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Introduction

Imagine all the people
Sharing all the world ...

John Lennon

Imagine mathematics, imagine with the help of mathematics, imagine new worlds,

new geometries, new forms. Imagine building mathematical models that make it

possible to manage our world better, imagine solving great problems, imagine new

problems never before thought of, imagine music, art, poetry, literature, architecture,

theatre and cinema with mathematics. Imagine the unpredictable and sometimes

irrational applications of mathematics in all areas of human endeavour.

Imagination and mathematics, imagination and culture, culture and mathematics.

For some years now the world of mathematics has penetrated deeply into human cul-

ture, perhaps more deeply than ever before, even more than in the Renaissance. In

theatre, stories of mathematicians are staged; in cinema Oscars are won by films

about mathematicians; all over the world museums and science centres dedicated

to mathematics are multiplying. Journals have been founded for relationships be-

tween mathematics and contemporary art and architecture. Exhibitions are mounted

to present mathematics, art and mathematics, and images related to the world of

mathematics.

“Imagine Math” is intended to contribute to grasping how much that is interesting

and new is happening in the relationships between mathematics, imagination and

culture.

A look at the past, at figures and events that made history, can also help to under-

stand the phenomena of today.

It is no coincidence that this volume contains an homage to the great Italian artist

of the 1700s, Andrea Pozzo, and his perspective views. It also has a particular focus

on Luca Pacioli, who remains today a source of inspiration not only for art, but for

theatre.

Here theatre, art and architecture are the topics of choice, along with music,

literature and cinema.

No less important are applications of mathematics to medicine and economics.

Nor does this particular focus neglect the universality of mathematics, from its ori-

gins in Mesopotamia up to the geometry of Japanese origami.

The topics are treated in a way that is rigorous but captivating, detailed but full

of evocations. An all-embracing look at the world of mathematics and culture.

Michele Emmer

Emmer M. (Ed.): Imagine Math. Between Culture and Mathematics
DOI 10.1007/978-88-470-2427-4 1, c© Springer-Verlag Italia 2012



Homage to Benoı̂t Mandelbrot



The Fantastic World of Tor’ Bled-Nam

Michele Emmer

Let us imagine that we have been travelling on a great journey to some far-off world. We
shall call this world Tor’ Bled-Nam. Our remote sensing device has picked up a signal
which is now displayed on a screen in front of us. The image comes into focus and we
see. [. . . ] What can it be? Can it be some strange looking insect? Or could it be some
vast and oddly shaped alien city, with roads going off in various directions to small towns
and villages nearby? Maybe it is an island – and then let us try to find whether there is a
nearby continent with which it is associated. This we can do by ‘backing away’, reducing
the magnification of our sensing device by a linear factor of about fifteen. Lo and behold,
the entire world springs into view. [. . . ] We may explore this extraordinary world of Tor’
Bled-Nam as long as we wish, tuning our sensing device to higher and higher degrees of
magnification. We find an endless variety: no two regions are precisely alike – yet there is a
general flavour that we soon become accustomed to. [. . . ] What is this strange, varied and
most wonderfully intricate land that we have stumbled upon? No doubt many readers will
already know. But some will not. This world is nothing but a piece of abstract mathematics
– the set known as the Mandelbrot set [1, p. 74-79].

The journey into the land of Tor’ Bled-Nam begins the chapter that Roger Pen-

rose dedicates to the relationship between mathematics and reality in the book The
Emperor’s New Mind. It may seem paradoxical that the Mandelbrot set is the first

example that Penrose uses to confirm the Platonic reality of mathematical concepts,

objects that can only be seen on the monitor of a computer! But for Penrose the

Mandelbrot set is an astounding example of how human thought can be guided to-

wards an eternal truth that has it own reality and that is only partially revealed to

some of us.

Its wonderfully elaborate structure was not the invention of any one person, nor was it
the design of a team of mathematicians. Benoit Mandelbrot himself, the Polish-American
mathematician (and protagonist of fractal theory) who first studied the set, had no real prior
conception of the fantastic elaboration inherent in it, although he knew that he was on
the track of something very interesting. Indeed, when his first computer pictures began to
emerge, he was under the impression that the fuzzy structures that he was seeing were the
result of a computer malfunction (Mandelbrot 1986)! Only later did he become convinced
that they were really there in the set itself [1, p. 95].

Michele Emmer

Department of Mathematics, Sapienza University of Rome (Italy).

Emmer M. (Ed.): Imagine Math. Between Culture and Mathematics
DOI 10.1007/978-88-470-2427-4 2, c© Springer-Verlag Italia 2012
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Fig. 1 Mandelbrot set

Penrose adds:

The complete details of the complication of the structure of Mandelbrot’s set cannot really
be fully comprehended by any one of us, nor can it be fully revealed by any computer.
It would seem that this structure is not just part of our minds, but it has a reality of its
own [. . . ] The computer has been used in essentially the same way that the experimental
physicist uses a piece of experimental apparatus to explore the structure of the physical
world. [. . . ] The Mandelbrot set is not an invention of the human mind. It was a discovery:
like Mount Everest, the Mandelbrot set is just there! [1, p. 95].

We may not know whether it was a creation or a discovery, but we do know who

the inventor/discoverer of the Mandelbrot set and the theory of fractals was: Benoı̂t

Mandelbrot, who coined the word fractal in 1975. A paragraph from his Les objets
fractals. Forme, hasard et dimension [2] describes the origins of the term:

This etymology can be asserted with full authority because I am responsible for coining the
term to denote a collection of concepts and techniques that seems finally to acquire a clear-
cut identity. Fractal comes from the Latin adjective fractus, which has the same root as
fraction and fragment and means “irregular or fragmented”; it is related to frangere, which
means “to break” [3, p. 4].

Mandelbrot, then a mathematician working for IBM, sought to characterise a class

of objects in sectors other than mathematics and in some of its applications.

Looking back in 1984 to his first experiences with fractal geometry, Mandelbrot

wondered:

Why is geometry often described as cold and dry? One reason lies in its inability to describe
the shape of a cloud, a mountain, a coastline, or a tree. Clouds are not spheres, mountains
are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel
in straight line. [. . . ] Nature exhibits not simply a higher degree but an altogether different
level of complexity [4, p. v].

Fractal geometry immediately presented itself as the geometry best suited to study

the complexity of natural forms and their evolution. Mandelbrot wrote:
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Today, however, there is more to geometry than Euclid. During the 1970s it was my privilege
to conceive and develop fractal geometry, a body of thoughts, formulas and pictures that can
be called either a new geometry of nature or a new geometric language [7, p. 11].

In a 1990 article in Scientific American [5] several of the authors of the most evoca-

tive fractal images reiterated the fact that fractal geometry seemed to describe the

forms and configurations of nature in a way that was not only succinct but also

aesthetically more valid than traditional Euclidean geometry. The article underlined

the correspondence between fractals and the modern theory of chaos as a sign of a

profound relationship: ‘Fractal geometry is the geometry of chaos’.

It further stated that fractals themselves were above all the language of geometry.

This explicit attempt to posit the geometry of fractals as the only true geometry of

nature, the key that made it possible to read and comprehend natural phenomena, is

one of the reasons that they came to be view with suspicion by some scientists. The

history of the idea of space makes it evident that the idea of a universal geometry is

completely illusory and erroneous. Every geometry, every conception of space, can

be useful according to the problem viewed.

The principal property of fractal objects are those of being self-similar and of

having a fractional or fractal dimension, that is, one that is not an integer. A point

has zero dimensions; a line segment or curve has one dimension; a surface has two

dimensions, and so forth. Mathematicians have discovered that there exist math-

ematical objects that have a dimension comprised, for example, between one and

two: a normal curve has one dimension, it is a line; but if this curve winds on itself

and has many indentations, or jags – like the edge of a part of the coastline of Great

Britain – then it has a dimension that is greater than one, even through it remains a

line and thus has a dimension less than two.

A shape is called self-similar if it can be subdivided into a large number of parts,

each of which is an exact replica at reduced scale of the original. In reality, self-

similarity should be thought of more as an approximate property than an exact one.

Examples of shapes with this property have been known for more than a cen-

tury, such as the snowflake curve, which is the boundary (the outline) of the shape.

The fractal dimension is another property that generates the infinite jaggedness that

characterise fractals. For example, the fractal dimension of the snowflake curve is

log4/log3=1.26.

The great complexity of the images obtained might give the idea that it is very

complicated to understand what the Mandelbrot set is, how it can be defined, how

we can enter the land of Tor’ Bled-Nam. But the definition of the Mandelbrot set

is surprisingly simple. In addition to the main cardoid, this set consists in a series

of filaments on which appear miniscule copies of the central figure, copies that are

visible only when the figure is enlarged. To describe the set mathematically, to each

point on the plane is assigned a pair of numbers (a, b), which are the Cartesian

coordinates relative to the vertical and horizontal axes; this is equivalent to assigning

a complex number z = a+ ib, where iis such that i2 = −1. We then consider the

operation that consists in substituting, for the initial point z, the point z2 + c, where

c is a fixed complex number.
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Fig. 2 The snowflake curve

The new value z2 + c, for each point z, represents a new point in the plane. If for

example, we initially choose z = c = 1 (that is, the complex number 1 + i0 = 1),

through iterations of the operation we obtain:

12 +1 = 2,22 +1 = 5,52 +1 = 26, ...;

if instead c =−1, we obtain:

(−1)2 −1 = 0,0−1 =−1,(−1)2 −1 = 0, ...

Thus there are only two possibilities: in the first case, the numbers contained in

the set assume values that are increasingly higher, and the set is unbounded; in the

second case, the set of values is bounded. The Mandelbrot set is the set of points (a,

b) for which the set of numbers obtained by iterations of the operation is bounded.

The boundary of the Mandelbrot set is the fundamental example of a fractal. In

the introduction to the exhibition entitled Frontiers of Chaos, which travelled around

the world in the late 1980s, Robert Osserman observed:

Fig. 3 The Julia set
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Mandelbrot’s discovery of the figure that carries his name did not come about through sim-
ply playing with numbers or formulae to see what would happen. Rather, it was achieved
as a natural consequence of the study of a very ancient problem: the attempt to understand
the complex structure found every time a single operation like z2 + c is performed over and
over. In these cases we speak of iterative process or iteration. An enormous advantage of
iterative processes is that they are particularly suited to run on a computer. A slight variation
of the procedure that defines the Mandelbrot set using the iteration of the same expression
z2 +c produces a manifold of a completely different shape. The boundaries are still fractals
called the Julia set, after the mathematician Gaston Julia who studied and introduced them
in 1918. Many physical systems, such as planetary orbits, can be analysed by means of an
iterative process. The mathematical theory that derives from such processes is known by
the name of dynamical systems. Numerous images in this exhibition are obtained through
the application of the methods of dynamical systems to a particular model of magnetism. It
is becoming increasingly clear that shapes with fractal behaviour are present in many situ-
ations in the natural world. It may in any case come as a surprise that study of the physics
of magnetism led necessarily to shapes that were almost identical to the Mandelbrot set, a
purely mathematical creation [6].

Since fractal geometry has produced so many new images, those who have created

them could not help but invade art’s territory. In compiling their book The Beauty
of Fractals [4], Heinz-Otto Peitgen and Peter Richter wanted not only to present

the mathematical theory, but to use mathematical ideas as illustrations of – if not as

an out-and-out pretext for – their creative activity, not so much as mathematicians,

but as artists. In the book’s introduction they explicitly refer to the possibility of a

rejoining between scientific language and artistic language:

Science and Art: Two complementary ways of experiencing the natural world – the one
analytic, the other intuitive. We have become accustomed to seeing them as opposite poles,
yet don’t they depend on one another? The thinker, trying to penetrate natural phenomena
with his understanding, seeking to reduce all complexity to a few fundamental laws – isn’t
he also the dreamer plunging himself into the richness of forms and seeing himself as part
of the eternal play of natural events? [4, p. 1].

In his invited contribution to Peitgen and Richter’s book, entitled Fractals and the
Rebirth of Iteration Theory, Mandelbrot added:

On its contribution to science and aesthetics, the conclusion is that there was not even an
inkling of fractal geometry before my work [4, p. 159].

Mandelbrot himself has reiterated the importance of fractals in art:

Fractal geometry appears to have created a new category of art, next to art for art’s sake and
art for the sake of commerce: art for the sake of science (and of mathematics). [. . . ] The
source of fractal art resides in the recognition that very simple mathematical formulas that
seem completely barren may in fact be pregnant, so to speak, with an enormous amount of
graphic structure. The artist’s taste can only affect the selection of formulas to be rendered,
the cropping and the rendering. Thus, fractal art seems to fall outside the usual categories
of ‘invention’, ‘discovery’ and ‘creativity’ [7, p. 11, 14].

Elsewhere he states this in even more explicit terms:

Today we can say that the abstract beauty of the theory is flanked by the plastic beauty of
the curve, a beauty that is astounding. Thus, within this mathematics that is a hundred years
old, very elegant from a formal point of view, very beautiful for specialists, there is also a
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physical beauty that is accessible to everyone. [. . . ] By letting the eye and the hand intervene
in the mathematics, not only have we found again the ancient beauty, which remains intact,
but we have also discovered a new beauty, hidden and extraordinary. [. . . ] Those who are
only concerned with practical applications may perhaps tend not to insist too much on the
artistic aspect, because they prefer to entrench themselves in the technicalities that appertain
to practical applications. But why should the rigorous mathematician be afraid of beauty?
[8, pp. 18, 19, 29].

Fig. 4 Benoı̂t Mandelbrot

Benoı̂t Mandelbrot was born in Warsaw on 20 November 1924, and died in Cam-

bridge, Massachusetts on 14 October 2010. In 1936 his family moved to Paris,

where he began to study mathematics, where his uncle Szolem Mandelbrot was

a well-known mathematician at the Collége de France. In 1993 he was awarded the

prestigious Wolf Foundation Prize in Physics, for having transformed our vision of

nature. The obituary published on 16 October 2010 in The New York Times pointed

out that Mandelbrot had contributed to research in geology, medicine, cosmology

and engineering, using the theory of fractals to explain the clusters of the galaxy

and analyse economic theories, frequently in the face of scepticism on the part of

the specialists in the various fields. In Italy, perhaps I missed other articles, brief

tributes, written by those who cared about the death of a mathematician famous the

world over. As we know, the Italians have plenty of other things to fill the pages

of their newspapers. The most interesting obituary of Mandelbrot was that written

by his cousin, the physicist Jacques Mandelbrot, which appeared on the website of
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Leonardo, the most important journal for art, science and technology, published by

MIT press:

He was an extremely original scientist who with the invention of fractals created a new
concept which has applications in numerous fields of science and art. His unconventional
approach was well accepted when he came to IBM. He was also Professor at Yale Uni-
versity. [. . . ] Concerning art, René Huyghe in his book Formes et Forces [10] (Shapes and
Forces) makes a distinction between art based on shapes, actually shapes which can be de-
scribed by Euclidian geometry such as are encountered in Classical art, and art like Baroque
art based on the action of forces, for instance shapes which are encountered in waves, in
tourbillions etc. We could now assert that both Classical and Baroque art can be described
geometrically, the first one by Euclidian geometry, the second one by fractal geometry. In
sciences, ranging from physics at all scales to economics; fractals give new insights and
give a suitable framework to chaos or to phenomena which were outside the mainstream
of science due to their complexity. Concerning technology Benoit Mandelbrot was the first
one to be surprised when he saw weird and complex shapes appear on his computer screen
resulting from an equation. This was to lead to the Mandelbrot set and is the origin of fractal
art, a main branch of computer art. Fractals can subconsciously suggest that each of us is a
microcosm, an image of the whole world, hence their strong appeal [9].

In closing, I would like to highlight the last words of this tribute, and suggest that the

universal aspect of fractals might correspond to the fact that I can subconsciously

imply that the small part of the universe that is us, is an image of the entire universe;

in other words, that we are a microcosm. I think that Benoı̂t Mandelbrot would be

pleased by this phrase of his cousin’s.
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Venice and “La Fenice”



The Reconstruction of the Teatro La Fenice:
“splendidezze” and “dorature”
(Gleam and Gilding)
Elisabetta Fabbri

Nomen est omen, warned Plautus.

Destroyed by fire in 1996, Venice’s theatre La Fenice, The Phoenix, true to its

name, was restored to its original state, and upon its inauguration in December 2003

it received a mostly positive welcome.1

The apparently most logical hypothesis – that the theatre building would be re-

created as a modern structure – was instead overruled by a desire for conservation

on the one hand, and what was certainly an emotional impulse on the other.

It should be recalled that the entire city (or better, the unanimous voice of the

city council representing the city) called for the immediate reconstruction of its
theatre, but it is also true that in its urban dimension the theatre building had not been

completely destroyed: the imposing perimeter walls had contained the flames within

the building’s interior, and the façade as well as other external elements remained

intact. Thus the reconstruction had to take into account the conservation of what

remained, as Paolo Morachiello and Mario Piana [1] had immediately made clear.

Everything that had survived – the fragments of masonry, sections of surfaces,

single decorative elements – became crucial references for the reconstruction. Even

where the extent of the reconstructed component was larger than what had been

salvaged, the new took its origins and meaning from the old, which, as Aldo Rossi

said in his account of the project, guarantee the historic continuity of the reborn La
Fenice. For this reason it was important to leave the marks of time visible, while

stitching the fragments together with the aim of obtaining halls that are pleasingly
restored.

The impossible challenge was that of rebuilding the interior of the theatre in

order to restore the image of what had been lost. Which La Fenice was to be rebuilt

was indicated in the project of Aldo Rossi, who proposed reconstructing the theatre

auditorium designed in the mid-nineteenth century by the Meduna brothers. This

was made possible thanks to photographic archives which provided visible images

Elisabetta Fabbri

Architect, Venice (Italy).
1 The design was created by architect Aldo Rossi. After his death in 1997, it was developed and carried

out by the architects Marco Brandolisio, Giovanni Da Pozzo, Massimo Scheurer and Michele Tadini, and

engineer Edoardo Guenzani, with the contribution of engineer Nicola Berlucchi for the restoration of the

decorative apparatus.
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of what had been lost, and to documentary testimony describing the competition

won by the Meduna brothers, who were architects and set designers.

In 1853 the competition for a new decorative design for the auditorium was an-

nounced. The competition guidelines clearly defined the decorative effect that was

to be achieved, asking that the decoration of La Fenice be gleaming with ornaments
and gilding against light coloured backgrounds. The theatre was be resonant and

grandiose [2].

Meduna wrote that he had sought to maintain an effect of elegance conjoined to
lavishness, to make it so that some parts would be less ostentatious, and that ‘the
splendour of its striking beauty would be apparent everywhere.

News reports of the day describe how the spectator could feast on the rich splen-
dours of the 1500s, 1600s and 1700s, and how lavish elegance was evident every-

where, since there was every most posh and sumptuous thing imaginable, conclud-

ing that whoever sees it swears that the magnificent decorations at Versailles are
no greater than these. Meduna’s La Fenice was enthusiastically embraced by the

theatre-going public of the day, who were awed by the luxurious style of the 1600s,
which is now most in vogue [3].

All of these concepts, the transformation of these statements into forms, became

detailed illustration in the decorative system of the auditorium redesigned by the set

designer Mauro Carosi, who retraced the nineteenth-century design process, finally

arriving at the rediscovery and reinterpretation of the antique spirit of the artistic

decoration of the auditorium.

The discovery within the decorative traces of the so-called teatri di verzura, the-

atres made entirely of greenery, which were popular in the 1500s and with which

Meduna was certainly familiar, provided the basis for the recreation of those same

themes, and this underlying theme is what ties together the whole decor. Decoration

is code and language; it is theme and argument. The transformation of garlands,

leaves and flowers into faces and animals is a game of anamorphosis. Is it a leaf

that is transformed into a face, or a face that is transformed into a leaf? It is a gar-

land that is transformed into a swan. A bucolic kingdom already existed in the lost

Fenice, and perhaps for a long time no one had been able to recognise and see it.

Meduna had told a story that Mauro Carosi rediscovered: entering into the au-

ditorium the face of a satyr, a man of the forest, with a beard of leaves and limbs

transformed into garlands of acanthus leaves, opens his arms wide in a symbolic em-

brace of the spectators, marking the entrance into a magic forest, an archaic world

that belongs to an age when nature was still sacred.

Hidden among the acanthus leaves that surmount and envelop all of the architec-

ture are heads of children, men, women disguised as animals; there are the phantoms
of the forest, putti, nymphs, genies, swans and griffons; there are all the characters

who know how to live in an enchanted forest. The spectators, opening the door to

the boxes or entering the auditorium, step into this forest, participate in this repre-

sentation within a representation, becoming part of the game.

The redesign of the decorative theme, the interpretation of the teatro di verzura
created by Carosi, is conjoined to the theme of the geometric reconstruction of the

decorative system. Architecture and decoration are tied and held together by the ge-
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ometry of the hall; even though it is true that the architecture practically disappears
in the lush decoration, an exact understanding of the geometry was indispensable

for the application of the ornamentation.

Set painter Fabio Mattei reconstructed a 3D model of the auditorium vault on the

computer, and then transformed the virtual model into an actual wooden model at

a scale of 1:10. In order to be able to meet the deadlines imposed, it was necessary

to anticipate the design and execution of the vault while there was still no sign of

the vault on the construction site. Mattei wrote, You had to imagine. Imagine that
concave ceiling, find the system for measuring the curved surfaces, create a virtual
ceiling in the studio that would anticipate the shape of the real one. This made it

possible to perform exact checks of the decorative modules of the ceiling, and to

invent, or better, to devise a technique that was capable of exactly reproducing the

decoration on the actual vault. Scientific knowledge merged with artistic knowledge

to make possible the reconstruction off-site of the complicated play of ornamenta-

tion, which was then mounted on the empty skeleton of the auditorium in only seven

months, thanks to the precise programming of the job and the careful supervision of

the construction managers. The strong point of the reconstruction lies in the method

used and attention to the detail.

In order to reconstruct La Fenice it was necessary to reclaim the know-how of a

by-gone age, to reconstruct not only what can be seen, but also to reconstruct how
it is done by studying an older, knowing tradition of working: the work of eyes and
hands and memory, as Baricco wrote, is knowledge saved from oblivion [4], that of

the artisan who puts his skills to the test to recreate a tradition that is lost and no

longer in use.

The reconstructed Fenice is an example of the application of a rigorous method-

ology to give a new form to the theatre that was lost. When visiting the auditorium,

you have to know how to read all of that splendour of ornament and gilt that was so

beloved by Giovan Battista Meduna, and rediscover the bucolic kingdom that was

recreated by Mauro Carosi.

In evaluating the final results, it is also necessary to keep an open mind, and try

to understand what the Teatro La Fenice really was before the fire.

The decorative richness that has been reconstructed may be pleasing to many,

and horrible to others, but La Fenice has never been a perfect theatre. As soon as

the theatre was built by Selva in 1792, a satirical poem was composed about it:

belle pietre, bei legnami

scale larghe, palchi infami.

(handsome stones, handsome wood,

wide stairs, boxes no good)

Similarly, after the first fire and the reconstruction of 1851-57 following the design

of the Meduna brothers, mentioned earlier, Pietro Selvatico described La Fenice as a
jumble of ostentatious Baroque ornament superimposed on rigid, classical line. Be

that as it may, with its indubitable wealth and abundance of ornament, it represented
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and still represents a part of the living history of the city, and this is how it has been

reconstructed.

Nevertheless, both the reconstruction of the auditorium and the restoration / re-

construction of the Apollonean Halls, with the operative methodologies used to

stitch the fragments of decoration together and the solutions adopted, with necessary

compromises imposed by realities of the construction site as the work went forward,

make it evident that the Teatro La Fenice – with its halls restored and recomposed
and its auditorium reconstructed – is not an identical copy, but an evocation of the
splendour of the past.

Fig. 1 Foyer of the theatre, right side, after
the fire

Fig. 2 Foyer of the theatre, right side, af-
ter restoration (courtesy of Teatro La Fenice,
Venice)
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Fig. 3 Sala Grande after the fire

Fig. 4 Sala Grande after restoration
(courtesy of Teatro La Fenice, Venice)

Fig. 5 Theatre auditorium: zenithal view
after the fire
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Fig. 6 Theatre auditorium, June 2003:
restored wooden structure of the boxes

Fig. 7 Theatre auditorium after restora-
tion, December 2003 (courtesy of Teatro
La Fenice, venice)
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Homage to Andrea Pozzo



Exactitude and Extravagance:
Andrea Pozzo’s “Viewpoint”

Filippo Camerota

Andrea Pozzo’s perspective inventions represent the art of quadratura on its high-

est level. The illusory power of his fictive architecture was so strong that it force-

fully conditioned the perception of space, leading neo-classical critics to censor his

paintings as if they were actually buildings. Eloquent on this subject is the criticism

of Francesco Milizia, who warned young architects not to follow the example of

Brother Pozzo, calling him an “architect in reverse”1. On the technical level, in-

stead, the supreme skill of the Jesuit painter was undeniable. He could in fact be

criticized for one thing only, his decision to impose a compulsory viewpoint on the

observer. But it was just this point that formed the cornerstone of his art, and Pozzo,

heedless of the critics, never abandoned that crucial requisite.

