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Preface

This is an introductory book on the general theory of relativity based partly on
lectures given to students of M.Sc. Physics at my university.

The book is divided into three parts. The first part is a preliminary course on
general relativity with minimum preparation. The second part builds the math-
ematical background and the third part deals with topics where mathematics
developed in the second part is needed.

The first chapter gives a general background and introduction. This is fol-
lowed by an introduction to curvature through Gauss’ Theorema Egregium. This
theorem expresses the curvature of a two-dimensional surface in terms of intrinsic
quantities related to the infinitesimal distance function on the surface. The student
is introduced to the metric tensor, Christoffel symbols and Riemann curvature ten-
sor by elementary methods in the familiar and visualizable case of two dimensions.
This early introduction to geometric quantities equips a student to learn simpler
topics in general relativity like the Newtonian limit, red shift, the Schwarzschild
solution, precession of the perihelion and bending of light in a gravitational field.

Part II (chapters 5 to 10) is an introduction to Riemannian geometry as re-
quired by general relativity. This is done from the beginning, starting with vectors
and tensors. I believe that students of physics grasp physical concepts better if
they are not shaky about the mathematics involved.

There is perhaps more mathematics in Part II than strictly required for Part
III of this introductory book. My aim has been that, after reading the book, a
student should not feel discouraged when she opens advanced texts on general rel-
ativity for further reading. The advanced books introduce mathematical concepts
far too briefly to be really useful to a student. And the student feels lost in the
pure mathematical textbooks on differential geometry. In that sense, this book
offers to fill a gap.

The final part is devoted to topics that include the action principle, weak
gravitational fields, gravitational waves, Schwarzschild and Kerr solutions and the
Friedman equation in cosmology. A few special topics are touched upon in the
final chapter.

Many exercises are provided with hints and very often complete solutions
in the last section of chapters. These exercises contain material which cannot be
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ignored and has been put in this format purposely to help students learn on their
own.

Note

I have generally used the female gender for the imagined student reader of the
book, but occasionally, the male pronouns ‘he’ or ‘his’ are also slipped in for
political correctness.
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Notation and Conventions

We use super- and sub-scripts (‘upper’ and ‘lower’ indices) aplenty. In Part II of
the book indices i, j, k, l,m, . . . range from 1 to n where n is the dimension of the
vector space or the manifold. In rare cases n too is pressed into service when indices
are running short in supply, but I hope no confusion arises when n is summed from
1 to n ! Indices i, j, k, . . . take value 1, 2 while discussing two-dimensional surfaces
in chapter 2.

For physical four-dimensional spacetime (in Parts I and III) we use Greek
indices μ, ν, σ, τ, α, β, . . . for components in the coordinate bases. These indices
take on values 0, 1, 2, 3. The index 0 refers to the time-related coordinate (usually)
and in this context indices i, j, .. etc. take values 1, 2, 3 for space-like coordinates.
For example

Aμ = (A0, Ai) = (A0, A1, A2, A3)

On one or two occasions alphabets a, b, c, . . . running from 0 to 3 are employed
when a basis other than a coordinate basis is used. For example, when an ortho-
normal basis for vector fields is chosen to calculate Ricci coefficients.

We use Einstein’s summation convention which assumes a sum over the full
range of values of any repeated index (called “dummy index”) in a term without
explicitly writing the summation sign Σ. In most cases one of the summed indices is
lower, the other upper. For example, AiBi =

∑n
i=1 AiBi in mathematical chapters,

and AμBμ =
∑3

μ=0 AμBμ in physics chapters. Any departure from the summation
convention is explicitly pointed out in the text.

We use a comma followed by an index to denote partial differentiation with
respect to some coordinate system, the name symbol of the coordinate (usually x)
is to be understood from the context:

f,i =
∂f

∂xi
, F,jk =

∂2F

∂xj∂xk

When specific coordinates are used, a comma followed by a coordinate symbol
denotes differentiation, for example f,r = ∂f/∂r.

We use physicists’ convention of multiplying a vector (or tensor) by a scalar
number on the left or right according to convenience.



xiv Notation and Conventions

The signature of the metric tensor is +2. The Minkowski metric ημν has
diagonal components η00 = −1, η11 = 1, η22 = 1, η33 = 1.

We have used the physicists’ notation ds2 to denote the metric tensor most
of the time and g or g at one or two places. It is written ds2 = gijdxidxj instead

of g = gijdxi ⊗ dxj . Since gij is symmetric, the terms like g12dx1dx2 + g21dx2dx1

are written in combined form as 2g12dx1dx2 instead of g12(dx1dx2 + dx2dx1).
In raising and lowering of indices (the isomorphism induced by the metric

tensor between a tangent space and its dual space of one-forms) we follow the
usual practice of not changing the name symbol of a vector or tensor field for
important tensors like the Riemann tensor Rijkl = gimRm

jkl, the Ricci tensor
Rij = gikgjlRkl, the Einstein tensor Gij = gikgjlGkl or the stress energy tensor
Tij = gikgjlT

kl. But we write δi
j = gikgkj and not gi

j . We avoid this convention
when it serves no special purpose.

The covariant derivative is denoted by a semicolon (;), for example φ;i, Ai;j

etc. Repeated covariant derivatives are sometimes written without an additional
semicolon: (Ai;j);k = Ai;jk. Unlike ordinary derivatives where Ai,jk = Ai,kj , co-
variant derivatives do not commute, Ai;jk �= Ai;kj in general and one has to be
careful.

The components of the Riemann curvature tensor are given by

−Ri
jkl = Γi

jk,l − Γi
jl,k + Γm

jkΓ
i
lm − Γm

jlΓ
i
km

This is the same as the convention of Hawking-Ellis, Misner-Thorne-Wheeler and
Hartle but differs by a minus sign from Weinberg’s

(Ri
jkl)our = −(Ri

jkl)Weinberg′s

and by a rearragement of indices with Wald’s

(Ri
jkl)our = (Rlkj

i)Wald′s
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Spacetime





Chapter 1

Introduction

General Theory of Relativity (or General Relativity) is Einstein’s theory of grav-
itation given by him in 1915. The name also applies to its later developments.
According to the theory spacetime is a Riemannian space whose metric gμν deter-
mines the gravitational field.1 The Einstein equation

Rμν − 1

2
gμνR =

8πG

c4
Tμν (1.1)

governs the gravitational field. In this equation the quantities Rμν , R are functions
of the metric gμν and its various derivatives and Tμν on the right-hand side are
determined by distribution of matter.

Bodies move along the straightest possible curves if no forces other than
gravity act on them.

Understanding the general theory of relativity means understanding:

1. the left-hand side of this equation, which relates to curvature of spacetime,

2. the right-hand side which contains Tμν , the stress-energy tensor,

3. the nature of solutions to the equation in various situations.

In cosmological applications the Einstein equation is written with an additional term,

Rμν −
1

2
gμνR + Λgμν =

8πG

c4
Tμν

where Λ is called the ‘cosmological constant’. We can include this term by adding to Tμν an
additional TΛ

μν ≡ −c4gμνΛ/8πG. Such a form for a stress energy tensor is unusual in the sense
that it corresponds to a perfect fluid with negative pressure. This term is of little consequence
except in cosmology. That is where we will discuss it.

1The explanation of these mathematical concepts will come as we go along in the book. For
the purposes of initial chapters, quantities with indices should be treated as a set of physical
quantities which appear together in an equation, much like the components of a vector.



4 Chapter 1. Introduction

1.1 Inertial and Non-Inertial Frames

1.1.1 Inertial Frames

In the Newtonian mechanical view the world is made up of ‘mass-points’ and the
motion of mass-points is determined by the three laws of motion.

To describe the motion of a mass-point, we need a frame of reference. A
frame of reference is (i) a set of orthogonal axes from which the position of mass-
points can be determined, and (ii) a system of measuring time accurately. One can
imagine a frame as a set of orthogonal coordinate axes made of light and thin but
rigid rods with markings of length, and an accurate clock. The position of a mass-
point at any time t shown by the clock can be described by its space coordinates
r(t) = (x1(t), x2(t), x3(t)). Here t is the Newtonian absolute time which has the
same numerical value in all frames of reference.

The functions r(t) describe the trajectory of the mass-point. The velocity
and acceleration are defined as the first and second derivatives with respect to
time t of these functions.

The first law of motion (law of inertia) states that a mass-point either stays
put at a fixed position or moves with uniform velocity if there are no forces acting
on it. If the motion is accelerated, then there must be forces acting on the mass-
point.

It is assumed that we can identify the forces as real physical agents indepen-
dently of their capacity to produce accelerations. So, if there are no forces, and
we find mass-points accelerated, then it is because we have chosen a wrong frame
of reference. The acceleration we see is due to the acceleration of the frame of
reference itself.

The ‘correct’ frame of reference is one in which this first law holds good. Such
a frame is called an inertial frame of reference.

It is necessary to make sure there exist inertial frames. Isaac Newton gave the
following recipe for a close approximation to one inertial frame. Choose a frame
in which the distant stars are stationary. The distant stars thus define a reference
frame at absolute rest.

Given this one inertial frame we can define an additional infinite number of
them. Any frame whose origin moves with a constant velocity in any direction with
respect to this given inertial frame and whose axes move parallel to themselves is
another inertial frame. Moreover, there are inertial frames which can be obtained
by a shifting of the origin of coordinates by a fixed amount or those obtained by a
rotation of the axes with respect to the original inertial frame by a fixed angle. And
furthermore, there are frames that can be obtained by constant relative velocities
given to frames which have been translated and rotated in this manner.

The second law of motion equates the rate of change of momentum pi =
mdxi/dt in the i-direction to the component of force F i acting on the particle in
that direction. Here the inertial mass m is a measure of the ‘quantitiy of matter’
in the particle and is a constant. The second law shows that the force is equal to
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inertial mass times acceleration d2xi/dt2,

dpi

dt
= m

d2xi

dt2
= F i.

Note that these equations are formulated in rectangular cartesian coordinates.
This fundamental law of physics is not a definition of force. The numbers F i

on the right-hand side have to be measured separately (for example by comparing
with some standard spring pulled to a given distance) and must be equal (up to
experimental accuracy) to mass times the accelerations produced in the particle
by observing the particle trajectory.

The third law states that, in an inertial frame, when two mass-points interact
with each other, the force produced by one on the other is equal and opposite to
the force produced by the other on the first. One should remember here that
the two forces act at the same instant of time and at the locations of the two
mass-points, which may be quite far. The Newtonian “action at a distance” works
with a cartesian coordinate system which is defined everywhere and in which it
is possible to “parallel transport” a force vector located at one point to the other
point without ambiguity and compare it with the force vector at that point to see
that it is indeed equal and opposite.

1.1.2 Inertial or Psuedo Forces

Newton’s laws hold in inertial frames. Bodies on which no real forces act will move
with uniform velocities as seen in inertial frames but will seem to be accelerated in
a non-inertial frame. If we insist that Newton’s laws hold for such frames too, we
have to invent fictitious forces acting on bodies to account for the accelerations.

For example, if there is a frame of reference rotating with a constant angular
velocity ω with respect to an inertial frame, then in this rotating frame all bodies
seem to have an acceleration r|ω|2 radially away from the axis of rotation where r
is the distance from the axis. This is the centrifugal acceleration. Similarly there
is the Coriolis acceleration equal to 2v×ω on any body moving with a velocity v
in the rotating frame.

In the rotating frame all bodies have these accelerations. We are accustomed
to explaining acceleration in material bodies caused by the presence of forces.
Therefore, in such a frame it seems as if there is a universal field of force acting on
all bodies with the peculiarity that the force is exactly proportional to their inertial
masses. Thus we have the centrifugal force or the Coriolis force in a rotating frame.
These forces are called inertial or psuedo forces. The proportionality of these forces
on the inertial masses of bodies on which they act is trivial because we multiply
acceleration by the mass to get the force.

The common characteristics of these inertial forces are, as noted above:

(i) They are universal, that is they act on all bodies,

(ii) they are proportional to mass, and
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(iii) they can be “transformed away” completely by changing to a suitable frame
of reference. That is, by going to an inertial frame.

1.1.3 Absolute Space and Mach’s Principle

Newton’s classical mechanics rests on the existence of inertial frames of reference. Is it sheer
luck that there are ‘distant stars’ which provide a definition of inertial frames? Newton invented
the concept of absolute space simply to avoid having to depend on the existence of distant stars
to provide a foundation of mechanics. According to Newton, the distinction between an inertial
and an accelerated frame is absolute and not dependent on existence of matter elsewhere in the
universe. Suppose there were nothing in the universe except two huge spherical balls of matter,
far away from each other and one of them rotating relative to the other about the axis joining
the centres of the two balls. Then, according to Newton, one can find out how much both are
rotating with respect to absolute space by measuring the equatorial bulge due to the centrifugal
forces. If one of the balls is at rest with respect to the absolute space, it will show no bulging
while the other will.

The concept of absolute space was criticized by Ernst Mach in the late 19th Century.
Mach’s view is that there is no experimental way to establish the existence of absolute space
because we cannot remove the distribution of matter in the universe and compare it with the
situation when it is present. Mach assumed that the inertial forces like the centrifugal force are
actually caused by distribution of matter in the universe. The distant stars do, in fact, determine
the inertial frame here in the vicinity of earth.

Although Mach did not give any mechanism or formula for calculating the acceleration of
a body from the knowledge of matter distribution, Einstein was influenced by Mach’s ideas in
formulating the general theory of relativity.

1.1.4 Inertial and Gravitational Mass

Gravity is a force very different from other forces. Newton not only discovered the
laws of motion but also the way the most important of the known forces, gravity,
acts.

Newton’s formula for gravitational force on a mass m due to a mass M is
usually written as

Fm→M = −GMmr

r3
. (1.2)

Here G is a universal constant and r the position vector of the point-mass m with
respect to M . The force is attractive, and acts along the straight line joining the
two masses.

Gravity, which is as real as a force can be, curiously, seems to share the first
two, and a-little-of-the-third, of properties of pseudo forces listed above.

(i) Gravity is universal. It acts on all bodies, unlike electric or magnetic forces
which act only on charged or magnetized matter.

(ii) Secondly, the gravitational force on a body is proportional to its iner-
tial mass m. Which means that all bodies accelerate by the same amount in a
gravitational field. (See section 1.6.3 in this chapter for further remarks.)
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(iii) And lastly, gravitation has a bit of the third property of psuedo forces. If
you were to fall freely in a gravitational field, you would not feel it. If you surrender
to gravity, gravity surrenders. It vanishes! This is only partly true though because
only static and uniform gravitational fields can be so eliminated everywhere by
going to a freely falling frame. The real gravitational field can be eliminated in
this manner in a very small region of space and for not too long a time. This is
the essence of the “Equivalence Principle” which is the starting point of Einstein’s
general theory of relativity.

1.1.5 Special Theory of Relativity

Relativity was born out of attempts to relate the descriptions of electrodynamic
phenomena in different inertial frames. Einstein’s fundamental paper on special
theory of relativity, published in 1905, is titled “Electrodynamics of Moving Bod-
ies”.

Maxwell had showed in 1861 that electric and magnetic fields will travel
in empty space as waves with a speed determined by a constant c appearing in
formulas as the ratio of (the then prevalent) systems of electrostatic and elec-
tromagnetic units.(See historical note later in this chapter.) That this constant
(which has dimension of velocity) was found to be very close to the measured
speed of light was a surprise and the first indication that light was composed of
electromagnetic waves. It was presumed that electromagnetic waves propagated
as vibrations of a medium called aether. The frame of reference in which the
aether is at rest is therefore especially distinguished. In this frame the velocity
of waves is equal to the constant c of the electromagnetic theory. The question
then was: what is the velocity of earth with respect to aether? And, can we deter-
mine how fast we are going with respect to aether by carefully measuring the light
velocity?

Very accurate optical experiments were done for over twenty years by A. A.
Michelson and later by Michelson and Morley and others. There was no direct or
indirect evidence of the supposed “light-medium” aether, and light was seen to
travel in vacuum always with the same speed in all directions.

Transformation formulas for electromagnetic fields as seen in different inertial
frames were obtained by Lorentz and Poincare. These formulas suggest that one
must associate with each inertial frame not only a system of cartesian coordinates
but also a separate time coordinate. Thus for one frame there are coordinates
x, y, z, t and for another x′, y′, z′, t′. The specification of a physical place and a
definite time, given in each frame by the coordinates (x, y, z, t) is called an ‘event’.
The same event whose coordinates are (x, y, z, t) in one frame has coordinates
(x′, y′, z′, t′) in another. These coordinates are related to each other by formulas
which depend on how the two frames are related. Once these formulas for events
are established, quantities like electric and magnetic fields as observed in the two
frames also get related.
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The Lorentz transformations for a frame (x′, y′, z′, t′) which moves with ve-
locity v with respect to frame (x, y, z, t) along the x-axis such that the two origins
and axes coincide at time t = t′ = 0 are given by

x′ =
x− vt√
1− v2/c2

, t′ =
t− vx/c2√
1− v2/c2

with y′ = y and z′ = z. The time variable t′ is different for different frames. The
Newtonian ‘absolute time’ is supposed to have the same value for each frame.
Lorentz and others regarded a separate time variable attached to each frame to be
a mere mathematical convenience without any physical importance. Instead, they
tried to explain the negative results of experiments of Michelson and Morley by
supposing that all physical lengths shorten by a factor

√
1− v2/c2 in the direction

of motion of the aether, thereby making the change in velocity of light with respect
to aether undetectable.

Around the same time, in 1904, Poincare had formulated the Principle of
Relativity, as the requirement that laws of physics should look the same in all
inertial frames and that there should be no distinguished frame of reference. There
was therefore a very genuine problem of reconciling the principle of relativity with
the properties of the light medium aether.

It was Albert Einstein who solved the problem in 1905, quite independently.

He accepted both the experimental fact of constancy of velocity of light as
well as the principle of relativity.

He critically examined the concept of time and of simultaneity of two events
or happenings. He found that two events which happen at different places but at
the same time in one frame will not happen at the same time in another frame
moving with respect to the first one.

He rederived the Lorentz transformation formulas from these two principles.

The relativity of simultaneity leads to a revision of all the basic concepts of
Newtonian physics. Values of length and time intervals depend on the frame in
which they are measured. The transformation formulas for velocities are changed.
No object can move with a speed greater than that of light. The expressions
of momentum and kinetic energy in terms of velocity have to be altered. The
mass m of a body in a frame in which it is at rest determines a “rest-energy”
equal to mc2. Energy is conserved only if we include this rest energy for each
particle in the expression for total energy. The law of conservation of mass no
longer holds, and every form of energy E has an inertial mass equivalent to
E/c2.

Einstein’s theory was called the theory of relativity. The reason why most
of the Newtonian mechanics had been doing fine till Einstein’s time is that these
‘relativistic effects’ are of the order of (v2/c2), which are very small for objects
moving with velocity v much smaller than the velocity of light.
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Einstein required the Lorentz transformations to hold for all inertial frames
of reference and for all physical phenomena, and not just the electromagnetic ones
where they were first discovered.

Curiously, gravitational force could not be brought in line with this theory
of relativity, although attempts were made the next few years.

Theory of relativity implies that the set of all Lorentz transformations (which
form a transformation group) classify all physical quantities as vectors or tensors
transforming as representations of this group. This means that physical quantities
occur in subsets or ‘multiplets’. This unification of spacetime and consequent or-
dering of all physical quantities as four-dimensional vectors or tensors (and later,
spinors, in quantum theory) was the single most important conceptual advance in
physics after Newton’s mechanics and the Faraday-Maxwell theory of fields. The
theory of relativity as given by Einstein in 1905 is restricted to inertial frames of
reference and is called the special theory of relativity. The general theory of rela-
tivity is Einstein’s generalization of the special theory in order to include gravity.
But then it becomes a fundamental theory, not just a relativistic theory of gravity.
See remarks in section 1.6.1 of this chapter on the suitability of the name ‘general
relativity’.

1.1.6 Equivalence Principle

The special theory of relativity deals with physical phenomena as seen by observers
in inertial frames of reference. In these frames bodies which are not under the
influence of any force move with constant velocity. It seems natural to extend the
basic principle of relativity to all observers or frames of reference and assume they
are all equally good for describing physics.

The simplest non-inertial frames of reference are those which move with a
constant linear acceleration or those which rotate at a constant angular velocity
with respect to an inertial frame of reference. In these non-inertial frames one sees
the appearance of inertial or pseudo forces like centrifugal or Coriolis force. As
discussed above, these forces are universal, they are proportional to the mass of
the body on which they act, and they can be eliminated entirely by changing to
an inertial frame.

Gravitation is similar: it is universal, proportional to mass (that is why all
bodies fall with the same acceleration in a gravitational field), and if a person falls
freely, there is no gravitational field in the falling frame.

It must have been thoughts in this direction, coupled with the failure of all
attempts to generalise Newton’s theory of gravitation to make it compatible with
special theory of relativity, that led Einstein to see the equivalence of gravitation
and the inertial forces that are produced in an accelerated frame.
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The electric force on a body in an electric field is proportional to its charge.
Given the electric force on the body its acceleration is determined by its mass in
accordance with Newton’s second law.

The physical fact that in a gravitational field the gravitational force on a
body is proportional to the same mass which occurs in the equation force = mass
× acceleration is called the equality of the gravitational and the inertial mass.
Because of this equality all bodies fall with the same acceleration in a gravitational
field.

1.1.7 Falling Elevator

Imagine a box the size of a small room with an observer inside it resting on Earth’s
surface. The observer cannot see out of the box. Sitting inside she can infer that
there is a gravitational field by observing that bodies in the box fall with the same
acceleration g.

Now take this box (along with the observer) to a place far away from gravi-
tating bodies like the Sun or Earth and (with respect to any inertial frame) give
a constant acceleration −g to the box.

To the observer inside everything would again be seen to fall with acceleration
g and there would be no way of knowing that she is not, in fact, in a constant
gravitational field.

This equivalence of constant gravitational field with the physical effects in
an accelerated frame was called by Einstein the Equivalence Principle. He made
an even stronger assumption that one would not be able to distinguish between
the two situations by any physical experiments (and not merely the mechanical
experiments used for measuring the accelerations of bodies). Sometimes this is
called the Strong Principle of Equivalence.

An immediate consequence of the principle is that an observer falling freely
in a constant gravitational field would be in an inertial frame. The freely falling
observer experiences no gravitational field! Every object around her will fall with
the same acceleration under gravity and there would be no motion ascribable to
gravity.

Using special relativity it was possible to find physical effects in an instan-
taneous frame “comoving” with an accelerated frame, and by using the Equiva-
lence Principle one could therefore guess what would happen in a gravitational
field. For example, Einstein proved in 1907 that clocks near a massive body
(where gravitational potential is lower) run slowly compared to clocks farther
away.

We come to Einstein’s ingenious argument a little later in this chapter.

Strictly speaking only a uniform gravitational field can be so removed by using a freely
falling frame. Any realistic gravitational field will have tidal forces assocated with it. The tidal
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forces depend on second derivatives of the gravitational potential, and in principle can be mea-
sured in the falling elevator. This does not reduce the importance of the equivalence principle as
a basic input in the formulation of general relativity. See tutorial problem on tidal forces at the
end of the chapter.

1.2 Space and Time

1.2.1 Galilean Relativity

Einstein critically examined the concept of time and of simultaneity of two events.
He found that two events which happen at different places but at the same time
in one frame will not happen at the same time in a frame moving with respect to
the first one.

The idea to represent motion of a particle as a curve in a diagram with one
of the coordinate axes representing the time is natural. For a particle trajectory
one can show it as in Figure 1.1, a curve in the graph of distance and time.

The equivalence of all inertial frames in Newtonian physics is called “Galilean
relativity”. This means, in particular, that frames moving uniformly with respect
to each other are physically equivalent.

A frame of reference which moves with respect to a stationary frame with
constant velocity v along the positive x-axis, will have its assignment of position
coordinate x′ of any object at time t related to those of the stationary frame
as x′ = x − vt. The time coordinate t′ of the moving frame is, of course, the
Newtonian absolute time t′ = t. What is important to see is that we can view the
two frames as two coordinate systems on an underlying spacetime. This is shown
in Figure 1.2.
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trajectory

Time

Distance

Fig. 1.1: Space and Time. Fig. 1.2: Galilean Relativity.
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Fig. 1.3: Absolute Simultaneity. Fig. 1.4: Special Relativity.

x′ = γ(x− βct), ct′ = γ(ct− βx)
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ct-axis (x = 0)

ct′-axis (x′ = 0)

x-axis (ct = 0)

x′-axis (ct′ = 0)

Note that there is a new time axis (corresponding to x′ = x − vt = 0) for
deciding the the coordinates x′, t′ for the moving frame. However due to t′ = t the
new x′-axis that is t′ = 0 coincides with the x-axis.

In Galilean relativity two events which are simultaneous in one frame are
simultaneous in any other frame. This is because there is only one absolute time
associated with an event. (Figure 1.3)

1.2.2 Space and Time in Special Relativity

The Lorentz transformations between the same two frames can be written in terms
of convenient variables ct and ct′ as

x′ = γ(x− βct), ct′ = γ(ct− βx),

β =
v

c
γ = (1− β2)−

1
2 .

The scaling of the time axes by a factor c has the effect of showing the relativistic
effects very clearly on a diagram by magnifying by this large factor.

When the axes are plotted for the space and time for the two frames we see
that in the spacetime plane the axes corresponding to x and x′ (that is sets of
points corresponding to t = 0 for x-axis, and t′ = 0 for x′-axis) are separated. See
Figure 1.4.

We notice the relativity of simultaneity. Two events in spacetime which are
simultaneous for (x, t) frame (that is they have the same value for the time co-
ordinate) are not so in the other (x′, t′) frame which moves with respect to this
frame. (Figure 1.5).
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1.2.3 Minkowski Space

A point in Minkowski spacetime is called an event. It is specified by the spatial
coordnates x = (x1, x2, x3) of the point and the time t. We denote by xμ = (x0 =
ct, x1, x2, x3) the coordinates of an event where the time coordinate t is multiplied
by the light velocity c in order to get greater symmetry in the formulas. It also
makes all the four quantities have the same physical dimension of length.

This four-dimensional space, called the Minkowski space, differs from the
usual three-dimensional Euclidean space in one crucial way. The length squared
between two points in three-dimensional Euclidean space is given by the positive
definite expression

(x− y).(x− y) = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

which is always positive. In the Minkowski space the square of the interval is given
by

(x− y).(x− y) = −(x0 − y0)2 + (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

= −(x0 − y0)2 + (x− y).(x− y)

= ημν(x
μ − yμ)(xν − yν)

where we use summation over indices μ, ν = 0, .., 3 as explained in the note on
notation (page xiii). This expression can be positive, negative or zero. The numbers
ημν are elements of a matrix η which are equal to −1,+1,+1,+1 on the diagonal
and zero elsewhere.

The important point is that this interval between two spacetime events x
and y is invariant, that is a number which has the same value in all coordinate
frames.

Each inertial frame of reference is represented by a choice of axes in this space.
Lorentz transformations between inertial frames are 4×4 matrices Λ which connect
the coordinates x0, x1, x2, x3 and x′0, x′1, x′2, x′3 corresponding to the same phys-
ical event (written as column matrices): x′ = Λx which must satisfy the condition
that the interval has the same invariant value s2 = (x−y).(x−y) = (x′−y′).(x′−y′)
for a pair of events whose coordinates in one frame are x and y and in the other
x′ and y′.

Between any two infinitesimally close spacetime events with coordinates xμ

and xμ + dxμ the infinitesimal interval can be written

(ds)2 = ημνdxμdxν .

When the interval is positive the events are called space-like separated, when it is
negative they are time-like separated events, and when it is zero they are light-like
separated. If a point particle is present at x and also at x + dx then (assuming
dt > 0) its velocity v = dx/dt where x = (x1, x2, x3), is related to the invariant
interval as

(ds)2 = −c2(dt)2 + (dx)2 = −c2(dt)2 + v2(dt)2 = −(c2 − v2)dt2.
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As the particle cannot have velocity greater than that of light the interval is time-
like. We call

dτ =
1

c

√
−ημνdxμdxν = dt

(
1− v2

c2

) 1
2

the proper time between the particle’s two succesive spacetime positions. The
invariant number dτ is the time as seen by an observer in the rest frame of the
particle, because for a clock traveling with the particle, the velocity v is zero.

For an arbitrary motion of the particle, the sum of infinitesimal proper times
along its four-dimensional trajectory will be the time shown by a clock we can
imagine travelling along with the particle. Two clocks starting from the same initial
event and showing the same time at that event can follow seperate trajectories
and may meet again at a common spacetime point later on. But on camparison
they will show different times in general. The integrated proper-times along the
two trajectories need not be equal. This is no more surprising than the fact that
arc-lengths of two arbitrary curves between two fixed points in the Euclidean plane
are different in general. In fact the proper time plays the same role as the length
of a curve in Euclidean space.

The motion of a mass-point can be described by a curve x(τ) in spacetime,
where τ is the proper time labelling points on the trajectory curve. For a free
particle without any force acting on it the trajectory is a time-like straight line in
spacetime:

xμ(τ) = xμ(0) + τUμ,
dxμ

dτ
= Uμ,

d2xμ

dτ2
= 0.

A time-like straight line in spacetime between two fixed points is a geodesic, that
is, a path for which the integral of ds along the path is extremal. A variational
principle can be written with action A,

δA = −mc2δ

∫
dτ = −mcδ

∫ √
−ημνdxμdxν = 0.

This looks a little more familiar if we rewrite it in a non-relativistic limit of small
velocities |v| << c,

A = −mc2

∫
dτ = −mc2

∫
dt

(
1− v2

c2

) 1
2

≈ −mc2(t2 − t1) +
1

2

∫
mv2dt

where the first term depends only on the endpoints and the second term shows
the kinetic energy as the Lagrangian of a free non-relativistic particle.

In four dimensions, dynamics becomes geometry. The force-free motion be-
comes straight lines or extremal paths given by δ

∫
dτ = 0.

Light signals also move along straight lines but the proper time along the
line is zero.
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The main lesson of Minkowski’s contribution to special theory of relativity
is that physical quantities have a four-dimensional character. Quantities which
were described by three-vectors (that is vectors with three components) before
the theory of relativity are seen to have a fourth partner corresponding to the
time-axis. Such quantities were called four-vectors.

For example the “four-velocity” of the particle U is defined as the derivative
with respect to the proper time: it is the tangent vector to the trajectory,

Uμ =
dxμ

dτ
= (cγ(|v|), viγ(|v|)) (1.3)

where vi ≡ dxi/dt, the usual three-velocity of the particle. Note that the three-
velocity is not just the “space” part of the velocity four-vector. Note also, that all
four components of the velocity four-vector are not independent

〈U,U〉 ≡ ημν
dxμ

dτ

dxν

dτ
= −c2. (1.4)

We can say that the four-velocity of a material particle is a time-like vector of
constant magnitude.

At any (proper) time τ there exists a coordinate system in which the particle
is momentarily at rest, that is, its velocity four-vector has components (c, 0, 0, 0).

1.3 Linearly Accelerated Frame

In this section we follow Einstein’s argument of 1907 to show that clocks run
slowly where gravitational potential is low compared to clocks at higher value of
potential.

Let there be an inertial frame S with respect to which another frame S1 is
at rest at t = 0 with coinciding axes and origin. Let S1 start accelerating in the
x-direction at t = 0 with acceleration g.

Let there be two clocks C1 and C2 in the accelerating frame S1. They are at
events O1 and O2 at t = 0 as seen by S. As shown in Figure 1.7 the trajectories
of the clocks C1 and C2 according to frame S are given by x1(t) and x2(t) where

x1(t) =
1

2
gt2, x2(t) = L+

1

2
gt2.

These equations describe the accelerated frame at low enough velocities, that is,
at small values of t.

After a small time Δt by the clock of S, the frame S1 is moving with velocity
gΔt, and the clocks in S1 are located respectively at events A : (x = g(Δt)2/2, t =
Δt) and B : (x = L + g(Δt)2/2, t = Δt). The proper time shown by these clocks
is the same ∫ Δt

0

dt
√
1− g2t2/c2 = Δt+O(Δt3).
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S : (x = 0)

C1 : (x = gt2/2) C2 : (x = L + gt2/2)

S:(t=0)L

Fig. 1.7: Einstein’s argument of 1907.
Clocks run slowly at lower gravitational potential.

Events A and B are simultaneous in frame S but not simultaneous in the
accelerated frame S1 which (at time t = Δt) has gained a velocity gΔt with respect
to S.

Let S′ be a third frame which moves with constant velocity v = gΔt with
respect to S. Einstein chooses this frame just so that it is “co-moving” with the
accelerated frame S1 at exactly the S time t = Δt.

It is simultaneity in S′ (which is co-moving with S1), that should be used
to decide which two events are simultaneous in the accelerated frame S1 at this
instant. The t′ = constant line (which determines the simultaneity in S′) passes
through event A on the trajectory of C1 and cuts the trajectory of the second clock
C2 a little further at C. The time shown by clock C2 kept at L in the accelerated
frame S1 will be the proper time up to event C while at the same instant (according
to S′) the time shown by the clock C1 will be the proper time up to A.

It is clear from the diagram that the clock C2 (at event C) will show more
time than the clock C1 at A. We calculate the proper times τ(O1A) and τ(O2C).
τ(O1A) is equal up to lowest order to Δt. To find proper time up to C, we need
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the time coordinate tC of event C in frame S. The coordinates of these events are
as follows in the two frames:

S S′

A xA = g(Δt)2/2, t = Δt t′ = t′A

C xC = gt2C/2, t = tC t′ = t′C = t′A

where we have not written those coordinates we do not need.
The basic idea is to calculate t′A from the first line and then relate t′C = t′A

to (xC , tC). Use Lorentz transformation between S and S′ with relative velocity
v = gΔt:

t′A = γ(v)

[
Δt− v

c2

g(Δt)2

2

]
, (v = gΔt),

t′C = γ(v)

[
tC − v

c2

(
L+

g(tC)
2

2

)]
.

Neglecting order (Δt)3 terms the first equation gives t′A ≈ Δt and so the second
gives

t′C = t′A = Δt = tC − gΔt

c2

[
L+

g(tC)
2

2

]
.

Solving this equation for tC and keeping to lowest order we get

tC = Δt(1 + gL/c2),

which is also equal to the proper time τ(O2C) in this approximation.
Therefore, in the accelerated frame, which experiences a constant gravita-

tional field in the−x direction , the clock at ‘height’ L shows a reading Δt(1+Φ/c2)
when at the same instant (according to this frame) the clock at the origin shows
a reading Δt. Here Φ = gL is the gravitational potential difference between the
locations of the clocks.

Similarly one can prove that light rays moving in a gravitational field bend
from a rectilinear path in the direction of the gravitational field.

These are preliminary results of an incomplete theory, but were crucial for
progress.

Gravitational fields can be appproximated to be uniform only in very small
regions of spacetime. The equivalence principle therefore holds only in such regions.
Fortunately, laws of physics are expressed in terms of local differential equations
for quantities like fields. Therefore the priciple can be used to generalise laws from
their formulations in a ‘freely falling local inertial frame’ to arbitrary gravitational
fields.
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The equivalence principle proved to be the guiding principle for finding the
general equations. One was required to write (in a suitable form) the equations
in the inertial freely falling frame where we knew the special theory of relativity
holds, and then declare them to be valid for all frames of reference.

1.4 Need for the Riemannian Geometry

There are three physical questions to be answered for a relativistic theory of grav-
ity: (1) which quantities describe the gravitation field? (2) what are the equations
that relate the gravitational field to matter-energy distribution? and (3) what is
the equation of motion of a particle in the gravitational field.

In the Newtonian theory the gravitational potential Φ(x) describes gravity.
At any instant the matter distribution is given by the mass density ρ. This density
determines the potential at the same instant of time by the Poisson equation

∇2Φ = 4πρ.

In this gravitational field a mass point moves along a trajectory determined by

d2x

dt2
= −∇Φ.

It looks natural to generalise Φ into a scalar field to describe gravity in the
relativistic case. But such a theory proposed by Einstein and others between 1908-
1912 does not work.

The first clues came from the equivalence principle.
According to the Equivalence Principle, there must exist in a small region

of spacetime a coordinate system X0, X1, X2, X3 in which the equation of the
particle is a straight line, i.e., force free,

d2Xμ

dτ2
= 0.

As seen in the section on relativity theory this equation can be derived from the
variational priciple δ

∫
dτ = 0. In a general coordinate system, the same equation

holds because dτ is invariant:

c2(dτ)2 = −(ds)2 = (dX0)2 − (dX1)2 − (dX2)2 − (dX3)2 = −gμνdxμdxν

where gμν are determined by the relation between the coordinates Xμ and xμ,

gμν = ηαβ
∂Xα

∂xμ

∂Xβ

∂xν
.

In a general frame the particle will be seen moving under the influence of
gravitational forces, along paths determined by δ

∫
dτ = 0 where proper time dτ
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is given by the expression in terms of gμν . Therefore gμν must be intimately related
to the gravitational field. The first question (about which quantities represent the
gravitational field) was thus resolved.

This expression for (dτ)2 is the familiar ‘line element’ in the Gauss-Riemann
geometry. It became clear that the Riemannian geometry is the proper tool for
gravitational theory.

Working along these lines, Einstein collaborated with his mathematician
friend Marcel Grossmann. The equation δ

∫
dτ = 0 was seen to lead to the equation

for the ‘straightest curve’ or the geodesic

d2xμ

dτ2
= −Γμ

νσ

dxν

dτ

dxσ

dτ

where Γμ
νσ are expressions in terms of derivatives of gμν . These quantities will be

defined in later chapters.
In the non-relativistic limit, this equation reduces to the Newtonian equation

if we take, for (x0 = ct),

g00 = −
(
1 +

2Φ

c2

)
.

From the form of the equations for the particle, the Γ appear to be related to
gravitational force and the gμν play the role of gravitational potential. This takes
care of the third question above.

The search for the field equations which determine gμν , from a knowledge of
the energy-matter distribution, (that is, the second question in our list) took the
greatest effort. After many false steps Einstein finally arrived at the correct theory
in November 1915.

1.5 General Theory of Relativity

As we have seen, it is the geometry of space and time which departs from the
Eulidean. The Minkowski space of special relativity has a non-Euclidean metric
or line element.

Einstein’s final version of the theory regards spacetime as a four-dimensional
Riemannian space or manifold.

Let the neighbouring points have coordinates x = (x0, x1, x2, x3) and x +
dx = (x0 + dx0, x1 + dx1, x2 + dx2, x3 + dx3) where x0 is a ‘time’ coordinate and
xi, i = 1, . . . , 3 refer to space. The infinitesimal distance squared is given by an
expression

ds2 = gμνdxμdxν

where indices μ, ν = 0, . . . , 3. Different coordinate systems can be used to specify
the same spacetime points, but the quantity ds2 remains the same. This invariance
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of ds2 determines how the metric tensor components change from one coordinate
system to another.

The special theory of relativity as interpreted by H. Minkowski in 1908 uses
a spacetime in which the metric tensor

gμν = ημν

has non-zero components

η00 = −1, η11 = η22 = η33 = 1.

Lorentz transformations are precisely those coordinate changes in which these
constant values of ημν remain the same. A spacetime continuum in which it is
possible to choose a coordinate system which makes gμν constant everywhere such
as here is called flat or Minkowskian.

In the presence of gravitating matter, gμν become modified, and it is not
possible to choose coordinate systems in which they can take constant values. The
space becomes curved, and the measure of curvature is the Riemann-Christoffel
curvature tensor. Its components Rμνστ depend on gμν and their derivatives up
to second-order.

The curvature tensor is the true measure of the ‘real’ gravitational field that
cannot be transformed away by a choice of coordinates. Even so, in a very small
neighbourhood of a spacetime point one can choose a coordinate system such that
the derivatives of gμν vanish at the point. Therefore those effects which depend on
the first derivatives of the gμν (like the acceleration of a particle falling in gravity)
are indistinguishable from that of a particle moving in a gravity-free region. This
is the physical content of the Equivalence Principle.

The gμν ’s are determined by energy and matter distribution by the Einstein
Equation

Gμν ≡ Rμν − 1

2
gμνR =

8πG

c4
Tμν

where the Einstein tensor Gμν is a simple combination of the so-called Ricci tensor
given by Rμν = Rσ

μσν and the scalar curvature R = gμνRμν .

c and G are the velocity of light and Newton’s gravitational constant. The
constant multiplying Tμν on the right-hand side is chosen so that in the non-
relativistic limit the theory gives Newton’s law of gravitation.

The right-hand side contains Tμν , the stress-energy tensor of matter which
contains information about momentum and energy densities and pressure of matter
and radiation.
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Material particles move in the gravitational field determined by gμν along
geodesics, the “straightest possible” curves. The equation for such curves xμ(τ) is

d2xμ

dτ2
+ Γμ

νσ

dxν

dτ

dxσ

dτ
= 0

where Γμ
νσ, called Christoffel symbols, are functions of gμν and their derivatives.

Light rays also move along geodesics except that along the path the interval
dτ between any two neighbouring points is zero.

It must be remembered that curves corresponding to motion of a body in
a gravitational field are the straightest possible in spacetime and not in three-
dimensional space. Thus a particle thrown vertically upwards in Earth’s gravity
may seem to have a highly curved path at its turning point in the three dimensions
of space, but it is as straight a path as can be in the four-dimensional spacetime.
This spectacular ‘straightening’ happens when we go from a three-dimensional
projection of the trajectory to the actual curve in four dimensions because the
speed of light has a very large value compared to ordinary velocities.

General theory of relativity is a theory of gravitation in the narrow sense
that if there was no gravity then special theory of relativity would suffice.

In the broad sense it is a fundamental theory which includes all physical
phenomena because gravity acts on everything. As gravity is a weak force at ordi-
nary distances and mass densities, the corrections to Newton’s law of gravitation
are small. The typical corrections to Newtonian theory are of the order of the
dimensionless number GM/rc2 where M is the mass of the gravitating body, r
the typical distance scale of the problem.

For example, a clock at a distance r from a spherical body of mass M runs
in a ratio

√
1− 2GM/rc2 slower than a clock very far away from the body. This

leads to frequencies of spectral lines emitted by atoms, (atoms act like a clock),
at a distance r away from the massive body to be reduced by a fraction GM/rc2

when seen by a far away observer. This is called gravitational red-shift (because
in the visible spectrum lower frequencies occur near the red). For an atom sitting
on the surface of the Sun this turns out to be of the order of 10−6.

The angle of bending of light from a distant star grazing past the surface of
the Sun is 4GM/Rc2 where R is the radius of the Sun.

Similarly, the angle by which the elliptical orbit of a planet fails to close
in one revolution turns out in Einstein’s theory to be 6πGM/Lc2 where M is
the mass of the Sun, and L, the latus rectum of the orbit. For the innermost
planet Mercury (which has the smallest value of L) this angle turns out to be
equal to 43′′ of arc in a hundred years (415 revolutions of the planet). This
“precession of the perihelion” was the observed, but unexplained, leftover dis-
crepancy in the orbit of Mercury after all known causes for this phenomenon
had been taken into account. This was a great triumph for the general theory of
relativity.
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Gravitational disturbances, which mean perturbations in the values of gμν

caused by changing matter distribution, travel out as gravitational waves, taking
away energy. However the direct evidence of gravitational waves is yet to come. An
ambitious world-wide program for the detection of gravitational waves is currently
underway and the first results are expected soon.

One of the most dramatic application of the general theory of relativity is in
the gravitational collapse and formation of black holes. One finds that an idealised,
extremely heavy mass concentrated in a very small region so that this region is
inside its Schwarzschild radius RS = 2GM/c2 will give rise to a gravitational
field so strong that even light cannot escape from this region. Such a region is
called a black hole. It is a consequence of the general theory of relativity that if a
sufficiently large mass distribution begins to collapse under its own weight, there
may be no known forces of nature to stop it. In that case the collapse goes on
unchecked and the mass densities may reach extremely high values whose physics
we do not understand. The spacetime is so highly curved around the cores of such
objects that light gets bent and ‘sucked back in’, unable to escape. There are
believed to be black holes of all sizes existing in Nature, ranging in total mass
from a few solar masses to black holes of a billion solar masses residing in the
centers of most galaxies.

An application of the general theory of relativity is to the behaviour of the
universe itself. Assuming the universe at the largest distance scales (of a few billion
light years) to be uniform and isotropic, it is possible to infer from Einstein’s
equations that the universe must have started from a hot fiery ball which has
been expanding ever since. The field of cosmology has received a great boost in
recent years due to fantastic progress in observational astrophysics.

All the same the general theory of relativity is a classical theory. Physicists
believe that all phenomena, at the appropriate level, must be described by a quan-
tum theory. All attempts to quantize the classical gravitational field described by
Einstein’s theory have been unsuccessful so far. Physicists hope to learn something
deep and fundamental once they are ultimately successful in doing that.

In this book we concentrate on just the basics of Einstein’s theory. A guide
to the literature dealing with advanced topics and applications of the theory is
given in a section at the end of this chapter.

1.6 Tutorial

1.6.1 The Name ‘General Relativity’

The special theory of relativity was called the ‘theory of relativity’ from 1905
to 1915 (and even till much later) because it refers to a relativity of describing
the physical phenomena in different inertial frames. Two positions of observers
are relative, two orientations are relative and two uniform motions are relative
because they are equally good for description. The Lorentz transformations which
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connect inertial frames are linear mappings. Therefore, when theory of gravitation
required accelerated frames and general coordinate transformations it was called
general theory of relativity by Einstein, and the former theory of relativity became
the special theory.

But it is surely possible to formulate the special theory of relativity in general
coordinates. It may even be convenient sometimes. What is special about special
relativity is that the metric tensor gμν (which will appear in such a formulation) is
maximally symmetric. The spacetime of special theory is completely homogeneous
and isotropic leading to Poincare invariance. Realistic gravitational fields in general
relativity may not have any symmetry at all in gμν . Therefore general theory of
relativity is only general in the sense that it uses spacetimes which are not special
like the flat Minkowski space of special relativity. There is no relativity of position
or orientation. So it is a general theory alright, but not a general theory of relativity
there being no relativity in the general theory.

But what is there in a name and everyone uses it! See the lecture by V. Fock
reprinted in the collection edited by C. W. Kilmister for a discussion on this point.

1.6.2 Historical Note on c

Ratio of Electrostatic and Electromagnetic systems of units

One can define the electrostatic unit (e.s.u.) of charge as the charge which
repels an equal charge by a unit force at a unit distance. This amounts to choosing
the constant of proportionality in Coulomb’s formula as 1:

F =
q1q2

r2
12

(
F =

1

4πε0

q1q2

r2
12

(SI)

)
.

Therefore q(in e.s.u.) = q(in SI)/
√
4πε0. On the other hand the electromagnetic

unit of current was defined similarly using Ampere’s formula for force between
current elements

F =
i1i2dl1 × (dl2 × r12)

r3
12

(
F =

μ0

4π

i1i2dl1 × (dl2 × r12)

r3
12

(SI)

)
.

One e.m.u. of current is the current i which makes two current elements idl placed
a unit distance apart, parallel to each other and perpendicular to the line joining
them, attract by (dl)2 units of force. (The elements dl should be chosen small
enough in comparison with unit distance so that Ampere’s formula remains valid.)
From the above I(in e.m.u.)=I(in SI)

√
μ0/4π.

One e.m.u. of charge is then the amount of charge which flows past a cross-
section of wire having one e.m.u. of current in unit time. The two unit systems of
charge differ by a constant of dimension of velocity because the physical dimensions
of these quantities are (we denote the physical dimension by the symbol [ ])

[(e.m.u.) of charge] = [T ]
√
[Force], [(e.s.u.) of charge] =

√
[Force][L].
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Therefore [(e.s.u.)]=c [(e.m.u.)] where c has dimensions of velocity. From the com-
parison with our SI units,

Q(in e.s.u.) = Q(in e.m.u.)/
√

μ0ε0 = cQ(in e.m.u.).

This constant was measured carefully by Weber and Kohlrausch in 1856 by mea-
suring the charge on a Leyden Jar (a capacitor) by using electrostatic repulsion
as well as by electromagnetic effects of the current produced when discharging
the jar. Their value was 3.1 × 1010 cm/sec. The coincidence of its equality with
the velocity of light was noticed immediately by Kirchoff, who related it to his
theory of waves of electric disturbance propagating in a wire made of a perfect
conductor. Five years later, in 1861, Maxwell gave the concept of ‘displacement
current’ and showed that electric and magnetic fields will propagate with velocity
c/ε1/2 where ε is the dielectric constant (relative permittivity) of the medium. See
E.T.Whittaker[1951],History of theories of Aether and Electricity ,Vol I, p.232

1.6.3 Remarks on Inertial and Gravitational Masses

We have put the inertial masses M and m in the formula for the gravitational
force but conceptually the role of M and m is quite different here. We should have
written the formula as

Fm→M = −GMactivempassiver

r3
.

Mactive is the “active” gravitational mass which denotes the capacity of M to
produce the force of gravity and mpassive is the constant which occurs in the
formula for the force just as charge q of a body occurs in the formula for electric
force qE acting on it. The inertial mass m in contrast has nothing to do with
gravity in particular. It just determines the acceleration produced in a body due
to a force acting on it.

Active and passive gravitational masses for the same body can be chosen to
be equal, because there is an equal and opposite force due to m on M ,

FM→m =
GmactiveMpassiver

r3
= −Fm→M .

Therefore

Mactive

Mpassive
=

mactive

mpassive
= const.

By absorbing this constant in the definition of G we can write all equations with
only the passive masses to be henceforth called gravitational mass. Therefore we
write

Fm→M = −GMgrav.mgrav.r

r3
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and the formula for acceleration becomes

a =
Fm→M

m
= −GMgrav.

(mgrav.

m

) r

r3
.

It just happens to be a great coincidence, that the inertial and the gravitational
masses are always exactly proportional. In other words mgrav./m is a universal
constant. The proof of this fact is that if the body with mass m is replaced by
another with a different mass, we find its acceleration exactly the same. The
proportionality constant of mgrav./m can again be absorbed in the redefinition of
G and then the formula can be written as originally.

The question is, why there is this equality of gravitational and inertial mass?
Why do different bodies have the same acceleration?

Galileo and Newton were aware of this coincidence, and all measurements
have only confirmed the equality of gravitational and inertial masses.

1.6.4 Newtonian Gravity

Exercise 1. Derive expressions for the centrifugal and Coriolis forces in a frame rotating
with constant angular velocity ω about the z-axis of an inertial frame.

Answer 1. Let the coordinates of any point with respect to the rotating frame be
x′, y′, z′. Assume at t = 0 the axes coincide. Then at time t the frame has rotated
by angle ωt and

x′ = x cos(ωt) + y sin(ωt),

y′ = y cos(ωt)− x sin(ωt),

z′ = z.

These give

ẍ′ = 2ωẏ′ + ω2x′,

ÿ′ = −2ωẋ′ + ω2y′,

z̈′ = 0.

Put these in vector form: ω = (0, 0, ω), v′ = (ẋ′, ẏ′, ż′),

r′⊥ = (x′, y′, 0) = r′ − ω(ω.r′)/|ω|2 = ω × (r′ × ω)/|ω|2

and multiply by the mass of the particle

F′ = mr̈′ = 2mv′ × ω + mω × (r′ × ω).

The first term depending on the velocity is called the Coriolis force and the second the
centrifugal force.

Exercise 2. Show that motion of a particle under gravitational force takes place in a
fixed plane.

Answer 2. The plane is orthogonal to the angular momentum vector.
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1.7 Literature

The literature on relativity is vast. The following is just an indication of easily
traceable books and other sources. The choice of this material is guided by stu-
dents’ needs (particularly easy accessibility) and the list is grossly incomplete.

Original Papers

Lorentz, Einstein, Minkowski and Weyl, Principle of Relativity, Dover books, 1952
A collection of original papers on special and general theory of relativity in English
translation with notes by A. Sommerfeld.

C. W. Kilmister (Ed.), Special Theory of Relativity, Pergamon Press, 1970,
General Theory of Relativity, Pergamon Press, 1973
Collection of almost all the basic papers on relativity. These volumes have intro-
ductory chapters and commentary by C. W. Kilmister.

Historical Matter

Abraham Pais, ‘Subtle is the Lord. . . ’, The Science and the Life of Albert Einstein,
Oxford University Press, 1982
A thorough discussion of development of Einstein’s thinking with an almost day-
by-day account.

Edmond T. Whittaker, History of theories of Aether and Electricity, Vol I
and II, Thomas Nelson and Sons, London. Reprinted by Humanities Press, New
York, 1973
This is another standard reference for the history of field theories of classical
physics.

Texts

Albert Einstein, Meaning of Relativity, Indian Edition by Oxford Book Company,
1965
These are Einstein’s 1921 Princeton lectures, originally published by The Prince-
ton University Press. Every student of relativity should read these 100 odd pocket-
book sized pages for the clarity and brevity of the man who discovered the theory.
The available editions have appendices containing Einstein’s later unified theories,
none of which seem relevant today. But who knows?

Wolfgang Pauli, Theory of Relativity, Pergamon Press 1958
Pauli’s Mathematical Encyclopedia review article of 1921 written at the age of 21
by the author. The article gives a complete account of relativity theory till 1921.

Herman Weyl, Space-Time-Matter, Dover, 1952
First published in German in 1918. It was already in its fourth edition in 1920. One
of the earliest expositions of relativity by a great mathematician who contributed
to the theory. The third edition of 1919 introduces Levi-Civita’s 1917 discovery of
infinitesimal parallel displacement.
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Lev Landau and E. M. Lifshitz, Classical Theory of Fields, Pergamon Press,
Reprint 2004
Volume 2 of the famous Course of Theoretical Physics. The first nine chapters
are on Electrodynamics, last five on the General Theory of Relativity. These (less
than two hundred) pages constitute an introduction which is both deep and brief.

Arther S. Eddington, Mathematical Theory of Relativity, Cambridge Univer-
sity Press, 7th reprint 1963
One of the clearest early expositions, first written as mathematical notes to his
delightful and popular book Space Time and Gravitation published in 1920.

Peter G. Bergmann, Introduction to the Theory of Relativity, Prentice Hall,
1942
(Now available as a paperback in Dover, New York)
This book has a forward by Einstein. It is the complete, perhaps the first, textbook,
written with students’ needs in mind. It covers quite ‘advanced’ ideas (for those
days) such as the Kaluza-Klein theory, which has made a comeback in theoretical
physics recently.

Vladimir A. Fock, The Theory of Space, Time and Gravitation, Macmillan,
1964
The authoritative book by the great Russian physicist who took a critical look at
many of the fundamental ideas of relativity.

C. Møller, The Theory of Relativity, Oxford, 1952
Authoritative book on all aspects of the theory.

J. L. Synge, Relativity, the General Theory, North Holland, 1966
This is a book written in a very independent style very unlike other standard
books.

C. M. De Witt and B. S. De Witt (Eds.), Relativity, Groups and Topology,
Blackie and Sons, 1964
Contains delightful introductory lectures on general theory of relativity given by
Synge at Les Houche School in 1963. This collection also includes lectures by
Wheeler, Penrose, Sachs, and Misner on various aspects of general relativity.

Charles W. Misner, Kip S. Thorne and John A. Wheeler, Gravitation, Free-
man, 1973
The absolute darling of students and researchers in general relativity. Its twenty
fourth reprint came out in 2002 ! ‘Merely holding the book in your hand makes you
think about gravity !’, we used to say as students in the 1970’s. The presently avail-
able paperback is lighter, a little above two kilograms. This large sized (20 cm×
25 cm), 1272 page book begins at the beginning and has everything on gravity (up
to 1973). There are hundreds of diagrams and special boxes for additional expla-
nations, exercises, historical and biographical asides and bibliographical details.
It must have converted a fair number of people into research in general relativity.
And conversion is a good word here because S. Chandrasekhar, while reviewing
the book, is supposed to have commented on its missionary spirit! What makes it
a pleasure to read is that no idea is introduced without its motivation. A student
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is told why the idea is natural to expect, and, if the natural expectation is wrong,
why it is so. It has a cheery delightful style throughout.

Steven Weinberg, Gravitation and Cosmology, John Wiley, 1973
A modern classic which reduces the emphasis on geometry and reinforces the power
of the equivalence principle. Extremely readable with a discussion of experimental
data (up to 1973).

Paul M. Dirac, General theory of Relativity, Princeton University Press, 1996,
Reprinted by Prentice-Hall of India, 2001
Dirac’s 1975 Lectures at Florida State University. As concise, to-the-point as only
Dirac could be. This slim 35-section, 70 page booklet is written for a beginner.
The book has significantly five sections on the action principle.

S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford Univer-
sity Press, 1983
The exhaustive treatise on black hole solutions and their properties. If you need
anything, anything at all, on the Schwarzschild or the Kerr spacetime it is here.

Robert M. Wald, General Relativity, University of Chicago Press, 1984
The deservedly famous advanced textbook includes extremely readable introduc-
tory parts in the first six chapters and advanced topics on researches done in the
1960’s and 1970’s in chapters 7 to 14. A lot of mathematical background is con-
densed and relegated to Appendices at the end of the book which one cannot do
without.

S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time,
Cambridge University Press, 1973
A classic on spacetime structure in general relativity, known for its clarity and
rigour. All proofs are complete, every concept well defined, most details included.
But it requires considerable mathematical maturity to follow the line of thought.
The mathematical apparatus used is indispensable for research in the area but the
introduction to differential geometry is too brief (forty pages) to be of any actual
help to a beginner.

R. Adler, M. Bazin, M. Schiffer, Introduction to General Relativity, Second
Edition, McGraw Hill, 1975
A very good textbook although not widely available. Its derivation of the Kerr
metric is particularly good.

W. Rindler, Essential Relativity, Springer-Verlag, 1977
This book, written specially for the advanced undegraduate student, is known for
conceptual clarity and style. Written in extremely lucid style it is an enjoyable but
deep book.

E. F. Taylor and J. A. Wheeler, Spacetime Physics, W. H. Freeman, 1963
A delightful undergraduate book on basics.

Bernard F. Schutz, A first course in general relativity, Cambridge University
Press, 1985
A good textbook from a beginner’s point of view. It develops the mathematical
background of tensor calculus through hundreds of exercises.
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Ray d’Inverno, Introducing Einstein’s Relativity, Clarendon Press Oxford,
1992
A textbook with several advanced topics as well.

H. C. O’Hanian and R. Ruffini, Gravitation and Spacetime W. W. Norton
and Co., 1994
An introductory book which looks at gravity in the most logical and straightfor-
ward way. In spirit it is closer to Weinberg’s book. There is a good collection of
problems in each chapter. And the book contains a very detailed guide to further
reading in each chapter.

James B. Hartle, Gravity, Pearson Education, 2002
Written in the spirit of Misner, Thorne, Wheeler, this is the best recent treatment
of general relativity available to the advanced undergraduate student. The book is
complete with all the exciting experimental data up to the end of the 20th century.
This book is a must for every beginner.

S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativ-
ity, Addison Wesley, 2004
This is a well-written recent textbook which gives plenty of space to geometry as
needed in general relativity. Carroll’s lecture notes on general theory of relativity
are also available on the arxiv.org as gr-qc/9712019.

N. Straumann, General Relativity – With Applications to Astrophysics,
Springer Verlag, 2004
A thorough recent book. It has a condensed mathematical introduction in Part
III, used throughout the book.

Eric Poisson, A Relativist’s Toolkit, Cambridge University Press, 2004
A recent advanced book on selected topics in general relativity. Although the topics
are advanced, the author has taken pains to provide details and explanation.

Important Reviews and Internet Sources

S. W. Hawking and W. Israel, Einstein Centenary Survey, Cambridge University
Press, 1979
S. W. Hawking and W. Israel, 300 Years of Gravitation, Cambridge University
Press, 1987

Living Reviews on Relativity: (http://relativity.livingreviews.org/)
An internet source of reviews which are periodically updated. In addition there
are research articles and reviews available on (http://arxiv.org/) in the “gr-qc”
(general relativity and quantum cosmology) section.

Books on Mathematics

For the convenience of a physics student all texts on the general theory of relativity
do try to give an introduction to Riemannian geometry with varying degrees of
pedagogical attention or success.
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Geometry, Undegraduate Texts in Mathematics, Springer-Verlag, 1976
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This is an all-time favourite. A slim, 175 page book which introduces Riemannian
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Books on Astrophysics and Cosmology

Astrophysics and Cosmology are two important branches of physics where general
theory of relativity is applied. The subject of cosmology has been in very rapid
growth in the last ten years.

T. Padmanabhan, Theoretical Astrophysics, Cambridge University Press, Vol.
I, 2000, vol. II, 2001, Vol. III, 2002
This is a thorough introduction in three volumes.

J. V. Narlikar, An Introduction to Cosmology, Cambridge University Press,
2002
For cosmology there are many recent texts but as introduction, this is perhaps
the best. It gives a clear, detailed, account of all concepts with their historical
background.
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P. Coles and F. Lucchin, Cosmology, John Wiley and Sons, 2002
V. Mukhanov, Physical Foundations of Cosmology, Cambridge University

Press, 2005
These are two of the many recent textbooks on cosmology.

S. Weinberg, Cosmology, Oxford, 2008.
A very recent advanced book on Cosmology.



Chapter 2

What is Curvature?

In this chapter we discuss Gauss’ work to explain the concept of curvature tensor
and the geodesic in the familiar case of a two-dimensional curved surface.

Differential geometry as used in the general theory of relativity, and in much
of gauge theories of elementary particles, was the result of Riemann’s generaliza-
tion of Gauss’ work on curvature of two-dimensional surfaces to any number of
dimensions.

It is instructive to see how these ideas developed.

2.1 Concept of Curvature

The curvature of a curve in a plane is determined by how fast its unit normal
vector n (or the tangent vector for that matter) changes as we move along the
curve. A measure of curvature is the ratio of the small change |dn| in the unit
normal vector to the distance ds moved by the point on the curve.

A straight line has zero curvature because the unit normals are all parallel
and do not change. A circle of radius R has curvature 1/R because for the distance
ds that the point P moves, the unit normal vector changes by an angle ds/R so
|dn| = ds/R.

Gauss defined the curvature of a surface analogously.
Let S be a two-dimensional surface whose points r(u) are labelled by two

independent parameters u1, u2. Let the unit normal be denoted by n(u) at the
point determined by the parameters u.

When parameters u1, u2 change by small amounts du1, du2 the point on the
surface traces a small displacement

dr =
∂r

∂u1
du1 +

∂r

∂u2
du2 ≡ r,idui

tangential to the surface.
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Fig. 2.1: Curvature of planar curves.

The straight line on the left has zero curvature because the normal
does not change, whereas for the arc of a circle (of radius R) the ratio
Δn/Δs is 1/R.

Here we are using the convenient notation r,i for the derivative with respect to
ui and have omitted the summation sign, it being understood that whenever there
is a repeated index, there will be a sum. See page xiii for notational conventions.

Vectors r,1 and r,2 are linearly independent because u1, u2 are independent
parameters, so that changes in r along the u1 and u2 directions cannot be collinear.
These derivatives r,1 and r,2 form a basis for vectors tangent to the surface.

Because the unit normal n is a vector of constant length n.n = 1, infinitesimal
changes in it due to changes in the parameters u are orthogonal to it. That is,
d(n.n) = 2n.dn = 0. Therefore dn = n,idui is tangential to the surface.

The normal vector changes by (dn)1 = n,1du1 when the parameter u1 is
changed, but u2 is kept fixed while it changes by (dn)2 = n,2du2 when the opposite
is true. Note that in order to find the change in the normal vector the normal at
the displaced point is brought parallel to itself so that its base point coincides with
that of the normal at the original point. The change dn is then the infinitesimal
vector which joins the tip of the original normal to that of the parallel normal
from the neighbouring point.

As (dn)1, (dn)2 are tangential, (we have omitted the numerical coefficients
du1 and du2), we can expand them in basis vectors r,i, i = 1, 2,

n,i = Li
jr,j . (2.1)

The coefficients Li
j depend on u and they determine the way the tips of the unit

normal vectors move when their base is carried on the curving surface. It defines
a mapping of the tangent vector dr into another tangent vector dn. This mapping
is called the Weingarten map and matrix Li

j which determines it the Weingarten
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matrix. Generalizing the notion of curvature of a plane curve, Gauss defined the
curvature of the surface at a point P to be the ratio of the area spanned by the
increments (dn)1, (dn)2 of the normal, to the area spanned by the tangent vectors
(dr)1 = r,1du1 and (dr)2 = r,2du2 on the surface.
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Fig. 2.2: Curvature of surfaces.

The curvature is defined to be the ratio of the surface area spanned
by infinitesimal changes in the normal vector dn1 and dn2 in two inde-
pendent directions to the surface area of the infinitesimal area element
along whose sides the change in normal unit vector is calculated.

The curvature of a plane (a) is zero because the normal vector does
not change at all. For a cylindrical surface (b) the curvature is zero
again because, even if the normal changes along the circular side of
the surface, it does not change in a direction parallel to the axis. For
the surface of a sphere of radius R , the curvature (c) is equal to 1/R2

because the solid angle that dS subtends at the center of the sphere is
the same as that covered by the normal vectors at the end of the area
element.

The area of the parallelogram spanned by vectors a and b is |a× b|.
Therefore, the measure of curvature is given by

(dn)1 × (dn)2 = (n,1 × n,2) du1du2

= (L1
1r,1 + L2

1r,2)× (L1
2r,1 + L2

2r,2) du1du2

= (L1
1L2

2 − L1
2L2

1)((dr)1 × (dr)2).
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Fig. 2.3: Gaussian Curvature of a surface.

