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The main motivation and desire for writing this book, is the direct appreciation 
and attraction towards the Smarandache notions in general and Smarandache 
algebraic structures in particular. The Smarandache semigroups exhibit properties of 
both a group and a semigroup simultaneously. This book is a piece of work on 
Smarandache semigroups and assumes the reader to have a good background on 
group theory; we give some recollection about groups and some of its properties just 
for quick reference.  

 
Since most of the properties and theorems given regarding the Smarandache 

semigroups are new and cannot be found in existing literature the author has taken 
utmost efforts to see that the concepts are completely understood by illustrating with 
examples and a great number of problems. Solutions to all the problems need 
extraordinary effort. 

 
The book is organized in the following way: It has seven chapters. The first 

chapter on preliminaries gives some important notions and concepts, which are used 
in this book. Chapters 2 and 3 gives most of the basic concepts on group theory and 
results in group theory which have been used in this text to study Smarandache 
notions in groups or Smarandache semigroups. This text does not in any way claim 
completeness in giving the properties of groups. 

 
Chapter 4 starts with the definition of the Smarandache semigroup and gives 

some interesting properties of Smarandache semigroups. This chapter is made easy 
for comprehension by several examples. The problems are a must for the researchers 
to solve, for they alone will give them the complete conceptual understanding of the 
Smarandache semigroup.  

 
In chapter five we make use of the newly defined and special types of 

Smarandache semigroups in proving or disproving the classical theorems or analogs 
of the classical theorems. This chapter is also substantiated with examples and several 
problems are given. The sixth chapter is a mixture of both Smarandache notions on 
groups and the study of properties of Smarandache semigroups. 
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The final chapter, a special attraction to researchers and algebraists is a list of 

open research problems. Most of the proposed problems are not very easy to solve, 
but certainly, this feature will attract not only research students but also their research 
guides to take up research on Smarandache notions. Smarandache notions are 
revolutionary because group theory does not make one think of the unthinkable that 
can naturally occur but Smarandache semigroup explicitly and concretely expresses 
the possibilities of such occurrences like the validity of Lagrange's theorem, Cauchy's 
theorem, and Sylow's theorem. Since Smarandache semigroups are the overlap of two 
structures, we are able to see how the mixture of a group and a semigroup behaves. 

 
I deeply acknowledge my family members for their constant encouragement 

and support which made this book possible.  
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CHAPTER ONE 
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����
 
 

One of the essential and outstanding features of the twenty-first century 
mathematics has been not only the recognition of the power of abstract approach but 
also its simplicity by way of illustrative examples and counter examples. Here the 
Smarandache notions in groups and the concept of Smarandache semigroups in 
particular, which are a class of very innovative and conceptually a creative structure, 
have been treated in the context of groups and a complete possible study has been 
taken in this book. Thus, the main purpose of this book is to make both researcher and 
an algebraist to know and enjoy the Smarandache analog concept for groups. It is 
pertinent to mention that Smarandache notions on all algebraic and mathematical 
structures are interesting to the world of mathematicians and researchers, so at this 
juncture we felt it would be appropriate to study the Smarandache semigroups and 
introduce some Smarandache notions in groups.  
 

The introduction of Smarandache concepts in groups and Smarandache 
semigroups in a way makes a mathematician wonder when some of the classical 
theorems like Lagrange's become untrue but at the same time enables for a lucid 
extension of the Cayley's theorem. This book deals only with the algebraic structure 
of groups in the context of Smarandache structures. To make this book self-contained 
much effort is taken to see that the chapters two and three give most of the relevant 
concepts in group theory for which we have studied the Smarandache notions. In 
these two chapters we have restrained ourselves by not giving any problems, the 
problems, which are included, are those results that are essential for our study of 
Smarandache notions in groups and Smarandache semigroups. Chapters 4, 5 and 6 
deals with Smarandache semigroups and Smarandache notions in groups are crowded 
with examples, counter-examples and problems. The prominent feature of the book is 
- all abstract concepts are illustrated by examples.  
 

As to the best of the author's knowledge concepts and results about 
Smarandache semigroups and Smarandache notions in groups are very meager or 
absent except for the definition given by Florentin Smarandache himself. Here all 
pains are taken to introduce in a best sequential way for the reader to appreciate and 
contribute to the subject of Smarandache semigroups. The last chapter is completely 
devoted to research problems some of them are really very difficult for these problems 
may attract a research student and an algebraist and force them to contribute 
something to the world of Smarandache notions in groups and Smarandache 
semigroups. In Chapter one, we introduce some basic notation, Binary relations, 
mappings and the concept of semigroup and Smarandache semigroup.  
 
 
1.1 Binary Relation  
 

Let A be any non-empty set. We consider the Cartesian product of a set A with 
itself; A × A. Note that if the set A is a finite set having n elements, then the set A × A 
is also a finite set, but has n2 elements. The set of elements (a, a) in A × A is called the 
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diagonal of A × A. A subset S of A × A is said to define an equivalence relation on A 
if  

(a, a) ∈ S for all a ∈ A 
(a, b) ∈ S implies (b, a) ∈ S 
(a, b) ∈ S and (b, c) ∈ S implies that (a, c) ∈ S.  

 
Instead of speaking about subsets of A × A we can now speak about a binary 

relation (one between two elements of A) on A itself, by defining b to be related to a 
if (a, b) ∈ S. The properties 1, 2, 3 of the subset S immediately translate into the 
properties 1, 2, 3 of the following definition.  
 
DEFINITION: The binary relation ~ on A is said to be an equivalence relation on A if 
for all a, b, c in A 
 

i. a ~ a 
ii. a ~ b implies b ~ a  
iii. a ~ b and b ~ c implies a ~ c 

 
The first of these properties is called reflexivity, the second, symmetry and the 

third transitivity. The concept of an equivalence relation is an extremely important 
one and plays a central role in all mathematics. 
  
DEFINITION: If A is a set and if ~ is an equivalence relation on A, then the 
equivalence class of a ∈ A is the set {x ∈ A/ a ~ x}. We write this set as cl(a) or [a].  
 
THEOREM 1.1.1: The distinct equivalence classes of an equivalence relation on A 
provide us with a decomposition of A as a union of mutually disjoint subsets. Conversely, 
given a decomposition of A as a union of mutually disjoint, nonempty subsets, we can 
define an equivalence relation on A for which these subsets are the distinct equivalence 
classes. 
 
Proof: Let the equivalence relation on A be denoted by ∼. We first note that since for 
any a ∈ A, a ∼ a, a must be in cl(a), whence the union of the cl(a)'s is all of A. We 
now assert that given two equivalence classes they are either equal or disjoint. For, 
suppose that cl(a) and cl(b) are not disjoint: then there is an element x ∈ cl(a) ∩ cl(b). 
Since x ∈ cl(a), a ~ x; since x ∈ cl(b), b ~ x, whence by the symmetry of the relation, 
x ~ b. However, a ~ x and x ~ b by the transitivity of the relation forces a ~ b. 
Suppose, now that y ∈ cl(b); thus b ~ y. 
 

However, from a ~ b and b ~ y, we deduce that a ~ y, that is, that y ∈ cl(a). 
Therefore, every element in cl(b) is in cl(a), which proves that cl(b) ⊂ cl(a). The 
argument is clearly symmetric, whence we conclude that cl(a) ⊂ cl (b). The argument 
opposite containing relations imply that cl(a) = cl(b). We have thus shown that the 
distinct cl(a)'s are mutually disjoint and that their union is A. This proves the first half 
of the theorem. Now for the other half! Suppose that U α= AA  where the Aα are 

mutually disjoint, nonempty sets (α is in some index set T). How shall we use them to 
define an equivalence relation? The way is clear; given an element, a in A it is in 
exactly one Aα. We define for a, b ∈ A, a ~ b if a and b are in the same Aα.  
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We leave it as a problem for the reader to prove that this is an equivalence 
relation on A and that the distinct equivalence classes are the Aα's. 
 
 
1.2 Mappings 
 

Here we introduce the concept of mapping of one set into another. Without 
exaggeration that is possibly the single most important and universal notion that runs 
through all of Mathematics. It is hardly a new thing to any of us, for we have been 
considering mappings from the very earliest days of our mathematical training.  
 
DEFINITION: If S and T are nonempty sets, then a mapping from S to T is a subset M 
of S × T such that for every s ∈ S there is a unique t ∈ T such that the ordered pair (s, 
t) is in M.  
 

This definition serves to make the concept of a mapping precise for us but we 
shall almost never use it in this form. Instead we do prefer to think of a mapping as a 
rule which associates with any element s in S some element t in T, the rule being, 
associate (or map) s ∈ S with t ∈ T if and only if (s, t) ∈ M. We shall say that t is the 
image of s under the mapping.  

 
Now for some notation for these things. Let σ be a mapping from S to T; we 

often denote this by writing σ: S → T or S →σ T. If t is the image of s under σ we 
shall sometimes write this as σ: s → t; more often we shall represent this fact by t = 
sσ or t = σ(s). Algebraists often write mappings on the right, other mathematicians 
write them on the left.  
 
DEFINITION: The mappings τ of S into T is said to be onto T if given t ∈ T there exists 
an element s ∈ S such that t = sτ.  
 
DEFINITION: The mapping τ of S into T is said to be a one to one mapping if 
whenever s1 ≠ s2; then s1τ ≠ s2τ. In terms of inverse images, the mapping τ is one-to-
one if for any t ∈ T the inverse image of t is either empty or is a set consisting of one 
element.  
 
DEFINITION: Two mappings σ and τ of S into T are said to be equal if sσ = sτ for 
every s ∈ S. 
  
DEFINITION: If σ : S → T and τ : T → U then the composition of σ and τ (also called 
their product) is the mapping σ o τ : S → U defined by means of s( σ o τ) = (sσ)τ for 
every s ∈ S.  
 

Note the following example is very important in a sense that we shall be using 
it in almost all the chapters of this book. The example deals with nothing but mapping 
of a set of n elements to itself.  
 
Example 1.2.1: Let (1, 2, 3) be the set S. Let S(3) denote the set of all mappings of S 
to itself. The number of elements in S(3) is 27 = 33. 
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Example 1.2.2: Let S = (1, 2, 3, ... , n). The set of all mappings of S to itself denoted 
by S(n) has nn elements in it. Throughout this book by S(n) we mean only the set of 
all mappings of the set S = (1, 2, 3, ... , n) to itself. We are now interested to study the 
set S = (1, 2, 3, ... , n) when we take only one to one mappings of S to itself.  
 
Example 1.2.3: Let S = (1, 2, 3) be the set of all one to one mappings of S to itself, 
denoted by S3. S3 contains only 6 elements i.e. 3! elements. It is very important to 
note that the set S3 is a proper subset of the set S(3).  
 
Example 1.2.4: Let S = (1, 2, ... ,n). By Sn we denote the set of all one to one 
mappings of S to itself. Clearly, Sn has n! elements and we know the set of all one to 
one mappings of S is a proper subset of the set of all mappings of S to itself that is  Sn 
⊂ S(n).  
 

Now it is very important to note that the composition of mappings of the set to 
itself in general is not commutative that is if σ and τ: S → S, σ o τ ≠ τ o σ. Secondly 
we see if the mappings σ, τ, δ : S → S then we have (σ o τ) o δ =  σ o (τ o δ) that is 
the composition of mappings in general satisfies the associative law. Further if σ, τ : S 
→ S is one to one then  σ o τ and τ o σ  are also one to one maps from S to S.  We say 
a mapping σ : S → S is the identity map if σ(s) = s for all s ∈ S. In this book we 
denote the identity map just by 1.  
 
DEFINITION: Given an arbitrary set S we call a mapping σ from a set S ×  S into S a 
binary operation on S. Given such a mapping σ : S × S → S we could use it to define a 
"product" in S by declaring a o b = c if σ (a, b) = c. 
 
DEFINITION: If σ is a one to one mapping from the set S into S we have a one to one 
mapping µ from S to S such that σ o µ = µ o σ is the identity map from S to S. We call µ 
the inverse map of σ and σ is called the converse map of µ. 
 
Example 1.2.5: Let σ, µ : S → S where S = (1, 2, 3) be given by  
 

σ(1) = 2   µ(1) = 3 
σ(2) = 3   µ(2) = 1  
σ(3) = 1    µ(3) = 2. 
 

Now, (σ o µ)(1) = 1, (σ o µ)(2) = 2 and (σ o µ)(3) = 3.Thus we see σ o µ = 
identity map. Similarly µ o σ = identity map. 
 
 
1.3 Semigroups and Smarandache Semigroups 
 

In this section, we just recall the definitions of semigroups and Smarandache 
semigroups. Semigroups are the algebraic structures in which are defined a binary 
operation which is both closed and associative. Already we have defined binary 
operation but we have not mentioned explicitly that those maps from S × S to S where 
S is an arbitrary set are binary operations. Further, we mention here that semigroups 
are the most generalized structures with a single binary operation defined on it. 
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DEFINITION: Let S be a non empty set on which is defined a binary operation 'o', (S, 
o) is a semigroup if  1) for all a, b ∈ S we have a o b = c ∈ S and 2) a o (b o c) = (a o 
b) o c for all a, b, c ∈ S. 
 
Example 1.3.1: Let Z+ = {1, 2, 3, ...} be the set of positive integers define '+', usual 
addition of integers on Z+ as the binary operation, (Z+, +) is a semigroup. 
 
Example 1.3.2: Let Zn = {0, 1, 2, ... , n-1} the set of integers modulo n. Zn under 
multiplication is a semigroup denoted by (Zn, ×) 
 

If a semigroup (S, o) has an element e such that s o e = e o s = s for all s ∈ S 
then we say e is the identity element of S relative to the binary operation o and we call 
S a monoid or simply a semigroup. A semigroup with the identity element is called a 
monoid. Clearly the semigroup in example 1.3.1 is not a monoid but the semigroup 
given in example 1.3.2 is a monoid for 1 acts the multiplicative identity for Zn. (Zn, x) 
is a monoid.  
 
Example 1.3.3: Let S = (1, 2). Then S(2) is the semigroup with four elements, the 
elements of S(2) are the mappings of S to S given by σ1, σ2, σ3 and σ4; where σ1(1) = 
1, σ2(1) = 2, σ3(1) = 1, σ4(1) = 2, σ1(2) = 1, σ2(2) = 2, σ3(2) = 2 and σ4(2) = 1. Thus 
S(2) = (σ1, σ2, σ3, σ4).  
 
Example 1.3.4: Let S = (1, 2, ... , n). S(n) is the set of all mappings of S to S. S(n) 
under the composition of mappings is a semigroup with nn elements in it.  
 
Example 1.3.5: Let Z+ = {1, 2, ... , n,…} be the set of positive integers (Z+, ×) is a 
monoid where '×' is the usual multiplication of integers. Now it is important to remark 
(Z+, ×) is a monoid where as (Z+, +) is not a monoid as zero the identity with respect 
to addition does not belong to Z+. Thus on the same set different binary operations 
may be defined so as to make the semigroup a monoid or vice versa.  
 
Example 1.3.6: Let Z10 = {0, 1,2, ... , 9}. (Z10, ×) is a monoid under the usual 
multiplication '×' modulo 10. Thus, every monoid is obviously a semigroup with the 
identity. Throughout this book, even if the semigroup has the identity we choose to 
call it only a semigroup. Definition of a Smarandache semigroup is taken from the 
Florentin Smarandache’s paper “Special Algebraic Structures”.  
 
DEFINITION: The Smarandache semigroup is defined to be a semigroup A such that a 
proper subset of A is a group (with respect to the same binary operation on A).  

 
Here we just use the concept of the algebraic structure, viz. group and we have 

not defined it in the first chapter, but as this text is not just for a beginner or a 
graduate we make this lapse; for the concept of group is elaborately dealt in chapter 2. 
From the definition of the Smarandache semigroup we see every Smarandache 
semigroup is obviously a semigroup as semigroup is used to define the concept of 
Smarandache semigroup. To make this definition explicit we illustrate them by the 
following examples:  
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Example 1.3.7: Let Z8 = {0, 1, 2, ... , 7} be the semigroup under multiplication mod 8. 
Clearly the set A = (1, 7) ⊂ Z8 is a group so Z8 is the Smarandache semigroup.  
 
Example 1.3.8: Let Z4 = {0, 1, 2, 3} be the semigroup under multiplication modulo 4. 
Clearly the subset A = {1, 3} ⊂ Z4 under multiplication modulo 4 is a group. So Z4 is 
a Smarandache semigroup.  
 
Example 1.3.9: Let Z7 = {0, 1, 2, ... , 6} be the semigroup under multiplication '×' 
modulo 7. The only proper subsets of Z7 which are groups under '×' are S = {1, 2, 3, ... 
, 6} and B = {1, 6}. Thus, Z7 is a Smarandache semigroup.  
 
Example 1.3.10: Let S2×2 = {(aij) |aij ∈ Z2 = {0, 1}} be the set of all 2×2 matrices with 
entries from the prime field Z2 = {0, 1}. S2×2 is a semigroup under matrix 

multiplication 22S
01

10
,

10

01
A ×⊂





















=  is a subgroup under matrix multiplication. 

Thus, S2×2 is a Smarandache semigroup. We are not expecting the algebraist to 
understand fully the properties and notions of the Smarandache semigroup by this 
definition and illustrations, for we are going to deal elaborately about Smarandache 
semigroups and Smarandache notions in groups in Chapters 4, 5 and 6 with more 
illustrations.  

 
 

PROBLEM 1: Given an example of a Smarandache semigroup of order 42. 
 
PROBLEM 2: Find all subgroups in the Smarandache semigroup Z72 = {0, 1, 2, ... , 71} 
multiplication modulo 72. 
 
PROBLEM 3: Is Z19 = {0, 1, 2, ... , 18} a Smarandache semigroup under 
multiplication? 
 
PROBLEM 4: Give the subgroups S(5), S(5) the Smarandache semigroup of mappings 
of the set S = (1, 2, 3, 4, 5) to itself, under composition of maps. 
 
PROBLEM 5: Find all subgroup of S2×2 given in example 1.3.10. 

 
With this we end this chapter suggesting the reader the following materials as 

supplementary reading:  
 
 
Supplementary Reading 
 

1. Birkhoff G. and S. Maclane, A Brief Survey of Modern Algebra, 2nd Edition, 
New York, Macmillan, 1965. 

 
2. Padilla Raul, Smarandache algebraic structures, Bull of Pure and applied 

Sciences, Delhi, Vol. 17E, No. 1, 119-121, 1998. 
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CHAPTER TWO�
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��	�����
 

In this chapter we introduce the notion of groups and recall some of the 
elementary properties of groups. In later chapters we will be defining a Smarandache 
analog of these properties whenever possible. Further, we give examples after each 
definition to make the reader understand easily.  
 
 
2.1 Definition of a Group  
 

It is a well-known fact that groups are the only algebraic structures with a 
single binary operation that is mathematically so perfect that an introduction of a 
richer structure within it is impossible. Now we proceed on to define a group.  
 
DEFINITION: A non empty set of elements G is said to form a group if in G there is 
defined a binary operation, called the product and denoted by '•' such that 
 

1. a, b ∈ G implies that a • b ∈ G (closed) 
2. a, b, c ∈ G implies a • (b • c) = (a • b) • c (associative law) 
3. There exists an element e ∈ G such that a • e = e • a = a for all a ∈ G (the 

existence of identity element in G).  
4. For every a ∈ G there exists an element a-1 ∈ G such that a • a-1 = a-1 • a = e 

(the existence of inverse in G).  
 
DEFINITION: A group G is said to be abelian (or commutative) if for every a, b ∈ G; a • b 
= b • a.  
 

A group, which is not abelian, is called naturally enough, non-abelian. Another 
natural characteristic of a group G is the number of elements it contains. We call this 
the order of G and denote it by o(G).The number is most interesting when it is finite. 
In that case, we say that G is a finite group.    
 
 
2.2 Some Examples of Groups 
 
Example 2.2.1: G consists of real numbers 1 and −1. G under multiplication is a 
group of order 2 and it is abelian.  
 

Example 2.2.2: Let G be the set of all 2 × 2 matrices 





dc

ba
where a, b, c, d are real 

numbers such that ad −−−− bc ≠ 0. G is a group under matrix multiplication with 





10

01
 

as its identity. G is a non-commutative group. 
 
Example 2.2.3: Let S3 be the set of all 1−−−−1 mappings of the set {x1, x2, x3} onto it self, 
under the product called composition of mappings, S3 is a group of order 6. The map  
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







→
→
→

23

32

11

1

xx

xx

xx

:p  

is denoted by  
 







=

231

321
1 xxx

xxx
p  , 





=

123

321
2 xxx

xxx
p  , 





=

312

321
3 xxx

xxx
p  ,  







=

132

321
4 xxx

xxx
p  , 





=

213

321
5 xxx

xxx
p  and 





=

321

321

xxx

xxx
e .  

 
pioe = eopi = pi for i = 1, 2, 3, 4, 5. S3 is the smallest non-commutative group of order 
6.   
 
 
2.3 Some Preliminary Results 
 

Here we just prove some interesting preliminary results about groups, which 
clearly characterize the algebraic structure of groups. 
 
THEOREM 2.3.1: Let G be a group, then the identity element of G is unique. 
 
Proof: Given G is a group. To prove the identity element of G is unique, we will show 
that if two elements e and f in G enjoy the property that for every a ∈ G, a • e = e • a = 
a and a • f = f • a = a that is a • e = e • a = a • f = f • a implies e = f. Since e • a = a for 
every a ∈ G in particular we have e • f = f.  However, on the other hand since b • f = f 
for every b ∈ G, we must have for e ∈ G, e • f = e. Piecing these two bits of 
information together we get f = e • f = e and so e = f. 
 
THEOREM 2.3.2: If G is a group, then every a ∈ G has a unique inverse in G. 
 
Proof: Let a ∈ G suppose we have x, y ∈ G such that x • a = a • x = e and y • a = a • y 
= e to prove x = y. Suppose that for a in G. a • x = e and a • y = e then obviously a • x 
= a • y. Let us make this our starting point, that is, assume that a • x = a • y for a, x, y 
in G. There is an element b ∈ G such that b • a = e (as far as we know yet there may 
be several such b's). Thus b • (a • x) = b • (a • y) using the associative law this leads to 
x = e • x = (b • a) • x = b • (a • x) = b • (a • y) = (b • a) • y = e • y = y. We have, in fact, 
proved that a • x = a • y in a group forces x = y.  
 

Similarly x • a = y • a implies x = y. This says that we can cancel from the 
same side, in equations in groups. However it is important to note that a • x = y • a 
does not imply x = y. 
 
THEOREM 2.3.3: Let G be a group; for every a ∈ G, (a-1)-1 = a.  
 
Proof: This simply follows from the fact a-1 • (a-1)-1 = e = a-1 • a canceling off the a-1 
we get (a-1)-1 = a. This is analogous to the very familiar result -(-5) = 5. 
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THEOREM 2.3.4: Let G be a group. For a, b ∈ G  (a • b)-1 = b-1 • a-1. 
 
Proof: Now (a • b) • (b-1 • a-1) = a • (b • b-1) • a-1 = a • e • a-1 = a • a-1 = e so by the very 
definition of the inverse (a • b)-1 = b-1 • a-1. Consequent of the four theorems proved 
we give the proof of the following results as problems to the reader. 
 
PROBLEM 1: Given G is a group. For a, b ∈ G prove the equation a • x = b and y • a = b 
have unique solution for x and y in G. 
 
PROBLEM 2: Prove in a group G  
 

a • u = a • w implies u = w and  
u • a = w • a implies u = w for a, u, w ∈ G. 

 
 
2.4 Subgroups 
 

In general, we shall not be interested in subsets of a group G for they do not 
reflect the fact that G has an algebraic structure imposed on it. Whatever subsets we 
do consider, will be those endowed with algebraic properties derived from those of G. 
Smarandache structures are built in a reverse way. We will see later in this book how 
a Smarandache semigroup is defined. 
 
