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Preface

Almost two decades have passed since the appearance of those graph the-
ory texts that still set the agenda for most introductory courses taught
today. The canon created by those books has helped to identify some
main fields of study and research, and will doubtless continue to influence
the development of the discipline for some time to come.

Yet much has happened in those 20 years, in graph theory no less
than elsewhere: deep new theorems have been found, seemingly disparate
methods and results have become interrelated, entire new branches have
arisen. To name just a few such developments, one may think of how
the new notion of list colouring has bridged the gulf between invari-
ants such as average degree and chromatic number, how probabilistic
methods and the regularity lemma have pervaded extremal graph theo-
ry and Ramsey theory, or how the entirely new field of graph minors and
tree-decompositions has brought standard methods of surface topology
to bear on long-standing algorithmic graph problems.

Clearly, then, the time has come for a reappraisal: what are, today,
the essential areas, methods and results that should form the centre of
an introductory graph theory course aiming to equip its audience for the
most likely developments ahead?

I have tried in this book to offer material for such a course. In
view of the increasing complexity and maturity of the subject, I have
broken with the tradition of attempting to cover both theory and appli-
cations: this book offers an introduction to the theory of graphs as part
of (pure) mathematics; it contains neither explicit algorithms nor ‘real
world’ applications. My hope is that the potential for depth gained by
this restriction in scope will serve students of computer science as much
as their peers in mathematics: assuming that they prefer algorithms but
will benefit from an encounter with pure mathematics of some kind, it
seems an ideal opportunity to look for this close to where their heart lies!

In the selection and presentation of material, I have tried to ac-
commodate two conflicting goals. On the one hand, I believe that an
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introductory text should be lean and concentrate on the essential, so as
to offer guidance to those new to the field. As a graduate text, moreover,
it should get to the heart of the matter quickly: after all, the idea is to
convey at least an impression of the depth and methods of the subject.
On the other hand, it has been my particular concern to write with
sufficient detail to make the text enjoyable and easy to read: guiding
questions and ideas will be discussed explicitly, and all proofs presented
will be rigorous and complete.

A typical chapter, therefore, begins with a brief discussion of what
are the guiding questions in the area it covers, continues with a succinct
account of its classic results (often with simplified proofs), and then
presents one or two deeper theorems that bring out the full flavour of
that area. The proofs of these latter results are typically preceded by (or
interspersed with) an informal account of their main ideas, but are then
presented formally at the same level of detail as their simpler counter-
parts. I soon noticed that, as a consequence, some of those proofs came
out rather longer in print than seemed fair to their often beautifully
simple conception. I would hope, however, that even for the professional
reader the relatively detailed account of those proofs will at least help
to minimize reading time. ..

If desired, this text can be used for a lecture course with little or
no further preparation. The simplest way to do this would be to follow
the order of presentation, chapter by chapter: apart from two clearly
marked exceptions, any results used in the proof of others precede them
in the text.

Alternatively, a lecturer may wish to divide the material into an easy
basic course for one semester, and a more challenging follow-up course
for another. To help with the preparation of courses deviating from the
order of presentation, I have listed in the margin next to each proof the
reference numbers of those results that are used in that proof. These
references are given in round brackets: for example, a reference (4.1.2)
in the margin next to the proof of Theorem 4.3.2 indicates that Lemma
4.1.2 will be used in this proof. Correspondingly, in the margin next to
Lemma 4.1.2 there is a reference [4.3.2] (in square brackets) informing
the reader that this lemma will be used in the proof of Theorem 4.3.2.
Note that this system applies between different sections only (of the same
or of different chapters): the sections themselves are written as units and
best read in their order of presentation.

The mathematical prerequisites for this book, as for most graph
theory texts, are minimal: a first grounding in linear algebra is assumed
for Chapter 1.9 and once in Chapter 5.5, some basic topological con-
cepts about the Euclidean plane and 3-space are used in Chapter 4, and
a previous first encounter with elementary probability will help with
Chapter 11. (Even here, all that is assumed formally is the knowledge
of basic definitions: the few probabilistic tools used are developed in the
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text.) There are two areas of graph theory which I find both fascinat-
ing and important, especially from the perspective of pure mathematics
adopted here, but which are not covered in this book: these are algebraic
graph theory and infinite graphs.

At the end of each chapter, there is a section with exercises and
another with bibliographical and historical notes. Many of the exercises
were chosen to complement the main narrative of the text: they illus-
trate new concepts, show how a new invariant relates to earlier ones,
or indicate ways in which a result stated in the text is best possible.
Particularly easy exercises are identified by the superscript ~, the more
challenging ones carry a . The notes are intended to guide the reader
on to further reading, in particular to any monographs or survey articles
on the theme of that chapter. They also offer some historical and other
remarks on the material presented in the text.

Ends of proofs are marked by the symbol [J. Where this symbol is
found directly below a formal assertion, it means that the proof should
be clear after what has been said—a claim waiting to be verified! There
are also some deeper theorems which are stated, without proof, as back-
ground information: these can be identified by the absence of both proof
and 0.

Almost every book contains errors, and this one will hardly be an
exception. I shall try to post on the Web any corrections that become
necessary. The relevant site may change in time, but will always be
accessible via the following two addresses:

http://www.springer-ny.com/supplements/diestel/
http://www.springer.de/catalog/html-files/deutsch/math/3540609180.html

Please let me know about any errors you find.

Little in a textbook is truly original: even the style of writing and
of presentation will invariably be influenced by examples. The book that
no doubt influenced me most is the classic GTM graph theory text by
Bollobas: it was in the course recorded by this text that I learnt my first
graph theory as a student. Anyone who knows this book well will feel
its influence here, despite all differences in contents and presentation.

I should like to thank all who gave so generously of their time,
knowledge and advice in connection with this book. I have benefited
particularly from the help of N. Alon, G. Brightwell, R. Gillett, R. Halin,
M. Hintz, A. Huck, I. Leader, T. Luczak, W. Mader, V. Rodl, A.D. Scott,
P.D. Seymour, G.Simonyi, M. Skoviera, R. Thomas, C.Thomassen and
P. Valtr. T am particularly grateful also to Tommy R. Jensen, who taught
me much about colouring and all I know about k-flows, and who invest-
ed immense amounts of diligence and energy in his proofreading of the
preliminary German version of this book.

March 1997 RD
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About the second edition

Naturally, I am delighted at having to write this addendum so soon after
this book came out in the summer of 1997. It is particularly gratifying
to hear that people are gradually adopting it not only for their personal
use but more and more also as a course text; this, after all, was my aim
when I wrote it, and my excuse for agonizing more over presentation
than I might otherwise have done.

There are two major changes. The last chapter on graph minors
now gives a complete proof of one of the major results of the Robertson-
Seymour theory, their theorem that excluding a graph as a minor bounds
the tree-width if and only if that graph is planar. This short proof did
not exist when I wrote the first edition, which is why I then included a
short proof of the next best thing, the analogous result for path-width.
That theorem has now been dropped from Chapter 12. Another addition
in this chapter is that the tree-width duality theorem, Theorem 12.3.9,
now comes with a (short) proof too.

The second major change is the addition of a complete set of hints
for the exercises. These are largely Tommy Jensen’s work, and I am
grateful for the time he donated to this project. The aim of these hints
is to help those who use the book to study graph theory on their own,
but not to spoil the fun. The exercises, including hints, continue to be
intended for classroom use.

Apart from these two changes, there are a few additions. The most
noticable of these are the formal introduction of depth-first search trees
in Section 1.5 (which has led to some simplifications in later proofs) and
an ingenious new proof of Menger’s theorem due to Bohme, Goring and
Harant (which has not otherwise been published).

Finally, there is a host of small simplifications and clarifications
of arguments that I noticed as I taught from the book, or which were
pointed out to me by others. To all these I offer my special thanks.

The Web site for the book has followed me to

http://www.math.uni-hamburg.de/home/diestel /books/graph.theory/
I expect this address to be stable for some time.
Once more, my thanks go to all who contributed to this second
edition by commenting on the first—and I look forward to further com-

ments!

December 1999 RD
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1 The Basics

This chapter gives a gentle yet concise introduction to most of the ter-
minology used later in the book. Fortunately, much of standard graph
theoretic terminology is so intuitive that it is easy to remember; the few
terms better understood in their proper setting will be introduced later,
when their time has come.

Section 1.1 offers a brief but self-contained summary of the most
basic definitions in graph theory, those centred round the notion of a
graph. Most readers will have met these definitions before, or will have
them explained to them as they begin to read this book. For this reason,
Section 1.1 does not dwell on these definitions more than clarity requires:
its main purpose is to collect the most basic terms in one place, for easy
reference later.

From Section 1.2 onwards, all new definitions will be brought to life
almost immediately by a number of simple yet fundamental propositions.
Often, these will relate the newly defined terms to one another: the
question of how the value of one invariant influences that of another
underlies much of graph theory, and it will be good to become familiar
with this line of thinking early.

By N we denote the set of natural numbers, including zero. The set
Z/nZ of integers modulo n is denoted by Z,; its elements are written as
i := i+ nZ. For a real number z we denote by |z] the greatest integer
< «, and by [z] the least integer > x. Logarithms written as ‘log’ are
taken at base 2; the natural logarithm will be denoted by ‘In’. A set
A ={A1,..., A} of disjoint subsets of a set A is a partition of A if
A=, A; and A; # 0 for every i. Another partition { A},..., A} } of
A refines the partition A if each A/ is contained in some A;. By [A]* we
denote the set of all k-element subsets of A. Sets with k elements will
be called k-sets; subsets with k elements are k-subsets.

I

[z, [=]
log, In
partition

[A]*

k-set
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2 1. The Basics

1.1 Graphs

A graph is a pair G = (V, E) of sets satisfying E C [V]?; thus, the ele-
ments of E are 2-element subsets of V. To avoid notational ambiguities,
we shall always assume tacitly that VN E = (). The elements of V are the
vertices (or nodes, or points) of the graph G, the elements of E are its
edges (or lines). The usual way to picture a graph is by drawing a dot for
each vertex and joining two of these dots by a line if the corresponding
two vertices form an edge. Just how these dots and lines are drawn is
considered irrelevant: all that matters is the information which pairs of
vertices form an edge and which do not.

Fig. 1.1.1. The graph on V = {1,...,7} with edge set
E = {{172}»{175}7{275}7{374}7{577}}

A graph with vertex set V' is said to be a graph on V. The vertex
set of a graph G is referred to as V(G), its edge set as E(G). These
conventions are independent of any actual names of these two sets: the
vertex set W of a graph H = (W, F) is still referred to as V/(H), not as
W(H). We shall not always distinguish strictly between a graph and its
vertex or edge set. For example, we may speak of a vertex v € G (rather
than v € V(G)), an edge e € G, and so on.

The number of vertices of a graph G is its order, written as |G/;
its number of edges is denoted by ||G||. Graphs are finite or infinite
according to their order; unless otherwise stated, the graphs we consider
are all finite.

For the empty graph (0, ?) we simply write f. A graph of order 0 or 1
is called trivial. Sometimes, e.g. to start an induction, trivial graphs can
be useful; at other times they form silly counterexamples and become a
nuisance. To avoid cluttering the text with non-triviality conditions, we
shall mostly treat the trivial graphs, and particularly the empty graph {,
with generous disregard.

A vertex v is incident with an edge e if v € e; then e is an edge at v.
The two vertices incident with an edge are its endvertices or ends, and
an edge joins its ends. An edge {z,y } is usually written as zy (or yz).
Ifx e X and y € Y, then zy is an XY edge. The set of all X-Y edges
in a set E is denoted by E(X,Y); instead of E({z },Y) and E(X,{y})
we simply write E(z,Y) and E(X,y). The set of all the edges in E at a
vertex v is denoted by E(v).
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Two vertices x,y of G are adjacent, or neighbours, if ry is an edge
of G. Two edges e # f are adjacent if they have an end in common. If all
the vertices of G are pairwise adjacent, then G is complete. A complete
graph on n vertices is a K™; a K3 is called a triangle.

Pairwise non-adjacent vertices or edges are called independent.
More formally, a set of vertices or of edges is independent (or stable)
if no two of its elements are adjacent.

Let G = (V,FE) and G’ = (V', E’) be two graphs. We call G and
G’ isomorphic, and write G ~ G’, if there exists a bijection ¢: V — V'
with 2y € E & o(x)p(y) € E' for all z,y € V. Such a map ¢ is called
an tsomorphism; if G = G’, it is called an automorphism. We do not
normally distinguish between isomorphic graphs. Thus, we usually write
G = @' rather than G ~ G, speak of the complete graph on 17 vertices,
and so on. A map taking graphs as arguments is called a graph invariant
if it assigns equal values to isomorphic graphs. The number of vertices
and the number of edges of a graph are two simple graph invariants; the
greatest number of pairwise adjacent vertices is another.

1

3 Joe—e5

5
Gudg G-G GnaG

Fig. 1.1.2. Union, difference and intersection; the vertices 2,3,4
induce (or span) a triangle in GUG’ but not in G

We set GUG' := (VUV/EUE’) and GNG' := (VNV',ENE").
If GNG' = (), then G and G’ are disjoint. If V' C V and E’ C E, then
G’ is a subgraph of G (and G a supergraph of G’), written as G’ C G.
Less formally, we say that G contains G'.

If G’ C G and G’ contains all the edges xy € E with z,y € V', then
G’ is an induced subgraph of G; we say that V' induces or spans G’ in G,
and write G’ =: G[V’]. Thus if U C V is any set of vertices, then G [U |
denotes the graph on U whose edges are precisely the edges of G with
both ends in U. If H is a subgraph of G, not necessarily induced, we
abbreviate G [V(H)] to G[H]. Finally, G’ C G is a spanning subgraph
of G if V' spans all of G, i.e. if V' = V.

adjacent
neighbour
complete
K’VL

inde-
pendent
isomor-

phism

invariant

GnG'
subgraph
G CG

induced
subgraph
G[U]

spanning
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G G’ G"
Fig. 1.1.8. A graph G with subgraphs G’ and G"":
G’ is an induced subgraph of G, but G"’ is not

If U is any set of vertices (usually of G), we write G—U for
G [V \U]. In other words, G — U is obtained from G by deleting all the
vertices in U NV and their incident edges. If U = {v} is a singleton,
we write G — v rather than G — {v}. Instead of G — V(G’) we simply
write G — G’. For a subset F of [V]? we write G — F := (V, EX F) and
G+ F :=(V, EUF); as above, G—{ e} and G+ { e } are abbreviated to
G —e and G+e. We call G edge-mazximal with a given graph property
if G itself has the property but no graph G + zy does, for non-adjacent
vertices =,y € G.

More generally, when we call a graph minimal or maximal with some
property but have not specified any particular ordering, we are referring
to the subgraph relation. When we speak of minimal or maximal sets of
vertices or edges, the reference is simply to set inclusion.

If G and G’ are disjoint, we denote by G x G’ the graph obtained
from GUG’ by joining all the vertices of G to all the vertices of G’. For
example, K2+ K3 = K®. The complement G of G is the graph on V
with edge set [V]? \ E. The line graph L(G) of G is the graph on E in
which =,y € F are adjacent as vertices if and only if they are adjacent
as edges in G.

G G

Fig. 1.1.4. A graph isomorphic to its complement

1.2 The degree of a vertex

Let G = (V,E) be a (non-empty) graph. The set of neighbours of a
vertex v in G is denoted by Ng(v), or briefly by N(v).! More generally

L Here, as elsewhere, we drop the index referring to the underlying graph if the
reference is clear.
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for U C V, the neighbours in V' \ U of vertices in U are called neighbours
of U; their set is denoted by N(U).

The degree (or valency) dg(v) = d(v) of a vertex v is the number
|E(v)| of edges at v; by our definition of a graph,? this is equal to the
number of neighbours of v. A vertex of degree 0 is isolated. The number
0(G) := min{d(v) | v € V'} is the minimum degree of G, the number
A(G) := max {d(v) | v € V} its mazimum degree. If all the vertices
of G have the same degree k, then G is k-regular, or simply regular. A
3-regular graph is called cubic.

The number .

d(G) = il > d(v)

veV

is the average degree of G. Clearly,
0(G) < d(G) < A(G).

The average degree quantifies globally what is measured locally by the
vertex degrees: the number of edges of G per vertex. Sometimes it will
be convenient to express this ratio directly, as e(G) := |E|/|V|.

The quantities d and e are, of course, intimately related. Indeed,
if we sum up all the vertex degrees in G, we count every edge exactly
twice: once from each of its ends. Thus

Bl = 13 d(v) = Ld(G)-|V],

veV

and therefore

Proposition 1.2.1. The number of vertices of odd degree in a graph is
always even.

Proof. A graph on V has £, d(v) edges, so > d(v) is an even
number. 0

If a graph has large minimum degree, i.e. everywhere, locally, many
edges per vertex, it also has many edges per vertex globally: ¢(G) =
%d(G) > %6((?). Conversely, of course, its average degree may be large
even when its minimum degree is small. However, the vertices of large
degree cannot be scattered completely among vertices of small degree: as
the next proposition shows, every graph G has a subgraph whose average
degree is no less than the average degree of G, and whose minimum
degree is more than half its average degree:

2 but not for multigraphs; see Section 1.10

degree d(v)

isolated
(G)
A(G)
regular

cubic

d(G)

average
degree

[10.3.3]
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Proposition 1.2.2. Every graph G with at least one edge has a sub-
graph H with 6(H) > e(H) > ¢(G).

Proof. To construct H from G, let us try to delete vertices of small
degree one by one, until only vertices of large degree remain. Up to
which degree d(v) can we afford to delete a vertex v, without lowering &?
Clearly, up to d(v) = e: then the number of vertices decreases by 1
and the number of edges by at most ¢, so the overall ratio € of edges to
vertices will not decrease.

Formally, we construct a sequence G = Gy 2 G; 2 ... of induced
subgraphs of G as follows. If G; has a vertex v; of degree d(v;) < €(G;),
we let Gi11 = G; — v;; if not, we terminate our sequence and set
H := G,. By the choices of v; we have £(G;1+1) > &(G;) for all 4, and
hence e(H) > ¢(G).

What else can we say about the graph H? Since e(K') = 0 < £(G),
none of the graphs in our sequence is trivial, so in particular H # (). The
fact that H has no vertex suitable for deletion thus implies 0(H) > e(H),
as claimed. ]

1.3 Paths and cycles

A path is a non-empty graph P = (V| E) of the form
V =A{xo,z1,..., 21 } E = {xzox1, 2129, ..., 212k },

where the z; are all distinct. The vertices xg and xj are linked by P and
are called its ends; the vertices x1,...,x,_1 are the inner vertices of P.
The number of edges of a path is its length, and the path of length £ is
denoted by P*. Note that k is allowed to be zero; thus, P* = K.

Fig. 1.3.1. A path P = P®in G

We often refer to a path by the natural sequence of its vertices,?
writing, say, P = xoz1 ...y and calling P a path from xg to zi (as well
as between xg and xy).

3 More precisely, by one of the two natural sequences: zg...x; and zg...xo
denote the same path. Still, it often helps to fix one of these two orderings of V(P)
notationally: we may then speak of things like the ‘first’ vertex on P with a certain
property, etc.
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For 0 < i < j < k we write

P:L‘i =29...-2;
o, Pi=x;. .. .2
v Px; = x;...2;
and
ﬁ =T1...Tf—-1
Pi’z =Xy...Tj-1
QOJ‘Z'P = Ti41..- Tk
:%Z-P:%j = T4 Tj-1
for the appropriate subpaths of P. We use similar intuitive notation for

the concatenation of paths; for example, if the union Pz UzQyUyR of
three paths is again a path, we may simply denote it by PxQyR.

T rPyQz
Fig. 1.8.2. Paths P, @Q and xPyQz

Given sets A, B of vertices, we call P = xg...z an A-B path if
V(P)NA = {z9} and V(P)NB = {x1}. As before, we write a—B
path rather than { a }—B path, etc. Two or more paths are independent
if none of them contains an inner vertex of another. Two a—b paths, for
instance, are independent if and only if a and b are their only common
vertices.

Given a graph H, we call P an H-path if P is non-trivial and meets
H exactly in its ends. In particular, the edge of any H-path of length 1
is never an edge of H.

If P= xp...25_1 is a path and k > 3, then the graph C :=
P+ x,_1xq is called a cycle. As with paths, we often denote a cycle
by its (cyclic) sequence of vertices; the above cycle C' might be written
as g ...Tx—12To. The length of a cycle is its number of edges (or vertices);
the cycle of length k is called a k-cycle and denoted by C*.

The minimum length of a cycle (contained) in a graph G is the girth
g9(G) of G; the maximum length of a cycle in G is its circumference. (If
G does not contain a cycle, we set the former to oo, the latter to zero.)
An edge which joins two vertices of a cycle but is not itself an edge of
the cycle is a chord of that cycle. Thus, an induced cycle in G, a cycle in
G forming an induced subgraph, is one that has no chords (Fig. 1.3.3).

zPy, P

PzxQyR

A-B path

inde-
pendent

H-path

cycle

length

Ck

girth g(G)
circum-
ference
chord

induced
cycle
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Fig. 1.3.3. A cycle C® with chord zy, and induced cycles C®, C*

If a graph has large minimum degree, it contains long paths and
cycles:

Proposition 1.3.1. Every graph G contains a path of length 6(G) and
a cycle of length at least 6(G) + 1 (provided that 6(G) > 2).

Proof. Let xg ...z be a longest path in G. Then all the neighbours of
xy lie on this path (Fig. 1.3.4). Hence k > d(z) = 6(G). If i < k is
minimal with z;z; € E(G), then z; ... x,x; is a cycle of length at least
0(G)+1. |

=N

X0 Tq Tk

Fig. 1.8.4. A longest path xo ...z, and the neighbours of x

Minimum degree and girth, on the other hand, are not related (un-
less we fix the number of vertices): as we shall see in Chapter 11, there
are graphs combining arbitrarily large minimum degree with arbitrarily
large girth.

The distance dg(x,y) in G of two vertices z,y is the length of a
shortest z—y path in G; if no such path exists, we set d(z,y) := co. The
greatest distance between any two vertices in G is the diameter of G,
denoted by diam(G). Diameter and girth are, of course, related:

Proposition 1.3.2. Every graph G containing a cycle satisfies g(G) <
2diam(G) + 1.

Proof. Let C be a shortest cycle in G. If g(G) > 2diam(G) + 2, then
C' has two vertices whose distance in C' is at least diam(G)+ 1. In G,
these vertices have a lesser distance; any shortest path P between them
is therefore not a subgraph of C. Thus, P contains a C-path zPy.
Together with the shorter of the two x—y paths in C, this path xPy
forms a shorter cycle than C, a contradiction. |
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A vertex is central in G if its greatest distance from any other ver--
tex is as small as possible. This distance is the radius of G, denoted-
by rad(G). Thus, formally, rad(G) = mingcy(g) max,cv(q) da(z,y).-
As one easily checks (exercise), we have

rad(G) < diam(G) < 2rad(G).

Diameter and radius are not directly related to the minimum or
average degree: a graph can combine large minimum degree with large
diameter, or small average degree with small diameter (examples?).

The maximum degree behaves differently here: a graph of large
order can only have small radius and diameter if its maximum degree
is large. This connection is quantified very roughly in the following
proposition:

Proposition 1.3.3. A graph G of radius at most k and maximum degree
at most d has no more than 1+ kd* vertices.

Proof. Let z be a central vertex in GG, and let D; denote the set of
vertices of G at distance ¢ from z. Then V(G) = Uf:o D;, and |Dy| = 1.
Since A(G) < d, we have |D;| < d|D;—1| for i = 1,...,k, and thus
|D;| < d* by induction. Adding up these inequalities we obtain

k
Gl < 1+) d" < 1+kd".
i=1 0
A walk (of length k) in a graph G is a non-empty alternating se--
quence vpegvier ...ep_ 1V, of vertices and edges in G such that e; =
{vi,viq1 } for all ¢ < k. If vy = vy, the walk is closed. If the vertices
in a walk are all distinct, it defines an obvious path in G. In general,
every walk between two vertices contains* a path between these vertices
(proof?).

1.4 Connectivity

A non-empty graph G is called connected if any two of its vertices are-
linked by a path in G. If U C V(G) and G [U ] is connected, we also call
U itself connected (in G).

Proposition 1.4.1. The vertices of a connected graph G can always be
enumerated, say as vi,..., Uy, so that G; :== G [v1,...,v;] is connected
for every 1.

4 We shall often use terms defined for graphs also for walks, as long as their
meaning is obvious.

central
radius
rad(G)

walk

connected

[1.5.2]
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Proof. Pick any vertex as vp, and assume inductively that vy,...,v;
have been chosen for some i < |G|. Now pick a vertex v € G—G;. As G
is connected, it contains a v—v; path P. Choose as v;41 the last vertex
of P in G — (Gy; then v;41 has a neighbour in GG;. The connectedness of
every (G; follows by induction on 3. O

Let G = (V, E) be a graph. A maximal connected subgraph of G
is called a component of G. Note that a component, being connected, is
always non-empty; the empty graph, therefore, has no components.

Fig. 1.4.1. A graph with three components, and a minimal
spanning connected subgraph in each component

If AB CV and X C VUE are such that every A-B path in
G contains a vertex or an edge from X, we say that X separates the
sets A and B in G. This implies in particular that AN B C X. More
generally we say that X separates G, and call X a separating set in G,
if X separates two vertices of G — X in GG. A vertex which separates
two other vertices of the same component is a cutverter, and an edge
separating its ends is a bridge. Thus, the bridges in a graph are precisely
those edges that do not lie on any cycle.

Fig. 1.4.2. A graph with cutvertices v, z,y,w and bridge e = zy

G is called k-connected (for k € N) if |G| > k and G — X is connected
for every set X C V with |X| < k. In other words, no two vertices of G
are separated by fewer than k other vertices. Every (non-empty) graph
is O-connected, and the 1-connected graphs are precisely the non-trivial
connected graphs. The greatest integer k£ such that G is k-connected
is the connectivity k(G) of G. Thus, k(G) = 0 if and only if G is
disconnected or a K!, and k(K™) =n—1 for all n > 1.

If |G| > 1 and G — F is connected for every set ' C E of fewer
than ¢ edges, then G is called ¢-edge-connected. The greatest integer /¢
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G H

Fig. 1.4.8. The octahedron G (left) with x(G) = AM(G) = 4,
and a graph H with x(H) = 2 but A\(H) = 4

such that G is f-edge-connected is the edge-connectivity A(G) of G. In
particular, we have \(G) = 0 if G is disconnected.
For every non-trivial graph G we have

(exercise), so in particular high connectivity requires a large minimum
degree. Conversely, large minimum degree does not ensure high connec-
tivity, not even high edge-connectivity (examples?). It does, however,
imply the existence of a highly connected subgraph:

Theorem 1.4.2. (Mader 1972)
Every graph of average degree at least 4k has a k-connected subgraph.

Proof. For k € {0,1} the assertion is trivial; we consider k£ > 2 and a
graph G = (V, E) with |V| =: n and |E| =: m. For inductive reasons it
will be easier to prove the stronger assertion that G has a k-connected
subgraph whenever

(i) n >2k—1 and
(i) m> 2k-3)(n—k+1)+1.

(This assertion is indeed stronger, i.e. (i) and (ii) follow from our as-
sumption of d(G) > 4k: (i) holds since n > A(G) > d(G) > 4k, while
(i) follows from m = $d(G)n > 2kn.)

We apply induction on n. If n = 2k — 1, then k = %(n—i— 1), and
hence m > gn(n—1) by (ii). Thus G = K™ 2 K*™!, proving our claim.
We now assume that n > 2k. If v is a vertex with d(v) < 2k — 3, we can
apply the induction hypothesis to G — v and are done. So we assume that
0(G) > 2k —2. If G is k-connected, there is nothing to show. We may
therefore assume that G has the form G = G; UGs with |G1 NGs| < k
and |G1], |G2| < n. As every edge of G lies in G; or in G, G has no edge
between GG — G5 and G5 — 1. Since each vertex in these subgraphs has
at least (G) > 2k — 2 neighbours, we have |G|, |G2| > 2k — 1. But then
at least one of the graphs G1, G2 must satisfy the induction hypothesis

edge-
connectivity

A(G)

[8.1.1]
[11.2.3]



forest
tree
leaf

=
b oo
~N o~

12 1. The Basics

(completing the proof): if neither does, we have
Gill < (2k=3)(|Gi| —k+1)

for i = 1,2, and hence

m < [|Gi+ G2
< (2k=3)(|G1| +|Ga| — 2k +2)
< (2k=3)(n—k+1) (by [GiNG2| < k—1)
contradicting (ii). O

1.5 Trees and forests

An acyclic graph, one not containing any cycles, is called a forest. A con-
nected forest is called a tree. (Thus, a forest is a graph whose components
are trees.) The vertices of degree 1 in a tree are its leaves. Every non-
trivial tree has at least two leaves—take, for example, the ends of a
longest path. This little fact often comes in handy, especially in induc-
tion proofs about trees: if we remove a leaf from a tree, what remains is
still a tree.

Fig. 1.5.1. A tree

Theorem 1.5.1. The following assertions are equivalent for a graph T':
(i) T is a tree;
(ii) any two vertices of T are linked by a unique path in T';
(iii) T is minimally connected, i.e. T is connected but T — e is discon-
nected for every edge e € T';

(iv) T is maximally acyclic, i.e. T contains no cycle but T + xy does,
for any two non-adjacent vertices x,y € T. O
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The proof of Theorem 1.5.1 is straightforward, and a good exercise
for anyone not yet familiar with all the notions it relates. Extending our
notation for paths from Section 1.3, we write 7'y for the unique path
in a tree T between two vertices x,y (see (ii) above).

A frequently used application of Theorem 1.5.1 is that every con-
nected graph contains a spanning tree: by the equivalence of (i) and (iii),
any minimal connected spanning subgraph will be a tree. Figure 1.4.1
shows a spanning tree in each of the three components of the graph
depicted.

Corollary 1.5.2. The vertices of a tree can always be enumerated, say

as vi,...,Vn, SO that every v; with ¢ > 2 has a unique neighbour in
{vl,...,vi_l }
Proof. Use the enumeration from Proposition 1.4.1. |

Corollary 1.5.3. A connected graph with n vertices is a tree if and
only if it has n — 1 edges.

Proof. Induction on ¢ shows that the subgraph spanned by the first
1 vertices in Corollary 1.5.2 has ¢ — 1 edges; for ¢ = n this proves the
forward implication. Conversely, let G be any connected graph with n
vertices and n — 1 edges. Let G’ be a spanning tree in G. Since G’ has
n — 1 edges by the first implication, it follows that G = G’. O

Corollary 1.5.4. IfT is a tree and G is any graph with 6(G) > |T| -1,
then T C G, i.e. G has a subgraph isomorphic to T.

Proof. Find a copy of T in G inductively along its vertex enumeration
from Corollary 1.5.2. |

Sometimes it is convenient to consider one vertex of a tree as special;
such a vertex is then called the root of this tree. A tree with a fixed root
is a rooted tree. Choosing a root r in a tree T' imposes a partial ordering
on V(T) by letting @ < y if « € rTy. This is the tree-order on V(T)
associated with 7" and r. Note that r is the least element in this partial
order, every leaf x # r of T is a maximal element, the ends of any edge
of T are comparable, and every set of the form {z | z < y} (where y
is any fixed vertex) is a chain, a set of pairwise comparable elements.
(Proofs?)

A rooted tree T' contained in a graph G is called normal in G if
the ends of every T-path in G are comparable in the tree-order of T.
If T spans G, this amounts to requiring that two vertices of 7" must be
comparable whenever they are adjacent in G; see Figure 1.5.2. Normal
spanning trees are also called depth-first search trees, because of the way
they arise in computer searches on graphs (Exercise 17).

zTy

root

tree-order

chain

normal tree
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T

Fig. 1.5.2. A depth-first search tree with root r

Normal spanning trees provide a simple but powerful structural tool
in graph theory. And they always exist:

Proposition 1.5.5. Every connected graph contains a normal spanning
tree, with any specified vertex as its root.

Proof. Let G be a connected graph and r € G any specified vertex. Let T’
be a maximal normal tree with root r in G; we show that V(T') = V(G).

Suppose not, and let C' be a component of G —T. As T is normal,
N(C) is a chain in T. Let x be its greatest element, and let y € C be
adjacent to x. Let T” be the tree obtained from T by joining y to x; the
tree-order of 7" then extends that of T. We shall derive a contradiction
by showing that T is also normal in G.

Let P be a T'-path in G. If the ends of P both lie in T, then they
are comparable in the tree-order of T' (and hence in that of T"), because
then P is also a T-path and T is normal in G by assumption. If not,
then y is one end of P, so P lies in C except for its other end z, which
lies in N(C). Then z < z, by the choice of x. For our proof that y and
z are comparable it thus suffices to show that © < y, i.e. that x € rT"y.
This, however, is clear since y is a leaf of 77 with neighbour z. O

1.6 Bipartite graphs

Let 7 > 2 be an integer. A graph G = (V| E) is called r-partite if
V' admits a partition into r classes such that every edge has its ends
in different classes: vertices in the same partition class must not be
adjacent. Instead of ‘2-partite’ one usually says bipartite.

An r-partite graph in which every two vertices from different par-
tition classes are adjacent is called complete; the complete r-partite
graphs for all r together are the complete multipartite graphs. The
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Fig. 1.6.1. Two 3-partite graphs

complete r-partite graph K™ ... K" is denoted by Kny,ooms if
ny =...=mn, =: s, we abbreviate this to K. Thus, K is the complete-
r-partite graph in which every partition class contains exactly s ver-
tices.® (Figure 1.6.1 shows the example of the octahedron K3; compare
its drawing with that in Figure 1.4.3.) Graphs of the form K, are
called stars.-

_ _

Fig. 1.6.2. Three drawings of the bipartite graph K33 = K3

Clearly, a bipartite graph cannot contain an odd cycle, a cycle of odd-
length. In fact, the bipartite graphs are characterized by this property:

Proposition 1.6.1. A graph is bipartite if and only if it contains no
odd cycle.

Proof. Let G = (V, E) be a graph without odd cycles; we show that G is
bipartite. Clearly a graph is bipartite if all its components are bipartite
or trivial, so we may assume that G is connected. Let T be a spanning
tree in G, pick a root r € T, and denote the associated tree-order on V'
by <p. For each v € V, the unique path rTv has odd or even length.
This defines a bipartition of V; we show that G is bipartite with this
partition.

Let e = zy be an edge of G. If e € T, with x <p y say, then
rTy = rTay and so x and y lie in different partition classes. If e ¢ T
then C, := 2Ty + e is a cycle (Fig. 1.6.3), and by the case treated
already the vertices along xT'y alternate between the two classes. Since
C. is even by assumption, x and y again lie in different classes.- |

5 Note that we obtain a K7 if we replace each vertex of a K" by an independent
s-set; our notation of K is intended to hint at this connection.

KT

E]

star

odd cycle

(1.5.1)
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Fig. 1.6.3. The cycle Ce in T +e
1.7 Contraction and minors

In Section 1.1 we saw two fundamental containment relations between
graphs: the subgraph relation, and the ‘induced subgraph’ relation. In
this section we meet another: the minor relation.

Let e = xy be an edge of a graph G = (V, E). By G/e we denote the
graph obtained from G by contracting the edge e into a new vertex ve,
which becomes adjacent to all the former neighbours of x and of y. For-
mally, G/e is a graph (V', E') with vertex set V' := (V ~{z,y }) U{ v }
(where v, is the ‘new’ vertex, i.e. v, ¢ VUE) and edge set

E' = {v e E|{v,w}in{zy} :@}

w
U {vew\xweE\{e} or yweE\{e}}.

q g v
m G GJe

Fig. 1.7.1. Contracting the edge e = zy

More generally, if X is another graph and {V, | x € V(X)} is a
partition of V into connected subsets such that, for any two vertices
z,y € X, there is a V-V, edge in G if and only if zy € E(X), we call
G an M X and write® G = M X (Fig. 1.7.2). The sets V, are the branch
sets of this M X. Intuitively, we obtain X from G by contracting every

6 Thus formally, the expression M X—where M stands for ‘minor’; see below—
refers to a whole class of graphs, and G = M X means (with slight abuse of notation)
that G belongs to this class.
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G

Fig. 1.7.2. Y O G = MX, so X is a minor of Y’

branch set to a single vertex and deleting any ‘parallel edges’ or ‘loops’
that may arise.

If V, = U C V is one of the branch sets above and every other
branch set consists just of a single vertex, we also write G/U for the
graph X and vy for the vertex = € X to which U contracts, and think
of the rest of X as an induced subgraph of G. The contraction of a

single edge uu’ defined earlier can then be viewed as the special case of
U= {uu}.

Proposition 1.7.1. G is an M X if and only if X can be obtained
from G by a series of edge contractions, i.e. if and only if there are
graphs Gy, ...,G, and edges e; € G; such that Go = G, G, ~ X, and
Gi+1 = Gz/ez for all i < n.

Proof. Induction on |G| — |X]|. O

If G = M X is a subgraph of another graph Y, we call X a minor of Y’
and write X < Y. Note that every subgraph of a graph is also its minor;
in particular, every graph is its own minor. By Proposition 1.7.1, any
minor of a graph can be obtained from it by first deleting some vertices
and edges, and then contracting some further edges. Conversely, any
graph obtained from another by repeated deletions and contractions (in
any order) is its minor: this is clear for one deletion or contraction, and
follows for several from the transitivity of the minor relation (Proposition
1.7.3).

If we replace the edges of X with independent paths between their
ends (so that none of these paths has an inner vertex on another path
or in X), we call the graph G obtained a subdivision of X and write
G =TX." If G = TX is the subgraph of another graph Y, then X is a
topological minor of Y (Fig. 1.7.3).

7 So again T'X denotes an entire class of graphs: all those which, viewed as a
topological space in the obvious way, are homeomorphic to X. The T in T'X stands
for ‘topological’.

G/U

VU

minor; <

subdivision
TX

topological
minor



branch
vertices

[12.4.1]

18 1. The Basics

Y

Fig. 1.7.3. Y O G =TX, so X is a topological minor of Y

If G =TX, weview V(X) as a subset of V(G) and call these vertices
the branch vertices of G; the other vertices of G are its subdividing
vertices. Thus, all subdividing vertices have degree 2, while the branch
vertices retain their degree from X.

Proposition 1.7.2.

(i) Every TX is also an M X (Fig. 1.7.4); thus, every topological
minor of a graph is also its (ordinary) minor.

(if) If A(X) < 3, then every M X contains a TX; thus, every minor
with maximum degree at most 3 of a graph is also its topological
minor. (|

Fig. 1.7.4. A subdivision of K* viewed as an M K*

Proposition 1.7.3. The minor relation < and the topological-minor
relation are partial orderings on the class of finite graphs, i.e. they are
reflexive, antisymmetric and transitive. O

1.8 Fuler tours

Any mathematician who happens to find himself in the East Prussian
city of Konigsberg (and in the 18th century) will lose no time to follow the
great Leonhard Euler’s example and inquire about a round trip through
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Fig. 1.8.1. The bridges of Kénigsberg (anno 1736)

the old city that traverses each of the bridges shown in Figure 1.8.1
exactly once.
Thus inspired,® let us call a closed walk in a graph an Fuler tour if

it traverses every edge of the graph exactly once. A graph is Fulerian if Eulerian
it admits an Euler tour.

Fig. 1.8.2. A graph formalizing the bridge problem

Theorem 1.8.1. (Euler 1736)

A connected graph is Eulerian if and only if every vertex has even degree. [Egég%

Proof. The degree condition is clearly necessary: a vertex appearing k
times in an Euler tour (or k+ 1 times, if it is the starting and finishing
vertex and as such counted twice) must have degree 2k.

8 Anyone to whom such inspiration seems far-fetched, even after contemplating
Figure 1.8.2, may seek consolation in the multigraph of Figure 1.10.1.
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Conversely, let G be a connected graph with all degrees even, and
let

W = wvgeqg...ep_1v

be a longest walk in G using no edge more than once. Since W cannot
be extended, it already contains all the edges at v,. By assumption, the
number of such edges is even. Hence vy = vg, so W is a closed walk.
Suppose W is not an Euler tour. Then G has an edge e outside W
but incident with a vertex of W, say e = uv;. (Here we use the connect-
edness of G, as in the proof of Proposition 1.4.1.) Then the walk

UCV;€; ... €p_1Up€EH ... E€;_10V;

is longer than W, a contradiction. (|

1.9 Some linear algebra

Let G = (V,E) be a graph with n vertices and m edges, say V =
{vi,...,v, } and E = {eq,...,en }. The vertex space V(G) of G is the
vector space over the 2-element field Fy = { 0,1} of all functions V' — Fs.
Every element of V(G) corresponds naturally to a subset of V, the set of
those vertices to which it assigns a 1, and every subset of V' is uniquely
represented in V(G) by its indicator function. We may thus think of
V(G) as the power set of V' made into a vector space: the sum U + U’
of two vertex sets U, U’ C V is their symmetric difference (why?), and
U= —U for all U C V. The zero in V(G), viewed in this way, is the
empty (vertex) set (). Since {{wv1},...,{vn}} is a basis of V(G), its
standard basis, we have dim V(G) = n.

In the same way as above, the functions E — Fy form the edge
space E(G) of G: its elements are the subsets of E, vector addition
amounts to symmetric difference, ) C E is the zero, and F' = —F for
all F C E. As before, {{e1 },...,{em }} is the standard basis of £(G),
and dim £(G) = m.

Since the edges of a graph carry its essential structure, we shall
mostly be concerned with the edge space. Given two edge sets F, F’ ¢
E(G) and their coefficients Ay, ..., A\, and Aj, ..., X/ with respect to the
standard basis, we write

<F,F’> = )\1)\’1—|—+Am)\{m G]FQ.

Note that (F,F’) = 0 may hold even when F = F’ # (): indeed,
(F,F"y = 0 if and only if F' and F’ have an even number of edges
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in common. Given a subspace F of £(G), we write
Ft={De&G)|(F,D)=0foral F e F}.

This is again a subspace of £(G) (the space of all vectors solving a certain
set of linear equations—which?), and we have

dim F+dim F+ = m.

The cycle space C = C(G) is the subspace of £(G) spanned by all
the cycles in G—more precisely, by their edge sets.” The dimension of
C(G) is the cyclomatic number of G.

Proposition 1.9.1. The induced cycles in G generate its entire cycle
space.

Proof. By definition of C(G) it suffices to show that the induced cycles
in G generate every cycle C' C G with a chord e. This follows at once
by induction on |C|: the two cycles in C' + e with e but no other edge in
common are shorter than C, and their symmetric difference is precise-
ly C. ]

Proposition 1.9.2. An edge set F' C F lies in C(G) if and only if every
vertex of (V, F') has even degree.

Proof. The forward implication holds by induction on the number of
cycles needed to generate F', the backward implication by induction on
the number of cycles in (V, F). O

If {V4,V5} is a partition of V', the set E(V;,V3) of all the edges of
G crossing this partition is called a cut. Recall that for V; = {v } this
cut is denoted by E(v).

Proposition 1.9.3. Together with ), the cuts in G form a subspace C*
of £(G). This space is generated by cuts of the form E(v).

Proof. Let C* denote the set of all cuts in G, together with (). To prove
that C* is a subspace, we show that for all D,D’ € C* also D + D’
(= D—D') liesin C*. Since D+ D =0 € C* and D+0 = D € C*,
we may assume that D and D’ are distinct and non-empty. Let
{V1,Va} and {V{,Vy} be the corresponding partitions of V. Then
D + D’ consists of all the edges that cross one of these partitions but
not the other (Fig. 1.9.1). But these are precisely the edges between
WnVHu(VenVy) and (ViNVy)U (VanVy), and by D # D’ these two

9 For simplicity, we shall not normally distinguish between cycles and their edge
sets in connection with the cycle space.

