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Introduction

We know that geometry is all around us. Yet many people haven’t had the
opportunity to appreciate amazing geometric relationships and their
beauty. The high school curriculum in the United States typically
designates one year for the study of geometry providing an analog of the
work of a mathematician, who builds up a field of study beginning with
accepted knowledge—axioms and postulates—and then progresses to
proving theorems in a logical order. However, this concentration on the
proof of theorems bypasses many unusual relationships. This book
attempts to present these geometric wonders without the “distraction” of
proofs.

The modern understanding of geometry in the English language
began largely in the 18th century when the Scottish mathematician
Robert Simson published an English version of a large portion of Euclid’s
elements. Throughout the 19th century, the information was further
refined by the French mathematician Adrien-Marie Legendre (1752–
1833). Geometry’s first import into the United States was by the American
mathematician Charles Davies (1798–1876), who wrote the standard
textbook for a course that began with definitions, axioms, and postulates,
which led to theorems. This was originally a college-level course, and in
the 20th century it began to be introduced typically in the 10th grade of
high school. Most people’s recollection is of proving theorems, which
eventually builds up a body of knowledge in the way a mathematician
approaches a study of mathematics.

There is clearly beauty in developing a body of knowledge where one
step depends on the previous steps. However, very often this does not
allow for students to truly appreciate the amazing relationships that
permeate the subject of plane geometry. Under totally unexpected
situations, you can find three or more lines concurrent (lines containing a
common point) or three or more points concurrent (points on the same
straight line). Or, if you know that any three noncollinear points determine
a unique circle, under what circumstances will four or more points lie on
the same circle? These are just some of the surprising elements of



geometry that have often gone unnoticed. I hope to rectify this oversight
in this book.

Besides these unexpected characteristics, many aspects of geometry
have been—perhaps inadvertently—neglected the way the subject matter
has been presented. Naturally, when dealing with linear figures, the
triangle dominates. However, the quadrilateral (a four-sided figure) also
deserves consideration, which will be introduced at the appropriate time.
To whet your appetite, consider drawing an ugly quadrilateral, where no
sides are parallel or the same length. If you draw another quadrilateral by
consecutively joining the midpoints of the awkward-looking quadrilateral
you have drawn, you will always end up with a parallelogram (as shown in
Figure 0.1). This is clearly not expected, but it is true! There is much more
that can be done with this and many other such geometric novelties, as
you will see in our journey through geometry.

Figure 0.1. Parallelogram formed by joining the midpoints of the quadrilateral.

Much of geometry is not only a function of a lot of interesting
discoveries but also the result of brilliant work by famous mathematicians
over the centuries. This book will explore some of their findings in the
context of the geometric relationships that evolved from their work.

There is also beauty in geometry. The golden rectangle is an
example. In this book this figure will be presented in such a way that it
can be appreciated both aesthetically and mathematically. Naturally, the
golden rectangle permeates many other branches of mathematics, so we
will touch on just a few of these to highlight its importance.

Geometry can also be entertaining, as when we look at the mistakes
that can be made in it—errors that often go completely unnoticed until an



absurd result evolves. Then we become concerned and look to rectify
what might have been wrongly worked or assumed.

In this book, we will begin our journey through geometry to admire its
wonders by considering concurrency of lines. We are interested here
primarily in the relationships that exist, so the flow of the book will not be
disturbed with proofs. As mentioned earlier, high school geometry
courses consist largely of developing a logical system within geometry,
which highlights proofs more than the results that are proved. This book,
in contrast, will look at those results and admire the amazing relationships
that exist. This will be the modus operandi throughout. Lots of references
will be provided at the end of the book. These will enable readers to
access proofs of many of the concepts that are presented without proof.
The goal here is to allow you, the reader, to appreciate geometry and not
be distracted by proving each of the findings presented.

As you encounter these truly unexpected and rather interesting
relationships, you may be tempted to dig into your geometric toolbox and
attempt to prove them. Or you might do a geometric construction with an
unmarked straight edge and a pair of compasses. Today, however, we
can convince ourselves that a relationship truly holds by using various
dynamic geometry software products such as Geometer’s Sketchpad
(www.keycurriculum.com/) or Geogebra; the latter can be obtained
without cost at www.geogebra.org/?lang=en. In short, demonstrating the
many unexpected relationships that appear throughout the book by using
one of these software products can be almost as convincing as a proper
logical proof. Frankly, you should expect to regularly exclaim, “WOW,
what an amazing result!” while investigating the marvels shown in this
book. We invite you now to join us on this rather unusual approach to
appreciating geometry’s power and beauty, unencumbered by proofs.

http://www.keycurriculum.com/
http://www.geogebra.org/?lang=en


1

Concurrent Lines

As one of the basic elements in geometry, lines deserve investigation. We
know that any two nonparallel lines eventually will intersect. But when a third
line shares a point of intersection with two other lines, we have three
concurrent lines, which share a common point. This relationship becomes
more interesting when more than three lines share a common point. We
begin with various concurrent lines that are a part of the basic triangle
relationships. Then, after we establish these rather common concurrencies,
we will extend our knowledge of concurrency to other geometric figures. At
that point, we expect to provide the reader with ideas that should elicit
surprise and amazement. Let’s begin by considering the three altitudes of a
triangle, lines from the vertices of a triangle that are perpendicular to the
opposite sides.

THE ALTITUDES OF A TRIANGLE

Perhaps the most common concurrency is that generated by the three
altitudes of a triangle. Generally, we take this fact for granted. However, it is
a good example with which to begin our consideration of concurrent lines. In
Figures 1.1, 1.2, and 1.3 we show the three basic types of triangles: an acute
triangle, where no angle exceeds 90°; a right triangle; and an obtuse triangle,
where one angle is greater than 90°. Each of these triangles also has the
three altitudes AD, BE, and CF intersecting at point H. This point of
intersection, often referred to as the point of concurrency, is called the
orthocenter of the triangle and is located inside an acute triangle, outside an
obtuse triangle, and at the right-angle vertex of a right triangle, as shown in
Figures 1.1 through 1.3.



Figure 1.1.



Figure 1.2.



Figure 1.3.

We can gather much more information from this altitude relationship.
The point of concurrency is particularly interesting in that it divides the
altitudes into lengths that yield equal products. Although this relationship
holds true for all three situations pictured in Figures 1.1, 1.2, and 1.3, it is
probably easiest to see for the acute triangle, where 
AH ⋅HD = BH ⋅HE = CH ⋅HF .

Unfortunately, this relationship is rarely shown to high school classes,
although it easily could be presented when discussing similar triangles. Also
not shared in high school geometry is another relationship that further
enhances knowledge about the three altitudes of a triangle. The triangles
shown in Figures 1.1, 1.2, and 1.3 demonstrate a relationship involving the
alternate segments determined by the feet of the altitudes (the points at
which the altitudes intersect the opposite sides):
BD2 + CE2 +AF 2 = CD2 +AE2 +BF 2.

Altitudes do not stand alone in their relationship to other triangle parts.
For example, in Figure 1.4, we begin with a triangle and one of its altitudes,
say, AE. Then we draw the radius of the circumcircle (the circle containing
the three vertices of the triangle) to vertex A. Unexpectedly, when we draw



the angle bisector of angle A of triangle ABC, we find that this bisector also
bisects the angle we just created, angle IAE; or, put another way, 
∠EAD = ∠IAD. This relationship, one of many that unfortunately are not
shown to high school classes, foreshadows the well-hidden relationships that
we will examine going forward.

Figure 1.4.

Another example of how an altitude of a triangle can lead to an angle
bisector is shown in Figure 1.5, where we see triangle ABC with altitude AD.
Two random lines are drawn from points B and C that intersect at a point E
on the altitude and meet sides AC and AB of the triangle at points P and Q,
respectively. This makes the altitude AD bisect angle PDQ, so that 
∠ADQ = ∠ADP  This example demonstrates how the altitude can relate
to an angle bisector—which in this case is the altitude itself!



Figure 1.5.

CONSIDERING OTHER CONCURRENCIES

Concurrencies sometimes occur in the strangest ways. Consider, for
example, triangle ABC, shown in Figure 1.6. Here, side BC is extended to
point P, which can be placed anywhere along the extended side. We then
draw a random line from P to intersect sides AC and AB of triangle ABC at
points D and F, respectively. When we draw DE parallel to AB, and FE
parallel to AC, lines EF, DE, and BC all contain point E, or are concurrent at
point E. Recall that we could select point P anywhere on the extension of
BC, which is what makes this example so unusual.



Figure 1.6.

Many other relationships involve the altitudes of a triangle. For example,
if any altitude is extended to the circumcircle of the original triangle, the side
of the triangle (BC) bisects the line segment from the orthocenter to the point
of intersection with the circumcircle. In Figure 1.7, referring to altitude AD,
note that point D is the midpoint of HG, or put another way, HD = GD.



Figure 1.7.

If we extend another altitude, as shown in Figure 1.8, we now have two
altitudes that meet the circumcircle at points G and J. Rather unexpectedly,
this determines two equal arcs, JC and GC, on the circle; or, put another
way, point C bisects arc JCG. This is true for any inscribed triangle that has
two altitudes protruding toward the circumcircle. That’s what makes this
relationship so interesting.



Figure 1.8.

Suppose we now extend the remaining altitude, CF, to intersect the
circle at point K. When we connect the three points of contact of the
altitudes, J, K, and G, with the circumcircle, the result is not only a triangle
similar to the one formed by the feet of the altitudes (called an orthic triangle)
but also a situation in which the corresponding sides of these two similar
triangles are parallel. This is shown in Figure 1.9.

Particularly surprising in Figure 1.9, since this is an acute triangle, is that
the altitudes of triangle ABC bisect the angles of the orthic triangle. In other
words, altitude AD bisects angle EDF, altitude DE bisects angle FED, and
altitude CF bisects angle DFE.

The positioning of the orthic triangle is also intriguing. When radii of the
circumcircle of a triangle are drawn to a vertex of the triangle, they are
perpendicular to each of the sides of the orthic triangle. This is shown in



Figure 1.10 where for triangle ABC, the radii of circumcircle O are drawn to
each of the three vertices, A, B, and C, and the radii are perpendicular to the
sides of the orthic triangle, DEF. Such simple yet unexpected relationships
go far to enhance the beauty of geometry.

Figure 1.9.



Figure 1.10.

A triangle is said to be inscribed in a second triangle, if each of its
vertices is on a side of the larger triangle. In Figure 1.11, triangle DEF is
inscribed in triangle ABC. For this acute triangle ABC, however, we have
constructed triangle DEF so that each of its vertices is on the foot of one of
the larger triangle’s altitudes. We can inscribe a second triangle in triangle
ABC, as shown in Figure 1.11. The smallest perimeter of all the possible
inscribed triangles of the original acute triangle ABC is that of triangle DEF
formed with its vertices at the feet of the altitudes. That is, the perimeter of
triangle DEF is less than that of triangle XYZ or any other triangle formed by
three points on the sides of the original triangle. Recall from an earlier
example that each of the altitudes of the original triangle ABC, namely AD,
DE, and CF, bisects an angle of the orthic triangle.



Figure 1.11.

A slight digression here might be of interest. For any point within an
equilateral triangle, such as point P in triangle ABC (Figure 1.12), we find
that the sum of the perpendicular distances from P to each of the three sides
of the equilateral triangle is the same as that for any other point, say Q,
selected within the triangle. The distance sum is always equal to the length
of the altitude of the equilateral triangle. Therefore, referring to Figure 1.12,
we can summarize this relationship as follows: 
PK + PH + PD = QJ +QG+QF = AE.



Figure 1.12.

A peculiar relationship evolves when a semicircle is drawn on one side
of an equilateral triangle, as shown in Figure 1.13. Here we have triangle
ABC with semicircle ABDC drawn on side AC. Points E and F are the
trisection points of line segment BC. We then draw line AE to meet the
semicircle at G, and line AF to meet the semicircle at J. Quite surprisingly,
the semicircle is also trisected by these three lines, so that BG, GJ, and CJ
are equal arcs.

To see how inclusive the orthocenter is with the remainder of the
triangle, consider the midpoint of two of the altitudes and one of the sides.
This is shown in Figure 1.14, where N is the midpoint of altitude CF, M is a
midpoint of altitude BE, and K is the midpoint of side BC. It is well known that
any three noncollinear points determine a unique circle. However, getting
other points on that circle is no mean feat. Interestingly, no matter what the
shape of the original triangle ABC is, the orthocenter will also lie on the circle
determined by the three noncollinear points M, N, and K, as shown in Figure



1.14. We will consider many more concyclic points (points that lie on a
common circle) later on.

Figure 1.13.



Figure 1.14.

The point of intersection of the altitudes, or the orthocenter, of a triangle
has many special properties. One of these is rather curious. We know that
any three noncollinear points determine a unique circle. Figure 1.15 shows a
circle containing the orthocenter and two vertices of the triangle. This circle,
containing points B, H, and C, turns out to be congruent to the circumcircle,
containing points A, B, and C, of the triangle. This same relationship can be
seen for the other two circles (shown) that contain the orthocenter and a
different pair of vertices of triangle ABC; that is, all four circles shown in this
figure are equal in size.



Figure 1.15.

Many other relationships can be found regarding the altitudes of a
triangle and its circumcircle. One is that the distance from the circumcenter
to a side of the triangle is half the distance from the orthocenter to the
opposite vertex. We see this in Figure 1.16, where the distance between the
circumcenter O and the side AC is measured by the perpendicular distance
OG. With simple measurement we find that BH = 2OG.



Figure 1.16.

THE CONCURRENCY OF THE MEDIANS OF A
TRIANGLE

We have seen how the altitudes of a triangle are divided by their point of
concurrency, where the product of the segments of each altitude is the same
for all the altitudes. The medians of a triangle also are concurrent at a point,
yet this point trisects each of the medians. In Figure 1.17 the three medians
AD, BE, and CF meet at point G, their point of concurrency, which trisects
each of the medians, so that 

GD =
1

3
AD,GE =

1

3
BE, andGF =

1

3
CE. This point of concurrency



is called the centroid of the triangle, since it is the triangle’s center of gravity.
This means that if you wish to balance a cardboard triangle, the point at
which that triangle will balance perfectly is the centroid.

Furthermore, with the medians drawn as in Figure 1.17, the triangle ABC
is then partitioned into six smaller triangles of equal area.

Figure 1.17.

Concurrency of lines sometimes appears when we least expect it. One
such case is a line parallel to one side of a triangle, at any distance away
from that side. The points of intersection of the lines joining two vertices of
the triangle to the side-intersection points of the parallel line will always be
concurrent with the median from a third vertex. This is shown in Figure 1.18,
where PQ is parallel to side BC of triangle ABC. Quite surprisingly, lines PC
and QB will always be concurrent with the median AM.



Figure 1.18.

Were we to pass line PQ, which is parallel to side BC of triangle ABC,
through the midpoint, N, of AM, we would find that AM bisects PQ; that is,
the intersection, N, of AM and PQ is the midpoint of segment PQ, which we
can see in Figure 1.19. Notice that when two lines, such as AM and PQ,
bisect each other, they form the diagonals of a parallelogram, AQMP.



Figure 1.19.

CEVA’S THEOREM

One of the most useful, yet often neglected, theorems involving concurrency
of lines of a triangle was published in 1678 by the Italian mathematician
Giovanni Ceva (1648–1734) in his work De lineis rectis. An earlier proof of
this theorem had been done by the Arab mathematician Al-Mu’taman ibn
Hūd in the eleventh century. Nevertheless, we still credit it to Ceva, as he is
believed to have developed it without any knowledge of its previous
discovery. The theorem states that the three line segments connecting the
vertices of a triangle to the opposite sides are concurrent, if and only if, the
products of the alternate segments along the sides are equal. In Figure 1.20, 
AF ⋅BD ⋅ CE = FB ⋅ CD ⋅ EA, if and only if, the three line segments
AD, BE, and CF are concurrent. Using Ceva’s theorem, it is trivial to prove
that the medians of a triangle are concurrent, since the two products of
alternate segments are clearly identical. Ceva’s theorem is extremely useful



in establishing concurrency of lines joining vertices to the opposite sides of a
triangle, as we shall see going forward.

Figure 1.20.

THE CONCURRENCY OF THE ANGLE BISECTORS
OF A TRIANGLE

Yet another concurrency that should be introduced in high school geometry
is that of the angle bisectors of a triangle. Figure 1.21 shows the concurrency
of the angle bisectors, AD, BE, and CF, meeting at their point of concurrency,
I. This point is called the incenter, as it is the center of the circle inscribed in
the triangle, which is the circle tangent to each of the three sides of the
triangle.



Figure 1.21.

Ceva’s theorem is quite useful for proving concurrency when applied to
the three angle bisectors of a triangle. Ceva’s theorem would also prove that
the interior angle bisector of a triangle is concurrent with the two exterior
angle bisectors of the other two angles, as shown in Figure 1.22. Here the
interior angle bisector AL, when extended, meets the two exterior angle
bisectors, KB and NC, at point P. The ambitious reader may want to prove
this concurrency using Ceva’s theorem. However, here we merely appreciate
the fact that fascinating relationships such as this one exist in plane
geometry.



Figure 1.22.

The angle bisector of a triangle yields many unusual concurrencies. We
will show one here as an example, but others will be revealed going forward.
In Figure 1.23, AD is the bisector of angle BAC, and points M and N are the
points of tangency of the inscribed circle to sides AC and BC of the triangle.
The intersection of MN and AD is point P, and interestingly enough, when we
draw the perpendicular line from point B to AD, it falls precisely at point P.



Figure 1.23.

Another example of a concurrence using both the inscribed and the
circumscribed circles of a triangle is shown in Figure 1.24. Here, we have
triangle ABC, and the bisector of angle BAC is line AD. At point D we erect a
perpendicular to side BC, which meets the diameter of the circumcircle at
point P. Quite unexpectedly, when we draw the perpendicular bisector of AD,
it is concurrent with the other two lines at point P.



Figure 1.24.

DISCOVERING CONCURRENCIES IN TRIANGLES

Here, we show how geometric relationships can evolve from a group of
midpoints in a general triangle. Consider triangle ABC (Figure 1.25) with
three concurrent lines, AL, BM, and CN, drawn from each of the vertices to
each of the sides, where the midpoints of each of these three lines are P, Q,
and R, respectively. The midpoints of the three sides of the triangle are D, E,
and F.



Figure 1.25.

We then create triangle DEF (Figure 1.26). Its sides are parallel to those
of the original triangle ABC, since, when you join the midpoints of two sides
of a triangle, the line segment formed is half the length of, and parallel to, the
third side. But now we return to our search for another set of three
concurrent lines.

Figure 1.26.

Suppose that we join the midpoints of the sides of the original triangle
ABC with the three midpoints of AL, BM, and CN, namely, P, Q, and R,
respectively. We, unexpectedly, get another set of concurrencies, namely,
lines PD, QE, and RF, which all contain point S, as shown in Figure 1.27.



Figure 1.27.

Concurrencies can generate other concurrencies, as we have just seen.
Yet, there is probably no limit to finding other such relationships. We simply
select any point P in triangle ABC and connect it to each of the vertices, as
shown in Figure 1.28. This gives us three concurrent line segments, AP, BP,
and CP. We now draw the angle bisectors of each of the angles at vertex P.
This gives us PF as the bisector of angle APB, PE as the bisector of angle
APC, and PD as the bisector of angle BPC, where points D, E, and F are
each on the sides of triangle ABC. When we draw lines AD, BE, and CF, we
find that they are concurrent.



