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PREFACE.

tract is written in connection with the previous tract, No. 4 of

this series, on Projective Geometry, and with the same general

aims. In that tract, after the statement of the axioms, the ideas

considered were those concerning harmonic ranges, projectivity, order,

the introduction of coordinates, and cross-ratio. In the present tract,

after the statement of the axioms, the ideas considered are those

concerning the association of Projective and Descriptive Geometry by

means of ideal points, point to point correspondence, congruence,

distance, and metrical geometry. It has been my object in both

tracts to extend the investigations just far enough to assure the reader

that the whole of Geometry is really secured by the axioms stated.

My hopes for a comparative freedom from typographical errors are

based upon my experience of the excellence of the University Press.

A. N. W.

CAMBRIDGE.

March, 1907.
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CHAPTER I.

FORMULATIONS OF THE AXIOMS.

1. THE general considerations which must govern a mathematical

investigation on the foundations of Geometry have been explained in

iChapter I of the previous tract of this series, on the Axioms of

Projective Geometry*. It is explained there that Descriptive

Geometry is here used as a generic term for any Geometry in which

I

two straight lines in a plane do not necessarily intersect. Also it is

I

pointed out that the purely classificatory portions of a Descriptive
i Geometry are clumsy and uninteresting, and that accordingly the idea

I
of order is introduced from the very beginning.

There are three main ways by which this introduction of order

can be conveniently managed. In one way, which is represented by
.Peano s axioms given below ( 3 6), the class of points which lie

between any two points is taken as a fundamental idea. It is then

I easy to define the class of points collinear with the two points and

[lying beyond one of them. Thus these three classes of points, namely
the two classes lying beyond the two points respectively and the class

[Vying between the two points, together with the two points themselves

form the straight line defined by the two points Then a set of axioms

of the straight line are required, concerned with the idea of
*

between,

^and also axioms are required respecting coplanar lines.

Another way, which was pointed out by Vailatif and Russell J, is

[to conceive a straight line as essentially a serial relation involving two

berms. The whole field of such a relation, namely the terms which are

[uhus ranged in order by it, forms the class of points on the straight

[line.
Thus the Geometry starts with the fundamental conception of a

* In the sequel this tract will be referred to as Proj. Geom.

t Cf. Rivista di Matematica, vol. iv.

J Cf. Principles of Mathematics, 376,

w. 1



2 THE INTRODUCTION OF ORDER [CH.

class of relations. The axioms of the straight line are the axion

which secure that each of these relations is a serial relation. Tb

points are the entities occurring in the fields of any of these relation

The axioms of the plane are the same as in the previous mode c

development.

The third way, recently developed by Prof. 0. Veblen*, is t

consider the science of Descriptive Geometry as the study of tl

properties of one single three-termed relation of order. The entiti

forming the field of this relation are the points. When this relatio

holds between three points A, B, and C, it is said that the poim

A, B, and C, are in the linear order ABC. This method of conceivir

the subject results in a notable simplification, and combines advantage

from the two previous methods. Veblen s axioms will be stated in fti;

(cf. 8).

2. The enunciation of the axioms of Descriptive Geometry, whicl

is given in the sections ( 3 6) immediately following, is that due t&amp;lt;

Peanot. His formulation is based upon that of Pasch j, to whom is du.

the first satisfactory systematic exposition of the subject. The unde

fined fundamental ideas are two in number, namely that of a class o

entities called
f

points, and that of the class of points lying betwee)

any two given points/ It has already been explained that thi;

undetermined class of points is in fact any class of entities with inter

relations, such that the axioms are satisfied when considered as referring

to them.

The symbol AB will represent the class of points lying betweei

the points A and B. This class will be called the segment AB.
The first group of axioms, eleven in number, secure the ordinar;

properties of a straight line with respect to the order of points on it

and also with respect to the division of a line || into three parts by an

*
Cf. A System of Axioms for Geometry, Trans, of the Amer. Math. Soc., vol. v

1904.

t Cf. I principii di Geometria, Turin, 1889. These axioms are repeated t

him in an article, Sui fondamenti della Geometria, Rivista di Matematica, vol. r

1894. In this latter article the minute mathematical deductions are omitted, ar

their place is taken by valuable observations on the main points to be considere.

Also a treatment of congruence is given which does not appear in the earli&amp;lt;

tract. This article should be studied carefully by every student of the subject

Cf. Vorlesungen ilber neuere Geometric, Leipzig, 1882. This treatise is tl

classic work on the subject.

Cf. Proj. Geom. 2.

||
Note that line will be habitually used for straight line.



1-3] PEANO S AXIOMS 3

two points on it, and into two parts by any single point on it. The

Dedekind property* is not secured by them, but, compactness t is

secured by axiom IV.

3. Peano s axioms of the straight line are as follows :

I. There is at least one point.

II. If A is any point, there is a point distinct from A.

III. If A is a point, there is no point lying between A and A.

It follows that the class AA possesses no members.

IV. If A and B are distinct points, there is at least one point

lying between A and B.

Thus the class AB is not the null class.

V. If the point C lies between A and B, it also lies between

B and A.

It easily follows that the classes AB and BA are identical.

VI. The point A does not lie between the points A and B.

Thus the class, or segment, AB does not include its end-points

A and B.

Definition. If A and B are points, the symbol A B represents the

class of points, such as C, with the property that B lies between

A and C. Thus A B is the prolongation of the line beyond B, and

B A is its prolongation beyond A.

VII. If A and B are distinct points, there exists at least one

member of A B.

VIII. If A and D are distinct points, and C is a member of AD,
and B of AC, then B is a member of AD.

IX. If A and D are distinct points, and B and C are members of

AD, then either B is a member of AC, or B is identical with C, or B
is a member of CD.

X. If A and B are distinct points, and C and D are members of

A B, then either C is identical with D, .or C is a member of JBD, or D
is a member of BC.

XL If A, B, C, D are points, and B is a member of AC, and C
of BD, then (7 is a member of A D.

Definition. The straight line possessing A and B, symbolized by
str (A, B\ is composed of the three classes A B, AB, B A, together

with the points A and B themselves.

Then by the aid of the previous axioms the usual theorems,

*
Cf. Proj. Geom. 19, and 9 of the present tract,

t Cf. Proj. Geom. 16.

12



4 DEFINITION OF A PLANE [CH. I

excluding the Dedekind property, respecting the order of points on a

line can be proved. Also any two points are both contained by one

and only one line.

4. Peano uses the following useful notation which is an extension

of his notation for segments and prolongations. If A is a point and

u is a class of points, then Au is the class of points lying on the

segments between A and points of M, and A u is the class of points on

the prolongations of these segments beyond the points of u.

Then in conformity with this notation the seven regions into which

a plane is divided by three lines are as in the figure.

C(A S) / A (BC)

The plane determined by the three non-collinear points A, B, C
written pie (A y B, (T) is defined to be the class of points consisting of

the points on the three lines str (B(T), str (CA), and str (AB\ and

of the points in the seven regions A (BCf), A (BO), B (CA\ C (AB\
A (B C\B (C A\ C (A B).

5. Three axioms are required to establish the Geometry of

a plane.

XII. If r is a straight line, there exists a point which does not

lie on r.

Note that it would be sufficient to enunciate this axiom for one

straight line.

XIII. If A, B, C are three non-collinear points, and D lies on

the segment BC, and E on the segment AD, there exists a point F
on both the segment AC and the prolongation BE (cf. fig. i, p. 5).

XIV. If A, B, C are three non-collinear points, and D lies on the
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segment BC, and F on the segment A C, there exists a point E lying

on both the segments AD and BF (cf. fig. ii).

Fig. i.

With these axioms all the usual properties of the division of a

plane by a line, and of the inside and outside of a plane closed figure,

Fig. ii.

can be proved. Thus if ABC form a triangle and a coplanar line

intersect the segment BC, it must intersect one and only one of the

segments CA and AB.
Also any three non-collinear points lie in one and only one plane ;

and the line determined by any two points lying in a plane lies entirely

in that plane. But, as the case of Euclidean Geometry shews, we
cannot prove from these axioms that any two lines in a plane
intersect.

6. For three-dimensional Geometry two other axioms are required.

XV. A point can be found external to any plane. The enuncia

tion of this axiom can be restricted to a particular plane.



AXIOMS OF THREE DIMENSIONS [CH. I

XVI. Given any plane p, and any point A outside it, and any

point Q on it, and any point B on the prolongation A Q, then, if Xis
any other point, either X lies on the plane p, or AX intersects the

plane p, or BX intersects the plane p.

The annexed figure illustrates the axiom, the points X^ X%, X$
being positions of X which illustrate the three alternatives contem

plated in the axiom. Thus X lies on the plane p ;
Xz lies on the

same side of p as B, so that AX^ must cut p in some point L ; X$
lies on the same side of p as A, so that BX$ must cut p in some

point M.
Axiom XVI secures the limitation to three dimensions, and the

division of space by a plane. It can also be proved from the axioms

that, if two planes intersect in at least one point, they intersect in

a straight line.

7. A point will be said to divide a line into two half-rays which

emanate from it.

A line will be said to divide a plane into two half-planes which

are bounded by it.

A plane will be said to divide space into two half-spaces which are

bounded by it.
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A sheaf of lines is a complete set of coplanar lines concurrent

at one point (the vertex). A sheaf of half-rays is a complete set of

coplanar half-rays emanating from one point (the vertex).

A bundle of lines is a complete set of lines concurrent at one point

(the vertex). A bundle of half-rays is a complete set of half-rays

emanating from one point (the vertex).

If p, q, r are three half-rays belonging to a sheaf of half-rays, then

r is said to lie between p and q, if points A and B can be found on

p and q respectively, such that the segment AB intersects r.

It can be proved that if r lies between p and q, then p does not

lie between r and q.

The complete set of planes through a given line (the axis) is called

a sheaf of planes. The axis divides each plane into two half-planes.

These half-planes form a sheaf of half-planes.

If p, q, r are three half-planes belonging to a sheaf of half-planes,

then r is said to lie between p and q, if points A and B can be found

on p and q respectively, such that the segment AB intersects r.

It can be proved that if r lies between p and q, then p does not lie

between r and q.

The theorems indicated in this and in the preceding sections, and

allied theorems, are not always very easy to prove. But their proofs

depend so largely upon the particular mode of formulation of the

axioms, that it would be outside the scope of this tract to enter into

a consideration of them. In the sequel we shall assume that the whole

class of theorems of the types, which have been thus generally indi

cated, can be proved from the axioms stated.

8. Formulations of the axioms of Descriptive Geometry have also

been given by Hilbert*, and by E. H. Moore t, and by B. Russell^,

and by 0. Veblen. Veblen s memoir represents the final outcome of

these successive labours, and his formulation will be given now. The

axioms are stated in terms of points and of a relation among three

points called order. Points and order are not defined.

I. There exist at least two distinct points.

*
Grundlagen der Geometric, Leipzig, 1899, English Translation by E. J.

Townsend, Chicago, 1902.

t On the Protective Axioms of Geometry, Trans, of the Amer. Math. Soc.,

vol. in., 1902.

The Principles of Mathematics, Cambridge, 1903, ch. XLVI.

A System of Axioms for Geometry, Trans, of the Amer. Math. Soc., vol. v.,

1904.



8 VEBLEN S AXIOMS [CH. i

II. If the points A, B, C are in the order ABC, they are in the

order CBA.
III. If the points A, B, C are in the order ABC, they are not

in the order BCA.
IV. If the points A, B, C are in the order ABC, then A is

distinct from C.

V. If A and B are any two distinct points, there exists a point C
such that A, B, C are in the order ABC.

Definition 1. The line AB (AB) consists of A and B, and of

all points X in one of the possible orders ABX, AJCB, XAB. The

points X in the order AXB constitute the segment AB. A and

B are the end-points of the segment, but are not included in it.

VI. If points C and D (C$ D) lie on the line AB, then A lies on

the line CD.

VII. If there exist three distinct points, there exist three points

A, B, C not in any of the orders ABC, BCA, or CAB.

Definition 2. Three distinct points not lying on the same line are

the vertices of a triangle ABC, whose sides are the segments AB,
BC, CA, and whose boundary consists of its vertices and the points

of its sides.

VIII. If three distinct points A, B, C do not lie on the same line,

and D and E are two points in the orders BCD and CEA, then a

point F exists in the order AFB and such that D, E, F lie on the

same line.

Definition 5. A point is in the interior of a triangle, if it lies

on a segment, the end-points of which are points of different sides of a

triangle. The set of such points is the interior of the triangle.

Definition 6. If A, B, C form a triangle, the plane ABC
consists of all points collinear with any two points of the sides of the

triangle.
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IX. If there exist three points not lying in the same line, there

exists a plane ABC such that there is a point D not lying in the

plane ABC.

Definition 7. If A, B, C, and D are four points not lying in the

same plane, they form a tetrahedron ABCD, whose faces are the

interiors of the triangles ABC, BCD, CDA, DAB, whose vertices

are the four points A, B, C, and D, and whose edges are the

segments AB, BC, CD, DA, AC, BD. The points of faces, edges,

and vertices constitute the surface of the tetrahedron.

Definition 8. If A, B, C, D are the vertices of a tetrahedron, the

space ABCD consists of all points collinear with any two points of the

faces of the tetrahedron.

X. If there exist four points, neither lying in the same line, nor

lying in the same plane, there exists a space ABCD, such that there is

no point E not collinear with two points of the space A BCD.
The above axioms of Veblen are equivalent to the axioms of Peano

which have been previously given. Both Peano and Veblen give an

axiom securing the Dedekind property (cf. 9). Also Veblen gives an

axiom securing the Euclidean property (cf. 10).

9. Dedekind s original formulation* of his famous property applies

directly to the case of a descriptive line and is as follows :

&quot;If all points of the straight line fall into two classes such that

every point of the first class lies to the left of every point of the second

class, then there exists one and only one point which produces this

division of all points into two classes, this severing of the straight line

into two portions.&quot;

It is of course to be understood that the dividing point itself

belongs to one of the two classes.

It follows immediately that the boundary of a triangle consists of

points in a compact closed order possessing the Dedekind property as

already formulated for closed series t.

This definition may be repeated here to exhibit its essential in

dependence of the special definition of protective segments upon which

the previous formulation rests.