Curvature of the surface at a point is the ratio of the area spanned
by the increments (dn)1 = n1 − n and (dn)2 = n2 − n of the normal,
to the area spanned by the tangential displacement vectors (dr)1 and
(dr)2 on the surface.

The quantity detL ≡ L1
1L2

2 − L1
2L2

1 is called the Gauss curvature or the
total curvature of the surface.

Thus, a plane has zero curvature because the normals are all in the same
direction. If we imagine a sheet of paper in place of the plane, and roll it in the
form of a cylinder, the normals at points lying on the circular direction point in
different directions, but those along a line parallel to the axis of the cylinder are
parallel. Thus the area spanned by the tips of the normal when the base point is
moved in a small rectangle on the paper with sides along the axis and along the
circle is stll zero and the cylinder has zero total curvature. The spherical surface
of radius R however has curvature 1/R2 as can be seen easily.

2.2 “Theorema Egregium” of Gauss

Gauss, considered to be one of the three greatest mathematicians of all times, the
other two being Archimedes and Newton, was not known for overrating his own (or
anybody else’s) work. But he must have felt reasonably pleased with himself to call
the following result as standing out in a flock of theorems (“theorema egregium”,
1827):

The curvature of a surface can be defined entirely in terms of quantities
intrinsic to the surface, without any reference to how the surface is located or
embedded in the three-dimensional surrounding space.

The intrinsic quantities in question are the coefficients gij of the quadratic
form called the metric form or the line element which determines the distance
between two infinitesimally close points on the surface.
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Expressed in terms of the parameters (u1, u2) and (u1 + du1, u2 + du2) the
distance can be calculated as follows. As dr = r,idui, the infinitesimal distance
squared is

ds2 = dr.dr = r,i.r,jduiduj ≡ gijduiduj , (2.2)

gij = r,i.r,j = gji. (2.3)

The quadratic form of the metric is positive definite, symmetric and non-singular
(that is, det g �= 0).

Measurements of small distances made by two-dimensional creatures living on
the surface are sufficient to determine these coefficients. Functions and derivatives
of gij with respect to ui are again intrinsic.

What Gauss showed, specifically, was that the combination of Li
j which

determines the total curvature is given in terms of intrinsic quantities by the
following equation known as the Gauss equation:

Lj
mLl

k − Ll
mLj

k = −gmiRk
ijl (2.4)

where gij is the matrix inverse to gij and the quantities Rk
ijl, called the Riemann-

Christoffel curvature tensor are given by

−Rk
ijl = Γk

ij,l − Γk
il,j + Γm

ijΓ
k
ml − Γm

il Γ
k
mj (2.5)

which in turn is composed from

Γk
ij =

1

2
gkl(gil,j + glj,i − gij,l) (2.6)

and its derivatives.

The antisymmetry in j, l and in m, k restricts the Gauss equation to es-
sentially one combination of indices j, l,m, k, (because there are only two values
possible for any of these indices, 1 and 2 ) and that combination gives detL, the
total curvature.

Moreover, the straightest possible curves on the surface, called geodesics, are
given by functions ui(s), where s is the distance measured along the curve, which
satisfy

d2uk

ds2
+ Γk

ij

dui

ds

duj

ds
= 0. (2.7)

We give a proof of this revolutionary theorem later in this chapter.

Riemann generalised Gauss’ formula for curvature of two-dimensional sur-
faces to any number of dimensions in 1854 by introducing the curvature tensor
named after him.
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All information of the space is contained in the line element

ds2 = gijdxidxj

and quantities defined in terms of these, like the Γk
ij and the curvature tensor

Rk
lij . Riemann’s work was extended by Christoffel, Ricci and Levi-Civita and

other mathematicians.

2.3 The Gauss Equation

We have seen that the first drivatives of r are tangential to the surface r,i.n = 0.
But the second derivatives

r,ij ≡ ∂2r

∂ui∂uj

have components both along the normal and tangent to the surface.
(1) Differentiating r,i.n = 0 once, we get

r,ij .n+ r,i.n,j = 0

and using the definition of the Weingarten map,

r,ij .n = −r,i.(Lj
kr,k) = −Lj

kgki ≡ −Lji (2.8)

where we have used the symmetry gki = gik and defined Lij . This equation shows
that the Lij closely related to the Weingarten map is symmetric Lij = Lji. The
second derivatives have a component in the direction of the normal.

(2) Similarly, differentiating the defining equation gij = r,i.r,j we get

r,ik.r,j + r,i.r,jk = gij,k.

We rewrite this equation twice more, but with changed names of indices

r,ij .r,k + r,i.r,kj = gik,j ,

r,ki.r,j + r,k.r,ji = gkj,i

and add these later two and subtract the first one from these to get

2r,ij .r,k = gik,j + gkj,i − gij,k.

This shows that the second drivatives have non-zero components in the tangential
direction r,k as well.

(3) Let us expand the second derivatives in the three linearly independent
vectors n, r,1, r,2 and write temporarily

r,ij = ( )ijn+ ( )kijr,k.
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By taking the dot product of this equation with n and with r,l we identify these
unknown co-efficients from the steps (1) and (2),

r,ij = −Lijn+ Γk
ijr,k (2.9)

where Lij has already been defined, and

Γk
ij =

1

2
gkl(gil,j + glj,i − gij,l) (2.10)

where gij is the matrix inverse to gij ,

gijgjk = δi
k

(gij is non-singular, as noted above).
(4) Differentiating r,ij above with respect to ul to get the third derivatives,

r,ijl = −Lij,ln− Lijn,l + Γk
ij,lr,k + Γk

ijr,kl

= −Lij,ln− LijLl
kr,k + Γk

ij,lr,k + Γk
ij(−Lkln+ Γm

klr,m).

Because of the symmetry of mixed partial derivatives, r,ijl − r,ilj = 0. This, when
written out fully using the above expression, gives

(−Rk
ijl − LijLl

k + LilLj
k)r,k − (Lij,l − Lil,j + Γk

ijLkl − Γk
ilLkj)n = 0

where we have gathered coefficients of normal and tangential parts separately and
interchanged index names k and m in ΓΓ terms. The quantity Rk

ijl is called
Riemann-Christoffel curvature tensor and is given by

−Rk
ijl = Γk

ij,l − Γk
il,j + Γm

ijΓ
k
ml − Γm

il Γ
k
mj . (2.11)

Equating the coefficients of linearly independent vectors n, r,1, r,2 to zero we get
the Gauss equation

−Rk
ijl = LijLl

k − LilLj
k (2.12)

and the Codazzi equation

Lij,l − Lil,j = −Γk
ijLkl + Γk

ilLkj . (2.13)

The Gauss equation can be rewritten to bring it closer to total curvature by using
the symmetry of Lij and inverse matrix gij :

−Rk
ijl = LijLl

k − LilLj
k = LjiLl

k − LliLj
k = gim(Lj

mLl
k − Lm

l Lj
k),

therefore,

Lj
mLl

k − Ll
mLj

k = −gmiRk
ijl. (2.14)
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derivative d2uj/ds2 from the general form of the geodesic equation and using the
expression

Γj
pr =

1

2
gjl[glp,r + glr,p − gpr,l]

we see that all terms cancel and we are left with f(s) = 0.
The straightest possible curves are also the curves with shortest distance

between two fixed points.

δ

∫
ds = 0. (2.15)

2.5 Historical Note on Riemann

In 1854, Riemann generalised Gauss’ formula for curvature of two-dimensional
surfaces to any number of dimensions by introducing the curvature tensor named
after him.

Bernhard Riemann (1826-1866) presented his generalization in a lecture to
the faculty of the University of Gottingen as a candidate for ‘Privatdozent’, an
unpaid lecturership that was traditionally the starting point of an academic career.
Gauss, then 77, was in the audience among those judging him. He was suitably
impressed.

Riemann’s contribution is remarkable because he totally abandoned the idea
of thinking of curvature as a property of the way the space is embedded as a
subspace in still higher dimensional Euclidean space. Riemann showed that for the
existence of Euclidean coordinates, all components of the curvature tensor must
be zero. He also introduced the ‘normal coordinate system’ around a point which
makes the gik constant in a small neighbourhood of the point. (The derivatives of
the gik vanish at the point, making all Γ’s zero.) The existence of this coordinate
system is precisely the content of the Equivalence Principle in the General Theory
of Relativity. Riemann’s work was extended by Christoffel, Ricci and Levi-Civita
and other mathematicians.

It must have been a very bold step to think of our three-dimensional space
as not being the homogeneous Euclidean space, but an intrinsically defined curved
space without being a surface of some higher dimensional Euclidean space. Rie-
mann pointed out in a later paper that if homogeneity and isotropy of space is
assumed (independence of bodies from position in an older language) the space
is of constant curvature and measurements of departure from Euclidean geometry
(assuming them to be small) will be seen only at very large distances, possibly
too far to be observable. But if the space is not homogeneous, there is no such
restriction and it is possible that, at infinitely small distances, departures from
Euclidean geometry may occur and still not be noticeable at commonplace dis-
tances. Riemann suggests that if required, even the quadratic form for the line
element could be replaced by a more general expression. He also mentions that
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The Gauss curvature scalar is

det L = L1
1L2

2 − L2
1L1

2 = −g1jR2
j12 = −g11g22R2112

= g11g22R1212

= − 1

R2
.





Chapter 3

General Relativity Basics

We begin with Einstein’s theory in this chapter. Since the full mathematical back-
ground will be developed in Part II, for the present the student is advised to regard
gμν ,Γμ

νσ, Rμν etc. as sets of physical quantities which are labelled by indices just as
the familiar vectors and fields are. The words “tensor”, “connection components”
or coefficients should not bother the student.

3.1 Riemannian Space

We discussed Gauss’ theorem in great detail in the previous chapter. Riemann
generalised the result to any number of dimensions. The Riemannian geometry
has the following basic quantities:

Coordinates

The points of the space are labelled by n coordinates xi, i = 1, . . . , n. The points
of the space can be labelled by a different set of coordinates as well. Different sets
of coordinates are differentiable functions of each other.

Metric Tensor

In a given set of coordinates the infinitesimal distance between neighbouring points
can be written as

(ds)2 = gijdxidxj (3.1)

where gij are called the components of the metric tensor. In general the gij depend
on the coordinates of the point about which the distance is being calculated gij =
gij(x). Although written as (ds)2 the quantity is not positive definite in relativity.
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The metric tensor written as a matrix is (i) symmetric and (ii) non-singular.
The inverse of the matrix gij is written gij and is called the contravariant form of
the metric tensor. The non-zero determinant det |gij | is traditionally written as g.

Connection Components

These are quantities defined by the derivatives of the metric

Γk
ij =

1

2
gkl(gil,j + glj,i − gij,l). (3.2)

Riemann-Christoffel Curvature Tensor

Defined in terms of the derivative and products of the connection coefficients,

−Rk
mjl = Γk

mj,l − Γk
ml,j + Γi

mjΓ
k
il − Γi

mlΓ
k
ij . (3.3)

The covariant form of the Riemann curvature tensor

Rijkl ≡ gimRm
jkl (3.4)

shows many interesting symmetries in its indices. These are

1. Rijkl = −Rijlk,

2. Rijkl = −Rjikl,

3. Rijkl = Rklij ,

4. Rijkl +Riklj +Riljk = 0.

This reduces the number of independent components of Rijkl to n2(n2 − 1)/12
in n-dimensions. This means there are 20 components in four dimensions, six in
three and just one, R1212, in two dimensions.

Ricci Tensor, scalar curvature and Einstein Tensor

The Ricci tensor is just a linear combination of components of Riemann tensor

Rij = Rk
ikj . (3.5)

It can be shown that it is symmetric, Rij = Rji. The Einstein tensor is defined by

Gij = Rij − 1

2
gijR (3.6)

where the scalar R = gijRij .
With these ingredients we proceed to the application of the Riemannian

geometry to physics.
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3.2 General Relativity

As discussed in the first chapter the general theory of relativity makes the following
assumptions about the nature of spacetime and gravitation.

Spacetime Continuum

Spacetime is a four-dimensional continuum whose points (“events”) can be speci-
fied by systems of coordinates xμ, x′μ etc. where μ = 0, 1, 2, 3 and one of these is
a time-like coordinate.

The infinitesimal “interval” between two neighbouring points is given (in the
coordinate system xμ for example) by

ds2 = gμν(x)dxμdxν . (3.7)

The quantities gμν(x) = gνμ(x) can be treated as elements of a symmetric 4 × 4
matrix depending on coordinates in general. These fundamental quantities are
called components of the metric tensor. Because of symmetry there are only ten
independent quantities.

The Gravitational Field

The gravitational field is determined by the gμν and quantities derived from these.
In a certain definite sense the metric tensor represents ten gravitational “poten-
tials” in place of the one Newtonian potential Φ, and Γμ

νσ represent the forty
gravitational “forces”.

Minkowski Space

In the absence of gravitation, coordinates xμ can be chosen such that gμν are
equal to ημν (with η00 = −1, η11 = η22 = η33 = 1, all others zero). In this case
x0 = ct where t is the time coordinate, and x1, x2, x3 are the rectangular cartesian
coordinates:

(ds)2 = −c2(dt)2 + (dx1)2 + (dx2)2 + (dx3)2. (3.8)

One can also choose r, θ, φ coordinates for the spatial part (x1, x2, x3) =
(r sin θ cosφ, r sin θ sinφ, r cos θ) so that

(ds)2 = −c2(dt)2 + (dr)2 + r2(dθ)2 + r2 sin2 θ(dφ)2. (3.9)

The Einstein Equation

Matter distribution is given by stress-energy tensor Tμν , (we will discuss it in
a later chapter). It determines the gravitational field gμν through the Einstein
equation

Rμν − 1

2
gμνR =

8πG

c4
Tμν . (3.10)
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In a matter-free region – and we are interested in only such a region in Part
I – the Einstein equation further simplifies to

Rμν = 0 (3.11)

because Tμν = 0 implies gμν(Rμν − gμνR/2) = −R = 0.

Calculation of Rμν

The Ricci tensor Rμν is defined through the following steps:
First we define gμν which, as a matrix, is inverse to the matrix gμν .
Secondly, we calculate the forty coefficients Γα

μν = Γα
νμ depending on deriva-

tives of the metric

Γα
μν =

1

2
gαβ

(
∂gβμ

∂xν
+

∂gβν

∂xμ
− ∂gμν

∂xβ

)
. (3.12)

There are forty coefficients because Γ’s are symmetric in the two lower indices so
that there are ten possibilities and the upper index can take all four values.

In terms of these we then determine the curvature tensor

−Rμ
νστ = Γμ

νσ,τ − Γμ
ντ,σ + Γα

νσΓ
μ
ατ − Γα

ντΓ
μ
ασ. (3.13)

The symmetric Ricci tensor is obtained by summing up the curvature tensor
components as

Rντ = Rμ
νμτ (3.14)

= R0
ν0τ +R1

ν1τ +R2
ν2τ +R3

ν3τ . (3.15)

We will see later that Rμν has the following form.
Let g = det gμν be the determinant of the metric tensor. The determinant g is

negative in general relativity just as it is in special relativity where det(ημν) = −1.
Then,

−Rμν = (ln
√−g),μν − Γα

μν,α + Γβ
μαΓ

α
νβ − (ln

√−g),αΓ
α
μν . (3.16)

3.3 Solving the Einstein Equation

The Einstein equations are solved for the metric tensor components. Usually, one
can say something about the gμν already before attempting a solution, using, for
example, the symmetry of the gravitational field in a particular set of coordinates.
Symmetries reduce the number of non-zero independent components from ten to a
smaller number. For example, in the static, spherically symmetric field in vacuum
discussed in this chapter, there are just two unknown functions to be solved for
from the Einstein equation.



3.4. Particle Trajectories 59

3.4 Particle Trajectories

After we have solved the equations Rμν = 0 for the unknown gμν , the motion of a
body in the gravitational field is governed by the geodesic equation

d2xμ

dτ2
+ Γμ

νσ

dxν

dτ

dxσ

dτ
= 0 (3.17)

where τ is the proper time along the trajectory measured from some point on it.
Let xμ(λ) be the trajectory of the particle, parametrised by variable λ. Then

τ(λ) =
1

c

∫ λ (
−gμν

dxμ

dλ1

dxν

dλ1

)1/2

dλ1. (3.18)

The negative sign occurs because the velocity dxμ/dτ is a time-like vector
with negative norm squared.

3.5 Path of Light Rays

For light-rays the proper time along the path is zero: gμνdxμdxν = 0. In this case
the trajectory is written in terms of a parameter λ,

d2xμ

dλ2
+ Γμ

νσ

dxν

dλ

dxσ

dλ
= 0 (3.19)

and we use the additional constraint that

gμν
dxμ

dλ

dxν

dλ
= 0. (3.20)

3.6 Weak Field and Newtonian Limit

A particle moves in a static and weak gravitational field given by gμν . This means
that these gμν are independent of time t and they are close to their Minkowskian
values. We also assume that the velocity of the particle which follows the geodesic
is very small compared to light velocity c.

In this limit we expect the equations of motion of the particle to reduce to
their non-relativistic, Newtonian form.

Minkowski Background

When the field is weak, Cartesian coordinates can be chosen, xμ = {x0 = ct, xi},
and the metric tensor is only slightly different from the Minkowski tensor ημν . We
can therefore write

gμν = ημν + hμν (3.21)
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where hμν is small compared to ημν . Also, hμν should go to zero in an asymptotic
region, far away from gravitating bodies, where the metric is purely Minkowskian.

The inverse matrix gμν is also close to the Minkowski values if gμν = ημν+kμν

where kμν are of the order of hμν and ημν is the inverse of ημν as a matrix. This
is so because by definition gμνgνσ = δμ

σ .
In the non-relativistic limit we should obtain the Newtonian equation

d2xi

dt2
= − ∂

∂xi
Φ(x) (3.22)

where Φ(x) is the Newtonian gravitational potential.
The equation of the trajectory for space coordinates xi is

d2xi

dτ2
+ Γi

μν

dxμ

dτ

dxν

dτ
= 0. (3.23)

In the non-relativistic limit dτ = dt
√
1− v2/c2 ∼ dt. This means that dx0/dτ ∼ c

is much larger than the velocities vi ∼ dxi/dτ . The dominant term in this equation
is therefore

d2xi

dt2
+ Γi

00c
2 = 0. (3.24)

Because the gravitational field (given here by the metric tensor) is static, all time
derivatives are zero and the connection coefficient

Γi
00 =

1

2
ηij(2hj0,0 − h00,j) ∼ −1

2
h00,i. (3.25)

This when compared with the Newtonian equation gives h00 = −2Φ/c2 and

g00 = −
(
1 +

2Φ

c2

)
. (3.26)

Slowing Down of Clocks

The non-relativistic formula obtained in the last section for the 00-component
of the metric gives us a result which was first obtained by Einstein using the
Equivalence Principle as explained in Chapter 1.

It is important to remember that the time coordinate t is just a way to label
the spacetime events. Events which have the same value of t are simultaneous
according to the coordinate system x. On the other hand the time shown by a clock
following a trajectory is the proper time

∫
dτ =

∫ √−gμνdxμdxν/c integrated
along the trajectory.

In order to compare times shown by two clocks following two different tra-
jectories we choose the same “coordinate time”, say, t = 0 and note down their
readings at the two places where the clocks are present. Then again, at coordinate
time t we record their readings at their new positions. These four observations can
then be compared.
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For stationary clocks, that is clocks not changing their positions, the trajec-
tory is simply xi = constant. Therefore∫

dτ =

∫ √
−g00(x)dt.

As position coordinates, xi are constant along the trajectory∫
dτ =

√
−g00(x)

∫
dt.

Therefore the ratio of time intervals Tx =
∫

dτ shown by a clock sitting at a
point x to Ty =

∫
dτ shown by a stationary clock at y for the same interval of

“coordinate time” from 0 to t is

Tx

Ty
=

√−g00(x)√
−g00(y)

=
(1 + 2Φ(x)/c2)

1
2

(1 + 2Φ(y)/c2)
1
2

. (3.27)

This is the same result we derived following Einstein’s 1907 argument. Clocks slow
down at places where gravitational potential is smaller.

In particular, for a massive spherical body of massM the Newtonian potential
outside the body is Φ(r) = −GM/r where r is the distance from the center
of the gravitating body. Therefore clocks slow down by a factor

√
1− 2GM/rc2

compared to clocks very far away, r →∞ where Φ = 0.
An immediate consequence of this is the gravitational red shift. An atom

emitting a spectral line of a given frequency is like a clock. A stationary atom on the
surface of the Sun, for example, will seem to emit light of lower frequency compared
to an identical atom far away (say near earth if the gravitational potential due to
earth’s gravity on the surface of the earth can be neglected in comparison to the
gravitational potential due to the Sun on the surface of the Sun). We have,

ω∗ =

(
1− 2GM

rc2

) 1
2

ω ≈ ω − ωGM

rc2
. (3.28)

This equation has a simple interpretation in quantum theory. A photon with
frequency ω has energy �ω equivalent to a mass �ω/c2. It loses energy equal to the
gravitational potential energy (�ω/c2)GM/r in going from r to infinity, becoming
a photon of lower energy �ω∗.

3.7 Tutorial on Indexed Quantities

The full mathematical development of vectors and tensors will be done from Chap-
ters 5 onwards. Presently, we can do a number of exercises, treating these as in-
dexed quantities like vectors or matrices.
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Exercise 21. Aij and Bij ,i, j = 1, . . . , n are two matrices, with A a symmetric matrix
Aij = Aji and B antisymmetric Bij = −Bji. What is the number of independent
elements in A and B? Show that the sum AijB

ij is zero.

Answer 21. A has n(n + 1)/2 independent elements and B has n(n− 1)/2. Interchange
indices i and j in the sum and use symmetry and antisymmetry properties.

Exercise 22. Two three-indexed quantities are given: ωabc and fabc, a, b = 1, . . . , n.
The quantities ω are antisymmetric in the first two indices ωabc = −ωbac and f ’s are
antisymmetric the last two fabc = −facb. How many independent elements are there in
each set? Given that f is related to ω by

fabc = ωabc − ωacb,

solve ω’s in terms of f ’s.

Answer 22. There are n2(n − 1)/2 independent quantities in both. There are as many
independent linear equations for ω’s. These quantities appear in the discussion of Ricci
rotation coefficients in section 9.7.2, where the answer is given.

Exercise 23. The Riemann tensor is a four-indexed quantity with the following proper-
ties (i, j, k, l = 1, . . . , n)

Rijkl = −Rijlk antisymmetry in last two indices,

Rijkl = −Rjikl antisymmetry in first two indices,

Rijkl = Rklij symmetry in the composite index (ij) and (kl),

Rijkl + Riklj + Riljk = 0 cyclic sum in last three indices.

If there were no symmetries then there would be n4 independent elements in Rijkl.
Show that the number of independent elements reduces to n2(n2 − 1)/12 due to these
symmetries. There are 20 components in n = 4 dimensions, six in three and just one,
R1212, in two dimensions.

Answer 23. Divide the set of four indices i, j, k, l into three classes or subsets.

The first class is of those indices in which there are only two distinct indices. These
can involve only elements of type Rijij , and there are n(n− 1)/2 members in this class
because of antisymmetry in i and j.

In the second class there are three distinct indices. These elements can only be of
type Rikjk. k can take n values and for each of these i, j can take two distinct values from
the remaining n− 1 possibilities. We limit to i < j because the elements with i > j are
related to these by interchange of the pairs ik and jk. Thus there are n(n− 1)(n− 2)/2
such independent elements.

The cyclic property in the last three indices is trivial for these two classes and does
not reduce the number of elements.

In the third class are elements for which all four indices are different. We can
arrange these as Rijkl with i < j, k < l, i < k because all other choices can be related to
these by symmetry properties.

There are n(n− 1)/2 pairs i < j and (n− 2)(n− 3)/2 pairs k < l. Thus there are
n(n− 1)(n− 2)(n− 3)/4 possibilities but these have to be reduced to half (a factor 1/2)



3.7. Tutorial on Indexed Quantities 63

to only keep elements with i < k. The cyclic identities are all non-trivial for this class
and can be written (to bring the indices so that i < k < l, i < j)

Rijkl −Rikjl + Riljk = 0.

This further reduces the independent elements of this class by a factor 2/3 because each
cyclic relation allows one of the three elements to be expressed in terms of the other two.

The total number of independent components of the Riemann tensor is

n(n− 1)

2
+

n(n− 1)(n− 2)

2
+

2

3
· 1

2
· n(n− 1)(n− 2)(n− 3)

4
=

n2(n2 − 1)

12
.





Chapter 4

Spherically Symmetric
Gravitational Field

4.1 The Schwarzschild Solution

Schwarzschild’s solution is an exact solution of the Einstein equation in empty
spacetime which is static and spherically symmetric. It is also the physically most
important of the few known exact solutions.

We know we can solve for the Coulomb field of a point charge, or a spherically
symmetric static charge distribution at those points where there is no charge by
solving the Poisson equation ∇2φ = 0. Similarly, Einstein’s equation can be solved
in the matter-free outer region while the static matter distribution is spherically
symmetric and located around the origin. Actually, one can show that even if there
is time dependence in matter distribution, but provided it remains spherically
symmetric all the time, the gravitational field represented by the metric gμν in
the matter-free region is nevertheless static and given by the Schwarzschild form.
This result is known as Birkhoff’s theorem.

The assumption of a static and spherically symmetric solution means there
exist coordinates x0 = ct, x1 = r, x2 = θ, x3 = φ so that the metric is of the form

ds2 = −a(r)c2dt2 + b(r)dr2 + r2dθ2 + r2 sin2 θdφ2 (4.1)

where the angular part of the metric is the same as the gravitation-free form
because of the spherical symmetry, and a(r) and b(r) are functions of r only.
This is enormous simplification as only four diagonal components of the matrix
gμν are non-zero (in the general case there are ten) and there are essentially
only two unknown functions of a single variable. So we expect ordinary rather
than partial differential equations. As a consequence of time independence and
spherical symmetry, metric coefficients are independent of both x0 = ct and x3 =
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φ. Therefore, we expect two conserved quantities, related to energy and angular
momentum, just as in Newtonian gravity with spherical symmetry.

Starting with this assumed form of gμν one can calculate Γ
μ
νσ, and then Rμν .

We can then write Einstein’s equations

Rμν = 0

and solve for the unknown functions a(r) and b(r). The solution, first found by
K. Schwarzschild in 1916 is

a(r) =
1

b(r)
=

(
1− 2GM

rc2

)
≡ 1− RS

r
(4.2)

where M is the total mass of the matter distribution as determined by the New-
tonian potential −GM/r for r →∞. The quantity RS given by

RS =
2GM

c2
(4.3)

has dimensions of length and is called the Schwarzschild radius of the gravitating
body.

Because we will refer to it often let us write out the solution in its full
traditional form once again:

ds2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+r2dθ2 + r2 sin2 θdφ2. (4.4)

There are in general forty independent connection coefficients Γμ
νσ Of these forty,

only nine are non-zero. They are listed below for later reference:

Γ0
01 = Γ0

10 =
1

2

(
1− RS

r

)−1
RS

r2
,

Γ1
00 =

1

2

(
1− RS

r

)
RS

r2
,

Γ1
11 = −1

2

(
1− RS

r

)−1
RS

r2
,

Γ1
22 = −r

(
1− RS

r

)
,

Γ1
33 = −r sin2 θ

(
1− RS

r

)
,

Γ2
12 = Γ2

21 = 1/r,

Γ2
33 = − sin θ cos θ,

Γ3
23 = Γ3

32 = cot θ,

Γ3
13 = Γ3

31 = 1/r. (4.5)
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The derivation of the Schwarzschild solution is in the tutorial at the end of this
chapter.

4.2 Conserved Quantities

Calculations for trajectories are greatly simplified due to existence of conserved
quantities just as in Newtonian gravity.

We use the following result. If all the components gμν are independent of a
certain coordinate, say x0, then g0μdxμ/dτ is constant along the geodesic trajec-
tory.

d

dτ

(
g0μ

dxμ

dτ

)
= 0. (4.6)

Proof:

d

dτ

[
g0μ

dxμ

dτ

]
=

dxν

dτ

∂g0μ

∂xν

dxμ

dτ
+ g0μ

d2xμ

dτ2
.

Substituting the second derivative from the equation of the geodesic,

d

dτ

[
g0μ

dxμ

dτ

]
= g0σ,ν

dxν

dτ

dxσ

dτ
− g0μΓ

μ
νσ

dxν

dτ

dxσ

dτ
.

The coefficient of g0σ,ν is symmetric in ν and σ with summation over both these in-
dices and we write g0σ,ν as the sum of symmetric and antisymmetric parts, that is,

g0σ,ν =
1

2
(g0σ,ν + g0ν,σ) +

1

2
(g0σ,ν − g0ν,σ).

The antisymmetric part when multiplied by (dxν/dτ)(dxσ/dτ) and summed gives
zero. So using the definition of Γ,

d

dτ

[
g0μ

dxμ

dτ

]
=

1

2
(g0σ,ν + g0ν,σ)

dxν

dτ

dxσ

dτ
− g0μΓ

μ
νσ

dxν

dτ

dxσ

dτ

=

[
1

2
(g0σ,ν + g0ν,σ)− 1

2

{
g0σ,ν + g0ν,σ − gσν,0

}] dxν

dτ

dxσ

dτ

=
1

2

[
gνσ,0

]dxν

dτ

dxσ

dτ
= 0

because all the metric components are independent of x0.
If there is another coordinate, say x3, which also does not show up in the

expressions for the metric tensor components, then a similar equation

d

dτ

(
g3μ

dxμ

dτ

)
= 0 (4.7)

holds as well.
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4.3 Planetary Motion

We now work out the consequences of the Schwarzschild metric. The g00 in this
exact case is identical to the Newtonian limit −(1+ 2Φ/c2) which is a remarkable
coincidence.

Trajectories of bodies under the influence of a gravitational field produced
by the spherically symmetric mass distribution is determined from the geodesic
equation

d2xμ

dτ2
+ Γμ

νσ

dxν

dτ

dxσ

dτ
= 0

where Γ’s are as given above.

4.3.1 Two Conserved Quantities

In the present case we know that the metric gμν does not depend on coordinates
x0 = ct and x3 = φ. Accordingly there are two conserved quantities. The two
conserved quantities are

C0 = g00
dx0

dτ
= −

(
1− 2GM

rc2

)
c
dt

dτ
(4.8)

and

C3 = g03
dx3

dτ
= r2 sin2 θ

dφ

dτ
. (4.9)

The quantities C0 and C3 are related to energy and angular momentum. To see
this take the non-relativistic limit for θ = π/2 = const,

dτ = dt

[(
1− 2GM

rc2

)
− 1

c2

(
1− 2GM

rc2

)−1 (
dr

dt

)2

− r2

c2

(
dφ

dt

)2
]1/2

.

Therefore,

dt

dτ
= 1 +

GM

rc2
+

1

2c2

(
dr

dt

)2

+
r2

2c2

(
dφ

dt

)2

+ · · ·

and so,

−cC0 ≈ c2 +
1

2

(
dr

dt

)2

+
r2

2

(
dφ

dt

)2

− GM

r
. (4.10)

This expression, if multiplied by the mass m of a particle moving along the geo-
desic, gives the Newtonian expression of energy in radial coordinates added to the
rest-mass energy mc2. Similarly, multiplication by m of the non-relativistic limit
of C3 gives the expression for angular momentum as we see in the next section.
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4.3.2 Motion in the Equatorial Plane

We show that geodesic motion, as in the Newtonian orbit, is confined to the plane
θ = π/2 if it is initially so confined.

The geodesic equation for x2 = θ is

d2θ

dτ2
+
2

r

dθ

dτ

dr

dτ
− sin θ cos θ

(
dφ

dτ

)2

= 0.

Therefore, if θ = π/2 and dθ/dτ = 0 at some value of τ , then d2θ/dτ2 = 0 and
θ = π/2 for all values of τ .

From now on we can restrict ourselves to the “equatorial plane” θ = π/2.
The conserved quantity

h = r2 dφ

dτ

is just the “equal area in equal time” law of Kepler, except that the time is proper
time now.

We are looking at a two-dimensional motion with coordinates r, φ in the
plane. The area law gives the dependence of φ on τ and the constancy of C0

gives that of t on τ . We just need one more equation to completely determine the
trajectory giving dependence of r on τ .

It is, of course, possible to write the geodesic equation for x1 = r, but in
practice it is much simpler to use the fact that the velocity vector to a trajectory
parametrised by the proper time τ has norm −c2,

〈U,U〉 ≡ gμν
dxμ

dτ

dxν

dτ
= −c2, (4.11)

which gives us, substituting for dφ/dτ and dt/dτ from the expressions for h and C0,

1

2

(
dr

dτ

)2

+ V (r) = E (4.12)

where

V (r) = −GM

r
+

h2

2r2
− GM

rc2

h2

r2
(4.13)

and E is the constant

E =
C2

0 − c2

2
. (4.14)

Note that this equation for dr/dτ , written deliberately in the Newtonian form is
an exact result in the general theory of relativity ! The contribution of general
relativity (apart from replacing the time t by proper time τ) is the extra term
GMh2/r3c2 in V (r). The equation (as far as dependence of r on proper time τ
is concerned) is identical to that of a particle of unit mass in one dimension with
total energy E in an “effective potential” V (r).
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V (r)

r

← Newtonian effective potential

Fig. 4.1: Effective potential V (r) for h �= 0.
The Newtonian effective potential is shown by dotted lines.

4.3.3 Qualitative Features of Orbits

Let us analyse the effective potential V (r) of the previous section for various values
of E and h. We can immediately see the following qualitative features of the orbits.

1. For h = 0 the radial plunge (or escape) is just as it is for the Newtonian case
because V is the same.

2. The general relativistic contribution proportional to −1/r3 eventually dom-
inates over the repulsive core h2/2r2 as r → 0 and takes the potential back
to −∞ instead of +∞ as in the Newtonian case. In general therefore there
is both a minimum and a maximum in the effective potential.

3. If the value of E is such that r is at one of the extrema of V (r) and E =
V (r) then dr/dτ = 0, r =constant, and there is a circular orbit. There is an
unstable orbit corresponding to the maximum of V and a stable orbit at the
minimum.



4.3. Planetary Motion 71

4. There is now a possibility of a radial plunge if E > 0 is greater than the
maximum of V even for h �= 0. This is unlike the Newtonian case.

5. For h �= 0 and E > 0 but smaller than the maximum, the orbit comes from
infinity, goes round the center and goes back to infinity.

6. ForE < 0 the motion is restricted to within a maximum and a minimum value
of r, much like a general central force. The orbits are rotating or precessing
ellipses, as we shall see in the next section.

4.3.4 Precession of the Perihelion

The equation of the orbit can be obtained from the one-dimensional effective
problem by differentiating with respect to τ and factoring out the dr/dτ factor

d

dτ

[
1

2

(
dr

dτ

)2

+ V (r)

]
= 0 (4.15)

giving

d2r

dτ2
+ V ′(r) = 0. (4.16)

We can convert the derivatives with respect to τ into derivatives with respect to
φ by using

d

dτ
=

dφ

dτ

d

dφ
=

h

r2

d

dφ
. (4.17)

Finally we can change to the variable u = 1/r. The result is

d2u

dφ2
+ u =

GM

h2
+
3GM

c2
u2. (4.18)

Compare this equation with the equation for the Keplerian elliptical orbit.
Our aim is to solve this equation approximately in order to estimate the

contribution by the second term on the right-hand side. We follow the treatment
of P. G. Bergmann.

Recall (from the Tutorial in Chapter 1) that if this term was absent we will
get the fixed ellipse

u =
GM

h2
(1 + ε cosφ). (4.19)

If we plot u as a function of φ the graph will look like a ripple with a period
exactly equal to 2π.
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With the perturbing general relativistic term 3GMu2/c2 present we still ex-
pect the solution to be a periodic function although the periodicity may not be
2π. The excess (or deficiency) from 2π of the interval between values of φ at which
du/dφ = 0 in two successive occurences is the amount by which the perihelion
shifts per revolution.

Let us write the equation as

d2u

dφ2
+ u =

GM

h2
+ λu2 (4.20)

treating λ = 3GM/c2 as a small parameter. The equation is symmetric with
respect to φ ↔ −φ so that u(φ) is an even periodic function. Let the frequency be
ω so that we can write the function as

u = a0 + a1 cos(ωφ) + a2 cos(2ωφ) + · · · . (4.21)

Here an’s are all functions of the parameter λ. As λ → 0 we must recover the
ellipse u = GM(1 + ε cosφ)/h2, therefore

ω → 1, a0(λ)→ GM

h2
, a1 → GM

h2
ε, an → 0, n = 2, . . . . (4.22)

The important point here is that all higher coefficients an, n = 2, . . . are of order
λ or higher.

Substituting this ansatz in the equation we get, keeping to first order terms,

a0 + a1(1− ω2) cos(ωφ) + a2(1− 4ω2) cos(2ωφ) + · · ·
= GM/h2 + λ(a0 + a1 cos(ωφ) +O(λ))2

= GM/h2 + λ(a2
0 + a2

1 cos
2(ωφ) + 2a0a1 cos(ωφ)) + · · · .

S Q

P

Fig. 4.2: Precession of the perihelion.

The elliptical path of the planet in Newtonian gravity is replaced by a
precessing ellipse. The perihelion position is shifted from P to Q.
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Comparing the coefficients of cos(ωφ) terms on the two sides, (the presence
of cos2 ωφ is irrelevant as it is equal to (1 + cos 2ωφ)/2),

1− ω2 = 2λa0 ≈ 2
3GM

c2
· GM

h2
. (4.23)

This determines the periodicity to be

2π

ω
= 2π

(
1− 6(GM)2

h2c2

)− 1
2

≈ 2π +
6π(GM)2

h2c2
. (4.24)

The additional angle 6π(GM)2/h2c2 has a positive sign. When a planet returns
towards the original perihelion, it has to move this much angle beyond 2π to make
the next perihelion. Here h2/GM is the latus-rectum equal to L = A(1 − ε2),
where A is the semi-major axis and ε the eccentricity. So we can write the formula
for precession as

Δφ =
6πGM

Lc2
per revolution, (4.25)

which comes out to be 43′′ of arc per century for the planet Mercury with the
smallest value of latus-rectum.

4.4 Deflection of Light in a Gravitational Field

The light-like geodesics in the Schwarzschild field can be discussed just like the
time-like geodesics. The geodesics lie in the plane θ = π/2 if initially they do so
for the same reason.

We use an affine parameter λ to parametrize the trajectory xμ(λ).
The conserved quantities corresponding to energy and angular momentum

can again be written down,

C0 = −
(
1− 2GM

rc2

)
c
dt

dλ
, (4.26)

h = r2 dφ

dλ
. (4.27)

For the third equation for r we use the light-like nature of the tangent vector
〈U,U〉 = 0,

−
(
1− 2GM

rc2

)
c2

(
dt

dλ

)2

+

(
1− 2GM

rc2

)−1 (
dr

dλ

)2

+ r2

(
dφ

dλ

)2

= 0.

Substituting for dt/dλ and dφ/dλ from the first two equations we get, after chang-
ing to variable u = 1/r,(

du

dφ

)2

=
C2

0

h2
− u2 +

2GM

c2
u3. (4.28)
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To convert it into the (traditional) second-order equation of the path, differentiate
once with respect to φ and cancel the du/dφ factor,

d2u

dφ2
+ u =

3GM

c2
u2. (4.29)

Compare this equation with that for the motion of a particle in the previous
section. There is no constant GM/h2 term on the right-hand side. In the absence
of the general relativity term, the equation reduces to the Newtonian case

d2u

dφ2
+ u = 0. (4.30)

These ‘zeroth-order’ solutions are u = (1/b) cosφ representing a straight line prop-
agation of light passing at a distance b from the origin. In the first-order correction,
we substitute the zeroth-order solution on the right-hand side,

d2u

dφ2
+ u =

3GM

c2b2
cos2 φ. (4.31)

This equation is linear in u. Writing cos2 φ as (1 + cos(2φ))/2 on the right-hand
side and noticing that if w = cos(2φ) then w′′ = −4 cos(2φ). So u1 = 3− cos(2φ)
satisfies u′′1 + u1 = 3(1 + cos(2φ)). This gives (up to the appropriate constant) a
particular solution to our equation. The complete solution is therefore

u =
1

b
cosφ+

GM

2c2b2
(3− cos(2φ)) . (4.32)

If we convert the trajectory equation into cartesian coordinates (x =
r cosφ, y = r sinφ) it is

x = b− RS

2b

x2 + 2y2√
x2 + y2

. (4.33)

The path of a light ray looks like a straight line far away from a gravitating
body both above and below the x-axis (|y| >> x),

x = b− RS

b
|y|. (4.34)

The angle between the asymptotes is the angle by which the deflection takes place:

δ =
2RS

b
. (4.35)

The distance of closest approach of light ray BP to the massive body at the origin
is obtained by setting y = 0 in the approximation to the path of the light ray. It
is

b

1 +Rs/2b
≈ b− RS

2
.
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The impact parameter, that is the distance betweeen the straight line representing
the incoming asymptotic path of the light ray and the line parallel to it passing
from the center of the mass is

b cos(δ/2) = b

(
1− R2

S

2b2

)
≈ b.

The deflection δ is approximately equal to 1.75′′ for rays from a distant star grazing
the surface of the Sun so that b is the radius of the Sun (about 7× 105 Km) and
the Schwarzschild radius of the Sun is about 3 Km.
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Fig. 4.3: Deflection of light by a massive body.

Light from a far-off source comes in the direction SQ and after deflec-
tion is seen by a distant observer O to come from the virtual image S′.

Our treatment of light deflection in this section follows Eddington’s exposi-
tion in The Mathematical Theory of Relativity. We shall rederive this deflection
formula in Chapter 13 for weak gravitational fields by a different method.
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4.5 Gravitational Lensing

To a good approximation we can assume the bending of light to take place only
in the neighbourhood of a massive body. The impact parameter and the closest
distance are nearly the same. We can then approximate the light ray trajectory
as made up of two straight lines corresponding to incoming and outgoing rays
bending sharply at the point of intersection, much like the bending of a light
beam in a thin lens.

Let there be a distant source of light (a galaxy for instance) at S in a straight
line with the massive body B (which can be another galaxy) and the observer at O.

�b θE

δ

ψ

S u vB O

S′

Fig. 4.4: Gravitational Lensing.

Light source(S), massive body(B) and observer(O) in a straight line.
The virtual image of the source is a circle S′ called the Einstein Ring
with an angular diameter 2θE .

Light bends as shown in the figure. The observer O sees the virtual image
of the source S at a point S′ due to the deflection by an angle δ. Due to axial
symmetry, light from all sides is deflected in the same manner and the virtual
image of the source is a ring called the Einstein ring of angular diameter 2θE as
shown. The angle θE can be calculated as follows. Let u and v be the distances
of the source and the observer respectively from the gravitating body B. Let b be
the impact parameter, very nearly equal to the distance of the point from where
incoming and outgoing rays intersect. From the geometry of the figure we see that
b = θEv = ψu and

δ =
2RS

b
= ψ + θE =

b

u
+

b

v

or,

b =

(
2RS

uv

u+ v

)1/2

.
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The angular diameter of the Einstein ring is therefore 2θE with

θE =

(
2RS

u

v(u+ v)

)1/2

. (4.36)

For a source slightly off-axis by an angle β, the circular symmetry is broken
and there are only two images in the plane SBO as shown in Figure 4.5. We can
easily calculate the angles θ± of the two images

θ± = ±β +
θ2

E

θ±
. (4.37)

�δ+

δ−

ψ
β

u v

S

S+

S−

B O

Fig. 4.5: Gravitational Lensing.

Source off the axis by an agle β. The virtual images are at angles
θ± = ∠BOS±.

4.6 Tutorial

The Connection Coefficients

Exercise 24. Calculate gμν , ln
√−g and the forty Γ’s for the Schwarzschild form of

metric.

Answer 24. With only the four diagonal components of the metric tensor non-zero,

g00 = −a(r), g11 = b(r), g22 = r2, g33 = r2 sin2 θ,

g00 = −a(r)−1, g11 = b(r)−1, g22 = r−2, g33 = r−2(sin θ)−2,

“log-root-minus g” is

ln
√−g =

1

2
(ln a + ln b) + 2 ln r + ln sin θ. (4.38)

With these the nine non-zero independent connection coefficients can be calculated. We
use the convenient abbreviation of a prime to denote differentiation with respect to r,
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Chapter 5

Vectors and Tensors

We review the familiar notions of a vector space, the dual vector space, tensor and
exterior products.

5.1 Vector Spaces

5.1.1 Vectors

A real vector space V is a set whose members, called vectors, have two operations
defined on them. Two vectors can be added to give a vector called their sum, and,
a vector can be multiplied by a real number to give a vector. A vector space has a
special vector 0, called the zero vector, which has the property that when added
to any vector of the space the sum is this latter vector.

Two (non-zero) vectors are called linearly independent if they are not pro-
portional to each other, that is, one can not be written as a number times the
other. More generally, a set of r non-zero vectors v1, . . . ,vr is called linearly inde-
pendent if none of them can be written as a linear combination of any, some or all
the others. A linear combination of vectors is just the sum of these vectors after
they have been multiplied by numbers.

If vectors v1, . . . ,vr are linearly independent then a1v1 + · · · + arvr = 0
implies that a1 = · · · = ar = 0 because if any of the a’s fail to be zero, let us say,
ak �= 0, then, by dividing by ak in the equation we can express vk in terms of the
others.

Let there be a set of linearly independent vectors. Let us adjoin to this set
a new non-zero vector, then the amended set can be linearly independent, or it
may fail to be linearly independent. We can try to make a set which is the largest
possible linearly independent set by adjoining only those vectors which make the
larger set linearly independent.

We will deal only with those spaces, called finite dimensional vector spaces,
in which this process of finding the largest set of linearly independent set comes
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to an end and we have a finite set v1, . . . ,vn of linearly independent vectors.
Any other vector of the space can then be written as a linear combination of these
vectors. Whichever way we choose the set of linearly independent vectors, it always
contains the same number n of vectors.

A set of vectors like these is called a basis. The number n of independent
vectors is characterstic of the space and is called the dimension of the space.

5.1.2 Dual Vector Space

A functional α defined on a vector space V is a mapping which assigns to each
vector v ∈ V a real number α(v). If this mapping satisfies the linearity property,
that is for every v,u in V and any real number a if

α(v + u) = α(v) + α(u), (5.1)

α(av) = aα(v), (5.2)

then we call α a linear functional.
Now consider the set V ∗ of all linear functionals on the space V . We can

define addition and multiplication on linear functionals by

(α+ β)(v) = α(v) + β(v),

(aα)(v) = aα(v).

With these definitions V ∗ becomes a vector space whose zero vector is the
linear functional which assigns number zero to each vector of V . The space V ∗ is
called the vector space dual to V .

5.1.3 Change of Basis

Let V be a vector space of dimension n and let E = {ei}n
i=1 be a basis in V . We

write a vector v ∈ V in terms of the basis as v = xiei where there is a sum over
i on the right-hand side from 1 to n. We shall use this tacit assumption of a sum
over a repeated index without showing the sign of summation. This is called the
Einstein summation convention. Any exception to the convention will be explicitly
pointed out.

The numbers xi, i = 1, . . . , n are called components of vector v with respect
to basis E. We are using another convention by writing the components with a
superscript.

Let F = {fi}n
i=1 be another basis of V whose vectors can be expanded in

terms of the old basis vectors as

fi = Ti
jej . (5.3)
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The numbers Ti
j can be treated as elements of a matrix, with row index i and

column index j. It is an invertible matrix with the inverse matrix giving coefficients
involved in expanding members of basis E in terms of those of F .

Let the components of a vector v with respect to basis F be yi then

v = yifi = yiTi
jej = xjej .

Therefore,

yk = xj(T−1)j
k
= (T−1)T

k

jx
j . (5.4)

We state the above result as follows: when the basis changes from E to F by
matrix T then the components of a vector change by the matrix (T−1)T .

5.1.4 Dual Bases

Because of linearity a functional α ∈ V ∗ is defined completely if we give its values
on a basis of V . As

α(v) = xiα(ei),

α is defined if we know the numbers ai = α(ei). This gives us an idea how to
define a basis in V ∗. Let αi ∈ V ∗, i = 1, . . . , n be defined as

αi(ej) = δi
j (5.5)

where the Kronecker delta δi
j has the value 1 if i = j and 0 if i �= j. Any vector

α ∈ V ∗ can be written α = aiα
i where ai = α(ei), as can be checked by operating

α on an arbitrary vector v = viei:

aiα
i(vjej) = aiv

jδi
j = aiv

i = viα(ei) = α(v).

This shows that {αi}n
i=1 form a basis in V ∗. The basis A = {αi}n

i=1 is called the
basis dual to the basis E. For every basis of V there is a dual basis in V ∗.

5.1.5 Change of the Dual Basis

Let B = {βi}n
i=1 be dual to the basis F discussed above in section 5.1.3,

βi(fj) = δi
j , (fi = Ti

jej),

then B is related to A by (T−1)T ,

βi = (T−1)T
i

kαk

because

βi(fj) = (T−1)T
i

kαk(Tj
lel) = (T−1)T

i

kTj
k = δi

j .

This means that if α is any general vector in V ∗ with components ai in basis
A: α = aiα

i, then the components bi with respect to basis B (α = biβ
i) will be

related to ai by the inverse transpose of (T
−1)T , that is by T itself.
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5.1.6 Contra- and Co-Variant Vectors

The situation in the previous section is described by the following statement.
If we start with the space V and change basis in V by a matrix T , then

components of a vector in V transform contravariantly, that is, by (T−1)T whereas
the components of a vector in dual space V ∗ (due to corresponding changes in the
dual bases) transform covariantly, that is, by T itself.

We emphasize that the vectors themselves do not change, it is only their
components that change when bases do.

Notice the use of superscripts for components of vectors in V and subscripts
for components of those in V ∗. This is the standard convention of classical tensor
analysis adopted by physicists.

As can be verified immediately the dual (V ∗)∗ of V ∗ is V itself with the
linear functional v ∈ V ∗∗ = V on V ∗ acting as

v(α) = α(v).

This makes the designation of contra- and covariant quantities a matter of conven-
tion. We must decide which our starting space V is. Then vectors of V will have
components transforming contravariantly, and those of V ∗ will have components
transforming covariantly.

In our application of vectors and tensors to differential geometry, fortunately
there is a vector space singled out uniquely. That is the tangent space at any point
of a differentiable manifold.

5.2 Tensor Product

Just as the set of linear functionals on a vector space V form a vector space V ∗,
the set of all bilinear functionals which map a pair of vectors of V into a real
number form an n2 dimensional space V ∗ ⊗ V ∗.

Let V be a vector space of dimension n.
Consider the Cartesian product set V × V . This is the set whose members

are ordered pairs like (v,u) of vectors v,u of V . This cartesian product is just a
set and not a vector space.

A bilinear functional t on V × V is a mapping which assigns to each pair
(v,w) ∈ V × V a real number t(v,w) with the following properties

t(u+ v,w) = t(u,w) + t(v,w), t(av,w) = at(v,w),

t(u,v +w) = t(u,v) + t(u,w), t(v, aw) = at(v,w).

The set of all bilinear mappings on V ×V forms a vector space W if we define
the sum of two bilinear mappings and multiplication by a number as

(t+ s)(v,w) = t(v,w) + s(v,w), (at)(v,w) = at(v,w).
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We shall presently identify this space W as the n2 dimensional space called
the tensor product of the vector space V ∗ with itself.

5.2.1 Tensor Product T 0
2

= V ∗ ⊗ V ∗

Let α and β be two linear functionals on V , that is, members of V ∗. We can form
a bilinear functional out of these as follows.

Let α⊗ β, called the tensor product of α and β, be given by

(α⊗ β)(v,w) = α(v)β(w). (5.6)

It is trivial to check that this indeed is a bilinear functional. This definition also
gives us properties of this tensor product.

α⊗ (β + γ) = α⊗ β + α⊗ γ, α⊗ (aβ) = a(α⊗ β), (5.7)

(α+ β)⊗ γ = α⊗ γ + β ⊗ γ, (aα)⊗ β = a(α⊗ β). (5.8)

The vector α⊗β belongs to the vector space W of all bilinear maps on V ×V .
A vector of this type is called decomposable or factorizable. An arbitrary bilinear
functional on V × V is not decomposable but can always be written as a linear
combination of such vectors.

A bilinear map t is completely determined by its values tij = t(ei, ej) on the
members of a basis E because of the linear property. It can be actually written as

t = tijα
i ⊗ αj ,

using the dual basis because t and tijα
i ⊗ αj give the same result when acting on

an arbitrary pair (v,u):

(tijα
i ⊗ αj)(v,u) = t(ei, ej)α

i(v)αj(u)

= t(v,u).

The last line follows because for any vector the identity v = αi(v)ei holds.

We also note from this result that the space W is n2 dimensional and that
{αi⊗αj}n

i,j=1 form a basis in it. We denote the space W by V ∗⊗V ∗ or by T 0
2 and

call it the tensor product of the space V ∗ with itself. Members of T 0
2 = V ∗⊗V ∗ are

called covariant tensors of rank 2 or (0,2) tensors. The components tij of tensor
t in the basis {αi ⊗ αj}n

i,j=1 change to t′ij in basis {βi ⊗ βj}n
i,j=1 and they are

related as

t′ij = t(fi, fj) = t(Ti
kek, Tj

lel) = Ti
kTj

ltkl. (5.9)



88 Chapter 5. Vectors and Tensors

5.2.2 Tensor Product T 2
0

= V ⊗ V

We have already noted that just as V ∗ is dual to V , V is dual to V ∗. Thus starting
with bilinear functionals on the cartesian product V ∗×V ∗ we can define the tensor
product v ⊗w of vectors in V exactly in the same manner as in the last section.
The resulting space V ⊗V is called the tensor product of spaces V . Its vectors are
called contravariant tensors of second-rank or (2,0) tensors.

A basis in the space V ⊗ V is given by {ei ⊗ ej}n
i,j=1. A tensor t ∈ V ⊗ V is

completely determined by its values on (αi, αj) that is by numbers tij = t(αi, αj).
It is obvious that we can write t = tijei ⊗ ej . Under a change of basis from E to
F by a matrix T , the components of a contravariant vector transform as

t′ij = t(βi, βj) = t((T−1T )ikαk, (T−1T )j lα
l) = (T−1T )ik(T

−1T )j lt
kl. (5.10)

5.2.3 Multilinear Functionals and T 0
r

The formalism of the last sections can be generalised to multilinear functionals.
A multilinear functional t on V × · · · × V (r-factors) is a map which assigns real
number t(u, . . . ,w) to an ordered set of r vectors of V , (u, . . . ,w) in such a way
that

t(u+ v, . . . ,w) = t(u, . . . ,w) + t(v, . . . ,w),

t(av, . . . ,w) = at(v, . . . ,w)

with similar equations for each of the arguments.

Exactly as in the bilinear case one can define α ⊗ · · · ⊗ β (r-factors) as the
multilinear functional

(α⊗ · · · ⊗ β)(u, . . . ,w) = α(v) · · ·β(w). (5.11)

The vector space of all such multilinear functionals is called the space T 0
r =

V ∗ ⊗ · · · ⊗ V ∗ of covariant tensors of rank r or (0, r) tensors.

A typical vector in T 0
r is a linear combination of decomposable vectors of

type α⊗· · ·⊗β. Indeed the set {αi1⊗· · ·⊗αir}, i1, . . . , ir = 1, . . . , n forms a basis
in the nr dimensional space T 0

r . Such tensors t are fully specified by nr numbers
ti...j ≡ t(ei, . . . , ej).

5.2.4 Spaces T s
0

In a similar manner we can define space T s
0 = V ⊗ · · · ⊗ V of contravariant

tensors of rank s as the set of all multilinear functionals on the cartesian product
V ∗ × · · · × V ∗ (s-factors) with basis ei1 ⊗ · · · ⊗ eis

with i1, . . . , is = 1, . . . , n.

We can see that T 0
r is dual to T r

0 .
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Let t = β ⊗ · · · ⊗ βr ∈ T 0
r = V ∗ ⊗ · · · ⊗ V ∗. Then t can be defined as a linear

functional on V ⊗ · · · ⊗ V as follows: on decomposable vectors it is

t(v1 ⊗ · · · ⊗ vr) = (β1 ⊗ · · · ⊗ βr)(v1 ⊗ · · · ⊗ vr)

= β1(v1) · · ·βr(vr),

while on vectors which are sums of these the linearity of the functional is used.
This shows that t is in the space dual to T r

0 . Vectors such as t span T 0
r therefore

T 0
r = (T r

0 )
∗.

5.2.5 Mixed Tensor Space T 1
1

Let T be a linear operator T : V → V on V . Then we can identify T with a
bilinear functional on V ∗ × V (denoted by the same symbol T ) by defining

T (α,v) = α(T (v)).

It is easy to see that T indeed is bilinear. Therefore we can regard T as belonging
to the tensor space T 1

1 = V ⊗ V ∗.
Just as we defined α⊗β in V ∗⊗V ∗, we can define, similarly u⊗β ∈ V ⊗V ∗.

It is a bilinear functional on V ∗ × V given by

(u⊗ β)(α,v) = α(u)β(v).

Of course, we can also interpret u⊗ β as a linear operator on V by defining
(u⊗ β)(v) = β(v)u

Members of the vector spaceT 1
1 = V ⊗ V ∗ are called mixed tensors of con-

travariant rank 1 and covariant rank 1 or, (1, 1) tensors. A basis can be chosen
in this n2-dimensional space by choosing {ei ⊗ αj} with i and j taking values
1, . . . , n.

To summarise, tensors of type T 1
1 can be considered as bilinear functionals

on V ∗ × V or as linear mappings V → V .

5.2.6 Mixed Tensors

The space T s
r of mixed tensors of contravariant rank s and covariant rank r (briefly

called (s,r) tensors) can be defined as the set of multilinear maps on V ∗ × · · · ×
V ∗×V ×· · ·×V (there are s factors of V ∗ and r of V ). A typical multilinear map
of this type is v⊗ · · · ⊗w⊗α⊗ · · · ⊗β which acts on V ∗× · · · ×V ∗×V × · · · ×V
as

(v ⊗ · · · ⊗w ⊗ α⊗ · · · ⊗ β)(γ, . . . , ζ,u, . . . ,x) = γ(v) · · · ζ(w)α(u) · · · β(x).
Such decomposable tensors form the basis

ei1 ⊗ · · · ⊗ eis
⊗ αj1 ⊗ · · · ⊗ αjr .
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A general multilinear map t in T s
r is determined by its values

ti1...is
j1...jr

≡ t(αi1 , . . . , αis , ej1 , . . . , ejr
)

which allows us to write

t = ti1...is
j1...jr

ei1 ⊗ · · · ⊗ eis
⊗ αj1 ⊗ · · · ⊗ αjr .

5.2.7 Interior Product or Contraction

Given a covariant tensor t ∈ T 0
r of rank r and a vector v we define a tensor

ivt ∈ T 0
r−1 of rank r − 1 as follows:

(ivt)(v1, . . . ,vr−1) = t(v,v1, . . . ,vr−1). (5.12)

The linear mapping iv satisfies the following properties:

iv(t+ s) = iv(t) + iv(s), (5.13)

iv(at) = aiv(t), (5.14)

iv+u(t) = iv(t) + iu(t), (5.15)

iav(t) = aiv(t). (5.16)

Similarly, if we are given a mixed (r, s)-tensor T with contra- and covariant
indices then a contraction between the k-th contra- and l-th covariant index is
defined as an (r − 1, s− 1)-tensor i(k, l)T as

(i(k, l)T )(β1, β2, . . . , βr−1,v1, . . . ,vs−1)

=
∑

i

T (β1, β2, . . . , αi, . . . , βr−1,v1, . . . , ei, . . . ,vs−1) (5.17)

where the dual basis elements αi and ei appear in the k-th and l-th place. Simply
said, in terms of components,

(i(k, l)T )i1...ik−1ik+1...ir

j1...jl−1jl+1...js

= T i1...ik−1jik+1...ir
j1...jl−1jjl+1...js

. (5.18)

5.2.8 Summary

To summarise, we start with a vector space V with a basis {ei} and define the dual
space V ∗ with a dual basis {αi}. With these spaces and bases as starting point we
can define an infinite sequence of vector spaces of higher and higher dimensions
with tensor products. The components of a tensor are characterised by the way
they transform when we change the basis {ei} to a new basis. This leads to a
change in the dual basis, and to bases in all the tensor spaces.
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As a matter of standard established notation, observe carefully the use of
super- and sub-scripts for denoting the members of bases in V ∗ and V (respec-
tively) as well as in the components of contra- and co-variant vectors and tensors.

We can verify the transformation properties of components of the covariant
and contravariant tensors: when the basis {ei} in V is changed to {fi} as

fi = Ti
jei,

the dual basis changes from {αi} to {βi},

βi = (T−1T )ikαk,

and components of tensors change as

t′i...j = Ti
k . . . Tj

ltk...l, (5.19)

t′i...j = (T−1T )ik . . . (T−1T )j lt
k...l, (5.20)

t′i...jk...l = (T−1T )ip . . . (T−1T )jqTk
m . . . Tl

ntp...q
m...n (5.21)

where the primes denote components with respect to the bases βi and fi.

5.3 Wedge or Exterior Product

Antisymmetric covariant tensors are extremely important because of their connec-
tion to differential forms, surface and volume integrals and Gauss-Stokes theorem.
This importance is reflected in the fact that the antisymmetric part of tensor
products has a different symbol and name to denote it.

For second-rank tensors we write

α ∧ β = α⊗ β − β ⊗ α

and generalise it to tensors of higher rank.

5.3.1 Permutations

Let P be a permutation of r objects. This means that P is a one-to-one mapping
of the set {1, . . . , r} of first r natural numbers onto itself. There are r! such map-
pings. Each of these can be considered as composed of more elementary mappings
called transpositions, which just exchange two of the integers and map the rest to
themselves. The way in which transpositions make a permutation P is not unique
but the number of transpositions involved, though not fixed, is always either an
even or an odd integer. The permutation is called even or odd accordingly. Let us
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define (−1)P to be equal to +1 if P is even and −1 if odd. The set of r! permu-
tations can be made a group under composition of mappings as the group law.
The identity mapping is even. It is also clear that (−1)P1◦P2 = (−1)P1(−1)P2 . It
follows that P−1 is even or odd according to the sign of P .

Let us define a linear operator on T 0
r corresponding to permutation P , also

to be denoted by P , as follows. Let β1, . . . , βr be vectors in V ∗. Form the tensor
product β1 ⊗ · · · ⊗ βr. Now define

P (β1 ⊗ · · · ⊗ βr) ≡ βP (1) ⊗ · · · ⊗ βP (r). (5.22)

It is sufficient to define P on these vectors because any general vector in T 0
r is a

linear combination of such vectors, and P is linear. For two permutations P1 and
P2 we have clearly P2P1 = P2 ◦ P1 where in this equation the linear operators are
on the left and the mappings on the right.

5.3.2 Exterior or Wedge Product

We are now ready to define the wedge product of any number of vectors of V ∗.

β1 ∧ β2 ∧ · · · ∧ βr ≡
∑
P

(−1)P P (β1 ⊗ · · · ⊗ βr)

=
∑
P

(−1)P βP (1) ⊗ · · · ⊗ βP (r). (5.23)

If Q is a permutation operator, then

βQ(1) ∧ βQ(2) ∧ · · · ∧ βQ(r) =
∑
P

(−1)P PQ(β1 ⊗ · · · ⊗ βr)

= (−1)Q
∑
R

(−1)RR(β1 ⊗ · · · ⊗ βr)

where we have used R ≡ P ◦ Q and (−1)R = (−1)P (−1)Q = (−1)P /(−1)Q.
Therefore,

βQ(1) ∧ βQ(2) ∧ · · · ∧ βQ(r) = (−1)Q(β1 ∧ β2 ∧ · · · ∧ βr). (5.24)

In particular, the wedge product like β1∧β2∧· · ·∧βr changes sign whenever
any two factors in it are exchanged. Therefore if any factor is repeated, the product
is the zero vector.

Tensors with this property are called antisymmetric. As a multilinear func-
tional on V × · · · × V ,

(β1 ∧ β2 ∧ · · · ∧ βr)(v1, . . . ,vr) = det ‖βi(vj)‖. (5.25)

Linear combinations of antisymmetric tensors are also antisymmetric, there-
fore the set of all antisymmetric covariant tensors forms a subspace Λr(V ∗) ⊂
T 0

r = V ∗ ⊗ · · · ⊗ V ∗. These tensors are also called r-forms.
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5.3.3 Bases for Λr(V ∗)

A basis in Λr(V ∗) can be chosen by considering all independent tensors of the
form αi1 ∧ · · · ∧ αir . Obviously, i1, . . . , ir all have to be different, because the
antisymmetric wedge product is zero if any two vectors in the product string
are the same. Also, a particular combination i1, . . . , ir need be taken only once
because any other product with these same indices (though in some other order)
is ±1 times the same vector. There are as many independent tensors of this type
as the number of ways to choose a combination of r different indices i1, . . . , ir out
of 1, . . . , n. The dimension of space Λr(V ∗) is therefore n!/r!(n− r)!.