]:L
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Fig. 1.9.1. Cut edges in D+ D’

sets form another partition of V. Hence D + D’ € C*, and C* is indeed
a subspace of £(G).

Our second assertion, that the cuts F(v) generate all of C*, follows
from the fact that every edge xy € G lies in exactly two such cuts (in E(x)
and in E(y)); thus every partition { V;,V2} of V satisfies E(Vi,Va) =

Y ey, E(v). ]

The subspace C* =: C*(G) of £(G) from Proposition 1.9.3 will be
called the cut space of G. It is not difficult to find among the cuts
E(v) an explicit basis for C*(G), and thus to determine its dimension
(exercise); together with Theorem 1.9.5 this yields an independent proof
of Theorem 1.9.6.

The following lemma will be useful when we study the duality of
plane graphs in Chapter 4.6:

Lemma 1.9.4. The minimal cuts in a connected graph generate its
entire cut space.

Proof . Note first that a cut in a connected graph G = (V| E) is minimal
if and only if both sets in the corresponding partition of V' are connected
in G. Now consider any connected subgraph C C G. If D is a component
of G —C, then also G — D is connected (Fig. 1.9.2); the edges between D

Fig. 1.9.2. G — D is connected, and F(C, D) a minimal cut
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and G — D thus form a minimal cut. By choice of D, this cut is precisely
the set E(C, D) of all C—D edges in G.

To prove the lemma, let a partition {V1,V2} of V' be given, and
consider a component C' of G[Vi]. Then E(C,V2) = E(C,G - C) is
the disjoint union of the edge sets E(C, D) over all components D of
G — C, and is thus the disjoint union of minimal cuts (see above). Now
the disjoint union of all these edge sets E(C,V3), taken over all the
components C of G[V;], is precisely our cut E(V;,V3). So this cut is
generated by minimal cuts, as claimed. O

Theorem 1.9.5. The cycle space C and the cut space C* of any graph
satisfy

C=cC*t and C*=C .

Proof. Let us consider a graph G = (V, E). Clearly, any cycle in G has
an even number of edges in each cut. This implies C C C**.

Conversely, recall from Proposition 1.9.2 that for every edge set
F ¢ C there exists a vertex v incident with an odd number of edges in F'.
Then (E(v),F) = 1, so E(v) € C* implies F ¢ C*1. This completes the
proof of C = C*+.

To prove C* = C*, it now suffices to show C* = (C**+)*. Here
C* C (C*1+)* follows directly from the definition of 1. But since

dimC* 4+ dimC** = m = dimC** +dim (C* 1)+,
C* has the same dimension as (C**)*, so C* = (C*+)* as claimed. O

Theorem 1.9.6. Every connected graph G with n vertices and m edges
satisfies

dimC(G) =m—-n+1 and dimC*(G)=n—-1.

Proof. Let G = (V,E). As dimC + dimC* = m by Theorem 1.9.5, it
suffices to find m — n + 1 linearly independent vectors in C and n — 1
linearly independent vectors in C*: since these numbers add up to m,
neither the dimension of C nor that of C* can then be strictly greater.

Let T be a spanning tree in G. By Corollary 1.5.3, T has n — 1
edges, so m —n+ 1 edges of G lie outside T'. For each of these m —n+1
edges e € E~ E(T), the graph T + e contains a cycle C, (see Fig. 1.6.3
and Theorem 1.5.1 (iv)). Since none of the edges e lies on C,/ for ¢’ # e,
these m —n + 1 cycles are linearly independent.

For each of the n — 1 edges e € T, the graph T — e has exactly two
components (Theorem 1.5.1 (iii)), and the set D, of edges in G between
these components form a cut (Fig.1.9.3). Since none of the edges e € T
lies in D, for €’ # e, these n — 1 cuts are linearly independent. O

[4.5.1]
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Fig. 1.9.3. The cut D,

o o . .
E;Itrf;we The incidence matric B = (b;;j)nxm of a graph G = (V, E) with
V=A{wv,...,vn} and E = {ey,...,en } is defined over Fy by
b:{l if’UZ‘GSj
v 0 otherwise.
As usual, let B! denote the transpose of B. Then B and B! define linear
maps B: £(G) —V(G) and B*: V(G) — £(G) with respect to the standard
bases.
Proposition 1.9.7.
(i) The kernel of B is C(G).
(ii) The image of Bt is C*(G). O
ig::jincy The adjacency matriz A = (ai;)nxn of G is defined by

P { 1 ifvv; e E
E 0 otherwise.

Our last proposition establishes a simple connection between A and B
(now viewed as real matrices). Let D denote the real diagonal matrix
(dij)an with d” = d(’Uz) and d,‘j = 0 otherwise.

Proposition 1.9.8. BB = A+ D. O
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1.10 Other notions of graphs

For completeness, we now mention a few other notions of graphs which
feature less frequently or not at all in this book.

A hypergraph is a pair (V, E) of disjoint sets, where the elements
of FE are non-empty subsets (of any cardinality) of V. Thus, graphs are
special hypergraphs.

A directed graph (or digraph) is a pair (V, E) of disjoint sets (of
vertices and edges) together with two maps init: E —V and ter: E —V
assigning to every edge e an initial vertex init(e) and a terminal vertex
ter(e). The edge e is said to be directed from init(e) to ter(e). Note that
a directed graph may have several edges between the same two vertices
x,1y. Such edges are called multiple edges; if they have the same direction
(say from x to y), they are parallel. If init(e) = ter(e), the edge e is called
a loop.

A directed graph D is an orientation of an (undirected) graph G if
V(D) = V(G) and E(D) = E(G), and if {init(e),ter(e) } = {x,y} for
every edge e = xy. Intuitively, such an oriented graph arises from an
undirected graph simply by directing every edge from one of its ends to
the other. Put differently, oriented graphs are directed graphs without
loops or multiple edges.

A multigraph is a pair (V| E) of disjoint sets (of vertices and edges)
together with a map F — V U [V]? assigning to every edge either one
or two vertices, its ends. Thus, multigraphs too can have loops and
multiple edges: we may think of a multigraph as a directed graph whose
edge directions have been ‘forgotten’. To express that x and y are the
ends of an edge e we still write e = xy, though this no longer determines
e uniquely.

A graph is thus essentially the same as a multigraph without loops
or multiple edges. Somewhat surprisingly, proving a graph theorem more
generally for multigraphs may, on occasion, simplify the proof. Moreover,
there are areas in graph theory (such as plane duality; see Chapters 4.6
and 6.5) where multigraphs arise more naturally than graphs, and where
any restriction to the latter would seem artificial and be technically
complicated. We shall therefore consider multigraphs in these cases, but
without much technical ado: terminology introduced earlier for graphs
will be used correspondingly.

Two differences, however, should be pointed out. First, a multi-
graph may have cycles of length 1 or 2: loops, and pairs of multiple
edges (or double edges). Second, the notion of edge contraction is sim-
pler in multigraphs than in graphs. If we contract an edge e = zy in
a multigraph G = (V, E) to a new vertex v, there is no longer a need
to delete any edges other than e itself: edges parallel to e become loops
at v., while edges xv and yv become parallel edges between v, and v
(Fig. 1.10.1). Thus, formally, E(G/e) = E~{ e}, and only the incidence

hypergraph
directed
graph

init(e)
ter(e)

loop

orientation

oriented
graph

multigraph
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map €' +— {init(e’), ter(e¢’) } of G has to be adjusted to the new vertex
set in G/e. The notion of a minor adapts to multigraphs accordingly.

G Gle

Fig. 1.10.1. Contracting the edge e in the multigraph corre-

sponding to Fig. 1.8.1

Finally, it should be pointed out that authors who usually work with

multigraphs tend to call them graphs; in their terminology, our graphs
would be called simple graphs.

Exercises

1.
2.

~ What is the number of edges in a K"?

Let d € Nand V := {0,1}% thus, V is the set of all 0-1 sequences of
length d. The graph on V' in which two such sequences form an edge if
and only if they differ in exactly one position is called the d-dimensional
cube. Determine the average degree, number of edges, diameter, girth
and circumference of this graph.

(Hint for circumference. Induction on d.)
Let G be a graph containing a cycle C', and assume that G contains

a path of length at least k between two vertices of C'. Show that G
contains a cycle of length at least vk. Is this best possible?

4.7 Is the bound in Proposition 1.3.2 best possible?

Show that rad(G) < diam(G) < 2rad(G) for every graph G.

6.7 Assuming that d > 2 and k& > 3, improve the bound in Proposition

1.3.3 to d*.

7.7 Show that the components of a graph partition its vertex set. (In other

words, show that every vertex belongs to exactly one component.)

8.7 Show that every 2-connected graph contains a cycle.

10.

(i)~ Determine x(G) and A(G) for G = P* C* K* K n (k,m,n > 3).
(i)™ Determine the connectivity of the n-dimensional cube (defined in
Exercise 2).

(Hint for (ii). Induction on n.)

Show that k(G) < AM(G) < §(G) for every non-trivial graph G.



Exercises 27

11.7

12.

13.1

14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.7

Is there a function f:N — N such that, for all k € N, every graph of
minimum degree at least f(k) is k-connected?

Let a, 8 be two graph invariants with positive integer values. Formalize
the two statements below, and show that each implies the other:
(i) « is bounded above by a function of 3;

(ii) @B can be forced up by making « large enough.
Show that the statement

(iii) B is bounded below by a function of «
is not equivalent to (i) and (ii). Which small change would make it so?
What is the deeper reason behind the fact that the proof of Theorem

1.4.2 is based on an assumption of the form m > c¢n — b rather than
just on a lower bound for the average degree?

Prove Theorem 1.5.1.
Show that any tree T has at least A(T") leaves.

Show that the ‘tree-order’ associated with a rooted tree T is indeed a
partial order on V(T'), and verify the claims made about this partial
order in the text.

Let G be a connected graph, and let » € G be a vertex. Starting
from r, move along the edges of GG, going whenever possible to a vertex
not visited so far. If there is no such vertex, go back along the edge by
which the current vertex was first reached (unless the current vertex
is 7; then stop). Show that the edges traversed form a normal spanning
tree in G with root r.

(This procedure has earned those trees the name of depth-first search
trees.)

Let 7 be a set of subtrees of a tree T. Assume that the trees in 7 have
pairwise non-empty intersection. Show that their overall intersection
()7 is non-empty.

Show that every automorphism of a tree fixes a vertex or an edge.

Are the partition classes of a regular bipartite graph always of the same
size?

Show that a graph is bipartite if and only if every induced cycle has
even length.

Find a function f: N— N such that, for all k € N, every graph of average
degree at least f(k) has a bipartite subgraph of minimum degree at
least k.

Show that the minor relation < defines a partial ordering on any set of
(finite) graphs. Is the same true for infinite graphs?

Show that the elements of the cycle space of a graph G are precisely
the unions of the edges sets of edge-disjoint cycles in G.
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25.  Given a graph G, find among all cuts of the form E(v) a basis for the
cut space of G.

26. Prove that the cycles and the cuts in a graph together generate its
entire edge space, or find a counterexample.

27. Give a direct proof of the fact that the cycles C. defined in the proof
of Theorem 1.9.6 generate the cycle space.

28. Give a direct proof of the fact that the cuts D, defined in the proof of
Theorem 1.9.6 generate the cut space.

29. What are the dimensions of the cycle and the cut space of a graph with
k components?

Notes

The terminology used in this book is mostly standard. Alternatives do exist,
of course, and some of these are stated when a concept is first defined. There
is one small point where our notation deviates slightly from standard usage.
Whereas complete graphs, paths, cycles etc. of given order are mostly denoted
by K, Py, Ce and so on, we use superscripts instead of subscripts. This has
the advantage of leaving the variables K, P, C etc. free for ad-hoc use: we
may now enumerate components as Cq, Cy, ..., speak of paths Pi,..., Py, and
so on—without any danger of confusion.

Theorem!® 1.4.2 is due to W. Mader, Existenz n-fach zusammenhéngen-
der Teilgraphen in Graphen geniigend grofler Kantendichte, Abh. Math. Sem.
Univ. Hamburg 37 (1972) 86-97. Theorem 1.8.1 is from L.Euler, Solutio
problematis ad geometriam situs pertinentis, Comment. Acad. Sci. I. Petro-
politanae 8 (1736), 128-140.

Of the large subject of algebraic methods in graph theory, Section 1.9 does
not claim to convey an adequate impression. The standard monograph here is
N.L. Biggs, Algebraic Graph Theory (2nd edn.), Cambridge University Press
1993. Another comprehensive account is given by C.D. Godsil & G.F.Royle,
Algebraic Graph Theory, in preparation. Surveys on the use of algebraic
methods can also be found in the Handbook of Combinatorics (R.L. Graham,
M. Grotschel & L. Lovéasz, eds.), North-Holland 1995.

10 11 the interest of readability, the end-of-chapter notes in this book give references
only for Theorems, and only in cases where these references cannot be found in a
monograph or survey cited for that chapter.



2 Matching

Suppose we are given a graph and are asked to find in it as many in-
dependent edges as possible. How should we go about this? Will we
be able to pair up all its vertices in this way? If not, how can we be
sure that this is indeed impossible? Somewhat surprisingly, this basic
problem does not only lie at the heart of numerous applications, it also
gives rise to some rather interesting graph theory.

A set M of independent edges in a graph G = (V, E) is called a
matching. M is a matching of U C V if every vertex in U is incident
with an edge in M. The vertices in U are then called matched (by M);
vertices not incident with any edge of M are unmatched.

A Ek-regular spanning subgraph is called a k-factor. Thus, a sub-
graph H C G is a 1-factor of G if and only if E(H) is a matching of V.
The problem of how to characterize the graphs that have a 1-factor, i.e.
a matching of their entire vertex set, will be our main theme in this
chapter.

2.1 Matching in bipartite graphs

For this whole section, we let G = (V, E) be a fixed bipartite graph with
bipartition { A, B }. Vertices denoted as a,a’ etc. will be assumed to lie
in A, vertices denoted as b etc. will lie in B.

How can we find a matching in G with as many edges as possible?
Let us start by considering an arbitrary matching M in G. A path in G
which starts in A at an unmatched vertex and then contains, alternately,
edges from F ~\ M and from M, is an alternating path with respect to M.
An alternating path P that ends in an unmatched vertex of B is called
an augmenting path (Fig. 2.1.1), because we can use it to turn M into
a larger matching: the symmetric difference of M with E(P) is again a

matching
matched

factor

G = (V,E)
A, B

a,b etc.

alternating
path

augment-
ing path
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— N

A B A

s/

Fig. 2.1.1. Augmenting the matching M by the alternating
path P

matching (consider the edges at a given vertex), and the set of matched
vertices is increased by two, the ends of P.

Alternating paths play an important role in the practical search for
large matchings. In fact, if we start with any matching and keep applying
augmenting paths until no further such improvement is possible, the
matching obtained will always be an optimal one, a matching with the
largest possible number of edges (Exercise 1). The algorithmic problem
of finding such matchings thus reduces to that of finding augmenting
paths—which is an interesting and accessible algorithmic problem.

Our first theorem characterizes the maximal cardinality of a matching
in G by a kind of duality condition. Let us call a set U C V a cover of E
(or a vertex cover of G) if every edge of G is incident with a vertex in U.

Theorem 2.1.1. (Konig 1931)
The maximum cardinality of a matching in G is equal to the minimum
cardinality of a vertex cover.

Proof. Let M be a matching in G of maximum cardinality. From every
edge in M let us choose one of its ends: its end in B if some alternating
path ends in that vertex, and its end in A otherwise (Fig. 2.1.2). We
shall prove that the set U of these | M| vertices covers G; since any vertex
cover of G must cover M, there can be none with fewer than | M| vertices,
and so the theorem will follow.

UNnB

UNnA

Fig. 2.1.2. The vertex cover U
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Let ab € E be an edge; we show that either a or b lies in U. If
ab € M, this holds by definition of U, so we assume that ab ¢ M. Since
M is a maximal matching, it contains an edge a’b’ with a = @’ or b = ¥'.
In fact, we may assume that a = a’: for if a is unmatched (and b = ?’),
then ab is an alternating path, and so the end of a’b’ € M chosen for
U was the vertex b’ = b. Now if ' = a is not in U, then &/ € U, and
some alternating path P ends in b’. But then there is also an alternating
path P’ ending in b: either P’ := Pb (if b € P) or P’ := Pb'a’b. By the
maximality of M, however, P’ is not an augmenting path. So b must be
matched, and was chosen for U from the edge of M containing it. O

Let us return to our main problem, the search for some necessary
and sufficient conditions for the existence of a 1-factor. In our present
case of a bipartite graph, we may as well ask more generally when G
contains a matching of A; this will define a 1-factor of G if |A| = |B],
a condition that has to hold anyhow if G is to have a 1-factor.

A condition clearly necessary for the existence of a matching of A
is that every subset of A has enough neighbours in B, i.e. that

IN(S)| = |S| for all S C A.

The following marriage theorem says that this obvious necessary condi-
tion is in fact sufficient:

Theorem 2.1.2. (Hall 1935)
G contains a matching of A if and only if [N(S)| > |S| for all S C A.

We give three proofs for the non-trivial implication of this theorem, i.e.
that the ‘marriage condition’ implies the existence of a matching of A.
The first of these is based on Koénig’s theorem; the second is a direct
constructive proof by augmenting paths; the third will be an independent
proof from first principles.

First proof. If G contains no matching of A, then by Theorem 2.1.1
it has a cover U consisting of fewer than |A| vertices, say U = A’ U B’
with A’ C A and B’ C B. Then

A+ |B'| = |U| < |A],
and hence
|B'| < [A]—]A"] = |[AN A

(Fig. 2.1.3). By definition of U, however, G has no edges between A~ A’
and B\ B’, so

IN(ANA)| < |B'] < |[AN A

and the marriage condition fails for S := A~ A’ ]

marriage
condition

marriage
theorem
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B/

Fig. 2.1.8. A cover by fewer than |A| vertices

Second proof. Consider a matching M of G that leaves a vertex of A
unmatched; we shall construct an augmenting path with respect to M.
Let ag, by, a1, ba,as, ... be a maximal sequence of distinct vertices a; € A
and b; € B satisfying the following conditions for all ¢ > 1 (Fig. 2.1.4):

(i) ap is unmatched;

(ii) b; is adjacent to some vertex as(;) € { ao,..., a1 };
By the marriage condition, our sequence cannot end in a vertex of A:
the 7 vertices ag,...,a;—1 together have at least ¢ neighbours in B, so

we can always find a new vertex b; # by, ...,b;—1 that satisfies (ii). Let
b € B be the last vertex of the sequence. By (i)—(iii),

P = beagpa by arz b2 agae) - - - apr )

with f7(k) = 0 is an alternating path.

az ba
ao by
ai bg
as by
a4 bs

Fig. 2.1.4. Proving the marriage theorem by alternating paths

What is it that prevents us from extending our sequence further?
If by is matched, say to a, we can indeed extend it by setting ay := a,
unless @ = a; with 0 < ¢ < k, in which case (iii) would imply by = b;
with a contradiction. So by is unmatched, and hence P is an augmenting
path between ag and by. O



2.1 Matching in bipartite graphs 33

Third proof. We apply induction on |A|. For |A| = 1 the assertion
is true. Now let |A| > 2, and assume that the marriage condition is
sufficient for the existence of a matching of A when |A| is smaller.

If IN(S)| > |S|+1 for every non-empty set S G A, we pick an edge
ab € G and consider the graph G’ := G —{ a,b}. Then every non-empty
set S C AN {a} satisfies

[N (S)] = [Na(9)[ =1 = 5],

so by the induction hypothesis G’ contains a matching of A~ {a}. To-
gether with the edge ab, this yields a matching of A in G.

Suppose now that A has a non-empty proper subset A’ with |B’| =
|A’| for B’ := N(A’). By the induction hypothesis, G’ := G[ A" U B’]
contains a matching of A’. But G — G’ satisfies the marriage condition
too: for any set S C A~ A" with |[Ng_¢g(S)] < |S| we would have
INag(SUA")| < |SUA'|, contrary to our assumption. Again by induc-
tion, G — G’ contains a matching of A\ A’. Putting the two matchings
together, we obtain a matching of A in G. ]

Corollary 2.1.3. If |[N(S)| > |S| —d for every set S C A and some
fixed d € N, then G contains a matching of cardinality |A| — d.

Proof. We add d new vertices to B, joining each of them to all the ver-
tices in A. By the marriage theorem the new graph contains a matching
of A, and at least |A| — d edges in this matching must be edges of G. O

Corollary 2.1.4. If G is k-regular with k > 1, then G has a 1-factor.

Proof. If G is k-regular, then clearly |A| = | BJ; it thus suffices to show by
Theorem 2.1.2 that G contains a matching of A. Now every set S C A
is joined to N(S) by a total of k|S| edges, and these are among the
kE|N(S)| edges of G incident with N(S). Therefore & |S| < k|N(S)|, so
G does indeed satisfy the marriage condition. O

Despite its seemingly narrow formulation, the marriage theorem
counts among the most frequently applied graph theorems, both out-
side graph theory and within. Often, however, recasting a problem in
the setting of bipartite matching requires some clever adaptation. As a
simple example, we now use the marriage theorem to derive one of the
earliest results of graph theory, a result whose original proof is not all
that simple, and certainly not short:

Corollary 2.1.5. (Petersen 1891)
Every regular graph of positive even degree has a 2-factor.

Al B
G/

[2.2.3]
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Proof. Let G be any 2k-regular graph (k > 1), without loss of generality
connected. By Theorem 1.8.1, G contains an Euler tour vgpeg . .. ep—1vy,
with vy = vg. We replace every vertex v by a pair (v—,v"), and every
edge e; = v;v;11 by the edge v v, (Fig. 2.1.5). The resulting bipartite
graph G’ is k-regular, so by Corollary 2.1.4 it has a 1-factor. Collapsing
every vertex pair (v, v") back into a single vertex v, we turn this 1-
factor of G’ into a 2-factor of G. |

Fig. 2.1.5. Splitting vertices in the proof of Corollary 2.1.5

2.2 Matching in general graphs

Given a graph G, let us denote by Cqg the set of its components, and by
q(G) the number of its odd components, those of odd order. If G has a
1-factor, then clearly

q(G-5) < |S| for all S C V(G),

since every odd component of G — S will send a factor edge to S.

Cion -

Fig. 2.2.1. Tutte’s condition ¢(G —S) < |S| for ¢ = 3, and the
contracted graph Hg from Theorem 2.2.3.

Again, this obvious necessary condition for the existence of a 1-factor
is also sufficient:
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Theorem 2.2.1. (Tutte 1947)
A graph G has a 1-factor if and only if (G — S) < |S] for all S C V(QG).

Proof. Let G = (V,E) be a graph without a 1-factor. Our task is to
find a bad set S C V, one that violates Tutte’s condition.

We may assume that G is edge-maximal without a 1-factor. Indeed,
if G’ is obtained from G by adding edges and S C V is bad for G’, then
S is also bad for G: any odd component of G’ — S is the union of
components of G — .S, and one of these must again be odd.

What does G look like? Clearly, if G contains a bad set S then, by
its edge-maximality and the trivial forward implication of the theorem,

all the components of G — S are complete and every vertex (+)
s € S is adjacent to all the vertices of G — s.

But also conversely, if a set S C V satisfies (*) then either S or the
empty set must be bad: if .S is not bad we can join the odd components
of G — S disjointly to S and pair up all the remaining vertices—unless
|G| is odd, in which case ) is bad.

So it suffices to prove that G has a set S of vertices satisfying (x).
Let S be the set of vertices that are adjacent to every other vertex. If
this set S does not satisfy (x), then some component of G — S has non-
adjacent vertices a,a’. Let a,b, c be the first three vertices on a shortest
a—a’ path in this component; then ab,bc € FE but ac ¢ E. Since b ¢ S,
there is a vertex d € V such that bd ¢ E. By the maximality of G, there
is a matching M; of V in G 4 ac, and a matching Ms of V' in G + bd.

Fig. 2.2.2. Deriving a contradiction if S does not satisfy (x)

Let P = d...v be a maximal path in G starting at d with an edge
from M; and containing alternately edges from M; and Ms (Fig. 2.2.2).
If the last edge of P lies in My, then v = b, since otherwise we could
continue P. Let us then set C' := P +bd. If the last edge of P lies in M,
then by the maximality of P the M;-edge at v must be ac, so v € {a,c};
then let C' be the cycle dPvbd. In each case, C' is an even cycle with
every other edge in Ms, and whose only edge not in E is bd. Replacing
in M, its edges on C with the edges of C'— My, we obtain a matching
of V' contained in F, a contradiction. O

V,E
bad set

a,b,c

My, Ms
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Corollary 2.2.2. (Petersen 1891)
Every bridgeless cubic graph has a 1-factor.

Proof. We show that any bridgeless cubic graph G satisfies Tutte’s
condition. Let S C V(G) be given, and consider an odd component C' of
G — S. Since G is cubic, the degrees (in G) of the vertices in C' sum to an
odd number, but only an even part of this sum arises from edges of C.
So G has an odd number of S—C' edges, and therefore has at least 3 such
edges (since G has no bridge). The total number of edges between S and
G — S thus is at least 3¢(G — 5). But it is also at most 3|S/|, because G
is cubic. Hence ¢(G — S) < |S|, as required. O

In order to shed a little more light on the techniques used in match-
ing theory, we now give a second proof of Tutte’s theorem. In fact,
we shall prove a slightly stronger result, a result that places a structure
interesting from the matching point of view on an arbitrary graph. If the
graph happens to satisfy the condition of Tutte’s theorem, this structure
will at once yield a 1-factor.

A graph G = (V,E) is called factor-critical if G # () and G —v
has a 1-factor for every vertex v € G. Then G itself has no 1-factor,
because it has odd order. We call a vertex set S C V matchable to
G — S if the (bipartite!) graph Hg, which arises from G by contracting
the components C' € Cg_g to single vertices and deleting all the edges
inside S, contains a matching of S. (Formally, Hg is the graph with
vertex set SUCg—_g and edge set { sC' | I¢c € C: sc € E }; see Fig. 2.2.1.)

Theorem 2.2.3. Every graph G = (V, E) contains a vertex set S with
the following two properties:

(i) S is matchable to G — S;
(ii) every component of G — S is factor-critical.

Given any such set S, the graph G contains a 1-factor if and only if
IS| = [Ca-s.

For any given G, the assertion of Tutte’s theorem follows easily from
this result. Indeed, by (i) and (ii) we have |S| < |Cg—s| = ¢(G —5)
(since factor-critical graphs have odd order); thus Tutte’s condition of
q(G —95) < |S| implies |S| = |Ca—s|, and the existence of a 1-factor
follows from the last statement of Theorem 2.2.3.

Proof of Theorem 2.2.3. Note first that the last assertion of the
theorem follows at once from the assertions (i) and (ii): if G has a
1-factor, we have ¢(G — S) < |S| and hence |S| = |Cg_s| as above;

1 except for the—permitted—case that S or Co_g is empty
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conversely if |\S| = |[Cq—g|, then the existence of a 1-factor follows straight
from (i) and (ii).

We now prove the existence of a set S satisfying (i) and (ii). We
apply induction on |G|. For |G| = 0 we may take S = (). Now let G
be given with |G| > 0, and assume the assertion holds for graphs with
fewer vertices.

Let d be the least non-negative integer such that

q(G-T) < |T|+d for every T C V. (%)

Then there exists a set T for which equality holds in (x): this follows
from the minimality of d if d > 0, and from ¢(G —0) > ||+ 0 if d = 0.
Let S be such a set T of maximum cardinality, and let C := Cg_g.

We first show that every component C' € C is odd. If |C] is even,
pick a vertex c € C, and let S" := SU{ ¢} and C’ := C —¢. Then C’ has
odd order, and thus has at least one odd component. Hence, ¢(G —S’) >
q(G—8)+1. Since T := S satisfies (x) with equality, we obtain

qG-=5)2q(G-8)+1=|S|+d+1=1|5+d > q¢(G-5")
(*)

with equality, which contradicts the maximality of S.

Next we prove the assertion (ii), that every C € C is factor-critical.
Suppose there exist C € C and ¢ € C such that C' := C — ¢ has no
1-factor. By the induction hypothesis (and the fact that, as shown ear-
lier, for fixed G our theorem implies Tutte’s theorem) there exists a set
T C V(C') with

q(C'=T1") > |T"].
Since |C| is odd and hence |C’] is even, the numbers ¢(C’ —T") and |T”|
are either both even or both odd, so they cannot differ by exactly 1. We
may therefore sharpen the above inequality to

q(C'=T") = |T"|+2.
For T := SU{c}UT’ we thus obtain

g(G=T) = ¢(G—8)—1+¢(C'~T")
> |S|+d—1+]|T'|+2
=|T|+d

>q(G-T)
()

with equality, again contradicting the maximality of .S.
It remains to show that S is matchable to G —S. If S = (), this
is trivial, so we assume that S # 0. Since T := S satisfies (*) with

S,C
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equality, this implies that C too is non-empty. We now apply Corollary
2.1.3 to H := Hg, but ‘backwards’, i.e. with A := C. Given C’ C C,
set S’ := Ny (C') C S. Since every C € C’ is an odd component also of
G — 5, we have

INu(C)] = 15 (2) ¢(G=5")—d>|C'|—d.

By Corollary 2.1.3, then, H contains a matching of cardinality
ICl—d =q(G—-5)—d=]|5],
which is therefore a matching of S. |

Let us consider once more the set S from Theorem 2.2.3, together
with any matching M in G. As before, we write C := Cg_g. Let us
denote by kg the number of edges in M with at least one end in S, and
by ke the number of edges in M with both ends in G —S. Since each
C € C is odd, at least one of its vertices is not incident with an edge of
the second type. Therefore every matching M satisfies

ks <IS| and ke < 3(IVI-1S|-cl). (1)

Moreover, G contains a matching My with equality in both cases: first
choose | S| edges between S and | JC according to (i), and then use (ii) to
find a suitable set of %(|C| — 1) edges in every component C' € C. This
matching M, thus has exactly

(Mol = 151+ (V] =151 - [c) (2)
edges.

Now (1) and (2) together imply that every matching M of maximum
cardinality satisfies both parts of (1) with equality: by |M| > |Mo|
and (2), M has at least |S]+ 5 (|V|—1]S| —|C|) edges, which implies by
(1) that neither of the inequalities in (1) can be strict. But equality
in (1), in turn, implies that M has the structure described above: by
ks =S|, every vertex s € S is the end of an edge st € M witht € G— 5,
and by ke = £ (|V| = |S| —|C|) exactly 3(]C| —1) edges of M lie in C,
for every C' € C. Finally, since these latter edges miss only one vertex in
each C, the ends t of the edges st above lie in different components C'
for different s.

The seemingly technical Theorem 2.2.3 thus hides a wealth of struc-
tural information: it contains the essence of a detailed description of all
maximum-cardinality matchings in all graphs.?

2 A reference to the full statement of this structural result, known as the Gallai-
Edmonds matching theorem, is given in the notes at the end of this chapter.
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2.3 Path covers

Let us return for a moment to Konig’s duality theorem for bipartite
graphs, Theorem 2.1.1. If we orient every edge of G from A to B, the
theorem tells us how many disjoint directed paths we need in order to
cover all the vertices of G: every directed path has length 0 or 1, and
clearly the number of paths in such a ‘path cover’ is smallest when it
contains as many paths of length 1 as possible—in other words, when it
contains a maximum-cardinality matching.

In this section we put the above question more generally: how many
paths in a given directed graph will suffice to cover its entire vertex set?
Of course, this could be asked just as well for undirected graphs. As it
turns out, however, the result we shall prove is rather more trivial in
the undirected case (exercise), and the directed case will also have an
interesting corollary.

A directed path is a directed graph P # () with distinct vertices
Zo, ..., T, and edges eq,...,ex_1 such that e; is an edge directed from
x; to x;y1, for all ¢ < k. We denote the last vertex xj of P by ter(P).
In this section, path will always mean ‘directed path’. A path cover of a
directed graph G is a set of disjoint paths in G which together contain
all the vertices of G. Let us denote the maximum cardinality of an
independent set of vertices in G by a(G).

Theorem 2.3.1. (Gallai & Milgram 1960)
Every directed graph G has a path cover by at most «(G) paths.

Proof. Given two path covers Py, Py of a graph, we write P; < Pq if
{ter(P) | P eP1} C{ter(P)| P e Py} and |Pi| < |Pz|. We shall prove
the following;:

If P is a <-minimal path cover of G, then G contains an
independent set {vp | P € P} of vertices with vp € P for (%)
every P € P.

Clearly, (x) implies the assertion of the theorem.

We prove () by induction on |G|. Let P = { P1,..., Py, } be given
as in (x), and let v; := ter(P;) for every ¢. If {v; | 1 < i < m} is
independent, there is nothing more to show; we may therefore assume
that G has an edge from vy to vy. Since Povyvp is again a path, the
minimality of P implies that v; is not the only vertex of P;; let v be
the vertex preceding vy on P;. Then P’ := { Pjv, Py, ..., Py, } is a path
cover of G' := G —v; (Fig. 2.3.1). We first show that P’ is <-minimal
with this property.

Suppose that P” < P’ is another path cover of G’. If a path P ¢ P”
ends in v, we may replace P in P” by Puvv; to obtain a smaller path
cover of G than P, a contradiction to the minimality of P. If a path

ter(P)
path
path cover

a(@)

P1 < P2

P, Pi,m

Pl
G/
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Fig. 2.5.1. The path cover P’ of G’

P € P” ends in vy (but none in v), we replace P in P’ by Puyuvs,
again contradicting the minimality of P. Hence {ter(P) | P € P"} C
{vs,..., v }, and in particular |P”| < |P| —2. But now P” and the
trivial path {v; } together form a path cover of G that contradicts the
minimality of P.

Hence P’ is minimal, as claimed. By the induction hypothesis,
{V(P) | P € P’} has an independent set of representatives. But this is
also a set of representatives for P, and (x) is proved. ]

As a corollary to Theorem 2.3.1 we now deduce a classic result from
the theory of partial orders. Recall that a subset of a partially ordered
set (P, <) is a chain in P if its elements are pairwise comparable; it is
an antichain if they are pairwise incomparable.

Corollary 2.3.2. (Dilworth 1950)
In every finite partially ordered set (P,<), the minimum number of

chains covering P is equal to the maximum cardinality of an antichain
in P.

Proof. If A is an antichain in P of maximum cardinality, then clearly
P cannot be covered by fewer than |A| chains. The fact that |A| chains
will suffice follows from Theorem 2.3.1 applied to the directed graph on
P with the edge set { (z,y) |z < y }. O

Exercises

1. Let M be a matching in a bipartite graph G. Show that if M is sub-
optimal, i.e. contains fewer edges than some other matching in G, then
G contains an augmenting path with respect to M. Does this fact
generalize to matchings in non-bipartite graphs?

(Hint. Symmetric difference.)
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6.7

10.

11.7
12.
13.7

14.
15.7

16.

17.

Describe an algorithm that finds, as efficiently as possible, a matching
of maximum cardinality in any bipartite graph.

Find an infinite counterexample to the statement of the marriage the-
orem.

Let k be an integer. Show that any two partitions of a finite set into
k-sets admit a common choice of representatives.

Let A be a finite set with subsets Ai,...,A,, and let d1,...,d, € N.
Show that there are disjoint subsets Dy C Ay, with |Dy| = di, for all

k < n, if and only if
‘UAi = Zdi

i€l i€l

forall T C {1,...,n}.
Prove Sperner’s lemma: in an n-set X there are never more than (Ln72j)
subsets such that none of these contains another.

(Hint. Construct (Ln72J) chains covering the power set lattice of X.)
Find a set S for Theorem 2.2.3 when G is a forest.

Using (only) Theorem 2.2.3, show that a k-connected graph with at
least 2k vertices contains a matching of size k. Is this best possible?

A graph G is called (vertex-) transitive if, for any two vertices v, w € G,
there is an automorphism of G mapping v to w. Using the observa-
tions following the proof of Theorem 2.2.3, show that every transitive
connected graph is either factor-critical or contains a 1-factor.

(Hint. Consider the cases of S = () and S # () separately.)

Show that a graph G contains k£ independent edges if and only if
q(G —8) < |S|+ |G| — 2k for all sets S C V(G).

(Hint. For the ‘if’ direction, suppose that G has no k independent
edges, and apply Tutte’s 1-factor theorem to the graph G * KIGI=2k,
Alternatively, use Theorem 2.2.3.)

Find a cubic graph without a 1-factor.
Derive the marriage theorem from Tutte’s theorem.

Prove the undirected version of the theorem of Gallai & Milgram (with-
out using the directed version).

Derive the marriage theorem from the theorem of Gallai & Milgram.

Show that a partially ordered set of at least rs + 1 elements contains
either a chain of size 7+ 1 or an antichain of size s+ 1.

Prove the following dual version of Dilworth’s theorem: in every fi-
nite partially ordered set (P,<), the minimum number of antichains
covering P is equal to the maximum cardinality of a chain in P.

Derive Ko6nig’s theorem from Dilworth’s theorem.
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18.% Find a partially ordered set that has no infinite antichain but cannot
be covered by finitely many chains.

(Hint. N x N.)

Notes

There is a very readable and comprehensive monograph about matching in
finite graphs: L.Lovész & M.D.Plummer, Matching Theory, Annals of Dis-
crete Math. 29, North Holland 1986. All the references for the results in this
chapter can be found there.

As we shall see in Chapter 3, Konig’s Theorem of 1931 is no more than the
bipartite case of a more general theorem due to Menger, of 1929. At the time,
neither of these results was nearly as well known as Hall’s marriage theorem,
which was proved even later, in 1935. To this day, Hall’s theorem remains one
of the most applied graph-theoretic results. Its special case that both partition
sets have the same size was proved implicitly already by Frobenius (1917) in
a paper on determinants.

Our proof of Tutte’s 1-factor theorem is based on a proof by Lovész
(1975). Our extension of Tutte’s theorem, Theorem 2.2.3 (including the infor-
mal discussion following it) is a lean version of a comprehensive structure the-
orem for matchings, due to Gallai (1964) and Edmonds (1965). See Lovész &
Plummer for a detailed statement and discussion of this theorem.

Theorem 2.3.1 is due to T.Gallai & A.N.Milgram, Verallgemeinerung
eines graphentheoretischen Satzes von Rédei, Acta Sci. Math. (Szeged) 21
(1960), 181-186.



3 Connectivity

Our definition of k-connectedness, given in Chapter 1.4, is somewhat
unintuitive. It does not tell us much about ‘connections’ in a k-connected
graph: all it says is that we need at least k vertices to disconnect it. The
following definition—which, incidentally, implies the one above—might
have been more descriptive: ‘a graph is k-connected if any two of its
vertices can be joined by k independent paths’.

It is one of the classic results of graph theory that these two defini-
tions are in fact equivalent, are dual aspects of the same property. We
shall study this theorem of Menger (1927) in some depth in Section 3.3.

In Sections 3.1 and 3.2, we investigate the structure of the 2-con-
nected and the 3-connected graphs. For these small values of k it is still
possible to give a simple general description of how these graphs can be
constructed.

In the remaining sections of this chapter we look at other concepts of
connectedness, more recent than the standard one but no less important:
the number of H-paths in a graph for a given subgraph H; the number of
edge-disjoint spanning trees; and the existence of disjoint paths linking
up several given pairs of vertices.

3.1 2-Connected graphs and subgraphs

A maximal connected subgraph without a cutvertex is called a block.
Thus, every block of a graph G is either a maximal 2-connected subgraph,
or a bridge (with its ends), or an isolated vertex. Conversely, every such
subgraph is a block. By their maximality, different blocks of G overlap
in at most one vertex, which is then a cutvertex of G. Hence, every edge
of G lies in a unique block, and G is the union of its blocks.

In a sense, blocks are the 2-connected analogues of components, the
maximal connected subgraphs of a graph. While the structure of G is

block
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determined fully by that of its components, however, it is not captured
completely by the structure of its blocks: since the blocks need not be
disjoint, the way they intersect defines another structure, giving a coarse
picture of G as if viewed from a distance.

The following proposition describes this coarse structure of G as
formed by its blocks. Let A denote the set of cutvertices of G, and B
the set of its blocks. We then have a natural bipartite graph on AUB
formed by the edges aB with a € B. This block graph of G is shown in
Figure 3.1.1.

Fig. 8.1.1. A graph and its block graph

Proposition 3.1.1. The block graph of a connected graph is a tree.
O

Proposition 3.1.1 reduces the structure of a given graph to that of its
blocks. So what can we say about the blocks themselves? The following
proposition gives a simple method by which, in principle, a list of all
2-connected graphs could be compiled:

Proposition 3.1.2. A graph is 2-connected if and only if it can be
constructed from a cycle by successively adding H-paths to graphs H
already constructed (Fig. 3.1.2).

Fig. 3.1.2. The construction of 2-connected graphs
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Proof. Clearly, every graph constructed as described is 2-connected.
Conversely, let a 2-connected graph G be given. Then G contains a
cycle, and hence has a maximal subgraph H constructible as above.
Since any edge zy € F(G) \ E(H) with z,y € H would define an H-
path, H is an induced subgraph of G. Thus if H # G, then by the
connectedness of G there is an edge vw with v € G— H and w € H. As
G is 2-connected, G — w contains a v—H path P. Then wvP is an H-path
in G, and HUwuvP is a constructible subgraph of G larger than H. This
contradicts the maximality of H. O

3.2 The structure of 3-connected graphs

We start this section with the analogue of Proposition 3.1.2 for 3-
connectedness: our first theorem describes how every 3-connected graph
can be obtained from a K* by a succession of elementary operations
preserving 3-connectedness. We then prove a deep result of Tutte about
the algebraic structure of the cycle space of 3-connected graphs; this will
play an important role again in Chapter 4.5.

Lemma 3.2.1. If G is 3-connected and |G| > 4, then G has an edge e
such that G/e is again 3-connected.

Proof. Suppose there is no such edge e. Then, for every edge zy € G,
the graph G/zy contains a separating set S of at most 2 vertices. Since
k(G) > 3, the contracted vertex v, of G/xy (see Chapter 1.7) lies
in S and |S| = 2, i.e. G has a vertex z ¢ {z,y} such that {vgy, 2}
separates G/xy. Then any two vertices separated by { vgy,z} in G/zy
are separated in G by T := {z,y,z}. Since no proper subset of T
separates GG, every vertex in T has a neighbour in every component C'
of G-T.

We choose the edge xy, the vertex z, and the component C' so that
|C| is as small as possible, and pick a neighbour v of z in C' (Fig. 3.2.1).

C

Fig. 8.2.1. Separating vertices in the proof of Lemma 3.2.1

[4.4.3]
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By assumption, G/zv is again not 3-connected, so again there is a vertex
w such that { z, v, w } separates G, and as before every vertex in { z, v, w }
has a neighbour in every component of G — { z, v, w }.

As z and y are adjacent, G — { z, v, w } has a component D such that
Dn{z,y} =0. Then every neighbour of v in D lies in C (since v € C),
so DNC # ) and hence D & C by the choice of D. This contradicts the
choice of zy, z and C. |

Theorem 3.2.2. (Tutte 1961)
A graph G is 3-connected if and only if there exists a sequence Gy, . .., Gy
of graphs with the following properties:

(i) Go = K* and G,, = G;
(ii) Git1 has an edge xy with d(x),d(y) > 3 and G; = Gi11/xy, for
every 1 < n.