Let A, B, C be any three points of a closed series. Then by

Cf. his Continuity and Irrational Numbers, ch. in.
;

the quotation here is

from Beman s translation, Chicago, 1901.

t Cf. Proj. Geom. 19 (a).
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hypothesis the series is such that there are two ways round from A
to C, namely, one through B arid one not through B. Let segm (ABO)

denote the points, excluding A and (7, which are traversed from

A to C through B, and let segm (ABO) denote the remaining

points of the series. Again let a class u of the points of the series

be called a segment of the series, when (1) there is a point B of the

series which does not belong to u, and (2) if P and Q be any two

points of u then segm (PBQ) belongs entirely to u.

Then the series possesses the Dedekind property if any segment
such as u (which excludes more than one point of the series) must

possess two boundary points, that is to say, if there must exist points

A and C such that segm (ABO), with the possible exception of either

or both of A and (7, is identical with u. Here as above B is a

point which does not belong to u.

Hence a sheaf of half-rays can also be considered as a closed

compact series with the Dedekind property. This is made immediately
evident by surrounding the vertex by a triangle in the plane of the

sheaf. Then each half-ray of the sheaf intersects the boundary of the

triangle in one and only one point. Also the order of the points on

the boundary is the order of the corresponding half-rays of the sheaf.

But the boundary of the triangle is a closed series with the Dedekind

property.

10. By the aid of the Dedekind axiom and of the preceding

axioms, it can now be proved that, if / be any line and A be any point,

not incident in /, then in the plane Al at least one line can be drawn

through A, which does not intersect I.



9, 10] THE EUCLIDEAN AXIOM 11

For take any point B on /, and letp and q be the two supplementary

half-rays of / which emanate from B. Consider the sheaf of half-rays,

vertex A, in the plane Al. Some of these half-rays intersect p and

some intersect q, and these classes are mutually exclusive.

Also, from the Dfidekind property, there exist two semi-rays which

are limits of the semi-rays intersecting p. AB is one of the semi-rays,

let r be the other. Now the semi-ray p has no end-point. Hence r is

not among the semi-rays intersecting p. Again by similar reasoning
there is a semi-ray s which is the limit of the semi-rays inter

secting q, and s does not intersect q.

Now first let r and s be not collinear, and let r and s be the

half-rays supplementary to r and s respectively. Consider the set

(a, say) of lines through A with one set of their half-rays between

r and s, and therefore with their supplementary half-rays between

r and s. There are an infinite number of such lines. Now all half-

rays emanating from A and lying between the half-ray AB and r

intersect p, and no other half-rays from A intersect p. Similarly for

the half-rays AB and s and q. Also if s lie between the half-ray AB
and r, then / lies between the half-ray AB and s

;
and in this case

every line of the set a intersects the line I twice, namely once for each

of its pair of supplementary half-rays emanating from A. But this is

impossible. Hence neither the supplement of r nor that of s can

intersect /. Secondly if r arid s are collinear, then the complete line

formed by r and s cannot intersect /. For neither r nor s intersects /.

Thus taking any point A and any line /, the sheaf of lines,

vertex A and in the plane Al, falls into two parts, namely the lines

which intersect /, called the lines secant to /, and the lines which do

not intersect /, called the lines non-secant to /. The non-secant lines

of the sheaf may reduce to one line. The supposition that this is the

case is the Euclidean Axiom.



CHAPTER II.

THE ASSOCIATED PROJECTIVE SPACE.

11. WE have now to establish the relation of Descriptive Geometry
to an associated Projective Geometry. In a Projective Space let a

convex region be denned to be a region which (1) does not include

the whole of any line, and (2) includes the whole of one of the two

segments between any two points within it. It is easy to prove that

such regions exist. For remembering* that we can employ the

ordinary theory of homogeneous coordinates, the surface

is well known to enclose such a region. Let a quadric enclosing a

convex region be called a convex quadric. Again in two dimensions

let A, B, C be any three non-collinear points, and let P be any point
not collinear with any two of them. Let AP meet the line BC in L,
BP meet CA in M~, CP meet AB in N.

Define the triangular region (ABCjP} to be the set of points
formed by the collection of segments such as segm (A QR) t, where

Q is any point on segm (BPM\ and R is the point where the line

*
Cf. Proj. Geom. 37 and 42.

t Cf. Proj. Geom. 13.
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AQ intersects BC. The points A, B, C can be interchanged in this

definition without altering the region obtained.

Similarly in three dimensions, if A, B, C, D are the vertices of a

non-degenerate tetrahedron, and P be any point not on any of the

planes, ABC, BCD, etc., the tetrahedral region (ABCD/P) can be

similarly defined. From the ordinarytheory ofhomogeneous coordinates,
it is well known that a triangular region in two dimensions, and a
tetrahedral region in three dimensions, are both convex regions.

Again the triangular region (ABC/P) considered above has as its

boundary the segments (BLC\ (CMA\ (ANB\ together with the

points A, B,C. Also considering the tetrahedral region (ABCDJP\
let AP intersect BCD in L, BP intersect CDA in M

y
CP intersect

DAB in N, DP intersect ABC in 0. Then the boundary of the
tetrahedral region (ABCDJP} consists of the triangular regions

(BCDIL\ (CDAjMl (DABjNl (ABCJO\ together with the
boundaries of these triangular regions.

It is now a well-known result from the use of coordinates that in

two dimensions any line through a point in a triangular region cuts
the boundary in two points only; and that in three dimensions any
line through a point in a tetrahedral region cuts the boundary in two
points only.

12. Now consider a convex region, let it be either the region
within a convex quadric, or a tetrahedral region. Call the points
within it Descriptive points ;

and call the portions of lines within it
1

Descriptive lines. The protective order of points on a line becomes
an open order for Descriptive points on Descriptive lines. Then by
the use of coordinate Geometry it is easy to prove that all the

Descriptive axioms of the present tract, either in Peano s form or in

&quot;- -

Veblen s form, are satisfied, including the Dedekind axiom, but exclud

ing the Euclidean axiom. Thus in the figure the lines AB and CD
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intersect at a point Hm Descriptive Space; but the lines AB and EF
do not intersect in Descriptive Space, since K lies outside it. Also it

is evident that through any point P an infinite number of lines can be

drawn, coplanar with AB, and not intersecting it in Descriptive Space.

13. The previous article ( 12) proves* the existence theorem for

Descriptive Space with the negation of the Euclidean axiom
;
in other

words, it proves the independence of the Euclidean axiom.

The existence theorem for Descriptive Space with the Euclidean

axiom is immediately proved by considering the region of Projective

Space found by excluding all the points on one projective plane. The

region is convex according to the above definition
;

also all the

Descriptive axioms, together with the Dedekind axiom and the Euclidean

axiom, hold for itf.

14. The independence of the Dedekind axiom of the other axioms,

combined with the negation of the Euclidean axiom, is proved by con

sidering, as in 12, Descriptive Space to be a tetrahedral region in

Projective Space, but confining ourselves to the points whose co

ordinates are algebraic numbers t, as in the corresponding proof for

Projective Geometry.

The independence of the Dedekind axiom of the other axioms,

combined with the Euclidean axiom, is similarly proved by considering

Descriptive Space to be the region in Projective Space found by

* Cf. Proj. Geom. 43.

f In the later Greek period, and during the seventeenth and eighteenth centuries,

the discussion of the foundations of Geometry was almost entirely confined to

attempts to prove the Euclidean axiom. The explicit recognitions of its inde

pendence by Lobatschefskij (1828), and by J. Bolyai (1832) laid the foundation of

the existing theories of non-Euclidean Geometry. For the literature of the whole

question cf. Stackel and Engel, Die Thcorie der Parallellinien von Euklid bis auf

Gauss, Leipzig, 1895, and also their Urkunden zur Geschichte der Nichteuklid-

ischen Geometric, I. Lobatschefskij, Leipzig, 1898.

Cf. Proj. Geom. 43 (a). An oversight in this proof may be here corrected.

The proof, as printed, proceeds by considering only points with rational coordinates.

But then a difficulty arises as to the theory of segments given in Chapter IV. of

Proj. Geom. For it is necessary that the real double points of a hyperbolic

involution should belong to the points considered. But these double points are

given by a quadratic equation. Thus algebraic numbers (i.e. numbers which can

occur as the roots of equations with integral coefficients) should be substituted for

rational numbers. The proof proceeds without other alteration. I am indebted to

Mr G. G. Berry of the Bodleian Library for this correction.
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excluding a particular plane ;
and further, as before, we confine our

consideration to the points whose coordinates are algebraic numbers.

15. It has been proved in 12 and 13 that a convex region of a

Projective Space is a Descriptive Space. The converse problem has

now to be considered in this and in the next chapter ; namely, given
a Descriptive Space, to construct a Projective Space of which the

Descriptive Space is part. This effects a very considerable simplifica
tion in the investigation of the properties of Descriptive Space owing
to the superior generality of the analogous properties of Projective

Space. Thus a Projective Space affords a complete interpretation of

all the entities indicated in coordinate geometry. It is in order to

gain this simplification that the plane at infinity is introduced into

ordinary Euclidean Geometry. We have in effect to seek the logical

justification for this procedure by indicating the exact nature of the

entities which are vaguely defined as the points at infinity ;
and the

procedure is extended by shewing that it is not necessarily connected
with the assumption of the Euclidean axiom. This investigation is

the Theory of Ideal Points*, or of the generation of Proper and

Improper Projective Points in Descriptive Geometry. The Euclidean

axiom will not be assumed except when it is explicitly introduced.

The remainder of this chapter will be occupied with the general
theorems which are required for the investigation.

16. If A be any point and / be any line not containing A, then
the plane Al divides the bundle of half-rays emanating from A into

three sets, (1) the half-rays in the plane Al, (2) the half-rays on one

side of the plane, (3) the half-rays on the other side of the plane.
The sets (2) and (3) are formed of half-rays supplementary one to

the other.

Lemma. With the above notation, it is possible to find a plane

through the line / and intersecting any finite number of the half-rays
either of set (2) or of set (3).

For let j, ... an be n half-rays of one of the two sets. Let B be

any point on alt and 2 be any point on 2 . Then either the plane

*
Originally suggested by Klein (extending an earlier suggestion of von Staudt),

Math. Annal. vols. iv. and vi.
f 1871 and 1872 ;

first worked out in detail by Pasch,
loc. cit., 6 9. In the text I have followed very closely a simplification of the

argument given by E. Bonola, Sulla Introdvzione degli Enti Improprii in Geometria

Projectiva, Griornale di Matematiche, vol. xxxvin., 1900.
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BJ lies between the planes BJ and A I, or the plane BJ lies between

the planes BJ and A I, or the planes BJ and BJ are identical. But

in either of the first two cases the intermediate plane intersects both

semi-rays a^ and a,. Hence a plane is found through /, intersecting

both ! and 2 . Call it the plane R2 l. Again take any point Bs on as ;

and the same argument shews that at least one of R3 l and B3 l inter

sects !, 2 ,
and 3 . Proceeding in this way, a plane is finally found

which intersects each of the n semi-rays.

17. Desargues Perspective theorems* can be enunciated in the

following modified forms :

(1) If two coplanar triangles ABC and A B C are such that the

lines AA
,
BB

,
CO are concurrent in a point 0, then the three inter

sections of BC and B C
,
CA and C A t

AB and A B ,
if they exist, are

collinear.

*
Cf. Proj. Geom. 7.
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(2) If the pairs of homologous sides of the two coplanar triangles

ABC and A B C
, namely, BC and B C

,
CA and C A

t
AB and A B\

intersect in three collinear points, then the lines AA, BB\ CC
y
if any

two intersect, are concurrent in the same point.

Considering the first proposition let AB and A B intersect in L,

BC and B C in M, CA and CA in N. Now it is not possible both

for A to lie on the segment OA, and for A to lie on the segment OA.
Assume that A does not lie on the segment OA. Let R be any point

external to the given plane (a, say). Now by the lemma of 16, it is

possible to find a plane through LM, lying between the planes LMR and

LMA (i.e. the plane a), and intersecting the three lines RA, RB, EC,

say, in the points A&quot;, B&quot;,
C&quot; (in the figure C&quot; is not shewn). Then

evidently A&quot; must lie in the segment RA. Hence A
A&quot;, since A

does not lie in the segment OA ,
must intersect OR in the segment OR.

Thus the intersection of the lines A A&quot; and OR is secured. Let it

be the point O. Again the lines A and OB are the projections
from R on the plane A O B of the lines OA and OB . Now A B&quot;

passes through L. Hence B&quot; lies on the plane AA B
,

i.e. on the

plane OA B . Hence B&quot; is on the projection of the line OB on the

plane O A B ,
i.e. B&quot; lies on OB . Thus B B&quot; passes through .

Reasoning in exactly the same way for BC and B C
,
it follows that

C C&quot; passes through O. The same figure has now been constructed as

in the proof of the corresponding theorem for Projective Geometry*.

Accordingly the theorem follows by the same reasoning.

In order to demonstrate the converse theorem, we proceed exactly

as above, except that, L, M, N are now assumed to be collinear, is

the point of intersection of AA and BB . Then the same construc

tion is made as before, and it is successively proved by similar reasoning
that every pair of the lines A A&quot;,

B B&quot;, C C&quot; intersect. But the lines

are not coplanar. Hence they intersect in the same point O. But O
must lie on RO. Thus CC passes through 0.

Corollary. The enunciation of the first theorem can be modified

by removing the assumption that A C and AC intersect, but by adding
the assumption that A C intersects LM.

18. A trihedron is the figure formed by three lines concurrent

in the same point, and not all coplanar. The three lines form the

edges of the trihedron
;
the three planes containing the lines, two by

*
Of, Proj. Geom. 7.

w. 2
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two, form the faces of the trihedron
;
the point of concurrence of the

three edges is the vertex of the trihedron.

It follows (cf. 6) that, if two trihedrons have the same vertex, any

two faces, one from each trihedron, must intersect in a line through

the vertex
;
also that any two planes each containing two edges, one

edge from each trihedron, must intersect in a line through the vertex.

Desargues theorems can be applied to two trihedrons with the

same vertex ; only in this case, as in Projective Geometry, there are

no exceptional cases depending on non-intersection.

