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1 Introduction ix

1 Introduction

1.1 Motivation

Logarithmic geometry was developed to deal with two fundamental and related
problems in algebraic geometry: compactification and degeneration. A key as-
pect of algebraic geometry is that it is essentially global in nature. Algebraic
varieties can be compactified: any separated scheme S of finite type over a field
k admits an open embedding j : S ↪→ T , with T/k proper and with S Zariski
dense in T [55, 9]. Since proper schemes are much easier to study than general
schemes, it is often convenient to work with T even if it is the original scheme
S that is of primary interest. It then becomes necessary to keep track of the
complement Z := T \S and to study how functions, differential forms, sheaves,
and other geometric objects on T behave near Z, and to have a mechanism to
extract S from T . In differential topology, these problems are often addressed
by working with manifolds with boundary, and logarithmic geometry can be
thought of as a substitute for, or version of, the notion of “algebraic variety
with boundary.” Indeed, log schemes over the field of complex numbers have
“Betti realizations,”1 and the Betti realizations of logarithmically smooth log
schemes are topological manifolds with boundary.

The compactification problem is related to the phenomenon of degeneration.
A scheme S often arises as a moduli space, for example, a space parameterizing
smooth proper schemes of a certain type. If S is a fine moduli space, there
is a smooth proper morphism f : U → S whose fibers are the objects one
wants to classify. One can then hope to find a compactification T of S such that
the boundary points parameterize “decorated degenerations” of the original
objects. In this case there should be a proper and flat (but not smooth) g : X →
T extending f : U → S. Then one is left with the problem of comparing f to g
and in particular of analyzing the behavior of g near Y := X \U. In many cases
one can obtain important information about the original family f by studying
the degenerate family over Z. A typical example is the compactification of the
moduli stack of smooth curves by the moduli stack of stable curves.

The problems of compactification and degeneration are thus manifest in a

1 Betti realizations of log schemes were introduced by Kato and Nakayama and are often called
“Kato–Nakayama spaces.”
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diagram of the form:

U ⊂ - X � ⊃ Y

S

f

?
⊂ - T

g

?
� ⊃ Z.

g|Y

?

It turns out that in many such cases there is a natural way to equip X and T with
log structures, which somehow “remember” U and S and are compatible with
g. Then g : X → T becomes a morphism of log schemes and inherits many
of the nice features of f . The log structures on X and T restrict in a natural
way to Y and Z, and the resulting morphism of log schemes g|Y : Y → Z still
remembers useful information about f , thanks to the “decoration” provided by
the log structures on Y and Z.

In good cases, the log structures on f , X, and T render the morphism f
logarithmically smooth, which makes it much easier to study than the under-
lying morphism of schemes. The concept of smoothness for log schemes fits
very naturally into Grothendieck’s geometric deformation theory. Furthermore,
Betti realizations of proper log smooth morphisms behave in some respects like
topological fibrations (see [44] and [57]). The fact that this picture works so
well both in topological and in arithmetical settings is one of the main justifi-
cations for the theory of log geometry.

Let us illustrate how log geometry works in the most basic case, that of
a (possibly partial) compactification. Let j : U → X be an open immersion,
with complementary closed immersion i : Y → X. Then Y (and hence U) is
determined by the sheaf IY ⊆ OX consisting of those local sections ofOX whose
restriction to Y vanishes, a sheaf of ideals of OX . However, it is not Y but rather
U that is our primary interest, so instead we consider the subsheafMU/X of OX

consisting of the local sections of OX whose restriction to U is invertible. If f
and g are sections ofMU/X , then so is f g, but f + g need not be. ThusMU/X is
not a sheaf of rings, but it is a sheaf of submonoids of the multiplicative sheaf
of monoids underlying OX . Note thatMU/X contains the sheaf of units O∗X , and
if X is integral, the quotient MU/X/O

∗
X can be naturally identified2 with the

sheaf of effective Cartier divisors on X with support in the complement Y of
U in X. The morphism of sheaves of monoids αU/X : MU/X → OX (inclusion)
is a logarithmic structure, called the compactifying log structure associated to
the embedding j. In good cases this log structure “remembers” the inclusion
U → X and furthermore satisfies a technical coherence condition that makes
2 This identification takes the class of a local section m ofMU/X to the inverse of the (invertible)

ideal sheaf generated by αU/X(m).
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Figure 1.1.1 Compactifying an open immersion

it manageable. In the category of log schemes, the open immersion j fits into a
commutative diagram

U
j̃- (X, αU/X)

X.

τU/X

?

j
-

This diagram provides a relative compactification of the open immersion j.
The map τU/X is proper but the map j̃ somehow preserves much of the essential
nature of the original open immersion j: in good cases, it behaves like a local
homotopy equivalence. We can imagine that the log structure αU/X cuts away or
blows up enough of X to make it look like U, but leaves enough of a boundary
for it to remain compact. It is in this sense that the log scheme (X, αU/X) plays
the role of an “algebraic variety with boundary.” For example, in the case of
the standard embedding of Gm → A1, the corresponding log scheme (A1, α)
behaves very much like the complex plane in which the origin is blown up to
become a circle, as shown in Figure 1.1.1. The morphism in this picture can
be identified with the multiplication map R≥ × S1 → C, where R≥ is the set
of nonnegative real numbers and S1 is the set of complex numbers of absolute
value one. This “real blowup” resolves the ambiguity of polar coordinates. It
serves as a proper model of the inclusion Gm → A1, whose homotopy theory
it closely resembles. These ideas will be made more precise in Section 1 of
Chapter V, where we discuss Betti realizations of log schemes. In particular,
Theorem V.1.3.1 shows that the Betti realization of a (logarithmically) smooth
log scheme over C really is a topological manifold with boundary.

In general, a log structure on a scheme X is a morphism of sheaves of com-
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mutative monoids α : M→ OX inducing an isomorphism α−1(O∗X) → O∗X . We
do not require α to be injective. In particular, sections ofM can map to zero
in OX , although in good casesM is integral, so that onM, multiplication by
any local section is injective. The tension between these behaviors accounts
for much of the power, as well as many of the technical difficulties, of log
geometry, particularly those involving fiber products. The flexibility and func-
toriality of log structures allow us to restrict a compactifying log structure αU/X

to X \ U, where sections of the sheaf of monoidsM keep track of the “ghosts
of vanishing coordinates.”

The naturality of these constructions allows them to work in appropriate
relative settings, for example, in the context of semistable reduction. Let X
be a regular scheme, let T be the spectrum of a discrete valuation ring, and
let f : X → T be a flat and proper morphism whose generic fiber Xτ/τ is
smooth and whose special fiber is a reduced divisor with normal crossings.
Then the compactifying log structures αX and αT associated as above to the
open embeddings Xτ → X and τ→ T fit into a morphism of log schemes

f : (X, αX)→ (T, αT ),

which is in fact logarithmically smooth.
The value of the machinery of log geometry must be judged by its appli-

cations to problems outside the theory itself. A detailed discussion of any of
these would be beyond the scope of this book, and we can only point readers
to the literature. Historically, the first (and perhaps still most striking) such ap-
plication is in the proof, due to Hyodo and Kato [37], Kato [48], Tsuji [75],
Faltings [19] [18], and others, of the “Cst conjecture” in p-adic Hodge theory.
Indeed, log geometry began as an attempt to discern what additional structure
on the special fiber of a semistable reduction was needed to define a “limit-
ing crystalline cohomology,” in analogy to Steenbrink’s construction of lim-
iting mixed Hodge structures in the complex analytic context [73], [74]. In
`-adic cohomology, the main applications have been to the Bloch conductor
formula [51] and higher dimensional Ogg–Shafarevich formulas [1] and to
results on resolution, purity, and duality [42]. Log geometry has also been
notably used in the theory of mirror symmetry [24] and the study of com-
pactifications of moduli spaces of curves [47], [68], abelian varieties [64], K3
surfaces [63], and toric Hilbert schemes [65].

1.2 Roots

The development of logarithmic geometry, like that of any organism, began
well before its official birth, and was preceded by many classical methods deal-
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ing with the problems of compactification and degeneration. These include
most notably the theories of toroidal embeddings, of differential forms and
equations with log poles and/or regular singularities, and of vanishing cycles
and monodromy. Logarithmic geometry was influenced by all these ideas and
provides a language that incorporates and extends them in functorial and sys-
tematic ways.

Logarithmic structures fit so naturally with the usual building blocks of
schemes that it is possible, and in most (but not all) cases, straightforward and
natural, to adapt many of the standard techniques and intuitions of algebraic
geometry to the logarithmic context. Log geometry seems to be especially
compatible with infinitesimal techniques, including Grothendieck’s notions of
smoothness, differentials, and differential operators. The sheaf of Kähler dif-
ferentials of a logarithmic scheme (X, αX), constructed from Grothendieck’s
deformation-theoretic viewpoint, coincides with the classical sheaf of differ-
ential forms of X with log poles along X \ U; this fact is one justification for
the terminology. Furthermore, any toric variety (with the log structure corre-
sponding to the dense open torus it contains) is log smooth, and the theory of
toroidal embeddings is essentially equivalent to the study of (logarithmically)
smooth log schemes over a field.

1.3 Goals

Our aim in this book is to provide an introduction to the basic notions and
techniques of log geometry that is accessible to graduate students with a basic
knowledge of algebraic geometry. We hope the material will also be useful to
researchers in other areas of geometry, to which we believe the theory can be
profitably adopted, as has already been done in the case of complex analytic
geometry. For the sake of concreteness, we work systematically with schemes
as locally ringed spaces, although it certainly would have been possible and
profitable to develop the theory for complex analytic varieties, or for algebraic
spaces or stacks. Even in the case of schemes, it is quite valuable to work
locally in the étale topology, and we shall allow ourselves to do so, although
we do not use the language of topos theory. (That more powerful approach is
taken in the very thorough treatment in [22].)

Just as scheme theory starts with the study of commutative rings, log geom-
etry starts with the study of commutative monoids. Much of this foundational
material is already available in the literature, but we have decided to offer a
self-contained presentation more directly suited to our purposes. In log geom-
etry, in an apparent contrast with toric geometry, the study of the category of
monoids, and in particular of homomorphisms of monoids, plays a fundamen-



xiv 1 Introduction

tal role. This difference was part of our motivation for including this material,
and we hope our treatment may be of interest apart from its applications to
log geometry per se. Thus Chapter I begins with the study of limits and col-
imits in the category of monoids, and in particular with the construction of
pushouts, which are analogous to tensor products in the category of rings. We
then discuss sets endowed with a monoid action (the analogs of modules in
ring theory), ideals, localization, and the spectrum of a monoid, with its Zariski
topology. After these preliminaries we turn to more familiar constructions in
convex geometry, including basic results about finiteness, duality, and cones.
Then we discuss monoid algebras and some facts about affine toric varieties.
The final sections of Chapter I are devoted to a deeper study of properties of
homomorphisms and actions of monoids, and in particular to certain analogs
of flatness. Of particular importance is Kato’s key concept of exactness, which
we encounter in Section 1.1. An example of its importance is manifest in the
“four point lemma” 4.2.16, where exactness is needed to make fiber products
of logarithmically integral log schemes behave well. Integrality and saturation
of morphisms, which we discuss next, are refinements of the notion of exact-
ness. Theorem 4.7.2 reveals the structure of “critically” and “locally” exact
homomorphisms and plays an important role throughout log geometry and this
text. We finish by showing how locally exact homomorphisms can be made
integral and saturated by a suitable base change, which can be viewed as a log-
arithmic version of semistable reduction. This material is more technical than
the rest of our exposition and can be skipped over in a first reading.

Chapter II discusses sheaves of monoids on topological spaces. After dis-
posing of some generalities, we define monoschemes, which are constructed
by gluing together spectra of commutative monoids, just as schemes are con-
structed by gluing together spectra of commutative rings. Our monoschemes
are sometimes called “schemes over F1” in the literature [12] and are general-
izations of the fans used to construct toric varieties. We use this concept to con-
struct monoidal transformations (blowups) for monoids (and monoschemes).
The main application is Theorem 1.8.1, which explains how a homomorphism
of monoids can be made locally exact by a monoidal transformation. Sec-
tion 1.10 explains the moment map for a monoid scheme AQ, which gives
a linearized model of the set of its R≥-valued points. As an application, we
show that the “positive part” of each fiber of a monoidal transformation is con-
tractible. The remainder of Chapter II is devoted to Kato’s important notions of
charts and coherence for sheaves of monoids, which form the main technical
link between logarithmic and toric geometry.

With the preliminaries well in hand, we are ready in Chapter III to turn to
logarithmic geometry per se, including two variants of the standard theory:
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idealized log schemes and relatively coherent log structures. We work with log
structures in both the Zariski and étale topologies, since each has its own ad-
vantages and disadvantages, and explain the relation between the two. After
giving the main definitions and basic constructions, we discuss some exam-
ples: log points and dashes, and the compactifying log structures coming from
open immersions U → X. We then describe in some detail a precursor of the
notion of log structures, due (independently) to Deligne and Faltings. This no-
tion, although less flexible and functorial than the point of view taken here, is
convenient for describing the log structures that arise in the context of divisors
with normal crossings and semistable reduction. It was in some sense already
envisioned in the work of Friedman [20] and Steenbrink [73]. We then discuss
hollow and especially solid log structures. In the first case, the log structure
reflects the geometry of the part of a scheme that has been cut away, and in
the second the log structure is tightly tied to the part of the geometry of the
scheme which can be modelled by a toric structure. The notion of solidity of
a log structure is closely related to, and helpful in, the study of Kato’s notion
of log regularity, which we discuss next. Finally, we briefly discuss frames for
log structures, a weak version of charts that can be quite useful.

The remainder of Chapter III is devoted to the study of morphisms of log
schemes, including the rather delicate construction of fibered products. Exact
morphisms of log schemes play an especially important role, as well as the re-
lated notions of integral and saturated morphisms. We also study the logarith-
mic versions of immersions, inseparable morphisms, and Kummer and small
morphisms, as well as logarithmic blowups.

Chapter IV is devoted to logarithmic differentials and logarithmic smooth-
ness. We begin with a purely algebraic construction of Kähler differentials for
(pre) log schemes, then explain its geometric meaning in terms of deforma-
tion theory. Next we discuss smoothness for logarithmic schemes, defined in
terms of a logarithmic version of Grothendieck’s infinitesimal lifting criterion.
Although smooth morphisms in logarithmic geometry are much more com-
plicated than in classical geometry, locally they admit nice toric models. As in
the classical case, smoothness and regularity are related notions, the former be-
ing a “relative” version of the latter. We next discuss the more general notion
of logarithmic flatness, which is quite useful but, as of this writing, techni-
cally challenging. We explore the relationships among the notions of flatness,
smoothness, exactness, and integrality, extending in some cases the fundamen-
tal results of Kato.

In Chapter V we discuss topology and cohomology. To provide a geomet-
ric intuition, we begin with the construction of the Betti realization Xlog of a
log scheme X over C. This is a topological space that comes with a natural
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proper map τX : Xlog → Xan which embodies the picture exemplified in Fig-
ure 1.1.1. We explain the definition and basic topological properties of Betti
realizations, make them explicit for toric models, and show that the Betti re-
alization of a smooth analytic space is a topological manifold with boundary.
(We do not include the proof, but in fact the Betti realization of a smooth
proper and exact morphism of log analytic spaces is a topological fibration of
manifolds with boundary [57].) We then define the sheaf of rings Olog

X on Xlog,
which is obtained by adjoining logarithms of sections of MX in a canonical
way and which allows for a generalization of the familiar exponential sequence
in classical complex analytic geometry. Our next main topic is logarithmic de
Rham cohomology. We begin with an algebraic description of the logarith-
mic de Rham complex of a monoid algebra and some of the natural filtrations
(defined by faces and ideals) it carries. Then we explain the sheafification and
globalization of these constructions for log schemes. We give several versions
of the logarithmic Poincaré lemma in the analytic setting, proving that analytic
de Rham cohomology calculates the Betti cohomology of Xlog. In the alge-
braic setting, we construct the Cartier isomorphism and the Cartier operator
in positive characteristics, and explain how the Cartier operator relates to the
restricted Lie-algebra structure on the logarithmic tangent sheaf. Finally we
study algebraic de Rham cohomology in characteristic zero, concluding with
some finiteness theorems and comparisons with analytic, and hence log Betti,
cohomology.

Time and space constraints have prevented us from discussing many impor-
tant topics which we had earlier hoped to include and for which we can only
indicate some references in the literature. Some fundamental results not cov-
ered include the resolution of toric singularities [49],[58],[42], the cohomol-
ogy of log blowups [39], and the fact that normal toric varieties are Cohen–
Macaulay [36]. We have also had to omit examples of applications of log ge-
ometry and can only suggest that the reader look at work on the moduli of sta-
ble curves [47], on the logarithmic Riemann–Hilbert correspondence [40, 61],
and on crystalline cohomology [37, 60], as a scattered set of examples.

1.4 Organization

The goals of this text are to introduce the reader to the basic ideas of log geom-
etry and to provide a technical foundation for further work on the theory and
its applications. These goals are somewhat contradictory, in that a good deal
of the foundational material depends on the algebra of monoids and the geom-
etry of convex bodies, the study of which can impede the momentum toward
the ultimate goals coming from algebraic geometry. Although a fair amount of
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this material can be found in the literature, we have decided to treat it care-
fully here, partly because the author himself wanted to become comfortable
with it and partly because the perspective from log geometry, in which homo-
morphisms play a central role, is not to be found in the standard texts. We
have grouped nearly all this material in the first two chapters and consequently
don’t arrive at log geometry itself until Chapter III, potentially discouraging a
reader eager to try out log geometry in some specific context. Such a reader
may find it preferable to skip some of the earlier sections, returning to them as
necessary. We hope our exposition will make this possible. In particular, the
material on idealized monoids, idealized log schemes, and relative coherence,
concepts whose ultimate utility has not yet been convincingly demonstrated,
can be skipped on a first reading. Probably the same is true of monoschemes,
which are really just an alternative to the classical theory of fans from toric
geometry. Readers focused on the essence of log geometry could try reading
only Sections 1.1, 4.1, and 4.2 of Chapter I, and then Sections 1.1 and 2.1 of
Chapter II, before proceeding to Chapter III. Readers whose primary interest
is convex rather than log geometry may find it interesting to concentrate on
the material in Chapters I and II, since some of it may be new to them, es-
pecially Section 4 of Chapter I. Unfortunately, the key concept of logarithmic
smoothness does not appear until well into Chapter IV; fortunately, this con-
cept was already well explained in Kato’s original paper [48]. In any case, we
hope that impatient readers will find our treatment palatable even if they have
not digested all the preceding material.

To facilitate flexibility in reading the text, we have tried to be careful with
references. We use the same numbering scheme for definitions, theorems, re-
marks, etc. within each chapter. When referring to a result from a different
chapter, we include the (roman numeral) chapter number in the reference; oth-
erwise we omit it.

It is probably appropriate to remark on the writing style. We have attempted
to include a considerable degree of detail, both in motivating and in defin-
ing concepts and in writing the proofs. Some readers, especially those fa-
miliar with the techniques of toric geometry, may consequently find the pre-
sentation ponderous. However, we found no alternative compatible with the
goals of solidifying our understanding and of avoiding a plethora of errors,
which would otherwise crop up not just in the proofs themselves, but also
in statements of theorems and, worse, definitions. It seems easier for the
reader to skip some arguments as s/he sees fit rather than to worry about er-
rors hidden in unwritten proofs. Readers who feel the (understandable) de-
sire for exercises can refrain from reading the proofs supplied and provide
their own and/or content themselves with the search for errors, of which we
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fear many may remain. We would be grateful for notifications of any errors,
which we hope eventually to correct on a web page available at <https:
//math.berkeley.edu/˜ogus/logpage.html>.
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The Geometry of Monoids

1 Basics on monoids

1.1 Limits in the category of monoids

A monoid is a triple (M, ?, eM) consisting of a set M, an associative binary
operation ?, and a two-sided identity element eM of M. A homomorphism of
monoids is a function θ : M → N such that θ(eM) = eN and θ(m ? m′) =

θ(m) ? θ(m′) for any pair of elements m and m′ of M. Note that, although the
element eM is the unique two-sided identity of M, compatibility of θ with eM

is not automatic from compatibility with ?. All monoids we consider here will
be commutative unless explicitly noted otherwise, and we write Mon for the
category of commutative monoids and homomorphisms of monoids.

We will often follow the common practice of writing M or (M, ?) in place
of (M, ?, eM) when there seems to be no danger of confusion. Similarly, if a
and b are elements of a monoid (M, ?, eM), we will often write ab (or a + b)
for a ? b, and 1 (or 0) for eM .

The most basic example of a monoid is the set N of natural numbers, with
addition as the monoid law. If M is any monoid and m ∈ M, there is a unique
monoid homomorphism N→ M sending 1 to m; thus N is the free monoid with
generator 1. More generally, if S is any set, the set N(S) of functions I : S → N
such that Is = 0 for almost all s, endowed with the pointwise addition of
functions as a binary operation, is the free (commutative) monoid with basis
S ⊆ N(S). Thus the functor S 7→ N(S) is left adjoint to the forgetful functor from
the category of monoids to the category of sets.

Arbitrary (projective) limits exist in the category of monoids, and their for-
mation commutes with the forgetful functor to the category of sets. In particu-
lar, the intersection of a set of submonoids of M is again a submonoid; hence
if S is a subset of M, the intersection of all the submonoids of M that contain

1
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S is the smallest submonoid of M containing S, the submonoid of M generated
by S. If there exists a finite subset S of M that generates M, one says that M is
finitely generated as a monoid.

Arbitrary colimits (inductive limits) of monoids also exist. Direct sums are
easy to construct: the direct sum

⊕
Mi of a family {Mi : i ∈ I} of monoids is

the submonoid of the product
∏

i Mi consisting of those elements m· such that
mi = 0 for almost all i. The general construction is more difficult, and we will
first investigate quotients and equivalence relations in the category of monoids.

Let θ : P → Q be a homomorphism of monoids. Note that the kernel
θ−1(0) of θ is not very useful: for example, the kernel of the homomorphism
θ : N ⊕ N → N sending (a, b) to a + b is just {(0, 0)}, but θ is not injective. In-
stead we consider the set E(θ) of pairs (p1, p2) ∈ P×P such that θ(p1) = θ(p2),
an equivalence relation on P. The fact that θ is also a homomorphism of
monoids implies that E(θ) is a submonoid of P × P. An equivalence relation
on P that is also a submonoid of P × P is called a congruence (or congru-
ence relation) on P. One checks easily that if E is a congruence relation on P,
then the set P/E of equivalence classes has a unique monoid structure making
the projection P → P/E a monoid homomorphism. Thus there is a dictio-
nary between congruence relations on P and isomorphism classes of surjective
monoid homomorphisms P → P′. The following proposition, whose proof is
immediate, summarizes these considerations.

Proposition 1.1.1. Let P be a monoid.

1. Let π : P→ Q be a surjective homomorphism of monoids, and let E be the

equalizer of the two maps P × P
p1-
p2

- P
π- Q, i.e., E := P ×Q P.

(a) E is a congruence relation on P.

(b) Q is the coequalizer of the two maps E → P × P
p1-
p2

- P. Thus, the
diagram

E - P

P
?

- Q
?

is cocartesian, as well as cartesian.

2. Let E ⊆ P × P be a congruence relation on P, let Q := P/E be the set of
equivalence classes, and let π : P→ Q be the function taking an element of
P to the equivalence class containing it.
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(a) There is a unique monoid structure on Q such that π : P → Q is a
monoid homomorphism.

(b) The inclusion e : E → P×P is the equalizer of the two homomorphisms

P × P
p1-
p2

- P
π- Q,

and Q is the coequalizer of the two homomorphisms

E
e- P × P

p1-
p2

- P.

Thus, the diagram of (1b) is cartesian and cocartesian.

The passage from E to Q induces a bijection from the set of congruence re-
lations on P to the set of isomorphism classes of surjective homomorphisms
whose domain is P. �

In the terminology of [2, 10.3 and 10.8, Exp. I], Proposition 1.1.1 says that
every surjective homomorphism of monoids is an “effective epimorphism,” and
every congruence relation E is an “effective equivalence relation.”

Remark 1.1.2. If P → Q is surjective and Q′ → Q is any homomorphism,
then the pullback map P ×Q Q′ → Q′ is again surjective. This implies that
P → Q and E are in fact “universally effective.” On the other hand, not every
epimorphism in the category of monoids is surjective. In fact, a homomorphism
of monoids is universally an epimorphism if and only if it is surjective.

The intersection of a family of congruence relations is a congruence relation,
and hence it makes sense to speak of the congruence relation generated by a
subset of P × P. One says that a congruence relation E is finitely generated if
there is a finite subset S of P×P that generates E as a congruence relation; this
does not imply that S generates E as a monoid.

Here is a useful description of the congruence relation generated by a subset
of P × P.

Proposition 1.1.3. Let P be a (commutative) monoid.

1. An equivalence relation E ⊆ P × P is a congruence relation if and only if
(a + p, b + p) ∈ E whenever (a, b) ∈ E and p ∈ P.

2. If S is a subset of P × P, let

SP := {(a + p, b + p) : (a, b) ∈ S, p ∈ P}.

Then the congruence relation E generated by S is the equivalence relation
generated by SP. Explicitly, E is the union of the diagonal with the set of
pairs (x, y) for which there exists a finite sequence (p0, . . . , pn) with p0 = x
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and pn = y such that, for every i > 0, either (pi−1, pi) or (pi, pi−1) belongs
to SP.

Proof Let E be an equivalence relation on P that is stable under addition by
elements of the diagonal. Suppose that (a, b) and (c, d) ∈ E. Then (a+c, b+c) ∈
E and (c + b, d + b) ∈ E, and since P is commutative and E is transitive,
(a + c, b + d) ∈ E. Thus E is closed under addition. Since E contains the
diagonal, the identity element (0, 0) of P×P belongs to E, so E is a submonoid
of P×P, hence a congruence relation. Conversely, if E is a congruence relation,
then (p, p) ∈ E for every p ∈ E; hence (a + p, b + p) ∈ E whenever (a, b) ∈ E,
This proves (1). For (2), let E denote the congruence relation generated by
S and let E′ denote the equivalence relation generated by SP. Since SP ⊆ E
and E is an equivalence relation, it follows that E′ ⊆ E. The associative law
implies that SP is stable under addition by elements of the diagonal of P × P.
Hence if (p0, . . . , pn) is a sequence such that (pi−1, pi) or (pi, pi−1) ∈ SP for all
i > 0, then (p0 + p, . . . , pn + p) shares the same property. Thus if (x, y) ∈ E′

and p ∈ P, then (x + p, y + p) ∈ E′. Then it follows from (1) that E′ is a
congruence relation, and so E′ = E. �

Remark 1.1.4. If P is an abelian group and E ⊆ P×P is a congruence relation
on P, then the image of E under the homomorphism h : P ⊕ P → P sending
(p1, p2) to p2 − p1 is a subgroup K of P, and E = h−1(K). Conversely the
inverse image under h of any subgroup of P is a congruence relation on P.
This defines a bijective correspondence between the subgroups of P and the
congruence relations on P.

If θ1 and θ2 are monoid homomorphisms P → Q, one can construct the
coequalizer of θ1 and θ2 as the quotient of Q by the congruence relation on Q
generated by the set of pairs (θ1(p), θ2(p)) for p ∈ P.

The existence of arbitrary colimits follows from the existence of direct sums
and coequalizers of pairs of morphisms by the following standard construction
(see also [2, 2.3, Exp. I]). Let {Pi, θa} be a functor from a small category I to
the category of monoids, where i ranges over the objects of I and a over the
arrows a : i(a)→ j(a) of I. Since the category of monoids has direct sums, we
can form Q := ⊕{Pi : i ∈ Ob(I)} and R := ⊕{Pi(a), a ∈ Arr(I)}, with canonical
homomorphisms

{ui : Pi → Q : i ∈ Ob(I)} and {ua : Pi(a) → R : a ∈ Arr(I)}.

Then there are unique homomorphisms θ1, θ2 : R → Q such that, for all a,
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θ1 ◦ ua = ui(a) and θ2 ◦ ua = u j(a) ◦ θa:

Pi(a)
ua - R R �

ua Pi(a)

Q

θ1

?
ui(a) -

Q

θ2

?
�

u j(a)
P j(a).

θa

?

The colimit of the functor {Pi, θa} is the coequalizer of θ1 and θ2.
A presentation of a monoid M is a coequalizer diagram

L1
-- L0 - M

with L0 and L1 free. It is equivalent to the data of a map from a set I to M
whose image generates M and a map from a set J to N(I) × N(I) whose image
generates the congruence relation on N(I) defined by the surjective monoid map
N(I) → M corresponding to the set map I → M. The monoid M is said to be
of finite presentation if it admits a presentation with L0 and L1 free and finitely
generated. We shall see in Theorem 2.1.7 that in fact every finitely generated
(commutative) monoid is of finite presentation.

The amalgamated sum Q1
v1- Q �

v2 Q2 of a pair of monoid morphisms
ui : P → Qi, often denoted simply by Q1 ⊕P Q2, is the colimit of the diagram
Q1 �

u1 P
u2- Q2. That is, the pair (v1, v2) universally makes the diagram

P
u1 - Q1

Q2

u2

? v2 - Q

v1

?

(1.1.1)

commute. This amalgamated sum can be viewed as the pushout of u1 along u2

or the pushout of u2 along u1. It can also be viewed as the coequalizer of the
two maps (u1, 0) and (0, u2) from P to Q1 ⊕ Q2.

The following proposition describes the pushout Q1 ⊕P Q2 explicitly. Its
calculation is considerably simplified if one of the monoids in question is a
group. (See Proposition 4.6.1 for a generalization.)

Proposition 1.1.5. Let ui : P→ Qi be a pair of monoid morphisms, let Q be
their amalgamated sum, as in Diagram 1.1.1, and let E be the congruence rela-
tion on Q1 ⊕ Q2 given by the natural surjection Q1 ⊕ Q2 → Q.
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1. Let S be the set of pairs

((q1, q2), (q′1, q
′
2)) ∈ (Q1 ⊕ Q2) × (Q1 ⊕ Q2)

such that there exists a p ∈ P such that q′1 = u1(p) + q1 and q2 = u2(p) + q′2.
Then E is the set of pairs

(a, b) ∈ (Q1 ⊕ Q2) × (Q1 ⊕ Q2)

such that there exists a sequence (r0, . . . , rn) in Q1 ⊕ Q2 such that (a, b) =

(r0, rn) and such that (ri, ri+1) belongs to S if i is even and to St := {(a, b) :
(b, a) ∈ S} if i is odd.

2. Let E′ be the set of pairs ((q1, q2), (q′1, q
′
2)) of elements of Q1⊕Q2 such that

there exist p and p′ in P with q1 + u1(p′) = q′1 + u1(p) and q2 + u2(p) =

q′2 + u2(p′). Then E′ is a congruence relation on Q1 ⊕Q2 containing E, and
if any of P, Q1, or Q2 is a group, then E = E′.

3. If P is a group, then two elements of Q1 ⊕ Q2 are congruent modulo E if
and only if they lie in the same orbit of the action of P on Q1 ⊕ Q2 defined
by p(q1, q2) = (q1 + u1(p), q2 + u2(−p)).

4. If P and Qi are groups, then so is Q1 ⊕P Q2, which is in fact just the amal-
gamated sum in the category of abelian groups.

Proof To prove (1), observe first that S is stable under the action of the di-
agonal of (Q1 ⊕ Q2) × (Q1 ⊕ Q2) and contains this diagonal. Then, by Propo-
sition 1.1.3, the congruence relation R generated by S is the set of pairs (a, b)
such that there exists a sequence (r0, . . . , rn) with r0 = a and rn = b and such
that each pair (ri, ri+1) belongs to S or to St. Note however that if (ri−1, ri) and
(ri, ri+1) both belong to S or to St, then so does (ri−1, ri+1), so the sequence can
be shortened. Note further that if (r0, r1) belongs to St then (r0, r0, r1) satisfies
the description in (1). This shows that the set described in (1) really is a congru-
ence relation. Since E contains S, and is in fact the smallest such congruence
relation, it follows that E = R.

To prove (2), note first that the set E′ is evidently symmetric and reflexive.
To prove its transitivity, let us say that a pair (a, b) in P × P “links” a pair
of elements (q1, q2) and (q′1, q

′
2) of Q1 ⊕ Q2 if q1 + u1(b) = q′1 + u1(a) and

q2 + u2(a) = q′2 + u2(b). One checks immediately that if (a, b) links (q1, q2)
and (q′1, q

′
2) and (a′, b′) links (q′1, q

′
2) and (q′′1 , q

′′
2 ), then (a + a′, b + b′) links

(q1, q2) and (q′′1 , q
′′
2 ). Moreover, if (a, b) links (q1, q2) and (q′1, q

′
2) then, for any

(q̃1, q̃2) ∈ Q1 ⊕ Q2, (a, b) links (q1 + q̃1, q2 + q̃2) and (q′1 + q̃1, q′2 + q̃2). Then
by Proposition 1.1.3, E′ is a congruence relation on Q1 ⊕ Q2. Furthermore,
if p ∈ P, (p, 0) links (u1(p), 0) and (0, u2(p)), and since E is the congruence
relation generated by such pairs, E ⊆ E′. If P or either Qi is a group, then
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v := vi ◦ ui factors through the group Q∗ of invertible elements of Q. If (a, b)
links (q1, q2) and (q′1, q

′
2), we find that

v1(q1) + v2(q2) + v(a + b) = v1(q1 + u1(b)) + v2(q2 + u2(a))

= v1(q′1 + u1(a)) + v2(q′2 + u2(b))

= v1(q′1) + v2(q′2) + v(a + b).

Since v(a + b) ∈ Q∗, it follows that

v1(q1) + v2(q2) = v1(q′1) + v2(q′2).

Thus E′ ⊆ E. This proves (2), and (3) and (4) are immediate consequences.
�

Example 1.1.6. Taking Q2 = 0 in Proposition 1.1.5 one obtains the cokernel
of the morphism u1 : P → Q1, or, equivalently, the coequalizer of u1 and the
zero mapping P → Q1. If P is a submonoid of Q, one writes Q → Q/P for
the cokernel of the inclusion P→ Q, and it follows from (2) of the proposition
that two elements q and q′ of Q have the same image in Q/P if and only if
there exist p and p′ in P such that q + p = q′ + p′. For example, the cokernel
of the diagonal embedding N→ N ⊕ N is the homomorphism

N ⊕ N→ Z : (a, b) 7→ a − b.

Note that Q/P can be zero even if P is a proper submonoid of Q; this holds, for
example, if P is the submonoid of Q := N ⊕ N generated by (1, 0) and (1, 1).
If P′ is a submonoid of Q containing P, then P′/P is a submonoid of Q/P and
the natural map (Q/P)/(P′/P)→ Q/P′ is an isomorphism.

1.2 Monoid actions

If S is a set, then the set of functions from S to itself forms a (not necessarily
commutative) monoid End(S) under composition. If Q is a monoid, an action
of Q on S is a monoid homomorphism θS from Q to End(S). In this context we
often write the monoid law of Q multiplicatively, and, if q ∈ Q and s ∈ S, we
write qs for θS(q)(s). A Q-set is a set endowed with an action of Q, and EnsQ

will denote the category of Q-sets, with the evident notion of morphism. If S is
a Q-set and s ∈ S, the image of the map Q→ S sending q to qs is the minimal
Q-stable subset of S containing s, called the trajectory of s in S.

A basis for a Q-set S is a map of sets i : T → S such that the induced map
Q × T → S : (q, t) 7→ qi(t) is bijective. If such a basis exists we say that S
is a free Q-set. A free Q-set with basis T → S satisfies the usual universal
property of a free object: every map from T to the set underlying a Q-set S′
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extends uniquely to a morphism of Q-sets S→ S′. If T is any set and if Q × T
is endowed with the action ρ defined by ρ(q′)(q, t) = (q′q, t), then the map
T → Q × T sending t to (1, t) is a basis. Thus the functor taking a set T to the
free Q-set Q × T is left adjoint to the forgetful functor from the category of
Q-sets to the category of sets. Note that if G is a group and S is a G-set, then S
has a basis as a G-set if and only if the action is free in the sense that gs = s
implies g = 1. This equivalence is not true for general monoids.

The category EnsQ of Q-sets admits arbitrary projective limits, and their
formation commutes with the forgetful functor to the category of sets. This is
a formal consequence of the fact that the forgetful functor EnsQ → Ens has
a left adjoint. In particular, if S and T are Q-sets, then Q acts on S × T by
q(s, t) := (qs, qt), and this action makes S × T the product of S and T in EnsQ.

Colimits in EnsQ also exist. The direct sum of a family Si : i ∈ I is just
the disjoint union with the evident Q-action. To understand the construction of
quotients in the category EnsQ, note that if π : S → T is a surjective map of
Q-sets, then the corresponding equivalence relation E ⊆ S × S is a Q-subset
of S × S; such an equivalence relation is called a congruence relation on S.
Conversely, if E is any congruence relation on S, then there is a unique Q-set
structure on S/E such that the projection S → S/E is a morphism of Q-sets.
When S = Q acting regularly on itself, the notion of a congruence relation
on Q as a monoid coincides with the notion of a congruence relation as a Q-
set, thanks to Proposition 1.1.3. Furthermore, the analog of statement (2) of
Proposition 1.1.3 holds for Q-sets, and in particular the equivalence relation
generated by a subset of S × S that is stable under the diagonal action of Q
is already a congruence relation. If u and v are two morphisms S′ → S, the
coequalizer of u and v is the quotient of S by the congruence relation generated
by {(u(s′), v(s′)) : s′ ∈ S′}. The existence of general colimits follows.

If S and T are Q-sets, the set HomQ(S,T ) has a natural action of Q, given
by (qh)(s) := qh(s) = h(qs) for h : S → T , q ∈ Q, and s ∈ S There is also
a tensor product construction for Q-sets. If S, T , and W are Q-sets, then a Q-
bimorphism S × T → W is by definition a function β : S × T → W such that
β(qs, t) = β(s, qt) = qβ(s, t) for any (s, t) ∈ S×T and q ∈ Q. The tensor product
of S and T is the universal Q-bimorphism S × T → S ⊗Q T . To construct it,
begin by regarding S × T as a Q-set via its action on S, so that q(s, t) := (qs, t),
and consider the equivalence relation R on S × T generated by the set of pairs

((qs, t), (s, qt)) ∈ (S × T ) × (S × T ) for q ∈ Q, s ∈ S, t ∈ T .

Note that this set of pairs is stable under the action of Q, since if q′ ∈ Q,
and s′ := q′s then ((q′qs, t), (q′s, qt)) = ((qs′, t), (s′, qt)). It follows that the
equivalence relation R is a congruence relation. Then the projection π : S×T →
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(S×T )/R is a Q-bimorphism and satisfies the universal mapping property of the
tensor product. If Q is a (commutative) group, then S ⊗Q T can be constructed
in the usual way as the orbit space of the action of Q on S×T given by q(s, t) :=
(qs, q−1t).

In general, one has a natural isomorphism of Q-sets

HomQ(S ⊗Q T,W) � HomQ(S,HomQ(T,W)),

taking a Q bimorphism β to the Q-morphism γ given by γ(s)(t) := β(s, t). It
follows formally that, for fixed T , the functor S 7→ S ⊗Q T commutes with
colimits.

Let θ : P→ Q be a homomorphism of monoids. Then θ defines an action of
P on Q given by pq := θ(p)q. If S is a P-set, the tensor product Q ⊗P S has the
natural action of Q, with q(q′⊗ s) = (qq′⊗ s), and the map S→ Q⊗P S sending
s to 1 ⊗ s is a morphism of P-sets over the homomorphism θ. If θi : P → Qi

for i = 1, 2 is a pair of monoid homomorphisms, then there is a unique monoid
structure on Q1 ⊗P Q2 such that

(q1 ⊗ q2)(q′1 ⊗ q′2) = (q1q′1 ⊗ q2q′2),

and this is also the unique monoid structure for which the natural maps Qi →

Q1 ⊗P Q2 are homomorphisms. It can be checked that this monoid structure
makes Q1 ⊗P Q2 into the amalgamated sum of Q1 and Q2 along P.

Remark 1.2.1. We have seen that, for a fixed Q-set T , the functor S 7→ S⊗Q T
commutes with colimits. It is perhaps no surprise that it does not commute
with limits in general. We want to emphasize that this functor need not even
commute with finite products, even if T is free. Indeed, if T has basis Λ, then
S⊗Q T � S×Λ, and if the cardinality of Λ is greater than one, the functor S 7→
S×Λ does not commute with products. This fact complicates the calculation of
tensor products from generators and relations. Indeed, suppose that F → S is a
surjective morphism and E := F×S F is the corresponding equivalence relation
on F, where F is free. Then F → S is the coequalizer of the two maps E ⇒ F,
and, since ⊗QT commutes with colimits, it follows that F ⊗Q T → S ⊗Q T is
the coequalizer of E ⊗Q T ⇒ F ⊗Q T . However, the natural map

(F × F) ⊗Q T → (F ⊗Q T ) × (F ⊗Q T )

is not an isomorphism, and the image of E⊗QT in (F⊗QT )×(F⊗QT ) might not
be an equivalence relation. Thus one is left with the often challenging problem
of computing the congruence relation it generates.

Definition 1.2.2. Let Q be a monoid and let S be a Q-set. The transporter of
S is the category TQS whose objects are the elements of S and for which the
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morphisms from an object s to an object t are the elements q of Q such that
qs = t, with composition given by the monoid law of Q. The transporter of a
monoid Q is the transporter of Q regarded as a Q-set, and is denoted simply by
TQ.

Associated with the category TQS is a partially ordered set that is worth
making explicit.

Definition 1.2.3. Let Q be a monoid and S a Q-set. If s and t are elements of
S, we write s ≤ t if there exists a q ∈ Q such that qs = t, and s ∼ t if s ≤ t and
t ≤ s.

It is clear that s ≤ w if s ≤ t and t ≤ w and that s ≤ s for every s ∈ S.
Thus the relation ≤ defines a preorder on S. The relation ∼ is a congruence
relation on S, and the relation ≤ on the quotient S/∼ is a partial order. We shall
use this notion especially when S = Q with the regular representation. Since ∼
is a congruence relation, it follows from Proposition 1.1.3 that Q/∼ inherits a
monoid structure.

1.3 Integral, fine, and saturated monoids

If M is any commutative monoid, there is a universal homomorphism λM from
M to a group Mgp. That is, Mgp is a group, λM : M → Mgp is a homo-
morphism of monoids, and any homomorphism from M to a group factors
uniquely through λM . Thus, the functor M 7→ Mgp is the left adjoint of the
inclusion functor from the category of groups to the category of monoids;
since it has a right adjoint, it automatically commutes with the formation of
direct limits. In fact, Mgp can be identified with the cokernel (Example 1.1.6)
of M⊕M = M×M by the diagonal, and λM with the composite of (idM , 0) and
the projection M × M → (M × M)/∆M . One can also construct Mgp as the set
of equivalence classes of pairs (x, y) of elements of M, where (x, y) is equiva-
lent to (x′, y′) if and only if there exists z ∈ M such that x+y′+z = x′+y+z. The
explicit description of the equivalence relation in Example 1.1.6 shows that the
two constructions are in fact the same. One writes x−y for the equivalence class
containing (x, y), and then (x − y) + (x′ − y′) = (x + x′) − (y + y′).

If M is a monoid, let M∗ denote the set of all m ∈ M such that there exists
an n ∈ M such that m + n = 0. Then M∗ forms a submonoid of M. It is in fact a
subgroup—the largest subgroup of M. Any homomorphism from a group to M
factors uniquely through M∗, so that M 7→ M∗ is right adjoint to the inclusion
functor from groups to monoids. We call M∗ the group of units of M; it acts
naturally on M by translation. If G is any subgroup of M, the orbit space M/G
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can be identified with the quotient in the category of monoids discussed in
Example 1.1.6. In particular, we write M for M/M∗.

Definition 1.3.1. A (commutative) monoid M is said to be:

1. sharp if M∗ = {0};
2. dull if M∗ = M, i.e., if M is a group;
3. u-integral if m ∈ M, u′ ∈ M∗ and m + u′ = m implies that u′ = 0;
4. quasi-integral if m,m′ ∈ M and m + m′ = m implies that m′ = 0;
5. integral if m,m′,m′′ ∈ M and m + m′ = m + m′′ implies that m′ = m′′.

Evidently every integral monoid is quasi-integral and every quasi-integral
monoid is u-integral. If M is u-integral, then M∗ acts freely on M and the map
M → M makes M an M∗-torsor over M. The universal map λM : M → Mgp

is injective if and only if M is integral, and the induced map M∗ → Mgp is
injective if and only if M is u-integral. For any monoid M, the quotient M is
sharp, and the map M → M is the universal homomorphism from M to a sharp
monoid. For any monoid M, the monoid M/∼ (see Definition 1.2.3) is sharp,
and if M is quasi-integral, the natural map M/M∗ → M/∼ is an isomorphism.
The inverse limit of a family of integral monoids is again integral.

Remark 1.3.2. The formation of Mgp commutes with direct products but not
with fibered products in general. For example, let s : N2 → N be the map
taking (a, b) to a + b and let t be the map taking (a, b) to 0. Then the equalizer
of s and t is zero. However, the equalizer of the associated maps on groups
Z2 → Z is the antidiagonal Z→ Z2, sending c to (c,−c). On the other hand, it
is true that if θ : P → Q is injective and Q is integral, then θgp : Pgp → Qgp is
also injective.

Proposition 1.3.3. If Q is an integral monoid and P is a submonoid, the natural
map Q/P → Qgp/Pgp is injective. Thus Q/P is integral and can be identified
with the image of Q in Qgp/Pgp. A monoid Q is integral if and only if it is
u-integral and Q is integral.

Proof If q and q′ are two elements of Q with the same image in Qgp/Pgp,
then there exist p and p′ such that q − q′ = p − p′ in Qgp. Since Q is integral,
q + p′ = q′ + p in Q. Then it follows from the discussion in Example 1.1.6 that
q and q′ have the same image in Q/P. Thus Q/P → Qgp/Pgp is injective, and
Q/P is integral. In particular, if Q is integral, so is Q. Conversely, suppose that
Q is u-integral and Q is integral, and that q, q′ and p are elements of Q with
q + p = q′ + p. Since Q is integral, there exists a unit u such that q′ = q + u.
Then q + p = q + p + u. Since Q is u-integral, u = 0 and hence q = q′. This
shows that Q is integral. �
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Let Monint denote the full subcategory of Mon whose objects are the inte-
gral monoids. For any monoid M, let Mint denote the image of

λM : M → Mgp.

Then M 7→ Mint is left adjoint to the inclusion functor Monint →Mon.

Proposition 1.3.4. Let Q be the amalgamated sum of two homomorphisms
ui : P → Qi in the category Mon. Then Qint is the amalgamated sum of
uint

i : Pint → Qint
i in the category Monint, and can be naturally identified with

the image of Q in Qgp
1 ⊕Pgp Qgp

2 . If P, Q1, and Q2 are integral and any of these
monoids is a group, then Q is integral.

Proof The fact that Qint is the amalgamated sum of uint
i in Monint is a formal

consequence of the fact that M 7→ Mint preserves colimits. Moreover, since
M 7→ Mgp also preserves colimits, Qgp � Qgp

1 ⊕Pgp Qgp
2 . It follows that Qint is

the image of Q in Qgp � Qgp
1 ⊕Pgp Qgp

2 . Now suppose that any of P and Qi is
a group and that q and q′ are two elements of Q with the same image in Qgp.
Choose (q1, q2) and (q′1, q

′
2) in Q1 ⊕Q2 mapping to q and q′ respectively. Then

v1(q1)+v2(q2) = v1(q′1)+v2(q′2) in Qgp, and so there exist elements a and b in P
such that (q′1−q1, q′2−q2) = (u1(a−b), u2(b−a)). Then q′1 + u1(b) = q1 + u1(a)
and q′2 + u2(a) = q2 + u2(b). It then follows from (2) of Proposition 1.1.5
that v1(q1) + v2(q2) = v1(q′1) + v2(q′2) in Q, i.e., that q = q′. Thus the map
Q→ Qgp

1 ⊕Pgp Qgp
2 is injective and Q is integral. �

A monoid Q is said to be fine if it is finitely generated and integral. A monoid
Q is called saturated if it is integral and if whenever q ∈ Qgp is such that mq ∈
Q for some m ∈ Z+, then q ∈ Q. For example, the monoid of all integers greater
than or equal to some natural number d, together with zero, is not saturated if
d > 1. For another example, let Q be the submonoid of Z ⊕ Z/2Z generated
by x := (1, 0) and y := (1, e), where e is the nonzero element of Z/2Z. Then
2x = 2y, so z := (0, x − y) ∈ Qsat \ Q. In fact z is a nonzero unit of Qsat, but Q
is sharp.

Proposition 1.3.5. Let Q be an integral monoid.

1. The natural homomorphism Qgp/Q∗ → Q
gp

is an isomorphism.
2. If Q is saturated, then Q

gp
is torsion free.

3. The set Qsat of all elements x of Qgp such that there exists n ∈ Z+ with
nx ∈ Q is a saturated submonoid of Qgp, and the functor Q 7→ Qsat is
left adjoint to the inclusion functor from the category Monsat of saturated
monoids to Monint.

4. Q is saturated if and only if Q is saturated. An element of Q is a unit if and
only if its image in Qsat is a unit.
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5. The natural map Qsat/Q∗ → Q
sat

is an isomorphism. Furthermore, every
unit of Q

sat
is torsion, and the natural map

Qsat → Q
sat

is an isomorphism.

Proof Suppose that q1, q2 ∈ Q and q2 − q1 maps to zero in Q
gp

. Since Q ⊆
Q

gp
, q1 = q2 in Q, and hence there exists a u ∈ Q∗ with q2 = u + q1. Then

q2 − q1 = u ∈ Q∗. This proves (1). Suppose Q is saturated and q ∈ Qgp maps
to a torsion element q of Q

gp
. Then nq ∈ Q∗ for some n ∈ Z+, and since Q is

saturated, q ∈ Q. The fact that nq belongs to Q∗ now implies that q belongs to
Q∗, so q = 0 ∈ Q. Thus Q

gp
is torsion free. If q and p are elements of Qgp with

mq ∈ Q and np ∈ Q, then mn(q+p) ∈ Q, and it follows that Qsat is a submonoid
of Qgp. Hence (Qsat)gp = Qgp and, if q ∈ Qgp and nq ∈ Qsat, then there exists
an m ∈ Z+ with mnq ∈ Q. It follows that q ∈ Qsat, so Qsat is saturated. The
verification of the adjointness of the functor Q 7→ Qsat is immediate, as is the
verification of (4).

If q ∈ Qsat and q is a unit of Q
sat

, then there also exists an element p of Qsat

with q + p ∈ Q∗. Then there exist m and n in Z+ such that mq and np belong
to Q. But then mnq + mnp ∈ Q∗, and hence mnq is a unit of Q. This shows
that q is a torsion element of Q

sat
. It is clear that the map in (5) is surjective.

Suppose that q and p are two elements of Qsat with the same image in Q
sat

.
Then q − p ∈ Qgp maps to a unit of Q

sat
, and hence to a torsion element of

Q
sat
⊆ Q

gp
. Hence mq−mp ∈ (Qsat)∗ for some m. Then mp−mq ∈ Q∗ also, so

q− p is a unit of Qsat and q and p have the same image in Qsat. This proves the
injectivity. �

Monoids that are both fine and saturated are of central importance in loga-
rithmic geometry, and are often called fs-monoids. A monoid P is said to be
toric if it is fine and saturated and in addition Pgp is torsion free; in this case
Pgp can be viewed as the character group of an algebraic torus. The schemes
arising from toric monoids form the building blocks of toric geometry.

Proposition 1.3.6. Let {Mi : i ∈ I} be a direct system of monoids each of
which satisfies one of the following properties P: integral, saturated, dull. Then
the direct limit M also satisfies P.

Proof Suppose that each Mi is integral and let m be an element of M. Then
there exist i ∈ I and mi ∈ Mi such that mi maps to m in M. For each i → j,
let m ji denote the image of mi in M j. Then multiplication by m ji : M j → M j

is injective. It follows that the limit of these maps, i.e., multiplication by m,



14 I The Geometry of Monoids

is also injective. Thus M is integral. Suppose further that each Mi is saturated
and that x ∈ Mgp, with nx ∈ M for some n > 0. Since the formation of Mgp

commutes with direct limits, there exist i ∈ I and xi ∈ Mgp
i mapping to x.

Replacing i by some element to which it maps, we may further assume that
there is some mi ∈ Mi mapping to nx. Again replacing i, we may assume that
nxi = mi in Mi. Since Mi is saturated, it follows then that xi ∈ Mi and hence
that x ∈ M. Thus M is saturated. Since the formation of direct limits is the
same in the categories of commutative monoids and groups, the direct limit of
dull monoids is dull. �

A monoid M is said to be valuative if it is integral and if for every x ∈
Mgp, either x or −x lies in M. This is equivalent to saying that the preorder
relation (Definition 1.2.3) on Mgp defined by the action of M is a total preorder.
The monoid N is valuative and, if V is a valuation ring, the submonoid V ′ of
nonzero elements of V is valuative. Every valuative monoid is saturated.

If R is any commutative ring, its underlying multiplicative monoid (R, ·, 1) is
not quasi-integral unless R = {0}, since 0 · 0 = 1 · 0. On the other hand, the set
R′ of nonzero divisors of R forms an integral submonoid of the multiplicative
monoid of R. For example, Z′ is integral, and Z

′
= Z′/(±) is a free (commuta-

tive) monoid, generated by the prime numbers. If R is a discrete valuation ring,
R
′

= R′/R∗ is freely generated by the image of a uniformizer of R′. Although
there is a unique isomorphism of monoids R′/R∗ � N, this isomorphism is not
functorial: if R → S is a finite extension of valuation rings with ramification
index e, the induced map R

′
→ S

′
sends the unique generator of R

′
to e times

that of S
′
.

If Q is a sharp commutative monoid, free Q-sets are very rigid, as the fol-
lowing simple observation shows.

Proposition 1.3.7. Let Q be a sharp commutative monoid, and let S be a free
Q-set. Then any basis for S is unique up to unique isomorphism. Explicitly,
every basis i : T → S induces a bijection between T and S \ Q+S.

Proof Let i : T → S be a basis for S. Since the induced map Q × T → S is
bijective, i must be injective. Let us verify that if t ∈ T , then i(t) ∈ S \ Q+S.
Suppose that i(t) = qs with q ∈ Q and s ∈ S. Then there is a unique (q′, t′) ∈
Q × T such that s = q′i(t′), and so i(t) = qq′i(t′). Then (1, t) and (qq′, t′)
are two elements of Q × T with the same image in S, so qq′ = 1. Since Q
is commutative, q ∈ Q∗ and, since Q is sharp, q = 1. Since q was arbitrary,
i(t) < Q+S. On the other hand, suppose that s ∈ S \ Q+S. Since i is a basis for
S, there is some (q, t) ∈ Q × T such that qi(t) = s and, since s < Q+S, q = 1
and s = i(t). Thus the induced map from T to S \ Q+S is also surjective. �
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1.4 Ideals, faces, and localization

Definition 1.4.1. An ideal of a monoid M is a subset I such that k ∈ I and
q ∈ M implies q + k ∈ I. An ideal I is called prime if I , M and p + q ∈ I
implies p ∈ I or q ∈ I. A face of a monoid M is a submonoid F such that
p + q ∈ F implies that both p and q belong to F.

For example, the empty set ∅ is a prime ideal of M, as is the set M+ of non-
units of M. Note that any ideal I containing a unit must be all of M, so that
every proper ideal of M is contained in M+. Thus M+ is the unique (proper)
maximal ideal of M; moreover, ∅ is the unique minimal ideal of M. In many
respects, a monoid is analogous to a local ring. In particular, a monoid homo-
morphism θ : P → Q is said to be local if θ−1(Q+) = P+ or, equivalently,
θ−1(Q∗) = P∗. Observe that a face is just a submonoid whose complement is
an ideal (necessarily prime) and a prime ideal is an ideal whose complement
is a submonoid (necessarily a face). Thus p 7→ Fp := M \ p gives an order
reversing bijection between the set of prime ideals of M and the set of faces
of M. The set of units M∗ is the smallest face of M (contained in every face),
and M is the largest face of M. The notion of a face of a monoid corresponds
to the notion of a saturated multiplicative subset of a ring; we do not use this
terminology here because of its conflict with the notion of a saturated monoid.

As in the case of rings, the intersection of a family of ideals is an ideal,
but for monoids the union of a family of ideals is also an ideal. Furthermore
the union of a family of prime ideals is a prime ideal and the intersection of
a family of faces is a face. If T is a subset of M, the intersection 〈T 〉 of all
the faces containing T is a face of M, called the face generated by T . It is
analogous to the multiplicatively saturated set generated by a subset of a ring.
The interior ideal IM of a monoid M is the set of all elements that do not lie in
a proper face of M, i.e., the intersection of all the nonempty prime ideals of M.

We denote by Spec(M) the set of prime ideals of a monoid M, and for each
ideal I of M we denote by Z(I) the set of primes ideals of M containing I. Then
if (Iλ) is any family of ideals, ∪Iλ is an ideal and Z(∪Iλ) = ∩Z(Iλ). Also, if I
and J are ideals, so is the set IJ of all elements of the form p+q with p in I and
q in J, and Z(I) ∪ Z(J) = Z(I∩J) = Z(IJ). Thus the set of all subsets of Spec M
of the form Z(I) for variable I is closed under intersections and finite unions,
and hence defines a topology (the Zariski topology) on S := Spec(M). Since
M has a unique minimal prime ideal, Spec(M) has a unique generic point, and
in particular is irreducible. Since M has a unique maximal ideal it also has a
unique closed point. If f ∈ M and F is the face it generates, then

D( f ) := S f := {p : f < p} = {p : p ∩ F = ∅}
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is open in S, and the set of all such sets forms a basis for the topology on S.
Note that Spec(M) is never empty: it contains a unique closed point (the

maximal ideal M+ of M, consisting of all the non-units) and a unique generic
point (the empty ideal of M). These two points coincide if and only if every
element of M is a unit, that is, if and only if M is a group.

If θ : P → Q is a homomorphism of monoids, then the inverse image of an
ideal is an ideal, the inverse image of a prime ideal is a prime ideal, and the
inverse image of a face is a face. Thus θ induces a continuous map

Spec(Q)→ Spec(P) : p 7→ θ−1(p).

The preorder relation (Definition 1.2.3) is useful when describing the ideals
and faces of a monoid, as the following proposition shows.

Proposition 1.4.2. Let S be a subset of a monoid Q and let P be the submonoid
of Q generated by S.

1. The ideal (S) of Q generated by S is the set of all q ∈ Q such that q ≥ s for
some s ∈ S.

2. The face 〈S〉 of Q generated by S is the set P′ of elements q of Q for which
there exists a p ∈ P such that q ≤ p. In particular, the face generated by an
element p of Q is the set of all elements q ∈ Q such that q ≤ np for some
n ∈ N.

3. If Q is integral, then Q/P is sharp if and only if Pgp ∩ Q is a face of Q. In
particular, if F is a face of Q, then Q/F is sharp.

Proof The first statement follows immediately from the definitions. For the
second, note that a submonoid F of Q is a face if and only if F contains q
whenever q ≤ f for some f ∈ F. Hence 〈S〉 contains P′. Since in fact P′ is
necessarily a face of Q containing S, it follows that P′ = 〈S〉. If Q is integral,
Q/P can be identified with the image of Q in Qgp/Pgp, by Proposition 1.3.3.
Thus an element q ∈ Q maps to 0 in Q/P if and only if q ∈ Q ∩ Pgp, and q
maps to a unit in Q/P if and only if there exists an element q′ ∈ Q such that
q + q′ ∈ Pgp, i.e., if and only if q ∈ 〈Q ∩ Pgp〉. This shows that Q/P is sharp
if and only if Q ∩ Pgp is a face of Q. Finally, note that if F is a face of Q, and
q ∈ Q ∩ Fgp, then q + f ∈ F for some f ∈ F; hence q ∈ F. �

Corollary 1.4.3. Let K be an ideal of a monoid Q and let
√

K := {q : nq ∈ K for some n ∈ Z+}

be its radical.

1.
√

K is a radical ideal, that is,
√

K =

√
√

K.



1 Basics on monoids 17

2.
√

K is the intersection of all the prime ideals of Q containing K.
3. The mapping I → Z(I) induces an order-reversing bijection between the

radical ideals of Q and the closed subsets of Spec(Q), with inverse S 7→
∩{p : p ∈ S}.

4. A closed subset S of Q is irreducible if and only if the corresponding radical
ideal is prime.

Proof If q ∈
√
√

K, there exists n ∈ Z+ such that nq ∈
√

K and then there

exists m ∈ Z+ such that mnq ∈ K. Thus
√
√

K ⊆
√

K, and the reverse inclusion
is obvious. This proves (1). For (2), it is clear that

√
K is contained in every

prime ideal p containing K. Conversely, suppose that q ∈ Q \
√

K and let f be
an element of the face F of Q generated by q. By Proposition 1.4.2, there exist
n and q′ such that nq = f + q′. Since nq < K, the same is true of f . This shows
that F ∩ K = ∅, and hence that p := Q \ F is a prime ideal of Q containing
K but not q. It is clear that Z(J) ⊆ Z(I) if I ⊆ J. If S is any subset of Q, then
∩S := ∩{p : p ∈ S} is clearly a radical ideal of Q, and S ⊆ Z(∩S), since for
every p ∈ S, ∩S ⊆ p. Moreover, if I is any ideal of Q and S ⊆ Z(I), then I ⊆ p

for every p ∈ S, and hence I ⊆ ∩S and Z(∩(S)) ⊆ Z(I). Thus Z(∩S) is the
closure of S. In particular, if S is closed, S = Z(∩S). On the other hand, if K is
a radical ideal, statement (2) shows that K = ∩Z(K). This completes the proof
of statement (3). If S is closed and Z(S) is a prime ideal p, then p ∈ S and S is
the closure of {p} and hence is irreducible. Conversely, if S is irreducible and
a + b ∈ ∩S, then a + b belongs to every p ∈ S; hence every such p contains
either a or b, and so S ⊆ Z(a) ∪ Z(b). Since S is irreducible, it is contained in
either Z(a) or Z(b). If, for example, S ⊆ Z(a), it follows that

√
(a) ⊆ ∩S and,

since ∩S is a radical ideal, that a ∈ ∩S. Thus ∩S is prime. �

Proposition 1.4.4. Let M be a monoid, S a subset of M, and E an M-set. Then
there exist an M-set, denoted by S−1E or ES, on which the elements of S act
bijectively and a map of M-sets λS : E → S−1E with the following universal
property: for any morphism of M-sets E → E′ such that each s ∈ S acts
bijectively on E′, there is a unique M-map S−1E → E′ such that

E
λS- S−1E = ES

E′
?

-

commutes. The morphism λS is called the localization of E by S. A morphism
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of M-sets φ : E → E′ induces a morphism φS : ES → E′S; if φ is injective (resp.
surjective), then so is φS.

Proof Let T be the submonoid of M generated by S. The set S−1E can be
constructed in the familiar way as the set of equivalence classes of pairs (e, t) ∈
E × T , where (e, t) ≡ (e′, t′) if and only if t′t′′e = tt′′e′ for some t′′ in T . Then
λS(e) is the class of (e, 1), and the action of an element m of M sends the class
of (e, t) to the class of (me, t). The proof of the remainder of the proposition is
straightforward. �

Notice that in fact every element of the face F generated by S acts bijectively
on S−1E, so that in fact S−1E � F−1E. Indeed, let E′ be any M-set such that
θE′ (s) is bijective for every s ∈ S. If f ∈ F, then f ≤ p for some p in the
submonoid P of M generated by S. Thus p = f m for some m ∈ M. Then
θE′ (p) = θE′ ( f )θE′ (m) = θE′ (m)θE′ ( f ) and, since θE′ (p) is bijective, the same
is true of θE′ ( f ). If p := M \ F is the prime ideal of M corresponding to F,
one often writes Ep instead of S−1E. An M-set E is called M-regular if the
elements of M act as injections on E. If this is the case, the localization map
λS : E → S−1E is injective, for every subset S of M.

The most important case of Proposition 1.4.4 is the regular representation,
where M acts on E = M by translation. Then MS := S−1M has a unique monoid
structure for which λS is a homomorphism compatible with the M-actions. The
morphism λS : M → MS is also characterized by a universal property: any
homomorphism λ : M → N with the property that λ(s) ∈ N∗ for each s ∈ S
factors uniquely through MS. In fact, every element of the face 〈S〉 generated
by S maps to a unit in S−1M, and λ−1

S (M∗S) = 〈S〉. Indeed, if m ∈ 〈S〉, then
by (2) of Proposition 1.4.2 there exists m′ ∈ M such that mm′ belongs to the
submonoid T of M generated by S. Then λS(mm′) is a unit in MS, and hence
so is m′. Conversely, if λS(m) is a unit of MS, then there exist m′ ∈ M and
t′ ∈ T such that (m, 1)(m′, t′) ≡ (1, 1). This means that there is some t such
that mm′t = t′t. Since tt′ ∈ 〈S〉, it follows that m ∈ 〈S〉. If M is integral, then
the natural map S−1M → Mgp is injective, and S−1M can be identified with
the set of elements of Mgp of the form m − t with m ∈ M and t belonging to
the submonoid (or face) of M generated by S. If θ : M → N is a morphism of
monoids and S is a subset of M we write S−1N to mean the localization of N
by the image of S, when no confusion can arise. We should note that if E is
an M-set, then the localized monoid MS acts naturally on ES, and in fact the
natural map MS ⊗M E → ES is an isomorphism.

Remark 1.4.5. The localization of an integral (resp. saturated) monoid is inte-
gral (resp. saturated), but the analog for quasi-integral and u-integral monoids
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fails. For example, let Q and P be monoids and let K be an ideal of Q. Let
E be the subset of (P ⊕ Q)2 consisting of those pairs (p ⊕ q, p′ ⊕ q) such that
either p = p′ or q ∈ K. In fact E is a congruence relation on P ⊕ Q, and we
denote the quotient (P ⊕ Q)/E by P ?K Q (the join of P and Q along K). If
K is a prime ideal with complement F, then P ?K Q can be identified with
the disjoint union of P × F with K, and (p, f ) + k = f + k. Then N ?N+ N is
u-integral, but its localization by the element 1 of the “first” N in the previous
expression is Z ?N+ N, which is not u-integral.

Definition 1.4.6. Let Q be a monoid.

1. The dimension of Q is the maximum length d of a chain of prime ideals

∅ = p0 ⊂ p1 ⊂ · · · ⊂ pd = Q+,

i.e., the Krull dimension of the topological space Spec(Q).
2. If p ∈ Spec(Q), the height of P, denoted by ht(p), is the maximum length of

a chain of prime ideals

p = p0 ⊃ p1 ⊃ · · · ⊃ ph.

If p is a prime ideal of Q, the map Spec(Qp) → Spec(Q) induced by the
localization map λ : Q → Qp is injective and identifies Spec(Qp) with the
subset of Spec(Q) consisting of those primes contained in p. Equivalently,
F 7→ λ−1(F) is a bijection from the set of faces of Qp to the set of faces
of Q containing Q \ p. These bijections preserve the topologies and order. In
particular, every ideal of Qp is induced from an ideal of Q, and so Spec(Qp)
has the topology induced from its embedding in Spec(Q). Moreover, we have
ht(p) = dim(Qp). If Q is fine, Spec(Q) is a finite topological space, and is
catenary [26, 14.3.2, 14.3.3], as the following proposition implies. We defer its
proof until Section 2.3, after Corollary 2.3.8.

Proposition 1.4.7. Let Q be an integral monoid.

1. Spec(Q) is a finite set if Q is finitely generated.
2. dim(Q) ≤ rank(Q

gp
), with equality if Q is fine.

3. If Q is fine, every maximal chain p0 ⊂ p1 ⊂ · · · ⊂ pd of prime ideals has
length dim(Q). If p ∈ Spec(Q) and F := Q \ p,

ht(p) = rank(Q
gp
p ) = rank(Qgp/Fgp) = dim(Q) − dim(F).

Examples 1.4.8.

1. The monoid N has just two faces, {0} and N, with complementary prime
ideals N+ and ∅, respectively.
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2. More generally, let S be a set and let M = N(S), the free monoid generated
by S. If T is any subset of S, N(T ) can be identified with the set of all I ∈ N(S)

such that Is = 0 for s < T . This is a face of M, and every face of M is of
this form.

3. Let Q2,2 be the monoid given by generators x, y, z,w subject to the relation
x + y = z + w. This is isomorphic to the amalgamated sum N2 ⊕N N2, where
both maps N → N2 send 1 to (1, 1), to the submonoid of N4 generated by
{(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)}, and to the submonoid of Z3

generated by

{(1, 1, 1), (−1,−1, 1), (1,−1, 1), (−1, 1, 1)}.

In addition to the faces {0} and Q2,2, it has four faces of dimension one,
corresponding to each of the generators, and four faces of dimension two:
〈x, z〉, 〈x,w〉, 〈y, z〉, and 〈y,w〉.

4. Let Q3,2 be the monoid given by generators x, y, z, u, v subject to the rela-
tions x + y + z = u + v. This four-dimensional monoid has five faces of
dimension one, nine of dimension two, and six of dimension three.

When attempting to visualize the relations among the faces of a monoid, it
is often helpful to draw a picture not of the monoid itself but rather of its slice
with a suitable hyperplane not containing the vertex. Doing so reduces the
dimension of the monoid and of each of its faces by one. For example, slices
of the monoids Q2,2 and Q3,3 in the above examples are shown in Figure 1.4.1

1.5 Idealized monoids

A surjective homomorphism of commutative rings A → B induces a closed
immersion Spec(B) → Spec(A), but the analog for monoids is not true. In
fact, if P → Q is any homomorphism of monoids, the generic point of Spec P
lies in the image of Spec Q, so the map Spec Q → Spec P cannot be a closed
immersion unless it is bijective. To remedy this we introduce the notion of an
idealized monoid, which will be useful in studying the stratifications that arise
naturally in the context of toric varieties and log schemes.

Definition 1.5.1. An idealized monoid is a pair (M,K), where M is a monoid
and K is an ideal of M. A homomorphism of idealized monoids

θ : (P, I)→ (Q, J)

is a monoid homomorphism P → Q sending I to J. A face of an idealized
monoid (M,K) is a face F of M such that F ∩ K = ∅ or, equivalently, such that
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Figure 1.4.1 Slices of monoids and their faces

the corresponding prime ideal M \ F contains K, and Spec(M,K) is the set of
all such prime ideals, with the Zariski topology.

Note that Spec(M,K) is empty if and only if K = M. Let us say therefore
say that an idealized monoid (M,K) is acceptable if either K is a proper ideal
of M or M is the zero monoid. We write Moni for the category of acceptable
idealized monoids. The functor Moni → Mon taking (Q, J) to Q has a fully
faithful left adjoint, taking a monoid P to (P, ∅). Thus we may view Mon as a
full subcategory of Moni.

Remark 1.5.2. The Krull dimension of (M,K) is as usual the supremum of
the set of lengths of the chains of prime ideals of (M,K), or, equivalently, of a
chain of faces of (M,K). If C is a maximal chain of such faces, then F := ∪C
is another face of (M,K) and hence belongs to C; furthermore, each member
of C is a face of F. Thus the set of faces of (M,K) admits maximal elements,
and the dimension of (M,K) is the same as the maximum of the dimensions of
its faces.

Limits and colimits exist in the category of idealized monoids, and are com-
patible with the forgetful functor to the category of monoids. For example, the
pushout of a pair of morphisms ui : (P, I)→ (Qi, Ji) in the category of idealized
monoids is given by the obvious maps vi : (Qi, Ji) → (Q, J), where Qi → Q is
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the pushout of the underlying monoid homomorphisms and J is the ideal of Q
generated by the images of Ji. Note that this compatibility is not quite true for
acceptably idealized monoids. For example, if (Q, J) is an integral idealized
monoid and f ∈ J, then the localization of (Q, J) by f is not acceptable: the
localization in the category of acceptable idealized monoids is (0, 0).

2 Finiteness, convexity, and duality

2.1 Finiteness

Proposition 2.1.1. A monoid is finitely generated as a monoid if and only if
M∗ is finitely generated (as a group) and M is finitely generated (as a monoid).

Proof If S is a finite set of generators for M, then any nonzero element m of
M can be written as a sum

∑
nisi, with each ni > 0. If m is a unit, so is each

si, and it follows that M∗ is generated by the finite set S ∩ M∗. Since M → M
is surjective, M is finitely generated as a monoid. For the converse, suppose
{si} is a finite set of generators for the group M∗ and {t j} is a finite subset of M
whose images in M generate M as a monoid. Then the set {si,−si, t j} generates
M as a monoid. �

Recall that if M is a monoid and x and y are elements of an M-set X, we
write x ≤ y if there exists some m ∈ M such that y = m + x. If S is a subset of X
we say that s ∈ S is an M-minimal element of S if, whenever s′ ∈ S and s′ ≤ s,
then also s ≤ s′ (so that s ∼ s′ in the equivalence relation corresponding to
≤). If there seems to be no danger of confusion, we just say “minimal” instead
of “M-minimal.” For example, with the regular action of M on itself, the units
are the minimal elements of M. If M is quasi-integral, the minimal elements
of the maximal ideal M+ are called irreducible. Thus an element c of M+ is
irreducible if and only if it is not a unit and, whenever c = a + b in M, a or b is
a unit. The set M+2 of elements of the form a + b with a, b ∈ M+ is an ideal of
M, and we see that the irreducible elements of M are precisely the elements of
M+ \ M+2.

Proposition 2.1.2. Let M be a sharp quasi-integral monoid. Then every set
of generators of M contains every irreducible element of M. If in addition M
is finitely generated, then the set of irreducible elements of M is finite and
generates M.

Proof The first statement is obvious. Suppose now that M is finitely gener-
ated. It is clear that every finite set of generators contains a minimal set of
generators. Let S be such a minimal set; we claim that every element x of S is
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irreducible. If x = y + z with y and z in M, we can write y and z as sums of
elements of S, say y =

∑
s ass and z =

∑
s bss, where as and bs ∈ N for all s ∈ S.

Then x =
∑

s css, where cs = as + bs. Let S′ := S \ {x}, so that x = cxx + m′

where m′ is in the submonoid M′ of M generated by S′. If cx = 0, then x ∈ M′,
and S′ generates M, a contradiction of the minimality of S. Hence cx ≥ 1, and
we can write x = x + (cx−1)x + m′. But then the quasi-integrality of M implies
(cx − 1)x + m′ = 0, and the sharpness implies that cx = 1 and m′ = 0. Then
y = axx and z = bxx, where ax + bx = 1. Thus exactly one of y and z is zero, so
x is irreducible, as claimed. Since S generates M by hypothesis and since the
elements of S are irreducible, M is generated by its set of irreducible elements.
Since S contains all the irreducible elements of M and is finite, there can be
only finitely many irreducible elements. �

Corollary 2.1.3. The automorphism group of a fine sharp monoid is finite and
contained in the permutation group of the set of its irreducible elements. �

Remark 2.1.4. Proposition 2.1.2 shows that every element in a fine sharp
monoid can be written as a sum of irreducible elements. In fact a standard
argument applies somewhat more generally. Let M be a sharp quasi-integral
monoid in which every nonempty subset has a minimal element. Then every
element of M can be written as a sum of irreducible elements. (Note that 0 is
by definition the sum over the empty set.) Let us recall the argument. We claim
that the set S of elements of M+ that cannot be written as a sum of irreducible
elements is empty. If not, by assumption it contains a minimal element s. Since
s is not irreducible, s = a + b where a and b are not zero and hence belong to
M+. If both a and b can be written as sums of irreducible elements, then the
same is true of s, a contradiction. But if for example a cannot be written as a
sum of irreducible elements, then a ∈ S and a ≤ s, and, since b is not a unit,
s 6≤ a, contradicting the minimality of s.

Let M be a monoid and let S be an M-set. We say that S is noetherian if
every sub-M-set is finitely generated, and we say that M is noetherian if it is
so when regarded as an M-set via the regular representation. It is clear that
a finite union of noetherian M-sets is again noetherian, that a sub-M-set of a
noetherian M-set is noetherian, and that the image of a noetherian M-set is
noetherian. It follows that if M is a noetherian monoid, an M-set is noetherian
if and only if it is finitely generated as an M-set.

Proposition 2.1.5. Let M be a monoid and let S be an M-set. Then the follow-
ing conditions are equivalent:

1. Every sub-M-set of S is finitely generated, i.e., S is noetherian.
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2. Every ascending chain S1 ⊆ S2 ⊆ S3 ⊆ · · · of sub-M-sets of S is eventually
constant.

3. Every sequence (s1, s2, s3 . . .) in S contains an increasing subsequence; that
is, there is a strictly increasing sequence (i1, i2, i3, . . .) of natural numbers
such that (si1 , si2 , si3 . . .) is an increasing sequence in S.

4. Every nonempty subset of S contains a minimal element, and there are only
finitely many equivalence classes of such elements for the equivalence re-
lation ∼.

5. Every nonempty set of sub-M-sets of S has a maximal element.
6. The quotient of S by the congruence relation ∼ is noetherian.

Proof The equivalence of (1), (2), and (5) is proved in exactly the same way
as in the case of modules over a ring. Suppose that (2) holds and that (s1, s2, . . .)
is a sequence in S. For each i, let (si) be the sub-M-set of S generated by si and
let Si denote the union (s1)∪(s2)∪· · ·∪(si). Then S1 ⊆ S2 ⊆ · · · , so by (2) there
exists some N such that S j = SN for all j ≥ N. Thus for every j ≥ N, there
exists some i ≤ N such that s j ≥ si. Since there are infinitely many such j and
finitely many such i, there must exist an i ≤ N and a sequence j1 < j2 < · · ·
such that si ≤ s jk for all k. Thus, replacing (s1, s2, . . .) by the subsequence
(si, s j1 , s j2 , . . .), we may assume that s1 ≤ s j for all j > 1. Repeating this
process, we may also arrange that s2 ≤ s j for all j > 2, and then that s3 ≤ s j

for all j > 3, and so on.
To prove that (3) implies (4), let us first observe that any decreasing sequence

(s1, s2, . . .) in S is eventually in a single equivalence class for the relation ∼.
Indeed, (3) implies that there is an increasing sequence (i j : j ∈ Z+) such that
(si1 , si2 , . . .) is increasing (as well as decreasing). Then all si with i ≥ i1 are
equivalent. Indeed, if i ≥ i1, choose j such that i j ≥ i, and then

si1 ≥ si ≥ si j ≥ si1 .

Now if T is a nonempty subset of S, choose any element t1 of T . If t1 is M-
minimal, we are done; if not there exists an element t2 of T such that t2 ≤ t1
and t2 6≥ t1. If t2 is M-minimal, we are done, and if not there exists t3 with
t3 ≤ t2 and t3 6≥ t2. Continuing in this way, we find a decreasing sequence
(t1, t2, . . .) of elements of T with ti 6≥ ti−1 for all i. As we have just seen, such a
sequence must terminate, and so we find an M-minimal element of T . If there
were an infinite number of equivalence classes of such minimal elements, we
could find an infinite sequence (s1, s2, . . .) of elements all belonging to distinct
equivalence classes, and by (3) such a sequence would contain an increasing
subsequence s. But then s1 ≤ s2 and s1 / s2, contradicting the minimality of
s2. This proves (4).
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Suppose that (4) holds and T is a sub-M-set of S. By (4), there is a finite set
T ′ of minimal elements of T such that every minimal element is equivalent to
some element of T ′. Now let t be an arbitrary element of T and let Tt := {s ∈
T : s ≤ t}. Then Tt is not empty and hence by (4) contains a minimal element
t′′. Note that if t′′′ ∈ T and t′′′ ≤ t′′, then t′′′ ∈ Tt, and hence t′′′ ∼ t′′, by
the minimality of t′′. Thus t′′ is in fact a minimal element of T , and hence is
equivalent to some element t′ of T ′. Since t′′ ∈ Tt, t = m + t′′ = m′ + t′ for
some m,m′ ∈ M. Thus the finite set T ′ generates T . This proves (1).

Let π : S → S/∼ be the natural projection and let S′ be a sub-M-set of S.
Note that if s′ ∈ S′ and s ∈ S and s ∼ s′, then s ∈ S′. Thus S′ = π−1(π(S)),
so that π induces a bijection from the family of sub-M-sets of S to that of S/∼.
Hence property (5) holds for S if and only if it does for S/∼. �

Corollary 2.1.6. Every dull monoid is noetherian, and a monoid is noetherian
if and only if its sharpening is noetherian. �

Theorem 2.1.7. A finitely generated monoid is noetherian and finitely pre-
sented. Conversely, a sharp and quasi-integral noetherian monoid is finitely
generated.

Proof We shall use the following analog of the Hilbert basis theorem.

Lemma 2.1.8. If P and Q are noetherian, then P⊕Q is noetherian. In particular
if Q is noetherian, then Q ⊕ N is also noetherian.

Proof We use condition (3) of Proposition 2.1.5. Let (p·, q·) be a sequence
in P ⊕ Q. Since P is noetherian, there is a strictly increasing sequence (n·) in
N such that the subsequence (pn· ) of (p·) is increasing. Replacing the original
sequence by the sequence (pn· , qn·), we may assume that the sequence (p·)
was already increasing. Now since Q is noetherian, we may choose a strictly
increasing sequence (n·) such that (qn· ) is increasing. But then (pn· , qn· ) is an
increasing subsequence of the original sequence. �

It is immediate to verify that if M → M′ is surjective and M is noetherian,
M′ is also noetherian. Then it follows from the lemma and induction that ev-
ery finitely generated monoid is noetherian. The fact that a finitely generated
monoid is finitely presented follows from Lemma 2.1.9 below.

For the converse, suppose that M is sharp, quasi-integral, and noetherian. We
may assume that M is not the zero monoid. Applying (4) of Proposition 2.1.5
to the nonempty subset M+ of M, we see that the set S of minimal elements of
M+ is finite and not empty. Furthermore, the argument of Remark 2.1.4 shows
that every element of M can be written as a sum of elements of S. Thus M is
finitely generated. �
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Lemma 2.1.9. Every congruence relation on a finitely generated monoid is
finitely generated (as a congruence relation).

Proof The following proof is due to Pierre Grillet [23]. Let E be a congruence
relation on a monoid P. If P′ → P is a surjective homomorphism of monoids,
the inverse image E′ of E in P′ × P′ is a congruence relation on P′, and if S′ ⊆
E′ generates E′ as a congruence relation, then the image of S′ in E generates
E as a congruence relation. If P is finitely generated, we can find a surjective
homomorphism Nr → P, and thus we are reduced to proving the lemma when
P = Nr.

If p and q are elements of P, write p � q if p precedes q in the lexicographi-
cal order of Nr, and write p ≺ q if in addition p , q. If p � q and p′ � q′, then
p + p′ � q + q′, and if p ≤ q in the partial order defined by the monoid struc-
ture, then p � q. Then � well-orders P: every nonempty subset has a unique
�-minimal element. If p ∈ P, let E(p) denote the E-congruence class of p, and
let µ(p) denote the �-minimal element in E(p). Then, if (x, y) ∈ P×P, (x, y) ∈ E
if and only if µ(x) = µ(y), and E is the congruence relation generated by the set
of pairs (x, µ(x)) for x ∈ P. Then µ◦µ = µ, and the complement K of the image
of µ : P → P is the set of all elements k of P such that µ(k) ≺ k. Note that if
p ∈ P and k ∈ K, then µ(k) ≺ k, so µ(k)+ p ≺ k+ p. Since (µ(k)+ p) ≡E (k+ p),
k + p is not �-minimal in E(k + p). Thus µ(k + p) ≺ k + p and so K is an ideal
of P, finitely generated since P is noetherian. Let S be a finite set of generators
for K and let E′ be the congruence relation on P generated by the set of pairs
(s, µ(s)) with s ∈ S. Then E′ is finitely generated as a congruence relation and
contained in E, so it will suffice to prove that E ⊆ E′, i.e., that E′ contains
(x, µ(x)) for every x ∈ P. If this fails, there exists an x such that µ(x) does
not belong to E′(x) and that is �-minimal among all such elements. Note that
x does not belong to the image of µ, since otherwise x = µ(x), which would
contradict µ(x) < E′(x). Thus x ∈ K, and hence x = p + s for some s ∈ S and
p ∈ P+. Since s ∈ K, µ(s) ≺ s, so also x′ := p + µ(s) ≺ p + s = x. Then by the
minimality of x, µ(x′) ∈ E′(x′). But µ(s) ≡E′ s, so x′ = p + µ(s) ≡E′ p + s = x,
and consequently x′ ≡E x. But then µ(x′) = µ(x) and µ(x) ∈ E′(x), a contra-
diction. This completes the proof. �

Corollary 2.1.10. A quasi-integral monoid M is noetherian if and only if M
is finitely generated. �

Corollary 2.1.11. If M is a finitely generated monoid, any sub-M-set of a
finitely generated M-set is finitely generated, and in fact is generated by a
finite set of minimal elements. �
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The following simple result can be viewed as an analog of Nakayama’s
lemma in commutative algebra.

Proposition 2.1.12. Let Q be a monoid and let S be a finitely generated Q-set.
Assume that qs , s for every s ∈ S and every q ∈ Q+. Then S is generated by
S \ Q+S. In particular, if Q+S = S, then in fact S = ∅.

Proof Let {s1, . . . , sn} be a finite set of generators for S. After omitting some
of its elements, we may assume that no proper subset also generates S. Then
it suffices to prove that each si < Q+S. For example, if sn ∈ Q+S, then there
exist q ∈ Q+ and s ∈ S with sn = qs, and, since {s1, . . . , sn} generates S, there
exist some i ≤ n and some q′ ∈ Q with s = q′si. Then sn = qq′si, and if i < n
the set {s1, . . . , sn−1} generates S, contradicting the minimality assumption. It
follows that i = n, so that sn = qq′sn. The hypotheses then imply that qq′ is
unit, contradicting the assumption that q ∈ Q+. �

It follows from (2) of Proposition 2.1.5 that in a noetherian monoid M, ev-
ery nonempty set of ideals has a maximal element. We can deduce a primary
decomposition theorem for ideals; again the proof is a simple adaption of the
standard one in commutative algebra. Here we will use multiplicative notation
for the monoid law to exhibit the similarity with the argument from commuta-
tive algebra.

Definition 2.1.13. A proper ideal q ⊂ M in a monoid M is primary if ax < q

whenever a ∈ M \
√
q and x < q.

Proposition 2.1.14. Let M be a noetherian monoid.

1. If q is a primary ideal of M, its radical
√
q is prime, and there exists some

element x of M such that
√
q = {a : ax ∈ q}.

2. Every ideal of M can be written as the intersection of a finite number of
primary ideals.

3. If K = q1 ∩ · · · ∩ qn, where each qi is a primary ideal, let Fi := M \
√
qi and

let F = F1 ∩ · · · ∩ Fn. Then M \ K is stable under multiplication by F.

Proof Suppose q is primary, and a <
√
q, but ax ∈

√
q. Then there exists an n

such that anxn ∈ q, and, since q is primary, it follows that xn ∈ q and so x ∈
√
q.

Thus
√
q is prime. For each x ∈ M \ q, let Kx := {a : ax ∈ q}. Then Kx ⊆

√
q.

Furthermore, since M is noetherian, there exists an x ∈ M \ q such that Kx

is not properly contained in any Kx′ . We claim that in fact Kx =
√
q. Indeed,

if b ∈
√
q, then some power of b belongs to q, and hence there is a natural

number n such that bnx < q but bn+1x ∈ q. Let x′ := bnx. Then Kx ⊆ Kx′ , and
by maximality Kx = Kx′ . Since b ∈ Kx′ , it follows that b ∈ Kx, as required,
completing the proof of (1).
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If statement (2) were false, we could find an ideal of M that is maximal
among all ideals not admitting a primary decomposition. Such an ideal K
would necessarily be proper. For a ∈ M \

√
K, let Kn := {x : anx ∈ K}.

Then K ⊆ K1 ⊆ K2 ⊆ · · · , so there exists an n such that Kn = Kn+1. Note that
if x ∈ K1 ∩ (an), we can write x = any for some y ∈ M, and ax = an+1y ∈ K.
Then y ∈ Kn+1 = Kn, so in fact x = any ∈ K. This implies that K1 ∩ (an) ⊆ K,
and hence that K = K1 ∩ K′, where K′ := K ∪ (an). Since a <

√
K, K′ strictly

contains K and hence admits a primary decomposition. Then K1 cannot admit
such a decomposition, and hence K1 = K. This means that x ∈ K whenever
ax ∈ K, assuming as before that a <

√
K. We have in fact proved that K is

primary, another contradiction.
To prove (3), suppose that f m ∈ K, where f ∈ F and m ∈ K. Then f m ∈ qi

for every i and, since f <
√

qi, it follows that m ∈ qi for every i, so m ∈ K. �

Let S be a nonempty subset of a monoid P, and suppose that P is a local
submonoid of a fine monoid Q. Since Q is fine, it is noetherian, and Propo-
sition 2.1.5 shows that S contains a Q-minimal element s. Such an element is
necessarily also P-minimal: if s = p + s′ with p ∈ P and s′ ∈ S, then there
exist q ∈ Q such that s′ = q + s; hence p + q = 0. Then q ∈ Q∗ and p ∈ P∗,
so s′ ≥P s, and s is P-minimal. In particular, Remark 2.1.4 implies that P is
generated by its irreducible elements. On the other hand, P-minimal elements
of S need not be Q-minimal, and it could happen that S has an infinite number
of minimal elements and that P has an infinite number of irreducible elements.
For example, in Q := N × N, consider the submonoid E of N × N consisting
of (0, 0) together with all pairs (m, n) such that m and n are both positive. (This
submonoid is actually a congruence relation on N; the quotient N/E is the
unique (up to isomorphism) monoid with two elements which is not a group.)
Then for every m > 0, the element (1,m) is irreducible in E, and in particular
E is not finitely generated as a monoid. This situation is ameliorated by the
notion of exactness, which will turn out to be of fundamental importance.

Definition 2.1.15. A monoid homomorphism θ : P → Q is exact if the dia-
gram

P
θ - Q

Pgp
? θgp

- Qgp
?

is cartesian.
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For example, an inclusion of integral monoids P→ Q is exact if and only if
P = Pgp ∩ Q in Qgp. In this case one says that P is an exact submonoid of Q.

Proposition 2.1.16. The following statements hold.

1. If M is any monoid, the diagonal map ∆M : M → M × M is exact if and
only if M is integral.

2. An exact homomorphism θ : P→ Q is local, and is injective if P is sharp.
3. Let θ : P → Q be a homomorphism of integral monoids. Then θ is exact if

and only if, for any p1, p2 ∈ P, θ(p2) ≥ θ(p1) implies that p2 ≥ p1.
4. In the category of integral monoids, the pullback of an exact homo-

morphism is exact.
5. Let P be a submonoid of an integral monoid Q. Then the inclusion P → Q

is exact if and only if Q \ P is stable under the action of P on Q.

Proof A monoid M is integral if and only if the localization map λM : M →
Mgp is injective. This is true if and only if the diagram

M
∆M- M × M

Mgp

λM

?
∆Mgp- Mgp × Mgp

λM × λM

?

is cartesian. Since M × M � M ⊕ M, Mgp × Mgp � (M × M)gp, and thus (1)
is clear. Assume that θ : P → Q is exact and that p ∈ P with θ(p) ∈ Q∗. Then
there exists a q ∈ Q such that q + θ(p) = 0, and hence (−λ(p), q) ∈ Pgp ×Qgp Q.
By the exactness of θ, there is a unique p′ ∈ P such that λ(p′) = −λ(p) and
θ(p′) = q. Then p′ + p and 0 are two elements of P with the same image in
Pgp ×Qgp Q, so p′ + p = 0 and p ∈ P∗. This proves that θ is local. Now suppose
that P is sharp and that θ(p1) = θ(p2). Then (λ(p1)− λ(p2), 0) ∈ Pgp ×Qgp Q, so
there exists a unique p ∈ P such that λ(p) = λ(p1) − λ(p2) and θ(p) = 0. As
we have just observed, θ is local, so p ∈ P∗, and, since P is sharp, p = 0. Then
λ(p1) = λ(p2), and p1 and p2 have the same image in Pgp ×Qgp Q, hence are
equal.

Let θ : P→ Q be a homomorphism of integral monoids. We notate the maps
P→ Pgp and Q→ Qgp as inclusions. Assume that θ is exact and that p1, p2 ∈ P
with θ(p2) ≥ θ(p1). This means that for some q ∈ Q, θ(p2) = θ(p1) + q. Then
θgp(p2 − p1) = q in Qgp, so there is a unique p ∈ P mapping to (p2 − p1, q) in
Pgp × Q. Since P is integral, this implies that p2 = p + p1. For the converse,
suppose that (x, q) ∈ Pgp × Q and θgp(x) = q in Qgp. Write x = p2 − p1, with
p1, p2 ∈ P. Since Q is integral, it follows that θ(p2) + q = θ(p1), and hence by
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hypothesis that there exists a p ∈ P such that p2 = p1 + p. Then θ(p) = q by
the integrality of Q, and p is unique by the integrality of P. This shows that θ
is exact, completing the proof of (3).

Let θ : P→ Q be an exact homomorphism of integral monoids, let φ : Q′ →
Q be a homomorphism with Q′ integral, and let θ′: P′ := P×Q Q′ → Q′ be the
induced homomorphism. Then we have the following commutative diagram:

P′
γ- P′gp

×Q′gp Q′

P ×Q Q′

�

�
�Pgp ×Qgp Q ×Q Q′ � Pgp ×Qgp Q′

α

?
- Pgp ×Qgp Q′gp.

β

-

The diagram shows that α ◦ γ is an isomorphism, and in particular that γ is
injective and α is surjective. Since P and Q′ are integral, the map

P′ := P ×Q Q′ → Pgp ×Qgp Q′gp

is injective, and hence so is the map P′gp → Pgp ×Qgp Q′gp. Thus the map β is
injective, hence so is α, and it follows that α and γ are isomorphisms.

For the last statement, suppose that P is an exact submonoid of Q. If p ∈ P
and q ∈ Q and p′ := p + q ∈ P, then q = p′ − p ∈ Pgp ∩ Q = P. Thus Q \ P
is P-invariant. Conversely, if Q \ P is P invariant and p − p′ = q ∈ Q, then
p′ + q ∈ P, hence q ∈ P. �

The following theorem contains most of the important finiteness results for
fine monoids. The notion of exactness plays a key role.

Theorem 2.1.17.

1. Let θ : P → Q be an exact homomorphism of integral monoids. Suppose
that S is a sub-P-set of Pgp whose image in Qgp is contained in a noetherian
Q-set. Then S is a noetherian P-set.

2. Every exact submonoid of a fine (resp. saturated, resp. toric) monoid is fine
(resp. saturated, resp. toric).

3. A face of an integral monoid is an exact submonoid. Every face of a fine
monoid is finitely generated (as a monoid), and monogenic (as a face).

4. Every localization (see Proposition 1.4.4) of a fine (resp. saturated) monoid
is fine (resp. saturated).

5. The equalizer E of two homomorphisms of integral monoids θi : P → Q is
an exact submonoid of P. If P is fine (resp. saturated), then the same is true
of E.
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6. The fiber product of a pair of finitely generated (resp. fine, resp. saturated)
monoids over an integral monoid is finitely generated (resp. fine, resp. sat-
urated).

7. If P → Q is a homomorphism of fine monoids, then the congruence rela-
tion E := P ×Q P is finitely generated as a monoid and in particular as a
congruence on P.

8. Let P and Q be monoids. If Q is fine and P is finitely generated, then
Hom(P,Q) is also fine. If Q is saturated, Hom(P,Q) is also saturated.

Proof The proof of statement (1) will rely on criterion (4) of Proposition 2.1.5
and the following simple observation.

Lemma 2.1.18. Let P be an exact submonoid of a fine sharp monoid Q and
let Σ be a nonempty subset of Pgp. Then an element s of Σ is P-minimal in Σ if
and only if θgp(s) is Q-minimal in θgp(Σ).

Proof We assume for convenience and without loss of generality that P and
Q are sharp. Then θgp is injective, since θ is exact. Let s be an element of Σ. It is
clear that s is P-minimal in Σ if θ(s) is Q-minimal in θgp(Σ). On the other hand,
if s′ ∈ Σ and θgp(s′) < θgp(s), then q := θgp(s) − θgp(s′) ∈ Q+, and it follows
from the exactness of θ that p := s − s′ ∈ P+. Then s cannot be P-minimal in
S. �

To prove statement (1), we may again assume that P and Q are sharp. Let
Σ be a nonempty subset of S. If θgp(S) is contained in a noetherian Q-set T ,
then (4) of Proposition 2.1.5 implies that the set Σ′ of Q-minimal elements of
θgp(Σ) is finite and nonempty. The lemma implies that θgp−1(Σ′) is precisely the
set of P-minimal elements of Σ. Since θgp is injective, this set is also finite and
nonempty. Then Proposition 2.1.5 implies that S is noetherian.

To prove (2), suppose that P is an exact submonoid of Q. If Q is fine, then by
Theorem 2.1.7, Q is noetherian as a Q-set. Then statement (1) implies that P
is noetherian as a P-set, and Theorem 2.1.7 implies that P is finitely generated
as a monoid. Furthermore, P∗ is contained in Q∗, a finitely generated group, so
it too is finitely generated. Then P is finitely generated by Proposition 2.1.1. If
Q is saturated, we can conclude from the following (slightly stronger) lemma
that P is also saturated.

Lemma 2.1.19. If θ : P → Q is an exact homomorphism of integral monoids
and Q is saturated, then P is also saturated,

Proof Suppose that x ∈ Pgp and nx ∈ P. Then nθ(x) = θ(nx) ∈ Q, and, since
Q is saturated, it follows that θ(x) ∈ Q. Since θ is exact we conclude that x ∈ P,
so P is saturated. �
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In particular, an exact submonoid of a saturated is saturated. Of couse, if
Qgp is torsion free, then Pgp ⊆ Qgp is also torsion free, and consequently if Q
is toric, so is P.

Let F be a face of an integral monoid M, let x and y be elements of F, and
suppose z := x − y ∈ M. Then x = y + z ∈ F and, since F is a face, it follows
that z ∈ F. Thus F is an exact submonoid of M, and hence is finitely generated
as a monoid if M is fine. If f1, . . . , fn are generators, then f := f1 + · · · + fn
generates F as a face of M. This proves (3). For (4), note that if S ⊆ M is a
finite set of generators of M, then MF is generated by the set of elements λ(s)
for s ∈ S together with −λ( f ), where f is any generator of F as a face. Thus
MF is finitely generated as a monoid. If M is saturated and x is an element of
Mgp

F and n is a positive integer such that nx ∈ MF , then there exist y ∈ M and
f ∈ F such that nx = y − f . But then n(x + f ) = y + (n − 1) f ∈ M, and, since
M is saturated, x + f ∈ M and x ∈ MF . This proves (4).

Let E → P be the equalizer of two homomorphisms θ1 and θ2 from P to Q,
with P and Q integral. Then E → P is just the pullback of the diagonal ∆Q via
the map (θ1, θ2) : P → Q × Q. Proposition 4.2.1 implies that ∆Q is exact, and
thus that E → P × P is also exact. This proves (5), since an exact submonoid
of a fine (resp. saturated) monoid is fine (resp. saturated).

Let θ : P → M and φ : Q → M be monoid homomorphisms, where M is
integral. If P and Q are fine (resp. saturated), then so is P × Q. In this case,
P ×M Q is an exact submonoid of P × Q, since θ(p) = φ(q) if and only if
θgp(p) = φgp(q). Then P ×M Q is fine (resp. saturated), by statement (2). If P
and Q are finitely generated but not necessarily integral, we choose surjections
Nr → P and Ns → Q, and observe that the homomorphism Nr ×M Ns →

P×M Q is surjective. As we have just seen, Nr ×M Ns is finitely generated, and
hence the same is true of P×M Q. This proves statement (6), and (7) is a special
case.

In statement (8), it is clear that Hom(P,Q) is integral (resp. saturated) if
Q is integral (resp. saturated). If P is finitely generated, choose a surjective
homomorphism Nr → P for some r ∈ Z+. Then Hom(P,Q) can be identified
with the equalizer of the two obvious maps

Hom(Nr,Q)→ Hom(Nr ×P Nr,Q).

Since Hom(Nr,Q) � Qr is finitely generated if Q is finitely generated, (5)
implies that Hom(P,Q) is also finitely generated. �

Corollary 2.1.20. If P is an integral monoid and E is a congruence relation on
P, then P/E is integral if and only if E → P× P is exact. In particular, if P and
P/E are fine, then E is also fine.
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Proof Indeed the congruence relation E determined by a surjective homo-
morphism π : P→ Q of integral monoids is just the equalizer of the two maps
P × P → Q, and we saw in (5) of Theorem 2.1.17 that it is then an exact sub-
monoid of P × P. For the converse, let E be a congruence relation on P which
is an exact submonoid of P × P and let π : P → Q be the quotient mapping.
Then π is the coequalizer of the two maps E → P. To prove that Q is integral,
let q1, q2, and q be elements of Q such that q1 + q = q2 + q, and choose pi and
p in P with π(pi) = qi and π(p) = q. Then e := (p1, p2) + (p, p) ∈ E, and,
since (p, p) ∈ E, it follows that (p1, p2) ∈ Egp ∩ (P × P). Since E is an exact
submonoid, it follows that (p1, p2) ∈ E and hence that π(p1) = π(p2). If P and
P/E are fine, E is also fine by (2) of Theorem 2.1.17. �

In particular, congruence relations on P yielding integral quotients Q corre-
spond to congruence relations on Pgp, and hence by (1.1.4) to subgroups of Pgp.
Of course, the subgroup of Pgp corresponding to a surjective homomorphism
of integral monoids P→ Q is just the kernel of Pgp → Qgp.

Corollary 2.1.21. Let Q be a finitely generated integral monoid, let L be a
finitely generated abelian group, and let L → Qgp be a homomorphism. Then
L ×Qgp Q is a finitely generated monoid.

Proof This corollary is a special case of statement (6) of Theorem 2.1.17. �

Corollary 2.1.22. Let L be a finitely generated abelian group and let P be a
finitely generated submonoid of L. Then

P∨ := {w ∈ Hom(L,Z) : 〈w, p〉 ≥ 0 for all p ∈ P }

is a fine monoid.

Proof For each w ∈ P∨, the restriction ρ(w) of w to P belongs to H(P) :=
Hom(P,N). Thus there is a a homomorphism of integral monoids

ρ : P∨ → H(P).

We claim that ρ is exact. Indeed, suppose that w ∈ (P∨)gp and that there exists
h ∈ H(P) such that ρgp(w) = h in H(P)gp. Then the same relation holds in
Hom(P,Z), so that in fact w(p) = h(p) ≥ 0 for all p ∈ P, and indeed w ∈ P∨,
as desired. It follows easily that the induced homomorphism ρ : P∨ → H(P)
is also exact, and hence injective, by Proposition 2.1.16. According to (8) of
Theorem 2.1.17, H(P) is fine, and therefore so is its exact submonoid P∨. Since
P∨∗ is a subgroup of a finitely generated group, it is also finitely generated, and
hence so is P∨, by Proposition 2.1.1. �
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Remark 2.1.23. Let Q be an integral monoid. A subset K of Qgp that is in-
variant under the action of Q is called a fractional ideal. (Sometimes this ter-
minology is reserved for the case in which moreover there exists an element
q of Q such that q + K ⊆ Q. This is automatically the case if K is finitely
generated as a Q-set. Moreover, if Q is fine and q + K ⊆ Q, Corollary 2.1.11
implies that q + K is finitely generated as a Q-set and hence so is K.) The natu-
ral map π : Q→ Q induces a bijection between the set of fractional ideals of Q
and of Q, and this bijection takes finitely generated fractional ideals to finitely
generated fractional ideals.

Proposition 2.1.24. Suppose that θ : P → Q is an exact homomorphism of
fine monoids and that K is a finitely generated fractional ideal of Q. Then
J := θgp−1(K) is a finitely generated fractional ideal of P.

Proof This proposition is an immediate consequence of statement (1) of The-
orem 2.1.17. �

To see that the exactness hypothesis is not superfluous, consider the sum-
mation homomorphism θ : N ⊕ N → N, and let K = N ⊆ Z. Then θgp−1(K) =

{(m, n) : m + n ≥ 0} ⊆ Z ⊕ Z, which is not finitely generated as an N ⊕ N-set.
Lemma 1.9.2 of Chapter III gives an application of Theorem 2.1.17 to alge-

braic geometry.

2.2 Duality

If Q is a monoid, let H(Q) denote the monoid of homomorphisms Q→ N. The
following proposition, which guarantees the existence of enough elements of
H(Q), plays a fundamental role in the theory of monoids. It also connects our
definition (given in Definition 1.4.1) of a face of a monoid with the standard
definition in the theory of convex bodies (see for example [21, 1.2].)

Proposition 2.2.1. Let Q be a fine monoid and let F be a face of Q. Then there
exists a homomorphism h : Q→ N such that h−1(0) = F.

Proof Let λF : Q → QF be the localization homomorphism, and recall that
F = λ−1

F (Q∗F). Thus it suffices to construct a homomorphism h : QF → N with
h−1(0) = Q∗F . Since QF is still fine, we may as well replace Q by QF , and thus
we have reduced to the case in which F = Q∗. Replacing Q by Q/Q∗, we may
also assume that Q is sharp and so F = 0. We must show that there is a local
homomorphism h : Q→ N.

Let T be a finite set of nonzero generators of Q. We argue by induction
on the cardinality of T , using the technique of Fourier–Motzkin elimination.
If T is empty, Q = 0 and there is nothing to prove. If |T | = 1, then, since
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Q is sharp, the homomorphism N → Q sending 1 to the unique element of
T is an isomorphism, and its inverse is the desired homomorphism. In the
general case, if T is a finite set of nonzero generators for Q, we must construct
a homomorphism h : Qgp → Z such that h(t) > 0 for all t ∈ T . Choose some
t ∈ T , let S := T \ {t}, and let P be the submonoid of Q generated by S. The
induction hypothesis implies that there exists a local homomorphism h : P →
N. Then h induces a homomorphism Pgp → Z, which we denote again by
h. Since Ext1(Qgp/Pgp,Z) is a finite group, there is a positive integer n such
that nh extends to all of Qgp. Let us replace h by nh and choose an extension,
still denoted by h, of h to Qgp. If h(t) > 0, there is nothing more to prove.
If h(t) = 0, then the submonoid Q′ of Q generated by t is isomorphic to N,
and some positive multiple of the isomorphism extends to a homomorphism
g : Qgp → Z. Then, if n is a sufficiently large natural number, nh(s) + g(s) > 0
for all s ∈ S. Since also nh(t) + g(t) = g(t) > 0, nh + g is positive on all the
elements of T , as required.

Suppose on the other hand that h(t) < 0. Let φ : Qgp → Qgp be the homo-
morphism defined by

φ(q) := h(q)t − h(t)q.

Then φ(t) = 0 and, if s ∈ S, s′ := φ(s) = h(s)t + |h(t)|s ∈ Q. Since Q is
sharp, s′ , 0. Furthermore, the image Q′ of φ is a submonoid of Q, hence is
again sharp, and is generated by the image S′ of S under φ. By the induction
hypothesis, there exists a local homomorphism Q′ → N. Let h′ : Q → N be
the composition of such a homomorphism with the homomorphism Q → Q′

induced by φ. Then h′(s) > 0 for all s ∈ S and h′(t) = 0. This reduces us to the
previous case. �

Corollary 2.2.2. Let Q be a fine monoid and let x be an element of Qgp. Then
x ∈ Qsat if and only if hgp(x) ≥ 0 for every h ∈ H(Q).

Proof If x ∈ Qsat then nx ∈ Q for some n ∈ Z+ and hence hgp(x) ≥ 0 for
every h ∈ H(Q). Suppose conversely that hgp(x) ≥ 0 for every h ∈ H(Q).
Let Q′ be the submonoid of Qgp generated by Q and −x, and choose a local
homomorphism h : Q′ → N. Then hgp(x) ≥ 0 and h(−x) ≥ 0, so that in fact
h(−x) = 0. Since h is local, −x ∈ Q′∗. Thus x ∈ Q′, and writing x = −mx + q
with m ∈ N and q ∈ Q, we see that (m + 1)x = q, so x ∈ Qsat. �

The following result is the main duality theorem for fine monoids.

Theorem 2.2.3. Let Q be a fine monoid, and let H(Q) := Hom(Q,N).

1. The monoid H(Q) is fine, saturated, and sharp.
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2. The natural map H(Q)gp → Hom(Qgp,Z) factors through an isomorphism

ε : H(Q)gp → Hom(Q
gp
,Z).

3. The evaluation mapping ev : Q → H(H(Q)) factors through an isomor-
phism

ev : Qsat → H(H(Q)).

Thus, the functor H induces a contravariant involution of the category of
sharp toric monoids. In particular, this category is self dual.

Proof The first statement follows immediately from (8) of Theorem 2.1.17.
Since H(Q) → Hom(Q,Z) is injective, so is the map H(Q)gp → Hom(Q,Z).
Any element h of H(Q) necessarily annihilates Q∗, so this map factors through
a map ε as claimed, and ε is still injective. To prove its surjectivity, let h be
a local homomorphism Q → N and let S be a finite set of generators for Q.
For g ∈ Hom(Q,Z), there exists n ∈ Z+ such that nh(s) ≥ g(s) for each
s ∈ S. Then nh(q) ≥ g(q) for every q ∈ Q, so h′ := nh − g ∈ H(Q). Thus
g = nh − h′ ∈ H(Q)gp � H(Q)gp, as required.

Since H(H(Q)) is fine saturated and sharp, ev factors through a map ev
as claimed in the statement (3). Let x1 and x2 be two elements of Qsat with
ev(x1) = ev(x2), and let x := x1 − x2 ∈ Qgp. Then h(x) = 0 for every h ∈ H(Q).
It follows from Corollary 2.2.2 that x and −x belong to Qsat, so x ∈ (Qsat)∗.
Thus x1 = x2 in Qsat, and this proves the injectivity of ev. For the surjectivity,
suppose that g ∈ H(H(Q)). Since Qgp is a finitely generated group, the map
from Qgp to its double dual is surjective. Thus there exists an element q of Qgp

such that ev(q) = g, i.e., such that h(q) = g(h) for all h ∈ H(Q). Then h(q) ≥ 0
for all h, so q ∈ Qsat, as required. �

Corollary 2.2.4. Let Q be a fine monoid. A subset S of Q is a face if and only
if there exists an element h of H(Q) such that S = h−1(0). For each S ⊆ Q, let
S⊥ be the set of h ∈ H(Q) such that h(s) = 0 for all s ∈ S, and, for T ⊆ H(Q),
let T⊥ be the set of q ∈ Q such that t(q) = 0 for all t ∈ T . Then F 7→ F⊥

induces an order-reversing bijection between the set of faces of Q and the set
of faces of H(Q), and F = (F⊥)⊥ for any face F of either.

Proof The first statement follows from Proposition 2.2.1. It is clear that if S is
any subset of Q, then S⊥ is a face of H(Q) and that T⊥ is a face of Q if T is any
subset of H(Q). Furthermore, S⊥2 ⊆ S⊥1 if S1 ⊆ S2, and S ⊆ (S⊥)⊥. Let F be a
face of Q. By Proposition 2.2.1, there exists an h ∈ H(Q) such that h−1(0) = F.
Then h ∈ F⊥ and, if q ∈ (F⊥)⊥, h(q) = 0 so q ∈ F. Thus F = (F⊥)⊥, and
hence the map ⊥ from the set of faces of Q to the set of faces of H(Q) is
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injective and the map ⊥ from the set of faces of H(Q) to the set of faces of Q
is surjective. Hence the map from the set of faces of H(Q) to the set of faces
of H(H(Q)) is also injective. By Corollary 2.3.8, the map Q → Qsat induces
a bijection on the corresponding sets of faces, and hence by (3) of Theorem
2.2.3, ev identifies the faces of Q with the faces of H(H(Q)). Now it follows
that ⊥ is bijective. �

The next corollary is an analog of the finiteness of integral closure in com-
mutative algebra.

Corollary 2.2.5. If Q is a fine monoid, then Qsat is again fine. In fact, the
action of Q on Qsat defined by the homomorphism Q → Qsat makes Qsat a
finitely generated Q-set.

Proof Since (Qsat)∗ is contained in Qgp, it is a finitely generated abelian
group. Theorem 2.2.3 implies that Qsat is fine, and, since Qsat is integral, it fol-
lows from Proposition 2.1.1 that Qsat is finitely generated, hence fine. Choose
a finite set of generators T for Qsat as a monoid, and, for each t ∈ T , choose
nt ∈ N+ such that ntt ∈ Q. Then {

∑
jtt such that jt ≤ nt for all t ∈ T } generates

Qsat as a Q-set. �

Corollary 2.2.6. If π : Q′ → Q is a surjective homomorphism of fine monoids,
then H(π) : H(Q)→ H(Q′) is injective and exact.

Proof It is clear that H(π) is injective if π is surjective. Moreover, by (2)
of Theorem 2.2.3, we can view an element h of H(Q)gp as a homomorphism
Q→ Z, and we see that h ∈ H(Q) if and only if h ◦ π ∈ H(Q′). �

Corollary 2.2.7. Let Q be a fine sharp monoid. Then Q is isomorphic to a
submonoid of Nr ⊕T for some r ∈ N and some finite group T . If Qgp is torsion
free, we can take T = 0. If Q is also saturated, then it is isomorphic to an exact
submonoid of some Nr.

Proof Suppose that Q is fine and sharp. By (8) of Theorem 2.1.17, the monoid
P := H(Q) is fine and sharp, and, by (2) of Theorem 2.2.3, Pgp := H(Q)gp �

Hom(Qgp,Z). Then Hom(Pgp,Z) � H(P)gp is a finitely generated free group.
It follows that the kernel of the natural map

Qgp → Hom(Pgp,Z) � H(P)gp

is just the torsion subgroup T of Qgp. Choose a splitting

Qgp � H(P)gp ⊕ T

and a surjection Nr → P. By Corollary 2.2.6, H(P) is then an exact submonoid
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of H(Nr) � Nr. Then the natural injection

Q - Qgp �- H(P)gp ⊕ T

factors through the inclusion H(P) ⊕ T ⊆ H(P)gp ⊕ T , and Q is a submonoid
of Nr ⊕ T since H(P) ⊆ Nr. Furthermore, by (3) of Theorem 2.2.3, the natural
map Q → H(P) factors through an isomorphism Qsat → H(P). Thus if Q also
is saturated, Q � H(P), an exact submonoid of Nr. �

Remark 2.2.8. Recall that the interior of a monoid is the complement of all
its proper subfaces. Let us observe that if Q is fine, then an element h of H(Q)
lies in the interior of H(Q) if and only if h : Q→ N is a local homomorphism.
Indeed, by Corollary 2.2.4, h lies in the interior of H(Q) if and only if h⊥ does
not contain any nontrivial face of Q, i.e., if and only if h⊥ = Q∗. This is exactly
the condition that h : Q→ N be a local homomorphism.

We shall find the following crude finiteness result useful. More precise vari-
ants are available, most of which rely on the theory of Hilbert polynomials in
algebraic geometry.

Proposition 2.2.9. Let Q be a fine sharp monoid, let d be the rank of Qgp, and
let h : Q→ N be a local homomorphism. For each real number r, let

Bh(r) := {q ∈ Q : h(q) < r}.

Then there are positive real constants c and C such that, for all r � 0,

crd < #Bh(r) < Crd.

Proof The torsion subgroup T of Qgp is finite, and the quotient Qgp/T is a
free abelian group of rank d. By Theorem 2.2.3, H(Q) is finitely generated and
sharp, and hence by Proposition 2.1.2 it has a unique set of minimal gener-
ators {h1, . . . , hm}. Since h is local, it belongs to the interior of H(Q), by Re-
mark 2.2.8. Thus the face of H(Q) generated by h is all of H(Q), and in particu-
lar contains each hi. By Proposition 1.4.2, this means that for each i there exists
a positive integer ni such that nih ≥ hi in H(Q). Choose n ≥ ni for all i. Then
Bh(r) ⊆ ∩iBhi (nr) for every r ∈ R+. Since Q is sharp, statement (2) of Theo-
rem 2.2.3 implies that H(Q)gp � Hom(Qgp,Z), and consequently {h1, . . . , hm}

spans the Q-vector space Hom(Qgp,Q). Since this space has dimension d, the
set {h1, . . . , hm} contains a basis, which we may assume is {h1, . . . , hd}. Then
the map Qgp ⊗ Q → Qd sending x ⊗ 1 to (h1(x), h2(x), . . . , hd(x)) is an iso-
morphism and induces an injection from the image Q′ of Q in Qgp/T to Nd. If
q ∈ Bh(r), its image in Nd lies in {(I1, . . . , Id) : 0 ≤ Ii ≤ nr}, a set of cardinality
(1 + [nr])d. Since the cardinality of the fibers of the map Q → Q′ is bounded
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by the order t of T , it follows that #Bh(r) ≤ t(1 + nr)d. Thus if C := t(1 + n)d

and r ≥ 1, the cardinality of Bh(r) is bounded by Crd.
On the other hand, any set of generators for the monoid Q also generates

the d-dimensional Q-vector space Q ⊗ Qgp, and therefore contains a subset
{q1, . . . , qd} whose image forms a basis. Thus the homomorphism θ : Nd → Q
sending I := (I1, . . . , Id) to

∑
Iiqi is injective. Let n := max{h1(q1), . . . , hd(qd)}

and let c := (2nd)−d. Then we claim that #Bh(r) ≥ crd for r ≥ nd. Indeed, if
r ≥ nd, let m := [r/nd], and note that

r/nd ≥ m ≥ r/nd − 1 ≥ r/2nd.

The set {I : Ii ≤ m, i = 1, . . . , d} has cardinality (1 + m)d and its image in Q
also has cardinality (1 + m)d ≥ md ≥ crd and is contained in Bh(r). �

2.3 Monoids and cones

Just as vector spaces are simpler than abelian groups, cones are simpler than
monoids, and it is frequently very helpful to replace a monoid by the cone it
spans. Let K be an Archimedean totally ordered field and let K≥0 denote the
set of nonnegative elements of K, regarded as a multiplicative monoid. Since
0 ∈ K≥0, this monoid is not u-integral, but K> := K≥0 \ {0} is a group. In
practice, here K will be either R or Q. The constructions when K = Q are
considerably simpler and suffice for most purposes, but in some cases it is
useful to work with the locally compact topology of R. Proposition 2.3.11 will
help control the behavior of the constructions when one changes the field K.

Definition 2.3.1. A K-cone is an integral monoid (C,+, 0) endowed with an
action of the monoid (K≥0, ·, 1), such that

(a + b)x = ax + bx for a, b ∈ K≥0 and x ∈ C, and

a(x + y) = ax + ay for a ∈ K≥0 and x, y ∈ C.

A morphism of K-cones is a morphism of monoids compatible with the actions
of K≥0.

In the sequel we shall say “cone” instead of “K-cone,” and write C(S) instead
of CK(S), when there seems to be no danger of confusion.

Remark 2.3.2. We could define the notion of a K-cone without the integrality
assumption, but there seems to be no need for this extra generality. Note that it
follows from the definition (assuming only that C is quasi-integral) that a0 = 0
for every a ∈ K≥ and that 0x = 0 for every x ∈ C. Thus it really suffices to
give the action of the group K> on C, and in fact any such action satisfying the
definition extends uniquely to an action of K≥.
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Any K-vector space V is a K-cone, and any submonoid of V stable under the
action of K≥ forms a subcone. On the other hand, if C is any K-cone, then one
verifies immediately that the action of K≥ on C extends to a unique action of
K on Cgp and that this action defines a K-vector space structure on Cgp. Thus
every K-cone can be viewed as a subcone of a K-vector space.

If C is a K-cone, then its group of units C∗ is automatically stable under
the action of K≥ and hence forms a K-vector space. A cone is sharp if and
only if C∗ = 0; some authors call such a C a strongly convex cone. If C is a
K-cone, then C := C/C∗ is a sharp K-cone. By the dimension of C we mean
the dimension of Cgp (as a K-vector space), and we call the dimension of C
(which inherits a cone structure) the sharp dimension of C.

If S is any subset of a K-vector space V we can define its conical hull CK(S)
to be the set of all elements v of V that can be written v =

∑
ass with as ∈ K≥

and s ∈ S. Then CK(S) is the smallest K-cone in V containing S. A K-cone C
is called finitely generated if it admits a finite subset S such that C = CK(S).

Let C be a K-cone and let F be a face of C. Then F is automatically a
subcone of C. Indeed, if x ∈ F and a ∈ K≥0, then there exists n ∈ N with a ≤ n,
since K is Archimedean. Then ax ≤ nx and nx ∈ F, and, since F is a face,
ax ∈ F also. If F is a face of a cone C, then C/F is a sharp cone, and we call
its dimension the codimension of F. If this codimension is one, we say that F
is a facet of C. A one-dimensional face of C is sometimes called an extremal
ray of C.

Remark 2.3.3. An ideal J of C need not be invariant under K>; if it is we
say that is a conical ideal. Since the complement of every prime ideal is a
face and hence is invariant under K>, it follows that every prime ideal of C is
necessarily conical. In fact, an ideal is conical if and only if it is a radical ideal.
It is clear that a conical ideal is radical. Conversely, suppose that J is a radical
ideal of C and that q ∈ J and λ ∈ K>. We claim that p := λq ∈ J. Since K is
Archimedean, there exists λ′ ∈ K> such that n := λ′ + λ−1 is a positive integer.
Then np = λ′p + λ−1 p = λ′p + q ∈ J. Since J is an ideal and q ∈ J, it follows
that np ∈ J, and thus p ∈ J since J is a radical ideal. It follows that the conical
ideal generated by a subset S of C is the intersection of the set of prime ideals
of C containing S.

Let us say that an element x of a sharp cone C is K-indecomposable in C if it
is not a unit and, whenever x = y + z with y and z in C, y and z are K-multiples
of x. Thus x is K-indecomposable if and only 〈x〉gp is a one-dimensional K-
vector space. (Recall that 〈x〉 is the face of C generated by x.) For example,
in the monoid P given by generators {x, y, z} and relation x + y = 2z, the el-
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ements x, y, and z are irreducible, and in the corresponding cone x and y are
indecomposable, but z is not indecomposable.

Proposition 2.3.4. Let C be a finitely generated sharp cone. Then every ele-
ment of every minimal set S of generators of C is indecomposable, and every
indecomposable element of C is a multiple of some element of S. In particular,
C is spanned by a finite number of indecomposable elements.

Proof The proof is essentially the same as the proof of the analogous result
(Proposition 2.1.2) for monoids, but we write it in detail anyway. Let x be an
element of a minimal set S of generators for C and let S′ := S \ {x}. Write
x = y + z, with y =

∑
ass, z =

∑
bss, and as, bs ∈ K≥0. Then x =

∑
css, with

cs = as + bs, so (1 − cx)x =
∑

s∈S′ css. If cx < 1 we see that S′ generates C,
a contradiction, and if cx > 1, x is a unit, contradicting the sharpness of C.
Then necessarily cx = 1, so 0 =

∑
s∈S′ ass + bss. Since S is sharp, this implies

that ass = bss = 0 for all s ∈ S′. Then y = axx and z = bxx, proving that x
is indecomposable. On the other hand, if x′ is any element of C, we can write
x′ =

∑
ass, and if x′ is indecomposable, as , 0 implies that s is a multiple of

x′, hence x′ is a multiple of s. �

The next result relates the Krull dimension of the spectrum of a cone to the
dimension of the corresponding vector space.

Proposition 2.3.5. Let C be a K-cone and S a set of generators for C.

1. Every face F of C is generated as a cone by F ∩ S, and in particular is
finitely generated if C is finitely generated.

2. If C is finitely generated, C contains only a finite number of faces.
3. The length d of every maximal increasing chain of faces

C∗ = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fd = C

is less than or equal to the K-dimension of the vector space C
gp

, with equal-
ity if C is finitely generated as a K-cone. In this case, every chain of faces
is contained in a chain of length d.

4. If C is finitely generated, every proper face of C is contained in a facet.

Proof Let F be a face of C and x ∈ F, x , 0. Then we can write x =
∑

ass
with as ∈ K≥0 and s ∈ S. Since F is a face, each s for which as , 0 must
belong to F. This shows that in fact F is generated as a cone by F ∩ S. If S is
finite, it has only finitely many subsets, so C can have only finitely many faces.
This proves (1) and (2). Since there is a natural bijection between the faces of
C and the faces of C we may as well assume in the proof of (3) that C∗ = 0. Let
C := (F0 ⊂ · · · ⊂ Fd) be a maximal chain of faces of C; necessarily F0 = {0}
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and Fd = C. Since each Fi is an exact submonoid of C, the inclusions Fgp
0 ⊆

Fgp
1 ⊂ · · · ⊂ Fgp

d of linear subspaces of Cgp are all strict. It follows that d is less
than or equal to the dimension d of Cgp. Suppose that C is finitely generated and
that G := (G0 ⊆ · · · ⊆ Ge) is a chain of faces. We will prove that G is contained
in a chain of length d by induction on the dimension d of Cgp. Without loss of
generality we may assume that G0 = 0 and that Ge = C. If d = 0, C = {0}
and the result is trivial. Suppose that d > 0; we may assume by Proposition
2.3.4 that S is a set of indecomposable elements of C. Necessarily G1 , {0},
and it follows from statement (1) that G1 must contain a K-indecomposable
element c. Then F := 〈c〉 has dimension one and the quotient C/F has sharp
dimension d − 1. Thus the induction assumption implies that the chain G/F in
C/F is contained in a chain of length d − 1. The inverse image of this chain
in C, together with G0, is then a chain of length d containing G. This proves
statement (3), and (4) is an immediate consequence. �

Proposition 2.3.6. Let Q be an integral monoid and let K be an Archimedean
ordered field. Denote by CK(Q) the K-subcone of K ⊗ Qgp spanned by the
image of the map Q→ K ⊗ Qgp sending q to 1 ⊗ q.

1. Two elements q1, q2 of Q have the same image in CK(Q) if and only if there
exists n ∈ Z+ such that nq1 = nq2 in Q.

2. If K = Q, then an element x of Q ⊗ Qgp lies in CQ(Q) if and only if there
exist n ∈ Z+ and q ∈ Q such that nx = 1⊗q. For general K, CK(Q) is the set
of elements of K ⊗ Qgp that can be written as a sum of the form

∑
ai ⊗ qi,

with ai ∈ K≥ and qi ∈ Q.
3. If C is any K cone and Q → C is a homomorphism of monoids, then there

is a unique homomorphism of K-cones CK(Q)→ C such that the diagram

Q - CK(Q)

C
?

-

commutes.
4. Let H(Q) := Hom(Q,N) ⊆ Hom(Q,K≥). If Q is fine, the natural maps

CK(H(Q))→ Hom(Q,K≥) and Qsat → Qgp ∩CK(Q)

are isomorphisms.

Proof Since Q is integral, the map Q→ Qgp is injective, and the kernel of the
map Qgp → Q ⊗ Qgp consists of the torsion subgroup of Qgp. This proves (1)
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when K = Q. Since K is flat over Q, the map Q ⊗ Qgp → K ⊗ Qgp is injective,
and the general case follows.

For (2), denote by C the set of all x in Q ⊗ Qg for which nx = 1 ⊗ q for
some n ∈ Z+ and some q ∈ Q. It is clear that C ⊆ CQ(Q). On the other hand, if
nx = 1 ⊗ q and n′x′ = 1 ⊗ q′, then nn′(x + x′) = 1 ⊗ (n′q + nq), so x + x′ ∈ C.
Since C is stable under the action of Q≥, it follows that C is a Q-cone, and
hence CQ(Q) ⊆ C. The statement for general K is an immediate consequence
of the definition.

For (3), observe first that a homomorphism θ : Q → C induces a group
homomorphism θgp : Qgp → Cgp, where Cgp is now a K-vector space. This
homomorphism extends uniquely to a K-linear map K ⊗ Qgp → Cgp. It then
follows from (2) that this map sends CK(Q) to C. It is clear that the induced
map is a map of K-cones and is unique.

For now we just prove (4) when K is the field of rational numbers; see
Remark 2.3.13 for the general case. It is clear that the map CK(H(Q)) →
Hom(Q,K≥) is injective. For the surjectivity, let h be a homomorphism Q →
Q≥ and let S be a finite set of generators for Q. For each s ∈ S, choose ns ∈ Z+

such that nsh(s) ∈ N and let n :=
∏

ns. Then nh ∈ H(Q). The second part of
(4) follows immediately from (2). �

Let us now explain the relationship between the faces of a monoid and the
faces of the cone it spans. The following proof of the following result is almost
trivial if K = Q, but is slightly more delicate in the general case.

Proposition 2.3.7. Let Q be an integral monoid and let c : Q→ CK(Q) be the
map sending q to 1 ⊗ q.

1. If F is a face of Q, then CK(F) is a face of CK(Q), and the map F 7→ CK(F)
is a bijection from the set of faces of F to the set of faces of CK(Q), with
inverse G 7→ c−1(G). For each face F of Q, c−1(CK(F)gp) = Fgp.

2. If I is an ideal of Q, let C+
K(I) denote the set of elements that can be writ-

ten as a sum
∑
{ass : s ∈ S}, where each as ∈ K> and S is a nonempty

finite subset of I. Then C+
K(I) is the smallest K>-invariant ideal of CK(Q)

containing the image of I, and c−1(C+
K(I)) is the radical of I. Furthermore,

I 7→ C+
K(I) induces a bijection from the set of radical ideals of Q to the set

of K>-invariant ideals of CK(Q).

Proof Since the map from Q to its image Q′ in Qgp/Qgp
tor induces a bijection

between the sets of faces (resp. radical ideals) of Q and of Q′ and an isomor-
phism CK(Q) → CK(Q′), we may assume without loss of generality that Qgp

is torsion free. In this case, the map c is injective, and we write it as an in-
clusion and omit the subscript K. Let F be a face of Q. To prove that C(F)
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is a face of C(Q), suppose that c := a + b ∈ C(F) with a, b ∈ C(Q). Write
c =

∑
c f f , a =

∑
aqq, and b =

∑
bqq with aq, bq, c f ∈ K≥0 and q ∈ Q, f ∈ F.

There is a fine submonoid Q′ of Q containing all q and f such that aq, bq, or
c f is nonzero. Then a, b, c ∈ C(Q′), and F ∩ Q′ is a face of Q′. By Proposi-
tion 2.2.1, there is a homomorphism h : Q′ → N such that h−1(0) = F ∩ Q′.
This homomorphism extends to a homomorphism C(h′) : C(Q′)→ K≥0. Then
C(h′)(a) + C(h′)(b) = C(h′)(c) = 0, so C(h′)(a) = C(h′)(b) = 0. Since
0 =

∑
aqh(q) and each aq ≥ 0, it follows that aq = 0 if h(q) > 0, i.e., if q < F.

Thus a ∈ C(F), and similarly for b. This shows that C(F) is indeed a face of
C(Q). If q ∈ Q∩C(F), then there exists a finite subset S of F such that q can be
written q =

∑
{ass : s ∈ S}, with each as ∈ K≥0. Let Q′′ be the submonoid of Q

generated by S, let F′′ be the face of Q′′ generated by S, and choose a homo-
morphism h′′ : Q′′ → N with h′′−1(0) = F′′. Then h′′(q) = C(h′′)(q) = 0, so
q ∈ F′′ ⊆ F. This shows that Q∩C(F) = F, and a similar argument shows that
Qgp∩C(F)gp = Fgp. On the other hand, if G is a face of C(Q), then F := G∩Q
is a face of Q. Every element of G can be written as a sum g =

∑
ass with

s ∈ Q, and since G is a face of C(Q), s ∈ G whenever as > 0. But then each
such s lies in F, and hence g ∈ C(F), so in fact G = C(F). This proves (1).

For (2), let I be any ideal of Q. It is clear that C+
K(I) is contained in every

K>-invariant ideal containing c(I) and that it is invariant under K>, hence a
subcone, but perhaps it is not clear that it is an ideal of CK(Q). Let us first check
that if a, b ∈ K>, q ∈ Q, and s ∈ I, then aq + bs ∈ C+

K(I). If a ≤ b, this is clear,
since then aq+bs = a(q+ s)+(b−a)s ∈ C+

K(I). On the other hand, if b < a, let n
be the largest natural number less than a/b, so that a = bn+a′ and a′ < b. (Such
a number exists because K is Archimedean.) Then aq + bs = a′q + b(nq + s)
and we are reduced to the previous case. Now in general, if c =

∑
aqq and

v =
∑

bss, with aq, bs ∈ K> then it follows, by induction on the numbers of q’s
appearing, that c + v ∈ C+

K(I). It is clear that c−1(C+
K(I)) is a radical ideal of Q

containing I, and hence containing its radical
√

I. Suppose that q <
√

I. Then
there is a prime ideal p of Q containing I but not q, i.e., there is a face F of Q
containing q and which does not meet I. Then if c(q) ∈ C+

K(I), c(q) =
∑

ass
with as ∈ K> and s ∈ I. Since c(q) ∈ CK(F), the same is true of each s, and so
each s ∈ CK(F) ∩ Q = F, a contradiction. This shows that

√
I = c−1(C+

K(I)).

On the other hand, let J be any K>-invariant ideal of CK(Q) and let I :=
c−1(J). Then I =

√
I and furthermore it is clear that C+

K(I) ⊆ J. To prove
the reverse inclusion, write an element v of J as a finite sum v =

∑
aqq with

aq ∈ K>. Choose a natural number n with n ≥ aq for all q and let w :=
∑

q.
Then nw =

∑
(n − aq)q + v ∈ J, and, since J is K> invariant, it follows that

w ∈ c−1(J) = I. Moreover, there is some a ∈ Q> ⊆ K> such that a < aq for all



2 Finiteness, convexity, and duality 45

q. Then aq belongs to the ideal C+
K(I) of CK(Q), and, since v =

∑
(aq−a)q+aw,

it follows that v ∈ C+
K(I). �

Corollary 2.3.8. Let Q be an integral monoid. Then the natural maps in the
commutative diagram:

Spec(CK(Qsat)) - Spec(CK(Q))

Spec(Qsat)
?

- Spec(Q)
?

are homeomorphisms (for the Zariski topologies).

Proof It is clear from that the map CK(Q) → CK(Qsat) is an isomorphism,
and hence so is the top arrow in the diagram. Proposition 2.3.7 implies that the
vertical arrows are bijections, and even homeomorphisms. It follows that the
bottom arrow is also a homeomorphism, but this could also be easily checked
directly. �

Note that Proposition 1.4.7, whose proof we deferred, follows immediately
from Corollary 2.3.8 and Proposition 2.3.5. Moreover, if Q is fine, then S :=
Spec S is a finite topological space. In fact the topology of S can be recovered
from the partial order on S defined by inclusion on the set Spec S of prime
ideals of Q, or, equivalently, the set of faces of Q. To make this explicit, let p
be a point of S. The complement F of p is a face of Q, and, since Q is finitely
generated, by statement (3) of Theorem 2.1.17 there exists an f ∈ Q such that
〈 f 〉 = F. Then

{p′ : p ∈ {p′}−} = SF := {p′ : F ∩ p′ = ∅} = S f := {p′ : f < p′}

is open in S. Thus the set of generizations of each point is open, and hence a
subset of S is open if and only if it is stable under generization. This shows
that the topology of S is entirely determined by the order relation among the
primes of Q.

Let s be a point of S corresponding to a prime ideal p of Q and let F be
the complementary face. The height of s is the maximum length of a chain of
prime ideals containing p, or, equivalently, the dimension of Q/F. The space
S has a natural stratification defined by the heights of its points. Let d be the
Krull dimension of S and for 0 ≤ i ≤ d let Ki := ∩{p : ht p = i}, an ideal of Q.
We saw in Definition 1.4.6 that every prime of height i + 1 contains a prime of
height i, hence Ki ⊆ Ki+1. We have

∅ = K0 ⊂ IQ = K1 ⊂ · · · ⊂ Kd = Q+,
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where IQ is the interior ideal of Q.
Since {p : ht p = i} is finite,

Zi := Z(Ki) = ∪{Z(p) : ht p = i} = {p : ht p ≥ i}.

Thus we have a chain of closed sets

{Q+} = Zd ⊂ Zd−1 ⊂ · · · ⊂ Z1 ⊂ Z0 = Spec Q.

If p ∈ Spec Q and F := Q \ p, then p belongs to the open subset SF of S
defined by Q, and F is the largest face with this property. Let Fi denote the set
of faces F of Q such that Q \ F has height i, i.e., such that the rank of Q/F is i.
A prime p belongs to some SF with F ∈ Fi if and only if ht p ≤ i. This shows
that

∪{SF : F ∈ Fi} = {p : ht p ≤ i} = S \ Zi+1

If G is a face of Q, then Spec(Q/G) � Spec(QG) is an open subset of Spec Q,
and the height of a prime ideal computed in Spec(Q/G) is the same as its height
computed in Spec(Q). It follows that, for every i, the ideal of Q/G generated
by the ideal Ki of Q is the ideal of Ki of Q/G.

The following corollary summarizes this discussion.

Corollary 2.3.9. Let S be the spectrum of a fine monoid Q. For each natural
number i, let

Ki := ∩{p : ht p = i} and

Zi := Z(Ki) = {p ∈ S : ht p ≥ i}.

1. The Krull dimension d of Q is the rank of Q, and we have a chain of closed
subsets

∅ = Zd+1 ⊂ Zd = {Q+} ⊂ Zd−1 ⊂ · · · ⊂ Z0 = S.

2. The complement of Zi in S is the union of the set of all the open sets SF as
F ranges over the faces of Q such that the rank of Q/F is i−1. In particular,
S \ Z2 is the union of the sets SF := Spec(QF) as F ranges over the facets of
Q, and S \ Z1 = Spec(Qgp).

3. The topological space S is catenary, and Zi has codimension i in S.
4. If G is face of Q, then the ideal of Q/G generated by the ideal Ki of Q is

the ideal Ki of Q/G.

We now discuss a few finiteness and duality results for K-cones. When K =

Q, these can be deduced from analogous results for monoids, but in the general
case it is necessary to use “Fourier–Motzkin elimination theory.” Its key lemma
will allow us to compute a set of generators for the intersection of a cone C
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with a hyperplane from a set of generators of C. It will also show that formation
of this intersection is compatible with field extensions.

Lemma 2.3.10. Let V be a K-vector space, let w be a linear map W → K, and
let iw : Λ2V → Ker(w) signify interior multiplication by w:

iw(v1 ∧ v2) = 〈w, v1〉v2 − 〈w, v2〉v1.

If S is a subset of V , let

Sw := {iw(s1 ∧ s2) : 〈w, s1〉 > 0 and 〈w, s2〉 < 0} ∪ (S ∩ Ker(w)).

Then CK(Sw) = CK(S) ∩ Ker(w). If K → K′ is an extension of ordered fields
and V ′ := K′ ⊗K V and w′ := idK′ ⊗ w, then CK′ (Sw) = CK′ (S) ∩ Ker(w′).

Proof It is clear from the definition that Sw ⊆ C(S) ∩ Ker(w) and hence that
C(Sw) ⊆ C(S)∩Ker(w). To prove the reverse inclusion, suppose that v belongs
to C(S) ∩ Ker(w). Since v ∈ C(S), it can be written in the form

v =
∑
s∈S′

ass, where each as > 0,

for some finite subset S′ of S. We will prove that v ∈ C(Sw) by induction on
the cardinality of S′. Since S ∩ Ker(w) ⊆ Sw, we may assume without loss of
generality that S′ ∩ Ker(w) = ∅, i.e., that 〈w, s〉 , 0 for all s ∈ S′.

If S′ is empty there is nothing to prove. Otherwise,

0 = 〈w, v〉 =
∑
s∈S′

as〈w, s〉,

and since each as > 0, there must exist s, t ∈ S′ with 〈w, s〉 > 0 and 〈w, t〉 < 0.
Then

e := iw(s ∧ t) = 〈w, s〉t − 〈w, t〉s ∈ Sw.

Suppose that as〈w, s〉 + at〈w, t〉 ≥ 0. Then

a′s = 〈w, s〉−1(as〈w, s〉 + at〈w, t〉) ≥ 0, and

v′ := v − at〈w, s〉−1e = a′ss +
∑

s′′∈S′′
as′′ s′′,

where S′′ := S\{s, t}. Thus v′ ∈ C(S)∩Ker(w), and by the induction hypothesis,
v′ ∈ C(Sw). Since v = v′+at〈w, s〉−1e, we conclude that v also belongs to C(Sw),
as desired.

If on the other hand, as〈w, s〉 + at〈w, t〉 ≤ 0, let

a′t = 〈w, t〉−1(as〈w, s〉 + at〈w, t〉) ≥ 0 and
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v′ := v + as〈w, t〉−1e = a′t t +
∑

s′′∈S′′
as′′ s′′.

Then the same argument shows that v′ belongs to C(Sw) and hence so does v.
If K → K′ is an extension of ordered fields, then, with the notations of

the lemma, the same argument with V ′ in place of V shows that CK′ (Sw′ ) =

CK′ (S) ∩ Ker(w′). Since it follows from the construction that Sw′ is just (the
image in V ′ of) Sw, in fact CK′ (Sw) = CK′ (S) ∩ Ker(w′), as claimed. �

Proposition 2.3.11. Let g : V ′ → V be a homomorphism of K-vector spaces
such that Ker(g) is finite dimensional.

1. If C is a finitely generated K-cone in V , then g−1(C) is a finitely generated
K-cone in V ′.

2. If C is a K-cone in V and K → K′ is an extension of ordered fields, then
g−1(C) generates the K′-cone (idK′ ⊗ g)−1(CK′ (C)).

3. An exact subcone of a finitely generated K-cone is finitely generated.

Proof It is clear that g−1(C) is a K-cone in V ′. To prove statements (1) and
(2), we may factor g as the composition of a surjection (with finite dimensional
kernel) and an injection, and it suffices to treat each of these separately.

Assume first that g is injective. Replacing V by the span of C and g(V ′),
we may assume that the cokernel of g is finite dimensional. Then we can fac-
tor g into a finite composition of injections each of whose cokernels is one-
dimensional, and it suffices to treat each of these. Thus we are reduced to the
case in which V ′ is a subspace of V of codimension one. In this case there
exists a linear map w : V → K whose kernel is V ′. Then if S is a finite set of
generators for C, Lemma 2.3.10 tells us that Sw is a finite set of generators for
g−1(C). If K → K′ is a field extension, the second part of the same lemma
shows, without assuming that S is finite, that the K′-cone spanned by g−1(C) is
(idK′ ⊗ g)−1(CK(S)).

Now suppose that g is surjective with finite dimensional kernel. Arguing as
before, we may assume that the kernel has dimension one. For each s in a set
S of generators for C, choose s′ ∈ V ′ with g(s′) = s and let S′ := {s′ : s ∈ S}.
Let t be a nonzero element of the kernel of g, and let T := S′ ∪ {t,−t}. Note
that T is finite if S is finite. Since T ⊆ g−1(C), it follows that C(T ) ⊆ g−1(C).
Thus, to complete the proof of statements (1) and (2), it will suffice to show
that g′−1(CK′ (C)) = CK′ (T ), where g′ := id ⊗K′ g. If v′ ∈ g′−1(CK(C)), then
g′(v′) =

∑
a′ss with a′s ∈ K′≥0. Let v′′ :=

∑
a′ss′ ∈ CK′ (S′) ⊆ CK′ (T ). Since

g′(v′ − v′′) = 0, we can find some a′ ∈ K′ with v′ − v′′ = a′t. If a′ ≥ 0, we have
v′ = v′′ + a′t ∈ CK′ (T ), and if a′ ≤ 0 we have v′ = v′′ + (−a′)(−t) ∈ C(T ). Thus
in either case v′ ∈ CK′ (T ), as required.
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If C is a finitely generated K-cone, then Cgp is a finite dimensional K-vector
space, and if C′ is an exact subcone of C, then C′ = V ′∩C, where V ′ = C′gp ⊆

V . It follows that C′ is also finitely generated. �

The following statement summarizes the major duality results for cones that
we will need.

Theorem 2.3.12. Let V be a finite dimensional K-vector space and let W :=
HomK(V,K) be its dual. If C is a finitely generated K-cone contained in V , let

C∨ : = {w : V → K : w(c) ≥ 0 for all c ∈ C}
C⊥ : = {w : V → K : w(c) = 0 for all c ∈ C}.

1. The K-cone C∨ is finitely generated. If K → K′ is an extension of ordered
fields, then

CK′ (C∨) := (CK′ )∨ = {w′ : V → K′ : w′(c) ≥ 0 for all c ∈ C}.

2. For every face F of C, there is an element w of C∨ such that

w−1(0) ∩C = F.

The evaluation mapping from V to its double dual induces an isomorphism
C → (C∨)∨.

3. An element v of V belongs to C (resp. C∗) if and only if w(v) ≥ 0 (resp.
= 0) for all w ∈ C∨.

4. The map F 7→ C∨ ∩ F⊥ = (CF)∨ induces an order-reversing bijection from
the set of faces of C to the set of faces of C∨.

5. If F is a face of C and G := C∨ ∩ F⊥, then F∨ ⊆ W is the localization C∨G
of C∨ by G, and G∨ is the localization of C by F.

6. C is sharp if and only if C∨ spans Hom(V,K).

Proof Let S be a finite set of generators for C and consider the homo-
morphism g : W → KS sending w to the function s 7→ w(s). Then C∨ is
just g−1((K≥)S), and, since (K≥)S is a finitely generated K-cone in KS, state-
ment (1) of Proposition 2.3.11 implies that C∨ is finitely generated. Moreover
C∨K′ = (id ⊗ g−1)((K′≥)S), and statement (2) of Proposition 2.3.11 implies that
this K′-cone is spanned by C∨.

Statements (2) through (4) are proved by the arguments used in the proofs
of the analogous statements for monoids, and we do not repeat them here; see
Corollary 2.2.4. For (5), observe first that Ggp ⊆ F∨, so the natural injection
C∨ → F∨ factors naturally through the localization of C∨ by G. To prove that
the resulting (injective) map is surjective, let w be an element of F∨. By (2),
there is some φ ∈ C∨ such that φ−1(0) ∩ C = F; in particular φ ∈ G. Let S
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be a finite set of generators for C. If s ∈ S \ F, φ(s) > 0, and if s ∈ S ∩ F,
w(s) ≥ 0. Thus there exists an n > 0 such that w(s) + nφ(s) ≥ 0 for all s ∈ S.
Then w + nφ ∈ C∨ and φ ∈ G, so w ∈ (C∨)G. The second part of (5) then
follows from (4). For (6), note that evidently C∨ ⊆ (C∗)⊥, so if C∨ spans W
then (C∗)⊥ = W and hence C∗ = 0. On the other hand, if C∨ is contained in a
proper subspace W ′ of W, then W ′⊥ is a nonzero subgroup of C = (C∨)∨, so C
is not sharp. �

Remark 2.3.13. We can now explain the proof of the general case of (4) of
Proposition 2.3.6. Let V := Q⊗Qgp and let C be the cone of V generated by Q.
Then (1) of Theorem 2.3.12, applied to the extension Q→ K, implies that the
K-cone Hom(C,K≥) is spanned by Hom(C,Q≥) and hence also by Hom(Q,N).

Corollary 2.3.14. Let F be a face of a finitely generated cone C (resp. a fine
monoid Q) and let FF denote the set of facets of C (resp. of Q) containing F.
Then

1. F = ∩{G : G ∈ FF},
2. Fgp = ∩{Ggp : G ∈ FF}, and
3. CF = ∩{CG : G ∈ FF}, (resp. QF = ∩{QG : G ∈ FF}.

(The improper face F = C (resp. Q) is viewed as the intersection of the empty
set of facets.)

Proof Proposition 2.3.7 shows that the statements for monoids follow from
the statements for cones. Moreover, the second statement implies the first,
since F is an exact submonoid of C. The homomorphism C → C/F induces
a bijection between the facets of C containing F and the facets of C/F. Thus,
replacing C by C/F, we reduce to the case in which C is sharp and F = 0.
Without loss of generality we may assume that C , {0}. Let V := Cgp and
W := HomK(V,K). Then, by (6) of the previous theorem, the cone C∨ ⊆ W is
sharp and nonzero, and hence by Proposition 2.3.4 is generated by a nonempty
finite set of indecomposable elements w1, . . . ,wn. Each w⊥i ∩ C is a facet Gi

of C, and hence if x lies in Ggp for every facet G, then wi(x) = 0 for every i.
Since C is sharp, C∨ spans W, hence w(x) = 0 for every w, hence x = 0. For
(3), we can replace C by CF to reduce to the case in which F = C∗. Arguing
as before, we see that C∨ is sharp, hence is generated by the set T of its inde-
composable elements. By (3) of Theorem 2.3.12, C = ∩{Ct : t ∈ T }, where
Ct := {v ∈ V : 〈t, v〉 ≥ 0}. By (5) of the theorem, each Ct is the localization of
C by 〈t〉⊥ ∩C, a facet of C. �

The following application is a monoidal analog of the Hauptidealsatz.
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Corollary 2.3.15. If Q is a fine monoid and q is an element of Q, then every
prime ideal of Q that is minimal among the primes containing q has height one.
In particular,

√
(q) is a finite intersection of height one primes.

Proof Applying Corollary 2.3.14 to the complementary faces of prime ideals,
we see that every prime ideal p of Q is the union of the set of height one primes
contained in p. Suppose p is minimal among the set of primes containing q and
write p as the union p1 ∪ · · · ∪ pk, where each pi has height one. Then q ∈ pi

for some i, and, since p is minimal with this property and pi ⊆ p, in fact p = pi.
By Corollary 1.4.3,

√
(q) is the intersection of the prime ideals containing

q, and, since this set is finite, it is the intersection of a finite set of minimal
such elements. As we have just seen, each of these has height one. Perhaps we
should remark that the set of such primes is not empty if and only if q ∈ Q+; if
on the other hand q ∈ Q∗, the ideal it generates is Q, which is the intersection
of the empty set of prime ideals of height one. �

Corollary 2.3.16. Let C1 and C2 be cones in a finite dimensional K-vector
space V .

1. (C1 + C2)∨ = C∨1 ∩C∨2 .
2. If C1 and C2 are finitely generated, then C1 ∩ C2 and C1 + C2 are finitely

generated, and C∨1 + C∨2 = (C1 ∩C2)∨.

Proof The first statement is obvious. If C1 and C2 are finitely generated, it is
also obvious that C1 + C2 is finitely generated. Furthermore, it follows from
Theorem 2.3.12 that C∨1 and C∨2 are finitely generated, and hence that C∨1 + C∨2
is finitely generated. Now Theorem 2.3.12 tells us that (C∨1 + C∨2 )∨ is finitely
generated, and by (1) this is (C∨1 )∨ ∩ (C∨2 )∨, which is C1 ∩ C2, by another
application of Theorem 2.3.12. Thus C1 ∩ C2 is finitely generated. Now let us
apply (1) to the duals of C1 and C2 to obtain the equality (C∨1 +C∨2 )∨ = C1∩C2.
The dual of this equality then gives the equation in (2). �

Corollary 2.3.17. Let C be a finitely generated cone in a finite dimensional
K-vector space V . Endow V with the topology induced from the ordered field
K.

1. The cone C is closed in V .
2. Every face of C is closed in C.
3. The interior IC of C (the complement in C of the union of its proper faces)

is an open dense subset of C.

Proof The inclusion C → V factors through an inclusion Cgp → V , and,
since Cgp and V are finite dimensional, Cgp is closed in V . Thus we may as
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well assume that V = Cgp. Each φ ∈ C∨ is a linear and hence continuous map
V → K, and hence each φ−1(K≥0) is closed in V . By (2) of Theorem 2.3.12, C
is the intersection of these closed sets, and hence is closed. Furthermore each
face F is the intersection of C with a linear subspace of V , hence is also closed,
and since C has only a finite number of proper faces, their union is closed. Thus
the complement IC of this union is open. To prove that IC is dense, let S be a
finite set of generators for C. An element c of C can be written as a sum

∑
as

with as ∈ K≥, and c lies in the interior of C if no as vanishes. In any case
ci :=

∑
(as + i−1)s lies in the interior, and the sequence (c1, c2, . . . , ) converges

to c. �

Corollary 2.3.18. Let C be a finitely generated sharp K-cone and let h : C →
K≥ be a local homomorphism. Then, for each a ∈ K≥,

Ba := {c ∈ C : h(c) ≤ a}

is a closed and bounded subset of Cgp. If K = R, then h is a proper map.

Proof Let V := Cgp, a finite dimensional K-vector space, let W be its dual,
and let (w1, . . . ,wd) be a basis for W. Then a subset B of V is bounded if and
only if there exists a constant M such that |wi(b)| ≤ M for all i and all b ∈ B.
This condition is independent of the basis. In fact, if (h1, . . . hm) is any finite
sequence in W spanning W, then B is bounded if and only if there exists a
constant M such that |hi(b)| ≤ M for all i and all b ∈ B. In the situation of
corollary, C is finitely generated and sharp, so its dual C∨ is finitely generated
and spans W. Furthermore, since h is local, it belongs to the interior of C∨.
Thus if (h1, . . . , hm) is a finite set of generators for C∨, each hi belongs to 〈h〉,
and so there exists an ni > 0 such that hi ≤ nih for all i. Replacing hi by hi/ni,
we see that 0 ≤ hi(c) ≤ h(c) ≤ a if c ∈ Ba, so Ba is bounded. Since C is
finitely generated it is closed in V and, since h is continuous, Ba is closed in C
and hence Ba is also closed. If K = R, we see that Ba is a closed and bounded
subset of a Euclidean space, hence compact. It follows that the inverse image
by h of every compact subset of R is compact, so h is proper. �

The following is another useful finiteness result, whose proof makes use of
the topological properties of the real numbers.

Theorem 2.3.19 (Gordon). Let L be a finitely generated abelian group, let K
be a subfield of R, and let C be the K-cone in V := K ⊗ L generated by a finite
subset S of L. Then

L(C) := L ×V C = L ×VR CR

is a finitely generated monoid.
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Proof Let us first treat the case in which L is free, so that it may be iden-
tified with its image in V . Since C is a finitely generated K-cone in V , The-
orem 2.3.12 implies that its dual is also finitely generated and that there is a
finite subset T of Hom(V,K) such that

C = {v ∈ V : 〈t, v〉 ≥ 0 for all t ∈ T }.

Then CR = {v ∈ VR : 〈t, v〉 ≥ 0 for all t ∈ T } is a finitely generated R-cone and
CR ∩ V = C. It follows that L ×V C = L ×VR CR and so the proof is reduced to
the case when K = R.

Let S′ ⊆ V be the set of all linear combinations of elements of S with coeffi-
cients in the interval [0, 1]. The map [0, 1]S → V sending {as : s ∈ S} to

∑
ass is

continuous and maps surjectively to S′; hence S′ is compact. Then S′′ := L∩S′

is compact and discrete, hence finite; furthermore it contains S. Any element
x of C can be written as a sum

∑
ass with s ∈ S and as ∈ R≥0, and as can

be written as = ms + a′s with ms ∈ N and a′s ∈ [0, 1). Then x =
∑

mss + s′

with s′ ∈ S′; if also x ∈ L, in fact s′ ∈ S′′ and so x is a sum of elements
of S′′. Thus the monoid L(C) = L ∩ C is generated by the finite set S′′. For
the general case, let Lt be the torsion subgroup of L and let L f := L/Lt. No-
tice that Lt ⊆ L(C)∗, and the natural map L(C) → L identifies L(C)/Lt with
L f (C) = L f ∩C and L(C)∗/Lt with L∗f . Since L f (C) is a fine monoid, it follows
from Proposition 2.1.1 that L f (C)∗ is a finitely generated group, and, since Lt

is finitely generated, so is L(C)∗. Now Proposition 2.1.1 implies that L(C) is a
finitely generated monoid. �

Recall that a subset S of a vector space V is said to be convex if
∑
λisi ∈

S whenever (s1, . . . , sn) ∈ Sn and (λ1, . . . , λn) ∈ (K≥)n with
∑
λi = 1. For

example, if C is a cone in V and h : V → K is a linear map, then C ∩ h−1(a)
(the h-slice of C at a) is convex for every a ∈ K. Conversely, if S is any convex
subset of V , consider the cone C in V × K spanned by S × {1}, and let h : C →
K be the inclusion followed by the natural projection. Then S identifies with
S × {1} = C ∩ h−1(1), the h-slice of C at 1. In this way one can often reduce
questions about convex sets to questions about cones. Some care is required;
for example, if C1 and C2 are cones in V , then the convex hull of (C1∩h−1(1))∪
(C2 ∩ h−1(1)) is contained in (C1 + C2) ∩ h−1(1), but the containment may be
strict.

The following result plays a crucial role in the analysis of morphisms of
monoids and cones. In particular, it is used in the proof of the main struc-
ture theorem (Theorem 4.7.2) for exact morphisms and also to show that log
blowups satisfy a strong surjectivity property (Proposition II.1.7.7). It asserts
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This shows that w is in the dual of the cone Q(T ). But now if v = q + v0

with q 2 Q(T ) and v0 2 S(T ),

0 = hq + v0, wi+ a = hq, wi+ hv0, wi+ a � hv0, wi+ a � 0.

Then hv0, wi + a = 0, and since v is a vertex, it follows that v0 = v, as
required.

We should point out that in Theorem 2.3.18, the set of vertices of S(T )
is finite, but it does not necessarily generate S(T ) as a Q(T )-set. Indeed, the
cone Q(T ) can be the zero cone, even when S(T ) is infinite.

Here is an application of Theorem 2.3.18, which will be used in the proof
of the surjectivity result for log blowups alluded to above. Its goal is to
establish the existence and location of vertices of the convex hull of an ideal
in a fine monoid. Note that although such an ideal is necessarily finitely
generated as an ideal, its convex hull will not be finitely generated as a
convex set.

Figure 2.3.1: Q(T ) S(T )

Proposition 2.3.20 Let Q be a fine sharp monoid, let I be an ideal of Q,
with generators (s1, . . . , sn), and let S be the convex hull of I in V := K⌦Qgp.
Then S is an ideal of C(Q), and the set of vertices of S is a nonempty subset
of {s1, . . . , sn}.
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Proposition 2.3.20 Let Q be a fine sharp monoid, let I be an ideal of Q,
with generators (s1, . . . , sn), and let S be the convex hull of I in V := K⌦Qgp.
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Figure 2.3.1 Vertices of a convex set

the existence of “vertices” of certain convex sets that are cut out by suitable
systems of inequalities.

Let V be a finite dimensional K-vector space and let W be its dual. If T :=
{(wt, at)} is a subset of W × K, let

S(T ) := {v ∈ V : 〈v,wt〉 + at ≥ 0 for all t ∈ T }

Q(T ) := {v ∈ V : 〈v,wt〉 ≥ 0 for all t ∈ T } (2.3.1)

S(T )∨ := {(w, a) ∈ W × K : 〈v,w〉 + a ≥ 0 for all v ∈ S(T )}.

Then S(T ) is a convex subset of V and Q(T ) is a cone in V . Note that S(T )
depends only on the cone generated by T and that if q ∈ Q(T ) and v ∈ S(T ),
then q + v ∈ S(T ). Thus S(T ) is a Q(T )-set. An element v of S(T ) is called a
vertex if there exists a (w, a) ∈ S(T )∨ such that v is the unique element of S(T )
such that 〈v,w〉 + a = 0. An element of S(T )∨ with this property is sometimes
called a supporting equation of v. See Figure 2.3.1.

Theorem 2.3.20. Let T := {(wt, at) : t ∈ T } be a finite subset of W × K, or
a finitely generated cone in W × K. Assume that {wt : t ∈ T } spans W and
that S(T ) is not empty. Then S(T ) has at least one vertex. Any such vertex is
minimal with respect to the action of Q(T ) on S(T ).

Proof Our approach will be to consider the cone spanned by S(T ) × {1} in
V × K; the edges of this cone will help us find the vertices of S(T ). Note that
the pairing

(V × K) × (W × K)→ K : 〈(v, a), (w, b)〉 := 〈v,w〉 + ab

identifies W × K with the dual of V × K.
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Lemma 2.3.21. With the notations (2.3.1) above, let

Q∗(T ) := {(v, r) ∈ V × K>0 : 〈v,wt〉 + rat ≥ 0 for all t ∈ T } ∪ {(0, 0)}.

Then the following statements hold.

1. Q∗(T ) is the cone in V × K generated by S(T ) × {1}, and

S(T ) × {1} = Q∗(T ) ∩ (V × {1}) .

2. Q′(T ) := Q∗(T ) ∪ (Q(T ) × {0}) is the closure of Q∗(T ).
3. Q′(T ) is the cone in V × K dual to T ′ := T ∪ {(0, 1)} ⊆ W × K.
4. S(T )∨ is the dual of the cone Q′(T ).

Proof It is clear that Q∗(T ) is closed under addition and under multiplication
by elements of K≥0, i.e., is a cone in V × K, and that it contains S(T ) × {1}.
Suppose (v, r) ∈ Q∗(T ) and is not equal to (0, 0). Then by the definition of
Q∗(T ), r , 0 and (v/r, 1) ∈ S(T )×{1}. Thus (v, r) belongs to the cone generated
by S(T )×{1}. The remainder of statement (1) is immediate from the definition.

To prove (2), we must show that that Q(T ) × {0} is contained in the closure
of Q∗(T ). Suppose v ∈ Q(T ). Choose v′ ∈ S(T ) and note that for every t ∈ T
and every r > 0,

〈v + rv′,wt〉 + rat = 〈v,wt〉 + r(〈v′,wt〉 + at) ≥ 0.

Thus (v + rv′, r) ∈ Q∗(T ) for all r > 0, and it follows that (v, 0) belongs to the
closure of Q∗(T ).

If (v, r) ∈ V × K and t ∈ T , then

〈(v, r), t〉 = 〈v,wt〉 + rat, and (2.3.1a)

〈(v, r), (0, 1)〉 = r (2.3.1b)

If (v, r) ∈ Q∗(T ), both these expressions are nonnegative, and it follows that
Q∗(T ) is contained in the dual T ′∨ of T ′. Since T ′∨ is closed, it follows from (2)
that Q(T )×{0} is also contained in T ′∨ and hence that Q′(T ) ⊆ T ′∨. Conversely,
suppose that (v, r) ∈ T ′∨, so that the expressions (2.3.1a) and (2.3.1b) above
are nonnegative. Then (2.3.1b) implies that r ≥ 0. If r > 0, (2.3.1a) implies
that (v, r) ∈ Q∗(T ), and if r = 0, it implies that v ∈ Q(T ). Thus T∨ ⊆ Q′(T ),
completing the proof of (3).