DEFINITION: A non empty subset H of a group G is said to be a subgroup of G if, 
under the product in G, H itself forms a group. 
 

The following remark is clear; if H is a subgroup of G and K is a subgroup of 
H, then K is a subgroup of G. 
 
Example 2.4.1: Let G = {1, -1} be the group under multiplication H = {1} is a 
subgroup of G.  
 

We call this subgroup improper or trivial subgroup of G. Thus for every group 
G the identity element e of G is a subgroup which we call as trivial or improper 
subgroup of G. Likewise G the group itself is a subgroup of G called the improper 
subgroup of G. So H a subset of G is called a proper subgroup of G if H is not the 
identity subgroup or H is not the whole group G. 
 
Example 2.4.2: Let S3 = {e, p1, p2, p3, p4, p5} be the group given in example 2.2.3. 
Clearly H = {e, p1} and K = {e, p4, p5} are subgroups of S3. Both the subgroups are 
proper subgroups of S3. 
 
Example 2.4.3: Let Z = { }KK 2,1,0,1,2 −−  be the set of integers positive, negative 
with zero. Z under addition is a group. 2Z is a subgroup of Z which is a proper 
subgroup of Z, as 2Z = { }KK ,4,2,0,2,4 −−  is a proper subset of Z. 
 
THEOREM 2.4.1: A non-empty subset H of the group G is a subgroup of G if and only 
if 
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1. a, b ∈ H implies that a • b ∈ H. 
2. a ∈ H implies that a-1 ∈ H. 

 
Proof: Clearly if H is a subgroup of G then it is obvious 1 and 2 holds good. 
Conversely suppose 1 and 2 hold good, to establish H is a subgroup of G, is left for 
the reader as a problem. 
 
THEOREM 2.4.2: If H is a non-empty finite subset of group G and H is closed under 
multiplication, then H is a subgroup of G. 
 
Proof: From the theorem 2.4.1 we need but show that whenever a ∈ H, then a-1 ∈ H. 
Suppose that a ∈ H; then a2 = a • a ∈ H, a3 = a2 • a ∈ H, ... , am ∈ H, ... since H is 
closed. Thus the infinite collection of elements a, a2, ... , am, ... must all fit into H, 
which is a finite subset of G. 

 
Thus there must be repetition in this collection of elements; that is, for some 

integers r, s with r > s > o  ar = as. By the cancellation in G; ar-s = e (whence e is in H) 

since Ha,01sr 1sr ∈≥−− −−  and 1sr1 aa −−− =  since a • eaa sr1sr == −−− . Thus a-1 ∈ H, 
completing the proof of the theorem. 
 

This theorem has a nice analog in the case of Smarandache semigroups, which 
will be dealt in the later chapters. As the main aim of this book is to introduce 
Smarandache notions in groups and use Smarandache semigroups we do not give any 
problems on group theory further the problems which we give here are some theorems 
or results on groups which can be easily proved. 
 
DEFINITION: Let G be a group. H a subgroup of G: for a,b ∈ G we say a is congruent 
to b mod H, written as a ≡ b (mod H) if ab-1 ∈ H. It is easily verified that the relation a 
≡ b (mod H) is an equivalence relation. 
 
DEFINITION: If H is a subgroup of G, a ∈ G, then Ha = {ha / h ∈ H} Ha is called a 
right coset of H in G. 
 
THEOREM 2.4.3: For all a ∈ G, Ha = {x ∈ G / a ≡ x mod H} 
 
Proof: Let [a] = {x ∈ G / a ≡ x mod H}. We first show that Ha ⊂ [a]. For, if h ∈ H, 
then a (ha)-1 = a (a-1 h-1) = h-1 ∈ H since H is a subgroup of G. By the definition of 
congruence mod H this implies that ha ∈ [a] for every h ∈ H, and so Ha ⊂ [a]. 
Suppose, now, that x ∈ [a].  
 

Thus ax-1 ∈ H, so (ax-1)-1 = xa-1 is also in H. That is, xa-1 = h for some h ∈ H. 
Multiplying both sides by a from the right we get x = ha and so x ∈ Ha. Thus [a] ⊂ 
Ha. Having proved both the inclusions [a] ⊂ Ha and Ha ⊂ [a] we can conclude Ha = 
[a]. Hence the claim.  
 
DEFINITION: If G is a group and a ∈ G, the order of a is the least positive integer m 
such that am = e. 
 



 

 17

If no such integer exists we say that a is of infinite order.  We use the notation 
o(a) for the order of a. 
 
DEFINITION:  A subgroup N of a group G is said to be a normal subgroup of G if for 
every g ∈ G and n ∈  N, g n g-1 ∈ N. 
 

Equivalently by gNg-1 we mean the set of all gng-1, n ∈ N then N is a normal 
subgroup of G if and only if gNg-1 ⊂ N for every g ∈ G. 
 
THEOREM 2.4.4: N is a normal subgroup of G if and only if gNg-1 = N for every g ∈ 
G. 
 
Proof: If gNg-1 = N for every g ∈ G, certainly gNg-1 ⊂ N, so N is normal in G. 
Suppose that N is normal in G. Thus if g ∈ G, gNg-1 ⊂ N and   g-1Ng = g-1N (g-1)-1 ⊂ 
N. Now, since g-1Ng ⊂ N, N = g (g-1Ng)g-1 ⊂ gNg-1 ⊂ N whence N = gNg-1. 
 
DEFINITION: A mapping φ from a group G to a group G  is said to be a group 
homomorphism if for all a, b ∈ G, φ(ab) = φ(a) φ(b). 
 
Remarks: If φ(a) = e for all a ∈ G. We call φ a trivial homomorphism. Likewise if φ is 
a map from G to G such that φ(x) = x for every x ∈ G then also we say φ is a trivial 
homomorphism or the identity homomorphism from G to G . The kernel of φ, G → 
G is defined by Kφ = {x ∈ G / φ(x) = e , e  is the identity element of G }. 
 
DEFINITION: A homomorphism G into G  is said to be an isomorphism if φ is one to one. 
 
DEFINITION: By an automorphism of a group G, we shall mean an isomorphism of G 
onto itself. 
 

The following is left as a problem for the reader. 
 
PROBLEM: If G is a group then prove A(G), the set of all automorphism of G is also a 
group. 
 
DEFINITION: If a, b ∈ G, then b is said to be a conjugate of a in G if there exists an 
element c ∈ G such that b = c-1ac. We shall write, for this a ~ b and shall refer to this 
relation as conjugacy. 
 
THEOREM 2.4.5: Conjugacy is an equivalence relation on G. 
 
Proof: As usual, in order to establish this, we must prove that 
 

1. a ~ a; 
2. a ~ b implies b ~ a;  
3. a ~ b, b ~ c implies a ~ c for all a, b, c in G. 

 
We prove each of these in turn 

 
1. Since a = e-1ae, a ~ a with c = e serving as the c in the definition of conjugacy. 
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2. If a ~ b then b = x-1ax for some x ∈ G, hence a = (x-1)-1bx-1 and since y = x-1 ∈ 

G, a = y-1by, b ~ a follows. 
3. Suppose that a ~ b and b ~ c where a, b, c ∈ G. Then b =       x-1ax, c = y-1by 

for some x, y ∈ G. Substituting for b in the expression for c we obtain c = y-

1(x-1ax)y = (xy)-1a(xy); since xy ∈ G, a ~ c is a consequence. 
 
For a ∈ G let C(a) = {x ∈ G / a ~ x} C(a), the equivalence class of a in G 

under our relation, usually called the conjugate class of a in G; it contains the set of all 
distinct elements of the form y-1ay as y ranges over G. 
 
DEFINITION: If a ∈ G, then N(a), the normalizer of a in G, is a set N(a) = {x ∈ G / xa = 
ax}. 
 

N(a) consists of precisely  those elements in G which commute with  a. It is 
left as a problem for the reader to prove N(a) is a subgroup of G. 
 
THEOREM 2.4.6: If G is a finite group then Ca = o(G) / o(N(a)); in other words, the 
number of elements conjugate to a in G is the index of the normalizer of a in G. 
 
Proof: To begin with the conjugate class of a in G, C(a) consists exactly of all the 
elements x-1ax as x ranges over G. Ca measures the number of distinct x-1ax's. Our 
method of proof will be to show that two elements in the same right coset of N(a) in G 
yield the same conjugate of a whereas two elements in different right cosets N(a) in G 
give rise to different conjugates of a.  
 

In this way we shall have a one to one correspondence between conjugates of 
a and right cosets of N(a). Suppose x, y ∈ G are in the same right coset of N(a) in G. 
Thus y = nx where n ∈ N(a) and so na = an. Therefore, since y-1 = (nx)-1 = x-1n-1, y-1ay 
= x-1n-1anx = x-1n-1nax = x-1ax, whence x and y result in the same conjugate of a. 
 

If, on the other hand x and y are in different right cosets of N(a) in G we claim 
that x-1ax ≠ y-1ay. Were this is not the case, from x-1ax = y-1ay, we would deduce that 
yx-1a = ayx-1; this in turn would imply that yx-1 ∈ N(a). However, this declares x and y 
to be in the same right coset of N(a) in G, contradicting the fact that they are in 
different cosets. This proof is now complete. 
 

Since o(G) = ∑ aC  using the theorem we have  

 

( ) ( )
( )( )∑= aNo

Go
Go  

 
where the sum runs over one element a in each conjugate class. This is known as the 
class equation. 
 
DEFINITION: Let G be a group. Z(G) = {x ∈ G | gx = xg for all g ∈ G}. Then Z(G) is 
called the center of the group G. 
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DEFINITION: Let G be a group, A, B be subgroups of G. If x, y ∈ G define x ∼ y if y = axb 
for some a ∈ A and b ∈ B. We call the set AxB = {axb / a ∈ A, b ∈ B} a double coset of 
A, B in G.  
  

It is left as a problem for the reader to prove the relation defined above is an 
equivalence relation on G. The equivalence class of x ∈ G is the set AxB = {axb / a ∈ 
A, b ∈ B}. 
 

If A, B are finite subgroups of G, how many elements are there in the double 
coset AxB? It is again left for the reader to verify. 
 

)xBxA(o

)B(o)A(o
)AxB(o

1−∩
=  

 
DEFINITION: Let G be a group. A and B subgroups of G, we say A and B are 
conjugate with each other if for some g ∈ G, A = gBg-1.  
 

Clearly if A and B are conjugate subgroups of G then o(A) = o(B).  
 
DEFINITION: Let G1, ... , Gn be any n groups. Let G = G1 × ... × Gn = {(g1, g2, ... ,gn)/ gi 
∈ Gi} be the set of all ordered n-tuples, that is, the cartesian product of G1, G2, ... , 
Gn.  
 

We define a product in G via (g1,g2 ,..., gn) (g'1, g'2 ,..,g'n) = (g1 g1', g2 g2', ... , gn 

gn') that is, component-wise multiplication. The product in the ith component is carried 
in the group G. Then G is a group in which (e1, e2, ... , en) is the unit element, where 
each ei is the unit element of Gi , and where (g1, g2, ... , gn)

-1 = (g1
-1, g2

-1, ... , gn
-1).We 

call this group G the external direct product of G1, ... , Gn.  
 

In G = G1 × ... × Gn let iG = {(e1,  e2, ... , ei-1, gi, ei+1, ... , en) / gi ∈ Gi}. Then 

iG  is a normal subgroup of G and is isomorphic to Gi. Moreover G = 1G 2G ... nG  

and every g ∈ G has a unique decomposition; g = 1g 2g ... ng  where 1g  ∈ 1G , 2g  ∈ 

2G , ... ng  ∈ nG . We leave the verification of these facts to the reader.  
 
DEFINITION: Let G be a group and N1, N2, ... , Nn normal subgroups of G such that G 
= N1N2...Nn. Given g ∈ G then g = m1m2...mn, mi ∈ Ni, g written in this way is unique. 
We then say that G is the internal direct product of N1, N2, ... , Nn.  
 

It is left for the reader to verify the following facts.  
 

Let G be the internal direct product of N1, ... , Nn. Then for i ≠ j, Ni ∩ Nj = (e) 
and if a ∈ Ni, b ∈ Nj then ab = ba.  
 

Let G be a group and suppose that G is the internal direct product of N1, ... , Nn 
and T = N1 × N2 × … × Nn,, the external direct product of N1, …, Nn. Then prove G 
and T are isomorphic.  
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In this chapter, we just recall some theorems in group theory with proofs. The 
main purpose for giving the proof is that when we try to adopt them for Smarandache 
semigroups, we would prove either that the classical result or theorem is true or the 
theorem is not true. Thus, the Lagrange's theorem, Cayley's theorem, Cauchy's 
theorem and Sylow's theorems are the main theorems which we are interested in 
proving or disproving in case of Smarandache semigroup or proving the validity in 
case of Smarandache semigroups. 
 

Throughout this chapter by a symmetric group of degree n denoted by Sn we 
mean the set of all 1-1 mappings of the set (1,2, ... ,n) to itself and the group operation 
being the composition of maps. By the dihedral group we mean the group D2n = {a, b / 
a2 = bn = 1, bab = a} where this group contains exactly 2n elements. 
 
 
3.1 Lagrange's Theorem 
 

The famous theorem by Lagrange mainly uses the concept of cosets to prove 
that if G is a finite group and H is a subgroup of G, then o(H) is a divisor of o(G). It 
might be difficult at this point, for the student to see the extreme importance of this 
result. As the subject is penetrated more deeply, one will become increasingly aware 
of its basic character. Here we give the proof of Lagrange's theorem. 
 
THEOREM 3.1.1: (LAGRANGE). If G is a finite group and H is a subgroup of G then 
o(H) is a divisor of o(G). 
 
Proof: Suppose G is a finite group and H is a subgroup of G. Let h1, h2, ... , hr be a 
complete list of the elements of H, r = o(H). If H = G, there is nothing to prove. 
Suppose, that H ≠ G, thus there is an a ∈ G, a ∉ H. List all the elements so far in two 
rows as  
 

h1, h2, ... , hr 

h1a, h2a, ... , hra. 
  

We claim that all the entries in the second line are different from each other 
and are different from the entries in the first line. If any two in the second line were 
equal, then hia  = hja with i ≠ j, but by the cancellation law this would lead to hi = hj a 
contradiction. If an entry in the second line were equal to one in the first line, then hia 

= hj resulting in a  = hi
-1 hj ∈ H since H is a subgroup of G, this violates a ∉ H.  

 
Thus we have, so far, listed 2o(H) elements; if these elements account for all 

the elements of G, we are done. If not there is an element b ∈G, b ∉ Ha and b ∉ H 
that did not occur in these two lines. Consider the new list  
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h1, h2, ... , hr 

h1a, h2a, ... , hra 
h1b, h2b, ... , hrb 

  
As before (we are now waving our hands) we could show that, no two entries 

in the third line are equal to each other, and that no entry in the line occurs in the first 
or second line. Thus, we have listed 3o(H) elements. Continuing in this way, every 
new element introduced, in fact, produced o(H) new elements.  

 
Since G is a finite group, we must eventually exhaust all the elements of G. 

But if we ended up using k lines to list all elements of the group, we would have 
written ko(H) distinct elements and so ko(H) = o(G). Hence the claim.  
 

It is essential to point out that for every divisor of the order of a finite group G 
we need not in general have a subgroup. That the converse to Lagrange's theorem is 
false - a group G need not have a subgroup of order m if m is a divisor of o(G). 
 

Consider the group S4, the symmetric group of degree 4 which has A4 the 
alternating subgroup of order 12. Clearly 6/12 but A4 has no subgroup of order 6. 
Thus, we see the converse of Lagrange's theorem in general is not true. Hence, there 
are very few results, which assert the existence of subgroups of prescribed order in 
arbitrary finite groups. The Lagrange's theorem has some very important Corollaries. 
 
COROLLARY 3.1.2: If G is a finite group and a ∈ G, then o(a) | o(G). 
 
Proof: With Lagrange's theorem already in hand, it seems most natural to prove the 
corollary by exhibiting a subgroup of G whose order is o(a). The element a itself 
furnishes us with this subgroup by considering the cyclic subgroup generated by a that 
is, (a) of G; (a) consists of e, a, a2, .... How many elements are there in (a)? 
 

We assert that this number is the order of a. Clearly, since ao(a) = e, this 
subgroup has at most o(a) elements. If it should actually have fewer than this number 
of elements, then ai = aj for some integers 0 ≤ i < j < o(a). Then aj-i = e, yet 0 < j − i < 
o(a) which would contradict the very meaning of o(a). Thus the cyclic subgroup 
generated by a has o(a) elements, whence, by Lagrange's theorem, o(a) | o(G). 
 
COROLLARY 3.1.3: If G is a finite group and a ∈ G, then a o(G) = e. 
 
Proof: By Corollary 3.1.2, o(a) | o(G); thus o(G) = mo(a). Therefore,   a0(G) = amo(a) = 
(ao(a))m = em = e. 
 
 
3.2 Cauchy's Theorem 
 

In this section we give the two Cauchy's theorems one for abelian groups and 
the other for non-abelian groups. The main result on finite groups is that if the order 
of the group is n (n < ∝)  if p is a prime dividing n by Cauchy's theorem we will 
always be able to pick up an element a ∈ G such that ap = e. In fact we can say 
Sylow's theorem is a partial extension of Cauchy's theorem for he says this finite 
group G has a subgroup of order pα(α ≥ 1, p, a prime). 
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THEOREM 3.2.1: (CAUCHY'S THEOREM FOR ABELIAN GROUPS). Suppose G is a finite 
abelian group and p / o(G), where p is a prime number. Then there is an element a ≠  
e ∈ G such that ap = e. 
 
Proof: We proceed by induction over o(G). In other words, we assume that the 
theorem is true for all abelian groups having fewer elements than G. From this we 
wish to prove that the result holds for G. To start the induction we note that the 
theorem is vacuously true for groups having a single element. 
 

If G has no subgroups H ≠ (e), G, must be cyclic of prime order. This prime 
must be p, and G certainly has p-1 elements a ≠ e satisfying ap = ao(G) = e. So suppose 
G has a subgroup N ≠ (e), G. If p/o(N), by our induction hypothesis, since o(N)< o(G) 
and N is abelian, there is an element b ∈ N, b ≠ e, satisfying bp = e; since b ∈ N ⊂ G 
we would have exhibited an element of the type required. Therefore, we may assume 
that p / o(N). Since G is abelian, N is a normal subgroup of G, so G/N is a group. 
Moreover, o(G/N) = o(G)/o(N), since p / o(N), 
 

).G(o
)N(o

)G(o
p <  

 
Also, since G is abelian, G/N is abelian. Thus by our induction hypothesis 

there is an element X ∈ G/N satisfying Xp = e1, ; the unit element of G/N, X ≠ e1. By 
the very form of elements of G/N, X = Nb, b ∈ G, so that Xp = (Nb)p = Nbp. Since e1 
= Ne, Xp = e1,       X ≠ e1 translates into  Nbp = N, Nb ≠ N. Thus bp ∈ N, b ∉ N.  

 
Using one of the corollaries to Lagrange's theorem, (bp)o(N) = e. That is, (bp)o(N) 

= e. Let c = bo(N). Certainly cp = e. In order to show that c is an element that satisfies 
the conclusions of the theorem we must finally show that c ≠ e.  However, if c = e, 
bo(N) = e, and so (Nb)o(N) = N. Combining this with (Nb)p = N, p / o(N), p a prime 
number, we find that Nb = N, so b ∈ N, a contradiction. Thus c ≠ e, cp = e, and we 
have completed the induction. This proves the result.  
 
THEOREM 3.2.2: (CAUCHY) If p is a prime number and p | o(G), then G has an element 
of order p. 
 
Proof: We seek an element a ≠ e ∈ G satisfying ap = e. To prove its existence we 
proceed by induction on o(G); that is, we assume the theorem to be true for all groups 
T such that o(T) < o(G). We need not worry about starting the induction for the result 
is vacuously true for groups of order 1.  
 

If for any subgroup W of G, W ≠ G, were it to happen that     p | o(W), then by 
our induction hypothesis there would exist an element of order p in W, and thus there 
would be such an element in G. Thus we may assume that p is not a divisor of the 
order of any proper subgroup of G. In particular, if a ∉ Z(G), since N(a) ≠G, 
p / o(N(a)). Let us write down the class equation: 
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Since p | o(G), p / o(N(a)) we have that  ,
))a(N(o

)G(o
p  and 

so ∑
≠G)a(N

;
))a(N(o

)G(o
p  Since we also have that p | o(G), we conclude that 

)).G(Z(o
))a(N(o

)G(o
)G(op

G)a(N

=





− ∑

≠

 

 
Z(G) is thus a subgroup of G whose order is divisible by p. But, after all, we 

have assumed that p is not a divisor of the order of any proper subgroup of G, so that 
Z(G) cannot be a proper subgroup of G. We are forced to accept the only possibility 
left us, namely, that Z(G) = G. But then G is abelian; now we invoke the result 
already established for abelian groups to complete the induction. This proves the 
theorem.  
 
 
3.3 Cayley's Theorem 
 
 Though one may marvel at the number of groups of varying types carrying 
many different properties, except for Cayley's we would not have seen them to be 
imbedded in the class of groups this was done by Cayley's in his famous theorem. 
Smarandache semigroups also has a beautiful analog for Cayley's theorem which will 
be given in Chapter 5.  
 

By A(S) we mean the set of all one to one maps of the set S into itself. Clearly 
A(S) is a group having n! elements if o(S) = n < ∝, if S is an infinite set, A(S) has 
infinitely many elements.   

 
THEOREM 3.3.1: (CAYLEY) Every group is isomorphic to a subgroup of A(S) for some 
appropriate S. 
 
Proof: Let G be a group. For the set S we will use the elements of G; that is, put S = 
G. If g ∈ G, define τg:S(= G) → S(= G) by xτg = xg for every x ∈ G. If y ∈G, then y = 
(yg-1)g = (yg-1) τg, so that τg maps S onto itself. Moreover, τg is one to one, for if x, y 
∈ S and xτg = yτg, then xg = yg, which, by the cancellation property of groups, 
implies that x = y. We have proved that for every g ∈G, τg ∈ A(S). 
 

If g, h ∈ G, consider τgh. For any x ∈ S = G, xτgh = x(gh) = (xg)h = (xτg) τh. 
Note that we used the associative law in a very essential way here. From xτgh = xτgτ h 
we deduce that τgh = τgτ h. Therefore, if ψ: G → A(S) is defined by ψ(g) = τg, the 
relation τgh = τgτ h tells us that ψ is a homomorphism. What is the kernel K of ψ? If g0 
∈ K, then ψ(g0) = 

0gτ is the identity map on S, so that for x ∈ G, and, in particular, for 

e ∈ G, 
0geτ  = e. But 

0geτ = eg0 = g0. Thus comparing these two expressions for 
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0geτ we conclude that g0 = e, whence K = (e). We know a homomorphism ψ of G into 

A(S) with kernel K is an isomorphism of G into A(S) if and only if K = (e), proving 
the theorem.   

 
 
3.4 Sylow's Theorems 

 
The Norwegian mathematician Peter Ludvig Mejdell Sylow was the 

contributor of Sylow's theorems. Sylow's theorems serve double purpose. One hand 
they form partial answers to the converse of Lagrange's theorem and on the other hand 
they are the complete extension of Cauchy's Theorem. Thus Sylow's work interlinks 
the works of two great mathematicians Lagrange and Cauchy. The following theorem 
is one, which makes use of Cauchy's theorem. It gives a nice partial converse to 
Lagrange's theorem and is easily understood.  