On both the theoretical and the practical levels, the meticulous exactitude of An-

drea Pozzo was impeccable. The didactic structure of his treatise, leading the reader

to tackle a problem only after having thoroughly understood the one before it2, is

perfectly matched by his methodical procedure in his worksite, recognizable today

by some meaningful signs. On the ceiling of the church of St. Ignatius in Rome,

for instance, the traces of the construction grid cut into the plaster reveal the utmost

degree of precision in transferring the measurements of the sketch to the great di-

mensions of the pictorial surface (Fig. 1). On the construction site, as in the treatise,

each step is accurately measured, and in this absolute precision lies the secret of the

amazing illusionistic effects achieved by Pozzo.

His precision in drawing was undoubtedly a natural talent, and a mere glance at

his freehand sketch of the Colosseum in perspective shows that the hand and eye of

Andrea Pozzo were guided by a perfect sense of proportion and order (Fig. 2). This

natural talent, however, became the operational principle that the painter demanded

of his pupils as well, and tried to teach anyone who ventured on the study of per-

spective. Priority was categorically assigned to setting the “hand to the compass,

and to the rule”, rather than indulging in theoretical speculation3. Such precision,

moreover, found an ideal context in the scientific culture represented on the highest

Filippo Camerota

Museo Galileo, Florence (Italy).
1 [24], Book III, p. 276.
2 Pozzo (1693-1700), Part I (1693), p. 12, Avvisi a i principianti. Pozzo (1725), Advise to Beginners.
3 Pozzo (1693-1700), Part II (1700), pp. 19-20.
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Fig. 1 A. Pozzo, Gloria di
Sant’Ignazio, Rome, Church of
St. Ignatius, 1685: detail of the
grid carved in the plaster

level throughout the Christianized world by the mathematicians of the Jesuit order.

Years before, French studies in perspective had been embroiled in an intellectual

dispute between the Parisian Jesuit Jean Dubreuil and the Lyonese mathematician

Girard Desargues. Although Pozzo’s theoretical work does not reflect this contro-

versy, the bases for his preference for the single observation point seem to be rooted

expressly in that issue.

Fig. 2 A. Pozzo, View of the Coliseum,
preparatory drawing for the Fig. 44 (Per-
spectiva, II), Rome, Valentino Martinelli
Collection
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Criticism of the single viewpoint derived from the well-established operational

method that held it a good rule to adopt several vanishing points in perspective

compositions on ceilings and vaults, in order to ensure the best visibility of the

work4.

This rule, although conflicting with the principles of linear perspective, favoured

observation of the painting from the four sides of the room, reducing to a mini-

mum marginal deformations, commonly considered defects to be eliminated. An-

drea Pozzo’s method reversed this assumption, by imposing a single observation

point and bringing marginal deformations to their extreme consequences. In his trea-

tise, this method is disguised by a kind of propaganda typical of the Jesuits (“my

advice is, that you chearfully [sic] begin your Work, with a Resolution to draw all

the Points thereof to that true Point, the Glory of GOD”)5. But regardless of its

rhetorical form, his motivation appears firmly anchored to a precise objective, that

of exaggerating perspectival deformations at the margins of the painting to make the

illusion more spectacular from the chosen viewpoint; and thus amazing the observer

still further by unveiling the deception.

On this subject Pozzo concurred with his charismatic superior, the Jesuit Father

Athanasius Kircher, who used to entertain visitors in his famous museum with eru-

dite scientific and philosophical discussions only after having revealed the trickery

of his magic optical games. When Pozzo went to Rome in September 1681, Kircher

had been dead for almost a year but his museum was still very much alive. The angel

on the ceiling of St. Ignatius holding a concave mirror to reflect the Divine image

in the form of a Christogram is presumably a sign of the artist’s fascination with

Kircher’s catoptric machines (Fig. 3). Pozzo could have learned from the curator of

the museum, if not from the Jesuit priest’s books, that the concave mirror not only

lights a fire (symbolic of Ignatius igniting mankind with faith) but also projects im-

ages beyond its surface, which appear suspended in mid-air (symbolic of Ignatius

reflecting Divine glory). The optical phenomenon described and handed down over

the centuries in the writings of Hero of Alexandria, Roger Bacon and, more re-

cently, Giovanni Battista della Porta, had been illustrated by Kircher in some of the

most interesting pages of the Ars magna lucis et umbrae (The great art of light and
shadows, 1646)6. The Christogram painted by Pozzo appears, in fact, suspended

in mid-air, as the double of the image appearing on the surface of the mirror. It

is a refined optical effect hard to appreciate from below, but obviously worthy of

representation as the figurative expression of an optical theorem. On the symbolic

level then, the concave mirror was a true scientific icon, the fundamental instrument

of mediation between Divine wisdom and human knowledge, as demonstrated in the

4 On the history of quadraturism, see [25], XI, pp. 99-116; [33], [21], [17].
5 Pozzo (1693-1700), Part I (1693), p. 13, Al lettore studioso di Prospettiva; Pozzo (1725), To the Lovers
of Perspective.
6 See [1], [11], [16]. On this subject see also [3].
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Fig. 3 A. Pozzo, Gloria di
Sant’Ignazio, Rome, Church of
St. Ignatius, 1685: angel with a
concave mirror

Fig. 4 Zacharias Traber, Nervus op-
ticus, Wien, 1675, frontispiece

frontispieces to some of the major Jesuit treatises on optics, from Kircher’s Ars
magna to Zacharias Traber’s Nervus opticus (Fig. 4).

In Rome, Pozzo found the ideal climate for his creative vein. The Monastery of

the Minimi at Trinità dei Monti, where he worked, had not only been central to the

scientific debate nourished by Galileo’s discoveries and Descartes’s philosophy, but

was also the most advanced centre for studies of optics and its applications. The
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two great works of anamorphosis painted by the Minim friars Emmanuel Maig-

nan and Jean François Niceron in the cloister of their monastery aroused the same

amazement as Kircher’s catoptric machines. In these paintings Pozzo could find a

direct counterpart to his art. In them, the figures of saints seen from a single, highly

off-centre viewpoint slowly dissolved to the point of disappearing as the observer

gradually moved toward the centre of the painting. In losing their original form, the

paintings took on another, leaving to the observer the pleasure of discovering the

secret mechanism of that magical artifice7.

In walking along the corridor of the Jesuits’ Casa Professa, Brother Pozzo’s first

Roman work, the sensation produced by the works of anamorphosis of Trinità dei

Monti is felt again. As the visitor proceeds toward the centre of the room, its im-

age is transformed. From the central station point, the corridor appears in all its

architectural grace (Fig. 5). Toward the end and toward the entrance, the space is

rhythmically marked by a series of architraves supported by corbels resting on pro-

jecting pilaster strips, with windows and doors between them. Everywhere, angels

and cherubs enliven the scene and a great serliana dramatically frames the altar

of St. Ignatius in the background. But in proceeding toward the altar, this graceful

composure gives way to chaos. The architraves curve into fluidity (Fig. 6); the pi-

laster strips widen, becoming more oblique; the angels are deformed to the limits of

anamorphosis (Fig. 7); and the columns of the serliana slide dangerously down a

steep floor (Fig. 8). Faced with the aberration of these forms – too exaggerated not

to appear as the most sophisticated virtuosity – the observer, amazed at this supreme

display of artifice, retraces his steps to find again, almost unbelievably, the lost grace

and composure.

Fig. 5 A. Pozzo, Corridor
of the rooms of St. Ignatius,
Rome, Casa Professa del
Gesù, 1682, view from the
center of the corridor

7 On this subject see [4], pp. 51-75.
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Fig. 6 A. Pozzo, Corridor of the
rooms of St. Ignatius, Rome, Casa
Professa del Gesù, 1682, deforma-
tion of the architraves towards the
end of the corridor

Fig. 7 A. Pozzo, Corridor
of the rooms of St. Ig-
natius, Rome, Casa Pro-
fessa del Gesù, 1682, per-
spective deformation of the
figures towards the end of
the corridor
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Fig. 8 A. Pozzo, Corridor of the
rooms of St. Ignatius, Rome, Casa
Professa del Gesù, 1682, frontal
view of the oblique wall at the end
of the corridor

The corridor of the Casa Professa is an emblematic case study of the effects pro-

duced by a single viewpoint. Before such a long, narrow and relatively low room,

any quadraturist would have applied the rule of multiple viewpoints, unless he was

trying – as Pozzo was – to exploit perspective deformation to heighten the impact of

the visual experience. “And although it is possible to divide walls, or very long, low

ceilings, into several parts in the work”, writes Pozzo, “and to assign its own ob-

servation point to each of them, it nonetheless appears that a much more ingenious

effect can be attained in such cases using a single viewpoint, as I did in a corridor

of the Church of Jesus in Rome”8. The striking distortion seen when the image was

observed from any other vantage point was, Pozzo declared, “not a defect but praise-

worthy art”. Deformation of this kind was not restricted to the art of painting alone.

The Baroque century had seen the triumph of fluid forms in architecture, and Rome

had been its great experimental theatre, on both the practical and the theoretical

levels. Borromini’s buildings quivered with real and latent aberrations: curved and

undulating architraves, concave and convex walls, winding spirals, leaning arches;

oblique forms whose theoretical counterparts could be found in the bizarre mathe-

matical hypothesis of Juan Caramuel de Lobkowitz known as architettura obliqua9.

In the garden of Palazzo Spada is a work that might have struck Pozzo’s fancy.

Here Borromini designed a perspective gallery, ingeniously built by the Augustinian

8 Pozzo (1693-1700), Part I, ed. 1717, Fig. 101, pp. 216-217.
9 See [9].
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Fig. 9 Oblique deformation of the architectural
orders in the perspective gallery of Palazzo
Spada, Rome

monk Giovanni Maria da Bitonto, which gave the illusion of connecting the secret

garden to a larger garden, one entirely non-existent (Fig. 9). A material perspective,

of the type Pozzo had designed for numerous theatrical scenes and fictive altars, it

was not made of wood and canvas but of masonry; and this made it something very

different from a mere ephemeral stage-set. Its beauty lay, and still lies today, not

in the image that appears from the preferential viewpoint, but in the experience of

walking through it to discover how the space and the elements in it are gradually

transformed10. In this case too, the deception is only enhanced by being revealed.

Confronted with this work, Pozzo’s thoughts may have gone back to his first

years in Milan, when, in studying masterpieces of perspective “in the academies,

the galleries and the churches”11, he must have come across the first material per-

spective ever built in masonry: the illusory choir of Santa Maria presso San Satiro,

the famous artifice employed by Bramante to compensate for the lack of sufficient

space to build a real architectural structure (Fig. 10). The great master of classical

Renaissance architecture had used perspective in an innovative way, indicating how

visual deception could be used to solve architectural problems. It may have been

this first experience that induced Andrea Pozzo to go beyond temporary stage sets

and ephemeral decorations, seeking to attain an optical dimension in architecture. In

10 See [26]; see also [18]; [8], pp. 293-295.
11 Baldinucci (1975), p. 316.
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Fig. 10 Oblique deformation of the
architectural orders in the fake choir
of Santa Maria presso San Satiro,
Milan

his treatise, the problems of perspective are discussed beginning with a similar case,

the construction of a fictive choir in a church, establishing the principle that “the

Perspective of Structures here treated of, can have no Grace or Proportion, without

the Help of Architecture” (Fig. 11)12.

Fig. 11 A. Pozzo, Perspectiva pictorum atque
architectorum, Rome, 1693, Fig. 1: construction
of a fake choir in a church

12 Pozzo (1693-1700), Part I (1693), p. 12, Avvisi a i principianti. Pozzo (1725), Advise to Beginners.
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According to this principle, already expressed by Sebastiano Serlio, who saw it

applied on the highest level by Bramante, the painter must necessarily be an architect

as well13. Art’s relationship to architecture was strengthened by the role of perspec-

tive which was used mainly to design architectural settings in paintings, stage-sets

and temporary decorations for festivals and processions. In addition to the rules of

geometric drawing, then, the artist was obliged to learn the rules of architectural

drawing: first of all orthogonal projections, but also the proportions of the orders.

Pozzo was certainly familiar with Jean Dubreuil’s influential treatise La Perspective
pratique (Practical Perspective, 1642), where perspective was defined as a “science

[that] can boast of being the life and soul of painting” and that reached its apex

of beauty in representing “rich, sumptuous buildings, constructed according to the

orders of columns, whose beauty depends on the proportions and dimensions that

must be respected to avoid wounding the eye”14. Hence proportions and dimensions

are the indispensable underpinnings for conferring beauty on a perspective compo-

sition. The fact that Pozzo’s frescoes aroused debate of an architectural nature shows

how far beyond the limitations of mere pictorial decoration his art had gone15.

The importance assigned by Pozzo to the two fundamental components of per-

spective drawing, proportions and dimensions, is evident from his rigorous mode of

guiding the reader of his treatise to the perfect execution of a work. He is not inter-

ested in explaining the geometrical optical principles, presuming that his readers are

already familiar with the existing texts, but concentrates instead on constructing a

drawing with maximum precision, eliminating any possible weakness deriving from

operational uncertainty. There were basically two problems to be solved: how to

make the preparatory drawing, and how to transfer it onto the surface to be painted.

For the preparatory drawing, the treatises on perspective had established rules

that by then now constituted the foundations of the art. In his treatise, Pozzo deemed

it necessary to discuss these rules in detail in order to explain the stumbling block of

many painters, that is, the decisive function of the distance point16. The example he

used to illustrate this function is the above-mentioned case of constructing a fictive

choir in a church, with the observer’s eye located approximately where Bramante

had placed it in Santa Maria presso San Satiro, on the border between the nave and

the transept. The generic cases common to all treatises on perspective are followed

by concrete examples, namely, the works accomplished by Pozzo himself “by the

13 [32], p. 25v: “Il perspetivo non fara cosa alcuna senza l’Architetura, ne l’Architetto senza perspettiva”

[Perspectivist can do nothing without architecture, nor can the architect without perspective].
14 [13], Part I (1642), Preface: “Cette science se peut vanter d’estre l’ame et la vie de la Peinture [. . . ]

le plus belle pieces de Perspective, se font de Bastimens riches et somptueux, construits selon les ordres

des Colomnes, la beauté desquels dépend des proportions et des mesures qui doivent estre observées,

autrement elles blesseront l’oeil” [This science can boast of being the life and soul of Painting [. . . ] the

most beautiful perspectives are made with rich, sumptuous buildings, constructed according to the orders

of columns, whose beauty depends on the proportions and dimensions that must be respected to avoid

wound the eye].
15 Pozzo (1693-1700), Part I (1693), Fig. 91, pp. 196-197: “Si meravigliarono alcuni architetti, che io

appoggiassi le colonne davanti sopra mensole, ciò che essi non farebbono in una fabrica vera, e reale”.

Pozzo (1725), The Ninety-first Figure: “Some Architects dislik’d my setting the advanc’d Columns upon

Corbels, as being a thing not practis’d in solid Structures”.
16 Pozzo (1693-1700), Part I (1693), Fig. 1, p. 16. Pozzo (1725), The First Figure.
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Fig. 12 A. Pozzo, Perspectiva pictorum
atque architectorum, Rome, 1693, Fig.
90: perspective construction of the dome
in the Church of St. Ignatius, using the
ordinary rule (distance point)

Rule I make use of at present”, deemed “more easy and general than the common

way”17. The common rule consisted of construction with the distance point, in which

the volumes of bodies were obtained by representing the two orthogonal projections,

plan and elevation, in perspective (Fig. 12). The more easy rule, explained in the

second part of the treatise, consisted of intersecting the visual pyramid in plan and

elevation, thus relieving the painter of the projective complications involved in the

former method (Fig. 13).

The problem of transferring the preparatory drawing onto the surface to be

painted was even more complex, since the drawing had to be enlarged and adapted

to the shape of the picture plane. In this case the procedure employed was quadret-
tatura, or gridding, the most precise of the many methods devised over the years by

painters and mathematicians. In fictive altars, in theatrical scenes and in temporary

decorative sets for the Quarant’ore, or Forty Hours devotion, where the perspective

was painted on a series of vertical frames placed one after another, the so-called

backdrops, the problem consisted basically of how to draw with precision the pro-

portional variation of the grid on the various planes of the painting so that, from

17 Pozzo (1693-1700), Part I (1693), p. 13, Al lettore studioso di Prospettiva. Pozzo (1725), To the Lovers
of Perspective.
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Fig. 13 A. Pozzo, Perspectiva pictorum
atque architectorum, Rome, 1700, Fig.
52: perspective construction of the dome
in the Church of St. Ignatius, using the
easiest rule (intersection of the visual
pyramid in plan and elevation)

the preferential viewpoint, all of the lines appeared to extend in perfect continuity

(“You must be very careful that all the Squares of the Net-work be exactly divided,

and at right Angles”)18.

Being at different distances from the eye, in fact, the squares of the grid drawn

on the various planes of the painting differed in size (Fig. 14).

Even more difficult was the “method for marking grids on vaults”, where the

concave surface, frequently interrupted by ribs or groins, called for controlled de-

formation of the grid. Theoretically, it was sufficient to construct a network of taut

cords stretched over the impost plane of the vault and to project their shadows by

means of a lantern.

Then the painter would only have to trace the shadow with his brush, as described

in some recent widely-read treatises, such as those of Abraham Bosse and Gregoire

Huret (Fig. 15). But this was only theoretical. “I say, if you imagine a Lamp thus

fix’d”, wrote Pozzo in explaining the concept, “because either the Scaffold to the

Vault, or the great Distance of the Vault from the Net-work, or the greater of both

18 Pozzo (1693-1700), Part I (1693), Fig. 62, p. 138: Del graticolare i telari che rappresentano fabriche
di rilievo. Pozzo (1725), The Sixty-second Figure, Of making the Net-work on Frames, for representing
the Architecture as solid.
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Fig. 14 A. Pozzo, Perspectiva pictorum
atque architectorum, Rome, 1693, Figs.
61-62: constructive grid for a fake altar

Fig. 15 A. Bosse, Moyen universale pour pra-
tiquer la perspective sur les tableaux ou sur-
faces irregulieres, Paris, 1653, pl. 15: tracing
perspective lines on the surface of a vault
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Fig. 16 A. Pozzo, Perspectiva pic-
torum atque architectorum, Rome,
1693, Fig. 100: tracing the grid on
the surface of the vault in the Church
of St. Ignatius

from the Light, may prevent the Shadows from being thrown at all, or at least, may

render them so faint, as not to be distinct enough for the purpose”19. Projecting

shadows, although a brilliant idea, was not always feasible. The solution lay, instead,

in using a long rope “as a Ray”, fastened at the observation point and stretching

up to the surface of the ceiling (Fig. 16)20. The marks cut in the plaster on the

ceiling of St. Ignatius reveal how precisely Pozzo carried out this procedure. The

two middle lines in the grid intersect at right angles at the central vanishing point,

emblematically placed on Christ’s ribcage, the point of origin of the beam of light

conveying the Divine image by means of Ignatuius’s work and the concave mirror

(Fig. 17).

Fig. 17 A. Pozzo, Gloria di Sant’Ignazio, Rome, Church of St. Ignatius, 1685: reconstruction of
the grid traced by Pozzo (the lines carved in the plaster are still visible). The white lines show the
light rays which, from Christs ribs (vanishing point), reach St. Ignatius and the burning mirror

19 Pozzo (1693-1700), Part I (1693), Fig. 100, p. 216: Modo di far la graticola nelle volte. Pozzo (1725),

The Hundredth Figure, The Method of drawing the Net or Lattice Work on Vaults.
20 Ibidem.
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Once the grid had been traced, the artist had to control with maximum precision

the lines converging at the central vanishing point, which had to appear straight

although they were of course curved on the ceiling. For this purpose, two cords

fastened at the centre of the ceiling, at the vanishing point, were used: one “to guide

the rule straight” in tracing the lines, the other left “hanging like a pendulum” to

sight and correct any deviations of the rule21. In geometric terms, the two cords

were two straight lines belonging to the same vertical plane passing through the

observer’s eye, whose intersection with the ceiling generated a curved line.

Although applied mainly to the problems of artists, and thus consisting of prac-

tical procedures, perspective was by tradition a mathematical science. Christoph

Clavius had included it in the curriculum of Jesuit schools, and its applications

had been studied by some of the Company’s illustrious mathematicians, such

as Christoph Scheiner, inventor of the pantograph, Mario Bettini and Christoph

Grienberger, inventors of new perspective instruments inspired by the pantograph,

Athanasius Kircher and Gaspard Schott, visionary creators of magic optical tricks,

and Jean Dubreuil, one of the leading figures in the heated debate that accompa-

nied the development of projective geometry in France22. Pozzo was undoubtedly

familiar with that debate, since the issue had a direct bearing on the teaching of

perspective in the Jesuit colleges, downplaying the importance of the distance point,

which for Pozzo, as mentioned, was the thing most necessary to the perfect execu-

tion of a painting.

The bitter academic quarrel had been unwittingly triggered by Dubreuil him-

self. In his Perspective pratique, a text widely disseminated and not only in Jesuit

schools, he had presented with some variants the perspective method developed a

few years earlier by the architect and mathematician Girard Desargues (1642, pp.

117-119). Desargues had reacted vehemently, affixing handbills in the streets of

Paris publicly accusing the Jesuit father of plagiarism and proclaiming him guilty

of “unbelievable errors” and “enormous mistakes and falsehoods”23.

Between 1636 and 1640, Desargues had published three important treatises – on

perspective (1636); on conic sections (1639); and on stereotomy (1640) – proposing

a radical renovation of the methods used for representing geometric figures. For

Desargues, perspective and geometric drawing (isometric drawing and orthogonal

projections) were “two species of the same gender”24 that depended on a general

method aimed at measuring the geometric position of all points through their spatial

coordinates.

According to Desargues, Dubreuil had failed to grasp the fine points of his

maniére universelle, and had trivialized it in the pages of his Perspective pratique.

To these accusations, Dubreuil had replied with a scornful pamphlet, Advis charita-
bles (Charitable Advice), and a new text published immediately, Diverses methodes
universelles et nouvelles (Various new and universal methods), attributing the au-

21 Ibidem.
22 See [30]; [5], Apiarium V, Progymnasma II, pp. 35-56; [22], Book II, Part II; Book X, Part II; [31],

Book III; [14].
23 On this subject, see [29]; [4], pp. 87-94.
24 See [12].



38 F. Camerota

thorship of Desargues’s maniére to the mathematician Jacques Alleaume. In the

meantime, the controversy had produced several texts on perspective by the most

eminent members of the Académie royale in Paris, fiercely attacking one another;

on one side, Abraham Bosse, untiring defender of Desargues; on the other, Jacques

Curabelle, Jacques Le Bicheur and Grégoire Huret, who spared their opponents no

insult nor personal offence25.

The Maniére universelle de M. Desargues (The Universal Method of Mr Desar-
gues) by Abraham Bosse was published in two successive volumes, the second of

them devoted to a Moyen universel de pratiquer la perspective sur les tableaux ou
surfaces irrégulières (Universal method for drawing in perspective on paintings or
irregular surfaces, 1653), that is, a method for painting on vaults and domes. The

treatise dealt with questions of projection that were exemplified by the perfect prac-

tical procedure for transferring a drawing to the surface of a ceiling. To control the

deformation introduced by the shape of the pictorial support, Bosse suggested pro-

jecting the drawing “with cords, or using candles”26. The best method was the one

adopted by Pozzo as well, that is, constructing a horizontal network at the base of

the ceiling, with cords stretched from one side to the other of the impost plane, and

projecting its shadow by means of a candle placed at the observation point (Fig. 18).

This procedure was illustrated by Gregoire Huret, who in 1663 had replaced Bosse

Fig. 18 A. Bosse, Moyen universale pour
pratiquer la perspective sur les tableaux ou
surfaces irregulieres, Paris 1653, pls. 6-7:
deformation of the grid on different surfaces

25 See [6], [10], [23], [20].
26 [7], pl. 15.
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as teacher of perspective at the Académie royale and had made his debut in the

literature about art with a text in which he claimed to be able to draw any building

in perspective, without using either the plan or the distance point27. The object of

simplifying the technical procedure while at the same time guaranteeing precision in

projection was an attempt to go beyond the method of Desargues who, withdrawing

from the debate, had challenged mathematicians and artists to write a text better

than his.

Apart from personal malice and academic rivalry, the debate centred on the age-

old question of the relationships between the principles of geometry and the practice

of art. Desargues and Bosse advocated total geometric control in architectural draw-

ing as well as painting, but to their opponents, the use of proportional scales seemed

a futile complication. Dubreuil also deemed the use of geometric rules fundamen-
tal, since without them the painter could hope “only to paint for the ignorant”, but

in artistic practice their application was functional and did not call for the rigour of

a mathematical demonstration28. The French academics were less willing to com-

promise. Pointing to the recent Paris edition of Leonardo’s Trattato della pittura
(Treatise on painting) as authority, they claimed priority for the judgement of the

eye.