Since Q′(T ) is the closure of the cone generated by S(T ) × {1}, its dual is
the set of (w, r) such that 〈(v, 1), (w, r)〉 ≥ 0 for all v ∈ S(T ), which is just the
definition of S(T )∨. �

Let us return to the proof of the proposition. If T is a finitely generated cone,
we may replace it by a finite set of generators for the sake of the argument.
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Since {wt : t ∈ T } spans W, the finite set T ′ spans W × K, and it follows
that the dual cone Q′(T ) is sharp and finitely generated, hence generated by its
indecomposable elements. Since S(T ) is not empty, Q′(T ) is not contained in
W × {0}. Thus it contains at least one edge E not contained in W × {0}, and E
contains a unique point of the form (v, 1). Then v ∈ S(T ), and we claim that it
is a vertex. Since E is a face of the finitely generated cone Q′(T ), there is an
element h = (w, a) in its dual S(T )∨ such that h⊥ = E. Then 〈w, v〉+ a = 0, and
if v′ is another such point, then (v′, 1) ∈ E and hence v′ = v. This shows that v
is a vertex of S(T ).

It remains only to prove that every vertex v of S(T ) is Q(T )-minimal. Let
(w, a) ∈ S(T )∨ be a supporting equation for v, so that v is the unique element
of S(T ) with 〈v,w〉 + a = 0. Now q + v ∈ S(T ) if q ∈ Q(T ), hence

〈q,w〉 = 〈q,w〉 + 〈v,w〉 + a = 〈q + v,w〉 + a ≥ 0.

This shows that w is in the dual of the cone Q(T ). But now if v = q + v′ with
q ∈ Q(T ) and v′ ∈ S(T ),

0 = 〈q + v′,w〉 + a = 〈q,w〉 + 〈v′,w〉 + a ≥ 〈v′,w〉 + a ≥ 0.

Then 〈v′,w〉 + a = 0 and, since v is a vertex, it follows that v′ = v, as required.
�

We should point out that in Theorem 2.3.20, the set of vertices of S(T ) is
nonempty and finite, but it does not necessarily generate S(T ) as a Q(T )-set.
Indeed, the cone Q(T ) can be the zero cone, even when S(T ) is infinite.

Here is an application of Theorem 2.3.20, which will be used in the proof of
the surjectivity result for log blowups alluded to earlier. Its goal is to establish
the existence and location of vertices of the convex hull of an ideal in a fine
monoid. Note that although such an ideal is necessarily finitely generated as
an ideal, its convex hull will not be finitely generated as a convex set.

Proposition 2.3.22. Let Q be a fine sharp monoid, let I be an ideal of Q, with
generators (s1, . . . , sn), and let S be the convex hull of I in V := K ⊗ Qgp.
Then S is an ideal of C(Q), and the set of vertices of S is a nonempty subset of
{s1, . . . , sn}.

Proof To prove that S is an ideal of C(Q), we first check that q + s ∈ S if
q ∈ Q and s ∈ S. Write s =

∑
λisi, where si ∈ I and 0 ≤ λi and

∑
λi = 1.

Then q + s =
∑
λi(q + si) ∈ S. It follows that nq + s ∈ S for every natural

number n. Now, if a ∈ K>, there is a natural number n such that n ≤ a < n + 1,
so aq + s = bq + t, where 0 ≤ b < 1 and t := nq + s ∈ S. Then bq + t =

b(q + t) + (1 − b)t ∈ S, and thus S is invariant under translation by elements of
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the form aq. Since every element of C(Q) can be written as a sum
∑

aiqi with
ai ∈ K and qi in Q, it follows that S is invariant under translation by all such
elements.

To find the vertices of S, our strategy will be to show that there exists a
finitely generated cone T = {(wt, at)} in W × K such that, with the notation of
(2.3.1), S(T ) = S and then to apply Theorem 2.3.20. Let (w1, . . . ,wm) be a finite
set of generators for the dual cone C(Q)∨ ⊆ W, which is finitely generated by
Theorem 2.3.12. For i = 1, . . . ,m, let ti := (wi, 0) ∈ W × K and, for each such
i and for j = 1, . . . , n, let ti, j := (wi,−〈s j,wi〉). Let T j be the cone in W × K
spanned by {ti, ti, j} for i = 1, . . . ,m.

Claim 2.3.23. An element (v, λ) of V ×K belongs to the dual of T j if and only
if v belongs to C(Q) ∩

(
λs j + C(Q)

)
.

To check this, suppose that v = q + λs j for some q ∈ C(Q) and that v
also belongs to C(Q). Then 〈(v, λ), ti〉 = 〈v,wi〉 ≥ 0 because v ∈ C(Q) and
wi ∈ C(Q)∨. Furthermore, 〈(v, λ), ti j〉 = 〈v,wi〉 − λ〈s j,wi〉 = 〈q,wi〉 ≥ 0.
Suppose conversely that (v, λ) ∈ T∨j . Then the positivity of the pairings with
the elements ti implies that v ∈ C(Q), and the positivity of the pairings with ti, j
implies that v − λs j ∈ C(Q), i.e., that v ∈ C(Q) + λs j.

Lemma 2.3.24. Let T = T1 ∩ · · · ∩ Tn ⊆ W × K. Then T is finitely generated
as a cone, and

S(T ) := {v : 〈v,wt〉 + at ≥ 0 for all t ∈ T }

is the convex hull S of I in V . Furthermore, {wt : t ∈ T } spans W.

Proof The finite generation of T follows from Corollary 2.3.16, which also
implies that T∨ = T∨1 + · · · + T∨n . Note that S(T ) = {v : (v, 1) ∈ T∨}. In
particular, it follows from Claim 2.3.23 that (s j, 1) ∈ T∨j ⊆ T∨ for all j, hence
that each s j ∈ S(T ) and that S ⊆ S(T ). On the other hand, if v ∈ S(T ), then
(v, 1) ∈ T∨ can be written

(v, 1) = (v1, λ1) + · · · + (vn, λn), where (v j, λ j) ∈ T∨j .

Let us arrange the indices so that λ j > 0 if j ≤ k and λ j ≤ 0 if j > k. Since
λ1 + · · ·+ λn = 1, necessarily k ≥ 1 and m := λ1 + · · ·+ λk ≥ 1. Let λ′j := λ j/m
and µ j := λ j−λ

′
j. By Claim 2.3.23, we can write v j = q j +λ js j, with q j ∈ C(Q)

and s j ∈ S. Now let

q′1 := q1 + µ1s1 + vk+1 + · · · + vn ∈ C(Q)

s′1 := λ′−1
1 q′1 + s1 ∈ S,
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and, for j = 2, · · · , k, let

q′1 := q j + µ js j ∈ C(Q)

s′j := λ′−1
j q′j + s j ∈ S.

Then

λ′1s′1 + · · · + λ′k s′k = q′1 + λ′1s1 + · · · + q′k + λ′k sk

= q1 + λ1s1 + · · · + qk + λk sk + vk+1 + · · · + vn

= v.

Thus v belongs to S, showing that S(T ) ⊆ S. By construction {wt : t ∈ T }
contains Q∨ and, since Q is sharp, C(Q)∨ spans W. �

Thanks to Lemma 2.3.24, we can apply Theorem 2.3.20 to see the existence
of a vertex of S = S(T ). It remains to prove that the vertices of S(T ) lie among
the generators {s1, . . . , sn}. First suppose that n = 1. Then S is the ideal of
C(Q) generated by s := s1. Let w be a local homomorphism Q → K≥ and
let a := −〈s,w〉. Then, for every q ∈ C(Q), 〈q + s,w〉 + a = 〈q,w〉 ≥ 0, with
equality if and only if q = 0. Thus s is a vertex of S. If s′ is another vertex,
with supporting equation (w′, a′), write s′ = q + s with q ∈ C(Q). Then

0 = 〈s′,w′〉 + a′ = 〈q,w′〉 + 〈s,w′〉 + a′,

where 〈s,w′〉+a ≥ 0. If q , 0, the uniqueness of s′ implies that 〈s,w′〉+a′ > 0,
and it follows that 〈q,w′〉 < 0. But then s′′ := q + s′ ∈ S and 〈s′′,w′〉 + a′ < 0,
a contradiction.

Since the ideal generated by {s1, . . . , sn} is the union of the ideals generated
by each generator, the general case will follow from the following lemma.

Lemma 2.3.25. If S1 and S2 are convex sets, then every vertex of the convex
hull S of S1 ∪ S2 is either a vertex of S1 or a vertex of S2.

Proof Suppose that s is a vertex of S, and write s = λ1s1 + λ2s2 with si ∈ Si

and λ1 + λ2 = 1, λi ≥ 0. Let (w, a) be a supporting equation for s. Since Si ⊆ S,
〈si,w〉 + a ≥ 0 for each i, and since

0 = 〈s,w〉 + a = λ1(〈s1,w〉 + a) + λ2(〈s2,w〉 + a),

it follows that each λi(〈si,w〉 + a) = 0. Thus either λ1 or λ2 vanishes, and so s
belongs either to S2 or to S1. In either case it is a vertex of the set to which it
belongs. �

This lemma concludes the proof of Proposition 2.3.22. �
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2.4 Valuative monoids and valuations

Recall that an integral monoid Q is said to be valuative if, for every x ∈ Qgp,
either x or −x lies in Q. For example, N, Z, and (N × N) ∪ (Z × N+) are val-
uative; the last of these is not finitely generated. In general, the monoid Γ≥ of
nonnegative elements in any totally ordered group Γ is a valuative monoid, and,
conversely if Q is a valuative monoid, the induced order relation (see Defini-
tion 1.2.3) on Qgp is a total preordering. If L is an abelian group and φ : L→ Γ

is a homomorphism, then φ−1(Γ≥) is a valuative monoid.
If L is an abelian group and Q1,Q2 are submonoids of L, one says that Q2

dominates Q1 if Q1 ⊆ Q2 and the inclusion map is a local homomorphism.
This defines an ordering on the set of submonoids of L.

The following existence theorem for valuative monoids is a direct analog
of the well-known result for commutative rings; however, the existence of fine
valuative monoids here is considerably easier than the analog for rings.

Proposition 2.4.1. Let L be an abelian group. Then a submonoid Q of L is a
maximal element for the order relation of domination if and only if it is valua-
tive and Qgp = L. Every submonoid of L is dominated by such a monoid. If L is
finitely generated, then every finitely generated submonoid of L is dominated
by a finitely generated valuative monoid Q with Qgp = L.

Proof Suppose first that Q is a submonoid of L and is maximal under domi-
nation. Then Q ⊆ Qsat ⊂ L and, by (4) of Proposition 1.3.5, the homomorphism
Q → Qsat is local. Thus Qsat dominates Q, and hence Q = Qsat. Now to prove
that Q is valuative, suppose x ∈ L, and consider the submonoid P of L gener-
ated by Q and x. If P dominates Q, then P = Q and of course x ∈ Q. If not,
there exist q ∈ Q and p ∈ P with q + p = 0. Write p = q′+ nx with n > 0. Then
q + q′ + nx = 0. This shows that −nx ∈ Q, and hence that −x ∈ Qsat = Q, as
required. Since x was an arbitrary element of L, it follows also that Qgp = L.

Conversely, suppose that Q is valuative and that Qgp = L. If P is a sub-
monoid of L dominating Q and p ∈ P, then either p or −p belongs to Q. But if
−p belongs to Q, then since −p becomes a unit in P it is already a unit in Q,
so p belongs to Q in any case. This shows that Q = P, as required.

Suppose P is a submonoid of L. Then the set SP of submonoids of L that
dominate P is not empty, and the union of any chain in SP again belongs to SP.
By the Hausdorff maximality principle, SP contains a maximal element. If L
and P are finitely generated, then, by Corollary 2.1.22,

P∨ := {w ∈ Hom(L,Z) : 〈w, p〉 ≥ 0 for all p ∈ P}

is a finitely generated submonoid of Hom(L,Z). Let w : L → Z be an element
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in the interior IP∨ of P∨. Then, by Remark 2.2.8, w defines a local homo-
morphism P → N. Since N is valuative, Q := w−1(N) is valuative and clearly
Qgp = L. Furthermore, Q = {w}∨ and hence is finitely generated, by Corol-
lary 2.1.22. Since w factors through a homomorphism P → Q → N and is
local, it follows that P→ Q is also local, so Q dominates P. �

Proposition 2.4.2. Let Q be a sharp, integral, and nonzero monoid. Then the
following conditions are equivalent:

1. Q is valuative and finitely generated.
2. Q is isomorphic to N.
3. dim(Q) = 1 and Q is saturated and finitely generated.
4. Q is saturated and Qgp � Z.

Proof Since Q is nonzero and sharp, its maximal ideal Q+ is not empty. If Q
is finitely generated, then by Proposition 2.1.2, Q is generated by the minimal
elements of Q+. If Q is valuative, the order relation on Q is a total order and Q+

has just one minimal element q. Thus there is a surjective homomorphism N→
Q and, since Q is integral and sharp, this homomorphism is an isomorphism.
Thus (1) implies (2). It is obvious that (2) implies (1) and (3). If (3) holds
then, by Proposition 1.4.7, Qgp has rank one. Since Q is sharp and saturated,
Qgp is torsion free, and hence (4) holds. If (4) holds, choose an isomorphism
φ : Qgp � Z; such an isomorphism is unique up to a sign. Since φ is injective,
φ(q) , 0 for q ∈ Q+; choose q ∈ Q+ which minimizes |φ(q)| and adjust the
sign of φ so that n := φ(q) > 0. Then it follows from the sharpness of Q that φ
maps Q to N. If x ∈ Qgp is the element such that φ(x) = 1, then φ(nx) = φ(q),
hence nx = q ∈ Q. Since Q is saturated, in fact x ∈ Q, and, by the minimality
of |φ(x)|, necessarily n = 1. Then φ|Q : Q→ N is injective and surjective, hence
an isomorphism. �

Corollary 2.4.3. Every fine saturated monoid of dimension one is isomorphic
to Γ ⊕N for some finitely generated abelian group Γ. If Q is toric, Q � Zr ⊕N
for some natural number r.

Proof If Q is such a monoid, the previous result implies that there is an iso-
morphism φ : Q → N. Let q be an element of Q with φ(q) = 1. Then the
obvious homomorphism Q∗ ⊕N→ Q sending 1 to q is an isomorphism. Since
Q is fine, Q∗ is a finitely generated abelian group and, if Q is toric, Q∗ is torsion
free, hence free. �

Corollary 2.4.4. Let p be a height one prime ideal in a fine monoid Q. Then
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Qsat
p is valuative, and there is a unique epimorphism

νp : Qgp → Z

such that ν−1
p (N+) ∩ Q = p. Furthermore, Qsat

p = {x ∈ Qgp : νp(x) ≥ 0}.

Proof We know that that Qgp � (Qsat)gp, that Qsat is fine (Corollary 2.2.5) and
that Spec(Qsat) → Spec(Q) is a homeomorphism (Corollary 2.3.8). Thus we
may as well replace Q by Qsat, and so we assume that Q is saturated. Then Qp

is saturated, so Qp
gp

is torsion free, and, since p has height one, dim(Qp) = 1.
By the previous proposition, Qp is valuative and hence so is Qp. Moreover,
there is a unique isomorphism Qp � N, and we let νp be the composite of
Qgp � Qgp

p → Q
g
p with the induced isomorphism Q

gp
p → Z. It is clear that

ν−1
p (N) = Qp and that ν−1

p (N+) = p. The uniqueness of νp is easily verified. �

The following result is an analog of the fact that a normal domain is the
intersection of valuation rings in its fraction field.

Corollary 2.4.5. Let Q be a fine saturated monoid. Then

Q = {x ∈ Qgp : νp(x) ≥ 0 : ht(p) = 1}, and

Q∗ = {x ∈ Qgp : νp(x) = 0 : ht(p) = 1}.

In particular, Q is the intersection in Qgp of the set of all its localizations at
height one primes.

Proof Let p be a height one prime and let G be its complementary face, a
facet of Q. Then {x ∈ Qgp : νp(x) ≥ 0} = QG and {x ∈ Qgp : νp(x) = 0} = Ggp.
Thus statements (3) and (2) of Corollary 2.3.14 (applied to the face F = Q∗ of
Q), respectively imply the two statements of the corollary. �

Proposition 2.4.6. Let Q be a fine monoid and letW+
Q denote the free monoid

on the set of height one primes of Q. (Recall from Proposition 1.4.7 that this
set is finite.) For q ∈ Q, let

ν(q) :=
∑
{νp(q)p : ht(p) = 1} ∈ W+

Q.

Then ν : Q → W+
Q is a local homomorphism. Furthermore, ν(q1) = ν(q2) if

and only if there is some n ∈ Z+ such that nq1 = nq2 in Q, and ν is exact if and
only if Q is saturated.

Proof It is apparent that ν : Q → W+
Q is a homomorphism of monoids. To

see that ν is local, note that its target is sharp and, by the previous corollary,
ν(q) = 0 implies that q is a unit in Qsat and hence also in Q. The same corollary
also implies that ν induces an exact homomorphism Qsat → Q. Thus if q1, q2 ∈
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Q with ν(q1) = ν(q2), then q1−q2 is a unit in Qsat and there exists some n ∈ Z+

such that nq1 − nq2 ∈ Q∗. This implies that nq1 = nq2. We have already seen
that ν is exact if Q is saturated, and the converse follows from the fact that an
exact submonoid of a saturated monoid is saturated (see Theorem 2.1.17.) �

2.5 Simplicial monoids

A cone C is called simplicial if it is finitely generated and free, that is, if there
exists a finite set S such that each element of C can be written uniquely as a
linear combination of elements

∑
s∈S ass with as ∈ K≥0; such a set S necessarily

forms a basis for Cgp. A monoid is called simplicial if its corresponding cone
is simplicial. It is not hard to see that any sharp finitely generated cone in K1 or
K2 is simplicial. This is false for K3; for example, the monoid Q2,2 in part (3) of
Examples 1.4.8 is not simplicial. For a useful criterion, see Proposition 2.5.3.

In fact, every finitely generated cone is a finite union of simplicial cones, as
the following result of Carathéodory shows.

Theorem 2.5.1 (Carathéodory). Let C be a K-cone and let S be a set of gen-
erators for C. Then every element of C lies in a cone generated by a linearly
independent subset of S.

Proof If 0 , x ∈ C, we can write x =
∑

aisi with si ∈ S and ai > 0. We
may suppose that this has been done in such a way that the number e of terms
in the sum is minimal; since x is not zero, e ≥ 1. Then we claim that the
sequence (s1, s2, . . . , se) is independent in the vector space Cgp. Suppose that∑

cisi = 0. We may choose the indexing so that ci is positive if 1 ≤ i ≤ m,
negative if m + 1 ≤ i ≤ n, and 0 if i > n. Furthermore, we may suppose that
ai/ci ≤ ai+1/ci+1 for 1 ≤ i < m and for m + 1 ≤ i < n. If m > 0 then, for all i,
set a′i := ai − (a1/c1)ci ≥ 0. Since

∑
cisi = 0,

x = x − (a1/c1)
∑

cisi =
∑
i,1

a′i si,

contradicting the minimality of e. Thus m = 0. If n > 0, then for all i we let
a′i = ai − (an/cn)ci ≥ 0 and

x = x − (an/cn)
∑

cisi =
∑
i,n

a′i si,

again a contradiction. Thus m = n = 0, all ci = 0, and (s1, . . . , s3) is indepen-
dent. �

Corollary 2.5.2. Let C be a finitely generated sharp K-cone of dimension d.
Then C is a finite union of simplicial cones of dimension d.
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Proof Let S be a finite set of generators of C. Since the K-span of S is the d-
dimensional vector space Cgp, every linearly independent subset T of S is con-
tained in a linearly independent subset T ′ of S of cardinality d. Theorem 2.5.1
implies that every element of C belongs to some C(T ) and hence to some
C(T ′), and each C(T ′) is a simplicial cone of dimension d. �

The next two results, whose proofs are due to Bernd Sturmfels, give criteria
for a fine monoid to be simplicial or free, respectively.

Proposition 2.5.3. Let C be a finitely generated sharp K-cone and S a finite
subset. Suppose that every proper subset of S is contained in a proper face of
C and that S spans Cgp as a vector space. Then S is linearly independent and
spans C as a K-cone. In particular, C is simplicial.

Proof Suppose that
∑

ass = 0 with as ∈ K and s ∈ S. Let S′ := {s ∈ S : as >

0}, let S′′ := {s ∈ S : as < 0}, and let T := S \ S′ ∪ S′′. Then let t be the sum of
all the elements of T , and let

f :=
∑
s∈S′

ass + t =
∑
s∈S′′
−ass + t;

note that f ∈ C. If S′′ is not empty, then S′ ∪ T is a proper subset of S and
hence by assumption is contained in a proper face F of C. The first formula for
f above implies that f belongs to F, and the second formula then implies that
all the elements of S′′ also belong to F. Then all of S is contained in F, and so
Fgp = Cgp since S spans V . But F is a face of C, hence an exact submonoid,
and it follows that F = C, a contradiction of the fact that F is a proper face.
Thus we must have S′′ = ∅. Similarly S′ = ∅, and it follows that S is linearly
independent.

Let c be an element of the interior of C. Then there exist disjoint subsets S′

and S′′ of S and elements as ∈ K≥0 such that

c =
∑
s∈S′

ass −
∑
s∈S′′

ass.

It follows that c +
∑
{ass : s ∈ S′′} also belongs to the interior of C. If S′ were

a proper subset of S, it would be contained in a proper face of C, which would
contradict the fact that

∑
{ass : s ∈ S′} = c +

∑
{ass : s ∈ S′′} is in the interior

of C. Hence S′ = S and S′′ = ∅. We have thus shown that every element of the
interior of C lies in the the K≥0-span of S. Since this span is closed, and since
the interior of C is dense in C by Corollary 2.3.17, S spans C, as claimed. �

The formulation of the next result requires a preliminary definition and
lemma.
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Lemma 2.5.4. Let Q be a fine and sharp monoid of dimension d. For each
positive integer m, let Im denote the set of all elements of Q that can be written
as a sum q = q1 + · · · + qm, where (q1, . . . , qm) is a linearly independent
sequence in Q ⊆ Q ⊗ Qgp. In fact Im is an ideal of Q and is contained in the
ideal Kd−m+1 (the intersection of all the primes of height d − m + 1).

Proof If q = q1 + · · · + qm and (q1, . . . , qm) is independent, then 〈q〉 has rank
at least m. If p is a prime ideal of height d − m + 1, then Fp := Q \ p is a face
of codimension d −m + 1 and hence of dimension m− 1, so q < Fp, i.e., q ∈ p.

Suppose that q ∈ Im and p ∈ Q. To prove that p+q ∈ Im, it is enough to prove
that the sequence si := (q1, . . . , qi−1, p + qi, qi+1, . . . , qm) is independent for
some i. Suppose on the contrary that si is dependent. Then since the sequence
s′i obtained from si by omitting p + qi is independent, it must be the case
that p + qi is in the span of s′i . Let q′i be the sum of the sequence s′i . Then
p + qi + q′i = p + q is also in the span of s′i . If this is the case for every i, then
p + q is in the intersection of all these spans, which is {0} since the original
sequence is independent. It follows that p + q = 0, which is impossible since
Q is sharp and q , 0. �

Proposition 2.5.5. A fine sharp and saturated monoid Q of dimension d is free
if and only if Id = K1.

Proof Suppose that Id = K1. Choose a local homomorphism h : Q → N and
choose k ∈ K1 minimizing h. We will show that if k ∈ Id, then in fact Q is free
and k is the sum of its set of minimal generators.

Write k = q1 + · · · + qd, where (q1, . . . , qd) is independent, and then write
each qi as a sum of irreducible elements of Q. The collection of irreducible
elements thus appearing spans Q⊗Qgp and hence contains a linearly indepen-
dent sequence (q′1, . . . , q

′
d). Let k′ := q′1 + · · · + q′d, so that k = p + k′ for some

p ∈ Q. Since k′ ∈ Id ⊆ K1, the minimality of h(k) and the sharpness of Q
imply that p = 0. Thus each qi is already irreducible. Furthermore, if q is the
sum of a proper subset of the qi, then h(q) < h(k), so q < K1 and hence 〈q〉 is a
proper subset of Q. Thus S := {q1, · · · , qd} is a set of elements of Qgp spanning
Q ⊗ Qgp and every proper subset of S is contained in a proper face of Q. It
follows from Proposition 2.5.3 that Q is simplicial and that S is a basis for the
cone it spans.

To show that Q is free, it will now suffice to show that every irreducible
element q of Q already belongs to S. Since S is a basis for the cone spanned by
Q, there exist n > 0 and ni ∈ N such that nq =

∑
niqi. Reorder the sequence in

such a way that ni > 0 if i ≤ e and ni = 0 if i > e. Then 〈q, qe+1, . . . , qd〉 = Q,
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so q + qe+1 + · · · + qm ∈ K1. By the minimality of h(k) = h(q1) + · · · + h(qd),

h(q) + h(qe+1) + · · · + h(qd) ≥ h(q1) + · · · + h(qe) + · · · + h(qd), so
h(q) ≥ h(q1) + · · · + h(qe)

h(nq) ≥ nh(q1) + · · · + nh(qe)
n1h(q1) + · · · + neh(qe) ≥ nh(q1) + · · · + nh(qe)

It follows that ni ≥ n for some i. But then nq−nqi ∈ Q and, since Q is saturated,
in fact q − qi ∈ Q. Since q is irreducible, this impies that q = qi, completing
the proof that Q is free. The converse is immediate. �

3 Affine toric varieties

3.1 Monoid algebras and monoid schemes

Let R be a fixed commutative ring, usually the ring of integers Z or a field,
and let AlgR denote the category of R-algebras. If Q is a monoid, the R-monoid
algebra of Q is the R-algebra R[Q] whose underlying R-module is free with
basis Q, endowed with the unique ring structure making the inclusion map
e : Q→ R[Q] a homomorphism from the monoid Q into the multiplicative
monoid of R[Q]. Thus, if p and q are elements of Q and if we use additive
notation for Q, we have e(p + q) = e(p)e(q); for this reason we sometimes
write ep for e(p). For example, R[N] is the polynomial algebra R[T ], where
T = e1. More generally, if N(X) is the free monoid with basis X, then R[N(X)]
is the polynomial algebra R[X]: if I ∈ N(X) is a multi-index, eI corresponds to
the monomial XI :=

∏
{xIx : x ∈ X}.

The functor Q 7→ R[Q] is left adjoint to the functor Am taking an R-algebra
to its underlying multiplicative monoid. Thus if A is an R-algebra, giving a
homomorphism of R-algebras R[Q] → A is equivalent to giving a homo-
morphism of monoids Q → Am(A). Such a homomorphism is often called
an A-valued character of Q, and an R-algebra equipped with a character of Q
is often called a Q-algebra if R is understood. Since the functor Q → R[Q]
is a left adjoint, it automatically commutes with colimits. For example, if Q is
the amalgamated sum of a pair of monoid homomorphisms θi : P → Qi, then
R[Q] � R[Q1] ⊗R[P] R[Q2].

The set AQ(A) of A-valued characters of Q has a natural monoid structure,
with the multiplication law defined by the pointwise product and the identity
element given by the constant function whose value is 1. Thus we can view AQ
as a functor

AQ : AlgR →Mon
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from the category of R-algebras to the category of monoids. The functor AQ
is represented by the pair (R[Q], e), where R[Q] is the monoid R-algebra of
Q and e : Q → R[Q] is the map taking an element of Q to the corresponding
basis element of R[Q]. We use the same notation for the scheme AQ and the
functor AQ it represents. The monoid structure on the functor AQ is given by
the natural transformations

mQ : AQ ×AQ → AQ, 1Q : Spec R→ AQ,

and these give the scheme AQ the structure of a monoid scheme. Since AQ =

Spec R[Q], the corresponding morphisms of these schemes are given by R-
algebra homomorphisms:

m]
Q : R[Q]→ R[Q] ⊗ R[Q] : eq 7→ eq ⊗ eq

1]Q : R[Q]→ R :
∑

q

aq eq 7→
∑

q

aq.

Thus the identity section 1Q of the monoid scheme AQ is given by the homo-
morphism Q→ R sending every element to 1. There is another natural section
vQ of AQ, called the vertex, given by the homomorphism sending q ∈ Q to 1 if
q ∈ Q∗ and to 0 if q ∈ Q+. These two sections coincide if and only if Q is dull.

In particular, the functor Am is isomorphic to the functor AN; for each R-
algebra A we have an isomorphism of monoids

Am(A) := (A, ·, 1A) � Hom(N, A),

where an element a of A corresponds to the monoid homomorphism n 7→ an.
Note in particular that a0 = 1 for any a, including a = 0, by the definition of
a monoid homomorphism. The vertex of Am corresponds to the point 0 of AN
and the identity section to the point 1.

The following proposition shows that Q can often be recovered from the
functor AQ (with its monoid scheme structure).

Proposition 3.1.1. Suppose that Spec R is connected. Then the functor

Q 7→ AQ

from the category of monoids to the category of monoid schemes over R is
fully faithful:

Hom(P,Q) � Hom((AQ, 1, ·), (AP, 1, ·)).

Proof A morphism of schemes AQ → AP corresponds to a homomorphism of
rings θ : R[P]→ R[Q]. Since Q→ R[Q] is injective, a homomorphism P→ Q
is determined by the corresponding homomorphism R[P]→ R[Q]. This proves
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that our functor is faithful. For the fullness, let θ be a homomorphism and, for
each p ∈ P write,

θ(ep) =
∑
q∈Q

aq(p)eq,

with aq(p) ∈ R. The statement that θ corresponds to a monoid morphism is the
statement that the following diagrams commute:

R[P]
θ - R[Q] R[P]

θ - R[Q]

R

1]P

? id - R

1]Q

?
R[P] ⊗ R[P]

m]
P

? θ ⊗ θ- R[Q] ⊗ R[Q].

m]
Q

?

The second diagram says that, for each p ∈ P,∑
q,q′

aq(p)aq′ (p)eq ⊗ eq′ =
∑

q

aq(p)eq ⊗ eq,

i.e., that aq(p)aq′ (p) equals zero if q , q′ and equals aq(p) if q = q′. In other
words, the aq(p)’s are orthogonal idempotents of the ring R. The first diagram
says that

∑
q∈Q aq(p) = 1 for each p ∈ P. Since Spec R is connected, every

idempotent is either 0 or 1 and, since aq(p) and aq′ (p) are orthogonal if q , q′,
there is a unique element β(p) ∈ Q such that aq(p) = 0 if q , β(p) and
aq(p) = 1 if q = β(p). Thus β is a function P→ Q such that θ ◦ e = e ◦β. Since
θ is a ring homomorphism, β is a monoid homomorphism, as required. �

Corollary 3.1.2. Suppose that Spec R is connected and Q is a monoid.

1. The monoid of characters of AQ, i.e., of morphisms AQ → Am, is canoni-
cally isomorphic to Q.

2. The monoid of cocharacters of AQ, i.e. of morphisms Am → AQ, is canoni-
cally isomorphic to H(Q) := Hom(Q,N). �

If Q is a monoid and A is an R-algebra, AQgp (A) is precisely the set of
invertible elements of AQ(A), i.e., AQgp = A∗Q. If Q is fine, the localization
R[Q] → R[Qgp] is injective and of finite type, and hence A∗Q → AQ is a domi-
nant and affine open immersion.

3.2 Monoid sets and monoid modules

It will also be important to discuss linear representations of monoid schemes.
Let us begin with a geometric description. If E is an R-module, let VE be the
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functor taking an R-algebra A to the set of R-linear maps E → A. As explained
in [31], this functor is represented by the spectrum of the symmetric algebra
S·E, and the universal element of VE(S·E) is the inclusion E → S·E. Thus

VE(A) = HomR(E, A) = HomAlgR
(S·E, A).

The set V(A) has a natural structure of an A-module, where the operations
are defined pointwise. The module structure on V(A) is functorial in A, and
therefore defines morphisms of functors

VE × VE - VE and A × VE → VE,

where A is the identity functor on the category of R-algebras (and is repre-
sented by the affine line over Spec R). Thus the R-scheme VE has the structure
of a vector scheme over Spec R, and one can recover the R-module E from the
vector scheme VE as the R-module of A-linear morphisms VE → A. How-
ever, it will be enough for our purposes to use only the multiplicative monoid
structures of R and Am acting on E and VE respectively. Note that an element
e of E defines a natural transformation ê : VE → Am, where êA(α) := α(e)
for each R-algebra A and each α : E → A ∈ VE(A). Note also that ê is com-
patible with the actions of Am: aêA(α) = êA(aα) for each A and each a ∈ A.
The following proposition shows that the R-set underlying the R-module E is
determined by the Am-set VE.

Proposition 3.2.1. For any R-module E, the natural map

E → MorAm
(VE,Am)

is an isomorphism of R-sets. Consequently, the functor V from the category of
R-modules to the category of Am-sets is fully faithful.

Proof The statement that e 7→ ê is a morphism of R-sets says that r̂e = rê
for every e in E and r in R, an immediate verification. To prove that e 7→ ê is
bijective, let us begin by noting that the action of Am on VE is given by the
unique homomorphism of R-algebras λE : S·E → R[T ] ⊗ S·E sending each e
in E to T ⊗ e in R[T ] ⊗ S·E. It follows that λE( f ) =

∑
d T d ⊗ fd for every

f =
∑

d fd ∈ S·E, where each fd ∈ SdE.
By Yoneda, any morphism of functors η : VE → Am is given by a homo-

morphism of rings θ : R[T ]→ S·E, which in turn is determined by the element
f := θ(T ) in S·E. An element α of VE(A) induces a homomorphism of R-
algebras α̃ : S·E → A, and η(α) = α̃( f ). Then η is a morphism of Am-sets if
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and only if the diagram

R[T ]
θ - S·E

R[T ] ⊗ R[T ]

m]

? id ⊗ θ- R[T ] ⊗ S·E
?

λE

commutes. But λE ◦ θ(T ) =
∑

d T d ⊗ fd and id ⊗ θ ◦ m](T ) = id ⊗ θ(T ⊗ T ) =

T ⊗ f . Thus the diagram commutes if and only if f = f1, that is, if and only if
f ∈ E ⊆ S·E. �

Now if Q is a monoid, an action of AQ on VE is a natural transformation
mE : AQ ×VE → VE satisfying the usual rules for a monoid action. We re-
quire also that it be compatible with the Am-set structure on VE, i.e., that,
for every A and for every α ∈ AQ(A), a ∈ Am(A), and v ∈ VE(A), we have
α(av) = aα(v). In other words, VE should be an (AQ,Am)-biset. The map mE

is given by a homomorphism S·E → R[Q]⊗S·E, and the compatibility with the
Am-action implies that mE is induced by a homomorphism θE : E → R[Q]⊗R E,
thanks to Proposition 3.2.1. The morphism θE will be an action of AQ on VE
if and only if θE is a coaction of R[Q] on E, i.e., if the following diagrams
commute:

E
θE- R[Q] ⊗ E

E

1Q ⊗ idE

?

idE
-

E
θE - R[Q] ⊗ E

R[Q] ⊗ E

θE

? idR[Q] ⊗ θE- R[Q] ⊗ R[Q] ⊗ E.

m]
Q ⊗ idE

?

For each e ∈ E, write

θE(e) =
∑

q ⊗ πq(e) ∈ R[Q] ⊗R E.

Then each πq is an R-linear endomorphism of E. The two diagrams assert that
πpπq = 0 if p , q and that

∑
πq = idE . Thus the family {πq : q ∈ Q} defines
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a direct sum decomposition E = ⊕{Eq : q ∈ Q}, where Eq is the image of the
idempotent πq. This decomposition is nothing but a Q-grading of the R-module
E, and the corresponding action of AQ(A) on VE(A) is given by

(α, v)(e) =
∑

q

α(q)v(eq)

for α ∈ AQ(A), v ∈ VE(A), and e =
∑

eq in E. The following proposition
summarizes the results of this argument.

Proposition 3.2.2. Let Q be a monoid. Then the construction E 7→ VE in-
duces a fully faithful functor from the category of Q-graded R-modules to the
category of (AQ,Am)-bisets.

We shall find it useful to generalize Proposition 3.2.2 by considering R-
modules graded by a Q-set S in place of Q.

Definition 3.2.3. If S is a Q-set, R[S] is the free R-module with basis S and
endowed with the unique R[Q]-module structure compatible with the action of
Q on S.

The functor S 7→ R[S] is left adjoint to the functor taking an R[Q]-module to
its underlying Q-set. It follows that if {si : i ∈ I} is a basis for S as a Q-set, then
{esi : i ∈ I} is a basis for R[S] as a Q-module, and that if S and S′ are Q-sets,
there is a natural isomorphism R[S ⊗Q S′] � R[S] ⊗R[Q] R[S′].

If S is a Q-set, then the R[Q]-module R[S] has a natural S-grading. Let us
generalize this notion and explain its geometric significance.

Definition 3.2.4. Let Q be a monoid and let S be a Q-set. Then an S-graded
R[Q]-module is a functor from the transporter categoryT S of Q to the category
of R-modules.

The data of an S-graded R[Q]-module E is equivalent to the data of a col-
lection of R-modules {Es : s ∈ S} and, for every q ∈ Q, an R-linear map
hq : Es → Eq+s such that hq′ ◦ hq = hq+q′ and h0 = id. Thus ⊕sEs becomes an
R[Q]-module in the usual sense.

To interpret this geometrically, we attach to S the functor

VS : AlgR[Q] → Ens

which takes an R[Q]-algebra A to the set of all morphisms of Q-sets S →
A, where A is viewed as a Q-set via the character Q → A coming from its
R[Q]-algebra structure. Note that VS(A) has a natural structure of an A-module,
where the module operations are defined pointwise. In particular, we can and
shall view VS as being endowed with an action of the functor Am.

The functor VS is representable by an affine scheme over AQ, which we
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also denote by VS. Indeed, if A is any R[Q]-algebra, then to give a homo-
morphism of R[Q]-modules R[S] → A is equivalent to giving a morphism of
Q-sets S → A. Thus we have an isomorphism of functors VS � V(R[S]) on
the category AlgR[Q]. Explicitly, VS is the spectrum of the symmetric algebra
S·(R[S]) (computed with respect to R[Q]), or, equivalently, the quotient of the
polynomial algebra R[Q][Xs : s ∈ S] by the ideal generated by the elements
qXs − Xqs for q ∈ Q and s ∈ S. It follows from Proposition 3.2.1 (applied with
R[Q] in place of R) that R[S] can be identified with the set of Am-morphisms
VS→ Am.

We have a natural morphism VS→ AQ → Spec R. Let AS denote the scheme
VS viewed over Spec R. Explicitly, if A is an R-algebra,

AS(A) := {(α, σ) : α ∈ AQ(A), σ ∈ VS(A, α)}.

Pointwise multiplication defines a map

mS : AS × AS → AS,

which is bilinear with respect to the action of Am. The corresponding homo-
morphism R[S] → R[S] ⊗ R[S] sends s ∈ S to s ⊗ s. The constant function
S → R whose value is always 1 defines a section 1S : Spec R → AS, and
then (mS, 1S) gives AS the structure of a monoid scheme. (In fact it also has the
structure of an algebra scheme, but we shall not need this extra structure.) The
natural morphism AS → AQ is a morphism of monoid schemes. For example,
if S = Qgp with the natural action of Q, the morphism AS → AQ identifies AS

with AQgp = A∗Q ⊆ AQ.
We shall see that an S-grading structure on an R[Q]-module E amounts to

an equivariant action of the Am-monoid scheme AS on VE.

Definition 3.2.5. Let E be an R[Q]-module and let S be a Q-set. Then an
equivariant (AS,Am)-biset structure on VE is a monoid action

mE : AS × VE → VE

that is bilinear with respect to the Am structures on AS and VE and such that
the diagram

AS × VE
mE - VE

AQ ×AQ

? mQ - AQ

?

commutes.
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Let us explain how an S-grading on E gives rise to such an action. If E is
S-graded and A is a Q-algebra, then an element of VE(A) can be viewed as a
collection of R-linear maps ηs : Es → A such that, for each s ∈ S and q ∈ Q,
the diagram

Es
ηs - A

Eq+s

hq

? ηq+s - A

α(q)

?

commutes, where α : Q → A is the Q-algebra structure of A. Let (β, σ) be an
element of AS(A). Then α′ := βα is an element of AQ(A), and we can define

η′s : Es → A := σ(s)ηs.

One can easily check that η′ satisfies the diagram above with α′ in place of α.
Then (β, σ)η := η′ defines the desired action; the bilinearity and compatibility
with mQ are immediately verified.

Proposition 3.2.6. Let S be a Q-set. The construction above defines a fully
faithful functor from the category of S-graded R[Q]-modules to the category
of equivariant (AS,Am)-bisets.

Proof We give only a sketch. Let E be an R[Q]-module and let
µ : AS × VE → VE be an equivariant (AS,Am)-biset structure on VE. Then
AS × VE is represented by S·(R[S]) ⊗R[Q] S·E. Since µ is compatible with the
action of Am, it follows from Proposition 3.2.1 that µ is induced by a homo-
morphism of R[Q]-modules:

µ] : E → R[S] ⊗R E.

The compatibility of µ with mQ implies that this homomorphism is linear over
the homomorphism µ

]
Q. The fact that µ is a monoid action implies that the

following diagrams commute:

E
µ]- R[S] ⊗R E

E

1]S ⊗ idE

?

idE

-
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E
µ] - R[S] ⊗R E

R[S] ⊗R E

µ]

? idR[S] ⊗ µ
]

- R[S] ⊗R R[S] ⊗R E.

m]
S ⊗ idE

?

If e ∈ E, write µ](e) =
∑

s ⊗ πs(e). Then each πs : E → E is an R-linear map,
and these diagrams say that

∑
s πs = idE and πs ◦ πt = δs,tπt. (Note: for each

e ∈ E, πs(e) = 0 for almost all s ∈ S.) In others words, {πs : s ∈ S} is the
family of projections corresponding to a direct sum decomposition E = ⊕Es.
If e ∈ Es, then µ](e) = s ⊗ e and, since µ] is linear over mQ,

µ](qe) = (q ⊗ q)µ](e) = (q ⊗ q)(s ⊗ e) = (q + s) ⊗ (qe),

so that qe ∈ Eq+s. Then the map hq : Es → Eq+s given by e 7→ qe is R- linear,
and {Es, hq} defines an S-grading on the R[Q]-module E. This shows how the
S grading is determined by the biset structure, and it follows that the functor is
fully faithful. �

For example, suppose that Q is an integral monoid, so that whenever q′ ≥ q,
there is a unique p ∈ Q such that q′ = p + q. Then a Q-filtration on an R-
module V is a family of submodules Fq ⊆ V such that Fq ⊆ Fq′ whenever
q ≤ q′. Thus F can be viewed as functor from TQ to the category of R-
modules, and

⊕
Fq ⊆ V ⊗ R[Q] is a graded R[Q]-submodule. A Q-filtration

on R itself defines an ideal of R[Q], and the corresponding closed subscheme
of AQ is stable under the action of Q on itself. If K is an ideal in Q, the free
R-module R[K] with basis K can be viewed as an ideal of R[Q] defined by the
Q-filtration that equals 0 for q < K and equals R if q ∈ K. When R is a field,
every Q-filtration of R has this form.

Example 3.2.7. Let Q be an integral monoid. For each q ∈ Q, let 〈q〉 be
the face of Q generated by q (see Proposition 1.4.2). If q′ ∈ Q, 〈q〉 ⊆ 〈q + q′〉.
Hence q 7→ 〈q〉gp ⊆ Qgp defines a Q-filtration of Qgp and hence an AQ-invariant
submodule of Z[Q] ⊗ Qgp. More generally, for any integer i,

q 7→ Λi〈q〉gp ⊆ ΛiQgp

defines a Q-filtration of ΛiQgp. When i is the rank of Qgp, this filtration is
related to the filtration R[IQ] ⊗ ΛiQgp, where IQ is the interior ideal of Q (see
Section 1.4, as well as Lemma 2.5.4 and Proposition V.2.3.10).

Remark 3.2.8. Let F be a face of an integral monoid Q, let S be a Q-set, and let
E an S-graded R[Q]-module. Then the localization EF of E by F is naturally an
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SF-graded R[QF]-module. For any t ∈ SF and f ∈ F, multiplication by e f de-
fines an isomorphism from the component of EF in degree t to the component
in degree f + t. Since these isomorphisms all commute, we can safely identify
all the components EF, f +t for all f ∈ F. These components can be computed
as follows. For each s ∈ S, there is a direct system {e f · Es → E f +s : f ∈ F},
where F is endowed with the standard monoid order. Then one sees easily that,
for any s in S mapping to any f + t ∈ SF ,

lim
−→
{e f · Es → E f +s : f ∈ F} � EF,t.

3.3 Faces, orbits, and trajectories

In this section we discuss how the geometry of the spectrum of a fine monoid
Q, or, equivalently, the partially ordered set of its faces, relates to the action of
the monoid scheme AQ on itself.

The functor AlgR → Mon taking an R-algebra to its underlying multiplica-
tive monoid can be lifted naturally to a functor AlgR → Moni taking A to the
acceptably idealized monoid (A, ·, 1, {0}). If K is an ideal of a monoid Q, then
the R[Q]-module R[K] is an ideal of R[Q], and the quotient

R[Q,K] := R[Q]/R[K]

is a free R-module with basis Q \ K. For any R-algebra A,

HomMoni((Q,K), (A, 0)) = HomR(R[Q,K], A),

so that the functor (Q,K) 7→ R[Q,K] is left adjoint to the functor A 7→ (A, {0}).
We call R[Q,K] the monoid algebra of the idealized monoid (Q,K).

Let AQ,K denote the functor taking an R-algebra A to the set of maps
(Q,K) → (A, 0); as we have seen, this functor is representable by R[Q,K].
Thus AQ,K is a closed subscheme of the monoid scheme AQ, and Proposi-
tion 3.2.2 shows that it is invariant under the action of AQ on itself. In other
words, AQ,K is an ideal scheme of the monoid scheme of AQ: for every A, the
image of the injective map

iK(A) : AQ,K(A)→ AQ(A)

is an ideal in the monoid AQ(A).
In particular, let p be a prime ideal of Q and let F := Q \ p be the corre-

sponding face. The inclusion F → Q defines a morphism of monoid algebras
R[F]→ R[Q] and hence a morphism of monoid schemes

rF : AQ → AF . (3.3.1)
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The composition of the map R[F]→ R[Q] with the homomorphism

i]p : R[Q]→ R[Q, p]

yields an isomorphism of R-algebras R[F]→ R[Q, p], since it induces a bijec-
tion on the basis elements. This isomorphism of rings defines an isomorphism
of schemes AQ,p → AF, and we let

iF : AF → AQ (3.3.2)

be the composition of the inverse of this isomorphism with the closed immer-
sion ip. Thus,

i]F(eq) =

eq if q ∈ F

0 otherwise.

For example, if Q is sharp, then AQ,Q+ � Spec R. The corresponding R-
valued point of Q is the homomorphism v : Q → R such that vQ(0) = 1 and
vQ(q) = 0 if q ∈ Q+, i.e., the vertex of AQ.

Proposition 3.3.1. Let F be a face of an integral monoid Q, let iF and rF be
the morphisms (3.3.2) and (3.3.1) defined above, and let iQ/F be the closed
immersion induced by the surjection Q → Q/F. Let S denote the spectrum of
the base ring R.

1. These morphisms fit into a commutative diagram with cartesian squares:

S
vQ/F- AQ/F

π - S

AF

1F

? iF - AQ

iQ/F

? rF - AF .

1F

?

In this diagram, 1F is the S-valued point corresponding to the identity sec-
tion of the monoid scheme AF and vQ/F is the vertex of the monoid scheme
AQ/F. The composition rF ◦ iF is idAF

.
2. The map rF is a morphism of monoid schemes, and the morphism iF is

compatible with the actions of the monoid scheme AQ on itself and on the
ideal scheme AF ⊆ AQ.

3. If Q is fine, then iF is a strong deformation retract. That is, there exists a
morphism

f : AQ ×Am → AQ

such that f ◦ j0 = iF ◦ rF , f ◦ j1 = id, and f ◦ (iF × id) = iF ◦ pr1, where
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j0, j1 : AQ → AQ ×Am are given respectively by the sections 0 and 1 of Am
and pr1 : AF ×Am → AF is the projection.

Proof The closed immersion iF preserves the composition law for the monoid
schemes AF and AQ but not the identity section of the monoid scheme struc-
tures, so that AF cannot be regarded as a submonoid of AQ—in fact it is
rather an ideal scheme in the monoid scheme AQ. On the other hand, the in-
clusion F → Q defines a homomorphism R[F] → R[Q] and hence a map
rF : AQ → AF. Since rF is induced by a monoid homomorphism, it is a mor-
phism of monoid schemes. It follows from the definitions that rF ◦ iF = idAF

.
Thus rF and iF are morphisms of AQ-sets, and rF(a) = rF(a · 1) = arF(1A) for
every a ∈ AQ(A).

One can check immediately that the two squares in the above diagram com-
mute. All the morphisms in the outer rectangle are identity maps, so it is carte-
sian, and hence the square on the left will automatically be cartesian if the
square on the right is cartesian. The latter statement asserts that the ideal of
the closed immersion iQ/F is the ideal I generated by the set of all e f − 1 such
that f ∈ F. Indeed, it is evident that i]Q/F annihilates all these elements and
hence factors through a map R[Q]/I → R[Q/F]. On the other hand, the map
Q → R[Q]/I sends F to 1, and hence factors through Q/F because of its uni-
versal mapping property. This gives the inverse map R[Q/F]→ R[Q]/I.

If Q is fine, then by Proposition 2.2.1 there exists a morphism h : Q → N
such that h−1(0) = F. This h defines a morphism t : Am → AQ; on A-valued
points t(a) = ah, where ah is the homomorphism Q→ A sending q to ah(q). Let

f : AQ ×Am → AQ

be the composition of idAQ
× t with the multiplication map mQ of the monoid

structure on AQ. On A-valued points, f sends (α, a) to αah. Let i0 and i1 be the
sections of Am corresponding to 0 and 1 and let j0 and j1 be the corresponding
maps AQ → AQ ×Am. We check that f ◦ j0 = iF ◦ rF and that f ◦ j1 = id on
A-valued points. The second of these equations is obvious and, for the first, we
just have to observe that f (α, 0) = α0h and remember that 0n is 0 if n > 0 and
is 1 if n = 0. Finally, if α belongs to the image of iF then, for every a ∈ A,
f (α, a)(q) = α(q)ah(q) = α(q), since α(q) = 0 whenever h(q) , 0. This proves
that iF is a strong deformation retract. �

Corollary 3.3.2. If Q is a fine monoid, then AQ(C), endowed with the complex
analytic topology, is connected if and only if Q∗ is torsion free. If Q is sharp,
then AQ(C) is contractible.

Proof Proposition 3.3.1 implies that AQ(C) and AQ∗ (C) have the same ho-
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motopy type. Since the torsion subgroup of Q∗ identifies with the group of
connected components of the algebraic group AQ∗ , it follows that AQ(C) and
AQ∗ (C) are connected if and only if Q∗ is torsion free. If Q is sharp, the scheme
AQ∗ reduces to a single point, so AQ(C) is contractible. �

Variant 3.3.3. Proposition 3.3.1 also holds for idealized monoids: if F is a face
of (Q,K), then the prime ideal Q \ F contains K, so iF factors through AQ,K
and the vertex of Q/F lies in AQ/F,K/F. Furthermore, since AQ,K is an ideal of
the monoid scheme AQ, it is preserved by the homotopy f . As a consequence,
AQ,K is contractible if Q is sharp and is connected if Q∗ is torsion free.

When k is a field and Q is integral, the monoid AQ(k) admits an explicit
stratification indexed by the faces of Q. If x ∈ AQ(k) = Hom(Q, k), let F(x) :=
x−1(k∗), a face of Q. If x and z are points of AQ(k), then

F(xz) = F(x) ∩ F(z).

Note that x is zero outside F(x) and induces a map Fgp → k∗ which in fact
determines x. Thus we can view a point of AQ(k) as a pair (F, x′), where F is a
face of Q and x′ is a homomorphism Fgp → k∗.

Proposition 3.3.4. Let Q be a fine monoid, let k be a field, and let F be a
face of Q. Then the set of all y ∈ AQ(k) such that F(y) = F (or, equivalently,
y−1(0) = Q \ F) is

A∗F(k) := AFgp (k) ⊆ AF(k) ⊆ AQ(k),

a Zariski open subset of AF(k). If x and y are two points of AQ(k), then the
following are equivalent:

1. F(y) ⊆ F(x);
2. y ∈ AF(x)(k);
3. There exists a z ∈ AQ(k) such that y = zx.

Furthermore, if either k is algebraically closed or Qgp/F(x)gp is torsion free,
then F(y) = F(x) if and only if there exists a z ∈ A∗Q(k) with y = zx. In
particular, if k is algebraically closed or if Qgp/Fgp is torsion free for every
face F of Q, then the partition of AQ(k) = tA∗F(k) : F ∈ F (Q) defined by the
faces of Q corresponds to its orbit decomposition under the action of A∗Q(k),
and the closed sets AF(k) correspond to the trajectories of AQ(k) under the
action of AQ(k) on itself.

Proof We identify a point y of AQ(k) with the corresponding character Q→ k.
Then F(y) ⊆ F if and only if y(Q \ F) = 0, i.e., if and only if y factors through
iF ; hence the equivalence of (1) and (2). By (3) of Theorem 2.1.17, F is fine, so
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A∗F is Zariski dense and open in AF, and the inclusions A∗F(k) ⊆ AF(k) ⊆ AQ(k)
identify A∗F(k) with the set of all y such that F(y) = F. If F(y) ⊆ F(x), define
z : Q→ k by z(q) := 0 if q ∈ Q \ F(x) and z(q) := y(q)/x(q) if q ∈ F(x). Then,
using the fact that F is a face of Q, one can check that in fact z ∈ AQ(k) and
y = zx. Thus (2) implies (3), and the converse is obvious. If F(x) = F(y) = F,
then y/x defines a homomorphism Fgp → k∗. If k is algebraically closed, k∗ is
divisible, and if Qgp/Fgp is torsion free, the sequence Fgp → Qgp → Qgp/Fgp

splits. In either case, there exists an extension z of y/x to Qgp, which defines a
point of A∗Q such that zx = y. �

Proposition 3.3.4 describes the action of A∗Q(k) on AQ(k) when k is a field.
We shall need to generalize this discussion somewhat, allowing k to be any
ring and furthermore working in a relative situation.

Proposition 3.3.5. Let θ : P → Q be a homomorphism of integral monoids,
write Qgp/Pgp for Cok(θgp), and let A∗Q/P := AQgp/Pgp ⊆ AQ. Then A∗Q/P acts
naturally on AQ, viewed as an object over AP. For each face F of Q, the sub-
functors AQF

⊆ AQ and AF � AQ,pF
⊆ AQ are stable under this action. Fur-

thermore, the subgroup A∗Q/(P+F) of A∗Q/P acts trivially on the closed subfunctor
AF � AQ,pF

of AQ.

Proof Let A be a commutative ring and suppose that γ ∈ A∗Q/P(A) and α ∈
AQ(A). Then γ(θ(p)) = 1 for every p ∈ P, and hence (γα)(θ(p)) = α(θ(p)). In
other words, γ acts on AQ as an object over AP. Furthermore, for all q ∈ Q,
γ(q) ∈ A∗. In particular, γ(q)α(q) = 0 if and only if α(q) = 0, and applying this
to all q in pF , we see that γα ∈ AQ,pF

(A) if and only if α ∈ AQ,pF
(A). Similarly,

γ(q)α(q) ∈ A∗ if and only if α(q) ∈ A∗, and applying this to all q ∈ F we see
that γα ∈ AQF

(A) if and only if α ∈ AQF
(A). Now suppose that γ ∈ A∗Q/P+F(A)

and α ∈ AF(A) � AAQ,pF
(A). We claim that γ(q)α(q) = α(q) for all q ∈ Q. But

this is clear: if q ∈ pF then α(q) = 0, and if q ∈ F then γ(q) = 1. �

Remark 3.3.6. Observe that the homomorphism Qgp → Qgp/Pgp induces a
morphism of group schemes A∗Q/P → A∗Q identifying A∗Q/P with the kernel of
the homomorphism A∗Q → A∗P. Let us write the action of A∗Q/P on AQ on the
right, given by a morphism of monoid schemes

mQ/P : AQ ×A∗Q/P → AQ .

This morphism corresponds to the homomorphism of monoids

θ : Q→ Q ⊕ Qgp/Pg : q 7→ (q ⊕ [q]).

Let us check this by computing the effect on A-valued points. If (α, γ) ∈
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AQ(A) × A∗Q/P(A) and q ∈ Q,

(α, γ)(m[
Q/P(q)) = mQ/P(α, γ)(q)

= (αγ)(q)
= α(q)γ([q])
= (α, γ)(q, [q])
= (α, γ)(θ(q)).

The action of A∗Q/P on AQ induces a map

hQ/P : AQ ×A∗Q/P → AQ ×AP
AQ : (α, γ) 7→ (α, αγ).

This map corresponds to the homomorphism of monoids

φ : Q ⊕P Q→ Q ⊕ Qgp/Pgp : [(q1, q2)] 7→ (q1 + q2, [q2]). (3.3.3)

Note that the induced morphisms

Qgp ⊕Pgp Qgp → Qgp ⊕ Qgp/Pgp and A∗Q ×A∗Q/P → A∗Q ×A∗P A∗Q (3.3.4)

are isomorphisms. Thus A∗Q, viewed as an object over A∗P, is a torsor under the
induced action of A∗Q/P. The inverse of the isomorphism φgp is given by the
formula

Qgp ⊕ Qgp/Pgp → Qgp ⊕Pgp Qgp : (x, [y]) 7→ [(x − y, y)]

3.4 Local geometry of affine toric varieties

Here we collect some basic facts relating algebraic properties of a fine monoid
to the algebra and geometry of its monoid algebra and monoid scheme.

Proposition 3.4.1. Let P be an integral monoid and let R be a ring.

1. If Pgp is torsion free and R is an integral domain, then R[P] is an integral
domain.

2. If in addition P is finitely generated and R is normal, R[Psat] is the nor-
malization of R[P]. Thus in this case R[P] is normal if and only if P is
saturated.

3. If P is fine, the morphism π : Spec R[P] → Spec R is faithfully flat and of
finite presentation. Furthermore, the Krull dimension of the fibers of π is
the rank of Pgp. If in addition the order of the torsion subgroup of Pgp is
invertible in R, then the fibers are geometrically reduced.

Proof First suppose that P is finitely generated. Then if Pgp is torsion free, it
is free of finite rank, so

R[Pgp] � R[T1,T−1
1 , . . . ,Tn,T−1

n ]
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for some n. (Geometrically, A∗P = APgp is a torus over Spec R.) In particular
R[Pgp] is an integral domain and, since R[P] is contained in R[Pgp], it too is an
integral domain. In general, P is the union of its finitely generated submonoids
Pλ, and each Pgp

λ is torsion free if Pgp is. Then R[P] is the direct limit of the
set of all R[Pλ], each of which is an integral domain, and hence it too is an
integral domain. Since R[Psat] is generated as an R[P]-algebra by Psat and since
eq is integral over R[P] for every q ∈ Psat, R[Psat] is integral over R[P]. Since
R[Psat] is contained in R[Pgp], which in turn is contained in the fraction field
of R[P], R[Psat] is contained in the normalization of R[P]. It remains only to
prove that R[Psat] is normal, assuming that P is fine. Since Psat is then fine,
we may and shall assume without loss of generality that P is saturated. By
Corollary 2.4.5, P is the intersection in Pgp of all its localizations at height one
primes p, and one sees by looking at basis elements that R[P] is the intersection
in R[Pgp] of the corresponding monoid algebras R[Pp]. Since the intersection
of a family of normal subrings of a ring is normal, it will suffice to prove that
each R[Pp] is normal. Replacing P by Pp, we may assume that P is saturated
and of dimension one. Then, by Corollary 2.4.3, P is isomorphic to Zr ⊕ N
for some natural number r. Thus R[P] � R[T1,T−1

1 , . . . ,Tn,T−1
n ,T ], which is

normal since R is.
If P is fine, then it is of finite presentation by Theorem 2.1.7, and it follows

that R[P] is finitely presented as an R-algebra. Since by construction it is a
free R-module, it is necessarily faithfully flat. To prove the statements about
the fibers, we may as well assume that R is an algebraically closed field k.
Since k[P] → k[Psat] is finite and injective, k[P] and k[Psat] have the same
dimension, and k[P] is reduced if k[Psat] is. Since Pgp = (Psat)gp, we may
assume without loss of generality that P is saturated. Then the torsion subgroup
Pt of Pgp is contained in P∗ by (2) of Proposition 1.3.5. Choose a splitting σ
of the projection π : Pgp → Pgp/Pt. Then σ(π(p)) − p ∈ Pt ⊆ P for every
p ∈ P, and it follows that σ maps P/Pt to P. Thus P � P/Pt ⊕ Pt and k[P] �
k[P/Pt]⊗k[Pt]. Since Pt is a finite group, it follows that the dimension of k[P] is
the same as the dimension of k[P/Pt]. Thus we may assume that Pgp is torsion
free. Then k[P] is an integral domain, and its dimension is the same as the
transcendence degree of its fraction field, which is rk(Pgp). Finally, if the order
of Pt is invertible in R, then k[Pt] is étale over k. Then k[P] � [P/Pt]⊗ k[Pt] is
reduced, since it is étale over the integral domain k[P/Pt]. �

To see that the hypothesis that Pgp be torsion free is not superfluous, consider
the submonoid P of Z ⊕ Z/2Z generated by p := (1, 0) and q := (1, 1). This
is the free monoid generated by p and q subject to the relation 2p = 2q. It is
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sharp and fine, but R[P] � R[x, y]/(x2 − y2), which is not an integral domain.
Note also that its fibers in characteristic 2 are not reduced.

Proposition 3.4.2. Let Q be a fine monoid, let k be a field, and let AQ :=
Spec k[Q].

1. If p is a prime ideal of Q and F := Q \ p, then the height of p in Q is the
codimension of the closed subscheme AF � AQ,p of AQ.

2. If x is a scheme-theoretic point of AQ, let p be the set of elements of Q
whose image in OX,x lies in the maximal ideal mx of x, and let F := Q \ p,
so that x ∈ A∗F ⊆ AF ⊆ AQ. Then ht(p) ≤ dim(OX,x), and equality holds
if and only if x has codimension zero in A∗F, that is, if and only if x is a
generic point of A∗F. If equality holds and the order of the torsion part of
Fgp is invertible in k, then mx is generated by the image of p in OX,x.

Proof Note that in these statements we are using the closed immersion iF

(3.3.2) to identify AF and AQ,p. The dimension of AF is the rank of Fgp and the
dimension of AQ is the rank of Qgp, so the codimension of the locally closed
subset AF of AQ is the rank of Qgp/Fgp. This is the height of p as a prime of Q,
by Proposition 1.4.7.

It is clear from the definitions that x belongs to A∗F ⊆ AF ⊆ AQ. Let η be the
generic point of an irreducible component of A∗F containing x. As we have just
seen, the height of η is the same as the height of p. Since x is a specialization
of η, ht(x) ≥ ht(η), with equality if and only if η = x, that is, if and only
if x is a generic point of A∗F. Suppose this is the case and that the order of
the torsion part of Fgp is invertible in k. Then AF is an open subscheme of
the reduced scheme A∗F and so is also reduced. Consequently the local ring
OA∗F,x � OA∗Q,x/pOA∗Q,x of A∗F is a field. Thus p generates the maximal ideal of
OA∗Q,x. �

Theorem 3.4.3. If R is a noetherian Cohen–Macaulay ring, and P is a fine
saturated monoid, then the monoid ring R[P] is also Cohen–Macaulay.

Proof When R is a field, this result is a deep theorem of Hochster whose
proof [36] we will not give here. The morphism Spec R[P] → Spec R is flat,
and its fibers are Cohen–Macaulay by Hochster’s theorem. It follows that R[P]
is also Cohen–Macaulay [27, 6.3.5]. �

The following result is an immediate consequence of the analogous Corol-
lary 2.3.9 for monoids.

Proposition 3.4.4. Let R be a ring and Q a fine monoid of Krull dimension d.
For each i = 0, . . . , d, let Ki := ∩{p ∈ Spec R : ht p ≤ i}, an ideal of Q. Then
AQ \AQ,Ki+1

is covered by the special affine open subsets AQF
, where F ranges
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over the set of faces F such that rk Q/F = i. In particular, AQ \AQ,K2
is covered

by the open sets of the form AQF
as F ranges over the facets of Q. If Q is toric

and d > 0, each such open set is a product of a torus with an affine line over
Spec R. �

3.5 Ideals in monoid algebras

Let P be an integral monoid and R a nonzero ring. We shall find it useful
to investigate further the relationship between ideals in P and ideals in R[P].
Recall that if K is an ideal in P, then R[K] ⊆ R[P] is the set of elements∑
{ap : p ∈ P} such that ap = 0 for p < K, an ideal of R[P]. It follows that if

K is the intersection of a family of ideals Kλ of P, then R[K] is the intersection
of the corresponding family of ideals R[Kλ] of R[P].

Proposition 3.5.1. Let Q be an integral monoid, let R be a reduced ring, and
let K be an ideal of Q. Assume that the order of the torsion subgroup of Qgp is
invertible in R. Then the ring R[Q,K] is reduced if and only if K is a radical
ideal of Q.

Proof Recall that Q \ K → R[Q,K] : q 7→ eq is a basis for k[Q,K]. Thus
it is clear that if R[Q,K] is reduced, then K must be a radical ideal, since
otherwise there would exist q ∈ Q \ K and n ∈ N such that nq ∈ K, and then eq

would be a nonzero nilpotent of R[Q,K]. For the converse, first note that if K
is prime, its complement is a face F of Q, and R[Q,K] � R[F]. Furthermore,
R[F] ⊆ R[Fgp] � R[Zr ⊕T ], where T is a finite group whose order is invertible
in R. It follows that R[Fgp] and R[F] are reduced. If K is a radical ideal of P,
then as we saw in Corollary 1.4.3, it is the intersection of the prime ideals pλ
containing it, and it follows that R[K] is the intersection of the ideals R[pλ].
Since each of these ideals is reduced, so is R[K]. �

Proposition 3.5.2. Let R be an integral domain, let P be a toric monoid, and
let p be an element of P. Then the irreducible components of Spec R[P, (p)] are
precisely the closed sets defined by the height one prime ideals of P containing
p. If P is saturated and R is normal, each of these irreducible components is
normal.

Proof Let p be any prime of P and let G be its complementary face. Since
R[P, p] � R[G], it is an integral domain and is normal if R is normal and G
is saturated, by Proposition 3.4.1. By Corollary 2.3.15, the ideal

√
(p) of P

can be written as a finite intersection of height one primes p1 ∩ · · · ∩ pn. We
conclude that Spec(R[P, (p)] = Spec R[P, p1]∪ · · · ∪R[P, pn]. As we have seen,
each of these pieces is irreducible and hence these are indeed the irreducible



3 Affine toric varieties 83

components of R[P, (p)]. If P is saturated, so is each face Gi := P \ pi, and
hence if R is normal, so is each R[P, pi] � R[Gi]. �

This proposition shows that the Weil divisors with support in a closed subset
of Spec R[P] defined by an element of P come from ideals in P. To obtain the
analogous result for Cartier divisors will require more work. We begin with the
following definition.

Definition 3.5.3. Let P be an integral monoid and let R be a ring. If f :=∑
P ap( f )ep is an element of R[P] and S is a subset of R[P], then:

1. σ( f ) := {p ∈ P : ap( f ) , 0}, and σ(S) := ∪{σ( f ) : f ∈ S};
2. K( f ) is the ideal of P generated by σ( f ), and K(S) := ∪{K( f ) : f ∈ S}.

The set σ( f ) is called the support of f , and its convex hull is the Newton
polyhedron of f . Note that K(S) is an ideal of P, since the union of ideals is an
ideal. Furthermore, for any p ∈ P and f ∈ R[P],

σ(ep f ) = p + σ( f ).

It follows that if I is an ideal of R[P], then σ(I) = K(I), since if k ∈ K(I),
there exist f ∈ I and p ∈ P with k ∈ p + σ( f ) = σ(ep f ) ∈ σ(I). Note that
any f in R[P] is contained in R[K( f )], that any ideal I of R[P] is contained in
R[K(I)], and that in fact K(I) is the smallest ideal K of P such that I ⊆ R[K]. It
is clear from the definitions that if θ : P→ Q is an injective homomorphism of
monoids and f ∈ R[P], then σ(R[θ]( f )) = θ(σ( f )) and that K(R[θ]( f )) is the
ideal of Q generated by θ(K( f )).

Proposition 3.5.4. Suppose that f and g are elements of R[P].

1. σ( f + g) ⊆ σ( f ) ∪ σ(g), hence K( f + g) ⊆ K( f ) ∪ K(g).
2. σ( f g) ⊆ σ( f ) + σ(g), hence K( f g) ⊆ K( f ) + K(g) ⊆ K( f ) ∩ K(g).
3. K( f ) = K(( f )), where ( f ) is the ideal of R[P] generated by f .
4. If I and J are ideals of R[P], K(IJ) ⊆ K(I) + K(J).

Proof The first two statements follow from the fact that for every p ∈ P,

ap( f + g) = ap( f ) + ap(g) and

ap( f g) =
∑

q+q′=p

aq( f )aq′ (g),

and statement (4) is an immediate consequence. It is apparent from the def-
inition that σ( f ) ⊆ K(( f )), and hence that K( f ) ⊆ K(( f )). On the other
hand, for any h ∈ ( f ), it follows from (2) that σ(h) ⊆ K( f ) and hence that
K(h) ⊆ K( f ). �
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We shall be especially interested in determining when K( f ) is principal.

Proposition 3.5.5. Let P an integral monoid and let R be a ring.

1. If f ∈ R[P], K( f ) is the unit ideal of P if and only if f < R[P+].
2. If f ∈ R[P], then K( f ) is principally generated by an element p of P if and

only if f = ep f̃ , where f̃ is some element of R[P] \ R[P+].
3. Suppose R is an integral domain and P∗ is torsion free. Then if f and g are

elements of R[P] such that K( f ) and K(g) are principal, the same is true of
f g, and K( f g) = K( f ) + K(g).

Proof Statement (1) is a tautology. If K := K( f ) is generated by p, then
k − p ∈ P for every element k of K( f ). Hence f =

∑
k∈K akek = ep ∑

k akek−p,
so f = ep f̃ where f̃ :=

∑
k akek−p. Then

(p) = K( f ) ⊆ K(ep) + K( f̃ ) = (p) + K( f̃ ),

and it follows that K( f̃ ) = P. Conversely, if f = ep f̃ with K( f̃ ) = P, then
certainly K( f ) ⊆ (p). But if f̃ =

∑
ãqeq, there exists a q ∈ P∗ such that ãq , 0,

and then p + q ∈ K( f ), so p ∈ K( f ). Thus K( f ) = (p), and this proves (2). If
K( f ) is principally generated by p and K(g) is principally generated by q, then
f = ep f̃ and g = eqg̃, where f̃ and g̃ belong to R[P] \ R[P+]. The quotient of
R[P] by R[P+] is isomorphic to R[P∗]. If P∗ is torsion free and R is an integral
domain, then R[P∗] is also an integral domain by Proposition 3.4.1. Hence
R[P+] is a prime ideal, and so f̃ g̃ < R[P+]. Since f g = ep+q f̃ g̃, it follows that
K( f g) is principally generated by p + q. �

Statement (3) shows that if R is a domain and P∗ is torsion free, the set of
all f such that K( f ) is principal is a submonoid of R[P]. We shall see that if P
is toric, this set is in fact a face of R[P]. This is not true in general. Consider
for example the submonoid P of N generated by the elements 2 and 3, and let
f = e2 + e3 and g = e2 − e3. Then K( f ) = K(g) is the ideal (2, 3) of P, which is
not principal, but f g = e4 − e6 = e4(1 − e2), so K( f g) is principally generated
by 4.

Recall from Corollary 2.4.4 that associated to each height one prime p of
a fine monoid P there is a homomorphism νp : P → N; this homomorphism
is surjective if P is saturated, as we shall assume. The image under νp of a
nonempty ideal K of P is then an ideal Kp of N, principally generated by

νp(K) := inf{νp(k) : k ∈ K}.

For each f ∈ R[P], let

νp( f ) := νp(K( f )).

That is, νp( f ) is the minimum of the set of all νp(p) such that p ∈ σ( f ).
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Proposition 3.5.6. Let P be a toric monoid and let R be an integral domain.

1. If K is a nonempty ideal of P and p ∈ K is an element of K such that
νp(p) = νp(K) for every height one prime p, then K = (p).

2. If f and g are elements of R[P], then νp( f g) = νp( f ) + νp(g), for every
height one prime p. Moreover, K( f g) is principal if and only if K( f ) and
K(g) are.

Proof Suppose the hypotheses of (1) hold and k ∈ K. Then νp(k − p) ≥ 0 for
every height one prime p of P. By Corollary 2.4.5, k − p ∈ P, and it follows
that K is principally generated by p. This proves (1). For (2), let G be the facet
of P complimentary to p. The homomorphism P→ PG is injective, and hence
if f̃ ∈ R[PG] is the image of f , K( f̃ ) is the ideal of PG generated by the image
of K( f ), and νp( f̃ ) = νp( f ). Since PG is valuative, K( f̃ ) is principal, generated
by any p ∈ σ( f ) such that νp( f ) = νp(p). Since P∗G = Ggp is torsion free, (3) of
Proposition 3.5.5 implies that for every f , g ∈ R[P], K( f̃ g̃) = K( f̃ ) + K(g̃) and
hence νp( f g) = νp( f )+νp(g). We already know that K( f g) is principal if K( f )
and K(g) are. Conversely, if K( f g) is principally generated by r, statement (2)
of Proposition 3.5.4 shows that r can be written as a sum p + q, with p ∈ K( f )
and q ∈ K(g). Then for every p of height one, νp(p) ≥ νp( f ) and νp(q) ≥ νp(g).
On the other hand, νp(p) + νp(q) = νp(r) = νp( f g) = νp( f ) + νp(g). Hence
νp(p) = νp( f ) and νp(q) = νp(g) for every p. By (1), this implies that K( f )
and K(g) are principal. �

Corollary 3.5.7. Let R be an integral domain, P a toric monoid, and F a face of
P. Then the set F of elements f of R[P] such that K( f ) is principally generated
by an element of F is a face of the multiplicative monoid R[P].

Proof If f and g belong to F , then K( f ) = (p) and K(g) = (q) with p and q
in F, so by (3) of Proposition 3.5.5 K( f g) = (p + q) and p + q ∈ F. Thus F is
a submonoid of R[P]. Conversely if f g ∈ F then, by (2) of Proposition 3.5.6,
K( f ) and K(g) are principal, say generated by p and q respectively. Then p + q
generates K( f g) and lies in F. Since F is a face, each of p and q belongs to F
and hence each of f and g belongs to F . Thus F is a face of R[P]. �

We can now describe the monoid of effective Cartier divisors supported on
the closed subset of the toric variety AP defined by an element of P. In Theo-
rem III.1.9.4, we shall use this description to compute certain “compactifica-
tion log structures,” generalizing a theorem of Kato [49, 11.6]. Note that if P
is a toric monoid and p ∈ P, then ep ∈ R[P] is a nonzero divisor and hence
defines an effective Cartier divisor Dp in the scheme Spec(R[P]).

Theorem 3.5.8. Let P be a fine sharp and toric monoid and let R be a normal
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integral domain. Let f be an element of P, let Y := D f , and let ΓY (Div+
X) be

the sheaf of effective Cartier divisors of X := AP with support in Y . For each
x ∈ X, let Gx denote the set of elements of P whose image in k(x) is nonzero,
and let Fx denote the face of PGx generated by f . Then, for each p ∈ Fx, the
germ of the Cartier divisor Dp at x belongs to ΓY (Div+

X)x, and the map p 7→ Dp

induces an isomorphism

F x � ΓY (Div+
X)x.

Proof This statement is local around x, so we may without loss of generality
replace P by its localization by Gx. Thus we may and shall assume that Gx =

P∗, so that every element of P+ vanishes at x. If p belongs to the face F of
P generated by q, then ep maps to a unit in the ring R[Pq] and hence Dp has
support in Y . Thus we find a homomorphism F → ΓY (Div+

X), and we claim
that the induced homomorphism η : F → ΓY (Div+

X)x is an isomorphism.
Suppose that p and q are elements of F such that ep and eq define the same

ideal ofOX,x. Then there exist u and v ∈ R[P] not vanishing at x such that uep =

veq. But then u and v belong to R[P] \ R[P+], and hence by Proposition 3.5.5
K(uep) = (p) and K(veq) = (q). Then (p) = (q) as ideals in P, and so p
and q have the same image in F. This proves the injectivity of η. To prove
the surjectivity, let I be a principal ideal of OX,x that becomes the unit ideal
after localization by e f . Then if a generates I, there exist b ∈ OX,x and r ∈ F
such that ab = er. Furthermore, there exist u and v ∈ R[P] not vanishing
at x such that α := au and β := bv belong to R[P]. Then uv < R[P+] and
αβ = aubv = eruv. By Proposition 3.5.5, K(αβ) is generated by r, an element
of F. Then it follows from Corollary 3.5.7 that K(α) and K(β) are respectively
generated by elements p and q of F. Write α = epα̃ and β = eqβ̃with α̃ and β̃ in
R[P] \R[P+]. It follows that (p + q) = (r) and then that (α̃β̃) = (uv), so α̃ and β̃
do not vanish at x. Since a = α̃u−1ep in OX,x, ep generates I, i.e., I = η(p). �

3.6 Completions and formal power series

Let Q be a fine sharp monoid and let R be a commutative ring. We shall see
that the completion of R[Q] with respect to the ideal R[Q+] can be conveniently
viewed as a ring of formal power series in Q. Explicitly, we denote by R[[Q]]
the set of functions Q → R, viewed as an R-module using the usual point-
wise structure and endowed with the product topology induced by the discrete
topology on R.

Proposition 3.6.1. Let Q be a fine sharp monoid and let R be a commutative
ring.
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1. For each q ∈ Q, {(p, p′) ∈ Q × Q : p + p′ = q} is finite.
2. The topological R-module R[[Q]] defined above admits a unique continu-

ous multiplication with the property that the natural map ê : Q→ R[[Q]] is
a homomorphism of monoids.

3. The topological ring R[[Q]] is naturally identified with the formal comple-
tion of R[Q] along the ideal R[Q+].

4. If Qgp is torsion free and R is an integral domain, R[[Q]] is also an integral
domain.

5. If R is a local ring with maximal ideal m, then R[[Q]] is also a local ring,
whose maximal ideal is the set of elements of R[[Q]] whose constant term
belongs to m. Furthermore, Q→ R[[Q]] is a local homomorphism.

Proof Since Q is fine, there exists a local homomorphism h : Q → N. Then
Jh,n := {q : h(q) > n} is an ideal of Q and, by Proposition 2.2.9, Q \ Jh,n is a
finite set. If q = p + p′, then p and p′ belong to Q \ Jh,h(q), and hence there
are only finitely many such p and p′. Then if f =

∑
apep and g =

∑
bp′ep′ are

elements of R[[Q]], we can define f g to be
∑

cqeq, where

cq :=
∑

p+p′=q

apbp′ .

For each finite subset σ of Q,

Uσ :=
{∑

aqeq ∈ R[[Q]] : aq = 0 for q ∈ σ
}

is open, and the family of such subsets is a basis of open neighborhoods of zero.
It follows that the multiplication operation defined above is continuous, and
indeed that it is the unique continuous operation compatible with the monoid
law on Q.

If K is an ideal of Q and n is a natural number, let Kn denote the set of all
elements of Q which can be written as a sum of n or more elements of K. Then
K is an ideal of Q and R[Kn] = (R[K])n. Lemma 3.6.2 below implies that the
R[[Q+]]-adic topology on R[[Q]] agrees with the weak topology.

Lemma 3.6.2. Let Q be a fine sharp monoid and let h : Q → N be a local
homomorphism. The following families of subsets of Q are cofinal; that is,
given any member of one of these families, there is another member of each of
the other families which it contains:

1. {Jh,n : n ∈ N}, where Jh,n = {q : h(q) > n};
2. {(Q+)n : n ∈ N};
3. the set of all subsets of Q whose complement is finite.
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Proof It is clear that (Q+)n ⊆ Jh,n−1 for every n, since if q = q1 + · · · + qn ∈

(Q+)n with each qi ∈ Q+, then h(q) ≥ n. On the other hand, if (s1, . . . , sr) is
a finite set of generators for Q+ and M := max{h(s1), . . . , h(sr)}, then Jh,n ⊆

(Q+)n/M . Indeed, any q ∈ Q+ can be written as
∑

misi, with mi ∈ N, so if
q ∈ Jh,n,

n < h(q) =
∑

mih(si) ≤ M
∑

mi

and so
∑

mi > n/M and q ∈ (Q+)n/M . We have already seen that the comple-
ment of Jh,n is finite. On the other hand, if σ is a finite set and m is a bound for
{h(q) : q ∈ s}, then Jh,m is contained in the complement of σ. �

It is clear from the construction that an injection Q → Q′ induces an injec-
tion R[[Q]] → R[[Q′]]. If Q is fine and sharp and Qgp is torsion free then, by
Corollary 2.2.7, Q can be embedded in Nr for some r. Then (4) is reduced to
the case of R[[Nr]], a ring of formal power series, easily seen to be an integral
domain by induction on r. Statement (5) can also be reduced to the case of a
formal power series ring, by taking a surjection Nr → Q. �

Corollary 3.6.3. Let Q be a fine monoid, let h : Q → N be a homomorphism,
and for each n ∈ N let Jh,n := {q ∈ Q : h(q) > n}. Then Jh,1 is a prime ideal p,
and the families {Jh,n : n ∈ N} and {pn : n ∈ N} are cofinal.

Proof If Q is sharp and h is local, this corollary follows immediately from
Lemma 3.6.2. In any case, it is clear that p is prime. Let F := Q \ p, so that
h factors through a local homomorphism h : Q/F → N. Then the result for Q
and h follows from the result for Q/F and h. �

More generally, if S is a finitely generated Q-set, we can consider the set
R[[S]] of formal power series indexed by S and with coefficients in R, which
will form a module over R[[Q]] provided that, for every (q, s) ∈ Q+×S, qs , s.
To explain this properly, it is helpful to use a monoid-theoretic analog of the
Artin–Rees lemma and the Rees algebra in commutative algebra. This con-
struction is also useful in connection with monoidal transformations discussed
in II.1.7.2.

Definition 3.6.4. Let Q be an integral monoid and let K be an ideal of Q. The
Rees monoid of (Q,K) is the monoid BK(Q) whose elements are pairs (m, p),
where m ∈ N and p ∈ Km, and whose monoid law is given by

(m, p) + (n, q) := (m + n, p + q).

If S is a Q-set, the Rees set of (S,K) is the set of pairs (n, s), where n ∈ N and
s ∈ KnS, with the action of BK(Q) given by

(m, p) + (n, s) := (m + n, p + s).
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Note that we have

h : BK(Q)→ N : (m, p) 7→ m and g : BK(S)→ N : (n, s) 7→ n,

where h is a homomorphism of monoids and g is a morphism of BK(Q)-sets
over h.

Proposition 3.6.5. Let K be an ideal of a fine monoid Q and let S be a finitely
generated Q-set. Assume that qs , s whenever s ∈ S and q ∈ Q+. Then the
following statements hold:

1. If T is a sub-Q-set of S, then there exists an integer m such that T ∩Km+nS ⊆
KnT for all n.

2. If K is a proper ideal of Q, then ∩{KnS : n ≥ 0} = ∅.
3. If Q is sharp, R[[S]] can be identified with the R[[Q+]]-adic completion

of R[S]. In particular, if (s1, . . . , sn) is a sequence of generators for S as a
Q-set, then (es1 , . . . , esn ) is a sequence of generators for R[[S]] as an R[[Q]]-
module.

Proof If Q is finitely generated as a monoid, then it is noetherian, so K is
finitely generated as an ideal. If (p1, . . . , pr) is a sequence of generators for Q
and (k1, . . . , ks) is a sequence of generators for K, then

((0, p1), . . . , (0, pr), (1, k1), . . . (1, ks))

is a sequence of generators for the monoid BK(Q), and it follows from Theo-
rem 2.1.7 that BK(Q) is noetherian. Furthermore, since S is finitely generated
as a Q-set, BK(S) is finitely generated as a BK(Q)-set, and hence is also noethe-
rian. If T ⊆ S is a sub-Q-set, then

BK(S,T ) := {(n, t) : n ∈ N, t ∈ T ∩ KnS}

is naturally a sub-BK(Q)-set of BK(S), and consequently is finitely generated,
say by ((m1, t1), . . . , (mp, tp)). Then any upper bound m for (m1, . . . ,mp) satis-
fies (1). In particular, T := ∩{KnS : n ≥ 0} is a sub-Q-set of S, and (1) implies
that T = KT . Since K ⊆ Q+, Proposition 2.1.12 implies that T = ∅, proving
(2). It follows that for every s ∈ S, there exists an n such that s < (Q+)nS, and
that for every finite subset σ of S, there exists an n such that σ ∩ (Q+)nS = ∅.
On the other hand, it is easy to see that the complement of each (Q+)nS is finite,
for example by writing S as the quotient of a finitely generated free Q-set. Thus
the family of subsets of S whose complement is finite is cofinal with the family
{(Q+)nS : n ∈ N}. It follows that, for each s ∈ S, {(q, t) ∈ Q × S : q + t = s}
is finite. This allows us to define an obvious action of R[[Q]] on R[[S]] and to
see that the product topology is the R[[Q+]]-adic topology, �
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3.7 Abelian unipotent representations

In this section we give a geometric construction of the universal unipotent
representation of a finitely generated free abelian group. This construction is a
discrete version of the construction of the sheaf Olog

X on the Betti realization of
a log analytic space, explained in Section V.1.4.

Let I be a finitely generated free abelian group and let Z[I] be its group
algebra. Recall that Z[I] is the free Z-module with basis I, and that if γ ∈ I, we
write eγ for the corresponding basis vector for Z[I]. The regular representation
of I is the action of I on Z[I] given by δeγ := eδ+γ. Moreover, Spec Z[I] =

A∗I , which has a group scheme structure corresponding to the comultiplication
eγ 7→ eγ ⊗ eγ. This group scheme is a torus whose character group is I.

We can also form the “vector group scheme” VI := Spec S·I. Its comulti-
plication is given by γ 7→ γ ⊗ 1 + 1 ⊗ γ. The C-valued points of VI are the
homomorphisms v : I → (C,+), and the C-valued points of A∗I are the homo-
morphisms ρ : I → (C, ·). The exponential map (C,+) → (C, ·) induces a
morphism VI(C) → A∗I (C) sending a point v to exp ◦v. This morphism has
an algebraic incarnation in a suitable neighborhood of the identity, as we shall
now explain.

The identity section of A∗I is given by the augmentation f0 : Z[I]→ Z send-
ing every eγ to 1. Let J be its kernel, which is the ideal of Z[I] generated by
the set of elements of the form eγ − 1 for γ ∈ I. We note the formula

(eγ1+γ2 − 1) = (eγ1 − 1) + (eγ2 − 1) + (eγ1 − 1)(eγ2 − 1). (3.7.1)

This formula implies that J is generated by the set of elements of the form
(eγ−1) as γ ranges over any set of generators for I. It also implies that the map

λ : I→ J/J2 : γ 7→ [eγ − 1]

is a group homomorphism. In fact this map is an isomorphism. To see this, let
f1 : Z[I] → I be the unique homomorphism of abelian groups taking each eγ

to γ. Formula (3.7.1) shows that

f1 ((eγ1 − 1)(eγ2 − 1)) = f1
(
(eγ1+γ2 − 1) − (eγ1 − 1) + (eγ2 − 1)

)
= γ1 + γ2 − γ1 − γ2

= 0,

so f1 factors through a map f 1 : J/J2 → I. Evidently f 1 ◦ λ = idI, so λ is
injective, and since it is also surjective, it is an isomorphism. Furthermore, if
γ, δ ∈ I, then

δ(eγ − 1) = eδ+γ − eδ = eγ − 1 + (eγ − 1)(eδ − 1)
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so the action of I on J/J2 is trivial.
We can assemble f0 and f1 to form an isomorphism of abelian groups:

ε1 : Z[I]/J2 → Z ⊕ I : eγ 7→ 1 ⊕ γ.

This isomorphism preserves the action of I, where the action on Z ⊕ I is given
by δ(n ⊕ γ) = (n, γ + nδ). Note that this action of I on Z ⊕ I is not compatible
with the splitting, and in fact the right hand side should instead be written as
an extension of I-modules, as in the following diagram:

Z[I]/J2 J/J2 - Z[I]/J2 - Z

=

Z ⊕ I

ε1

?
I
?

- Z ⊕ I
?

- Z.
?

(3.7.2)

The isomorphism ε1 can be extended further, with the help of divided pow-
ers [67],[6],[7]. (In fact our main applications will take place after tensoring
with Q, where symmetric powers would suffice.) Let Γn(I) be the nth graded
piece of the divided power algebra of I, so that γ 7→ γ[n] is the “universal poly-
nomial law of degree n” in the sense of [67], and let fn : Z[I] → Γn(I) be the
map sending eγ to γ[n]. Let Γ̂(I) :=

∏
n Γn(I), the completion of the divided

power algebra with respect to the family of divided power ideals ⊕m≥nΓm(I).
Then the map

Z[I]→ Γ̂(I) : eγ 7→
∑
n≥0

γ[n]

is a ring homomorphism and sends J to Γ̂+(I). It therefore induces a divided
power homomorphism

ε̂ : D̂J(Z[I]) - Γ̂(I), (3.7.3)

where DJ(Z[I]) is the completed divided power envelope of the ideal J of Z[I].
This map is also an isomorphism, with inverse

λ̂ : Γ̂(I) - D̂J(Z[I]) : γ 7→
∑
i≥1

(−1)i+1(eγ − 1)i/i. (3.7.4)

Applying Hom( Z) to the exact sequences in Diagram (3.7.2), we find an
exact sequence of I-modules

0 - Z ι- L π- I∨ - 0 (3.7.5)

The (right) action of I on L � Z ⊕ I∨ is given by `γ = ` + ι(〈π(`), γ〉). For
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each natural number n, the sequence (3.7.5) induces an exact sequence

0 - Sn−1L - SnL - SnI - 0.

This sequence is split as a sequence of Z-modules, but the splitting is not com-
patible with the I-actions. We find an isomorphism

AI := lim
−→

SnL � ⊕S·(I∨). (3.7.6)

Let N·OL denote the image of Sn(L) in AI, an I-invariant submodule. Then I
acts trivially on GrN

· AI and, if δ ∈ I, the map Gr· AI → Gr·−1AI induced by
δ identifies with the action of δ on S·I by interior multiplication. We refer to
[61] for an explanation of the sense in which Q ⊗ AI is the universal rational
unipotent representation of I.

Recall from [7] and[67] that there is a canonical isomorphism

Sn(I∨) � Hom(Γn(I),Z).

Thus the algebra AI � S·(I∨) can be identified with the topological dual of
the divided power algebra Γ̂(I). It elements can be viewed as functions I → Z
(given by “polynomial laws”), and the left action of I on itself defines a right
action on the set of such functions. Explicitly, if f ∈ AI and γ, δ ∈ I, then
( f δ)(γ) = f (δ + γ). Interior multiplication by an element δ of I is a derivation
of the algebra S·(I∨), and if f ∈ S·(I∨), Taylor’s theorem implies that

( f δ)(γ) := f (γ + δ) =
∑

n

(1/n!)(δn f )(γ). (3.7.7)

An easy way to check this formula is to use the fact that the formula has al-
ready been verified for elements of L, that the action of I is compatible with
multiplication, and that, since δ is a derivation,

δn( f g) =
∑

i+ j=n

(
n
i

)
δi( f )δ j(g).

In characteristic zero, the isomorphism ε̂ (3.7.3) can be used to view locally
unipotent representations of I as Γ̂(I)-modules and to compute their cohomol-
ogy. We briefly recall the construction, using the notion of “Higgs fields” and
“Higgs cohomology.”

Definition 3.7.1. Let R be a commutative ring, let T be a projective R-module
of finite rank, let Ω := HomR(T,R) and Ωi := ΛiΩ. If E is an R-module, a
T-Higgs field on E is an R-linear map

θ : E → Ω ⊗ E



3 Affine toric varieties 93

whose composition with the map

(π ⊗ idE) ◦ (idΩ ⊗ θ) : Ω ⊗ E → Ω ⊗Ω ⊗ E → Ω2 ⊗ E

vanishes. The Higgs complex of θ is the complex

Ω· ⊗ E := E - Ω ⊗ E - Ω2 ⊗ E · · · .

obtained by prolonging this construction.

One sees easily that a T -Higgs field on E is equivalent to an extension of the
R-module structure on E to an S·T -module structure.

Proposition 3.7.2. If θ is a Higgs field on E, then the Higgs complex Ω· ⊗

E represents the complex R HomS·T (R, E), where E is given the S·T -module
structure defined by θ and R is given the S·T -module structure defined by the
augmentation S·T → R.

Proof Suppose that T has rank n. Recall [38, Chapitre I, 4.2] that the S·T -
module R has a canonical projective resolution (the “Koszul complex”)

K·T := ΛnT ⊗ S·T → Λn−1T ⊗ S·T → · · · → T ⊗ S·T → S· → R,

where the differentials are defined by

t1 ∧ · · · ∧ t j ⊗ f 7→
∑

i

(−1)i+1t1 ∧ · · · ∧ t̂i ∧ · · · ∧ t j ⊗ ti f .

Then R HomS·T (R, E) � HomS·T (K·(T ), E), which is easily seen to be the
Higgs complex of E. �

Theorem 3.7.3. Let R be a ring containing Q, let I be a finitely generated free
abelian group of rank n, and let E be an R-module equipped with a locally
unipotent action ρ of I. For each γ ∈ I, let

λγ :=
∑
i≥1

(−1)i+1(ργ − 1)i/i.

Then γ 7→ λγ defines an R ⊗ I-Higgs field on E, and there is a natural isomor-
phism

Hi(I, E) � Hi(Ω· ⊗ E)

where Ω := HomZ(I,R).

Proof To say that the action of ρ is locally unipotent is to say that each x in
E is annihilated by (ργ − id)i for i � 0. Since R contains Q, this condition
guarantees that the formula for λγ is well-defined. To prove the theorem on
cohomology, we interpret the action of I on E as providing it with the struc-
ture of a Z[I]-module. Then Hi(I, E) = ExtiZ[I](Z, E), where Z is viewed as
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a Z[I]-module via the augmentation mapping. The R-module structure on E
provides it with the structure of an R[I]-module and, since Z[I]→ R[I] is flat,
ExtiZ[I](Z, E) � ExtiR[I](R, E). In fact, the unipotence of ρ means that each ele-
ment of the augmentation ideal J of R[I] is locally nilpotent on E, and hence
that the R[I]-module structure of E extends to an R̂[I]-module structure, where
R̂[I] is the J-adic completion of R[I]. Since R[I]→ R̂[I] is again flat, it is also
true that Hi(I, E) � Exti

R̂[I]
(R, E).

Since R contains Q, the formula (3.7.4) for λ̂ defines an isomorphism

λ̂ : Ŝ·R(R ⊗ I)→ R̂[I],

and the action of any γ ∈ I on λ̂∗E is given by the formula λγ in the theo-
rem. Since S·R(R ⊗ I) → Ŝ·R(R ⊗ I) is flat and λ̂ is an isomorphism, there are
isomorphisms

ExtiS·R(R⊗I)(R, λ∗E) � Exti
Ŝ·R(R⊗I)

(R, λ∗E) � Exti
R̂[I]

(R, E) � Hi(I, E).

By Proposition 3.7.2, the first of these Ext groups is calculated by the Higgs
complex of E. �

4 Actions and homomorphisms

4.1 Local and logarithmic homomorphisms

The following definition is partly a review.

Definition 4.1.1. A homomorphism of monoids θ : P→ Q is

1. local if θ−1(Q∗) = P∗ or, equivalently, if θ−1(Q+) = P+,
2. sharp if the induced homomorphism P∗ → Q∗ is an isomorphism,
3. logarithmic if the induced homomorphism θ−1(Q∗) → Q∗ is an isomor-

phism,
4. strict if the induced homomorphism θ : P→ Q is an isomorphism,
5. s-injective if the induced homomorphism θ : P→ Q is injective.

Proposition 4.1.2. Let θ : P → Q be a sharp and strict monoid homo-
morphism. Then θ is surjective, and is bijective if Q is u-integral.

Proof Suppose q ∈ Q. Since θ is strict, there exist p ∈ P and v ∈ Q∗ with
θ(p) = q + v. Since θ is sharp, there exists a u ∈ P∗ with θ(u) = −v, and then
θ(u + p) = q. Suppose p1, p2 ∈ P with θ(p1) = θ(p2). Since θ is strict, there
exists a u ∈ P∗ such that p2 = p1 + u. Then θ(p2) = θ(p1) + θ(u) = θ(p2) + θ(u),
and θ(u) ∈ Q∗. If Q is u-integral, it follows that θ(u) = 0. Since θ∗ is injective,
u = 0 and p2 = p1. �
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To see that the u-integrality hypothesis is not superfluous, let Q = Z ? N+

be the join (1.4.5) of Z and N along N+. Then the morphism from Z ⊕ N to Q
sending (m, n) to n in N+ if n > 0 and to m ∈ Z if n = 0 is surjective, sharp,
and strict but not bijective.

Proposition 4.1.3. Let θ : P → Q be a homomorphism of monoids. Then the
following conditions are equivalent:

1. θ is sharp and local;

2. θ is logarithmic;

3. θ∗ : P∗ → Q∗ is surjective and θ−1(0) = 0.

4. θ−1(0) = 0 and Q∗ ⊆ Im(θ).

Proof If θ is local, θ−1(Q∗) = P∗, and if θ is also sharp, it induces an iso-
morphism P∗ → Q∗, so (2) holds. If (2) holds, then θ−1(Q∗) is a subgroup
of P containing P∗, hence equal to P∗, and since θ induces an isomorphism
θ−1(Q∗) → Q∗, it follows that (3) holds. It is obvious that (3) implies (4). Fi-
nally, suppose (4) is true and let p be an element of P with θ(p) ∈ Q∗. By
(4) there is a p′ ∈ P with θ(p′) = −θ(p). Then θ(p + p′) = 0, hence by (4)
p + p′ = 0. Thus p ∈ P∗ and it follows that θ is local. Since Ker(θ∗) is zero,
θ∗ is injective. Since Q∗ is contained in the image of θ and θ is local, in fact θ∗

is surjective. Hence θ∗ is an isomorphism, i.e., θ is also sharp. Thus (1) is also
satisfied. �

Proposition 4.1.4. Let P be a monoid and let Pint be the image of P in Pgp.
The natural homomorphism P→ Pint is local if P is quasi-integral. Conversely,
if P→ Pint is local and P is u-integral, then P is quasi-integral.

Proof Suppose that P is quasi-integral and that p ∈ P maps to a unit in Pint.
Then there exists a p′ ∈ P and a q ∈ P such that p + p′ + q = q. Since P is
quasi-integral, p + p′ = 0 and p′ is a unit. For the converse, suppose that P is
u-integral and that P→ Pint is local. If p + q = q, p maps to 0 in Pint and hence
is a unit in P. It follows that p = 0, because P is u-integral. �

In the next proposition we work in the category of commutative, but not nec-
essarily integral, monoids. The more important integral case will be discussed
later.
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Proposition 4.1.5. Consider a cocartesian diagram

Q
φ′ - Q′

P

θ

6

φ - P′

θ′
6

in the category of (commutative) monoids, so that Q′ � P′ ⊕P Q.

1. If θ and φ are local, so are φ′ and θ′, and Q′∗ � P′∗ ⊕P∗ Q∗.
2. The corresponding diagram of topological spaces

Spec Q′ - Spec Q

Spec P′
?

- Spec P
?

is cartesian (in the category of all topological spaces).

Proof For the first statement, suppose p′ ∈ P′ and θ′(p′) ∈ Q′∗, so that there
exists a q′ ∈ Q′ such that q′ + θ′(p′) = 0. Choose q ∈ Q and p′′ ∈ P′

with q′ = φ′(q) + θ′(p′′), so that φ′(q) + θ′(p′ + p′′) = 0. This means that
(p′ + p′′, q) ∈ (P′,Q) is equivalent to the element (0, 0) with respect to the
congruence relation E defining the quotient P′ ⊕ Q→ Q′. We will use the ex-
plicit description of E given in Proposition 1.1.5 to see that there is a sequence
(r0, . . . , rn) as described there with r0 = (0, 0) and rn = (p′ + p′′, q). We shall
show, by induction on i, that each ri is a unit. This is clear if i = 0. For the in-
duction step, write ri = (p′i , qi). First suppose that i is even. Then there exists a
p ∈ P such that qi = θ(p) + qi+1 and p′i+1 = φ(p) + p′i . The induction hypothesis
tells us that qi is a unit, hence so are qi+1 and θ(p) and, since θ is local, p is a
unit. Then φ(p) is a unit, and since p′i is a unit, it then follows that the same is
true of p′i+1. Thus p′i+1 and qi+1 are units, so ri+1 is a unit. If i is odd, the same
argument, with the roles of θ and φ interchanged, implies that ri+1 is a unit. We
conclude that p′ + p′′ is a unit of P′, and hence the same is true of p′. This
shows that θ′ is local, and by symmetry the same is true of φ′.

The universal mapping property of a pushout shows the existence of a homo-
morphism P′∗ ⊕P∗ Q∗ → Q′∗. This is a group homomorphism, so to show
it is injective it will suffice to prove that its kernel vanishes. Suppose that
(p′, q) ∈ P′∗⊕Q∗ maps to zero in Q′. Then there is a sequence (r0, . . . , rn) as in
Proposition 1.1.5 with r0 = (0, 0) and rn = (p′, q). As we saw in the previous
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paragraph, in fact each ri lies in P′∗⊕Q∗, so that the equivalence relation holds
within the unit groups, and consequently (p′, q) maps to zero in P′∗ ⊕P∗ Q′∗.
For the surjectivity, suppose that q′ is a unit of Q′. Write q′ = θ′(p′) + φ′(q).
Then θ(p′) and φ′(q) are units, and it follows that p′ and q are units, and q′ is
the image of (p′, q).

The second statement is the assertion that the natural map

Spec Q′ → Spec P′ ×Spec P Spec Q

is a homeomorphism. First we prove the injectivity. We work with faces instead
of prime ideals. Let G′ be a face of Q′, let G := φ−1(G′) and F′ := θ′−1(G′).
Then φ(G) + θ′(F′) ⊆ G′. On the other hand, any g′ ∈ G′ can be written as a
sum g′ = φ(q) + θ′(p′), with q ∈ Q and p′ ∈ P′. But then necessarily φ(q) and
θ′(p′) also belong to G′ and hence q ∈ G and p′ ∈ F′. This shows that G′ is
determined by G and F′. Now suppose that F, G, and F′ are faces of P, Q and
P′ respectively and that F = θ−1(G) = φ−1(F′). We claim that there is a face of
Q′ which pulls back to F′ and to G. Form the pushout diagram

QG
φ̃′ - Q′′

PF

θ̃

6

φ̃ - P′F′

θ̃′
6

By construction, θ̃ and φ̃ are local and, as we saw in part (1), it follows that
θ̃′ and φ̃′ are local. Then the inverse image of Q′′∗ in Q′ is face of Q′ which
restricts to G in Q and to F′ in P′. Finally we have to check that the Zariski
topology of Spec Q′ is induced by the product topology coming from Spec P′

and Spec Q′. But any element q′ of Q′ can be written as a sum q′ = φ′(q) +

θ′(p′), and then D(q′) = D(φ′(q)) ∩ D(θ′(p′)), which is the intersection of the
inverse images of D(q) and D(p′). �

Example 4.1.6. Note that locality of θ′ does not follow from the locality of
θ alone. For example, let θ : P → Q be the homomorphism N ⊕ N → N ⊕ N
sending (m, n) to (m + n, n). Thus P and Q are freely generated by the standard
basis elements, which we denote by p1, p2 ∈ P and q1, q2 ∈ Q, and θ(p1) =

q1, θ(p2) = q1 + q2. Now let φ : P→ P′ be the localization of P by p2 and form
the pushout Q′ := P′ ⊕P Q. Then, in Q′, φ′(q1) + φ′(q2) = θ′(φ(p2)), which is
a unit, hence φ′(q1) = θ′(φ(p1)) is a unit, but φ(p1) is not a unit, so θ′ is not
local.

Note also that it is important that the pushout Q′ appearing in Proposi-
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tion 4.1.5 is formed in the category of monoids, not in the category of inte-
gral monoids. As the previous remark shows, if Q′ fails to be quasi-integral,
the map Q′ → Q′int may not be local, and then θ′ could also fail to be local.
For example, let θ : P → Q be as before, but let φ : P → P′ be the homo-
morphism N ⊕ N → N ⊕ N sending (m, n) to (m,m + n). In terms of genera-
tors, φ(p1) = p′1 + p′2 and φ(p2) = p2. Then the pushout Q′ is generated by
p′′1 := θ′(p1), p2, and q′2 := φ′(q2), with the relation p′′1 + p2 + q′2 = p2. This
monoid is sharp, but not quasi-integral and, in Q′int, p′′1 + q′2 maps to zero and
hence p′′1 and q′2 become units. Thus neither Q→ Q′int nor P′ → Q′int is local.
In fact this issue turns out to be a central technical difficulty in log geometry
and will be partially addressed in the next section.

4.2 Exact homomorphisms

Recall from Definition 2.1.15 that a homomorphism of monoids θ : P → Q is
exact if the induced map P → Pgp ×Qgp Q is an isomorphism. If P is integral,
this map is automatically injective, so it suffices to check the surjectivity. If
also Q is integral, then it suffices to check that (θgp)−1(Q) = P.

The following result collects several useful facts about exactness in the cat-
egory of integral monoids. In particular, the family of exact homomorphisms
is stable under composition, pullbacks, and pushouts.

Proposition 4.2.1. In the category of integral monoids, the following state-
ments hold.

1. The natural homomorphism π : Q→ Q is exact.
2. If θ : P→ Q and φ : Q→ R are exact, then so is φ ◦ θ. If φ ◦ θ is exact, then

θ is exact. If in addition θ
gp

is surjective, or if Cok(θ
gp

) is torsion and Q is
saturated, then φ is also exact.

3. A homomorphism θ is exact if and only if θ is exact.
4. A homomorphism P→ Q is local if it is exact, and the converse holds if P

is valuative.
5. An exact sharp homomorphism is injective. In particular, if θ is exact, then

it is s-injective.
6. Let θ : P → Q be an exact homomorphism of integral (resp. saturated)

monoids.

(a) If α : P→ P′ is a homomorphism of integral (resp. saturated) monoids,
then the pushout θ′ : P′ → Q′ of θ along α in the category of integral
(resp. saturated) monoids is exact.

(b) If β : Q′ → Q is a homomorphism of integral monoids, then the pull-
back θ′ : P′ → Q′ of θ along β is exact.
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7. If θ is exact, then θsat is also exact.

Proof To prove (1), let x be an element of Qgp such that πgp(x) ∈ Q. Since
(Q/Q∗)gp � Qgp/Q∗ there exist q ∈ Q and u ∈ Q∗ such that x = q + u. Then in
fact x ∈ Q, so π is exact. If θ and φ are exact, the exactness of φ◦θ follows from
the fact that the composition of cartesian squares is cartesian. Suppose that φ◦θ
is exact, that x ∈ Pgp, and that θgp(x) ∈ Q. Then φgpθgp(x) ∈ R, and it follows
that x ∈ P, so θ is exact. Suppose that y ∈ Qgp and φgp(y) ∈ R. If Cok(θ

gp
) is

torsion we can write ny = θgp(x)+v with v ∈ Q∗ and x ∈ Pgp and n > 0; we can
do this with n = 1 if θ

gp
is surjective. Then, since (φ◦θ)gp(x) = φgp(y)−φ(v) ∈ R

and φ ◦ θ is exact, necessarily x ∈ P and hence ny ∈ Q. If n = 1 or if Q is
saturated, it follows that y ∈ Q, proving the exactness of φ and completing the
proof of statement (2).

Note that if θ : P → Q is any homomorphism of integral monoids there is a
commutative diagram

P
θ - Q

P

π

?
θ - Q

π

?

in which the vertical arrows are exact and surjective. Thus (2) implies that θ is
exact if and only if θ is; so statement (3) follows. We have already observed
that θ is local if it is exact in Proposition 2.1.16. Suppose that P is valuative,
that θ is local, and that x ∈ Pgp with θgp(x) ∈ Q. Since P is valuative, either
x or −x belongs to P. If x ∈ P there is nothing to prove. If −x ∈ P, then
θ(−x) = −θ(x) ∈ Q, hence θ(−x) ∈ Q∗. Since θ is local, it follows that −x ∈ P∗

and hence that x ∈ P, proving (4). Suppose that θ is exact and sharp, and that
p, p′ ∈ P with θ(p) = θ(p′). Then θgp(p− p′) = 0 ∈ Q, so p− p′ ∈ P. Similarly
p′ − p ∈ P, so p − p′ ∈ P∗. Since θ(p − p′) = 0 and θ is sharp, p = p′. This
proves the injectivity of θ as asserted in (5).

Recall from Proposition 1.3.4 that the integral pushout Q′ in (6a) can be
identified with the image of P′ ⊕ Q in P′gp ⊕Pgp Qgp. Hence if x′ ∈ P′gp and
θ′gp(x′) ∈ Q′, there exist p′ ∈ P′, q ∈ Q, and x ∈ Pgp such that x′ = p′ + α(x)
and q = θgp(x). Since θ is exact, necessarily x ∈ P and so x′ = p′ + α(x) ∈ P′.
This proves that θ′ is exact. Now the saturated pushout Q′sat is the saturation
of the integral pushout Q′. Thus if x′ ∈ P′gp and θ′gp(x′) ∈ Q′sat, there exists
a positive integer n such that nθ′gp(x′) ∈ Q′. As we just saw, this implies that
nx′ ∈ P′ and, if P′ is saturated, it follows that x′ ∈ P′. Thus P′ → Q′sat

is also exact. This completes the proof of (6a). Statement (6b) had already
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been proven as part (4) of Proposition 2.1.16, and the verification of (7) is
immediate. �

Proposition 4.2.2. Let θ : P→ Q be a homomorphism of integral monoids. If
θ is exact, then Spec θ is surjective. The converse holds if P is fine and satu-
rated. In fact it is enough to check that every prime of height one is contained
in the image of Spec θ.

Proof Suppose that θ is exact and p is a prime of P. Let F := P \ p and let
θF : PF → QF be the localization of θ by F. Since QF is integral and can be
identified with PF ⊕P Q it follows from statement (6a) of Proposition 4.2.1 that
θF is exact and hence local. Thus, θ−1(q) = p, where q := Q \ F, the prime
ideal of Q corresponding to the maximal ideal of QF , This proves that Spec θ
is surjective.

Conversely, suppose that P is fine and saturated and that Spec θ is surjective.
Let x be an element of Pgp such that θ(x) ∈ Q and let p ∈ Spec P be a prime
of height one. Since Spec θ is surjective, there is a prime q of Q lying over p.
Then the map Pp → Qq is local. Since Pp is saturated and p has height one, it
follows from Corollary 2.4.4 that Pp is valuative. Then by (4) of Proposition
4.2.1, the map Pp → Qq is exact. Since the image of θ(x) in Qgp lies in Qq, it
follows that x ∈ Pp. Thus x ∈ Pp for every prime of height one and, since P is
saturated, it follows from Corollary 2.4.5 that x ∈ P. �

Exact homomorphisms are convenient for many reasons. For example, we
shall see in Proposition 4.2.3 that an exact homomorphism is universally local
and in Proposition 4.2.5 that an exact pushout of a local (resp. logarithmic)
homomorphism is again local (resp. logarithmic).

Proposition 4.2.3. Let θ : P→ Q be a homomorphism of integral monoids. If
θ is exact, it is universally local, i.e., for every cocartesian square

Q
ψ - Q′

P

θ

6

φ - P′

θ′
6

in the category of integral monoids, θ′ is local. The converse is true if P is
saturated. In this case, θ is exact if and only if the pushout θ′ is local for all
local homomorphisms φ. If P is fine it suffices to check local homomorphisms
into fine monoids P′.

Proof We know by Proposition 4.2.1 that an exact homomorphism is local
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and that any pushout (in the category of integral monoids) of an exact homo-
morphism is exact. Therefore an exact homomorphism is universally local.
Conversely, suppose that the pushout θ′ of θ along every local φ is again lo-
cal. If x is an element of Pgp such that q := θgp(x) belongs to Q, consider the
submonoid P′ of Pgp generated by P and −x. If x ∈ P, there is nothing more
to prove. Otherwise Lemma 4.2.4 below implies that the inclusion φ : P → P′

is local and that −x is not a unit of P′. However, in Q′, θ′(−x) + ψ(q) = 0, so
θ′(−x) is a unit of Q′, contradicting the assumption that θ′ is local. Note that in
Lemma 4.2.4 the monoid P′ is fine if P is fine. �

Lemma 4.2.4. Let P be a saturated monoid, let x be an element of Pgp \ P,
and let P′ be the submonoid of Pgp generated by P and −x. Then the inclusion
homomorphism φ : P→ P′ is local, and furthermore −x is not a unit of P′.

Proof Suppose that p ∈ P and φ(p) is a unit of P′. The inverse of φ(p) can be
written as p′−nx for some p′ ∈ P and n ∈ N. Then nx = p+ p′ in Pgp. If n > 0,
the fact that P is saturated implies that x ∈ P, contradicting the hypothesis of
the lemma. It follows that n = 0, hence p ∈ P∗, proving that φ is indeed local.
If −x is a unit of P′, there exist p ∈ P and n ≥ 0 such that −x + p− nx = 0. But
this implies that (n + 1)x = p, and hence that x ∈ P, another contradiction. �

Proposition 4.2.5. Let

Q
ψ - Q′

P

θ

6

φ - P′

θ′
6

be a cocartesian diagram in the category of integral monoids, where θ is exact
and φ is local.

1. The homomorphism ρ : Q∗⊕P∗P′∗ → Q′∗ is an isomorphism, and the homo-
morphisms ψ and θ′ are local.

2. If φ is logarithmic then ψ is also logarithmic.
3. If φ is logarithmic and Q is sharp, then Q′ is also sharp.
4. If Q and P′ are sharp, then Q′ is sharp.
5. The induced homomorphism Q ⊕P P

′
→ Q

′
is an isomorphism.

Proof First let us verify the following assertion.

Claim 4.2.6. With the assumptions of the proposition, suppose that q ∈ Q and
p′ ∈ P′ are such that ψ(q) + θ′(p′) = 0. Then there exists a p ∈ P∗ such that
q = θ(p) and p′ = φ(−p).
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Indeed, the equality ψ(q)+θ′(p′) = 0 means that there exists an x ∈ Pgp such
that q = θ(x) and p′ = −φ(x). The exactness of θ implies that p := x belongs
to P. Then φ(p) + p′ = 0, so φ(p) is a unit of P′. Since φ is local it follows that
p ∈ P∗.

The claim immediately implies that the homomorphism ρ is injective. To
see that it is surjective, suppose that q′1 is a unit in Q′. Let q′2 : −q′1 and write
q′i = ψ(qi)+θ′(p′i). Then ψ(q1 +q2)+θ′(p′1 + p′2) = 0. By the claim, there exists
a unit p of P such that q1 + q2 = θ(p) and p′1 + p′2 = θ(−p). It follows that q1

and p′1 are units. Their sum defines an element of Q∗⊕P∗ P′∗ which maps to q′1.
Thus ρ is also surjective.

To prove that ψ is local, suppose that q ∈ Q and ψ(q) is a unit in Q′. By
the surjectivity of ρ, there exist units q1 ∈ Q∗ and p′ ∈ P′∗ such that ψ(q) =

ψ(q1) + θ′(p′). Then ψ(q − q1) + θ′(−p′) = 0 and, by the claim, there exists a
unit p ∈ P such that q − q1 = θ(p). It follows that q is a unit. The locality of θ′

follows from Proposition 4.2.3, without any assumption on φ. This completes
the proof of statement (1).

The remaining statements follow easily from the fact that ρ is an isomor-
phism. If φ is logarithmic, it induces an isomorphism P∗ → P′∗, and since ρ is
an isomorphism, ψ induces an isomorphism Q∗ → Q′∗. Since ψ is local, it is in
fact logarithmic and, if Q is sharp, necessarily so is Q′. Statement (4) follows
immediately from the fact that ρ is an isomorphism. To prove (5), observe that
there is a commutative diagram:

Q′ := Q ⊕P P′
a- Q ⊕P P

′

Q
′
.

b

?
π

-

It is clear that a and b are surjective. If q′1 and q′2 are elements of Q′ with the
same image in Q

′
, there exists a unit u of Q′∗ with q′2 = uq′1. By (1), we can

write u as a sum of units of Q and P′, and it follows that q1 and q2 have the
same image in Q ⊕P P

′
. Thus b is injective. �

The exactness of a homomorphism θ : P → Q can be interpreted via the
corresponding morphism of affine toric varieties AQ → AP. This morphism
need not be flat, but does “descend flatness” in the sense of [66, §1, Part II].
The key ideas here are due to Illusie, Nakayama, and Tsuji [41].

Proposition 4.2.7. Let θ : P → Q be an injective homomorphism of integral
monoids. Then the following are equivalent.
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1. The homomorphism θ is exact.

2. The homomorphism Z[θ] : Z[P] → Z[Q] splits as a sequence of Z[P]-
modules.

3. The homomorphism Z[θ] is universally injective.

Proof If (1) holds then, by statement (5) of Proposition 2.1.16, the subset
Q \ θ(P) of Q is stable under the action of P on Q induced by the homo-
morphism θ. Thus the P-set Q is a disjoint union of the two P-sets θ(P) and
Q\θ(P). It follows that the Z[P]-module Z[Q] is a direct sum Z[P]⊕Z[Q\θ(P)],
proving (2). The implication of (3) by (2) is clear. Suppose (3) holds. To
prove that θ is exact, suppose that p, p′ ∈ P and θ(p) = q + θ(p′) for some
q ∈ Q. Let I be the ideal of Z[P] generated by p′. Then (3) implies that
Z[P]/I → Z[Q]/IZ[Q] is injective. Since θ(ep) ∈ IZ[Q], it follows that ep ∈ I,
and hence that p belongs to the ideal of P generated by p′. Then p − p′ ∈ P,
proving the exactness of θ. �

Corollary 4.2.8. Let θ : P → Q be an injective and exact homomorphism of
integral monoids. For any homomorphism α : Z[P]→ A, let B := A⊗Z[P] Z[Q]
and let θA : A→ B be the induced homomorphism of rings. Then an A-module
E is flat over A if and only if B⊗A E is flat over B. Thus θ “universally descends
flatness.”

Proof We shall need the following general lemma.

Lemma 4.2.9. Let θ : A → B be an injective homomorphism of commutative
rings which has a left inverse as a homomorphism of A-modules. Then an A-
module E is flat over A if and only if B ⊗A E is flat over B.

Proof It suffices to prove the “if” part of the lemma. Suppose that σ : B→ A
is an A-linear splitting of θ and that B ⊗A E is B-flat. Let i : M′ → M be
an injective homomorphism of A-modules, let K be the kernel of 1B ⊗ i, and
consider the following diagram.

0 - K
k- B ⊗A M′

1B ⊗ i- B ⊗A M

0 - A ⊗A M′

σ ⊗ 1M′

? 1A ⊗ i-

a
-

A ⊗A M.

σ ⊗ 1M

?

The diagram commutes and i is injective, and it follows that a = 0. Now let K′
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be the kernel of i ⊗ 1E and consider the diagram

0 - K ⊗A E
k ⊗ 1E- B ⊗A M′ ⊗A E

1B ⊗ i ⊗ 1E- B ⊗A M ⊗A E

0 - K′

θ′

6

k′- A ⊗A M′ ⊗A E

θ ⊗ 1M′ ⊗ 1E

6

1A ⊗ i ⊗ 1E- A ⊗A M ⊗A E.

θ ⊗ 1M ⊗ 1E

6

The top row can be identified with the tensor product of the top row of the
previous diagram with the B-module B ⊗A E. Since this B-module is flat, this
row is still exact. It follows that θ ⊗ 1M′ ⊗ 1E maps K′ to K ⊗A E as shown in
the diagram. But σ ◦ θ = idA, so

k′ = (σ⊗1M′⊗1E)◦(θ⊗1M′⊗1E)◦k′ = (σ⊗1M′⊗1E)◦(k⊗1E)◦θ′ = (a⊗1E)◦θ′.

Since a = 0, it follows that k′ = 0, hence that that K′ = 0, and hence that i⊗1E

is injective. Since i was an arbitrary injection of A-modules, E is flat. �

Corollary 4.2.8 follows easily. Indeed, since θ is exact, Proposition 4.2.7
implies that Z[θ] splits as a homomorphism of Z[P]-modules, and it follows
that θA splits as a homomorphism of A-modules. Then Lemma 4.2.9 implies
that θA descends flatness. �

A homomorphism of monoids θ : P→ Q induces a continuous map of topo-
logical spaces f : Spec Q → Spec P and, for each q ∈ Spec Q, a local homo-
morphism of monoids θq : P f (q) → Qq. To really understand θ we need to
understand all these homomorphisms. The most important primes of Q to con-
sider are those lying over the maximal ideal of P. We rephrase this description
in terms of faces in the next definition.

Definition 4.2.10. Let θ : P → Q be a homomorphism of monoids. Then a
face G of Q is θ-critical if θ−1(G) = θ−1(Q∗).

Remark 4.2.11. The maximal θ-critical faces of Q are of special importance;
these correspond to the prime ideals q of Q minimal among those containing
the ideal Kθ of Q generated by θ(P+). Suppose that Q is integral and that R is
an integral domain. Then every prime ideal p of R[Q] which is minimal among
the primes containing R[Kθ] is of the form R[q], where q is such a prime ideal
of Q. To see this, let q be the inverse image of p in Q, a prime ideal of Q
lying over P+, and let G be its complementary face. Since R[Q]/R[q] � R[G]
is an integral domain, R[q] is a prime ideal of R[Q]. Since q contains P+ and
R[q] ⊆ p, it follows from the minimality of p that R[q] = p. Furthermore, the
minimality of p implies that q is minimal among all the primes of Q lying over
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p. Note that, since q ⊆ Q+, the prime ideal p of R[Q] is necessarily contained
in R[Q+].

In the following definition we introduce a terminology for exact and s-
injective homomorphisms which we will also apply to other types of homo-
morphisms.

Definition 4.2.12. A homomorphism θ : P→ Q of integral monoids is

1. locally exact (resp. locally s-injective) if for every face G of Q, the localized
homomorphism Pθ−1(G) → QG is exact (resp. s-injective);

2. critically exact (resp.critically s-injective) if for every θ-critical face G of
Q, the homomorphism Pθ−1(Q∗) → QG is exact (resp. s-injective).

Examples 4.2.13. The inclusion morphism N → Z is not exact, but it is criti-
cally and locally exact. The homomorphism θ : N ⊕ N → N ⊕ N ⊕ N sending
(a, b) to (a, a + b, b) is exact but not critically exact. The θ-critical faces are 0,
0⊕N⊕0, N⊕0⊕0, 0⊕0⊕N, and N⊕0⊕N, and θ is not exact when localized
by any of the last three.

Remark 4.2.14. If X is a topological space and x ∈ X, let X(x) be the set of all
generizations of x, i.e., the set of all x′ ∈ X such that x ∈ {x′}−. (For example, if
P is a monoid and X = Spec(P) and if x corresponds to the prime ideal p of P,
then X(x) identifies with Spec(Pp).) Then if f : X → Y is continuous, f induces
a map f(x) : X(x) → Y( f (x)) for each x ∈ X. We say that f is locally surjective
if, for each x in X, this map f(x) is surjective. If X has a unique closed point x
and y := f (x), then we say that f is critically surjective if f(x′) : X(x′) → Y(y) is
surjective for every x′ ∈ f −1(y). It follows from Proposition 4.2.2 that a homo-
morphism of fine saturated monoids θ : P→ Q is locally exact (resp. critically
exact) if and only if Spec(θ) is locally surjective (resp. critically surjective).
We shall see in Theorem 4.7.7 that a homomorphism of fine saturated monoids
is locally exact if and only if it is critically exact and also if and only if it is
critically s-injective.

Corollary 4.2.15. Let θ : P → Q be a locally exact morphism of integral
monoids. Let q be be a prime ideal of P and let p := θ−1(q). Then ht p ≤ ht q.

Proof Since θ is locally exact, Spec(θ) is locally surjective. Let p0 ⊃ p1 ⊃

· · · ⊃ pd be a maximal chain of prime ideals ideals in Pp. Since Spec(Qq) →
Spec(Pp) is surjective, there exists a prime ideal q1 of Qq lifting p1. Since
Spec(Qq1

) → Spec(Pp1
) is surjective, there exists a prime ideal of Qq1

lifting
p2Pp1

. Continuing in this way, we find a lifting q = q0 ⊃ q1 ⊃ · · · ⊃ qd of the
chain p0 ⊃ p1 ⊃ · · · ⊃ pd to Qq. It follows that ht p ≤ ht q. �
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Corollary 4.2.16 (The four point lemma). Let

Q
ψ - Q′int

P

θ

6

φ - P′

θ′
6

be a cocartesian square in the category of integral monoids. Then the corre-
sponding map of fibered products in the category of sets,

Spec Q′int → Spec Q ×Spec P Spec P′

is injective, and it is bijective if either θ or φ is locally exact.

Proof The injectivity follows from the injectivity in Proposition 4.1.5 and
the injectivity of the map Spec Q′int → Spec Q′. For the rest of the proof, we
just write Q′ for Q′int. Suppose that either θ or φ is locally exact; by symme-
try, we may as well assume that it is θ that is locally exact. A point of the
fibered product Spec Q ×Spec P Spec P′ corresponds to a pair (G, F′), where G
is a face of Q and F′ is a face of P′ such that F := θ−1(G) = φ−1(F′). Since
θ is locally exact, the map PF → QG is again exact. Let Q′′ := QG ⊕PF P′F .
Proposition 4.2.5 asserts that the pushouts QG → Q′′ and P′F′ → Q′′ are local.
Let G′ be the inverse image of Q′′∗ in Q′. It follows that ψ−1(G′) = G and
θ′−1(G′) = F′. Thus G′ corresponds to a point of Spec(Q′) which restricts to
the point of Spec Q ×Spec P Spec P′ corresponding to (G, F′). �

The following construction is a crude attempt at rendering a homomorphism
exact; we will do a better job (see Theorem II.1.8.1) once we have some addi-
tional constructions at our disposal.

Proposition 4.2.17. If θ : P→ Q is a homomorphism of integral monoids, let

Pθ := Pgp ×Qgp Q = {x ∈ Pgp : θ(x) ∈ Q},

so that θ factors:

θ = P
θ̃- Pθ θe

- Q.

Then the following properties hold.

1. The homomorphism θ̃gp is an isomorphism, and θe is exact. The homo-
morphism θ̃ is an isomorphism if and only if θ is exact, and the homo-
morphism θe is an isomorphism if and only if θgp is an isomorphism.



4 Actions and homomorphisms 107

2. The formation of Pθ is functorial in θ: given the outer rectangle below, there
exists a canonical ρ making the following diagram commute.

θ : P
θ̃ - Pθ θe

- Q

θ′ : P′

α

? θ̃′ - P′θ
′

ρ

?
θ′e - Q′

β

?

If θ′ is exact, there is a unique ψ : Pθ → P′ such that ψ ◦ θ̃ = α, and
necessarily θ̃′ ◦ ψ = ρ and θ′ ◦ ψ = β ◦ θe.

3. In the category of integral monoids, the square A below is cartesian and the
square B below is cocartesian.

Q - Qgp Q
id - Q

A B

Pe

θe

6

- Pgp

θgp

6

P

θ

6

θ̃ - Pθ

θe

6

4. If Q is fine and Pgp is finitely generated, then Pθ is fine.

Proof Since P ⊆ Pθ ⊆ Pgp, it follows that θ̃gp is an isomorphism, and the
remaining statements in (1) are immediate from the definitions. The existence
of the homomorphism ρ in the diagram in (2) is clear from the construction. If
θ′ is exact, then θ̃′ is an isomorphism, and we set ψ := θ̃′−1 ◦ ρ. Then ψ ◦ θ̃ = α

and θ̃′ ◦ ψ = ρ. The first of these equalities determines ψ because θ̃ is an
epimorphism, and the second implies that θ′ ◦ ψ = β ◦ θe.

The square A in (3) is cartesian by construction. The fact that B is cocarte-
sian follows formally from the fact that θ̃ is an epimorphism. Namely, suppose
that φ : Q→ R and ψ : Pθ → R are homomorphisms such that φ◦θ = ψ◦ θ̃. We
claim that there is unique homomorphism φ′ : Q→ R such that φ′ ◦ id = φ and
φ′ ◦ θe = ψ. Evidently the only possibility is to take φ′ to be φ, and the equality
φ ◦ θe = ψ follows from the fact that θ̃ is an epimorphism.

If Pgp is finitely generated and Q is fine, then Corollary 2.1.21 implies that
Pθ is also fine. �

The statements (2) and (3) together say that the homomorphism θ̃ : P → Pθ

has the following universal property: the pushout of P → Q along θ̃ is exact,
and any homomorphism P→ P′ with this property factors uniquely through θ̃.

The next result shows the compatibility of exactification and sharpening.
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Proposition 4.2.18. If θ : P→ Q is a homomorphism of integral monoids, the

natural map Pθ → P
θ

is an isomorphism and identifies θe with θ
e
.

Proof The “natural map” in the statement comes about as follows. By
the functoriality of the exactification construction, there is a natural homo-

morphism a : Pθ → P
θ
. The target monoid is not necessarily sharp, but maps

to Q. Thus there is a commutative diagram

Pθ a - P
θ

Pθ

πPθ

?
a - P

θ

π
P
θ

?

θ
e

- Q.

θ
e

-

The composed arrow along the bottom is θe, and our claim is that a is an
isomorphism. Note that it is exact because θe is exact and, since Pθ is sharp, it
follows that a is injective. Since Q→ Q is exact, we have

Pθ := Pgp ×Qgp Q � Pgp ×Qgp Qgp ×Q
gp Q � Pgp ×Q

gp Q,

while P
θ

:= P
gp
×Q

gp Q. This shows that the map a is surjective, hence an
isomorphism. �

The construction of exactifications has an interesting form in the case of
the diagonal morphism. Again let θ : P → Q be a homomorphism of integral
monoids, and form the integral pushout Q ⊕P Q. The diagonal morphism of
monoid schemes ∆ : AQ → AQ ×AP

AQ corresponds to the summation homo-
morphism

σ : Q ⊕P Q→ Q : [(q1, q2)] 7→ q1 + q2.

Recall from Remark 3.3.6 that the action of A∗Q/P on AQ induces a morphism
AQ ×A∗Q/P → AQ ×AP

AQ corresponding to the homomorphism of monoids

φ : Q ⊕P Q→ Q ⊕ Qgp/Pgp : [(q1, q2)] 7→ (q1 + q2, [q2]), (4.2.1)

which induces an isomorphism of group envelopes. This homomorphism fits
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into a commutative diagram:

Q ⊕P Q
φ- Q ⊕ Qgp/Pgp

(Q ⊕P Q)σ

σ̃

? σe
-

�

-

Q.

(idQ, 0)

?

(4.2.2)

Since φgp is an isomorphism and the square commutes, it follows from the
constructions that φgp induces an isomorphism (Q ⊕P Q)σ → Q ⊕ Qgp/Pgp.
This argument leads to the following statement.

Proposition 4.2.19. Let θ : P → Q be a homomorphism of integral monoids,
let σ : Q ⊕P Q→ Q be the homomorphism [(q1, q2)] 7→ q1 + q2, and let

σ : Q ⊕P Q
σ̃- (Q ⊕P Q)σ

σe
- Q

be its universal exactification as described in Proposition 4.2.17. Diagram
(4.2.2) identifies this construction with the homomorphisms

σ : Q ⊕P Q
φ- Q ⊕ Qgp/Pgp (id,0)- Q �

4.3 Small, Kummer, and vertical homomorphisms

The following terminology originated in the literature of log geometry.

Definition 4.3.1. A homomorphism of integral monoids θ : P→ Q is:

1. Q-surjective if for every q ∈ Q, there exist n ∈ Z+ and p ∈ P such that
nq = θ(p),

2. Kummer if it is injective and Q-surjective,
3. small if θgp is Q-surjective, i.e., if the cokernel of θgp is a torsion group,
4. vertical if Cok(θ) (computed in the category of integral monoids) is dull.

Remark 4.3.2. If θ : P → Q is a homomorphism of integral monoids, one
often writes Q/P for Cok(θ), which we recall is just the image of Q in Cok(θgp).
Since the faces of Q are exact submonoids of Q, the homomorphism Q→ Q/P
induces a bijection between the faces of Q/P and those faces of Q containing
the image of θ. Thus θ is vertical if and only if its image is not contained in any
proper face of Q. Equivalently, θ is vertical if and only if the generic point of
Spec(Q) is the only point of Spec(Q) lying over the generic point of Spec(P).
For example, the diagonal homomorphism N→ N⊕N is vertical, whereas the
embedding into either of the coordinate submonoids is not. See Figure 4.3.1.

A small homomorphism need not be Q-surjective: for example, the inclusion
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Figure 4.3.1 Vertical and non-vertical homomorphisms

of the submonoid P of Q := N ⊕ N generated by (1, 0) and (1, 1) is small but
not Q-surjective.

We begin with some straightforward “sorites” about these classes of homo-
morphisms.

Proposition 4.3.3. Let P be one of the following classes of homomorphisms
of integral monoids: Q-surjective, small, vertical.

1. Every Q-surjective homomorphism is small, and every small homo-
morphism is vertical. If F is a face of P, the localization homomorphism
P→ PF is small and vertical.

2. Let θ : P → Q and φ : Q → R be homomorphisms of integral monoids. If
θ and φ belong to P, then φ ◦ θ belongs to P. If φ ◦ θ belongs to P, then φ
belongs to P, and the same is true of θ if P is “ Q-surjective” or “small” and
φ is injective.

3. The natural homomorphism P → Psat belongs to P, and a homomorphism
θ : P→ Q belongs to P if and only if θsat belongs to P.

4. The natural homomorphism P → P belongs to P. If θ : P → Q belongs to
P, then θ belongs to P, and the converse holds if P is “vertical.”

5. The pushout of a homomorphism in P, formed in the category of integral
monoids or in the category of saturated monoids, again belongs to P.

6. If θ : P → Q belongs to P and G is a face of Q, then the induced homo-
morphism Pθ−1(G) → QG belongs to P.
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Proof A Q-surjective homomorphism is obviously small. If θ is small, then
the cokernel of θgp is a torsion group, and the submonoid generated by any
element is finite and integral, hence a group. Thus Q/P is a group and θ is ver-
tical. If F is a face of P, the homomorphism Pgp → (PF)gp is an isomorphism,
so P→ PF is small, hence also vertical.

Suppose that θ and φ are Q-surjective. Then if r ∈ R, there exist n ∈ Z+ and
q ∈ Q such that φ(q) = nr, and then there exist m ∈ Z+ and p ∈ P such that
θ(p) = mq. Then φ(θ(p)) = mnr, so φ ◦ θ is Q-surjective. Applying this result
to θgp and φgp, we see that φ ◦ θ is small if θ and φ are small. If φ ◦ θ is Q-
surjective and r ∈ R, then there exist n ∈ Z+ and p ∈ P with θ(φ(p)) = nr, and
hence θ is also Q-surjective, and we conclude the analogous result for small
morphisms. If φ is injective and φ ◦ θ is Q-surjective then, for any q ∈ Q, there
exist m ∈ Z+ and p ∈ P such that φ(θ(p)) = mφ(q), hence θ(p) = mq, so θ is
also Q-surjective, and the corresponding result for small morphisms follows.
If θ and φ are vertical, then the face of Q generated by θ(P) is all of Q and the
face of R generated by Q is all of R. If G is a face of R containing φ ◦ θ(P),
then φ−1(G) is a face of Q containing θ(P), hence this face is all of Q and, since
〈φ(Q)〉 = R, in fact G = R, so φ ◦ θ is vertical. Conversely, if 〈φ ◦ θ(P)〉 = R, it
is clear that 〈φ(Q)〉 = R, so φ is vertical.

It is obvious from the definitions that the natural map ηP : P → Psat is Q-
surjective, hence small and vertical. If θ belongs to P, then by (2) so does
ηQ ◦ θ = θsat ◦ ηP, and by (2) it follows that θsat belongs to P. If θsat is Q-
surjective (resp. small), we can also conclude from (2) that θ has the same
property, because ηQ is injective. It is clear that the same conclusion holds for
for the class of vertical homomorphisms, since the faces of a monoid and of its
saturation correspond bijectively.

It is also obvious that the natural map πP : P → P belongs to P, and it
follows from (2) that θ belongs to P if θ does. If P is “vertical,” the converse
also holds, because the faces of P and of P correspond bijectively.

Suppose that θ′ : P′ → Q′ is the pushout of a homomorphism θ : P → Q
along φ : P → P′ in the category of integral monoids. Any element q′ of Q
can be written as a sum q′ = θ′(p′) + φ′(q), with p′ ∈ P′ and q ∈ Q. If θ is
Q-surjective, there exist m > 0 and p ∈ P such that θ(p) = mq, and then

mq′ = θ′(mp′) + φ′(θ(p)) = θ′(mp′ + φ(p)),

so θ′ is Q-surjective. As we saw in (2), it follows that θ′sat is also Q-surjective,
so the same conclusion holds for pushouts constructed in the category of sat-
urated monoids. If θ is vertical and G′ is a face of Q′ containing θ′(P′), then
θ(P) ⊆ φ′−1(G′), and since θ is vertical, it follows that φ′−1(G′) = Q. Thus
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G′ contains φ′(Q) and θ′(P) and hence is all of Q′, so θ′ is again vertical. It
follows that θ′sat is also vertical.

Suppose that θ : P → Q belongs to P and that G is a face of Q. Let F :=
θ−1(G); since θF : PF → QF is the pushout of θ along λF , it belongs to P. If P is
the class of small or vertical homomorphisms, the localization homomorphism
QF → QG also belongs to P, and hence so does the homomorphism PF → QG.
If P is the class of Q-surjective homomorphisms, then for every g ∈ G, there
exist n > 0 and f ∈ F with θ( f ) = ng, and it follows that G is the smallest face
of Q containing θ(F). Then the natural map QF → QG is an isomorphism, and
it follows that PF → QG is Q-surjective. �

Proposition 4.3.4. In the category of integral (resp. saturated) monoids, the
following statements hold.

1. Let θ : P → Q and φ : P → Q be homomorphisms. If θ and φ are Kummer,
then φ ◦ θ is Kummer. If φ ◦ θ is Kummer, and φ is injective, then θ and φ
are Kummer.

2. The natural homomorphism P → Psat is Kummer. A homomorphism θ is
Kummer if and only if θsat is Kummer.

3. The pushout of a Kummer homomorphism θ : P→ Q is Kummer. If G is a
face of Q, the induced map Pθ−1(G) → QG is Kummer.

Proof If θ and φ are Kummer, then φ ◦ θ is Q-surjective by (2) of Proposi-
tion 4.3.3, and is injective because each of θ and φ is injective. Thus φ ◦ θ is
Kummer. If φ ◦ θ is Kummer, then θ is injective. If also φ is injective then φ
and θ are also Q-surjective by Proposition 4.3.3; hence both are Kummer.

It is clear from the definitions that ηP : P→ Psat is Kummer. If θ : P→ Q is
a homomorphism, then ηQ ◦ θ = θsat ◦ ηP and ηQ and ηP are Kummer. If θ is
Kummer, it is injective, hence θsat is also injective and it follows that it is also
Kummer. Conversely, if θsat is Kummer, then the same is true of θ, because
ηQ ◦ θ is Kummer and ηQ is injective.

Since the pushout of an injective (resp. Q-surjective) homomorphism is in-
jective (resp. Q-surjective), the pushout of a Kummer homomorphism is Kum-
mer. If θ is Kummer and G is a face of Q, then, as we saw in Proposition 4.3.3,
the homomorphism Pθ−1(G) → QG is Q-surjective and, since it is injective, it is
Kummer. �

The next result shows that, in the category of saturated monoids, a homo-
morphism is Kummer if and only if it is injective, exact, and small.

Proposition 4.3.5. Let θ : P→ Q be a homomorphism of integral monoids.

1. If θ is exact and small, it is Q-surjective.
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2. If P is saturated, if θ is Q-surjective, and if Ker(θ) is torsion, then θ is exact,
locally exact, and small.

3. If P is saturated and θ is Kummer, then θ is exact, locally exact, and small.

4. If θ is exact, sharp, and small, it is Kummer.

Proof Suppose that θ is exact and small. If q ∈ Q, then since θ is small there
exist x ∈ Pgp and n ∈ Z+ such that θgp(x) = nq belongs to Q. Since θ is
exact, it follows that x ∈ P, so θ is Q-surjective. This proves statement (1).
Suppose that P is saturated and that θ is Q-surjective, and let x be an element
of Pgp with θ(x) ∈ Q. Then there exist p ∈ P and n ∈ Z+ with θ(p) = nθ(x).
If Ker(θ) is torsion (and in particular if θ is Kummer), we can conclude that
mp = mnx for some m > 0. Since P is saturated it follows that x ∈ P and hence
that θ is exact, and it is obviously small. If G is any face of Q, statement (6)
of Proposition 4.3.3 shows that the induced homomorphism Pθ−1(G) → QG is
again Q-surjective, and it follows that it too is exact. Thus θ is locally exact.
Statements (2) and (3) follow. If θ is exact and small it is Q-surjective, and
it is injective if it is exact and sharp, by (5) of Proposition 4.2.1. This proves
statement (4). �

The next proposition shows that Q-surjective homomorphisms are analo-
gous to integral homomorphisms in the theory of commutative rings.

Proposition 4.3.6. Let θ : P → Q be a homomorphism of integral monoids
and consider the following conditions.

1. The action of P on Q deduced from θ makes Q into a finitely generated
P-set.

2. θ is Q-surjective.

Condition (1) implies (2), and the converse holds if Q is fine.

Proof Suppose that (1) holds and that T is a finite set of generators for Q as
a P-set. For each q ∈ Q, there exist t1 ∈ T and p1 ∈ P such that q = θ(p1) + t1.
Then there exist t2 ∈ T and p2 ∈ P such that 2t1 = θ(p2) + t2. Continuing, we
find by induction sequences (tn) in T and (pn) in P such that 2tn = θ(pn+1)+tn+1

for n ≥ 1. Then for every k > 0,

2ktn = θ(pn,k) + tn+k, where pn,k := pn+k + 2pn+k−1 + · · · + 2k−1 pn+1.

Since T is finite, there exist k and n in Z+ such that tn = tn+k. Then

(2k − 1)tn = θ(pn,k) + tn+k − tn = θ(pn,k),
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and

tn + θ(p0,n) = tn + θ(pn) + 2θ(pn−1) + · · · + 2n−1θ(p1)

= 2tn−1 + 2θ(pn−1) + · · · + 2n−1θ(p1)

· · ·

= 2n−1t1 + 2n−1θ(p1)

= 2n−1q.

Then

(2k − 1)2n−1q = (2k − 1)tn + (2k − 1)θ(p0,n) = θ(pn,k + (2k − 1)p0,n).

This proves that θ is Q-surjective. Conversely suppose that θ is Q-surjective
and that S is a finite set of generators for Q as a monoid. For each s ∈ S there
exist ds ∈ Z+ and ps ∈ P such that dss = θ(ps). Then the set T of elements of
Q that can be written in the form

∑
{rss : 0 ≤ rs < ds} is finite and generates

Q as a P-set. Indeed, any q ∈ Q can be written as a sum q =
∑
{nss : s ∈ S},

where each ns ∈ N, and then each ns can be written as ns = msds + rs, where
each ms, rs ∈ N and rs < ds. Then

q =
∑

s

(msds + rs)s =
∑

s

(θ(ms ps) + rss) = θ

∑
s

ms ps

+
∑

s

rss ∈ P + T. �

The following result uses duality to relate the notions of exactness and Q-
surjectivity.

Proposition 4.3.7. Let θ : P → Q be a homomorphism of integral monoids
and let H(θ) : H(Q)→ H(P) be its dual.

1. If P and Q are fine and θ is exact, then H(θ) is Q-surjective. The converse
holds if P is saturated.

2. If θ is Q-surjective, then H(θ) is exact, and the converse holds if P and Q
are fine and Q is sharp.

Proof Suppose that P and Q are fine and that θ is exact. Then θ is also exact,
and since H(θ) = H(θ) we can and shall assume that P and Q are sharp. Since
θ is exact and sharp, it is injective, by (5) of Proposition 4.2.1. We claim that
the induced homomorphism of Q-cones

CQ(H(θ)) : CQ(H(Q))→ CQ(H(P))

is surjective. Note first that CQ(θ) : CQ(P) → CQ(Q) is exact. Indeed, if x ∈
CQ(Q) and y ∈ CQ(P)gp, with CQ(θ)(y) = x, then there exist m > 0 and q ∈ Q
with mx = 1 ⊗ q and z ∈ Pgp with my = 1 ⊗ z. Then θ(y) and q have the same
image in CQ(Q)gp, so there exists some n > 0 such that nθ(y) = nq in Qgp.
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Since θ is exact, it follows that p := ny belongs to P. Then CQ(θ)(n−1 ⊗ p) = x,
proving the desired exactness of CQ(θ). By (4) of Proposition 2.3.6, we may
identify CQ(H(P)) with

P∨ := Hom(P,Q≥) = Hom(CQ(P),Q≥) ⊆ Hom(Pgp,Q),

and similarly for CQ(H(Q)). Let C denote the image of θ∨ : Q∨ → P∨. Evi-
dently C ⊆ P∨; by statement (2) of Theorem 2.3.12, to prove equality it will
suffice to prove that C∨ ⊆ (P∨)∨ = CQ(P) as subsets of Q⊗ Pgp. Thus suppose
that v ∈ C∨ ⊆ Q ⊗ Pgp. For every w ∈ Q∨,

〈CQ(θ)(v),w〉 = 〈v,w ◦CQ(θ)〉 = 〈v, θ∨(w)〉 ≥ 0.

Thus CQ(θ)(v) ∈ (Q∨)∨ = CQ(Q) and, since CQ(θ) is exact, it follows that
v ∈ CQ(P), as claimed.

Suppose conversely that H(θ) is Q-surjective and that P is saturated. Let x
be an element of Pgp with θ(x) ∈ Q. For each h ∈ H(P), there exist n ∈ Z+

and h′ ∈ H(Q) such that nh = h′ ◦ θ, since H(θ) is Q-surjective. Then nh(x) =

h′(θ(x)) ≥ 0, hence h(x) ≥ 0 and, since this is true for every h, Corollary 2.2.2
implies that x ∈ Psat = P. Thus θ is exact, completing the proof of statement
(1).

Suppose that θ is Q-surjective and that x ∈ H(Q)gp � Hom(Q,Z), Then
x ◦ θ ∈ H(P). For every q ∈ Q, there exist n ∈ Z+ and p ∈ P with nq = θ(p),
hence nx(q) = x(θ(p)) ≥ 0, and so x(q) ≥ 0. This shows that x ∈ H(Q), so
H(θ) is exact. Suppose conversely that P and Q are fine, that Q is sharp, and
that H(θ) is exact. Since θ is Q-surjective if θsat is and since H(θsat) = H(θ) is
exact, we may assume without loss of generality that P and Q are saturated.
We have a commutative diagram:

P
θ - Q

HH(P)

eP

? HH(θ)- HH(Q)

eQ

?

Since H(θ) is exact, it follows from (1) that HH(θ) is Q-surjective. Theo-
rem 2.2.3 implies that eQ is an isomorphism and that eP is surjective. It follows
that θ is also Q-surjective �

The following consequence is evident if K = Q, but perhaps less so in the
general case.

Corollary 4.3.8. Let θ : P → Q be a homomorphism of toric monoids and let
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K be an Archimedean field. Then θ is exact if and only if the induced morphism
of K-cones CK(θ) : CK(P)→ CK(Q) is exact

Proof Suppose that CK(θ) is exact and that x ∈ Pgp and θgp(x) ∈ Q. Then
CK(θ)gp(x) ∈ CK(Q) and, since CK(θ) is exact, the image of x in K ⊗ Pgp lies
in CK(P). By (4) of Proposition 2.3.6, it therefore lies in Psat, hence in P, since
we are assuming that P is toric. Suppose conversely that θ is exact. As we have
already observed in the proof of Proposition 4.3.5, the exactness of CQ(θ) is
immediate. For the general case, we use Proposition 4.3.5 to note that the map
H(θ) : H(Q) → H(P) is Q-surjective. Now if v ∈ K ⊗ Pgp and CK(θ)(v) ∈
CK(Q), it follows that h(v) ≥ 0 for every h ∈ H(P). By (4) of Proposition 2.3.6,
H(P) generates P∨, so in fact v ∈ (P∨)∨ = CK(P) by Theorem 2.3.12. �

The following proposition relates the Q-surjectivity of a homomorphism θ

to the topological properties of Spec(θ).

Proposition 4.3.9. Let θ : P → Q be a homomorphism of integral monoids.
Consider the following conditions.

1. The homomorphism θ is Q-surjective.
2. The mapping Spec(θ) is injective (as a map of sets).
3. If G and G′ are faces of Q and θ−1(G) ⊆ θ−1(G′), then G ⊆ G′.
4. Every face G of Q is generated as a face by θ(θ−1(G)).
5. The topology of Spec(Q) is the weak topology induced from the topology

of Spec(P) and the map Spec(θ).
6. The only θ-critical face (4.2.10) of Q is Q∗.

Then condition (1) implies conditions (2) through (5), which are equivalent,
and which imply condition (6). All six conditions are equivalent if Q is fine
and sharp.

Proof If θ is Q-surjective, then the corresponding homomorphism of cones
CQ(θ) is surjective. It follows immediately that Spec CQ(θ) is injective, and,
since the spectrum of a monoid identifies with that of the cone it spans, we can
conclude that Spec(θ) is also injective. This shows that (1) implies (2). Suppose
that (2) holds and that G and G′ are faces of Q with θ−1(G) ⊆ θ−1(G′). Then

θ−1(G) = θ−1(G) ∩ θ−1(G′) = θ−1(G ∩G′).

Since Spec(θ) is injective, it follows that G = G ∩ G′ and hence that G ⊆ G′.
Thus (2) implies (3). Suppose that (3) holds, let G be a face of Q, and let G′

be the face of Q generated by θ(θ−1(G)). Then G′ ⊆ G and θ−1(G′) = θ−1(G).
Then by (3), G′ = G, proving (4). Suppose that (4) holds. If g ∈ Q, let G := 〈g〉
and F := θ−1(G). Since θ(F) generates G, there exist f in F and q in Q such
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that θ( f ) = g + q and, since θ( f ) belongs to 〈g〉, there exist n ∈ N and q′ ∈ Q
such that gn = θ( f ) + q′. Then a prime q of Q fails to contain g if and only if
it fails to contain θ( f ). This implies that Spec(θ)−1(D( f )) = D(g), and hence
that the topology of Spec(Q) is induced from the topology of Spec(P); so (4)
implies (5). If (5) holds, let G and G′ be faces of Q with θ−1(G) ⊆ θ−1(G′).
Then θ−1(p′) ⊆ θ−1(p), where p and p′ are the respective complimentary faces.
If we write f : X → Y for Spec(θ) : Spec(Q) → Spec(P), and x and x′ for
the points of X corresponding to p and p′, this means that f (x) belongs to the
closure of f (x′), and hence by (5) that x belongs to the closure of x′. But then
p′ ⊆ p and G ⊆ G′. Thus (5) implies (3), and it is clear that (3) implies (2) and
(6).

It remains only to prove that if Q is fine and sharp, then condition (6) implies
condition (1). Let G be a one-dimensional face of Q. Then (6) implies that
θ−1(G) , θ−1(Q∗), so there exists some p ∈ P such that θ(p) is a nonzero
element of G. Then the image of θ(p) in the cone CQ(Q) generates the face
CQ(G) of CQ(Q), which is an arbitrary edge of CQ(Q). By Proposition 2.3.4,
CQ(Q) is generated by the generators of its edges, so CQ(θ) is surjective. �

Corollary 4.3.10. Let θ : P → Q be a homomorphism of fine sharp and satu-
rated monoids. Then the following are equivalent.

1. θ is exact and small.
2. θ is Kummer.
3. Spec(θ) is a homeomorphism.
4. θ is injective and local and {0} is its only θ-critical face.

Proof If θ is exact it is injective, by (5) of Proposition 4.2.1, and if it is also
small it is Q-surjective by Proposition 4.3.5, and hence Kummer. Thus (1) im-
plies (2), and the converse was already proved in Proposition 4.3.5. If (1) and
(2) hold, θ is exact, so Proposition 4.2.2 implies that Spec(θ) is surjective, and
then Proposition 4.3.9 implies that Spec(θ) is a a homeomorphism. Conversely
if (3) holds, it follows from Proposition 4.3.9 again that θ is Q-surjective. Since
Spec(θ) is surjective, Proposition 4.2.2 implies that θ is also exact. This com-
pletes the proof of the equivalence of the first three conditions. If these hold,
then it is clear from (3) that {0} is the only θ-critical face of Q, from (2) that θ
is injective, and from (1) that θ is local, proving (4). Condition (4) here is the
same as condition (6) of Proposition 4.3.9, so that proposition implies that θ is
Q-surjective. Since θ is injective by assumption, it is Kummer. �

Corollary 4.3.11. Let θ : P → Q be a homomorphism of integral monoids. If
θ is exact and small, then θ is locally exact and Spec(θ) is a homeomorphism.
In particular these conclusions hold if P is saturated and θ is Kummer,
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Proof If θ is exact, then Spec(θ) is surjective by Proposition 4.2.2. If θ is also
small, then it is Q-surjective by (1) of Proposition 4.3.5, and it follows from (5)
of Proposition 4.3.9 that Spec(θ) is injective and that the topology of Spec(Q)
is induced from that of Spec(P). Thus Spec(θ) is a homeomorphism, and the
same is true of Spec(θ). Furthermore, if G is any face of Q and F := θ−1(G),
then (4) of Proposition 4.3.9 implies that G is generated by F, and hence the
homomorphism PF → QG can be identified with the localization θF of θ by
F. Since θ is exact, θF is also exact and, since G was arbitrary, θ is locally
exact. If P is saturated and θ is Kummer, then it is Q-surjective and exact by
Proposition 4.3.5, so the same conclusions hold. �

Corollary 4.3.12. Let θ : P → Q be a homomorphism of fine monoids. Sup-
pose that θ is small. Then, with the notation of Proposition 4.2.17, the homo-
morphisms θe : Pθ → Q, θ

e
: P

θ
→ Q, and θe : Pθ → Q are locally exact.

Furthermore, θe is Kummer.

Proof Since θ is small, so is θ
e

and, the latter is also exact by construction.

Then θ
e

(which by Proposition 4.2.18 can be identified with θe) is also exact
and small, so Corollary 4.3.11 implies that θ

e
is locally exact. It follows that θe

and θe are also locally exact. Since θe is exact, small, and sharp it is Kummer
by (4) of Proposition 4.3.5. �

Proposition 4.3.13. Let θ : P → Q be a homomorphism of fine monoids. As-
sume that θ is exact and Q-surjective and that Kθ := P+ + Q is a radical ideal
of Q. Then θ is strict.

Proof Replacing θ by θ, we may assume without loss of generality that P
and Q are sharp. Then θ is exact, local, and injective. Let us identify P with
its image in Q. We claim that Q \ P is empty. Since θ is exact, Q \ P is a
sub-P-set of Q by (5) of Proposition 2.1.16. Since θ is Kummer, it follows
from Proposition 4.3.6 that Q is finitely generated as a P-set, and hence by
Proposition 2.1.5 that it is noetherian as a P-set. The same proposition tells
us that the P-set Q \ P is also noetherian and hence, if nonempty, contains a
minimal element q0. Since θ is Q-surjective, there is some positive integer n
such that nq0 ∈ P, and since q0 , 0 and Q is torsion free, nq0 ∈ P+ ⊆ Kθ.
Since Kθ is a radical ideal, q0 ∈ Kθ = P+ + Q, so we can write q0 = p + q for
some p ∈ P+ and q ∈ Q. Necessarily q ∈ Q \ P and, by the minimality of q0,
we have q = p′ + q0 for some p′ ∈ P. Then q0 = p + p′ + q0, hence p + p′ = 0,
contradicting the fact that p ∈ P+. �
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4.4 Toric Frobenius and isogenies

If Q is a (commutative) monoid and n is a natural number, the map

nQ : Q→ Q : q 7→ nq

is a monoid homomorphism. The corresponding morphism of monoid schemes
AnQ

: AQ → AQ is the nth power mapping. If R is a ring of characteristic
p, the homomorphism of monoid algebras R[Q] → R[Q] induced by pQ is
the identity on elements of R and takes a generator eq to epq = (eq)p; this is
the homomorphism corresponding to the relative Frobenius morphism of the
R-scheme AQ. (Since AQ is defined over the prime field, we can identify AQ
with its base change with respect to the absolute Frobenius of Spec R.) For this
reason, the morphism nQ is sometimes called the n-Frobenius endomorphism
of Q.

Fix an integral monoid Q and a natural number n, and let

Q(n) := {x ∈ Qgp : nx ∈ Q}.

The exacification of nQ, in the sense of Proposition 4.2.17, defines a factoriza-
tion of nQ:

Q
φQ,n- Q(n)

Q.

ψQ,n

?

nQ
-

If Qgp is n-torsion free, ψQ,n is injective and identifies Q(n) with Q ∩ nQgp. If
Q is toric, then φQ,n is an isomorphism and ψQ,n can be identified with nQ.

Of course, the homomorphisms nQ are compatible with all monoid homo-
morphisms, fitting into the obvious commutative squares. We relativize these
Frobenius homomorphisms in the following way.

Definition 4.4.1. Let θ : P → Q be a homomorphism of integral monoids, let
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n be a positive integer, and consider the following commutative diagram:

Q(n)
θ

Q
nθ -

φθ,n

-

Qθ,n
hθ,n -

ñθ

-

Q

ψθ,n

?

P

θ

6

nP - P

θn

6

θ

-

.

Here the square is cocartesian in the category of integral monoids and hθ,n is
the unique homomorphism such that hθ,n ◦ nθ = nQ and hθ,n ◦ θn = θ. The
homomorphism hθ,n is called the relative n-Frobenius homomorphism of θ.
The homomorphism ψθ,n is the exactification of the homomorphism hθn in the
sense of Proposition 4.2.17 and is called the exact relative n-Frobenius homo-
morphism of θ.

Recall from Proposition 4.2.17 that by definition

Q(n)
θ := {x ∈ Qgp

θ,n : hθ,n(x) ∈ Q}

and that ñθ induces an isomorphism

Qgp
θ,n � (Q(n)

θ )gp.

We shall be especially interested in the subdiagram (the exact relative Frobe-
nius diagram)

Q
φθ,n- Q(n)

θ

ψθ,n - Q

P

θ

6

nP - P

θ(n)
6

θ

-

.

(4.4.1)

Suppose that P and Q are saturated and let Qsat
θ,n denote the saturation of the

integral monoid Qθ,n. Then the homomorphism hθ,n factors uniquely through
a homomorphism h′θ,n : Qsat

θ,n → Q. Let us remark that this homomorphism
is necessarily exact, so that Q(n)

θ ⊆ Qsat
θ,n. In fact, the following more precise

statement holds.

Proposition 4.4.2. Let θ : P → Q be a homomorphism of integral monoids.
Then Q(n)

θ ⊆ {z ∈ Qgp
θ,n : nz ∈ Qθ,n} ⊆ Qsat

θ,n, with equality if Q is saturated.
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Proof To verify this claim, write an element z of Q(n)
θ as z = nθ(x) + θn(y),

where x ∈ Qgp and y ∈ Pgp. Then hθ,n(z) = nx + θ(y) is an element q of Q, and

nz = nθ(nx) + θn(ny) = nθ(q − θ(y)) + θn(ny) = nθ(q).

Thus nz ∈ Qθ,n, as claimed. It is obvious that {z ∈ Qgp
θ,n : nz ∈ Qθ,n} ⊆ Qsat

θ,n. If Q
is saturated, Lemma 2.1.19 implies that Q(n)

θ is already saturated, since ψθ,n is
exact by construction. Thus equality holds in this case. �

Proposition 4.4.3. Let θ : P → Q be an injective homomorphism of integral
monoids, and consider the diagram in Definition 4.4.1. If A is an abelian group,
we denote by Tn(A) the subgroup of A killed by n.

1. The group Ker(hgp
θ,n) is killed by n, and the natural maps

Ker(hgp
θ,n)→ Tn(Cok(θgp

n ))

Cok(θgp)→ Cok(θgp
n )

are isomorphisms.
2. The sequence

0→ Tn(Pgp)→ Tn(Qgp
θ,n)→ Tn(Cok(θgp

n ))→ 0

is exact.
3. The homomorphism ñgp

θ : Qgp
θ,n → Q(n)

θ

gp
is an isomorphism, and the image

of Q(n)
θ in Q is Q ∩ (nQgp + Pgp).

4. The homomorphism ψθ,n is Kummer, the group Ker(ψgp
θ,n) is contained in

Q(n)
θ

∗
, and ψθ,n induces an isomorphism

Q(n)
θ /Ker(ψgp

θ,n)→ Q ∩
(
nQgp + Pgp) .

5. The homomorphism ψθ,n induces a bijection between the set of faces of Q
and the set of faces of Q(n)

θ . For every face F of Q containing P,

(nFgp + Pgp) ∩ F = (nFgp + Pgp) ∩ Q,

and if Q is saturated,1

(nFgp + Pgp) ∩ F = (nQgp + Pgp) ∩ F.

Proof The natural map Cok(θgp) → Cok(θgp
n ) is an isomorphism because

the square in the defining diagram is cocartesian. Suppose x̃ ∈ Ker(hgp
θ,n), and

write x̃ = nθ(x) + θn(y), with x ∈ Qgp and y ∈ Pgp. Then nx + θ(y) = 0,
and so nx̃ = nθ(nx) + θn(ny) = nθ(nx + θ(y)) = 0. Thus x̃ is killed by n,

1 In fact it suffices that Q/Fgp be n-torsion free for every face F. For example, this is the case if
Q is n-saturated (see Definition 4.8.1).
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and its image in Cok(θgp
n ) identifies with the image of x in Cok(θgp) and is

independent of the choices of x and y. If this image is zero, then there exists
some z ∈ Pgp such that θ(z) = x, and we have θ(nz + y) = 0. Since θ is
injective, −nz = y, and then x̃ = nθθ(z) + θn(−nz) = 0. Finally, if x ∈ Qgp is
an element whose image in Qgp/Pgp is killed by n, then there exists a y ∈ Pgp

such that nx = θ(y), in which case x̃ := nθ(x) − θn(y) belongs to Ker(hθ,n) and
maps to the image of x in Cok(θgp). This completes the proof of statement (1).
The exactness of the sequence in (2) is clear, except for the surjectivity of the
map Tn(Qgp

θn
) → Tn(Cok(θgp

n )), which follows from the first part of statement
(1). The homomorphism ñgp

θ is an isomorphism by construction, and the image
of hgp

θn,n
is nQgp + θ(Pg). Since ψθ,n is exact by construction, its image is the

intersection of Q with the image of ψgp
θ,n, proving (3). Since ψθ,n is exact and

small, ψθ,n is Kummer, by (4) of Proposition 4.3.5. If x̃ ∈ Ker(ψθ,n)gp, write x
as q̃2 − q̃1, with q̃i ∈ Q(n)

θ . Then q̃2 and q̃1 have the same image in Q and, since

ψθ,n is injective, they have the same image in Q
(n)
θ . It follows that x̃ ∈ Q(n)

θ

∗
.