The enunciations are as follows :

(1) If a, b, c and a, b
,
c are the edges of two trihedrons with the

same vertex, such that the planes containing a and a
,
b and b

,
c and c

,

are concurrent in a line s (i.e. belong to the same sheaf), then the three

intersections of the planes be and b c, ca and c a
,
ab and a b are

coplanar.

(2) If a, b, c and a
,
b

,
c are the edges of two trihedrons with the

same vertex, such that the three intersections of the planes be and

b c, ca and ca
,
ab and a b

,
are coplanar, then the three planes

containing a and a
,
b and b

,
c and c belong to the same sheaf.

These propositions immediately follow from the case of triangles

by noticing that, by the lemma of 16, the six edges of the trihedrons

can be cut by a plane, not through the vertex. Hence by the previous

remarks on trihedrons, Desarguesian triangles are obtained without the

exceptions due to non-intersection.

19. The two theorems of the present and next articles are the

central theorems of the whole theory of Ideal Points.

If the lines a, b, c are the intersections of three planes a, /?, y of a

sheaf with a plane TT, not belonging to the sheaf, and if be any

point not incident in TT, then the three planes Oa, Ob, Oc belong to

one sheaf.
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If the axis (r) of the sheaf intersect the plane TT in a point S, then

the three lines a, b, c pass through S, and the line OS is evidently
contained in Oa, Ob, Oc, and thus forms the axis of the new sheaf.

Consider now the case when the axis (r) of the sheaf does not

intersect it. Then a, b, c are not concurrent, and no two of them
intersect. Hence one of the three (b, say) must lie between [i.e. any
segment, joining a point on a and a point on c, intersects b] the other

two. Take any two points L and N on a and c respectively, then the

segment LN intersects b in a point M. Take two other points P and

Q on LN so that we have the order P, L, M, N, Q. Take any point
D on c

;
then the segment PD must intersect a and b in two points

A and B respectively; and the segment AQ must intersect the

segment DN in a point C. Then the line BC must intersect the

segment NQ in a point R. Thus a triangle ABC has been formed,

whose vertices lie on a, b, c, and whose sides AB, AC, BC pass

through P, Q, R respectively.

By taking another point D on c, another triangle A B C can be

similarly formed, whose vertices lie on a, b, c, and whose sides A B
and AC pass through P and Q respectively.

We have first to shew that B C passes through R. For taking

any point T on the axis (r} of the sheaf, the lines TA,TB, TC form

the edges of one trihedron, and the lines TA
,
TB

,
TC form the

edges of another trihedron with the same vertex.

Also the planes TAA, TBB
,
TCC belong to the same sheaf.

Hence the three intersections of the pairs of planes TAB and TAB
,

TAG and TAG
,
TBC and TB C are coplanar ;

hence they lie in

the plane TPQ. Hence B C passes through R.

Now considering the two trihedrons with edges OA, OB, OC, and

OA, OB
,
OC

,
the intersections of the pairs effaces OAB and OA B

,

OAC and OAC
,
OBC and OB C

,
are respectively OP, OQ, OR

,

and these are coplanar. Hence by the converse part of Desargues
theorem for trihedrons, the planes OAA, OBB

,
OCC belong to the

same sheaf. Hence Oa, Ob, Oc belong to the same sheaf (i.e. have

a common line of intersection).

20. If any two of the lines a, b, c are coplanar, but the three

lines are not coplanar, and similarly for the lines a, b, d, then c and d

are coplanar.

If a and b intersect, the theorem is evident
;
for a, b, c are con

current, and a, b, d are concurrent. Hence c and d are concurrent.
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Assume that a and b do not intersect. Then it is easy to prove

that no two of the lines intersect. It follows that no one of the lines

c, b, d can intersect any of the planes ab, ac, ad in which it does

not lie.

Fig. i.

Fig. 2.
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Hence it follows that either c and d lie on opposite sides of the

plane ab, or d and b on opposite sides of the plane ac, or b and c on

opposite sides of the plane ad.

First, let c and d lie on opposite sides of the plane ab (cf. fig. 1).

Take any point C on c. Then the plane Cd must intersect the plane

ab in a line, d , say. Then the lines a, b, d are the intersections of

the three planes da, db, dC with the plane ab
;
and these three planes

belong to the same sheaf. Hence (cf. 19) the three planes through

the lines a, b, d respectively and through any point not on ab belong

to the same sheaf. But C is such a point. Hence the planes Ca,

Cb, Cd belong to the same sheaf. But c is the common line of Ca

and Cb. Hence Cd contains the line c. Hence c and d are coplanar.

Secondly, let the plane ad lie between b and c. Then the plane be

must intersect the plane ad in some line, d say. Thus the three lines

b, d
,
c are the intersections of the three planes ab, ad, ac with the

plane be. These three planes belong to the same sheaf. Hence

(cf. 19), if D is any point on d, not on be, the planes Db, DC, Dd
belong to the same sheaf. But Db and Dd intersect in the line d

hence DC passes through the line d. Thus c and d are coplanar.

Thirdly, let the plane ac lie between b and d. Then the proof is

as in the second case, interchanging c and d.



CHAPTER III.

IDEAL POINTS.

21. Definition. An Associated* Projective Point/ or an Ideal

Point, is the class of lines which is composed of two coplariar lines,

a and b, say, and of the lines formed by the intersections of pairs

of distinct planes through a and b respectively, and of the lines in the

plane ab which are coplanar with any of the lines of the protective

point not lying in the plane ab.

It follows immediately from 20 that the lines forming a projective

point are two by two coplanar ;
and further that (with the notation

of the definition) the lines of the projective point lying in the plane
ab are the lines in ab coplanar with any one of the lines of the

projective point not lying in ab.

Definition. A projective point is termed proper, if the lines

composing it intersect. Their point of intersection will be called the

vertex of the point.

Thus a proper projective point is simply a bundle of lines, and

every bundle is a proper projective point.

Definition. A projective point is termed improper, if the lines

composing it do not intersect.

It is proved (cf. 2430) that Projective Geometry holds good of

projective points as thus defined, when a fitting definition has been

given of a projective line.

Definition. A projective point will be said to be coherent with

a plane, if any of the lines composing it lie in the plane.

Definition. A projective line is the class of those projective

points which are coherent with two given planes. If the planes

* The word Associated will usually be omitted.
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intersect, the projective line is called proper ;
and the line of inter

section is the axis. If the planes do not intersect, the projective

line is called improper.

Since Projective Geometry has been developed* from the two

fundamental ideas of point and straight line, the other definitions

of projective elements must simply be those which have been given

in considering Projective Geometry. Thust a projective plane is the

class of those projective (ideal) points, which lie on any projective

line joining any given projective point A to any projective point on

any given projective line not possessing the given projective point A.

Definition. If a projective plane possesses any proper projective

points, it will be called a proper projective plane/ Otherwise it is an

improper projective plane.

The vertices of all the proper projective points on a proper pro

jective plane will be seen to form a plane (cf. 26 (a)).

Definition. A proper projective point and its vertex are said to be

associated, so likewise are a proper projective line and its axis, and

also a proper projective plane and the plane constituted by the vertices

of its proper projective points.

22. Since any two lines belonging to a projective point are

coplanar, it easily follows that any two lines of the projective point

can be used in place of the two special lines (a and b} used in the

definition (cf. 21). Hence it can easily be proved that any plane,

containing one line of a projective point, contains an infinite number

of such lines. In other words, if a projective point is coherent with

a plane, an infinite number of the lines of the projective point lie

in the plane. In fact it follows that, through each point of the plane,

one line passes which belongs to the projective point.

23. If three projective points are incident in the same projective

line, then with any plane, with which two of the projective points

cohere, the third projective point also coheres.

First, if the three projective points are proper, the theorem is

immediately evident.

Secondly, let two of the projective points, M and N
t say, be

proper, and let the third projective point, L, say, be improper. Let

*
Cf. Proj. Geom. t Cf. Proj. Geom. 4.
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the projective line possessing L, M, N be denned by the two planes
TT and TT

(cf. Definition of 21). Then the three projective points cohere

with TT and TT . Let TT&quot; be any third plane with which two of the three,

Fig. 1.

L, M, and N
t
cohere. Let MI and NI be the vertices of the proper

points, M and N. Then M^N-i is a line in the plane TT
(cf. fig.* 1) ;

also the line M^N^ belongs to L. Again (cf. 22) another line r

exists in TT belonging to L and Ml and NI must lie on the same

side of r. Let r be any line in TT belonging to L, and on the opposite

side of the line r to Ml and NI ;
such a line exists (cf. 22). Let

be any point of -n- on the side of r remote from MI and ^V^. Then

the segment OM\ intersects r and r
,
in A and A

, say ;
and the

* Note in drawing an illustrative figure, it is convenient to make the assump
tion of 12, and to consider Descriptive space as a convex region in a larger

Projective Space. This region is marked off by an oval curve in the figure, and an
ideal point, such as L, is a point outside the oval. Note that the existence of L,
as an analogous entity to Ifj and Nlt must not be assumed in the present

reasoning.
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segment ON^ intersects r and r
,
in B and B , say. The segments

ANT and SMl intersect, in C, say; the segments BMl and A N
intersect, in C

, say. Now project from any point in -n-
,
and two

trihedrons are formed, namely O A, OB, O C, and A
y
OB

,
O C

,

with the same vertex . Also the homologous faces intersect in the

three coplanar lines O L, OM^ O N^. Hence the three planes O A A
,

OBB
,
O CC are concurrent in a line. Hence the plane O CC con

tains the line O O. Therefore CC passes through 0. Again project

from any point 0&quot; in TT&quot;
,
and consider the trihedrons 0&quot;A, 0&quot;B, 0&quot;C,

and O A
, 0&quot;ff, O C . Then the planes O A A!, O BB

,
0&quot;CC are

concurrent in the same line O O. Thus the three lines O L, 0&quot;M^

O&quot;N! are coplanar. Hence if two of them lie in
IT&quot;,

the third must do

so also. Hence if two of L, M, N cohere with
TT&quot;,

the third also

does so.

Fig. 2.

Thirdly, let either two or three of L, M, N be improper. Thus

let L and M be certainly improper (cf. figs. 2 and 3). In the plane IT
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form a triangle ABC, such that its sides AS, BC, CA belong to

L, M, N respectively. Thus if N is a proper point, CA passes

through N,, the vertex of N: also since the lines BC and AB do not

intersect the line N^ML, the points A, B, C lie on the same side

of this line (cf. fig. 2) : also since the lines BC and BA do not

intersect the line N,ML, either C lies on the same side of the line AB
as Nlt or A lies on the same side of the line BC as Nlm Assume that

C lies on the same side ofAB as Nl (cf. fig. 2). The rest of the proof
for figures 2 and 3 is now identical. In the plane TT, let r be any line

Fig. 3.

belonging to L, on the side of AB remote from C. In the plane TT,

take any point on the side of r remote from C. Then the segments
OA and OB intersect r, say in A and B . Also the line A N
intersects the segment OA, and does not intersect the segment AC ;

hence it must intersect the segment OC, say in C . Then, by pro

jecting from any point O in the plane TT and by similar reasoning
to that in the second case, it is proved that the line B C belongs
to M. Then, as in the second case, by projecting from any point
0&quot; in

TT&quot;,
it follows that, if any two of the projective points L, M, N

cohere with
TT&quot;,

so also does the third.

24. (a) It follows from 23 that any two planes, with which

both of two given projective points cohere, define the same projective



23-26] AXIOMS OF PROJECTIVE GEOMETRY 27

line as any other pair of such planes. Hence two projective points

determine not more than one projective line.

(/?) Two projective points determine at least one projective line.

For if the points are proper, this is immediately evident. But in any

case let the projective points be A. and B, and let be any point.

There are at least two lines, a and ,, which are members of A and

such that the plane a^a2 does not contain 0. Then the planes Oa-^

and 2 intersect in a line which passes through and is a member of

A. Hence through any point there passes a line which is a member of

a projective point. Hence through there are lines belonging to A
and B respectively. But these lines determine a plane, with which A
and B both cohere. Similarly a second such plane can be determined.

Hence there is a projective line possessing both A and B.

25. The Axioms of Projective Geometry* can now be seen to be

true for the Projective Elements as thus defined. Thus we have the

following theorems corresponding to those axioms of the previous tract,

of which the numbers are enumerated in the initial brackets.

(I, II, III.) There is a class of Projective Points, possessing at

least two members.

(IV, V, VI, VII, VIII.) If A and B are Projective Points, there

is a definite projective line AB, which (1) is a class of projective

points, and (2) is the same as the projective line BA, and (3) possesses

A and B, and (4) possesses at least one projective point distinct from

A and B.

Note that two improper projective points may possess no common

line.

(IX and X.) If A and B are projective points, and C is a pro

jective point belonging to the projective line AB, and is not identical

with A, then (1) B belongs to the projective line AC, and (2) the

projective line A C is contained in the projective line AB.

(XL) If A and B are distinct projective points, there exists

at least one projective point not belonging to the projective line AB.

26. Before considering the proof of the axioms of the projective

plane t, some further propositions are required.

(a) Since a line exists through any given point and belonging

to any given projective point, it easily follows that the set of projective

*
Cf. Proj. Geom. 4, 7, 8, 14.

f Cf. Proj. Geom., Axioms XII, XIII, XIV.
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points cohering with a plane form a proper projective plane ;
and that

conversely, any proper projective plane is the set of projective points

cohering with some plane.

(ft) Any projective line intersects any given proper projective

plane. For through the vertex of any proper projective point on the

projective plane, a plane passes with which every point of the

projective line coheres (cf. 23). This plane intersects the plane

associated with the projective plane in a line. Two such planes can

be found. The two lines in the plane associated with the projective

plane define a projective point which lies both in the projective line

and the projective plane.

(y) Two projective lines in a proper projective plane necessarily

intersect.

For let m and n be the projective lines and a be the proper

projective plane, and ax its associated plane. Take any point

outside ttj. Then two planes Om and On exist, with which re

spectively all projective points of m and n cohere. These planes

intersect in a line through 0, I, say. Let A be any point in ax .

The plane A I intersects % in a line, /
, say. The two lines / and /

define a projective point which lies in both the projective lines m
and n.

(8) Desargues Theorem holds for triangles formed by projective

lines and projective points in a proper projective plane.

By (y) immediately above, no exception arises from non-intersec

tion. Then by taking a point external to the associated plane, two

trihedrons can be formed for which the theorem holds. Hence the

theorem holds for the proper projective plane.