A basis can be chosen consisting of vectors {αi1∧· · ·∧αir} with i1 < · · · < ir.
For r = n the space Λn(V ∗) is one-dimensional containing multiples of α1∧· · ·∧αn.
For r > n the spaces Λr are zero, that is, contain only the zero vector.

5.3.4 Space Λr(V )

In exactly the same manner we define the space Λr(V ) of all antisymmet-
ric contravariant tensors. They are called r-vectors. This space is spanned by
{ei1 ∧ · · · ∧ eir

} with i1 < · · · < ir.

5.3.5 Wedge Product of an r- and an s-form

Given an r-form t ∈ Λr(V ∗) and an s-form u ∈ Λs(V ∗) we can define an r+s-form
t ∧ u called the wedge or exterior product of t and u as follows. First define it on
decomposable vectors:

(β1 ∧ · · · ∧ βr) ∧ (γ1 ∧ · · · ∧ γs) = β1 ∧ · · · ∧ βr ∧ γ1 ∧ · · · ∧ γs

and then extend it on general vectors by linearity. Because

β1 ∧ · · · ∧ βr ∧ γ1 ∧ · · · ∧ γs = (−1)rsγ1 ∧ · · · ∧ γs ∧ β1 ∧ · · · ∧ βr

follows from the antisymmetry of the wedge product, we must have in general

t ∧ u = (−1)rsu ∧ t. (5.26)

5.3.6 Bases in T 0
r

and Λr(V ∗)

Let t ∈ Λr(V ∗) be written

t =
∑

i1<···<ir

Ti1...ir
αi1 ∧ · · · ∧ αir .

Note that coefficients Ti1...ir
are defined only for indices i1 < · · · < ir.
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As Λr(V ∗) ⊂ T 0
r , the r-form t can also be expanded as a member of T 0

r in
the basis {αj1 ⊗ · · · ⊗ αjr}n

j1,...,jr=1, with coefficients tj1,...,jr
= t(ej1 , . . . , ejr

),

t =

n∑
j1,...,jr=1

tj1,...,jr
αj1 ⊗ · · · ⊗ αjr .

By expanding the wedge product basis vectors in terms of a tensor product basis,
and then comparing the coefficients, we find the components t’s in terms of T’s.

tj1...jr
= 0 if any of the indices coincide,

tj1...jr
= Tj1...jr

for j1 < · · · < jr,

tj1...jr
= (−1)P TP (j1)...P (jr)

where permutation P brings indices j1 . . . jr to increasing order P (j1) < · · · <
P (jr)

5.3.7 Components of t ∧ u in Λr+s(V ∗) Basis

Given that

t =
∑

i1<···<ir

Ti1...ir
αi1 ∧ · · · ∧ αir ,

u =
∑

i1<···<is

Ui1...is
αi1 ∧ · · · ∧ αis ,

we can work out the components Bi1...ir+s
of t∧ u in the basis {αi1 ∧ · · · ∧αir+s}.

They are

Bi1...ir+s
=

∑
(r,s) shuffles Q

TQ(i1)...Q(ir)UQ(ir+1)...Q(ir+s) (5.27)

where the sum is over all (r, s) shuffles defined below.
An (r, s) shuffle is defined to be a permutation Q of (r + s) distinct integers

(i1 < · · · < ir+s) such that

[i1, · · · , ir+s]→ [Q(i1), · · · , Q(ir) ; Q(ir+1), · · ·Q(ir+s)]

where Q(i1) < · · · < Q(ir) and Q(ir+1) < · · · < Q(ir+s).
The total number of (r,s) shuffles is (r + s)!/r!s!.
As an example, (2,4,5,7) have the following six (2,2) shuffles:

(2, 4, 5, 7)→ (2, 4; 5, 7), (2, 5; 4, 7), (2, 7; 4, 5), (4, 5; 2, 7), (4, 7; 2, 5), (5, 7; 2, 4).
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Answer 31. Change a basis and verify that the inverse-transpose rule for change of bases
makes the definition independent of bases.

Exercise 32. Every (1,1) tensor t ∈ T 1
1 (V ) determines a linear mapping T : V → V by

the formula (see section 5.2.5)

(Tv)(α) = t(α,v).

What is the linear mapping corrsponding to the Kronecker delta? And what is the linear
mapping corresponding to t = u⊗ β for fixed u ∈ V and fixed β ∈ V ∗.

Answer 32. Identity for the Kronecker delta. For t = u ⊗ β the map T is such that
T (v) = β(v)u



Chapter 6

Inner Product

In this chapter we introduce the additional structure of an inner product or metric
on a vector space and its associated spaces.

6.1 Definition

A vector space is defined by the operations of sum of its vectors and multiplication
by real numbers to its vectors.

An inner product or metric is an additional structure on a vector space.
For any two vectors v and w in a vector space V their inner product is a real

number denoted by 〈v,w〉. The function which defines the inner product should
have the following properties:

1. It is linear, that is,

〈u,v +w〉 = 〈u,v〉+ 〈u,w〉, (6.1)

〈u, av〉 = a〈u,v〉 (6.2)

for any v,u,w ∈ V and any real number a.

2. It is symmetric

〈u,v〉 = 〈v,u〉 (6.3)

for any v,u ∈ V With this property we can see that the inner product is
linear in the first argument as well:

〈u+ v,w〉 = 〈u,w〉+ 〈v,w〉,
〈au,v〉 = a〈u,v〉.

3. It is non-degenerate, that is, if 〈u,v〉 = 0 for all v ∈ V then u = 0.
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The inner product is also called the metric.
An inner product is often defined with a stronger condition of positive defi-

niteness which says that 〈v,v〉 ≥ 0 and 〈v,v〉 = 0 if and only if v = 0.
Obviously, a positive definite inner product is non-degenerate (take v = u in

the condition of non-degeneracy), but not vice versa. In relativity theory we need
inner-products on spacetime which are not positive definite. In Minkowski space
there are time-like vectors whose inner product with themselves is negative or null
vectors for which it is zero. But the inner product is always non-degenerate.

Given an inner product we can define the notion of orthogonality. Two vectors
v and u in V are called orthogonal if their inner product is zero, that is 〈v,u〉 = 0.

For any vector v the number 〈v,v〉 is its norm squared. When the inner
product is positive definite, as in Eulidean space, the positive number

√〈v,v〉 is
its norm or length.

When the inner product is not positive definite, norm squared can be positive,
negative or zero. A vector with zero norm squared (that is a vector which is
orthogonal to itself) is called a null vector. A vector with norm squared equal to
±1 is called normalized.

Two non-null, orthogonal vectors are linearly independent. What is interest-
ing is that two non-orthogonal null vectors are also linearly independent. And in
(3+1)-dimensional Minkowski space, if two null vectors are orthogonal, then they
are necessarily proportional to each other.

6.2 Orthonormal Bases

An inner product or metric as defined above is a bilinear functional on V × V .
Therefore it defines a second-rank, symmetric covariant tensor g called the metric
tensor through

g(u,v) = 〈u,v〉.

We could equally well use the notation with g(u,v) in place of 〈u,v〉. In most
cases however, g is a given, fixed tensor and there is ease of notation in using
the bracket notation for the inner product. In three-dimensional vector spaces the
notation used is u · v instead of 〈u,v〉.

Let ei, i = 1, . . . , n be a basis in V . The components of the metric in this
basis are

gij = 〈ei, ej〉. (6.4)

This symmetric matrix contains all the information about the inner product be-
cause if v = viei and u = ujej are two vectors, then bilinearitry of the product
in its two arguments implies

〈v,u〉 = gijv
iuj . (6.5)
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The non-degeneracy of the inner product means that g ≡ det gij �= 0 or, in
other words, the matrix of metric tensor components in any basis is non-singular.

We note the important result that despite the existence of null (zero-
norm) vectors in the space one can always choose a basis {ni}n

i=1 such that
ηij = 〈ni,nj〉 = 0 if i �= j and the norm squared 〈ni,ni〉 is either +1 or −1.
Such a basis is called an orthonormal basis (or o.n. basis). We construct such a
basis in the next section.

The number of vectors with norm squared +1 and those with norm squared
−1 in such an orthonormal basis is fixed by the definition of the inner product.
The number of positive norm squared vectors minus the number of negative norm
squared vectors in an orthonormal basis is called the signature of the metric and
is denoted by sig(V ).

There do exist bases which contain (non-zero) null vectors as basis vectors.
But these bases are not orthonormal.

6.2.1 Existence of Orthonormal Bases

We go through the standard proof of the existence of orthonormal bases because
of its fundamental importance.

Let a be a non-zero vector with non-zero norm squared 〈a,a〉 �= 0.
There certainly exists a non-null vector of this kind unless the whole space

is trivial consisting of just the zero vector 0. This is so because if 〈a,a〉 were zero
for all a ∈ V then by using 〈a + b,a + b〉 = 0 for any arbitrary b it follows that
〈a,b〉 = 0 for all b. The condition of non-degeneracy then implies a = 0.

Let n1 = a/
√|〈a,a〉|. Depending on the sign of norm squared of a, 〈n1,n1〉 ≡

ε1 is +1 or −1.
Let V1 be the one-dimensional subspace spanned by n1, and let V2 be the

set of all vectors in V orthogonal to every vector in V1. Obviously, V2 is a vector
subspace, and every vector v ∈ V can be decomposed as

v = ε1〈v,n1〉n1 + (v − ε1〈v,n1〉n1)

where the first term is in V1 and the second term is in V2. The only vector common
to V1 and V2 is the zero vector 0 and this again follows from non-degeneracy.

The inner product restricted to V2 is again non-degenerate because a vector
in V2 orthogonal to all other vectors of V2 is moreover orthogonal to V1 and hence
is the zero vector.

We can now start with V2 as the starting space and find a non-null vector
b ∈ V2 such that 〈b,b〉 �= 0, and construct n2 = b/

√
|〈b,b〉|, with 〈n2,n2〉 ≡ ε2

equal to +1 or -1. We proceed in this manner inductively till the whole basis is
constructed.

Thus we have a basis {ni} with the metric components

Iεij = 〈ni,nj〉 = εiδij (no summation on i) (6.6)
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or

Iε =

⎛
⎜⎜⎜⎝

ε1 0 . . . 0
0 ε2 . . . 0

. . .

0 0 . . . εn

⎞
⎟⎟⎟⎠ . (6.7)

6.2.2 Signature of the Metric

Note that whichever route we take to choose orthonormal vectors for a basis the
number n+ of vectors with norm +1 and the number n− of vectors with norm −1
is always the same. As dimV = n = n++n− is fixed so is the number t = n+−n−.
t is called the signature of the metric. The Minkowski space has one time-like unit
vector with ε0 = −1 and three space-like vectors with (εi = 1, i = 1, 2, 3) in any
orthonormal basis. Thus it has signature +2.

Similarly the number ±1 = ε1ε2 . . . εn = det Iε, which is the determinant of
the matrix Iε of metric components (in the orthonormal basis), is a characteristic
of the metric. If {ej} is any basis with gij = 〈ei, ej〉 as the metric components
then g ≡ det ‖gij‖ (which is always non-zero) has the same sign as det Iε. We write
this number as sgn(g) in general.

For spacetime in general relativity the sign of g = det gij is always negative
because the number of vectors with negative norm is odd.

6.3 Correspondence Between V and V ∗

A non-degenerate inner product 〈 , 〉 defined on a vector space V sets up a one-
to-one correspondence between vectors in V and those in the dual V ∗.

Let v ∈ V be given. Then every vector u ∈ V can be mapped linearly to real
numbers by u → 〈v,u〉. This helps us define a linear functional v	 ∈ V ∗ (called
“v-flat”) with the help of the inner product as

v	(u) = 〈v,u〉.

Properties of the inner product ensure that v	 is a linear functional. Obviously,
v	 depends on the vector v.

In fact, for finite dimensional spaces, all linear functionals arise in this way.
In other words, if we are given a linear functional α ∈ V ∗ then there exists a vector
α
 ∈ V (“alpha-sharp”) such that the number assigned by α to a vector u is the
same number 〈α
,u〉 obtained in taking the inner product with α
.

We can identify α
 as follows.

First choose an orthonormal basis {ni} with 〈ni,nj〉 = 0 for i �= j and
〈ni,ni〉 = εi.
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Now define

α
 =
∑

i

εiα(ni)ni. (6.8)

This is indeed the vector with the required property. Expanding u = ujej

and using (εi)
2 = 1,

〈α
,u〉 =
∑

j

uj〈α
,nj〉 =
∑
ij

ujεiα(ni)〈ni,nj〉

=
∑
ij

ujεiα(ni)εiδij =
∑

j

ujα(nj) = α(u).

This one-to-one correspondence between the the dual spaces V and V ∗ is
called raising and lowering of indices by the matrix gij . The reason for this nomen-
clature is as follows.

If v ∈ V has components vi in basis ei (not necessarily orthonormal) then
the linear functional v	 ∈ V ∗ corresponding to it has components

ai = gijv
j

with respect to the dual basis αi,

v	(u) = 〈v,u〉 = gijv
iuj = gijv

iαj(u) ≡ (ajα
j)(u) (6.9)

where we have used the property of dual basis: if u = ujej then αi(u) = ui.
The inverse of this one-to-one correspondence between components of a linear

functional α = aiα
i to a vector α
 = vjej is similarly given by

vi = gijaj

where gij (with matrix indices written as superscripts) is the inverse of the matrix
gij . We see this in the next section.

This also explains the musical notation of sharp and flat. A vector v ∈ V (con-
travariant,upper index) corresponds, via the metric, to a form v	 (covariant, lower
index=lower pitch=flat), while a form α becomes a vector (contravariant=upper
index=higher pitch=sharp) α
 ∈ V .

Remark on Physicists’ Notation

Most general relativity physicists use the same letter-symbol for components when
a (contravariant) vector v is put in correspondence with a (covariant) form v	 or
vice versa. For example if

v = viei,
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then v	 is written as

v	 = viα
i

in the dual basis. The correspondence itself looks like

vi = gijv
j , vi = gijvj .

This notation although convenient can be very confusing in geometrical contexts.
For example, in dealing with a hypersurface, the normal vector field on the surface
and its corresponding 1-form have very different roles to play, and the choice of
using the same symbols for components is more a liability than a convenience.

6.4 Inner Product in V ∗

An inner product defined on a vector space V , determines in a natural way an
inner product on the dual vector space V ∗ as well as on spaces T r

s and Λr(V ∗)
etc.

We saw in the last section that to every α ∈ V ∗ corresponds a vector α
 such
that α(u) = 〈α
,u〉 for every u ∈ V and conversely every vector in V determines
a member of V ∗ in this manner.

This one-to-one correspondence suggests that if α corresponds to α
 =∑
i εiα(ni)ni for an orthonormal basis {ni} and similarly if β corresponds to β
,

then we can define

〈α, β〉 ≡ 〈α
, β
〉 =
∑

i

εiα(ni)β(ni).

All properties of the inner-product are satisfied. Perhaps the only property not
obvious to see is non-degeneracy. We follow it up in an exercise.

In a basis with vectors ei = Ti
knk the metric is

gij = 〈ei, ej〉 = Ti
kεkTj

k = (TIεT
T )ij

where Iε is the matrix of the metric in the orthonormal basis

(Iε)ij = 〈ni,nj〉 = εiδij , no summation. (6.10)

The convenience of the matrix in the orthonormal basis is that its square is the
identity marix and (Iε)

−1 = (Iε).
Let {αi} be the basis dual to {ei}. The dual basis is obtained by matrix

T−1T acting on the basis {νi} dual to {ni},

αi =
∑

l

(T−1)l
i
νl.
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The matrix of the metric in the dual space is then

gij ≡ 〈αi, αj〉 (6.11)

=
∑

k

εkαi(nk)α
j(nk)

=
∑
k,l,m

(T−1)l
i
νl(nk)εk(T

−1)m
j
νm(nk)

= (T−1T IεT
−1)ij

= (g−1)ij (6.12)

which follows from the relation gij = (TIεT
T )ij given above.

Therefore we see that the matrix gij = 〈αi, αj〉 of the naturally determined
metric in the dual basis of V ∗ is the inverse of the matrix gij = 〈ei, ej〉 in the
original basis.

6.4.1 Inner Product in Tensor Spaces

We now define the inner product on T r
0 = V ⊗ · · · ⊗ V .

For a1 ⊗ a2 · · · ⊗ ar ∈ T r
0 define the inner product on decomposable vectors

as

〈a1 ⊗ a2 · · · ⊗ ar,b1 ⊗ b2 · · · ⊗ br〉 ≡ 〈a1,b1〉 · · · 〈ar,br〉
and extend by linearity over arbitrary linear combinations.

To check the non-degeneracy property of this inner product let us choose an
orthonormal basis {ni} in V with 〈ni,nj〉 = ±δij . Let t = ti1...irni1 ⊗ · · · ⊗nir

be
such that 〈t,nj1 ⊗ · · · ⊗ njr

〉 = 0 for all sets {j1, . . . jr}. Then it follows from the
definition that ti1...ir = 0 for all i1 . . . ir, that is t = 0.

An exactly similar definition can be given for the inner product in T 0
r (V ) =

V ∗ ⊗ · · · ⊗ V ∗.

6.4.2 Inner Product in Λr(V ∗)

The inner product on the exterior product of spaces Λr(V ∗) ⊂ T 0
r , or Λ

r(V ) ⊂ T r
0

is already defined as these are subsets of larger spaces whose inner product they
naturally inherit.

But there is a standard convention to redefine the inner product on spaces
Λr(V ∗) to avoid factors of r!.

For r = 2, the definition of the wedge product gives,

〈η1 ∧ η2, β1 ∧ β2〉 = 〈η1 ⊗ η2 − η2 ⊗ η1, β1 ⊗ β2 − β2 ⊗ β1〉.
This can be written as a determinant

〈η1 ∧ η2, β1 ∧ β2〉 = 2det[〈ηi, βj〉].
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Similarly,

〈ηi1 ∧ · · · ∧ ηir
, βj1 ∧ · · · ∧ βjr

〉 ≡ r! det[〈ηim
, βjn

〉].

Notation

The redefined inner product is given without the factor r!

〈ηi1 ∧ · · · ∧ ηir
|βj1 ∧ · · · ∧ βjr

〉 ≡ det[〈ηim
, βjn

〉]. (6.13)

In order to remind ourselves of this new normalization, we use the ‘bar’
notation 〈 | 〉 in place of the comma 〈 , 〉. For r = 1, there is no difference and we
use the comma notation.

Let {νi} be an orthonormal basis in V ∗ with 〈νi, νj〉 = εiδij . Let us use the
abbreviation

νi1<···<ir ≡ νi1 ∧ · · · ∧ νir with i1 < · · · < ir (6.14)

for the orthonormal basis vectors in Λr(V ∗). With the re-normalised inner product
these basis vectors have

〈νi1<···<ir |νj1<···<jr 〉 = εi1 . . . εir
δi1j1 . . . δirjr

.

An inner product 〈 | 〉 can be defined for spaces Λr(V ) similarly.

6.5 Orientation and Cartan Tensor

Remember that the space Λn(V ∗) is one-dimensional. Choose {νi} as an ortho-
normal basis in V ∗. Then Λn(V ∗) has just two normalized vectors η = ν1∧· · ·∧νn

and −η, with

〈η|η〉 = ε1 . . . εn = sgn(g).

If we remove the zero vector from the one-dimensional space Λn(V ∗) then the
space gets divided into two disjoint subsets.

We choose one of these subsets (say the subset to which η belongs) and say
that ‘we have chosen an orientation’ η = ν1 ∧ · · · ∧ νn through the orthonormal
basis {νi}.

The vector η ∈ Λn(V ∗) is called the Cartan tensor after we have chosen this
orientation.

A different basis (not necessarily orthogonal) {αj} in V ∗ is defined to have
the chosen orientation if the vector α1 ∧ · · · ∧ αn is in the chosen subset to which
η = ν1 ∧ · · · ∧ νn belongs. It is said to have the opposite orientation otherwise.

Let {αj} and {βi} be two bases with the chosen orientation. Then the matrix
connecting the two bases must have a positive determinant.

βi =
∑

j

Tijα
j , detT > 0.
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This can be seen from relating both the bases to η,

αi =
∑

j

Aijν
j , βi =

∑
j

Bijν
j

and noting that for example

α1 ∧ · · · ∧ αn = (detA)η,

therefore detA > 0. Similarly, detB > 0. Now T = BA−1 therefore detT > 0 as
well.

The components of the Cartan tensor in the orthonormal basis (of T 0
n) are

just numbers ±1 depending on the permutation of the factors:

η = ν1 ∧ · · · ∧ νn

= εi1...in
νi1 ⊗ · · · ⊗ νin ,

ε1...n = 1,

εi1...in
= (−)P . (i1, . . . , in) are a permutation P of(1, . . . , n),

εi1...in
= 0 if any two indices coincide.

The components εj1...jn
of the Cartan tensor in a general basis {αi} where

αi =
∑

j Aijν
j are given by

εj1...jn
=

√
|g|εj1...jn

.

This is worked out in a tutorial.

6.6 Hodge *-Operator

6.6.1 Definition

Let us choose an orientation, say, η = ν1 ∧ · · · ∧ νn with the orthonormal basis
{νi}.

For any 0 ≤ r ≤ n the star operator ∗ is a linear map from Λr(V ∗) into
Λn−r(V ∗). The map is defined as follows:

Let t ∈ Λr(V ∗) be a fixed r-form and s ∈ Λn−r(V ∗), then t ∧ s ∈ Λn(V ∗)
which is one-dimensional space and therefore t ∧ s is proportional to η. Let the
proportionality constant be written as T (s),

t ∧ s = T (s)η.

The map T : s→ T (s) is a linear functional on Λn−r(V ∗).
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We know that in any vector space W with an inner product 〈 , 〉, a linear
functional c : u→ c(u) will determine a vector v ∈ W whose inner product with a
vector of the space is the number assigned by the linear functional , c(u) = 〈v,u〉.

The mapping T : Λn−r(V ∗)→ R given by s → T (s) (for the fixed t chosen)
is a linear functional on Λn−r(V ∗) and therefore it determines, through the inner
product (〈 , 〉 or 〈 | 〉 or any other) a unique vector ∗t in Λn−r(V ∗) whose inner
product with s is this value T (s),

〈∗t, s〉 = T (s).

We have denoted the vector by ∗t because the functional T (s) is determined by t.
We can write more transparently but with a slight abuse of language,

T (s) = 〈∗t, s〉 = t ∧ s

η
.

6.6.2 Formula for the Star Operator

The definition of ∗t ∈ Λn−r(V ∗) starting from t ∈ Λr(V ∗) depends on the inner
product chosen. On Λr(V ∗) we already have two definitions for the inner product,
〈 , 〉, (which is the direct inheritor of the natural inner product on T 0

r ) and 〈 | 〉
differing by a factor of r!. To make matters worse there exist different possibilities
for defining the map s → T (s): should t ∧ s = T (s)η or s ∧ t = T (s)η? And we do
not even mention the choice of orientation η.

Therefore the definition of the star operator is obtained by fixing an r-
dependent proportionality factor.

In the following we define our convention which agrees with most physics texts
(including the one in Misner, Thorne and Wheeler) for students’ convenience. It
is sufficient to define the operator on the orthonormal basis elements of spaces Λr.

Our definition corresponds to choosing

〈∗t|s〉η = (sgn(g))t ∧ s. (6.15)

Remember that Λ0 is the one-dimensional space which can be identified with the
set of real numbers R. An orthonormal basis in Λ0 has only one element which
we can identify with the number 1. We define the *-operated vectors in Table 6.1
given below.

This mapping ∗ : Λr(V ∗)→ Λn−r(V ∗) is a linear mapping called the Hodge
*-operator. Actually there is a *-operator for each r, but they are all denoted by
the same common symbol.

It is straightforward to see how formulas follow from the definition. We work
out the connection between the definition and the formulas given above in the
excercises at the end of the chapter.

The star operator maps an r-form into an (n−r)-form and vice versa. There-
fore applying it twice is the same as mapping r-forms into themselves. Actually it
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is proportional to identity

∗∗ = (−1)r(n−r)sgn(g). (6.16)

6.6.3 Star Operator in a General Basis

The star operator is expressed most simply in an orthonormal basis. But we cal-
culate it in other, general bases too. Since an orientation has been chosen, the
general basis {αi} should be such that α1∧· · ·∧αn is a multiple of η = ν1∧· · · νn

by a positive number. This means that if αi = Si
jν

j then detS > 0.
We start with the convenient form, already a tensor equation

∗(νi1 ∧ νi2 · · · ∧ νir ) =
1

(n− r)!
ηi1k1 . . . ηirkrεk1...krj1...jn−r

νj1 ∧ · · · ∧ νjn−r

and change basis. Let

αi = Si
jν

j , gij = 〈αi, αj〉 = Si
kSj

l ηkl.

Therefore,

∗(αi1 ∧ . . . αir ) =
1

(n− r)!
Si1

j1
. . . Sir

jr
∗ (νj1 ∧ . . . νjr )

=
1

(n− r)!
Si1

j1
. . . Sir

jr
ηj1k1 . . . ηjrkr

× εk1...krl1...ln−r
νl1 ∧ · · · ∧ νln−r .

As Si
kSj

l ηkl = gij , we have Si
kηkl = (S−1)ljg

ij therefore

Si1
j1

. . . Sir

jr
ηj1k1 . . . ηjrkr = (S−1)k1

p1
. . . (S−1)kr

pr
gi1p1 . . . girpr .

Next we change the orthonormal vectors νi into αj ’s,

νl1 ∧ · · · ∧ νln−r = (S−1)l1q1
. . . (S−1)ln−r

qn−r
αq1 . . . αqn−r

and combine all S−1 factors to convert the Cartan tensor components
εk1...krl1...ln−r

from the orthonormal basis to the general basis

(S−1)k1

p1
. . . (S−1)kr

pr
(εk1...krl1...ln−r

)(S−1)l1q1
. . . (S−1)ln−r

qn−r

= εp1...prq1...qn−r

=
√
|g|εp1...prq1...qn−r

.

Therefore we get the general formula

∗(αi1 ∧ . . . αir ) =
1

(n− r)!

√
|g|gi1p1 . . . girpr (εp1...prq1...qn−r

)

× αq1 ∧ · · · ∧ αqn−r .
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Table 6.1
Definition of the Hodge star-operator

Orthonormal basis

r t ∗t

0 1 ν1 ∧ · · · ∧ νn

1 ν1 ε1ν
2 ∧ · · · ∧ νn

ν2 −ε2ν
1 ∧ ν3 ∧ · · · ∧ νn

. . . . . .
νi (−1)i−1εiν

1 ∧ · · · νi−1 ∧ νi+1 · · · ∧ νn

. . . . . .

r νi1 ∧ νi2 · · · ∧ νir (−1)P εi1 . . . εir
νj1 ∧ · · · ∧ νjn−r

(i1 < · · · < ir) where ji < · · · < jn−r is the
complimentary set of indices remaining after
taking out i1 < · · · < ir from 1, . . . , n
and P is the permutation

P : {i1, . . . , ir, j1, . . . , jn−r} → {1, . . . , n}

r νi1 ∧ νi2 · · · ∧ νir 1
(n−r)!η

i1k1 . . . ηirkrεk1...krj1...jn−r
νj1 ∧ · · · ∧ νjn−r

Another useful form:
no restrictions on order of indices

. . . . . .

n ν1 ∧ · · · ∧ νn ε1 . . . εn = sgn(g)

(6.17)
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Notice that ∗(α1 ∧ · · · ∧ αn) = sgn(g)/
√|g|. In terms of components, a general

form t = ti1...ir
αi1 ∧ · · · ∧ αir becomes ∗t = (∗t)i1...in−r

αi1 ∧ · · · ∧ αin−r with

(∗t)q1...qn−r
=

√
|g|ti1...ir

gi1p1 . . . girprεp1...prq1...qn−r
.

Table 6.2: Hodge star-operator
(General basis)

t ∗t

1
√
|g|α1 ∧ · · · ∧ αn

αi1 ∧ · · · ∧ αir [(n− r)!]−1
√|g|gi1k1 . . . girkr×

εk1...krj1...jn−r
αj1 ∧ · · · ∧ αjn−r

α1 ∧ · · · ∧ αn sgn(g)/
√|g|

(6.18)

6.7 Minkowski Space

Minkowski space M is the spacetime of special relativity. It is a four-dimensional
space with a real non-degenerate metric 〈, 〉. If {eμ}, μ = 0, 1, 2, 3 is a basis then
gμν = 〈eμ, eν〉 is a real non-singular symmetric matrix. We say two vectors u,v ∈
M are orthogonal if 〈u,v〉 = 0. Because the metric is not positive definite, and
merely non-degenerate, our intuition based on orthogonality in the ordinary sense
does not work. There are non-zero vectors which are orthogonal to themselves.

A vector v with negative norm squared 〈v,v〉 < 0 is called time-like. It is
called space-like if 〈v,v〉 > 0 and null or light-like if 〈v,v〉 = 0. All vectors in M
except the zero vector fall into one of these categories.

The basic fact about Minkowski space is:

A non-zero vector orthogonal to a time-like vector must be space-like.

That is, v �= 0 and T such that 〈T,T〉 < 0, 〈T,v〉 = 0 implies 〈v,v〉 > 0. We can
rephrase it by saying that there can be no time-like or null vector orthogonal to a
time-like vector.

Since the inner product of two time-like vectors T and T′ can only be non-
zero, we define a relation T ∼ T′ on time-like vectors by saying they are related if
〈T,T′〉 < 0. A vector is related to itself. If T is related to T′ then T′is related to
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T. Moreover if T ∼ T′ and T′ ∼ T′′ then we can prove the transitivity property
of this relation (that T ∼ T′′) as follows.

First we see that T − aT′′ can be made orthogonal to T′ by choosing a =
〈T′,T〉/〈T′,T′′〉 > 0. Since T′ is time-like, a vector orthogonal to it can only be
space-like. So,

〈T− aT′′,T− aT′′〉 > 0.

This gives,

〈T,T′′〉 <
1

2a

[〈T,T〉+ a2〈T′′,T′′〉] < 0.

This equivalence relation ‘∼’ splits all time-like vectors into two classes called
the ‘future’ and ‘past’ pointing time-like vectors. There are exactly two equivalence
classes because if T,T′,T′′ are three time-like vectors with T and T′′ not in the
same class as T′, then T and T′′ are in the same equivalence class: T ∼ T′′. (The
proof is exactly similar to the proof of transitive property given above. We can
make T− aT′′ orthogonal to T′ by choosing a positive a > 0, then T− aT′′ has
to be space-like: 〈T− aT′′,T− aT′′〉 > 0 this gives 〈T,T′′〉 < 0.)

A linear combination with positive coefficients of two vectors in the same
class is again in the class.

Consider the set of all null or light-like vectors in the Minkowski space. As in
the case of time-like vectors we can define two null vectors k and k′ to be related if
〈k,k′〉 ≤ 0. (This time we have to include zero as well in the inequality otherwise a
vector will not be equivalent to itself!). Exactly as in the case of time-like vectors
there are two equivalence classes called the ‘future’ and ‘past’ light cones.

The inner product of two space-like vectors can be positive, negative or zero
and there is no further division of space-like vectors.

In Minkowski space there exists an orthonormal basis with one time-like
vector n0 with norm square −1 and three space-like vectors n1,n2,n3, with +1:

ημν ≡ 〈nμ,nν〉 =

⎛
⎜⎜⎝
−1

1
1

1

⎞
⎟⎟⎠

where μ, ν take values 0, 1, 2, 3.
As an illustration we construct the star operator for Minkowski space.
The orthonormal basis in M∗ dual to the basis {nμ} is ν0, ν1, ν2, ν3 with

〈ν0, ν0〉 = −1, 〈ν1, ν1〉 = 〈ν2, ν2〉 = 〈ν3, ν3〉 = 1.

Let us choose the orientation η = ν0 ∧ ν1 ∧ ν2 ∧ ν3. As Λ0 = R the normal basis
vector in this one-dimensional space is the number 1.
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where t ∧ s = νi1 ∧ · · · ∧ νir ∧ νj1 ∧ · · · ∧ νjn−r = (−)P η, and P is the permutation
{i1, . . . , ir, j1, . . . , jn−r} → {1, . . . , n}. The inner product

〈νj1 ∧ · · · ∧ νjn−r |νj1 ∧ · · · ∧ νjn−r 〉 = εj1 . . . εjn−r
,

therefore it cancels the factors in (sgn(g)) = ε1 . . . εn to give the required formula.
The other formula is straightforward when we realize that (−)P = εi1...irj1...jn−r

and εiδ
ij = ηij .

Exercise 37. Show that ∗∗ = (−1)r(n−r)sgn(g).

Answer 37.

∗(∗νi1 ∧ · · · νir ) = (−1)P εi1 . . . εir ∗ (νj1 ∧ · · · νjn−r

= (−1)P (−1)Q(ε1 . . . εn)νi1 ∧ · · · νir

= (−1)P (−1)Qsgn(g)νi1 ∧ · · · νir

where Q is the permutation

Q = {j1 < · · · < jn−r; i1 < · · · < ir} → {1, . . . , n},
P = {i1, . . . , ir, j1, . . . , jn−r} → {1, . . . , n}.

As Q and Q−1 have the same parity, (−1)P (−1)Q is the same as the parity of Q−1P :
{i1 < · · · < ir; j1 < · · · < jn−r} → {j1 < · · · < jn−r; i1 < · · · < ir}, which is (−1)r(n−r).

Exercise 38. Show that in the Minkowski space two orthogonal null vectors must be
proportional to each other.

Answer 38. Choose an orthonormal basis. Without loss of generality we can assume
that one of the null vectors has components (1, 1, 0, 0) and the other (t, a, b, c) with
a2 + b2 + c2 = t2. Orthogonality of the two vectors imples that −t+a = 0. Therefore the
second vector is (t, t, 0, 0) = t(1, 1, 0, 0).





Chapter 7

Elementary Differential
Geometry

The model of spacetime used by the general theory of relativity is that of a differ-
ential manifold with a Riemannian geometry. In this and the next few chapters we
develop the necessary background with emphasis on tools necessary for a physicist.
This introduction is not rigorous from a mathematician’s point of view. We would
assume that these manifolds have all the nice mathematical properties (Haus-
dorff nature, paracompactness etc.) which are needed for the existence of various
geometrical quantities and procedures.

7.1 Coordinates and Functions

In physics we regularly encounter sets whose points can be labelled by a fixed
number (say n) of coordinates. Let M be such a set. By coordinates of a point
p ∈ M we mean numbers x1, x2, . . . , xn which we associate with the point. In
order to be useful this rule of association or mapping (call it φ) should have some
obviously desirable properties.

1. First of all, coordinates should be independent. It should not happen that
one of the coordinates can be calculated by some formula in terms of the re-
maining coordinates. The minimum number of coordinates needed to specify
the points of M is called the dimension of M .

2. Moreover, different points should have different coordinates. The mapping φ
which associates coordinates to the points of M has to be one-to-one.

3. Further, the mapping should be continuous both ways so that neighbouring
points have coordinates which are close to each other and vice versa.
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4. Lastly, in order to discuss the way quantities change from one point to an-
other, every point should have coordinates defined for all other points in its
neighbourhood.

This is expressed by saying that coordinates should be defined on open
sets of M . The result of this condition is that points of our set M are mapped
onto open sets of the n-dimensional Euclidean space Rn and we know how
to do the calculus there.

If we can define such a single mapping φ for the whole set M we are lucky
because then the set M is mapped onto an open set of n-dimensional Euclidean
space Rn and all mathematical analysis on M can be transferred to that open
subset of Rn. But often it is not possible to cover the entire set M with one such
mapping. In such cases we consider coordinates in patches or “charts”.

A coordinate chart (U, φ) is specified by an open subset U of M on which
a one-to-one, bothways continuous mapping φ is defined which takes points p ∈
U ⊂ M to points φ(p) = x = (x1, . . . , xn) ∈ Rn. We write xi = φi(p).

We cover the whole set M by several such charts (U, φ) , (V, ψ) . . . etc such
that every point of M falls in one or the other of these sets U, V, . . . . Such a
collection of charts is called an atlas.

If (U, φ) and (V, ψ) are two charts in an atlas then (unless there is no point
common between U and V ) a point p in U ∩ V can be specified by coordinates
x = φ(p) as well as by y = ψ(p). As p moves within U ∩ V the pair of num-
bers (x(p), y(p)) determine a functional relationship between the two coordinate
variables:

y = ψ(p) = (ψ ◦ φ−1)(x), x = φ(p) = (φ ◦ ψ−1)(y). (7.1)

All these functional relationships between all coordinates with overlapping do-
mains in an atlas are continuous by definition.

If, moreover, they happen to be infinitely differentiable as well, then the setM
is called a differentiable manifold and the atlas is said to determine a differentiable
structure.

On the same set M we can define charts and atlases in a variety of ways.
Two atlases whose charts are mutually compatible with each other, i.e., deter-
mine infinitely differentiable coordinates relaionships, have the same differential
stucture.

It is quite possible for a set to have two mutually incompatible differential
stuctures. For physical applications the choice of the differential structure is usu-
ally determined by physics and one does not seem to need the exotic differential
structures that can possibly also be defined.

A smooth function f defined on a manifold M is a real-valued function which
when expressed in all the local coordinates is infinitely differentiable.
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Let (U, φ) be a chart containing point p. Then f(p) = f(φ−1(x)) = f ◦φ−1(x)
is infinitely differentiable as a function of coordinates x.

M

��
�	U

p

φ(p) = (x1, . . . , xn)

Fig. 7.1: A coordinate chart (U, φ) on a manifold mapping a point p
into numbers (x1, . . . , xn).

The definition is independent of which coordinate system is chosen to define
it. If there are several charts defined around the point, the differentiability of f
can be checked in any one of them. The differentiability in other charts follows
because all coordinates are smooth functions of each other.

We denote by F(M) the class of all smooth funtions defined on M . F(M) is
obviously a vector space because the sum of smooth functions is smooth, as is the
function obtained by multiplying by a real number.

Actually the set has moreover a multiplication defined on it because members
of F(M) can be multiplied by each other to give another smooth function: if
f, g ∈ M are smooth then (fg)(p) ≡ f(p)g(p) is also smooth.

7.2 Curves and Tangent Vectors

A smooth curve c is a mapping from an interval I of the real line into a differen-
tiable manifold M such that the coordinates of the mapped point c(t), t ∈ I are
smooth, i.e., infinitely differentiable functions of t.

Let us assume that I contains a point t = t0 which is mapped to the point
p0 = c(t0). Let (U, φ) be a coordinate chart containing the point p0. Then the
smoothness of the curve is determined by the infinite differentiability of the func-
tions xi(t) = φi(c(t)) with respect to t.

The rate of change of these coordinates with respect to parameter t,

vi ≡ dxi

dt

∣∣∣∣
t0

(7.2)
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M

φ �

I

c

�

c(t)

(x1(t), . . . , xn(t))

Fig. 7.2: A curve c : I → M is represented by coordinates as n func-
tions t → (x1(t), . . . , xn(t)). The arrows represent the tangent vec-
tors to the curve in M and its image in Rn given by the components
(dx1/dt, . . . , dxn/dt).

are called the components of a tangent vector to the curve c at p0 in terms of
coordinates (U, φ). If p0 belongs to the domain of some other chart (V, ψ) then the
components in that chart will be

wi =
dyi

dt

∣∣∣∣
t0

=
∂yi

∂xj

∣∣∣∣
x(p0)

dxj

dt

∣∣∣∣
t0

.

In other words, the same tangent vector has components in the two coordinates
related by

wi =
∂yi

∂xj
vj . (7.3)

The student might have seen this formula before. It is known as the law of trans-
formation of a contravariant vector field.

It is important to picture the tangent vector to a curve c as a geometric entity
independent of the coordinate systems that may be defined in the neighbourhood
of the point in question. Actually, the tangent vector determines the rate at which
the point c(t) changes with respect to t. As we cannot measure the extent by which
the abstract point c(t) moves because there is no distance function to tell how far
the point has moved, we measure this rate indirectly through the coordinates.

Coordinates are a convenient set of n real-valued functions on M . If we take
function f ∈ F(M) we can measure how f(c(t)) changes with t. By knowing how
all functions f ∈ F(M) change with respect to t, we know what the tangent vector
is.
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For an arbitrary smooth function f ,

df

dt

∣∣∣∣
t0

= vi ∂

∂xi

∣∣∣∣
φ(p0)

f(φ−1(x)).

For all possible functions f what remains common is the linear differential operator

v = vi ∂

∂xi

∣∣∣∣
φ(p0)

. (7.4)

In this form it is independent of the coordinate chart because

v = vi ∂

∂xi

∣∣∣∣
φ(p0)

= vi ∂yj

∂xi

∂

∂yj

∣∣∣∣
ψ(p0)

= wj ∂

∂yj

∣∣∣∣
ψ(p0)

.

We can also look at the tangent vector v at p0 as a rule which assigns to every
smooth function f a real number, namely, its rate of change v(f) = df/dt at t0
along the curve to which it is tangent. We discuss this in the next section.

7.3 Tangent Space

Let F(M) be the class of smooth functions defined above. Then a tangent vector
v at p as discussed in the last section gives for any smooth function f (defined in
a neighbourhood of the point p) its rate of change. The function f → v(f) has
the following properties:

v(f + g) = v(f) + v(g), (7.5)

v(af) = av(f), (7.6)

v(fg) = v(f)g(p) + f(p)v(g), (7.7)

where f, g are smooth functions and a is any real number. These properties can
be verified immediately from the definition of v given as a differentiable operator
in the last section.

Conversely, we can use these properties to define a tangent vector. Since
coordinate functions xi are (trivially) infinitely differentiable functions in a neigh-
bourhood of point p, we can recover the components of the vector by acting with
v on xi:

v = vi ∂

∂xi
, vi ≡ v(xi). (7.8)

We would use whichever definition is more convenient for the purpose.
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The sum v1 + v2 of two tangent vectors at the same point p ∈ M can be
defined in an obvious fashion as

(v1 + v2)(f) = v1(f) + v2(f).

Similarly we define multiplication by a real number a,

(av)(f) = av(f).

These definitions make the set Tp(M) of all tangent vectors associated with the
point p ∈ M a vector space, called the tangent space at p.

As every vector v can be written

v = vi ∂

∂xi

∣∣∣∣
φ(p0)

, (7.9)

the n operators {
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

}

form a basis in Tp(M). This shows that the tangent space at any point of the
manifold has the same dimension n as the manifold itself. It is the basis naturally
associated with the coordinate chart (U, φ) and is called the natural or coordinate
basis associated with the coordinates.

One must not think that these operators have a meaning only when they
have something to act on. They should, instead, be treated as symbols for the
basis vectors which also happen to represent the role of a tangent vector as a
differential operation.

7.4 Vector Fields on a Manifold

Smooth functions and vector fields are the fundamental building blocks of a differ-
entiable manifold. All other geometric quantities: tensor fields, differential forms,
Lie derivatives, connections, curvature, metric etc. are defined using these.

We have seen that there is a tangent space associated with every point of the
manifold. A vector field is a smooth way of choosing one tangent vector at each
of these spaces.

A tangent vector field or simply a vector field X on M is an assignment
of a tangent vector X(p) ∈ Tp(M) at each point p ∈ M in a smooth way. This
‘smooth way’ means that in terms of local coordinates, the components of X(p)
change smoothly with coordinates of p. For a chart (U, φ) the vector field can be
written

X(p) = vi(x)
∂

∂xi
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where vi are now smooth functions of coordinates x. The components of the vector
field are smooth in all coordinate systems if they are smooth in one. This is so
because of the law of transformation which relates the components of the vector
at the same point in the two coordinate systems.

A tangent vector field is defined on the whole manifold, whereas the coor-
dinate systems are defined in patches. But this does not create problems because
one can pass from one coordinate system to the other on the overlapping part.

We again emphasize: notice the way components change when coordinate
systems are changed:

X = v′j(x′)
∂

∂x′j
= vi(x)

∂

∂xi
= vi(x)

∂x′j

∂xi

∂

∂x′j

or

v′j(x′) =
∂x′j

∂xi
vi(x). (7.10)

For a smooth vector field X on M the action of X(p) on a smooth function
f ∈ F(M) gives another smooth function X(f) ∈ F :

(X(f))(p) = (X(p))(f) = vi(x)
∂f

∂xi
. (7.11)

We can use this fact to give a definition of vector field X on M as a mapping
of smooth functions F(M) on M into themselves with the following properties.
X : F(M)→ F(M) is such that

X(f + g) = X(f) +X(g), (7.12)

X(fg) = X(f)g + fX(g) (7.13)

for every f, g ∈ F .
It is easy for physicists to imagine vector fields, familiar as they are with

physical fields of force like magnetic, electrical or gravitational fields. All these
fields assign a vector quantity at each spacetime point. We shall see in a later
chapter that physicists’ idea of lines of force: that is, a family of curves whose
tangent vectors give the force field is also very naturally defined and useful.

The class X (M) of all smooth vector fields on a manifold M is a vector space
because we can define the sum of two vector fields X and Y as the vector field
obtained by adding the vectors X(p) and Y (p) assigned to a point p ∈ M and
denoting this as the value of X + Y at p. Similarly we can say (aX)(p) = aX(p).

The student should appreciate that here we are dealing with an infinite number of vector
spaces; there is a tangent space Tp(M) at each point p ∈ M . A vector field is an infinite collection
of vectors, one in each tangent space. It is a function. The class or collection of vector fields is
itself a vector space X (M) because we can define addition and multiplication by a real number for
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these objects. But this vector space, like most function spaces, is certainly an infinite dimensional
vector space. We can multiply a vector field X by a smooth function f ∈ F(M) instead of
multiplying by a constant number a and get another smooth field. This is expressed by saying
that X (M) is not just a vector space but an F(M)-module where the job of multiplication by
numbers is taken over by the ring of functions F(M).

7.5 Local Basis Fields

Let there be a coordinate system around point p ∈ M with coordinate functions
xi. We have seen that any vector field can be written in these coordinates as

X(p) = vi(x)
∂

∂xi
.

This shows that vector fields Ei, i = 1, . . . , n given by

Ei(p) =
∂

∂xi

∣∣∣∣
φ(p)

which are defined in the domain U of the coordinate system form a basis for vector
fields. We call these local basis fields.

In general if there are n vector fields X1, . . . , Xn such that at each point
p ∈ U ⊂ M in a domain U , the vectors X1(p), . . . , Xn(p) are linearly independent
then we call the vectors a local basis field.

One must understand the symbolic nature of the notation used for the natural
basis vectors in the coordinate chart (U, φ). If p and q are two points, then we must
write

∂

∂xi

∣∣∣∣
φ(p)

,
∂

∂xi

∣∣∣∣
φ(q)

to distinguish the tangent vectors at the two points. They belong to entirely dif-
ferent tangent spaces Tp and Tq respectively. In practice however one writes this
local basis as {

∂

∂x1
, . . . ,

∂

∂xn

}
to simplify the notation.

A simple way to picture the natural basis vectors is to realise that these
vectors are tangent vectors to the coordinate ‘mesh’ of the curvilinear coordinates.
For example, ∂/∂xi is the tangent vector passing through the given point to the
curve all of whose coordinates except xi are fixed.

In the case of radial r, θ coordinates in the plane, the ∂/∂r are along the
radial direction and ∂/∂θ along circles of constant r in the direction of increasing
θ. Of course, there is no concept of the “length” or norm of these vectors. So
one can picture them as little arrows pointing in the direction determined by the
coordinate mesh.
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7.6 Lie Bracket

Given two vector fields X and Y we can define a new vector field [X,Y ] called
their Lie bracket as follows:

[X,Y ](f) = X(Y (f))− Y (X(f)) ∀f ∈ F(M). (7.14)

We check easily that [X,Y ] too satisfies the defining properties given in the pre-
vious section: the second (‘Leibnitz’) property need only be verified.

X(Y (fg)) = X(Y (f)g + fY (g))

= X(Y (f))g + Y (f)X(g) +X(f)Y (g) + fX(Y (g)).

The second and third terms in the final expression cancel when Y (X(fg)), written
similarly, is subtracted from X(Y (fg)).

The Lie bracket being a ‘commutator’ of two vector fields acting on a smooth
function is antisymmetric,

[X,Y ] = −[Y,X] (7.15)

and satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (7.16)

for any vector fields X,Y, Z.

In some local coordinates (U, φ) if the fields X and Y are expressed as

X = vi(x)
∂

∂xi
, Y = wi(x)

∂

∂xi
,

then [X,Y ] is given by

[X,Y ] =

(
vi(x)

∂wj

∂xi
− wi(x)

∂vj

∂xi

)
∂

∂xj
(7.17)

as follows from direct computation. Note that for coordinate basis fields
[∂/∂xi, ∂/∂xj ] = 0 for any i, j.

7.7 Cotangent Space

The space T ∗p dual to the tangent space Tp is called the cotangent space. We can
associate it in an abstract way as also a space attached to the point p. Actually
there is a virtual crowding at the point p because we will associate the whole
infinite set of tensor spaces (Tp)

r
s and differential forms Λ(T

∗
p ) to the point.
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The basis dual to the standard basis{
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

}

is denoted by

{dx1, . . . , dxn}.

It consists of linear functionals dxi which act on the basis vectors in Tp as

dxi

(
∂

∂xj

)
= δi

j . (7.18)

Just as the symbols ∂/∂xi are chosen to give correct transformation laws
under change of coordinates,

∂

∂x′i
=

∂xj

∂x′i
∂

∂xj
≡ Ai

j ∂

∂xj
,

the dual basis changes as naturally,

dx′i =
∂x′i

∂xj
dxj ≡ (A−1)j

i
dxj = (A−1T )ijdxj (7.19)

according to the ‘inverse-transposed’ matrix rule.
Analogous to a vector field we can define a cotangent vector field, also called

a one-form or the covariant vector field, as a smooth assignment of a vector in T ∗p .
Such a field can be written as

α = ai(x)dxi.

The components of a cotangent vector field transform as expected,

α = a′j(x
′)dx′j = ai(x)dxi = ai(x)

∂xi

∂x′j
dx′j

therefore

a′j(x
′) =

∂xi

∂x′j
ai(x). (7.20)

If α is a cotangent vector field and X a vector field, we can take the pairing
of dual vectors at each point, getting a smooth function

α(X) = ai(x)v
j(x)dxi

(
∂

∂xj

)
= ai(x)v

i(x). (7.21)
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then this mapping is linear when X is multiplied by a number but not when multiplied by a
function. Linearity with respect to functions ensures the proper transformation property for these
fields.

The basic idea is that although the mappings are defined on spaces of fields defined in a
region, we must make sure that the mappings determine a quantity in the appropriate tensor
space (T r

s )p which depends only on vectors in Tp, T ∗
p etc. and not spaces at neighbouring points.

In the counterexample above the presence of derivatives of components vi of the vector field X
shows dependence of the mapping on points in the neighbourhood, because a derivative involves
comparing values at neighbouring points.

A covariant tensor field T of second-rank (i.e., type X 0
2 (M)) is a bilinear

mapping of X (M)×X (M) into F(M) such that

T (X + Y,Z) = T (X,Z) + T (Y,Z), (7.26)

T (fX, Y ) = fT (X,Y ), (7.27)

T (X,Y + Z) = T (X,Y ) + T (X,Z), (7.28)

T (X, fY ) = fT (X,Y ), (7.29)

for fields X,Y and functions f .
A tensor field S of type X 1

2 (M) can be defined as a bilinear mapping S :
X (M)×X (M)→ X (M),

S(X + Y,Z) = S(X,Z) + S(Y,Z), (7.30)

S(fX, Y ) = fS(X,Y ), (7.31)

S(X,Y + Z) = S(X,Y ) + S(X,Z), (7.32)

S(X, fY ) = fS(X,Y ). (7.33)

A case where a mapping X × X → X does not define a tensor field is the
mapping (X,Y ) → [X,Y ] of two vector fields giving the third vector field which
is their Lie bracket. We have

[X, fY ] = f [X,Y ] +X(f)Y

where the extra term spoils the linearity.
Similarly, the mapping X,Y → DXY giving the covariant derivative or

connection (to be discussed in the next chapter) is a celebrated example of
a mapping not defining a tensor field. But we shall see that a combination
T : (X,Y )→ DXY −DY X − [X,Y ] where the last term cancels the non-tensorial
terms of the first two, does define a tensor called torsion.

7.10 Differential Forms and Exterior Derivative

The antisymmetric covariant tensor fields, which amount to choosing members of
Λr(T ∗p ) smoothly, are specially important and are called differential r-forms on
the manifold M and denoted by Λr(M).
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Differential r-Forms

We define differential 0-forms as the class of smooth functions Λ0(M) = F(M)
and as noted above the differential 1-forms are just the cotangent vectors Λ1(M) =
χ0

1(M)
An r-form is a tensor field of the form

α =
∑

i1<···<ir

Ai1...ir
dxi1 ∧ · · · ∧ dxir

with coefficients Ai1...ir
smooth functions of coordinates.

The wedge product of an r-form and an s-form is the wedge product at each
point. It naturally satisfies

α ∧ β = (−1)rsβ ∧ α

where α is an r-form and β an s-form.

Exterior Derivative

The entire machinery of differential forms revolves round the concept of exterior
derivative which we now define.

For a 0-form (that is a function) f ∈ F defines the cotangent field

df =
∂f

∂xi
dxi. (7.34)

For α, an r-form (r > 0) the exterior derivative dα is the (r+1)-form

dα =
n∑

j=1

∑
i1<···<ir

∂Ai1...ir

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxir . (7.35)

We must use the antisymmetry of the wedge product in the above expression to
bring it into the standard form of a basis, that is with dxi factors in order of
increasing i.

For example, if α = Aidxi is a 1-form, the exterior derivative is

dα =
∂Ai

∂xj
dxj ∧ dxi =

∑
j<i

(
∂Ai

∂xj
− ∂Aj

∂xi

)
dxj ∧ dxi.

A crucial property of the exterior derivative operator is that applying it twice
gives zero on any differential form:

d(dα) = d

⎛
⎝ n∑

j=1

∑
i1<···<ir

∂Ai1...ir

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxir

⎞
⎠

=
∑

k

∑
j

∑
i1<···<ir

∂2Ai1...ir

∂xk∂xj
dxk ∧ dxj ∧ dxi1 ∧ · · · ∧ dxir

= 0. (7.36)
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The double sum over k, j gives zero because the second partial derivatives of Ai1...ir

are symmetric in these indices while there is antisymmetry in these indices due to
dxk ∧ dxj .

It is clear that if α is an r-form and β an s-form,

d(α ∧ β) = (dα) ∧ β + (−1)rα ∧ dβ (7.37)

which follows directly from the formula for the wedge product and the definition
of the exterior derivative.

For a one-form α the exterior derivative can be defined as the antisymmetric
bilinear functional on a pair of vector fields X0 and X1 as

dα(X0, X1) = X0(α(X1))−X1(α(X0))− α([X0, X1]) (7.38)

which is easily verified. Let X0 = ui∂/∂xi and X1 = vi∂/∂xi Then,

dα(X0, X1) =
∂Ai

∂xj
(dxj ∧ dxi)(X0, X1)

=
∂Ai

∂xj
(ujvi − uivj)

= uj ∂Aiv
i

∂xj
− vj ∂Aiu

i

∂xj
−Ai

(
uj ∂vi

∂xj
− vj ∂ui

∂xj

)
= X0(α(X1))−X1(α(X0))− α([X0, X1]).

This formula can be generalised to an r-form β. dβ is the (r+1)-form defined
by

dβ(X0, X1, . . . , Xr) = X0(β(X1, X2, . . . , Xr))−X1(β(X0, X2, . . . , Xr))

+X2(β(X0, X1, . . . , Xr))− · · ·+ (−1)rXr(β(X0, X1, . . . , Xr−1))

+
∑
i<j

(−1)i+jβ([Xi, Xj ], X0, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xr).

(7.39)

7.11 Closed and Exact Differential Forms

A differential r-form α is called closed if the (r+ 1)-form dα is zero. An r-form α
is called exact if it can be written as α = dβ where β is an (r− 1)-form. The set of
all closed r-forms Cr(M) is a subspace in Λr(M) and the set of all exact r-forms
is still a smaller subspace of Cr(M).

Every exact form is obviously closed because d(d(β)) = 0. The converse
is only locally true in the following sense. Let B be an open ball in coordinate
space Rn, and let U = φ−1(B). If α is a closed form d(α) = 0 then there exists
an (r − 1)-form β such that restricted to U , α = d(β). This result is called the
Poincare lemma.
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The torus
As a set it is the cartesian product of two circles T 2 = S1 × S1. We can take the atlas
of two charts U1, U2 defined above for one circle and similarly U ′

1, U
′
2 for the other circle.

Then the torus is specified by four charts Uij ≡ Ui × Uj where i, j = 1, 2:

U11 ≡ U1 × U ′
1 : p → (θ11, θ

′
11) : 0 < θ11, θ

′
11 < 2π,

U12 ≡ U1 × U ′
2 : p → (θ12, θ

′
12) : 0 < θ12 < 2π,−π < θ′

12 < π,

U21 ≡ U2 × U ′
1 : p → (θ21, θ

′
21) : 0 < θ′

21 < 2π,−π < θ21 < π,

U22 ≡ U2 × U ′
2 : p → (θ22, θ

′
22) : −π < θ22, θ

′
22 < π.

The coordinate change for overlap between charts U11 and U12 for example, is as follows:

On the overlap U11 ∩ U12,

θ11 = θ12,

θ′
11 = θ′

12, 0 < θ′
11 < π,

θ′
11 = θ′

12 + 2π, π < θ′
11 < 2π.

Similarly for other chart overlaps.
The cone

The cone with a vertex angle α can be built up from a plane sheet of paper from which an
angular wedge with angle β = 2π(1− sin α) is cut away and then the two straight edges
are joined together. On the cone we can choose coordinates r, θ with 0 < r < ∞ with r
measured from the vertex point of the cone and 0 < θ < 2π sin α measured along the circle
r = const. as one would have done on the original sheet. This covers all points except those
on the edges which have been joined. To include these another chart is required. One can
choose another radial line (for example that belonging to θ = π) and define coordinates
r, θ′ with θ′ = θ − π, (π < θ < 2π sin α− π) and θ′ = θ + 2π sin α− π, (0 < θ < π).

Exercise 40. Find a suitable atlas for the n-dimensional sphere Sn.

Answer 40. Generalise the stereographic projection map to this case.

Exercise 41. Consider the union of the X- and Y-axes as a subset R of points on the
plane

R = {(x, y) ∈ R2|either x = 0 or y = 0}.

Does this set form a differentiable manifold?

Answer 41. Hint: can one define a chart containing the point (0, 0)?

Vector Fields

Exercise 42. Plot the following vector fields (by showing the direction of the vectors by
an arrow) on the two-dimensional plane with coordinates (x1, x2):

X = x1 ∂

∂x1
+ x2 ∂

∂x2
,

Y = x1 ∂

∂x2
− x2 ∂

∂x1
.
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Find the integral curves of the field: that is curves t → (x1(t), x2(t)) such that the tangent
vectors to those curves give the vectors of the fields.

Answer 42. For X the curves are t → (C1 exp(t), C2 exp(t)) where C1, C2 are constants.
For Y the curves are t → (A cos(t + B), A sin(t + B)) with A, B constants.

Interpretation of the Lie Bracket

Two steps forward, two steps backward

Two vector fields X = ai(x)∂/∂xi and Y = bi(x)∂/∂xi are given. We take
a point P with coordinates x in its neighbourhood and consider an integral curve
of vector field X passing through P . Let the curve be given by t → xi(t) so that
the point P corresponds to t = 0. Take t > 0 to be infinitesimally small and keep
quantities up to second-order in t. The point Q close to P along the curve then
has coordinates

yi = xi(t) = xi(0) + tai(x) +
t2

2!
(ai),ja

j + · · · .

We shall write this symbolically as y = x + ta(x) + t2a′.a/2. In this notation
quantities of second-order will not be shown with their argument because any
change in their argument in the infinitesimal region will be one higher order.

This point Q is close to P in the direction of the vector field X at P . Now
starting from Q locate a point R in the direction of Y with an infinitesimal pa-
rameter s. The point R has coordinates z = y + sb(y) + s2b′.b/2. Now from R go
in the reverse direction −X (by the same parameter t that was used for bringing
P to Q) to point S which has coordinates w = z − ta(z) + t2a′.a/2. Finally from
S come to a point T along −Y with parameter s. The point T has coordinates
u = w − sb(w) + s2b′.b/2.

Are we back to the starting point P after these four steps (two in the forward
directions of X and Y respectively, and then two in the backward direction) or is
there a shortfall? The Lie bracket measures that.

Exercise 43. Find the difference in the coordinates of T and P keeping quantities up to
second-order. Show that T is in the direction of [X, Y ] by infinitesimal parameter st.

Answer 43. We have

y = x + ta(x) + t2a′.a/2,

z = y + sb(y) + s2b′.b/2,

w = z − ta(z) + t2a′.a/2,

u = w − sb(w) + s2b′.b/2.





Chapter 8

Connection and Curvature

We have introduced Γk
ij in Chapter 2 as basic quantities in terms of which the

Riemann-Christoffel curvature tensor and the equation of a geodesic curve are
expressed.

It was found by Levi-Civita that geodesic and curvature can be defined using
the notion of parallel displacement which governs the geometry of the space. Par-
allel displacement or parallel transport became the starting point of differential
geometry of not just Riemannian spaces where an infinitesimal distance is defined,
but also of more general spaces.

In this chapter we define connection in this general setting.

8.1 Directional Derivative

To find the rate of change of a real-valued function f along a curve we use the
tangent vector. If the tangent vector to a curve at a given point p ∈ M is v then
the required rate is v(f). This is the directional derivative Dv of the function

Dvf = v(f) = vi ∂f

∂xi
= df(v) (8.1)

where vi are the components of the vector in local coordinates.

Now suppose that X = ai(x)∂/∂xi is a vector field on the manifold M , and
we are interested in finding the rate of change of the vector field in the direction
v ∈ Tp at the point p ∈M .

Is it alright if we take the partial derivatives v(ai) = vj∂ai/∂xj of the com-
ponents ai as a measure of the change in the vector field along v?

Components of a vector are determined by the basis used. How can we be
sure that the change in the components is not due to the change in basis vectors
themselves?
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Consider the example of the radial coordinates r, θ in the two-dimensional
Euclidean plane. We can judge if two vectors are the same or not even if they
are located at different places in a euclidean space. We already have a concept of
parallel vectors in this space. A constant vector field on the euclidean plane has
vectors at each point parallel and of the same constant length.

The components of such a constant vector field change from point to point
in the {∂/∂r, ∂/∂θ} basis because the direction of the basis vectors changes.

The basic problem in defining the derivative of a vector field is that if p and q
are two neighbouring points, vectors X(p) and X(q) belong to two different vector
spaces Tp and Tq respectively. How can we compare these? It is not like finding the
change in a function f . In that case an observer at q can telephone the colleague
at p and communicate the value of the function f at q so that the observer at p
can find the difference or the change in f .

But it is not possible to communicate on the telephone the direction of a
vector. How can one identify a vector in a vector space which is supposedly equal
to a given vector in some other vector space so that the two can be compared?

There is no alternative but to define the concept of parallel displacement by
giving a reasonable rule for identifying a vector in Tp when a given vector in Tq is
shifted or displaced and brought to Tp ‘without change’.

The hints for defining such a rule are obtained from our experience of two-
dimensional surfaces. For example, to define the parallel transport of a tangent
vector at a point of the two-dimensional spherical surface to an infinitesimally close
point we can use the concept of parallelism in the surrounding three-dimensional
Euclidean space and, after having shifted the vector to the new point as if it were
a three-dimensional vector, take its projection tangent to the surface and define
that as the parallel shifted vector.

8.1.1 Connection Coefficients

We now discuss the reasonable rule mentioned above for identifying a vector in Tp

when a vector in Tq is given and brought parallel to itself to point p.
Let the points p and q be in a chart with coordinates x and let ∂/∂xi be the

natural basis vector fields. Let p and q have coordinates x and x+Δx respectively
where Δx is infinitesimal change in the coordinates. Let

∂

∂xi

∣∣∣∣
x

, and
∂

∂xi

∣∣∣∣
x+Δx

be the natural basis vectors (for some fixed i) at point p, q respectively and let

∂

∂xi

∣∣∣∣
‖

be the vector
∂

∂xi

∣∣∣∣
x+Δx

brought from Tq to Tp by parallel displacement.
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We parallel transport the vector at x+Δx

ai(x+ΔX)
∂

∂xi

∣∣∣∣
x+Δx

to the point x as ai(x+ΔX)
∂

∂xi

∣∣∣∣
‖

and compare with

ai(x)
∂

∂xi

∣∣∣∣
x

.

The result is

X|‖ −X|x = ai(x+ΔX)
∂

∂xi

∣∣∣∣
‖

− ai(x)
∂

∂xi

∣∣∣∣
x

= Δxj

(
∂ak

∂xj
+ Γk

jia
i

)
∂

∂xk

∣∣∣∣
x

.

Dividing by the parameter change Δt and taking the limit Δt → 0 we get the
covariant derivative of the vector field X in the direction of the tangent vector v
to the curve

DvX = lim
Δt→0

(X|‖ −X|x)/Δt = lim
Δt→0

Δxj

Δt

(
∂ak

∂xj
+ Γk

jia
i

)
∂

∂xk

= vj

(
∂ak

∂xj
+ Γk

jia
i

)
∂

∂xk
.