Since ψθ,n is Kummer, it and the homomorphism ψθ,n induce bijections between
the faces of Q and the faces of Q(n)

θ , by Corollary 4.3.10. If F is a face of Q
containing P, the equality (nFgp +Pgp)∩F = (nFgp +Pgp)∩Q follows from the
fact that F is an exact submonoid of Q. If x ∈ Qgp, y ∈ Pgp, and f := nx+y ∈ F,
then nx ∈ Fgp and, if Q is saturated, Qgp/Fgp is torsion free, so x ∈ Fgp. It
follows that (nFgp + Pgp) ∩ F = (nQgp + Pgp) ∩ F. �

Corollary 4.4.4. Suppose that the hypotheses of Proposition 4.4.3 hold and
that Cok(θgp) is n-torsion free. Then ψθn factors:

ψθ,n : Q(n)
θ

�- (nQgp + Pgp) ∩ Q ⊂ - Q.

Assume in addition that for every face F of Q containing P, the group Qgp/Fgp

is n-torsion free. Then for every such face, F(n)
θ = ψ−1

θ,n(F) and is mapped iso-
morphically to (nFgp+Pgp)∩Q by ψθ,n. The isomorphism Cok(θgp)→ Cok(θgp

n )
takes Fgp/Pgp isomorphically to F(n)

θ

gp
/Pgp, and F(n)

θ is the face of Q(n)
θ gener-

ated by φθ,n(F).

Proof The first statement follows immediately from (1) and (4) of Proposi-
tion 4.4.3. If F is a face of Q containing P, then Fgp/Pgp is also n-torsion free,
and hence the map F(n)

θ → (nFgp + Pgp)∩F is again an isomorphism. By (5) of
Proposition 4.4.3, (nFgp + Pgp)∩F = (nQgp + Pgp)∩F, so F(n)

θ = ψ−1
θ,n(F). Fur-

thermore, (nFgp+Pgp)∩F = (nFgp+Pgp)∩Q, again by (5) of Proposition 4.4.3.
Statement (1) of this same proposition, applied to the homomorphism P→ F,
implies that the homomorphism Fgp/Pgp → F(n)

θ

gp
/Pgp is an isomorphism.

It is clear that the face F′ of Q(n)
θ generated by φθ,n(F) is contained in F(n)

θ .
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Moreover, F′ contains nP(P) and hence also P. Since Fgp maps surjectively to
F(n)
θ

gp
/Pgp, and since F′ contains P, it follows that F′gp = F(n)

θ

gp
and hence that

F′ = F(n)
θ , since both are exact submonoids of Q(n)

θ . �

Toric Frobenius homomorphisms are examples of the following more gen-
eral class of homomorphisms. In practice, the number n appearing in the defi-
nition below will be prime.

Definition 4.4.5. If n is a positive natural number, a homomorphism of com-
mutative monoids θ : P → Q is an n-isogeny if the following conditions are
verified:

1. For every q ∈ Q, there exist an r > 0 and a p ∈ P such that θ(p) = nrq.
2. For every pair p1, p2 of elements in P such that θ(p1) = θ(p2), there exists

an r > 0 such that nr p1 = nr p2.

Proposition 4.4.6. A homomorphism of integral monoids θ : P → Q is an n-
isogeny if for some r > 0 there exists a homomorphism θ′ : Q→ P fitting into
the following commutative diagram:

Q
nr

Q - Q

P

θ

6

nr
P - P.

θ

6
θ′

-

The converse is true if P and Q are fine. If P is saturated (or just n-saturated,
see Definition 4.8.1) and θ is an n-isogeny, then θ is exact.

Proof It is clear that the existence of the diagram implies that θ is an n-
isogeny. For the converse, suppose that that θ is an n-isogeny and that Q is
fine. Then Qgp is a finitely generated group, and the hypothesis implies that the
map θgp

S : Pgp
S → Qgp

S is an isomorphism, where the subscript S means localiza-
tion by the multiplicative set S of powers of n. Let φ ∈ Hom(Qgp

S , P
gp
S ) be the

inverse of θgp
S . Since Qgp is finitely presented, the map Hom(Qgp, Pgp)S →

Hom(Qgp
S , P

gp
S ) is an isomorphism, and hence there exist r > 0 and φ′ ∈

Hom(Qgp, Pgp) such that φ′S = nrφ. Then θgp
S ◦ φ

′
S = nr

Qgp
S

, and again since Q is

finitely generated, there is a k > 0 such that nkθ ◦ φ′ = nk+r
Qgp . Replacing φ′ by

nkφ′ and r by r + k, we have θgp ◦ φ′ = nr
Qgp . When P is also finitely generated,

the same argument applied to φ′ ◦ θgp allows us to assume that φ′ ◦ θgp = nr
P.

Now, for each of a finite set of generators qi of Q, there exist pi ∈ P and
ki ∈ N such that θ(pi) = nki qi. Without loss of generality, we may assume that
ki = k + r for some k. Then θ(pi) = θ(nkφ′(qi)) for every i, and hence there
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exists some j such that n j pi = n jφ′(qi) for every i. In particular, n jφ′(qi) ∈ P
for every i, and θ′ := n jφ′ defines a map Q→ P. Replacing r by r + j, we find
the desired commutative diagram. When P is saturated, nr

P is exact, and since
θ′ ◦ θ = nr

P, it follows that θ is exact. �

Proposition 4.4.7. Let θ : P→ Q be an n-isogeny of fine monoids and let P→
Pθ → Q be its exactification (see Proposition 4.2.17). Then if Q is saturated,
Pθ = Psat, as submonoids of Pgp.

Proof Since θe : Pθ → Q is exact and Q is saturated, Lemma 2.1.19 implies
that Pθ is also saturated, and hence Psat ⊆ Pθ. Conversely, if x ∈ Pθ, then
θgp(x) ∈ Q, and hence there exist r ∈ N and p ∈ P such that θ(p) = nrθgp(x).
Then nr x− p ∈ Ker(θ). Since θ is an n-isogeny, Ker(θgp) is n∞-torsion, so there
exists s ∈ N such that nr+sx = ns p. Thus x ∈ Psat as claimed. �

Proposition 4.4.8. The class of n-isogenies enjoys the following properties.

1. If θ : P → Q and φ : Q → R are homomorphisms of monoids and any two
of φ, θ, and φ ◦ θ are n-isogenies, so is the third.

2. If θ is an n-isogeny of integral monoids, then θsat is also an n-isogeny.
3. Let θ : P → Q be an n-isogeny of integral monoids and let φ : P → P′ be

a homomorphism of integral monoids. Then the pushout homomorphism
θ′ : P′ → Q′ in the category of integral monoids is an n-isogeny. If P′

is saturated, the homomorphisms P′ → Q′sat and Q′ → Q′sat are also n-
isogenies. In particular, the class of n-isogenies is closed under pushouts in
the category of integral monoids and in the category of saturated monoids.

4. A homomorphism θ of fine monoids is an n-isogeny for some n if and only
if it is Q-surjective and θgp ⊗ idQ is injective.

5. Every homomorphism which is an n-isogeny is local.
6. A homomorphism of integral monoids θ : P → Q is an n-isogeny if and

only if θ∗ and θ are n-isogenies.

Proof The proof of the first statement is straightforward and we omit it. Sup-
pose that θ : P → Q is an n-isogeny of integral monoids and x ∈ Qsat. Since
θ is an n-isogeny, so is θgp, and hence there exist r > 0 and y ∈ Pgp such that
θgp(y) = nr x. Since x ∈ Qsat, there exists m > 0 such that mx ∈ Q, and since
θ is an n-isogeny, there exist s > 0 and p ∈ P such that θ(p) = nsmx. Without
loss of generality we may assume that r = s. Then θgp(p) = θgp(my), and hence
there exists t > 0 such that nt p = ntmy. But then y ∈ Psat, and thus nr x is in the
image of θsat. Since (θsat)gp = θgp, its kernel is n∞-torsion, and hence θsat is an
n-isogeny.

Suppose that θ : P → Q is an n-isogeny and P′ → Q′ is its pushout along
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P → P′ in the category of integral monoids. Any q′ ∈ Q′ can be written as a
sum θ′(p′)+φ′(q) with p′ ∈ P′ and q ∈ Q. Choose r > 0 and p ∈ P with θ(p) =

nrq. Then nr(θ′(p′) +φ′(q)) = θ′(nr p′ +φ(p)). On the other hand, if p′1, p′2 ∈ P′

and θ′(p′1) = θ′(p′2), then, by the construction of pushouts in the category of
integral monoids, there exist p1, p2 ∈ P such that p′2 − p′1 = φ(p2) − φ(p1)
and θ(p2) = θ(p1). Since θ is an n-isogeny, it follows that there exists some
r > 0 such that nr p2 = nr p1, hence also nr p′2 = nr p′1. If P′ is saturated, the
homomorphism P′ → Psat is an isomorphism, hence an n-isogeny, and hence
P′ → Q′ → Q′sat is an n-isogeny. It follows that Q′ → Q′sat is also an n-
isogeny.

Suppose θ is Q-surjective and Q is finitely generated. For each qi in a finite
set of generators q1, . . . , qm for Q, choose ni > 0 and pi ∈ P such that θ(pi) =

niqi. Let n := n1n2 · · · nm. Then, for all q ∈ Q, there exists p ∈ P such that
θ(p) = nq. Suppose that P is finitely generated and that θgp ⊗ idQ is injective.
Then Ker(θgp) is a finite group, hence killed by some positive integer n′. Hence
if θ(p1) = θ(p2), it follows that n′p1 = n′p2. It follows that θ is an nn′-isogeny.

Suppose that θ : P → Q is an n-isogeny and p ∈ P with θ(p) ∈ Q∗. Then
there exists q′ ∈ Q such that q′ + θ(p) = 0, and hence there exist r > 0 and
p′ ∈ P with nrq′ = θ(p′). Then θ(p′ + nr p) = 0, so there exists some s > 0 with
ns p′ + nr+s p = 0. It follows that p is a unit, as required.

Suppose θ is an n-isogeny and q ∈ Q∗. Then there exist r > 0 and p ∈
P such that θ(p) = nrq. It follows that θ(p) ∈ Q∗ and hence that p ∈ P∗.
This proves that θ∗ satisfies condition (1) of Definition 4.4.5. Condition (2) is
obvious, so θ∗ is an n-isogeny. Suppose that p1 and p2 are two elements of P
and θ(p1) = θ(p2) in Q. Then there exists q ∈ Q∗ such that θ(p2) = q + θ(p1)
and, since θ is an n-isogeny, there exist r > 0 and p ∈ P such that nrq = θ(p).
Then p ∈ P∗, and θ(nr p2) = θ(p + nr p1). Hence there exists s > 0 such that
ns+r p2 = ns p + ns+r p1. It follows that ns+r p2 = ns+r p1 in P. Thus θ satisfies
condition (2) of Definition 4.4.5. Condition (1) is obvious, so θ is an n-isogeny.
Suppose on the other hand that θ∗ and θ are n-isogenies, and that q ∈ Q. Then
there exist r > 0 and p ∈ P such that θ(p) = nrq. Hence there exists v ∈ Q∗

such that nrq = v + θ(p), and then there exist s > 0 and u ∈ P∗ such that
nsv = θ(u). Then nr+sq = θ(u + ns p). If p1, p2 ∈ P with θ(p1) = θ(p2) then,
since θ is an n-isogeny, there exist r > 0 and p ∈ P∗ such that nr p2 = u + nr p1.
Since Q is integral, it follows that θ(u) = 0 and, since θ∗ is an n-isogeny, that
nsu = 0 for some s > 0. But then nr+s p2 = nr+s p1, and θ is an n-isogeny. �

Although n-isogenies are not necessarily exact, they are universally local, as
the following proposition shows.

Proposition 4.4.9. Let θ : P → Q and φ : P → P′ be homomorphisms of
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monoids, and let φ′ : Q → Q′ and θ′ : P′ → Q′ be the pushout maps, in the
category of integral monoids. If θ is an n-isogeny, then θ′ is also an n-isogeny,
and in particular it is local. If φ is local, then φ′ is also local. The kernel K of
the natural map P′∗ ⊕P∗ Q∗ → P′gp ⊕Pgp Qgp is n∞-torsion.

Proof The fact that θ′ is an n-isogeny and hence local follows from Proposi-
tion 4.4.8. Assume that φ is local and suppose that q ∈ Q and φ′(q) is a unit
of Q′. Then there exist q′ ∈ Q, p′ ∈ P′, such that φ′(q) + φ′(q′) + θ′(p′) = 0.
This implies that there is an x ∈ Pgp such that q + q′ = θ(x) and p′ = −φ(x).
Since θ is an n-isogeny, there exist r > 0 and p ∈ P such that nr(q + q′) = θ(p).
Then θ(p) = θ(nr x), and hence there exists s > 0 such that nr p = ns+r x. Then
φ(ns p) = −ns+r p′ ∈ P′, and hence φ(ns p) ∈ P′∗. Since φ is local, we can con-
clude that p ∈ P∗ and hence that ns+r(q + q′) ∈ Q∗. It follows that q + q′ is a
unit of Q, hence the same is true of q.

To prove the second statement, let θgp
S (resp. θ∗S) denote the localization of θgp

(resp. of θ∗) by S := {nr : r ≥ 0}. Since the formation of kernels and pushouts
commutes with localization, we can identify KS with the kernel of the map

P′∗S ⊕P∗S Q∗S → P′gp
S ⊕Pgp

S
Qgp

S .

Since θ is an n-isogeny, both θ∗S and θgp
S are isomorphisms, and the above map

identifies with the map P′∗S → P′gp
S , which is injective. Thus KS = 0, and hence

each element of K is killed by some power of n.
�

4.5 Flat and regular monoid actions

Flatness is a key and subtle condition in algebraic geometry, and in this section
we begin an investigation of its analog in monoidal geometry. In commutative
algebra, an R-module E is flat if M 7→ M ⊗R E is an exact functor on the
category of R-modules. If P is a monoid, we shall define the flatness of a P-set
S in terms of a suitable exactness property of the functor T 7→ T ⊗P S. To
prepare for this definition, let us recall the following terminology from [2, I,
2.7].

Definition 4.5.1. A category is said to be filtering if it satisfies the following
conditions:

F0. It is nonempty and connected. That is, there is at least one object and, given
any two objects a and b, there exists a finite sequence of morphisms con-
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necting a and b:
x1 x2 x3

· · ·

a
�

y1
�

-
�

b

-

or
x1 x2 x3

· · ·

a

-

y1

-
�

-

b.

�

F1. Given arrows u1 and u2 as shown in the following diagram

s
u1 - t1

t2

u2

? v2 - t,

v1

?

there exist an object t and morphisms v1 : t1 → t and v2 : t2 → t such that
v1u1 = v2u2.

F2. Given arrows u1 and u2 as in the following diagram,

s
u1-
u2

- t
v- t′

there exists a morphism v : t → t′ such that v ◦ u1 = v ◦ u2.

Condition F2 says that, in the situation of F1, if t1 = t2, then one can choose
(v1, v2) with v1 = v2. We should remark that in the presence of condition F2,
conditions F0 and F1 can be replaced by

F0′. There is at least one object.
F1′. Given any two objects a1 and a2, there exists an object b and morphisms

ui : ai → b.

A category is said to be cofiltering if its opposite is filtering.

Definition 4.5.2. Let P be a commutative monoid and let S be a P-set. Then
S is said to be flat if for every functor F from a finite connected category Λ to
EnsP, the natural map

(lim F) ⊗P S→ lim(F ⊗P S)

is an isomorphism.
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Note that this can fail if Λ is not connected, even if S is free. For example, if
Λ is a discrete category with two objects 1, 2, a functor F : Λ → EnsP is just
a pair of P-sets F1, F2, and lim F is the product F1 × F2. In particular, when
P = 0, the category EnsP is just the category of sets, and T 7→ T ⊗P S is just
T 7→ T × S, which does not commute with the formation of finite products.

Example 4.5.3. With the definition above, every free P-set S is flat. Indeed if
{si : i ∈ I} is a basis for S then, for any P-set T , the map

T × I - T ⊗P S (t, i) 7→ t ⊗ si

is an isomorphism. (Here T × I is given the structure of a P-set via the action
of P on T .) If F : Λ→ EnsP is a functor, we have a commutative diagram

(lim F) × I
�- (lim F) ⊗P S

lim(F × I)
? �- lim(F ⊗P S).

?

(Here F × I is the functor which takes λ to Fλ × I and which takes a morphism
u : λ→ λ′ to Fu × idI .) The left vertical arrow takes ( f·, i) to the family ( f·, i·),
where iλ = i for all λ ∈ Λ. It is clear that this map is injective. We claim that if
Λ is connected, it is also surjective. Indeed, if ( f·, i·) ∈ lim(F × I) and if there
is a morphism u : λ → λ′, then (F × I)u( fλ, iλ) = ( fλ′ , iλ′ ), and hence iλ = iλ′ .
Thus if Λ is connected, iλ is independent of λ, and ( f·, i·) belongs to (lim F)× I.
It follows that the right vertical map is also bijective.

Example 4.5.4. If G is an abelian group, every G-set S satisfies a weak form
of flatness. Namely, if θ : T → T ′ is an injective map of G-sets then, for every
G-set S, the induced map T ⊗G S → T ′ ⊗G S is also injective. Indeed, suppose
that θ(t1) ⊗ s1 = θ(t2) ⊗ s2. Then since G is a group, there exists a g ∈ G such
that θ(t2) = gθ(t1) and s1 = gs2. Since θ is injective, it follows that t2 = gt1
and hence that t1 ⊗ s1 = t2 ⊗ s2. On the other hand, not every G-set is flat. For
example, if S is a singleton, then T ⊗G S identifies with the orbit space T/G,
whose formation does not commute with equalizers if G is not trivial. We shall
see as a consequence of Theorem 4.5.7 and Proposition 4.5.10 that a G-set S is
flat if and only if the action of G on S is free.

We shall see that the notion of flatness for P-sets can be understood in terms
of the transporter category TPS of S. Note first that the transporter category of
any P-set S satisfies F1, and that the transporter category TPP of P is filtering.
Next, observe that a P-set S can be written as a disjoint union of its connected
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components, which are just the connected components of its transporter cate-
gory TPS, or, equivalently, of its opposite. The following result describes these
more directly.

Proposition 4.5.5. Let S be a P-set and λ : S → SP be the localization of S by
P, so that Pgp acts on SP. Then, if (s1, s2) ∈ S× S, the following are equivalent.

1. λ(s1) and λ(s2) lie in the same orbit of the action of Pgp on SP.
2. There exist p1, p2 ∈ P with p1s1 = p2s2.
3. s1 and s2 lie in the same connected component of S under the action of P,

i.e., in the same connected component of the category TPS.

Proof If (1) holds, then there exists x ∈ Pgp such that λ(s2) = xλ(s1) in SP.
Write x = p1 p−1

2 . Then λ(p2s2) = λ(p1s1) and, by the construction of SP, there
exists a p ∈ P such that pp2s2 = pp1s1. Then (2) holds with pi replaced by
ppi. It is clear that (2) implies (3). Finally, if s1 and s2 lie in the same connected
component of S under the action of P, then the same is true of λ(s1) and λ(s2),
and it follows that λ(s1) and λ(s2) are in the same Pgp-orbit of SP. �

The next proposition is an immediate consequence of the definitions.

Proposition 4.5.6. Let P be a monoid and let S be a P-set. Then the trans-
porter category TPS of S is cofiltering if and only if S satisfies the following
conditions.

I0. S is connected, that is, the category TPS satisfies condition F0 of Defini-
tion 4.5.1.

I1. Given s1, s2 ∈ S and p1, p2 ∈ P such that p1s1 = p2s2, there exist s′ ∈ S
and p′1, p′2 ∈ P such that si = p′i s

′ and p1 p′1 = p2 p′2.
I2. Given s ∈ S and p1, p2 ∈ P such that p1s = p2s, there exist s′ ∈ S and

p′ ∈ P such that s = p′s′ and p1 p′ = p2 p′. �

Condition I1 says that, given the solid arrows in the diagram below, there
exist an object s′ and dashed arrows making the diagram commute.

s′
p′1 - s1

s2

p′2

? p2 - s.

p1

?

Condition I2 says that when s1 = s2, one can in fact choose p′1 = p′2. Note that
S satisfies I1 (resp. I2) if and only if each of its connected components does,
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that is, if and only if each of its connected components is cofiltering. Finally,
note that TPP is always cofiltering as well as filtering.

The following proposition can be thought of as an analog for monoids of
Lazard’s theorem in commutative algebra [71].

Theorem 4.5.7. Let P be a monoid and S a P-set. Then the following condi-
tions are equivalent.

1. S satisfies I1 and I2 of Proposition 4.5.6.
2. S is a filtered direct limit of free P-sets.
3. S is flat.

Proof The proof that (1) implies (2) depends on the following general way of
writing an arbitrary P-set S as a colimit of free P-sets. Let

G : (TPS)op → EnsP

be the functor which sends each s in S to the P-set P and for each p ∈ P sends
the morphism p : ps→ s to multiplication by p : P→ P. For each s ∈ S, let

fs : G(s) = P→ S

denote the unique morphism of P-sets sending 1P to s. Thus for each p ∈ P
and s ∈ S we have a commutative diagram

G(ps) = P
fps - S

G(s)

G(p)

?
= P

p·

?

fs

-

and hence a morphism f : colim G → S.

Lemma 4.5.8. Let P be a monoid and let S be a P-set, and let G : (TP)op → S
be the functor described above. Then the corresponding morphism of P-sets

f : colim G → S

is an isomorphism.

Proof For each s ∈ S, let ηs : G(s) → colim G be the natural map. Then f
is the unique morphism of P-sets such that f ◦ ηs = fs for all s. In particular,
f (ηs(1P)) = fs(1P) = s, so it is clear that f is surjective. To see that it is
injective, let g : S → colim G be the function sending s to ηs(1P). Then, if
p ∈ P,

g(ps) = ηps(1P) = ηs(G(p)(1P)) = ηs(p) = pηs(1P) = pg(s),
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so g is a morphism of P-sets. For each s ∈ S, g ◦ fs(1P) = g(s) = ηs(1P), and
hence g ◦ fs = ηs. Moreover,

g ◦ f ◦ ηs = g ◦ fs = ηs,

hence g ◦ f = id. It follows that f is indeed injective. �

Now we can prove that (1) implies (2). First suppose that S satisfies I1 and
I2 and additionally that it is connected. Then (TPS)op is filtering, so the colimit
in Lemma 4.5.8 is in fact a filtered direct limit, hence S is a filtered direct limit
of free Q-sets.

In general, S is the disjoint union of its connected components and, if S
satisfies I1 and I2, each of these connected components is a filtered direct limit
of free P-sets, and it follows that the same is true of S. To see this directly, let
{Sc : c ∈ C} be the set of connected components of S, for each c ∈ C, let Λc be
the opposite of the transporter category of Sc, and let Λ be the product category
Λ =

∏
{Λc : c ∈ C}. An object of Λ is a family s· := {sc ∈ Sc : c ∈ C} and

a morphism s· → s′· is a family p· := {pc : c ∈ C} such that sc = pcs′c for all
c ∈ C. The category Λ is filtering if each Λc is filtering. For each object s· of
Λ, let G(s·) be the free P-set P × C and, for each morphism p· : s· → s′·, let
G(p·) : G(s·)→ G(s′·) be the map sending (p, c) to (pc p, c). Then G is a functor
from Λ to the category of P-sets. For each object s· of Λ, let fs· : P×C → S be
the morphism sending (p, c) to psc. Then fs· ◦G(p·) = fp· s· , and the argument
used in the proof of Lemma 4.5.8 shows that the map colim G → S induced by
f is an isomorphism.

To prove that (2) implies (3), recall from Example 4.5.3 that every free P-set
is flat. Thus it will suffice to show that a direct limit of flat P-sets is flat. The
argument is standard. Suppose that S is a functor from a filtering category Λ

to the category of P-sets and F is a functor from a finite connected category to
the category of P-sets. We have the following commutative diagram:

(lim F) ⊗P lim
−→

S
a- lim(F ⊗ lim

−→
S)

lim
−→

((lim F) ⊗ S)

b

? d- lim
−→

(lim(F ⊗ S)) .

c
6

Here b is an isomorphism because the functor T → (lim F)⊗T commutes with
all colimits, since it has a right adjoint. The map d is an isomorphism because
each object Sλ is flat. Finally, all projective limits and all direct limits (i.e.,
colimits over filtering categories) in the category EnsP are the same as in the
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category Ens. Thus, formation of direct limits in EnsP is exact, i.e., commutes
with formation of finite limits, and so c is also an isomorphism. It follows that
a is an isomorphism, and hence that lim

−→
S is flat.

Next we prove that if S is flat then it satisfies I2. Note first that if p1 and p2

are elements of P, then

K(p1, p2) := {p ∈ P : p1 p = p2 p}

is an ideal of P, and the inclusion K(p1, p2) → P is the equalizer of multipli-
cation by p1 and p2 on P. Since ⊗PS commutes with formation of equalizers,
it follows that K(p1, p2) ⊗P S → S is the equalizer of multiplication by p1 and
p2 on S. Thus if p1s = p2s, there exist s′ ∈ S and p′ ∈ K(p1, ps) such that
s = p′s′. This is exactly I2.

Finally, we prove that if S is flat then it satisfies I1. Given p1, p2 ∈ P, con-
sider the fiber squares

EP - P ES - S

P
? p1 - P

p2

?
S
? p1 - S.

p2

?

Thus EP consists of the set of pairs (p′1, p′2) such that p1 p′1 = p2 p′2. The flatness
of S implies that the natural map EP⊗P S→ ES is an isomorphism. If (s1, s2) ∈
S × S and p1s1 = p2s2, then in fact (s1, s2) ∈ ES, and it follows that there exist
a pair (p′1, p′2) ∈ EP and an s′ ∈ S such that si = p′i s

′. This is exactly I1. �

Let us investigate conditions I1 and I2 in the context of integral monoids. It
will also be convenient to introduce a variant of condition I2.

Definition 4.5.9. Let P be a monoid and let S be a P-set.

1. An element p of P is S-regular if the endomorphism of S induced by the
action of p is injective.

2. The P-set S is P-regular if every p in P is S-regular.
3. The P-set S satisfies I2* if whenever p1, p2 ∈ P and s ∈ S are such that

p1s = p2s, there exists a u ∈ P∗ such that us = s and p2 = up1.

Proposition 4.5.10. Let P be an integral monoid and let S be a P-set.

1. If P is a group, conditions I1 and I2* are automatically satisfied.
2. If I1 holds, then S is P-regular, and the converse holds if P is valuative.
3. Condition I2 holds if and only if p1s = p2s implies that p1 = p2 or, equiva-

lently, if and only if the action of Pgp on the localization SP of S is free.
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Proof Suppose P is a group. If p1s1 = p2s2, then we can take s′ := s2,
p′1 := p−1

1 p2, and p′2 := 1P to satisfy I1. If s1 = s2, this argument shows that
I2* is satisfied as well, with u := p′1.

Suppose only that P is integral and that ps1 = ps2. If S satisfies I1, then
there exist s′ ∈ S and p′1, p′2 ∈ P with si = p′i s

′ and pp′1 = pp′2. Since P is
integral, it follows that p′1 = p′2 and hence that s1 = s2. Thus S is P-regular.
Conversely, suppose that S is P-regular and that P is valuative. If p1s1 = p2s2,
either p2 ≥ p1 or p1 ≥ p2; let us assume the former. Then p2 = pp1 for some
p ∈ P, and p1s1 = p1 ps2. Since S is P-regular, it follows that s1 = ps2, and I1
is satisfied, with s′ := s2, p′1 := p, and p′2 = 1P.

Finally suppose that P is integral and that p1s = p2s. Then I2 says that there
exist s′ and p′ with p′p1 = p′p2 and s = p′s′. But then in fact p1 = p2, as
claimed. The converse is immediate, as is the equivalence with the freeness of
the action of Pgp on SP. �

Statement (3) of the next proposition is an analog of the fact that a finitely
generated flat module over a noetherian local ring is free.

Proposition 4.5.11. Let P be an integral monoid and let S be a P-set.

1. If S satisfies I2* and each of its connected components is monogenic, then
S also satisfies I1.

2. If S satisfies I1, then an element s of S generates its connected component
Ss(P) if and only if it is P-minimal. In particular, if P is fine and S is finitely
generated and satisfies I1, then each of its connected components is mono-
genic.

3. If P is fine, a finitely generated P-set S is flat if and only if it is free. In this
case each connected component of S is isomorphic to P.

Proof Suppose that each connected component of S is monogenic and that
pi ∈ P and si ∈ S with p1s1 = p2s2. Then s1 and s2 belong to the same
connected component of S; suppose that s is a generator of this component.
Then there exist p′′1 , p′′2 ∈ P with si = p′′i s, and it follows that p1 p′′1 s = p2 p′′2 s.
If condition I2* is satisfied, there exists a u ∈ P∗ such that us = s and p2 p′′2 =

p1 p′′1 u. Let p′1 := up′′1 and p′2 := p′′2 , so that si = p′i s and p1 p′1 = p2 p′2, as in
condition I1.

Suppose that S satisfies I1 and s ∈ S. It is clear that s is minimal in its
connected component Ss(P) if it generates Ss(P). Conversely suppose that s1

is minimal in Ss(P). (Note that such an element will also be minimal in S.)
Choose any s2 ∈ Ss(P). By Proposition 4.5.5, there exist p1, p2 in P such that
p1s1 = p2s2. By condition I1, there exist s′ ∈ S and p′i ∈ P such that si = p′i s

′
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and p1 p′1 = p2 p′2. Necessarily s′ also belongs to Ss(P), so that, by the min-
imality of s1, there exists some p′′ such that s′ = p′′s1. But then we have
s2 = p′2 p′′s1 and hence s2 is in the trajectory of s1. Thus s1 generates Ss(P). If
P is fine and S is finitely generated, then it is noetherian and hence by Corol-
lary 2.1.11 each of its connected components contains a minimal element. This
completes the proof of (2).

We have already observed that a free P-set is flat. Suppose that S is flat
and finitely generated and that P is fine. To prove that S is free it is enough
to prove that each of its connected components S′ is free. By Theorem 4.5.7,
S satisfies I1 and I2, and hence so does S′. As we have just seen, condition I1
already implies that S′ is monogenic, say generated by s. Then the map P→ S′

sending p to ps is surjective. Condition I2 and the integrality of P imply that
this map is also injective, hence an isomorphism. �

The next proposition relates the flatness of a P-set to the flatness of the cor-
responding Z[P]-module (Definition 3.2.3) and helps to justify our definition
of the former notion.

Proposition 4.5.12. Let P be an integral monoid and let S be a P-set. Then the
following conditions are equivalent.

1. S is flat as a P-set.
2. The Z[P]-module Z[S] is flat as a Z[P]-module.
3. For every prime field k, the k[P]-module k[S] is flat as a k[P]-module.

Proof If S is flat, then by Theorem 4.5.7 it is a direct limit of free P-sets, and
hence Z[S] is a direct limit of free Z[P]-modules, and therefore is flat. Thus (1)
implies (2). The implication of (3) by (2) is trivial, so it remains only to prove
that (3) implies (1). This will follow from Lemma 4.5.14 below. That lemma
depends on the following result, which deals with the simpler case of group
actions. �

Lemma 4.5.13. Let G be a group and let S be a G-set. Suppose that for every
prime field k, k[S] is flat over k[G]. Then S is a free G-set.

Proof Suppose that g ∈ G, s ∈ S, and gs = s. Then (eg −1)es = 0 in the k[G]-
module k[S] and, since k[S] is flat over k[G], we can write es =

∑
i αiσi where

each αi ∈ k[G] is killed by eg − 1 and σi ∈ k[S]. Write αi :=
∑

cheh. Then∑
chegh =

∑
cheh, since αi is annihilated by eg − 1. This says that cg−1h = ch for

all h, i.e., that αi is a linear combination of g-orbits of the regular representation
of G on itself. Since only finite sums are allowed, either αi is zero or g has finite
order. But if all αi = 0, we could conclude that es = 0, which is impossible.
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Thus g has finite order, say n. Then each αi is a multiple of α :=
∑n−1

i=0 egi
, and

hence we can write es = ασ for some σ :=
∑

ctet ∈ k[S]. Then

es =
∑

i,t

ctegit =
∑

t

c′te
t

where c′t :=
∑

i cgit. Comparing the coefficients of es, we find that 1 = c′s :=∑
i cgi s. Since gs = s, we find that 1 = ncs. Thus n is invertible in k and, since

this is true for every prime field k, necessarily n = 1 and g is the identity, as
required. �

Lemma 4.5.14. Let P be an integral monoid and let S be a P-set.

1. If k[S] is flat over k[P] for some field k, then S satisfies condition I1 of
Proposition 4.5.6.

2. If k[S] is flat over k[P] for every field k, then S also satisfies condition I2 of
Proposition 4.5.6 and hence is a flat P-set.

Proof Suppose that k[S] is flat over k[P] for some field k. Let us first observe
that S is P-regular. If p is any element of P, translation by p induces an injective
endomorphism of P, since P is integral. Since the elements of P form a basis
for k[P], it follows that multiplication by ep is injective on k[P] and, since k[S]
is flat, multiplication by ep is also injective on k[S]. It follows that the action
of each p ∈ P on S is injective, so that S is P-regular. Now, to verify that S
satisfies condition I1, suppose that s1 and s2 are elements of S and p1 and p2

are elements of P with p1s1 = p2s2. Let E be the fiber product in the category
of k[P]-modules in the following diagram:

E - k[P]

k[P]
? ep1

- k[P].

ep2

?

Tensoring by k[S] we get by the flatness of k[S] a cartesian diagram:

E ⊗k[P] k[S] - k[S]

k[S]
? ep1

- k[S].

ep2

?

Hence (es1 , es2 ) comes from an element of E⊗k[P]k[S], and we can find elements



136 I The Geometry of Monoids

(αi, βi) of E ⊆ k[P] × k[P] and σi of k[S] with es1 =
∑
αiσi and es2 =

∑
βiσi.

Write

αi :=
∑

p

ai,pep, βi :=
∑

p

bi,pep, σi :=
∑

s

ci,ses.

From the equation es1 =
∑
αiσi, we see that there exist i, p′1, and s′ such that

ai,p′1 , 0, ci,s′ , 0, and s1 = p′1s′. Since ep1αi = ep2βi, there exists p′2 such that
bi,p′2 , 0 and p1 p′1 = p2 p′2. But then p2s2 = p1s1 = p1 p′1s′ = p2 p′2s′ and, since
S is P-regular, s2 = p′2s′. This gives us I1.

Now suppose that k[S] is flat for every prime field k. Let S → SP be the
localization of S by P, so that the action of P on SP extends to an action of
Pgp. As we remarked in the paragraph following Definition 3.2.3, the functor
S 7→ k[S] is compatible with formation of tensor products, and hence k[SP] �
k[Pgp] ⊗k[P] k[S]. The flatness of k[S] over k[P] implies that k[S] injects into
k[SP] and that k[SP] is flat over k[Pgp]. Since this is true for every k, it follows
that the action of Pgp on SP is free, as we saw in Lemma 4.5.13. Then it follows
from (3) of Proposition 4.5.10 that the action of P on S satisfies I2. �

We shall be especially interested in P-regularity and its stability under the
formation of pushouts. We begin with the following generality.

Proposition 4.5.15. Let P be a monoid.

1. The inclusion functor from the category of P-regular P-sets to the category
of all P-sets has a left adjoint S 7→ Sreg. Explicitly, Sreg = S/E, where
E is the congruence relation on S consisting of the set of pairs (s1, s2) of
elements of S such that there exists some p ∈ P with ps1 = ps2.

2. If S is a P-set, then Sreg can be identified with the image of the localization
mapping S→ SP, and S is regular if and only if the localization map S→ SP

is injective.

Proof We must first verify that the set E described in (1) really is a congru-
ence relation on S. It is clear that E is symmetric and reflexive. If ps1 = ps2

and p′s2 = p′s3, then

pp′s1 = p′ps1 = p′ps2 = pp′s2 = pp′s3,

so (s1, s3) ∈ E and E is transitive. Furthermore for any q ∈ P,

pqs1 = qps1 = qps2 = pqs2

so (qs1, qs2) ∈ E, and so by the analog of Proposition 1.1.3 for P-sets, E is a
congruence relation. If s1 and s2 are elements of S and if there exists a p′ ∈ P
such that p′s1 ≡ p′s2 (mod E), then by definition there exists p ∈ P such that
pp′s1 = pp′s2, and hence s1 ≡ s2 (mod E). Thus S/E is P-regular. It is evident
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that any morphism from S to a P-regular S-set factors uniquely through S/E,
so that S/E has the desired universal property, i.e., S/E = Sreg. This proves
statement (1). The identification of S/E with the image of S in SP follows from
the explicit construction of SP explained in Proposition 1.4.4. The last part of
(2) follows, but it can also be easily checked directly from the definitions. �

Corollary 4.5.16. Let P be an integral monoid, let S be a P-regular P-set, and
let J be an ideal of P. Then the natural map J ⊗P S → S factors through an
injection (J ⊗P S)reg → S. In particular, if θ : P → Q is a homomorphism of
integral monoids and J is an ideal of P, then (Q ⊗P J)reg can be identified with
an ideal of Q.

Proof We use additive notation in this proof. Thus the “natural map” in the
statement sends ( j, s) to j + s. Since S is P-regular, this map factors through
(J ⊗P S)reg. Suppose that ( j1, s1) and ( j2, s2) are elements of J × S such that
j1 + s1 = j2 + s2. Let pi := ji, regarded now as an element of P. Then p1 + s1 =

p2 + s2 in S and p2 + j1 = p1 + j2 in P. In SP we can write s2 = (p1 − p2) + s1

and in JP we have j2 = (p2 − p1) + j1. Hence in JP ⊗Pgp SP we have

j2 ⊗ s2 = (p2 − p1 + j1) ⊗ (p1 − p2 + s1) = j1 ⊗ s1.

By (2) of Proposition 4.5.15, (J ⊗P S)reg ⊆ (J ⊗P S)P � (JP ⊗Pgp SP), so ( j1, s1)
and ( j2, s2) have the same image in (J ⊗P S)reg. �

The next result shows that a P-set S satisfies condition I1 if and only if it is
“universally” P-regular.

Theorem 4.5.17. Let P be an integral monoid and let S be a P-set. Then the
following conditions are equivalent.

1. S satisfies I1.
2. For every P-regular P-set T , T ⊗P S is P-regular.
3. For every homomorphism of integral monoids P → P′, the P′-set P′ ⊗P S

is P′-regular.

Lemma 4.5.18. Let θ : P → P′ be a homomorphism of integral monoids and
let S be a P-set. Then S′ := P′ ⊗P S is P-regular as a P-set if and only if it is
P′-regular as a P′-set.

Proof It is clear that S′ is P-regular if it is P′-regular. Suppose conversely that
S′ is P-regular. Since P′ is integral, the localization mapping

Pgp ⊗P P′ = P′P → P′gp
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is an injective map of Pgp-sets. As we saw in Example 4.5.4, injectivity is pre-
served under tensor product with any Pgp-set, and it follows that the morphisms
a and b in the diagram below are also injective.

(Pgp ⊗P P′) ⊗Pgp (Pgp ⊗P S)
a- P′gp ⊗Pgp (Pgp ⊗P S)

Pgp ⊗P P′ ⊗P S

�

? b - P′gp ⊗P S

�

?

P′ ⊗P S

c

6

d- P′gp ⊗P′ P′ ⊗P S.

�

6

The morphism c is injective because P′ ⊗P S is P-regular, and it follows that
the morphism d is injective. Then statement (2) of Proposition 4.5.15 shows
that P′ ⊗P S is P′-regular. �

Proof of Theorem 4.5.17 Suppose that S satisfies I1 and that T is a P-regular
P-set. To prove that T ⊗P S is P-regular, suppose that we have p ∈ P, s1, s2 ∈ S,
and t1, t2 ∈ T with p(t1 ⊗ s1) = p(t2 ⊗ s2). Then (t1 ⊗ ps1) = (t2 ⊗ ps2) in T ⊗P S
and hence also in (T ⊗P S)reg ⊆ TP ⊗Pgp SP. Hence there exist p1, p2 ∈ P such
that p1 ps1 = p2 ps2 and p1t2 = p2t1. Since S is P-regular, the first of these
equations implies that p1s1 = p2s2, Since S satisfies I1, there then exist s′ ∈ S
and p′i ∈ P such that si = p′i s

′ and p1 p′1 = p2 p′2. Then

p1 p′1t1 = p2 p′2t1 = p′2 p1t2,

and since T is P-regular, it follows that p′1t1 = p′2t2. Then

t1 ⊗ s1 = t1 ⊗ p′1s′ = p′1t1 ⊗ s′ = p′2t2 ⊗ s′ = t2 ⊗ p′2s′ = t2 ⊗ s2.

Thus T ⊗P S is P-regular, proving that (1) implies (2).
If θ : P → P′ is a homomorphism of integral monoids, then the action of P

on P′ defined by θ is regular. Hence if a P-set S satisfies (2), the tensor product
P′⊗P S is regular as a P-set and, by Lemma 4.5.18, it is also regular as a P′-set.
Thus S also satisfies (3).

The proof that (3) implies (1) is more difficult; we follow the method of
Kato’s proof in [48, 4.1]. Suppose that S is universally P-regular and that x
and y are elements of S and a and b are elements of P such that ax = by. We
construct a homomorphism of integral monoids P → P′ as follows. Let E be
the subset of (P⊕N2)× (P⊕N2) consisting of those pairs ((c,m, n), (c′,m′, n′))
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such that m+n = m′+n′ and cambn = c′am′bn′ . In fact E is a congruence relation
and an exact submonoid of (P ⊕ N2) × (P ⊕ N2), so, by Corollary 2.1.20, the
quotient P′ := (P ⊕ N2)/E is an integral monoid. Let [c,m, n] denote the class
in P′ of an element (c,m, n) of P ⊕ N2 and let P → P′ be the composite P →
P⊕N2 → P′, sending p to [p, 0, 0]. Then if a′ := [1P, 0, 1] and b′ := [1P, 1, 0],
we have a′a = [a, 0, 1] and b′b = [b, 1, 0], and it follows from the definition of
E that p′ := a′a = b′b′ in P′. Hence in P′ ⊗P S we have

p′b′ ⊗ x = a′ab′ ⊗ x = a′b′ ⊗ ax = a′b′ ⊗ by = a′b′b ⊗ y = p′a′ ⊗ y.

By hypothesis P′⊗P S is P′-regular, and it follows that b′⊗ x = a′⊗y in P′⊗P S.
Now let P act on S × N2 via its action on S, and let R be the subset of

(S × N2) × (S × N2) consisting of those pairs ((s,m, n), (s′,m′, n′)) such that:

1. m + n = m′ + n′;
2. there exist c,c′ in P and t in S such that s = ct, s′ = c′t, and cambn =

c′a′m
′

b′n
′

.

This subset is symmetric, contains the diagonal, and is invariant under the ac-
tion of P. It follows from the analog of Proposition 1.1.3 for P-sets that the
congruence relation E′ that it generates is just the set of pairs (e, f ) such that
there exists a sequence (r0, . . . , rk) with (ri−1, ri) ∈ R for i > 0 and r0 = e,
rk = f . Write [s,m, n] for the class in S′ := (S × N2)/E′ of (s,m, n). Then the
map (P ⊕ N2) × S→ S′ sending (c,m, n, s) to [cs,m, n] factors through P′ × S,
and furthermore the corresponding map P′ × S → S′ is a P-bimorphism. Thus
there is a map g : P′⊗P S→ S′ sending each [c,m, n]⊗ s to [cs,m, n]. (We shall
not need to check that g is an isomorphism.)

We saw above that b′ ⊗ x = a′ ⊗ y in P′ ⊗P S, and it follows that [x, 1, 0] =

[y, 0, 1] in S′. Hence there exists a sequence r := (r0, . . . rk) as above, with
ri = (si,mi, ni) and r0 = (x, 1, 0) and rk = (y, 0, 1). Then, for all i, we have mi +

ni = 1, so that (mi, ni) = (1, 0) or (0, 1). Suppose that, for some i, (mi−1, ni−1) =

(mi, ni). Then there exist c, c′, t with si−1 = ct, si = c′t and ca = c′a or cb = c′b.
But then c = c′ and hence si−1 = si, ri−1 = ri, and in fact ri can be omitted
from the sequence r. Consequently we may assume that mi−1 , mi for all i.
Since m0 = 1, it follows that mi = 1 if i is even and ni = 1 if i is odd. If k ≥ 2,
choose an odd i ∈ [0, k]. Then ri−1 = (ct, 1, 0), ri = (c′t, 0, 1) = (dt′, 0, 1), and
ri+1 = (d′t′, 1, 0), with ca = c′b and db = d′a. But then in S we have

act = cat = c′bt = bc′t = bdt′ = dbt′ = d′at′ = ad′t′.

Since S is P-regular, it follows that ct = d′t′ and ri−1 = ri+1. In this case ri and
ri+1 can be omitted from r. Thus we may assume without loss of generality
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that k = 1. Then there exist c, c′, t such that x = ct, y = c′t, and ac = bc′. This
proves that S satisfies I1. �

Here is an another consequence of condition I1.

Proposition 4.5.19. Let P be a monoid and S a P-set satisfying condition I1.
Let p be a prime ideal of P and F := P \ p. Then T := S \ pS is stable under the
action of F, and the action of F on T also satisfies I1.

Proof To prove that T is F-stable, suppose that t ∈ T , f ∈ F, and f t = ps
with p ∈ p and s ∈ S. Then, by I1, there exist s′ ∈ S and p′, q ∈ P such that
s = p′s′, t = qs′, and pp′ = f q. Since p ∈ p and f ∈ F, necessarily q ∈ p,
hence t ∈ pS, a contradiction. To prove that the F-set T satisfies I1, suppose
that fi ∈ F and ti ∈ T with t1 f1 = t2 f2. Since S satisfies I1, there exist t′ ∈ S
and pi ∈ P such that f1 p1 = f2 p2 and ti = pit′. Since ti ∈ T , necessarily pi ∈ F
and t′ ∈ S \ pS = T , as required. �

4.6 Integral homomorphisms

The fact that the coproduct of integral monoids need not be integral is the
source of important technical problems in log geometry. In this section we
investigate this issue in some detail. Recall from the discussion in Section 1.2
that if P → Q1 and P → Q2 are monoid homomorphisms, then the coproduct
Q1 ⊕P Q2 can be identified with the tensor product Q1 ⊗P Q2, and we use that
notation here.

Proposition 4.6.1. Let P → Q1 and P → Q2 be homomorphisms of inte-
gral monoids. and let Q := Q1 ⊗P Q2 be their coproduct in the category of
commutative monoids. Then Q is integral if and only if its underlying P-set is
P-regular.

Proof If Q is integral then for any p ∈ P, multiplication by p on Q is injective
and hence Q is P-regular. Suppose conversely that Q is is P-regular, According
to Lemma 4.5.18, it is also Q1-regular and Q2-regular. Since any q ∈ Q can be
written as a sum of elements coming from Q1 and Q2, Q is also Q-regular, that
is, it is integral. �

Definition 4.6.2. A homomorphism θ : P→ Q of integral monoids is integral
if it satisfies the following equivalent conditions.

1. The action of P on Q defined by θ satisfies condition I1 of Proposition 4.5.6.
That is, whenever q1, q2 ∈ Q and p1, p2 ∈ P satisfy

θ(p1) + q1 = θ(p2) + q2,
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there exist q′ ∈ Q and p′i ∈ P such that

qi = θ(p′i) + q′ and p1 + p′1 = p2 + p′2.

2. The action of P on Q determined by θ makes Q a universally P-regular
P-set.

3. For every homomorphism P→ P′ of integral monoids, the pushout P′⊗P Q
is an integral monoid.

The equivalence of conditions (1) and (2) in the definition is just a restate-
ment of Theorem 4.5.17, and the equivalence of (2) and (3) follows from Pro-
position 4.6.1.

Proposition 4.6.3. Let θ : P → Q and φ : Q → R be homomorphisms of
integral monoids.

1. If θ and φ are integral, then φ◦θ is integral. If φ◦θ is integral and φ is exact,
then θ is integral. If φ ◦ θ is integral and θ is surjective, then φ is integral.
The pushout of any integral homomorphism is integral.

2. The homomorphism θ is integral if and only if θ is integral.
3. If F is a face of P, the homomorphisms P→ PF and P→ P/F are integral.

If θ : P → Q is integral and G is a face of Q, containing θ(F), then the
induced homomorphisms PF → QG and P/F → Q/G are integral.

4. If θ is integral, then it is exact if and only if it is local. In particular, an
integral homomorphism is locally exact.

5. Every θ : P→ Q is integral if P is valuative, or if Q is dull.

Proof The fact that the composite and the pushout of integral homo-
morphisms are integral follows immediately from from characterization (3) in
Definition 4.6.2. Suppose that φ◦θ is integral and that φ is exact. To verify that θ
satisfies I1, suppose that q1, q2 ∈ Q and p1, p2 ∈ P with q1 +θ(p1) = q2 +θ(p2).
Then φ(q1) + φ(θ(p1)) = φ(q2) + φ(θ(p2)), and since φ ◦ θ is integral there exist
r ∈ R and p′1, p′2 ∈ P with p1 + p′1 = p2 + p′2 and φ(qi) = r + φ(θ(p′i)). Then
φ(qi − θ(p′i)) = r ∈ R, and since φ is exact, qi − θ(p′i) ∈ Q. In fact,

q := q1 − θ(p′1) = q1 + θ(p1) − θ(p2) − θ(p′2) = q2 − θ(p′2).

It follows that qi = q+θ(p′i) in Q, and since p1 + p′1 = p2 + p′2, that θ is integral.
Suppose on the other hand that θ is surjective. Then one checks immediately
that if φ ◦ θ satisfies I1, so does φ. This completes the proof of (1).

For (2), we first check that the natural map π : P → P is integral. Suppose
that pi ∈ P and qi ∈ P with p1 + q1 = p2 + q2. Choose p′i ∈ P such that
π(p′i) = qi. Then π(p1 + p′1) = π(p2 + p′2), so there exists a u ∈ P∗ such that
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p1 + p′1 = p2 + p′2 + u. Replace p′2 by p′2 + u, and let q := 0 ∈ P. Then
qi = π(p′i) + q, as required. Statement (2) follows, since in the diagram

P
θ - Q

P
?

θ - Q,
?

the vertical arrows are surjective, integral, and exact.
For (3), first observe that a localization homomorphism λF : P → PF is

integral. Indeed, if P → P′ is any homomorphism of integral monoids, then
the pushout P′ ⊗P PF identifies with P′F , which is necessarily integral. Since
P/F � PF , it follows that P→ P/F is also integral. If θ : P→ Q is integral, so
is its pushout PF → QF , and if θ(F) ⊆ G, the map QF → QG is a localization
map, hence is integral, and hence so are PF → QG and P/F → Q/G.

Suppose that θ : P → Q is local and integral and p1 − p2 ∈ Pgp is such that
θ(p1 − p2) is an element q of Q. Then in Q we have θ(p1) + 0 = θ(p2) + q,
and since θ satisfies I1, there exist q′ ∈ Q and p′i ∈ P with 0 = θ(p′1) + q′,
q = θ(p′2) + q′, and p′1 + p1 = p′2 + p2. But then q′ is a unit of Q, and since
θ is local p′1 is a unit of P. Then p1 − p2 = p′2 − p′1 ∈ P, so θ is exact. Since
every exact homomorphism is local (Proposition 4.2.1), we see that an integral
homomorphism is exact if and only if it is local.

If Q is dull then Q = 0 and it is obvious that P → 0 is integral. More
generally, Q is certainly P-regular since it is integral, and hence if P is valuative
it satisfies I1 by Proposition 4.5.10. �

Corollary 4.6.4. Let θ : P → Q be a morphism of integral monoids. Then the
following are equivalent.

1. θ : P→ Q is integral.
2. θQ∗ : Ploc := Pθ−1(Q∗) → Q is integral.
3. θG : Pθ−1(G) → QG is integral for every face G of Q.

Proof Statement (3) of Proposition 4.6.3 implies that the localization homo-
morphism P → Ploc is integral. Since the composition of integral homo-
morphisms is integral, it follows that if Ploc → Q is integral, then so is
P → Q. Conversely, suppose P → Q is integral and let Ploc → P′ be
any homomorphism of integral monoids. It follows from the universal map-
ping properties of pushouts and localizations that the natural homomorphism
P′ ⊗P Q → P′ ⊗Ploc Q is an isomorphism. Since P → Q is integral, P′ ⊗P Q is
integral, and hence so is P′ ⊗Ploc Q. This proves the equivalence of (1) and (2).
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Suppose that θ is integral and that G is a face of Q. Then Q → QG is in-
tegral, and hence so is P → QG. It follows from the implication of (2) by (1)
that PF → QG is integral. Suppose conversely that each such localization is
integral. Taking G = Q∗, we see that Ploc → Q is integral, and hence that θ is
integral. �

Example 4.6.5. Proposition 4.6.3 shows that the family of integral homo-
morphisms of monoids is stable under pushouts in the category of integral
monoids. The reader is cautioned that this is no longer true in the category
of saturated monoids: the saturated pushout of an integral homomorphism
θ : P → Q of fine saturated monoids need not be integral. For an example,
let P and Q be freely generated by p and q respectively, and let θ : P → Q
be the homomorphism sending p to 2q. Then let P′ be the monoid given by
generators p′0, p′1, p′2 with the relation p′1 + p′2 = 2p′0, and let P → P′ be the
homomorphism sending p to p′1. Then the pushout Q′ := P′ ⊕P Q has genera-
tors q′1, p′2, p′0, with the relation 2q′1 + p′2 = 2p′0. Hence q′2 := p′0 − q′1 belongs
to Q′sat, which is in fact the free monoid generated by q′1 and q′2. The homo-
morphism θ′ is given by

p′0 7→ q′1 + q′2, p′1 7→ 2q′1, p′2 7→ 2q′2.

Then

p′0 + q′1 = 2q′1 + q′2 = p′1 + q′2,

but q′1 and q′2 are irreducible, and hence θ′ is not integral. It is true however
that the saturated pushout of an exact homomorphism is exact.

Remark 4.6.6. If θ : P → Q is homomorphism of integral monoids, then the
corresponding action of P on Q satisfies condition I2 of Proposition 4.5.6 if
and only if θ is injective. Thus by Theorem 4.5.7 and Proposition 4.5.12, θ is
injective and integral if and only if Z[θ] : Z[P] → Z[Q] is flat if and only if
the action of P on Q defined by θ is flat. Note that If θ : P → Q is local and
integral, then by (4) of Proposition 4.6.3 it is exact, and then Ker(θgp) ⊆ P∗,
and θ factors through an injective homomorphism P/Ker(θgp)→ Q.

Proposition 4.6.7. Let θ : P → Q be a homomorphism of integral monoids,
and consider the following conditions.

1. The action of P on Q defined by θ is flat (see Definition 4.5.2).
2. The homomorphism Z[θ] : Z[P]→ Z[Q] is flat.
3. For some field k, the homomorphism k[θ] : k[P]→ k[Q] is flat.
4. The homomorphism θ is integral.
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Conditions (1) and (2) are equivalent and imply condition (3). Condition (3)
implies condition (4), and if θ is local and P is sharp, all four conditions are
equivalent.

Proof We have already seen in Proposition 4.5.12 that (1) implies (2), and
it is obvious that (2) implies (3). Lemma 4.5.14 shows that that (3) implies
condition I1, so (3) implies (4). If θ : P → Q is integral and local, then by
Proposition 4.6.3 it is exact, and if P is sharp, θ must be injective. The inte-
grality of Q then implies that the action of P on Q satisfies condition I2 of
Proposition 4.5.6. Thus the P-set underlying Q satisfies I1 and I2, hence by
Theorem 4.5.7 is flat. This proves that (4) implies (1). �

The following result can be viewed as an analog of the local criterion for
flatness in commutative algebra.

Proposition 4.6.8. Let θ : P→ Q be an injective and local homomorphism of
fine monoids and let k be a field. Then the following conditions are equivalent.

1. The natural map P+ ⊗P Q→ Q is injective.
2. Tork[P]

1 (k[P, P+], k[Q]) = 0.
3. For every ideal J of P, the map J ⊗P Q→ Q is injective.
4. Tork[P]

1 (k[P, J], k[Q]) = 0 for every ideal J of P.
5. The homomorphism θ is integral.
6. The action of P on Q is flat.
7. The homomorphism k[P]→ k[Q] is flat.

If P and Q are sharp, these conditions are also equivalent to

8. The homomorphism k[[P]]→ k[[Q]] is flat.
9. Tork[[P]]

1 (k[[P, P+]], k[[Q]]) = 0.

Proof If J is an ideal of P, the map Q ⊗P J → Q is injective if and only if
the induced homomorphism k[Q ⊗P J]→ k[Q] is injective. Since k[Q ⊗P J] �
k[Q]⊗k[P]k[J], this is the case if and only if Tork[P]

1 (k[P, J], k[Q]) = 0. It follows
that statements (1) and (2) (resp. (3) and (4)) are equivalent.

Let us prove that (2) implies (4). Let C denote the family of ideals J of P
such that Tork[P]

1 (k[P, J], k[Q]) , 0. If C is not empty, it has a maximal element,
since P is noetherian. We first observe that such a maximal element J is prime.
Otherwise there exist elements p1 and p2 of P \ J such that p1 + p2 ∈ J. Let
Ji := J + (pi). Then there is an exact sequence of k[P]-modules:

0→ k[J1, J]→ k[P, J]→ k[P, J1]→ 0,
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and hence also an exact sequence:

Tork[P]
1 (k[J1, J], k[Q])→ Tork[P]

1 (k[P, J], k[Q])→ Tork[P]
1 (k[P, J1], k[Q]).

Note that Tork[P]
1 (k[P, J1], k[Q]) vanishes, since J1 strictly contains J. Let

J′ := {p ∈ P : p+p1 ∈ J}, an ideal of P. Since J′ contains J2 which strictly con-
tains J, it follows also that Tork[P]

1 (k[P, J′], k[Q]) vanishes. Multiplication by
ep1 induces an isomorphism k[P, J′] → k[J1, J], so Tork[P]

1 (k[J1, J], k[Q]) van-
ishes as well. Then the exact sequence above shows that Tork[P]

1 (k[P, J], k[Q])
also vanishes, a contradiction. Thus thus our maximal element J of C is a prime
ideal. By hypothesis (2), J , P+, so there is some p ∈ P+ \ J. Let J′ := J + (p).
Since J is prime, multiplication by ep is injective on k[P, J], and there are exact
sequences:

0→ k[P, J]
ep
- k[P, J]→ k[P, J′]→ 0 and

Tork[P]
1 (k[P, J], k[Q])

ep
- Tork[P]

1 (k[P, J], k[Q]) - Tork[P]
1 (k[P, J′], k[Q]).

But Tork[P]
1 (k[P, J′], k[Q]) = 0 since J′ strictly contains J, and thus multiplica-

tion by ep induces a surjection on Tork[P]
1 (k[P, J], k[Q]). As we shall see, this

will imply that this module in fact vanishes, which will conclude the proof.
Since Q is a fine monoid, there exists a local homomorphism h : Q → N.

Since θ is local, so is g := h◦θ. We define a function J×Q→ N by sending ( j, q)
to g( j)+h(q). This function is a P-bimorphism,and hence factors through a map
s : J⊗P Q→ N. Furthermore, for ( j, q) ∈ J×Q, we have s( j⊗q) = h(θ( j)+q)).
The function h (resp. s) defines an N-grading on k[Q] (resp. on k[J ⊗ Q]), and
the homomorphism k[J⊗Q]→ k[Q] is compatible with the grading. It follows
that its kernel T := Tork[P]

1 (k[P, J], k[Q]) inherits a grading. Since p ∈ P+,
necessarily h(p) > 0. Since multiplication by ep is surjective on T , for every i,
multiplication by p induces a surjection Ti−h(p) → Ti. Since Ti = 0 for i < 0, it
follows that T = 0, as required.

To prove that (4) implies (5), let p1 and p2 be two elements of P and let
E := {(p′1, p′2) : p′1 + p1 = p′2 + p2}, a sub-P-set of P × P. Then we have a
sequence

0→ k[E]
g- k[P] ⊕ k[P]

f- k[J]→ 0, (4.6.1)

where f sends (α, β) to αep1−βep2 and g sends e(p′1,p
′
2) to (ep′1 , ep′2 ). It is clear that

f is surjective, that g is injective, and that f ◦ g = 0. Suppose that f (α, β) = 0.
Write α :=

∑
s ases and β :=

∑
t atet. We prove by induction on the size of

the support of α that (α, β) belongs to the image of g. Since αep1 = βep2 , we
have

∑
s asep1+s =

∑
t btep2+t. Suppose that as , 0. Then there is a (necessarily

unique) t such that p2 + t = p1 + s and necessarily bt = as. Then (s, t) ∈ E and
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ase(s,t) ∈ k[E]. It follows that (α, β)−g(ase(s,t)) lies in the kernel of f and hence
in the image of g by the induction hypothesis. We conclude that (α, β) also lies
in the image of g. It follows that the the sequence (4.6.1) is exact. Tensoring
with k[Q], we find an exact sequence

k[E] ⊗k[P] k[Q] - k[Q] ⊕ k[Q] - k[J] ⊗k[P] k[Q]→ 0.

Condition (4) implies that the map k[J] ⊗k[P] k[Q] → k[Q] is injective, so the
sequence

k[E] ⊗k[P] k[Q]
g⊗id- k[Q] ⊕ k[Q]

f⊗id- k[Q]

is also exact. Then if (q1, q2) ∈ Q × Q and p1 + q1 = p2 + q2, we can argue as
in the proof of statement (2) of Lemma 4.5.14 to see that I1 is satisfied, so θ is
integral.

As we saw in Remark 4.6.6, an integral and injective homomorphism is flat,
so (5) implies (6), and Proposition 4.5.12 shows that (6) implies (7). Since (7)
implies (2), we see that (1)–(7) are equivalent.

Now suppose that P and Q are sharp. Then k[[P]]→ k[[Q]] is a local homo-
morphism of noetherian local rings, so the local criterion for flatness tells us
that (8) and (9) are equivalent. If (7) holds, k[P] → k[Q] is flat, then so is the
map k[P]→ k[Q] ⊗k[P] k[[P]], by base change. The ring k[Q] ⊗k[P] k[[P]] is of
finite type over k[[P]] and hence noetherian, and hence the map from it to its
completion k[[Q]] is also flat, It follows that k[[P]] → k[[Q]] is flat. Finally,
suppose that (8) holds. Then k[P] → k[[Q]] is flat, and we can again argue as
in the proof of (1) of Lemma 4.5.14, computing in k[[Q]] instead of k[Q], to
see that condition I1 holds.

To be careful, let us write out the argument. Again we let J be the ideal of P
generated by elements p1 and p2 of P and let E := {(p′1, p′2) ∈ P×P : p1 + p′1 =

p2 + p′2}. Since k[[Q]] is flat over k[[P]], the map k[[J]]⊗k[[P]] k[[Q]]→ k[[Q]]
is injective, and we find an exact sequence:

0→ k[E] ⊗k[P] k[[Q]]
g⊗id- k[[Q]] ⊕ k[[Q]]

h- k[[Q]],

where h(α, β) = αep1 − βep2 . Then if (q1, q2) ∈ Q × Q and p1 + q1 = p2 + q2,
the element (eq1 , eq2 ) of k[[Q]] ⊕ k[[Q]] lies in the kernel of h and hence also
in the image of g ⊗ id. Then there exist γi ∈ k[E] and δi ∈ k[[Q]] such that
(eq1 , eq2 ) =

∑
i δig(γi) Write γi =

∑
e ai,ke(p′1,k ,p

′
2,k), where each (p′1,k, p′2,k) ∈ E

and write δi =
∑

q bi,qeq. Here ai,k = 0 for all but finitely many k, but there is no
such restriction on the support of δi. Then δig(γi) = (

∑
q cqeq,

∑
q dqeq), where

cq =
∑

θ(p′1)+q′=q

ai,kbi,q′ and dq =
∑

θ(p′2)+q′=q

ai,kbi,q′ .
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Since
∑

i δig(γi) = (eq1 , eq2 ), there must be at least one triple (i, k, q′) such that
ai,kbi,q′ , 0 and θ(p′1) + q′ = q1. Then

θ(p2) + q2 = θ(p1) + q1 = θ(p1 + p′1) + q′ = θ(p2) + θ(p′2) + q′,

and hence q2 = θ(p′2) + q′. �

Proposition 4.6.9. Let θ : P → Q be a homomorphism of integral monoids,
and view Q as a P-set via θ. Then, for each q ∈ Q,

Sq(θ) := (θ(Pgp) + q) ∩ Q

is the connected component of the P-set Q containing q. Consider the follow-
ing conditions:

1. θ is integral and local;
2. θ is exact and, for every q ∈ Q, the P-set Sq(θ) is monogenic as a P-set.

Then (2) implies (1), and the converse is true if P and Q are fine. Moreover,
if (2) holds, then Ker(θgp) ⊆ P∗, and each Sq(θ) is a isomorphic as a P-set to
P/Ker(θgp).

Proof It is apparent from the definitions that Sq(θ) is the connected compo-
nent of Q viewed as a P-set. Suppose that (2) holds. Since θ is exact, it is local
by Proposition 4.6.3, and furthermore Ker(θgp) is contained in P∗. Let us prove
that θ satisfies I2* of Definition 4.5.9. Suppose that q ∈ Q and p1, p2 ∈ P
with θ(p1) + q = θ(p2) + q. Since Q is integral, it follows that θ(p1) = θ(p2),
hence that u := p2 − p1 ∈ Ker(θgp) ⊆ P∗. Then θ(u) + q = q and p2 = u + p1

with u ∈ P∗, as required. If in addition each Sq(θ) is monogenic, then by (1) of
Proposition 4.5.11 it follows that θ satisfies I1, proving that (2) implies (1).

Conversely, suppose that P and Q are fine and that θ is integral and local. By
Proposition 4.6.3, θ is exact. Let

(Q : q) := {y ∈ Qgp : y + q ∈ Q},

the principal fractional ideal of Qgp generated by −q, and let

Kq := {x ∈ Pgp : θgp(x) + q ∈ Q},

the inverse image of (Q : q) in Pgp. Then θgp followed by translation by q
induces an isomorphism of P-sets Kq/Ker(θgp) → Sq(θ). Since θ is exact and
P and Q are fine, Proposition 2.1.24 implies that Kq is finitely generated as a
P-set, and hence so is Sq(θ). Since θ is integral, it satisfies I1, and hence so
does each connected component Sq(θ) of the P-set Q. Then Proposition 4.5.11
implies that Sq(θ) is monogenic, so (2) is proved. We have already seen that
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(2) implies that Ker(θgp) ⊆ P∗ and condition I2*, and it follows that Sq(θ) is
isomorphic to P/Ker(θgp).

�

Remark 4.6.10. Let θ : P→ Q be a local and integral homomorphism of fine
monoids and let y be an element of the localization QP of Q by P. Choose p
such that p + y ∈ Q. Then

Sy(θ) := (Pgp + y) ∩ Q = (Pgp + (p + y)) ∩ Q,

so Proposition 4.6.9 applies equally well to Sy. As we saw in the proof of
Proposition 4.6.9, Sy is finitely generated as a P-set and hence contains minimal
elements. For each q ∈ Sy(θ), the following are equivalent:

1. q is P-minimal as an element of Q.
2. q is P-minimal as an element of Sy(P).
3. q generates Sy(θ) as a P-set.
4. P = {x ∈ Pgp : θgp(x) + q ∈ Q}.

Indeed, it is obvious that (1) implies (2). Since θ is integral and local, Propo-
sition 4.6.9 implies that Sy(θ) is monogenic as a P-set and, if q is minimal, it
must be a generator. Thus (2) implies (3). Suppose that q generates Sy(θ) and
that x ∈ Pgp is such that q′ := θgp(x) + q ∈ Q. Then q′ ∈ Sy(Q) and hence
q′ = θ(p) + q for some p ∈ P. But then θgp(x) = θ(p) ∈ Q and, since θ is exact,
x ∈ P and thus (4) holds. Finally, suppose that (4) holds and that q = p + q′ for
some q′ ∈ Q. Then −p ∈ {x ∈ Pgp : θgp(x) + q ∈ Q}, hence −p ∈ P, and thus q
is a minimal element in the P-set Q.

The following corollary shows that a homomorphism which is injective, lo-
cal, and integral has a very restricted structure.

Corollary 4.6.11. Let θ : P → Q be an injective and local homomorphism of
fine monoids. Then θ is integral if and only if Q is free as a P-set. If this is the
case and P is sharp, the summation map induces a bijection

P × (Q \ Kθ)→ Q,

where Kθ is the ideal of Q generated by P+; furthermore, for every θ-critical
face G of Q, the homomorphism

P ⊕G → P + G

is an isomorphism of monoids.
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Proof If θ makes Q into a free P-set, it satisfies condition I1 of Proposi-
tion 4.5.6 and hence is integral. Conversely, if θ is integral and local, Propo-
sition 4.6.9 implies that each connected component Sq(θ) of the P-set Q is
isomorphic to P, so that Q is free as a P-set. Suppose also that P is sharp, and
note that the ideal Kθ is the set P+ +Q of elements of Q which can be written in
the form p + q, where p ∈ P+ and q ∈ Q. Then as we saw in Proposition 1.3.7,
Q \ Kθ is a basis for Q. In other words, the map P × (Q \ Kθ) → Q is a bi-
jection. If G is a θ-critical face of Q, then G ⊆ (Q \ Kθ), so the last statement
follows. �

4.7 The structure of critically exact homomorphisms

Corollary 4.6.11 has a very important analog for cones, Theorem 4.7.2 below.
This is the key “structure theorem” (A.3.2.2) of [40]. It plays a crucial role in
many places in log geometry, especially with regard to the topological structure
of log smooth maps and their Betti realizations [57]. The key is statement (3),
illustrated by Figure 4.7.1 for the homomorphism N → N ⊕ N sending n to
(n, n).

Remark 4.7.1. If θ : P → Q is a local homomorphism of fine monoids, then
the union CK(Q, P) of the set of CK(θ)-critical faces of CK(Q) is the comple-
ment of the conical ideal CK(Kθ) of CK(Q) generated by θ(P+). Indeed, an
element q of CK(Q) lies in CK(Q, P) if and only if the face 〈q〉 it generates
does not meet θ(P+), and this is the case if and only if CK(Q) \ 〈q〉 contains
θ(P+). Thus the complement CK(Q, P) is the intersection of all of the primes
containing θ(P+), which is the conical ideal of CK(Q) generated by θ(P+) (see
Remark 2.3.3).

Theorem 4.7.2. Let θ : P → Q be a local homomorphism of fine monoids,
where P is sharp. Let K be an Archimedean field, let

CK(θ) : CK(P)→ CK(Q)

be the induced homomorphism of K-cones, and let CK(Q, P) be the union of
the set of θ-critical faces of CK(Q). Then the following conditions are equiva-
lent:

1. CK(θ) : CK(P)→ CK(Q) is locally exact;
2. CK(θ) : CK(P)→ CK(Q) is critically exact (Definition 4.2.12);
3. the summation map σ : CK(P) ×CK(Q, P)→ CK(Q) is bijective;
4. CK(θ) : CK(P)→ CK(Q) is integral.



150 I The Geometry of Monoids

Figure 4.7.1 C(P) ×C(Q, P) � C(Q)

Proof Our proof will rely on the following result about exact homo-
morphisms.

Lemma 4.7.3. Let θ : P→ Q be an injective and exact homomorphism of fine
monoids, let K be an Archimedean field, and view CK(Q) as a CK(P)-set via
the homomorphism CK(θ).

1. An element q of CK(Q) is CK(P)-minimal if and only if the face it generates
is θ-critical.

2. Each connected component of the CK(P)-set CK(Q) has a minimal element.

Proof To simplify the notation, we view P as a submonoid of Q. For each
q ∈ CK(Q), recall that

〈q〉 = {q′ ∈ CK(Q) : λq′ ≤ q for some λ ∈ K>}.

Thus if p ∈ 〈q〉 ∩ CK(P), then there exist λ ∈ K> and q′ ∈ CK(Q) such that
λp + q′ = q. If q is CK(P)-minimal it follows that λp ∈ CK(P)∗ and hence
p ∈ CK(P)∗. This proves that 〈q〉 ∩ CK(P) = CK(P)∗, i.e., that 〈q〉 is θ-critical.
Suppose for the converse that 〈q〉 is θ-critical. Then if there exists some p ∈
CK(P) with q = p + q′, necessarily p ∈ 〈q〉 ∩ CK(P) = CK(P)∗ and thus q is
minimal. This proves statement (1) of the lemma.

For statement (2), note that for each q ∈ CK(Q), the connected component
of the CK(P)-set CK(Q) containing q is Sq := (CK(P)gp + q) ∩ CK(Q). Let
Jq = {x ∈ CK(P)gp : x + q ∈ Sq}. Then the map Jq → Sq sending x to x + q
is an isomorphism of CK(P)-sets, so it suffices to show that Jq has a minimal
element.

Since CK(Q) is a finite generated K-cone, Theorem 2.3.12 says that there
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exists a finite set of linear maps hi : CK(Q)gp → K such that

CK(Q) = {y ∈ CK(Q)gp : hi(y) ≥ 0 for all i}.

Then

Jq = {x ∈ CK(P)gp : hi(x) + hi(q) ≥ 0 for all i}.

In particular, J0 = CK(P)gp ∩ CK(Q) = CK(P), since CK(P) is an exact sub-
monoid of CK(Q). Let V := CK(P)gp, let W be its dual, and let wi ∈ W be the
restriction of hi to V . For each i, let ai := hi(q), and let T := {(wi, ai)} ⊆ W ×K.
For t = (wi, ai) ∈ T , write wt for wi and at for ai. Then

Jq = {v ∈ V : 〈v,wt〉 + at ≥ 0 for all t ∈ T }.

CK(P) = {v ∈ v : 〈v,wt〉 ≥ 0 for all t ∈ T }.

Furthermore, {wt : t ∈ T } spans W since CK(P) is sharp, and 0 ∈ Jq, so Jq is not
empty. Thus we can apply Theorem 2.3.20, which asserts that the CK(P)-set Jq

has a vertex v0 and that v0 is CK(P)-minimal. �

We now turn to the proof of the theorem. The implication of (2) by (1) is
trivial. Suppose that (2) holds. Since P is sharp, the same is true for CK(P) by
Proposition 2.3.7, and CK(θ) is exact and locally exact by Corollary 4.3.8. It
follows that CK(θ) is injective; to simplify the notation we view CK(P) as a
subcone of CK(Q).

Now let q be an element of CK(Q). By statement (2) of Lemma 4.7.3, its
connected component Sq has a minimal element q0; by (1) of the same lemma,
q0 ∈ CK(Q, P). We claim that q0 generates Sq as a CK(P)-set. If q′ ∈ Sq then
Sq′ = Sq, so there exist p, p0 ∈ CK(P) such that p + q′ = p0 + q0. Since
〈q0〉∩CK(P) = 0 and θ is critically exact, the map CK(P)→ CK(Q)〈q0〉 is again
exact. But then

p′ := p0 − p = q′ − q0 ∈ CK(Q)〈q0〉 ∩CK(P)gp = CK(P),

and q′ = p′ + q0. Thus q′ is in the trajectory of q0, proving that q0 generates
Sq. as claimed. Since q0 ∈ CK(Q, P), it follows that the summation map σ is
surjective. For the injectivity, suppose that (pi, qi) ∈ CK(P) × CK(Q, P) and
p1 +q1 = p2 +q2. Then Sq1 = Sq2 and, since each 〈qi〉 is θ-critical, q1 and q2 are
each minimal generators of Sqi . Since CK(P) is sharp, these generators must be
equal, and it follows that also that p1 = p2. This completes the proof that (2)
implies (3).

Suppose that (3) holds. We shall verify that θ satisfies I1. Note first that (3)
certainly implies that θ is injective, and hence again we view CK(P) as a subset
of CK(Q). Suppose that qi ∈ CK(Q) and pi ∈ CK(P) satisfy p1 + q1 = p2 + q2.
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Write qi = p′i + q′i with p′i ∈ CK(P) and q′i ∈ CK(Q, P). Then p1 + p′1 + q′1 =

p2 + p′2 + q′2, and, by the injectivity of σ, q′1 = q′2 and p1 + p′1 = p2 + p′2. Let
q′ := q′1 = q′2, so that qi = p′i + q′, showing that I1 holds. Statement (4) of
Proposition 4.6.3 says that an integral homomorphism of integral monoids is
locally exact, so (4) implies (1). �

Let us reap some consequences for monoids.

Definition 4.7.4. A homomorphism of integral monoids θ : P → Q is said to
be Q-integral if the induced homomorphism of Q-cones

CQ(θ) : CQ(P)→ CQ(Q)

is integral. Explicitly, θ is Q-integral if and only if, whenever pi ∈ P and qi ∈ Q
satisfy θ(p1) + q1 = θ(p2) + q2, there exist n ∈ Z+, p′i ∈ P and q′ ∈ Q such that
nqi = θ(p′i) + q′ and np1 + p′1 = np2 + p′2.

To check the equivalence, suppose that CQ(θ) is integral and that θ(p1)+q1 =

θ(p2) + q2. Then since CQ(θ) satisfies condition I1 in Proposition 4.5.6, there
exist q′′ ∈ CQ(Q) and p′′i ∈ CQ(P) such that qi = θ(p′′i ) + q′ and p1 + p′′1 =

p2 + p′′2 . Multiplying by a large enough n, we can arrange for p′i := np′′i to
lie in P, and so the equations in the definition hold up to torsion, say killed
by m > 0. Multiplying by m and replacing p′i by mp′i and q′ by mq′, we may
arrange for them to hold exactly. The converse implication is clear.

Proposition 4.7.5. Let θ : P → Q be a homomorphism of fine monoids. If P
is free and Q is saturated, then θ is integral if and only if it is Q-integral. 2

Proof Suppose that p1, p2 ∈ P and q1, q2 ∈ Q with θ(p1) + q1 = θ(p2) + q2.
Choose n ∈ Z+, p′i ∈ P, and q′ ∈ Q such that nqi = θ(p′i) + q′ and np1 + p′1 =

np2+p′2. Then for every φ : P→ N, φ(p′1) ≡ φ(p′2) (mod n). Let (e1, . . . er) be a
basis for P and let (φ1, . . . φr) be the dual basis for Hom(P,N). For each i and j,
write φ j(p′i) = nmi, j + ri, j with mi, j, ri, j ∈ N and ri, j < n. Since φ j(p′1) ≡ φ j(p′2)
(mod n), in fact r j := r1, j = r2, j for all j. Let p′′ :=

∑
r je j and p′′i =

∑
mi, je j

in P. Then p′i = np′′i + p′′, and np1 + np′′1 + p′′ = np2 + np′′2 + p′′. Since
P is integral and torsion free, it follows that p′′1 + p1 = p′′2 + p2. Now let
xi := qi − θ(p′′i ) ∈ Qgp. Note that

x1 + θ(p1) + θ(p′′1 ) = q1 + θ(p1) = q2 + θ(p2) = x2 + θ(p2) + θ(p′′2 ),

and hence x1 = x2. Furthermore,

nx1 = nq1−nθ(p′′1 ) = nq1− θ(p′1− p′′) = nq1− θ(p′1) + θ(p′′) = q′+ θ(p′′) ∈ Q.

2 This proposition is due to Aaron Gray.
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Since Q is saturated, q := x1 = x2 ∈ Q. Now qi = p′′i +q and p1 + p′′1 = p2 + p′′2 ,
proving that θ satisfies condition I1. �

Example 4.7.6. To see that the hypothesis on P is not superfluous, let Q :=
N ⊕ N and let P be the submonoid of Q generated by (2, 0), (1, 1), (0, 2). Then
the inclusion homomorphism P→ Q is Q-integral but not integral. This homo-
morphism is also an example of a locally exact homomorphism which is not
integral.

Theorem 4.7.7. Let θ : P → Q be a local homomorphism of fine saturated
monoids and let Kθ denote the ideal of Q generated by the image of P+. Then

dim(Q) ≤ dim(P) + dim(Q,Kθ).

Furthermore, the following conditions are equivalent:

1. dim(Q) = dim(P) + dim(Q,Kθ).
2. θ is critically exact.
3. θ is critically s-injective.
4. θ is Q-integral.
5. θ is locally exact.
6. θ is locally s-injective.

Proof The following lemmas will also be useful elsewhere.

Lemma 4.7.8. Let θ : P → Q be a local homomorphism of fine monoids, and
let G be a θ-critical face of Q. Then G is maximal among all θ-critical faces of
Q if and only if the homomorphism θ′ : P→ Q/G induced by θ is Q-surjective.

Proof Suppose that G is a θ-critical face of Q and let θ′ : P→ Q/G be the in-
duced homomorphism. The θ′-critical faces of Q/G correspond to the θ-critical
faces of Q containing G. Thus G is maximal if and only if Q/G has a unique
θ′-critical face. Since Q/G is sharp and fine, Proposition 4.3.9 tells us that this
is the case if and only if θ′ is Q-surjective. �

Lemma 4.7.9. Let θ : P → Q be a local homomorphism of fine monoids, and
let G be a θ-critical face of Q which is maximal among the θ-critical faces.
Then the following conditions are equivalent:

1. The induced homomorphism P→ Q/G is an isogeny.
2. dim P + dim G = dim Q.
3. The induced homomorphism Q ⊗ P

gp
⊕Q ⊗Ggp → Q ⊗ Qgp is an isomor-

phism.

If in addition P is saturated, these conditions are also equivalent to the follow-
ing:
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4. The homomorphism P→ Q/G is exact.

5. The homomorphism P→ Q/G is injective.

6. The homomorphism P→ Q/G is Kummer.

Proof If (1) holds, then dim P = dim Q/G = dim Q−dim G, so (2) also holds.
According to Lemma 4.7.8, the homomorphism P→ Q/G is Q-surjective. and
hence the homomorphism Q⊗ P

gp
→ Q⊗ (Qgp/Ggp) is surjective. The dimen-

sion of the target is dim Q − dim G, so if (2) holds, this homomorphism is
an isomorphism, and it follows that the homomorphism in (3) is also an iso-
morphism. Condition (3) implies that the map Q ⊗ P

gp
→ Q ⊗ (Qgp/Ggp) is

injective, and hence that the homomorphism of cones CQ(P) → CQ(Q/G) is
injective. Since it is also surjective, it is in fact an isomorphism. Thus (3) im-
plies (1). Now suppose that P is saturated. If (1) holds, the homomorphism
CQ(P) → CQ(Q/G) is an isomorphism, hence exact. Since P is saturated,
the homomorphism P → CQ(P) is exact, hence so is the homomorphism
P → CQ(Q/G), and it follows from Proposition 4.2.1 that P → Q/G is also
exact. Thus (1) implies (4). Since a sharp exact homomorphism is injective, (4)
implies (5). Since P → Q/G is Q-surjective, it is by definition Kummer if it
is injective, so (5) implies (6). Since (6) trivially implies (1), all six conditions
are equivalent. �

Let us return to the proof of Theorem 4.7.7. The prime ideals of (Q,Kθ)
are the primes q of Q such that P+ ⊆ θ−1(q), and so the faces of (Q,Kθ)
are the faces G of Q such that θ−1(G) ⊆ P∗, i.e., the θ-critical faces of Q.
Recall from Remark 1.5.2 that the dimension of (Q,Kθ) is the maximum
of the dimensions of its faces. Thus the claimed inequality just means that
dim(Q) ≤ dim(P) + dim(G) for every maximal θ-critical face G of Q. If G is
such a face, Lemma 4.7.8 implies that the induced homomorphism P → Q/G
is Q-surjective, hence dim P ≥ dim Q − dim G, as claimed.

Now suppose that dim(Q) = dim(P) + dim(Q,Kθ). Then for every θ-critical
face G, we have dim(G) ≤ dim(Q)−dim(P). Let G′ be a maximal θ-critical face
containing G. Then as we saw in Lemma 4.7.8, the maximality of G′ implies
that P→ Q/G′ is Q-surjective, and hence that dim G′ ≥ dim Q − dim P. Thus
equality holds, and it follows from Lemma 4.7.9 that P→ Q/G′ is exact. Then
P→ QG′ is also exact. Since G ⊆ G′, we have a factorization P→ QG → QG′ ,
and so θG : P → QG is also exact, by (2) of Proposition 4.2.1. This shows that
θ is critically exact.

It is clear that any critically exact homomorphism is critically s-injective,
since every exact homomorphism is s-injective. On the other hand, suppose θ is
critically s-injective, and let G be a maximal θ-critical face of Q. Since θ is crit-
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ically s-injective, the homomorphism P→ Q/G is injective, and Lemma 4.7.9
tells us that dim(G) = dim(Q) − dim(P), proving condition (1).

We have thus proved the equivalence of conditions (1)–(3). If (2) holds,
then the induced homomorphism θ : P → Q is critically exact, and hence so
is CQ(θ). Then Theorem 4.7.2 implies that CQ(P) → CQ(Q) is integral. Using
(2) of Proposition 4.6.3, we see that the homomorphism CQ(P) → CQ(Q)
is integral. This proves (4). If (4) holds then, by (4) of Proposition 4.6.3,
CQ(P) → CQ(Q) is locally exact. Since P → CQ(P) is locally exact if P is
saturated, it follows that P → Q → CQ(Q) is locally exact and hence that
P→ Q is locally exact, so (5) holds. Statement (5) of Proposition 4.2.1 shows
that condition (5) above implies condition (6) and it is clear that (6) implies
(3). The proof of the theorem is complete. �

Proposition 4.7.10. Let F be a face of a sharp toric monoid Q. Then the fol-
lowing conditions are equivalent: 3

1. F is a direct summand of Q.
2. For every face G of Q, F + G is a face of Q.
3. For every face G of Q, F + Ggp is face of QG.

Proof Suppose that F is a direct summand of Q, say Q = F ⊕ Q′. Let G be a
face of Q. Observe that if f ∈ F and q′ ∈ Q′ and f + q′ ∈ G, then f ∈ F ∩G
and q′ ∈ Q′ ∩ G, since G is a face of Q. To prove that F + G is a face of Q,
suppose that qi ∈ Q and q1 + q2 ∈ G. Write qi = fi + q′i , so that q1 + q2 = f + g,
where f ∈ F and g ∈ G ∩ Q′. It follows that f = f1 + f2 and g = q′1 + q′2, and
hence that each q′i belongs to G. But then each qi ∈ F + G, as required. This
shows that (1) implies (2).

To prove that (2) implies (3), suppose that F, G, and F + G are faces of
Q. We claim that F + Ggp is a face of QG. Suppose that x1, x2 ∈ QG and
x1 + x2 ∈ F + Ggp. Then there exist g1, g2, g ∈ G such that xi + gi ∈ Q and
x1 + x2 + g ∈ F + G. Then x1 + g1 + x2 + g2 + g ∈ F + G and, since F + G is a
face of Q, each xi + gi ∈ F + G. Hence each xi ∈ F + Gg, as claimed.

Now suppose that (3) holds. Every face G of Q is an exact submonoid of Q,
and hence F ∩G = F ∩Ggp. Then the natural map

F/F ∩G → (F + Ggp)/Ggp

is an isomorphism. Since F + Ggp is a face of QG, it is an exact submonoid,
and it follows that FF∩G → QG = Q + Ggp is also exact. Since this is true for
every G, the inclusion homomorphism θ : F → Q is locally exact. Now let G
be a maximal θ-critical face of Q and let Q′ := F ⊕G. By (3) of Lemma 4.7.9

3 This proof that (3) implies (1) is due to Bernd Sturmfels.
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the map Q ⊗ Q′′gp → Q ⊗ Qgp is an isomorphism. We shall show that in fact
the map Q′ → Q is an isomorphism.

First we consider the corresponding rational cones CQ(Q′) ⊆ CQ(Q) and
their duals

CQ(Q)∨ ⊆ CQ(Q′)∨ ⊆ Hom(Qgp,Q).

Let φ be an indecomposable element of CQ(Q′)∨ � CQ(F)∨⊕CQ(G)∨. Since φ
is indecomposable, φ belongs either to CQ(F)∨ or to CQ(G)∨. In the first case,
φ⊥ contains all of Ggp, and so φ factors through CQ(Q)/CQ(G). Lemma 4.7.9
implies that the map CQ(F)→ CQ(Q)/CQ(G) is bijective, and φ is nonnegative
on CQ(F), hence on all of CQ(Q). In other words, φ ∈ CQ(Q)∨. In the second
case, G′ := φ⊥ ∩ G is a facet of G, and by assumption, F + G′gp is a face,
hence a facet, of Q + G′gp. Then F is a facet of Q/G′, and hence Q/(F + G′) is
a one-dimensional sharp monoid. Since Q′/(F + G′) is also one-dimensional,
the map

CQ(Q′)/CQ(F + G′)→ CQ(Q)/CQ(F + G′)

is an isomorphism. This again implies that φ(q) ≥ 0 for every q ∈ CQ(Q). We
conclude that CQ(Q′)∨ = CQ(Q)∨ and hence that CQ(Q′) = CQ(Q).

We have proved that the homomorphism Q′ → Q is Q-surjective. Thus for
every q ∈ Q, there exist m > 0, f ∈ F, and g ∈ G such that mq = f + g.
Our assumption also implies that F is a face of Q/G, and since F → Q/G is
Q-surjective, it is in fact surjective. Thus we can also write q = f ′ + x with
f ′ ∈ F and x ∈ Ggp. But then mq = m f ′ + mx, so mx = g and hence belongs
to G. Since G is a face of Q and Q is saturated, G is also saturated, so x ∈ G.
This proves that Q = F + G � F ⊕G. �

Example 4.7.11. The saturation hypothesis is not superfluous. To see this,
consider the submonoid of N ⊕N generated by {(2, 0), (3, 0), (1, 1), (0, 1)}, and
the face F generated by (0, 1).

Proposition 4.7.12. Let Q be a fine, sharp, and saturated monoid. Then Q is
free if and only if every face of Q is a direct summand.

Proof Suppose that every face of Q is a direct summand. We prove that Q
is free by induction on its dimension. If the dimension of Q is one, the result
follows from Proposition 2.4.2. Assume the result is true for all monoids of
smaller dimension and choose a face G of Q of dimension one. Then we can
write Q = G ⊕ P, and P is necessarily a face of Q. Every face F of P is also
a face of Q and hence is a direct summand of Q: Q = F ⊕ Q′. In particular,
any p ∈ P can be written as p = f + q′ with f ∈ F and q′ ∈ Q′; since P is a
face of Q, q′ ∈ P′ := P ∩ Q. Thus in fact we have P = F ⊕ P′, so F is a direct
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summand of P. Thus P enjoys the same property as Q, and hence is free by the
induction hypothesis. Since G is free and Q = G⊕P, Q is also free. Conversely,
suppose Q is the free monoid generated by a finite set S. Then because Q is
free, the mapping taking a subset of S to the face it generates establishes a
bijection between the set of subsets of S and the set of faces of Q, as we saw in
Example 1.4.8. Furthermore, if T is a subset of S, then Q = 〈T 〉 ⊕ 〈S \ T 〉. �

Corollary 4.7.13. A direct summand of a finitely generated free monoid is
free.

Proof Suppose that Q is a direct summand of P := Nr, so that there is a
retraction π : P → Q. If x ∈ Qgp and nx ∈ Q then, since P is saturated, x ∈ P,
hence πgp(x) ∈ Q. Since πgp is the identity on Qgp, in fact x ∈ Q. Thus Q is
saturated. Every face of Q is a direct summand of P and hence also a direct
summand of Q, and so the previous proposition implies that Q is free. �

Theorem 4.7.2 allows us to say more about the topology of cones. Recall
that if θ : P → Q is a monoid homomorphism, then CK(Q, P) is by definition
the union of the θ-critical faces of CK(Q).

Corollary 4.7.14. Let θ : P → Q be a critically exact and local homo-
morphism of fine monoids, with P sharp. Then the following statements are
verified.

1. The natural map π : CK(Q, P)→ CK(Q)/CK(P) is a homeomorphism.

2. The summation map σ : CK(P)×CK(Q, P)→ CK(Q) is a homeomorphism.

Proof Recall that CK(Q)/CK(P) is the image of CK(Q) in the vector space
CK(Q)gp/CK(P)gp. It follows from Theorem 4.7.2 that π is bijective, and its
continuity is obvious. To prove that its inverse is continuous, let G be a maxi-
mal θ-critical face of Q. Then by (3) of Lemma 4.7.9, the map φ : CK(Ggp) →
CK(Q)gp/CK(P)gp induced by π is an isomorphism of finite dimensional K-
vector spaces, and hence it is a homeomorphism. By Corollary 2.3.17, the
cone CK(G) is a closed subset of the vector space CK(Ggp) and hence its im-
age π(CK(G)) is a closed subset of CK(Q)gp/CK(P)gp. Since φ is a homeo-
morphism, so is the induced map φ|G : CK(G) → π(CK(G)). Thus the restric-
tion of π−1 to π(CK(G)) is continuous. Since the family of sets π(CK(G))
as G ranges over the maximal critical faces of Q is a finite closed cover of
CK(Q)gp/CK(P)gp, π−1 is continuous. This proves (1).

We already know that σ is bijective and continuous. To prove that its inverse
is continuous, consider the following commutative diagram:
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CK(Q)
(ρ, η)- CK(P) ×CK(Q, P)

CK(Q)/CK(P)

π0

?
�π CK(Q, P),

π2

?

η

-

where the top arrow is the inverse of σ. We have just seen that π is a homeo-
morphism and, since π0 is continuous, it follows that η is continuous. But
q = θ(ρ(q)) + η(q) for all q ∈ CK(Q), so θ ◦ ρ = idQ − η is continuous.
Since θ is a closed embedding, it follows that ρ is continuous, hence that (ρ, η)
is continuous. Thus σ is a homeomorphism. �

Corollary 4.7.15. Let C be a finitely generated K-cone, and let IC be its inte-
rior, that is, the complement of the union of its proper faces. Assume that C is
not dull. Then there exist a K-vector space V and a homeomorphism of pairs

(K≥ × V,K> × V) - (C, IC).

In particular, if K = R, C is a topological manifold with boundary.

Proof Let Q be the submonoid of C generated by a finite set of generators, so
that C = CK(Q). Let p be an element of IQ. Since C is not dull, C∗ is a proper
face and p is not a unit of Q. Let θ : P := N→ Q be the homomorphism taking
1 to p. Since P is valuative, statement (5) of Proposition 4.6.3 implies that θ is
local and integral. Since p belongs to the interior of Q, every proper face of Q
is θ-critical, and thus CK(Q, P) = C \ IC . By (1) of Corollary 4.7.14, the map
π : CK(Q, P) → CK(Q)/CK(P) is a homeomorphism. Since p is not contained
in any proper face of Q, the homomorphism CK(θ) is vertical, and hence the
quotient CK(Q)/CK(P) is a group, hence a vector space V . Replacing CK(Q, P)
by V and identifying CK(P) with K≥ in statement (2) of Corollary 4.7.14, we
find a homeomorphism σ̃ : K≥ × V → C. By construction, σ̃−1(CK(Q, P)) =

0 × CK(Q, P), and since C \ CK(Q, P) = IC , we see that σ̃ induces the desired
homeomorphism of pairs. �

4.8 Saturated homomorphisms

Just as the coproduct of integral monoids need not be integral, the coproduct
of saturated monoids need not be saturated. This complication is also quite
important, and we study how to overcome it in this section and the one that
follows. The main ideas in this section are due to K. Kato and T. Tsuji [76].

Here are some examples. Let P = Q = N and let P → Q be the homo-
morphism sending 1 to 2. Then Q ⊕P Q is given by generators a, b satisfying
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the relation 2a = 2b and is not saturated. More generally, let m and n be inte-
gers, and consider the coproduct Q⊕P Q, where the left homomorphism P→ Q
is multiplication by m and the right multiplication is multiplication by n. Then
Q ⊕P Q has generators a, b satisfying the relation na = mb. Here P and Q are
saturated, but Q ⊕P Q is not, provided both m and n are at least 2. Note that if
m and n are relatively prime, (Q ⊕P Q)gp is torsion free. For another example,
consider the monoid P′ given by generators a, b, c with relation a + b = 2c, let
N = P → P′ be the homomorphism sending 1 to a, and let P → Q = N be
multiplication by 2. Then the coproduct P′ ⊕P Q is given by generators a′, b, c
and relation 2a′ + b = 2c, which is not saturated.

An integral monoid P is saturated if and only the endomorphism nP of P
given by multiplication by n is exact for every n ∈ Z+. This motivates the
following definition.

Definition 4.8.1. Let P be an integral monoid and let n be a positive integer.
Then P is n-saturated if the endomorphism

nP : P→ P : p 7→ np

is exact.

It is clear from Proposition 4.2.1 that if P is n-saturated then it is also nk-
saturated for every natural number k, and that if P is n-saturated and m di-
vides n, then P is also m-saturated. Thus P is n-saturated if and only if it is
p-saturated for every prime p dividing n, and in this case it is n′-saturated,
where n′ is any number with the same set of prime divisors as n.

Definition 4.8.2. Let θ : P → Q be a homomorphism of integral monoids and
let n be a positive integer. Consider the following subdiagram of the relative
n-Frobenius diagram of Definition 4.4.1:

Q
nθ - Qθ,n

hθ,n - Q

P

θ

6

nP - P.

θn

6

θ

-

Then θ is said to be n-quasi-saturated if hθ,n is exact, and θ is said to be n-
saturated if it is integral and n-quasi-saturated. Finally, θ is said to be quasi-
saturated if it is n-quasi-saturated for all n and to be saturated if it is integral
and quasi-saturated.

Example 4.8.3. Let θ : P → Q be the homomorphism mN : N → N. As we
saw in the second paragraph of this section, Qθ,n is generated by a, b, where
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a := nθ(1) and b := θn(1), satisfying the relation ma = nb. Then hθ,n takes a to
n and b to m and is not exact whenever m and n are both greater than 1. Thus
if m > 1, mN is not n-quasi-saturated for any n > 1.

Proposition 4.8.4. If P is an integral monoid and n is a natural number, the
homomorphism 0→ P is n-saturated if and only if P is n-saturated. If θ : P→
Q is n-quasi-saturated and P is n-saturated, then Q is also n-saturated.

Proof The zero homomorphism 0 → P is integral, so it is n-saturated if and
only if it is n-quasi-saturated. The homomorphism n0 : P → P0,n := P ⊕0 0 is
in fact idP, and the homomorphism h0,n : P0,n → P is nP. Thus P is n-saturated
if and only if 0 → P is n-quasi-saturated. This proves the first statement, and
the second statement will follow once we know that the composite of two n-
quasi-saturated homomorphisms is n-quasi-saturated, as we will verify in the
next proposition. However it is easy to give a direct proof. Indeed, if P is n-
saturated, it follows from (6) of Proposition 4.2.1 that nθ is exact, since it is
the pushout of the exact homomorphism nP. It follows that the the composite
nQ = hθ,n ◦ nθ is also exact, i.e., that Q is n-saturated. �

Proposition 4.8.5. Let n be a natural number.

1. The class of n-quasi-saturated (resp. saturated) homomorphisms is closed
under composition and pushout in the category of integral monoids.

2. If ψ ◦ θ is n-quasi-saturated (resp. saturated) and ψ is exact, then θ is also
n-quasi-saturated (resp. saturated).

3. If ψ ◦ θ is n-quasi-saturated (resp. saturated) and θ is surjective, then ψ is
also n-quasi-saturated (resp. saturated).

4. A homomorphism of integral monoids θ : P→ Q is n-quasi-saturated (resp.
saturated) if and only if θ : P→ Q is.

Proof Let θ : P → Q and ψ : Q → R be n-quasi-saturated homomorphisms
of integral monoids, and consider the following diagram.
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R
nψθ- Rψθ,n

h′ - Rψ,n
hψ,n - R

B C

Q

ψ

6

nθ - Qθ

ψ′
6

hθ,n - Q

ψn

6

ψ

-

A

P

θ

6

nP - P.

θn

6

θ

-

Here the square A and the rectangles BA and BC are, by construction, cocarte-
sian in the category of integral monoids. The homomorphism ψ′ is the unique
homomorphism such that ψ′ ◦ nθ = nψθ ◦ ψ and ψ′ ◦ θn = (ψθ)n, and the homo-
morphism h′ is the unique one such that h′ ◦ nψθ = nψ and h′ ◦ψ′ ◦ θn = ψn ◦ θ.

Let us observe that

hψ,n ◦ h′ = hψθ,n (4.8.1)

To verify this we compute

hψ,n ◦ h′ ◦ nψθ = hψ,n ◦ nψ
= nR

= hψθ,n ◦ nψθ,

and

hψ,n ◦ h′ ◦ ψ′ ◦ θn = hψ,n ◦ ψn ◦ θ

= ψ ◦ θ

= hψθ ◦ (ψθ)n

= hψθ ◦ ψ′ ◦ θn.

Since the rectangle BA and the square A are cocartesian, it follows that the
square B is also cocartesian and, since the rectangle CB and the square B are
cocartesian, the square C is also cocartesian. Now if θ is n-quasi-saturated, hθ,n
is exact and hence so is its pushout h′. If ψ is n-quasi-saturated, then hψ,n is
also exact. Since hψ,n ◦ h′ = hψθ,n we can conclude that hψθ,n is the composition
of exact homomorphisms, hence is exact, and so ψ ◦ θ is n-quasi-saturated. If θ
and ψ are n-saturated, they are also integral, and hence the same is true of ψ◦ θ
by Proposition 4.6.3.

Suppose that ψθ is n-quasi-saturated, i.e., that hψθ,n is exact. If also ψ is
exact, so are its pushouts ψ′ and ψn. Then ψ ◦ hθ,n = hψ,n ◦ h′ ◦ψ′ = hψθ,n ◦ψ′ is
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the composition of exact homomorphisms, hence exact. By (2) of Proposition
4.2.1, we conclude that hθ,n is exact, so that θ is n-quasi-saturated. If ψθ is also
integral, Proposition 4.6.3 implies that the same is true of θ. If θ is surjective,
then hθ,n and h′ are also surjective, and then it follows, again by (2) of (4.2.1),
that hψ,n is exact, i.e., that ψ is n-quasi-saturated. The saturated case follows,
again using Proposition 4.6.3

We have now proved (2), (3), and the first part of (1). Statement (4) will
follow easily if we know that map π : P→ P is saturated (and similarly for Q).
Consider the diagram

P
nπ - Pπ,n

hπ,n - P

P

π

6

n - P.

πn

6

π

-

Here πn is surjective because it is the pushout of the surjective homomorphism
π. Since hθ,n ◦ πn = π is exact, it follows from Proposition 4.2.1 that hπ,n is also
exact. Thus π is n-quasi-saturated and, since it is integral it is also saturated.

To finish the proof, we must show that the pushout of an n-quasi-saturated
homomorphism is again n-quasi-saturated. We shall need the following lemma,
which asserts that the functors θ 7→ θn and θ 7→ hθ,n are compatible with
pushouts.

Lemma 4.8.6. Consider a cocartesian diagram in the category of integral
monoids):

Q
φ′ - Q′

P

θ

6

φ - P′.

θ′
6

Then for every n, the following squares, in which φθ is induced by functoriality,
are also cocartesian; that is, θ′n is the pushout of θn along φ, and hθ′,n is the
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pushout of hθ,n along φθ:

Qθ,n
φθ- Q′θ′,n Q′θ′,n

hθ′,n - Q′

P

θn

6

φ - P′

θ′n

6

Qθ,n

φθ

6

hθ,n - Q.

φ′
6

Proof In the diagram below, the two squares are cocartesian by construction.
It follows that the outer rectangle is also cocartesian:

Q
φ′ - Q′

nθ′- Q′θ′,n

P

θ

6

φ - P′

θ′
6

nP′ - P′.

θ′n

6

In the next diagram, the square on the left is cocartesian by construction, and,
φθ is by definition the unique homomorphism such that φθ ◦ nθ = nθ′ ◦ φ′ and
φθ ◦ θn = θ′n ◦ φ:

Q
nθ - Qθ,n

φθ - Q′θ,n

P

θ

6

nP - P

θn

6

φ - P′.

θ′n

6

Thus the outer rectangles in both diagrams are the same. We conclude that the
outer rectangle in the second rectangle is also cocartesian and, since the square
on the left is cocartesian, so is the square on the right. Now we claim that there
is a commutative diagram:
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P′
θ′n- Q′θ′,n

hθ′,n - Q′

P

φ

6

θn - Qθ,n

φθ

6

hθ,n - Q

φ′
6

P

nP

6

θ - P.

nθ

6

nQ

-

The outer rectangle is just the original cocartesian square, and we have just
seen that the square on the top left is also cocartesian. It follows that the square
on the top right is also cocartesian. �

The stability of n-quasi-saturation under pushouts follows. Indeed, if θ is n-
saturated, hθ,n is exact, and hence so is its pushout hθ′,n. Since the integrality of
homomorphisms is also preserved by pushouts, the pushout of an n-saturated
homomorphism is also n-saturated. �

Proposition 4.8.7. If m and n are natural numbers and θ : P → Q is m-quasi-
saturated and n-quasi-saturated, then it is also mn-quasi-saturated. Conversely,
if θ is mn-quasi-saturated and P is m-saturated, then θ is n-quasi-saturated.
Thus θ is quasi-saturated if and only if it is p-quasi-saturated for every prime
number p.

Proof Consider the following diagram:

Q
mθ- Qθ,m

hθ,m - Q

Q
nθ -

nQ

-

Qθ,n

hθ,n

6

f - Qθ,nm

h′θ,n

6

hθ,nm

-

P

θ

6

nP - P

θn

6

mP - P.

θnm

6

Here f is the unique homomorphism such that f ◦ nθ = (nm)θ and f ◦ θn =

θnm ◦mP, and h′θ,n is the unique homomorphism such that h′θ,n ◦ (nm)θ = mθ ◦nQ

and h′θ,n ◦ θnm = θm. The bottom square on the left and the bottom rectangle are
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cocartesian by construction, and it follows that the square at the bottom right
is also cocartesian. The large rectangle on the right is cocartesian, and so it
follows that the top square on the right is cocartesian.

Now suppose that θ is n and m-quasi-saturated, i.e., that hθ,n and hθ,m are
exact. Since hθ,n is exact, it follows that its pushout h′θ,n is exact and, since hθ,m
is exact, it follows that the composition hθ,nm = hθ,m ◦ h′θ,n is exact.

Suppose on the other hand that θ is mn-quasi-saturated and that P is m-
saturated. Then mP is exact and hence so is its pushout f . By hypothesis hθ,nm

is exact, and hence so is hθ,nm ◦ f = hθ,m ◦mθ ◦hθ,n. By (2) of Proposition 4.2.1,
it follows that hθ,n is also exact. �

Proposition 4.8.8. Let θ : P → Q be a homomorphism of integral monoids
sending a face F of P to a face G of Q and let n be a natural number.

1. The localization maps λF : P→ PF and λG : Q → QG are n-saturated, as
are the quotient maps P→ P/F and Q→ Q/G.

2. If θ is n-quasi-saturated (resp. saturated), then so also are the maps
PF → QG and P/F → Q/G.

Proof We claim that the diagram

PF
nPF - PF

P

λF

6

nP - P

λF

6

is cocartesian in the category of integral monoids. Indeed, if α : PF → R and
β : P→ R are homomorphisms with α ◦ λF = β ◦ nPF then, for every f ∈ F,

nβ( f ) = β(nPF ( f )) = α(λF( f )).

Thus nβ( f ) is a unit in R, hence so is β( f ), and hence β factors uniquely through
PF . This implies that the map hλF in the diagram in Definition 4.8.2 is an
isomorphism, hence exact. It follows that λF is n-quasi-saturated and hence
saturated, since it is integral by (3) of Proposition 4.6.3. This proves the first
part of (1), and the second part follows from (4) of Proposition 4.8.5.
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Now suppose θ : P→ Q is n-quasi-saturated. The square in the diagram

PF
θG - QF

λ - QG

P

λF

6

θ - Q

6

λG

-

is cocartesian, and thus θG is the pushout of an n-quasi-saturated homo-
morphism and hence is n-quasi-saturated by (1) of Proposition 4.8.5. The pre-
vious paragraph implies that the localization map λ is n-quasi-saturated, and
hence so is the composite λ ◦ θG. �

We can now explain how a saturated homomorphism of saturated monoids
preserves the saturation of its target under pushouts.

Proposition 4.8.9. Let n be a positive integer and let θ : P → Q be a homo-
morphism of n-saturated monoids. The following conditions are equivalent.

1. The homomorphism θ is n-quasi-saturated.
2. For every homomorphism φ : P→ P′ from P to an n-saturated monoid, the

pushout Q′ := P′ ⊕P Q in the category of integral monoids is n-saturated.
3. The monoid Qθ,n in the diagram of Definition 4.8.2 is n-saturated.

Proof If θ is n-quasi-saturated and φ : P → P′ is any homomorphism
of n-saturated monoids then, by Proposition 4.8.5, the pushout morphism
θ′ : P′ → Q′ is again n-quasi-saturated. Since P′ is n-saturated, it then follows
from Proposition 4.8.4 that Q′ is again n-saturated. This shows that (1) implies
(2), and the implication of (3) by (2) is trivial. Condition (3) means that the
homomorphism nQθ

is exact. Since nQθ
= nθ ◦ hθ,n, it follows that hθ,n, is also

exact, by (2) of Proposition 4.2.1. �

Corollary 4.8.10. Let θ : P → Q be a homomorphism of saturated monoids.
The following conditions are equivalent.

1. The homomorphism θ is quasi-saturated.
2. For every homomorphism φ : P→ P′ from P to a saturated monoid P′, the

integral pushout P′ ⊕P Q is saturated.
3. For every natural number n, the monoid Qθ,n in Definition 4.8.2 is saturated.
4. For every prime number p, the monoid Qθ,p in Definition 4.8.2 is saturated.

Proof The equivalence of conditions (1) through (3) follows from Proposi-
tion 4.8.9, and the equivalence of (1) and (4) follows from this and Proposi-
tion 4.8.7 �
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The examples at the beginning of this section suggest that the failure of a
homomorphism θ to be quasi-saturated is related to the possible existence of
torsion in Cok(θgp). This is indeed the case, but one must dig a little deeper, as
we shall see in Proposition 4.8.11 and Theorem 4.8.14.

Proposition 4.8.11. Let θ : P → Q be a quasi-saturated homomorphism of
fine saturated monoids. Then for every face G of Q, the cokernel of the map
Pgp → (Q/G)gp is torsion free.

Proof By Proposition 4.8.8, the induced map P/θ−1(G)→ Q/G is also quasi-
saturated, so we may assume without loss of generality that P and Q are sharp
and that θ is local. Let π be the natural projection Q→ Cok(θgp), let Γ be the
torsion subgroup of Cok(θgp), and let Q′ := {q ∈ Q : π(q) ∈ Γ}. Then θ factors:
θ = φ ◦ θ′, where θ′ : P→ Q′ and φ : Q′ → Q. Since φ is exact, it follows from
Proposition 4.8.5 that θ′ is also quasi-saturated. Furthermore, Γ = Cok(θ′gp).
Thus we may as well assume that Q′ = Q. In other words, we may assume that
θ is local, that P and Q are sharp, and that Cok(θgp) is a finite group Γ.

Now consider the following diagram:

Q
(id, π)- Q ⊕ Γ

P

θ

6

θ - Q.

(id, 0)

6

The associated diagram in the category of abelian groups is cocartesian, and
so the integral pushout Q ⊕P Q can be identified with the submonoid of Q ⊕ Γ

generated by the images of (id, π) and (id, 0). Since Γ ⊆ Qgp⊕Pgp Qgp is torsion,
it is contained in the (Q ⊕P Q)sat. But θ is quasi-saturated, so Corollary 4.8.10
implies that Q⊕P Q is saturated. This means that every element (q, g) of Q⊕ Γ

can be written as (q1 + q2, π(q1)) for some q1, q2 ∈ Q. When q = 0 this is only
possible when q1 = q2 = 0, since Q is sharp. Thus Γ = 0. �

Corollary 4.8.12. A saturated local homomorphism θ : P → Q of fine, sharp,
and saturated monoids of the same dimension is an isomorphism.

Proof Since θ is local and integral it is exact, and since it is also sharp, θgp

is injective. Since P and Q are sharp, the ranks of Pgp and Qgp are equal
to their respective dimensions and hence to each other, and it follows that
Γ := Cok(θgp) is a finite group. By the previous result, Γ = 0, so θgp is an
isomorphism. Since θ is exact, it also is an isomorphism. �

Our next goal is to characterize quasi-saturated homomorphisms more ex-
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plicitly by giving an analog of the condition I1 for integral homomorphisms in
Definition 4.6.2.

Proposition 4.8.13. Let θ : P → Q be a homomorphism of integral monoids
and let n be a positive integer. If P and Q are n-saturated, then θ is n-quasi-
saturated if and only if it satisfies the condition:

QSn. Whenever p ∈ P and q ∈ Q satisfy θ(p) ≤ nq, there exists a p′ ∈ P such
that p ≤ np′ and θ(p′) ≤ q, where in each case the inequality sign means is to
be taken with respect to the standard ordering within the respective monoid.

More generally, the following statements hold.

1. If P is n-saturated and θ is n-quasi-saturated, then θ satisfies condition QSn.

2. If Q is n-saturated and θ satisfies condition QSn, then θ is n-quasi-saturated.

Proof We use the notation of the diagram in Definition 4.8.2, recalling that
Qgp
θ,n is the pushout of the corresponding diagram of abelian groups and that

Qθ,n is the image of Q ⊕ P in Qgp
θ,n. Suppose that P is n-saturated, that θ is

n-quasi-saturated, and that p ∈ P and q ∈ Q with θ(p) ≤ nq. Then z :=
nθ(q) − θn(p) ∈ Qgp

θ and hθ(z) = nq − θ(p) ∈ Q. Since by hypothesis hθ is
exact, it follows that z ∈ Qθ,n. Hence there exist p′′ ∈ P and q′′ ∈ Q such
that nθ(q′′) + θn(p′′) = nθ(q) − θn(p). Then there exists an x ∈ Pgp such that
q − q′′ = θgp(x) and p′′ + p = nx. Since P is n-saturated, it follows that in fact
p′ := x ∈ P and p ≤ np′. Since q′′ = −θ(p′) + q ∈ Q, it also follows that
q ≥ θ(p′). Thus condition QSn is satisfied.

Now suppose that Q is n-saturated, that θ satisfies condition QSn, and that
z ∈ Qgp

θ,n is such that hgp
θ,n(z) ∈ Q. Choose x ∈ Pgp and y ∈ Qgp such that

z = ngp
θ (y) + θ

gp
n (x), and write x = p1 − p2 with pi ∈ P. Letting x′ := x − np1 =

−(p2 + (n − 1)p1) and y′ := y + θ(p1), we see that it is still true that z =

ngp
θ (y′) + θ

gp
n (x′). Changing notation, we may assume without loss of generality

that p := −x ∈ P. Then ny = hθ,n(z) + θ(p) ∈ Q and, since Q is n-saturated, it
follows that y ∈ Q and ny ≥ θ(p). Then, by condition QSn, there exists a p′ ∈ P
such that p ≤ np′ and θ(p′) ≤ y. Then p′′ := np′ − p ∈ P, q := y − θ(p′) ∈ Q,
and

z = nθ(y) + θn(−p)
= nθ(y − θ(p′)) + θn(np′ − p)
= nθ(q) + θn(p′′) ∈ Qθ,n.

This shows that hθ is exact. �
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We can now state and prove the main structure theorem for saturated homo-
morphisms. Recall from Theorem 4.7.7 that a homomorphism of fine saturated
monoids is Q-integral if and only if it is locally exact.

Theorem 4.8.14. Let θ : P → Q be a locally exact homomorphism of toric
monoids. Then the following conditions are equivalent:

1. θ is saturated.

2. For every q ∈ Spec Q such that q and p := θ−1(q) have the same height, the
homomorphism θq : Pp → Qq is an isomorphism.

3. θ is integral and, for every q ∈ Spec Q such that both q and p := θ−1(q) have
height one, the homomorphism θq : Pp → Qq is an isomorphism.

4. For every face G of Q, the cokernel of the homomorphism

Pgp → Qgp/Ggp

is torsion free.

5. The ideal Kθ := θ(θ−1(Q+)) + Q is a radical ideal.

6. For every maximal θ-critical face G of Q, the cokernel of the homo-
morphism Pgp → Qgp/Ggp is torsion free.

If also θ is local and P and Q are sharp, then these conditions are also equivalent
to

7. The summation map σ : P × (Q \
√

Kθ)→ Q is bijective.

Proof Recall from Proposition 4.8.7 that θ is saturated if and only if θ is
saturated. Furthermore, conditions (2) through (6) also hold for θ if and only if
they hold for θ. Thus without loss of generality we may assume that P and Q
are sharp. Let F := θ−1(0). Then θ factors:

θ = P
π- P/F

θ′- Q,

and π is saturated by Proposition 4.8.8. Thus it follows from Propositions 4.8.5
and 4.6.3 that θ is saturated if and only if θ′ is saturated. Furthermore, proper-
ties (2)–(6) are true for θ if and only if they are true for θ′. Thus we may also
assume that θ is local, and we are reduced to proving that (1)–(7) are equivalent
assuming that P and Q are sharp and that θ is local. In this case we shall prove
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the implications shown in the following diagram:

(1)

(2)
�

(3)
?

(4)

-

(5) -
�

(6) -
�

-

(7) - (1).

The proofs follow.
(1) implies (2) and (3): If θ is saturated, then by Proposition 4.8.8 so is

θq. Since Pp and Qq have the same dimension, it then follows from Corol-
lary 4.8.12 that θq is an isomorphism.

(1) implies (4): This is an immediate consequence of Proposition 4.8.11.
(2) implies (6): If G is a face of Q and q := Q \ G, then the height of q is

the dimension of Q/G. If G is θ-critical then p := θ−1(q) = P+, so the height
of p is the dimension of P. If G is a maximal θ-critical face, then Lemma 4.7.9
implies that dim P = dim Q/G, since θ is locally exact. Thus (2) implies that
P→ Q/G is in fact an isomorphism.

(3) implies (5): Suppose that (3) holds and that q ∈ Q \ Kθ. We must show
that q <

√
Kθ, i.e., that if n ∈ Z+, p0 ∈ P, and q0 ∈ Q with nq = θ(p0)+q0, then

necessarily p0 ∈ P∗. Since P is fine and saturated, it is enough to prove that,
for every facet F of P, p0 maps to a unit in PF , by Corollary 2.4.5. Let us first
observe that λF(q) < KθF ⊆ QF . To see this, suppose that p1 ∈ PF and q1 ∈ QF

with λF(q) = θ(p1) + q1. Choose f ∈ F such that f + p1 ∈ P and θ( f ) + q1 ∈ Q,
so that we have, after replacing p1 by f + p1, that θ( f ) + q = θ(p1) + q1, where
f ∈ F, p1 ∈ P, and q1 ∈ Q. Since θ is integral, there exist q′ ∈ Q and p′, p′1 ∈ P
such that q = θ(p′) + q′, q1 = θ(p′1) + q′, and f + p′ = p1 + p′1. Since q < Kθ,
necessarily p′ ∈ P∗, and it follows that p1 ∈ F, so λ(p1) ∈ (PF)∗, as desired.
Let νp : P → N be the valuation of P associated with the facet F, and choose
p ∈ P such that νp(p) = 1, i.e., so that p generates the maximal ideal (PF)+ of
PF . Then in particular λF(q) does not belong to the ideal of QF generated by
θF(p), i.e., λF(q) − θF(p) < QF . Since QF is saturated, Corollary 2.4.5 tells us
that there is some height one prime q of Q such that νq(λF(q)) < νq(θF(p)).
Then θ−1(q) = p, and assumption (3) implies that νq(p) = νp(p) = 1, and
hence that νq(q) = 0. But then also νp(p0) = νq(p0) = 0, as required.

(5) implies (6): Let G be a maximal θ-critical face of Q and consider the
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homomorphism θG : P → Q/G. Since P is saturated and θ is locally exact,
Lemma 4.7.9 implies that this homomorphism is exact and Q-surjective. As-
sumption (5) implies that KθG

+ Q/G is a radical ideal. Then Proposition 4.3.13
implies that θG is strict, hence an isomorphism, since P is sharp.

(6) implies (7). Since θ is locally exact, Theorem 4.7.2 implies that the map-
ping on cones induced by σ is bijective. Thus for each q ∈ Q there exist n > 0,
p ∈ P, and g ∈ Q \

√
Kθ such that nq = g + p. Then 〈g〉 is θ-critical and

hence contained in a maximal θ-critical face G. Let π : Q→ Q/G be the natu-
ral projection. Since the cokernel of Pgp → Q/Ggp is torsion free, π(q) ∈ Pgp,
and since θ is locally exact and G ∩ P = {0}, in fact π(q) lies in the image of
P. Thus there exist p′ ∈ P and g1, g2 ∈ G such that p′ + g2 = q + g1. Then
np′ + ng2 = nq + ng1 = g + p + ng1. Hence np′ − p = ng1 + g − ng2, and
since Pgp ∩ Ggp = {0}, p = np′ and g = ng2 − ng1. Since G is saturated,
g′ := g2 − g1 ∈ G, and we can write nq = ng′ + np′. Since Q is sharp and satu-
rated, it follows that q = g′+ p′. This proves that the map σ : P× (Q\Kθ)→ Q
is surjective. The injectivity of σ follows from the case of cones, since Pgp and
Qgp are torsion free.

(4) implies (6): This implication is obvious.
(7) implies (1): Let us check first that θ is integral. Suppose that qi ∈ Q and

pi ∈ P with θ(p1) + q1 = θ(p2) + q2. Write qi = θ(p′i) + gi, with p′i ∈ P and
gi ∈ Q \

√
Kθ. Then θ(p1 + p′1) + g1 = θ(p2 + p′2) + g2, and by the injectivity

of σ, p′ := p1 + p′1 = p2 + p′2 and q′ := g1 = g2. Then qi = θ(p′i) + q′, with
p1 + p′1 = p2 + p′2, as required. Next we verify that for every positive integer
n, the condition QSn is satisfied. Suppose p ∈ P and q ∈ Q with θ(p) ≤ nq,
say nq = θ(p) + q1 Write q = θ(p′) + g and q1 = θ(p′1) + g1 with p′, p′1 ∈ P
and g, g1 ∈ Q \

√
Kθ. Then θ(np′) + ng = nq = θ(p + p1) + g1. It follows that

np′ = p + p1, so indeed θ(p′) ≤ q and p ≤ np′. �

Example 4.8.15. Let Q := N ⊕ N and let P be the submonoid generated by
(2, 0), (1, 1), (0, 2). Then the inclusion P→ Q satisfies (3) with “Q-integral” in
place of “integral,” but it does not satisfy (5).

Corollary 4.8.16. A locally exact homomorphism of fine saturated monoids
which is n-quasi-saturated for some n > 1 is in fact saturated.

Proof Let θ : P → Q be such a homomorphism, let Iθ := θ−1(Q+) and let
Kθ := Iθ + Q. Since Q+ is a radical ideal, the same is true of Iθ. Suppose that
q ∈ Q and nq ∈ Kθ. Then there is some p ∈ Iθ such that θ(p) ≤ nq, and
by condition QSn, there is some p′ ∈ P such that θ(p′) ≤ q and p ≤ np′.
Then p′ ∈ Iθ, and consequently q ∈ Kθ. It follows by induction on k that,
for every positive integer k, nkq ∈ Kθ implies that q ∈ Kθ. Now if m is any
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positive integer, we can choose k so that nk ≥ m. and then mq ∈ Kθ implies that
nkq ∈ Kθ and hence q ∈ Kθ. Thus Kθ is a radical ideal. Since θ is locally exact,
Theorem 4.8.14 implies that θ is saturated. �

The following result gives a characterization of saturated homomorphisms
in terms of the associated map of toric varieties.

Corollary 4.8.17. Let θ : P → Q be an integral and local homomorphism of
fine saturated monoids. Assume that P is sharp. Then the following conditions
are equivalent.

1. θ is saturated.
2. For every field k in which the order of the torsion part of Qgp is invertible,

k[Q,Kθ] is reduced.
3. There exists a field such that k[Q,Kθ] satisfies R0.

Proof If θ is integral then by Theorem 4.8.14, it is saturated if and only if
Kθ is a radical ideal. If k is a field and the order of the torsion part of Qgp

is invertible in k, Proposition 3.5.1 tells us that this is the case if and only
if the ring k[Q,Kθ] is reduced. Thus (1) and (2) are equivalent. If (2) holds,
there is a field such that k[Q,Kθ] is reduced. Then the local ring at each of
its generic points is a field, hence regular, so k[Q,Kθ] satisfies condition R0.
Thus (2) implies (3). Suppose that (3) holds. Since P→ Q is integral and local
and P is sharp, it is injective, and hence by Remark 4.6.6 the homomorphism
k[P] → [Q] is flat. By Theorem 3.4.3, k[Q] and k[P] are Cohen–Macaulay,
and it follows from [27, 6.3.2] that the ring k[Q,Kθ] of the fiber over the vertex
of AP is also Cohen–Macaulay. In particular it satisfies condition S1, and so
injects into the product of the local rings at its generic points. The condition
R0 says that these rings are regular, hence reduced, and it follows that k[Q,Kθ]
is also reduced. Then by Proposition 3.5.1 it follows that Kθ is a radical ideal
and hence θ is saturated. �

4.9 Saturation of monoid homomorphisms

The previous section showed that saturated homomorphisms of monoids are
relatively easy to understand. The goal of this section is to show how one
can often reduce to this case. We shall see that, given a locally exact homo-
morphism of fine saturated monoids θ : P → Q, the homomorphism obtained
by base change along nP in the category of saturated monoids is saturated, for
suitable n. In geometric terms, this process can be thought of as adjoining nth
roots of the parameters in the base and then normalizing. As Theorem 4.8.14
suggests, the key is to control, for each face G of Q, the torsion subgroup
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ΓG of the cokernel of the homomorphism θ
gp
G associated to the monoid homo-

morphism:

θG : P
θ- Q

πG- Q/G.

Theorem 4.9.1. Let θ : P → Q be a locally exact homomorphism of fine sat-
urated monoids. Let n be a positive integer which is divisible by the order of
ΓθG for every θ-critical face G of Q, and form the diagram

Q
nθ - Qθ,n

φ - Q′

P

θ

6

nP - P,

θn

6

θ′n

-

where Q′ := Qsat
θ,n. Then θ′n is saturated and, in particular, integral.

Proof Our first step is to reduce to the case in which θ is local. Let

P
λ- Ploc θloc

- Q

be the factorization of θ through the localization of P by θ−1(Q∗) and consider
the diagram:

Q
nθloc - Qθloc

n

Ploc nPloc-

θloc
-

Ploc

θloc
n

-

P

λ

6

nP -

-

P.

λ

6
φ

-

We saw in the proof of Proposition 4.8.8 that the bottom square is cocartesian,
and the top rectangle is cocartesian by construction. It follows that the back
rectangle is also cocartesian and hence the map φ can be identified with θn.
Proposition 4.8.8 shows that λ is saturated, and hence θ′n is saturated if and
only if θloc

n
′ is saturated. Thus we may and shall assume that θ is local.
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Next we reduce to the case in which P and Q are sharp. Form the diagram

Q
πQ - Q

Qθ,n

nθ

? πQθ,n- Qθ,n �
γ

α

�

α

-

Qθ,n

nθ

?

P

θn

6

πP
-

β

-

P.

θn

6
β

�

Here the solid horizontal and vertical arrows come from the constructions, and
the arrows α and β are the compositions making the solid triangles commute.
Then α and β factor as shown, through Q and P respectively. One checks easily
that α ◦ θ = β ◦ nP so there is a unique homomorphism γ making the triangles
on the right commute. There is also a unique homomorphism δ : Qθ,n → Qθ,n

such that δ ◦ nθ = nθ ◦ πQ and δ ◦ θn = θn ◦ πP. The homomorphism nP is
exact because P is saturated, and θ is local by assumption, so it follows from
Proposition 4.2.5 that the coproduct Qθ,n is also sharp. Thus δ factors through
a homomorphism δ : Qθ,n → Qθ,n, which is easily seen to be inverse to γ. Then
we find homomorphisms

Qsat
θ,n

- (Qθ,n)sat �γ
sat

(Qθ,n)sat.

The left arrow is an isomorphism by (5) of Proposition 1.3.5, and the right
arrow is an isomorphism because γ is an isomorphism. We now have a com-
mutative diagram:

Qsat
θ,n

- Qsat
θ,n

�- (Qθ,n)sat � (Qθ,n)sat

P

θ′n

6

- P

θ′n

6

id - P.

θn
′

6

θ
′

n

-

Since a homomorphism φ is saturated if and only if φ is saturated, we see that
θ′n will be saturated if θn

′
is saturated.

The key idea of the proof is to relate the torsion groups Γθ to the splitting of
the homomorphism θgp.

Lemma 4.9.2. Let θ : P→ Q be an injective homomorphism of fine monoids.
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1. If the torsion subgroup Γθ of Qgp/Pgp vanishes, then θgp is split.
2. If θgp is split, then Γθ is contained in the image of (Qsat)∗.
3. If θgp is split and Q∗ is torsion, then the cokernel of the homomorphism

Pgp → Qsatgp
is torsion free.

Proof Since Qgp/Pgp is a finitely generated abelian group, it is free if it is
torsion free. In this case the exact sequence

0→ Pgp → Qgp → Qgp/Pgp → 0

splits. This proves (1).
Suppose conversely that θgp is split. Then every torsion element of Qgp/Pgp

lifts to a torsion element of Qgp. Such elements are contained in (Qsat)∗, proving
(2).

Now suppose that θgp is split and that Q∗ is a torsion group. If u ∈ (Qsat)∗,
there is some positive n such that both nu and n(−u) belong to Q. Then in fact
nu ∈ Q∗ and hence has finite order. Thus (Qsat)∗ is also a torsion group. Let P′

be the image of P in Qsat, and consider the diagram

(Qsat)∗
a - K

Pgp θgp
- Qgp

?
- Qgp/Pgp

?
- 0

P′gp
?

θ′gp
- (Qsat)gp

?
- (Qsat)

gp
/P′gp

c

?
- 0.

Here K is by definition the kernel of c. Thus the columns are exact and the bot-
tom vertical arrows are surjective. It follows from the snake lemma that a is sur-
jective and, since (Qsat)∗ is a torsion group, so is K. Thus the torsion subgroup
Γθ of Qgp/Pgp maps surjectively to the torsion subgroup Γ of (Qsat)

gp
/P′gp. If

θgp is split then, by (2), (Qsat)∗ maps surjectively to Γθ. Since (Qsat)∗ maps to
zero in (Qsat)

gp
/P′gp, it follows that Γ = 0. �

Now we are return to the proof of Theorem 4.9.1, under the assumption that
θ is local and that P and Q are sharp. Since θ is locally exact, the same is true
for θn, by (6) of Proposition 4.2.1. Since Qθ,n → Q′ induces an isomorphism
of cones and P is saturated, the homomorphism θ′ is also locally exact. Thus,
according to Theorem 4.8.14, it is enough to prove that for every θ′-critical
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face G′ of Q′ the torsion subgroup Γθ′,G′ of (Q′/G′)gp/Pgp vanishes. Let G′ be
such a face and let and Gθ := G′ ∩ Qθ,n, let G := n−1

θ (Gθ), and let Gn := nθ(G).
Then Gn ⊆ Gθ and, since θn is small, statement (4) of Proposition 4.3.9 implies
that Gn generates Gθ as a face of Qθ,n. In fact we shall see that Gn is already
a face and hence equal to Gθ. Notice that nθ is exact because it is the pushout
of the exact homomorphism nP and, since G is an exact submonoid of Q, it
follows that its image Gn is an exact submonoid of Qθ,n.

Since G′ is θ′-critical, G is θ-critical. Consider the following diagram:

Q/G
ψ- Qθ,n/Gn - Q′/G′

Q

π

6

nθ - Qθ,n

πn

6

π′n

-

P

θ

6

nP - P.

θn

6

(4.9.1)

Here the bottom square is cocartesian in the category of integral monoids by
construction, and one checks immediately that the top square is also cocarte-
sian in this category. It follows that the exterior rectangle is cocartesian and
hence Cok(πgpθgp) identifies with Cok(πgp

n θ
gp
n ). The homomorphism nP is nec-

essarily local, and the homomorphism πθ is exact because θ is locally exact and
G is θ-critical. Since P and Q/G are sharp, it follows from Proposition 4.2.5
that Qθ,n/Gn is also sharp. Since Gn is exact in Qθ,n, Proposition 1.4.2 implies
that Gn is a face of Qθ,n. Note that, by (5) of Proposition 1.3.5, we have the
following isomorphisms:

Q′/G′ = Q′G′ = (Qθ,n Gn )sat � (Qθ,n/Gn)sat.

The exact sequence

0→ Pgp → (Q/G)gp → Qgp/(Ggp + Pgp)→ 0

defines an element ξ of Ext1(Qgp/(Ggp + Pgp), Pgp). Because the rectangle of
diagram 4.9.1 is cocartesian, the exact sequence

0→ Pgp → (Qθ,n/Gn)gp → Qgp
θ,n/(G

gp
n + Pgp)→ 0

corresponding to the right vertical arrow is obtained by pushout along nP of
the left vertical arrow. Thus the corresponding extension class ξn is nξ. Since
the order of the torsion subgroup of (Q/G)gp/Pgp divides n, this extension
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class ξn = nξ vanishes. Thus the homomorphism : Pgp → (Qθ,n/Gn)gp splits.
Since (Qθ,n/Gn)gp is sharp, Lemma 4.9.2 implies that the cokernel of the homo-
morphism

Pgp → (Qθ,n/Gn)satgp
= (Q′/G′)gp

is torsion free. This completes the proof. �

4.10 Homomorphisms of idealized monoids

In this section we discuss some analogs of exactness, integrality, and saturation
in the context of idealized monoids. The material in this section is somewhat
provisional.

Recall that if (Q, J) is an idealized monoid, the prime ideals of (Q, J) are by
definition the prime ideals of Q that contain J, and the faces of (Q, J) are the
faces of Q that do not meet J. Recall also that if R is a ring, the monoid algebra
R[Q, J] is the quotient of R[Q] by the ideal R[J] of R[Q], and that the set Q \ J
is a basis for R[Q, J]. Note that if a + b belongs to Q \ J, then a and b belong
to Q \ J.

Definition 4.10.1. A homomorphism θ : (P, I) → (Q, J) of idealized monoids
is:

1. local if it takes the closed point of Spec(Q, J) (if there is one) to the closed
point of Spec(P, I);

2. exact (resp. integral, saturated) if θ−1(J) = I and for every face P′ of (P, I);
the restriction θ′ of θ to P′ is exact (resp. integral, saturated),

3. strict if the induced homomorphisms P→ Q and I → J are isomorphisms.

Care is required with these notions, which do not always behave consistently
with their non-idealized analogs. For example, if F is a face of a monoid P,
the localization homomorphism λF : P → PF is integral, but the analogous
result does not hold for idealized monoids. For example, let P := N ⊕ N and
let I := N+ ⊕ N+ be its interior ideal. Then F := (0,N) is a face of (P, I), and
(PF , IF) = (N ⊕ Z,N+ ⊕ Z), so I , λ−1

F (IF) = N+ ⊕ N. On the other hand, with
the definitions we have made here, an exact homomorphism is local (as we
shall see in the next proposition), and a local integral homomorphism is exact
(as follows immediately from the definitions and Proposition 4.6.3).

Proposition 4.10.2. Let θ : (P, I) → (Q, J) be a homomorphism of idealized
monoids. Consider the following conditions.

1. θ : (P, I)→ (Q, J) is exact.
2. Spec θ : Spec(Q, J)→ Spec(P, I) is surjective.
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Either condition implies that θ is local. Furthermore, (1) implies (2), and the
converse holds if P and Q are fine and saturated and J and K are radical ideals.

Proof To prove that θ is local, we may assume that J is a proper ideal of Q,
since otherwise the statement is vacuous. Suppose that (1) is satisfied and that
p ∈ θ−1(Q∗). Then θ(np) ∈ Q∗ for every n ∈ N and, since θ maps I to the
proper ideal J, np < I for every n. It then follows from Corollary 1.4.3 that
there is a prime ideal p of P containing I such that p < p. Then P′ := P \ p is
a face P′ of (P, I) containing p. By hypothesis, θ′ : P′ → Q is exact, hence by
Proposition 4.2.1 it is local. It follows that p is a unit of P′ and hence also of P.
Thus θ is local. Next suppose that θ satisfies condition (2). Then there is some
prime q of Spec(Q, J) such that θ−1(q) = P+, and it follows that θ−1(Q+) = P+

also, so again θ is local.
Next we prove that (1) implies (2). Suppose that (1) holds and that F is a face

of (P, I). Let us check that that θF : (PF , IF)→ (QF , JF) is still exact. If p ∈ PF

then there exists some f ∈ F such that p+ f ∈ P and, if θF(p) ∈ JF , there exists
some f ′ ∈ F such that θ(p + f ) + θ( f ′) ∈ J. Then θ(p + f + f ′) ∈ J and, since
θ is exact, it follows that p + f + f ′ ∈ I and hence that p ∈ IF . Moreover, if
P′ is a face of (P, I), then P′F → QF is exact, by Proposition 4.2.1. This proves
that θF is exact and hence local, as we have already seen. Furthermore, since θ
is an exact homomorphism of idealized monoids, I = θ−1(J) and J ∩ θ(F) = ∅,
since I ∩ F = ∅. It follows that JF is a proper ideal of QF and hence that (QF)∗

is a face of (QF , JF). Its inverse image G in Q is a face (Q, J), and θ−1(G) = F
because θF is local. This proves the surjectivity of Spec θ. Conversely, suppose
that (2) holds and that P and Q are fine and saturated. Let F be a face of (P, I),
and choose a face G of (Q, J) lying over F. Every face F′ of F is a face of
(P, I), so there is a face G′ of (Q, J) lying over F′. Then G ∩G′ is a face of G
lying over F′. This shows that Spec G → Spec F is surjective. Since F and G
are fine and saturated, it follows from Proposition 4.2.2 that F → G is exact.
Since G is a face of Q, it is exact in Q, by (3) of Theorem 2.1.17, and it follows
that F → Q is also exact. Now, since I is a radical ideal, it is the intersection of
all the primes p of Spec(P, I) and, since each such prime comes from a prime
of Q containing J, in fact I = θ−1(J). �

Proposition 4.10.3. Let θ : P→ Q be an exact morphism of integral monoids,
let I be an ideal of P, and let J be the ideal of Q generated by the image of I.
Then θ : (P, I)→ (Q, J) is exact.

Proof Suppose that p ∈ θ−1(J). Then there exists an element q of Q and an
element p′ of J such that θ(p) = q + θ(p′). Thus θgp(p− p′) ∈ Q and, since θ is
exact, p − p′ ∈ P. Since p′ ∈ J, this implies that p ∈ J. �
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Definition 4.10.4. A homomorphism of idealized monoids θ : (P, I) → (Q, J)
is:

1. locally exact if for every face G of (Q, J), the homomorphism of idealized
monoids

(Pθ−1(G), Iθ−1(G))→ (QG, JG)

is exact,
2. critically exact if for every face G of (Q, J) such that θ−1(G) = P∗, the

homomorphism of idealized monoids

(P, I)→ (QG, JG)

is exact.

Lemma 4.10.5. Let θ : (P, I) → (Q, J) be a local and critically exact homo-
morphism of fine saturated idealized monoids.

1. For every face G of Spec(Q, J), the induced homomorphism θ−1(G)→ G is
locally exact.

2. The homomorphism θ : (P, I)→ (Q, J) is locally exact and Q-integral.

Proof There is nothing to check if J = Q, so we assume that J is a proper
ideal. To prove (2), let G be a face of (Q, J), let F := θ−1(G), and let φ : F → G
be the induced homomorphism. Since F → P and P → Q are local, so is φ.
Recall that a face G′ of G is called φ-critical if φ−1(G′) = F∗. Such a G′ is also a
face of Q; let us note that it is also automatically θ-critical, because F = θ−1(G).
Furthermore, since G∩J = ∅ and G′ ⊆ G, necessarily G′∩J = ∅, so G′ is a face
of (Q, J). The assumption that θ is critically exact says that (P, I)→ (QG′ , JG′ )
is exact, and since F is a face of (P, I), this says in particular that the composite
F → QG′ is exact. Then F → GG′ is also exact. Thus φ : F → G is is critically
exact, and hence by Theorem 4.7.7 it is locally exact. This proves (1).

Statement (2) is more subtle. Since θ is local, Q∗ is a θ-critical face of
(Q, J) and, since θ is critically exact, it is exact. In particular, it follows that
I = θ−1(J). Now, to prove that θ is locally exact, let G be a face of (Q, J) and let
F := θ−1(G). We claim that the induced homomorphism of idealized monoids

θF : (PF , IF)→ (QG, JG)

is exact. First we show that its restriction to any face of (PF , IF) is exact. Such a
face is necessarily the localization of a face P′ of (P, I) containing F. Suppose
that x ∈ P′gp and θgp(x) ∈ QG. Then there exists some g ∈ G with g + θ(x) ∈ Q.
According to statement (1), the homomorphism φ : F → G is locally exact, and
hence so is the induced homomorphism φ : F → G. Then by Theorem 4.7.2,
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there exist f ∈ CQ(F) and g′ CQ(G) such that G′ := 〈g′〉 is a φ-critical face of
G and g = g′ + θ( f ) ∈ CQ(G). Choose n ∈ Z+ such that ng′ ∈ G and n f ∈ F.
Thus ng + u = nθ( f ) + ng′ for some u ∈ G∗. Then (ng + u) + θgp(x) ∈ Q,
and so, replacing f by n f and g′ by ng′, we find that θgp( f + x) + g′ ∈ Q.
Then θgp( f + x) ∈ QG′ . Since G′ is φ critical and F = θ−1(G), G′ is also θ-
critical, and hence by assumption the homomorphism P′ → QG′ is exact. We
conclude that f + x ∈ P′ and hence that x ∈ P′F , as required. Finally, we claim
that the inverse image of JG in PF is IF . Suppose that p ∈ P, f ∈ F, k ∈ J,
and g ∈ G, with θ(p − f ) = k − g. Arguing as before, we can use the local
exactness of φ : F → G to show that there exists such a g that can be written as
g = g′ + θ( f ′), where 〈g′〉 is θ-critical. Then by assumption (P, I)→ (QG′ , JG′ )
is exact, and so θ−1(JG′ ) = I. Since θ(p + f ′) = θ( f ) + k − g′ ∈ JG′ , it follows
that p+ f ′ ∈ I and then that p− f ∈ IF . Thus θ : (P, I)→ (Q, J) is locally exact.
In particular, for each face F of (P, I), the induced homomorphism F → Q is
locally exact and hence Q-integral by Theorem 4.7.7. �

We now turn to an idealized version of the key structure theorem 4.7.2. If
(Q, J) is an idealized monoid and K is an Archimedean field, let

CK(Q, J) := ∪{CK(G) : G is a face of (Q, J)}.

If J is a radical ideal of Q, then the ideal CK(J) of CK(Q) it generates is also
radical, hence is the intersection of set of prime ideals which contain it, and
hence in this case CK(Q, J) = CK(Q) \ CK(J). If θ : (P, I) → (Q, J) is a local
homomorphism of idealized monoids, let Jθ be the ideal generated by J and
Kθ, where Kθ := (P+ + Q). Then

CK(Q, Jθ) = ∪{CK(G) : G is a face of (Q, J) with θ−1(G) = P∗ }.

Theorem 4.10.6. Let θ : (P, I) → (Q, J) be a local homomorphism of toric
idealized monoids, where P is sharp.

1. If θ is locally exact, the addition map induces a homeomorphism

σ : CK(P, I) ×CK(Q, Jθ)→ CK(Q, J).

For each pair (F,G), where F is a face of (P, I), and G is a θ-critical face of
(Q, J), the map σ induces an isomorphism of K-cones

CK(F) ⊕CK(G)→ CK(F) + CK(G).

2. If θ is integral and I and J are radical ideals, the addition map σ induces a
bijection

σ : (P \ I) × (Q \ Jθ)→ Q \ J.
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For each pair (F,G) as in (2), σ induces an isomorphism of monoids

F ⊕G → F + G.

Proof We begin by checking the existence of the map σ, which is not ob-
vious. Supposing that q ∈ CK(Q, Jθ) and p ∈ CK(P, J), we must check that
θ(p) + q ∈ CK(Q, J). Let G := 〈q〉 and F := 〈p〉. Then G ∩ J = F ∩ I = ∅ and
θ−1(G) = P∗ = {0}. By hypothesis, θG : (P, I) → (QG, JG) is exact, so by Pro-
position 4.10.2, Spec(θG) is surjective. Hence there exists a face G′ of (Q, J)
containing G such that θ−1(G′) = F. Then G′ contains θ(p) + q, and hence
θ(p) + q ∈ CK(Q, J), as required.

To see that σ is injective, suppose that (pi, qi) ∈ CK(P, I) × CK(Q, Jθ) for
i = 1, 2, and that q := q1 + θ(p1) = q2 + θ(p2). Let G′ be the face of CQ

generated by q; note that θ(pi) and qi belong to G′. We have seen that G′ is a
face of (Q, J), so F′ := θ−1(G′) is a face of (P, I) and θ′ : F′ → G′ is locally
exact, by (1) of Lemma 4.10.5. Since each 〈qi〉 is θ-critical and F′ = θ−1(G′),
each is also θ′-critical. Then it follows from Theorem 4.7.2 that q1 = q2 and
p1 = p2.

To see that σ is surjective, suppose that q ∈ CK(Q, J). Then there is a
face G of (Q, J) containing q, and F := θ−1(G) is a face of (P, I). Again by
Lemma 4.10.5, F → G is locally exact, and it follows from Theorem 4.7.2 that
there exist an element q′ of G with θ−1(〈q′〉) = {0} and an element p of F such
that θ(p) + q′ = q. Then (p, q′) ∈ CK(P, I) × CK(Q, P) and σ(p, q′) = q, as
required. The proof that σ is a homeomorphism is done in the same way as in
the non-idealized case, in Corollary 4.7.14.

Finally, suppose that G is a θ-critical face of (Q, J). It is clear that σ takes
CK(F) × CK(G) bijectively to CK(F) + CK(G), and that the induced map is a
morphism of K-cones.

Now suppose that θ is integral. Then it is locally exact, and the argument
above for cones applies to show that the summation map takes (P\ I)× (Q\ Jθ)
to Q \ J. If q ∈ Q \ J, let G′ := 〈q〉; since J is by assumption a radical
ideal, G′ ∩ J = ∅, i.e., G′ is a face of (Q, J). Then F′ := θ−1(G′) is a face
of (P, I), and by assumption the homomorphism θ′ : F′ → G′ induced by θ

is integral. Let K′θ be the ideal of G′ generated by F′+. Using the fact that G′

is a face of Q that does not meet J, one can easily check that K′θ = Jθ ∩ G′.
Since θ′ is integral and local and F′ is sharp, Corollary 4.6.11 implies that the
summation map induces a bijection σ′ : F′ × (G′ \ K′θ) → G′. It follows that
there exists a unique (p1, q1) ∈ F′ × (G′ \ K′θ) ⊆ (P \ I) × (Q \ Jθ) such that
q = θ(p1)+q1. Moreover, if (p2, q2) ∈ (P\ I)× (Q\ Jθ) and θ(p2)+q2 = q, then
θ(p2) and q2 necessarily belong to G′, hence p2 ∈ F′ and q2 ∈ G′ \ K′θ, hence
(p2, q2) = (p1, q1). Furthermore, if F is a face of (P, I) and G is a θ-critical



182 I The Geometry of Monoids

face of (Q, J), then the uniqueness shows that the map F ⊕ G → F + G is an
isomorphism. �

Example 4.10.7. The homomorphism

θ : (P, I) := (N, ∅)→ (Q, J) := (N ⊕ N,N+ ⊕ N+) : n 7→ (n, 0)

is exact, local, satisfies condition (1) of Lemma 4.10.5 and I = θ−1(J). However
it is not critical exact: the last condition no longer holds after localization by the
θ-critical face (0,N). The ideals I and J are radical ideals, but in this example
the addition map does not take CK(P, I)×CK(Q, Jθ) to CK(Q, J). In fact, 1 ∈ P\I
and (0, 1) ∈ Q \ Jθ, but θ(1) + (0, 1) = (1, 1) < (Q \ J).

As another application of the Theorem 4.7.2, we prove that certain slices of
idealized cones are contractible.

Proposition 4.10.8. Let Q be a fine monoid, let h : Q → N be a homo-
morphism, and let CR(h) : CR(Q) → CR(N) be the corresponding homo-
morphism of real cones. If K is a proper ideal of Q, let

CR(Q,K, h) := CR(Q,K) ∩
(
CR(h)−1(1)

)
.

If K is generated by K ∩ h−1(0), then CR(Q,K, h) is contractible

Proof Choose a sequence of generators (k1, . . . , kn) for K with each h(ki) = 0;
the proof will be by induction on n. If n = 0, K is empty, and CR(Q,K, h) =

CR(Q, h) is contractible because it is convex. For the induction step, let K′

be the ideal generated by (k1, . . . , kn−1) and let k := kn. Consider the homo-
morphism θ : N → Q sending 1 to k. Since k ∈ Q+, this homomorphism is
local, and it is integral because N is valuative. Thus Theorem 4.7.2 implies
that the summation map

σ : R≥ ×CR(Q, (k))→ CR(Q)

is a homeomorphism. Let (η, ρ) : CR(Q)→ R≥×CR(Q, (k)) be its inverse. Note
that if q = q′ + rk and q ∈ CR(Q,K′), then 〈q′〉 ⊆ 〈q〉. Thus q′ ∈ CR(Q,K′) if
q ∈ CR(Q,K′), so ρ maps CR(Q,K′) to CR(Q,K′) ∩ CR(Q, (k)) = CR(Q,K).
Moreover, h(k) = 0, so h(q + rk) = h(q) and therefore ρ induces a map

ρ′ : CR(Q,K′, h)→ CR(Q,K, h).

Moreover, ρ is the identity on CR(Q,K), so ρ′ is a retraction of CR(Q,K′, h)
onto CR(Q,K, h). For t ∈ [0, 1] and q ∈ CR(Q,K′, h), let ρ′t(q) := ρ′(q)+ tη(q)k.
Then ρ′t(q) ≤ q ∈ CR(Q,K′, h), so ρ′t(q) ∈ CR(Q,K′, h). Since ρ′0 = ρ and
ρ′1 is the identity, we see that CR(Q,K, h) is a strong deformation retract of
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CR(Q,K′, h). The latter is contractible by the induction hypothesis, and hence
so is the former. �

For another perspective on this result, see [54, Lemma 4.18 and Exer-
cise 4.7].



II

Sheaves of Monoids

In order to make global geometric use of monoids, it is necessary to bundle
them together into sheaves. For example, an analytic space is conveniently
described as a pair (X,O), where X is a topological space and O is a sheaf of
rings on X (the sheaf of “holomorphic functions”). The multiplication on O
gives rise in particular to a sheaf of monoids; in logarithmic analytic geometry
we consider in addition a logarithmic homomorphism of sheaves of monoids
(M,+) → (O, ·) (see Definition 1.1.4). Similarly, a logarithmic structure on a
scheme X is a logarithmic homomorphism of sheaves of monoids (MX ,+) →
(OX , ·). We should note that in practice it is often more convenient to work
with the étale topology on a scheme than with the Zariski topology, so strictly
speaking we should be working with sheaves of monoids in a topos rather
than on a topological space. To improve the accessibility of our presentation
we will not insist on this point and will instead simply point out any issues
as they arise. If we are dealing with the étale topology on a scheme instead
of the Zariski topology, then wherever we say “point” the reader should think
“geometric point,” and if we say “open subset of X,” think “étale map U → X.”
A more systematic presentation in the context of topos theory can be found
in [22].

1 Monoidal spaces

1.1 Generalities

Definition 1.1.1. A monoidal space is a pair (X,MX), where X is a topolog-
ical space and MX is a sheaf of commutative monoids on X. A morphism of
monoidal spaces

( f , f [) : (X,MX)→ (Y,MY )

184
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is a pair ( f , f [), where f : X → Y is a continuous function and

f [ : f −1(MY )→MX

is a homomorphism of sheaves of monoids such that for each point x ∈ X,
the stalk f [x : MY, f (x) → MX,x of f [ at x is a local homomorphism of monoids
(Definition I.4.1.1).

Sometimes we will write “locally monoidal space” instead of “monoidal
space” for emphasis. There is an obvious functor from the category of lo-
cally ringed spaces to the category of locally monoidal spaces taking an object
(X,OX) to (X,Om

X ), where Om
X is the underlying sheaf of multiplicative monoids

on X. (One must note that a local homomorphism of local rings induces a local
homomorphism of their underlying multiplicative monoids.)

Variant 1.1.2. An idealized monoidal space is a triple (X,MX ,KX), where X
is a topological space,MX is a sheaf of commutative monoids on X, and KX

is a sheaf of ideals in MX such that KX,x is a proper ideal of MX,x for every
x ∈ X. A morphism of idealized monoidal spaces (X,MX ,KX)→ (Y,MY ,KY )
is a morphism ( f , f [) of monoidal spaces such that f [ maps f −1(KY ) to KX .

In general, if P is a property of monoids, we say that a sheaf of monoidsM
on X has P at a point x of X ifMx has P, and that X orM has P ifM does so
for each x ∈ X. There are unfortunately some exceptions to this convention, for
example the notion of “fine sheaf of monoids” in Definition 2.1.5. Similarly,
if P is a property of homomorphisms of monoids and θ : P → Q is a homo-
morphism of sheaves of monoids, we say that θ has P at x if θx : Px → Qx has
P, and simply that θ has P if it does so at each x ∈ X.

Proposition 1.1.3. Let (X,MX) be a monoidal space, and let P be one of the
following properties of monoids: integral, saturated, dull. Then MX has P if
and only ifMX(U) has P for every open subset U of X.

Proof Suppose that for every open set U,MX(U) has P. Then if x is a point
of X, the stalk of MX at x is the direct limit of the system of MX(U) as U
ranges over the neighborhoods of x in X. The fact that the stalk also has P then
follows from Proposition I.1.3.6.

Let us check the converse when P is the property “integral.” Suppose that
each stalk is integral and that m ∈ MX(U). Then multiplication by m defines a
morphism of sheaves of monoidsMX |U → MX |U . Since the stalks ofMX are
integral, it follows that this map is injective on the stalks and hence also on
sections. This implies thatMX(U) is integral.

Before proving the converse for saturated monoids, let us observe that if
MX is a sheaf of integral monoids, then for each open set U, the natural map
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MX(U)gp → M
gp
X (U) is injective (but not necessarily surjective). Indeed, any

element of the kernel can be written as m − m′ with m,m′ ∈ MX(U), and then
the image of m − m′ inMgp

X,x is zero for each x ∈ U. SinceMX is integral, this
implies that m = m′ inMX(U). Now suppose that each stalkMX,x is saturated
and that q ∈ MX(U)gp with nq ∈ MX(U) for some n > 0. Let q′ be the image
of q inMgp

X (U). For every x ∈ U, the germ of q′ at x lies inMX,x ⊆ M
gp
X,x, and

it follows that q′ in fact lies inMX(U). Then q′ and q have the same image in
M

gp
X (U) and hence also inMX(U)gp. Hence q ∈ MX(U).
We leave the dull case to the reader. �

Because of its importance, we restate below the definition of a logarithmic
homomorphism. The equivalence of the two conditions follows immediately
from Proposition I.4.1.3.

Definition 1.1.4. A homomorphism θ : P → Q of sheaves of monoids is loga-
rithmic if and only it is sharp and local, or equivalently if and only if it induces
an isomorphism θ−1(Q∗)→ Q∗.

The next result shows how an arbitrary morphism of sheaves of monoids
factors canonically through a logarithmic one.

Proposition 1.1.5. Let θ : P →M be a homomorphism of sheaves of monoids
and let ` be one of the following properties: “local, sharp, logarithmic.” Then
there exists a factorization

θ = P - P`
θ`- M

where θ` has the property ` and also has the following universal property: if
P - P′

θ′- M is another factorization of θ and if θ′ has `, then there is
a unique homomorphism P` → P′ such that the left triangle in the diagram

P - P`
θ` - M

P′
?

θ′

-

θ′′
-

commutes, and in fact this homomorphism makes the right triangle commute
as well.

Proof First suppose that ` is “local.” Let F := θ−1(M∗), a sheaf of faces in
P, and let λ : P → PF be the localization of P by F in the category of sheaves
of monoids. This is the sheaf associated to the presheaf U 7→ P(U)F (U) or
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equivalently, the pushout:

F - P

F gp
?

- PF

λ

?

in the category of sheaves of monoids. Then since θ(F ) ⊆ M∗, the map θ

factors uniquely through a map θ` : PF → M, and θ` is local because P∗
F

=

F gp. Moreover, if θ′ in a factorization diagram as shown above is local, then θ′′

takes F to P′∗, and hence θ′′ factors uniquely through PF . The right triangle
also commutes because of the universal mapping property of λ (which is an
epimorphism).

Next suppose that ` is the property “sharp.” Take Psh to be the pushout

P∗ - P

M∗
?

- Psh
?

in the category of sheaves of monoids. This is just the quotient of P ⊕M∗ by
the antidiagonal action of P∗. It is immediate to check that the natural map
M∗ → (Psh)∗ is an isomorphism, so that the map Psh → M is sharp and that
P → Psh has the desired universal property.

Finally suppose that ` is “logarithmic.” Then we can take Plog to be (Ploc)sh,
or, alternatively, the pushout

θ−1(M∗) - P

M∗
?

- Plog.

?

(1.1.1)

In either case, it is straightforward to check that the construction has the desired
properties. �

Remark 1.1.6. Since one of the corners of the pushout square in diagram
(1.1.1) is a group, the computation ofPlog is relatively easy: Proposition I.1.1.5
shows that it is the quotient ofM∗⊕P in the category of sheaves of monoids by
the equivalence relation that identifies (u, p) with (u′, p′) if and only if locally
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there exist sections v and v′ of θ−1(M∗) such that u + θ(v′) = u′ + θ(v) and
v + p = v′ + p′.

Remark 1.1.7. If θ′ : P → M′ and α : M′ → M are homomorphisms and
θ := α ◦ θ′, then the inclusion θ′−1(M′∗)→ θ−1(M) induces a homomorphism
of sheaves of monoids Plog

θ′ → P
log
θ . If α is logarithmic, this map is an isomor-

phism.

Proposition 1.1.8. Let θ : P → Q be a homomorphism of sheaves of monoids
and θlog : Plog → Q the associated logarithmic homomorphism.

1. The map P → Plog factors through an isomorphism

P/θ−1(Q∗)→ Plog.

In particular, the map P → Plog is surjective, and if θ is local it is an iso-
morphism.

2. Plog is integral (resp. saturated) if P is, and the converse holds if θ is local
and P is u-integral.

3. Plog is u-integral if P is u-integral and θ is local.

Proof It suffices to check the stalks. The first statement follows from the
construction of Plog as the sharp localization of P by θ. If θ is local, then
Plog � Psh, so P → Plog is an isomorphism. If P is integral, then by Propo-
sition I.1.3.4, so is Plog. If P is saturated, then so is its localization Ploc, and
hence so is Ploc � Plog, and it follows that Plog is saturated. Conversely, if θ
is local, then P � Plog. Moreover, if P is u-integral and Plog is integral, P is
integral by Proposition I.1.3.3, and is saturated if Plog is saturated. If θ is local,
then Plog is just the pushout of P along the homomorphism P∗ → Q∗, which
is easily seen to be u-integral. �

A warning: If P is u-integral, it does not follow that Plog is also u-integral,
since localization can destroy u-integrality, as we saw in Remark I.1.4.5.

Corollary 1.1.9. Let θ : P → M be a homomorphism of sheaves of integral
monoids such thatPlog →M is an isomorphism. Then the following are equiv-
alent:

1. θ : P →M is an isomorphism.
2. θ : P →M is exact.
3. θ : P →M is local.

Proof It again suffices to work at the level of stalks. If θ is an isomorphism,
then θ is exact, and if θ is exact it is local, by Proposition I.4.2.1. If θ is local,
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then by Proposition 1.1.8 the map P → Plog is an isomorphism. Since by
hypothesis Plog �M, it follows that θ is a isomorphism. �

According to our conventions, a monoidal space (X,MX) is dull if MX is
dull. If (X,MX) is any monoidal space, then X := (X,M∗X) is dull, and there is
an obvious morphism of monoidal spaces

dX := (idX , inc) : X := (X,MX)→ X := (X,M∗X).

This morphism is universal: any morphism from X to a dull monoidal space
factors uniquely through dX .

Definition 1.1.10. Let f : (X,MX) → (Y,MY ) be a morphism of monoidal
spaces.

1. f a : f ∗log(MY ) → MX is the universal logarithmic homomorphism associ-

ated to f [ : f −1(MY ) → MX . In particular, f ∗log(MY ) :=
(

f −1(MY )
)log

and
containsM∗X .

2. MX/Y is the cokernel of the homomorphism f ∗log(MY )→MX , computed in
the category of sheaves of monoids.

The inverse image Mv
X ofM∗X/Y inMX is called the vertical part ofMX rela-

tive to Y , andMX/Y is called the horizontal part (see Definition I.4.3.1). Notice
thatMX �MX/X . More generally, since f ∗logMY containsM∗X , in factMX/Y is

canonically isomorphic to the cokernel of the natural map f ∗logMY → MX . It
follows from Propositions I.1.3.3 and 1.1.3 that ifMY andMX are integral, so
isMX/Y . In this caseMgp

X/Y is isomorphic to the cokernel of f ∗logM
gp
Y → M

gp
X ,

andMX/Y can be identified with the image ofMX in this sheaf of groups. The
sheafMX/Y is sometimes called the relative characteristic of the morphism f .

Definition 1.1.11. Let P be a property of homomorphisms of monoids. and let
f : X → Y be a morphism of monoidal spaces. Then f has P at a point x of X
if the homomorphism f [x : ( f ∗logMY )x →MX,x has P. If y ∈ Y , then we say that
f has P over y if it has P as every point x mapping to y, and that it has P if it
does so at every point of X.