Proof. If G is 3-connected, a sequence as in the theorem exists by Lemma
3.2.1. Note that all the graphs in this sequence are 3-connected.
Conversely, let Go,...,G, be a sequence of graphs as stated; we
show that if G; = G;11 /2y is 3-connected then so is G;41, for every i < n.
Suppose not, let S be a separating set of at most 2 vertices in G;41, and
let C1,Cy be two components of G;+1 —S. As x and y are adjacent, we
may assume that { z,y }NV(C1) = 0 (Fig. 3.2.2). Then C5 contains nei-

Cy S Co

Fig. 3.2.2. The position of zy € Giy1 in the proof of Theo-
rem 3.2.2

ther both vertices x,y nor a vertex v ¢ { z,y }: otherwise vy, or v would
be separated from C; in G; by at most two vertices, a contradiction.
But now Cs contains only one vertex: either z or y. This contradicts
our assumption of d(z),d(y) > 3. O

Theorem 3.2.2 is the essential core of a result of Tutte known as his
wheel theorem.' Like Proposition 3.1.2 for 2-connected graphs, it enables
us to construct all 3-connected graphs by a simple inductive process
depending only on local information: starting with K*, we pick a vertex
v in a graph constructed already, split it into two adjacent vertices v’, v”,
and join these to the former neighbours of v as we please—provided only
that v’ and v"” each acquire at least 3 incident edges, and that every
former neighbour of v becomes adjacent to at least one of v’,v"”.

L Graphs of the form C™ * K1 are called wheels; thus, K* is the smallest wheel.
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Theorem 3.2.3. (Tutte 1963)
The cycle space of a 3-connected graph is generated by its non-separating
induced cycles.

Proof. We apply induction on the order of the graph G considered.
In K%, every cycle is a triangle or (in terms of edges) the symmetric
difference of triangles. As these are both induced and non-separating,
the assertion holds for |G| = 4.

For the induction step, let e = zy be an edge of G for which
G’ := G/e is again 3-connected; cf. Lemma 3.2.1. Then every edge
e/ € E(G') \ E(G) is of the form ¢ = wuwv,, where at least one of the
two edges ux and uy lies in G. We pick one that does (either uzx or uy),
and identify it notationally with the edge €’; thus € now denotes both
the edge uv, of G’ and one of the two edges ux,uy. In this way we may
regard F(G’) as a subset of F(G), and £(G’) as a subspace of £(G); thus
all vector operations will take place unambiguously in £(G).

Let us consider an induced cycle C C G. If e € C and C = C3, we
call C a fundamental triangle; then C/e = K?. If e € C but C # C3,
then C/e is a cycle in G'. Finally if e ¢ C, then at most one of z,y
lies on C' (otherwise e would be a chord), so the vertices of C in order
also form a cycle in G’ if we replace = or y by v,; this cycle, too, will
be denoted by C/e. Thus, as long as C' is not a fundamental triangle,
C'/e will always denote a unique cycle in G’. Note, however, that in the
case of e ¢ C the edge set of C'//e when viewed as a subset of F(G) need
not coincide with E(C), or even be a cycle at all; an example is shown
in Figure 3.2.3.

c Cle E(C/e) C G
Fig. 8.2.8. One of the four possibilities for E(C/e) when e ¢ C

Let us refer to the non-separating induced cycles in G or G’ as basic
cycles. An element of C(G) will be called good if it is a linear combination
of basic cycles in G; we thus want to show that every element of C(G) is
good. The basic idea of our proof is to contract a given cycle C € C(G)
to C/e, generate C'/e in C(G”) by induction, and try to lift the generators
back to basic cycles in G that generate C'.

We start by proving three auxiliary facts.

Every fundamental triangle is a basic cycle in G. (1)

[4.5.2]

(1.9.1)

e =uzy
G/

fundamental
triangle

Cle

basic cycles
good
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A fundamental triangle, wzyw say, is clearly induced in G. If it sepa-
rated G, then {v.,w } would separate G’, which contradicts the choice
of e. This proves (1).

If C C G is an induced cycle but not a fundamental trian- )
gle, then C+C/e+ D € {0,{e} } for some good D € C(G).

The gist of (2) is that, in terms of ‘generatability’, C' and C/e differ only
a little: after the addition of a permissible error term D, at most in the
edge e. In which other edges, then, can C and C/e differ? Clearly at
most in the two edges e, = uv. and e,, = vow incident with v, in C/e;
cf. Fig. 3.2.3. But these differences between the edge sets of C'//e and
C are levelled out precisely by adding the corresponding fundamental
triangles uzy and xyw (which are basic by (1)). Indeed, let D, denote
the triangle uzy if e, ¢ C and () otherwise, and let D,, denote zyw if
ew ¢ C and () otherwise. Then D := D, + D,, satisfies (2) as desired.
Next, we show how to lift basic cycles of G’ back to G:

For every basic cycle C' C G’ there exists a basic cycle (3)
C=C(C") C G withC/e=C".

If v, ¢ C’, then (3) is satisfied with C' := C”. So we assume that v, € C".
Let v and w be the two neighbours of v, on C’, and let P be the u—w
path in ¢ avoiding v, (Fig. 3.2.4). Then P C G.

Fig. 8.2.4. The search for a basic cycle C with C'/e = C’

We first assume that {ux,uy, wz,wy} C E(G), and consider (as
candidates for C) the cycles C, := uPwzu and C, := uPwyu. Both are
induced cycles in G (because C’ is induced in G’), and clearly C,/e =
Cy/e = C'. Moreover, neither of these cycles separates two vertices
of G— (V(P)U{z,y}) in G, since C’ does not separate such vertices
in G'. Thus, if C, (say) is a separating cycle in G, then one of the
components of G — C, consists just of y. Likewise, if C} separates G
then one of the arising components contains only x. However, this cannot
happen for both C, and Cy at once: otherwise N¢({z,y}) C V(P) and
hence Ng({z,y}) = {u,w} (since C" has no chord), which contradicts
k(G) = 3. Hence, at least one of C, Cy is a basic cycle in G.
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It remains to consider the case that {uz, uy, wz,wy} Z E(G), say
ux ¢ E(G). Then, as above, either uPwyu or uPwzyu is a basic cycle
in G, according as wy is an edge of G or not. This completes the proof

of (3).

We now come to the main part of our proof, the proof that every
C € C(G) is good. By Proposition 1.9.1 we may assume that C is an
induced cycle in G. By (1) we may further assume that C is not a
fundamental triangle; so C/e is a cycle. Our aim is to argue as follows.
By (2), C differs from C/e at most by some good error term D (and
possibly in e); by (3), the basic cycles C; of G’ that sum to C/e by
induction can be contracted from basic cycles of G, which likewise differ
from the C{ only by a good error term D; (and possibly in e); hence these
basic cycles of G and all the error terms together sum to C—except that
the edge e will need some special attention.

By the induction hypothesis, C/e has a representation

Cle=Ci+...+C,

in C(G"), where every C! is a basic cycle in G’. For each i, we obtain from
(3) a basic cycle C(C}) C G with C(C?)/e = C} (in particular, C(C?) is
not a fundamental triangle), and from (2) some good D; € C(G) such
that

C(CH)+Ci+Di e {0,{e}}. (4)
We let
C; = C(C))+D;;

then C; is good, and by (4) it differs from C! at most in e. Again by (2),
we have

C+Cle+D e {0,{e}}

for some good D € C(G), i.e. C + D differs from C/e at most in e. But
then C'+ D +Ci + ...+ Cy, differs from C/e+C] +...+C}, = 0 at most
in e, that is,

C+D+Ci+...+Cr e{0,{e}}.

Since C+D+Cy1+...+Cj € C(G) but {e} ¢ C(GQ), this means that in
fact

C+D+Ci+...4C, =10,

soC'=D+Ci1+...4+Cf is good. O

C/

1o
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3.3 Menger’s theorem
The following theorem is one of the cornerstones of graph theory.

Theorem 3.3.1. (Menger 1927)

Let G = (V, E) be a graph and A, B C V. Then the minimum number
of vertices separating A from B in G is equal to the maximum number
of disjoint A—B paths in G.

We offer three proofs. Whenever G, A, B are given as in the theorem,
we denote by k = k (G, A, B) the minimum number of vertices separating
A from B in G. Clearly, G cannot contain more than k disjoint A-B
paths; our task will be to show that k such paths exist.

First proof. We prove the following stronger statement:

If P is any set of fewer than k disjoint A—B paths in G
then there is a set Q of |P|+ 1 disjoint A—B paths whose
set of ends includes the set of ends of the paths in P.

Keeping G and A fixed, we let B vary and apply induction on |G — B].
Let R be an A-B path that avoids the (fewer than k) vertices of B that
lie on a path in P. If R avoids all the paths in P, then @ := PU{ R}
is as desired. (This will happen for |G — B| = 0 when all A-B paths are
trivial.) If not, let = be the last vertex of R that lies on some P € P
(Fig. 3.3.1). Put B’ :== BUV(zPUzR) and P’ := (P~ {P})U{Pz}.
Then |[P'| = |P| and k(G,A,B’) > k(G, A, B), so by the induction
hypothesis there is a set Q" of |P|+ 1 disjoint A-B’ paths whose ends
include those of the paths in P’. Then Q' contains a path @ ending in z,
and a unique path @’ whose last vertex y is not among the last vertices
of the paths in P’. If y ¢ xP, we let Q be obtained from Q' by adding
xP to @, and adding yR to Q' if y ¢ B. Otherwise y € &P, and we let
Q be obtained from Q' by adding zR to Q and adding yP to Q’. O

Fig. 3.3.1. Paths in the first proof of Menger’s theorem
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Second proof. We show by induction on |G| + |G| that G contains k
disjoint A-B paths. For all G, A, B with k € {0,1} this is true. For
the induction step let G, A, B with k > 2 be given, and assume that the
assertion holds for graphs with fewer vertices or edges.

If there is a vertex € AN B, then G — x contains k — 1 disjoint A—B
paths by the induction hypothesis. (Why?) Together with the trivial
path { z }, these form the desired paths in G. We shall therefore assume
that

ANB=10. (1)

We first construct the desired paths for the case that A and B are
separated by a set X C V with |X| = k and X # A, B. Let C4 be
the union of all the components of G — X meeting A; note that Cx # 0,
since |A| =2 k = | X| but A # X. The subgraph Cg defined likewise is not
empty either, and C4x NCp = 0. Let us write G4 := G[V(C4)UX | and
Gp := G[V(Cp)UX]. Since every A-B path in G contains an A-X
path in G4, we cannot separate A from X in G 4 by fewer than k vertices.
Thus, by the induction hypothesis, G4 contains k disjoint A-X paths
(Fig. 3.3.2). In the same way, there are k disjoint X—B paths in Gg. As
| X | = k, we can put these paths together to form k disjoint A-B paths.

Fig. 3.3.2. Disjoint A—X paths in G 4

For the general case, let P be any A-B path in G. By (1), P has
an edge ab with a ¢ B and b ¢ A. Let Y be a set of as few vertices as
possible separating A from B in G —ab (Fig. 3.3.3). ThenY, :=Y U{a}
and Y, := Y U{b} both separate A from B in G, and by definition of k
we have

IYU«|7|YE7‘ 2 k

If equality holds here, we may assume by the case already treated that
{Y,, Y, } C{A,B},s0{Y,,Y,} ={A,B}sincea¢ Bandb¢ A. Thus,
Y = ANB. Since |Y| > k—1 > 1, this contradicts (1).

We therefore have either |Y,| > k or |Y3| > k, and hence |Y] > k.
By the induction hypothesis, then, there are k disjoint A-B paths even
inG—ab CG. O

Ca,Cp

Ga,Gp

ab

Ya: Yy
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A B
Y

Fig. 3.3.3. Separating A from B in G —ab

Applied to a bipartite graph, Menger’s theorem specializes to the
assertion of Kénig’s theorem (2.1.1). For our third proof, we now adapt
the alternating path proof of Konig’s theorem to the more general set-

P up of Theorem 3.3.1. Let again G, A, B be given, and let P be a set of
disjoint A-B paths in G. We write

VIP]:=|J{V(P)| PP}
E[P]:=|J{EP) | PeP}.

A walk W = zpepzier...en—12, in G with e; # e; for ¢ # j is said
to be alternating with respect to P if the following three conditions are

jj;i;natmg satisfied for all i < n (Fig. 3.3.4):

(i) if e; = e € E[P], then W traverses the edge e backwards, i.e.
Zi+1 € Px; for some P € P;

(ii) if ; = x; with ¢ # j, then z; € V[P];
(iii) if z; € V[P], then {e;_1,e; JNE[P] # 0.2

Fig. 3.3.4. An alternating walk from A to B

2 For i = 0 we let {ei—1,ei} :=={eo}.



3.3 Menger’s theorem 53

Let us consider a walk W = zgepxier...en_12, from AN V[P]
to BN\ V[P], alternating with respect to P. By (ii), any vertex outside
V[P] occurs at most once on W. Since the edges e; of W are all distinct,
(iii) implies that any vertex in V[P] occurs at most twice on W. This
can happen in two ways: if z; = z; with 0 < i < j < n, say, then

either e;_1,e; € E[P] and e;,ej_1 ¢ E[P]
or e;,ej_1 € E[P]and e;_1,e; ¢ E[P].

Lemma 3.3.2. If such a walk W exists, then G contains |P|+ 1 disjoint
A-B paths.

Proof. Let H be the graph on V[P |U{ zo,...,z, } whose edge set is the
symmetric difference of E[P] with {eg,...,en—1}. In H, the ends of
the paths in P and of W have degree 1 (or 0, if the path or W is trivial),
and all other vertices have degree 0 or 2. For each of the |P|+1 vertices
a € (ANV[P])U{ g}, therefore, the component of H containing a is
a path, P = vg...v; say, which starts in ¢ and ends in A or B. Using
conditions (i) and (iii), one easily shows by induction on ¢ = 0,...,k—1
that P traverses each of its edges e = v;v;41 in the forward direction with
respect to P or W. (Formally: if e € P’ with P’ € P, then v; € P'v;11;
if e =e; € W, then v; = z; and v;41 = x;41.) Hence, P ends in B. As
we have |P| + 1 disjoint such paths P, this completes the proof. O

Third proof of Menger’s theorem. Let P be a set of as many disjoint
A-B paths in G as possible. Unless otherwise stated, all alternating
walks considered are alternating with respect to P. We set

Al = AﬁV[P] and Ay = AN Ay,
and

Bl = BQV[’P] and BQ = B\Bl.

For every path P € P, let zp be the last vertex of P that lies on
some alternating walk starting in As; if no such vertex exists, let xp be
the first vertex of P. Clearly, the set

X:={zp|PecP}

has cardinality |P|; it thus suffices to show that X separates A from B.

Let @Q be any A-B path in G; we show that ) meets X. Suppose
not. By the maximality of P, the path @ meets V[P]. Since the A-
V[P] path in Q is trivially an alternating walk, @ also meets the vertex
set V[P'] of

P :={Pxp|PeP};

W,a:i,ei

A1, Az

B, B

rp

7)/
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let y be the last vertex of @ in V[P’], let P be the path in P containing y,
and let x := xp. Finally, let W be an alternating walk from A, to =z,
as in the definition of zp. By assumption, @) avoids X and hence x,
so y € Pz, and W UxPyQ is a walk from As to B (Fig. 3.3.5). If
this walk is alternating and ends in Bs, we are home: then G contains
|P| 41 disjoint A-B paths by Lemma 3.3.2, contrary to the maximality
of P.

Fig. 3.3.5. Alternating walks in the third proof of Menger’s the-
orem

How could W U xPyQ fail to be an alternating walk? For a start,
W might already use an edge of zPy. But if 2’ is the first vertex of W
on zPy, then W’ := Wz'Py is an alternating walk from As to y. (By
Wz’ we mean the initial segment of W ending at the first occurrence of
a2’ on W; from there onwards, W’ follows P back to y.) Even our new
walk W’'yQ need not yet be alternating: W’ might still meet 7Q. By
definition of P’ and W, however, and the choice of y on @, we have

VIW)YNVIP]CVIP'] and V(@Q)NV[P']=10.

Thus, W’ and 9@ can meet only outside P.

If W’ does indeed meet y@Q, let z be the first vertex of W’ on yQ. As
z lies outside V[P], it occurs only once on W’ (condition (ii)), and we let
W' := W'2Q. On the other hand if W/ NyQ = 0, we set W' := W' UyQ.
In both cases, W is alternating with respect to P’, because W’ is and 5Q
avoids V[P’]. (Note that W satisfies condition (iii) at y in the second
case, while in the first case (iii) is not applicable to z.) By definition of P,
therefore, W" avoids V[P ]~ V[P’]; in particular, V(gQ)NV[P] = 0.
Thus W is also alternating with respect to P, and it ends in Bs. (Note
that y cannot be the last vertex of W”, since y € Pz and hence y ¢ B.)
Furthermore, W' starts in A,, because W does. We may therefore
use W with Lemma 3.3.2 to obtain the desired contradiction to the
maximality of P. a
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A set of a—B paths is called an a—B fan if any two of the paths have
only a in common.

Corollary 3.3.3. For B C V and a € V \ B, the minimum number of
vertices # a separating a from B in G is equal to the maximum number
of paths forming an a—B fan in G.

Proof. Apply Theorem 3.3.1 with A := N(a). O

Corollary 3.3.4. Let a and b be two distinct vertices of G.

(i) Ifab ¢ E, then the minimum number of vertices # a,b separating
a from b in G is equal to the maximum number of independent
a—b paths in G.

(ii) The minimum number of edges separating a from b in G is equal
to the maximum number of edge-disjoint a—b paths in G.

Proof. (i) Apply Theorem 3.3.1 with A := N(a) and B := N(b).
(ii) Apply Theorem 3.3.1 to the line graph of G, with A := E(a)
and B := E(b). O

Theorem 3.3.5. (Global Version of Menger’s Theorem)
(i) A graph is k-connected if and only if it contains k independent
paths between any two vertices.

(ii) A graph is k-edge-connected if and only if it contains k edge-
disjoint paths between any two vertices.

Proof. (i) If a graph G contains k independent paths between any two
vertices, then |G| > k and G cannot be separated by fewer than k ver-
tices; thus, GG is k-connected.

Conversely, suppose that G is k-connected (and, in particular, has
more than k vertices) but contains vertices a, b not linked by k indepen-
dent paths. By Corollary 3.3.4 (i), a and b are adjacent; let G’ := G — ab.
Then G’ contains at most k — 2 independent a—b paths. By Corollary
3.3.4 (i), we can separate a and b in G’ by a set X of at most k — 2
vertices. As |G| > k, there is at least one further vertex v ¢ X U{a,b}
in G. Now X separates v in G’ from either a or b—say, from a. But
then X U{b} is a set of at most k — 1 vertices separating v from a in G,
contradicting the k-connectedness of G.

(ii) follows straight from Corollary 3.3.4 (ii). O

fan

[10.1.2]

[4.2.10]
[6.6.1]
[9.4.2]

a,b
GI
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3.4 Mader’s theorem

In analogy to Menger’s theorem we may consider the following ques-
tion: given a graph G with an induced subgraph H, up to how many
independent H-paths can we find in G?

In this section, we present without proof a deep theorem of Mader,
which solves the above problem in a fashion similar to Menger’s theorem.
Again, the theorem says that an upper bound on the number of such
paths that arises naturally from the size of certain separators is indeed
attained by some suitable set of paths.

What could such an upper bound look like? Clearly, if X C V(G — H)
and F' C FE(G — H) are such that every H-path in G has a vertex or an
edge in X UF, then G cannot contain more than |X U F| independent
H-paths. Hence, the least cardinality of such a set X U F' is a natural
upper bound for the maximum number of independent H-paths. (Note
that every H-path meets G — H, because H is induced in G and edges
of H do not count as H-paths.)

In contrast to Menger’s theorem, this bound can still be improved.
Clearly, we may assume that no edge in F’ has an end in X: otherwise
this edge would not be needed in the separator. Let Y := V(G- H)\ X,
and denote by Cp the set of components of the graph (Y, F'). Since every
H-path avoiding X contains an edge from F', it has at least two vertices
in OC for some C € Cr, where 0C denotes the set of vertices in C' with
a neighbour in G — X — C' (Fig. 3.4.1). The number of independent

o

°
® [
X

Fig. 8.4.1. An H-path in G — X

H-paths in G is therefore bounded above by

Mg(H) = min (|X]+ Y [510C]]),
CeCr

where the minimum is taken over all X and F' as described above: X C
V(G—H) and F C E(G — H — X) such that every H-path in G has a
vertex or an edge in X U F.
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Now Mader’s theorem says that this upper bound is always attained
by some set of independent H-paths:

Theorem 3.4.1. (Mader 1978)
Given a graph G with an induced subgraph H, there are always Mqa(H)
independent H-paths in G.

In order to obtain direct analogues to the vertex and edge version
of Menger’s theorem, let us consider the two special cases of the above
problem where either F' or X is required to be empty. Given an induced
subgraph H C G, we denote by kg (H) the least cardinality of a vertex
set X C V(G — H) that meets every H-path in G. Similarly, we let
Ac(H) denote the least cardinality of an edge set F' C F(G) that meets
every H-path in G.

Corollary 3.4.2. Given a graph G with an induced subgraph H, there
are at least 1k (H) independent H-paths and at least 1A (H) edge-
disjoint H-paths in G.

Proof. To prove the first assertion, let k& be the maximum num-
ber of independent H-paths in G. By Theorem 3.4.1, there are sets
X CV(G—H)and F C E(G—H — X) with

k= X+ ) [$loC]]

CECF

such that every H-path in G has a vertex in X or an edge in F'. For every
C € Cp with C # ), pick a vertex v € C and let Yo := 0C \ {v }; if
0C = 0, let Yo := 0. Then L% |8C’|J > % |Ye| for all C € Cp. Moreover,
for Y := Ugce, Yo every H-path has a vertex in X UY. Hence

k> X[+ Y $Yol 2 3IXUY| > Sra(H)

CeC F
as claimed.
The second assertion follows from the first by considering the line
graph of G (Exercise 16). O

It may come as a surprise to see that the bounds in Corollary 3.4.2
are best possible (as general bounds): one can find examples for G and
H where G contains no more than %Hg(H ) independent H-paths or no
more than ¢ (H) edge-disjoint H-paths (Exercises 17 and 18).

kg (H)

Aa(H)



cross-edges

[6.4.4]

G=(V,E)
k,F

58 3. Connectivity
3.5 Edge-disjoint spanning trees

The edge version of Menger’s theorem tells us when a graph G contains k
edge-disjoint paths between any two vertices. The actual routes of these
paths within G may depend a lot on the choice of those two vertices:
having found the paths for one pair of endvertices, we are not necessarily
better placed to find them for another pair.

In a situation where quick access to a set of k edge-disjoint paths
between any two vertices is desirable, it may be a good idea to ask for
more than just k-edge-connectedness. For example, if G has k edge-
disjoint spanning trees, there will be k canonical such paths between
any two vertices, one in each tree.

When do such trees exist? If they do, the graph is clearly k-edge-
connected. The converse is easily seen to be false; indeed, it is not
even clear whether any edge-connectivity, however large, will imply the
existence of k edge-disjoint spanning trees. Our first aim in this section
will be to study conditions under which k£ edge-disjoint spanning trees
exist.

As before, it is easy to write down some obvious necessary conditions
for the existence of k edge-disjoint spanning trees. With respect to any
partition of V(G) into r sets, every spanning tree of G has at least r — 1
cross-edges, edges whose ends lie in different partition sets (why?). Thus
if G has k edge-disjoint spanning trees, it has at least k (r — 1) cross-
edges.

Once more, this obvious necessary condition is also sufficient:

Theorem 3.5.1. (Tutte 1961; Nash-Williams 1961)
A multigraph contains k edge-disjoint spanning trees if and only if for
every partition P of its vertex set it has at least k (|P| — 1) cross-edges.

Before we prove Theorem 3.5.1, let us note a surprising corollary:
to ensure the existence of k edge-disjoint spanning trees, it suffices to
raise the edge-connectivity to just 2k:

Corollary 3.5.2. Every 2k-edge-connected multigraph G has k edge-
disjoint spanning trees.

Proof. Every set in a vertex partition of G is joined to other partition
sets by at least 2k edges. Hence, for any partition into r sets, G has
at least %Z:Zl 2k = kr cross-edges. The assertion thus follows from
Theorem 3.5.1. ]

For the proof of Theorem 3.5.1, let a multigraph G = (V, E) and
k € N be given. Let F be the set of all k-tuples F' = (Fy,...,F}) of
edge-disjoint spanning forests in G with the maximum total number of
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edges, i.e. such that ||F|| := |E[F]| with E[F] := E(F\)U...UE(F})
is as large as possible.

If F=(F,...,F,) € Fand e € EX E[F], then every F;+ e con-
tains a cycle (i = 1,...,k): otherwise we could replace F; by F; + e in F
and obtain a contradiction to the maximality of |F||. Let us consider
an edge ¢’ # e of this cycle, for some fixed i. Putting F := F;+e—¢/,
and Fj := Fj for all j # 4, we see that F' := (F],..., F}) is again in F;
we say that F’ has been obtained from F by the replacement of the
edge ¢ with e. Note that the component of F; containing e’ keeps its
vertex set when it changes into a component of F;. Hence for every path
x...y C F! there is a unique path zF;y in Fj; this will be used later.

We now consider a fixed k-tuple FO = (FP,...,F?) € F. The set
of all k-tuples in F that can be obtained from F° by a series of edge
replacements will be denoted by F°. Finally, we let

E°:= |J (ENE[F])
and G° := (V, E?). e

Lemma 3.5.3. For every e® € E~ E[F°] there exists a set U C V that
is connected in every F? (i = 1,...,k) and contains the ends of e".

Proof. As FO ¢ FO we have € € E?; let C° be the component of G°
containing . We shall prove the assertion for U := V(C?).

Let ¢ € {1,...,k} be given; we have to show that U is connected
in F?. To this end, we first prove the following:

Let F = (Fy,...,Fy) € F°, and let (F{,..., F}) have been
obtained from F by the replacement of an edge of F;. If (1)
x,y are the ends of a path in F/ NC°, then also zF;y C C°.

Let e = vw be the new edge in E(F])\ E[F]; this is the only edge of
F! not lying in F;. We assume that e € xF/y: otherwise we would have
xF;y = xF!y and nothing to show. It suffices to show that vF;w C C°:
then (zF/y —e) UvFyw is a connected subgraph of F; NC? that contains
x,y, and hence also xF;y. Let ¢’ be any edge of vF;w. Since we could
replace €' in F € F° by e and obtain an element of F° not contain-
ing e/, we have ¢/ € E°. Thus vFyw C G, and hence vFyw C C° since
v,w € zF/y C C° This proves (1).

In order to prove that U = V(C?) is connected in F? we show that,
for every edge zy € C°, the path xFy exists and lies in C%. As C? is
connected, the union of all these paths will then be a connected spanning
subgraph of F? [U].

So let e = 2y € C° be given. As e € EY, there exist an s € N
and k-tuples F™ = (FY,...,F]) for r = 1,...,s such that each F" is
obtained from F"~! by edge replacement and e € E~ E[F*]. Setting

E[F], |IF]

edge
replacement

zFy
FO

]:0
EO

GO

CO
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F := F?® in (1), we may think of e as a path of length 1 in F/ N CP.
Successive applications of (1) to F' = F* ..., F° then give xFy C C°
as desired. g

Proof of Theorem 3.5.1. We prove the backward implication by
induction on |G|. For |G| = 2 the assertion holds. For the induction
step, we now suppose that for every partition P of V there are at least
k (|P| —1) cross-edges, and construct k edge-disjoint spanning trees in G.

Pick a k-tuple FO = (FP,..., F?) € F. If every F} is a tree, we are
done. If not, we have

k
IE =Y IEP | < k(G- 1)

=1

by Corollary 1.5.3. On the other hand, we have ||G|| > k(|G| —1) by
assumption: consider the partition of V' into single vertices. So there
exists an edge ¢’ € E~ F[F']. By Lemma 3.5.3, there exists a set
U C V that is connected in every F? and contains the ends of eg; in
particular, [U| > 2. Since every partition of the contracted multigraph
G/U induces a partition of G with the same cross-edges,® G/U has at
least k (|P| — 1) cross-edges with respect to any partition P. By the
induction hypothesis, therefore, G/U has k edge-disjoint spanning trees
T1,...,T;. Replacing in each T; the vertex vy contracted from U by the
spanning tree F? NG [U] of G [U], we obtain k edge-disjoint spanning
trees in G. g

Let us say that subgraphs G1,...,Gy of a graph G partition G if
their edge sets form a partition of E(G). Our spanning tree problem may
then be recast as follows: into how many connected spanning subgraphs
can we partition a given graph? The excuse for rephrasing our simple
tree problem in this more complicated way is that it now has an obvious
dual (cf. Theorem 1.5.1): into how few acyclic (spanning) subgraphs
can we partition a given graph? Or for given k: which graphs can be
partitioned into at most k forests?

An obvious necessary condition now is that every set U C V(QG)
induces at most k (JU| — 1) edges, no more than |U|—1 for each forest.
Once more, this condition turns out to be sufficient too. And surprising-
ly, this can be shown with the help of Lemma 3.5.3, which was designed
for the proof of our theorem on edge-disjoint spanning trees:

Theorem 3.5.4. (Nash-Williams 1964)
A multigraph G = (V, E) can be partitioned into at most k forests if and
only if |G [U]|| < k(JU|—1) for every non-empty set U C V.

3 see Chapter 1.10 on the contraction of multigraphs
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Proof. The forward implication was shown above. Conversely, we show
that every k-tuple F' = (F1y,..., Fy) € F partitions G, i.e. that E[F] =
E. If not, let e € E\ E[F]. By Lemma 3.5.3, there exists aset U C V
that is connected in every F; and contains the ends of e. Then G[U ]
contains |U| — 1 edges from each F;, and in addition the edge e. Thus
IGIU]| > k(JU| —1), contrary to our assumption. O

The least number of forests forming a partition of a graph G is called
the arboricity of G. By Theorem 3.5.4, the arboricity is a measure for
the maximum local density: a graph has small arboricity if and only if
it is ‘nowhere dense’, i.e. if and only if it has no subgraph H with ¢(H)
large.

3.6 Paths between given pairs of vertices

A graph with at least 2k vertices is said to be k-linked if for every 2k dis-
tinct vertices s1,..., Sk, t1,...,tx it contains k disjoint paths Py,..., Py
with P; = s;...t; for all 7. Thus unlike in Menger’s theorem, we are not
merely asking for k disjoint paths between two sets of vertices: we insist
that each of these paths shall link a specified pair of endvertices.

Clearly, every k-linked graph is k-connected. The converse, however,
is far from true: being k-linked is generally a much stronger property
than k-connectedness. But still, the two properties are related: our aim
in this section is to prove the existence of a function f:N — N such that
every f(k)-connected graph is k-linked.

As a lemma, we need a result that would otherwise belong in Chap-
ter 8:

Theorem 3.6.1. (Mader 1967)
There is a function h: N— N such that every graph with average degree
at least h(r) contains K" as a topological minor, for every r € N.

Proof. For r < 2, the assertion holds with h(r) = 1; we now assume that
r > 3. We show by induction on m = r,..., (}) that every graph G with
average degree d(G) > 2™ has a topological minor X with r vertices and
m edges; for m = (5) this implies the assertion with f(r) = 2(2).

If m = r then, by Propositions 1.2.2 and 1.3.1, G contains a cycle
of length at least e(G)+1 > 2"~ 4+1 > r+1, and the assertion follows
with X = C".

Now let r < m < (;), and assume the assertion holds for smaller m.
Let G with d(G) > 2™ be given; thus, ¢(G) > 2™~1. Since G has a
component C with ¢(C) > ¢(G), we may assume that G is connected.
Consider a maximal set U C V(G) such that U is connected in G and

(1.5.3)

arboricity

k-linked

(1.2.2)
(1.3.1)
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e(G/U) = 2™~ such a set U exists, because G itself has the form G /U
with |U| = 1. Since G is connected, we have N(U) # 0.

Let H := G[N(U)]. If H has a vertex v of degree dz (v) < 2m~1, we
may add it to U and obtain a contradiction to the maximality of U: when
we contract the edge vuy in G/U, we lose one vertex and dg(v) +1 <
2m~1 edges, so € will still be at least 2™~1. Therefore d(H) > §(H) >
2m=1 By the induction hypothesis, H contains a TY with |Y| = r
and ||Y] = m —1. Let z,y be two branch vertices of this TY that are
non-adjacent in Y. Since z and y lie in N(U) and U is connected in G,
G contains an x—y path whose inner vertices lie in U. Adding this path
to the TY, we obtain the desired T'X. ([l

How can Theorem 3.6.1 help with our aim to show that high con-
nectivity will make a graph k-linked? Since high connectivity forces the
average degree up (even the minimum degree), we may assume by the
theorem that our graph contains a subdivision K of a large complete
graph. Our plan now is to use Menger’s theorem to link the given ver-
tices s; and t; disjointly to branch vertices of K, and then to join up the
correct pairs of those branch vertices inside K.

Theorem 3.6.2. (Jung 1970; Larman & Mani 1970)
There is a function f:N — N such that every f(k)-connected graph is
k-linked, for all k € N.

Proof. We prove the assertion for f(k) = h(3k) + 2k, where h is a
function as in Theorem 3.6.1. Let G be an f(k)-connected graph. Then
d(G) = 6(G) = k(G) = h(3k); choose K = TK®*F C G as in Theorem
3.6.1, and let U denote its set of branch vertices.

For the proof that G is k-linked, let distinct vertices sq,..., sy and
t1,...,t; of G be given. By definition of f(k), we have x(G) > 2k.
Hence by Menger’s theorem (3.3.1), G contains disjoint paths Py, ..., P,
Q1,...,Q, such that each P; starts in s;, each @Q; starts in t;, and all
these paths end in U but have no inner vertices in U. Let the set P of
these paths be chosen so that their total number of edges outside E(K)
is as small as possible.

Let uy,...,u; be those k vertices in U that are not an end of a
path in P. For each i = 1,...,k, let L; be the U-path in K (i.e., the
subdivided edge of the K3¥) from u; to the end of P; in U, and let v; be
the first vertex of L; on any path P € P. By definition of P, P has no
more edges outside F(K) than Pv;L;u; does, so v;P = v;L; and hence
P = P; (Fig. 3.6.1). Similarly, if M; denotes the U-path in K from u;
to the end of Q; in U, and w; denotes the first vertex of M; on any
path in P, then this path is @;. Then the paths s; P;v; L;u; M;w; Q;t; are
disjoint for different ¢ and show that G is k-linked. ]
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Fig. 3.6.1. Constructing an s;—t; path via u;

In our proof of Theorem 3.6.2 we did not try to find any particularly
good bound on the connectivity needed to force a graph to be k-linked;
the function f we used grows exponentially in k. Not surprisingly, this
is far from being best possible. It is still remarkable, though, that f can
in fact be chosen linear: as Bollobds & Thomason (1996) have shown,
every 22k-connected graph is k-linked.

Exercises

For the first three exercises, let G be a graph and a,b € V(G). Suppose that
X CV(G)~{a,b} separates a from b in G. We say that X separates a from b
minimally if no proper subset of X separates a from b in G.

1.7 Show that X separates a from b minimally if and only if every vertex
in X has a neighbour in the component C, of G — X containing a, and
another in the component Cj of G — X containing b.

2. Let X' C V(G)~{a,b} be another set separating a from b, and define
C}, and C} correspondingly. Show that both

Y, = (XNCHUXNXHYU(X'NC,)
and

Yy = (XNCHUXNX)U(X' NCy)

separate a from b (see figure).

‘4
I\

3. Do Y, and Y}, separate a from b minimally if X and X’ do? Are |Y,|
and |Y3| minimal for vertex sets separating a from b if | X| and | X’| are?

4. Let X and X’ be minimal separating vertex sets in G such that X
meets at least two components of G — X’. Show that X’ meets all the
components of G — X, and that X meets all the components of G — X’.
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5.7

10.

11.

12.7

13.

14.

15.

16.

17.7

18.
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Prove the elementary properties of blocks mentioned at the beginning
of Section 3.1.

Show that the block graph of any connected graph is a tree.

Show, without using Menger’s theorem, that any two vertices of a 2-
connected graph lie on a common cycle.

For edges e, e’ € G write e ~ € if either e = €’ or e and €’ lie on some
common cycle in G. Show that ~ is an equivalence relation on E(G)
whose equivalence classes are the edge sets of the non-trivial blocks
of G.

Let G be a 2-connected graph but not a triangle, and let e be an edge
of G. Show that either G —e or G/e is again 2-connected.

Let G be a 3-connected graph, and let xy be an edge of G. Show that
G/xy is 3-connected if and only if G — {z,y } is 2-connected.

(i) Show that every cubic 3-edge-connected graph is 3-connected.

(ii) Show that a graph is cubic and 3-connected if and only if it can
be constructed from a K* by successive applications of the following
operation: subdivide two edges by inserting a new vertex on each of
them, and join the two new subdividing vertices by an edge.

Show that Menger’s theorem is equivalent to the following statement.
For every graph G and vertex sets A, B C V(G), there exist a set P of
disjoint A-B paths in G and a set X C V(G) separating A from B in
G such that X has the form X = {zp | P € P} with zp € P for all
P eP.

Work out the details of the proof of Corollary 3.3.4 (ii).

Let £ > 2. Show that every k-connected graph of order at least 2k
contains a cycle of length at least 2k.

Let £ > 2. Show that in a k-connected graph any k vertices lie on a
common cycle.

Derive the edge part of Corollary 3.4.2 from the vertex part.

(Hint. Consider the H-paths in the graph obtained from the disjoint
union of H and the line graph L(G) by adding all the edges he such
that h is a vertex of H and e € E(G)\ E(H) is an edge at h.)

To the disjoint union of the graph H = K2m+1 with k copies of K?™*1
add edges joining H bijectively to each of the K?™ "', Show that the
resulting graph G contains at most km = %Iig(H) independent H-
paths.

Find a bipartite graph G, with partition classes A and B say, such that
for H := G[A] there are at most 2+ A\c(H) edge-disjoint H-paths in G.
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19.%7 Derive Tutte’s 1-factor theorem (2.2.1) from Mader’s theorem.

(Hint. Extend the given graph G to a graph G’ by adding, for each
vertex v € G, a new vertex v’ and joining v’ to v. Choose H C G’ so that
the 1-factors in G correspond to the large enough sets of independent
H-paths in G'.)

20. Find the error in the following short ‘proof’ of Theorem 3.5.1. Call a
partition non-trivial if it has at least two classes and at least one of the
classes has more than one element. We show by induction on |V|+ |E|
that G = (V, E) has k edge-disjoint spanning trees if every non-trivial
partition of V' into r sets (say) has at least k(r — 1) cross-edges. The
induction starts trivially with G = K if we allow k copies of K as a
family of k edge-disjoint spanning trees of K*. We now consider the
induction step. If every non-trivial partition of V into r sets (say) has
more than k(r — 1) cross-edges, we delete any edge of G and are done by
induction. So V has a non-trivial partition { V4,..., V., } with exactly
k(r — 1) cross-edges. Assume that |Vi]| > 2. If G' := G[Vi] has k
disjoint spanning trees, we may combine these with k disjoint spanning
trees that exist in G/V;i by induction. We may thus assume that G’
has no k disjoint spanning trees. Then by induction it has a non-trivial
vertex partition {V{,...,VJ} with fewer than k(s — 1) cross-edges.
Then {V{,...,VJ, Va,...,V,; } is a non-trivial vertex partition of G into
r+ s —1 sets with fewer than k(r — 1)+ k(s—1) = k((r+s—1)—1)
cross-edges, a contradiction.

21.7 Show that every k-linked graph is (2k — 1)-connected.

Notes

Although connectivity theorems are doubtless among the most natural, and
also the most applicable, results in graph theory, there is still no comprehensive
monograph on this subject. Some areas are covered in B. Bollobds, Extremal
Graph Theory, Academic Press 1978, in R.Halin, Graphentheorie, Wissen-
schaftliche Buchgesellschaft 1980, and in A. Frank’s chapter of the Handbook of
Combinatorics (R.L. Graham, M. Gritschel & L. Lovdsz, eds.), North-Holland
1995. A survey specifically of techniques and results on minimally k-connected
graphs (see below) is given by W. Mader, On vertices of degree n in minimally
n-connected graphs and digraphs, in (D.Miklés, V.T.Sés & T.Szdnyi, eds.)
Paul Erdés is 80, Vol. 2, Proc. Colloq. Math. Soc. Janos Bolyai, Budapest 1996.

Our proof of Tutte’s Theorem 3.2.3 is due to C. Thomassen, Planarity and
duality of finite and infinite graphs, J. Combin. Theory B 29 (1980), 244-271.
This paper also contains Lemma 3.2.1 and its short proof from first principles.
(The lemma’s assertion, of course, follows from Tutte’s wheel theorem—its
significance lies in its independent proof, which has shortened the proofs of
both of Tutte’s theorems considerably.)

An approach to the study of connectivity not touched upon in this chap-
ter is the investigation of minimal k-connected graphs, those that lose their
k-connectedness as soon as we delete an edge. Like all k-connected graphs,
these have minimum degree at least k, and by a fundamental result of Halin
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(1969), their minimum degree is exactly k. The existence of a vertex of small
degree can be particularly useful in induction proofs about k-connected graphs.
Halin’s theorem was the starting point for a series of more and more sophis-
ticated studies of minimal k-connected graphs; see the books of Bollobds and
Halin cited above, and in particular Mader’s survey.

Our first proof of Menger’s theorem is due to T.Bohme, F.Goéring and
J.Harant (manuscript 1999); the second to J.S.Pym, A proof of Menger’s
theorem, Monatshefte Math. 73 (1969), 81-88; the third to T. Griinwald (later
Gallai), Ein neuer Beweis eines Mengerschen Satzes, J. London Math. Soc. 13
(1938), 188-192. The global version of Menger’s theorem (Theorem 3.3.5) was
first stated and proved by Whitney (1932).

Mader’s Theorem 3.4.1 is taken from W.Mader, Uber die Maximalzahl
kreuzungsfreier H -Wege, Arch. Math. 31 (1978), 387-402. The theorem may
be viewed as a common generalization of Menger’s theorem and Tutte’s 1-
factor theorem (Exercise 19). Theorem 3.5.1 was proved independently by
Nash-Williams and by Tutte; both papers are contained in J. London Math.
Soc. 36 (1961). Theorem 3.5.4 is due to C.St.J.A. Nash-Williams, Decompo-
sitions of finite graphs into forests, J. London Math. Soc. 39 (1964), 12. Our
proofs follow an account by Mader (personal communication). Both results
can be elegantly expressed and proved in the setting of matroids; see § 18 in
B. Bollobas, Combinatorics, Cambridge University Press 1986.

In Chapter 8.1 we shall prove that, in order to force a topological K" mi-

nor in a graph G, we do not need an average degree of G as high as h(r) = 2(2)
(as used in our proof of Theorem 3.6.1): the average degree required can
be bounded above by a function quadratic in 7 (Theorem 8.1.1). The im-
provement of Theorem 3.6.2 mentioned in the text is due to B.Bollobéds &
A.G. Thomason, Highly linked graphs, Combinatorica 16 (1996), 313-320.
N.Robertson & P.D.Seymour, Graph Minors XIII: The disjoint paths prob-
lem, J. Combin. Theory B 63 (1995), 65-110, showed that, for every fixed k,
there is an O(nS) algorithm that decides whether a given graph of order n is
k-linked. If k is taken as part of the input, the problem becomes NP-hard.