Pozzo’s position in this debate was close to that of Dubreuil’s: lose no time “in

mere speculation” but take up “the compass and rule”, in order to apply the geo-

metric rules with the utmost precision. Only with these instruments could “the most

subtle of all our outward Senses [the Eye]” be deceived29, in architecture as well

as figures: “and is very necessary to be known of all, who in Painting would give a

due Place and Proportion to their Figures”30. Without any theoretical pretensions,

entrusting to drawings the role of instructor (“if you meet with any thing which at

first seems difficult in the Description, a diligent Inspection of the Figure may re-

lieve you”)31, Pozzo managed to blend operational practice and scientific exactitude

with surprising results. In his treatise, mathematical demonstrations are suppressed

in favour of a perfect understanding of the method of operating with the rule and

compasses, whose foundations are solidly based, however, “in the Art of Geometry
and of Architecture, which I assume are already known to those who undertake this

study”32.

With a rigour that matches his technical skill, Pozzo sets forth the two basic rules

of practical perspective, distance point and intersection, explaining how to avoid

the pitfalls of geometric drawing on highly foreshortened planes. With the same

inflexible rigour, Pozzo rejects any mitigation of perspectival deformation, such as

the use of several vanishing points preferred by the great quadraturists of Emilia

and Veneto, firmly imposing his faith in the single vanishing point that will provide

27 See [19].
28 [13], Part I (1642), Preface.
29 Pozzo (1693-1700), Part I (1693), Al lettore studioso di Prospettiva. Pozzo (1725), To the Lovers of
Perspective.
30 Pozzo (1693-1700), Part II (1700), Al lettore. Pozzo (1725), To the Lovers of Perspective.
31 Pozzo (1693-1700), Part I (1693), p. 12, Avvisi a i principianti. Pozzo (1725), Advice to Beginners.
32 Pozzo (1693-1700), Part II (1700), Al lettore.
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maximum illusion, and assigning an important added value to marginal deforma-

tions. To this crucial subject, Pozzo devoted the concluding appendix of his treatise,

a Risposta sull’obiezione fatta circa il punto di vista nelle prospettive (An Answer

to the objection made about the Point of Sight in Perspective), where he sets forth

three simple and categorical points: first, “the greatest Masters” have always used a

single viewpoint; second, “since perspective is but a Counterfeiting of the Truth” the

painter is not obliged to show it correctly from all points of view, but from only one;

third, if a work is made to be seen from several viewpoints, in none of them will the

illusion be truly convincing. The glorious fresco over the nave in St. Ignatius is cited

as proof of these statements, and the marble disk in that church that unmistakeably

marks the position of the observation point has the indisputable truth of a geometric

theorem, one whose proof is repeated anew each time to the astonished eyes of the

observer.
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23. J. Le Bicheur, Traicté de Perspective. Jollain, Paris, 1660.
24. F. Milizia, Memorie degli architetti antichi e moderni. Stamperia Reale, Parma, 1781.
25. F. Negri Arnoldi, Prospettici e quadraturisti. In: Enciclopedia Universale dell’Arte, vol. XI,

pp. 99-116. De Agostini, Novara, 1963.
26. L. Neppi, Palazzo Spada. Edizioni d’Italia, Roma, 1975.
27. A. Pozzo, Perspectiva pictorum atque architectorum. Komarek, Roma, 1693-1700.
28. A. Pozzo, Rules and examples of perspective proper for painters and architects. London, 1725.
29. N.G. Poudra, Oeuvres de Desargues reunies et analiste. Leiber, Paris, 1864.
30. C. Scheiner, Pantographice, seu ars delineandi res quaslibet per parallelogrammum lineare seu

cavum, mechanicum, mobile. Grignani, Roma, 1631.
31. G. Schott, Magia universalis naturae et artis, sive, Recondita naturalium & artificialium rerum

scientia. Schönwetter, Würzburg, 1657.
32. S. Serlio, Il Primo libro d’Architettura [di Geometria]. Il Secondo Libro di Perspettiva. Barbé,
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The Apse Scenes in the Prospective Inventions
of Andrea Pozzo

Silvia Carandini

It was the great multi-talented artists such as Bernini, and Giovan Battista Aleotti,

Bernardo Buontalenti and Giacomo Torelli before him, using a toolkit that included

a vast array of figurative languages as well as the mechanical and optical sciences,

who wove the threads of an extraordinary network of evocations and borrowed de-

vices that were distilled from the immense cauldron of literature, arts and theatre of

the Baroque period. For all these artists, works in architecture and in theatre con-

stituted crucial experiences in the profession, the laboratories for comparing artistic

forms of expression and scientific practices. At the end of the seventeenth century, a

significant role was played by Andrea Pozzo (Trento 1642 – Vienna 1709). A sim-

ple Jesuit brother, he occupied an important place, gathering to himself the entire

legacy of his predecessors, although employing it almost exclusively in a religious

context ([2]; [7]; [9]). His magnificently illustrated treatise, Perspectiva pictorum
et architectorum, published in Rome in two volumes by the typographer Komarek

between 1693 and 1700, is the most evocative and efficacious document possible

of praxis and mastery; here Pozzo presents the sum of his experiences as a painter,

architect, decorator and scene designer, all united in the service of that perspectiva
artificialis which over the course of the 1600s had benefitted from the contribu-

tions of so many scientists and artists. Andrea Pozzo had also contributed to the

perfection of this field of practical experimentation; he, like the other great artists

of the 1600s, was commissioned to create decorations and backdrops for festive oc-

casions, and relied on temporarily-erected mechanical contrivances to create sacred

theatrical spaces for religious ceremonies. His talents had also been refined through

designs for the ornamentation of churches, such as tabernacles and altars, both on

paper and actually built, of solid and precious materials, or more economically and

with astonishing skill, in faux materials and paint. He also had occasion to test his

skills in theatrical designs for the extremely active stages in the Jesuit colleges, in

particular those of Milan and Rome.

All of these aspects of Pozzo’s work have been the objects of recent studies

occasioned by the three-hundredth anniversary of his death, celebrated in 2009-

2011. Particularly noteworthy are the studies of Father Heinrich Pfeiffer, Francesco

Camerota, Elysabeth Kieven, Richard Bösel, Lidia Salviucci Insolera, Giuseppe

Silvia Carandini

Department of History of Art and Performing Arts, Sapienza University of Rome (Italy).

Emmer M. (Ed.): Imagine Math. Between Culture and Mathematics
DOI 10.1007/978-88-470-2427-4 5, c© Springer-Verlag Italia 2012
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Dardanello and Marinella Pigozzi ([3], [4], [11]), and of Pascal Dubourg Glatigny

in the recently published anastatic reprint of his treatise ([12]).

A frontispiece of the second volume of the Perspectiva pictorum et architecto-
rum may perhaps furnish the key to understanding this humble yet ardent Jesuit

brother (Fig. 1).The engraving shows a benevolent Minerva offering refreshment

to an artist who kneels down, and drawing water from a well (pozzo) enshrined in

a small apse framed by a double arch, between columns and pilasters. We might

call this ingenious work a dual self-portrait, in which he depicts himself (Pozzo) as

modestly drinking from the science of the ancients, and at the same time, as an in-

exhaustible well (pozzo) of knowledge, which his treatise freely imparts.

It is with this small apse framing the ‘well of science’, as though it were an

altar, that I would like to begin this brief delineation of an itinerary through the

works of Andrea Pozzo, which centres on the multiple variations of a theme held

dear by the artist: the creation of an illusionistic space, modelled on the apse of the

church, which, situated behind a proscenium arch or a triumphal arch, constitutes

the fulcrum of a vision of a fictitious nature, like the backdrop of a stage set.

Fig. 1 A. Pozzo, frontispiece, Perspectiva
Pictorum et Architectorum, vol. II, Rome,
1700
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1 The colonnade and arch that frame the vision

As part of the celebrations of the three-hundredth anniversary of Pozzo’s death, the

restoration of the Chiesa della Missione in Mondovı̀, dedicated to St Francis Xavier

and decorated by the artist, then a young man, between 1675 and 1677, before he

was called to Rome, was carried to completion. Using decorations in stucco, faux

finishes and frescoes, the artist drapes a brilliantly coloured mantle over Boeri’s ar-

chitecture, transforming the incompletely resolved architectonic composition into a

fascinating spectacle, an extremely effective dramatization of the person and ges-

tures of St Francis Xavier, who, together with St Ignatius, founded the Jesuit or-

der. A recently published book documents the magnificence of Pozzo’s creation

([11]). Here, restored to all their original splendour, are the rows of columns in rose-

coloured faux French breccia marble, standing out against the white of pedestals, pi-

lasters, capitals, and cornices that accompany the spectator’s view along the nave, all

the way to the altar (Fig. 2). In the centre of all this rises the astounding altar appa-

ratus, the only one of the many temporarily-erected machines contrived by Andrea

Pozzo still in existence, now admirably restored. The entire composition is crowned

by the illusionistic depictions of the apse and its vault, where the artist’s perspec-

tive genius was made evident in all its glory for the first time, giving us imaginary

views into elevated platforms, doubling the structure of the nave, opening up into

non-existent cupolas, virtual heavens, flights of angels, musical concerts, and the

mystical vision of the saint himself ascending into paradise.

2 Imaginary apses and painted altars

Another of Andrea Pozzo’s remarkable examples of illusionism is the daringly fore-

shortened painting at the end of the well known corridor leading to the quarters of

Fig. 2 Mondovı̀, Chiesa della Missione,
view of the nave
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St Ignatius in the Chiesa del Gesù in Rome, in which, following a series of modil-

lions, architraves and arches, there appears an apse with two angels playing musical

instruments who introduce the scene. At the centre of the altar is an aedicule, as

though in relief, with columns and broken pediments, and at the focal point of the

scene is the altarpiece of St Ignatius. The view that is seen when the spectator stands

in the centre of the corridor deforms as the spectator moves closer to the wall, pre-

cipitating into a chaos of profoundly altered forms, where reality is decomposed, as

in the enigmatic experience of anamorphosis ([5]).

While in this case astonishment comes into play, the mystery of a reality that

is revealed only through enigmas, and through an evident disillusionment that in-

creases the force of the illusion ([5]), there were numerous altars that Pozzi created

in materials both poor and precious, or, as in the corridor of St Ignatius, painted

with an illusionistic technique in churches and then depicted in his treatise, placing

his optical prowess at the service of both the glory and the economy of the Jesuit

order. Through the use of faux imitations of much more costly materials, decora-

tive elements, statues, paintings on canvas and, stuccos, Pozzo, thanks to the use of

chiaroscuro and perspective, provided at a small cost the required depth of altar ta-

bles, executed as imaginary projections, as in the Chiesa del Gesù at Frascati, where

he creates the illusion of the concave back wall of a large choir in an apse crowned

with a cupola on the concave wall of the tribune, while in the middle of the illusory

space the convex body of an altar in the form of a tempietto with its little cupola on

top materializes (Fig. 3); in his treatise he explains with evident pleasure the process

used to create the virtuoso and rhetorically shrewd double illusion.

Pozzo also uses the play of perspective and the two-dimensional illusion of real

space as trial runs for design projects, as in the immense painted canvas depicting

a possible solution for the decoration of the tribune in the church of Sant’Ignazio,

documented in an etching by Nicolas Dorigny and Antonio Colli ([4], 120). In this

case the aim was to make it possible to evaluate the effect of the planned architecture

in loco, and thus the painting on canvas was hung like an immense stage curtain or

backdrop.

3 Temporary and permanent devices

Let us now go back to the nave of the Chiesa della Missione in Mondovı̀, and in

particular to that apse where the white and red sequence of architectural elements

terminate (Fig. 4). The altar in the centre was conceived by Pozzo, perhaps provi-

sionally, as a temporarily-erected apparatus in faux materials, shaped like a quad-

rangular tempietto, with cross-shaped columns, a rich pediment, the space in the

middle prepared for a genuine apparition of the image of St Francis Xavier. En-

graved and painted on a sheet of metal, the figure was set into motion by a hoist

located above, by means of a winch. The effect created was wondrous: a vision of

the saint framed against the black background, appearing to rise up and levitate in

space, in re-enactment of one of the miracles that had contributed to his canonisa-
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Fig. 3 A. Pozzo, painted altar in Frascati, Per-
spectiva Pictorum et Architectorum, vol. II,
fig. 69

Fig. 4 Mondovı̀, Chiesa della Missione, altar
apparatus
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Fig. 5 Mondovı̀, Chiesa della Missione,
Chiesa della Missione, altar apparatus
viewed from the rear

tion. The structure of the apparatus is comprised of two simple, painted canvases

(or backdrops) supported on a wooden framework (Fig. 5). I mentioned that this is

the only apparatus by Pozzo that has survived until today, precisely because it was

intended for temporary use on the altar. It is thus that much more interesting to be

able to look at it in relationship to other apparatuses conceived by Pozzo and doc-

umented in his treatise, such as that shown in fig. 62 in the first volume, where he

explains the Modo d’alzar le machine che son composte di più ordini di telari (Way

to lift the machines that are composed of several orders of canvas) (Fig. 6). More

than once Andrea Pozzo boasted of the simplicity and economy that characterised

his temporary apparatuses, which, while apparently lavish, he created for his order

at a minimal cost, with particularly effective illusionistic effects.

4 The scene created for the forty-hours devotion

The pages of the Perspectiva offer numerous examples of inventions described by

the artist as being suitable for the celebration of the Quarantore, or forty-hours de-

votion (and thus intended to be mounted and demounted), or which lend themselves

to a dual purpose, such as the disegno per l’altar maggiore di qualche Chiesa (de-

sign for the high altar of some church) which can also serve as an apparatus for the

forty-hours devotion by ‘arranging in the middle space several angels on clouds’

(Fig. 7). This particular device is very similar to that built for the high altar of the

church in Mondovı̀, and thus the play of true and false, permanent and temporary, is

multiplied.
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Fig. 6 A. Pozzo, Modo d’alzar le ma-
chine che sono composte di più ordini di
telari, Perspectiva Pictorum et Architecto-
rum, vol. I, fig. 62

Fig. 7 A. Pozzo, Fabrica quadrata, Per-
spectiva Pictorum et Architectorum, vol.
I, fig. 64
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The most spectacular temporary apparatuses of the late seventeenth century

erected in the great Jesuit churches (but in others as well), the work of the greatest

artists of the age, were those built on the occasion of the ceremony of the forty-hours

devotion, which appears to have been the most significant function of the counter-

Reform project. The Blessed Sacrament was exposed at the centre of a scenographic

apparatus that filled the entire apse, accompanied by effects that were decidedly the-

atrical, like those characterising the beginning of a play: the curtain rose and a silent

tableau appears, blazingly luminous and still, silently manned by experts who pow-

ered hidden lights and guaranteed safety ([10], [13]).

Andrea Pozzo’s procedure regarding the first of his two greatest efforts in this

field, the apparatus for the forty-hours devotion erected in the Chiesa del Gesù in

1685, is documented and illustrated in detail by his biographer Baldinucci (Fig. 8).

The ceremony usually promoted among the usual congregation using apparatuses

built ‘with all due pomp . . . and at wasteful and costly expense . . . it is seemly . . .

for that year to celebrate the function with simplicity and without any magnificence’,

Brother Pozzo ‘stepping forward, said freely and frankly, that he would build it with

rags and used canvases: at an extremely small cost, and with increased beauty for

the altar’. Baldinucci goes on to describe how others laughed at Pozzo, ‘seeing him

armed with rags and pieces of old wood’, but he only teased them back, and at

the end of the work displayed the canvasses stretched out on the ground, the image

painted on them incomprehensible without the perspective arrangement it had been

designed for. Having created the greatest perplexity in the bystanders, the day after

he ‘closed himself away with the canvasses where the device was to be installed, he

Fig. 8 A. Pozzo, Teatro delle Nozze di
Cana Galilea fatto nella chiesa del Giesu
di Roma l’anno 1685, Perspectiva Picto-
rum et Architectorum, vol. I, fig. 62
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mounted it all together without showing it to anyone, in order to then uncover it in

public at the exposition of the Blessed Sacrament, and so it happened that a most

beautiful theatre scene was created before one’s eyes in an instant’([1], 322-323).

In the treatise he describes an apparatus called Teatro delle nozze di Galilea (The-

atre setting for the ‘Marriage in Cana’), which he defines as a nobile architettura,

of a more complex structure than the devices illustrated in the preceding figures. He

speaks of six orders of canvasses, ‘without counting those which in the middle of

the large arch appear to be clouds full of angels in adoration of the Most Blessed

Sacrament: and those clouds I have not drawn here, in order not to cover the other

parts of the cloths that are further inside’ ([12], I: fig. 67-71) .

The other images in the treatise that refer to this particularly scenographic kind of

apparatus are very well-known. There was, for example, in 1695, again at the Gesù,

the scene entitled Sitientes venite ad aquas (Fig. 9). The space of the apse painted

just a few years earlier by Giovan Battista Gaulli (called ‘il Baciccia’) was encap-

sulated within the apparatus: architecture, painting, and temporary device, here too

the functions were interchanged, and real and illusory spaces were combined in an

ingenious invention, without ever leaving the confines of the apse, the scena absi-
dale.

Fig. 9 A. Pozzo, Teatro tutto intero, & om-
breggiato, Perspectiva Pictorum et Architecto-
rum, vol. I, fig. 47



52 S. Carandini

5 The scenes of heaven

Andrea Pozzo’s experience in the sacred theatre of the Jesuit Colleges, such as that

of Brera in Milan, and later in the Roman College and the Roman Seminary, and

again in Rome, at the Chancellery, is documented in the treatise in numerous plates.

These are the Teatri scenici – as Pozzo calls them – similar to those discussed above,

but in which, he explains, ‘it is more difficult to find the perspective point’ ([6]).

Pozzo also addresses, in the second part of the Perspectiva, the question of scenic

soffitti or ceilings, in particular those made with aria con nuvole, ‘air with clouds’.

In the churches, the practice of covered roofs, flat ceilings and rounded apse,

vaults and domes, lent themselves to the most audacious inventions and the most

daring solutions, in keeping with a trend that had established itself in the course of

the 1600s in churches and palaces. In this camp as well Pozzo was an innovator,

taking the scenographic devices already tried many times and pushing them to new

heights, not contenting himself with opening the ceiling to a vision of the heavens,

but erecting a second platform of architectonic scenery over the nave, which then

in its turn opens itself to the sky. He thus crowns the church with a palace, and

crowns the palace with a depiction of heaven in a vortex of illusionistic foreshort-

ening whose vanishing point coincides with the figure of the saint ascending into

heaven. This occurs in the false cupola created in the church in Mondovı̀ (Fig. 10)

where he reduplicates the decoration of the nave and opens loggias for angels play-

ing musical instruments. He then perfects his art in the very famous vault of the

church of Sant’Ignazio in Rome. As noted, there are also numerous false architec-

tonic cupolas painted on canvas, thanks to which Andrea Pozzo can creates illusions

and astonishes the faithful, while sparing the coffers of the Jesuit order.

Fig. 10 Mondovı̀, Chiesa della Missione,
frescoes in the central vault showing St Fran-
cis Xavier in glory
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6 The characters in the scenes

All of the architectonic scenes painted by Pozzo in vaults and domes and on canvases

for apparatuses are alive with figures. In addition to allegorical, angelic and demonic

characters, and in addition to the divine characters and the saints of the Jesuits to

be glorified, the scenes are filled to the brim with lesser characters who climb, fall,

remain in precarious equilibrium, wink and point.

Some seem to emerge from the paintings along with parts of the stucco, such

as the figure of a man in the vault of Sant’Ignazio who runs in front of a window;

as noted by Fagiolo dell’Arco, his arm is not painted, but is actually formed in

stucco placed on the window ([8]). This is why some paintings in oil show the

interior of a church and a rich perspective scene populated with figures (Fig. 11).

The great apparatuses for the forty-hours devotion, shown earlier, are also abound

in characters, always on a miniscule scale with respect the majestic spatial volumes,

tiny figures that daringly climb balusters and balconies, as though defying the empty

space below.

The self-portrait of Andrea Pozzo conserved in the Chiesa del Gesù in Rome

(Fig. 12), shows the artist in a similar pose, seated daringly on a cornice in the

church Sant’Ignazio with one hand firmly holding (so as not to fall) onto the books

about perspective that he learned from, and with the other, a finger raised, pointing

to the vault and the cupola still to be frescoed.

Ingenious scenic apparatuses, daring compositions of canvases, or dizzying per-

spective solutions that are sott’in su, ‘bottom to top’, constitute the complex tech-

nical foundations of the visions that provide spectators with the materialisation of

a principle of faith, the immediate perception of an ineffable truth that involves the

senses and predisposes the spirit to meditation and prayer.

Fig. 11 A. Pozzo and assistants, Ultima cena,
1708, oil on canvas, Trento, Museo Diocesano
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Fig. 12 A. Pozzo, Self-portrait, oil on canvas,
Rome, Chiesa del Gesù
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Andrea Pozzo: Art, Culture and Mathematics

Marco Costamagna

Andrea Pozzo was born in Trento to a Milanese father, Jacopo, and his wife Lucia

on 30 November 1642. He attended the Jesuit School in Trento until he was 17,

but because his results that were less than brilliant, his father apprenticed him to a

painter, given that booklearning went against his nature, and he preferred drawing

and doodling to studying. From an early age he worked, and learned the art of paint-

ing in painters’ workshops in Trento and Venice. It is thought that Andrea became

practiced in this art and in the use of perspective forms through painting scenes for

the theatre, every aspect of which was evolving in that particular period. In 1665 he

chose the religious life, entering the Society of Jesus; although he never completed

the entire cursus of Jesuit studies, he would remain in the order as a temporal coad-

jutator. What little is known about his life comes from the catalogi breves and the

catalogi triennales, reports sent by the Jesuit fathers in the provinces fathers to the

Father General at the beginning/ end of each year in the case of the former, every

three years in the case of the latter. All of the evaluations between 1670 and 1705

concur in expressing great appreciation of his artistic talents. Over the years, his

fame and his talent would both grow, but he remained simple and unaffected in his

modest position as a Brother in the Society of Jesus. Andrea Pozzo died in Vienna

on 31 August 1709. He is considered, along with Gian Lorenzo Bernini and Pieter

Paul Rubens, to be one of the three great artists who expressed the art of the Society
of Jesus.

Andrea Pozzo was a Jesuit, and this fact must be underlined in order to under-

stand completely him as an artist. As mentioned, he is recognised as one of the three

great artists who created Jesuit art, but he, more than anyone else, was also capable

of representing philosophy, narrating history, and promoting the work of the Jesuits;

in short, he expressed religiousness in a way that was absolutely extraordinary and

avant-garde for the time. But at the same time, the Society of Jesus constituted a

fitting environment for taking care of protecting this simple man, who was reserved,

of few words, and of delicate health.

In order to understand fully who this great artist was, we must begin with the el-

ements and characteristics of his technique, which are already evident in his first

Marco Costamagna
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work, the Jesuit church in Mondovı̀ dedicated to St. Francis Xavier, one of the

founding fathers of the Jesuit order.

Fig. 1 The Jesuit church in Mondovı̀ ( c© Maurizio Roatta 2010)1

1 Historical background

The church in Mondovı̀ dedicated to St. Francis Xavier was strongly desired by the

Jesuits, who had by that time been carrying out their work in the city for over a

hundred years. Construction work began in 1665, based on a design by Giovenale

Boetto, architect to the house of Savoy.

At the beginning of the 1670s, a new rector for the Jesuit College in Mondovı̀

arrived from Milan. By that point, work on the construction was well on its way; the

shell had been completed, and the design by architect Boetto had been enriched with

new details and trimmings to complete the work, but the Jesuits were not satisfied

with the design: the part felt to be most faulty was the vault, which consisted of a

poor excuse for a cupola in the first part of the nave, followed by a sequence of small

vaults and sustaining arches that alternated in a disharmonic way up to the apse.

The Jesuits, in the person of the new rector, protested that the whole space was

squat and unpleasant, and proposed creating a work that was more suitable for hon-

ouring both their great saint and the city of Mondovı̀, which at the time in Piedmont

was second in importance only to Torino. This gave rise to heated debates which

1 All the photographs of this paper are by Maurizio Roatta – Studio Roatta Architetti Associati Mondovı̀.
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led to arguments between those involved: the designer, the master masons, and the

Jesuits themselves. For their part, the Jesuits were even willing the demolish part of

what had already been built in order to satisfy their aesthetic requirements, until fi-

nally, perhaps thanks to a proposal by the Jesuits themselves, the design was placed

under the scrutiny of Andrea Pozzo, who was then at the Jesuit College in Brera, in

Milan, in the capacity of a lay brother working as an assistant cook.

He was to maintain this status, if it can be called that, for a long time to come,

but his skills as a painter, his genius, and his talent were already appreciated and

recognised widely, even outside the order.

Pozzo studied the design and proposed several modifications. These included the

addition of six columns in the nave that played no structural or load-bearing role; he

wanted all the columns to be in faux marble; he also asked that two new windows

be opened in the apse, and that the windows already present be widened.

As far as the vault was concerned – the critical point, object of all the arguments

– he said in substance that he would deal with it himself with his paintings, and

that ‘all that is unpleasing now will become pleasing, and where there is now a flat

ceiling, I will make a cupola’.