This terminological convention for morphisms of monoidal spaces differs
somewhat from the convention for homomorphisms of sheaves of monoids,
because here we need to suppress the role of the units. However, if P is such
that a logarithmic homomorphism θ has P if and only θ has P, then a mor-

phism f has P at x if and only if f
[

x : MY, f (x) →MX,x has P. For example, this
is the case for small and Q-surjective morphisms. Moreover, if every homo-
morphism θ has P if and only if θ has P, then f has P at x if and only if
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f [x : MY, f (x) →MX,x has P. For example, this is the case for exact and integral
homomorphisms.

Definition 1.1.12. A morphism of monoidal spaces i : Y → Z is an immersion
if it is set-theoretically injective and the homomorphismMZ → i∗MY is sur-
jective. An open immersion of monoidal spaces is an immersion that induces
an isomorphism onto an open subset of its target.

We should remark that an immersion of monoidal spaces is a monomor-
phism.

Definition 1.1.13. If X is a monoidal space and n is a positive integer, the
n-Frobenious endomorphism of X is the morphism X → X that is the identity
map on X and is given by multiplication by n onMX .

This definition makes sense because if P is a monoid and n is a positive
integer, then multiplication by n induces a local homomorphism P→ P.

1.2 Monoschemes

Recall from Section I.1.4 that if Q is a monoid, then the topological space S :=
Spec(Q) is the set of prime ideals of Q, endowed with the Zariski topology.
For f ∈ Q, the topological space Spec(Q f ) identifies with the open set S f of
all q ∈ Spec(Q) not containing f , and the set of all such S f forms a base B for
the topology of S. Sets of the form S f are called the special affine open subsets
of S. If g is another element of Q, then Sg ⊆ S f if and only if f ∈ 〈g〉. If this is
the case, then there is a unique homomorphism Q f → Qg making the diagram

Q - Q f

Qg

?
-

commute. Thus S f 7→ Q f defines a presheaf of monoids on B, and we let
MS denote the corresponding sheaf on Spec(Q). For each f ∈ Q, the prime
p := Q \ 〈 f 〉 is the unique closed point of S f , and it follows that

Γ(S f ,MS) =MS,p = Q〈 f 〉 = Q f .

In particular, the face generated by 0 is Q∗, whose complementary prime ideal
Q+ is the unique closed point s of S, and S0 = S. Consequently

Γ(S,MS) =MS,s = Q. (1.2.1)
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Definition 1.2.1. If Q is a monoid, then

aQ := spec(Q)

is the locally monoidal space consisting of the set Spec(Q) of prime ideals of
Q, endowed with the Zariski topology and the sheaf of monoids defined above.

A morphism of monoids θ : P→ Q induces a morphism of locally monoidal
spaces

spec(Q)→ spec(P)

and thus one obtains a functor from the category of monoids to the category of
locally monoidal spaces.

Proposition 1.2.2. Let Q be a monoid and let X be a locally monoidal space.
Then the natural map

Mor
(
X, aQ

)
→ Hom (Q,Γ(X,MX))

is an isomorphism. Consequent to this fact and the isomorphism (1.2.1), the
functor spec from the category of monoids to the category of locally monoidal
spaces is fully faithful.

Proof This a standard argument from scheme theory, which we repeat for
fun. Let S := spec(Q). Given a homomorphism θ : Q → Γ(X,MX), we define
a map f : X → S as follows. If x ∈ X, we have a homomorphism of monoids

θx : Q→ Γ(X,MX)→MX,x,

and we set f (x) := θ−1(M+
X,x), a prime ideal of Q. The set of special affines Sq

such that q ∈ Q \ f (x) is a neighborhood basis of f (x) in S. For any such q,
θ(q) is a unit inM∗X,x and hence also in a neighborhood of x. Thus f −1(Sq) is
open in X and f is continuous. Since θ(q) is a unit in Γ( f −1(Sq),MX), θ factors
uniquely through a homomorphism

θq : Γ(Sq,MS) = Qq → Γ( f −1(Sq),MX),

and in this way we find a homomorphism of sheaves of monoids f [ : MS →

f∗(MX). Taking q = 0, we see that Γ( f [) = θ. It follows from the definition of
f (x) that for each x ∈ X, the homomorphism

f [x : MS, f (x) = QFx →MX,x

is local.
Conversely, let f : X → S be a morphism of monoschemes. Such an f in-

cludes the data of a homomorphism of sheaves of monoids f [ : MS → f∗(MX)
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and hence a homomorphism of monoids

θ f : Q = Γ(S,MS)→ Γ(X,MX).

Let us check that f agrees with the morphism fθ constructed from θ f . Indeed,
for each x ∈ X, we have a commutative diagram

Γ(X,MX) - MX,x

Q

θ f

6

λx-

θx

-

MS, f (x).

f [x

6

Here λx identifiesMS, f (x) with the localization of Q at its prime ideal f (x). The
homomorphism f [x is local by assumption, and then it follows from the commu-
tativity of the diagram that θ−1

x (M+
X,x) = f (x). This shows that f and fθ agree

set theoretically, and the agreement of the corresponding homomorphisms of
sheaves of monoids follows from the universal property of localization.

Now if P and Q are monoids, we use the isomorphism (1.2.1) to see that that
the natural map

Mor(aP, aQ)→ Hom(Q,Γ(aP,MaP )) � Hom(Q, P)

is an isomorphism, and hence the (contravariant) functor spec is fully faithful.
�

Definition 1.2.3. A locally monoidal space is affine if it is isomorphic to
spec(Q) for some monoid Q. A monoscheme is a locally monoidal space that
admits an open cover by affines, and the category of monoschemes is the full
subcategory of the category of locally monoidal spaces consisting of such
spaces. 1

Variant 1.2.4. Recall from Definition I.1.5.1 that if (Q,K) is an idealized
monoid, then S := spec(Q,K) consists of the set of prime ideals of Q that
contain K, or equivalently, the set of faces of Q that do not meet K, endowed
with a natural Zariski topology. A base for this topology is given by sets of the
form S f , where now f ∈ Q\K. One defines a sheaf of monoidsMS and a sheaf
of ideals KS by localizing, as in the non-idealized case. Note that if K is the
unit ideal, then S is empty and Γ(S,MS) = 0. Recall that (Q,K) is said to be
acceptable if either Q = 0 or K is a proper ideal of Q. A homomorphism of ide-
alized monoids θ : (P, J) → (Q,K) induces a morphism of idealized monoidal
1 Locally monoidal spaces locally of the form spec(Q) are sometimes called “schemes over F1”

(see [12]). The terminology “monoscheme” is intended to suggest both the “field with one
element F1” and the fact that the theory is built out of monoids.
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spaces

spec(Q,K)→ spec(P, J).

An idealized monoscheme is an idealized monoidal space that admits an open
cover {Ui : i ∈ I} such that each Ui is isomorphic to some spec(Qi,Ki).

We denote by Msch and Mschi the categories of monoschemes and ideal-
ized monoschemes, respectively.

The analog of Proposition 1.2.2 for idealized monoids requires a slight mod-
ification.

Proposition 1.2.5. Let (Q,K) be an idealized monoid, let S := a(Q,K) be the
corresponding idealized monoidal space, and let X := (X,MX ,KX) be any
idealized monoidal space.

1. The idealized monoid Γ(X, (MX ,KX)) is acceptable. The canonical homo-
morphism

ρ : (Q,K)→ Γ(S, (MS,KS))

is an isomorphism if and only if (Q,K) is acceptable.
2. The natural map

Mor(X, a(Q,K))→ Hom((Q,K),Γ(X, (MX ,KX))

taking f to

θ f := (Q,K)
ρ- Γ(S, (MS,KS))

Γ( f [)- Γ(X, (MX ,KX)).

is bijective.
3. The functor spec from the category of acceptably idealized monoids to the

category of idealized locally monoidal spaces is fully faithful.

Proof If X is an idealized monoidal space and x ∈ X, then by hypothesis
KX,x is contained in the maximal ideal ofMX,x and hence does not contain 0.
Thus Γ(X,KX) must be a proper ideal of Γ(X,MX) and hence Γ(X, (MX ,KX))
is acceptable. On the other hand, if X is empty, Γ(X, (MX ,KX)) = (0, 0), which
is also acceptable. The existence of the homomorphism ρ is clear from the
construction of S. If K is a proper ideal of Q, then it is contained in the maximal
ideal Q+ of Q, which then corresponds to the unique closed point s of S, so that
Γ(S, (MS,KS)) = (MS,s,KS,s) = (Q,K). If (Q,K) is acceptable and K is not a
proper ideal, then by definition Q = 0, and again ρ is an isomorphism. This
concludes the proof of statement (1).

The proof of statement (3) is similar to the proof of Proposition 1.2.2. If
θ : (Q,K) → Γ(X, (MX ,KX)) is a homomorphism of idealized monoids, then
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for each x in X we have a homomorphism θx : Q → MX,x, and f (x) :=
θ−1

x (M+
X,x) is a prime ideal of Q. By assumption θ maps K to KX and Kx ⊆

M+
X,x, and it follows that K ⊆ f (x), that is, f (x) ∈ Spec(Q,K). As before

one constructs a homomorphism of sheaves of idealized monoids to obtain a
morphism fθ : X → a(Q,K) with Γ( f [θ ) = θ. On the other hand, a morphism
f : X → a(Q,K) induces a homomorphism

θ f := Γ( f [) : (Q,K)→ Γ(S, (MS,KS))→ Γ(X, (MX ,KX)),

which induces f .
This completes the proof of the first two statements, and (3) follows from

(1) and (2). �

Proposition 1.2.6. Let X be a (possibly idealized) monoscheme and let U be
an open subset of X. Then U, with the restriction of MX to U as idealized
structure sheaf, is a monoscheme.

Proof Each point x of X admits an affine neighborhood V . Then V ∩ U is
open in V , and it suffices to prove that there is an open subset of V ∩ U that
contains x and is affine. Thus we may as well assume that X itself is affine, say
X = spec(Q). Recall that then the set of special affine sets form a base for the
topology of X, and hence U ∩V contains a neighborhood of x of this form. �

If X is a monoscheme and x is a point of X, there is a natural morphism of
monoschemes

spec(MX,x)→ X,

sending the closed point of spec(MX,x) to x. If x and ξ are points of X and ξ is
a generization of x, there is a cospecialization map

λx,ξ : MX,x →MX,ξ,

and the diagram

spec(MX,ξ)
spec(λx,ξ)- spec(MX,x)

X
?-

is commutative.
It is convenient to use the Yoneda formalism to identify a monoscheme X

with the contravariant functor FX taking a monoscheme T to the set of mor-
phisms T → X. It is clear from the definitions that the restriction of FX
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to the category of open subsets of T is a sheaf. Since each such T is cov-
ered by affines, in fact FX is determined by its restriction to the category of
affine monoschemes. By Yoneda, it follows that X is determined by the functor
Q 7→ Mor(aQ, X). If Q is a monoid and X is a monoscheme, we write X(Q)
for Mor(aQ, X). The next proposition shows that this functor can be computed
from the underlying topological space X and its set of cospecialization maps.

Proposition 1.2.7. If X is a monoscheme and Q is a monoid, we let hX(Q)
denote the set of pairs (x, φx), where x is a point of X and φx is a local homo-
morphismMX,x → Q.

1. If (x, φx) belongs to hX(Q) and θ : Q→ Q′ is a homomorphism of monoids,
there is a unique (ξ, φξ) in hX(Q′) such that ξ is a generization of x and
θ ◦φx = φξ ◦ λx,ξ. Thus hX becomes a functor from the category of monoids
to the category of sets.

2. If (x, φx) belongs to hX(Q), then the composite

spec(Q)
spec(φx)- spec(MX,x)→ X

is a morphism of monoschemes mapping the unique closed point of spec(Q)
to x.

3. The correspondence in (2) defines an isomorphism of functors hX → X.

Proof Given (x, φx) and θ, let U be an affine neighborhood of x in X. To
prove the existence of (ξ, φξ), we may replace X by U, and in fact since every
generization of x belongs to U, it also suffices to prove uniqueness when X =

U. Thus we suppose without loss of generality that X = spec(P). ThenMX,x

is the localization of P at the face F corresponding to x, and φx is a local
homomorphism PF → Q. Then G := φ−1

x (θ−1(Q′∗)) is the the unique face of
P such that θ ◦ φx factors through a local homomorphism φ′ : PG → Q′. The
factorization is unique, and if ξ is the point of P corresponding to G, then (ξ, φ′)
is the unique pair we seek. It is clear that this construction is compatible with
composition and hence defines a functor, proving (1). Since by assumption
φx is local, the morphism spec(φx) sends the closed point of Spec(Q) to the
closed point of Spec(MX,x), and statement (2) follows. On the other hand, if
f : spec(Q) → X is a morphism of monoschemes, let x be the image in X
of the unique closed point of spec(Q). Then (x, f [x ) ∈ hX(Q); this defines the
inverse to the correspondence in (2). �

Remark 1.2.8. An affine monoscheme T has a unique closed point t, and T is
the unique open neighborhood of t in T . Thus if F is any presheaf on T , the
canonical map F (T )→ Ft is an isomorphism. Consequently, if {Fi : i ∈ I} is a
direct system of sheaves on T and F is their sheaf-theoretic direct limit, then
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lim
−→
Fi(T ) � F (T ). For example, if X is a monoidal space and {Xi : i ∈ I} is

an open cover of X, then Mor(T, X) = ∪{Mor(T, Xi) : i ∈ I}. Of course, these
results do not hold if T fails to be affine.

Examples 1.2.9. Here are some examples of monoschemes. Note that the
monoscheme corresponding to any dull monoid contains a unique point,
the empty ideal, and the corresponding functor is the one point functor. In
fact, the empty monoscheme is not representable in the category of affine
monoschemes, although in the category of idealized monoschemes it is rep-
resented by the idealized monoid (0, 0). The monoscheme a := spec(N) is the
analog of the affine line. It contains just two points, a closed point s and an open
point σ, andMa,s = N andMa,σ = Z. The cospecialization mapMa,s →Ma,σ

is the natural inclusion N→ Z. For any Q,

ha(Q) = {s} × Q+ ∪ {σ} × Q∗ � Q.

The origin of a can be doubled by identifying two copies of a along σ,
with two differing outcomes. The monoscheme d consists of two closed points
s, t and one open point σ, with Md,s = Md,t = N and Md,σ = Z, and the
cospecialization maps are again the inclusions. We have

hd(Q) = {s} × Q+ ∪ {t} × Q+ ∪ {σ} × Q∗.

The analog p of the projective line has the same topological space as d, with
two closed points, now denoted by 0,∞, and one open point σ, and again
Mp,0 = Mp,∞ = N and Mp,σ = Z. However, the cospecialization maps are
different:Mp,0 →Mp,σ is the inclusion butMp,∞ →Mp,σ is its negative. We
have

hp(Q) = {0} × Q+ ∪ {σ} × Q∗ ∪ {∞} × Q+

Although this looks the same set-theoretically as hd, the functor is different.
For example, for the map Q→ Qgp, one finds the following diagram:

hp(Q) = {0} × Q+ ∪ {σ} × Q∗ ∪ {∞} × Q+

hp(Qgp)
?

= {σ} × Qgp.

jσ

?

j∞
�

j0
-

Here j0 takes (0, q) to (σ, q), jσ takes (σ, q) to (σ, q), and j∞ takes (∞, q)
to (σ,−q). Note that Γ(d,Md) = N but Γ(p,Mp) = 0; on the other hand,
Γ(p,Mgp

p ) � Z and Γ(p,Mp) � N ⊕ N.
For a slightly more complicated-looking example, consider the monoscheme
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u obtained by obtained by omitting the origin of spec(N⊕N). This monoscheme
has two closed points and one open point, and the corresponding cospecializa-
tion morphisms of stalks form the following diagram, in which we write i for
the identity map and j for the inclusion.

Mu,x N ⊕ Z

Mu,y - Mu,η

?
Z ⊕ N

(i, j)- Z ⊕ Z.

( j, i)

?

Then

hu(Q) = {x} × Q∗ × Q+ t {η} × Q∗ × Q∗ t {y} × Q+ × Q∗.

In fact there is a morphism of monoschemes u → p making p the quotient
of u by the diagonal action of a∗. To see this, consider the summation homo-
morphism deg: Z ⊕ Z → Z, and observe that the stalks ofMp correspond to
the elements of the stalks ofMU of degree zero. Thus u → p is given by the
following commutative diagram of cospecializations:

Mp,0 N

Mp,∞ - Mp,σ

?
Mu,x

-

N
− j - Z

j

?
N ⊕ Z

(i,− j)

-

Mu,y -

-

Mu,η

?
-

Z ⊕ N
(i, j)-

(− j, i) -

Z ⊕ Z.

( j, i)

?

(i,−i)

-

The map on functors is the following:

hu(Q) = {x} × Q∗ × Q+t {η} × Q∗ × Q∗ t {y} × Q+ × Q∗

hp(Q)

p

?
= {0} × Q+

p0

?
t {σ} × Q∗

pσ

?
t {∞} × Q+,

p∞

?

where p0(u, q) = q − u, pσ(u, q) = q − u, and p∞(q, u) = q − u. Notice that this
diagram identifies hp(Q) with the quotient of hu(Q) by the action of ha(Q) =

Q∗. This example is a special case of an analog of the Proj construction in
algebraic geometry, which we will discuss in Section 1.5.
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Recall that a topological space is said to be quasi-compact if every open
cover has a finite subcover, and to be quasi-separated if the intersection of
every pair of quasi-compact sets is quasi-compact. Every affine monoscheme
X is quasi-compact and quasi-separated. Indeed, if X = spec Q, then X has a
unique closed point x, every open cover of X contains an open U containing
x, and necessarily U = X. Note that the family of special affine open sets is
closed under finite intersection and, since each such set is quasi-compact, it
follows that X is quasi-separated.

We shall say that a monoscheme X is integral (resp. saturated) if the sheaf
of monoidsMX is integral (resp. saturated). We shall say that X is noetherian
if the space X is noetherian and the stalks MX,x are noetherian, and that X is
fine (resp. toric) if it is noetherian and the stalksMX,x are fine (resp. toric).

Remark 1.2.10. If X is a fine monoscheme then, for every affine open subset U
of X, the monoid Q := MX(U) is finitely generated. Indeed, since U is affine,
it is isomorphic to spec(Q), hence has a unique closed point x, and Q �MX,x,
which is fine by assumption. Moreover, if x is any point of X, then spec(MX,x)
is an open subset of X. To see this, replace X by an affine open neighborhood
Spec(Q) of x. Then MX,x is the localization of Q by a face F, and by (3) of
Theorem I.2.1.17, there is some f ∈ F such that F = 〈 f 〉. It follows that
MX,x = Q f , and spec(Q f ) is a special affine subset of U.

Let X be a connected integral monoscheme. Then the sheaf of groupsMgp
X

on X is constant. Furthermore, X has a unique generic point ξ; it is uniquely
characterized by the fact that MX,ξ is dull. We write X∗ for the monoscheme
spec(Mgp

X,ξ), which maps naturally to X (and is an open subset of X if X
is noetherian). If Q is a monoid, an element of X∗(Q) amounts to a homo-
morphismMgp

X,ξ → Q, which necessarily factors through Q∗. In fact X∗(Q) �
X(Q∗) naturally, as follows immediately from Proposition 1.2.7. Thus X∗(Q)
has a natural structure of a group object in the category of monoschemes, and
the action of Q∗ on Q defines an action of X∗ on X. In this sense, monoschemes
are avatars of toric varieties, and in fact (separated) monoschemes give rise to
toric varieties, as we shall see in Section 1.9. We record our observations in the
following proposition, which needs no further proof.

Proposition 1.2.11. Let X be a connected integral monoscheme. Then for ev-
ery Q, there is a natural identification X∗(Q) � X(Q∗), and hence a natural
action X∗ × X → X of X∗ on X. �

Proposition 1.2.12. Let θ : P → Q be a homomorphism of integral monoids
and let spec(θ) : T → S be the corresponding morphism of monoschemes. If θ
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is Kummer and exact, then the diagram

T ∗ - T

S∗
?

- S
?

is cocartesian in the category of monoschemes.

Proof Recall from Corollary I.4.3.11 that the morphism T → S is a
homeomorphism, and we can and shall identify the underlying topologi-
cal spaces of T and S. Since θ is exact, the same is true of θ, and it fol-
lows that MS � M

gp
S ×M

gp
T
MT . Suppose now that we are given morphisms

g : T → X and f : S∗ → X that agree on T ∗. Then g[ : g−1(MX) → MT and
f [ : f −1(MX)→Mgp

S agree when mapped toMgp
T , and hence define a unique

map toMS. �

1.3 Some universal constructions

We follow methods from the theory of schemes. Let F : Mon → Ens be a
functor. For each monoid Q, F induces a presheaf FQ on the category of special
affine open subsets of spec Q. We say that F is a sheaf on Mon if FQ is a
sheaf on this base for the topology of spec(Q) for every Q. Evidently every
representable F is a sheaf in this sense.

Definition 1.3.1. Let η : F′ → F be a morphism of sheaves of sets on the
category of monoids (or, equivalently, of sheaves on the category of affine
monoschemes). Then η is an open immersion if, for every affine monoscheme
T and every ξ : T → F, the functor F′ ×F T → T is represented (on the cat-
egory of monoschemes over T ) by an open sub-monoscheme of T . An open
covering of a sheaf F on Mon is a family of open immersions Fi → F such
that the induced map from the sheaf-theoretic union ∪Fi to F is an epimor-
phism. A sheaf on F is a presheaf P on the category of sheaves F′ → F over F
such that, for every sheaf F′ → F over F and every open covering {F′i → F′}
of F′, the sequence

P(F′)→
∏

P(F′i )→→
∏
i, j

P(F′i × F′j)

is exact (that is, P(F′) is the equalizer of the two arrows).

For example, if G is a sheaf on Mon, then the presheaf

hG : F′ 7→ Mor(F′,G)
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on the category of sheaves over F is in fact a sheaf on F, as is easily checked.
In particular, if F is any presheaf on Mon, we let

M(F) := Mor(F, a) := Mor(F, ha),

with its natural monoid structure coming from the monoid structure on a. If F
is a sheaf, the restriction MF of M to the category of sheaves over F forms
a sheaf of monoids on F. If T is a monoscheme, there are canonical isomor-
phisms

M(T ) := Mor(hT , ha) � ha(T ) � Γ(T,MT ),

so our notation is not ambiguous.

Proposition 1.3.2. A sheaf of sets on Mon is representable in the category of
monoschemes if and only if it admits an open cover by affine monoschemes.

Proof We give only a sketch, since the argument is standard. Let F be a
sheaf of sets on Mon admitting an open cover {Fi → F}, where Fi = hSi

and each Si is an affine monoscheme. Let S̃ be the disjoint union of the Si, and
let F̃ denote the disjoint union (in the category of sheaves) of the Fi. Then S̃
is a monoscheme, and F̃ � hS̃. Furthermore, the two projections F̃ ×F F̃ →
F̃ are open immersions. It follows that F̃ ×F F̃ is representable by an open
submonoscheme E of S̃, and that F is the coequalizer of the two maps F̃×F F̃ →
F̃ in the category of sheaves. Let S be the coequalizer of the two maps E → S̃
in the category of topological spaces. If U is an open subset of S, let Ũ be its
inverse image in S̃ and let FU be the sheaf-theoretic image of hŨ → hS̃ → F.
Then FU → F is an open immersion. LetMS(U) := Γ(FU ,MF). ThenMS is
sheaf of monoids on S. The natural map Si → S is an open immersion, and the
restriction ofMS to Si is the structure sheaf of the affine monoscheme Si. This
shows that (S,MS) is a monoscheme. Finally, the map hS̃ → F descends to a
map hS → F, which is in fact an isomorphism. �

Variants 1.3.3. The evident analogs of the constructions in Proposition 1.3.2
work in exactly the same way if we replace the category of monoids by the
category of integral (resp. saturated) monoids, or even the category of accept-
able idealized monoids. For this last case, we should describe how to recover
the sheaf of ideals. Notice first that if (Q,K) is an idealized monoid, then there
are bijections

Mor((N, ∅), (Q,K)) � Q
Mor((N,N+), (Q,K)) � K.

Let a := spec(N, ∅) and a+ := spec(N,N+), and if F is a sheaf on the
category of acceptable idealized monoids, let M(F′) := Mor(F′, ha) and
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K(F′) := Mor(F′, ha+ ) for every open subsheaf F′ of F. Then (M,K) is a
sheaf of idealized monoids on F, and if X is an idealized monoscheme and
F = hX , then (M,K) is the idealized structure sheaf of X. Then the gluing
construction of Proposition 1.3.2 can be carried out as before.

We can use Proposition 1.3.2 to construct global examples of some universal
constructions we carried out in the category of monoids.

Proposition 1.3.4. Let Msch denote the category of monoschemes and let
Mschint be the full subcategory consisting of the integral monoschemes. Then
the inclusion functor Mschint → Msch admits a right adjoint X 7→ Xint. The
analogous statement holds in the category of saturated monoschemes.

Proof Let X be a monoscheme and let h′X be the restriction of hX to the cat-
egory of integral monoids. If {Xi = spec Qi} is an affine open cover of X, then
{h′Xi
→ h′X} is an open cover of hX . But h′Xi

= hX′i , where X′i := spec Qint
i , by

the universal property of Q 7→ Qint. Then the representability of h′X in the cat-
egory of integral monoschemes follows from the analog of Proposition 1.3.2
for integral monoschemes. The proof in the saturated case is analogous. �

Proposition 1.3.5. Let X → Y and Y → Z be morphisms of monoschemes.
Then the product X ×Z Y exists in the category of monoschemes. Similarly,
fiber products exist in the category of integral (resp. saturated) monoschemes,
and in the category of idealized monoschemes.

Proof The proposition asserts that the presheaf hX ×hZ hY is representable.
Since hX , hZ , and hY are sheaves, so is this fiber product. Let {Zk → Z} be an
affine open cover of Z. Then Xk := X ×Z Zk is an open submonoscheme of X
and hence admits an affine open cover {Xik}; similarly, we construct an affine
open cover {Y jk} of Yk := Y ×Z Zk. Then {hXi,k ×hZk

hY jk } is an affine open cover
of hX ×hZ hY . The variants are proved in a similar manner. �

Remark 1.3.6. It follows from Proposition 4.1.5 that, in the category of all
monoschemes, the underlying topological space of X ×Z Y is homeomorphic
to the corresponding fiber product in the category of topological spaces. In the
category of integral monoschemes this is no longer true: X ×Z Y is a subspace
of the topological fiber product.

1.4 Quasi-coherent sheaves on monoschemes

In this section we adapt some standard constructions in the theory of schemes
to the context of monoschemes. The arguments are in general straightforward.

Let X = spec(Q) and let S be a Q-set. For each f ∈ Q, we have a Q f -set S f ,
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and if Xg ⊆ X f , there is a natural map S f → Sg, just because f maps to a unit
in Qg. Let S̃ denote the sheaf of sets on X associated to the presheaf X f 7→ S f .
This sheaf has a natural action of the sheaf of monoidsMX .

Definition 1.4.1. Let X be a monoscheme and let S be a sheaf ofMX-sets on
X. Then S is quasi-coherent if for every quasi-compact and quasi-separated
submonoscheme U of X and every f ∈ Γ(U,MX), the natural map

Γ(U,S) f → Γ(U f ,S)

is an isomorphism. If X is locally noetherian, S is said to be coherent if it is
coherent and for every x ∈ X, Sx is finitely generated as anMX,s-set.

Proposition 1.4.2. Let X be a monoscheme and let S be a sheaf ofMX-sets.

1. If X = spec(Q) and S = S̃ for some Q-set S, then S is quasi-coherent.
Moreover, the functor S → S̃ gives an equivalence from the category of
Q-sets to the category of quasi-coherent sheaves of MX-sets, with quasi-
inverse S 7→ Γ(X,S).

2. If there exists a covering U of X such that S|U is quasi-coherent for each
U ∈ U, then S is quasi-coherent.

Proof First suppose that X is affine, and let x be its unique closed point. Let
P be a presheaf defined on the family of basic open subsets of X and let F
be its associate sheaf. As we saw in Remark 1.2.8, the maps P(X) → Px and
F (X) → Fx are isomorphisms. It follows that the natural map P(X) → F (X)
is an isomorphism, and the same holds for any basic open subset of X. In
particular, if X = Spec(Q) and S is a Q-set, then S � S̃(X) and S f � S̃(X) f �

S̃(X f ) for every f ∈ Q.
Now suppose that S is a sheaf of MX-sets on a monoscheme X, that {Ui :

i ∈ I} is a finite open cover of a subset U of X, and that a is an element of
MX(U). Since S is a sheaf, the sequence

(Γ, (U,S)) -

∏
i

Γ(Ui,S)

 -
-

∏
i, j

Γ(Ui ∩ U j,S)


is left exact (that is, the term on the left is the equalizer of the two arrows).
Since localization commutes with finite limits, localization by a yields the ex-
actness of the top row of the commutative diagram below; the bottom row is
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exact just because S is a sheaf:

(Γ, (U,S))a
-

∏
i

Γ(Ui,S)


a

--

∏
i, j

Γ(Ui ∩ U j,S)


a

Γ(Ua,S)
?

-
∏

i

Γ(Uia,S)
?

--
∏
i, j

Γ(Uia ∩ U ja,S).
?

Now to prove (1), suppose that X = spec(Q), that S = S̃, and that U is a
quasi-compact subset of spec Q. Then U admits a finite covering by special
affine open subsets Ui. For each of these, the map Γ(Ui,S)a → Γ(Uia,S) is an
isomorphism, as we have seen. Since the intersection of two special affines is
again special affine, the two vertical maps on the right in the diagram above are
isomorphisms, and it follows that the vertical map on the left is also an isomor-
phism. This proves that S is quasi-coherent. The fact that the functor S 7→ S̃
is fully faithful follows easily from the isomorphism S → Γ(X, S̃). Suppose
that S is quasi-coherent and let S := Γ(X,S). Then X f is quasi-compact and
quasi-separated for every f ∈ Q, so the map S f → S(X f ) is an isomorphism.
It follows that the map X̃ → S is an isomorphism.

To prove (2), let U be a quasi-compact and quasi-separated open subset of
X. Then the hypothesis of (2) implies that U admits a finite and affine open
covering {Ui : i ∈ I} such that each S|Ui

is quasi-coherent. Then in the diagram
above, the central vertical arrow is an isomorphism, and it follows that the left
vertical arrow is injective. Since each Ui ∩ U j is quasi-compact, our argument
applies to show that the right vertical arrow is injective, and then it follows that
the left vertical arrow is bijective. �

Remark 1.4.3. If S and T are sheaves of MX sets on a monoidal space X,
one can form their tensor product S ⊗ T by taking the sheaf associated to the
presheaf U 7→ S(U) ⊗MX (U) S(T ). Since localization commutes with taking
tensor products, the tensor product of two quasi-coherent sheaves on a mono-
scheme is quasi-coherent. Furthermore, the fiber product of quasi-coherent
sheaves is quasi-coherent, since localization commutes with fiber products.

Remark 1.4.4. A morphism of monoschemes f : X → Y is quasi-compact
(resp. quasi-separated) if for every quasi-compact (resp. quasi-separated)
open V in Y , f −1(V) is quasi-compact (resp. quasi-separated). Then one sees
easily that if f : X → Y is quasi-compact and quasi-separated, the functor f∗
takes quasi-coherent sheaves on X to quasi-coherent sheaves on Y . For exam-
ple, if f is quasi-compact and quasi-separated and K is a quasi-coherent sheaf
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of ideals in MX , then f∗(MX) and f∗(KX) are quasi-coherent, and it follows
that f∗(KX) × f∗(MX ) MY is again quasi-coherent. In particular, if f is an open
immersion of noetherian monoschemes, any coherent sheaf of ideals on X has
a canonical extension to a coherent sheaf of ideals on Y .

Let X be a monoscheme and let Z be a closed subset of X. For each open
subset U of X, let IZ(U) denote the set of sections ofMX(U) whose stalk at
each point z of Z lies in the maximal ideal of MX,z. It is clear that IZ(U) is
an ideal of MX(U) and that IZ forms a sheaf of ideals in MX . For example,
suppose that X = spec(Q) and that Z is the closed set defined by some ideal
I of Q. Then IZ(X) = ∩{p : p ∈ Z}, which by Corollary I.1.4.3 is the radical
of I. Moreover, IZ(X f ) =

√
I f =

√
I f for every f ∈ Q . Thus IZ =

√
I ,̃ and

hence is quasi-coherent.

Proposition 1.4.5. If X a quasi-compact and quasi-separated monoscheme,
the following conditions are equivalent.

1. X is quasi-affine, i.e., isomorphic to an open subset of an affine mono-
scheme.

2. Every quasi-coherent sheaf on X is generated by its global sections.
3. For every closed subset Z of X and every x ∈ X \ Z, there exists a global

section f of IZ such that fx <M
+
X,x.

4. The natural map h : X → spec(Γ(X,MX)) is an open immersion.

Proof Suppose that X is quasi-affine, so that there exists an open immersion
j : X → Y , where Y := spec(P). Let Y ′ be a special affine open subset of Y
and let {Xi : i ∈ I} be a finite affine open cover of X. Then each Xi ∩ j−1(Y ′)
is special affine in Xi and hence also quasi-compact, and it follows that j−1(Y ′)
is again quasi-compact. Thus the morphism j is quasi-compact, and one can
show similarly that it is quasi-separated. Then if S is quasi-coherent on X, it
follows from Remark 1.4.4 that j∗(S) is quasi-coherent on Y . Hence j∗(S) � S̃,
where S := Γ(Y, j∗(S)) = Γ(X,S). Since S̃ is generated by its global sections
andS = j∗(S̃), it too is generated by its global sections, proving that (1) implies
(2).

Suppose that (2) holds and that Z is a closed subset of X. Then IZ is a quasi-
coherent sheaf of ideals on X, hence by hypothesis is generated by its global
sections. If x ∈ X \ Z, then Ix = MX,x, and hence there must exist a global
section f of I such that fx <M

+
X,x. Thus (2) implies (3).

To prove that (3) implies (4), it will suffice to exhibit a family V of open
subsets of Y := spec(Γ(X,MX)) such that, for each V ∈ V, h induces an
isomorphism h−1(V) → V and such that {h−1(V) : V ∈ V} covers X. Since
X is a monoscheme, each x ∈ X admits an open affine neighborhood U. Then
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Z := X \ U is a closed subset of X not containing x. By hypothesis, there
exists a global section f of IZ whose stalk at x is not in M+

X,x. Then x ∈
X f ⊆ U; furthermore X f = U f|U , hence is affine, and hence is isomorphic to
spec(Γ(X f ,MX)). Since X is quasi-compact and quasi-separated, the map

Γ(X,MX) f → Γ(X f ,MX)

is an isomorphism. Then V := spec Γ(X,MX) f is an affine open subset of Y ,
and in fact X f = h−1(V). The set V of such V is the desired family of open
subsets of Y . This completes the proof that (3) implies (4), and the implication
of (1) by (4) is trivial. �

Definition 1.4.6. A sheaf of MX-sets on a locally monoidal space X is in-
vertible if, locally on X, there exists an isomorphismMX → S of sheaves of
MX-sets.

It follows from Proposition 1.4.2 that an invertible sheaf of MX-sets on a
monoscheme X is quasi-coherent. The tensor product of two invertible sheaves
is again invertible and in particular, for every natural number n, the nth tensor
power Sn of S is again invertible. The sheaf of generators S∗ of an invertible
S is a torsor underM∗X , and the natural map S∗ ⊗M∗X MX → S is an isomor-
phism. Thus there is an equivalence between the category Pic(X) of invertible
MX-sheaves and the category of M∗X-torsors, and hence a bijection between
the set Pic(X) of isomorphism classes of invertible sheaves on X and the set
of isomorphism classes of M∗X-torsors. This bijection is compatible with the
natural group structures on both sets, and in this way we find an isomorphism
of groups

Pic(X) � H1(X,M∗X) (1.4.1)

and an exact sequence of groups

Γ(X,M∗X)→ Γ(X,Mgp
X )→ Γ(X,M

gp
X )→ Pic(X)→ H1(X,Mgp

X ).

Recall that if X is integral, X is irreducible andMgp
X is constant, hence flasque,

and H1(X,Mgp
X ) vanishes. Thus Pic(X) can be understood as the quotient of

the group Γ(X,M
gp
X ) of divisors on X by the group Γ(X,Mgp

X )/Γ(X,M∗X) of
principal divisors. In particular, Pic(p) � Z (see Example 1.2.9).

Now suppose that X is a monoidal space, that S is an invertible sheaf on X,
and that T is a sheaf ofMX-sets on X. If s is a global section of S, then

Xs := {x ∈ X : s <M+
X,xS}

is an open subset of X. Furthermore, multiplication by s defines a map T →
S⊗T and indeed a direct system Sn⊗T → Sn+1⊗T for n ∈ N. The restriction
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of each of these maps to Xs is an isomorphism, and there is a commutative
diagram

Γ(X,Sn ⊗ T )
s- Γ(X,Sn+1 ⊗ T )

Γ(Xs,T ).

s−n−1

?
s−n

-

Proposition 1.4.7. With the notation above, suppose that X is a quasi-compact
and quasi-separated monoscheme and that T is quasi-coherent. Then the map

lim
−→
{Γ(X,Sn ⊗ T ), ·s : n ∈ N} → Γ(Xs,T )

induced by the diagrams above is an isomorphism.

Proof If S is isomorphic to MX the result follows from Proposition 1.4.2.
In the general case we can cover X by a finite number of open sets on which
this is true, and then use the technique of that proposition to reach the same
conclusion. �

1.5 Proj for monoschemes

In this section we show how a version of the Proj construction for schemes can
be used to generalize the example of p discussed in Example 1.2.9. We shall
later use this construction to perform monoidal transformations (blowups) for
monoschemes and log schemes.

Definition 1.5.1. A graded monoid is a monoid P together with a homo-
morphism h : P → N. If (P, h) is a graded monoid, a graded (P, h)-set is a
P-set S endowed with a function g : S→ Z such that g(p + s) = h(p) + g(s) for
p ∈ P and s ∈ S. For p ∈ P (resp. for s ∈ S), one refers to h(p) (resp. g(s)) as
the degree of p (resp. of s).

If (P, h) is a graded monoid, the homomorphism h defines a morphism of
monoid-valued functors a → aP and hence an action of a on aP. If Q is any
monoid, this action is given explicitly by

a(Q) × aP(Q)→ aP(Q) : (q, θ) 7→ qθ, where

(qθ)(p) := h(p)q + θ(p).

Let P+
h := h−1(N+) and let Uh := spec P\Z(P+

h ), a quasi-affine monoscheme.
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We denote again by h the homomorphism of groups Pgp → Z as well as the
homomorphism of sheaves of monoidsMUh → Z induced by h. Finally, we let

Mh := h−1(0) ⊆ MUh ,

a sheaf of monoids on Uh.

Theorem 1.5.2. Let (P, h) be a graded monoid.

1. With the notations of the previous paragraph, the monoidal space

proj(P, h) := (Uh,Mh)

is a monoscheme.
2. For each p ∈ P+

h , the open set Up ⊆ spec(P) is contained in Uh, and

D+(p) := (Up,Mh |Up ) � spec(P(p)),

where P(p) is the degree zero part of Pp. In particular, the family of all
D+(p) for p ∈ P+

h is an affine open cover of proj(P, h).
3. If P+

h is generated by elements of degree one, then proj(P, h) can be identi-
fied with the quotient of (U, h) by the action of a∗. That is, for every monoid
Q, the map Uh(Q)→ proj(P, h)(Q) is surjective, and two elements of Uh(Q)
have the same image in proj(P, h)(Q) if and only if they are in the same orbit
under the action of the group Q∗.

Proof Let us first establish the following:

Claim 1.5.3. If p ∈ P+
h , the inclusion map ι : P(p) → Pp is exact and ι is

Kummer. If h(p) = 1, the homomorphism:

ι′ : P(p) ⊕ Z→ Pp : (q′, n) 7→ q′ + np

is an isomorphism.

The exactness of ι is clear, and it follows from Proposition I.4.2.1 that ι is
injective. Now if q ∈ P, let q′ := h(p)q − h(q)p. Then q′ ∈ P(p) and h(p)q =

q′ + h(q)p. Since p ∈ P∗p, we have h(p)q = ι(q′) and, since h(p) > 0, it follows
that ι is Kummer. Note also that if h(p) = 1, the same argument shows that ι′

is an isomorphism.
Since ι is Kummer, Spec(ι) is a homeomorphism, by Corollary I.4.3.11. Note

that there is a morphism of locally monoidal spaces

(Uh,MUh )→ (Uh,Mh),
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simply becauseMh ⊆ MUh . Restricted to Up, this morphism induces an iso-
morphism of locally monoidal spaces (Up,Mh) � spec(P(p)), proving state-
ment (2). Since the family of all Up for p ∈ P+

h covers Uh, it follows that
(Uh,Mh) has an open covering by affines, and hence is a monoscheme.

Suppose that p is an element of degree one of P+
h . Then D(p) := spec(Pp) ⊆

Uh ⊆ Spec(P). The isomorphism ι′ of the claim induces an isomorphism of
functors

D(p) � D+(p) × a∗

that is compatible with the actions of a∗. It follows that D+(p) can be identified
with the orbit space of the action of a∗ on D(p). Remark 1.2.8 implies that
every Q-valued point of proj(P, h) lies in some D(p), and statement (3) follows.

�

Remark 1.5.4. Let (P, h) and (P′, h′) be a graded monoids and let θ : P → P′

be a homomorphism such that h = h′ ◦ θ. Then θ maps P+
h into P+

h′ and hence
the map f := Spec(θ) sends Z(P+

h′ ) to Z(P+
h ). If the radical of the ideal of P′

generated by θ(P+
h ) equals the radical of P+

h′ , then in fact f maps U′h′ to Uh and
induces a morphism of monoschemes proj(P′, h′)→ proj(P, h). This morphism
is an isomorphism if there exists an integer d such that θn is an isomorphism
for all n divisible by d.

Remark 1.5.5. Let (P, h) be a graded monoid and let p ∈ P be an element of
degree one. The following description of P(p) is also useful. For n ∈ N, write
Pn for the set of elements of P of degree n. Then multiplication by p induces a
mapping Pn

p- Pn+1. These maps are compatible with the maps Pn → P(p)

sending an element q to q − np, and hence the latter assemble into a map

lim
−→
{Pn, ·p : n ∈ N} → P(p).

It is easy to check that this map is a bijection.

Let (S, g) be a graded (P, h)-set. For each p ∈ P+
h , Pp operates on the local-

ization Sp of S by p, and S(p) := {s ∈ Sp : g(s) = 0} is stable under the action of
P(p). One checks that these fit together to form a sheaf ofMh-sets on proj(P, h).
For d ∈ Z define gd : S → Z by gd(p) = p − d. Then (S, gd) is again a graded
(P, h)-set, which we also denote by (S, g)(d). Let S(d) be the corresponding
sheaf ofMh-sets, and note that, for p ∈ P+

h , S(d)(Up) is the set of elements s
of Sp such that g(s) = d.

We are especially interested in the sheaves of setsMh(d) on proj(P, h). Note
that if p ∈ P+

h and if h(p) divides d, say d = eh(p), then ep is a section ofM(d)
on the open set spec(P(p)) of proj(P, h), and in fact is a basis for the set of such
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sections. In particular, if P+
h is generated by elements p with h(p) dividing d,

thenMh(d) is invertible.
Let us now describe the monoscheme analog of projective space, as well

as its universal mapping property in terms of invertible quotients. Let e be a
finite set and let Pe := Ne be the free commutative monoid with basis e. Let
h : Pe → N be the homomorphism with h(e) = 1 for all e ∈ e. We denote
by pe the monoscheme proj(Pe, h). Each e ∈ e defines an element of degree
one of (P, h) and hence a global section of the invertible sheafMpe(1). Since e
generates Pe, the induced morphism

Mpe × e→Mpe(1) (1.5.1)

is surjective.

Definition 1.5.6. If T is a monoscheme and e is a finite set, an invertible quo-
tient of e on T is a pair (S, s), where S is an invertible sheaf ofMT -sets and s is
an e-indexed sequence of sections of S, such that the corresponding morphism
of sheaves

MT × s→ S

is surjective.

It is clear that if T ′ → T is a morphism, an invertible quotient of e on T
pulls back to an invertible quotient on T ′.

Proposition 1.5.7. The invertible quotient (1.5.1) of e on pe is universal. That
is, if T is any monoscheme, then every invertible quotient of e on T is isomor-
phic to the pullback of (1.5.1) via a unique morphism T → pe.

Proof Let (S, s) be an invertible quotient of e on T . For each e ∈ e, let Te be
the set of all points t of T such that se forms a basis for the stalk St of S at t.
Then Te is an open subset of T , and {Te : e ∈ e} is an open cover of T .

If t ∈ Te, then for each e′ ∈ e there is a unique me′,t ∈ MT,t such that
se′ = me′,t se in St. The uniqueness implies that these sections patch to a global
section me′ of MT on Te. Now, P(e) is isomorphic to the free commutative
monoid with basis {e′e−1 : e′ , e}, and so there is a unique homomorphism of
monoids

θe : P(e) → Γ(Te,MT )

sending each e′e−1 to me′ . Let fe : Te → D+(e) ⊆ pe be the corresponding
morphism of monoschemes. There is a unique morphism ofMS-sets

he : f ∗e (Mpe(1))→ S|Te
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sending e to se, and then in fact

he(e′) = θe((e′e−1)e) = me′ se = se′ .

It follows that f ∗e (Mpe(1), e) � (S, s). Furthermore, it is clear that fe is the
unique morphism Te → pe with this property. Thus the morphisms { fe : e ∈ e}
patch to a morphism f : T → pe such that f ∗(Mpe(1), e) � (S, s), and that f is
unique. �

We write pn for pe when e := {0, 1, . . . , n}.

Variant 1.5.8. Let (P, h) be a graded monoid and let K be an ideal in P. As-
sume that P+

h *
√

K. Then UK,h := spec(P,K) ∩ Uh is not empty. We let
proj(P,K, h) denote the idealized monoidal space UK,h endowed with the sheaf
of idealized monoids (Mh,Kh), obtained by taking the degree zero part of the
sheaves M and K := K̃, restricted to UK,h. Then proj(P,K, h) is an idealized
monoscheme. For example, if P is freely generated by elements x, y of degree
one and K = (xy), then proj(P,K, h) consists of two points, and if P is freely
generated by elements x, y, z of degree one and K = (xyz), then proj(P,K, h) is
the union of three copies of p1, each meeting in two points. More generally,
if P is freely generated by x0, . . . , xn of degree one and K = (x0, . . . , xn), then
proj(P,K, h) is the union of the “coordinate hyperplanes” in pn.

Definition 1.5.9. Let X be a noetherian monoscheme and let S be an invertible
sheaf on X. Then S is:

1. base-point-free if, for every x ∈ X, there exists a global section s of S such
that sx <M

+
X,xSx;

2. ample if for every closed subset Z of X and every x ∈ X \ Z, there exist a
natural number n and a global section s of Sn ⊗ IZ such that sx <M

+
X,xS

n
x;

3. extremely ample if (2) is true with n = 1 for every x and Z.

Remark 1.5.10. An invertible sheaf on a noetherian monoscheme is ample
if and only if some positive tensor power of it is extremely ample. Indeed,
suppose that S is ample. If s ∈ Sn⊗IZ and sx <M

+
X,xS

n
x then, for every d ∈ N,

sd is a global section of Snd with the same property. Since X is noetherian, it
has only finitely many points and finitely many closed sets, and hence finitely
many pairs (x,Z) with x < Z. For each such pair, there exists an n and a section
of Sn as above. Hence if N is the product of all such n, then for every (x,Z)
there exists a global section ofSn such that sx <MX,xS

N
x . ThusSN is extremely

ample. The converse is trivial.

Proposition 1.5.11. Let S be an invertible sheaf on a quasi-compact and
quasi-separated monoscheme X. Then S is ample if and only if there exists
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a finite set of sections s1, . . . , sn of some power of S such that the correspond-
ing family of open sets Xs1 , . . . , Xsn is an affine covering of X. In particular, if
(P, h) is a graded monoid and P+

h is generated by elements p1, . . . , pn with all
h(pi) dividing d > 0, thenMh(d) is an ample invertible sheaf on proj(P, h).

Proof Suppose S is ample. For each x ∈ X, choose an open affine neigh-
borhood U with complement Z. Since S is ample, there exist n > 0 and
s ∈ Γ(X,IZS

n) such that sx < M+
X,xS

n
x. Then Xs = Us is an affine neigh-

borhood of x contained in U. Since X is covered by the family of these sets
Xs and is quasi-compact, a finite number of them will suffice. Conversely, sup-
pose that there exists an affine open cover Xs1 , . . . , Xsn of this form. Let x be a
point of X not contained in some closed subset Z of X and let s := si be such
that x ∈ Xsi . Since x < Z, IZ,x = MX,x, and since Xs is affine, there exists
m ∈ Γ(Xs,IZ) such that mx <M

+
X,x. Applying Proposition 1.4.7 with T = IZ ,

we see that there exist n > 0 and s ∈ Γ(X,SnIZ) such that sx <M
+
X,xSx.

Now suppose that X = proj(P, h) and that p1, . . . pn and d are as in the state-
ment of the proposition. Let di := d/h(pi), and si := di pi ∈ Γ(X,Mh(d)).
Then Xsi = D+(pi) is affine, and Xs1 , . . . , Xsn covers X. It follows thatMh(d) is
ample. �

Somewhat more generally, if f : X → Y is a morphism of monoschemes, an
invertible sheaf S on X is said to be ample relative to f if Y admits a covering
by affine open sets V such that the restriction of S to each f −1(V) is ample.
There is an evident analog of Proposition 1.5.11 in this relative situation, which
we leave to the reader.

If S is an invertible sheaf on a monoscheme X, let Q denote the disjoint
union {tΓ(X,Sn) : n ∈ N}, and let h : Q → N map Γ(X,Sn) to N. Thus (Q, h)
is a graded monoid. Fix a global section s of S. Recalling the maps constructed
in Remark 1.5.5 and Proposition 1.4.7, we find a diagram

lim
−→
{Γ(X,Sn), ·s : n ∈ N}

� - Q(s)

Γ(Xs,MX)
?

θ

�

and hence a morphism

ts : Xs → D+(s)→ proj(Q, h). (1.5.2)

Explicitly, an element q ∈ Γ(X,Sn) defines an element s−nq ∈ Q(s), and θ(s−nq)
is the unique element of Γ(Xs,MX) such that θ(s−nq)sn = q.
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Theorem 1.5.12. Let X be a noetherian monoscheme and letS be an invertible
sheaf on X. Let Q := tΓ(X,Sn) with the natural monoid structure and map
h : Q→ N.

1. If S is base-point-free, then there exists a unique map

f : X → proj(Q, h)

such that for each s ∈ Γ(X,S), the restriction of f to Xs agrees with the
morphism ts : Xs → D+(s) (1.5.2).

2. If S is base-point-free and ample, the morphism f is an open immersion.

Proof For the first statement, we must show that if s and s̃ are sections of S,
the morphisms

f : Xs → proj(Q, h) and f̃ : Xs̃ → proj(Q, h),

defined respectively by θ and θ̃, agree on Xs ∩ Xs̃. Observe that θ̃(ss̃−1)s̃ =

s, and so θ̃(ss̃−1) restricts to a unit on Xs̃ ∩ Xs. It follows that θ̃ induces a
homomorphism

(Q(s̃))s/s̃ → Γ(Xs ∩ Xs̃,MX).

Similarly, θ induces a homomorphism

(Q(s))s̃/s → Γ(Xs ∩ Xs̃,MX).

We must show that, with the canonical identification

(Q(s̃))s/s̃ � (Q(s))s̃/s : qs̃−h(q) 7→ qs−h(q)(s/s̃)h(q),

these two homomorphisms agree. On Xs ∩ Xs̃, we have s̃ = θ̃(ss̃−1)−1s. If n :=
h(q), we can write θ(qs−n) = qs−n and θ̃(qs̃−n) = qs̃−n. Then the identification
above sends qs̃−n to qs−n(ss̃−1)n), and

θ̃(qs̃−n(ss̃−1)n) = qs̃−nθ̃(ss̃−1)n = qs−n,

as required.
Now suppose that S is base-point-free and ample. Fix a global section s of

S, and on the open set Xs, identifyMX with S via the basis element s for S.
By Proposition 1.4.7, the map

Q(s) = lim
−→

Γ(X,Sn) = Γ(Xs,MX)

is an isomorphism. Because S is ample, hypothesis (3) of Proposition 1.4.5
is satisfied, and it follows that the map Xs → spec(Γ(Xs,MX)) is an open
immersion. Thus the map Xs = f −1(D+(s)) → D+(s) is an open immersion,
and since the set of all sets of the form D+(s) covers Proj(Q, h), f is an open
immersion. �
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Remark 1.5.13. If T is a finite set of generators for the ideal P+
h := h−1(N+)

of P, then P is generated as a monoid by F := h−1(0) and T . To see this, let Q
be the submonoid of P generated by T and, for each p ∈ P, write p = p′ + q
where q ∈ Q and p′ ∈ P, chosen so that h(p′) is minimized. If h(p′) > 0, then
p′ ∈ P+

h and hence there exist p′′ ∈ P and t ∈ T such that p′ = p′′ + t. Then
p = p′′+ t + q, with t + q ∈ Q and h(p′′) = h(p′)−h(t) < h(p′), a contradiction.
Thus in fact p′ ∈ F and so p = p′ + q belongs to the submonoid of P generated
by F and Q. We will use an analog of this remark in our discussion of the
moment map for projective monoschemes.

1.6 Separated and proper morphisms

The underlying topology of a monoscheme is not sufficiently rich to charac-
terize either separation or properness. (It is likely that Berkovich’s theory of
“analytic spaces over F1” would remedy this defect.) Instead we use the val-
uative criteria as the definition. For simplicity we restrict our attention to fine
monoschemes.

Recall that a = spec(N) and a∗ := spec(Z).

Definition 1.6.1. Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of fine monoschemes. Then f is separated (resp. proper) if, for every
commutative square

a∗
h - X

a
?

-

h′
-

Y,

f

?

there is a at most one (resp. exactly one) morphism h′ : a → X making the
triangles in the diagram commute.

Let us observe that in contrast to the situation in algebraic geometry, a proper
morphism need not be closed. For example, the summation map N ⊕ N → N
induces a proper morphism of monoschemes, but the image of this map is
not closed. It does not seem to be possible to characterize the properness
of a morphism of monoschemes by a topological property. For example,
spec(Z) → spec(0) is not proper, but it has the same topology as the identity
map spec(0)→ spec(0) (even universally).

Remark 1.6.2. It is enough to prove that h′ in the diagram in Definition 1.6.1
is unique (resp. exists) after some covering a → a given by multiplication by
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n. Indeed, since N is saturated, multiplication by n is exact and Kummer. Thus,
by Proposition 1.2.12, the diagram

a∗
n - a∗

a
? n - a

?

is cocartesian.
Let us also point out that the classes of separated and proper morphisms of

monoschemes are closed under composition and base change, just as in the
case of schemes. Furthermore, if g ◦ f is proper and g is separated, then f
is proper. All these verifications are purely formal. The next result is more
substantial.

Theorem 1.6.3. Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of fine monoschemes, let T be an integral monoscheme, and consider a
diagram of the form

T ∗
h - X

T

j

? g -

h′
-

Y,

f

?

in which the outside commutative square is given.

1. If h′ exists (resp. is unique) whenever T := a, then the same is true when-
ever T is the spectrum of a valuative monoid V .

2. If f is separated, then h′ is uniquely determined by h.

Proof Statement (1) is easy to see if V is finitely generated. In this case Pro-
position I.2.4.2 implies that V/V∗ � N, and hence V � V∗⊕N and Vgp � V∗⊕Z.
Then to give a morphism spec(V) → X (resp. spec(Vgp) → X) is the same as
to give a morphism spec(V∗) → X and a morphism a → X (resp. a morphism
a∗ → X).

The general case is more difficult. Let us explain how to prove the exis-
tence; the uniqueness will follow by applying this surjectivity to the diagonal
morphism X → X ×Y X.

Suppose we are given a diagram as in the theorem and that no lifting h′

exists. We will show that there is a similar diagram with T = a. The image
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under g of the closed point of T is a point of Y , and without loss of generality
we may replace Y by an affine neighborhood of this point and assume that
Y = spec(P). Then the morphism g is given by a homomorphism θ : P → V ,
and h by a homomorphism φ : MX,ξ → Vgp, where ξ is the generic point of
X. Replacing P by the image P′ of θ and X by X ×Y spec(P′), we may assume
without loss of generality that θ is injective. Let Γ denote the image ofMX,ξ in
Vgp. Then Γ∩V is a valuation monoid of Γ through which θ factors. Replacing
V by Γ ∩ V , we may as well assume that Γ = Vgp, a finitely generated group,
since X is fine.

Let x be a point of X and let φx be the composition

φx : MX,x - MX,ξ
φ- Γ.

If φx factored through a local homomorphism MX,x → V , then this homo-
morphism would induce a morphism h′ filling in the square in the diagram,
contradicting our hypothesis. Thus there exists qx ∈ MX,x such that either
φ(qx) < V , or qx ∈ M

+
X,x and φ(qx) ∈ V∗. Since V is valuative, in either

case φ(qx) ∈ −V . Since X is finite, the submonoid Q of Γ generated by
{φ(qx) : x ∈ X} is finitely generated, and Q ⊆ −V . By Proposition I.2.2.1,
there exists a local homomorphism γ0 : Q → N. After replacing γ0 by nγ0

for some n > 0, we may assume that γ0 can be extended to a homomorphism
Γ → Z. On the other hand, if p ∈ P+, then θ(p) ∈ V+ and, since Q ⊆ −V , no
multiple of θ(p) lies in Q, i.e., θ(p) < Qsat. Hence by Corollary I.2.2.2 there
exists a homomorphism γp : Q → N such that γp(p) < 0, which we also may
assume extends to a homomorphism Γ → Z. Let γ := γ0 +

∑
p γp, where

the sum is taken over a finite set of generators for P+. Then γ induces a local
homomorphism Q → N, and −γ ◦ θ induces a local homomorphism P → N.
We have then have the diagram

MX,ξ
φ - Vgp −γ - Z

P

6

-

�

N.

6

We claim that there is no x ∈ X such that −γ◦φ induces a local homomorphism
MX,x → N. Suppose the contrary, and let qx ∈ MX,x be the element chosen
above. If φ(qx) ∈ Q+, then −γ(φ(qx)) < 0, a contradiction. On the other hand,
if φ(qx) ∈ Q∗, then −γ(φ(qx)) = 0. But φ(qx) ∈ Q∗ ⊆ −V∗ = V∗, and in this
case qx was chosen to lie in M+

X,x. Since −γ(φ(qx)) is a unit, −γ ◦ φ is not a
local homomorphismMX,x → N. This completes the proof of (1).
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To prove (2), suppose that h′1, h
′
2 : T → X make the triangles commute,

and let g : T → X ×Y X be the corresponding morphism. Then g ◦ j factors
through the diagonal ∆X , and we claim that the same is true of g. Without loss
of generality, we may assume that T is affine, say T := spec(Q). Let t be the
closed point of T and let τ be the generic point. By Proposition I.2.4.1, there
exists a valuation monoid V of Qgp which dominates Q. Writing S for spec V ,
we find that the morphism j factors through a morphism T ∗ = S∗ → S, and we
find the diagram

S∗ - X

S
?

- X ×Y X.

∆X

?

If S were equal to a, then the separation hypothesis on f would assert that the
two morphisms S→ X defined by the bottom arrow would coincide, hence that
the diagram could be filled in with a map S→ X. But we saw in the proof of (1)
that the same conclusion holds also for S, since V is valuative. It follows from
this that the restrictions of h′1 and h′2 to S coincide, and hence that x := h′1(t) =

h′2(t) in X. Furthermore, the homomorphisms h′[1,t, h
′[
2,t : MX,x → MT,t ⊆ MT,τ

also agree and, since t was arbitrary, it follows that h′1 = h′2. �

Corollary 1.6.4. Let f : X → Y be a separated morphism of of connected
and fine monoschemes. If f induces a monomorphism X∗ → Y∗, then f is
a monomorphism in the category of integral monoschemes, and the diagonal
morphism X → X ×Y X, computed in that category, is an isomorphism.

Proof Let h1, h2 : T → X be morphisms of integral monoschemes such that
f ◦ h1 = f ◦ h2. The claim that h1 = h2 can be checked locally on T , so we
may assume that T is also connected. Since X∗ → Y∗ is a monomorphism
and since the restriction of each hi to T ∗ factors through X∗ it follows that
these restrictions agree. By the previous result, this implies that h1 = h2. It is a
formality that the diagonal map of a monomorphism is an isomorphism. �

Proposition 1.6.5. A proper open immersion of fine connected and nonempty
monoschemes is an isomorphism.

Proof Let j : X → Y be a proper open immersion, with X nonempty. It will
suffice to prove that j is surjective. This condition is local on the target, so we
may as well assume that Y = spec(P). Choose a local homomorphism P→ N,
which induces a morphism h : a → Y . The morphism spec(Pgp) → Y factors
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through Y∗ = X∗, and we find the commutative diagram

a∗ - spec(Pgp) - X

a
h -

-

Y.

j

?

Then the properness of j implies that h lifts to a map a → X, and hence
that the closed point y of Y lies in X. Since X is open in Y , it is stable under
generization, so all the generizations of y, i.e., all the points of Y , lie in X. �

Let us agree to say that a morphism of connected and integral monoschemes
f : X → Y is birational if it induces an isomorphism X∗ → Y∗, or, equivalently,
an isomorphism f −1M

gp
Y →M

gp
X .

Proposition 1.6.6. Let f : X → Y be a birational morphism of connected fine
monoschemes.

1. If f is separated and exact, it is an open immersion.
2. If f is proper and exact, it is an isomorphism.

Proof Assume that f is exact and birational. Let x be a point of X and recall
from Remark 1.2.10 that U := spec(MX.x) is an affine neighborhood of x and
that V := spec(MY,y), is an affine neighborhood of y := f (x). By hypothesis,
the homomorphism f [x : MY,y → MX,x is exact and induces an isomorphism
M

gp
Y,y → M

gp
X,x. Then by the definition of exactness, f [x is an isomorphism. We

conclude that, for each x ∈ X, there exists a neighborhood V of f (x) and a
section g : V → X of f . Assume in addition that f is separated. Consider the
set of pairs (V, g), where V is open in Y and g : V → X is a section of f . If
(V ′, g′) is another such pair, then necessarily g and g′ agree on Y∗. Since f is
separated, they also agree on V ∩ V ′, by Theorem 1.6.3, and hence they patch
uniquely to a section of f over V ∪ V ′. It follows that there is a maximal pair
(W, g). Necessarily such a maximal W contains the image of f , and g : Y → X
is surjective. Since f ◦g is injective, g is bijective. Furthermore, for each x ∈ X,
the map f [x is an isomorphism, and it follows that f is an open immersion.
This concludes the proof of statement (1). Statement (2) then follows from
Proposition 1.6.5. �

Theorem 1.6.7. Let θ : P → Q be a homomorphism of fine monoids. Then
the following conditions are equivalent.

1. The morphism spec(θ) : spec(Q)→ spec(P) is proper.
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2. The diagram

Q∨ - P∨

WQ

? Wθ - WP

?

is cartesian, where WQ := Hom(Q,Q) and Q∨ is the cone in WQ dual to Q,
with similar notations for P.

3. The homomorphism θ is Q-surjective (see Definition I.4.3.1).
4. The action of P on Q defined by θ makes Q a finitely generated P-set.

Proof Suppose that spec(θ) is proper. Let w ∈ WQ be such that Wθ(w) ∈ P∨.
Choose n > 0 such that nw maps Q to Z and hence P to N. Then we find the
diagram

a∗
spec(nw)- spec(Q)

a
? f - spec(P).

spec(θ)

?

By the definition of properness, the morphism f factors uniquely through
spec Q, and hence in fact nw belongs to Q∨, and consequently the same is
true of w. This implies that the diagram in (2) is cartesian. Now suppose that
(2) holds, and let P′ be the image of θ. We have a diagram:

Q∨ - P′∨ - P∨

WQ

? Wθ′- WP′
?

- WP.
?

Since the rectangle is cartesian and the map WP′ → WP is injective, the square
on the left is also cartesian. Recall from Theorem I.2.3.12 that Q∨ is sharp,
since Q spans WQ. Since the square is cartesian, the kernel K of Wθ′ is con-
tained in Q∨, and since the latter is sharp and K is a group, it follows that
K = 0. Thus Wθ′ is injective. Since by construction θ′ : P′ → Q is injective,
Wθ′ is also surjective, hence an isomorphism. Since the square is cartesian, it
follows that Q∨ → P′∨ is an isomorphism. Then Theorem I.2.3.12, implies that
C(P′) → C(Q) is an isomorphism. It follows that C(P) → C(Q) is surjective,
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i.e., θ is Q-surjective. The equivalence of (3) and (4) was proved in Proposi-
tion I.4.3.6. Finally, suppose that (3) holds. Then if h : Q→ Z is such that h◦ θ
maps to N, h also sends Q to N. This shows that spec(θ) is proper. �

Proposition 1.6.8. Let f : X → Y be a proper morphism of fine noetherian
monoschemes, where Y := spec(P). Then f∗(MX) is a coherent sheaf ofMY -
sets.

Proof Without loss of generality, we may and shall assume that X is con-
nected and that Y is affine, say spec P. Since X is noetherian, f is quasi-
compact and quasi-separated, so f∗(MX) is quasi-coherent, by Remark 1.4.4.
Thus it suffices to prove that Q := Γ(X,MX) is a finitely generated P-set. Let
S := spec Q, so that we have a factorization X

g- S
f ′- Y of f . By

Theorem 1.6.7, it will suffice to show that f ′ is proper. Let h : a → Y be a
morphism whose restriction h∗ to a∗ lifts to S. Since Qgp ⊂ Γ(X,Mgp

X ) and the
latter is a finitely generated group, nh factors through a map a∗ → X∗ for some
n > 0. Then the properness of f implies that nh lifts to X and hence to S, as
required. �

Theorem 1.6.9. Let (P, h) be a finitely generated graded monoid and let F :=
h−1(0). Then the natural map proj(P, h)→ spec(F) is proper.

Proof Suppose we are given a diagram of the form

a∗
g- proj(P, h)

a
?

- spec(F).
?

Since a∗ has only one point, the morphism g factors through D+(s) for some
s ∈ P+

h . Let K be the kernel of the homomorphism h : Pgp → Z, and observe
that (P(s))gp = K. Indeed, any element of K can be written in the form p − q,
where p, q ∈ P and h(p) = h(q). Let d := h(p), let e := h(s), and let p′ :=
p + (e − 1)q. Then

p − q = p′ − eq = p′ − ds − (eq − ds) ∈ Pgp
(s).

This shows that K ⊆ (P(s))gp, and the reverse inclusion is trivial. Thus g corre-
sponds to a homomorphism K → Z. Since Pgp/K is contained in Z, it is free,
and so the homomorphism h extends to a homomorphism θ : Pgp → Z.

Let S be a finite set of generators for P, and choose an s ∈ S \ F which
minimizes θ(s)/h(s). We shall show that θ maps P(s) into N, so that g extends
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to a morphism a → D+(s). Every element of P(s) has the form p − ns with
h(p) = nh(s), and p can be written in the form p =

∑
nisi + f with si ∈ S \ F

and f ∈ F. Then h(p) = nh(s) =
∑

nih(si). Furthermore, θ(si) ≥ h(si)θ(s)/h(s)
for all i, so

θ(p) =
∑

niθ(si) + θ( f )

≥
∑

nih(si)θ(s)/h(s)
≥ h(p)θ(s)/h(s)
≥ nθ(s).

Thus θ(p − ns) ≥ 0, as required.
Now suppose that g and g′ are morphisms a → proj(P, h) with the same

restriction to a∗. Let s (resp. s′) be an element of P+
h containing g(t) (resp

g′(t)), where t is the closed point of a. Then g factors through D+(s) and
hence is given by a homomorphism θ : P(s) → N; similarly g′ is given by a
homomorphism θ′ : P(s′) → N. By hypothesis, θ and θ′ induce the same homo-
morphism P(s′+s) → Z. Now s′′ := h(s)s′ − h(s′)s ∈ P(s) and hence θ(s′′) ∈ N.
Since −s′′ ∈ P(s′), it is also true that θ′(−s′′) ∈ N. Thus θ(s′′) = θ′(s′′) = 0,
so that θ extends to a homomorphism P(s+s′) = (P(s))s′′ → N, and similarly for
θ′. That is, g and g′ both factor through D+(s + s′), which is affine and hence
separated. Since g and g′ agree on a∗, they are equal. �

A monoscheme X is said to be separated if the unique morphism from X to
the final object spec(0) is separated. The following result gives a characteriza-
tion of separated monoschemes that is useful in comparing monoschemes to
the classical notion of fans, as we shall see in Section 1.9

Proposition 1.6.10. Let X be a connected and fine monoscheme. Then the
following conditions are equivalent.

1. X is separated.
2. The diagonal morphism ∆X : X → X × X is proper.
3. For every pair U,V of affine subsets of X, the intersection U ∩ V is affine,

and the natural map

Γ(U,MX) + Γ(V,MX)→ Γ(U ∩ V,MX)

is an isomorphism.

Proof If X is separated, the properness of ∆X follows immediately from the
definitions and the universal property of products. Suppose that ∆X is proper
and that U and V are affine open subsets of X. Then U ∩ V = ∆−1

X (U × V) is
evidently quasi-affine, and so Proposition 1.4.5 shows that the natural map
j : U ∩ V → Y := spec(Γ(U ∩ V,MX)) is an open immersion. The map
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g : U ∩ V → U × V is proper, since it is obtained by base change from the
proper map ∆X . Since U × V is affine, the map g factors: g = g′ ◦ j, and the
map g′ is separated because Y is affine. It follows that j is proper, and hence
an isomorphism by Proposition 1.6.5. Thus U ∩V is affine. Let x be the unique
closed point of U, let y be the unique closed point of V , and let z be the unique
closed point of U ∩ V . Then

Γ(U,MX) =MX,x, Γ(V,MX) =MX,y, and Γ(U ∩ V,MX) =MX,z.

Since U ∩V → U ×V is proper, Theorem 1.6.7 implies that the natural homo-
morphism Γ(U × V,MU×V ) → Γ(U ∩ V,MX) is Q-surjective, and hence the
same is true of the homomorphism θ : P :=MX,x +MY,y → Q :=MX,z. Since
the latter is also injective, it is Kummer, and it follows from Corollary I.4.3.10
that the induced map Spec(θ) is a homeomorphism. Consequently θ is a local
homomorphism. Since X is a monoscheme, the cospecialization map λx,z iden-
tifies MX,z with the localization of MX,x by F := λ−1

x,z(M
∗
X,z). Then it follows

that PF → Q is surjective, and hence an isomorphism. Since P → Q is local,
F maps into P∗. Thus PF = P and so P = Q, as claimed.

Finally suppose that (3) holds. To prove that X is separated, let h1, h2 be
morphisms a → X that agree when restricted to a∗. Let xi := hi(t), where t is
the closed point of a. It will suffice to prove that x1 = x2. Since X is noetherian,
Ui := spec(MX,xi ) is an affine open subset of X, and, by hypothesis, so is
U := U1∩U2. Let x be the unique closed point of U, so that Γ(U,MX) =MX,x.
By hypothesis,MX,x =MX,x1 +MX,x2 ⊆ M

gp
X,x. Since hi : MX,xi → N, i = 1, 2,

induce the same homomorphism h : Mgp
X,xi
→ Z, it follows that h mapsMX,x to

N. Since hi is a local homomorphism and factors through the cospecialization
map λxi,x, the latter must also be local, But then x = xi, and hence x1 = x2. �

1.7 Monoidal transformations

Here we discuss the analog of blowing up for monoschemes. For more details
and applications, we refer to the discussion in [58]. The figure (1.7) illustrates
two examples of blowing up.

Let (X,MX) be a monoidal space and let I be a sheaf of ideals in MX .
We say that I is invertible if it is so as a sheaf ofMX-sets (Definition 1.4.6).
When we work in the category of integral monoidal spaces, this condition is
especially manageable.

Lemma 1.7.1. Let X be an integral monoidal space.

1. A sheaf of ideals is invertible if and only if it is locally generated by a single
element.
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Figure 1.7.1 Blowing up the maximal ideal in N2 and in Q2,2 (Example I.1.4.8).

2. If I and J are sheafs of ideals, then I+J is invertible if and only if I and
J are invertible.

3. If f : X′ → X is a morphism of integral monoidal spaces and I is an invert-
ible sheaf of ideals on X, then the ideal I′ ofMX′ generated by the image
of f −1(I) is again invertible, and the natural map

f ∗(I) :=MX′ ⊗ f −1(MX ) f −1(I)→ I′

is an isomorphism.

Proof If k is any section of I, the integrality of MX implies that multipli-
cation by k defines an injectionMX → I. Thus if k generates I, this map is
an isomorphism and I is invertible, proving (1). If I and J are invertible, we
can choose local generators s of I and t of J , and then s + t will be a local
generator of I+J . Suppose that I+J is invertible; let us check that I is also
invertible. Let k be a local generator of I + J and write k = s + t with s ∈ I
and t ∈ J . Then, if q is a section of I, q + t is a section of I + J and hence
q + t = p + s + t for some local section p of MX . It follows that q = p + s
and that s generates I. Thus I is invertible, and the same argument applies
to J . If f : X′ → X is a morphism of integral monoidal spaces and I is an
invertible sheaf of ideals in MX , it is clear that the ideal I′ is locally mono-
genic and hence invertible. Furthermore, the map in statement (3) is surjective
by definition, and its injectivity can be checked locally using a basis for I. (In
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the terminology of Corollary I.4.5.16, one notes from the invertibility of I that
f ∗(I) isMX-regular.) �

Theorem 1.7.2. Let I be a quasi-coherent sheaf of ideals on an integral mono-
scheme X. If T is an integral monoidal space, let

FI(T ) := { f : T → X : IT := f −1(I)MT is invertible}.

Then FI is a subfunctor of the functor hX and is representable in the cate-
gory of integral monoschemes. Thus there exists a morphism of monoschemes
β : XI → X such that:

1. the ideal sheaf II ofMXI generated by β−1(I) is invertible;
2. any morphism of monoidal spaces β′ : T → X with this property factors

uniquely through β.

Furthermore, the ideal sheaf II is ample, relative to the morphism XI → X.

Proof If g : T ′ → T is a morphism of integral monoschemes over X and IT

is invertible, then (3) of Lemma 1.7.1 implies that IT ′ is also invertible. Thus
FI is indeed a subfunctor of the functor hX . (Note that this is not the case in
the category of schemes, or without the integrality assumption.)

To construct XI, we first suppose that X = spec(P). Let I := Γ(X,I) and let
BI((P) be the Rees monoid of (P, I). Recall from Definition I.3.6.4 that this is
the monoid BI(P) whose elements are pairs (n, p), where n ∈ N and q ∈ In, and
whose monoid law is given by (m, p) + (n, q) := (m + n, p + q). Let h : BI(P)→
N be the homomorphism sending (n, p) to n, and let XI := proj(BI(P)). The
degree zero part of BI(P) is just P, and the ideal h−1(N+) is generated by the
set of elements of the form (1, q) with q ∈ I. Thus on XI the sheaf MXI (1)
is invertible. Consider the ideal IBI of BI(P) generated by I ⊆ P ⊆ BI(P).
The degree-n part of IBI is In+1 if n ≥ 0 and is empty otherwise. Thus there
is an evident inclusion IBI(P) → BI(P)(1) of graded BI(P)-sets, which is an
isomorphism in positive degrees and hence induces an isomorphism of sheaves
ofMXI -sets. It follows that IMXI �MXI (1) and hence is invertible. It is ample
by Proposition 1.5.11.

We claim that β : XI → X represents the functor FI . Observe first that β is a
monomorphism in the category of integral monoschemes. To see this, suppose
that h1 and h2 are morphisms T → XI such that β ◦ h1 = β ◦ h2. To prove
that h1 = h2 we may argue locally on T , hence we may assume that T is
affine. If I is empty, XI is empty and there is nothing to prove. Otherwise β
is birational, hence induces an isomorphism X∗I → X∗, and hence h1 and h2

induce the same map T ∗ → XI . Since β is projective, it is separated and hence,
by Theorem 1.6.3, h1 = h2.
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The following lemma gives a useful description of certain open subsets of
XI .

Lemma 1.7.3. Let I be an ideal in an integral monoid P, let q be an element of
I, and let b := (1, q) be the corresponding element of the Rees monoid BI(P).
Then BI(P)(b) is naturally isomorphic to the submonoid of Pq generated by
elements of the form p − q where p ∈ I. In particular, if I is generated by q,
this monoid is naturally isomorphic to P.

Proof The homomorphism P → BI(P) induces an isomorphism from Pgp to
the degree zero part of (BI(P))gp. If p ∈ I, then p − q maps to the element
(0, p − q) = (1 − p) − (1 − q) ∈ BI(P)(b). On the other hand, each element in
BI(P)(b) can be written in the form (n, p) − (n, nq) = (0, p − nq), where n ∈ N
and p ∈ In. Since p ∈ In, there exist p1, . . . , pn ∈ I such that p = p1 + · · · + pn,
and so p − nq =

∑
(pi − q), which belongs to the submonoid Pgp generated by

elements of the form p − q with p ∈ I. �

We claim that β is an isomorphism if I is invertible. Since this assertion
can be checked locally on X and since the construction of β is compatible
with localization, we may assume that I is monogenic, say generated by q.
Then the ideal B+

I (P) is generated by b := (1, q), and so XI = D+(1, q), which
is isomorphic to the degree zero part of the localization of BI(P) by b. Then
Lemma 1.7.3 implies that the natural map P→ BI(P)(b) is an isomorphism.

Now suppose that f : T → X and IT is invertible. If T factors through
XI, such a factorization will be unique, so to prove the existence of such a
factorization we may argue locally on T . Thus we may assume that T is affine,
say T = spec(Q), and that f is given by a homomorphism θ : P→ Q. Let J be
the ideal of Q generated by the image of I. Then θ induces a homomorphism of
graded monoids BP(I) → BQ(J), and the ideal B+

Q(J) is generated by the ideal
B+

P(I). By Remark 1.5.4, we conclude that there is a morphism fI : TJ → XI

over the morphism f . By Lemma 1.7.3 the map TJ to T is an isomorphism,
and hence f factors through XI , as desired.

This concludes the proof of Theorem 1.7.2 when X is affine. The general
case follows by a straightforward gluing argument, which we leave to the
reader. �

Remark 1.7.4. It may be useful to give a more explicit description of a natural
open cover of XI and the corresponding open cover of the functor FI . Recall
that XI = proj(BI(P)) admits an affine cover by sets of the form D+(b), where
b ranges over a set of generators for the ideal B+

I (P) of BI(P). In this case, such
a set of generators is furnished by a set of elements of the form (1, q), where
q ranges over a set of generators for I. Then D+((1, q)) is the spectrum of the
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monoid obtained by taking the degree zero part of the localization of BI by
(1, q), which, as Lemma 1.7.3 shows, can be identified with the submonoid of
Pgp generated by elements of the form p − q with p ∈ I. If T is an integral
monoidal space, let

FI,q(T ) := { f : T → X : IT := f −1(I)MT is generated by f [(q)}.

Then it is not difficult to see that FI,q is an open subfunctor of FI and is
representable by the affine monoscheme D+((1, q)).

Definition 1.7.5. Let I be a quasi-coherent sheaf of ideals of a monoscheme
X. Then the blowup, or monoidal transformation, of X along I is the map
β : XI → X described in Theorem 1.7.2.

The following result is an immediate consequence of Lemma 1.7.1 and the
universal mapping property of the monoidal transformation.

Proposition 1.7.6. Let X be an integral monoscheme and let I be a quasi-
coherent sheaf of ideals on X.

1. If g : X′ → X is a morphism of integral monoschemes and I′ is the ideal of
MX′ generated by g−1(I), then the natural map

X′
I

:= X′
I′
→ X′ ×X XI

is an isomorphism, where the fiber product is taken in the category of inte-
gral monoschemes.

2. If J is another quasi-coherent sheaf of ideals on X, there are natural iso-
morphisms

XI+J � XI ×X XJ � (XI)J � (XJ )I. �

The next result shows that monoidal transformations are surjective in a very
strong sense.

Proposition 1.7.7. Let X be a fine (resp. fine and saturated) connected mono-
scheme, let I be a nonempty and coherent sheaf of ideals in MX , and let
β : XI → X be the monoidal transformation defined by I. For each x ∈ X,
there is a point x′ of XI lying over x such that the induced homomorphism

β
[

x′ : M
gp
X,x →M

gp
XI,x′

is surjective with finite kernel (resp. is an isomorphism).

Proof Without loss of generality we may assume that X is affine, say X =

spec(P), and let I := Γ(X,I).
Assume for the moment that P is sharp. Let V be the vector space Q ⊗ Pgp

and let W be its dual. Since P is fine, I is finitely generated and, according to
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Proposition I.2.3.22, there is a generator k of I that is a vertex of the convex hull
S of I in V . This means that there exists a (w, a) in W⊕Q such that 〈s,w〉+a ≥ 0
for all s ∈ S and such that k is the unique element of S for which equality holds.
In particular, 〈k′,w〉 + a ≥ 0 if k′ ∈ I, and it follows that 〈k′,w〉 + ma ≥ 0 if
k′ ∈ Im. Then D+((1, k)) is an open subset of XI , which by Lemma 1.7.3 can be
identified with the spectrum of the submonoid Q of Pgp generated by elements
of the form k′ − k with k′ ∈ I. We claim that Q∗ is torsion, and in fact that it
vanishes if P is saturated. Any u ∈ Q∗ can be written as a sum of elements of
the form k′ − k as above and, since u is a unit, so is each such k′ − k. Thus it
will suffice to prove that if k′ − k is a unit, then it is torsion (resp. is zero). If
k′ − k ∈ Q∗, there exists an element q of Q with k′ − k + q = 0, and we can
write q = k′′ −mk for some k′′ ∈ Im and some m ∈ N. Then k′ + k′′ = (m + 1)k,
〈k′,w〉 + a ≥ 0, 〈k′′,w〉 + ma ≥ 0, and

〈k′,w〉 + a + 〈k′′,w〉 + ma = 〈k′ + k′′,w〉 + (m + 1)a

= 〈(m + 1)k,w〉 + (m + 1)a = 0.

It follows that 〈k′,w〉 + a = 0, and hence by the uniqueness of k that k′ and k
have the same image in C(P). Then nk = nk′ for some positive integer n, and
so k′ − k is torsion. If P is saturated and sharp, Pgp is torsion free, so k = k′,
proving that Q is sharp.

It follows that the inclusion P → Q is local. Indeed, if p ∈ P maps to a unit
in Q, then np = 0 for some n > 0, hence p is a unit in P. Thus the ideal Q+ of
Q defines a point x′ of XI mapping to x. Then the homomorphism β

[

x identifies
with the homomorphism Pgp → Qgp/Q∗ = Pgp/Q∗, which is surjective with
finite kernel (resp. an isomorphism), as claimed.

To deduce the general case, we argue as follows. Observe first that if
θ : P → Q is a homomorphism of integral monoids, then the pushout Q ⊕P P
is obtained by dividing Q by the subgroup θ(P∗) of Q∗. In particular, the natu-

ral map Q → Q ⊕P P is an isomorphism. To globalize this observation, write
X′ → X for the morphism of monoschemes corresponding to P → P, let
X̃ → X be a morphism of integral monoschemes, and let X̃′ := X̃ ×X X′.
Then it follows from the affine case just considered that the natural map
X̃′ → X̃ is a homeomorphism and induces an isomorphism MX̃ → MX̃′ .
Now let I′ be the ideal of X′ generated by I. As we have just seen, the natu-
ral map X′

I′
� XI ×X X′ → XI is a homeomorphism and the homomorphism

MXI →MX′
I′

is an isomorphism. Thus statement (1) for X′
I′
→ X′ implies the

analogous result for XI → X. �

We should remark that the saturation hypothesis in Proposition 1.7.7 is not
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superfluous. For example, if P is the monoid given by generators p, q and re-
lation 2p = 2q, then the monoidal transformation of the ideal (p, q) is given
by the saturation homomorphism P → Psat. The maximal ideal of Psat is the
only prime lying over P+, and the map Pgp → (Psat)gp is not an isomorphism.
However, the proof of the proposition shows that it would be enough to assume
thatM

gp
X is torsion free.

Corollary 1.7.8. Let X be a connected and fine monoscheme and let β be the
monoidal transformation defined by a nonempty sheaf of ideals of X. Then in
the category of fine monoschemes, the morphism β is universally surjective.

Proof Let I be an nonempty sheaf of ideals on X, let Xsat be the saturation
of X, and let J be the ideal of Xsat generated by I. Since the pullback of I to
(Xsat)J is invertible, we have a commutative diagram:

(Xsat)J - XI

Xsat

β′

?
- X.

β

?

Then Xsat is fine and andJ is nonempty, and Proposition 1.7.7 implies that the
monoidal transformation β′ defined by J is surjective. Since Xsat → X is also
surjective, it follows that β is surjective. By Proposition 1.7.6, the base change
of a monoidal transformation is again a monoidal transformation, and hence
the surjectivity is universal. �

Remark 1.7.9. Although monoidal transformations are universally surjective
in the category of fine monoschemes, care must exercised in the context of
fiber products. Since monoidal transformations are not exact, the “four point
lemma” (see Corollary 4.2.16) does not hold. In fact, if I is a coherent sheaf
of ideals inMX , the isomorphism (1) of Proposition 1.7.6 implies that the two
projections XI ×X XI → XI are isomorphisms. Hence if x1 and x2 are two
distinct points of XI with the same image in X, there is no point of XI ×X XI
mapping to (x1, x2). Furthermore, the map XI \ {x1} → X is surjective but not
universally surjective, since

XI \ {x1} ×X XI \ {x2} = XI \ {x1, x2}.

1.8 Monoidal transformations and exactification

We have seen that monoidal transformations are not exact. In fact, their non-
exactness is strong enough to swallow the failure of a general morphism to
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be exact: any morphism of monoschemes can be “exactified” by a suitable
blowup. This result is one of the main applications of blowing up. Its proof
is based on arguments in [40] and [46]. First, a warning: recall that a homo-
morphism θ of integral monoids can be exact but not locally exact, or locally
exact but not exact (Examples I.4.2.13), and the corresponding morphism of
monoschemes is exact if and only if θ is locally exact.

In the following theorem and its proof, we use the following notation. If
f : X → Y is a morphism of fine monoschemes and I is a coherent sheaf of
ideals in Y , then XI → X is the monoidal transformation defined by the ideal
of IX ofMX generated by I. Recall from Proposition 1.7.6 that XI � X×Y YI,
where the fiber product is taken in the category of integral monoschemes.

Figure 1.8.1 Exactifying the diagonal map AN → AN2 .

Theorem 1.8.1 (exactification). Let f : X → Y be a quasi-compact morphism
of quasi-compact and fine monoschemes. Then there exists a coherent sheaf of
ideals I on Y such that the morphism

fI : XI � X ×Y YI → YI

is exact. If V is an open subset of Y contained in the image of f with the
property that f is exact over V , then I may be chosen so that its restriction to
V is the unit ideal.

Proof We begin with some preliminary lemmas. The first says that any bi-
rational map of fine affine monoschemes is an open subset of a blowup.

Lemma 1.8.2. Let f : Y ′ → Y be a morphism of fine affine monoschemes
that induces an isomorphism Y ′∗ → Y∗. Then there exists a coherent sheaf of
ideals I in Y such that the morphism Y ′

I
→ YI is an open immersion and the

morphism Y ′
I
→ Y ′ is an isomorphism. Furthermore, if V is an open subset of

Y over which f is an isomorphism, I may be chosen to be invertible on V .

Proof Let θ : P→ Q be the monoid homomorphism defining f . By hypothe-
sis, θgp is an isomorphism. Note that f is a monomorphism in the category of
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integral monoschemes, and in particular that Y ′ � Y ′ ×Y Y ′. Let (q1, . . . , qn)
be a finite sequence of elements of Q such that Q is generated as a monoid
by P together with (q1, . . . , qn). For each i we can find pi, p′i ∈ P such that
qi = pi − p′i . In fact we arrange this so that all p′i are equal, say to p0 ∈ P.
Let I be the ideal of P generated by (p0, p1, . . . , pn) and let I be the corre-
sponding sheaf of ideals on Y . Then YI (resp. Y ′

I
) is covered by affine open

sets Yi := D+((1, pi)) ⊆ Proj(BI(P), h) (resp., by open sets Y ′i := Yi ×Y Y ′).
In particular, D+((1, p0)) = spec(P((1,p0))) where, by Lemma 1.7.3, P(1,(p0)) is
the submonoid of Pgp = Qgp generated by P and q1, . . . , qn. But this is just the
monoid Q, and so the maps Y ′0 → Y ′ and Y ′0 → Y0 are isomorphisms. It follows
that, for every i, the maps Y ′0∩Y ′i → Y ′i and Y ′0∩Y ′i → Y0∩Yi are isomorphisms.
Since Y0∩Yi → Yi is an open immersion, so is the map Y ′i → Yi. It follows that
Y ′
I
→ YI is an open immersion. Since Y ′0 → Y ′ is already an isomorphism, in

fact the map Y ′
I
→ Y ′ is an isomorphism. Let us check that the restriction of

the sheaf of ideals I to V is invertible. We may cover V by special affine open
sets Yp where p ∈ P is such that the localization Pp → Qp is an isomorphism.
Then for each i, there exists an n ≥ 0 such that p′i := np + qi ∈ P. But then
pi = p′i + p0 − np, so the ideal Ip ⊆ Pp is principally generated by p0. Since
the sets Yp cover Y , it follows that I is invertible. �

Lemma 1.8.3. Let f : X → Y be a morphism of fine affine monoschemes, and
let x be the unique closed point of X. Then there exists a coherent sheaf of
ideals I on Y such that the map XI → X is an isomorphism and the morphism
XI → YI is exact at the unique point of XI lying over x. Furthermore, I can
be chosen so that Iy is invertible at each point y of the image of f over which
f is exact.

Proof The morphism f is is given by a homomorphism of fine monoids
θ : P → Q, and x corresponds to the face Q∗ of Q. Recall that in Proposi-
tion I.4.2.17 we defined a factorization

θ = P
θ̃- Pθ θe

- Q,

where Pθ is the inverse image of Q in Pgp. Here θe is automatically exact, the
homomorphism P→ Pθ induces an isomorphism on associated groups, and Pθ

is again fine. Let

f = X
f e
- Ye f̃- Y

be the factorization of f corresponding to the factorization of θ, and apply
Lemma 1.8.2 to the morphism f̃ . Then the map Ye

I
→ Ye is an isomorphism

and hence so is the map XI � X ×Ye Ye
I
→ X. Since f e is exact at x, the map
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XI → Ye
I

is exact at the unique point x′ of XI lying over x. Since the map
Ye
I
→ YI is an open immersion, it follows that XI → YI is also exact at x′.

Suppose I is chosen so that it is invertible at each point of Y over which f̃
is an isomorphism. Let y be a point in the image of f over which f is exact.
Then y corresponds to a face F of P, and by hypothesis there exists a face G of
Q such that θ−1(G) = F and such that the induced homomorphism PF → QG

is exact. Then PF → QF is also exact, and it follows that PF → Pθ
F is an

isomorphism. Hence f̃ is an isomorphism over y and Iy is invertible. �

Lemma 1.8.4. With the same hypothesis as in the previous lemma, there exists
an ideal J so that XJ → YJ is exact at every point of XJ lying over x and
such that Jy is the unit ideal at every point in the image of f over which f is
exact.

Proof We continue with the notation of the previous lemma. Let I be the
ideal constructed there, and let I∨ ⊆ Pgp denote the set of all g ∈ Pgp such that
g + I∨ ⊆ P. Then J := I∨ + I is an ideal of P containing I, and Jy is the unit
ideal at every y at which Iy is invertible. Furthermore, the pullback ofJ to YJ
is invertible, and hence by (2) of Lemma 1.7.1 so is the pullback of I. Then the
map YJ → Y factors uniquely through YI, and in fact YJ+I � YJ . It follows
that the map XJ → YJ is the pullback of the map XI → YI along YJ → YI
and hence that it is exact at each point of XJ lying over x. �

Now we turn to the proof of the theorem. First assume that Y is affine.
Since X is quasi-compact and fine, it contains only finitely many points, say
x1, . . . , xn. For each i, let Xi := spec(MX,xi ), an affine open subset of X contain-
ing xi as its unique closed point. Let Ii be a sheaf of ideals as in the previous
lemma, constructed for the restriction fi of f to Xi. Note that we can arrange
for Ii to be the unit ideal over V . Then XIi → YIi is exact at every point of
XIi lying over xi. Then for any Y ′ → YIi the base-changed map X′

Ii
→ Y ′

Ii
is

exact at every point of X′
Ii

lying over xi. Let I := I1 + · · ·+In and apply (2) of
Proposition 1.7.6 to interpret this blowup as an iterated sequence of blowups
by each of the ideals Ii. Then the map XI → YI is exact at every point lying
over each of the points x1, . . . , xn, and hence everywhere, and it remains the
unit ideal over V .

For the general case, choose a finite affine open covering Y1, . . . ,Ym of Y
and, for each Yi, a coherent sheaf of ideals Ii on Yi which makes the restriction
of fIi to f −1

Ii
(Yi) exact. We can also arrange for Ii to be the unit ideal on Yi∩V ,

and hence to extend to V ∪ Yi. By Remark 1.4.4, we may find a coherent sheaf
of idealsJi on Y whose restriction to V∪Yi is Ii. Let J :=

∑
Ji, Then the map

XJ → YJ can be viewed as the successive blowup of Y by the ideals Ji in any
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order, and we thus see that its restriction to each f −1
J

(Yi) is exact. Hence it is
exact everywhere. Furthermore, the restriction of J to V is the unit ideal. �

Remark 1.8.5. Blowing up can destroy saturation: YI may fail to be saturated
even if Y is saturated. In order to apply Theorem 1.8.1 to the category of sat-
urated monoschemes, one needs to observe that if X → Y is exact, so is the
corresponding map of saturations Xsat → Ysat, by (7) of Proposition I.4.2.1.
Thus if f : X → Y is a quasi-compact morphism of fine monoschemes and
Y is affine, there is a coherent sheaf of ideals I of Y such that the morphism
Xsat
I
→ Ysat

I
is exact.

As an application of Theorem 1.8.1, we have the following global version
of Lemma 1.8.2.

Corollary 1.8.6. Let f : X → Y be a quasi-compact birational morphism of
fine monoschemes, with Y quasi-compact. Assume that f is separated (resp.
proper). Then there exists a coherent sheaf of ideals I on Y such that fI : XI →
YI is an open immersion (resp. an isomorphism). Furthermore, if V is an open
subset of YI over which f is an isomorphism, I may be chosen so that its
restriction to V is the unit ideal.

Proof Theorem 1.8.1 tells us that there is an I such that the map XI → YI
is exact. Since it is still birational and separated (resp. proper), it is an open
immersion (resp. an isomorphism), by Proposition 1.6.6. Since f is exact over
the open set V , and V is contained in the image of f , we may choose I so that
its restriction to V is the unit ideal. �

Theorem 1.8.7. Let f : X → Y be a a morphism of fine monoschemes. If f is
exact then it is Q-integral. If in addition X is quasi-compact, then there exists
a natural number n > 0 such that the morphism f ′′ in the following diagram is
saturated:

X′sat - X′ - X

Y
? φn -

f ′′

-

Y.

f

?

Here φn : Y → Y is the n-Frobenius morphism (Definition 1.1.13), and the
square is cartesian.

Proof If f : X → Y is exact then, for every point x of X, the homomorphism
f [x : MY, f (x) → MX,x is exact. Since every face ofMX,x corresponds to a point
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of X, it follows in fact that f [x is locally exact and hence is Q-integral, by
Theorem I.4.7.7.

Now suppose that f is exact and that X is quasi-compact. For each x ∈ X,
the homomorphism f [x : MY, f (x) →MX,x is Q-integral. Let

fx : Xx := spec(MX,x)→ Y f (x) := spec(MY, f (x))

be the corresponding morphism of monoschemes. Then Theorem I.4.9.1 im-
plies that there exists an n(x) ∈ N such that the morphism f ′′ : X′′x → Y f (x)

obtained as in the diagram is saturated for every n ∈ N that is divisible by n(x).
Since X is quasi-compact, it has only finitely many points and, since the family
of saturated morphisms is stable under base change, the theorem holds if n is
the product of all the integers n(x). �

The notion of closed immersion is not useful in the context of monoschemes,
since the image of any map of nonempty connected monoschemes contains
the generic point of the target. It therefore does not make sense to ask for
the “monoscheme-theoretic closure” of the image of a morphism. We con-
sider instead “proper immersions” and “proper images.” A “proper immersion”
of monoschemes is, as the name suggests, an immersion (Definition 1.1.12)
which is proper (Definition 1.6.1), and we give the definition of a “proper im-
age” below.

Definition 1.8.8. The proper image of a morphism of monoschemes f : X →
Z is a factorization f = i ◦ g, where i : Y → Z is a proper immersion, with
the following universal property: for any factorization f = i′g′ with i′ a proper
immersion, there is a morphism h : Y → Y ′ such that i = i′ ◦ h.

Note that the morphism h is unique, since i′ is a monomorphism, and fur-
thermore h◦g = g′, for the same reason. The proper image of a morphism, if it
exists, is unique up to unique isomorphism, by the universal mapping property.

In Proposition 1.8.9 below, we shall use the following construction. Suppose
that Z is a monoscheme and thatM is a sheaf of monoids on Z endowed with a
homomorphismMZ → M that makesM into a quasi-coherent sheaf ofMZ-
sets. Then there is an associated monoscheme Y := specZ(M), endowed with
a morphism i : Y → Z, such that i∗MY identifies with M. If Z is affine, Y is
just spec(Γ(Z,M(Z)), and the general case follows by gluing.

Proposition 1.8.9. Every morphism of connected fine monoschemes admits a
proper image, unique up to unique isomorphism. This image has the following
properties.

1. The proper image of a morphism Spec(θ : P → Q) of affine integral
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monoschemes, is again affine, given by the factorization P → M → Q,
where M is the image of P in Q;

2. The proper image of f coincides with the proper image of the restriction of
f to X∗.

3. In general, if f : X → Z is a homomorphism of integral monoids, let M
be the sheaf-theoretic image of the homomorphism MZ → f∗MX . Then
the natural map MZ → M makes M into a quasi-coherent sheaf of MZ-
sets, and Y = specZ( f∗MX). A point z of Z lies in Y if and only if the
homomorphismMZ,z →Mz is local, and in this caseMY,z =Mz.

Proof The proof will rely on the following useful property of proper immer-
sions.

Lemma 1.8.10. Let f : X → Z and i : Y → Z be morphisms of connected and
fine monoschemes. Suppose that i is a proper immersion and that there exists
a morphism g : X∗ → Y such that i ◦ g = f |X∗ . Then g extends uniquely to a
morphism g′ : X → Y such that i ◦ g′ = f .

Proof Since Y → Z is separated and X is integral, any such g′ is unique if it
exists, by (2) of Theorem 1.6.3. Thus it suffices to prove that X admits an open
cover on which such a g′ exists.

Let x be a point of X and choose a local homomorphism θ : MX,x → N.
Then θ defines a morphism h : a→ X taking the closed point t of a to x. Since
i is proper, there is a unique morphism h′ : a → Y such that h′

|a∗
= g ◦ h∗ and

i ◦ h′ = f ◦ h. Then f (x) = i(y) where y := h′(t). We now have the solid arrows
in the following commutative diagram

MZ, f (x)
i[y - MY,y

λy,η- MY,η

MX,x

f [x

? λx,ξ-

g′[x

�
MX,ξ,

g[ξ
�

where ξ and η are, respectively, the generic points of X and Y . Since X is
integral, the map λx,ξ is injective and, since i[y is surjective, there is a unique
homomorphism g′[x : MY,y → MX,x making the diagram commute. Since X is
fine, spec(MX,x) is an open subset of X, and we have proved that the desired
morphism g′ exists in this neighborhood of x. As we have already observed,
it follows that g′ exists and is unique on all of X, completing the proof of the
lemma. �

It is clear that the question of the existence of the proper image of a mor-
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phism f : X → Z can be checked locally on Z. Thus we may assume that Z is
affine, say Z = spec(P). We can also reduce to the case in which X is affine.
Indeed, suppose that i : Y → Z is the proper image of f |X∗ . Then it follows
from the lemma that the map X∗ → Y extends uniquely to X, and in fact then
Y → Z is also the proper image of f . Thus we may assume that X = spec(Q),
and we may even assume that Q is dull. Then f is given by a homomorphism
θ : P → Q. Let M be its image, so that we have θ = γ ◦ ι, where ι is surjec-
tive and γ is injective. We claim that the corresponding factorization f = i ◦ g
gives a proper image of f . Since ι is surjective, Theorem 1.6.7 implies that
i := spec(ι) is proper, and it is also an immersion. Now suppose that f = i′ ◦g′,
where i′ : Y ′ → Z is a proper immersion. We claim that i factors through i′. The
morphisms i, g, i′, g′ induce the solid arrows in the following diagram, where
η′ is the generic point of Y ′:

Pgp ιgp
- Mgp γgp

- Qgp

MY ′,η′ .

6

γ′

-

ι′
-

Since γgp is injective, it follows that the kernel of ι′ is contained in the kernel
of ιgp, and since ι′ is surjective, there is a unique dashed arrow as shown mak-
ing the diagram commute. It follows that i|Y∗ factors through i′. Applying the
lemma to the proper immersion i′, we see that in fact i factors through i′, as
claimed.

We have now proved statements (1) and (2). For (3), we drop the assump-
tion that X and Z are affine. Note however that, since X is integral, the sheaf-
theoretic imageM ofMZ → f∗MX is the same as the sheaf-theoretic image of
MZ in the constant sheafMgp

X , and its formation is compatible with localiza-
tion. It therefore follows from our local construction that Y = specZ(M). Note
that if y ∈ Y , the map i[y : MZ,i(y) →MY,y is local and surjective, soMY,y =My.
Conversely, if MZ,z → Mz is local, and if y is the point of spec(Mz) corre-
sponding to the maximal ideal ofMz, then i(y) = z andMY,y =Mz. �

Remark 1.8.11. As another application of exactification, let us explain how
the indeterminacy of a morphism can be eliminated by a monoidal transforma-
tion. Let X and Y be connected and fine monoschemes, where Y is proper, let
U be an open subset of X, and let f : U → Y be a morphism. There exist a
sheaf of ideals I of X whose restriction to U is the unit ideal and a morphism
f ′ : XI → Y whose restriction to UI = U agrees with f . To see this, let X′ be
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the proper image of the morphism U → X ×Y defined by f . Since X′ → X ×Y
and X×Y → X are proper, so is the map X′ → X. Since Y is separated, the map
U → U × Y is proper. Since X′

|U
→ U × Y is the proper image of U → U × Y ,

the map U → X′
|U

is an isomorphism. Thus the map X′ → X is proper and is
an isomorphism over U. By Corollary 1.8.6, there is a coherent sheaf of ideals
I on X whose restriction to U is the unit ideal and such that X′

I
→ XI is an

open immersion, hence an isomorphism by Proposition 1.6.5. The composition
XI � X′

I
→ X′ → Y is the desired morphism f ′.

1.9 Monoschemes, toric schemes, and fans

In this section we show how (toric) monoschemes give rise to (toric) schemes.
The construction is very direct and straightforward. We also review the classi-
cal construction of toric varieties from fans [21] and explain the relationships
among monoschemes, classical fans, and Kato’s fans [49].

If X is a locally monoidal space X, denote by HX the functor from the cat-
egory of schemes to the category of sets taking a scheme T to the set of mor-
phisms of locally monoidal spaces T → X. For example, if Q is a monoid, it
follows from Proposition 1.2.2 that HaQ (T ) = Hom(Q,Γ(T,OT )). Thus HaQ is
represented by AQ, where AQ = Spec(Z[Q]). The next proposition is a straight-
forward generalization of this to the case of monoschemes.

Proposition 1.9.1. If X is a monoscheme, the functor HX is representable
by a scheme, which we denote by AX. Thus there is a universal morphism
µX : AX → X, and if T is any scheme and f : (T,OT ) → (X,MX) is any
morphism of locally monoidal spaces, there is a unique morphism of schemes
f̃ : T → AX such that f = µX ◦ f̃ .

Proof It suffices to prove that the functor HX has an open cover by affine
schemes. First note that if X′ → X is an open immersion of locally monoidal
spaces, then the corresponding morphism of functors HX′ → HX is open, i.e.,
if f : T → X is any morphism, hX′ ×hX T is represented by the open subscheme
f −1(X′) of T . Now if X is a monoscheme, it admits an open cover by affine
monoschemes X′, and if X′ � spec(Q), then

hX′ (T ) � Hom(Q,Γ(T,OT )) � Mor(T,AQ).

Thus, hX′ is represented by the affine scheme AQ. �

Now suppose that X is a connected toric monoscheme. Recall thatMgp
X is a

constant sheaf, with value Γ := MX,ξ, a finitely generated free abelian group.
As we saw in Proposition 1.2.11, X∗ := spec(Γ) is a group object in the cate-
gory of monoschemes and acts on X. It follows that the group scheme A∗Γ � AX∗
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acts naturally on the scheme AX. Furthermore, AX∗ is dense and open in AX.
Thus AX can be viewed as a toric scheme, a mild generalization of a toric vari-
ety. (Note that AX need not be separated.)

To explain the relationship between toric monoschemes and fans, we begin
by reviewing the definition of the latter.

Definition 1.9.2. Let L be a lattice, i.e., a finitely generated free abelian group,
and let V := Q ⊗ L. Then a fan in V is a finite set ∆ of finitely generated cones
in V satisfying the following conditions.

1. If σ belongs to ∆, then every face of σ also belongs to ∆.
2. If σ and τ belong to ∆, then σ ∩ τ is a face of σ and a face of τ, and in

particular belongs to ∆.

A morphism of fans f : (L,∆) → (L′,∆′) is a homomorphism h : L → L′ such
that for each σ ∈ ∆, h(σ) is contained in some element of ∆′.

Fans are traditionally used to construct toric varieties, as explained for ex-
ample in [21]. But in fact there is a more fundamental construction that relates
fans to monoschemes. If X is a connected and toric monoscheme with generic
point ξ, and if x is a point of X, the cospecialization map allows us to view
MX,x as a submonoid ofMX,ξ, and we use the following notation:

Γ(X) := Γ(X,Mgp
X ) =MX,ξ (a finitely generated free abelian group),

L(X) := Hom(Γ(X),Z) � X∗(a) � X(a∗),
V(X) := Q ⊗ L(X),

σx := M∨X,x := {φ ∈ V(X) : φ(m) ≥ 0 for all m ∈ MX,x}, a cone in V(X),

∆(X) := {σx : x ∈ X}.

Theorem 1.9.3. Let X be a separated, connected, and toric monoscheme. Then
with the notation above, (L(X),∆(X)) is a fan. A morphism of monoschemes
f : X → X′ induces a morphism of the corresponding fans

(L(X),∆(X)→ (L(X′),∆(X′)),

and this functor gives an equivalence from the category of separated, con-
nected, and toric monoschemes to the category of fans.

Proof Each x ∈ X,MX,x is a finitely generated toric monoid, and it follows
from Theorem I.2.3.12 that its Q-dual σx is a finitely generated cone in V(X)
and that MX,x = σ∨x ∩ Γ(X). We claim that the map x → σx is injective,
and hence bijective. Indeed, suppose that x and y are points of X and that
σ = σx = σy. Then M :=MX,x =MX.y as submonoids of Γ(X). Furthermore,
since σ is a finitely generated Q-cone, its interior contains an element h in
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L(X). Then h defines a local homomorphism M → N (see Remark I.2.2.8). By
Proposition 1.2.7, (x, h) and (y, h) define respective elements fx and fy of X(a).
Both of these define the same element hgp of X(a∗) and, since X is separated, it
follows that fx = fy and hence that x = y.

Next suppose that x and y are points of X and that y is a generization of x.
ThenMX,y is the localization ofMX,x by a face F, and (4) of Theorem I.2.3.12
tells us that σy :=M∨X,y =M∨X,x ∩ F⊥, a face of σx. Conversely, if σy is a face
of σx, then by (5) of Theorem I.2.3.12, σ∨y ∩Γ(X) =MX,y is the localization of
σ∨X ∩ Γ(X) =MX,x by a face F ofMX,x. This F corresponds to a generization
y′ of x; then σy′ = σy and hence y = y′. We conclude that y is a generization of
x if and only if σy is a face of σx.

Let x and y be any two points of X. Then Ux := spec(MX,x) and Uy :=
spec(MX,y) are affine open subsets of X, and since X is separated, Proposi-
tion 1.6.10 implies that Ux ∩ Uy is affine. Its unique closed point z is a gener-
ization both of x and of y, and hence σz is a face both of σx and of σy. Pro-
position 1.6.10 also implies that MX,z = MX,x +MX,y and hence by Corol-
lary I.2.3.16 thatσz = σx∩σy. This shows that the intersection of two elements
of ∆(X) is a face of each, and hence that (L(X),∆(X)) is indeed a fan.

Now suppose that f : X → X′ is a morphism of connected separated
toric monoschemes. Then f induces a homomorphism f [ξ : Γ(X′,Mgp

X′ ) →
Γ(X,Mgp

X ) and hence a morphism h : L(X)→ L(X′). Furthermore, if x′ = f (x),
then f [ξ maps MX′,x′ to MX,x and hence h maps σx into σ f (x). Thus h deter-
mines a morphisms of fans

(L(X),∆(X))→ (L(X′),∆(X′).

Conversely suppose that h is a morphism

(L(X),∆(X))→ (L(X′),∆(X′)).

By assumption, for each x ∈ ∆(X), Σx := {σ′ ∈ ∆(X′) : h(σx) ⊆ σ′} is finite
and nonempty and, since ∆(X′) is a fan, ∩Σx belongs to ∆(X′). Then there is
a unique x′ ∈ X′ such that σx′ = ∩Σx, and we get a function f : X → X′ by
sending x to this x′. Note that if y is a generization of x, then σy ⊆ σx, hence
Σx ⊆ Σy and so ∩Σy ⊆ ∩Σx and f (y) is a generization of f (x). This implies
that f is a continuous function. Since MX,x = σ∨x ∩ M

gp
X , h∨ maps Mgp

X′ to
M

gp
X and induces a homomorphism f [x : MX′, f (x) → MX,x for all x ∈ X. Then

f [
−1(M∗X,x) is a face of MX′, f (x), which corresponds to a generization y′ of

f (x). Then σy′ ⊆ σ f (x) and f [x factors throughMX′,y′ . Hence h(σx) ⊆ σy′ , so
σy′ ∈ Σx. But then σ f (x) := ∩Σx ⊆ σy′ , and hence σy′ = σ f (x). Then f (x) = y′

and hence in fact f [x is a local homomorphism. Thus h is subordinate to a
(unique) morphism of monoschemes f : X → X′.
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Finally we sketch the construction of a (separated) monoscheme from a fan
(L,∆). We build a topological space X whose points X are the elements of ∆,
and, for each σ ∈ ∆, the smallest open set containing σ is Uσ := {τ : τ ⊆ σ}.
Let M := Hom(L,Z), and for each σ ∈ ∆, let

Mσ := σ∨ ∩ M,

where σ∨ is the cone in Hom(V,Q) dual to σ, in the sense of Theorem I.2.3.12.
Then τ ⊆ σ if τ ∈ Uσ, and it follows from condition (2) in Definition 1.9.2 that
τ is a face of σ, and hence τ⊥ ∩σ∨ is a face F of σ∨. By Theorem I.2.3.12, τ∨

is the localization of σ∨ by this face, and henceMτ is the localization ofMσ

by F ∩Mσ. Moreover, if G is any face ofMσ, G⊥ ∩ σ is a face of σ, hence
corresponds to a point τ of ∆ lying in Uσ. Thus the set Uσ becomes homeo-
morphic to Spec(Mσ), and the collection of mapsMσ → Mτ corresponding
to inclusions in ∆ identifies with the cospecialization maps of the structure
sheaf of spec(Mσ). Then, if X is endowed with the sheaf associated to the
presheaf taking each Uσ to Mσ (with the corresponding restriction maps), X
becomes a toric monoscheme. Furthermore, a morphism a → X corresponds
to a morphism of fans (Z,R≥, {0}) → (L,∆), which is by its very definition
determined by the map Z→ L, that is, its restriction to a∗. This shows that the
monoscheme X is separated. �

Remark 1.9.4. In [49], Kato considers monoidal spaces in which the sheaf of
monoids is sharp. For example, one can attach to any monoscheme (X,MX) the
sharpened sheaf of monoidsMX . A monoidal space that is locally isomorphic
to the sharpened monoidal space of a monoid is what Kato terms a fan. Since
this notion is not as closely related to the classical one as ours, we suggest
calling Kato’s notion an s-fan. The data of an s-fan is not as precise as those of
a monoscheme, and in particular there seems to be no notion of separation for
s-fans. However, if X is an integral and connected monoscheme, the natural
map MX → MX is exact, so MX = Γ(X) ×

M
gp
X
MX . Thus (X,MX) can be

recovered from (X,MX) by specifying the map Γ(X) → M
gp
X . For example,

the monoscheme versions d of the doubled affine line and of the projective
line p (Examples 1.2.9) give rise to the same s-fan and the same Γ(X), but the
corresponding maps Γ(X)→M

gp
X are different.

Proposition 1.9.5. Let X be a monoscheme, let AX be the associated scheme,
and let µ : AX → X be the natural map of monoidal spaces (Proposition 1.9.1).

1. If E is a quasi-coherent sheaf of OAX
-modules on AX, then µ∗(E) is a quasi-

coherent sheaf ofMX-sets on the monoscheme X.
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2. The functor µ∗ of (1) admits a left adjoint µ∗, from the category of quasi-
coherent sheaves of MX-sets to the category of quasi-coherent sheaves of
OAX

-sets.

3. If S is an invertible sheaf ofMX-sets on S, then µ∗(S) is an invertible sheaf
of OAX

-modules on AX. If X is quasi-compact and separated and S is ample
on X, then µ∗(S) is ample on AX.

Proof Statement (1) can be verified locally on X, so we may assume with-
out loss of generality that X = spec(P), for some monoid P. Then AX =

Spec(Z[P]), and E is the quasi-coherent sheaf associated to a Z[P]-module
E. To show that µ∗(E) is quasi-coherent, we must show that, for every p ∈ P,
the natural map E := µ∗(E)(X) → µ∗(E)(Xp) factors through an isomorphism
Ep → µ∗(Xp). But we have

µ∗(E)(Xp) = E(µ−1(Xp)) = E(APp
).

Since Z[Pp] is the localization of Z[P] by ep, the desired result follows from
the quasi-coherence of E.

Let S be a sheaf of MX-sets on a monoscheme X. For every affine open
set U of X, the free abelian group Z[S(U)] generated by S[U] has a natural
structure of a Z[MX(U)] = µ∗(OAX

)(U)-module. Thus the sheaf Z[S] on X
associated to this presheaf has a natural structure of a µ∗(OAX

)-module, and
µ∗(S) := µ−1(Z[S]) ×µ−1MX OAX

has a natural structure of OAX
-module. It is

easily verified that the functor µ∗ just defined is left adjoint to the functor µ∗.
To see that µ∗ takes quasi-coherent sheaves to quasi-coherent sheaves, we may
work locally on X, and thus may assume that X = spec(P) and S is the sheaf
associated to a P-set S. Then µ∗(S) is the sheaf associated to the Z[P]-module
Z[S], since these two sheaves enjoy the same universal mapping property. If
S is isomorphic to MX , then µ∗(S) is isomorphic to OAX

, and hence if S is
invertible, so is µ∗(S). If S is ample, then it follows from the definition that
X can be covered by affine open sets of the form Xs for sections s of Sn and
some n > 0. Then AX can be covered by affine open sets of the form (AX)s as s
ranges over sections of µ∗(S), and [25, 4.5.2] implies that µ∗(S) is ample. �

1.10 The moment map

The moment map is an important tool that illuminates the topology of the set
of complex points of an affine toric variety. If Q is a fine monoid, we use the
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following notation:

XQ := Hom(Q,C) = AQ(C),

X∗Q := Hom(Qgp,C) = A∗Q(C),

TQ := Hom(Q,S1), where S1 := {z ∈ C : |z| = 1},

RQ := Hom(Q,R≥), where R≥ := {r ∈ R : r ≥ 0},

R∗Q := Hom(Q,R>), where R> := {r ∈ R : r > 0}.

There is a natural map XQ → RQ sending a homomorphism x to |x| := abs◦x,
and it is easily seen that this map identifies RQ as the orbit space of XQ under
the natural action of TQ. Recall from Proposition I.3.3.4 that XQ can be parti-
tioned into the disjoint union of the locally closed subsets X∗F, where F ranges
over the faces of Q. If f ∈ F and x ∈ X∗F then x( f ) ∈ C∗ = S1×R>, and we have
a corresponding product decomposition: X∗F � TF ×R∗F. Furthermore, ρ( f ) > 0
if ρ ∈ R∗F and f ∈ F, and the logarithm R> → R produces a homeomorphism

R∗F → VF := Hom(Fgp,R).

Thus X∗F becomes a product of the compact torus TF and the linear space VF .
The moment map will enable us to glue together the linear spaces VF to pro-
duce a linearization of RQ. Specifically, it produces a homeomorphism from
RQ to CQ, the real cone spanned by Q in the vectors space R ⊗ Qgp. Our ex-
position roughly follows the treatment in [21], with improvements suggested
by O. Gabber. We refer also to the more recent discussions in [57] and [10,
12.2.5].

Let R[Q] be the real monoid algebra of Q. Its underlying vector space is just
the set of real linear combinations of elements of Q, which we also refer to as
cycles in Q. We say a cycle A :=

∑
aqq is effective if its coefficients are all

nonnegative; the set of effective cycles is a semi-ring in R[Q]. The support of
A is the set of q such that aq , 0.

Definition 1.10.1. Let A :=
∑

aqq be an effective cycle in Q. Define

eA : RQ → R≥ by ρ 7→
∑
q∈Q

aqρ(q)

µA : RQ → CQ by ρ 7→
∑
q∈Q

aqρ(q)q.

The map µA is called the moment map associated to the cycle A.

We should remark that any ρ ∈ RQ extends uniquely to a continuous homo-
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morphism CQ → R≥, so eA and µA can also be defined for cycles aqq with
q ∈ CQ.

Theorem 1.10.2. Let Q be a fine monoid and A an effective cycle in R[Q]
whose support S generates Q. Then the moment map µA of Definition 1.10.1 is
a homeomorphism

µA : RQ → CQ

that is compatible with the stratifications of RQ and CQ by faces. Thus, for
each face F of Q, µQ induces homeomorphisms RF → CF and R∗F → Co

F,
where R∗F := Hom(F,R>) and Co

F is the interior of CF.

Proof Let us first explain the “compatibility with the faces.” Since the group
R> is divisible, it follows as in Proposition I.3.3.4 that RQ is the disjoint union
of the subsets R∗F for F ∈ F (Q), where here we are identifying R∗F with the set
of ρ ∈ RQ such that ρ−1(R>) = F. Then, if ρ ∈ R∗F,

µA(ρ) =
∑

q∈F∩S

aqρ(q)q ∈ CF ⊆ CQ .

For every q ∈ F ∩ S, the coefficient of q in the above sum is nonzero, and
hence q ∈ 〈µA(ρ)〉. Since S generates Q, its intersection with F generates F,
and hence 〈µA(ρ)〉 = F and µA(ρ) ∈ Co

F. This shows that µA maps RF to CF and
R∗F to Co

F.
Here is the first of the two main ingredients in the proof that µA is a homeo-

morphism.

Lemma 1.10.3. If the support S of A generates Q, then µA : RQ → CQ is
proper.

Proof We assume without loss of generality that 0 < S. If S generates CQ,
then the evaluation map RQ → RS is a closed immersion. Since RS is a Eu-
clidean space, a subset of RQ is compact if and only if its image in RS is closed
and bounded. Thus to prove that µA is proper, it will suffice to show that, for
every compact subset K of CQ, µ−1

A (K) is bounded in RS.
First let us suppose that Q is sharp. In this case, we choose a local homo-

morphism h : CQ → R≥. If K is a compact subset of CQ, h(K) is a compact
subset of R≥, say bounded by M. Since h is local and S is finite, there exists a
positive number ε such that ε < ash(s) for all s ∈ S. Then, if ρ ∈ µ−1

A (K) and
s ∈ S,

ερ(s) < ash(s)ρ(s) ≤
∑
q∈S

aqρ(q)h(q) = h(µA(ρ)) ≤ M.

It follows that each ρ(s) ≤ M/ε, so µ−1
A (K) is bounded, hence compact.
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For the general case, we argue as follows2. Let Σ denote the set of all subsets
σ of S such that the subcone Cσ of CQ generated by σ is sharp. For each such
σ we can choose a local homomorphism hσ : Cσ → R≥, which we can then
extend to a linear map VQ → R. Then hσ(s) > 0 if s ∈ σ. Since S and Σ are
finite, there exist positive numbers ε and m such that

1. |ashσ(s)| < m for all σ ∈ Σ and all s ∈ S,
2. ε < ashσ(s) for all σ ∈ Σ and all s ∈ σ.

For ρ ∈ RQ, let σρ := {s ∈ S : ρ(s) > 1}. Then ρ defines a homomorphism
Cσρ → (R>, ·) and log ◦ρ is a homomorphism Cσρ → (R,+). Since in fact this
homomorphism is positive on the generators of Cσρ , it follows that Cσρ is sharp
and hence that σρ ∈ Σ.

Now if K is a compact subset of CQ, each hσ(K) for σ ∈ Σ is bounded. Since
Σ is finite, there exists a positive M such that hσ(k) ≤ M for all k ∈ K and all
σ ∈ Σ. If ρ ∈ µ−1

A (K), let σ = σρ, and compute as follows:

M ≥ hσ(µA(x)) =
∑
s∈σ

ashσ(s)ρ(s) +
∑
s<σ

ashσ(s)ρ(s).

Recall that |ashσ(s)| ≤ m and that 0 ≤ ρ(s) < 1 for s < σ, so that∣∣∣∣∣∣∣∑s<σ ashσ(s)ρ(s)

∣∣∣∣∣∣∣ ≤∑
s<σ

|ashσ(s)ρ(s)| ≤ m|S|.

It follows that ∑
s∈σ

ashσ(s)ρ(s) ≤ M + m|S|.

Each term in the sum on the left is positive, so for each s ∈ σ,

ashσ(s)ρ(s) ≤ M + m|S|.

Hence

ρ(s) ≤

(M + m|S|)/ε if ρ ∈ σ

1 otherwise.

Thus µ−1
A (K) is bounded, hence compact. �

The second main ingredient in the proof is a study of the maps µA : R∗F → Co
F

for each face F of Q. The source and the target of these maps are differentiable
manifolds, and the proof will exploit this structure. In fact each R∗F is naturally
a Lie group. If f ∈ F and ρ ∈ RQ, e f (ρ) > 0 if ρ ∈ R∗F. Then log(e f ) is a

2 This argument is due to O. Gabber.
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well-defined function on R∗F, and its differential d log(e f ) is an invariant dif-
ferential form. The map f 7→ d log(e f ) induces a natural isomorphism from
VF := R ⊗ Fgp to the space of invariant differential forms on R∗F, and hence an
isomorphism from the Lie algebra of R∗F to V∨F := Hom(Fgp,R). To simplify
the notation we write these isomorphisms as identifications. Thus if f ∈ F, we
view 1⊗ f ∈ VF as an invariant differential form on R∗F, and if φ ∈ V∨F we view
φ as an invariant vector field on R∗F. With this notation, we have the formula:

de f = e f ⊗ f . (1.10.1)

Similarly, the interior Co
F of the cone spanned by F has a natural structure of

a C∞ manifold, induced from the inclusion Co
F ⊆ VF , and the invariant vector

fields on the ambient space VF are naturally identified with elements of VF .
The following result describes the differential properties of the moment map.

Proposition 1.10.4. Let A be an effective cycle in CQ, let S ⊆ CQ be its sup-
port, and let F be a face of Q.

1. The restriction of the moment map µA to R∗F is the differential of the restric-
tion of the function eA to R∗F.

2. Let ρ be a point of R∗F and consider the derivative of µA at ρ:

τρ := Tρ(µA) : Tρ(R∗F)→ TµA(ρ)(Co
F) i.e., V∨F → VF .

Then the associated bilinear form βρ on V∨F

βρ(φ, ψ) := ψ(τρ(φ))

is symmetric and positive semi-definite. If S ∩ CF generates CF, then βρ is
positive definite, and τρ is an isomorphism.

Proof As we have seen,

eA ◦ iF =
∑

f∈F∩S

a f e f ,

so by the formula (1.10.1) for de f on R∗F,

deA|F =
∑

f∈F∩S

a f de f =
∑

f∈F∩S

a f e f ⊗ f = µA|F .

Then

Tρ(µA) =
∑

a f de f ⊗ f =
∑

a f e f ⊗ f ⊗ f ∈ R[CF] ⊗ Hom(V∨F ,VF).

In particular, for ρ ∈ R∗F and φ ∈ V∨F ,

τρ(φ) =
∑

f

a fρ( f )φ( f ) f
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and

βρ(φ, ψ) =
∑

f

a fρ( f )φ( f )ψ( f ).

Thus βρ is symmetric. Since a f and ρ( f ) are positive for ρ ∈ R∗F and f ∈ S∩F,
and since

βρ(φ, φ) =
∑

f

a fρ( f )φ( f )2,

we conclude that βρ is positive semi-definite. Suppose S ∩ CF spans CF . Then
if βρ(φ, φ) = 0, necessarily φ( f ) = 0 for all f ∈ S and hence φ = 0. Thus in this
case βρ is positive definite, and consequently τρ is an isomorphism. �

We have already observed that if F is a face of Q, µA maps RF to CF and R∗F
to Co

F , so that µA is compatible with the stratification by faces. Thus to prove
that µA is injective it will suffice to prove that, for each face F, µA induces an
injection R∗F → Co

F. To simplify the notation, we may and shall assume that
F = Q. We have an isomorphism

expQ : V∨Q → R∗Q : φ 7→ exp ◦φ.

If φ and φ′ are distinct points of V∨Q, let ψ := φ′ − φ and, for each real number
t, let φt := φ + tψ and ρt = expQ(φt). Then it follows from (2) of Proposi-
tion 1.10.4 that the derivative of ψ(µA(ρt)) with respect to t is βρt (ψ, ψ), which
is positive. Explicitly,

ψ(µA(ρt)) =
∑

s

asψ(s) exp (φ(s) + tψ(s)) ,

and the derivative with respect to t is∑
s

as(ψ(s))2ρt(s) > 0.

Thus ψ(µA(ρt)) is an increasing and hence injective function of t. This implies
that µA(exp ◦φ) , µA(exp ◦φ′).

It is now easy to see that, when S generates Q, µA is a homeomorphism.
For each face F of Q, R∗F = µ−1

A (Co
F) and, in particular, µA induces a proper

map µA,F : R∗F → Co
F. As we have seen in Proposition 1.10.4, µA,F is a dif-

ferentiable map of differentiable manifolds which induces an isomorphism on
tangent spaces at every point, and it follows from the implicit function theo-
rem that its image is open. Since it is also proper, its image is also closed, and
since Co

F is connected, it follows that µA,F is surjective. We conclude that µA is
bijective, continuous, and proper, and it follows that it is a homeomorphism,
since a proper map of Hausdorff spaces is closed. �
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Figure 1.10.1 RQ for a non-integral Q.

Variant 1.10.5. The fact that the moment map µ is compatible with the strat-
ification by faces implies that, for every ideal K of P, µ induces a homeo-
morphism R(P,K) → C(P,K). Thus, the analog of Theorem 1.10.2 is also valid
for idealized monoids.

Corollary 1.10.6. If Q is a fine monoid and is not dull, then there is a homeo-
morphism

(RQ,R∗Q)→ (R≥ × Rd−1,R> × Rd−1),

where d is the rank of Qgp. In particular, RQ is homeomorphic to a manifold
with boundary.

Proof This is an is an immediate consequence of Corollary I.4.7.15 and The-
orem 1.10.2. �

Remark 1.10.7. Corollary 1.10.6 need not be true if Q is not integral. For
example, if Q is given by generators p and q with relations p + q = q, then
RQ is the set of pairs (x, y) ∈ R≥ × R≥ such that xy = y, or equivalently, such
that (x − 1)y = 0. This set, pictured in Figure 1.10.1, is not a manifold with
boundary in a neighborhood of the point (1, 0).

The moment map can be used to prove a version of the structure theo-
rem I.4.7.2 for a morphism Rθ : RQ → RP. This is the “rounding theorem”
of [57].

Theorem 1.10.8. Let θ : P → Q be a locally exact and local homomorphism
of fine monoids, where P is sharp. Then Rθ is a trivial fibration. That is, there
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exists a commutative diagram

RQ
η- Z × RP

RP,

Rθ

?
pro j

�

where η is a homeomorphism.

Proof We take Z to be CQ,P, the union of the θ-critical faces of Q. Choose
an effective generating cycle A for Q, and let ηZ : RQ → CQ,P be the compos-
ite of the inverse of the moment map µA : RQ → CQ with the inverse of the
isomorphism CQ,P ×CP → CQ of Theorem 4.7.2, followed by the projection
CQ,P ×CP → CQ,P. The theorem follows from the fact that η := (ηZ ,Rθ) is a
homeomorphism. We refer to [57] for the proof, which is rather similar to the
proof of Theorem 1.10.2, (but again uses the local exactness of θ). �

It is also possible to define moment maps for projective monoschemes. Note
first that the maps R × S1 → C (multiplication) and C → R≥ (absolute value)
define, for any monoscheme X, the commutative diagram

RX ×TX - X(C)

RX,
?

-

where RX := X(R≥) and TX := X(S1) = X∗(S1). Furthermore, X(C) (resp. RX)
is the disjoint union of the sets X∗x(C) (resp. RX∗x = X∗x(R≥)) as x ranges over
the points of X, and X∗x is a torsor under spec(M∗X,x). When X is projective, we
can fit linearizations of the spaces RX∗x together as we did in the affine case.

Let (P, h) be a fine graded monoid, let F := h−1(0), P+
h := h−1(N+), and

Uh := spec(P) \ Z(P+
h ), so that Proj(P, h) is the quotient of Uh by a∗. We will

modify our construction of the moment map so as to be compatible with this
action and at the same time compatible with a moment map defined on RF.

In this construction it will slightly more convenient to work with cones
than monoids. We will view h as a homomorphism CP → R≥, and let
C(P,h) := h−1(1), the intersection of CP with an affine hyperplane. Then
h−1(R>) = CP \CF is the R>-invariant ideal CP+

n
of CP generated by P+

h and
in particular is finitely generated. Let B :=

∑
btt ∈ R[CP] be an effective
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cycle whose support is contained in C(P,h) and which generates CP+
h

as an in-
variant ideal of P. For example, if (t1, . . . , tm) is a finite set of generators for
the ideal P+

h of P and bi ∈ R> for each i, then B :=
∑

bi t̃i, will do, where
t̃i := ti/h(ti) ∈ CP.

Let T be the support of B and recall that

eB(ρ) :=
∑

t

btρ(t) ∈ R≥

µB(ρ) :=
∑

t

btρ(t)t ∈ CP .

The homomorphism h defines an action of R≥ on Rp given by (rρ)(p) =

rh(p)ρ(p). Since the support of B is contained in h−1(1), we have eB(rρ) =

reB(ρ) and µB(rρ) = rµB(ρ). Note further that h(µB(ρ)) = eB(ρ) and that
eB(ρ) > 0 if ρ ∈ RUh , since ρ(t) , 0 for some t in the support of B.

If A is an effective cycle with support S in h−1(0), we define

µA,B(ρ) := µA(ρ) + eB(ρ)−1µB(ρ) ∈ CF + CP+
h
⊆ CP . (1.10.2)

Since eB(ρ) = h(µB(ρ)) and h(µA(ρ)) = 0, in fact µA,B(ρ) ∈ C(P,h). Furthermore,
µA,B(rρ) = µA,B(ρ) for all r and ρ.

Proposition 1.10.9. If (P, h) is a fine graded monoid, let R(P,h) :=
proj(P, h)(R≥) and let C(P,h) := CP ∩ h−1(1). Then if A and B are as described
in the preceding paragraphs, the map µA,B (1.10.2) induces a homeomorphism

µA,B : R(P,h) → C(P,h) .

For each ideal K of P, µA,B induces a homeomorphism R(P,K,h) → C(P,K,h).

Proof We begin with the following analog of Remark 1.5.13.

Lemma 1.10.10. If T is a finite set of generators for the R+-invariant ideal
CP+

h
, then the cone CP is generated by CF and T .

Proof Let C ⊆ CP be the cone generated by T . Since each h(t) is positive,
C is sharp, and the restriction of h|C to C is a local homomorphism. Then, by
Corollary I.2.3.18, h|C is a proper morphism. If p is any element of CP, the
restriction of h to (p − C) ∩ CP is also proper. Let p′ be a member of this
set that minimizes h, say p′ = p − c. If h(p′) > 0, then p′ ∈ CP+

h
and hence

p′ = p′′ +
∑

riti, where p′′ ∈ CP and ri > 0 for at least one i. But then
h(p′′) < h(p′) and p′′ = p−c−

∑
riti ∈ (p−C)∩CP, a contradiction. It follows

that h(p′) = 0, so p = p′ + c ∈ CF +C as claimed. �

It follows from the lemma that the support of A + B generates CP, and then
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from Theorem 1.10.2 that the map

µA+B : RP → CP : ρ 7→
∑

s

asρ(s)s +
∑

t

btρ(t)t

is a homeomorphism.
We have a continuous map π : R(Uh) → R(P,h), which makes R(P,h) the quo-

tient of R(U,h) by the group R>, with the action defined by h. Since µA,B is
invariant under this action, it descends to define the map µA,B.

Let UB := {ρ ∈ RP : eB(ρ) = 1}. Since h(µA+B(ρ)) = eB(ρ), in fact UB is the
inverse image of C(P,h) by the map µA+B. Furthermore, µA+B and µA,B agree on
UB. Thus we find the commutative diagram

RUh

R(P,h) �
πB

π

�
UB

iB

6

⊂ - RP

-

C(P,h)

µ′A,B

?
⊂ -

µA,B -

CP,

µA+B

?

in which the square is Cartesian. It follows that µ′A,B is also a homeomorphism.
Moreover, the map from R(Uh) to UB sending ρ to (eB(ρ))−1ρ factors through π
to define an inverse to the map πB. Thus πB is a homeomorphism, and hence
so is µA,B. �

Corollary 1.10.11. Let (P, h) be a fine graded monoid and let K be an ideal of
P generated by elements of degree zero. Then R(P,K,h) is contractible.

Proof Proposition 1.10.9 produces a homeomorphism R(P,K,h) → C(P,K,h), and
the latter is contractible by Proposition I.4.10.8. �

Corollary 1.10.12. Let X be a fine monoscheme, let I be a coherent sheaf
of ideals in X, and let β : XI → X be the monoidal transformation of X with
respect to I. Then the associated map RXI → RX is proper, and its fibers are
contractible.

Proof The properness follows from the facts that β induces a projective mor-
phism of toric varieties and that RXI and RX can be viewed as closed subsets of
the corresponding complex varieties. To prove the claim about the fibers, we
can reduce to the case in which X is affine, say X = spec Q, and I is the sheaf
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of ideals associated to an ideal I of Q. Then XI = Proj(P, h), where (P, h) is
the Artin-Rees monoid associated to the ideal I. Then P = h−1(0) and the fiber
of β over the a point of AP is subset of Proj(P, h) defined by the corresponding
ideal p of P. Thus Corollary 1.10.11 implies the desired result. �

2 Charts and coherence

We shall be primarily interested in sheaves of monoids that are coherent.
Roughly speaking, this means that, up to units, they are locally controlled by
a finitely generated constant monoid. The notion of coherence for log struc-
tures is due to K. Kato, but in fact the definition makes sense for any sheaf of
monoids.

2.1 Charts

If X is a topological space and Q is a monoid, we denote by QX , or just Q
or Q, the constant sheaf on X associated to Q, that is, the sheaf associated
to the presheaf that takes every open set U of X to Q. If M is a sheaf of
monoids on X, then to give a homomorphism of monoids Q → Γ(X,M) is
equivalent to giving a homomorphism of sheaves of monoids QX → M. By
Proposition 1.2.2 this is also equivalent to giving a morphism of monoidal
spaces f : (X,M)→ S := spec(Q).

Definition 2.1.1. LetM be a sheaf of monoids on a topological space X and let
Q be a monoid. A chart forM subordinate to Q is a monoid homomorphism
β : Q → Γ(X,M) such that the associated logarithmic map βlog : Qlog → M

(see Proposition 1.1.5) is an isomorphism.

One says that a chart Q → Γ(X,M) is coherent (resp. integral, fine, satu-
rated) if Q is finitely generated (resp. integral, fine, saturated).

Proposition 2.1.2. Let Q be a monoid, let M be a sheaf of monoids on a
topological space X, let β : Q→ Γ(X,M) be a homomorphism of monoids, and
let f : X → S := spec(Q) be the corresponding morphism of monoidal spaces.
For each point x of X, let βlog

x : Qlog
x →Mx be the logarithmic homomorphism

associated to βx : Q → Mx (see Definition 1.1.10). Then there is a natural
isomorphism:

Q
log
x → f ∗log(MS, f (x)).

Furthermore, the following conditions are equivalent.

1. β is a chart forM.
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2. For every x ∈ X, the homomorphism β
log
x is an isomorphism.

3. The homomorphism f [log : f ∗log(MS)→MX is an isomorphism.

Proof Let x be a point of X. Then s := f (x) is the point in spec(Q) cor-
responding to Fx := β−1

x (M∗x), and MS,s = QFx . Hence the homomorphism
βx : Q → Mx factors: Q → QFx = MS,s → Mx. We saw in Proposition 1.1.5
that Qlog

x can be obtained by first localizing Q at Fx and then sharpening with
respect to the morphism QFx →Mx, and one gets the same answer if one does
this with QFx in place of Q. Thus the mapQlog

x → f ∗log(MS,s) is an isomorphism,
As we saw in diagram 1.1.1 in the proof of Proposition 1.1.5, there is a

cocartesian diagram

β−1
x (M∗x) - M∗x

Q
?

- Qlog
x .

?

(2.1.1)

Thus there is a unique homomorphism Qlog
x →Mx compatible with the inclu-

sionM∗x → Mx and β. Then it follows immediately from the definitions that
statements (1) and (2) are equivalent. Since Qlog

x � f ∗log(MS, f (x)), statements (2)
and (3) are also equivalent. �

For example, if S = spec(Q), the tautological map Q → Γ(S,MS) is a chart
forMS.

Remark 2.1.3. Thanks to Proposition 2.1.2, we can safely generalize the no-
tion of a chart by replacing the monoid Q there by an arbitrary monoscheme S.
That is, we can say that a chart for a sheafM of monoids on X subordinate to
S is a morphism f of monoidal spaces from (X,M) to the monoscheme S such
that the associated map f [log : f ∗log(MS)→MX is an isomorphism.

Proposition 2.1.4. Let f : (X,M) → S be a morphism of locally monoidal
spaces, where S is a monoscheme. Then if f is a chart forM, the map

f
[
: MS, f (x) →MX,x

is an isomorphism for every point x of X. The converse is true if M is u-
integral. In particular, if MX is u-integral, a homomorphism β : Q → MX is
a chart if and only if, for every x ∈ X, the natural map Q/Fx → MX,x is an
isomorphism, where Fx := β−1

x (M∗X).

Proof If f is a chart, then f [log : ( f ∗logMS)x →MX,x is an isomorphism, hence
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so is f
[

log. Since f is a morphism of locally monoidal spaces, the homo-
morphism f [x is local, so by (1) of Proposition 1.1.8, MS, f (x) � ( f ∗logMS)x �

Mx. Conversely, ifM is u-integral and f
[

log is an isomorphism, then the same
is true of f [log, by Proposition I.4.1.2. �

Definition 2.1.5. A sheaf of monoids M on a topological space X is quasi-
coherent (resp. coherent ) if X admits an open covering U such that the re-
striction of M to each U in U admits a chart (resp. a chart subordinate to a
finitely generated monoid). A sheaf of monoidsM is fine if it is coherent and
integral.

We remark that this use of the terminology “fine sheaf of monoids” conflicts
with the convention used in Proposition 1.1.3: the stalks of a fine sheaf of
monoidsM need not be finitely generated (since there is no control overM∗),
and a sheaf of monoids all of whose stalks are fine need not be coherent.

Corollary 2.1.6. LetM be a coherent sheaf of monoids on a topological space
X and let n be an integer. Then

X(n) := {x ∈ X : rk(M
gp
X,x) ≤ n}

is open in X. In particular,

X∗
M

:= {x ∈ X :M∗X,x =MX,x}

is open in X.

Proof We can check the openness of X(n) locally on X, and thus we may
assume without loss of generality that there is a chart f : X → S, where S is the
spectrum of a finitely generated monoid Q. It follows from Proposition 2.1.4
that X(n) = f −1(S(n)), and so we are reduced to the case when (X,M) = spec(S).
This case follows from Corollary I.2.3.9. �

2.2 Construction and comparison of charts

LetM be a sheaf of monoids on a topological space X. A morphism of charts
forM is a commutative diagram

Q - Q′

Γ(X,M),

β′

?

β
-
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where β and β′ are charts forM. Thus the class of charts forM forms a cat-
egory. If x is a point of X, a germ of a chart at x is a chart of the restriction
of M to some open neighborhood of x in X, and a morphism of such germs
β→ β′ is an element of the direct limit lim

−→
Hom(β|U , β

′
|U

), where U ranges over
the neighborhoods of x in X.

Proposition 2.2.1. Let β : Q → Γ(X,M) be a chart for a sheaf of monoidsM
on X. Suppose that β factors as follow,

β = Q
θ- Q′

β′- Γ(X,M),

where Q′ is a finitely generated monoid. Then, locally on X, β′ can be factored
as

β′ = Q′
θ′- Q′′

β′′- Γ(X,M),

where β′′ is a chart for M and Q′′ is finitely generated. In particular, M is
coherent.

Proof Let {q′i : i ∈ I} be a finite system of generators for Q′ and let x be a
point of X. Because β is a chart, it follows from Proposition 2.1.4 that βx is
surjective. Hence for each i ∈ I there exist an element qi ∈ Q, a neighborhood
Ui of x, and a section ui ofM∗(Ui) such that β′(q′i) = β(qi)+ui. Replacing X by
∩{Ui : i ∈ I}, we may assume that the ui are global sections ofM∗. Let Q′′ be
the quotient of Q′ ⊕ ZI by the relation identifying (q′i , 0) with (θ(qi), ei). Then
there is a unique homomorphism β′′ : Q′′ →M sending the class of any (q′, 0)
to β′(q′) and the class of (0, ei) to ui, inducing the commutative diagrams

Q
θ - Q′ Qlog θlog

- Q′log

M

β

?
� β′′

Q′′

θ′

?

θ′′

-

M

βlog

?
�β′′log

Q′′log.

θ′log

?

θ′′log

-

Then Q
′′

is generated by the elements q′i = θ(qi), and so θ′′ : Q→ Q
′′

is surjec-
tive. Since the natural homomorphism Q′′ → Q′′log is necessarily surjective, it
follows that θ′′log is also surjective. By construction θ′′log is sharp, and it fol-
lows that θ′′log is surjective. But β′′log ◦ θ′′log = βlog, which is an isomorphism,
so θ′log is also injective, hence bijective. Then β′′log is also an isomorphism,
and so β′′ : Q′′ →M is again a chart. �

Corollary 2.2.2. Let M be a coherent sheaf of monoids on X and let x be a
point of X. Then the category of germs of coherent charts forM at x is filtering.
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Proof We will verify the conditions F0′, F1′, and F2 (see Definition I.4.5.1
and the following discussion). SinceM is coherent, the category of germs of
coherent charts at x has at least one object. Let βi : Qi →M|Ui

be finitely gener-
ated charts for the restrictions ofM to neighborhoods Ui of x in X, for i = 1, 2,
and let U := U1 ∩ U2. Then Q′ := Q1 ⊕ Q2 is finitely generated and βi factors
through the map β′ : Q′ → M|U induced by β1 and β2. By Proposition 2.2.1,
β′ factors through a coherent chart β′′ : Q′′ → M in some neighborhood of x,
and so there is a commutative diagram:

Q1

Q′
θ′ -

θ1

�
Q′′

θ′1

? β′′ - M

β1

-

Q2,

θ′2

6

β2

-

θ2

�

where β′′ is a coherent chart forM.
Similarly, if θ1, θ2 : β → β′ is a pair of morphisms of coherent charts, the

coequalizer Q′′ of θ1 and θ2 is finitely generated, and there is a diagram

Q
θ1 -

θ2
- Q′ - Q′′

M.

β′

?

β′′

�

β
-

Then by Proposition 2.2.1, β′′ factors through a coherent chart Q′′′ →M. �

The next result allows us to extend charts from a stalk to a neighborhood.

Proposition 2.2.3. Let M be a coherent sheaf of monoids on X and let x be
a point of X. Then the evident functor from the category of germs of coher-
ent charts of M at x to the category of finitely generated charts of Mx is an
equivalence.

The proof of this proposition depends on some preliminary results.

Lemma 2.2.4. LetM be a sheaf of monoids on X and let x be a point of X. If
Q is a finitely generated monoid, the natural map

(Hom(Q,M))x → Hom(Q,Mx)
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is an isomorphism.

Proof By Theorem I.2.1.7, Q is of finite presentation, so the functor
Hom(Q, ) commutes with direct limits. �

Lemma 2.2.5. LetM1,M2, andN be sheaves of monoids on X, let αi : Mi →

N be logarithmic morphisms, and let x be a point of X.

1. IfM1 is coherent, the natural map

(HomN (M1,M2))x → HomNx (M1x ,M2x )

is an isomorphism.
2. IfM1 andM2 are coherent, then a homomorphism θ : M1 → M2 over N

is an isomorphism in a neighborhood of x if and only if its germ θx is an
isomorphism.

Proof Let β1 : Q1 →M1 be a chart forM1, with Q1 finitely generated. Since
α1 and α2 are logarithmic morphisms to N and β1 is a chart forM1, any mor-
phism from Q1 toM2 over N factors uniquely throughM1. That is,

HomN (Q1,M2) � HomN (M1,M2).

This remains true on any neighborhood of x in X, so passing to the limit and
applying Lemma 2.2.4 withM =M2 and withM = N , we get

(HomN (M1,M2))x � (HomN (Q1,M2))x � HomNx (Q1,M2,x).

But Q1 →M1x is also a chart forM1x , and so

HomNx (Q1,M2x ) � HomNx (M1x ,M2x ),

proving (1). Statement (2) is an immediate consequence. �

Lemma 2.2.6. Let θ : M1 →M2 be a logarithmic homomorphism of coherent
sheaves of monoids. If the germ of θ at a point x of X is an isomorphism, then
θ is an isomorphism in some neighborhood of x.

Proof This is an immediate consequence of (2) of Lemma 2.2.5, with α1 = θ

and α2 = idM2 . �

Proof of Proposition 2.2.3 Let us first prove that our “evident functor” is
fully faithful. Let β : Q → M and β′ : Q′ → M be coherent charts for M.
Then βx : Q → Mx and β′x : Q′ → Mx are charts forMx, and a morphism of
charts βx → β′x is just a homomorphism θ : Q→ Q′ such that β′x◦θ = βx. Then,
for each q ∈ Q, the equality β′(θ(q)) = β(q) holds in some neighborhood of x
and, since Q is finitely generated, in fact β′ ◦ θ = β in some neighborhood of x.
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Thus the homomorphism θ defines a morphism of the germs of charts defined
by β and β′, proving that our functor is fully faithful. To show that it is essen-
tially surjective, let βx be a chart for Mx. Then, by Lemma 2.2.4, β extends
to a homomorphism from Q toM in some neighborhood of x. Moreover, βlog

x

is an isomorphism and, since βlog is logarithmic, it follows from Lemma 2.2.6
that βlog is an isomorphism in some neighborhood U of x. Thus β|U is a chart
forM|U . �

2.3 Exact and neat charts

It is often desirable to construct charts for a sheaf of monoids M that are as
close as possible to the stalk ofM at some given point x.

Definition 2.3.1. LetM be a sheaf of integral monoids on a space X, let x be
a point of X and let β : Q→M(X) be an integral chart forM.

1. β is exact at x if it satisfies the following equivalent conditions:

(a) βx : Q→Mx is exact;
(b) βx : Q→Mx is local;
(c) βx : Q→Mx is an isomorphism.

2. θ is neat at x if it satisfies the following equivalent conditions: 3

(a) Q is sharp and β is exact at x;
(b) π ◦ βx : Q→Mx →Mx is an isomorphism;
(c) πgp ◦ β

gp
x : Qgp →M

gp
x is an isomorphism.

The equivalence of the conditions in (1) follows immediately from Corol-
lary 1.1.9. To check the equivalences in (2), note that if (2a) is true and Q is
sharp, then (1a) and hence (1c) hold, and so does (2b). It is trivial that (2b)
implies (2c). If (2c) is true, then Q → Mx is injective, so Q is sharp. Since β
is a chart, Q → Mx is surjective, hence bijective, so βx is exact by Proposi-
tion I.4.2.1. Thus (2c) implies (2a).

Remark 2.3.2. Let β : Q → M be a chart forM that is subordinate to a fine
monoid Q and let x be a point of X. Then F := β−1(M∗x) is a face of Q, and
hence by (3) of Theorem I.2.1.17, there exists a p ∈ F such that 〈p〉 = F. Since
β(p)x ∈ M

∗
x, there exists a neighborhood U of x on which β(p) is a unit, and so

β factors through a map β′ : QF → M|U . Then β′x is local, hence exact. Thus,
any fine chart forM locally factors through a chart that is exact at x.

We shall use the condition (2c) as a technique to construct exact charts.

3 Some authors use the terminology “good chart” rather than “neat chart.”
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Definition 2.3.3. A markup of an integral monoid M is a homomorphism φ

from a finitely generated abelian group L to Mgp inducing a surjection L →
M

gp
. A morphism of markups of M is a homomorphism of abelian groups

θ : L1 → L2 such that φ2 ◦ θ = φ1.

Proposition 2.3.4. Let M be an integral monoid such that M is fine.

1. The category of markups of M is filtering (and in particular not empty).
2. If φ : L→ Mgp is a markup of M, consider the induced map

β : Q := L ×Mgp M → M.

Then the natural map Qgp → L is an isomorphism, and β is a fine exact
chart for M.

3. Conversely, if β : Q→ M is a fine exact chart for M, then βgp : Qgp → Mgp

is a markup of M.
4. The correspondence φ 7→ β gives a equivalence between the category of

fine exact charts for M and the category of markups of M.

Proof We will verify conditions F0′, F1′, and F2 described after Defini-
tion 4.5.1. If M is integral and M is fine, there exists a finitely generated free
abelian group L together with a surjection L → M

gp
. Since L is free and, by

(1) of Proposition I.1.3.5, M
gp
� Mgp/M∗, this homomorphism lifts to a homo-

morphism L → Mgp, which defines a markup of M. Let φ1 : L1 → Mgp and
φ2 : L2 → Mgp be markups of M. Then L′ := L1 ⊕ L2 is a finitely generated
group, the homomorphisms φi : Li → Mgp factor through a homomorphism
φ′ : L′ → Mgp, and the induced map L′ → M

gp
is necessarily surjective. Thus

the markups φ1 and φ2 both map to the markup φ′. Finally, if θ and θ′ are mor-
phisms of markups φ1 → φ2, then the induced map from the coequalizer of θ
and θ′ to Mgp is also a markup, and F2 is also satisfied.

Let φ be a markup of M and let β : Q→ M be the map described in (2). We
write, with an abuse of notation, φ for the induced homomorphism L → M

gp
.

Note first that, since M → M is exact,

Q := L ×Mgp M = L ×Mgp Mgp ×M
gp M = L ×M

gp M.

Since L and M are fine, it follows from (2) of Theorem I.2.1.17 that Q is fine.
The integrality of M implies that Q ⊆ L and hence Qgp ⊆ L. To see the equality,
choose z ∈ L and then choose m1,m2 ∈ M such that φ(z) = m1 − m2. Since
L → M

gp
is surjective, there exist z1, z2 ∈ L such that φ(zi) = mi, and then

φ(z− z1 + z2) = 0. But Q = L×M
gp M, so z1, z2, and z− z1 + z2 all belong to Q. It

follows that z ∈ Qgp, and hence Qgp = L. It is then clear from the definition of
Q that β is exact, and so β : Q → M is injective, by (5) of Proposition I.4.2.1.
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Since φ is surjective, its pullback β is also surjective, hence β is surjective,
hence an isomorphism. This proves that θ is an exact chart of M.

Conversely, if β : Q → M is a fine exact chart, then by condition (2c) of
Definition 2.3.1, the homomorphism β : Q → M is an isomorphism. Thus the
map φ := βgp : Qgp → Mgp is a markup. It is immediate to verify that the
correspondences φ 7→ β and β 7→ βgp are functorial and form an equivalence
of categories. �

Corollary 2.3.5. LetM be a fine sheaf of monoids on X and let x be a point of
X. Then the category of markups ofMx is equivalent to the category of germs
at x of charts forM which are exact at x. In particular this category is filtering.

Proof The proof follows immediately from Proposition 2.2.3 and statement
(4) of Proposition 2.3.4. �

Corollary 2.3.6. A sheaf of monoidsM is fine (resp. fine and saturated) if and
only if locally it admits a fine (resp. fine and saturated) chart.

Proof Suppose thatM is fine and let x be a point of X. SinceM is integral,
Mx is integral. Since M admits a chart subordinate to a finitely generated
monoid, by Proposition 1.1.8,Mx is also finitely generated, hence fine. Then,
by Proposition 2.3.4,Mx admits a markup, which in turn defines a chart forMx

subordinate to a fine monoid Q. SinceM is by hypothesis coherent, this chart
is in fact the germ of a chart forM at x by Proposition 2.2.3. Since Q � Mx,
Q is saturated if and only if Mx is. Thus M admits a chart subordinate to a
fine (resp. fine and saturated) monoid, in some neighborhood of x. Conversely,
if β : Q → M is a chart for M and Q is fine (resp. fine and saturated) then,
for each x ∈ X, Q maps surjectively to Mx, so Mx is finitely generated, and
M � Qlog, soM is integral (resp. saturated). �

Proposition 2.3.7. Let M be a fine sheaf of monoids on a topological space
X and let x be a point of X. ThenM admits a local chart that is neat at x if and
only if the sequence

0→M∗x →M
gp
x →M

gp
x → 0

splits. These conditions hold if M
gp

is torsion free, and in particular if M is
saturated.

Proof If the sequence splits, let Q :=Mx. Then the splitting defines a homo-
morphism β : Q → Qgp →M

gp
x , which we claim factors throughMx. Indeed,

if q ∈ Q, then β(q) = q ∈ Mx, and hence β(q) = u + q for some u ∈ M∗x,
so β(q) ∈ Mx. It is clear that β−1(M∗x) = β

−1
({0}) = {0}, so β is local, and so

Qlog → Mx is strict and sharp, hence an isomorphism, by Proposition I.4.1.2.
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Thus β is a chart for Mx, which extends to a chart for M in a neighborhood
of x by Proposition 2.2.3. It is neat at x by construction. IfM

gp
x is torsion free,

it is a torsion-free finitely generated group, hence free, and the sequence au-
tomatically splits. If M is saturated, we know M

gp
x is torsion free by (2) of

Proposition I.1.3.5.
Conversely, if β : Q→M is a chart forM that is neat at x, then by definition

the map βx : Q →Mx is an isomorphism. Thus there is a splittingMx →Mx

which induces a splittingM
gp
x →M

gp
x . �

Example 2.3.8. Let n ≥ 2 be a natural number, let Γ := Z ⊕ Z/n2Z, and let M
be the submonoid of Γ generated by (1, 0), (1, 1), and (0, n). Then M∗ is cyclic
of order n and generated by (0, n), the monoid M is given by generators m1,m2

satisfying the relation nm1 = nm2, and M
gp
� Z ⊕ Z/nZ. The sequence

0→ M∗ → Mgp → M
gp
→ 0

does not split, and hence M does not admit a neat chart.

If β : Q→M is a chart forM and γ : Q→M∗ is any homomorphism, then
β + γ is also a chart forM. In fact it is almost true that, locally on X, any two
charts can be compared in this way.

Proposition 2.3.9. Let β : Q → M and β′ : Q′ → M be fine charts for a fine
sheaf of monoidsM on X. Let x be a point of x and suppose that either of the
following condition holds:

1. β is neat at x; or
2. β is exact at x and Q′gp is torsion free.

Then in some neighborhood of x in X, there exist homomorphisms κ : Q′ → Q
and γ : Q′ →M∗ such that β′ = β ◦ κ + γ.

Proof The solid arrows in the diagram

Q
π - Q

Q′
β′x -

κ

-

Mx

βx

? πx - Mx

βx

?

is given, and the square commutes. If β is neat at x, then the composition
πx ◦ βx : Q → Mx is an isomorphism, so there is a unique homomorphism
κ : Q′ → Q making the outer part of the diagram commute. If β is only exact
at x, then βx is an isomorphism, and we find a homomorphism κ : Q′ → Q
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such that βx ◦ κ = πx ◦ β
′
x. If Q′gp is torsion free it is free and, since πgp is

surjective, we can then choose a homomorphism κgp : Q′gp → Qgp such that
πgp ◦ κgp = κgp. Since π is exact, necessarily κgp sends Q′ to Q. Thus we again
find a homomorphism κ : Q′ → Q making the outer diagram commute. The
triangle may not commute, but, for each q′ ∈ Q, πx(β′x(q′)) = πx(βx(κ(q′))), so
there is a unique γ(q′) ∈ M∗x such that β′x(q′) = βx(κ(q′)) + γ(q′). Evidently
γ : Q′ →M∗x is a homomorphism. Since Q′ is of finite presentation, γ extends
to a homomorphism Q′ →M∗ in some neighborhood of x. �

2.4 Charts for morphisms

Definition 2.4.1. Let f : (X,MX) → (Y,MY ) be a morphism of monoidal
spaces. A chart for f subordinate to a homomorphism of monoids θ : P → Q
is a triple (α, θ, β) fitting into a commutative diagram

Q
β- Γ(X,MX)

P

θ

6

α- Γ(Y,MY ),

f [
6

where α and β are charts forMY andMX , respectively.

Proposition 2.4.2. Let f : (X,MX) → (Y,MY ) be a morphism of monoidal
spaces and let α : P → Γ(Y,MY ) be a chart for MY , where P is finitely gen-
erated. Assume that MX is coherent. Then, locally on X, α fits into a chart
(α, θ, β) for f :

Q
β- Γ(X,MX)

P

θ

6

α- Γ(Y,MY ),

f [
6

where Q is also finitely generated.

Proof Since the assertion is local on X, we may assume that MX admits a
chart β : Q → M, with Q finitely generated. Consider the commutative dia-
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gram

Q
ιQ- P ⊕ Q

γ- Γ(X,MX)

P

ιP

6

α- Γ(Y,MY ),

f [
6

where ιP and ιQ are the canonical inclusions and γ(p, q) := f [(α(p)) + β(q).
Since γ ◦ ιQ is a chart and P⊕Q is finitely generated, Proposition 2.2.1 implies
that γ can be factored as γ = β′γ′, where β′ : Q′ → MX is a chart and Q′ is
finitely generated. Then θ := γ′ ◦ ιP fits into a chart for f [ as desired. �

Remark 2.4.3. Suppose that, in the situation of Proposition 2.4.2, MY ,MX ,
and P are fine, and let x be a point of X. Then it follows from Remark 2.3.2
that β may be chosen to be exact at x.

The following more delicate theorem, due to K. Kato, shows how to con-
struct charts that closely reflect the structure of a morphism of monoidal
spaces. Recall from Definition 1.1.10 that if f : X → Y is a morphism of
monoidal spaces,MX/Y is the cokernel of f ∗log(MY )→MX .

Theorem 2.4.4 (Neat charts). Let f : X → Y be a morphism of fine monoidal
spaces, let x be a point of X, and assume that Ext1(Mgp

X/Y,x,M
∗
X,x) = 0. Let

α : P → Γ(Y,MY ) be a fine chart for MY . Then, after X is replaced by some
neighborhood of x, there exists a chart (α, θ, β) for f with the following prop-
erties.

1. Q is a fine monoid.
2. θgp : Pgp → Qgp is injective.
3. The homomorphism Qgp/Pgp →M

gp
X/Y,x induced by β is bijective.

Moreover, the chart β can be chosen to be exact at x. A chart with properties
(1)–(3) is said to be neat at x.

Proof Let y := f (x), let Nx denote the image of ( f ∗MY )x in MX,x and let
P′ denote the image of P in MX,x. Because P → MY,y is a chart, the map
Pgp → M

gp
Y,y is surjective, and consequently Ngp

x is the subgroup ofMgp
X,x gen-

erated byM∗X,x and P′gp. Thus the mapM∗X,x → Ngp
x /P′gp is surjective. Since

Ext1(Mgp
X/Y,x,M

∗
X,x) vanishes by assumption and the functor Ext1(Mgp

X/Y,x, ) is
right exact, it follows that Ext1(Mgp

X/Y,x,N
gp
x /P′gp) also vanishes. Then the map

Ext1(Mgp
X/Y,x, P

′gp)→ Ext1(Mgp
X/Y,x,N

gp
x )
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is surjective, and the element of Ext1(Mgp
X/Y,x,N

gp
x ) defined by the exact se-

quence

0→ Ngp
x →M

gp
X,x →M

gp
X/Y,x → 0

lifts to a class in Ext1(Mgp
X/Y,x, P

′gp). Since Pgp → P′gp is surjective, it follows
from the right exactness of Ext1(Mgp

X/Y,x, ) that this element lifts further to a
class in Ext1(Mgp

X/Y,x, P
gp). Thus, we have the following diagram,

0 - Pgp - L - M
gp
X/Y,x

- 0

0 - Ngp
x

?
- M

gp
X,x

φ

?
- M

gp
X/Y,x

id

?
- 0,

whose rows are exact. SinceMX/Y,x is a quotient of the fine monoidMX,x it is
also fine, and in particularMgp

X/Y,x is a finitely generated group. It follows that L

is also a finitely generated group. Moreover, the map Pgp → N
gp
x is surjective,

and it follows from the diagram that L → M
gp
X,x is also surjective. Thus φ is a

markup ofMX,x in the sense of Definition 2.3.3. Let βx : Q := φ−1(MX,x) →
MX,x be the exact chart corresponding to φ, as explained in Corollary 2.3.5,
and recall from Proposition 2.2.3 that βx extends to a chart β : Q → MX in
some neighborhood of x. Then Qgp = L, and it is clear from the diagram that
βx satisfies the conditions of the theorem. �

Remark 2.4.5. Let β : Q→MX be a chart forMX that is subordinate to a fine
monoid Q. Then α : 0 → M∗X is a chart forM∗X and one finds a chart (α, β, 0)
for the canonical morphism X → X. This chart is neat at a point x of X if and
only if the map Qgp → M

gp
X,x is an isomorphism, that is, if and only if β is

neat at x, by statement (2) of Definition 2.3.1. More generally, suppose we are
given a morphism of monoidal spaces f : X → Y and a chart for f that is neat
at a point x of f . Suppose further that f [x induces an injectionMY, f (x) →MX,x

and that P → MY is neat at y. Then it follows that Q → MX is also neat at x.
Indeed, in this case we have a commutative diagram with exact rows:

0 - Pgp - Qgp - M
gp
X/Y,x

- 0

0 - M
gp
Y, f (x)

�

?
- M

gp
X,x

?
- M

gp
X/Y,x

�

?
- 0.
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This diagram shows that Qgp → M
gp
X,x is an isomorphism, so the chart Q →

MX,x is neat at x.