(e) The projections upon a proper projective plane of three

projective points belonging to the same projective line also belong to

a projective line.

The theorem is immediately evident, if the centre of projection,
or if any one of the three projective points, is proper. Assume that

all the projective points are improper. Let L, M, N be the three pro

jective points, and S the projective point which is the centre of

projection. Let IT be the proper projective plane on to which L, M, N
are to be projected. Let a be any plane with which L, M, N all

cohere. On a construct figure 3 of 23. Project (remembering (ft)

above) the whole figure of associated projective points from S on to the

plane TT. Then by the first case of the present theorem, all collinear

groups of projective points which possess a proper projective point are
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projected into collinear groups. Let A, B,...M, N be projected

into A lt J$lt ... Mlt N!.

Thus, in the plane TT, two homological triangles A&Ci and

AiBi Ci are obtained, J-i^-/, ^A , CW being concurrent in Oi ;

also B^A 1 and B-fA^ B& and Bi Ci, J-i^i and ^4/07 are concurrent

respectively in L1} Ml} Nlt Hence, by (3) above, A&amp;gt; -3/n ^Vi belong

to the same projective line.

27. The next group of propositions correspond to the three axioms

concerning the projective plane.

(XII.) If A
t B, C are three projective points, which do not

belong to the same projective line, and A belongs to the projective

line SC, and B to the projective line CA, then the projective lines

AA and BB possess a projective point in common.

If the projective plane ABC is proper, the theorem follows from

26 (y). If the projective plane ABC is improper, consider any plane

with which all the projective points of the projective line BB cohere.

Such planes exist. Thus the associated projective plane of such a

plane is a proper projective plane containing the line BB . But by

26 (/?) the projective line AA intersects this proper projective plane,

in the projective point D, say. Also by 26 (e) the projections of

B, A, C from A on to this proper projective plane belong to the

same projective line. Hence D belongs to BB . Thus AA and BB
intersect.

(XIII.) If A, B, C are three projective points, not belonging to

the same projective line, then there exists a projective point not

belonging to the projective plane ABC.
This follows immediately from Peano s Axiom XV given in 6

above.
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28. The theory of Harmonic Ranges must now be considered.
Let A, B be any two points, C a point in the segment AB. Take

F any point outside the line AB, and H any point on the segment
FC, and let EG be as in figure 1. Then the point D, if it exist, is

the harmonic conjugate of C with respect to A and B. By considering
the associated projective points and the associated projective lines, the

requisite harmonic conjugate (as a projective point) always exists.

Thus, on the basis of the axioms of Projective Geometry already
proved, the proof for the uniqueness of the harmonic conjugate in the
associated projective geometry holds good*. Thus in the original
Descriptive Geometry, the harmonic conjugate, if it exist, is unique.

Furthermore, since H is on the segment FC, E and G are re

spectively on the segments AF &nd FB. Hence D, if it exist, cannot
lie on the segment AB. Conversely, if D is any point on the line A B,
say on the side of B remote from A, take E any point on the segment
AF, then DE must intersect the segment BF. Hence AG and BE
must intersect in H, on the segments AG and BE. Therefore FH
intersects the segment AB. Thus the harmonic conjugate with respect
to A and B of any point on the line AB, not on the segment AB,
must exist, and lies on the segment AB.

Furthermore, if D lies on the side of B remote from A, and C
lies on the segment BC, let FC and EB intersect in H

\
and AH

intersect the segment FB in G . Then since C lies in the segment
BC, H lies in the segment BH, and G lies in the segment BG.
Hence D exists and lies in the segment BD. Thus as C moves
towards B, D also moves in the opposite direction towards Bj.

*
Cf. Proj. Geom. 6 and 7. f Cf. Proj. Geom. 17 ().
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Hence it is easily seen that the segment AB is divided into three

parts by reference to the harmonic conjugates of points in it with

respect to A and B. The part formed by the segment AK^ (cf. fig. 2),

Fig. 2.

exclusive of A and K^ contains the points whose harmonic conjugates

lie on the side of A remote from B ; the segment BK^ exclusive of

B and K2 ,
contains the points whose harmonic conjugates lie on the

side of B remote from A
;
the segment K^K^, inclusive of KI and JT2 ,

contains the points for which the harmonic conjugates do not exist.

It is not necessary that the points K and K2 be distinct. If they

coincide, the segment KK, inclusive of K^ and K^ shrinks into a

single point K. Thus in Euclidean Geometry the middle point of any

segment AB is this degenerate portion of the segment.

It immediately follows that Fano s axiom* is satisfied for proper

projective lines. Hence, remembering that the harmonic relation is

projectivet, we have :

(XIV.) If A and B are distinct projective points, and G is a

projective point of the projective line AB, distinct from A and B,
then the harmonic conjugate of (7, with respect to A and B, is

distinct from C.

Also the restriction to three dimensions follows at once from

Peano s Axiom XVI of 6, giving the same restriction for Descriptive

Geometry. Hence we find :

(XV.) If a be any projective plane, and A be any projective point

not lying in a, any projective point P lies on some line joining A to

some projective point on a.

29. The order of the projective points on a projective line must

now be considered.

If the projective line is proper, the order of the proper projective

points on it will be defined to correspond to the order of the associated

points. Thus (cf. fig. 2 of 28) if the points marked in the figure are

projective points, as C moves from A to K^ excluding K^, the projec

tive point Z&amp;gt;,
which is the harmonic conjugate to (7 with respect to A

and B, moves from C through all the proper projective points on the

*
Cf. Proj. Geom. 8. f Cf. Proj. Geom. 9 (5).
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side of A remote from B
;
and as moves from K^ excluding K2)

to B, D moves towards B through all the proper projective points

on the side of B remote from A.

Now let the order of the improper projective points be denned so

as to make the above theorem hold generally : thus as C moves from

KI to K^ including KI and K2 ,
let the order of the improper

projective points through which D moves be such that D passes

continually in the same direction round the line from the proper

projective points on the side of A remote from B to the proper

projective points on the side of B remote from A.

Then by theorem (a) of 17 of the Tract on Projective Geometry,
the order as thus denned agrees with the order as defined in 14

and 15 of that Tract. Also the order on the improper projective

lines is obtained from the order on the proper projective lines by

projection. Since the harmonic property is projective, the orders

obtained thus by different projections must agree. Also from Peano s

axioms of the segments of the Descriptive line given in 3 above,

it follows that the Projective axioms of order* are satisfied, namely :

(XVI.) If A, B, C are distinct projective points on the same

projective line, and D is a projective point on segm (ABC)^ }
not

identical either with A or C, then D belongs to segm (BCA).

(XVII.) If A, B, C are distinct projective points on the same

projective line, and D is a projective point belonging to both

segm (BCA) and segm (CAB}, then D cannot belong to segm (ABO).

(XVIII.) If A, B, C are distinct projective points on the same

projective line, and D is a projective point, distinct from B, and

belonging to segm (ABC) [which excludes A and C], and E belongs

to aogm(ADC)t
then E belongs to segm (ABC).

30. Finally, the Dedekind property J for the projective line

follows immediately from its assumption for Descriptive Geometry

(cf. 9 above).

Thus all the axioms for Projective Geometry, including the axioms

of order and the Dedekind property, are satisfied by the Projective

Points and the Projective Lines. Furthermore the proper projective

points evidently form a convex region in the projective space formed

by the projective points. Also the geometry of this convex region of

*
Cf. Proj. Geom. 14.

f i.e. on the segment between A and C not possessing , cf. Proj. Geom. 13.

+ Cf. Proj. Geom. 19 (a).
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proper projective points corresponds step by step with the geometry of

the original descriptive space. Thus the geometry of descriptive space

can always be investigated by considering it as a convex region in a

projective space. This simply amounts to considering the associated

proper projective points and adding thereto the improper projective

points. A particular case arises when the Euclidean axiom (cf. 10,

above) is assumed. The improper projective points then lie on a single

improper projective plane. Thus in Euclidean Geometry when the

plane at infinity is considered, the associated projective geometry has

been introduced, and this plane is the single improper projective plane.



CHAPTER IV.

GENERAL THEORY OF CORRESPONDENCE.

31. IN this chapter the general ideas of Correspondences, or

Transformations, and of groups of transformations are explained, and

thus the idea of continuous motion is led up to.

Consider any proposition respecting two entities p and q ;
let it be

denoted by &amp;lt;j&amp;gt;(p, q). The proposition may be varied by replacing

p and q by two other- entities, say u and v, so that the new proposition

is
&amp;lt;f&amp;gt; (u, v). Thus we arrive at the notion of a constant form common

to all the propositions of the type &amp;lt;j&amp;gt; (at, y\ where x and y are any two

entities such that a significant proposition results when x and y replace

p and q in &amp;lt; (p, q). Note that a false proposition is significant ;
an

insignificant proposition is not in truth a proposition at all, it is a

sequence of ideas lacking the type of unity proper to a proposition.

The constant form of the proposition &amp;lt;j&amp;gt; (x, y\ as x and y vary, may
be said to constitute a relation between x and y, in those special cases

for which &amp;lt;

(a, y) is a true proposition. The order of x and y in

respect to this relation represents the special roles of x and y
respectively in the proposition &amp;lt; (x, y}. Thus if this relation is called

JR,
( x has the relation R to ?/, or more briefly xRy, is equivalent to

the proposition &amp;lt;j&amp;gt; (x, y), however x and y be varied. It is evident that

we might have considered the relation indicated by the proposition in

such form that, if it be denoted by R, yE x represents &amp;lt;j&amp;gt; (#, y). Then
R and R are called mutually converse relations. It is evident that

each relation has one and only one corresponding converse relation.

When xRy holds, x is called the referent and y the relatum. A
relation is said to be a one-one relation when to each referent there is

only one relatum, and to each relatum there is only one referent. For

example, if aRb and aRc both hold, where b and c are distinct entities,

then the relation R is not one-one.



31, 32] DEFINITION OF A EELATION 35

The class of all the referents in respect to a relation is called the

domain of the relation, and the class of all relata is the converse

domain. In mathematics a one-one relation is often spoken of as a trans

formation (or correspondence) of the members of its domain into (or

with) the corresponding members of the converse domain. The corre

spondence is definite and reversible, and constitutes a rule by which

we can pass from any member of one class to a corresponding definite

member of the other class.

For example, the equation,

2a; + 3y = 4,&quot;

constitutes a one-one relation of all real numbers, positive or negative,

to the same class of real numbers. This brings out the fact that the

domain and the converse domain can be identical.

Again, a projective relation between all the points on one line of

projective space and all the points on another (or the same) line-

constitutes a one-one relation, or transformation, or correspondence,

between the points of the two lines. Any one-one relation of which

both the domain and the converse domain are each of them all the

points of a projective space will be called a one-one point corre

spondence.

32. By reasoning* based upon the axioms of Projective Geometry,
without reference to any idea of distance or of congruence, coordinates

can be introduced, so that the ratios of four coordinates characterize

each point, and the equation of a plane is a homogeneous equation of

the first degree. Let X, F, Z, U be the four coordinates of any

point ;
then it will be more convenient for us to work with non-

homogeneous coordinates found by putting x for XjU, y for Y/17,

z for Zl U. Accordingly the actual values of as, y, z are, as usual, the

coordinates characterizing a point. All points can thus be represented

by finite values of #, y, z, except points on the plane, U= 0. For these

points some or all of a?, y, and z are infinite. In order to deal with

this plane either recourse must be had to the original homogeneous

coordinates, or the limiting values of x to y to z must be considered as

they become infinite.

The plane, x = 0, is called the yz plane, the line, y - 0, z - 0, is

called the axis of x, and the plane, U=0, is called the infinite

plane.

*
Cf. Proj. Geora. chs. vi. and vn.

32
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When the fundamental tetrahedron is changed, the coordinates are

changed according to the formula

l3 Z + au U},

Z+a-a, 17},

Z =&amp;lt;r
{flfoJT+ a32 F+ a33 Z + au U},

Uf =
&amp;lt;r{ai X+a2 Y+a3 Z+a, U}.

Hence the non-homogeneous coordinates are transformed by the
formula

x =
(aux + al2y + alsz + a14)/(!# + a2y + a3z + a4),

y = (a^x + a^y + a23z + a24)/(a^ + a2y + asz + 4),

z =
(a3lx + a32y + a33z + a^)l(a^x + a2y + asz + 4).

But if the infinite plane is the same in both cases, the formula for

transformation becomes

x = a^x + al2y + al3z + au ,

with two similar equations.

33. A one-one point correspondence can be characterized by
formulae giving the coordinates of any relatum in terms of those of
the corresponding referent. It must be remembered that every point
is both a relatum and a referent. Let the correspondence under
consideration be called T, then the coordinates of the relatum of any
point x, y, z will be written Tx, Ty, Tz. Thus we have,

Tx = & O, y, z\ Ty -
&amp;lt; 2 (#, y, z\ Tz =

&amp;lt; 3
(&amp;gt;, y, z),

where the functions &,
&amp;lt;f&amp;gt;

2 , &amp;lt;f&amp;gt;3 are defined for every point of space and
are single-valued. Furthermore, since the correspondence, being one-

one, is reversible, it must be possible to solve these equations for x, y,
and z, obtaining

x = ^(Tx,Ty,Tz\ y = ^(Tx,Ty,Tz\ z =
*&amp;gt;(Tx t Ty,Tz).

Let this converse relation be written T1} and let the coordinates of
the relatum of any point #, y, z be written

7&amp;gt;, T,y, T^z. Then

x=T,Tx=TT^ y=T1Ty=TT1y, z = T1Tz=TT1z.

Then, remembering that by properly choosing x, y, z we can take
Tx, Ty, Tz to be any point of space, we find

where fa, ^2) fa are defined for every point of space and are single-
valued.



32-35] FINITE CONTINUOUS GROUPS 37

34. Consider* the one-one point correspondence (T) defined by

Tx = fa (x, y, z, alt 2 ,...ar), Ty = fa (x,y, z, aly aa ,...a,.),

Tz = fa(x, y, z, !, 2 ,...ar),

where al} a.2) ...ar are r parameters. Let the parameters be assumed to

be effective, so that two different choices of special values for them

necessarily produce different correspondences. Then by varying the

parameters an assemblage of correspondences is produced, each corre

spondence being defined by a particular choice of the parameters

!, a^...ar .