 
THEOREM 3.4.1: (SYLOW'S THEOREM FOR ABELIAN GROUPS) If G is an abelian group 
of order o(G), and if p is a prime number, such that      pα | o(G), pα+1 / o(G), then G has 
a subgroup of order pα.   
 
Proof:  Given G is an abelian group of order o(G) and p is a prime number such that 
pα/o(G) and pα+1 / o(G). Suppose α = 0, then the subgroup (e) satisfies the conclusion 
of the result. So suppose α ≠ 0. Then p | o(G). By Cauchy's theorem for abelian 
groups, there is an element a ≠ e ∈ G satisfying ap

 = e.  
 

Let S = {x ∈ G | ex
np =  for some integer n}. Since a ∈ S, a ≠ e, it follows 

that S ≠ (e). We now assert that S is a subgroup of G. Since G is finite we must only 

verify that S is closed. If x, y ∈ S, ,ey,ex
mpnp ==  so that ( ) eyxxy

mnmnmn ppp ==
+++

 

(we have used that G is abelian), proving that xy ∈ S. We next claim that o(S) = pβ 
with β an integer 0 < β ≤ α. For, if some prime q | o(S), q ≠ p, by the result of 
Cauchy's theorem for abelian groups there is an element c ∈ S, c ≠ e, satisfying cq = e. 
 

However, ec
np =  for some n since c ∈ S. Since pn, q are relatively prime, we 

can find integers λ, µ such that λq + µpn = 1, so that c = c1 = µλµ+λ = )c()c(c
nn pqpq  = 

e, contradicting c ≠ e. By Lagrange's theorem o(S) | o(G), so that β ≤ α. Suppose that 
β < α; consider the abelian group G/S. Since β < α and o(G/S) = o(G)/o(S), p | 

o(G/S), there is an element Sx, (x ∈ G) in G/S satisfying Sx ≠ S,
np)Sx(  = S for some 

integer n > 0. But S = 
np)Sx( = 

npSx , and so 
npx ∈ S; consequently e = 

β+β
==

nnn ppp)S(op x)x()x( . Therefore, x satisfies the exact requirements needed to 
put it in S; in other words, x ∈S. Consequently Sx = S contradicting Sx ≠ S. Thus β < 
α is impossible and we are left with the only alternative, namely, that β = α. S is 
required subgroup of order pα. 
 
COROLLARY 3.4.2: If G is abelian of order o(G) and pα | o(G), pα+1 / o(G), there is a 
unique subgroup of G of order pα. 
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Proof: Suppose T is another subgroup of G of order pα, T ≠ S. Since G is abelian ST = 
TS, so that ST is a subgroup of G. We know if S and T are finite subgroups of G of 
order o(S) and o(T) respectively then. 

 

)TS(o

pp

)TS(o

)T(o)S(o
)ST(o

∩
=

∩
=

αα
 

 
and since S ≠ T, o(S ∩ T) < pα, leaving us with o(ST) = pγ, γ > α. Since ST is a 
subgroup of G, o(ST) | o(G); thus pγ | o(G) violating the fact that α is the largest 
power of p which divides o(G). Thus no such subgroup T exists, and S is the unique 
subgroup of order pα. 
 
DEFINITION: Let G be a finite group. A subgroup G of order pα, where pα / o(G) but 
pα /  o(G), is called a p-Sylow subgroup of G. Thus we see that for any finite group G 
if p is any prime which divides o(G); then G has a p-Sylow subgroup.  
 

Thus, the classical three parts of theorems due to Sylow with proofs will be 
given in this chapter. It is interesting to note that out of three proofs were given to the 
first Sylow's theorem, which clearly enables us to understand that Sylow's theorem is 
that important that it merits this multi front approach. However, in this text we give 
only the proof, which uses induction and the class equation.  
 
THEOREM 3.4.3: (FIRST PART OF SYLOW'S THEOREM). If p is a prime number and pα/ 
o(G) and pα+1 / o(G), G is a finite group, then G has a subgroup of order pα. 
 
Proof: We give the proof using induction on the order of the group G, that for every 
prime p dividing the order of G, G has a p-Sylow subgroup.If the order of the group G 
is 2, the only relevant prime is 2 and the group certainly has a subgroup of order 2, 
namely itself. So we suppose the result to be correct for all groups of order less than 
o(G). From this we want to show that the result is valid for G. Suppose, then, that 
pα/o(G), pα+1 / o(G) where p is a prime, α ≥ 1. If pα / o(H) for any subgroup H of G, 
where H ≠ G, then by the induction hypothesis, H would have  a subgroup T of order 
pα.  
 

However, since T is a subgroup of H and H is a subgroup of G, T too is a 
subgroup of G. But then T would be the sought after subgroup of order pα. We 
therefore may assume that pα / o(H) for any subgroup H of G, where H ≠ G. We 
restrict our attention to a limited set of such subgroups. Recall that if a ∈ G, then N(a) 
= {x ∈ G / xa = ax} is a subgroup of G; moreover, if a ∉ Z(G), the center of G, then 

N(a) ≠ G. Recall, too, that the class equation of G states that ∑= ))a(N(o

)G(o
)G(o  where 

the sum runs over one element a from each conjugate class. We separate this sum into 
two pieces, those a which lie in Z(G), and those which don't. This gives, 

∑
∉

+=
Za ))a(N(o

)G(o
z)G(o where z = o(Z(G)). Now invoke the reduction we have made 

namely, that pα / o(H) for any subgroup H of G, where H ≠ G, to those subgroups N(a) 
for a ∉ Z(G). Since in this case, pα / o(G) and pα / o(N(a)), we must have that 



 

 27

.
))a(N(o

)G(o
p  Restating this result 

))a(N(o

)G(o
p , for every a ∈ G where a ∉ Z(G). Look 

at the class equation with this information. Since pα/o(G) we have that p/o(G), also 

∑
∉Za ))a(N(o

)G(o
p . 

 
Thus the class equation gives us that p/z. Since p/z = o(Z(G)) by Cauchy's 

Theorem Z(G) has an element b ≠ e of order p. Let B = (b), the subgroup of G 
generated by b. B is of order p; moreover, since b ∈ Z(G), B must be normal in G. 
Hence we can form the quotient group G = G/B. We look at G , first of all its order if 
o(G)/o(B) = o(G)/p, hence is certainly less than o(G). Secondly we have pα-1/o( G ) 
but pα /  o( G ). Thus by the induction hypothesis G  has subgroup P of order pα-1. Let 
P = {x ∈ G/ xB ∈ P }. It is left for the reader to prove; P is a subgroup of G.  
 

Moreover, B/PP ≈  (Prove!); thus .
p

)P(o

)B(o

)P(o
)P(op 1 ===−α  This results in 

o(P) = pα. Therefore P is the required p-Sylow subgroup of G. This completes the 
induction and so proves the theorem. 
 
THEOREM 3.4.4: (SECOND PART OF SYLOW'S THEOREM) If G is a finite group, p a 
prime and pn | o(G) but pn+1 / o(G), then any two subgroup of G of order pn are 
conjugate.   
 
Proof: Let A, B be subgroups of G, each of order pn. We want to show that A = gBg-1 
for some g ∈ G. Decompose G into double cosets of A and B; G = U .AxB  We know 

.
)xBxA(o

)B(o)A(o
)AxB(c

1−∩
=  If A ≠ xBx-1 for every x ∈ G then o(A ∩ xBx-1) = pm where 

m < n. Thus mn2
m

n2

m
p

p

p

p

)B(o)A(o
)AxB(o −===  and 2n - m ≥ n + 1. Since pn+1 | 

o(AxB) for every x and since o(G) = ,)AxB(o∑  we would get the contradiction pn+1 | 

o(G). Thus A = gBg-1 for some g ∈G. This is the assertion of the theorem. 
 
THEOREM 3.4.5: (THIRD PART OF SYLOW'S THEOREM) The number of p-Sylow 
subgroups in G, for a given prime, is of the form 1 + kp. 
 
Proof: Let P be a p- Sylow subgroup of G. We decompose G into double cosets of P 
and P. Thus G = U .PxP  We know that 

 

.
)xPxP(o

)P(o
)PxP(o

1

2

−∩
=  

 
Thus, if P ∩ xPx-1 ≠ P then pn+1 | o(PxP), where pn = o(P). Paraphrasing this: if 

x ∉ N(P) then Pn+1 | o(PxP). Also, if x ∈N(P), then PxP = P(Px) = P2x = Px, so o(PxP) 
= pn in this case. Now  
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∑∑
∉∈

+=
)P(Nx)P(Nx

)PxP(o)PxP(o)G(o , 

 
where each sum runs over one element from each double coset. However, if x ∈ N(P), 
since PxP = Px, the first sum is merely Σx ∈ N(p) o(Px) over the distinct cosets of P in 
N(P). Thus this first sum is just o(N(P)). What about the second sum? We saw that 
each of its constituent terms is divisible by pn+1, hence 
 

∑
∉

+

)P(Nx

1n )PxP(op . 

 
We can thus write this second sum as  

 

.up)PxP(o 1n

)P(Nx

+

∉
=∑  

 
Therefore o(G) = o(N(P)) + pn+1u, so 

 

.
))P(N(o

up
1

))P(N(o

)G(o 1n+
+=  

 
Now o(N(P)) | o(G) since N(P) is a subgroup of G, hence pn+1u | o(N(P)) is an 

integer. Also, since pn+1 /  o(G), pα+1 cannot divide o(N(P)). But then pn+1u | o(N(P)) 
must be divisible by p, so we can write as kp, where k is an integer. Feeding this 
information back into our equation above, we have 

 

.kp1
))P(N(o

)G(o +=  

 
Recalling that o(G) | o(N(P)) is the number of p-Sylow subgroups in G, we 

have the theorem. 
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Padilla Raul introduced the notion of Smarandache semigroups in the year 
1998 in the paper entitled Smarandache Algebraic Structures. Since groups are the 
perfect structures under a single closed associative binary operation, it has become 
infeasible to define Smarandache groups. Smarandache semigroups are the analog in 
the Smarandache ideologies of the groups.  
 

Now in this chapter we define new classes of Smarandache semigroups like 
Smarandache Lagrange semigroups, Smarandache p-Sylow subgroups, Smarandache 
subsemigroups, Smarandache hyper subsemigroups Smarandache simple semigroups 
and Smarandache Cauchy semigroup. Finally, the concept of Smarandache cosets was 
introduced in 2001 in the paper Smarandache cosets which has appeared in the online 
"Smarandache Notions Journal and is accessible at: 
http://www.gallup.unm.edu/~smarandache/Cosets.pdf  
 
 
4.1 Definition of Smarandache Semigroup 
 

Here we first recall the definition of Smarandache semigroups as given by 
Raul (1998) and introduce in this section concepts like Smarandache commutative 
semigroup, Smarandache weakly commutative semigroup, Smarandache cyclic and 
weakly cyclic semigroups.  
 
DEFINITION: The Smarandache semigroup (S-semigroup) is defined to be a semigroup A 
such that a proper subset of A is a group (with respect to the same induced operation).  
 
DEFINITION: Let S be a S-semigroup. If every proper subset of A in S, which is a group is 
commutative then we say the S-semigroup S to be a Smarandache commutative 
semigroup. 
 
Remark: It is important to note that if S is a commutative semigroup and if S is a S-
semigroup then S is a Smarandache commutative semigroup. Here we are interested in 
finding whether there exists proper subsets of S-semigroups which are subgroups of 
which some of them are commutative and some non-commutative. This leads us to 
define: 
 
DEFINITION: Let S be S-semigroup, if S contains at least a proper subset A that is a 
commutative subgroup under the operations of S then we say S is a Smarandache weakly 
commutative semigroup.  
 
DEFINITION: Let S be S-semigroup if every proper subset A of S which is a subgroup is 
cyclic then we say S is a Smarandache cyclic semigroup.  
 
DEFINITION: Let S be a S-semigroup if there exists at least a proper subset A of S, which 
is a cyclic subgroup under the operations of S then we say S is a Smarandache weakly 
cyclic semigroup.  



 

 30

 
DEFINITION: Let S be a S-semigroup. If the number of distinct elements in S is finite, we 
say S is a finite S-semigroup otherwise we say S is a infinite S-semigroup. 
 

We are more interested in this book only about S-semigroups of finite order. We 
use the term subgroup or group in a S-semigroup in a synonymous way 
 
 
4.2 Examples of S-semigroups 
 
 The lucidity and understanding of an algebraic concept is made easy only 
when it is illustrated by many examples. So this book tries to give many examples of 
S-semigroups.  
 
Example 4.2.1 Let Z12 = {0, 1, 2, ... , 9, 10, 11} be the semigroup under 
multiplication modulo 12. Clearly, Z12 is a S-semigroup. The subsets, which form the 
subgroups under multiplication mod 12, are given by the following tables:  
 

× 1 5 
1 1 5 
5 5 1 

 
  1 is the multiplicative identity  

 
× 9 3 
9 9 3 
3 3 9 

 
 9 is the multiplicative identity   

 
× 4 8 
4 4 8 
8 8 4 

 
4 is the multiplicative identity  

 
× 1 7 
1 1 7 
7 7 1 

 
1 is the multiplicative identity 

 
× 1 11 
1 1 11 
11 11 1 

 
1 is the multiplicative identity 
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× 1 5 7 11 
1 1 5 7 11 
5 5 1 11 7 
7 7 11 1 5 

11 11 7 5 1 
 
            1 is the multiplicative identity 

 
Thus we see Z12 is only a Smarandache weakly cyclic semigroup as Z12 has 6 

proper subsets which are subgroups under multiplication modulo 12. Here of the six 
subgroups 5 are cyclic subgroups of order 2 and one is a non-cyclic subgroup of order 
4. Further it is very important and fascinating to note that every subgroup of Z12 does 
not have the same element 1 as its multiplicative identity.  
 
Example 4.2.2: Let Z6 = {0, 1, 2, 3, 4, 5} is the semigroup under multiplication mod 
6. Clearly, Z6 is a S-semigroup having only the cyclic group of order 2 viz. 
 

× 4 2 
4 4 2 
2 2 4 

 
× 1 5 
1 1 5 
5 5 1 

 
Z6 is a Smarandache cyclic semigroup of order 6. 

 
Example 4.2.3: Let S(3) be the set of all maps from the three element set (1, 2, 3) to 
itself. Clearly, S(3) under the operations of composition of maps 'o' is a semigroup. 
Further S(3) is a S-semigroup. The subsets, which are subgroups of S(3), are given by 
the following tables using the following notation, 
 







=

321

321
1 , 





=

231

321
p1 , 





=

123

321
p2 , 







=

312

321
p3 , 





=

132

321
p4 , 





=

213

321
p5 . 

 
o 1 p1 
1 1 p1 
p1 p1 1 

 
o 1 p2 

1 1 p2 
p2 p2 1 

 
o 1 p3 

1 1 p3 
p3 p3 1 
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o 1 p4 p5 
1 1 p4 p5 
p4 p4 p5 1 
p5 p5 1 p4 

 
and 

o 1 p1 p2 p3 p4 p5 
1 1 p1 p2 p3 p4 p5 
p1 p1 1 p5 p4 p3 p2 
p2 p2 p4 1 p5 p1 p3 
p3 p3 p5 p4 1 p2 p1 
p4 p4 p2 p3 p1 p5 1 
p5 p5 p3 p1 p2 1 p4 

 
 

Thus, we see S(3) has subgroup; all them are not cyclic, so S(3) is a 
Smarandache weakly cyclic semigroup. It is absorbing to note unlike in the example 

4.2.1, here for every subgroup the identity element is the same viz. 





=

321

321
1 . 

 
Example 4.2.4 Let Z8 = {0, 1, 2, 3, ... , 7} be the semigroup under multiplication 
modulo 8. The semigroup Z8 is a S-semigroup. It has the following subsets, which are 
subgroups given by the following tables: 
 

× 1 3 
1 1 3 
3 3 1 

 
× 1 5 

1 1 5 
5 5 1 

 
× 1 7 

1 1 7 
7 7 1 

 
× 1 3 5 7 
1 1 3 5 7 
3 3 1 7 5 
5 5 7 1 3 
7 7 5 3 1 

 
Now Z8 has 4 subsets, which are subgroups of which 3 are cyclic and one is 

not cyclic but abelian. Thus, Z8 is a Smarandache abelian semigroup, which is not a 
Smarandache cyclic semigroup. Here it is pertinent to note 1 which is the unit of Z8 
acts as the unit for all subgroups of Z8.  
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Example 4.2.5 Consider the semigroup Z9 = {0, 1, 2, 3, ... , 8} under multiplication 
modulo 9. Now Z9 is a S-semigroup. The following subsets of Z9, which are 
subgroups are given by the following tables:  
 

× 1 8 
1 1 8 
8 8 1 

 
× 1 2 4 5 7 8 
1 1 2 4 5 7 8 
2 2 4 8 1 5 7 
4 4 8 7 2 1 5 
5 5 1 2 7 8 4 
7 7 5 1 8 4 2 
8 8 7 5 4 2 1 

 
 This example is unique in its own way for it has only 2 proper subsets which 
are subgroups under multiplication; they are of order 2 and 6. Clearly the order of the 
S-semigroup is 9 and 2 does not divide 9 and 6 also does not divide 9. Here we cannot 
even say the order of the subgroup and that of the S-semigroup are relatively prime. 
For (2, 9) = 1 and (6, 9) = 3. 
 
Example 4.2.6: Let Z25 = {0, 1, 2, 3, ... , 23, 24} be the semigroup under 
multiplication modulo 25. The subset of Z25 which are subgroups of Z25 are given by 
A = {1, 24} and B = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 
24} that is Z 25 \ {0, 5, 10, 15, 20} = B is also a subgroup under multiplication modulo 
25. Thus o(A) = 2 and o(B) = 20. Clearly, B is not a cyclic subgroup of Z25. 
Here Z25 is not a Smarandache cyclic semigroup. 
 
 
4.3 Some Preliminary Theorems 
 

Here we give some basic theorems about some S-semigroups. This will not 
only make the S-semigroup properties easy and enjoyable but also make one see how 
these structures satisfy various new properties. 
 
LEMMA 4.3.1: Let S be a Smarandache cyclic semigroup. Then S is a Smarandache 
commutative semigroup. 
 
Proof: By the very definition, we know all cyclic groups are abelian. So a 
Smarandache cyclic semigroup is a Smarandache commutative semigroup. Hence the 
claim. 
 
THEOREM 4.3.2: Let G be a Smarandache commutative semigroup. G in general need 
not be a Smarandache cyclic semigroup. 
 
Proof: We prove this by a counter example. Consider the S-semigroup given by Z25 = 
{0, 1, 2, ... ,23, 24}, the semigroup under multiplication modulo 25 given in example 
4.2.6. Clearly, Z25 is a Smarandache abelian semigroup but Z25 is not a Smarandache 
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cyclic semigroup as Z25 \ {0, 5, 10, 15, 20} = B is a proper subset of Z25 which forms 
an abelian group under multiplication but is not a cyclic group. Hence the claim. 
 

The examples introduced in these sections have enabled us to prove the 
following results, about the semigroup of integers Zn under multiplication modulo n 
and S(n) the semigroup of mappings of the set of n elements to itself. 
 
THEOREM 4.3.3: Zn be the semigroup under multiplication modulo n; n ≥ 3; Zn is a S-
semigroup. 
 
Proof: Zn = {0, 1, 2, ... , n-1}. Zn is a semigroup under multiplication modulo n. 
Clearly, we have the set A = {1, n-1} is proper subset of Zn, which is a subgroup 
under multiplication given by the following table: 
 

× 1 n-1 
1 1 n-1 

n-1 n-1 1 
 

Hence, Zn is a S-semigroup of order n.  
 

From the above theorem, we have a nice property about the S-semigroup Zn. 
 
THEOREM 4.3.4: The S-semigroup Zn is a Smarandache weakly cyclic semigroup  
 
Proof: By the above theorem, Zn always has a cyclic subgroup of order 2 given by A 
= {1, n – 1}. Hence Zn is a Smarandache weakly cyclic semigroup. 
 
THEOREM 4.3.5: S(n) is the S-semigroup. 
 
Proof: Clearly S(n) is the semigroup of order nn. Sn is a S-semigroup for it contains 
the symmetric group of degree n, i.e Sn is a proper subset which is the group of 
permutations on (1, 2, 3, …, n). Hence S(n) is a S-semigroup. 
 

Clearly S(n) is a not Smarandache commutative semigroup. Further we have 
the following engrossing results about S(n). 
 
THEOREM 4.3.6: S(n) the S-semigroup is not a Smarandache commutative (abelian) 
semigroup (n ≥ 3). 
 
Proof: Now the semigroup S(n)contains Sn the symmetric group of degree n as a 
proper subset which is a group; further Sn is non abelian so S(n) is not a Smarandache 
commutative semigroup. 
 
Remark: The condition n ≥ 3 is important for S(2) is abelian.  
 
COROLLARY: S(n) is a Smarandache weakly cyclic semigroup. 
 
Proof: S(n) is a S-semigroup for Sn the proper  subset having n! elements is a 
subgroup of S(n). Now consider any element 
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Thus, p generates a cyclic group of order n, which is cyclic. Hence the claim. 

 
PROBLEM 1: Find the subgroups in the semigroup Z21 under multiplication modulo 21. Is 
Z21 a Smarandache cyclic semigroup? 
 
PROBLEM 2: Find S-semigroup Zn (Zn semigroup under multiplication modulo n) which 
is a Smarandache cyclic semigroup for n > 30. 
 
PROBLEM 3: Find all subsets which are subgroups of Z120, the S-semigroup under 
multiplication modulo 120. 
 
PROBLEM 4: How many cyclic subgroups are there in Z120? (Z120 given in problem 3). Is 
Z120 a Smarandache cyclic semigroup? 
 
PROBLEM 5: Find all cyclic subgroups in the semigroup Z20 × Z15 where Z20 × Z15 is the 
Cartesian product of the semigroups Z20 and Z15 under multiplication. Prove Z20 × Z15 is a 
S-semigroup. 
 
PROBLEM 6: Find all abelian subgroups in S(15); where S(15) is the S-semigroup of 
mappings of the set S =(1, 2, …, 15) to itself. 
 
PROBLEM 7: Find all abelian groups which are not cyclic in S(15) (given in problem 6). 
 
PROBLEM 8: Prove S(15) is only  
 

1. Smarandache weakly cyclic semigroup. 
2. Smarandache weakly abelian semigroup. 

 
PROBLEM 9: Find the largest subgroup in S(20) × S(6) where S(20) and S(6) are S-
semigroups of order 2020 and 66 respectively.  
 
PROBLEM 10: Prove the largest subgroup in the S-semigroup Z49 = {0, 1, 2, ... , 48} 
under multiplication modulo 49 is of order 42.  
 
PROBLEM 11: Let S2×2 = {(aij)/ aij ∈ Z5 = {0, 1, 2, 3, 4}}. Prove S2×2 is not a 
Smarandache commutative semigroup under matrix multiplication. Find the order of S2×2.  
 
PROBLEM 12: Is R2×2 = {(aij)/aij ∈ Z4 = {0, 1, 2, 3}}, the semigroup under matrix 
multiplication a Smarandache weakly cyclic semigroup? Prove your claim.   
 
 
4.4 Smarandache Subsemigroup 
 

In this section, we introduce the concept of Smarandache subsemigroup and 
obtain some interesting results about this study and this analysis of Smarandache 
subsemigroup has lead us to the definition of Smarandache hyper subsemigroup 
which is defined in the following section 4.5. 
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DEFINITION: Let S be a S-semigroup. A proper subset A of S is said to be a 
Smarandache subsemigroup of S if A itself is a S-semigroup, that is A is a semigroup 
of S containing a proper subset B such that B is the group under the operations of S. 
Note we do not accept A to be a group. A must only be a semigroup. 
 