Figure 1.28.

We can also randomly select some concurrent lines in a triangle, such
as those shown in Figure 1.29, where a random point P is chosen inside
triangle ABC. We then locate the midpoints M, K, and N of the sides of
triangle ABC, namely, AB, BC, and CA, respectively. When we draw lines KL,
NJ, and MG parallel to AP, BP, and CP through points K, N, and M,
respectively, we find that they are concurrent at point Q. Remember that
point P was randomly chosen, so the lines are concurrent at point Q
regardless of where point P is placed in triangle ABC.



Figure 1.29.

Sometimes a concurrency can generate a second concurrency. Here we
show a rather unusual arrangement of related concurrencies. We begin with
triangle ABC, as shown in Figure 1.30. We then draw any three concurrent
lines in the triangle, as we have done here with AP, BP, and CP. We now
construct triangle DEF in such a way that each side of the triangle is
perpendicular to one of the concurrent lines of the original triangle ABC.
Figure 1.30 shows that DE is perpendicular to AP, DF is perpendicular to BP,
and EF is perpendicular to CP. We then draw lines from the vertices of
triangle DEF in such a way that each is perpendicular to one of the sides of
triangle ABC. Here we see that DK is perpendicular to AB, EL is
perpendicular to AC, and FM is perpendicular to BC. Unexpectedly, when
these three lines are extended, we find that DQ, EQ, and FQ are concurrent
at point Q. This concurrency, although it took us a bit of time to find, further
demonstrates the kind of unusual patterns discoverable in geometry.



Figure 1.30.

Sometimes we can create a point of concurrency that has further
surprising significance. Consider triangle ABC in Figure 1.31, where we
trisect BC at points D and E. This enables us to trisect the triangle itself, so
that triangles ABD, ADE, and AEC all have the same area. This is easy to
see, since the bases are equal and the altitude from A to line BC is the same
for all three triangles. We would like to find a concurrency that would give us
another way to partition this triangle into three equal areas. This can be done



as follows: We construct line DF to be parallel to AB, and line EJ to be
parallel to AC. The point at which EJ intersects DF, which we call P, will
allow us to partition the triangle into three equal areas, namely APB, APC,
and BPC. We encountered a similar situation earlier (Figure 1.17), when we
noted that the medians of a triangle partition the triangle into six equal-area
triangles. Consequently, when these triangles are taken in pairs, the original
triangle would be seen as partitioned into three equal-area triangles.

Figure 1.31.

In our examination of concurrencies of lines, we now introduce circles
that are related to triangles. These include inscribed and circumscribed
circles as well as circles that intersect the triangle’s sides at six different
points.

Let’s begin by considering concurrencies that evolve from a triangle with
its inscribed circle. We noted earlier that the center is determined by the
concurrency of the three angle bisectors of the triangle. We show this in
Figure 1.32, where the angle bisectors are AD, BE, and CF, which are
concurrent at point I. Once we have inscribed the circle, we are prepared to
construct another set of three concurrent lines. These lines join the triangle’s
vertices with the points of tangency, T, U, and V, of the inscribed circle with



the opposite vertices, AT, BU, and CV, which are concurrent at point K. This
is called the Gergonne point after its discoverer, the French mathematician
Joseph-Diaz Gergonne (1771–1859).

Figure 1.32.

The inscribed circle of a triangle can provide us several other surprising
concurrencies. Some of these may seem contrived; however, we will
consider two more concurrencies that we hope will motivate the reader to
search for more such relationships.

In Figure 1.33, we draw the diameters of the inscribed circle emanating
from its three points of tangency, T, U, and V, to meet the inscribed circle at
points M, N, and Q, respectively. We then connect each of the triangle’s
vertices with these points to get AM, BN, and CQ. When these latter lines are
extended, they are rather unexpectedly concurrent at point P. What makes
this relationship special is that it is not well-known and it is applicable to all
triangles.



Figure 1.33.

Suppose we now do an analogous construction. We first draw any three
concurrent lines (at point R). This time, however, they do not contain the
center of the inscribed circle, and they emanate from the three points of
tangency (T, U, and V) and intersect the other side of the circle at points W,
Y, and Z, as shown in Figure 1.34. Connecting each of the newly established
points W, Y, and Z to the nearest vertices, we find, once again, another
concurrency; namely, that AW, BY, and CZ, when extended, meet at point P.



Figure 1.34.

Sometimes, what appears to be a somewhat convoluted diagram can
lead to a quite unexpected concurrency. Consider triangle ABC, shown in
Figure 1.35, where the altitudes AY, BZ, and CX meet at point Q, the
orthocenter. We can easily locate the center of the circumscribed circle by
taking the perpendicular bisectors of any two sides of the triangle, which
gives us point P. We then locate the midpoints of AP, BP, and CP as points
G, H, and K. Unexpectedly, we find that line segments GD, HE, and FK are
concurrent at point O.



Figure 1.35.

Note also, the orthocenter in this configuration, since it gives us an
added wonder, namely, the collinearity of points Q, O, and P. Therefore, this
figure shows not only a concurrency but also a collinearity. This foreshadows
the next chapter.

In our search for another concurrency, we first locate in Figure 1.36 the
midpoints of the segments that connect the orthocenter with each of the
vertices; that is, the midpoints of the segments AQ, BQ, and CQ are G, H,
and K. We then connect these midpoints with those of the three sides of the
triangle, namely D, E, and F. Once again, we find unexpectedly that GD, HE,
and FK are concurrent and, in addition, they are the same length! This is
quite an amazing relationship that goes completely unnoticed in high school
geometry.



Figure 1.36.

There is no limit to the various concurrencies that can be found within a
triangle. For this example, we consider two triangles that share the same
inscribed circle. These are shown in Figure 1.37, where triangles ABC and
DEF share the inscribed circle with center I.

Figure 1.37.

However, there is one additional stipulation. The triangles are so
situated that the lines joining their opposing vertices, AF, BE, and DC, are
concurrent at point P, as shown in Figure 1.38.



Figure 1.38.

Unexpectedly, when this happens, the lines TJ, UK, and VL joining their
opposing points of tangency are also concurrent, as shown in Figure 1.39.
One more unexpected feature is that these additional lines are concurrent at
the very same point, point P, as the previous three lines. This is truly
unusual!

Figure 1.39.

Sometimes, segment lengths can determine concurrency. One such
example is triangle ABC, shown in Figure 1.40, where point P is placed on



side BC so that AB+BP = AC + CP . Similarly, although not clearly
demonstrated in the diagram, point Q is placed on side AC so that 
BC + CQ = AB+AQ. Furthermore, point R is placed on side AB so that
BC +BR = AC +AR. When all of these conditions are properly met, we
find, curiously enough, that AP, BQ, and CR are concurrent at point P.

Figure 1.40.

It is always intriguing when one concurrency leads unexpectedly to
another that seems completely unrelated. We see within triangle ABC
(Figure 1.41) three randomly drawn lines, AL, BM, and CN, concurrent at
point P. They allow us to draw the resulting triangle, MNL. We then locate
the midpoints, S, Q, and R, of the sides of triangle MNL, MN, ML, and NL,
respectively. Quite surprisingly, lines AS, BR, and CQ (each extended) also
turn out to be concurrent, at point X.



Figure 1.41.

There is an interesting variation of the previous example. Instead of
using the midpoints of the sides of triangle MNL, we simply select other
points, S, R, and Q, on the sides of triangle MNL so that LS, MR, and NQ are
concurrent at point T, as shown in Figure 1.42. This makes lines AS, BR, and
CQ concurrent as well at point K. Remember, this depends on triangle MNL
maintaining the concurrency at point P.

Figure 1.42.



CIRCLES AND TRIANGLES

Our next relationship provides us some truly amazing geometry. Consider a
circle intersecting a random triangle at six points, as shown in Figure 1.43.
This is not just a random circle intersecting the triangle at six points,
however, but rather one where lines AD, BF, and CE are concurrent at point
P. (When you try to construct this, begin with the three concurrent lines and
then construct a circle containing the three points of intersection with the
sides.)

Figure 1.43.

When this happens, amazingly, the vertex connections to the other three
points of intersection of triangle ABC and the circle, D′, E′ and F′, determine
another three lines, AD′, BF′ and CE′, which turn out to be concurrent at point
R, as shown in Figure 1.44.



Figure 1.44.

Analogously, we now select a point P in triangle ABC, as shown in
Figure 1.45. From point P we draw perpendiculars, PD, PE, and PF, to each
of the three sides of the triangle. We know that any three noncollinear points
determine a unique circle, so we then draw the circle determined by points D,
E, and F.



Figure 1.45.

Note that the circle also intersects the triangle at three additional points,
K, L, and M, as shown in Figure 1.46. We then draw the perpendiculars to
the sides of triangle ABC at each of the points K, L, and M. As you can see,
these perpendiculars are concurrent. Remember, we began with a randomly
selected point P, then allowed the circle formed by the perpendiculars to
determine another three points that seem to be unrelated to the first three
points. But, lo and behold, those new three points similarly determine a point
of concurrency of perpendiculars.



Figure 1.46.

TANGENT CIRCLES

We have introduced a circle that is neither inscribed in nor circumscribed
about a triangle. Now let’s do the reverse and consider a circle circumscribed
about a triangle and a circle inscribed in the same triangle. This will lead us
to some truly unexpected concurrencies. In Figure 1.47, the circle with center
O is inscribed in the triangle and tangent to the sides at points T, U, and V.
The circle with center I is circumscribed about triangle ABC, with the
perpendicular bisectors of the sides (which determine the center of the
circumscribed circle) meeting the circle at points K, L, and J.



Figure 1.47.

The last determined points, K, L, and J, when joined to the points of
tangency (T, U, and V) on the inscribed circle, provide us with three
concurrent lines, as shown in Figure 1.48.



Figure 1.48.

As you might notice, points P, O, and I in Figure 1.49 appear to be
collinear; that is, all three points lie on the same line. This, in fact, is true, as
we can show. Take time to marvel over these concurrencies and
collinearities, as they are often overlooked aspects of geometry that make it
fascinating. We will consider collinear points in the next chapter. But since
points P, O, and I are so obviously lined up, we have taken the liberty of
mentioning them in advance.



Figure 1.49.

We now extend our concept of inscribed circles beyond triangles to
consider circles that are tangent to the circumscribed circle of a triangle and
to a side of the triangle. Figure 1.50 shows such a configuration. The easiest
way to construct this is to draw the perpendicular bisectors of the sides
(which, of course, are concurrent at the center of the circumscribed circle)
and then determine the midpoints between the two points of tangency. Once
you have these midpoints, you have the center of the circles as well as their
radii, allowing for construction of the three circles.



Figure 1.50.

A surprising concurrency is obtained by joining each of the common
points of tangency of the pairs of circles with the opposite vertex of the
triangle. This is shown in Figure 1.51, where lines AK, BL, and CJ are
concurrent at point P. Remember, we began with a randomly drawn triangle,
which is what makes this result so spectacular.



Figure 1.51.

As we approach our next unexpected concurrency, we must first
recognize that when we join the midpoints of the three sides of a triangle (as
shown in Figure 1.52), the triangle is divided into four congruent triangles.
Furthermore, if you look at this figure carefully, you will see three
parallelograms, AEFD, DFEC, and BFED, as well.



Figure 1.52.

If we now construct three inscribed circles in each of the triangles, as
shown in Figure 1.53, we can establish another concurrency by connecting
the centers of each of the circles with the remote vertex of the center
triangle. We then have the concurrent lines QD, ER, and FS meeting at point
P, another example of unexpected concurrency that demonstrates
geometry’s beauty.

Figure 1.53.

This configuration also allows us to determine yet another concurrency
by drawing lines from the vertices of the large triangle ABC through the
center of the nearest small circle, as shown in Figure 1.54. Here you can see
that lines AQ, BP, and CS meet at point P.



Figure 1.54.

We can take this a step further by considering points J, K, and L, at
which lines AQ, BR, and CS intersect the nearest side of the inside triangle
DEF, as shown in Figure 1.55. Surprisingly, the lines joining the vertices of
the inside triangle DEF and the points, J, K, and L meet at point P. Once
again, in one configuration we have found several concurrencies. An
ambitious reader may look for further concurrencies.

Figure 1.55.

This time we will work in the exterior of a triangle as well as the interior.
The centers of the circles, P, Q, and O, are tangent to the extensions of the
sides of triangle ABC. Such circles are called escribed circles, while the
circle inside the triangle is called the inscribed circle. The points of tangency
of the circles with each of the three sides are clearly marked in Figure 1.56.
Circle P is tangent to the three sides at points H, F, and G. The circle with
center Q is tangent to the three sides of the triangle at points R, E, and N.



And the circle with center O is tangent to the three sides of the triangle at
points J, D, and M. This configuration gives us lots of concurrent lines:

AD, BE, and CF are concurrent at point X.
PC, AO, and QB are concurrent at point Y.

We also have a number of collinear points, such as P, A, and Q; P, B,
and O; and Q, C, and O.

A motivated reader may want to search for other collinearities or
concurrencies in this very rich diagram.

Next, we consider three circles of different sizes, which are not linked to
each other except by tangent lines shared by the circles two a time, as
shown in Figure 1.57. When we connect the three points of intersection, R,
T, and S, of the common tangent lines with the centers of the circles opposite
them, we again find a surprising concurrency. Note that the circles were
placed randomly. This makes this concurrency all the more amazing!



Figure 1.56.



Figure 1.57.

SPECIAL TRIANGLES PLACED ON SIDES OF A
GENERAL TRIANGLE

A famous relationship involves placement of equilateral triangles on the three
sides of a randomly drawn triangle. Napoleon Bonaparte (1769–1821), who
was enamored with mathematics, is believed to have discovered this
relationship. As shown in Figure 1.58, the lines drawn from each vertex of
the original triangle to the remote vertex of the equilateral triangle on the
opposite side are concurrent. Note that triangle ABC could be any shape,
and this relationship will still hold. Furthermore, these three concurrent line
segments are equal in length: AE = BD = CF .



Figure 1.58.

Moreover, the centers of the three equilateral triangles on the sides of
triangle ABC, when joined by line segments, form another equilateral
triangle, as shown in Figure 1.59. This configuration is often called
Napoleon’s triangle.



Figure 1.59.

There is still more to be discovered in this Napoleon’s triangle. The
circumcircles of each of the equilateral triangles are concurrent at point O,
the point of concurrency of the original three lines. This is shown in Figure
1.60.



Figure 1.60.

We continue to find more beauty in this noteworthy geometric
configuration. The point O is called the equiangular point of triangle ABC,
since ∠AOB = ∠BOC = ∠COA, as shown in Figure 1.61.



Figure 1.61.

There is one final surprising equilateral triangle in this Napoleon’s
triangle. All we need to do is to create a parallelogram beginning with
segments AD and DC, which gives us the parallelogram ADCK. Lo and
behold, we obtain AKF as another equilateral triangle, as shown in

Figure 1.62.



Figure 1.62.

Now that we have had equilateral triangles and circles on each side of a
triangle, we construct in a very unusual way a triangle that can be placed on
each of the three sides of a given triangle. We will do this by using a process
called reflection, in which we reflect triangle ABC through line AC to create
triangle ADC, as shown in Figure 1.63. The technique for doing this is to
draw a line from point B perpendicular to AC at point G, then mark off a
length equal to BG on the extension of BG and call it point D. We then have
triangle ADC as the reflection of triangle ABC in the line AC.



Figure 1.63.

We now employ this technique two more times. This will yield reflection
of triangle ABC through the line AB, giving us triangle ABE. The third time,
the triangle ABC will be reflected in side BC, creating the triangle FBC,
shown in Figure 1.64.



Figure 1.64.

Now that we have three triangles, each of which is congruent to the
original triangle ABC, we will construct their circumcircles, as shown in
Figure 1.65. Unexpectedly, the three circles are concurrent. In other words,
they share a common intersection point, P.



Figure 1.65.

Now if that isn’t enough, we can find still another concurrency point, this
time, once again, with concurrent lines. In Figure 1.66, the three concurrent
lines emerge by joining the center of each circle with the remote vertex of the
original triangle ABC. We then observe that lines AS, BQ, and CR are
concurrent at point O.



Figure 1.66.

Suppose we now return to our Napoleon’s triangle and use our newly
developed skill of reflecting a triangle in a side of another triangle. In Figure
1.67, we reflect each of the equilateral triangles in the side on which they are
drawn. Note that the reflected triangles (dashed lines) brought with them
their center point, which when combined with segments created another
equilateral triangle. When we combine the reflected center points of the
reflected triangles in Figure 1.67, we once again get an equilateral triangle,
P′R′Q′.



Figure 1.67.

CONCURRENT CIRCLES

Another interesting set of three concurrent circles can be constructed from
the triangle partitioned into four congruent triangles by joining the midpoints
of the sides of the outside triangle, which we considered earlier in Figure
1.52. When we draw the circumcircles of the three “outside” triangles, they
meet at point P, as shown in Figure 1.68.



Figure 1.68.

To further add to the wonder of these three concurrent circles, when we
draw lines from each of the large triangle’s vertices to the centers of the
three circles, we find that these lines also are concurrent. Amazingly enough,
they are concurrent at the very same point as the three circles. We show this
in Figure 1.69.



Figure 1.69.

The configuration shown in Figure 1.69 can be generalized by taking
any point on each side of triangle ABC and constructing three circles, using
the vertices as a third point to determine the circles, as shown in Figure 1.70.
Notice that the three circles contain a common point, P. This point, known as
the Miquel point of a triangle, is named after the French mathematician
Auguste Miquel (1816–1851), who first discovered this wonderful
relationship.



Figure 1.70.

There are some other interesting features about the Miquel point. For
example, when line segments are drawn from the Miquel point to the other
circle intersection points, which are on the sides of the original triangle, the
angles formed with those sides are equal, as shown in Figure 1.71. There
you can see that ∠AEP = ∠CDP = ∠BEP . A special appreciation of
this relationship results when we recall that we began with any triangle,
which provides a generalization beyond this one illustration.



Figure 1.71.

Note that for some triangles, such as obtuse triangles, the point of
concurrency, P, of the three circles could be outside the triangle, as shown in
Figure 1.72. Yet, the properties we have seen for the acute triangle hold for
the obtuse triangle as well.



Figure 1.72.

Further, if we join the center points of the three circles in the Miquel
configuration, we amazingly get a triangle that is similar to the original one.
That is, in Figure 1.73, triangle ABC is similar to triangle RSQ, since the
three corresponding angles are equal, as marked. Of course, this also holds
true for the obtuse triangle illustration shown in Figure 1.73.



Figure 1.73.

We can take this Miquel configuration a step further. Consider any
second triangle, where each vertex is on one of the Miquel circles and each
side contains one of the three Miquel points. Such a triangle is similar to the
original triangle. We have one such configuration in Figure 1.74, where we
begin with triangle ABC and then construct triangle GHK so that one vertex is
on each of the three circles, and each side contains one of the Miquel points
E, D, and F. When we do this, we have constructed, surprisingly, a triangle
(GHK) that is similar to the original triangle (ABC).