4 Planar Graphs

When we draw a graph on a piece of paper, we naturally try to do this
as transparently as possible. One obvious way to limit the mess created
by all the lines is to avoid intersections. For example, we may ask if we
can draw the graph in such a way that no two edges meet in a point
other than a common end.

Graphs drawn in this way are called plane graphs; abstract graphs
that can be drawn in this way are called planar. In this chapter we
study both plane and planar graphs—as well as the relationship between
the two: the question of how an abstract graph might be drawn in
fundamentally different ways. After collecting together in Section 4.1 the
few basic topological facts that will enable us later to prove all results
rigorously without too much technical ado, we begin in Section 4.2 by
studying the structural properties of plane graphs. In Section 4.3, we
investigate how two drawings of the same graph can differ. The main
result of that section is that 3-connected planar graphs have essentially
only one drawing, in some very strong and natural topological sense. The
next two sections are devoted to the proofs of all the classical planarity
criteria, conditions telling us when an abstract graph is planar. We
complete the chapter with a section on plane duality, a notion with
fascinating links to algebraic, colouring, and flow properties of graphs
(Chapters 1.9 and 6.5).

The traditional notion of a graph drawing is that its vertices are
represented by points in the Euclidean plane, its edges are represented by
curves between these points, and different curves meet only in common
endpoints. To avoid unnecessary topological complication, however, we
shall only consider curves that are piecewise linear; it is not difficult to
show that any drawing can be straightened out in this way, so the two
notions come to the same thing.
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4.1 Topological prerequisites

In this section we briefly review some basic topological definitions and
facts needed later. All these facts have (by now) easy and well-known
proofs; see the notes for sources. Since those proofs contain no graph
theory, we do not repeat them here: indeed our aim is to collect precisely
those topological facts that we need but do not want to prove. Later,
all proofs will follow strictly from the definitions and facts stated here
(and be guided by but not rely on geometric intuition), so the material
presented now will help to keep elementary topological arguments in
those proofs to a minimum.

A straight line segment in the Euclidean plane is a subset of R? that
has the form {p+ A(g—p) | 0 < A < 1} for distinct points p,q € R2.
A polygon is a subset of R? which is the union of finitely many straight
line segments and is homeomorphic to the unit circle. Here, as later, any
subset of a topological space is assumed to carry the subspace topology.
A polygonal arc is a subset of R? which is the union of finitely many
straight line segments and is homeomorphic to the closed unit interval
[0,1]. The images of 0 and of 1 under such a homeomorphism are the
endpoints of this polygonal arc, which links them and runs between them.
Instead of ‘polygonal arc’ we shall simply say arc. If P is an arc between
x and y, we denote the point set P~ {z,y }, the interior of P, by P.

Let O C R? be an open set. Being linked by an arc in O defines
an equivalence relation on O. The corresponding equivalence classes are
again open; they are the regions of O. A closed set X C R? is said to
separate O if O ~ X has more than one region. The frontier of a set
X C R?is the set Y of all points y € R? such that every neighbourhood
of y meets both X and R?\ X. Note that if X is open then its frontier
lies in R?\ X.

The frontier of a region O of R? \ X, where X is a finite union of
points and arcs, has two important properties. The first is accessibility:
if z € X lies on the frontier of O, then = can be linked to some point in O
by a straight line segment whose interior lies wholly inside O. As a conse-
quence, any two points on the frontier of O can be linked by an arc whose
interior lies in O (why?). The second notable property of the frontier of
O is that it separates O from the rest of R, Indeed, if ¢: [0,1]— P C R?
is continuous, with ¢(0) € O and ¢(1) ¢ O, then P meets the frontier of
O at least in the point p(y) for y := inf {z | p(x) ¢ O}, the first point
of P in RZ\ O.

Theorem 4.1.1. (Jordan Curve Theorem for Polygons)

For every polygon P C R2, the set R? \. P has exactly two regions, of
which exactly one is bounded. Each of the two regions has the entire
polygon P as its frontier.
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With the help of Theorem 4.1.1, it is not difficult to prove the
following lemma.

Lemma 4.1.2. Let Py, Py, P; be three arcs, between the same two end-
point but otherwise disjoint.

(i) R? ~ (P U P, U P;) has exactly three regions, with frontiers
P1UP2, P2UP3 aHdP1UP3.

(ii) If P is an arc between a point in P, and a point in Ps whose
interior lies in the region of R2~ (PyU P3) that contains P,, then
Pnp, 0.

P Py

Fig. 4.1.1. The arcs in Lemma 4.1.2 (ii)

Our next lemma complements the Jordan curve theorem by saying
that an arc does not separate the plane. For easier application later, we
phrase this a little more generally:

Lemma 4.1.3. Let X;,X, C R? be disjoint sets, each the union of
finitely many points and arcs, and let P be an arc between a point in
X, and one in Xo whose interior P lies in a region O of R? ~\ (X1 U X>).
Then O\ P is a region of R2~ (X; UPUX>).

0]
X1 X2

Fig. 4.1.2. P does not separate the region O of R* \ (X; U X>)

It remains to introduce a few terms and facts that will be used only
once, when we consider notions of equivalence for graph drawings in
Chapter 4.3.

As usual, we denote by S™ the n-dimensional sphere, the set of
points in R**! at distance 1 from the origin. The 2-sphere minus its
‘north pole’ (0,0, 1) is homeomorphic to the plane; let us choose a fixed
such homeomorphism 7: $? \. { (0,0, 1) } — R? (for example, stereograph-
ic projection). If P C R? is a polygon and O is the bounded region of

STL
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R2\ P, let us call C := 7~ Y(P) a circle on S%, and the sets 771(O) and
S2 771 (PUO) the regions of C.

Our last tool is the theorem of Jordan and Schoenflies, again adapt-
ed slightly for our purposes:

Theorem 4.1.4. Let ¢:Cy — Co be a homeomorphism between two
circles on S2?, let O, be a region of Cy, and let Oy be a region of Cs.
Then ¢ can be extended to a homeomorphism CqUO; — Cy U Os.

4.2 Plane graphs

A plane graph is a pair (V, E) of finite sets with the following properties
(the elements of V' are again called vertices, those of E edges):

(i) V C R%
(ii) every edge is an arc between two vertices;
(iii) different edges have different sets of endpoints;
)

iv) the interior of an edge contains no vertex and no point of any
iv) the interi f d tai t d int of
other edge.

A plane graph (V, E) defines a graph G on V in a natural way. As long
as no confusion can arise, we shall use the name G of this abstract graph
also for the plane graph (V,E), or for the point set V U|J E; similar
notational conventions will be used for abstract versus plane edges, for
subgraphs, and so on.!

For every plane graph G, the set R%2\ G is open; its regions are the
faces of G. Since G is bounded—i.e., lies inside some sufficiently large
disc D—exactly one of its faces is unbounded: the face that contains
R2 \. D. This face is the outer face of G; the other faces are its inner
faces. We denote the set of faces of G by F(G). Note that if H C G
then every face of GG is contained in a face of H.

In order to lay the foundations for the (easy but) rigorous introduc-
tion to plane graphs that this section aims to provide, let us descend
once now into the realm of truly elementary topology of the plane, and
prove what seems entirely obvious:? that the frontier of a face of a plane
graph G is always a subgraph of G—not, say, half an edge. The fol-
lowing lemma states this formally, together with two similarly ‘obvious’
properties of plane graphs:

1 However, we shall continue to use \ for differences of point sets and — for graph
differences—which may help a little to keep the two apart.

2 Note that even the best intuition can only ever be ‘accurate’, i.e., coincide with
what the technical definitions imply, inasmuch as those definitions do indeed formal-
ize what is intuitively intended. Given the complexity of definitions in elementary
topology, this can hardly be taken for granted.
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Lemma 4.2.1. Let G be a plane graph and e an edge of G.
(i) If X is the frontier of a face of G, then either e C X or X Né = ().

(ii) If e lies on a cycle C C G, then e lies on the frontier of exactly
two faces of G, and these are contained in distinct faces of C'.

(iii) If e lies on no cycle, then e lies on the frontier of exactly one face

of G.

Proof. We prove all three assertions together. Let us start by considering
one point zg € é. We show that zq lies on the frontier of either exactly
two faces or exactly one, according as e lies on a cycle in G or not. We
then show that every other point in é lies on the frontier of exactly the
same faces as xg. Then the endpoints of e will also lie on the frontier of
these faces—simply because every neighbourhood of an endpoint of e is
also the neighbourhood of an inner point of e.

G is the union of finitely many straight line segments; we may as-
sume that any two of these intersect in at most one point. Around every
point x € é we can find an open disc D,, with centre x, which meets
only those (one or two) straight line segments that contain x.

Let us pick an inner point zy from a straight line segment S C e.
Then D,, NG = D,, NS, so Dy, \ G is the union of two open half-discs.
Since these half-discs do not meet G, they each lie in a face of G. Let
us denote these faces by fi1 and fs; they are the only faces of G with xg
on their frontier, and they may coincide (Fig. 4.2.1).

fi Dz

e L

S iy

P

Fig. 4.2.1. Faces fi, fo of G in the proof of Lemma 4.2.1

If e lies on a cycle C' C G, then D,, meets both faces of C' (Theo-
rem 4.1.1). The faces f1, fo of G are therefore contained in distinct faces
of C—since C' C G, every face of G is a subset of a face of C—and in
particular f; # fy. If e does not lie on any cycle, then e is a bridge and
thus links two disjoint point sets X7, Xo with X; U Xs = G\ é. Clearly,
fiUéuU fy is the subset of a face f of G—e. (Why?) By Lemma 4.1.3,
f~éis aface of G. But f\ é contains f; and fo by definition of f, so
fi = f~é= fosince f1, fo and f are all faces of G.

Now consider any other point 1 € é. Let P be the arc from xg to
x1 contained in e. Since P is compact, finitely many of the discs D,
with = € P cover P. Let us enumerate these discs as Dy, ..., D, in the
natural order of their centres along P; adding D,, or D,, as necessary,
we may assume that Do = D,, and D,, = D,,. By induction on n, one
easily proves that every point y € D,, \ e can be linked by an arc inside

Dy

xo, S

f1, f2
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(DoU...UD,) N\ e toapoint z € Dy~ e (Fig. 4.2.2); then y and z are
equivalent in R? \. G. Hence, every point of D,, \ e lies in f; or in fs, so
x1 cannot lie on the frontier of any other face of G. Since both half-discs
of Dy \ e can be linked to D,, \ e in this way (swap the roles of Dg
and D,,), we find that z; lies on the frontier of both f; and fs. O

Fig. 4.2.2. An arc from y to Dy, close to P

Corollary 4.2.2. The frontier of a face is always the point set of a
subgraph. O

The subgraph of G whose point set is the frontier of a face f is said to
bound f and is called its boundary; we denote it by G[f]. A face is
said to be incident with the vertices and edges of its boundary. Note
that if H C G then every face f of G is contained in a face f’ of H. If
G[f] C H then f = f’ (why?); in particular, f is always also a face of
its own boundary G [ f]. These basic facts will be used frequently in the
proofs to come.

Proposition 4.2.3. A plane forest has exactly one face.

Proof. Use induction on the number of edges and Lemma 4.1.3. O

With just one exception, different faces of a plane graph have dif-
ferent boundaries:

Lemma 4.2.4. If a plane graph has different faces with the same bound-
ary, then the graph is a cycle.

Proof. Let G be a plane graph, and let H C G be the boundary of
distinct faces f1, fo of G. Since f; and f5 are also faces of H, Proposition
4.2.3 implies that H contains a cycle C. By Lemma 4.2.1 (ii), f1 and f,
are contained in different faces of C'. Since f; and f5 both have all of H
as boundary, this implies that H = C: any further vertex or edge of H
would lie in one of the faces of C' and hence not on the boundary of the
other. Thus, f; and f> are distinct faces of C'. As C' has only two faces,
it follows that f; UC U fo = R? and hence G = C. |

Proposition 4.2.5. In a 2-connected plane graph, every face is bounded
by a cycle.
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Proof. Let f be a face in a 2-connected plane graph G. We show by
induction on |G| that G[f] is a cycle. If G is itself a cycle, this holds
by Theorem 4.1.1; we therefore assume that G is not a cycle.

By Proposition 3.1.2, there exist a 2-connected plane graph H C G
and a plane H-path P such that G = H U P. The interior of P lies in a
face f/ of H, which by the induction hypothesis is bounded by a cycle C.

If f is also a face of H, we are home by the induction hypothesis.
If not, then the frontier of f meets P~ H, so f C f’. Therefore [ is a
face of C'U P, and is hence bounded by a cycle (Lemma 4.1.2 (i)). O

A plane graph G is called mazimally plane, or just mazimal, if we
cannot add a new edge to form a plane graph G’ 2 G with V(G') = V(G).
We call G a plane triangulation if every face of G (including the outer
face) is bounded by a triangle.

Proposition 4.2.6. A plane graph of order at least 3 is maximally plane
if and only if it is a plane triangulation.

Proof. Let G be a plane graph of order at least 3. It is easy to see that
if every face of GG is bounded by a triangle, then G is maximally plane.
Indeed, any additional edge e would have its interior inside a face of G
and its ends on the boundary of that face. Hence these ends are already
adjacent in G, so G Ue cannot satisfy condition (iii) in the definition of
a plane graph.

Conversely, assume that G is maximally plane and let f € F(G) be
a face; let us write H := G[f]. Since G is maximal as a plane graph,
G [ H] is complete: any two vertices of H that are not already adjacent
in G could be linked by an arc through f, extending G to a larger plane
graph. Thus G[H] = K™ for some n—but we do not know yet which
edges of G[H ] lie in H.

Let us show first that H contains a cycle. If not, then G~ H # {:
by G O K™ if n > 3, or else by |G| > 3. On the other hand we have
fUH = R? by Proposition 4.2.3 and hence G = H, a contradiction.

Since H contains a cycle, it suffices to show that n < 3: then H = K3
as claimed. Suppose n > 4, and let C' = v1v9v3v4v1 be a cycle in G[ H |
(= K™). By C C G, our face f is contained in a face fc of C; let ff
be the other face of C'. Since the vertices v; and vs lie on the boundary
of f, they can be linked by an arc whose interior lies in fo and avoids G.

fé .

V2 V4

C

U3

Fig. 4.2.3. The edge vav4 of G runs through the face f&
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Hence by Lemma 4.1.2 (ii), the plane edge vovy of G[H ] runs through
f& rather than fc (Fig. 4.2.3). Analogously, since ve,vs € G| f], the
edge vivz runs through f/.. But the edges vivs and vovs are disjoint, so
this contradicts Lemma 4.1.2 (ii).- O

The following classic result of Euler (1752)—here stated in its sim-
plest form, for the plane—marks one of the common origins of graph
theory and topology. The theorem relates the number of vertices, edges
and faces in a plane graph: taken with the correct signs, these numbers
always add up to 2. The general form of Euler’s theorem asserts the same
for graphs suitably embedded in other surfaces, too: the sum obtained
is always a fixed number depending only on the surface, not on the
graph, and this number differs for distinct (orientable closed) surfaces.
Hence, any two such surfaces can be distinguished by a simple arithmetic
invariant of the graphs embedded in them!?

Let us then prove Euler’s theorem in its simplest form:

Theorem 4.2.7. (Euler’s Formula)
Let G be a connected plane graph with n vertices, m edges, and { faces.
Then

n—m-+4£=2.

Proof. We fix n and apply induction on m. For m < n—1, G is a tree
and m = n—1 (why?), so the assertion follows from Proposition 4.2.3.

Now let m > n. Then G has an edge e lying on a cycle; let G’ :=
G —e. By Lemma 4.2.1 (ii), e lies on the boundary of exactly two faces
fi, f2 of G5 we put f12 := fi UéU fo. We shall prove that

F@G)~{f, o} =F(G)~{fi2}.¢ (%)

without assuming that fi o € F(G’). However, since é must lie in some
face of G’ and this will not be a face of G, by (%) it can only be fi o.
Thus again by (%), G’ has one face less than G. As G’ also has one edge
less than G, the assertion then follows from the induction hypothesis
for G'.

For our proof of (x) we first consider any f € F(G)~{ f1,f2}. By
Lemma 4.2.1 (i), we have G[f] C G~ é = G'. So f is also a face of G’
(but obviously not equal to fi2) and hence lies in F(G') ~{ fi2 }.

Conversely, let a face f' # f12 of G’ be given. Since e lies on the
boundary of both f; and fs, we can link any two points of f; 2 by an
arc in R? N\ G/, so fi lies inside a face f{, of G’. Our assumption
of f' # fi,2 therefore implies f' Z f12 (as otherwise f C fi2 C fi,

3 This fundamental connection between graphs and surfaces lies at the heart of
the proof of the famous Robertson-Seymour graph minor theorem; see Chapter 12.5.
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and hence ' = fi2 = f{,); let x be a point in f'~ fi2. Then x lies
in some face f # fi1, fo of G. As shown above, f is also a face of G'.
Hence x € fN f' implies f = f', and we have f' € F(G)~{ f1,f2} as
desired. ]

Corollary 4.2.8. A plane graph with n > 3 vertices has at most 3n — 6
edges. Every plane triangulation with n vertices has 3n — 6 edges.

Proof. By Proposition 4.2.6 it suffices to prove the second assertion. In a
plane triangulation G, every face boundary contains exactly three edges,
and every edge lies on the boundary of exactly two faces (Lemma 4.2.1).
The bipartite graph on E(G)UF(G) with edge set {ef | e C G [ f]} thus
has exactly 2 |E(G)| = 3|F(G)| edges. According to this identity we may
replace ¢ with 2m/3 in Euler’s formula, and obtain m = 3n — 6. g

Euler’s formula can be useful for showing that certain graphs cannot
occur as plane graphs. The graph K°, for example, has 10 > 3-5—6
edges, more than allowed by Corollary 4.2.8. Similarly, K3 3 cannot be a
plane graph. For since K3 3 is 2-connected but contains no triangle, every
face of a plane K33 would be bounded by a cycle of length > 4 (Pro-
position 4.2.5). As in the proof of Corollary 4.2.8 this implies 2m > 4¢,
which yields m < 2n —4 when substituted in Euler’s formula. But K33
has 9 > 2.6 —4 edges.

Clearly, along with K° and K3 3 themselves, their subdivisions can-
not occur as plane graphs either:

Corollary 4.2.9. A plane graph contains neither K° nor K33 as a
topological minor. O

Surprisingly, it turns out that this simple property of plane graphs iden-
tifies them among all other graphs: as Section 4.4 will show, an arbitrary
graph can be drawn in the plane if and only if it has no (topological) K°
or K33 minor.

As we have seen, every face boundary in a 2-connected plane graph
is a cycle. In a 3-connected graph, these cycles can be identified combi-
natorially:

Proposition 4.2.10. The face boundaries in a 3-connected plane graph
are precisely its non-separating induced cycles.

Proof. Let G be a 3-connected plane graph, and let C C G. If C is a
non-separating induced cycle, then by the Jordan curve theorem its two
faces cannot both contain points of G ~. C. Therefore it bounds a face
of G.

Conversely, suppose that C' bounds a face f. By Proposition 4.2.5,
C'is a cycle. If C has a chord e = zy, then the components of C —{ z,y }

C’f
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are linked by a C-path in G, because G is 3-connected. This path and
e both run through the other face of C' (not f) but do not intersect,
a contradiction to Lemma 4.1.2 (ii).

It remains to show that C does not separate any two vertices x,y €
G — C. By Menger’s theorem (3.3.5), 2 and y are linked in G by three
independent paths. Clearly, f lies inside a face of their union, and by
Lemma 4.1.2 (i) this face is bounded by only two of the paths. The third
therefore avoids f and its boundary C. g

4.3 Drawings

An embedding in the plane, or planar embedding, of an (abstract) graph
G is an isomorphism between G and a plane graph G. The latter will
be called a drawing of G. We shall not always distinguish notationally
between the vertices and edges of G and of G.

In this section we investigate how two planar embeddings of a graph
can differ. For this to make sense, we first have to agree when two em-
beddings are to be considered the same: for example, if we compose one
embedding with a simple rotation of the plane, the resulting embedding
will hardly count as a genuinely different way of drawing that graph.

To prepare the ground, let us first consider three possible notions
of equivalence for plane graphs (refining abstract isomorphism), and see
how they are related. Let G = (V, E) and G’ = (V', E’) be two plane
graphs, with face sets F(G) =: F and F(G’') =: F’. Assume that G and
G’ are isomorphic as abstract graphs, and let o:V — V' be an isomor-
phism. Setting zy — o(x)o(y), we may extend o in a natural way to a
bijection VUE — V' UE’ which maps V to V' and F to E’, and which
preserves incidence (and non-incidence) between vertices and edges.

Our first notion of equivalence between plane graphs is perhaps
the most natural one. Intuitively, we would like to call our isomor-
phism o ‘topological’ if it is induced by a homeomorphism from the
plane R? to itself. To avoid having to grant the outer faces of G' and
G’ a special status, however, we take a detour via the homeomorphism
752~ {(0,0,1) } — R? chosen in Section 4.1: we call o a topological
1somorphism between the plane graphs G and G’ if there exists a homeo-
morphism ¢: $% — $2 such that 1) := Topon~! induces ¢ on VUE.
(More formally: we ask that ¢ agree with o on V', and that it map every
plane edge e € G onto the plane edge o(e) € G’. Unless ¢ fixes the point
(0,0,1), the map v will be undefined at w(¢~1(0,0,1)).)

It can be shown that, up to topological isomorphism, inner and
outer faces are indeed no longer different: if we choose as ¢ a rotation
of $? mapping the 7~ !-image of a point of some inner face of G to the
north pole (0,0, 1) of S2, then 1) maps the rest of this face to the outer
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Fig. 4.8.1. Two drawings of a graph that are not topologically
isomorphic—why not?

face of ¢(G). (To ensure that the edges of ¢(G) are again piecewise
linear, however, one may have to adjust ¢ a little.)

If o is a topological isomorphism as above, then—except possibly
for a pair of missing points where ) or 1! is undefined—) maps the
faces of G onto those of G’ (proof?). In this way, o extends naturally
to a bijection o: VUFEUF — V' UE'UF’ which preserves incidence of
vertices, edges and faces.

Let us single out this last property of a topological isomorphism
as the defining property for our second notion of equivalence for plane
graphs: let us call our given isomorphism o between the abstract graphs
G and G’ a combinatorial isomorphism of the plane graphs G and G’ °
if it can be extended to a bijection o:VUFEUF — V' UE' U F’ that
preserves incidence not only of vertices with edges but also of vertices
and edges with faces. (Formally: we require that a vertex or edge = € G
shall lie on the boundary of a face f € F if and only if o(z) lies on the
boundary of the face o(f).)

G G

Fig. 4.8.2. Two drawings of a graph that are combinatorially
isomorphic but not topologically—why not?

If o is a combinatorial isomorphism of the plane graphs G and G’ it
maps the face boundaries of G to those of G’. Let us raise this property
to our third definition of equivalence for plane graphs: we call our isomor-
phism o of the abstract graphs G and G’ a graph-theoretical isomorphism
of the plane graphs G and G’ if

{o@G[f):feF}={G[f]:feF}.

Thus, we no longer keep track of which face is bounded by a given
subgraph: the only information we keep is whether a subgraph bounds

ombinatorial
isomorphism

graph-
theoretical
isomorphism
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some face or not, and we require that ¢ map the subgraphs that do
onto each other. At first glance, this third notion of equivalence may
appear a little less natural than the previous two. However, it has the
practical advantage of being formally weaker and hence easier to verify,
and moreover, it will turn out to be equivalent to the other two notions
in most cases.

As we have seen, every topological isomorphism between two plane
graphs is also combinatorial, and every combinatorial isomorphism is also
graph-theoretical. The following theorem shows that, for most graphs,
the converse is true as well:

Theorem 4.3.1.

(i) Every graph-theoretical isomorphism between two plane graphs is
combinatorial. Its extension to a face bijection is unique if and
only if the graph is not a cycle.

(ii) Every combinatorial isomorphism between two 2-connected plane
graphs is topological.

Proof. Let G = (V,E) and G’ = (V', E’) be two plane graphs, put
F(G) =: F and F(G') =: F’', and let 0:VUE — V' U E’ be an isomor-
phism between the underlying abstract graphs.

(i) If G is a cycle, the assertion follows from the Jordan curve theo-
rem. We now assume that G is not a cycle. Let H and H’ be the sets of
all face boundaries in G and G’, respectively. If o is a graph-theoretical
isomorphism, then the map H — o(H) is a bijection between H and H'.
By Lemma 4.2.4, the map f — G| f] is a bijection between F and H,
and likewise for F’ and H’'. The composition of these three bijections is
a bijection between F' and F’, which we choose as o: F — F’. By con-
struction, this extension of o to VU E'U F' preserves incidences (and is
unique with this property), so ¢ is indeed a combinatorial isomorphism.

(ii) Let us assume that G is 2-connected, and that o is a combina-
torial isomorphism. We have to construct a homeomorphism ¢: $% — 52
which, for every vertex or plane edge x € G, maps 7~ 1(x) to 7~ (o(x)).
Since ¢ is a combinatorial isomorphism, &: 7~ oo o7 is an incidence
preserving bijection from the vertices, edges and faces? of G := 7 YG)
to the vertices, edges and faces of G’ := 7~ 1(G).

We construct ¢ in three steps. Let us first define ¢ on the vertex
set of G, setting ¢(x) := &(x) for all z € V(G). This is trivially a
homeomorphism between V(G) and V(G').

As the second step, we now extend ¢ to a homeomorphism between
G and G’ that induces & on V(G)U E(G). We may do this edge by

4 By the ‘vertices, edges and faces’ of G and G’ we mean the images under 7!

of the vertices, edges and faces of G and G’ (plus (0,0,1) in the case of the outer
face). Their sets will be denoted by V(G), E(G), F(G) and V(G), E(G'), F(G),
and incidence is defined as inherited from G and G'.
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Fig. 4.83.3. Defining 6 via o

edge, as follows. FEvery edge zy of G is homeomorphic to the edge
5(zy) = @(x)p(y) of G’, by a homeomorphism mapping z to ¢(z) and
y to (y). Then the union of all these homeomorphisms, one for every
edge of G, is indeed a homeomorphism between G and G'—our desired
extension of ¢ to G: all we have to check is continuity at the vertices
(where the edge homeomorphisms overlap), and this follows at once from
our assumption that the two graphs and their individual edges all carry
the subspace topology in R3.

In the third step we now extend our homeomorphism ¢: G — G’ to
all of $2. This can be done analogously to the second step, face by face.
By Proposition 4.2.5, all face boundaries in G and G’ are cycles. Now if
fis a face of G and C' its boundary, then 6(C) := |J{5(e) | e € E(C)}
bounds the face &(f) of G’. By Theorem 4.1.4, we may therefore extend
the homeomorphism ¢: C' — &(C) defined so far to a homeomorphism
from CU f to 6(C)Ua(f). We finally take the union of all these home-
omorphisms, one for every face f of G, as our desired homeomorphism
©: 5% — S2: as before, continuity is easily checked. O

So far, we have considered ways of comparing plane graphs. We
now come to our actual goal, the definition of equivalence for planar
embeddings. Let us call two planar embeddings 1,02 of a graph G
topologically (respectively, combinatorially) equivalent if o300 Lis a to-
pological (respectively, combinatorial) isomorphism between o1 (G) and
o2(G). If G is 2-connected, the two definitions coincide by Theorem
4.3.1, and we simply speak of equivalent embeddings. Clearly, this is
indeed an equivalence relation on the set of planar embeddings of any
given graph.

Note that two drawings of G resulting from inequivalent embeddings
may well be topologically isomorphic (exercise): for the equivalence of
two embeddings we ask not only that some (topological or combinatori-
al) isomorphism exist between the their images, but that the canonical
isomorphism o9 007 ! be a topological or combinatorial one.

Even in this strong sense, 3-connected graphs have only one embed-
ding up to equivalence:

Theorem 4.3.2. (Whitney 1932)
Any two planar embeddings of a 3-connected graph are equivalent.

equivalent
embeddings
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Proof. Let G be a 3-connected graph with planar embeddings o1: G — G
and o9: G — G3. By Theorem 4.3.1 it suffices to show that o o 01_1 is
a graph-theoretical isomorphism, i.e. that o1(C) bounds a face of Gy if
and only if o9(C) bounds a face of Go, for every subgraph C' C G. This
follows at once from Proposition 4.2.10. g

4.4 Planar graphs: Kuratowski’s theorem

A graph is called planar if it can be embedded in the plane: if it is
isomorphic to a plane graph. A planar graph is mazimal, or mazimally
planar, if it is planar but cannot be extended to a larger planar graph
by adding an edge (but no vertex).

Drawings of maximal planar graphs are clearly maximally plane.
The converse, however, is not obvious: when we start to draw a planar
graph, could it happen that we get stuck half-way with a proper subgraph
that is already maximally plane? Our first proposition says that this
can never happen, that is, a plane graph is never maximally plane just
because it is badly drawn:

Proposition 4.4.1.
(i) Every maximal plane graph is maximally planar.

(ii) A planar graph with n > 3 vertices is maximally planar if and
only if it has 3n — 6 edges.

Proof. Apply Proposition 4.2.6 and Corollary 4.2.8. |

Which graphs are planar? As we saw in Corollary 4.2.9, no planar
graph contains K° or K3 3 as a topological minor. Our aim in this section
is to prove the surprising converse, a classic theorem of Kuratowski: any
graph without a topological K° or K33 minor is planar.

Before we prove Kuratowski’s theorem, let us note that it suffices
to consider ordinary minors rather than topological ones:

Proposition 4.4.2. A graph contains K® or K3 3 as a minor if and only
if it contains K® or K3 3 as a topological minor.

Proof. By Proposition 1.7.2 it suffices to show that every graph G
with a K® minor contains either K° as a topological minor or K33 as
a minor. So suppose that G = K?®, and let K C G be minimal such
that K = MK®. Then every branch set of K induces a tree in K, and
between any two branch sets K has exactly one edge. If we take the
tree induced by a branch set V, and add to it the four edges joining it
to other branch sets, we obtain another tree, T}, say. By the minimality
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Fig. 4.4.1. Every MK® contains a TK® or MK3 3

of K, T, has exactly 4 leaves, the 4 neighbours of V, in other branch
sets (Fig. 4.4.1).

If each of the five trees T} is a T'K; 4 then K is a TK?®, and we are
done. If one of the T} is not a T'K; 4 then it has exactly two vertices
of degree 3. Contracting V, onto these two vertices, and every other
branch set to a single vertex, we obtain a graph on 6 vertices containing
a K3 3. Thus, G = K33 as desired. O

We first prove Kuratowski’s theorem for 3-connected graphs. This
is the heart of the proof: the general case will then follow easily.

Lemma 4.4.3. Every 3-connected graph G without a K° or K3 3 minor
is planar.

Proof. We apply induction on |G|. For |G| = 4 we have G = K*, and
the assertion holds. Now let |G| > 4, and assume the assertion is true
for smaller graphs. By Lemma 3.2.1, G has an edge zy such that G/xy
is again 3-connected. Since the minor relation is transitive, G/xy has no
K? or K33 minor either. Thus, by the induction hypothesis, G/zy has
a drawing G in the plane. Let f be the face of G — Ugy containing the
point v, and let C' be the boundary of f. Let X := Ng(z)~{y} and
Y := Ng(y)~{x}; then XUY C V(C), because v,y € f. Clearly,

G =G —{vgv|veY~X}

may be viewed as a drawing of G — y, in which the vertex z is represented
by the point vy, (Fig. 4.4.2). Our aim is to add y to this drawing to
obtain a drawing of G.

Since G is 3-connected, G — Ugy 18 2-connected, so C is a cycle
(Proposition 4.2.5). Let x1,. ..,z be an enumeration along this cycle of
the vertices in X, and let P; = z;...x;41 be the X-paths on C between
them (i = 1,...,k; with 2541 := x1). For each 4, the set C' \ P, is
contained in one of the two faces of the cycle C; := xx;Pix;i17; we

f’C
X,Y

Tly..- Tk
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Fig. 4.4.2. G asa drawing of G — y: the vertex z is represented
by the point vy

denote the other face of C; by f;. Since f; contains points of f (close
to ) but no points of C', we have f; C f. Moreover, the plane edges zz;
with j ¢ {4,7+ 1} meet C; only in z and end outside f; in C' \ P;, so f;
meets none of those edges. Hence f; C R2~ &, that is, f; is contained
in a face of G'. (In fact, f; is a face of G/, but we do not need this.)

In order to turn G’ into a drawing of G, let us try to find an i
such that Y C V(P;); we may then embed y into f; and link it up to
its neighbours by arcs inside f;. Suppose there is no such i: how then
can the vertices of Y be distributed around C? If y had a neighbour
in some ]51-, it would also have one in C — P;, so G would contain a
TKs 3 (with branch vertices , y, x;, x;41 and those two neighbours
of y). Hence Y C X. Now if [Y| = |[Y N X| > 3, we have a TK® in G.
So Y] < 2; in fact, |Y| = 2, because d(y) > k(G) > 3. Since the two
vertices of Y lie on no common F;, we can once more find a TK3 3 in G,
a contradiction. ]

Compared with other proofs of Kuratowski’s theorem, the above
proof has the attractive feature that it can easily be adapted to produce
a drawing in which every inner face is convex (exercise); in particular,
every edge can be drawn straight. Note that 3-connectedness is essential
here: a 2-connected planar graph need not have a drawing with all inner
faces convex (example?), although it always has a straight-line drawing
(Exercise 12).

It is not difficult, in principle, to reduce the general Kuratowski
theorem to the 3-connected case by manipulating and combining partial
drawings assumed to exist by induction. For example, if x(G) = 2 and
G = G1 UGy with V(G1NGs) = {z,y}, and if G has no TK® or TK3 3
subgraph, then neither G1 + zy nor Gs + xy has such a subgraph, and
we may try to combine drawings of these graphs to one of G + zy. (If
xy is already an edge of G, the same can be done with G; and Gs.)
For k(G) < 1, things become even simpler. However, the geometric
operations involved require some cumbersome shifting and scaling, even
if all the plane edges occurring are assumed to be straight.
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The following more combinatorial route is just as easy, and may be
a welcome alternative.

Lemma 4.4.4. Let X be a set of 3-connected graphs. Let G be a graph
with k(G) < 2, and let Gy, G2 be proper induced subgraphs of G such
that G = G1 UGy and |G1 N Gs| = k(G). If G is edge-maximal without
a topological minor in X, then so are G1 and G, and G1 NGy = K2.

Proof. Note first that every vertex v € S := V(G; N G2) has a neigh-
bour in every component of G; — S, i = 1,2: otherwise S~ {v } would
separate G, contradicting |S| = k(G). By the maximality of G, every
edge e added to G lies in a TX C G+ e with X € X. For all the
choices of e considered below, the 3-connectedness of X will imply that
the branch vertices of this TX all lie in the same G, say in G;. (The
position of e will always be symmetrical with respect to G; and Gs, so
this assumption entails no loss of generality.) Then the TX meets G4 at
most in a path P corresponding to an edge of X.

If S = 0, we obtain an immediate contradiction by choosing e with
one end in Gy and the other in Go. If S = {v} is a singleton, let e
join a neighbour v; of v in G; — 5 to a neighbour vs of v in Gy — S
(Fig. 4.4.3). Then P contains both v and the edge v1vs; replacing vPuvy
with the edge vvy, we obtain a TX in G; C G, a contradiction.

€

= T

G1 v G2

Fig. 4.4.8. If G+ e contains a T'X, then so does G1 or G2

So |S| =2,say S ={z,y}. Ufzy ¢ G, welet e := xy, and in the
arising T'X replace e by an x—y path through Gs; this gives a TX in G,
a contradiction. Hence zy € G, and G [S] = K? as claimed.

It remains to show that G; and G, are edge-maximal without a
topological minor in X. So let ¢’ be an additional edge for Gy, say.
Replacing Py with the edge xy if necessary, we obtain a T'X either
in G1 + ¢ (which shows the edge-maximality of Gy, as desired) or in Go
(which contradicts G2 C G). O

Lemma 4.4.5. If|G| > 4 and G is edge-maximal with TK®, TK3 3 G,
then G is 3-connected.

[8.3.1]
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Proof. We apply induction on |G|. For |G| = 4, we have G = K*
and the assertion holds. Now let |G| > 4, and let G be edge-maximal
without a TK® or TK3 3. Suppose #(G) < 2, and choose G and Gy as
in Lemma 4.4.4. For X := { K°, K33 }, the lemma says that Gy NGy is
a K2, with vertices z,y say. By Lemmas 4.4.4, 4.4.3 and the induction
hypothesis, G; and G are planar. For each i = 1,2 separately, choose a
drawing of G;, a face f; with the edge zy on its boundary, and a vertex
2; # x,y on the boundary of fi. Let K be a TK® or TK33 in the
abstract graph G + 2122 (Fig. 4.4.4).

G1 G2

Fig. 4.4.4. A TK® or TKszsin G+ 2122

If all the branch vertices of K lie in the same G;, then either G; + xz;
or G;+yz (or G; itself, if z; is already adjacent to z or y, respectively)
contains a TK® or TKj 3; this contradicts Corollary 4.2.9, since these
graphs are planar by the choice of z;. Since G+ 21 25 does not contain four
independent paths between (G; — G2) and (G — G1), these subgraphs
cannot both contain a branch vertex of a TK?®, and cannot both contain
two branch vertices of a T'K3 3. Hence K is a T'K3 3 with only one branch
vertex v in, say, Go — G1. But then also the graph Gy +v+ { vz, vy, vz },
which is planar by the choice of z1, contains a T'K3 3. This contradicts
Corollary 4.2.9. O

Theorem 4.4.6. (Kuratowski 1930; Wagner 1937)
The following assertions are equivalent for graphs G':

(i) G is planar;
(ii) G contains neither K® nor K3 3 as a minor;
(iii) G contains neither K5 nor K33 as a topological minor.
Proof. Combine Corollary 4.2.9 and Proposition 4.4.2 with Lemmas
4.4.3 and 4.4.5. 0
Corollary 4.4.7. Every maximal planar graph with at least four ver-

tices is 3-connected.

Proof. Apply Lemma 4.4.5 and Theorem 4.4.6. g
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4.5 Algebraic planarity criteria

In this section we show that planarity can be characterized in purely
algebraic terms, by a certain abstract property of its cycle space. Theo-
rems relating such seemingly distant graph properties are rare, and their
significance extends beyond their immediate applicability. In a sense,
they indicate that both ways of viewing a graph—in our case, the topo-
logical and the algebraic way—are not just formal curiosities: if both are
natural enough that, quite unexpectedly, each can be expressed in terms
of the other, the indications are that they have the power to reveal some
genuine insights into the structure of graphs and are worth pursuing.

Let G = (V,E) be a graph. We call a subset F of its edge space
E(Q) simple if every edge of G lies in at most two sets of F. For example,
the cut space C*(G) has a simple basis: according to Proposition 1.9.3 it
is generated by the cuts F(v) formed by all the edges at a given vertex v,
and an edge xy € G lies in E(v) only for v = z and for v = y.

Theorem 4.5.1. (MacLane 1937)
A graph is planar if and only if its cycle space has a simple basis.

Proof. The assertion being trivial for graphs of order at most 2, we
consider a graph G of order at least 3. If kK(G) < 1, then G is the union
of two proper induced subgraphs G1, G with |G1 NG2| < 1. Then C(G)
is the direct sum of C(G1) and C(G2), and hence has a simple basis if
and only if both C(G;) and C(G2) do (proof?). Moreover, G is planar if
and only if both G; and G5 are: this follows at once from Kuratowski’s
theorem, but also from easy geometrical considerations. The assertion
for G thus follows inductively from those for G; and Gs. For the rest of
the proof, we now assume that G is 2-connected.

We first assume that G is planar and choose a drawing. By Lemma
4.2.5, the face boundaries of G are cycles, so they are elements of C(G).
We shall show that the face boundaries generate all the cycles in G; then
C(@) has a simple basis by Lemma 4.2.1. Let C' C G be any cycle, and
let f be its inner face. By Lemma 4.2.1, every edge e with ¢ C f lies on
exactly two face boundaries G [ f'] with f' C f, and every edge of C lies
on exactly one such face boundary. Hence the sum in C(G) of all those
face boundaries is exactly C.

Conversely, let {Cq,...,Ck } be a simple basis of C(G). Then, for
every edge e € G, also C(G — e) has a simple basis. Indeed, if e lies
in just one of the sets C;, say in Cq, then {Cs,...,Cf } is a simple
basis of C(G — e); if e lies in two of the C;, say in C; and Cj, then
{C1 4+ C5,C5,...,Cy} is such a basis. (Note that the two bases are
indeed subsets of C(G — e) by Proposition 1.9.2.) Thus every subgraph
of G has a cycle space with a simple basis. For our proof that G is planar,
it thus suffices to show that the cycle spaces of K® and K3 3 (and hence

simple

[4.6.3]
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those of their subdivisions) do not have a simple basis: then G cannot
contain a TK?® or TKs3 3, and so is planar by Kuratowski’s theorem.

Let us consider K® first. By Theorem 1.9.6, dimC(K®) = 6; let
B ={Ci,...,Cs} be a simple basis, and put Cy := C1 +...+ Cg. As
B is linearly independent, none of the sets Cy,...,Cg is empty, and so
each of them contains at least three edges (cf. Proposition 1.9.2). The
simplicity of B therefore implies

18 =6-3 < |Cy|+...+|C6]
< 2| K|~ |Gyl
<2-10-3 =17,

a contradiction; for the middle inequality note that every edge in Cj lies
in just one of the sets C4,...,Cg.

For K3 3, Theorem 1.9.6 gives dimC(K3 3) =4;let B={C1,...,Cy }
be a simple basis, and put Cy := C1 + ...+ C4. Since K3 3 has girth 4,
each C; contains at least four edges, so

16 =4-4 < |Cy|+...+|C4]
< 2| K33 — |Col
<2-9-4=14,
a contradiction. O

It is one of the hidden beauties of planarity theory that two such
abstract and seemingly unintuitive results about generating sets in cy-
cle spaces as MacLane’s theorem and Tutte’s theorem 3.2.3 conspire to
produce a very tangible planarity criterion for 3-connected graphs:

Theorem 4.5.2. (Tutte 1963)
A 3-connected graph is planar if and only if every edge lies on at most
(equivalently: exactly) two non-separating induced cycles.

Proof. The forward implication follows from Propositions 4.2.10 and
4.2.1 (and Proposition 4.2.5 for the ‘exactly two’ version); the backward
implication follows from Theorems 3.2.3 and 4.5.1. g
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4.6 Plane duality

In this section we shall use MacLane’s theorem to uncover another con-
nection between planarity and algebraic structure: a connection between
the duality of plane graphs, defined below, and the duality of the cycle
and cut space hinted at in Chapters 1.9 and 3.5.

A plane multigraph is a pair G = (V, E) of finite sets (of vertices
and edges, respectively) satisfying the following conditions:

(i) V CR?%
(ii) every edge is either an arc between two vertices or a polygon
containing exactly one vertex (its endpoint);

(iii) apart from its own endpoint(s), an edge contains no vertex and
no point of any other edge.

We shall use terms defined for plane graphs freely for plane multigraphs.
Note that, as in abstract multigraphs, both loops and double edges count
as cycles.