Now let 8 and T be any two members of this assemblage. Then

STa, i.e. S(Tx), STy, and 8Tz obviously are the coordinates of a point

which is related to the point (#, y, z) by a one-one point correspondence.

This correspondence is denoted by ST. Now, if 8T is necessarily a

member of the assemblage whenever 8 and T are both members of it,

the assemblage is called a group. When each correspondence of the

group is defined by r effective parameters, where r is a finite number,

the group is called finite and r-limbed. The group is said to be

continuous, if, 8 and T being any two different transformations of the

group, whenever the parameters of 8 vary continuously and ultimately

approach those of T as their limits, then, for every value of #, y, z,

also Sx
t Sy, Sz vary continuously and approach Tx, Ty, Tz as their

limits.

The assumption that fa, fa, fa are analytical functions of their

arguments, x, y, z, a^...ar ,
secures that the group is continuous.

35. The identical one-one point correspondence, O say, is such

that, for every value of #, y, z,

# = #, % =
y, Qz = z (1).

Finite Continuous Transformation Groups exist which do not

contain the identical transformation. But the chief interest of the

subject is concerned with those which do contain it. Let a, $2 , dr

be the value-system of the parameters for which the corresponding

transformation of the group is the identical transformation O, so that

Cl = a? = ^(^y,,&amp;lt;aa J
...ar ) (2),

with two similar equations.

*
Cf. Vorlesungen uber Continuierliche Gruppen, by Lie, ch. vi. 2.
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For brevity put

(3).

Now any transformation (I) of the group can be expressed in the
form

Tx = & (#, y&amp;gt; 3, ttl
o + Ci t) af + eat,..., ar + ert) \

Ty=ts(x,y,z,a1 + e1 tt ctf + 6stt ...,ar
9+ertn ......... (4).

Tz = ^ (xt yt z, of + ei t, a2 + e2 t,..., ar + ert)}

Hence, since the functions &, &amp;lt;j&amp;gt;t , &amp;lt;/,3 are analytic, if t is not too
large, we find, remembering equations (2) and (3),

Tx = x + t (X fe + 3,& + . . . + er^ + terms involving
2

, #, etc.
)

Ty = y + t(el
T
1l + e2 i]2 +... + er^ + terms involving ^

2
,
^
3
,
etc. I- (5).

I7

^ = z + t (el d + e^ + . . . + er r) + terms involving t
2
,
t
s

,
etc.

Hence in the limit when t diminishes indefinitely, writing

we find

dx

dz

(6).

These equations define the infinitesimal transformations of the
group, every value-system of ratios of*, e2,...er defining one Infini
tesimal Transformation.

36. Conversely by integrating equations (6) of 35, it can be
proved that the form of any finite transformation of the group can be
recovered. Assume that we have found in this way

where Q, &amp;lt;7a ,
Cs are the constants introduced by the integration. Let
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#o #o&amp;gt;

zo be the values of #, #, when = 0. Then from the above

equations it can be proved to be possible, owing to the properties of -

the continuous group of one-one transformations, to solve for Ci, C2 ,
Cs

in terms of x^y^z^. Thus we obtain again equations (4) of 35,

namely
X =

&amp;lt;j&amp;gt;i (&amp;gt;o&amp;gt; 2A ^O, 1 + 01 ^ r + M),

with two similar equations, where #
, # ,

now correspond to #, #, 2

in those equations, and #, y, to 7k, Tfy, 7k

But it is not true that, if any equations of the same form as

equations (6) of 35 be written down, where &,..., r are any

arbitrarily chosen functions of #, y, z, the integral forms give the finite

transformations of an r-limbed finite continuous group. For in

equations (6) of 35, &,...,& are derived from equations (3) of 35,

that is to say, they are partial differential coefficients of functions with

special properties. The enunciation of the conditions to be satisfied

by ,..., r ,
so that a finite continuous group of transformations may

result from the integration of the corresponding equations, is called the

Second Fundamental Theorem of the subject. It is not required here.

Also if 61, e2 ,...er are kept unchanged, then the assemblage of

transformations found by the variation of t in equations (4) of 35

form a one-limbed continuous group, which is denned by the single

infinitesimal transformation which it contains, namely that one corre

sponding to the given value-system of &amp;lt;?15 e.2 ,...er . Also every finite

transformation is a member of the one-limbed group produced by the

indefinite repetition of some infinitesimal transformation.

37. A latent point of a transformation is a point which is trans

formed into itself. A latent curve or surface is such that any point of

it is transformed into some point on the same curve or surface.

It is evident that the latent points, lines, and surfaces of any

infinitesimal transformation are also latent for every finite transfor

mation belonging to the one-limbed group defined by it. They are

called the latent points, lines, and surfaces of the group.

The transformations which leave a given surface latent must form

a group, for the successive application of two such transformations still

leaves the surface latent. Also the assemblage of the infinitesimal

transformations which leave a surface latent must be the infinitesimal

transformations of a continuous transformation group.
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38. If a reentrant single-branched curve a (which may be a straight

line) is transformed by an infinitesimal transformation of a continuous

group into a curve ft then the senses* round, or directions round, the

curves correspond in a perfectly definite manner, the same for all such

infinitesimal transformations.

In order to make clear the correspondence of directions round any
two reentrant single-branched curves a and ft let OP^L and OP2L
define two complementary segments round a, and let O QiM and O Q^M
define two complementary segments round (3. Now consider any
one-one point transformation which (1) transforms a into ft (2) trans

forms segments of a into segments of 13, (3) transforms into .

Then one of the two following mutually exclusive cases must hold, either

one of the two, O QiM and the relatum of OP^L, contains the other, or

one of the two, O Q^M and the relatum of OP^L contains the other.

If one of the two, O Q^I and the relatum of OPiL, contains the other,

then the segments OP^L and Q^M will be said to correspond in sense

where and are corresponding origins. Also we shall consider an

arbitrary small portion of a containing as the neighbourhood of
;

thus divides its neighbourhood into two parts, one lying in the

segment OP^, and the other in the segment OP2L. Similarly

divides its neighbourhood on (3 into two parts. Then the case con

templated above, when the segments OP^L and O QiM correspond in

sense with and as corresponding origins, will also be expressed by

saying that corresponds to and the neighbourhood of in the

segment OP^L corresponds to the neighbourhood of in the segment
O Q^M.

Now considering the case of an infinitesimal transformation, the

curve (3 must lie infinitesimally near to the curve a, so that the point

Ql may be assumed to be a point infinitesimally near to the point Pl

and the point Q2 to be a point infinitesimally near to the point P2 .

Then no point of the segment OPJj which is infinitesimally near to Pl

is infinitesimally near to any point on the segment Q.2M. Hence the

segments OP^L and O QiM must correspond in sense with and as

corresponding origins. Thus only one of the two cases of corre

spondence in sense is now possible.

Notice that for this theorem the curves a and /3 need not be distinct,

nor need the points and .

If a straight line I is latent for a transformation, and is a latent

point on it, and segments with origin correspond in sense with

*
Cf. Proj. Geom. 15, extended to any reentrant lines.
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themselves, then the line is said to be transformed directly in the

neighbourhood of 0, in the other case it is said to be transformed

inversely in the neighbourhood of 0.

Thus it follows as a corollary from the above proposition that an

infinitesimal transformation, which leaves latent a line and also a

point on it, transforms the line directly in the neighbourhood of 0.

Hence also it follows that any finite transformation of the one-limbed

group defined by the infinitesimal transformation, transforms the line

directly in the neighbourhood of 0.

Similar theorems hold with respect to surfaces. It is sufficient for

us to consider a transformation for which (1) a given straight line / is

latent and also a point on it, and (2) the relata of planes through /

are planes and the relata of straight lines through are straight lines.

The general extension is obvious.

The portion of a plane through 0, which lies within an arbitrarily

small convex surface (cf. 11) which contains within it, will be

called the neighbourhood of 0. The axis I divides into two parts the

neighbourhood of on a plane p through /
;

call them p^ and p2 . Let

the plane q be the relatum ofp with respect to the transformation, and

let the two parts of its neighbourhood, as divided by /, be ql and q.2 .

Let a line through in p cut the convex surface in Plt P2 ;
and let

the relatum of the line in q cut the surface in Qu Qi &amp;gt;

^ ^ OP\
stand for the segment of the line in the neighbourhood^, and so on.

Then (assuming that continuous lines are transformed into con

tinuous lines) if OPi and OQi correspond in sense, the same must hold

for all similar parts of corresponding lines through in the neighbour-
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hoods P! and ql . The neighbourhoods p and ql will then be said to

correspond in sense. Also if p is latent, it will be said to be trans

formed directly in the neighbourhood of with / as axis, if the

neighbourhood p l corresponds to itself in sense.

Now, if the transformation is infinitesimal, it follows at once from

the case of curves, that a definite one of the two neighbourhoods

q and q^ must correspond in sense with j^, and that, if the plane p is

latent, it must be transformed directly in the neighbourhood of with

/ as axis.

39. The general protective group of one-one point correspondences
is the group of those transformations which transform planes into planes.

Such transformations must therefore transform straight lines into

straight lines, and must leave unaltered all projective relations between

sets of points on lines.

Now, if in such a transformation three points A, B, C on a line /

are known to be transformed into A
,
B

,
C on a line /

,
the relatum

on / of every point on I is determined. For, by the Fundamental

Theorem* one and only one projective relation can be established

between the points on I and those on /
,
such that A corresponds to A

,

B to B
,
and C to C . Thus the given transformation must transform

/ into / according to this relation.

Hence it follows that if four points, A, B, C, D on a plane p, no

three of which are collinear, are known to be transformed into A, B ,

C
,
D on a plane p, the relatum on p of every point oup is determined.

For let AD meet BC in E, and A D meet B C in E . Then E
corresponds to E. Hence A, B, E on AB correspond to A, B ,

E on

A B . Hence the relatum on AB of every point on AB is determined,

and similarly for BC and B C , and for CA and C A . But through any

point P on p a line I can be drawn cutting BC, CA, AB in L, M, N.

Thus the relata on p of L, M, N, namely L
r

,
M

,
N on /

,
are deter

mined. Thus the relatum of every point on / is determined. Hence

the relatum of P is determined.

Similarly, if A, B, C, D, E are five points, no four of which are

coplanar, and if for any projective transformation their relata are

determined, then the relatum of every point is determined. Accordingly
a projective transformation is completely determined when the relata

of five points, no four of which are coplanar, are determined.

*
Of. Proj. Geom. 9 (7).
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40. Now consider transformations of the type

Tx =
(anx + al2y + a lsz

Ty
-
(a^x + a^y + a&z

Tz =
#31 a? +

+ a.2y + asz + 1)

+ a.2y + asz + 1) . . .(1).

They obviously belong to the general projective group as defined

above. Also there are fifteen effective parameters. But if we

substitute for a?, y, z the coordinates of a given point A, and for

Tx, Ty, Tz the coordinates of a given point A ,
three equations are

obtained between the parameters. Let the same be done for B and B ,

C and C
,
D and D

,
E and N. Then in all fifteen equations are

found. Also if no four of A, B, C, D, E are coplanar, and no four of

A, B
,
C

, D\ E are coplanar, these equations are consistent, and

definitely determine the transformation T. Hence (cf. 39) the

equations (1) can, by a proper choice of parameters, be made to

represent any assigned transformation of the general projective group.

Hence the transformations represented by them are those of the whole

general projective group.

It is obvious from the form of these equations that the group is

a fifteen-limbed continuous transformation-group. To find its infini

tesimal transformations, put

+ an t, ia
= a12 , 13

= a13 tf,
a14

= aH t, ax
= a^, a2

= a2 #, a3
= as t, etc.

Then we find that the analogues of equations (6) of 35 are

dz

dt

a14
- X

(2).

These equations give the general form of an infinitesimal trans

formation of the general projective group.



CHAPTER V.

AXIOMS OF CONGRUENCE.

41. THE logical analysis of the method of superposition as applied
to geometrical proofs is now to be undertaken. In this method a

figure is said to move unchanged till it arrives at coincidence with

some other figure. But what moves ? Certainly not the points of the

space. For they remain where they are. If it is some physical body

occupying space which moves, then the assumption, that the body
remains unchanged in its motion, involves the very comparison
between the assemblage of points occupied in one position with that

occupied in another position, which the supposition was designed to

explain. Accordingly we find that Pasch* in effect treats congruence
as a fundamental idea not definable in terms of the geometrical concepts
which we have already acquired. He states ten axioms of congruence
in a form applicable to Descriptive Geometry. They are as follows,

where the single capital letters represent points, and the figures are

the ordered assemblages of the points mentioned, ordered in the order

of mention.

I. The figures AB and BA are congruent.
II. To the figure ABC, one and only one point B can be added,

so that AB and AB are congruent figures and B lies in the segment
A G or C in the segment AB .

III. If the point C lies in the segment AB and the figures

ABC and A B C are congruent, then the point C lies in the segment
A ff.

IV. If the point Cl lies in the segment AB, and the segment ACl

is lengthened by the segment dC2 which is congruent to it, and AO2

is lengthened by the segment CzCSt congruent to ACit and so on, then

finally a segment CnCn+1 is arrived at which contains the point B.

*
loc. cit. 13.
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V. If in the figure ABC the segments AC and BC are congruent,

then the figures ABC and BA C are congruent.

VI. If two figures are congruent, so also are their homologous

parts congruent.

VII. If two figures are each congruent to a third figure, they are

congruent to each other.

VIII. If of two congruent figures one is enlarged by the addition

of a point, the other can be similarly enlarged so that the enlarged

figures are congruent.

IX. If AB and FGH are any two given figures, Ft G, H being

not collinear, and AB is congruent to FG
t
then in any plane containing

AB exactly two points C and D can be found such that the figures

ABC and ABD are each congruent to FGH, and furthermore the

segment CD has a point in common with the line AB.
X. Two figures ABCD and ABCE which are not plane figures

are not congruent.

42. These axioms at once suggest the analysis and definition of

congruence in terms of our previously stated geometrical concepts.

This analysis was first successfully achieved by Lie*.

Any point of space may be supposed to move with the rigid figure

when the method of superposition is applied. Accordingly, considering
the explanations of chapter IV, we see at once that a superposition

is in fact a one-one point transformation. Let this special class of

point transformations be called motions. We have now to consider

whether the peculiar properties of motions can be defined in terms of

the geometrical ideas already on hand.