Figure 1.74.

Miquel’s theorem is remarkable in that the three points on the sides of
the original triangle can also be on the extensions of two sides of the given
triangle, as shown in Figure 1.75. In comparison to the configuration shown
in Figure 1.70, points F and E are not on the internal segments of the
triangle’s sides but rather on their extensions. We then follow the Miquel
procedure of drawing the three circles, as we have previously done, and
notice that they also are concurrent at point P. Of course, all the
aforementioned properties will once again hold true. At this point you may
wonder if there any limitations to the Miquel theorem. Keep reading!



Figure 1.75.

We can even apply Miquel’s theorem and concurrent circles to a
quadrilateral. If we extend the sides of a quadrilateral until the opposite sides
meet—assuming they are not parallel—the resulting configuration is called a
complete quadrilateral. At the same time, we will have formed four triangles,
and for each of these we will apply the Miquel circles. Amazingly, we find that
all the circles we draw share one common point of concurrency, P. In Figure
1.76, focus on the four triangles ∆ABC, ∆ADE, ∆BFE, and ∆CDF and notice
that the four circumcircles meet at point P.



Figure 1.76.

We shouldn’t think that three circles cannot create a concurrency without
a triangle. As shown in Figure 1.77, we have three randomly drawn circles,
each of which is tangent to the larger circle internally, and we mark the points
of intersection of the circles as D, E, G, and F. When we join the centers of
the circles with a remote intersection of the other two circles, we find that
they are concurrent at point P. That is, DQ, ER, and FS are the three
concurrent lines.



Figure 1.77.

A RECTANGLE CONCURRENCE

Let us now leave circles for a while and concentrate on rectilinear figures.
Here, a rather simple construction leads to a most unexpected concurrency.
We begin with any rectangle ABCD, as shown in Figure 1.78. We then draw
a line parallel to the horizontal lines cutting the vertical lines at points E and
J. We do the same thing with a vertical line cutting the horizontal lines at
points F and K. Now comes the most unexpected result: We draw the
diagonal of rectangle ADJE. Then we draw the diagonal of rectangle FDCK.
When we draw the diagonal of rectangle ERKB and extend it, we find that all
three of these diagonals are concurrent at point P. Since this can be done for



any shape rectangle with any parallel lines, we show in Figures 1.78, 1.79,
and 1.80 a few rectangles of different shapes that all yield the same result.

Figure 1.78.

Figure 1.79.



Figure 1.80.

QUADRILATERALS ON THE SIDES OF A
TRIANGLE

Another equally surprising concurrency occurs when we take any random
triangle (in this case triangle ABC, shown in Figure 1.81) and draw squares
on two of its sides, as we have done on sides AB and AC. We then draw a
perpendicular from a remote vertex of one of the squares to the furthest side
of triangle ABC, as we have done with DK perpendicular to BC. We then do
the same thing with the other square to get FL perpendicular to AB so that
these two perpendiculars meet at point P. Most unexpectedly, when we draw
the altitude from B to AC of triangle ABC, it turns out to be concurrent with
the previous two perpendiculars.



Figure 1.81.

We can extend this initial diagram by adding a congruent square on
each of the two existing squares, as shown in Figure 1.82. By joining a



remote vertex of the square and triangle twice, we find that they are
concurrent with the triangle’s altitude from the vertex where the squares
meet. In other words, the two lines TC and FA are concurrent with the
altitude BG of triangle ABC.



Figure 1.82.

Suppose we now make triangle ABC a right triangle with the right angle
at vertex B. Once again, we will join remote vertices of the triangle and



square twice, as shown in Figure 1.83 by line segments DC and AF.
Surprisingly, they intersect the altitude from B to the hypotenuse AC at point
P. Again we have three concurrent lines—rather unexpectedly.

Figure 1.83.

This time we construct a square on each side of triangle DEF so that the
external sides of these three squares, when extended, form triangle ABC, as
shown in Figure 1.84. When we draw the (extended) lines AD, BE, and CF,
we find that they are concurrent at point P.



Figure 1.84.

While placing squares on the sides of a triangle we can discover a
number of other concurrencies. In Figure 1.85, we begin with any randomly
drawn acute triangle ABC. We can easily locate the center of each of the
squares by getting the intersection of its diagonals. When we join the center
of a square with the remote vertex of the triangle, we find that those three
lines, AS, BQ, and CR, are concurrent. Bear in mind, as with many of the
other examples shown here, that these concurrencies are independent of the
shape of the original triangle. That is part of the beauty of geometry we are
trying to demonstrate.



Figure 1.85.

When seeking further concurrencies, we can try some rather inventive
ways to find them. Figure 1.86 shows a most unusual arrangement of four
lines that have a common point of intersection. Two of the lines, AF and CE,
join triangle vertices with remote vertices on squares on opposite sides of
triangle ABC. The third line, DG, joins the two remote vertices of the squares
thus far involved. The fourth line also shares a common point of intersection,
P, and this line, BQ, joins a third vertex of the triangle with the center of the
square on the opposite side. This would be a more difficult concurrency to
discover on one’s own, which might be reason to admire it even more.



Figure 1.86.

Sometimes we can find concurrencies with part of a configuration, as
shown in Figure 1.87, where we ignore square BCGF and work with the
other two remaining squares. Here we find that lines EJ, BK, and DC are
concurrent at point P. We could just as easily have ignored one of the other
squares and repeated this procedure with the remaining two squares.
Therein lies the beauty of the situation!



Figure 1.87.

We can discover several more concurrencies in this configuration, where
a square is placed on each side of a randomly drawn triangle. Figure 1.88
shows an unusual situation rather than a concurrency. When we draw the
line of centers, RQ, and then compare it to the line joining the common
vertex of these two squares to the center of the third square, we find that
these two lines are not only perpendicular but also the same length; that is, 
RQ ⊥ AS and RQ = AS. Once again, the beauty lies in the fact that this
can be done for any triangle.



Figure 1.88.

Another concurrency that can be found in this configuration is shown in
Figure 1.89. Here, lines EC and JB are concurrent with the perpendicular line
from vertex A to side FG.



Figure 1.89.

Now, we enhance the diagram shown in Figure 1.89 by constructing
parallelograms between each of the squares, so that we have the following
parallelograms: AKXD, CJZG, and BFWE. Once again, we locate the centers
of each of these parallelograms by drawing the diagonals. When we connect
these centers to the centers of the remote squares by drawing lines NQ, MS,
and RT, again, to our amazement, the lines are concurrent at point P. This is
shown in Figure 1.90.



Figure 1.90.

We can establish still another concurrency from the previous diagram
(Figure 1.90). This time we connect the center of each square with the
remote vertex of the opposite parallelogram. In other words, segments XS,
WQ, and ZR are now also concurrent at point P, which is shown in Figure
1.91.



Figure 1.91.

Yet another concurrency can be established in this configuration (Figure
1.92). We can join midpoints U, V, and Y of the remote sides of the squares,
ED, KJ, and FG respectively, with the opposite remote vertex of each of the
parallelograms so that lines UZ, XY, and VW are concurrent.



Figure 1.92.

There are even more concurrencies that we can idenjpgy in this
configuration. This time we connect the midpoints of the sides of the triangle
to the center point of the opposite parallelograms. In Figure 1.93, we show
that lines ML, HT, and NI are concurrent at point P.



Figure 1.93.

While we are still on this configuration, let’s draw an altitude from each
vertex of the original triangle to each of the parallelograms’ diagonals. This
results in another concurrency. When NB, TC, and MA are extended, they
meet at point P, as shown in Figure 1.94.



Figure 1.94.

We find yet more concurrent lines by taking the perpendicular bisector of
each of the diagonals of the parallelograms, as shown in Figure 1.95, where
M, N, and T are midpoints. We then have the following concurrency: HM, IT,
and LN.



Figure 1.95.

Besides the various concurrencies that exist in this configuration, there
are also equalities to be found. We offer one here and leave the others for
the reader to discover. In Figure 1.96, we notice that AW = AZ. Good luck
in your search for the other equalities!



Figure 1.96.

MORE PLACEMENTS OF SQUARES

We now explore placement of squares onto a randomly drawn quadrilateral,
TLUV, shown in Figure 1.97. First, we will join the center points of opposite
squares so that we have lines YZ and XW meeting at point P. Curiously
enough, when we join the midpoints of the four lines joining the squares—J



the midpoint of AH, K the midpoint of GF, N the midpoint of DE, and M the
midpoint of BC—we find that lines MK and NJ also meet at point P. In effect
we have four lines, which are all concurrent at point P.

Figure 1.97.

Having placed squares on triangles and then on a quadrilateral, we now
place squares on a point, as shown in Figure 1.98. The three squares are
shown with the sole consideration that they all share the common point P.
We then join vertices of adjacent squares with the three line segments AK,
GF, and CD. As shown in Figure 1.98, we join the midpoints of those three
lines with the opposite square’s center. Amazingly, these three lines, YM,
XQ, and NZ, are always concurrent (at point R) regardless of the size of the
squares and their placement as long as they share a common vertex with the
others. This is surely an example to be cherished!



Figure 1.98.

We can even find concurrencies where two squares share a common
vertex point, P. In Figure 1.99, we notice two randomly placed squares of
different sizes that share the common vertex A. When we draw the lines BE,
CF, and DG, we notice that they are concurrent at point P. As with many of
our other examples, placement of the two squares will not affect the
concurrency.



Figure 1.99.

To show that the placement of the two squares will not affect the
concurrency, we offer Figure 1.100. Here the squares have changed size
and position, and still, the concurrency remains intact.



Figure 1.100.

There are also configurations where analogous polygons are embedded
on the sides of a triangle. Consider, for example, Figure 1.101, where we
begin with triangle ABC and select any point P. We then join P to the three
vertices and create parallelograms, as shown in the figure. When we connect
each vertex of the original triangle to the remote vertex of the parallelogram
embracing the opposite side, we find that lines AF, BE, and CD are
concurrent at point R. For the ambitious reader we offer a small



enhancement to this already amazing concurrency: 
AF 2 +BE2 + CD2 = (AB2 +BC2 +AC2) + (AP 2 +BP 2 + CP 2)
.

Figure 1.101.

We can also find surprising concurrencies in two regular pentagons
placed in any way we choose, except that they share one common vertex. In
Figure 1.102, that common vertex is point X. When we join the
corresponding vertices of the two pentagons with lines AE, BF, CG, and DH,
as shown in Figure 1.102, we find that these four lines are concurrent at



point P, which could be anywhere, depending on the relative sizes and
placement of the pentagons.

Figure 1.102.

We can extend this scheme further by repeating it for hexagons in place
of the pentagons we previously used and still find a concurrency. In Figure
1.103 we have two hexagons that share a common vertex N, yet are located
randomly and are of different sizes. When we join the points consecutively,
we find that the five lines AF, BG, CH, DJ, and EK are concurrent at point P.



Figure 1.103.

BACK TO TRIANGLE PLACEMENTS

In our pursuit of further concurrencies, let us consider the configuration
shown in Figure 1.104. Here we place square DEFG inside triangle ABC in
such a way that two sides of the square are parallel to altitude AH. Once
again, we find an unexpected concurrency when we draw lines BFJ and
CGK, which are concurrent with altitude AH at point P. Again, the beauty lies
in the fact that it is the placement, not the size, of the triangle and the square
that is important.



Figure 1.104.

Here is a rather unusual arrangement for those accustomed to working
with related triangles. Consider two noncongruent triangles placed one inside
the other, with the corresponding sides parallel, as shown in Figure 1.105.
Here, the sides of triangle ABC are parallel to the corresponding sides of
triangle DEF. We can clearly see that the lines joining the corresponding
vertices are concurrent at point P.



Figure 1.105.

Another way of placing triangles within other triangles is where two
triangles are placed in such a way that lines from each vertex of the larger
triangle are perpendicular to the nearer side of the inside triangle. Again, it
turns out that these lines are concurrent.

This configuration is shown in Figure 1.106, where each of the vertices
of triangle DEF are on the sides of triangle ABC, and the lines from vertices
A, B, and C are each perpendicular to sides DF, DE, and EF at points H, G,
and J, respectively. These three perpendicular lines, AH, BG, and CJ, are
concurrent at point R.



Figure 1.106.

If this isn’t impressive enough, we can take it one step further and show
another concurrency for this configuration. When we erect perpendiculars at
points D, E, and F to each of the sides of triangle ABC, they will be
concurrent at point P (Figure 1.106).

Our next example shows how two triangles inscribed in the same circle
have a relationship through their angle bisectors and altitudes. Figure 1.107
shows triangle ABC and its circumcircle O. We then draw the angle bisectors
of each of the angles of triangle ABC to meet the circumcircle at points D, E,
and F. It turns out that the point of intersection, I, of the angle bisectors also
serves as the orthocenter of triangle DEF. In other words, point I is also the
point of intersection of altitudes DX, EY, and FZ of triangle DEF. Therefore,
we can say that the two triangles are related by sharing lines that are
respectively angle bisectors and altitudes.



Figure 1.107.

Although the next configuration is complex, it again reveals concurrency
in a way you might least expect. We begin with triangle ABC and its inscribed
circle O, as shown in Figure 1.108. We then randomly select any diameter of
circle O, and from each vertex of triangle ABC we draw a perpendicular
intersecting the diameter at points D, E, and F. From these three points, D,
E, and F, we then draw another set of perpendiculars to each of the three
sides of the triangle, BC, AC, and AB, respectively, intersecting the sides of
the triangle at points P, Q, and R. Unexpectedly, we find that EQ, FR, and
DP are concurrent at point X. This configuration, once again, points out the
beauty of geometry, which sometimes can be achieved through less
attractive beginnings.



Figure 1.108.

Our next discovery of concurrency likewise is complicated. We begin
with triangle ABC, which is shown in Figure 1.109, and select any point
somewhere inside the triangle. We then draw a line l containing point P and
have it intersect the sides of the triangle at points X, Y, and Z. We now let
extended lines AP, BP, and CP intersect the circumcircle of triangle ABC at
points R, S, and T respectively. Unexpectedly, lines RX, SZ, and TY are
concurrent at point Q. This elaborate configuration shows how one
concurrency creates another that appears to be completely unrelated and
where we would least expect it.



Figure 1.109.

POLYGON CONCURRENCIES

Let us now focus on some polygon concurrencies. In Figure 1.110 we see a
hexagon circumscribed about the circle. If this were a regular hexagon, the
diagonals would certainly be concurrent. But here we have a randomly drawn
nonregular hexagon with the sole condition that it is circumscribed about a
circle—meaning that the circle is tangent to each of the six sides of the
hexagon. Unexpectedly, in this case, we once again find that the diagonals
are concurrent at point P.



Figure 1.110.

This unusual relationship was discovered in 1806 by a 21-year-old
French student, Charles Julian Brianchon (1783–1864), who later became a
professor of mathematics. Furthermore, it holds true not only for a circle but
also for an ellipse. That is, if we had a hexagon circumscribed around an
ellipse, the same thing would be true: the diagonals joining opposite vertices
would be concurrent, as shown in Figure 1.111.



Figure 1.111.

While we’re still on the topic of polygons, let’s consider a nonregular
pentagon circumscribed about a circle, as shown in Figure 1.112. Here, two
diagonals, AD and BE, intersect at point P. Then the line joining vertex C to
the point of tangency F on the opposite side of the pentagon will be
concurrent with the other two lines at point P. There is a very subtle
relationship between this situation and that of the hexagon. We leave its
discovery to the ambitious reader.



Figure 1.112.

A lot more concurrencies can be found on polygons. For entertainment
and as a challenge to the motivated reader we begin by considering an 18-
sided regular polygon (i.e., a polygon that has equal sides and equal angles),
as shown in Figure 1.113. A host of surprising concurrencies appear in the
next few figures, which will further allow us to appreciate them. We describe
some of these examples here and leave the others for the reader to discover.
Beginning with Figure 1.113, five lines can be symmetric about the diagonal
AK, which are all concurrent at point P.



Figure 1.113.

In Figure 1.114 we consider an 18-sided regular polygon with four
diagonals symmetric around the center diagonal AK, once again concurrent
at point P.



Figure 1.114.

Figures 1.115 to Figure 1.118 show several other concurrencies that can
be found in the 18-sided regular polygon.

Before we challenge the reader to find these other concurrencies, we
describe one more. In it we have five lines, shown in Figure 1.118, that are
concurrent at point P. Notice that a certain symmetry exists among the line
segments in the examples that we provided.



Figure 1.115.



Figure 1.116.



Figure 1.117.



Figure 1.118.

We are now finished with the concept of concurrency of lines. We move
on to the analogue: the collinearity of three or more points, which are points
on a straight line.



2

Collinearity

Concurrency of lines and collinearity of points are analogs and in some
cases closely related. One of the better known relationships between
these two concepts was demonstrated by French mathematician Gerard
Desargues (1591–1661). This relationship relates concurrency to
collinearity, and vice versa.

DESARGUES’ THEOREM AND BEYOND

We begin by placing two triangles in such a way that the lines connecting
the corresponding vertices will be concurrent. According to Desargues’
theorem, once this is achieved the pairs of corresponding sides will then
meet in three collinear points. In Figure 2.1 the corresponding vertices are
A1 and A2, B1 and B2, and C1 and C2. When we connect these vertices
with lines we notice that A1A2, B1B2, and C1C2 meet at point P. When we
extend the corresponding sides, C1B1 and C2B2 meet at point A′, A1B1
and A2B2 meet at point C′, and A1C1 and A2C2 meet at point B′. We find
that these three points, A′, B′, and C′, are collinear.



Figure 2.1.

Here we can see how collinearity and concurrency relate. To further
strengthen this point, we could have pursued this configuration
conversely by placing the two original triangles in such a way that the
corresponding sides connected through their extensions meet in three
collinear points. Then the lines joining the corresponding vertices would
be concurrent.

This amazing relationship that Desargues offered the world of
mathematics allows us to appreciate other unexpected relationships—in
this case involving concurrency and collinearity. We will consider one of
these in Figure 2.2, where the points of tangency of the inscribed circle in
triangle ABC are M, N, and L. When we connect the corresponding
vertices of triangles ABC and LMN, recalling the Gergonne point (see
page 17) enables us to realize that line segments AL, BM, and CN are
concurrent. This relationship can be easily established by Ceva’s
theorem, noting that two tangent segments from an external point to the
same circle are equal (that is, AM = AN, BN = BL, and CM = CL). Thanks
to Desargues’ theorem, we see that the line extensions of the
corresponding sides of the two triangles, ABC and MNL, meet at three
collinear points, P, Q, and R, as shown in Figure 2.2, where MN and CB
meet at point P, LM and BA meet at point R, and LN and CB meet at
point Q.



Figure 2.2.

By this line of reasoning, we can apply an apparently analogous
situation, shown in Figure 2.3, since we have already established that the
altitudes of a triangle are concurrent. As in the previous example, the
lines joining the vertices of triangles ABC and LMN are concurrent. Once
again invoking Desargues’ theorem, we find that the line extensions of
the corresponding sides meet at three collinear points (P, Q, and R): MN
and CB at point P, LM and BA at point R, and LN and CB at point Q.

Figure 2.3.