8.1.3 Components of a Parallel Displaced Vector

We can restate the content of equation (8.3) by (reversing the role of points q
and p) saying that when a vector with components ai at p (with coordinates x)
is parallel displaced to point q (with coordinates x+Δx) its components (in the
natural basis at x+Δx) become

ak|‖ = ak −ΔxjΓk
jia

i. (8.4)

8.2 Transformation Formula for Γk
ij

The definition of parallel transport is specific to a coordinate system, and the
connection coefficients have meaning only for this coordinate system. In order
to be useful this procedure should be independent of coordinates. We find that
insisting on independence of coordinates gives us the transformation formula for
the connection coefficients Γk

ij . Although we will give a much simpler proof of this
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important formula later on, (twice in fact!) it is worthwhile to go through the
following calculation as it teaches certain manipulation skills.

We calculate DvX in some other coordinate system x′i. We call the new
coordinate system x′, and the connection coefficients Γ′kji. The tangent vector is

v = v′j∂/∂x′j = vi∂/∂xi with vi = v′j∂xi/∂x′j and ai(x) = a′j(x′)∂xi/∂x′j .
Comparing the two expressions for DvX,

DvX = v′m
(

∂a′l

∂x′m
+ Γ′lmra

′r

)
∂

∂x′l

= vj

(
∂ak

∂xj
+ Γk

jia
i

)
∂

∂xk

= v′m
∂xj

∂x′m

[
∂

∂xj

(
a′l

∂xk

∂x′l

)
+ Γk

jia
′r ∂xi

∂x′r

]
∂

∂xk

= v′m
[

∂

∂x′m

(
a′l

∂xk

∂x′l

)
+

∂xj

∂x′m
Γk

jia
′r ∂xi

∂x′r

]
∂

∂xk

= v′m
[

∂a′l

∂x′m
∂xk

∂x′l
+ a′l

∂2xk

∂x′m∂x′l
+

∂xj

∂x′m
Γk

jia
′r ∂xi

∂x′r

]
∂

∂xk
.

Take (i) ∂/∂xk inside the square bracket and the first term becomes
(∂a′l/∂x′m)∂/∂x′l; (ii) replace the dummy l index in the second term by r in an-
ticipation of comparison with the first line; (iii) write ∂/∂xk = (∂x′l/∂xk)∂/∂x′l

and take it inside the square bracket to multiply by the second and third terms;
and (iv) factor ∂/∂x′l from all terms. We get

DvX = v′m
(

∂a′l

∂x′m
+ Γ′lmra

′r

)
∂

∂x′l

= v′m
[

∂a′l

∂x′m
+

(
∂x′l

∂xk

∂2xk

∂x′m∂x′r
+

∂x′l

∂xk

∂xj

∂x′m
Γk

ji

∂xi

∂x′r

)
a′r

]
∂

∂x′l
.

Comparing the two sides of the equation, the transformation formula is ob-
tained:

Γ′lmr(x
′) = Γk

ji(x)
∂xi

∂x′r
∂xj

∂x′m
∂x′l

∂xk
+

∂x′l

∂xk

∂2xk

∂x′m∂x′r
. (8.5)

The three-index notation at first seems to suggest that Γk
ij is a third-rank

tensor. But this is not so because of the extra term in the formula above. In
older notation the coefficients Γk

ji were written {k
ji} to emphasize their non-tensor

nature. They are called Christoffel symbols.
On any reasonable manifold there are an infinite number of independent def-

initions of connections. Practically, all we need to do is to choose smooth functions
Γi

jk in each coordinate neighbourhood and make sure that they transform in the
appropriate way when coordinates are changed in overlapping domains.
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Each connection gives its own concept of change of vector under parallel
transport and so defines the geometry of the manifold or space.

However, we shall see later that in a Riemannian space where the parallel
transport is required to satisfy the condition that the inner product of two vec-
tors does not change when they are both parallel tranported, there is a unique
symmetric connection, called the Levi-Civita connection.

Note that if Γi
jk are components of a connection in some coordinates, then

the transpose Γ̃i
jk ≡ Γi

kj defines components of another connection. This follows

from the above formula. But, −Γi
jk are not components of any connection if Γi

jk

are. This again follows from the transformation formula, and shows the non-tensor
nature.

8.3 Geodesics

A geodesic is a curve whose tangent vector at any point when parallel transported
to a neighbouring point on the curve coincides with the tangent vector at that
point. When this happens the parameter to the curve is called an affine parameter.

A geodesic is the “straightest possible” curve whose direction, as fixed by the
tangent vector, does not change. It remains parallel to itself.

If the curve is represented by x(t) in coordinates, then it is clear from the
formula for parallel transport that

dxk

dt

∣∣∣∣
x+Δx

=
dxk

dt

∣∣∣∣
x

−ΔxjΓk
ji

dxi

dt
.

Dividing by Δt and taking the limit we get the equation that the representative
coordinates of a geodesic curve must satisfy:

d2xk

dt2
+ Γk

ji

dxj

dt

dxi

dt
= 0. (8.6)

Note the role of the affine parameter t in the equation of the geodesic. If
s = s(t) is another parameter for the same curve x(t) = x(t(s)), the equation of
the geodesic will become

d2xk

ds2
+ Γk

ij

dxi

ds

dxj

ds
= −dxk

ds

d2s

dt2

(
ds

dt

)−2

.

The equation for the geodesic retains its form if

d2s

dt2
= 0, or s = at+ b

where a and b are constants. Therefore the parameters which all give the same
geodesic equation are related to each other by the affine transformation s = at+b.
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8.4 Covariant Derivative

We introduced the connection coefficients and parallel transport to define the con-
cept of directional derivative of a vector field. In fact the transformation formula
for the connection coefficients Γ’s was obtained from the requirement that the
directional derivative should not depend on which coordinate system is used to
calculate it.

For this reason, the directional derivative of a vector field X = ai∂/∂xi in
the direction of a vector v,

DvX = vj

(
∂ak

∂xj
+ Γk

jia
i

)
∂

∂xk

is also called the covariant derivative.

8.4.1 Semicolon Notation

There is a standard notation used by physicists to define the components of deriv-
atives in individual directions,

ak
;j ≡ ak

,j + Γk
jia

i. (8.7)

Another way to describe the covariant derivative is to say that the two-index
quantities ak

,j , that is, the ordinary partial derivatives of components of X, are
not tensor components because they do not transform like one. But the quantities
ak

;j are components of a second-rank (1,1) tensor.

8.4.2 Zero Covariant Derivative Means Parallel Displacement

Given a law for parallel displacement we can define a covariant derivative. Given
a rule for calculating covariant derivatives we can define a vector field parallel
transported along a curve if its covariant derivative with respect to the tangent
vector vanishes.

If we look at components of a vector field, the vanishing of covariant derivative

ak
;j = ak

,j + Γk
jia

i = 0

means derivative vanishing in all directions. Writing

ak
,j = lim

Δx→0

ak(x+Δx)− ak(x)

Δxj

shows that for infinitesimal Δxj (in any direction)

ak(x+Δx) = ak(x)−ΔxjΓk
jia

i

which is the formula for parallel displacement of a vector from point x to x+Δx.
This means that if the covariant derivative vanishes in all directions, the

vector field values in a neighbourhood can all be obtained by parallel translation
starting from any single point.
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8.5 Abstract Definition

The notion of covariant or directional derivative DvX of a vector field X in the
direction v can be generalised to define DV X, the directional derivative of a vector
field X at all points of a region where the directions are determined by another
vector field V .

A connection or covariant derivative is a rule or mapping D by which we
associate to a vector field X and a vector field V , a third vector field DV X such
that the following conditions are satisfied,

DV +W X = DV X +DW X, (8.8)

DfV X = fDV X, (8.9)

DV (X + Y ) = DV X +DV Y, (8.10)

DV (fX) = fDV X + V (f)X, (8.11)

where W,Y are any vector fields and f any smooth function.

Recall the remarks made in section 7.9 of the last chapter. The mapping from a pair of
vector fields V, X to field DV X : (V, X) → DV X is not linear when functions f are multiplied
by X because of the last condition. Therefore it does not define a tensor.A connection is not a

(1,2) tensor. But for a fixed X, the mapping χ → χ given by V → DV X is linear because of the
first two conditions. So, this mapping does define a (1,1) tensor. Indeed that is what is called
the “covariant derivative” DX. We will come to this point again later.

Let us take X = ∂/∂xi to be the basis vector field whose components are
constant, and let V = ∂/∂xj . Then expanding DV X in the basis the coefficients
of expansion Γk

ji are:

D∂/∂xj

(
∂

∂xi

)
= Γk

ji

∂

∂xk
. (8.12)

The relation of DV X and Γk
ji is established by this formula.

The transformation formula for Γ’s can be rederived using this definition:

D∂/∂x′j

(
∂

∂x′i

)
= Γ′kji

∂

∂x′k

= D(∂xm/∂x′j)∂/∂xm

(
∂xr

∂x′i
∂

∂xr

)

=
∂xm

∂x′j
D∂/∂xm

(
∂xr

∂x′i
∂

∂xr

)

=
∂xm

∂x′j

[
∂xr

∂x′i
D∂/∂xm

(
∂

∂xr

)
+

(
∂

∂xm

∂xr

∂x′i

)
∂

∂xr

]

=

[
∂xm

∂x′j
∂xr

∂x′i
Γs

mr +

(
∂2xs

∂x′j∂x′i

)]
∂

∂xs
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where we have renamed the dummy index r by s in the second term of the last
line. In order to compare the last line with the first, we reconvert the last factor,
the partial derivative ∂/∂xk with respect to x, into partial derivative with respect
to x′:

∂

∂xs
=

∂x′k

∂xs

∂

∂x′k
.

So that

Γ′kji

∂

∂x′k
=

[
∂xm

∂x′j
∂xr

∂x′i
Γs

mr +

(
∂2xs

∂x′j∂x′i

)]
∂x′k

∂xs

∂

∂x′k

and for comparison

Γ′kji =
∂x′k

∂xs

∂xm

∂x′i
∂xr

∂x′j
Γs

mr +
∂2xs

∂x′ix′j
∂x′k

∂xs

which is the formula for transformation for connection coefficients we obtained
earliar.

8.6 Torsion Tensor

It is easy to see that the difference of two connections is a tensor.
Let D(1) and D(2) be two connections. Then the terms V (f)X in the fourth

condition, which prevents the connection from becoming a tensor, cancel. From

the definitions of D
(1)
V and D

(2)
V we deduce

(D
(1)
V −D

(2)
V )(fX) = f(D

(1)
V −D

(2)
V )X

which makes the difference a tensor.
The map T : X × X → X (vector fields are denoted by X ) is defined by

T (X,Y ) = DXY −DY X − [X,Y ]. (8.13)

It is bilinear in both arguments, as can be checked immediately — the term pre-
venting the linearity is compensated by the Lie bracket. Hence this mapping defines
a (1,2) tensor called the torsion tensor.

Recall that connection coefficients are not assumed to be symmetric. There-
fore Γk

ij and Γ
k
ji define two independent connections. (The transformation property

of Γk
ji is the same as Γ

k
ij).The difference of these two connections is a tensor with

components T k
ij ,

T k
ij ≡ Γk

ij − Γk
ji (8.14)

equal to the torsion tensor defined above. Actually,

T

(
∂

∂xi
,

∂

∂xj

)
= T k

ij

∂

∂xk
. (8.15)
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8.7 Cartan Equations

It is useful to look at what happens to bases, rather than to components of a
vector field by a covariant derivative. This is Cartan’s approach.

8.7.1 Connection Matrix

The tangent vector space Tp at any point p has an infinite number of bases.
Any two bases, say, {ei} = {e1, . . . , en} and {fi} = {f1, . . . , fn} are related by a
transformation matrix

fi = ekAk
i.

When we choose bases in all the tangent spaces in a region in a smooth fashion,
then we have basis vector fields. The best example is the natural or coordinate
basis fields which are written (for tangent space Tp where p has coordinates x) as

∂

∂xi

∣∣∣∣
x

, i = 1, . . . , n.

Consider two neighbouring points on a curve passing through p with coordinates
x = x(t) and x(t+Δt) = x+Δx. We have seen that when

∂

∂xi

∣∣∣∣
x+Δx

is brought to point x, it becomes
∂

∂xi

∣∣∣∣
‖

equal to

∂

∂xi

∣∣∣∣
‖

=
∂

∂xi

∣∣∣∣
x

+ΔxjΓk
ji

∂

∂xk

∣∣∣∣
x

.

The parallel transported vectors (∂/∂xi)‖, i = 1, . . . , n also form a basis in Tp

which is related to the basis (∂/∂xi)x by the transformation matrix

∂

∂xi

∣∣∣∣
‖

=
(
δk

i +ΔxjΓk
ji

) ∂

∂xk

∣∣∣∣
x

.

In the limit of Δt → 0 the tangent vector to the curve has components vi =
limΔxi/Δt and the infinitesimal amount by which the matrix relating the parallel
transported basis (∂/∂xi)‖, i = 1, . . . , n and the original basis differs from the
identity matrix is

ΔtAk
i = vjΔtΓk

ji.

We can look upon these numbers as a rule which assigns to every ‘direction’, that
is every tangent vector v ∈ Tp, a matrix Ak

i of numbers in a linear fashion. For
each fixed k and i this is a differential one-form belonging to T ∗p .
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We define a connection matrix ω of one-forms

ωk
i ≡ Γk

jidxj . (8.16)

Then all information about the connection is contained in this matrix of one-forms.

In particular, we can say that when the natural basis vectors are brought
from a neighbouring point to a given point along a curve which has tangent vector
v, then the two bases are related by a transformation matrix which differs from
the identity by the matrix ΔtAk

i where Ak
i = ωk

i(v)

The two ways of defining connection are related by

Dv

(
∂

∂xi

)
= ωk

i(v)
∂

∂xk
. (8.17)

8.7.2 General Bases

It is not essential to use the natural basis ∂/∂xi for defining the connection matrix.
Any set of non-vanishing vector fields Xa, a = 1, . . . , n in a region can be used as
a basis provided the vectors X1, . . . , Xn are linearly independent at each point of
the region.

The connection matrix is again defined by finding the infinitesimal amount
by which the matrix (relating the parallel transported basis vectors from a neigh-
bouring point and the original basis vectors at the point) differs from the identity
matrix.

A connection matrix ωX for the basis fields Xa, a = 1, . . . , n is defined as
the matrix of one-forms obtained by expanding the vector Dv(Xa) for a fixed a
as a linear combination of the basis vectors: Dv(Xa) = XbC

b
a and realising that

these coefficients Cb
a depend linearly on v. The matrix ωX of 1-forms is defined

as (ωX)
b
a(v) = Cb

a. Thus

Dv(Xa) = Xb(ωX)
b
a(v). (8.18)

8.7.3 Change of Bases

Let the basis fields Xa, a = 1, . . . , n be replaced by another set of basis fields
Ya, a = 1, . . . , n such that

Ya(x) = Xb(x)U
b
a(x) (8.19)

where U b
a(x) are the coefficients by which fields Ya(x), a = 1, . . . , n are expanded

in Xb(x), b = 1, . . . , n.

The connection matrix for the basis fields Y is defined as

Dv(Ya) = Yb(ωY )
b
a(v). (8.20)



144 Chapter 8. Connection and Curvature

The left-hand side can be written

Dv(XbU
b
a) = Dv(Xb)U

b
a +Xbv(U

b
a)

= Dv(Xb)U
b
a +Xbd(U

b
a)(v)

= Xc(ωX)
c
bU

b
a +XcdU c

a(v)

= YdU
−1d

c(ωX)
c
b(v)U

b
a + YdU

−1d
cd(U

c
a)(v).

Using matrix notation, and suppressing indices

ωY = U−1ωXU + U−1dU. (8.21)

The student may recognise this formula as the transformation formula of a non-abelian
gauge potential. This is no coincidence because gauge potentials too are connection 1-forms,
although in a different ‘bundle’.

When basis Xa is the natural basis ∂/∂xi and Ya is the basis ∂/∂x′i, the
matrix Uk

i is

∂

∂x′i
= Uk

i

(
∂

∂xk

)
=

∂xk

∂x′i

(
∂

∂xk

)

and its inverse is

(U−1)mk =
∂x′m

∂xk
.

Obviously the formula for the trasformation of connection coefficients is the same
as ω′ = U−1ωU + U−1dU for this U . This is the third time we have derived the
transformation formula for the connection components.

8.7.4 Cartan’s Structural Equations

The connection matrix of 1-forms ωX
b
a defined for the basis vector fields

X1, . . . , Xn can be related to its dual basis α1, . . . , αn of 1-forms (or covariant
vectors) defined as αa(Xb) = δa

b .
We introduced the torsion tensor in the last section. Now we define n torsion

tensors T a of rank (0,2) with respect to the basis Xa by expanding the vector field
T (X,Y ) in this basis. The coefficients are n bilinear functions T a,

T (X,Y ) = DXY −DY X − [X,Y ] ≡ T a(X,Y )Xa. (8.22)

In this formula write the vector fields X and Y as (using the dual nature of basis
{αa})

X = αa(X)Xa, Y = αa(Y )Xa,
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then

T a(X,Y )Xa = DX(α
a(Y )Xa)−DY (α

a(X)Xa)−Xaαa([X,Y ]).

But

DX(α
c(Y )Xc) = αc(Y )XaωX

a
c(X) +X(αc(Y ))Xc

with a similar equation for DY X. Substituting and using formulas

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ])

and (α ∧ β)(X,Y ) = α(X)β(Y ) − α(Y )β(X) for 1-forms, we get Cartan’s first
structural equation

dαa = −ωX
a

c ∧ αc + T a. (8.23)

Let ωX be a connection matrix for a set of basis fields Xa. Define the curva-
ture two-form matrix

ΩX
a

b ≡ dωX
a

b + ωX
a

c ∧ ωX
c
b. (8.24)

This equation is known as Cartan’s second structural equation.

8.8 Curvature 2-Form

We defined the curvature two-form matrix

ΩX
a

b ≡ dωX
a

b + ωX
a

c ∧ ωX
c
b

in the previous section. The transformation property of the curvature two-form is
simple;

dωY = d(U−1ωXU + U−1dU)

= dU−1 ∧ ωXU + U−1dωXU − U−1ωX ∧ dU + dU−1 ∧ dU.

We have used the properties of the exterior derivative

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ

for any r-form α and the fact that d ◦ d = 0. Similarly,

ωY ∧ ωY = (U−1ωXU + U−1dU) ∧ (U−1ωXU + U−1dU)

can be written

U−1ωX ∧ ωXU + U−1ωX ∧ dU + U−1dUU−1 ∧ ωXU + U−1dUU−1 ∧ dU.

Using U−1dU = −dU−1U which follows from d(U−1U) = d(1) = 0, we see that
the curvature two-form Ω transforms as

ΩY = U−1ΩXU. (8.25)

This, too is an important equation and shows that Ω is a matrix whose indices
are tensor indices. Unlike the connection matrix, the curvature 2-form is a tensor.
In gauge theories the matix Ω is called the “field strength” tensor.



146 Chapter 8. Connection and Curvature

8.9 Riemann-Christoffel Curvature Tensor

The curvature 2-form has an intimate relation with an antisymmetric (1, 3) tensor
defined below.

Let us define a tensor which maps three vector fields X,Y, Z multilinearly
into a vector field R(X,Y )Z defined by

R(X,Y )Z = DXDY Z −DY DXZ −D[X,Y ]Z. (8.26)

Checking the multilinearity is short and straightforward algebra. Obviously R(X+
X ′, Y )Z = R(X,Y )Z + R(X ′, Y )Z and similarly in Y and Z. For multiplication
by a function we have for example

R(fX, Y )Z = fDXDY Z −DY (fDXZ)−D[fX,Y ]Z.

Now DY (fDXZ) = fDY DXZ + Y (f)DXZ. And [fX, Y ] = f [X,Y ] − Y (f)X so
D[fX,Y ] = fD[X,Y ] − Y (f)DX . Therefore f factors out in second and third terms
as well. Similarly, R(X, fY )Z = fR(X,Y )Z and R(X,Y )(fZ) = fR(X,Y )Z.

From the definition it is obvious that the tensor is antisymmetric;

R(X,Y )Z = −R(Y,X)Z. (8.27)

8.9.1 Relation of R and Ω

Let us explore the relation of tensor R and 2-form Ω. We fix a set of basis fields Xa

and drop the basis label X from ωX
c
a and write simply ωc

a. Calculate R(X,Y )Xa

step by step:

DY Xa = ωc
a(Y )Xc,

next

DXDY Xa = X(ωc
a(Y ))Xc + ωc

a(Y )DX(Xc)

= X(ωc
a(Y ))Xc + ωc

a(Y )ω
d

c(X)Xd

= X(ωc
a(Y ))Xc + ωd

a(Y )ω
c
d(X)Xc

where we have interchanged the dummy indices c and d in the second term so
that both terms have factor Xc. The second term in the definition of R is just the
negative of this term with the role of X and Y interchanged. The third term is

−D[X,Y ]Xa = −ωc
a([X,Y ])Xc.

We can combine all the terms now and use the formula for exterior derivative of
a 1-form,

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ])
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to get

R(X,Y )Xa =
[
dωc

a(X,Y ) + (ωc
d ∧ ωd

a)(X,Y )
]
Xc.

Thus the 2-form Ω defined by

Ωc
a = dωc

a + ωc
d ∧ ωd

a

is indeed related to the tensor R by

R(X,Y )Xa = XcΩ
c
a(X,Y ). (8.28)

8.9.2 The (Second) Bianchi Identity

The following identity is trivial to see;

dΩ = d(dω + ω ∧ ω)

= dω ∧ ω − ω ∧ dω

= (Ω− ω ∧ ω) ∧ ω − ω ∧ (Ω− ω ∧ ω)

= Ω ∧ ω − ω ∧ Ω.

The relation

dΩ+ ω ∧ Ω− Ω ∧ ω = 0 (8.29)

is called the Bianchi identity. For historical reasons it is named the second Bianchi
identity. This general identity holds for all connections and their associated cur-
vatures, whereas the first Bianchi identity, given in the next section, holds only
for curvatures whose connection has torsion tensor equal to zero.

8.9.3 The (First) Bianchi Identity

Every torsion-free (or symmetric) connection, (that is one for which the torsion
tensor is zero) satisfies the following identity, called the first Bianchi identity.

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y ≡ 0 (T = 0). (8.30)

Recall that for torsion-free connection T = 0, we must have

DXY −DY X = [X,Y ],

therefore writing fully,

R(X,Y )Z + cyclic = DXDY Z −DY DXZ −D[X,Y ]Z + cyclic.

Of the six double-D terms on the right-hand side we can combine DXDY Z −
DXDZY = DX(DY Z − DZY ) = DX([Y,Z]). This can then combine with the
single-D term −D[Y.Z]X to give [X, [Y.Z]]. Therefore the entire right-hand side
vanishes as a consequence of the Jacobi identity.
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8.10 Components of the Curvature Tensor

We now calculate the components of the curvature 2-form Ω or, equivalently, the
Riemann curvature tensor R in the natural coordinate basis ∂/∂xi.

Recall that the connection matrix ω has components Γk
ij in the natural basis

for coordinates x given by

ωk
i = Γk

jidxj .

The curvature matrix Ω = dω + ω ∧ ω is therefore,

Ωk
i = d(Γk

jidxj) + Γk
mldxm ∧ Γl

nidxn =

(
∂Γk

ni

∂xm
+ Γk

mlΓ
l
ni

)
dxm ∧ dxn

where we have changed the dummy index j to n in the first term on the right-hand
side. As dxm ∧ dxn = dxm ⊗ dxn − dxn ⊗ dxm, we can write

Ωk
i = Rk

imndxm ⊗ dxn (8.31)

with R given by

−Rk
imn = Γk

mi,n − Γk
ni,m + Γl

miΓ
k
nl − Γl

niΓ
k
ml. (8.32)

Here we have used, as before, a comma followed by an index i as an abbreviation
for partial derivative with respect to xi.

The components of the curvature tensor are related to the tensor R by

R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xk
= Rm

kij
∂

∂xm
. (8.33)

This is seen most easily from the formula connecting R to Ω.

8.11 Covariant Derivative of Tensor Fields

8.11.1 Scalar Field

Recall the definition of the directional derivative DV given at the beginning of this
chapter. On a function it merely gives the ordinary derivative

DV (f) = df(V ).

For a fixed f it is linear on vector field V and as it maps vector fields into scalars,
it defines a differential 1-form. We can write this as

D(f) = df. (8.34)
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8.11.2 Vector Field

For a fixed X, DV X is linear in V . It maps vector field V into vector field DV X.
Thus it defines a tensor of type (1,1) whose components in the natural basis are
ai
;j . We write

D(X) = ai
;j

∂

∂xi
⊗ dxj

= (ai
,j + Γi

jkak)
∂

∂xi
⊗ dxj

= ak ∂

∂xi
⊗ ωi

k +
∂

∂xi
⊗ dai

where the components ai(x) are the scalar functions whose exterior derivative is
dai = ai

,jdxj .

We can summarise the definition simply as

D(X + Y ) = D(X) +D(Y ), (8.35)

D(fX) = fD(X) +X ⊗ df, (8.36)

which defines the connection matrix as

D

(
∂

∂xk

)
=

∂

∂xi
⊗ ωi

k. (8.37)

Note that our directional covariant derivative DXY can be written in terms of
this derivative as

DXY = iXDY (8.38)

where the operator iX is the interior multiplication or contraction by a vector field
X (see section 5.2.7 of Chapter 5).

8.11.3 Cotangent Vector Field

In order to generalise the concept of covariant differentiation to all tensor fields
we must first define it on cotangent vector fields through the components method.

We have defined parallel displacement of a vector with components ai at x
to point x+Δx as the vector with components

ak
‖ = ak −ΔxjΓk

jia
i.

Let bk be components of a cotangent vector at x. As a vector belonging to the
dual space it maps the tangent vector with components ak to the number bkak.
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The parallelly displaced covariant vector is defined with components b‖k such

that at the point x +Δx it maps the parallel displaced tangent vector ak
‖ to the

same number as the original vector does to the tangent vector:

bkak = b‖kak
‖ = b‖k(a

k − Γk
jia

iΔxj).

Now we expect the parallel displaced components to be given by a formula similar
to that for tangent vectors. That is, a formula of the form

b‖k = bk + γm
jkbmΔxj ;

then the above requirement implies γk
ji = Γk

ji giving

b‖k = bk + Γm
jkbmΔxj . (8.39)

The parallel displacement of a covariant vector defines the covariant derivative of
a covariant vector field β = bidxi.

Let x(t) be a curve, with xj(t + Δt) = xj + Δxj . The covariant derivative
(in direction j) is obtained as the limit of the difference of bi at x+Δx with bi at
x parallel displaced from x to x+Δx divided by Δxj . As

bi(x+Δx)− b‖i = bi(x+Δx)− bi(x)− Γm
jibmΔxj

the derivative is

bi;j ≡ bi,j − Γk
jibk (8.40)

for this parallel displacement. One can check that bi;j do indeed transform as
components of a second-rank covariant tensor.

We can write the operator D of covariant differentiation on covariant vector
fields as

Dβ = bi;jdxi ⊗ dxj (8.41)

which is equivalent to

Ddxk = −dxi ⊗ ωk
i. (8.42)

Like the operator D on vector fields this operator too has the following prop-
erties:

D(α+ β) = Dα+Dβ, (8.43)

D(fα) = fDα+ α⊗ df. (8.44)
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8.11.4 Tensor Fields

The process of covariant differentiation that has been defined on scalar, contra-
and co-variant vector fields, can be extended to all tensor fields.

We define a mapping D which maps tensor fields T, S etc. to tensor fields of
one higher covariant rank such that

D(T + S) = D(T ) +D(S), (8.45)

D(fT ) = fD(T ) + T ⊗ df, (8.46)

D(T ⊗Q) = D(T )⊗Q+ T ⊗D(Q). (8.47)

For practical calculations we just need to remember

D

(
∂

∂xk

)
=

∂

∂xi
⊗ ωi

k, (8.48)

Ddxk = −dxi ⊗ ωk
i. (8.49)

For example

D

(
T i...j

k...l(x)
∂

∂xi
⊗ · · · ⊗ ∂

∂xj
⊗ dxk ⊗ · · · ⊗ dxl

)

= T i...j
k...l(x)

∂

∂xm
⊗ · · · ⊗ ∂

∂xj
⊗ dxk ⊗ · · · ⊗ dxl ⊗ ωm

i + · · ·

+ T i...j
k...l(x)

∂

∂xi
⊗ · · · ⊗ ∂

∂xm
⊗ dxk ⊗ · · · ⊗ dxl ⊗ ωm

j

− T i...j
k...l(x)

∂

∂xi
⊗ · · · ⊗ ∂

∂xj
⊗ dxm ⊗ · · · ⊗ dxl ⊗ ωk

m − · · ·

− T i...j
k...l(x)

∂

∂xi
⊗ · · · ⊗ ∂

∂xj
⊗ dxk ⊗ · · · ⊗ dxm ⊗ ωl

m

+
∂

∂xi
⊗ · · · ⊗ ∂

∂xj
⊗ dxk ⊗ · · · ⊗ dxl ⊗ d(T i...j

k...l(x)). (8.50)

In each of these terms except the last interchange the two dummy indices occur
in ω. In the last term write

d(T i...j
k...l(x)) = (T i...j

k...l(x)),mdxm.

This gives the general formula for the covariant derivative components for any
tensor field

T i...j
k...l;m = T i...j

k...l,m

+Γi
mnTn...j

k...l + · · ·+ Γj
mnT i...n

k...l

−Γn
mkT i...j

n...l − · · · − Γn
mlT

i...j
k...n. (8.51)
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8.12 Transport Round a Closed Curve

Given a closed curve we can start at a point on the curve with some tangent vector
and ask what will happen when the vector is parallel transported round the curve,
brought back and compared with the original vector.

We do this for an infinitesimal “rectangle” ABCD made up from the point
A with coordinates xi, point B with coordinates xi + Δi

1, D with xi + Δi
2 and

C with xi + Δi
1 + Δi

2. Let vi be the components of a tangent vector which is to
be taken round the closed curve ABCD. Parallel transport from point D to C
is obtained by reversing the sign of Δ1 in the formula for transport from C to
D and similarly A to D by reversing the sign of Δ2 in the formula for D to A.
Therefore to find out if the vector remains the same after going round ABCDA
it is sufficient to check the difference of the vector transported from A to C via B
and the same vector transported from A to C via D.

The components vi at A become at B,

vi
B = vi − Γi

kj(x)v
jΔk

1 .

This vector vi
B becomes, on further transporting to C,

vi
C = vi

B − Γi
kj(x+Δ1)v

j
BΔ

k
2

= vi − Γi
kj(x)v

jΔk
1 − Γi

kj(x)v
jΔk

2 − Γi
kj,l(x)v

jΔl
1Δ

k
2

+Γn
lj(x)Γ

i
knvjΔl

1Δ
k
2 + · · · .

On the other hand, the same vector taken to C from A via D becomes, by a similar
reasoning,

v′iC = vi
D − Γi

kj(x+Δ2)v
j
DΔ

k
1

= vi − Γi
kj(x)v

jΔk
1 − Γi

kj(x)v
jΔk

2 − Γi
kj,l(x)v

jΔk
1Δ

l
2

+Γn
lj(x)Γ

i
knvjΔk

1Δ
l
2 + · · · .

Therefore the difference is, to lowest order,

v′i − vi = Ri
jklv

jΔk
1Δ

l
2. (8.52)

This equation shows that if Ri
jkl is zero in a region, then we can set up parallel

vector fields which can then define the covariant derivative totally in terms of or-
dinary derivatives of components. When the Riemann tensor is not zero, transport
of a vector around a curve does not match with the initial vector at the starting
point, the difference being a measure of curvature.

8.13 Tutorial

Exercise 44. Ricci formulas Show that if vi are the components of a contravariant
vector field and ai those of a covariant vector field in some coordinate basis, then the
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Riemann tensor is related to the failure of repeated covariant derivatives to commute as
follows:

vi
;j;k − vi

;k;j = −Ri
ljkvl, (8.53)

ai;j;k − ai;k;j = Rl
ijkal. (8.54)

Answer 44. Straightforward calculation. Hint: first write the covariant derivative of
wi

j ≡ vi
;j as a second-rank mixed tensor and only then substitute its value.

Exercise 45. The Ricci formula is fundamental. In fact the defintion of curvature tensor
(DXDY − DY DX − D[X,Y ])Z = R(X, Y )Z is based on it. Show that the second Ricci
formula above can be written in the abstract notation as (with DXα ≡ iXDα)

[(DXDY −DY DX −D[X,Y ])α](Z) = −α(R(X, Y )Z). (8.55)

Answer 45. Hint: use the fact that because the derivative DX respects the tensor product
and contractions and satisfies Leibnitz’s rule,

(d(α(Z))(X) = X(α(Z)) = DX(α(Z)) = (DXα)(Z) + α(DXZ).

Exercise 46. Show that for a covariant vector field with components ai the antisymmet-
ric tensor ai;j − aj;i constructed with covariant derivatives is the same as with ordinary
derivatives if torsion is zero.

Answer 46. Obviously if Γi
jk = Γi

kj then

ai;j − aj;i = ai,j − aj,i.

Exercise 47. Show that for any covariant vector field α the following equality holds:

(Dα)(X, Y )− (Dα)(Y, X) = dα + α(T (X, Y )). (8.56)

Answer 47. Follows directly from the definition of D and the torsion tensor T .





Chapter 9

Riemannian Geometry

We have discussed connection, covariant derivative, and curvature in the previous
chapter without even mentioning the metric tensor gij . This has been done to
emphasize that these concepts are independent of the existence of a metric. We
first discuss Riemannian geometry in its classical (component-index) form in the
coordinate basis. Only later do we put in the abstract and elegant form.

The fundamental result of this chapter is that in a differentiable manifold on
which a metric is defined, a symmetric connection which ‘respects’ the metric can
only be the standard Levi-Civita connection.

We now explain these terms.

9.1 Riemannian Space

A Riemannian space is a manifold in which every tangent space has an inner
product 〈 , 〉 defined on it. The inner product is such that for two smooth vector
fields X and Y the number 〈X(x), Y (x)〉 at a point with coordinates x changes
smoothly with x. The geometry of Riemannian space is called the Riemannian
geometry.

By the linearity property of the inner product it follows that it is enough to
specify the metric for a basis, that is, to specify what the smooth functions

gij(x) ≡
〈

∂

∂xi
,

∂

∂xj

〉
(9.1)

are for the natural coordinate basis vectors ∂/∂xi.
If X(x) has components ai(x) and Y (x) has bi(x) in the natural basis, then

〈X(x), Y (x)〉 = gij(x)a
ibj . (9.2)

The symmetry of the inner product 〈X(x), Y (x)〉 = 〈Y (x), X(x)〉 implies
gij = gji. Similarly the non-degeneracy of the inner product implies that gij , as a
matrix is non-singular, that is, g ≡ det ‖gij‖ �= 0.



156 Chapter 9. Riemannian Geometry

Although the discussion in this chapter is quite general, we eventually would
apply it to the physical spacetime. Therefore we assume the metric gij has the
signature of Minkowski space. This means that if we choose an orthonormal basis
in any tangent space the form of the metric will become diagonal ηij with one
−1 and the rest +1. We use the Minkowski terminology and call a tangent vector
time-like, space-like or null according as its inner product with itself is negative,
positive or zero.

9.1.1 Metric Tensor

The metric is a bilinear form on tangent spaces. So it defines a second-rank co-
variant tensor.

We have studied in Chapter 6 that the inner product in one space V defines
an inner product in all the associated spaces, V ∗, T r

s etc. In particular the inner
product in the space V ∗ with basis {αi} dual to the basis {ei} of V has the matrix
gij = 〈αi, αj〉. The matrix gij is equal to the inverse of the matrix gij = 〈ei, ej〉.

In coordinate basis we have

gij = 〈dxi, dxj〉. (9.3)

The covariant nature of the metric tensor components can be seen from their
transformation under change of coordinates:

g′ij(x
′) =

〈
∂

∂x′i
,

∂

∂x′j

〉
=

∂xk

∂x′i
∂xl

∂x′j

〈
∂

∂xk
,

∂

∂xl

〉
=

∂xk

∂x′i
∂xl

∂x′j
gkl(x).

Using the matrix notation

‖U‖ = ‖U‖k
i =

∥∥∥∥∂xk

∂x′i

∥∥∥∥ ,

we can write the above equation as

‖g′‖ = UT ‖g‖U.

Taking the matrix inverse of this equation, we get

‖g′‖−1 = U−1‖g‖−1U−1T
.

The inverse matrix U−1 is actually

‖U−1‖k
i =

∥∥∥∥∂x′k

∂xi

∥∥∥∥
because

∂x′k

∂xi

∂xi

∂x′j
=

∂x′k

∂x′j
= δk

j .
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Recall from Chapter 5 that if covariant vectors or tensors transform with a

matrix U , then contravariant vectors or tensors transform with U−1T
and vice-

versa. This means that if we write the elements of the matrix

‖g−1‖ = ‖gkl‖,

then gkl transform as components of a second-rank contravariant tensor

g′ij(x′) =
∂x′i

∂xk

∂x′j

∂xl
gkl(x).

Moreover, as the inverse of a symmetric matrix is symmetric, therefore

gkl = glk.

The symmetric covariant second-rank tensor with components gij determines
everything in Riemannian geometry and is called the fundamental ormetric tensor.
We can write this tensor as

g = gijdxi ⊗ dxj . (9.4)

There is a reason for the name metric tensor, at least for the case when the
inner product is positive definite. If x and x + Δx are two infinitesimally close
points, then

(Δs)2 ≡ gijΔxiΔxj (9.5)

represents the square of infinitesimal length or distance of the diplacement vector
with components Δxi. As is clear from the transformation formula for gij the
length Δs of the displacement vector is not dependent on which coordinates we
use (up to second-order in Δx), and depends only on the two points. This formula
is the generalisation of the Pythogorean theorem

(Δs)2 = ΔxΔx+ΔyΔy +ΔzΔz (9.6)

of Euclidean geometry. Specification of gij either through the infinitesimal distance
square or the inner product is the starting point of Riemannian geometry.

Another way to look at it is to note that if x(t) are the coordinates of points
on a curve, then the length of the curve between points x(t1) and x(t2) can be
written as

s =

∫ t2

t1

[
gij

dxi

dt

dxj

dt

] 1
2

dt. (9.7)
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9.1.2 Induced Metric

Riemannian spaces commonly occur as subspaces of Euclidean or Minkowskian
spaces as indeed we have seen in Chapter 2 and will see still more in Chapter 16.

The Euclidean space of dimension n is the Riemannian space Rn whose
points are labelled by coordinates xi, i = 1, . . . , n, each going from −∞ to +∞,
and the metric is given by δijdxi ⊗ dxj , where δij is the Kronecker delta. The
Minkowskian space is defined by using coordinates xμ (in physics we number them
with μ = 0, 1, 2, 3 and call x0 the time coordinate). The metric for Minkowski space
is ημνdxμ ⊗ dxν , where η00 = −1, η0i = 0, ηij = δij for i, j = 1, 2, 3.

Let a subspace S (an m-dimensional surface) of an n-dimensional Riemannian
space M with metric gij be given. We can choose coordinates ur = u1, . . . , um on
the surface. Let those points on the surface treated as points of M have coordinates
xi, i = 1, . . . , n. Then xi are given as functions xi(u), i = 1, . . . n of coordinates ur

of the surface. Then the surface has metric

grs =

〈
∂

∂ur
,

∂

∂us

〉

=

〈
∂xi

∂ur

∂

∂xi
,
∂xj

∂us

∂

∂xj

〉

=
∂xi

∂ur

∂xj

∂us
gij .

We can write this relation also as

gijdxi ⊗ dxj = gij
∂xi

∂ur

∂xj

∂us
dur ⊗ dus = grsdur ⊗ dus.

We have taken the example of Euclidean space for illustration. Any subspace
of a Riemannian space will get an induced metric as well as the connection in this
way. We discuss these issues in the last chapter.

9.2 Levi-Civita Connection

9.2.1 The Fundamental Theorem

The fundamental theorem of Riemannian geometry says that there is a unique,
symmetric (i.e., torsion-free) connection on a Riemannian manifold which “pre-
serves the inner product” under parallel transport. This means if two tangent
vectors are taken in the tangent space of a point, and both are parallel displaced
by the connection to a neighbouring point, then the inner product of the vectors
at the first point is the same as the inner product at the displaced point (as deter-
mined by the value of the metric tensor at that neighbouring point). This unique
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connection, known as Levi-Civita or Riemann connection is given by components
in the natural basis by

Γk
ij =

1

2
gkl(gil,j + gjl,i − gij,l). (9.8)

This is the same familiar formula we have been working with from Chapter 2
onwards.

The proof of the fundamental theorem is very simple.
Since torsion is zero, we will assume Γk

ij = Γk
ji. Let vi and wi be components

of two tangent vectors. Then

vi
‖(x+Δx) = vi(x)− Γi

kjΔxkvj .

Similarly,

wi
‖(x+Δx) = wi(x)− Γi

kjΔxkwj .

The condition on the connection is

gij(x+Δx)vi
‖w

j
‖ = gij(x)v

iwj . (9.9)

Keeping to lowest order we get

Δxkviwj(gij,k − gljΓ
l
ki − gilΓ

l
kj) = 0,

so

gij,k = gljΓ
l
ki + gilΓ

l
kj . (9.10)

Let us define for convenience [ki, j] ≡ gjlΓ
l
ki and write the above equation as

gij,k = [ki, j] + [kj, i]. (9.11)

Interchanging j and k and again i and k we rewrite the above equations;

gik,j = [ji, k] + [jk, i], (9.12)

gkj,i = [ik, j] + [ij, k]. (9.13)

We now add the last two equations, subtract the first equation from that sum and
get, using the symmetry [ij, k] = [ji, k],

2[ij, k] = 2gklΓ
l
ij = gik,j + gjk,i − gij,k. (9.14)

The expression for Γ is obtained on multiplying by the inverse gmk and summing
over k.



160 Chapter 9. Riemannian Geometry

9.2.2 Covariant Derivative of the Metric

As the parellel transport given by the Levi-Civita connection preserves the inner
product, it is not surprising that the covariant derivative of the metric tensor gij;k

is zero,

gij;k = gij,k − grjΓ
r
ik − girΓ

r
jk = 0. (9.15)

The same happens for the contravariant counterpart gij of the metric tensor

gij
;k = gij

,k + grjΓi
rk + girΓj

rk = 0. (9.16)

Therefore we can freely take gij or gij in or outside covariant differentiations as if
it were a constant,

gij(Kl...m
r...s);k = (gijKl...m

r...s);k. (9.17)

9.2.3 A Useful Formula

An expression in which the upper and one of the lower indices of the connection
coefficient are contracted occurs often. The useful formula for it is

Γi
ij = (ln

√−g),j . (9.18)

The proof is easy:

2Γi
ij = gik[gki,j + gkj,i − gij,k]

= gikgik,j

= Tr

(
‖g‖−1 ∂

∂xj
‖g‖

)
.

The last two terms in the first line above cancel if dummy indices i, k are switched
in one of the terms. Now we use the formula for the derivative of the determinant
of a symmetric non-singular matrix M whose elements depend on a parameter x:

d

dx
detM = detMTr

(
M−1 d

dx
M

)
.

This formula follows by simply diagonalising the matrix by a similarity transfor-
mation: D = SMS−1 where D is the diagonal matrix. The formula is obviously
true for a diagonal non-singular matrix. If D is a matrix with non-zero diagonal
elements λ1, . . . , λn,

d

dx
detD =

∑
λ1 . . .

dλi

dx
. . . λn

= detD
∑

i

1

λi

dλi

dx

= detDTr

(
D−1 d

dx
D

)
.
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Now we know that the determinant is unchanged, detD = detM . And in the
trace,

Tr

(
D−1 d

dx
D

)
= Tr

(
SM−1S−1 d

dx
(SMS−1)

)

= Tr

(
SM−1S−1 dS

dx
(MS−1)

)

+Tr

(
SM−1 dM

dx
S−1

)

+Tr

(
S

dS−1

dx

)
.

In the first term on the right-hand side we can bring the matrix MS−1 as the first
factor inside the trace using the property of the trace Tr(AB) = Tr(BA). Then
the first term becomes

Tr

(
S−1 dS

dx

)
= Tr

(
dS

dx
S−1

)
which can be combined with the third term to give the trace of

dS

dx
S−1 + S

dS−1

dx
=

dSS−1

dx
= 0.

The middle term becomes the required expression in the formula when the last
factor is brought to the left as first.

Our expression for the Christoffel symbol Γi
ij is thus proved because gik is

the matrix inverse to gik. The sign inside the square root is taken to be nega-
tive because the spacetime signature makes the determinant of the metric tensor
negative.

9.3 Bianchi Identity in Components

The (second) Bianchi identity dΩ + ω ∧ Ω − Ω ∧ ω = 0 for a symmetric, that is,
torsion-free, connection such as in the present case of Riemannian geometry, can
be written in component form in a special way which is used in Einstein’s theory
of gravitation.

Recall that (section 8.10)

ωi
j = Γi

kjdxk,

Ωi
j =

1

2
Ri

jkldxk ∧ dxl = Ri
jkldxk ⊗ dxl.

Therefore,

dΩi
j =

1

2
Ri

jkl,mdxm ∧ dxk ∧ dxl
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while

ωi
r ∧ Ωr

j =
1

2
Γi

mrR
r
jkldxm ∧ dxk ∧ dxl

and

Ωi
r ∧ ωr

j =
1

2
Γr

kjR
i
rmldxm ∧ dxl ∧ dxk

= −1
2
Γr

kjR
i
rmldxm ∧ dxk ∧ dxl.

Thus the Bianchi identity looks like

(Ri
jkl,m + Γi

mrR
r
jkl + Γr

kjR
i
rml)dxm ∧ dxk ∧ dxl = 0. (9.19)

We now try to convert the ordinary derivative of R into a covariant derivative.
The second term in the equation above already corresponds to the term in Ri

jkl;m

for the contravariant index i. The next term in the bracket is the term for the
covariant index j provided we interchange the names of dummy indices k and
m and rearrange dxk ∧ dxm ∧ dxl to −dxm ∧ dxk ∧ dxl. The two more terms in
Ri

jkl;m, namely −Γr
mkRi

jrl − Γr
mlR

i
jkr which ought to be there but are not, can

be trivially written down inside the bracket because they are symmetric in km
and lm respectively while the bracket is multiplied by dxm ∧ dxk ∧ dxl which is
antisymmetric in these indices. So these terms are effectively zero.

Thus we have

Ri
jkl;mdxm ∧ dxk ∧ dxl = 0. (9.20)

Of course, this does not imply that Ri
jkl;m = 0 because dxm ∧ dxk ∧ dxl are

linearly independent only for m < k < l and the sum above is over all values of
these indices. The simplest way to see what these equations imply is to express
the wedge product in terms of tensor products:

Ri
jkl;mdxm ∧ dxk ∧ dxl = Ri

jkl;m(dxm ⊗ dxk ⊗ dxl − dxm ⊗ dxl ⊗ dxk

− dxk ⊗ dxm ⊗ dxl + dxk ⊗ dxl ⊗ dxm

+ dxl ⊗ dxm ⊗ dxk − dxl ⊗ dxk ⊗ dxm).

We rearrange these terms as follows. Remember that Ri
jkl is antisymmetric in

the last two indices k and l. The first and second terms in the equation above
can be combined together as 2Ri

jkl;mdxm⊗dxk⊗dxl if the dummy indices k and
l are interchanged in the second term. Similarly third and fourth terms can be
combined as 2Ri

jlm;kdxm ⊗ dxk ⊗ dxl by interchanging m and k and the last two
as 2Ri

jmk;ldxm ⊗ dxk ⊗ dxl by interchanging m and l. Therefore,

2(Ri
jkl;m +Ri

jlm;k +Ri
jmk;l)dxm ⊗ dxk ⊗ dxl = 0.

We can now say that

Ri
jkl;m +Ri

jlm;k +Ri
jmk;l = 0. (9.21)

This is the useful form mentioned above.
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9.4 Symmetry Properties of the Curvature Tensor

Recall that Ri
jkl is antisymmetric in the last two indices because these correspond

to the curvature two-form matrix Ωi
j ,

Ri
jkl = −Ri

jlk. (9.22)

Also, for any symmetric connection Γi
jk = Γi

kj we have the first Bianchi identity,
written in components

Ri
jkl +Ri

klj +Ri
ljk = 0. (9.23)

We can check it by just writing down the expressions cyclically and adding. Note
that this identity is non-trivial only when all three indices j, k, l are different.
When two of these indices are equal, one term drops out and the remaining terms
just express the antisymmetry in the last two indices of the curvature tensor.

The curvature tensor as determined by the Levi-Civita connection has addi-
tional symmetry properties which are seen when the contravariant index is brought
down. Define

Rijkl ≡ gimRm
jkl. (9.24)

Then we see below that this covariant version of the Riemann tensor is antisym-
metric in the first two indices,

Rijkl = −Rjikl (9.25)

and the index pair ij and kl can be switched without any change,

Rijkl = Rklij . (9.26)

We write the expression for Rijkl,

−Rijkl = gim(Γ
m
jk),l + gimΓ

r
jkΓ

m
rl − [k ↔ l].

In the expression for −Rijkl the first term is

gim(g
mn[jk, n]),l = [jk, i],l − gmngim,l[jk, n]

where we use the convenient notation

[jk, i] =
1

2
(gji,k + gki,j − gjk,i)

introduced earlier. As gim,l = [il,m] + [lm, i] we can write

gim(Γ
m
jk),l = [jk, i],l − gmn([il,m][jk, n] + [lm, i][jk, n]).
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The second term in the expression for Rijkl is

gimΓ
r
jkΓ

m
rl = grs[jk, s][rl, i] = gmn[lm, i][jk, n].

When we add the first and the second terms, we get

gim(Γ
m
jk),l + gimΓ

r
jkΓ

m
rl = [jk, i],l − gmn[il,m][jk, n]

=
1

2
(gij,kl + gik,jl − gjk,il)− gmn[il,m][jk, n].

When we subtract [k ↔ l] terms the very first term gij,kl, being symmetric in kl,
vanishes, and we get (using the symmetry of gmn)

−Rijkl = gim(Γ
m
jk),l + gimΓ

r
jkΓ

m
rl − [k ↔ l]

=
1

2
(gik,jl − gjk,il − gil,jk + gjl,ik)

+ gmn ([ik,m][jl, n]− [il,m][jk, n] + [ik, n][jl,m]− [il, n][jk,m])/2

=
1

2
[{gik,jl − i↔ j} − k ↔ l]

+ gmn [{[ik,m][jl, n]− i↔ j} − k ↔ l]/2.

In this form all symmetry properties are clearly visible.

To summarise: Rijkl has the following symmetry properties.

1. Rijkl = −Rijlk: antisymmetry in last two indices.

2. Rijkl = −Rjikl: antisymmetry in first two.

3. Rijkl = Rklij : symmetry in pairs of indices.

4. Rijkl + Riklj + Riljk = 0: cyclic sum in last three indices. (First Bianchi
Identity.)

In the tutorial to this chapter a more elegant proof of these properties is given using
the abstract definition of the covariant form of Riemann tensor R(W,Z;X,Y ) in
section 8 later in this chapter.

Because of these symmetry properties the number of independent compo-
nents of the Riemann tensor Rijkl in a space of dimension n is

Number of independent Rijkl =
n2(n2 − 1)

12
.

For four spacetime dimensions it is twenty. We discussed this in a tutorial in
Chapter 3.
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9.5 Ricci, Einstein and Weyl Tensors

9.5.1 Ricci and Einstein Tensors

We define the Ricci tensor as the contraction

Rij ≡ Rk
ikj . (9.27)

This is a symmetric tensor Rij = Rji because of the symmetry properties of the
Riemann curvature tensor

Rij = gklRlikj = gklRkjli = Rji.

Further contraction of the Ricci tensor leads to scalar curvature

R ≡ gijRij . (9.28)

The tensor defined by

Gij = Rij − 1

2
gijR (9.29)

is called the Einstein tensor with a related tensor defined by

Gi
j ≡ gikGkj = gikRkj − 1

2
δi
jR = Ri

j − 1

2
δi
jR. (9.30)

This tensor satisfies the contracted Bianchi identity

Gi
j;i = 0. (9.31)

The proof of the contracted Bianchi identity is straightforward, we only have
to remember that the metric tensor gij or its contravariant version gij have their
covariant derivatives zero so they can be taken in or out of covariant derivations
like constants. Starting with the Bianchi identity

Ri
jkl;m +Ri

jlm;k +Ri
jmk;l = 0,

write the last term as −Ri
jkm;l and then contract i and k, that is put i = k and

sum. We get

Rjl;m +Ri
jlm;i −Rjm;l = 0.

Now multiply by gjm summing over both indices:

Rm
l;m + (gjmRi

jlm);i − (gjmRjm);l = 0.

But in the second term

gjmRi
jlm = gjmgisRsjlm = gjmgisRjsml = gisRsl = Ri

l

and the last term becomes R;l. So 2R
i
l;i −R;l = 0 or,

Gi
l;i = Ri

l;i − 1

2
R;l = 0. (9.32)
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9.5.2 Weyl Tensor

The Riemann tensor Rijkl with its symmetry properties is discussed in the previous
sections. The Ricci tensor Rjl = gikRijkl and scalar curvature R = gjlRjl are
particular linear combinations of it (with components of the metric tensor as
coefficients). Because of the symmetries, there is no non-zero linear combination
possible except gikRijkl = Rjl. This is expressed by saying that the Ricci tensor
is the “trace” of the Riemann tensor.

What is the rank-four covariant tensor which has the same symmetry prop-
erties as the Riemann tensor and is “traceless”?

The answer to this question is the Weyl tensor Cijkl. We construct the Weyl
tensor by a combination of Rijkl, and Rjl and R.

To get a fourth-rank tensor from Rjl we consider gikRjl. To get antisymmetry
in i, j construct gikRjl− gjkRil, and to get antisymmetry in k, l, we subtract from
it the same expression with k, l interchanged:

gikRjl − gjkRil − gilRjk + gjlRik.

Now this combination has the correct symmetry properties including symmetry
under simultaneous interchange of ij and kl.

Next we consider combinations possible with R. The only choice is

(gikgjl − gjkgil)R.

So we write tentatively,

Cijkl = Rijkl + a(gikRjl − gjkRil − gilRjk + gjlRik)

+b(gikgjl − gjkgil)R.

The trace zero condition gikCijkl = 0 determines the coefficients using
gijgij = n,

Cijkl = Rijkl − 1

n− 2
(gikRjl − gjkRil − gilRjk + gjlRik)

+
1

(n− 1)(n− 2)
(gikgjl − gjkgil)R. (9.33)

9.5.3 Conformally Related Metrics

Suppose on a Riemannian space with metric tensor gij we choose another metric

gij = e2φgij (9.34)

which differs only by a positive factor at each point. The result will be that the
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lengths of tangent vectors will change but the angles will remain the same. Such
a transformation is called a conformal transformation, and two metrics related
in this way are called conformally related. If one of the two conformally related
metrics is flat the other one is called conformally flat.

The corresponding quantities for the metric g can be calculated. And it will
be seen that the Weyl tensor has the simple transformation as

Cijkl = e2φCijkl. (9.35)

9.6 Geodesics

9.6.1 Geodesic Equation and Affine Parameter

The ‘straightest possible’ curve is a curve whose tangent vector when transported
along the curve is found to be in the same direction as the tangent vector at the
transported point. Let λ → x(λ) be a curve, and xi and xi+Δxi be coordinates of
two points p and q corresponding to λ and λ+Δλ respectively. Then the tangent
vector components dxi/dλ at p become, on transporting from p to q,

dxi

dλ

∣∣∣∣
p

− Γi
jkΔxj dxk

dλ

and these should be proportional to (dxi/dλ)q. Therefore

dxi

dλ

∣∣∣∣
p

− Γi
jkΔxj dxk

dλ
= φ(λ)

dxi

dλ

∣∣∣∣
q

where φ(λ) is the proportionality constant which may change from point to point.
In the limit of Δλ → 0 we can write Δxi/Δλ → (dxi/dλ)p and

lim
Δλ→0

1

Δλ

(
dxi

dλ

∣∣∣∣
q

− dxi

dλ

∣∣∣∣
p

)
=

d2xi

dλ2

∣∣∣∣
p

,

therefore the equation for the geodesic is

d2xi

dλ2
+ Γi

jk

dxj

dλ

dxk

dλ
= (1− φ(λ))

dxi

dλ
.

As discussed in section (2.4) we can redefine the parameter λ in terms of an-
other parameter, say, τ in such a manner that the right-hand side of the geodesic
equation is zero,

d2xi

dτ2
+ Γi

jk

dxj

dτ

dxk

dτ
= 0.
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The only freedom still left in the choice of parameter τ is the one-dimensional
affine transformation

τ → aτ + b

where a and b are constants along the geodesic curve. A parameter chosen in such
a way is called an affine parameter

From the very definition of the Levi-Civita connection Γi
jk we know that a

parallel transported vector v preserves its norm 〈v,v〉 under transport. Therefore
the tangent vectors of a geodesic cannot change their character along a geodesic.
The geodesics are therefore classified as time-like, space-like or null depending on
the nature of its tangent vectors.

In the case of time-like geodesics we can always take the proper time starting
from some fixed point p as affine paramenter:

τ =

∫
p

√
−gij

dxi

dλ

dxj

dλ
dλ

Tangent vectors T along the geodesic curve have the constant norm squared 〈T, T 〉
for time-like geodesic when the parameter is chosen as proper time. In this case not
only the parallel transported tangent vector is proportional to the tangent vector
sitting at the transported point (by the condition of the curve being a geodesic), it
has, moreover, the same length. Therefore the proportionality constant φ is equal
to 1 at all points.

This argument does not apply to null geodesics for which proper time (or
length) is identically zero along the geodesic and cannot be used as a parameter.
Of course, we can always choose an affine parameter for a null geodesic.

9.6.2 Congruence of Geodesics

A congruence of curves in an open set O in a manifold is a family of smooth
curves such that from each point p ∈ O only one curve of the family passes. A
congruence of curves defines a tangent vector field belonging to the congruence. In
principle the affine parameters for the curves of the family can be chosen arbitrarily
because an affine parameter of one curve of the family has nothing to do with the
parameters of any other.

A congruence of geodesic curves is important in general relativity. A con-
gruence of time-like geodesics may represent trajectories of dust particles falling
under gravity and a congruence of null curves may similarly represent paths of
light rays. A study of these families of geodesic curves gives important clues to
the nature of a gravitational field. We will treat congruence of time-like geodesics
in the last chapter in the context of the Raychaudhuri equation.
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9.7 Calculating Connection Matrix

9.7.1 Ricci Rotation Coefficients

Although the Levi-Civita connection coefficients Γk
ij (n

2(n+ 1)/2 in number) are
straightforward to calculate from the derivatives of gij , the calculation may some-
times be long. We can calculate the connection matrix somewhat more simply
using Cartan’s structural equation (or Lie bracket relations) by using a basis in
which the metric components are constant. Usually an orthonormal basis is used.

Let {Xa} be basis vector fields, {αa} the corresponding dual basis fields
and (ωX)

b
a the connection matrix. Cartan’s equation states that for zero torsion

(symmetric connection)

dαa = −(ωX)
a

b ∧ αb.

These equations provide us with an alternative and simpler way to calculate the
connection.

The compatibility condition on the Riemannian metric is that the covariant
derivative respects the inner product. In the following we omit the basis symbol
X from g and ω. The indices a, b on gab = 〈Xa, Xb〉 already distinguish them from
gij .

DY (gab) = d(gab)(Y ) = DY 〈Xa, Xb〉
= 〈DY Xa, Xb〉+ 〈Xa, DY Xb〉
= ωc

a(Y )〈Xc, Xb〉+ ωc
b(Y )〈Xa, Xc〉

= gcbω
c
a(Y ) + gacω

c
b(Y )

≡ (ωba + ωab)(Y )

or, what is equivalent to eqn. (9.10),

d(gab) = ωba + ωab.

The one-forms

ωab ≡ gacω
c
b (9.36)

can be expanded in the basis {αa},
ωab = ωabcα

a. (9.37)

Written in this way the coefficients ωabc are called Ricci rotation coefficients.
When we choose the basis {Xa} orthonormal:

gab = ηab = 〈Xa, Xb〉
then dgab = dηab = 0. This imples that ωba = −ωab and the Ricci rotation
coefficients become antisymmetric in the first two indices:

ωabc = −ωbac.
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9.7.2 Calculating Ricci Coefficients

There are n2(n − 1)/2 Ricci rotation coefficients — of its three indices ωabc is
antisymmetric in the first two. This should be compared to n2(n+1)/2 Christoffel
symbols Γk

ij . For four-dimensional spacetime these numbers are 24 and 40. It is
therefore easier to calculate the Ricci coefficients and hence the connection matrix.
The price to be paid is finding an orthonormal basis, and converting things back
to a natual basis if so required.

Let the exterior derivatives dαa be expanded as

dαa =
∑
b<c

F a
bcα

b ∧ αc.

The coefficient functions F a
bc are defined only for b < c but we can extend the

definition by F a
cb = −F a

bc and F a
bb = 0 for each b. The first structural equation is

ηdadαa = −ωdb ∧ αb

= −ωdbcα
c ∧ αb

=
∑
b<c

(ωdbc − ωdcb)α
b ∧ αc.

The left-hand side is ∑
b<c

ηdaF a
bcα

b ∧ αc,

therefore

fdbc = ωdbc − ωdcb, fdbc ≡ ηdaF a
bc.

These are n2(n − 1)/2 equations for as many unknowns. The fabc are the known
functions antisymmetric in the last two indices, whereas the unknown ωabc are
antisymmetric in the first two indices. These linear equations can be easily solved.
Add all the 3! permutations of ωabc with appropriate permutation signs

ωabc − ωacb − ωbac + ωbca + ωcab − ωcba = fabc + fbca + fcab.

Use antisymmetry of ω in the first two indices and the left-hand side becomes

2(ωabc + ωcab − ωcba) = 2ωabc + 2fcab;

put it back to get

2ωabc = fabc + fbca − fcab. (9.38)
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9.7.3 Bracket Relations for Ricci Coefficients

There is another method to find Ricci coefficients for orthonormal basis fields. The Lie bracket
of basis fields, when expanded back in terms of the basis, determines the n2(n− 1)/2 structure
functions Cc

ab = −Cc
ba:

[Xa, Xb] = Cc
abXc. (9.39)

The Lie bracket is related to the torsion tensor (which is identically zero for our case of Rie-
mannian geometry)

0 = T (Xa, Xb) = DXa
Xb −DXb

Xa − [Xa, Xb].

Therefore, using the definition of the connection matrix,

DXa
Xb = iXa

DXb = ωc
b(Xa)Xc

and expanding ω in the basis {αa} as ωc
b = ωc

bdαd we get

DXa
Xb = ωc

baXc.

Thus

Cc
ab = ωc

ba − ωc
ab.

Lowering the first index by gXdc = ηdc,

hdab ≡ −ηdcCc
ab = ωdab − ωdba. (9.40)

Like the last subsection, these are n2(n−1)/2 equations to determine n2(n−1)/2 Ricci coefficients
ωabc = −ωbac in terms of known quantities hdab = −hdba. The solution is

2ωabc = habc + hbca − hcab. (9.41)

9.8 Covariant Riemann Tensor R(W, Z; X, Y )

Recall that the covariant derivative of a vector field Y in the direction of X is
written as a vector field DXY . If the connection is symmetric, that is torsion-free,
then

DXY −DY X − [X,Y ] = 0.

We say that the connection is compatible with the metric if the rate of change of
〈Y,Z〉 along X which is equal to

DX

(〈Y,Z〉) = X
(〈Y,Z〉) = (

d〈Y,Z〉)(X)

is such that

X
(〈Y,Z〉) = 〈DXY,Z〉+ 〈Y,DXZ〉. (9.42)
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This is the same as saying that the inner product of two vectors is preserved if
they are both parallel displaced by the connection along a curve. In section 9.2.1
earlier in this chapter we gave the proof of the fundamental theorem that the
only symmetric connection which is compatible with the metric is the Levi-Civita
connection.

The covariant form of the Riemann tensor can be easily defined as a mul-
tilinear mapping which takes four-vector fields X,Y, Z,W into a real number
R(W,Z;X,Y ),

R(W,Z;X,Y ) ≡ 〈W,R(X,Y )Z〉. (9.43)

There should be no confusion in using the same symbol R for the two Riemann
tensors; one of them takes three argumants R(X,Y )Z and gives a field while the
other takes four arguments R(W,Z;X,Y ) and gives a number.

The symmetry properties of the Riemann tensor with components Rijkl can
be seen as the following properties of the tensor R(W,Z;X,Y ):

R(W,Z;X,Y ) = −R(W,Z;Y,X), (9.44)

R(W,Z;X,Y ) = −R(Z,W ;X,Y ), (9.45)

R(W,Z;X,Y ) = R(X,Y ;W,Z), (9.46)

R(W,Z;X,Y ) + R(W,X;Y,Z) + R(W,Y ;Z,X) = 0. (9.47)

The first and the fourth of these are direct consequences of properties of R(X,Y )Z.
The other two are treated in a tutorial.