Remark 2.4.6. More generally, let f : X → Y and g : Y → Z be morphisms
of fine monoidal spaces, and let (β, φ, γ) and (α, θ, β) be charts for f and g
respectively. Then (α, φ ◦ θ, γ) is a chart for g ◦ f . Let x be a point of X, and
suppose that (β, φ, γ) is neat at x and that (α, θ, β) is neat at y := f (x). Then it
does not necessarily follow that (α, φ◦ θ, γ) is neat at x. Indeed if α : P→MZ ,
β : Q → MY , and γ : R → MX , we have a commutative diagram with exact
rows:

0 - Qgp/Pgp - Rgp/Pgp - Rgp/Qgp - 0

M
gp
Y/Z, f (x)

�

? a- Mgp
X/Z,x

γ̃

?
- M

gp
X/Y,x

�

?
- 0.

The homomorphism γ̃ is necessarily surjective, but its kernel is isomorphic to
the kernel of a. However, note that if z := g(y), thenMgp

Y/Z,y is the cokernel of

the mapMZ,z → MY,y andMgp
X/Z,x is the cokernel of the mapM

gp
Z,z → M

gp
X,x.

Thus a is injective ifMY,y → MX,x is injective, and we can conclude that the
composed chart is indeed neat in this case. This fact is worth recording for
future reference.

Corollary 2.4.7. Let f : X → Y and g : Y → Z be morphisms of fine monoidal
spaces, with charts (β, φ, γ) and (α, θ, β) for f and g, respectively. Let x be a
point of X, and suppose that f is s-injective at x, that (β, φ, γ) is neat at x, and
that (α, θ, β) is neat at f (x). Then (α, φ ◦ θ, γ) is neat at x.

2.5 Constructibility and coherence

It is possible to give a fairly explicit description of what it means for a sheaf of
integral monoids to be coherent.

Definition 2.5.1. Let E be a sheaf of sets on a topological space X. A trivial-
izing stratification for E is a locally finite partition Σ of X such that:

1. each element of Σ is connected and locally closed;
2. if S1 and S2 are elements of Σ and S1 ∩ S2 , ∅, then S1 ⊆ S2;
3. the restriction of E to each S in Σ is constant.

We say that a sheaf E on X is quasi-constructible if X has a trivializing strati-
fication for E.
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We will call a partition satisfying the conditions in Definition 2.5.1, with the
exception of connectedness, a quasi-trivializing partition. If the sets occurring
in such a partition are locally connected with finitely many components, then
the partition can be refined into a trivializing partition. This is always the case
if X is noetherian, for example, or, in the local complex analytic context, if the
sets are locally defined by analytic functions.

Remark 2.5.2. Recall that a Kolmogoroff space is a topological space X such
that given any two distinct points x and y of X, either x does not belong to the
closure of y or y does not belong to the closure of x. For example, if Q is a
monoid, spec(Q) is a Kolmogoroff space; it is finite if Q is finitely generated.
Every point of a finite Kolmogoroff space is locally closed, and hence every
sheaf on such a space is quasi-constructible. Furthermore, if f : X → Y is a
continuous map and Σ is a trivializing partition for E on Y , then f −1(Σ) is a
quasi-trivializing stratification for f −1(E) on X,

If X is noetherian, then every locally closed subset S of X is a union of
finitely many irreducible components, and if E is constant on S it is constant
on each of these. Thus we could require the elements of Σ to be irreducible (in-
stead of connected) without significant lost of generality. If X is also sober [31,
(0.2.1.1)], each of these irreducible subsets S contains a unique generic point
σ, and for any s ∈ S, the cospecialization map Es → Eσ is an isomorphism.
Since we also want to work in the complex analytic context, we shall explain
a different point of view.

If Σ is a trivializing stratification for E and s ∈ S ∈ Σ, then since E|S is
constant and S is connected, the natural map E(S) → Es is an isomorphism.
We write ES for E(S) to emphasize this. If t belongs to the closure of S, then
every neighborhood V of t contains a point s of S ∩ V , and we have a natural
map:

E(V)→ Es � ES.

Taking the limit over all V , we find the cospecialization map,

cospt,S : Et → ES.

If T is the element of Σ containing t, and if now s is any point of S, then T ⊆ S−,
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and we find a commutative diagram:

ET
cospT,S- ES

Et

�

?

cospt,s

-

cospt,S

-

Es.

�

?

These cospecialization maps satisfy the following cocycle conditions:
cospS,S = id and, if T ⊆ S− ⊆ R−, then cospT,R = cospT,S ◦ cospS,R.

We shall say that a point x of X is a central point for Σ if x belongs to the
closure of every element of Σ. Any point x of X has a neighborhood U such
that x is a central point for Σ|U : it suffices to take a neighborhood U of x that
meets only finitely many strata and then remove the closures of all the strata
whose closures do not contain x.

Proposition 2.5.3. Let E be a quasi-constructible sheaf on a topological space
X and let x be a point of X.

• If x is a central point for a trivializing partition of E, the natural map E(X)→
Ex is an isomorphism.

• For all sufficiently small neighborhoods U of x in X, the natural map
E(U)→ Ex is an isomorphism.

Proof It is clear that (1) implies (2), since any x has a neighborhood U with
the property that it is central in any sub-neighborhood of U. So let us assume
that x is a central point for a trivializing partition Σ. First we prove that the nat-
ural map E(X) → Ex is injective. The central point x belongs to the closure of
the stratum containing every point y, so the map E(X)→ Ey factors through the
cospecialization map cospx,y. Thus if two elements e, e′ of E(X) have the same
image in Ex, they have the same image in Ey for every y, and hence must be
equal. For the surjectivity, let ex be an element of Ex, let U be a neighborhood
of x in X, and let e be an element of E(U) whose germ at x is ex. Since x is a
central point for E|U , in fact e is unique. The Hausdorff maximality principle
implies that there is a maximal open neighborhood of x to which e extends,
and we may assume that U is such a maximal neighborhood. We claim that
then U = X. Indeed, if y is any point of X, let e′y := cospx,y(ex), and let V be a
neighborhood of y and e′ be a section of E on V whose stalk at y is e′y. After
replacing V by a possibly smaller neighborhood of y, we may assume that y is
central for E|V′ . If z is any point of U ∩ V ′, the closure of S(z) contains both x
and y, and cospx,z = cospy,z ◦ cospx,y. It follows that the stalk of e at z agrees
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with the stalk of e′ at z. Since this is true at every point of U ∩ V ′, the restric-
tions of e′ and of e to U ∩ V ′ agree. But then e and e′ extend to U ∪ V ′, so in
fact y ∈ U. �

Theorem 2.5.4. An integral sheaf of monoidsM is fine if it satisfies the fol-
lowing three conditions.

1. X admits an open covering on whichM is quasi-constructible.
2. For each x ∈ X,Mx is finitely generated.
3. Whenever x and ξ are points of X with x ∈ ξ, the cospecialization map

cospx,ξ : Mx →Mξ identifiesMξ with the quotient ofMx by a face.

Conversely, any fine sheaf of monoids M satisfies conditions (2) and (3); it
also satisfies (1) with “quasi-trivializing partition” in place of “trivializing par-
tition.” In fact, in the case of locally noetherian schemes,M satisfies (1).

Proof Suppose that M is fine. Properties (1) through (3) are local on X, so
by Corollary 2.3.6 we may assume that M admits a fine chart P → M. Let
h : X → S := spec(Q) be the corresponding map of locally monoidal spaces.
Then by Proposition 2.1.4, M � h−1(MS). Since S is a finite Kolmogoroff

space, MS is quasi-constructible and, by Remark 2.5.2, M admits a quasi-
trivializing partition. Furthermore, properties (2) and (3) hold for MS, and
hence also forM.

Now suppose thatM satisfies the conditions (1) through (3) and let x be a
point of X. Without loss of generality we may assume that x is a central point
for the trivializing partition Σ. Since Mx is finitely generated, Mx admits a
markup L → Mgp

x and hence an exact chart βx : Q → Mx, as explained in
in Proposition 2.3.4. Since Q is finitely generated, Lemma 2.2.4 tells us that,
after replacing X by an open neighborhood of x, we can find a homomorphism
β : Q→M whose stalk at x is βx. Then β is a chart forM at x, which, by Pro-
position 2.1.4, means that the induced map Q/Fx → Mx is an isomorphism,
where Fx := β−1

x (M∗x). We claim that the same is true for every point y of X.
For any such point we have a commutative diagram

Q/Fx
βx - Mx

Q/Fy

πx,y

? βy - My.

cospx,y

?

By condition (3), cospx,y is the quotient of Mx by a face G, which can only
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be cosp−1
x,y(0). Since Fy is by definition the inverse image of 0 in Q, it follows

that πx,y is the quotient of Q/Fx by β
−1
x (G), and hence that βy is also an isomor-

phism. �

Proposition 2.5.5. IfM is a fine sheaf of monoids on a noetherian and sober
space X, then Γ(U,MX) is fine, for every open set U of X,

Proof It suffices to treat the case U = X. By Theorem 2.5.4 and Proposi-
tion 2.5.3, every point x admits an open neighborhood Ux such that the map
MX(Ux) → MX,x is an isomorphism. In particular,MX(Ux) is a fine monoid.
Since X is quasi-compact, there exists a finite set {Ux1 , . . . ,Uxn } of these neigh-
borhoods that covers X. We prove that Γ(Um,MX) is fine by induction on
m, where Um := ∪{Uxi : i ≤ m}. In fact, Γ(Um,MX) is the fiber product of
Γ(Um−1,MX) and Γ(Uxm ,MX) over the integral monoid Γ(Um ∩ Uxm ,MX), so
it is fine by statement (6) of Theorem I.2.1.17.

�

2.6 Coherent sheaves of ideals and faces

Let β : Q → M be a homomorphism from a constant monoid Q to a sheaf of
monoidsM on a space X and let K be an ideal of Q. We denote by K̃ the sheaf
associated to the presheaf taking an open set U to the ideal ofM(U) generated
by βU(K). IfK is a sheaf of ideals inM, if β : Q→M is a chart forM, and if
K � K̃, then we say that (Q,K) is a chart for (M,K).

Proposition 2.6.1. Let K be a sheaf of ideals in a coherent sheaf of monoids
M on a space X. Then the following conditions are equivalent.

1. Locally on X, K is generated by a finite set of global sections.
2. Locally on X, there exists a chart for (M,K).

If these conditions are satisfied, K is said to be a coherent sheaf of ideals in
M. If this is the case and if Q → M is any chart forM and x is a point of X,
then there is an ideal K of Q such that (Q,K) is a chart for (M,K) in some
neighborhood of x.

Proof To prove that (1) implies (2), we may and shall assume that K is gen-
erated by global sections k1, . . . , kn on all of X. Let x be a point of X. Since
M is coherent, we may, after replacing X by a neighborhood of x, assume that
there exist a finitely generated monoid Q and a chart β : Q → Γ(X,M). We
shall show that there is an ideal K of Q such that (Q,K) is a chart for (M,K)
in some neighborhood of x. Since β is a chart for M, it induces a surjection
Q → Mx, by Proposition 2.1.4. For each i, choose a qi ∈ Q mapping to the
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germ of ki at x. Replacing X by a suitable neighborhood of x, we may assume
that each β(qi) = ki in Γ(X,M). After a further shrinking of X, it follows that
β(qi) and ki differ by an element of Γ(X,M∗). Thus without loss of generality
we may assume that ki = β(qi) for all i. Let K be the ideal of Q generated by
q1, . . . , qn. Then it is clear that K̃ = K .

Conversely, if β : (Q,K)→ (M,K) is a chart with Q finitely generated, then
by Theorem I.2.1.7, K is finitely generated as an ideal. If (k1, . . . , kn) generates
K, then (β(k1), . . . , β(kn)) generates K . �

Remark 2.6.2. Let K be a coherent sheaf of ideals in a coherent sheaf of
monoids on X. Suppose that β : Q → M is a chart forM and x is a point of
X. Let K be the inverse image in Q of K x. Then the proof of Proposition 2.6.1
shows that in some neighborhood of x, K generates K .

Proposition 2.6.3. Let M be a fine sheaf of monoids on a topological space
X. For each natural number i there exists a unique sheaf of idealsKi ofM such
that, for each x ∈ X, Ki,x is the intersection of all the prime ideals p ofMx of
height i. Each of these idealsKi is coherent. The stalkKi,x ofKi at a point x of
X is a proper ideal ofMx if and only if dimMx ≥ i. In particular, IM := K1

is the interior ideal ofM.

Proof The uniqueness is clear, since a sheaf of ideals is determined by the
collection of its stalks. Because of this uniqueness, it will suffice to prove this
proposition whenM admits a chart β subordinate to a fine monoid Q. By Pro-
position 2.1.4, β induces an isomorphism Q/Fx →Mx, where Fx := β−1

x (M∗X),
for each x ∈ X. Then by Corollary I.2.3.9, the ideal Ki of Q discussed there
corresponds to the intersection of the height-i primes ofMX,x. Thus the ideal
ofMX generated by Ki has the desired properties. In particular, statement (4)
of this corollary implies that the construction is compatible with further local-
ization, so that these properties hold on all of X. The last statement also follows
from Corollary I.2.3.9. �

It is also sometimes useful to work with sheaves of faces. For example,
let (X,MX) be a monoidal space and let U be an open subset of X. Then the
subsheaf F ofMX consisting of those sections whose restriction to U are units
is a sheaf of faces ofMX .

Definition 2.6.4. LetM be a sheaf of monoids on X and F ⊆ M a sheaf of
faces ofM. Then a relative chart for F is a chart Q→M together with a face
F ⊆ Q such that F is the smallest sheaf of faces ofM containing F. If, locally
on X, such a chart exists then F is said to be relatively coherent inM.

The proof of the following result is so similar to that of Proposition 2.6.1
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that we will omit it. (Recall from Theorem I.2.1.17 that, in a fine monoid,
every face is monogenic.)

Proposition 2.6.5. Let F be a sheaf of faces in a fine sheaf of monoids M.
Then the following conditions are equivalent.

1. Locally on X, F is generated as a sheaf of faces of M by a single global
section.

2. Locally on X, F is generated as a sheaf of faces by a finite set of global
sections.

3. F is relatively coherent inM.

If F is a relatively coherent sheaf of faces inM, if β : Q → M is a fine chart
forM, and if x is a point of X, then there is a face F of Q such that (Q, F) is a
relative chart for (M,F ) in some neighborhood of x. �

A relatively coherent sheaf of faces in a coherent sheaf of monoids need not
be coherent as a sheaf of monoids. For a simple example, consider the monoid
P given by generators a, b, c and the relation a + b = 2c. Let F be the face
of P generated by a = 2c − b and let p be the complement of the face of
P generated by b. Then the stalk of F̃ at p is the face of Pb generated by a,
which is the monoid generated by c, b, and −b. Thus F̃p/F̃∗p � N, generated

by the class of c. On the other hand, at the closed point m := P+, F̃m is
the free monoid generated by a. Thus the map F̃m → F̃p/F̃∗p identifies with

the homomorphism N ·2- N. This map is not the quotient by a face, and so
Theorem 2.5.4 shows that F̃ is not coherent. Other examples can be constructed
from the non-simplicial monoid given by a, b, c, d with a + b = c + d. In fact,
the next proposition shows that the coherence of F̃ is quite unusual.

Proposition 2.6.6. Let F be a face of a fine sharp monoid P and let X :=
spec(P). Then the (relatively coherent) sheaf of faces F ofMX generated by
F is coherent as a sheaf of monoids if and only if F is a direct summand of P.

Proof By Theorem 2.5.4, F is coherent if and only if, for each pair of points
(x, ξ) with x ∈ ξ−, the map cospx,ξ : Fx → Fξ identifies F ξ with the quotient of
Fx by the face cosp−1

x,ξ(F
∗
ξ ). It suffices to check this conditions if x is the unique

closed point of X. For each x ∈ X, let Gx denote the face of P consisting of
those elements that map to a unit in MX , i.e., the complement of the prime
ideal of P corresponding to x. ThenMx � P/Gx and F x ⊆ Mx corresponds to
the face of P/Gx generated by F/F ∩Gx. Thus F is coherent if and only if for
every face G of P, F/F ∩ G is a face of P/G. By Proposition I.4.7.10, this is
the case if and only if F is a direct summand of P. �
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Remark 2.6.7. If M is a fine sheaf of monoids on a topological space X,
then the function x 7→ rkM

gp
x is upper semicontinuous, as follows easily from

Theorem 2.5.4. This is not true for a relatively coherent sheaf of faces F inM.
However, it is immediate to verify that the set of points of X where F x = 0,
which we denote by X∗(F ) or X∗

F
, is open.



III

Logarithmic Schemes

1 Log structures and log schemes

Although the concepts of logarithmic geometry apply potentially to a wide
range of situations, we shall not attempt to develop a language to carry this out
in great generality here. We restrict ourselves to the case of algebraic geometry
using the language of schemes, leaving to the future the task of building a foun-
dation for logarithmic algebraic spaces, algebraic stacks, analytic varieties, and
other types of geometry.

In the context of schemes, log structures in the étale and Zariski topologies
each have their own advantages and disadvantages, so here we shall consider
both. We refer the reader to chapter I of [15] for an introduction to the étale
topology. If x is a scheme-theoretic point of a scheme X, we shall write x for
a geometric point lying over x, i.e., a separably closed field extension of the
residue field k(x). The stalk of OX at such a point is a strict Henselization of
OX,x, with residue field the separable closure of k(x) in k(x).

1.1 Log and prelog structures

Let (X,OX) be a scheme, and let MonX denote the category of sheaves of (com-
mutative) monoids on Xét or Xzar. The structure sheaf OX is a sheaf of rings;
when we refer to it as a sheaf of monoids we always will use its multiplicative
structure.

Definition 1.1.1. A prelogarithmic structure on a scheme X is a homo-
morphism of sheaves of monoids α : P → OX on Xét (or Xzar). A logarithmic
structure is a prelogarithmic structure such that the induced homomorphism
α−1(O∗X)→ O∗X is an isomorphism. If α : M→ OX and α′ : M′ → OX are prel-
ogarithmic or logarithmic structures, a morphism α → α′ is a homomorphism
θ : M→M′ such that α′ ◦ θ = α.

270



1 Log structures and log schemes 271

We denote by LogX (resp. PlogX) the category of logarithmic (resp. prelog-
arithmic) structures on X. To save space and time, we may write “log” instead
of “logarithmic.”

Remark 1.1.2. A log structure αX induces an isomorphism M∗X → O
∗
X , and

it is common practice to identify O∗X and M∗X . Doing so requires the use of
multiplicative notation for the monoid law on MX . When using additive no-
tation forMX , we shall write λX for the mapping O∗X → MX induced by the
inverse of αX . Then λX(uv) = λX(u) +λX(v), and λX(u) can be thought of as the
logarithm of the invertible function u. For any section f of OX , α−1

X ( f ) is then
the (possibly empty) set of logarithms of the function f .

Proposition 1.1.3. Let X be a scheme.

1. The inclusion functor LogX → PlogX admits a left adjoint:

P → OX 7→ Plog → OX .

2. The identity map OX → OX is the final object of PlogX and of LogX . The
initial object of PlogX is the inclusion {1} → OX , and the initial object of
LogX is the inclusion O∗X → OX .

3. The categories PlogX and LogX admit pushouts, and their formation is com-
patible with the inclusion functor LogX → PlogX .

Proof The functor in (1) is nothing but the formation of the associated log-
arithmic morphism, which we already discussed in Proposition II.1.1.5. The
verification of its adjointness to the inclusion functor is immediate, as is the
verification of (2). For (3), suppose that we are given morphisms of (pre)log
structures θi : α0 → αi for i = 1, 2, where αi : Pi → OX for i = 0, 1, 2. Let
P := P1⊕P0P2 in the category MonX . Then by the universal mapping property
of the pushout, there is a unique morphism α : P → OX which is compatible
with α1 and α2. It is clear that α satisfies the universal mapping property of a
pushout in the category PlogX . It remains only to verify that α is a log structure
if the αi are. It suffices to work at the stalk at each point x of X. Suppose that m
is a section of Px and α(m) ∈ O∗X,x. Write m = φ1(m1)+φ2(m2), where mi ∈ Pi,x

and φi : Pi → P is the canonical map. Then α1(m1)α2(m2) = α(m) ∈ O∗X,x, so
each αi(mi) is a unit. Since each αi is a local homomorphism, each mi ∈ P

∗
i,x

and hence m ∈ P∗x. Thus α is local. It follows from Proposition I.4.1.5 that it is
also strict, hence a log structure. �

The inclusion O∗X → OX (the initial object of LogX) is called the trivial log
structure on X. The final object, which is rarely used, can be called the empty
log structure.
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Remark 1.1.4. Formation of the log structure Plog → OX associated to a
prelog structure β : P → OX involves a pushout in the category of sheaves of
monoids: this is the sheaf associated to the presheaf sending each open set to
the pushout in the category of monoids. We shall see later that, if P is integral,
then this sheafification yields the same result when carried out in the Zariski or
in the étale topology. More precisely, for each étale f : X′ → X, let Plog

X′ denote
the log structure on Xzar associated to P → f −1(OX) → OX′ . We will see in in
Proposition 1.4.1 that X′ 7→ Plog

X′ (X′) defines a sheaf on Xét, and it follows that
this sheaf is the étale log structure associated to β.

Definition 1.1.5. Let f : X′ → X be a morphism of schemes.

1. If α′ : M′ → OX′ is a log structure on X′, form the cartesian diagram

f log
∗ (M′)

f log
∗ (α′)- OX

f∗(M′)
? f∗(α′)- f∗(OX′ ).

f ]

?

Then f log
∗ (α′) is a log structure on X, and

f log
∗ : LogX′ → LogX

is a functor from the category of log structures on X′ to the category of log
structures on X.

2. If α : M→ OX is a log structure on X, let

f ∗log(α) : f ∗log(M)→ OX

be the log structure associated to the prelog structure

f −1(M)→ f −1(OX)→ OX′

Then

f ∗log : LogX → LogX′

is a functor from the category of log structures on X to the category of log
structures on X′.

3. The functor f ∗log is left adjoint to the functor f log
∗ .

In this context, f log
∗ (α′) is called the direct image of α′, and f ∗log(α) is called

the inverse image of α. The sub- and superscripts “log” in the notation above
are often omitted. The verifications of the statements in the definition are im-
mediate.
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Remark 1.1.6. If f : X → Y is a morphism of schemes and αY : MY → OY

is a log structure on Y , then the homomorphisms f −1(MY )→ f −1(OY ) and
f −1(OY )→ OX are both local, and hence so is the composite f −1(MY )→ OX .
It follows that the construction of the associated log structure f ∗log(MY )→ OX

is accomplished just by sharpening. As a consequence, the homomorphism
f −1(MY )→ f ∗log(MY ) is an isomorphism.

A log structure α : M → OX is said to be coherent if the sheaf of monoids
MX is coherent, that is, if locally on X there exist a finitely generated monoid
Q and a chart γ : Q→ Γ(X,M). Recall from Definition II.2.1.1 that this means
that the associated logarithmic homomorphism γlog : Qlog → M is an isomor-
phism. Note that β := α◦γ is a prelog structure on X, and since α is logarithmic,
Qlog is the same whether computed with respect to γ or β, by Remark II.1.1.7.
Thus, if γ is a chart forM, then α is isomorphic to the log structure associated
to the prelog structure Q→ OX , and to give a chart forM is equivalent to giv-
ing a prelog structure β : Q→ OX together with an isomorphism Qlog �MX .

To relate log structures to divisors, we introduce the following notation. If
X is a scheme and U is an open subset of X, let ZX(U) be the set of closed
subschemes Z of U, or equivalently, the set of quasi-coherent sheaves of ideals
in OU . We endow ZX(U) with the structure of a commutative monoid, where
Z1 + Z2 is the (scheme-theoretic) union of Z1 and Z2, defined by the product
of the ideals I1 and I2 defining Z1 and Z2. (This is the ideal sheaf generated
by the products of sections of I1 and I2.) The identity element of this monoid
is the empty subscheme, corresponding to the unit ideal OX . In fact we will
mostly be interested in the submonoid corresponding to the ideals that are lo-
cally monogenic (including the zero ideal). The natural restriction maps make
ZX into a presheaf, and this presheaf is in fact a sheaf. If a is a section of OX

over a set U, let Z(a) be the subscheme corresponding to the ideal sheaf gen-
erated by a. If a is a nonzero divisor of OX , then Z(a) is an effective Cartier
divisor, but this will not be true in general. Note also that the ideal sheaf IZ

is the inverse of the invertible sheaf typically assigned to the effective Cartier
divisor Z. If α : M → OX is a prelog structure on X and m is a section ofM,
the subscheme Z(α(m)) depends only on the image of m inM := M/M∗, so
there is a commutative diagram:

M
α - OX

M

π

?
ζ - ZX .

Z

?

(1.1.1)
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Remark 1.1.7. Let α : M → OX be a u-integral log structure on X, so that
there is an exact sequence

0 - O∗X
λ- M

gp
X

π- M
gp
X

- 0,

in the sense thatMX is the sheaf of orbits by the free action of O∗X onMX . If
q is a global section ofMX , the sheaf L∗q := π−1

X (q) is an O∗X-torsor on X, and
hence defines an invertible sheaf Lq on X. The isomorphism class [Lq] of Lq

is an element of the Picard group of X, and the induced map

Γ(X,M
gp
X )→ Pic(X) : q 7→ [Lq]

is nothing but the boundary map associated to the short exact sequence

0→ O∗X →M
gp
X →M

gp
X → 0.

The image by αX of Lq is a quasi-coherent and locally monogenic sheaf of
ideals Iq in OX , and the subscheme defined by Iq is ζ(q) in the notation of
diagram 1.1.1.

1.2 Log schemes and their charts

Definition 1.2.1. A log scheme is a scheme X endowed with a log structure
αX : MX → OX . A morphism of log schemes is a morphism f : X → Y of the
underlying schemes together with a homomorphism f [ : MY → f∗(MX) such
that the diagram

MY
f [- f∗(MX)

OY

αY

? f ]- f∗(OX)

f∗(αX)

?

commutes.

By adjunction, to give the homomorphism f [ in this diagram is equivalent
to giving a homomorphism f −1(MY ) → MX , which in turn is equivalent to
giving a homomorphism f ∗log(MY ) → MX . We will allow ourselves to denote
any of these data by f [. The commutative diagram in the definition implies that
for each x ∈ X, the morphism f [x : MY, f (x) →MX,x is automatically local, so f
induces a morphism of monoidal spaces (X,MX)→ (Y,MY ).

If X is a scheme then X, endowed with the trivial log structure O∗X ⊆ OX , is
a log scheme, and the functor X 7→ (X,O∗X) is fully faithful. In this way we can
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and shall regard the category of schemes as a full subcategory of the category
of log schemes.

The following proposition needs no proof.

Proposition 1.2.2. If X is a log scheme, denote by X its underlying scheme
or (equivalently) the same underlying scheme X endowed with the trivial log
structure. Then the inclusion O∗X →MX underlies a morphism of log schemes
pX : X → X, which in fact is the universal morphism from X to a log scheme
with trivial log structure. �

Thus if Y is a (log) scheme with trivial log structure, there is a natural bi-
jection Mor(X,Y) � Mor(X,Y), and the functor X → X is left adjoint to the
inclusion of the category of schemes into the category of log schemes.

Definition 1.2.3. A log ring is a homomorphism β from a monoid P to the
multiplicative monoid of a ring A. A local log ring is a local homomorphism
from a monoid P into the multiplicative monoid of a local ring. If P → A
is a log ring, Spec(P → A) is the log scheme whose underlying scheme is
X := Spec A with the log structure associated to the prelog structure P → OX

induced by the map P→ A.

If P is a monoid and e : P → Z[P] is its monoid algebra (see Section I.3.1),
one can form the log scheme

AP := Spec(e : P→ Z[P]).

More generally, if S is a monoscheme, we denote by AS the log scheme whose
underlying scheme is AS (defined in Proposition II.1.9.1) with the log structure
associated to the prelog structure π−1(MS) → OAS

, where π : AS → S is the
natural map.

A log scheme X gives rise to a monoidal space (X,MX), to which the def-
initions and results of Chapter II apply. For example, a morphism f : X → Y
is said to be strict if the induced homomorphism f ∗log(MY ) → MX is an iso-
morphism. By the same token, a chart for X is just a chart for its underlying
sheaf of monoids. Such charts can be interpreted in a variety of ways, as the
following proposition (which requires no proof) illustrates.

Proposition 1.2.4. Let X be a log scheme, let Q be a monoid, and let S denote
the monoidal space spec(Q). Then the following sets of data are equivalent.

1. A monoid homomorphism α : Q→ Γ(X,MX) forMX .
2. A morphism of locally monoidal spaces a : (X,MX)→ (S,MS).
3. A morphism of log schemes b : X → AQ.

Then α is a chart forMX if and only if a is strict if and only if b is strict. In
this case, any one of these data is called a chart for X subordinate to Q. �
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More generally, let S be a monoscheme and let AS be the associated log
scheme. Then the following sets of data are equivalent.

1. A morphism of locally monoidal spaces a : (X,MX)→ (S,MS).
2. A morphism of log schemes b : X → AS.

Then a is a strict if and only if b is, and in this case either of these sets of data
is called a chart for X subordinate to S.

In general, a morphism f : (X, αX)→ (Y, αY ) of log schemes has a canonical
factorization

(X, αX)
i- XY := (X, f ∗log(αY ))

f s
- (Y, αY ). (1.2.1)

This factorization is uniquely determined by the fact that i is the identity on
the underlying schemes and f s is strict. There is an analogous factorization
through Y equipped with the direct image log structure f log

∗ (αX), and in fact f
fits into the commutative diagram

(X, αX)
i- (X, f ∗log(αY ))

(Y, f log
∗ (αX))
?

j - (Y, αY ),

f s

?

where i and j are each the identity map on the underlying schemes. In some
sense, f log

∗ (αX) is the log structure on Y that makes it as close as possible to X,
and f ∗log(αY ) is the log structure on X that makes it as close as possible to Y .

Proposition 1.2.5. A morphism of log schemes f : X → Y is strict if and only
if the diagram

X
f - Y

X

pX

? f
- Y

pY

?

is cartesian.

Proof Suppose that f is strict and let h : T → Y and g : T → X be mor-
phisms such that pY ◦ h = f ◦ g. Then the morphism h includes the data of a
homomorphism

h[ : h∗log(MY )→MT .
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But h∗log(MY ) � g∗
log

( f ∗
log

(MY )), and since f is strict, f ∗
log

(MY ) � MX . Thus

h[ amounts to a homomorphism g∗
log

(MX) → MT . All these homomorphisms
are compatible with αT , and thus we have a morphism of log schemes T → X
making the diagram commute. This morphism is uniquely determined by its
underlying morphism of schemes, given by its composition with pX , together
with h[, given by its composition with f [, and hence is unique.

Suppose on the other hand that the diagram is cartesian. Then we have a
commutative diagram

X
i - XY

f s
- Y

X
? f

-

pX
-

Y ,

pY

?

(1.2.2)

where the top row is the canonical factorization (1.2.1) of f , with i = idX and
f s strict. Since f s is strict, the square is cartesian, and so it follows from our
hypothesis that i is an isomorphism. Then f = f s ◦ i is strict. �

Remark 1.2.6. It is also useful to reinterpret the definition (II.2.4.1) of a chart
for a morphism of monoidal spaces in the context of log schemes. Thus if
f : X → Y is a morphism of log schemes and θ : P → Q is a homomorphism
of monoids, a chart for f subordinate to θ can be interpreted as a commutative
diagram of log schemes

X
b - AQ

(a, θ, b)

Y

f

? a - AP

Aθ

?

in which a and b are strict. In this context, we let Yθ denote the log scheme
whose underlying scheme is the fiber product Yθ := Y ×AP AQ, endowed with
the log structure induced from the morphism Yθ → AQ. Thus we have the
commutative diagram

X
bθ - Yθ

b - AQ

Y

fθ

? a -

f

-

AP,

Aθ

?

(1.2.3)
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in which the square is cartesian and the horizontal maps are all strict. Note that
in this diagram, the group scheme A∗Q/P := AQgp/Pgp = A∗Q/P acts on AQ over AP

and hence by base change also on Yθ over Y .
More generally, we can define a chart for a morphism of log schemes sub-

ordinate to a morphism of monoschemes T → S in obvious ways.

The construction of exact and neat charts (Definition II.2.3.1) in the context
of log schemes is worth describing explicitly.

Theorem 1.2.7. Let f : X → Y be a morphism of fine log schemes for the
étale (resp. Zariski) topology, let x be a geometric point of X (resp. a scheme
theoretic point), and let y be its image in Y .

1. After Y is replaced by some étale (resp. Zariski) neighborhood of y, Y ad-
mits a fine chart which is exact at y.

2. If the sequence 0 → O∗Y,y →M
gp
Y,y →M

gp
Y,y → 0 splits, then the chart in (1)

may be taken to be neat at y. This is always the case ifMY,y is saturated, or
more generally ifM

gp
Y,y is torsion free. In the étale case, it is true provided

that the order of the torsion subgroup of M
gp
Y,y is invertible in k(y). A neat

chart always exists in some fppf1 neighborhood of y.
3. Suppose a fine chart α : P → MY is given. Then after X is replaced by

some étale (resp. Zariski) neighborhood of x, the morphism f admits a chart
(α, θ, β), where β : Q→MX is exact at x.

4. Suppose that Ext1(Mgp
X/Y,x,O

∗
X,x) = 0. Then the chart in (3) may be taken to

be neat at x. This is always the case if Mgp
X/Y,x is torsion free. In the étale

case, it is true provided that the order of the torsion subgroup ofMgp
X/Y,x is

invertible in k(x). A neat chart always exists in some fppf neighborhood of
x.

5. Suppose that f is s-injective at x and that (α, θ, β) is a chart for f that is neat
at x. Then β is automatically neat at x if α is neat at y.

Proof By hypothesis, MY is integral and coherent. In the Zariski topology
Corollary II.2.3.6 therefore implies that the sheaf of monoidsMY admits a fine
chart α : P → MY in some Zariski neighborhood of x. Let F := α−1(M∗Y,y), a
face of P. Then by (3) of Theorem I.2.1.17 there is an f ∈ F that generates F
as a face of P. If we replace Y by the open subset on which α( f ) is invertible,
α factors through the localization PF of P by F. The resulting chart PF →MY

is local, hence exact, at y (see Definition II.2.3.1). If we are working in the
étale topology, then we can apply Corollary 1.4.4 to replace Y by some étale
neighborhood of y on whichMY is given by a Zariski log structure. This proves

1 “faithfully flat and of finite presentation”
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(1). To prove (2), we can reduce as above to the case of Zariski log structures.
Then Proposition II.2.3.7 shows that we can choose α to be neat provided that
the sequence shown splits. Let n be the order of the torsion subgroup ofM

gp
Y,y.

If n is invertible in k(y), then multiplication by n on O∗Y,y is surjective, since OY,y

is strictly Henselian. Then Ext1(M
gp
Y,y,O

∗
Y,y) = 0 and the sequence splits. Since

multiplication by n on O∗Y,y is always surjective in the flat topology, any class in
this finite Ext group can be killed after a flat localization, and then the sequence
will split. Statement (2) follows. Statement (3) is proved in the same way as
(1), starting with Proposition II.2.4.2, and (4) is proved in the same was as (2),
using Theorem II.2.4.4. Statement (5) follows from Remark II.2.4.5. �

Recall from Proposition 1.2.2 that the inclusion functor from the category of
schemes to the category of log schemes has a left adjoint X 7→ X. This functor
has a right adjoint as well, if we restrict our attention to coherent log structures.

Proposition 1.2.8. If X is a log scheme, let

X∗ := {x ∈ X :Mx = 0}.

1. If X∗ is open in X and T is a log scheme with trivial log structure, then every
morphism T → X factors (uniquely) through X∗.

2. IfMX is coherent, X∗ is open in X.

Thus the functor X 7→ X∗ from the category of coherent log schemes to the
category of schemes is right adjoint to the inclusion functor from schemes to
coherent log schemes.

Proof If f : T → X is a morphism of log schemes and t ∈ T , then the homo-
morphism f [t : MX, f (t) → MT,t is local. Hence ifMT,t is dull, the same is true
ofMX, f (t); that is, f (t) ∈ X∗. Thus if X∗ is open in X, the map f factors through
the open immersion X∗ → X. IfMX is coherent then Corollary II.2.1.6 implies
that X∗ is open in X. �

Let P be a monoid and let αP : MP → OAP be the log structure of AP. The
construction ofMP shows that there is a natural homomorphism

e : P→ Γ(AP,MP).

Proposition 1.2.9. Let T be a log scheme and P a monoid. For each morphism
f : T → AP of log schemes, consider the composition

e f : P
e- Γ(AP,MP)

f [- Γ(T,MT ).
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Then f 7→ e f defines a bijection

Mor(T,AP)
�- Hom(P,Γ(T,MT )).

Proof Let θ : P → Γ(T,MT ) be a monoid homomorphism. The monoid
homomorphism Γ(T, αT ) ◦ θ : P → Γ(T,OT ) induces a ring homomorphism
Z[P] → Γ(T,OT ), and hence a morphism of schemes f : T → AP. Then the
composition

P→ Γ(T,MT ) = Γ(AP, f
∗
(MT ))→ f

∗
(MT )

is compatible with the homomorphisms P → OAP and f
∗
(MT ) → f

∗
(OT ),

and hence defines a homomorphism P → f log
∗ (MT ). Since f log

∗ (αT ) is a log
structure on AP and P is a chart forMAP , this homomorphism factors uniquely
through a homomorphism MAP → f log

∗ (MT ). This in turns induces a mor-
phism of log schemes T → AP. We leave it to the reader to check that this
construction is inverse to the assignment f 7→ e f . �

Corollary 1.2.10. Let T be a scheme with trivial log structure and let P be
a monoid. Then every morphism of log schemes T → AP factors uniquely
through the inclusion A∗P → AP, and in fact

AP(T ) � APgp (T ) � A∗P(T ).

Proof Using the previous proposition and the universal mapping property of
P→ Pgp, we find:

AP(T ) := Mor(T,AP) � Hom(P,Γ(T,O∗T )) � Hom(Pgp,Γ(T,O∗T ))

� Hom(Pgp,Γ(T,OT )) � Mor(T,APgp ) := A∗P(T ). �

If P is fine, A∗P = A∗P and is the largest open subscheme of AP on which the
log structure is trivial, and the corollary says that the set of T -valued points of
AP is the same as the set of T -valued points of A∗P.

The following result is an immediate consequence of Remark 1.1.6 and Pro-
position I.4.1.2.

Corollary 1.2.11. Let f : X → Y be a morphism of log schemes. If f is strict,
the induced map f −1(MY ) → MX is an isomorphism, and the converse holds
ifMX is u-integral. �

1.3 Idealized log schemes

It is sometimes convenient to study closed subschemes of log schemes that
are cut out by sheaves of ideals in the underlying monoid. In this context it is
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helpful to keep track of this sheaf of ideals. The notion of idealized log schemes
provides a framework for this study. To avoid overburdening the exposition, we
shall limit ourselves to explaining the main definitions and concepts.

Definition 1.3.1. An idealized log scheme is a log scheme (X,MX) equipped
with a sheaf of ideals KX ⊆ MX such that KX ⊆ α−1

X (0). A morphism of
idealized log schemes f : X → Y is a morphism of log schemes such that f [

maps f −1(KY ) into KX .

The functor which endows a log scheme X with the empty sheaf of ideals
inMX defines a fully faithful functor from the category of log schemes to the
category of idealized log schemes. This functor is left adjoint to the functor
from idealized log schemes to log schemes that forgets the ideal. On the other
hand, endowing X with the sheaf of ideals α−1

X (0) gives the right adjoint to the
“forget the ideal” functor.

Let (P,K) be an acceptably idealized monoid (see Definition I.1.5.1 and the
discussion which follows it) and let Z[P,K] be the quotient of the monoid
algebra Z[P] by the ideal generated by the image of K. The map P→ Z[P,K]
sends the elements of K to zero. We denote by AP,K the idealized log scheme
whose underlying scheme is Spec Z[P,K], with log structure associated to the
prelog structure coming from the map P → Z[P,K], and with the sheaf of
ideas K inMP generated by the image of K. If T is any idealized log scheme,
then we can argue as in Proposition 1.2.9 to see that the set of morphisms T →
AP,K can be identified with the set of monoid homomorphisms P → Γ(T,MT )
sending K to Γ(T,KT ).

Definition 1.3.2. A morphism of idealized log schemes f is ideally strict if
KX is generated by f −1(KY ).

If X is a fine log scheme, the inverse image inMX of the zero ideal of OX

need not be coherent. For example, let X := Spec (N→ k[X,Y]/(XY)), where
n is sent to xn. Then the stalk of α−1

X (0) at the origin is empty, but the stalk
at any other point on the y-axis is not. Hence α−1

X (0) cannot be coherent. The
following result shows that this cannot happen in some good situations.

Proposition 1.3.3. Let K be an ideal in a fine monoid P, and let X := AP,K and
let K̃ be the sheaf of ideals ofMK generated by K. Then α−1

X (0) = K̃ and thus
is a coherent sheaf of ideals inMX .

Proof We work over an arbitrary base ring R. If x is a point of X, let βx be
the map P → OX,x, and let Fx := β−1

x (O∗X,x). Evidently K̃ maps injectively to
α−1

X (0); to prove that the map is an isomorphism, suppose that m ∈ MX,x and
αX,x(m) = 0. Since P→MX,x is surjective, there exists a p ∈ P mapping to m.
Let mx ⊆ R[P] be the prime ideal corresponding to the point x. Then OX,x is the
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localization of R[P]/R[K] at mx, and since ep maps to zero in OX,x, there exists
an f ∈ A[P] \mx such that f ep ∈ R[K]. Write f :=

∑
aqeq; then since f < mx,

there exists some q ∈ Fx such that aq , 0. Since f ep ∈ R[K], it follows that
q + p ∈ K. Since q ∈ Fx and since Kx is the ideal ofMX,x generated by KFx ,
we can conclude that p ∈ K̃x. �

Proposition 1.3.4. Let X be a coherent log scheme, let K be a coherent sheaf
of ideals in MX , and let I be the sheaf of ideals in OX generated by αX(K).
Then I is a quasi-coherent sheaf of ideals in OX . Let X′ denote the closed
subscheme of X defined by I, endowed with the log structure induced from X,
and let K ′ ⊆ MX′ be the sheaf of of ideals inMX′ generated by the image of
K . Then (X′,K ′) is an idealized log scheme, and there is a natural morphism
of idealized log schemes (X′,K ′)→ (X, ∅).

Proof The quasi-coherence of an étale sheaf of ideals in OX can be verified
étale locally, so we may without loss of generality assume that the log structure
of X admits a chart. We may also assume without loss of generality that X is
affine, and hence isomorphic to the spectrum of a log ring α : P→ A. Since K
is coherent, Proposition II.2.6.1 implies that, possibly after a further shrinking,
K admits a chart K ⊆ P. Let I be the ideal of A generated by α(K). Then for
any a ∈ A, P → Aa is a chart for the special affine subset of X defined by
a, and K is still a chart for the corresponding sheaf of ideals of its sheaf of
monoids. It follows that I is the sheaf of ideals of OX generated by I. Since
I is then quasi-coherent, it defines a closed subscheme X′ of X, and since K ′

maps to zero in OX′ , the pair (X′,K ′) is an idealized log scheme, which maps
to (X, ∅). �

1.4 Zariski and étale log structures

In this section we will attempt to compare and connect the theories of log struc-
tures in the étale and Zariski topologies. Examples illustrating the differences
will be given in Remark 1.6.4. The point is that it is often important for a log
structure to account for all the branches of a divisor, which can sometimes only
be distinguished in the étale topology.

Proposition 1.4.1. Let X be a scheme, and let η : Xét → Xzar be the canonical
map from the étale topos of X to its Zariski topos.

1. Let α : Mzar → OX be a u-integral log structure on X, and for each étale
f : X′ → X, let MX′ := f ∗log(Mzar). Then the assignment X′ 7→ MX′ (X′)
defines a sheaf f ∗log(Mzar) in the étale topology of X, and

f ∗log(α) : f ∗log(Mzar)→ OXét
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is a log structure η∗log(Mzar) on Xét.
2. Let α : Mét → OX be a u-integral log structure on Xét, and suppose thatMét

admits a global chart γ : P → Γ(X,Mét). Then γ factors through a global
chart for Mzar := f log

∗ (Mét), and the natural map η∗log(Mzar) → Mét is an
isomorphism.

Proof To prepare for the proof of (1), let us consider the following situation.
If f : X′ → X is a morphism, let X′′ := X′ ×X X′, let pi : X′′ → X′, i = 1, 2, be
the two projections, and let g := f ◦ p1 = f ◦ p2 : X′′ → X. If αX : MX → OX

is a log structure on X, letMX′ := f ∗log(MX) and letMX′′ := g∗log(MX). Then
there are canonical isomorphisms MX′′ � p∗i,log(MX′ ), and hence each of the
maps pi induces a morphism of sheaves of monoids f∗(MX′ ) → g∗(MX′′ ).
Then statement (1) follows immediately from the following lemma.

Lemma 1.4.2. In the situation above, assume that f : X′ → X is a faithfully
flat and quasi-compact morphism of schemes. Let αX : MX → OX be a u-
integral log structure in the Zariski topology of X. Then the natural maps

MX → Eq
(

f∗MX′
-
- g∗MX′′

)
MX → Eq

(
f∗MX′

-- g∗MX′′
)

are isomorphisms.

Proof This lemma is a simple consequence of faithfully flat descent. First we
prove the statement about M. Since f ∗log(M) = f −1(M), this reduces to the
following elementary statement about sheaves of sets.

Claim 1.4.3. Let S be a sheaf of sets on X. Then the natural map

S→ Eq
(

f∗ f −1S -- g∗g−1S
)

is an isomorphism.

Proof The injectivity of S → f∗ f −1(S) is clear from the surjectivity of f .
For the surjectivity, recall that since f is faithfully flat and quasi-compact, the
underlying map on topological spaces is open and surjective [27, 2.4.6]. Let s′

be a section of f∗ f −1(S) such that p∗1(s′) = p∗2(s′) in g∗g−1(S). For any point x
of X there is at least one point x′ of X′ such that f (x′) = x, and for any pair
(x′1, x

′
2) of such points, there is a point x′′ of X′′ such that pi(x′′) = x′i . The

natural maps Fx → ( f −1(S))x′i → (g−1(S))x′′ , are isomorphisms, and because
p∗1(s′) = p∗2(s′), the stalks of s′ at x′1 and x′2 correspond to the same element
of Fx, which we denote by s(x). Thus x 7→ s(x) ∈

∏
x Fx is a “discontinuous

section” of F such that s(x) = sx′ whenever f (x′) = x. It remains only to prove
that s is in fact continuous. If x ∈ X, there exist a neighborhood U of x in X
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and a section t of S over U whose stalk at x is s(x). Choose a point x′ of f −1(U)
mapping to x. Then the stalk of s′ at x′ agrees with the stalk of f ∗(t) at x′, and
hence there is a neighborhood U′ of x′ in X′ such that f ∗(t)|U′ = s′

|U′
. Then if

y′ ∈ U′, the stalk of t at f (y′) equals the stalk of s′ at y′, so t f (y′) = s( f (y′)). In
other words, ty = s(y) for all y in the image of U′. Since f is open, this image
contains a neighborhood of x, and so s is continuous, as required. �

Now to prove the lemma for M, note that since MX is u-integral, it is an
O∗X-torsor overMX , and similarlyMX′ (resp.MX′′ ) is an O∗X′ -torsor (resp., an
OX′′ -torsor) overMX′ (resp.,MX′′ ). Consequently the rows of the diagram

0 - O∗X
- MX - MX - 0

0 - f∗(O∗X′ )
?

- f∗(MX′ )
?

- f∗(MX′ )
?

0 - g∗(O∗X′′ )
??

- g∗(MX′′ )
??

- g∗(MX′′ )
??

are exact. The column on the left is an equalizer diagram because O∗X is a sheaf
in the fpqc topology. The argument of the previous paragraph shows that the
column on the right is also an equalizer diagram, becauseMX′ � f −1(MX) and
MX′′ � g−1(MX). Now the exactness of the middle column follows by chasing
the diagram (locally in the Zariski topology on X). �

Let us now turn to statement (2). Since the map OXzar → η∗(OXét ) is an
isomorphism, η∗(Mét) = η

log
∗ (Mét). Let x be a geometric point of X lying over

x ∈ X, and consider the following commutative diagram:

O∗X,x
- η∗(Mét)x - η∗(Mét)x

O∗X,x

?
- Mét,x

?
- Mét,x.

ηx

?

The bottom row is short exact, in the sense that the first map is injective and
Mét,x is the quotient of O∗X,x acting onMét,x. In fact the same is true of the top
row, by Hilbert’s Theorem 90. It follows that the vertical arrow on the right
is injective. Indeed, if mx and m′x are two elements of η∗(Mét)x with the same
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image inMét,x, then their respective images mx and m′x inMét,x differ by the
action of some u ∈ O∗X,x. In fact this u must lie in O∗X,x, by descent, since O∗X
acts freely onMét. It follows that mx and m′x have the same image in η∗(Mét,x),
and the injectivity of ηx follows.

The globally given homomorphism γ induces a factorization of the homo-
morphism γx : P→Mét,x through a map γx : P→Mét,x. Let Fx := γ−1

x (O∗Xx
) =

γ−1
x (O∗X,x). Then the composite

P/Fx
γx- η∗(Mét)x

ηx- Mét,x,

is an isomorphism. Since ηx is injective, it follows that it and γx are also iso-
morphisms. This implies that γx is a chart for η∗(Mét)x, and the rest of the
corollary follows immediately. �

Corollary 1.4.4. Let X be a scheme and let αX : MX → OX be a u-integral
log structure on Xét. Then MX is coherent if and only if there exist an étale
covering X̃ → X and a coherent log structure M̃X on X̃zar whose pullback to
X̃ét agrees with the pullback ofMX . �

Corollary 1.4.5. If X is a log scheme, then the functor on the category of u-
integral log schemes sending T to the set of morphisms T → X forms a sheaf
in the Zariski (resp. étale, fpqc) topology.

1.5 Log points and dashes

Definition 1.5.1. A log point is a log scheme whose underlying scheme is the
spectrum of a field. A log dash is a log scheme whose underlying scheme is
the spectrum of a discrete valuation ring.

Example 1.5.2. If P is sharp monoid, and k is a field, the homomorphism

k∗ ⊕ P→ k : (u, p) 7→

u if p = 0

0 otherwise

defines a log structure on S := Spec k, and we denote the corresponding log
point by SP. Since P is sharp,MS � P, and the given homomorphism P→MS

is a chart forMS and a splitting of the canonical mapMS →MS. We therefore
call SP the split log point defined by k and P. In particular, SN is sometimes
called the standard log point over k.

Remark 1.5.3. Let S be a u-integral Zariski log point, whose underlying
scheme is Spec k. Since S has only one point, every sheaf on S is constant,



286 III Logarithmic Schemes

and we identify it with its set of global sections. The exact sequence of abelian
groups

0→ k∗ →Mgp
S →M

gp
S → 0 (1.5.1)

defines an element of Ext1(M
gp
S , k

∗). If k is algebraically closed, the group
k∗ is divisible, and if M

gp
S is finitely generated and torsion free, it is free. In

either case, the extension group vanishes, and hence the sequence can be split;
note that the set of splittings is naturally a pseudo-torsor under the action of
Hom(M

gp
S , k

∗). A choice of splitting defines an isomorphism S → SP, where
P :=MS.

If we are working in the étale topology, then the sheaves in (1.5.1) are not
necessarily constant. We choose a separable closure ks of k, defining a geomet-
ric point x of S, and look at the sequence of G-sets

0→ ks∗ →M
gp
x →M

gp
x → 0, (1.5.2)

where G is the Galois group of ks/k. If M is fine, then Mx is a fine sharp
monoid, and hence by Corollary I.2.1.3 its automorphism group is finite. Then
G operates through a finite quotient and there is a finite extension k′/k such that
Mx′ = Mx, where x′ := Spec(k′). It follows from Hilbert’s Theorem 90 and
the spectral sequence with Ep,q

2 = Hp(G,Extq(M
gp
xs , ks∗)) that the obstruction

to splitting the sequence of G-modules (1.5.2) again lies in Ext1(M
gp
x′ , k

s∗).
A log point can be endowed with many idealized structures: one can choose

any ideal K ⊆ M+
S .

Proposition 1.5.4. Let P be a fine sharp monoid and let SP be the correspond-
ing split log point over a field k. Then the automorphism group Aut(SP/SP)
of SP relative to SP is naturally identified with the opposite of the semidirect
product A∗P(k) o Aut(P).

Proof We can identify an element γ of Aut(SP/SP)op with its action onMS.
Such a γ acts on P = MS, and the map γ → γ defines a homomorphism
of groups Aut(SP/SP)op → Aut(P). This homomorphism is split by the map
Aut(P) → Aut(SP/SP)op sending an automorphism g of P to (idk∗ ⊕ g). On
the other hand, if x ∈ A∗P(k) = Hom(P, k∗), we can define an automorphism
γx of (k∗ ⊕ P) by γx(u, p) := (x(p)u, p). Since α(u, p) = 0 unless p = 0,
this automorphism is also compatible with α and defines an automorphism of
the log scheme S/S, acting trivially on P. If γ is any such automorphism, its
compatibility with α forces the equality γ(u, 0) = (u, 0) and, since γ is the
identity, γ(u, q) = (x(q)u, q) for some homomorphism x : P → k∗. Thus A∗P(k)
becomes identified with the kernel of the homomorphism Aut(SP/SP)op →

Aut(P). �
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The next result shows that every fine log point is dominated by a standard
log point.

Proposition 1.5.5. If S is any fine log point, there exist an algebraically closed
field k and a morphism from the standard log point over k to S.

Proof Suppose that S = Spec(k), where k is a field. Choose an algebraic
closure k of k and endow Spec(k) with the log structure obtained by pulling
back the log structure of S via the morphism Spec(k)→ Spec(k). Thus there is
a strict morphism of log points S → S, and so we may assume without loss of
generality that k is algebraically closed. Then the log structure on S is split, so
that there exists an isomorphismMS � k∗ ⊕MS. SinceMS is a fine monoid,
there exists a local homomorphism h : MS → N, by Proposition I.2.2.1. Since
αS sendsM

+

S to 0 and h is local, the homomorphism h defines a morphism of
log schemes SN → S. �

Example 1.5.6. A standard log dash is a log scheme of the form

T := Spec(V ′ ⊆ V),

where V is a discrete valuation ring and V ′ := V\{0}, viewed as a multiplicative
monoid.

The terminology “dash” for the spectrum of a discrete valuation is a trans-
lation of the French usage “trait.” Such a spectrum T has just two points, the
closed point t and the generic point τ, which is an open subset. In contrast to
the case of a standard log point, the sheaf of monoids MT on a standard log
dash is not constant. It has the following form:

V ′
= - Mt

αt- OT,t = V

K∗
?

= - Mτ

? ατ- OT,τ = K
?

where αt is the inclusion V ′ → V . The homomorphism of sheavesMT →MT

cannot split, sinceMt = V ′/V∗ � N andMτ = 0, whileMτ = K∗. Splittings
of the stalk Mt → Mt do exist, and amount to choices of a uniformizing
parameter of V .

Since the quotient V ′/V∗ is isomorphic to N, the restriction of the standard
log structure on Spec V to the spectrum of its residue field k is isomorphic to the
standard log structure on Spec k. However, this isomorphism is not canonical:
it depends on the choice of a uniformizing parameter π of V . Two such choices
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π and π′ define the same isomorphism if and only if π′ = uπ, where u ∈ V∗ is
congruent to 1 modulo the maximal ideal of V .

There are other interesting log structures on dashes. For example, one has
the hollow log structure

V ′
= - Mt

αt- OT,t = V

V ′ ⊕V∗ K∗
?

= - Mτ

? ατ- OT,τ = K
?

where now

αt : V ′ 7→ V : v 7→

v if v ∈ V∗

0 otherwise

and ατ is the obvious map. The pullback of the hollow log structure to Spec k
is also non-canonically isomorphic to the standard log structure on Spec k. In
between these extremes, for each n one can form the log structure associated
to the prelog structure

N→ V : 1 7→ πn.

For n = 1, the corresponding log structure is isomorphic to the standard one,
and as n approaches infinity, the induced log structure approaches (in some
sense) the hollow one; see for example [60].

Remark 1.5.7. If T is a standard log dash, then Aut(T/T ) is trivial, since
MT,t ⊆ OT . On the other hand, if T has the hollow log structure, one finds as
in the case of log points that Aut(T/T ) is a semidirect product of Aut(Q) and
A∗Q(V).

1.6 Compactifying log structures

One of the most important applications of log geometry is the study of com-
pactifications and, more generally, open embeddings U → X.

Definition 1.6.1. Let U be a nonempty Zariski open subset of a scheme X and
let j : U → X be the inclusion. The direct image log structure (Definition 1.1.5)

αU/X : MU/X := jlog
∗ (O∗U)→ OX

is called the compactifying log structure associated to the open immersion j.
A log structure α→ OX on X said to be compactifying if its subset of triviality
X∗ is open and the natural map α→ αX∗/X is an isomorphism.
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The sheafMU/X is the inverse image of j∗(O∗U) ⊆ j∗(OU) via the natural map
OX → j∗(OU). This is just the sheaf of sections of OX whose restriction to U is
invertible. Thus αU/X : jlog

∗ (O∗U) → OX is injective, and its image is a sheaf of
faces in the monoid OX . For example, αU/X is the trivial log structure if U = X
and is the empty log structure if U = ∅. The log structure on standard log
dash T is the compactifying log structure associated with the open immersion
{τ} → T .

The construction of compactifying log structures is functorial, in the follow-
ing sense. If f : X → Y is a morphism of schemes taking an open subset U of
X to an open subset V of Y , then f induces a morphism of compactifying log
schemes f : (X, αU/X)→ (Y, αV/Y ).

The following proposition illustrates one sense in which the log scheme
X, with the compactifying log structure associated with an open embedding
U → X, is closer to U than to the underlying scheme X. We will see further
illustrations later; see for example Corollary V.1.3.2.

Proposition 1.6.2. Let X be a log scheme and let U be a Zariski open subset.
Suppose that the log structure of X is the compactifying log structure of the
open immersion U → X. Then, for every log scheme Y , the natural map

Mor(X,Y)→ {g ∈ Mor(X,Y) : g(U) ⊆ Y∗}

is bijective.

Proof Let f : X → Y be a morphism of log schemes and let f : X → Y
be the corresponding map of underlying schemes. Since U ⊆ X∗, it follows
from Proposition 1.2.8 that f (U) ⊆ Y∗. Moreover, since αU/X is injective, the
homomorphism f [ : MY → f

∗
(MX) is uniquely determined by f , and so the

correspondence f 7→ f is injective. Suppose on the other hand that g : X → Y
maps U to Y∗, and that m is a local section ofMY . Then g](αY (m)) is a local
section of g∗(OX) whose restriction to U is a unit and hence defines a section
of g∗(MX). The resulting homomorphismMY → g∗(MX) defines the required
homomorphism X → Y . �

Proposition 1.6.3. Let X be a locally noetherian scheme and let U be an open
subset containing all the associated points of X. Denote by ΓY (Div+

X) the sheaf
of effective Cartier divisors on X with support in Y := X \ U.

1. The compactifying log structureMU/X is integral, and the homomorphism
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ζ of diagram (1.1.1) fits into a commutative diagram

MU/X
�- ΓY (Div+

X)

ZX .
?

ζ
-

Here the top arrow takes a local section q of MX to the effective Cartier
divisor defined by the inverse of the invertible sheaf of ideals generated by
any local section m ofMX mapping to q.

2. If q is a section ofMU/X corresponding to a section D of ΓY (Div+
X), thenLq

is the ideal sheaf ID of the effective divisor D, and is equal to ζ(q) in the
notation of Remark 1.1.7.

3. If U′ ⊆ U is another open subset containing all the associated points of X
and if, for each x ∈ U \U′, the height of OX,x is at least two, then the natural
mapMU/X →MU′/X is an isomorphism.

Proof If m is a local section of MU/X , then the restriction of αU/X(m) to U
is a unit and hence does not vanish at any associated point of X. This implies
that the germ of αU/X(m) at every point x of X is a nonzero divisor of OX,x.
Thus, αU/X(m) lies in the sheaf O′X of nonzero divisors of X. Since αU/X is an
injective homomorphism of monoids, it follows that MU/X is integral. Since
M∗U/X � O

∗
X , αU/X induces an injection α : MU/X → O

′
X/O

∗
X . The map sending

an element of O′X to the inverse of the invertible ideal that it generates induces
an isomorphism O′X/O

∗
X → Div+

X . Since each αU/X(m) restricts to a unit on U,
the divisor it defines has support in Y . Conversely, if D is an effective Cartier
divisor, then locally D can be expressed as the class of an element f of O′X .
If D has support in Y , then f|U is a unit, i.e., f ∈ jlog

∗ (O∗U). This proves the
first statement, and the second follows immediately from the definitions. For
the third, it will suffice to prove that the map ΓY (Div+

X) → ΓY ′ (Div+
X) is an

isomorphism, where Y ′ := X \U′. Injectivity is clear. Let x be a point of X and
let D be an effective Cartier divisor of OX,x with support in Y ′, defined by a
nonzero divisor a of OX,x. We have to prove that if x ∈ Y ′ \Y , then a is a unit. If
not, then OX,x/(a) is a noetherian local ring that necessarily contains a minimal
prime p, corresponding to a point z of X generizing x. By the Hauptidelsatz,
z has height one. Then z < Y , since x is a specialization of z and x < Y . On
the other hand, z ∈ D and D has support in Y ′, so z ∈ Y ′. This contradicts our
hypothesis that every point of Y ′ \Y has height at least two. Here we have been
working in the Zariski topology; the étale argument is the same. �
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Remark 1.6.4. The formation of MU/X can depend on whether we use the
étale or the Zariski topology. Indeed, if f : X′ → X is étale, the natural map
f −1(Div+

X)→ Div+
X′ is not an isomorphism in general. For an explicit example,

take X := Spec(C[x, y]), let Y be the closed subset defined by y2 − (x2 − x3),
let U := X \ Y , and let s denote the origin. Then, in the Zariski topology,
the stalk of MU/X � ΓY (Div+

X) at s has rank one, generated by the class of
Y , since Y is irreducible. However, in the étale topology, the stalk at s has
rank two, generated by the two branches of Y . To make this explicit, let X′ :=
Spec C[y, t, t−1], and let f : X′ → X be the map defined by x 7→ 1 − t2. Then
X′ → X is étale, and the inverse image Y ′ of Y in X′ is defined by y2−(1−t2)2t2,
which clearly has two branches. See Figure 1.6.1.

Figure 1.6.1 Étale vs. Zariski branches.

As pointed out in [22, 12.2.12], this difficulty is amplified in higher dimen-
sions. For example let X := C[x, y, z] and let Y be the closed subset defined
by zy2 − zx2 + x3. Then the Henselization of Y at the origin s has only one
branch, but it has two branches at points s′ where y = x = 0 and z , 0. Thus, if
M is the compactifying log structure associated to the inclusion of X \ Y in X
computed in the étale topology,Ms has rank one butMs′ has rank two. Then
it follows from Corollary II.2.1.6 thatM cannot be coherent. See Figure 1.6.2.

The following proposition allows us to avoid, with a suitable hypothesis, the
difficulties illustrated by the examples in the previous remark.

Proposition 1.6.5. Let X be a locally noetherian and normal scheme and let
U be an open subset of X containing all the associated points of X. Assume
that the complement Y of U has pure codimension one and that each of its
irreducible components is geometrically unibranch [27, 6.15.1]. Then the map

η∗(MU/Xzar )→MU/Xét

is an isomorphism, where η : Xét → Xzar is the projection mapping.
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Figure 1.6.2 Collapsing branches.

Proof The following lemma shows that on a normal scheme, the effective
Cartier divisors are exactly embedded in the sheaf of effective Weil divisors.

Lemma 1.6.6. Let X be a normal scheme and let Div+
X and W+

X denote, re-
spectively, the sheaves of effective Cartier and Weil divisors on X. Then there
is a natural injective and exact homomorphism

ν : Div+
X →W

+
X .

Proof Since X is normal, each of its local rings is an integral domain, and so
the sheaf O′X of nonzero divisors consists of those sections f of OX whose stalk
at every point is not zero. As we have seen, this is a sheaf of submonoids of
OX , and Div+

X can be identified with the quotient O′X/O
∗
X . The sheafW+

X is the
sheaf associated to the presheaf that to every open U assigns the free monoid on
the set of points η ∈ U such that OU,η has dimension one. Since X is regular in
codimension one, each OU,η is a discrete valuation ring, and the valuation maps
induce a monoid homomorphism ν : O′X → W

+
X [34, II §6]. The normality of

X implies that, for each x ∈ X, the local ring OX,x is the intersection, in the
fraction field KX,x of OX,x, of its localizations at height one primes. It follows
that O′X,x is the set of sections f of KX,x such that νgp( f ) ∈ W+

X . Hence the
homomorphism νx : O′X,x →W

+
X,x is exact. It follows that Div+

X,x := O′X,x is an
exact submonoid ofW+

X,x. �

Lemma 1.6.7. Let f : X′ → X be an étale morphism of normal and let Y ⊆ X
be a closed subscheme each of whose irreducible components is purely of codi-
mension one and geometrically unibranch [27, 6.15.1]. Then, if Y ′ := f −1(Y),
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the natural maps

f −1(ΓY (W+
X))→ ΓY ′ (W

+
X′ ) and f −1(ΓY (Div+

X))→ ΓY ′ (Div+
X′ )

are isomorphisms.

Proof Let x′ be a point in X′ and let x := f (x) ∈ X. Since X′ → X is étale,
Y ′ is purely of codimension one in X′. The stalk of ΓY ′ (W

+
X′ ) at x′ is the free

monoid generated by the generic points of Y ′ that generize x′. If ζ′ is such a
point, its image ζ in X is a generic point of Y generizing x. Since f is étale
and Z is geometrically unibranch, then by [29, 18.10.7] f −1(Z) has a unique
generic point ζ′′ whose closure contains x′, and so ζ′′ = ζ′. Thus the first of
our maps, for Weil divisors, is an isomorphism.

Since X and X′ are normal, the vertical maps in the following diagram are
injections:

f −1(ΓY (Div+
X)) - ΓY ′ (Div+

X′ )

f −1(ΓY (W+
X))

?
- ΓY ′ (W

+
X′ ).
?

Since f is faithfully flat, a Weil divisor on X is Cartier if and only if its pullback
to X′ is Cartier. Thus the square is cartesian and, since the bottom arrow is an
isomorphism, so is the top one. �

Proposition 1.6.5 follows from Lemma 1.6.7 and Propositions 1.4.1 and
1.6.3. �

1.7 DF log structures

The notion of a log structure that we have been discussing was formulated by
Fontaine and Illusie and further developed by Kato. A similar but less flexi-
ble theory was suggested independently by Deligne and Faltings. Since it is
somewhat simpler and still useful, we discuss it briefly.

Definition 1.7.1. A DF structure on a scheme X is a finite sequence γ· of
homomorphisms γi : Li → OX , where each Li is an invertible sheaf on X. 2

Let us indicate how to pass from a DF structure to a log structure, following
Kato’s explanation in [48, Complement (1)]. Given a DF structure γ·, consider
the sheaf P whose sections on a connected open set U consist of the set of

2 In fact Deligne and Faltings take the equivalent but dual point of view: for them γi is an
invertible sheaf Li endowed with a global section si.
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pairs (a, I), where I := (I1, . . . , In) ∈ Nn is a multi-index and a is a generator of
the invertible sheaf LI := LI1

1 ⊗ · · · ⊗ L
In
n . The sheaf P has a natural structure

of a sheaf of integral monoids. Let γ : P → OX be the homomorphism sending
(a, I) to γI(a), where γI := γI1

1 ⊗ · · · ⊗ γ
In
n : LI → OX . The prelog structure γ

defines a log structure α : M → OX , with γ = α ◦ β, where β : P → M is a
chart forM. Not every fine log structure comes from a DF structure; see Re-
mark 1.12.2 for a characterization. We refer to work of Bourne and Vistoli [8]
for a more general notion of a DF structure, using the language of stacks.

If γ· is a DF structure on X and f : X′ → X is any morphism, then each
γi induces a morphism f ∗(Li) → OX′ , and thus one obtains a DF structure
f ∗(γ·) on X′. The log structure associated to this DF structure is the pullback
(Definition 1.1.5) of the log structure corresponding to γ·, as is easy to verify.

Example 1.7.2. Let Y1, . . . ,Yn be a sequence of effective Cartier divisors in
X, defined by invertible sheaves of ideals I1, . . . ,In. Then the family of in-
clusions Ii → OX , i = 1, . . . , n, defines a DF structure on X. More generally,
given closed immersions Yi ⊆ X′ ⊆ X′′, let I′′i be the ideal sheaf of Yi in X′′,
and suppose that the restriction of Ii to X′ is an invertible sheafLi on X′. Then
the inclusion Ii → OX induces a (not necessarily injective) map γi : Li → OX′ ,
and the collection γ· defines a DF structure on X′.

Let γ· be a DF structure and let α : M→ OX be the corresponding log struc-
ture. For each i, the image Ii of γi is a quasi-coherent sheaf of ideals in OX ,
defining a closed subscheme Yi of X. Note that, since eachLi is invertible, each
Ii is locally monogenic but it need not be invertible and could, for example,
be the zero ideal. In any case, the codimension of Yi in X is everywhere less
than or equal to one. The homomorphism O∗X → P : u 7→ (u, 0) identifies O∗X
with the sheaf of units P∗ of P. Let θ : P → Nn be the homomorphism sending
(a, I) to I. On any open set U on which all the sheaves Li are trivial, a choice
of generators (a1, . . . , an) defines a splitting of θ sending I to (aI1

1 aI2
2 · · · a

In
n , I).

It follows that we have an exact sequence: 0 → O∗X → P → Nn → 0, so
that θ identifies P with Nn and the chart β : P → M defines an isomorphism
β : Nn → M. Let qi denote the global section of M corresponding to the ith
standard basis vector of Nn via this isomorphism. Then Yi = ζ(qi), in the nota-
tion of diagram 1.1.1.

Proposition 1.7.3. Let α : M → OX be the log structure associated to a DF
structure γ·, let qi ∈ Γ(X,M) correspond to the ith standard basic vector of Nn

as explained above.

1. The sheaf of monoids M is integral and, for each i, there is a natural iso-
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morphism L∗i � π−1(qi), where π : M → M is the natural map and L∗i is
the sheaf of local generators for Li.

2. Locally on X, the homomorphism β : Nn → M lifts to a chart Nn → M.
For each x ∈ X, the stalk ofMx is freely generated by the images of those
qi such that γi(qi) vanishes in k(x).

3. Let Yi = ζ(qi), in the notation of diagram 1.1.1 of Remark 1.1.6. and let
Y := ∪{Yi : i = 1, . . . , n}. Then the restriction of M to U := X \ Y is
trivial. Hence there is a natural homomorphism of log structures from α to
the compactifying log structure αU/X associated to U ⊆ X.

4. Suppose that X is normal, that each γi is injective, and that each Yi is
reduced and irreducible (resp. and geometrically unibranch). Then in the
Zariski (resp. étale) topology, the map α → αU/X is an isomorphism. In
particular, the homomorphism ζ̃ : M → ΓY (W+

X) sending qi ∈ Γ(X,M) to
Yi ∈ ΓY (W+

X) is an isomorphism, as is the inclusion ΓY (Div+
X)→ ΓY (W+

X).

Proof Since P is a sheaf of integral monoids and is a chart forM, it follows
from Proposition II.1.1.8 thatM is also integral. The map βi : L∗i →M factors
through π−1(qi), and the resulting morphism L∗i → π−1(qi) is a morphism of
O∗X-torsors, hence an isomorphism. This proves (1). To prove statement (2),
we may assume that all the invertible sheaves Li are trivial, so that there is a
splitting σ : Nn → P as explained in the previous paragraph. Then β◦σ : Nn →

M lifts β and hence is a chart forM. Now, for each x ∈ X, the stalkMx ofM
at x is the quotient of Nn by the face Fx consisting of the set of elements I ∈ Nn

that map to a unit in Mx, or equivalently in OX,x. Since Nn is free with basis
(e1, . . . , en), statement (2) of Examples I.1.4.8 tells us that Fx is generated by
the set of ei that map to a unit in OX,x, or equivalently, the set of i such that qi

does not vanish in k(x). Then Nn/Fx is freely generated by the remaining ei’s.
Statement (2) of the proposition follows.

To prove statement (3), let mi be a local section ofM lifting qi. Then α(mi)
is a unit outside Yi, and hence mi restricts to a unit ofM outside Yi. It follows
thatM is trivial on U, and the existence of the mapM→MU/X follows from
Proposition 1.6.2.

Now suppose the hypotheses in (4) are satisfied. Since each γi is injective
and X is integral, Ii is an invertible sheaf of ideals and each Yi is an effective
Cartier divisor in X. It follows that U is a nonempty subset of X and, since X is
normal, (1) of Proposition 1.6.3 exhibits an isomorphismMU/X � ΓY (Div+

X).
Since the Yi are the reduced irreducible components of Y , their images in the
Zariski stalks of ΓY (W+

X) form a basis at each point. Then we have a commu-
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tative diagram

Nn � - M - MU/X

ΓY (W+
X)

ζ

?
�δ

-

ΓY (Div+
X).

�

?

We have just seen that ζ is an isomorphism, and it follows that δ is surjective.
The normality of X implies that δ is also injective, hence an isomorphism. It
follows that all the arrows are isomorphisms. When the Yi are geometrically
unibranch, the same is true in the étale context, by Proposition 1.6.5. �

Corollary 1.7.4. Let U ⊆ X be a dense open subset of a locally noetherian and
locally factorial scheme X, let Y := X \ U, and letMU/X be the Zariski com-
pactifying log structure associated with U → X. ThenMU/X is coherent, and
MU/X � ΓY (W+

X). Moreover, if q is a global section ofMU/X corresponding
to an irreducible component Yi of Y , then Lq � IYi .

Proof Let Z be the closure of the set of points y of Y such that dimOX.y is
at least two, let Y ′ be the closure of Y \ Z, and let U′ := X \ Y ′. Then all
the points of U′ \ U have height at least two, and so (3) of Proposition 1.6.3
implies that the natural mapMU′/X →MU/X is an isomorphism. Thus without
loss of generality we may replace U by U′, that is, we may assume that all
the irreducible components of Y have codimension one. Since X is locally
factorial, each such component Yi is a Cartier divisor, and its ideal sheaf Ii is
invertible. The collection of inclusions Ii → OX defines, as we have seen, a
DF log structureM, and Proposition 1.7.3 tells us thatMU/X is the associated
log structure. �

Let i : Y → X be a reduced and irreducible Cartier divisor in a normal
scheme X and let j : U → X be its complement. Proposition 1.7.3 shows
that αU/X : MU/X → OX is the log structure associated to the DF structure
IY → OX . It follows that i∗log(αU/X) is the log structure associated to the DF
structure (IY/I

2
Y , γ), where γ is the zero map IY/I

2
Y → OX . Thus the informa-

tion that this log structure contains is no more or less than the conormal sheaf
of Y in X. In particular, it depends only on the first infinitesimal neighborhood
of Y in X. The next proposition generalizes this fact.

Proposition 1.7.5. Let X be a normal and locally noetherian scheme, and let Y
be a closed subset of codimension one, each of whose irreducible components
Yi is a Cartier divisor. For each natural number m, let Xm be the subscheme of X
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defined by Im+1
Y . Let U := X\Y and let αU/X : MU/X → X be its compactifying

log structure.

1. The restriction of the ideal of Yi in Xm to Xm−1 is an invertible sheaf Li

of OXm−1 -modules. Thus, by the construction of Example 1.7.2, there is a
DF structure γ(m)

· : L· → OXm−1 associated to the family of embeddings
Yi → Xm.

2. The log structure associated to the DF structure L· → OXm−1 is the restric-
tion of αU/X to Xm−1.

3. The restriction of αU/X to Xm−1 depends only on the scheme Xm and the
embedding Y → Xm.

Proof We will work in the Zariski topology; in the étale topology one must
assume that each Yi is geometrically unibranch. Let I denote the ideal of Y in
X, so that I ⊆ Ii for all i. Then the ideal I′′i of Yi in Xm is Ii/Ii ∩ I

m+1 =

Ii/I
m+1, and its restriction to Xm−1 is

I′′i /I
mI′′i = Ii/(Im+1 + IiI

m) = Ii/IiI
m � OXm−1 ⊗ Ii,

an invertible sheaf on Xm−1. This proves (1), and in fact we see that the DF
structure γ(m)

· on Xm−1 is the restriction of the DF structure γ· on X defined
by the set of embeddings Yi → X. By (4) of the previous proposition, the
latter is the compactifying log structure αU/X . Since the formation of the log
structure associated to a DF structure is compatible with pullbacks, statement
(2) follows, and (3) is an immediate consequence. �

1.8 Normal crossings and semistable reduction

Let us look more closely at the case of divisors with normal crossings, which
has long been studied in other formulations. We review the fundamental results
of [20], which were updated in the language of log geometry in [45] and [74].
If Z is a closed subscheme of X, we write iZ/X for the closed immersion Z → X
and IZ/X for the ideal sheaf of Z in X.

Definition 1.8.1. Let X be a regular scheme. A divisor with (strict) normal
crossings in X is a closed subscheme Y such that the intersection of every
set of irreducible components of Y is also regular. A scheme Y is said to be a
(strict) normal crossing scheme if, for every point y of Y , there exist a (Zariski)
neighborhood U of y and a closed immersion identifying U with a divisor with
strict normal crossings in a regular scheme X.

We sometimes write DNC for “divisor with normal crossings.” If U is an
open subset of a DNC scheme, we shall call an embedding U → X as in
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the definition a DNC coordinate system on U. If Y is a closed subscheme of
X, the condition that Y be a strict divisor with normal crossings X is local in
the Zariski topology of X. More generally, a closed subscheme Y of a regular
scheme X is said to be a divisor with (not necessarily strict) normal crossings
if étale locally it is a strict DNC in X. It is standard, and easy to verify, that Y
is a strict DNC in X if and only if, for each point x in X, there exists a regular
sequence (t1, . . . , tm) generating the maximal ideal ofOX,x and a natural number
r such that t1 · · · tr generates the ideal of Y in OX,x.

Let Y → X be a divisor with strict normal crossings in X, with irreducible
components Yi defined by ideals Ii. Since X is regular, it is locally factorial and
each Ii is an invertible sheaf of ideals. The family of inclusions γi : Ii → OX

thus defines a DF structure on X. The following result is then a straightforward
consequence of Proposition 1.7.3; we omit the proof.

Proposition 1.8.2. Let Y → X be a strict DNC in a regular scheme X, let
γ· : I· → OX be the DF structure defined by the ideals of the irreducible com-
ponents of Y in X, and let αX : MX → OX denote the corresponding log struc-
ture.

1. The log structure αX is compactifying.
2. Let x be a point of X and let {Y1, . . . ,Yr} be the set of irreducible com-

ponents of Y containing x. Then in a neighborhood of x there exists a
chart β : Nr → MX such that αX(β(ei)) is a generator of Ii for each
i = 1, . . . , r. �

As we shall see later, the log scheme associated to a divisor with strict nor-
mal crossing behaves very well: in Example 1.11.9 we will see that it is “log
regular,” and in Example IV.3.1.14 we will see under what circumstances it
is “log smooth.” If Y is a divisor with (not necessarily) strict normal crossing
in X, one can still consider the compactifying log structure αX on X corre-
sponding to the complement of Y in X; in this case it is important to work with
étale log structures. Then αX is coherent and étale locally admits charts as in
statement (2) of the proposition.

Normal crossing divisors often arise as a degenerate fiber of a smooth family.
This situation has been much studied and was one of the founding motivations
for log geometry.

Definition 1.8.3. Let f : X → S be a flat morphism of schemes, where X is
regular and S is the spectrum of a discrete valuation ring. One says that X/S
has (strict) semistable reduction if its special fiber Y is a (strict) divisor with
normal crossings in X.

Suppose that X is regular, that S is the spectrum of a DVR, that X/S is flat,
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and that π is a uniformizing parameter of X. Then, if x is a closed point of the
closed fiber of X/S, the morphism has strict semistable reduction at x if and
only if there is a regular sequence (t1, . . . , tn) generating the maximal ideal of
OX,x such that π = t1 · · · tr for some r.

Let X/S be a morphism with semistable reduction, and let η and s be the
generic and closed points of S, respectively. For the sake of exposition, we
assume the semistable reduction is strict and work in the Zariski topology.
Thus the fiber Y over s is a union of regular irreducible components Y1, . . . ,Yn.
The compactifying log structures associated to the open immersions Xη → X
and η → S define log structures αXη/X and αη/S on X and S, respectively, and
the morphism f underlies a morphism f : X → S of the corresponding log
schemes. By Proposition 1.8.2, the compactifying log structures on X and S are
induced from the DF structures corresponding to the family of maps IYi → OX

and Is → OS. Let x be a point of X, and restrict attention to a neighborhood
on which each ideal sheaf IYi is trivial. A choice of a generator ti for each IYi

and π for Is defines charts Nn → MX and N → MS. Necessarily f ∗(π) is a
unit times t1t2 · · · tr, and we may adjust the choices so that the unit is 1. Thus
we see that there is a chart for f subordinate to the diagonal homomorphism
N→ Nn. One finds a commutative diagram

X
g- S ×AN ANr - ANr

S
?

-

-

AN .
?

The horizontal arrows in this diagram are strict, and one sees easily that the
underlying morphism of g is flat, and that its fiber over the closed point of S is
the closed subscheme of X defined by (t1, . . . , tr), which is regular. Thus, if X/S
is locally of finite type, the map g is smooth. As we shall see in Chapter IV,
and in particular in Corollary IV.3.1.18, the morphism X → S is an example of
a smooth morphism of log schemes.

Let us summarize our conclusions for future reference.

Proposition 1.8.4. Let X/S be a semistable reduction morphism over the spec-
trum of a DVR. Then the étale log structures αXη/X and αη/S are fine. Let X/S
be the corresponding morphism of log schemes and let x be a point of X. Then,
after restricting to some neighborhood of x in X, there exists a chart for X/S
subordinate to the diagonal homomorphism N → Nr. If X/S is of finite type,
then the underlying morphism of the map X → S ×AN ANr is smooth. �

The log structures associated to divisors with a normal crossings divisor Y in
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X can be restricted to Y; this restricted log structure “remembers” certain key
aspects of the embedding. More generally, let i : Y → X be a closed immersion,
let α : M → OX be the compactifying log structure associated to the comple-
mentary open embedding U → X, and let i∗log(α) be the restriction of α to Y . In
some cases one can say explicitly, in terms of familiar data on Y , what this log
structure is, and when such structures exist, without a priori knowledge of X.
For example, as we saw in the discussion preceding Proposition 1.7.5, if Y is
an irreducible Cartier divisor in a normal X, thenM is the log structure associ-
ated to the DF structure IY → OX , and i∗log(α) is just the data of the conormal
sheaf IY/I

2
Y : it is the DF structure associated to the zero map IY/I

2
Y → OY .

More generally, suppose that X is normal and that each irreducible compo-
nent Yi of Y is a reduced Cartier divisor (and is unibranch, if we are working
in the étale topology). Then, as we saw in Proposition 1.7.3, the compactifying
log structureM is the log structure attached to the DF structure defined by the
family of ideals IYi → OX , and ζ̃ induces an isomorphism

M � ε∗(NỸ ), (1.8.1)

where ε : Ỹ → Y is the normalization of Y . Note that the sheaves in this iso-
morphism vanish outside Y , and that in fact the same isomorphism holds if
we replace α by i∗Y (α). This is the log structure associated to the restriction
of {Li → OX} to Y , i.e., the family of maps: i∗(LYi ) → OY . In particular, if
qi ∈ Γ(X,M) corresponds to Yi, then i∗Y (LYi ) is the invertible sheaf Lqi in the
notation of Remark 1.1.7.

Let us now attempt to explicate the log structures that arise naturally on
a strict normal crossing scheme. If Y is such a scheme, let ε : Ỹ → Y be
its normalization. Then Ỹ is the disjoint union of the irreducible components
Y1, . . . ,Yn of Y , each of which is regular. For each j, let

Y j := ∪{Yk : k , j} = Y \ Y j,

D j := Y j ∩ Y j,

D := D1 ∪ · · · ∪ Dn

= Y1 ∩ · · · ∩ Yn

= ∪{Y j ∩ Yk : j < k}

= Sing(Y).

The subscheme D ⊆ Y is often called the double locus of Y .

Lemma 1.8.5. Let Y be a strict normal crossing scheme, with normalization
Ỹ = Y1 t · · · t Yn.

1. D j is a Cartier divisor in Y j and in Y j.
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2. The ideal IY j/Y of Y j in Y is annihilated by the ideal IY j/Y of Y j in Y , and
in fact IY j/Y � iY j/Y∗(ID j/Y j ), and ID j/Y j is an invertible sheaf on Y j.

3. The ideal IY j/Y of Y j in Y is annihilated by the ideal IY j/Y of Y j in Y , and
in fact IY j/Y � iY j/Y∗(ID j/Y j ), and ID j/Y j is an invertible sheaf on Y j.

4. Each i∗D/Y (IY j/Y ) is an invertible sheaf of OD-modules, as is

OD(−Y) := i∗D/Y (IY1/Y ) ⊗ · · · ⊗ i∗D/Y (IYn/Y )

� i∗D/Y1
(ID1/Y1 ) ⊗ · · · ⊗ i∗D/Yn

(IDn/Yn ).

For every j, we have

OD(−Y) � i∗D/Y (IY j/Y ) ⊗ i∗D/Y (IY j/Y ).

5. If i : Y → X is a DNC coordinate system on Y and IY is the ideal of Y in X,
then there is a natural isomorphism

i∗D/Y (i∗(IY )) � OD(−Y).

Proof All these statements can be proved under the assumption that there
exists a DNC coordinate system i : Y → X. We work in the local ring of a
point y of Y and with a regular sequence (t1, . . . , tn) as in Definition 1.8.1.
Then t j generates the ideal of Y j in X and s j := t1 · · · t̂ j · · · tr generates the ideal
of Y j in X. The ideal IY j/X of Y j in X is an invertible sheaf of ideals; note that
it becomes the unit ideal in OX,y if j > r. The ideal of D j in Y j is generated by
the image of s j in OX/(t j) and the ideal of D j in Y j is generated by the image
of t j in OX/(s j). It follows from the fact that (t1, . . . , tr) is a regular sequence
that (t j, s j) and (s j, t j) are regular sequences, and hence t j is a nonzero divisor
mod (s j) and s j is a nonzero divisor mod (t j). This proves (1). Writing t for
the image in OY,y of an element t of OX,x, we see that t js j = 0. This proves (2)
and (3). For (4) and (5), note that the inclusion iD/Y : D → Y factors through
Y j and, by (2), i∗D/Y (IY j/Y ) � i∗D/Y j i∗Y j/Y (IY j/Y ) � i∗D/Y j

(ID j/Y j ) and hence is
invertible on D. For each j, we have a natural surjection i∗Y/X(IY j/X) → IY j/Y

and hence also a surjection i∗D/Y i∗Y/X(IY j/X) → i∗D/Y (IY j/Y ). Since each of these
is an invertible sheaf of OD-modules, the latter surjection is an isomorphism.
Since IY/X = IY1/X ⊗ · · · ⊗ IYn/X , we find that

i∗D/Y i∗Y/X(IY/X) = i∗D/Y i∗Y/X(IY1/X) ⊗ · · · ⊗ i∗D/Y i∗Y/X(IYn/X)
= i∗D/Y (IY1/Y ) ⊗ · · · ⊗ i∗D/Y (IYn/Y )

= OD(−Y).

Furthermore, the ideal of Y j in X is defined by the tensor product of all IYi/X

such that i , j, and hence OD(−Y) � i∗D/Y (IY j/Y ) ⊗ i∗D/Y (IY j/Y ). �
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Theorem 1.8.6. Let Y be a strict normal crossings scheme, with irreducible
components Y1, . . . ,Yn and normalization ε : Ỹ → Y . Then the following sets
of data are naturally equivalent:

1. a log structure α : M → OY such that the map ζ : M → ZY induced by α
in turn induces an isomorphismM→ ε∗(NỸ );

2. for each j, an invertible sheaf of OY -modules L j and an isomorphism of
OY j -modules

α j : i∗Y j/Y (L j) � ID j/Y j ;

3. for each j, an invertible sheaf of OY j -modules L̃ j and an isomorphism of
OD j -modules

β j : i∗D j/Y j
(L̃ j) � i∗D j/Y j (ID j/Y j );

4. an invertible sheaf of OY -modules L and an isomorphism of OD-modules

β : i∗D/Y (L) � OD(−Y).

If i : Y → X is a DNC embedding, then these data arise as follows: α is the
restriction to Y of the compactifying log structure associated to U ⊆ X; L j is
the restriction i∗Y/X(IY j/X) to Y of the ideal sheaf of Y j in X; L̃ j is the restriction
i∗Y j/X

(IY j/X) to Y j of the ideal sheaf of Y j in X to Y j; and L is the conormal
sheaf of Y in X.

Proof For each j, the data in (1) give us a global section of M defined by
Y j, whose inverse image inM is an O∗Y -torsor. Let L j be the invertible sheaf
corresponding to this global section, as explained in Remark 1.1.7. Then α

maps L j surjectively to the ideal I j ⊆ OY . The restriction of this map to Y j

defines a surjection

α j : i∗Y j/Y (L j)→ i∗Y j/Y (I j) = ID j/Y j .

Since ID j/Y j is invertible on Y j, α j is an isomorphism. This gives us the data
in (2). On the other hand, thanks to statement (2) of Lemma 1.8.5, the data (2)
yield homomorphisms

L j → iY j/Y∗ i
∗

Y j/Y (L j) � iY j/Y∗(ID j/Y j ) � IY j/Y → OY ,

and thus define a DF structure γ· on Y . LetM be the sheaf of monoids of the
associated log structure and let ζ : M → ZY be the associated map. Since the
image of γi is precisely IYi/Y , the map ζ sends qi ∈ M to Yi ∈ ZY . Thus the
data in (1) and (2) are naturally equivalent. Furthermore, the restriction of α j

to D ⊆ Y j defines an isomorphism i∗D/Y (L j) � i∗D/Y j i∗Y j/Y (L j) � i∗D/Y j (ID j/Y j ).



1 Log structures and log schemes 303

Thus if L := L1 ⊗ · · · ⊗Ln, the tensor product of these isomorphisms yields an
isomorphism

β : i∗D/Y (L) � i∗D/Y1 (ID1/Y1 ) ⊗ · · · ⊗ i∗D/Yn (IDn/Yn )
� i∗D/Y (I1) ⊗ · · · ⊗ i∗D/Y (In)

� OD(−Y),

and thus the data (4).
By (3) of Lemma 1.8.5 the ideal ID j/Y j is an invertible sheaf ofOY j -modules.

Thus, given the data in (4), we can set

L̃ j := I−1
D j/Y j

⊗ i∗Y j/Y (L),

so that we have isomorphisms:

i∗D j/Y j
(L̃ j) � i∗D j/Y j

(ID j/Y j )
−1 ⊗ i∗D j/Y j

i∗Y j/Y (L)

� i∗D j/Y j
(ID j/Y j )

−1 ⊗ i∗D j/Di∗D/Y (L)

� i∗D j/Y j
(ID j/Y j )

−1 ⊗ i∗D j/D(OD(−Y))

� i∗D j/Y j
(ID j/Y j )

−1 ⊗ i∗D j/Y j
(ID j/Y j ) ⊗ i∗D j/Y j (ID j/Y j ).

� i∗D j/Y j (ID j/Y j ).

This gives the data of (3).
Finally we show how to pass from (3) to (2). Note first that for each j there

are exact sequences:

0 - OY - OY j ⊕ OY j - OD j
- 0,

1 - O∗Y
- O∗Y j

⊕ O∗Y j
- O∗D j

- 1,

→ H0(O∗D j
)→ Pic(Y)→ Pic(Y j) ⊕ Pic(Y j)→ Pic(D j).

We make the construction suggested by the last of these explicit as follows.
Given (L̃ j, β j) as in (3), let L j be the sheaf of pairs ( ˜̀, x) ∈ L̃ j × ID j/Y j such
that β j(i∗D j/Y j

( ˜̀)) = i∗D j/Y j (x). ThenL j is an invertible sheaf ofOY -modules, and
there is an induced isomorphism i∗Y j/Y (L j) � ID j/Y j . �

Remark 1.8.7. The assertion of the theorem that the sets of data (1)–(4) are
“naturally equivalent” means that the categories (which we view as groupoids)
in question are equivalent. We hope that the reader can imagine the definitions
of the morphisms in these categories, which we have not made explicit. For
example, a morphism in (2) means a collection of isomorphisms θ j : L j → L

′
j

that are compatible with the isomorphisms α j and α′j, and a morphism in (4)
means an isomorphism θ : L → L′ that is compatible with the isomorphisms
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β and β′. We have not verified the compatibilities of these equivalences, a task
we leave to the reader.

More generally, a scheme Y is said to be a normal crossings scheme if it
admits an étale covering by a strict normal crossings scheme. A nodal curve
is an example of a (non-strict) normal crossings scheme. For such a Y one can
still consider the sheaf ε∗(NỸ ) in the étale topology, the sheaf of branches of Y .
Then if y→ Ỹ is a geometric point, the strict Henselization of Y at y is a union
of irreducible components as in Lemma 1.8.5, naturally indexed by the germs
of the sheaf of branches at y. This sheaf is no longer generated by its global
sections, but the tensor product definingOD(−Y) is independent of the ordering
of the branches, and hence this construction defines an invertible sheaf on D.
In Theorem 1.8.6, statements (1) and (4) make sense in the étale topology,
although (2) and (3) have no global meaning. Furthermore, the equivalence of
the data of (1) and (4) is still valid: morphisms between the objects form an
étale sheaf, and objects can be glued. (That is, the categories in questions form
stacks.) Although the passage from (1) to (4) passes through (2) and (3), the
result is independent of the ordering of the branches.

Now suppose that f : X → S is a morphism of log schemes coming from a
semistable reduction situation. This morphism restricts to a morphism of log
schemes Y → s, where Y is the fiber over the closed point s of S. Moreover,

the map f
[
: N→ MY � η∗(NỸ ) sends 1 to

∑
1Yi , where the Yi are the branches

of Y . The following proposition makes explicit the extra information provided
by the log structures.

Proposition 1.8.8. Let k be a field, let Y be a normal crossing scheme over k.
and let sN := Spec(N → k), the standard log point over k. Then the following
sets of data are equivalent:

1. a pair (α, f ), where α is a log structure on Y satisfying condition (1) of
Theorem 1.8.6 and f is a morphism of log schemes f : Y → sN whose
underlying morphism f is the given k-scheme structure of Y and such that

f
[

sends 1 to
∑

1Yi ;

2. an isomorphism OD → OD(−Y).

Proof Suppose we are given a pair (α, f ). By Theorem 1.8.6, we find an in-
vertible sheaf L on Y and an isomorphism i∗D/Y (L) � OD(−Y) depending only
on α. It follows from the construction that in factL = Ly. Since by assumption
f [(1) = y, the morphism f [ maps L∗1 to L∗y, and hence induces a trivialization
of L and hence also of OD(−Y). Conversely, given a trivialization of OD(−Y),



1 Log structures and log schemes 305

we let L := OY , and endow Y with the corresponding log structure. Then the
global section 1 of OY = L = L1 ⊗ · · · ⊗ Ln induces the morphism f . �

Remark 1.8.9. The origins of Proposition 1.8.8 trace back to the work of
Friedman [20], who showed that the triviality of OD(−Y) is a necessary condi-
tion for a DNC scheme Y to be the special fiber of a semistable degeneration. In
his widely adopted terminology, a normal crossing scheme Y such thatOD(−Y)
is said to be d-semistable if OD(−Y) is trivial.

1.9 Coherence of compactifying log structures

In this section we take a closer look at the compactifying log structure associ-
ated with an open immersion j : U → X, and, particular, we investigate when
and in what senses it is coherent.

Proposition 1.9.1. Let U be a dense open subset of a normal and locally
noetherian scheme X and let Y := X \ U be a closed subset purely of codi-
mension one.

1. The stalks ofMU/X are finitely generated monoids and are free if X is lo-
cally factorial.

2. If X is locally factorial and we are working in the Zariski topology,MU/X is
fine. The same is true in the étale topology provided X has an étale covering
f : X′ → X such that each irreducible component of f −1(Y) is unibranch.

Proof Recall that from Proposition 1.6.3 we have

MU/X,x � ΓY (Div+
X) ⊆ ΓY (W+

X).

Since the inclusion is an equality if X is locally factorial, the first statement
of the proposition will follow from the following lemma. The same argument
works in the étale setting if one works in a strict Henselization of OX,x.

Lemma 1.9.2. With the hypotheses of Proposition 1.9.1, the stalks of the sheaf
ΓY (Div+

X) (resp. of ΓY (W+
X)) are fine (resp. fine and free) monoids.

Proof According to Lemma 1.6.6, Div+
X,x is an exact submonoid ofW+

X,x, and
it follows that the same is true if we restrict to sections with supports in Y . But
ΓY (W+

X)x is just the free monoid on the set of prime ideals of height one in the
local ring OX,x that are contained in Y . Since Y is a proper closed subset of X,
each of these is a minimal prime of the noetherian local ring OY,x, and hence
there only finitely many such primes. Thus ΓY,x(W+

X) is a fine monoid, and by
(2) of Theorem I.2.1.17, the same is true of its exact submonoid ΓY (Div+

X)x. �
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Now suppose that X is locally factorial and that we are working in the Zariski
topology. Each irreducible component Yi of Y is defined by an invertible sheaf
of ideals Ii, and the family of inclusions Ii → OX is a DF structure on X.
LetM be the associated log structure. As we saw in Proposition 1.7.3, this log
structure is fine and the natural mapM→MU/X is an isomorphism. Statement
(2), in the case of the Zariski topology, follows. In the étale topology, one must
first pass to an étale cover η : X̃ → X such that the irreducible components of
Ỹ := η−1(Y) are unibranch. Then we can apply the same construction, thanks
to Proposition 1.6.5. �

Remark 1.9.3. To see that the normality hypothesis in Lemma 1.9.2 is not
superfluous, let X be the spectrum of the subring R of C[t] consisting of those
polynomials f such that f ′(0) = 0. This is a curve with a cusp at the origin x.
Let Y := {x}, and for any complex number a, let Da be the class of t2 − at3 in
Div+

X,x = O′X,x/O
∗
X,x. In the fraction field of X, we have

(t2 − at3)(t2 − bt3)−1 = (1 − at)(1 − bt)−1 = 1 + (b − a)t + · · · ,

which does not belong to O∗X,x if a , b. Thus Da , Db in ΓY,x(Div+
X). It fol-

lows that ΓY,x(Div+
X) is uncountable and hence is not finitely generated. Similar

examples can be constructed with nodal curves.

The following result computes the compactifying log structure correspond-
ing to a special affine open subset U of an affine toric variety AP, when U is
defined by element p of the defining monoid P. An important special case,
Corollary 1.9.5, is obtained by taking p to be an element of P not contained in
any proper face, and is a theorem of Kato [49, 11.6].

Theorem 1.9.4. Let R be a normal integral domain, let AP denote the log
scheme Spec(P → R[P]), and let η : X → AP be a strict morphism of log
schemes whose underlying morphism η of schemes is étale. Let p be an ele-
ment of P and let U := η−1(D(ep)), where D(ep) = Spec R[Pp] ⊆ Spec R[P].
Finally, let F be the the face of P generated by p, and let F be the sheaf of
faces ofMX generated by F. Then the natural map F → Γ(X,MX) induces an
isomorphism

γ : F →MU/X := jlog
∗ (O∗U).

Proof If f is any element of F, f maps to a unit in k[Pp], and consequently
f also maps to a unit in Γ(U,OU). Since MU/X ⊆ OX is a sheaf of faces in
the multiplicative monoid OX , the map F → OX induces a homomorphism of
sheaves of monoids γ : F →MU/X . The homomorphism γ is sharp andMU/X

is integral, so, by Proposition I.4.1.2, it will suffice to prove that γ is an isomor-



1 Log structures and log schemes 307

phism. Since P is torsion free, X is integral and hence, by Proposition 1.6.3,
MU/X � ΓY (Div+

X), where Y := X \ U.
First suppose that η is the identity map. If x is a point of X, the stalk of F x

at x is the face Fx of P/Gx generated by p, where Gx is the set of elements in P
such that ep(x) , 0. Theorem I.3.5.8 says that the the natural homomorphism
Fx → ΓY (Div+

X)x is an isomorphism, proving the theorem in this case. More
generally, note that Proposition I.3.5.2 asserts that each irreducible compo-
nent of the closed subscheme Z of AP defined by ep is unibranch. Hence by
Lemma 1.6.7 the map η∗(ΓZ(Div+

AP
)) → ΓY (Div+

X) is an isomorphism, and the
result follows. �

Corollary 1.9.5. With the notation of Theorem 1.9.4, there is a natural isomor-
phism:MX → MX∗/X . In particular, the natural homomorphism P → MX∗/X

is a chart forMX∗/X .

1.10 Hollow and solid log structures

Recall from Section 1.5 that the spectrum of a valuation ring V has two par-
ticularly interesting log structures: the standard (compactifying) log structure,
where αt : Mt = V ′ → V is the inclusion, and the hollow log structure, where
αt : Mt = V ′ → V sends v to 0 if v ∈ mV . The standard log structure is what
we shall call “solid,” a notion that we will define and study in this section. This
notion is related both to exactness and to the logarithmic analog of regularity,
which we discuss in Section 1.11.

Definition 1.10.1. A log ring β : Q→ A is:

1. hollow if β(Q+) ⊆ {0},
2. solid if Spec(β) : Spec(A) → Spec(Q) is locally surjective (Re-

mark I.4.2.14),
3. very solid if for every prime ideal q of Q, the ideal qA of A generated by

β(q) is a prime ideal of A such that β−1(qA) = q.

A prelog structure α : Q → OX is hollow (resp. solid, resp. very solid) if for
every geometric point x of X, βx : Qx → OX,x is hollow (resp. solid, resp. very
solid).

If Q is a Zariski log structure, then can one work with ordinary points in-
stead of geometric points. It is clear that a log ring β : Q → A is solid if and
only if its localization Qβ−1(A∗) → A is solid. One checks immediately that a
prelog structure β : Q → OX is hollow (resp. solid) if and only if the associ-
ated log structure α is. It is almost as immediate to verify that the log structure
associated to a very solid prelog structure is very solid.
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Remark 1.10.2. Let β : Q → A be a log ring, let q be a prime of Q, and let
F := Q\q. Then the fiber of Spec(β) over q is Spec(A/qA)F , which is nonempty
if and only if β(F) ∩ qA = ∅, or equivalently, if and only if q = β−1(qA). Thus
β is solid if and only if, for every prime ideal p of A and every prime ideal q of
Q contained in β−1(p), q = β−1

p (qAp). In particular, β is solid if it is very solid.
Indeed, suppose that p ∈ Spec(A) and q ∈ Spec(Q), with q ⊆ β−1(p). If β is
very solid, qA is a prime ideal of A and β−1(qA) = q. Since qA ⊆ p, qAp is a
prime ideal of Ap, and β−1

p (qAp) = q. On the other hand, a solid log ring need
not be very solid: the local log ring

N→ C[[x, y]] : n 7→ xnyn

is solid but not very solid.
If β : Q→ A is a solid local log ring, then Q+ is in the image of Spec(β) since

β is local, and since Spec(β) is locally surjective, it must also be surjective. The
converse is not true: the local log ring

β : N ⊕ N→ k[[x, y, z,w]]/(xy − zw) : (m, n) 7→ xmzn

is not solid, although Spec(β) is surjective.
If β : Q→ A is a hollow log ring, then β−1(p) = Q+ for every p ∈ Spec(A), so

the map Spec(β) : Spec(A)→ Spec(Q) is constant. Thus if β is solid, local, and
hollow, then Spec(Q) = {Q+}, and hence Q+ = ∅ and Q is dull. In particular,
the log structure associated to a solid and hollow local log ring is trivial.

Proposition 1.10.3. Let β : Q → A be a local log ring, let θ : A → A′ be a
local homomorphism of local rings, and let β′ := θ ◦ β.

1. If β is hollow, then the same is true of β′, and the converse holds if θ is
injective (for example, if θ is flat).

2. If θ is flat and β′ is very solid, then β is also very solid.
3. If θ is flat, then β is solid if and only if β′ is solid. In particular, if A is

noetherian and θ : A → Â is its completion, then β is solid if and only if β′

is solid, and if β′ is very solid, then so is β.

Proof The first statement is clear. If θ is flat, it is faithfully flat, since θ is a
local homomorphism of local rings. Suppose that β′ is very solid and that q
is a prime ideal of Q. Then the induced homomorphism A/qA → A′/qA′ is
faithfully flat, and since A′/qA′ is an integral domain, so is A/qA. Thus qA is
prime. Since β′−1(qA′) = q, it follows that β−1(qA) = q. Thus β is also very
solid. Since θ is faithfully flat, Spec(θ) is locally surjective and surjective, and
it follows that β is solid if and only if β′ is solid. �
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Proposition 1.10.4. Let X be a fine log scheme whose underlying scheme X
is reduced. Then the following conditions are equivalent

1. The log structure on X is hollow.
2. The sheaf of monoidsMX on Xét is locally constant.
3. The sheaf of abelian groupsM

gp
X on Xét is locally constant.

4. The function X → N sending x ∈ X to rk(M
gp
X,x) is locally constant.

Proof Suppose (1) holds. Since we are working locally on Xét, we may
choose a point x of X, replace X by an étale neighborhood of x, and assume
that there is a fine chart β : P → OX which is local at x. Since αX is hollow, it
follows that βx(p) = 0 for every p ∈ P+, i.e., that each β(p) vanishes in some
neighborhood of x. Since P+ is finitely generated as an ideal of P, we may
replace X by a neighborhood of x so that β(P+) = 0. Then, for every x′ ∈ X,
β−1(O∗X,x′ ) = P∗, and hence β induces an isomorphism P → MX,x′ . ThusMX

is constant, proving that (2) holds. It is obvious that (2) implies (3) and that
(3) implies (4). Suppose that (4) holds. Again we may assume that αX admits
a chart β : P → MX and that x is a point of X such that βx is local. Let ξ be
a point of OX,x corresponding to a generization of x in X, which we denote by
the same letter. ThenMX,ξ � P/Fξ, where Fξ := β−1

x (O∗X,ξ). Then (4) implies

that rk(P/Fξ)gp = rk(P
gp

) and, as we saw in Proposition I.2.3.5, this implies
that Fξ = P∗. It follows that β maps P+ to the maximal ideal of OX,ξ, i.e., that
β(P+) is contained in the prime ideal of OX,x defined by ξ. Since this is true for
every ξ, in fact β(P+) is contained in every prime ideal of OX,x and hence in the
nilradical of OX,x. When X is reduced, this implies that β(P+) = {0}, so αX is
hollow. �

Corollary 1.10.5. If X is a fine log scheme,

Xi := {x ∈ X : rk(M
gp
X,x = i}

is a locally closed subset of X, and the restriction of α to its reduced subscheme
Xi,red is hollow.

Proof Recall from Corollary II.2.1.6 that each X(n) := {x : rkM
gp
X,x ≤ n} is an

open subset of X, and it follows that each Xi is locally closed. Thus Xi,red has a
natural structure of a fine log scheme, and the rank ofM

gp
X at each of its points

is i. SinceMX is coherent, Theorem II.2.5.4 implies that the cospecialization
maps M

gp
X,x → M

gp
X,x are surjective, hence bijective. Proposition 1.10.4 then

implies that the log structure is constant. �

Corollary 1.10.6. Let α : MX → OX be a fine log structure on X. Then the
following conditions are equivalent:
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1. For every geometric point x ∈ X and every m ∈ M+
X,x, αx(m) is nilpotent.

2. The sheaf of monoidsMX is locally constant.

Proof A sheaf of sets on the étale or Zariski topology of X is locally constant
if and only if it is so on its reduced subscheme. Thus we may replace X by
Xred, and the corollary follows from Proposition 1.10.4. �

Remark 1.10.7. It is not difficult to describe the structure of fine saturated
and hollow log structures fairly explicitly, at least whenMX is constant. Given
such a log structure, consider the exact sequence of abelian sheaves

0→ O∗X →M
gp
X →M

gp
X → 0,

and the associated boundary homomorphism

H0(X,M
gp
X )→ H1(X,O∗X) = Pic(X).

Let P := H0(X,MX), a fine sharp monoid; note that Pgp is a finitely gen-
erated free abelian group because MX is fine and saturated. Then the above
homomorphism amounts to the data of a homomorphism P → Pic(X). This
homomorphism determines the log structure up to isomorphism. Indeed, let P
be a saturated and sharp monoid and let θ : P → Pic(X) be a homomorphism
of monoids. Since Pgp is free,

Hom(Pgp,H1(X,O∗X)) � H1(X,Hom(Pgp,O∗X)) � Ext1(Pgp,O∗X).

The image of θgp in this Ext group is the isomorphism class of an extension
of Pgp by O∗X . Choose a representative of this class; its pullback to P gives an
exact sequence of monoids 0 → O∗X → M → P → 0. If m is a section ofM
over an open set U, its image in P is constant, and we letM+(U) denote the
set of all m ∈ M(U) whose image is not a unit. Then M+ forms a sheaf of
ideals inM, and in factM+(U) is the complement of O∗X(U) for every U. The
homomorphismM → OX that is the inclusion on O∗X and that sendsM+ to 0
is the unique hollow log structureM → OX . It is clear that if θ : P → Pic(X)
comes from MX as above, then M is isomorphic to MX , compatibly with
the log structures. Note, however, that our construction required choosing a
representative extension from its extension class and it is thus not functorial.

Proposition 1.10.8. A coherent log structure α : MX → OX is solid if and only
if, for every x ∈ X, the map Spec(αx) : Spec(OX,x)→ Spec(MX,x) is surjective.

Proof Since the statement is local for the étale topology, we may assume
assume that α admits a local chart and then work with Zariski log structures.
Then, assuming that every Spec(αx) is surjective, we will show that in fact
every Spec(αx) is locally surjective. This latter condition means that if ξ ∈
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Spec(OX,x) and η := α−1
x (ξ) ∈ Spec(MX,x), then the induced map Spec(OX,ξ)→

Spec((MX,x)η) is surjective. The point ξ corresponds to a point of X to which
we assign the same letter. Then we have a commutative diagram

OX,x - OX,ξ

MX,x

αx

6

- MX,ξ.

αξ

6

The top arrow in this diagram can be identified with the localization of OX,x at
the prime ideal pξ of of OX,x corresponding to ξ. BecauseMX is coherent, the
bottom arrow can be identified with the localization ofMX,x at the prime ideal
α−1

x (pξ). By hypothesis Spec(αξ) is surjective, proving the claim. The converse
is obvious. �

Proposition 1.10.9. Let β : Q → A be a solid (resp. very solid) log ring, let q
be a prime an ideal of q and let F be its complementary face. Assume that Q is
fine. Then βF : QF → AF and βq : F → A/qA are also solid (resp. very solid).

Proof Recall that Spec(QF) → Spec(Q) is an open immersion whose image
is the set of primes p of Q such that p ∩ F = ∅, and that

Spec(F) � Spec(Q, q) ⊆ Spec(Q)

is a closed subset, the set of primes p containing q. Furthermore, the following
diagrams are cartesian in the category of topological spaces:

Spec(AF) - Spec(A) Spec(A/qA) - Spec(A)

Spec(QF)
?

- Spec(Q)
?

Spec(F)
?

- Spec(Q).
?

Thus if β is solid, the following lemma shows that βF and βq are also solid.

Lemma 1.10.10. Let f : X → Y and g : Y ′ → Y be continuous maps of sober
topological spaces. If f is locally surjective, so is the induced map f ′ from
X′ := X ×Y Y ′ to Y ′.

Proof Let x′ be a point of X′, let x (resp. y′, resp. y) be its image in X (resp. Y ′,
resp. Y). Then X′x′ → Y ′y′ can be identified with induced map Xx ×Yy Y ′y′ → Y ′y.
Since Xx → Yy is surjective, so is this induced map. �

Now suppose that β is very solid. Every prime of QF is of the form pF , where
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p is a prime of Q not meeting F. Then pA is a prime of A not meeting β(F),
and hence pA is the inverse image in A of pAF = pF AF . Since p = β−1(pA), it
follows that pF = β−1

F (pF AF). Since pAF is prime, we can conclude that βF is
very solid. If p is a prime of F, then p ∪ q is the prime of (Q, q) corresponding
to p. Since β is solid, (p ∪ q)A is a prime of A and, since (p ∪ q)A contains qA,
the ideal pA/qA � (p ∪ q)A/qA is prime. Since also p ∪ q = β−1((p ∪ q)A), it
follows that p = β−1

q (pA/qA). �

Proposition 1.10.11. Let X be a fine Zariski log scheme. Then the set of points
of X at which the log structure is very solid is open in X.

Proof Suppose that the log structure α : MX → OX is very solid at a point x
of X, i.e., that αx : MX,x → OX,x is very solid. Since the statement is local on X,
we may and shall assume that X = Spec(β : Q → A), where Q is fine and A is
noetherian. As usual, we may also assume that β is local at x. Let p be the prime
ideal of A corresponding to x, so that the homomorphism Q → Ap is local.
Then the map Spec(MX,x) → Spec(Q) is bijective, and hence βp : Q → Ap
is very solid. Let λ : A → Ap be the localization homomorphism. For each
q ∈ Spec(Q), the ideal qAp is prime and β−1

p (qAp) = q, since βp is very solid.
Then λ−1(qAp) is a prime ideal p′ of A containing qA, and β−1(p′) = q. Since
(qA)p = p′p = qAp and these ideals are finitely generated, there exists an
element a ∈ A \ p such that (qA)a = p′a as ideals in Aa. In particular qAa is
prime. Replacing A by Aa we see that qA is prime and β−1(qA) = q. Note that
further localization by any a′ ∈ A \ p will preserve both of these conditions.
Since Spec(Q) is finite, we may repeat this process for each prime of Q: there
is an a′ ∈ A \ p such that, for every q ∈ Q, qAa′ is prime and its inverse image
in Q is q. Then Q → Aa′ is very solid, and it follows that the associated log
structure is also very solid. �

We next discuss some examples of solid log rings.

Proposition 1.10.12. Let Q be an integral monoid such that Qgp is torsion free
and let R be an integral domain.

1. The canonical homomorphism e : Q→ R[Q] is injective and very solid.
2. Suppose in addition that Q is finitely generated and sharp and that R is lo-

cal. Then R[[Q]] is a local integral domain, and the natural homomorphism
Q→ R[[Q]] is injective, local, and very solid.

Proof Recall first from Proposition I.3.4.1 that, since R is an integral domain
and Qgp is torsion free, R[Q] is an integral domain. Next note that if K is an
ideal of Q, then R[K] is the ideal of R[Q] generated by the image of K, and
e−1(R[K]) = K. Furthermore, if K is prime and F is the complementary face,
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then R[Q]/R[K] � R[F], which is again an integral domain, since Fgp is also
torsion free. Thus R[K] is prime, and hence e : Q → R[Q] is very solid. The
injectivity of e is obvious.

If Q is finitely generated and sharp and R is local then, by Proposition I.3.6.1,
R[[Q]] is a local domain and can be identified with the R[Q+]-adic completion
of R[Q]. Furthermore if K is an ideal of Q, it is finitely generated, and q+k = k
implies q = 0, so by Proposition I.3.6.5, R[[K]] can be viewed as the R[Q+]-
adic completion of R[K] and also as the ideal of R[[Q]] generated by K. If K
is prime and F is its complement, the quotient R[[Q]]/R[[K]] is isomorphic to
the integral domain R[[F]], so R[[K]] is prime. It is clear that ê−1(R[[K]]) = K,
so ê : Q→ R[[Q]] is very solid. �

The following proposition gives a more subtle construction of very solid
local log rings. Recall that an element of a commutative ring is called “prime”
if it is a nonzero divisor and generates a prime ideal.

Proposition 1.10.13. Let R be a noetherian local ring, let Q be a fine sharp
monoid such that Qgp is torsion free, and let f be an element of R[[Q]] whose
constant term is a prime element of R.

1. The quotient A := R[[Q]]/( f ) is a local integral domain.
2. The homomorphism β : Q→ A is injective, local, and very solid.

The main technical work in the proof will be accomplished in the following
lemma.

Lemma 1.10.14. With the notation above, the follow results hold.

1. For every ideal K of Q, multiplication by f on R[[Q,K]] := R[[Q]]/R[[K]]
is injective.

2. More generally, let S be a finitely generated Q-set and let T be a Q-subset.
Assume that for every s ∈ S, qs = s only if q = 0. Then multiplication by f
is injective on the quotient R[[S,T ]] of R[[S]] by R[[T ]].

3. If Q→ Q′ is an injective homomorphism of fine sharp monoids, the corre-
sponding homomorphism R[[Q]]/( f )→ R[[Q′]]/( f ) is injective.

4. If K is any ideal of Q, then β−1(KA) = K. In particular, ê−1(( f )) = ∅.
5. If q ⊆ Q is a prime ideal, then qA is also prime.

Proof Write

f = π +
∑
{aqeq : q ∈ Q+}.

Statement (1) is a special case of (2), so we just prove the latter. Suppose
that g :=

∑
{bses : s ∈ S} ∈ R[[S]] and f g ∈ R[[T ]]. We claim that g ∈ R[[T ]],

i.e., that the support σ(g) := {s ∈ S : bs , 0} is contained in T . If this is not
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the case, then by Proposition I.2.1.5, the nonempty set σ(g) \ T has a minimal
element r. Since f g ∈ R[[T ]], the coefficient of er in the product vanishes, so

πbr +
∑
{aqbs : q + s = r, q ∈ Q+, s ∈ S} = 0.

Since π is a nonzero divisor, πbr is not zero, and it follows that the sum is
not empty. That is, there exists a pair (q, s) with r = q + s and aq, bs , 0. In
particular, s ∈ σ(g), and s < T , because r < T . But q ∈ Q+ and r = q + s,
contradicting the minimality of r.

The proof of (3) is similar. To simplify the notation in its proof, we write P
instead of Q′ and assume that Q is a submonoid of P. Suppose that g ∈ R[[Q]]
and h :=

∑
bpep ∈ R[[P]] with g = f h. We claim that in fact h ∈ R[[Q]], that

is, that Φ := {p ∈ P \ Q : bp , 0} is empty. If this is not the case, then, by
Proposition I.2.1.5 applied to the fine monoid P, Φ has a minimal element r.
Since r < Q, the coefficient of er in g is zero, so in fact

0 = πbr +
∑
{aqbp : p + q = r, q ∈ Q+, p ∈ P}.

Necessarily the sum is not empty, which means that there exist p ∈ P and
q ∈ Q+ such that r = p + q. But p < Q, contradicting the minimality of r in Φ.

For (4), let K be an ideal of Q and let q be an element of Q with β(q) ∈ KA.
Then there exist g ∈ R[[Q]] and h ∈ R[[K]] such that eq = f g + h. Then
f g = eq−h belongs to R[[K′]], where K′ is the ideal of Q generated by q and K.
By statement (1), it follows that g ∈ R[[K′]]. Since R[[K′] = (eq) + R[[K]], we
can write g = g′eq + h′, where g′ ∈ R[[Q]] and h′ ∈ R[[K]]. Then eq(1− f g′) =

f h′+h ∈ R[[K]] and, since 1− f g′ is a unit of R[[Q]], it follows that eq ∈ R[[K]],
hence q ∈ K. If we apply this statement with K = ∅, we find that β−1(0) = ∅,
hence ê−1(( f )) ∩ Q = ∅.

First we prove (5) when q is the empty ideal; in this case we need to show
that A is an integral domain. Thanks to (3) and Corollary I.2.2.7, it suffices
to prove this when Q = Nr. To prove that A is a domain, it suffices to prove
that GrI A is a domain, where I is the ideal of A generated by Q+, because A
is I-adically separated. But GrI(A) � GrR[Q+] R[Q]/in( f ) � R/π[Nr], since the
initial term, in( f ), of f in GrI(A) is just π. This last ring is an integral domain
because π is prime. More generally, if q is a prime ideal of Q, let F := Q \ q,
and let f be the image of f in R[[Q]]/R[[q]] � R[[F]]. Then F is a fine sharp
monoid with Fgp torsion free, and the constant term of f is again π. Then
A/qA � R[[F]]/( f ), which is an integral domain, as we have just seen. �

Proof of Proposition 1.10.13 The fact that A is an integral domain follows
from (5) of Lemma 1.10.14, and the fact that A and β are local follows from
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the fact that R[[Q]] and Q → R[[Q]] are local (Proposition I.3.6.1). The fact
that β is very solid follows from (4) and (5) of the lemma. �

The next proposition investigates the behavior of solidity under base change.

Proposition 1.10.15. Let α : P → A be a log ring, let Y := Spec(α), and let
θ : P → Q be an injective local homomorphism of fine monoids. Let x be a
point of YQ := Y ×AP AQ lying over a point y of Y . If α is solid at y, then the
induced homomorphism β : Q → YQ is solid at x. The converse holds if θ is
locally exact.

Proof We need the following lemma.

Lemma 1.10.16. Suppose that θ : P → Q is an injective homomorphism of
fine monoids and that φ : Z[P] → Z[Q] is the corresponding homomorphism
of monoid algebras. Then the obvious map from AQ to the set-theoretic fiber
product AP ×aP aQ is surjective.

Proof Let q be a prime ideal of Q, let p := θ−1(q) and let J be a prime ideal
of A such that J ∩ P = p. The lemma asserts that there exists a prime ideal K
of Z[Q] such that K ∩ Q = q and φ−1(K) = J.

We check a sequence of special cases. If P and Q are groups, aQ and aP are
singletons, and the lemma just asserts that Spec(φ) is surjective.

Case 1: P and Q are groups and the cokernel of θ is torsion free. Then θ

admits a section, hence so does φ, and hence Spec(φ) is surjective.
Case 2: P and Q are groups and there exists an n such that nQ ⊆ P. In this

case the morphism φ is injective and finite, so Spec(φ) is surjective.
Case 3: P and Q are groups. Let P′ := {q ∈ Q : nq ∈ P for some n > 0}.

Then Case 1 implies that Spec(Z[Q]→ Z[P′]) is surjective and Case 2 implies
that Spec(Z[P′]→ Z[P]) is surjective. Thus Spec(Z[Q]→ Z[P]) is surjective.

Case 4: q = ∅. Then also p = ∅. Let k be the fraction field of the integral
domain Z[P]/J. Since J ∩ P = ∅, every element of P maps to a unit in k, the
homomorphism P→ k factors through Pgp, and the homomorphism Z[P]→ k
factors through Z[Pgp]. Thus J lifts to a prime ideal J′ of Z[Pgp]. By Case 3, J′

lifts to a prime ideal K′ of Z[Qgp], whose intersection with Z[Q] is the desired
prime ideal lifting J and q.

Case 5: In general, let G := Q \ q and let P := P \ p. Since J con-
tains p it corresponds to a prime ideal J′ of Z[P, p] � Z[F], and, since
J ∩ P = p, J′ ∩ F = ∅. Furthermore, the homomorphism φ induces a homo-
morphism φ′ : Z[P, p] → Z[Q, q], which can be identified with the homo-
morphism Z[F] → Z[G] induced by θ′ : F → G. Then q′ := G ∩ q = ∅,
so θ′−1(q′) = ∅ = J′ ∩ F. By Case 4, there exists a prime K′ of Z[G] such that
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K′ ∩G = q′ and φ′−1(K′) = J′. The corresponding prime K of Z[Q] fulfills the
requirements of the lemma. �

To prove the proposition, we begin with the commutative diagram

X := YQ
b′ - AQ

a′ - aQ

Y

f

? b - AP

Aθ

? a - aP,

aθ

?

in which the left square is cartesian.
Let us prove that if α is solid at y, then β is solid at x, i.e., that the map

X(x) → aQ is locally surjective. We may and shall replace Q by its localization
at q and P by its localization at p := θ−1(q). As we saw in Remark 1.10.2,
we must show that, for every x′ ∈ X(x) lying over q := a′(b′(x)), the map
X(x′) → aQ is surjective. Since y′ := f (x′) is a generization of x and Y(y) → aP

is locally surjective, Y(y′) → aP is also locally surjective, so we may as well
assume that x′ = x and y′ = y. Let τ ∈ aQ be a generization of the image t
of x in aQ. Then the image σ of τ in aP is a generization of the image s of
y. Since Y(y) → aP is locally surjective, there exists a point η ∈ Y such that
a(b(η)) = σ. By the lemma, there exists a point η′ of AQ such that a′(η′) = τ

and Aθ(η′) = b(η). Since the left square is cartesian, there exists a point ζ of X
such that b′(ζ) = η′, and hence a′(β′(ζ)) = τ.

For the converse, suppose that θ is locally exact and that β is solid. Since
θ is locally exact and local, aθ is locally surjective and surjective, by Proposi-
tion I.4.2.2. Then it follows from the lemma that Aθ is surjective and, since the
square is cartesian, that f is surjective. Since β is solid, a′b′ is locally surjec-
tive and hence so is aθ a′b′ = ab f . Since f is surjective, it follows that ab is
locally surjective, as desired. �

The next proposition gives a geometric consequence of solidity that will play
an important role in the characterization of log regularity.

Proposition 1.10.17. Let β : Q → A be a log ring, where A is a noetherian
local ring and Q is a toric monoid, and let Iβ be the ideal of A generated by
β(Q+). Then

dim(A) ≤ dim(A/Iβ) + dim(Q),

and equality holds if β is solid.

Proof Let Â be the completion of A and let β̂ : Q→ Â be the induced homo-
morphism. Recall from Proposition 1.10.3 that β̂ is solid if β is. Furthermore
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dim(A) = dim(Â) and dim A/Iβ) = dim(Â/Iβ), so we may and shall assume,
without loss of generality, that A is complete.

Let F := β−1(A∗), and let βF : QF → A be the induced local homomorphism.
Since dim(QF) ≤ dim(Q), and since Spec(βF) is locally surjective if and only
if Spec(β) is, we may without loss of generality replace β by βF . Thus we may
and shall assume β is local. Since Q is saturated, Q � Q∗ ⊕ Q, so we may also
assume that Q is sharp. Let r be the dimension of A/Iβ, and choose a sequence
(t1, . . . , tr) in A whose image in A/Iβ is a system of parameters. The sequence
(t1, . . . , tr) defines a homomorphism Nr → A, and hence a homomorphism
γ : P := Q ⊕ Nr → A. Since the image of (t1, . . . , tr) in A/Iβ contains a system
of parameters, the quotient A/Q+A has finite length.

To prove the inequality, assume first that A contains a field. Then it also
contains a copy of its residue field k [17, 7.7]. Since γ takes Q+ into the it
induces a homomorphism ψ : k[[Q]] → A, and since A/Q+A has finite length
and A is complete, it follows that k[[Q]] → A is a finite homomorphism of
local rings. Thus dim(A) ≤ dim(k[[Q]]), and Proposition I.3.4.2 implies that
dim k[[Q]] = r + dim(Q).

If A does not contain a field, it does contain a Cohen ring V of its residue
field [26, 19.8.8], which necessarily has positive characteristic p. Proceeding as
before, we obtain a finite homomorphism φ : V[[Q]]→ A such that A/Q+A has
finite length. Let J := Ker(φ), so that φ factors through an injective and finite
homomorphism V[[Q]]/J → A, and the image of Spec(φ) is the set of prime
ideals containing J. We claim that J is not zero, and in fact that it contains an
element with a nonzero constant term. In the contrary case, J ⊆ Q+, and so
there is a prime ideal p of A such that φ−1(p) = V[[Q+]]. But then p contains
P+A and since A/Q+A has finite length, necessarily p is the maximal ideal m of
A. This is a contradiction, since p ∈ φ−1(m) and p < V[[Q+]], so indeed J , 0.
Since V[[Q]] is an integral domain of dimension 1 + dim Q + r, its quotient
by J has strictly smaller dimension, and hence the dimension of A is at most
dim Q + r.

Now suppose that β is solid. Let q0 ⊃ · · · · · · ⊃ qd be a chain of prime ideals
in Q with d = dim(Q), and let p−r ⊃ · · · ⊃ p0 be a chain of prime ideals in A/Iβ
with r = dim A/Iβ. By construction, the homomorphism Q → A/Iβ is hollow,
and consequently β−1(p0) = Q+. Since Spec(β) is locally surjective, there exists
a chain p0 ⊃ · · · ⊃ pd in Spec(A) with β−1(pi) = qi. Thus p−r ⊃ · · · ⊃ pd is a
chain of distinct prime ideals in A, showing that dim(A) ≥ r + d. �

Variant 1.10.18. An idealized log ring β : (Q,K) → A is solid if the map
Spec(β) : Spec(A)→ Spec(Q,K) is locally surjective. We claim that, for every
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idealized log local ring, dim(A) ≤ dim(A/Iβ) + dim(Q,K), and equality holds
if β is solid.

To check this, we may assume without loss of generality that K is reduced
and hence is the intersection of prime ideals p1, . . . , pr. Then Spec(Q,K) is the
union of the closed sets Spec(Q, pi), and each Spec(A/piA) is the inverse image
of each Spec(Q, pi) under the map Spec(β). Thus Spec(A) is set-theoretically
the union of closed subschemes Spec(A/piA), and hence its dimension is the
maximum of the dimensions of these closed subschemes. Suppose that p is the
prime pi that achieves this maximum and let A′ := A/p. Then dim(Q,K) ≥
dim(Q, p) = dim(G), where G := Q \ p. Consider the log ring β′ : G → A′

induced by β. Note that A/Iβ � A′/Iβ′ , since Q+ = p ∪G+ and p maps to zero
in A′. By Proposition 1.10.17, we have

dim(A) = dim(A′) ≤ dim(A′/Iβ′ ) + dim(G) ≤ dim(A/Iβ) + dim(Q,K),

as required. On the other hand, if β is solid, we can extend a chain of prime
ideals of A/Iβ to A, just as in the non-idealized case, to prove the reverse in-
equality.

1.11 Log regularity

We now discuss a logarithmic analog of the notion of regularity, due to K.
Kato [49] and further developed by Gabber and Ramero in [22]. Roughly
speaking, a local log ring is regular if its singularity is completely accounted
for by its log structure.

Theorem 1.11.1. Let β : Q→ A be a local log ring, where A is noetherian and
Q is fine and saturated. Let Iβ be the ideal of A generated by β(Q+). Suppose
that

1. the quotient ring A/Iβ is regular, in the usual sense.

Then the following conditions are equivalent:

2. β is very solid;
3. β is solid;
4. dim(A) = dim(A/Iβ) + dim(Q).

If these conditions are verified, β is said to be (log) regular. A fine saturated
log scheme X is regular at x ∈ X if the local log ringMX,x → OX,x is regular,
and X is regular if it is so at each of its points.

We have already seen, in Remark 1.10.2 and Proposition 1.10.17, that con-
dition (2) implies (3) and that (3) implies (4). The equivalence of (2)–(4) in
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the presence of condition (1) will be proved in the course of the next theorem,
which also gives a structure theorem for regular local log rings. More equiva-
lent conditions appear in Proposition 1.11.5 below.

Since we are assuming that Q is fine and saturated, the group Q
gp

is finitely
generated and free, so the natural projection Q → Q splits, and β is regular if
and only if the induced homomorphism Q→ A is regular. Thus we are reduced
to the case in which Q is sharp.

Theorem 1.11.2. Let β : Q → A be a local log ring, where A is a noetherian
local ring and Q is fine, sharp, and saturated. Let k be the residue field of A and
let Iβ be the ideal of A generated by β(Q+).

1. If A contains a field, then β is regular if and only if there exists a commuta-
tive diagram of the form

Q - k[[Q ⊕ Nr]]

A

β

?
- Â,

� ψ

?

where the top arrow is the obvious one and Â is the completion of A.
2. In the mixed characteristic case, let V be a Cohen ring of k and let p > 0

be the characteristic of k. Then β is regular if and only if there exists a
commutative diagram of the form

Q - V[[Q ⊕ Nr]]

A

β

?
- Â,

φ

?

where φ is a surjection whose kernel is a principal ideal generated by an
element f of V[[Q ⊕ Nr]] whose constant term is p.

Proof Suppose that we have a diagram as in (1) above. Then Â/IβÂ � k[[Nr]],
which is regular, and it follows that A/Iβ is also regular. Furthermore, by Pro-
position 1.10.12, the homomorphism Q ⊕Nr → Â is very solid. It follows that
the same is true for the homomorphisms Q → Â and β : Q → A, by Proposi-
tion 1.10.3.

Next suppose that we have a diagram as in (2). Then Â/Iβ � V[[Nr]]/(g),
where g is the image of f in V[[Nr]. Since g belongs to the maximal m of
this ring but not to m2, this quotient is a regular local ring. Furthermore, by
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Proposition 1.10.13, the homomorphism Q ⊕ Nr → Â is very solid, and hence
so is β : Q→ A.

We have thus proved that the existence of a diagram as in (1) or (2) implies
that Â/IβÂ is regular and that β is very solid, so that conditions (2)–(4) of
Theorem 1.11.1 hold.

To finish the proofs of Theorems 1.11.2 and 1.11.1 we need to show that if
A/Iβ is regular and dim(A) = dim(A/Iβ) + dim(Q) then we have a diagram as
in statement (1) or (2) of the theorem. We may as well replace A by Â in this
argument.

Suppose first that A contains a field. Then, by [17, 7.7], A contains a copy of
its residue field k, and we will use a more precise version of the argument in the
proof of Proposition 1.10.17. Since A/Iβ is a regular local ring, there exists a se-
quence (t1, . . . , tr) of elements of A whose image in A/Iβ is a regular sequence
of parameters. Then the corresponding homomorphism k[[Nr]] → A/Iβ is an
isomorphism. Since β is a local homomorphism, the map k[Q ⊕ Nr] → A in-
duced by β and (t1, . . . , tr) extends to a morphism ψ : k[[Q ⊕ Nr]] → A, which
is necessarily surjective, since it is so modulo Iβ and Q generates Iβ. Since
k[[Q⊕Nr]] is an integral domain of dimension dim(Q) + dim(A/Iβ) = dim(A),
in fact ψ must be an isomorphism. This shows that we have the diagram in
statement (1).

If the residue field k has characteristic zero, then A contains a field, so we
may and shall suppose that k has characteristic p. Again we let (t1, . . . , tr) be a
sequence in A whose image in the regular local ring A/Iβ is a regular sequence
of parameters. Then if P := Q ⊕ Nr, we obtain a surjective homomorphism
φ : V[[P]] → A; let J be its kernel. By construction, P+A is the maximal ideal
of A, which contains p, so p ∈ J + V[[P+]]. That is, there exists an element
f ∈ J whose constant term is p. By Lemma 1.10.14, V[[P]]/( f ) is an integral
domain of dimension dim(Q)+ r = dim A, and hence ( f ) = J. Thus (2) implies
the existence of the diagram in statement (2). �

Corollary 1.11.3. Let Q be a fine sharp and saturated monoid and let β : Q→
A be a regular log local ring. Assume that A contains its residue field k. Then
the homomorphism k[Q]→ A is flat.

Proof According to statement (1) of Theorem 1.11.2, the homomorphism
β fits into an isomorphism of the form k[[Q ⊕ Nr]] → Â. Since the homo-
morphism k[Q] → k[[Q]] → k[[Q ⊕ Nr]] is flat and since A → Â is faithfully
flat, it follows that k[Q]→ A is also flat. �

Corollary 1.11.4. The underlying local ring of a regular local log ring is
Cohen–Macaulay.
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Proof Suppose β : Q → A is a regular local log ring. Since a noetherian
local ring is Cohen–Macaulay if and only if its completion is so [26, 0,16.5.2],
we may and shall assume that A is complete. If R is a DVR or a field and
Q is a fine saturated and sharp monoid, it follows from Theorem I.3.4.3 that
R[[Q]]] is Cohen–Macaulay, and hence so is the quotient of R[[Q]] by any
nonzero divisor [26, 0,16.5.5]. Thus the corollary follows from the structure
theorem 1.11.2. �

A noetherian local ring R with residue field k is regular if and only if it has
finite projective dimension, which is true if and only if TorR

i (k, k) vanishes for
i sufficiently large. The closest analogy of this result currently known is the
following.

Proposition 1.11.5. Let β : Q → A be a local log ring, where Q is saturated,
A is noetherian, and A/Iβ is a regular local ring. Then the following conditions
are equivalent.

1. β is regular.
2. TorZ[Q]

i (Z[S,T ], A) = 0 for all i > 0, whenever T is a sub-Q-set of a finitely
generated Q-set S such that qs , s for all q ∈ Q+ and all s ∈ S.

3. TorZ[Q]
1 (Z[Q]/Z[Q+], A) = 0.

4. (GrZ[Q+] Z[Q]) ⊗Z A/Iβ → GrIβ A is an isomorphism.

Proof We may assume without loss of generality that A is complete. Suppose
that β is regular and that A contains a field, so that we have the diagram in
statement (1) of Theorem 1.11.2. Let F· be a resolution of Z[S,T ] by flat Z[Q]-
modules. Since Z[S,T ] is flat over Z,

F·k := F· ⊗Z[Q] k[Q] � F· ⊗Z k

is a resolution of k[S,T ] by flat k[Q]-modules. Since A � k[[Q ⊕ Nr]], it is flat
over k[Q], and so

F· ⊗Z[Q] A � F·k ⊗k[Q] A

is still acyclic. Thus TorZ[Q]
i (Z[S,T ], A) vanishes for i > 0.

Now suppose that we have a diagram of the form (2) in Theorem 1.11.2, and
let R := V[[Nr]]. Since R[[Q]] is flat over Z[Q], and A is an R[[Q]]-module,

TorZ[Q]
i (Z[S,T ], A) � TorR[[Q]]

i (Z[S,T ] ⊗Z[Q] R[[Q]], A)

� TorR[[Q]]
i (R[[S,T ]], A).

Now R[[Q]]
f- R[[Q]] is a resolution of R[[Q]]/( f ) by flat R[[Q]]-modules,
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so these Tor groups are computed as the cohomology of the complex

V[[S,T ]]
f- V[[S,T ]].

The homomorphism R[[Q]] → A induces a surjection R → A/Iβ whose ker-
nel is generated by the constant term g of f in R. Since A/Iβ is an integral
domain, g is a prime element of R, and so (2) of Lemma 1.10.14 tells us that
multiplication by f is injective on V[[S,T ]], whence the vanishing of the Tori.

It is trivial that (2) implies (3). Suppose (3) holds. Let J := Z[Q+], and
note that the Z[Q]-module Jn/Jn+1 is a direct sum of copies of Z[Q]/Z[Q+].
Thus assumption (3) implies that TorZ[Q]

1 (Jn/Jn+1, A) = 0 for all n. Consider
the following diagram, in which the rows are exact and the vertical arrows are
surjective:

Jn+1 ⊗ A
an- Jn ⊗ A - Jn/Jn+1 ⊗ A - 0

0 - Iβn+1

bn+1

?
in - Iβn

bn

?
- Iβn/Iβn+1

cn

?
- 0.

The vanishing of the Tor1 implies that an is injective for all n, and since b0 = id
is injective, it follows by induction that bn is injective for all n. But then it also
follows that cn is bijective for all n, so the homomorphism

(GrJ Z[Q]) ⊗Z[Q] A→ GrIβ A

is an isomorphism. Since GrJ Z[Q] is annihilated by J, statement (4) follows.
Let us prove that (4) implies the existence of a diagram (1) or (2); we write

out only the latter case. We assume without loss of generality that A is com-
plete. As in the proof of Theorem 1.11.2, we construct a surjective homo-
morphism V[[Nr ⊕ Q]] → A whose kernel contains an element f whose con-
stant term is p and such that the induced map R := V[[Nr]] → A/Iβ corre-
sponds to a regular system of parameters for A/Iβ. It follows that the induced
map R/(g) → A/Iβ is an isomorphism, where g is the image of f in R. The
proof will be finished if we can show that the homomorphism R[[Q]]/( f )→ A
is an isomorphism. It will suffice to prove that the associated graded map
GrJ (R[[Q]]/( f ))→ GrIβ A is an isomorphism. By (2) of Lemma 1.10.14, mul-
tiplication by f on GrJ R[[Q]] is injective, so that ( f ) ∩ Jn ⊆ f Jn + Jn+1.
Therefore, since g is the initial form of f ,

GrJ (R[[Q]]/( f )) � (GrJ R[[Q]]) /(g) � (R/(g)) ⊗ (GrJ Z[Q])

� A/Iβ ⊗ GrJ Z[Q],



1 Log structures and log schemes 323

so our claim follows from (4). �

Theorem 1.11.6. Let X be a fine saturated log scheme, regular at a point x of
X. Then the underlying local ring OX,x is regular if and only ifMX,x is a free
monoid. In particular, this is the case if dimMX,x ≤ 1.

Proof Since MX,x is saturated, we can choose a section of the projection
MX,x →MX,x, and the induced homomorphism

β : Q :=MX,x → A := OX,x

is a chart. Then β is a regular log local ring, and in particular A/Iβ is a regular
local ring. Then its maximal ideal can be generated by m := dim(A/Iβ) ele-
ments, which we may lift to a sequence (a1, . . . , am) in A. Since β is regular,
dim(A) = m + d, where d := dim(Q). If Q is free, it can be generated by d
elements (q1, . . . , qd), and then (a1, . . . , am, β(q1), . . . , β(qd)) is a sequence of
generators for the maximal ideal of A. Since dim(A) = m + d, it follows that A
is regular.

Suppose conversely that A is a regular local ring. Then its completion Â
is again regular and Q → Â is also regular, so we may as well assume that
A is complete. If A contains a field then, according to Theorem 1.11.2, A is
isomorphic to k[[P]], where P � Q ⊕ Nr for some r ≥ 0. Then Lemma 1.11.7
below implies that P is a free monoid, and Corollary I.4.7.13 allows us to
conclude that Q is also free. If A has mixed characteristic p, Theorem 1.11.2
says that A � V[[P]/( f ) where f ∈ V[[P]] has p as its constant term. If A is
regular, necessarily V[[P]] is regular, and then k[[P]] is also regular, and so
again it follows that P and Q are free. �

Lemma 1.11.7. If P is a fine sharp monoid and k is a field, then k[[P]] is
regular if and only if P is free.

Proof If P is free, k[[P]] is a formal power series ring, hence regular. Sup-
pose conversely that A := k[[P]] is regular. Then mA/m

2
A is a vector space of

dimension d := dim(A) = rank(Pgp). On the other hand, it follows from Propo-
sition I.3.6.5 that mA/m

2
A � k[P+, P+

2 ], where P+
2 is the square of the ideal P+.

The set P+ \ P+
2 is a basis for this vector space and therefore has cardinality d.

On the other hand, by Proposition I.2.1.2, this set generates P. Thus we have
a surjective homomorphism Nd → P, which induces a surjection Zd → Pgp.
Since d is the rank of Pgp, this surjection is an isomorphism, and hence Nd → P
is also an isomorphism. �

The following result is useful amplification of Theorem 1.11.6.

Theorem 1.11.8. Let α : P → A and β : Q → A be local log rings, where P
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and Q are fine, sharp, and saturated, and let γ : P ⊕ Q → A be the log ring
induced by α and β. If γ is regular, the following conclusions hold.

1. The local log ring α′ : P→ A/Iβ is regular, and dim(A/Iβ) = dim(A/Iγ).
2. The local log ring β : Q→ A is regular if and only if P is free.

Proof Let d be the rank of Qgp, let r be the rank of Pgp, and let A′ := A/Iβ.
Then A/Iγ � A′/I′α, where I′α is the image of Iα in A′. Since γ is regular,
A′′ := A/Iγ is regular of dimension dim(A) − (d + r). On the other hand, Pro-
position 1.10.17 applied to β implies that dim(A) ≤ d + dim(A′), and hence

dim(A′) ≥ dim(A) − d = dim(A′′) + r.

But the same proposition applied to α′ says that

dim(A′) ≤ dim(A′′) + r,

and so in fact equality holds, and it follows that α′ is regular.
If P is free, I′α can be generated by r elements, say (a1, . . . , ar). Since the

quotient A′′ of A′ is regular, its maximal ideal can be generated by e elements,
where e := dim(A′′) = dim(A′)− r. If (ar+1, . . . , ar+e) is a sequence in A′ lifting
such a set of generators, then (a1, . . . , ar+e) is a sequence of generators for the
maximal ideal of A′ of length dim(A′). It follows that A′ is a regular local ring
and then that β is also regular. Conversely, if β is regular, then A′ is also a
regular ring, and it follows from Theorem 1.11.6 that P is free. �

Example 1.11.9. Let Y be a divisor with strict normal crossings in a regular
scheme X, let α be the compactifying log structure associated to the comple-
ment of Y , and let X be the log scheme (X, α). Then X is a regular log scheme.
Indeed, if x ∈ X, it follows from Proposition 1.8.2 that α is the log structure
associated to the DF structure defined by the set of irreducible components
Y1, . . . ,Yr containing x and that MX,x � Nr. The ideal of OX,x generated by
MX,x is the ideal of Y1∩· · ·∩Yr, which is regular and of dimension dim(OX,x)−r.
Thus X satisfies condition (4) of Theorem 1.11.1.

If β : Q → A is a regular local log ring and q is a prime of Q, then qA is
a prime ideal of A. The induced homomorphism F → A/q is then a local log
ring and the next proposition shows that this log ring is again regular.

Proposition 1.11.10. Let β : Q→ A be a regular local log ring. For each prime
ideal q of Q, the local log ring βq : F := Q \ q→ A/qA is again regular.

Proof Proposition 1.10.9 tells us that βq : F → A/qA is solid. Furthermore,
Q+ = F+ ∪ q, and hence (A/qA)/F+(A/qA) � A/Q+A, which is by hypothesis
a regular ring. �
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The following result globalizes the previous one and shows that the solidity
and regularity of log structures are preserved on passage to suitably defined
subschemes.

Proposition 1.11.11. Let X be a fine log scheme, let K ⊆ MX be a coherent
sheaf of ideals, and let Y be the closed subscheme of X defined byK . Suppose
that Ky is prime for every y of Y , and let F be the subsheaf ofMY consisting
of the sections whose stalks at every point do not belong to Ky.

1. F is a sheaf of faces in MY and, for each y ∈ Y , its stalk is MY,y \ Ky.
Furthermore, F is coherent as a sheaf of monoids, and the induced map
αY : F → OY is a fine log structure.

2. If αX is solid (resp. very solid, resp. regular), then the same is true of αY .

Proof SinceMX,x \ Kx is face ofMX,x, it is clear that F is a sheaf of faces
in MX; the description of the stalks of F is also immediate to check. To see
that F is coherent is a local question around a point y of Y , so we may assume
that there is a chart β : Q → MX and that K := β−1(Ky) generates K . Then K
is prime, so its complement is a face F of Q. We claim that the induced map
F → F is a chart for F . Let y′ be any point of Y and let G := β−1(O∗Y,y′ ). Then
G ⊆ F, since K maps to zero in OY,y′ . It follows that FG is the complement
of KG in QG, and hence that the map FG/G → F y′ is an isomorphism, as
required.

Suppose that β is solid. The subscheme Y of X is defined by the ideal of OX

generated by K . Hence, for each point y of X, there is a cartesian diagram

Y(y) - X(x)

Spec(Fy)
�- Spec(MX,y,Ky)

?
- Spec(MX,x).

?

Since the diagram is set-theoretically cartesian and the right vertical arrow is
locally surjective, Lemma 1.10.10 shows that the left vertical arrow is also
locally surjective. If β is very solid and p is a prime ideal of Fy, then p ∪ Ky is
a prime ideal ofMX,y, hence (p ∪ Ky)OX,y is prime, and hence pOY,y is prime.
If X is regular, Proposition 1.11.10 implies that Y is also regular. �

Theorem 1.11.12. The log structure of a regular log scheme is compactifying;
that is, the natural mapMX → MX∗/X is an isomorphism. More generally, let
F be a relatively coherent sheaf of faces ofMX and let XF be the log scheme
F → OX . Then X∗

F
is open in X, and the log structure of XF is compactifying.
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Proof We may assume that there is a chart β for αX subordinate to a fine
saturated monoid Q and that F is the sheaf of faces of MX generated by an
element q of Q. Then XF is the special affine open subset of X defined by β(q),
and its complement Y is the closed subset defined by β(q). We must show that
the natural map F → ΓY (Div+

X) is an isomorphism. Working at the stalks, we
may assume that X is the spectrum of a regular local log ring Q → A, and
that Q is sharp. Then if F is the face of Q generated by q, the natural map
F → F x is an isomorphism. Let Â be the completion of A and let X̂ be the
corresponding local log ring. Then we have maps

F → ΓY (Div+
X)→ ΓŶ (Div+

X̂
),

and the second of these is injective, since A→ Â is faithfully flat. Hence if the
theorem is true for Â, it is also true for A, so we may assume without loss of
generality that A is complete.

By Theorem 1.11.2, we may assume that β has the form Q → R[[Q]]/( f ),
where R is a normal noetherian local ring and and the constant term of f is a
prime element of R. Let X′ be the localization of Spec(Q→ R[Q]) at the ideal
m[Q+], where m is the maximal ideal of R. Then we have a strict morphism
X → X′ and a diagram

F
a- ΓY ′ (Div+

X′ )
b- ΓY (Div+

X)

W+(Q, q)

c

? a′- ΓY ′ (W+
X′ )

d

? b′- ΓY (W+
X),

e

?

whereW+(Q, q) is the free monoid on the set of height one primes of Q con-
taining q. We saw in Theorem I.3.5.8 that the map a is an isomorphism, so it
will suffice to prove that b is an isomorphism.

Since X and X′ are normal, the maps d and e are injective. By Proposi-
tion I.3.5.2, the irreducible components of Spec(R[Q]/(q)) are defined by the
height one prime ideals p of Q containing q, i.e., the map a′ is an isomorphism.
Furthermore since X is very solid, each p remains prime in R[[Q]]/( f ). It fol-
lows that the irreducible components of Y := Spec(R[[Q]](q)) are defined by
the same set of prime ideals. Thus the map b′ is also an isomorphism. It follows
that b is injective. To prove its surjectivity, let D be an element of ΓY (Div+

X);
there is a unique Z′ =

∑
npp ∈ W+(Q, q) such that e(D) = b′(a′(Z)). Let K

be the ideal of Q defined by Z′, i.e., K = {q′ ∈ Q : νp(q′) ≥ np for all p}. By
statement (1) of Lemma 1.10.14, ( f )∩R[[K]] = f R[[K]], so R[[K]]/( f R[[K]])
is isomorphic to the ideal of D in A, a principal ideal. Thus R[[K]]/( f R[[K]]) is
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monogenic as an A-module, hence R[[K]] is monogenic as an R[[Q]]-module,
by Nakayama’s lemma. This implies that a′(Z) is in the image of d and con-
cludes the proof. �

It is natural to ask if a localization of a regular log local ring is regular, and
if, under a suitable excellence hypothesis, the regular locus of a log scheme is
open. We shall see that both these questions have affirmative answers. However
we defer the discussion until Section 3.5, after the discussion of logarithmic
smoothness.

1.12 Frames for log structures

The following definition is modeled after a notion introduced by K. Kato and
T. Saito [51, 4.1].

Definition 1.12.1. Let (X,MX) be a monoidal space.

1. If Q is a monoid, a frame for X subordinate to Q is a homomorphism
φ : Q→ Γ(X,MX), which locally on X lifts to a chart Q→MX .

2. More generally, if T is a monoscheme, a frame for X subordinate to T is
a morphism of monoidal spaces (X,MX) → (T,MT ) which, locally on X,
lifts to a chart X → T .

3. If S is an s-fan (Remark II.1.9.4), an s-frame for X subordinate to S is a
morphism of monoidal spaces f : (X,MX) → (S,MS) such that, locally on
X and S, there exist a monoscheme T and an isomorphism j : (S,MS) →
(T,MT ) such that j ◦ f is a frame.

Remark 1.12.2. Let α : M→ OX be the log structure on X associated to a DF
structure. Then the map Nr → M constructed in Proposition 1.7.3 is a frame.
Conversely, suppose that a log structure α on X admits a frame Nr →M. Then
for each basis ei of Nr, the O∗X-torsor associated to image ei in M defines an
invertible sheaf Li, and α defines a DF structure {γi : Li → OX}. Then one can
check that α is the log structure associated to γ·, using the fact that Nr →MX

is a frame. Thus a log structure comes from a DF structure if and only if it
admits a frame subordinate to a finitely generated free monoid.

The next result is an adaptation of a construction of Kato [49, 10.1]. It im-
plies that every regular log scheme (in the Zariski topology) has a canonical
s-frame.

Proposition 1.12.3. Let X be a fine very solid log scheme for the Zariski topol-
ogy. Then there exist an s-fan SX = (SX ,MS) and morphisms

i : (SX ,MS)→ (X,MX), s : (X,MX)→ (SX ,MS),
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with s ◦ i = id, such that s is universal: any morphism from (X,MX) to an
s-fan factors uniquely through s. Moreover, the morphism s is open and is an
s-frame for X.

Proof Since αX is very solid, for each point x of X, the ideal M+
X,xOX,x

is prime and hence corresponds to a generization s(x) of x. Then the in-
verse image of mX,s(x) in OX,x is M+

X,xOX,x, and it follows that the cospe-
cialization homomorphism MX,x → MX,s(x) is local and then that the map
MX,x →MX,s(x) is an isomorphism.

Let us say that a point x of X is an “s-point” if x = s(x). Let SX be the
set of s-points of X, and let i : SX → X be the inclusion. Endow SX with the
topology induced from its embedding in X and let MS be the restriction of
MX to SX . Since s(x) is a generization of x, it belongs to every neighbor-
hood of x, and consequently formation of the spaces SX and the maps i and
s is compatible with passage to open subsets of X. Thus, for every open sub-
set U of X, s(U) = SX ∩ U. It follows that s is a continuous open mapping.
Since x is a specialization of s(x), there is a cospecialization homomorphism
MSX ,s(x) = MX,s(x) → MX,x, and the integrality ofMX makes it easy to check
that these maps fit into a homomorphism MS → s∗(MX). We have seen that
each homomorphismMS,s(x) → MX,x is local, so that s becomes a morphism
of locally monoidal spaces (X,MX)→ (S,MS).

Let g : (X,MX)→ T be a morphism, where T is an s-fan; we claim that there
is a unique g′ : SX → T such that g′ ◦ s = g. Since s ◦ i = id, necessarily g′ =

g ◦ i, and we must check that, with this definition of g′, in fact g′◦s = g. We can
verify this equality locally on X, and hence may assume that T is affine, so that
the map g is given by a monoid homomorphism β : Q → MX . If x is a point
of X, then g(x) = β−1(M

+

X,x) ∈ Spec(Q), and g′(s(x)) = g(s(x)) = β−1(M
+

X,s(x)).
This coincides with g(x) because the homomorphismMX,x →MX,s(x) is local.
Thus g = g′ ◦ s on the level of sets. We must also verify that g[ = s[ ◦ g′[,
i.e., that for each point x of X, the upper left triangle in the following diagram
commutes:

MT,g(x)
g[x- MX,x

MS,s(x)

g′[s(x)

?
�

i[s(x)

s[x
-

MX,s(x).

cosp

?

Recall that g(x) = g(s(x)), so cosp ◦ g[x = g[s(x), and so

g′[s(x) := i[s(x) ◦ g[s(x) = i[s(x) ◦ cosp ◦ g[x,
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so the square commutes. Since all the arrows in the lower commutative right
triangle are isomorphisms, it follows that the upper left triangle commutes as
well.

It remains to prove that SX is an s-fan and that s is an s-frame. These ques-
tions are also local on X, so we may and shall assume that X is affine, say
X = Spec(β : Q → A), where Q is a fine monoid. Choose a point x of X; af-
ter localizing Q, we may assume that βx : Q → OX,x is local. Then the map
Q → MX,x is an isomorphism, and since αX is very solid it follows that βx

is very solid. As we saw in the proof of Proposition 1.10.11, we may replace
X by some neighborhood such that β : Q → A is very solid. Assuming this is
the case, let S be the s-fan defined by Q and let g : (X,MX) → S be the map
defined by β. Then g : X → S is locally surjective, hence open and, since its
image contains the closed point of SQ, g is surjective. Then g′ := g ◦ i is also
surjective and open. If p is the prime ideal of A corresponding to a point y of
X, then s(y) corresponds to the prime ideal qA, where q = β−1(p) is the prime
ideal of Q corresponding to g(y). If y is an s-point, it follows that y is uniquely
determined by g(y), and hence g′ is injective. Since g′ is continuous and open
and bijective, it is a homeomorphism. Finally, the map g′[ : MSQ → MS is an
isomorphism because β is a chart. Thus SX � SQ, and hence is an s-fan and s
is an s-frame. �

It follows from the universal property of s : X → SX that its formation is
functorial: if f : X → Y is a morphism of fine and very solid schemes, there is
an induced map S f : SX → SY such that sY ◦ f = S f ◦ sX . Such functoriality
does not hold for the map i : SX → X. For example, if X = AN, SX consists
of the vertex (origin) and the generic point, but, if Y = AN, SY consists of just
the generic point, and the canonical map X → Y is the identity on underlying
schemes and does not map SX to SY .

Remark 1.12.4. Let X be a fine and very solid log scheme as in Proposi-
tion 1.12.3. The proposition shows that, for every x ∈ X, there is a point ξ
(namely, the point is(x)), with the following properties.

1. The point x is a specialization of the point ξ.
2. The maximal ideal of OX,ξ is generated by the image of the maximal ideal

ofMX,ξ.
3. dimOX,ξ = dimMX,ξ.

The first two properties of ξ follow from the construction, and property (3)
follows from (2) and the equality implied by Proposition 1.10.17 in the solid
case.
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2 Morphisms of log schemes

In this section we discuss some of the important properties of morphisms of
log schemes. We begin with a discussion of fiber products, whose formation
is delicate in the categories of integral and separated log schemes. We then
discuss some properties of morphisms of log schemes that are related to the
corresponding homomorphism of sheaves of monoids. The important notion
of smooth morphisms of log schemes will be covered in a later chapter. Some
readers may prefer to skip ahead to that topic, deferring their study of some of
the material here.

Before embarking on the technical discussion of morphisms of log schemes,
let us first describe the set of morphisms from a log point into a log scheme. It is
important to remember that the passage from a log scheme X to its underlying
scheme X forgets a good deal of the geometry. In some contexts, it is helpful
to picture the set of “log point” valued points of a log scheme.

Proposition 2.0.1. Let X be a fine log scheme and let pX : X → X be the
canonical map from X to the corresponding scheme with trivial log structure.
Let S be an integral log point whose underlying scheme is the spectrum of an
algebraically closed field k, and let P :=MS. Given a k-valued point x ∈ X(k),
let Qx be the stalk ofMX at x and let p−1

X (x) denote {g : S → X : g = x}. Then
there exist maps

h : p−1
X (x)→ Homloc(Qx, P), A∗Qx

(k) × p−1
X (x)→ p−1

X (x)

making p−1
X (x) an A∗Qx

(k)-torsor over h. In particular:

1. p−1
X (x) is empty if and only if P = 0 and x < X∗(k);

2. if P = N, then p−1
X (x) is an A∗Qx

(k)-torsor over the set of interior lattice
points in the dual of Qx.

Proof The point x defines a homomorphism x] : OX,x → k. Then an element
g of p−1

X (x) amounts to a local homomorphism of monoids g[ : MX,x → MS

whose restriction to O∗Xx
is given by x]. In particular, h(g) := g[ is a local

homomorphism Qx → P. A point of A∗Qx
(k) can be viewed as a homomorphism

γ : MXx → k∗ which annihilates O∗X,x. Then γg[ : MX,x → k∗ defines an ele-
ment γg of p−1

X (x) with h(γg) = h(g). Moreover, if g′ ∈ p−1
X (x) and h(g′) = h(g),

then there is a unique γ such that g′ = γg. To show that this action makes p−1
X (x)

a torsor over h, it remains only to show that h is surjective.
Since P is sharp, Homloc(MX,x, P) = Homloc(Qx, P). There is an exact se-

quence

Hom(Mgp, k∗)→ Hom(Mgp
X,x,M

gp
S )→ Hom(Mgp

X,x, P
gp)→ Ext1(Mgp

X,x, k
∗)
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and, since k is algebraically closed, k∗ is divisible and the Ext1 group vanishes.
Thus given any local homomorphism ν : MX,x → P, there is a homomorphism
ρ : Mgp

X,x →M
gp
S such that ρgp

= νgp. SinceMS → P is exact, it follows that ρ
mapsMX,x toMS, and the resulting homomorphism is local because ν is local.

If P = 0 and x < X∗(k), then Qx , 0 and there are no local homomorphisms
Qx → P. Hence p−1

X (x) is empty in this case. If P = N, then the set of local
homomorphisms Qx → N can be identified with the interior lattice points of
the dual to Qx, by Remark I.2.2.8. More generally, if P , 0, choose p ∈ P+

and note that the corresponding homomorphism N → P is local. Proposi-
tion I.2.2.1 shows that there is a local homomorphism θ : Q → N, and so the
homomorphism Q → P sending q to θ(q)p is also local. It follows that p−1

X (x)
is not empty. �

2.1 Fibered products of log schemes

Just as in the case of ordinary schemes, the existence of products in the cate-
gory of log schemes has deep consequences and many subtleties.

Proposition 2.1.1. Let X be a scheme. Then the category of prelog (resp. log)
structures on X admits colimits. The colimit of a finite family of coherent log
structures is coherent.

Proof Let M· := {αi : Mi → OX : i ∈ I} be a family of prelog structures
on X and letM be the colimit of the familyM· in the category of sheaves of
monoids on X. Then the maps {αi : i ∈ I} induce a map β : M→ OX , and β is
the colimit of {αi : i ∈ I} in the category of prelog structures on X. If each αi is
in fact a log structure, then the log structure α := βa associated to β is the limit
of {αi : i ∈ I} in the category of log structures on X.