Now that we have some experience with Desargues’ theorem, we
embark toward a truly unexpected result that we can jusjpgy very nicely



by applying it. As shown in Figure 2.4, we select points E, F, G, and H on
the sides of parallelogram ABCD so that lines GH, AC, and EF are
concurrent at point P. Unexpectedly, when we draw lines HE, DB, and
GF, they too are concurrent at point Q.

Figure 2.4.

This surprising result is even better appreciated when we see how
simply it is jusjpgied by Desargues’ theorem. To do that, consider
triangles DHG and BEF (highlighted in Figure 2.5). Our original setup had
these two triangles placed so that their corresponding sides met at the
collinear points A, C, and P. By Desargues’ theorem this tells us that the
lines joining the corresponding vertices HE, DB, and GF are concurrent at
point Q. We might consider this a surprising application of Desargues’
theorem!



Figure 2.5.

UNEXPECTED SURPRISES FROM SIMSON’S
THEOREM

As shown in the previous example, concurrency of lines is analogous to
collinearity of points (more than two points that lie on the same straight
line). When considering collinear points involving triangles, Simson’s
theorem comes into play.

We should appropriately credit the originator of this theorem, since it
touches upon one of the great injustices in the history of mathematics.
This theorem was originally published by English mathematician William
Wallace (1768–1843) in Thomas Leybourn’s Mathematical Repository
(1799–1800). Through careless misquotes, the theorem has been
attributed to Scottish mathematician Robert Simson (1687–1768), whose
edition of Euclid’s Elements was long the basis for the study of geometry
in the English-speaking world and, more specifically, greatly influenced
American high school geometry courses.

Simson’s theorem states that the feet of the perpendiculars drawn
from any point on the circumscribed circle of a triangle to the sides of the
triangle are collinear. This is shown in Figure 2.6, where P is any point on
the circumscribed circle of triangle ABC. We then draw PY perpendicular
to AC at Y, PZ perpendicular to AB at Z, and PX perpendicular to BC at



X. According to Simson’s theorem, points X, Y, and Z are collinear. The
line that contains these points is usually referred to as the Simson line.

Figure 2.6.

A curious phenomenon occurs when we construct the Simson line
from the intersection point on the circumscribed circle and the extension
of one of the triangle’s altitudes. This Simson line is parallel to the tangent
line at the vertex from which this altitude emanates. Figure 2.7 shows an



example. When altitude BD (emanating from point B) of triangle ABC
meets the circumscribed circle at point P, then the Simson line of triangle
ABC with respect to P is parallel to the line tangent to the circle at B.

Figure 2.7.

Another interesting property of the Simson line is that it bisects the
line that joins the orthocenter with the generator point of the Simson line.
We can see this in Figure 2.8, where point P is used to construct the
Simson line, XZY, of triangle ABC. Line PH, joining the orthocenter, H, of
the triangle with point P, is bisected by the Simson line at point M, or PM
= HM.



Figure 2.8.

Another curiosity here is that if two Simson lines are constructed for
the same triangle by two distinct points on the circumscribed circle, the
angle formed by the Simson lines is half the measure of the arc the two
points intercept on the circle. In Figure 2.9, Simson lines YZX and UVW
intersect to form angle MTN, which is half the measure of arc PQ.



Figure 2.9.



Often, as we have seen so far, three circles can share a common
point of intersection. With the support of Simson’s theorem, however, we
can jusjpgy the amazing relationship that four circles share a common
intersection point, as shown in Figure 2.10. Here four lines, AB, BC, EC,
and ED, have created four triangles, ABC, FBD, EFA, and EDC. The
circumcircles for these triangles all contain a common point, P. The
dashed lines in the figure show the ambitious reader how Simson’s
theorem helps us guarantee the concurrency of the four circles.

Figure 2.10.



Consider three Simson lines drawn for the same triangle, shown in
Figure 2.11. The Simson lines of triangle ABC—using points P, Q, and R
—form triangle NST. When we compare triangle NST to PQR, the triangle
created by the three points on the circumcircle generating the Simson
lines, we find that triangle PQR is similar to triangle NST. This is quite an
amazing leap for Simson lines.

Figure 2.11.

Another concurrency develops after we draw the three altitudes, AD,
BE, and CF, of triangle ABC, as shown in Figure 2.12. Connecting the
feet of the altitudes generates three collinear points, P, Q, and R. We see
this when we draw FE to intersect BC at point P, CA to intersect FD at
point Q, and BA to intersect DE at point R.



Figure 2.12.

EVEN POLYGONS CAN GENERATE
COLLINEARITY

The next few examples consider polygon configurations that lead to
collinearity of points. The collinearity here is sometimes well
camouflaged. But that is all part of the beauty of geometry, which will be
further supported through polygonal examples. We begin with a hexagon,
as shown in Figure 2.13.



Figure 2.13.

Suppose we consider the vertices, AB′, CA′, and BC′ (Figure 2.13),
located alternately on two lines (see Figure 2.14). Then suppose we draw
the lines that were previously the opposite sides of the hexagon:

AB′ and A′B; and note their point of intersection C′′
BC′ and B′C; and note their point of intersection A′′
AC′ and A′C; and note their point of intersection B′′



Figure 2.14.

We find that the three points of intersection, A′′, B′′, and C′′, of these
pairs of opposite sides are collinear. This surprising result was first
published in about 300 CE by Pappus of Alexandria in his Mathematical
Collection.

A curious relationship occurs in a hexagon that has no opposite sides
parallel and is inscribed in a circle. When the opposite sides are extended



until they meet, the three points of intersection will all lie on the same line
(are collinear).

This is shown in Figure 2.15, where opposite sides AF and DC meet
at point N, EF and BC meet at point M, and ED and AB meet at point L.
Like the previous hexagonal relationship, this one was discovered by a
soon-to-be famous French mathematician, Blaise Pascal (1623–1662),
who published it at age 16. Also similar to the previous case, this
relationship holds true not only for circles but also for ellipses, as shown
in Figure 2.16.



Figure 2.15.



Figure 2.16.

We now perform a rather unusual procedure. Recall from Figure 2.13
the opposite sides of the hexagon: AF is opposite CD, AF is opposite CD,
and AF is opposite CD. We now place these points randomly on a circle,
as shown in Figure 2.17, and we notice the following:

AF and CD intersect at point N
BC and FE intersect at point M
AB and ED intersect at point L



Figure 2.17.

Looking at the opposite sides as we did before, we see that,
assuming they are not parallel, they are able to intersect. Once again, to
our surprise (and awe), the result is three collinear points. We show this
in the carefully constructed version of Figure 2.17, where points N, L, and
M are, in fact, collinear.

Collinearity sometimes occurs in surprising and somewhat arjpgicial
ways. One such example is shown in Figure 2.18. Here, we see triangle
ABC and the midpoints of its sides marked with points M, N, and L. We
now choose a random point, P, somewhere inside triangle ABC. From the
vertices of the triangle we draw lines through point P that intersect the
opposite sides at points D, E, and F. Up to this point we have not done
anything terribly unusual. Now, however, we do something that will lead to
our collinearity, and it may look somewhat arjpgicial—but it’s correct! We
will join each of the midpoints, M, N, and L, with each of the previously
determined endpoints, F, D, and E, respectively. That produces lines FM,
ND, and EL, which meet the (extended) respective third sides, AC, AB,
and CB, at points X, Y, and Z, respectively. And, as we notice in Figure
2.18, these three points are collinear. Although the construction of this



configuration was simple, albeit unusual, it led to an unexpected
collinearity.

Figure 2.18.

MORE UNEXPECTED COLLINEARITIES

We now embark on a somewhat simpler illustration of collinearity in
geometry. Once again, we begin with triangle ABC and its circumcircle O.
We then draw the tangents to the circumcircle at each of the three
vertices of the triangle. It turns out that these tangents meet the opposite
sides at three collinear points J, K, and L. But as shown in Figure 2.19,
the sides of the triangle in each case needed to be extended to meet the
tangent lines.



Figure 2.19.

Circles also can produce collinear points, as shown in the following
example. We begin with circle O (Figure 2.20) and simply draw chords
AB, AC, and AD emanating from one randomly selected point, A, on the
circle. Next, we construct new circles using each of these chords as the
diameters. We then idenjpgy the three points of intersection of each pair



of circles; circles P and Q meet at point X, circles P and R meet at point
Y, and circles Q and R meet at point Z. A simple visual inspection shows
that these three points of intersection, X, Y, and Z, are collinear. So we
see that collinearity is not limited to straight-line figures. To convince
yourself that this is true, you might choose to draw it using dynamic
geometry.

Figure 2.20.

It is particularly interesting that the bisectors of the exterior angles of
a nonisosceles triangle meet the opposite sides of the triangle in three
collinear points. Consider triangle ABC shown in Figure 2.21, where the
bisectors of the three exterior angles are AN, BL, and CM. It is then clear



that the three points of intersection, L, M, and N, of these exterior-angle
bisectors with the extended sides of the triangle are collinear.

Figure 2.21.

We can take this another step further by considering the angle
bisectors of both the interior and exterior angle bisectors of two angles of
a triangle. Once we draw these four angle bisectors, we go to the third
vertex of the triangle and from there draw the perpendiculars to each of
them. When we do this, lo and behold, we once again have collinearity of
four points. This is shown in Figure 2.22, where we have the interior angle
bisectors BJ and CH of angles ABC and ACB, respectively. These angles
of triangle ABC have exterior angle bisectors BU and CW. From the third
vertex, A, of triangle ABC, we draw the four perpendiculars meeting each
of the angle bisectors at points K, L, N, and M, which, as you can see, are
collinear. As with most of what we show, this is true for all triangles, where
we have four distinctive points.

Figure 2.22.



3

Circles and Concyclic Points

To this point in our journey through the unusual and unexpected
relationships that we can admire in geometry we have concentrated on
concurrent lines as well as concurrent circles; that is, circles that share a
common point, analogous to concurrent lines. We now focus on points
that lie on the same circle. Any three noncollinear points will always lie on
the same unique circle. Therefore, when we speak of concyclic points, we
speak of more than three points that lie on the same circle.

Determining a circle in a rather unusual way once again
demonstrates the amazing relationships in geometry. One such example
begins with a rectangle, where the width is one-third as long as the
length. In Figure 3.1 we show a rectangle where AD = AM = MN = NB.
We then draw line segment MC meeting diagonal DB at point P. This
simple arrangement leaves us with four points, C, B, N, and P, all lying on
the same circle. Having four concyclic points is already noteworthy. And it
is a simple way for us to begin our journey through discovering more than
three points lying on the same circle.

Figure 3.1.



Sometimes concyclic points turn up in quite unusual circumstances.
Consider the nest of squares shown in Figure 3.2. This configuration
begins with square ABCD, then EG and FH are drawn perpendicular to
each other at point O, which is the intersection of the diagonals of square
ABCD. It then turns out that EFGH also is a square, and when the
intersection points of the sides of this square are joined with the
diagonals of square ABCD, we get another square, MLKN. The fact that
FO = EO, and ∠FAC = ∠EAC = 45°, allows us to conclude that
points A, E, O, and F are concyclic by using the converse—that equal
inscribed angles intercept equal arcs on a circle, which in turn generate
equal chords.



Figure 3.2.

When additional points lie on the same circle, it can be even more
noteworthy. Swiss mathematician Leonhard Euler in 1765 first showed
that there are six points that lie on the same circle. He found that the
midpoints of the sides and the feet of the altitudes of a triangle must lie on
the same circle. This is shown in Figure 3.3, where the midpoints of the
sides of triangle ABC are points D, E, and F, and the feet of the altitudes
are X, Y, and Z, all lying on the same circle with center O.



Figure 3.3.

In 1820, two French mathematicians and technical experts in
Napoleon’s army, Charles-Julian Brianchon (1783–1864) and Jean-Victor
Poncelet (1788–1867), discovered three additional points that lie on the
very same circle. These three points are the midpoints of the segments
joining the orthocenter (the point of intersection of the altitudes) and the
feet of the altitudes. Figure 3.4 shows these as points K, L, and M so that
HK = BK, HL = LH, and HM = CM. This constitutes the famous nine-point
circle, also often referred to as the Feuerbach circle. This configuration is
named after Karl Wilhelm Feuerbach (1800–1834) who in 1822 published
a paper that included this relationship and others as well.



Figure 3.4.

There is still more to admire in this configuration. In Figure 3.5 we
draw the line, HP, joining the orthocenter and the center of the
circumscribed circle of triangle ABC. It turns out the center O of the nine-
point circle is the midpoint of HP, where P is the center of the
circumscribed circle of triangle ABC.



Figure 3.5.

When we draw the three medians of triangle ABC, we locate the
centroid, G (the center of gravity of the triangle), which just happens to lie
on line HP. But it also is at a trisection point of HP, so that HG = 2PG, as
shown in Figure 3.6. This unique line, which exists in all triangles except
an equilateral triangle, where all points would mesh in one, is called the
Euler line and contains four important points: the center of the
circumscribed circle, the orthocenter, the centroid, and the center of the
nine-point circle.



Figure 3.6.

Many other relationships can be found in this configuration; for
example, the radius of the nine-point circle of triangle ABC is one-half that
of the circumcircle of triangle ABC. In Figure 3.7 we can see that 

MO =
1

2
BD. Furthermore, an ambitious reader might want to verify

through geometric constructions that all triangles inscribed in a given
circle and having a common orthocenter also have the same nine-point
circle. There are also other points of interest on the Euler line, such as the
Exeter point, discovered by students at Phillips Exeter Academy in 1986.
The Exeter point can be found by extending the medians of the triangle to
meet the circumcircle of triangle ABC at points Q, R, and S. Triangle TRL
is formed by the tangents to the circumcircle of triangle ABC.
Appropriately joining the points Q, R, and S to the vertices of triangle



TRL, the Exeter point will be determined. (We leave the diagram to the
reader.)

Figure 3.7.

Geometric figures sometimes can be challenging to fully
comprehend. Take, for example, Figure 3.8, where we have shaded three
triangles, namely, triangles AHC, AHB, and BHC. These three triangles
along with the large triangle ABC create what is called an orthocentric
system. In this system, the four points used—A, B, C, and H—are each
the orthocenter of the triangle formed by the other three points. The
surprising result is that these four triangles all share the same nine-point
circle. This may not be too easy to visualize at first. Since we already
know the nine-point circle for the original triangle ABC, let’s idenjpgy the
nine points for one of the other triangles, for example, AHC. First we have



the midpoints, K, M, and D, of its sides. Now we can locate the feet, X, Y,
and Z, of the three altitudes. The midpoints of the segments (AH, BH, and
CH) joining the vertices with the orthocenter (A) are points K, L, and M.
All of these nine points lie on the same nine-point circle. Triangle XYZ,
which is formed by the feet of the altitudes of triangle ABC, is called the
pedal triangle of the original triangle ABC. We will be using the pedal
triangle going forward.

Figure 3.8.

We know that any three noncollinear points determine a unique
circle. How surprising it is to find that, surrounding our nine-point circle,
are two congruent circles determined as follows: one circle is the
circumcircle of the original triangle—triangle ABC in Figure 3.9. The
second circle is the one containing two vertices of triangle ABC and the
orthocenter, H. That means four congruent circles could be drawn from
this configuration. For clarity, however, we show only the circle containing
vertices B and C and the orthocenter, H.



Figure 3.9.

In Figure 3.10 we show the four equal circles mentioned above,
where we did not want to complicate the original diagram. We can use the
pedal triangle to create a concurrency. In Figure 3.11, XYZ is the pedal
triangle of ABC, since it is formed by joining the feet of the altitudes of
triangle ABC. Next, we draw lines from each vertex perpendicular to the



nearest side of the pedal triangle. Notice that these three lines are
concurrent at point P.

Figure 3.10.



Figure 3.11.

Another curiosity in this configuration is that the area of triangle ABC
is equal to the product of the radius of the circumscribed circle and half
the perimeter of the pedal triangle. It turns out that P is also the center of
the circumscribed circle. Therefore, BP is a radius and so: 

Area Δ ABC = (BP)( 1

2
)(XY + Y Z + ZX).

Other interesting relationships can be found in this rich configuration
generated originally through the discovery of the nine-point circle. For
example, for any triangle, the line joining the orthocenter with the midpoint
of one of the sides meets the endpoint of the diameter of the circumcircle,
which emanates from the vertex, which is opposite the side from which
the previously mentioned midpoint was selected. In Figure 3.12, we can



see this unexpected concurrence by drawing the line segment joining
orthocenter H and midpoint D of side BC, and then drawing the diameter,
APR, of the circumcircle containing vertex A. These two lines meet on the
circumcircle at pedal point, R. This can certainly be applied to each of the
three sides of the triangle. It is curious that this intersection point is
always on the circumcircle!

Figure 3.12.

Still more can be found in the nine-point circle. The following
seemingly contrived example should demonstrate that there are always
more novelties to be found within a geometric configuration. Figure 3.13
shows once again the nine-point circle of triangle ABC, with the
orthocenter designated by O.After constructing the bisector of angle BAC,
which intersects side BC at point T, we erect a perpendicular from O to



AT and designate it as point R. What we now notice is an unexpected
collinearity, where points R, P, and D all lie in the same line.

Figure 3.13.

We close our discussion with a rather amazing relationship that the
nine-point circle shares with the other circles of a triangle. Consider three
circles that are tangent to the three sides of the triangle and lie outside
the triangle; that is, circles that are tangent to two extended sides and a
third side of the triangle. These are called excircles (or escribed circles) of
a triangle. The fourth circle that we will consider here is the inscribed
circle of the triangle. The relationship here is that the nine-point circle of
the triangle is tangent to each of these four circles. This is shown in
Figure 3.14, where circles P, Q, and R are the escribed circles of triangle
ABC and circle I is the inscribed circle. Notice that the bold-line circle in
Figure 3.14, which is the nine-point circle, is tangent to each of the other
four circles. This is also frequently referred to as the Feuerbach theorem.
It is, of course, true for all triangles as usual!



Figure 3.14.



4

On Quadrilaterals

One surprising relationship referring to quadrilaterals is very simply stated
and easily proved. In the spirit of this book, however, we merely present it
for its beauty and show how it helps us better understand geometric
relationships. (We have already encountered it in the introduction of the
book.) We begin with any “ugly” quadrilateral, preferably one that has no
special properties, and locate the midpoints of its sides. Connecting these
midpoints in sequence will always present us with a parallelogram. We
show several of these awkward-shaped quadrilaterals generating such
parallelograms in Figure 4.1. Some might be special parallelograms, such
as squares, rectangles, and rhombuses, and others just general
parallelograms.



Figure 4.1.

After seeing this amazing phenomenon in geometry, you might ask
what must be true about the original quadrilateral in order for the resulting
parallelogram to be a square, a rectangle, or a rhombus?

To answer this question and to satisfy the reader’s curiosity, we will
make an exception to our usual method of presentation and give the
reason why these parallelograms are formed. Figure 4.2 shows a
quadrilateral, ABDC, where the midpoints of the sides are noted by points
E, F, H, and G. We first focus on triangle ABC. Recall that when a line is
drawn joining the midpoints of two sides of a triangle, it is one-half the
length of and parallel to the third side. Therefore, EF is parallel to BC.
Similarly, with triangle BCD we have GH parallel to BC and one-half of its
length. Therefore, EF and GH are equal and parallel, which determines a
parallelogram. Now let’s take this a step further. Since the diagonals of
quadrilateral ABDC are perpendicular, the sides of parallelogram EFGH
also are perpendicular. This provides us with a parallelogram that is a
rectangle.