Let us consider the plane multigraph G shown in Figure 4.6.1. Let
us place a new vertex inside each face of G and link these new vertices
up to form another plane multigraph G*, as follows: for every edge e of
G we link the two new vertices in the faces incident with e by an edge e*
crossing e; if e is incident with only one face, we attach a loop e* to the
new vertex in that face, again crossing the edge e. The plane multigraph
G* formed in this way is then dual to G in the following sense: if we
apply the same procedure as above to G*, we obtain a plane multigraph
very similar to G; in fact, G itself may be reobtained from G* in this way.

G

Fig. 4.6.1. A plane graph and its dual

To make this idea more precise, let G = (V, E) and (V*, E*) be any
two plane multigraphs, and put F(G) =: F and F((V*,E*)) =: F*. We
call (V*, E*) a plane dual of G, and write (V*, E*) =: G*, if there are
bijections

F—-V* E— FE* V- F*
[t (f) e e’ v f(v)
satisfying the following conditions:

(i) v*(f) € f for all f € F;

plane
multigraph

plane
dual G*
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(i) le*NG| =1le*Né| = |enG*| =1forall e € E;
(iii) v € f*(v) for all v € V.

The existence of such bijections implies that both G and G* are con-
nected (exercise). Conversely, every connected plane multigraph G has
a plane dual G*: if we pick from each face f of G a point v*(f) as a
vertex for G*, we can always link these vertices up by independent arcs
as required by condition (ii), and there is always a bijection V — F*
satisfying (iii) (exercise).

If G7 and G% are two plane duals of G, then clearly G7 ~ G3; in fact,
one can show that the natural bijection v} (f) — v3(f) is a topological
isomorphism between G7 and G3. In this sense, we may speak of the
plane dual G* of G.

Finally, G is in turn a plane dual of G*. Indeed, this is witnessed
by the inverse maps of the bijections from the definition of G*: setting
v*(f*(v)) = v and f*(v*(f)) := f for f*(v) € F* and v*(f) € V*, we
see that conditions (i) and (iii) for G* transform into (iii) and (i) for G,
while condition (ii) is symmetrical in G and G*. Thus, the term ‘dual’
is also formally justified.

Plane duality is fascinating not least because it establishes a con-
nection between two natural but very different kinds of edge sets in a
multigraph, between cycles and cuts:

Proposition 4.6.1. For any connected plane multigraph G, an edge set
E C E(G) is the edge set of a cycle in G if and only if E* :== {e* |e € E'}
is a minimal cut in G*.

Proof. By conditions (i) and (i) in the definition of G*, two vertices
v*(f1) and v*(f2) of G* lie in the same component of G*— E* if and
only if f; and f, lie in the same region of R? \ | J E: every v*(f1)-v*(f2)
path in G*— E* is an arc between f; and f in R?\ | E, and conversely
every such arc P (with PNV (G) = 0) defines a walk in G*— E* between
v*(f1) and v*(f2).

Now if C C G is a cycle and E = E(C) then, by the Jordan curve
theorem and the above correspondence, G*— E* has exactly two com-
ponents, so E* is a minimal cut in G*.

Conversely, if E C F(G) is such that E* is a cut in G*, then, by
Proposition 4.2.3 and the above correspondence, E contains the edges
of a cycle C C G. If E* is minimal as a cut, then E cannot contain any
further edges (by the implication shown before), so E = E(C). O

Proposition 4.6.1 suggests the following generalization of plane du-
ality to a notion of duality for abstract multigraphs. Let us call a multi-
graph G* an abstract dual of a multigraph G if E(G*) = E(G) and the
minimal cuts in G* are precisely the edge sets of cycles in G. Note that
any abstract dual of a multigraph is connected.
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Proposition 4.6.2. If G* is an abstract dual of G, then the cut space
of G* is the cycle space of G, i.e.

C*(G*) = C(G).

Proof. By Lemma 1.9.4,> C*(G*) is the subspace of £(G*) = £(G)
generated by the minimal cuts in G*. By assumption, these are precisely
the edge sets of the cycles in G, and these generate C(G) in £(G). O

We finally come to one of the highlights of classical planarity the-
ory: the planar graphs are characterized by the fact that they have an
abstract dual. Although less obviously intuitive, this duality is just as
fundamental a property as planarity itself; indeed the following theorem
may well be seen as a topological characterization of the graphs that
have a dual:

Theorem 4.6.3. (Whitney 1933)
A graph is planar if and only if it has an abstract dual.

Proof. Let G be a graph. If G is plane, then every component C' of G has
a plane dual C'*. Let us consider these C* as abstract multigraphs, pick
a vertex in each of them, and identify these vertices. In the connected
multigraph G* obtained, the set of minimal cuts is the union of the sets
of minimal cuts in the multigraphs C*. By Proposition 4.6.1, these cuts
are precisely the edge sets of the cycles in G, so G* is an abstract dual
of G.

Conversely, suppose that G has an abstract dual G*. By Theorem
4.5.1 and Proposition 4.6.2 it suffices to show that C*(G*) has a simple
basis, which it has by Proposition 1.9.3. g

Exercises

1. Show that every graph can be embedded in R?® with all edges straight.
2.7 Show directly by Lemma 4.1.2 that K3 3 is not planar.
3.7 Find an Euler formula for disconnected graphs.

4. Show that every connected planar graph with n vertices, m edges and
finite girth g satisfies m < ;%5(n—2).

5.  Show that every planar graph is a union of three forests.

5 Although the lemma was stated for graphs only, its proof remains the same for
multigraphs.

(1.9.4

)
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10.7

11.

12.%

4. Planar Graphs

Let G1,G2,... be an infinite sequence of pairwise non-isomorphic
graphs. Show that if limsupe(G;) > 3 then the graphs G; have un-
bounded genus—that is to say, there is no (closed) surface S in which
all the G; can be embedded.

(Hint. You may use the fact that for every surface S there is a constant
x(S) < 2 such that every graph embedded in S satisfies the generalized
Euler formula of n —m+£ > x(S5).)

Find a direct proof for planar graphs of Tutte’s theorem on the cycle
space of 3-connected graphs (Theorem 3.2.3).

Show that the two plane graphs in Fig. 4.3.1 are not combinatorially
(and hence not topologically) isomorphic.

Show that the two graphs in Fig. 4.3.2 are combinatorially but not
topologically isomorphic.

Show that our definition of equivalence for planar embeddings does
indeed define an equivalence relation.

Find a 2-connected planar graph whose drawings are all topologically
isomorphic but whose planar embeddings are not all equivalent.

Show that every plane graph is combinatorially isomorphic to a plane
graph whose edges are all straight.

(Hint. Given a plane triangulation, construct inductively a graph-
theoretically isomorphic plane graph whose edges are straight. Which
additional property of the inner faces could help with the induction?)

Do not use Kuratowski’s theorem in the following two exercises.

13.

14.

15.7
16.
17.

18.

Show that any minor of a planar graph is planar. Deduce that a graph
is planar if and only if it is the minor of a grid. (Grids are defined in
Chapter 12.3.)

(i) Show that the planar graphs can in principle be characterized as
in Kuratowski’s theorem, i.e., that there exists a set X of graphs such
that a graph G is planar if and only if G has no topological minor in X.

(ii) More generally, which graph properties can be characterized in this
way?
Does every planar graph have a drawing with all inner faces convex?

Modify the proof of Lemma 4.4.3 so that all inner faces become convex.

Does every minimal non-planar graph G (i.e., every non-planar graph G
whose proper subgraphs are all planar) contain an edge e such that
G — e is maximally planar? Does the answer change if we define ‘mini-
mal’ with respect to minors rather than subgraphs?

Show that adding a new edge to a maximal planar graph of order at
least 6 always produces both a TK® and a T K3, 3 subgraph.
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19.

20.

21.

22.%F

23.

24.7

25.7
26.”
27.F

28.

29.

30.

31.

32.

Prove the general Kuratowski theorem from its 3-connected case by
manipulating plane graphs, i.e. avoiding Lemma 4.4.5.

(This is not intended as an exercise in elementary topology; for the
topological parts of the proof, a rough sketch will do.)

A graph is called outerplanar if it has a drawing in which every vertex
lies on the boundary of the outer face. Show that a graph is outerplanar
if and only if it contains neither K* nor K> 3 as a minor.

Let G = G1 UGz, where |G1 N G2| < 1. Show that C(G) has a simple
basis if both C(G1) and C(G2) have one.

Find a cycle space basis among the face boundaries of a 2-connected
plane graph.

Show that a 2-connected plane graph is bipartite if and only if every
face is bounded by an even cycle.

Let G be a connected plane multigraph, and let G* be its plane dual.
Prove the following two statements for every edge e € G:
(i) If e lies on the boundary of two distinct faces fi, f2 of G, then
e’ = v'(f1) v'(f2).
(ii) If e lies on the boundary of exactly one face f of G, then e* is
a loop at v*(f).
What does the plane dual of a plane tree look like?

Show that the plane dual of a plane multigraph is connected.

Show that a plane multigraph has a plane dual if and only if it is
connected.

Let G, G™ be mutually dual plane multigraphs, and let e € E(G). Prove
the following statements (with a suitable definition of G/e):

(i) If e is not a bridge, then G*/e* is a plane dual of G —e.

(ii) If e is not a loop, then G* —e* is a plane dual of G/e.

Show that any two plane duals of a plane multigraph are combinatori-
ally isomorphic.

Let G, G* be mutually dual plane graphs. Prove the following state-
ments:
(i) If G is 2-connected, then G* is 2-connected.
(ii) If G is 3-connected, then G* is 3-connected.
(iii) If G is 4-connected, then G* need not be 4-connected.

Let G, G* be mutually dual plane graphs. Let Bi,..., By be the blocks
of G. Show that Bj,..., B, are the blocks of G*.

Show that if G* is an abstract dual of a multigraph G, then G is an
abstract dual of G*.
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33. Show that a connected graph G = (V, E) is planar if and only if there
exists a connected multigraph G’ = (V’, E) (i.e. with the same edge
set) such that the following holds for every set F' C E: the graph (V, F)
is a tree if and only if (V', E\ F) is a tree.

Notes

There is an excellent monograph on the embedding of graphs in surfaces,
including the plane: B.Mohar & C.Thomassen, Graphs on Surfaces, Johns
Hopkins University Press, to appear. Proofs of the results cited in Section 4.1,
as well as all references for this chapter, can be found there. A good account
of the Jordan curve theorem, both polygonal and general, is given also in
J. Stillwell, Classical topology and combinatorial group theory, Springer 1980.

The short proof of Corollary 4.2.8 uses a trick that deserves special men-
tion: the so-called double counting of pairs, illustrated in the text by a bipar-
tite graph whose edges can be counted alternatively by summing its degrees
on the left or on the right. Double counting is a technique widely used in
combinatorics, and there will be more examples later in the book.

The material of Section 4.3 is not normally standard for an introductory
graph theory course, and the rest of the chapter can be read independently of
this section. However, the results of Section 4.3 are by no means unimportant.
In a way, they have fallen victim to their own success: the shift from a topo-
logical to a combinatorial setting for planarity problems which they achieve
has made the topological techniques developed there dispensable for most of
planarity theory.

In its original version, Kuratowski’s theorem was stated only for topo-
logical minors; the version for general minors was added by Wagner in 1937.
Our proof of the 3-connected case (Lemma 4.4.3) can easily be strengthened
to make all the inner faces convex (exercise); see C. Thomassen, Planarity and
duality of finite and infinite graphs, J. Combin. Theory B 29 (1980), 244-271.
The existence of such ‘convex’ drawings for 3-connected planar graphs follows
already from the theorem of Steinitz (1922) that these graphs are precisely
the 1-skeletons of 3-dimensional convex polyhedra. Compare also W.T. Tutte,
How to draw a graph, Proc. London Math. Soc. 13 (1963), 743-767.

As one readily observes, adding an edge to a maximal planar graph (of
order at least 6) produces not only a topological K® or Ks3, but both. In
Chapter 8.3 we shall see that, more generally, every graph with n vertices
and more than 3n — 6 edges contains a TK® and, with one easily described
class of exceptions, also a T'K3 3. Seymour conjectures that every 5-connected
non-planar graph contains a TK® (unpublished).

The simple cycle space basis constructed in the proof of MacLane’s theo-
rem, which consists of the inner face boundaries, is canonical in the following
sense: for every simple basis B of the cycle space of a 2-connected planar graph
there exists a drawing of that graph in which B is precisely the set of inner face
boundaries. (This is proved in Mohar & Thomassen, who also mention some
further planarity criteria.) Our proof of the backward direction of MacLane’s
theorem is based on Kuratowski’s theorem. A more direct approach, in which
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a planar embedding is actually constructed from a simple basis, is adopted in
K. Wagner, Graphentheorie, BI Hochschultaschenbiicher 1972.

The proper setting for duality phenomena between cuts and cycles in ab-
stract graphs (and beyond) is the theory of matroids; see J.G. Oxley, Matroid
Theory, Oxford University Press 1992.






D Colouring

How many colours do we need to colour the countries of a map in such
a way that adjacent countries are coloured differently? How many days
have to be scheduled for committee meetings of a parliament if every
committee intends to meet for one day and some members of parliament
serve on several committees? How can we find a school timetable of min-
imum total length, based on the information of how often each teacher
has to teach each class?

A wertex colouring of a graph G = (V, E) is a map ¢:V — S such
that c¢(v) # ¢(w) whenever v and w are adjacent. The elements of the
set S are called the available colours. All that interests us about S is
its size: typically, we shall be asking for the smallest integer k such that
G has a k-colouring, a vertex colouring ¢: V —{1,...,k }. This k is the
(vertez-) chromatic number of Gj it is denoted by x(G). A graph G with
X(G) = k is called k-chromatic; if x(G) < k, we call G k-colourable.

2

/N

1 2

Fig. 5.0.1. A vertex colouring V—{1,...,4}

Note that a k-colouring is nothing but a vertex partition into k
independent sets, now called colour classes; the non-trivial 2-colourable
graphs, for example, are precisely the bipartite graphs. Historically,
the colouring terminology comes from the map colouring problem stated

vertex
colouring

chromatic
number

x(G)

colour
classes



edge
colouring

chromatic
index

X'(G)

(4.1.1)
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above, which leads to the problem of determining the maximum chro-
matic number of planar graphs. The committee scheduling problem, too,
can be phrased as a vertex colouring problem—how?

An edge colouring of G = (V, E) is a map ¢: E— S with c(e) # c(f)
for any adjacent edges e, f. The smallest integer k for which a k-edge-
colouring exists, i.e. an edge colouring ¢: E — {1,...,k}, is the edge-
chromatic number, or chromatic indezx, of G; it is denoted by x'(G).
The third of our introductory questions can be modelled as an edge
colouring problem in a bipartite multigraph (how?).

Clearly, every edge colouring of G is a vertex colouring of its line
graph L(G), and vice versa; in particular, x'(G) = x(L(G)). The prob-
lem of finding good edge colourings may thus be viewed as a restriction
of the more general vertex colouring problem to this special class of
graphs. As we shall see, this relationship between the two types of
colouring problem is reflected by a marked difference in our knowledge
about their solutions: while there are only very rough estimates for y,
its sister x’ always takes one of two values, either A or A+ 1.

5.1 Colouring maps and planar graphs

If any result in graph theory has a claim to be known to the world
outside, it is the following four colour theorem (which implies that every
map can be coloured with at most four colours):

Theorem 5.1.1. (Four Colour Theorem)
Every planar graph is 4-colourable.

Some remarks about the proof of the four colour theorem and its history
can be found in the notes at the end of this chapter. Here, we prove the
following weakening:

Proposition 5.1.2. (Five Colour Theorem)
Every planar graph is 5-colourable.

Proof. Let G be a plane graph with n > 6 vertices and m edges. We
assume inductively that every plane graph with fewer than n vertices
can be 5-coloured. By Corollary 4.2.8,

d(G) =2m/n <2(Bn—06)/n < 6;

let v € G be a vertex of degree at most 5. By the induction hypothesis,
the graph H := G —v has a vertex colouring ¢: V(H) —{1,...,5}. If ¢
uses at most 4 colours for the neighbours of v, we can extend it to a 5-
colouring of G. Let us assume, therefore, that v has exactly 5 neighbours,
and that these have distinct colours.
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Let D be an open disc around v, so small that it meets only those
five straight edge segments of G that contain v. Let us enumerate these
segments according to their cyclic position in D as sq,...,ss5, and let
vv; be the edge containing s; (i = 1,...,5; Fig. 5.1.1). Without loss of
generality we may assume that ¢(v;) = 4 for each .

U1

Vs 85

U3
V4

Fig. 5.1.1. The proof of the five colour theorem

Let us show first that every v1—wv3 path P C H separates vy from
vg in H. Clearly, this is the case if and only if the cycle C' := vv; Pvsv
separates vg from vy in G. We prove this by showing that vo and vy lie
in different faces of C.

Consider the two regions of D N\ (s1 Usz). One of these regions
meets So, the other s4. Since CN D C s; Uss, the two regions are
each contained within a face of C'. Moreover, these faces are distinct:
otherwise, D would meet only one face of C, contrary to the fact that
v lies on the boundary of both faces (Theorem 4.1.1). Thus DN sy and
D N sy lie in distinct faces of C. As C meets the edges vvs 2 so and
vvy D 84 only in v, the same holds for vo and wvy.

Given i,j € {1,...,5}, let H; ; be the subgraph of H induced by
the vertices coloured 7 or j. We may assume that the component C; of
H; 5 containing v; also contains v3. Indeed, if we interchange the colours
1 and 3 at all the vertices of C7, we obtain another 5-colouring of H;
if v3 ¢ Cq, then vy and vs are both coloured 3 in this new colouring,
and we may assign colour 1 to v. Thus, H; 3 contains a v;—vs path P.
As shown above, P separates ve from vy in H. Since PN Hyy = 0,
this means that vy and vy lie in different components of Hj 4. In the
component containing ve, we now interchange the colours 2 and 4, thus
recolouring vo with colour 4. Now v no longer has a neighbour coloured 2,
and we may give it this colour. (|

As a backdrop to the two famous theorems above, let us cite another
well-known result:

Theorem 5.1.3. (Grotzsch 1959)
Every planar graph not containing a triangle is 3-colourable.

D
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5.2 Colouring vertices

How do we determine the chromatic number of a given graph? How can
we find a vertex-colouring with as few colours as possible? How does
the chromatic number relate to other graph invariants, such as average
degree, connectivity or girth?

Straight from the definition of the chromatic number we may derive
the following upper bound:

Proposition 5.2.1. Every graph G with m edges satisfies

X(G) < %—F\/Qm—i—%.

Proof. Let ¢ be a vertex colouring of G with k = x(G) colours. Then
G has at least one edge between any two colour classes: if not, we could
have used the same colour for both classes. Thus, m > 1k(k—1). Solving
this inequality for k, we obtain the assertion claimed. O

One obvious way to colour a graph G with not too many colours is
the following greedy algorithm: starting from a fixed vertex enumeration
v1,...,V, of G, we consider the vertices in turn and colour each v; with
the first available colour—e.g., with the smallest positive integer not
already used to colour any neighbour of v; among v1,...,v;_1. In this
way, we never use more than A(G) + 1 colours, even for unfavourable
choices of the enumeration vy, ..., v,. If G is complete or an odd cycle,
then this is even best possible.

In general, though, this upper bound of A + 1 is rather generous,
even for greedy colourings. Indeed, when we come to colour the vertex
v; in the above algorithm, we only need a supply of dg[u,,....0; (Vi) +1
rather than dg (v;) + 1 colours to proceed; recall that, at this stage, the al-
gorithm ignores any neighbours v; of v; with j > . Hence in most graphs,
there will be scope for an improvement of the A+ 1 bound by choosing a
particularly suitable vertex ordering to start with: one that picks vertices
of large degree early (when most neighbours are ignored) and vertices
of small degree last. Locally, the number dg|,,. ..., 1(vi) + 1 of colours
required will be smallest if v; has minimum degree in G [v1,...,v;]. But
this is easily achieved: we just choose v, first, with d(v,) = 6(G), then
choose as v,—1 a vertex of minimum degree in G — v, and so on.

The least number k such that G has a vertex enumeration in which
each vertex is preceded by fewer than k of its neighbours is called
the colouring number col(G) of G. The enumeration we just discussed
shows that col(G) < maxpcgd(H)+ 1. But for H C G clearly also
col(G) > col(H) and col(H) > 6(H) + 1, since the ‘back-degree’ of the
last vertex in any enumeration of H is just its ordinary degree in H,
which is at least 6(H). So we have proved the following:
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Proposition 5.2.2. Every graph G satisfies

X(G) € col(G) =max{é6(H) | HCG}+1.
|

Corollary 5.2.3. Every graph G has a subgraph of minimum degree at
least x(G) — 1. O

The colouring number of a graph is closely related to its arboricity; see
the remark following Theorem 3.5.4.

As we have seen, every graph G satisfies x(G) < A(G) + 1, with
equality for complete graphs and odd cycles. In all other cases, this
general bound can be improved a little:

Theorem 5.2.4. (Brooks 1941)
Let G be a connected graph. If G is neither complete nor an odd cycle,
then

X(G) < AG).

Proof. We apply induction on |G|. If A(G) < 2, then G is a path or
a cycle, and the assertion is trivial. We therefore assume that A :=
A(G) > 3, and that the assertion holds for graphs of smaller order.
Suppose that x(G) > A.

Let v € G be a vertex and H := G —wv. Then x(H) < A: by
induction, every component H’ of H satisfies x(H') < A(H') < A unless
H' is complete or an odd cycle, in which case x(H') = A(H')+1 < A
as every vertex of H' has maximum degree in H' and one such vertex is
also adjacent to v in G.

Since H can be A-coloured but G cannot, we have the following:

Every A-colouring of H uses all the colours 1,...,A on
the neighbours of v; in particular, d(v) = A.

(1)

Given any A-colouring of H, let us denote the neighbour of v col-
oured ¢ by v;, i = 1,...,A. For all ¢ # j, let H; ; denote the subgraph
of H spanned by all the vertices coloured ¢ or j.

For all i # j, the vertices v; and v; lie in a common com-
pOIlth C,’J’ OfH?ﬁj'

(2)

Otherwise we could interchange the colours ¢ and j in one of those com-
ponents; then v; and v; would be coloured the same, contrary to (1).

C; ; is always a v;—v; path. (3)

Indeed, let P be a v;—v; path in C; ;. As dg(v;) < A —1, the neighbours
of v; have pairwise different colours: otherwise we could recolour v;,

[9.2.1]
[9.2.3]
[11.2.3]

v, H

UIFRRS 7N
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contrary to (1). Hence the neighbour of v; on P is its only neighbour
in C;;, and similarly for v;. Thus if C;; # P, then P has an inner
vertex with three identically coloured neighbours in H; let u be the first
such vertex on P (Fig. 5.2.1). Since at most A — 2 colours are used
on the neighbours of u, we may recolour u. But this makes P into a
component of H; ;, contradicting (2).

Fig. 5.2.1. The proof of (3) in Brooks’s theorem
For distinct i, j, k, the paths C; ; and C; ), meet only in v;. (4)

For if v; # u € C; ;N C i, then u has two neighbours coloured j and two
coloured k, so we may recolour u. In the new colouring, v; and v; lie in
different components of H; ;, contrary to (2).

The proof of the theorem now follows easily. If the neighbours of v
are pairwise adjacent, then each has A neighbours in N (v)U{ v } already,
so G =G[N@w)U{v}] = K2 As G is complete, there is nothing to
show. We may thus assume that vivs ¢ G, where vy,...,va derive their
names from some fixed A-colouring c of H. Let u # vs be the neighbour
of v1 on the path Cj 2; then ¢(u) = 2. Interchanging the colours 1 and 3
in C1 3, we obtain a new colouring ¢’ of H; let v, H; ;, C} ; etc. be defined
with respect to ¢’ in the obvious way. As a neighbour of v; = v, our
vertex u now lies in € 5, since ¢'(u) = c(u) = 2. By (4) for ¢, however,
the path v1C 2 retained its original colouring, so u € ¥;Cy 2 C 0{72.
Hence u € C5 3N C1 5, contradicting (4) for ¢’. O

As we have seen, a graph G of large chromatic number must have
large maximum degree: at least x(G)— 1. What else can we say about
the structure of graphs with large chromatic number?

One obvious possible cause for x(G) > k is the presence of a K*
subgraph. This is a local property of G, compatible with arbitrary values
of global invariants such as € and k. Hence, the assumption of x(G) > k
does not tell us anything about those invariants for G itself. It does,
however, imply the existence of a subgraph where those invariants are
large: by Corollary 5.2.3, G has a subgraph H with §(H) > k—1, and
hence by Theorem 1.4.2 a subgraph H’ with x(H’) > |(k—1)].
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So are those somewhat denser subgraphs the ‘cause’ for the large
value of x?7 Do they, in turn, necessarily contain a graph of high chro-
matic number—maybe even one from some small collection of canonical
such graphs, such as K*? Interestingly, this is not so: those subgraphs of
large but ‘constant’ average degree—bounded below only by a function
of k, not of |G|—are not nearly dense enough to contain (necessarily)
any particular graph of high chromatic number, let alone K*.!

Yet even if the above local structures do not appear to help, it
might still be the case that, somehow, a high chromatic number forces
the existence of certain canonical highly chromatic subgraphs. That this
is in fact not the case will be our main result in Chapter 11: according
to a classic result of Erdés, proved by probabilistic methods, there are
graphs of arbitrarily large chromatic number and yet arbitrarily large
girth (Theorem 11.2.2). Thus given any graph H that is not a forest, for
every k € N there are graphs G with x(G) > k but H Z G.2

Thus, contrary to our initial guess that a large chromatic number
might always be caused by some dense local substructure, it can in fact
occur as a purely global phenomenon: after all, locally (around each
vertex) a graph of large girth looks just like a tree, and is in particular
2-colourable there!

So far, we asked what a high chromatic number implies: it forces
the invariants §, d, A and « up in some subgraph, but it does not imply
the existence of any concrete subgraph of large chromatic number. Let
us now consider the converse question: from what assumptions could we
deduce that the chromatic number of a given graph is large?

Short of a concrete subgraph known to be highly chromatic (such
as K*), there is little or nothing in sight: no values of the invariants
studied so far imply that the graph considered has a large chromatic
number. (Recall the example of K, ,,.) So what exactly can cause high
chromaticity as a global phenomenon largely remains a mystery!

Nevertheless, there exists a simple—though not always short—
procedure to construct all the graphs of chromatic number > k. For
each k € N, let us define the class of k-constructible graphs recursively
as follows:

(i) K* is k-constructible.

(ii) If G is k-constructible and z,y € V(G) are non-adjacent, then also
(G + zy)/xy is k-constructible.

L This is obvious from the examples of Ky n, which are 2-chromatic but whose
connectivity and average degree n exceeds any constant bound. Which (non-constant)
average degree exactly will force the existence of a given subgraph will be the topic
of Chapter 7.

2 By Corollaries 5.2.3 and 1.5.4, of course, every graph of sufficiently high chro-
matic number will contain any given forest.

k-con-
structible
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(iii) If G4, Gs are k-constructible and there are vertices x,y1, y2 such
that G1NGe = {x}, zy1 € E(G1) and zy2 € E(G3), then also
(G1UG3) — xy1 — xys +y1y2 is k-constructible (Fig. 5.2.2).

. \
. .

T T

Fig. 5.2.2. The Hajds construction (iii)

One easily checks inductively that all k-constructible graphs—and hence
their supergraphs—are at least k-chromatic. Indeed, if (G + zy)/zy as
in (ii) has a colouring with fewer than k colours, then this defines such
a colouring also for G, a contradiction. Similarly, in any colouring of
the graph constructed in (iii), the vertices y; and y2 do not both have
the same colour as z, so this colouring induces a colouring of either G
or (G2 and hence uses at least k& colours.
It is remarkable, though, that the converse holds too:

Theorem 5.2.5. (Haj6s 1961)
Let G be a graph and k € N. Then x(G) > k if and only if G has a
k-constructible subgraph.

Proof. Let G be a graph with x(G) > k; we show that G has a k-
constructible subgraph. Suppose not; then £ > 3. Adding some edges
if necessary, let us make G edge-maximal with the property that none
of its subgraphs is k-constructible. Now G is not a complete r-partite
graph for any r: for then x(G) > k would imply r > k, and G would
contain the k-constructible graph K*.

Since G is not a complete multipartite graph, non-adjacency is not
an equivalence relation on V(G). So there are vertices y1, , y2 such that
nz,xye ¢ E(G) but y1y2 € E(G). Since G is edge-maximal without
a k-constructible subgraph, each edge zy; lies in some k-constructible
subgraph H; of G+zy; (i = 1,2).

Let H} be an isomorphic copy of Hs that contains x and Hs — Hy
but is otherwise disjoint from G, together with an isomorphism v +— v’
from Hj to H) that fixes Hy N H) pointwise. Then Hy N H) = {z }, so

H := (HyUHj) —xys — xys + Y195

is k-constructible by (iii). One vertex at a time, let us identify in H each
vertex v/ € H) — G with its partner v; since vv’ is never an edge of H,
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each of these identifications amounts to a construction step of type (ii).
Eventually, we obtain the graph

(HiUH3) —zy1 —ay2 +1y1y2 C G

this is the desired k-constructible subgraph of G. g

5.3 Colouring edges

Clearly, every graph G satisfies x'(G) > A(G). For bipartite graphs, we
have equality here:

Proposition 5.3.1. (Konig 1916)
Every bipartite graph G satisfies xX'(G) = A(G).

Proof. We apply induction on ||G||. For ||G|| = 0 the assertion holds.
Now assume that ||G|| > 1, and that the assertion holds for graphs with
fewer edges. Let A := A(G), pick an edge xy € G, and choose a A-
edge-colouring of G — zy by the induction hypothesis. Let us refer to
the edges coloured o as a-edges, etc.

In G — zy, each of x and y is incident with at most A — 1 edges.
Hence there are o, 3 € {1,...,A} such that z is not incident with an
a-edge and y is not incident with a (-edge. If @ = 3, we can colour the
edge xy with this colour and are done; so we may assume that o # 3,
and that z is incident with a (-edge.

Let us extend this edge to a maximal walk W whose edges are
coloured § and « alternately. Since no such walk contains a vertex twice
(why not?), W exists and is a path. Moreover, W does not contain y:
if it did, it would end in y on an a-edge (by the choice of 3) and thus
have even length, so W + xy would be an odd cycle in G (cf. Proposition
1.6.1). We now recolour all the edges on W, swapping a with 5. By the
choice of a and the maximality of W, adjacent edges of G — xy are still
coloured differently. We have thus found a A-edge-colouring of G — xy
in which neither x nor y is incident with a 8-edge. Colouring zy with (3,
we extend this colouring to a A-edge-colouring of G. 0

Theorem 5.3.2. (Vizing 1964)
Every graph G satisfies

Proof. We prove the second inequality by induction on ||G||. For ||G|| =0
it is trivial. For the induction step let G = (V, E) with A := A(G) > 0 be

(1.6.1)

A, xy

a-edge

a7ﬁ
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given, and assume that the assertion holds for graphs with fewer edges.
Instead of ‘(A + 1)-edge-colouring’ let us just say ‘colouring’. An edge
coloured o will again be called an a-edge.

For every edge e € G there exists a colouring of G — e, by the
induction hypothesis. In such a colouring, the edges at a given vertex
v use at most d(v) < A colours, so some colour € {1,...,A+1}is
missing at v. For any other colour «, there is a unique maximal walk
(possibly trivial) starting at v, whose edges are coloured alternately «
and 3. This walk is a path; we call it the /3 - path from v.

Suppose that G has no colouring. Then the following holds:

Given zy € FE, and any colouring of G — zy in which the
colour « is missing at x and the colour 3 is missing at vy, (1)
the /3 - path from y ends in x.

Otherwise we could interchange the colours o and [ along this path and
colour zy with a, obtaining a colouring of G (contradiction).

Let xyp € G be an edge. By induction, Gy := G — zyy has a
colouring cg. Let a be a colour missing at x in this colouring. Further,
let yo,¥y1,---,yx be a maximal sequence of distinct neighbours of z in G,
such that co(zy;) is missing in ¢p at y;—1 for each ¢ = 1,... k. For each
of the graphs G; := G — zy; we define a colouring ¢;, setting

(¢) = co(zyj41) fore=wxy; with j € {0,...,i—1}
Gle) = cole) otherwise;

note that in each of these colourings the same colours are missing at x
as in cg.

Now let 3 be a colour missing at yj, in ¢g. Clearly, 3 is still missing
at yi in cx. If B were also missing at z, we could colour xy, with §
and thus extend c; to a colouring of G. Hence, x is incident with a
B-edge (in every colouring). By the maximality of k, therefore, there is
ani e {1,...,k—1} such that

Co(zyi) =p.

Let P be the /- path from yy, in Gy, (with respect to ¢x; Fig. 5.3.1).
By (1), P ends in z, and it does so on a [-edge, since « is missing at x.
As 8 = ¢co(xy;) = cx(xyi—1), this is the edge zy;—1. In ¢, however, and
hence also in ¢;_1, 3 is missing at y;—1 (by (2) and the choice of y;); let
P’ be the a/B-path from y;_1 in G;—; (with respect to ¢;_1). Since P’
is uniquely determined, it starts with y;_1 Pyx; note that the edges of
Pz are coloured the same in ¢;_1 as in ¢;. But in ¢g, and hence in ¢;_1,
there is no f-edge at yi (by the choice of 3). Therefore P’ ends in yy,
contradicting (1). O
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Fig. 5.3.1. The a/3-path P in Gy

Vizing’s theorem divides the finite graphs into two classes according
to their chromatic index; graphs satisfying x' = A are called (imagina-
tively) class 1, those with X' = A+ 1 are class 2.

5.4 List colouring

In this section, we take a look at a relatively recent generalization of the
concepts of colouring studied so far. This generalization may seem a little
far-fetched at first glance, but it turns out to supply a fundamental link
between the classical (vertex and edge) chromatic numbers of a graph
and its other invariants.

Suppose we are given a graph G = (V, E), and for each vertex of
G a list of colours permitted at that particular vertex: when can we
colour G (in the usual sense) so that each vertex receives a colour from
its list? More formally, let (S,),cv be a family of sets. We call a vertex
colouring ¢ of G with ¢(v) € S, for all v € V a colouring from the
lists S,. The graph G is called k-list-colourable, or k-choosable, if, for
every family (S, )ycv with |S,| = k for all v, there is a vertex colouring
of G from the lists S,,. The least integer k for which G is k-choosable is
the list-chromatic number, or choice number ch(G) of G.

List-colourings of edges are defined analogously. The least integer
k such that G has an edge colouring from any family of lists of size k
is the list-chromatic index ch’(G) of G; formally, we just set ch’(G) :=
ch(L(@G)), where L(G) is the line graph of G.

In principle, showing that a given graph is k-choosable is more diffi-
cult than proving it to be k-colourable: the latter is just the special case
of the former where all lists are equal to {1,...,k }. Thus,

ch(G) = x(G) and ch'(G) = X'(G)

for all graphs G.

k-choosable

choice
number

ch(G)

ch’(G)
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In spite of these inequalities, many of the known upper bounds for
the chromatic number have turned out to be valid for the choice num-
ber, too. Examples for this phenomenon include Brooks’s theorem and
Proposition 5.2.2; in particular, graphs of large choice number still have
subgraphs of large minimum degree. On the other hand, it is easy to con-
struct graphs for which the two invariants are wide apart (Exercise 24).
Taken together, these two facts indicate a little how far those general
upper bounds on the chromatic number may be from the truth.

The following theorem shows that, in terms of its relationship to
other graph invariants, the choice number differs fundamentally from the
chromatic number. As mentioned before, there are 2-chromatic graphs
of arbitrarily large minimum degree, e.g. the graphs K, ,. The choice
number, however, will be forced up by large values of invariants like §, &
or K:

Theorem 5.4.1. (Alon 1993)
There exists a function f:N— N such that, given any integer k, all graphs
G with average degree d(G) > f(k) satisty ch(G) > k.

The proof of Theorem 5.4.1 uses probabilistic methods as introduced in
Chapter 11.

Empirically, the choice number’s different character is highlighted
by another phenomenon: even in cases where known bounds for the
chromatic number could be transferred to the choice number, their proofs
have tended to be rather different.

One of the simplest and most impressive examples for this is the list
version of the five colour theorem: every planar graph is 5-choosable.
This had been conjectured for almost 20 years, before Thomassen found
a very simple induction proof. This proof does not use the five colour
theorem—which thus gets reproved in a very different way.

Theorem 5.4.2. (Thomassen 1994)
Every planar graph is 5-choosable.

Proof. We shall prove the following assertion for all plane graphs G with
at least 3 vertices:

Suppose that every inner face of G is bounded by a trian-
gle and its outer face by a cycle C' = vy ...v,v1. Suppose
further that vy has already been coloured with the col-
our 1, and vs has been coloured 2. Suppose finally that
with every other vertex of C a list of at least 3 colours is
associated, and with every vertex of G — C' a list of at least
5 colours. Then the colouring of v1 and vy can be extended
to a colouring of G from the given lists.
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Let us check first that () implies the assertion of the theorem.
Let any plane graph be given, together with a list of 5 colours for each
vertex. Add edges to this graph until it is a maximal plane graph G.
By Proposition 4.2.6, G is a plane triangulation; let vyvovzv; be the
boundary of its outer face. We now colour v; and ve (differently) from
their lists, and extend this colouring by () to a colouring of G from the
lists given.

Let us now prove (x), by induction on |G|. If |G| = 3, then G =
C and the assertion is trivial. Now let |G| > 4, and assume (%) for
smaller graphs. If C' has a chord vw, then vw lies on two unique cycles
C1,Cy C C+vw with vive € Cp and vivy ¢ Cy. For i = 1,2, let G;
denote the subgraph of G induced by the vertices lying on C; or in its
inner face (Fig. 5.4.1). Applying the induction hypothesis first to G;
and then—with the colours now assigned to v and w—to G5 yields the
desired colouring of G.

G 2!
Vo =W
v
G2
Fig. 5.4.1. The induction step with a chord vw; here the case
of w = vy
If C has no chord, let vy, w1, ..., U, vx—1 be the neighbours of vy in

their natural cyclic order order around vy;® by definition of C, all those
neighbours u; lie in the inner face of C' (Fig. 5.4.2). As the inner faces

Fig. 5.4.2. The induction step without a chord

3 as in the first proof of the five colour theorem

U, ...

VW
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of C' are bounded by triangles, P := viu1 ... unvg—1 is a path in G, and
C' .= PU(C — ) a cycle.

We now choose two different colours 7, ¢ # 1 from the list of vy and
delete these colours from the lists of all the vertices u;. Then every list of
a vertex on C’ still has at least 3 colours, so by induction we may colour
C’ and its interior, i.e. the graph G —vg. At least one of the two colours
4, £ is not used for vi_1, and we may assign that colour to vy. 0

As is often the case with induction proofs, the trick of the proof
above lies in the delicately balanced strengthening of the assertion
proved. Note that the proof uses neither traditional colouring arguments
(such as swapping colours along a path) nor the Euler formula implicit in
the standard proof of the five colour theorem. This suggests that maybe
in other unsolved colouring problems too it might be of advantage to
aim straight for their list version, i.e. to prove an assertion of the form
ch(G) < k instead of the formally weaker x(G) < k. Unfortunately,
this approach fails for the four colour theorem: planar graphs are not in
general 4-choosable.

As mentioned before, the chromatic number of a graph and its choice
number may differ a lot. Surprisingly, however, no such examples are
known for edge colourings. Indeed it has been conjectured that none
exist:

List colouring conjecture. Every graph G satisfies ch’(G) = x'(G).

We shall prove the list colouring conjecture for bipartite graphs. As
a tool we shall use orientations of graphs, defined in Chapter 1.10. If D
is a directed graph and v € V (D), we denote by N (v) the set, and by
d*(v) the number, of vertices w such that D contains an edge directed
from v to w.

To see how orientations come into play in the context of colouring,
let us recall the greedy algorithm from Section 5.2. In order to apply the
algorithm to a graph G, we first have to choose a vertex enumeration
v1,...,V, of G. The enumeration chosen defines an orientation of G:
just orient every edge v;v; ‘backwards’, from v; to v; if 4 > j. Then, for
each vertex v; to be coloured, the algorithm considers only those edges
at v; that are directed away from v;: if d*(v) < k for all vertices v, it will
use at most k colours. Moreover, the first colour class U found by the
algorithm has the following property: it is an independent set of vertices
to which every other vertex sends an edge. The second colour class has
the same property in G — U, and so on.

The following lemma generalizes this to orientations D of G that do
not necessarily come from a vertex enumeration, but may contain some
directed cycles. Let us call an independent set U C V(D) a kernel of D
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if, for every vertex v € D — U, there is an edge in D directed from v
to a vertex in U. Note that kernels of non-empty directed graphs are
themselves non-empty.

Lemma 5.4.3. Let H be a graph and (S,),cv(m) a family of lists. If H
has an orientation D with d*(v) < |S,| for every v, and such that every
induced subgraph of D has a kernel, then H can be coloured from the
lists S,,.

Proof. We apply induction on |H|. For |H| = 0 we take the empty
colouring. For the induction step, let |H| > 0. Let « be a colour occur-
ring in one of the lists S, and let D be an orientation of H as stated.
The vertices v with a € S, span a non-empty subgraph D’ in D; by
assumption, D’ has a kernel U # ().

Let us colour the vertices in U with «, and remove « from the lists
of all the other vertices of D’. Since each of those vertices sends an edge
to U, the modified lists S] for v € D — U again satisfy the condition
dt(v) < |S!|in D—U. Since D — U is an orientation of H — U, we
can thus colour H — U from those lists by the induction hypothesis. As
none of these lists contains «, this extends our colouring U — {a'} to
the desired list colouring of H. O

Theorem 5.4.4. (Galvin 1995)
Every bipartite graph G satisfies ch’(G) = x'(G).

Proof. Let G =: (X UY, E), where { X,Y } is a vertex bipartition of G.
Let us say that two edges of G meet in X if they share an end in X, and
correspondingly for Y. Let x/'(G) =: k, and let ¢ be a k-edge-colouring
of G.

Clearly, ch’(G) > k; we prove that ch’(G) < k. Our plan is to use
Lemma 5.4.3 to show that the line graph H of G is k-choosable. To apply
the lemma, it suffices to find an orientation D of H with d*(v) < k for
every vertex v, and such that every induced subgraph of D has a kernel.
To define D, consider adjacent e, e’ € F, say with c¢(e) < c¢(e’). If e and
e’ meet in X, we orient the edge ee’ € H from €’ towards e; if e and €’
meet in Y, we orient it from e to e’ (Fig 5.4.3).

Let us compute d*(e) for given e € E = V(D). If c¢(e) = i, say,
then every ¢/ € NT(e) meeting e in X has its colour in {1,...,i—1},
and every ¢/ € N*(e) meeting e in Y has its colour in {i+1,...,k}.
As any two neighbours €’ of e meeting e either both in X or both in
Y are themselves adjacent and hence coloured differently, this implies
d*(e) < k as desired.

It remains to show that every induced subgraph D’ of D has a
kernel. We show this by induction on |D’|. For D’ = (), the empty set
is a kernel; so let |D’| > 1. Let E' := V(D’) C E. For every x € X
at which E’ has an edge, let e, € E’ be the edge at x with minimum

D’

E/
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Fig. 5.4.3. Orienting the line graph of G

c-value, and let U denote the set of all those edges e,. Then every edge
e/ € E' \U meets some ¢ € U in X, and the edge e¢’ € D' is directed
from ¢’ to e. If U is independent, it is thus a kernel of D’ and we are
home; let us assume, therefore, that U is not independent.