If a rigid body is transferred from position a to position /?, and

then from ft to y, the final transformation defined is the same as if it

were transferred directly from a to y. Thus the successive application
of two motions produces a motion. But this is the characteristic group

property.

What Lie has succeeded in doing is to define in geometrical terms

the properties which must be possessed by a complete group of motions.

But now the explanations of the preceding paragraphs are found to be

*
Cf. two papers by Lie in the Leipziger Berichte, 1890. These investigations

are reproduced in a much enlarged form in the Theorie der Transformationsgruppen,
vol. in. part v. But Lie s line of thought was not that suggested above. He starts

from an almost successful solution of the same problem by Helmholtz, cf. Ueber die

Thatsachen, die der Geometric zu Grunde liegen, Gott. Nachr. 1868, and Collected

Works, vol. ii.
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to some extent faulty. For they implicitly assume that there is one

definite group of motions, as indeed our sensations of the physical

world do in fact seem to give us special intelligence of one such definite

group in physical space. However it will be found that an indefinite

number of groups of one-one point transformations exist which satisfy

Lie s definitions of the properties of a complete group of motions.

Accordingly a motion when one special group is being considered is not

a motion when another such group is considered.

A group of motions is called a congruence-group, and the

definitions of the characteristics of such a group are called the axioms

of Congruence.

43. Lie s results, as expressed by himself, are as follows :

Definition*. A finite continuous group in the variables x^ x^...xn

is called transitive, if in the space (#15 #2
&amp;gt; #) an w-fold extended

region exists, within which each point can be transformed into any
other point through at least one transformation of the group.

Definition!. A real continuous group of three-fold extended

space possesses at the real point P free mobility in the infinitesimal,

if it satisfies the following conditions : If a point P and an arbitrary

real line-element passing through it are fixed, continuous motion is still

possible ;
but if, in addition to P and that line-element, an arbitrary

real surface-element, passing through both is held fixed, then shall no

continuous motion be further possible.

Theorem I. (1) If a real continuous protective group of ordinary

three-fold extended space possesses without exception in all real points

of this space free mobility in the infinitesimal, then it is six-limbed and

transitive, and consists of all real protective transformations through
which a not-exceptional imaginary surface of the second degree, which

is represented by a real equation [e.g. xz + y
2 + z2 + 1 = 0], remains

invariant (latent).

(2) If a real continuous protective group of ordinary three-fold

extended space possesses free mobility in the infinitesimal, not in all

real points of this space but only in all real points of a certain region,

then it is six-limbed and transitive and is either the continuous real

projective group of a not-exceptional real not-ruled surface of the

*
Cf. Theorie der Transformationsgruppen, vol. i. 58.

t Cf. loc. cit., vol. m. 98.

I Cf. Lie, loc. cit. vol. in. 98.
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second degree [i.e. with this surface latent], or it is by means of a real

projective transformation similar to the group of Euclidean motions.

The above constitutes what Lie calls his first solution of the

Riemann*-Helmholtz Problem.

The axioms which are implicit in this solution appear to be the

following :

(1) A congruence-group is a finite continuous group of one-one

point transformations, containing the identical transformation.

(2) It is a sub-group of the general projective group.

(3) An infinitesimal transformation belonging to it can always be

found satisfying the condition, that any definite line and any definite

point on the line are latent.

(4) No infinitesimal transformation of the group exists such that

a line, a point on it, and a plane through it, shall all be latent.

44. Lie sf second solution of the Riemann-Helmholtz Problem

consists of the theorem that the following axioms completely

characterize a complete assemblage of Euclidean or non-Euclidean

Motions :

(1) The motions form a real continuous group defined by in

finitesimal transformations.

(2) If any arbitrary real point (y, y, y3 ) is fixed, then the real

points (o71} #2, #3),
into which it is possible to move any real point

(%i, #2 ,
#3 ), satisfy a real equation of the form

Wfa , y^ y8 ; *a ; ^2, ^ 5 #1, #a , #3)
= 0,

which is not satisfied by x-^-y^ #2
=
#2 &amp;gt; x$ = yz, and which represents

a real surface passing through (x?, x, #8 ).

(3) Round any point (j^ , y t y3 ) a finite three-fold region exists,

such that, when (j/x , y t y3 ) is fixed, any other point fc, #2 ,
#3 )

can be moved through an irreducible continuous sequence of points up
to any point satisfying the above equation of (2).

45. The conception of a finite continuous group, though it is

simple enough analytically, does not seem to correspond to any of the

obvious and immediate properties of congruence-transformations as

presented by sense-perceptions. The following set of axioms conform

more closely to the obvious properties of congruence-transformations ;

* Kiemann s work in this connection is contained in his Habilitationsrede,

Ueber die Hypothesen, welche der Geometric zu Grande liegen, 1854, cf. his Collected

Works, and also a translation in the Collected Works of W. K. Clifford.

t Cf. loc. cit. vol. in. 102.
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they are based upon, and are modifications of, a set of congruence-

axioms given by Peano*.

(1) The assemblage of congruence-transformations is a sub-group
of the general projective group.

(2) The group contains the converse of every transformation

belonging to it.

(3) Given any two points and
,
and any two lines / and /

through and respectively, and any two planes TT and if through

/ and / respectively, one and only one transformation of the group
exists which transforms into

,
/ into /

,
TT into TT

,
so that the two

neighbourhoods of on / correspond in an assigned manner with the two

neighbourhoods of on /
,
and the two neighbourhoods of on TT as

divided by / correspond in an assigned manner with the two neigh

bourhoods of on if as divided by / .

(4) Given any line and any point on that line, an infinitesimal

transformation of the group exists such that the line and the point

are latent.

Comparing these axioms with those of 43 which are required for

Lie s first solution, it will be found that practically finite and

continuous is left out of the first axiom of 43, but on the other

hand the fourth axiom is strengthened into the form of axiom (3) of

this article.

The following chapters will be based upon these axioms.

Proposition. It follows immediately from axioms (2) and (3) that

the identical transformation is the only member of the group for

which a given point is latent, and a given line through the point is

latent, being transformed directly in the neighbourhood of the point,

and a given plane through the line is latent, being transformed directly

in the neighbourhood of the point with respect to the line as axis.

For with the notation of axiom (3) let T be such a transformation

with respect to the point 0, the line /, and the plane ?r. Also let S be

the transformation of the group which transforms 0, I, and TT, into
,

I
,
and TT

,
in a specified way according to axiom (3) ; and let /Si be the

converse of $ which also belongs to the group. Then the transforma

tion ST belongs to the group, and transforms 0, /,
TT into

,
I

,
if

according to the same specified way as JS. Hence by axiom (3), we
have ST= S. Thus operating with /Si, we have /Si/ST= S,S. But by
axiom (2) /Si/ST and 8$ belong to the group ; also SlST = nT=T, and

Q. Hence T-O.
*

Cf. loc. cit. Eiv. Mat. vol. iv.



CHAPTER VI.

INFINITESIMAL ROTATIONS.

46. AN infinitesimal transformation of the projective group (cf.

40, equations (2)), which leaves the origin and the axis of x latent, is

of the form

dx
u ^ als z.

- X o

p ct22 ?/

dz

We proceed to consider the specialization necessary for the co

efficients in order that this may be a rotation round the axis of x in

a congruence group.

There is in a congruence group only one infinitesimal rotation

round any given line with a given point on the line latent. For consider

the motion of the plane, y =pz, round the axis of x with the origin

latent
; after the infinitesimal transformation (1), we have

dt dt dt

Substituting from (1), and putting y =pz, we find

~T7 = 23 + (2i
~ a

3*)P ~ a&P
2

Hence when p is changed to p + dp by the infinitesimal transformation

(1) we find

dj = _
dp

j (2).

w. 4
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Now consider a second infinitesimal transformation of similar form

to (1), only with an ,
a12 5

etc. as coefficients. Let d.2t be the incre

ment of t requisite to change p into p + dp. Then we have

Now consider the transformation

dx^
dx (dx\ , .

-(ad*
-

with two similar equations ;
where

(
-vr

)
comes from the first trans-

formation, and
\-nj

from the second. But this transformation leaves

the plane, y =pz, latent. Hence by the proposition of 45, it is the

identical transformation. Thus we find dx = 0, dy = 0, dz = 0, for every
value of x, y, z, and p. Thus

- X

Z - X a
1 X

&quot;23
+

(&amp;lt;%

-
&quot;33 )^ ~ &quot;V P

2

with corresponding equations for y and z. These three equations hold

for every value of x, y, z, and p. Hence it is easy to prove that

Thus the infinitesimal transformations are identical.

47. The plane, my + nz=0, is latent for the rotation of 46 (1),

if, m
Jf

+ n
-^

=
0, is satisfied whenever the point (x, y, z) lies on the

plane. Hence

and a- is given by

(o--a22)(o--a33)-a2;j
a32 -0 ..................... (1).

But by the proposition of 45, there can be no real latent plane of

this form. Hence the roots of equation (1) are imaginary. Thus

-
(a22 + aa3)

2
&amp;gt; .................. (2).
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48. In the neighbourhood of the origin the rotations of 46 (1)

can be expressed by
dx .

=
dt

Thus, writing 7/cc e**, z& eP*,p satisfies equation (1) of 47. Hence

p is complex. Thus we may write

y = 0i(*2+ 3s)&amp;lt;

(y COS vt + q Sill
vt))

z = e* (** + fl33) t

(z cos vt + q sili vt) f

where v = ^{a^a^
- a.23 a32

-
J (a-a + a^,)

2

},
and q and # can be determined

in terms of y ,
ZQ ,

and of the coefficients. Thus, putting X= 0Ka +aM)ir/*
J

when =
TT/V,

and when =
27T/V, y=\y()j

z = X*zQ (4).

By the proposition of 45, the equations (4) must reduce to

y=y&amp;lt;&amp;gt;-&amp;gt;

z = Zo Hence A =
1, and therefore

- + 33
=

(5).

Thus for a value of t, not zero, the integral form of equations (1) yields
the identical transformation.

Also equations (2) become

.(6).

= z, cos vt + ayo ~aa~
sin vt

V

Hence a value of t can be found such that by the corresponding
transformation of the type of equations (6), any plane y =poZ is trans

formed into any plane y =pz, the axis of a being transformed directly,

and the neighbourhoods of on the planes as divided by the axis of x

corresponding in assigned manners. Hence by axiom (3) of 45, this

is the only transformation of the group for which these conditions are

fulfilled.

Hence the transformations for which the origin and the axis of x
are latent, the axis of x being transformed directly in the neighbour
hood of the origin, form a one-limbed continuous group produced by
the infinitesimal transformation which fulfils these conditions.

42
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49. The transformation of 46 (1) on the latent axis of x
(i.e. y = 0, 3 = 0) is given by

dx
- = an% ~ a-iX .

If an =f= 0, the solution is

X

If n = 0, the solution is

=
a-i t.

X #0

But (cf. 48) when t = 2ir/v, we find & = jc for every value of # .

Hence an = 0, a
3
= 0.

^

Thus every point on any line is latent for a rotation round it with one
point of it latent. This fundamental theorem will be cited by the
shortened statement, that every point on an axis of rotation is

latent.

^

Thus equations (1) of 46 for the infinitesimal rotation round the
axis of a?, reduce to

(1),

dx_

dy _

dz _
dt

=

where a.22 + 33
=

|and
022033 -a.23a32 &amp;gt;0/

50. The condition that

0, ^O
(1),

should be a latent plane for the rotation (1) of 49 is that

, dx dii dz
l-j- + m-jt + n r̂ =Q (}dt dt dt ~\*}t

whenever (1) is satisfied. Hence substituting for

dx dy dz

~di&amp;gt; ~dt&amp;gt; It
and using (1), we find
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From the inequality (2) of 49, it follows that the solution of this

equation satisfies the condition, 1 4= 0.

Let this plane be taken to be the plane of yz, i.e. the plane x = 0.

This requires

51. With this specialization of the plane of yz, the condition that,

Ix + my + nz +1=0
(1),

should be a latent plane for the rotation (1) of 49 is that

, dx dy dz

whenever (1) is satisfied. Hence substituting from equations (1) of

49 and using equation (1), we find (cf. 50, equation (4))

Hence there is a family of latent planes of the form (1), where / is

the variable parameter, and m and n are definitely determined in terms

of the coefficients of the infinitesimal rotation. Now let one member
of this family be taken to be the infinite plane. Then from equations

(2), we find

*=&amp;lt;&amp;gt;,
a3
=

(3).

Hence with these choices for the plane of yz and for the infinite

plane, the infinitesimal rotation round the axis of x is reduced to the

form

-
dt~

dz =
ftoo?/ &quot;^

= 01

&amp;gt;o|

(4),

where a22 +a33 =0
a22 a33 -a23 a32

. Then every plane of the family, Xx 4-
/u,
=

0, is latent.

52. Any infinitesimal motion, which keeps the origin fixed, is of

the form

dx .

2 + ez - x x + + *

with two similar equations
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If the line, x = la-, y mo-, z no-, is latent, then

da_jd(r dy_ dor dz _ dcr

dt~ dt dt
=m

di
j

dt
=n

dt

Hence putting p for - ~, the equations (1) become

with two similar equations.

These equations hold for all values of a-. Accordingly, near the

origin, when a- is very small,

with two similar equations.

Hence p, in the neighbourhood of the origin, satisfies

.

i 31 ) 33 5 33~ P I

But this equation has always one real root. Thus there is always
one real latent line through the origin. Hence every infinitesimal

motion for which one point is latent possesses an axis. Also (cf. 49)
every point on this axis is latent. Accordingly for every point on the

axis, x-la^y ma; z = no-, we have

^ _ n dy _ dz

^~ U
&amp;lt;fc~ dt

= (l

Hence en / + e^m + elsn - a- (l^ + mc2 + ??e3)
=

0,

with two similar equations.

These equations hold for every value of a-. Thus

23n =

(2).