Figure 4.2.

If the diagonals are perpendicular and equal in length, as shown in
Figure 4.3, the sides of the rectangle also are of equal length. The figure



that results when the midpoints of the sides are joined is a square.

Figure 4.3.

Continuing with this line of reasoning, suppose the diagonals are of
the same length as those in Figure 4.4, where AD = BC. Then the lines
joining the midpoints, each of which is one-half the length of a diagonal,
must all be the same length. This results in a parallelogram that is a
rhombus.



Figure 4.4.

Note also that the perimeter of each parallelogram formed by joining
the midpoints consecutively of a quadrilateral will always equal the sum of
the lengths of the two diagonals. In addition, the area of the parallelogram
formed by joining the midpoints of any quadrilateral is one-half the area of
the original quadrilateral. These are truly geometric findings that should
be appreciated.

Just to take this a step further, a parallelogram can also be formed by
joining the midpoints of the diagonals with the midpoints of one pair of



opposite sides of a quadrilateral. This is shown in Figure 4.5.

Figure 4.5.

Sometimes a rather strange way of creating a common geometric
figure demonstrates the hidden beauty of geometry. Our next example
shows how a rectangle can appear from very unexpected constructions.
We begin with the cyclic quadrilateral ABCD inscribed in circle O, shown
in Figure 4.6. We then construct the bisectors of the angles of the
quadrilateral to meet the circumcircle at points D, E, F, and G.
Unexpectedly, a rectangle appears as quadrilateral EFGH.



Figure 4.6.

A truly remarkable coincidence occurs when bisectors of opposite
angles of a general quadrilateral intersect each other on a point on one of
the diagonals. Unexpectedly, the bisectors of the other pair of opposite
angles also meet, but on the other diagonal. This is illustrated in Figure
4.7, where the bisectors of angles B and D meet at point Q, which is on
diagonal AC. When we draw the bisectors of angles A and C, we find that
they meet at point P, which is on the other diagonal, BD. This is another
example of the beaujpgul consistency of geometry that is often
overlooked.



Figure 4.7.

Quadrilaterals continue to provide some quite unusual curiosities.
Take, for example, quadrilateral ABCD as shown in Figure 4.8, where
diagonal BD divides the quadrilateral into two equal-area triangles, ABD
and CBD. When that is the case, we will always find a diagonal BD that
divides diagonal AC into two equal parts, namely, AP = PC.



Figure 4.8.

Still working with a general quadrilateral, we find an unexpected rela-
tionship that can evolve when we construct the four bisectors of the
angles of the quadrilateral. In Figure 4.9, we have drawn the bisectors,
AE, BG, CG, and DE, of angles A, B, C, and D, respectively. You know
that any three noncollinear points always determine a unique circle;
however, it is not particularly common for four points to lie on the same
circle. Yet, with this configuration the points of intersection, E, F, G, and J,
of the adjacent angle bisectors all lie on the same circle, resulting in a
cyclic quadrilateral EFGJ. This is quite noteworthy!



Figure 4.9.

There is one relationship of particular interest in the configuration
shown in Figure 4.9. If the original quadrilateral ABCD is a parallelogram,
then the resulting quadrilateral EFGJ will be a rectangle, as shown in
Figure 4.10.

Figure 4.10.

Taking this one step further, if the original quadrilateral ABCD is a
rectangle, then the resulting figure formed by the four angle bisectors of



the rectangle will be a square. We can see this in Figure 4.11, where
EFGJ is a square.

Figure 4.11.

This could be generalized to any cyclic quadrilateral. Suppose we
take the angle bisectors and find their points of intersection on the
circumcircle. Lo and behold, a rectangle is formed, and again the
intersection points of the adjacent angle bisectors are concyclic. We show
this in Figure 4.12, where the angle bisectors of quadrilateral ABCD
determine the cyclic quadrilateral PQRS. When those bisectors meet the
circumcircle of quadrilateral ABCD, those intersection points form
rectangle HEFG.



Figure 4.12.

We can take this a step further. When the diagonals of a cyclic
quadrilateral are perpendicular, the resulting quadrilateral formed by the
angle bisectors creates a square. This is shown in Figure 4.13, where
diagonals AC and BD are perpendicular, and the points at which the
bisectors of the angles of quadrilateral ABCD meet the circle create
square HEFG.



Figure 4.13.

Although we have dealt with general quadrilaterals, there is an
extended version called a complete quadrilateral, which is formed by
extending opposite sides to meet (assuming opposite sides are not
parallel). This is shown in Figure 4.14, where ABCDEAF is a complete
quadrilateral. A complete quadrilateral has three diagonals, AD, CF, and
BE. The striking part about these diagonals is that their midpoints, M, N,
and K, respectively, will always end up being collinear, as shown in Figure
4.14. Quite amazing!



Figure 4.14.

In this particular situation, we have the original simple quadrilateral
FBCE inscribed in a circle, as shown in Figure 4.15. Yet by extending the
opposite sides and considering their points of intersection, we will have a
complete quadrilateral. When we draw the bisectors of the opposite
angles, BAC and BDF, the result is truly unexpected. The points of
intersections with the opposite sides determine a rhombus, GHJK.



Figure 4.15.

An interesting feature of a cyclic quadrilateral, such as the one
shown in Figure 4.16, is that the perpendicular bisectors of the sides of
each of the four triangles, ABC, CDA, BCD, and BAD, are concurrent at
the center of the circumcircle of the cyclic quadrilateral ABCD. Put
another way, the perpendicular bisectors of each of the sides and the
diagonals of the cyclic quadrilateral will all be concurrent at the center of
the circumcircle.



Figure 4.16.

Occasionally rather unusual geometric configurations lead to
determining four points on one circle. One such arrangement is shown in
Figure 4.17, where we begin with triangle ABC and line PQ parallel to
side BC. We then construct a circle tangent to side AC and intersecting
side AB at points P and R. Unexpectedly, we find that points Q, R, B, and
C all lie on the same circle.



Figure 4.17.

Let us now consider a randomly drawn cyclic quadrilateral, where we
construct a line from the midpoint of each side of the quadrilateral and
perpendicular to the opposite side. In Figure 4.18, perpendiculars are



drawn from the midpoints E, F, G, and H of sides AD, AB, BC, and CD,
respectively, and perpendicular to the opposite sides of the quadrilateral.
Quite unexpectedly, these four lines are all concurrent at point P.

Figure 4.18.

Point P in Figure 4.18 has another coincidental property. In Figure
4.19, we once again have a cyclic quadrilateral and point P determined,
but this time we draw the diagonals of quadrilateral ABCD and also locate
the midpoints, M and N, of those diagonals. In triangle KMN, where K is
the intersection of the two diagonals, we find that point P is also the
orthocenter of triangle KMN.



Figure 4.19.

Once again, point P, the intersection of the segments joining the
midpoints of one side and perpendicular to the opposite side of a cyclic
quadrilateral, plays an unexpected role. In Figure 4.20, when we extend a
pair of opposite sides of the cyclic quadrilateral—in this case, sides AD
and BC—they meet at point X. We then consider the line EG joining the
midpoints of the same pair of opposite sides, which we extended.
Unexpectedly, when we draw the perpendicular from point X to line EG, it
contains a point, P, and thereby joins in the concurrency.



Figure 4.20.

This time let’s consider a special cyclic quadrilateral that has
perpendicular diagonals as shown in Figure 4.21, where AC is
perpendicular to BD. The unexpected result here is that, if we draw a line
from the midpoint of one side of the quadrilateral and perpendicular to the
opposite side, this line is concurrent with the two perpendicular diagonals
of the cyclic quadrilateral. In Figure 4.21, line EF joins the midpoint of DC,
is perpendicular to AB, and turns out to be concurrent with the two
diagonals, AC and BD, at point P.



Figure 4.21.

Conversely, we can say that if a cyclic quadrilateral has
perpendicular diagonals, then the perpendicular to one side of the
quadrilateral from the point of intersection of the diagonals bisects the
opposite side of the quadrilateral.

Another unusual relationship evolves when considering cyclic
quadrilaterals with perpendicular diagonals. If we draw a perpendicular
from the center of the circle to one side of the quadrilateral, the length of
the segment is half that of the opposite side of the quadrilateral. In Figure

4.22, ON is perpendicular to side CD. It then turns out that ON =
1

2
AB

. Of course, this line could have been drawn from the center of the circle
to any of the sides of the quadrilateral, and that perpendicular segment



would be half the length of the opposite side. Think about it; quite
astonishing!

Figure 4.22.

A cyclic quadrilateral leads us to more unexpected relationships.
Let’s once again consider cyclic quadrilateral ABCD, shown in Figure
4.23. This time we draw the diameter of the circumscribed circle from
point A to meet the opposite side of the circle at point N. It turns out that
point N enables us to conclude that BN = CD.



Figure 4.23.

Midpoints of lines sometimes can produce unexpected results. For
example, if we join the midpoints of the two diagonals of any cyclic
quadrilateral, we find that this line is concurrent with the two lines joining
the midpoints of the opposite sides of the quadrilateral. This is shown in
Figure 4.24, where the midpoints of the two diagonals are points M and
N, and the midpoints of the sides are E, F, G, and H. Point P is the
intersection of the two lines joining the midpoints of the opposite sides,
EG and FH, and it is also the midpoint of line MN. This situation can be
seen as a concurrency of the three lines, EG, FH, and MN, or as a
collinearity of points M, P, and N. There is still one more thing to marvel
about in this configuration: point P is the midpoint of MN. The beauty of
this arrangement lies in the fact that it is true for any cyclic quadrilateral.



Figure 4.24.

When we combine two quadrilaterals, lots of interesting relationships
can result. Figure 4.25 shows a cyclic quadrilateral ABCD inscribed in
circle O. At each of the vertices of quadrilateral ABCD, a tangent to the
circumcircle is drawn, creating quadrilateral HKLJ, which is circumscribed
about circle O. The first amazing thing we find here is that the diagonals
of the two quadrilaterals are all concurrent at point P. We also find a
collinearity when we look at the complete quadrangle ABCD, where
points F, G, and E are collinear. An ambitious reader can find other
concurrencies and collinearities in this rather rich geometric configuration.



Figure 4.25.

One of the more famous relationships of cyclic quadrilaterals is a
theorem attributed to Claudius Ptolemaeus of Alexandria (commonly
referred to as Ptolemy). In his work, the Almagest, Ptolemy stated the
following: the product of the lengths of the diagonals of a cyclic
quadrilateral equals the sum of the products of the lengths of the pairs of
opposite sides. Applying this theorem to Figure 4.26 yields:

AC ⋅BD = AB ⋅DC +AD ⋅BC.



Figure 4.26.

This leads to some rather unusual length relationships. For example,
suppose a parallelogram is intersected by a circle that contains one
vertex and intersects two of its adjacent sides, which is shown in Figure
4.27. Here circle O passes through the vertex A of parallelogram ABCD
and intersects two sides and the diagonal at points P, Q, and R. When
this is the case, the following strange relationship results:

AQ ⋅AC = AP ⋅AB+AR ⋅AD.



Figure 4.27.

Ptolemy’s theorem provides some rather interesting relationships
among the lengths of lines joining a point on the circumcircle of a regular
polygon to each of the polygon’s vertices. Here is a summary of the
relationship of the first few regular polygons.

First, equilateral triangle ABC is inscribed in a circle with point P on
the circle, as shown in Figure 4.28. The following is then true: PA = PB +
PC.



Figure 4.28.

The next regular polygon is a square, and in Figure 4.29 we show
square ABCD with point P on the circumcircle. The following relationship

results: 
PD

PA
=
PA+ PC

PB+ PD
.



Figure 4.29.

Next is a regular pentagon, ABCDE, shown in Figure 4.30, with point
P on the circumcircle. Here, Ptolemy’s theorem provides us with the
following:

PA+ PD = PB+ PC + PE.



Figure 4.30.

Finally, we have the regular hexagon ABCDEF, pictured in Figure
4.31, and once again point P is on the circumcircle. This results in the
following relationship:

PE + PF = PA + PB + PC + PD.



Figure 4.31.



5

On Circles

We have considerably immersed ourselves with circles to this point. But there are
other beaujpgul relationships that exist primarily among circles—apart from those we
have already discussed. One such relationship is based on the arbelos, pictured in
Figure 5.1. Here the darker area bounded by three semicircles is mounted on one
line, and the sum of the diameters of the two smaller semicircles is equal to the
diameter of the larger semicircle.

Figure 5.1.

There are lots of amazing features in this configuration, as shown in Figure 5.2.
Here, GC is a common tangent to the two smaller semicircles, and SR is tangent to
both smaller semicircles. The following are a few of these curiosities to appreciate—
you may want to search for others!

Arc AGB = Arc ASC + Arc CRB

There are two sets of collinear points: A, S, and G, as well as B, R, and G.
Lines SR and CG bisect each other at point P.
Points G, R, C, and S are concyclic with the center of the circle at point P.
The area of the arbelos is equal to the area of the circle with center P.



Figure 5.2.

Other curiosities are to be found in this arbelos configuration. For example, if we
draw segments RC and SC, we unexpectedly end up with a rectangle, RCSG, as
shown in Figure 5.3.

Figure 5.3.

We extend our appreciation of the arbelos even further by considering a circle
tangent to each of the three semicircles, as shown in Figure 5.4. Many more such
configurations exist, including other circles tangent to those in Figure 5.4.



Figure 5.4.

There are almost always more fascinating things to find in any geometric
configuration. Let’s once again consider the arbelos. This time we draw a complete
large circle and locate the midpoint of the semicircle, M, below the arbelos. We then
create the odd-looking quadrilateral SMRC, shown in Figure 5.5. It can be
demonstrated that the area of this odd-looking quadrilateral is equal to the sum of the
squares of the radii of the two smaller semicircles. In equation form we would write
this as follows: Area SRMC = r

2
1 + r

2
2.



Figure 5.5.

Other analogous structures can provide geometric insights. For example, Figure
5.6 shows a configuration of two small equal semicircles and two larger semicircles
encasing a region. Particularly fascinating here is that the area bounded by these
four semicircles is equal to that of the large circle (shown in Figure 5.7) whose
diameter is shown as the distance between the two larger semicircles, AB.



Figure 5.6.

Figure 5.7.



Several variations of this arrangement can be used for further entertainment and
discoveries. Consider the configuration shown in Figure 5.8, where the sum of the
diameters of the two smaller semicircles is equal to the diameter of the large
semicircle. We draw a tangent from point A to the smaller semicircle at point T. Circle
O is then drawn with AT as its diameter. The area of circle O turns out to be equal to
that of the two smaller semicircles!

Figure 5.8.

Countless area comparisons and calculations can be performed with
semicircles. Figure 5.9 shows one more such example, where the area mapped out
by the bold curved lines (four semicircles) is equal to that of the complete circle
shown with dashed lines. We can say that the area of ABFCDE is equal to that of the
circle with center at O.



Figure 5.9.

These semicircle-generated figures lead to some interesting collinearities.
Figure 5.10 shows a configuration of three semicircles centered at M, C, and D.
When we draw a circular arc centered at A and tangent at point E to the circle
centered at C, we find that points E, C, and A are collinear. When we draw a circle
centered at A and tangent at point F to the semicircle centered at point D, we find a
concurrence with points D, F, and A.



Figure 5.10.

Most of the geometric figures presented always have additional features. For
example, from Figure 5.10 we can very easily create a regular pentagon, as shown
in Figure 5.11. Here we use the intersection points of the last two circular arcs with
the large circle to determine four of the vertices of the regular pentagon.



Figure 5.11.

Perhaps one of the best recalled relationships in geometry is the Pythagorean
theorem. It states that the sum of the squares of the legs of a right triangle is equal
to the square of the hypotenuse. Restating this theorem by changing the word “of” to
“on” gives it a geometric interpretation. Taking this a step further, we don’t need
squares on the hypotenuse and on the legs, but any similar figures would also
suffice. For example, the sum of the areas of the semicircles on the legs of a right
triangle is equal to the area of the semicircle on the hypotenuse. Thus, for Figure
5.12 we can say that the areas of the semicircles are related as follows: Area P =
Area Q + Area R.



Figure 5.12.

Suppose we now flip semicircle P over the rest of the figure (using AB as its
axis). We would get the configuration shown in Figure 5.13. Let us now focus on the
lunes, L1 and L2, formed by the two semicircles.



Figure 5.13.

The resulting diagram after we flip the semicircle will look like that in Figure 5.14.
Earlier, in Figure 5.12, we established that Area P = Area Q + Area R. In Figure 5.14
that same relationship can be written as follows:

Area J1 + Area J2 + Area T = Area L1 + Area J1 + Area L2 + Area J2

If we subtract Area J1 + Area J2 from both sides, we get an astonishing
result:

Area T = Area L1 + Area L2

That is, we have a rectilinear figure (the triangle) equal to some nonrectilinear
figures (the lunes). This is quite unusual, since the measures of circular figures seem
to always involve π, while rectilinear (or straight-line) figures do not.



Figure 5.14.

An analogous situation can be gotten by extending the above scenario to that of
a square, as shown in Figure 5.15. Here the sum of the areas of the four lunes is
equal to the area of the square. In equation form we have: Area ABCD = Area L1 +
Area L2 + Area L3 + Area L4.



Figure 5.15.

Most of the results presented so far have been known for many centuries. The
next “wonder,” however, was first published in 1974 by John Evelyn, G. B. Money-
Coutts, and J. A. Tyrrell in The Seven Circles Theorem and Other New Theorems
(London: Stacey International, 1974). This implies that reasonably simple unknown
results in elementary geometry are still out there, waiting to be discovered by some
diligent researchers. Figure 5.16 shows a large circle, with six more circles packed
inside the large circle. Each of these is tangent to the large circle at points P1, P2, P3,
P4, P5, and P6, respectively, and any two successive circles among these also are
tangent to each other. In other words, the circles through P1 and P2 touch in a point,
as do those through P2 and P3, P3 and P4, P4 and P5, P5 and P6, as well as P6 and
P1. If all of these pairs of circles are tangent, it follows that lines P1P4, P2P5, and
P3P6 pass through a common point, Q. This is true under quite general
circumstances.



Figure 5.16.

We now go from the seven circles theorem to the famous five circles theorem.
Figure 5.17 shows a central circle with five circles intersecting each other placed
sequentially around it. When we consecutively connect the internal intersection
points, we form a pentagram whose vertices lie on each of the five circles.



Figure 5.17.

The ambitious reader may want to study other multiple circle theorems, which
are readily available. Here we merely whet the reader’s appetite to do further
research.

Circles also can generate some concurrency, as shown in Figure 5.18. Here we
have three circles whose centers are not collinear, and which intersect in pairs. We
will join the pairs of intersection points and the tangents to each of the circles,
noticing how they are all concurrent and of equal length. Put another way, when we
first located point P, the intersection of KL and MN, we found that the tangents from
P to each of the circles are the same length, that is, PT = PR = PS. (We chose only
one tangent to each of the other three circles, since the other three tangents would
clearly be the same length.)



Figure 5.18.



6

Admiring Other Geometric Phenomena

Our next journey through geometry will present a variety of unstructured
curiosities spanning a plethora of ideas. We begin rather gently by
introducing some simple constructions and then delve into some
beaujpgul and unexpected geometric relationships.