The relation of the tensor with its components when coordinate basis fields
∂i ≡ ∂/∂xi are used is given by

D∂i
∂j = Γk

ij∂k, (9.48)

R(∂i, ∂j)∂k = Rl
kij∂l, (9.49)

R(∂i, ∂j ; ∂k, ∂l) = Rijkl = gimRm
jkl. (9.50)

9.9 Isometries and Killing Vector Fields

Let M be a Riemannian manifold with a metric tensor g. Let φ be a one-to-one
invertible mapping of the manifold. Such a mapping is called a diffeomorphism if
its representative in terms of coordinates is infinitely differentiable.

Let c : τ → c(τ) ∈ M be a curve passing through a point p = c(0). For each
τ we can map the point c(τ) by φ to φ(c(τ)) and obtain a new curve. We can say
φ maps the curve c into another curve φ∗c ≡: τ → φ(c(τ)) ∈ M passing through
φ(p) at τ = 0.

As a result the tangent vector v = dc/dτ ∈ Tp is mapped by φ into the
tangent vector φ∗v ≡ d(φ∗c)/dτ ∈ Tφ(p). By considering different curves passing
through p we can find a Φ∗v for every v ∈ Tp.
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The vector Φ∗v ∈ Tφ(p) is called the pushforward of v by φ.
If the inner product of two vectors is preserved by the pushforwarding by φ,

we say that the diffeomorphism φ is an isometry. This means

〈φ∗v, φ∗w〉φ(p) = 〈v,w〉p
where we have indicated the points at which the the inner product on the left and
the right-hand side is calculated.

The existence of an isometry is an indication of symmetry in the space.
Composition of two isometries is again an isometry. The identity mapping and
inverse of an isometry are also isometries. Therefore the set of isometries form a
group.

A one-parameter group of isometries φt is a family of isometries labelled by
a real parameter t : −∞ < t <∞ which satisfies

φt ◦ φs = φt+s, φ0 = id

where id is the identity mapping.
Given a one-parameter group of isometries, at each point p the curve t →

φt(p) determines a tangent vector

K(p) =
dφt(p)

dt

∣∣∣∣
t=0

giving rise to a vector field. The vector field defined by the one-parameter group of
isometries φt is called the Killing vector field corresponding to the one-parameter
group. A Killing vector field can be thought of as the infinitesimal form of isometry
or symmetry mapping.

Let us choose a coordinate system x. For infinitesimally small values Δt of
the parameter, the point which has coordinates xi is mapped to a point with
coordinates xi + ΔtKi(x) by φΔt where Ki are the components of the Killing
vector.

A tangent vector with components

ai =
dxi(t)

dt

∣∣∣∣
t=0

at point P having coordinates x will have, at the mapped point Q = φΔt(P ) with
coordinates ∼ xi +KiΔt, components equal to

d(xi(t) +KiΔt)

dt

∣∣∣∣
t=0

= ai +Ki
,ja

jΔt.

Similarly, a vector with components bk will become bk +Kk
,lb

lΔt. The condition
of isometry is then

gik(x)a
ibk = gik(x+KΔt)(ai +Ki

,ja
jΔt)(bk +Kk

,lb
lΔt).
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Keeping terms to first order in Δt this gives, for arbitrary ai and bk,

ginKi
,m + gmiK

i
,n + gmn,lK

l = 0.

By lowering the index to Ki = gijK
j and using the fact that gijg

jk = δk
i is a

constant we get, using the definition of covariant derivative,

Km;n +Kn;m = 0. (9.51)

Killing Vector Fields

We have seen that a one-parameter group of isometries determines a Killing vector
field K. The covariant components of the Killing vector field satisfy the equation
Km;n +Kn;m = 0.

Conversely, any vector field with components V i(x) in coordinate system x
can be used to define an infinitesimal mapping which maps a point with coordinates
xi into the point with coordinates xi+εV i(x) where ε is an infinitesimal parameter.
For different values of ε this defines a local one-parameter group of mappings which
preserves the inner product if and only if Vm;n + Vn;m = 0. Therefore any vector
field V which satisfies Vm;n + Vn;m = 0 is called a Killing vector field.

Conserved Quantities Along a Geodesic

There is a physically important relationship between a Killing vector field, which
represents a symmetry of the metric and conservation of a quantity along a geo-
desic.

Let c : τ → x(τ) be a geodesic with tangent vector t(τ), and K = Ki∂/∂xi

a Killing vector field. Then

d〈K, t(τ)〉
dτ

= 0. (9.52)

This can be readily seen as follows.

d〈K, t(τ)〉
dτ

=
d

dτ

(
Ki

dxi

dτ

)

= Ki,j
dxj

dτ

dxi

dτ
+Ki

d2xi

dτ2

= Kk;j
dxj

dτ

dxk

dτ

by using the geodesic equation to substitute for d2xi/dτ2, and using the definition
of the covariant derivative. This expression is zero because Kk;j = −Kj;k and this
antisymmetric tensor is multiplied by the symmetric product of tangent vector
components.
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It is important to realise that the Killing fields form a vector space. For
physical applications it is important to find all linearly independent Killing fields.
We shall see in a later chapter that in a space of dimension n there cannot be more
than n(n+1)/2 independent Killing fields. A Riemannian space whose metric has
all the n(n+ 1)/2 Killing fields present is called maximally symmetric.

For physical applications it is important to identify all possible Killing vector
fields for a given metric.

It is easy to show that if the metric tensor components gij are independent of
a particular coordinate, say xi0 , then the corresponding natural basis vector field
∂/∂xi0 is a Killing vector field.

As an example the flat two-dimensional Euclidean space ds2 = dx ⊗ dx +
dy ⊗ dy is maximally symmetric. The three Killing fields are:

∂

∂x
,

∂

∂y
, x

∂

∂y
− y

∂

∂x
.

Conserved Energy-Momentum Four-Vector

We will use the following result later. Let T ij = T ji be a symmetric second-rank
tensor satisfying ’conservation equation’ T ij

;j = 0. Let Ki be a Killing vector field.
Then the associated Ki ≡ gikKk satisfies Ki;j = −Kj;i. It follows that P i defined
by

P i = T ijKj

satisfies

P i
;i = 0

because in

P i
;i = (T ijKj);i = T ij

;i Kj + T ijKj;i

the first term is zero (given) and the second is zero because T ij is symmetric and
Kj;i is antisymmetric.

9.10 Tutorial

Exercise 48. Given that a spherically symmetric four-dimensional spacetime has a metric
of the form

ds2 = −a(r)dt⊗ dt + b(r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin θdφ⊗ dφ.

Find the connection matrix by choosing an orthonormal basis and calculating the Ricci
rotation coefficients.













Chapter 10

Additional Topics in Geometry

10.1 Mappings Between Manifolds

We have already encountered diffeomorphisms in the previous chapter as one-
to-one invertible bothways-differentiable maps of a manifold onto itself. We now
define maps between different manifolds.

Let M and N be two differentiable manifolds of dimensions m and n respec-
tively, and ψ a mapping ψ : M → N . Then ψ is called differentiable if (any of the)
local coordinates y1, . . . , yn of the point q = ψ(p) are smooth functions of (any of
the) local coordinates x1, . . . , xm of p, and this happens for all points of M . We
can express this correspondence in terms of coordinates as

yi = ψi(x1, . . . , xm) i = 1, . . . , n. (10.1)

Pullback and Pushforward Maps

The mapping ψ sets a correspondence between smooth functions F(N) on N and
F(M) on M . For any f ∈ F(N) we can define a pullback function ψ∗f = f ◦ ψ ∈
F(M) which simply assigns to point p ∈M the same value that f does to ψ(p).

Let c : I → M be a curve in M . The mapping ψ then defines a curve on
N by mapping t ∈ I to ψ(c(t)) = (ψ ◦ c)(t). A tangent vector v ∈ Tp(M) to the
curve c at a point p = c(t0) ∈ M corresponding to t = t0 ∈ I determines a tangent
vector w ∈ Tψ(p)(N) tangent to the curve ψ ◦ c at the same t0.

Let the curve c be represented in coordinates by functions xi(t), i = 1, . . . , m.
With ψ these points are mapped to a curve in N whose coordinates can be given
by functions yj(t) = ψj(x(t)), j = 1, . . . , n. Therefore the components wjof the
tangent vector w = wj ∂

∂yj to the curve at point ψ(p) are given in terms of com-

ponents of the vector v = vi ∂
∂xi as

wj =
dyj

dt

∣∣∣∣
t0

=
∂ψj

∂xi

dxi

dt

∣∣∣∣
t0

=
∂ψj

∂xi
vi.
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This correspondence of a tangent vector v at a point p determining a tangent
vector w via ψ is called a pushforward by ψ and written

w = ψ∗(v). (10.2)

The above discussion of the tangent vector is not dependent on the existence of
a curve, although a concrete curve makes the concept very transparent. We can
discuss the tangent vectors in terms of their action on smooth functions defined on
the manifolds. If f ∈ F(N) is a smooth function on N , then the action of w on f is

w(f) = v(ψ∗f) = v(f ◦ ψ). (10.3)

Notice the use of ‘*’ in the superscript ψ∗ for pullback, that is in the direction
opposite to that of ψ and in the subscript for pushforward. This is the standard
notation.

ψ-Related Vector Fields

It might appear that if X is a vector field on M then it will determine a vector
field on N by pushing forward every vector to the mapped point. But this is not
so in general, because two different points of M may map to the same point in N
and the two pushed-forward vectors may not match.

A vector field X which does, in fact, determine a vector field on N unam-
biguously is said to be ψ-related.

We write ψ∗X for the pushed-forward vector field.
The Lie bracket of two ψ-related vector fields is also ψ-related and equal to

the bracket of pushed-forward fields,

ψ∗[X,Y ] = [ψ∗X,ψ∗Y ].

Pullback of a 1-Form

A 1-form or cotangent vector α ∈ T ∗ψ(p) at ψ(p) is pulled back to point p ∈ M to
ψ∗α ∈ T ∗p which acts on members of Tp as

ψ∗α(v) = α(ψ∗v). (10.4)

There is no ambiguity in defining the pullback of the cotangent vector field, unlike
the case for tangent vector fields.

Pullback and Pushforward

For higher rank tensors the push-forward or pullback is defined in a straightforward
manner on decomposable vectors as

ψ∗(v ⊗ · · · ⊗w) ≡ (ψ∗v)⊗ · · · ⊗ (ψ∗w), (10.5)

ψ∗(α⊗ · · · ⊗ β) ≡ (ψ∗α)⊗ · · · ⊗ (ψ∗β). (10.6)
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On general vectors the mapping is extended by using linearity. It is useful to write
down the formulas for basis elements:

ψ∗

(
∂

∂xi

)
=

∂ψj

∂xi

∂

∂yj
, (10.7)

ψ∗(dyj) =
∂ψj

∂xi
dxi. (10.8)

In general all contravariant tensor fields can be pushed forward by ψ : M →
N and all covariant tensor fields which are multilinear functionals on contravariant
quantities are pulled back from N to M .

The only caution to be exercised is that pushed-forward fields must be ψ-
related. But there is no restriction on the pullbacks, even in those cases where the
range of ψ is a proper subset of N .

Pullback of Forms and Exterior Derivative

For pulled-back differential forms the following result is fundamental.
The pullback operation commutes with that of taking the exterior derivative,

ψ∗(dα) = d(ψ∗α). (10.9)

This is a very important result although it is straightforward to prove. It shows
the significance of the notion of exterior derivative in differential geometry. The
definition of integration on manifolds depends crucially on this result.

Diffeomorphisms

A smooth mapping ψ : M → N from a manifold M to a manifold N of the same
dimension is called a diffeomorphism if it is invertible and the inverse mapping
ψ−1 : N → M is also differentiable. In this case all geometrical quantities can be
pushed to or fro using ψ∗, ψ∗, ψ

−1∗, ψ−1
∗ . In particular there exist diffeomorphisms

of a manifold to itself. Two manifolds between which there exists a diffeomorphism,
are called diffeomorphic and they are practically identical as far as their differential
structure is concerned.

The set Diff(M) of all diffeomorphisms of a manifold onto itself forms a
group with composition of mappings as the group operation. The identity of the
group is the mapping which maps every point of M to itself. This is an infinite
group in the sense that different members of the group cannot be labelled by a
finite number of parameters. Still, we can talk about diffeomorphisms which are
close to identity if every point is mapped to a point in its neighbourhood in some
definite sense.

Let us consider a diffeomorphism Φ close to identity. Choose a coordinate
chart and let a point p with coordinates x(p) be mapped to a point q = Φ(p); then
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we can assume that the point q also lies in the same chart with coordinates x(q).
x(q) as numbers are close to x(p) and we write x(q) = x(p) + ξ. As the point p
varies in a region within the chart, we get a functional relationship

yi = xi(q) = xi(p) + ξi(x).

A vector v ∈ Tp with components vi in a coordinate basis at the point p is pushed
forward to φ∗v ∈ Tφ(p) whose action on a function f is

φ∗v(f) = v(f ◦ φ).

If the coordinate representation of the function f is f(x) then the coordinate
representation of the function f ◦ φ is f(y) = f(x+ ξ). Therefore

φ∗v(f) = vi ∂

∂xi

∣∣∣∣
p

(f ◦ φ)

= vi ∂yj

∂xi

∂

∂xj

∣∣∣∣
q

f.

This gives the transformation formula for the pushed-forward vector components

(φ∗v)
j = vi ∂yj

∂xi
.

Similarly components of other geometric quantities can be calculated.

A Word of Warning

One should never, never confuse a diffeomorphism with a coordinate transfor-
mation. A point in a manifold may be described by two charts defined in its
neighbourhood. The coordinates in these respective charts may be, say, xi and yi.
These numbers refer to the same point p. A diffeomorphism Φ maps all points of
the manifold into other points of the manifold. And barring exception a point p
is mapped to a different point q = Φ(p). The points q and p may happen to lie
in the same chart but their coordinates refer to two different points. The relation-
ship yi = xi + ξi above is therefore not a coordinate transformation but just a
local coordinate expression of the diffeomorphism φ when it happens to be close
to identity.

This caveat is necessary because in many texts this distinction is not empha-
sized enough. Physicists define vectors or tensors as quantities which ‘transform’
in a certain way. The formula which gives a change in the components of a vector
when coordinates are changed and the formula above which gives the components
of a pushed-forward vector at q in terms components of the original vector com-
ponents at p are similar. Maybe that is why this confusion is prevalent.
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10.2 Integral Curves of a Vector Field

We know that a smooth curve c : I → M from an interval I of the real line into
a manifold M defines tangent vectors all along itself. Suppose X = vi(x)∂/∂xi is
a smooth vector field. Is it possible to find curves such that vectors X(p) are just
the tangent vectors to the curve passing through the point p?

Let us assume such a curve exists, c : I → M . Without any loss of generality,
we can take I to be an interval containing the point t = 0. Let ai be the coordinates
of the point c(0) and xi(t) that of points c(t). Therefore

dxi

dt
= vi(x), xi(0) = ai.

Solutions to this differential equation exist not only for the initial conditions xi =
ai but also for initial conditions in a neighbourhood of ai. This family of solutions
corresponds (by the coordinate charts) to a family of curves in a neighbourhood
U of the original point, c[p] : Ip →M ; p ∈ U such that

c[p](0) = p,
dc[p]

dt
= X(c(t)). (10.10)

We say that the curve c[p] is an integral curve of the vector field centered at p. In
the following we consider all these curves c[p] in their totality, and we will assume
that there is a common minimum interval I which is contained in all the intervals
Ip, p ∈ U .

Let us fix t to be small so that p1 = c[p](t) is still in U . Now, there exists a
curve c[p1] centered at p1 such that if s is the parameter of this curve, c[p1](s =
0) = p1 = c[p](t) and

dc[p1]

ds
= X(c[p1](s)).

Let us define a new curve as C(s) ≡ c[p](t + s); then C is centered at p1 and
satisfies the same differential equation and initial conditions as the curve c[p1].
Calling T = t+ s,

C(0) = p1,
dC

ds
=

dc[p]

dT
= X(c[p](T )) = X(C(s)).

The solution to the differential equation is unique, therefore it follows that C and
c[p1] are the same curve and they coincide on the union of the intervals Ip and
Ip1

,

c[p](t+ s) = C(s) = c[p1](s) = c[c[p](t)](s).

Let us define a mapping φt : U → U for small enough values of t, which
maps the initial points p to the points c[p](t) further along the curve through
them, φt(p) ≡ c[p](t). We can apply φs on the image φt(p) and get

(φs ◦ φt)(p) = φs(φt(p)) = c[c[p](t)](s) = c[p](t+ s) = φt+s(p).
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This set of mappings defined for a small interval containing t = 0 follows the
composition law of an additive group of real numbers. These mappings form a
local one-parameter group of diffeomorphisms determined by the vector field X.
It is a group because φ0 is the identity mapping and φ−1

t = φ−t. But in general,
the composition law holds only for t and s close to zero such that c[p](t), c[p](s)
and c[p](t+ s) are all defined. Therefore these mappings represent only a “local”
additive group of real numbers close to zero, and not the group of all real numbers
on the real line.

In terms of the mappings φt we can write the equation for the curves c[p]
symbolically as

dφt

dt
= X ◦ φt. (10.11)

10.3 Lie Derivative

Given a diffeomorphism φ on a manifold we can pushforward all contravariant
vectors and tensors from a point p to q = φ(p) by the mapping φ∗ and pull back
all covariant tensors from q to p by φ∗. Moreover since φ is invertible we can use
φ−1 to transport these vectors and tensors in the opposite direction as well. This
means we can pushforward and pullback any mixed tensors as needed by suitably
using the mappings determined by φ or φ−1. We shall denote all push-forwards (in
the direction of φ) by φ∗ even though for covariant quantities it is actually pullback
φ−1∗ of φ−1. Similarly all pullbacks will be denoted by the general symbol φ∗.

Let X be a vector field and, in some region, φt be the one-parameter group
of diffeomorphisms determined by the integral curves c[p] of X. Let α be a tensor
field defined in the region. Our aim is to find out how α varies along the integral
curve c[p], that is, how does α at q = c[p](t) = φt(p) compare with α at p as t → 0.
Note that these quantities cannot be directly compared because they belong to
different tangent spaces (or tensor products of tangent spaces) at two different
points p and q. The idea behind the Lie derivative is to use the mapping φt which
transports p to q to pullback α from q to p for a finite t, find the difference with α
at p, divide by t and take the limit t → 0. As we subtract quantities in the same
tangent space, for all values of t, the derivative is well defined. This Lie derivative
is written LX :

LXα ≡ lim
t→0

φ∗t α− α

t
. (10.12)

Let us calculate the Lie derivative of the basic quantities. To make the dis-
cussion simple we choose a set of coordinates in the region. In these coordinates
let the vector field have components vi(x). Let the coordinates of the point p be
xi and that of q = φt(p) be yi(t). Then, for sufficiently small t,

yi(t) � xi + tvi(x). (10.13)



10.3. Lie Derivative 187

Lie Derivative of a Function f

We first calculate the Lie derivative of a function f .
The pullback φ∗t f of a function f is simply f ◦ φt. Therefore, calling the

coordinate representation of f also by f ,

φ∗t f(x) = (f ◦ φt)(x) = f(y)

= f(xi + tvi + · · · )
= f(x) + tvi ∂f

∂xi
+ · · ·

which gives,

LXf = lim
t→0

φ∗t f − f

t
= vi ∂f

∂xi
= X(f). (10.14)

Now to calculate the Lie derivative of a vector field Y .

Lie Derivative of a Vector Field

Let Y = wi(x)∂/∂xi. In section 10.1 we saw that if, under a mapping coordinates
xi are mapped to yi, then the pushforward of a vector components vi is given by

(ψ∗v)
i(y) =

∂yi

∂xj
vj(x).

Here we have to pushforward the point y to x by φ−1
t , therefore we must express

x as functions of y. We have,

xi = yi − tvi(y) + · · · .

Therefore, the components wi brought back to x from y are

(φ−1
t ∗w

i)(x) = wj(y)
∂

∂yj

(
yi − tvi(y)

)
= wi(x+ tv)− twj(x+ tv)

∂vi

∂yj

= wi(x) + tvj(x)
∂wi

∂xj
− twj(x)

∂vi

∂xj
+ · · · .

The Lie derivative is thus the vector with components

vj(x)
∂wi

∂xj
− wj(x)

∂vi

∂xj

which is recognised as those of the Lie bracket [X,Y ]. We write

LXY = [X,Y ]. (10.15)
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Lie Derivative of a One-Form

Let α = aidxi be a covariant vector field or one-form. By a reasoning similar to
the contravariant case in the previous subsection, the pullback components are
(for the same vector field X = vi∂/∂xi)

φ∗t aj(x) = ai(y)
∂yi

∂xj

= ai(x+ tv)

(
δi
j + t

∂vi

∂xj

)

= aj(x) + tvi ∂aj

∂xi
+ tai(x)

∂vi

∂xj
+ · · · .

Therefore, the Lie derivative is a one-form with components

vi ∂aj

∂xi
+ ai

∂vi

∂xj
.

Or, we can write

LXα =

(
vi ∂aj

∂xi
+ ai

∂vi

∂xj

)
dxj . (10.16)

There are two standard ways to write this result in component-free from. We can
rearrange(

vi ∂aj

∂xi
+ ai

∂vi

∂xj

)
dxj = vi

(
∂aj

∂xi
− ∂ai

∂xj

)
dxj +

∂

∂xj
(aiv

i)dxj

which gives

LXα = iXdα+ d(iXα) (10.17)

where iX is the contraction operator (or the interior product operator) defined on
any covariant tensor φ ∈ T 0

k and giving the covariant tensor iXφ ∈ T 0
k−1 of rank

one lower,

(iXφ)(X1, . . . , Xk−1) = φ(X,X1, . . . , Xk−1). (10.18)

The other way to write LXα is to see its effect on a vector field Y = wk∂/∂xk,

(LXα)(Y ) = vi ∂aj

∂xi
wj + aiw

j ∂vi

∂xj

= vi ∂

∂xi
(ajw

j)− viaj
∂wj

∂xi
+ ajw

i ∂vj

∂xi

where indices i and j are interchanged in the last term. This can be written now
as

(LXα)(Y ) = X(α(Y ))− α([X,Y ]). (10.19)
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Lie Derivative and Tensor Products

It is important to note that pullback or pushforward generated by a diffeomor-
phism, by definition, respects tensor products and contractions,

φ∗(α⊗ β) = φ∗(α)⊗ φ∗(β),

φ∗(α(X)) = (φ∗(α))(φ∗X),

therefore the Lie derivative satisfies the Leibnitz rule:

LX(α⊗ β) = (LXα)⊗ β + α⊗ (LXβ),

LX(α(Y )) = (LXα)(Y ) + α(LXY ). (10.20)

Therefore also

LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ)

for any two differential forms. The formula for Lie derivative of a 1-form given
above (10.19)is an example of using the Leibnitz property under tensor product
and contraction.

X(α(Y )) = LX(α(Y )) = (LXα)(Y ) + α(LXY ) = (LXα)(Y ) + α([X,Y ]).

Lie Derivative of any Tensor Field

If we know the Lie derivative for a function f , for ∂/∂xi and for dxi then the Lie
derivative for all the tensors can be easily calculated.

From the calculations above, we know that for a vector field X,

X = vi ∂

∂xi
,

LXf = vi ∂f

∂xi
, (10.21)

LX

(
∂

∂xi

)
= −∂vj

∂xi

∂

∂xj
, (10.22)

LX(dxi) =
∂vi

∂xj
dxj . (10.23)

Starting from these as given and using the Leibnitz property we can rederive
the formulas for vector fields and for one-forms.

A very important formula for the derivative of the metric tensor can be
written using the above rules:

LX(gijdxi ⊗ dxj) = [vi;j + vj;i]dxi ⊗ dxj . (10.24)

It is given as a tutorial problem.
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We can also show that if X and Y are two vector fields, the Lie derivative
satisfies

LX ◦ LY − LY ◦ LX = L[X,Y ]. (10.25)

We can show this first on the basic quantities: functions f , tangent space basis
vectors ∂/∂xi and cotangent basis vectors dxi. Then prove that

(LX ◦ LY − LY ◦ LX)(α⊗ β) = ((LX ◦ LY − LY ◦ LX)α)⊗ β

+α⊗ (LX ◦ LY − LY ◦ LX)β

for any two tensors α and β.

General Formula for the Lie Derivative of an r-Form

One can show by induction

(LXα)(X1, . . . , Xr)

= X(α(X1, . . . , Xr)) −
r∑

i=1

α(X1, . . . , [X,Xi], . . . , Xr). (10.26)

10.4 Submanifolds

We have discussed two-dimensional surfaces embedded in three-dimensional am-
bient space quite early in this book.

A one-one map ψ : S → M from an r < n-dimensional manifold into an n-
dimensional manifold M is called a submanifold if the pushforward map ψ∗ takes
the r linearly independent vectors in the tangent space Tp(S) at every point p ∈ S
into r linearly independent vectors in Tq(M), q = ψ(p). Actually, we will assume
the submanifold to satisfy a further condition: open sets in S are mapped by ψ into
sets which can be obtained as intersections of an open set in M with ψ(S). This
is technically called an embedding, and we shall assume this further condition as
well. This allows us to identify the submanifold S with its image ψ(S) with the
differential structure of coordinates and tangent spaces identified with the one-one
map ψ.

Still, one must not confuse the subset ψ(S) ⊂ M , just as a subset, with the
submanifold ψ(S) equipped with its own coordinates and tangent spaces. This is
clarified by using the inclusion map i : ψ(S)→M which maps a point p regarded
as a point of ψ(S) to p ∈M .

In physics our manifoldM is spacetime, and there is nothing outside it. There
we have to imagine, perforce, a submanifold to be a subset ψ(S) ⊂ M which is
the image of S under the map ψ defining the submanifold. In practice this creates
no difficulties as the following discussion shows.
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If u1, . . . , ur are coordinates around a point p ∈ S and x1, . . . , xn around
ψ(p) ∈M , then the mapping ψ is determined by n functions ψi : Rr → R,

xi = ψi(u), i = 1, . . . , n. (10.27)

The condition about linearly independent vectors mapping into linearly indepen-
dent vectors means that the Jacobian matrix ∂xi/∂ua where i = 1, . . . , n and
a = 1, . . . , r, has the maximal rank r. By eliminating the r u’s from n equations
xi = ψi(u) we get n− r equations

χA(x) = 0, A = 1, . . . , n− r

which characterize the submanifold.

10.5 Frobenius Theorem

We have seen that when a smooth vector field is given, we can find integral curves,
that is, curves whose tangent vector at a point coincides with the value of the vector
field at the point.

Now suppose we are given a smooth distribution of r-dimensional subspaces
of the tangent spaces of a manifold M . By smooth distribution of subspaces in a
region we mean that there exist smooth vector fields X1, . . . , Xr such that they
are linearly independent at all points and span r-dimensional subspaces of tangent
spaces at those points.

The question we can ask is: Does there exist an r-dimensional submanifold
such that vectors tangent to the submanifolds constitute precisely the subspaces
given by the distribution? Frobenius theorem answers this question.

We cannot prove the theorem here (not because it is difficult but because we
have limited space) and quote the result.

For a smooth distribution determined by the vector fields X1, . . . , Xr there
exists a submanifold whose tangent spaces coincide with the subspaces of the
distribution if and only if the vector fields X1, . . . , Xr are involutive, that is, they
are such that [Xi, Xj ] is again a linear combination of these fields,

[Xi, Xj ] =

r∑
k=1

Ck
ijXk (10.28)

where Ck
ij are smooth functions.

This condition can also be written in terms of the dual basis of forms.
We take vector fields X1, . . . , Xr which are independent at each point

and complete the basis by adding n − r additional linearly independent fields
Y1, . . . , Yn−r. Let {γi} = {α1, . . . , αr, ω1, . . . , ωn−r} be dual to the basis
{X1, . . . , Xr, Y1, . . . , Yn−r}.
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By definition, ω1, . . . , ωn−r annihilate the vector fields of the distribution:

ωj(Xi) = 0, j = 1, . . . , n− r i = 1, . . . , r.

Let ω be any of the ωj , j = 1, . . . , n − r and X,X ′ be fields of the distribution.
Calculate dω by the standard formula

dω(X,X ′) = X(ω(X ′))−X ′(ω(X))− ω([X,X ′])

where the right-hand side is zero because ω annihilates fields of the distribution.
This means that if the two-form dω is expanded in the basis γi ∧ γj , every term
has at least one factor corresponding to the annihilators ω1, . . . , ωn−r.

dωi =
∑

ai
jkωj ∧ γk, i, j = 1, . . . , n− r, k = 1, . . . , n,

where ai
jk are coefficient functions.

10.6 Induced Metric

If there is a metric 〈 , 〉 defined on the manifold M , then we can define metric
〈 , 〉S , called the induced metric on a submanifold S, by pulling back the 2-
form which defines 〈 , 〉. It amounts to saying that the inner product of two
vectors v,u ∈ Tp(S) is the same as that between the pushed-forward vectors
ψ∗v, ψ∗u ∈ Tq(M),

〈v,u〉S = 〈ψ∗v, ψ∗u〉. (10.29)

But one must remember that the induced metric can be degenerate (i.e., a non-
zero vector can be orthogonal to all vectors of the tangent space) if the metric in
the space M is non-degenerate but not positive definite.

10.7 Hypersurface

An n − 1 dimensional submanifold ψ : S → M of an n-dimensional manifold
M is called a hypersurface. In this case there is one function χ(x) = 0 which
characterizes the hypersurface. If coordinates xi are determined by coordinate
function φ : M → Rn, then χ(x) is the coordinate representative of the smooth
function f ≡ χ ◦ φ. The image of S near point ψ(p) is the constant f ’surface’,
f = 0.

The set of vectors Hq(M) = ψ∗(Tp(S)), q = ψ(p) is an (n − 1)-dimensional
subspace of vectors in Tq(M) tangent to the surface.

Let there be a curve in M passing through the point q = ψ(p) and lying
entirely in the surface f = 0. Then the tangent vector v ∈ Tq to the curve will
give zero rate of change for f :

v(f) = df(v) = 0.
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Thus the tangent subspace Hq(M) is determined by the condition

Hq(M) = {v ∈ Tq(M)|df(v) = 0}. (10.30)

We can similarly construct subspaces tangent to the surface at all points of the
submanifold.

Let 〈 , 〉 be the metric inM . The correspondence set up by the metric between
forms and tangent vectors then singles out a vector field obtained by raising the
1-form df as N ≡ (df)
 such that for any vector v ∈ Hq,

df(v) = 〈N,v〉. (10.31)

The vector N is called the normal to the surface because it is orthogonal to all
vectors v ∈ Hq tangent to the hypersurface: 〈N,v〉 = 0.

We only deal with manifolds M which are equipped with a Lorentzian metric,
whose form in an orthonormal basis is ηij = diagonal{−1,+1, . . . ,+1}.

When 〈N,N〉 < 0 everywhere (that is the normal is time-like) the hypersur-
face is called a space-like hypersurface, when 〈N,N〉 > 0 (the normal is space-like)
the hypersurface is called time-like and if 〈N,N〉 = 0 the hypersurface is called a
null hypersurface.

10.8 Homogeneous and Isotropic Spaces

Let M be a Riemannian manifold with metric tensor g. In the most general case
the metric may have no isometries or Killing vector fields at all. But in physics
and cosmology we do encounter Riemannian spaces which have a fair degree of
symmetry, and Killing vector fields do exist.

It is clear from the definition that if X and Y are two Killing fields, then
any linear combination (with constant coefficients) is again a Killing vector field.
Moreover from the fact that LX ◦LY −LY ◦LX = L[X,Y ] it follows that LXg = 0
and LY g = 0 imply that the bracket [X,Y ] is also a Killing vector field.

Thus the set of all Killing vector fields forms a Lie algebra. What is even
more interesting is that there is a limit to which a space can be symmetric: there
are no more than n(n+1)/2 independent Killing vector fields and the space which
has them all is called maximally symmetric.

We now outline the arguments which show how this is so. For more details
the student should see for example Weinberg’s Gravitation and Cosmology.

Recall that a Killing vector field with components vi(x) must satisfy

vi;j = −vj;i.

Using the Ricci identity

vi;j;k − vi;k;j = Rl
ijkvl
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and adding to it its cyclic versions, and recalling that

Rl
ijk +Rl

jki +Rl
kij = 0

we get

vi;j;k − vi;k;j + vj;k;i − vj;i;k + vk;i;j − vk;j;i = 0.

Using the defining property vj;i;k = −vi;j;k and vi;k;j = −vk;i;j for the Killing field,
we get

2vi;j;k + 2vk;i;j − 2vk;j;i = 0

or,using the above formula for repeated covariant derivatives again,

vi;j;k = −Rl
kijvl. (10.32)

Now suppose we specify the numbers bi = vi at a fixed point. We also specify
the antisymmetric matrix numbers cij = vi;j = −vj;i at the same point. As cij =
vi;j = vi,j − Γk

ijbk this gives us the first derivatives vi,j . Next, the above equation
determines the second derivatives from

vi;j;k = (vi,j − Γl
ijvl),k − combinations of Γ and cij

= Rl
kijbl.

The third partial derivatives, similarly, will be linear combinations of bi and
cij and lower partial derivatives. And so, by repeating this process all higher
partial derivatives of vi can be constructed out of given n numbers bi, and n(n−
1)/2 numbers cij (in addition to known quantites like the curvature tensor and
its covariant derivatives). The Killing field is therefore determined by its Taylor
expansion in a neighbourhood of the point at which the values vi and vi;j are
specified.

Of course, choosing some numbers vi and vi;j at a point will not necessarily
ensure a solution because the values of vi determined by the Taylor expansion at
a neighbouring point, will in their turn, determine vi at other points including the
original point, and they have to match. The important point is that in the best
possible case, when all possible arbitrary values of vi and vi;j can be chosen, there
will only be at most n+n(n− 1)/2 = n(n+1)/2 independent Killing fields. That
is the maximal dimension of the Lie algebra of Killing fields.

One should look at a Killing vector field as an infinitesimal symmetry trans-
formation which compares the metric tensor at two neighbouring points x and
y = x+ tv for small t.

If it is possible to choose Killing fields such that at a fixed point the n compo-
nents vi of the field take all possible values, then every point in the neighbourhood
can be approached by the infinitesimal symmetry transformation starting from the
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given point x. The space is called homogeneous around the point x. If Killing fields
of this type are defined everywhere we say the space is homogeneous.

If, on the other hand, at a point, Killing fields exist which have vi = 0 for
all i, then the infinitesimal symmetry transformations determined by these fields
keep the point fixed and instead the non-zero values of vi;j determine “rotations”
of neighbouring points about the given point. If it is possible to choose all the
n(n− 1)/2 independent values for vi;j we say that the space is isotropic about the
point.

A space which is homogeneous as well as isotropic about a single point is
actually isotropic about all points and is maximally symmetric.

On the other hand a space which is isotropic about every point is homoge-
neous and therefore again maximally symmetric. The proof goes somewhat along
these lines. Choose Killing fields for which vi(x) = 0 but vi;j(x) take all possible
values. As there is isotropy at a neighbouring point y as well, there exist Killing
fields with compnents wi such that wi(y) = 0 but wi;j(y) take all possible val-
ues. The proof consists in showing that suitable combinations ui of Killing fields
wi can be taken which will permit all possible values for ui(x) at x, proving the
homogeneous nature at x. And this argument can be given for all points.

10.9 Maximally Symmetric Spaces

Existence of symmetry puts restrictions on gij and Ri
jkl. A maximally symmetric

space is therefore possible only for very special values of these quantities. It is
therefore not surprising that a maximally symmetric Riemannian space is essen-
tially unique.

For a maximally symmetric space the following hold:

1. The scalar curvature R is a constant.

2. The Ricci tensor is proportional to the metric tensor

Rij =
1

n
Rgij .

3. The Riemann curvature tensor is

Rijkl =
R

n(n− 1)
(gikgjl − gjkgil).

Any maximally symmetric space can be shown to be diffeomorphic to a certain
standard space which is characterized by the scalar curvature constant R and the
signature of matrix gij , that is the numbers n+ and n− of its positive and negative
eigenvalues. (There are no zero eigenvalues of gij because it is non-degenerate.)

These standard spaces are constructed by starting with an (n+1)-dimensional
Eucliden or Minkowskian space and restricting to the sphere or hyperboloid.
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Let us first consider an (n+1)-dimensional Euclidean space with coordinates
x1, . . . , xn, z and metric

(ds)2|(n+1) =

n∑
i=1

dxi dxi +
ε

k2
(dz)2

where ε is equal to +1 or −1 and k is a positive constant.
Our maximally symmetric n-dimensional space is the subspace of this Euclid-

ean space given by points whose coordinates satisfy∑
i

εk2(xi)2 + z2 = 1

which, for ε = +1 is a spheroid and for ε = −1, a hyperboloid.
We consider the case ε = +1 in detail to illustrate.
The induced metric is calculated by retaining xi as coordinates and expressing

dz in terms of them:

2k2
∑

xidxi + 2zdz = 0

or

dz = −k2

∑
xidxi√

1− k2
∑
(xi)2

.

Thus the n-dimensional metric g(n) induced on the sphere due to the Euclidean
(n+ 1)-dimensional metric is

(ds)2|(n) =
∑

i

dxi dxi + k2
∑
i,j

xixjdxi dxj

1− k2
∑

i(x
i)2

. (10.33)

We can also write this in vector notation as

(ds)2|(n) = (dx).(dx) + k2 (x.dx)2

1− k2|x|2 .

Isometries of the metric are easy to see. Any n×n rotation (that is an orthogonal
matrix) R which takes xi to Rijx

j is an isometry in the larger n+ 1 dimensional
space and therefore also for the induced metric. There are n(n−1)/2 independent
rotations corresponding to as many planes in which the motion takes place. For
example, a one-parameter group of isometry depending on a parameter t which
maps x→ x(t) (corresponding to a rotation in the (12)-plane) is

x1(t) = x1 cos t+ x2 sin t,

x2(t) = x2 cos t− x1 sin t,

xi(t) = xi i = 3, . . . , n.



10.9. Maximally Symmetric Spaces 197

The tangent vectors to these curves at t = 0 give the Killing fields of the form

dxi(t)

dt

∣∣∣∣
t=0

= M
(12)
ij xj

where M
(12)
ij is the antisymetric matrix whose (12) element is 1, (21) element −1

and all the rest zero.
The remaining n Killing fields (there should be n(n + 1)/2 for a maximally

symmetric space) come from the isometries involving rotation in the plane of z
and one of the coordinates xi. For i = 1 choose

kx1(t) = kx1 cos t+ z sin t,

z(t) = z cos t− kx1 sin t,

xi(t) = xi i = 2, . . . , n,

with the understanding that z is to be replaced in terms of the x using the equation
of the sphere. (The second of these equations is not really needed because our space
does not have z as a coordinate.)

The case ε = −1 can be discussed similarly with the metric given by

(ds)2|(n) =
∑

i

dxi dxi − k2
∑
i,j

xixjdxi dxj

1 + k2
∑

i(x
i)2

(10.34)

and in vector notation as

(ds)2|(n) = (dx).(dx)− k2 (x.dx)2

1 + k2x.x
.

de Sitter Space

We start with the physical four-dimensional Minkowski space, with additional fifth
w coordinate and metric

ds2|5 = −(dt)2 + (dx)2 + (dy)2 + (dz)2 + (dw)2

and restrict to the four-dimensional subspace determined by the hyperboloid

−t2 + x2 + y2 + z2 + w2 = ρ2.

Choose coordinates on the surface compatible with the geometry

t = ρ sinh τ,

w = (ρ cosh τ) cosχ,

z = (ρ cosh τ sinχ) cos θ,

x = (ρ cosh τ sinχ sin θ) cosφ,

y = (ρ cosh τ sinχ sin θ) sinφ;
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then we get the metric of the de Sitter space

(ds)2|dS = −ρ2(dτ)2 + (ρ cosh τ)2[(dχ)2 + sin2 χ((dθ)2 + sin2 θ(dφ)2)].

There is another form of de Sitter metric which is useful in cosmology. If we
take the outgoing and ingoing null coordinates in the direction w and define u by
w + t = u and v = t− w, then the equation of the surface is

−uv + x2 + y2 + z2 = ρ2

which allows us to eliminate v,

v =
1

u
[x2 + y2 + z2 − ρ2],

dv = −du

u2
[x2 + y2 + z2 − ρ2] + 2

xdx+ ydy + zdz

u
.

The metric becomes

(ds)2|dS = −dudv + (dx)2 + (dy)2 + (dz)2

= [x2 + y2 + z2 − ρ2]
(du)2

u2

−2[xdx+ ydy + zdz]
du

u
+ (dx)2 + (dy)2 + (dz)2.

This suggests that we define dU = du/u which integrates to u = ρ exp(U) if we
chose the constant of integration to get the factor ρ. So

(ds)2|dS = −ρ2(dU)2 + (dx− xdU)2 + (dy − ydU)2 + (dz − zdU)2.

It is easy to verify that if we now define

X = x/u = xe−U/ρ, Y = y/u = ye−U/ρ, Z = z/u = ze−U/ρ

so that (ρeU )dX = dx− xdU etc., this will give us the final form

1

ρ2
(ds)2|dS = −(dU)2 + e2U [(dX)2 + (dY )2 + (dZ)2] (10.35)

which shows the homogeniety in the space coordinates X,Y, Z explicitly.

Maximally Symmetric Subspaces

Physically interesting spaces may not be maximally symmetric themselves but
may admit a family of maximally symmetric subspaces which fill up the entire
space. In such a case it can be shown that if there are m-dimensional subspaces



10.9. Maximally Symmetric Spaces 199

which are maximally symmetric as subspaces, then there exist coordinates (v, u)
with va, a = 1, . . . , n−m and ur, r = 1, . . . , m such that the metric is

(ds)2|(n) = gabdva dvb + f(v)g̃rsdur dus (10.36)

where the subspaces are defined by va = constant. It follows that there are m(m+
1)/2 Killing vector fields of the general form

X = wr(u, v)
∂

∂ur
. (10.37)

The integral curves of these Killing fields do not cut across subspaces and lie
entirely in the subspaces.

Two examples of physical importance of metrics whose subspaces are maxi-
mally symmetirc are given below.

Spherically Symmetric Spacetime

In this case the v-coordinates are r, t and the u-coordinates are θ, φ. The metric
is given by,

(ds)2 = gtt(r, t)(dt)2 + 2grt(r, t)(drdt) + grr(r, t)(dr)2

+f(r, t)[(dθ)2 + sin2 θ(dφ)2]. (10.38)

Friedman-Robertson-Walker Spacetime

Here the three-dimensional space-like surfaces are maximally symmetric, that is
homegeneous and isotropic. This assumption about the maximal symmetry of the
universe at large scales is called the cosmological principle. If x1, x2, x3 are the
three homogeneous space coordinates, then

(ds)2 = g(v)(dv)2 + f(v)

[
dx.dx± k2 (x.dx)2

1∓ k2x.x

]
(10.39)

where k is the constant of maximal symmetry which can be normalized to take
values 0 or ±1. It is customary to redefine dt = (g(v))1/2dv and use x related to
r, θ, φ in the standard way. Then x.dx = rdr and the metric is in the standard
Friedman-Robertson-Walker or FRW form

(ds)2 = (dt)2 −R(t)2
[

(dr)2

1∓ k2r2
+ r2(dθ)2 + r2 sin2 θ(dφ)2

]
. (10.40)

In this form the isotropy of the space (about the point r = 0) is manifest but
homogeneity is not.
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10.10 Integration

Integration is a limiting process of summation. It is not, contrary to what one
learns in school, a process opposite to differentiation. Integration of a function on
a Euclidean space is done by dividing the region of integration into convenient
non-overlapping elementary subsets (for example by a rectangular grid). Each of
these elementary subsets is equipped with a “measure” or volume. The value of
the function (assumed to be regular in some well-defined sense) in each subset is
approximated and is multiplied by the volume of the subset. The sum of these
products over all subsets approximates the integral. Choosing finer and finer di-
visions of the region of integration into elementary subsets, the sum approaches a
limit, called the integral of the function.

In the case of integration over a one-dimensional interval, the integral of a
function depends on the two boundary points (limits of integration). The funda-
mental theorem of calculus assures us that this integral is dependent on the limits
in a differentiable manner and the derivative with respect to the upper limit is
just the function which was integrated. This shows that the differentiation of an
integral gives the original function. This is the concept of ‘indefinite’ integral. On
the other hand, if we differentiate a function first and then integrate, the result is
just the difference of the values of the function at the two boundary points of the
region of integration.

In higher dimensions there is no anologue of the indefinite integral.The inte-
gral of a ‘function’ depends on a region and its boundary in a more complicated
way. There is a very important result known as Stokes theorem. It relates the
integral of the exterior derivative of an r-form over an r+1-dimensional region to
the value of the form on the r-dimensional boundary of the region.

Integration on Euclidean Space

Differential forms have a deep and intimate relation to integration of functions of
several variables over regions in the space of those variables.

Recall that integration of a function on an interval can be defined by dividing
that interval into many smaller intervals by choosing points (a partition) x0 =
a, x1, x2, . . . , xN = b. The value of a function in the interval is approximated by
the constant value at some point ξi ∈ xi+1 − xi. The “measure” or volume of the
i-th infinitesimal interval is taken to be just its length xi+1 − xi. The integral of
the function is then approximated by∫ b

a

f(x)dx =
∑

i

f(ξi)(xi+1 − xi).

As the limit of the partitioning is made finer and finer, the sums converge to a
limit called the integral of the function.

Now consider an integral over some compact region in two-dimensional
Euclidean space. If we chose Cartesian coordinates we can divide the region of inte-
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gration by a rectangular grid with lines parallel to the two (say x and y axes). Then
the “measure” of a typical cell is the area ΔxΔy. We can construct the integral of
a function f(x, y) of two variables in a manner similar to the one-dimensional case
by approximating the function in some standard way, multiplying it with the area
of the cell and summing over all cells. In the limit of cell size going to zero the
integral is obtained. But it is not necessary to use rectanguar coordinates. Suppose
we use instead ξ(x, y) and η(x, y) as the variables in place of x, y. The grid of lines
corresponding to ξ(x, y) =const and η(x, y) =const can now be used to define the
integral, but the area of the infinitesimal cell with sides whose (ξ, η) coordinates
differ by Δξ and Δη is not ΔξΔη anymore. The infinitesimal vector in the direc-
tions of η = b =const and ξ changing from ξ = a to ξ + Δξ has components (in
the x, y rectangular coordinates) equal to

nξ =

(
∂x

∂ξ
Δξ,

∂y

∂ξ
Δξ

)
.

Similarly the infinitesimal vector in the directions of ξ = a =const and η changing
from η = b to b+Δη has components equal to

nη =

(
∂x

∂η
Δη,

∂y

∂η
Δη

)
.

Thus the area of the little parallelogram contained within the lines ξ = a, ξ =
a+Δξ and η = b, b+Δη is

nξ × nη = ΔξΔη

(
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

)

= ΔξΔη det

∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ .
Therefore the integral of the same function in (ξη) coordinates looks like∫

f(x, y) det

∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ dξdη

where x, y are supposed to have been expressed as functions of ξ and η.
We rephrase this by saying that we are actually integrating a differential

two-form α = f(x, y)dx ∧ dy over a region. Under a change of coordinates∫
f(x, y)dx ∧ dy =

∫
f(x, y)(

∂x

∂ξ
dξ +

∂x

∂η
dη) ∧ (∂y

∂ξ
dξ +

∂y

∂η
dη)

=

∫
f(x, y) det

∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ dξ ∧ dη.

The infinitesimal cells can be defined by infinitesimal tangent vectors which consti-
tute a grid. They can be chosen in any arbitrary way but usually they are specific
to some coordinate system as above.
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The process of evaluation of the integral simply means evaluating the two-
form α on the two vectors of the grid α(e1, e2) and adding this number to similar
numbers obtained from other cells. The student can convince herself that the
integral obtained will be the same because of the natural way in which the Jacobian
matrix appears under change of coordinates. This is the deep-rooted connection
of differential forms to integration.

One can similarly check that integration over a three-dimensional region in-
volves a three-form evaluated on a grid of infinitesimal tangent vectors, and so
on.

Integration on Manifolds

Integration of a 1-form on a one-dimensional submanifold of an n-dimensional
manifold M is defined as follows. Let the one-dimensional submanifold be obtained
as a mapping ψ : T →M . If t is a coordinate function on T and xi on M , let this
mapping ψ be represented in coordinates by t → xi(t).

A one-form α = Ai(x)dxi is then integrated as∫
α =

∫ t2

t1

Ai(x)
dxi

dt
dt. (10.41)

It is obvious that what we are really integrating is the pullback ψ∗(α) on the real
line and using the definition of integration on the one-dimensional Euclidean space.
Note that the value of the integral is independent of the choice of coordinates t
on T or x on M .

Similarly, one can integrate an r-form β on M on an r-dimensional subman-
ifold ψ : S → M . Let ψ be represented in coordinates by xi(u) where u1, . . . , ur

are coordinates on the r-dimensional manifold S. We pull back the form

β =
∑

i1<···<ir

Bi1...ir
(x)dxi1 ∧ · · · ∧ dxir

to S as

ψ∗(β) =
∑

i1<···<ir;j1,...,jr

Bi1...ir
(x(u))

∂xi1

∂uj1
. . .

∂xir

∂ujr
duj1 ∧ · · · ∧ dujr .

This is just the usual r-form on an r-dimensional manifold. Again the integral is
independent of the choice of coordinates x or u.

Stokes Theorem

A region D contained in a submanifold of dimension r has a boundary ∂D which
is a submanifold of dimension r − 1. The Stokes theorem simply says that if the
r-form α which is to be integrated on a region D happens to be an exact form,
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that is, α = dβ where β is an (r− 1)-form, then, the integral of α over D is equal
to the integral of β over ∂D, ∫

D

dβ =

∫
∂D

β. (10.42)

The student can look up the proof of the theorem in the book by Frank Warner,
Foundations of Differential Geometry and Lie Groups.

Summary and Remarks

One-forms are integrated on one-dimensional submanifolds, two-forms on two-
dimensional submanifolds and so on. The integral is independent of any coordinate
system because the change in coordinate system is compensated by the Jacobian
determinant.

If we integrate an r-form α which is obtained by exterior derivative of an
(r − 1)-form β, that is, α = dβ , over a region D the result is the same as the
integral of β over the boundary ∂D of the region.

10.11 Integration on a Riemannian Manifold

We have seen how r-forms can be integrated over an r-dimensional region. The
integration proceeds with the assumption that the value of the form on the grid
of infinitesimal vectors gives the “content” or “measure” of the quantity to be
summed. There is no preferred form which can be taken as standard. But a Rie-
mannian structure gives us a definition of “length” and orthogonality. Then there
is a preferred “volume” form corresponding to an orthonormal basis.

Orientation

Let x1, . . . , xn and y1, . . . , yn be two coordinate systems or charts with overlapping
domain of definition around a point p in a Riemannian space. The space of n-forms
is one-dimensional and all n-forms are proportional to each other. In particular we
know that

dy1 ∧ · · · ∧ dyn = det

∣∣∣∣∂y

∂x

∣∣∣∣ dx1 ∧ · · · ∧ dxn. (10.43)

We say the two coordinate systems have the same orientation if the determinant
det |∂y/∂x| is positive.

A Riemannian manifold is called orientable if there exists an atlas (that is
charts covering the whole space) so that all charts have the same orientation. We
deal with only such spaces. When we choose an atlas of this type we say we have
chosen an orientation.



204 Chapter 10. Additional Topics in Geometry

It may occur to the student that one can always get the same orientation for
the two charts by switching the name of two coordinates (say x1 and x2 in one
chart to make a determinant sign change) but that is not always possible. The
reason is that the two coordinate systems may overlap in two disjoint places and
the det |∂y/∂x| may be positive in one and negative in the other. A prime example
of a non-orientable manifold is the Mobius band.

Construct an orthonormal basis of form fields α1, . . . , αn. Let

Ω ≡ α1 ∧ · · · ∧ αn.

It is an n-form basis element of the one-dimensional space of n-forms and therefore
proportional to any other n-form We say that Ω has the same orientation as the
coordinate basis if

Ω = (a positive number)dx1 ∧ · · · ∧ dxn

at each point with local chart x1, . . . , xn. We call Ω the volume form for the given
orientation.

The ‘positive number’ can be easily calculated. Let e1, . . . , en be the ortho-
normal basis dual to α1, . . . , αn with

〈ei, ej〉 = ηij =

⎛
⎜⎜⎜⎝

ε1
ε2

. . .

εn

⎞
⎟⎟⎟⎠

where εi are fixed constants equal to 1 or −1. Recall that the number of vectors
with norm square 1 or −1 in an o.n. basis is fixed. Let

ei = ai
j ∂

∂xj
, (10.44)

then

αi = bi
jdxj (10.45)

where matrices a and b are inverse-transpose of each other because {ei} and {αi}
are dual bases. Therefore

ai
kbi

j = δk
j = bk

iaj
i. (10.46)

Now,

ηij = ai
kaj

l

〈
∂

∂xk
,

∂

∂xl

〉
= ai

kaj
lgkl (10.47)

which, on taking the determinant, gives

ε = ε1ε2 . . . εn = (det ‖a‖)2 det ‖g‖. (10.48)
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Since det ‖b‖ is the inverse of det ‖a‖, we find that

det ‖b‖ = √εg (10.49)

where according to usual custom we write g for det ‖g‖. Thus

α1 ∧ · · · ∧ αn = b1
i . . . bn

jdxi ∧ · · · ∧ dxj

= det ‖b‖dx1 ∧ · · · ∧ dxn

=
√

εgdx1 ∧ · · · ∧ dxn. (10.50)

Gauss’ Divergence Theorem

This is an important application of the Stokes theorem. We need it for discussing
conservation of a physical quantity in general relativity.

First, we define the divergence of a vector field. Let X be a vector field on
an orientable Riemann manifold M which has Ω as the volume form. The Lie
derivative LXΩ of the volume form with respect to the vector field is another
n-form proportional to Ω. The proportionality factor is a scalar field called the
divergence divX of the field. Thus

LXΩ = (divX)Ω. (10.51)

Since LX acts like LX = d ◦ iX + iX ◦ d on any form (where iX is the interior
product or contraction by X),

LXΩ = d(iXΩ) (10.52)

because the exterior derivative acting on the n-form gives zero. Integrating on a
region D we get ∫

D

(divX)Ω =

∫
D

d(iXΩ) =

∫
∂D

(iXΩ). (10.53)

Now we choose an orthonormal basis field on points of ∂D in such a manner that
e1 = n points in the direction normal to the hypersurface ∂D and e2, . . . , en span
the tangent space of ∂D. Let α1, · · · , αn be the basis dual to e1, . . . , en so that
Ω = α1 ∧ · · · ∧ αn. Out of the basis for (n− 1)-forms, only α2 ∧ · · · ∧ αn ≡ (Ω)∂D

is non-zero on ∂D and is the volume (n− 1)-form on ∂D. Thus,

iX(Ω) = iX(α
1 ∧ · · · ∧ αn)

= α1(X)α2 ∧ · · · ∧ αn − α2(X)α1 ∧ α3 ∧ · · · ∧ αn + · · ·

and therefore, on ∂D

iX(Ω)|∂D = ε1〈e1, X〉α2 ∧ · · · ∧ αn

= 〈n,n〉〈X,n〉(Ω)∂D.
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Here we have used eqn. (6.8), so that α1(X) = 〈(α1)
, X〉 = ε1〈e1, X〉 which is
just 〈n,n〉〈X,n〉. Therefore,∫

D

(divX)Ω =

∫
∂D

〈n,n〉〈X,n〉(Ω)∂D. (10.54)

The orientation on ∂D is fixed by the Stokes theorem in terms of the choice of
the unit normal vector n. We are omitting some technical subtleties here when n
becomes a null vector. But these do not arise in discussing conservation laws.

Before we leave this topic we calculate the divergence divX in terms of co-
ordinate components.

LXΩ = LX(
√−gdx1 ∧ · · · ∧ dxn)

= Xi (
√−g),i√−g

Ω+
√−g(X1),jdxj ∧ dx2 ∧ · · · ∧ dxn

+
√−gdx1 ∧ [(X2),jdxj ] ∧ dx3 ∧ · · · ∧ dxn + · · ·

=
(
(Xi),i +XiΓj

ij

)
Ω

= (Xi);iΩ.

Therefore

divX = (Xi);i. (10.55)

10.12 Tutorial

Exercise 53. Show that the map φ : R → R such that x → x3 is one-one, invertible and
infinitely differentiable. But it is not a diffeomorphism. Why?

Answer 53. The inverse map is not differentiable at x = 0.

Exercise 54. Two differential 1-forms α1, α2 are given to be linearly independent in a
region U of a two-dimensional manifold. Show that there exist local coordinates x1, x2

such that α1 = dx1 and α2 = dx2. Generalize this result to n-dimensions.

Answer 54. Outline of solution.

Construct the dual basis X1, X2 vector fields. That is, find the dual to the basis
α1(p), α2(p) ∈ T ∗

p in each tangent space Tp. Then X1, X2 are differentiable vector fields.
Choose a point and find an integral curve for X1 passing through the point at parameter
t1 = 0. Label each point on this integral curve by t1 ∈ I1 where I1 is an interval about
t1 = 0. Find the integral curve of X2 from each point labelled with fixed t1 and similarly
label points with values (t1, t2). Then coordinates (t1, t2) are defined in a neighbourhood
of the chosen point, the point itself at (0, 0) and X1 = ∂/∂t1 and ∂/∂t2. The dual basis
condition αi(Xj) = δi

j requires that α1 = dt1 and α2 = dt2.

Exercise 55. Show that the Lie derivative of the metric tensor g = gijdxi ⊗ dxj with
respect to a vector field K = Ki∂/∂xi is equal to

LK(g) = (Ki;j + Kj;i)dxi ⊗ dxj (10.56)
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where Ki = gijK
j and the semicolon denotes the covariant derivative.

Answer 55.

LK(gijdxi ⊗ dxj) = K(gij)dxi ⊗ dxj + gijLK(dxi)⊗ dxj + gijdxi ⊗ LK(dxj)

= [gij,kKk + gkjK
k
,i + gikKk

,j ]dxi ⊗ dxj

converting the ordinary derivatives into covariant derivatives using a formula such as

Kk
,i = Kk

;i − Γk
miK

m

and taking the metric components inside the covariant derivatives (because they act like
constants under covariant differentiation) the expression simplifies to

LK(g) = [Ki;j + Kj;i]dxi ⊗ dxj . (10.57)

If the Lie derivative of the metric with respect to a vector field K vanishes, then that
field is called a Killing vector field.





Part III

Gravitation





Chapter 11

The Einstein Equation

We have learnt something about the left-hand side of the Einstein equation

Gμν ≡ Rμν − 1

2
gμνR =

8πG

c4
Tμν

in chapters on geometry. It is time now to have a look at the equation itself.
Einstein guessed this equation by a difficult process of intution, trial and er-

ror. A detailed record of these efforts is contained in Abraham Pais’ book Subtle is
the Lord... Einstein knew that gμν which determine the geometry of spacetime are
supposed to decide the motion of freely falling bodies and light in a gravitational
field by the equivalence principle. The question was what determines gμν them-
selves? As we know, a gravitational field is determined by matter distribution,
therefore stress-energy-momentum tensor Tμν which represents the density and
flow of matter should somehow be equated to a tensor dependent on gμν . After
a long and tortuous search (‘superhuman exertions’ in his own words) Einstein
was able to converge on the tensor Gμν (now named after him) whose distinguish-
ing feature is that it satisfies the contracted Bianchi identities (four equations)
(gμνGνσ);μ = 0. But it was not as straightforward as it sounds. He was unaware
of the Bianchi identities. The usual argument given is that Gμν should be propor-
tional to the stress-energy tensor Tμν because then Tμν

;ν = 0 follows automat-
ically, which represents the local conservation of energy and momentum. Energy
momentum conservation laws in general relativity are a delicate matter because in
a spacetime with no symmetries there are no quantities whose conservation (that
is, depletion of quantity inside a closed region related to the flowing out of that
quantity from the boundary of the region) can be guaranteed. Another way to
say this is that there is no local energy density of a gravitational field because a
gravitational field can be transformed away by choosing a local inertial frame at
any point.

The identification of the stress energy tensor with Gμν (up to a constant
factor) gives a theory of gravitation. We can calculate how spacetime geometry is
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determined by matter distribution. Spacetime in general relativity is a dynamical
quantity not a passive arena in which things happen. What is more, spacetime
affects itself and determines its own development.

We take the Einstein equation as a basic axiom. If we can write the stress-
energy-momentum of the source of a gravitational field, the equation can be solved
(in principle) for the gravitational field represented by metric components gμν .
What is more, the motion of matter in this gravitational field is also determined
by the equation.

The Einstein equation can also be derived from an action principle as we
see later in this chapter. In that case the choice of the Lagrangian becomes the
basic axiom. But the action principle has an advantage. It turns out that gravity
interacts with all other fields in a minimal way. The Lagrangian for any field
is first written in its special relativistic form in a local inertial frame and then
the Minkowski metric ημν is converted to gμν and the ordinary derivative into a
covariant derivative. There are no separate “interaction terms” to be added to the
total Lagrangian. Variation of the metric gμν produces the stress tensor Tμν which
governs the interaction of the gravitational field with the given field representing
matter. The action principle allows us to calculate the stress-energy tensor for any
field if we can write the Lagrangian of that field in general relativistic fashion. It
is this stress tensor which causes gravity and responds to it. As an aside it is the
most convenient way to calculate the stress tensor of any field even in Minkowski
space.

After these preliminary remarks we start with a definition of the stress-tensor.
We review the Newtonian concept first for pedagogical reasons.

11.1 Stress-Energy-Momentum Tensor

Classical description of matter involves the mass or energy density and its flow. The
flow of mass is momentum and the flow of momentum (momentum per unit time
per unit area = force per unit area) is called stress. The stress-energy-momentum
tensor (called “stress-energy tensor’ for short) is represented mathematically by a
second-rank symmetric tensor whose components contain matter or energy density.

Before we discuss how the distribution of matter density and matter currents
are described in relativity, we first deal with the non-relativistic case.

11.1.1 Newton’s Second Law for Fluids

We use a Cartesian system of coordinates and call the three coordinates x = xi, i =
1, 2, 3.

The motion of continuous matter, a fluid, is characterized by two quantities:
a mass density ρ(x, t), which may change from place to place and may depend on
time, and the velocity vi(x, t) of the fluid which, too, changes from place to place
and with time.
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Let the total force per unit volume around point x at time t be denoted by
f i(x, t)

Take a small volume dV about x at time t and fix attention on the matter
contained inside it. The velocity of this portion of matter is vi(x, t). A little later, at
time t+Δt, all this matter has moved to a new point x+Δx with Δxi � vi(x, t)Δt.
The acceleration of this mass packet is

ai = lim
Δt→0

vi(x+Δx, t+Δt)− vi(x, t)

Δt
=

∂vi

∂t
+ vj ∂vi

∂xj
.

The force on this packet which has mass ρ(x, t)dV is f i(x, t)dV . Therefore New-
ton’s second law can be written down as

ρai = ρ

(
∂vi

∂t
+ vj ∂vi

∂xj

)
= f i. (11.1)

11.1.2 Continuity Equation

Since mass is neither created nor destroyed in Newtonian mechanics, the flowing
out of mass from a volume is equal to the loss of mass contained in it. This is
expressed in the continuity equation,

∂ρ

∂t
+

∂(ρvj)

∂xj
= 0. (11.2)

11.1.3 Stress Tensor

Let us assume for the moment there are no forces other than that of fluid on itself.
These internal forces are the ‘area forces’ like pressure and friction (or viscosity).
It is a good assumption that these forces act only between neighbouring portions
of matter.

Consider a small area da centered at a point x at time t with a normal unit
vector n.

Let F be the force acting on matter immediately in the frontside of this area
element due to matter behind the area element. That is, matter on the −n side
of the area pushes the matter on the n side.

In a perfect fluid which on the whole is at rest, the force is in the same
direction as n and proportional to area, so F = p(x, t)nda. The constant of pro-
portionality p(x, t) is called pressure at the point x at time t.

In the general case the tangential or ‘shear’ forces due to tendency of layers of
fluid moving with differing velocities to drag adjacent matter have an only slightly
more complicated form. The relationhip is linear, that is, each component of force
is a linear combination of components of the normal vector

F i(x, t) = tik(x, t)nkda; (11.3)
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here (F 1, F 2, F 3) are components of the force F and (n1, n2, n3) are components
of n.

The coefficients tik are called components of the stress tensor. We can say
that tik is the force component (acting near x) in the i-direction on matter in
front of a unit area element chosen perpendicular to the k-direction by matter
behind that element. Across every area element there is equilibrium of forces by
Newton’s third law. Therefore the force component in the i-direction on the same
area element by matter immediately in the front of the element on matter just
behind is −tik.
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Δx2

t12

t21

(a) (b)

Fig. 11.1: (a) Force F acts on fluid matter immediately in the front of
an area element,(normal n determines which side is front) by matter
behind. Components of the stress tensor relate F to n by F i(x, t) =
tik(x, t)nkda where da is the area. (b) The condition that torque exerted
by matter just outside a volume should be zero if there are no external
forces gives the symmetry of the stress tensor.

For a stationary perfect fluid the components of the stress-tensor have the
simplest possible form, tik = p(x, t)δik where p(x, t) is called pressure.