Let e, e’ € U be adjacent, and assume that c(e) < ¢(e’). By definition
of U, e and €’ meet in Y, so the edge ee’ € D’ is directed from e to €.
By the induction hypothesis, D’ — e has a kernel U’. If ¢’ € U’, then U’
is also a kernel of D', and we are done. If not, there exists an e” ¢ U’
such that D’ has an edge directed from €’ to €”. If ¢/ and e” met in X,
then ¢(e’’) < ¢(e’) by definition of D, contradicting e’ € U. Hence e’ and
e’ meet in Y, and ¢(e’) < c¢(e”). Since e and €’ meet in Y, too, also e
and €’ meet in Y, and ¢(e) < c(e’) < ¢(e”). So the edge ee” is directed
from e towards €, so again U’ is also a kernel of D’. |

By Proposition 5.3.1, we now know the exact list-chromatic index
of bipartite graphs:

Corollary 5.4.5. Every bipartite graph G satisfies ch’(G) = A(G).
|

5.5 Perfect graphs

As discussed in Section 5.2, a high chromatic number may occur as a
purely global phenomenon: even when a graph has large girth, and thus
locally looks like a tree, its chromatic number may be arbitrarily high.
Since such ‘global dependence’ is obviously difficult to deal with, one may
become interested in graphs where this phenomenon does not occur, i.e.
whose chromatic number is high only when there is a local reason for it.

Before we make this precise, let us note two definitions for a graph G.
The greatest integer r such that K™ C G is the cligue number w(G) of G,
and the greatest integer r such that K™ C G (induced) is the indepen-

dence number a(QG) of G. Clearly, o(G) = w(G) and w(G) = a(G).
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A graph is called perfect if every induced subgraph H C G has
chromatic number x(H) = w(H), i.e. if the trivial lower bound of w(H)
colours always suffices to colour the vertices of H. Thus, while proving
an assertion of the form x(G) > k may in general be difficult, even
in principle, for a given graph G, it can always be done for a perfect
graph simply by exhibiting some K**! subgraph as a ‘certificate’ for
non-colourability with k colours.

At first glance, the structure of the class of perfect graphs appears
somewhat contrived: although it is closed under induced subgraphs (if
only by explicit definition), it is not closed under taking general sub-
graphs or supergraphs, let alone minors (examples?). However, per-
fection is an important notion in graph theory: the fact that several
fundamental classes of graphs are perfect (as if by fluke) may serve as a
superficial indication of this.*

What graphs, then, are perfect? Bipartite graphs are, for instance.
Less trivially, the complements of bipartite graphs are perfect, too—
a fact equivalent to Konig’s duality theorem 2.1.1 (Exercise 34). The
so-called comparability graphs are perfect, and so are the interval graphs
(see the exercises); both these turn up in numerous applications.

In order to study at least one such example in some detail, we
prove here that the chordal graphs are perfect: a graph is chordal (or
triangulated) if each of its cycles of length at least 4 has a chord, i.e. if
it contains no induced cycles other than triangles.

To show that chordal graphs are perfect, we shall first characterize
their structure. If G is a graph with induced subgraphs G, G5 and S,
such that G = G1 UG5 and S = Gy NGs, we say that G arises from G4
and G by pasting these graphs together along S.

Proposition 5.5.1. A graph is chordal if and only if it can be con-
structed recursively by pasting along complete subgraphs, starting from
complete graphs.

Proof. If G is obtained from two chordal graphs G1, G2 by pasting them
together along a complete subgraph, then G is clearly again chordal:
any induced cycle in G lies in either G; or Gs, and is hence a triangle
by assumption. Since complete graphs are chordal, this proves that all
graphs constructible as stated are chordal.

Conversely, let G be a chordal graph. We show by induction on |G]|
that G can be constructed as described. This is trivial if G is complete.
We therefore assume that G is not complete, in particular |G| > 1, and
that all smaller chordal graphs are constructible as stated. Let a,b € G

4 The class of perfect graphs has duality properties with deep connections to
optimization and complexity theory, which are far from understood. Theorem 5.5.5
shows the tip of an iceberg here; for more, the reader is referred to Lovasz’s survey
cited in the notes.

perfect

chordal

pasting
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be two non-adjacent vertices, and let X C V(G) \ {a,b} a minimal
set of vertices separating a from b. Let C' denote the component of
G — X containing a, and put G; := G[V(C)UX] and Gy := G- C.
Then G arises from G; and G2 by pasting these graphs together along
S =G[X].

Since G1 and G are both chordal (being induced subgraphs of G)
and hence constructible by induction, it suffices to show that S is com-
plete. Suppose, then, that s,¢ € S are non-adjacent. By the minimality
of X = V(S) as an a-b separator, both s and ¢ have a neighbour in C.
Hence, there is an X-path from s to ¢ in G1; we let P; be a shortest such
path. Analogously, G5 contains a shortest X-path P, from s to ¢t. But
then P; U P is a chordless cycle of length > 4 (Fig. 5.5.1), contradicting
our assumption that G is chordal. (|

Fig. 5.5.1. If G; and G2 are chordal, then so is G

Proposition 5.5.2. Every chordal graph is perfect.

Proof. Since complete graphs are perfect, it suffices by Proposition
5.5.1 to show that any graph G obtained from perfect graphs G1, G2 by
pasting them together along a complete subgraph S is again perfect. So
let H C G be an induced subgraph; we show that x(H) < w(H).

Let H; := HNG; for i = 1,2, and let T := HNS. Then T is
again complete, and H arises from H; and Hy by pasting along 7. As
an induced subgraph of G;, each H; can be coloured with w(H;) colours.
Since T' is complete and hence coloured injectively, two such colourings,
one of H; and one of Hs, may be combined into a colouring of H with
max {w(Hy),w(Hs2) } < w(H) colours—if necessary by permuting the
colours in one of the H;. O

We now come to the main result in the theory of perfect graphs, the
perfect graph theorem:

Theorem 5.5.3. (Lovész 1972)
A graph is perfect if and only if its complement is perfect.
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We shall give two proofs of Theorem 5.5.3. The first of these is Lovéasz’s
original proof, which is still unsurpassed in its clarity and the amount
of ‘feel’ for the problem it conveys. Our second proof, due to Gasparian
(1996), is in fact a very short and elegant linear algebra proof of another
theorem of Lovéasz’s (Theorem 5.5.5), which easily implies Theorem 5.5.3.

Let us prepare our first proof of the perfect graph theorem by a
lemma. Let G be a graph and z € G a vertex, and let G’ be obtained
from G by adding a vertex 2’ and joining it to z and all the neighbours
of z. We say that G’ is obtained from G by expanding the vertex x to
an edge zz’ (Fig. 5.5.2).

Fig. 5.5.2. Expanding the vertex x in the proof of Lemma 5.5.4

Lemma 5.5.4. Any graph obtained from a perfect graph by expanding
a vertex is again perfect.

Proof. We use induction on the order of the perfect graph considered.
Expanding the vertex of K yields K2, which is perfect. For the induc-
tion step, let G be a non-trivial perfect graph, and let G’ be obtained
from G by expanding a vertex x € G to an edge zz’. For our proof that
G’ is perfect it suffices to show x(G’) < w(G’): every proper induced
subgraph H of G’ is either isomorphic to an induced subgraph of G or
obtained from a proper induced subgraph of G by expanding z; in either
case, H is perfect by assumption and the induction hypothesis, and can
hence be coloured with w(H) colours.
Let w(G) =: w; then w(G') € {w,w+1}. If W(G') = w+1, then

X(G) < x(G)+1=w+1=w(G)

and we are done. So let us assume that w(G') = w. Then z lies in no
K¥ C G: together with 2/, this would yield a K“*!in G’. Let us colour
G with w colours. Since every K* C G meets the colour class X of x but
not x itself, the graph H := G — (X ~ {z }) has clique number w(H) < w
(Fig. 5.5.2). Since G is perfect, we may thus colour H with w — 1 colours.
Now X is independent, so the set (X ~{x })U{z'} =V (G'— H) is also
independent. We can therefore extend our (w — 1)-colouring of H to an
w-colouring of G', showing that x(G') < w = w(G’) as desired. O

expanding
a vertex
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Proof of Theorem 5.5.3. Applying induction on |G|, we show that
the complement G of any perfect graph G = (V, E) is again perfect. For
|G| = 1 this is trivial, so let |G| > 2 for the induction step. Let X denote
the set of all vertex sets of complete subgraphs of G. Put a(G) =: «,
and let A be the set of all independent vertex sets A in G with |[A| = «.

Every proper induced subgraph of G is the complement of a proper
induced subgraph of G, and is hence perfect by induction. For the per-
fection of G it thus suffices to prove x(G) < w(G) (= «). To this end,
we shall find a set K € K such that KN A # () for all A € A; then

wG—-K)=a(G-K) <a=uw(q@),

so by the induction hypothesis

X(G) < X(G-K)+1=w(G-K)+1<w(G)

as desired.

Suppose there is no such K; thus, for every K € K there exists a
set Ag € A with KN Ag = 0. Let us replace in G every vertex x by a
complete graph G, of order

k(z) = {KeK|zeAx}|,

joining all the vertices of G, to all the vertices of G, whenever = and y are
adjacent in G. The graph G’ thus obtained has vertex set |J, . V(G2),
and two vertices v € G, and w € G, are adjacent in G’ if and only if
x =y or xy € E. Moreover, G can be obtained by repeated vertex
expansion from the graph G[{z € V | k(z) > 0}]. Being an induced
subgraph of G, this latter graph is perfect by assumption, so G’ is perfect
by Lemma 5.5.4. In particular,

X(G') < w(@). (1)

In order to obtain a contradiction to (1), we now compute in turn the
actual values of w(G’) and x(G’). By construction of G’, every maximal
complete subgraph of G’ has the form G’ [|J, .y G| for some X € K.
So there exists a set X € K such that

w(@) = k(z)

zeX

{(z,K):zeX, Kek, ve Ak}

= > IXNAg|

KeK
< K| =15 (2)
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the last inequality follows from the fact that | X N Ag| < 1 for all K
(since Ak is independent but G [ X | is complete), and |[X NAx| = 0 (by
the choice of Ax). On the other hand,

&'l =) k()

rzeV
{(z,K):zeV, Kek, e Ak}

= > |4k

KekK
K] .

As a(G') < a by construction of G, this implies

G’ G’
L. ©

X(Gl> = (@)

Putting (2) and (3) together we obtain
X(G) = K] > K] -1 2 w(@),
a contradiction to (1). O

Since the following characterization of perfection is symmetrical in
G and G, it clearly implies Theorem 5.5.3. As our proof of Theorem
5.5.5 will again be from first principles, we thus obtain a second and
independent proof of the perfect graph theorem.

Theorem 5.5.5. (Lovész 1972)
A graph G is perfect if and only if

[H| < a(H)-w(H) (%)

for all induced subgraphs H C G.

Proof. Let us write V(G) =1 V =: {v1,...,v, }, and put o := a(G)
and w := w(G). The necessity of () is immediate: if G is perfect, then
every induced subgraph H of G can be partitioned into at most w(H)
colour classes each containing at most a(H) vertices, and (x) follows.
To prove sufficiency, we apply induction on n = |G|. Assume that
every induced subgraph H of G satisfies (x), and suppose that G is not
perfect. By the induction hypothesis, every proper induced subgraph of
G is perfect. Hence, every non-empty independent set U C V satisfies

X(G-U)=w(G-U)=w. (1)

V,vi,n

a,w
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Indeed, while the first equality is immediate from the perfection of G — U,
the second is easy: ‘<’ is obvious, while x(G — U) < w would imply
X(G) < w, so G would be perfect contrary to our assumption.

Let us apply (1) to a singleton U = { u } and consider an w-colouring
of G —u. Let K be the vertex set of any K“ in G. Clearly,

ifu ¢ K then K meets every colour class of G — u; (2)

ifu € K then K meets all but exactly one colour class of G —u. (3)

Let Ay = {u1,...,uq} be an independent set in G of size a.
Let Aq,..., A, be the colour classes of an w-colouring of G — uy, let
Aut1, .-, Az, be the colour classes of an w-colouring of G — ug, and
so on; altogether, this gives us aw + 1 independent sets Ag, A1, ..., Aaw

in G. For each i = 0,...,aw, there exists by (1) a K¥ C G — A;; we
denote its vertex set by K.
Note that if K is the vertex set of any K* in G, then

KNA; =0 for exactly one i € {0,...,aw+1}. (4)

Indeed, if KN Ay = 0 then KN A; # () for all ¢ # 0, by definition of A;
and (2). Similarly if KN Ay # 0, then |[KNAg| =1, s0 KNA; =0 for
exactly one 7 # 0: apply (3) to the unique vertex u € KN Ag, and (2)
to all the other vertices u € Ag.

Let J be the real (aw+ 1) x (aw + 1) matrix with zero entries in
the main diagonal and all other entries 1. Let A be the real (aw+1) xn
matrix whose rows are the incidence vectors of the subsets 4; C V: if
@1, . . ., Qi denote the entries of the ith row of A, then a;; = 1ifv; € A;,
and a;; = 0 otherwise. Similarly, let B denote the real n x (aw + 1)
matrix whose columns are the incidence vectors of the subsets K; C V.
Now while |K; N A;| = 0 for all ¢ by the choice of K, we have K;NA; # 0
and hence |K; N A;| = 1 whenever i # j, by (4). Thus,

AB = J.

Since J is non-singular, this implies that A has rank aw + 1. In particu-
lar, n > aw + 1, which contradicts () for H := G. O

By definition, every induced subgraph of a perfect graph is again
perfect. The property of perfection can therefore be characterized by
forbidden induced subgraphs: there exists a set H of imperfect graphs
such that any graph is perfect if and only if it has no induced subgraph
isomorphic to an element of H. (For example, we may choose as H the
set of all imperfect graphs with vertices in N.)

Naturally, it would be desirable to keep H as small as possible. In
fact, one of the best known conjectures in graph theory says that H
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need only contain two types of graph: the odd cycles of length > 5 and
their complements. (Neither of these are perfect—why?) Or, rephrased
slightly:

Perfect Graph Conjecture. (Berge 1966)
A graph G is perfect if and only if neither G nor G contains an odd cycle
of length at least 5 as an induced subgraph.

Clearly, this conjecture implies the perfect graph theorem. In fact, that
theorem had also been conjectured by Berge: until its proof, it was
known as the ‘weak’ version of the perfect graph conjecture, the above
conjecture being the ‘strong’ version.

Graphs G such that neither G nor G contains an induced odd cycle
of length at least 5 have been called Berge graphs. Thus all perfect graphs
are Berge graphs, and the perfect graph conjecture claims that all Berge
graphs are perfect. This has been approximately verified by Promel &
Steger (1992), who proved that the proportion of perfect graphs to Berge
graphs on n vertices tends to 1 as n — oo.

Exercises

1.7 Show that the four colour theorem does indeed solve the map colouring
problem stated in the first sentence of the chapter. Conversely, does
the 4-colourability of every map imply the four colour theorem?

2.7 Show that, for the map colouring problem above, it suffices to consid-
er maps such that no point lies on the boundary of more than three
countries. How does this affect the proof of the four colour theorem?

3. Try to turn the proof of the five colour theorem into one of the four
colour theorem, as follows. Defining v and H as before, assume induc-
tively that H has a 4-colouring; then proceed as before. Where does
the proof fail?

4. Calculate the chromatic number of a graph in terms of the chromatic
numbers of its blocks.

5.7 Show that every graph G has a vertex ordering for which the greedy
algorithm uses only x(G) colours.

6. For every n > 1, find a bipartite graph on 2n vertices, ordered in such
a way that the greedy algorithm uses n rather than 2 colours.

7. Consider the following approach to vertex colouring. First, find a max-
imal independent set of vertices and colour these with colour 1; then
find a maximal independent set of vertices in the remaining graph and
colour those 2, and so on. Compare this algorithm with the greedy
algorithm: which is better?
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10.7

11.
12.7
13.

14.7

15.F

16.

17.%

18.

5. Colouring

Show that the bound of Proposition 5.2.2 is always at least as sharp as
that of Proposition 5.2.1.

Find a function f such that every graph of arboricity at least f(k) has
colouring number at least k, and a function g such that every graph of
colouring number at least g(k) has arboricity at least k, for all £ € N.
(The arboricity of a graph is defined in Chapter 3.5.)

A k-chromatic graph is called critically k-chromatic, or just critical,
if x(G—wv) < k for every v € V(G). Show that every k-chromatic
graph has a critical k-chromatic induced subgraph, and that any such
subgraph has minimum degree at least k — 1.

Determine the critical 3-chromatic graphs.
Show that every critical k-chromatic graph is (k — 1) - edge-connected.

Given k € N, find a constant ¢ > 0 such that every graph G with
|G| > 3k and a(G) < k contains a cycle of length at least ¢ |G|.

Find a graph G for which Brooks’s theorem yields a significantly weaker
bound on x(G) than Proposition 5.2.2.

Show that, in order to prove Brooks’s theorem for a graph G = (V, E),
we may assume that £(G) > 2 and A(G) > 3. Prove the theorem under
these assumptions, showing first the following two lemmas.

(i) Let vi,...,v, be an enumeration of V. If every v; (¢ < n) has
a neighbour v; with j > i, and if viv,, v2v, € E but vive ¢ E,
then the greedy algorithm uses at most A(G) colours.

(ii) If G is not complete and v, has maximum degree in G, then v,
has neighbours v1, v2 as in (i).

Given a graph G and k € N, let Pg(k) denote the number of vertex
colourings V(G) — {1,...,k}. Show that Pg is a polynomial in k of
degree n := |G|, in which the coefficient of k™ is 1 and the coefficient
of k"~ is —||G||. (Pg is called the chromatic polynomial of G.)

(Hint. Apply induction on ||G||. In the induction step, compare the
values of Pg(k), Pg—c(k) and Pg,.(k).)

Determine the class of all graphs G for which Pg(k) =k (k—1)""". (As
in the previous exercise, let n := |G|, and let Pg denote the chromatic
polynomial of G.)
In the definition of k-constructible graphs, replace the axiom (ii) by
(ii)’ Every supergraph of a k-constructible graph is k-constructible;
and the axiom (iii) by
(iii)’ If G is a graph with vertices x,y1,y2 such that yiy> € E(G)
but zyi,zy2 ¢ E(G), and if both G + xzy1 and G + zy» are k-
constructible, then G is k-constructible.
Show that a graph is k-constructible with respect to this new definition
if and only if its chromatic number is at least k.
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19.7

20.

21.
22.%
23.7

24.
25.7

26.

27.F
28.

29.7
30.%

31.

32.7

33.7
34.

35.

36.

An n x n-matrix with entries from {1,...,n} is called a Latin square
if every element of { 1,...,n } appears exactly once in each column and
exactly once in each row. Recast the problem of constructing Latin
squares as a colouring problem.

Without using Proposition 5.3.1, show that x'(G) = k for every k-
regular bipartite graph G.

Prove Proposition 5.3.1 from the statement of the previous exercise.
For every k € N, construct a triangle-free k-chromatic graph.

Without using Theorem 5.4.2, show that every plane graph is 6-list-
colourable.

For every integer k, find a 2-chromatic graph whose choice number is
at least k.

Find a general upper bound for ch’(G) in terms of x'(G).

Compare the choice number of a graph with its colouring number:
which is greater? Can you prove the analogue of Theorem 5.4.1 for
the colouring number?

Prove that the choice number of K3 is r.

The total chromatic number X" (G) of a graph G = (V, E) is the least
number of colours needed to colour the vertices and edges of G simulta-
neously so that any adjacent or incident elements of V' U E are coloured
differently. The total colouring conjecture says that x"(G) < A(G) +2.
Bound the total chromatic number from above in terms of the list-
chromatic index, and use this bound to deduce a weakening of the
total colouring conjecture from the list colouring conjecture.

Find a directed graph that has no kernel.

Prove Richardson’s theorem: every directed graph without odd directed
cycles has a kernel.

Show that every bipartite planar graph is 3-list-colourable.
(Hint. Apply the previous exercise and Lemma 5.4.3.)

Show that perfection is closed neither under edge deletion nor under
edge contraction.

Deduce Theorem 5.5.5 from the perfect graph conjecture.

Use Konig’s Theorem 2.1.1 to show that the complement of any bipar-
tite graph is perfect.

Using the results of this chapter, find a one-line proof of the following
theorem of Konig, the dual of Theorem 2.1.1: in any bipartite graph
without isolated vertices, the minimum number of edges meeting all
vertices equals the maximum number of independent vertices.

A graph is called a comparability graph if there exists a partial ordering
of its vertex set such that two vertices are adjacent if and only if they
are comparable. Show that every comparability graph is perfect.
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37. A graph G is called an interval graph if there exists aset { I, | v € V(G) }
of real intervals such that I, NI, # ( if and only if uv € E(G).

(i) Show that every interval graph is chordal.
(ii) Show that the complement of any interval graph is a compara-
bility graph.
(Conversely, a chordal graph is an interval graph if its complement is a
comparability graph; this is a theorem of Gilmore and Hoffman (1964).)

38.  Show that x(H) € {w(H), w(H)+1} for every line graph H.
39.7 Characterize the graphs whose line graphs are perfect.

40. Show that a graph G is perfect if and only if every non-empty induced
subgraph H of G contains an independent set A C V(H) such that
w(H—-A) <w(H).

41.% Consider the graphs G for which every induced subgraph H has the
property that every maximal complete subgraph of H meets every max-
imal independent vertex set in H.

(i) Show that these graphs G are perfect.

(i1) Show that these graphs G are precisely the graphs not containing
an induced copy of P3.

42,7 Show that in every perfect graph G one can find a set A of independent
vertex sets and a set O of vertex sets of complete subgraphs such that
UA =V(G) = |JO and every set in A meets every set in O.

(Hint. Lemma 5.5.4.)

43.7 Let G be a perfect graph. As in the proof of Theorem 5.5.3, replace
every vertex x of G with a perfect graph G (not necessarily complete).
Show that the resulting graph G’ is again perfect.

44. Let H; and H2 be two sets of imperfect graphs, each minimal with
the property that a graph is perfect if and only if it has no induced
subgraph in H; (¢ = 1,2). Do Hi1 and H2 contain the same graphs, up
to isomorphism?

Notes

The authoritative reference work on all questions of graph colouring is T.R.
Jensen & B. Toft, Graph Coloring Problems, Wiley 1995. Starting with a brief
survey of the most important results and areas of research in the field, this
monograph gives a detailed account of over 200 open colouring problems, com-
plete with extensive background surveys and references. Most of the remarks
below are discussed comprehensively in this book, and all the references for
this chapter can be found there.

The four colour problem, whether every map can be coloured with four
colours so that adjacent countries are shown in different colours, was raised by
a certain Francis Guthrie in 1852. He put the question to his brother Frederick,
who was then a mathematics undergraduate in Cambridge. The problem was
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first brought to the attention of a wider public when Cayley presented it to
the London Mathematical Society in 1878. A year later, Kempe published
an incorrect proof, which was in 1890 modified by Heawood into a proof of
the five colour theorem. In 1880, Tait announced ‘further proofs’ of the four
colour conjecture, which never materialized; see the notes for Chapter 10.

The first generally accepted proof of the four colour theorem was pub-
lished by Appel and Haken in 1977. The proof builds on ideas that can be
traced back as far as Kempe’s paper, and were developed largely by Birkhoff
and Heesch. Very roughly, the proof sets out first to show that every plane
triangulation must contain at least one of 1482 certain ‘unavoidable config-
urations’. In a second step, a computer is used to show that each of those
configurations is ‘reducible’; i.e., that any plane triangulation containing such
a configuration can be 4-coloured by piecing together 4-colourings of smaller
plane triangulations. Taken together, these two steps amount to an inductive
proof that all plane triangulations, and hence all planar graphs, can be 4-
coloured.

Appel & Haken’s proof has not been immune to criticism, not only be-
cause of their use of a computer. The authors responded with a 741 page
long algorithmic version of their proof, which addresses the various criticisms
and corrects a number of errors (e.g. by adding more configurations to the
‘unavoidable’ list): K. Appel & W.Haken, Every Planar Map is Four Col-
orable, American Mathematical Society 1989. A much shorter proof, which
is based on the same ideas (and, in particular, uses a computer in the same
way) but can be more readily verified both in its verbal and its computer part,
has been given by N. Robertson, D. Sanders, P.D. Seymour & R. Thomas, The
four-colour theorem, J. Combin. Theory B 70 (1997), 2—-44.

A relatively short proof of Grétzsch’s theorem was found by C. Thomassen,
Grotzsch’s 3-color theorem and its counterparts for the torus and the projective
plane, J. Combin. Theory B 62 (1994), 268-279. Although not touched upon
in this chapter, colouring problems for graphs embedded in surfaces other
than the plane form a substantial and interesting part of colouring theory;
see B. Mohar & C. Thomassen, Graphs on Surfaces, Johns Hopkins University
Press, to appear.

The proof of Brooks’s theorem indicated in Exercise 15, where the greedy
algorithm is applied to a carefully chosen vertex ordering, is due to Lovéasz
(1973). Lovész (1968) was also the first to construct graphs of arbitrarily
large girth and chromatic number, graphs whose existence Erdés had proved
by probabilistic methods ten years earlier.

A. Urquhart, The graph constructions of Hajés and Ore, J. Graph Theory
26 (1997), 211-215, showed that not only do the graphs of chromatic number
at least k each contain a k-constructible graph (as by Hajds’s theorem); they
are in fact all themselves k-constructible. Algebraic tools for showing that
the chromatic number of a graph is large have been developed by Kleitman &
Lovész (1982), and by Alon & Tarsi (1992); see Alon’s paper cited below.

List colourings were first introduced in 1976 by Vizing. Among other
things, Vizing proved the list-colouring equivalent of Brooks’s theorem. Voigt
(1993) constructed a plane graph of order 238 that is not 4-choosable; thus,
Thomassen’s list version of the five colour theorem is best possible. A stim-
ulating survey on the list-chromatic number and how it relates to the more
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classical graph invariants (including a proof of Theorem 5.4.1) is given by
N. Alon, Restricted colorings of graphs, in (K. Walker, ed.) Surveys in Combi-
natorics, LMS Lecture Notes 187, Cambridge University Press 1993. Both the
list colouring conjecture and Galvin’s proof of the bipartite case are originally
stated for multigraphs. Kahn (1994) proved that the conjecture is asymptot-
ically correct, as follows: given any € > 0, every graph G with large enough
maximum degree satisfies ch’(G) < (14 ¢)A(G).

The total colouring conjecture was proposed around 1965 by Vizing and
by Behzad; see Jensen & Toft for details.

A gentle introduction to the basic facts about perfect graphs and their ap-
plications is given by M.C. Golumbic, Algorithmic Graph Theory and Perfect
Graphs, Academic Press 1980. Our first proof of the perfect graph theorem
follows L. Lovdsz’s survey on perfect graphs in (L.W. Beineke and R.J. Wilson,
eds.) Selected Topics in Graph Theory 2, Academic Press 1983. The theorem
was also proved independently, and only a little later, by Fulkerson. Our
second proof, the proof of Theorem 5.5.5, is due to G.S. Gasparian, Minimal
imperfect graphs: a simple approach, Combinatorica 16 (1996), 209-212. The
approximate proof of the perfect graph conjecture is due to H.J. Promel &
A.Steger, Almost all Berge graphs are perfect, Combinatorics, Probability
and Computing 1 (1992), 53-79.



8 Flows

Let us view a graph as a network: its edges carry some kind of flow—of
water, electricity, data or similar. How could we model this precisely?

For a start, we ought to know how much flow passes through each
edge e = xy, and in which direction. In our model, we could assign
a positive integer k to the pair (x,y) to express that a flow of k units
passes through e from z to y, or assign —k to (x,y) to express that k
units of flow pass through e the other way, from y to x. For such an
assighment f:V?2 — Z we would thus have f(z,y) = —f(y, ) whenever
x and y are adjacent vertices of G.

Typically, a network will have only a few nodes where flow enters
or leaves the network; at all other nodes, the total amount of flow into
that node will equal the total amount of flow out of it. For our model
this means that, at most nodes x, the function f will satisfy Kirchhoff’s

law
> flay) =0.

yeN(z)

In this chapter, we call any map f:V? — Z with the above two
properties a ‘flow” on GG. Sometimes, we shall replace Z with another
group, and as a rule we consider multigraphs rather than graphs.! As
it turns out, the theory of those ‘flows’ is not only useful as a model for
real flows: it blends so well with other parts of graph theory that some
deep and surprising connections become visible, connections particularly
with connectivity and colouring problems.

L For consistency, we shall phrase some of our proposition for graphs only: those
whose proofs rely on assertions proved (for graphs) earlier in the book. However, all
those results remain true for multigraphs.

Kirchhoff’s
law
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6.1 Circulations

In the context of flows, we have to be able to speak about the ‘directions’
of an edge. Since, in a multigraph G = (V, E), an edge e = zy is not
identified uniquely by the pair (z,y) or (y,x), we define directed edges as
triples:

Ei={(e,0y) e B mye Vi e =ay}.
Thus, an edge e = zy with = # y has the two directions (e, z,y) and
(e,y,2); a loop e = zz has only one direction, the triple (e,z,z). For

given € = (e,z,y) € E, we set € := (e,y,x), and for an arbitrary set
F C E of edge directions we put

F:={e|eecF}.

Note that E itself is symmetrical: E = E. For X, Y CV and F C E,
define

FX,Y):={(e,x,y)e FloreX;yeY; z#y},
abbreviate F({z},Y) to F(z,Y) etc., and write
F(z) = F(z,V) = F({z},{z}).

Here, as below, X denotes the complement V \. X of a vertex set X C V.
Note that any loops at vertices x € X NY are disregarded in the defini-
tions of F(X,Y) and F(z).

Let H be an abelian semigroup,? written additively with zero 0.
Given vertex sets X, Y C V and a function f: F — H, let

FXY) = ) f(e).

Instead of f({x},Y) we again write f(z,Y), etc.

From now on, we assume that H is a group. We call f a circulation
on G (with values in H), or an H-circulation, if f satisfies the following
two conditions:

(F1) f(e,2,y) = —f(e,y,z) for all (e,z,y) € E with = # y;
(F2) f(v,V)=0forallveV.

2 This chapter contains no group theory. The only semigroups we ever consider
for H are the natural numbers, the integers, the reals, the cyclic groups Zg, and
(once) the Klein four-group.
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If f satisfies (F1), then
(X, X)=0
for all X C V. If f satisfies (F2), then

FXV) =) fla, V) =0.

reX

Together, these two basic observations imply that, in a circulation, the
net flow across any cut is zero:

Proposition 6.1.1. If f is a circulation, then f(X,X) = 0 for every
set X C V.

Proof. f(X,X) = f(X,V)—f(X,X)=0-0=0. O

Since bridges form cuts by themselves, Proposition 6.1.1 implies
that circulations are always zero on bridges:

Corollary 6.1.2. If f is a circulation and e = zy is a bridge in G, then
fle,z,y) = 0. 0

6.2 Flows in networks

In this section we give a brief introduction to the kind of network flow
theory that is now a standard proof technique in areas such as matching
and connectivity. By way of example, we shall prove a classic result of
this theory, the so-called maz-flow min-cut theorem of Ford and Fulk-
erson. This theorem alone implies Menger’s theorem without much dif-
ficulty (Exercise 3), which indicates some of the natural power lying in
this approach.

Consider the task of modelling a network with one source s and
one sink ¢, in which the amount of flow through a given link between
two nodes is subject to a certain capacity of that link. Our aim is to
determine the maximum net amount of flow through the network from
s to t. Somehow, this will depend both on the structure of the network
and on the various capacities of its connections—how exactly, is what
we wish to find out.

Let G = (V, E) be a multigraph, s,t € V two fixed vertices, and
¢E—Na map; we call ¢ a capacity function on G, and the tuple
N := (G,s,t,c) a network. Note that ¢ is defined independently for
the two directions of an edge. A function f: E—Risa flow in N if it
satisfies the following three conditions (Fig. 6.2.1):

[6.3.1]
[6.5.2]
[6.6.1]

G=(V,E)
s,t,c, N
network

flow
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(Fl) f(e,x,y) = _f(€7y7x) for all (67337?}) € E_j with z 7é Y,
(F2') f(v,V)=0forallveV~{st}
(F3) f(€) < c(e)forall € c E.

We call f integral if all its values are integers.

1

Fig. 6.2.1. A network flow in short notation: all values refer to
the direction indicated (capacities are not shown)

Let f be aflowin N. If S C V is such that s € S and t € S, we call
the pair (S, S) a cut in N, and ¢(S, S) the capacity of this cut.

Since f now has to satisfy only (F2') rather than (F2), we no longer
have f(X,X) =0 for all X C V (as in Proposition 6.1.1). However, the
value is the same for all cuts:

Proposition 6.2.1. Every cut (S,S) in N satisfies f(S,S) = f(s,V).
Proof. As in the proof of Proposition 6.1.1, we have

f(8,8) = f(S,V)—f(S,9)
)f(s,V) + ) fw,V) =0

veS~{s}

L F(s V).
(F2')
O

The common value of £(S,S) in Proposition 6.2.1 will be called the total
value of f and denoted by |f];® the flow shown in Figure 6.2.1 has total
value 3.

By (F3), we have

I =£(5.8) < (S, S)

for every cut (S,S) in N. Hence the total value of a flow in N is never
larger than the smallest capacity of a cut. The following maz-flow min-

cut theorem states that this upper bound is always attained by some
flow:

3 Thus, formally, |f| may be negative. In practice, however, we can change the
sign of |f| simply by swapping the roles of s and t¢.
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Theorem 6.2.2. (Ford & Fulkerson 1956)
In every network, the maximum total value of a flow equals the minimum
capacity of a cut.

Proof. Let N = (G, s,t, ¢) be anetwork, and G =: (V, E'). We shall define
a sequence fy, f1, f2,... of integral flows in N of strictly increasing total
value, i.e. with

|f0| < |f1| < |f2| < ...

Clearly, the total value of an integral flow is again an integer, so in fact
|fnt1]l = |fn] +1 for all n. Since all these numbers are bounded above
by the capacity of any cut in IV, our sequence will terminate with some
flow f,. Corresponding to this flow, we shall find a cut of capacity
¢n = |fn]. Since no flow can have a total value greater than ¢,, and no
cut can have a capacity less than | f,,|, this number is simultaneously the
maximum and the minimum referred to in the theorem.

For fo, we set fo(€) := 0 for all € € E. Having defined an integral
flow f, in N for some n € N, we denote by .5,, the set of all vertices v
such that G contains an s—v walk zgeq . ..ep_12, with

fnléi) < c(e)

for all i < ¢; here, €; := (e;, z;,x;41) (and, of course, xg = s and xp = v).

Ift € S,, let W = xpeq...es_12¢ be the corresponding s—t walk;
without loss of generality we may assume that W does not repeat any
vertices. Let

e:=min{c(€)— fu(&) | i < L}.

Then € > 0, and since f,, (like ¢) is integral by assumption, € is an integer.
Let

fo(€)+e fore=e;, i=0,...,0—1;
frnt1:€— < fo(€)—e€ fore=¢, i=0,...,0—1;
fn(€) fore ¢ W.

Intuitively, f,+1 is obtained from f,, by sending additional flow of value e
along W from s to t (Fig. 6.2.2).

Fig. 6.2.2. An ‘augmenting path’ W with increment ¢ = 2, for
constant flow f, = 0 and capacities ¢ = 3

max-flow
min-cut
theorem

Sn
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Clearly, f,+1 is again an integral flow in IV. Let us compute its total
value |frni1| = fat1(s, V). Since W contains the vertex s only once, €
is the only triple (e,z,y) with z = s and y € V whose f-value was
changed. This value, and hence that of f,11(s, V) was raised. Therefore
[ frt1| > |fn] as desired.

If t ¢ S,, then (S,,5,) is a cut in N. By (F3) for f,, and the
definition of S,,, we have

for all € € E(Sp,S,,), so

|fn| = fn(Snvsin) = C(Sn7Sn>
as desired. O

Since the flow constructed in the proof of Theorem 6.2.2 is integral,
we have also proved the following:

Corollary 6.2.3. In every network (with integral capacity function)
there exists an integral flow of maximum total value. O

6.3 Group-valued flows

Let G = (V,E) be a multigraph and H an abelian group. If f and
g are two H-circulations then, clearly, (f + g):€ — f(€)+ g(€) and
—f:€— —f(€) are again H-circulations. The H-circulations on G thus
form a group in a natural way.

A function f: E — H is nowhere zero if f(€) # 0 for all € € E. An
H-circulation that is nowhere zero is called an H-flow.* Note that the
set of H-flows on G is not closed under addition: if two H-flows add
up to zero on some edge €, then their sum is no longer an H-flow. By
Corollary 6.1.2, a graph with an H-flow cannot have a bridge.

For finite groups H, the number of H-flows on G—and, in particular,
their existence—surprisingly depends only on the order of H, not on H
itself:

Theorem 6.3.1. (Tutte 1954)
For every multigraph G there exists a polynomial P such that, for any
finite abelian group H, the number of H-flows on G is P(\H| — 1).

4 This terminology seems simplest for our purposes but is not standard; see the
notes.
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Proof. Let G =: (V, E); we use induction on m := |E|. Let us assume
first that all the edges of G are loops. Then, given any finite abelian
group H, every map E — H~ {0} is an H-flow on G. Since |E| = |E]|
when all edges are loops, there are (|H\ - 1)m such maps, and P := ™
is the polynomial sought.

Now assume there is an edge eg = zy € F that is not a loop; let
€y := (eo,z,y) and E' := E~{eg}. We consider the multigraphs

Gy =G—¢ and Gy :=G/eg.

By the induction hypothesis, there are polynomials P; for ¢ = 1,2 such
that, for any finite abelian group H and k := |H| — 1, the number of
H-flows on G; is P;(k). We shall prove that the number of H-flows on
G equals Py(k) — Pi(k); then P := P, — P; is the desired polynomial.

Let H be given, and denote the set of all H-flows on G by F. We
are trying to show that

|F| = Py(k) — Pu(k). (1)

The H-flows on GG; are precisely the restrictions to E’ of those H-circu-
lations on G that are zero on ey but nowhere else. Let us denote the set
of these circulations on G by F}; then

Py(k) = |F1].
Our aim is to show that, likewise, the H-flows on G5 correspond bijec-

tively to those H-circulations on G that are nowhere zero except possibly
on eg. The set Fy of those circulations on GG then satisfies

Py(k) = |F3l,

and Fj is the disjoint union of F; and F. This will prove (1), and hence
the theorem.

E'(z,y

)
T €0 Y e Lo
G G2

Fig. 6.3.1. Contracting the edge eg

In Gs, let vg := ve, be the vertex contracted from ey (Fig. 6.3.1;
see Chapter 1.10). We are looking for a bijection f +— g between Fj

(6.1.1)

ey) = Y
El

Py, P
k

Fy
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and the set of H-flows on G2. Given f, let g be the restriction of f to
E'\E'(y,x). (As the z—y edges e € E’ become loops in Ga, they have on-
ly the one direction (e, vg,vp) there; as its g-value, we choose f(e,x,y).)
Then g is indeed an H-flow on G2; note that (F2) holds at vy by Propo-
sition 6.1.1 for G, with X := {z,y }.

It remains to show that the map f — g is a bijection. If we are given
an H-flow g on Gg and try to find an f € Fy with f +— g, then f(€) is
already determined as f(€) = g(€) for all € € B/~ E'(y,z); by (F1), we
further have f(€) = —f(&) for all € € E(y,x). Thus our map f — g is
bijective if and only if for given g there is always a unique way to define
the remaining values of f(ey) and f(ég) so that f satisfies (F1) in ¢y and
(F2) in  and y.

This is indeed the case. Let V' := V ~{z,y}. As g satisfies (F2),
the f-values fixed already are such that

f@ V) +fy, V') = g(vo, V') = 0. (2)

With

hi= 30 0@ (= X alewow)).

& cE (z,y) e €E'(z,y)
(F2) for f requires

and

0= f(y,V) = f(éo) —h+f(y, V'),
so we have to set
f(@) == —f(z,V')=h and f(é):=—f(y,V')+h.
Then f(&)+ f(é5) = 0 by (2), so f also satisfies (F1) in eo. O

The polynomial P of Theorem 6.3.1 is known as the flow polynomial
of G.

Corollary 6.3.2. If H and H' are two finite abelian groups of equal
order, then G has an H-flow if and only if G has an H'-flow. O

Corollary 6.3.2 has fundamental implications for the theory of al-
gebraic flows: it indicates that crucial difficulties in existence proofs of
H-flows are unlikely to be of a group-theoretic nature. On the other
hand, being able to choose a convenient group can be quite helpful; we
shall see a pretty example for this in Proposition 6.4.5.
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Let £ > 1 be an integer and G = (V, E) a multigraph. A Z-flow f
on G such that 0 < |f(€)] < k for all € € E is called a k-flow. Clearly,
any k-flow is also an ¢-flow for all £ > k. Thus, we may ask which is
the least integer k such that G admits a k-flow—assuming that such a k
exists. We call this least k the flow number of G and denote it by ¢(G);
if G has no k-flow for any k, we put ¢(G) := oo.

The task of determining flow numbers quickly leads to some of the
deepest open problems in graph theory. We shall consider these later
in the chapter. First, however, let us see how k-flows are related to the
more general concept of H-flows.

There is an intimate connection between k-flows and Zg-flows. Let
o) denote the natural homomorphism i — ¢ from Z to Zj;. By compo-
sition with oy, every k-flow defines a Zg-flow. As the following theorem
shows, the converse holds too: from every Zg-flow on G we can construct
a k-flow on G. In view of Corollary 6.3.2, this means that the general
question about the existence of H-flows for arbitrary groups H reduces
to the corresponding question for k-flows.

Theorem 6.3.3. (Tutte 1950)
A multigraph admits a k-flow if and only if it admits a Zj-flow.

Proof. Let g be a Zp-flow on a multigraph G = (V| E); we construct a
k-flow f on G. We may assume without loss of generality that G has
no loops. Let F be the set of all functions f: E — Z that satisfy (F1),
[f(@)| < k for all € € E, and o0 f = g; note that, like g, any f € F is
nowhere zero.

Let us show first that F' # (). Since we can express every value
g(€) € Zy as ¢ with |i| < k and then put f(€) := i, there is clearly a map
f: E—Zsuch that |f(€)] < k for all € € E and o), 0 f = g. For each edge
e € F, let us choose one of its two directions and denote this by €. We
may then define f’: E — Z by setting f/(€) := f(€) and f'(€) := —f(€)
for every e € E. Then f' is a function satisfying (F1) and with values in
the desired range; it remains to show that oy o f/ and g agree not only
on the chosen directions € but also on their inverses €. Since o}, is a
homomorphism, this is indeed so:

(or o f))(€) = on(=f(€)) = =(ono f)(€) = —g(e€) = g(e).

Hence f’ € F, so F is indeed non-empty.

Our aim is to find an f € F that satisfies Kirchhoff’s law (F2), and
is thus a k-flow. As a candidate, let us consider an f € F' for which the
sum

k-flow

flow
number

»(G)

Ok
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K(f) =Y |f(= V)

zeV

of all deviations from Kirchhoff’s law is least possible. We shall prove
that K(f) = 0; then, clearly, f(x,V) = 0 for every x, as desired.

Suppose K(f) # 0. Since f satisfies (F1), and hence > _, f(z,V) =
f(V, V) = 0, there exists a vertex = with

f(z, V) >0. (1)

Let X C V be the set of all vertices ' for which G contains a walk
Zoeq - ..ep_1x¢ from x to a’ such that f(e;,x;,x;41) > 0 for all i < ¢
furthermore, let X' := X ~{x }.