Example 4.4.1: Let S(5) be the set of all mappings of the set S = (1, 2, 3, 4, 5) to 
itself. Clearly S(5) is a semigroup under composition of mappings. S(5) is a S-
semigroup as the proper subset S5 ⊂ S(5) is a group, that is the symmetric group of 
degree 5. Now take A = the semigroup generated by the elements, viz., 
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Clearly A is a proper subset of S(5) which is a semigroup. A is a S-semigroup 

as A contains the subgroup B generated by 





15432

54321
.  

 
Thus S(5) has proper Smarandache subsemigroups. 

 
Example 4.4.2: Let Z10 = {0, 1, 2, ... , 9} be the semigroup under multiplication 
modulo 10. Z10 is a S-semigroup. Z10 also has Smarandache subsemigroup. For A = 
{0, 1, 9} ⊂ Z10 is a Smarandache subsemigroup of Z10. 

 
We are now interested to study the following; that is the reverse structure of 

the Smarandache subsemigroup suppose we have say A1, ... , An to be n proper 
subsets of a S-semigroup S which are the only subgroups of S then our question now 
is; does for each Ai, i = 1, 2, ... , n we have a subsemigroup Pi ⊂ S such that Ai is 
properly contained in each Pi. The answer to our question is this is not always true; 
which is substantiated by the following example. 
 
Example 4.4.3: Let Z7 = {0, 1, 2, ... , 6} be the S-semigroup under multiplication mod 
7. The only subsets which are subgroups of Z7 are A = {1, 6} and A2 = {1, 2, 3, 4, 5, 
6}. Clearly take P1 = {0, 1, 6} then P1 is a subsemigroup containing the subset A1, 
which is a subgroup. Thus P1 is a Smarandache subsemigroup of Z7. But for A2 we 
cannot find a proper subsemigroup in Z7 such that A2 is a proper subset of it. So all 
subgroups of a S-semigroup may not in general be contained in a Smarandache 
subsemigroup. 
 

Thus we like to see for what S-semigroups we have all semigroups to be 
contained in proper subsemigroups. 
 
THEOREM 4.4.1: Let Zn = {0, 1, 2, ... , n-1} be the S-semigroup under multiplication 
modulo n-1, n is a composite number. Then every proper subset of Zn which are 
subgroup of Zn is properly contained in a proper Smarandache subsemigroup. 
 
Proof: Given Zn = {0, 1, 2, ... , n-1} where n is a composite number and Zn is a S-
semigroup. If A1., ... , Am are proper subsets of Zn which are subgroups of Zn. Clearly 
none of the semigroups A1, A2, ... , Am have n-1 elements in them. All subgroups have 
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elements strictly less than n-1. Hence Ai ∪ {0} ⊂ Zn for i = 1, 2, ... , m is a 
Smarandache subsemigroup of Zn. Hence the claim. 
 
THEOREM 4.4.2: Let Zp = {0, 1, 2, 3, ... , p-1}, p a prime be the S-semigroup of order 
p. Clearly Zp has a proper subset which cannot be properly contained in a proper 
subsemigroup  of Zp. 
 
Proof: Given Zp = {0, 1, 2,.., p-1} is a S-semigroup of order p, p a prime. The 
subgroups of Zp are A1 = {1, p-1} and A2 = {1, 2, ... , p-1}. Clearly A1 ∪ {0} is a 
subsemigroup of Zp. Hence A1 ∪ {0} is a Smarandache subsemigroup. But A2 cannot 
be strictly contained in any proper subset of Zp. So A2 cannot be contained in a 
subsemigroup in Zp. Hence the claim. 
 
DEFINITION: Let S be a S-semigroup. If A ⊂ S is a proper subset of S and A is a 
subgroup which cannot be contained in any proper subsemigroup of S we say A is the 
largest subgroup of S. 
 

This terminology will be used throughout this book. 
 
THEOREM 4.4.3: Let S(n) be the symmetric semigroup of order nn, where S = (1, 2, 3, 
... , n) and S(n) is the set of all maps from S to S. Now Sn is the largest subgroup in 
S(n). 
 
Proof: We know Sn is the largest subgroup of S(n). For no element in S(n) \ Sn has 
inverse for it to become a group. Hence the claim. 
 
DEFINITION: We call the semigroup S(n) as the Smarandache symmetric semigroup of 
order nn. 
 
COROLLARY 4.4.4: The Smarandache symmetric semigroup S(n) has its largest group 
Sn to be contained in the proper subset A where A is a subsemigroup  properly 
contained in S(n). 
 
Proof: We know from the above theorem Sn is the largest group. Take  
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Clearly A is a proper subset and a subsemigroup of S(n). Hence the claim.  

 
 
4.5 Smarandache Hyper Subsemigroups 
 

In this section we introduce a new concept called Smarandache hyper 
subsemigroups and define what are called Smarandache simple semigroup when they 
have no proper Smarandache hyper subsemigroups. There are S-semigroups, which 
do not have Smarandache hyper subsemigroups. We obtain nice results about these 
Smarandache hyper subsemigroups. 
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DEFINITION: Let S be a S-semigroup. If A be a proper subset of S which is 
subsemigroup of S and A contains the largest group of S then we say A to be the 
Smarandache hyper subsemigroup of S.  
 
Example 4.5.1: Let S(8) be the Smarandache symmetric semigroup of all mappings of 
the set S = (1, 2, 3, ... , 8). Now S(8) has a Smarandache hyper subsemigroup for take  
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Clearly A is a subsemigroup of S(8) and has the largest group S8 in it. 
 
It is interesting to know the relation between Smarandache hyper 

subsemigroup and the Smarandache subsemigroup. 
 
THEOREM 4.5.1: Let S be a S-semigroup. Every Smarandache hyper subsemigroup is 
a Smarandache subsemigroup  but every Smarandache subsemigroup is not a 
Smarandache hyper subsemigroup.  
 
Proof: Given S is a S-semigroup, and A ⊂ S is a Smarandache hyper subsemigroup of 
S. Clearly A contains the largest subgroup in S so A is a Smarandache subsemigroup 
of S. 
  

Conversely, if S contains B to be Smarandache subsemigroup to show B in 
general is not a Smarandache hyper subsemigroup. We prove this only by a counter 
example. Let Z16 = {0, 1, 2, 3, ... , 15} be the S-semigroup under multiplication 
modulo 16. Now A = {0, 1, 15} is Smarandache subsemigroup which is clearly not a 
Smarandache hyper subsemigroup. Hence the claim. 
 
THEOREM 4.5.2: S(n) the Smarandache symmetric semigroup of mappings of the set S 
= {1, 2, ... , n} to itself has Smarandache hyper subsemigroup. 
 
Proof: The only largest subgroup of S(n) is Sn take A =  
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Clearly A is a Smarandache hyper subsemigroup of S(n) as it contains the 

largest subgroup Sn. 
 
Example 4.5.2: Let Z11 = {0, 1, 2, ... , 10} be the S-semigroup under multiplication of 
order 11. Now the largest subgroup of Z11 is A = {1, 2, 3, ... , 10}. Clearly A = Z11 \ 
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{0} which cannot be contained in any proper subset of Z11 containing A. Hence Z11 
has no Smarandache hyper subsemigroup.  
 
 This example leads us to define Smarandache simple semigroups. 
 
DEFINITION: Let S be a S-semigroup. We say S is a Smarandache simple semigroup if 
S has no proper subsemigroup A, which contains the largest subgroup of S or 
equivalently S has no Smarandache hyper subsemigroup.  
 
THEOREM 4.5.3: Zp = {0, 1, 2, ... , p-1} where p is a prime is a S-semigroup under 
multiplication modulo p. But Zp is a Smarandache simple semigroup. 
 
Proof: Zp = {0, 1, 2, ... , p-1} is a S-semigroup. To show Zp is Smarandache simple 
semigroup we have to show the largest subgroup of Zp cannot be contained in a proper 
subsemigroup of Zp. 
 
 Now the largest subgroup of Zp is A = {1, 2, 3, ... , p-1}. Clearly A = Zp \ {0} 
which cannot be strictly contained in a proper subset of Zp which is subsemigroup of 
Zp other than itself. Hence, Zp is simple.   
 
 
4.6 Smarandache Lagrange Semigroup  
 

In this section, we define the concept of Smarandache Lagrange semigroup 
and Smarandache weakly Lagrange semigroup. Further, as the classical Lagrange's 
theorem for groups is not true in case of S-semigroup, we have defined Smarandache 
Lagrange semigroup and Smarandache weakly Lagrange semigroup and prove 
Lagrange's theorem to be true for Smarandache Lagrange semigroups.  
 

Also the converse of Lagrange's theorem is not true in case of S-semigroups 
and its subgroups. 
 
DEFINITION: Let S be a finite S-semigroup. If the order of every subgroup of S divides 
the order of the S-semigroup S then we say S is a Smarandache Lagrange semigroup.   
 
Example 4.6.1: Let Z4 = {0, 1, 2, 3} be the semigroup under multiplication modulo 4. 
Clearly, Z4 is a S-semigroup. Further the only subgroup in Z4 is A = {1,3} and o(A) / 
4 so Z4 is a Smarandache Lagrange semigroup. 
 
 However, we see in general most of the S-semigroups are not Smarandache 
Lagrange semigroups. For example, we consider Z9. 
 
Example 4.6.2: Let Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8} be the semigroup under 
multiplication mod 9. Now A = {1, 8} is a subgroup of Z9. Also B = {1, 2, 4, 5, 7, 8} 
is also a subgroup of Z9 the order of both of them do not divide 9. Hence, Z9 is not a 
Smarandache Lagrange semigroup. 
 
 Therefore, we are interested in defining the concept of Smarandache weakly 
Lagrange semigroup. 
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DEFINITION: Let S be a finite S-semigroup. If there exists at least one subgroup A that is 
a proper subset (A ⊂  S) having the same operations of S whose order divides the order of 
S then we say that S is a Smarandache weakly Lagrange semigroup. 
 
Example 4.6.3: Z10 = {0, 1,2, ... , 9} is a S-semigroup under multiplication modulo 
10. Clearly A = {1, 9} is a subset of Z10 which is a subgroup such that o(A) / 10. 
Therefore, Z10 is a Smarandache weakly Lagrange semigroup. 
 

It is still engaging and important to note that all S-semigroups are not 
Smarandache weakly Lagrange semigroup. For the S-semigroup given in example 
4.6.2 is not even a Smarandache weakly Lagrange semigroup. This leads to formulate 
the following theorem. 
 
THEOREM 4.6.1: Every Smarandache Lagrange semigroup is a Smarandache weakly 
Lagrange semigroup and not conversely.    
 
Proof: By the very definition of Smarandache Lagrange semigroup and Smarandache 
weakly Lagrange semigroup we see every Smarandache Lagrange semigroup is a 
Smarandache weakly Lagrange semigroup. To prove the converse we consider the 
following example. 
 
Example 4.6.4: Let S(3) be the semigroup under the composition of mappings of the 
3 element set S = (1, 2, 3). Clearly S(3) is a S-semigroup for it contains S3 the 
symmetric group of degree 3 which is of order 6. Clearly 6 /  o(S(3)) as o(S(3)) = 27. 
So S(3) is not a Smarandache Lagrange semigroup, but S(3) is a  Smarandache 
weakly Lagrange semigroup for consider the set 
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Clearly A is a proper subset of S(3) which is also a group under composition 

of maps that is a cyclic group of order 3. o(A) / S(3). Hence S(3) is a  Smarandache 
weakly Lagrange semigroup. 
 
 Thus by the above example we see the converse of the theorem 4.6.1 is not 
true in general.  
 
THEOREM 4.6.2: Every Smarandache symmetric semigroup S(n) is a  Smarandache 
weakly Lagrange semigroup and not a Smarandache Lagrange semigroup for n ≥ 3. 
 
Proof: Now to prove S(n) is a Smarandache weakly Lagrange semigroup and not a 
Smarandache Lagrange semigroup we have to prove  
 

1. S(n) has a subgroup which divides the order of S(n) and  
2. S(n) has a subgroup which does not divide the order of S(n). 

 
To prove this theorem we consider two cases one when n is odd and other 

when n is even. 
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CASE 1:  
 

Let n be odd. Now S(n) is a semigroup of order nn and S(n) is a S-semigroup, 
for S(n) contains Sn the symmetric group of degree n. Further the order of the group 
Sn is n!. Now to show S(n) is not a Smarandache Lagrange semigroup we see o(Sn) /  
o(S(n)) for o(S(n)) = n × ... × n where n is odd but o(Sn) = n! so n-1 is even hence 
o(Sn) /  S(n) as no even integer can divide nn when n is odd. Hence S(n) is not a 
Smarandache Lagrange semigroup. 
 
 To show S(n) is a  Smarandache weakly Lagrange semigroup. For consider A 
= {the permutation of 1 2 3 4 ... n} = the subgroup generated by g where  
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Clearly, the number of elements in the group generated by g is n, and nn
n . 

So S(n) is a  Smarandache weakly Lagrange semigroup when n is odd. 
 
CASE 2:  
 

Let n be even. Now S(n) is a S-semigroup of order nn. Let Sn be the symmetric 
group of degree n, so o(Sn) is n!.  o(Sn) does not divide o(S(n)) for n is even so n-1 is 
odd; n – 1 / nn when n is even; so S(n) is not a Smarandache Lagrange semigroup.  
 

But S(n) is a  Smarandache weakly Lagrange semigroup, for A = the group 
generated by g  
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is a cyclic group of order n. n/nn. Hence the claim. 
 
Remark: n ≥ 3 is essential in the theorem for if n = 2 we have S(2) contains only 4 
elements and S2 the subgroup has 2 elements so o(S2) / o(S(2)). Hence S(2) is a 
Smarandache Lagrange semigroup. 
 
 
4.7 Smarandache p-Sylow Subgroups 
 

In this section, we define the concept of Smarandache p-Sylow subgroups of a 
S-semigroups and get some appealing results about them. 
 
DEFINITION: Let S be a finite S-semigroup. p be a prime such that p divides the order of 
S. If there exists a subgroup A of S of order p or pt (t > 1) we say S has a Smarandache p-
Sylow subgroup. 
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Note: It is very important to note that p/o(S) but pt / o(S) still we may have 
Smarandache p-Sylow subgroups having pt elements; this is illustrated by the 
following example. 
 
Example 4.7.1: Let Z10 = {0, 1, 2, ... , 9} be the semigroup under multiplication 
modulo 10. Clearly, Z10 is a S-semigroup. For A = {1, 9} ⊂ Z10 is a subgroup of Z10. 
Now 2/10 but 22 / 10 but Z10 has Smarandache 2-Sylow subgroups of order 4. Now 
take B = {6, 2, 4, 8} ⊂ Z10. B is a subgroup under multiplication modulo 10 given by 
the following table  
 

× 6 2 4 8 
6 6 2 4 8 
2 2 4 8 6 
4 4 8 6 2 
8 8 6 2 4 

 
B is a subgroup with 6 as the multiplicative identity. Further C = {1, 3, 7, 9} is 

also a Smarandache 2- Sylow subgroup of Z10 given by the following table  
 

× 1 3 7 9 
1 1 3 7 9 
3 3 9 1 7 
7 7 1 9 3 
9 9 7 3 1 

 
Thus unlike as in the classical definition of p-Sylow subgroups we see the definition of 
Smarandache p-Sylow subgroups is different for if p is a prime dividing the order of 
the S-semigroup S, then S can have Smarandache p-Sylow subgroups of order pα 
where pα /  o(S). From above example it is evident for 2/10 and 4 / 10. 
 
Example 4.7.2: Let Z16 = {0, 1, 2, ... , 15} be a S-semigroup of order 16. Clearly, this 
S-semigroup has 2-Sylow semigroups of order 2, 4 and 8 given by the following 
tables 
 

× 1 15 
1 1 15 
15 15 1 

 
     1 is the identity element of this subgroup A = {1, 15}. 

 
× 1 3 9 11 
1 1 3 9 11 
3 3 9 11 1 
9 9 11 1 3 

11 11 1 3 9 
 

1 is the identity element of this subgroup A = {1, 3, 9, 11}. 
 
 



 

 43

× 1 5 9 13 
1 1 5 9 13 
5 5 9 13 1 
9 9 13 1 5 

13 13 1 5 9 
 

1 is the identity element of this subgroup B = {1, 5, 9, 13}. 
 

A1 = {1, 3, 5, 7, 9, 11, 13, 15} can be verified to be a 2-Sylow subgroup of 
order 8 in Z10. Thus unlike our classical group the S-semigroup of order 16 has 2 
Sylow subgroups of order 2, 4 and 8 respectively.   
 
Example 4.7.3: Let Z12 = {0, 1, 2, 3, ... , 11} be the S-semigroup. The operation on 
Z12 is multiplication modulo 12. The p-Sylow subgroups of Z12 are for p = 2, given by 
A1, ... , A6 where A1 = {1, 7}, A2 = {1, 5}, A3 = {1, 11}, A4 = {4, 8}, A5 = {3, 9} and 
A6 = {1, 5, 7, 11} are groups of order 2. Finally A6 = {1, 5, 7, 11} is a subgroup of 
order 4 given by the following table 
 

× 1 5 7 11 
1 1 5 7 11 
5 5 1 11 7 
7 7 11 1 5 

11 11 7 5 1 
 

In fact, this S-semigroup is also a Smarandache Lagrange semigroup. 
 
 
4.8 Smarandache Cauchy Element of a S-semigroup  
 

In this section, we define the concept called Smarandache Cauchy element in a 
S-semigroup. The main motivation for this is to try to prove or disprove the classical 
Cauchy's theorem in case of S-semigroup. This is carried out in chapter 5. 
 
DEFINITION: Let S be a finite S-semigroup. An element a ∈ A, A ⊂ S (A a proper subset 
of S and A is the subgroup under the operation of S) is said to be a Smarandache Cauchy 
element of S if ar = 1 (r > 1) and 1 is the unit element of A and r divides the order of S 
otherwise a is not a Smarandache Cauchy element of S. 
 
Example 4.8.1: Let S(3) be the semigroup got from the mappings of the set S = (1, 2, 
3) to itself. Every element of S(3) is not a Smarandache Cauchy element of S(3).  
 

For consider the element  
 







=

231

321
a  ∈ )3(S

231

321
,

321

321
A ⊂





















= . 

 



 

 44

Clearly, A is a subgroup. Now, a2 = =
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o(S(3)) = 27 and a2 = 1 Clearly 2 / 27. Hence 
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Cauchy element of S(3). 
 

Thus, we see all elements of the form am = 1 (m>1) in a S-semigroup S need 
not in general be Smarandache Cauchy elements of S. 
 
DEFINITION: Let S be a finite S-semigroup if every element in every subgroup of S is a 
Smarandache Cauchy element of S then we say S is a Smarandache Cauchy semigroup.  
 

But it is interesting to note that there exists S-semigroup in which no element 
is a Smarandache Cauchy element. 
 
THEOREM 4.8.1: Let ZP = {0, 1, 2, ... , p-1}, p is a prime be the S-semigroup under 
multiplication. No element in Zp is a Smarandache Cauchy element of Zp. 
 
Proof: Consider Zp = {0, 1, 2, ... , p-1}, Zp is a S-semigroup under multiplication 
modulo p. A = {1, 2, ... , p-1} is a proper subset of Zp which is a group under 
multiplication. Every element in A is such that ar = 1 where r lies between 2 and p-1 
as p is a prime with every element less than itself cannot divide p, hence no element in 
Zp is a Smarandache Cauchy element of Zp as p is a prime. Hence the claim. 
 
 
4.9 Smarandache Coset 
 

This section is devoted to introduction of Smarandache right coset (left coset) 
in a S-semigroup A. We prove by examples as in the case of groups the number of 
elements in each coset for a given subgroup is not equal in general. 
 
DEFINITION: Let A be a S-semigroup. H is a proper subset of A (H ⊂ A) be a group 
under the operations of A. For any a ∈ A define the Smarandache right coset Ha = {ha / 
h ∈ H}, Ha is called the Smarandache right coset of H in A. 
 

Similarly Smarandache left coset of H in A can be defined. If the S-semigroup 
is a commutative semigroup then we will see the concept of the Smarandache left 
coset and the Smarandache right coset will coincide and will get the same set.  
 
DEFINITION: Let S be a S-semigroup. H ⊂ S be a subgroup of S. We say aH is the 
Smarandache coset of H in S for a ∈ S if Ha = aH, that is {ha / h ∈ H} = {ah / h ∈ H}. 
 
Example 4.9.1: Let Z12 = {0, 1, 2, ... , 11} be the S-semigroup under multiplication 
modulo 12. Clearly, Z12 is a Smarandache commutative semigroup. Let A = {3, 9}, is 
given by the following table: 
  

× 9 3 
9 9 3 
3 3 9 
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Clearly A is subgroup with 9 as the identity element as 92 ≡ 9 (mod 12). For 4 

∈ Z12 the right (left) coset of A is 4A = {0}. Thus we see the number of elements in 
4A is not 2 but one viz {0}. Further for 5 ∈ Z12 we have 5A = {3, 9} = A. This 
property too is  unique and distinctly different from cosets in a group. For in case of 
cosets of H in a group G we see that aH = H if and only if a ∈ H but in case of 
Smarandache cosets we can have aH = H even if a ∉H but a is in the semigroup S. 
  
Example 4.9.2: Let Zp = {0, 1, 2, ... , p-1} where p is a prime be the S-semigroup 
under multiplication modulo 12. Now the  subgroups of Zp are A = {1, 2, ... , p-1} and 
{1, p-1}. So the cosets of A are {0} and A.  
 

Thus we have interesting results about Smarandache cosets which will be 
proved in the next chapter. 
 
PROBLEM 1: Is Z18 = {0, 1, 2, ... , 17} a Smarandache Lagrange semigroup? 
 
PROBLEM 2: Give an example of a Smarandache weakly commutative semigroup other 
than S(n). 
 
PROBLEM 3: Is R3×3 = {(aij) | aij ∈ Z2 = {0, 1}} the semigroup under matrix 
multiplication a Smarandache weakly Lagrange semigroup? 
 
PROBLEM 4: Find the number of elements in R3×3 given in the problem 3.  
 
PROBLEM 5: Let A3×3 = {(aij) | aij ∈ Z2 = {0, 1}} denote only upper triangular matrices 
with the possibility of the diagonal elements having the value to be zero. A3×3 under 
matrix multiplication is a S-semigroup. 
 

a. Is A3×3 a Smarandache Lagrange semigroup? 
b. Find the number of elements in A3×3. 

 
PROBLEM 6: Let Z35 = {0, 1, 2, ... , 34} be the S-semigroup under multiplication modulo 
35. Does Z35 have Smarandache 5-Sylow semigroup or a Smarandache 7-Sylow 
semigroup? 
 
PROBLEM 7: Let Z20 = {0, 1, 2, ... , 19} be the S-semigroup under multiplication modulo 
20. Find all subsets in Z20 which are subgroups under multiplication. 
 
PROBLEM 8: Find all Smarandache p-Sylow subgroups in Z125 = {0, 1, 2, ... , 124} where 
Z125 is a S-semigroup under multiplication mod 125. 
 
PROBLEM 9: Find all the Smarandache p-Sylow subgroups of R3×3 given in problem 
3. 
 
PROBLEM 10: Find all the Smarandache p-Sylow subgroups of S(4). 
 
PROBLEM 11: Find all the Smarandache p-Sylow subgroups of S(25). 
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PROBLEM 12: When will the number of Smarandache p-Sylow subgroups be more in 
S(n) when n is prime or when n is a composite number? 
 
PROBLEM 13: Find two subgroups of order two in Z33 = {0, 1, 2, ... , 32} the S-
semigroup under multiplication mod 33. 
 
PROBLEM 14: Find all subsets in Z33, the S-semigroup of order 33, that are subgroups 
under multiplication modulo 33. 
 
PROBLEM 15: Find all the Smarandache Cauchy elements in Z20. 
 