To prove that finite colimits of coherent log structures are coherent, it will
suffice to check that the direct sum of two coherent log structures is coherent
and that the coequalizer of two maps between coherent log structures is coher-
ent. Suppose that, for i = 1, 2, each αi : Mi → OX is a coherent log structure.
Localizing on X, we may assume that each Mi admits a chart γi : Pi → Mi,
with Pi finitely generated. Then each αi ◦ γi : Pi → OX is a prelog structure,
and the induced map P := P1 ⊕ P2 → OX is their direct sum in the category
of prelog structures. Since the formation of associated log structures is a left
adjoint, it commutes with colimits, and hence the associated prelog structure
Pa → OX is the direct sum of the log structuresMi. Since P is finitely gener-
ated,M is coherent. Now suppose that α : M → OX and β : N → OX are log
structures and φ1 and φ2 are morphisms α → β. Choose a finitely generated
chart P→M for α. By Proposition II.2.4.2, we may find, locally on X, homo-
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morphisms θi : P → Qi of finitely generated monoids and charts Qi → N .
By Corollary II.2.2.2, we may find a finitely generated Q and a chart Q → N
through which these charts factor. Thus we may assume that Q1 = Q2 = Q. Let
R be the coequalizer of the two maps θi : P → Q in the category of monoids.
Then R is finitely generated, and the map Q→ OX factors through R. Then the
log structure Ra → OX is coherent and is the coequalizer of φ1 and φ2 in the
category of log structures.

The most important case of colimits of log structures is that of coproducts.
If α0 is a log structure and θi : α0 → αi, with i = 1, 2 is a pair of morphisms
log structures, then the coproduct α : M → OX is formed by taking the log
structure associated to the prelog structureM1 ⊕M0 M2 → OX . If all these log
structures are coherent, then locally on X one can find coherent charts Pi →Mi

and compatible morphisms P0 → Pi. Then the induced map P1 ⊕P0 P2 → M

is a chart forM. �

As we shall see, the construction of fibered products in the category of log
schemes is straightforward, and in particular the underlying scheme of such a
product is the fiber product of the underlying schemes. This is not the case for
fibered products in the categories of integral and saturated log schemes, which
we discuss later.

Proposition 2.1.2. The category of log schemes admits fibered products, and
the functor X → X taking a log scheme to its underlying scheme commutes
with fibered products. The fibered product of coherent log schemes is coherent.

Proof Let f : X → Z and g : Y → Z be morphisms of log schemes and let
X′ denote the fiber product X ×Z Y in the category of schemes, with projection
maps g′ : X′ → X and f ′ : X′ → Y , and h := f ◦g′ = g◦ f ′. Then on X′ we find
morphisms of log structures h∗log(αZ)→ g′∗log(αX) and h∗log(αZ)→ f ′∗log(αY ). It is
straightforward to verify that if αX′ is the coproduct of these log structures, then
the log scheme X′ := (X′, αX′ ), together with its maps X′ → X and X′ → Y , is
the fibered product X ×Z Y . If the log structures αX , αY , and αZ are coherent,
so are their pullbacks to X′, and hence by Proposition 2.1.1, so is αX′ . By
construction, the scheme underlying (X′, αX′ ) is the fiber product X ×Z Y . �

Remark 2.1.3. Suppose that the morphism f : X → Z is strict, i.e., that
f ∗log(αZ) � αX on X. Then on X′, h∗log(αZ) � g′∗log(αX). It follows that

f ′∗log(αY ) ⊕h∗log(αZ ) g′∗log(αX) � f ′∗log(αY ).

Thus, the morphism f ′ is also strict. In other words, the family of strict maps
is stable under base change.

Since the amalgamated sum of integral (resp. saturated) monoids need not be
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integral (resp. saturated), the construction of fibered products in the category of
fine (resp. fine and saturated) log schemes is more delicate, and in fact involves
some of the main technical difficulties of logarithmic algebraic geometry.

The following result—just a reformulation of descent theory—is a basic
tool in the construction of log schemes, following the pattern we sketched for
monoschemes in Proposition II.1.3.2. It applies, for example, to the category
of schemes, log schemes, fine log schemes, etc.

Proposition 2.1.4. Let LS′ be a full subcategory of the category of log
schemes which is locally defined, i.e., such that any log scheme X admitting an
open covering whose objects are in LS′ also belongs to LS′. Let S be a scheme
and denote by LS′S the category of pairs (X, f ) where X is an object of LS and
f is a morphism X → S. Finally, let F be a functor from LS′S to the category
of sets.

1. If F admits a Zariski open cover by representable functors, then F is also
representable.

2. If S admits a Zariski open covering {Si → S} such that the restriction of F
to each Si is representable, then F is representable.

3. If S admits an étale open covering {Si → S} such that the restriction of F
to each Si is representable by an object in LS′Si

whose underlying scheme
is affine over Si, then F is representable by an object whose underlying
scheme is affine over S.

Proof Statement (1) follows from the fact that topological spaces and sheaves
thereon can be glued along open coverings, as in Proposition II.1.3.2, thanks
to the locality of the subcategory LS′. Statement (2) is a direct consequence,
since {Fi := F ×S Si} is a Zariski open cover of F. Since gluing schemes along
étale open subsets can yield algebraic spaces that are not schemes, we need
the affineness condition in (3). Specifically, suppose that Fi is represented by
an object Xi of LS′S such that Xi is affine over Si. Since Fi is the restriction
of F to Si and Xi represents Fi, we have isomorphisms between the restriction
of Xi to Si ∩ S j and the restriction of X j to Si ×S S j, and these isomorphisms
satisfy the cocycle condition over Si ×S S j ×S Sk. This collection of isomor-
phisms forms “descent data” with respect to the given covering of S. Since Xi
is affine over Si, it corresponds to a quasi-coherent sheaf Ai of OSi -algebras.
The descent data on the schemes Xi define define gluing data on these sheaves
and hence a quasi-coherent sheaf of OS-algebras A on the étale topology of
S. By Hilbert’s Theorem 90 for quasi-coherent sheaves [15, I-2], this sheaf
descends to the Zariski topology of S and hence defines an affine scheme X
over S. Then the log structures αi on the étale topology of each Xi glue to a
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log structure α on the étale topology of X, and define an object (X, α) of LS′S.
Finally, the isomorphisms of functors (Xi, αi) → Fi glue to define an isomor-
phism (X, α)→ F. �

Proposition 2.1.5. Let LS (resp. LScoh,LSfin,LSfs) denote the category of log
schemes (resp. of coherent log schemes, fine log schemes, fine and saturated
log schemes).

1. The inclusion functor LSfin → LScoh admits a right adjoint X 7→ Xint. For
each object X of LScoh, the map Xint → X is a closed immersion.

2. The inclusion functor from LSfin → LSfs admits a right adjoint X 7→ Xsat,
and for each object X of LSfin, the corresponding morphism Xsat → X is
finite and surjective.

Proof Let X be a coherent (resp. fine) log scheme, let hX be its Yoneda func-
tor on the category of coherent (resp. fine) log schemes and let h′X denote its
restriction to LS′ := LSfin (resp. LSfs). We claim that h′X is representable in
LS′. Let LS′X denote the category of fine (resp. fine and saturated) log schemes
T endowed with a morphism T → X and, for any object (T, p) of LS′X , let
F(T ) := { f : T → X : f = p}. Then h′X will be representable in LS′ if and only
if F is representable in LS′X , as is tautological to verify.

To prove the proposition, first suppose that X = AP, where P is a finitely
generated (resp. fine) monoid. In this case let P′ := Pint (resp. Psat), and let
X′ := AP′ . Then if T is any fine (resp. fine and saturated) log scheme,

h′X(T ) = Hom(P,MT ) = Hom(P′,MT ) = hX′ (T ).

Let g : X′ → X be the natural map, so that (X′, g) is an object of LS′X . Then
(X′, g) represents the functor F on LSX . When P is finitely generated, the
homomorphism P → Pint is surjective and hence the morphism X′ → X is
a closed immersion. When P is fine, the homomorphism P→ Psat is finite and
injective, and hence the morphism X′ → X is finite and surjective. Thus the
result is proved in this case.

Somewhat more generally, suppose that X admits a chart subordinate to
a finitely generated (resp. fine) monoid P. Then we find a strict morphism
f : X → Y := AP. By Proposition 1.2.5, the morphism X → X ×Y Y is an iso-
morphism, and it follows that the map h′X → X ×Y h′Y is also an isomorphism.
As we saw in the previous paragraph, h′Y � hY ′ ; so X′ := X ×Y Y ′, an object of
LS′, represents the functor h′X .

The proposition now follows from Proposition 2.1.4. Indeed, if X is coherent
(resp. fine), then X has an étale covering {Xi → X} such that each Xi admits a
chart subordinate to a finitely generated (resp. fine) monoid. In each case, the
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functor F is representable by an object (X′i , pi), where pi : X′i → X is affine,
and hence F is representable. �

Notice that the morphisms of topological spaces underlying the maps
Xint → X and Xsat → Xint are not in general homeomorphisms and, in par-
ticular, that we cannot identifyMXint withMint

X orMXsat withMsat
X , in general.

Corollary 2.1.6. The category of fine log schemes (resp. of fine and saturated
log schemes) admits finite projective limits. If X and Y are fine (resp. fine and
saturated) log schemes over a fine (resp. fine and saturated) log scheme Z, then
the natural map from the underlying scheme of the fibered product X ×Z Y to
the fibered product of underlying schemes is a closed immersion (resp. a finite
morphism).

Proof If X → Z and Y → Z are morphisms of fine log schemes, then it
follows from the universal mapping properties that (X ×Z Y)int, together with
its induced maps to X, Y , and Z, is the fibered product of X and Y over Z in
the category of fine log schemes. Analogous constructions works for fine and
saturated log schemes. �

Example 2.1.7. In classical geometry, the fiber product of points is never
empty, because the tensor product of field extensions is never zero. However in
the category of fine log schemes, the fiber product of morphisms of log points
can be empty. This can happen because the pushout of a local homomorphism
can fail to be local (see Example I.4.1.6). The following example is based on
a different phenomenon involving the behavior of units.

Let P be the monoid with generators p1, p2 and relation mp1 = mp2 and let
SP be the split log point associated to P over some field k. If ζ is an mth root
of unity in k, define a homomorphism of monoids θζ : P → k∗ ⊕ N by sending
p1 to (1, 1) and p2 to (ζ, 1). This homomorphism defines a morphism of log
schemes fζ : SN → SP. We claim that if ζ , ζ′, the fiber product of fζ and
fζ′ in the category of integral log schemes is empty. Indeed, if t were a point
of the fiber product in the category of integral log schemes, there would be a
commutative diagram

P
θζ- k∗ ⊕ N

k∗ ⊕ N

θζ′

? θ - MT,t

θ′

?

withMT,t an integral monoid containing k∗. Let q := θ(1, 1) and q′ := θ′(1, 1)
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inMT,t. Then q′ = θ′θζ(p1) = θθζ′ (p1) = q, and ζ + q′ = θ′θζ(p2) = θθζ′ (p2) =

ζ′ + q. We conclude that ζ + q = ζ′ + q. The integrality ofMT,t then implies
that ζ = ζ′. Note that, in this example, neither θζ nor θζ′ is exact. For ways to
avoid these difficulties, see Proposition 2.2.3 and Lemma 2.4.9.

Fiber products also exist in the category of idealized log schemes. The con-
struction is straightforward. Given morphisms of idealized log schemes X → Z
and Y → Z, one constructs the fiber product X ×Z Y in the category of sheaves,
and endows its sheaf of monoids with the sheaf of ideals K generated by the
sheaves of ideals KX and KY . Then K maps to zero in OX×ZY and it is easy
to check that the universal mapping property of fiber products is satisfied. An
important example is the notion of the idealized log fiber over a point.

Definition 2.1.8. If y is a point of a log scheme Y , the idealized log point at y
is the idealized log scheme

yK := Spec
(
(i∗log(MY,y,M

+
Y,y))→ k(y)

)
,

where i : y → Y is the inclusion and M+
Y,y is the maximal ideal of MY,y. If

f : X → Y is a morphism of fine log schemes, the idealized log fiber of f over
y is the fiber product

XK := yK ×Y X,

computed in the category of idealized log schemes.

2.2 Exact morphisms

Let f : X → Y be a morphism of integral log schemes. Following our conven-
tions (see Definition 1.1.11), we say that f is exact at a point x of X if for every
(equivalently, for some) geometric point x lying over x, the homomorphism
f [x : f ∗log(MY, f (x))→MX,x is exact or, equivalently, if the corresponding homo-

morphismsMY, f (x))→MX,x andMY, f (x) →MX,x are exact.
Our first result is an immediate consequence of Proposition I.4.2.1.

Proposition 2.2.1. In the category of integral log schemes, the following state-
ments hold.

1. Let f : X → Y and g : Y → Z be morphisms and let x be a point of X, with
y := f (x) and z := g(y). If f is exact at x and g is exact at y, then g ◦ f is
exact at x. If g ◦ f is exact at x, then g is exact at y. If g ◦ f is exact at x and
g[z is surjective (or is small andMY,y is saturated) then f is exact at x.

2. If f : X → Y is exact at x, then f
[

x : MY f (x) → MX,x is injective. Thus an
exact morphism is s-injective.
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3. If f : X → Y and h : Y ′ → Y are morphisms, let X′ := X′ ×Y X, with
projections f ′ : X′ → Y ′ and g : X′ → X. If x′ ∈ X and f is exact at g(x),
then f ′ is exact at x′. In particular, the class of exact morphisms is stable
under fiber products. �

The following result relates exactness of morphisms and exactness of their
charts.

Proposition 2.2.2. Let f : X → Y be a morphism of fine log schemes,
equipped with a fine chart (α, θ, β). Suppose that x ∈ X and y = f (x).

1. If β is exact at x and θ is exact, then α is exact at y and f is exact at x. If f
is exact at x and α is exact at y, then θ is exact.

2. If θ is locally exact then f is exact. Conversely, suppose that f is exact at
every point in the fiber X′ over y := f (x), that the idealized fiber X′

K
is solid

(in the sense of Variant 1.10.18), and that β is exact at x. Then θ is locally
exact and hence Q-integral.

Proof Since we are assuming the existence of charts in this proposition, we
do not need to distinguish between geometric and scheme-theoretic points.
Suppose that βx : Q → MX,x and θ are exact. Then the homomorphism f [x ◦
αy = βx ◦ θ : P → MX,x is exact. It follows that αy is exact and hence by
Definition II.2.3.1 that αy is an isomorphism. Since θ is also exact and βx is

an isomorphism, it follows that f
[

x is exact, so f is exact at x. Conversely, if
αy : P →MY,y and f [x : MY,y →MX,x are exact, then βx ◦ θ = f [x ◦ αy is exact,
and it follows that θ is exact.

Suppose that θ is locally exact. Let G := β−1(M∗X,x) and let F := θ−1(G) =

α−1(M∗Y,y). Since θ is locally exact, the induced homomorphism PF → QG is
exact. Replacing β by the chart βG : QG →MX in some neighborhood of x, we
see from part (1) that f is exact at x. For the converse, let S := Spec(Q), T :=
Spec(P), and g := Spec(θ). Then α and β define morphisms of monoidal spaces
b : (Y,MY )→ T and a : (X,MX)→ S. Let s = a(x) and t := b(y). According to
Theorem I.4.7.7, it will suffice to prove that θ is critically exact, i.e., that g[s′ is
exact for every s′ ∈ g−1(t). Since β is exact at x, the homomorphism Q→MX,x

is an isomorphism and the map Spec(MX,x)→ S is a homeomorphism, and we
identify these spaces. Then s′ ∈ Spec(MX,x,K) and, since the idealized log
fiberX′

K
is solid, the map a : X′

K
→ Spec(MX,x,K) is locally surjective. Since

x ∈ X′
K

maps to s and s′ is a generization of s, there is a generization x′

of x such that a(x′) = s′. Since β is a chart, the map MS,s′ → MX,x′ is an
isomorphism. By hypothesis f is exact at x′, so the composed homomorphism
MT,t �MY,y →MX,x′ →MS,s′ is exact. �
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The following result is sometimes called the “four point lemma” for log
schemes. It shows how exactness helps overcome the difficulties entailed by the
necessity to work with fiber products in the category of integral log schemes.

Proposition 2.2.3. Let f1 : X1 → Y and f2 : X2 → Y be morphisms of fine
log schemes, and let X′ be their fiber product in the category of integral log
schemes. Suppose that x1 ∈ X1 and x2 ∈ X2 are points such that f1(x1) = f2(x2).
Then if f1 is exact at x1 or f2 is exact at x2, there exists a point x′ ∈ X′ such
that p1(x′) = x1 and p2(x′) = x2.

Proof The statement is étale local around the points, so we may assume
that there exists an exact chart P → MY,y for MY,y, with P fine. By Propo-
sition II.2.4.2, we may also assume that there exists a chart for each fi subordi-
nate to a homomorphism of fine monoids θi : P→ Qi, and we may also assume
that the homomorphisms Qi → MXi,x are local, equivalently, exact. Suppose
that f1 is exact at x1. Then, by Proposition 2.2.2, θ1 is exact. Let Q := Q1⊕P Q2,
formed in the category of integral monoids. By Proposition I.4.2.5, the homo-
morphisms Qi → Q are local and the homomorphism Q∗1 ⊕P∗ Q∗2 → Q∗ is an
isomorphism.

Let k be the residue field of the point y := f (xi) of Y and let ki be the residue
field of xi. Let γ := αY,y ◦ θ : P → k and βi := αXi,xi ◦ θi : Qi → ki; since
these homomorphisms are local, they send the maximal ideals of P+ (resp.
Q+

i ) to 0. There are then morphisms of log schemes S := Spec(β) → Y and
Ti := Spec(βi)→ Xi sending the unique point of S to y and the unique point of
Ti to xi.

The k-algebra k1 ⊗k k2 is not zero and hence admits a homomorphism to a
field k′. The homomorphisms Q∗1 → k1 and Q∗2 → k2 define a homomorphism

β∗ : Q∗ � Q∗1 ⊕P∗ Q∗2 → k1 ⊗k k2 → k′.

Extend this to a homomorphism β : Q→ k′ by sending Q+ to zero, and let T :=
Spec(β). Since the homomorphisms Qi → Q are local, we have morphisms
T → Ti, which agree when composed with the map to S. We find morphisms
T → Xi, which agree when composed with the map to Y , and since T is an
integral log scheme, a morphism T → X1×Y X2. The image of the unique point
of T has the desired properties. �

Corollary 2.2.4. Let f1 : X1 → Y and f2 : X2 → Y be morphisms of fine log
schemes and let X′ (resp. X′′) be their fiber product in the category of coherent
(resp. fine) log schemes. If f1 or f2 is exact, the morphism i : X′′ → X′ is a nil
immersion.

Proof By (1) of Proposition 2.1.5, the morphism i is a closed immersion, and
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Proposition 2.2.3 implies that i is surjective. These two facts imply that i is a
nil immersion. �

Corollary 2.2.5. A surjective and exact morphism of fine (resp. fine saturated)
log schemes is universally surjective in the category of fine log schemes. If
f : X → Y is a morphism of fine log schemes that is universally bijective in the
category of fine log schemes and Y is saturated, then f is exact.

Proof The first statement is a direct consequence of Proposition 2.2.3, to-
gether with the fact that the map Xsat → X is surjective for the saturated case.
We write the proof of the converse for fine log schemes, leaving the saturated
case to the reader. Suppose that f is universally bijective, i.e., that for every
Y ′ → Y , the underlying morphism of topological spaces X′ → Y ′ is bijective,
where X′ := X ×Y Y ′ in the category of fine log schemes. Let x be a geometric
point of X and let y be its image in Y . To prove that f [x is exact, we may re-
place Y by the log point y, since the induced map Xy → y is again universally
bijective. Thus we may assume without loss of generality that Y is a log point
and even that Y is the spectrum of an separably closed field k = k(y) = k(x).
Then X has a single point x and, since k is separably closed, MX,x � MX,x.
Choose a splitting α : P := MY,y → MY,y and a fine chart (α, θ, β) for f , with
β : Q → MX,x exact. It will suffice to prove that θ is exact. Let φ : P → P′ be
a local homomorphism of fine monoids, and let θ′ : P′ → Q′ be the integral
pushout of θ. The homomorphism P′ → k sending P′+ to 0 and P′∗ to 1 defines
a prelog structure on k, and hence a log point Y ′. Since φ is local and P is
sharp, we find a morphism of log points Y ′ → Y for which φ is a chart. Then
θ′ : P′ → Q′ is a chart for X′ → Y ′, and by assumption there is a point x′ ∈ X′

mapping to the unique point of Y ′. It follows that there is a prime ideal of Q′

mapping to the maximal ideal of P′, and consequently that θ′ is local. Thus θ
is universally local, in the sense of Proposition I.4.2.3. Since P is saturated, it
follows from this proposition that θ is exact. �

Example 2.2.6. To show that Corollary 2.2.5 is not trivial, here is an example
of a morphism that is surjective but not universally so. Consider the following
homomorphisms of monoids:

σ : N ⊕ N→ N : (a, b) 7→ a + b,
σ′ : N ⊕ N→ N : (c, d) 7→ c,

τ : N ⊕ N→ N ⊕ N : (a, b) 7→ (a + b, b),
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leading to the following diagrams of monoids and log schemes:

N ⊕ N Z′

N �
σ

σ′

�
N ⊕ N

τ

6

X
i -

i′
-

Z.

f

?

Then f is a monomorphism in the category of fine log schemes, as follows
from Proposition 1.2.4 and the fact that τgp is surjective. Let X → Y → Z be the
canonical factorization (1.2.1) of i, with j : X → Y the identity on topological
spaces and Y → Z strict. Then j is surjective but not exact, and we shall see
that it is not universally surjective.

The log scheme Y is Spec(α : N ⊕ N → Z[t]), where α sends (a, b) to ta+b.
Let Y ′ := Y ×Z Z′. Then the morphism Y ′ → Y is also a monomorphism of fine
log schemes. Since Y → Z is strict, the underlying scheme of Y ′ is

Y ×Z Z′ � Spec(Z[t, s]/(ts = t)).

The maps i′ and j define a map j′ : X → Y ′. Since Y ′ → Y is a monomorphism,
the map (id, j′) : X → X ×Y Y ′, is an isomorphism, but j′ is not surjective.

We saw in Section I.4.2 that the condition of exactness becomes much
more powerful when it holds at sufficiently many nearby points. The next the-
orem makes use of the notion of the solidity of the idealized fiber (see Vari-
ant 1.10.18) to guarantee that there are enough such points, in the context of
log schemes.

Theorem 2.2.7. Let f : X → Y be a morphism of fine saturated log schemes,
let x be a point of X, and let y := f (x), with the log structure inherited from
Y . Let X′ := X ×Y y be the fiber of f over y and let X′

K
:= (X′, αX′ ,KX′ ) be

its idealized version. If the idealized log fiber X′
K

is solid at x, the following
conditions are equivalent and are also equivalent to the existence, in some étale
neighborhood of x, of a chart for f subordinate to a Q-integral homomorphism
of fine monoids.

1. f is Q-integral in some neighborhood of x.
2. f is exact in some neighborhood of x.
3. f is s-injective in some neighborhood of x.
4. f is Q-integral at x.
5. f ′ : X′ → y is exact in some neighborhood of x.
6. f ′ : X′ → y is s-injective in some neighborhood of x.
7. dim(OX′,x/(M+

X,xOX′,xx)) + dim(MX,x) = dim(MY,y) + dim(OX′,x).
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8. dim(MX,x) = dim(MY,y) + dim(MX,x,KX′,x).

In any case, the implications denoted by the solid arrows in the figure

(1) - (2) - (3)

(4)
?

6

- (5)
?

- (6)
?

(8)

6

� - (7).
�

hold.

Proof Since the theorem is a local statement, we may replace X and Y by
Zariski neighborhoods of x and y respectively. In fact, if U → X and V → Y
are étale neighborhoods of x and y with U mapping to V , and if the theorem is
true for the restriction of f to U, then it is true for f as well, because the image
of U in X is Zariski open. Thus we may assume that the morphism f admits a
chart (α, θβ), where θ : P→ Q is a homomorphism of fine monoids. Replacing
P and Q by suitable localizations, we may also assume that P → MY,y and
Q → MX,x are local, so that P �MY,y �MY,y and Q �MX,x �MX,x. Let Kθ

be the ideal of Q generated by θ(P+). Then (Q,Kθ) → (MX′,x,KX′ ) is a chart
for the idealized log scheme X′

K
.

The implications indicated by the downward arrows in the first row of
the figure are trivial. Statement (1) implies (2) because a Q-integral homo-
morphism of saturated log schemes is exact, by Theorem I.4.7.7. Statement
(2) implies (3) and statement (5) implies (6) because an exact homomorphism
is s-injective, by Proposition I.4.2.1. We next claim that (4) implies (1). Since
a homomorphism θ is Q-integral if and only if θ is, hypothesis (4) implies that
θ : P → Q is Q-integral. It follows from Corollary I.4.6.4 that, for every face
F of P mapping into a face G of Q, the induced homomorphism PF → QG

is also Q-integral. For every x′ ∈ X, the homomorphism f [x′ : MY f (x′ ) → MX,x′

is charted by such a homomorphism, and hence is again Q-integral. Thus f is
Q-integral on all of X. Finally, (8) implies (4) by Theorem I.4.7.7. We have
proved all the implications indicated by solid arrows.

Now suppose that X′
K

is solid at x. Then, by Variant 1.10.18,

dim(OX′,x) = dim((OX′,x/M
+
X,xOX′,x)) + dim(MX,x,Kx).



342 III Logarithmic Schemes

Thus condition (7) is equivalent to (8).
It remains to prove that (6) implies (8) when X′

K
is solid at x. By Theo-

rem I.4.7.7, it will suffice to show that (6) implies that the homomorphism

MY,y → MX,x = MX′,x is critically s-injective. Let G be an f
[

x-critical face
ofMX′,x, and let q ∈ Spec(MX′,x) be the corresponding prime ideal. Since G

is f
[

x-critical, q belongs to Spec(MX′,x,KX′,x) and, since X′
K

is solid, there is a
prime ideal p of Spec(OX′,x) such that α−1

X′,x(p) = q. Let ξ be the point of X′ cor-
responding to p, a generization of x. SinceMX is coherent, the cospecialization
map MX,x → MX,ξ induces an isomorphism MX,x/G � MX,ξ. Statement (6)
implies that the mapMY,y →MX,ξ is injective. Since this is true for every f [x -
critical face G, the homomorphismMY,y →MX,x is critically s-injective. �

Proposition 2.2.8. Let f : X → Y be a morphism of fine saturated log
schemes. Assume that the underlying morphism of schemes f : X → Y is lo-
cally surjective. Then f is exact if Y is solid, and f is Q-integral if X is also
solid.

Proof Choose x ∈ X and let y := f (x). Replacing x and y by étale neigh-
borhoods, we may assume that MX,x � MX,x and similarly for y. We have a
commutative square

X(x)
a- Spec(MX,x)

Y(y)

f(x)

? b- Spec(MY,y).

c

?

If Y is solid, the map b is surjective and, since f is locally surjective, the map
f(x) is surjective. It follows that c is surjective, and then Proposition I.4.2.2
implies that f [x is exact. If X is also solid, the map a is surjective, and hence
its restriction to the fiber over the closed point of Spec(MY,y) is also surjective.
Thus the idealized log fiber X′

K
is also solid, and so it follows from the previous

theorem that f is Q-integral. �

This next result illustrates a connection between exactness and flatness that
the reader may have come to suspect.

Corollary 2.2.9. Let f : X → Y be morphism of solid locally noetherian log
schemes such that f is flat. Then f is exact and Q-integral.

Proof A flat morphism of locally noetherian schemes is locally surjective,
and so the corollary follows from the previous proposition. �
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2.3 Immersions and small morphisms

Definition 2.3.1. A morphism f : X → Y of log schemes is an immersion
(resp. closed immersion) if the underlying morphism of schemes f is an im-
mersion (resp. closed immersion) and the homomorphism f [ : f ∗log(MY )→ MX

is surjective.

If i : X → Y is a closed immersion, let

IX/Y := Ker
(
i−1(OY )→ OX

)
and KX/Y := Ker

(
(i−1(Mgp

Y )→Mgp
X

)
.

There is an exact sequence

1→ (1 + i−1IX/Y )→ i−1(O∗Y )→ O∗X → 1,

leading to a zero-sequence

0→ (1 + IX/Y )→ i−1(MY )→ i∗log(MY )→ 0,

which is exact if Y is u-integral. Thus there is a homomorphism of abelian
sheaves (

1 + i−1(IX/Y )
)
→ KX/Y , (2.3.1)

which is injective ifMY is u-integral and surjective if i is strict. Conversely, if
MY is integral and (2.3.1) is an isomorphism, then i is strict. An exact immer-
sion of integral log schemes is strict, since necessarily f is s-injective, by (2)
of Proposition I.4.2.1.

Definition 2.3.2. Let f : X → Y be a morphism of fine log schemes and let x
be a point of X. Then f is:

1. small at x if, for every (equivalently, for one) geometric point x over x, the
homomorphism f [x : ( f ∗log,xMY )x →MX,x is small;

2. s-finite at x if, for every (equivalently, for one) geometric point x over x,

the homomorphism f
[

x : MY, f (x) → MX,x makes MX,x a finitely generated
MY, f (x)-set;

3. Kummer at x if, for every (equivalently. for one) geometric point x over X,

the homomorphism f
[

x : MY, f (x) →MX,x is Kummer.

See Definition I.4.3.1 for these notions for homomorphisms of monoids.

Proposition 2.3.3. If f : X → Y is a morphism of fine log schemes and x is a
point of X, the following conditions are equivalent.

1. f is small at x.
2. For every (equivalently, for one) geometric point x over x, the homo-

morphism f
[

x : MY, f (x) →MX,x is small.
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3. For every (equivalently, for one) geometric point x over X, the groupMgp
X/Y,x

is finite.
4. f is small in a neighborhood of x.

Proof The equivalence of the first three conditions is straightforward. If they
are satisfied, we may, after an étale shrinking of X and Y , assume that f admits
a chart which is exact at x and at f (x), subordinate to a homomorphism of

fine monoids θ : P → Q. Then f
[

x coincides with θ, and hence θ is small. By
Proposition I.4.3.3 it follows that, for every face G of Q, the induced map
P→ Q/G is small, and hence that f is small. �

Proposition 2.3.4. If f : X → Y is a morphism of fine log schemes and x is a
point of X, the following conditions are equivalent.

1. f is s-finite at x.
2. For every (equivalently for one ) geometric point x over x, the homo-

morphism f
[

x : MY, f (x) →MX,x is Q-surjective.

If f is s-finite at x, then it is s-finite in some neighborhood of x.

Proof Proposition I.4.3.6 implies that conditions (1) and (2) are equiva-
lent. Suppose that they are verified and that f admits a fine chart (α, θ, β),
where α is exact at f (x) and β is exact at x. Then θ : P → Q identifies with
f
[

x : MY, f (x) → MX,x and, consequently, is Q-surjective. If x′ is any point of

X, the homomorphism f
[

x′ : MY, f (x′) →MX,x′ identifies with a homomorphism
P/F → Q/G, where F and G are suitable faces of P and Q, and consequently
is also Q-surjective. �

It follows from the results of Section I.4.3 that a morphism is Kummer if and
only if it is s-injective and s-finite. If Y is saturated, then by Corollary I.4.3.10
f is Kummer if and only if it is exact and small. An s-finite morphism is small,
and an immersion is s-finite. If X is a coherent log scheme, the map Xint → X
is a closed immersion and the map Xsat → Xint is s-finite. If f : X → Y and
g : Y → Z are small, then g ◦ f is small if f and g are small, and if g ◦ f is
small, g is small.

Proposition 2.3.5. Let f : X → Y be a small morphism of fine log schemes.
Then, locally on X and Y , f admits a factorization f = g◦ f ′, where f ′ : X → Y ′

is exact and Kummer and g : Y ′ → Y admits a fine chart (α, φ, α′), where φgp

is an isomorphism. If f is a closed immersion, then in fact f ′ is a strict closed
immersion.

Proof Since our assertion is local on X and Y , we may assume that we are
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working in the Zariski topology. Let x be a point of X and let y be its image
in Y . We may assume that f admits a chart subordinate to a homomorphism of
fine monoids θ : P→ Q. By Remarks II.2.3.2 and II.2.4.3, we may also assume
that αy : P → MY,y and βx : Q → MX,x are exact. Then the maps P → MY,y

and Q →MY,y are isomorphisms. Since f
[

x : MY,y →MX,x is small, it follows
that θ : P→ Q is small.

Now consider the factorization P
θ̃- Pθ θe

- Q described in Propo-
sition I.4.2.17. The homomorphism θ̃gp is an isomorphism and the homo-
morphism θe is exact. Moreover, since θ is small, it follows from Corol-
lary I.4.3.12 that Pθ → Q is locally exact, and hence that AQ → APθ is exact.
Let Y ′ := Y ×AP APθ and let α′ : P′ →MY ′ be the natural map. Then (α, θ̃, α′)
is a chart for g′ with the desired properties. Since X → AQ is strict, it follows
that f : X → Y ′ is also exact and small, hence Kummer. If f is a closed im-
mersion it is proper, and since g is affine it is separated, and hence f ′ is also
proper. Necessarily f ′ is an immersion, hence a closed immersion, and since it
is exact, it must also be strict, since an exact morphism is s-injective. �

Example 2.3.6. Let f : X → Y be a morphism of fine log schemes and let
X ×Y X denote the fiber product, computed in the category of integral log
schemes. Then the diagonal morphism ∆X/Y : X → X ×Y X is an immersion.
A chart (a, θ, b) for f will induce a chart for ∆X/Y that we can use to give
an explicit description of the construction in Proposition 2.3.5, based on the
exactification construction discussed in Proposition I.4.2.19.

Suppose that θ : P→ Q is a homomorphism of integral monoids. Recall that
(Q/P)gp � Qgp/Pgp, where we write Qgp/Pgp for the cokernel of θgp. Carrying
over the discussion in Remark I.3.3.6 to the category of log schemes, we see
that the homomorphism of monoids

θ : Q→ Q ⊕ Qgp/Pgp : q 7→ (q, [q])

induces a morphism of log schemes

mQ/P : AQ ×A∗Q/P → AQ, (2.3.2)

defining a right action of the group scheme A∗Q/P on the log scheme AQ, over
the log scheme AP. The homomorphism

φ : Q ⊕P Q→ Q ⊕ Qgp/Pgp : [(q1, q2)] 7→ (q1 + q2, [q1]]

corresponds to the morphism of log schemes

hQ/P : AQ ×A∗Q/P → AQ ×AP AQ : (α, γ) 7→ (α, αγ), (2.3.3)
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and the summation homomorphism σ : Q ⊕P Q → Q corresponds to the di-
agonal morphism AQ → AQ ×AP AQ. As explained in Proposition I.4.2.19, the
homomorphism φgp is an isomorphism and φ identifies Q⊕Qgp/Pgp → Q with
the exactification (Q ⊕ Q)σ → Q of σ.

Now, if (a, θ, b) is a chart for f , we find a chart (b, σ, b × b) for ∆X/Y . Then
the construction of Proposition 2.3.5 gives a factorization

∆X/Y : X
∆′X/Y- (X ×Y X)′

hX/Y- X,

where (X ×Y X)′ → X is the projection

(X ×Y X) ×(AQ ×AP AQ) (AQ ×A∗Q/P)→ X.

The following diagram, in which all the squares are cartesian, may be helpful.

(X ×Y X)′
hX/Y- X ×Y X

X
(id, 1)-

∆′X/Y

-

X × A∗Q/P
? hX- X ×AP AQ

id × b

?

AQ

b

? (id, 1)- AQ ×A∗Q/P

b × id

? hQ/P- AQ ×AP AQ .

b × id

?

(2.3.4)

2.4 Inseparable morphisms and Frobenius

Definition 2.4.1. Let X and Y be log schemes in characteristic p.

1. The absolute Frobenius endomorphism of X is the morphism FX : X → X
that is the identity on the underlying topological space of X and for which
F[

X : MX →MX is multiplication by p and F]
X : OX → OX is the pth-power

map.
2. If f : X → Y is a morphism of log schemes, then X′ is the fiber product

X ×FY Y , and the relative Frobenius morphism FX/Y : X → X′ is the mor-
phism whose composition with the projection X′ → X is FX and whose
composition with the projection X′ → Y is f .

The use of the relative Frobenius morphism requires some caution, since
the fiber product X ×FY Y need not be integral or saturated even if X and Y are.
Thus its construction may depend on the category in which this fiber product is
taken. One way to avoid this difficulty is to require that the morphism f : X →
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Y be saturated; see Section 2.5; in this case all three constructions agree, and
furthermore the morphism FX/Y is exact. Kato’s seminal article [48] defines a
morphism f to be of Cartier type if it is integral and if the the relative Frobenius
morphism FX/Y is exact. As we shall see in Corollary 2.5.4, it turns out that a
morphism f of fine saturated log schemes is of Cartier type if and only if it is
saturated.

The Frobenius endomorphism FX of a fine log scheme X is s-finite, hence
small, and it is exact if X is saturated. If f : X → Y is a morphism of fine
log schemes and X′ is formed in the category of integral (resp. saturated) log
schemes, then FX/Y is is small (resp. small and exact; see Proposition I.4.4.2).
In the category of integral log schemes, the exactification construction of the
morphism FX/Y explained in Proposition 2.3.5 is canonical, and hence global-
izes, as we shall see in Corollary V.3.3.8.

Frobenius morphisms are special cases of “weakly inseparable morphisms,”
a notion due to Kato. Our definition is slightly stronger than the original one he
proposed [48, 4.9]; we have added the requirement that f be radicial. As The-
orem 2.4.3 shows, this amounts to replacing “homeomorphism” by “universal
homeomorphism.”

Definition 2.4.2. A morphism of integral log schemes f : X → Y in char-
acteristic p is weakly inseparable if it satisfies the equivalent conditions of
Theorem 2.4.3 below. A morphism f is inseparable if it is exact and weakly
inseparable.

Theorem 2.4.3. Let f : X → Y be a morphism of fine log schemes in charac-
teristic p > 0. Then the conditions (1)–(3) below are equivalent. Furthermore,
they imply that f is a universal homeomorphism. 3

1. (a) For every x ∈ X, the homomorphism f [x : MY, f (x) → MX,x is a p-
isogeny (Definition I.4.4.5).

(b) The underlying morphism f : X → Y is radicial and a homeomorphism.
2. (a) Condition (1a) holds.

(b) The morphism f is affine and surjective.
(c) For every local section b of f∗OX , locally there exists r > 0 such that

bpr
is in the image of f ] : OY → f∗(OX).

3. (a) For each x ∈ X, the homomorphism f
[

x : MY, f (x) →MX,x is a p-isogeny
in the sense of Definition I.4.4.5.

(b) The morphism f is affine, and the kernel of OY → f∗(OX) is a nil ideal.
(c) Condition (2c) holds.

Proof The proof will depend on the following lemmas.
3 We thank O. Gabber for correcting some shortcomings in our first proof of this theorem.
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Lemma 2.4.4. Let θ : A→ B be a local homomorphism of local rings in char-
acteristic p > 0. Then θ induces a p-isogeny A∗ → B∗ if and only if the
following two conditions are verified.

1. For every a ∈ Ker(θ), there is an r > 0 such that apr
= 0.

2. For every b ∈ B, there exists an r > 0 such that bpr
is in the image of θ.

If these conditions are satisfied, then θ is a universal homeomorphism and in
particular is surjective and radicial.

Proof Suppose that θ induces a p-isogeny θ∗ : A∗ → B∗. If a ∈ Ker(θ), then
a is not a unit of A, hence 1 + a is a unit, and θ∗(1 + a) = 1. Since θ∗ is a
p-isogeny, it follows that (1 + a)pr

= 1 for some r > 0, and then apr
= 0. If

b ∈ B and b is a unit, then since θ∗ is a p-isogeny there exist r > 0 and a ∈ A
such that θ(a) = bpr

. If b is not a unit, then 1+b is a unit, and there exist u ∈ A∗

and r > 0 such that (1 + b)pr
= θ(u). Then θ(u − 1) = bpr

. We leave the proof
of the converse, which is similar, to the reader.

Condition (2) implies that Spec(θ) is injective and, since it is stable under
base change, it implies that Spec(θ) is radicial. Conditions (1) and (2) together
imply that Spec(θ) is surjective and integral. Thus by [29, 18.12.11], Spec(θ)
is a universal homeomorphism. �

Lemma 2.4.5. Let θ : A → B be a local homomorphism of local rings of
characteristic p > 0, and let θ′ : A′ → B′ be the corresponding homomorphism
of their strict henselizations. Assume that Spec(θ) is surjective and radicial and
that θ′ satisfies conditions (1) and (2) of Lemma 2.4.4. Then θ also satisfies
these conditions.

Proof Consider the diagram

A′
θ′′- A′ ⊗A B

φ - B′

A

α

6

θ - B.

γ

6

β

-

The maps α and β are ind-étale and hence the same is true of γ and φ [4,
tag 097H]. Moreover Spec(θ) is universally bijective, and hence Spec(θ′′)
is bijective. Since θ′ satisfies the conditions of Lemma 2.4.4, Spec(θ′) =

Spec(φ) ◦ Spec(θ′′) is bijective and, since Spec(θ′) is bijective, Spec(φ) is also
bijective. Since φ is flat it is faithfully flat, hence injective.

Now, if a ∈ Ker(θ), then α(a) ∈ Ker(θ′′), and hence α(apr
) = 0 for some

r > 0. Since α is injective, in fact apr
= 0. If b ∈ B, there exist r > 0 and a′ ∈ A′
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such that θ′(a′) = β(b)pr
. Since φ is injective, we can conclude that θ′′(a′) =

γ(bpr
). In the following commutative diagram of A-modules, the bottom row is

exact by construction and the top row is consequently exact, since α is flat:

A′
θ′′- A′ ⊗A B

π′- A′ ⊗A (B/A)

A

α

6

θ - B

γ

6

π - B/A.

δ

6

In fact α is faithfully flat, so, for every A-module M, the natural map
M → A′ ⊗A M is injective. We have seen that π′(γ(bpr

)) = 0, hence π(bpr
) = 0,

so there is an a ∈ A such that θ(a) = bpr
. �

Now suppose that condition (1) of Theorem 2.4.3 holds. Since f is a homeo-
morphism, it is easily seen to be affine. (For example, one could observe that
f is quasi-compact and apply Serre’s criterion.) Thus conditions (2a) and (2b)
hold. To prove (2c), begin by observing that, if y is the image of a point x
of X, then the natural map f∗(OX)x → OX,x is an isomorphism, since f is a
homeomorphism. Thus it will suffice to show that, for every b ∈ B := OX,x,
there exists an r > 0 such that bpr

is in the image of A := OY,y. Let x be a
geometric point of X lying over x, let y be its image in Y , and let A′ := OY,y and
B′ := OX,x, the strict Henselizations of A and B, respectively. By statement (5)
of Proposition I.4.4.8, condition (1a) implies that the group homomorphism
O∗Y,y → O

∗
X,x is a p-isogeny. It follows that the homomorphism A′ → B′ satis-

fies conditions (1) and (2) of Lemma 2.4.4. By Lemma 2.4.5, the same is true
of the homomorphism A→ B. Thus (2c) is satisfied.

Suppose that (2) of Theorem 2.4.3 holds and let x be a geometric point
of X mapping to y ∈ Y . Then, by statement (5) of Proposition I.4.4.8, the

homomorphisms f
[

x and f [x
∗ are p-isogenies. In particular, (3a) is satisfied. To

prove (3b), choose a point y of Y; since f is surjective there is an x ∈ X with
f (x) = y. Furthermore, Lemmas 2.4.4 and 2.4.5 imply that the kernel of f ] is
a nil ideal. Thus (3b) is also satisfied.

Conditions (3b) and (3c) imply that f is integral, radicial, and surjective,
hence a universal homeomorphism by [29, 18.12.11]. Moreover, these con-
ditions remain true after a strict étale localization on Y . Since f is a univer-
sal homeomorphism, it is also a homeomorphism for the étale topology [3,
VIII,1.1]. Let x be a geometric point of X mapping to y in Y . Since every étale
neighborhood of x in X is pulled back from an étale neighborhood of y in Y , it
follows that the homomorphism f ]x : OY,y → OX,x still satisfies conditions (3b)
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and (3c). Then Lemma 2.4.4 implies that f ]x induces a p-isogeny O∗Y,y → O
∗
X,x.

Condition (3a) asserts that f
[

x is a p-isogeny, and so (5) of Proposition I.4.4.8
implies that f [x is also a p-isogeny. �

It will be useful to know that weakly inseparable morphisms admit weakly
inseparable charts.

Proposition 2.4.6. Let f : X → Y be a weakly inseparable morphism of fine
(resp. fine saturated) log schemes. Then, étale locally on Y , there exists a chart
(α, θ, β) for f such that θ is a weakly inseparable homomorphism of fine (resp.
fine saturated) monoids.

Proof Since f is a universal homeomorphism, it is also a homeomorphism
for the étale topology [32, I, §11], and so localizing on X and Y is the same. In
particular, we may assume that the log structures on X and Y are Zariski. Let
x be a point of X and let y be its image in Y . Applying Lemma 2.4.7 below to
the p-isogeny f [x : MY,y → MX,x, we find a fine chart (α, θ, β) for f [x with θ a
p-isogeny of fine (resp. fine saturated) monoids. By Proposition II.2.2.3, this
chart extends to a chart for f in neighborhoods of x and y. �

Lemma 2.4.7. Suppose that φ : My → Mx is a local homomorphism of inte-
gral monoids, where My and Mx are finitely generated and φ (resp. φgp) is a
p-isogeny. Then there exists a fine chart (α, θ, β) for φ such that θ (resp. θgp) is
a p-isogeny, where θ is a homomorphism of fine (resp. fine saturated) monoids.

Proof Suppose that φ is a p-isogeny. Choose a finitely generated submonoid
P of My such that the induced map P → My is surjective, and then choose a
finitely generated submonoid Q of Mx containing φ(P) whose image surjects to
Mx. Since φ is a p-isogeny and Q is finitely generated, there exists some r > 0
such that prQ ⊆ Im φ. Hence there is a finitely generated submonoid A of My

such that φ(A) = prQ. Replacing P by P + A, we may assume that prQ ⊆ φ(P)
and φ(P) ⊆ Q. Now let P′ := Q ×Mx P, with its natural maps α′ : P′ → My and
θ : P′ → Q. This monoid is finitely generated by (6) of Theorem I.2.1.17. We
claim that α′ induces a surjection to My. Indeed, if m ∈ My, there exists a ∈ P
mapping to m, and then (φ(a), a) ∈ P′. Moreover, if b ∈ Q, there exist r > 0 and
a ∈ P such that prb = φ(a), and then (prb, a) ∈ P′ with θ(prb, a) = prb. Finally,
suppose that (b1, a1), (b2, a2) ∈ P′ and θ(b1, a1) = θ(b2, a2). Then b1 = b2 and
φ(a1) = φ(a2), and it follows that pma1 = pma2 for some m. Thus θ is a p-
isogeny. If My and Mx are saturated, we may replace θ by its saturation θsat,
which is again a p-isogeny by Proposition I.4.4.8.

Suppose instead that φgp is a p-isogeny. Then the same construction
applied to φgp produces finitely generated markups (Definition II.2.3.3)
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b : Lx → Mx, a : Ly → My and a p-isogeny θ : Ly → Lx such that φ ◦ a = b ◦ θ.
Then the corresponding homomorphism of charts P := a−1(My) → Q :=
b−1(Mx) fits into a chart for φ and has the desired properties. �

Proposition 2.4.8. In the category of fine log schemes in positive characteris-
tic, the following statements hold.

1. If f : X → Y is weakly inseparable and Y is saturated, then f is inseparable.
2. If f and g are two composable morphisms and h = g ◦ f , then if any two of

f , g, and g ◦ f are weakly inseparable, so is the third.
3. If f and g are inseparable, so is g ◦ f . If g ◦ f is inseparable then f is

inseparable if g is, and the converse holds if Y is saturated.
4. The class of weakly inseparable (resp. of inseparable) morphisms is closed

under base change in the category of fine log schemes and also in the cate-
gory of fine saturated log schemes.

Proof Statement (1) is proved in the same way as Proposition I.4.4.7. It is
easy to verify that if any two of f , g and g ◦ f are radicial homeomorphisms,
then so is the third. Proposition I.4.4.8 shows that the analogous result holds
for p-isogenies of integral monoids, and statement (2) follows. Since f is exact
if g ◦ f is exact and since weakly inseparable morphisms to a saturated target
are necessarily inseparable, (3) also holds.

Now suppose that f : X → Y and g : Y ′ → Y are morphisms of fine log
schemes and that f is weakly inseparable, and let f ′ : X′ → Y ′ be the pullback
of f along g, in the category of integral monoids. Recall that the underlying
scheme X′ of X′ is a closed subscheme of the fiber product X′′ := Y ′ ×Y X. If

x′ is a point of X′ mapping to x ∈ X, the morphism f
′[

x′ is the integral pushout

of the morphism f
[

x, and hence is again a p-isogeny, by Proposition I.4.4.8.
The morphisms X′ → X′′ and X′ → Y ′ are affine and satisfy condition (2c) of
Theorem 2.4.3, and hence the same is true for their composition f ′. It remains
to prove that the kernel of the map OY ′ → f∗(O′X) is a nil ideal, equivalently,
that X′ maps surjectively to Y ′. Since the map X′′ → Y ′ is surjective, it will
suffice to prove that X′ → X′′ is surjective. When f is exact, the “four-point
lemma,” Proposition 2.2.3, suffices; fortunately, the analogous result also holds
for weakly inseparable morphisms, as Lemma 2.4.9 below shows. This com-
pletes the proof in the category of fine log schemes.

To finish the proof in the category of fine saturated log schemes, it remains
to prove that the map X′sat → Y is a radicial homeomorphism. Since this is
true for X′ → Y and since X′′sat → X′ is surjective, we need only show that
X′sat → X′ is radicial. This is a local statement, which we can check in the
presence of a weakly inseparable chart (α, θ, β) for f as Proposition 2.4.6. We
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may also assume that there is a chart (α, φ, γ) for g, where φ : P → P′ is a
homomorphism of fine saturated monoids. Since P→ Q is a p-isogeny and P′

is saturated, the homomorphism Q′ → Q′sat is a p-isogeny (see statement (3)
of Proposition I.4.4.8). Then the corresponding morphism of schemes AQ′sat →

AQ′ is radicial. Since X′sat → X′ is obtained by base change from this map, it
is also radicial.

Lemma 2.4.9. Let f : X → Y be a morphism of fine log schemes, and let
f ′ : X′ → Y ′ be its pullback along a morphism Y ′ → Y , in the category of fine
log schemes. Suppose that x is a geometric point of X such that the morphism
f [x : MY, f (x) → MX,x is a p-isogeny, where p is the characteristic exponent of
k(x). Let y′ be a point of Y ′ mapping to y := f (x). Then there is a point x′ of
X′ mapping to x and to y′.

Without loss of generality we may replace X, Y , and Y ′ by the log points
defined by x, y, and y′, respectively. In particular, X = Y = Spec k, where
k is an algebraically closed field, and Y = Spec k′, where k → k′ is a field
extension and k′ is also algebraically closed. Then we can identify y with y, x
with x, and y′ with y′. ThenM∗Y,y → M

∗
X,x is the identity map of k∗,M∗Y,y →

M′∗Y ′,y′ is the inclusion k∗ → k′∗, and the morphisms of log schemes are given
by local homomorphisms θ : MY,y → MX,x and φ : MY,y → M

′
Y,y extending

these homomorphisms. LetM′ :=M′Y ′,y′ ⊕MY,yMX,x in the category of integral
monoids. By Proposition I.4.4.9, the homomorphisms φ′ : MX,x → Q′ and
θ′ : M′Y ′,y′ → Q′ are local and the kernel K of M∗Y ′,y′ ⊕M∗Y,y M

∗
X,x → Q′∗ is

p∞-torsion. ButM∗Y ′,y′ ⊕M∗Y,y M
∗
X,x = k′∗ ⊕k∗ k∗ � k′∗ and, since k′ is a field of

characteristic p > 0, in fact K = {1}, and hence the map k′∗ → Q′∗ is injective.
Since k′ is algebraically closed, the group k′∗ is divisible, and hence there is
a homomorphism σ : Q′∗ → k′∗ splitting the inclusions k′∗ → Q′∗. Extend
σ to a homomorphism Q′ → k′ by sending Q′+ to zero to obtain a local log
ring X′′ := Spec(Q′ → k′). Then the homomorphisms θ′ : M′Y ′,y′ → Q′ and
φ′ : MX,x → Q′ define morphisms of log schemes X′′ → Y ′ and X′′ → X,
which agree when projected to Y , and hence a morphism X′′ → X′. The image
of the closed point of X′′ has the desired property. �

For more about inseparable morphisms of log schemes, we refer to the im-
portant paper of I. Vidal [77].

2.5 Integral and saturated morphisms

The following definitions satisfy the conventions established in II.1.1.11.

Definition 2.5.1. Let f : X → Y be a morphism of integral log schemes, let x
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be a point of X, and let P be one of the following properties: integral (Defini-
tion I.4.6.2), saturated, or n-saturated for some integer n (Definition I.4.8.2).
Then f is said to satisfy the property P at x if for every geometric point x lying
over x, the homomorphism f [x : MY, f (x) →MX,x has P. The morphism f is said
to satisfy P if it does so at every point of X.

It is clear that if f [x has one of the properties P for some geometric point
lying over x, then it does so for every such geometric point. Note that, as a
consequence of statement (2) of Proposition I.4.6.3 (resp. of statement (4) of
Proposition I.4.8.5), the homomorphism f [x : MY, f (x) →MX,x has P if and only

if f
[

x : MY, f (x) →MX,x does.

Proposition 2.5.2. Let f : X → Y be a morphism of fine log schemes, let x be
a point of X, and let n be a natural number.

1. If f is saturated or just n-saturated at x, then it is integral at x. If f is integral
at x, it is exact at x.

2. If f n-saturated at x for some n > 1 and if X is saturated at x and Y is
saturated at f (x), then f is saturated at x.

3. Let (α, θ, β) be a fine chart for f that is neat at x and such that α is neat at y.
Then f has one of the properties P listed in Definition 2.5.1 if and only if θ
has the corresponding property P.

4. If f has property P at x, then it does so in a neighborhood of x.

Proof Saturated and n-saturated homomorphisms are integral by their very
definition. If f is integral at x, the homomorphism f [x is local and integral,
hence exact, by statement (4) of Proposition I.4.6.3. This proves statement (1).
Statement (2) follows from Corollary I.4.8.16. Let (α, θ, β) be a chart for f
that is neat at x and such that α is neat at y. Since f [x is exact, it is s-injective,
and hence, by Remark II.2.4.5, the chart β is also neat at x. Thus the monoids
P and Q are sharp and the homomorphisms P → MY, f (x) and Q → MX,x

are isomorphisms, and statement (3) becomes clear. Suppose f has P at x. To
verify that the same is true in a neighborhood of x, it is harmless to replace X
by an fppf neighborhood of x. Thus, by Theorem 1.2.7, we may assume that
there exists a chart (α, θ, β) for f which is neat at x and such that α is neat at y.
Then θ : P→ Q has property P. If G is a face of Q and F := θ−1(G), it follows
from Corollary I.4.6.4 and Proposition I.4.8.8 that the induced homomorphism
P/F → Q/G still has P. But (α, θ, β) is a chart for f on all of X, so, for every

x′ ∈ X, the homomorphism f
[

x′ : MY, f (x′) → MX, f (x′) identifies with such a
homomorphism, and hence also has P. �

Proposition 2.5.3. Let f : X → Y and g : Y → Z be morphisms of fine log
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schemes, let x be a point of x, let y := f (x) and z := g(y), and let P be one of
these properties: integral, saturated, or n-saturated.

1. If f is has P at x and g has P at y, then g ◦ f has P at x. If g ◦ f has P at x
and f has P at x, then g has P at y. If g ◦ f has P at x and g[y : MZ,z →MY,y

is surjective for some geometric point y over y, then f has P at x.
2. The family of morphisms satisfying P is stable under base change in the

category of fine log schemes. In particular, if X → Y and Y ′ → Y are
morphisms of fine (resp. fine saturated) log schemes and f is integral (resp.
saturated) then X′ := X×Y Y ′ is an integral (resp. saturated) log scheme and
the morphism f ′ : X′ → Y ′ is integral (resp. saturated).

3. If f : X → Y is a morphism of fine log schemes and the rank ofM
gp
Y, f (x) is

less than or equal to one, then f is integral at x.

Proof When P is integral, statement (1) follows from statement (1) of Propo-
sition I.4.6.3, and statement (3) follows from (5) of that proposition. Statement
(2) follows from statements (1) of the same proposition and (3) of Defini-
tion I.4.6.2. When P is saturated or n-saturated, statement (1) follows from
Proposition I.4.8.5, and statement (2) follows from Proposition I.4.8.9. State-
ment (3) follows from (5) of Proposition I.4.6.3. �

Proposition 2.5.3 shows that the family of integral morphisms of fine log
schemes is stable under base change in the categories of log schemes and in
the category of integral log schemes. However, the analogous statement in the
category of saturated log schemes fails, as Example I.4.6.5 shows.

Corollary 2.5.4. Let f : X → Y be an integral morphism of fine saturated
log schemes in characteristic p. Then f is saturated if and only if the relative
Frobenius morphism FX/S : X → X(p) (Definition 2.4.1) is exact.

Proof Let x be a geometric point of X, and let x′ := FX/Y (x) and y := f (x).
Since f is integral, the fiber product X(p) := X ×FY Y is an integral log scheme,
andMX(p),x′ is the pushout ofMX,x andMY,y over the pth toric Frobenius en-
domorphism ofMY,y. SinceMX,x is saturated and FX/Y is exact, it follows that
MX(p),x′ is also saturated. The exactness of FX/Y at x means that the homo-
morphism f [x is p-quasi-saturated at x (Definition I.4.8.2) and, since f is inte-
gral, it is in fact p-saturated at x. Since f [x is integral, it is locally exact and, by
Corollary I.4.8.16, it follows that f [x is saturated. �

Theorem 2.5.5. Let f : X → Y be a morphism of fine saturated log schemes.
Consider the following conditions.

1. The morphism f is saturated.
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2. For every geometric point x of X such that dimMX,x = dimMY, f (x), the
morphism f [x is strict.

3. For every geometric point x of X such that dimMX,x = dimMY, f (x) = 1, the
homomorphism f [x is strict.

4. For every geometric point x of X, the groupMgp
X/Y,x is torsion free.

Then the following implications hold.

1. Condition (1) implies conditions (2), (3), and (4), and condition (2) implies
condition (3).

2. If f is Q-integral (resp. integral) and X is solid, then (2) implies (1) (resp.
(3) implies (1)).

3. If f is Q-integral and the idealized fibers of f are solid, then (4) implies (1).

Proof Since a saturated homomorphism is by definition integral, the fact that
(1) implies (3) and (4) follows from Theorem I.4.8.14; the fact that (2) implies
(3) is trivial. Suppose that f is Q-integral (resp. integral) and that X is solid.
Let x be a geometric point of X and let q be a prime ideal of MX,x whose
height is the same as the height of f [x

−1(q) (resp. and such that this height
is one) and let G be the corresponding face of MX,x. Since X is solid, there
exists a generization x′ of x such that the cospecialization map identifiesMX,x′

withMX,x/G. Then condition (2) (resp. condition (3)) implies that f [
x′

is strict.
Since this is true for every such q, Theorem I.4.8.14 implies that f [x is saturated.
Finally, suppose that f is Q-integral and that its idealized fibers are solid. Let
G be an f [x -critical face ofMX,x, and let q be the corresponding prime ideal of
MX,x. Since the idealized fiber of f over y is solid, it contains a point x′ such
that the cospecialization map identifiesMXx′ with the quotient ofMX,x by G.
Condition (4) asserts that the cokernel of the homomorphism f

gp
x′ is torsion

free, and since this is true for every such G, Theorem I.4.8.14 implies that f [x
is saturated. �

For more about integral and saturated morphisms, we refer to the discus-
sion in Section IV.4. In particular, if f is an integral morphism of fine log
schemes that is smooth in the sense of log geometry (Definition IV.3.1.1), then
the underlying morphism of schemes f is flat (see Theorem IV.4.3.5). Pro-
position IV.4.1.9 shows that the idealized fibers of a logarithmically smooth
(or just flat) morphism are solid, so that (3) of Theorem 2.5.5 applies to such
morphisms. Furthermore, Theorem IV.4.3.6 shows that a smooth and integral
morphism f is saturated if and only if the fibers of f are reduced.
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2.6 Log blowups

Blowing up is an important technique in algebraic geometry. It provides, for
example, a universal way to render a coherent sheaf of ideals invertible. The
logarithmic analog is equally important and admits an analogous description.
Log blowups in the category of integral log schemes behave in surprising ways;
in particular they are compatible with base change and are monomorphisms,
despite the fact that they are not set-theoretically injective.4

Proposition 2.6.1. Let X be a fine log scheme and let K be a sheaf of ideals
inMX . Then the following conditions are equivalent.

1. Étale locally on X, K is generated as a sheaf of ideals by a single element.
2. Étale locally on X, K is isomorphic as a sheaf ofMX-sets toMX .
3. The sheaf of ideals K is coherent and, for each geometric point x of X, its

stalk Kx is monogenic as anMx-set.

A sheaf of ideals with this property is said to be invertible.

4. If f : X → Y is a morphism of fine log schemes andK is an invertible sheaf
of ideals inMY , then the ideal ofMX generated by f −1(K) is invertible.

5. If I and J are ideal sheaves inMx, then I + J is invertible if and only if
each of I and J is invertible.

Proof If (1) holds, a choice of a local generator of K defines a surjection
of MX-sets from MX to K . This surjection is necessarily injective because
MX is integral. Thus (1) implies (2), and it is clear that (2) implies (3). If (3)
holds, observe that a local generator of Kx will also generate K in some étale
neighborhood of x, because of the coherence of K . Thus (3) implies (1). It is
clear that condition that condition (1) for K ⊆ MY implies condition (1) for
the ideal ofMX generated by f −1(K), proving statement (4). Statement (5) is
proved as in the case of monoschemes; see Lemma II.1.7.1. �

Definition 2.6.2. A morphism h : X′ → X of fine (resp. fine saturated) log
schemes is a log blowup if there exists a coherent sheaf of ideals K in MX

with the following properties.

1. The ideal ofMX′ generated by h−1(K) is invertible.
2. If h′ : T → X is any morphism of fine (resp. fine saturated) log schemes

such that the ideal ofMT generated by h′−1(K) is invertible, then h′ factors
uniquely through h.

In this case we say that h : X′ → X is a log blowup of X along K .

4 We have already seen this phenomenon in the category of monoschemes, in Section II.1.7
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The universal property (2) in the definition ensures that if a log blowup of
X along K exists, it is unique up to unique isomorphism. Thus we may, and
shall often, write XK → X for any such map, and refer to it as the (log) blowup
of X along K . Note that, because of statement (4) of Proposition 2.6.1 (which
holds only in the category of integral log schemes), the universal mapping
property for log blowups is stronger than the universal property for blowups
in the category of schemes [34, II,7.14]. (In the latter case, morphisms to the
blowup of a coherent sheaf of ideals in OX may not preserve invertibility of the
pullback ideal.)

Theorem 2.6.3. In the category of fine (resp. fine saturated) log schemes, the
following statements hold.

1. The base change of a log blowup is again a log blowup. Specifically, if
h : XK → X is a log blowup of X along K then, for any g : X′ → X, the
fiber product X′ ×X XK (computed in the appropriate category) is a log
blowup of the ideal ofMX′ generated by g−1(K).

2. The log blowup of X along any coherent sheaf of ideals of MX always
exists.

3. Every log blowup is proper, a monomorphism, and universally surjective.
4. If I and J are coherent sheaves of ideals in MX , then there are unique

isomorphisms of log schemes over X

XI+J � XI ×X XJ � (XI)J � (XJ )I.

Proof Let K be a coherent sheaf of ideals in MX , let h : XK → X be a log
blowup of X along K , and let T be any fine (resp. fine saturated) log scheme.
The universal mapping property of the log blowup XK → X allows us to iden-
tify the set of morphisms T → XK as the subset of all morphisms T → X
rendering K invertible. In particular, the map XK → X is a monomorphism.
The universal mapping property also implies that the category of log blowups
is stable under base change. Indeed, let g : X′ → X be a morphism, and let
h′ : X′′ := X′ ×X XK → XK be the pullback of h along g. Let g′ : X′′ → XK
be the natural projection. Then by (4) of Proposition 2.6.1, the ideal of MX′′

generated by h′−1(K ′) = g′−1(h−1(K)) is invertible. Moreover, if f : T → X′ is
any morphism renderingK ′ invertible, the composition g◦ f rendersK invert-
ible, and hence factors uniquely through XK . Thus the map f factors uniquely
through X′′, and X′′ satisfies the universal property of a log blowup of the ideal
K ′.

We prove the existence of log blowups in several steps. We first do the con-
struction in the category of fine log schemes. To obtain the blowup in the sat-
urated category it will suffice to replace the fine log blowup by its saturation.
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Lemma 2.6.4. Let X be a fine log scheme and let K be a coherent sheaf of
ideals in MX . Suppose that X admits a chart a subordinate to a fine monoid
P, or more generally to a fine monoscheme S. Suppose also that there exists a
coherent sheaf of ideals I inMS such that a−1(I) generates K . Then there is
a commutative diagram of locally monoidal spaces

XK
aK - SI

X

h

? a - S,

g

?

where g is the log blowup of S along I (Theorem II.1.7.2), where h is a log
blowup of X along K , and where aK is a chart for XK . In particular, the triple
(a, g, aK ) is a chart for h.

Proof First suppose that X = AS, the log scheme associated to the mono-
scheme AS (see Proposition 1.2.4). Let h : XK := ASI → AS be the mor-
phism of log schemes associated to g. Then the map of locally monoidal spaces
aK : XK → SI is strict and the ideal of XK generated by K is the same as the
ideal generated by I and hence is invertible. To check that h is universal, sup-
pose that f : T → X is a morphism of integral log schemes such that the ideal
KT ofMT generated by K is invertible. Then a ◦ f : T → S is a morphism of
integral monoidal spaces such that the ideal of MT generated by I is invert-
ible, and hence a ◦ f factors uniquely through g, by the universal property of
SI. Since T is a log scheme, the resulting morphism T → SI factors uniquely
through a map f̃ : T → ASI , and necessarily h ◦ f̃ = f . Thus h is a log blowup
and the lemma is proved in this case.

For the general case, observe that the morphism a factors uniquely through
a morphism of log schemes X → AS. Then by (1) of Theorem 2.6.3, the mor-
phism XK := X ×AS SI → X is a log blowup. Furthermore, XK → ASI is strict,
and hence so is the morphism XK → SI. �

If the log structure of X is Zariski, then we can cover X by open sets U
admitting charts, and on each U we can construct the blowup UK . For any two
open sets U and V in this covering, there is a unique isomorphism UK ×X V �

VK ×X U, and these isomorphisms automatically satisfy the cocycle condition.
It then follows by standard methods that these local constructions glue together
to form a global object XK → X satisfying the requisite universal mapping
property. On the other hand, if the log structure on X only admits charts étale
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locally, this global construction could a priori yield an algebraic space rather
than a scheme. The following additional argument 5 overcomes this difficulty.

Lemma 2.6.5. Let h : XK → X be a log blowup in the category of fine (resp.
fine saturated) log schemes. Then the invertible sheaf of OXK -modules on XK
corresponding to the torsor of local generators of h−1(K) is relatively ample
for the morphism h. In particular, the morphism XK → X is projective.

Proof We can verify this statement locally on X, and in particular we may
assume that there is a fine chart α : (P,K) → (MX ,K). Since all our construc-
tions and the desired conclusions are compatible with base change, we are
reduced to the case in which X = AP and K is the ideal generated by K. Then
XK is the log scheme associated to monoscheme APK obtained by blowing up
AP along the ideal K. As explained in Theorem II.1.7.2, the invertible sheaf of
ideals on APK generated by K is ample, so Proposition II.1.9.5 implies that the
corresponding invertible sheaf of OXK -modules is also ample. �

As we have seen, to prove the existence of log blowups in general, it will suf-
fice to consider the case in which X is affine and admits an affine étale covering
η : X̃ → X such that the induced log structure on X̃ is Zariski. If K is a coher-
ent sheaf of ideals inMX , we have seen that the log blowup X̃K of X̃ along the
ideal of MX̃ generated by K exists as a log scheme. The universal mapping
property of the blowup endows X̃K with descent data for the covering X̃ → X,
but, because X̃K is not affine over X̃, these data are not a priori effective. How-
ever, the descent data also apply to the invertible sheaf L̃ on X̃K constructed in
Lemma 2.6.5. Then as explained in [32, VIII, 7.8], one can descend the sheaf
of graded algebras associated to L, and then construct a scheme X

K
and an

isomorphism X
K
×X X̃ � X̃

K
compatible with these data. Then the sheaf of

monoidsMX̃K descends to an (étale) sheaf of monoids on XK . The ideal sheaf
ofMXK generated by K is invertible because it is so on X̃K , and the universal
mapping property is easy to verify.

We have already seen that a log blowup is a monomorphism. Properness can
be checked locally on X and is preserved by base change, and follows from the
fact that X → XK is projective, as we observed in Lemma 2.6.5. Statement (4)
follows from the universal mapping property of log blowups and statement (5)
of Proposition 2.6.1.

It remains only to prove that log blowups are universally surjective. Since
the base change of a log blowup is again a log blowup, the surjectivity of
log blowups will prove their universal surjectivity. Moreover, since the satura-
tion map Xsat

K
→ XK is always surjective, it suffices to treat the surjectivity in

5 due to Martin Olsson
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the category of integral log schemes. Thus the theorem will follow from the
stronger statement provided by the following proposition. �

Proposition 2.6.6. Let X be a fine (resp. fine and saturated) log scheme, let
h : X′ → X be a log blowup, and let x be a geometric point of X. Then there
exists a point x′ of X′ such that h(x′) = x and such that the induced map

h[x′ : M
gp
X,x →M

gp
X′,x′

is surjective with finite kernel (resp. is an isomorphism).

Proof This statement is local on X, so we may assume that there is a chart
α : P→MX and that h is the log blowup of X along the ideal ofMX generated
by K. Then the morphism X → AP is strict, hence exact, and therefore satisfies
the four point lemma, Proposition 2.2.3. Thus we are reduced to proving the
statement when X = AP. In this case the lemma follows immediately from the
analogous statement for monoschemes, Proposition II.1.7.7. We should remark
that the saturation hypothesis could be weakened: it is enough to require that
the sheafM

gp
X be torsion free. �

The following important application of log blowups is due to [40].

Theorem 2.6.7. Let f : X → Y be a quasi-compact morphism of fine log
schemes. Then, locally on Y , there exists a log blowup Y ′ → Y such that
the base-changed map f ′ : X′ → Y ′ is Q-integral.

Proof First suppose that f admits a chart (a, θ, b), where θ : P → Q is a
homomorphism of fine monoids, or, more generally, a morphism g : T → S
of fine and quasi-compact monoschemes. By Theorem II.1.8.1, there exists a
coherent sheaf of ideals I inMS such that the induced morphism gI : TI → SI
is exact. By Theorem II.1.8.7, this morphism is in fact Q-integral. Let K be
the ideal ofMY defined by I and let fK : XK → YK be the blowup of f along
K . Then by Lemma 2.6.4, we have morphisms of locally monoidal spaces
XK → TI and YK → SI, fitting into a chart for fK . It follows that fK is also
Q-integral.

In general, there exists a finite collection of étale maps Xi → X over which
such charts exists, and for each of these there exists an idealKi ofMY such that
Xi,Ki → Y is Q-integral. Let K :=

∑
Ki, and recall from Theorem 2.6.3 that

XK is the fiber product of the XKi over X. It follows from Proposition I.4.6.3
that Q-integrality is preserved by base change. Hence each XiK → YK is Q-
integral, and so XK → YK is also Q-integral. �



IV

Differentials and Smoothness

To motivate the definitions to come, let us recall the classical notion of “differ-
entials with log poles” along a divisor with normal crossings, which served as
a model for some of the original notions of log geometry. Let X/Z be a smooth
morphism and let Y ⊆ X be a divisor with strict normal crossings in X relative
to Z. This means that, locally on X, there exist a sequence (t1, . . . , tn) of sections
of OX such that the corresponding map X → An

Z is étale and an integer r ≥ 0
such that the ideal I of Y in X is defined by (t1 · · · tr). The sheaf of differentials
of X/Z is the target of the universal derivation d : OX → Ω1

X/Z and, in the pres-
ence of coordinates (t1, . . . , tn), is the freeOX-module generated by dt1, . . . , dtn.
Let j : U → X be the open immersion complementary to the closed immersion
Y → X. Then the sheaf Ω1

X/S(log Y) of differentials with log poles along Y [13]
is the subsheaf of j∗ j∗(Ω1

X/Z) generated by (dlog t1, . . . , dlog tr, dtr+1, . . . , dtn),
where dlog t := t−1dt. Its dual is the subsheaf of DerX/Z(OX) generated by
(t1∂/∂t1, . . . , tr∂/∂tr, ∂/∂tr+1, . . . , ∂/∂tn). This is the sheaf of derivations of OX

that preserve the ideal I. Let α : MU/X → OX be the compactifying log struc-
ture associated with U → X, that is, the sheaf of sections of OX whose restric-
tion to U is invertible. Then each ti defines a section mi ofMU/X , and the map
β : Nr → M defined by (m1, . . . ,mr) is a chart for MU/X . There is a unique
homomorphism

Nr → Ω1
X/Z(log Y)

sending the ith basis element ei to dti/ti that agrees with the homomorphism

O∗X → Ω1
X/Z ⊆ Ω1

X/Z(log Y) : u 7→ dlog u

on β−1(O∗X). It then follows from the construction ofM that there is a unique
homomorphism

dlog: M→ Ω1
X/Z

361
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such that α(m) dlog(m) = dα(m) for all sections m ofM, and Ω1
X/Z is the target

of the universal such homomorphism. Note that in particular, ti dlog(mi) = dti.
We hope that this familiar example motivates the formal algebraic defini-

tions of log derivations and log differentials, which we explain in the forth-
coming sections. These definitions turn out to fit beautifully into the deforma-
tion theory of log schemes, in the general geometric framework envisioned by
Grothendieck, thus providing one of the main justifications for the foundations
of log geometry.

1 Derivations and differentials

1.1 Derivations and differentials of log rings

For the sake of simplicity and concreteness, let us begin by discussing deriva-
tions and differentials for log rings. Recall from Definition III.1.2.3 that a log
ring is a homomorphism α : P→ A from a monoid P into the underlying multi-
plicative monoid of a ring A, and that if α and β are log rings, a homomorphism
θ : α→ β is a commutative diagram

Q
β - B

P

θ[
6

α - A.

θ]

6

Definition 1.1.1. Let θ be a homomorphism of log rings as given above and
let E be a B-module. Then a (log) derivation of θ with values in E is a pair
(D, δ), where D : B → E is an A-linear homomorphism and δ : Q → E is a
homomorphism of monoids, such that:

1. D(bb′) = bD(b′) + b′D(b) for every pair of elements b, b′ of B;
2. D(β(q)) = β(q)δ(q) for every q ∈ Q;
3. δ(θ[(p)) = 0 for every p ∈ P.

We denote by Derθ(E) the set of all derivations of θ with values in E. If
(D1, δ1) and (D2, δ2) are derivations of θ and b1, b2 are elements of B, then
(b1D1 + b2D2, b1δ1 + b2δ2) is also a derivation, so that Derθ(E) has a natu-
ral structure of a B-module. Furthermore, if h : E → E′ is a homomorphism of
B-modules and (D, δ) ∈ Derθ(E), then (h◦D, h◦δ) ∈ Derθ(E′). so that Derθ be-
comes a functor from the category of B-modules into itself. Recall that if b is an
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element of B that acts bijectively on E, then any derivation D of B/A with val-
ues in E extends uniquely to the localization λ : B → Bb. Thus if βb is the log
ring Q → B → Bb, the natural map Derλ◦θ(E) → Derθ(E) is an isomorphism.
Finally, note that if q ∈ β−1(B∗), then (2) implies that δ(q) = β(q)−1D(β(q)),
i.e., δ(q) is the “logarithmic derivative of β(q) with respect to D.” It follows
that δ factors uniquely through Q → Qlog, where βlog : Qlog → B is the log-
arithmic homomorphism associated to β, in the sense of Proposition II.1.1.5.
Thus the natural map Derθlog (E) → Derθ(E) is an isomorphism, where θlog is
the associated homomorphism of log rings with Qlog in place of Q. Further-
more, if Q is dull and D ∈ DerB/A(E), then δ(q) := β(−q)D(β(q)) is the unique
homomorphism Q → E such that (D, δ) ∈ Derθ(E). Thus the natural map
Derθ(E)→ DerB/A(E) is an isomorphism in this case.

It is straightforward to construct the universal derivation of a homo-
morphism of log rings; its target will be the module of logarithmic differen-
tials.

Proposition 1.1.2. Let θ : α → β be a homomorphism of log rings. Then the
functor Derθ is representable by a universal derivation

(d, d) : (B,Q)→ Ω1
θ ,

whose target is called the module of (log) differentials of θ.

Proof There are of course many ways to construct Ω1
θ by generators and re-

lations. If one is willing to make use of the standard module of differentials
d : B→ Ω1

B/A, one can take

Ω1
θ :=

(
Ω1

B/A ⊕ (B ⊗ Qgp/Pgp)
)
/R.

Here Qgp/Pgp is the cokernel of the map Pgp → Qgp and R is the submodule of
Ω1

B/A ⊕ (B ⊗ Qgp/Pgp) generated by elements of the form

(dβ(q),−β(q) ⊗ π(q)) for q ∈ Q,

where π : Q → Qgp/Pgp is the canonical map. Then d : B→ Ω1
θ sends b to the

class of (db, 0) and d : Q → Ω1
θ sends q to the class of (0, 1 ⊗ π(q)). We omit

the straightforward verification that this construction has the desired universal
property. �

The formation of the module of log differentials enjoys the familiar functo-
riality properties of its classical counterpart. Let us record the essential ones
here.
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Proposition 1.1.3. Let

(β : Q→ B)
φ- (β′ : Q′ → B′)

(α : P→ A)

θ

6

- (α′ : P′ → A′)

θ′
6

be a commutative diagram of log rings. Then there is a canonical homo-
morphism

B′ ⊗B Ω1
θ → Ω1

θ′

compatible with the universal derivations. This homomorphism is an isomor-
phism if the square is cartesian, or if α = α′, Q = Q′, and B → B′ is a
localization.

Proof A B′-module E′ gives rise to a B-module φ∗(E′), and composition with
θ] and θ[ induces a natural map

Derθ′ (E′)→ Derθ(φ∗(E′)). (1.1.1)

Applying this map to the universal derivation with values in Ω1
θ′ , one finds a

canonical element in Derθ(θ∗(Ω1
θ′ )) and hence a map

Ω1
θ → φ∗(Ω1

θ′ ).

The homomorphism in the proposition is deduced from this one by adjunc-
tion. Now suppose that the diagram is cartesian. Then B′ = A′ ⊗A B and
Q′ = P′ ⊕P Q, and it follows easily that, for any B′-module E′, the map in
equation (1.1.1) is an isomorphism. Consequently

HomB′ (B′ ⊗B Ω1
θ , E

′) � HomB(Ω1
θ , φ∗(E

′)) � HomB′ (Ω1
θ′ , E

′),

and since this holds for every E′, it follows that the map is an isomorphism.
In the case of localizations, suppose that B′ is the localization of B by b, and
let (D, δ) be a derivation of θ with values in E′. Then multiplication by b acts
bijectively on E′ and, as we have observed, (1.1.1) is an isomorphism and
consequently so is the homomorphism in the proposition. �

The module of log differentials has an especially simple description in the
case of monoid algebras.

Proposition 1.1.4. Let R be a commutative ring, let θ[ : P → Q be a monoid
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homomorphism, and let θ] : R[P] → R[Q] be the corresponding homo-
morphism of monoid algebras. Write θ := (θ[, θ]) for the resulting homo-
morphism of log rings and, with some abuse of notation, π : Q → Qgp/Pgp

for the homomorphism from Q to the cokernel of (θ[)gp.

1. For every R[Q]-module E, the natural map

Derθ(E)→ Hom(Qgp/Pgp, E)

is an isomorphism. Namely, given any δ ∈ Hom(Qgp/Pgp, E), there is a
unique D ∈ DerR[Q]/R[P] such that (D, δ) ∈ Derθ(E).

2. Define D : R[Q]→ R[Q] ⊗ Qgp/Pgp and δ : Q→ R[Q] ⊗ Qgp/Pg by

D(eq) := eq ⊗ π(q) and δ(q) := q ⊗ π(q).

Then (D, δ) is a universal log derivation of θ, and hence induces a natural
isomorphism

Ω1
θ → R[Q] ⊗ Qgp/Pgp.

In particular, if Qgp/Pgp is a finitely generated group the order of whose
torsion is invertible in R, then Ω1

θ is a free R[Q]-module.

Proof Note that the map in (1) is injective, since, for any (D, δ) ∈ Derθ(E),
D(eq) = eqδ(q). To prove the surjectivity, given δ ∈ Hom(Qgp/Pgp, E), let D be
the unique R-linear map sending eq to eqδ(q). If q and q′ are elements of Q,

D(eqeq′ ) = D(eq+q′ )

= eq+q′ ⊗ δ(q + q′)

= eqeq′ ⊗ (δ(q) + δ(q′))

= eqeq′ ⊗ δ(q′) + eqeq′ ⊗ δ(q)

= eqD(eq′ ) + eq′D(eq).

Furthermore,

D(eθ
[(p)) = eθ

[(p)δ(θ[(p)) = 0.

Thus D is a derivation of R[Q] over R[P] and (D, δ) is the required element of
Derθ(E).

Statement (1) implies statement (2), since, for every R[Q]-module E,

HomR[Q](Ω1
θ , E) � Derθ(E) � HomZ(Qgp/Pgp, E)

� HomR[Q](R[Q] ⊗ Qgp/Pgp, E). �

Corollary 1.1.5. If G is an abelian group, then there is a universal derivation

R[G]→ R[G] ⊗G : eg 7→ eg ⊗ g.
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Proof The previous result shows that this is the case when R[G] is replaced
by the log ring G → R[G]. Since G is dull, the log differentials agree with
the usual differentials, as we observed in the discussion immediately following
Definition 1.1.1. �

Corollary 1.1.6. Let 0→ G′ → G → G′′ → 0 be an exact sequence of abelian
groups and let I ⊆ R[G] be the kernel of the corresponding homomorphism
R[G]→ R[G′′]. Then there is a unique isomorphism

η : R[G′′] ⊗Z G′ � I/I2

mapping 1 ⊗ g′ to (eg′ − 1) (mod I2) for all g′ ∈ G′.

Proof If g′ ∈ G′, then eg′ − 1 ∈ I. If also h′ ∈ G′, then

eg′+h′ − 1 = eg′eh′ − 1

= (eg′ − 1)(eh′ − 1) + (eg′ − 1) + (eh′ − 1)

= (eg′ − 1) + (eh′ − 1) (mod I2).

Thus the map G′ → I/I2 sending g′ to the class of eg′ − 1 is a group homo-
morphism. Since I/I2 is an R[G]/I � R[G′′]-module, this homomorphism in-
duces by adjunction an R[G′′]-linear map η : R[G′′] ⊗ G′ → I/I2, as in the
statement of the corollary. Since I is generated by the set of all eg′ − 1 with
g′ ∈ G′, η is surjective.

On the other hand, we constructed in Corollary 1.1.5 a (universal) derivation
D : R[G]→ R[G] ⊗G sending each eg to eg ⊗ g. Consider the composite

I
D- R[G] ⊗G → (R[G]/I) ⊗G � R[G′′] ⊗G. (1.1.2)

Since the last of these R[G]-modules is annihilated by I and since D is a deriva-
tion, the map (1.1.2) is in fact R[G]-linear and annihilates I2. Furthermore, for
any g′ ∈ G′, D(eg′ − 1) = eg′ ⊗ g′ = 1 ⊗ g′ ∈ R[G′′] ⊗ G. Since I is gen-
erated by such elements, the map (1.1.2) factors through a homomorphism
d : I/I2 → R[G′′]⊗G′, sending the class of eg′ − 1 to 1⊗ g′. Then dη = id and,
since η is surjective, it must be an isomorphism. �

Corollary 1.1.7. Let φ : P → Q be a homomorphism of finitely generated
abelian groups and let K be the kernel of φ. Then the corresponding homo-
morphism R[P]→ R[Q] is flat if and only if R ⊗ K = 0.

Proof First observe that if φ is injective, Q is a free P-set, hence R[Q] is a free
R[P]-module, and in particular the homomorphism R[P] → R[Q] is faithfully
flat. Now let P′ denote the image of φ. Since R[P′] → R[Q] is faithfully flat,
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we see that R[P] → R[Q] is flat if and only if R[P] → R[P′] is flat. Thus we
are reduced to the case in which φ is surjective.

Let I ⊆ R[P] be the kernel of R[φ]. If R[P]→ R[P]/I is flat, necessarily I2 =

I, and then Corollary 1.1.6 implies that R ⊗ K = 0. Conversely, if R ⊗ K = 0,
then I = I2. Since I is finitely generated, Nakayama’s lemma implies that, at
each point x of AP, either Ix = OX,x or Ix = 0. Thus the map AP′ → AP is an
open immersion, hence flat. �

Remark 1.1.8. In the category of schemes, the sheaf of differentials Ω1
X/Y can

be identified with the conormal sheaf of the diagonal embedding X → X ×Y X.
The logarithmic version of this useful interpretation is not straightforward, be-
cause in general the diagonal embedding is not strict, and the notion of the
conormal sheaf in this case requires some preparation, as we shall see later in
Section 3.4. We can, however, explain here how to think about the conormal
sheaf of the diagonal in the case of monoid algebras.

If θ : P → Q is a homomorphism of integral monoids and Aθ : AQ → AP

is the corresponding morphism of log schemes, then the diagonal embedding
AQ → AQ ×AP AQ corresponds to the homomorphism σ : Q ⊕P Q → Q given
by summation. Since σ is surjective, to make it strict is the same as to make it
exact, and Proposition I.4.2.19 allows us to identify the universal exactification
of σ with the embedding

i : AQ → A∗Q/P ×AQ : α 7→ (1, α).

Let J (resp. I) be the kernel of the homomorphism R[i#] (resp. of the aug-
mentation homomorphism R[Qgp/Pgp] → R). Corollary 1.1.6 constructed
an isomorphism: I/I2 � R ⊗ Qgp/Pgp, and hence by base change we have
J/J2 � R[Q] ⊗ Qgp/Pgp. Thus the isomorphism of Proposition 1.1.4 identifies
Ω1
θ with the conormal J/J2 of the exactified diagonal embedding.

The following result will have a geometric explanation in Remark 3.2.5,
where we will see that the morphisms of log schemes corresponding to φ and
ψ are étale.

Proposition 1.1.9. Suppose that we are given a commutative diagram of log
rings

(Q
β
→ B)

ψ- (Q′
β′

→ B′)

(P
α
→ A)

θ

6

φ-

θ′
-

(P′
α′

→ A′),

θ′′
6
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where φ[gp : Pgp → P′gp and ψ[gp : Qgp → Q′gp are isomorphisms and where
the natural maps A⊗Z[P]Z[P′]→ A′ and B⊗Z[Q]Z[Q′]→ B′ are isomorphisms.
Then the natural maps

B′ ⊗B Ω1
θ → Ω1

θ′ and Ω1
θ′ → Ω1

θ′′

are also isomorphisms.

Proof To prove that the second arrow above is an isomorphism, we must
prove that for any B′-module E′, the natural map Derθ′′ (E′) → Derθ′ (E′)
is an isomorphism. This map is obviously injective. Suppose that (D′, δ′) ∈
Derθ′ (E′). Since φgp is an isomorphism, δ′ annihilates the image of P′. Hence
D′(α′(p′)) = α(p′)δ′(p′) = 0 for every p′ ∈ P′, and it follows that
D′(aα′(p′)) = 0 for every a ∈ A and every p′ ∈ P′. Since A′ is generated
by such products, D′ annihilates A′ and so (D′, δ′) belongs to Derθ′′ (E′).

For the first arrow, we must prove that Derθ′ (E′) → Derθ(E′) is an isomor-
phism for every E′. Injectivity follows from the facts that ψ[gp is an isomor-
phism and that B′ is generated by B and Q. To prove surjectivity, let ε (resp.
ε′) denote the log ring Q → Z[Q] (resp. Q′ → Z[Q′]). Since ψ[gp is an iso-
morphism, it induces an isomorphism Hom(Q′, E′)→ Hom(Q, E′). Then Pro-
position 1.1.4 implies that ψ induces an isomorphism Derε′ (E′) → Derε(E′).
Thus if (D, δ) ∈ Derθ(E′), there is a unique (D′, δ′) ∈ Derε′ (E′) such that
δ′ ◦ ψgp = δ. Necessarily δ′gp ◦ θ′[

gp
= 0, and it follows that D′ annihilates

Z[P]. Then D′ ∈ DerZ[Q′]/Z[P](E′) and D ∈ DerB/A restrict to the same element
of DerZ[Q]/Z[P]. Applying Lemma 1.1.10 below with R = Z[P], S = Z[Q], and
S′ = Z[Q′], we conclude that there is a D′′ ∈ DerB′/A restricting to D′. Then
(D′′, δ′) ∈ Derθ′ (E′) restricts to (D, δ) ∈ Derθ(E′), completing the proof. �

Lemma 1.1.10. Suppose we are given a commutative diagram of commutative
ring homomorphisms

A - B - B′

R

6

- S

6

- S′,

6

in which the square on the right is cocartesian. Then if E′ is a B′-module, the
natural map

DerB′/A(E′)→ DerB/A(E′) ×DerS/R(E′) DerS′/R(E′)

is an isomorphism. Consequently, the following sequence is exact:

B′ ⊗S Ω1
S/R → B′ ⊗B ΩB/A ⊕ B′ ⊗S′ Ω1

S′/R → Ω1
B′/A → 0.
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Proof The injectivity is clear from the fact that B′ is generated as an algebra
by the images of B and S′. For the surjectivity, suppose that we are given E′-
valued derivations of B/A and of S′/R that agree on S, which we denote by
the same letter D. Define a function 〈 , 〉 : B × S′ → E′ by setting 〈b, s′〉 :=
s′D(b) + bD(s′). This function is evidently Z-bilinear. Moreover, if s ∈ S,

〈sb, s′〉 = s′D(sb) + sbD(s′)
= s′sD(b) + s′bD(s) + sbD(s′)
= ss′D(b) + bD(ss′)
= 〈b, ss′〉.

Even though D is not S-linear, this equality implies that 〈 , 〉 factors through an
R-linear map D : B ⊗ S′ → E′. One checks immediately that D is a derivation
of B′/A. �

1.2 Derivations and differentials of log schemes

Although log schemes are the focus of our study, it is convenient to define
derivations and differentials for prelog schemes as well.

Definition 1.2.1. Let f : X → Y be a morphism of prelog schemes and let E
be a sheaf of OX-modules. A derivation (or, for emphasis, log derivation) of
X/Y with values in E is a pair (D, δ), where D : OX → E is a homomorphism
of abelian sheaves and δ : MX → E is a homomorphism of sheaves of monoids
such that the following conditions are satisfied:

1. D(αX(m)) = αX(m)δ(m) for every local section m ofMX;
2. δ( f [(n)) = 0 for every local section n of f −1(MY ),
3. D(ab) = aD(b) + bD(a) for every pair of local sections a, b of OX;
4. D( f ](c)) = 0 for every local section c of f −1(OY ).

We denote by DerX/Y (E) the set of all such derivations. Then the presheaf
DerX/Y (E) that to every open subset U of X assigns the set of derivations of
U/Y with values in E|U is in fact a sheaf. Furthermore, if (D1, δ1) and (D2, δ2)
are sections of DerX/Y (E), so is (D1 + D2, δ1 + δ2), and if a is a section of OX

and (D, δ) an section of DerX/Y (E), then (aD, aδ) also belongs to DerX/Y (E).
ThusDerX/Y (E) has a natural structure of a sheaf of OX-modules.

Variant 1.2.2. Derivations for idealized log schemes are defined in exactly
the same way as in Definition 1.2.1. Thus, if f : X → Y is a morphism of
idealized log schemes, and (D, δ) ∈ DerX/Y (E), we do not require that δ(k) = 0
for k ∈ KX , and we have Ω1

X/Y = Ω1
(X,∅)/(Y,∅). The reason for this definition will
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become apparent from the relationship between derivations and deformations
explained in Theorem 2.2.2 and Variant 2.2.3.

The formation of DerX/Y is functorial in E: an OX-linear map h : E → E′

induces a homomorphism

DerX/Y (h) : DerX/Y (E)→ DerX/Y (E′) (D, δ) 7→ (h ◦ D, h ◦ δ).

The following proposition explains how Der is also functorial in X/Y .

Proposition 1.2.3. Let

X′
g - X

Y ′

f ′

? h - Y

f

?

be a commutative diagram of prelog schemes.

1. Composition with g] and g[ induces a morphism of functors

Derg : DerX′/Y ′ → DerX/Y ◦g∗,

which for an OX′ -module E′ is the map

DerX′/Y ′ (E′)→ DerX/Y (g∗(E′)) : (D′, δ′) 7→ (D′ ◦ g], δ′ ◦ g[).

2. The functoriality morphism Derg is an isomorphism in the following cases

(a) f ′ is the morphism of log schemes associated to the morphism f of
prelog schemes.

(b) The diagram is cartesian in the category of prelog schemes.
(c) The diagram is cartesian in the category of log schemes.

Proof The verification that composition with g] and g[ takes derivations to
derivations is immediate. To prove (2a), recall from Proposition II.1.1.5 and
especially diagram (1.1.1) of its proof, that the log structure Mlog

X → OX as-
sociated to the prelog structure MX → OX is obtained from the cocartesian
square in the following diagram:

α−1
X (O∗X) - O∗X

MX

?
- Mlog

X

?
- OX .

-
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Thus the sheaf of monoidsMlog
X is locally generated by the images ofMX and

O∗X , and it follows that Derg is injective. Conversely, if (D, δ) ∈ DerX/Y (E),
define

∂ : O∗X → E : u 7→ u−1Du.

Then ∂(uv) = ∂u + ∂v, and ∂ is a homomorphism O∗X → E. Furthermore, if m
is a section of α−1

X (O∗X), then

∂(αX(m)) = αX(m)−1D(αX(m)) = αX(m)−1αX(m)δ(m) = δ(m).

Since the diagram is cocartesian, it follows that there is a unique δlog : Mlog
X →

E which agrees with δ onMX and with ∂ on O∗X . SinceMlog
X is generated by

MX and O∗X , in fact DαX(m) = αX(m)δlog(m) for every section m ofMlog
X . Fur-

thermore, sinceMlog
Y is generated by O∗Y andMY , δlog annihilates the image of

f −1(Mlog
Y ). Thus (D, δlog) is a section of DerX′/Y ′ (E) that restricts to (D, δ). This

shows that the functoriality map is also surjective and completes the proof of
statement (2a). In the case (2b), let p := h◦ f ′ = f ◦g. If (D, δ) ∈ DerX/Y (g∗E′),
then, by the classical version of (2b), there is a unique D′ ∈ DerX′/Y ′ (E′), which
restricts to D ∈ DerX/Y . Since the diagram is cartesian in the category of prelog
schemes, the map

f ′−1(MY ′ ) ⊕p−1(MY ) g−1(MX)→MX′

is also an isomorphism, and the map δ : MX → g∗(E′) induces a unique map
MX′ → g∗(E′) that annihilates f ′−1(MY ′ ). It follows that (D′, δ′) satisfies con-
ditions (1) and (2) of Definition 1.2.1 as well, and this completes the proof
of (2b). Finally, we observe that (2c) is a consequence of (2a) and (2b), since
the log structure of the fiber product in the category of log schemes is the log
structure associated to the prelog structure of the fiber product in the category
of prelog schemes. �

Theorem 1.2.4. Let f : X → Y be a morphism of prelog schemes. Then the
functor E 7→ DerX/Y (E) is representable by a universal object

OX
d- Ω1

X/Y , MX
d- Ω1

X/Y

(
or MX

dlog- Ω1
X/Y

)
.

Proof There are of course many constructions possible. For example, we can
take

Ω1
X/Y =

(
Ω1

X/Y ⊕ (OX ⊗M
gp
X )

)
/R,

where R is the sub OX-module generated by sections of the form

(dαX(m),−αX(m) ⊗ m) for m ∈ MX , (0, 1 ⊗ f [(n)) for n ∈ f −1(MY ),
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with the evident maps

d : OX → Ω1
X/Y , d : MX → Ω1

X/Y .

Proposition 1.2.11 below gives an alternative construction that does not use the
sheaf Ω1

X/Y as an ingredient. �

Remark 1.2.5. When using additive notation for MX , it seems sensible to
write d for the map MX → Ω1

X/Y . Then αX : MX → OX behaves like an ex-
ponential map, which is consistent with the equation dαX(m) = αX(m)dm. In
this case, the canonical injection O∗X → MX needs a symbol λ, which should
be regarded as a logarithm map, and one has dλ(u) = u−1du, as expected.
When the monoid law on MX is written multiplicatively and O∗X is viewed
as a submonoid of MX , it is more natural (and more usual) to write dlog for
the universal map MX → Ω1

X/Y , since dlog(mn) = dlog(m) + dlog(n) and
dlog(u) = u−1du if u ∈ O∗X ⊆ MX .

The proofs of the next two corollaries are immediate and therefore omitted.

Corollary 1.2.6. Let f : X → Y be a morphism of log schemes given by a
morphism of log rings θ as in Definition 1.1.1. Then Ω1

X/Y is the quasi-coherent
sheaf associated to the A-module Ω1

θ . �

Corollary 1.2.7. Let f : X → Y be a morphism of schemes with trivial log
structure and let E be a sheaf ofOX-modules. ThenDerX/Y (E) can be identified
with the usual sheaf of derivations of X/Y with values in E, i.e., with the sheaf
of homomorphisms of abelian groups D : OX → E satisfying conditions (3)
and (4) of Definition 1.2.1. �

Corollary 1.2.8. If f : X → Y is a morphism of coherent log schemes, Ω1
X/Y

is quasi-coherent, and it is of finite type (resp. of finite presentation) if f is of
finite type (resp. of finite presentation).

Proof This assertion is of a local nature on X, so we may assume that X and
Y are affine, and by Proposition II.2.4.2, that f admits a coherent chart. Then
f comes from a morphism of log rings whose underlying monoids P and Q
are finitely generated. By Corollary 1.2.6, Ω1

X/Y is quasi-coherent. Since Ω1
X/Y

is of finite type (resp. of finite presentation) if f is, and since Qgp is a finitely
generated abelian group, Ω1

X/Y is of finite type (resp. of finite presentation) if
f is. �

We shall see that a derivation (D, δ) of log schemes is uniquely determined
by δ. This observation leads to a new construction of the sheaf of differentials,
which is in some ways more convenient that the standard one.

Proposition 1.2.9. Suppose that f : X → Y is a morphism of log schemes,
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that E is a sheaf of OX-modules, and that (D, δ) is a pair of homomorphisms of
sheaves of monoids satisfying conditions (1) and (2) of Definition 1.2.1. Then
D is uniquely determined by δ and necessarily satisfies conditions (3) and (4).

Proof We shall need the following simple lemma.

Lemma 1.2.10. If X is any scheme, the image of O∗X → OX generates OX

as sheaf of additive monoids. That is, any local section of OX can locally be
written as a sum of sections of O∗X . In particular, if X is a log scheme, OX is
generated, as a sheaf of additive monoids, by the image of αX : MX → OX .

Proof Let a be a local section of OX and let x be a point of X. If a maps to
a unit in the local ring OX,x, then a is a unit in some neighborhood of x, and
hence a is locally in the image of O∗X . If a maps to an element of the maximal
ideal of OX,x, then a − 1 maps to a unit, and so a = 1 + (a − 1) is locally the
sum of two units. �

The lemma evidently implies that D is uniquely determined by δ, and that
condition (4) follows from condition (2). To check (3), observe that if m and n
are sections ofMX and a := αX(m) and b := αX(n), then

D(ab) = D(αX(m)αX(n))

= D(αX(m + n))

= αX(m + n)δ(m + n)

= αX(m)αX(n)(δ(n) + δ(m))

= αX(m)αX(n)δ(n) + αX(m)αX(n)δ(m)

= aD(b) + bD(a).

If ai = αX(mi) and a = a1 + a2, then again

D(ab) = D(a1b + a2b) = a1D(b) + bD(a1) + a2D(b) + bD(a2) = aD(b) + bD(a).

A similar argument with b, together with an application of Lemma 1.2.10,
shows that (3) holds for any sections a and b of OX . �

The following proposition gives an alternative construction of the sheaf of
differentials of a morphism of log schemes, as a suitable quotient of the sheaf
OX ⊗M

gp
X . We consider the subsheaves of OX ⊗M

gp
X defined as follows:

• R1 ⊆ OX ⊗M
gp
X is the subsheaf of sections locally of the form∑

i

αX(mi) ⊗ mi −
∑

i

αX(m′i) ⊗ m′i ,

where (m1, . . . ,mk) and (m′1, . . . ,m
′
k′ ) are sequences of local sections ofMX

such that
∑

i αX(mi) =
∑

i αX(m′i);
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• R2 is the image of the map

OX ⊗ f −1(Mgp
Y )→ OX ⊗M

gp
X .

Proposition 1.2.11. Let f : X → Y be a morphism of log schemes. Then there
is a unique isomorphism of sheaves of OX-modules:

Ω1
X/Y �

(
OX ⊗M

gp
X

)
/(R1 + R2),

sending dm to the class of 1⊗m for every local section m ofMX . In particular,
Ω1

X/Y is generated as a sheaf of OX-modules, by the image of d : MX → Ω1
X/Y .

Proof The main difficulty is contained in the following lemma.

Lemma 1.2.12. The sheaves R1 and R2 are sheaves of sub-OX-modules of
OX ⊗M

gp
X .

Proof This result is clear for R2; the difficulty is R1. For a finite sequence
m := (m1, . . . ,mk) of sections ofMX , let

s(m) :=
∑

i

αX(mi) ∈ OX

r(m) :=
∑

i

αX(mi) ⊗ mi ∈ OX ⊗M
gp
X .

Let S be the sheaf of pairs (m,m′) of finite sequences of sections ofMX such
that s(m) = s(m′). Then R1 is the subsheaf of sections of OX ⊗M

gp
X locally of

the form r(m) − r(m′) for some local section (m,m′) of S.
Note first that the pair (0, 0) belongs to S and that r(0) − r(0) = 0, so that

0 ∈ R1. Next, note that, since (m′,m) ∈ S if (m,m′) ∈ S, it follows that −r ∈ R1

whenever r ∈ R1. Now if (m,m′) and (n,n′) ∈ S, let p (resp. p′) denote the
concatenation of m and n (resp. of m′ and n′). Then (p,p′) ∈ S and

r(m) − r(m′) + r(n) − r(n′) = r(p) − r(p′).

Thus R1 is an abelian subsheaf of OX ⊗M
gp
X .

It remains to check that R1 is stable under multiplication by sections a of
OX . Lemma 1.2.10 shows that it suffices to check this for a = αX(m), with m a
section ofMX . Let us first observe that S is stable under the action ofMX by
translation. Thus, if m = (m1, . . . ,mk) is a sequence of sections ofMX and m
is any section ofMX , let m + m := (m1 + m, . . . ,mk + m) and let a := αX(m).
Then

s(m + m) =
∑

αX(mi + m)

= αX(m)
∑

αX(mi)
= αX(m)s(m)
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= as(m).

Hence if (m,m′) ∈ S,

s(m + m) = αX(m)s(m) = αX(m)s(m′) = s(m′ + m),

so that (m + m,m′ + m) ∈ S. Next, we compute as follows:

r(m + m) =
∑

αX(mi + m) ⊗ (mi + m)

=
∑

αX(mi)αX(m) ⊗ mi +
∑

αX(mi)αX(m) ⊗ m

= a
∑

αX(mi) ⊗ mi + a
∑

αX(mi) ⊗ m

= ar(m) + as(m) ⊗ m.

Hence, if (m,m′) ∈ S, we have, since s(m) = s(m′),

a(r(m) − r(m′)) = ar(m) − ar(m′)
= ar(m) + as(m) ⊗ m − ar(m′) − as(m′) ⊗ m

= r(m + m) − r(m′ + m).

Since (m + m,m′ + m) ∈ S, we can conclude that a(r(m) − r(m′)) ∈ R1. �

Now let us write Ω for the quotient of OX ⊗ M
gp
X by R1 + R2 and let

d : MX → Ω be the map described in the statement. We claim that there is
a unique derivation d : OX → Ω such that dαX(m) = αX(m)dm for all lo-
cal sections m of OX . As we have explained, the uniqueness follows from
Lemma 1.2.10. If a is any section of OX , choose a sequence m of local sec-
tions ofMX with s(m) = a. Then it follows from the definition of R1 that the
image of r(m) in Ω is independent of the choice of m. Let d : OX → Ω be the
map of abelian sheaves such that ds(m) is the class of r(m) for every sequence
m. In particular, if m is a section ofMX and m := (m), then αX(m) = s(m) and
so dαX(m) is the class of r(m) = αX(m) ⊗ m. Thus, dαX(m) = αX(m)dm, and
the pair (d, d) satisfies (1) and (2), hence also (3) and (4), of Definition 1.2.1.

To check that (d, d) is universal, suppose that E is a sheaf of OX-modules
and (D, δ) ∈ DerX/Y (E). Since E is a sheaf of abelian groups, δ factors uniquely
throughMgp

X , and since E is a sheaf of OX-modules, it factors through a unique
OX-linear map θ : OX ⊗M

gp
X → E. Property (2) of Definition 1.2.1 implies that
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θ annihilates R2. If m is a sequence of sections ofMX , then

θ(r(m)) = θ
(∑

i

αX(mi) ⊗ mi

)
=

∑
i

αX(mi)δ(mi)

=
∑

i

D(αX(mi))

= D
(∑

i

αX(mi)
)

= D(s(m)).

Consequently θ(r(m)) = θ(r(m′)) whenever (m,m′) ∈ S, so θ factors uniquely
through an OX-linear map h : Ω → E. This is the unique homomorphism such
that h(d(m)) = δ(m) for every local section m ofM. It follows that h(d(a)) =

D(a) for every local section a of OX . �

The difference between classical and log differentials is revealed by the
Poincaré residue mapping, of which there are several versions. The next ex-
ample explains a version for log rings, and the proposition which follows it is
a geometric incarnation.

Example 1.2.13. Let θ : (α : P → A) → (β : Q → B) be a homomorphism
of log rings, let F be a face of Q containing the image of P, and let I be
the ideal of B generated by β(pF). Define δ : Q → B/I ⊗ (Q/F)gp to be the
homomorphism sending q to 1 ⊗ πF(q), where πF(q) is the image of q in
(Q/F)gp. Then β(q)δ(q) = 0 for every q ∈ Q, so (0, δ) defines an element
of Derθ(B/I ⊗ (Q/F)gp). The corresponding homomorphism

ρF : Ω1
θ → B/I ⊗ (Q/F)gp

sends dq to 1 ⊗ πF(q) if q ∈ Q and db to 0 if b ∈ B. In particular, if F is a facet
of Q and Q is saturated, then (Q/F)gp � Z, and ρF can be viewed as a map
Ω1
θ → B/I.

Proposition 1.2.14. Let f : X → Y be a morphism of coherent idealized log
schemes. Suppose that for every x ∈ X, KX,x is a prime ideal disjoint from the
image of f −1(MY ). Let F be the subsheaf of sections ofMX whose stalks do
not belong to K (see Proposition III.1.11.11), and define

δ : MX → OX ⊗ (MX/F )gp : m 7→ 1 ⊗ πF(m),

where πF(m) is the image of m in (MX/F)gp. Then there is a unique OX-linear
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map ρ making the following diagram commute:

MX

Ω1
X/Y

dlog

?
ρ- OX ⊗ (MX/F )gp,

δ

-

The map ρ is called the Poincaré residue mapping, and ρ(da) = 0 for every
a ∈ OX .

Proof Any m ∈ MX,x belongs either to KX,x or to Fx. Since αX(m) = 0 if
m ∈ KX,x and πF(m) = 0 if m ∈ Fx it follows that αX(m) ⊗ δ(m) = 0 for
every section m of MX . Then (0, δ) is a log derivation of X/Y with values in
OX ⊗ (MX/F )gp. The existence and uniqueness of ρ follow from the universal
mapping property of Ω1

X/Y . �

Next we discuss functoriality and base change for the sheaf of log differen-
tials.

Proposition 1.2.15. Let C be a commutative diagram

X′
g - X

Y ′

f ′

? h - Y

f

?

of prelog schemes. Then there is a unique homomorphism

dC : g∗(Ω1
X/Y )→ Ω1

X′/Y ′

sending 1 ⊗ da to dg](a) for every section a of g−1(OX) and 1 ⊗ dlog(m) to
dlog g[(m) for every section m of g−1(MX). This morphism dC is an isomor-
phism in the following cases:

1. f ′ is the morphism of log schemes associated to to the morphism f of prelog
schemes;

2. The diagram is cartesian in the category of prelog (resp. log, coherent, fine,
fine and saturated log) schemes.
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In either of these cases, there is a commutative diagram of isomorphisms

Ω1
X′/Y

f ′∗(Ω1
Y ′/Y ) ⊕ g∗(Ω1

X/Y ) -

-

Ω1
X′/X ⊕Ω1

X′/Y ′ .

-

Proof Let E′ be any sheaf of OX′ -modules and let (D, δ) be an element of
DerX′/Y ′ (E′). As we saw in Proposition 1.2.3, there is a natural homomorphism

DerX′/Y ′ (E′)→ DerX/Y (g∗E′).

The existence of and uniqueness of the map on differentials dC follows from
their defining universal property. If f ′ is the morphism of log schemes corre-
sponding to the morphism of prelog schemes f , then dC is an isomorphism by
(2a) of Proposition 1.2.3. If the diagram is cartesian in the category of prelog
(resp. log schemes), dC is an isomorphism by (2b) (resp. (2c)). Since the fiber
product of coherent log schemes is the same as the fiber product in the cate-
gory of log schemes, it follows that dC is an isomorphism in this case as well.
The proofs for fine and fine saturated log schemes follow from Lemma 1.2.16
below.

The last statement follows formally. Indeed, since the map g∗(Ω1
X/Y ) →

Ω1
X′/Y ′ is an isomorphism, the map g∗(Ω1

X/Y ) → Ω1
X′/Y provides a splitting of

the map Ω1
X′/Y → Ω1

X′/Y ′ . By the same token, the map f ′∗(Ω1
Y ′/Y ) → Ω1

X′/X is
also an isomorphism, and the map f ′∗(Ω1

Y ′/Y ) → Ω1
X′/Y provides a splitting of

the map Ω1
X′/Y → Ω1

X′/X . �

Lemma 1.2.16. Let f : X → Y be a morphism of coherent (resp. fine) log
schemes, and let r : X′ → X be the universal map from Xfin (resp. Xsat) into
X. Then the map dr : r∗(Ω1

X′/Y ) → Ω1
X/Y is an isomorphism. If s : Y ′ → Y is

defined similarly, the map ds : Ω1
X′/Y → Ω1

X′/Y ′ is an isomorphism.

Proof To prove that these morphisms are isomorphisms is a local problem, so
we may assume that f is given by a homomorphism of log rings. In this case
the lemma follows from Proposition 1.1.9. �

Example 1.2.17. Associated to any morphism f : X → Y of prelog schemes is
a commutative square, mapping f to the morphism f of underlying schemes.
Thus there is a canonical map Ω1

X/Y → Ω1
X/Y sending (D, δ) to D. If f is strict,

the diagram is cartesian, and this homomorphism is an isomorphism by Pro-
position 1.2.15. For example, if X → XY → Y is the canonical factorization
(equation III.1.2.1) of f , then the map Ω1

X/Y → Ω1
XY/Y is an isomorphism.



2 Thickenings and deformations 379

2 Thickenings and deformations

Deformation theory in log geometry works very nicely, as long as one works
with deformations along strict closed immersions and with log structures that
are u-integral or nearly so. Many of the ideas in this section were suggested by
L. Illusie.

2.1 Thickenings and extensions

Definition 2.1.1. A log thickening is a strict closed immersion i : S → T of
log schemes such that:

1. the ideal I of S in T is a nil ideal;
2. the subgroup 1 + I of O∗T �M

∗
T operates freely onMT .

A log thickening of order n is a log thickening such that In+1 = 0.

If T is u-integral, condition (2) in Definition 2.1.1 is automatic. A thickening
i : S→ T induces a homeomorphism of the underlying topological spaces of S
and T , and it is common to identify them.

Proposition 2.1.2. Let i : S→ T be a log thickening, with ideal I.

1. The commutative square

O∗T
- MT

O∗S

?
- MS

i[

?

is cartesian and cocartesian (i.e., O∗T is the inverse image of O∗S in OT , and
MS is the amalgamated sum of O∗S andMT ).

2. Ker
(
O∗T → O

∗
S

)
= Ker

(
M

gp
T →M

gp
S

)
= 1 + I.

3. The action of 1 +I onMT (resp. onMgp
T ) makes it a torsor overMS (resp.

overMgp
S ). That is, the maps

(1 + I) ×MT →MT ×MS MT and (1 + I) ×Mgp
T →M

gp
T ×M

gp
S
M

gp
T ,

(u,m) 7→ (m, um)

are isomorphisms.
4. The mapMT →MS ×Mgp

S
M

gp
T is an isomorphism.
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Proof The fact that the square in (1) is cartesian just amounts to the statement
that the homomorphism i[ is local. The fact that the diagram is cocartesian
comes from the fact that i is strict, so that MS is the log structure associated
to the prelog structureMT → OS. Since I is a nilideal, any local section a of
I is locally nilpotent, and hence 1 + a is a unit of OT . It is clear that 1 + I

is exactly the kernel of the homomorphism O∗T → O
∗
S. Since MT → OT is a

log structure,M∗T = O∗T , and since the action of 1 + I onMT is free, the map
1 + I → M

gp
T is injective, and evidently its image is contained in the kernel

of the mapMgp
T → M

gp
S . Conversely, any local section x ofMgp

T is the class
of m′ − m for two sections ofMT and, if x maps to zero inMgp

S , there exists
a local section n of MS such that i[(m′) + n = i[(m) + n. Locally n lifts to a
section m′′ ofMT , and the equation then becomes i[(m′ + m′′) = i[(m + m′′).
Since i is strict, there then exists a u ∈ 1 + I such that m′ + m′′ = u + m + m′′,
and hence m′ − m = u inMgp

T . This shows that x ∈ 1 + I and completes the
proof of (2). These same arguments also prove (3).

When T and S are integral, statement (4) amounts to the fact that the mor-
phism i is exact, a consequence of its strictness. Let us check it in the general
case. Let (m, x) be a local section of MS ×Mgp

S
M

gp
T . We may locally write

m = i[(m′) for a local section of MT and x as the class of m2 − m1 for local
sections mi ofMT . Since m′ and x have the same image inMgp

S , there exists a
local section m′′ ofMT such that

i[(m′′) + i[(m′) + i[(m1) = i[(m′′) + i[(m2).

Then there is a local section u of 1+I such that u+m′′+m′+m1 = m′′+m2 in
MT . Then u + m′ is a section ofMT mapping to (m, x). Suppose on the other
hand that m and m′ are sections ofMT with the same image inMS ×Mgp

S
M

gp
T .

Since the images inMS of m and m′ are the same, m′ = u + m for some section
u of 1 + I, and since the images of m and m′ inMgp

T are the same, u maps to
0 inMgp

T . Since 1 + I acts freely onMT , this implies that u = 0, so m′ = m,
completing the proof. �

Proposition 2.1.3. Let i : S→ T be a log thickening.

1. T is coherent (resp. integral, resp. fine, resp. fine and saturated) if and only
if S is.

2. Let β : P → MT be a homomorphism from a constant monoid P to MT .
Then β is a chart forMT if and only if i[ ◦ β is a chart forMS.

Proof 1 Let us first prove statement (2). Let NT →MT (resp. NS →MS) be

1 This proof is due to O. Gabber
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the logarithmic homomorphism associated to β (resp. to i[ ◦ β). These fit into a
commutative diagram

NT - MT

NS

?
- MS.

?

The two vertical arrows are the quotient mappings by the action of the group
(1 + I), and the action on MT is free, since S → T is a log thickening. It
follows that the action on NT is also free. Then the top vertical arrow is an
isomorphism if and only if the bottom one is. It follows thatMT is integral if
and only ifMS is integral.

To prove (1), suppose that β : P → MS is a chart for MS subordinate to a
finitely generated (resp. fine, resp. fine and saturated) monoid P. Then Pgp is a
finitely generated group, and we choose a surjection θ from a finitely generated
free abelian group L to Pgp. By statement (6) of Theorem I.2.1.17, the monoid
P′ := P ×Pgp L is finitely generated (resp. fine, resp. fine and saturated). It is
easy to see that the natural map P′gp → L is an isomorphism and that P′ →MS

is still a chart for MS. Replacing P by P′, we may assume without loss of
generality that Pgp is free. Then the homomorphism P → Mgp

S lifts locally to
M

gp
T , and hence by (4) of Proposition 2.1.2, the homomorphism β : P → MS

lifts locally toMT . As we have seen, any such lift is a chart forMT . �

Definition 2.1.4. Let f : X → Y be a morphism of log schemes and let E be a
quasi-coherent sheaf ofOX-modules. A Y-extension of X by E is a commutative
diagram

X
i - T

Y,

f

?�

where i is a log thickening of order one with E = ker(i]). If u : F → E is
a homomorphism of quasi-coherent sheaves of OX-modules and i : X → S
(resp. j : X → T ) is a Y-extension of X by E (resp. by F ), then a morphism
of Y-extensions over u is a Y-morphism g : S → T such that g ◦ i = j and
g](ax) = g](a)u(x), for sections a of OT and x of F . When E = F and u = id,
one says simply that g is a morphism of Y-extensions.
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If T is a Y-extension of X by E, then the map i[ : MT →MX and the action
of E ⊆ M∗T on MT make MT into a E-torsor over MX . The category of Y-
extensions of X with a fixed E (with morphisms over idE) is a groupoid: every
morphism is an isomorphism.

Remark 2.1.5. If E is a quasi-coherent sheaf of OX-modules, the trivial Y-
extension of X by E, denoted X ⊕ E, is the log scheme T defined by OT :=
OX ⊕ E, where (a, e)(a′, e′) := (aa′, ae′ + a′e), and byMT :=MX ⊕ E, where
αT (m, e) := (αX(m), αX(m)e). The kernel of OT → OX is the ideal (0,E) ⊆ OT ,
which acts freely onMT , so that (idX , i) is a Y-extension of X by E. Further-
more, we have an evident retraction T → X. Conversely, a Y-extension is
trivial (isomorphic to X ⊕ E) if and only if i admits a Y-retraction r : T → X.

One can endow the set ExtY (X,E) of isomorphism classes of Y-extensions
of X by E with an abelian group structure in a natural way. If i : X → S and
j : X → T are Y-extensions of X by E, then the sum of the classes of i and j
in ExtY (X,E) is formed by first taking the Y-extension of X by E ⊕ E given by
the fibered products OS ×OX OT and MS ×MX MT , and then taking the class
of the pushout along the additional law E ⊕ E → E. The identity element of
ExtY (X,E) is the class of X ⊕ E. If a is a section of OX and T is an object of
ExtY (X,E), then the pushout along the endomorphism of E defined by a defines
the class of aT in ExtY (X,E).

Variant 2.1.6. An idealized log thickening is a log thickening i : S→ T of ide-
alized log schemes that is ideally strict as well as strict. Thus KT is the unique
sheaf of ideals inMT whose restriction toMS agrees with KS, and αT (k) = 0
for every section k ofKT . If f : X → Y is a morphism of idealized log schemes
and E is a quasi-coherent sheaf on X, then an idealized Y-extension of X by E
is a first-order idealized log thickening of X over Y whose ideal sheaf is E. The
trivial Y-extension of X by E is such an extension, since αT (k, e) = 0 if k is a
section of KT .

Example 2.1.7. Let f : X → Y and g : Y → Z be morphisms of log schemes
such that the underlying morphism of schemes f is affine, and let i : X → S
be a Z-extension of X by a quasi-coherent OX-module E. Then f∗E is quasi-
coherent on Y , and we can construct a Z-extension f∗(i) := j : Y → T of Y by
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f∗E and a universal commutative diagram

X
i - S

Y

f

? j - T,
?

as follows. Since E is quasi-coherent and f is affine, there is an exact sequence
of sheaves

0→ f∗E → f∗OS → f∗OX → 0

on Y . Let OT be the fiber product of f∗OS and OY over f∗OX , which fits into an
exact sequence

0→ f∗E → OT → OY → 0.

Since F := f∗E is quasi-coherent, there is a closed immersion j : Y → T
with square-zero ideal F corresponding to this exact sequence. Since i is a log
thickening, 1+E acts freely onMS, with quotientMX . Moreover, E is a square-
zero ideal, so as an abelian sheaf 1 +E � E, and consequently R1 f∗(1 +E) = 0.
It follows that 1 + F = f∗(1 + E) acts freely on f∗(MS) with quotient f∗(MX).
LetMT be the fiber product of f∗(MS) andMY over f∗(MX). Then 1 +F acts
freely onMT with quotientMY , and the the map αT : MT → OT induced by
αS is a log structure. Then j : Y → T is an extension of Y by F , and the square
above is cocartesian in the category of log schemes.

2.2 Differentials and deformations

The geometric motivation for the definition of log derivations lies in the study
of extensions of morphisms to thickenings.

Definition 2.2.1. Let f : X → Y be a morphism of log schemes. A log thick-
ening over X/Y is a commutative diagram consisting of the solid arrows in the
diagram

S
i - T

X

g

?

f
-

g̃

�
Y,

h

?
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where i is a log thickening (Definition 2.1.1). A deformation of g to T is an
element of

DefX/Y (g,T ) := {g̃ : T → X : g̃ ◦ i = g, f ◦ g̃ = h}.

The morphism i in the diagram is a homeomorphism for the Zariski topol-
ogy, and we have identified the underlying topological spaces of S and T . If
i has finite order, the étale topologies of S and T can also be identified. Thus
DefX/Y (g,T ) forms a sheaf on S, and we can identify g̃∗ with g∗. Then a defor-
mation of g to T amounts to a pair of homomorphisms

g̃] : OX → g∗OT and g̃[ : MX → g∗MT ,

such that αT ◦ g[ = g] ◦ αX that are compatible with h and f .
The following key result reveals the geometric meaning of log derivations.

Theorem 2.2.2. Let i : S → T be a first-order log thickening over X/Y . Then
there is an action of DerX/Y (g∗IT ) on g∗DefX/Y (g,T ), with respect to which
g∗DefX/Y (g,T ) becomes a pseudo-torsor under DerX/Y (g∗IT ). With multiplica-
tive notation for the monoid law ofMT , the action is given as follows:

DerX/Y (g∗I) × g∗DefX/Y (g,T )→ g∗DefX/Y (g,T )

((D, δ), g1) 7→ g2 := (g]1 + D, (1 + δ)g[1).

Proof Explicitly, for a ∈ OX and m ∈ MX ,

g]2(a) := g]1(a) + Da and g[2(m) := g[1(m)(1 + δ(m)).

This makes sense because Da ∈ g∗IT ⊆ g∗OT and 1 + δ(m) ∈ g∗(1 + IT ) ⊆
g∗O∗T ⊆ g∗MT . We claim that g2 is another deformation of g to T . It is standard
and immediate to verify that g]2 is a homomorphism of sheaves of f −1(OY )
algebras, because D is a derivation relative to Y and I2

T = 0. Moreover, since
I2

T = 0, the map IT → O
∗
T ⊆ MT sending b to 1 + b is a homomorphism of

sheaves of monoids, and hence g[2 is also a homomorphism. Since δ ◦ f [ = 0,
it still the case that g[2 ◦ f [ = h[. Furthermore, if m ∈ MX ,

g]2(αX(m)) = g]1(αX(m)) + DαX(m)

= g]1(αX(m)) + g](αX(m))δ(m)

= g]1(αX(m))(1 + δ(m))

= αT (g[1(m))(1 + δ(m))

= αT

(
(1 + δ(m))g[1(m)

)
= αT (g[2(m)).
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Thus g2 really is a morphism of log schemes. Furthermore, g2 ◦ i = g because
D and δ map into IT .

It is immediate from the formulas that the mapping they define is an action
of the group DerX/Y (g∗IT ) on DefX/Y (g,T ). The action is free because 1 + IT

acts freely on MT . If g1 and g2 are deformations of g to T , (g[1, g
[
2) defines a

homomorphism of sheaves of monoids

g−1MX →MT ×MS MT
ε- (1 + IT ) ×MT

pr- 1 + IT → IT ,

where ε is the inverse of the isomorphism (u,m1) 7→ (m1, um2) in (3) of Pro-
position 2.1.2, and the last map is the first-order logarithm homomorphism
u 7→ u − 1. Let δ : MX → g∗IT be the map obtained by adjunction. Since
f ◦ g2 = f ◦ g1, it follows that δ annihilates the image of MY . Moreover,
D : g]2 − g]1 defines a derivation OX → g∗IT , and reversing the calculation
in the previous paragraph shows that g](αX(m))δ(m) = D(αX(m)) for every
m ∈ MX . Thus (D, δ) is a derivation of X/Y with values in g∗IT . We conclude
that DefX/Y (g,T ) is a pseudo-torsor under the action of DerX/Y (g∗IT ). �

Variant 2.2.3. Let X/Y be a morphism of idealized log schemes and let
i : S→ T be a first-order idealized log thickening over X/Y . Then the formula
given in Theorem 2.2.2 defines an action of DerX/Y (g∗IT ) on DefX/Y (g,T ). In-
deed, if g1 is a morphism T1 → Y , then it follows from the formulas in the
theorem that the pair (g]2, g

[
2) defines a morphism of idealized log schemes.

Corollary 2.2.4. If i : X → T is a Y-extension of the log scheme X with ideal
I, then Aut(i) � DerX/Y (I).

2.3 Fundamental exact sequences

In most cases, standard arguments from classical algebraic geometry carry over
to the logarithmic case to produce the familiar exact sequences exhibiting the
behavior of differentials with respect to closed immersions and compositions.

Proposition 2.3.1. Let f : X → Y and g : Y → Z be morphisms of logarithmic
schemes. Then the functoriality maps defined in Proposition 1.2.15 fit into an
exact sequence of sheaves of OX-modules

f ∗Ω1
Y/Z → Ω1

X/Z → Ω1
X/Y → 0.

Proof This is proved just as in the classical case: the morphisms in the se-
quence are induced by the commutative squares formed by g, f , g ◦ f , idZ and
g ◦ f , idX , f , g. One checks from the definitions that, for any OX-module E, the
sequence

0→ DerX/Y (E)→ DerX/Z(E)→ DerY/Z( f∗E) (2.3.1)
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is exact. The exactness of the sequence of differentials then follows from the
universal properties. �

Proposition 2.3.2. Let i : X → Y and g : Y → Z be morphisms of logarithmic
schemes, where i is a strict closed immersion defined by an ideal sheaf I. Then
there is an exact sequence of sheaves of OX-modules

I/I2 d
−→i∗(Ω1

Y/Z)→ Ω1
X/Z → 0,

where the map d sends the class of an element a of I to the image of da
in i∗(Ω1

Y/Z). If the first infinitesimal neighborhood T of X in Y admits a Z-
retraction andMY is u-integral, then d is injective and split.

Proof One verifies immediately that the composition of d : I → Ω1
Y/Z with

the map Ω1
Y/Z → i∗(Ω1

Y/Z) is OY -linear, and hence that this composition factors
through a map d as claimed. To prove the exactness of the sequence, it suffices
to prove that, for every sheaf E of OX-modules, the sequence obtained by ap-
plying Hom( ,E) is exact. By the universal mapping property of the sheaf of
differentials, this amounts to verifying that the sequence

0→ DerX/Z(E)→ DerY/Z(i∗E)→ Hom(I, i∗E)

is exact. The injectivity of the map DerX/Z(E) → DerY/Z(i∗E) follows from the
fact that i[ : MY → MX is surjective. Let (D, δ) be a derivation of Y/Z with
values in i∗(E) such that Da = 0 for every section a of I. Then D factors
through i∗OX; we must also check that δ factors through i∗(MX). Since i is
strict, if m1 and m2 are two sections of i−1(MY ) with the same image inMX ,
then locally on X there exists some u ∈ 1 + I such that m2 = um1. Hence
δ(m2) = δ(u) + δ(m1) = u−1Du + δ(m1), and Du = 0 since D annihilates I.
Hence δ(m2) = δ(m1), as required.

Let j : T → Y be the first infinitesimal neighborhood of X in Y , i.e., the
strict closed subscheme of Y defined by I2. IfMY is u-integral, i−1(1 +I) acts
freely on i−1(MT ), and i′ : X → T is a first-order log thickening of X over Y/Z.
Suppose that r : T → X is a morphism over Z such that r ◦ i′ = idX . Then j and
i ◦ r are two deformations of i to T and, by Theorem 2.2.2, there is a unique
h : Ω1

Y/Z → I/I
2 such that h(da) = j](a) − (ir)](a) for every local section a of

OY . If a ∈ I, we see that h(da) = j](a), i.e., the image of a in I/I2, and we
have found a splitting of the map d. �

Corollary 2.3.3. Let f : Y → Z be a morphism of coherent log schemes, let
K ⊆ MY be a coherent sheaf of ideals, and let i : X → Y be the strict closed
immersion of log schemes defined by K (see Proposition 1.3.4). Then there is
a natural isomorphism i∗(Ω1

Y/Z) � Ω1
X/Z .
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Proof The ideal I of X in Y is generated by αX(K) as a sheaf of ideals. In
fact it is even generated by αX(K) as an abelian sheaf, since αX(K) is stable
under the action of O∗X and any section of OX can be locally written as a sum
of sections of O∗X . If k is a local section of K , dαX(k) = αX(k)dk, which al-
ready maps to zero in i∗(Ω1

Y/Z). Thus the map d : I/I2 → i∗(Ω1
Y/Z) in the exact

sequence of Proposition 2.3.2 vanishes, and hence the map i∗(Ω1
Y/Z)→ Ω1

X/Z is
an isomorphism. �

Let f : X → Y and g : Y → Z be morphisms of log schemes. We can use the
action (Theorem 2.2.2) of derivations on deformations and the group of iso-
morphism classes of extensions (Remark 2.1.5) to prolong the exact sequence
(2.3.1). For a quasi-coherent sheaf of OX-modules E, let X ⊕ E be the trivial
Y-extension of X by E. The morphism X⊕E → Y is r◦ f , where r : X⊕E → X
is the canonical retraction. Then, if ∂ ∈ DerY/Z( f∗E), let f̃∂ := ∂ + r ◦ f ,
again using the action of DerX/Y ( f∗E) defined in Theorem 2.2.2. Then the log
scheme X ⊕ E with the morphism f̃∂ defines a new thickening of X over Y ,
which we denote by X ⊕∂ E. Passing to isomorphism classes, we find a map
DerX/Y ( f∗E) → ExtY (X,E). We leave the proof of the following result to the
reader, since it uses no further input particular to log geometry.

Proposition 2.3.4. Let f : X → Y and g : Y → Z be morphisms of u-integral
log schemes and let E be a quasi-coherent sheaf of OX-modules. Then, with
the notation of the previous paragraph, the map

DerX/Y ( f∗E)→ ExtY (X,E) : ∂ 7→ [X ⊕∂ E]

is a group homomorphism. Furthermore, the exact sequence (2.3.1) prolongs
to an exact sequence

0→ DerX/Y (E)→ DerX/Z(E)→ DerY/Z( f∗E)→ ExtY (X,E)→ ExtZ(X,E).

If f is affine, the sequence prolongs further to an exact sequence including the
sequence:

. . .DerY/Z( f∗E)−→ExtY (X,E)→ ExtZ(X,E)
f∗
−→ExtZ(Y, f∗E),

where f∗ is the map of extension classes induced by the construction iin Ex-
ample 2.1.7. �

Proposition 2.3.5. Let f : X → Y be a morphism of log schemes and x a
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geometric point of X. Then there is a commutative diagram

M
gp
X,x

- M
gp
X/Y,x

Ω1
X/Y (x) - Ω1

X/Y (x)

dlog

?
ρX/Y,x- k(x) ⊗Mgp

X/Y,x → 0.

π

?

π

-

Here π(m) sends a section m ofMgp
X/Y,x to 1 ⊗ m, and the bottom row is exact.

The map ρX/Y,x is sometimes called the Poincaré residue at x.

Proof Consider the canonical factorization X → XY → Y , where XY is the
scheme X with the log strucure induced from Y . Then XY � X ×Y Y , so the
base-change formula for differentials induces an isomorphism Ω1

X/Y → Ω1
XY/Y .

We get from Proposition 2.3.1 an exact sequence:

Ω1
X/Y → Ω1

X/Y → Ω1
X/XY
→ 0.

We shall prove that the composite map

θ : Mgp
X → Ω1

X/Y → Ω1
X/XY

induces an isomorphism

θx : k(x) ⊗Mgp
X/Y,x

�- Ω1
X/XY

(x). (2.3.2)

The image ofMY in Ω1
X/Y is zero by definition, and the image of O∗X,x is zero

in Ω1
X/XY ,x

. Thus θ kills f ∗Mgp
Y and hence factors through Mgp

X/Y and induces
the map θx in (2.3.2). We know from Lemma 1.2.10 that Ω1

X/XY
is generated by

the image ofMgp
X/Y , so θx is clearly surjective. If m ∈ M∗X,x, then its image in

MX/Y,x is zero, and hence π(m) is zero, and if m ∈ M+
X,x, then αX(m) maps to

zero in k(x). Thus in any case αX(m)π(m) = 0, and the pair

(0, π) : OX ⊕M
gp
X,x → k(x) ⊗Mgp

X/Y,x

is a logarithmic derivation of X/Y . Thus there is a unique map r : Ω1
X/Y,x →

k(x) ⊗ Mg
X/Y,x such that r(dm) = π(m) for all m ∈ MX,x. Evidently r kills

dOX,x, hence also the image of Ω1
X,x/Y . Consequently r factors through a map

r : Ω1
X/XY ,x

→ k(x) ⊗Mgp
X/Y,x, which is inverse to θx. �

Corollary 2.3.6. If X is a log point over a field k, the Poincaré residue map
ρX/k induces an isomorphism: Ω1

X/k,x � k ⊗M
gp
x .
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3 Logarithmic smoothness

The basic definitions and main properties of smoothness for log schemes fol-
low closely Grothendieck’s functorial and geometric approach to smoothness
in algebraic geometry. Nevertheless, local models of smooth morphisms of log
schemes are considerably more complicated than in the classical case.

3.1 Definitions and examples

Definition 3.1.1. A morphism of log schemes f : X → Y is formally smooth
(resp. formally unramified, resp. formally étale) if, for every n and every nth-
order log thickening (Definition 2.1.1) S → T over X/Y , the given morphism
g : S → X locally admits at least one (resp. at most one, resp. exactly one)
deformation (Definition 2.2.1) to T . A morphism f is smooth (resp. étale) if it
is formally smooth (resp. étale) and in additionMX andMY are coherent and
f is locally of finite presentation. A morphism f is unramified if it is formally
unramified and f is locally of finite type.

Since an nth-order log thickening can be written as a succession of first-
order thickenings, it is enough to check the deformation conditions in Defini-
tion 3.1.1 when n = 1. In this case, the sheaf De f X/Y (g,T ) of deformations
of g is a pseudo-torsor underDerX/Y (g∗IT ) by Theorem 2.2.2. Thus the formal
smoothness condition says that this pseudo-torsor is locally nonempty, i.e., is
in fact a torsor.

Remark 3.1.2. The family of formally smooth (resp. formally étale, resp. for-
mally unramified) morphisms is stable under composition and base change in
the category of log schemes. If g : Y → Z is formally étale, then a morphism
f : X → Y is formally smooth if and only if g◦ f is formally smooth. If X → Z
and Y → Z are formally étale, then any Z-morphism X → Y is formally étale.
If g ◦ f : X → Z is formally unramified, then f : X → Y is also formally
unramified. These properties follow immediately from the definitions.

Proposition 3.1.3. A morphism f : X → Y of log schemes is formally unram-
ified if Ω1

X/Y = 0. The converse holds if X and Y are coherent.

Proof If i : S → T is a log thickening over X/Y , the sheaf of deformations
of g : S → X to T is a pseudo-torsor under DerX/Y (g∗I) � Hom(Ω1

X/Y , g∗I),
by Theorem 2.2.2. If Ω1

X/Y = 0, these groups vanish, and so deformations
are unique when they exist and X/Y is formally unramified. If X and Y are
coherent, the sheaf Ω1

X/Y is quasi-coherent by Corollary 1.2.8. Then we can
form the trivial extension T of X/Y by Ω1

X/Y (see Remark 2.1.5), and the set
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of deformations of idX is a torsor under End(Ω1
X/Y ). If X/Y is unramified, the

retraction T → X is the unique such deformation, so Ω1
X/Y = 0. �

Proposition 3.1.4. Let f : X → Y be a morphism of log schemes.

1. The morphism f is formally smooth if and only if for every open subset U
of X and every quasi-coherent OU-module E, every Y-extension of U by E
is locally trivial.

2. If X and Y are coherent and f is locally of finite presentation, then f is
smooth if and only if, for every finite-order log thickening S→ T over X/Y
with S-affine, the morphism S→ X can be deformed to T .

Proof It follows immediately from the definition that if f is formally smooth,
every Y-extension U → T of an affine open subset U of X locally admits a
section T → X and hence is locally trivial. Conversely, suppose that every such
extension is locally trivial and that (i : S → T, g : S → X) is a log thickening
of order one over X/Y , with ideal I. The thickening i defines an element of ξ
of ExtY (S,I). Assuming without loss of generality that X and S are affine, we
may form the direct image extension (Example 2.1.7) of X/Y by g∗(I):

S
i - T

X

g

? j- g∗(T ).

g′

?

By assumption, this extension is locally trivial, and hence locally on X there
exists a retraction r : g∗(T )→ X. Then r ◦ g′ is the desired deformation of g.

To prove (2), suppose that f is smooth and that i : S→ T is log thickening of
order n over X/Y . Working by induction, we may assume that n = 1. Since X
and Y are coherent log schemes and f is locally of finite presentation, the sheaf
Ω1

X/Y is quasi-coherent and locally of finite presentation, by Corollary 1.2.8.
Hence DerX/Y (g∗(I)) � Hom(g∗Ω1

X/Y ,I) is quasi-coherent and, since S is
affine, H1(S,DerX/Y (g∗(I)) = 0. Thus every torsor under this sheaf of groups
has a global section, and in particular DefX/Y (g,T ) is not empty. �

Corollary 3.1.5. In the definition of smooth (resp., unramified, étale) mor-
phisms, it is sufficient to consider thickenings where g : S → X is an open
immersion. �

If f : X → Y is a morphism of schemes, and if X and Y are endowed with
the trivial log structure, then f is formally smooth (resp. étale, unramified) if
and only if f is. More generally:
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Proposition 3.1.6. Let f : X → Y be a strict morphism of log schemes. If the
underlying morphism of schemes f : X → Y is formally smooth (resp. étale,
unramified), then the same is true of f . The converse holds if the log structure
on Y is u-integral.

Proof If f is strict, the map X → X ×Y Y is an isomorphism. Thus if f is
formally smooth the same is true of f , since smoothness is preserved by base
change. The same holds for étale and unramified morphisms. To prove the
converse, suppose that f is smooth and that S → T is a thickening over X/Y .
Endow T with the inverse image of the log structure on Y , and note thatMT

is u-integral by (3) of Proposition II.1.1.8. Then S → T is a log thickening
over X/Y . Since f is smooth, locally there exists a deformation g̃ : T → X of
g : X → X, and then g̃ is a deformation of g. It follows that f is smooth. If f is
unramified, so is f , since Ω1

X/Y � Ω1
X/Y , �

The next set of results explains when the morphisms of log schemes mod-
eled on monoid homomorphisms are unramified, smooth, or étale. This im-
portant result will be key to understanding the local structure of log smooth
morphisms, which is more complicated than in the classical case.

Theorem 3.1.7. Let θ : P → Q be a homomorphism of finitely generated
monoids and let f : AQ → AP be the corresponding morphism of log schemes
over a base ring R. Then the following conditions are equivalent.

1. The order of the cokernel Cok of θgp is finite and invertible in R.
2. The morphism of log schemes f : AQ → AP is unramified over R.
3. The morphism of group schemes f|A∗Q : A∗Q → A∗P is unramified over R.

Proof If (1) holds, then R ⊗ Cok = 0. By Proposition 1.1.4, Ω1
AQ /AP

is the
quasi-coherent sheaf associated to R[Q] ⊗ Cok, and hence vanishes. Then it
follows from Proposition 3.1.3 that f is unramified. If f is unramified, so is
its restriction f|A∗Q to the open subset A∗Q. Finally, if f|A∗Q is unramified, Proposi-

tion 3.1.3 implies that Ω1
A∗Q /A∗P

= 0, hence R[Qgp]⊗Cok = 0. Since R[Qgp] is a
nonzero free R-module, this vanishing also implies that R ⊗ Cok vanishes. �

Theorem 3.1.8. Let θ : P → Q be a homomorphism of finitely generated
monoids. and let f : AQ → AP be the corresponding morphism of log schemes
over a base ring R. Then the following conditions are equivalent:

1. The kernel and the torsion part of the cokernel of θgp are finite groups whose
order is invertible in R.

2. The morphism of log schemes f : AQ → AP is smooth over R.
3. The morphism of group schemes f|A∗Q : A∗Q → A∗P is smooth over R.
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Proof Suppose that (1) holds. Recall from Proposition 1.2.9 that, for any log
scheme T , the set of morphisms T → AQ is identified with the set of monoid
homomorphisms Q → Γ(T,MT ). Thus a log thickening i : S → T over f can
be thought of as a solid commutative square of the form.

P
θ - Q

Γ(T,MT )

φ

? ι-

ψ̃

�
Γ(S,MS).

ψ

?

We must show that, locally on T , there is a homomorphism ψ̃ as shown that
makes both triangles commute. Recall from statement (4) of Proposition 2.1.2
that the homomorphismMT →M

gp
T ×MS MS is an isomorphism. Thus it will

suffice to find a map in the analogous diagram in which all the monoids are
replaced by their corresponding groups.

Since the question is local on T , we may assume without loss of generality
that T is affine, and we may also assume that i is a first-order thickening. By
statement (2) of Proposition 2.1.2, the kernel of the surjectionMgp

T →M
gp
S is

1 + I and, since I2 = 0, this sheaf of groups is isomorphic to I. Since I is
quasi-coherent, H1(T,I) = 0, and the sequence

0→ Γ(I)→ Γ(Mgp
T )→ Γ(S,Mgp

S )→ 0

is exact. Let E := Γ(Mgp
T ) ×Γ(Mgp

S ) Qgp, which fits into the following commuta-
tive diagram:

0 - Ker(θgp) - Pgp

0 - Γ(I)

φ′′

?
- E

φ′

? π - Qgp -

θgp

-

0

0 - Γ(I)

id

?
- Cok(φ′)

? π′- Cok(θgp)

ρ

?
- 0.

In this diagram, the columns and solid-arrowed rows are exact. Moreover, Γ(I)
is an R-module and Ker(θgp) is a finite group whose order is invertible in R. It
follows that φ′′ vanishes, so the bottom row is also exact at Γ(I). But then the
middle row is the pullback of the bottom row, i.e., the square at the bottom
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right is cartesian. Observe that Ext1(Cok(θgp),Γ(I)) = 0, since Γ(I) is an R-
module and the order of the torsion part of Cok(θgp) is invertible in R. Thus
the sequence on the bottom splits: there is a homomorphism σ : Cok(θgp) →
Cok(φ′) such that π′σ = id. Since the square at the bottom right is cartesian,
such a splitting also defines a map Qgp → E, which necessarily agrees with
the given map Pgp → E. This map gives the desired deformation of g and
completes the proof that (1) implies (2).

It is apparent from the definitions that the restriction of a smooth map to any
open subset is smooth, and it follows that (2) implies (3). Thus it remains only
to prove that (3) implies (1). For this implication we may as well replace P by
Pgp and Q by Qgp. Thus we may and shall assume that P and Q are finitely
generated abelian groups. Let P′ be the image of P in Q, so that the map θ

factors as θ = P
φ- P′

θ′- Q, where φ is surjective and θ′ is injective. We
get a corresponding factorization of maps of group schemes

f = AQ
f ′- AP′

g- AP,

where g is a closed immersion and f ′ is dominant. Observe that the group
homomorphism θ′ makes Q into a P′-set and, since θ′ is injective, each P′

orbit is isomorphic to P′. Thus Q is a free P′-set, and hence R[Q] is a free
R[P′]-module and f ′ is faithfully flat. Let x be a point of AQ, let y := f ′(x) ∈
AP′ ⊆ AP, and let s be the image of x in Spec R. Then y lies in the inverse
image of s in

Y ′s := Spec k(s) ×Spec R AP′ = Spec k(s)[P′],

and the fiber of y in AQ can be identified with its fiber in

Xs := Spec k(s) ×Spec R AQ = Spec k(s)[Q].

Now the dimension of Xs is the rank of the abelian group Q, the dimension of
Ys is the rank of P′, and the morphism f ′s : Xs → Y ′s is faithfully flat. It follows
that all the fibers of f ′s have dimension equal to the rank of Q minus the rank of
P′, i.e., the rank r of Q/P. Since f is smooth, its sheaf of relative differentials is
locally free, and its rank at any point x is the dimension of the fiber containing it
[34, III.10.4], which we have just seen is r. By Proposition 1.1.4, we conclude
that R[Q] ⊗ Q/P is locally free of rank r and, since R[Q] is faithfully flat over
R, it follows that R⊗Q/P is locally free of rank r. Write Q/P as a direct sum of
a free abelian group F and a finite group T . Then F has rank r, and it follows
that the map R[Q/P] → R[F] is an isomorphism and that R ⊗ T = 0. This
implies that the order of T is invertible in R.

It remains to prove that Ker(θ) is a finite group whose order is invertible in
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R. Since f is smooth, it is flat and since, f ′ is faithfully flat, it follows that the
closed immersion g is flat. Then the result follows from Corollary 1.1.7. �

Corollary 3.1.9. Let Q be a finitely generated monoid, let

AQ := Spec Q→ R[Q],

and let S := Spec R (with trivial log structure). Then the following conditions
are equivalent.

1. The order of the torsion subgroup of Qgp is invertible in R.

2. The morphism of log schemes AQ → S is smooth.

3. The group scheme A∗Q := Spec R[Qgp] is smooth over S. �

Corollary 3.1.10. Let θ : P → Q be a morphism of finitely generated
monoids. and let f : AQ → AP be the corresponding morphism of log schemes
over a base ring R. Then the following conditions are equivalent:

1. The kernel and cokernel of θgp are finite groups whose order is invertible in
R.

2. The morphism of log schemes f : AQ → AP is étale over R.

3. The morphism of group schemes f|A∗Q : A∗Q → A∗P is étale over R.

In particular, if θgp is an isomorphism, then f|A∗Q : A∗Q → A∗P is an isomorphism
and f : AQ → AP is étale. �

Corollary 3.1.11. If X is a coherent log scheme, the canonical maps Xint → X
and Xsat → Xint are étale.

Proof Let Q be a finitely generated (resp. fine) monoid, and let Q′ denote
Qfin (resp. Qsat). It follows from Corollary 3.1.10 that the map AQ′ → AQ is
étale. If now X is a coherent (resp. fine) log scheme, we can verify that the
map X′ → X is étale locally on X, so we may assume that there exists a chart
X → AQ, where Q is finitely generated (resp. fine). Then, by the construction
in Proposition III.2.1.5, X′ is the fiber product of X and AQ′ over AQ. Since
étaleness is preserved by base change, it follows that X′ → X is also étale. �

Corollary 3.1.12. Let f : X → Y be a morphism of coherent log schemes with
X fine. Then f is smooth if and only if the canonical factorization f̃ : X → Y int

is smooth, and the same holds with f sat in place of f int.

Proof Let ζ : Y int → Y be the canonical map, and consider the following
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diagram, in which the square is cartesian:

X
η- X ×Y Y int ζ′ - X

Y int

pr

?
ζ -

f̃
-

Y.

f

?

Since ζ is smooth, so is ζ′ and, since ζ′ ◦ η = id is étale, η is also étale. If f
is smooth, pr is smooth, and hence f̃ = pr ◦ η is also smooth. If f̃ is smooth,
then f = ζ ◦ f̃ is also smooth. The proof for Ysat is analogous. �

Proposition 3.1.13. Let f : X → Y be the morphism of log schemes admitting
a coherent chart θ : P → Q and let x be a point of X, satisfying the following
conditions.

1. The kernel of θ is a finite group whose order is invertible in k(x).
2. The cokernel (resp. the torsion part of the cokernel) of θ is a finite group

whose order is invertible in k(x).
3. The map bθ : X → Yθ := Y ×AP

AQ is étale (resp. smooth) in some neigh-
borhood of x.

Then f : X → Y is étale (resp. smooth) in some neighborhood of x.

Proof Consider the commutative diagram of log schemes constructed in Re-
mark III.1.2.6:

X
bθ - Yθ

b - AQ

Y

fθ

?
-

f
-

AP,

Aθ

?

in which the square is cartesian. Let n be the order of the kernel of θ and let
y := f (x). Condition (1) implies that n is a unit in k(x) and hence also in k(y).
It follows that n is a unit in the local ring of y in Y . The same argument for the
order m of the torsion subgroup of the cokernel of θ shows that m is invertible
in the local ring of Y at y. Thus, after a further localization, we may assume that
Y is a scheme over a ring R in which m and n are invertible, and we view AP

and AQ as schemes over R. Then, by Corollary 3.1.10) (resp. Theorem 3.1.8),
the map Aθ is étale (resp. smooth). The same conclusion holds for fθ by base
change. Since X → AQ is a chart for X, the map bθ is strict. Since bθ is étale
(resp. smooth), it follows from Proposition 3.1.6 that the same is true for bθ.
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Since the family of smooth (resp. étale) maps is closed under composition, this
completes the proof. �

Example 3.1.14. Let Y be a divisor with strict normal crossing in a smooth
scheme X over field k, let α be the compactifying log structure associated to
the complement of Y , and let X be the log scheme (X, α). Then X/k is smooth at
every closed point x of X at which k(x)/k is separable. To see this, recall from
Proposition III.1.8.2 that, in some neighborhood of x, there is a chart a : X →
ANr , where Y1, . . . ,Yr is the set of irreducible components of Y passing through
x. Then it suffices to see that the underlying morphism X → ANr = Ar is
smooth. This morphism is flat, since its defining sequence (t1, . . . , tr) is regular,
so it suffices to prove that the fiber Y1 ∩ · · · ∩ Yr over the origin is smooth.
Since k(x)/k is separable, the map mx/m2

x → Ω1
X/k(x) is an isomorphism. Since

Y is a divisor with strict normal crossings in X, the image of the sequence
(t1, . . . , tr) in mx/m2

x is linearly independent, and it follows from the Jacobian
criterion that Y1 ∩ · · · ∩ Yr is smooth. We note that the separability hypothesis
is not superfluous. For example, if k := Fp(s), if X = k[t], and if Y is the
closed subscheme defined by tp − s, then the corresponding log scheme X is
not smooth over k.

Example 3.1.15. Let n be an integer and let θ : N → N be multiplication
by n. Then the corresponding morphism f : AN → AN is étale if and only
if n is invertible in the base ring R. The map f on underlying schemes is a
finite covering, tamely and totally ramified over the origin. More generally, let
θ : P → Q be an injective and small homomorphism of fine monoids, so that
Qgp/Pgp is a finite group. Then the corresponding morphism of log schemes is
étale over a base ring R if and only if the order of this group is invertible in
R. For another example, consider P, the monoid given by generators (a, b, c)
satisfying the relation a + b = 2c, and the homomorphism θ : P→ N⊕N given
by θ(a) = (2, 0), θ(b) = (0, 2), and θ(c) = (1, 1). Then θ is small and even
Kummer, so Aθ is étale but the underlying morphism of schemes is not flat.

Example 3.1.16. Let θ : P→ Q be a homomorphism of monoids such that θgp

is an isomorphism. Then Aθ : AQ → AP is étale. For example, let n an integer
greater than 1 and let

θ : Nn → Nn by (a1, a2, . . . , an) 7→ (a1, a2 + a1, . . . , an + a1).

Then the corresponding map θgp is an isomorphism and Aθ is étale. However,
the underlying map on schemes Aθ : An → An is an affine piece of a blowup
and is not even flat.

Example 3.1.17. Let r be a positive integer and let φ : N→ Nr be the diagonal
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map sending a natural number n to (n, n, . . . , n). Then the corresponding mor-
phism of log schemes ANr → AN is smooth. The map of underlying schemes
sends a point (x1, . . . , xr) to the point x1x2 · · · xr, and is the standard model of
semistable reduction. Notice that there are commutative diagrams

Nr � θ
Nr ANr

Aθ - ANr

N

π

6

φ

�

AN,

Aπ

?

Aφ
-

where θ is the map in Example 3.1.16 corresponding to a partial blowup and
π is the map n 7→ (n, 0, . . . , 0) corresponding to a projection. Thus in the log
world, a stable reduction mapping can be factored as an étale map followed by
a standard projection.

We can now easily see that semistable reduction morphisms, when endowed
with their natural log structures, become (logarithmically) smooth.

Corollary 3.1.18. A morphism of log schemes arising as in Proposi-
tion III.1.8.4 from a semistable reduction morphism of finite type is smooth.

Proof Let f : X → S be such a morphism and let x be a geometric point of X.
According to Proposition III.1.8.4, we may find, after restricting to some étale
neighborhood of x, a chart for f subordinate to a homomorphism θ : P → Q,
where P = N, Q = Nr, and θ(n) = (n, n, . . . , n), and such that the induced
map X → Sθ := S ×AP

AQ is smooth. Then Proposition 3.1.13 implies that f is
smooth. �

More generally, if (m1,m2, . . . ,mr) is a sequence of positive integers, the
morphism of log schemes corresponding to the map

N→ Nr given by n 7→ (m1n,m2n, . . . ,mrn)

is smooth if and only if the greatest common divisor of (m1,m2, . . .mr) is in-
vertible in the base ring R. This follows immediately from Corollary 3.1.10.
Notice that the multiplicities of the divisors of the special fiber, i.e., the inte-
gers mi themselves, need not be invertible in R. For example, if p is prime, the
map of log schemes corresponding to the map of monoids N→ N⊕N sending
n to (n, pn) is log smooth in any characteristic.

Let us explain how this situation arises in classical algebraic geometry. Let
S be the spectrum of a discrete valuation ring V , and let X be a V-scheme of
finite type. Let x be a point of X lying over the closed point s of S, and assume
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that X is regular at x. Then the local ring OX,x of X at x is a unique factor-
ization domain, and hence a uniformizer π of V can be written as a product
π = utm1

1 · · · t
mr
r , where each ti is irreducible in OX,x. It follows from Corol-

lary 1.7.4 that the compactifying log structure α associated to the generic fiber
of X/S is fine, and the sequence (t1, . . . , tr) provides a chart for α. Then f in-
duces a morphism of log schemes f : X → S, where S is S equipped with the
compactifying log structure coming from the generic point. Suppose that the
closed subscheme of X defined by the ideal (t1, . . . , tr) is of codimension r in X
and smooth over the residue field k of V . If all mi = 1, then f is a semistable re-
duction morphism, and so f is a smooth morphism of log schemes. In fact this
smoothness can hold more generally, as the following proposition illustrates.

Proposition 3.1.19. Let X/S be a morphism of finite type, where X is regu-
lar and S is the spectrum of a DVR, and that X and S are endowed with the
compactifying log structures induced from the generic fiber over S. Let x be
a closed point of the special fiber of X/S, and in the local ring OX,x write the
uniformizer π is as a product utm1

1 · · · t
mr
r , where u is a unit in OX,x and each ti

is irreducible. Suppose that the closed subscheme of X defined by (t1, . . . , tr) is
of codimension r and smooth over the residue field k of V and that at least one
mi is invertible in k. Then the morphism f is smooth at x.

Proof If m is invertible in k and u is a unit in OX,x, then the equation tm − u
defines a finite étale algebra over OX,x. Hence after an étale localization, we
may assume that u = vm. If mi is invertible in k, we may then replace ti by
vti, and the equation for π becomes π = tm1

1 · · · t
mr
r . Let α : N → V be 1 7→ π,

let θ : N → Nr be n 7→ (m1n,m2n, . . . ,mrn), and let β : Nr → OX be ei 7→ ti.
Then (α, θ, β) is a chart for f . The map X → Sθ := S ×AN ANr is strict, and its
homomorphism of rings is given by

A := V[s1, . . . , sr]/(sm1
1 · · · s

mr
r − π)→ OX,x : si 7→ ti.

Since OX,x is Cohen–Macaulay and the codimension of the quotient defined
by (t1, . . . , tr) is r, the sequence (t1, . . . , tr) is regular. Since A is a regular local
ring, it follows that the the morphism X → Sθ is flat at x. Its fiber over the point
of Sθ defined by (s1, . . . , sr) is by hypothesis smooth at x, so X → Sθ is smooth
at x. By Proposition 3.1.13, it follows that f is also smooth at x. �

Example 3.1.20. In the situation of Proposition 3.1.19, the morphism f can
be smooth even if all mi are divisible by p. Furthermore, a morphism of log
schemes X/Y can be smooth even ifMgp

X/Y is p-torsion. For example, the homo-
morphism N → Z ⊕ N sending n to (n, pn) defines a smooth morphism of log
schemes. If we take the base change defined by sending 1 ∈ N to π ∈ V ,
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where V is a DVR of mixed characteristic p, the resulting log scheme X is
smooth over the standard log dash associated to V , and its underlying ring
homomorphism is given by V → V[u, u−1, t]/(utp = π). A further base change
to the standard log point gives an example of a smooth log scheme over the
standard log point in whichMX/S � Z/pZ.

The concepts of smooth, unramified, and étale morphisms of idealized log
schemes are defined just as in Definition 3.1.1, using idealized log thickenings
as test objects. The categorical and differential properties of such morphisms
behave as expected. Let us here indicate some of the key points. An impor-
tant family of étale morphisms of idealized log schemes can be constructed as
follows.

Variant 3.1.21. Let (X,K) be a coherent idealized log scheme, let K ′ be a
coherent sheaf of ideals in MX containing K , and let (X′,KX′ ) denote the
idealized log subscheme of X defined by K ′ (Proposition III.1.3.4). Then the
morphism of idealized log schemes j : (X′,KX′ )→ (X,KX) is étale.

Proof It suffices to show the following. For every idealized log thickening i
over (X′,KX′ )/(X,KX) as in the diagram

(S,KS)
i- (T,KT )

(X′,KX′ )

g

? j- (X,KX),

h

?

the morphism h factors through j. To see this, observe that since i is ide-
ally strict, KT � MT ×MS KS. The commutativity of the square implies that
i[h[(K ′) ⊆ g[(KX′ ) ⊆ KS and hence that h[(K ′) ⊆ KT . Since αT (KT ) = 0, it
follows that h]αX(K ′) = 0 and hence that the morphism h factors through j.
SinceMX′ is the quotient ofMX by 1 + αX(K ′), it also follows that h[ factors
throughMX′ , and this factorization necessarily takes KX′ to KT . �

For example, if Q is a fine sharp toric monoid, then the log scheme
AQ := Spec(Q → Z[Q]) is smooth over Z. The map of idealized log schemes
AQ,Q+ → AQ,∅ is étale. Thus AQ,Q+ is smooth over Z as an idealized log scheme
although the underlying log scheme AQ is not smooth over Z.

Let us check the idealized version of Proposition 3.1.6.

Variant 3.1.22. An ideally strict morphism fK : (X,KX) → (Y,KY ) of fine
idealized log schemes is smooth (resp. unramified, resp. étale) if and only if
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the corresponding map of underlying log schemes f : X := (X, ∅)→ Y := (Y, ∅)
is smooth (resp. unramified, resp. étale).

Proof If fK is ideally strict, then the natural map (X,KX) → (Y,KY ) ×Y X is
an isomorphism. Hence if the map f is smooth (resp. unramified, resp. étale)
then so is fK , because each of these respective properties is preserved by base
change. Suppose conversely that fK is smooth, and let S → T be an affine
first-order thickening over X/Y , in the notation of Definition 2.2.1. Let KT be
the sheaf of ideals of MT generated by the image of h−1(KY ), and note that
αT (KT ) = 0, because αT ◦ h[ = h] ◦ αY and αY (KY ) = 0. Thus (T,KT ) is
an idealized log scheme. Similarly, let KS be the ideal of MS generated by
the image of g−1(MX), so that there is a morphism of idealized log schemes
i : (S,KS) → (T,KT ). This morphism is strict because f is strict, and hence is
an idealized log thickening. Then the rest of the proof follows the pattern of
the proof of Proposition 3.1.6. �

3.2 Differential criteria for smoothness

The next set of results follows the standard pattern from algebraic geometry.

Proposition 3.2.1. If f : X → Y is a smooth morphism of idealized log
schemes, then Ω1

X/Y is locally free of finite type.

Proof Without loss of generality we assume that X and Y are affine. If
E is a quasi-coherent sheaf on X, let X ⊕ E denote the trivial Y-extension
(Remark 2.1.5) of X by E. Then, by Theorem 2.2.2, the set of retractions
X ⊕ E → X is canonically bijective with Hom(Ω1

X/Y ,E). A surjective map of
quasi-coherent OX-modules E → E′ gives rise to a corresponding log thick-
ening X ⊕ E′ → X ⊕ E and, by the smoothness of X/Y , every retraction
X ⊕E′ → X lifts to X ⊕E, since X is affine. It follows that, for every surjective
homomorphism E → E′, the induced map Hom(Ω1

X/Y ,E)→ Hom(Ω1
X/Y ,E

′) is
also surjective. Since Ω1

X/Y is of finite presentation, it follows that it is locally
free. �

Theorem 3.2.2. Let g : Y → Z be a smooth morphism of coherent and u-
integral log schemes and let i : X → Y be a strict closed immersion defined by
a finite type ideal I of OY . Then X → Z is smooth if and only if the map d in
the sequence of Proposition 2.3.2,

I/I2 d- i∗(Ω1
Y/Z)→ Ω1

X/Z → 0,

is injective and locally split.
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Proof The proof is standard; we will recall the main outline for the conve-
nience of the reader. Let j : X → T be the first infinitesimal neighborhood of
X in Y . If X/Z is smooth, then locally on X there exists a retraction T → X and
hence, by Proposition 2.3.2, the sequence shown is locally split. Conversely,
suppose that the sequence is locally split, and let X′ be a Z-extension of an
affine open subset U of X by a quasi-coherent E. By Proposition 3.1.4, it will
suffice to prove that X′ is trivial. Since Y/Z is smooth, there exists a defor-
mation h̃ : X′ → Y of the inclusion U → Y . Necessarily h̃ factors through T
and induces a homomorphism h̃∗ : I/I2 to i∗E. Since the map d is split, h̃∗

can be extended to a map Ω1
Y/Z → g∗(E). Such a map corresponds to a sec-

tion ξ = (D, δ) of DerY/Z(g∗E). Then the deformation h̃′ := −ξ + h̃ annihilates
I/I2 ⊆ OT and 1 + I/I2 ⊆ MT , and hence factors through i : X → T . This
proves that X′ is trivial and hence that X/Z is formally smooth. Since I is of
finite type and Y/Z is locally of finite presentation, X/Z is also locally of finite
presentation, hence smooth. �

Theorem 3.2.3. Let f : X → Y and g : Y → Z be morphisms of coherent log
schemes, and consider the exact sequence from Proposition 2.3.1

f ∗(Ω1
Y/Z)

s
−→Ω1

X/Z
t
−→Ω1

X/Y → 0.