Hence we find the equation, |er.|
=

0, and that the values of
l:m : n which satisfy the first three equations, must satisfy the
fourth.
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53. The infinitesimal rotation round the axis of y as axis is of the

form (cf. 49, equations (1) and (2)),

= P x + 8 z-x(px + B~)
dt

\ (i),

where Ai + As = (h ^
and AiA !:! -A:3Ai&amp;gt;0/

Then, since (cf. 45, axiom (1)) the motions form a group, by

combining this infinitesimal rotation with that round the axis of x,

another infinitesimal rotation of the group is found. Thus (cf. 51,

equations (4)) an infinitesimal rotation of the group, assuming the

special axes and infinite plane of 51, is of the form

-^
= farf + faZ - X (fax + faz) \

jj
= An*; + Ko^y + (fa. + Ka23) z-y(fax + faz) \

......... (3),

- faiX + Ka^y + (A,3 + Ka,o) z-Z (fax + faz)

where K has any arbitrary value.

Hence (cf. 52) we have

Ai, 0,

An, Ka
-22,

-0 (4).

But equation (4) holds for every value of K. Hence

Ai (22 a33
-

023032)
= 0.

Hence (cf. 51, equations (5)),

Ai = ................................. (5).

Thence, again from equation (4), we find

A 3Ai 32-A 3Aia22-o ........................ (G).

From equations (2) and (5) we find

AS-O ....................... ; ......... (7).



56 RECTANGULAR AXES [CH. VI

54. Now (cf. 50) the plane of yz is the latent plane through the

origin of the infinitesimal rotation round the axis of #, and the axes of

y and z are any distinct lines in this plane through the origin. Any
point on the latent plane, Ix + my + nz = 0, of the rotation round the

axis ofy satisfies (cf. 53, equations (1), (5), and (7))

Hence wAa + ^An =
&amp;gt; ^Ais + m

&amp;gt;

Thus the equation of the latent plane is

But (cf. 53, equations (2)) AisAn cannot vanish. Hence the

latent plane cannot contain the axis of y. Thus we may assume its

intersection with the plane, x =
(i.e. with the latent plane of the

rotation round 0#), to be the axis of z. With this assumption we
have

Aa =
(2).

Then from equation (6) of 53, we find

&quot;s^O (3).

And from equations (5) of 51, we find

&quot;33
=

(4).

A latent plane of an infinitesimal rotation round an axis will be

said to be perpendicular to the axis. The set of axes of coordinates

with any given origin, found by taking the axis of x to be any line,

the axis of y to be any line in the latent plane through the origin of

the infinitesimal rotation round the axis of x, and the axis of z to be

the line of intersection of the latent planes through the origin of the

infinitesimal rotations round the axes of x and y, will be said to be

mutually perpendicular, or mutually at right angles.
It has now to be proved that a set of axes mutually at right angles

have reciprocal properties in respect to each other.

55. With the mutually perpendicular axes of 54, the equations

(2) of 52, as applied to the infinitesimal rotation of equations (3) of

53, become

Ais =
0, (Ass + *&amp;lt;%)

n = 0, pj + Ka^m = 0,

Hence K can be given any arbitrary value, and then the corresponding
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values of / : m : n are to be found. Also As* ftx ,
a.2,, a32 cannot

vanish.

Hence we have n = 0, //*a32
= m/( Ai).

Thus A = ................................. (1).

56. Again, let lx + my + nz+ 1 =0, be any one of the family of

latent planes of the rotation round the axis of y. Then for all points

on the plane,

7
dx dy dz

l
di
+m

dt
+n

dt
=() -

Hence substituting from equations (1) of 53, remembering that

Ai, A-., Ai, A
have all been proved to vanish for the special axes, we have

wAi# + (/As + ^As + A) * =

for all points on the plane. Also /?13 , Ai do not vanish. Hence

Thus there is one latent plane for which wi 0, w =
0, / = A/As-

This is the plane

-A#+As=o.
But this plane is a member of the family (cf. 51) of latent planes

of the rotation round the axis of x. Also the infinite plane has been

chosen to be any member of this family. Thus we now choose the

infinite plane to be the one common member of the two families of

latent planes of the infinitesimal rotations round the axes of x and of

y. This plane, since As^O, can never pass through the origin. With
this choice, we find

A = o ................................. (i).

Then, with this special tetrahedron of reference, the equations

defining the infinitesimal rotation round the axis of x are reduced to

dx dy dz~^ =***&amp;gt;
=

where a23a32
&amp;lt; .............................. (3).

Also the equations defining the infinitesimal rotation round the axis

of y are reduced to

dx o dy dz

di
=^ dt=^ dr^ ...............(4)

where /2, :IA, &amp;lt;0 .............................. (5).



58 AXES OF ROTATIONS
[CH. VI

_

57. The equations defining the infinitesimal rotation round the
axis of z are (cf. 53, equations (1), (5) and (7)),

das

dz

(1),

where
712721 &amp;lt;

.(2).

Thus the transformation found by combining three infinitesimal
rotations round the axes of x, of y, and of z is by equations (2) and
(4) of 56,

dx

dy_
fa

- K
372i +

(OJB + K 2/?23) z y(Ksy\a +

fa
=

(*2#u +
K;;73i) x +

(&amp;gt;
3y32 + a32)y-z (*#

Hence applying equations (2) of 52, we find

(3).

J *37l2 &amp;lt;2&3

This equation holds for every value of *2 and KS .

Thus the term involving K2V3 yields y13^3fti
= 0. Hence, since

712 and /?31 cannot vanish, we have

fe =
................................. (4).

The term involving K* yields 712y;il
a23

- 0. Hence, since y12 and a23

cannot vanish, we have

731^0 ................................. (o).

The coefficient of *3
2K2 is 712y31fe + ft^y^. Hence, using (4) and (5),

and noting that /?13 and y21 cannot vanish, we find

The coefficient of /c2K3 gives
.(6).
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Now equations (2) of 52, applied to this case, become, after

simplifying by (4), (5) and (6),

nl + a^m =
0,

Hence &quot;3271

- KA\yi - 0.

This equation holds for all values of *c2 ,
and a32 and /331 do not vanish.

Hence yi
=

0, ya
= (8).

Thus the infinite plane is the common latent plane of the three infini

tesimal rotations round the three rectangular axes.

58. Thus using equations (4), (5), (6), (8) of 57, the equations

for the infinitesimal rotations round the three mutually perpendicular

axes, the infinite plane being the common latent plane of the rotations,

are
dx dy dz /-.N

3T dt
=a

**&amp;gt; 5=** (1)&amp;gt;

-
r^liV^ ) TJ. J-i f&quot;*l

... * **\ /

dt dt at

dx dy dz /Q -\

=-=y1o?/, -ji=1v&* ~j;
=

()&amp;gt;

dt dt at

where o^sflss &amp;lt; 0, &A &amp;lt; 0, 712721
&amp;lt; W

and 7i2
a2.Ai + ftuflitfn

~
W&quot;

It at once follows from the symmetry of these equations, that a set

of axes mutually at right angles have reciprocal properties in respect to

each other.

The mention of equations (4) and (5) is avoided by altering the

unit points* on the axes, that is, by writing \x for #, py for
?/,

and

vz for z, where X, /A,
v are constants at our disposal. Let them be

chosen, so that

and v/3i;&amp;gt;/A

= -
X/331/V

=
o&amp;gt;2 (say).

By equations (4), the ratios of X : /x : i/ are real. Then by equation

(5), we have

*
Cf. Proj. Geom, 42.
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Hence remembering that wj, o)2 ,
w

:!
are arbitrary parameters, we find

that any infinitesimal rotation round an axis through the origin can be

expressed in the form

dx _ dy _ dz _ ,.,

...(6).

The latent line of the rotation is given by

Thus this form gives one and only one infinitesimal rotation round any
line through the origin. Hence the form (6) can include no infini

tesimal transformation other than those of the congruence group under

consideration.

A tetrahedron formed by three mutually perpendicular axes, with

the common latent plane of the three rotations round the axes for its

fourth plane, and with the unit points of its axes chosen so as to produce

equations (6), will be called a normal reference tetrahedron.

When the congruence group is given, the normal reference tetra

hedrons are determinate, though infinite in number. But a congruence

group can be found so that any given tetrahedron is a normal reference

tetrahedron.



CHAPTER VII.

THE ABSOLUTE.

59. CONSIDER the surfaces which are latent for a rotation round

the axis of x. Let the axis system form a normal reference tetrahedron.

Then the infinitesimal rotation can be written

^_0 ^--(o =(0? (1)

Let u = be any latent surface. Then we have

as the requisite condition. Solving this linear equation by Lagrange s

rule, and remembering that x has been treated as a constant, we find

that the latent surfaces are of the form

f(f + z\
&amp;lt;p)

= (2),

where /is an arbitrary function. Surfaces, whose equations are of the

form of (2), will be called surfaces of revolution round the axis of x.

60. A necessary and sufficient condition, that a surface may be

latent for any congruence transformation which leaves the origin at

rest, is that the surface be a surface of revolution round each of the

three axes. Hence by equation (2) of 59 this family of surfaces is

represented by
X(^ +^ + ^) + /x-0 (1),

where A. and
/u,

are arbitrary parameters. Let these be called spheres,

with the origin as centre.

The infinite plane is the common polar plane of the origin, with

respect to each of the spheres with it as centre. Thus transforming to
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homogeneous coordinates by putting x^XI U, y= Y/C7, z = Z/U}

where, 7=0, is the equation of the infinite plane, the equation of
the family of concentric spheres is

A(X2 + Y* + Z*) + pU* =
(2).

Thus returning to the original coordinates, if &amp;lt;

(#, y, z)
=

0, is the
equation of any sphere, centre at (# , y , z,\ the equation of the family
of spheres with that centre is

yo + ,0+ = ...... (3),

where, as usual, t is introduced to make the equation homogeneous
and is put equal to 1 after differentiation.

61. By recurring to equation (2) of 60, we see that the plane
of yz, which is the plane perpendicular to the axis of #, is the plane
through the origin and through the common conjugate line of the axis
of x with respect to any of the spheres, centre the origin. Hence if,
&amp;lt; (* y&amp;gt; z)

=
0, is any sphere with centre A

(&amp;gt; , y0&amp;gt; z,\ and A, is the
point fo, y1} Zl\ then the plane through A perpendicular to A A 1 is

+ l + X) =
...(1),

where

aild ^
/o

etc&amp;lt; are tlle results of substituting the coordinates of

A iii
&amp;lt;f) (a, y, z\ ^ ,

etc.

Let the left-hand side of (1) be written (A , A 1} P) , where P is

the variable point (#, y, z). Thus the equation of the plane, perpen
dicular to the line A A 1 and through the point A ,

is

........................... (2).

A quadratic surface of revolution round the axis of x is of the form
(cf. equation (2) of 59)

c = .................. (3).

This can be written in the form

X {a (x&amp;gt;

+ 7/
2 + -

) + ft] + a a? + %gx + c = 0.

Thus, if &amp;lt; (x, y,z) = is the equation of a sphere, centre A (^ , y9 ,
z

),
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the equation of a quadric surface of revolution round the line joining

A to A l (#u ylt j) is

The family of quadric surfaces of revolution round any line must

include every family of concentric spheres with its common centre at a

point on the line. Accordingly taking A to be the origin, and &amp;lt;j&amp;gt; (a, y, z)

to be or y* + z2 + 1, the family of spheres at any point (xlt ylt z^) is

included in the family

\ (3? + f + z* + 1) + n (x& + y$ + z&J + 2v (xtf + yfl + z&) + p - 0,

that is, in the family

X (a? + y&quot;

+ z
2

} + ft (xiX + y^y + z-^zf + 2v (x\x + y^y + z^z) + a- = . . .(5).

For this is the family of quadrics of revolution round the line joining

the origin to the point (x^, yi} Zi).

62. Consider any two infinitesimal projective transformations in

the plane of xy. One transformation is defined by

dx

The other is defined by

dx = i)

(2).

6.53
-
y (b&

Now each of these transformations leaves a family of curves latent,

the locus of points, which either are the points of contact of members

of the respective families, or are points on a curve common to the two

families, is given by

_
bnx + bl2y + bu - x (b& + b.2y)

~
b^x + b^y + b23

-
y (b

This locus is a cubic curve.

Now consider two rotations belonging to the congruence group
under consideration. Let one be about the point (0, 0, 0), and the
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other about the point (xlt ylt 0), and let the plane of xy be latent for

them both. Then for the first rotation, the family of latent curves

(cf. 60, equation (1)) in the plane of xy is given by

AC^ + yO + f^O (4);

and for the second rotation, the family of latent curves (cf. 61,

equation (5)) in the plane of xy is included in the family

A! (x* + ij
2

)
+ fr (x^x + y^yf + 2v\ (x^x + y^y] + o-j

=
(5).

It is easy to prove that the locus of points where members of the

family (4) touch members of the family (5) is the line, xjxl =ylyl .

Hence for the case of these two rotations the cubic curve of equation

(3) above becomes a straight line and a common member of the two

families (4) and (5). Thus these two families must possess a common
member. Let it be

Ci(x* + f) + 1 =0.

Then (cf. 60, equation (1), and 61, equation (5)) the sphere,

(^(0^ +^ +^ + 1=0 (6),

belongs to the family of spheres centre (0, 0, 0), and also to the family
of spheres centre (x^ , v/i , 0).

Hence any two distinct families of concentric spheres with different

centres possess one member in common.

63. Let (a?!, ylt z^ and (#2 , yz , z2) be any two points which are

not collinear with the point (0, 0, 0). Let (cf. 62)

cl (a? +f + ^) + l=Q (1)

be the sphere common to the two families of spheres with centres at

(0, 0, 0) and (xlt ylf zj respectively ;
and let

C2 (x* + ?f + Z2

)
+ l=0 (2)

be the sphere common to the two families of spheres with centres at

(0, 0, 0) and (#2 , ya ,
z2) respectively. Then (cf. 60, equation (3)) the

family of spheres, centre (xlt ylt z^, is given by

A! { Cl (x* + f + z2

) + !} + /*! {d (xtf+ytf + z&) + \
}

2 =
...(3),

and the family of spheres, centre (r25 y^ z*), is given by

\2 {c2 (x? + yt + z2

)
+ 1} + /x2 {c.2 (x& + yzy + z&amp;lt;#)

+ 1}
2 =

...(4).

But (cf. 62) it is possible to find a common member of the families

(3) and (4). Then remembering that the two centres are not collinear

with the origin, it is easy to prove that we must have

^1 = 0, /*2
=

0, Cx
= c2 (5).
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Thus the three families of concentric spheres with centres at three

non-collinear points have one member in common. Hence it is easy to

prove that there is one sphere common to all families of concentric

spheres. Let this sphere be called The Absolute.