PROBLEM 16: Give an example of S-semigroup in which every invertible element is a 
Smarandache Cauchy element. 
 
PROBLEM 17: Give an example of a S-semigroup of order 11 in which no element is a 
Smarandache Cauchy element. 
 
PROBLEM 18: Does there exist a S-semigroup of order 24 in which no element is a 
Smarandache Cauchy element? 
 
PROBLEM 19: Does there exist an example of a S-semigroup of order 30 in which 
every element is a Smarandache Cauchy element? 
 
PROBLEM 20: Find all the Smarandache Cauchy elements in S3×3 = {(aij) | aij ∈ Z4 = 
{0, 1, 2, 3}} the S-semigroup under matrix multiplication.  
 
PROBLEM 21: Find whether S3×3 (given in Problem 20) is Smarandache weakly 
Lagrange semigroup. 
 
PROBLEM 22: Find at least three Smarandache Cauchy elements in S3×3. (S3×3 given in 
Problem 20.)  
 
PROBLEM 23: Does S3×3 (given in Problem 20) contain a subset of order 24, which is 
a subgroup of S3×3 under multiplication? 
 
PROBLEM 24: Let S(5) be the Smarandache symmetric semigroup. Does S(5) contain 
a subgroup of order 12? 
 
PROBLEM 25: Let S(7) be the Smarandache symmetric semigroup. Find a subgroup in 
S(7) of order 120. 
 
PROBLEM 26: Find a subgroup of order 60 in S(5). (S(5) given in Problem 24).  
 
PROBLEM 27: Find all the subgroups in S(15). 
  
PROBLEM 28: Prove at least S(3) × S(4) is a S-semigroup and a Smarandache weakly 
Lagrange semigroup.  
 
PROBLEM 29: Find all the Smarandache p-Sylow subgroups in S(3) × S(4), the direct 
product of the semigroups which is a S-semigroup.  
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PROBLEM 30: Find all the Smarandache p-Sylow subgroups in Z7 × Z9 and prove Z7× 
Z9 is a S-semigroup.  
 
PROBLEM 31: Find all the Smarandache Cauchy elements in Z5 × Z12 and prove Z5 × 
Z12 is a Smarandache weakly Lagrange semigroup.  
 
PROBLEM 32: Find all the Smarandache Cauchy elements in S(5) × S(6). 
 
PROBLEM 33: Find all Smarandache p-Sylow subgroups of Z7 × Z8. Does Z7 × Z8 
contain Smarandache Cauchy elements? If so find them. 
 
PROBLEM 34: Let S(4) be the S-semigroup and A4 is the subgroup of S(4). Are the 
right cosets of A4 the same as the left cosets of A4? Justify your answer. 
 
PROBLEM 35: Let Z120 = {0, 1, 2, ... , 119} be the S-semigroup under multiplication 
modulo 120. Does there exist one element x in the subgroup H in Z120 such that o(Hx) 
= o(H) for x ∈ Z120 \ {0}? 
 
PROBLEM 36: Does there exist a subgroup H in Z42 = {0, 1, 2, ... , 41} such that o(aH) 
= o(H) for all a ∈ Z42 and a ≠ 0? 
 
PROBLEM 37: Let Zp = {0, 1, ... , p-1} be the S-semigroup of order p, p is a prime 
prove the subgroup A ={1, p-1} partitions Zp into equivalence classes. 
 
PROBLEM 38: Let Zn = {0, 1, ... , n-1} be the S-semigroup of order n, n a composite 
number. Prove when does the subgroup A = {1, p-1} partition Zn into equivalence 
classes. Find how many distinct equivalence classes exist?  
 
PROBLEM 39: Find the Smarandache right and left cosets for the subgroup A ×B ⊂ Z9 

× Z21 where A = {1, 8} and B = {1, 20} when z = (3, 7) and y = (6, 3). Is z(A×B) = 
(A×B)z?  
 
PROBLEM 40: Find the Smarandache cosets for the subgroup A1 × B1 ⊂ Z9 × Z21 when 
A1 = Z9 and B1 = {1, 20} for x = (3, 7) and y = (6, 3) Make a comparison about 
Smarandache cosets in example 39 and 40. 
 
PROBLEM 41: Prove for Z19 = {0, 1, 2, ... , 18} the S-semigroup under multiplication, 
the Smarandache cosets got by A = {1, 18} is such that AxZ

19i Zx
i19 U

∈
=  ; xiA ∩ xjA = 

φ if i ≠ j. 
 
PROBLEM 42: Can you extend the concept in problem 41 and prove AxZ

ni Zx
in U

∈
=  

where A = {1, n-1} and xiA ∩ xjA = φ if i ≠ j for any n? 
 
PROBLEM 43: Let S(5) be the Smarandache symmetric semigroup for the group A5 

and S5, find the Smarandache coset decomposition of S(5) relative to A5 and S5. 
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PROBLEM 44: Find for 





=

53121

54321
x  xA5 and A5x. S(5) ⊃ A5 and x ∈ S(5) 

given in Problem 43. 
 
PROBLEM 45: For the same problem 43 does there exist a x ∈ S(5) \ S5 such that, xA5 
= A5x?  
 
PROBLEM 46: Let S(6) be the S-semigroup. S6 the subgroup in S(6). Find an element 
x in S(6) and x ∉ S6 such that xS6 = S6x. 
 
PROBLEM 47: Does the Smarandache coset decomposition of S(6) by S6 divide S(6) 
into equivalence classes of same length? Prove your answer. 
 
PROBLEM 48: Does there exist any subgroup G in S(6) which will decompose S(6) 
into equivalence classes? 
 
PROBLEM 49: Let S(9) be the S-semigroup G be the group generated by 







=

19432

98321
g

K

K
. Clearly, G is a subgroup of order 9. Can xG = Gx for any x 

∈ S(9) \ G? 
 
PROBLEM 50: In problem 49 will G divide - S(9) into equivalence classes?  
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In this chapter, we introduce the classical theorems for S-semigroups. Already 
in Chapter 4 all essential definitions were made about S-semigroup, their properties 
studied and those concepts illustrated with examples. So now, we proceed to 
introduce those classical theorems of groups for S-semigroups. 
 
  
5.1 Lagrange's Theorem for S-semigroups  
 

Lagrange's Theorem states that if G is a finite group having a subgroup H then 
o(H)/o(G). However for S-semigroups we see Lagrange's Theorem does not hold in 
general. So we introduced in Chapter 4 Smarandache Lagrange semigroup and we 
will prove in this section the Lagrange's Theorem holds good only for this class of 
Smarandache Lagrange semigroups.  
   
THEOREM 5.1.1: Let S be a finite Smarandache Lagrange semigroup. If H is a subgroup 
of S then o(H) / o(S). 
 
Proof: By the very definition of the Smarandache Lagrange semigroup, we know 
every subgroup of S divides the order of S. Hence the result. 
 

Thus, it is very important to note that only the class of Smarandache Lagrange 
semigroups satisfies the Smarandache Lagrange's Theorem all other semigroups 
which are not Smarandache Lagrange semigroups will not even satisfy the classical 
Lagrange's theorem for groups which is stated in chapter 3 of this book. 

 
  Hence, the class of Smarandache weakly Lagrange semigroups do not satisfy 
the classical theorem. So in general when we go for the S-semigroup structure we see 
that no more the order of the subgroups of the S-semigroup divide the order of the S-
semigroup. 
 

Now the converse of the Lagrange's theorem for S-semigroups is doublefold. 
One, order of the subgroup of a finite S-semigroup does not divide the order of the S-
semigroup, for which the class of Smarandache weakly Lagrange semigroup is an 
evident example. Secondly, to disprove the converse of the Smarandache Lagrange's 
theorem for Smarandache Lagrange semigroup we have to find a finite Smarandache 
Lagrange semigroup for which we should find a divisor and show that there does not 
exist a subgroup of that order. 
 
THEOREM 5.1.2: Let S be a finite Smarandache Lagrange semigroup. If m/o(S), S need 
not in general contain a subgroup of order m. 
 
Proof: Consider the S-semigroup given by Z12 = {0, 1, 2, ... , 11}. Clearly, Z12 is a 
Smarandache Lagrange semigroup of order 12. The only subgroups of Z12 are A1 = 
{1, 11}, A2 = {1, 5}, A3 = {1, 7}, A4 = {4, 8 / 4 is the multiplicative identity} A5 = {3, 
9 / 9 is the multiplicative identity} and A6 = {1, 5, 7, 11}. Now every subgroup is of 
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order 2 or 4 and 2/12 and 4/12. However, 3/12 and Z12 does not contain a subgroup of 
order 3. Hence the claim. 
 

Therefore, we now give the weak from of the Lagrange's theorem for S-
semigroups which is as follows: 
 
THEOREM 5.1.3: S be a finite Smarandache weakly Lagrange's semigroup then there 
exists at least one subgroup A contained in S such that o(A)/o(S). 
 
Proof: The theorem is true only for finite Smarandache weakly Lagrange semigroups. 
By the very definition of the Smarandache weakly Lagrange semigroup we have the 
claim in the theorem to be true. 
 

Now we have to consider only a S-semigroup, which is not a Smarandache 
weakly Lagrange semigroup to prove the following theorem. 
 
THEOREM 5.1.4: Let S be a finite S-semigroup. In general, order of a subgroup need not 
divide the o(S). 
 
Proof: By a counter example. Clearly, this finite semigroup S must not be a 
Smarandache Lagrange semigroup or a Smarandache weakly Lagrange semigroup. 
Consider Z9 = {0, 1, 2, ... , 8} be the semigroup of order 9. Clearly, Z9 is a S-
semigroup under multiplication modulo 9. The subgroups in Z9 are {1, 8} = A and {1, 
2, 4, 5, 7, 8} = B. Clearly o(A) /  o(Z9) and o(B) /  o(Z9). Hence the above theorem.  
 

Thus we see in case of finite S-semigroup S we have subgroups in S none of 
whose order divides the order of S, these S-semigroups are really very innovative 
because they make the analog of the classical Lagrange's theorem false. This forces us 
or instigates us to define a new class of S-semigroups which we choose to call the 
Smarandache non Lagrange semigroups. 
 
DEFINITION: Let S be a finite S-semigroup we say S is a Smarandache non-Lagrange 
semigroup if none of the subgroups of S divide the order of the S-semigroup S. 
 

The class of Smarandache non Lagrange semigroups is non empty, by the 
following theorem. 
 
THEOREM 5.1.5: Let Zp = {0, 1, 2, ... , p-1}, p an odd prime. Zp is a S-semigroup 
under multiplication modulo p. Zp for every prime p, is a Smarandache non Lagrange 
semigroup. 
 
Proof: ZP = {0, 1, 2, ... , p-1}, p is a prime and Zp is a S-semigroup under 
multiplication modulo p. The only subgroups of Zp are A = {1, p-1} and B = {1, 2, 3, 
... , p-1} = Zp \ {0} . Clearly, 2 /  p and p–1 / p. Since in Zp every element other than 1 
and 0 generates Zp under multiplication. Hence the claim. 
 

Since the number of primes is infinite, we have infinitely many Smarandache 
non-Lagrange semigroups. Interestingly we have divided the class of all S-semigroups 
as Smarandache Lagrange semigroups, Smarandache weakly Lagrange semigroups 
and Smarandache non Lagrange semigroups. Class of Smarandache Lagrange 
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semigroups is properly contained in the class of Smarandache weakly Lagrange 
semigroups and Smarandache non Lagrange semigroups are disjoint with the class of 
Smarandache weakly Lagrange semigroups. 
 
 
5.2 Cayley's Theorem for S-semigroups  
 

To prove the classical Cayley's theorem of group for S-semigroups we need 
the concept of S-semigroup homomorphism using which we will prove our result. 
 
DEFINITION: Let S and S' be any two S-semigroups. A map φ from S to S' is said to be 
a S-semigroup homomorphism if φ restricted to a subgroup A ⊂ S → A' ⊂ S' is a 
group homomorphism. The S-semigroup homomorphism is an isomorphism if φ: A → 
A' is one to one and onto. Similarly, one can define S-semigroup automorphism on S. 
 

It is surprising to note that two S-semigroups S and S' can be isomorphic even 
if o(S) ≠ o(S'). 
 
Example 5.2.1: Let Z12 = {0, 1, 2, ... , 11} be a S-semigroup under multiplication 
modulo 12, Z7 = {0, 1, 2, ... , 6} be the S-semigroup under multiplication. Define φ: 
Z12 → Z7 by  
 

φ(1) = 1 
φ(11) = 6 and  
φ(0) = 0 
φ(x) = 0 for all x ≠ 1 and 11. 

 
Clearly φ: Z12 → Z7 is a S-semigroup homomorphism for φ restricted to A 

where A = {1, 11} ⊂ Z12 → A' = {1, 6} ⊂ Z7 that is φ: A → A' is an isomorphism of 
the subgroups. Using this definition of S-semigroup homomorphism we have now the 
analog of the Cayley's theorem, which is as follows. 
 
THEOREM 5.2.1: (CAYLEY'S THEOREM FOR S-SEMIGROUP) Every S-semigroup is 
isomorphic to a S-semigroup S(N); of mappings of a set N to itself, for some 
appropriate set N. 
 
Proof: Let S be a S-semigroup. That is A the proper subset of S which is a group 
under the operations of S. That is φ ≠ A ⊂ S. Now let N be any set, S(N) denote the 
set of all mappings from N to N. Clearly S(N) is a S-semigroup. We have in fact 
proved in the chapter 5 S(N) is a Smarandache weakly Lagrange semigroup of order 
NN. 
  

Now we use the classical theorem of Cayley for groups. By the classical 
Cayley's theorem for groups we can always find an isomorphism from the group A to 
a subgroup SN ⊂ S(N) for an appropriate N. Thus S is Smarandache homomorphic 
with S(N) for an appropriate N, that is A is isomorphic to a subgroup in SN ⊂ S(N). 
Hence the theorem. 
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5.3 Cauchy's Theorem for S-semigroups  
 
 Here we prove that Cauchy's theorem in general is not true for S-semigroups. 
In order to make possible an analog for Cauchy's theorem we have introduced in 
chapter 4 the concept of Cauchy element in a S-semigroup "An element x in A ⊂ S 
where S is a finite S-semigroup and A a subgroup in S is said to be a Smarandache 
Cauchy element of S if xr = 1 (r > 1) and 1 is the unit element of A and r/o(S) ". The 
Smarandache Cauchy semigroup is defined as a S-semigroup in which every element 
in every subgroup is a Smarandache Cauchy element of S. 
 
THEOREM 5.3.1: Let S be a finite Smarandache Cauchy semigroup. If a ∈ S and am = 
1 then m/o(S). 
 
Proof: The above theorem is true for all finite Smarandache Cauchy semigroup as we 
have by the very definition of Smarandache Cauchy semigroup the order of every 
invertible element a ∈ S divides the order of S. 
 
THEOREM 5.3.2: Let S be any finite S-semigroup. If a ∈ S and am = 1 then in general 
m /  o(S). 
 
Proof: We prove this by giving an example. Let S = Z11 = {0, 1, 2, 3, ... , 10} be the 
S-semigroup under multiplication modulo 11. Now we have baring 0 and 1. 210 = 1 
where 2 ∈A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ⊂ Z11 but 10 /  11. Hence the theorem. 
 
 
5.4 p-Sylow Theorem for S-semigroups 
 

In this chapter, we see how far the analogs of the three classical Sylow's 
theorems for groups can be given equivalent formulation for the S-semigroups. In 
chapter 4 we have already defined the concept of Smarandache p-Sylow semigroup. 
 
THEOREM 5.4.1 (FIRST SYLOW'S THEOREM FOR SMARANDACHE P-SYLOW 
SUBGROUP) Let S be a finite S-semigroup if p is a prime such that p/o(S), it does not 
imply S has a Smarandache p-Sylow subgroup. 
 
Proof: The proof of the theorem is by giving an example. Consider Z12 = {0, 1, 2, 3, 
... , 11}; clearly Z12 is a S-semigroup, 2/12 and 3/12. It is verified that Z12 has no 
subgroup of order 3. Hence the claim. 
 

This property leads us to define a new concept called Smarandache p-Sylow 
semigroup. 
 
DEFINITION: Let S be a finite S-semigroup. If for every prime p dividing o(S) we have 
a Smarandache p-Sylow subgroup then we say S is a Smarandache p-Sylow 
semigroup. 
 
THEOREM 5.4.2: Let S be a finite Smarandache p-Sylow semigroup if p/o(S) (p any 
prime)then there exist a Smarandache p-Sylow subgroup of order p or pα. 
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Proof: The result follows from the very definition of the Smarandache p-Sylow 
semigroup S. 
 
Example 5.4.1: Let S = (1, 2, 3, 4, 5) be the set with 5 elements S(5) is the S-
semigroup of order 55. Clearly 5 is the only prime which divides o(S(5)). We have  
 









=
15432

54321
A  

 
i.e. the cyclic group generated by  

 







15432

54321
 

 
is a Smarandache p-Sylow subgroup of S(5). Thus we have S(5) to be a Smarandache 
p-Sylow semigroup. Using this result we prove S(n) for the set of n elements (1, 2, ... , 
n) is a Smarandache p-Sylow semigroup. 
 
THEOREM 5.4.3: The S-semigroup S(n) is a Smarandache p-Sylow semigroup. 
 
Proof: Now let p1, p2, ... , pr be the primes which divide o(S(n)) = nn; that is in short 
p1, p2, ... , pr are the distinct primes which divides n.(if n is a prime n = p) Now S(n) is 
nothing but mappings of the set S = (1, 2, ... , n) to itself. Further Sn ⊂ S(n) where Sn 
is the symmetric group of degree n. 
 
 Now for any prime pi (pi < n, pi / n) we have a permutation g which is such 
that  







=

+

+−

np1p32

nppp21
g

1ii

1i11i

KK

KK
 

 
that is fixes pi+1, pi+2, ... , n and translates each r to r + 1, r = 1, 2, …, pi – 1  and pi = 1. 
Now 'g' generates a cyclic group of order pi this is true for i = 1, 2, ... , r. Hence the 
claim. 
 
THEOREM 5.4.4: (SECOND PART OF SYLOW'S THEOREM). Let S be a S-semigroup. 
Two Smarandache p-Sylow subgroups in S need not be conjugate. 
 
Proof: The proof is given by the following example. Consider Z8 = {0, 1, 2, ... , 7} the 
S-semigroup of order 8 under multiplication modulo 8. The Smarandache 2-Sylow 
subgroups of Z8 are A = {1, 7}, B = {1, 5}, C = {1, 3} and D = {1, 3, 5, 7}. Clearly A 
is conjugate to B and C but D is not conjugate to A or B or C. Hence the claim.  
 

To overcome this problem we leave it for the reader to introduce some more 
new concepts. 
 
THEOREM 5.4.5 (THIRD PART OF SYLOW'S THEOREM): Let S be a finite S-
semigroup. If p/o(S) and suppose S has Smarandache p-Sylow subgroup, then in 
general  
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kp1
))P(N(o

)S(o +≠ . 

 
Proof: For this result, also we prove by an example. Now consider the S-semigroup 
Z8 = {0, 1, 2, ... , 7} this has Smarandache 2-Sylow subgroups of order 2 and 4 so we 
cannot find k which is such that 8/2 = 1 + 2.k that is 4 = 1 + 2k so k has no integer 
value. This is the case when the Smarandache 2-Sylow subgroup A = {1, 7}. Now B = 
{1, 3, 7, 5} 8/4 = 1+ 2k = 2, k = ½ which is not an integer. Thus the third part of p-
Sylow theorem is not true in case of Smarandache p-Sylow subgroups.  

 
Still we are interested in studying the situation when S is a finite S-semigroup 

and p a prime number with p < o(S), p /  o(S), we may still find a subgroup of order p 
or pα (α > 1), to characterize or make a note of such happening which is never 
possible in case of groups we give the following definition. 
 
DEFINITION: Let S be a finite S-semigroup. If for a prime p, p < o(S), p /  o(S) there 
exist a subgroup in S of order p then we call that subgroup a Smarandache non-p-
Sylow subgroup of the S-semigroup S. 
 

We have in plenty such Smarandache non-p-Sylow subgroup for example.  
 
Example 5.4.2: Let Z23 = {0, 1, 2, ... , 22} is the S-semigroup of order 23. This has 
subgroup of order 2 (where 2 is an even prime) given by A ={1, 22}. Thus Z23 has 
Smarandache non 2 Sylow subgroup. 
 
THEOREM 5.4.6: Let Zm = {0, 1, ... , m-1} be the S-semigroup of order m where m is 
an odd number. Zm has Smarandache non 2-Sylow subgroup. 
 
Proof: Clearly, we have the set A = {1, m-1} to be a subgroup of order 2 in Zm and 2 
/  m as m is odd. Hence the claim. 
 
Example 5.4.3: Let S(7) be the S-semigroup of the symmetric semigroup. Clearly 
o(S(7))  = 77 but S(7) has Smarandache non p-Sylow subgroups for p = 2, 3 and 5. For  
 





















=

7654312

7654321
,

7654321

7654321
A  

 
is a group of order 2 or a Smarandache non 2-Sylow subgroup of S(7). Also  
 















































=

7653214

7654321
,

7652143

7654321
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is a Smarandache non 2-Sylow subgroup of order 4 in S(7). Now let  
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

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
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7654132

7654321
,

7654321

7654321

C  

 
is a cyclic subgroup of order 3. So C is a Smarandache non 3-Sylow subgroup of S(7). 
Finally, S(7) has a cyclic group of order 5 given by  
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


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

=

7643215

7654321

,
7632154

7654321
,

7621543

7654321

,
7615432

7654321
,

7654321

7654321

D  

 
hence this is a Smarandache non 5-Sylow subgroup of the S-semigroup S(7). 
 
 This leads us to find a nice theorem on Smarandache symmetric semigroup 
S(n) n a positive integer. 
 
THEOREM 5.4.4: Let S(n) be the Smarandache symmetric semigroup, n a prime. Then 
S(n) has Smarandache non p-Sylow subgroups for all primes p; p < n. 
 
Proof: We know the primes less then n are 2, 3, 5, 7, 11,... p < n. Our claim is for 
every p(p < n) we have correspondingly a cyclic group of order p. This is got by 
permuting p elements cyclically in the set (1, 2, 3,…,p-1, p, p+1, ... , n) as follows.  
 

The subgroup A generated by  
 







+
+−

=
n2p1p32

n1pp1p21
g

KK

KK
. 

 
Clearly, A is a cyclic group of order p generated by g. Since the choice of p is 

arbitrary from the set of primes p < n our claim is true for all primes p, p < n, but 
p / o(S(n)) = nn as n is a prime. Hence we have for every prime p, p < n (n a prime) 
there exist a Smarandache non p-Sylow subgroup in S(n). 
 
 
5.5 Smarandache Cosets 
  
  This section is completely devoted in proving that in case of Smarandache 
cosets we do not have one to one correspondence between any two Smarandache right 
cosets of A in a S-semigroup. Further we prove that in general the Smarandache right 
cosets of any subgroup A ⊂ S does not partition S. 
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THEOREM 5.5.1: Let S be a S-semigroup. A ⊂ S be a proper subset which is a group 
under the operations of S. There does not exist in general a one to one 
correspondence between any two Smarandache right cosets of A in the S-semigroup S. 
 
Proof: We prove the theorem by an example. Let S = Z10 = {0, 1, 2, ... , 9} be the S-
semigroup of order 10 under multiplication modulo 10. 

 
Take A = {1, 9} ⊂ Z10. Clearly, A is a subgroup of Z10. We see 0A = {0}, 3A 

= {3, 7}, 5A = {5}. So we cannot imagine of any one to one correspondence between 
right cosets of A in the S-semigroup Z10. Similarly we take B = {2, 4, 6, 8} which is a 
subgroup with 6 as the identity we get 5A2 = {0} 3A2 = A2. So there does not exist a 
one to one correspondence between the right cosets of B in Z10. Hence the claim. 
 