11.1.4 Symmetry of the Stress Tensor

We now show that the stress tensor components tik are symmetric, that is tik = tki.

Let us consider a small cube-like region (Figure 11.1(b)) formed by points
with coordinates (x1 ±Δx1/2, x2 ±Δx2/2, x3 ±Δx3/2). The 3-component of the
moment of forces (that is torque) with respect to point (x1, x2, x3) acting on the
cubical region by the matter outside it is

−t12Δx1Δx3

(
−Δx2

2

)
+ t12Δx1Δx3

(
+
Δx2

2

)

−t21Δx2Δx3

(
+
Δx1

2

)
+ t21Δx2Δx3

(
−Δx1

2

)
= (t12 − t21)dV.
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This shows that in the absence of external forces the angular momentum of the
volume element will keep on changing unless t12 = t21. We can show in a similar
way the symmetry of other components,t13 = t31, t23 = t32.

11.1.5 Euler Equation

We now switch on the external (volume) forces assumed to be equal to gi(x, t) per
unit volume.

Consider a small volume V with surface area S. By Gauss’ theorem, the sum
of forces components in i-th direction acting on its infinitesimal surface elements
is

−
∫

S

tiknkda

where the negative sign appears because we are considering the force on matter
contained inside V by matter outside, that is by matter on the same side as n, and
not behind. By Gauss’ theorem this surface integral can be written as a volume
integral

−
∫

S

tiknkda = −
∫

V

(∂ktik)dV.

By making the volume V small we see that the force per unit volume due to
internal forces is equal to −∂ktik. Therefore, the total force per unit volume on
continuous matter is

f i(x, t) = gi(x, t)− ∂ktik

where gi(x, t) is the external force per unit volume.
We can now combine all the ingredients together. The equation representing

Newton’s second law can be written as

ρ

(
∂vi

∂t
+ vj ∂vi

∂xj

)
= gi(x, t)− ∂ktik.

Using the equation of continuity, we can write

ρ
∂vi

∂t
≡ ∂(ρvi)

∂t
− vi ∂ρ

∂t
=

∂(ρvi)

∂t
+ vi ∂(ρvj)

∂xj
.

Therefore, the equation of motion can be written

∂(ρvi)

∂t
+

∂

∂xj

(
ρvivj + tij

)
= gi. (11.4)

This equation, called Euler’s Equation, expresses Newton’s second law for contin-
uous matter. Together with the equation of continuity it determines the dynamics
of continuous matter.
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11.2 Relativistic Perfect Fluid

11.2.1 Continuous Matter in Special Relativity

The stress-energy tensor for continuous matter in special relativity can be written
by generalising the non-relativistic equations treated in the last section.

The mechanics of continuous matter is determined by two equations: the
continuity equation which represents conservation of mass and the Euler equation
which is just Newton’s second law. We shall see that these two equations are time
and space parts of a single equation.

In the absence of external forces, the two equations are,

∂ρ

∂t
+

∂(ρvj)

∂xj
= 0,

∂(ρvi)

∂t
+

∂

∂xj

(
ρvivj + tij

)
= 0.

The non-relativistic velocity vi is contained in the limit of the four-vector

Uμ = (U0, U i) = (cγ, viγ)

where γ = 1/
√
1− v2/c2. In the limit of low velocities Uμ ≈ (c, vi). We can write

the two equations by defining x0 = ct,

∂(ρU0U0)

∂x0
+

∂(ρU0U j)

∂xj
= 0,

∂(ρU iU0)

∂x0
+

∂

∂xj

(
ρU iU j + tij

)
= 0

which are parts of the single equation

∂Tμν

∂xν
= 0, Tμν = ρUμUν + tμν (11.5)

where

tμν =

⎛
⎜⎜⎝

0 0 0 0
0
0 tij

0

⎞
⎟⎟⎠ . (11.6)

We see that one part (UμUν) of Tμν is already in a relativistically covariant
form if Uμ is allowed to have the full relativistic status. The second part can be
generalised too, provided we can give meaning to the tensor tμν in a relativistic,
frame-independent way.
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We will do that not for the most general relativistic fluid, but for the most
simple type of fluid known as a perfect fluid.

Relativistic dust is defined to be matter for which tμν = 0. This is the same
as a perfect fluid with zero pressure.

A relativistic perfect fluid is defined to be one for which the tμν part of the
stress energy tensor when seen in a local frame moving along with the fluid has
the same form as the non-relativistic perfect fluid. We denote the components of
the stress tensor in this comoving frame by tμν

(0). Then

tij(0) = p(x)δij

Here p(x) is a scalar quantity equal to the physical fluid pressure in the comoving
frame.

To generalise the continuity and Euler equations to the relativistic case we
assume that the equations written above at a given point are written for the local
frame which is moving with the fluid. Then Uμ = Uμ

(0) = (c,0) and then these

equations are exact equations relativistically as well. To get the general form we
only have to transform the tensor to the frame moving with arbitrary velocity
using an appropriate Lorentz transformation.

The part tμν has the form given by the matrix above with tij = p(x)δij in
the comoving frame for a perfect fluid.

We can calculate how tμν looks in a general frame by transforming it as a
second-rank tensor with the same Lorentz transformation which transforms the
velocity four-vector Uμ

(0) = (c,0) to Uμ = (U0, U i) = (cγ, viγ). We have already

noted this transformation before (in a tutorial in Chapter 1),

Λμ
ν =

(
U0/c U i/c
U i/c δij + U iU j/(c2(γ + 1))

)
.

The answer is

tμν = p
(
ημν + UμUν/c2

)
(11.7)

as we can see by the following steps.
(1) tμν

(0) in the comoving frame is

tμν
(0) =

⎛
⎜⎜⎝

0 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎠

(2) In the general frame therefore

tμν = Λμ
σΛ

ν
τ tστ

(0).
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We can write these equations as

t00 = p
∑

k

Λ0
kΛ

0
k = p(γ2 − 1),

t0i = p
∑

k

Λ0
kΛ

i
k = pγU i/c,

tij = p
∑

k

Λi
kΛ

j
k = p(δij + U iU j/c2),

and so, after arranging the factors a little, tμν = p(ημν + UμUν/c2).

The full stress-energy tensor is thus

Tμν = pημν +
( p

c2
+ ρ

)
UμUν ; (11.8)

ρ(x) is the proper mass density as a function of spacetime. This means that at a
fixed point at a given time if we choose a frame of reference (comoving with the
fluid) ρc2 gives the energy per unit volume in a small neighbourhood of the point.

The Lorentz transformation Λ which transforms the four-vector Uμ
(0) = (c,0)

into Uμ = (cγ, viγ) is not determined uniquely. We can show without much diffi-
culty that any other transformation which serves the same purpose is of the form
BΛA where A and B are Lorentz transformations which belong to the ‘stability
groups’ of Uμ

(0) and Uμ respectively, that is, AU(0) = U(0) and BU = U . Then the

form of the stress-energy tensor Tμν = pημν + (p/c2 + ρ)UμUν does not change
even for the general BΛA.

To summarise, we say that the mechanics of a relativistic perfect fluid is
described by a stress-energy tensor of the above type. The continuity and Euler
equations are combined into a single four-dimensional law

Tμν
,ν = 0. (11.9)

11.2.2 Perfect Fluid in General Relativity

Perfect fluid in general relativity is defined to have the same form for the stress
tensor as in special relativity except that ημν is replaced by gμν :

Tμν = pgμν +
( p

c2
+ ρ

)
UμUν . (11.10)

This is the quantity that acts as the source of a gravitational field in the Einstein
equation.
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11.3 Interpretation of T μν
;ν = 0

The Einstein equation Gμν = 8πGTμν/c4 determines the gravitational field given
the source of gravity, that is, the stress-energy tensor of matter (or of radiation).
But there is more to it.

Because of the contracted Bianchi identity Gμν
;ν ≡ 0, the stress-energy tensor

satisfies

Tμν
;ν = 0. (11.11)

Note that this equation involves the gravitational field through the covariant deriv-
ative. It expresses not the conservation of energy momentum but rather the ex-
change of energy and momentum of matter with the gravitational field.

Tμν
,ν = 0 gives Newton’s equations of motion for a fluid moving under no

other forces except its own stresses. The generalised equation Tμν
;ν = 0 gives the

equation of motion of the fluid in the presence of gravity.

Thus the Einstein equation plays both roles: of determining the gravitational
field from matter distribution as well as determining the motion of matter in that
field. Contrast this with electrodynamics in special relativity: Maxwell’s equa-
tions determine electromagnetic fields from charge-current distributions, but the
equation of motion for a charged particle, the Lorentz force equation, has to be
postulated separately.

The electromagnetic fields and their interaction with gravity can be formulated entirely in
terms of the field tensor Fμν . But to discuss the interaction of electromagnetic fields with charged
matter we must either postulate the Lorentz force equation separately or introduce the electro-
magnetic potential Aμ in the Lagrangian. In quantum theory the interaction of electromagnetic
fields with charged matter fields comes out naturally from the principle of gauge invariance by
the introduction of the connection 1-form Aμdxμ which is just the potential.

For a small body which is away from the main matter distribution causing
the gravitational field, the equation Tμν

;ν = 0 implies that the body follows a
geodesic path. This is not easy to prove and we shall take this fact (that particles
falling freely in gravity follow geodesic paths) as an independent postulate.

11.4 Electromagnetic Fields

11.4.1 Maxwell’s Equations in Minkowski Space

Electromagnetic fields are described by a differential 1-form A = Aμdxμ called the
four-potential. It is related to the electric and magnetic potentials by

A0 = −φ/c, (A1, A2, A3) = A. (11.12)
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We are using the SI system of units where the potential 1-form A = Aμdxμ

when multiplied by the electric charge has the dimensions of action and φ, the
electrostatic potential, has dimensions of energy per unit charge.

The exterior derivative of A is a 2-form F = dA given by

F = dA = (∂νAμ)dxν ∧ dxμ =
∑
ν<μ

Fνμdxν ∧ dxμ

=
1

2
(∂νAμ − ∂μAν) dxν ∧ dxμ

where the antisymmetric components Fμν of F are related to the electric and
magnetic fields by

(F23, F31, F12) = B, (F01, F02, F03) = −E/c.

The exterior derivative of F is zero dF = d(dA) ≡ 0 because F is exact.

dF =
1

2
(∂σFνμ)dxσ ∧ dxν ∧ dxμ = 0. (11.13)

In order to infer what these equations imply, convert into the independent basis
elements dxσ ⊗ dxν ⊗ dxμ, then we get

∂σFνμ + ∂νFμσ + ∂μFσν = 0.

These are equivalent to the two Maxwell equations

∇ ·B = 0, ∇×E = − ∂

∂t
B.

To express the remaining two equations we need to define the charge current
density. Let the contravariant four-vector current have components

Jμ ≡ (cρ, j). (11.14)

Construct the 1-form J ≡ Jμdxμ by lowering the index Jμ = ημνJν = (−cρ, j).
Then the Hodge star applied to J gives the 3-form ∗J whose components are

∗J = (cρ)dx1 ∧ dx2 ∧ dx3 − (j1)dx0 ∧ dx2 ∧ dx3

−(j2)dx0 ∧ dx3 ∧ dx1 − (j3)dx0 ∧ dx1 ∧ dx2.

The physical dimension of the 3-form ∗J is charge times velocity.
Similarly let ∗F be the Hodge star-dual to F . Then the remaining Maxwell

equations can be written compactly as

d(∗F ) = ∗J
ε0c2

. (11.15)
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The Lagrangian for the electromagenetic field can be written as the 4-form

Lem = −1
2
(ε0c

2)F ∧ (∗F ). (11.16)

Interaction with a charged distribution is determined by the 4-form

Lint =
1

c
(∗J) ∧A. (11.17)

11.4.2 Electromagnetic Fields in General Relativity

Electromagnetic fields in general relativity are determined by the same Lagrangian
interpreted in general coordinates instead of Minkowki space coordinates. Thus
there is a one-form A = Aμdxμ and F = dA. The Lagrangian is again

Lem = −1
2
(ε0c

2)F ∧ (∗F ) (11.18)

except that the gravitational field gμν has sneaked in through the star operator. We
can show that (see tutorial in this chapter)

Lem = −1
4
(ε0c

2)FμνFμν√−gd4x (11.19)

where the contravariant antisymmetric tensor with components is defined by rais-
ing indices

Fμν ≡ gμσgντFστ . (11.20)

11.5 Action Principle

The action principle is a variational principle. It is based on an extremum or
maximum-minimum problem. A quantity called action is dependent on ‘trajecto-
ries’ or ’histories of evolution of configurations’ (called simply the ‘configurations’)
of a physical system in a given region of spacetime. The principle says that only
those configurations are realized in nature for which the action is stationary when
compared to the (suitably defined) ‘neighbouring’ configurations.

Let M be the spacetime manifold with metric components gμν in some co-
ordinate system x. Let φr(x), r = 1, . . . , N be classical fields corresponding to
matter (or radiation) defined on M . We will call all these fields “matter fields”
even though in some other contexts it may be necessary to distinguish matter from
radiation.

We may assume the fields φr to be real. At each point with coordinates x,
φr(x) have (covariant) derivatives φr;μ. Some of the indices r may be spacetime
indices (like μ, ν, etc.) indicating the vector or tensor character of the fields. The
metric tensor components gμν themselves are fields, but their covariant derivatives
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are zero. Their ordinary derivatives, however, are present in the Γ’s which occur
in covariant derivatives φr;μ and in the curvature tensors.

Action A on a ‘domain’ D (that is a subset of spacetime with a regular
boundary ∂D) depends on fields φr(x), gμν(x) and their derivatives. In all the
cases the action is assumed to be of the form of an integral

A =

∫
D

L (11.21)

where L is a four-form.
The action four-form can be written as a scalar field L multiplied by the

volume form

η =
√−g d4x ≡ √−g dx0 ∧ · · · ∧ dx3. (11.22)

The scalar field L is called the action density or the Lagrangian. Thus

L = L η ≡ L(x)√−g d4x (11.23)

and action is

A =

∫
D

L =

∫
D

L(x)√−g d4x. (11.24)

The action depends on the fields gμν(x), φr(x) through the Lagrangian. In all cases
of application the Lagrangian (which is a scalar), is constructed from fields and
their derivatives as a local product. The scalar character is obtained by balancing
tensor indices in a suitable manner.

Variation

Action depends on the domain D and on the fields defined on it. We choose a
region on spacetime D and keep it fixed throughout. Then we calculate the action
for some field configuration. Next we calculate the action by replacing the fields
by a different configuration inside D but keeping the same values on the boundary
∂D.

To vary fields gμν we choose a family of metrics g
(λ)
μν depending on a contin-

uous parameter λ. g
(λ)
μν has the same value as gμν on and outside the boundary

∂D of the integration region D. Inside D, g
(λ)
μν differs from gμν but tends to gμν

as λ → 0. We define

δgμν(x) =
d

dλ

∣∣∣∣
λ=0

g(λ)
μν (x) (11.25)

where we use the symbol δ:

δ ≡ d

dλ

∣∣∣∣
λ=0

. (11.26)
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On the boundary ∂D the gμν remain fixed. Therefore we assume that the deriva-
tives of gμν are all zero. This is, strictly speaking, true only for derivatives tangen-
tial to the boundary surface but we assume variations become zero in all directions.

By a variation of fields φr we similarly mean a family of field configurations
φλ′

r (x) such that on and outside the boundary of D there is no variation: φλ′

r (x) =
φr(x) for all λ′ whereas inside φλ′

r (x)→ φr(x) as λ′ → 0.

δφr(x) =
d

dλ′

∣∣∣∣
λ′=0

φλ′

r (x). (11.27)

We use the same symbol δ to denote variation of φr as well as of gμν .
The variation of action with respect to gμν is the difference of action evaluated

for the varied and original fields in the limit of λ → 0:

δA =
d

dλ

∣∣∣∣
λ=0

A[g(λ), φr]. (11.28)

The variation of A with respect to matter fields φr is similarly defined.
The variation of action can be calculated knowing the dependence of L on

fields. By doing integration by parts we can write the variation in the form

δA =

∫
D

d4x
√−g

[
δA

δgμν(x)

]
δgμν(x) +

∫
D

d4x
√−g

[
δA

δφr(x)

]
δφr(x);

(11.29)

the quantities in brackets are called the variational derivatives of the action with
respect to the variations of fields gμν and φr.

The action principle can now be stated as:
Only those field configurations are realised in nature for which the action is

an extremum. This means

δA

δgμν(x)
= 0, (11.30)

δA

δφr(x)
= 0. (11.31)

Lagrangian

We assume that the Lagrangian can be written as a sum of two terms

L = Lgravity + Lmatter. (11.32)

These are, as indicated, for the gravitational and for the matter fields φr respec-
tively. The gravity Lagrangian is chosen to be

Lgravity =
c4

16πG
R (11.33)
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where R is the Ricci scalar curvature. The Lagrangian for a gravitational field was
written down by David Hilbert in 1916 within a few weeks of Einstein’s discovery of
his equation in November 1915. This action is therefore called the Einstein-Hilbert
action.

The matter Lagrangian Lmatter is constructed as follows: (i) we first write
the Lagrangian density as it is written in special relativity, (ii) we replace the
Minkowski metric ημν wherever it occurs in the Lagrangian by gμν , (iii) then we
replace the ordinary derivatives with respect to coordinates by covariant deriva-
tives: that is we use the “comma” to “semicolon” rule.

It is remarkable there is no “interaction Lagrangian” for interactions of grav-
ity with fields. Whatever interactions between gravity and matter do exist, they
are supposed to be already contained in the matter Lagrangian through gμν or its
derivatives occuring in the covariant derivatives and in balancing the indices to
make a scalar Lmatter. This is called the principle of minimal coupling of gravity.
This is exactly analogous to the coupling of matter fields with gauge fields.

Remark

The method of constructing Lmatter has ambiguities. In translating from a special relativistic
formula to the general relativistic formula there may be terms proportional to curvature, but
invisible in special relativistic formulas. How do we know those are not present in reality? This
ambiguity is similar to the one which occurs in quantization of a classical system. When a
classical formula is changed to its quantum mechanical counterpart, different orderings of factors
of coordinates and momenta give different operator expressions differing by terms proportional
to powers of �. In general relativity the commuting ordinary derivatives on flat space are raised
to the status of non-commuting covariant derivatives on curved space.

11.5.1 Variation of Agravity with Respect to gμν

First we discuss the variational derivative of the action when gμν are varied.
The scalar R depends on gμν , their first as well as second derivatives (because

R involves derivatives of Γ’s). We shall see that despite this we do not get Euler-
Lagrange equations of higher than second-order.

The action is calculated for infinitesimally differing values λ = 0 and λ = Δλ
and subtracted. The variational principle says that in nature only that (or those)
metric(s) exist for which the difference goes to zero as Δλ → 0. In other words

δA[g(λ)] ≡ d

dλ

∣∣∣∣
λ=0

A[g(λ)] = 0.

Omitting the constant c4/16πG (to be restored later):

δAgravity =

∫
D

[
(δR)

√−g +R(δ
√−g)

]
dx0 ∧ · · · ∧ dx3

=

∫
D

[(δgμν)Rμν

√−g + gμν(δRμν)
√−g

+R(δ
√−g)] dx0 ∧ · · · ∧ dx3. (11.34)
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Since gμν are completely determined by gμν and vice-versa, it is a little more
convenient to make variations in gμν than in gμν . In any case a relation between
variations of the two is obtained by differentiating gμνgνσ = δμ

σ and equating to
zero,

(δgμν)gνσ + gμν(δgνσ) = 0 (11.35)

so that we can always change one from the other when required.

The variational terms can be calculated as follows.

Calculate δ
√−g

δ
√−g is easy to calculate. We know from Chapter 9 (“a useful formula”) that

δ det ‖g‖ = det ‖g‖Tr(‖g‖−1δ‖g‖),

therefore

δ
√−g =

1

2

√−ggμνδgμν = −1
2

√−g(δgμν)gμν . (11.36)

Calculate δRαβ

This one requires special care. Rαβ is a sum of components of the Riemann tensor
which involves products of two Γ’s and derivatives of Γ’s. We first calculate δRαβ

at a fixed point by choosing a special coordinate system in the neighbourhood of
the point. After the calculation the result is in a tensor form and we can relax the
choice of special coordinate system and go back to the original system.

Special Coordinate System

At the given point we choose a coordinate system such that the connection coeffi-
cients are zero at the point. We will prove this result in the next chapter. There-
fore δ(ΓΓ) which give ΓδΓ are all zero. So δRαβ depends only on the variation of
−Γσ

ασ,β + Γσ
αβ,σ terms.

δ(Γσ
ασ,β)

δ(Γσ
ασ,β) = lim

1

Δλ

(
Γσ

ασ,β [g
(Δλ)]− Γσ

ασ,β

)
= lim

1

Δλ

(
Γσ

ασ[g
(Δλ)]− Γσ

ασ

)
,β

= (δΓσ
ασ),β . (11.37)
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δΓσ
ασ is a Tensor

Use the fact that the difference of two connections is a tensor. For the tensor
δΓσ

ασ we can write the ordinary derivative as a covariant derivative because in the
chosen coordinate system the connection coefficients are zero:

(δΓσ
ασ),β = (δΓσ

ασ);β . (11.38)

After the expression is put in a tensor form the condition of the special coordi-
nate system can be relaxed. This same argument is repeated for all points. When
multiplied by gαβ this term gives

(gαβδΓσ
ασ);β = Aβ

;β , Aβ ≡ gαβδΓσ
ασ

because gαβ is a constant as far as covariant derivative is concerned and can move
freely in or out of covariant derivatives.

δΓσ
αβ,σ

Similarly,

gαβ(δΓσ
αβ,σ) = (gασδΓβ

ασ);β = Bβ
;β , Bβ ≡ gασδΓβ

ασ.

δAgravity

Therefore, the variation of the gravitational action gives,

δAgravity =
c4

16πG

∫
D

d4x[(δgμν)Rμν

√−g + gμν(δRμν)
√−g

+R(δ
√−g)]

=
c4

16πG

∫
D

d4x
√−g

[
Rμν − 1

2
gμνR

]
δgμν

+

∫
D

d4x
√−g(Bν −Aν);ν .

The last term being a divergence becomes a surface integral on ∂D and since we
have assumed the derivatives (of gμν) to have zero variation there, these terms are
zero.

11.5.2 Variation of Amatter with Respect to gμν

We can calculate the variation of matter action only if we know the form of the
Lagrangian. But what is remarkable is that the variation of matter action with
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respect to the minimally coupled gravitational field gμν is always the symmetric
tensor we traditionally associate with stress-energy of that field. Therefore, we de-
fine the second-rank symmetric stress-energy tensor of matter Tμν as the quantity
obtained by the variation of gμν in the matter fields action,

δAmatter

δgμν
≡ −1

2
Tμν . (11.39)

Therefore if the action is given by
∫

D
Lmatter

√−gd4x and if the Lagrangian density
depends only on gμν and not its derivatives, then

Tμν = −2∂Lmatter

∂gμν
+ gμνLmatter. (11.40)

This identification of the stress-energy tensor is based on examples of stress
energy tensors of classical fields. A prime example is electrodynamics. See examples
in the Tutorial exercises.

11.5.3 Einstein’s Equation

Einstein’s equation is the Euler-Lagrange equation for variation with respect to
gμν . We get from previous subsection δA ≡ δ(Agravity +Amatter) = 0,

δA =

∫
D

d4x
√−g

[
c4

16πG

(
Rμν − 1

2
gμνR

)
− 1

2
Tμν

]
δgμν

which gives the Einstein equation for arbitrary variations.

Rμν − 1

2
gμνR =

8πG

c4
Tμν . (11.41)

11.5.4 Variation with Respect to Matter Fields

The matter fields appear only in the matter Lagrangian. The variation of the
matter action can be written quite generally as

δAmatter =

∫
D

d4x
√−g

[
δAmatter

δφr

]
δφr. (11.42)

The exact form of the variational derivative will depend on the specific Lagrangian.
But we know that under arbitrary variations the total action will be stationary if
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the variational derivative vanishes:

δAmatter

δφr
= 0. (11.43)

11.6 Diffeomorphic Invariance

We have seen that the variation of action for gravitational and matter field

δA[φ, gμν ] = δAgravity[g
μν ] + δAmatter[φr, g

μν ] (11.44)

= δ

∫
Lgravityd4x+ δ

∫
Lmatterd

4x (11.45)

where

δAgravity =

∫
D

d4x
√−g

[
δAgravity

δgμν

]
δgμν

≡
∫

D

d4x
√−g

[
c4

16πG

(
Rμν − 1

2
gμνR

)]
δgμν (11.46)

and

δAmatter =

∫
D

d4x
√−g

[
δAmatter

δgμν

]
δgμν

≡
∫

D

d4x
√−g

[
−1
2
Tμν

]
δgμν . (11.47)

Our action functionals are integrals of 4-forms

Agravity =

∫
D

Lgravity, Amatter =

∫
D

Lmatter.

Let there be a family of diffeomorphisms Φt depending on a continuous parame-
ter t with Φ0 = identity. We can choose a diffeomorphism such that under Φt

points p of the domain D are mapped to points q within the domain D. For any
diffeomorphism the action of the pullback form (Φ−1)∗L over a grid of vectors
pushed-forward to a point q by Φ∗ is the same as that of L on those vectors at
the original point p. Therefore, an action integral does not change under such a
diffeomorphism.

Agravity =

∫
D

Lgravity =

∫
Φ(D)=D

(Φ−1)∗Lgravity,

Amatter =

∫
D

Lmatter =

∫
Φ(D)=D

(Φ−1)∗Lmatter.
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In the limit of t → 0 the diffeomorphism is generated by the vector field X (given
by the tangent vectors dΦt(p)/dt at p).By definition of the Lie derivative,∫

D

LXLgravity = 0, as well as

∫
D

LXLmatter = 0.

We shall now work out the consequences of the invariance of the gravitational and
the matter actions under the diffeomorphism generated by the vector field X.

Since we have already calculated the variation for arbitrary δgμν all we need
to do is to replace δgμν by LXgμν . We know that

δgμν = LXgμν = Xμ;ν +Xν;μ

so using

δgμν = −gμσgντδgστ

we obtain

0 = −
∫

D

d4x
√−g

[
δAgravity

δgμν

]
gμσgντ (Xσ;τ +Xτ ;σ)

= −2
∫

D

d4x
√−g

[
c4

16πG

(
Rμν − 1

2
gμνR

)]
Xμ;ν

where Rμν = gμσgντRστ etc. We can transfer the covariant derivative from X to
the other factor,

(. . . )μνXμ;ν = ((. . . )μνXμ);ν − ((. . . )μν);νXμ.

The first term (which is a total divergence) can be converted by Gauss’ divergence
theorem as the surface integral where we have chosen X to be zero. The other
term gives ([

c4

16πG

(
Rμν − 1

2
gμνR

)])
;ν

= 0

because the vector field X can be arbitrarily chosen inside D. Thus we get the
contracted Bianchi identities(

Rμν − 1

2
gμνR

)
;ν

= 0. (11.48)

We must emphasize that these equations are just a consequence of the diffeo-
morphic invariance of the gravitational action. It is not necessary that the Euler-
Lagrange equations (that is Einstein equations) be satisfied. (In Part II of this
book we have already verified that the Bianchi identities follow just from the
definition of the curvature tensor.)
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The first two equations give A′ + B′ = 0 which implies ab = constant and the constant
should be 1 because both a and b tend to 1 as r → 0. Substituting for b gives the equation
for a as

a′′ +
2

r
a′ =

2

r4

GQ2

c2(4πε0)

which can be immediately solved for a.





Chapter 12

General Features of Spacetime

12.1 Signature and Time Orientability

A fundamental assumption of the general theory of relativity is that the physi-
cal spacetime is a four-dimensional manifold with a non-degenerate metric 〈 , 〉
of signature +2. Signature of the metric is the number of positive eigenvalues of
metric components matrix gμν minus the number of its negative eigenvalues. As
the metric is non-degenerate, there can be no zero eigenvalues. This statement is
independent of coordinate system chosen. The actual numerical values of eigen-
values of the tensor matrix may vary from one coordinate system to another but
the number of eigenvalues of positive sign and of negative sign is the same.

This follows from Sylvester’s law of inertia. See for example R.Bellman, Introduction to

Matrix Analysis. The law states that if two real symmetric matrices A and B are related by a
real non-singular matrix S such that B = SAST , then A has as many zero eigenvalues and as
many eigenvalues of positive and negative signs as B. When S is orthogonal (ST = S−1) then,
of course, the eigenvalues of A and B are also numerically equal. Matrices of the metric tensor
in a two-coordinate system are related by the formula

g′μν(x′) =
∂xσ

∂x′μ
gστ (x)

∂xτ

∂x′ν

to which Sylvester’s law applies. Since gμν(x) change continuously with x, and the matrix is
non-degenerate everywhere, the sign of an eigenvalue cannot change from point to point.

We can choose an orthonormal basis ea, a = 0, 1, 2, 3 in any tangent space,
such that the tensor components are

ηab = 〈ea, eb〉

where ηab is a diagonal matrix with η00 = −1 and η11 = η22 = η33 = +1.
The metric divides the tangent space vectors v at any point into space-like,

time-like or null according as 〈v,v〉 is > 0, < 0 or 0. The lightcone consists of null
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vectors and separates the time-like vectors into two classes, those pointing to the
future and those pointing into the past.

The spacetime is supposed to be time orientable, that is, it should be possible
to pick out the future (or past) pointing cone of time-like vectors unambiguously
at all points and this choice should vary smoothly from point to point. This means
in particular that there cannot exist any closed time-like curves.

12.2 Local Flatness

In a suitable neighbourhood of every point we can choose coordinates Xμ such
that the first derivatives of the metric (and therefore also connection components)
vanish at the point.

This is a property of the Riemannian geometry. We show that we can put a
one-to-one correspondence between an open neighbourhood about the zero vector
in the tangent space of the given point and a certain open neighbourhood of the
point itself.

The idea is simple. Let φ : M → R4 : q → xμ(q) be some coordinate system
in a neighbourhood of the point p, and let xμ(p) = xμ

(0).

Choose an orthonormal basis

{ea} = {e0, e1, e2, e3}
in the tangent space of the point p. Every vector v ∈ Tp can then be expanded in
the coordinate basis as well as the orthonormal basis:

v = ξaea = vμ ∂

∂xμ
.

This shows that vμ are linear functions of ξa and vice versa.
Construct a geodesic starting from p with affine parameter s and with vector

vμ∂/∂xμ as the tangent to the geodesic at the point.

d2xμ

ds2
+ Γμ

νσ

dxν

ds

dxσ

ds
= 0, xμ|s=0 = xμ

(0),
dxμ

ds

∣∣∣∣
s=0

= vμ.

The geodesic equations are second-order ordinary differential equations. From
Cauchy’s theorem on the existence of solutions of ordinary differential equations
we know there exists a solution

xμ(s) = ψμ(s; ξa)

where we use ξa determined by vμ so that the new coordinates we are going to
asssign can be easily identified.

The point q which corresponds to parameter value s = 1 is now assigned new
coordinates Xa(q) = ξa:

q ←→ ψμ(s = 1; ξa) ←→ ξa.
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By choosing components ξa sufficiently close to zero we can always ensure that the
point corresponding to s = 1 exists. The point p itself has coordinates Xa(p) = 0.

The construction above for assigning coordinates shows that if the affine
parameter s in the geodesic equation is replaced by s′ = λs where λ is a constant,
the geodesic equation remains unchanged and the same identical function (of s′)
will be obtained as the solution to the geodesic equation, provided the initial
tangent vector is now chosen with components ξa/λ:

ψμ(s; ξa) = ψμ(λs; ξa/λ).

Therefore if q is assigned coordinates Xa(q) = ξa, then a point q′ lying on the
same geodesic at s = 1/2 with x coordinates xμ(q′) = ψμ(s = 1/2; ξa) = ψμ(s =
1; ξa/2), would be asigned X coordinates Xa(q′) = ξa/2.

We see that if we restrict attention to a small enough neighbourhood of the
point p, a point q in the neighbourhood can be connected by a geodesic starting
from p at s = 0 with appropriate initial tangent vector ξa so as to reach q with
affine parameter equal to 1. The point q is assigned coordinates Xa(q) = ξa and
points along the geodesic from p to q which correspond to the parameter values
0 < s < 1, are assigned coordinates Xa(s) = sξa.

The geodesic in these new coordinates is expressed simply by

Xa(s) = sξa. (12.1)

The equation for the geodesic in these coordinates at the point p becomes

d2Xa

ds2

∣∣∣∣
p

+ Γa
bc|p

dXb

ds

dXc

ds
= Γa

bc|p ξbξc = 0.

As this holds for all possible initial values ξa, it follows that all the Christoffel
symbols are zero at p,

Γa
bc|p = 0. (12.2)

Note that we can make the statement only for the point p because it is common
to all the geodesics corresponding to different values of ξa.

It is easy to see that in these coordinates

∂

∂Xa

∣∣∣∣
p

= ea (12.3)

because, for example, the curve s → Xa(s) = (s, 0, 0, 0) has a tangent vector at
p with components (1, 0, 0, 0) in the basis {ea}. The metric components in these
coordinates are just ηab.

These coordinates are called the Riemann normal coordinates.
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12.3 Static and Stationary Spacetimes

Symmetries of a spacetime are determined by its isometries. An isometry preserves
the inner product of two vectors under a push-forward map and therefore as far as
Riemannian geometry is concerned the new point looks the same as the old one. As
we have seen in the mathematical chapters (sections 9.9 and 10.8) a continuous
one-parameter group of isometries generates a family of curves whose tangent
vectors are Killing vector fields.

A stationary gravitational field is described by a spacetime on which a time-
like Killing vector field K exists. An observer following the (time-like) integral
curve of the Killing field will find the metric tensor independent of time.

If, moreover, the Killing field is orthogonal to a hypersurface, then the space-
time is called static.

For a static spacetime let the given surface orthogonal to the Killing field be
called S0. Start from every point p of the surface S0 an integral curve of K. Let
the local 1-parameter group of diffeomorphisms φt determined by K at p map p
to q. For fixed t the set of all points q as p varies on S0 determines another surface
St. The Killing vectors are orthogonal to the surface St as well because vectors
tangential to S0 are mapped to vectors tangential to St by construction and φt is
an isometry.

Therefore, at least for t in a small interval around zero, we determine a family
of surfaces St given by a function t which has the same constant value for points
of the surfaces.

Let u1, u2, u3 be a set of coordinates for the surface S0 with three-dimensional
metric

γij(u) =

〈
∂

∂ui
,

∂

∂uj

〉
.

By assigning the same coordinates to the mapped point q = φt(p) we set up a
coordinate system t, u1, u2, u3 in the neighbourhood of the surface S0 such that

K =
∂

∂t
,〈

∂

∂ui
,

∂

∂t

〉
= 0.

The metric in these coordinates is therefore of the form

(ds)2 = −a(u)(dt)2 + γij(u)(dui)(duj) (12.4)

where a is a positive function of u determined by the Killing vector

−a(u) = 〈K,K〉 =
〈

∂

∂t
,

∂

∂t

〉
.
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12.4 Fermi Transport

Construction of a Parallel Vector Field Starting from a Point

Let C : I → M be a curve, that is, a differentiable mapping from an interval
I on the real line into spacetime M . Choose natural coordinates and basis. Let
T (s) = Tμ∂/∂xμ|C(s) be the tangent vector to the curve.

Let p = C(s) be a point on the curve and let q = C(s+Δs) be a neighbouring
point on it. Let vμ be four real numbers chosen as the components of a vector at
p. If xμ and xμ +Δxμ are coordinates of p and q respectively, define

vμ
‖ = vμ − Γμ

νσΔxνvσ

as the components of the vector parallel transported to q.
By repeating this process, starting with a single vector at a point p on the

curve we can define vectors all along the points on the image of the curve by
parallel transporting. Let us write vμ(s) as components of the parallel displaced
vectors. Then as Δs → 0 the ratio Δxμ/Δs tends to Tμ(s) so

dvμ

ds
+ Γμ

νσT ν(s)vσ(s) = 0.

Thus the parallel transport components are determined by the ordinary differential
equation which has a unique solution given the initial value of vμ at a fixed value
of s.

The vector fields V = vμ(s)∂/∂xμ|C(s) and T = Tμ(s)∂/∂xμ|C(s) are de-
fined only on the point of the curve. If the fields were defined everywhere in the
neighbourhood we would have written the left-hand side of the above equation as

DT V ≡ dvμ

ds
+ Γμ

νσT ν(s)vσ(s)

= T ν

(
∂

∂xν
vμ(x(s)) + Γμ

νσvσ(s)

)
= T νV μ

;ν .

We will write the above equation for parallel transport as DT V = 0 with this
understanding, that the fields in question are defined only along the curve.

A geodesic curve is one for which the parallel transport of the tangent vector
is proportional to itself

DT T = f(s)T,

and if we choose the parameter s defining the curve as an affine parameter, then

DT T = 0 for a geodesic with an affine parameter.
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As the curve C is a geodesic DT T = 0. We can choose any three vectors
X(0), Y (0), Z(0) orthogonal to T (0) and to each other. Then, they can be par-
allel transported along C from the point C(0) to the point C(s) and defined as
X(s), Y (s), Z(s).

Under parallel transport, the inner products do not change, and the vector
T (0) is parallel transported to T (s) because the curve is a geodesic. Therefore we
have the orthonormal frames T (s), X(s), Y (s), Z(s) at points C(s).

Fermi Transport

When the curve of the observer’s history is not a geodesic, that is, the observer is
not in free fall but accelerated, the tangents T (s) are still time-like vectors which
can be normalised to 〈T (s), T (s)〉 = −1 by choosing s = cτ as the parameter along
the curve.

As the curve is not a geodesic, we do not have DT T equal to zero. But DT T
is orthogonal to T all along the curve because of the constant norm

d

ds
〈T (s), T (s)〉 = DT

(〈T (s), T (s)〉)
= 〈DT T, T 〉+ 〈T,DT T 〉 = 2〈DT T, T 〉 = 0.

Let V μ(0) be four numbers giving the components of a vector in Tp at point
p (s = 0) orthognal to T (0). If we parallel translate this vector to q corresponding
to Δs, its components will be

V μ
‖ = V μ(0)− Γμ

νσΔxνV σ(0).

When we construct the vector

V‖ = V μ
‖

∂

∂xμ

∣∣∣∣
q

,

then V‖ is not orthogonal to T (Δs) but rather to the parallel translate T‖ of T (0)
to q because the parallel translation respects the inner product. The components
T‖ are

Tμ
‖ = Tμ(0)− Γμ

νσΔxνT σ(0)

= Tμ(0)−ΔsΓμ
νσT ν(0)T σ(0)

= Tμ(Δs)−Δs(DT T )μ.

We must make a correction to V μ
‖ so that it is orthogonal to the time axis T (Δs).

Let the correction (which has to be of the order Δs) be W , then

〈V‖ +W,T (Δs)〉 = 〈V‖ +W,T‖ +ΔsDT T 〉 = 0;
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this gives up to order Δs,

〈W,T‖〉 ∼ 〈W,T 〉 = −Δs〈V‖, DT T 〉 ∼ −Δs〈V,DT T 〉.

This suggests a definition of the correction term W (remembering 〈T, T 〉 = −1),

W = ΔsT 〈V,DT T 〉.

Thus we get the definition of Fermi Transport: A vector V (0) at point p (s = 0)
which is orthogonal to T (0) is Fermi transported to q (s = Δs) to become

V (s+Δs) = V‖(s+Δs) + ΔsT 〈V,DT T 〉.

Or, bringing the right-hand side to the left and dividing by Δs, the Fermi trans-
ported vector field along the curve satisfies

DF
T V ≡ DT V − T 〈V,DT T 〉 = 0. (12.5)

This definition is restricted to vectors which are orthogonal to the curve but we
can extend the definition to any vector field V and say that it is Fermi transported
along a curve if DT V − T 〈V,DT T 〉 = 0 .

We can check that a Fermi transported vector V remains orthogonal to the
curve

d

ds
〈V (s), T (s)〉 = DT 〈V (s), T (s)〉 = 〈DT V, T 〉+ 〈V,DT T 〉 = 0

because DT V − T 〈V,DT T 〉 = 0.
Moreover, two vectors orthogonal to the curve preserve their innner product.

DT 〈V (s),W (s)〉 = 〈DT V,W 〉+ 〈V,DT W 〉
= 〈T 〈V,DT T 〉,W 〉+ 〈V, T 〈W,DT T 〉〉
= 0

because 〈V, T 〉 = 0 and 〈W,T 〉 = 0 as well.
An orthogonal set of vectors X(0), Y (0), Z(0) chosen normal to T (0) can be

taken by Fermi transport along the curve to give an orthonormal set of vectors
X(s), Y (s), Z(s) normal to T (s) for all s.

12.5 Fermi-Walker Transport

The Fermi transport has the following shortcomings.
Vectors which are not orthogonal to T when Fermi transported, do not pre-

serve inner products. In particular, they change their norm or length. Moreover,
the vector T itself is not Fermi transported DF

T T = DT T �= 0 unless the curve
is a geodesic.
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This is corrected by the Fermi-Walker transport which is defined as the
condition

DFW
T V ≡ DT V − T 〈V,DT T 〉+DT T 〈V, T 〉 = 0. (12.6)

We call DFW
T V the Fermi-Walker derivative of V with respect to T along the

curve.
With this definition the following properties are satisfied:

1. If the curve is a geodesic, then the Fermi-Walker transport is identical to
parallel transport: if DT T = 0, then DFW

T V = DT V .

2. DFW
T T = 0, that is, the tangent to the curve is always Fermi-Walker trans-

ported.

3. If V (s),W (s) are Fermi-Walker transported vectors, then their inner product
remains constant along the curve

d

ds
〈V (s),W (s)〉 = 〈DT V,W 〉+ 〈V,DT W 〉.

Use DFW
T V = 0 = DT V −T 〈V,DT T 〉+DT T 〈V, T 〉 and the similar equation

for W to get

d

ds
〈V (s),W (s)〉 = 〈T 〈V,DT T 〉 −DT T 〈V, T 〉,W 〉

+〈V, T 〈W,DT T 〉 −DT T 〈W,T 〉〉
= 〈T,W 〉〈V,DT T 〉 − 〈DT T,W 〉〈V, T 〉

+〈V, T 〉〈W,DT T 〉 − 〈V,DT T 〉〈W,T 〉
= 0.

4. If there is a space-like vector V orthogonal to the curve at all points (that
is, 〈V (s), T (s)〉 = 0 for all s), then its Fermi-Walker derivative along the
curve is the same as taking the “horizontal part” of the covariant derivative.
The horizontal part h(X) of a vector field X with respect to the unit tangent
vector T to a time-like curve is obtained by subtracting from X its projection
along T :

h(X) ≡ X + T 〈T,X〉

(the reason we have a plus sign is because 〈T, T 〉 = −1). The horizontal part
has the property that 〈h(X), T 〉 = 0.

We know that if V is orthogonal to T along the curve, then

d

ds
〈V, T 〉 = 〈DT V, T 〉+ 〈V,DT T 〉 = 0.
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Therefore,

DFW
T V = DT V − T 〈V,DT T 〉

= DT V + T 〈DT V, T 〉
= h(DT V ).

The physical meaning of this last property is this: V is already orthog-
onal to T all along. So any horizontal change in it along the curve can only
come from rotation of the vector in a plane perpendicular to T . The condition
of Fermi-Walker transport DFW

T V = 0 means that the vector is transported
without any rotation. This is essential to find the behaviour of gyroscopes
when carried by accelerated observers.

12.6 Penrose Diagrams

The nature of the physical spacetime is determined by the structure of its light
cones and the time-like and null geodesics. Let there be two different metrics on the
same manifold, (or on two different manifolds with a mapping φ : p → q defined
between them). One is the physical spacetime ds2 and the other, a ‘fictitious’

metric
∼

ds
2

“conformally” related to it. That is,

ds2(p) = (Ω(q))−2
∼

ds
2

(q)

where Ω is a smooth function (therefore Ω2 > 0). The time-like, space-like and
null tangent vectors at any point p are mapped then into similar vectors in the
other metric at q. This is specially useful for an analysis of the asymptotic regions
of the physical spacetime if such regions can be mapped onto finite regions (that
is, a set of points with finite values of the coordinates) of the other spacetime.
This will happen when Ω(q)→ 0 when we make p approach an asymptotic region
of the given spacetime.

Penrose diagrams are pictures of the second metric with finite ‘boundary
points’ representing ‘infinity’ of the physical spacetime.

The idea is best illustrated by the Penrose diagram for the Minkowski space.
The metric of Minkowski space is (changing to polar coordinates in spatial coor-
dinates to bring out spherical symmetry)

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2) ≡ −dt2 + dr2 + r2dω2

where we have denoted the angular part dθ2+sin2 θ dφ2 by dω2 and write t for ct.
Define the null coordinates for outgoing and ingoing light rays,

v = t+ r, u = t− r
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which brings the metric to

ds2 = −dudv +
1

4
(v − u)2dω2.

In order to map an infinite region onto a finite region we use the simplest trigono-
metric functions u = tanU and v = tanV which map infinite intervals (−∞,∞)
of u and v to −π/2 < U, V < π/2 in a one-one onto manner.

ds2 =
1

4 cos2 U cos2 V

[−4dUdV + sin2(V − U)dω2
]
.

Defining R and T as

V = (T +R)/2, U = (T −R)/2

we get the desired form

ds2 = Ω−2[−dT 2 + dR2 + sin2 Rdω2] = Ω−2
∼

ds
2

with Ω = 2 cosU cosV .

The following diagrams show the mapping of the region in these coordinates.

The θ and φ coordinates are to be associated with each point with fixed values
of T and R. In other words, each point of the triangular region in R, T coordinates
is associated with a 2-sphere S2 of directions θ, φ. It is traditional (and convenient)
to double the set of points by joining another triangle and completing a diamond
shape region with each point representing only half a 2-sphere. This can be done by
dividing S2 into two halves by a plane and assigning a point T,R with directions
in one half and the point −R, T the opposite directions in the other half. The time
axis common to both parts still has the full sphere associated to its points and the
end points i0 corresponding to spatial infinity R = ±π have to be identified.

The spatial part in the metric
∼

ds2,

dR2 + sin2 Rdω2,

is precisely the metric of the three-dimensional maximally symmetric space with
positive curvature. This is just the space S3 as a subset of R4 with the induced
metric.

We can see the following features of the Penrose diagram:

1. All time-like geodesics begin at the past time-like infinity i− and end at
future time-like infinity i+.

2. Null geodesics are straight lines at ±45◦. They start at I− and end at I+.
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Fig. 12.1: Mapping the region r ∈ (0,∞), t ∈ (−∞,∞) into the finite
region R ∈ (0, π), T ∈ (−π, π) through the transformation given in
the text. The points i+, i− correspond to T = π, T = −π and are
called future time-like infinity and past time-like infinity respectively.
The point i0 which corresponds to R = π (or r = ∞) is called spatial

infinity. The segments I+ and I− are called future null infinity and
past null infinity respectively.

Relation with the Einstein Static Universe

The underlying manifold of the Einstein static universe is R× S3 where the real
line R represents time and S3 is the three-sphere.

The time coordinate T of the Einstein universe runs from −∞ to +∞ and R
from 0 to π. Each point of this ‘strip’ is associated with the other two coordinates,
θ and φ which constitute a 2-sphere S2. Just as we did for the Penrose diagram
above, we can take a copy of the strip and let R run from 0 to −π. By joining the
two strips along R = 0 and R = ±π lines we get a cylindrical geometry for the

Einstein static universe R× S3 with metric
∼

ds
2

.
Then it is obvious that the diamond-shaped finite Penrose diagram which

represents the entireMinkowski space can be regarded as conformally equivalent to
a portion of the Einstein universe, namely the part of the cylinder with appropriate
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range of coordinates. This makes it possible to do analysis at the future, past and
null infinity in a Minkowski spacetime as these regions correspond to finite points
and line segments in the Einstein universe.
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Fig. 12.2: The Penrose diagram with each point representing half a
2-sphere except the time axis (the middle vertical line in the first di-
agram) whose points represent the full 2-sphere. The diagram on the
right shows the trajectory of (a) a particle sitting at a fixed point, (b) a
particle travelling from the (spatial) infinity at constant velocity, pass-
ing through the origin and going off to infinity (c) a stationary particle
in remote past getting acclerated in one direction and asymptotically
moving with velocity of light.

Of course for the Minkowski space this elaborate exercise may not be needed,
but the same idea can be applied to more complicated spacetimes. The usefulness
of Penrose diagrams arises from the fact that the light cones always open at right
angles (null geodesics run along 45◦ lines).

We shall construct Penrose diagrams for illustrating the causal structure of
Schwarzschild spacetime in chapter 14.

12.7 Solutions of Einstein Equations

It can be proved that on any differentiable manifold there exist an infinite number
of possible Riemanninan metrics. Do any of these represent physical situations?

In a trivial sense, solving Einstein equations is very easy: just take any four-
dimensional Riemannian space with signature two, calculate the Einstein tensor
Gμν and declare that the chosen metric is the exact solution to the Einstein equa-
tion for the matter distribution whose stress tensor is

Tμν =
c4

8πG
Gμν .

















Chapter 13

Weak Gravitational Fields

In all ordinary situations Einstein’s theory of gravity differs from the Newtonian
gravity by very small corrections. But conceptually it gives many predictions which
are startling. For example a spherical mass rotating slowly about an axis will “drag
inertial frames” so that the spin of a gyroscope far from the mass will precess.
Another prediction of the general theory of relativity is that perturbations of the
metric gμν propagate as waves.

13.1 Einstein Tensor for Weak Fields

We assume that coordinates can be chosen such that the metric tensor is given by

gμν = ημν + hμν (13.1)

where the spacetime dependence is only in hμν which are assumed to be much
smaller than the ‘background’ Minkowski coordinates with metric ημν . We will
neglect quantities which are second or higher power in hμν ’s.

The contravariant form of a metric tensor is

gμν = ημν + kμν

where kμν are small. From gμνgνσ = δμ
σ we see that up to terms of first-order

kμν = −hμν , gμν = ημν − hμν , hμν = ημσηντhστ .

We shall use the metric ημν and ημν to raise and lower indices in hμν , for
example hμ

ν ≡ ημσhσν . As η’s are constants the derivative indices can also be
raised or lowered, for example hμν,σ = ηστ (hμν),τ etc.

The Christoffel coefficients, Γ’s, are first-order quantities because η are con-
stants

Γμ
νσ =

1

2
ημλ(hλν,σ + hλσ,ν − hνσ,λ)
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and the curvature and Ricci tensors

Rμ
νσλ = −Γμ

νσ,λ + Γμ
νλ,σ,

Rνσ = −Γμ
νμ,σ + Γμ

νσ,μ,

because the last two terms in the curvature tensor are quadratic in Γ’s. Substitut-
ing the expression for Γ’s we get

2Rντ = ημσ[−hμσ,ντ + hμν,στ + hμτ,νσ − hντ,μσ]

and further

R = (hμν),μν − ∂2h

where h ≡ hμ
μ = ημνhμν and

∂2 ≡ ημν∂μ∂ν = −
(

∂

∂x0

)2

+∇2

is the d’Alembertian operator in Minkowski space.
The Einstein tensor for the weak field case is, therefore

Rντ − 1

2
ηντR =

1

2

[
(hμ

ν ),μτ + (hμ
τ ),μν − h,ντ − ∂2hντ

]
+
1

2
ηντ

[−(hμσ),μσ + ∂2h
]

(13.2)

and the Einstein equation is

−16πG

c4
Tντ = ∂2h,ντ + (h),ντ − [(hμ

ν ),μτ + (hμ
τ ),μν ]

−ηντ

[−(hμσ),μσ + ∂2h
]
. (13.3)

This can be further simplified by changing to the “reversed trace” perturbation
defined by

hμν ≡ hμν − 1

2
ημνh. (13.4)

It is called reversed trace because h = ημνhμν = h − 2h = −h. We can write the
original quantities in terms of the h quantities as

hμν = hμν − 1

2
ημνh, hμ

ν = h
μ

ν −
1

2
δμ
ν h.

In terms of these the Einstein equation simplifies to

∂2hντ − [(h
μ

ν ),μτ + (h
μ

τ ),μν ] + ηντ (h
μσ
),μσ = −16πG

c4
Tντ . (13.5)
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13.2 ‘Fixing a Gauge’

Recall that we can make use of diffeomorphic invariance to simplify formalism.

Any metric g is as good as the pullback Φ∗(g) for a diffeomorphism Φ of the
spacetime. We choose a one-parameter group of diffeomorphisms Φt generated by
a vector field X = ξμ∂μ. Under this, the metric tensor changes, for small t by

(Φ∗t g)μν = gμν + tδgμν , δgμν = ξμ;ν + ξν;μ.

We shall absorb the infinitesimal t into ξ itself and regard ξ as a small quantity
of first order like h. Thus ξμ = gμνξν = ημνξν and we can replace the covariant
derivative in ξμ;ν by ordinary derivatives because the Christoffel symbols are small
too.

Choosing a suitable diffeomorphism so that Einstein equations in the new
(pulled-back) metric are obtained in some desired form is called fixing a gauge
in analogy with choosing the gauge in electrodynamics or in gauge theories of
elementary particle physics.

Let us write the pullback

(Φ∗t g)μν = ημν +Hμν , Hμν = hμν + ξμ,ν + ξν,μ

and construct quantities Hμν ≡ Hμν − 1
2ημνH as before. Then the ‘gauge’ (that

is choice of ξμ) that simplifies the equation is the one for which

(H
μν
),ν = 0, “Lorentz Gauge”. (13.6)

That this can actually be done is straightforward to see. We have

H = h+ 2ημνξμ,ν ,

H
μν

= Hμν − 1

2
ημνH

= h
μν
+ ξμ,ν + ξν,μ − ημνηστξσ,τ ,

and

(H
μν
),ν = (h

μν
),ν + ∂2ξμ.

So (H
μν
),ν = 0 if ξ is chosen such that

∂2ξμ = −(hμν
),ν .

This is always possible. In fact there is a residual freedom still in the choice of ξμ.
We can add to the chosen ξμ any ξμ

1 which satisfies ∂2ξμ
1 = 0.
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13.3 The Solution

Having chosen the gauge we can call our H quantities again by the original name
h with the understanding that now it satisfies the additional gauge condition

(h
μν
),ν = 0. (13.7)

With the gauge having been fixed the Einstein equation is

∂2h
μν

= −16πG

c4
Tμν (13.8)

whose solution is well known from classical Maxwell electrodynamics,

h
μν

=
4G

c4

∫
Tμν(x0 − |x− x′|/c,x′)

|x− x′| d3x′. (13.9)

13.4 Static Mass Distribution

We first take the simpler case of a static mass distribution near the origin. The
stress-energy tensor has only one non-zero component T 00 = ρc2:

Tμν =

⎛
⎜⎜⎝

ρc2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (13.10)

Therefore the gravitational field at x (away from the mass distribution which is
concentrated near the origin x′ = 0) is obtained by integrating with r = |x − x′|
pulled out of the integral. The only non-zero component of h

μν
is

h
00
=
4G

c4

∫
ρc2

r
dv =

4GM

rc2

where

M =

∫
ρc2 dv.

The covariant tensor

h00 = (η00)
2h

00
= h

00
.

The trace is h = ημνhμν = −4GM/rc2. Therefore from hμν = hμν − ημνh/2 we
get

h00 = h11 = h22 = h33 =
2GM

rc2
(Static mass distribution).
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Thus, our metric for the weak static field is

ds2 = −
(
1− 2GM

c2r

)
c2(dt)2

+

(
1 +

2GM

c2r

)
[(dx1)2 + (dx2)2 + (dx3)2]. (13.11)

As simple applications of the metric in this approximation we rederive the formula
for light deflection and another effect called the Shapiro time delay.

13.4.1 Light Ray in a Weak Field

Let K(λ) be the tangent vectors of a null geodesic, 〈K,K〉 = 0 and DKK = 0
with affine parameter λ.

Kμ(λ) =
dxμ

dλ
.

� �

�

�
Kμ(0)

Y

X

b

A

Fig. 13.1: Deflection of light.
Light ray starts at A parallel to X axis. It bends and develops a small
component in the negative Y direction due to mass at the origin.

We assume the light ray to start (t = 0, λ = 0) from a point A (see Fig-
ure 13.1) (xμ(A) = (0, 0, b, 0)) and with initial direction along the x1 axis. Thus
the tangent vector to the geodesic is initially

Kμ(0) = (1, 1, 0, 0) +O(h)

where we generally denote small quantities by the symbol O(h) ∼ h00 = h11 etc.
The geodesic will stay in the x1-x2 plane under the assumption that all mass is
concentrated near the origin.
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The equation for parallel transport of K along the geodesic is

dKμ

dλ
= −Γμ

νσKνKσ.

We are interested in finding the first-order change in the direction of the geodesic
far away (x1 →∞). This change comes from O(h) changes in K2. To calculate to
lowest order we can replace KνKσ on the right-hand side by their initial values
K0 ≈ K1 ≈ 1. Thus the following equation holds,

dK2

dλ
= −Γ2

νσKνKσ

= −(Γ2
00 + 2Γ2

01 + Γ2
11)

= h00,2

= −2GM

c2

x2

r3
,

using h00 = h11 = 2GM/(rc2). To lowest order x2 stays close to b, so that

x2

r3
≈ b

(b2 + (x1)2)3/2

and we can write

dλ =
dλ

dx1
dx1 =

dx1

K1
≈ dx1.

Therefore

dK2 = −2GMb

c2

dx1

(b2 + (x1)2)3/2
.

Integrating on x1 from 0 to ∞ we get

K2(∞) = −2GM

bc2
.

The ratio of K2(∞)/K1(∞) ≈ K2(∞) gives the angle made by asymptotic direc-
tion of the light ray with the x1 axis .

δ = −2GM

bc2
. (13.12)

For a light ray coming from infinity, going past the source at a distance b and then
observed again at infinity, the geometry of the curve is symmetric and the two
deflections add up. Therefore the deflection is twice this value, that is 4GM/bc2.
This is what we calculated as the light deflection in a Schwarzschild field.
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13.4.2 Time Delay

As another example we estimate the background coordinate time that light will
take to go from the point A(0, b, 0) in the figure to point B(X, b, 0). In the absence
of gravitating body the time will be just X/c. In presence of a big mass at the
origin the time taken is slightly more than this. The excess is called the Shapiro
time delay.

� �

�

B

X’ X

b

A

S

Fig. 13.2: Time delay.
The time taken by light to travel from A to B according to flat space
clocks is an amount [2GM/c3] ln(2X/b) greater than X/c which it
would take in the absence of the gravitating body.

We make assumptions similar to the last section. Neglecting the vertical
change in the path of the ray,

(ds)2 = −c2(dt)2(1−H) + (1 +H)(dx)2 = 0

where

H ≡ 2GM

rc2

implies

dt ≈ 1

c
(1 +H)dx.

Therefore ∫
dt =

1

c

∫ X

0

[
1 +

2GM

c2
√

x2 + b2
dx

]

=
X

c
+
2GM

c3

∫ X

0

1√
x2 + b2

dx.
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Using the standard integral∫
ds√

s2 + 1
= ln[s+

√
s2 + 1]

the delay is to leading order

Δt =
2GM

c3
ln

(
2X

b

)
.

If light comes from some source S at a large distance X ′ and after passing the
gravitating body at perpendicular distance b is received by a detector B at a
distance X, the time delay compared to the time when gravitating body is absent
is therefore the sum

ΔtSA +ΔtAB =
2GM

c3
ln

(
4XX ′

b2

)
. (13.13)

If the source is kept at B and a signal is sent to S which reflects it back, then the
round-trip delay is twice this value.

We have estimated the delay under simplified assumptions. A more careful
calculation gives

Δtround trip =
4GM

c3

[
1 + ln

(
4RR′

r2
0

)]
(13.14)

where R,R′ are the distances of B and S from the gravitating body and r0 is the
distance of closest approach of light to the body.

13.5 Slowly Rotating Mass Distribution

Let us calculate the field of a mass distribution slowly rotating with a constant
angular velocity about the z-axis of a cartesian coordinate system. We assume the
mass to be concentrated around the origin and symmetric about the z-axis. We
calculate the field at a point far away from the body.

Matter in the non-relativistic regime will have negligible pressure (the kinetic
theory of gases gives pressure proportional to average velocity square times mass
density ρ which is much smaller than ρc2). Therefore the stress-energy tensor is of
the form Tμν = ρUμUν . If the mass distribution is rotating slowly with constant
angular velocity ω about the z-axis, then

Uμ ≈ (c, v1 = −ωx2, v2 = ωx1, 0)

which is, neglecting terms of O((vi)2/c2),

Tμν ≈ ρUμUν ≈ ρ

⎛
⎜⎜⎝

c2 −cωx2 cωx1 0
−cωx2 0 0 0
cωx1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (13.15)
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From our formula for weak fields (written for a contravariant metric tensor) the
non-zero h

μν
= h

νμ
are for μ, ν = 00, 01, 02. We calculate these.

First of all there is no time dependence in Tμν . The masses are moving,
but velocities are constant in time. This is the stationary situation analogous to
stationary currents in magnetostatics.

Tμν(x0 − |x− x′|/c,x′) = Tμν(x′).

Therefore using the fact that r ≡ |x| >> |x′|,
1

|x− x′| = (|x|2 + |x′|2 − 2x.x′)−1/2

≈ 1

r
+

x1x1′ + x2x2′ + x3x3′

r3
,

we can write the leading order contributions to h
μν
,

h
00

=
4G

c4

∫
ρ(x′)c2

|x− x′|d
3x′

=
4G

c2r

∫
ρ(x′)d3x′

≡ 4GM

c2r
,

h
01

= −4ωG

c3r3

∫
ρ(x′)x2′(x1x1′ + x2x2′ + x3x3′)d3x′

= −4ωGx2

c3r3

∫
ρ(x′)(x2′)2d3x′

= −4ωGx2

c3r3
I22,

where (i) M is the total mass, (ii) the integration over x2′x1′ and x2′x3′ vanish
because of symmetry of mass distribution and (iii) I22 is the moment-of-inertia
component. Similarly,

h
02
=
4ωGx1

c3r3
I11.

The mass distribution is symmetric about the z-axis. Therefore we can use the
perpendicular axis theorem of moments of inertia,

I11 = I22 = (I11 + I22)/2 = I33/2.

The angular momentum is equal to

J = ωI33. (13.16)
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To the order of approximation used, the components h
μν

are

h
00
=
4GM

c2r
, h

01
= −2JGx2

c3r3
, h

02
=
2JGx1

c3r3
. (13.17)

The trace h is h = h
0

0 = −h
00
and therefore hμν = hμν − ημνh/2 are

h00 =
2GM

c2r
= h00,

h11 = h22 = h33 =
2GM

c2r
= h11 = h22 = h33,

h01 = −2JGx2

c3r3
= −h01,

h02 =
2JGx1

c3r3
= −h02.

The metric for this case is thus gμν = ημν + hμν ,

(ds)2 = −
(
1− 2GM

c2r

)
(dx0)2

+

(
1 +

2GM

c2r

)
[(dx1)2 + (dx2)2 + (dx3)2]

−4JG

c3r2

(
x1(dx2)− x2(dx1)

r

)
(dx0) (13.18)

where, as is physicists’ custom, we write g01 and g10 terms together.
Actually, the form of this metric is more general. Even if the source is not

the Newtonian, slowly moving matter but fully relativistic, the fields at a large
distance will have this form.

13.6 Gravi-Magnetic Effects

13.6.1 Freely Falling Gyroscope

Newtonian gravity depends only on instantaneous mass distributions or density,
whereas Einstein’s theory involves all components of the stress-energy tensor.
These include mass and energy flow. We have seen in the last section how gravita-
tional fields are modified by stationary mass-energy currents. These gravitational
fields produce effects proportional to v/c much like the magnetostatic effects of
stationary currents in electromagnetism. If a gyroscope falls along the axis of a
rotating mass distribution such that its spin points in a direction in the plane
perpendicular to the axis, then this spin direction will precess in the plane in the
same sense as the rotating mass as the gyroscope falls. These effects are called
gravi-magnetic effects.
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An early discussion of such effects was by H.Thirring and J.Lense in 1918 who considered
effects at the center of a slowly rotating massive spherical shell. Einstein had come to the same
conclusion in 1913 even before the general theory of relativity was formulated. See discussion on
Mach’s principle in Misner, Thorne and Wheeler (section 21.12) and Weinberg (section 9.7).

A gyroscope is a small heavy symmetric body rotating with its axis supported
frictionlessly on frames which are again mounted so that they are free to move in
all possible directions. The gyroscope can be transported by moving the outermost
frame. The design of frames ensures that to a very good approximation no torques
can be applied to the rotating body. If the gyroscope is in free fall, its spin will be
transported without change, that is, it will be parallel transported. If the gyroscope
is carried by an accelerated observer, then the gyroscope’s spin will be Fermi-
Walker transported. We discuss the free fall in this section and motion along the
accelerated path in the next.

We can represent the spin by a space-like vector S orthogonal to the time-like
velocity vector U to the gyroscope’s trajectory in spacetime. If the gyroscope is
falling freely (that is following a geodesic) then S will remain orthogonal to U all
along the trajectory because U is also parallel transported along the geodesic.