1. If f is smooth, the map s is injective and locally split.
2. If g ◦ f is smooth and s is injective and locally split, then f is smooth.

Proof Without loss of generality we assume that X is affine. Suppose that f is
smooth, and let T := X⊕ f ∗(Ω1

Y/Z) denote the trivial Y-extension (Remark 2.1.5)
of X by f ∗(Ω1

Y/Z). Thus f̃ : T → Y is f ◦ r, where r : T → X is the retraction.
The adjunction map Ω1

Y/Z → f∗ f ∗(Ω1
Y/Z) induces a derivation

D ∈ DerY/Z( f∗ f ∗(Ω1
Y/Z)),

and hence a deformation f̃ ′ := D + f̃ of f to T . Since X/Y is smooth and X
is affine, the Y-extension of X defined by f̃ ′ is also trivial, so there exists a
retraction r′ : T → X such that f ◦ r′ = f̃ ′. Then r′ and r are both deformations
of idX to T over Z, and hence differ by an element of DerX/Z( f ∗(Ω1

Y/Z)) �

Hom(Ω1
X/Z , f ∗(Ω1

Y/Z)). The homomorphism thus given is the desired splitting
of s.

Suppose on the other hand that h := g◦ f is smooth and that s is injective and
locally split. To prove that X/Y is smooth, we shall show that every Y-extension
i : X → T of X is locally split. If f̃ : T → Y is the structure morphism of T/Y ,
then h̃ := g ◦ f̃ makes i into a Z-extension of X and, since X/Z is smooth,
this extension is locally split. Thus we may assume that there is a Z-retraction
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r̃ : T → X such that h ◦ r̃ = h̃. This retraction will not be a splitting of T as a
Y-extension unless f ◦ r̃ = f̃ . In any case, f ◦ r̃ and f̃ are two deformations of f
to T , and hence differ by a homomorphism φ : f ∗(Ω1

Y/Z)→ IT . Let ρ : Ω1
X/Z →

f ∗(Ω1
Y/Z) be a splitting of s. Then φ ◦ ρ corresponds to a derivation D of X/Z

with values in IT , and r̃′ := D+r̃ is now a splitting of X → T that is compatible
with the maps to Y . �

Corollary 3.2.4. Let f : X → Y and g : Y → Z be morphisms of coherent log
schemes.

1. If f is étale, then the natural map f ∗(Ω1
Y/Z)→ Ω1

X/Z is an isomorphism.
2. If g is unramified, the natural map Ω1

X/Z → Ω1
X/Y is an isomorphism.

Proof If f is étale then it is smooth, so the map s in the exact sequence of
Theorem 3.2.3 is injective. Since f is also unramified, Ω1

X/Y = 0, and hence
the map f ∗(Ω1

Y/Z)→ Ω1
X/Z is an isomorphism. If g is unramified, Ω1

Y/Z = 0, and
the same exact sequence shows that Ω1

X/Z → Ω1
X/Y is an isomorphism. �

Remark 3.2.5. We can now explain the geometry behind Proposition 1.1.9.
The diagram of log rings appearing there becomes a diagram of log schemes:

X′
g - X

Y ′

f ′′

? h - Y.

f

?

f ′

-

The homomorphisms φ : P → P′ and ψ : Q → Q′ induce morphisms of log
schemes AP′ → AP and AQ′ → AQ. Since φgp and ψgp are isomorphisms, these
morphisms are étale, by Corollary 3.1.10. Since g : X′ → X (resp. h : Y ′ → Y)
is obtained by base change of Aφ (resp. Aψ) via the map Spec(B) → A∗Q
(resp. Spec(A) → A∗P), the maps g and h are étale. Since g is étale, the
map g∗(Ω1

X/Y ) → Ω1
X′/Y ′ is an isomorphism and, since h is étale, the map

Ω1
X′/Y → Ω1

X′/Y ′ is an isomorphism by Corollary 3.2.4.

The following result is a familiar echo of the existence of local coordinates
for smooth morphisms in classical algebraic geometry. However, it involves an
unspecified logarithmically étale morphism, whose structure can, as we have
seen, be quite complicated. We shall give more explicit local models of loga-
rithmically smooth and étale morphisms in the next section.

Theorem 3.2.6. Let h : X → Z be a smooth morphism of coherent log
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schemes and let x be a geometric point of X. Then in a strict étale neighborhood
of x, there exists a diagram

X
f- Z × ANr

Z

g

?

h
-

in which f is étale.

Proof Recall from Lemma 1.2.10 that the map OX ⊗M
gp
X → Ω1

X/Z is surjec-
tive. It follows that the fiber Ω1

X/Z(x) of Ω1
X/Z at x is spanned as a k(x)-vector

space by the image of the map MX,x → Ω1
X/Z(x). Thus there exists a finite

sequence (m1,m2, . . . ,mr) of local sections of MX whose images in the vec-
tor space Ω1

X/Z(x) form a basis. Since X/Z is smooth, Ω1
X/Z is locally free, and

hence (dm1, . . . , dmr) give rise to a basis for its stalk at x. Restricting to some
(strict) étale neighborhood of x, we may assume that the mi are global sections
and therefore define a map of log schemes p : X → ANr . Let Y := Z × ANr ,
let f : X → Y be the map (h, p), and let g : Y → Z be the projection mapping.
Consider the exact sequence

→ f ∗Ω1
Y/Z

s- Ω1
X/Z → Ω1

X/Y → 0

from Proposition 2.3.1. The sequence (dm1, dm2, . . . , dmr) also forms a basis
for Ω1

Y/Z,x, and s takes this sequence to our basis for Ω1
X/Z,x. It follows that s

induces an isomorphism on the stalks at x, hence in some neighborhood of
x. Replacing X by such a neighborhood, we find that Ω1

X/Y = 0 and that s is
an isomorphism. Then it follows from Theorem 3.2.3 that f is smooth. Since
Ω1

X/Y = 0, it follows from Proposition 3.1.3 that f is also unramified, hence
étale. �

3.3 Charts for smooth morphisms

The following theorem describes the local structure of a smooth morphism of
log schemes.

Theorem 3.3.1. Let f : X → Y be a smooth (resp. étale) morphism of fine log
schemes, let a : Y → AP be a fine chart for Y , and let x be a geometric point
of X. Then, after X and Y are replaced by étale neighborhoods of x and f (x)
respectively, a fits into a chart (a, θ, b) for f with the following properties.
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1. The homomorphism θ : P → Q is injective and the torsion subgroup of
Cok(θ)gp has order invertible in OX (resp. is finite of order invertible in OX).

2. The morphism bθ in the diagram (see Remark III.1.2.6)

X
bθ - Yθ

b - AQ

Y

fθ

? a -

f

-

AP

Aθ

?

is étale and strict.
3. The chart b is exact at x. If f is étale, the chart (a, θ, b) can be chosen to be

neat at x. If f is smooth and the order of the torsion subgroup ofMgp
X/Y,x is

invertible in k(x), the chart (a, θ, b) can be chosen to be neat at x, provided
bθ is allowed to be smooth (but not necessarily étale).

Proof First note that Ω1
X/Y (x) = 0 if f is étale, and so it follows from Pro-

position 2.3.5 that k(x) ⊗ Mgp
X/Y,x = 0. Then Mgp

X/Y,x is a finite abelian group
whose order is invertible in k(x). Suppose more generally that the order of the
torsion part ofMgp

X/Y,x is invertible in k(x). Localizing X, we may assume that
this order is invertible in OX . Then (4) of Theorem III.1.2.7 tells us that, after
a further étale localization, a can be embedded in a chart for f that is neat at x
and subordinate to a homomorphism θ : P → Q. In particular, θgp is injective,
and the homomorphism Qgp/Pgp → M

gp
X/Y,x induced by b is bijective. Thus

property (1) is certainly satisfied. By Corollary 3.1.9 (resp. Corollary 3.1.10),
the morphism Aθ is smooth (resp. étale). Hence, by Remark 3.1.2, the base-
changed map fθ : Yθ → Y is also smooth (resp. étale). If f is étale, it follows
from Remark 3.1.2 that bθ is also étale and, since bθ is strict, Proposition 3.1.6
implies that bθ is also étale. If f is only smooth, consider the diagram

Ω1
Yθ/Y (x) - Ω1

X/Y (x) - Ω1
X/Yθ (x) - 0

k(x) ⊗ Qgp/Pgp

�

6

- k(x) ⊗Mgp
X/Y,x,

ρX/Y,x

?

(3.3.1)

where the exact sequence along the top comes from Proposition 2.3.1, the map
ρX/Y,x from Proposition 2.3.5, and the left vertical isomorphism from Proposi-
tions 1.1.4 and 1.2.15. Since the chart is neat at x, the horizontal arrow at the
bottom left is an isomorphism, and it follows that the top left horizontal arrow
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is injective. Then it follows from Theorem 3.2.3 that bθ is smooth at x and,
since bθ is strict, that bθ is also smooth.

Now suppose that f is smooth, without any assumption on MX/Y . Let us
apply Theorem 3.2.6 to find, after a localization, a diagram

X
f ′- Y ′ := Y × ANr

Y

p

?

f
-

in which f ′ is étale. Since α := a[ is a chart forMY ,

α′ := α ⊕ id : P ⊕ Nr →MY ′

is a chart for Y ′. Now let us apply the étale case we have already proved to
find a chart for f ′ that is subordinate to a morphism θ′ : P⊕Nr → Q satisfying
conditions (1) and (2). Let θ : P→ Q be the composite of θ′ with the inclusion
P→ P ⊕ Nr. Then θgp is injective, and there is an exact sequence

0→ Zr → Qgp/Pgp → Qgp/(Zg ⊕ Pgp)→ 0.

It follows that the torsion subgroup of Qgp/Pg injects in the torsion subgroup
of Qg/(Zg ⊕ Pgp), and hence has order invertible in OX . Finally, observe that
the two squares in the diagram

X - Y ′θ′ - AQ

Y ′
?

-

f ′

-

AP⊕Nr

?

Y
?

-

f

-

AP

?

are cartesian, and hence so is the rectangle. Since X → Y ′θ′ is étale, (2) is also
satisfied. Let F be the face of Q consisting of those elements of Q that map
to units in OX,x. After a replacement of X by a Zariski open neighborhood of
x, the map X → AQ will factor through AQF , and the map QF → Mx will be
local, hence exact. Then (3) will hold as well. �
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Remark 3.3.2. The chart constructed in the smooth case of Theorem 3.3.1
may not be neat. Indeed, if f is smooth, it can happen that Mgp

X/Y can have
torsion which is not invertible in OX , and that a flat (not étale) localization can
be required before a neat chart can be found. For example, let f : X → Y be
the morphism of log schemes corresponding to the morphism of monoids

n 7→ (n, pn) : N→ Z ⊕ N.

As we saw in Example 3.1.20, this morphism is smooth in characteristic p
although the multiplicity of the special fiber is p. Note that the cokernel of the
map f −1(Mgp

Y,x)→M
gp
X,x at any point of the special fiber is Z/pZ, and thus the

chart N → Z ⊕ N is not neat. In order to find a neat chart, one must take a
flat cover X̃ of X given by taking a pth root of the function corresponding to
(1, p) ∈ Z ⊕ N, but then the morphism X̃ → Y is no longer smooth.

It is in general impossible to construct charts that are both neat and étale—
for example one cannot do this for schemes with trivial log structure. It will be
possible, however, if we relax the notion of a chart somewhat. If Q′ is a monoid
and Q is a submonoid, we let AQ′ (Q) := Spec(Q → Z[Q′]). We shall see that,
when Q is sharp, the local behavior of AQ′ (Q) near its vertex provides a good
model for the local behavior of a smooth log scheme, or a smooth morphism
of log schemes, rather generally.

Theorem 3.3.3. Let f : X → Y be a smooth morphism of fine log schemes,
and let x ∈ X be a geometric point and y := f (x). Suppose that f is s-injective
at x, that the order of the torsion subgroup ofMgp

X/Y,x is invertible in k(x), and
that α is a chart for Y that is neat at y, subordinate to a fine sharp monoid P.
Then there exist fine sharp monoids Q and Q′ := Q ⊕ Nr, a homomorphism
θ : P→ Q, and a chart (α, θ, β) for f that is neat at x. Furthermore, there exists
a homomorphism Nr → OX that, together with the chart (α, θ, β), fits into a
commutative diagram of the following form, in which h is strict and étale:

X
h- Y ×AP AQ′ (Q) - AQ′ (Q)

Y

f ′

?
-

f
-

AP .

Aθ⊕0(Q)

?

The morphism X → AQ′ (Q) (resp. Y → AP) takes the point x (resp. y) to the
vertex of AQ′ (Q) (resp. of AP). If f is Q-integral (resp. integral, resp. saturated),
then the same is true for the homomorphisms P→ Q and P→ Q′.

Proof Replacing X and Y by suitable étale neighborhoods of x and y, we
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work with Zariski log structures and with schematic points in place of ge-
ometric points. Thanks to the assumption on Mgp

X/Y,x, we may apply Theo-
rem III.1.2.7 to obtain a chart (α, θ, β) for f that is neat at x. Statement (5)
of that theorem implies that the chart β is neat at x, since f is s-injective at
x. Let Yθ =: Y ×AP AQ. There is a commutative diagram in which the row and
column are exact:

Ω1
X/Y (x)

Ω1
Yθ/Y (x)

c - Ω1
X/Y (x)
?

- Ω1
X/Yθ (x) -

a

-

0

k(x) ⊗Mgp
X/Y,x.

ρx

?

b

-

The column comes from Proposition 2.3.5 and the row from Proposition 2.3.1.
As we saw in the discussion of diagram 3.3.1 in the proof of Proposition 3.3.1,
the map b is an isomorphism. Then it follows from this diagram that c is injec-
tive and and that a is surjective. Thus we can choose elements (t1, . . . , tr) in the
maximal ideal of x such that (a(dt1), . . . , a(dtr)) is a basis of Ω1

X/Yθ
(x). These

elements define a homomorphism Nr → OX , possibly after a further shrinking
of X. We get a map

X → X′ =: Ar × Yθ � Y ×AP AQ′ (Q),

and the map Ω1
X′/Y (x) → Ω1

X/Y (x) is an isomorphism. By Theorem 3.2.3, this
implies that X → X′ is étale, and it is strict by construction. Since the chart
P→MY is neat at y, the homomorphism P→MY,y is local, and it follows that
the morphism Y → AP takes y to the vertex of AP. The same argument applies
to x. If f is Q-integral (resp. integral, resp. saturated), then the homomorphism

f
[

x : MY,y →MX,x has the same property, and hence so does θ : P → Q. Since
Q → Q ⊕ Nr is saturated, the composition P → Q′ is also Q-integral (resp.
integral, resp. saturated). �

Corollary 3.3.4. Let X be a fine log scheme, smooth over a field with trivial
log structure, and let x be a geometric point of X such that the order of the tor-
sion subgroup ofM

gp
X,x is invertible in k(x). Then, in some étale neighborhood

of x, there exist a fine chart β : Q→MX that is neat at x and a homomorphism
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Nr → OX such that the induced map

X → AQ⊕Nr (Q)

is étale and strict and takes x to the vertex of AQ⊕Nr (Q). �

The idealized analog of the local structure theorem for smooth and étale
morphisms is proved in precisely the same way as the non-idealized version.

Variant 3.3.5. Let f : X → Y be a smooth (resp. étale) morphism of fine
idealized log schemes, let a : Y → AP,J be a fine chart for Y , and let x be a
geometric point of X. Then, after X and Y are replaced by étale neighborhoods
of x and f (x) respectively, there is a chart

a : Y → AP,J, b : X → AQ,K, θ : P→ Q

for f with the following properties.

1. The homomorphism θ : P→ Q is injective and the order of the torsion part
of its cokernel is invertible in OX (resp. and its cokernel is finite of order
invertible in OX).

2. The morphism bθ in the diagram (see Remark III.1.2.6)

X
bθ - Yθ - AQ,K

Y

fθ

? a -

f

-

AP,J

Aθ

?

is étale and strict.
3. The chart b is exact at x. If f is étale, the chart (a, θ, b) can be chosen to be

neat at x.

Corollary 3.3.6. Let f : X → Y be an étale morphism of fine idealized log
schemes. Then, locally on X and Y , f admits a factorization f = f ′′ ◦ f ′, where
f ′ : X → X′ is a closed immersion defined by a coherent sheaf of ideals inMX′

and f ′′ : X′ → Y is étale and ideally strict.

Proof We may suppose that there exists a chart for f of the form described
in Variant 3.3.5. Let J′ be the ideal of Q generated by the image of J and let
Y ′θ := Y ×AP,J AQ,J′ . Then Y ′θ → Y is ideally strict and étale, Yθ → Y ′θ is a closed
immersion, and X → Yθ is ideally strict and étale. Thus X → Yθ is an étale
morphism of schemes. Since Yθ → Y ′θ is a closed immersion, we may, after a
further Zariski localization if necessary, find an étale morphism X′ → Y ′θ such
that X′ ×Y ′θ Yθ � X. Endow X′ with the idealized log structure induced from
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Y ′θ, and let K be the sheaf of ideals ofMX′ generated by K. Then f ′′ : X′ → Y
is étale and ideally strict, and f ′ : X → X′ is the closed immersion defined by
K . �

Let X → Y be an étale morphism and let i : S → T be a (log) thickening.
Then every Y-morphism S → X extends uniquely to T . In standard algebraic
geometry, the same unique extension property holds more generally: it suffices
for i to be an integral radicial homeomorphism [3, Exp. VIII, Thm 1.1]. The
follow result is a logarithmic analog.

Proposition 3.3.7. Let f : X → Y be an étale morphism of fine log schemes
in characteristic p and let i : S → T be an inseparable morphism of fine
log schemes over Y . Then every Y-morphism S → X lifts uniquely to a Y-
morphism T → X.

Proof First let us verify this when X → Y is the morphism corresponding to
an injective homomorphism of fine monoids θ : P→ Q such that Cok(θgp) is a
finite group whose order is prime to p. Using Proposition III.1.2.9, we see that
the proposition in this case amounts to the assertion that the diagram

Hom(Q,MT ) - Hom(P,MT )

Hom(Q,MS)
?

- Hom(P,MS)
?

is cartesian. Since S → T is by definition exact, we may replace all monoids
by their corresponding group envelopes in this diagram. The localization of the
diagram by the powers of p is cartesian because the homomorphism Pgp →

Qgp becomes an isomorphism, and its localization by the powers of the order
n of Cok(θ) is cartesian becauseMgp

T →M
gp
S becomes an isomorphism. Since

(p, n) = 1, it follows that the diagram itself is cartesian.
For the general case, observe that, because of the uniqueness, it suffices to

prove the statement locally on S and X. Thus we may assume without loss of
generality that f admits a chart as described in Theorem 3.3.1. The argument
in the previous paragraph gives us a unique T → AQ over AP, and hence a
unique T → Yθ over Y . Since X → Yθ is étale and S→ T is an integral radicial
homeomorphism, the result in the classical case implies that there is a unique
T → X compatible with the given maps S → X and T → Yθ. Since X → Yθ is
strict, the morphisms T → Yθ and T → X correspond to a unique T → X, as
desired. �

Corollary 3.3.8. Let f : X → Y be a weakly inseparable morphism of fine log
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schemes in characteristic p. Then f admits a factorization X → Y ′ → Y , where
X → Y ′ is inseparable and Y ′ → Y is étale, unique up to unique isomorphism.
An inseparable and étale morphism of fine log schemes is an isomorphism.

Proof Since f is small, such a factorization exists étale locally on X, by Pro-
position III.2.3.5. Since f is an integral radicial homeomorphism, “étale lo-
cally on X” is equivalent to “étale locally on Y ,” by [3, Exp. VIII, Thm 1.1].
Let X → Y ′1 → Y and X → Y ′2 → Y be two such factorizations. Then, by
Proposition 3.3.7, there is a unique map Y ′1 → Y ′2 compatible with these factor-
izations, and this morphism must be an isomorphism. The morphisms Y ′ → Y
are necessarily weakly inseparable by Proposition III.2.4.8, hence affine, and
hence the local constructions patch, by Proposition III.2.1.4. Suppose that f is
inseparable and étale. Then f = idY ◦ f and f = f ◦ idX are two factorizations
of f as the composition of a separable and an étale map. The uniqueness of
such a factorization implies that f is an isomorphism. �

Example 3.3.9. Let f : X → Y be a morphism of fine log schemes in charac-
teristic p. We can form a commutative diagram

X
FX/Y- X′

X′′

GX/Y

? π′X/Y -

F′X/Y

-

X

πX/Y

-

Y

f ′′

? FY -

f

-

Y.

f

?

Here the square is cartesian in the category of fine log schemes and FX =

π′X/Y ◦ F′X/Y . Since FY is weakly inseparable, so is π′X/Y and, since FX is weakly
inseparable, so is F′X/Y by Proposition III.2.4.8. Then F′X/Y = GX/Y ◦ FX/Y is
the unique factorization of F′X/Y with FX/Y inseparable and GX/Y étale. We
call FX/Y the exact relative Frobenius morphism of X/Y . Note that the maps
π′∗X/Y (Ω1

X/Y ) → Ω1
X′′/Y are isomorphisms, since the square is cartesian, and the

maps G∗X/Y (Ω1
X′′/Y )→ Ω1

X′/Y are isomorphisms because GX/Y is étale. It follows
that the maps

π∗X/Y (Ω1
X/Y )→ Ω1

X′/Y

are also isomorphisms.
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Proposition 3.3.10. Formation of the exact relative Frobenius morphism in
the category of fine log schemes is compatible with strict étale localization and
with base change. Thus if f : X → Y is a morphism of fine log schemes and if
g : X̃ → X is strict and étale, then the squares in the diagram

X̃
FX̃/Y- X̃′

πX̃/Y - X̃

X

g

? FX/Y- X′

g′

? πX/Y - X

g

?

are cartesian, and the morphism g′ is strict and étale. If Ỹ → Y is a morphism
of fine log schemes and X̃ := X̃ ×Ỹ X, then the squares in the diagram are
cartesian and the vertical maps are the projections.

Proof If g is strict and étale, consider the commutative diagram

X̃
a- X ×X′′ X̃′′

b- X′ ×X′′ X̃′′
π′′ - X̃′′

π′
X̃/Y - X̃

X

π

? FX/Y -

g
-

X′

π′

? GX/Y- X′′

g′′

? π′X/Y - X.

g

?

Since X′′ := X×FY Y and X̃′ := X̃×FY Y , the square on the far right is cartesian.
The remaining two squares are cartesian by construction, and hence so are the
rectangles. The composition along the top is the absolute Frobenius endomor-
phism of X̃, which is weakly inseparable, and hence by Proposition III.2.4.8,
all the horizontal morphisms in the top row are weakly inseparable. The mor-
phisms g and π are strict and étale, hence a is strict and étale. It then follows
from Corollary 3.3.8 that a is an isomorphism. We can thus identify the com-
posite π′′ ◦b with the morphism F′

X̃/Y
. The morphism GX/Y is étale, hence so is

π′′, and the morphism FX/Y is exact, hence so is b. Thus the factorization b◦π′′

of F′
X̃/Y

is the canonical one, i.e., b identifies with FX̃/Y and π′′ with GX̃/Y . Then
π′

X̃/Y
◦ p′′ identifies with πX̃/Y and the morphism π′ with g′. This completes the

proof of the proposition when g is étale. The proof for base-change maps is
similar but simpler. �

3.4 Unramified morphisms and the conormal sheaf

The main ideas in this section are due to L. Illusie and W. Bauer [5], and of
course K. Kato.
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Proposition 3.4.1. Let f : X → Y be an unramified morphism of log schemes.
Then f is small, andMgp

X/Y is, locally on X, annihilated by an integer invertible
in OX .

Proof Proposition 2.3.5 implies that k(x) ⊗ Mgp
X/Y,x is a quotient of Ω1

X/Y (x)
for every geometric point x of X. Since X/Y is unramified, Ω1

X/Y vanishes,
and hence the same is true of k(x) ⊗ Mgp

X/Y,x. It follows that Mgp
X/Y , a finitely

generated group, must in fact be finite of order prime to the characteristic of
k(x). Then Proposition III.2.3.3 implies that f is small in some neighborhood
of x. �

Theorem 3.4.2. Let f : X → Y be a morphism of fine log schemes. Assume
that f is locally of of finite type. Then the following conditions are equivalent.

1. The morphism f is unramified.
2. The sheaf Ω1

X/Y vanishes.
3. The diagonal morphism ∆X/Y : X → X ×Y X is étale.
4. For every Y ′ → Y , every section Y ′ → X ×Y Y ′ of the projection X ×Y Y ′ →

Y ′ is étale.
5. For every log point (resp. standard log point) S and every morphism S→ Y ,

the base-changed map X ×Y S→ S is unramified.
6. For every point y of Y , the base changed map Xy → y is unramified.
7. Étale locally on X, there exists a chart (a, θ, b) for f subordinate to an in-

jective homomorphism of fine monoids θ : P → Q such that Cok(θgp) is
finite of order invertible in OX and such that the induced map bθ : X → Yθ

is unramified. In fact, for any point x of X, one can arrange for (a, θ, b) to
be neat at x.

8. Étale locally on X, there exists a factorization f = g ◦ i where g is étale and
i is a strict closed immersion.

In particular, any immersion of fine log schemes is unramified.

Proof We have already seen in Proposition 3.1.3 that a morphism of fine log
schemes is formally unramified if and only if Ω1

X/Y = 0. Since we are also
assuming that f is locally of finite type, the equivalence of (1) and (2) follows.
In particular, suppose that f : X → Y is an immersion of fine log schemes.
Then f is an immersion, and hence locally of finite type and unramified, so
Ω1

X/Y = 0. Furthermore, the map f ∗log(MY ) → MX is surjective, soMX/Y = 0.
Then it follows from the exact sequence in Proposition 2.3.5 that Ω1

X/Y = 0, so
f is unramified.

Suppose that f is unramified. Since f is of finite type, the diagonal mor-
phism ∆X/Y is locally of finite presentation. Since ∆X/Y is an immersion, it is
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unramified, and to see that it is formally étale, it is enough to check that it is
formally smooth. Let i : S → T be a first-order log thickening over ∆X/Y . The
given map h : T → X ×Y X defines a pair of maps h1, h2 : T → X with the
same projection k to Y and the same restriction g to X. Then (i, g, k) defines
a log thickening over f , and h1, h2 are two deformations of g to X. Since f is
unramified, these two deformations agree, so h factors uniquely through ∆X/Y

and defines a deformation of g to X. Conversely, if ∆X/Y is étale and S→ T is a
log thickening over f , then any two deformations g̃1, g̃2, of g to T define a log
thickening (i, g, k) over ∆X/Y . Since ∆X/Y is étale, the map g deforms uniquely
to T and defines a factorization of k through ∆X/Y . It follows that g̃1 = g̃2 and
hence that f is formally unramified. Thus conditions (2) and (3) are equivalent.

It is clear that condition (4) implies condition (3): take Y ′ to be X. Suppose
conversely that (3) holds, that Y ′ → Y is a morphism, and that s : Y ′ → Y ′×Y X
is a section of the map f ′ : Y ′ ×Y X → Y ′. Then the diagram

Y ′
s- Y ′ ×Y X

X
? ∆X/Y- X ×Y X

?

is cartesian. Since ∆X/Y is étale, so is s.
Since the family of unramified maps is stable under base change, (1) implies

(5) and (6). Suppose that (5) holds, for all standard log points S. Let x be a point
of X and let y be its image in Y . According to Proposition III.1.5.5, there exist
a standard log point S and a morphism of log schemes S → x, where x is
endowed with the log structure induced from X. Let S → Y be the morphism
obtained by composing S → x with the morphisms x → X and X → Y . Then
the morphism f ′ : X′ := X ×Y S→ S admits a section s taking the unique point
of S to a point x′ of X′ whose image via the map g : X′ → X is x. If (5) holds,
the morphism f ′ is unramified, and hence Ω1

X′/S = 0. By Proposition 1.2.15,
Ω1

X′/S � g∗(Ω1
X/Y ), where g : X′ → X is the projection, and it follows that the

fiber g∗(Ω1
X/Y )(x′) of g∗(Ω1

X/Y ) at x′ vanishes. Since g(x′) = x, we conclude that
Ω1

X/Y (x) also vanishes. Since X/Y is of finite type, the module Ω1
X/Y is of finite

type and hence, by Nakayama’s lemma, it follows that Ω1
X/Y,x vanishes as well.

Since x was arbitrary, the sheaf Ω1
X/Y vanishes and so f is unramified. Suppose

(6) holds and S → Y is a morphism, where S is a log point. Let y be the image
of the unique point of S, and endow it with the log structure induced from Y .
Then the morphism S→ Y factors through the morphism y→ Y . Since Xy → y
is unramified, so is the morphism X ×Y S→ S, and so (6) implies (5).
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Suppose that f admits a chart as described in condition (7). Theorem 3.1.7
implies that the map Aθ : AQ → AP is unramified, and hence so is the map
h : Yθ → Y induced by base change. Since bθ : X → Yθ is strict and bθ is
unramified, it follows from Proposition 3.1.6 that bθ is also unramified. Then
f = h ◦ bθ is also unramified. Supposing conversely that f is unramified, we
follow the method of the proof of the structure theorem 3.3.1 of smooth mor-
phisms. Since our statement is local, we may assume that we are working with
Zariski log structures. Let x be a point of X and let y := f (x). It follows from
Proposition 3.4.1 thatMgp

X/Y,x has finite order, invertible in k(x). Hence by The-
orem III.1.2.7, after a further localization of X, f admits a chart (a, θ, b) which
is neat at x. In particular, Qgp/Pgp � M

gp
X/Y,x, and hence Qgp/Pgp is a finite

group whose order is invertible in k(x), hence also in some neighborhood of
x. Let Yθ := Y ×AP AQ, let bθ : X → Yθ be the morphism induced by f and b,
and let x′ := bθ(x). Since X → Y is unramified, the same is true of the map
bθ : X → Yθ and, since bθ is also strict, bθ is unramified by Proposition 3.1.6.

Since immersions and étale morphisms are unramified, and since the family
of unramified morphisms is stable under composition, it is clear that (8) implies
(1). On the other hand, if f is unramified, then étale locally on X there exists
a chart as in (7). Note that, by Corollary 3.1.10, the map fθ : Yθ → Y is étale.
By the structure theorem for unramified morphism of schemes [32, Corollaire
7.8], bθ can, locally on X, be written as a composite of a closed immersion
i : X → Y ′ and an étale map g′ : Y ′ → Yθ. Endow Y ′ with the log structure
induced from Yθ. Then i becomes a strict closed immersion and g′ a strict étale
morphism of log schemes. We now have f = fθ ◦g′ ◦ i, where i is a strict closed
immersion and fθ ◦ g′ is an étale morphism. �

The previous result can be used to construct “strict infinitesimal neighbor-
hoods” of a closed immersion, or, more generally, of an unramified morphism.

Theorem 3.4.3. Let f : X → Y be a morphism of fine log schemes and,
for each natural number n, let Thickn(X/Y) denote the category whose ob-
jects are log thickenings i : S → T of order less than or equal to n over
X/Y(Definition 2.2.1) and whose morphisms are commutative squares over
X → Y . Then f is unramified if and only if, for every n, the category
Thickn(X/Y) has a final object in of the form

X
in - Yn

X

idX

? f - Y.

fn

?
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Furthermore, the formation of in, when it exists, is compatible with base change
Y ′ → Y . The thickening in is called the nth strict infinitesimal neighborhood
of X in Y .

Proof Let us first prove that the existence of such a universal object implies
that f is unramified. Suppose that i : S → T is a log thickening over X/Y of
order n, given by the maps g : S → X and h : T → Y . Since in is a final object
in Thickn(X/Y), there is a unique morphism hn : T → Yn such that hn◦ i = in◦g
and fn ◦ hn = h. If g̃ : T → X is a deformation of g to T , then in ◦ g̃ ◦ i = in ◦ g
and furthermore fn ◦ in ◦ g̃ = f ◦ g̃ = h. It follows from the uniqueness of hn that
in ◦ g̃ = hn. Hence in ◦ g̃′ = in ◦ g̃ for any other deformation g̃′ of g to T . But in is
a closed immersion, hence a monomorphism, and it follows that g̃ = g̃′. Thus
deformations of g, when they exist, are unique, and hence f is unramified.

Before embarking on the proof of the converse, let us check that the forma-
tion of in is compatible with base change. Thus we suppose that in : X → Yn

is a final object of Thickn(X/Y) and that q : Y ′ → Y is a morphism of fine log
schemes. Let p : X′ := X ×Y Y ′ → X and i′n : X′ → Y ′n := Yn ×Y Y ′ be the in-
duced maps. Then i′n is an object of Thickn(X′/Y ′). If i′ : S′ → T ′ is any other
such object, with maps g′ : S′ → X and h′ : T ′ → Y ′, then p ◦ g′ : S′ → X
and q ◦ h′ : T ′ → Y make i′ into an object of Thickn(X/Y), which then maps
uniquely to in : X → Yn. The induced map T ′ → Y ′n then defines the (necessar-
ily unique) morphism i′ → i′n in Thickn(X′/Y ′).

To prove the existence of in, let us first assume that f admits a factoriza-
tion f = f ′ ◦ i, where f ′ : Y ′ → Y is étale and i : X → Y ′ is a strict closed
immersion. Then the nth infinitesimal neighborhood i′n : X → Y ′n of X in Y ′ is
a log thickening of order n, and the map Y ′n → Y ′ → Y allows us to view it
as an nth-order log thickening of X in Y . We claim that this object, which we
now denote by in, is the final object in the category Thickn(X/Y). Indeed, if
i : S → T is any object of Thickn(X/Y), the map h : T → Y factors uniquely
through a map h′ : T → Y ′, because Y ′ → Y is étale. The ideal IX/Y ′ of X in Y ′

then maps to the ideal IS/T of S in T , and hence In+1
X/Y maps to zero in OT . Thus

the map OY ′ → h′∗(OT ) factors uniquely through fn∗(OYn ). Since in is strict, it
follows also that the mapMY ′ → h′∗(MT ) factors uniquely throughMYn . Thus
the map T → Y factors uniquely through Yn.

In the general case, Theorem 3.4.2 implies that any unramified f admits such
a factorization étale locally on X, and hence the nth strict infinitesimal neigh-
borhood of X in Y exists étale locally. It remains to show that these locally
constructed objects glue. Our argument shows that there is a strict étale cover-
ing Ỹ → Y such that Thickn(X̃/Ỹ) admits a final object ĩn. By the compatibility
of its formation with base change, we see that there is a unique isomorphism
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between the pullbacks of ĩn via the two projections Ỹ ×Y Ỹ → Y , and that this
isomorphism satisfies the cocycle condition on Ỹ ×Y Ỹ ×Y Ỹ . Thus we have
descent data for the embedding ĩn, with respect to the étale morphism Ỹ → Y .
The uniqueness of the construction will give descent data, but since the maps
Yn → Y need not be affine in general, the resulting global object Yn could, a
priori, be an algebraic space rather than a scheme. One can conclude by ob-
serving that Yn,red = Xred is a scheme and then referring to the literature (for
example [53, Theorem III,3.3]) to see that Yn is consequently also a scheme.
Let us roughly sketch an alternative argument showing how to overcome this
problem, without resorting to the language of algebraic spaces.

Our argument shows that there is a strict étale covering Ỹ → Y such that
Thickn(X̃/Ỹ) admits a final object ĩn. By the compatibility of its formation with
base change, we see that there is a unique isomorphism between the pullbacks
of ĩn via the two projections Ỹ×Y Ỹ → Y , and that this isomorphism satisfies the
cocycle condition on Ỹ×Y Ỹ×Y Ỹ . Thus we have descent data for the embedding
ĩn, with respect to the étale morphism Ỹ → Y . If Ũ → X̃ is an étale map, let
Ỹn,Ũ be the restriction of Ỹn to Ũ, and let A(Ũ) := Γ(Ỹn,Ũ ,OYn,Ũ

). The descent
data imply that A(Ũ) does not depend the map Ũ → X̃ and that A defines a
sheaf of rings (not a sheaf of OX-algebras) on Xét.

Let η : Xét → Xzar be the canonical map from the étale to the Zariski topol-
ogy. We shall show by induction on n that the natural map η∗η∗(A)→ A is an
isomorphism. This statement is just Hilbert’s Theorem 90 when n = 0. Sup-
pose its truth for n−1, letA′ be the structure sheaf of Yn−1, viewed as a sheaf on
Xét, and look at the exact sequence 0 → I → A → A′ → 0. Then I is in fact
a quasi-coherent sheaf of OX-modules on Xét. By étale descent, R1η∗(I) = 0
and the map η∗η∗(I) → I is an isomorphism. It follows that η∗η∗A → A is
also an isomorphism. Then η∗(A) forms a quasi-coherent sheaf of rings on Xzar
and hence defines a scheme Yn, and η∗(OYn ) � A. Thus the pullback of Yn to X̃
is Ỹn, and the map Ỹn → Y descends to a map Yn → Y . The fact that X → Yn is
a log thickening of order n over X/Y can be checked étale locally on X, as can
the fact that it is the final such object. This concludes the argument. �

Corollary 3.4.4. Let Lognet denote the category of unramified morphisms f
of fine log schemes, with morphisms f ′ → f given by commutative squares.
For n ∈ N, let Thickn be the full subcategory of Lognet whose objects are the
log thickenings of order less than or equal to n. Then the inclusion functor
Thickn → Lognet admits a right adjoint ( f : X → Y) 7→ (Tn( f ) : X → Yn) (so
that f and Tn( f ) have the same source).

Proof If f : X → Y is an unramified morphism of fine log schemes, let
Tn( f ) : X → Yn be the final object of Thickn(X/Y) constructed in Theo-
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rem 3.4.3 above. If f ′ → f is a morphism in Lognet given by the maps
p : X′ → X and q : Y ′ → Y , then composition with p and q define a func-
tor Thickn(X′/Y ′) → Thickn(X/Y). Then the final object i′n of Thickn(X′/Y ′)
can be viewed as an object of Thickn(X/Y) that maps uniquely to the final ob-
ject in of Thickn(X/Y). Thus we find a morphism i′n → in in Thickn, and Tn

defines a functor Lognet → Thickn. If i : S → T is an object of Thickn and
f : X → T an object of Lognet, a morphism i → f in Lognet makes i into
an object of Thickn(X/Y), which then maps uniquely to the final object Tn( f ).
Thus Tn is right adjoint to the inclusion functor Thickn → Lognet. �

Let i : X → Y be a log unramified morphism of fine log schemes, and let
i1 : X → Y1 be its first strict infinitesimal neighborhood. The ideal of X in
Y1 is a square-zero ideal, hence an OX-module, called the conormal sheaf of
X in Y and denoted by CX/Y . It depends functorially on i: a morphism from
i′ : X′ → Y ′ to i : X → Y given by f : X′ → X and g : Y ′ → Y induces a
morphism of thickenings i′1 → i1 and hence a morphism f ∗(CX/Y )→ CX′/Y ′ .

Remark 3.4.5. Let f : X → S be a morphism of fine log schemes for which
f is locally of finite presentation, and let i1 : X → P1

X/S be the first strict in-
finitesimal neighborhood of the diagonal morphism ∆X/S : X → X ×s X. Thus
the sheaf of ideals defining i1 is the conormal sheaf C∆ of ∆X/S. According to
Theorem 2.2.2, the two maps pi : P1

X/S → X differ by a homomorphism

Ω1
X/S → C∆.

In fact, this homomorphism is an isomorphism. This may be checked geomet-
rically as follows. Given any quasi-coherent E, Theorem 2.2.2 identifies the
set of deformations of idX to the trivial extension X ⊕ E with the set of homo-
morphisms Ω1

X/S → E. On the other hand, if g̃ is such a deformation, and if
r is the retraction X ⊕ E → X, then (r, g) defines a morphism X ⊕ E → P1

X/S
and hence a morphism C∆ → E. In particular, taking E to be Ω1

X/S, one finds
a homomorphism C∆ → Ω1

X/S, which is easily seen to be inverse to the map
defined above.

3.5 Smoothness and regularity

Our main goal in this section is to explore the relationship between regularity
and smoothness in the context of log geometry, echoing the main results in
the classical setting. In particular, we prove the openness of the regular locus
for log schemes satisfying a suitable excellence condition. These ideas will be
further developed in the section on logarithmic flatness.
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Theorem 3.5.1. Let X/S be a fine saturated log scheme over the spectrum S
of a perfect field k with trivial log structure, and let x be a point of X. Assume
that the underlying morphism X/S is of finite type. Then X/S is smooth in a
neighborhood of x if and only if X is regular at x.

Proof This statement can be verified étale locally on X, so we may assume
that we are working in the Zariski topology.

Suppose that X is regular at x. Since X is saturated, statement (2) of Theo-
rem 1.2.7 tells us that, after passing to an étale neighborhood of x, we may find
a chart β : Q →MX that induces an isomorphism Q →MX,x. Then β induces
a strict morphism b : X → AQ := Spec(Q → k[Q]). By Corollary III.1.11.3,
the homomorphism k[Q] → OX,x is flat, and hence b is flat in a neighborhood
of x. Let s be the vertex of AQ, that is, the k-valued point defined by Q+. Since
X is regular at x, the fiber Xs of b over s is regular at x. Since k is perfect and
Xs is a regular k-scheme of finite type, the morphism Xs/k is smooth at x [29,
17.15.1]. Since b is flat at x and since its fiber over s is smooth at x, it follows
from [32, 2.1] that b is also smooth in a neighborhood of x.

Conversely, assume that X/S is smooth. By Theorem 3.3.1, there exist a
fine monoid Q such that the order of the torsion part of Qgp is invertible in
OX and a chart b : X → AQ such that b is étale. As we saw in Proposi-
tion I.3.3.1, the closed subscheme AQ,Q+ of AQ defined by Q+ is isomorphic
to Spec k[Q∗]. Since Q∗ is a finitely generated group whose torsion subgroup
has order invertible in k, the scheme AQ∗ is smooth over k, and hence regular.
Since b is étale, dim(OX,x) = dim(AQ) and dim(OXs,x) = dim(AQ,Q+ ), where
Xs := Spec(OX,x/Q+OX,x). Then

dim(OX,x) = dim(AQ) = rk(Q) = rk(Q) + rk(Q∗) = dim(Q) + dim(OXs,x),

so X is regular at x. �

Theorem 3.5.2. Let X be a fine saturated and locally noetherian log scheme.

1. The set Reg(X) of points of X at which X is regular is stable under gener-
ization.

2. If the scheme underlying X is quasi-excellent [4, Tag 07QS], then Reg(X)
is open.

The proof of this theorem will require some preliminary results, of inde-
pendent interest. The main difficulty is (1). This result was first formulated by
Kato [49, 7.1], but his proof is incomplete.2 We follow the methods of Gabber
and Ramero in [22, 12.5.47] and Gabber in [42, X,1.1.1(b)].

2 His argument only shows regularity at generizations of the generic points of the log strata.
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Proposition 3.5.3. Let f : X → Y be a smooth morphism of fine saturated log
schemes whose underlying schemes are locally noetherian. Then X is regular
at a geometric point x if and only if Y is regular at f (x).

Proof Replacing X and Y by étale neighborhoods of x and f (x), we may
assume that X and Y have charts, and we may therefore work in the Zariski
topology and replace geometric points by scheme-theoretic points. We may
also assume that there exists a chart (a, θ, b) for f of the form specified in
Theorem 3.3.1, and we use the notation established there. Since X → Yθ is
étale and strict, the log scheme X is regular at x if and only if Yθ is regular
at bθ(x). Thus we may assume that X = Yθ. Since our statement is local, we
may and shall assume that X and Y are affine, say Y = Spec(α : P → A) and
X = Spec(β : Q → B). We may also assume that A is a local ring. Since now
X = Yθ, we have B = A ⊗Z[P] Z[Q]. Let Iβ be the ideal of B generated by Q+,
let Iα be the ideal of A generated by P+, and let X+ ⊆ X and Y+ ⊆ Y be the
corresponding closed log subschemes.

Lemma 3.5.4. In the situation described in the previous paragraph, the fol-
lowing statements hold.

1. The restriction X∗ → Y∗ of f to the log trivial locus is smooth and of relative
dimension equal to rank(Qgp/Pgp).

2. The morphism X+ → Y+ induced by f is smooth at x and of relative dimen-
sion equal to rank(Q∗/P∗).

Proof Let q (resp. p) be an element of the interior of Q (resp. P), so that the
localization of Q by q is Qgp (resp. the localization of P by p is Pgp). Then, if
b := β(b) and a := α(q),

Bb � A ⊗Z[P] Z[Qgp] � Aa ⊗Z[Pgp] Z[Qgp].

Since Pgp → Qgp is injective, and since the order of the torsion subgroup of
its cokernel is invertible in A, the corresponding morphism of group schemes
AQgp → APgp is smooth and of relative dimension rank(Qgp/Pgp), when pulled
back to Spec(Aa). This proves (1).

For (2), we have

B/Iβ = B ⊗Z[Q] Z[Q,Q+]

� A ⊗Z[P] ⊗Z[Q] ⊗Z[Q] Z[Q,Q+]

� A ⊗Z[P] Z[P, P+] ⊗Z[P,P+] Z[Q,Q+]

� A/Iα ⊗Z[P,P+] Z[Q,Q+]

� A/Iα ⊗Z[P∗] Z[Q∗].
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The homomorphism P∗ → Q∗ is injective; let us note also that the order of
the torsion subgroup of its cokernel is invertible in A. Indeed, if p > 0 is the
residue characteristic of A and u ∈ Q∗ with pu ∈ P∗ then, since Qgp/Pgp

is p-torsion free, necessarily u ∈ Pgp. Since P is saturated, it follows that
u ∈ P and, since θ is local, that u ∈ P∗. Hence u maps to zero in Q∗/P∗.
The corresponding morphism of group schemes AQ∗ → AP∗ therefore becomes
smooth when pulled back to Spec(A/Iα); its relative dimension is the rank of
Q∗/P∗. Thus, the morphism Spec(B/Iβ) → Spec(A/Iα) is smooth of the same
relative dimension. �

Now suppose that α is regular at y. Then the underlying local ring A/Iα is
regular and thus (2) of Lemma 3.5.4 implies that the ring B/Iβ is regular at x.
Furthermore, α is solid at y, so it follows from Proposition III.1.10.15 that β is
solid at x. Thus β is also regular at x, by the equivalence of the conditions in
Theorem III.1.11.1.

The proof of the converse, made possible by help from O. Gabber, is more
difficult. It will use the following commutative algebra result from [27, 5.5.8
and 5.6.1].

Theorem 3.5.5. Let f : X′ → Y ′ be a dominant and finite type morphism of
integral noetherian schemes, with generic points ξ and η, respectively, and let
x be a point in X with image y in Y ′. Then

dimy(Y ′) + tr.deg.k(ξ)/k(η) ≥ dimx(X′) + tr.deg.k(x)/k(y),

with equality if Y ′ is universally catenary. �

To complete the proof of Proposition 3.5.3, suppose that X is regular at x.
Then OX,x is an integral domain, and we may assume that X is also integral. Let
A be the image of A in B, which is also integral, and let Y be Spec A. Applying
Theorem 3.5.5 with Y ′ := Y and X′ := X, we see that

dimy Y ≥ dimy Y + tr.deg.k(ξ)/k(η) ≥ dimx X + tr.deg.k(x)/k(y).

By (1) of Lemma 3.5.4, we see that tr.deg.k(ξ)/k(η) = rk(Qgp/Pg), so this
inequality becomes:

dimy Y ≥ dimx X + tr.deg.k(x)/k(y) − rk(Qgp) + rk(Pgp).

Let X+ be the closed subscheme of X defined by the ideal generated by Q+,
with similar notation for Y . Since X is regular at x, dimx X = dimx X++rk(Q

gp
),

so we get

dimy Y ≥ dimx X+ + tr.deg.k(x)/k(y) − rk(Q∗) + rk(Pgp). (3.5.1)

We also know that X+ is regular at x, and hence by (2) of Lemma 3.5.4, Y+
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is regular at y, and in particular is universally catenary. Then Theorem 3.5.5
applied to the morphism X+ → Y+ gives the equality:

dimy Y+ + tr.deg.k(ξ+)/k(η+) = dimx X+ + tr.deg.k(x)/k(y).

Statement (2) of Lemma 3.5.4 also implies that

tr.deg.k(ξ+)/k(η+) = rk(Q∗/P∗).

Thus

dimx X+ = dimy Y+ + rk(Q∗) − rk(P∗) − tr.deg.k(x)/k(y).

Substituting this equation into the inequality (3.5.1) yields

dimy Y ≥ dimy Y+ + rk(Pgp) − rk(P∗) = dimy Y+ + rk(P
gp

),

as required. �

The next result will allow us to reduce the rank of a log structure by a care-
fully constructed modification.

Proposition 3.5.6. Let X be a fine locally noetherian log scheme and let x, ξ
be two points of X, where x is a specialization of ξ. Then there exist an étale
morphism of fine log schemes f : X′ → X and points x′, ξ′ of X′ lying over x
and ξ respectively, such that x′ is a specialization of ξ′ such that dim(MX′,x′ ) ≤
1, and such that X′∗ → X∗ is an isomorphism.

Proof Without loss of generality we may assume that X = Spec(Q→ A), and
that x corresponds to a prime p of A and ξ to a prime q of A contained in p. We
may also assume that Q → Ap is local and that A is noetherian. Then, by [34,
Exercise II,4.11], there exists a discrete valuation ring V with fraction field K
endowed with local homomorphisms Ap → V and Aq → K. Let us identify
V/V∗ with N, so that the homomorphism Q → Ap → V → V/V∗ defines a
local homomorphism h : Q→ N. Let Q′ := Qgp ×Z N, which is a fine monoid,
by Corollary I.2.1.21. The homomorphism θ : Q → Q′ is local, because its
composition with Q′ → N is the local homomorphism h. Moreover, Q′gp = Qgp

and Q′ → N is exact. By Proposition I.4.2.1, the induced homomorphism
Q′ → N is injective and hence dim(Q′) ≤ 1. We have a homomorphism of log
rings (Q→ A) - (Q′ → V). Thus if T is the log dash Spec(Q′ → V), there
is a commutative diagram of log schemes

T - AQ′

X
?

- AQ .

Aθ

?
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Since θgp is an isomorphism, the morphism of log schemes Aθ is étale and
induces an isomorphism on the log trivial loci. Then the same is true of the
induced morphism

X′ := X ×AQ AQ′ → X.

The commutative diagram above defines a lifting T → X′ of T → X. Let x′

(resp. ξ′) be the image in X′ of the closed (resp. generic) point of T . Then ξ′

is a specialization of x′. Furthermore, since X → AQ is strict, so is X′ → AQ′ ,
and it follows that the dimension ofMX′,x′ is at most one. �

Proof of Theorem 3.5.2 Let x be a point of Reg(X) and let ξ be a generization
of x. Let A be the local ring of X at x, and assume we are given a fine and
saturated chart β : Q → A of X, which we may assume is local. Then β is
a regular local log ring. The point ξ corresponds to a prime ideal p of A; let
q := β−1(p) and let F := Q \ q. We claim that the local log ring βF : QF →

Ap is again regular. Since β : Q → A is (very) solid, Proposition III.1.10.9
implies that the same is true of βF . Thus by the equivalence of the conditions
in Theorem III.1.11.1, it will suffice to prove that Ap/qAp is a regular ring.
We know from Proposition III.1.11.10 that βq : F → A/qA is a regular local
log ring, and our target Theorem 3.5.2 asserts that that the local log ring (F →
Ap/qAp) is again regular. However, the log structure of F → Ap is trivial, since
β(F) ⊆ A∗p, so log regularity implies standard regularity in this case. Thus we
are reduced to proving (1) of Theorem 3.5.2 when p lies in the log trivial locus
X∗.

Let us write X for Spec(β). We must show that X is regular at ξ if ξ ∈ X∗.
Let us apply Proposition 3.5.6 to find a morphism f : X′ → X as described
there. Then X′ is regular and saturated at x′ and dim(MX′,x′ ) ≤ 1, so by The-
orem III.1.11.6, the underlying scheme X′ is regular at x′. Since X′ is quasi-
excellent, it is also regular at ξ′ [26, 0,17.3.2]. But since the log structure of X
is trivial at ξ, X′ is isomorphic to X in a neighborhood of ξ′, and hence X is
regular at ξ. This completes the proof of (1).

Since X is locally noetherian, a subset R of X is open if and only if it is
closed under generization and every point ξ of R has an open neighborhood U
such that {ξ}− ∩ U is contained in R [27, 6.11.6.1]. Thus the following lemma
will complete the proof of Theorem 3.5.2. �

Lemma 3.5.7. With the hypotheses of Theorem 3.5.2, suppose that ξ is a point
of X at which X is regular. Then there is a nonempty open subset of {ξ}− at
every point of which X is regular.

Proof Since X is regular at ξ it is very solid at ξ. Hence Proposi-
tion III.1.10.11 implies that X is very solid in some neighborhood of ξ, which
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we may assume to be all of X. Without loss of generality we may also assume
that X = Spec(β : Q → A), where Q is a fine and saturated monoid and where
A is a quasi-excellent ring. Let X+ be the closed subscheme of X defined by Iβ.
Since X is quasi-excellent, the same is true of X+, and in particular Reg(X+) is
open. Since X+ is regular at ξ, there is an open neighborhood of ξ in X+ that is
regular and we may assume that this neighborhood is all of X+. Note that, for
every point x ∈ X+, IβOX,x = M+

X,xOX,x. Thus OX,x/M
+
X,xOX,x is regular and,

by the equivalence of the conditions in Theorem III.1.11.1, it follows that X is
regular at x. �

4 Logarithmic flatness

4.1 Definition and basic properties

As we have seen, a morphism of log schemes is smooth (resp. étale) if and
only if it locally admits a model resembling a morphism of monoid schemes
AQ → AP whose corresponding morphism of tori A∗Q → A∗P is smooth (resp.
étale). Following K. Kato’s original idea, as explained and developed by W.
Bauer [5], we use a similar method to define the notion of flatness for mor-
phisms of log schemes. Note that if θ : P → Q is an injective homomorphism
of integral monoids, then Pgp → Qgp is also injective, and so Qgp is a free
Pgp-set and the corresponding homomorphism Z[Pgp] → Z[Qgp] is flat. Thus
the corresponding morphism of log schemes AQ → AP will be an example of
a (log) flat morphism.

In this section we work in the category of integral or fine log schemes, and in
particular all fibered products are taken in the category of integral log schemes.
We omit any discussion of idealized log schemes.

Definition 4.1.1. A morphism of fine log schemes f : X → Y is (log) flat if,
fppf locally on X and Y , there exists a chart (a, θ, b) for f such that θ : P → Q
is an injective homomorphism of fine monoids and such that the morphism of
schemes bθ : X → Yθ = Y ×AP

AQ is flat.

Before investigating this definition further, it will be useful to establish some
basic properties of the class of flat morphisms. Let us say that a chart (a, θ, b)
for a morphism f is flat if θ is injective and the map bθ : X → Yθ is flat, as in
Definition 4.1.1. Thus a morphism is flat if and only if, ffpf locally on X and
Y , it admits a flat chart.

Proposition 4.1.2. In the category of fine log schemes, the following state-
ments hold.
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1. Smooth morphisms are flat.
2. A strict morphism of fine log schemes f : X → Y is flat if and only if the

underlying morphism of schemes f : X → Y is flat.
3. If f : X → Y is flat and Y ′ → Y is a morphism, then the base-changed mor-

phism f ′ : X ×Y Y ′ → Y ′ is also flat. The same result holds in the category
of fine saturated log schemes.

4. If f : X → Y and g : Y → Z are flat, then the composed morphism g ◦ f is
also flat.

Proof The fact that smooth morphisms are flat follows from Theorem 3.3.1,
which asserts that a smooth morphism locally admits a chart subordinate to an
injective homomorphism θ such that bθ is smooth (and hence flat).

Suppose that f is strict and that f is flat. Locally on Y , choose a chart
a : Y → AP for Y . Then b := a ◦ f is a chart for X and (a, idP, b) is a chart
for f . Then Yθ = Y and bθ = f , which is flat. It follows that f is flat.
Conversely, suppose that f is flat and strict. To prove that f is flat, we may
work fppf locally on X and Y , and so we may assume that f admits a flat
chart (a, θ, b). Choose a point x of X mapping to a point y of Y . Then the
homomorphism α := a[ : P→MY,y factors through its localization PF , where
F := α−1(M∗Y,y), and similarly β := b[ : Q→MX,x factors through its localiza-
tion by G := β−1(M∗X,x). The homomorphism θ′ : PF → QG induced by θ is still
injective, and we obtain a chart (a′, θ′, b′) for f . The morphism AQG → AQ is an
open immersion, and hence so is the morphism j : Yθ′ → Yθ. Since bθ = j ◦ b′θ′
and bθ is flat, it follows that b′θ′ is also flat. Thus, changing notation, we may
assume that α and β are local and hence induce isomorphisms P → MY,y and
Q→MX,x, respectively. Since f is strict, the mapMY,y →MX,x is an isomor-
phism, and hence so is θ. Then θ is integral and, by (2) of Proposition I.4.6.3,
the homomorphism θ : P→ Q is also integral. Since θ is injective and integral,
Proposition I.4.6.7 tells us that Aθ is flat. Since f = Aθ ◦ bθ, it is also flat.

To prove statement (3), let f : X → Y be a flat morphism of fine log
schemes, let g : Y ′ → Y be an arbitrary morphism of fine log schemes, and
let f ′ : X′ → Y ′ be the base change of f along g. The assertion that f ′ is
flat may be checked fppf locally on X′, and hence also fppf locally on X and
Y ′. Thus we may assume that f admits a chart (a, θ, b) as in Definition 4.1.1.
Thanks to Proposition II.2.4.2, we may also assume that the given chart a for
Y fits into a chart (a, φ, a′) for the morphism g, where φ : P → P′ is a homo-
morphism of fine monoids. Let Q′ := Q ⊕P P′, computed in the category of
integral monoids. Then the homomorphism θ′ : P′ → Q′ := Q ⊕P P′ is again
injective, the morphism

b′ : X′ = Y ′ ×Y X → AP′ ×AP AQ = AQ′
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is a chart for X′, and (a′, θ′, b′) is a chart for f ′ : X′ → Y ′. The morphism

b′θ′ : X′ = Y ′ ×Y X → Y ′θ′ := Y ′ ×AP
′ AQ′ � Y ′ ×AP AQ

can be identified with idY ′ ×Y bθ and, since bθ is flat, so is the morphism bθ′ .
Thus the morphism f ′ : X′ → Y ′ is again flat. This proves statement (3) in the
category of fine log schemes.

To prove (3) in the category of fine saturated log schemes, recall that if X, Y ,
and Y ′ are saturated, then X′ may not be, and the fiber product in the category
of saturated log schemes is formed by replacing Q′ by its saturation Q′′ and
X′ by X′′ := X′ ×AQ

′ AQ′′ (formed in the category of integral log schemes).
Since the homomorphism Q′ → Q′′ is injective, the morphism AQ′′ → AQ′ is
flat, and hence so is X′′ → X′. Then it will follow from statement (4) that the
composition X′′ → X′ → Y ′ is also flat.

The proof of statement (4) relies on the following lemma, due to O. Gabber.

Lemma 4.1.3. Let f : X → Y be a flat morphism of fine log schemes and let
a : Y → AP be a fine chart for Y . Then, fppf locally on X and Y , there exists a
flat chart (a, θ, b) for f .

Proof Let x be a point of X, let y := f (x), and let α := a[ : P → MY . Then
αy : P→MY,y factors through its localization αloc : Ploc →MY,y, and, after re-
placing X and Y by suitable open subsets, we may further assume that αloc fac-
tors through Γ(Y,MY ). Then a factors through the open immersion APloc → AP.
Since this open immersion is flat, it suffices to prove the lemma with αloc in
place of α. Thus we may also assume that a is exact at y.

Since f is flat and the assertion is fppf local, we may assume that there
exists a flat chart (a′, θ′, b′) for f , corresponding to monoid homomorphisms
α′ : P′ → MY , β′ : Q′ → MX , and θ′ : P′ → Q′. After further shrinking of X
and Y if necessary, we may also assume that a′ is exact at y and that b′ is exact
at x. We proceed with a series of reductions.

Choose a surjection φ from a finitely generated free abelian group L to Q′gp

and let Q′′ := φ−1(Q′) and P′′ := Q′′ ×Q′ P′. Then Ker(φ) is contained in Q′′∗

and Q′ = Q′′/Ker(φ). Since Ker(φ) is also contained in P′′, it follows that
the map Q′′ ⊕P′′ P′ → Q′ is an isomorphism. The homomorphisms P′′ → P′

and Q′′ → Q′ are exact and surjective, and hence the induced morphisms
a′′ : Y → AP′′ , b′′ : X → AQ′′ , and θ′′ : P′′ → Q′′ form a chart for f , with θ′′

injective. Since AQ′ � AQ′′ ×AP
′′ AP′ , the map Yθ′ → Yθ′′ is an isomorphism and,

since bθ′ is flat, b′′θ′′ is also flat. Thus (a′′, θ′′, b′′) is a flat chart for f . Moreover
Q′′gp � L and in particular is torsion free. Replacing (a′, θ′, b′) by (a′′, θ′′, b′′),
we may therefore assume that P′gp and Q′gp are torsion free.

Since a is exact and y and P′gp is torsion free, Proposition II.2.3.9 implies
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that there exist homomorphisms κ : P′ → P and γ : P′ → M∗Y,y such that
α′ = α ◦ κ + γ. After shrinking X and Y , we may assume that γ defines a
morphism g : Y → A∗P′ , and after a finite flat covering, we may assume that
g lifts to a morphism h : Y → A∗Q′ . This h corresponds to a homomorphism
δ : Q′ → O∗Y such that δ ◦ θ′ = γ. Let α′′ := α′ − γ and β′′ := β′ − δ, defining
morphisms a′′ : Y → AP′ and b′′ : X → AQ′ respectively, and let θ′′ = θ′. Then
(a′′, θ′′, b′′) is again a chart for f . Furthermore, there is a commutative diagram

X
b′θ′ - Yθ′

=- Y ×a′ AQ′

Yθ′′

k

? =-

b′′θ′′ -

Y ×a′′ AQ′ ,

k

?

where k(y, z) = (y, h(y)z). Then b′′θ′ is flat, because k is an isomorphism and b′θ′
is flat. Thus (a′′, θ′′, b′′) is also a flat chart for f . Changing notation again, we
may assume that α′ = α ◦ κ.

Since α′ and α are exact at y, the map κ is an isomorphism, and it follows
that P � P′ ⊕P′∗ P∗. Let θ : P → Q := Q′ ⊕P′ P be the pushout of θ′. Then
Q � Q′ ⊕P′∗ P and it follows that the induced homomorphism β : Q → MX is
also a chart. The diagram

X
b′θ′- Y ×AP′ AQ′

Y ×AP AQ

�

?

bθ
-

shows that (a, θ, b) is a flat chart for f , as desired. �

Now, to prove statement (4) of the proposition, suppose that f : X → Y and
g : Y → Z, are flat morphisms Then, fppf locally on Y and Z, there exists a
flat and fine chart (c, φ, a) for g, where c is subordinate to M and a to P. The
lemma implies that, after a further fppf localization on X and Y , there exists a
flat chart (a, θ, b) for f . Then ψ := θ ◦ φ is injective and (b, ψ, c) is a chart for
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g ◦ f , so it will suffice to check that bψ is flat. Consider the diagram

X
bθ - Yθ

ã - Zψ - AQ

Y
? aθ -

f
-

Zφ
?

- AP

Aθ

?

Z
?

-

g
-

AM .

Aφ

?

All the squares are cartesian and, by hypothesis the morphisms bθ and aθ are
flat. It follows by base change that ã is flat and hence that the composition
bψ = ã ◦ bθ. is flat. This completes the proof of the proposition. �

This definition of log flatness is not well adapted to proving that a mor-
phism of log schemes is not flat: a flat morphism can (trivially) admit charts
such that bθ is not flat. Theorem 4.1.4 and Corollary 4.1.6 will remedy this
weakness by giving more intrinsic characterizations. It is inspired by the dis-
cussion of flatness due to Martin Olsson using the classifying stack of log
structures [62], as recast in [51, Lemma 4.3.1]. It makes crucial use of the ac-
tion mQ/P : AQ ×A∗Q/P → AQ of the group scheme A∗Q/P on the log scheme AQ

and the corresponding morphism hQ/P : AQ ×A∗Q/P → AQ ×AP AQ, described in
Example III.2.3.6.

Theorem 4.1.4. Let f : X → Y be a morphism of fine log schemes. Then, in
the category of fine (resp. fine saturated) log schemes, the following conditions
are equivalent.

1. The morphism f is flat.
2. Fppf locally on X and Y , the following holds. For every diagram of the form

X′′
h - X′

pX - X

Y ′

f ′

? pY -

f ′′
-

Y

f

?

in which the square is cartesian, h is étale, and f ′′ is strict, the underlying
morphism f ′′ is flat.
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3. The same as (2), for diagrams with the additional assumptions that pY is
flat and that the relative characteristicMX′′/X′ of the morphism h vanishes.

4. Fppf locally on X and Y , for every fine chart (a, θ, b) for f in which θ is
injective, the morphism mθ : X × A∗Q/P → Yθ defined by bθ and the action
mQ/P of A∗Q/P on AQ is flat.

Proof Suppose that f is flat and that we are given a diagram as in (2) (after
a possible fppf localization). Statement (3) of Proposition 4.1.2 implies that
the morphism f ′ is flat, statement (1) implies that h is flat, and statement (4)
implies that f ′′ is flat. Since f ′′ is strict, statement (2) implies that f ′′ is flat,
as required.

It is trivial that (2) implies (3). The implication of (4) by (3) will use the
following lemma, which shows how a chart for f produces a diagram of the
type described in (3).

Lemma 4.1.5. Let (a, θ, b) be a chart for a morphism of integral log schemes
f : X → Y , where θ : P → Q is an injective homomorphism of fine monoids.
Let

mY : Yθ × A∗Q/P → Yθ

be the map induced from mQ/P by base change along a, and let

hX : X × A∗Q/P → X ×AP AQ

be the map induced from hQ/P by base change along b. Consider the commu-
tative diagram

X × A∗Q/P
hX- X ×AP AQ

prX - X

Yθ × A∗Q/P

bθ × id

? mY - Yθ

f × id

? prY -

mθ

-

Y.

f

?

(4.1.1)

Then the right square is cartesian, and the morphism hX is étale with van-
ishing relative characteristic. Furthermore, the morphism mθ is strict and the
morphism prY is flat. If f is of finite presentation, then so are mθ and bθ ⊗ id.

Proof The square on the right is cartesian by construction. The map hQ/P

comes from the homomorphism φ : Q ⊕P Q→ Q ⊕ Qgp/Pgp defined in Exam-
ple III.2.3.6, and φgp is an isomorphism. It follows that hQ/P is étale and that its
relative characteristic vanishes. Since hX is obtained from hQ/P by base change,
it shares the same properties. The morphisms mY and bθ × id are strict, and it
follows that mθ is also strict. Since θ is injective, the morphism AQ → AP is
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flat, and hence so is the morphism prY : Yθ → Y . Suppose that f is locally of
finite presentation. Since mY is also locally of finite presentation, so are hX and
f × id, and it follows that mθ is locally of finite presentation. Since mY is locally
of finite type, it also follows that bθ × id is locally of finite presentation. �

The lemma shows that if (a, θ, b) is any chart for f in which θ is injective,
then mθ fits as the morphism f ′′ in a diagram satisfying the conditions in state-
ment (3). Thus if f satisfies the hypotheses of (3), the morphism mθ is flat, so
(4) is also satisfied.

Now suppose that f satisfies (4). Since flatness can be checked fppf locally
on X and Y , we may assume that f admits a chart (a, θ, b), where θ : P → Q
is a homomorphism of fine monoids. Let Q′ := Pgp ⊕ Q, let θ′ : P → Q′ be
(inc, θ), and let β′ : Q′ → MX be (0, β). Then (α, θ′, β′) is a chart for f and θ′

is injective. Changing notation, we may assume that θ was already injective.
Since A∗Q/P is faithfully flat and of finite presentation over Spec(Z) and since its
log structure is trivial, the projection π : X̃ := X×A∗Q/P → X is an fppf cover of
X, and (a, θ, b◦π) is a chart for f̃ := f ◦π. The map b̃ := mQ/P◦(b×id) : X̃ → AQ

is also a chart for f̃ , because mQ/P and b × id are strict. Since b̃θ = mθ and mθ

is flat by hypothesis, (a, θ, b̃) is a flat chart for f , and hence f is flat. �

Corollary 4.1.6. A morphism of fine log schemes is flat if, fppf locally on
X and Y , it admits a fine chart (a, θ, b) in which θ is injective and the map
mθ : X × A∗Q/P → Yθ is flat. Conversely, if f is flat, and (a, θ, b) is any local
chart in which θ is injective, then mθ is flat. �

The following result, due to K. Kato, shows that neat charts for flat mor-
phisms are flat.

Theorem 4.1.7. Let f : X → Y be a flat morphism of fine log schemes such
that f is locally of finite presentation. Suppose that (a, θ, b) is a chart for f that
is neat at point x of X. Then bθ is flat in some neighborhood of x.

Proof Let us consider the diagram of Lemma 4.1.5 formed from the chart
(a, θ, b). We proceed in several steps.

The morphism mθ is flat.
Since our chart (a, θ, b) is neat, the homomorphism θ : P → Q is injective.
Then statement (4) of Theorem 4.1.4 tells us that mθ is flat.

The action of A∗Q/P on Y+
θ := Yθ ×AQ

A(Q,Q+) is trivial.
Since the chart (a, θ, b) is neat at x, the homomorphism b[ induces an isomor-
phism Qgp/Pgp →M

gp
X/Y,x. Note that b[ maps Q∗ into O∗X,x, which maps to zero
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in Mgp
X/Y,x. It follows that Q∗ is contained in θ(Pgp). Thus A∗Q/P = A∗Q/(P+Q∗),

which acts trivially on A∗(Q,Q+) by Proposition I.3.3.5.

The morphism b+
θ : X+ := b−1

θ (Y+
θ )→ Y+

θ is flat.
Consider the following diagram:

X+ × A∗Q/P
prX+

- X+

Y+
θ × A∗Q/P

b+
θ × id

? m+
Y - Y+

θ .

b+
θ

?

mθ
+

-

The lower left triangle of this diagram comes from the lower left corner of
diagram (4.1.1), and the square commutes because the action of A∗Q/P on Y+

θ is
trivial. It follows that the upper right triangle commutes. Since mθ is flat, so is
mθ
′′+ and, since prX+ is faithfully flat, it follows that b+

θ is flat.

The morphism bθ is flat.
The lower left corner of diagram (4.1.1) gives the following diagram:

X × A∗Q/P

Yθ × A∗Q/P

bθ × id

? mY - Yθ.

mθ

-

Since β is neat at x, it is local at x, so b(x) lies in A(Q,Q+) and hence x be-
longs to X+, the fiber of X over Y+

θ . We have seen that mθ and b+
θ are flat and

that bθ is locally of finite presentation. Thus the criterion of flatness along the
fibers [30, 11.3.10] implies that bθ × id is flat in a neighborhood of x. Since
A∗Q/P is faithfully flat over Spec(Z), the flatness of bθ follows. �

Remark 4.1.8. Recall that a morphism of schemes f : X → Y is said to be
flat at a point x of X if the corresponding local homomorphism of local rings
OY, f (x) → OX,x is flat, and that a morphism f is flat if and only if it is flat at
each point of its domain. Furthermore, if f is flat at x and is locally of finite
presentation, then it is flat in some neighborhood of x [30, 11.3.10]. Let us use
the analogous terminology for morphisms of fine log schemes. Then it is easy
to see from Theorem 4.1.4 that a morphism of fine log schemes is flat if and
only if it is flat at each point of its domain and that if f is flat at x and f is
locally of finite presentation, then f is flat in some neighborhood of x.
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The next result shows that the idealized fibers of a flat morphism of fine log
schemes are solid. The important corollary that follows it relates the notions of
exactness, s-injectivity, and Q-integrality for smooth and flat morphisms.

Proposition 4.1.9. Let f : X → Y be a flat morphism of fine log schemes. As-
sume that the underlying morphism of schemes is locally of finite presentation.
Then the idealized fibers of f are solid. In particular, the idealized fibers of a
smooth morphism of fine log schemes are solid.

Proof We may assume without loss of generality that Y is a log point and that
we are working in the Zariski topology. Let K be the sheaf of ideals of MX

generated byM+
Y . The proposition asserts that the idealized log scheme (X,K)

is solid, i.e., that for every point x of X, the map Spec(OX,x)→ Spec(MX,x,Kx)
is locally surjective. Suppose that X′ → X is a strict and ideally strict locally
surjective morphism of fine idealized log schemes. Thus X will be solid if
X′ is. We may therefore assume without loss of generality that the field k is
algebraically closed and furthermore we may work fppf locally on X. Then, by
Remark III.1.5.3, we may assume that Y is split, so that it admits a neat chart
a subordinate to a fine sharp monoid P. By Theorem III.1.2.7, we may assume
that the chart P→MY extends to a chart (a, θ, b), neat at x, with b subordinate
to a fine monoid Q. Then, by Theorem 4.1.7, the morphism bθ : X → Yθ =

Spec(k[Q, J+
θ ]) is flat, where Jθ is the ideal of Q generated by θ(P+). It follows

that bθ is locally surjective. Since Yθ → Spec(Q, Jθ) is locally surjective the
same is true of the map X → Spec(Q, Jθ). �

The following result follows immediately from the previous proposition and
Theorem III.2.2.7. See also Proposition 4.3.1, which does not require the satu-
ration assumption.

Corollary 4.1.10. Let f : X → Y be a morphism of fine saturated log schemes.
Assume that f is smooth or, more generally, that it is flat and that its underlying
morphism of schemes is locally of finite presentation. Then conditions (1)–(8)
of Theorem III.2.2.7 are equivalent. In particular, f is exact if and only if it is
s-injective if and only if it is Q-injective. �

4.2 Flatness and smoothness

In classical algebraic geometry, a morphism is étale (smooth and unramified)
if and only if it is flat and unramified. (In fact the latter is used as the definition
of “étale” in [32].) We will see that the analogous result holds in the log case.

Corollary 4.2.1. Let f : X → Y be a morphism of fine log schemes, and as-
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sume that f is locally of finite presentation. Then f is étale if and only if it is
flat and unramified.

Proof It is clear that an étale map is flat and unramified. Suppose conversely
that f is flat and unramified. Let x be a point of X; since f is unramified,
we can, after some étale localization, find a chart (a, θ, b) for f that is neat at
x, as we saw in Theorem 3.4.2. By Theorem 4.1.7, the associated morphism
bθ : X → Yθ is flat in a neighborhood of x. Since f = g ◦ bθ is unramified, bθ is
also unramified and, since it is strict, it follows that bθ is unramified. Since bθ
is flat and unramified, it is étale [32] and, since bθ is strict, it too is étale. Since
θ is injective and Cok(θgp) is finite of order invertible in k(x), it follows from
Corollary 3.1.10 that Aθ is étale, hence g is étale, and hence f = g ◦ bθ is also
étale. �

The following result is a logarithmic version of the theorem on“flatness
along the fibers.”

Theorem 4.2.2. Let f : X → Y and g : Y → Z be morphisms of fine log
schemes, where f and g are locally of finite presentation. Let x be a point of
X, let z := f (g(x)), and assume that both g ◦ f and the base-changed morphism
fz : Xz → Yz are flat in some neighborhood of x. Then f : X → Y is flat in some
neighborhood of x.

Proof Let f̃ : X̃ → Ỹ be an fppf localization of f , and let g̃ : Ỹ → Z be the
composition Ỹ → Y → Z. Then, for any S→ Z, the morphism f̃S : X̃S → ỸS is
an fppf localization of fS and hence is again flat. Thus our hypothesis on f and
g is stable under fppf localization.

First assume that f is strict. Choose, after an fppf localization, a chart
(a, θ, b) for g that is neat at y, where θ : P → Q is a homomorphism of fine
monoids. Since f is strict, the composite c := b ◦ f is a chart for X, and
(a, θ, c) is a chart for g ◦ f that is neat at x. Since g ◦ f is flat, it follows
from Theorem 4.1.7 that cθ : X → Zθ is flat in some neighborhood of x. Let
z′ := bθ(y) ∈ Zθ and z := g(y) ∈ Z, and let S′ (resp. S) be the log point ob-
tained by endowing z′ (resp. z) with the log structure of Zθ (resp. of Z). By
assumption, the morphism fS : X ×Z S→ Y ×Z S is flat. Then the base-changed
morphism

fS′ : (X ×Z S) ×(Y×Z S) (Y ×Zθ S′)→ Y ′ ×Zθ S′

is also flat. But

(X ×Z S) ×(Y×Z S) (Y ×Zθ S′) � X ×Zθ S′,

so fS′ can be viewed as the fiber of f along S′ → Zθ. Since f is strict, so is fS′ ,
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and we conclude that the morphism f : Xz′ → Yz′ is flat. Since cθ : X → Zθ is
flat, it follows from the criterion of flatness along the fibers [30, 11.3.10] that
f is flat in some neighborhood of x, as required.

We shall use Theorem 4.1.4 to reduce to the case in which f is strict. Sup-
pose we are given a diagram as in (3) of that theorem. We must show that the
(strict) morphism f ′′ : X′′ → Y ′ is flat. Since pY is flat, so is its base change
pX , and since g ◦ f is flat, so is g′ := g ◦ f ◦ pX . The morphism h : X′′ → X′

is étale, hence flat, and hence g′′ := g′ ◦ h : X′′ → Z is flat. By assumption,
fz : Xz → Yz is flat, and it follows that f ′z : X′z → Y ′z is also flat. Since h is étale,
we conclude that hz : X′′z → Y ′z is flat and hence that f ′′z = f ′z ◦ hz : X′′z → Y ′z is
flat. Since f ′′ is strict, the previous paragraph shows that f ′′ is flat, concluding
the proof. �

Corollary 4.2.3. Let f : X → Y be a morphism of fine log schemes whose
underlying morphism of schemes is locally of finite presentation. Let x be
a point of X and let y := f (x). Then f is smooth in a neighborhood of x
if only if, in some neighborhood of x, f is flat and the induced morphism
fy : Xy := f −1(y)→ y is smooth.

Proof Theorem 3.2.6 shows that, after replacing X and Y by étale neighbor-
hoods of x and y, we may factor the smooth morphism fy : Xy → y through an
étale morphism f ′y : Xy → y×ANr . The morphism Xy → ANr is defined by global
sections m1, . . . ,mr of the sheafMXy . Since the map of sheavesMX → MXy

is surjective, these sections can be lifted to sections ofMX , in some neighbor-
hood of x. Then f ′y extends to a morphism f ′ : X → Y×ANr , whose fiber over y
is f ′y . Since f ′y is unramified at x, Theorem 3.4.2 implies that f ′ is also unrami-
fied at x. Since f ′y is étale, it is also flat. The morphism f is the composition of
f ′ : X → Y × ANr with the projection g : Y × ANr → Y , and by assumption f is
flat. Moreover f ′ and g are locally of finite presentation, so, by Theorem 4.2.2,
it follows that f ′ is also flat. Thus f ′ is flat and unramified, and so, by Corol-
lary 4.2.1, f ′ is in fact étale. Since the projection g is smooth, we can conclude
that f = g ◦ f ′ is smooth. �

The following result explores the relationship between the flatness of a mor-
phism of log schemes and the flatness of its underlying morphism of schemes.
We will return to this question in the context of integral morphisms of log
schemes, in Theorem 4.3.5.

Proposition 4.2.4. Let f : X → Y be a morphism of fine saturated log schemes
whose underlying morphism of schemes is locally of finite presentation and
flat. Let x be a point of X, let y := f (x), and suppose that the fiber Xy → y is
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smooth (resp. flat) in a neighborhood of x. Then f is smooth (resp. flat) in a
neighborhood of x.

Proof Thanks to Corollary 4.2.3 it suffices to prove this result for the flat case.
Flatness can be checked fppf locally on X and Y , so, by Theorem III.1.2.7, we
may assume that we have a chart (α, θ, β) for f that is neat at x. Then f = fθ◦bθ,
where fθ : Y ×AP ×AQ → Y is the projection to Y , and it will suffice to prove
that bθ is flat. We have charts ay : y → AP and by : Xy → AQ, and (ay, θ, by)
is a chart for fy that is neat at x. Since fy = fθ,y ◦ bθ,y is flat, it follows from
Theorem 4.1.7 that bθ,y is flat. Since f is locally of finite presentation and f

θ
is

locally of finite type, it follows that bθ is locally of finite presentation. Since f
and bθ,y are flat, the criterion of flatness along the fibers [30, 11.3.10] implies
that bθ is flat, as required. �

A variant of Theorem 4.1.4 holds for other kinds of morphisms as well.
We content ourselves with the following statement; for a more thorough and
general discussion, we refer to [51, Lemma 4.3.1].

Theorem 4.2.5. Let P be one of the following properties of morphisms of
schemes: flat, smooth, étale. Let f : X → Y be a morphism of fine log schemes,
with f locally of finite presentation. Then f is P if and only if, for every
diagram as in (2) or (3) of Theorem 4.1.4, the morphism f ′′ is P.

Proof Suppose that f is smooth. Then in any diagram as in (2) or (3) of
Theorem 4.1.4, the morphism f ′′ is also smooth, and by hypothesis is strict.
By Proposition 3.1.6 a strict morphism is smooth if and only if its underlying
morphism of schemes is smooth, so f ′ is indeed smooth. A similar argument
works for étale morphisms. Suppose conversely that f ′′ in every such diagram
is smooth. Let S→ T be a log thickening over Y , together with a Y-morphism
S → X. We must show that this morphism admits a local extension T → X.
According to Corollary 3.1.5, we may assume that S → X is an open im-
mersion, and in particular that it is strict. The assertion is local, so we may
assume without loss of generality that S = X, that X is affine, and that the mor-
phism X → Y admits a chart subordinate to an injective homomorphism of fine
monoids θ : P → Q as in Theorem 3.3.1. Since Aθ is smooth and X → T is a
log thickening, the morphism X → AQ extends to a morphism T → AQ over
AP and, since X → T is strict, the morphism T → AQ is a chart for T . Form di-
agrams as in Lemma 4.1.5 for X and for T . Then T ′′ is a thickening of X′′ over
Yθ and, since f ′′ is smooth, there is a retraction T ′′ → X′′ over Yθ. Since the
morphisms T ′′ → Yθ and X′′ → Yθ are strict, this retraction is compatible with
the log structures, and defines a retraction r : T ′′ → X′′. Then the morphism
T → T ′′ = A∗Q/P ×T : t 7→ (1, t), followed by r : T ′′ → X′′ = A∗Q/P ×X → X
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gives the desired morphism T → X. The argument for étale morphisms is left
to the reader. �

4.3 Flatness, exactness, and integrality

The following result is due to C. Nakayama [56].

Proposition 4.3.1. A flat and exact morphism of fine log schemes is Q-
integral.

Proof Suppose that f : X → Y is flat and exact and that x is a geometric point
of X and y is its image in Y . Our claim is that the homomorphism f [x : MY,y →

Mx is Q-integral. According to Theorem I.4.7.7, it will suffice to show that, for
every face G ofMx lying overM∗y, the induced homomorphismMy → (Mx)G

is exact. Working fppf locally on X and Y , we may assume that f admits a
chart (a, θ, b) such that the morphism bθ : X → Yθ is flat. Then we may replace
x and y by their corresponding scheme-theoretic points x and y, and X and Y by
their corresponding local log schemes Spec(Q → OX,x) and Spec(P → OY,y).
We may also assume that the charts a and b are exact at x and y, respectively.
The faces G and Q∗ define prime ideals q′ and q of Z[Q] lying over Z[P+],
with q′ ⊆ q, giving rise to points η′ and η of Yθ := Y ×AP AQ lying over y, with
η a specialization of η′. Since b is exact at x, it follows that bθ(x) = η. Since
bθ is a flat morphism, it is locally surjective, and hence there is a point x′ of X
such that bθ(x′) = η′. Since f is exact, the homomorphism f [x′ : My → Mx′ =

(Mx)G is exact, as required. �

In classical algebraic geometry, a surjective and flat morphism is faithfully
flat, and many properties of schemes and morphisms of schemes can checked
after passing to a faithfully flat cover. The situation in log geometry is more
complicated and seems to require an additional hypothesis of exactness. We
explain here the main ideas, referring to [41] for more details.

Theorem 4.3.2. Let f : X → Y and g : Y → Z be morphisms of fine saturated
log schemes. Assume that f and g are locally of finite presentation. Suppose
that f is exact and flat at x. Then g ◦ f is flat x if and only if g is flat at f (x).

Proof If f is flat at x and g is flat at f (x), then g ◦ f is flat at f (x), by Pro-
position 4.1.2. Assume that f is exact and flat at x and that g ◦ f is flat at x.
To prove that g is flat at f (x) we may work fppf locally around y := f (x). By
Theorem III.1.2.7, we may assume that there exists a chart (a, θ, b) for g that
is neat at y, and then that there is a chart (b, φ, c) for f that is neat at x. We
may also assume that a is exact at z, that b is exact at y, and that c is exact at x.
Since f is exact at x, it is s-injective, and it follows from Corollary II.2.4.7 that
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(a, θφ, c) is also neat at x. Suppose that the charts a, b, and c are subordinate to
the monoids P,Q, and R, respectively. Then we have a commutative diagram

X
cφ- Y ×AQ AR - Y

Z ×AP AR

b′

? id × Aφ-

cθφ
-

Z ×AP AQ,

bθ

?

in which the square is cartesian. Since g ◦ f and f are flat and the charts are
neat, it follows from Theorem 4.1.7 that cθφ and cφ are flat at x and hence that
the map b′ is flat at y. Since f is exact at x and b is exact at y, it follows from
(2) of Proposition I.4.2.1 that φ : Q → R is also exact. Since it is injective
by construction, we see from Corollary I.4.2.8 that the map Aφ universally
descends flatness. Thus bθ is flat at y, and it follows that the morphism g is also
flat at y. �

Corollary 4.3.3. Let f : X → Y and h : Y ′ → Y be morphisms of fine
log schemes, with f and h locally of finite presentation. Suppose that h is
flat, exact, and surjective. Then f is flat if and only if the induced map
f ′ : X ×Y Y ′ → Y is flat.

Proof If f is flat, then Proposition 4.1.2 implies that f ′ is flat. If h is exact
and surjective, it is universally surjective, by Corollary III.2.2.5. Thus the pro-
jection p : X ×Y Y ′ → X is surjective and flat. If f ′ is flat, then f ◦ p = h ◦ f ′

is flat, so it follows from Theorem 4.3.2 that f is flat. �

Examples 4.3.4. Here are two examples which illustrate that the hypothesis
of exactitude in Theorem 4.3.2 is not superfluous.

The first example is a flat and Kummer morphism that does not descend
flatness. Let P be the submonoid of N generated by 2 and 3. This monoid is not
2-saturated, so multiplication by 2 on P is Kummer but not exact. As we saw in
Proposition I.4.2.7, it follows that the corresponding endomorphism θ of Z[P]
is not universally injective. Let us make this explicit. The ring Z[P] can be
identified with the ring A := Z[x, y]/(y2 − x3). Let I be the ideal of A generated
by y and let J be the ideal generated by y and x2, let Z := Spec(P → A/I),
and let Y := Spec(P → A/J). The inclusion i : Y → Z is strict and is not flat.
The endomorphism φ2 : AP → AP induced by multiplication by 2 is flat as a
morphism of log schemes and Kummer, but not exact. Then the map Z′ → Z
obtained by base change of φ2 along Z → AP is also flat and Kummer. The
base change i′ : Y ′ → Z′ of i along Z′ → Z is an isomorphism, hence flat,
although i is not flat.
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The second example, due to C. Nakayama, is a universally surjective and flat
morphism that does not descend flatness. Let P := N ⊕ N, and identify Z[P]
with Z[x, y] in the obvious way. Let Z := Spec(P→ Z[x, y]/(x2, y2)) and Y :=
Spec(P→ Z[x, y]/(x2, xy, y2)), and let i : Y → Z be the obvious inclusion. The
log blowup Z′ → Z of Z at the ideal P+ of P is flat and universally surjective,
and the base-changed map Y ′ → Z′ is an isomorphism, but i is not flat.

The following result relates the integrality of a morphism f of log schemes
to the flatness of f and of its underlying morphism f .

Theorem 4.3.5. Let f : X → Y be a morphism of locally noetherian fine log
schemes, where f is locally of finite presentation.

1. If f is flat and integral, then f is also flat.
2. If f is smooth and integral, then the morphisms f and f are flat, and if in

addition X and Y are saturated, then the fibers of f are Cohen–Macaulay. 3

3. If f and f are flat and Y is regular, then f is integral.

Proof To prove the first statement, assume that f is flat and integral, let x be
a point of X, and let y be its image in Y . The flatness of f can be verified fppf
locally on X and Y , so we can replace X and Y by fppf neighborhoods of x and
y as is convenient during the course of the proof. By (2) of Theorem III.1.2.7,
there exists, after an fppf localization of Y , a chart a : Y → AP for Y that is neat
at y, where P is a fine sharp monoid. Statement (4) of the same theorem asserts
that, after a further localization, there exists a chart (a, θ, b) for f that is neat and
exact at x. Then Theorem 4.1.7 implies that the morphism bθ : X → Y ×AP

AQ

is flat. Since f is integral, the homomorphism f
[

x : MY,y → MX,x is integral.
Since a is neat at y, the homomorphism P → MY,y is an isomorphism, and
hence the induced homomorphism P → MX,x is integral. Since Q → MX,x is
an exact chart, the homomorphism Q → MX,x is also an isomorphism, and it
follows that θ : P→ Q is also integral, by statement (2) of Proposition I.4.6.3.
Since P is sharp and θ is integral, Proposition I.4.6.7 implies that the map of
schemes AQ → AP is flat, and hence so is the projection Y ×AP

AQ → Y . Since
f is the composition of this projection with the flat morphism bθ, it too is flat.

If f is smooth then it is also flat, and hence if f is integral, it follows from (1)
that f is also flat. Suppose in addition that X and Y are saturated. Statement (2)
of Theorem III.1.2.7 asserts that, after a harmless étale localization, there exists
a chart a : Y → AP that is neat at y. After a further étale localization, we can
fit a into a chart (a, θ, b) for f as in Theorem 3.3.1. Since bθ : X → Yθ is étale,
it will suffice to show that the fiber of fθ : Yθ → Y over y is Cohen–Macaulay.

3 This result is due to T. Tsuji [76, II.4.1].
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Since fθ is obtained by base change from Aθ, it will suffice to show that the
fiber of Aθ over the vertex of AP is Cohen–Macaulay. The homomorphism
P → MY,y is an isomorphism because a is neat at y and the homomorphism
Q → MX,x is an isomorphism because b is exact at x. Since f is integral, it
follows that θ : P→ Q is integral, and hence, by Proposition I.4.6.3, the homo-
morphism θ : P → Q is also integral. Since θ is local and P is sharp, Proposi-
tion 4.6.7 implies that Aθ is flat. Since P and Q are saturated, the schemes AP
and AQ are Cohen–Macaulay (Theorem II.3.4.3). Then our conclusion follows
from the fact that the fibers of a flat morphism of Cohen–Macaulay schemes
are again Cohen–Macaulay [27, 6.5].

The proof of statement (3) is more involved. Suppose that f and f are flat
and that Y is regular. Then Y is locally noetherian, and consequently so is X.
Since Y is regular, it is solid, and f is locally surjective because it is flat. It
follows from Proposition III.2.2.8 that f is exact and hence s-injective.

Let x be a geometric point of X and let y be its image in Y . We claim that

the map f
[

x : My → Mx is integral. Since Y is regular, it is saturated. By
Theorem III.1.2.7, we see that, after an étale localization of Y and an fppf
localization of X, there is a chart a for Y that is neat at y and which fits into a
chart (a, θ, b) for f that is neat at x. Furthermore, since f is s-injective, b is also
neat at x. We can and will work with scheme-theoretic points from now on.

We use the notation of diagram III.1.2.3 . Since f is flat and the chart is neat
at x, it follows from Theorem 4.1.7 that bθ is flat at x. Let x′ := bθ(x). Then
the homomorphism of local rings b]θ,x : OYθ,x′ → OX,x is flat, hence faithfully

flat. Since f ]
x

is also flat, it follows that f ]θ,y : OY,y → OYθ ,x′ is flat. Thus we have
reduced the theorem to the case in which X = Yθ. We may also replace Y and
X by the spectra of the completions of their respective local rings.

Suppose first that the local ring OY,y contains a field k, which we may as-
sume is its residue field. Then we may replace AP := Spec(P→ Z[P]) by
Spec(P→ k[P]) and AQ by Spec(Q → k[Q]). Since Y is regular, the homo-
morphism k[P]→ OY,y is flat, as we saw in Corollary III.1.11.3. Then Y → AP
is flat and hence the same is true for the map X → AQ, by base change. We
then have a commutative diagram of local homomorphisms of local rings:

k[[Q]]
β - OX,x

k[[P]]

θ

6

α - OY,y.

φ

6
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The regularity of Y implies that α is flat and, since β is obtained from α by
base change and completion, it too is flat, hence faithfully flat. Since φ is flat
by assumption, we can conclude that θ is flat. Then Proposition I.4.6.8 implies
that P→ Q is integral.

The mixed-characteristic case is more complicated. Write A for the local
ring of Y at y and B for the local ring of X at x, and let V be a Cohen ring of the
residue field k of A. By Theorem III.1.11.2, we can write A = V[[P⊕Nr]]/( f ),
where f ∈ V[[P ⊕Nr]] has constant term p. Then B � V[[Q ⊕Nr]]/(g), where
g is the image of f . Our assumption on f implies that A → B is flat, and we
need to prove that V[[P]]→ V[[Q]] is flat.

To simplify the notation, we let P′ := P ⊕ Nr and Q′ := Q ⊕ Nr. Since
V[Q]→ V[Q′] and V[P]→ V[P′] are faithfully flat, it is enough to prove that
V[P′]→ V[Q′] is flat, and so we may as well replace P by P′ and Q by Q′.

Let J be an ideal of P and let K be the ideal of Q generated by J. We have
an exact sequence

0→ V[[J]] - V[[P]] - V[[P, J]]→ 0. (4.3.1)

Statement (1) of Lemma III.1.10.14, applied to the ideal J of P and the element
f of V[[P]], implies that multiplication by f is injective on V[[P, J]]. Since A =

V[[P]]/( f ), we conclude that TorV[[P]]
1 (V[[P, J]], A) = 0. Therefore, tensoring

the sequence (4.3.1) with A yields the exact sequence

0→ V[[J]] ⊗V[[P]] A - A→ A/JA - 0.

Since A→ B is flat, the sequence

0→ V[[J]] ⊗V[[P]] B
γ- B - B/JB→ 0 (4.3.2)

is also exact.
On the other hand, tensoring the sequence (4.3.1) with V[[Q]] yields the

exact sequence

0→ T - V[[J]] ⊗V[[P]] V[[Q]] - V[[Q]] - V[[Q,K]]→ 0,

where T := TorV[[P]]
1 (V[[P, J]],V[[Q]]). Thus we find the exact sequence

0→ T - V[[J]] ⊗V[[P]] V[[Q]] - V[[K]]→ 0. (4.3.3)

Statement (2) of Lemma III.1.10.14, applied to the pair of Q-sets (K, ∅) and
the element g of V[[Q]], implies that multiplication by g on V[[K]] is injective.
Since B = V[[Q]]/(g), we conclude that TorV[[Q]]

1 (V[[K]], B) = 0, and hence
that the sequence

0→ T ⊗V[[Q]] B - V[[J]] ⊗V[[P]] B
δ- V[[K]] ⊗V[[Q]] B→ 0 (4.3.4)
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is exact. But we saw in equation (4.3.2) that the map γ : V[[J]] ⊗V[[P]] B → B
is injective and, since γ factors through δ, it follows that δ is also injective
and hence that T ⊗V[[Q]] B = 0. Since T is finitely generated over V[[Q]] and
g belongs to the maximal ideal of V[[Q]], Nakayama’s lemma implies that
T = 0.

Taking J = P+, we conclude that TorV[[P]]
1 (V[[P, P+],V[[Q]]) = 0, so we

have an exact sequence

0→ V[[P+]] ⊗V[[P]] V[[Q]]→ V[[Q]]→ V[[Q,K]],

where K is the ideal of Q generated by P+. Since V[[Q,K]] is p-torsion free,
the sequence

0→ k[[P+]] ⊗k[[P]] k[[Q]]→ k[[Q]]→ k[[Q,K]]

is exact, so Tork[[P]]
1 (k[[P, P+], k[[Q]]) = 0. Then, by Proposition I.4.6.8, the

homomorphism θ : P→ Q is integral, completing the proof. �

The next result, due to T. Tsuji [76, II.4.2, II.4.11], gives a purely geometric
criterion for a smooth and integral morphism to be saturated.

Theorem 4.3.6. Let f : X → Y be a smooth and integral morphism of fine
saturated log schemes. Then the following conditions are equivalent.

1. The morphism f is saturated.
2. The fibers of f are reduced.
3. The fibers of f are generically reduced (Serre’s condition R0).

If Y is regular, it is enough to check that (3) holds for the fiber over every
geometric point y of Y such that dimOY,y = dimMY,y = 1.

Proof Let x be a point of X and let y := f (x), regarded as a log scheme with
the log structure induced from Y . Then the base-changed map fy : Xy → y is
again smooth, and each of the conditions (1)–(3) is true for f if and only if
it is true for fy. Thus we may assume that Y is a log point, without loss of
generality.

The theorem can be verified locally in a neighborhood of each point x of
X, so we may assume that f admits a chart as described in Theorem 3.3.1.
Moreover, since Y is saturated, we may assume that the chart P→MY,y is neat,
so P is sharp. In this situation the homomorphisms P →MY,y and Q →MX,x

are isomorphisms, so f
[

x is saturated if and only if θ is. Let k be the residue
field of y and let Jθ be the ideal of k[Q] generated by θ(P+). By construction,
the morphism

bθ : X → Yθ = Spec k[Q, Jθ]
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is étale and the torsion part of Cok(θgp) has order n invertible in k.
Assume that f is saturated. Then θ and θ are also saturated, and hence by

Corollary I.4.8.17 the ring k[Q, Jθ] is reduced. Since bθ is étale, it follows that
X is also reduced, proving that (1) implies (2).

The implication of (3) by (2) is trivial. Suppose that (3) holds, i.e., that X
is generically reduced. Since the map bθ : X → Yθ is étale, its image contains
an open neighborhood V of the point bθ(x), i.e., the point y′ of Yθ defined by
the maximal ideal Q+ of Q. By Remark I.4.2.11, y′ is in the closure of every
generic point of Yθ. Since X is generically reduced and bθ is étale, V is also
generically reduced and, since V contains all the generic points of Yθ, it follows
that Yθ satisfies R0. Then Corollary I.4.8.17, implies that θ is saturated.

For the last statement, we assume that Y is regular. By Proposition 3.5.3, X
is also regular, hence solid. Working locally, we may assume that our log struc-
tures are in the Zariski topology. By Theorem III.2.5.5, it will suffice to prove
that f is strict at every point x of X such that dimMX,x = dimMY,y = 1.
Let x be such a point and let y := f (x). Since X is regular, the ideal of
OX,x generated by M+

X,x is prime and hence defines a generization x′ of x.
Let y′ := f (x′), a generization of y. As we observed in Remark III.1.12.4,
dimOX,x′ = dimMX,x′ = 1. Since X is saturated, MX,x′ � N, and since
X is regular, it follows from Theorem III.1.11.6 that OX,x′ is also regular,
hence a DVR. Furthermore, the log structure on OX,x′ defined by MX,x′ is
the standard one. Since f is integral and smooth, the underlying morphism
f is flat, by Theorem 4.3.5, hence the map OY,y′ → OX,x′ is flat, and hence
dimOY,y′ ≤ dimOX,x′ = 1. On the other hand, since Y is regular, the idealM+

Y,y′

generates a prime ideal p of OY,y′ , and dimOY,y′ = dimMY,y′ + dimOY,y′/pOY,y′ .
Since dimMY,y′ = 1 and dimOY,y′ ≤ 1, it follows that dimOY,y′ = 1 and that
p is the maximal ideal of OY,y′ . Then OY,y′ is also a DVR with the standard log
structure. The assumption (3) applies to the fiber of f over y′, and in particular
we can conclude that the ring OX,x′/ f ]x′mY,y′ is reduced, i.e., that mY,y′ gener-
ates the maximal ideal of OX,x′ . Since the log structures on the DVRs OX,x′ and
OY,y′ are the standard ones, we can conclude that the maximal ideal of MY,y′

generates the maximal ideal ofMX,x′ . Thus f
[

x′ : MY,y′ → MX,x′ is an isomor-
phism, and f is strict at x′. Since the cospecialization maps MX,x → MX,x′

and MY,y →MY,y′ are isomorphisms, it follows that f is also strict at x, as
required. �



V

Betti and de Rham Cohomology

In this chapter we concentrate on geometry over the field C of complex num-
bers. Let X/C be a log scheme whose underlying scheme X/C is locally of fi-
nite type. It is a straightforward matter to associate to X/C a log analytic space
Xan (see Definition 1.1.4). A more subtle construction, due to K. Kato and C.
Nakayama [50], is the ringed space (Xlog,O

log
X ), which maps canonically to

the ringed space (Xan,O
an
X ) and which gives a very good geometric picture of

the meaning of the log structure on X. The space Xlog fits into a commutative
diagram of topological spaces

Xlog

X∗an
j -

jlog

-

Xan,
?

τX

in which τX is proper and is in some sense a “real blowup” of Xan determined
by its log structure. If X/C is (logarithmically) smooth, then Xlog is a topolog-
ical manifold with boundary Xlog \ X∗an. This diagram expresses the sense in
which Xlog → Xan is a compactification of the open immersion j : X∗ → X that
preserves its homotopy-theoretic properties. We call Xlog the Betti realization1

of X and define the Betti cohomology of X to be the singular cohomology of
Xlog.

1 The space Xlog is sometimes referred to as the Kato–Nakayama space of X.

442
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1 Betti realizations of log schemes

1.1 The space Xan

Let X be a scheme of finite type over C. The set X(C) of C-valued points of
X is classically endowed with the topology induced from the classical (strong)
topology on C. This is the weakest topology with the property that for ev-
ery Zariski open subset U of X and every section f of OX(U), the function
U(C)→ C given by f is continuous. We should remark that one gets the same
result if one uses étale open sets U → X instead of Zariski open sets. This fol-
lows from the implicit function theorem in complex analysis, which says that
if U → X is étale, then every point of U(C) has a strong neighborhood basis
of open sets V such that the restriction V → X(C) is an open embedding. If U
is affine and ( f1, . . . , fn) is a set of generators for OX(U) over C, the topology
on U(C) is also the weakest topology such that each fi is continuous, and it
is the topology induced from Cn via the closed immersion U(C) → Cn given
by ( f1, . . . , fn). We denote by Xan or Xan the topological space X(C) with this
topology.

When Q is a fine monoid and X = AQ, the underlying set of Xan can be
identified with XQ = Hom(Q,C), and its topology has the following useful
description.

Proposition 1.1.1. Let Q be a fine monoid, let X := AQ, and let x0 : Q → C
be an element of Xan.

1. Let S be a set of generators for Q, and for each δ > 0, let

Uδ,x0 := {x ∈ Xan : |x(s) − x0(s)| < δ for all s ∈ S.}

Then the set of all such Uδ forms a neighborhood basis for x0 in Xan.
2. In particular, if Q is sharp and S is the set of irreducible elements of Q, then

the set of all sets of the form

Uδ := {x : |x(s)| < δ for all x ∈ S}

forms a neighborhood basis for the vertex of Xan. �

Proof If S is a set of generators for Q, then the corresponding set of elements
of C[Q] generates the algebra C[Q] = OX(X). Hence Xan has the weakest
topology such that, for all s ∈ S, the function es : X → C given by evaluation
is s is continuous. Statement (1) follows immediately from this fact. Statement
(2) follows from (1) along with Proposition I.2.1.2. �

The neighborhood bases described in Proposition 1.1.1 allow us to construct
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a useful local version of the deformation retracts associated to a face of Q (see
Proposition I.3.3.1).

Proposition 1.1.2. Let Q be a fine monoid, let F be a face of Q, and let x0

be a point of AF, viewed as an element of XQ via the closed embedding iF

(Proposition I.3.3.1). Then x0 has a neighborhood basis of open sets that are
stable under the retraction rF : XQ → XF and under the homotopy making iF a
strong deformation retract.

Proof Let S be any finite set of generators for Q, and for each δ > 0 let Uδ be
the open neighborhood of x0 defined in Proposition 1.1.1. Recall that if x ∈ XQ,
then iFrF(x) ∈ XQ is the homomorphism Q → C sending q to 0 = x0(q)
if q < F and to x(q) if q ∈ F. Thus iFrF maps Uδ,x0 to Uδ,x0 . Let us verify
that the homotopies f : XN ×XQ → XQ between id and iF ◦ rF constructed in
Proposition I.3.3.1 induce a map [0, 1] × Uδ,x0 → Uδ,x0 . Let h : Q → N be a
homomorphism with h−1(0) = F. If t ∈ [0, 1] and x ∈ Uδ,x0 , then y := f (t, x) is
by definition the homomorphism sending each q ∈ Q to th(q)x. If q < F, then
x0(q) = 0 and |y(q) − x0(q)| = |th(q)x(q)| ≤ |x(q)| < δ. On other hand, if q ∈ F,
then h(q) = 0 and |y(q) − x0(q)| = |t0x(q) − x0(q)| = |x(q) − x0(q)| < δ. �

So far we have discussed only the topological space Xan associated to a
scheme of finite type over C. To truly pass into the realm of analytic geometry,
we need to introduce the sheaf Oan

X of analytic functions on Xan. We refer to
[34, Appendix B] for precise definitions. Let us note here the following explicit
description of the ring of germs of analytic functions at the vertex of a monoid
scheme over C.

Proposition 1.1.3. Let Q be a fine sharp monoid, let x0 be the vertex of XQ

and let h be any local homomorphism Q → N. Then a formal power series
α :=

∑
q aqeq ∈ C[[Q]] converges in some neighborhood of x0 if and only if

the set of (extended) real numbers{
log |aq|

h(q)
: q ∈ Q+

}
is bounded above.

Proof We let T be the set of irreducible elements of Q, and use the notation of
Proposition 1.1.1. Suppose that α =

∑
q aqeq, and that b ∈ R is an upper bound

for the set of all h(q)−1 log |aq| with q ∈ Q+. Choose ε > 0, let λt := −(b+ε)h(t)
for each t ∈ T , and choose a positive number δ such that δ < eλt for all t. Then
Uδ is an open neighborhood of x0 in XQ, and log |x(t)| < λt for all t ∈ T and all
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x ∈ Uδ. Any q ∈ Q can be written as q =
∑

ntt with nt ∈ N. Hence if x ∈ Uδ,

log |aqx(q)| = log |x(q)| + log |aq|

≤ log |x(q)| + bh(q)

≤
∑

t

(
nt log |x(t)| + bnth(t)

)
≤

∑
t

nt (λt + bh(t))

≤
∑

t

nt(−εh(t))

≤ −εh(q)

Thus |aqx(q)| ≤ rh(q), where r := e−ε < 1. By Proposition I.2.2.9, there exist C
and m such that {q : h(q) = i} has cardinality less than Cim for all i. Then the set
of partial sums of the series

∑
q |aqx(p)| is bounded by the set of partial sums

of the series
∑

i Cimri. Since this latter series converges, so does the former.
Suppose on the other hand that α :=

∑
aqeq and that {h(q)−1 log |aq| :

q ∈ Q+} is unbounded. For c ∈ R+ , define xc : Q→ C by xc(q) := c−h(q). Then
xc ∈ XQ and, if δ > 0 and c is chosen large enough that log c > (h(t))−1(− log δ)
for all t ∈ T , then xc ∈ Uδ. For every such c, there are infinitely many q ∈ Q+

such that |aq| > (1 + c)h(q). For such a q,

|aqxc(q)| ≥ (1 + c)h(q)c−h(q) = (1/c + 1)h(q) ≥ 1,

so the series
∑

q aqxc(q) cannot converge. �

If X/C is a scheme of finite type, we let Xan denote the associated analytic
space. Then there is a morphism of locally ringed spaces a : Xan → X.

Definition 1.1.4. A log analytic space is an analytic space X together
with a logarithmic homomorphism of sheaves of commutative monoids
αX : MX → OX . If X/C is a log scheme whose underlying scheme X/C is lo-
cally of finite type over C, then the associated log analytic space Xan is Xan,
with the induced log structure αan

X : Man
X := a∗log(MX)→ Oan

X .

We shall not develop the theory of smooth morphisms of log analytic spaces
in detail here. We hope it will suffice to say that a morphism of fine log ana-
lytic spaces spaces is smooth if it admits local charts of the form described in
Theorem IV.3.3.1, and that the analogies of the related results for schemes go
through without difficulty. In particular, smooth log analytic spaces admit the
following useful local description.

Proposition 1.1.5. If Q and Q′ are fine monoids with Q ⊆ Q′, let XQ′ (Q)
denote the log analytic space associated to Spec(Q→ C[Q′]).
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1. If r is a natural number and Q is a fine monoid, the log analytic space
XNr⊕Q(Q) is smooth over C.

2. Let x be a point of a fine and smooth log analytic space X. Then there exist
a neighborhood U of x in X, a natural number r, a fine sharp monoid Q,
and an isomorphism from U to an open subset of XNr⊕Q(Q) taking x to the
vertex of XNr⊕Q(Q).

Proof Since the log scheme Spec(Q → C[Nr ⊕ Q]) is smooth over C, so is
its associated log analytic space. Conversely, if x is a point of a smooth and
fine analytic space X, then the analytic analog of Corollary IV.3.3.4 says that,
after replacing X by an étale neighborhood of x, there exists a strict étale map
f : X → XNr⊕Q(Q) taking x to the vertex of the latter. The restriction of f to a
small neighborhood of x is then an isomorphism onto its image. �

The results and statements in this section have obvious idealized analogs,
which we leave to the reader.

1.2 The space Xlog

Let us begin with a simple example, the log scheme AN. The associated com-
plex analytic space XN is just the set of complex numbers C with its usual
topology. The space Xlog

N turns out to be the real blowup of C at the origin,
which is effectuated by the introduction of polar coordinates. Consider the fol-
lowing monoids (with monoid law given by multiplication) and monoid homo-
morphisms:

S1 := {z ∈ C : |z| = 1}
R≥ := {r ∈ R : r ≥ 0},

Z(1) := {2πin : n ∈ Z} ⊆ C
R(1) := {ri : r ∈ R} ⊆ C

arg : C∗ → S1 : u 7→ u/|u|

abs : C→ R≥ : z 7→ |z|

τ : S1 × R≥ → C : (ζ, ρ) 7→ ζρ

exp: R(1)→ S1 : θ 7→ exp(θ) := eθ.
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There is a commutative diagram:

R(1) × R>
⊂- R(1) × R≥ =: X̃log

N

S1 × R>

exp×id

?
⊂ - S1 × R≥

exp×id

?

=: Xlog
N

η

?

C∗

τ′

?
⊂ - C.

τ

?

τ

�

The map η in this diagram is a universal covering of Xlog
N , with covering group

Z(1). The map τ′ is a homeomorphism, with inverse

C∗ → S1 × R> : z 7→ (arg(z), abs(z)).

Then

τ−1(z) =

{z} if z , 0

S1 if z = 0,

and, as the diagram shows, τ restricts to an isomorphism on τ−1(C∗). Thus τ
replaces the origin of C by S1, which can be identified with the set of rays
through the origin. This is the sense in which τ is the real blowup of C at the
origin, as shown in Figure 1.2.1.

Figure 1.2.1 Real blowup of the complex plane.

A similar construction can be carried out with N replaced by any finitely
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generated monoid Q. We use the following notation:

XQ := Hom(Q,C) = {z : Q→ C},
X∗Q : Hom(Q,C∗) ⊆ XQ,

RQ := Hom(Q,R≥) = {ρ : Q→ R≥},
TQ := Hom(Q,S1) = {ζ : Q→ S1},

VQ := Hom(Q,R(1)) = {θ : Q→ R(1)},

IQ := Hom(Q,Z(1)) = {γ : Q→ Z(1)},

Xlog
Q := TQ ×RQ,

X̃log
Q := VQ ×RQ .

If q ∈ Q, let eq : XQ → C be the evaluation mapping x 7→ x(q), and use
the same notation for the similarly defined maps TQ → S1 and RQ → R.
Endow each of the sets XQ, TQ, and XQ with the weak (product) topology in-
duced by the standard topology on the target and the functions eq for q belong-
ing to any set of generators for Q. Then XQ is identified with the topological
space underlying the analytic space associated to AQ. The multiplication map
S1 × R≥ → C induces a map

τQ : TQ ×RQ → XQ : (ζ, ρ) 7→ ζρ. (1.2.1)

If x = τQ(ζ, ρ), then (ζ, ρ) can be viewed as a set of polar coordinates for x.

Remark 1.2.1. Since S1 is compact, TQ is a compact topological group. Let
Qgp

t denote the torsion subgroup of Qgp and let Qgp
f denote the quotient of

Qgp by Qgp
t . Then Qg

t is a finite abelian group, Qgp
f is a finitely generated free

abelian group, and there is an exact sequence

0→ Qgp
t → Qgp → Qgp

f → 0.

Since S1 is divisible, Hom( ,S1) is an exact functor, and one obtains the fol-
lowing diagram:

0 - TQgp
f

- TQ - TQgp
t

- 0

0 - (TQ)0

=

?
- TQ

=

?
- π0(TQ)

=

?
- 0.

Here (TQ)0 is the connected component of TQ containing the identity and
π0(TQ) is the group of connected components of TQ (a finite group). When
Q is toric, Qgp

t = 0 and TQ is already connected.
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The exponential map R(1)→ S1 induces a map

ηQ : X̃log
Q → Xlog

Q , (1.2.2)

which maps surjectively onto (TQ)0. This map is an even covering, and X̃log
Q is

contractible. In particular, if Q is toric, the map ηQ is a universal covering of
XQ. The natural (right) action of IQ on X̃log

Q , given by

((θ, ρ)γ)(q) := (θ(q) + γ(q), ρ(q)), (1.2.3)

makes X̃log
Q into a torsor over Xlog

Q . It follows that IQ identifies with the group
of covering transformations of ηQ. Thus IQ can be viewed as the fundamental
group of Xlog

Q ; since the group is abelian, the choice of base point is not crucial.

There is an obvious closed embedding R≥ → C, admitting a retraction
abs : C → R≥, both of which are group homomorphisms. There are corre-
sponding morphisms RQ ⊆ XQ and XQ → RQ, so that RQ is a retract XQ.
There is also a closed embedding of topological groups S1 → C∗, with a re-
traction arg : C∗ → S1, giving a closed embedding TQ → X∗Q with a retraction
X∗Q → TQ. We find a commutative diagram:

TQ ×RQ - X∗Q ×XQ

RQ

pr2

?
� abs

XQ,
?

where the right vertical arrow is the action of X∗Q on XQ by multiplication.

Proposition 1.2.2. If Q is an integral monoid, then two points x and x′ of XQ

have the same image in RQ if and only they are in the same orbit under the
action of TQ.

Proof If ζ ∈ TQ and x′ = ζx, it is clear that abs(x′) = abs(x). Conversely
suppose that abs(x′) = abs(x). Then F := x−1(C∗) = x′−1(C∗), and x and x′

induce homomorphisms Fgp → C∗. Furthermore, x′/x is a homomorphism
Fgp → S1. Since S1 is a divisible group, this homomorphism extends to a
homomorphism ζ : Qgp → S1. Then x′(q) = ζ(q)x(q) for all q ∈ F and, since
both sides are zero for q < F, in fact the same holds for all q. Thus x′ = ζx. �

Proposition 1.2.3. Let Q be a finitely generated monoid. Then τQ is proper. If
Q is fine, then τQ is surjective and, for each x ∈ XQ, τ−1

Q (x) is naturally a torsor
under TQ/Fx , where Fx := x−1(C∗).
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Proof Consider the commutative diagram

TQ ×RQ
id × i- TQ ×XQ

XQ

τQ

?
� pr2 TQ ×XQ .

λ

?

Here i is the inclusion RQ → XQ, and λ(ζ, x) := (ζ, ζx). The closed immer-
sion id × i is continuous and proper and λ is a homeomorphism, with inverse
(ζ, x) 7→ (ζ, ζ−1x). Thus λ is continuous and proper and, since TQ is compact,
the projection mapping pr2 is also continuous and proper. It follows that τQ is
continuous and proper.

Now suppose that Q is integral. Any x ∈ XQ defines a map Fgp
x → C∗,

and x(q) = arg(x(q))abs(x(q)) for every q ∈ Fx. Since S1 is divisible and
Fgp

x ⊆ Qgp, the homomorphism arg ◦x : Fgp
x → S1 extends to Qgp and, for any

such extension ζ, we have τQ(ζ, abs ◦ x) = x. Furthermore, the set of such
extensions is a torsor under Hom(Q/Fx,S1). Finally, note that if τQ(ζ, ρ) =

τQ(ζ′, ρ′) = x, then ρ = abs(x) = abs(x′) and ζ(q) = ζ′(q) = arg(x(q)) for all
q ∈ F. Therefore ζ′ζ−1 lies in Hom(Q/Fx,S1). �

Let us now turn to the global construction of Xlog. We alert the reader that
there seems to be no possible construction of a space X̃log globalizing the space
X̃log

Q . Proposition 1.4.1 will discuss a sheaf-theoretic substitute.

Definition 1.2.4. Let X be a log analytic space.

1. Xlog is the set of pairs (x, σ), where x is a point of X and σ : MX,x → S1 is
a homomorphism of monoids fitting into the commutative diagram

MX,x
σ - S1

O∗X,x

αX,x

6

x∗ - C∗,

arg

6

and τX : Xlog → X is the map sending (x, σ) to x.
2. For each section m ofMX on an open subset U of X, arg(m) is the function

arg(m) : τ−1
X (U)→ S1 : (x, σ) 7→ σ(mx).

3. Xlog is given the weak topology defined by the map τX : Xlog → X and the
family of maps {arg(m) : U ⊆ X,m ∈ MX(U)}.
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Proposition 1.2.5. Let X be a log analytic space and Xlog its Betti realization.

1. The map τX : Xlog → X is a continuous and separated, and is a homeo-
morphism if the log structure on X is trivial.

2. Let x be a point of x and let

Tx := Hom(MX,x,S1).

Then Tx acts naturally on the fiber τ−1
X (x), and this action defines a torsor if

MX is u-integral. In particular, τX is surjective ifMX is u-integral.
3. The construction of Xlog is functorial in X, and the morphism τX is natural.

That is, a morphism of log schemes f : X → Y induces the commutative
diagram

Xlog
flog- Ylog

Xan

τX

? fan- Yan.

τY

?

This diagram is cartesian if f is strict.

Proof The continuity of τX is built into the definition of the topology on Xlog.
To see that τX is separated, suppose that (x1, σ1) and (x2, σ2) are distinct points
of Xlog with the same image in X. Then x := x1 = x2, so σ1 , σ2. Hence
there is an mx ∈ MX,x such that σ1(mx) , σ2(mx) in S1. Choose an open
neighborhood U of x in X and a section m of MX(U) whose germ at x is
mx. Since S1 is Hausdorff, there exist disjoint open neighborhoods V1,V2 of
σ1(mx), σ2(x). Then arg(m)−1(V1) and arg(m)−1(V2) are disjoint neighborhoods
of (x, σ1) and (s, σ2) in Xlog. It is clear from the definition that τX is bijective if
the log structure on X is trivial. Moreover, if u is a section ofMX = O∗X , then
arg(u) is already continuous on X, and hence τX is a homeomorphism.

Suppose (x, σ) ∈ Xlog and ζ ∈ Tx. Define ζσ : MX,x → S1 by the formula
(ζσ)(m) := ζ(m)σ(m). Since ζ(u) = 1 for u ∈ O∗X,x, it follows that (x, ζσ) ∈
Xlog. Thus we have defined an action of Tx on τ−1

X (x).
SinceMX is u-integral, the sequence

1→ O∗X,x →M
gp
X,x → M

gp
X,x → 0

is exact, and the divisibility of S1 implies that the sequence

0→ Hom(M
gp
X,x,S

1)→ Hom(Mgp
X,x,S

1)→ Hom(O∗X,x,S
1)→ 0

is also exact. It follows that arg ◦x∗ : O∗X,x → S1 can be extended to Mgp
X,x,
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and hence that τX is surjective. Thanks to this exact sequence, the set of all
σ ∈ Hom(Mgp

X,x,S
1) mapping to arg ∈ Hom(O∗X,x,S

1) is naturally a torsor under

Hom(M
gp
X,x,S1). The set of all such σ is precisely τ−1

X (x).
Let f : X → Y be a morphism of log schemes. If (x, σ) ∈ Xlog, let f (σ) be

the composition

f (σ) :=MY, f (x)
f [x- MX,x

σ- S1.

Then ( f (x), f (σ)) ∈ Ylog, and (x, σ) 7→ ( f (x), f (σ)) defines a map flog : Xlog →

Ylog. For each open subset V of Y and each section m ofMY (V), the function
arg(m) ◦ flog = arg( f [(m)) is continuous on f −1

log(τ−1
Y (V)), and it follows that

flog is continuous. The commutativity of the diagram is immediate from the
definitions. If f is strict, f ∗log(MY ) → MX is an isomorphism and, since the
homomorphism f −1(MY )→MX is local, the diagram

O∗X,x
- MX,x

O∗Y, f (x)

6

- MY, f (x)

6

is cocartesian, for each x in X. It follows that flog maps τ−1
X (x) bijectively to

τ−1
Y ( f (x)). Thus the diagram in the proposition is set-theoretically cartesian.

Since f is strict, every section of MX is locally the product of a section of
O∗X and a section of f −1(MY ), and it follows that that the topology on Xlog is
the weak topology defined by τX and flog. That is, Xlog has the product topol-
ogy induces from X and Ylog, and the diagram is cartesian in the category of
topological spaces. �

Remark 1.2.6. If T is any topological space, we let S1
T (or S1) denote the

sheaf of continuous functions from T to S1. The construction of Xlog includes
a homomorphism of abelian sheaves arg : τ−1

X (MX) → S1
Xlog

with the prop-
erty that its composition with the inclusion τ−1

X (O∗X) → τ−1
X (Mgp

X ) agrees with
the usual arg function. It follows easily from the construction that this homo-
morphism is universal. That is, if τ : T → X is a continuous mapping of topo-
logical spaces and a : τ−1(MX) → S1

T is an extension of arg, there is a unique
map τ′ : T → Xlog such that τX ◦ τ

′ = τ and such that a is the composition of
τ′−1(arg) with the natural map τ′−1(S1

Xlog
)→ S1

T .

Before proceeding, we verify that the general construction given in Defini-
tion 1.2.4 agrees with the previous construction Xlog

Q for monoid schemes.
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Proposition 1.2.7. Let Q be a finitely generated monoid, let AQ be the associ-
ated log scheme, and let Alog

Q be its Betti realization. Then there is a commuta-
tive diagram

Alog
Q

ξlog
- Xlog

Q

Aan
Q

τAlog
Q

? ξ - XQ,

τQ

?

in which the horizontal maps are homeomorphisms.

Proof Let X := AQ. By definition, X = Spec(Q→ C[Q]), and so is equipped
with a chart β : Q → Γ(X,MX) and a homomorphism γ : Q → Γ(X,OX). The
map ξ in the diagram takes a homomorphism x : C[Q] → C to x ◦ γ : Q → C
and is, as we have already observed, a homeomorphism. We will henceforth
identify x with x ◦ γ.

If (x, σ) ∈ Xlog, the composition ζ : Q
βx- MX,x

σ- S1 is a point of TQ,
and ρ : Q

γx- OX,x
x∗- C abs- R≥ is a point of RQ. Then

ξlog(x, σ) := (ζ, ρ) ∈ Xlog
Q := TQ ×RQ .

Note that ρ(q) = |x(q)| for all q ∈ Q, so Fx := x−1(C∗) = ρ−1(R>). Moreover,
γx(q) ∈ O∗X if q ∈ Fx, hence ζ(q) := σ(βx(q)) = arg(x(γx(q))) and x(q) =

ζ(q)ρ(q). On other hand, x(q) = ζ(q)ρ(q) = 0 if q < Fx. This shows that
ξ(τX(x, σ)) = τQ(ζ, ρ), so that the diagram commutes.

Conversely, suppose that (ζ, ρ) ∈ Xlog
Q . Let x := ζρ ∈ XQ and let Fx :=

x−1(C∗) = ρ−1(R>). Since x(q) = ζ(q)ρ(q) and ρ(q) ∈ R> for q ∈ Fx, in fact
ζ(q) = arg ◦x(q) for all q ∈ Fx. Since β is a chart for MX , the square in the
diagram

Fx
ix - Q

O∗X,x

γ′x

?
- MX,x

? σ - S1

ζ

-

is cocartesian. Since arg ◦γ′x = ζ ◦ ix on Fx, there is a unique σ as shown
making the diagram commute. Then (x, σ) ∈ Xlog is the unique point of Xlog

mapping to x ∈ X and to (ζ, ρ) ∈ Xlog
Q . This shows that the map ξlog is bijective.

Finally we must show that ξlog is a homeomorphism. For each q ∈ Q, we
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have evaluation maps eq : Xlog
Q → S1 and εq : Xlog

Q → R≥, and Xlog
Q has the

weak topology defined by these maps. Thus it will suffice to show that Xlog has
the weak topology T ′ defined by the maps eq ◦ ξ

log and εq ◦ ξ
log. If q ∈ Q and

(x, σ) ∈ Xlog, then εq(ξ(x)) = |x(q)|, so εq ◦ ξ is continuous on X. Similarly,
eq(ξlog(x, σ)) = σ(βx(q)) = arg(β(q))(x, σ), so eq ◦ξ

log is also continuous. Thus
the topology T of Xlog is at least as strong as T ′.

Since ξ : X → XQ is a homeomorphism and τQ is continuous, it follows that
τX is T ′-continuous. Let U be an open subset of X and m a section ofMX(U).
We claim that that arg(m) : τ−1

X (U)→ S1 is T ′-continuous. This can be verified
locally over U. Since β is a chart forMX , locally on U there exist a section u
of O∗X and an element q of Q such that m = u + β(q). Then

arg(m) = arg(u ◦ τX) arg(β(q) = arg(u ◦ τX)eq ◦ ξ
log.

Since arg(u ◦ τX) and eq ◦ ξ
log are continuous, so is arg(m). �

Corollary 1.2.8. If X is a fine log analytic space, then τX : Xlog → X is proper.

Proof If Q is a fine monoid and X = Aan
Q , the properness of τX follows from

Propositions 1.2.7 and 1.2.3. For the general case, we may verify the proper-
ness of τX locally on X, and hence we may assume without loss of generality
that there is a chart X → Aan

Q , where Q is a fine monoid. Then the cartesian
square in (3) of Proposition 1.2.5, with Y = Aan

Q , shows that τX is proper. �

Corollary 1.2.9. Let f : X → Y be a morphism of u-integral log analytic
spaces such that f : X → Y is an isomorphism.

1. IfMX is fine, then flog is proper.
2. If MX is fine and f is s-injective, the map flog : Xlog → Ylog is surjective,

and τY is also proper.
3. IfMX is fine and f is an immersion, then flog is a closed embedding.

Proof We identify the topological spaces of X and Y and hence τY ◦ flog with
τX . The properness of flog can be verified locally on X = Y , so we may as
well assume that this space is Hausdorff. We have seen in Corollary 1.2.8 that
the coherence ofMX implies the properness of τX = τY ◦ flog, and since τY is
separated, it follows that flog is proper. If f is s-injective, the mapMY →MX

is injective, and it follows from the u-integrality of MX that the map MY →

MX is also injective. Then it follows from the divisibility of S1 that flog is
surjective, and the properness of τX implies that of τY . If f is an immersion,
f [ is surjective, hence evidently flog is injective and, since it is proper, it is a
closed embedding. �
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Corollary 1.2.10. If the log structure on X is fine, the map Xsat
log → Xlog is a

homeomorphism.

Proof This statement can be verified locally on X, so we may assume that
MX admits a chart subordinate to a fine monoid Q, which we view as a strict
morphism X → AQ. Then Xsat � X ×AQ AQsat , and hence, by (3) of Proposi-
tion 1.2.5, Xsat

log � Xlog ×Alog
Q

Alog
Qsat . Therefore it will suffice to prove that the map

Alog
Qsat → Alog

Q is a homeomorphism. According to Proposition 1.2.7, this map
can be identified with the map Xlog

Qsat → Xlog
Q , so it will suffice to prove that

TQsat → TQ and RQsat → RQ are homeomorphisms. Since TQ := Hom(Q,S1)
and S1 is saturated, the map TQsat → TQ is bijective, and a hence a homeo-
morphism since it is proper and continuous. The set RQ (resp. RQsat ) is the
disjoint union of its subsets RFgp as F ranges over the faces of Q (resp. of Qsat),
and the maps Q → Qsat, Q → CR(Q), and Qsat → CR(Qsat) = CR(Q) induce
bijections between the respective sets of faces, by Corollary I.2.3.8. For each
face F of Q (resp. of Qsat),

RFgp := Hom(Fgp,R≥) � Hom(Fgp,R>) � HomR(CR(F),R),

where CR(F) is the corresponding face of the cone CR(Q). It follows that the
natural map RQsat → RQ is also bijective. Since RQsat has the weak topology
generated by the evaluation functions ex for x ∈ Qsat, and since each such x be-
longs to Qgp, this is the same as the weak topology generated by the functions
xq for q ∈ Q. It follows that the map RQsat → RQ is also a homeomorphism. �

In applying Corollary 1.2.10, be cautious of the fact that, although the map
Xsat

log → Xlog is a homeomorphism, the map Xsat → X need not be, and if it is
not, the map from the fibers of τXsat to the fibers of τX is not bijective.

Proposition 1.2.11. Let f : X → Z and g : Y → Z be morphisms of fine log
analytic spaces. Then in the category of log analytic spaces, the natural map

(X ×Z Y)log → Xlog ×Zlog Ylog

is a homeomorphism. The same statement holds in the category of fine (resp.
fine saturated) log analytic spaces provided that f or g is exact.

Proof Let X′ := X ×Z Y in the category of log analytic spaces. Then the un-
derlying topological space of X′ is the cartesian product of the corresponding
topological spaces. Since the conclusions of the proposition may be verified
locally, we may assume that there exist charts for the morphisms X → Z and
Y → Z, subordinate to homomorphisms of monoids R → Q and R → P, re-
spectively. These charts induce a chart X×Z Y → XQ ×XR XP. Then, using (3) of
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Proposition 1.2.5, we reduce to showing that the map Xlog
Q⊕RP → Xlog

Q ×Xlog
R

Xlog
P

is an isomorphism. This follows immediately from the definitions and the uni-
versal property of the pushout monoid.

Now suppose that the spaces X, Y , and Z are fine and that f is exact. Let
X′′ := X′int. The analog of Corollary III.2.2.4 holds in the category of log
analytic spaces, so the map X′′ → X′ = X ×Z Y is a nil immersion and its
underlying map of topological spaces is a homeomorphism. Since the map
X′′log → Xlog ×Zlog Ylog is a continuous morphism between spaces that are proper
over X′′, it is also proper and hence will be a homeomorphism if it is bijective.
Thus it will suffice to show that the induced map on fibers over X′′ is bijective.

Let x′ be a point of X′′ mapping to x in X, to y ∈ Y , and to z ∈ Z. Endow x,
x′, y, and z with the log structures induced from their ambient spaces. Since the
map x→ X is strict, (3) of Proposition 1.2.5 implies that the map xlog → τ−1

X (x)
is a homeomorphism, and similarly for y, z, and x′. Thus we are reduced to the
case in which all our spaces are log points. Choose charts for the morphisms
X → Z and Y → Z that are subordinate to homomorphisms of fine monoids
R→ Q and R→ P, respectively. Replacing these charts by their localizations,
we may assume that the homomorphisms Q → MX , P → MY , and R → MZ

are local and hence exact. Assuming as we may that f is exact, it follows
that the homomorphism R → Q is also exact. We find a chart Q′ → MX′ ,
where Q′ is the integral pushout Q′ of R → Q and R → P. Then by (5)
of Proposition I.4.2.5, the map Q ⊕R P → Q

′
is an isomorphism, and hence

TQ
′ � TQ ×TR

TP. Since Xlog � TQ, and similarly for Y , Z, and X′, our result is
proved, in the category of fine log analytic spaces. The saturated case follows
from this and Corollary 1.2.10. �

Variant 1.2.12. If (Q,K) is an idealized monoid, we let

TQ,K := TQ,

VQ,K := VQ,

RQ,K := {ρ ∈ RQ : ρ(k) = 0 for all k ∈ K},
Xlog

Q,K := TQ,K ×RQ,K,

X̃log
Q,K := VQ,K ×RQ,K .

If X is an idealized log analytic space, the space Xlog is defined as in Defini-
tion 1.2.4, and the evident analogs of the results in this section are straight-
forward. We should also remark that the construction of the space Xlog can be
useful for some log structures that are not coherent; see Variant 1.3.5.
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1.3 Local topology of Xlog

The following result illustrates the geometric meaning of the construction Xlog.
It shows that if X is a smooth scheme over C, then Xlog is a topological mani-
fold with boundary, with interior X∗.

Theorem 1.3.1. Let X be a fine and smooth log analytic space, let x′ be a point
of Xlog, and let n be the dimension of X at the point τX(x′). Then there exist
an open neighborhood U of x′ in Xlog, an open subset W of R≥ × R2n−1, and a
homeomorphism U → W taking U ∩ X∗ to W ∩ (R> × R2n−1).

Proof If x := τX(x′) belongs to X∗, the underlying analytic space X is smooth
at x and the map τX is an isomorphism in a neighborhood of x′. Hence Xlog is
a smooth manifold of real dimension 2n in a neighborhood of x′, by classical
results. If the log structure of X is not trivial at x, choose a chart as described in
Proposition 1.1.5. Then Q is a sharp fine monoid of dimension d := n − r > 0,
and we are reduced to proving the result when x is the vertex of XNr⊕Q(Q).
Then

Xlog = Xlog
Nr⊕Q(Q) � Cr × Xlog

Q � Cr × TQ ×RQ,

with x′ mapping to the vertex of RQ. By Corollary II.1.10.6, there is a homeo-
morphism (RQ,R∗Q) � (R≥ × Rd−1,R> × Rd−1). Since Cr � R2r and TQ is
locally homeomorphic to R2r, we find a neighborhood U of x′ in Xlog, an open
subset W of R2r+d ×R≥ ×Rd−1 � R≥ ×R2n−1, and a homeomorphism U → W
taking U ∩ X∗ to W ∩ (R> × R2n−1). �

Corollary 1.3.2. If X is a fine and smooth log analytic space, the map
jlog : X∗an → Xlog is locally aspheric. Consequently:

1. The functors jlog∗ and j∗log induce an equivalence between the categories of
locally constant sheaves on X∗ and on Xlog. In particular, if E is a locally
constant abelian sheaf on X∗, then jlog∗(E) is locally constant on Xlog and
Ri jlog∗(E) = 0 for i > 0.

2. If E is locally constant on X∗, then the natural map RτX∗( jlog∗E) → R j∗(E)
is an isomorphism.

Proof Recall that a morphism of locally compact Hausdorff spaces f : Y → Z
is said to be “locally aspheric” if every point of Z admits a basis Bz of neigh-
borhoods U such that each f −1(U) is (nonempty and) contractible. Suppose
that this is the case and that F is a locally constant sheaf on Y . Then, if z ∈ Z
and U ∈ Bz, the restriction of F to f −1(U) is constant and, since f −1(U) is
connected and not empty, the natural map f∗(F )(U) → Fy is an isomorphism
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for every y ∈ f −1(U). Thus the map f ∗ f∗(E) → E is an isomorphism. It fol-
lows that f induces an equivalence between the categories of locally constant
sheaves on Y and on Z. Furthermore, if F is abelian, then Hq( f −1(U),E) van-
ishes if q > 0, since f −1(U) is contractible and E is constant on f −1(U). Con-
sequently Rq f∗(E) = 0 for q > 0, the natural map Hq(Z, f∗(E)) → Hq(Y,E) is
an isomorphism, and in fact f∗(E) � R f∗(E) in the derived category. Thus the
asphericity of jlog implies statement (1), and statement (2) will then follow.

To prove that the map jlog : X∗ → Xlog is locally aspheric is a local question
on Xlog. Let x′ be a point of Xlog mapping to x ∈ X. If x ∈ X∗, Theorem 1.3.1
tells us that jlog looks locally like the identity map from R2n to itself, and
since every point of R2n has a basis of contractible neighborhoods, the result
is clear. If x ∈ X \ X∗, then jlog looks locally like the inclusion of R> × R2n−1

in R≥ × R2n−1. Assuming without loss of generality that x′ is the origin, we
observe that the family of sets

Uε = {(r1, r2, . . . , rn) ∈ R≥ × R2n−1 : |ri| < ε}, ε > 0}

is a neighborhood basis for x′. Since each

U∗ε = {(r1, r2, . . . , rn) : 0 < r1 < ε, |ri| < ε, for i = 2, · · · n}

is contractible, the result is again clear. �

The following theorem is a relative version of Theorem 1.3.1, for morphisms
of log analytic spaces. The proof is somewhat more complicated; for it we refer
the reader to the original source [57, 3.5]. This result also holds for some log
structures that are only relatively coherent, as does Corollary 1.3.2. (See [57,
3.7] and Variant 1.3.5.)

Theorem 1.3.3. Let f : X → Y be an exact and smooth morphism of fine log
analytic spaces. Then flog : Xlog → Ylog is a topological submersion, whose
fibers are topological manifolds with boundary, where the boundary consists
of those points of Xlog where the log structure is not vertical. �

The following proposition gives more information about the topology of the
morphism τX : Xlog → X.

Proposition 1.3.4. Let X be a fine saturated log analytic space. Then every
point of Xlog has a neighborhood basis consisting of compact sets K such that
the fibers of τX |K are either empty or contractible. 2

Proof We may and shall assume that X admits a chart X → AP, where P is a

2 The proof of this result is due to Piotr Achinger.
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toric monoid. Then the diagram

Xlog - Xlog
P

Xan

τX

?
- XP

τ

?

is cartesian. The restriction of Xlog → Xlog
P to a compact neighborhood of any

point is proper. Thus we are reduced to proving the proposition when X = XP,
which we henceforth assume.

To linearize the computations, we use the covering η : X̃log
P → Xlog

P , (1.2.2).
This morphism is a local homeomorphism, and in particular Xlog

P has the quo-
tient topology induced by η. It therefore suffices to prove our claim with
τ̃ := τ ◦ η in place of τ.

Let (ρ, θ) be a point of X̃log
P and let x := eθρ be its image in XP. Let Fx :=

ρ−1(R+), a face of P. Then if (ρ′, θ′) is another point in τ̃−1(x), necessarily
ρ = ρ′ = |x|, and x = eθ(p)ρ(p) = eθ

′(p)ρ(p) for all p ∈ P. Since ρ( f ) , 0 for
f ∈ Fx, it follows that θ′( f ) − θ( f ) ∈ Z(1) for every such f . In fact τ̃−1(x) is a
torsor under

V ′′x := {θ ∈ VP : θ(Fgp
x ) ⊆ Z(1)}.

The connected component of this space containing zero is

V ′x := {θ ∈ VP : θ(Fgp
x ) = 0} � VP/Fx ,

and we have an exact sequence

0→ V ′x → V ′′x → IFx → 0.

For each face F of P, let SF be a finite set of generators for Fgp, let S := ∪SF ,
and let T be a finite set of generators for P. Note that S is finite because P has
only finitely many faces. Choose some r ∈ (0, π/3), let U be the set of points
ρ′ in RP such that |ρ′(t) − ρ(t)| ≤ r for all t ∈ T , and let W be the set of points
θ′ of VP such that |θ′(s)− θ(s)| ≤ r for all s ∈ S. Then K := U ×W is a compact
neighborhood of (ρ, θ), and the set of all such K forms a neighborhood basis
of (ρ, θ). We claim that the nonempty fibers of the restriction of τ̃ to K are
contractible.

Fix some (ρ′, θ′) in K and, for each s ∈ S, let

Ds,θ′ := {δ ∈ VP : |θ′(s) + δ(s) − θ(s)| ≤ r}.

Then Ds,θ′ is a convex neighborhood of 0 in VP, and hence so is
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Dθ′ := ∩{Ds,θ′ : s ∈ S}. For δ ∈ VP, θ′ + δ ∈ W if and only if δ ∈ Dθ′ . If
this is the case,

|δ(s)| ≤ |θ′(s) + δ(s) − θ(s)| + |θ(s) − θ′(s)| ≤ 2r < π

for every s in S. Furthermore, (ρ′, θ′ + δ) ∈ τ̃−1(x) if and only if δ ∈ V ′′x . If
also δ ∈ Dθ′ , then δ(Fx′ ) ⊆ Z(1) and, since S contains a set of generators for
Fgp

x′ , the inequality above implies that δ(Fgp
x ) = 0. Thus Dθ′ ∩ V ′′x = Dθ′ ∩ V ′x,

a convex set, and (ρ′, θ′ + δ) ∈ τ̃−1(x) if and only if δ ∈ D′θ ∩ V ′x. It follows that
τ̃−1(x) ∩ K is convex, hence contractible, as claimed. �

Variant 1.3.5. Let X be a fine log analytic space, let F be a relatively coherent
sheaf of faces in X and let X(F ) be the log analytic space whose underlying an-
alytic space is X and with the log structure defined by the map F → OX . Then
the morphisms of log analytic spaces X → X(F )→ X define a factorization

τX : Xlog
τX/F- X(F )log

τX(F )- X.

As we saw in Proposition 1.2.5 and Corollary 1.2.8, the morphism τX(F ) is
separated and the morphism τX is proper, and it follows that τX/F is also proper.
Moreover, the argument of Proposition 1.2.5 shows that τX/F is surjective, and
that the fiber over a point (x, σ) of X(F )log is a torsor under MX,x/Fx. Since
τX/F is surjective and τX = τX(F ) ◦ τX/F is proper, it also follows that τX(F )

is proper. However, this map does not necessarily satisfy the conclusion of
Proposition 1.3.4. Finally, we point out that it is proved in [57, 5.1] that if X
is smooth and the stalks ofMX/F are free, then X(F )log is again a manifold
with boundary, whose interior is X∗(F ) := {x ∈ X : F x = 0}. Without the
freeness hypothesis, the argument there shows that the pair

(
X(F )log, X∗(F )

)
is locally isomorphic to a product of the form (R≥ × XQ,R>0,×XQ) for some
fine sharp monoid Q. By Corollary I.3.3.2, the space XQ is locally contractible,
and it follows that the inclusion X∗(F ) → X(F )log is still locally aspheric,
and Corollary 1.3.2 also applies to the morphism jlog : X∗(F )→ X(F )log. (See
Remark II.2.6.7.)

1.4 Olog
X and the exponential map

If Y and Z are topological spaces, let us write ZY for the sheaf that to every open
set V of Y assigns the set of continuous functions V → Z. (We sometimes omit
the subscript and/or the underline if no confusion seems likely to result, and
indeed we have already used this notation several times.)

On an analytic space X, one has the fundamental exact sequence of abelian
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sheaves

0 - Z(1) - OX
exp- O∗X

- 1,

where exp( f ) :=
∑∞

n=0 f n/n! and Z(1) is the subgroup of C generated by 2πi.
If X is endowed with a log structure, then on Xlog one can define an analogous
sequence in which Mgp

X replaces O∗X . In order to do so, we must also replace
OX by a larger sheaf LX on Xlog whose sections correspond to logarithms of
sections ofMgp

X , which would be multivalued on X.
Recall again that the universal covering of S1 is given by the exponential

map

exp: R(1)→ S1 : z 7→ exp(z) =

∞∑
0

zn/n!,

where R(1) is the set of purely imaginary numbers. Locally on S1, the map exp
has a section. Then on any topological space X there is an exact sequence of
abelian sheaves on X

0→ Z(1)→ R(1)→ S1 → 0.

Proposition 1.4.1. If X is a log analytic space, let LX be the fiber product, in
the category of abelian sheaves on Xlog, in the following diagram:

LX
exp- τ−1

X (Mgp
X )

R(1)

θ

? exp - S1.

arg

?

1. There is a commutative diagram of abelian sheaves on Xlog, in which the
squares on the right are cartesian and the rows are exact,

0 - Z(1) - τ−1
X (OX)

exp- τ−1
X (O∗X) - 0

0 - Z(1)

id

?
- LX

ε

? exp- τ−1
X (Mgp

X )

λ

?
- 0

0 - Z(1)

id

?
- R(1)

θ

? exp - S1

arg

?
- 0,
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and where θ ◦ ε( f ) is the imaginary part Im( f ) of f .
2. There is an exact sequence

0 - τ−1
X (OX)

ε- LX
exp- τ−1

X (M
gp
X ) - 0.

Proof The middle row of the diagram is by definition the pullback of the bot-
tom row via the map arg : τ−1

X (Mgp
X ) → S1. The top row is just the standard

exponential sequence on X, pulled back to Xlog. The homomorphism ε in state-
ment (2) exists because arg(λ(exp f )) = exp(Im( f )) for every section f of OX ,
Then the top row is necessarily the pull-back of the middle row along λ, and it
follows that the right upper square is cartesian. Chasing the diagram gives the
exact sequence in (2). �

Sections of LX may be thought of as logarithms of sections of MX . Such
functions and their powers are often introduced in an ad hoc manner in the
study of differential equations with regular singular points. Here they arise
quite naturally, and we shall also want to consider the sheaf of τ−1

X (OX)-
algebras that they generate. This sheaf plays an important role in the loga-
rithmic Riemann–Hilbert correspondence ([50], [61], and [40]).

Definition 1.4.2. Let X be a u-integral log analytic space. Then Olog
X is the uni-

versal τ−1(OX)-algebra equipped with a map LX → O
log
X such that the diagram

τ−1(OX)
ε - LX

O
log
X

?
-

commutes.

The algebra Olog
X may be constructed explicitly by taking the quotient

of τ−1
X (OX) ⊗Z S·(LX) by the ideal generated by the sections of the form

1 ⊗ ε( f ) − f ⊗ 1, for f a local section of τ−1
X (OX). Alternatively, tensor the

exact sequence of statement (2) of Proposition 1.4.1 with the (torsion-free)
abelian sheaf τ−1(OX) to obtain the top row of the following diagram:

τ−1(OX) ⊗ τ−1(OX)
id ⊗ ε- τ−1(OX) ⊗ LX - τ−1(OX) ⊗M

gp
X

τ−1(OX)

m

?
ε′ - EX

m′

?
- τ−1(OX ⊗M

gp
X ).

�

?

(1.4.1)



1 Betti realizations of log schemes 463

The top row is short exact because τ−1(OX) is Z-flat, and the bottom row is
obtained by pushout along the multiplication map m. Then, for each j, one can
form the jth symmetric product S j(EX) of the τ−1

X (OX) module EX , and the map
τ−1

X (OX)→ EX induces a map S j−1(EX)→ S j(EX).

Proposition 1.4.3. On a u-integral log analytic space X, there is a unique iso-
morphism of τ−1

X (OX)-algebras

O
log
X � lim

−→
S j(EX)

compatible with the inclusions of LX . If the stalks ofM
gp
X,x are finitely gener-

ated, then for each j ∈ N, the map S j(EX) → Olog
X is injective, and if N jO

log
X

denotes its image, then the map

τ−1(OX) ⊗Z S j(M
gp
X )→ GrN

j O
log
X

is an isomorphism.

Proof We endow lim
−→

S j(EX) with its obvious ring structure and the τ−1
X (OX)-

algebra structure induced by the map τ−1
X (OX) → EX → lim

−→
S j(EX). Then if a

is a local section τ−1
X (OX),

ε′(a) = ε′(m(a ⊗ 1)) = ε′(m(1 ⊗ a)) = m′((id ⊗ ε)(1 ⊗ a)),

and hence a ∈ OX and ε(a) ∈ LX have the same image in lim
−→

S j(EX). The
universal property of Olog

X then gives a unique map Olog
X → lim

−→
S j(EX) making

the evident diagram commute. On the other hand, the τ−1
X (OX)-algebra structure

ofOlog
X and the map ε induce the homomorphism b of the commutative diagram

τ−1
X (OX) ⊗ τ−1(OX)

id ⊗ ε- τ−1
X (OX) ⊗ LX

τ−1
X (OX)

m

?
- Olog

X

b

?

and, by the construction of EX , the map b factors uniquely through a map of
τ−1

X (OX)-modules EX → O
log
X , compatible with the inclusions of τ−1

X (OX). This
map extends uniquely to lim

−→
S j(EX).

The map LX → O
log
X factors through N1O

log
X and the map OX → O

log
X factors

through N0O
log
X . Thus we find a homomorphismM

gp
X → GrN

1 O
log
X . By the OX-

algebra of structure of Olog
X and its compatibility with the filtration N·, we get

a homomorphism OX ⊗ S·M
gp
X → GrN

· O
log
X .

The remaining statements can be verified at the stalks. Suppose that the stalk
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ofM
g
X at x is finitely generated. Then the quotient ofM

gp
X,x by its torsion part

is a free abelian group, and hence OX,x ⊗MX,x is a free OX,x-module of finite
rank. Then we can choose a splitting of the sequence

0→ OX,x → EX,x → OX,x ⊗M
gp
X,x → 0.

Then S jEX,x � ⊕{SiM
gp
X,x : 0 ≤ i ≤ j}, and the result is clear. �

Proposition 1.4.4. Let f : X → Y be a morphism of u-integral log analytic
spaces. Then there are canonical maps

f −1
log(LY )→ LX and τ−1

X (OX) ⊗( f τX )−1(OY ) f −1
log(Olog

Y )→ Olog
X ,

compatible with the maps f ] : f −1(OY ) → OX and f [ : f −1(MY ) → MX . The
latter of these is an isomorphism if f is strict.

Proof The construction of the claimed maps is straightforward. Suppose that
f is strict. Recalling the construction of (1.4.1), we find a commutative diagram
of short exact sequences:

τ−1
X (OX) ⊗ f −1

log(Olog
Y ) - τ−1

X (OX) ⊗ f −1
log(EY ) - τ−1

X (OX) ⊗ f −1
logτ

−1
Y (M

gp
Y )

τ−1
X (OX)
?

- EX

?
- τ−1

X (OX ⊗M
gp
X );

?

here the tensor products in the upper row are taken over ( f τX)−1(OY ). Since
the morphism f is strict, the map f −1(MY ) → MX is an isomorphism, and
it follows that all the vertical maps in the diagram are isomorphisms. Since
O

log
X = lim

−→
S·EX , we can conclude that the map in the statement of the proposi-

tion is also an isomorphism. �

Let us give an explicit description of these constructions when X is the
log analytic space associated to a fine idealized monoid (Q,K). We assume
that Qgp is torsion free, so that X and TQ are connected (by Variant I.3.3.3
and Remark 1.2.1, respectively). Recall from Variant 1.2.12 that then Xlog =

TQ ×RQ,K and admits a universal cover η : X̃log → Xlog with covering group IQ,
where X̃log = VQ ×RQ,K and IQ := Hom(Q,Z(1)). Let ι : Z(1) → R(1) be the
inclusion and, for q ∈ Q, let χ̃(q) : X̃log → R(1) be the map sending (θ, ρ) to
θ(q). Let

LQ := Z(1) ⊕ Qgp,
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with the action of IQ given by γ(z, q) := (z + γ(q), q). We are given a homo-
morphism Qgp → M

gp
X and, if Z(1) → Mgp

X is the zero map, we find a com-
mutative diagram

Z(1) ⊕ Qgp (ι, χ̃)- Γ(X̃log,R(1))

Γ(X̃log, τ̃
−1
X (Mgp

X ))
? arg- Γ(X̃log,S1).

?

This diagram defines a mapping LQ → Γ(X̃log, η
−1(LX)), which fits in the com-

mutative diagram

0 - Z(1) - LQ - Qgp - 0

0 - Γ(X̃log,Z(1))
?

- Γ(X̃log, η
−1(LX))
?

- Γ(X̃log,M
gp
X )

?
- 0.

The covering group IQ acts on Γ(X̃log, η
−1(Lgp

X )), and we claim this action is
compatible with its action on LQ. Indeed, the image of Z(1) in Γ(X̃log,M

gp
X )

is constant and hence invariant under γ, and if q ∈ Qgp and (θ, ρ) ∈ X̃log,
formula (1.2.3) implies that

(γχ̃(q))(θ, ρ) := (χ̃(q))((θ, ρ)γ) = χ̃(q)(θ+γ, ρ) = θ(q)+γ(q) = γ(q)+χ̃(q)(θ, ρ).

Now let EQ := LQ(−1) = Z ⊕ Qgp(−1), with its natural IQ-action, and let

E·Q := lim
−→

S j EQ � ⊕ jS j(Qgp)(− j), (1.4.2)

which has a natural ring structure and IQ-action. In fact, since Qgp is a finitely
generated free abelian group, it identifies with Hom(IQ,Z(1)). Hence EQ iden-
tifies with Z⊕ (IQ)∨ and E·Q identifies withAIQ , the universal locally unipotent
representation of IQ constructed in Section I.3.7. Note that we have a canonical
isomorphism C(1)→ C and hence C ⊗ LQ � C ⊗ EQ.

Proposition 1.4.5. Let Q be a fine monoid such that Qgp is torsion free and
let K be an ideal in Q. Let X := Aan

Q,K, let η : X̃log → Xlog be the exponential
map (1.2.2), and let E·Q be the ring defined in equation (1.4.2).

1. There is a natural homomorphism

τ−1
X (OX) ⊗ E·Q → Γ(X̃log, η

−1(Olog
X ))

compatible with the actions of IQ and the natural filtrations on both sides.



466 V Betti and de Rham Cohomology

2. If Q is sharp and x is the vertex of X, this homomorphism restricts to an
isomorphism

OX,x ⊗ E·Q → Γ(τ̃−1
X (x), η−1(Olog

X )).

Proof We have already constructed the homomorphism appearing in (1). The
restriction of the sheaf η−1(Olog

X ) to the contractible space τ̃−1
X (x) is constant. To

see that the homomorphism (2) is an isomorphism, it is enough to see that it is
so on the graded pieces associated to the filtrations N· of both sides. On the left,
the jth graded piece is OX,x ⊗ S jQgp, and on the right it is OX,x ⊗ S jM

gp
X,x, as we

saw in Proposition 1.4.3. The map on these pieces is evidently an isomorphism
by construction. �

Remark 1.4.6. Proposition 1.4.5 makes sense more generally, for any split
hollow log analytic space with constant log structure given by a sharp toric
Q. Without a splitting, it may not be possible to construct the covering X̃log of
Xlog. Indeed, Xlog → X is a TQ-torsor, classified by an element of H1(X,TQ).
The desired universal covering would be a VQ-torsor, and the obstruction to its
construction lies in H2(X, IQ). The exact sequences

0→ Z(1)→ OX → O
∗
X → 0 and 0→ O∗X →M

gp
X → Qgp → 0

splice to an exact sequence

0→ Z(1)→ OX →M
gp
X → Qgp → 0,

which defines an element in Ext2(Qgp,Z(1)) = H2(X, IQ). We leave it to the
reader to verify that this element, which is given by the Chern classes of the
line bundles Lq for q ∈ Qgp (see Remark III.1.1.7), is the obstruction to the
construction of X̃log.

Theorem 1.4.7. If E is a coherent sheaf ofOX-modules on a fine analytic space
X, let τ∗X(E) := τ−1

X (E) ⊗τ−1
X (OX ) O

log
X . IfM

gp
X is torsion free, the natural map

E → RτX∗τ
∗
X(E)

is a derived isomorphism. If F is a relatively coherent sheaf of faces inMX ,
the analogous result holds for τX(F ).

Proof The theorem asserts that the natural map E → τX∗τ
∗
X(E) is an isomor-

phism and that RqτX∗(E) = 0 for q > 0. These statements can be checked
on the stalks. At the stalk level, the same argument will work for F . Let
x be a point of X; since τX is proper, it is enough to check that the map
Ex → H0(τ−1

X (x), τ∗X(Ex)) is an isomorphism and that Hq(τ−1
X (x), τ∗X(Ex)) = 0

for q > 0.
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By Proposition 1.2.5, we can identify τ−1
X (x) with Tx = Hom(M

gp
X,x,S1).

Let Q := MX,x and choose a splitting of the map MX,x → Q. Then we
have a universal covering ηQ : VQ → TQ = Tx with covering group IQ. Let
Ẽx := Γ(VQ, η

∗
Qτ
∗
X(Ex)) with its natural IQ-action. Since Tx is a K(π, 1) and

τ∗X(Ex) is locally constant on Tx, the cohomology groups Hq(Tx, τ
∗
X(Ex)) can

be computed as the group cohomology Hq(IQ, Ẽx).
Let W := C ⊗ Qgp. Using the Propositions 1.4.5 and 1.4.4, we can write

Ẽx := Γ(τ̃−1
X (x), η∗Q(Olog

X ⊗OX,x Ex)) � S·W ⊗C Ex.

Then, by the universal coefficient theorem, Hq(IQ, Ẽx) � Ex ⊗C Hq(IQ, S·W),
and we are reduced to proving that

Hq(IQ, S·W) =

C if q = 0

0 otherwise.

This calculation is straightforward. For example, by Theorem I.3.7.3, the group
cohomology of this locally unipotent representation can be computed from the
associated Higgs complex. In this case, the Higgs field on S·W is just the usual
exterior derivative S·W → S·W ⊗ W, and the Higgs complex is the de Rham
complex of the polynomial algebra S·W. Thus the desired result follows from
the standard Poincaré lemma for polynomial algebras. �

2 The de Rham complex

One of the most important historical inspirations for log geometry is the theory
of differential forms with log poles. These have been used for a long time to
study the de Rham cohomology of an open subset U whose complement in
a smooth proper scheme is a divisor with normal crossings. This method was
used, for example, by Grothendieck in his original proof [28] of the compari-
son theorem between Betti cohomology and algebraic de Rham cohomology,
and also by Deligne in his treatment [16] of differential equations with regular
singularities. It is no surprise then that logarithmic de Rham cohomology is
quite well developed and that it gives a good idea of the geometric meaning of
log geometry.

2.1 Exterior differentiation and Lie bracket

Our first task is to show that the universal logarithmic derivation defined in
Proposition IV.1.2.11 fits into a complex of abelian sheaves, the (logarithmic)
de Rham complex.
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Proposition 2.1.1. Let f : X → Y be a morphism of coherent log schemes, and
for each i, let Ωi

X/Y be the ith exterior power of Ω1
X/Y . Then there is a unique

collection of homomorphisms of sheaves of abelian groups

di : Ωi
X/Y → Ωi+1

X/Y : i ∈ N,

called the exterior derivative, such that:

1. d1 dlog m = 0 if m is any section ofMX ,
2. didi−1ω = 0 if ω is any section of Ωi−1

X/Y ,

3. di+ j(ω ∧ ω′) = (diω) ∧ ω′ + (−1)iω ∧ (d jω′) if ω ∈ Ωi
X/Y and ω′ ∈ Ω

j
X/Y .

The resulting complex Ω·X/Y is called the de Rham complex of the morphism
f : X → Y .

Proof By Lemma IV.1.2.16, we may without loss of generality assume that
MX is integral, and we identify a section of MX with its image in Mgp

X . The
main point is the existence of d1 : Ω1

X/Y → Ω2
X/Y . Classically, this is proved by

checking compatibility with all the relations used in the construction of Ω1
X/Y ; a

somewhat tedious task [6, II, §3]. In our setting, it is more convenient to use the
description of Ω1

X/Y as a quotient ofOX⊗M
g
X by the abelian subsheafR1+R2 as

described in Proposition IV.1.2.11. The map OX ×M
gp
X → Ω2

X/Y sending (a,m)
to da ∧ dlog m is evidently bilinear, and hence it induces a homomorphism of
abelian sheaves φ : OX ⊗M

gp
X → Ω2

X/Y . If m is any section ofMX then

φ(αX(m) ⊗ m) = dαX(m) ∧ dlog m = αX(m) dlog m ∧ dlog m = 0,

and it follows that φ annihilates R1. If n is a local section of f −1(Mgp
Y ) and a

is a local section of OX , then φ(a ⊗ n) = da ∧ dlog n = 0, so φ also annihi-
lates R2. We can conclude from Proposition IV.1.2.11 that φ factors through a
homomorphism of abelian sheaves d1 : Ω1

X/Y → Ω2
X/Y .

By construction, d1(a dlog m) = da ∧ dlog m for sections a of OX and m of
MX . In particular, d1(dlog m) = d1(1 dlog m) = 0, so condition (1) is satisfied.
If a = αX(m), then

d1da = d1(αX(m) dlog m) = dαX(m) ∧ dlog m = αX(m) dlog m ∧ dlog m = 0.

It follows that d1da = 0 if a is a unit and, since any local section of OX can
locally be written as a constant plus a unit, in fact d1da = 0 for every local
section of OX . Thus condition (2) is satisfied for i = 1.

Condition (3) when i = j = 0 is just the fact that d is a derivation. Let a and b
be local sections of OX , let m be a local section ofMX , and let ω′ := b dlog m.
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Then d1ω′ = db ∧ dlog m, so

d1(aω′) = d1(ab dlog m) = (dab) ∧ dlog m

= (bda + adb) ∧ dlog m = da ∧ ω′ + a ∧ d1ω′.

Since Ω1
X/Y is locally generated as an abelian sheaf by sections of the form

ω′ = b dlog m, condition (2) holds when i = 0 and j = 1.
To define di for i > 1, consider the map ψi : Ω1

X/Y × · · · × Ω1
X/Y → Ωi+1

X/Y ,
where

ψi(ω1, . . . , ωi) :=
∑

j

(−1) j+1ω1 ∧ · · · ∧ dω j ∧ · · · ∧ ωi.