The modifications suggested by Pozzo were not enormous, but they completely

changed how the architectural corpus was perceived. His idea was simple: he in-

tended to create, by means of the real and the painted architecture, a sequence of

scenic backdrops that would immerge the spectator in a unified, theatrical environ-

ment, and evoke his emotions by means of special effects, focussing all his attention

on the apparatus of the altar.

Today his intentions are clear to all, but at the time I don’t believe that even the

Jesuits were completely aware of what Pozzo actually had in mind. But they had

great faith in him; especially the new rector of the College of Mondovı̀, who knew

him well. He had been there when this assistant cook had set up the scenic apparatus

for the canonisation of St. Francis Borgia in the church of San Fedele in Milan, and

in the church of SS. Andrea e Ambrogio in Genoa, and he had seen with his own

eyes how successful these sacred theatres had been

Andrea’s proposals were accepted, and he was commissioned to paint the vaults.

He arrived in Mondovı̀ in the spring of 1676.

( c© Maurizio Roatta 2010)
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The previous picture shows the famous false cupola photographed from the ob-

servation point, where the entire area comprised by the octagon is actually a flat

plane. This image makes it possible to understand why Andrea Pozzo had wanted

the columns in faux marble; he depicts identical columns in the paintings and thus

gives the illusion of continuity with the real architecture, creating this effect of depth

Pozzo’s painterly technique is called anamorphosis. The painting appears to us

in its correct three-dimensionality only when observed from a precise point, a point

which, in some works, the painter himself indicates for us by making a mark in the

pavement of the nave. This is the first great work executed according to the canons

of this technique, which for the time can be considered modern painting. Andrea

Pozzo called the observation point ‘the divine light’.

Many meanings have been attributed to that point. The Lutheran Christoph

Friedrich Nicolai (1733-1811), one of Pozzo’s fiercest critics, in 1781, shortly af-

ter the suppression of the Society of Jesus [in 1773], called it the point of blind

obbedience, in denigration of the entire Jesuit order. But that point is the fulcrum of

Pozzo’s genius as a painter; it is the essence of his technique.

( c© Maurizio Roatta 2010)
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In 2009, while restoration work was still underway, the financial patrons spon-

sored an event on the occasion of the three-hundredth anniversary of the death of

Andrea Pozzo, making it possible for visitors to use the scaffolding in place for the

work to view the paintings close up. The images that show the painter’s point of
view relative to the false cupola allow us to formulate some comments about this

technique.

( c© Maurizio Roatta 2010)

Many visitors, upon seeing these strange tangles, after losing themselves a bit in

contemplation, have asked in one way or another the same question:

‘How did the painter do all this?’

A few answers have been attempted by experts both real and improvised, from

the most improbable (‘Andrea Pozzi left holes in the scaffolding so that he could see

the painting from below and correct any errors’) to the most ennobling and flattering

(‘Pozzo was pure talent. He was a genius’). This last assertion derives from the fact

that although the painter in question was never a brilliant student during the years

he attended the Jesuit College in Trento, he had already shown an early preference

for painting over study; thus maintaining that Pozzo was a genius elegantly closes

the discussion.

It is my conviction, without intending to take anything at all away from the artist’s

talent, that genius in this case is also supported by precise mathematical knowledge,

and I think that Pozzo acquired this foundation precisely during his student years at

the Jesuit College in Trento, and that he built on and used it for the rest of his life.

The church at Mondovı̀ is his first work, and there may have been room for

improvisation, but I am convinced that it is articulated by means of a graphic design

that required precise calculations for the subdivision of the space and the correct

distribution of the volumes. I believe that his system of calculating, if it can be

defined in that way, has yet to be revealed. In order to execute this illusory cupola,

he laid out a grid on the ceiling; traces are still evident in the plaster, and the nails

are still there that were used to hold the strings to define the modules of a grid onto

which was transferred with identical proportions a drawing created earlier. All of

this indicates that behind the painting there was a precise design.
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The figure that follows shows that Andrea Pozzo had no absolute need to go

down below to check for possible errors. Here we are on the vertical axis of the

point of observation, very close to the vault. As you can see, the part of the painted

architecture is in the correct arrangement, and in spite of the fact that the central

scene is still quite flattened, the cupola already begins to appear. Naturally, as you

go down along this vertical line, that phenomenon becomes increasingly evident,

finally assuming the correct dimensions.

( c© Maurizio Roatta 2010)

( c© Maurizio Roatta 2010)

The layers of plaster make it possible for us to see how he proceeded.
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( c© Maurizio Roatta 2010)

( c© Maurizio Roatta 2010)
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First he created these two lunettes in order to have the precise direction of the

longitudinal axis of the church.

( c© Maurizio Roatta 2010)

He then painted the scene of the ascension of the Saint, in the centre of the false

cupola, very far from the centre of the actual ceiling.

( c© Maurizio Roatta 2010)

He then laid out and painted the entire lower order of the architecture.

( c© Maurizio Roatta 2010)
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Next he painted the upper orders of the architecture.

( c© Maurizio Roatta 2010)

Finally, he painted the figures.

( c© Maurizio Roatta 2010)

In addition to calculating the perspective, there are also plays of interpenetration

used by the painter to augment the effects, for example, the figure of the angel with

the cello which appears to be suspended between the real space of the church and the

heavens of Paradise. This of course is all fictive, as are the plays of light and shadow,

( c© Maurizio Roatta 2010)
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but fiction imitates reality in this scenic apparatus, since it represents a miracle: the

levitations attributed to St. Francis Xavier, described in a Papal Bull.

( c© Maurizio Roatta 2010)

We are now in the winter between 1676 and 1677. The apse has been completed

with paintings, and Marco Mutis has erected the first four columns in plaster and

completed the walls. With the help of three assistants and a team of carpenters and

joiners, who are charged with erecting the scaffolding and constructing the various

frameworks on which the canvasses will be stretched, Andrea Pozzo creates the

scenic apparatus that was to serve for both the commemoration of St. Francis and

for the celebrations of the Quarant’hore, or forty hours’ devotion, and for other

particularly important church functions.

Pozzo was a man of the theatre and kept the group working at a fast pace. Care-

ful observation shows parts of the wood left unvarnished and hastily fitted joints.

The painter himself seems to have used something more akin to a broom than a

paintbrush, and to have painted directly on the canvas without having first primed

it. Often the canvasses are not large enough to cover the entire wooden framework;

in that case, as the figure shows, the painter painted directly on the wood.

Pozzo’s work in Mondovı̀ is ephemeral, constructed with simple materials, the

stuff of theatre, designed to be dismantled and remounted. There may even have

been an intention to rebuild it in marble in order to make the church even more
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( c© Maurizio Roatta 2010)

sumptuous, but as fate would have it, it has remained as it was for more than three

hundred years. We restorers, who have had the opportunity to study every inch of

this apparatus at length, have found no signs to indicate that it has ever been dis-

mantled.

( c© Maurizio Roatta 2010)
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Fig. 2 Design for an altar apparatus similar to that in Mondovı̀ (image taken from vol. I of the
treatise Prospettiva dei Pittori e architetti by Andrea Pozzo, Rome, 1780)

“I have used this tabernacle several times for the exposition of the forty hours

devotion” said Andrea Pozzo with regard to the design which is shown in fig. 61

of his treatise. This provides us with a first precise reference for the analysis of the

perspective construction of the apparatus in Mondovı̀. The second reference is the

physical model, which is the high altar of the church of Santi Giovanni e Paolo

in Venice (a work in marble by Mattia Carneri and Baldassarre Longhena). The

altar apparatus in Mondovı̀ is a very similar copy, differing only in the ornamental

figures that crown the tympanum and in the materials. It is composed of two parallel
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backdrops, each of which is composed of various fitted panels, ten for the front wing,

and four for the back one. Together they provide the image of an architecture that is

coherent with that of the scenic apparatus of the church, not only in the proportions

but also in the illusions of materials and the use of the architectural orders. The

scenic apparatus is supported on planking at the top of the high altar.

The images that follow provide an idea of how this apparatus functions, based

on the remaining elements that constitute the mechanism. A simple apparatus, the

working parts consist in a few pulleys, a pulley knot, and a small winch placed in

the upper part of the ceiling of the apse.

Fig. 3 Details of the two backdrops and of the structure of the apparatus

It is presumed that to create an evocative scenic effect, the church was darkened

while the two backdrops of the apparatus were illuminated with artfully located oil

lamps. Marks left by nails indicate that cloth panels arranged in the central space of

the first backdrop acted as drop curtains. At a certain point of the function, the drop

curtains opened, St. Francis appeared, and the faithful watched him levitate.
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Because there are no documents that describe the movement and lighting of this

apparatus, a group of scholars has been created to study and apply the correct system

to a scale model constructed ad hoc in order to then apply it to the apparatus of

Andrea Pozzo, which was and is unique in the world.
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Homage to Hypatia



Hypatia as Polymath

Michael A.B. Deakin

1 Introduction

First let me introduce my subject and explain my title.

Hypatia was a mathematician, astronomer and philosopher whose life spanned

the late IV and early V centuries AD. She was, for a time, the world’s leading math-

ematician, the only woman ever for whom this claim can be made. She is also the

first female mathematician of whose life we have any reasonably complete account

(although we have sketchy details of a number of earlier figures). I have published a

biography [1] of her, which contains English translations of all the primary sources

from which we draw the story of her life, and because these sources constitute the

basis for detailed claims I advance in what follows, I here refrain from reproducing

the minutiae of the relevant documentation, but instead refer the reader to the place

in my book where these details are supplied.

She was the daughter of Theon of Alexandria, himself an astronomer and math-

ematician, best remembered as the principal source of our knowledge of Euclid’s

Elements [2]. The date of her birth is uncertain, and various authors have argued for

different years ranging from 350 to 375 AD. The best modern scholarship opts for

ca. 355 AD, but with a large error bar attached. She lived out her life in Alexandria,

which was at that time the intellectual hub of the Eastern Roman Empire, surpassing

then both Athens and Constantinople in this respect. She died, brutally murdered, in

(almost certainly) 415 AD, a victim of an outpouring of Christian fanaticism against

a prominent adherent of a rival philosophy. Her womanhood, her learning and her

violent martyrdom have combined to make her a powerful symbol of scholarship

under difficult circumstances and an icon for the feminist movement.

The term polymath applies to one expert in a variety of different fields of intel-

lectual endeavor. Its etymology is Greek: “poly”, of course, meaning “many”, and

“math” signifying “learning”. This latter half of the word, however, requires fur-

ther elaboration. Its origins go back to the Pythagorean movement (VI century BC).
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At their gatherings, there were two classes of participants: the mathematikoi, who

were authorized to contribute to the discussion, and the akousmatikoi, who could at-

tend and listen, but not themselves play an active part [3] (think, in this connection,

of the word acoustic). Because Pythagoras is recognized as a pioneering mathe-

matician (in our modern sense of the term), the element math in the first of these

designations has come to be applied to that specific branch of learning that today we

call mathematics.

I find this particularly apt for my theme here. While it is clear that Hypatia’s

expertise covered several fields (which makes her a polymath in the usual general

sense), it is also clear, as I will argue in detail, that, of these various fields, it was

the mathematics that was paramount. In other words, the second linguistic element

in the word polymath may be assigned a particular significance. We might rephrase

the meaning of the entire word as “many-fold ramifications of mathematics”.

It is especially important to stress the primary rôle played by mathematics in

her thinking, because many, indeed most, earlier biographies either gloss over her

mathematical endeavors or else discuss them quite inadequately. For critical details

on this matter, the reader is once again referred to my book [1].

2 Hypatia as Mathematician

The various branches of the mathematical sciences were later combined and for-

malized into the quadrivium ([1], p. 178) of the medieval universities. As this name

implies, there were four such branches: arithmetic, geometry, astronomy and mu-

sic. Hypatia was adept in the first three of these, and may also have had some in-

volvement with the fourth. (Music was seen as mathematical ever since the time of

Pythagoras and his interest in the mathematical principles behind, e.g., the mono-

chord. However, this aspect of the story will not be pursued here. Furthermore, we

nowadays discuss astronomy as a separate discipline for reasons I outline below; I

will follow this convention here.)

But now first note that we must think of Hypatia as being first and foremost a

mathematician. The books she is credited with writing are all concerned with math-

ematics or astronomy; no others are mentioned. Her strictly mathematical works

comprise commentaries on the Conics of Apollonios and the Arithmetic of Dio-

phantos.

Her times were not, however, propitious for the pursuit of mathematics. Mathe-

matics had become confused with numerology and astronomy with astrology. Both

of these were regarded with mistrust by the Christian establishment of the late Ro-

man Empire. The thirty-sixth canon of the council of Laodicea forbade priests to

be mathematicians. Hypatia’s almost exact contemporary St. Augustine of Hippo

recalled his adventures with mathematicians thus ([1], p. 64):

Those imposters whom they call mathematicians I consulted without scruple: because they
seemed to use no sacrifice nor pray to any spirit for their divinations: which art, however,
Christian piety consistently rejects and condemns.
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It follows that the interest Theon and Hypatia displayed in mathematical endeavors,

although actually pursued only in its reputable aspects, could easily be misrepre-

sented and accordingly mistrusted. Indeed there is very good evidence that such

misrepresentation was used to justify Hypatia’s murder ([1], pp. 148-149).

In such a climate, the priority for both father and daughter was not so much the

advancement of the frontiers of knowledge (i.e. research mathematics), but rather

the urgent attempt to preserve and transmit the body of existing knowledge. This

was done in two ways, first by the production of commentaries on mathematical

and astronomical classics, and second by teaching, hoping to keep alive the flame

of genuine learning in the living beings of their students.

Theon had worked extensively on the books of Euclid and Ptolemy, especially

the former’s Elements and the latter’s Almagest; Hypatia extended his program to

the more difficult works of Apollonios and Diophantos, producing commentaries

on both the Conics (Apollonios) and the Arithmetic (Diophantos). These commen-

taries are both now presumed lost, although it is possible that parts of them may

be preserved as interpolations and translations in later works. Again, the matter is

discussed in more detail in my book ([1], Chapter 9).

I have already stressed that it is the mathematical and astronomical works that are

listed in the primary source material. No specifically philosophical treatise has ever

been ascribed to her. She is, however, also described there as giving public lectures

on philosophy, and we may plausibly deduce the general nature of the philosophy

she espoused, a task I embark on below.

This mathematical aspect of her thinking even attracted adverse comment. The

philosopher Damaskios compared her unfavorably with his own teacher, Isidoros

([1], pp. 140-143):

There was a very great difference between Isidoros and Hypatia, not simply because she
was merely a woman while he was a man, but also insofar as she was expert mainly in
geometry whereas he was a true philosopher.

(Women and mathematicians alike will rejoice in this reaction by the French histo-

rian of mathematics, Paul Tannery: “In plain language, Isidoros knew no mathemat-

ics!”; see [1], p. 177.)

3 Hypatia as Astronomer

Although in her own time, Hypatia’s interest in astronomy would have been seen as

being essentially mathematical in character, I here follow modern nomenclature in

separating astronomy from mathematics proper (arithmetic and geometry deal with

abstract mental constructs, whereas astronomy has not, and indeed cannot, shed its

material referents).

Hypatia is known to have collaborated with her father in at least one aspect of his

work on Ptolemy. Quite what was the nature of her contribution to the third book of

her father’s commentary on Ptolemy’s Almagest is under dispute. It is also unclear
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whether or not this contribution is the same as an astronomical table she is credited

with producing.

However, it has been plausibly suggested that her contribution was an improved

method for the long division algorithms needed for astronomical computation (see

[1], pp. 115-118). In Book III of the Almagest, there is a division calculation aimed

at computing the number of the degrees swept out by the sun in a single day as it

orbits the earth (remember that the Ptolemaic system of astronomy was geocentric).

In modern terms, the determination of the value of 360/365.25. The computation

proceeds by means of a tabular method that is superior to the approaches used in

other parts of Theon’s commentary. It may be that this tabular method is what the

sources refer to as the astronomical table, but this is by no means the only possible

interpretation.

Hypatia also assisted her pupil Synesios in the design of an astrolabe that he

had had made as a gift to an influential official. The astrolabe in question would

have been a little astrolabe, which used a stereographic projection of the celestial

sphere to represent the heavens on a plane surface. The underlying theory seems to

have been passed down from Ptolemy, or perhaps even the earlier Hipparchos via

Ptolemy, to Theon and thence to Hypatia and Synesios.

In his covering letter, Synesios wrote ([1], p. 60):

Astronomy itself is a venerable science, and might become a stepping stone to something
more august, a science which I think is a convenient passage to mystical theology, for the
happy body of heaven has matter underneath it, and its motion has seemed to the leaders
in philosophy to be an imitation of mind. It proceeds to its demonstrations in no uncertain
way, for it uses as its servants geometry and arithmetic, which it would not be improper to
call a fixed standard of truth.

The passage bears elaboration. The composition of the heavens was seen as involv-

ing the quinta essentia, a fifth element distinct from the other four: the mundane

earth, air, fire and water (ordinary matter). Synesios saw astronomy as a bridge be-

tween the material world and a more sublime counterpart, visible in the sky. This

counterpart is directly influenced by the abstractions of geometry and arithmetic,

which provide guaranteed truth (he is citing Ptolemy at this point). Elsewhere in

his writing, Synesios saw dreams as a similar bridge between the material and the

spiritual realms.

The scribe Photios, summarizing an earlier account of Hypatia, wrote ([1], p.

158):

[Philostorgios] says that Hypatia the daughter of Theon was taught mathematics by her
father, but reached an excellence far above her teacher, especially in astronomy, and that
she instructed many [pupils] in mathematical studies.

(As indicated above, in accordance with the custom of the time, he regarded astron-

omy as a branch of mathematics.)
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4 Hypatia as Philosopher

The primary sources tell us that Hypatia was a Neoplatonist, which means that she

would have ascribed a religious cast to the philosophy of Plato. This label of itself

is not particularly specific, and could be applied to a wide multiplicity of actual

beliefs. However, Synesios of Cyrene was her devoted pupil and his position is very

well documented. Not only did he speak most fulsomely of her, and indeed in his

letters to her, but he also sent her copies of some of his writings, in effect inviting

her to referee them. She must have approved, because the works remain extant.

Synesios idolized Hypatia (see [1], pp. 150-158). He addressed her as “mother,

sister, teacher and withal benefactress”. He referred to her as “the lady who legit-

imately presides over the mysteries of philosophy” and spoke of her as providing

Egypt with “fruitful wisdom”. We are thus led to think that Synesios’ philosophical

outlook was close to Hypatia’s own, and thus that we may attempt to reconstruct

Hypatia’s philosophy by extrapolating from Synesios’.

Synesios was very much a Platonist and so followed Plato in espousing a theory

according to which the world of everyday experience is actually a projection of a

more fundamental reality – a universe of forms. We can access this deeper reality

via our power of abstraction and the clearest example of this principle at work is the

case of mathematics.

Indeed so important is the example of mathematics in Plato’s philosophy that

he is credited with the injunction: “Let no one ignorant of mathematics enter [my

academy].”

So familiar do mathematical concepts become to us that we reify them, and think

of numbers such as 2 as actually existing – not of course in a concrete sense, but

nonetheless as being every bit as real as concrete objects. So, for example, the num-

ber 2 is reached via our abstracting from pairs of objects (hands, feet, parents and

the like). But beyond this simple example, we even apply this same mode of thought

to much more elaborate cases such as the number π which indeed is referred to as a

real number!

The concepts of mathematics can thus be regarded as clear examples of Platonic
forms – probably the clearest examples there are. It is most certainly true that most

working mathematicians adopt a form of Platonism, perhaps even subconsciously,

but not necessarily so, as a working philosophy. Here is an explicit statement from

the mathematician Charles Hermite:

There exists, if I am not mistaken, an entire world which is the totality of mathematical
truths, to which we have access only with our mind, just as the world of physical reality
exists, the one like the other independent of ourselves, both of divine creation [4].

The attribution of divine creation requires elaboration. In 1856, Hermite embraced

Roman Catholicism and clung to it rigorously. His attribution of a divine locus to

mathematical reality is thus hardly surprising (see, in this connection, my remarks

below on the close correspondence of the notions of the Christian God and the Neo-

platonic One). However, by no means all mathematicians who ascribe an other-
worldly realm to mathematical reality follow Hermite in his religious interpretation.
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Fig. 1 Portrait of Hypatia

Another mathematician, an avowed atheist, G. H. Hardy has written in quite similar

vein, but naturally without the reference to the godhead:

I believe that mathematical reality lies outside us, that our function is to discover or observe
it, and that the theorems which we prove, and which we describe grandiloquently as our
creations, are simply the notes of our observations ([5], pp. 123-124).

Even those mathematicians who decry platonic mathematics, such as Philip Davis,

nonetheless succeed in demonstrating that it accurately describes the way in which

most working mathematicians think [6].

The case against platonic mathematics has also been argued forcibly by Lakoff

and Núñez, who nonetheless acknowledge its force ([7], p. 80).

The metaphor Numbers Are Things in the World has deep consequences. The first is the
widespread view of mathematical Platonism. If objects are real entities out there in the
universe, then understanding Numbers metaphorically as Things in the World leads to the
metaphorical conclusion that numbers have an objective existence as real entities out there
as part of the universe. This is a metaphorical inference from one of our most basic uncon-
scious metaphors. We barely notice it.

They continue in this vein and derive three consequences of such a view, the first of

which I find tendentious, and will refrain from discussing further. But their second

reads “[n]umbers should not be product of minds, any more than trees or rocks or

stars are products of minds” and their third “[m]athematical truths are discovered,

not created” (when, in the above, they say “numbers”, they imply also reference to

other mathematical constructs).

Their second consequence leads to an important philosophical division as to the

nature of mathematical reality Lakoff and Núñez espouse the antithetical view: that
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mathematical constructs are the product of (embodied) human minds. This view im-

pinges on the ongoing debate as to whether mathematical advances are discoveries
or inventions (their third consequence). It is not my intention to involve myself in

this debate; but I do I point out, indeed stress, that, for many mathematicians, the

Platonic account is paramount, and even for those who dispute it, there is recogni-

tion and acknowledgement of its force.

The Platonic view extends naturally into mathematical education:

. . . the exact sciences [are not] based on an accumulation of statistics. In order to teach the
young that three plus four makes seven, you do not add four cakes plus three cakes nor four
bishops plus three bishops nor four cooperatives plus three cooperatives nor four patent
leather buttons with three wool socks. Once the principle has been intuited, the youthful
mathematician grasps that three plus four invariably make seven and he does not have to
prove it over and over again with chocolates, man-eating tigers, oysters or telescopes ([8],
pp. 123- 124).

An explicitly religious dimension can be given to the theory of forms by supposing a

further act of abstraction, directed to discovering an even deeper reality underlying

the forms themselves. This deeper reality was termed the One or the Unity. For

Neoplatonists, the goal of the well-spent life was seen as one of conformity with the

principles implicit in the One. The virtuous life entailed a quest for mystic union

with the One.

This concept of One is actually not very different in its fundamentals from the

God of the monotheistic religions: a fundamental correspondence clearly grasped

by Synesios, who converted to Christianity without compromising his fundamental

Neoplatonism. However, it was equally clearly not grasped by the Christian fanatics

who assassinated Hypatia.

In fact, there are Neoplatonist ideas implicit in many of Christianity’s doctrinal

formulations. In particular, the doctrine of the Trinity has clear Neoplatonic roots,

especially in its notion of the Logos or Word, a term derived from Neoplatonism,

but routinely applied to God the Son who in Christian belief became incarnate as

Jesus of Nazareth (such a view clearly characterizes the opening sentences of the

Gospel of John).

It may well be true that Hypatia’s Christian contemporaries could see the idea

of mathematics as a path to the divine as perhaps odd or quirky (although clearly

Synesios did not), but there is nothing inimical to Christianity in such a view. Rather,

a Christian would see Neoplatonism as incomplete, in that it omitted reference to

the Incarnation, the central dogma of Christianity.

The compatibility of Hypatia’s outlook with Judaeo-Christian theism is most

strikingly illustrated by the fact that she was not acted against during the episcopate

of Theophilos (bishop of Alexandria from 385-412 AD). Theophilos had sacked the

pagan temple of Serapis and replaced it with a Christian church dedicated to St. John

the Baptist, of whom he held custody of some alleged relics. But this ultra-militant

Christian took no action against Hypatia and indeed enjoyed a cordial friendship

with her pupil Synesios. With the deaths of Synesios and Theophilos, and the acces-

sion of St Cyril of Alexandria to the bishopric, Hypatia lost two powerful protectors.

I think it probable that Theophilos took the view that, although Hypatia was not her-
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self a Christian, her philosophy was nonetheless not anti-Christian (as other streams

of Neoplatonism in fact were), and so she was not an antagonist of the Christian

position, but perhaps rather even a somewhat distant ally.