We first show that X’ contains a vertex z’ with f(2/,V) < 0. By
definition of X, we have f(e,2’,y) < 0 for all edges e = z'y such that
2’ € X and y € X. In particular, this holds for 2’ = 2. Thus, (1) implies
f(z,X") > 0. Then f(X',xz) < 0 by (F1), as well as f(X',X’) = 0.
Therefore

Z f(a:’,V) = f(X/aV) = f(X/,X)+f(X/,SU)+f(X/7X/) <0,

o' eX’
so some z’ € X’ must indeed satisfy
f2', V) <0. (2)
As 2/ € X, there is an z—2’ walk W = xpeqg...ep_12, such that

f(eis iy xip1) > 0 for all i < £. We now modify f by sending some flow
back along W, letting f’: E — Z be given by

f(g)—k‘ for € = (ei,xi,xiﬂ), 1= O,...,é—l;
fe—< fe)+k fore=(e,xiv1,2i), i =0,...,0—1;
f(e) fore ¢ W.

By definition of W, we have |f'()| < k for all € € E. Hence f’, like f,
lies in F.

How does the modification of f affect K7 At all inner vertices v
of W, as well as outside W, the deviation from Kirchhoff’s law remains
unchanged:

', V)= f(v,V) forallv e V.~ {z,2'}. (3)
For x and 2/, on the other hand, we have

P V)= f@V)—k and (V)= f@V)+k. (1)
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Since g is a Zj-flow and hence

or(f(z,V)) = g(x,V) =0 € Z
and

Uk(f(‘rlv‘/)) = g(xlvv> =0¢ Zy,

f(z,V) and f(2',V) are both multiples of k. Thus f(z,V) > k and
f(2',V) < —k, by (1) and (2). But then (4) implies that

[ (@, V) < |f(x, V)] and  [f'(2, V)] < |f(2", V)]

Together with (3), this gives K(f’) < K(f), a contradiction to the choice
of f.
Therefore K(f) = 0 as claimed, and f is indeed a k-flow. O

Since the sum of two Zg-circulations is always another Zg-circulation,
Zy-flows are often easier to construct (by summing over suitable partial
flows) than k-flows. In this way, Theorem 6.3.3 may be of considerable
help in determining whether or not some given graph has a k-flow. In
the following sections we shall meet a number of examples for this.

6.4 k-Flows for small k

Trivially, a graph has a 1-flow (the empty set) if and only if it has no
edges. In this section we collect a few simple examples of sufficient
conditions under which a graph has a 2-, 3- or 4-flow. More examples
can be found in the exercises.

Proposition 6.4.1. A graph has a 2-flow if and only if all its degrees
are even.

Proof. By Theorem 6.3.3, a graph G = (V, E) has a 2-flow if and only if
it has a Zo-flow, i.c. if and only if the constant map E — Z, with value 1
satisfies (F'2). This is the case if and only if all degrees are even. O

For the remainder of this chapter, let us call a graph even if all its vertex
degrees are even.

Proposition 6.4.2. A cubic graph has a 3-flow if and only if it is bi-
partite.

(6.6.1]

(6.3.3)

even
graph
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Proof. Let G = (V,E) be a cubic graph. Let us assume first that
G has a 3-flow, and hence also a Zs-flow f. We show that any cycle
C = zp...24x0 in G has even length (cf. Proposition 1.6.1). Consider
two consecutive edges on C, say e;_1 := x;—12; and e; := x;x;41. If f
assigned the same value to these edges in the direction of the forward
orientation of C, i.e. if f(e;—1,2i—1,%;) = f(ei, i, xi41), then f could
not satisfy (F2) at x; for any non-zero value of the third edge at x;.
Therefore f assigns the values 1 and 2 to the edges of C alternately, and
in particular C' has even length.

Conversely, let G be bipartite, with vertex bipartition {X,Y }.
Since G is cubic, the map E — Zs defined by f(e,z,y) := 1 and
fle,y,x) := 2 for all edges e = zy with x € X and y € YV is a Zs-
flow on G. By Theorem 6.3.3, then, G has a 3-flow. g

What are the flow numbers of the complete graphs K™? For odd
n > 1, we have p(K™) = 2 by Proposition 6.4.1. Moreover, ¢(K?) = oo,
and p(K?) = 4; this is easy to see directly (and it follows from Proposi-
tions 6.4.2 and 6.4.5). Interestingly, K* is the only complete graph with
flow number 4:

Proposition 6.4.3. For all even n > 4, o(K") = 3.

Proof. Proposition 6.4.1 implies that ¢(K™) > 3 for even n. We show,
by induction on n, that every G = K™ with even n > 4 has a 3-flow.

For the induction start, let n = 6. Then G is the edge-disjoint union
of three graphs Gy, Ga, G, with G1,G2 = K3 and G5 = K3 3. Clearly
G1 and G5 each have a 2-flow, while G5 has a 3-flow by Proposition 6.4.2.
The union of all these flows is a 3-flow on G.

Now let n > 6, and assume the assertion holds for n — 2. Clearly, G is
the edge-disjoint union of a K"~2 and a graph G’ = (V', E’) with G’ =
K"—2 % K2 The K" 2 has a 3-flow by induction. By Theorem 6.3.3, it
thus suffices to find a Zs-flow on G’. For every vertex z of the K"=2 C ¢/,
let f, be a Zsz-flow on the triangle zazyz C G’, where e = zy is the edge
of the K2 in G’. Let f: E’ — 73 be the sum of these flows. Clearly, f is
nowhere zero, except possibly in (e,x,y) and (e,y,z). If f(e,z,y) # 0,
then f is the desired Zz-flow on G'. If f(e,z,y) = 0, then f+ f, (for
any z) is a Zs-flow on G'. O

Proposition 6.4.4. Every 4-edge-connected graph has a 4-flow.

Proof. Let G be a 4-edge-connected graph. By Corollary 3.5.2, G has
two edge-disjoint spanning trees T;, i = 1,2. For each edge e ¢ T;, let
Ci. be the unique cycle in T; + e, and let f; . be a Zy-flow of value i
around C; .—more precisely: a Zs-circulation on G with values iand —¢
on the edges of C; . and zero otherwise.
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Let f1 := ZE¢TI fi,e. Since each e ¢ T lies on only one cycle C1 ¢/
(namely, for e = €’), f; takes only the values T and —1 (= 3) outside T}.
Let

F:={ecE(T)| fi(e) =0}

and fo := > . p fo.e. As above, fo(e) =2 = =2 for all e € F. Now
f = f1+ f2 is the sum of Z,-circulations, and hence itself a Z4-circula-
tion. Moreover, f is nowhere zero: on edges in F' it takes the value 2, on
edges of Ty — F' it agrees with f; (and is hence non-zero by the choice
of F), and on all edges outside T} it takes one of the values 1 or 3. Hence,
fis a Zy-flow on G, and the assertion follows by Theorem 6.3.3. ]

The following proposition describes the graphs with a 4-flow in terms
of those with a 2-flow:

Proposition 6.4.5.

(i) A graph has a 4-flow if and only if it is the union of two even
subgraphs.

(ii) A cubic graph has a 4-flow if and only if it is 3-edge-colourable.

Proof . Let 72 = Zy x Zs be the Klein four-group. (Thus, the elements of
73 are the pairs (a, b) with a,b € Zo, and (a,b) + (a/,b') = (a+a’,b+1V).)
By Corollary 6.3.2 and Theorem 6.3.3, a graph has a 4-flow if and only
if it has a Z2 -flow.

(i) now follows directly from Proposition 6.4.1.

(ii) Let G = (V, E) be a cubic graph. We assume first that G has a
73 -flow f, and define an edge colouring £ —Z2~ {0}. As a = —a for
all a € Z2, we have f(€) = f(€) for every € € E; let us colour the edge
e with this colour f(€). Now if two edges with a common end v had
the same colour, then these two values of f would sum to zero; by (F2),
f would then assign zero to the third edge at v. As this contradicts the
definition of f, our edge colouring is correct.

Conversely, since the three non-zero elements of Z2 sum to zero,
every 3-edge-colouring c: E— 72~ {0} defines a Z2 -flow on G by letting
f(@) = f(&) = cle) for all € € E. O

Corollary 6.4.6. Every cubic 3-edge-colourable graph is bridgeless.
O

fi

f2

(6.3.2)
(6.3.3)
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6.5 Flow-colouring duality

In this section we shall see a surprising connection between flows and
colouring: every k-flow on a plane multigraph gives rise to a k-vertex-
colouring of its dual, and vice versa. In this way, the investigation of
k-flows appears as a natural generalization of the familiar map colouring
problems in the plane.

Let G = (V,E) and G* = (V*, E*) be dual plane multigraphs. For
simplicity, let us assume that G and G* have neither bridges nor loops
and are non-trivial. For edge sets F' C FE, let us write

F*:={e*e€eE*|ecF}.

Conversely, if a subset of E* is given, we shall usually write it immedi-
ately in the form F*, and thus let /' C E be defined implicitly via the
bijection e — e*.

Suppose we are given a circulation g on G*: how can we employ the
duality between G and G* to derive from g some information about G?
The most general property of all circulations is Proposition 6.1.1, which
says that g(X, X) = 0 for all X C V*. By Proposition 4.6.1, the minimal
cuts E*(X, X) in G* correspond precisely to the cycles in G. Thus if we
take the composition f of the maps e — e* and g, and sum its values
over the edges of a cycle in G, then this sum should again be zero.

Of course, there is still a technical hitch: since g takes its arguments
not in E* but in E*, we cannot simply define f as above: we first have
to refine the bijection e — e* into one from F to E* ie. assign to every
¢ecE canonically one of the two directions of e*. This will be the
purpose of our first lemma. After that, we shall show that f does indeed
sum to zero along any cycle in G.

If C =wp...v0-17 is a cycle with edges e; = v;v;41 (and vy := vp),
we shall call

5 = {(ei,vimiH) ‘ 1< E}

a cycle with orientation. Note that this definition of c depends on the
vertex enumeration chosen to denote C': every cycle has two orientations.
Conversely, of course, C' can be reconstructed from the set C.In practice,
we shall therefore speak about C' freely even when, formally, only C has
been defined.

Lemma 6.5.1. There exists a bijection *: € — €* from E to E* with
the following properties.

*

(i) The underlying edge of €* is always e*, i.e. €* is one of the two
directions e*, e* of e*.
(ii) If C C G is a cycle, F' := E(C), and if X C V* is such that

Fr = B (X, X), then there exists an orientation C' of C' with
{e*|eelC}=FE(XX).
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The proof of Lemma 6.5.1 is not entirely trivial: it is based on the
so-called orientability of the plane, and we cannot give it here. Still,
the assertion of the lemma is intuitively plausible. Indeed if we de-
fine for e = vw and e* = zy the assignment (e,v,w) — (e,v,w)* €
{(e*,z,y), (e*,y,z) } simply by turning e and its ends clockwise onto e*
(Fig. 6.5.1), then the resulting map € — €* satisfies the two assertions
of the lemma.

Q

Fig. 6.5.1. Oriented cycle-cut duality

Given an abelian group H, let f: E — H and g: E* — H be two maps f,g
such that

f(e) =g(e”)
forall € ¢ E. For F C E, we set

f(F) = > f(e).

geF F(CO) ete.
Lemma 6.5.2.
(i) The map g satisfies (F1) if and only if f does.
(ii) The map g is a circulation on G* if and only if f satisfies (F1)
and f(C) = 0 for every cycle C' with orientation.
Proof. Assertion (i) follows from Lemma 6.5.1 (i) and the fact that EZGL?B

€ — e is bijective.

For the forward implication of (ii), let us assume that g is a circu-
lation on G*, and consider a cycle C' C G with some given orientation.
Let F := E(C). By Proposition 4.6.1, F* is a minimal cut in G*, i.e.
F* = E*(X,X) for some suitable X C V*. By definition of f and g,
Lemma 6.5.1 (ii) and Proposition 6.1.1 give

O =3 f@)= > g(d)=gX.X)=0

geC d e B (X,X)

for one of the two orientations C' of C. Then, by f(é) = —f(é), also
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the corresponding value for our given orientation of C' must be zero.
For the backward implication it suffices by (i) to show that g satis-
fies (F2), i.e. that g(x,V*) = 0 for every x € V*. We shall prove that
g(z,V(B)) = 0 for every block B of G* containing z; since every edge
of G* at x lies in exactly one such block, this will imply g(z, V*) = 0.
So let z € V* be given, and let B be any block of G* contain-
ing x. Since G* is a non-trivial plane dual, and hence connected, we
have B—x # (). Let F* be the set of all edges of B at z (Fig. 6.5.2),

Fig. 6.5.2. The cut F* in G*

and let X be the vertex set of the component of G* — F* containing z.
Then () # V(B —z) C X, by the maximality of B as a cutvertex-free
subgraph. Hence

F* = B*(X,X) (1)

by definition of X, i.e. F* is a cut in G*. As a dual, G* is connected,
so G*[ X ] too is connected. Indeed, every vertex of X is linked to = by
a path P C G* whose last edge lies in F*. Then P — x is a path in
G*[ X | meeting B. Since x does not separate B, this shows that G*[ X ]
is connected.

Thus, X and X are both connected in G*, so F* is even a minimal
cut in G*. Let C C G be the cycle with E(C) = F that exists by
Proposition 4.6.1. By Lemma 6.5.1 (ii), C has an orientation C such that
{e*|eeC}=E*(X,X). By (1), however, E*(X,X) = E*(z,V(B)),
S0

9(x,V(B)) = g(X,X) = f(C) =0
by definition of f and g. a

With the help of Lemma 6.5.2, we can now prove our colouring-flow

duality theorem for plane multigraphs. If P = vg...v,; is a path with

edges e; = v;v;41 (1 < £), we set (depending on our vertex enumeration
of P)

.ﬁ = {(ei7/U7;,'Ui+1) | 7 < E}

and call P a vy — vy path. Again, P may be given implicitly by P.
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Theorem 6.5.3. (Tutte 1954)
For every dual pair G, G* of plane multigraphs,

X(G) = ¢(G7).

Proof. Let G =: (V,E) and G* =: (V*,E*). For |G| € {1,2} the
assertion is easily checked; we shall assume that |G| > 3, and apply
induction on the number of bridges in G. If e € G is a bridge then e*
is a loop, and G* — e* is a plane dual of G/e (why?). Hence, by the
induction hypothesis,

X(G) = x(G/e) = p(G" —¢") = p(G™);

for the first and the last equality we use that, by |G| > 3, e is not the
only edge of G.

So all that remains to be checked is the induction start: let us
assume that G has no bridge. If G has a loop, then G* has a bridge,
and x(G) = oo = ¢(G*) by convention. So we may also assume that G
has no loop. Then x(G) is finite; we shall prove for given k > 2 that G
is k-colourable if and only if G* has a k-flow. As G—and hence G*—
has neither loops nor bridges, we may apply Lemmas 6.5.1 and 6.5.2
to G and G*. Let € — €™ be the bijection between E and F* from
Lemma 6.5.1.

We first assume that G* has a k-flow. Then G* also has a Zy-flow g.
As before, let f: E — Zj, be defined by f(e) :=g(e*). We shall use f to
define a vertex colouring c¢: V — Zj, of G.

Let T be a normal spanning tree of G, with root r, say. Put ¢(r) := 0.
For every other vertex v € V let ¢(v) := f(P), where P is the r — v
path in T. To check that this is a proper colouring, consider an edge
e =vw € E. As T is normal, we may assume that v < w in the tree
order of T'. If e is an edge of T' then ¢(w) — c¢(v) = f(e, v, w) by definition
of ¢, so ¢(v) # c(w) since g (and hence f) is nowhere zero. If e ¢ T, let
P denote the v —w path in T'. Then

c(w) —c(v) = f(P) = —f(e,w,v) # 0

by Lemma 6.5.2 (ii).
_ Conversely, we now assume that G has a k-colouring c. Let us define
ftE—Zby
fle,v,w) = c(w) —¢(v),

and g: B* — 7Z by g(€*) := f(€). Clearly, f satisfies (F1) and takes
values in {+1,...,4+(k — 1)}, so by Lemma 6.5.2 (i) the same holds
for g. By definition of f, we further have f (5 ) = 0 for every cycle c
with orientation. By Lemma 6.5.2 (ii), therefore, g is a k-flow. O

(1.5.5)
V,E
V*, B
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6.6 Tutte’s flow conjectures

How can we determine the flow number of a graph? Indeed, does every
(bridgeless) graph have a flow number, a k-flow for some k? Can flow
numbers, like chromatic numbers, become arbitrarily large? Can we
characterize the graphs admitting a k-flow, for given k?

Of these four questions, we shall answer the second and third in this
section: we prove that every bridgeless graph has a 6-flow. In particular,
a graph has a flow number if and only if it has no bridge. The ques-
tion asking for a characterization of the graphs with a k-flow remains
interesting for k = 3,4, 5. Partial answers are suggested by the following
three conjectures of Tutte, who initiated algebraic flow theory.

The oldest and best known of the Tutte conjectures is his 5-flow
conjecture:

Five-Flow Conjecture. (Tutte 1954)
Every bridgeless multigraph has a 5-flow.

Which graphs have a 4-flow? By Proposition 6.4.4, the 4-edge-
connected graphs are among them. The Petersen graph (Fig. 6.6.1), on
the other hand, is an example of a bridgeless graph without a 4-flow:
since it is cubic but not 3-edge-colourable (Ex. 19, Ch.5), it cannot have
a 4-flow by Proposition 6.4.5 (ii).

Fig. 6.6.1. The Petersen graph

Tutte’s 4-flow conjecture states that the Petersen graph must be
present in every graph without a 4-flow:

Four-Flow Conjecture. (Tutte 1966)
Every bridgeless multigraph not containing the Petersen graph as a mi-
nor has a 4-flow.

By Proposition 1.7.2, we may replace the word ‘minor’ in the 4-flow
conjecture by ‘topological minor’.
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Even if true, the 4-flow conjecture will not be best possible: a K1,
for example, contains the Petersen graph as a minor but has a 4-flow,
even a 2-flow. The conjecture appears more natural for sparser graphs,
and indeed the cubic graphs form an important special case. (See the
notes.)

A cubic bridgeless graph or multigraph without a 4-flow (equivalent-
ly, without a 3-edge-colouring) is called a snark. The 4-flow conjecture snark
for cubic graphs says that every snark contains the Petersen graph as
a minor; in this sense, the Petersen graph has thus been shown to be
the smallest snark. Snarks form the hard core both of the four colour
theorem and of the 5-flow conjecture: the four colour theorem is equi-
valent to the assertion that no snark is planar (exercise), and it is not
difficult to reduce the 5-flow conjecture to the case of snarks.> However,
although the snarks form a very special class of graphs, none of the
problems mentioned seems to become much easier by this reduction.®

Three-Flow Conjecture. (Tutte 1972)
Every multigraph without a cut consisting of exactly one or exactly three
edges has a 3-flow.

Again, the 3-flow conjecture will not be best possible: it is easy to con-
struct graphs with three-edge cuts that have a 3-flow (exercise).

By our duality theorem (6.5.3), all three flow conjectures are true
for planar graphs and thus motivated: the 3-flow conjecture translates
to Grotzsch’s theorem (5.1.3), the 4-flow conjecture to the four colour
theorem (since the Petersen graph is not planar, it is not a minor of a
planar graph), the 5-flow conjecture to the five colour theorem.

We finish this section with the main result of the chapter:

Theorem 6.6.1. (Seymour 1981)
Every bridgeless graph has a 6-flow.

(3.3.5)
Proof. Let G = (V,E) be a bridgeless graph. Since 6-flows on the (6.1.1)
components of G will add up to a 6-flow on G, we may assume that (6.4.1)

G is connected; as G is bridgeless, it is then 2-edge-connected. Note
that any two vertices in a 2-edge-connected graph lie in some common
even connected subgraph—for example, in the union of two edge-disjoint
paths linking these vertices by Menger’s theorem (3.3.5 (ii)). We shall
use this fact repeatedly.

5 The same applies to another well-known conjecture, the cycle double cover con-
jecture; see Exercise 13.

6 That snarks are elusive has been known to mathematicians for some time; cf.
Lewis Carroll, The Hunting of the Snark, Macmillan 1876.
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We shall construct a sequence Hy, ..., H, of disjoint connected and
even subgraphs of G, together with a sequence Fi, ..., F;, of non-empty
sets of edges between them. The sets F; will each contain only one or
two edges, between H,; and HoU...UH;_;. We write H; =: (V;, E;),

H':= (HyU...UH;)+(FiU...UF)

and H® =: (V' E%). Note that each H* = (H*~1 U H;) + F} is connected
(induction on ). Our assumption that H; is even implies by Proposition
6.4.1 (or directly by Proposition 1.2.1) that H; has no bridge.

As Hy we choose any K' in G. Now assume that Hy, ..., H;_; and
F1, ..., F;_1 have been defined for some i > 0. If Vi~! =V, we terminate
the construction and set ¢ —1 =: n. Otherwise, we let X; C Vi1 be
minimal such that X; # () and

|B(X;, VITIN X)) <1 (1)

(Fig. 6.6.2); such an X; exists, because Vi1 is a candidate. Since G
is 2-edge-connected, (1) implies that E(X;, V') # (. By the mini-
mality of X;, the graph G [X;] is connected and bridgeless, i.e. 2-edge-
connected or a K'. As the elements of F; we pick one or two edges
from E(X;, Vi~1), if possible two. As H; we choose any connected even
subgraph of G [ X;] containing the ends in X; of the edges in F;.

Vi71 AN Xz

Fig. 6.6.2. Constructing the H; and F;

When our construction is complete, we set H" =: H and E’ :=
E ~\ E(H). By definition of n, H is a spanning connected subgraph
of G.

We now define, by ‘reverse’ induction, a sequence f,..., fo of Zs3-
circulations on G. For every edge ¢ € E', let C. be a cycle (with orienta-
tion) in H + e containing e, and f. a positive flow around 678; formally,
we let f. be a Zs-circulation on G such that f;1(0) = E ~ (C,UC.).
Let f, be the sum of all these f.. Since each ¢’ € E’ lies on just one of
the cycles C, (namely, on Cy), we have f,(€) # 0 for all € € E'.
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Assume now that Zg-circulations f,, ..., f; on G have been defined
for some i < n, and that

fz‘(g);«féﬁforall€el*7H’ULJ]7j7 2)

J>i

where FZ ={ecFE|ec F; }. Our aim is to define f;_q in such a way
that (2) also holds for ¢ — 1.

We first consider the case that |F;| = 1, say F; = {e}. We then
let fi—1 := f;, and thus have to show that f; is non-zero on (the two
directions of) e. Our assumption of |F;| = 1 implies by the choice of
F; that G contains no X;~V?~! edge other than e. Since G is 2-edge-
connected, it therefore has at least—and thus, by (1), exactly—one edge
e’ between X; and Vi—1 \ X;. We show that f; is non-zero on €’; as
{e,e'} is a cut in G, this implies by Proposition 6.1.1 that f; is also
Non-zero on e.

To show that f; is non-zero on €', we use (2): we show that e’ €
E' UUJ>z , L.e. that ¢’ lies in no Hy, and in no F; with j < 4. Since ¢’
has both ends in Vi=1 it clearly lies in no F; with j < ¢ and in no Hy,
with k < . But every Hjy, with k > ¢ is a subgraph of G [Vi~1]. Since ¢’
is a bridge of G[V?~!] but Hj has no bridge, this means that e’ ¢ Hy.
Hence, f;_1 does indeed satisfy (2) for ¢ — 1 in the case considered.

It remains to consider the case that |F;| = 2, say F; = {ej,ea }.
Since H; and H*~! are both connected, we can find a cycle C in H* =
(H; U H'=1) + F; that contains e; and ey. If f; is non-zero on both these
edges, we again let f;_1 := f;. Otherwise, there are directions e; and
e3 of e; and es Such that, without loss of generality, fl(el) 0 and
fi(é3) € {0,1}. Let C be the orientation of C with €3 € C, and let g be
a flow of value T around C (formally let g be a Zs- c1rculat10n on G such
that g(e3) = 1 and g~1(0) = E~ (CU C)) We then let f;_1 := f; +g.
By choice of the directions e; and 63, fi—1 is _1OnN-Z€ro on both edges.
Since f;_; agrees with f; on all of E' U U.~; Fj and (2) holds for ¢, we
again have (2) also for i — 1.

Eventually, fy will be a Zg-circulation on G that is nowhere zero
except possibly on edges of HyU...U H,,. Composing fo with the map
h + 2h from Z3 to Ze (h € {1, 2} we obtain a Zg-circulation f on G
with values in {0,2,4} for all edges lying in some H;, and with values
in {2,4} for all other edges. Adding to f a 2-flow on each H; (formally:
a Zg-circulation on G with values in {1,—1} on the edges of H; and 0
otherwise; this exists by Proposition 6.4.1), we obtain a Zg-circulation
on G that is nowhere zero. Hence, G has a 6-flow by Theorem 6.3.3.

(|

>4

i

€1, €2
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Exercises

1.7 Prove Proposition 6.2.1 by induction on |[S].

2. (i)~ Given n € N, find a capacity function for the network below such
that the algorithm from the proof of the max-flow min-cut theorem will
need more than n augmenting paths W if these are badly chosen.

s t
(i)™ Show that, if all augmenting paths are chosen as short as possible,
their number is bounded by a function of the size of the network.

3.7 Derive Menger’s Theorem 3.3.4 from the max-flow min-cut theorem.
(Hint. The edge version is easy. For the vertex version, apply the edge
version to a suitable auxiliary graph.)

4.7 Let f be an H-circulation on G and g: H — H' a group homomorphism.
Show that go f is an H'-circulation on G. Is go f an H'-flow if f is an
H-flow?

5.7 Given k > 1, show that a graph has a k-flow if and only if each of its
blocks has a k-flow.

6.7 Show that ¢(G/e) < ¢(G) whenever G is a multigraph and e an edge
of G. Does this imply that, for every k, the class of all multigraphs
admitting a k-flow is closed under taking minors?

7.7 Work out the flow number of K* directly, without using any results
from the text.

8. Let H be a finite abelian group, G a graph, and T a spanning tree

of G. Show that every mapping from the directions of E(G) ~\ E(T) to
H that satisfies (F1) extends uniquely to an H-circulation on G.

Do not use the 6-flow Theorem 6.6.1 for the following three exercises.

9.
10.

11.7

12.

13.

Show that ¢(G) < oo for every bridgeless multigraph G.

Assume that a graph G has m spanning trees such that no edge of G
lies in all of these trees. Show that p(G) < 2™.

Let G be a bridgeless connected graph with n vertices and m edges. By
considering a normal spanning tree of G, show that ¢(G) < m —n+ 2.

Show that every graph with a Hamilton cycle has a 4-flow. (A Hamilton
cycle of G is a cycle in G that contains all the vertices of G.)

A family of (not necessarily distinct) cycles in a graph G is called a
cycle double cover of G if every edge of G lies on exactly two of these
cycles. The cycle double cover conjecture asserts that every bridgeless
multigraph has a cycle double cover. Prove the conjecture for graphs
with a 4-flow.
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14.7 Determine the flow number of C° % K, the wheel with 5 spokes.
15.  Find bridgeless graphs G and H = G — e such that 2 < ¢(G) < p(H).
16. Prove Proposition 6.4.1 without using Theorem 6.3.3.

17.7 Prove Heawood’s theorem that a plane triangulation is 3-colourable if
and only if all its vertices have even degree.

18.7 Find a bridgeless graph that has both a 3-flow and a cut of exactly
three edges.

19. Show that the 3-flow conjecture for planar multigraphs is equivalent to
Grotzsch’s Theorem 5.1.3.

20. (i)~ Show that the four colour theorem is equivalent to the non-exist-
ence of a planar snark, i.e. to the statement that every cubic bridgeless
planar multigraph has a 4-flow.

(ii) Can ‘bridgeless’ in (i) be replaced by ‘3-connected’?

21.7 Show that a graph G = (V, E) has a k-flow if and only if it admits an
orientation D that directs, for every X C V, at least 1 /k of the edges
in B(X, X) from X towards X.

22.7 Generalize the 6-flow Theorem 6.6.1 to multigraphs.

Notes

Network flow theory is an application of graph theory that has had a major
and lasting impact on its development over decades. As is illustrated already
by the fact that Menger’s theorem can be deduced easily from the max-flow
min-cut theorem (Exercise 3), the interaction between graphs and networks
may go either way: while ‘pure’ results in areas such as connectivity, matching
and random graphs have found applications in network flows, the intuitive
power of the latter has boosted the development of proof techniques that have
in turn brought about theoretic advances.

The standard reference for network flows is L.R. Ford & D.R. Fulkerson,
Flows in Networks, Princeton University Press 1962. A more recent and com-
prehensive account is given by R.K. Ahuja, T.L. Magnanti & J.B. Orlin, Net-
work flows, Prentice-Hall 1993. For more theoretical aspects, see A.Frank’s
chapter in the Handbook of Combinatorics (R.L.Graham, M. Grotschel &
L. Lovész, eds.), North-Holland 1995. A general introduction to graph algo-
rithms is given in A. Gibbons, Algorithmic Graph Theory, Cambridge Univer-
sity Press 1985.

If one recasts the maximum flow problem in linear programming terms,
one can derive the max-flow min-cut theorem from the linear programming
duality theorem; see A.Schrijver, Theory of integer and linear programming,
Wiley 1986.

The more algebraic theory of group-valued flows and k-flows has been
developed largely by Tutte; he gives a thorough account in his monograph
W.T. Tutte, Graph Theory, Addison-Wesley 1984. Tutte’s flow conjectures are
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covered also in F. Jaeger’s survey, Nowhere-zero’ flow problems, in (L.W. Bei-
neke & R.J. Wilson, eds.) Selected Topics in Graph Theory 3, Academic Press
1988. For the flow conjectures, see also T.R. Jensen & B. Toft, Graph Coloring
Problems, Wiley 1995. Seymour’s 6-flow theorem is proved in P.D.Seymour,
Nowhere-zero 6-flows, J. Combin. Theory B 30 (1981), 130-135. This pa-
per also indicates how Tutte’s 5-flow conjecture reduces to snarks. In 1998,
Robertson, Sanders, Seymour and Thomas announced a proof of the 4-flow
conjecture for cubic graphs.

Finally, Tutte discovered a 2-variable polynomial associated with a graph,
which generalizes both its chromatic polynomial and its flow polynomial.
What little is known about this Tutte polynomial can hardly be more than
the tip of the iceberg: it has far-reaching, and largely unexplored, connections
to areas as diverse as knot theory and statistical physics. See D.J.A. Welsh,
Complexity: knots, colourings and counting (LMS Lecture Notes 186), Cam-
bridge University Press 1993.

" In the literature, the term ‘flow’ is often used to mean what we have called ‘cir-
culation’, i.e. flows are not required to be nowhere zero unless this is stated explicitly.



7 Substructures in
Dense Graphs

In this chapter and the next, we study how global parameters of a graph,
such as its edge density or chromatic number, have a bearing on the
existence of certain local substructures. How many edges, for instance,
do we have to give a graph on n vertices to be sure that, no matter how
these edges happen to be arranged, the graph will contain a K" subgraph
for some given r? Or at least a K" minor? Or a topological K" minor?
Will some sufficiently high average degree or chromatic number ensure
that one of these substructures occurs?

Questions of this type are among the most natural ones in graph
theory, and there is a host of deep and interesting results. Collectively,
these are known as extremal graph theory.

Extremal graph problems in this sense fall neatly into two categories,
as follows. If we are looking for ways to ensure by global assumptions
that a graph G contains some given graph H as a minor (or topological
minor), it will suffice to raise ||G|| above the value of some linear function
of |G| (depending on H), i.e. to make e(G) large enough. The existence
of such a function was already established in Theorem 3.6.1. The precise
growth rate needed will be investigated in Chapter 8, where we study
substructures of such ‘sparse’ graphs. Since a large enough value of e
gives rise to an H minor for any given graph H, its occurrence could be
forced alternatively by raising some other global invariants (such as x
or x) which, in turn, force up the value of ¢, at least in some subgraph.
This, too, will be a topic for Chapter 8.

On the other hand, if we ask what global assumptions might imply
the existence of some given graph H as a subgraph, it will not help
to raise any of the invariants €, k or x, let alone any of the other in-
variants discussed in Chapter 1. Indeed, as mentioned in Chapter 5.2,
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given any graph H that contains at least one cycle, there are graphs
of arbitrarily large chromatic number not containing H as a subgraph
(Theorem 11.2.2). By Corollary 5.2.3 and Theorem 1.4.2, such graphs
have subgraphs of arbitrarily large average degree and connectivity, so
these invariants too can be large without the presence of an H subgraph.

Thus, unless H is a forest, the only way to force the presence of an H
subgraph in an arbitrary graph G by global assumptions on G is to raise
IG|| substantially above any value implied by large values of the above
invariants. If H is not bipartite, then any function f such that f(n)
edges on n vertices force an H subgraph must even grow quadratically
with n: since complete bipartite graphs can have %nz edges, f(n) must
exceed %nz.

Graphs with a number of edges roughly! quadratic in their number
of vertices are usually called dense; the number ||G||/ (lg‘)—the propor-
tion of its potential edges that G actually has—is the edge density of G.
The question of exactly which edge density is needed to force a given
subgraph is the archetypal extremal graph problem in its original (nar-
rower) sense; it is the topic of this chapter. Rather than attempting to
survey the wide field of (dense) extremal graph theory, however, we shall
concentrate on its two most important results and portray one powerful
general proof technique.

The two results are Turdn’s classic extremal graph theorem for
H = K", a result that has served as a model for countless similar
theorems for other graphs H, and the fundamental Erdés-Stone theo-
rem, which gives precise asymptotic information for all H at once (Sec-
tion 7.1). The proof technique, one of increasing importance in the
extremal theory of dense graphs, is the use of the Szemerédi regularity
lemma. This lemma is presented and proved in Section 7.2. In Sec-
tion 7.3, we outline a general method for applying the regularity lemma,
and illustrate this in the proof of the Erdés-Stone theorem postponed
from Section 7.1. Another application of the regularity lemma will be
given in Chapter 9.2.

7.1 Subgraphs

Let H be a graph and n > |H|. How many edges will suffice to force an
H subgraph in any graph on n vertices, no matter how these edges are
arranged? Or, to rephrase the problem: which is the greatest possible
number of edges that a graph on n vertices can have without containing
a copy of H as a subgraph? What will such a graph look like? Will it
be unique?

L Note that, formally, the notions of sparse and dense make sense only for families
of graphs whose order tends to infinity, not for individual graphs.
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A graph G 2 H on n vertices with the largest possible number of
edges is called extremal for n and H; its number of edges is denoted by
ex(n, H). Clearly, any graph G that is extremal for some n and H will
also be edge-maximal with H € G. Conversely, though, edge-maximality
does not imply extremality: G may well be edge-maximal with H € G
while having fewer than ex(n, H) edges (Fig. 7.1.1).

Fig. 7.1.1. Two graphs that are edge-maximal with P*> ¢ G; is
the right one extremal?

As a case in point, we consider our problem for H = K" (with r > 1).
A moment’s thought suggests some obvious candidates for extremality
here: all complete (r — 1)-partite graphs are edge-maximal without con-
taining K”. But which among these have the greatest number of edges?
Clearly those whose partition sets are as equal as possible, i.e. differ in
size by at most 1: if V1, V5 are two partition sets with |V1| — V2| > 2, we
may increase the number of edges in our complete (r — 1)-partite graph
by moving a vertex from V; across to V5.

The unique complete (r — 1)-partite graphs on n > r — 1 vertices
whose partition sets differ in size by at most 1 are called Turdn graphs;
we denote them by 77~!(n) and their number of edges by ¢, 1(n)
(Fig. 7.1.2). For n < r — 1 we shall formally continue to use these
definitions, with the proviso that—contrary to our usual terminology—
the partition sets may now be empty; then, clearly, 7"~1(n) = K™ for
alln <r—1.

Fig. 7.1.2. The Turén graph T3(8)

The following theorem tells us that 7"~1(n) is indeed extremal for
n and K", and as such unique; in particular, ex(n, K") = t,_1(n).

extremal
ex(n, H)

Trfl (TI,)
tr—1 (n)
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Theorem 7.1.1. (Turdn 1941)
For all integers r,n with r > 1, every graph G 2 K" with n vertices and
ex(n, K") edges is a T"~1(n).

Proof. We apply induction on n. For n < r—1 we have G = K™ =
T"~1(n) as claimed. For the induction step, let now n > r.

Since G is edge-maximal without a K" subgraph, G has a sub-
graph K = K"~!. By the induction hypothesis, G — K has at most
tr—1(n —r + 1) edges, and each vertex of G — K has at most r — 2
neighbours in K. Hence,

61 < tyatn=r 1)+ (0= +0)6 =2+ (7)) = tats )

the equality on the right follows by inspection of the Turan graph 77~ (n)
(Fig. 7.1.3).

Fig. 7.1.8. The equation from (1) for r = 5 and n = 14

Since G is extremal for K" (and T"~*(n) 2 K"), we have equality
in (1). Thus, every vertex of G — K has exactly r — 2 neighbours in K—
just like the vertices x1,...,x,—1 of K itself. Fori =1,...,r—1 let

Vi = {ve V(G) | va; ¢ E(G)}

be the set of all vertices of G whose r — 2 neighbours in K are precisely the
vertices other than x;. Since K" ¢ G, each of the sets V; is independent,
and they partition V(G). Hence, G is (r — 1)-partite. As T"!(n) is the
unique (r — 1)-partite graph with n vertices and the maximum number of
edges, our claim that G = T"~!(n) follows from the assumed extremality
of G. ]

The Turén graphs 77~ !(n) are dense: in order of magnitude, they
have about n? edges. More exactly, for every n and r we have

r—1"

=
[\

tr—1(n) < 3n®
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with equality whenever r — 1 divides n (Exercise 8). It is therefore
remarkable that just en? more edges (for any fixed € > 0 and n large)
give us not only a K" subgraph (as does Turdn’s theorem) but a K7 for
any given integer s—a graph itself teeming with K" subgraphs:

Theorem 7.1.2. (Erdds & Stone 1946)
For all integersr > 2 and s > 1, and every € > 0, there exists an integer
ng such that every graph with n > ng vertices and at least

tr_1(n) 4 en?

edges contains K as a subgraph.

We shall prove this theorem in Section 7.3.

The Erdés-Stone theorem is interesting not only in its own right: it
also has a most interesting corollary. In fact, it was this entirely unex-
pected corollary that established the theorem as a kind of meta-theorem
for the extremal theory of dense graphs, and thus made it famous.

Given a graph H and an integer n, consider the number h, :=
ex(n,H)/(%): the maximum edge density that an n-vertex graph can
have without containing a copy of H. Could it be that this critical
density is essentially just a function of H, that h,, converges as n — oco?
Theorem 7.1.2 implies this, and more: the limit of A,, is determined by a
very simple function of a natural invariant of H—its chromatic number!

Corollary 7.1.3. For every graph H with at least one edge,

Tim_ex(n, H) <Z>1: %

For the proof of Corollary 7.1.3 we need as a lemma that ¢,._1(n)
never deviates much from the value it takes when r — 1 divides n (see
above), and that ¢,_1(n)/ (Z) converges accordingly. The proof of the
lemma is left as an easy exercise with hint (Exercise 9).

Lemma 7.1.4.

[7.1.2]
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Proof of Corollary 7.1.3. Let r := x(H). Since H cannot be coloured
with 7 — 1 colours, we have H Z T"~1(n) for all n € N, and hence

tr—1(n) < ex(n,H).
On the other hand, H C K for all sufficiently large s, so
ex(n, H) < ex(n, K})

for all those s. Let us fix such an s. For every € > 0, Theorem 7.1.2
implies that eventually (i.e. for large enough n)

ex(n, KT) < t,_1(n) 4+ en?.

Hence for n large,

tr-1(n)/(3) < ex(n, H)/(3)
< ex(n, K’)/(g)
<tr_1(n)/(5) +en®/(3)
=t,—1(n (Z)+ 6/1_l)
< tr1(n)/(5) +4e (assume n > 2).

r—

Therefore, since t,_1(n)/(%) converges to =2 (Lemma 7.1.4), so does
ex(n, H)/( )). Thus

n—oo

n\ " r—2
lim ex(n,H)(> =

as claimed. O

For bipartite graphs H, Corollary 7.1.3 says that substantially fewer

than (;”) edges suffice to force an H subgraph. It turns out that
can—%l < ex(n, Kpp) < 02712_%

for suitable constants c1, co depending on r; the lower bound is obtained
by random graphs,? the upper bound is calculated in Exercise 13. If H
is a forest, then H C G as soon as (@) is large enough, so ex(n, H)
is at most linear in n (Exercise 5). Erdds and S6s conjectured in 1963
that ex(n,T) < %(k—1)n for all trees with k > 2 edges; as a general
bound for all n, this is best possible for every T'. See Exercises 15-18 for
details.

2 see Chapter 11
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7.2 Szemerédi’s regularity lemma

More than 20 years ago, in the course of the proof of a major result on
the Ramsey properties of arithmetic progressions, Szemerédi developed a
graph theoretical tool whose fundamental importance has been realized
more and more in recent years: his so-called regularity or uniformity
lemma. Very roughly, the lemma says that all graphs can be approx-
imated by random graphs in the following sense: every graph can be
partitioned, into a bounded number of equal parts, so that most of its
edges run between different parts and the edges between any two parts
are distributed fairly uniformly—just as we would expect it if they had
been generated at random.

In order to state the regularity lemma precisely, we need some defi-
nitions. Let G = (V, E) be a graph, and let X, Y C V be disjoint. Then
we denote by || X, Y| the number of XY edges of G, and call

X, Y
d(X,Y) = 1o 1

| X[ 1Y
the density of the pair (X,Y"). (This is a real number between 0 and 1.)
Given some € > 0, we call a pair (A, B) of disjoint sets A, B CV e-regular
ifall X € Aand Y C B with

|X| > ¢€|A] and |Y] > €|B]|
satisfy
|d(X,Y) —d(A,B)| <e.

The edges in an e-regular pair are thus distributed fairly uniformly: the
smaller €, the more uniform their distribution.

Consider a partition { Vp, Vi,..., Vi } of V' in which one set Vj has
been singled out as an exceptional set. (This exceptional set Vy may
be empty.?) We call such a partition an e-reqular partition of G if it
satisfies the following three conditions:

(i) Vol < €lV;
(i) Vi = ... = |Vil;
(iii) all but at most €k? of the pairs (V;,V;) with 1 < i < j < k are
e-regular.

The role of the exceptional set V{ is one of pure convenience: it
makes it possible to require that all the other partition sets have exactly
the same size. Since condition (iii) affects only the sets Vi,..., Vi, we

3 So Vo may be an exception also to our terminological rule that partition sets
are not normally empty.

X, Y]l

d(X,Y)

density

e-regular
pair

exceptional
set

e-regular
partition
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may think of Vj as a kind of bin: its vertices are disregarded when
the uniformity of the partition is assessed, but there are only few such
vertices.

Lemma 7.2.1. (Regularity Lemma)

For every e > 0 and every integer m > 1 there exists an integer M
such that every graph of order at least m admits an e-regular partition
{Vo,Vi,..., Vi } withm < k < M.

The regularity lemma thus says that, given any € > 0, every graph
has an e-regular partition into a bounded number of sets. The upper
bound M on the number of partition sets ensures that for large graphs
the partition sets are large too; note that e-regularity is trivial when
the partition sets are singletons, and a powerful property when they are
large. In addition, the lemma allows us to specify a lower bound m on
the number of partition sets; by choosing m large, we may increase the
proportion of edges running between different partition sets (rather than
inside one), i.e. the proportion of edges that are subject to the regularity
assertion.