We start by showing how easy isosceles triangles are to construct.
We take the given equal side lengths and make them the radius of the
circle. Then we choose the desired measure for the vertex angle and
draw the other radius at that angle measure. Figure 6.1 shows one such
simple construction resulting in triangle ABC.



Figure 6.1.

Other rather unusual constructions result in an isosceles triangle.
Consider isosceles triangle ABC, shown in Figure 6.2. We can select any
point P along BC and erect a perpendicular line that would intersect the
other two sides (extended) at points D and E. Unexpectedly, triangle ADE
will always be an isosceles triangle, with AE = AD.



Figure 6.2.



Sometimes locating points on the circumcircle of a triangle can be
surprising. Let’s consider triangle ABC with altitudes AX, BY, and CZ,
which determine the orthocenter P, as shown in Figure 6.3. We then
choose any point D on side BC and draw a circle with center D and radius
DP. When altitude AX is extended to meet this circle at point E, we find
that point A is also on the circumcircle of the original triangle ABC. How
curious it is for two circles to meet at a point determined independently of
the circles—further evidence of the beauty of geometry.

Figure 6.3.

Speaking of strange configurations that lead to unexpected results,
let’s consider triangle ABC shown in Figure 6.4, where AD is the bisector
of angle BAC. Through point B we construct a line parallel to the angle



bisector AD, which meets line CA extended at point H. When we
construct the circumcircle of triangle ABC and the circle determined by
points C, D, and H, we find that the two circles intersect line AD extended
at points N and E, which just happen to be two points equidistant from
point A, or put another way: AN = AE. Here, we have another example of
how mathematics produces an equality when it is least expected.

Figure 6.4.



Sometimes just drawing a few circles also leads us to some equal
line segments. Consider right triangle ABC, shown in Figure 6.5, where
we draw a circle on each side of the right triangle, such that each of the
sides is the diameter of the respective three circles. We then simply draw
any line from point A to cut each of the three circles at points F, H, and G.
Quite unexpectedly, we find that AH = FG. What makes this so
remarkable is that it is true for any right triangle!

Figure 6.5.

Other geometric configurations also lead to parallel lines rather
simply. We begin with triangle ABC, shown in Figure 6.6, with median
AM. We draw two lines, each from one of the other two vertices of the
triangle, so that they intersect the median, AM, as well as the opposite



sides AB and AC at points D and E, respectively. The result is that line
DE is parallel to BC.

Figure 6.6.

Constructing a right angle is normally a rather simple procedure.
Sometimes, however, we might want to draw a line parallel to the base of
a triangle and at the same time create a right angle with the vertex at any
given point on the base. This may seem a bit contrived, but it does once
again demonstrate the hidden beauty in geometry. We begin with triangle
ABC, shown in Figure 6.7. We seek the precise place at which line FG
can be drawn parallel to the base, BC, so that the two points, F and G, at
which it intersects the remaining two sides of the triangle will enable us to
construct the right angle whose vertex is on point P on side BC.



Figure 6.7.

We begin the construction by locating the midpoint, M, of side BC
and drawing a circle with center M and radius MC. We then draw line AP
to intersect the circle at point D. This allows us to draw line DM;
whereupon we then draw a line containing point P and parallel to DM,
intersecting line AM at point E. This allows us to construct a line through
point E and parallel to BC, intersecting sides AB and AC of triangle ABC



at points F and G, respectively. By drawing lines FP and GP, we will have
created the right angle FPG at the predetermined point P on line BC,
which was our initial goal. This is a rather difficult construction for a
seemingly easy task, but it once again demonstrates geometry’s power.

Sometimes, we seek to find the longest line that can be drawn within
a given configuration such as that shown in Figure 6.8. Here, we have
two semicircles of which the radius of one is the diameter of the other,
and where we seek to find the longest line that would be perpendicular to
the common radius/diameter line with its endpoints on each of the
semicircles. The diagram shows that C is the midpoint of diameter AB,
and D is the midpoint of diameter BC. Point G, at which CD is trisected,
so that CG = 2DG, turns out to be the point at which EF is the longest
perpendicular with endpoints on the two semicircles.

Figure 6.8.

We now embark on a rather strange path to construct a rhombus
beginning with a random quadrilateral, yet with equal diagonals, as
shown in Figure 6.9. First, we draw on each side of the original
quadrilateral ABCD a circle with the side of the quadrilateral as its
diameter.



Figure 6.9.

Next, we just draw the four common chords, ANL, BFL, DKJ, CEJ, of
each pair of circles. We will then have created rhombus SJRL (Figure
6.10). A strange and unexpected result!



Figure 6.10.

Constructing an equilateral triangle using straightedge and
compasses (or a dynamic geometry program such as GeoGebra or
Geometer’s Sketchpad) is a rather simple process. We merely choose the
length of the side of the to-be-constructed equilateral triangle, as shown
in Figure 6.11, and construct the circle with B as center and radius BC
and then the circle with C as center and radius BC. The point at which the
two circles intersect will be point A, resulting in an equilateral triangle,
ABC.



Figure 6.11.

Another surprisingly simple construction for an equilateral triangle
begins with an isosceles triangle whose vertex angle is 120°. All we need
to do is to locate the trisection points along the base of the isosceles
triangle and connect them to the vertex, and we have an equilateral
triangle. We show this in Figure 6.12, where ∠BAC = 120° and points
D and E are the trisection points of the base, BC. The resulting triangle
ADE is equilateral.

Figure 6.12.



It would be interesting to see how to construct an equilateral triangle
equal in area to that of a given triangle, although this is not often done.
The process may look complicated, but just follow along and you will see
how it makes sense.

We begin with the given triangle ABC, shown in Figure 6.13, for
which we would like to construct an equilateral triangle with an equal
area. We begin by constructing an equilateral triangle (something we
have reviewed earlier) using BC as a side, thus creating equilateral
triangle DBC. Next, through point A, we draw a line parallel to BC that
intersects line DB at point E. At point E, we erect a perpendicular to line
DB. After locating the midpoint of DB and creating a semicircle on
diameter DB, we will call the point of intersection with the perpendicular
we just created, point F. We draw a circular arc with center B and radius
BF, meeting DB at point G. Through point G, we construct a parallel line
to DC. This then gives us the required equilateral triangle BGH, which is
equal in area to triangle ABC. Although a bit complicated, the mission is
completed!

Figure 6.13.



In 1900, American mathematician Frank Morley (1860–1937)
published a remarkable geometric relationship that can be applied to any
shape triangle. It simply states that the angle trisectors of any triangle can
determine an equilateral triangle. Figures 6.14, 6.15, 6.16, and 6.17
shows various triangles of different shapes, and in each case we have the
trisectors of its angles. We mark the intersections of adjacent trisectors as
points D, E, and F. In each case, the triangle formed by these three
points is always an equilateral triangle. This is truly a remarkable
theorem, which reminds us of our discoveries in Chapter 1 on
concurrency, as you will see when we explore this wonderful finding.

Figure 6.14.



Figure 6.15.

Figure 6.16.

Figure 6.17.

When we connect the vertices of the original triangle ABC with
corresponding vertices of the equilateral triangle, DEF, formed by the
trisectors, we find that they are concurrent. And so in Figure 6.18 we once
again have a concurrency, thereby demonstrating the beauty and
consistency in geometry.



Figure 6.18.

One rather unusual arrangement leads to an unexpected equality.
Suppose we have two triangles, ABC and PBC (Figure 6.19), whose only
relationship is that they share the same base, BC, and their third vertex
lies on a line parallel to BC (that is, AP is parallel to BC). We now choose
any line parallel to BC and extend the sides of the two triangles to meet
that parallel line at points D, E, F, and G. Regardless of the shapes of the
two triangles and how far below the triangle the third parallel line is, you
always have DE = FG. Amazing but true!

Figure 6.19.

If we consider a parallelogram with a point, P, anywhere in its interior,
we can establish a very interesting area relationship. In Figure 6.20, point



P is placed within parallelogram ABCD. From P we draw lines to each of
the four vertices of the parallelogram. It turns out that Area∆APB =
Area∆DPC + Area∆APC + Area∆BPD. What makes this so special is that
the point P, which we selected to be anywhere within the parallelogram,
and the two diagonals we use to form the triangles produced this truly
unexpected result.

Figure 6.20.

Parallelograms often lend themselves to some unexpected
properties. Take, for example, parallelogram ABCD shown in Figure 6.21,
where any two parallel lines, AF and EC, are selected within the
parallelogram, and where points F and E are located on sides DC and
AB, respectively. From point F we draw a line parallel to diagonal AC
meeting side AD at point P. When we draw line segment PE, we find that
it is parallel to the other diagonal BD. Remember, points F and E could
have been anywhere along the sides of the parallelogram as long as they
generated the two parallel lines AF and CE.

Figure 6.21.



And speaking of parallelograms, here is a simple-looking question
that has stumped lots of people: What is the relationship between the two
parallelograms, ABCD and BEFP, shown in Figure 6.22, where point P is
on AD and point C is on EF ? The two parallelograms share a common
vertex point, B. In the attempt to find a solution, various lines are drawn
and the ease of getting the answer is lost. Don’t look ahead! Try to
answer the question without looking further ahead.

Figure 6.22.

All that is needed is to draw one line, PC, as we have done in Figure
6.23. We then notice that triangle BPC is one-half the area of
parallelogram ABCD, since it shares base BC and has the same altitude
from P to base BC. Analogously, triangle BPC is also one-half the area of
parallelogram BEFP, since it shares base BP and has the same altitude
from base BP as has parallelogram BEFP. Therefore, since triangle BPC
is one-half the area of each of the parallelograms, the parallelograms
must be equal in area.



Figure 6.23.

Here is further evidence that parallel lines can evolve when they are
least expected. In Figure 6.24 we begin with triangle ABC and mark the
midpoints of its sides at points D, E, and F. We select any point on EF
and call it point G. We then draw a line from A through G to meet DE at
point H. Oddly enough, lines GC and BH end up being parallel.

Figure 6.24.



Here we create two equal angles in a situation where they would
least be expected to arise. In Figure 6.25, right triangle ABC, with a right
angle at vertex A and the altitude from A, intersects the hypotenuse BC at
point D. From point D perpendiculars are drawn to the other two sides of
the triangle, meeting them at points M and N. We end up creating equal
angles BMC and BNC by drawing lines MC and NB. It is surprising how
equal angles can emerge in any right triangle that follows this procedure.

Figure 6.25.

Sometimes a very complicated-looking figure ends up unexpectedly
yielding line segments of equal length. That is the case in Figure 6.26,
where right triangle ABC is inscribed in circle O, and D is any point on arc
AC. From point D a perpendicular is drawn to diameter CB, meeting it at
point E and intersecting AC at point F. Lastly, a perpendicular is drawn to
AC at point F and intersecting the circle determined by diameter AC at



point G. The result of all these constructions is that three equal line
segments, GC, DC, and JC, appear.

Figure 6.26.
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The Golden Rectangle

For centuries, artists and architects have identified what they believed to be the ideal
rectangle. This rectangle, often referred to as the golden rectangle, has also proved to be the
most pleasing to the eye. The golden rectangle has the following ratio of length and width: 

ϕ =
w

l
=

l

w + l
. This is known as the golden ratio, symbolized by the letter ϕ. (See A. S.

Posamentier and I. Lehmann, The Glorious Golden Ratio [Amherst, New York: Prometheus
Books, 2012].)

The desirability of this rectangle has been borne out by numerous psychological experiments.
For example, Gustav Theodor Fechner (1801–1887), a German experimental psychologist,
inspired by German philosopher Adolf Zeising’s (1820–1876) book Der goldene Schnitt (The
Golden Section),1 began to investigate whether the golden rectangle had a special psychological
aesthetic appeal in Neue Lehre von den Proportionen des menschlichen Körpers (New Theories
about the Proportions of the Human Body)2. His findings were published in 1876 in Zur
experimentalen Ästhetik (On Experimental Aesthetics)3. Fechner made thousands of
measurements of commonly seen rectangles, such as playing cards, writing pads, books,
windows, and other objects. He found that most had a ratio of length to width that was close to ϕ.
He also tested people’s preferences and found that most people preferred the shape of the golden
rectangle.

In his research Fechner asked 228 men and 119 women which rectangle was aesthetically
the most pleasing. Looking at the rectangles shown in Figure 7.1, which would you choose as the
most pleasing to look at?



Figure 7.1.

We can easily eliminate rectangle 1:1, as a square is considered by the general public not to
be representative of a rectangle. It is, after all, a square! Rectangle 2:5 (the other extreme) is
uncomfortable to look at since it requires the eye to scan it horizontally. Rectangle 21:34, on the
other hand, can be appreciated at a single glance. Fechner’s findings seem to bear this out. The
results that Fechner reported are shown in Table 7.1.

Table 7.1. Gustav Fechner’s survey results

Ratio of sides of rectangle
Percent

response
for best

rectangle

Percent
respons
for wors
rectangl

1:1 = 1.00000 3.0 27.8  
5:6 = .83333       .02 19.7  
4:5 = .80000  2.0 9.4
3:4 = .75000  2.5 2.5

20:29 = .68966     7.7 1.2
2:3 = .66667 20.6  0.4

21:34 = .61765      35.0  0.0
13:23 = .56522      20.0  0.8

1:2 = .50000  7.5 2.5
2:5 = .40000  1.5 35.7  

100.00 100.00 



Fechner’s experiment has been repeated with variations in methodology many times, and his
results have been further supported. For example, in 1917 Edward Lee Thorndike (1874–1949),
the American psychologist and educator, carried out similar experiments, with analogous results.
In general, the rectangle with the ratio of 21:34 was most preferred. These two numbers are part
of a Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …, where the ratio of
consecutive numbers approaches the golden ratio (see A. S. Posamentier and I. Lehmann, The
Fabulous Fibonacci Numbers [Amherst, New York: Prometheus Books, 2007]). Thus, 
21

34
= 0.61764705882352941 ≈ ϕ, and hence, it creates the golden rectangle, where the

length, l, and the width, w, are in the following proportion: 
w

l
=

l

w + l
= ϕ. (See Figure 7.2.)

Figure 7.2.

By multiplying means and extremes of this proportion we get w2 + wl = l2or 
w2 + wl − l2 = 0 If we let l = 1, then w2 + w − 1 = 0. Using the quadratic formula, we get 

w =
−1 ± √5

2
. Because we have lengths, we use only the positive value. Therefore, 

w =
−1 + √5

2
=

√5 − 1

2
=

1

ϕ
 and ϕ =

√5 + 1

2
.

Let’s see how this rectangle may be constructed using the traditional Euclidean tools (an
unmarked straightedge and compasses) or a computer program such as Geometer’s Sketchpad

or GeoGebra. With a width of 1 unit, our objective is to get the length to be 
1 + √5

2
 so that the

ratio of the length to the width will be ϕ .
One of the simpler ways to construct this golden rectangle is to begin with a square, ABEF,

shown in Figure 7.3, where M is the midpoint of AF. Then with radius ME and center M, draw a
circle to intersect line AF at D. The perpendicular at D intersects line BE at C. We now have
ABCD, a golden rectangle.



Figure 7.3.

Let us continue with golden rectangle ABCD, where a square is constructed internally (as

shown in Figure 7.4). If AF = 1 and AD = ϕ, then FD = ϕ − 1 =
1

ϕ
. We can establish that

rectangle CDFE has dimensions FD =
1

ϕ
 and CD = 1. If we inspect the ratio of length to width

of rectangle CDFE, we get 
EF

FD
=

1

1

ϕ

= ϕ . It is, therefore, also a golden rectangle.

Figure 7.4.



We continue this process by constructing an internal square in the newly formed golden
rectangle. In golden rectangle CDFE, square DFGH is constructed as shown in Figure 7.5. We

find that CH = 1 −
1

ϕ
=

1

ϕ2
, so the ratio of the length to the width of rectangle CHGE is 

1

ϕ

1

ϕ2

= ϕ (after multiplying both numerator and denominator by ϕ2). This, therefore, establishes

that rectangle CHGE also is a golden rectangle.

Figure 7.5.

Continuing this process, we construct square CHKJ in golden rectangle CHGE. We know that

ϕ −
1

ϕ
= 1 therefore, ϕ − 1 =

1

ϕ
 and EJ =

1

ϕ
−

1

ϕ2
=

ϕ − 1

ϕ2
=

1

ϕ

ϕ2
=

1

ϕ3
. We now

inspect the ratio of the dimensions of rectangle EJKG. This time, the length-to-width ratio is 
1

ϕ2

1

ϕ3

= ϕ. Once again, we have a new golden rectangle, which is rectangle EJKG. By continuing

this procedure, we get golden rectangles GKML, NMKR, MNST, and so on. Suppose we now
draw the following quarter circles:

center E, radius EB
center G, radius GF
center K, radius KH
center M, radius MJ



center N, radius NL
center S, radius SR
etc.

The drawing, as shown in Figure 7.6, winds up being an approximation of a logarithmic spiral.
The symmetric parts of this complex-looking figure are the squares. Suppose we locate the center
of each of these squares. If we draw arcs through each of these points, we see that the centers of
these squares lie in another approximation of a logarithmic spiral. This configuration is shown in
Figure 7.7.

Figure 7.6.

Figure 7.7.

The spiral in Figure 7.8 seems to converge (i.e., end) at a point in rectangle ABCD. This point
is at the intersection, P, of AC and ED, which we can better see in Figure 7.8. Consider once
again golden rectangle ABCD. Earlier we established that square ABEF determined another
golden rectangle, CEFD. In Figure 7.8, we see that rectangles ABCD and CEFD are reciprocal
rectangles. Furthermore, we see that reciprocal rectangles have corresponding diagonals that are
perpendicular.



Figure 7.8.

In the same way as before, we can establish that rectangles CEFD and CEGH are reciprocal
rectangles. Their diagonals, ED and CG, are perpendicular at P. This may be extended to each
pair of consecutive golden rectangles shown in Figure 7.9. Clearly P ought to be the limiting point
of the spiral.

Figure 7.9.

We can use this relationship of the diagonals to construct consecutive golden rectangles. We
could simply construct a perpendicular from D to AC in golden rectangle ABCD, and from its
intersection E with BC construct a perpendicular to AD to complete the second golden rectangle.
This process can be repeated indefinitely.

THE DIAGONALS OF THE GOLDEN RECTANGLE



We have done quite a bit with the golden rectangle, yet there never seems to be a limit to what
you can do. For example, the golden rectangle— whose length and width are in the golden ratio—
provides us a neat way to find the point along the diagonal that cuts it into the golden ratio. It is
the unique properties of this special rectangle that enable us to do this so easily.

Consider the golden rectangle ABCD, whose sides AB = a and BC = b, so that 
a

b
= ϕ. As

shown in Figure 7.10, two semicircles are drawn on sides AB and BC to intersect at point S. If we
now draw line segments SA, SB, and SC, we find that angles ASB and BSC are right angles
(since they are each inscribed in a semicircle). Therefore, AC is a straight line, namely the
diagonal. We now have the unexpected result that point S divides the diagonal in the golden ratio.

Figure 7.10.

The golden ratio can be created in practically endless ways. Consider the semicircle with the
three congruent circles inscribed so that the tangency points are as shown in Figure 7.11.

Figure 7.11.