64. By a rotation round a suitable axis any point can be moved

to any neighbouring position. For, if

c(^ + y
2 + z^ + 1 = (1)

is the absolute, then (cf. 63, equation (3))

c(z? +f + z^ + l-feC^ +^ +^+lP^O (2)

is the equation of the sphere, centre (xlt y^ z^ touching at the origin

the plane
x-iX + yiy + z-^z

= 0.

Hence if xjl = yjm =
Zi/n, the sphere touches at the origin the plane

Ix + my + nz 0.

Now let this be any plane through the origin and through the neigh

bouring position to which the origin is to be displaced. Then it

follows that a rotation round a suitable axis through the point (X, ylt Zi)

can effect the required displacement of the origin.

Thus the effect of any infinitesimal congruent transformation can

be produced by combining a rotation round some line not passing

through the origin with a rotation round some line through the origin.

Hence (cf. 45, axiom (3)) the absolute is latent for any congruent
transformation of the group.

65. Conversely the group of projective transformations, for which

a given imaginary or convex quadric is latent, forms a congruence group.

For take a tetrahedron, self-polar with respect to the given surface of

the second degree, as the fundamental tetrahedron. Then the equation

of the surface can be reduced to the form

c(^ + y
2 + z2

)
+ l = (1),

and, when c = 0, the surface degenerates into the infinite plane.

The most general form of infinitesimal projective transformation is

dx ,

.(2).

x

dz = w + a x + a

w.
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This is to satisfy
dx dii dz , N

when (1) is satisfied.

Hence (3) becomes, after simplifying by (1),

CX (u + au# 4- a12?/ + a13z) + Cy (v + a2lx + a22?/ 4- a

4- CZ (w 4- a3lx + a.^y + 0.33?)
+ (a-iX + a.2y + a.jp)

= ...... (4).

Then (4) must either be identical with (1), or must be an identity.

But it cannot be identical with (1). Hence it is an identity.

Thus cu +
!

= 0, cv + a2
=

(), cw + 0.3
=

0,

Can 0, Ca^ = 0, Ca^ - 0,

C (a13 4- a21)
=

0, C (a 13 4- a31)
=

0, C (a23 + a32)
= 0.

Thus the general form of transformation is

dx N \= u Wzy + u&amp;gt;2z 4- cx (iix + v-y
+ wz) \

Cit

-j-
= v-ulz + w,x + cy (ux + vy + wz} \ ............ (5).

(Jilt

dz ,

-ji=w utfc 4- ^y 4- cz (ux + vy+ wz) J
Cut

But when the origin is fixed, these equations reduce to the equations

(6) of 58 for the general infinitesimal rotation round the origin of the

corresponding congruence group. Also it is easy to see that the

above equations give one and only one infinitesimal transformation

which transports the origin to a given neighbouring point (udt, vdt,

wdt\ and at the same time transforms a given line / through the

origin, and a given plane TT through /, into a neighbouring line and

plane respectively through the new position of the origin and the new

position of /. Thus by 64 and by axiom (3) of 45 all the transforma

tions of the form (5) belong to the associated congruence group.
-

Hence these equations give the general form of an infinitesimal

congruence transformation, referred to a normal reference tetrahedron.

The equation of the absolute is then

c02
4-?/

2 + 22

)4-l=0 ........................ (6).

It follows from equations (5) by applying the Second Fundamental

Theorem (cf. 36) that a congruence group is a six-limbed finite

continuous group,
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66. The congruence groups are divisible into three types.

In Type I, c is positive. Then the absolute (cf. 65, equation

(6)) is an imaginary quadric. The congruence axioms hold for the

transformation of all points of the projective space by any members

of such a congruence group. Such a congruence group is called

Elliptic.

In Type II, c is negative. Then the absolute is a real convex

quadric. The congruence axioms only hold for all points within the

space enclosed by the absolute for transformations by any members

of the corresponding congruence group. Such a congruence group is

called Hyperbolic.

In Type III, the numerical value of c has diminished indefinitely.

Groups of this type require further investigation. They are called

Parabolic.

67. In the Parabolic case, when c diminishes indefinitely, the point

equation of the absolute

cO2 + y* + 22

)
+ 1 = 0,

reduces to that of the infinite plane. Hence for every parabolic group
a plane is latent.

Again in equation (3) of 63 by putting \c a, //,
= & A, we find

that the equation of any sphere, centre (#n ylt zj, can be written

a (z
2 + y

2 + z2 - Ix^x 2y-^y 2ziz) + b 4 c {(be
-
a) (x^x + y^y + z&f

Hence when c diminishes indefinitely, and the coefficient of no term

is infinite, the general equation for spheres, centre (^15 y^ ^), becomes

a (V +
3/

2 + z - Ix^x - Zy^j
-

2ZiZ) + b = ............ (1).

Hence every sphere cuts the infinite plane, which is latent for this

special choice of coordinates, in the imaginary conic where

a* + y* + s?=o,

cuts it. Thus this imaginary conic in the infinite plane is also

latent.

Accordingly in the parabolic form the absolute is represented by
the latent infinite plane, and by the imaginary latent conic in the

infinite plane. A set of concurrent rectangular axes are a set of

concurrent lines intersecting the infinite plane at the angular points

of a triangle self-conjugate with regard to the absolute conic.



PARABOLIC GROUPS
[CH. VII

The general form of the infinitesimal transformation (cf. 65,
equations (5)), referred to a normal reference tetrahedron, reduces to

dx



CHAPTER VIII.

METRICAL GEOMETRY.

68. THE theory of distance follows immediately from that of con

gruence by noting two facts. In the first place let the anharmonic

ratio* of the range (PQRty be denoted by {PQRS} ;
then if

AI, A 2 , -*i&amp;gt;
-t a, PS

are collinear points, we have

or, in another form,

log {A^AiPJ + log {AftAJ**} = log {A^AiP,} (1).

In the second place, let A l and A.2 be the two real or imaginary
points in which the line containing the points Plt P2 ,

P3 meets the
real or imaginary absolute of some definite congruence group. Then
for any transformation of that group (a) the anharmonic ratios are

unaltered because the transformation is projective, and (/3) the points
A-L and A.2 are transformed into the points in which the transformed

position of the line P^P^P^ cuts the absolute.

Thus if some multiple t of log {A^A^} be defined as the
distance between the points P1 and P,, where A l and A.2 are the

points where the line P^P* cuts the absolute, then equation (1) secures
the characteristic addition property of distance in respect to collinear

points, and the second consideration secures the characteristic in

variability of distances in a congruence transformation.

*
Cf. Proj. Geom. 38.

t This definition is due to Cayley, Sixth Memoir on Qualities, Phil. Trans.
1859 and Coll. Papers, vol. IL, and to Klein, Ueber die sogenannte nicht-euklidische

Geometric, Math. Ann. vol. iv. 1871.

53
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69. Now let P1 be the point fa, ylf Zl\ and P2 the point
fa, 7/2, s2). Then the coordinates of any point on the line P,P2 take
the form

Thus the points 4, and A 2 , where the line P,PS cuts the absolute,

c (x- + if + z2

) + 1 = 0,

are given by the roots X^ and A
2//*2 of the quadratic equation

X2

{c (^ + y
* + Zfi + !

}
+ 2 Aft {c^a + Wa +^ + l

}

+ ^
2

{c(^
2 + ?/2

2 + %2

) + l}-0 ............... (1).

For the elliptic case, when c-is positive, put

cos Q _ cfaaz
+

ihy.,
+ z,z^ + 1

{c (a?!
2 +^2 + ^2

Then *
{^-iPi^ 2P2 }

Thus the distance P.P,, written dist (P1P) can be denned by

1P1J[ tft} ............... (2).

Hence

-

y? + z?) + 1p {c (^ +
2/,

2 + ^) + ip
...(o).

It is evident that there will be two distances, associated with the two

segments into which the point-pair P, and P, divides the line P,P2 .

If one distance, say the smaller, is called dist (P^), the other will

be Try- dist (PiP2). Thus the whole length of a straight line is Try.

This system of metrical geometry embraces the whole of Projective
Space t.

70. For the hyperbolic case, when c is negative, put

cosh = ^

*
Cf. Proj. Geom. 38.

f The possibility of a Metrical Geometry with closed lines of finite length was
first suggested by Riemann, cf. loc. cit. For a full account and amplification of
Riemann s treatment of distance, cf. Forms of Non-Euclidean Space, by F. S. Woods,
printed in The Boston Colloquium, New York, 1905.



69-72] ANALYTICAL EXPRESSION FOR DISTANCE 71

Then if Pl and P are both within the region enclosed by the absolute,

is necessarily real.

Hence (cf. 69, equation (1))

Thus the distance PJ?, written dist(PiP2),
can be defined by

dist (P.P.) = Jy log {A^AsPJ .................. (1).

Therefore

, dist (PiP2)
1 + c to-zv, + y1 ?/o

+ 3iSo)
cosh- 7-=- ;...(2&amp;gt;

y {1 + C (^ + y? + Z?W {1 + c (^
2 + ^2 + zfi}*

There will only be one distance between Pl and P2 . This must be

associated with the sole segment of the line P^P2 which lies wholly

within the region enclosed by the absolute. This system of metrical

geometry only embraces those points which lie within the region

enclosed by the absolute*. Any point in the region to which the

metrical geometry applies is at an infinite distance from every point

on the absolute.

71. The parabolic formula for the distance, arising when c is in

definitely diminished, can be derived as a limit from either of the other

two cases. Put y
2c=l, according as c is positive or negative, so

that y increases as c diminishes numerically. Then expanding both

sides of equation (3) of 69, or of equation (2) of 70, and pro

ceeding to the limit, we find

{dist (PiP,)}
2 = to - .r,)

2 + (^
-
y.y + & -

ztf ...... (1).

The parabolic system of metrical geometry embraces all projective

space with the exception of points on the latent plane, which is the

infinite plane in our system of coordinates. This is the ordinary

Euclidean Geometry.

72. Exactly the same procedure can be applied for the measure

ment of the angle between planes. Let p^ and 2h be any two planes,

and let ^ and t, be the two real or imaginary planes through the

intersection of p^ and p, and tangential to the absolute. When the

* Metrical Geometry of this Hyperbolic Type was first discovered by Lobat-

schefskij in 1826, and independently by J. Bolyai in 1832. This discovery is

the origin of the modern period of thought in respect to the foundations of

Geometry.
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congruence group is elliptic, or when the congruence group is hyper
bolic, and the line of intersection of Pl and pa passes through the
region enclosed by the absolute, then t, and t, are necessarily not real.

Then the angle between the planes is denned to be ^
Thus if the two planes are given by

^y + n& +pl
=

0, /^ + m.2y +

and 6 is the angle between them, we have

+ n? +

As before, there are two angles 6 and . - 0- but it can be proved that
the whole angle round a line is 2ir, owing to the existence of dia-

ncally opposite regions in the neighbourhood of the line.
In the parabolic case, when c is indefinitely diminished, the anglebetween the planes is given by

73. The same procedure can also be applied for the measurement
the angle between two concurrent lines. Let I, and /., be any two

concurrent lines in a plane p. Let t, and t.2 be the real or imaginary
tangents from the point ft . /2) to the conic which is the section of the
absolute by the plane/,. When the congruence group is elliptic, or when
the congruence group is hyperbolic and the point ft . I) lies within the
region enclosed by the absolute, then t, and t, are necessarily imaginary.
Then the angle between the lines is defined to be

t

-
log {t&t&}. Thus

there are two angles and v-O between two
intersecting lines, and

tne whole angle round a point is 2?r.

In the degenerate parabolic case the section of the absolute by the
plane p becomes two conjugate imaginary points in the plane at

iity. These are known as the circular points at infinity. Then
*i and t, are the imaginary lines from the point ft .

/.,)
to these points

respectively*.

*
This projective view of Euclidean Metrical Geometry was elaborated by

Laguerre m 1853, previously to the rise of the general theory which is explained
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74. Thus Metrical Geometry is in fact the investigation of the

properties of a particular congruence group. Any set of axioms of

congruence (cf. 43 to 45) form the definition of what we mean by
a congruence group. The investigations which are summed up in

equations (5) of 65 and in equations (2) of 67 form the proof of the

existence of congruence groups in a projective space for which the

axioms of order and of Dedekind continuity hold. It is proved that

to any convex quadric and to any imaginary quadric with a real

equation exactly one congruence group corresponds. Also there is

one congruence group corresponding to each imaginary conic lying in

a real plane and defined by a real equation.

If the absolute is a real quadric, the metrical geometry applies only

to the region within it. If the absolute is an imaginary quadric, the

metrical geometry applies to all the projective space. If the absolute

is an imaginary conic in a real plane, the metrical geometry applies to

the whole of the projective space with the exception of the real plane.

75. It follows that in relation to Projective Geometry no

additional geometrical axiom is required in order to establish metrical

properties. But the case is otherwise in respect to Descriptive

Geometry. The transformations of a congruence group in Descriptive

Geometry are to be one-one transformations of descriptive points into

descriptive points, and all the other axioms of congruence can be

enunciated without change of form. Thus when the associated pro

jective space is formed, associated congruence groups in the projective

space must exist, which however satisfy the further conditions (1) that

proper projective points are to be transformed into proper projective

points and (2) that the congruence conditions are to hold throughout
the whole region of the proper projective points.

It follows therefore that the convex boundary surface of the proper

projective points (cf. 30) must be a quadric surface, or in the degene
rate case a real plane. Unless this is the case no congruence group
can exist in the original descriptive space.

Thus the Euclidean axiom (cf. 10) is sufficient to secure the

existence of parabolic congruence groups having as their latent plane

the single plane of improper projective points (the points at infinity).

Also with this axiom no other types of congruence groups can exist.

But it is to be noticed that alternative congruence groups exist, namely
one for each imaginary conic lying in the plane at infinity.

In order to secure the existence of hyperbolic congruence groups an
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axiom is required which secures that the boundary of the proper pro-

jective points is a quadric. Then it is to be noticed that one and only
one congruence group exists in the descriptive space, namely that one

which corresponds to this definite quadric. Perhaps the most direct

form of the axiom is to assert that a hyperbolic congruence group
exists.
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