THEOREM 5.5.2: The Smarandache right cosets of A in a S-semigroup does not in 
general partition S into either equivalence classes of same order or does not partition 
S at all. 
 
Proof: Consider the S-semigroup Z10 given in theorem 5.5.1: where A = {1, 9} and B 
= {6, 2, 4, 8} are the subgroups of S = Z10. The equivalence classes corresponding to 
A = {1, 9} are {0}, {5}, {1, 9}, {2, 8}, {3, 7} and {4, 6}. So A partitions Z10 but not 
into equivalence classes of same length. 
 

Now B = {6, 2, 4, 8} is a subgroup of Z10. Now the Smarandache coset 
division by B gives just {0} and {6, 2, 4, 8} only. Therefore, subsets do not even 
account for every element in Z10. Hence the claim. 

 
Finally we conclude this chapter with an interesting example study and test the 

validity of all the results proved in this chapter. 
 

Example 5.5.1: Let S2×2 = ,
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
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
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
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
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
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
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
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
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11

11
,

11

01
  

 
be the collection of all 2×2 matrices with entries from the prime field of characteristic 
2 viz Z2 = {0, 1}.  
 

Now clearly the number of elements in S2×2 is 16 = 24. Now first we show S2×2 
is not a Smarandache Lagrange semigroup. To prove this we have to find a subgroup 
A of S2×2 of order n where n / 16. 
 

Now    














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
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



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01

11
,

11

10
,

10

01
A  

 
is subgroup of S2×2 of order 3. Hence the claim. However, S2×2 is a Smarandache 
weakly Lagrange semigroup. To prove this we have to show S2×2 contains a subgroup 
B of order m where m/16.  
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To this end, we have   







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



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
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
=

01
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,

10

01
B  

 
which is a subgroup of order 2. Hence, S2×2 is a Smarandache weakly Lagrange 
semigroup. To show S2×2 is not a Smarandache Cauchy semigroup we have to get an 
element g in S2×2 such that  

 







=

10

01
gn  but n / 16. 

 

Consider   22S
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
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



=





10

01

01

11
3

 

 

and 3 / 16. But S2×2 has Smarandache Cauchy elements also as 22S
10

11
×∈





 is such 

that 





=





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01

10

11
2

.  Hence 





10

11
 is a Cauchy element of S2×2 as 2 / 16. 

 
Now to show S2×2 contains both Smarandache p-Sylow subgroups and 

Smarandache non p-Sylow subgroups.  
 

Clearly,       


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

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A  

 
is a subgroup of order 2 so A is Smarandache 2-Sylow subgroup of S2×2. Consider the 
subgroup  
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C is a subgroup of order 3 in S2×2 3 / 16. So C is a Smarandache non 3-Sylow 

subgroup of S2×2. 
 

Finally, to show that the right cosets partition S2×2 for the group C that is the 
following equivalence classes.  

 

To prove this, consider 
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Now 22S
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01
x ×∈
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Now take 


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Next,  
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



=

00

11
z  we have 



























=

00

01
,

00

11
,

00

10
zC . 

For 
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same length 3 and all the sets are disjoint.  
 

Now the subgroup 
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This is a partition unlike in group each class is of different lengths.  

 
PROBLEM 1: Is Z42 = {0, 1, 2, ... , 41} a Smarandache weakly semigroup or a 
Smarandache Lagrange semigroup? 
 
PROBLEM 2: Is Z30 = {0, 1, 2, ... , 29} a Smarandache Lagrange semigroup? 
 
PROBLEM 3: Does there exist an example of a Smarandache Lagrange semigroup of 
order 14? 
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PROBLEM 4: Is Z122 = {0, 1, 2, ... , 121} a Smarandache weakly Lagrange semigroup? 
 
PROBLEM 5: Prove Z2n = {0, 1, 2, ... , 2n-1} is a Smarandache weakly  Lagrange 
semigroup. 
 
PROBLEM 6: Can Z15 be a Smarandache Lagrange semigroup? Justify your answer. 
 
PROBLEM 7: Prove P2×2 = {(aij) | aij ∈ Z3 = {0, 1, 2}} the semigroup under matrix 
multiplication is a Smarandache weakly Lagrange semigroup. 
 
PROBLEM 8: Can 2×2 matrices with entries from Zp, p a prime, under matrix 
multiplication be Smarandache Lagrange semigroup? 
 
PROBLEM 9: Does there exist a Smarandache p-Sylow semigroup in a S-semigroup of 
order 30? 
 
PROBLEM 10: For the primes 2, 3, 5, 7 find a Smarandache p-Sylow  semigroup of order 
m where 2/m, 3/m, 5/m and 7/m. 
 
PROBLEM 11: Give an example of a Smarandache Cauchy semigroup of order 24. 
 
PROBLEM 12: Does there exist a Smarandache Cauchy semigroup of order 210? 
 
PROBLEM 13: Give an example of S-semigroup for which there is no Smarandache p-
Sylow subgroups. 
 
PROBLEM 14: Find all the Smarandache p-Sylow subgroups of S(20). 
 
PROBLEM 15: How many Smarandache p-Sylow subgroups are there in S(12)? 
 
PROBLEM 16: Find all Smarandache 3-Sylow subgroups of S(18)? 
 
PROBLEM 17: Give an example of Smarandache Cauchy semigroup of order 20. 
 
PROBLEM 18: Can there exist a Smarandache Cauchy semigroup of order 127? Justify 
your answer. 
 
PROBLEM 19: Does there exist a Smarandache p-Sylow subgroup of order 37? Justify 
your answer. 
 
PROBLEM 20: Find a Smarandache Cauchy semigroup of order 81. 
 
PROBLEM 21: Give an example of a Smarandache non p-Sylow subgroup of order 18. 
 
PROBLEM 22: Give an example of a Smarandache non p-Sylow subgroup order 72. 
 
PROBLEM 23: Verify the classical Smarandache Cauchy theorem for Z105. 
 
PROBLEM 24: Verify the classical Smarandache Cauchy theorem for the group S(27). 
 
PROBLEM 25: Verify Smarandache Sylow theorems for the S-semigroup S(3) × S(8). 
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PROBLEM 26: Divide into Smarandache cosets the S-semigroup Z121 by any subgroup in 
Z121. 
 
PROBLEM 27: Divide S(3) × S(7) into Smarandache cosets by the subgroups S3 × A7, A3 
× S7. 
 
PROBLEM 28: Let S2×2 the set of all 2×2 matrices over the ring  Z4 =                              
{0, 1, 2, 3} under multiplication.  
 

1. Prove S2×2 is not Smarandache Lagrange semigroup. 
2. Prove S2×2 is Smarandache weakly Lagrange semigroup. 
3. Prove S2×2 has Smarandache p-Sylow subgroup. 
4. Find in S2×2 a Smarandache non p-Sylow subgroup. 
5. Find a Smarandache Cauchy element in S2×2. 
6. An element which is not Smarandache Cauchy element in S2×2. 
7. Find a subgroup A of order 3 and find the Smarandache coset decomposition 

of S2×2. 
 
PROBLEM 29: Find all Smarandache non p-Sylow subgroups and Smarandache p-Sylow 
subgroups of Z125. 
 
PROBLEM 30: Find all Smarandache non p-Sylow subgroup of S(6). 
 
PROBLEM 31: Find all Smarandache p-Sylow subgroup of Z120. 
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CHAPTER SIX�
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In the earlier chapters we studied the S-semigroup and obtained some 
attractive results about them. In that study the algebraic structure under consideration 
was a S-semigroup, that is a semigroup, which has a proper subset in it which is a 
subgroup under the operations of the semigroup. Now in this chapter our algebraic 
object will be a group or a S-semigroup and in the group we will introduce 
Smarandache notions like Smarandache inverse of an element in a group and 
Smarandache conjugate elements in a group. Smarandache double coset, 
Smarandache normal subgroup, Smarandache quotient group and Smarandache direct 
products and study them. 
 
 
6.1 Smarandache Inverse in Groups  
 

This section is completely devoted to the introduction of Smarandache inverse 
in a group and we obtain some interesting properties about them. Generally in a group 
every element has a unique inverse but in case of groups Smarandache inverse may or 
may not exists. Certain elements of a group may have Smarandache inverse and some 
may not have Smarandache inverse. 
 
DEFINITION: Let G be a group. An element x ∈ G \ {1} is said to have a Smarandache 
inverse y in G if xy = 1 and for a, b ∈ G \ {1, x, y} we have xa = y (or ax = y), yb = x 
(or by = x) with ab = 1. 
 

The pair (x, y) is called the Smarandache inverse pair and (a, b) is called the 
related or relating pair of the Smarandache inverse pair (x, y). Further if x is the 
Smarandache inverse of y we can equivalently say y is the Smarandache inverse of x 
and (y, x) is the Smarandache inverse pair and the related pair remains the same viz 
(a, b). Thus x is the Smarandache inverse of y or y is the Smarandache inverse of x 
when (x, y) is the Smarandache inverse pair no distinction between these two 
statements exist as in the case of inverse elements in a group G; for x is the inverse of 
y is the same as y is the inverse of x. 
 
DEFINITION:  Let G be a group. x be the Smarandache inverse of y and (x, y) the 
Smarandache inverse pair with the related pair (a, b). If the pair (a, b) happens to be 
a Smarandache inverse pair not necessarily with (x, y) as the related pair then we say 
(a, b) is the Smarandache co inverse pair. 
 
Example 6.1.1: Let Z'5 = Z5 \ {0} (where Z5 = {0, 1, 2, 3, 4}) be the group under 
multiplication modulo 5. Clearly 2 ∈ Z'5 has the Smarandache inverse pair 3 and 2.3 ≡ 
1(mod 5) and 4 ∈ Z'5 is such that 2.4 ≡ 3(mod 5) and 3.4 ≡ 2(mod 5) with 42 ≡ 1(mod 
5). Clearly, 4 ∈ Z'5 has no Smarandache inverse in Z'5 for their exist no x ∈ Z'5 \ {1, 
4} such that x.4 ≡ 4(mod 5). Thus, 4 ∈ Z'5 has no Smarandache inverse. (4, 4) is 
called the related pair for the Smarandache inverse pair (2, 3). 
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Example 6.1.2:   Let G = < g  /  g6 = 1> be the cyclic group of order 6. Now g in G 
has g5 ∈ G such that g • g5 = 1 further g2, g4 ∈ G \ {1, g, g5} is such that g5 • g2 = g 
and g • g4 = g5 with g2 • g4 = 1. Clearly g3 • g3 = 1 but g3∈G has no Smarandache 
inverse for we cannot find gi ∈ G with g3 • gi = g3. So for (g, g5) the Smarandache 
inverse pair the related pair is (g2, g4) and g3 ∈ G has no Smarandache inverse. 
 
Remark: Clearly the pair (g2, g4) which is the related pair for the Smarandache inverse 
pair (g, g5) is never a Smarandache inverse for the pair (g2, g4)has no Smarandache 
inverse as g2 • gi = g4 and gj • g4 = g2 , gi • gj ∈ G\ {g2, g4, 1} is never possible as i = 2 
and j = 4 is the only solution for g2 • gi = g4 and gj • g4 = g2. 
 
THEOREM 6.1.1: Let G be a group. Every Smarandache inverse has an inverse in the 
group G but every inverse in G need not have a Smarandache inverse. 
 
Proof: By the very definition of the Smarandache inverse, it should have an inverse. 
Hence the first part of the theorem. On the other hand, we have every element in G 
has inverse, but they are not in general Smarandache inverses. For g2 ∈G in example 
6.1.2. g4 is the inverse in G as g2 • g4 = 1 but g2 has no Smarandache inverse. Hence 
the claim. 
 
Example 6.1.3: Let G = <g/g7 = 1> be the cyclic group of prime order 7. Clearly g • 
g6 = 1, g2 • g5 = 1 and g3 • g4 = 1. For g ∈ G we have g6 ∈ G. g • g6 = 1, now g2, g5 ∈ 
G \ {1, g, g6} is such that g • g5 = g6 and g6 • g2 = g with g2 • g5 = 1. Similarly for g2 ∈ 
G, g5 is such that g2 • g5 = 1. We have g3, g4 ∈G \ {1, g2, g5} is such that g2 • g3 = g5 
and g4 • g5 = g2 with g3 • g4 = 1. Now g3 ∈ G has a Smarandache inverse g4 ∈ G is 
such that g3 • g4 = 1. Further g, g6 ∈ G \ {1,g3, g4}, g3 • g = g4 and g4 • g6 = g3 with g • 
g6 = 1. Thus it is nice to see every element in G has a Smarandache inverse. This 
example leads us to the following engaging result about group of prime order; that is 
for all cyclic groups of prime order p. 
 
THEOREM 6.1.2: Let G be a cyclic group of prime order p; p an odd prime. Every 
element in G \ {1} has a Smarandache inverse. 
 
Proof: Given G = <g /gp = 1> where p is a prime. Now G \ {1} has exactly p-1 

elements which we will pair in the form (g, gp-1), (g2, gp-2), (g3, gp-3), ... 










 +−
2

1p

2

1p

g,g . 

The pairs are inverses of each other that is g • gp-1 = 1, g2 • gp-2 = 1, g3 • gp-3 = 1, ... , 

1gg 2

1p

2

1p

=•
+−

. Now for each pair (g, gp-1); g • gp-1 = 1 the pair (g2, gp-2) acts as a 
Smarandache inverse, for (g, gp-1) as we have g • gp-2 = gp-1 and gp-1 • g2 = g with g2 • 
gp-2 = 1. 
 

Similarly, we can show for the element g2 ∈G, g2 • gp-2 = 1 for this pair (g3, gp-

3) acts as the Smarandache inverse and so on. Thus finally for the pair 










 +−
2

2p

2

1p

g,g  



 

 63

we have 1gg 2

2p

2

1p

=•
+−

; we have the pair (g,gp-1) acts as the Smarandache inverse 
for  
 

2

1p

2

21p

2

1p

gggg
++−−

==•  
and  

 

2

1p

2

1p
p2

2p21p
1p2

1p

gggggg
−−−++

−
+

=•==•   
 

Hence the claim. This make us to define the following. 
 
DEFINITION: Let G be a group. If every element in G has a Smarandache inverse then 
we say G is a Smarandache inverse group. 
 
THEOREM 6.1.3: All symmetric groups Sn of degree n, are not Smarandache inverse 
groups (n ≥ 4).  
 
Proof: Given Sn symmetric group of degree n; n ≥ 4. Clearly g ∈ Sn is such that 







=

n51432

n54321
g

K

K
. Now g generates a cyclic group of order 4 and 







=

n52143

n54321
g2

K

K
 and g2 has no Smarandache inverse in Sn as 







==•

n321

n321
1gg 22

K

K
 and we do not have x ∈ Sn \ {1, g2} such that xg2 = g2. 

Hence the theorem. 
 
COROLLARY 6.1.4: Sn has elements which have Smarandache inverses. 
 
Proof: By Cauchy's theorem Sn has elements x(x ≠ 1) such that xp = 1 where p is an 
odd prime and p < n. By theorem 6.1.2 we have the cyclic group G of order p 
generated by x is such that G ⊂ Sn and every element in G has a Smarandache inverse 
so; G is a Smarandache inverse group. 
 

We can still generalize this to the following theorem. 
 
THEOREM 6.1.5: Let G be a group of finite order. If p / o(G) where p is a prime (p ≥ 
5). Then G has Smarandache inverse elements. 
 
Proof: Given G is a finite group such that p is a prime which divides order of G. Now 
let x ∈ G by Cauchy's theorem xp = 1. Then by theorem 6.1.2 every element in the 
subgroup generated by x has Smarandache inverse baring the identity. Hence the 
claim. 
 

In the theorem p ≥ 5 is essential for if p = 3 or 2 we see when p = 2 no element 
in the group G has Smarandache inverse. When p = 3 we see no element of G has 
Smarandache inverse. 
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THEOREM 6.1.6: Let G be a group. If x ∈  G is such that x2 = 1. Then x has no 
Smarandache inverse. 
 
Proof: Since x ∈ G \ {1} is such that x2 = 1 that is x is a sef inverse element. We see 
there is no y in G \ {1, x}, suppose we have y ∈ G \ {1, x} we will arrive at a 
contradiction. Given y ≠ 1 and y ≠ x but xy = x multiply by x on the left and use the 
fact x2 = 1; x2y = x2 = 1 so y = 1 a contradiction to our assumption y ∈ G \ {1, x}. So 
if x ∈ G is such that x2 = 1 then x has no Smarandache inverse. 
 

From this, we arrive at the following conclusions. 
 
THEOREM 6.1.7: The dihedral group D2n has elements, which have no Smarandache 
inverses. 
 
Proof: We know the dihedral group D2n = {a, b| a2 = bn = 1 with bab = a}. We see a ∈ 
D2n has no Smarandache inverse as a2 = 1 by theorem 6.1.6. Further every element of 
the form abi; i ≤ n-1 have no Smarandache inverse as abiabi =1 when i ≤ n-1. Hence 
the claim. 
 
THEOREM 6.1.8: The symmetric group S3 has no element, which has Smarandache 
inverse.  
 
Proof: S3 = {1, p1, p2, p3, p4, p5} where  
 


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


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


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323

321
p2 , 





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312

321
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





=

132

321
p4  and 





=

213

321
p5  with 





=

321

321
1 . 

 

Clearly 2
3

2
2

2
1 ppp ==  = 1, so by theorem 6.1.7 p1, p2 and p3 have no 

Smarandache inverse. Finally p4 • p5 = 1 so p4 has no Smarandache inverse for we 
cannot find a pi, i ≤ 3 such that pupi = p5. Hence the claim. 
 
COROLLARY: The symmetric group of degree 4 that is S4 has Smarandache inverses.  
 
Proof: Consider the element 

 







=

1432

4321
g  

 
clearly g4 = 1 and we have g • g3 = 1 and g2 ∈ S4 is such that g2 • g3 = g and g2 • g = 
g3, with g2 • g2 = 1. Hence the claim. Thus g ∈ S4 has Smarandache inverse g3 and (g2, 
g2) is the related pair. 
 
DEFINITION: Let G be a group if no element in G has a Smarandache inverse call G a 
Smarandache inverse free group.  
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Clearly, the group S3 is a Smarandache inverse free group. It is clear from the 

earlier theorems Sn (n ≥ 4) are not Smarandache inverse free groups. 
 
DEFINITION: Let x ∈ G have a Smarandache inverse y for the pair (x, y), (a, b) is the 
related pair. We say (x, y) is a Smarandache self inversed pair if (a, b) has the 
Smarandache inverse and the related pair is (x, y). 
 
Example 6.1.4: Let G = <g/g25 = 1>. Now g15 ∈ G has a Smarandache inverse g10 ∈ G 
such that g15 • g10 = 1 and (g20,g5) ∈ G is such that g15 • g20 = g10, g10 • g5 = g15 with 
g20 • g5=1. 
 

Now for g20 ∈ G and g20 • g5 = 1 we have the pair (g10, g15) in G such that g20 • 
g10 = g5, g5 • g15 = g20, with g20 • g5 = 1. Thus we see the pair (g20, g5) is the 
Smarandache self inversed pair and its self inverse is (g10, g15) and vice versa. 
 
THEOREM 6.1.9: Every Smarandache inverse pair in a group in general need not be a 
Smarandache self inversed pair. 
 
Proof: We prove this by an example. Let Z'5 = Z5 \ {0} be the group of integers under 
modulo multiplication 5. 
  

Clearly for 2 ∈ Z'5 we have 3 ∈ Z'5 with 2.3 ≡ 1(mod 5) and (4, 4) acts as the 
Smarandache co inverse. But 4 has no Smarandache inverse as 42 ≡ 1(mod 5). Hence 
the claim. 
 

We now define the concept of Smarandache conjugate elements in a group G. 
 
 
6.2 Smarandache Conjugate in Groups 
 

In this section, we introduce the concept of Smarandache conjugate in groups. 
Throughout this section by a group G we mean only a non commutative group as the 
concept of conjugates has no meaning in commutative groups. We define a new 
concept called Smarandache conjugates in a group as follows. 
 
DEFINITION: Let G be a group let x ∈ G; x is said to have a Smarandache conjugate 
y in G if 
  

1. x is conjugate to y (that is there exist a ∈ G such that x = aya-1). 
2. a is conjugate with x and a is conjugate with y. 

 
Example 6.2.1: Let  
 

S3 = 
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 66

 
be the symmetric group of degree 3. Now p1 ∈ S3 has Smarandache conjugate. For we 
have p1 is conjugate with p3 as p1 = p2p3

1
2p−  that is p1 ~ p3. Now we have p2 is 

conjugate with p3 as 
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 that is p2 ~ p3. 

 
Also it can be verified p1 ~ p2 as  
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Thus p1 has Smarandache conjugate p3. Further every element in S3 need not 

have Smarandache conjugate; for take p4 ∈ S3; clearly p4 has no Smarandache 
conjugate we know p4 ~ p5 as  
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It is left for the reader to verify that p4 has no Smarandache conjugate but p5 

acts only as its conjugate. 
 
 This leads to the following theorem. 
 
THEOREM 6.2.1: Let G be a non abelian group. If x ∈ G has a Smarandache conjugate 
then x has conjugate; conversely if x ∈ G has conjugate then x ∈ G  in general have no 
Smarandache conjugate. 
 
Proof: Clearly by the very definition of Smarandache conjugate we see if x has 
Smarandache conjugate then it obviously has conjugate. 
  

To prove the fact that if an element has conjugate then it in general need not 
have Smarandache conjugate. We prove this by the example 6.2.1. 
 

Clearly p4 ∈ S3 has conjugate p5 but p4 has no Smarandache conjugate for we 
see p4 = p1p5p1 but p1 can never be conjugate with p4 or p5. Hence the claim. 
 
THEOREM 6.2.2: Let Sn be the symmetric group of degree n, n ≥ 3. Sn has 
Smarandache conjugates. 
 

Proof: Let nS
n4312

n4321
x ∈


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we have nS
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is such that x is Smarandache conjugate with y for take 





=

n4231

n4321
z
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K
 



 

 67

 
we have  zyz-1 = x. Also we can easily verify z ~ x and y ~ z. 
 

This leads us to find conditions for elements in Sn to be Smarandache 
conjugate with each other. This is given by the following theorem. 
 
THEOREM 6.2.3: Let Sn be the symmetric group of degree n. Let x, y ∈ Sn be the 
Smarandache conjugate by the conjugating element a that is x = aya-1. Then all the 
three elements a, x, y ∈ Sn have the same cycle decomposition. 
 
Proof: Now to show x is Smarandache conjugate with y, x, y ∈ Sn we have to show x 
= aya-1 and a ∈ Sn with x ~ a that is x = bab-1 with b ∈ Sn. To do this we need to prove 
first. 
 

Two permutations in Sn are Smarandache conjugate if and only if x, y and a 
have the same cycle decomposition. that is if x = aya-1 then x is Smarandache 
conjugate with y if and only if all the three permutations x, y and a in Sn have the 
same cycle decomposition. 
  

To prove this first we prove the permutations x and y in Sn are conjugate if the 
permutations x and y have same cycle decomposition. Suppose x ∈ Sn and that x 
sends i → j. How do we find θ-1 xθ where θ ∈ Sn? Suppose that θ sends i → s and j → 
t then θ-1 x θ sends s → t.  
 