The form of Neoplatonism that Hypatia adopted formed the basis of a devoted

lifestyle, aimed at communion with the One. In her case, it led her to embrace a

strict celibacy, as a corollary of an attempt to rise above material things. It did not

however mean that she withdrew from public life. Indeed, her pupil Synesios urged

in his Dion that such engagement was to be encouraged (see [9], Chapter VI). Her

lectures on philosophical topics were popular and well-attended. Furthermore she

engaged in civic affairs and held frequent discussion with the prefect of Alexandria,

Orestes. This aspect of her life was, sadly, a part of the motivation for her murder,

for when a Christian assassination attempt on Orestes failed, its perpetrators chose

a softer target: Hypatia.

5 Conclusion: the Primacy of Mathematics in Hypatia’s
Philosophy

So I here argue that Hypatia made the example of mathematics her primary entree

to the world of Neoplatonic philosophy. Indeed, this approach earned her some dis-

approval, as instanced by the comment by Damaskios (quoted above).

In the first place, the example of mathematics offers the clearest possible illus-

tration of the Platonic theory of forms, so that someone committed to that would

necessarily make mathematics an integral part of their philosophy, as indeed Plato

himself did.

Moreover, the truths of mathematics stand scrutiny without qualification, and

without reference to what we might call experiment. If we like, we may describe

them as necessary facts, rather than contingent ones. In such a sense, we may there-

fore view them as offering a path to aspects of the One, as the fundamental under-

lying reality.

We therefore see Hypatia as unifying the mathematics of her day into an overall

Neoplatonic philosophical outlook: the mathematics was a stepping stone to higher

things; it enabled access to “a fixed standard of truth”.

So she did use mathematics as a gateway to philosophy, and thus was not a mere
geometer, as Damaskios would have it; unlike Isidoros, she was a true philosopher,

who knew, treasured and used mathematics.
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Women’s Contributions to the Progress
of Mathematics: Lights and Shadows

Elisabetta Strickland

It’s undoubtedly worthwhile to analyse the role played by women in mathematics.

Men have obtained many recognitions in this field, but the same cannot be said about

women. Indeed, how many people are aware of the contributions of Hypatia, Émilie

du Châtelet, Maria Gaetana Agnesi, Sophie Germaine, Mary Fairfax Somerville,

Sonya Kovalevsky and Emmy Noether? Nevertheless, today we can confirm that

these women made substantial contributions to the progress of mathematics. For

this reason they deserve our attention, but also because they had extraordinary lives

and peculiar personalities which are interesting to observe closely.

It has been proven that when human beings started to develop the concept of

number, women approached this concept in the same way as men [1, p. 11]. As a

matter of fact, anthropologists are convinced that primitive women had a relatively

high order of creative intelligence, absolutely as lively as that of primitive men.

Cuneiform documents on clay tablets from the region of ancient Mesopotamia

have shown that around 4700 B.C. there were already expert mathematicians at work

and when the Code of Hammurabi was in force among the Babylonians, women

took care of business and accounting, exactly as in ancient Egypt. Nevertheless,

none of the women experts in mathematics in these ancient cultures are known by

name: we have to wait for the Hellenic age to discover the names of women who

were expert in mathematics.

The school of Pythagoras, which started around 539 B.C. in the Greek colony of

Croton in southern Italy, was also attended by women, and some of the teachers were

women too. Pythagoras married one of them, Theano, and two of their daughters ran

the school after the death of Pythagoras.

The first notable woman mathematician was the Egyptian Hypatia, born around

370 A.D. in Alexandria [2]. She was the daughter of the mathematician Theon, who

was the librarian of the Library of Alexandria and educated her as if she were a boy.

In about 400 A.D., she became headmistress of the Platonist school at Alexandria,

where she imparted the knowledge passed down from Plato and Aristotle. Hypatia

was a popular lecturer, drawing students from all parts of the empire. She was a

Hellenistic pagan. Her contributions to science are many: she is credited with the
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invention of an astrolabe [1, p. 28], wrote commentaries on Diophantine equations

and on the conics of Apollonius, edited her father’s commentary on Euclid’s Ele-
ments, wrote a text called The Astronomical Canon, contributed to the invention of

the hydrometer and the hydroscope, and worked on the charting of celestial bod-

ies. When Bishop Cyril and his Christian followers accused her of causing religious

turmoil, Hypatia was assassinated in a ferocious way: a Christian mob of monks

waylaid Hypatia’s chariot as she travelled through the town. The monks stripped

her naked, dragged her through the streets to a church, where they killed her, flay-

ing her body with sharp oyster shells and burned the parts. This cruel death didn’t

prevent Hypatia from securing her place in history.

After the fall of Constantinople, there was a decline in intellectual progress; even

after the Renaissance the status of women changed very slowly. One has to wait

until the seventeenth century to hear again of a prominent woman mathematician.

In France during the Age of Reason it was not easy for women to have an educa-

tion which was not too superficial. The only institution which performed this duty

was founded during the reign of Louis XIV, the Sun King: the Institut of Saint-Cyr,

where young ladies were prepared to become the wives of aristocrats.

This was the general situation of education in France when in 1706 Émilie de

Breteuil was born in Paris, daughter of Louis Nicholas le Tonnier, baron of Breteuil,

head of the protocol at Court [1, p. 52]. She had very good teachers at home and

they were all astonished by her capability in understanding mathematics. Often they

didn’t even understand properly what she was saying, as her ideas were much more

sophisticated than those they were accustomed to. When she was nineteen years

old, she married the Marquis of Châtelet, who was colonel of a regiment. Émilie

du Châtelet was left often alone and spent her time studying and enjoying society.

She was so smart in mathematics that all the best minds in Paris became her friends.

She fell in love with one of them, Voltaire, and went to live with him in the country

house of the Châtelet family, at Cirey-sur-Blaise. There du Chatelet was introduced

to the work of Leibniz and Newton, which occupied her mind for fifteen years. She

became so deep in her thoughts, that she inspired Voltaire to write the novel Can-
dide. The couple could live their love story freely because du Chatelet’s husband

admired Voltaire and decided to tolerate their menage a trois. Du Chatelet liked her

routine: she could work every morning on her papers and in the evenings she could

devote herself to the pleasures of the fashionable world, which suited her personal-

ity as much as science books. During those years, she published with Voltaire the

Istitutions de physique, which was devoted to the work of Leibniz, and translated

Newton’s Principia from Latin, establishing her reputation for competence among

contemporaries.

When she was expecting her fourth child, she admitted that she didn’t know who

the father was, maybe even not Voltaire, as at the time she was having an affair with

the poet Saint Lambert. She really didn’t care about the issue and preferred to spend

those months studying Newton’s theories. Voltaire himself wrote that when the baby

was born, the little girl was put on a volume of geometry and the mother went to bed

taking the papers she was writing along with her. Apparently du Chatelet seemed

well, she spent her convalescence together with her husband, Voltaire and Saint
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Lambert taking care of her. But all of a sudden, late one afternoon, she died quietly.

Voltaire was beside himself, and declared that he had lost not only his lover, but half

of himself.

While these peculiar events where taking place in France, in Italy women were

becoming interested in the study of mathematics. The most notable among them

was Maria Gaetana Agnesi, born in Milan on May 16, 1718.

Agnesi was a child prodigy; she learned seven languages before her thirteenth

birthday, and her father, Pietro Agnesi, who held a chair at the University of

Bologna, and mother, Anna Brivio, gave her the best possible education, with spe-

cial emphasis on mathematics and philosophy, so that she learned from the work

of masters such as Newton, Leibniz, Fermat, Descartes and Euler. Her father orga-

nized seminars at home and distinguished intellectuals gathered to listen Agnesi’s

lectures; but she was shy by nature, and asked her father for permission to enter

a convent in order to spend her life studying in peace. This was not granted, not

least because Agnesi had twenty-one siblings and half-siblings and when he lost

his last wife, Agnesi was asked to help with their education. Her first book, which

she started writing at the age of twenty, entitled Instituzioni analitiche ad uso della
gioventù italiana (Analytical Institutions for the use of Italian Youths), was a treatise

on differential and integral calculus. She spent ten years on it and when it was pub-

lished in 1748, the academic world was extremely impressed by her work. But her

reputation reached extraordinary heights when she discussed a planar cubic curve,

originally studied by Fermat, which she called a versiera, from the Latin word vert-
ere, as the curve actually turned. But this word was interpreted as an abbreviation of

the word avversiera, or ‘wife of the devil’, so it happened that John Colson, profes-

sor of mathematics at Cambridge, translated the word versiera as ‘witch’, and the

curve discussed by Agnesi became known as the witch of Agnesi.
Because of her results in mathematics, Agnesi became a member of the Ac-

cademia delle Scienze of Bologna and was given a diamond ring by the Empress

Maria Theresa, to whom she had dedicated her book. Even Pope Benedict XIV

showed appreciation for her work and secured a teaching position for her at the Uni-

versity of Bologna after her father’s death. But Agnesi preferred to devote herself

to help the poor, and she was appointed head of the female section of the Hospice

Trivulzio in Milan. She died at age 81: the city of Milan named a street after her,

and a crater on Venus is named in her honour.

Like Émilie du Châtelet, another notable mathematician, physicist and philoso-

pher of the eighteenth century was also French: Sophie Germaine, born in Paris on

April 1, 1776.

Germaine was 13 when the Bastille fell, and as the turmoil in Paris made it im-

possible for her to spend time outside the house, she turned to her father’s library. In

the book of Jean-Étienne Montucla, Histoire des Mathèmatiques, she read the story

of the death of Archimedes, killed by a Roman soldier during the sack of Syracuse

in 212 B.C. while he was totally absorbed by a problem in geometry. Germaine

decided that if mathematics had held such fascination for Archimedes, it was a sub-

ject worthy of study. The family didn’t approve of her attraction to mathematics

and, when night came, they would deny her warm clothes and proper lighting in her
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bedroom. She waited until they went to sleep, took out candles, wrapped herself in

blankets and worked until dawn. One morning Germaine was found asleep on her

desk, the ink frozen in the ink horn; this made them realise that she had to be free to

do mathematics [1, p. 85].

In 1794, when she was 18, the École Polytechnique opened, but as a woman

Germaine was not permitted to attend. She managed to obtain the lecture notes

of Lagrange, who was a faculty member, and started to send him her work using

the pseudonym of M. Le Blanc. Lagrange recognised the quality of her work and

was determined to meet M. Le Blanc, so Germaine was forced to disclose her true

identity. Lagrange didn’t mind that Germaine was a woman, and helped her in her

work.

Initially Germaine had a deep interest in number theory and, again under the

pseudonym of M. Le Blanc, she wrote to Carl Friedrich Gauss, presenting some of

her work on Fermat’s Last Theorem. Gauss thought well of Germaine, even after

he discovered that she was a woman, but he generally did not review her work, so

finally the correspondence ended without the two having ever met.

In 1811 Germaine participated in a competition sponsored by the Académie des

sciences in Paris concerning the experiments of the physicist Ernst Chladni with

vibrating metal plates. The object of the competition was to give a mathematical

theory for the vibration of an elastic surface. She didn’t succeed this first time, be-

cause the jury said the equations were not established, but she tried again and at the

third attempt, in 1816, she won the prize and this allowed her to have a reputation

on a par with that of Cauchy, Ampere, Navier, Poisson and Fourier.

But Germaine’s best work was in number theory, as she made a significant con-

tribution to Fermat’s Last Theorem. She wrote again to Gauss to ask his opinion

on her proof for a special case, but Gauss never answered. As we know, Andrew

Wiles solved the problem in 1994, but Germaine’s work two hundred years before

is considered substantial.

Finally Gauss did his best to convince the University of Göttingen to confer a

doctor’s degree honoris causa on Germaine, but she never had the chance to receive

it, since she died of breast cancer in 1831. When the state official who had to fill

her death certificate came to her house, he refused to write ‘mathematician’ for her

profession, writing property owner instead. When the Eiffel Tower was erected and

it was decided to inscribe in it the names of the seventy-two scientists whose work

on elasticity contributed to the enterprise, Germaine’s name was left out, perhaps

because she was a woman. But today Germaine is considered one of the founders of

mathematical physics.

We now leave France and turn to the British contribution of women in math-

ematics. This leads us to some interesting reflections on the life of Mary Fairfax

Somerville, whose extraordinary mathematical talent came to the surface by a lucky

accident. She was born in Scotland, at Jedburgh, in 1780. When she was a little girl,

she didn’t like studying; as a matter of fact at the age of ten she was barely capable

of reading. One day, when she was a teenager, she was leafing through a fashion

magazine and noticed some algebraic symbols, which she found fascinating [3, p.

46]. She was at that time attending Nasmyth’s Academy, in order to learn painting
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and dancing and there she overheard the master of the school talking about Euclid’s

Elements of Geometry and succeeded in obtaining a copy of the book through her

youngest brother’s tutor, together with a text of algebra [3, p. 49]. She started to

spend her time studying at night at candlelight, behaviour which her family found

deeply worrying. It was decided that she would marry her cousin Samuel Greig. This

is exactly what happened, and in the first three years of marriage she had two sons,

one of whom died shortly after birth. Her husband was against her wish to study

mathematics, but he died in 1807, leaving her financially independent for the first

time in her life. By this time she had pretty well mastered geometry and astronomy.

At the age of 33, she won a prize solving a problem on Diophantine equations

which had been posed by a popular science journal. The editor gave her a list of

classics in mathematics suited to form a solid background in the field. Her family

still found her manner of life abnormal and convinced her to marry a second time

with another cousin, William Somerville. This time she was lucky, as her new hus-

band was an intelligent and handsome surgeon, who moved with Fairfax Somerville

to London, where she had the chance to study and meet all the most outstanding in-

tellectuals of that time, such as the mathematician Pierre Laplace and the explorers

Georges Cuvier and Sir Edward Perry.

In 1826 Fairfax Somerville submitted an article to the Royal Society on the mag-

netic properties of ultraviolet rays in the solar spectrum and in 1838 she was ap-

pointed honorary member of the Royal Astronomical Society, together with Caro-

line Lucretia Herschel. Her second husband also had health problems and Fairfax

Somerville had to move first to Paris, then to Italy. This didn’t prevent her from

writing two volumes on behalf of the Society of Useful Knowledge, Mechanism of
the Heavens about the work of Laplace and one about Newton’s Principia, which

had to be translated from Latin into English for the British academic institutions.

Notwithstanding her role as mother of five children (she had four from the second

marriage), in 1843 her book The Connection of the Physical Sciences was published

and was followed in 1848 by another one called Physical Geography. At the age

of 89, after the death of her second husband, she wrote Molecular and Microscopic
Science, a treatise on the form and the rotation of the earth and the tides of the ocean

and atmosphere, plus other texts on various topics. She also wrote also her memoirs,

Personal Recollections [3]. She died at 92, in Naples. Most of the popularity of her

writings is due to her clear style and her enthusiasm for the subjects. No one has any

doubt about her being one of the most outstanding British women scientists.

Up to know, we have talked about women mathematicians in France, Italy and

Great Britain. What can be said about other countries?

An interesting answer can be found in Russia. Sofia (or Sophie) Vasilyevna Ko-

valevskaya was born in Moscow in 1850. Her father, Vasily Vasilyevich Korvin-

Krukovsky, served in the Imperial Russian Army. She was the first major Russian

female mathematician as well as a public advocate of feminism and a noted writer

whose works include both fiction and nonfiction.

There are some transliterations of her name; she herself changed it in Sonya Ko-

valevsky in her last academic publications. Her mother Yelizaveta decided to nurture

her interest in mathematics by hiring a well known tutor for her higher education,
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Alexander Nikolayevich Strannoliubsky, who taught her calculus [4, p. 7]. Because

her father prevented her from completing her education in Russia, she decided to

contract a fictitious marriage with Vladimir Kovalevsky, a young palaeontology

student and together they emigrated from Russia. Kovalevskaya began attending the

University of Heidelberg, in Germany, studying under such teachers as the physi-

cists Helmholtz and Kirkhoff and the chemist Bunsen [5, p. 424]. But when she

learned that the mathematician Karl Weierstrass was teaching in Berlin, she asked

him to give her private lessons: the University would not allow her to audit classes.

In 1874 she presented three papers to the University of Göttingen as her doctoral dis-

sertation: the first was on partial differential equations, containing the well known

Cauchy-Kovalevsky theorem, the second one on the dynamics of Saturn’s rings and

the third one on elliptic integrals. Weierstrass supported her and she obtained her

doctorate in mathematics, summa cum laude, without having to pass oral exams or

defend her thesis, thus becoming the first woman in Europe to hold that degree. Af-

ter this achievement, she returned to Russia and gave birth to a daughter, Fufa. After

a year devoted to raising her baby, she resumed her work in mathematics: in order

to do this, she left her husband, who suffered from mood swings, and entrusted Fufa

to her sister, Anyuta. Vladimir couldn’t stand this and, also beleaguered by a stock

swindle, committed suicide.

Kovalevskaya was distraught over this tragedy, and asked the Swedish mathe-

matician Gösta Mittag-Leffler, whom she had known as a fellow student of Weier-

strass, to help her. She thus obtained a position as a docent at Stockholm University.

In 1884 she was appointed a professor (without a chair) and became the editor of

Acta Mathematica. In 1888 she won the Prix Bordin of the French Académie des

sciences for the celebrated discovery of what is known as the ‘Kovalevsky top’, on

the complete integrability of a rigid body motion about a fixed point: the only other

tops were those of Euler and Lagrange. Finally in 1889 she was appointed Profes-

sor with a chair, the first woman to hold such a position in northern Europe. She

also became a member of the Russian Academy of Sciences, but was never offered

a professorship in Russia. She died of complications from a flu in 1891 at the age

of forty-one, after a trip of pleasure. She was buried in Sweden, at Solna. The So-

viet Union honoured her with a postage stamp showing her portrait. Kovalevskaya

also wrote a memoir, A Russian Childhood [4], plays (in collaboration with Anne

Charlotte Edgren-Leffler, the sister of Gösta Mittag-Leffler), and a partly autobio-

graphical novel, Nihilist Girl.
At this point it’s a duty to talk about Emmy Noether, another extraordinary math-

ematician, the founder of modern algebra. She was born in a Jewish family in Ger-

many, at Erlangen, in 1882. Her father, Max Noether, professor of mathematics at

the University of Erlangen, was at that time already a celebrity, thanks to his theory

of algebraic functions. Noether had a wonderful character, she was full of joy and

loved having fun, so she grew up dividing her time between social activities and her

father’s lectures, which were attended also by her brother Fritz. She obtained her de-

gree in mathematics in 1907, defending a thesis ‘On complete systems of invariants

for ternary biquadratic forms’ under the supervision of Paul Gordan. She herself

defined her work ‘a jungle of formulas’. After her father’s death, David Hilbert con-
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vinced Noether to go to Göttingen, where he believed she could be useful, with her

knowledge of invariants, for his joint work with Felix Klein on the general theory of

relativity. Hilbert tried desperately to convince the university to give her a position,

but he didn’t succeed, because she was a woman. He was so exasperated by the re-

fusal, that one day at a faculty meeting he burst out with his famous words ‘This is

a university, not a bathhouse!’. But Hilbert had such an high opinion of the young

lady, that he ignored the faculty’s decision and started to send her to give lectures

in his place. Only at the end of the first world war was Noether officially allowed to

teach at the university. In the 1920s she developed the theory of ideals in commuta-

tive rings. She loved working at the beautiful Institute of Mathematics of Göttingen,

which had been constructed with the financial help of the Rockefeller Foundation.

In 1932 she was the first woman to give a talk at the International Congress

of Mathematicians, in Zurich. But under the Nazis, because she was Jewish, she

was compelled to leave for the United States, where she was offered a job at Bryn
Mawr College in Pennsylvania, very close to the Institute for Advanced Study of

Princeton. During her American years, she worked on noncommutative rings and

hypercomplex algebras and united the theory of group representations with the the-

ory of modules and ideals. But she didn’t enjoy the privileges she had received in

the States for long, as she died at 53 as the consequence of an apparently successful

operation. Albert Einstein wrote in the New York Times [May 4, 1935, p. 12] that

‘Fraulein Noether was the most significant creative mathematical genius thus far

produced since the higher education of women began’.

Hilbert [1, p. 152] said that in Göttingen people usually referred to Noether as

‘der Noether’, i.e., using the masculine article, because of a respectful recognition

of her power as a creative thinker who appeared to have broken through the barrier

of sex.

One last glimpse at Italy: as the 150th anniversary of its founding as a modern

state is being celebrated at the moment of this writing, it’s quite natural to wonder

if women have made important contributions to mathematics during this period.

Let me mention two relevant names in this context: Maria Pastori (1895-1975)

and Maria Cibrario Cinquini (1905-1992). Pastori had as master and colleague the

great mathematical physicist Bruno Finzi. She didn’t come from a wealthy family or

grow up in an intellectual environment, but nevertheless she succeeded in entering

the Scuola Normale Superiore di Pisa, where she defended her degree thesis in 1920.

In 1939 she obtained a chair at the University of Messina and in 1947 she returned to

her hometown Milan, holding the chair of rational mechanics. During her career she

published about one hundred papers, obtaining important results in tensor analysis

and relativity. She wrote a book in collaboration with Bruno Finzi, entitled Calcolo
Tensoriale ed Applicazioni (Tensor Calculus and its Applications), still considered

today a milestone in mathematical literature.

Maria Cibrario Cinquini obtained her degree in 1927 at the University of Turin,

under the supervision of Guido Fubini. As an assistant professor she worked with

Giuseppe Peano and in one of her first eight papers written during the six years after

her graduation, she analyzed 24 statements derived from the definition of limit, fol-

lowing Peano’s work. After his death, she worked with Francesco Giacomo Tricomi
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and Guido Fubini, and won the Corrado Segre Prize for young assistant profes-

sors three years in a row (1926-1928). She became internationally renowned for her

discovery that hyperbolic-elliptic differential equations could give a description of

transonic aerodynamic phenomena. She married her colleague Silvio Cinquini, and

they had three children. Her family duties didn’t prevent her from solving the Gour-

sat problem for nonlinear hyperbolic equations and the Cauchy problem for systems

of first order differential equations.

Some final words about women in mathematics today. Many women are first-

class mathematicians: as a matter of fact, women have never before enjoyed such

prominence in mathematics. At the most recent International Congress of Mathe-

matics, many of the 178 speakers were women, including Parimala, an Indian math-

ematician, Claire Voisin, French, winner of the Clay Research Award in 2008, and

an Italian, Matilde Marcolli, who works at Caltech in California.

Moreover, in 2010 for the first time a woman was elected President of the In-

ternational Mathematical Union: she is the Belgian Ingrid Daubechies, first woman

full professor of mathematics at the University of Princeton, expert in the theory of

wavelets. And again in 2010 a woman was elected President of the European Math-

ematical Society: Marta Sanz-Solè, Spanish, from the University of Barcelona, an

expert in stochastic processes.

No woman has yet been the recipient of the Fields Medal, the most important

prize awarded for mathematics, but we have good reason to hope that in 2014, when

the next International Congress of Mathematicians takes place in Seoul, Korea, the

prize will finally be awarded to a woman.
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Hypatia’s Dream

Massimo Vincenzi

1 The plot

The play narrates Hypatia’s last day. From when she wakes up in the morning, then

leaves home for school, until her assault and death. The narration is alternated with

the recollection of one of the protagonist’s desperate feats: saving the library of

Alexandria. A feat that we have turned into a paradigm of her entire life. This recol-

lection is alternated with the more and more vehement and violent voice of the polit-

ical and religious authorities. Beginning from Theodosius’ first edict in 380 AD and

culminating with Bishop Cyril’s anathemas. Most of the narration concerning Hypa-

tia, though faithful to the historical documents, has been freely reinvented. The text

relating to the political authorities is taken from the four Theodosius’ edicts. For the

part of the narration concerning Bishop Cyril we have freely readapted fragments

of his speeches, using as guidelines the available historical evidence.

2 The story

If reason and faith represent the two parallel tracks along which Western history has

travelled during the past two thousand years, the episode that better typifies these

two contending ideologies took place in March 415 with the murder of Hypatia

(Alexandria of Egypt, circa 370 – 415 AD), known as the muse or the philosopher.

The historical context in which the event took place is the time when Christianity

underwent a genetic mutation when it stopped being persecuted after Constantine’s

edict in 313, became a State religion with Theodosius’ edict in 380 and in 392

engaged in persecution, in its turn, when the Greek temples were destroyed and the

pagan books burned.
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The events in Alexandria came to a head starting from 412, when the fundamen-

talist Cyril was appointed patriarch (proclaimed Saint and Doctor of the Church in

1882).

In just three years, availing himself of an armed wing of fighting monks, he

spread panic in the city. But his true sacrificial victim was Hypatia, the most famous

cultural figure in the city. Daughter of Theon, rector of the University of Alexandria

and himself a famous mathematician, Hypatia and her father made scientific history

for commenting the Greek classics: we owe the editions of the works of Euclid,

Archimedes and Diophantus to them.

In a world that, to this day, is still almost exclusively a men’s world, Hypatia is

remembered as the first female mathematician in history: the equivalent of Sappho

for poetry or Aspasia for philosophy. Indeed, she was the only female mathematician

for more than a millennium: for others to appear, we have to wait until the eighteenth

century. But Hypatia was also the inventor of the astrolabe, the planisphere and the

hydroscope, as well as the leading Alexandrian exponent of the Neoplatonic school.