We now see how the spin of a gyroscope behaves for the mass distribution of
the last section. In order to simplify our calculation we assume a gyroscope falling
freely along the z-axis with its spin pointing in the x-y plane. As the fall is along
the z-axis, x1 = x = 0 and x2 = y = 0 along the trajectory. Therefore tangent
vector U(τ) of the geodesic has components only along time and z-direction Uμ =
(U0, 0, 0, U3). The fact that x1(s) = 0, x2(s) = 0 makes many Christoffel symbols
equal to zero along the trajectory. The parallel transport equation

dSμ

dτ
+ Γμ

νσUνSσ = 0 (13.19)

gives to leading order,

dS1

dτ
= −2GJ

c2z3
S2,

dS2

dτ
=
2GJ

c2z3
S1. (13.20)

More details are given in the tutorial to this chapter. If we are in the frame
of reference of the falling gyroscope (an inertial frame) we would not see the
precession because the spin is being parallel transported. But it is the background
Minkowski coordinate system (distant stars) that seems to precess with respect to
the gyroscope. The Lense-Thirring precession frequency at ‘height’ z is

ΩLT =
2GJ

c2z3
(13.21)

in the same sense as the rotating mass. We express this phenomenon by saying
that the freely falling inertial frame (in which the gyroscope spin is a constant
vector) is dragged along by the rotating mass distribution.
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13.6.2 Gyroscope at Rest

We can generalise the metric of a slowly rotating mass distribution whose angular
momentum is in an arbitrary direction instead of being along the z-axis:

(ds)2 = −
(
1− 2GM

c2r

)
(dx0)2

+

(
1 +

2GM

c2r

)
[(dx1)2 + (dx2)2 + (dx3)2]

−4GεijkJjxk

c3r3
(dxidx0), (13.22)

where J is the angular momentum vector and the εijk is the antisymmetric symbol
equal to 1 if ijk is an even permutation of 123, −1 if odd, and zero if any two
indices in ijk happen to be the same.

If a gyroscope is ‘nailed’ to a point x in the coordinate system with the help
of forces applied to its centre of mass (so that its spin is not disturbed) then the
gyroscope follows the non-geodesic trajectory

xμ(τ) = (x0 = cτ,x). (13.23)

The unit tangent vector T, 〈T, T 〉 = −1 of this path is given by

T =

(
1− 2GM

c2r

)− 1
2 ∂

∂x0
. (13.24)

The gyroscope’s spin is Fermi-Walker transported along the trajectory. Its com-
ponents S = (0, Si) with respect to the global background Minkowski coordinate
system (“fixed stars”) change as follows:

dSi

d(cτ)
+ ΩijS

j = 0 (13.25)

where the precession frequency vector

Ω ≡ c(Ω23,Ω31,Ω12)

is given by

Ω =
G

r3c2

[
−J+ 3

x(x · J)
r2

]
. (13.26)

This is worked out in the tutorial. Note that if the J is along the z-axis and the
gyroscope is at rest at a point along the z-axis with its spin S in the x-y plane,
then the precession frequncy vector Ω points in the z-direction with magnitude
2JG/z3c2. To lowest order the two precession frequencies (of the freely falling and
the fixed on z-axis gyroscopes) match because the correction due to time dilation
factor between coordinate time and the proper time is of one higher order.
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13.7 Energy and Momentum

The Einstein equation relates a geometric quantity, the Einstein tensor Gμν , to the
stress energy tensor Tμν of matter. This tensor Tμν is the total stress-energy tensor
of all matter and radiation fields except gravity. Gravitational field is characterized
by a conspicuous absence of a separate stress-energy tensor. This is due to the non-
linear nature of the Einstein equations.

The Bianchi identities Gμν
;ν = 0 imply Tμν

;ν = 0. But this is not a conservation
law for energy and momentum of matter. By a conservation of some quantity we
understand that the change in the amount of that quantity inside a closed three-
dimensional volume can be accounted for by the flowing out of that quantity from
the surface of that volume.

We have discussed Gauss’ divergence theorem in section 10.11. It can be
summarised by saying that if there is a vector field X such that divX = Xν

;ν = 0,
then over a four-dimensional domain D,∫

D

(divX)Ω =

∫
∂D

〈n,n〉(〈X,n〉)(Ω)∂D = 0.

Equivalently as

Xν
;ν = Xν

,ν + Γν
μνXμ

= Xν
,ν +

1√−g
(
√−g),μXμ

=
1√−g

[
√−gXν ],ν ,

therefore Xν
;ν = 0 gives a continuity equation

(
√−gXν),ν = 0

which can be converted into a surface integral.
It is often stated (somewhat carelessly) that Tμν

;ν = 0 gives the law of
conservation of energy-momentum for matter. This is not correct. However, if
there is a Killing vector field K, then there we can construct a conserved current:
define

P ν ≡ TμνKμ, Kμ ≡ gμσKσ,

then

(P ν);ν = (TμνKμ);ν = (Tμν);νKμ + TμνKμ;ν = 0

because both the terms are zero: the first from the Einstein equation and the
second because K is a Killing vector field so Kμ;ν = −Kν;μ. Thus (P

ν);ν = 0, and
we can interpret Pμ as the conserved quantity.
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If there is a Killing vector field K, then P ν ≡ TμνKμ gives a conservation
law: If D is a four-dimensional region with boundary hypersurface ∂D then∫

∂D

〈n,n〉〈P,n〉(Ω)∂D = 0 (13.27)

where n is the unit normal vector on ∂D and (Ω)∂D is the volume on the hyper-
surface.

We have seen (in Chapter 10) that there cannot be more than 10 indepen-
dent Killing fields in four-dimensional spacetime. That happens in the maximally
symmetric space like the Minkowski space. The Killing field corresponding to time
translations gives rise to energy conservation, those of space translations give linear
momentum, of rotations to angular momentum and so on. In a general spacetime
there will be no Killing fields, and there will be no conserved quantities either. But
if it is possible to choose vector fields which approximate Killing fields in a small
region of spacetime, then there can be local conservation of energy momentum etc.
Thus it is appropriate to say that Tμν

;ν = 0 represents the local conservation of
energy momentum. After all, the conservation laws of energy and momentum in
non-gravitational physics are of this nature. They depend on the near flatness of
the spacetime region in which they are tested.

Conserved Quantities Along a Geodesic

We have discussed the conservation of energy and angular momentum of a freely falling particle
in a Schwarzschild field in Chapter 4. There these quantities were seen to be conserved due to
the existence of Killing fields ∂/∂t and ∂/∂φ of the spacetime. In general, if K is the Killing field
and U the four-velocity of the freely falling particle (that is tangent vector to a geodesic) then
〈K, U〉 remains constant along the path. This law represents the conservation of quantities of
the test particle, in a symmetric gravitational field and has nothing to do with the conservation
of energy-momentum of the source of gravitation.

Of course, one can think of the combined source plus test particle stress-energy tensor
producing the gravitational field by the Einstein equation. Then the fact that test particles move
along geodesics of the spacetime must also follow from the Einstein equation. This is indeed so
but these calculations are not easy and can be done only approximately. They were initiated by
Einstein and Infeld in the 1940s.

13.8 Energy Psuedo-Tensor

The equation Tμν
;ν = 0 does not give a conservation law in general but rather

gives the exchange of energy momentum between matter and a gravitational field.
This equation can be written as

Tμν
,ν = −Γμ

σνT σν − Γν
σνTμσ (13.28)

where the right-hand side measures the failure of matter energy momentum to
conserve due to exchange of energy and momentum with the gravitational field.

At a given fixed point, we can always choose local coordinates such that all
Γ’s vanish at the given point. Therefore the right-hand side can be made zero at
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a single point, but in order to define momentum and energy of a field system we
have to integrate corresponding densities over a region and their values at a single
point are of no use.

Does this mean that “gravitational field energy” has no meaning? The answer
is that gravitational field energy has a meaning in those situations where we can
clearly separate the matter and gravitational degrees of freedom. This may require
choosing a special coordinate system.

In the following we discuss the separation of matter and gravitational energy,
momentum etc. for mass distribution located in a finite volume so that we can
choose a coordinate system which is asymptotically Minkowskian. This means we
can write gμν = ημν+hμν where the hμν tend to zero as r = (x2+y2+z2)1/2 →∞.

We have already separated the first-order quantities. Let us write the exact
Einstein tensor as a part of the first-order in hμν plus the “rest”,

Gμν = Gμν
(1) +Gμν

rest

where G
(1)
μν is constructed from hμν = hμν − ημνh/2 as before (section 13.1).

We prefer to use the contravariant version of Einstein’s equations for notational
convenience.

−2Gμν
(1) = ∂α∂β [h

μν
ηαβ + h

αβ
ημν − h

μα
ηνβ − h

νβ
ημα]

≡ ∂α∂βHναμβ (13.29)

where the second line defines the quantity Hναμβ . It has interesting symmetry
properties. It is , like the Riemann tensor, antisymmetric in ν, α and in μ, β, as
well as symmetric under the interchange of the pair of joint indices να with μ, β ;
Hναμβ = Hμβνα.

If we operate by ∂ν onGμν
(1) and sum over ν, we get zero because the symmetric

operator ∂ν∂α acts on an expression antisymmetric in ν, α and both indices are
summed. Thus Gμν

(1) has vanishing ordinary, rather than covariant divergence:

(Gμν
(1)),ν = 0.

Rearrange the exact Einstein equation as

Gμν
(1) =

8πG

c4
Tμν −Gμν

rest

=
8πG

c4
(Tμν + tμν)

where

tμν ≡ − c4

8πG
Gμν

rest. (13.30)

Because (Gμν
(1)),ν = 0 we also have the ordinary divergence of Tμν + tμν zero:

(Tμν + tμν),ν = 0. (13.31)
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This can be interpreted as the conservation of ‘total’ energy-momentum, the
first term Tμν giving the matter and the second tμν the gravitational energy-
momentum. Except for this warning: the above decomposition is based on the exis-
tence of a coordinate system which is asymptotically Minkowskian where gμν can
be written as the sum ημν + hμν . The ‘gravitational’ energy-momentum tensor
is called energy-momentum ‘psuedo-tensor’ because its form is dependent on the
coordinate system.

13.9 Energy-Momentum for an Isolated System

In electrostatics the electric charge inside a volume can be calculated by summing
the flux of electric field over the surrounding surface. This is just Gauss’ theorem.
Similarly the Newtonian potential which satisfies ∇2Φ = 4πρ allows the calcula-
tion of total mass inside a volume by integrating over the gravitational field (or
acceleration) (g = −∇Φ)

M = − 1

4π

∫
g · ndS.

The idea is that since charge or mass produce the fields, the field carries the
information of the source which causes the field.

In the previous section we have identified the “psuedo tensor” tμν as an
expression for gravitational energy-momentum. It is of second or higher order in
h. If we integrate T 0ν + t0ν over a large volume, we expect to get the total energy
and momentum contained in it. Call it P ν ,

P ν =
c4

8πG

∫
V

d3xG0ν
1

= − c4

16πG

∫
V

d3x∂α∂βHνα0β

= − c4

16πG

∫
V

d3x∂α∂jH
να0j

= − c4

16πG

∫
S

dS nj(Hνα0j),α (13.32)

where the antisymmetry property reduces the integrand to a spatial divergence
∂i(...)

i which can be converted into a two-dimensional surface integral with surface
normal n = (n1, n2, n3).

It is important to realise that this expression for the total mass is independent
of any gauge choice. Moreover, under global Lorentz transformation of Minkowski
coordinates xμ → Λμ

νxν the quantity P ν transforms like a four-vector.
It is also important to see that the surface integral is to be calculated far

away from the source. Thus even if the source is strong, the asymptotic field at the
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point of evaluation will give the right expression for total energy and momentum.
As an example one can evaluate the total energy for the Schwarzschild field. A
short calculation (see tutorial for this chapter) yields the total energy equal to
P 0 = Mc2. Thus constant M appearing in the Schwarzschild solution is the total
energy of the static mass distribution plus the gravitational energy.

The formulas for angular momentum can similarly be written. The angular
momentum with respect to the origin of coordinates is

Mkl =

∫
V

d3x[xk(T 0l + t0l)− xl(T 0k + t0k)] (13.33)

which can be written similar to the case for total energy momentum

Mkl = − c4

16πG

∫
S

dS
(
xknj(H lα0j),α − xlnj(Hkα0k),α

)
. (13.34)

13.10 tμν up to Second-Order

The gravitational stress-energy tensor tμν is determined by the Einstein tensor
from which its linear terms have been subtracted, tμν = −c4Gμν

rest/8πG. For weak
fields it may be sufficient to calculate Gμν

rest only up to second-order,

Gμν
rest ≈ Gμν

(2) = [Rμν − 1

2
gμνR](2).

We start with gμν = ημν + hμν and following the procedure in section 13.1 of this
chapter get the following expressions which help us calculate the psuedo tensor
tμν to second-order.

Rμν = R(1)
μν +R(2)

μν + · · ·

where R
(1)
μν was calculated in section 13.1,

2R(1)
ντ = ημσ[−hμσ,ντ + hμν,στ + hμτ,νσ − hντ,μσ].

The contribution toR
(2)
μν comes from various sources. First of all Γ’s are of structure

g(..)[g(..,.) + ..] = (η− h)[h+ ..]. They gives second-order contribution to the Γμ
νσ,τ

terms in the Riemann tensor, in addition to the Γ terms. After a straightforward
calculation we get

R(2)
μν = +

1

2
hαβ [hμν,αβ + hαβ,μν − hμα,νβ − hνβ,μα]

−1
2

[
(hαβ),β − 1

2
ηαβ(h),β

]
[hαμ,ν + hαν,μ − hμν,α]

+
1

4
hαβ

,μhαβ,ν

+
1

4
ηστηαβ(hσμ,α − hαμ,σ)(hτν,β − hβν,τ ). (13.35)
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Similarly R = gμνRμν can be written

R = R(1) +R(2) + · · · ,

R(1) = ημνR(1)
μν

= (hμν),μν − ∂2h,

R(2) = ημνR(2)
μν + hμνR(1)

μν ,

and so

gμνR = ημνR(1) + hμνR(1) + ημνR(2), (13.36)

which gives the desired expression for the Einstein tensor,

G(2)
μν = −1

2
(ημνhαβ + hμνηαβ)R

(1)
αβ +

(
R(2)

μν −
1

2
ημνηαβR

(2)
αβ

)
. (13.37)

Note that if we need second-order Gμν = gμαgνβGαβ we would need to expand
again and obtain

Gμν
(2) = ημαηνβG

(2)
αβ − ημαhνβG

(1)
αβ − hμαηνβG

(1)
αβ . (13.38)

13.11 Gravitational Waves

13.11.1 Isolating the Radiative Part

So far we have considered the solutions of ∂2h
μν

= −16πGTμν/c4 for stationary
sources Tμν . For a time-varying mass distribution the solutions will be in the form

of a gravitational wave. h
μν

are ten quantities which can be subjected to four
‘gauge conditions’ (for example (h

μν
),ν = 0).

Using the convenient background of Minkowski coordinates xμ and the small-
ness of the deviation hμν of the metric, we can decompose these into components
which remain unaffected by diffeomorphic invariance. There are six independent
degrees of freedom which are immune to diffeomorphic invariance. They are called
“gauge invariant” in the following sense. Under an infinitesimal diffeomorphism
where a point with coordinates xμ is mapped into the point with coordinates
xμ + ξμ, the metric tensor is pulled back with components

hμν + ξμ;ν + ξν;μ ≈ hμν + ξμ,ν + ξν,μ

where we can replace the covariant derivatives by ordinary derivatives because the
ξ and Γ’s are both small.

We use the fact that both the original and the transformed metric have weak
fields decomposition (ημν+hμν) which allows identifying components with respect
to the background flat geometry. Thus the h00 component is the weak field riding
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η00 = −1 and so on. We can find suitable combinations of hμν and their derivatives
such that they remain unchanged under infinitesimal diffeomorphism.

As an example, note that h00 involves change through ξ0 (it changes by 2∂0ξ0)
and so does h0i. But the change in h0i will also involve ξi just as changes in hij

would. Now it turns out that there is a combination of h00, h0i and hij which will
cancel the ξ0 dependence from h00 with that from h0i while the ξi dependence
(that comes in with h0i ) cancels with a certain combination from hij . This is
achieved by looking at the transformation properties of various components under
three-dimensional rotations of the background Minkowski coordinates. Thus h00

is a scalar, h0i a three-dimensional vector and so on. A three-dimensional vector
can be decomposed into a gradient part and a divergence-free or transverse part.
A three-dimensional symmetric tensor has a more elaborate decomposition

hij =
1

3
δijH +

(
∂i∂j − 1

3
∂2

)
C + (∂iDj + ∂jDi) + hTT

ij

where the vector Di is transverse, ∂iDi = 0, and hTT
ij is the transverse traceless

(TT) part satisfying four conditions,∑
i

hTT
ii = 0,

∑
i

∂ih
TT
ij = 0.

There are six quantities hij on the left, six on the right (two scalars H,C two D’s
and two (6− 4) hTT ’s).

We can separate them as follows. H is simply the trace H =
∑

hii and C
and Di are related to the gradient and transverse parts of ∇−2

∑
∂ihij ,∑

∂ihij = ∇2

(
2

3
∂jC +Dj

)
.

Under diffeomorphisms the TT-part remains unchanged. It is ‘gauge invariant’ in
the commonly used language. As expected, there are six gauge invariant quantities
because the diffeomorphism introduces four arbitrary functions and out of ten hμν ,
six combinations can manage to remain unaffected.

Gauge invariant quantities by definition have the same values whether the
gauge is fixed or not. For weak fields the curvature tensor (and thus the Einstein
tensor) remains ‘gauge invariant’. This is easily shown in a tutorial exercise.

We can decompose the stress tensor Tμν in a way analogous to the decompo-
sition of hμν and write down Einstein equation ∂2hμν = −16πGTμν/c4 in terms
of gauge invariant quantities by comparing the decomposition on both sides. The
hμν contain both the wave-like (“radiative”) and non-wavelike solutions. It follows
that out of six gauge invariant quantities only the ‘TT-part’ satisfies a wave equa-
tion whereas others satisfy Poisson-like equations. Thus the radiative or wave-like
nature of the metric perturbation resides in the transverse-traceless part. We refer
the student to the introductory article by Eanna Flanagan and Scott Hughes in
arxiv: gr-qc/0501041 for details.
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13.11.2 Wave Nature

In a region away from the sources the wave equation reads

(−∂2
0 +∇2)hTT

ij = 0. (13.39)

We can determine hij (or rather hij) from the formula for the solution given above.
The question we face now is how to separate the TT-part from the hij .

This is seen easily through an example. Suppose we find a simple ‘plane wave’
(that is constant amplitude and phase on a plane), in a small region of spacetime
away from sources

hij = aijf(ct− z) = aijf(x
0 − x3)

with aij a symmetric numerical matrix. The transverse condition requires hij,j =
0, i = 1, 2, 3 which implies ai3 = a3i = 0. That leaves three quantities
h11, h22, h12 = h21. The traceless condition requires h11 + h22 = 0. As we expect
there are only two degrees of freedom. We can write these two polarization ampli-
tude a = h11 = −h22 and b = h12 = h21. Therefore the TT-part of hij is obtained
by projecting the matrix aij into the subspace perpendicular to the direction of
propagation of the wave, and then enforcing the tracelessness condition.

(aij) =

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠→ (aTT

ij ) =

⎛
⎝ a b 0

b −a 0
0 0 0

⎞
⎠ . (13.40)

This suggests how to separate the TT-parts from the general expression. If we know
the direction of propagation of the wave, say, along the unit vector n, nini = 1,
then we use a projection operator perpendicular to n. The projection matrix Pij

is a symmetric matrix with the following properties:

Pij = δij − ninj , PijPjk = Pik, Pii = 2. (13.41)

We first obtain the transverse (‘T-part’) h
T

ij ,

h
T

ij = PikPjlhkl, (13.42)

then subtract its trace from it to get the TT-part:

h
TT

ij = h
T

ij −
1

2
Pijh

T

kk

= PikPjlhkl − 1

2
Pij(hklPkl). (13.43)

Note that we have calculated the TT-part of the ‘reverse trace’ perturbation hij

rather than hij because our wave equation is written for hij . Happily, because of
the tracelessness the two are the same:

h
TT

ij = hTT
ij . (13.44)
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There is a standard way to relate the integral on the right-hand side with the
second time derivative of the moment of inertia tensor. We know that the local
energy-momentum conservation looks like Tμν

,ν = 0 for weak fields. Separating

the space and time components, we have two equations (T 00),0 + (T 0i),i = 0 and
(T i0),0 + (T ij),j = 0. Therefore

(T 00),00 = −((T 0i),0),i = (T ij),ij .

Now we derive a useful identity. Calculate

(T ijxkxl),i = (T ij),ix
kxl + T kjxl + T ljxk

and then

(T ijxkxl),ij = (T ij),ijx
kxl + (T ik),ix

l + (T il),ix
k

+(T kj),jx
l + T kl + (T lj),jx

k + T kl

= (T 00),00x
kxl − 2T kl + 2[T ikxl + T il(xk)],i.

Both (T ijxkxl),ij and [T
ikxl + T il(xk)],i are divergences. Integrating these terms

over a volume enclosing all matter we get zero on the surface. Therefore using the
above identity to express T kl in terms of (T 00),00x

kxl we get

h
kl

=
4G

c4r

∫
T kl(x0 − r,x′) d3x′

=
2G

c4r

d2

d(x0)2

∫
T 00xk′xl′ d3x′

=
2G

c2r

d2

d(x0)2

∫
ρxk′xl′ d3x′

=
2G

c4r
Ïkl (13.47)

where the dot denotes differentiation with respect to time t, (x0 = ct) and Ikl are
the moment of inertia tensor components.

13.11.4 Separation of the TT-Part

Our solution h
kl
is equal to a numerical matrix times 1/r: hkl ∼ Akl/r. Therefore

the transverse condition (Akl/r),l = −Aklx
l/r3 = 0 requires that we project Akl

to the subspace perpendicular to the unit vector n ≡ x/r. Define the TT-part as

h
TT

ij =
2G

c4r
ÏTT
ij
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where

ÏTT
ij = PikPjlÏkl − 1

2
Pij(ÏklPkl).

It is more convenient to use the ‘quadrupole inertia tensor’

Qkl = Ikl − 1

3
δklI, I ≡ Iii

in place of Ikl. The quadrupole tensor is zero for a spherically symmetric body.
The TT-part of both the tensors are the same:

QTT
ij = PikPjlQkl − 1

2
Pij(QklPkl)

= PikPjl(Ikl − δklI/3)− 1

2
Pij((Ikl − δklI/3)Pkl)

= PikPjlIkl − PijI/3− 1

2
Pij(IklPkl) + PijI/3, (Pkk = 2)

= ITT
ij .

Therefore the gravitational spherical wave amplitude at x at time t far away from
the gravitating masses is given by

h
TT

ij = hTT
ij =

2G

c4r
Q̈TT

kl (13.48)

where the dependence on the direction n = x/r is hidden in the projection operator
Pij = δij − ninj occuring in the expression for QTT

kl .

13.11.5 Energy Radiated Away as Gravitational Waves

The flux, that is, energy carried by a gravitational wave per unit area per unit
time (per unit x0 coordinate actually) in the i-th direction is contained in the
gravitational energy pseudo-tensor component t0i. As the amplitude of the wave
hμν undulates with time we have to average t0i suitably just as we do for any
wave.

We can calculate tμν from its second-order Einstein tensor formula

tμν = − c4

8πG
Gμν

(2).

It is easiest to calculate it for a plane wave along the z-direction in TT-gauge:
h11 = −h22 = af(x0−x3), h12 = h21 = bf(x0−x3), the rest of the components of
hμν are zero. It is a very short calculation. Of t0i only the 03-component is non-
zero because the wave is in that direction. The only dependence on coordinates
is on x0 and x3 and that only through the combination x0 − x3 which allows a
derivative with respect to one to be converted into the other. We get

G
(2)
03 = R

(2)
03 = −(a2 + b2)

(
f ′′ +

1

2
(f ′)2

)
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where f ′, f ′′ are the first and second derivatives of f = f(x0− x3) with respect to
its argument. Upon averaging the fluctuating term f ′′ will vanish and we get

〈t03〉 =
c4

16πG
〈(a2 + b2)(f ′)2〉

=
c5

32πG
〈ḣTT

ij ḣTT
ij 〉

where we have written it back in terms of the gravitational field and replaced the
derivatives with respect to (x0−x3) by derivatives with respect to time (ct = x0).
In this form the formula is applicable to not just the z-direction but any direction.

By substituting our formula for hTT
ij and integrating over a spherical surface

(which involves integrating over all directions in the flux formula) we get the total
flux from the gravitational source. It is given by the famous ‘quadrupole formula’
(derived first by Einstein) for energy loss per unit time from a radiating source,

P =
G

5c5
〈

...

Qij

...

Qij〉. (13.49)

The details are left for the tutorial.

13.12 Detection of Gravitational Waves

A gravitational wave changes the metric locally. A massive matter distribution
with non-zero quadrupole tensor may start changing rapidly starting at some fixed
time. The effects on the metric at a point far away will be felt when waves reach
there. The metric at the point which was Minkowskian will get a part hTT

μν added
to it. If only the gravitational waves are present, we can choose a local coordinate
system so that the metric has the form ημν+hTT

μν with the wave propagating along

the z-direction. This means hTT
μν is of the form

hTT
μν = Aμνf(x0 − x3)

with non-zero components A11 = −A22 = a,A12 = A21 = b.
A particle which is at rest before the arrival of the wave , that is with its

velocity four-vector Uμ = (c, 0, 0, 0), and otherwise not influenced by any other
force, remains at rest after the arrival of the wave because the particle follows the
geodesic of free fall and its acceleration is given by

d2xi

dτ2
+ Γi

00c
2 = 0.

But Γi
00 = 0 for the TT-metric. Thus the velocity remains zero, the coordinate

position of the particle does not change!
This does not mean that there is no effect of the wave. Indeed, if there are

two neighboring particles lying in the x-y plane with coordinates (x, y, z) and
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(x′, y′, z) their numerical coordinates may not change, but the physical distance
between them changes. Let us take the two particles a coordinate distance L
apart connected by a light spring with unextended (or uncompressed) length L.
The second particle kept at an angle θ with respect to the first, that is, x′ =
x + L cos θ, y′ = y + L sin θ. The physical distance Lphy between them when the
wave arrives is

Lphy = [(ημν + hμν)(x
′ − x)μ(x′ − x)ν ]1/2

= [{(1 + a)L2 cos2 θ + 2bL2 sin θ cos θ + (1− a)L2 sin2 θ}f ]1/2

≈ L+
1

2
L(a cos 2θ + b sin 2θ)f.

Thus the passing gravitational wave produces a strain

δLphy

Lphy
=
1

2
(a cos 2θ + b sin 2θ)f.

It is interesting to note the 2θ appearing in the formulas again due to the spin of
the field being 2.

One way to see what it means is to imagine first a wave ‘polarised’ so that
a �= 0, b = 0. When two mass points in the x-y plane kept along the x-axis (θ = 0)
at coordinates x = 0 and x = L feel a positive strain (will be pushed out) then,
at the same time mass points kept along the y-axis θ = π/2, cos 2θ = −1 will
feel the negative strain (pushed in). Mass points in the 45◦ direction will remain
unaffected. This is the horizontal-vertical polarization denoted by the plus symbol
‘+’.
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θ
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(x′, y′)
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Fig. 13.3: (a) A pair of particles in a plane perpendicular to the direction
of gravitational wave. (b) The plus (+) polarization (c) The cross (×)
polarization.

On the other hand if a = 0, b �= 0, then similar maximum strains are produced
at±45◦ lines and no strain in horizontal-vertical directions. This is the polarization
corresponding to h12 denoted popularly by ‘×’.

Detection of gravitational waves depends on the above principle. However, no
gravitational waves have been detected yet because of the smallness of the effect.
A big international program for measuring gravitational wave signals is underway.













Chapter 14

Schwarzschild and Kerr
Solutions

For the purpose of simplifying formulas, we use a unit of time so that
t stands for ct and unit of mass so that 2M stands for 2GM/c2 in this
chapter except for section 14.4 where c and G appear as usual.

We have already discussed in Chapter 4 the motion of bodies (like planets)
or light moving in the Schwarzschild field. The Schwarzschild solution holds the
same importance in relativistic theory of gravitation as the Coulomb field of a
point charge (or spherically symmetric charge distribution) holds for electrostatics.
What is important about this solution is its uniqueness: any spherically symmetric
mass distribution confined within a finite radius will produce a gravitational field
outside that mass distribution given by the Schwarzschild metric. The spacetime is
static where there is no matter. Even if the mass distribution changes with time in
any arbitrary way, so long as it keeps spherical symmetry, the spacetime is static
outside the distribution. This is the content of Birkhoff’s theorem.

A rigorous proof of the Birkhoff theorem cannot be given in this elementary
book. The argument can be summarised as follows. By a spherically symmetric
spacetime one means a spacetime on which every element of the rotation group
SO(3) acts as an isometry, that is, a diffeomorphism which preserves the metric
or inner product. If we start with any point in this spacetime and keep applying
all possible group diffeomorphisms, we get an “orbit” of SO(3) which is a surface.
The definition of spherical symmetry further requires that these orbits should be
2-dimensional space-like surfaces. It is then shown that coordinates can be chosen
so that the metric can be brought to the form

(ds)2 = −A(t, r)(dt)2 +B(t, r)(dr)2 + C(t, r)[(dθ)2 + sin2 θ(dφ)2].

The substitution of these metric components in Einstein equations (for matter
with perfect fluid tensor) then gives a general form of the Schwarzschild metric
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in those regions where there is no matter. The proof can be found for example in
Appendix B of Hawking and Ellis, Large scale structure of spacetime.

We discuss the geometry of the Schwarzschild spacetime when the mass M
is contained in a small region near r = 0.

14.1 The Schwarzschild Solution

The coordinate t in the Schwarzschild solution is the time shown by a clock sitting
with fixed coordinates in the asymptotic region (r →∞).

We know that near the gravitating body the clock will run slow. We may
expect that the clock will run slower and slower for small r and stop running
altogether at r = 0. But that is not true. The clocks stop running much before
that.

The infinitesimal proper time shown by a clock nailed to the coordinate
system (that is for r, θ, φ fixed) is

dτ =

(
1− 2M

r

)1/2

(dt)

where dt is the coordinate time shown by the clock at infinity. The interval dτ goes
to zero at the Schwarzschild radius r = 2M . Two light signals sent from a source
on this fixed clock near r = 2M with an interval of one second between them
(according to this clock) may be received by a stationary observer near r → ∞
with a gap of many years between them.

We can see that light cones begin to shrink (as seen in these coordinates)
near the surface r = 2M . Their opening angles become smaller and smaller as
r → 2M from the r > 2M side. For light we must have ds = 0 which implies that
radial light velocity in Schwarzschild coordinates, ±dr/dt = (1 − 2M/r) goes to
zero as one gets closer and closer to the surface. It is remarkable that the light
velocity becomes smaller in both directions: radially out as well as radially in!

At r = 2M light stays put at r = 2M and the surface contains light rays
running along the time axis t. This means the tangent vectors ∂/∂t are not time-
like but become null. This is obvious from the expression for g00. On the inside of
the surface the tangent vector ∂/∂t becomes space-like because of the change in
sign of g00, while ∂/∂r becomes the time-like vector. A light signal starting from a
point inside, r < 2M , can only move towards the ‘future’ which is r = 0. It cannot
come out. For this reason a spherical mass distribution which is entirely contained
within its Schwarzschild radius is called a Schwarzschild black hole.

The fact that light (or material bodies) falling towards the gravitating body
(which is assumed to be so compact that it is contained inside an r = 2M surface)
take an infinite amount of Schwarzschild coordinate time t does not mean that
they never reach r = 0. A clock carried by a falling observer who begins to fall
from r = R sees the clock ticking normally along its trajectory and reaching
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r = 0 in finite proper time R3/2π/
√
8M . (See Tutorial at the end of the chapter.)

This just means that t is not an appropriate coordinate to use on and inside
r = 2M . Although g11 and g00 become singular at r = 2M there is no singularity
in any physically relevant quantity, for example, scalar quantities (whose values
are independent of coordinates) constructed out of curvature tensors: R = gμνRμν

or RμνστRμνστ . But these quantities do become infinity at r = 0. That happens
to be a real singularity.

r = 2Mr = 0 Emitted light rays

Fig. 14.1: Light rays originating near r = 2M .

The surface r = 2M is a three-dimensional surface in four-dimensional space.
Its normal vector n = (dr)
 is null 〈n,n〉 = 〈dr, dr〉 = g11 = 0. Any light ray
starting from a point on the surface stays on the surface (or wraps around the
surface if the direction is not radial). It doesn’t fall in or get out. The surface is
generated by such null geodesics and is called a null surface.

In order to explore this surface we must use coordinates which are not singular
on it. The surface r = 2M is also an event horizon because it is like a one-way
membrane, objects can go in from outside (r > 2M) to inside (r < 2M) but not
the other way round.

We now explore the nature of the coordinate problem or coordinate singu-
larity at r = 2M by first studying a simpler case.
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The mathematically minded student may wonder why there should be any
coordinate singularity at all. After all, aren’t we supposed to define our coordinate
charts first before we study other properties of the manifold? Why did we admit
a problematical coordinate in the first place?

What we actually do in practice is that we assume a certain coordinate system
on a manifold and a certain form of the metric and solve the Einstein equation. In
the Schwarzschild case we did precisely that and obtained an exact solution. The
solution happens to hold for all values of r except that it has metric components
gμν or gμν being undefined for r = 2M and r = 0. The spacetime for r > 2M which
we can observe and which has been experimentally tested should be matched (or
‘continued’ or ‘extended’) with the spacetime for r < 2M if possible. In doing
this we find the nature of the singularities. The process is akin to extending the
domain of analyticity of an analytic function of a complex variable.

14.2 Kruskal-Szekeres Coordinates

14.2.1 Rindler Wedge as an Example

We cannot discuss the rigorous mathematical definition of extendibility in this
elementary book. Roughly speaking, a spacetime is called extendible if there is
a larger spacetime of which it can be considered a subset and the metric of the
larger space matches smoothly with the metric of the given space.

As an example consider the two-dimensional space called the Rindler wedge.
It is a space with coordinates (t, x);−∞ < t < +∞, 0 < x < +∞ and line element

ds2 = −x2 dt2 + dx2.

So, to begin with, the space is defined only on the half (x, t) plane as shown.
In order to explore the nature of this spacetime, we look for the light rays, or

null geodesics along which ds = 0. In two dimensions there is the advantage that
the null geodesics provide a system of coordinate mesh just as the coordinates
u = t− x, v = t+ x do for the Minkowski space.

The null geodesics require ds = 0 which means dx/dt = ±x or t = ± lnx +
const. The path of an incoming light ray, which corresponds to a negative sign, is
shown in the diagram.

Along the path of light rays (or null geodesics), u and v, defined by

u ≡ t− lnx, v ≡ t+ lnx

remain constant along outgoing and incoming rays respectively and characterise
a particular geodesic.

Using u, v as coordinates with ranges −∞ < u, v < +∞ we find

ds2 = −ev−ududv.
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We can easily absorb the expoentials and redefine

U = −e−u, ∈ (−∞, 0),

V = ev, ∈ (0,∞).

Since U is a function of u only and V of v, U, V also remain constant along the null
geodesics. The incoming light ray shown in the (x, t) diagram is now a straight
line parallel to the U -axis.
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x > 0

x

t

S∗

P

Path of an incoming light ray
v = t + ln x = constant

Fig. 14.2: Incoming light in ds2 = −x2 dt2 + dx2.

In these coordinates the metric becomes the Minkowski space metric ds2 =
−dUdV ! It can be made more explicit by choosing U = T −X and V = T +X
to give

ds2 = −dT 2 + dX2.

But note the range of coordinates U : (−∞, 0), V : (0,∞). The original spacetime
with coordinates (t, x),−∞ < t < +∞, 0 < x < +∞ (the shaded half plane in
Figure 14.2) is now mapped to one quarter wedge shaped region of the Minkowski
space in Figure 14.3.



292 Chapter 14. Schwarzschild and Kerr Solutions

The question naturally arises: what happens to the light ray that was coming
in? Should it stop at U = 0 or should it keep going and enter the region which
corresponds to negative values of x?
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Fig. 14.3: The original (x, t) coordinates are related to these as x2 =
−UV and exp(2t) = −V/U . Lines of constant t are straight lines with
t = −∞ corresponding to the −U half-axis and t = +∞ corresponding
to the V half-axis. Lines of constant x are rectangular hyperbolas. The
line x = 0 becomes the two half-axes. The incoming light signal travels
along the straight line V = constant. The path of light ray S∗P of Figure
14.2 continues in this extended spacetime along S∗PQ.

It is difficult to see what happens in the original diagram (Figure 14.2) be-
cause the light signal reaches x = 0 only asymptotically for t →∞. But it is clear
here. There is no reason to stop trajectories of light or material particles abruptly.
One should extend the spacetime by joining portions which naturally allow such
continuation. This is the essence of ‘extendibility’ of spacetime.

So, if we allow U, V to run over all possible values, we recover the full
Minkowski space which cannot be extended any further. The original half-plane is
maximally extended.

The original coordinate patch with x between zero and infinity could not
be extended to negative values of x because g00 = −1/x2 becomes singular at
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x = 0. Usually if any of the gμν ’s or gμν ’s become infinity at some point, then
it may mean that the coordinate system has a problem which can be cured by
choosing a proper set of coordinates and extending the spacetime if necessary.
Such a situation is called a coordinate singularity. At a coordinate singularity the
gμν or gμν may become singular but scalars constructed from the curvature tensor
R,RμνστRμνστ etc. are finite. If these scalars also become infinity at a point then
we have a genuine singularity. We shall see next that the singularity at r = 0 of
the Schwarzschild spacetime is a genuine singularity whereas the singularity at
r = 2M is a coordinate singularity.

14.2.2 Kruskal-Szekeres Coordinates

The Schwarzschild spacetime is spherically symmetric. Therefore we choose fixed
values for θ, φ and concentrate on the t, r plane.

The metric can be written with the simplified notation and dropping the θ, φ
part simply as

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2.

This metric clearly has a problem at r = 2M . We must determine the nature of
the singularity using the techniques we learnt in the last section for the Rindler
wedge. We shall notice the similarity of the region r > 2M and the region x > 0
of the Rindler wedge.

We treat the ranges 0 < r < 2M and r > 2M separately.

14.2.3 Region I: r > 2M

The null geodesics are given by ds = 0 which implies

dr

dt
= ±

(
1− 2M

r

)
or

dr∗I ≡
dr

(1− 2M/r)
= ±dt.

This is easily integrated to

t = ±r∗I + const.

where

r∗I = r + 2M ln
( r

2M
− 1

)
.
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Path of an incoming light ray

Fig. 14.4: Schwarzschild coordinates.

An incoming light ray has vI ≡ t + r∗I = constant, where r∗I = r +
2M ln(r/2M − 1). Notice the remarkable similarity of this diagram
with Figure 14.2.

As r ranges from 2M to ∞, r∗I ranges from −∞ to ∞. It is important to notice
that there is a one-to-one mapping between r and r∗I even if we are unable to write
a closed formula for r in terms of r∗I . The constants along the null geodesics are

uI = t− r∗I , vI = t+ r∗I ,

uI , vI take all values −∞ < uI , vI <∞. With these

ds2 = −
(
1− 2M

r

)
(dt)2 +

(
1− 2M

r

)−1

(dr)2

= −
(
1− 2M

r

)
[(dt)2 − (dr∗I )

2]

= −
(
1− 2M

r

)
(dt− dr∗I )(dt+ dr∗I )

= −2M
r

e−r/2Me(vI−uI)/4MduIdvI
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where r appearing in the formulas is supposed to have been expressed in terms of
r∗I = (vI − uI)/2. Looking at this expression we are prompted to use

UI = −e−uI/4M , VI = evI/4M

with ranges UI : (−∞, 0);VI : (0,∞) so that

ds2 = −32M
3

r
e−r/2MdUIdVI .

Since r is in the range of (2M,∞) the factor in front of dUIdVI is finite. There is
no singularity at r = 2M . We can go a step further by defining

UI = T −X, VI = T +X

and see that the region r > 2M is mapped into the region I in the figure which
corresponds to the Rindler wedge region in the Minkowski diagram. Except for the
overall r-dependent factor the metric is like the Minkowski metric. In particular,
all light rays move along the 45◦ lines as in two-dimensional Minkowski space.

To see where our original coordinates t, r are located, calculate

UIVI = −e(vI−uI)/4M = −er∗

I /2M = −er/2M
( r

2M
− 1

)
.

This shows that curves of constant r are the hyperbolas T 2 −X2 < 0. Points for
which r = 2M are the two half axes: the positive half axis for VI and negative half
for UI . Curves of constant t are curves of constant uI + vI or curves of constant
T/X,

T

X
=

VI + UI

VI − UI
=
1− e−t/2M

1 + e−t/2M
.

This shows that in the T -X plane straight lines in region I passing through the
origin and making angles between ±45◦ with the X-axis are lines of constant t:
t = 0 the X-axis itself, t = −∞ the −45◦ line and t =∞ the +45◦ line.

14.2.4 Region II: r < 2M

Now, take the region r < 2M . The null geodesic equation which requires dr/dt =
±(1− 2M/r) can be integrated as

t = ±r∗II + const.

where

r∗II = r + 2M ln
(
1− r

2M

)
.
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The difference from the previous case is that r∗II is always negative. The region
r = (0, 2M) is mapped to r∗II = (0,−∞). As before we define

uII = t− r∗II , vII = t+ r∗II ;

uII , vII take all values −∞ < uI , vI < ∞. This makes

ds2 =
2M

r
e−r/2Me(vII−uII)/4MduIIdvII

where r is understood to have been expressed in terms of r∗II = (vII−uII)/2. This
time we choose

UII = e−uII/4M , VII = evII/4M

with ranges UII : (0,∞);VII : (0,∞) so that

ds2 = −32M
3

r
e−r/2MdUIIdVII .

Now if we define

UII = T −X, VII = T +X

we see that the region t, 0 < r < 2M is mapped into the region-II of the X-T
plane. Constant r points lie on

T 2 −X2 = UIIVII = e−r/2M
(
1− r

2M

)
> 0

which are hyperbolas in region-II lying between the coordinate axes which cor-
respond to r = 2M and the hyperbola T 2 − X2 = 1 which is the singularity
r = 0.

We cannot extend beyond this r = 0 hyperbola because the metric becomes
genuinely singular due to the 32M3/r factor in the metric. One can check that it is
not just a coordinate singularity but a genuine singularity by calculating curvature
scalars.

Lines of constant t (along which r steadily decreases to zero) are time-like
straight lines passing through the origin and lying in region-II. These lines end
at the r = 0 hyperbola

T

X
=

VII + UII

VII − UII
=
1 + e−t/2M

1− e−t/2M
> 1.

The Killing vectors ∂/∂t which are tangent to hyperbolas r = constant are
space-like in this region.
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Fig. 14.5: Kruskal-Szekeres coordinates.
Lines of constant t are straight lines, with t = −∞ corresponding to the
−U half-axis and t = +∞ corresponding to the V half-axis. Lines of
constant r > 2M are rectangular hyperbolas in Region I with r = 2M
corresponding to the two half-axes. In Region II constant r lines are
hyperbolas but spacetime cannot be extended beyond the singularity
r = 0 shown by a double-lined hyperbola.

The coordinates of Region I and Region II join together smoothly and can
be denoted by the same symbol:

U = UI = UII , V = VI = VII .

14.2.5 Horizon and the Black Hole

The extension of spacetime in the last section reveals that in the Region II corre-
sponding to r < 2M all future directed time-like or light-like curves end up at the
singularity r = 0. If somehow all mass is compressed in a spherically symmetric
way inside the Schwarzschild radius r = 2M , then not only would nothing come
out of the surface, all matter inside would eventually collapse into the singularity
r = 0 because that is the fate of all future-directed time- or light-like curves. The
singularity is called the Schwarzschild black hole.
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The surface r = 2M consists of all those light rays which neither fall in
or can come out. In fact the surface is generated by such null geodesics as the
construction above shows.

The surface r = 2M is an event horizon which means that events beyond the
surface (that is those in the region II corresponding to r < 2M) cannot influence or
communicate with events in region I. The surface of any future half of a light cone
in the flat Minskowski space is an example of a horizon because the events inside
the cone can only influence events inside it. What makes the horizon r = 2M non-
trivial is that it is a “trapped surface” of finite extension and area. The singularity
at r = 0 is hidden or covered by the surface, the singularity is not a ‘naked
singularity’.

Because the event horizon is a null surface, the induced metric on it is de-
generate. But there is no problem in defining the area of the t =constant subset
which has positive definite space-like metric. For r=constant and t = constant the
metric of the surface is ds2 = r2(dθ2 + sin2 θdφ2) which gives 4πr2 as the area of
such surfaces.

A remarkable feature of the singularity is its space-like nature. From the
naive picture of the Schwarzschild coordinates one is tempted to think of the
singularity r = 0 as a one-dimensional time-like straight line. But the Kruskal-
Szekeres coordinates show that it is actually a space-like subset.

14.3 Extension of Schwarzschild Spacetime

It is natural to ask the question, what corresponds to the remaining half-plane
corresponding to negative values of V ?

The radial lines of constant t (from −∞ to +∞) move in Region I from
negative U -axis to positive V -axis when t is a time-like coordinate. The coordinate
t becomes space-like from here. The time coordinate continues as the decreasing
variable r from (t = ∞) ↔ (r = 2M) up to r = 0. The radial lines of constant t
pick up the role of the space-like variable r which has been decreasing from ∞ to
r = 2M in Region I and now t runs from +∞ to −∞ when it reaches the positive
U -axis.

The radial lines can be extended backwards in Regions III and IV for the
same constant values. Similarly the hyperbolas of constant r have their mirror
images in Region III and Region IV. The mirror singularity in Region IV is such
that light coming from it can come to the physical Region I but no light or particle
can go from Region I to Region IV. This hypothetical singularity is called a white
hole.

Region III corresponds to a space-like coordinate r running from 2M to ∞
but that region is inaccessible to us in Region I. No time-like curve can start in
Region I and move forward into Regions III or IV.



14.4. Spherical Mass Distribution: Interior Solution 299

�T

�X

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

���V

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��� U

r=0

r=0

Region I

Region II

Region III

Region IV

�������������

�
�

�
�

�
�

�
�

�������������

�
�

�
�

�
�

�
�

Fig. 14.6: Maximal Extension of Schwarzschild Spacetime.
The Regions III and IV are mathematically natural extensions of the
Schwarzschild spacetime. All geodesics (time-like, light-like or space-
like) can either be extended indefinitely on both sides or they end up
at the singularities (the black hole or the white hole in Regions II and
IV respectively).

One can wonder why there has to be a white-hole. Why can’t we extend the
spacetime throughout Region IV? The reason is that there is no problem with the
differential manifold or coordinates. But the Riemannian metric has been extended
to these regions by continuation of the metric which has a factor of 1/r. Thus to
use a continuously differentiable metric everywhere we need to have the symmetric
location of the singularity.

14.4 Spherical Mass Distribution: Interior Solution

The Schwarzschild solution represents a gravitational field outside a spherical mass
distribution. We now solve the Einstein equations in the special but unrealistic
case of static spherical matter distribution in the form of a perfect fluid. Even
this simple case is able to show how relativistic theory differs qualitatively from
Newtonian theory.
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Let the metric be of the Schwarzschild form

ds2 = −a(r)c2(dt)2 + b(r)(dr)2 + r2(dθ)2 + r2 sin2 θ(dφ)2 (14.1)

where

a = a(r) = eA, b = b(r) = eB

are functions of r only.
The stress energy tensor of the fluid is

Tμν = pgμν + (ρ+ p/c2)UμUν

where Uμ is the velocity field of matter flow and p and ρ are pressure and mass
density respectively. p and ρ are both functions of r only. For a static equilibrium
we expect U to have zero spatial components, therefore

Uμ = (U0 = c/
√

a, 0, 0, 0).

Notice the normalization to make U a velocity four-vector: 〈U,U〉 = −c2. This
makes Tμν “diagonal”,

T 00 = ρc2/a, T 11 = p/b, T 22 = p/r2, T 33 = p/(r2 sin2 θ)

and the covariant form of it is

T00 = ρc2a, T11 = pb, T22 = pr2, T33 = p(r2 sin2 θ).

The Einstein equations correspond to the four non-zero components of Gμν ;

G00 =
ab′

b2r
+

a

r2

(
1− 1

b

)
=
8πG

c4
ρc2a, (14.2)

G11 =
a′

ar
+

1

r2
(1− b) =

8πG

c4
bp, (14.3)

G22 =
r2

2b

[
2

(
a′

a

)′
+

(
a′

a
+
2

r

)(
a′

a
− b′

b

)]
=
8πG

c4
r2p. (14.4)

We have not written the fourth equation for G33. It is the same as for G22 except
that both sides are multiplied by the same factor sin2 θ. The G00 equation can be
written (after cancelling a on both sides) as

1

r2

d

dr

[
r

(
1− 1

b

)]
=
8πG

c2
ρ.

If we define, in place of ρ(r), a variable

m(r) = 4π

∫ r

0

ρ(r)r2 dr,
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then our G00 equation can be solved for b,

r

(
1− 1

b

)
=
2Gm

rc2
+ constant.

The constant should be zero because as r → 0, m(r) should be zero. Thus

b =

(
1− 2Gm

rc2

)
. (14.5)

If the mass distribution is up to radius R and after that the stress tensor is
zero, the parameter m acquires a value

M = m(R) = 4π

∫ R

0

ρ(r)r2 dr

and after that the metric has to be joined to the Schwarzschild metric with para-
meter M .

Note that M is not, as seems on first sight, the proper mass contained up
to radius R as 4πr2dr is not the volume of the shell between r and r + dr. The
3-volume of the shell should include the “

√
g” factor and the mass contained is

actually

Mproper = 4π

∫ R

0

ρ(r)r2[1− 2Gm(r)/rc2]−1/2 dr.

This factor is always positive and greater than 1 if the hypersurface spanned by
coordinates r, θ, φ is purely space-like with signature (+,+,+) in the static case
we are considering. The interpretation of M is that it accounts for all energy,
including the energy contributed by the gravitational field.

The G11 equation can now be solved for A′ = a′/a where a = eA. After
substituting the value of b we get

A′ = 2G
m+ 4πr3p/c2

r(rc2 − 2mG)
. (14.6)

Next, instead of solving the equation for G22 we look at Tμν
;ν = 0 which is actually

a conseqence of the Bianchi identities in contracted form, Gμν
;ν = 0. For μ = 1 it

is

T 1ν
;ν = T 10

;0 + T 11
;1 + T 12

;2 + T 13
;3.

Note that even if T 10 = 0 everywhere this does not mean T 10
;0 is zero! Actually

T 10
;0 = T 10

,0 + Γ1
00T

00 + Γ1
10T

11. Similarly for other terms. Collecting them to-
gether and using the Christoffel symbols of the Schwarzschild form of metric, we
get

T 1ν
;ν =

A′ρc2

2b
+

A′p

2b
+

p′

b
= 0,
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which gives, after substituting the expression for A′, the Oppenheimer-Volkoff
equation

p′ =
dp

dr
= −G

(ρc2 + p)(m+ 4πr3p/c2)

r(rc2 − 2mG)
. (14.7)

We can rewrite this equation in a form which shows relativistic correction factors
to the Newtonian formula (dp = −Gmρdr/r2) for equilibrium

dp

dr
= −Gm(r)

r2
ρ

[
1 +

p

ρc2

] [
1 +

4πr3p

m(r)c2

] [
1− 2m(r)G

rc2

]−1

.

This formula gives us a qualitative understanding of gravitational collapse. One
can start at the centre r = 0 with some unknown value of pressure p(0) and
integrate outward up to the surface of the star, knowing the relation between
density and pressure.

More realistic models of stars can be built up using the spherical symmetry.
Astrophysics deals with this subject using the physical inputs about the consti-
tution of matter, its equation of state, etc. The general picture seems to be this.
Gravitation becomes very effective if the total mass of the gaseous matter which
begins to collapse is very high. Gravity begins to pull matter inwards, increas-
ing pressure and temperature, leading to nuclear processes such as conversion of
hydrogen into helium with accompanying energy release. The equilibrium of ther-
mal pressure and the gravitational pull may go on for billions of years as long as
hydrogen keeps burning into helium. This is how a typical star like our Sun works.

But after the ‘nuclear fuel has burnt out’ (that is there are no longer nuclear
processes available where by forming a heavier element the binding energy advan-
tage can release energy as radiation), the star cools and contracts. If the ‘electron
degeneracy pressure’ (due to the Pauli principle of electrons not liking to be too
close to each other) is large enough to counter gravitational pull, it becomes a
‘white dwarf’, staying inactive like that. But if the mass of the star is much larger
than a certain minimum it has no option but to collapse further under its own
weight.

The Chandrasekhar limit of about one and a half solar masses gives an idea
of how massive a star has to be to undergo unchecked gravitational collapse.

Thus a sufficiently massive star can go on collapsing further and violent
events like supernova explosions can happen along the way. It is possible that
even after a big fraction of matter is thrown off in an explosion, the remaining
mass can form a ‘neutron star’ where practically all nuclei are touching each other
and the matter density is that of nuclear matter. The matter is supported by the
‘neutron degeneracy’ pressure just as the electron degeneracy pressure supports a
white dwarf. A neutron star of about one solar mass is a very compact object of
about 10 kilometer size, with its Schwarzschild horizon of three kilometers not too
deep inside it.
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How do we know that in various violent astrophysical processes there are not
mass lumps big enough so that even the neutron degeneracy pressure is unable to
stop the collapse? We can conclude from known physics and from reasonable ex-
trapolation that in such cases black holes are formed where all matter has vanished
behind a horizon.

A black hole has strong gravitational fields. Matter in its neighbourhood is
attracted to it. The swirling matter around a black hole in its exceptionally strong
gravitational fields will produce all kinds of radiation as it falls into the hole. That
is our chance of inferring a black hole. It is believed there are a large number of
black holes of a few solar masses. In addition it is believed that practically every
galaxy has at its center an ‘active galactic nucleus’ which, judging by the speeds
of stars and gaseous matter around it, implies the existence of supermassive black
holes of mass equal to millions of solar masses.

A Schwarzschild black hole has zero angular momentum and would be rather
an exception. In general there will be rotating black holes which are described by
the exact solution of the Einstein equation known as the Kerr solution.

14.5 The Kerr Solution

Realistic collapse is hardly ever spherically symmetric. Actual collapse involves
rotation of collapsing mass about an axis. An axially symmetric, stationary, ex-
act vacuum solution of Einstein’s equations was discovered by R.P. Kerr in 1963
and is known by his name. This is also a black hole solution in the sense that
it is asymptotically flat and there is a bounding surface or horizon into which
matter or radiation can fall but never come out. The Kerr solution represents a
“rotating black hole”. For zero angular momentum the Kerr solution reduces to
the Schwarzschild solution.

A truly remarkable feature of these solutions is their uniqueness. The Kerr
solution depends on just two parameters, M and a related to the total mass and
angular momentum of the matter contained in them. It can be shown that any
asymptotically flat, stationary solution of vacuum Einstein equations which has a
horizon and which is non-singular outside the horizon must be the Kerr solution
for some definite values of M and a. It seems that when all collapsing matter has
vanished behind the horizon and all gravitational waves radiated out, regardless
of what is happening inside, the gravitational field outside is that given by the
Kerr solution with fixed values of the two parameters. There are no distinguishing
features of the black hole except its mass and angular momentum.

The Kerr solution is simple to look at but has a reputation of being compli-
cated to derive. Even the verification that it is a solution is famously described as
“cumbersome” by Landau and Lifshitz in their book, Classical Theory of Fields.

In this chapter we take the Kerr metric as given. A diligent and ambitious
student can go directly to the relevant chapter of S.Chandrasekhar’s book, The
Mathematical Theory of Black Holes if she has learnt the techniques of calculating
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connection and curvature using Ricci coefficients as we discussed in Chapter 9.
One must be patient and calculate slowly but accurately.

We first give the solution in its so-called Kerr-Schild form and go by steps
to the other, more familiar Boyer-Lindquist form.

Let us consider a flat spacetime with coordinates x (they need not be
Minkowski coordinates) and metric η defined on it. Let K = Kμ∂/∂xμ be a

null vector field, that is, null with respect to metric η,

〈K,K〉η = ημνKμKν = 0.

Let κ = K	 = κμdxμ be the associated covariant field

κμ = ημνKν .

Let us define a new metric (on the same manifold)

g ≡ η + κ⊗ κ = (ημν + κμκν)dxμdxν .

It is easy to see that the new metric is non-degenerate (with gμν = ημν −KμKν

as inverse) and K remains a null vector field with respect to this new metric:

〈K,K〉g = gμνKμKν = 0.

This gives us a method to construct new metrics from a flat metric by choosing
an appropriate null vector field.

An important result in general relativity is that if the Ricci tensor Rμν is
equal to zero (that is vacuum Einstein equations are satisfied) then the integral
curves of K form a geodesic congruence. The proof is not difficult and can be
found in Chandrasekhar’s book.

The Kerr solution belongs to this special form of metric.

14.5.1 The Kerr-Schild Form

The Kerr-Schild form of metric is given in coordinates t∗, x, y, z as

ds2 = −(dt∗)2 + (dx)2 + (dy)2 + (dz)2

+
2Mr3

r4 + a2z2

[
r(xdx+ ydy) + a(xdy − ydx)

r2 + a2
+

zdz

r
− dt∗

]2

(14.8)

where M and a are constants (related to total mass and angular momentum) and
the variable r is implicitly defined by

x2 + y2

r2 + a2
+

z2

r2
= 1.
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The null covariant vector field is defined by

κ =

√
2Mr3

r4 + a2z2

[
r(xdx+ ydy) + a(xdy − ydx)

r2 + a2
+

zdz

r
− dt∗

]
and to check that it is indeed a null field, one can ignore the square-root in front.
Then using the Minkowski metric, 〈κ, κ〉 is (up to the factor)

−1 + (xr − ay)2

(r2 + a2)2
+
(yr + ax)2

(r2 + a2)2
+

z2

r2

which vanishes by the definition of r.

14.5.2 Remarks on Kerr-Schild Metric

There are some obvious inferences from this form:

Asymptotic Flatness

The metric is asymptotically flat and reduces to the flat Minkowski metric for
large values of x, y, z. This is so because, solving the quadratic equation defining
r2,

2r2 = (x2 + y2 + z2 − a2) +
√
(x2 + y2 + z2 − a2)2 + 4a2z2,

therefore for large |x|, |y|, |z| >> |a| , r2 ∼ x2 + y2 + z2. The factor appearing in
front of κ goes to zero.

a = 0 Corresponds to Schwarzschild

For a = 0 the solution reduces to the Schwarzschild case because then r2 =
x2 + y2 + z2 and xdx+ ydy + zdz = rdr, so

ds2 = −(dt∗)2 + dr2 + r2dθ2 + r2 sin2 θdφ2 +
2M

r
[dr − dt∗]2.

Choosing v = t∗ − r and eliminating t∗ in favour of v we get the form

ds2 = −
(
1− 2M

r

)
dv2 − 2dvdr + r2dθ2 + r2 sin2 θdφ2.

This is the same as the Schwarzschild metric in the so-called ingoing Eddington-
Finkelstein coordinates. If we convert the v coordinate into

v = t− r − 2M ln
( r

2M
− 1

)
, For r > 2M

= t− r − 2M ln
(
1− r

2M

)
, For r < 2M

we get back the standard Schwarzschild form.
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Disc Singularity

The metric components are everywhere well defined except where the denominator
r2 + a2z2 of the factor in κ vanishes. That obviously happens when z = 0 and
r = 0. From the defining relation for r above it is obvious that surfaces of constant
r are ellipsoids of revolution. This means that the surface r =constant cuts a plane
through the symmetry axis (the z-axis) in an ellipse. For example the plane x = 0
cuts the surface of constant r in

y2

r2 + a2
+

z2

r2
= 1

which has eccentricity a/
√

r2 + a2 and the foci at y = ±a from the z-axis. Because
the position of the foci is independent of the value of r, these ellipsoids have the
same common foci on the ring corresponding to z = 0 and x2 + y2 = a2. They are
‘confocal’ ellipsoids of revolution.

When r → 0 the ellipsoids become smaller and smaller and flatter and flatter
in the z-direction. Their eccentricity increases. At r = 0 the upper surface (z > 0
side) and lower surface of the ellipsoid join together to form a disc x2 + y2 ≤ a2

Thus the true singularity of the Kerr solution is in the form of a disc. This
is the only singularity it has.
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Fig. 14.7: Disc Singularity and surfaces of constant r.
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14.5.3 Boyer-Lindquist Coordinates

We change the Kerr-Schild form of the metric into a physically more appealing
form given by Boyer and Lindquist.

Step 1

As a first step, we notice the ellipsoidal nature of constant r surfaces

x2 + y2

r2 + a2
+

z2

r2
= 1

and define new coordinates θ, φ1 respecting this geometry:

x =
√

r2 + a2 sin θ cosφ1,

y =
√

r2 + a2 sin θ sinφ1,

z = r cos θ.

This gives immediately

dx2 + dy2 + dz2 =
r2 + a2 cos2 θ

r2 + a2
(dr)2 + (r2 + a2 cos2 θ)(dθ)2

+(r2 + a2) sin2 θ(dφ1)
2,

r(xdx+ ydy) + a(xdy − ydx)

r2 + a2
=

r2 sin2 θ

r2 + a2
dr + r sin θ cos θdθ

+a sin2 θdφ1,

zdz

r
= cos2 θdr − r sin θ cos θdθ.

Therefore

ds2

= −(dt∗)2 +
r2 + a2 cos2 θ

r2 + a2
(dr)2 + (r2 + a2 cos2 θ)(dθ)2

+(r2 + a2) sin2 θ(dφ1)
2

+
2Mr

r2 + a2 cos2 θ

[
−dt∗ +

r2 + a2 cos2 θ

r2 + a2
dr + a sin2 θdφ1

]2

.

Step 2

Further simplification is achieved by defining

dφ1 = dφ2 +
a

r2 + a2
dr,

(
or φ1 = φ2 + tan−1(r/a)

)
;
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then

ds2 = −(dt∗)2 + (dr)2 + (r2 + a2 cos2 θ)(dθ)2 + (r2 + a2) sin2 θ(dφ2)
2

+2a sin2 θ(dφ2dr) +
2Mr

r2 + a2 cos2 θ

[−dt∗ + dr + a sin2 θdφ2

]2
.

This by itself is quite a useful form and used often. However there are ‘cross-terms’
drdφ2, drdt∗ and dφ2dt∗.

Step 3

To eliminate drdt∗ and drdφ2 we guess

dt∗ = dt+A(r)dr, dφ2 = dφ+B(r)dr

where A and B are functions of r, to be determined by the condition that drdt
and drdφ terms do not occur in the metric. Substituting and solving for A and B
we get

A = −2Mr

Δ
, B = − a

Δ
, Δ ≡ r2 − 2Mr + a2.

This brings the metric in the standard Boyer-Lindquist form,

ds2 = −(dt)2 +
ρ2

Δ
(dr)2 + ρ2(dθ)2 + (r2 + a2) sin2 θ(dφ)2

+
2Mr

ρ2
(dt− a sin2 θ dφ)2 (14.9)

where the frequently occuring expression is abbreviated as

ρ2 = r2 + a2 cos2 θ.

Another form in which the metric is usually written is

ds2 = −
[
1− 2Mr

ρ2

]
(dt)2 +

ρ2

Δ
(dr)2 + ρ2(dθ)2

+

[
(r2 + a2) +

2Mra2

ρ2
sin2 θ

]
sin2 θ(dφ)2

−4Mar

ρ2
sin2 θ dφdt. (14.10)

In practice t∗ of the Kerr-Schild form of metric is also written as t but we have kept
a separate notation to emphasize that the two time coordinates (in the Kerr-Schild
form and the Boyer-Lindquist form) are not the same.
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14.5.4 Stationary and Axisymmetric Nature

None of the metric components depend on t or φ. This means that T = ∂/∂t and
L = ∂/∂φ are Killing vector fields. Motion of test bodies will conserve the values
of 〈T,U〉 and 〈L,U〉 where U is the four-velocity of the particle.

14.5.5 Meaning of a

The Kerr solution is asymptotically flat. At large values of coordinate r the func-
tion ρ2 = r2 + a2 ≈ r2 and the metric becomes as that of a weak field of slowly
rotating mass discussed in Chapter 13. In particular the dφdt term has coeffi-
cient −4Ma sin2 θ/r which, when compared to 4JG(xdy− ydx)/c3r3, gives us the
physical meaning of parameter a. The total angular momentum J of the system
described by the Kerr solution is equal to Ma = J in the units of this chapter.
(In ordinary units a has dimensions of length, M has dimensions of mass, then
Ma = J/c.) In other words, a is the ratio of total angular momentum and total
mass of matter causing the Kerr spacetime.

14.5.6 g00 = 0, Horizons and Ergosphere

We saw in the case of the Schwarzschild solution that g00 goes to zero at the surface
r = 2M leading to clocks fixed to the coordinate system stopping altogether.
Similarly, in Kerr spacetime the proper time shown by a clock with fixed value of
r, θ, φ stands still when r has the value given by g00 = −1 + 2Mr/ρ2 = 0 or at

r = M ±
√

M2 − a2 cos2 θ.