It is clear that ψ is multilinear over Z. Moreover, if a is a local section of OX

and 1 ≤ k ≤ i,

ψi(ω1, . . . , aωk, . . . , ωi) =
∑
j<k

(−1) j+1ω1 ∧ · · · ∧ dω j ∧ · · · ∧ aωk ∧ · · · ∧ ωi

+
∑
j>k

(−1) j+1ω1 ∧ · · · ∧ aωk ∧ · · · ∧ dω j ∧ · · · ∧ ωi

+ (−1)k+1ω1 ∧ · · · ∧ da ∧ ωk ∧ · · · ∧ ωi

+ (−1)k+1aω1 ∧ · · · ∧ dωk ∧ · · · ∧ ωi

= da ∧ ω1 ∧ · · · ∧ ωi

+
∑

j

(−1) j+1aω1 ∧ · · · ∧ dω j ∧ · · · ∧ ωi.

This answer is independent of the choice of k, and hence ψi is multilinear over
OX and factors through the tensor product (Ω1

X/Y )⊗k. Since ψ annihilates any
i-tuple with a repeated factor, it also factors through a map di : Ωi

X/Y → Ωi+1
X/Y .

It is easy to check that this map has the desired properties. �

In the classical case, the exterior derivative d : Ω1
X/Y → Ω2

X/Y corresponds
to a Lie-algebra structure on the dual TX/Y . Let us verify that the same holds
here.

Proposition 2.1.2. Let f : X → Y be a morphism of coherent log schemes
and let TX/Y := DerX/Y (OX). Then TX/Y has the structure of a Lie algebra over
f −1OY , with Lie bracket defined by

[∂1, ∂2] := ([D1,D2],D1δ2 − D2δ1) (2.1.1)

if ∂i = (Di, δi). Moreover,

〈dω, ∂1 ∧ ∂2〉 = ∂1〈ω, ∂2〉 − ∂2〈ω, ∂1〉 − 〈ω, [∂1, ∂2]〉 (2.1.2)

if ω ∈ Ω1
X/Y and ∂1,∂2 ∈ TX/Y .
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Proof We must prove that the right hand side of (2.1.1) defines a logarithmic
derivation of X/Y . Let D := [D1,D2], a derivation of OX relative to OY , and let
δ := D1 ◦ δ2 −D2 ◦ δ1, a homomorphismMX → OX that annihilates f −1(MY ).
To see that (D, δ) ∈ DerX/Y (OX), it is enough to check that, for each local
section m ofMX , D(αX(m)) = αX(m)δ(m). Writing a for αX(m), we have

D(αX(m)) = D1D2(a) − D2D1(a)
= D1(aδ2(m)) − D2(aδ1(m))
= aδ1(m)δ2(m) + aD1δ2(m) − aδ2(m)δ1(m) − aD2δ1(m)
= aδ(m)

as required.
We should also verify the Jacobi identity

[∂1, [∂2, ∂3]] + [∂2, [∂3, ∂1]] + [∂3, [∂1, ∂2]] = 0.

Suppose that ∂i = (Di, δi) for i = 1, 2, 3, and write ∂i, j for [∂i, ∂ j]. It suffices to
compute the “δ” portion of this expression, which is

D1δ2,3 − D2,3δ1 + D2δ3,1 − D3,1δ2 + D3δ1,2 − D1,2δ3

= D1D2δ3 − D1D3δ2 − D2D3δ1 + D3D2δ1

+ D2D3δ1 − D2D1δ3 − D3D1δ2 + D1D3δ2

+ D3D1δ2 − D3D2δ1 − D1D2δ3 + D2D1δ3.

This sums to zero as required.
It is clear that the difference between the left and right hand sides of (2.1.2)

is additive in ω. Since Ω1
X/Y is generated as an abelian sheaf by elements of

the form ω = adm, it suffices to check (2.1.2) for such elements. The left hand
side is

〈da ∧ dm, ∂1 ∧ ∂2〉 = 〈da, ∂1〉〈dm, ∂2〉 − 〈da, ∂2〉〈dm, ∂1〉

= D1(a)δ2(m) − D2(a)∂1(m).

The right hand side is

∂1〈ω, ∂2〉 − ∂2〈ω, ∂1〉 − 〈ω, [∂1, ∂2]〉

= D1(aδ2(m)) − D2(aδ1(m)) − 〈adm, ([D1,D2],D1δ2 − D2δ1)〉

= D1(a)δ2(m) + aD1δ2(m) − D2(a)δ1(m)

− aD2δ1(m) − (aD1δ2(m) − aD2δ1(m))

= D1(a)δ2(m) − D2(a)δ1(m).

This concludes the proof. �
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2.2 De Rham complexes of monoid algebras

A smooth morphism of log schemes is locally modeled by a morphism of
monoid schemes coming from an injective monoid homomorphism P → Q.
The de Rham complex in this case is invariant under the action of the monoid
AQ and so is equipped with a canonical Q-grading. Although the action and
grading are destroyed by localization and do not exist in the local models, they
are still quite useful, and in this section we exploit them to calculate the de
Rham cohomology of such toric morphisms.

Let θ : P → Q be an injective homomorphism of fine monoids, which for
simplicity of notation we regard as an inclusion. We write π for the projection
π : Qgp → Qgp/Pgp. Let R be a fixed ground ring. The inclusion θ induces a
homomorphism of log R-algebras(

P→ R[P]
)
→

(
Q→ R[Q])

)
,

and hence a corresponding morphism of log schemes AQ → AP. According
to Theorem IV.3.1.8, this morphism is smooth if and only if the order of the
torsion part of Cok(θgp) is invertible in R. We assume this from now on, so
that R ⊗Z Qgp/Pgp is a free R-module of finite rank. As we saw in Propo-
sition IV.1.1.4, the sheaf of (logarithmic) Kahler differentials Ω1

AQ /AP
is the

quasi-coherent sheaf of OAQ -modules associated to the Q-graded R[Q]-module
R[Q] ⊗ Qgp/Pgp. Depending on the context, we may use any of the following
notations for this module:

Ω1
θ := Ω1

Q/P/R := Ω·Q/P := R[Q] ⊗ Qgp/Pgp.

For each i, Ωi
AQ /AP

is the quasi-coherent sheaf associated to the Q-graded R[Q]-
module

Ωi
θ := Ωi

Q/P := R[Q] ⊗ ΛiQgp/Pgp.

Similarly,DerAQ /AP (OAQ ) is the quasi-coherent sheaf associated to

Tθ := Hom(Ω1
θ ,R[Q]) � R[Q] ⊗ Hom(Qgp/Pgp,Z).

The de Rham complex of AQ /AP is the complex of R[Q]-modules (Ω·θ, d), and
the de Rham cohomology H∗DR(AQ /AP) of AQ /AP is the cohomology of this
complex. The grading of Ω1

θ assigns degree q to an element eq ⊗ π(x), and so
the universal log derivation (d, d) : (R[Q],Q)→ Ω1

θ preserves degrees. Indeed,
if q ∈ Q, dq = 1⊗ π(q) has degree zero, and deq = eqdq = eq ⊗ π(q) has degree
q. Thus the de Rham complex Ω·Q/P inherits a grading. It admits the following
explicit description.

Proposition 2.2.1. Let θ : P → Q be an injective homomorphism of fine
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monoids for which the order of the torsion part Cok(θgp) is invertible in R.
Then the de Rham complex Ω·Q/P is a Q-graded complex of free graded R[Q]-
modules, generated in degree zero. The degree-q term is given explicitly as the
complex

Ω·Q/P,q �
(
Λ·Qgp/Pgp, dq∧

)
,

where (Λ·Qgp/Pgp, dq∧) is the exterior algebra on Qgp/Pgp with differential
given by exterior multiplication by the image π(q) of q in Qgp/Pgp. Further-
more, the exterior multiplication

Ωi
Q/P ⊗Ω

j
Q/P → Ω

i+ j
Q/P

is compatible with the grading.

Proof Each element ω of Ωi
Q/P can be written uniquely as a sum

ω =
∑
q∈Q

eq ⊗ ωq where ωq ∈ R ⊗ Λi(Qgp/Pgp).

Thus ωq is the homogeneous component of degree q of ω. Since the elements
of Qgp/Pgp are all closed, so is each ωq. Hence

d(eqωq) = deq ∧ ωq = eq ⊗ π(q) ∧ ωq,

as claimed. �

Since the differentials of the de Rham complex preserve the grading, the
cohomology modules are also graded, and are easy to describe if R contains a
field. Of course, the answer depends on the characteristic.

Proposition 2.2.2. Suppose that, in addition to the hypothesis of Proposi-
tion 2.2.1, R contains a field k. If the characteristic of k is zero, let

Q̃ := {q ∈ Q : ∃n > 0 : nq ∈ Pgp},

and if the characteristic is p, let

Q̃ := Q ∩ (pQgp + Pgp).

Then the natural maps

R[Q̃] ⊗ Λ·Qgp/Pgp → H·DR(AQ /AP).

are isomorphisms.

Proof If q ∈ Q, then deq = eq ⊗ π(q), so deq = 0 if and only if 1 ⊗ π(q)
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vanishes in R ⊗ Qgp/Pgp. This makes it clear that deq = 0 if q ∈ Q̃, so that we
have a natural inclusion

R[Q̃] � H0
DR(AQ /AP).

More generally, if q ∈ Q̃, the differential ∧dq of the complex Ω·Q/P,q vanishes,
so that, for all i,

Hi
DR(AQ /AP)q = Ωi

Q/P,q � R ⊗ ΛiQgp/Pgp.

On the other hand, if q < Q̃, we shall see that the complex Ω·θ,q is acyclic, using
the following lemma.

Lemma 2.2.3. With the notation and hypotheses of Proposition 2.2.2, let q be
an element of Q. Then q ∈ Q \ Q̃ if and only if there exists a homomorphism
∂ : Qgp/Pgp → Z→ R such that ∂(π(q)) ∈ R∗.

Proof If q ∈ Q̃, then its image in R ⊗ Qgp/Pgp is zero, so ∂(q) = 0 for every
∂ ∈ Hom(Qgp/Pgp,R). Suppose that q ∈ Q \ Q̃ and (without loss of generality)
that k is the prime field contained in R. Then the image of q in k ⊗ Qgp/Pgp is
nonzero, so there exists a homomorphism t : Qgp/Pgp → k such that t(q) , 0.
Since k is Q or Fp, the homomorphism t can be chosen so that it comes from a
homomorphism Qgp/Pgp → Z. �

Let ∂ be as in the lemma and let s denote interior multiplication by
∂(π(q))−1∂ on Ω·Q/P,q = R ⊗ Λ·Qgp/Pgp. Then s(π(q)) = 1 and, for any ω in
this complex,

(ds + sd)(ω) = π(q) ∧ s(ω) + s(π(q) ∧ ω)

= π(q) ∧ s(ω) + s(π(q))ω − π(q) ∧ s(ω)

= ω.

Thus the complex Ω·θ,q is homotopic to zero, hence acyclic. �

Corollary 2.2.4. With the notation and hypotheses of Proposition 2.2.2, sup-
pose that R contains a field of characteristic zero and that P = 0. Let Q∗t and
Qgp

t denote the torsion subgroups of Q∗ and Qgp, respectively. Then the natural
maps (

R[Q∗t ] ⊗ Λ·(Qgp), 0
)
−→

(
Ω·Q, d

)(
R[Qgp

t ] ⊗ Λ·(Qgp), 0
)
−→

(
Ω·Qgp , d)

)
are quasi-isomorphisms. Thus if Q is saturated or, more generally, if Q

gp
is

torsion free, the map Ω·Q → Ω·Qgp is a quasi-isomorphism.
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Proof When P = 0 and R has characteristic zero, Q̃ = Q∗t , and the proposition
implies that the displayed arrows are quasi-isomorphisms. If Q is saturated,
Proposition I.1.3.5 tells us that Q

gp
is torsion free. If this is case, the map

Q → Qgp induces an isomorphism Q∗t → Qgp
t , and it follows that the map

Ω·Q → Ω·Qgp is a quasi-isomorphism. �

The corollary can be interpreted geometrically as follows. The morphism
Q∗ → Qgp of finitely generated abelian groups induces a commutative diagram
of group schemes

A∗Q = AQgp
- AQgp

t

AQ∗

?
- AQ∗t

.
?

The groups on the right are the groups of connected components of the cor-
responding group schemes on the left. Thus the corollary implies that the de
Rham complex Ω·θ of the log scheme AQ computes the de Rham cohomology
of the group scheme A∗Q if and only if A∗Q and AQ∗ have the same set of con-
nected components. For example, this is not the case for the monoid given by
generators p and q satisfying the relation 2p = 2q.

We now turn to the case of characteristic p. The operation of multiplication
by p on a monoid Q corresponds to the Frobenius endomorphism in (log) ge-
ometry; to emphasize this we write FQ for the homomorphism denoted pQ in
Section I.4.4.

Proposition 2.2.5. In addition to the hypotheses of Proposition 2.2.1, suppose
that R has characteristic p, and let FQ : Q→ Q denote multiplication by p.

1. Suppose that P = 0, that Q is p-saturated, and that the torsion subgroup of
Qgp has order prime to p. Then FQ induces an isomorphism Q → Q̃ and a
quasi-isomorphism

(R[Q] ⊗ Λ·Qgp, 0)→ FQ∗(Ω·Q, d),

eq ⊗ ω 7→ epq ⊗ ω.

2. More generally, suppose that Q is p-saturated and that Qgp/Pgp is p-torsion
free, and consider the exact relative Frobenius diagram (I.4.4.1), which we
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now notate as follows:

Q
πQ/P- Q(p)

θ

FQ/P- Q

P

θ

6

FP - P.

θ(p)
6

θ

-

The homomorphism FQ/P factors as FQ/P = Q(p)
θ � Q̃ ⊆ Q, the homo-

morphism πQ/P induces an isomorphism

γQ/P : Cok(θgp)→ Cok(θ(p)gp
),

and together these induce a quasi-isomorphism(
R[Q(p)

θ ] ⊗ Λ·Ω·
θ(p) , 0

)
→

(
FQ/P∗Ω

·
θ, d

)
eq′ ⊗ ω′ 7→ FQ/P(eq′ ) ⊗ γ−1

Q/P(ω′).

Proof If P = 0, then Q̃ = Q ∩ pQgp and, since Q is p-saturated Q̃ = pQ.
Since the torsion subgroup of Q has order prime to p, multiplication by p
defines an isomorphism Q → pQ. Thus the first statement follows from Pro-
position 2.2.2. For the second statement, note that (1) of Proposition I.4.4.3
implies the claim about πQ/P and that Corollary I.4.4.4 implies the claim about
FQ/P. Then statement (2) follows from Proposition 2.2.2. �

Corollary 2.2.6. With the hypotheses of Proposition 2.2.5, there is a unique
family of isomorphisms

Ωi
θ(p) → FQ/P∗Hi(Ω·θ)

that are compatible with exterior multiplication and that send dπQ/P(q) to dq
for every q ∈ Q. �

The calculation of the cohomology given in the proof of Proposition 2.2.2
depends on the grading of de Rham complex Since this grading is destroyed by
localization, it will be important to give a variation of the method that is more
geometric.

Definition 2.2.7. Let θ : P → Q be a morphism of integral monoids. A ho-
mogeneous flow over θ is a homomorphism of monoids h : Q → N such that
h(p) = 0 for all p ∈ P. A homogeneous vector field over θ is a group homo-
morphism ∂ : Qgp → Z such that ∂ ◦ θgp = 0.

Remark 2.2.8. The set of homogeneous vector fields over θ can be identified
with the degree zero part of the module Tθ of all vector fields, and the set Hθ(Q)
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of homogeneous flows over θ forms a submonoid of this group. Furthermore,
if 〈P〉 is the face of Q generated by P, then Hθ(Q) can be identified with the
dual monoid H(Q/〈P〉), and it follows from Corollary I.2.2.4 that

Hθ(Q)gp � Hom(Qgp/〈P〉gp,Z) ⊆ Tθ,0.

If ∂ : Qgp/Pgp → Z is a homogeneous vector field over θ, the corresponding
R[Q]-linear map

ξ : R[Q] ⊗ Qgp/Pgp → R[Q]

identifies with id ⊗ ∂, and the corresponding derivation

(id ⊗ ∂) ◦ d : R[Q]→ R[Q]

sends eq to eq∂(q). Any two such homogeneous vector fields commute under
the bracket operation defined in Proposition 2.1.2.

We can extend a vector field ξ ∈ Tθ = Hom(Ω1
Q/P,R[Q]) to a collection of

R[Q]-linear homomorphisms (interior multiplication)

ξ : Ωi
Q/P → Ωi−1

Q/P : ω1 ∧ · · · ∧ ωi 7→
∑

j

(−1) j+1ξ(ω j)ω1 ∧ · · · ∧ ω̂ j ∧ · · · ∧ ωi.

Similarly, we can extend the derivation ξ ◦ d : R[Q] → R[Q] to a collection of
maps (the Lie derivative) by setting

κ : Ωi
Q/P → Ωi

Q/P : ω 7→ (dξ + ξd)ω.

Lemma 2.2.9. Let ξ ∈ Tθ be a vector field over θ, let ξ : Ω·Q/P → Ω·−1
Q/P denote

interior multiplication by ξ, and let κ be the Lie derivative with respect to ξ.

1. If α ∈ Ωa
Q/P and β ∈ Ωb

Q/P, we have

ξ(α ∧ β) = ξ(α) ∧ β + (−1)aα ∧ ξ(β) and

κ(α ∧ β) = κ(α) ∧ β + α ∧ κ(β),

i.e., ξ and κ are derivations of degrees −1 and 0, respectively.
2. The Lie derivative κ : Ω·Q/P → Ω·Q/P is a morphism of complexes, is homo-

topic to zero, and induces the zero map on cohomology.
3. If ξ is induced by a homogeneous vector field ∂ ∈ Hom(Qgp/Pgp,Z), then

ξ and κ preserve the Q-grading of Ω·Q/P. In particular, κ is an endomor-
phism of the Q-graded complex Ω·Q/P, and gives multiplication by ∂(π(q))
in degree q.

Proof The formulas in (1) are standard computations, which we leave to the
reader to verify. Of course, κ := dξ + ξd is automatically a morphism of com-
plexes and induces zero on cohomology, since it is visibly homotopic to zero.
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If ξ is induced by a homogenous vector field ∂, then interior multiplication by
ξ is induced by interior multiplication by ∂, and thus preserves degrees. Since
d also preserves degrees, so does κ.

To compute κ explicitly, let ω be any element of Ωi
Q/P,0. We have already

observed that dω = 0. Since ξ preserves the Q-grading, ξ(ω) ∈ Ωi−1
Q/P,0, hence

dξω = 0, and thus κ(ω) = 0. This proves the formula when q = 0. On the other
hand, if i = 0 and q is arbitrary,

κ(eq) = dξeq + ξdeq = 0 + ξ(eq ⊗ π(q)) = ∂π(q))eq,

which again is consistent with the formula in statement (3). For any q and i,
Ωi

Q/P,q is spanned as an R-module by elements of the form eq ⊗ ω with ω ∈
Ωi

Q/P,0. Then

κ(eq ⊗ ω) = κ(eq) ⊗ ω + eqκ(ω) = ∂(π(q))eq ⊗ ω + 0.

This proves (3) in general. �

We shall use these techniques to control the cohomology of various subcom-
plexes of de Rham complexes and their localizations.

2.3 Filtrations on the de Rham complex

If f : X → Y is a morphism of log schemes, the combinatorics of the sheaf
of monoidsMX manifest themselves through two sheaves of partially ordered
sets: the set of ideals of MX and the set of faces of MX . These are in turn
reflected in certain filtrations on the de Rham complex Ω·X/Y , which have inter-
esting cohomological interpretations.

We begin with the case of toric models, given as in Section 2.2 by an in-
jective homomorphism of fine monoids θ : P → Q such that the order of the
torsion subgroup of Qgp/Pgp is invertible in R.

Lemma 2.3.1. If K ⊆ Qgp a fractional ideal, for each i, let

KΩi
Q/P ⊆ Ωi

Qgp/Pgp � R[Qgp] ⊗ ΛiQgp/Pgp

denote the R-submodule generated by the elements of the form ekω with k ∈ K
and ω ∈ R ⊗ ΛiQgp/Pgp. Then KΩi

Q/P is an R[Q]-submodule of Ωi
θgp , and

KΩ·Q/P := ⊕{KΩi
Q/P : i ≥ 0} is stable under d and under interior multiplication

and Lie differentiation by any vector field over θ.

Proof The fact that KΩi
Q/P is stable under multiplication by R[Q] follows

from the fact that K is stable under translation by Q. Since interior multipli-
cation by a vector field is R[Q]-linear, KΩ·Q/P is stable under such interior
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multiplication. For any k ∈ K and ω ∈ Ωi
Q/P,

d(ekω) = dek ∧ ω + ekdω = ekdk ∧ ω.

It follows that KΩ·Q/P is stable under exterior and Lie differentiation. �

Lemma 2.3.2. If K ⊆ Q is an ideal, the following conditions are equivalent.

1. For each k ∈ K, there exists a homogenous flow h ∈ Hθ(Q) (see Defini-
tion 2.2.7) such that h(k) , 0.

2. K ∩ P = ∅.
3. K ∩ 〈P〉 = ∅.
4. There exists an h ∈ Hθ(Q) such that h(k) , 0 for all k ∈ K.

Proof If h ∈ Hθ(Q), then h(p) = 0 for all p ∈ P, so (1) implies (2). If
k ∈ 〈P〉 ∩K, then there exists a q ∈ Q such that q + k ∈ P, hence q + k ∈ K ∩ P,
so (2) implies (3). If (3) is true, then KP is a proper ideal of the localization
QP of Q by P. By Proposition I.2.2.1 there exists a local homomorphism
h′ : QP → N, which will necessarily factor through QP = Q/P and hence
define an element h of Hθ(P). Since K maps into the maximal ideal of Q/P
and h′ is local, h(k) , 0 for every k ∈ K, so (4) is true. The implication of (1)
by (4) is of course trivial. �

An ideal satisfying the conditions of the lemma will be called horizontal.

Proposition 2.3.3. Let θ : P → Q be an injective homomorphism of fine
monoids, let K ⊆ Q be a horizontal ideal, and let FΩ·Q/P be a Q-graded sub-
complex of Ω·Q/P stable under interior multiplication by the vector fields com-
ing from horizontal flows. Suppose that R contains Q. Then KΩ·Q/P ∩ FΩ·Q/P
is homotopic to zero and hence acyclic. Consequently, the natural map

FΩ·Q/P → FΩ·Q/P/K ∩ FΩ·Q/P

is a quasi-isomorphism.

Proof By Lemma 2.3.2, there exists a horizontal flow h ∈ Hθ(Q) with
h(k) , 0 for all k ∈ K. Let ξ be interior multiplication by the correspond-
ing horizontal vector field. Lemma 2.3.1 shows that KΩ·Q/P is stable under the
exterior derivative d, by ξ and hence by κ := dξ + ξd. Since FΩ·Q/P is by as-
sumption stable under d and ξ, the same is true of the complex KΩ·Q/P∩FΩ·Q/P.
This complex is Q-graded and vanishes in degrees q ∈ Q\K, and Lemma 2.2.9
implies that κ is multiplication by h(k) in degree k. Since h(k) is a unit in R for
every k ∈ K, the morphism κ induces an isomorphism of complexes

κ : KΩ·Q/P ∩ FΩ·Q/P → KΩ·Q/P ∩ FΩ·Q/P.
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Note that κξ = ξκ = ξdξ, and let

ξ′ := κ−1ξ = ξκ−1 : KΩ· ∩ FΩ·Q/P → KΩ·−1 ∩ FΩ·−1
Q/P.

Then dξ′ + ξ′d = id, and so the complex KΩ· ∩ FΩ·Q/P is homotopic to zero,
hence acyclic. �

We will apply these ideas to some filtrations generalizing Danilov’s con-
struction of de Rham complexes for toric varieties [11].

Definition 2.3.4. If F is a face of Q containing P and q ∈ Q, let 〈F, q〉 denote
the face of the quotient Q/P generated by F and π(q). Then:

Ki
q(F)Ω j

θ := Im
(
R ⊗ Λ j−iQgp ⊗ Λi〈F, q〉gp → R ⊗ Λ jQgp/Pgp

)
,

Li
q(F)Ω j

Q/P := Ki+ j
q (F)Ω j

Q/P,

Li,q(F)Ω j
Q/P := L−i

q (F)Ω j
Q/P,

Ωi
Q/P(F) := L0(F)Ωi

Q/P,

Ωi
Q/P := Ωi

Q/P(Q∗).

Note that K·q(F) is just the Koszul filtration on R⊗Λ j(Qgp/Pgp) correspond-
ing to the submodule

R ⊗ 〈F, q〉gp → R ⊗ Qgp/Pgp.

Explicitly, Ki
q(F)Ω j

Q/P is the subgroup of Λ j(Qgp/Pg) generated by the ele-
ments of the form dq1 ∧ · · · ∧ dq j such that there exist n ∈ N and f ∈ F such
that nq + f ≥ qi + · · · + qi, after a suitable permutation of the indices. Note
that if q′ ≥ q ∈ Q, then 〈F, q〉 ⊆ 〈F, q′〉, so that Ki(F) defines a Q-filtration on
R⊗Λ j(Pgp/Qgp), and hence a Q-graded submodule of R[Q]⊗Λ j(Qgp/Pgp).(See
Definition I.3.2.4 and its following discussion.)

For example, suppose that P = 0 and that Qgp is free of rank r. Then Ωr
Q =

R ⊗ ΛrQgp, a free R-module of rank one. If q ∈ Q, Ωr
Q,q = R ⊗ Λr〈q〉gp, which

vanishes if 〈q〉 , Q and is R ⊗ ΛrQgp otherwise. Since 〈q〉 = Q if and only if
q belongs to every height one prime of Q, it follows that Ωr

Q = IQΩr
Q, where

IQ is the interior ideal of Q, the intersection of all such primes. This is not the
same as the rth exterior power of Ω1

Q in general; see Proposition 2.3.10.

Proposition 2.3.5. Let θ : P → Q be an injective homomorphism of fine
monoids and let R be a ring such that the order of the torsion part of Cok(θgp)
is invertible in R.

1. The differential d of the complex Ω·Q/P sends Ki(F)Ω j
Q/P into Ki+1(F)Ω j+1

Q/P

and Li(F)Ω j
Q/P into Li(F)Ω j+1

Q/P.
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2. If ξ is a vector field over θ, interior multiplication by ξ maps Ki(F)Ω j
Q/P to

Ki−1(F)Ω j−1
Q/P and Li(F)Ω j

Q/P to Li(F)Ω j−1
Q/P.

3. The filtration L·(F) is the “filtration décalée” [14, 1.3.3] associated to
K·(F).

Proof The proof is an immediate verification, using the explicit description
following Definition 2.3.4. Suppose that ω = dq1 ∧ · · · ∧ dq j ∈ Ki

q(F)Ω j
Q/P

and that nq + f ≥ q1 + · · · + qi. Then dω = dq ∧ dq1 ∧ · · · ∧ dq j, and since
(n+1)q+ f ≥ q+q1 · · ·+qi, it follows that dω lies in Ki+1

q (F)Ω j+1
Q/P,q. To prove (2),

we first suppose that ξ is homogeneous and is induced by the homomorphism
∂ : Qgp/Pgp → R. Then interior multiplication by ξ sends ω to

ξ(ω) =
∑

k

(−1)k−1∂(qk)q1 ∧ · · · ∧ q̂k ∧ · · · ∧ q j,

which evidently belongs to Ki−1
q (F)Ω j−1

Q/P. Then eq′ξ(ω) lies in Ki−1
q′+q(F)Ω j−1

Q/P

for every q′ ∈ Q. It follows that the assertion is also true for eq′ξ. Since every
vector field can be written as a linear combination of vector fields of this form,
the result is true in general. By definition, the “filtration décalée” Dec K of
Ω·Q/P is

(Dec K(F))iΩ
j
Q/P := {ω ∈ Ki+ j(F)Ω j

Q/P : dω ∈ Ki+ j+1(F)Ω j+1
Q/P}.

Since the differential of Ω·Q/P maps Ki+ j(F)Ω j
Q/P into Ki+ j+1(F)Ω j+1

Q/P, this is
just the filtration L·(F). �

The following technical result helps control the behavior of formation of
these filtrations under base change.

Proposition 2.3.6. Let θ : P → Q be an injective homomorphism of fine
monoids, let F be a face of Q containing P, and let R be a ring in which the or-
der of the torsion subgroup of the cokernel of θgp is invertible. Suppose either
that R contains a field or that, for every face G of Q containing F, the order of
the torsion subgroup of Qgp/Ggp is also invertible in R.

1. The submodules Li(F)Ω j
Q/P) of Ω

j
Q/P are direct summands as R[P]-

modules.
2. Let P → P′ be a homomorphism of integral monoids, let Q′ := Q ⊕P P′

(formed in the category of integral monoids), and let F′ := F ⊕P P′. Then
θ′ : P′ → Q′ and F′ again satisfy the hypotheses of the proposition, and the
natural map

R[Q′] ⊗R[Q] (Ω·Q/P, L
·(F))→ (Ω·Q′/P′ , L

·(F′))



2 The de Rham complex 481

is an isomorphism of filtered complexes. The analogous statement also
holds in the category of saturated monoids.

3. If furthermore θ is integral and local, then the graded modules Gri
L(F) Ω

j
Q/P

are flat over R[P].

Proof Let G be a face of Q containing F. We have an exact sequence

0→ Ggp/Pgp → Qgp/Pgp → Qgp/Ggp → 0.

If the order of the torsion subgroups of the latter two groups is invertible in R,
then the sequence

0→ R ⊗Ggp/Pgp → R ⊗ Qgp/Pgp → R ⊗ Qgp/Ggp → 0

is a short exact sequence of free R modules, and hence is split. If, on the other
hand, R is a field, the sequence

0→ LG → R ⊗ Qgp/Pgp → R ⊗ Qgp/Ggp → 0

is split, where LG is now the image of R⊗Ggp/Pgp in R⊗Qgp/Pgp. If R contains a
field, the same result holds by base change. In any of these cases, choose such a
splitting sG for each G, and note that, for every q ∈ Q, the face 〈F, q〉 generated
by F and q is such a G. These splittings define splittings of the Koszul filtration
of R ⊗ Λ jQgp/Pgp induced by the image of R ⊗ 〈F, q〉gp in R ⊗ Qgp/Pgp. Thus,
for each q, we have a splitting

sq := s〈F,q〉 : R[Q] ⊗ Λ jQgpPgp → Li(F)
(
R[Q] ⊗ Λ jQgp/Pgp

)
in degree q. The collection of these maps defines an R[P]-linear homo-
morphism because 〈F, q〉 = 〈F, p + q〉 for p ∈ P.

To prove statement (2), first let us check that F′ := F ⊕P P′ is a face of Q.
Suppose that qi ∈ Q, p′i ∈ P′, f ∈ F, and p′ ∈ P′ with q1 + p′1 + q2 + p′2 =

f + p′ in Q′. Then there exist p1, p2 ∈ P such that p1 + q1 + q2 = p2 + f and
p2 + p′1 + p′2 = p1 + p′. Since p2 ∈ F, it follows that q1 and q2 belong to F, and
hence that q1 + p′1 and q2 + p′2 belong to F′, as required. Then, for any face G of
Q containing F, G⊕P P′ is a face of Q′ containing F′. Conversely, if G′ is a face
of Q′ containing F′, let G be its inverse image in Q, a face of Q containing F.
Any element of G′ can be written as a sum q + p′; since necessarily q belongs
to G, in fact G′ = G ⊕P P′. Thus we have a bijection between the faces of Q
containing F and the faces of Q′ containing F′. For any G, the natural map
Qgp/Ggp → Q′gp/G′gp is a bijection, as is the map Qgp/Pg → Q′gp/P′gp, so the
hypotheses of the proposition are preserved. Now, any element q′ of Q′ can be
written q′ = q + p′ with q ∈ Q and p′ ∈ P, and then 〈F′, q′〉 = 〈F, q〉 ⊕P P′. It
follows that Li(F′)Ω·Q′/P′,q′ = Li(F)Ω·Q/P,q, and statement (2) follows.
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Now suppose that P, Q, and P′ are saturated, and let Q′′ be the saturation of
the pushout Q′ and F′′ the saturation of F′. Note that in this case, the torsion
hypothesis is automatically satisfied, since Qgp/Ggp is torsion free for every
face G of Q. We check that F′′ is in fact a face of Q′′. Suppose that q′′1 + q′′2 =

f ′′, where q′′i ∈ Q′′ and f ′′ ∈ F′′. Then there exists an n > 0 such that nq′′i ∈ Q′

and n f ′′ ∈ F′ and, since nq′′1 + nq′′2 ∈ F′, in fact each nq′′i ∈ F′. As we have
seen, Q′gp/F′gp � Qgp/Fgp is torsion free, and it follows that q′′i ∈ F′gp, and
hence that q′′i ∈ F′sat = F′′. The rest of the proof proceeds in the same way as
in the integral case.

If also P → Q is integral and local we shall in fact prove that each E :=
Gri

L(F) Ω
j
Q/P is free as an R[P]-module. Recall from Corollary I.4.6.11 that Q is

a free P-set, say with basis S ⊆ Q. Then it suffices to prove that, for each s ∈ S,
the sub R[P]-module ⊕{Ep+s : p ∈ P} is free. This follows from the fact that
Es is a free R-module and that, for each p ∈ P, the map Es → Ep+s induced by
multiplication by ep is bijective. �

We note that if Q is saturated, then Qgp/Ggp is torsion free for every face
G of Q, so the condition on the faces G in Proposition 2.3.6 is automatically
satisfied.

The proof of the following variant is left for the reader.

Variant 2.3.7. Let θ : (P, J) → (Q,K) be an injective homomorphism of fine
idealized monoids and let F be a face of Q containing P. Suppose that θ, F,
and R satisfy the hypotheses of Proposition 2.3.6. Then the submodules

Li(F)Ω j
(Q,K)/(P,J)) ⊆ Ω

j
(Q,K)/(P,J)

are direct summands as R[P]-modules.

Example 2.3.8. Let Q be the monoid with generators, a, b, c and relation 2a =

2b + c. Then Qgp is torsion free, but Qgp/〈c〉gp is not, and in fact the map
F2 ⊗ 〈c〉gp → F2 ⊗ Qgp is the zero map. Consequently the map

F2 ⊗Ω1
Q/Z → Ω1

Q/F2

is not injective in degree c and in particular the formation of Ω·Q does not
commute with the base change Z → F2. The saturation Qsat of Q is generated
by x := a − b and b, and the image of c in Qsat is 2x. Thus the map

F2[Qsat] ⊗Ω1
Q/F2
→ Ω1

Qsat/F2

is not injective in degree x, even though AQsat → AQ is étale.

The following result, inspired by techniques in [50], extends the Poincaré
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residue mapping discussed in Proposition IV.1.2.14 to the complexes con-
structed here. It will play an important role in the proof of the comparison
theorems in Section 4.2.

Proposition 2.3.9. Let θ : P → Q be an injective homomorphism of fine
monoids and let R be a ring in which the order of the torsion part of Qgp/Pgp is
invertible. Let F be a face of Q containing P, let p := Q \ F, and assume that
the order of the torsion subgroup of Qgp/Fgp is also invertible in R.

1. For each i ∈ N, there is a natural isomorphism of complexes

GrL(F)
i Ω·(Q,p)/P � ΛiQgp/Fgp ⊗Ω·F/P[−i].

2. There is a natural exact sequence of complexes

0 - Ω·Q/P(F) ∩ pΩ·Q/P
- Ω·Q/P(F)

i·F- Ω·F/P
- 0.

3. Suppose that F is a facet of Q. Then pΩ·Q/P ⊆ Ω·Q/P(F), and there are natural
exact sequences:

0 - Ω·F/P
- Ω·(Q,p)/P

ρ·- Ω·F/P[−1] - 0,

0 - Ω·Q/P(F) - Ω·Q/P
ρ·- Ω·F/P[−1] - 0.

Proof According to our definitions, L·(F)Ω j
(Q,p)/P vanishes in degrees q < F

and, in degree q ∈ F, is just the (shifted) Koszul filtration associated with the
direct summand R ⊗ Fgp/Pgp of R ⊗ Qgp/Pgp. Then

GrL(F)
i Ω·(Q,p)/P,q � R ⊗ Λi(Qgp/Fgp) ⊗ Λ j−i(Fgp/Pgp),

with boundary map given by left exterior multiplication by π(q). This boundary
map is (−1)i times the identity of Λi(Qgp/Fgp) times the boundary map of
Ω·F/P,q. This proves (1).

The map Ω·Q/P(F) ∩ pΩ·Q/P → Ω·Q/P(F) in statement (1) is just the nat-
ural inclusion of complexes, and the quotient is the complex Ω·(Q,p)/P(F) =

L0(F)Ω·Q/P. By statement (1), this is just Ω·F/P.
Now suppose that F is a facet of Q. Then 〈F, q〉 = Q if q ∈ p, so Ω·Q/P,q(F) =

Ω·Q/P,q in this case. It follows that pΩ·Q/P ⊆ Ω·Q/P(F). Moreover, thanks to the
hypothesis on the torsion in Qgp/Fgp, the valuation νp associated to p induces
an isomorphism R ⊗ Qgp/Fgp → R. Then it follows from (1) that

GrL(F)
i Ω·(Q,p)/P =


Ω·F/P if i = 0

Ω·F/P[−1] if i = 1

0 otherwise.
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The exact sequence

0→ GrL(F)
0 Ω·(Q,p)/P → Ω·(Q,p)/P → GrL(F)

−1 Ω·(Q,p)/P → 0

is the first sequence in statement (3). The second sequence in degree q ∈ F is
the same as the first sequence and, in degree q ∈ p, the map Ω·Q/P,q(F)→ Ω·Q/P,q
is an isomorphism and Ω·F/P,q = 0. Hence the sequence is exact. �

We should point out that the map ΛiΩ1
Q/P(F) → Ωi

Q/P(F) is not surjective
in general. For example, if P = F = 0 and Q is the monoid with generators
(a, b, c) and relation a + b = 2c, the element da ∧ db ∈ Ω2

Q,c does not lie in
this image, since c is irreducible. In fact, as the next result shows, if Q is fine
saturated and sharp, surjectivity only happens if Q is free.

Proposition 2.3.10. Let Q be a fine, sharp, and saturated monoid of dimension
d, let IQ be the interior ideal of Q, and let Id ⊆ IQ be the ideal defined in
Lemma I.2.5.4. If k is a field, the following statements hold.

1. The k[Q]-module Ωd
Q/k is free of rank one. Furthermore, Ωd

Q/k = IQΩd
Q/k

and the image of the map ΛdΩ1
Q/k → Ωd

Q/k is IdΩd
Q/k.

2. The map ΛdΩ1
Q/k → Ωd

Q/k is surjective if and only if Q is free.

Proof Since Q is fine sharp and saturated of dimension d, its associated group
Qgp is free abelian of rank d, and hence Ωd

Q/k = k[Q] ⊗ ΛdQgp is free of rank
one. Since Ωd

Q/k,q = k ⊗ Λd〈q〉gp, this graded piece is nonzero if and only if
〈q〉 has rank d, that is, if and only if q ∈ IQ, in which case Ωd

Q/k,q is one-
dimensional. Thus Ωd

Q/k = IQΩd
Q/k.

Recall that Ω1
Q/k,q′ is the image of k ⊗ 〈q′〉gp in k ⊗ Qgp, for every q′ ∈ Q.

Suppose that q = q1 + · · · + qd. Since Q is saturated, each 〈qi〉
gp is a direct

summand of Qgp. Thus the map k⊗〈q1〉⊗· · ·⊗〈qd〉 → k⊗Λd(Qgp) is surjective
if 〈q〉 spans k ⊗ Qgp and is zero otherwise. If q ∈ Id, there is an independent
sequence (q1, . . . , qd) with q =

∑
qi, so the map is surjective and Ωd

Q/k,q belongs
to the image of ΛdΩ1

Q/k. Conversely if Ωd
Q/k.q belongs to this image, there is a

sequence (q1, . . . , qd) with q =
∑

qi and with
∑
〈qi〉 = Q. Then there is an

independent sequence (q′1, . . . , q
′
d) with each q′i ∈ 〈qi〉. Write qi = pi + q′i with

pi ∈ Q, and let p :=
∑

pi and q′ :=
∑

q′i . Then q′ ∈ Id and q = p+q′, so q ∈ Id.
We conclude that the image of ΛqΩ1

Q/k is IdΩd
Q/k. This completes the proof of

the first statement, The second statement follows from the first statement and
Proposition I.2.5.5. �

Before proceeding, let us attempt to explain the meaning of these filtrations
by comparing them to other kinds of differential forms. There is a commutative
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diagram of prelog rings

(F → R[F])
ψ- (F → R[Q]) - (Q→ R[Q])

(P→ R[P])

φ

6

id-

�

(P→ R[P]),

θ

6

which induces a diagram of log schemes

AQ
h- AQ(F) - AF

AP

f

? id - AP,

g

?�

(2.3.1)

and a map of logarithmic differentials Ω1
φ → Ω1

Q/P. The module Ω1
φ is gener-

ated by elements of the form eqdq for q ∈ Q and d f for f ∈ F, and is clear that
each of these elements maps to L0(F)Ω1

θ . Taking exterior powers, one finds a
morphism of complexes Ω·φ → Ω·Q/P(F). If G is a face of F and G̃ is the face of
Q it generates, this map sends Li(G)Ω·φ to Li(G̃)Ω·Q/P(F), and if K̃ is the ideal
of Q generated by an ideal K of F, it also maps KΩ·φ to K̃Ω·Q/P ∩Ω·Q/(F).

Proposition 2.3.11. Let θ : P → Q be an injective homomorphism of fine
monoids, let F be a face of Q containing P, and let R be a base ring in which
the order of the torsion subgroup of Cok(θgp) is invertible. If Q � F ⊕ Nr

for some r, then the morphism g in diagram (2.3.1) is smooth, and the map
(Ω·φ, L

·) → (Ω·Q/P(F), L·) is a an isomorphism of filtered objects, with the
filtrations defined by the ideals and faces of F as described in Lemma 2.3.1
and Definition 2.3.4. In particular, this is the case if Q is free.

Proof First suppose that F = 0, so that P = 0 and Q is free. Then R[Q]
is a polynomial algebra, so AQ → Spec R is indeed smooth. The proposition
asserts also that the maps Ω

j
R[Q]/R → Ω

j
Q are isomorphisms. This is clearly true

on the dense open set A∗Q and, since the modules Ω
j
R[Q]/R are free, the map is

at least injective. To see that it is surjective, let S be the basis for Q, and write
an arbitrary element q of Q as

∑
s nss with each ns ≥ 0. Then 〈q〉 is the free

monoid generated by S(q) := {s : ns > 0}, and Ω
j
Q,q = R⊗Λ j〈q〉gp is generated

by elements of the form s1 ∧ · · · ∧ s j with each si ∈ S(q). Then q =
∑

nisi with
each ni > 0. Each si defines an element esi of R[Q], and

h∗(desi ) = esi dsi ∈ Ω1
Q,si
⊆ Ω1

Q,si
.
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Thus h∗(e(ni−1)si desi ) = eni si dsi, a basis element for 〈nisi〉 = Ω1
Q,ni si

. It follows
that the element e(n1−1)s1 des1 ∧· · ·∧e(n j−1)s j desi of Ω

j
R[Q]/R maps to eqds1∧· · ·∧

ds j, a basis element of Ω
j
Q,q, proving that our map is indeed surjective.

More generally, suppose that Q = F ⊕ F′, with F′ free. The homomorphism
P → F is injective and the torsion subgroup of Fgp/Pgp is contained in the
torsion subgroup of Qgp/Pgp, and hence its order is invertible in R∗. Thus the
morphism AF → AP is smooth. Moreover, the morphism AQ(F) → AF identi-
fies with the projection AF ×AF′ → AF, which is smooth since it is strict and
its underlying morphism of schemes is smooth. It follows that g is also smooth
and that

Ω1
φ � Ω1

F/P ⊕Ω1
AF′

� Ω1
F/P ⊕Ω1

F′ .

Let us check that, in each degree q, the homomorphism Ωk
φ,q → Ωk

Q/P(F) is an
isomorphism. Write q = f + f ′ with f ∈ F and f ′ ∈ F′. Then 〈F, q〉 = F⊕〈 f ′〉,
so

Ωk
Q/P,q(F) = R ⊗

⊕
i+ j=k

ΛiFgp ⊗ Λ j〈 f ′〉gp

 =
⊕
i+ j=k

Ωi
F/P, f ⊗Ω

j
F′, f ′ = Ω

j
φ,q.

It is a straightforward but tedious matter to check the compatibility with the
filtrations. �

Proposition 2.3.12. Let θ : P → Q be an injective homomorphism of fine
monoids, let F be a face of Q containing the image of P, and let R be a ring in
which the order of the torsion subgroup of Cok(θgp) is invertible.

1. Let UF be the open subset of AQ defined by the invertibility of elements of
F. Then, for all i and j,

Li(F)Ω j
Q/P � Γ(UF , Li(F)Ω j

Q/P) ∩Ω
j
Q/P.

2. Let U be the inverse image in AQ of an open subset of Spec Q containing
all the height one prime ideals of Spec Q. Then, if Q is saturated,

L0(F)Ω·Q/P � Γ(U, L0(F)Ω·Q/P).

Proof The proof depends on the following simple calculation.

Lemma 2.3.13. With the notation of Proposition 2.3.12, suppose that G is
another face of Q, and let H be the face of Q generated by F and G. Then

Li(F)Ω j
QG/P

∩Ω
j
Q/P = Li(H)Ω j

Q/P.

Proof Endow the localization Ω
j
QG/P

of Ω
j
Q/P with its natural Qgp-grading. If
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E is any Q-graded submodule of Ω
j
Q/P, its localization EG has a natural Qgp-

grading, and

EG ∩Ω
j
Q/P =

∑
q∈Q

EG,q.

As we saw in Remark I.3.2.8, for any Q-graded R[Q]-module E,

EG,q � lim
−→
{Eg+q : g ∈ G}.

Applying this with E = Li(F)Ωq
Q/P, we see that, for any q ∈ Q,

Li(F)Ω j
QG/P,q

= lim
−→g∈G

Li(F)Ω j
Q/P,g+q

= lim
−→g∈G

Im
(
R ⊗ Λ−iQgp/Pg ⊗ Λi+ j〈F, g + q〉gp

)
= Im

(
R ⊗ Λ−iQgp/Pgp ⊗ Λi+ j〈F,G, q〉gp

)
= Li(H)Ω j

Q/P,q. �

Statement (1) of Proposition 2.3.12 follows from the special case of this
lemma when G = F. To prove statement (2), note that the complement of a
height one prime p of Q is a facet G of Q, and Spec(QG) is the smallest open
subset of Spec(Q) containing p. It follows that UG := Spec(R[QG]) ⊆ U. If E
is a torsion free Q-graded R[Q]-module and E is the associated quasi-coherent
sheaf, then Γ(UG,E) = EG, and

E ⊆ Γ(U, Ẽ) ⊆ E′ := ∩{EG : G is a face of Q}.

Thus E′ inherits a Qgp-grading and, if x ∈ Qgp, the degree-x component of E′

vanishes unless x belongs to the intersection of all the localizations QG, which
by Corollary I.2.4.5 is just Qsat = Q. In particular, when E = R[Q], we see that
R[Q] is the intersection of the set of localizations R[QG], proving statement (2)
when j = 0.

Each G is a facet of Q, so 〈F,G, q〉 is G if G contains F and q and is Q
otherwise. Thus the lemma implies that

Γ(U, L0(F)Ω j
Q/P)q ⊆

⋂
G

Ωi
Q/P,G,q =

⋂
G⊇〈F,q〉

R ⊗ ΛiGgp/Pgp.

As we saw in Corollary I.2.3.14, the intersection of the set of all Ggp such
that G contains 〈F, q〉 is just 〈F, q〉gp = L0(F)Ω1

Q/P. This implies statement (2)
when j = 1. The general case will follow, once we verify that if H1, . . . ,Hn is a
finite collection of corank-one direct summands of a free and finitely generated
abelian group H and W := H1∩· · ·∩Hn, then Λ jW = Λ jH1∩· · ·∩Λ jHn. Using
induction on n, this statement is reduced to the case when n = 2. This case
follows from the injectivity of the rightmost vertical map and the exactness of
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the rows in the following diagram:

0 - Λ j(H1 ∩ H2) - Λ jH1
- Λ j−1(H1 ∩ H2) ⊗ H1/H1 ∩ H2

- 0

0 - Λ jH2

?
- Λ jH

?
- Λ j−1H ⊗ H/H2

?
- 0.

�

Variant 2.3.14. With the notation of Lemma 2.3.13, suppose that K is an ideal
of Q and that G does not meet any associated prime of K. Then the statement
of the lemma also holds with Ω

j
Q/P replaced by Ω

j
Q/P/KΩQ/P. Indeed, Proposi-

tion 2.1.14 shows that Q\K is stable under the action of G, so G acts injectively
on Ω

j
Q/P/KΩ

j
Q/P, and hence Ω

j
Q/P/KΩ

j
Q/P maps injectively to its localization

by G.

The following corollary relates the complex Ω·Q/P when P = 0 to the de
Rham complex constructed by Danilov [11].

Corollary 2.3.15. Let Q be a fine saturated monoid, and let U be the inverse
image in Spec R[Q] of the set of p ∈ Spec Q such that ht p ≤ 1. Assume that
the order of the torsion subgroup of Qgp is invertible in R. Then U is smooth
over Spec R, and the natural map

Ω·Q/R � Γ(U,Ω·U/R)

is an isomorphism

Proof Recall that if ht p ≤ 1, then Qp is a fine saturated monoid of dimension
one, hence is valuative, and hence is isomorphic to Q∗p ⊕ N. Since the finitely
generated abelian group Q∗p is contained in Qgp, the order of its torsion sub-
group is invertible in R, and hence the corresponding group scheme is smooth
over R. It follows that each R[Qp] is smooth over R, and hence U is smooth
over R. The map Ω·U/R → Ω·U/R is an isomorphism by Proposition 2.3.11, and
the corollary follows from statement (2) of Proposition 2.3.12 with F = 0. �

The cohomology computations of the de Rham complex of P → Q have
filtered analogs.

Proposition 2.3.16. With the notations and hypotheses of Proposition 2.2.2
and Definition 2.3.4, suppose that R contains Q. Then the natural map

(R[Q̃] ⊗ Λ·(Qgp/Pgp), L·(F), 0)→ (Ω·Q/P, L
·(F), d).

is a filtered quasi-isomorphism.



2 The de Rham complex 489

Proof Both sides are Q-graded, and the differential on the right vanishes in
degrees q if q ∈ Q̃. The corollary will follow if can show that the complex
in remaining degrees is acyclic. As we saw in Lemma 2.2.3, if q ∈ Q \ Q̃,
there exists a ∂ : Qgp → Z that annihilates Pgp and is such that ∂(q) maps to a
unit in R. Then the filtered complex (Ω·Q/P,q, L

·(F)) is invariant under the Lie
derivative κ with respect to ∂. Since κ is multiplication by ∂(q) in degree q, the
complex is indeed acyclic in degree q. �

Now assume that R contains the prime field Fp; our hypothesis then implies
that Cok(θgp) is p-torsion free.

Proposition 2.3.17. With the notations and hypotheses of Propositions 2.2.2
and 2.2.5 and Definition 2.3.4, suppose that R contains the prime field Fp, and
let F(p) be the face of Q(p)

θ generated by F. Then the quasi-isomorphism in
statement (2) of Proposition 2.2.5 is strictly compatible with the filtrations and
induces a filtered quasi-isomorphism(

Ω·
θ(p) , L·(F(p)), 0

)
→ FQ/P∗

(
Ω·θ, L

·(F), d
)
.

Proof Recall from Proposition 2.2.2 that the filtered complex (Ω·θ, L
·(F), d) is

Q-graded, that the degree-q part is acyclic if q < Q̃, and that the differential in
degree q is zero if q ∈ Q̃. Thus it remains only to check that the filtration L·(F)
induced on Ω·

θ(p) is the filtration L·(F(p)). Recall from statement (5) of Proposi-
tion I.4.4.3 that FQ/P induces a bijection between the sets of faces of Q and of
Q(p)
θ . Furthermore, by Corollary I.4.4.4, F−1

Q/P(F) = F(p)
θ and is equal to the face

of Q(p)
θ generated by πQ/P(F). Choose q′ ∈ Q(p)

θ , and let q := FQ/P(q′) ∈ Q.
Let G be the face of Q generated by F and q and let G′ be the face of Q(p)

θ gen-
erated by F(p) and q′. Then FQ(F) and q are contained in FQ/P(G′) which in
turn is contained in G = 〈F, q〉. We conclude that F−1

Q/P(G) = G′ and hence that
π−1

Q/P(G′) = G. It follows that the isomorphism γQ/P : Cok(θgp) → Cok(θgp
n )

takes Ggp/Pgp isomorphically to G′/Pgp, and the same holds for the exterior
powers. �

Corollary 2.3.18. With the hypotheses of Proposition 2.3.17 above, there are
natural isomorphisms

L j(F(p))Ωi
θ(p) � Hi(L j(F)Ω·θ)),

compatible with the inclusions L j+1(F) → L j(F) and also with the maps in-
duced by inclusions of faces F → G. �

Now we explain how to sheafify and globalize these constructions. We use
the following notation. If X is a log scheme, ifK is a sheaf of ideals inMX , and
if E is a sheaf of OX-modules, then KE is the abelian subsheaf of E generated
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by elements of the form αX(k)e with k ∈ K and e ∈ E. This is automatically a
sheaf of OX-submodules, because it is closed under multiplication by elements
of the image of αX and any section of OX can locally be written as a sum of
such elements.

Let f : X → Y be a quasi-compact and quasi-separated morphism of integral
log schemes. We write d, rather than dlog, for the mapMX → Ω1

X/Y and λ for
the inverse of the isomorphismM∗X → O

∗
X induced by αX . Thus dλ(u) = u−1du

for every local section u of O∗X .

Proposition 2.3.19. If K ⊆ MX is a sheaf of ideals ofMX , let KΩi
X/Y be the

subsheaf of Ωi
X/Y generated by all sections of the form αX(k)ω with k ∈ K and

ω ∈ Ωi
X/Y . Then the exterior derivative mapsKΩi

X/Y toKΩi+1
X/Y , so thatKΩ·X/Y

forms a subcomplex of Ω·X/Y . If the log structures MX and MY are coherent
and K is a coherent sheaf of ideals, then each KΩi

X/Y is quasi-coherent.

Proof If k is a local section of K and ω is a local section of Ωi
X/Y , then

d(αX(k)ω) = dαX(k) ∧ ω + αX(k)dω = αX(k)dk ∧ dω + αX(k)dω,

which belongs to KΩi+1
X/Y . This proves the first statement of the proposition.

Corollary IV.1.2.8 implies that Ωi
X/Y is quasi-coherent if the log structures on

X and Y are coherent. IfK is coherent, it is locally generated by a finite number
of sections k1, . . . , km as an ideal ofMK . In this situation,KΩi

X/Y is locally the
subsheaf of Ωi

X/Y generated by a finite number of sections, and hence is quasi-
coherent. �

Definition 2.3.20. Let f : X → Y be a morphism of log schemes. A sheaf of
ideals K inMX is said to be horizontal if for every geometric point x of XK ,
the stalkKx at x is disjoint from the image ofMY, f (x) inMX,x, or, equivalently,
from the face ofMX,x generated by this image.

The filtrations defined by sheaves of faces are more subtle.

Definition 2.3.21. Let f : X → Y be a morphism of fine log schemes, and let
F be a sheaf of faces inMX containing the image of f ∗logMY . If m0 is a section
ofMX on an open subset U of X, let F 〈m0〉 denote the sheaf of faces ofMX |U
generated by F and m0.

1. Ki(F )Ω j
X/Y ⊆ Ω

j
X/Y is the abelian subsheaf generated by the local sections

of the form α(m0)dm1 ∧ · · · ∧ dm j such that m1, . . . ,mi belong to F 〈m0〉.
2. Li(F )Ω j

X/Y := Ki+ j(F )Ω j
X/Y .

3. Ω
j
X/Y (F ) := L0(F )Ω j

X/Y .

Remark 2.3.22. The stalk of F 〈m0〉 at a geometric point x of X is the set of
m ∈ MX,x such that there exist n ∈ N and f ∈ Fx with nm0 + f ≥ m. Hence
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Ki(F )Ω j
X/Y ⊆ Ω

j
X/Y is the subsheaf of abelian groups generated by the local

sections of the form αX(m0)dm1 ∧ · · · ∧ dm j such that there exist n ∈ N and
f ∈ F with nm0 + f ≥ m1 + · · · + mi;

Proposition 2.3.23. With the hypotheses of Definition 2.3.21, the following
statements are verified:

1. Ki(F )Ω j
X/Y and Li(F )Ω j

X/Y are sheaves ofOX-submodules of Ω
j
X/Y and con-

tain the image of Ω
j
X/Y → Ω

j
X/Y .

2. The exterior derivative maps Ki(F )Ω j
X/Y to Ki+1(F )Ω j+1

X/Y and Li(F )Ω j
X/Y to

Li(F )Ω j+1
X/Y , and d : MX → Ω1

X/Y maps F to L0(F )Ω1
X/Y .

3. The exterior product maps Ki(F )Ω j
X/Y × Ki′ (F )Ω j′

X/Y to Ki+i′ (F )Ω j+ j′

X/Y and

Li(F )Ω j
X/Y × Li′ (F )Ω j′

X/Y to Li+i′ (F )Ω j+ j′

X/Y .
4. Interior multiplication by an element of TX/Y induces maps from

Ki(F )Ω j
X/Y to Ki−1(F )Ω j−1

X/Y and from Li(F )Ω j
X/Y to Li(F )Ω j−1

X/Y .
5. Suppose that f is locally of finite presentation, that X and Y are fine, and that
F ⊆ MX is a relatively coherent sheaf of faces in MX . Then Ki(F )Ω j

X/Y

and Li(F )Ω j
X/Y are quasi-coherent sheaves of OX-modules.

6. If f is the morphism coming from a monoid homomorphism P→ Q and F
is generated by a face F of Q containing P, then Ki(F )Ω j

X/Y is the quasi-

coherent sheaf associated to the module Ki(F)Ω j
Q/P in Definition 2.3.4, and

similarly for L·.

Proof To prove that Ki(F )Ω j
X/Y is a sheaf of OX-submodules of Ω

j
X/Y , sup-

pose that (m0,m1, . . . ,m j) is a sequence of sections ofMX , that f is a section
of F , and that n is a natural number such that nm0 + f ≥ m1 + · · · + mi,
and let ω := αX(m0)dm1 ∧ · · · ∧ dm j. Then, if m is any local section of MX ,
n(m0 + m) f ≥ m1 + · · · + mi, and hence αX(m)ω also belongs to Ki(F )Ω j

X/Y .

Thus Ki(F )Ω j
X/Y is stable under multiplication by sections of the form αX(m)

with m ∈ MX . Since any section of OX is a locally a sum of such sections and
Ki(F )Ω j

X/Y is a subgroup of Ω
j
X/Y , it follows that Ki(F )Ω j

X/Y is stable under
multiplication by OX , and hence is an OX-submodule of Ωi

X/Y . Furthermore,
dω = α(m0)dm0 ∧ dm1 ∧ · · · ∧ dm j and, since (n + 1)m0 + f ≥ m0 + · · · + mi,
we see that dω ∈ Ki+1(F )Ω j+1

X/Y . If (m′0,m
′
1, . . . ,m

′
j′ ) is another sequence of

sections of MX and f ′ is a section of F with k′m′0 + f ′ ≥ m′1 + · · · + m′i′ ,
then ω′ =: αX(m′0)dm1 ∧ · · · ∧ dm j′ is a typical element of Ki′ (F )Ω j′

X/Y and,
since (n + n′)(m0 + m′0) + f + f ′ ≥ m1 + · · · + mi + m′1 + · · · + m′i′ , we see
that ω ∧ ω′ ∈ Ki+i′ (F )Ω j+ j′

X/Y . Note that Ω1
X/Y is generated by sections of the

form u−1du = dλ(u) for u ∈ O∗X and, since λ(u) ≤ λ(1), the image of dλ(u)
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in Ω1
X/Y in fact belongs to K1(F )Ω1

X/Y . It follows that K j(F )Ω j
X/Y contains the

image of Ω
j
X/Y → Ω

j
X/Y . If ω := αX(m0)dm1 ∧ · · · ∧ dm j ∈ Ki(F )Ω j

X/Y with
km0 + f ≥ m1 + · · ·+mi, and if θ is a section of TX/Y , then interior multiplication
by θ takes ω to∑

r

αX(m0)(−1)r−1θ(dmr)dm1 ∧ · · · ∧ dm̂r ∧ · · · ∧ dm j,

which evidently belongs to Ki−1(F )Ω j−1
X/Y . The corresponding statements for

the filtration L follow by reindexing.
The proof of quasi-coherence will use the following lemma.

Lemma 2.3.24. Let β : Q → MX be a chart forMX and let F be a face of Q
which generates the sheaf of faces F . Then Ki(F )Ω j

X/Y is the sheaf of sub-OX-

modules of Ω
j
X/Y generated by the image of

Ω1
X/Y ⊗ Ki−1(F )Ω j−1

X/Y → Ki(F )Ω j
X/Y

together with sections of the form αX(β(q0))dβ(q1) ∧ · · · ∧ dβ(q j), where
q1, . . . qi belong to the face of Q generated by F and q0.

Proof Let Ei, j be the subsheaf of Ω
j
X/Y generated by the sections described

in the lemma. It is clear that Ei, j ⊆ Ki(F )Ω j
X/Y . To prove equality we work at

the stalk of an arbitrary point x. Let ω = αX(m0)dm1 ∧ · · · ∧ dm j be one of
the defining elements of Ki(F )Ω j

X/Y . Since Q is a chart for MX,x, there exist
u ∈ O∗X,x and q0 ∈ Q such that m0 = λ(u) + β(q0). Then αX(m0) = uαX(q0) and
〈m0,Fx〉 = 〈β(q0),Fx〉. Thus we may as well assume that m0 = β(q0). There is
nothing to prove if i = 0, so assume that i ≥ 1 and write m1 := λ(u) + β(q1),
where u ∈ O∗X,x and q1 ∈ Q. Then dm1 = u−1du + dβ(q1), and

ω = αX(β(q0))u−1du ∧ dm2 ∧ · · · ∧ dmi + αX(β(q0))dβ(q1) ∧ · · · ∧ dm j.

The first term in this expression belongs to Ei, j, and so it suffices to treat the
second term. Since β(q1) ∈ 〈Fx, q0〉, we may as well assume that m1 = β(q1).
Repeating this process, we may assume that each mk = β(qk) for some qk ∈ Q.

By assumption, β(qk) ∈ 〈Fx, q0〉 for 1 ≤ k ≤ i. Thus there exist m′k ∈ MX,x,
f ∈ F, and nk ≥ 0 such that β(qk)+m′k = β( fk +nkq0). Write m′k = λ(uk)+β(q′k),
where q′k ∈ Q and uk ∈ O

∗
X,x. Thus

β(qk + q′k) + λ(uk) = β( fk + nkq0).

Since Q is a chart forMX,x, this implies that there exist g′k, gk ∈ β
−1(O∗X,x) such

that λ(u) + β(gk) = β(g′k) and qk + q′k + g′k = fk + nkq0 + gk in Q. In particular,
qk belongs to the face of Q generated by F and q0 + gk. Let g = g1 + · · · + gi

and let u := αX(β(g)), an element of O∗X,x. Then qk ∈ 〈F, q0 + g〉 for 1 ≤ k ≤ i,
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and hence ω′ := αX(β(q0 + g))dβ(q1)∧ · · · ∧ dβ(qi)∧ · · · ∧ dβ(q j) ∈ Ei, j. Since
ω = u−1ω, it too belongs to Ei, j. �

It is now easy to prove that Ki(F )Ω j
X/Y is quasi-coherent, using induction on

j. If j = 0 there is nothing to prove, and if the quasi-coherence is established
for j − 1, the lemma shows that Ki(F )Ω j

X/Y is the subsheaf of Ω
j
X/Y generated

by the image of the quasi-coherent sheaf Ω1
X/Y ⊗ Ki−1(F )Ω j−1

X/Y and a finite
number of global sections, and hence is quasi-coherent. The last statement of
the proposition also follows easily from the lemma. �

Remark 2.3.25. The filtration L·(F ) on Ω·X/Y is interesting even when F is
the trivial sheaf of faces O∗X . In this case we just write L· instead of L·(O∗X) and
Ω

j
X/Y for L0Ω

j
X/Y .

Let us note that the formation of these subcomplexes is functorial. For ex-
ample, if F ⊆ F ′,

(Ω·X/Y , L
·(F )) ⊆ (Ω·X/Y , L

·(F ′)).

The following proposition says more about this situation.

Proposition 2.3.26. Let f : X → Y be a smooth morphism of fine idealized
log schemes, and let F be a relatively coherent sheaf of faces inMX .

1. If g : X′ → X is strict and étale, the natural maps

g∗(Ω·X/Y , L
·(F ))→ (Ω·X′/Y , L

·(F ′))

are isomorphisms, where F ′ is the sheaf of faces in MX′ generated by
g−1(F ).

2. Suppose that, for every geometric point x of X and every face Gx of Mx

containing Fx, the order of the torsion subgroup ofMgp
X,x/G

gp
X,x is invertible

in OX,x. Then the formation of the filtered complex (Ω·X/Y , L
·(F )) is com-

patible with base change Y ′ → Y in the category of fine log schemes and
also in the category of fine saturated log schemes.

Proof Statement (1) may be checked étale locally on X′ and X, so we may
assume that X/Y admits a chart as in Theorem IV.3.3.1 (or its idealized Vari-
ant 3.3.5). Then the composition X′ → X → AQ is a chart for X fitting into a
chart for X′ → Y . Since g is strict and étale, the natural map g∗(Ω1

X/Y )→ Ω1
X′/Y

is an isomorphism. Then statement (1) follows easily from Lemma 2.3.24 and
induction. Statement (2) of the lemma can also be checked locally, hence in
the presence of charts for f : X → Y and Y ′ → Y . Statement (2) then follows
from statement (1) of the current proposition combined with statement (2) of
Proposition 2.3.6. �
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3 Analytic de Rham cohomology

In this section we study the de Rham cohomology of smooth log analytic
spaces. Let us begin with an explicit description of the formal and holomorphic
stalks of the de Rham complex Ω·X/Y , together with some of its subcomplexes.

Proposition 3.0.1. Let θ : P→ Q be an injective homomorphism of fine sharp
monoids, and let f : X → Y be the morphism of log analytic spaces corre-
sponding to the map of log schemes Aθ : AQ → AP. Let x ∈ X be the vertex of
X, and let Ωi

X/Y,x denote the stalk of the sheaf of holomorphic i-forms at x.

1. The formal completion Ω̂
j
X/Y,x of Ω

j
X/Y,x can be identified with the set of

formal sums

ω :=
∑
q∈Q

ωq, where ωq ∈ C ⊗ Λ j(Qgp/Pgp).

2. Let h be any local homomorphism Q → N and let || || be any norm on
C ⊗ Λ jQgp/Pgp. Then an element ω =

∑
ωq of Ω̂

j
X/Y,x lies in Ω

j
X/Y,x if and

only if the set

{h(q)−1 log ||ωq|| : q ∈ Q+}

is bounded above.
3. If K is an ideal of Q andK is the corresponding sheaf of ideals inMX , then

KΩ
j
X/Y,x =

{
ω ∈ Ω

j
X/Y,x : ωq = 0 if q < K

}
.

4. If F is face of Q and F is the corresponding sheaf of faces inMX , then

Li(F )Ω j
X/Y,x =

{
ω ∈ Ω

j
X/Y,x : ωq ∈ Ki+ j

F,q (C ⊗ Λ jQgp/Pgp) for all q
}
,

where L·(F ) is the filtration defined in Definition 2.3.4 and K·F,q is the
Koszul filtration on C ⊗ Λ jQgp/Pgp defined by the image of 〈F, q〉 in
C ⊗ Qgp/Pgp.

Proof We saw in Proposition I.3.6.1 that the formal completion of OX,x can
be identified with the ring of formal power series C[[Q]]. Proposition IV.1.1.4
identifies Ω

j
X/Y with OX ⊗Λ jQgp/Pgp, and statement (1) follows. Statement (2)

is a consequence of this fact and Proposition 1.1.3. The remaining statements
are consequences of the definitions and Proposition 2.3.23 �

3.1 An idealized Poincaré lemma

The Poincaré lemma in logarithmic de Rham cohomology takes many forms.
We begin with the following statement.
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Theorem 3.1.1. Let f : X → Y be a smooth and exact morphism of fine ideal-
ized log analytic spaces, let K be a coherent horizontal sheaf of ideals inMX ,
and let i : XK → X be the inclusion of the closed subspace of X defined by
K . Then the complex i−1(KΩ·X/Y ) is acyclic, as are its subcomplexes defined
by the filtrations associated to the relatively coherent sheaves of faces contain-
ing the image of f ∗logMY in MX . In particular, for any such sheaves of faces
F and F ′ and any natural numbers i, i′, the sheaf-theoretic restrictions of the
complexes

KΩ·X/Y ∩Ω·X/Y (F ),

KΩ·X/Y ∩ Li(F )Ω·X/Y ,

KΩ·X/Y ∩ Li(F )Ω·X/Y ∩ Li′ (F ′)Ω·X/Y

to XK are acyclic. The analogous result holds for any finite collection of faces
F and indices i.

Proof We first treat the case in which the idealized structures on X and Y are
trivial. We will show that the stalks of the complexes above are acyclic at each
point x of XK . Since the statement is local on X and Y , and since f is exact and
hence s-injective, we may assume that f admits a chart of the form described
in Theorem IV.3.3.3. Thus we may assume that there is a diagram

X - YQ′ (Q) - AQ′ (Q)

Y
?

-

-

AP,
?

where Q′ := Q ⊕ Nr and x maps to the vertex of AQ′ (Q). Here the square
is cartesian and the map X → YQ′ (Q) is strict and étale, hence analytically a
local isomorphism. Thus we may assume without loss of generality that X =

YQ′ (Q). We may also assume that F is generated by a face F of Q and that K
is generated by an ideal K of Q. Then F is also a face of Q′, the ideal K′ of Q′

generated by K is again horizontal, and K′∩Q = K. Let X′ := AQ′ and observe
that Q defines a coherent (hence relatively coherent) sheaf of faces G inMX′ .
Furthermore, Ω·X′/Y (G) � Ω·X/Y , by Proposition 2.3.11, and in fact

C· := KΩ·X/Y ∩ Li(F )Ω·X/Y � KΩ·X′/Y (G) ∩ Li(F )Ω·X′/Y .

The analogous statement holds if C· is any finite intersection of complexes of
this form. Thus it suffices to prove the theorem when X = X′ and Q = Q′,
which we henceforth assume.
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Let us begin with the case in which Y = AP and X = AQ′ . By Lemma 2.3.2,
there exists a horizontal flow h : Q→ N such that h(k) > 0 for all k ∈ K. Let ξ
denote the corresponding vector field on X. Both the differential d and interior
multiplication by ξ map Ci to Ci−1, and hence the Lie derivative κ := dξ + ξd
is an endomorphism of C· and is homotopic to zero. We claim that κ acts as an
isomorphism on C·, hence also on its cohomology groups, and it will follow
that these all vanish.

To verify our claim, we use the explicit description given in Proposi-
tion 3.0.1, according to which an element ω of Ci can be written as a formal
sum

∑
{ωq : q ∈ K}. Recall from Lemma 2.2.9 that then κ(ω) =

∑
h(q)ωq.

Since h(q) , 0 for q ∈ K, it is clear that κ induces an isomorphism on the
formal completion KΩ̂·X/Y,x, with κ−1(ω) =

∑
h(q)−1ωq. Since each h(q) ≥ 1,

the criterion of Proposition 3.0.1 shows that κ−1(ω) converges if ω does, and
hence that κ is also an isomorphism on KΩ·X/Y,x. It is also clear from the ex-
plicit description in Proposition 3.0.1 that KΩ·X/Y,x ∩ Li(F )Ω·X/Y is invariant
under κ−1, so that κ is indeed an isomorphism on C·.

To treat the case of a general base Y , we note first that Proposition 2.3.26
implies that the formation of these complexes is compatible with base change.
Furthermore, κ and its inverse are C[P]-linear, and hence induce endomor-
phisms of the based-changed complexes over Y . We should further note that
both κ and κ−1 continue to preserve holomorphicity. To simplify the verifica-
tion of this last fact, one can replace P by P′ := P⊕Nr and AP by AP′ (P), with
r chosen so that Y → AP′ (P) is a closed immersion.

Finally we note that the theorem in the idealized case follows from the non-
idealized one. Since the statement is local, we may apply Variant IV.3.3.5 to
reduce to the case of an idealized log space XJ defined by a coherent sheaf of
ideals J in a smooth X/Y . Then the ideal J ∩ K is still horizontal, and there
is an exact sequence

0→ (J ∩K)Ω·X/Y → KΩ·X/Y → KΩ·XJ /Y → 0

and similarly for the intersections with the filtrations defined by F . Since the
first two complexes are acyclic, so is the last. �

To simplify the notation in the next corollary, we denote by L· the collection
of filtrations defined by all the faces ofM.

Corollary 3.1.2. With the hypotheses of Theorem 3.1.1, the following state-
ments hold:

1. The natural map

i−1
(
Ω·X/Y , L

·
)
→ (Ω·XK /Y , L

·)
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is a filtered quasi-isomorphism, where i−1 means the sheaf-theoretic restric-
tion to the closed subset XK .

2. The natural map

(Ω̂·X/Y , L
·)→ (Ω·XK /Y , L

·)

is a filtered quasi-isomorphism, where X̂ is the formal completion of X
along XK .

Proof There is a strict exact sequence of filtered complexes

0→ i−1
(
KΩ·X/Y , L

·
)
→ i−1

(
Ω·X/Y , L

·
)
→

(
Ω·XK /Y , L

·
)
→ 0.

The theorem implies that the first complex is acyclic, so the second arrow is
a quasi-isomorphism, proving (1). The proof of the theorem also shows that
(KΩ̂·X/Y , L

·) is acyclic, and (2) follows in the same way. �

Corollary 3.1.3. Let X be a smooth and fine idealized log analytic space and
let F be a relatively coherent sheaf of faces inMX . If x is a point of X, let xM

denote the log point obtained by restricting the log structure of X to x.

1. The natural map(
Ω·X/C,x, L

·(F )
)
→

(
Ω·xM/C, L

·(Fx)
)
�

(
C ⊗ Λ·MX,x, L·(F x)

)
is a filtered quasi-isomorphism, where L·(F x) is the shifted Koszul filtration
of C ⊗ Λ·MX,x defined by the submodule F x ofMX,x.

2. The natural maps

Ω·X/C,x(F )→ Ω·xM/C(F )→ C ⊗ Λ·F
gp
x

are quasi-isomorphisms, where Λ·F
gp
x is the exterior algebra of F

gp
x en-

dowed with zero as boundary maps.

Proof As in the proof of Theorem 3.1.1, we may assume that x is the vertex
of X = AQ′ (Q), where Q is a fine sharp monoid and Q′ = Q⊕Nr. Let X′ := AQ′

and let G be the sheaf of faces ofMX′ defined by Q. Recall that L·(F )Ω·X/C �

L·(F )Ω·X′/C(G). Let K be the ideal of MX′ defined by the maximal ideal of
Q′. Then XK is just xM , and statement (1) of Corollary 3.1.2 says that the
stalk of the filtered complex (Ω·X/C,x, L

·(F )) maps quasi-isomorphically to the
filtered complex (Ω·xM/C, L

·(F )). Corollary IV.2.3.6 provides an isomorphism:

Ω1
xM/C � C⊗Mx. It follows that the differentials of the complex Ω·xM/C vanish,

and it is clear that the filtration L·(Fx) corresponds to the filtration L·(F x). This
proves statement (1), and statement (2) follows. �
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As a consequence of the previous result, we can give a logarithmic version
of a classical result of Danilov [11], as well as some variations.

Corollary 3.1.4. Let X be a fine and smooth idealized log analytic space.

1. The natural map

CX → Ω·X/C

is a quasi-isomorphism. Consequently there are natural isomorphisms

H∗(X,C) � H∗(X,Ω·X/C).

2. If K is a coherent sheaf of ideals inMX , let XK be the idealized log sub-
scheme of X defined by K , and let j : UK → X be the inclusion of its
complement. Then the natural map

j!(CUK )→ Ω·X/C ∩ KΩ·X/C

is a quasi-isomorphism.
3. Suppose that KX = ∅, let IM ⊆ MX be the interior ideal of MX (see

Proposition II.2.6.3), and let j : X∗ → X be the inclusion. There is a natural
quasi-isomorphism

j!(CX∗ )→ IMΩ·X/C.

If X is compact, there are are natural isomorphisms

Hi
c(X∗,C) � Hi(X,IMΩ·X/C).

Proof The first statement follows from (2) of Corollary 3.1.3 when F =M∗X .
The “natural map” in the second statement comes from the map

CUK → Ω·UK /C � j∗(Ω·X/C ∩ KΩ·X/C)

and adjunction. We will check that it is a quasi-isomorphism at the stalks at
each x ∈ X. If x ∈ U this is the case by statement (1), and if x ∈ XK , both
complexes are acyclic, as follows from Theorem 3.1.1. To deduce statement
(3), observe that UIM = X∗ and that IMΩ·X/C ⊆ Ω·X/C. The latter statement
can be checked locally, so we may assume that X = Aan

Q where Q is a fine
monoid. Then IMΩ

j
X/C (resp. Ω

j
X/C) is the coherent sheaf associated to the Q-

graded C[Q]-module IQΩ
j
Q (resp. Ω

j
Q). In degree q, the module IQΩ

j
Q) vanishes

if q < IQ. If q ∈ IQ, then 〈q〉 = Q and so Ω
j
Q,q is all of C ⊗ Λ jQgp and hence

contains IQΩ
j
Q,q. Thus IMΩ·X/C ⊆ Ω·X/C, and statement (2) implies that the

natural map

j!(CX∗ )→ Ω·X/C ∩ IMΩ·X/C = IMΩ·X/C
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is a quasi-isomorphism. If X is compact, then Hi
c(X∗,C) � Hi(X, j!(CX∗ ), com-

pleting the proof of statement (3). �

3.2 The symbol in de Rham cohomology

Our main goal in this section is to compute the cohomology sheaves of the
relative de Rham complex Ω·X/Y .

Proposition 3.2.1. Let f : X → Y be a morphism of fine idealized log analytic
spaces. There is a unique family of homomorphisms of sheaves of f −1(OY )-
modules on X (the analytic symbol maps),

sq : f −1(OY ) ⊗ ΛqM
gp
X/Y → H

q(Ω·X/Y ) : q ∈ N,

satisfying the following conditions.

1. The composite

s0 : f −1(OY )→ H0(Ω·X/Y )→ OX

is the structure homomorphism f ].
2. The diagram

M
gp
X

dlog- Z1
X/Y

f −1(OY ) ⊗Mgp
X/Y

?
s1
- H1(Ω·X/Y )

?

commutes.
3. If ω ∈ ΛiM

gp
X/Y and η ∈ Λ jM

gp
X/Y , then

si+ j(ω ∧ η) = si(ω) ∧ s j(η).

Proof The existence and uniqueness of s0 in (1) are clear. If m is a local
section of MX , then dlog(m) is local section of Ω1

X/Y and d dlog(m) = 0; so
the top horizontal arrow makes sense. Locally on X, every section u of O∗X
can be written as u = exp f , and then dlog(u) = d f vanishes in H1(Ω·X/Y ).
Furthermore, dlog(m) = 0 if m is in the image of f −1(MY ), and so f ∗log(MY )
maps to zero in H1(Ω·X/Y ). Since H1(Ω·X/Y ) is a sheaf of f −1(OY )-modules,
there is a unique arrow along the bottom making the diagram commute. The
map sq for q > 1 by definition sends m1∧· · ·∧mq to dlog m1∧· · ·∧dlog mq for
any q-tuple of sections ofM

gp
X/Y , and thus is uniquely determined by property

(3). �
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Variant 3.2.2. If F is a relatively coherent sheaf of faces in MX containing
the image of f ∗log(MY ), let FX/Y denote the cokernel of the map f ∗log(MY )→ F ,
so that F gp

X/Y becomes a sheaf of subgroups ofMgp
X/Y . We have a corresponding

Koszul filtration K·(F ) on the exterior algebra ofMgp
X/Y and its décalée L·(F ).

Then there are compatible families of maps

sq : f −1(OY ) ⊗ Li(F )ΛqM
gp
X/Y → H

q(Li(F )Ω·X/Y ).

In particular, we find maps

sq : f −1(OY ) ⊗ ΛqF
gp
X/Y → H

q(Ω·X/Y (F )).

We shall see that, with suitable hypotheses, the symbol maps defined in
Proposition 3.2.1 and its variant are isomorphisms. For the sake of simplicity,
we begin with the case in which Y = C with the trivial log structure.

Theorem 3.2.3. Let X be a fine and smooth idealized log analytic space and
let F be a relatively coherent sheaf of faces inMX . Then the symbol maps are
isomorphisms

C ⊗ ΛqM
gp
X � Hq(Ω·X/C),

C ⊗ Li(F )ΛqM
gp
X � Hq(Li(F )Ω·X/C),

C ⊗ ΛqF
gp
� Hq(Ω·X/C(F )).

Proof It suffices to check that maps on stalks are isomorphisms. This fact
follows immediately from Corollary 3.1.3, since one easily verifies that the
symbol maps are compatible with the isomorphisms used there. �

The idea of the proof in the relative case is similar, but technically more
complicated. Instead of a single homogeneous flow, we must use a collection
of homogenous vector fields.

Theorem 3.2.4. Let f : X → Y be a smooth and exact morphism of fine ideal-
ized log analytic spaces for which the sheavesMgp

X/Y are torsion free. Let F be
a relatively coherent sheaf of faces inMX containing the image of flog ∗ (MY ).
Then the maps

f −1(OY ) ⊗ ΛqM
gp
X/Y → H

q(Ω·X/Y ),
f −1(OY ) ⊗ Li(F )ΛqM

gp
X/Y → H

q(Li(F )Ω·X/Y ),
f −1(OY ) ⊗ ΛqF

gp
X/Y → H

q(Ω·X/Y (F ))

defined in Variant 3.2.2 are isomorphisms.

Proof As in the proof of Theorem 3.1.1, we can reduce to the case in which
f is given by an exact homomorphism of idealized monoids (P, J) → (Q,K),
and x is the vertex of AQ.
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Let ∂ : Qgp/Pgp → Z be a homomorphism defining a vector field ξ, and
let Q′ := ker(∂) ∩ Q. As we have seen, interior multiplication by ξ acts on the
filtered complex (C·, L·) := (Ω·X/Y , L

·(F )), and hence so does the Lie derivative
κ := dξ + ξd. Let (C′·, L·) be the kernel of κ with the induced filtration and let
(C′′·, L·) be the image. Note that if ω =

∑
ωq ∈ C·, then κ(ω) =

∑
q ∂(q)ωq, so

C′· = {
∑
ωq : q ∈ Q′} and C′′· = {

∑
ωq : q ∈ Q \ Q′}. Thus C· is the direct

sum of C′· and C′′·. Furthermore, κ induces an automorphism of the complex
(C′′·, L·), as in the proof of Theorem 3.1.1. It follows that this filtered complex
is acyclic, and hence that (C′·, L·) → (C·, L·) is a filtered quasi-isomorphism.
The symbol maps factor through C′·, and it will thus suffice to prove they
induce a filtered quasi-isomorphism (OY,y ⊗ Λ·MX/Y , L·)→ (C′·, L·).

Let ∂1, . . . , ∂r be a basis for the dual of the finitely generated free abelian
group Qgp/Pgp. Then the corresponding vector fields ξ1, . . . , ξr commute, and
hence the kernel C′·i of ξi is invariant under the remaining vector fields.
Thus a repetition of the argument of the previous paragraph shows that the
map ∩(C′·i , L

·) → (C·, L·) is a filtered quasi-isomorphism. But ∩{C′·i : i =

1, . . . , r} = {
∑
ωq : q ∈ Pgp}, and since θ is exact, such elements in fact lie in

OY,y ⊗ Λ·MX/Y . �

We should remark that the torsion hypothesis in Theorem 3.2.4 is not
superfluous, even though it is not needed for Theorem 3.2.3. For exam-
ple, the morphism f : X → Y associated to multiplication by n > 0
on the monoid N is étale, so Ω1

X/Y = 0 and H0(Ω·X/Y ) = OX , although
f −1(OY ) ⊗ Λ0M

gp
X/Y = f −1(OY ).

3.3 Ω
·log
X and the Poincaré lemma

The best analog of the Poincaré lemma in the context of log analytic geometry
takes place not on Xan but rather on Xlog. To formulate it, we must first construct
the de Rham complex for the ringed space (Xlog,O

log
X ). Roughly speaking, this

amounts to constructing an integrable connection on the sheaf Olog
X .

Proposition 3.3.1. If f : X → Y is a morphism of fine log analytic spaces, let

Ω
i,log
X/Y =: Olog

X ⊗τ−1
X OX

τ−1
X Ωi

X/Y .

Then there is a unique τ−1
X (OY )-linear homomorphism:

d : Olog
X → Ω

1,log
X/Y

such that:

1. d( f ) = 1 ⊗ d f for f ∈ τ−1
X (OX) ⊆ Olog

X ;
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2. d( f g) = g ⊗ d f + f ⊗ dg for f , g ∈ Olog
X ;

3. d(`) = 1 ⊗ dlog(exp(`)) for all ` ∈ LX , where exp: LX → τ−1(Mgp
X ) is the

map defined in Proposition 1.4.1.

Furthermore, there is a unique extension of d to a derivation of ⊕Ω
i,log
X/Y forming

a complex

Ω
·,log
X/Y := Olog

X
d- Ω

1,log
X/Y

d- Ω
2,log
X/Y

d- · · · .

Proof The uniqueness of d is clear, since Olog
X is generated as a τ−1

X (OX)-
algebra by LX . For the existence, we begin by constructing a connection on
the extension EX in diagram 1.4.1.

Lemma 3.3.2. There is a unique additive map

d : EX → EX ⊗ τ
−1
X (Ω1

X/Y )

with the following properties:

1. d f = 1 ⊗ d f for f ∈ τ−1
X (OX);

2. d( f e) = e ⊗ d f + f ⊗ de; for f ∈ τ−1
X (OX) and e ∈ EX;

3. de = d exp(`) if ` ∈ LX and e is its image in EX .

Furthermore, d fits into a commutative diagram with exact rows

0 - τ−1
X (OX) - EX

- M
gp
X ⊗ τ

−1
X (OX) - 0

0 - τ−1
X (ΩX/Y )

d

?
- EX ⊗ τ

−1
X (Ω1

X/Y )

d

?
- M

gp
X ⊗ τ

−1
X (Ω1

X/Y )

id ⊗ d

?
- 0,

and the natural map d2 : EX → EX ⊗ τ
−1
X (Ω2

X/Y ) vanishes.

Proof We claim that there is a diagram as follows:

τ−1
X (OX) ⊗ LX - LX ⊗ τ

−1
X (Ω1

X/Y )

EX

?
- EX ⊗ τ

−1
X (Ω1

X/Y ).
?

The tensor product in the top row is taken over Z, and the top arrow is given
by

f ⊗ ` 7→ ` ⊗ d f + ε( f ) ⊗ d exp(`),
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which exists because the right side is bilinear in f and `. Thus if f and g are
sections of τ−1

X (OX), we find that this arrow takes f ⊗ ε(g) to

ε(g) ⊗ d f + ε( f ) ⊗ d exp ε(g) = ε(g) ⊗ d f + ε( f ) ⊗ dg

inLX⊗τ
−1
X (Ω1

X/Y ). The tensor product at the bottom right is taken over τ−1
X (OX),

and so f ⊗ ε(g) maps to 1 ⊗ gd f + 1 ⊗ f dg = 1 ⊗ d( f g) in EX ⊗ τ
−1
X (Ω1

X/Y ).
Then the existence of the dashed arrow follows from the definition of EX as a
pushout. The verification of the remaining properties of d is immediate. �

To complete the proof of Proposition 3.3.1, we observe by induction on n
that there is a unique d : SnEX → SnEX ⊗ Ω1

X/Y such that d(ab) = adb + bda
for a ∈ SiEX and b ∈ Sn−iEX . Since these are compatible with the inclusions
SnEX → Sn+1EX , we find the desired map on Olog

X = lim
−→

SnEX . �

The importance of (EX , d) is that it is a physical incarnation of the sym-
bol map. The exact sequence of statement (2) of Proposition 1.4.1 is in fact a
sequence of modules with connection. Thus it fits into an exact sequence of
complexes:

0→ τ−1
X (Ω·X/Y )→ EX ⊗ τ

−1
X (Ω·X/Y )→ τ−1

X (M
gp
X ⊗Ω·X/Y )→ 0, (3.3.1)

leading to an exact sequence of cohomology sheaves

H0(τ−1
X (Ω·X/Y ) ⊗ EX) - H0(τ−1

X (M
gp
X ⊗Ω·X/Y ))

∂- H1(τ−1
X (Ω·X)).

Lemma 3.3.3. The following diagram commutes:

H0(τ−1
X (M

gp
X ⊗Ω·X/Y ))

∂- H1(τ−1
X (Ω·X/Y ))

τ−1
X (M

gp
X )

6

π- τ−1
X (Mgp

X/Y ).

τ−1
X (s1)
6

Here s1 : M
gp
X/Y → H

1(Ω·X/Y ) is the symbol map and π is the projection.

Proof Let m be a local section of τ−1
X (M

gp
X ). Choose a local section ` of LX

with m = exp(`), and let e be the image of 1 ⊗ ` in EX . Then ∂m is the class
of de in the cohomology of τ−1

X (Ω·X/Y ). By the formula (3) of Lemma 3.3.2,
de = dlog(exp(`)) = dlog(m), which indeed maps to the symbol of the image
of m inMgp

X/Y . �

Now we are ready to formulate and prove the Poincaré lemma on Xlog. Note
first that the naturality of the construction of Olog

X implies the existence of a
natural homomorphism f −1

log(Olog
Y )→ Olog

X .
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Theorem 3.3.4. Let f : X → Y be a smooth and exact morphism of fine ana-
lytic spaces. Suppose either that Y = Spec C with trivial log structure or that
M

gp
X/Y is torsion free. Then, on the space Xlog, the natural map

f −1
log(Olog

Y )→ Ω
·,log
X/Y

is a quasi-isomorphism. 3

Proof Recall from Proposition 1.4.3 that we have an increasing exhaustive
filtration on Olog

X given by NpO
log
X := SpEX ⊆ O

log
X for p ∈ N. This filtration is

compatible with the connection d and induces a filtration on Ω
·,log
X/Y . The homo-

morphism f −1
log(Olog

Y ) → Ω
·,log
X/Y is a map of filtered complexes, and we shall see

that the induced map of the corresponding spectral sequences is an isomor-
phism starting at the E2 term. To work with the usual index conventions for
cohomological spectral sequences, we set N p := N−p for all p. Then we have

Gr−p
N Ω

i,log
X/Y � τ

−1
X (SpM

gp
X ⊗Ωi

X/Y ),

and the spectral sequence of the filtered complex (Ω·log
X/Y ,N) begins

E−p,q
0

=- Gr−p
N Ω

q−p,log
X/Y

�- SpM
gp
X ⊗Ω

q−p
X/Y

E−p,q+1
0

dp,q
0

?
=- Gr−p

N Ω
q−p+1,log
X/Y

Gr(d)

?
�- SpM

gp
X ⊗Ω

q−p+1
X/Y .

id

?

⊗ d

Here we have omitted writing τ−1
X to save space. The E1 terms of the spectral

sequence are given by the cohomology of the E0 terms, which we compute
using Theorem 3.2.3 if Y = C and using Theorem 3.2.4 if Mgp

X/Y is torsion
free. We find the following commutative diagram:

E−p,q
1

=- Hq−p(E−p,·
0 )

� - f −1(OY ) ⊗ SpM
gp
X ⊗ Λq−pM

gp
X/Y

E1−p,q
1

dp,q
1

?
=- Hq−p+1(E1−p,·

0 )
?

�- f −1(OY )⊗Sp−1M
gp
X ⊗ Λq−p+1M

gp
X/Y ).

?

Let us calculate the boundary map dp,q
1 using these identifications. When

p = q = 1, the map dp,q
1 is the boundary map ∂ coming from the exact se-

quence (3.3.1). Thus Lemma 3.3.3 shows that the vertical map on the right
3 The hypothesis of the torsion-freeness ofMgp

X/Y can be eliminated by working locally in the
Kummer étale topology; see [40, 5.1].
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is the identity tensored with the projection M
gp
X → M

gp
X/Y . Since d acts as

a derivation, it follows that, for every p and q, every monomial m1 · · ·mp ∈

Sp(M
gp
X ), and every ω ∈ OY ⊗ Λq−pM

gp
X/Y ,

d(m1 · · ·mp ⊗ ω) =
∑

i

m1 · · · m̂i · · ·mp ⊗ mi ∧ ω.

In other words, the complex E·,q1 can be identified with the complex

OY ⊗ SqM
gp
X → OY ⊗ Sq−1M

gp
X ⊗M

gp
X/Y → OY ⊗ Sq−2M

gp
X ⊗ Λ2M

gp
X/Y · · · .

This is the degree q-graded piece of the de Rham complex of the symmetric
algebra OY ⊗ S·M

gp
X relative to OY ⊗ S·MY , with a shift by q. By the Poincaré

lemma for polynomial algebras, we conclude that E−p,q
2 vanishes unless p = q

and that

E−p,p
2 � OY ⊗ f −1SpM

gp
Y � Gr−p

N f −1
log(Olog

Y ).

Thus the map of spectral sequences is an isomorphism at the E2 level, and the
spectral sequences are degenerate from that point on. �

Variant 3.3.5. If F is a relatively coherent sheaf of faces in MX containing
f −1(OY ), then the same argument shows that on the space Xlog(F ), the map

f −1
log(Olog

Y )→ Ω
·,log
X/Y (F )

is a quasi-isomorphism, where

Ω
·,log
X/Y (F ) := Olog

X(F ) ⊗ τ
−1
X(F )(Ω

·
X/Y (F )).

The next two results reveal the geometric meaning of the de Rham coho-
mology of log analytic spaces.

Theorem 3.3.6. Let X/C be a smooth idealized log analytic space such that
M

gp
X is torsion free.

1. In the bounded derived category Db(X,C) of sheaves of C-vector spaces on
X, the natural maps

RτX∗(CXlog )→ RτX∗Ω
·log
X/C ← Ω·X/C

are isomorphisms.
2. More generally, if F is a relatively coherent sheaf of faces inMX , the nat-

ural maps

RτX(F )∗(CX(F )log )→ RτX(F )∗Ω
·log
X/C(F )← Ω·X/C(F )

are isomorphisms.
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Proof Theorem 3.3.4, in the case when Y = Spec C, says that the map
CXlog → Ω

·,log
X/C is a quasi-isomorphism on Xlog. It follows immediately that

the map RτX∗(CXlog )→ RτX∗Ω
·log
X/C is a derived isomorphism, and the relatively

coherent analog follows in the same way from Variant 3.3.5. Since M
gp
X is

torsion free, Theorem 1.4.7 implies that the maps

RτX∗Ω
·log
X/C ← Ω·X/C and RτX∗(F )Ω

·log
X/C(F )← Ω·X/C(F )

are isomorphisms. �

Corollary 3.3.7. Let X be a fine and smooth log analytic space (without ide-
alized structure) such thatM

gp
X is torsion free.

1. In the following commutative diagram, all maps are isomorphisms:

Ω·X/C
- RτX∗(Ω

·,log
X/C) � RτX∗(CXlog )

R j∗(Ω·X∗/C)
?

�

-

R j∗(CX∗ ).
?

2. More generally, if F is a relatively coherent sheaf of faces in MX and
jF : X∗

F
→ X is the inclusion of the open set of triviality of F (see Re-

mark II.2.6.7), the maps in the following commutative diagram are isomor-
phisms:

Ω·X/C(F ) - RτX(F )∗(Ω
·,log
X/C(F )) � RτX(F )∗(CXlog )

R jF ∗(Ω·X∗
F
/C)

?
�

-

R jF ∗(CX∗
F

).
?

Proof The horizontal isomorphisms come from Theorem 3.3.6 and the right-
most vertical isomorphism comes from Corollary 1.3.2. (resp. Variant 1.3.5 in
the relatively coherent case). It follows that the remaining two arrows are also
isomorphisms. �

4 Algebraic de Rham cohomology

Logarithmic techniques have long played an important role in de Rham coho-
mology. Here we shall explain how classical constructions fit into the general
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framework of log geometry and how this new framework can be used to extend
them. First we discuss characteristic p, then characteristic 0.

4.1 The Cartier operator and the Cartier isomorphism

On a log scheme X, the differentials of sections ofMX give rise to one-forms
that are closed but not in general exact. This was the construction underlying
the symbol map in the analytic context in Proposition 3.2.1. The following
construction can viewed as the characteristic p analog of that proposition.

Proposition 4.1.1. Let f : X → Y be a morphism of fine idealized log schemes
in characteristic p > 0. Let FX denote the absolute Frobenius endomorphism
of X. Then there is a unique family of OX-linear homomorphisms

σi
X/Y : Ωi

X/Y → FX∗H
i(Ω·X/Y ) i ≥ 0

with the following properties.

1. σ0
X/Y (1) = 1.

2. σi+ j
X/Y (ω ∧ η) = σi

X/Y (ω) ∧ σ j
X/Y (η) if ω ∈ Ωi

X/Y and η ∈ Ω
j
X/Y .

3. For every local section m of MX , σX/Y (dlog m) is the class of dlog m in
FX∗H

1(Ω·X/Y ).

These homomorphisms are compatible with the filtrations defined by coherent
sheaves of ideals and relatively coherent sheaves of faces inMX .

Proof In the course of the proof we will use the following notation. If E is a
sheaf of OX-modules and e is a local section of E, we write FX∗(e) to mean the
same section but now viewed as a section of FX∗(E). Thus if a is a local section
of OX , we have aFX∗(e) = FX∗(ape).

The existence and uniqueness of σi
X/Y for i > 1 will follow from the case

i = 1, by multiplicativity. The uniqueness of σ1
X/Y follows from the fact

that Ω1
X/Y is locally generated as a sheaf of OX-modules by the image of

dlog : MX → Ω1
X/Y , as we saw in Proposition IV.1.2.11.

The existence depends on the following well-known lemma.

Lemma 4.1.2. Let X → Y be a morphism of schemes, let f and g be sections
of OX , and let p be a prime integer. Then f p−1d f +gp−1dg− ( f +g)p−1(d f +dg)
is exact.

Proof It suffices to prove this when X = Spec Z[x, y], Y = Spec Z, f = x, and
g = y. There is a unique z ∈ Z[x, y] such that (x + y)p − xp − yp = pz. Then
(x + y)p−1(dx + dy) − xp−1dx − yp−1dy = dz. �
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The lemma implies that the map D : OX → FX∗H
1(Ω·X/Y ) sending f to the

cohomology class of FX∗( f p−1d f ) is a homomorphism of abelian sheaves. For
m ∈ MX , let δ(m) be the class of FX∗(dlog m) in FX∗H

1(Ω·X/Y ). Then δ defines
a homomorphism of sheaves of monoids MX → FX∗H

1(Ω·X/Y ), which evi-
dently annihilates f −1MY . Writing [ω] for the cohomology class of ω ∈ Ω1

X/Y ,
we have:

D(αX(m)) = [FX∗(αX(m)p−1dαX(m))]

= [FX∗((αX(m))p dlog m]

= αX(m)[FX∗(dlog m)]

= αX(m)δ(m).

Thus (D, δ) is a log derivation of X/Y with values in FX∗H
1(Ω·X/Y ) (and in

particular D automatically satisfies the Leibniz rule), by Proposition IV.1.2.9.
The universal property of Ω1

X/Y then produces the desired OX-linear map σ1
X/Y .

The compatibility of σX/Y with the filtrations associated to coherent sheaves of
ideals and relatively coherent sheaves of faces follows immediately from the
definitions. �

The following result computes the cohomology sheaves of the de Rham
complex of a smooth morphism of log schemes in characteristic p. Recall from
Example IV.3.3.9 that the Frobenius morphism FX has a canonical factoriza-
tion FX = πX/Y ◦ FX/Y , where FX/Y is the exact relative Frobenius morphism,
and that the natural maps π∗X/Y (Ω j

X/Y ) → Ω
j
X′/Y are isomorphisms. It follows

that the differentials of the complex FX/Y∗(Ω·X/Y ) are OX′ -linear and that its co-
homology sheaves are OX′ -modules. The maps C−1

X/Y in the following theorem
are the logarithmic versions of the (inverse) Cartier isomorphism.

Theorem 4.1.3. Let f : X → Y be a smooth morphism of fine saturated ideal-
ized log schemes in characteristic p, and let FX/Y : X → X′ be the exact relative
Frobenius morphism (Example IV.3.3.9).

1. The maps

C−1
X/Y : Ω

j
X′/Y → FX/Y∗H

j(Ω·X/Y )

induced by adjunction from the morphisms σ·X/Y defined in Proposi-
tion 4.1.1 are isomorphisms.

2. If F is a relatively coherent sheaf of faces inMX and F ′ is the correspond-
ing sheaf inMX′ , the maps C−1

X/Y induce isomorphisms

Li(F ′)Ω j
X′/Y → FX/Y∗H

j(Li(F )Ω·X/Y ).
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Proof Recall from Proposition IV.3.3.10 that formation of the relative Frobe-
nius morphism FX/Y is compatible with strict étale localization. Formation of
the filtered complexes L·(F )Ω·X/Y and L·(F ′)Ω·X′/Y is also compatible with
strict étale localization, and the differentials of the complex FX/Y∗(Li(F )Ω·X/Y )
areOX′ -linear. It follows that formation of its cohomology sheaves is also com-
patible with strict étale localization. Thus the theorem can be checked locally
on X, and furthermore its validity is preserved by étale localization: if it is
true for a morphism f : X → Y , and if g : X̃ → X is strict and étale, then the
theorem also holds for f̃ := f ◦ g.

Proceeding locally in an étale neighborhood of some point x in X, we may
assume that the morphism f admits a chart (a, θ, b) as in Theorem IV. 3.3.1
(or Variant IV.3.3.5 in the idealized case). Since X → Yθ is strict and étale,
we are reduced to proving the result when X = Yθ, and we may assume that
Y is affine, say Y = Spec(P → A). Since b is exact at x, the homomorphism
Q → MX,x is an isomorphism and, since X is saturated, it follows that Q is
also saturated. Furthermore, the order of the torsion subgroup of the cokernel
of θgp is invertible in k(x), and hence this cokernel is p-torsion free.

First suppose that Y = AP, so X = AQ. Then Proposition 2.2.5 implies
statement (1) of the theorem and Proposition 2.3.17 implies statement (2).
Let us review and strengthen the arguments, beginning with the simpler state-
ment (1). Thanks to Proposition 2.2.5, we can identify F]

X/Y with the inclusion
R[Q̃]→ R[Q], and we have an exact sequence of filtered complexes

0→ R[Q̃] ⊗ Λ·(Qgp/Pgp)→ R[Q] ⊗ Λ·(Qgp/Pgp)→ C· → 0.

We showed that the differentials of the complex R[Q̃] ⊗ Λ·(Qgp/Pgp) vanish
and that the quotient C· is acyclic. To prove the theorem, it will suffice to prove
that the same remains true after tensoring with any homomorphism R[P]→ A,
since formation of the exact relative Frobenius morphism and of the (filtered)
de Rham complex is compatible with base change.

First note that, since Q̃ is an exact submonoid of Q, the map R[Q̃] → R[Q]
is split as a sequence of R[Q̃]-modules, by Proposition I.4.2.7. Namely, Q \ Q̃
is stable under the action of Q̃ and, for each q ∈ Q, we let tq be the identity
of R[Q] if q ∈ Q̃ and the zero map otherwise. Then t defines an R[Q̃]-linear
splitting, hence also an R[P]-linear splitting, of the inclusion R[Q̃] → R[Q].
It follows that the sequence remains exact after tensoring with A. Next recall
that if q ∈ Q \ Q̃, its image π(q) in R ⊗ Qg/Pgp spans a direct summand of
R ⊗ Qgp/Pgp. Choose a homomorphism sπ(q) : R ⊗ Qgp/Pgp → R sending π(q)
to 1, and recall that interior multiplication by sπ(q) defines a homotopy operator
ξq on the degree-q part of the complex C· with dξq + ξqd = idq. Then ξ :=∑
{ξq ∈ Q \ Q̃} defines a homotopy between idC· and 0. Since ξp+q = ξq for
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p ∈ P, in fact ξ is R[P]-linear and induces a homotopy operator on A ⊗R[P] C·.
Since the differential of C· is also R[P]-linear, it follows that dξ + ξd is again
the identity, and so the complex A ⊗R[P] C· is acyclic.

Now suppose that F is a face of Q containing P. In this case we have a strict
exact sequence of filtered complexes

0→ (Ω·Q̃/P, L
·(F̃))→ (Ω·Q/P, L

·(F))→ (C·, L·(F))→ 0.

By Variant 2.3.7, each inclusion Li(F)Ω·Q/P → Ω·Q/P is split as a sequence of
R[P]-modules, with splitting sq in degree q induced from a splitting of the im-
age of Fp ⊗ 〈F, q〉gp in Fp ⊗ Qgp. Since the splittings s and t are defined degree
by degree, they are compatible, i.e., the corresponding endomorphisms of Ω

j
Q/P

commute. It follows that Li(F̃)Ω j
Q̃/P

is an R[P]-linear direct summand of Ω
j
Q̃/P

and of Li(F)Ω jQ/P and that the sequence above remains strictly exact when
tensored over R[P] with A. Since the R[P]-linear homotopy operators ξ con-
structed in the previous paragraph preserve the filtrations, the filtered complex
(C·, L·(F) is filtered acyclic. Then the map (Ω·

Q̃/P
, L·(F̃))→ (Ω·Q/P, L

·(F)) is a
filtered quasi-isomorphism, and the proof is complete. �

In positive characteristic p, the sheaf TX/Y of derivations is not just a Lie
algebra, but also a restricted Lie algebra: the pth iterate of a derivation is again
a derivation. We shall see that this is also true for logarithmic derivations and
shall relate the pth-power operation on TX/Y to the Cartier isomorphism.

Theorem 4.1.4. Let f : X → Y be a morphism of log schemes in character-
istic p. Then TX/Y has the structure of a restricted Lie algebra [43, V§7], over
F−1

X/Y (OX), with pth-power operator defined by

(D, δ)(p) = (Dp, F∗X ◦ δ + Dp−1 ◦ δ). (4.1.1)

If ∂ is any local section of TX/Y and a is any local section of OX ,

(a∂)(p) = ap∂(p) + (a∂)p−1(a)∂ = ap∂(p) − a∂p−1(ap−1)∂. (4.1.2)

Proof Our first task is to show that the formula (4.1.1) for (D, δ)(p) does define
a log derivation. The proof uses the following formulas, valid in any character-
istic.4

Lemma 4.1.5. Let f : X → Y be a morphism of coherent log schemes, and let
(D, δ) be an element of TX/Y � DerX/Y (OX). Let δ1 := δ and, for n > 1 define
δn : MX → OX inductively by

δn(m) := δ(m)δn−1(m) + D ◦ δn−1(m). (4.1.3)

4 This lemma was made possible by help from Hendrik Lenstra and the marvelous book [72].
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Then the following formulas hold for all n.

Dn(αX(m)) = αX(m)δn(m). (4.1.4)

δn =
∑

I

c(I)
∏

j

DI j−1 ◦ δ (4.1.5)

where I ranges over the partitions (I1 ≥ I2 ≥ · · · ) of the number n and where
c(I) is the number of partitions {s1, s2, . . .} of the set {1, · · · , n} such that |si| =

|Ii| for all i.
If n is a prime number p, then

δn ≡ F∗X ◦ δ + Dp−1 ◦ δ (mod p). (4.1.6)

Proof We prove formula (4.1.4) by induction on n. It is true for n = 1 because
(D, δ) is a logarithmic derivation. If it holds for n, then

Dn+1(αX(m)) = D(αX(m)δn(m))

= D(αX(m))δn(m) + αX(m)D(δn(m))

= αX(m)δ(m)δn(m) + αX(m)D(δn(m))

= αX(m)δn+1(m).

Next we claim that, for each n,

δn =
∑
π∈Pn

∏
s∈π

D|s|−1 ◦ δ, (4.1.7)

where Pn is the set of partitions of the set {1, . . . , n}. This is trivial for n = 1
and we proceed by induction on n. For each π ∈ Pn, let π∗ be the partition of
{1, . . . , n + 1} obtained by adjoining {n + 1} to π, and for each pair (s, π) with
π ∈ Pn and s ∈ π, let πs be the partition of {1, . . . , n + 1} obtained by adding
n + 1 to s. Let P∗n := {π∗ : π ∈ Pn} and P∗π := {πs : s ∈ π}. In this way we obtain
all the partitions of {1, . . . , n+1}, and so Pn+1 can be written as a disjoint union
of sets

Pn+1 = P∗n
⊔
{P∗π : π ∈ Pn}.
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By the definition of δn+1, the induction hypothesis, and the product rule,

δn+1 = δ · δn + D ◦ δn

= δ ·
∑
π∈Pn

∏
s∈π

D|s|−1 ◦ δ + D ◦
∑
π∈Pn

∏
s∈π

D|s|−1 ◦ δ

=
∑
π∈Pn

∏
s∈π

δD|s|−1 ◦ δ +
∑
π∈Pn

∑
s′∈π\{s}

∏
s∈π

(D|s| ◦ δ)(D|s
′ |−1 ◦ δ)

=
∑
π∈Pn

∏
t∈π∗

D|t|−1 ◦ δ +
∑

s∈π∈Pn

∏
t∈πs

D|t|−1 ◦ δ

=
∑
π∈Pn+1

∏
t∈π

D|t|−1 ◦ δ,

as required.
We can now easily deduce formula (4.1.5). If π is any element of Pn and

|π| = r, choose an ordering (s1, s2, . . . , sr) of π with |s1| ≥ |s2| ≥ . . . ≥ |sr |, and
let I(π) =: (|s1|, |s2|, . . . , |sr |). Then I(π) is independent of the chosen ordering
of of π, and π 7→ I(π) is a function from Pn to the set of finite sequences I of
positive integers. Its (nonempty) fibers are exactly the orbits of Pn under the
natural action of the symmetric group Sn. For each sequence I, let c(I) be the
cardinality of the fiber of I. Then the formula (4.1.7) reduces to formula (4.1.5).

Note that the cyclic group Z/nZ acts on Pn through its inclusion in Sn; it
is clear that the only elements of Pn fixed under this action are the two trivial
partitions, with n elements and with one element, respectively. In particular,
if n is a prime number p, all the other orbits have cardinality divisible by p.
Formula (4.1.6) follows. �

Now we return to the proof of Theorem 4.1.4. In characteristic p > 0, let

δ(p)(m) := δ(m)p + Dp−1(δ(m)) = (F∗X ◦ δ + Dp−1 ◦ δ)(m).

Then δ(p) : MX → OX is a homomorphism of monoids, and formulas (4.1.4)
and (4.1.6) imply that, for all m,

Dp(αX(m)) = αX(m)δ(p)(m) = αX(m)
(
δ(m)p + Dp−1(δ(m)

)
(4.1.8)

and so (Dp, δ(p)) is a logarithmic derivation.
Next we prove equation (4.1.2), which we will deduce from the following

general result.

Lemma 4.1.6. Let D be a derivation of an Fp-algebra A. Then, for any ele-
ments f , g, and h of A, the following equalities are satisfied.

( f D)p−1( f h) = f pDp−1(h) + ( f D)p−1( f )h, (4.1.9)

( f D)p(g) = f pDp(g) + ( f D)p−1( f )D(g), (4.1.10)
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( f D)p−1( f h) = f pDp−1(h) − f Dp−1( f p−1)h, (4.1.11)

( f D)p(g) = f pDp(g) − f Dp−1( f p−1)D(g), (4.1.12)

( f D)p−1( f ) = − f Dp−1( f p−1). (4.1.13)

Proof Note that (4.1.9) implies (4.1.12), by setting h = D(g). Furthermore,
(4.1.11) implies (4.1.13) (take h = 1), and (4.1.9) follows from (4.1.13) and
(4.1.11). Equation (4.1.10) is proved in [35, Lemma 2] and (4.1.12) is proved
in [52, 5.3.0] (although there is a sign error in the formula there). We will
use a universal algebra argument due to G. Bergman to deduce (4.1.11) from
(4.1.12) (which is also proved by a universal algebra argument).

Lemma 4.1.7. Let C denote the category whose objects are commutative R-
algebras equipped with a derivation D and two elements a, b and whose mor-
phisms are homomorphisms compatible with (D, a, b). The category C has an
initial element whose underlying ring A is the polynomial algebra over R in the
variables X0, X1, . . . ,Y0,Y1, . . . , and where a = X0, b = Y0, and D(Xi) = Xi+1,
D(Yi) = Yi+1 for all i.

Proof Since A is a polynomial ring on the variables Xi and Yi it certainly
admits a derivation as described. If (A′,D, a′, b′) is an object of C, there is a
unique R-algebra homomorphism θ : A → A′ sending Xi to Di(a′) and Yi to
Di(b′). It follows that D(θ(a)) = θ(D(a)) for every a ∈ A since this equation
holds for each generator of A. �

To prove Lemma 4.1.6, we apply the already known equation (4.1.12) to the
elements f = X0 and g = Y0 in the algebra A to find

(X0D)p(Y0) = Xp
0 Dp(Y0) − X0Dp−1(Xp−1

0 )D(Y0).

Since Y1 = DY0, we can write this as

(X0D)p−1(X0Y1) = Xp
0 Dp−1(Y1) − X0Dp−1(Xp−1

0 )Y1.

Now consider the homomorphism σ : A→ A sending X0 to X0 and Y0 to Y1. It
is clear from the construction that this map is an injection, compatible with D,
and hence the same equation holds with Y0 in place of Y1:

(X0D)p−1(X0Y0) = Xp
0 Dp−1(Y0) − X0Dp−1(Xp−1

0 )Y0.

Since (A, X0,Y0,D) is universal, this equation implies that (4.1.11) holds in any
Fp-algebra. As we have observed, (4.1.13) and (4.1.9) follow. �

Now we can prove formula (4.1.2) of Theorem 4.1.4. If ∂ = (D, δ) is a log
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derivation of (A, α) and a ∈ A then, by the definition of ∂(p) and equations
(4.1.10) and (4.1.9) of Lemma 4.1.6, with f = a and h = δ:

(a∂)(p) := ((aD)p, (aδ)p + (aD)p−1) ◦ aδ)

= (apDp + (aD)p−1(a)D, apδp + apDp−1 ◦ δ + (aD)p−1(a)δ)

= ap(Dp, δp + Dp−1 ◦ δ) + (aD)p−1(a)(D, δ)

= ap∂(p) + (aD)p−1(a)∂.

Finally, by equation (4.1.13) of Lemma 4.1.6, this last equation can be rewrit-
ten as

(a∂)(p)ap∂(p) − aDp−1(ap−1)∂.

It remains to check that the operation ∂ 7→ ∂(p) satisfies the definition of a
restricted Lie algebra:

(a∂)(p) = ap∂(p) for a ∈ F−1
X/Y (OX) and ∂ ∈ TX/Y , (4.1.14a)

ad∂(p) = adp
∂

for ∂ ∈ TX/Y , (4.1.14b)

(∂1 + ∂2)(p) = ∂
(p)
1 + ∂

(p)
2 +

p−1∑
i=1

si(∂1, ∂2) for ∂1, ∂2 ∈ TX/Y , (4.1.14c)

where si is the ith universal Lie polynomial [43, V§7].
The first of these equations follows easily from the fact that the derivation D

annihilates elements of F−1
X/Y (OX). To prove formulas (4.1.14b) and (4.1.14c),

we write ∂i = (Di, δi) and, with some abusive of notation,

[δ1, δ2] := D1 ◦ δ2 − D2 ◦ δ1,

δ
(p)
i := F∗X ◦ δi + Dp−1 ◦ δi,

so that

[∂1, ∂2] = ([D1,D2], [δ1, δ2]),

∂
(p)
i = (Dp

i , δ
(p)
i ).

Continuing with these notational conventions we have

adn
∂1

(∂2) = (adn
D1

(D2), adn
δ1

(δ2)),

for every n > 0. Thus, for every m ∈ MX ,

(adn
D1

(D2))(α(m)) = α(m) adn
δ1

(δ2)(m)

and, for each Lie polynomial si,

si(D1,D2)(α(m)) = α(m)si(δ1, δ2)(m).



4 Algebraic de Rham cohomology 515

Let us begin with the proof of equation (4.1.14c). The equation (4.1.14c)
is automatic for any two elements in any associative algebra in characteristic
p [43, V]. In particular it holds for the endomorphisms D1 and D2 of the sheaf
OX . Thus it will suffice to prove that

(δ1 + δ2)(p)(m) = δ
(p)
1 (m) + δ

(p)
2 (m) +

p−1∑
i=1

si(δ1, δ2)(m). (4.1.15)

We know that

(D1 + D2)(p)(α(m)) = D(p)
1 (α(m)) + D(p)

2 (α(m)) +

p−1∑
i=1

si(D1,D2)(α(m)),

so

α(m)(δ1 + δ2)(p)(m) = α(m)δ(p)
1 (m) + α(m)δ(p)

2 (m) + α(m)
p−1∑
i=1

si(δ1, δ2)(m).

Thus the desired equation (4.1.14c) holds if α(m) is a nonzero divisor in A.
We argue similarly for equation (4.1.14b), which asserts that, for any log

derivations ∂1 and ∂2,

ad∂(p)
1

(∂2) = adp
∂1

(∂2).

This is true for D1 and D2, and it remains to prove that

adδ(p)
1

(δ2)(m) = adp
δ1

(δ2)(m) (4.1.16)

for all m ∈ MX . We know that

adDp
1
(D2)(α(m)) = adp

D1
(D2)(α(m)),

i.e., that

α(m) adδ(p)
1

(δ2)(m) = α(m) adp
δ1

(δ2)(m)

so that (4.1.14b) holds when α(m) is a nonzero divisor.
We conclude that equations (4.1.14b) and (4.1.14c) hold if the underlying

ring A is an integral domain. We shall deduce the general case by an argument
from universal algebra, based on the construction in the following lemma.5

Lemma 4.1.8. If R is a commutative ring and n is a positive integer, let Cn

be the category whose objects are commutative R-algebras A equipped with
a sequence of derivations (D1, . . . ,Dn), an element x of A, and a sequence
(x1, . . . , xn) of elements of A such that Dix = xxi for all i, and whose mor-
phisms are ring homomorphisms preserving these data. Then Cn has an initial

5 I am indebted to G. Bergman for assistance with these techniques.



516 V Betti and de Rham Cohomology

object whose underlying ring A is a polynomial ring over R. In particular, if R
is an integral domain, so is A.

Proof Let {x1, . . . , xn} be a finite set of indeterminates and let (M, ?, e) denote
the free noncommutative monoid on this set. (Thus if n = 1, (M, ?, e) is the
monoid (N,+, 0).) Now let A be the polynomial ring over R on the elements X
of M and let x := e. Since A is the polynomial ring on the variables M, there is
a unique derivation Di of A such that

Di(x) = xxi = xix ∈ A,

Di(X) = xi ? X ∈ M ⊆ A if X ∈ M \ {e}.

(Note: xi ? X ∈ M is one of the free variables in the polynomial ring, but xix is
the product of two polynomials in A.)

Now suppose that (A′,D′· , x
′, x′· ) is another object of Cn. Since M is the free

monoid generated by (x1, . . . , xn), there is a unique monoid homomorphism
ψ : M → EndR(A′) such that ψ(xi) = D′i for all i; necessarily ψ(e) = idA′ . For
each X ∈ M\{e}, there is a unique pair (X′, j) such that X′ ∈ M and X = X′?x j.
Since A is the polynomial algebra generated by M, there is a unique R-algebra
homomorphism θ : A → A′ such that θ(x) = x′ and θ(X) = ψ(X′)(x′j) for all
X ∈ M \ {e}. In particular θ(xi) = x′i for each i, since x′i = e.

We claim that θ(Di(a)) = Di(θ(a)) for all a ∈ A. It suffices to check this
equality for the generators of the R-algebra A, i.e., the elements of M. First of
all,

θ(Di(x)) = θ(xix) = θ(xi)θ(x) = x′i x
′ = D′i(x′) = D′i(θ(x)).

If X ∈ M \ {e}, write X = X′ ? x j. Then DiX = xi ? X = xi ? X′ ? x j and so
(DiX)′ = xi ? X′. Thus

θ(DiX) = ψ(xi ? X′)(x′j) = ψ(xi)(ψ(X′)(x j)) = D′i(θ(X)).

This completes the proof of the lemma. �

Let (A,D·, x, x·) be an object of the category Cn in Lemma 4.1.8 with
R = Fp, and let α : N → (A, ·) be the monoid homomorphism sending n to
xn and δi : N → (A,+) the homomorphism sending n to nxi Then Di(α(n)) =

nxn−1Di(x) = xnδi(n), so ∂i := (Di, δi) is a derivation of the log ring (A, α).
Let us apply this to the initial object (A,D·, x, x·) of Cn. Since A is an integral
domain, formulas (4.1.15) and (4.1.16) are verified for (A, α), as we have seen.
Now suppose that α′ : Q′ → A′ is any log ring equipped with a pair of log
derivations ∂′1, ∂

′
2. Choose any q′ ∈ Q′, and let x′ := α′(q′) and x′i := δ′i(q

′).
Then D′i(x′) = x′x′i , so there is a unique homomorphism θ] : A → A′ sending
x to x′ and each xi to x′i and such that D′i(θ

](a)) = θ](Di(a)) for all a ∈ A.
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Let θ[ : N → Q′ be the homomorphism sending 1 to q′, so that (θ], θ[) is a
homomorphism of log rings, and note that θ](δi(n)) = δi(θ[(n)) = nx′i for all i.
We know that equations (4.1.15) and (4.1.16) hold in (A, α) with q = 1, and
applying θ] we see that they also hold in A′ with δ′i in place of δi and q′ in place
of 1. Thus formulas (4.1.15) and (4.1.16) hold in general. �

Remark 4.1.9. If m is a unit of MX , then u := α(m) is a unit of OX , and
δ(m) = u−1D(u). Thus formula (4.1.8) says:

Dp(u) = u
(
u−p(D(u))p + Dp−1(u−1D(u))

)
.

Multiplying through by up−1, we get

up−1Dp(u) = D(u))p + Dp−1(up−1D(u)),

a well-known formula attributed to Hochschild [70, Lemma 2].

The following result relates the restricted Lie algebra structure on TX/Y to
the mapping σ1

X/Y defined in Proposition 4.1.1 and will allow us to define a
logarithmic version of the Cartier operator.

Proposition 4.1.10. Let f : X → Y be a smooth morphism of fine log schemes
in characteristic p > 0. Then there is a unique OX-bilinear pairing

C : TX/Y × FX∗(Z1
X/Y )→ FX∗(OX),

C(∂, FX∗ω) = 〈∂(p), ω〉 − ∂p−1〈∂, ω〉.

If f is any local section of OX ,

C(∂, FX∗(d f )) = 0,

and if m is any local section ofMX ,

C(∂, FX∗(dlog m)) = F∗X〈∂, dlog m〉.

Proof For each section ∂ = (D, δ) of TX/Y we have an OX-linear map

C∂ : FX∗(Z1
X/Y )→ FX∗(OX) : ω 7→ 〈∂(p), ω〉 − (Dp−1〈∂, ω〉).

If f ∈ OX ,

C∂(FX∗(d f )) = 〈∂(p), d f 〉 − Dp−1〈∂, d f 〉

= Dp f − Dp−1(D f )
= 0.
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If m ∈ MX ,

C∂(FX∗(dlog m)) = 〈∂(p), dlog m〉 − Dp−1〈∂, dlog m〉

= δ(p)(m) − Dp−1δ(m)

= F∗X(δ(m)) + Dp−1δ(m) − Dp−1(δ(m))

= F∗X(δ(m))

= F∗X〈∂, dlog m〉.

In fact C∂ is also OY -linear, and so can be viewed as an OX′ -linear homo-
morphism

FX/Y∗(Z1
X/Y )→ FX/Y∗(OX).

Since it annihilates the exact forms, it factors through a map

C∂ : FX/Y∗(H1
X/Y )→ FX/Y∗(OX).

We claim that for any section ω of Ω1
X/Y ,

C∂(σ1
X/Y (π∗X/Y (ω))) = F∗X/Y〈∂, ω〉. (4.1.17)

Indeed, we have already seen that this is the case if ω = dlog m for some sec-
tion m ofMX , and the general case follows because Ω1

X/Y is locally generated
as a sheaf of OX-modules by such sections, as we saw in Proposition IV.1.2.11.
This formula also proves that the pairing C is linear in ∂ and thus completes
the proof of the proposition. �

Remark 4.1.11. The pairing defined in Proposition 4.1.10 induces an OX′ -
linear map

FX/Y∗(Z1
X/Y )→ HomOX′ (π

∗
X/Y (TX/Y ), FX/Y∗(OX)),

or equivalently, a map

C : FX/Y∗(Z1
X/Y )→ Ω1

X′/Y ⊗ FX/Y∗(OX).

This is the logarithmic version of the classical Cartier operator [70], and the
formula (4.1.17) shows that it is in essence inverse to σ1

X/Y .

4.2 Comparison theorems

Our goal in this section is to establish algebraic analogs of the analytic results
in Section V.3 and to compare algebraic and analytic de Rham cohomology. We
shall study the de Rham complex of a fine and smooth (possibly idealized) log
scheme X over a field k of characteristic zero, as well as the complexes arising
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from coherent sheaves of ideals and relatively coherent sheaves of faces. The
array of possibilites obtainable by combining these is too large for us to treat
definitively here, and we limit ourselves to some key cases.

Our first result is an algebraic version of the analytic “idealized Poincaré
lemma” (3.1.1).

Theorem 4.2.1. Let X/k be a fine and smooth idealized log scheme over k,
let J and I be coherent sheaves of ideals inMX such that I ⊆ J ∪ KX , and
let F be a relatively coherent sheaf of faces inMX . Let XJ denote the closed
subscheme of X defined by J and let X̂ denote the formal completion of X
along XJ .

1. The filtered complex (IΩ·
X̂/k
, L·(F )) is acyclic.

2. The map (Ω·
X̂/k
, L·(F ))→ (Ω·XJ /k, L

·(F )) is a filtered quasi-isomorphism.

3. Let
√
J be the radical J . The natural maps

(Ω·XJ /k, L
·(F ))→ (Ω·X√J /k, L

·(F )),

(JΩ·X/k, L
·(F ))→ (

√
JΩ·X/k, L

·(F ))

are filtered quasi-isomorphisms.

Proof This assertion is local on X, and can be verified at the stalks at each
geometric point x. Thus by Variant 3.3.5 we may assume that X admits a strict
and étale morphism f : X → A(Q,K), that J and I come from ideals J and K of
Q and that F comes from a face F of Q.

Using noetherian induction on the ideal J, we may assume that statement
(1) is true for every ideal properly containing J. Since the formal completion
of X along J is the same as the formal completion along

√
J, statement (1)

is true for J if J (
√

J, so we may assume without loss of generality that
J =
√

J. Suppose that J = J1 ∩ J2, where J1 and J2 properly contain J, and let
J3 := J1 + J2. Then (1) is true for J1, J2, and J3. If E is a coherent sheaf on X,
then there is an exact sequence

0→ Ê → Ê1 ⊕ Ê2 → Ê3 → 0,

where Êi is the formal completion of E along Ji. We deduce an analogous
sequence:

0→ (IΩ·
X̂
, L·(F ))→ (IΩ·

X̂1
, L·(F )) ⊕ (IΩ·

X̂2
, L·(F ))→ (IΩ·

X̂3
, L·(F ))→ 0.

Then the acyclicity of the latter two complexes implies that of the first. Since
J is reduced, it is the intersection of a finite number of prime ideals, and by
induction we are reduced to the case in which J is prime.
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Assume that J is a prime ideal p, let G := Q \ p, choose a local homo-
morphism h : Q/G → N, and let J(n) := {q ∈ Q : h(q) ≥ n}. Then J(1) = p,
each J(n) is an ideal of Q, and pJ(n) ⊆ J(n+1). Furthermore, the topology on
Q defined by {J(n) : n ∈ N} is equivalent to the p-adic topology, by Corol-
lary I.3.6.3. Extend h to a homogenous vector field ∂ : Qgp → Z, let ξ denote
interior multiplication by ∂, and let κ := dξ + ξd be the Lie derivative with re-
spect to ∂. Since X → AQ is strict and étale, the filtered complex (IΩ·Q, L

·(F))
pulls back to the filtered complex (IΩ·X/k, L

·(F )) on X, and we view ξ and κ as
acting on AQ and on X.

Lemma 4.2.2. The map ξ : Ω1
Q → k[Q] defined in the previous paragraph

sends Ω1
Q to pk[Q] and Ω1

X/k to JOX . Furthermore, each J (n)Ω
j
X/k is invariant

under κ, and κ acts as multiplication by n on

Gr(n) Ω
j
X/k := J (n)Ω

j
X/k/J

(n+1)Ω
j
X/k.

Proof The map ξ : Ω1
Q → k[Q] sends eq ⊗ ω to eq∂(ω). In other words, in

degree q it is given by id⊗ ∂ : Ω1
Q,q = k⊗Qgp → k⊗Z. Its restriction to Ω1

Q,q is
the restriction of ∂ to k ⊗ 〈q〉gp, and thus vanishes if q ∈ G, i.e., if q < p. Thus
ξ takes Ω1

Q to k[p], and hence Ω1
X/k to JOX . In particular, ξ(da) ∈ JOX if a is

any local section of OX .
Suppose that m is a local section of J (n) and ω is a local section of Ω

j
X/k.

Then

κ(αX(m)ω) = κ(αX(m))ω + αX(m)κ(ω) = αX(m)ξ(dm) + αX(m)κ(ω),

so J (n)Ω
j
X/k is invariant under κ. Moreover, if a ∈ OX and ω ∈ J (n)Ω

j
X/k, then

κ(aω) = κ(a)ω + aκ(ω) ≡ aκ(ω) mod J (n+1)Ω
j
X/k,

since κ(a) = ξ(da) ∈ JOX . Thus κ acts OX-linearly on Gr(n) Ω
j
X/k and k[Q]-

linearly on Gr(n) Ω
j
Q. For any element

∑
aqeq of k[Q], we have

κ
(∑

aqeq
)

=
∑

aqξ(eqdq) =
∑

aqh(q)eq,

and it follows that κ acts as multiplication by n on Gr(n) k[Q]. Since this action
is linear, it also acts by multiplication by n on Gr(n) Ω

j
Q and on Gr(n) Ω

j
X/k. �

Now let

FilnC· := IΩ·X/k ∩ L·Ω·X/k ∩ J(n)Ω·X/k,

so that

Grn
Fil C· ⊆ J(n)Ω

j
X/k/J(n+1)Ω

j
X/k.

It follows from the lemma that κ acts as multiplication by n on on Grn
Fil C·.
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Moreover, Gr0
Fil C· vanishes, since I ⊆ J∪KX . Thus κ acts as an isomorphism

on Grn C· for all n ≥ 0, and by induction we conclude that it also acts as an
isomorphism on C·/FilnC· for all n. Then it also acts as an isomorphism on
the J-adic completion of C·. Since κ is homotopic to zero, this completion is
consequently acyclic, proving statement (1).

We have an exact sequence of complexes

0→ JΩ·
X̂/k
→ Ω·

X̂/k
→ Ω·XJ /k → 0.

Statement (1) implies that the first term is acyclic, and statement (2) follows.
Since the formal completions of X along J and along

√
J are the same, state-

ment (3) follows from statement (2). �

Statement (2) of Theorem 4.2.1 shows that formal completions of de Rham
complexes along logarithmically defined ideals have the same cohomology as
their idealized restrictions. This fact allows one to translate many of the results
in algebraic de Rham cohomology, as developed by Hartshorne [33], into the
context of the de Rham cohomology of idealized log schemes. Here is one
particularly useful such result.

Corollary 4.2.3. Let f : X′ → X be a proper morphism of smooth idealized
log schemes over k. Suppose that J is a coherent sheaf of ideals inMX such
that f induces an isomorphism over X \ XJ , and let X′

J
:= X′ ×X XJ . Then the

natural maps fit into a distinguished triangle

Ω·X/k → Ω·XJ ⊕ R f∗Ω·X′/k → R f∗Ω·X′
J

+- ,

and similarly for the cohomology of the subcomplexes defined by coherent
sheaves of faces in X.

Proof Statement (2) of Theorem 4.2.1 allows us to replace the complexes
computing the de Rham cohomology of XJ and X′

J
by the formal completions

of the complexes of X and X′ along XJ and X′
J

respectively. Then the argument
given in [33, 4.4] applies to give the desired result. �

The following result allows one to weaken the saturation hypothesis in some
circumstances.

Theorem 4.2.4. Let X/k be a fine and smooth idealized log scheme such that
the groups M

gp
X are torsion free, and let η : Xsat → X be the saturation of X.

Then the natural map Ω·X/k → η∗(Ω·Xsat/k) is a quasi-isomorphism.

Proof The statement can be verified étale locally on X, so we may assume
that there is a strict étale map f : X → AQ,K. Replacing Q by a localization if
necessary, we may assume that X → Spec(Q,K) is surjective. The hypothesis
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onMX implies that, for every face F of (Q,K), the group Qgp/Fgp is torsion
free. We shall prove by noetherian induction that, for every ideal J of Q contin-
ing K, the idealized log subscheme XJ of X defined by J satisfies the theorem.
We may also use induction on the dimension of Q to assume that the theorem
is true for all monoids Q′ such that dim Q′ < dim Q. Using a dévissage as in
the proof of Theorem 4.2.1, we reduce to the case in which J is a prime ideal.
Let F := Q \ p, a face of Q, and let F′ be the face of Qsat generated by F. The
map Q ⊗ Qgp/Fgp → Q ⊗ Qgp/F′gp is an isomorphism and, since Qgp/Fgp is
torsion free, it follows that Fgp = F′gp and hence that F′ = Fsat.

Let Y be XJ with the log structure defined by F → OXJ and the empty
idealized structure. Then Y/k is smooth and there is a morphism of idealized
log schemes XJ → Y . We have a map of filtered complexes

(Ω·XJ/k, L
·(F ))→ η∗(Ω·Xsat

J
, L·(F sat)), (4.2.1)

and, by Proposition 2.3.9, the map on the associated graded complexes is the
map

⊕iΩ
·
Y [−i] ⊗ ΛiQg/Fgp → ⊕iη∗(Ω·Ysat [−i]) ⊗ ΛiQg/Fgp

obtained from the saturation map Ysat → Y . Every face G of F is a face of
(Q,K), and hence Fgp/Ggp ⊆ Qgp/Ggp is torsion free.

Assume J is a nonempty ideal of Q. Then F is a proper face, and the in-
duction hypothesis on the dimension of Q implies that these maps are quasi-
isomorphisms. It follows that the map of filtered complexes (4.2.1) is a fil-
tered quasi-isomorphism, and hence that Ω·XJ/k

→ η∗(Ω·Xsat
J /k) is a quasi-

isomorphism.
It remains to prove that the theorem is true when J is empty, but now with

the additional hypothesis that the theorem is true for every nonempty ideal
of Q. Let J′ := {q ∈ Q : q + Qsat ⊆ Q}, a nonempty ideal because Qsat is
finitely generated as a Q-set, by Corollary I.2.2.5. The morphism η : Xsat → X
is proper and an isomorphism outside XJ′ and hence by Corollary 4.2.3 there
is a distinguished triangle

Ω·X/k → Ω·XJ′
⊕ η∗Ω

·
Xsat/k → η∗Ω

·
Xsat

J′

+- .

Since the map Ω·XJ′
→ η∗Ω

·
Xsat

J′
is a quasi-isomorphism, the same is true of the

map Ω·X/k → η∗Ω
·
Xsat/k. �

Central to work of Grothendieck and Deligne on de Rham cohomology and
Hodge theory is the fact that the de Rham complex with log poles along a
divisor D with normal crossings can be used to calculate the cohomology of
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the complement of D. The following result is the logarithmic incarnation of
this classical result. In this statement the idealized structure of X is trivial.

Theorem 4.2.5. Let X/k be a fine saturated and smooth log scheme over k.

1. The natural map

Ω·X/C → R j∗Ω·X∗/k

is a quasi-isomorphism.
2. More generally, suppose that F and G are relatively coherent sheaves of

faces inMX with G ⊆ F , and let jG : XG → X be the inclusion of the open
set X∗

G
:= {x : O∗X = GX,x}. Then the map

(Ω·X/k, L
·(F ))→ R jG∗(Ω·XG/k, L

·(F ))

is a filtered quasi-isomorphism.
3. If F is any relatively coherent sheaf of faces ofMX , the map

Ω·X/k(F )→ R jF ∗(Ω·XF /k)

is a quasi-isomorphism.

Proof Since the morphism j is affine, in fact R j∗Ω·X∗/k � j∗Ω·X∗/k, and the
theorem reduces to the claim that the natural map Ω·X/C → j∗Ω·X∗/k is a quasi-
isomorphism. Since the sheaves in these complexes are torsion free and X∗ is
dense, the map is injective, so what must be shown is that the quotient C·X is
acyclic. This statement can be verified étale locally, so we may assume that X
is affine and that there exist a fine saturated monoid Q and a strict étale map
X → AQ. Then X∗ = f −1(A∗Q) and C·X = f ∗C·Q, where C·Q := Ω·Qgp/Ω·Q. Since
Q is saturated, the map Q∗tors → Qgp

tors is an isomorphism and, as we saw in
Corollary 2.2.4, this implies that C·Q is acyclic. This fact does not suffice to
prove the acyclicity of its pullback to X, since its differentials are not k[Q]-
linear. We will show that C·Q admits an exhaustive filtration whose associated
graded terms are acyclic and whose boundary maps are linear. In the course
of the proof, let us say that a k[Q]-linear subquotient of the complex Ω·Qgp is
“universally acyclic” if it is so after its pullback along any strict étale X → AQ.

The basic method is similar to that used in the proof of Theorem 4.2.1.
Let h : Q → N be a homomorphism, inducing a homogeneous vector field
∂ : Qgp → Z and linear maps ξ : Ω

j
Q → Ω

j−1
Q . Let p := h−1(Z+) and, for each

n ∈ N, let In := {x ∈ Qgp : h(x) ≥ −n}. Each In is a fractional ideal of Q,
pIn ⊆ In−1, and Q = ∪{In : n ≥ 0}. Consider the complex

FilnΩ·Qgp :=
⊕
x∈In

Ω·Qgp,x ⊆ Ω·Qgp .
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As we saw in the proof of Lemma 4.2.2, the map ξ : Ω1
Q → k[Q] sends Ω

q
Q

to k[p]. Since pIn ⊆ In−1, it follows that the differentials of GrFil
n Ω·Q are k[Q]-

linear for all n. Furthermore, κ := dξ + ξd is multiplication by n on Grn, and
hence Grn is acyclic for n > 0. It follows that Ω·Qgp/Fil0Ω·Qgp is universally
acyclic.

Now let h′ be another homomorphism Q → N, with corresponding oper-
ators ∂′, ξ′, κ′ and filtration Fil′. Since Fil is invariant under ξ′, we can use
the filtration Fil′ and repeat the above argument to show that Ω·Qgp/Fil0 ∩ Fil′0
is universally acyclic. Repeating the process, we conclude that Ω·Qgp/FilS is
acyclic, where S is any finite subset of H(Q) and where

FilS := ⊕{Ω·Qgp,x : h(x) ≥ 0 for all h ∈ S}.

Since H(Q) is finitely generated (Theorem I.2.2.3) and Q is saturated, in fact
FilSΩ·Qgp = Ω·Q (Corollary I.2.2.2) for some finite set of generators S. Thus C·Q
is universally acyclic, as claimed. This proves statement (1).

For statement (2), we may again work locally, and we assume that F and G
are generated by faces F and G of Q with G ⊆ F. Consider the exact sequence
of filtered complexes:

0→ (Ω·Q, L
·(F))→ (Ω·QG

, L·(FG))→ (C·, L·)→ 0.

Here the filtration on the quotient is by definition induced from the filtration
L·(FG). The key additional point is that the filtration L·(F) on Ω·Q is also in-
duced from the filtration L·(FG). Indeed, in degree q ∈ Q, Li(FG)Ω j

QG
is the

image of k⊗Λ−iQgp ⊗Λ j+i〈FG, q〉, which agrees with Li(F) since G ⊆ F. (See
also Lemma 2.3.13.) Thus the sequence of filtered complexes is strictly exact.
The argument used for statement (1) implies that the quotient is filtered acyclic,
and it follows that the inclusion is a filtered quasi-isomorphism, proving state-
ment (2). Statement (3) is statement (2) when F = G, applied to L0(F ). �

Remark 4.2.6. Theorem 4.2.4 implies that statement (1) of Theorem 4.2.5 is
true under the hypothesis that M

gp
X is torsion free in place of the saturation

hypothesis.

The following result is a logarithmic generalization of Grothendieck’s fun-
damental theorem on algebraic de Rham cohomology. It compares analytic and
algebraic de Rham cohomology and shows that both are finite dimensional.
Each successive statement of the theorem is a generalization of the previous
one. The redundancy is intentional, both for ease of digestion and because the
proof will proceed by dévissage from the special to the more general state-
ments. Some of these statements were proved, and some conjectured, in [59].
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Theorem 4.2.7. Let X/C be a fine, saturated, smooth, and quasi-compact ide-
alized log scheme over C.

1. The natural map

H∗DR(X/C)→ H∗DR(Xan/C)

is an isomorphism of finite dimensional vector spaces.
2. If J is a coherent sheaf of ideals inMX , the natural map

H∗(X,JΩ·X/C)→ H∗(Xan,JΩ·X/C)

is an isomorphism of finite dimensional vector spaces.
3. If F is a relatively coherent sheaf of faces in X, the natural map

H∗(X,Ω·X/C(F ))→ H∗(Xan,Ω
·
X/C(F ))

is an isomorphism of finite dimensional vector spaces.
4. If F is a relatively coherent sheaf of faces in X and J is a coherent sheaf

of ideals inMX , the natural map

H∗(X,JΩ·X/C ∩Ω·X/C(F ))→ H∗(Xan,JΩ·X/C ∩Ω·X/C(F ))

is an isomorphism of finite dimensional vector spaces.

Proof We begin with a simple bound.

Lemma 4.2.8. If C· is any of the complexes appearing in Theorem 4.2.7, then
Hi(X,C·) = 0 for i > d + 2 dim(X), where

d = max{rankM
gp
X,x : x ∈ X}.

(These numbers are finite, since X is quasi-compact.)

Proof In fact, it follows easily from Corollary IV.3.3.4 that, for every closed
point x ∈ X, the rank of Ω1

X/C,x is bounded by rankMX,x + dimOX,x and hence
by d + dim(X). Thus Ci = 0 for i > d + dim(X) and H j(X,Ci) = 0 for j >
dim(X). It follows that Hn(X,C·) = 0 for n > d + 2 dim(X). �

Lemma 4.2.9. Theorem 4.2.7 is true if X/C is proper.

Proof Let C· be any of the complexes occurring in the theorem. Since each
C j is a coherent sheaf of OX-modules and X is proper, the map H j(X,Ci) →
H j(Xan,Ci) is an isomorphism of finite dimensional vector spaces, by Serre’s
GAGA theorem [69]. Then it follows from the first spectral sequence of hy-
percohomology that, for each n, the map Hn(X,C·) → Hn(Xan,C·) is also an
isomorphism. By Lemma 4.2.8, both sides vanish for n � 0, and the lemma
follows. �
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The following lemma describes two basic dévissage techniques that will be
used repeatedly during the course of the proof. Let us say that a complex C·

of étale sheaves of OX-modules with C-linear differentials “is GAGA” if the
map H∗(X,C·) → H∗(Xan,C·) is an isomorphism of finite dimensional vector
spaces.

Lemma 4.2.10. Let C· be a complex of étale sheaves of OX-modules with
C-linear differentials.

1. If X̃ → X is an étale covering, let X̃(p) be the p-fold fiber product of X̃
over X. Assume that X admits an étale covering X̃ → X such that, for every
p ≥ 0, the restriction of C· to X(p) is GAGA. Then C· is GAGA.

2. Suppose that 0 → A· → B· → C· → 0 is an exact sequence of complexes
of OX-modules with C-linear differentials. Then if any two of A·, B·, and
C·, is GAGA, so is the third.

Proof The first part of the lemma follows from the existence and natural-
ity of the Čech spectral sequence with Ep,q

2 = Hq(X̃(p),C·), which converges
to H∗(X,C·). The second statement follows from the (compatible) long exact
sequences of cohomology on X and Xan and the five lemma. �

The first steps in the proof of Theorem 4.2.7 are classical. If X is a smooth
log scheme over C, there is a commutative diagram

H∗(X,Ω·X/C)
a- H∗(X∗,Ω·X/C)

H∗(Xan,Ω
·
X/C)

b

? e- H∗(X∗an,Ω
·
X/C).

c

?

(4.2.2)

Note that in this diagram, arrow a is an isomorphism by Theorem 4.2.5 and
arrow e is an isomorphism by Corollary 3.3.7.

Lemma 4.2.11. Theorem 4.2.7 is true if X has trivial log structure.

Proof This fundamental result is due to Grothendieck [28]. It seems sensible
to review his proof here, since it uses logarithmic de Rham cohomology in
an essential way. Using an affine covering of X and Lemma 4.2.10, we can
reduce to the case in which X is affine. Changing notation, we write U for X
and, using Hironaka’s theorem on the resolution of singularities, we find an
open immersion U → X, where X is proper and smooth and D := X \ U
is a divisor with normal crossings. Let α be the compactifying log structure
associated to the open immersion U → X, and note that U is its locus of
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triviality. The log scheme X := (X, α) is saturated and smooth over C, as we
saw in Example IV.3.1.14, and it suffices to prove the theorem for U = X∗.
In diagram (4.2.2), arrow b is an isomorphism of finite dimensional vector
spaces by Lemma 4.2.9, since X/C is proper and smooth. We have observed
that arrows a and e are isomorphisms. It follows that all the vector spaces in
the diagram are finite dimensional and that arrow c is an isomorphism. �

We can reverse this argument to deduce the following statement.

Lemma 4.2.12. Statement (1) of Theorem 4.2.7 is true if KX = ∅.

Proof We apply diagram (4.2.2) when the log structure of X is not neces-
sarily trivial. As we have seen, the horizontal arrows are isomorphisms, and
the previous lemma (Grothendieck’s theorem) implies that the arrow c is an
isomorphism of finite dimensional vector spaces. It follows that all the vector
spaces are finite dimensional and that b is also an isomorphism. �

Lemma 4.2.13. Statements (1) and (2) of Theorem 4.2.7 are true.

Proof Let observe that statement (2) follows from statement (1). Indeed, if X
is ideally log smooth andJ is a coherent sheaf of ideals inMX , thenJ+KX is
also a coherent sheaf of ideals and the closed subscheme i : Y → X defined by
J , with the idealized log structure defined byMX andJ ∪KX , is also (ideally
log) smooth over C. There is an exact sequence

0→ JΩ·X/C → Ω·X/C → i∗Ω·Y/C → 0,

and statement (1) applies to the latter two terms of this sequence. As we ob-
served in Lemma 4.2.10, it then follows that the same is true of the first term.

To prove statement (1), first observe that X admits a finite open covering
X1, . . . , Xn such that each Xi admits an étale covering X̃i → Xi and a strict
étale map X̃i → AQi,Ki by Variant IV.3.3.5. Using the spectral sequence in
Lemma 4.2.10 for the covering X1, . . . , Xn, we see that it suffices to prove the
result for each Xi and, using the spectral sequence for the covering X̃i → X,
we see that it suffices to prove it for X̃i. Thus we may assume without loss of
generality there is a strict étale map X → AQ,K for some fine saturated idealized
monoid Q.

The proof will be by noetherian induction on the ideal K, and also by induc-
tion on the dimension of Q. Let us say that an ideal K of Q “is GAGA” if every
X admitting a strict étale map X → AQ,K, satisfies (1) of Theorem 4.2.7. It fol-
lows from Lemma 4.2.12 that the empty ideal is GAGA. Since Q is noetherian,
the set of non-GAGA ideals, if nonempty, has a maximal element. Arguing as
in the proof of Theorem 4.2.1, we see that K must be a prime ideal p. Let
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F := Q \K, and consider the filtration L·(F) of Ω·Q,p. It is enough to prove that
the associated graded complexes have finite dimensional and isomorphic coho-
mology on X and on Xan. Proposition IV.2.3.9 shows that these graded pieces
are, up to a shift, given by Ω·F,∅ tensored with an exterior power of Qgp/Fgp.
If p is not empty, F is a proper face of Q, and the induction hypothesis on the
dimension of Q applies. If p is empty, Lemma 4.2.12 applies. �

We can now complete the proof of Theorem 4.2.7. As we saw in the proof
of Lemma 4.2.13, statement (4) is an easy consequence of (3), and it suffices
to prove (3) when there exist a strict étale map X → AQ,K and a face F of
(Q,K) generating F . Let us say that a triple (Q,K, F) “is GAGA” if every such
X satisfies (3). Lemma 4.2.13 says that (Q,K,Q) is GAGA. We proceed by
induction on the rank of Q/F, ranging over all (Q,K, F).

Let (Q,K, F) be such a triple, and assume that every (Q′,K′, F′) with
rk(Q′/F′) < rk(Q/F) is GAGA. To prove that (Q,K, F) is GAGA, we will
show, using noetherian induction, that, for every ideal J with J ∩ F = ∅, the
triple (Q,K + J, F) is GAGA. The case when J = ∅ is the desired statement
of the theorem. Since Q is noetherian, it suffices to prove that (Q,K ∪ J, F) is
GAGA under the additional assumption that (Q,K ∪ J′, F) is GAGA for every
J′ strictly containing J and not meeting F. The dévissage technique used in
the proof of Theorem 4.2.1 allows us to reduce to the case in which J is prime.

If J is not empty, its complement G is a proper face of Q containing F, and
rk(G/F) < rk(Q/F), so (G,G ∩ K, F) is GAGA by the induction hypothesis.
Since the natural map

Ω·(Q,J+K)(F)→ Ω·(G,G∩K)(F)

is an isomorphism, it follows that (Q, J + K, F) is GAGA, as desired.
Thus we are reduced to proving the result assuming that J = ∅ and that every

triple (Q,K + J′, F) is GAGA if J′ is a nonempty ideal of Q not meeting F.
Let S denote the set of facets containing F. For each G ∈ S, let pG := Q \ G,
let T := {pG : G ∈ S}, and let J′ := ∩{p : p ∈ T }. Observe that Q \ J′ =

∪{G : G ∈ S} is properly contained in Q, so J′ is not empty. Since J′ does
not meet F, our hypothesis implies that (Q,K ∪ J′, F) is GAGA. Furthermore,
〈F, q〉 = Q whenever q ∈ J′, and hence J′Ω·Q,K ⊆ Ω·Q,K(F). Thus there is an
exact sequence

0→ J′Ω·Q,K → Ω·Q,K(F)→ Ω·Q,K∪J′ (F)→ 0.

Since (Q,K ∪ J′,Q) is GAGA by Lemma 4.2.13 and (Q,K ∪ J′, F) is GAGA,
it follows that (Q,K, F) is also GAGA. This completes the proof. �
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0. Lecture Notes in Mathematics, vol. 407. New York: Springer-Verlag.

[7] Berthelot, P., and Ogus, A. 1978. Notes on Crystalline Cohomology. Annals of
Mathematics Studies, vol. 21. Princeton: Princeton University Press.

[8] Borne, N., and Vistoli, A. 2012. Parabolic Sheaves on Logarithmic Schemes.
Advances in Mathematics, 231(3–4), 1327–1363.

[9] Conrad, B. 2007. Deligne’s Notes on Nagata Compactifications. Journal of the
Ramanujan Mathematical Society, 22(3), 205–257.

[10] Cox, D., Little, J., and Schenck, H. 2011. Toric Varieties. Graduate Studies in
Mathematics, vol. 124. Providence: American Mathematical Society.

[11] Danilov, V. I. 1978. The Geometry of Toric Varieties. Russian Mathematical
Surveys, 33, 97–154.

[12] Deitmar, A. 2005. Schemes over F1. ArXiv. arXiv:math.NT/0404185.
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231. <http://www.numdam.org/item?id=PMIHES_1965__24__5_0>.

[28] Grothendieck, A. 1966. On the de Rham Cohomology of Algebraic Varieties.
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colimits of monoids, 4
compactifying log structure, 288
condition QSn, 168
congruence, 2
congruence relation on a Q-set, 8
conical hull, 40
conical ideal, 40
connected components of a P-set, 129
conormal sheaf, 417
constant log structures, 309
convex set, 53
cospecialization map, 263
critical face, 104
critically exact homomorphism, 105

d-semistable, 305
de Rham complex of a monoid algebra, 471
de Rham complex of a morphism, 468
deformation of g to T , 384
derivation of log rings, 362
derivation of prelog schemes, 369
DF structure, 293
differentials, 363
differentials with log poles, 361
dimension of a cone, 40
dimension of a monoid, 19
direct image log structure, 272
divisor with normal crossing, 297
DNC coordinate system, 298
domination for submonoids, 59
double locus, 300
dull monoid, 11
dull monoidal space, 189
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effective Cartier divisor, 273, 289
equivariant biset structure, 71
étale morphism of log schemes, 389
exact chart, 255
exact homomorphism of idealized monoids,

177
exact morphism of monoids, 28
exact relative Frobenius morphism, 410
exact relative n-Frobenius homomorphism,

120
exterior derivative, 468
extremal ray, 40
extremely ample sheaf on a monoscheme, 210

face generated by a set, 15
face of a monoid, 15
facet of a cone, 40
fan, 236
filtering category, 126
fine chart, 249
fine monoid, 12
fine monoscheme, 198
fine sheaf of monoids, 251
finitely generated congruence relation, 3
flat chart, 423
flat monoid action, 127
flat morphism of log schemes, 423, 430
formal power series in a monoid, 86
four point lemma, 338
fractional ideal of a monoid, 34
frame for a monoidal space, 327
free Q-set, 7
free monoid, 1
fs-monoid, 13

germ of a chart, 252
good chart for a sheaf of monoids, 255
graded monoid, 206
graded set over a graded monoid, 206

height of a point, 45
height of an ideal, 19
Higgs complex, 93
Higgs field, 92
hollow log ring, 307
hollow log structure, 307
homogeneous flow, 475
homogeneous vector field, 475
horizontal ideal, 478
horizontal part of a sheaf of monoids, 189
horizontal sheaf of ideals, 490

ideal of a monoid, 15
idealized log fiber, 336

idealized log point, 336
idealized log scheme, 281
idealized monoid, 20
idealized monoscheme, 193
ideally strict morphism, 281
immersion of log schemes, 343
immersion of monoidal spaces, 190
indecomposable element of a cone, 40
inductive limit of monoids, 4
inseparable morphism, 347
integral homomorphism of idealized monoids,

177
integral homomorphism of monoids, 140
integral monoid, 11
integral monoscheme, 198
interior ideal of a monoid, 15
interior ideal of a sheaf of monoids, 267
inverse image log structure, 272
invertible quotient on a monoscheme, 209
invertible sheaf ofMX-sets, 205
invertible sheaf of ideals in a monoidal space,

221
irreducible element of a monoid, 22
isogeny of monoids, 123

join of monoids, 19

K-cone, 39
Kato–Nakayama space, vii, 442
Kolmogoroff space, 263
Kummer homomorphism, 109
Kummer morphism of log schemes, 343

Lie algebra, 469
Lie bracket, 469
Lie derivative, 476
local homomorphism of idealized monoids,

177
local homomorphism of monoids, 15
localization of an M-set, 17
locally aspheric morphism, 457
locally constant log structures, 309
locally exact homomorphism, 105
locally s-injective homomorphism, 105
locally surjective map, 105
log étale morphism, 389
log analytic space, 445
log blowup, 356
log dash, 285
log derivation, 369
log point, 285
log point valued point of a log scheme, 330
log ring, 275
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log scheme, 274
log smooth morphism, 389
log thickening, 379
log thickening over X/Y , 383
log unramified morphism, 389
logarithmic homomorphism, 94, 186
logarithmic structure, 270

markup of a monoid, 256
minimal element, 22
moment map, 240
monoid, 1
monoid algebra, 65
monoid algebra of an idealized monoid, 74
monoid scheme action, 69
monoidal space, 184, 185
monoidal transformation of monoschemes,

225
monoscheme, 192
morphism of fans, 236
morphism of log schemes, 274
morphism of log structures, 270
morphism of markups, 256
morphism of (pre)log structures, 270

n-Frobenius endomorphism of a monoid, 119
n-isogeny of monoids, 123
n-quasi-saturated homomorphism, 159
n-saturated homomorphism, 159
n-saturated monoid, 159
n-saturated morphism, 353
neat chart for a morphism of monoidal spaces,

260
neat chart for a sheaf of monoids, 255
Newton polyhedron, 83
noetherian M-set, 23
noetherian monoid, 23
normal crossings scheme, 304
nth strict infinitesimal neighborhood, 415

P-regular P-set, 132
partially ordered set associated to a Q-set or a

monoid, 10
Poincaré residue, 376, 377, 388
prelogarithmic structure, 270
presentation of a monoid, 5
primary ideal in a monoid, 27
prime ideal of a monoid, 15
projective limits in EnsQ, 8
proper image of a monoscheme, 232
proper immersion of monoschemes, 232
proper morphism of monoschemes, 213
pth power operator, 510

pushout, 5

Q-algebra, 65
Q-bimorphism, 8
Q-filtration on a module, 73
Q-integral homomorphism, 152
Q-set, 7
Q-surjective homomorphism, 109
quasi-coherent sheaf of monoids, 251
quasi-coherent sheaf on a monoscheme, 202
quasi-compact morphism, 203
quasi-compact topological space, 198
quasi-constructible sheaf of sets, 262
quasi-integral monoid, 11
quasi-saturated homomorphism, 159
quasi-separated morphism, 203
quasi-separated topological space, 198
quotients in the category of monoids, 2

radical of an ideal in a monoid, 16
Rees monoid, 88
Rees set, 88
regular M-set, 18
regularity of a log scheme, 318
relative characteristic of a morphism, 189
relative chart, 267
relative Frobenius morphism, 346
relative n-Frobenius homomorphism, 120
relatively ample sheaf, 211
relatively coherent sheaf of faces, 267
restricted Lie algebra, 510

s-fan, 238
s-finite morphism, 343
s-frame for a monoidal space, 327
s-injective homomorphism, 94
S-regular element of a monoid, 132
saturated chart, 249
saturated homomorphism, 159
saturated homomorphism of idealized

monoids, 177
saturated monoid, 12
saturated monoscheme, 198
saturated morphism, 353
semistable reduction, 298
separated monoscheme, 220
separated morphism of monoschemes, 213
sharp dimension of a cone, 40
sharp homomorphism, 94
sharp monoid, 11
sheaf on a sheaf, 199
simplicial cone, 62
simplicial monoid, 62
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small homomorphism, 109
small morphism, 343
small morphism of log schemes, 343
smooth morphism of log schemes, 389
solid idealized log ring, 317
solid log ring, 307
solid log structure, 307
Spec of an idealized monoid, 21
special affine subset of a monoscheme, 190
split log point, 285
standard log dash, 287
standard log point, 285
strict homomorphism, 94
strict homomorphism of idealized monoids,

177
strict morphism of log schemes, 275
support of an element of a monoid algebra, 83
supporting equation of a vertex, 54

tensor product of Q-sets, 8
toric monoid, 13
toric monoscheme, 198
toric scheme, 236
trajectory, 7
transporter of a Q-set, 9
transporter of a monoid, 10
trivial Y-extension of X by E, 382
trivial log structure, 271
trivializing stratification, 262

u-integral monoid, 11
universally local homomorphism, 100
unramified morphism of log schemes, 389

valuative monoid, 14, 59
vertex of a convex set, 54
vertex of a monoid scheme, 66
vertical homomorphism, 109
vertical part of a sheaf of monoids, 189
very solid log ring, 307

weakly inseparable morphism, 347

Y-extension, 381

Zariski topology of a monoid, 15
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abs, 446
αU/X , 288
Am, 65
AP, 275
aQ, 191
AQ(A), 65
AQ,K, 74
AQ′ (Q), 406
arg, 446
arg(m), 450
AS, 275

bθ, 277

CK (Q, J), 180
CK (Q, P), 149
CK (S), 40
C+

K (I), 43
cosp, 263
CQ, 240

D( f ), 16

EX , 462

f log
∗ , 272

f ∗log, 272
f ∗log(MY ), 189
FQ/P, 475
FX , 346
FX/Y , 346

H∗DR(AQ /AP), 471
Hθ(Q), 475
ht(p), 19
hX(Q), 195

IM, 267
IQ, 448

KE, 489
Ki(F )Ω j

X/Y , 490

KΩ·X/Y , 490
Kθ, 148

L·(F), 479
Li(F )Ω j

X/Y ., 490
L·Ω·X/Y , 493
Lq, 274

Mint, 12
M, 11
M∗, 10
M+, 15
Moni, 21
MU/X , 288
MX/Y , 189
Monint, 12

nQ, 119
νp, 61

Ω
i,log
X/Y , 501

Ω
·,log
X/Y , 502

Ω1
Q/P/R, 471

Ω·X/Y , 493
Ω·X/Y (F ), 490
Ω1

X/Z (log Y), 361

O
log
X , 462

pe, 209
pn, 210
Pic of a monoscheme, 205
Pic of a monoscheme, 205
proj(P, h), 207

Q(n), 119

R′, 14
R(1), 446
R∗Q, 240
R[[Q]] if Q is a monoid, 86
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R[K] if K is an ideal, 73
R[Q,K] if K is an ideal in Q, 74
R[Q] if Q is a monoid, 65
R[S] if S is a Q-set, 70
RQ, 240, 448

S1, 446
SF , 16
SP, 285
Sq(θ), 147
Spec(M), 15
Spec(P→ A), 275
spec(Q), 191
specZ (M), 232
S ×Q T , 8

< T >, 15
τX , 450
TQ, 240, 448
Tx, 451

VF , 240
VQ, 448
VS, 71

W+
Q, Q a monoid, 61

X, 189
X∗, 279
X∗
M

, 251
X∗Q, 240, 448
X ⊕ E, 382
X∗
F

, 269
XK , 357
Xlog, 450
Xlog, 442
X̃log

Q , 448
X(n), 251
X(Q), 195
XQ, 240, 443, 448
XQ′ (Q), 445
Xlog

Q , 448

yK , 336
Yθ, 277

Z(1), 446
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