Her works have gone missing. Anything we know about her comes from the

letters of Synesius of Cyrene, her favourite student.

Hypatia’s rationalism, who never married a man because she said she was already

“married to the truth”, was a far too conspicuous counterpart to Cyril’s fanaticism.

One of them had to yield and it could be none but Hypatia. Hypatia was attacked

in the street, her body flayed with ostraca, dismembered and then burned. Governor

Orestes reported the event to Rome, but Cyril claimed that she was safe and sound

in Athens. After an inquiry, the case was dismissed “for lack of witnesses”.

After centuries of guilty silence, in these past few months, Hypatia’s figure is

forcefully coming to the fore. Radio and television programmes, articles in the lead-

ing newspapers, numerous successful books have also been published and at the

festival of Cannes a Spanish MovieTalk has been presented.

3 Hypatia’S Dream

(Hypatia’s house, dawn)

Hypatia: I love the wind that blows through the trees in my garden. It makes a

strange sound. I love to hear the voice of the trees. They speak to me. They remind

me of the stars. The rustling of the sky when at night I look at the lights above. It

is the music that keeps me company. The same prolonged, sweet note wishing me

good night that I hear on waking up in the morning.

Enough! I am captivated by a thousand thoughts and forget what is important. My

father used to tell me again and again. I’ve tried to escape his arguments in whatever

way, but at the end logic, his logic followed me everywhere. He was right. Study

first and foremost. If I’m here today, it’s thanks to him, to my father, it’s thanks to

studying. To his passion. If I’m here today.

I could laugh if I were not in despair. Where am I today? Where are we all today?
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I must get up. Enough! Enough going around with words. I must see my pupils. I

must go to them. I’ve been home too many days. I must go out. I want the sun on my

face. I want to wear my nicest dress. To dismiss evil thoughts. They want to keep us

home. They want the field clear. Nothing. No witnesses.

What kind of God fears words. Hates books. It’s a strange God, indeed.

But it’s the God they wish to portray that is scary. The projection of their fears.

It’s not God. Because you can call God or the gods with many names, but if they

are really up there, beyond the stars and they govern everything, why should they

be afraid? And of what? Of us? Fear and violence belong to man, to God, if there is

one, belongs love.

Off-stage voice: The august emperor Theodosius to Albinus, praetorian prefect. No

one shall violate one’s purity with sacrificial rites, no one shall immolate innocent

victims, no one shall go near sanctuaries, enter temples and turn one’s gaze towards

statues sculptured by mortal hands so as not to deserve divine and human sanctions.

If anyone who is devoted to profane rites enters the temple with the intention of

praying, he shall be immediately forced to pay the sanction with public demonstra-

tion.

(1st flashback)

Hypatia: Let’s go, don’t be afraid. It’s they who don’t understand. Who still don’t

understand. Hurry with those chests. They are books. Many books. As many as

they’ve never seen. An army of books. We shall take them home. Our soldiers. They

will be our weapons. You’ll see the look on their faces when our house shall be full

of books again. They ordered to burn them, the books of the Alexandria library, but

they shall not find them if we rescue them. Cheer up! The stars shall soon rise to

give us a hand. Come on, all together. You, on the boat deck. You, down here to

load the horses. One on the lookout on the hill to check if anyone approaches. Let’s

hurry. We must unload before daybreak.

Off-stage voice: Those who have betrayed the holy faith and desecrated holy Bap-

tism shall be banned from common society: they shall be exempted from testifying

in court, they shall have no part in wills, shall inherit nothing and shall not be named

heirs by anyone.

For those who have corrupted the faith, the disgrace of morality shall not be

effaced by penance, which shall only be good for the other crimes.

(Hypatia’s house, dawn)

Hypatia: Two more minutes. I’m tired. Too many nights I slept an unrestful sleep.

I shudder at every noise. My sight is getting worse. That’s how old age must be. I

don’t even know whether I’m old anymore. The calendar has gone mad. The sundial

shows a shadow that is impossible to decipher. I would cry if I knew how. I dreamt

of my father. I dream of him more and more often. We used to spend hours with our

heads bent over the same sheets of paper. We always whispered. How many words

I didn’t understand as a child. I would stretch my muscles until my arms and legs

ached. I stretched out in the effort. I would become taller, very tall. Then I would
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collapse in a heap exhausted. When I opened my eyes, my father would be there,

staring at me. Smiling. I dreamt that they hammered down our instruments, my

astrolabe, my hydroscope. Piece by piece. Clubs to smash everything. I dreamt that

they burned our books. I know this will really happen. I cannot predict the future, I

just line up logic. That’s why I must go. My pupils are waiting for me.

Off-stage voice: No one shall be granted the authority to perform sacrificial rites,

no one shall wander around the temples, no one shall turn one’s gaze towards the

sanctuaries. In particular, all profane entrances shall be identified, which remain

closed hindering our law so that, if something should instigate anyone to ignore

these bans concerning gods and sacred things, the transgressor shall understand that

he shall be stripped of any indulgence.

(2nd flashback)

Hypatia: Where are you? Where are you? Here you are, I feared I had lost you.

Hurry! The stars are high in the sky. There is light. We can see because we can

follow the stars. They can’t see anything. They are small. In their small houses.

Their small palaces that look like huts shaken by the wind of their very fear. If there

is a God, he is not above them. If there is a God, he is above us all. Check that all the

books have been brought down, on the wharf. Don’t leave in the waves the smallest

piece of paper. If their God existed, his hands would be black with ink. His eyes

red from reading. He would have read all the books in the world. Their God. If he

existed. He would have room for all the books of Alexandria. If he existed.

I promise you. They will not burn these books. They will not be banished from

Alexandria. Remember that. This city will die when the last book shall be lost. This

city will hold out to everything. Even to them. Even to their God, if we’ll manage to

save even one page of our past, of our knowledge. This city will not die. I promise

you.

Off-stage voice: No one, of any gender, order, social class or status or honorary

role, either of noble birth or humble origins, in any place, no matter how far, in any

city, shall sculpture simulacrums or offer any innocent victim to the gods or secretly

burn a sacrifice to lars, genies or penates, light fires, offer incenses, or lay wreaths

to these idols. For, if it shall be heard that someone has offered a sacrificial victim

or has consulted the entrails, shall be accused of lese-majesty and shall accept the

proper sentence.

(morning, Hypatia leaves home)

Hypatia: The way is long. I read as I walk. As if the book were not an obstacle,

but a kind of compass. I count the pages and know exactly where I am. Three pages

and my garden is behind me. Ten pages and my old wet-nurse’s house. How many

mornings I spent with her. It’s comforting that she died before all this happened. It’s

even a joy.

My dear child, she used to say to me. Your father is a man of great intelligence

and a good man. But he’s always a man and he doesn’t know what a child, what a
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woman needs. In your world, always leave room for your heart. We women are not

weak. We are only different. And saying this she laughed.

Even among the stars there are different stars, female stars. I learned this growing

up. I’ve seen stars with a paler light, with a slimmer body. Stars that always seemed

on the verge of dying out. Always about to be pushed down from the sky by other

bigger stars. Instead, the years go by, the space wind blows to wipe out the starlight,

but they’re still here. And they always look more beautiful, year after year. And they

will be there forever. Like us. Like me. I read. I read and walk. I read their texts.

To understand what they write. But I don’t understand. What has happened? They

spit their insults in our faces. They have created a wall of hate. Today they call it

church. What will they call it tomorrow? They imagined a warrior god and decided

it was their god. Good and just. This is what saddens me the most. The deception

of thought, of minds. Faith and hope soiled by fear. Paralyzed by terror. God is not

only yours. I feel like screaming. God is not like this. I would like to scream. But

screams don’t belong to me. I don’t like the sound of iron clashing against iron, the

sounds of battle. I would like to stop and talk to them. To explain, to explain myself.

To open up our minds. I’ve done so a thousand times with my pupils. Many times.

At first, the staring eyes of those who do not understand, then the spark of doubt and

finally the happy smile of those who have gone a step forward.

I read and I think I see them. I see them on the white walls where they write their

insults. I see them behind the windows that shut down as I go by. In the people who

bump into me on purpose. Increasingly violent. I see them as soon as I raise my

head from my papers. I no longer know whom I should fear.

I feel there is less people who follow me. What has happened? Once, even those

who governed the city came to me for advice, my opinion had bearing on their

decisions. And now? There is no one around me. My pupils lie to me: they say

that today one is ill, that maybe another will come tomorrow. They tell me not to

worry, that things will change. They can’t persecute us. They can’t hurt us. They

experienced pain when they were forced by the Romans to pray in the Catacombs.

Will they do that to us? This is what my pupils say. But they are young and idealistic.

They don’t know how dangerous can be a god generated by resentment.

I see a shadow. I jerk my head up and look around me. I just have to get to my

school. Find my pupils. Think. But I can no longer think.

I see them. Now I see them. I hear their voices and I’m not dreaming. I walk

faster. No! I stop.

I don’t want to gratify them. I stop and go through the pages of my book with

deliberation.

I hear them, though. They say that I’m impudent. That I am mad. That’s the

course they’ll follow. Madness. I already know. The light on the walls will still be

the same, the shadows won’t be too long when I will become the village madwoman.

The heretic. A new word they invented. Books with long, endless lists of heretics:

that’s what the future holds in store for us.

Off-stage voice: To be accused of a crime, it shall in fact suffice the will to oppose

the same law, to pursue illegal actions, to manifest occult things, to attempt to do
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forbidden things, to seek a salvation other than Christian salvation, to promise a

different hope.

(3rd flashback)

Hypatia: It’s a quiet night and the sky is full of stars. On a night like this, my father

took me on the roof of our house to look at them. He never stopped searching for the

supreme order that eluded him. If they only knew that he was the first to speak to me

of God. But it was a God that united instead of dividing. He told me that planets do

not revolve at random following their instincts like animals in the forest. He often

used animals as a metaphor so that I would understand. He knew I liked tales. So

he used to tell me about stars and plants, giving them the names of the animals in

our garden. Thus the planets were no longer mad animals, but they all obeyed to a

higher order. At the time we didn’t know what order it was. And I doubt I know it

now. But that was a wonderful thing. I can’t explain it. I only remember feeling a

sense of peace. I would often crouch on the roof alone and stare at the stars. I also

wanted to search.

Search, look, understand.

Enough talk! Let’s go, the city is still asleep. Let’s not wake those who must not

be awakened. This is not a night to be taken lightly. It’s a night that bites.

Off-stage voice: If anyone has venerated mortal works and worldly effigies with

incense and, ludicrous example, fears even those that they represent, or has erected

altars with dug lumps of earth to the vain images, that he be accused of slander to

the full religion (Christian) and be guilty of violating religion. That he be fined in

his household things and belongings, having become a slave of pagan superstition.

Then, all the places where sacrifices have been offered with incense be seized.

(morning, on the street)

Hypatia: The few friends I meet almost pretend not to see me. If they speak to me,

they say: stay home, we will come to see you. Don’t you see them? Don’t you know

they hate you? Of course I know. Of course I see them. That is why I go out. I want

to look them in the eyes. I want to chase them. I am the hunter. I was not born to

end up on an altar, the lamb of a sacrifice I do not recognize. Then, my nightmare

comes back to my mind. It’s been hounding me for many nights. Do you know what

a 1 by 2 meter cell dug behind the wall of a church is like? Do you know what is

like being always in the dark? In a stone cage that spreads itself on you? This is my

nightmare.

I am locked up in my fear, a prisoner, worse than being buried. I don’t move. I

fall on my knees and feel no pain. A trickle of blood awakens me for a moment.

But it’s only a dream, I tell myself. Then my father appears. My pupils are shadows,

they’re not here with me. I see their men everywhere. Shadows behind the windows.

Monks. The bishop’s men. They shout “God is with us!”. I am scared. I feel the iron

inside my flesh. I must awake from this dream. From this terrible nightmare. Calm

down, calm down, I tell myself. But I’m mute.

Then I wake up.
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I walk towards the school. A shadow slips behind me and hastens to the opposite

side of the street. A cart hides it from me. I probably imagined it. I run a hand over

my eyes. I reopen the book I had closed. I shall soon be home. In my true home,

my school, and before that my father’s school and before that my father’s teachers’

school.

I shall soon be home.

Off-stage voice: I, Cyril, bishop of Alexandria, implore you: my Emperor, give me

the land purged of the heretics and I shall repay you with the sky. Help me crush the

heretics and I shall help you crush the Persians!

(4th flashback)

Hypatia: Wait. I am no longer a little girl. I am not like you. I cannot think of

passing through the night on a white horse as if I were twenty years old. Fatigue

weighs on me. But I was not always like this, you know. No, your teacher was

young. I was young and -people say – also beautiful. Very beautiful, someone wrote

to me. I never really believed it. Vanity is a sin only for those who are here now. Only

a blind God can place it among sins. Vanity is just a sweet thought that women need

to get through the darkest hours. Your teacher was also vain. And I pride myself. It’s

one of the sins they spit on me. If it is a sin, then yes, I am guilty. Do you hear what

they say? They reproach me for going round the streets with you without shame.

And what should I be ashamed of? Of being a woman?

Go! I’ll stop here to rest a while. Yes. I know the way. It’s my house we are going

to. There we shall all find some peace. Myself, you and our books. Go, I shall only

close my eyes for a moment.

With my eyes closed, I can see well what my pupils cannot even perceive. There

shall be no feasts for us who saved Alexandria’s books. We shall not walk through

the triumphal arch. Our army shall not take up arms again. Our heads are bowed.

Our faces desperate. Lit by the burning paper. Prisoners of ropes and chains. There

shall not be dances for us. They shall not lay tables in celebration. Only the noise of

their rhythmic steps. The obsessive sound of their prayers beating our breast. God

is with us, God is with us, God is with us. . . I can’t just sit here waiting for the end,

watching thoughts die. I cannot.

Off-stage voice: God’s church is constantly threatened by “heresies”, by impure and

unholy doctrines, by godless persons, full of inanity, excesses, boundless ignorance

and depravation. These persons are highly unholy, they are slanderers and deceivers

by right, they are undermined by the seeds of viciousness and seriously affected by

ignorance of God. Their highest degree of stupidity and their folly leads them to

profess diabolical doctrines. Their contempt of God shall plunge them into hell, if

they haven’t already died a horrible death in this life.

(at the school, afternoon)

Hypatia: No one. No one. There is no one in my school. I walked this far hoping

to find someone to talk to. Not even to teach. Now, I would be satisfied to talk.

But in these days of terror, my dearest friends are locked up in their houses. As if
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fear could save them. In the street, people laugh at the woman being beaten, at the

woman they are calling witch. They don’t know that soon it will happen to men with

sparse hair. Then to fat men. Then to those whose skin is too dark or too fair. And

then to misfits. The kingdom of lunatics awaits us. When men believe they are God.

Towers become steeples. Temples become cathedrals. They will burn books. Then

they will burn schools. Statues. And then they will burn us. I know. I know. I tried

to shout it.

But my cries came back. The buffets of indifference.

I love this place. I love the books that are here. I grew up with them. Will mem-

ories suffice to protect me?

Off-stage voice: Then on with the bursting wave of these men. . . go on with the

gossip and foolish prattle, with words embellished with chimeras and deception!

Oh, God! Help me crush the heretics.

(5th flashback)

Hypatia: The first sun ray awakens me. Blinds me. I try to cover my eyes with my

hand and I feel the tears. I have heartburn. My tears tell me to stop again. My body

captures me in its old age.

I must leave. I must get up from this rock. I grab the horse’s reins. The sun shows

me the way. The air is pleasant. The books smell of dust and dew. They smell of

happiness. No God could hate this smell. I see the seagulls playing with the waves. I

feel the salt on my skin. I feel like touching the sand with my feet. The path is steep.

I remember my father, when I used to persuade him to come here. I remember when,

after jumping in the ocean, I turned my head in the waves, to see if he was waiting

for me on the beach. And yes, he was there, waiting for me!

I want another dawn, just for me. The books are safe. I would like to think I’m at

peace now.

Off-stage voice: If they do not convert themselves, the Lord shall shine his sword

against them. They are at the extremity of viciousness. Their throat is indeed a wide

open tomb. . . their lips conceal the viper’s venom. Come to your senses, intoxicated

people.

God is with us!

(at the school, evening)

Hypatia: Who are you? Who are you? I do not wish to see anyone. Leave me alone.

They knock again. Go away. Go away. It’s them. They want me to become a Chris-

tian. They offered me money for this. Money for my school. But I cannot let them

buy me. If I let them buy me, I will no longer be free and be able to study. Religion,

any religion, any dogma or ideology, if it doesn’t allow you to think, becomes a cage

that stifles you. I go round the empty benches. How many days I spent here with my

pupils. They can’t have abandoned me too. Again those noises. I fear everything.

They drove me to this. I see shadows and hooded heads in the garden, where once

there were trees. I hear stealthy footsteps where once there was the joyous running

of my pupils after classes.
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Who are you? Who are you? No. The hands knocking at my door are not friendly.

I would like to shout that I’m not afraid. To say that we are many in here. And that

we will defend ourselves.

But I’m alone and they know it. Who are you? Who are you?

Flames and screams! Flames and screams! Flames and screams!

I bend my head and crouch.

Tongues of flames chasing me.

I’m scared. But I’m not scared of God.

I’m scared of them.

I would confess all the sins in the world, if it would be of use.

If it could stop the hands and fists.

Blows. Kicks. Blows with stones cutting my skin.

My body thins out. I am transparent.

But I still want to exist.

Maybe it would suffice to open my eyes.

But I no longer have eyes.

They ripped them off.

Images spin. My girlish smile, my father’s untroubled face, the laughing at

school, the voices.

I repeat the names of the stars that I loved.

I think of the order of the universe.

The pages of my book burn with me. Then nothing more. Only flames. Flames

and screams. The screams of their defeat.

Don’t listen to what they’ll tell you.

They want me to disappear in thin air.

That’s why they’ll say I left, I ran away.

That’s why they’ll say that no one saw what they did to me, no one heard.

Don’t believe them!

They burn my body and my writings because they want nothing to be left of

me.

But they’re wrong.

Thought does not burn.

Remember that.

I see you, my friends.

I’m there with you. As you run fast clinging to your horses.

The night will take us to the sea.

Free.
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The wind in the sails.

A ship full of books.

Words to the oars.

Numbers to the rudder.

The order in our heads giving us the course.

We shall find a place where we can start anew.

Another dawn awaits us.

And don’t look back.

To watch my body burning.

Thought does not burn.

Now, all I want is to climb on my roof and look at the stars.

My father is up there, waiting for me.

My father is waiting for me.

I know.

4 A note by Carlo Emilio Lerici

I’ve been working with Massimo Vincenzi for many years. We became friends by

chance in a pub in Trastevere in Rome where I used to spend my evenings after the

theatre. The ideas for the plays came to us while chatting in the café. That’s how

BIRD IS ALIVE, a play dedicated to 6 great jazz musicians came about. Then the

others followed: Eyes to the sky, the ghosts trilogy, Alan Turing and the poisoned
apple, Barney’s version, Ruth Ellis and Hypatia’s dream. A word, a conversation,

an interesting article, a book and we immediately got to work.

This play came about the same way, entirely by chance. In April 2009, Alan
Turing was on stage and on the day of the last performance, when the play was

already over, a person walked by the Teatro Belli and saw the poster. He became

curious and came in to ask about the play. He was a member of an association

named Ipazia Preveggenza Tecnologica. They were interested in Turing, the British

mathematician, father of artificial intelligence. We met again and talked about many

topics and projects. During one of these meetings, the association’s director, Oreste

Grani, told me about Hypatia. He was interesting in producing a play about her. They

were ready to support it in every way. And that’s exactly what they did. But they

probably didn’t expect us to get going so fast. After all, I had never heard of Hypatia

before. Like many people, I completely ignored this amazing story. But when I

spoke about it to Francesca Bianco, the actress I’ve been working with for more

than 25 years, she was thrilled at the idea too. So we immediately called Massimo

Vincenzi. He didn’t know anything about her either, but he also became enthusiastic

and set to work at once. Then we involved Francesco Verdinelli, the musician who

wrote the score and with whom I have also worked for many years, and finally, I
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Fig. 1 Poster of the play

called another long standing friend and co-worker, Stefano Molinari, whose voice

we used to interpret the religious authority. Finally, Teresa Pedroni from the Diritto
& Rovescio company, gave us her valuable help for the production of the play.

In September 2009, we were supposed to participate in Opere Festival in the

Odescalchi Castle in Bracciano with the play Assassins, but we didn’t want to waste

the opportunity to propose to the festival directors Maurizio Conte and Alberto Bas-

setti to host Hypatia’s dream as well. We asked him to provide us with an auditorium

and we would offer him the play in exchange. A lunatic suggestion at a time when

you’re forced to assess everything in terms of money. But enthusiasm often drives

people mad and so the directors, overwhelmed by our enthusiasm, even though the

festival programme was already closed, accepted our proposal and provided us with

a beautiful auditorium and an evening entirely for us.

After the sold out debut of September 19, we revived the play at the Antonio

Salines’ Teatro Belli within the Theatres Festival. It was October 4th and the play

was scheduled for 10:30 p.m. Due to a series of technical problems, it started at

11:45 pm. The house was full. No one had left and no one had made a noise about

the delay. Everybody wanted to see Hypatia.

That’s why we decided to repeat the play on the following days. We always

had a full house. Hypatia’s Dream had been a success! We couldn’t believe it. The
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newspapers wrote about the motion picture1 that couldn’t find a distribution, a book

in Italian2 was about to come out that would sell thousands of copies in a few days.

Hypatia had compellingly come to the fore and we were there too.

Then the play returned on stage in November, in February and in March at

the Teatro Lo Spazio in Rome, made available by Alberto Bassetti e Francesco

Verdinelli who also took part in the production. Again, it had been a success. Af-

terwards, we were invited in Naples and in Genoa. The invitations are growing in

number throughout Italy. The page we created for the play on Facebook has gathered

more than 2000 enthusiasts in a short time. We found out that the motion picture was

finally going to come out in Italy. I was looking for a theatre to stage the play again

and, by a miracle, two plays that were on at the Teatro Belli had been cancelled. We

could go back on stage!

I don’t know whether this passion for Hypatia will continue after the release

of the motion picture, but I truly believe that the wheels put in motion cannot be

stopped. We certainly will not stop taking Hypatia across Italy.

For Hypatia.

1 Agorà, directed by Alejandro Amenábar, Spain, 2009.
2 A. Petta, A. Colavito, Ipazia, Vita e sogni di una scienziata del IV secolo. La Lepre, 2010.
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1 Introduction: Hope

Too often mathematics and architecture are related through concepts that have been

central in Renaissance, and through ideas that were new in the 15th century; in

this research, we propose sophisticate geometrical ideas and shapes that are still to-

day object of active researches in mathematics, such as curves, vector fiber bundle,

fibrations, foliations, non-euclidean surfaces etc... in order to read architectural re-

alizations as well as to “equate” objects with an artistic or design value. This is done

independently of the awareness of the “conceiver”.

We shall describe mathematical objects and their architectural counter part. The

interest is two folded, on one hand we wish to raise philosophical questions such

as: Is the artistic and architectural value of a building or object of design amplified

or even due to its mathematical content? (Philosophy is written in this grand book,
the universe... It is written in the language of mathematics, and its characters are
triangles, circles, and other geometric figures Galileo []) or is mathematics only an

instrument that can be used by the architects or the artists?

On the other hand, thanks to powerful algorithms, the mathematical objects have

now an immediate way of being created or represented easily and quickly; at the

same time “technical solutions” for complex architectures can be given thanks to

new developments in building technic. Hence the imagination of the shapes to which

the “architect” (or the artist) can be inspired, through the mathematical framework,

goes well behind the simple “triangles, and circles” mentioned by Galileo. But of

course some understanding is necessary.

To be more precise, we feel that we can easily affirm that any reader of this note,

and most “educated” people know such artists as: Santiago Calatrava, Zaha Hadid,

Isabeau Birindelli

Sapienza University of Rome (Italy).

Renata Cedrone

Laboratorio di Progettazione e Pianificazione, Rome (Italy).

Emmer M. (Ed.): Imagine Math. Between Culture and Mathematics
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Anish Kapoor, Pierre Boulez, Bruno Munari, and, somehow simplifying, we can say

that their success is proportional to the wonder their creations generate.

Stratified manifolds, hyperbolic spaces, fibre bundles, riemanian surfaces, geode-

sics, Lorentz attractor, stochastic processes, homoclinic orbits, gaussian curvature,

minimal surfaces; with the same certitude we feel that most people have never even

heard of them or, if they have, they remain at best mysterious and at worst terribly

boring mathematical concepts.

Now each of these complex concepts have been a source of wonder and ex-

citement for whoever “invented” them, or even for every mathematician that has a

moment of epiphany when she (finally) understand their “power”. Often, their com-

plexity, their richness can be glimpse at in their representation, while of course their

“beauty” is much deeper then the esthetic one.