In other words, to compute θ-1 x θ replace every symbol in x by its image 
under θ. For example to determine θ-1 x θ where θ = (1, 2, 3)(4, 7) and x = (5, 6, 7)(3, 
4, 2), then since θ : 5 → 5, 6 → 6, 7 → 4, 3 → 1, 4 → 7, 2 → 3, θ-1 x θ is obtained 
from x by replacing in x, 5 by 5, 6 by 6, 7 by 4, 3 by 1, 4 by 7 and 2 by 3 so θ-1 x θ is 
obtained from x by replacing in x 5 by 5, 6 by 6, 7 by 4, 3 by 1, 4 by 7 and 2 by 3 so 
that θ-1 x θ = (5, 6, 4)(1, 7, 3).  
 

With this algorithm for computing conjugates it becomes clear that two 
permutations having same cycle decomposition are conjugate. For if x = (a1, a2, ... 
,

1na ) (b1, b2,..., 2nb ) ... (x1, x2,..., rnx ) and y = (α1, α2,..., 1nα ) (β1, β2,..., 1nβ ) ... (z1, 

z2,..., rnz ) then y = θ-1 x θ, where one could get as θ the permutation  
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Thus for instance (1, 2) (3, 4, 5) (6, 7, 8) and(7, 5) (1, 3, 6) (2, 4, 8) can be 

exhibited as conjugates by using the conjugating permutation  
 

.
84263157

87654321






 

   
That two conjugates have the same cycle decomposition is now trivial for, by 

our rule, to compute a conjugate, replace every element in a given cycle by its unique 
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image under the conjugating permutation. Now x ~ y but for x to be Smarandache 
conjugate we need x = aya-1 and x and a are conjugate this once again forces x and a 
should have the same cycle decomposition. Thus x is Smarandache conjugate with y 
if and only if all the 3 elements x, y and a have same cycle decomposition. Hence the 
claim. 
 
 Thus we see a pair is Smarandache conjugate if and only if even the 
conjugating permutation have the same cycle decomposition.  
 
 Now we are trying to see whether the concept of Smarandache conjugating is 
first of all an equivalence relation on the group. Unfortunately even at this stage we 
see x is Smarandache conjugate with itself for if x ~ x if we have a ∈ G \ {e} with x = 
axa-1 that is ax = xa and a ~ x. Such things happen in reality also for consider S4 the 
symmetric group of degree 4. 
 


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xa = ax also; 
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so x ~ x now  
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. Hence the claim. 

 
 So x ~ x (~ Smarandache conjugate if there exists a ≠ e with x = axa-1 that is 
ax = xa and implies a = xax-1). Unless x commutes with an element other than identity 
element of G, reflexive property cannot hold good. Clearly if x is Smarandache 
conjugate with y then obviously y is Smarandache conjugate with x. Thus 
Smarandache conjugacy is always symmetric. If  x  ~  y  and  y  ~  z  then we have x  
=  aya-1  and  a  =   bxb-1 and y  =  czc-1 ,  c  = dyd-1 thus x ~ y ~ a and y  ~  z  ~  c so 
to show x Smarandache conjugate with z we have x = tzt-1 with x ~ t. Now there are 
examples in which such result is true so as in the case of reflexive property transitivity 
many or may not be true. 
 
 Thus on the whole we cannot call Smarandache conjugate relation an 
equivalence relation on a group. 
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PROBLEM 1: Let S8 be the symmetric group of degree 8. Does (1, 2, 3) (4, 8) (5, 6, 7) ∈ 
S8 have a Smarandache inverse?  
 
PROBLEM 2: Find the Smarandache inverse if it exists for the element  
 

33S
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110

111

×∈















 

 
where S3×3 is a group of all invariable matrices with entries from Z2 = (0, 1), under matrix 
multiplication. 
 
PROBLEM 3: Let G = D2.9 = {a, b / a2= b9 = 1 bab = a}. Find the Smarandache inverse of 
ab5? 
 
PROBLEM 4: Find all elements in S4, which have Smarandache inverses. Do the 
collection from a subgroup? 
 
PROBLEM 5: Find all the elements in G which have Smarandache inverses where G = A5, 
the alternating group of degree 5. 
 
PROBLEM 6: Find the Smarandache inverse for g15 in G =<g/g21 =1>. 
 
PROBLEM 7: S10 be the symmetric group of degree 10. Find the Smarandache inverse for 
g = (1, 2, 3, 4) (9, 5) (10, 6, 7). 
 
PROBLEM 8: Does the Smarandache inverse exist for (1, 2, 3) (4, 5, 6) (7, 8, 9) (10, 11, 
12) in S12? 
 
PROBLEM 9: Does the Smarandache inverse exist for (1, 2) (3, 4) (5, 6) (7, 8) (9, 0) ∈ 
S10? Justify your answer! 
 
PROBLEM 10: Find the Smarandache inverse of (1, 4, 5, 7) (3, 6, 8, 11) ∈ S11. 
 
PROBLEM 11: Find the Smarandache conjugate of (1, 2, 3) (4, 5, 6) (7, 8) ∈  S8. 
 
PROBLEM 12: Does there exist a Smarandache conjugate for (1, 7) (3, 4, 6) (9, 12) ∈ S12? 
 
PROBLEM 13: Find all elements in S4, which have Smarandache conjugates.  
 
PROBLEM 14: Find all elements in A6 which has Smarandache inverses and Smarandache 
conjugates? Does there exist any relation between these two sets? 
 
PROBLEM 15: Find a Smarandache conjugate for x = (1, 2) (3, 4, 5, 6) ∈ S6. How many 
elements can be Smarandache conjugate with x? 
 
PROBLEM 16: Can (1, 5, 7) (3, 8, 9) (4, 2) and (8, 2, 7) (9, 3, 4) (1, 5) be Smarandache 
conjugates in S9? Justify your answer. 
 
PROBLEM 17: Does (1, 2, 3, 4) (5) (6, 7, 8) ∈ S8? 
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1. have Smarandache conjugate in S8. 
2. have Smarandache inverse in S8. 

 
PROBLEM 18: Can (1, 2, 3) (4, 5, 6) (7, 8, 9) ∈ S9 have Smarandache inverse? 
 
PROBLEM 19: Find the Smarandache inverse of x = (1, 2, 3, 4) (5, 6) (7, 8) ∈ S9. Is y = 
(4, 6, 7, 8) (3, 9) (5, 3) a Smarandache conjugate of x? 
 
PROBLEM 20: Is (2, 3) (4, 7) (6, 8) is Smarandache conjugate with (8, 3) (1, 5) (2, 7) in 
S8. Justify your answer. 
 
 
6.3 Smarandache Double Cosets. 
 
In the section we introduce the concept of Smarandache double cosets in a S-
semigroup S and prove that Smarandache double coset relation in general is not an 
equivalence relation on S. 
 
DEFINITION: Let S be a S-semigroup. Let A ⊂ S and B ⊂ S be two proper subgroups 
in S under the operations of S. For some x ∈ S we define the Smarandache double 
coset as AxB = {axb | a ∈ A, b ∈ B} AxB is called the Smarandache double coset of A 
and B for x ∈ S. 
 
Remark: If x ∈ A or x ∈ B we do not have any nice special results. Only when we 
take x ∈ S and x ∉ A and x ∉ B we obtain many nice and fascinating properties 
which does not allow us to extend classically the result, the double coset relation is an 
equivalence relation on S. 
 
Example 6.3.1: Let Z10 = {0, 1, 2, ... , 9} be the S-semigroup under multiplication 
modulo 10. Take A = {1, 9} ⊂ Z10 and B = {2, 4, 6, 8} ⊂ Z10. Now take x = 3. 
  

A3B = {2, 4, 6, 8} = B. Similarly for x = 7 we get A7B = {2, 4, 6, 8} = B. 
Consider A5B = {0}. AxB does not divide Z10 into disjoint sets. 

 
Now for x = 2, A2A = {2, 8}, A0A ={0}, A5A = {5}, A4A = {4, 6}, A3A = 

{3, 7}, A1A = {1, 9}. Thus, AxA unlike AxB partition Z10 but the number of elements 
in each class is not the same. 

 
Finally B0B = B5B ={0} BxB = B. Thus this double coset does not even 

partition Z10. 
 

All this study enables us to formulate the following theorem. 
 
THEOREM 6.3.1: Double coset relation on S-semigroup Zn in general does not 
partition Zn for all subgroups in Zn. 
 
Proof: We prove this by an example. Consider the example 6.3.1, the S-semigroup 
Z10. We see AxB gives only two sets viz. {0} and {2, 4, 6, 8} where as BxB = {2, 4, 
6, 8} or {0}. Hence the claim. 
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Example 6.3.2: Consider the semigroup of 2 × 2 matrices under matrix multiplication 
with entries from Z2 = {0, 1}. 
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Now S2×2 is a S-semigroup under multiplication. Consider the subgroups  
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Calculate AxB by varying x ∈ S2×2.  
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Thus AxB divides the S-semigroup S2×2 into disjoint set of order 1, 2 and 4. 

The natural question would be "Is Smarandache double coset relation on a S-
semigroup S an equivalence relation on S". The major observation made by us is that 
Smarandache double cosets in general does not divide S into disjoint sets such that 
their union is S. Clearly from examples. 
 

To test whether Smarandache double coset relation is an equivalence relation 
on S, we define a relation called Smarandache double coset relation on S. 
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DEFINITION: Let S be a S-semigroup. Let A ⊂ S and B ⊂ S be subgroups of S under 
the same operation as in the semigroup S. If for x, y ∈ S we define x 

s
~  y if y = axb for 

some a ∈ A and b ∈ B. This relation 
s
~  we call as Smarandache double coset relation 

of S relative to the subgroup A and B. 
 
Now 

s
~  relation may be an equivalence relation on S. Still it may not be a 

"Smarandache equivalence relation" on S to this end we are going to define now the 
following. 
 
DEFINITION: Let S be a S-semigroup; the relation 

s
~  on S is said to be a 

Smarandache equivalence relation on S if  
 

1. 
s
~  is reflexive that is x 

s
~  x, 

2. If x 
s
~  y then y 

s
~  x (symmetric) 

3. If x 
s
~  y and y 

s
~  z then x 

s
~  z transitivity. 

4. If A1, ... , An are the disjoint sets then we need U
n

1i
IAS

=
= . 

 
Then only 

s
~  is said to be a Smarandache relation on the S-semigroup S. 

 
The condition 4 is important as we see from example 6.3.1 ∪Ai ≠ S. 

 
THEOREM 6.3.2: If 

s
~  is a Smarandache equivalence relation on S then 

s
~  is an 

equivalence relation on S, but if 
s
~  is not an equivalence relation on S then it need not 

be a Smarandache equivalence relation on S. 
 
Proof: Clearly by the very definition of 

s
~  we see if  

s
~  is a Smarandache equivalence 

relation on S then it is an equivalence relation on S. 
  

Now to prove every equivalence relation on the S-semigroup need not in 
general be a Smarandache equivalence relation on S. 
  

The proof of the second part follows from the example 6.3.1 constructed using 
the S-semigroup Z10. We see if A = {2, 4, 6, 8} then x 

s
~  x for element in a that is x = 

axa can never occur for when x is 3 and 5. Hence 
s
~  is not a Smarandache relation 

means it cannot be even an equivalence relation. 
 
Regarding these notions, we suggest the reader to refer the chapter 7 on 

research problems.  
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Example 6.3.3: Let S(3) be the set of all mappings of the set (1, 2, 3) to itself. We 
have o(S(3)) = 33. Now let  
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Clearly the Smarandache equivalence relation on S(3) by A and B. Suppose  
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Here also the subgroups of S(3) partition S(3) into Smarandache equivalence 

classes and it is a Smarandache equivalence relation. 
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PROBLEM 1: Let S(7) be the Smarandache symmetric group. For A7 and B = {<(1, 2, 3) 
(4, 5, 6, 7)>} the group generated by the permutation (1, 2, 3) (4, 5, 6, 7). Is A7xB a 
Smarandache equivalence relation on S(7)? 
 
PROBLEM 2: Let S(4) be the Smarandache symmetric semigroup. Take  
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as subgroups of S(4). Is AxB a Smarandache equivalence relation on S(4)? 
 
PROBLEM 3: In S(4) if A = A4 and  
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that is a group generated by  
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Is A4xB a Smarandache equivalence relation on S(4)? 

 
PROBLEM 4: Let S3×3 = {aij | aij ∈ Z2 = {0, 1}} set of all 3 × 3 matrixes, be the semigroup 
under matrix multiplication . For  
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2 subgroups of S3×3. Does AxB divide S3×3 into Smarandache equivalence classes? 
 
PROBLEM 5: Let Z18 = {0, 1, 2, 3, ... , 17} be the S-semigroup under multiplication mod 
18. A = {1, 17} and B = {10, 2, 4, 8, 14,16} are subgroups of Z18. Find the Smarandache 
double cosets with elements 7, 6 and 5. Is AxB a Smarandache equivalence relation on 
Z18? 
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PROBLEM 6: Let Z20 = {0, 1, 2, 3, ... , 19} be the S-semigroup under multiplication 
modulo 20. Can Z20 be divided by Smarandache double cosets by any suitable subgroup 
of Z20? 
 
PROBLEM 7: Let Z125 = {0, 1, 2, 3, ... , 124} be the S-semigroup under multiplication 
modulo 125. Let A = {1, 124} be a subgroup of Z125. Does AxA divide Z125 into 
Smarandache double coset equivalence relations? 
 
PROBLEM 8: Let Z9 = {0, 1, 2, ... , 8}be the semigroup under multiplication mod 9. A = 
{1, 8} and B = {1, 2, 4, 8, 5, 7}. 
 
a. Does the double coset AxB divide Z9 into equivalence classes? 
 
b. If A = {1, 8} and B = {1, 8} be subgroups of Z9. Does AxB that is  AxA divide Z9 

into Smarandache equivalence classes? 
 
c. Let A = {1, 8} and B = {1, 7,4}. Does the Smarandache double coset AxB divide Z9 

into Smarandache equivalence classes? 
 
PROBLEM 9: Let S2×2 = {(aij) | aij ∈ Z5} be the set of all 2 ×2 matrixes with entries in Z5, 

Z5 the prime field of characteristic 5. S2×2 is a S-semigroup under matrix multiplication. 
Does there exist subgroups in S2×2 such that  there Smarandache double coset divides S2×2 
into Smarandache equivalence classes? 
 
PROBLEM 10: Let S(4) be the Smarandache symmetric group. A4 be the subgroup of 
S(4). Find A4xA4 the Smarandache double coset representation of S(4)? Does A4xA4 
divide S(4) into Smarandache equivalence classes? 
 
 
6.4 Smarandache Normal subgroups 
 

In this section we introduce the concept of Smarandache normal subgroups to 
a S-semigroup S and obtain some interesting results about them. This concept leads us 
to the definition of Smarandache quotient groups. 
 
DEFINITION: Let S be a S-semigroup. Let A be a proper subset of S which is a group 
under the operation of S. We say A is a Smarandache normal subgroup of the S-
semigroup S if xA ⊆ A and Ax ⊆ A or xA = {0} and Ax = {0} for all x ∈ S and if 0 is 
an element in S then we have xA = {0} and Ax = {0}. 
 
Remark: Now we have to define Ax ⊆ A, xA ⊂ A as we have for x ∈ S we may or 
may not have x-1 to exist in S. That is why we cannot define xAx-1 = A. Secondly if 
we restrict ourselves to the subgroup of S then it has nothing to do with S-semigroup. 
 
Example 6.4.1: Let Z10 = {0, 1, 2, ... , 9} be a S-semigroup under multiplication 
modulo 10. Let A = {2, 4, 6, 8} ⊂ Z10 be the subgroup of Z10. Now 6 is the identity 
element of A under multiplication modulo 10. Clearly Ax = xA = A for all x ∈ Z10\{0, 
5}. We have 5A = {0} and 0A = {0}. Thus A is a Smarandache normal subgroup of 
the S-semigroup Z10.  
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It is important to note that if the S-semigroup contains 1 as its identity element 
under multiplication and if the proper subgroup A has the same 1 as the identity 
element in general A may not be Smarandache normal subgroup of S. We consider the 
following example. 
 
Example 6.4.2: Let Z7 = {0, 1, 2, ... , 6} be the S-semigroup A = {1, 6}. Now A is a 
subgroup in Z7 but A is not a Smarandache normal subgroup of Z7 as xA ⊄ A for x ∈ 
Z7 \{A} ∪ {0}.  
 

So even if the S-semigroup is a commutative group we many not have the 
subgroups of S to be Smarandache normal subgroups.  
 

This following result allows to state which groups in a certain S-semigroup S 
are Smarandache normal subgroups of S. 
 
THEOREM 6.4.1: Let Zp = {0, 1, 2, ... , p-1} be the S-semigroup of order p under 
multiplication where p is an odd prime. Then Zp has only two subgroups A = {1, p-1} 
and B = {1, 2, 3, ... , p-1} of which A is not a Smarandache normal subgroup of Zp, 
and B is a Smarandache normal subgroup of Zp. 
 
Proof: Now given Zp is a S-semigroup of order p, p an odd prime. We have only two 
subgroups in Zp viz A = {1, p-1} and B = {1, 2, ... , p-1}. Clearly, A is not a 
Smarandache normal subgroup of Zp as if we take 0 ≠ x ∈ Zp \{1, p-1} we xA ⊄ A. 
Hence the claim.  
 

Now B = {1, 2, ... , p-1} ⊂ Zp and B = Zp \{0}. Clearly B is a subgroup and xB 
= B x ∈ Zp \ {0} and xB = {0} if x = 0. Hence, B is a Smarandache normal subgroup 
of Zp. It is still interesting to note that in general when S is a finite S-semigroup then 
the Smarandache normal subgroup A of S need not divide the order of S. 
  

This is a very different and distinct from the behaviour of groups. 
 
Example 6.4.3: Let S(3) be the Smarandache symmetric semigroup.  
 

Let  
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be a subgroup in S(3). xA ⊆/  A for x ∈ S(3) \ S3. A is not normal in S3. Hence the 
claim. So we get a nice theorem about S(n). 
 
THEOREM 6.4.2: Let S(m) be the Smarandache symmetric semigroup. Then S(m) has 
no subgroup which is Smarandache normal in S(m). 
 
Proof: S(m) is the S-semigroup got by mapping elements of the set S = {1, 2, 3, ... , 
m} to itself. Now any proper subset of S(m), which is a subgroup, has only  
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





m321

m321

K

K
 

 
as the identity element. Let A be proper subset which is a subgroup of S(m). Now for 
any x ∈ S(m) \ A, xA ⊆/  A. Hence S(m) has no subgroups  which are Smarandache 
normal in S(m). Hence the claim. 
 

This leads us to the following definition. 
 
DEFINITION: Let S be a S-semigroup if A has no Smarandache normal subgroup then 
S is called Smarandache pseudo simple. 
 

Using the above theorem and definition we can have the following theorem.  
 
THEOREM 6.4.3: S(n) the Smarandache symmetric semigroup is a Smarandache 
pseudo simple semigroup. 
 
Example 6.4.4: Let S2×2 = {aij | aij ∈ Z2 = {0, 1}} be the set of all 2 × 2 matrixes with 
entries from Z2 = {0, 1}. S2×2 is a S-semigroup under matrix multiplication.  Now if  
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is a subgroup of S2×2. But A is a not Smarandache normal subgroup of S2×2.  
 

For  
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Hence the claim. 
 
THEOREM 6.4.4: Sn×n = {aij | aij ∈ Z2 = {0, 1}} set of all n × n matrices with entries 
from Z2 = {0, 1} under matrix multiplication is a S-semigroup which is a 
Smarandache pseudo simple semigroup. 
 
Proof: Now let 
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is a subgroup of Sn×n. Clearly A is not a Smarandache normal subgroup of Sn×n. 

 
In general In×n is the identity element for every subgroup A in Sn×n. Now if we 

take a matrix B ∈ Sn×n \ {set of all invertible n×n matrices with entries from Z2 = {0, 
1}}. We get BA ⊆/  A. Hence the claim. 
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Thus we are justified in using the terminology pseudo simple instead of simple 

as S(n) is pseudo simple for S(n) in the classical sense has the alternating group An ⊂ 
Sn ⊂ S(n) to be the normal subgroup. So if we want to define Smarandache quotient 
group of a S-semigroup S we cannot take S(n) or Sn×n; we have to go for only other 
classes of S-semigroups. 
 
DEFINITION: Let S be a S-semigroup. A be a Smarandache normal subgroup of S. We 
define the Smarandache quotient group of the S-semigroup S by S/A = {Ax | x ∈ S}. 
 
THEOREM 6.4.5: Let S be a S-semigroup A ⊂ S be the Smarandache normal 
subgroup. The Smarandache quotient group S/A is a semigroup. 
 
Proof: Let S be a S-semigroup. A ⊂ S be a Smarandache normal subgroup of S. S/A = 
{Ax | x ∈ S} if X = Ax and Y = Ay we have XY = AxAy we know Ax ⊂ A and Ax ⊂ 
A. So XY = AxAy ⊂ A. Hence the claim. S/A gives the number of distinct elements 

of the form Ax. From example 6.4.1 in Z10, 2
A

Z10 =  viz A and {0}. 

 
PROBLEM 1: Let Z23 = {0, 1, 2, ... , 22} be a S-semigroup under multiplication mod 
23. Find a Smarandache normal subgroup of Z23. 
 
PROBLEM 2: Does Z14 have Smarandache normal subgroup? 
 
PROBLEM 3: Can Z8 have Smarandache normal subgroups? 
 
PROBLEM 4: Prove in every Zn = {0, 1, 2, ... , n-1} S-semigroup under multiplication 
mod n, Zn has a subgroup of order 2 which is never a Smarandache normal subgroup. 
 
PROBLEM 5: Let Z12 = {0, 1, 2, ... , 12}. Is A = {3, 9} a Smarandache normal 
subgroup of Z12? Can B = {4, 8} be a Smarandache normal subgroup of Z12. Is Z12 a 
Smarandache pseudo simple semigroup? 
 
PROBLEM 6: Is Z8 ×Z9 Smarandache pseudo simple semigroup? 
 
PROBLEM 7: Find Smarandache normal subgroup of Z7 × Z3 where Z7 = {0, 1, 2, ... , 
6} and Z3 = {0, 1, 2}. 
 
PROBLEM 8: Find a Smarandache normal subgroup of Z8 × Z16 × Z6. Find 
Smarandache quotient group for any Smarandache normal subgroup. 
 
PROBLEM 9: Find Smarandache normal subgroup of Z8 ×Z7×Z10. Find the 
Smarandache quotient group for  
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PROBLEM 10: Find Smarandache quotient group of the S-semigroup  
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6.5 Smarandache Direct Product in S-semigroups 
 

In this section we introduce the concept of Smarandache direct product of S-
semigroup and obtain some stunning results about them. Now to define the concept of 
Smarandache direct product in S-semigroup we need the notion of maximal subgroup 
of a S-semigroup. 
 
DEFINITION: Let S be a S-semigroup we say the proper subset M ⊂ S is the maximal 
subgroup of S that is N if a subgroup such that M ⊂ N then N = M is the only 
possibility. 
 

The concept of maximal subgroup in a S-semigroup is such that a S-semigroup 
can have more than one maximal subgroup. 
 
Example 6.5.1: Let Z7 = {0, 1, ... , 6} the S-semigroup under multiplication modulo 7. 
The only maximal subgroup of Z7 is G = {1, 2, 3, ... , 6} ⊂ Z7. 
 
Example 6.5.2: Let Z12 = {0, 1, 2, 3, ... , 11} be the S-semigroup under multiplication 
modulo 12. The maximal subgroups of Z12 are A1 = {4, 8}, A2 = {9, 3} and A3 = {1, 
5, 7, 11}.  
 

Thus the number of maximal subgroups need not be one that is why we use 
maximal and not the term "largest". These examples leads to interesting definition. 
 
DEFINITION: Let S be a S-semigroup. If S has only one maximal subgroup we call S a 
Smarandache maximal semigroup. 
 

This definition of maximal subgroup of S-semigroup paves way for the 
following theorems. 
 