Note that the regularity lemma is designed for use with dense
graphs:* for sparse graphs it becomes trivial, because all densities of
pairs—and hence their differences—tend to zero (Exercise 22).

The remainder of this section is devoted to the proof of the regu-
larity lemma. Although the proof is not difficult, a reader meeting the
regularity lemma here for the first time is likely to draw more insight
from seeing how the lemma is typically applied than from studying the
technicalities of its proof. Any such reader is encouraged to skip to the
start of Section 7.3 now and come back to the proof at his or her leisure.

We shall need the following inequality for reals pq,...,ux > 0 and
e1,...,ex = 0:
2

2
Hi > Hi
This follows from the Cauchy-Schwarz inequality Y~ aZ > b2 > (3 a;b;)?
by taking a; := \/i; and b; := e;/ /1.
Let G = (V, E) be a graph and n := |V/|. For disjoint sets A, B C V
we define

[A1B]
n2

|4, B|?
[AlIB[n?

q(A,B) = d*(A,B) =

For partitions A of A and B of B we set

qAB):= > qA,B),

A’cA; B'eB

4 Sparse versions do exist, though; see the notes.
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and for a partition P = {C1,...,Ck } of V we let

q(P) =Y _q(Ci,Cy).

1<j

However, if P = {Cy,C4,...,C) } is a partition of V' with exceptional
set Cp, we treat Cj as a set of singletons and define

where P := {Cy,....C}u{{v} v eCo}.

The function ¢(P) plays a pivotal role in the proof of the regularity
lemma. On the one hand, it measures the uniformity of the partition P:
if P has too many irregular pairs (A, B), we may take the pairs (X,Y) of
subsets violating the regularity of the pairs (A4, B) and make those sets
X and Y into partition sets of their own; as we shall prove, this refines
‘P into a partition for which ¢ is substantially greater than for P. Here,
‘substantial’ means that the increase of ¢(P) is bounded below by some
constant depending only on e. On the other hand,

a(P) = ZQ(Q‘, Cj)

i<j
Cil IG5

=) — 5 dCL0)

1<J

1
S 3 Z ICil |5

i<y

<1.

The number of times that ¢(P) can be increased by a constant is thus
also bounded by a constant—in other words, after some bounded number
of refinements our partition will be e-regular! To complete the proof of
the regularity lemma, all we have to do then is to note how many sets
that last partition can possibly have if we start with a partition into m
sets, and to choose this number as our desired bound M.

Let us make all this precise. We begin by showing that, when we
refine a partition, the value of ¢ will not decrease:

Lemma 7.2.2.

(i) Let C,D C V be disjoint. If C is a partition of C and D is a
partition of D, then ¢(C,D) = ¢q(C, D).

(ii) If P, P’ are partitions of V and P’ refines P, then q(P’) = q(P).

hell
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Proof. (i) Let C =: {Cy,...,Cr } and D =: { Dy,...,D¢}. Then

0(C.D) = 3 4(Ci. D))

ICs, D; |

- F Z [ 1D
1 (zm- 1Cs, D)

5w %, Gl D]

_ 1 lc, DJ)?
—on? (1G) (X, D))
= ¢q(C, D).

(ii) Let P =: {C4,...,C }, and for i = 1,...,k let C; be the parti-
tion of C; induced by P’. Then

o(P) = Y 4(Ci, Cy)
i<j

< ) qlCiC)
) <

< q(P),
since ¢(P") =3, q(Cy) +Zi<j q(Ci, Cj). .

Next, we show that refining a partition by subpartitioning an ir-
regular pair of partition sets increases the value of ¢ a little; since we are
dealing here with a single pair only, the amount of this increase will still
be less than any constant.

Lemma 7.2.3. Let € > 0, and let C; D C V be disjoint. If (C, D) is not

e-regular, then there are partitions C = (C1,C2) of C and D = (D1, D3)

of D such that oD
q(C,D) > q(C, D) +¢* % )

Proof. Suppose (C, D) is not e-regular. Then there are sets C; C C and

Dy C D with |Cy| > €|C| and |D;| > €|D] such that

In| > € (2)

for n = d(Cl,Dl) 7d(C, D) Let C := {61702} and D := {Dl,DQ }7
where Cy := C . C1 and Dy := D~ D;.
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Let us show that C and D satisfy the conclusion of the lemma. We
shall write ¢; := |C;|, d; := |D;|, e :== ||Cs, Dy, ¢:=1C|, d:=|D]
and e := ||C, DJ|. As in the proof of Lemma 7.2.2,

q(C,'D) = 3 Z 4ij

2 _ 2
> 1 (eu N (e—e11) >

1) n? c1dy cd —c1dy

—

By definition of 1, we have e;; = ¢1die/ed + neidy, so

2 1 cldle 2
n~q(C,D) > +nerdy

Cldl cd
1 cd — Cldl 2
—ncrd
+ cd—cidy ( a9 1)
c1dq €2 2encydy 9
= d
c2d? + cd tnah
cd — c1dy o2 2encydy n ngc%d%
c2d? cd cd—cidy
> ¢ +n?c1d
> — c
cd et
2
> < +eted
(2) cd
since ¢; > ec and d; > ed by the choice of C; and D;. O

Finally, we show that if a partition has enough irregular pairs of
partition sets to fall short of the definition of an e-regular partition,
then subpartitioning all those pairs at once results in an increase of ¢ by
a constant:

Lemma 7.2.4. Let 0 < € < 1/4, and let P = {Cy,C,...,Ck }
be a partition of V, with exceptional set Cy of size |Cy| < en and
|Cy| = ... =|Ck| =: ¢. If P is not e-regular, then there is a partition
P ={C},C1,...,C,} of V with exceptional set Cj), where k < £ < k4F,
such that |C}| < |Co|+mn/2%, all other sets C! have equal size, and

a(P') = q(P)+¢€/2.

ciydi, eqj

c, d, e
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Proof. For all 1 < ¢ < j < k, let us define a partition C;; of C; and
a partition Cj; of C;, as follows. If the pair (C;, C;) is e-regular, we let
Cij == {C;} and Cj; :== {C; }. If not, then by Lemma 7.2.3 there are
partitions C;; of C; and Cj; of C; with |C;;| = |Cj;| = 2 and

;1 1C; etc?
q(Cij,Cji) = Q(Ci’cj)+€4|7|,b# =G, G+ —s (3)

For each i = 1,...,k, let C; be the unique minimal partition of C; that
refines every partition C;; with j # 4. (In other words, if we consider two
elements of C; as equivalent whenever they lie in the same partition set
of C;; for every j # i, then C; is the set of equivalence classes.) Thus,
|C;| < 2F~1. Now consider the partition

k
C = {CO}chz
i=1

of V', with Cy as exceptional set. Then C refines P, and

k<|Cl < k2k. (4)
Let Cy := {{v} : v € Cp}. Now if P is not eregular, then for more
than ek? of the pairs (C;,C;) with 1 < i < j < k the partition C;; is

non-trivial. Hence, by our definition of ¢ for partitions with exceptional
set, and Lemma 7.2.2 (i),

9@ = > alCi,C)+ Y a(Co,C)+ D a(Ci)

1<i<j 1<i o<i
> > (€ Cii)+ Y a(Co,{ Ci }) +a(Co)
1<i<y 1<i
6402
> > q(CiC))+ el —+> q(Co, { Ci }) +a(Co)
(3) 1<i<j n 1<4

= q(P)+ 65<];C>2
> q(P)+ /2.

(For the last inequality, recall that |Cp| < en < %n, so ke > %n)

In order to turn C into our desired partition P’, all that remains to
do is to cut its sets up into pieces of some common size, small enough that
all remaining vertices can be collected into the exceptional set without
making this too large. Let Cf,...,C} be a maximal collection of dis-
joint sets of size d := |c/4%] such that each C! is contained in some
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CeC~{Cy}, and put Cp := V.~ UC|. Then P' = {C;,C1,...,C}
is indeed a partition of V. Moreover, P’ refines C, so

q(P') = q(C) = q(P) +€/2

by Lemma 7.2.2 (ii). Since each set C} # CJ is also contained in one
of the sets Cy,...,C}, but no more than 4* sets C! can lie inside the
same C; (by the choice of d), we also have k < ¢ < k4F as required.
Finally, the sets C1,...,C} use all but at most d vertices from each set

C # Cy of C. Hence,
Col < [Col +dC]

C
< |Co| + —k2F
(4)' ol

= |Cy| —|—Ck‘/2k

< |Col —|—n/2k.
O

The proof of the regularity lemma now follows easily by repeated
application of Lemma 7.2.4:

Proof of Lemma 7.2.1. Let ¢ > 0 and m > 1 be given; without loss
of generality, € < 1/4. Let s := 2/¢®. This number s is an upper bound
on the number of iterations of Lemma 7.2.4 that can be applied to a
partition of a graph before it becomes e-regular; recall that ¢(P) < 1 for
all partitions P.

There is one formal requirement which a partition { Co,C1,...,Cy }
with |Cy| = ... = |C| has to satisfy before Lemma 7.2.4 can be (re-)
applied: the size |Cp| of its exceptional set must not exceed en. With
each iteration of the lemma, however, the size of the exceptional set can
grow by up to n/2F. (More precisely, by up to n/2¢, where ¢ is the
number of other sets in the current partition; but £ > k by the lemma,
so n/2% is certainly an upper bound for the increase.) We thus want
to choose k large enough that even s increments of n/2* add up to at
most gen, and n large enough that, for any initial value of |Co| < k, we
have |Co| < Len. (If we give our starting partition k non-exceptional
sets C1q, ..., Ck, we should allow an initial size of up to k for Cp, to be
able to achieve |C1] = ... = |Ck|.)

So let k > m be large enough that 2F~1 > s/e. Then 3/2’“ < €/2,
and hence

k+ in < en (5)
whenever k/n < ¢/2, i.e. for alln 2k/e.

Let us now choose M. This should be an upper bound on the
number of (non-exceptional) sets in our partition after up to s iterations
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of Lemma 7.2.4, where in each iteration this number may grow from its
current value r to at most 74". So let f be the function z — 4%, and
take M := max{ f*(k), 2k /e }; the second term in the maximum ensures
that any n > M is large enough to satisfy (5).

We finally have to show that every graph G = (V| E) of order at
least m has an e-regular partition { Vo, Vi,..., Vi } withm <k < M. So
let G be given, and let n := |G|. If n < M, we partition G into k := n
singletons, choosing V := @ and |V1| = ... = |Vi| = 1. This partition of
G is clearly e-regular. Suppose now that n > M. Let Cy C V be minimal
such that k divides |V \ Cy|, and let {Cy,...,Ck } be any partition of
V'~ Cp into sets of equal size. Then |Cy| < k, and hence |Cy| < en by (5).
Starting with { Cp, C1,...,Ck } we apply Lemma 7.2.4 again and again,
until the partition of G obtained is e-regular; this will happen after at
most s iterations, since by (5) the size of the exceptional set in the
partitions stays below en, so the lemma could indeed be reapplied up to
the theoretical maximum of s times. (|

7.3 Applying the regularity lemma

The purpose of this section is to illustrate how the regularity lemma
is typically applied in the context of (dense) extremal graph theory.
Suppose we are trying to prove that a certain edge density of a graph G
suffices to force the occurrence of some given subgraph H, and that we
have an e-regular partition of G. The edges inside almost all the pairs
(V;,V;) of partition sets are distributed uniformly, although their density
may depend on the pair. But since G has many edges, this density cannot
be zero for all the pairs: some sizeable proportion of the pairs will have
positive density. Now if G is large, then so are the pairs: recall that
the number of partition sets is bounded, and they have equal size. But
any large enough bipartite graph with equal partition sets, fixed positive
edge density (however small!) and a uniform distribution of edges will
contain any given bipartite subgraph®—this will be made precise below.
Thus if enough pairs in our partition of G have positive density that H
can be written as the union of bipartite graphs each arising in one of
those pairs, we may hope that H C G as desired.

These ideas will be formalized by Lemma 7.3.2 below. We shall then
use this and the regularity lemma to prove the Erd&s-Stone theorem
from Section 7.1; another application will be given later, in the proof of
Theorem 9.2.2.

Before we state Lemma 7.3.2, let us note a simple consequence of
the e-regularity of a pair (A, B): for any subset ¥ C B that is not too

5 Readers already acquainted with random graphs may find it instructive to com-
pare this statement with Proposition 11.3.1.



7.3 Applying the regularity lemma 161

small, most vertices of A have about the expected number of neighbours
inY:

Lemma 7.3.1. Let (A, B) be an e-regular pair, of density d say, and let
Y C B have size |Y| > €|B|. Then all but at most €|A| of the vertices
in A have (each) at least (d — €)|Y'| neighbours in Y.

Proof. Let X C A be the set of vertices with fewer than (d — €)|Y]
neighbours in Y. Then || X,Y] < |X|(d—¢)]Y], so

_ XY _
d(X,Y) = i < ¢ e=d(A B)—e.

Since (A, B) is e-regular, this implies that | X| < €|A]. O

Let G be a graph with an e-regular partition { Vp, V1,..., Vi }, with
exceptional set Vp and |V4] = ... = |Vi| =: L. Given d € (0,1], let R be
the graph with vertices V1,...,V; in which two vertices are adjacent if
and only if they form an e-regular pair in G of density > d. We shall call
R a regularity graph of G with parameters €, £ and d. Given s € N, let
us now replace every vertex V; of R by a set V;° of s vertices, and every
edge by a complete bipartite graph between the corresponding s-sets.
The resulting graph will be denoted by Rs. (For R = K", for example,
we have Ry = KI.)

The following lemma says that subgraphs of R, can also be found
in G, provided that € is small enough and the V; are large enough. In
fact, the values of € and £ required depend only on (d and) the maximum
degree of the subgraph:

Lemma 7.3.2. Foralld € (0,1] and A > 1 there exists an ey > 0 with
the following property: if G is any graph, H is a graph with A(H) < A,
s € N, and R is any regularity graph of G with parameters ¢ < ¢,
{ > s/ey and d, then

HCR, = HCQG.
Proof. Given d and A, choose ¢y < d small enough that

A+1
mﬁogl; (1)

such a choice is possible, since (A4 1)e/(d — €)™ —0 as e — 0. Now let
G, H, s and R be given as stated. Let { Vp,V1,...,V; } be the e-regular
partition of G that gave rise to R; thus, € < ¢y, V(R) = {V1,..., Vi }
and |Vi| = ... = |Vi| = £. Let us assume that H is actually a subgraph

regularity
graph
‘/iS

R

[9.2.2]

d, A

€0

G,H,R, Rs
Vi
e k0
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of Rs (not just isomorphic to one), with vertices uq,...,u, say. Each
vertex u; lies in one of the s-sets V* of R,; this defines a map o1 +— j.
Our aim is to define an embedding u; — v; € V,;) of H in G; thus,

v1,...,v, will be distinct, and v;v; will be an edge of G whenever u;u;
is an edge of H.
Our plan is to choose the vertices vy, . . ., vp inductively. Throughout

the induction, we shall have a ‘target set’ ¥; C V,,(;) assigned to each i;
this contains the vertices that are still candidates for the choice of v;.
Initially, Y; is the entire set V;(;). As the embedding proceeds, Y; will
get smaller and smaller (until it collapses to {v; } when v; is chosen):
whenever we choose a vertex v; with j < i and u;u; € E(H), we delete
all those vertices from Y; that are not adjacent to v;. The set Y; thus
evolves as

Voiy =Y 2 ... 2V = {uv},

where Y;j denotes the version of Y; current after the definition of v; (and
any corresponding deletion of vertices from 1/1-]71).

In order to make this approach work, we have to ensure that the
target sets Y; do not get too small. When we come to embed a vertex u;,
we consider all the indices ¢ > j with uju; € E(H); there are at most A
such 4. For each of these 7, we wish to select v; so that
Y/ = N()ny/ ™ (2)

K3

is large, i.e. not much smaller than Yij 1. Now this can be done by
Lemma 7.3.1 (with A = V,(;), B =V, and Y = Y771 unless Y7
is tiny (of size less than €f), all but at most e/ choices of v; will be such
that (2) implies

Y7 = (d=elY7 ™. (3)

Doing this simultaneously for all of the at most A values of ¢ considered,
we find that all but at most Aef choices of v; from V), and in particular
from ij_l C Vy(jy, satisfy (3) for all 7.

It remains to show that the sets Y considered for Lemma 7.3.1 above
are indeed never tiny, and that |Y7?~'| — Ael > s to ensure that a suitable
choice for v; exists: since o(j’) = o(j) for at most s —1 of the vertices
uj with j* < j, a choice between s suitable candidates for v; will suffice
to keep v; distinct from vy,...,v;_1. But all this follows from our choice
of €p. Indeed, the initial target sets Y,” have size ¢, and each Y; has
vertices deleted from it only when some v; with j < i and uju; € E(H)
is defined, which happens at most A times. Thus,

V7| —Ael > (d—e)* 0 —Ael > (d— €)™l — Aegl > €l > s
(3) (1)

whenever j < i, so in particular [Y| > epf > e/ and |ij71| —Ael 2 s.
O
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We are now ready to prove the Erdds-Stone theorem.

Proof of Theorem 7.1.2. Let » > 2 and s > 1 be given as in the
statement of the theorem. For s = 1 the assertion follows from Turan’s
theorem, so we assume that s > 2. Let v > 0 be given; this v will play
the role of the € of the theorem. Let G be a graph with |G| =: n and

IGI > tr—1(n) +n®.

(Thus, v < 1.) We want to show that K7 C G if n is large enough.

Our plan is to use the regularity lemma to show that G has a regu-
larity graph R dense enough to contain a K" by Turan’s theorem. Then
R contains a K, so we may hope to use Lemma 7.3.2 to deduce that
K CG.

On input d := v and A := A(K?), Lemma 7.3.2 returns an €y > 0;
since the lemma’s assertion about ey becomes weaker when ¢y is made
smaller, we may assume that

€0<’)//2<1. (1)

To apply the regularity lemma, let m > 1/4 and choose € > 0 small
enough that € < ¢y and

1
§:=2y—€—de—d—— > 0;
m

this is possible, since 2y —d — % > 0. On input € and m, the regularity
lemma returns an integer M. Let us assume that

Ms

nz-—-—.
o(1—¢)

Since this number is at least m, the regularity lemma provides us with
an e-regular partition {Vp,Vi,..., Vi } of G, where m < k < M; let
‘V1| =...= |Vk| =: /. Then

n = kl, (2)

and
n—|V| _ n—en l—e _ s
> =

= > —
¢ E - M "M 7

by the choice of n. Let R be the regularity graph of G with parameters
¢, , d corresponding to the above partition. Since € < ¢y and £ > s/¢q, the
regularity graph R satisfies the premise of Lemma 7.3.2, and by definition
of A we have A(K?) = A. Thus in order to conclude by Lemma 7.3.2

d, A

€0
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that K7 C G, all that remains to be checked is that K™ C R (and hence
KI C Ry).

Our plan was to show K™ C R by Turan’s theorem. We thus have to
check that R has enough edges, i.e. that enough e-regular pairs (V;, V;)
have density at least d. This should follow from our assumption that G
has at least t,_1(n) +yn? edges, i.e. an edge density of about =1 —|— 27:
this lies substantially above the approximate edge density = —1 of the
Turén graph T7~!(k), and hence substantially above any density that
G could have if no more than ¢,_1(k) of the pairs (V;,V;) had density
> d—even if all those pairs had density 1!

Let us then estimate ||R| more premsely How many edges of G
lie outside e-regular pairs? At most (I'°l) edges lie inside Vp, and by
condition (i) in the definition of e-regularity these are at most 3(en)?
edges. At most |Vy|kl < enkl edges join Vj to other partition sets. The
at most ek? other pairs (V;,V;) that are not e-regular contain at most
£? edges each, together at most €k2¢2. The e-regular pairs of insufficient
density (< d) each contain no more than df? edges, altogether at most
1k2d¢? edges. Finally, there are at most gg) edges inside each of the
partition sets Vi,..., Vi, together at most §€2k edges. All other edges
of G lie in e-regular pairs of density at least d, and thus contribute to
edges of R. Since each edge of R corresponds to at most ¢? edges of G,
we thus have in total

|G|l < 2e*n® + enkl + ek0® + 1k*d0® + L0k + || R|| 2.

Hence, for all sufficiently large n,

1.2 |G — % —enkl — ek?0? — %dlﬁﬁ _ %kﬁ
IR] > 3k e
tr—1(n) +yn? — 3*n® — enkl 1
> 5k % —d— -
(172)2 < 712/2 € L
tr—1(n) 1
1k2<r - + 2y 6246d>
@ ? 2/2 m
1
S —
~ 2 r—1
> tr—l(k) .

(The strict inequality follows from Lemma 7.1.4.) Therefore K" C R by
Theorem 7.1.1, as desired. O
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Exercises

1.7 Show that K 3 is extremal without a P3.

2.7 Given k > 0, determine the extremal graphs of chromatic number at
most k.

3. Determine the value of ex(n, K1) for all r,n € N.

4. TIs there a graph that is edge-maximal without a K® minor but not
extremal?

5. Show that, for every forest F', the value of ex(n, F') is bounded above
by a linear function of n.

6.7 Given k > 0, determine the extremal graphs without a matching of
size k.
(Hint. Theorem 2.2.3 and Ex. 10, Ch. 2.)

7.  Without using Turadn’s theorem, show that the maximum number of
edges in a triangle-free graph of order n > 1 is |n?/4].

8. Show that

1 2T — 2
t'r'fl(n) < in r—1 )

with equality whenever r — 1 divides n.

9. Show that tT_l(n)/(g) converges to (r—2)/(r —1) as n — co.
(Hint. tr—1((r —1)[;25]) < tr-1(n) < tra((r—=1)[;251).)

10.7 Given non-adjacent vertices u, v in a graph G, denote by G [u— v] the
graph obtained from G by first deleting all the edges at w and then
joining w to all the neighbours of v. Show that K" € G[u— v] if
K" ¢ G. Applying this operation repeatedly to a given extremal graph
for n and K", prove that ex(n, K") = t,—1(n): in each iteration step,
choose u and v so that the number of edges will not decrease, and so
that eventually a complete multipartite graph is obtained.

11.  Show that deleting at most (m — s)(n —t)/s edges from a K, , will
never destroy all its K, : subgraphs.

12. For 0 < s <t < nlet z(n, s, t) denote the maximum number of edges in
a bipartite graph whose partition sets both have size n, and which does
not contain a K,;. Show that 2ex(n, Ks:) < z(n,s,t) < ex(2n, K ).

13.7 Let 1 < r < n be integers. Let G be a bipartite graph with bipartition

{ A, B}, where |A| = |B| = n, and assume that K, , € G. Show that

(W) <o)

Using the previous exercise, deduce that ex(n, K, ») < cn
constant ¢ depending only on r.

2-1/7 for some
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14. The upper density of an infinite graph G is the infimum of all reals «
such that the finite graphs H C G with ||H|| (‘}2”) ~" > & have bounded

order. Show that this number always takes one of the countably many

values 0,1,1, 2,3

(Hint. Erd8s-Stone.)

15.  Prove the following weakening of the Erd&s-Sés conjecture (stated at
the end of Section 7.1): given integers 2 < k < n, every graph with n
vertices and at least (k — 1)n edges contains every tree with k edges as
a subgraph.

16. Show that, as a general bound for arbitrary n, the bound on ex(n,T)
claimed by the Erdés-Sés conjecture is best possible for every tree T'.
Is it best possible even for every n and every T'7

17.7 Prove the Erd6s-Sés conjecture for the case when the tree considered
is a star.

18. Prove the Erd6s-Sés conjecture for the case when the tree considered
is a path.

(Hint. Use the result of the next exercise.)

19. Show that every connected graph G contains a path of length at least
min { 26(G), |G| —1}.

20.7 In the definition of an e-regular pair, what is the purpose of the re-
quirement that |X| > €|A| and |Y| > €¢|B|?

21.7 Show that any e-regular pair in G is also e-regular in G.

22.  Prove the regularity lemma for sparse graphs, that is, for every sequence
(Gn)nen of graphs G, of order n such that ||Gy||/n® — 0 as n— oc.

Notes

The standard reference work for results and open problems in extremal graph
theory (in a very broad sense) is still B. Bollobds, Extremal Graph Theory,
Academic Press 1978. A kind of update on the book is given by its author in
his chapter of the Handbook of Combinatorics (R.L. Graham, M. Grétschel &
L. Lovész, eds.), North-Holland 1995. An instructive survey of extremal graph
theory in the narrower sense of our chapter is given by M. Simonovits in
(L.W. Beineke & R.J. Wilson, eds.) Selected Topics in Graph Theory 2, Aca-
demic Press 1983. This paper focuses among other things on the particular
role played by the Turan graphs. A more recent survey by the same author
can be found in (R.L. Graham & J.Nesetfil, eds.) The Mathematics of Paul
Erdés, Vol. 2, Springer 1996.

Turan’s theorem is not merely one extremal result among others: it is
the result that sparked off the entire line of research. Our proof of Turan’s
theorem is essentially the original one; the proof indicated in Exercise 10 is
due to Zykov.
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Our version of the Erdés-Stone theorem is a slight simplification of the
original. A direct proof, not using the regularity lemma, is given in L. Lovasz,
Combinatorial Problems and Exercises (2nd edn.), North-Holland 1993. Its
most fundamental application, Corollary 7.1.3, was only found 20 years after
the theorem, by Erdés and Simonovits (1966).

Of our two bounds on ex(n, K,) the upper one is thought to give the
correct order of magnitude. For vastly off-diagonal complete bipartite graphs
this was verified by J.Kollar, L.Rényai & T.Szabd, Norm-graphs and bi-
partite Turdn numbers, Combinatorica 16 (1996), 399-406, who proved that
ex(n, Krs) > crnQ_% when s > 7r!.

Details about the Erd&s-Sés conjecture, including an approximate solu-
tion for large k, can be found in the survey by Komlés and Simonovits cited
below. The case where the tree T is a path (Exercise 18) was proved by
Erdds & Gallai in 1959. It was this result, together with the easy case of stars
(Exercise 17) at the other extreme, that inspired the conjecture as a possible
unifying result.

The regularity lemma is proved in E.Szemerédi, Regular partitions of
graphs, Colloques Internationaux CNRS 260—Problémes Combinatoires et
Théorie des Graphes, Orsay (1976), 399-401. Our rendering follows an ac-
count by Scott (personal communication). A broad survey on the regular-
ity lemma and its applications is given by J.Komlés & M. Simonovits in
(D. Miklés, V.T.Sés & T. Szdnyi, eds.) Paul Erdés is 80, Vol. 2, Proc. Collog.
Math. Soc. Jénos Bolyai (1996); the concept of a regularity graph and Lem-
ma 7.3.2 are taken from this paper. An adaptation of the regularity lemma
for use with sparse graphs was developed independently by Kohayakawa and
by R&dl; see Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs,
in (F.Cucker & M. Shub, eds.) Foundations of Computational Mathematics,
Selected papers of a conference held at IMPA in Rio de Janeiro, January 1997,
Springer 1997.






8 Substructures in
Sparse Graphs

In this chapter we study how global assumptions about a graph—on its
average degree, chromatic number, or even (large) girth—can force it to
contain a given graph H as a minor or topological minor. As we know
already from Mader’s theorem 3.6.1, there exists a function h such that
an average degree of d(G) > h(r) suffices to create a T K" subgraph
in G, and hence a (topological) H minor if » > |H|. Since a graph
with n vertices and average degree d has %dn edges this shows that, for
every H, there is a ‘constant’ ¢ (depending on H but not on n) such
that a topological H minor occurs in every graph with n vertices and
at least cn edges. Such graphs with a number of edges about linear! in
their order are called sparse—so this is a chapter about substructures in
sparse graphs.

The first question, then, will be the analogue of Turan’s theorem:
given a positive integer r, what is the minimum value of the above ‘con-
stant’ ¢ for H = K", i.e. the smallest growth rate of a function h(r) as
in Theorem 3.6.17 This was a major open problem until very recently;
we present its solution, which builds on some fascinating methods the
problem has inspired over time, in Section 8.1.

If raising the average degree suffices to force the occurrence of a
certain minor, then so does raising any other invariant which in turn
forces up the average degree. For example, if d(G) > ¢ implies H < G,
then so will x(G) > ¢+ 1 (by Corollary 5.2.3). However, is this best
possible? Even if the value of ¢ above is least possible for d(G) > ¢ to
imply H < G, it need not be so for x(G) > ¢+ 1 to imply H < G. One
of the most famous conjectures in graph theory, the Hadwiger conjecture,

L Compare the footnote at the beginning of Chapter 7.

sparse
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suggests that there is indeed a gap here: while a value of ¢ = ¢'rv/logr
(where ¢’ is independent of both n and ) is best possible for d(G) > ¢
to imply H < G (Section 8.2), the conjecture says that x(G) > r will
do the same! Thus, if true, then Hadwiger’s conjecture shows that the
effect of a large chromatic number on the occurrence of minors somehow
goes beyond that part which is well-understood: its effect via mere edge
density. We shall consider Hadwiger’s conjecture in Section 8.3.

8.1 Topological minors

In this section we prove that an average degree of cr? suffices to force
the occurrence of a topological K" minor in a graph; complete bipartite
graphs show that, up to the constant ¢, this is best possible (Exercise 5).

The following theorem was proved independently around 1996 by
Bollobas & Thomason and by Komlds & Szemerédi.

Theorem 8.1.1. There exists a ¢ € R such that, for every r € N, every
graph G of average degree d(G) > cr? contains K" as a topological
minor.

The proof of this theorem, in which we follow Bollobas & Thomason,
will occupy us for the remainder of this section. A set U C V(G) will
be called linked (in G) if for any distinct vertices uq,...,us, € U there
are h disjoint paths P; = ugj_1...ug; in G, i = 1,... h.2 The graph G
itself is (k, £)-linked if every k-set of its vertices contains a linked (-set.

How can we hope to find the TK” in G claimed to exist by The-
orem 8.1.17 Our basic approach will be to identify first some r-set X
as a set of branch vertices, and to choose for each z € X a set Y, of
r — 1 neighbours, one for every edge incident with = in the K". If the
constant ¢ from the theorem is large enough, the r + r(r — 1) = r?
vertices of X U|JY, can be chosen distinct: by Proposition 1.2.2, G has
a subgraph of minimum degree at least £(G) = 1d(G) > icr?, so we
can choose X and its neighbours inside this subgraph. Having fixed X
and the sets Y}, we then have to link up the correct pairs of vertices in
Y := Y, by disjoint paths in G — X, to obtain the desired TK".

This would be possible at once if Y were linked in G — X. Unfortu-
nately, this is unrealistic to hope for: no average degree, however large,
will force every r(r —1)-set to be linked. (Why not?) However, if we
pick for X significantly more than the r vertices needed eventually, and
for each x € X significantly more than r» — 1 neighbours as Y., then Y
might become so large that the high average degree of G guarantees the

2 Thus, in a k-linked graph—see Chapter 3.6—every set of up to 2k + 1 vertices
is linked.
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existence of some large linked subset Z C Y. This would be the case if
G were (k,¢)-linked for some k < |Y] and ¢ > |Z].

As above, a large enough constant ¢ will easily ensure that X and Y
can be chosen with many vertices to spare. Another problem, however,
is more serious: it will not be enough to make ¢ (and hence Z) large in
absolute terms. Indeed, if k¥ (and Y') is much larger still, it might happen
that Z, although large, consists of neighbours of only a few vertices in X!
We thus have to ensure that £ is large also relative to k. This will be the
purpose of our first lemma (8.1.2): it establishes a sufficient condition
for G to be (k, [k/2])-linked.

What is this sufficient condition? It is the assumption that G has a
particularly dense minor H, one whose minimum degree exceeds % |H|
by a positive fraction of k. (In particular, H will be dense in the sense
of Chapter 7.) In view of Theorem 3.6.2, it is not surprising that such
a dense graph H is highly linked. Given sufficiently high connectivity
of G (which again follows easily if ¢ is large enough), we may then try
to link up the vertices of any Y as above to distinct branch sets of H by
disjoint paths in G avoiding most of the other branch sets, and thus to
transfer the linking properties of H to a [k/2]-set Z C Y (Fig. 8.1.1).

va

X $1 Z2

’ ))Y

\V

Fig. 8.1.1. Finding a TK? in G with branch vertices T1, T2, T3

What is all the more surprising, however, is that the existence of
such a dense minor H can be deduced from our assumption of d(G) > cr?.
This will be shown in another lemma (8.1.3); the assertion of the theorem
itself will then follow easily.

Lemma 8.1.2. If G is k-connected and has a minor H with 26(H) >
|H|+ 3k, then G is (k, [k/2])-linked.
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Proof. Let V := {V, | € V(H)} be the set of branch sets in G
corresponding to the vertices of H. For our proof that G is (k, [k/2])-
linked, let k distinct vertices vy,...,vx € G be given. Let us call a
sequence P, ..., Py of disjoint paths in G a linkage if the P; each start
in v; and end in pairwise distinct sets V' € V; the paths P; themselves will
be called links. Since our assumptions about H imply that |H| > k, and
G is k-connected, such linkages exist: just pick k vertices from pairwise
distinct sets V' € V), and link them disjointly to { vy, ..., v; } by Menger’s
theorem.

Now let P = (Py,..., P;) be a linkage whose total number of edges
outside (Jy, ., G [V'] is as small as possible. Thus, if f(P) denotes the
number of edges of P not lying in any G [V, ], we choose P so as to
minimize Zle f(P;). Then for every V € V that meets a path P, € P
there exists one such path that ends in V: if not, we could terminate P;
in V and reduce f(P;). Thus, exactly k of the branch sets of H meet a
link. Let us divide these sets into two classes:

U :={V €V |V meets exactly one link }
W :={V €V |V meets more than one link } .

Since H is dense and each U € U meets only one link, it will be easy to
show that the starting vertices v; of those links form a linked set in G.
Hence, our aim is to show that |[U| > [k/2], i.e. that U is no smaller
than W. (Recall that ||+ |W| = k.) To this end, we first prove the
following:

Every V € W is met by some link which leaves V again
and next meets a set from U (where it ends).

(1)

Suppose V,, € W is a counterexample to (1). Since

25(H) > [H|+ 3k > 6(H) + 3k,
we have §(H) > 3k. As [{UW)| = k, this implies that = has a neighbour
y in H with V, € VYV~ (UUW); let wyw, be an edge of G with w, € V,
and wy € V. Let Q = w...wyw, be a path in G [V, U{w, }] of whose
vertices only w lies on any link, say on P; (Fig. 8.1.2). Replacing P; in
P by P! := P,wQ then yields another linkage.

If P, is not the link ending in V,, then f(P}) < f(P;). The choice
of P then implies that f(P/) = f(P;), i.e. that P; ends in the branch set
W it enters immediately after V. Since V is a counterexample to (1)
we have W ¢ U, i.e. W € W. Let P # P; be another link meeting W.
Then P does not end in W (because P; ends there); let P* C P be the
(minimal) initial segment of P that ends in W. If we now replace P; and
P by P! and P’ in P, we obtain a linkage contradicting the choice of P.
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V, e VN (UUW)

P/ Wew

Fig. 8.1.2. If P; does not end in V., we replace P; and P by P/
and P’

We now assume that P; does end in V,; then f(P/) = f(F;)+ 1.
As V, € W, there exists a link P; that meets V, and leaves it again; let
P/ be the initial segment of P; ending in V,. (Fig 8.1.3). Then f(P}) <
f(P;) — 1. In fact, since replacing P; and P; with P} and P; in P yields
another linkage, the choice of P implies that f(P}) = f(P;) —1, so P
ends in the branch set W it enters immediately after V,. Then W ¢ W
as before, so we may define P and P’ as before. Replacing P;, P; and P
by P/, Pj and P" in P, we finally obtain a linkage that contradicts the
choice of P. This completes the proof of (1).

Vy e VN (UUW)

>
<

Fig. 8.1.3. If P; ends in Vi, we replace P;, P;, P by P}, P, P’

With the help of (1) we may define an injection W — U as follows:
given W € W, choose a link that passes through W and next meets a
set U € U, and map W — U. (This is indeed an injection, because
different links end in different branch sets.) Thus || > |W|, and hence
| = [k/2].

Let us assume the enumeration of vq,...,v; to be such that the
first u := |U| of the links Py,..., Py end in sets from U. Since 26(H) >
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|H|+ %kj, we can find for any two sets V;;, V,, € U at least %k sets V, such
that xz,yz € E(H). At least k/2 of these sets V, do not lie in U UW.
Thus whenever Uy, ..., Uy, are distinct sets in U (so h < u/2 < k/2), we
may find inductively h distinct sets V¢ e V. (UUW) (i =1,...,h) such
that V? is joined in G to both Us;_; and Us;. For each i, any vertex of
Usi_1 can be linked by a path through V? to any desired vertex of Us;,
and these paths will be disjoint for different ¢. Joining up the appropriate
pairs of paths from P in this way, we see that the set {vy,...,v, } is
linked in G, and the lemma is proved. |

Lemma 8.1.3. Let k > 6 be an integer. Then every graph G with
e(G) > k has a minor H such that 26(H) > |H|+ k.

Proof. We begin by choosing a (x-)minimal minor Gy of G with
e(Go) = k. The minimality of G implies that §(Gg) > k and (Gy) = k
(otherwise we could delete a vertex or an edge of Gy), and hence

k+1< 5(G0) < d(Go) =2k.

Let x¢ € Gy be a vertex of minimum degree.
If £ is odd, let m := (k+1)/2 and

Gl = Go[{xo}UNGD(xo)].
Then |G1| = 6(Go) +1 < 2k+1 < 2(k+1) = 4m. By the minimal-
ity of Gy, contracting any edge xzgy of Gy will result in the loss of at

least k + 1 edges. The vertices xg and y thus have at least k common
neighbours, so 6(G1) > k+1 = 2m (Fig. 8.1.4).

o

NGO (‘TO)

Zo

Fig. 8.1.4. The graph G1 < G: a first approximation to the
desired minor H

If k is even, we let m := k/2 and
Gl = GQ [NGO(xo)] .

Then |G1| = 6(Go) < 2k = 4m, and §(G1) > k = 2m as before.
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Thus in either case we have found an integer m > k/2 and a graph
G1 < G such that

|G| < 4m (1)

and 6(G1) = 2m, so
e(G1) =2m=k/2>3. (2)

As 26(G1) = 4m > |G|, our graph G is already quite a good
candidate for the desired minor H of G. In order to jack up its value
of 26 by another %kz (as required for H), we shall reapply the above
contraction process to G, and a little more rigorously than before: step
by step, we shall contract edges as long as this results in a loss of no
more than %m edges per vertex. In other words, we permit a loss of edges
slightly greater than maintaining ¢ > m seems to allow. (Recall that,
when we contracted G to Gy, we put this threshold at e(G) = k.) If this
second contraction process terminates with a non-empty graph Hg, then
e(Ho) will be at least Im, higher than for G;! The im thus gained will
suffice to give the graph H;, obtained from Hj just as G; was obtained
from Gy, the desired high minimum degree.

But how can we be sure that this second contraction process will
indeed end with a non-empty graph? Paradoxical though it may seem,
the reason is that even a permitted loss of up to %m edges (and one
vertex) per contraction step cannot destroy the m |G| or more edges
of G; in the |G| steps possible: the graphs with fewer than m vertices
towards the end of the process would simply be too small to be able to
shed their allowance of %m edges—and, by (1), these small graphs would
account for about a quarter of the process!

Formally, we shall control the graphs H in the contraction process
not by specifying an upper bound on the number of edges to be discarded
at each step, but by fixing a lower bound for ||H]|| in terms of |H|. This
bound grows linearly from a value of just above (Zl) for |H| = m to a
value of less than 4m? for |H| = 4m. By (1) and (2), H = G will satisfy
this bound, but clearly it cannot be satisfied by any H with |H| = m;
so the contraction process must stop somewhere earlier with |H| > m.

To implement this approach, let

f(n) = %m(n —m—25)
and

H

(H <Gy | H > m|H|+ F(H) - (3)}.

By (1),
F(IGL]) < f(4m) = gm? = 3m < (73),

so Gy € H by (2).
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For every H € 'H, any graph obtained from H by one of the following
three operations will again be in H:

(i) deletion of an edge, if |H| = m|H|+ f(|H|) - () +1;
(i) deletion of a vertex of degree at most Im;

(iii) contraction of an edge zy € H such that x and y have at most
%m — 1 common neighbours in H.
Starting with G1, let us apply these operations as often as possible, and
let Hy € H be the graph obtained eventually. Since

™| = m [K™| =m— (%)

and

flm) = —%m > —m,

K™ does not have enough edges to be in H; thus, H contains no graph
on m vertices. Hence |Hy| > m, and in particular Hy # (). Let 21 € Hy
be a vertex of minimum degree, and put

H1 = HQ[{Il}UNHO(Il)].

We shall prove that the minimum degree of H := H; is as large as
claimed in the lemma.
Note first that

Indeed, since Hy is minimal with respect to (ii) and (iii), we have d(z1) >
%m in Hy (and hence in Hy), and every vertex y # x1 of H; has more

than %m — 1 common neighbours with ;7 (and hence more than %m
neighbours in Hy altogether). In order to convert (3) into the desired

inequality of the form
26(Hy) = |Hi|+am,

we need an upper bound for |H;| in terms of m. Since Hy lies in H but
is minimal with respect to (i), we have

| Holl < m | Ho| + (&m |Ho| - §m? = 2m) — (3) +1

2

= Im|Ho|—4m*—im+1

< Im|Ho| — gm*. (4)
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By the choice of z; and definition of Hy, therefore,

[Hy|—1 = 6(Ho)
< 2€(H0)

so |H1| < 2m. Hence,

20(H,) ; 2m+ im

>
3
> |Hi|+ %m
= \Hﬂ-l—%k
(2)

as claimed. O

Proof of Theorem 8.1.1. We prove the assertion for ¢ := 1116. Let
G be a graph with d(G) > 111672, By Theorem 1.4.2, G has a subgraph
Go such that

k(Go) = 27912 > 27612 + 3r.

Pick aset X :={x1,...,x3, } of 3r vertices in Go, and let G; := Gp— X.
For each i = 1,...,3r choose a set Y; of 5r neighbours of x; in Gy; let
these sets Y; be disjoint for different . (This is possible since 6(Gg) >
Ii(G()) > 157"2 + |X|)

As

8(G1) = #(G1) = #(Go) — |X]| > 27612,

we have ¢(G1) > 138r%. By Lemma 8.1.3, G; has a minor H with
26(H) > |H|+23r% and is therefore (1512, 7r?)-linked by Lemma 8.1.2;
let Z C Ule Y; be a set of 7r? vertices that is linked in Gy.

Foralli =1,...,3r let Z; := ZNY,. Since Z is linked, it suffices
to find r indices ¢ with |Z;] > r — 1: then the corresponding z; will be
the branch vertices of a TK" in Gy. If r such ¢ cannot be found, then
|Z;] < r—2 for all but at most » — 1 indices 7. But then

3r
12| =Y 12| < (r=1)5r+2r+1)(r—2) < 7’ = |Z],
=1

a contradiction. O

(1.4.2)

G1,Y;
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Although Theorem 8.1.1 already gives a good estimate, it seems
very difficult to determine the exact average degree needed to force a
TK" subgraph, even for small ». We shall come back to the case of
r = 5 in Section 8.3; more results and conjectures are given in the notes.

The following almost counter-intuitive result of Made