We seek to find the ratio of the radius of the large semicircle to that of one of the smaller
circles. In Figure 7.12, AB = 2R and AM = R. Each of the congruent small circles has a radius r.
Consider right triangle CEM with legs r and 2r, where the hypotenuse then has length r√5. We
now have ME = r√5 and KE = r, therefore, MK = r(√5 + 1) = R. Put another way, 



R

r
= √5 + 1 = 2ϕ. In this seemingly unrelated configuration of three congruent circles

inscribed in a semicircle, we find the ratio of their radii is related to the golden ratio.

Figure 7.12.

THE GOLDEN TRIANGLE

We have thoroughly investigated the famous golden rectangle. Now we are ready to consider the
golden ratio as it pertains to the golden triangle. As you would expect, the golden triangle, much
like the golden rectangle, has Fibonacci numbers embedded within it, so it too consequently
exhibits the golden ratio. Let’s consider a triangle that contains the golden ratio. We begin by
placing an isosceles triangle into another similar isosceles triangle, rather like we embedded our
similar golden rectangles earlier. To do this, we draw the configuration shown in Figure 7.13. The
sum of the angles of triangle ABC is a + a + a + 2a = 5a = 180°, and a = 36°.



Figure 7.13.

This clearly leads us to a triangle with the angle measurements shown in Figure 7.14. Simple

calculations show us that the ratio 
side

base
=

1

x
= ϕ in triangle ABC.



Figure 7.14.

We therefore call this a golden triangle. One easy way to construct a golden triangle is to first
construct the golden section (done earlier in this chapter). Then draw a circle O with the longer
segment of the golden section as radius OB, as shown in Figure 7.15. Then draw a circle, A, with
the smaller segment AB of the golden ratio as the radius, centered at any point on the larger
circle. The intersection point of the two circles, as shown in Figure 7.15, determines a golden
triangle.



Figure 7.15.

By taking consecutively the following angle bisectors, BD, CE, DF, EG, and FH, of a base
angle of each newly formed 36°, 72°, 72° triangle, we get a series of golden triangles (see Figure
7.16). These golden triangles (36°, 72°, 72°) are triangles: ABC, BCD, CDE, DEF, EFG, and FGH.
Obviously, had space permitted we could have continued to draw angle bisectors and thereby
generate more golden triangles. Our inspection of the golden triangle will be analogous to that of
the golden rectangle.



Figure 7.16.

Let us begin by having HG = 1 (Figure 7.16). Since the ratio 
side

base
 of a golden triangle is ϕ,

we find the following:

For golden triangle FGH: 
GF

HG
=

ϕ

1
, or

GF

1
=

ϕ

1
, and GF = ϕ.

Similarly, for golden triangle EFG: 
FE

GF
=

ϕ

1
, but GF = ϕ, so FE = ϕ 2.

In golden triangle DEF: 
ED

FE
=

ϕ

1
, but FE = ϕ 2, therefore ED = ϕ 3.

Again, for triangle CDE: 
DC

ED
=

ϕ

1
, but ED = ϕ 3, therefore DC = ϕ 4.



For triangle BCD: 
CB

DC
=

ϕ

1
, but DC = ϕ 4, therefore CB = ϕ 5.

Finally, for triangle ABC: 
BA

CB
=

ϕ

1
, but CB = ϕ 5, therefore BA = ϕ 6.

So, we see that the golden ratio is embedded throughout the figure.
As we did with the golden rectangle, we can generate an approximation of a logarithmic spiral

by drawing arcs to join the vertex angle vertices of consecutive golden triangles (see Figure 7.17).
We draw the circular arcs as follows: begin with circular arc AB centered at point D; then draw
circular arcs BC centered at point E, CD centered at point F, DE centered at point G, EF centered
at point H, and FG centered at point J. And so the spiral is created.

Figure 7.17.



Many other truly fascinating relationships emanate from the golden ratio. Now that you have
been exposed to the golden triangle, we next turn to the regular pentagon and regular pentagram
(the five-pointed star) for more applications, since these are essentially composed of many golden
triangles. You will then see that the golden ratio abounds throughout these shapes.

THE PENTAGON AND THE PENTAGRAM

A beaujpgul geometric shape, the regular pentagram, which was the symbol of the Pythagoreans,
sums up much of the golden ratio in one configuration. The golden triangle is embedded many
times in this shape (see Figures 7.18 and 7.19). According to Pythagoras, all geometric shapes
can be described in terms of integers. So he was greatly disappointmented when one of his
followers, Hippasus of Metapontum (ca. 450 BCE), showed that the ratio of the regular pentagon’s
diagonal to its side length could not be expressed as a fraction with integers. In other words, this
ratio is not rational! This characteristic carried over to the Pythagoreans’ symbol, the pentagram.
The secret society was a bit troubled by this anomaly—which today can be seen as the beginning
of our concept of irrational numbers (i.e., numbers that cannot be expressed as a ratio of two
whole numbers, hence the name irrational). In the regular pentagon, the ratio of the diagonal to
the side is irrational. But which irrational number did Hippasus find? You guessed it! It was the
golden ratio, ϕ.

Figure 7.18.



Figure 7.19.

To show that this length relationship is irrational, we use the fact that, in a regular pentagon,
every diagonal is parallel to the sides it does not intersect. In triangles AED and BTC have parallel
sides, so they are similar to each other.



Figure 7.20.

Therefore 
AD

AE
=

BC

BT
. But BT = BD – TD = BD – AE. In the regular pentagon, therefore,

the following ratio holds: 
diagonal

side
=

side

diagonal  −  side
.

In equation form we can write this as 
d

s
=

s

d − s
 or 

d

s
=

1

d

s
− 1

 (with d as the length of

the diagonal, and s the length of the side).

If we now let x =
d

s
 we get the equation x =

1

x − 1
. This equation can be converted to the

quadratic equation x2 – x – 1 = 0, of which 
d

s
 is a positive root, which just happens to be the

irrational number ϕ =
√5 + 1

2
 . (Remember: √5 is irrational!)

This is what we claimed at the outset: the ratio of the diagonal to the side of a regular
pentagon is irrational. As the irrational number π = 3.1415926535897932384… is inseparably
connected with the circle, so too the irrational number ϕ = 1.6180339887498948482… is
connected inseparably with the regular pentagon!

The regular pentagon is a fascinating figure with lots of useful properties. We now present
some for you to appreciate and ponder over. You might look for other such properties. In Figure
7.21 the regular pentagon ABCDE has the following properties:

1. The size of every interior angle is 108°: ∠EAB = ∠ABC =∠BCD =∠CDE =∠DEA = 108°



∠BEA =∠CAB =∠DBC =∠ECD =∠ADE = 36°,
∠PEB =∠QAC =∠RBD =∠SCE =∠TDA= 36°,
∠CDA =∠DEB =∠EAC =∠ABD =∠BCE = 72°.

2. Triangles ΔDAC, ΔEBD, ΔACE, ΔBDA, ΔCEA, ΔBEA, ΔCAB, ΔDBC, ΔECD, ΔADE,ΔPEB,
ΔQAC, ΔRBD, ΔSCE, and ΔTDA are all isosceles.

3. Triangles ΔDAC and ΔQCD are similar (as are many others, as shown in Figure 7.21).
4. All diagonals of the pentagon are of the same length.
5. Every side of the pentagon is parallel to the diagonal “facing” it.

6. Common ratios are embedded in the figure, such as the following: 
AD

DC
=

CQ

QD
.

7. The intersection point of two diagonals partitions both diagonals in the golden section.
8. PQRST is a regular pentagon.

Figure 7.21 shows how the pentagon and the pentagram relate to one another and practically
infinitely approach a point.

Figure 7.21.

CONSTRUCTING A REGULAR HEXAGON

We begin constructing a hexagon by drawing a circle. Then, from any point on the circle, we draw
a circle of equal radius. We then continue that process, each time placing the center at the point
where the previous circle intersects the original circle. You will always end up at the starting point,



and you will have constructed a regular hexagon. A lot of the beautiful symmetry in Figure 7.22 is
left to the reader to discover.

Figure 7.22.

CONSTRUCTING A REGULAR PENTAGON

The construction of a regular pentagon is more complicated than that for most other regular
polygons. Were we to try to construct a regular pentagon in a way similar to that for other
polygons, we would find ourselves in a dilemma. Consider the following curious situation.

Perhaps the most important artist that Germany has contributed to western culture is Albrecht
Dürer (1471–1528). One largely forgotten work of his, which he produced in 1525, is a geometric
construction (using only straightedge and compasses) of a regular pentagon. He knew that it was
only an approximation of a regular pentagon, but it is extremely close to perfect, so much so that
its inaccuracy is not visually detectable. Dürer offered this construction to the mathematical
community as an easy alternative method to draw a regular pentagon despite the fact that the
resulting shape was off by about half a degree (see C. J. Scriba and P. Schreiber, 5000 Jahre
Geometrie: Geschichte, Kulturen, Menschen [Berlin, Germany: Springer, 2000], 259, 289–290).
Although its deviation from a perfect regular pentagon is minuscule, the discrepancy cannot be
ignored. Until recently, engineering books still presented Dürer’s method for constructing a regular
pentagon. We shall show it here, despite its flaws, since it is instructive and was seriously used for
many years.

We begin with a segment, AB (Figure 7.23). Five circles of radius AB are constructed as
follows:

1. Circles with centers at A and B are drawn and intersect at Q and N.
2. Draw a circle with center Q to intersect circles A and B at points R and S, respectively.



3. QN intersects circle Q at P.
4. SP and RP intersect circles A and B at points E and C, respectively.
5. Draw circles with centers at E and C, with radius AB to intersect at D.

Polygon ABCDE is (approximately) a regular pentagon.

Although the pentagon looks regular, the measure of angle ABC is about 
22

60
=

11

30
 of a

degree too large. For ABCDE to be a regular pentagon, each angle would have to be 108°. We
will show the curious reader here that ∠ABC ≈ 108.3661202°

In rhombus ABQR, shown in Figure 7.24, ∠ARQ = 60° and BR = AB√3, since BR is
actually twice the length of an altitude of equilateral triangle ARQ. Since triangle PRQ is an
isosceles right triangle, ∠PRQ = 45° and ∠BRC = 15°.

Figure 7.23.



Figure 7.24.

We shall apply the law of sines to ΔBCR :
BR

sin ∠BCR
=

BC

sin ∠BRC
. That is, 

AB√3

sin ∠BCR
=

AB

sin 15°
or sin∠BCR = √3 sin 15°. Therefore, ∠BCR ≈ 26.63387984.

In triangle 
BCR, ∠RBC = 180° − ∠BRC − ∠BCR ≈ 180 − 15° − 26.63387984° ≈ 138.3661202°
.

Thus, since 
∠ABR = 30°, ∠ABC = ∠RBC − ∠ABR ≈ 138.661202° − 30° ≈ 108.3661202°, and
not 108° as it should be in order for the shape to be a regular pentagon. Furthermore, consider
the results of Dürer’s construction: ∠ABC = ∠BAE ≈ 108.37°, ∠BCD = ∠AED ≈ 107.94°, and
∠EDC ≈ 107.38°.

One way to construct a proper regular pentagon would be to first construct a golden triangle
and then simply mark off its base length along a given circle, as shown in Figure 7.25.



Figure 7.25.

1. Published posthumously in 1884 by the Leopoldinisch Carolinische Akademie, Halle, Germany.
2. Published in 1854 by R. Weigel, Leipzig.
3. Published by Breitkopf & Härtel, Leipzig.
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Geometric Mistakes

Up to this point we have experienced some of the beauty and amazing
relationships that geometry offers us. Now it might be instructive to see
how geometry can also be deceiving. Some geometric pictures are
grossly misleading, and others are logically wrong. In this chapter we will
entertain ourselves with these deceptions.

Depictions of geometric figures can be deceiving in a number of
ways. For example, we can make mistakes in our optical perceptions.
Geometry is often referred to as the visual part of mathematics, and we
tend to believe many things as we see them. Consequently, geometric
diagrams still play an important role in determining geometric properties
and proving geometric relationships. The importance of geometric
diagrams should not be minimized; however, they should be carefully
analyzed, as we will see throughout this chapter. Although geometric
proofs can be done without seeing a diagram, picturing the geometric
figures can be very helpful. But they can still be deceiving. (For examples
of mistakes in mathematics, see A. S. Posamentier and I. Lehmann,
Magnificent Mistakes in Mathematics [Amherst, New York: Prometheus
Books, 2013].)

As mentioned above, we can easily make mistakes in our visual
assessment of a geometric figure. We now present some of these optical
mistakes, as studying them can help make you more discriminating with
visual presentations. We will first show some of these erroneous visual
assessments. Then we will show how logical mistakes can be
compounded and overlooked. So, follow along as we explore some of the
counterintuitive characteristics that can lead to geometric mistakes!

OPTICAL MISTAKES



We begin by comparing the two segments in Figure 8.1. The one on the
right side looks longer. In Figure 8.2 the bottom segment looks longer. In
reality, the segments have the same length.

Figure 8.1.

Figure 8.2.

In Figure 8.3, the crosshatched segment appears longer than the
clear one. In the right side of Figure 8.4, the narrower and vertical stick
appears to be longer than the other two, even though to the left they are
shown to be the same length.

Figure 8.3.



Figure 8.4.

A further optical illusion can be seen in Figure 8.5, where AB
appears to be longer than BC. This is not true, since AB = BC.

Figure 8.5.

In Figure 8.6 the vertical segment clearly appears longer, but it isn’t.
The curve lengths and curvature of the diagrams in Figure 8.7 look quite
dissimilar. Yet, the curves are congruent!



Figure 8.6.



Figure 8.7.

The square between the two semicircles in Figure 8.8 looks bigger
than that to the left, but the two squares are the same size. In Figure 8.9
the square within the large black square looks smaller than that to the
right; but, again, that is an optical illusion, since they are the same size.



Figure 8.8.

Figure 8.9.

The senses are again fooled in Figure 8.10. Here the larger circle
inscribed in the square (on the left) appears to be smaller than the circle



circumscribed about the square (on the right). Again, the circles are the
same size!

Figure 8.10.

Figures 8.11, 8.12, and 8.13 show how relative placement can affect
the appearance of a geometric diagram. In Figure 8.11 the center square
appears to be the largest of the group, but it isn’t. In Figure 8.12 the black
center circle on the left appears to be smaller than the black center circle
on the right, and again it is not.

Figure 8.11.



Figure 8.12.

Figure 8.13.

In Figure 8.13, the center sector on the left appears to be smaller
than the center sector on the right. In all of these cases the two figures
that appear not to be the same size are, in fact, the same size!

Throughout this book we have avoided proving the beaujpgul
relationships that geometry has to offer. Now, however, we will revert to
“proofs” to show how geometry can also be entertaining when it claims
through faulty arguments that the absurd is true. The trick is to find where
the error resides. Let the reader now take on the challenge!



HOW CAN A RIGHT ANGLE EQUAL AN OBTUSE
ANGLE?

This geometric mistake points out a few properties that must hold and
cannot be ignored. Furthermore, it shines a spotlight on a rarely
recognized concept: the reflex angle. Follow along as we proceed to
“prove” that a right angle can be equal to an obtuse angle (an angle that
is greater than 90°).

We begin with a rectangle ABCD, where FA = BA, R is the midpoint
of BC, and N is the midpoint of CF (Figure 8.14). We will now “prove” that
right angle CDA is equal to obtuse angle FAD.

Figure 8.14.

To set up the “proof” we first draw RL perpendicular to CB, and draw
MN perpendicular to CF. Then RL and MN intersect at point O. If they did
not intersect, then RL and MN would be parallel. This would mean that
CB is parallel to or coincides with CF, which is impossible. To complete
the diagram for our “proof,” we draw line segments DO, CO, FO, and AO.

We are now ready to embark on the “proof.” Since RO is the
perpendicular bisector of CB and AD, we know that DO = AO. Similarly,
since NO is the perpendicular bisector of CF, we get CO = FO.
Furthermore, since FA = BA, and BA = CD, we can conclude that FA =
CD. This enables us to establishΔCDO ≅ΔFAO (SSS), so that 
∠ODC = ∠OAF . We continue with OD = OA, which makes triangle



AOD isosceles and the base angles ODA and OAD equal. Now,
∠ODC − ∠ODA = ∠OAF − ∠OAD or ∠CDA = ∠FAD. This
says that a right angle is equal to an obtuse angle. There must be some
mistake!

Clearly, there is nothing wrong with this “proof.” However, if you use a
ruler and compasses to reconstruct the diagram, it will look like Figure
8.15.

Figure 8.15.

As you see, the mistake here rests with a reflex angle—one that is
often not considered. For rectangle ABCD, the perpendicular bisector of
AD will also be the perpendicular bisector of BC. Therefore, OC = OB,
OC = OF, and OB = OF. Since both points A and O are equidistant from
the endpoints of BF, line AO must be the perpendicular bisector of BF.
This is where the fault lies; we must consider the reflex angle of angle



BAO. Although the triangles are congruent, our ability to subtract the
specific angles no longer exists. Thus, the difficulty with this “proof” lies in
its dependence upon an incorrectly drawn diagram.

A MISTAKEN “PROOF” THAT EVERY ANGLE IS
A RIGHT ANGLE

We begin this demonstration with quadrilateral ABCD, where AB = CD
and right angle ∠BAD = δ (see Figure 8.16). We will allow ∠ADC = δ′ to
be of random measure but show that it is actually a right angle. By
showing this, we will have proved that any random angle is a right angle.



Figure 8.16.

We then construct m, the perpendicular bisector of AD, and m′, the
perpendicular bisector of BC. These perpendicular bisectors intersect at
point O. The point O is then equidistant from points A and D, as well as
from points B and C. Therefore, OA = OD and OB = OC. We can then
conclude that ΔOAB ≅ΔODC, and it follows that ∠BAO = ∠ODC =
α.

Since triangle OAD is isosceles, it follows that ∠DAO = ∠ODA = β.
Therefore, δ = ∠BAD = ∠BAO – ∠DAO = α – β, and δ′ = ∠ADC = ∠ODC –



∠ODA = α – β.
It then follows that δ = δ′. However, this result is silly. There must be

a mistake somewhere. Let’s revisit the original diagram.
In fact, the diagram presented in Figure 8.16 tricked us since it was

intentionally false. The key error is the point where the two perpendicular
bisectors meet, which must be further beyond the quadrilateral than what
was indicated. The correct diagram would look like that shown in Figure
8.17.We then have δ = α – β, however, δ′ = 360° – α – β. This destroys
the mistaken “proof.” The ancient Greeks would likely have had difficulty
determining the error, as the concept of “betweenness” was not
addressed until the twentieth century. In other words, where does a point
lie, between or not between other given points? We will encounter this
issue again later.



Figure 8.17.

ANOTHER MISTAKEN “PROOF” SHOWING
THAT TWO RANDOMLY DRAWN LINES IN A

PLANE ARE ALWAYS PARALLEL

We begin this demonstration with the two randomly drawn lines l1 and l2.
We then construct two parallel lines, AD and BC, that intersect our two
given lines, l1 and l2. We complete our required diagram by drawing EF



parallel to AD. The line EF intersects BD and AC in points G and H,
respectively (see Figure 8.18).

Figure 8.18.