In the Schwarzschild case the surface of infinitely slow clocks (the surface on which
g00 = 0) coincided with the event horizon. But here, a particle or light can still
escape to infinity from the surface where g00 = 0.

The event horizon, which is the null surface of finite extent on which light
beams hover and neither go in nor away to infinity, is actually given by

Δ = 0 ⇐⇒ r± = M ±
√

M2 − a2.

The surfaces r = r± are event horizons. The surfaces of g00 = 0 coincide with
r± along the z-axis, but for other values of θ there is a region between the two
surfaces: the horizon r+ = M +

√
M2 − a2 is inside the surface of infinitely slow

clocks, r = M +
√

M2 − a2 cos2 θ. The region between these surfaces from where
a particle can escape to infinity is called the ergosphere.

The reason for that name is this. Take a particle falling from rest from some
fixed value of r in the plane θ = π/2. The particle will keep within this plane
because of axial symmetry but will not follow a radial trajectory. Because of the
‘rotating’ nature of whatever mass distribution (or black hole) is creating the
Kerr spacetime, it will drift along the direction of rotation and acquire angular
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velocity in the same direction as the mass distribution. But we can counter it
by giving an initial condition (of sufficient opposite angular momentum) if it is
outside the g00 = 0 surface so that it doesn’t move in the angular direction of the
Kerr spacetime.

But if a particle is in the ergosphere it is forced to move in the angular
direction.

Even light is forced to sweep along in the direction of rotation of the Kerr
spacetime.

For a light signal in the x-y plane (θ = π/2) the condition ds = 0 gives

0 = −
[
1− 2Mr

ρ2

]
(dt)2 +

ρ2

Δ
(dr)2

+

[
(r2 + a2) +

2Mra2

ρ2

]
(dφ)2

−4Mar

ρ2
dφdt.

Dividing by (dt)2 and evaluating on the g00 = 0 surface where θ = π/2, r =
2M,ρ2 = 4M2,Δ = a2, we get

4M2

a2

(
dr

dt

)2

+ (4M2 + 2a2)

(
dφ

dt

)2

− 2a

(
dφ

dt

)
= 0.

An immediate conclusion from this equation is that dφ/dt cannot be negative
because in that case all three terms are strictly positive and the equation cannot
be satisfied. Even for dφ/dt = 0 we must have dr/dt = 0 so light doesn’t move
at all but stays put at the point with fixed r, φ and θ = π/2. With dφ/dt > 0,
non-zero solutions for dr/dt are allowed if

0 < (2M2 + a2)

(
dφ

dt

)
< a.

In the ergosphere all material particles as well as light have to rotate in the same
sense as that of the mass distribution that is causing the gravitational field.

14.5.7 Penrose Process

The Killing vector field T = ∂/∂t is time-like in the outer region and space-like in
the ergosphere.

The Killing vector field determines a conserved quantity 〈T,U〉 along the
trajectory. If m is the rest mass of the particle falling along the geodesic, then
E = −m〈T,U〉 is the energy of the particle.

Since U remains a future-directed time-like vector, and T becomes space-like
in the ergosphere, 〈T,U〉 being the inner product of a time-like and a space-like
vector can be positive, negative or zero depending on the point and the direction.
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Fig. 14.8: Disc Singularity, g00 = 0 surfaces, horizons and ergosphere.

Only one actant is shown for clarity. Various surfaces are indicated by
their intersection curves with the coordinate planes. The disc singu-
larity is shown by hatched lines. The two g00 = 0 surfaces correspond
to AC(r = M −√M2 − a2 cos2 θ) and BF(r = M +

√
M2 − a2 cos2 θ).

Point C corresponds to r = 0 and touches the disc singularity. F corre-
sponds to r = 2M . The two horizons are AD(r = r− = M−√M2 − a2)
and BE(r = r+ = M +

√
M2 − a2).

The Penrose process is a hypothetical way of extracting energy from a rotat-
ing black hole. The idea is to throw a body with positive energy E = −m〈T,U〉 > 0
with suitably defined direction so that it falls into the Ergosphere and arrange
so that it breaks into two pieces, with rest masses m1 and m2. The ‘explosion’
of the particle is to be so timed and managed that the particle with mass m1

follows a geodesic with a starting four-velocity U1 corresponding to negative
E1 = −m1〈T,U1〉 < 0 and the other particle (rest mass m2 with positive en-
ergy E2 = −m2〈T,U2〉 > 0 and direction U2 so that it eventually gets out of the
ergosphere. (Actually if particle 2 has to come out, particle 1 must fall into the
black hole.) At the point of breaking, the four-momenta of the three particles obey
mU = m1U1 +m2U2 therefore E = E1 +E2. Thus the particle 2 which returns to
the outside region has energy E2 = E − E1 = E + |E1| > E.

The particle which falls into the black hole has negative energy, and one
can show that it must have negative angular momentum as well. So the total
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energy and the angular momentum of the black hole is reduced. The Penrose
process allows extraction of energy from a rotating black hole by slowing down its
spinning. This sets a limit on the total energy that can be so extracted because if
the black hole stops spinning altogether the separation of the two surfaces which
enclose the ergosphere will vanish too.

14.6 Tutorial

Exercise 72. Start with the flat spacetime metric

−dt2 + dr2 + r2dθ2 + r2 sin2 θdφ

for which dr + dt is a null one-form field. Add f(r)(dr + dt)2 to get the new metric

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ + f(r)(dr + dt)2.

Find the Ricci tensor for this metric and show that the Ricci tensor is zero only for f of
the form f = (constant)/r which gives the Schwarzschild metric. What are the Riemann
tensor components for f(r) = exp(−r/a)?

Answer 72. Steps:
Choose coordinates v = r + t, r, θ, φ and an o.n. “coframe”. One choice is

α0 = F (r)dv − 1

F (r)
, α1 =

1

F (r)
dr, α2 = rdθ, α3 = r sin θ

where F =
√

1− f . Inversely,

dv =
1

F
(α0 + α1), dr − Fα1, dθ =

1

r
α2, dφ =

1

r sin θ
α3.

The Ricci rotation coefficients can be calculated as for example in

dα0 = F ′dr ∧ dv = −F ′α0 ∧ α1

where F ′ = dF/dr. The non-zero ones are

F 0
01 = −F ′, F 2

12 =
F

r
= F 3

13, F 3
23 =

cot θ

r
.

These determine fabc = ηadF d
bc which in turn determine ωabc. The connection matrix is

(non-zero) components

ω0
1 = F ′α0 = ω1

0, ω1
2 = −F

r
α2 = −ω2

1,

ω1
3 = −F

r
α3 = −ω3

1, ω2
3 = −cot θ

r
α3 = −ω3

2.

The Riemann tensor is calculated from Ω = dω + ω ∧ ω. The non-zero components are

R0
101 = −FF ′′ − (F ′)2,

R0
202 = −FF ′

r
= R0

303 = R1
212 = R1

313,

R2
323 =

1− F 2

r2
.
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If we include the maximally extended coordinates as well we get the diagram as
shown in the second figure below.
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Fig. 14.9: The Penrose diagram for the Schwarzschild spacetime show-
ing Regions I, II, III and IV of the Kruskal-Szekeres coordinates. The
double line corresponds to the singularity.





Chapter 15

Cosmology

An important application of the general theory of relativity is to the universe
itself. The science of the universe is called cosmology. Cosmology is a vast subject
requiring a thorough knowledge of many branches of physics. We give only the
barest outline of how the general theory of relativity defines the picture of our
universe.

15.1 The Universe

Our universe is made up of gravitationally clustered matter in galaxies, and unclus-
tered energy including radiation. Galaxies have been surveyed thoroughly through
the optical, radio and other telescopes. They are estimated to be several billion in
the observable part of the universe.

A typical galaxy, like our home galaxy Milky Way, is like a flattish disc
containing about 1011 stars. Our Sun is just one of these stars. A typical galaxy
is about several kilo parsecs in size. (A parsec is an astronomical unit of distance
equal to 3.26 light years). The typical mass of a galaxy is of the order of 1012 solar
masses. Our nearest neighbour galaxy is Andromeda about 750 kpc away.

There are two very important experimental facts about the distribution of
all forms of energy and matter.

Galaxies are uniformly distributed. Typical distances between galaxies range
from 50 kpc to 1 Mpc (mega parsec). These local inhomogenities smoothen out if
we see the universe on a very large scale. At a scale of 1000 Mpc the universe will
look like a uniform density cloud of dust, each galaxy a particle of dust.

Even though we are forced to make all our observations from our own galaxy,
(in fact from our own solar system) all observations seem to suggest that there is
no particular feature or mark to distinguish one place of the universe from another,
nor any particular direction more preferable than the other.
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The assumption that the universe looks the same from anywhere and in all
directions is called the cosmological principle of homogeneity and isotropy of its
(three-dimensional) space.

But the universe is changing along the time axis.

The galaxies are moving away from each other. If we measure distances of
nearby galaxies from our galaxy, it seems that all these distances increase in time
by the same proportionality factor. So if a galaxy is twice as far as compared to
another, then it recedes twice as fast. The linear relationship between the speed
with which a galaxy recedes away (as measured by redshift of spectral lines) and
its distance, is called the Hubble law. We must remember that light from galaxies
very far away (the farthest observed is about 3 billion light years away) takes much
time to travel to us and its redshift represents the velocities of those earlier times.
This has to be taken into account. Light from distant objects gives us information
about how the universe was some time ago and that helps us guess how it has
been changing.

The experimental validity of Hubble’s law means that the galaxies have very
small peculiar velocities, that is velocities over and above the receding velocity
governed by Hubble’s law.

Homogeneous and Isotropic Universe

The picture that emerges is as follows. Imagine a uniform density fluid whose
particles (each a galaxy) have fixed unchanging coordinates. But the physical
distances between these particles keep increasing. At any given time the physical
distance is obtained by multiplying the fixed ’coordinate distance’ between the
particles by a positive factor a(t) called the scale factor. The picture often given
in popular books on cosmology is that of a baloon in which air is being blown
in. As the balloon expands the points on its surface recede from each other. One
should notice that there is no particular point on the baloon which is special: all
points move away from each other without any one of them being the “center”. It
is a very useful and basically correct picture in two dimensions. Another picture
(in three dimensions) is a cake being baked in an oven. As the cake bakes it swells
in all directions, the raisins and nuts embedded in it move away from each other.

The universe changes with time, but at a fixed time it looks spatially
isotropic. We further assume that it would look isotropic from all points as well.
Then the universe has to be maximally symmetric, as far as three-dimensional
space is concerned. We can choose coordinates so that on the large scale the met-
ric is of the form

ds2 = −c2dt2 + a(t)2(dσ)2 (15.1)

where the spatial metric (dσ)2 is both homogeneous and isotropic. We have dis-
cussed maximally symmetric metrics in Chapter 10. The high degree of symmetry
completely determines the three-dimensional space determined by a constant k.
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There are just three choices corresponding to positive (k = 1), negative (k = −1)
or zero (k = 0) curvature:

(dσ)2 =
(dr)2

1− kr2
+ r2(dθ)2 + r2sin2θ(dφ)2, k = 0,±1. (15.2)

Our starting point therefore is the metric in coordinates xμ = (x0 = ct, r, θ, φ)
with

gμν =

⎛
⎜⎜⎝
−1 0 0 0
0 a2/(1− kr2) 0 0
0 0 a2r2 0
0 0 0 a2r2 sin2 θ

⎞
⎟⎟⎠ . (15.3)

This metric is called the Friedman-Robertson-Walker or FRW metric.

We have written the scale factor a(t) as a function of time t rather than the coordinate
x0 = ct. This means that when we write ȧ it means da/dt and not da/dx0. Also, we take r, θ, φ
to be dimensionless. This is particularly convenient as this means k is dimensionless. The scale
factor a(t) has dimensions of length. The time coordinate t which divides or (“foliates”) the
spacetime into surfaces of maximal spatial homogeneity is called the cosmic time coordinate. If
we neglect our own peculiar velocity then the time shown by our clocks ‘runs at the same rate’
as the cosmic time.

Hubble Parameter

Since space is homogeneous, we can choose the origin of coordinates in our own
galaxy. A galaxy has the physical distance s(t) = a(t)|d(r, θ, φ)| from the ori-
gin where |d(r, θ, φ)| is the coordinate distance (as measured by dσ2). |d(r, θ, φ)|
remains constant as the universe evolves. Therefore

ds

dt
= ȧ(t)d ≡ H(t)s(t)

where

H(t) =
ȧ

a
. (15.4)

H(t) is called the Hubble parameter. This equation states that the speed of re-
ceding galaxies is proportional to the separation between them. The present value
of H denoted by H0 is determined by the velocities of neighbouring galaxies. Red
shift of much farther galaxies gives information of H at earlier times, which is
quite useful.

As a ratio of velocity and distance the Hubble parameter has dimensions
of inverse time. The present value of the Hubble parameter is about H0 = 72
(Km/sec)/Mpc in practical units, which corresponds to 1/H0 = 106 × 3.26× 3×
108(m/sec)× year/72Km ∼ 14 billion years.
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Spatial homogeneity simplifies a lot. The distribution of matter content of
the universe, that is Tμν , is only a function of t not r, θ and φ. If we know Tμν at
any time t, the Einstein equation can be used to find the geometrical quanties k
and the scale factor function a(t).

What can we say about Tμν(t)?
The universe not only has non-relativistic matter in the form of visible galax-

ies, but it has electromagnetic radiation in the form of background radiation per-
meating the whole universe, as well as ‘dark matter’ and ‘dark energy’.

In fact, the fraction of energy contribution of visible galaxies and gas clouds
is estimated to be about four to five percent in the present universe. Radiation is
about 10−4 fraction-wise. About 25% contribution comes from dark matter whose
existence is not in doubt because its gravitational effects can be seen on visible
matter like stars and gas clouds. The dark matter is supposed to be clustered or
clumped around galaxies but we know practically nothing about the nature of
dark matter. And lastly the universe is supposed to be everywhere swathed in
‘dark energy’ (with negative pressure) which is about 70%. The nature of dark
energy is also not understood. One can replace dark energy by assuming that
there is a cosmological constant instead. But we don’t know why the cosmological
constant has to have a fantastically small value.

It is a strange feeling that we are floating in a fluid 95% of whose content we
don’t even know and the only sure knowledge we have is about the 5% portion of
matter and radiation as shown by experiments in particle physics.

15.2 Friedman Equations

Assuming the distribution of matter and radiation to be that given by the stress
tensor of a perfect fluid, and using the homogeneity of space, we can write

Tμν =

(
ρc2 0
0 gijp

)
(15.5)

where the energy density ρc2 and pressure p will depend on time but not on space
coordinates because of homogeneity and isotropy.

The Einstein equations for this metric are called Friedman equations. The
Einstein tensor is evaluated for this metric in the tutorials at the end of the
chapter.

For the zero-zero component the Einstein equation is

−G00 = − 3

c2

(
ȧ2

a2
+

kc2

a2

)
= −8πG

c4
ρc2,

or

ȧ2

a2
+

kc2

a2
=
8πGρ

3
. (15.6)
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The other three equations corresponding to G11, G22, G33 all give the same equa-
tion

2ä

a
+

(
ȧ2

a2
+

kc2

a2

)
= −8πGp

c2
. (15.7)

We can simplify this second equation by substituting the part within the paren-
theses from the first equation and obtaining

ä

a
= −4πG

3c2
(3p+ ρc2). (15.8)

Other Forms of Equations

There is a still simpler and physically appealing form of the second equation which
eliminates both ä and k. Multiply the first equation by a2 and differentiate with
respect to time t. The constant k goes away upon differentiation and we get

2ȧä =
8πG

3

d(ρa2)

dt
.

Substitute for ä from the last equation of the previous section. The result can be
written as the “first law” (of thermodynamics pdV = −dE);

−p
da3

dt
=

d(ρc2a3)

dt
. (15.9)

This is just the law of conservation of energy, the work done by pressure in
any change of volume equals loss of energy inside: pd(a3) = −d(ρc2a3). This is
not unexpected because the Einstein equations imply the local conservation law
Tμν

;ν = 0 as a consequence of the contracted Bianchi identities.
We can rewrite this equation also as

d(ρc2) = −3(ρc2 + p)d(ln a). (15.10)

Simple Consequences of Friedman Equations

One of the obvious consequences of the equation ä/a = −4πG(3p + ρc2)/(3c2) is
that (unless we can find matter with 3p + ρc2 = 0) the universe cannot be static
because a=const corresponds to both ȧ = 0 as well as ä = 0! As 3p+ ρc2 > 0 for
all familiar form of matter, ä(t) < 0. We know by observation that the universe is
expanding, that is ȧ > 0 today. It would have been an even larger positive number
in the past because ä is negative. This means as we go back in time a keeps
decreasing. Even if ȧ were constant and retained its present value ȧ0 = a0H0 —
(there is a fairly standard convention of using a subscript 0 for all present-day
values of cosmological quantities) — the scale factor a will reduce to zero if we go
sufficiently back in time by an amount T = 1/H0:

a(t) = a0 + (t− t0)(a0H0).
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So T is a rough estimate for the age of the universe. The Hubble parameter
presently has value H0 ≈ 72 (km/sec)/Mpc which gives the value 1/H0 ≈ 14
billion years.

15.3 Cosmological Constant

The Hubble law of an expanding universe was established in 1929. When Einstein
first applied his equation to the Universe, the conception of the Universe was
that of a static distribution of galaxies. We saw in the last section that unless
3p + ρc2 = 0, the second time derivative of the scale parameter ä �= 0. So the
universe cannot be static; it will either expand or contract. In order to cure this
‘defect’ Einstein introduced an additional term in his equation:

Rμν − 1

2
gμνR+ Λgμν =

8πG

c4
Tμν . (15.11)

Here Λ has dimensions of inverse length squared.
Einstein is supposed to have regretted introducing Λ later on and the ‘Ein-

stein static universe’ is no longer relevant today, but the ‘cosmological constant’
has been brought up and discarded many times in the following years for different
reasons. Finally, during the last few years, data seems to indicate that it is here
to stay but with an exceedingly small positive value. Why this value should be so
close to zero and still not quite zero is one of the open and challenging problems
of cosmology today.

We can always accomodate Λ in Tμν by writing

Rμν − 1

2
gμνR =

8πG

c4

(
Tμν + T vac.

μν

)
(15.12)

where

T vac.
μν = − c4Λ

8πG
gμν (15.13)

=

(
ρvac.c

2 0
0 gijpvac.

)
(15.14)

where

ρvac.c
2 =

c4Λ

8πG
, pvac. = −ρvac.c

2.

When we write the cosmological constant in this way as a stress-energy tensor of a
fictitious perfect fluid, we notice the strange feature that the pressure and energy
density have opposite signs. If Λ is positive, then energy density of the fictitious
fluid is positive and the pressure is negative.
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We include the cosmological constant in this way as part of the total stress-
energy tensor. This additional contribution T vac.

μν is called “vacuum” contribution
because the Einstein equations with a cosmological constant can be obtained by
adding a term −2Λ√−g to the Lagrangian R

√−g. This amounts to adding a
constant term to the Hamiltonian which shifts the zero of energy by a constant
amount. Traditionally in field theories such a term is called the “vacuum” energy.

15.4 Models of the Universe

All cosmology revolves round determining the function a(t). The equations which
govern the scale factor a(t) are the Friedman equations:

ȧ2

a2
+

kc2

a2
=

8πGρ

3
ä

a
= −4πG

3c2
(3p+ ρc2).

Where convenient we can also use

pd(a3) = −d(ρc2a3)

which follows from the other two.

It is assumed that we know the “equation of state”, the relation between
energy density ρc2 and pressure p of the supposed perfect fluid filling the universe.
Then we have basically two equations for two unknown functions a(t), ρ(t) and an
unknown constant k = 0,±1 which determines the type of universe we live in.

In practice one starts with a model based on some assumptions about (1)
k which can be 0 (“spatially flat universe”) or k = 1 (“spatially closed”) or k =
−1 (“open”) (2) the matter content and attempts to fit the available data. The
matter content could be any of the constituents: radiation, non-relativistic matter,
‘vacuum’ energy or cosmological constant, dark matter, dark energy or whatever
is required to fit the data. It is remarkable how much can be learnt by this process
of model universes. For example, it is established beyond doubt in the last few
years that we live in a universe that is spatially flat, that is k = 0.

Flat Matter-Dominated Universe

Matter means non-relativistic ‘cold’ matter for which the kinetic energy and pres-
sure can be neglected compared to energy density due to rest masses. ‘Dominated’
means that other forms of energy are ignored. If k = 0 and p = 0, then d(ρc2a3) = 0
implies

ρ ∝ 1

a3
.
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From Friedman’s equation for k = 0 it follows that

ȧ2 ∝ 1

a

which gives

a ∝ t
2
3 .

Flat Radiation-Dominated Universe

For radiation there is no mass density ρ but the stress-energy tensor has instead
the energy density u in place of ρc2. The relation between the energy density and
pressure is given by p = u/3 for diffuse radiation in thermal equilibrium.

If p = u/3 then d(ua3) = −uda3/3 implies

u ∝ 1

a4

and then the Friedman equation implies

ȧ2 ∝ 1

a2

which gives

a ∝
√

t.

If the uniform radiation is in thermal equilibrium at temperature T, then by the
Stephan-Boltzmann law u ∝ T 4. This implies that

T (t) ∝ 1

a(t)
∝ 1√

t
.

Flat Λ Dominated Universe

The first thing to note about the cosmological constant or ‘vacuum energy’ den-
sity is that it remains constant unlike matter or radiation which decrease with
expansion (as a−3 and a−4 respectively)

ρvac. =
c2Λ

8πG

therefore the flat (k = 0) Friedman equations imply ȧ2 = a2Λc2/3 which solves to

a(t) = C exp(
√

c2Λ/3t), or a(t) = C ′ exp(−
√

c2Λ/3t).

We can solve exactly for a(t) for single constituents as seen above. Due to the non-linear
nature of Friedman equations it is not possible to deduce the time dependence of a(t) when
several constituents are present, none of which can be singled out as ‘dominating’. This is only
part of the problems of cosmology.
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15.5 History of the Universe

We have seen that the Hubble parameter H(t) provides an estimate of the age
of the universe. If the expansion rate ȧ were constant the age would be about 14
billion years, and the second Friedman equation implies that ä < 0 implies that
the expansion rate was actually greater before than now.

What was the universe like in the beginning?

Today the fraction of radiation in the universe is about 10−5 but as radiation
density goes, at a−4 it would have been dominant when a was small. It would
also have been hotter because density goes as T 4. At those high temperatures all
particles would have been in thermal equilibrium along with their antiparticles
with kinetic energies much larger than their rest masses. A model of the early
universe uses the physics of elementary particles to describe what must have been
going on. As the universe expanded it cooled and various light nuclei were formed.
At a still later time, neutral atoms were formed when the thermal energies were
not large enough to ionize atoms. The radiation became decoupled from matter
at this stage and the universe entered the matter dominated era. The radiation
has ever been thinning out with expansion and becoming cooler so that today
its temperature is 2.73◦ K. This ‘cosmic background radiation’ is the incredibly
accurate Planck black body spectrum corresponding to this temperature with
peak wavelengths near microwaves. That is why it is called cosmic microwave
background radiation or CMBR.

CMBR is a very useful tool to test theories of the universe. The CMBR is
not only astonishingly true Planck spectrum it is very uniform in all directions as
well. The small departures from true isotropy as seen in recent observations are a
very accurate and sensitive tool which put stringent bounds on various theories of
the early universe.

Research in cosmology has been going on intensely in recent years.

15.6 Tutorial on the FRW Metric

For the spatially homogeneous and isotropic universe the metric can be chosen to
be in the Friedman-Robertson-Walker form,

ds2 = −(dx0)2 + a2

[
(dr)2

1− kr2
+ r2(dθ)2 + r2sin2θ(dφ)2

]
, (15.15)

where the scale factor a = a(t) depends only on the cosmological time t. The scale
factor a has the dimensions of length whereas coordinates r, θ, φ are dimensionless.

Connection Components

Exercise 78. Find connection components for the FRW metric.









Chapter 16

Special Topics

16.1 The Gauss Equation

We have discussed Gauss’ Theorema Egregium and the Gauss and Codacci equa-
tions in Chapter 2 in their original formulation of a two-dimensional surface imbed-
ded in the three-dimensional Euclidean space. The metric and the covariant deriv-
ative on the surface was induced from the derivative of the ambient Euclidean
space. The great discovery was that the metric and covariant derivative referred
only to the surface, that is, intrinsic quantities. This result led to the Riemannian
geometry we know.

The result can be generalised. If we are given an imbedded submanifold or a
hypersurface in a Riemannian manifold, the metric in the larger space induces a
metric on the hypersurface. Moreover, we find that there is a well-defined connec-
tion or covariant derivative on the surface. This covariant derivative is related to
the induced metric in the usual manner, i.e., the Christoffel symbols of the induced
connection are constructed from the induced metric components in the standard
way.

This generalization can be achieved exactly as in the original formulation,
that is, by defining the tangential component of the covariant derivative (of the
larger space) as the covariant derivative on the surface.

For definiteness, we discuss the case of a space-like hypersurface with a time-
like normal, but the result holds more generally.

Let M be a Riemannian space of dimension n with one time-like and n − 1
space-like vectors in an orthonormal basis. We shall denote our space-like hyper-
surface by S. This means that at any point p ∈ S ⊂ M the tangent space Tp is a
direct sum of two orthogonal subspaces: a one-dimensional space generated by a
time-like unit vector N , and an (n−1)-dimensional tangential subspace of vectors
tangent to curves lying in S and passing through p. All vectors tangent to S are
orthogonal to N and any vector orthogonal to N must be tangential. As point p
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varies on the surface, N becomes a unit normal vector field defined on S.

〈N,N〉 = −1.
We shall denote vector fields defined on points of S which are tangential to S by

a tilde
∼

X,
∼

Y etc. and call them tangential fields; it being understood that they are
tangential to S. These fields are such that

〈∼X,N〉 = 0.

On the tangent space of any point p of S the inner product 〈∼X,
∼

Y 〉 of two
tangential vectors

∼

X and
∼

Y determines the induced metric 〈 , 〉∼ on S:

〈∼X,
∼

Y 〉∼ ≡ 〈
∼

X,
∼

Y 〉. (16.1)

The induced metric is also known as the first fundamental form.
Let the covariant derivative of M be denoted by D. In order to calculate

the covariant derivative of a vector field Y along a certain direction of field X,
all we need to know is the value of vectors Y along the curve whose tangents are

X. Therefore the covariant derivatives of tangential vector fields D∼

X

∼

Y are well

defined. Similarly, D∼

X
N is well defined too.

Although it is intuitively plausible, for a rigorous proof of these statements see section 16.3
later in this chapter. The connection on S should be defined for all tangential vector fields and
functions on S. We need to extend these fields and functions on S into M so that concepts on M
can be applied. One then has to make sure that quantities defined on the surface are independent

of the extensions. In the derivation which follows we use the fact that the Lie bracket [
∼
X,

∼
Y ] of

two tangential fields is tangential. This particular result is also plausible in view of the Tutorial
exercise (two steps forward, two steps back) in Chapter 7.

As 〈N,N〉 = −1 is constant on S,

0 =
∼

X (〈N,N〉) = 〈D∼

X
N,N〉+ 〈N,D∼

X
N〉.

Also, for tangential fields
∼

X and
∼

Y , differentiating 〈
∼

X,N〉 = 0 along
∼

Y we obtain

0 =
∼

Y
(〈 ∼

X,N〉) = 〈D∼

Y

∼

X,N〉+ 〈∼X,D∼

Y
N〉.

Of course, the covariant derivative of a tangential field along the direction of
another tangential field need not itself be tangential. The decomposition of this
derivative in tangential and normal components and defining the tangential part
as the new covariant derivative for the surface was precisely the idea of Gauss.

Given any vector X in the tangent space at a point p ∈ S we can write its
tangential part as

h(X) = X + 〈X,N〉N.
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That this is indeed the tangential part is seen by taking the inner product:
〈h(X), N〉 = 0 because 〈N,N〉 = −1. Therefore the splitting of a vector is

X = h(X)− 〈X,N〉N.

The mapping h : Tp → Tp is a linear projection operator

h(h(X)) = h(X).

Let us write the tangential-normal split of the covariant derivative as (the Gauss’
equation)

D∼

X

∼

Y=
∼

D∼

X

∼

Y +K(
∼

X,
∼

Y )N (16.2)

where we use new symbols for the tangential and normal parts:

∼

D∼

X

∼

Y ≡ h(D∼

X

∼

Y ), (16.3)

K(
∼

X,
∼

Y ) ≡ −〈D∼

X

∼

Y ,N〉 = 〈D∼

X
N,

∼

Y 〉. (16.4)

The following result is the modern version of Theorema Egregium:

Proposition:
∼

D is a metric connection (or covariant derivative) on S with respect
to the induced metric. Moreover, K defines a covariant symmetric tensor on S.
The second-rank tensor K is called the second fundamental form or extrinsic
curvature.
Proof:
To prove that

∼

D is a metric connection we must show that
(1) it is a connection on the surface, i.e., it satisfies the four defining conditions

∼

D∼

X+
∼

Z

∼

Y =
∼

D∼

X

∼

Y +
∼

D∼

Z

∼

Y . . . . . . . . . . . . (i),

∼

D∼

X
(
∼

Y +
∼

Z) =
∼

D∼

X

∼

Y +
∼

D∼

X

∼

Z . . . . . . . . . . . . (ii),

∼

D
f

∼

X

∼

Y = f
∼

D∼

X

∼

Y . . . . . . . . . . . . . . . . . . (iii),

∼

D∼

X
(f

∼

Y ) = f
∼

D∼

X

∼

Y +
∼

X (f)
∼

Y . . . . . . . . . (iv)

(where f is a smooth function on S),

(2) the torsion of
∼

D is zero and

(3)
∼

D preserves the induced metric

〈∼D∼

X

∼

Y ,
∼

Z〉∼ + 〈
∼

Y ,
∼

D∼

X

∼

Z〉∼ =
∼

X
(〈 ∼Y ,

∼

Z〉∼
)
.

(On the right-hand side,
∼

X acts on the function 〈 ∼Y ,
∼

Z〉∼).
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Connection properties (i) to (iii) are evident:

D
f

∼

X
(
∼

Y +
∼

Z) = fD∼

X

∼

Y +fD∼

X

∼

Z .

Gauss’ equation for the left and right-hand side of this equation can be written

∼

D
f

∼

X
(
∼

Y +
∼

Z) +K(f
∼

X,
∼

Y +
∼

Z)N = f
∼

D∼

X

∼

Y +f
∼

D∼

X

∼

Z

+fK(
∼

X,
∼

Y )N + fK(
∼

X,
∼

Z)N

and the tangential and normal components compared: therefore,

∼

D
f

∼

X
(
∼

Y +
∼

Z) = f
∼

D∼

X

∼

Y +f
∼

D∼

X

∼

Z

and, in addition we get the linearity of K,

K(f
∼

X,
∼

Y +
∼

Z) = fK(
∼

X,
∼

Y ) + fK(
∼

X,
∼

Z).

For property (iv) we note that

D∼

X
(f

∼

Y ) = fD∼

X

∼

Y +
∼

X (f)
∼

Y

and since the second term is tangential, it only adds to the tangential part

∼

D∼

X
(f

∼

Y ) = f
∼

D∼

X

∼

Y +
∼

X (f)
∼

Y .

Thus
∼

D satisfies the conditions of a connection.

To see (2) (i.e., the connection
∼

D is free of torsion) we just use the fact that,
the original connection D has zero torsion:

0 = D∼

X

∼

Y −D∼

Y

∼

X −[∼X,
∼

Y ]

= (
∼

D∼

X

∼

Y − ∼

D ∼

Y

∼

X −[∼X,
∼

Y ]) + (K(
∼

X,
∼

Y )−K(
∼

Y ,
∼

X))N

where we combine [
∼

X,
∼

Y ] with the tangential part because it is tangential. Equat-

ing the tangential and normal parts separately to zero we see that
∼

D is torsion-free,

∼

D∼

X

∼

Y − ∼

D ∼

Y

∼

X −[∼X,
∼

Y ] = 0.

Moreover as a bonus, we get the symmetry of K,

K(
∼

X,
∼

Y ) = K(
∼

Y ,
∼

X).
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To show (3) (that
∼

D is metric), we calculate the action of the vector field
∼

X on

the scalar function 〈 ∼Y ,
∼

Z〉∼ = 〈 ∼Y ,
∼

Z〉:
∼

X (〈 ∼Y ,
∼

Z〉∼) = 〈D∼

X

∼

Y ,
∼

Z〉+ 〈
∼

Y ,D∼

X

∼

Z〉
= 〈∼D∼

X

∼

Y ,
∼

Z〉+ 〈
∼

Y ,
∼

D∼

X

∼

Z〉
+〈K(

∼

X,
∼

Y )N,
∼

Z〉+ 〈
∼

Y ,K(
∼

X,
∼

Z)N〉
= 〈∼D∼

X

∼

Y ,
∼

Z〉+ 〈
∼

Y ,
∼

D∼

X

∼

Z〉
+K(

∼

X,
∼

Y )〈N,
∼

Z〉+ 〈
∼

Y ,N〉K(
∼

X,
∼

Z).

The last two terms are zero bacause N is orthogonal to tangential fields
∼

Y and
∼

Z.
We can replace the metric 〈 , 〉 by 〈 , 〉∼ in the remaining terms because all fields
are tangential. Thus

∼

X 〈 ∼Y ,
∼

Z〉∼ = 〈D∼

X

∼

Y ,
∼

Z〉∼ + 〈
∼

Y ,D∼

X

∼

Z〉∼.

Moreover we have shown thatK is symmetric and linear in its arguments, therefore
it defines a covariant second-rank tensor.

This completes the proof of the proposition.

16.2 The Gauss and Codacci Equations

The relationship between the Riemann curvature tensor of the metric in M and
the Riemann curvature of the induced metric on S can be easily worked out: Write

D∼

X
(D∼

Y

∼

Z) = D∼

X
(
∼

D ∼

Y

∼

Z +NK(
∼

Y ,
∼

Z))

= D∼

X
(
∼

D ∼

Y

∼

Z) + (D∼

X
N)K(

∼

Y ,
∼

Z)

+
∼

X (K(
∼

Y ,
∼

Z))N

= [
∼

D∼

X
(
∼

D ∼

Y

∼

Z) + (D∼

X
N)K(

∼

Y ,
∼

Z)]

+N [K(
∼

X,
∼

D ∼

Y

∼

Z)+
∼

X (K(
∼

Y ,
∼

Z))]

where use has been made of the properties of the covariant derivative. We write

the expression for D∼

Y
(D∼

X

∼

Z) similarly, and further,

D
[
∼

X,
∼

Y ]

∼

Z=
∼

D
[
∼

X,
∼

Y ]

∼

Z +NK([
∼

X,
∼

Y ],
∼

Z).

Combining these to form the Riemann curvature tensor

R(
∼

X,
∼

Y )
∼

Z= D∼

X
(D∼

Y

∼

Z)−D∼

Y
(D∼

X

∼

Z)−D
[
∼

X,
∼

Y ]

∼

Z,
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we see that the expression becomes

R(
∼

X,
∼

Y )
∼

Z =
[ ∼

R (
∼

X,
∼

Y )
∼

Z +(D∼

X
N)K(

∼

Y ,
∼

Z)− (D∼

Y
N)K(

∼

X,
∼

Z)
]

+ N
[
K(

∼

X,
∼

D ∼

Y

∼

Z)−K(
∼

Y ,
∼

D∼

X

∼

Z)

+
∼

X (K(
∼

Y ,
∼

Z))−
∼

Y (K(
∼

X,
∼

Z))−K([
∼

X,
∼

Y ],
∼

Z)
]

where we have separated the tangential and normal parts in square brackets.

Take the inner product with a tangential field
∼

W to project the tangential
part (recall the definition of covariant form of Riemann curvature tensor Chap-
ter 9)

R(
∼

W,
∼

Z;
∼

X,
∼

Y ) =
∼

R (
∼

W,
∼

Z;
∼

X,
∼

Y )

+ (D∼

X
N,

∼

W )K(
∼

Y ,
∼

Z)− (D∼

Y
N,

∼

W )K(
∼

X,
∼

Z).

Using the definition of K, e.g.,

〈D∼

X
N,

∼

W 〉 = −〈N,D∼

X

∼

W 〉 = K(
∼

X,
∼

W ),

we get the tangential projection, Gauss’ formula,

R(
∼

W,
∼

Z;
∼

X,
∼

Y ) =
∼

R (
∼

W,
∼

Z;
∼

X,
∼

Y ) + K(
∼

X,
∼

W )K(
∼

Y ,
∼

Z)

− K(
∼

Y ,
∼

W )K(
∼

X,
∼

Z). (16.5)

By taking the inner product with the normal N , we get the orthogonal projection,

〈N,R(
∼

X,
∼

Y )
∼

Z〉 = −
[
K(

∼

X,
∼

D ∼

Y

∼

Z)−K(
∼

Y ,
∼

D∼

X

∼

Z)

+
∼

X (K(
∼

Y ,
∼

Z))−
∼

Y (K(
∼

X,
∼

Z))−K([
∼

X,
∼

Y ],
∼

Z)
]

as 〈N,N〉 = −1. We can write [
∼

X,
∼

Y ] =
∼

D∼

X

∼

Y − ∼

D ∼

Y

∼

X for the torsion-free connec-

tion
∼

D and combine these with the other terms to get the Codacci formula〈
N,R(

∼

X,
∼

Y )
∼

Z
〉

= −
[(

D∼

X
K

)
(
∼

Y ,
∼

Z)−
(
D∼

Y
K

)
(
∼

X,
∼

Z)
]

(16.6)

where the covariant derivative D∼

X
K of the second-rank covariant tensor K is, as

usual, the second-rank tensor whose value on a pair of fields
∼

Y ,
∼

Z is(
D∼

X
K

)
(
∼

Y ,
∼

Z) =
∼

X (K(
∼

Y ,
∼

Z))−K(D∼

X

∼

Y ,
∼

Z)−K(
∼

Y ,D∼

X

∼

Z)

=
∼

X (K(
∼

Y ,
∼

Z))−K(
∼

D∼

X

∼

Y ,
∼

Z)−K(
∼

Y ,
∼

D∼

X

∼

Z)

(where D can be replaced by
∼

D in the last two terms because the inner products

of tangential field
∼

Z with normal components of D∼

X

∼

Y and D∼

Y

∼

X are zero).

Gauss Codacci equations are important in discussions of initial value and the
Hamiltonian formulation of the general theory of relativity where time develop-
ment is replaced by a family of space-like hypersurfaces.
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16.3 Bases on M and S

16.3.1 Basis for Tangential Fields

We now write the Gauss and Codacci formulas in explicit bases on M and S.
We can regard the surface S to be a subset of the manifold M . The surface

S has one time-like vector and n − 1 space-like vectors in an orthonormal basis
of the tangent space of its points. Let n − 1 coordinates ua, a = 1, . . . , n − 1 be
defined on S. Then the n coordinates xi, i = 1, . . . , n of these points (as points of
M) are smooth functions of u,

xi = φi(u).

These coordinate systems define coordinate basis vector fields {∂i = ∂/∂xi} for
all vectors and {∂a = ∂/∂ua} for tangential vector fields.

We have the following definitions and formulas which are simple to prove.
See below for explanation.

∂a = φi
,a∂i, (φi

,a = ∂φi/∂ua) (16.7)
∼
gab ≡ 〈∂a, ∂b〉 (16.8)
∼
gab = gijφ

i
,aφj

,b (16.9)

h(v) ≡ v +N〈N,v〉 (16.10)

hij ≡ 〈h(∂i), h(∂j)〉 (16.11)

hij = gij +NiNj (16.12)

hijN
j = 0 (16.13)

hi
j ≡ δi

j +N iNj (16.14)

(h(v))i = hi
jv

j (16.15)

h(∂i) ≡ ψa
i ∂a (16.16)

φi
,agij =

∼
gab ψb

j (16.17)

φi
,a =

∼
gab ψb

jg
ij (16.18)

ψa
i =

∼
g

ab

φj
,bgij (16.19)

hij = ψa
i ψb

j

∼
gab (16.20)

hij = ψa
i φk

,agkj (16.21)

φi
,aψb

i = δb
a (16.22)

φi
,aψa

j = hi
j (16.23)

Vectors tangent to the surface are given by linear combinations of the basis vectors {∂a}
which span the n− 1 dimensional subspace tangent to S

∂a ≡
∂

∂ua
=

∂φi

∂ua

∂

∂xi
≡ φi

,a∂i.
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then

φi
,agij = 〈∂a, ∂j〉 = 〈∂a, h(∂j)〉 =

∼
gab ψb

j .

Both gij and
∼
gab are non-singular matrices, with inverses gij and

∼
g

ab
; respectively, we can

express φi
,a and ψa

i in terms of each other as

φi
,a =

∼
gab ψb

jgij , ψa
i =

∼
g

ab
φj

,bgij .

Other useful relations are

hij = ψa
i ψb

j

∼
gab= ψa

i φk
,agkj , ψa

i φk
,a = δk

i + gijNjNk.

16.3.2 Extension of Vector Fields on S

A tangential vector field
∼

X which is only defined on points of the surface S can
be extended into a neighbourhood of the surface as follows. Let us expand it in
the basis {∂a},

∼

X=
∼

X
a

(u)∂a =
∼

X
a

(u)φi
,a(u)∂i.

Now choose any smooth functions Xi(x) in a neighbourhood of S which coincide

with Xi(x(u)) =
∼

X
a

(u)φi
,a(u) on S. This will give us one possible extension of a

tangential field
∼

X (which is defined only on the surface). We call such a field an

extension of
∼

X and write X for it.

Three Lemmas About Extensions

Lemma 1 If X is an extension of the tangential field
∼

X, and f is a smooth function
on M (f |S = f(x(u)) is a smooth function on S) then

X(f)|S =
∼

X (f |S).

It follows directly that

X(f)|S = Xi(x)∂i(f)|S =
∼

X
a

(u)φi
,a(u)∂i(f)|S =

∼

X
a

(u)∂a(f(x(u))) =
∼

X (f |S).

Lemma 2 If X and Y are extensions of tangential fields
∼

X and
∼

Y respectively,
then [X,Y ]|S is independent of extensions and equal to the Lie bracket [X̃, Ỹ ]
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calculated on the surface. We see this readily using Xi|S = X̃aφi
,a:

[X,Y ]|S = [Xi(∂iY
j)− (X ↔ Y )]∂j

= [
∼

X
a

(φi
,a∂iY

j)− (X ↔ Y )]∂j

= [
∼

X
a

(∂a(Ỹ
bφj

,b)− (X ↔ Y )]∂j

= [
∼

X
a

(∂a(Y
b))∂b+

∼

X
a ∼

Y
b

φj
,ab∂j − (X ↔ Y )]

= [
∼

X
a

(∂a(Y
b))∂b − (X ↔ Y )]

= [
∼

X,
∼

Y ]

where the terms involving φj
,ab being symmetric in X and Y cancels when X ↔ Y

is added.

Lemma 3 If X and Y are extensions of tangential fields
∼

X and
∼

Y , then the covari-
ant derivativeDXY on manifoldM when restricted to the surface S is independent
of the extensions.

We have

DXY |S = Xi[∂iY
k + Γk

ijY
j ]∂k|S

= [
∼

X
a

∂a(
∼

Y
b

φk
,b) + Γk

ij

∼

X
a ∼

Y
b

φi
,aφj

,b]∂k|S .

All the quantities inside the bracket are expressible in terms of u or its func-

tions, and are explicitly independent of how
∼

X etc. are extended. Moreover, the
tangential part is

h(DXY |S) = [
∼

X
a ∼

Y
b

,a φk
,b+

∼

X
a ∼

Y
b

φk
,ab + Γk

ij

∼

X
a ∼

Y
b

φi
,aφj

,b]h(∂k|S).
The rightmost factor is h(∂k) = ψc

k∂c. The coefficient ψc
k can be taken inside the

square bracket where it combines with the first term to give φk
,bψ

c
k = δc

b . To the
second term it simply multiplies as

ψc
k =

∼
g

cd

gkmφm
,d .

When combined with the third term it gives

φi
,aφj

,bΓ
k
ijψ

c
k = (1/2)φi

,aφj
,b[gmi,j + gmj,i − gij,m]g

mkψc
k

= (1/2)[gmi,j + gmj,i − gij,m]
∼
g

cd

φi
,aφj

,bφ
m
,d .

Terms can be written

gmi,jφ
i
,aφj

,bφ
m
,d = gmi,bφ

i
,aφm

,d

=
∼
gda,b −gmiφ

i
,abφ

m
,d − gmiφ

i
,aφm

,db
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using

gmiφ
i
,aφm

,d =
∼
gda .

Combining all the terms together we get

h(DXY |S) =
∼

X
a [ ∼

Y
c

,a +
∼

Y
b∼
g

cd (
gkmφm

,dφk
,ab + (1/2)

[ ∼
gda,b +

∼
gbd,a −

∼
gab,d

]
+(1/2)

[− gmiφ
i
,abφ

m
,d − gmiφ

i
,aφm

,db − gmjφ
j
,baφm

,d − gmjφ
i
,bφ

m
,da

+gijφ
i
,adφ

j
,b + gijφ

i
,aφj

,bd

])]
∂c.

All terms of the type gxxφx
,xxφx

,x add to zero and we get

∼

D∼

X

∼

Y≡ h(DXY |S) =
∼

X
a [ ∼

Y
c

,a +
∼

Γ
c

ab

∼

Y
b ]

∂c (16.24)

where the connection components for the surface are given by

∼

Γ
c

ab≡
1

2

∼
g

cd [ ∼
gda,b +

∼
gbd,a −

∼
gab,d

]
. (16.25)

This proves that the tangential component of connection in the larger space is
indeed a connection built from the induced metric in the standard way.

16.3.3 Gauss Codacci Formulas

Let us rewrite the Gauss and Codacci formulas:

R(
∼

W,
∼

Z;
∼

X,
∼

Y ) =
∼

R (
∼

W,
∼

Z;
∼

X,
∼

Y )

+ K(
∼

X,
∼

W )K(
∼

Y ,
∼

Z)−K(
∼

Y ,
∼

W )K(
∼

X,
∼

Z), [Gauss]〈
N,R(

∼

X,
∼

Y )
∼

Z
〉

= −
[( ∼

D∼

X
K

)
(
∼

Y ,
∼

Z)−
( ∼

D ∼

Y
K

)
(
∼

X,
∼

Z)
]

[Codacci]

in the basis for tangential fields. Choose

∼

X= ∂c,
∼

Y= ∂d,
∼

W= ∂a,
∼

Z= ∂b,

then for the Gauss formula we put

R(∂a, ∂b; ∂c, ∂d) = φi
,aφj

,bφ
k
,cφ

l
,dRijkl

so that

φi
,aφj

,bφ
k
,cφ

l
,dRijkl =

∼

Rabcd +KcaKdb −KdaKcb (16.26)
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where

Kab ≡ K(∂a, ∂b).

The Codacci formula gives similarly

Niφ
k
,cφ

l
,dφ

j
,bR

i
jkl = Kdb‖c −Kcb‖d

where we denote the induced covariant derivative
∼

D on the surface S in
components-index form by a stroke ‖ as distinguished from the semicolon ; used
for the covariant derivative D:

Kab‖c ≡
( ∼

D∂c
K

)
(∂a, ∂b).

The left-hand side of the Codacci equation can be written

N iφk
,cφ

l
,dφ

j
,bRijkl = −N iφk

,cφ
l
,dφ

j
,bRjikl;

multiply by
∼
g

cb

on both sides and sum on c, b we get

N iRilφ
l
,d = (Kb

b )‖d − (Kb
d)‖b (16.27)

where

Ka
b =

∼
g

ac

Kcb.

Remark on Notation

The component-index Gauss Codacci formulas are written differently in the liter-
ature depending on the use. For example, the (n−1)-dimensional curvature tensor
should have indices running from 1 to (n− 1) as we have indicated by

∼

Rabcd. But

it is often convenient to write
∼

Rijkl with indices running 1 to n. This is done by
following definitions

∼

Rijkl ≡ ∼

R
(
h(∂i), h(∂j);h(∂k)h(∂l)

)
,

Kij ≡ K(h(∂i), h(∂j),

Kij‖k ≡ (
Dh(∂k)K

)
(h(∂i), h(∂j)).

Then Gauss and Codacci formulas become

Ri′j′k′l′h
i′

i hj′

j hk′

k hl′

l =
∼

Rijkl +KikKjl −KilKjk (16.28)

and

NiR
i
j′k′l′h

j′

j hk′

k hl′

l = −Kkl‖j +Kjl‖k. (16.29)
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The left-hand side of the Codacci equation is equal to

NiR
i
j′k′l′h

j′

j hk′

k hl′

l = N iRij′k′l′h
j′

j hk′

k hl′

l

= −N iRj′ik′l′h
j′

j hk′

k hl′

l .

Multiply by gjk on both sides of the Codacci equation and sum to get the left-hand
side as

−N iRj′ik′l′
(
hj′

j hk′

k gjk
)
hl′

l = −N iRj′ik′l′
(
hj′

j hk′

k gjk
)
hl′

l

= −N i(gj′k′

+N j′

Nk′

)Rj′ik′l′h
l′

l

= −N iRil′h
l′

l

where the term containing three N factors is zero because of antisymmetry of
Rj′ik′l′ in j′ and i. The right-hand side becomes

gjk(−Kkl‖j +Kjl‖k),

therefore the Codacci equation is

N iRil′h
l′

l = gjk(Kkl‖j −Kjl‖k). (16.30)

The student is advised to study these equations with careful attention to notation.
The relevant portions in advanced books are sections 2.7 of Hawking-Ellis, 21.5 of
Misner-Thorne-Wheeler and 10.2 of Wald.

16.4 The Raychaudhuri Equation

We are back to physical spacetime in this section.
A congruence of curves in a region of a manifold is a collection of curves such

that only one curve from the collection passes through each point of the region.
The effects of gravitation are best seen by studying what happens to tra-

jectories of matter particles or of photons. If we imagine particles of dust falling
under gravity, their trajectories will be time-like geodesics. By observing how these
trajectories behave we get an idea about the gravitational field. If we consider a
fluid instead of dust, the particles of the fluid are pushed around not only by
gravity but by stresses (like pressure) as well. Nevertheless, the trajectories are a
congruence of time-like curves which give valuable insights into the nature of the
gravitational field.

Obviously the congruence of time-like curves depends on the “initial con-
ditions”. Different initial conditions give rise to different congruences, and it is
worthwhile to study them in the general context.

A congruence of time-like curves can be characterized by the unit time-like
vector field N of tangent vectors along the curves.

〈N,N〉 = −1. (16.31)
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Conversely, given a unit time-like vector field like this we can find its integral
curves to get the congruence.

Note that the normalization condition above implies that the covariant deriv-
ative of the field N with respect to any other smooth vector field X is orthogonal
to N itself:

DX〈N,N〉 = 〈DXN,N〉+ 〈N,DXN〉 = 2〈N,DXN〉 = 0.

In particular DNN is orthogonal to N . Of course, if the curves in the congruence
are geodesics, then

DNN = 0 for geodesics. (16.32)

16.4.1 Deviation of Nearby Time-like Geodesics

Let us consider the simplest case of a congruence of time-like geodesics, which
could, for example, be dust particles in a region falling freely. We want to find out
how the neighbouring trajectories deviate from each other (or come closer). Let
us imagine a pair of nearby geodesic trajectories and study how two points (one
on each) separate when they travel the same proper time along their respective
geodesics.

Let us use the proper time as the affine parameter along each of the tra-
jectories. We take a curve λ : s → λ(s) which is nowhere tangent to any of the
congruences. Those curves of the congruence which pass through points λ(s) can
be labelled by the parameter s.

λ(s)

C(s, τ) = λτ (s)

s

τ = 0

s = 0

τ

Fig. 16.1: Definition of λτ : s → C(s, τ).

Assign to each point λ(s) the value of proper time (of that curve) zero.
Identify the point C(s, τ) on the curve through the point λ(s) and situated at a
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proper time τ from it along the curve. This determines a new curve λτ : s → C(s, τ)
shifted by a proper time τ along the curves.

Define a local diffeomorphism φτ which maps points on the curves to points
on the same curve a proper time τ away. Obviously, for any point p,

d

dτ
φτ (p)

∣∣∣∣
τ=0

= N(p).

Under this mapping the curve λτ ′ is mapped onto λτ ′+τ . The tangent vector

Z(s′, τ) =
d

ds
C(s′ + s, τ)

∣∣∣∣
s=0

to λτ for different values of s, τ is mapped by the one-parameter group of diffeo-
morphisms whose orbits are the integral curves of N . Therefore, the Lie derivative
LNZ = [N,Z] = 0. As the torsion is zero (T = 0 = DXY −DY X − [X,Y ]) this
implies

DZN = DNZ. (16.33)

The deviation of nearby geodesics can now be calculated. We have

DN (DNZ) = DN (DZN)

= DZ(DNN)−D[Z,N ]N +R(N,Z)N

but DNN = 0 and [Z,N ] = 0 therefore

DN (DNZ) = R(N,Z)N. (16.34)

16.4.2 Jacobi Equation for a Congruence

In the previous section we considered the trajectories of dust particles which fall
freely in a gravitational field and constitute a congruence of time-like geodesics. If
we have a fluid instead of dust, then infinitesimal elements of fluid follow time-like
curves but not geodesics because the stresses act on the elements. Therefore we
study a congruence of time-like curves not necessarily time-like geodesics.

We can construct the field N and Z as previously. Only, now Ṅ ≡ DNN
need not be zero as the congruence curves are not geodesics. From the geometry
of construction we still have

〈N,N〉 = −1, [N,Z] = 0, DNZ = DZN.

It is useful to project any vector field X perpendicular to the congruence.
We can define the projection operator

h(X) = X +N〈N,X〉
which gives

〈N,h(X)〉 = 0.

In particular h(N) = 0.
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First Deviation

Take the covariant derivative (along N) of orthogonal part h(Z) of Z. This deriv-
ative will have components both along the trajectory as well as orthogonal to it.
The orthogonal part h(DN (h(Z))) of the covariant derivative (along N) of the
orthogonal part of Z changes according to the first deviation equation:

h(DN (h(Z))) = Dh(Z)N [First deviation equation]. (16.35)

The proof is straightforward,

DN (h(Z)) = DN (Z +N〈N,Z〉)
= DNZ + fDNN +N.N(f), f = 〈N,Z〉.

Taking projection with h, using h(N) = 0, as well as DNZ = DZN ,

h(DN (h(Z))) = h(DZN) + Ṅ〈N,Z〉
= DZN + Ṅ〈N,Z〉

because DZN being orthogonal to N is already horizontal. The right-hand side
can actually be written as

Dh(Z)N = DZ+N〈N,Z〉N

= DZN +DNN〈N,Z〉
= DZN + Ṅ〈N,Z〉.

This proves the first deviation equation.

Second Deviation: Jacobi Equation

Now we calculate the second deviation, that is one more derivative followed by
taking the orthogonal projection. We have

h(DN (h(DN (h(Z))))) = h(DNDh(Z)N).

We write, using the definition of Riemann curvature tensor,

DNDh(Z)N = Dh(Z)DNN +R(N,h(Z))N +D[N,h(Z)]N.

Now

[N,h(Z)] = [N,Z + fN ], f = 〈N,Z〉
= [N,Z] + f [N,N ] +N N(f)

= N N(f)

as [N,Z] = 0 by construction and therefore

D[N,h(Z)]N = N(f)DNN = N(f)Ṅ .



16.4. The Raychaudhuri Equation 345

We can simplify it further by noting that

N(f) = N(〈N,Z〉)
= 〈DNN,Z〉+ 〈N,DNZ〉
= 〈DNN,Z〉+ 〈N,DZN〉
= 〈Ṅ , Z〉;

the last line follows because DZN is orthogonal to N . Thus we get for the second
deviation an equation called the Jacobi equation,

h(DN (h(DN (h(Z))))) = h(Dh(Z)Ṅ) + h(R(N,h(Z))N) + Ṅ〈Ṅ , Z〉.
(16.36)

16.4.3 Jacobi Equation in Components

As explained above, it is the separation of nearby curves orthogonal to N which
actually measures how fast they are converging. To be useful we must be able to
define actual numbers which measure this deviation. For this purpose we choose
three unit vectors, Ei, i = 1, 2, 3 orthogonal to N and to each other at some point
on a chosen curve. The set

{Ea}, a = 0, 1, 2, 3 E0 = N

is an orthonormal basis

〈Ea, Eb〉 = ηab.

Then we propagate the three vectors along the curve by Fermi-Walker transport
so that they remain orthogonal to N and to each other. This construction thus
makes {Ea} = N,Ei a basis along the curve, and the “horizontal part” h(Z) of
the deviation vector can be expanded in the three orthogonal vectors

h(Z) = ZiEi.

The rate of change of quantities like Zi measures the deviation. If τ is the proper
time along the curve (we are taking c = 1 so that 〈N,N〉 is equal to −1 and not
−c2)

DN (h(Z)) = DN (Z
iEi)

=
dZi

dτ
Ei + Zi DNEi.

Because Ei change along the trajectory according to Fermi-Walker transport we
have

0 = DFW
N Ei = DNEi −N〈Ṅ , Ei〉+ Ṅ〈N,Ei〉

= DNEi −N〈Ṅ , Ei〉.
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Substituting DNEi = N〈Ṅ , Ei〉 gives

h(DN (h(Z))) =
dZi

dτ
Ei

because h(N) = 0.
On the other hand

Dh(Z)N = ZiDEi
N

therefore the first deviation equation h(DN (h(Z))) = Dh(Z)N becomes

dZi

dτ
Ei = ZiDEi

N.

Taking the inner product with Ej and using orthogonality 〈Ei, Ej〉 = δij ,

dZj

dτ
= 〈Ej , DEi

N〉Zi. (16.37)

Similarly, the second deviation equation can be simplified.

DN (h(DN (h(Z)))) = DN

(
dZi

dτ
Ei

)

=
d2Zi

dτ2
Ei +

dZi

dτ
DNEi.

Again operating with h gives h(N) = 0 and

h(DN (h(DN (h(Z))))) =
d2Zi

dτ2
Ei.

The second deviation equation therefore becomes taking the inner product with
Ej ,

d2Zj

dτ2
= [〈Ej , R(N,Ei)N〉+ 〈Ej , DEi

Ṅ〉+ 〈Ej , Ṅ〉〈Ṅ , Ei〉]Zi. (16.38)

16.4.4 Raychaudhuri Equation

Let us go back to a congruence of time-like geodesics. Then Ṅ = 0 and the
components Zi of the three-dimesional deviation vector satisfy the first and second
deviation equations

dZj

dτ
= 〈Ej , DEi

N〉Zi (16.39)

d2Zj

dτ2
= 〈Ej , R(N,Ei)N〉Zi. (16.40)
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Zi(τ)

Zi(τ + Δτ)

Δτ

Fig. 16.2.

Let us define the τ dependent matrix

Bji(τ) ≡ 〈Ej , DEi
N〉, (16.41)

then the meaning of

dZj

dτ
= BjiZ

i

can be understood as follows. Under an infinitesimal proper time Δτ the change
in Zj is linearly proportional to Zi’s again.

ΔZj = BjiZ
iΔτ.

The coefficients Bji(τ) are in general nine numbers at each τ and they determine
the nature of change taking place in spatial separation of two neighbouring geodes-
ics. If an observer ‘falls freely’ (like a dust particle) along one geodesic labelled by
parameter s (as just discussed in section 16.4.1) then ZiΔs would be the spatial
three-dimensional vector representing the position of another dust particle falling
freely on a neighbouring geodesic with parameter s+Δs. We can think of a cloud
of dust particles in the neighbourhood of the falling observer to see what gravity
does to freely falling matter.

A general 3 × 3 matrix Bji can be written as a sum of its symmetric part
(six independent components) and the antisymmetric part (three). The symmetric
part again can be written as a sum of a matrix proportional to the identity matrix
(one) and a symmetric matrix which is also traceless (five).

Bji =
θ

3
δji + σji + ωji (16.42)
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where

θ =
∑

i

Bii, (16.43)

σji = (Bji +Bij)/2− (θ/3)δij , (16.44)

ωji = (Bji −Bij)/2. (16.45)

Each of these three types of matrices generate a physically visualizable type of
change: if there was only an antisymmetric part (Bji = ωji), the change in Zj

would be an infinitesimal rotation because then the new position of the dust
particles is obtained by an infinitesimal orthogonal transformation:

Zj(τ +Δτ) = (δji + ωjiΔτ)Zi.

If there is only a symmetric traceless part (Bji = σji), then the change

Zj(τ +Δτ) = (δji + σjiΔτ)Zi

will be a distortion of the cloud but no change of volume because the determinant

det(δji + σjiΔτ) = 1 +
∑

i

σii +O(Δτ2) ≈ 1.

Such a change or distortion is called shear. If the dust cloud were a spherical ball
at one time, it will become an ellipsoid of the same volume a little later.

Lastly, if the matrix were proportional to unit matrix Bji = (θ/3)δji, then
the change is

Zj(τ +Δτ) = (1 + θΔτ)Zj .

This is obviously expansion (or contraction if θ is negative) by the same propor-
tionality factor (1+ θΔτ) for all points. θ is called the expansion parameter. This
parameter determines how geodesics expand or contract and not just how they
rearrange themeselves, because only in this case does the volume of the dust cloud
change.

The second deviation equation tells us how these parameters of expansion,
shear or rotation themselves change along the geodesics. Substituting the first
deviation in the second we get

〈Ej , R(N,Ei)N〉Zi =
d

dτ

(
BjkZk

)
=

dBjk

dτ
Zk +Bjk

dZk

dτ

=
dBji

dτ
Zi +BjkBkiZ

i.
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Suppose ωij are zero, and we can ensure that NμNνRμν is positive; then the
Raychaudhuri equation says that regardless of the initial value of θ it can only
decrease along the geodesic in the forward time direction of N . This means that if
θ was positive, expansion by factor (1+Δτθ), then the expansion will decrease. And
if there was contraction before θ < 0 there will be even more severe contraction.
This ‘focussing’ property of gravitation is compatible our perception of gravitation
being a attractive force for all matter and radiation.

The condition NμNνRμν > 0 is called the strong energy condition. After
taking the trace in the Einstein equation Rμν − gμνR/2 = (8πG/c4)Tμν , we find
−R = (8πG/c4)T where T = gμνTμν . This allows us to write

Rμν =
8πG

c4

(
Tμν − 1

2
gμνT

)
.

Therefore the strong energy condition becomes(
NμNνTμν +

1

2
T

)
> 0. (16.47)

For the freely falling observer whose time axis is given by N , NμNνTμν is just the
rest-mass density of dust (and is equal to T ), the condition is certainly satisfied.
The condition is also expected to be satisfied for all forms of matter and radiation.

Penrose and Hawking were able to prove with very general arguments us-
ing the Raychaudhuri equation that the kind of singularities that appear in the
Schwarzschild or Kerr solutions or in the FRW metric at the beginning t = 0
of the universe are a generic feature of the general theory of relativity and not
a pecularity of solutions with a very high degree of symmetry. This means that
black holes cannot be wished away by arguing that exact spherical collapse re-
quires initial conditions impossible in the actual world. Gravitational collapse of
sufficiently large mass will give rise to a black hole after transients in the form of
gravitational waves and radiation have eventually died down.

Similarly, the singularity at the very beginning of the universe is a real one,
and we seem to have reached a physical phenomenon which cannot be explained
by classical, non-quantum physics. Quantum gravitational phenomena will be-
come important when lengths of the order of Planck length (equal to

√
�G/c3)

are reached long before the mathematical limit of a singularity. The quest for a
quantum theory of gravity has been going on for the last few decades.

It seems we are not there yet.
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tensor (covariant), 171

Riemann-Christoffel curvature
tensor, 43, 56, 146

Riemannian space, 155
Rindler wedge, 290

scalar curvature, 21, 56, 165
scale factor, 318
Schwarzschild solution, 65
second fundamental form, 331
semicolon notation, 139
signature, 237
signature of the metric, 100
singularity theorems, 250
slowing down of clocks, 60
smooth curve, 117
smooth function, 116
space and time in special relativity,
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space-like separated events, 14
special relativity, 7
spherically symmetric field, 65
spin of gravitational radiation, 276
stable circular orbit, 80
static spacetime, 240
stationary spacetime, 240
Stokes theorem, 202
stress tensor

symmetry of, 214
stress-energy tensor, 21, 212
submanifolds, 190
subscripts, 86
superscripts, 86
Sylvester’s law of inertia, 237
Symmetries of curvature tensor,
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tangent space, 119
tangent vector, 117

field, 120
tangential fields, 330
tensor fields, 125
tensor product, 86–88
Theorema Egregium, 42, 331
time delay, 263
time orientation, 237
time-like separated, 14
torsion tensor, 141
transport round a closed curve, 152
transverse-traceless (TT) part, 275

universe, 317–324

Vaidya spacetime, 251

variational principle, 221
vector

contravariant, 86
covariant, 86
normalized, 98
null, 98

vector fields, 120, 125
Killing, 207
ψ-related, 182

vector space, 83

weak field in Newtonian limit, 59
wedge (exterior) product, 91
Weingarten matrix, 41
Weyl tensor, 165

zero vector, 83
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