THEOREM 6.5.1: The S-semigroup S(n) is a Smarandache maximal semigroup with 
the maximal group Sn. 
 
Proof: The claim is true from the basic fact that Sn contains the set of all 1-1 mapping 
of the set S = (1, 2, ... , n) onto itself and it is the only maximal subgroup in S(n), as 
S(n) \ Sn has no elements which has inverse. So S(n) is a Smarandache maximal 
semigroup. 
 
THEOREM 6.5.2: Let Zp = {0, 1, 2, ... , p-1} be the S-semigroup under multiplication 
mod p where p is a prime. Zp is a Smarandache maximal semigroup. 
 
Proof: Since p is a prime we know Zp \ {0} is a group under multiplication so G = Zp \ 
{0} is the largest subgroup in Zp under multiplication. Hence the claim. 
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Making use of the maximal subgroups of the S-semigroup we define the direct 
product of several S-semigroups as follows:  
 
DEFINITION: Let S1,S2, ... , Sn be n S-semigroups S = S1 × S2 × ... × Sn = {(s1, s2, ... , 
sn) | si ∈ Sn for i = 1, 2, ... , n} is called the Smarandache direct product of the S-
semigroups S1, S2, ..., Sn if S is a Smarandache maximal semigroup, and G is got from 
the S1, S2, ... , Sn as G = G1 × G2 × ... × Gn where each Gi is the maximal subgroup of 
the S-semigroup Si for i = 1, 2, ... , n.  
 
Example 6.5.3: Let S(5) be the symmetric S-semigroup. Z5 = {0, 1, 2, 3, 4} be the S-
semigroup under multiplication modulo Z5. S = S(5) × Z5 is the Smarandache direct 
product for S has a Smarandache maximal semigroup with the largest subgroup G, G 
= S5 × {1, 2, 3, 4}. 
 
Example 6.5.4: S1 = S(3) and S2 = Z6 the Smarandache direct product of S1 × S2 = 
{(σ, n) / σ ∈ S(3) and n ∈ Z6}. 
 

Clearly S1 × S2 is a S-semigroup for {S3} × {1} is a subgroup of S1 × S2 which 
is group. Hence the claim.  
 

Is S1 × S2 the Smarandache direct product of S1 × S2? What are the maximal 
subgroups of S1 × S2 are {S3} × {2, 4} and S3 × {1, 5}. Both of them are maximal 
subgroups of S(3) × Z6 = S1 × S2. Hence, S1 × S2 is not a Smarandache direct product.  
 
DEFINITION: Let S be a S-semigroup. A1, ... , An be nonempty subsets of S. We say A1, 
A2, ... ,An is the Smarandache internal direct product of S if S = A1, ... , An = {a1 ... an | 
ai ∈ Ai i= 1, 2, ... , n} and accounts for all elements in S. 
 
Remark: We do not demand Ai's to S-semigroups or even semigroup for all situation. 
So it is sufficient A1, A2, ... , An are just non empty subsets and S = {a1 ... an | ai ∈ Ai 
i= 1, 2, ... , n} accounts for all elements of S. 
 
Example 6.5.5: Consider Z7 = {0, 1, 2, ... , 6}. Take A1 = {0, 1} and A2 = {1, 2, ... , 
6}. A1A2 = {a1a2 | a1 ∈ A1, a2 ∈ A2} = {0, 1, 2, 3, ... , 6} Here A2 happens to be a 
group and A1 to be S-semigroup. Z7 is the internal direct product of A1A2. 
 
Example 6.5.6: Let Z6 be the S-semigroup having elements {0, 1, 2, ... , 5}. Z6 = A1 • 
A2 • A3 where A1 = {1, 3, 0}, A2 = {1, 5} and A3 = {1, 2, 4} be the subsets of Z6. 
Clearly Z6 is the Smarandache internal direct product of the sets A1, A2 and A3. 
 

Now we have the following definition.  
 
DEFINITION: Let S be a S-semigroup. If S = B • A1 • A2 • A3 • An where B is a S-
semigroup and A1 ... An are maximal subgroup of S. Then we say S is a Smarandache 
strong internal direct product. 
 
Example 6.5.7: Let Z9 = {0, 1, 2, ... , 8} be the S-semigroup under multiplication mod 
9. Z9 = A1A2, where A1 = {0, 1, 3, 8, 6} and A2 = {1, 2, 4, 8, 5, 7} here A2 is the 
maximal subgroup of Z9 and A1 is a S-semigroup as it contains {1, 8} as a subgroup 
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of A1.. Thus, Z9 is the Smarandache strong internal direct product of A1 and A2. 
Hence the claim. 
 
THEOREM 6.5.3: Let S be a S-semigroup. If S is the strongly Smarandache internal 
direct product viz. S = A1 × ... × An then S is trivially a Smarandache internal direct 
product and not conversely. 
 
Proof: Follows from the very definition of strongly Smarandache internal direct 
product and Smarandache internal direct product but converse is not true for S can 
made as the internal product of subsets Ai for i = 1, 2, ... , n, none of them being 
subgroups. Hence the claim. 
 
Example 6.5.8: Let Z12 = {0, 1, 2, 3, ... , 11} be the S-semigroup under multiplication 
modulo 12. Z12 = A1A2 where A1 = {0, 1, 2, 3, 4, 6, 8, 9, 10} and A2 = {1, 5, 7, 11}. 
Here A1 is a S-semigroup and A2 is the maximal subgroup of Z12. Thus Z12 is 
Smarandache strong internal direct product. 
  

This S-semigroup Z12 has {4, 8} and {3, 9} as its maximal subgroups but in 
our Smarandache strong internal direct product of Z12 we do not take all the maximal 
subgroup of Z12. 
 
 Thus from this example one of the important question is whether in the 
definition of Smarandache strong internal product all maximal subgroups of S will 
have to be considered in the product. The answer is it cannot be, which is evident 
from example 6.5.8. 
 

But an observation is important for if the maximal subgroups of a S-semigroup 
S have different identities then we take only those maximal subgroups which have the 
identity of S as its identity. This is illustrated by the following example. 
     
Example 6.5.9: Let Z20 = {0, 1, 2, ... , 19} be the S-semigroup under multiplication 
modulo 20.  
 
The maximal subgroups of Z20 are given by the following tables  
 
 

× 5 15 
5 5 15 

15 15 5 
 

5 is the identity element  
 
 

× 16 4 8 12 
16 16 4 8 12 
4 4 16 12 8 
8 8 12 4 16 
12 12 8 16 4 

 
16 is the identity element 
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× 1 3 7 9 11 13 17 19 
1 1 3 7 9 11 13 17 19 
3 3 9 1 7 13 19 11 17 
7 7 1 9 3 17 11 19 13 
9 9 7 3 1 19 17 13 11 
11 11 13 17 19 1 3 7 9 
13 13 19 11 17 3 9 1 7 
17 17 11 19 13 7 1 9 3 
19 19 17 13 11 9 7 3 1 

 
1 is the identity element  

 
Clearly Z20 cannot be written as a product of these maximal subgroups. Thus 

Z20 = A1A2 where A1 = (Z20 \ A2) ∪ {0} where A2 = {1, 3, 7, 9, 11, 13, 17, 19} the 
maximal subgroup of Z20 and A1 is a S-semigroup as it contains the subgroups {5,  
15}.  
 

Hence Z20 is the Smarandache strong internal direct product of A1 and A2. 
 

Thus we see only maximal subgroups which have the same identity as the 
identity of the S-semigroup S will find its place in the Smarandache strong internal 
direct product. The following two interesting theorems give an insight into the 
Smarandache strong internal direct product. 
   

As in the case of groups we may or may not get any proper relation between 
the Smarandache internal direct product and Smarandache external direct product but 
one nice relation. 
 
THEOREM 6.5.4: Let S(n) be the S-semigroup S(n) can be represented as the 
Smarandache strongly internal direct product of S(n). 
 
Proof: S(n) is a S-semigroup. By theorem 6.5.1 Sn is the only maximal Smarandache 
subgroup of S(n). Hence S(n) = G • Sn where G = (S(n) \ Sn) ∪ {1}. Thus S(n) = G • 
Sn is the Smarandache strong internal direct product of G and Sn. 
 
THEOREM 6.5.5: Let S be a S-semigroup. If every maximal subgroup of S contains the 
same unit as in S, as its identity then we can have all the maximal subgroups in the 
Smarandache strong internal direct product.  
 
Proof: Let A1, ... , An be the collection of all maximal subgroups of S with 1 as their 
identity for each Ai, i = 1, 2, ... , n. S is a S-semigroup with 1 as its identity. The Set B 
= (S \ {A1 ∪ A2 ... ∪ An}) ∪{1}. 
 

Clearly S = BA1A2...An is a strongly Smarandache internal direct product of S. 
 
THEOREM 6.5.6: Zp = {0, 1, 2, ... , p-1}, p an odd prime be the S-semigroup under 
multiplication modulo p. Zp has A1 = {1, p-1} and A2 = {1, 2, 3, ... , p-1} as 
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subgroups, Zp is the Smarandache strongly internal direct product of B • A2 where B 
is any Smarandache subsemigroup containing 0 and 1. 
 
Proof: It can be easily verified using the fact A2 is the only maximal subgroup of Zp 
and B any Smarandache subsemigroup of Zp containing 0 and 1, we have Zp = BA2 to 
be the Smarandache strong internal direct product. 
 
PROBLEM 1: Find the maximal subgroup of S = S(9) × Z20 × Z8. 
 
PROBLEM 2: Find the Smarandache internal direct product of Z30. 
 
PROBLEM 3: Find the Smarandache strong internal direct product of Z75. 
 
PROBLEM 4: Find the Smarandache strong internal direct product of S(25). 
 
PROBLEM 5: Find all the maximal subgroup of S =   Z12 × A5 × Z8. 
 
PROBLEM 6: Can Z80 be represented as the Smarandache strong internal direct product? 
 
PROBLEM 7: Represent Z54 as the Smarandache internal direct product. 
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CHAPTER SEVEN��

	����	����	�������

 
 The study of S-semigroup and the Smarandache notions in groups is a fairly 
new subject and there are numerous unsolved problems as the very concept of 
Smarandache algebraic structure is very recent (1998). Some of the problems listed 
below may be simple but the main motivation for giving these set of research 
problems is mainly to attract researches and students and make them to contribute to 
Smarandache algebraic notions.  
 

Any research book if it has research problems it has always a special place 
among students and researchers. Finally some of the problems are explained with 
examples.  
 
 
PROBLEM 1: Let np

Z be the S-semigroup (p a prime, n > 1) under multiplication mod pn. 

Prove np
Z has subset of order pn – pr, 1 < r < n, which is a subgroup under multiplication 

mod pn.  
 
The reason for proposing problem 1 is Z8, Z9, and Z25 have subsets. {1, 3, 5, 7} ⊆ Z8, 

{1, 2, 4, 5, 7, 8} ⊆ Z9 and {0, 5, 10, 15, 20} ⊆ Z25 which are subgroups of order pn – pr 
for the values of p = 2, 3 and 5 respectively. Problem 1 is a generalization of these 
examples.   

 
 

PROBLEM 2: Find conditions on n, n a positive non-prime so that Zn the semigroup under 
multiplication modulo n is a Smarandache cyclic semigroup i.e. every subset of Zn which 
are subgroups of Zn are cyclic.  
 
PROBLEM 3: Let np

Z be the S-semigroup under multiplication modulo pn, p an odd 

prime, n an integer greater than 1. Does np
Z  have only 2 proper subsets of order 2 and of 

order pn – pr
, (1 ≤ r ≤ n) which are subgroups of np

Z  under multiplication modulo pn?  

 
PROBLEM 4: Give an example of a Smarandache Lagrange semigroup S where S is a non 
commutative semigroup.  
 
PROBLEM 5: Is np

Z  (where p is an odd prime) a S-semigroup which is not even 

Smarandache weakly Lagrange semigroup? 
 

If problem 3 is true the answer for problem 5 is that np
Z  is not even a 

Smarandache weakly Lagrange semigroup. 
 
PROBLEM 6: Let Sn×n = {(aij)/ aij ∈ Zp}, the collection of all n × n matrixes with entries 
from Zp, p a prime, is a S-semigroup under matrix multiplication. Prove or disprove 
Sn×n,is a  Smarandache Lagrange semigroup, when  
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1) (p, n) = 1, n not a prime 
 
2) (p, n) = p,  

 
3) (p, n) = 1, n is prime.  

 
 
PROBLEM 7: Is Sn×n = {(aij)/aij/Zm}, m a non-prime; a Smarandache Lagrange semigroup? 
(n – any number, no condition is imposed on it) (Sn×n is as in problem 6). 

 
PROBLEM 8: Let n2

Z = {0, 1, 2, 3, …, 2n – 1}be the S-semigroup of order 2n (n > 3) for n 

arbitrarily, large find the number of Smarandache 2-Sylow subgroups of n2
Z . Does n2

Z  

have subsets of odd order which forms a subgroup under multiplication mod 2n? Justify 
your answer.  

 
PROBLEM 9: Does there exists a S-semigroup of order n, n ≥ 24, in which every subgroup 
is a Smarandache p-Sylow subgroup? 

 
PROBLEM 10: Let S(n) be the symmetric S-semigroup; n an arbitrary integer. Find all 
subsets in S(n) which form a subgroup or equivalently how many subgroups does S(n) 
have? 

 
PROBLEM 11: Does there exist a non-commutative S-semigroup of order p, p a prime (p 
> 3) (other than the S-semigroup Zp) such that it has only 2 subsets which are subgroups 
of which one is of order 2 and the other is of order p – 1? 

 
PROBLEM 12: Does there exists a S-semigroup S in which every element is a 
Smarandache Cauchy element in S? (S should not be taken as Zn, n a composite number 
for which such result is true). 

 
PROBLEM 13: Give an example of a finite S-semigroup S for which every subgroup H of 
S is such that H partitions S\{0} into equivalence class of equal cardinality; (S\{0} only if 
S contains {0}).  

 
PROBLEM 14: Find / characterize all Smarandache inverse free groups.  

 
PROBLEM 15: Does there exist Smarandache inverse groups other than cyclic groups of 
prime order p(p, a prime greater that or equal to 5)?  

 
PROBLEM 16: Characterize those groups in which every Smarandache inverse pair is a 
Smarandache self-inversed pair.  

 
PROBLEM 17: Does there exist a non-abelian group of finite order in which every 
element has a Smarandache conjugate? 

 
PROBLEM 18: Characterize groups G in which Smarandache conjugate relation is an 
equivalence relation on G. 
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PROBLEM 19: Characterize non abelian groups G in which for every x in G the 
Smarandache conjugate relation is reflexive. 

 
PROBLEM 20: Does there exist a group G in which no element in G has a Smarandache 
conjugate? (o(G) > 20). 

 
PROBLEM 21: Obtain any interesting relation between Smarandache conjugate elements 
and Smarandache inverse elements in any group G. 

 
PROBLEM 22: Suppose x ∈ G has no Smarandache inverse does it imply x can be 
Smarandache conjugate with some element in G? Justify your answer with examples.  

 
PROBLEM 23: Let S be a S-semigroup with identity. If every proper subset contained in 
S, which is a subgroup under the operations of S, contains the same multiplicative 
identity, which is the identity in the semigroups.  
 
 
  Then for any two subgroup A, B in S, x ∈ S, AxB = { axb / a ∈ A and b ∈ B} can 
we say x 

S
~ y i.e. x = ayb implies 

S
~  is Smarandache equivalence relation on S (or 

equivalently) if A and B have different multiplicative identity does it imply x 
S
~  y i.e. x = 

ayb ( a ∈ A and b ∈ B) cannot be a Smarandache equivalence relation on S.  
 
 

PROBLEM 24: Prove or disprove for two distinct groups A and B in S(n), the double coset 
AxB is not a Smarandache equivalence relation on S(n).  

 
PROBLEM 25: Find for what values of n, Zn, n not a prime have Smarandache normal 
subgroups.   

 
PROBLEM 26: Let S be a S-semigroup. Suppose S contains A1, A2, …, An to be n 
maximal subgroups of S. Let B be a suitable subset of S which is a S-semigroup. Can we 
prove S = BA1A2…An is the Smarandache strong internal direct product in general for 
any S-semigroup.  

 
PROBLEM 27: Give an example of S-semigroup which is simple (other than the class of 
semigroups given in this book).  

 
PROBLEM 28: Give an example of a S-semigroup which has a Smarandache normal 
subgroup A and S/A is also a S-semigroup. (S ≠ S(n), S ≠ Zp). 

 
PROBLEM 29: Characterize S-semigroup S such that S has one and only one largest 
subgroup.  

 
 
For example in case of the Smarandache symmetric semigroup S(n); the largest 

subgroup of S(n) in Sn. When we consider Zp, p a prime the set A = {1, 2, …, p-1} is the 
largest subgroup of Zp.  
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PROBLEM 30: Find the order of the largest subgroup in the S-semigroup Sn×n = {(aij)/ aij 
∈ Zp} = {0, 1, 2, …, p – 1}}; p a prime and (n, p) = 1; when  
 

1) n < p. 
2) n > p. 

 
PROBLEM 31: Find the order of the largest subgroup in the S-semigroup Sn×n = {(aij) / aij 
∈ Zn = {0, 1, 2, …, n};  

 
1) when n is a prime 
2) when n is not a prime  

 
PROBLEM 32: Find interesting/ innovative results on S-semigroups.  
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 A 
Abelian group, 22-25, 34-35 
Automorphism of groups, 17 
 
 B 
BIRKHOFF, 12, 20 
Binary operation, 10-11, 13, 27 
Binary relation, 7-8 
BURNSIDE W., 28  
 
 C 
Cartesian product, 7, 19, 35  
Cauchy's Theorem, 6, 21-25, 27, 48, 52, 63 
Cayley's Theorem, 7, 21, 24, 51 
Center of a group, 18, 26  
Class equation, 18, 23, 26-27  
Congruent, 16 
Conjugacy, 17, 68  
Conjugate, 17-19, 26-27, 53, 61, 65-70, 86-87  
Coset 
 double, 19, 27-28, 70-72, 75,76, 87 
 left, 18, 44, 47 
 right 18, 44, 47, 55-57  
Cycle decomposition, 67-68 

  Cyclic group, 31, 33-34, 40, 41, 53, 55, 62, 63, 86   
 
   D 
  Dihedral group, 21, 64  
  Direct product of groups, 19 
   internal, 19 
   external, 19 
  Double coset, see under Coset, double. 
 
   E 
  Elements 
   conjugate, 61, 65, 87 
   identity, 11, 13-15, 17, 32, 42-45, 68, 76-78, 82-83 
   order of, 22 
  Equivalence class, 8-9, 18-19, 47-48, 56-58, 74-76, 86 
  Equivalence relation, 8-9, 16-17, 19, 68, 70-76, 86-87 
  External direct product, see under Direct product, external 
 
   F 
  Finite group, 13, 18, 21-22, 26-27, 49, 63 
 
   G 
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  Groups,  
   abelian , see under Abelian group 
   automorphism, see under Automorphism of groups 
   center, see under center of a group 
   commutative, see under Abelian group 
   cyclic, see under Cyclic group 
   dihedral, see under Dihedral group 
   direct product, see under Direct product 
   homomorphism, 17, 51 
   isomorphism, 17, 25, 51 
   order, 13, 16-17, 22-24, 26 
   symmetric, 21-24, 34, 36, 40-41, 53, 63-63, 66-68, 75-76 
 
   H 

HALL. M, 20, 28 
HERSTEIN, 20, 28, 60, 84 
Homomorphism 
 of groups, see under Groups, homomorphism 
 kernel of, 17, 24, 25 
 
 I 
Identity element, see under Element, identity 
Identity map, 10, 24 
Image, 9, 67-68 
Internal direct product, see under Direct product of groups, internal 
Inverse, 9, 13-15, 37, 61-65, 69-70, 86-87 
Inverse map, 10 
Isomorphism groups, see under Groups, isomorphism 
 
 J 
JOHN B. FRALEIGH, 20, 28 
 
 L 
Lagrange's Theorem, 6, 21-23, 25, 39, 49-50 
Largest subgroup, 35, 37-39, 80-81, 87-88 
Law(s) 
 associative,10, 13-14, 34  
 cancellation, 21 
 
 M  
Mapping(s) 
 composition, 10-11, 13, 36, 40 
 one to one, 9-10, 17-18, 24, 55-56  
 onto, 13, 17, 24, 51, 80 
 identity, 10   
MC KAY, 28 
Monoid, 11 
 
 N 
Normalizer, 18 
Normal subgroups, 17, 19, 23, 61, 76-79, 87 
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 O 
One to one mapping, see under Mappings, one to one 
Onto mapping, see under Mappings, onto 
Order of a group, see under Group, order 
 
 P 
PADILLA RAUL, 6, 11-12, 29, 48, 60, 84 
p- Sylow subgroup, 27  
Product 
 Cartesian, see under Cartesian Product 
 direct, see under Direct Product 
 
 R 
Relation(s) 
 binary, see under Binary relation 
 equivalence, see under Equivalence relation 
 reflexivity , 8  
 symmetric, 8 
 transitivity, 8 
Right coset, see under Cosets, right 
 
 S 
Semigroup, 10, 11 
Sets of all one-one mappings, see under Mappings 
Smarandache  
 co inverse pair, 61 
 conjugate, 61, 65-70, 86-87 
 inverse, 61-65, 69–70, 86-87 
 inverse free group, 64, 65, 86 
 inverse group, 63, 86 
 inverse pair, 61-62, 65, 86 
 self inversed pair, 65  
Smarandache semigroup (also S- Semigroup) 
 automorphism, 51 
 Cauchy element, 43-44, 46-47, 52, 57, 60, 86 
 Cauchy, 29, 43-44, 52, 57, 59 
 commutative, 29, 33, 35, 44    
 coset, 29, 44-45, 47-38, 55-56, 60, 84 
 cyclic, 29, 31-35, 85 
 direct product, 61, 80-81  
 double coset relation, 70-72 
 double cosets, 70-71, 75-76  
 equivalence relation, 72, 74-75, 87 
 homomorphism, 51 
 hyper subsemigroup, 29, 35, 37-39  
 internal direct product, 81-85 
 isomorphism, 51 
 Lagrange's, 49 
 left coset, 44 
 maximal subgroup, 80-84, 87 
 maximal, 80-81 
 non Lagrange, 50-51  
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 non-p-Sylow subgroup, 54-55, 57, 59-60  
 normal, 61, 76-79, 87 
 pseudo simple, 78-79 
 p-Sylow subgroup, see under Smarandache Semigroup, p-Sylow  
 p-Sylow, 29, 41-42, 45-47, 52-54, 57, 59-60, 76 
 quotient group, 61, 76, 79 
 right coset, 44, 55, 56 
 simple semigroup, 29, 37, 39  
 strong internal direct product, 81-84, 87 
 subsemigroup, 29, 35-38, 84 
 symmetric semigroup, 37-38, 40, 46-47, 55, 75, 77-78, 87 
 weakly commutative, 29, 45 
 weakly cyclic, 29, 31, 32, 34-35 
 weakly Lagrange's, 50 
Subgroups, 12, 15-17, 19, 21-28 
Symmetric semigroup, 37 

 
  V 
  W. B. VASANTHA KANDASAMY, 48, 60, 84 
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$ 19.95 

Definition: 
Generally, in any human field, a Smarandache Structure on a set A means a weak
structure W on A such that there exists a proper subset B ⊂⊂⊂⊂ A which is embedded with
a stronger structure S. 
 
These types of structures occur in our everyday life, that’s why we study them in this
book. 
 
Thus, as a particular case: 
A Smarandache Semigroup is a semigroup A which has a proper subset B ⊂⊂⊂⊂ A that  is a 
group (with respect to the same binary operation on A). 
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