The triangles AEH and ABC are similar, as are the triangles HCF and

ACD. We therefore can establish the following proportions: 
EH

BC
=

AH

AC

and 
HF

AD
=

HC

AC
. When we add the two proportions we get the



following: 
EH

BC
+

HF

AD
=

AH

AC
+

HC

AC
=

AH + HC

AC
=

AC

AC
= 1,

which is to say that 
EH

BC
+

HF

AD
 = 1.

Analogously, we can establish the similarity between triangles BGE
and BDA as well as a similarity between triangles BDC and GDF and then

get the following result: 
EG

AD
+

GF

BC
 = 1. Since the last two equations

are equal to 1, we get

EH

BC
+

HF

AD
=

EG

AD
+

GF

BC
, or 

HF

AD
−

EG

AD
=

GF

BC
−

EH

BC
.

Therefore, 
HF − EG

AD
=

GF − EH

BC
.

From the diagram we find that HF – EG = (EF – EH) – (EF – GF) =
GF – EH. This tells us that the numerators of the two equal fractions are
equal. Consequently, the denominators must also be equal. Therefore,
AD = BC. Since we began with AD parallel to BC, the quadrilateral ABCD
must be a parallelogram, and therefore, AB is parallel to CD, or l1 is
parallel to l2. Thus, we seem to have proved that two randomly drawn
lines in the same plane are actually parallel. Clearly, this is absurd, so a
mistake must have been made in this demonstration.

Let’s take another look at what we have just done. From Figure 8.18
you can clearly see that

HF – EG = (HG + GF) – (EH + HG) = GF – EH.
From the parallel lines in the diagram the following proportions follow

immediately: 
EH

BC
=

AE

AB
=

AH

AC
=

DF

DC
=

GF

BC
.

Since BC ≠ 0, we then have EH = GF. Therefore, GF – EH = 0, and
HF – EG must also equal 0. From the earlier equation, 
HF − EG

AD
=

GF − EH

BC
. By substitution we have the following:

0

AD
=

0

BC

.



This essentially tells us that we had no reason to state that AD = BC,
since AD and BC can essentially take on any values to make this
equation true. This explains where the mistake was made.

IS “PROVING” THAT A SCALENE TRIANGLE IS
ISOSCELES—OR THAT ALL TRIANGLES ARE

ISOSCELES—A MISTAKE?

Mistakes in geometry—also sometimes called fallacies—tend to come
from faulty diagrams that result from a lack of definition. Yet, as we know,
in ancient times some geometers discussed their geometric findings or
relationships without a diagram. For example, as we indicated earlier, in
Euclid’s work the concept of “betweenness” was not considered. When
this concept is omitted, we can prove that any triangle is isosceles—that
is, that a triangle with three sides of different lengths actually has two
sides that are equal. This sounds a bit strange. But we can demonstrate
this “proof” and have the reader attempt to discover where the mistake
lies before we expose it.

We shall begin by drawing a scalene triangle (i.e., a triangle with no
two sides of equal length) and then “prove” it is isosceles (i.e., a triangle
with two sides of equal length). Consider a scalene triangle, ABC, where
we then draw the bisector of angle C and the perpendicular bisector of
AB. From their point of intersection, G, we draw perpendiculars to AC and
CB, meeting them at points D and F, respectively.

There are now four possibilities that match the above description for
various scalene triangles: in Figure 8.19, where CG and GE meet inside
the triangle at point G; in Figure 8.20, where CG and GE meet on side AB
(that is, points E and G coincide); in Figure 8.21, where CG and GE meet
outside the triangle (in G), but perpendiculars GD and GF intersect
segments AC and CB (at points D and F, respectively); and in Figure
8.22, where CG and GE meet outside the triangle, but perpendiculars GD
and GF intersect the extensions of sides AC and CB outside the triangle
(at points D and F respectively).



Figure 8.19.



Figure 8.20.



Figure 8.21.



Figure 8.22.

The “proof” of the mistake (or fallacy) can be done with any of the
above figures. Follow along and see if the mistake shows itself without
reading further. We begin with a scalene triangle, ABC. We will now
“prove” that AC = BC (or that triangle ABC is isosceles).

As we have an angle bisector, we have ∠ACG ≅∠BCG. We also
have two right angles such that ∠CDG ≅∠CFG. This enables us to
conclude that ∠CDG ≅∠CFG (SAA). Therefore, DG = FG and CD =
CF. Since a point on the perpendicular bisector (EG) of a line segment is
equidistant from the endpoints of the line segment, AG = BG. Also, 



∠ADGand ∠FBGare right angles. We then have ∠DAG ≅∠FBG

(since they have hypotenuse and leg congruent). Therefore DA = FB. It
then follows that AC = BC (by addition in Figures 8.19, 8.20, and 8.21;
and by subtraction in Figure 8.22).

At this point you may feel quite disturbed. You may wonder where the
error lies that permitted this mistake to occur. You could challenge the
correctness of the figures. Well, by rigorous construction you will find a
subtle error in the figures. We will now divulge the mistake and show how
it leads us to a better and more precise way of referring to geometric
concepts.

First we can show that point G must be outside the triangle. Then,
when perpendiculars meet the sides of the triangle, one of them will meet
a side between the vertices, while the other will not. We can “blame” this
mistake on Euclid’s lack of the concept of betweenness. However, the
beauty of this particular mistake lies in its proof of this betweenness
issue, which establishes the mistake.

Begin by considering the circumcircle of triangle ABC (Figure 8.23).
The bisector of angle ACB must contain the midpoint, M, of arc AB (since
angles ACM and BCM are congruent inscribed angles). The
perpendicular bisector of AB must bisect arc AB and therefore must pass
through M. Thus, the bisector of angle ACB and the perpendicular
bisector of AB intersect on the circumscribed circle, which is outside the
triangle at M (or G). This eliminates the possibilities we used in Figures
8.19 and 8.20.



Figure 8.23.

Now consider the inscribed quadrilateral ACBG. Since the opposite
angles of an inscribed (or cyclic) quadrilateral are supplementary, 
∠CAG + ∠CBG = 180°. If angles CAG and CBG were right angles,
then CG would be a diameter and triangle ABC would be isosceles.
Therefore, since triangle ABC is scalene, angles CAG and CBG are not
right angles. In this case one must be acute and the other obtuse.
Suppose angle CBG is acute and angle CAG is obtuse. Then in triangle



CBG the altitude on CB must be inside the triangle, while in obtuse
triangle CAG, the altitude on AC must be outside the triangle. The fact
that one and only one of the perpendiculars intersects a side of the
triangle between the vertices destroys the fallacious “proof.” This
demonstration hinges on the definition of betweenness, a concept not
available to Euclid.

A MISTAKEN PROOF THAT A TRIANGLE CAN
HAVE TWO RIGHT ANGLES

The next geometric mistake is one that can truly upset an unsuspecting
person. With two intersecting circles of any size, we draw the diameters
from one of their points of intersection and then connect the other ends of
the diameters, as shown in Figure 8.24.

Figure 8.24.

In Figure 8.24, the endpoints of diameters AP and BP are connected
by line AB, which intersects circle O at point D and circle O′ at point C.
Here, we find that ∠ADP  is inscribed in semicircle PNA, and ∠BCP  is
inscribed in semicircle PNB, thus making them both right angles. We then



have a dilemma: triangle CPD has two right angles! This is impossible.
Therefore, there must be a mistake somewhere in our work.

Omission of the concept of betweenness could lead us to this
dilemma. When this figure is drawn correctly, we find that angle CPD
must equal 0, since a triangle cannot have more than 180°. That would
make triangle CPD nonexistent. Figure 8.25 shows the correct drawing of
this situation.

Figure 8.25.

In Figure 8.25 we can easily show that ΔPOO
′ ≅ΔNOO

′, and
then ΔPOO

′ = ΔNOO
′. Because ∠PON = ∠A + ∠ANO and

∠ANO = ∠NOO′ (alternate-interior angles) we have ∠POO′ = ∠A, and
then AN is parallel to OO′. The same argument can be made for circle O′
to get BN parallel to OO′. Since line segments AN and BN are both
parallel to OO′, they must in fact be one line, ANB. This proves that the
diagram in Figure 8.25 is correct and the diagram in Figure 8.24 is not.

EVERY EXTERIOR ANGLE OF A TRIANGLE IS
EQUAL TO ONE OF ITS REMOTE INTERIOR

ANGLES



We begin with triangle ABC, shown in Figure 8.26, and we would like to
demonstrate that angles δ and α are equal.

Figure 8.26.

We now refer to Figure 8.27, where we have quadrilateral APQC so
constructed that ∠CAP + ∠CQP = α + ε = 180°.



Figure 8.27.

We then construct a circle through three points C, P, and Q. Point B
is where line AP intersects the circle a second time. Drawing BC creates
a cyclic quadrilateral (i.e., one that can be inscribed in a circle), BPQC,
where the following is true: ∠CQP + ∠CBP = ε + δ = ∠BCQ + ∠BPQ =
180°.

However, at the outset we had drawn ∠CAP + ∠CQP = α + ε = 180°,
so we can now conclude that ∠CAP = ∠CBP, which is to say that α = δ.
Something must be wrong. Where does the mistake lie?

If quadrilateral APQC has the property that ∠CAP + ∠CQP = α + ε =
180° and that vertices C, P, and Q lie on the same circle, then
quadrilateral APQC must also be cyclic, which implies that point A must
also lie on the circle. This implies that points A and B must be identical. In
that case, triangle ABC cannot exist. Thus, the mistake here has been
revealed.



ANY POINT IN THE INTERIOR OF A CIRCLE IS
ALSO ON THE CIRCLE

Let’s consider the conflicting statement that any point in the interior of a
circle is also on the circle. It sounds ridiculous, but we can provide a
“proof” of this statement. There must be a mistake, or else we are in a
logical dilemma.

We shall begin our “proof” with a circle, O, whose radius is r (see
Figure 8.28). We will then let A be any point in the interior of the circle
distinct from O, and “prove” that point A is actually on the circle.

Figure 8.28.

We will set up our diagram as follows: let B be on the extension of
OA through A such that OA ⋅ OB = OD2 = r2. (Clearly OB is greater than r,
since OA is less than r.) The perpendicular bisector of AB meets the circle
at points D and G, where R is the midpoint of AB. We now have 
OA = AR − RA and OB = OR + RB = OR + RA Therefore, 
r

2 = OA ⋅ OB = (OR + RA), or r2 = OR
2 − RA

2. However, by
applying the Pythagorean theorem to triangle ORD, we get 



OR
2 = r

2 − RA
2, and applying it once again to triangle ADR gives us 

RA2 = AD2 − DR2. Therefore, since r2 = OR2 − RA2, we get 
r2 = (r2 − DR2) − (AD2 − DR2), which reduces to 
r

2 = r
2 − AD

2. This would imply that AD2 = 0; put another way, that
A coincides with D and thus lies on the circle. That is to say, point A
inside the circle has been proved to be on the circle. There must be a
mistake somewhere!

The fallacy in this proof lies in the fact that we drew an auxiliary line
DRG with two conditions—that it is the perpendicular bisector of AB and
that it intersects the circle. Actually, all points on the perpendicular
bisector of AB lie in the exterior of the circle, and therefore, cannot
intersect the circle. Follow along with the algebraic process:

r2 = OA ⋅ OB
r2 = OA(OA + AB)
r

2 = OA
2 + OA ⋅ AB

The “proof” assumes that OA +
AB

2
< r.

By multiplying both sides of the inequality by 2 we get: 2 ⋅ OA + AB <
2r.

By squaring both sides of the inequality we have: 4 ⋅ OA2 + 4 ⋅ OA ⋅
AB + AB2 < 4r2.

By substituting four times equation (I), which is 
4r2 = 4OA2 + 4OA ⋅ AB, into equation (II) we get 4r2 + AB

2 < 4r2,
or AB2 < 0, which is impossible. The mistake here warns us not to allow
points to take on more properties than are possible. That is, when
drawing auxiliary lines, we must make sure that they use one condition
only.

HOW CAN 64 = 65?

We now have a mathematics mistake that was popularized by Charles
Lutwidge Dodgson (1832–1898), who, under the pen name of Lewis
Carroll, wrote The Adventures of Alice in Wonderland. In Figure 8.29, we
notice that the square on the left side has an area of 8 × 8 = 64 and is
partitioned into two congruent trapezoids and two congruent right
triangles. Yet, when these four parts are placed into a different



configuration (as shown on the right side of Figure 8.29), we get a
rectangle whose area is 5 × 13 = 65. How can 64 = 65? There must be a
mistake somewhere.

Figure 8.29.

When we correctly construct the rectangle formed by the four parts of
the square, we find an extra parallelogram in the drawing—shown,
exaggerated in size, in Figure 8.30.

Figure 8.30.

This parallelogram (shaded) results from the fact that angles α and β
are not equal. Yet, this is not easily noticeable at a glance in the original
diagram! Perhaps, the easiest way to show this is to refer to the familiar

tangent function. In triangle ABC, tan α =
5

2
= 2.5, while tan β =

8

3
≈ 2.667.

In order for line segment ACE to be a straight line—preventing a
parallelogram from being formed—angles α and β would have to be



equal. With different tangent values this is not the case! Thus, the mistake
—one easily overlooked—has been exposed. (More such examples can
be found in A. S. Posamentier and I. Lehmann, The [Fabulous] Fibonacci
Numbers [Amherst, NY: Prometheus Books, 2007], 140–143.)

MISLEADING LIMITS

The concept of a limit is not to be taken lightly, since it is a very
sophisticated one that can be easily misinterpreted. The issues
surrounding the concept sometimes are quite subtle, and
misunderstanding of limits can lead to some curious situations (or
humorous ones, depending on your viewpoint). This point is nicely
exhibited with the following two illustrations. Don’t be too upset by the
conclusion that you will be led to reach. Remember, this is merely for
entertainment. Consider the illustrations separately and then notice their
connection.

It is easy to see that the sum of the lengths of the bold segments (the
“stairs”) is equal to a + b, since the sum of the vertical bold lines equals
the length OP = a, and the sum of the horizontal bold lines equals OQ = b
(see Figure 8.31).



Figure 8.31.

The sum of the bold segments (“stairs”), found by adding all the
horizontal and vertical segments, is a + b. If the number of stairs
increases, the sum is still a + b. The dilemma arises when we continue to
increase the stairs to a “limit” so that they get smaller and smaller. This
makes the set of stairs appear to be a straight line, in this case the
hypotenuse, PQ, of triangle POQ. It would then appear that PQ has
length a + b. Yet we know from the Pythagorean theorem that PQ =
√a2 + b2 and not a + b. So what’s wrong?

Nothing is wrong! While the set consisting of the stairs does indeed
get closer and closer to the straight line segment PQ, it does not,
therefore, follow that the sum of the bold (horizontal and vertical) lengths
approaches the length of PQ, contrary to our intuition. There is no
contradiction here, only a failure on the part of our intuition.

Another way to “explain” this dilemma is to argue the following. As
the “stairs” get smaller, they increase in number. In the most extreme



situation, we have stairs of 0 length in each dimension, used an infinite
number of times. This then leads to considering 0 ⋅ ∞, which is
meaningless! In truth, no matter how small the stairs get, the sum of two
adjacent perpendiculars that form one of the small right triangles will
never be equal to their hypotenuse. They will just be small right triangles.
This may be a bit difficult to see, but that is one of the dangers of working
with infinity.

Just as an aside, the set of natural numbers, {1, 2, 3, 4, …}, seems to
be a larger set than the set of positive even numbers, {2, 4, 6, 8, …},
because all the positive odd numbers are missing from the second set.
Yet, since they are infinite sets, they are equal in size! We reason as
follows: for every number in the set of natural numbers there is a “partner”
member of the set of positive even numbers; hence they are equal in
size. Counterintuitive? Yes, but that is what happens when we consider
the concept of infinity.

Infinity appears to be playing games with us. The problem, however,
is that with infinity we can no longer talk about the equality of sets the way
we do when we have finite sets. The same is true with the staircase in our
original problem. We can draw a finite number of steps, yet we cannot
draw an infinite number of steps. Therein lies the problem.

A similar situation arises with the following example. In Figure 8.32
the smaller semicircles extend from one end of the large semicircle’s
diameter to the other.

Figure 8.32.



It is easy to show that the sum of the arc lengths of the smaller
semicircles is equal to the arc length of the larger semicircle; that is, the
sum of the smaller semicircles

=
πa

2
+

πb

2
+

πc

2
+

πd

2
+

πe

2
+

π

2
(a + b + c + d + e) =

π

2
AB,

which is the arc length of the larger semicircle. This may not appear to be
true, but it is! As a matter of fact, as we increase the number of smaller
semicircles (where, of course, they get smaller) their sum appears to be
approaching the length of segment AB, that is, 

π

2
⋅ AB = AB. Taking this

a step further, if we let AB = 1, then we have π = 2, which we know is a
mistake!

Again, the set consisting of the semicircles does indeed appear to
approach the length of the straight-line segment AB. It does not follow,
however, that the sum of the semicircles approaches the length of the
limit, in this case AB.

This “apparent limit sum” is absurd, since the shortest distance
between points A and B is the length of segment AB, not the semicircle
arc AB (which equals the sum of the smaller semicircles). This important
concept may best be explained using these motivating illustrations, so
that future misinterpretations can be avoided.

OFT-MISTAKEN ATTEMPTS AT COMMON
GEOMETRIC TRICKS

What is the least number of straight lines you would need to draw to
connect the six points in Figure 8.33 without lifting your pencil off the
paper?



Figure 8.33.

A typical response to this question is five lines, usually drawn in one
of the ways shown in Figure 8.34. But is this the least number of straight
lines that can be used to connect these six points?

Figure 8.34.

As you might have expected, the answer is no. Fewer than five lines
can be used to connect the six points. The mistake rests in the fact that
we thought each line segment had to terminate at one of the points. As



you can see from Figure 8.35, we were able to connect the dots with four
straight lines.

Figure 8.35.

Eliminating the restriction of having each line segment end at one of
the given points allows us to get an even better solution: the three line
segments shown in Figure 8.36.



Figure 8.36.

Our earlier mistakes should now be instructive for the next situation.
This time we are given nine dots, as shown in Figure 8.37, and are asked
to connect them with four straight lines without lifting the pencil off the
paper.



Figure 8.37.

Having learned from our earlier experiences, we should be able to
arrive at the solution offered in Figure 8.38.



Figure 8.38.

Now that the reader will no longer make the mistake often made with
the first of these dot-connecting problems, we offer two challenges. One,
connect the 12 dots shown in Figure 8.39 with as few as five straight
lines, without lifting the pencil off the paper, and returning to the initial
point. The solution is shown in Figure 8.40.

Figure 8.39.



Figure 8.40.

Two, connect the 25 dots shown in Figure 8.41 using only eight
straight lines, without lifting the pencil off the paper, and returning to the
initial point. Using nine lines would not be so difficult; using eight lines,
however, is quite challenging. A solution is provided in Figure 8.42.



Figure 8.41.



Figure 8.42.

We have now seen a wide variety of geometric mistakes. Many of
these give us a much stronger view of geometric principles. Those seen
as “paradoxes” also allow us to see the kind of misinterpretations often
encountered without notice. In sum, through exploration of geometric
mistakes, our understanding of and appreciation for geometry are hugely
enhanced.
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