The artists mentioned above have sometime used the knowledge of these math-

ematical objects (even if sometimes that knowledge was only germinal). Of course

this is not said in order to reduce their artistic value. The idea is just to use these ex-

amples of contamination between mathematics and architecture, to enrich the “lan-

guage of the artist” and of the critic of architecture (which is in fact everyone of

us who endures it). Precisely we hope to enrich everyone’s vocabulary in order to

enrich everyone’s vision. A bad artist will stay a bad artist, no matter how much

mathematics he learns, but a great artist will be potentially unpowered by a fantastic

tool which is unknown to most, but is available now to many, thanks to technological

supports.

2 Spiraling

We start with a very basic and classical parallel, in the hope of making you comfort-

able.

2.1 Curves

A very classical example of spiral used in architecture is the lituus whose equation is

given in polar coordinates r2θ = a, and it is said to represent the volute of the Ionic

column. But we don’t want to dwell on this, being more interested in the symbolic

content of the spiral.

One of the oldest architectural example of spiral building, after the Babel tower,

is the Minaret of Samarra’s mosque in Iraq, built in the VI century AD under the

Abbasside dynasty and called Al- Malwiyya i.e. the spiral (see Fig. 1); it seems that

Ibn Tulun Mosque (879 AD) in Cairo has been inspired by it .

The symbolic value of the spiral is evident and in the Muslim world it is directly

related to the concept of infinity and hence of God; this is particularly true during the

Abbasids Dynasty, indeed in that period, the traditional calligraphy is the Angular
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Fig. 1 Minaret of Samarra’s
mosque in Iraq, built in the
VI century AD under the
Abbasside dynasty and called
Al-Malwiyya

Fig. 2 Example of Angular
kufic writing (detail of a panel
from a Topkapi scroll)

kufic (see Fig. 2) which is based on the spiral and it was used as a decoration to cover

the Mosque and in the transposition of the koran. The idea being that the spiral gives

a centripetal movement of the reading, a rotational vision.

Always as an elevation toward God, but centuries later, it is impossible not to

mention Sant’Ivo alla Sapienza in Rome by the baroque architect Francesco Borro-

mini. His mathematical and geometrical knowledge is well documented, and deeply

related to his deep religious belief. He repeatedly used geometrical concept to em-

body his quasi mystical faith and in particular Sant’Ivo’s spiral suggests an elevation

towards infinity, in the research of Sapienza (knowledge) and God.

It is important to mention that this vision of the “spiral” is not only an occidental

vision since in the Hindu philosophy the powerful generating “Kundalini” force, is
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Fig. 3 Left Sant’Ivo alla Sapienza, Francesco Borromini; right Tatlin’s Monument to the Third
International (1918)

by definition “coiled” in the spine and so is define through a variation of the term

“Kundala” which means spiral in Sanskrit.

When the Soviet Socialist movement transplanted religious sentiments into ide-

ology it was again the spiral that was used by architect Vladimir Tatlin in the con-

struction of the Monument to the Third International (see Fig. 3). Soviet construc-

tivism was used as a political propaganda for the construction of the new socialist

society; Tatlin’s tower was experimental, because though completely abstract, the

double spiral was suppose to somehow represent the elevation of the russian people

under the glorious prospective of the Bolshevik revolution.

Interestingly enough, Tatlin’s tower inspired Roberto Semprini for its Tatlin’s

couch , the goal of the spiral is once more “reduced” as he says: In today’s mass
consuming society, with the end of the great political utopias, this coach wants to
realize a small utopia: let some art enter the living room[...] a revolution in the
living room that in the boring design landscape, rises like a flag.

2.2 Helicoids

The Helicoid is a two dimensional spiral whose parameter equation is⎧⎪⎨
⎪⎩

x(s,θ) = scosθ
y(s,θ) = ssinθ
z(s,θ) = θ .

It is far too obvious to mention that in architecture the geometrical surface denoted

helicoid, which is somehow the natural extension of the spiral, has been used in infi-

nite example of staircases. Precisely, the helicoid allows to solve a precise technical

problem: rising while staying around a vertical axe. Of course it would be naive to
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Fig. 4 Eero Saarinen staircase in the General Motors Technical Centre in Michigan ( c© Ezra
Stoller / Esto)

think that its only value is “functional”, in fact the complex and expressive geomet-

rical structure has often played a central role in the formal, esthetic and symbolic

characterization of the architecture involved.

We cannot help but go back to the mystical Borromini in its conception of the

Barberini’s staircase (he adds an elliptical plan to further emphasize the symbolic

value of the staircase).

Eero Saarinen staircase in the General Motors Technical Centre in Michigan

in its neo-expressionist design seems to use the “helicoid shape” in order to play

with both light and engineering. It is antithetical to the used done by Herzog and

De Meuron in the Treppenhaus Bibliothek, where the shape is used to enhance the

expressionism through the use of colors “A building is a building. It cannot be read

like a book; it doesn’t have any credits, subtitles or labels like picture in a gallery.

In that sense, we are absolutely anti-representational. The strength of our buildings

is the immediate, visceral impact they have on a visitor” (Jaques Herzog, [4]).

On the other hand, in Frank Lloyd Wright’s Guggenheim’s museum the helicoid

is the building itself and not only an element of it, hence revolutionizing both the

role and the direction of the geometrical surface. Using Paolo Portoghesi’s words

Borromini è stato forse l’architetto più innovatore degli ultimi secoli. Oggi è sentito
come un precursore che ha prefigurato la condizione dell’architetto moderno. Molti
hanno tratto ispirazione dalle sue opere. Come Frank Lloyd Wright, ad esempio:
la spirale di S. Ivo si ritrova, rovesciata, nel museo Guggenheim. [5] (“Borromini

is maybe the most innovative architect of the last century. Today he is perceived as

a pioneer that has pre-conceived the role of the modern architect. Many have been

inspired by his opus. As Frank Lloyd Wright, for example: St. Ivo’s spiral can be

found upside down in the Guggenheim museum”).
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Fig. 5 An hyperboloid of one
sheet, see the straight lines

3 Ruled surfaces

A ruled surface is a surface such that through each of its points passes a straight line

contained in the surface, so that it can parametrized by⎧⎪⎨
⎪⎩

x(t,s) = a1(s)t +b1(s),
y(t,s) = a2(s)t +b2(s),
z(t,s) = a3(s)t +b3(s).

For obvious structural reasons, ruled surfaces are convenient geometrical objects

to use in architecture and so have been used throughout the centuries. One such

example is the Helicoid which was treated above which is just a straight line that

turns around a pole. Interestingly, to design or build a ruled surface it is often enough

to construct a curve and then an infinite number of the straight lines (beams) through

that curve. And whether it is reinforced concrete or steel beams, the structural primal

elements are linear; hence ruled surfaces are extremely convenient shapes to use in

term of time and price. This applies also to steel and glass.

3.1 Hyperboloids

Of particular interest is the one sheet hyperboloid (see Fig. 5) which is just a set of

straight lines around a circle and perpendicular to it that are twisted, its equation is

given by x2 + y2 − z2 = 1. In fact it is a ruled surface such that at each point there

are two straight lines contained in the surface.

The hyperbolic hyperboloid is also a ruled surface. Antonio Gaudı̀, designing

the Sagrada Familia, used many ruled surfaces exactly for the reasons mentioned

above, in his gothic and organic vision of architecture, he used geometrical structure

present in nature, not for imitation but in a careful planning of the convenient use

of the generating forces that are behind some “natural” constructions. Hence many

pillars of the Sagrada Familia are hyperbolic hyperboloids that are in fact inspired

by trunk trees [9].
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Fig. 6 Oceanografic by Felix Can-
dela, Valencia

Of course the list of hyperbolic hyperboloids in architecture and design is very

long we shall just mention the Cathedral in Brasilia by Oscar Niemeyer, McDonnell
Planetarium in Saint Louis by Gyo Obata, Coop Himmelblau’s BMW building, or

the Falkland lamp by Bruno Munari (though the latter is most likely a catenoid.).

3.2 Other ruled surfaces

It would be reductive to think that the helicoids and the hyperbolic hyperboloid are

the only ruled surfaces present in architecture, there are others even more complex

like: Le Corbusier’s “Phillips pavilion” in Brussel, Felix Candela’s Oceanografic in

Valencia (see Fig. 6) , Toyo Ito’s Relaxation Park in Spain, James Stirling’s New
State Gallery in Stuttgart, Nicoletti’s new Hall of Justice in Arezzo etc.

4 Fiber bundles

In most examples of ruled surfaces, one can describe the surface as a straight lines

that moves around another curve, but of course there are no obligations to consider

only straight lines, one can take any family of curves that fibrate on a curve, a simple

example is the tori, which is just a fibration of circles perpendicular to a given circle.

In general it is possible to fibrate surfaces on surfaces, the most important fi-

bration is the tangent fiber bundle, which is the set of planes that are tangent to a

surface, because it allows to do differences and hence “calculus” on curved surfaces.

The visualization of fiber bundle is obviously not easy, but it is particularly under-

standable seeing Roberto Capucci’s Bolero [3] or Norman Foster’s dome on top of

the Berlin’s Reichstag building), but in the Artichoke Lamp by Poul Henningsen (see

Fig. 9) the planes that fibrates the surface are not tangent to it.
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Fig. 7 Poul Henningsen, Arti-
choke Lamp

5 Genus of a surface or architecture with holes

The tori, beside being a fibration is an example of surface of genus 1 i.e. with one

hole, mathematicians can give a precise notion of hole, and through it, thanks to the

theorem of Gauss Bonnet, give a precise relationship between the genus of a closed

surface M and its area weighted by its curvature:

∫
M

Kds = 2πχ(M)

where K is the curvature and χ(M) is its Euler characteristic i.e. χ(M) = 2− 2g
where g counts the number of holes.

Two-topology is the science that allows to classify the surfaces by counting their

holes. Recent architectural examples of surfaces with “holes” are: in Milan Trade
Fair by Fuksas, Burnham Pavilions in Chicago (one by UN Studio and one by Zaha

Hadid), Toyo Ito’s Grin Grin Park in Fukuoka or his project for the Forum for Mu-

sic Dance and Visual Culture in Ghent Belgium (designed together with Andrea

Branzi).

6 Inspirations

We recall that the curvature of a surface measures the mean of the highest and the

smallest of the curvatures of the curves obtained by intersecting of the surface with

an orthogonal plane; e.g. the curvature of the sphere is just the inverse of the square

of the radius while the curvature of a plane or a cylinder is null everywhere. Surfaces
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Fig. 8 Dini’s surface

with negative curvature are somehow more disturbing then those with positive cur-

vature, since the negative curvature suggest a saddle, so surfaces where each point

can be seen as a saddle are rare and create an aesthetic tension, one such example

is the Dini’s surface another one is the hyperbolic hyperboloid. It is interesting to

wonder if Hadid’s Nordpark Cable Railway in Innsbruk is a piece of Dini’s surface

or just resembles it i.e. which is the awareness of Hadid in the use of it.

Another interesting example is Musmeci’s bridge in Potenza (see Fig. 9), where

the negative curvature is not only used in order to enhance the aesthetic power of the

pillars but to solve an engineering problem i.e. to englobe in a continuous surface

both the horizontal and the vertical structural elements.

An algebraic surface is a set of points whose coordinates annihilate a polynome.

The possible shapes taken by algebraic surfaces are of infinite kind and complexity,

here we shall show a few that have particularities that could be of inspiration for

architectural applications.

Fig. 9 Bridge on the Basenta,
by Ing. S. Musmeci. Courtesy
of P. Musmeci
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Fig. 10 Diagonal Cubic Clebsch, with its Salomn seal lines and S3 by Gianmarco Todesco

We start by Todesco’s favorite algebraic surface , the Diagonal Cubic Clebsch
(see Fig. 10) whose equation is

16x3 +16y3 −31z3 +24x2y−48x2z−48xy2 +24xz2 +51
√

3z2 −72z = 0.

It is characterized by the fact that it contains 27 straight lines (Salomon’s seal lines),

implying that even though it is not a ruled surface it has some characteristics of ruled

surfaces that could make it constructible through beams.

Another cubic is known as S3 its equation is

9x3 +3x2z−4x3 −27y2x+3y2z−4/7(9x2 +9y2 −4z2)(2z+1) = 0.

Using Todesco’s description it is obtained through a homographic transformation of

Cayley’s surface, the singular points create an interesting anomaly.

Minimal surfaces are surfaces with constant mean curvature, one example is

given by Schwarz PD surface, which is was constructed and named by A. Schoen

(1970) [6] as an example of triply periodic minimal surface.

Fig. 11 Triply periodic Mini-
mal Surface
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Visual Harmonies:
an Exhibition on Art and Math

Michele Emmer

1 Art and Math: the idea of space

Art and Mathematics are inextricably linked. One of the main linkages is the idea

of space and its transformations. There is no doubt that throughout the history of

Western culture, there were moments when the relationship between mathematics

and art has remained hidden, if not absent, and others in which it appeared with

great vividness. And one of the privileged periods is obviously the Renaissance.

For several reasons the problem of depicting the real world led the Renaissance painters to
mathematics. The first reason was one that could be operative in any age in which the artists
seek to paint realistically. Stripped of colour and substance the objects that painters put on
canvas are geometrical bodies located in space [...].

Fig. 1 MART (Museo Arte
Moderna Rovereto), archi-
tect Mario Botta, 2002

Michele Emmer

Department of Mathematics, Sapienza University of Rome (Italy).

Emmer M. (Ed.): Imagine Math. Between Culture and Mathematics
DOI 10.1007/978-88-470-2427-4 11, c© Springer-Verlag Italia 2012



118 M. Emmer

The Renaissance artist turned to mathematics not only because he sought to reproduce na-
ture but also because he was influenced by the revived philosophy of the Greeks. He became
thoroughly familiar and imbued with the doctrine that mathematics is the essence of the real
world, that the universe is ordered and explicable rationally in terms of geometry [1].

So wrote the math historian Morris Kline in the book Mathematics in Western Cul-
ture and he added that even less well known is the fact that:

. . . mathematics has determined the direction and content of much philosophic thought,
has destroyed and rebuilt religious doctrines, has supplied substance to economic and po-
litical theories, has fashioned major painting, musical, architectural and literary styles, has
fathered our logic [. . . ]. Finally, as an incomparably fine human achievement mathematics
offers satisfactions and aesthetic values at least equal to those offered by any other branch
of our culture.

The great master of Perspective and one of the best mathematicians of the Quattro-
cento was Piero della Francesca. His text De perspectiva pingendi was written in

1474.

Martin Kemp writes that to understand the work of Piero as a scholar of per-

spective, we should remember that he had a deep knowledge of pure and applied

mathematics, enough to write treatises of sufficient quality to compete with any

work in the Italy of his time.

Years after Piero, precisely in 1623, Galilei wrote in the Essayer (Il Saggiatore)

[2]:

It seems to detect a firm belief that, in philosophising, it is necessary to depend on the opin-
ions of some famous author, as if our minds should remain completely sterile and barren,
when not wedded to the reasoning of someone else. In philosophizing one must support
oneself upon the opinion of some celebrated author, as if our minds ought to remain com-
pletely sterile and barren unless wedded to the reasoning of some other person. Possibly he
thinks that philosophy is a book of fiction by some writer, like the Iliad or Orlando Furioso,
productions in which the least important thing is whether what is written there is true. Well
that is not how matters stand. Philosophy is written in this grand book, the universe, which
stands continually open to our gaze. But the book cannot be understood unless one first
learns to comprehend the language and read the letters in which it is composed. It is written
in the language of mathematics, and its characters are triangles, circles, and other geometric
figures without which it is humanly impossible to understand a single word of it; without
these, one wanders about in a dark labyrinth.

Thus, without mathematical structures we cannot understand nature. Mathematics

is the language of nature.

A few centuries, in 1904 a famous painter wrote to Emile Bernard [3]:

Traiter la nature par le cylindre, la sphère, le cône, le tous mis en perspective, soit que
chaque cote d’un objet, d’un plan, se dirige vers un point central. Les lignes parallèles à
l’horizon donnent l’étendue, soit une section de la nature. Les lignes perpendiculaires à cet
horizon donnent la profondeur. Or, la nature, pour nous hommes, est plus en profondeur
qu’en surface, d’oμu la nécessite d’introduire dans nos vibrations de lumière, représentée
par les rouges et le jaunes, une somme de bluetes, pour faire sentir l’air.

The art historian Lionello Venturi commented that in Cezanne’s (the artist in ques-

tion) paintings there are no cylinders, spheres and cones, so the artist’s quote rep-

resents nothing but an ideal aspiration to an organization of shapes transcending

nature.



Visual Harmonies: an Exhibition on Art and Math 119

During the period when Cezanne was painting, and even a few years earlier,

the panorama of geometry had changed since Galileo’s time. In the second half

of the 19th century geometry had mutated significantly. In a letter of December

1799 Gauss wrote to Farkas Bolyai on his tentative to prove the Fifth Postulate of

the Elements of Euclid, starting from a demonstration by absurd: “My works are

very advanced but the way in which I am moving is not conducing to the aim I am

looking for, and that you say to have reached. It rather seems to put in doubt the

exactness of geometry.” Gauss never published his results on this particular topic

in his lifetime. In 1827 he published the “Disquisitiones generales circa superficies

curves” in which he introduce the idea of studying the geometry of a surface in a

“local way” without minding its immersion in a three dimensional space, studying

the invariant properties of the surfaces. He also introduces the idea of the curva-

ture of the surface. Between 1830 and 1850 Lobacevskij and Bolyai built the first

examples of non-Euclidean geometry, in which the famous fifth postulate by Eu-

clid was not valid. Not without doubt and conflicts, Lobacevskij would later call his

geometry (which today is called non-Euclidean hyperbolic geometry) imaginary ge-

ometry, because it was in such strong contrast with common sense. For some years

non-Euclidean geometry remained marginal to the field, a sort of unusual and curi-

ous form, until it was incorporated into and became an integral part of mathematics

through the general ideas of G.F.B. Riemann (1826-1866). In 1854 Riemann held

his famous dissertation entitled Ueber die Hypothesen welche der Geometrie zur
Grunde liegen (On the hypotheses which lie at the foundation of geometry) before

the faculty of the University of Göttingen (it was not published until 1867). In his

presentation Riemann held a global vision of geometry as the study of varieties of

any dimension in any kind of space. According to Riemann, geometry didn’t nec-

essarily need to deal with points or space in the traditional sense, but with sets of

ordered n-ples.

In 1872 in his inauguration speech after becoming professor at Erlangen (known

as the Erlangen Program), Felix Klein (1849-1925) described geometry as the study

of the properties of figures with invariant character in respect to a particular group of

transformations. Consequently each classification of the groups of transformations

became a codification of the different types of geometry. For example, Euclidean

plane geometry is the study of the properties of the figures that remain invariant

in respect to the group of rigid transformations of the plane, which is formed by

translations and rotations.

Jules Henri Poincaré held that:

. . . the geometrical axioms are neither synthetic a priori intuitions nor experimental facts.
They are conventions. Our choice among all possible conventions is guided by experimental
facts; but it remains free, and is only limited by the necessity of avoiding every contradic-
tion, and thus it is that postulates may remain rigorously true even when the experimental
laws, which have determined their adoption, are only approximate. In other words the ax-
ioms of geometry are only definitions in disguise. What then are we to think of the question:
Is Euclidean geometry true? It has no meaning. We might as well ask if the metric system
is true and if the old weights and measures are false; if Cartesian coordinates are true and
polar coordinates are false. One geometry cannot be more true than another; it can only be
more convenient. Euclidean geometry is and will remain the most convenient.
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Poincaré, in Analysis Situs (Latin translation of the Greek), published in 1895, is

also responsible for the official birth of the sector of mathematics that today is

called Topology: “As far as I am concerned, all of the various research that I have

performed has brought me to Analysis Situs (literally analysis of place)”. Poincaré

defined topology as the science that introduces us to the qualitative properties of

geometric figures not only in ordinary space, but also in more than 3-dimensional

space. Without any doubt, one of the main contributions of mathematics to art is the

transformation, the mutation of the idea of space.

Years later an artist of the twentieth century clarified [4]:

By a mathematical approach to art it is hardly necessary to say I do not mean any fanci-
ful ideas for turning out art by some ingenious system of ready reckoning with the aid of
mathematical formulas. [. . . ] It must not be supposed that an art based on the principles of
mathematics is in any sense the same thing as a lastic or pictorial interprepation of the lat-
ter. Indeed it employs virtually none of the resources implicit in the term pure mathematics.
The art in question can best be defined as the building up of significant patterns from the
everchanging relations, rhythms and proportions of abstract forms, each one of which, hav-
ing its own causality, is tantamount to a law unto itself. As such, it presents some analogy
to mathematics itself. Just as mathemaics provides us with a primary method of cognition,
and can therefore enable us to apprehend our physical surroundings, so, too, some of its
basic elements will furnish us with laws to appraise the interactions of separate objects, or
groups of objects, one to another and again, since it is mathematics which lends signifi-
cance to these relationships, it is only a natural step from having percieved them to desiring
to portray them.

So wrote Max Bill in 1949 to trace the lines of a possible mathematical approach to

modern art. Bill was one of the artists partecipating in an unusual exhibition. From

January 20 to February 17, 1963 an art exhibition was held in Paris. It was unusual,

first for its location: the Palais de la Découverte, the temple of the popularization

of science in France until the opening in the early eighties of the Cité des Sciences
de la Villette. An art exhibition entitled Formes mathématiques, Painters, Sculptors
contemporains.

Works of artists of great importance were exhibited, among which among Max

Bill, Paul Cezanne, Robert and Sonya Delaunay, Albert Gleizes, Juan Gris, Le Cor-

busier, Jean Metzinger, Piet Mondrian, Laszlo Moholy-Nagy, Georges Seurat, Gino

Severini, Sophie Tauber-Arp, Victor Vasarely. Among the sculptors Max Bill, Ray-

mond Duchamp-Villon, Georges Vantongerloo. The exhibition was organized in

three sections: Mathématiques, Peintres, Sculptors. In the first section numerous

mathematical surfaces made of metal or plaster were exposed.

The middle pages of the small catalog had four illustrations: two geometric sur-

faces, and works by Robert Delaunay, Barbara Hepworth and Gino Severini. The

introduction to the exhibition was by Paul Montel, mathematician, curator at that

time of the mathematics section of the Palais de la Découverte. Montel wrote [5]:

It may seem surprising that there are relationships between art and mathematics, between
the world of quality and quantity of the world. Nevertheless, close connections link together
these two different worlds of representation. [...] In fact, each of these two activities, math-
ematical research and artistic creation, is in debt to the other. An important result obtained
in mathematics, to its author offers an aesthetic joy similar to that which can give the archi-
tectural harmony or musical chords.
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Interactions, proportions, transformations and harmony, as well matemorphosis and

their metaphoric meaning became central concepts in the relation between art, math

and architecture too. It is not by chance that the theme of the Biennale of Architec-

ture in Venice in 2004 was Metamorph [6]:

Many of the great creative acts in art and science can be seen as fundamentallymetamorphic,
in the sense that they involve the conceptual re-shaping of orderingprinciples from one
realm of human activity to another visual analogy. Seeing something as essentially similar
to something else has served as a key tool in the fluid transformation of mental frameworks
in every field of human endeavour. I used the expression ‘structural intuitions’ to try to cap-
ture what I felt about the way in which such conceptual metamorphoses operate in the visual
arts and the sciences. Is there anything that creators of artefacts and scientists share in their
impulses, in their curiosity, in their desire to make communicative and functional images
of what they see and strive to understand? The expression ‘structural intuitions’ attempts to
capture what I tried to say in one phrase, namely that sculptors, architects, engineers, de-
signers and scientists often share a deep involvement with the beguiling structures apparent
in the configurations and processes of nature - both complex and simple. I think we gain
a deep satisfaction from the perception of order within apparent chaos, a satisfaction that
depends on the way that our brains have evolved mechanisms for the intuitive extraction of
the underlying patterns, static and dynamic.

These are the words of Martin Kemp, an art historian specialized in the relationship

between art and science in the article - Intuizioni strutturali e pensiero metamorfico
nell’arte, architettura e scienze, in Focus, one of the volumes that made up the

catalogue of the 2004 Venice International Biennale of Architecture. In his article

Kemp writes mainly about architecture. The image accompanying Kemp’s article is

a project by Frank O. Gehry, an architect who obviously cannot be overlooked when

discussing modern architecture, continuous transformation, unfinished architecture,

and infinite architecture.

Fig. 2 The logo of MART

2 An exhibition on Art and Math: the idea of space

Adding to all this the geometry of complex systems, fractal geometry, chaos theory

and all of the “mathematical” images discovered (or invented) by mathematicians

in the last thirty years using computer graphics, it is easy to see how mathematics

has contributed to changing our concept of space - the space in which we live and
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the idea of space itself. Because mathematics is not merely a means of measurement

in recipes, but has contributed, if not determined, the way in which we understand

space on earth and in the universe.

These are some of the reasons behind a major exhibition dedicated to the idea of

space and the relationships between modern and contemporary art and mathematics

from the twentieth century to the present day at the MART in Rovereto, one of

the important European Musems of Modern and Comteporary Art. The exhibition

Visible harmonies: the idea of space between art and mathematics, will probably

open March 2013 and will remain open until the end of June 2013 [7].

The general idea of the exhibition is by Michele Emmer, the project by the Di-

rector of the MART, and Michele Emmer. The other members of the scientific com-

mittee are: Umberto Bottazzini, Università di Milano, Linda D. Henderson, Univer-

sity of Texas at Austin, Michael Rottman, Frei Universität Berlin. Curators of the

catalogue, in two different volumes, italian and english: the Director and Michele

Emmer.
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Emilio Prini, Alison Knowles, and Art’s Logic

Cornelia Lauf

This is a short description of how art works. For those who know math (I don’t), go

figure.

In the period between 1968 and 1974, artist Emilio Prini executed several hun-

dred drawings on plain white paper, fabricated with the help of an Olivetti 22

typewriter. Some look like architectural drawings, others like mathematical formu-

las, poems, or musical scores. The typewriter was twisted every which way for its

repertoire of possible visual images. Prini forced the machine into making a “1001

nights” of drawings.

These studies (more than three hundred) are currently being worked up into a

book for Three Star Books, a publishing house founded by myself and two col-

leagues, Christophe Boutin and Mélanie Scarciglia, in Paris. The volume is entitled

Proporzione 2/7.

Emilio Prini is one of the elder statesmen of Italian postwar art. Voracious reader,

connoisseur of music, literature, art, architecture, and food, among many other dis-

ciplines. Diligent in the elaboration of one of the least understood and most elusive

of postwar artistic practices.

Although it seems self-congratulatory to discuss one’s own publication with an

artist, and to thus both produce and publish one’s own ideas oneself, this is the

essence of making artworks. You have to believe in the whole thing, hook, line,

and sinker. Thus, the description of two artworks – two books in this case – shall

stand here in the context of this volume of essays, in the place of a more abstract

discussion on the growth/creation of an artwork.

There is no real rationale for my doing this, and indeed much of what one does

in life, as in art, seems to run counter to logic. And yet, there is urgency, especially

on the part of great artists, to proceed, even if it appears as folly, simply because

“geniuses create because they must.”

There are indeed formulas, codes, order and reasons for creation, and they are

known well by those inside the center of art. This is a topic of debate, particularly

as it appears that increasingly it is possible to map codes – even mathematically or

electronically – to identify elements as seemingly subjective as literary style. The

logic inside chaos is known to those who pay with their skin for their decisions
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Fig. 1 Emilio Prini, drawing,
ink on paper, 1974 (detail)

to live art in their every waking moment. It means caring about philosophy and

meaning so deeply that the only way to deal with it is “aesthetically” (as many

might say) or materially, for sure.

Emilio Prini’s collection of drawings is entitled Proporzione 2/7 because it is a

selection of proportional studies, many of which deal with the relation between the

numbers 2 and 7. There are a few earlier drawings. Many are dated. These draw-

ings can be arranged in chronological order. There is a section of so-called “scarti,”

rejected drawings.

The more than three hundred drawings are divided into three sections, in which

numerous themes are worked out, even “checked off,” when a certain theme has

been explored in depth and resolved conceptually. Sometimes, this resolution takes

place over a sequence of pages, as in the case of the drawings resembling building

blocks, like Vecchia fortezza (the old fortress), or in the case of La Scala (the ladder).

These pages function almost like a flip-book. An antecedent to this use of “motion”

picture editing may be found in the 1970 Arte Povera catalogue of Germano Celant,

in which photographs of the artist progress from a picture of his half-naked body to

a photo of the artist’s measure of his own body weight in the form of cubes made

out of lead. This magnificent sequence, extraordinary in its modesty, and density,

measures the ineffable moment that artists from Xeuxis to Bernini dealt with, of

the transformation of stone into life (or vice versa). Vying neck to neck with the

Fibonacci research of Mario Merz, the ability to make a bicycle seat into a bull, or

ceramic urinal into a sculpture, Mr. Prini has gone one up, and in his utter anonymity,

taken on the formulas underlying life itself.

In a first photo in the Celant book, there is a black-and-white image of the young

artist, waking in his bed, and rising out of a plaid blanket. The image was shot by

a Genovese friend of Prini’s. This man went to Prini’s house at dawn, and pho-

tographed him right as he awoke. The artist’s alabaster skin, rising out of the white

sheets, and his aquiline profile and mutton chop sideburns, resemble a sculpture by

Canova, or a painting by Ingres.



Emilio Prini, Alison Knowles, and Art’s Logic 125

It’s just a photograph, though, a medium that Prini has explored so relentlessly as

to include even its destruction, through over-usage, in one work/performance, until

the camera gave up the ghost.

In other artworks, Prini is less visceral. He has created images about the viewing

act and virtuality, in which a camera is depicted frontally, as the subject itself, in

a mirror effect. Rather than being just the means toward making a reproduction,

the camera is pictured as the subject. Forty years before the current replacement

of text through image culture, Prini set up tautological situations regarding self-

presentation and mediatization.

Another early work depicts a television, full screen, black and white, again the

subject of the piece. In a way, these machines are self-portraits. The artist as ma-

chine.

The body of Prini is like a machine too, pushed to function and produce. Al-

though the artist is famous for saying Non faccio mai niente, and Non sono un
artista he is a relentless worker and thinker, subjecting his mind and body to the

utmost fatigue: a life dedicated totally and utterly to art.

At the heart of Prini’s projects are a desire to find the mechanisms that underlie

biological process - a concern that typifies the work of many of the founders of arte
povera.

And strangely enough, it is this play with the threshold of life, and making even

lived life be part of artistic investigation - turning the eating of a piece of organic

bread with an anchovy on top into an artistic experience - that the moment of making

art lies.

While I was working on the publication with Emilio Prini in Rome, in which

dozens of drawings created with the Olivetti typewriter chronicle the passage of

written script into organic forms, I began a project with another artist, Alison

Knowles, in New York. Knowles is one of the founders of the movement, Fluxus,

and a wonderfully gifted performer, whose tributes to everyday process and the sim-

ple beauty of life shapes - from the shape of beans to the making of a sandwich -

has been a feature of her work for over fifty years.

Oddly enough, Knowles’ project too was about the process of creation. First,

Knowles proposed to make a book using a series of phrases subsequently scram-

bled by computer and turned into a long and mesmerizing poem. This method

and the concept of Knowles’ initial work was based on her computer-generated

book/computer score House of Dust published by Verlag Gebr. König, Cologne, in

1969: the first literary score created by a machine.

By sheer coincidence, on the other side of the world, Knowles’ project, pro-

duced by computer rather than the typewriter that Prini used, involves the Fibonacci

cycle too. Knowles conceived of phrases in three disparate categories: “situations,”

“weather/time,” and “place.” These were then cross-matched (like a Cadavre Exquis
game) into all possible permutations. A 64-page book published by one star press

ensued. However, the actual design of the project (now that computers no longer

necessarily spit out long rolls of green perforated paper, like in 1969) was up for

grabs. So, I asked artist Rirkrit Tiravanija (sympathetic to Fluxus, afficionado of

the work of Knowles) to take over this element. The first suggestion he made was
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Fig. 2 Alison Knowles and
Rirkrit Tiravanija, “Men and
Women Commonly Dress
Alike” (detail) (Paris, Three
Star Books, 2011)

to set Knowles’ text in his characteristic typeface, and the second was to scramble

Knowles’ poem again, this time adding the filter of the Fibonacci system (1, 2, 3,

5, 8, 13, and so forth). The oddly short result has been presented in a tribute to the

Eastern book, in the form of a digitally printed scroll with two bamboo rods, devised

using canvas selected by Knowles.

Neither the Prini nor the Knowles/Tiravanija project occurred with knowledge of

the other, yet the artists were all working with formulas that might describe natural

process.

Entropy and chance, but also some strange form of symmetry and determination,

are at the heart of art. This small text demonstrates the uncanniness of the process,

and the randomness as well as intent that go into making artworks–two books in this

case–with artists whose work capture the rhythm of life processes.



All the Numbers End in Numbers.
On a Work by Alighiero Boetti

Andrea Valle

Alighiero Boetti is one of the most representative contemporary Italian artist and his

opus is raising a constantly growing international interest. Many of his works can

be realized on very different supports and make use of algorithmic procedures. This

contribution analyzes a minimal work, consisting only of the linguistic description

of a process, with the aim of demonstrating that, in spite of its simplicity, it shows

various relevant features of Boetti’s aesthetics.

1 Sensing numbers: Alighiero Boetti

Alighiero Boetti (1940-1996) is one of the most prominent artistic figures in the cul-

tural landscape of conceptual art. After a first working period [1] that can be traced

back to the “Arte povera” movement [2], he started a highly personal path, which

has lead him to become more and more influencing during recent years, raising a

growing interest in his work and poetics. While Conceptualism tends to strongly

remark the role of the idea against the material qualities of the resulting work, of the

project against its implementation, the situation is more subtly complex in Boetti, as

abstract conceptual devices are intended to generate sensible outputs without favor-

ing an aspect against the other. As an example, Alternando da 1 a 100 e viceversa
(“alternating from 1 to 100 and vice versa”, hence on Alternando) is the name of

a series of works by Alighiero Boetti that represents at its best some features of

Boetti’s art. Despite its absolutely simple structure, or maybe exactly because of

this aspect, it is a particularly elegant and clear statement of Boetti’s aesthetics1. In

Alternando (see Fig. 1) the starting point is a chessboard consisting of 100 squares;

each square consists of other 100 small squares. The chessboard is the theatre of

a numerical progression; in the first square one of the small squares is left white,

while all the others are black; in the second square there are two black small squares

and 98 white; in the third square 97 small squares are black and 3 white; ... in the

penultimate square

Andrea Valle

CIRMA, University of Torino (Italy).
1 For a general presentation see [3], for a formal and semiotic description [4] and [5].

Emmer M. (Ed.): Imagine Math. Between Culture and Mathematics
DOI 10.1007/978-88-470-2427-4 13, c© Springer-Verlag Italia 2012
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Fig. 1 Filling mechanism in
Boetti’s Alternando da 1 a 100 e
viceversa, embroidery on canvas,
1977 (“w”: white“b”: black)

there are 99 white small squares; the last square is completely blackened ([1], 154,

for a description by Boetti emphasizing the combinatorial pathos see [1], 204).

The decision about which small squares in each square are to be blackened or

to remain white is left undetermined by the definition, and it has to be taken by

the implementing subject (that, as typical with Boetti, may not coincide with the

artist himself). On one side, the formal specification of the work simply assumes

two graphic primitives: square drawing and binary colorization (black/white). This

abstractness is typical of Boetti’s love for hand drawing (often with pencil or pen)

as a way of visualizing patterns and processes2. But this is just a part of the Boettian

practice. As it can be seen on Fig. 1, the filling mechanism operates sequentially

on the chessboard visually exploiting the two-state inversion mechanism. The ab-

stractness of the design is in fact intended to allow for multiple implementations on

very different supports. Some versions of the work are hand-drawn with pencil by

Boetti himself, but other are embroidered (as the version presented in Fig. 1), weft

on kilims, realized as wall mosaics or as a large square pavement. In Fig. 1 it can

be noted that the colored border, even if very often present in mostly Alternando’s

realizations (as a sort of counterpart to the black/white progression), is not required

for the attribution of a work to the series. All these cases witness the relevance that

Boetti assigns to the final output, in order to avoid the perils of an idealistic drift

which is somewhat typical of Conceptualism. This “sensible Conceptualism” –so to

say– remarks both the role of the mental process at the source of the art work and

the relevance of its concrete realization through a material practice. By coupling

2 See Storia naturale della moltiplicazione, Cimento dell’armonia e dell’invenzione, Autodisporsi for

pencil, or the so-called Lavori a biro (biro works), realized with pen [1], [6].
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these two poles, the world itself reveals an unsuspected richness to the one able to

see it, not in terms of a mysterious quality to be recognized by the adept of a mystic

depth, but in terms of a capability of reading the surface of the phenomena, with

the intermingling play of order and disorder, to use an opposition which gave the

title to a large series of works by Boetti (Ordine e disordine, see [1], 136-9 and [6],

147-9). It is worthwhile to investigate all the previously introduced aspects by dis-

cussing a real minimalist work, which focuses on the conceptual and procedural

side of Boetti’s poetics but that will reveal at the end its intimate relationship with a

phenomenology of the world.

2 All the numbers end in three

Boetti can candidly assume that “the number is the only real entity existing in the

universe” ([6], 205). But it must be noted that in the artist’s opus this Platonism

seems to turn into Pythagoreanism, as the number is not intended by Boetti as a

static entity but exactly as “a form unfolding in the becoming” ([7], 22). Boetti’s

fascination for numbers refuses any compromise with numerology, favoring instead

the pure exhibition of a numerical progression, algorithmically defined. His genuine

amazement for numbers is indeed evident in the Alternando’s construction, where it

seems to be possible to literally hear the Pythagorean definition of number reported

by Stobaeus as “a progression of quantity beginning from the one and a regression

that ends in it” ([7], 22). But this idea of the number as a form that unfolds in the

becoming probably finds its purest example in a crystal-clear “little-known work”

Tutti i numeri finiscono in tre [All numbers end in three]. Giovan Battista Salerno,

one of the most acute commentators of Boetti’s work and poetics, explains in Italian

(as we will see, the language is relevant):

Si prenda per esempio il numero otto: è fatto di quatto lettere; quattro è di sette lettere; sette
è di cinque lettere; cinque è di sei lettere; sei è di tre lettere e il tre conta le proprie stesse
lettere. Dunque otto finisce in tre. Questo sistema funziona con tutti i numeri, per grandi
che siano. Si tratta solo di alternare i numeri e le lettere, leggere e contare. Si noti che
quest’opera, un’opera piccolissima che con il suo modo leggero e giocoso aggiunge forse
qualcosa al grande sistema simbolico del numero tre, un’opera come questa non si vale di
alcun supporto materiale [8]3.

This work, which has no place in Boetti’s catalog, is genuinely Boettian and co-

incides with its linguistic description (provided by Salerno after one of the usual

conversations with the artist). Its clear algorithmic nature resembles Alternando, but

while the latter masterpiece is embodied by a whole system of implementations, that

3 Take for example the number otto [eight]: it is composed of four letters, four [quattro] is composed of

seven letters, seven [sette] of five letters, five [cinque] counts six letters, six [sei] counts three letters and

three [tre] counts its own letters. Thus, eight ends in three. This system works with all the numbers, no

matter how large. It is enough to alternate numbers and letters, to read and to count. Note that this work,

a work which, with its light and playful mood, perhaps adds something to the great symbolic system of

the number three, a work like this does not use any material support.
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reaches its apex with the realization of 50 kilims, in this case the work remains at

the germinal state, that is, it is concluded in the linguistic medium. The consequence

of such a status of absence of physical implementation is a specific pureness of All
numbers end in three (hereinafter indicated by the acronym TINFIT, after the Italian

title). Before investigating deeper the content of the statement that coincides with

the work, a formal description of the process is appropriate.

Let’s consider a function y = flettercounter(x). The function is made up of (so to

say) two submodules cnv and cnt: cnv converts a number into its linguistic repre-

sentation, the cnt counts the characters composing the string resulting from cnv.

The structure of flettercounter is represented in Fig. 2, where number m is provided

as input, converted into a string by cnv, its characters being counted by cnt and fi-

nally returned as n. The domain and the codomain of the function coincide with

natural numbers (“the ones used for counting”). While the domain may eventually

include zero, the image of the function on y cannot include zero: in fact, a number

will be described by a string of at least 1 character. Thus, we will assume a stricter

perspective, defining the domain and codomain as the positive integers.

Fig. 2 flettercounter with mod-
ules cnv (converter) and cnt
(counter)

The values returned by flettercounter for the first ten numbers are shown in Fig. 3:

the x-axis represents the numbers, while the y-axis the number of letters that com-

pose the relative Italian string4. The gray line indicates the values for which the

number n is linguistically represented by a string containing n characters (y = x).

Fig. 3 flettercounter for n1...,10.
The gray line indicates the
values for which the number
n is linguistically represented
by a string containing n
characters (y = x)

4 As flettercounter is defined only for natural numbers, the continuous curve has not a formal meaning

(there is properly nothing between two adjacent numbers), but it is nonetheless useful for sake of visual

clarity.
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Fig. 4 flettercounter
for n1...,100

Fig. 5 flettercounter
for n1...,1000

Fig. 4 and 5 represent the values of flettercounter respectively for the first 100 and

1000 numbers, with the gray line increasing its slope only for graphical reasons.

It is easy to observe that the function shows a very irregular pattern for the first

ten values, while a clear and consistent pattern emerges when greater numbers are

taken into account. This nonlinearity can be explained by an empirical linguistic

fact. The first ten numbers are encoded with entirely arbitrary strings (e.g. 1, 7,

9, “uno”, “sette”, “nove”). While for successive values, and in a systematic way

above 20 (“venti”), a composition principle holds (22, 23, 24, [“ventidue”, “ven-

titre”, “ventiquattro”] . . . , 123 [“centoventitre”], . . . , 923 [“novencentoventitre”]

. . . ). This systematic feature shapes the trend of the curve. The negative peaks oc-

cur when 0 is used in some positions, e.g. in the case of 100 [“cento”] vs. 103

[“centotre”] vs. 123 [“centoventitre”]). The only case where the line y = x crosses

the curve is for x = 3, while only in the range [1 . . .5] we have y ≥ x, i.e. the lin-

guistic representation has a number of characters equal or greater than the number

it represents. Above 5, the ratio y
x tends to zero. That is, y grows much less than

x. Thus, while 3 is composed of 3 characters (“tre”, y
x = 1), 99 (“novantanove”)

consists of only 11 characters ( y
x = 0.111 . . . ). This makes indeed sense in terms

of mnemonic economy: if the language were to follow the straight line y = x then

it would take 100 characters to encode the number 100, 200 characters to encode

the number 200, and so on. The language would encode numbers as in the case of
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a unary alphabet. The latter consists of a single character, e.g. |, with {1,2,3, . . .}
represented respectively by {|, ||, |||, . . .}, and so on. It would still be possible for

small values, but as far as greater numbers were to be considered, the situation for

memory would rapidly become unmanageable. Not surprisingly, the average length

of Italian words in Dante’s Comedy is around 4 characters5. In the case of number

encoding, these average does not hold, exactly because of the composition principle.

As an example, “novecentonovantanovemiliardinovecentonovantanovemilioninove-

centonovantanovemilanovecentonovantanove” (999.999.999.999) counts 99 charac-

ters, and it is probably not remembered as a string labeling the number, but proce-

durally, i.e. by means of the algorithm needed to generate the string. A closer in-

spection reveals that the TINFIT procedure can be rewritten as an iterated function

starting from flettercounter, i.e. informally as

n �→ flettercounter(n) (1)

where �→ indicates a re-assignment, which assigns to n the result of f (n). As al-

ready discussed, the function is a “contraction” on the set of natural numbers, as it

associates each natural number to another natural number, resulting from the count

of the letters that compose the related linguistic item. The notation of (1) allows to

describe not only the association but also the generative process, that requires to it-

erate the association. This process, as described by TINFIT, is known in literature as

iterated function system (IFS), a type of formalism typically used in the generation

of fractals (on IFS we refer to [9]). Boetti is not stranger to the implicit use of frac-

tals, the artist having repeatedly explored self-similarity, a crucial aspect associated

with fractals. As an example, in Afghanistan (1980, see [1], 168) the shape of the

map of Afghanistan is constructed with smaller shapes of the same map. Indeed,

in the Alternando series, the larger square is made up of 100 squares, in turn made

up of 100 squares. In relation to Fig. 2, the IFS can be represented as in Fig. 6. In

the Boetti-Salerno formulation there is an exit condition for iteration (the “ending

in three” clause), when m = n.

Fig. 6 clearly shows the feedback mechanism, whereby the output value is rein-

jected in the function input. In the IFS parlance the sequence of values thus obtained

is called the “orbit” of the function. An orbit has a “fixed point” for n = f (n): once

n is reached, the system keeps on outputting n. The fixed point is also called the

“attractor” of the system.

Fig. 6 flettercounter as an
IFS, with n feeding back the
function

5 To be precise, 4.045, calculated from the electronic version provided by Project Gutenberg

(http://www.gutenberg.org/cache/epub/1012/pg1012.txt).
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Fig. 7 Iterative flettercounter . Orbits for n = 1,8,15,40

Fig. 8 Iterative flettercounter . Orbits for n = 1, . . . ,1000

In the case of TINFIT, the system built on flettercounter has clearly a fixed point,

namely, 3, and the title of the work is exactly the description of the presence of

the attractor. Fig. 7 consider the orbits of the system in relation to the number of

iterations, that is, in terms of steps that lead to the attractor 3. The starting number

is represented on the x-axis and the process develops along the y-axis. The itera-

tions are represented by segments joining points: thus, a single iteration for n = 1

(“uno” counts 3 letters), five for n = 8, six for n = 15 and n = 40. Fig. 8 depicts

the overlapping orbits for n = 1, . . . ,1000 and shows how the convergence towards

the attractor requires few iterations also for higher values of n: with n = 1, . . . ,1000,

up to a maximum of 8 in the case of n = 44 (“quarantaquattro”), whose orbit is

[44,15,8,4,7,5,6,3].

3 Not really all the numbers end in three

However, some structural aspects of the system do not clearly emerge from the

graphic representations used so far. Indeed, it is possible to observe that the orbits

rapidly converge to a fixed set of values. This behavior is more evident if a different,

more compact representation is considered, that takes into account the relationship
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Fig. 9 Graph of flettercounter
for n = 1, . . .9

between successive numbers in flettercounter. Consider the numbers 1, 2, 6 (“uno”,

“due”, “sei”): in all cases there is an immediate connection with 3. The number 5

(“cinque”) instead is related to 6 (“sei”), which in turn will be rewritten as 3. The

contraction operated by flettercounter can then be described by a directed graph, i.e.

a structure consisting of “vertices” and “edges” [10], representing respectively the

numbers n and the relations n �→ flettercounter(n). Fig. 9 and 10 depict the graph of

flettercounter for n = 1, . . .9 and n = 1, . . .50 respectively. The latter allows to note the

location of 44 on top left. As we have seen, 44 is the topologically farthest vertex,

as it takes 8 steps to get to the attractor 3 following the directed edges (the arrows).

The graph provides a compact representation of the system of relations among the

interested numbers, and can be thought as a generative grammar for sequences of

numbers. The generation process can take any vertex as a starting point and then

follows the path on the graph until a looping vertex is reached, that is, the attractor

3 that is connected only to itself. A path on the graph is another way of describing

an orbit of the function. However, graph modeling allows to study some aspects of

TINFIT that would be substantially hidden in the previous representations.

Fig. 10 Graph of flettercounter for n = 1, . . .50, only numbers are represented for sake of clarity
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In particular, is it really true that all the numbers end in three? Under which con-

ditions? As Salerno said, it is only a matter of alternating numbers and letters, to

read and to count”. Now, this figure of alternation, that articulates the notion of dou-

ble as a process, is at the core of the dual nature of TINFIT, a playful and at the

same time icy work, and a real conceptual prototype of Boetti’s modus operandi,
holding together structure and history by alternating them at each step. Indeed, the

number represents a cognitive primitive related to the idea of quantity. Counting

is a cognitive performance in some way universal, that has no trade with cultural

history. On the contrary, the letters that compose a number are the result of a triple

cultural mediation: first of all, numbering systems encode quantity in different way

in different cultures; then, different languages can encode even the same numbering

system in different ways; finally, different writing systems and practices (includ-

ing orthography) can encode even the same language in different ways. From this

perspective, TINFIT takes as its basis –on the side of the “letters”– respectively

the decimal positional system, its expression in the Italian language, and the Italian

standard orthography. Thus, the previous formalization is related to a totally empiri-

cal and historical set of facts. Indeed, there is no formal necessity in the construction

of strings that represent numbers in different languages, and the same composition

principle that we have discussed before is just an empirical regularity historically at-

tested in some specific languages. Hidden in the original formulation by Boetti and

Salerno, this culturally related issue has immediately prompted in the discussion

above, as the mixed Italian/English context probably forced the reader to note that

in English all the numbers end in four (Fig. 11), and, just to take into account the

narrow field of the Indo-European written languages, the same applies to German

(Fig. 12). However, a lower style variant of Rechtschreibung (the German standard

orthography) makes use of digrams instead of umlauts e.g. ‘ö”, “ä” are written as

“oe”, “ae”. The resulting graph in Fig. 13 shows a remarkable new phenomenon, a

topological variant: the system features not one but two attractors, 4 and 5, splitting

the graph into into two subgraphs.

And yet, other topologies are possible. Fig. 14 represents the graph of flettecounter
for French, with n = 1, . . . ,20. Not only the numbers do not end in 3, but they do

not end at all, as the graph does not converge on a looping vertex, but on a circuit

connecting 5 �→ 4 �→ 6 �→ 3 �→ 5. As a consequence, there is not an attractor, that

Fig. 11 Graph of flettercounter for n = 1, . . .20, English
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Fig. 12 Graph of flettercounter for n = 1, . . .20, German

Fig. 13 Graph of flettercounter for n = 1, . . .20, German with digrams

Fig. 14 Graph of flettercounter for n = 1, . . .20, French

is, a vertex satisfying n = f (n). The presence of an attractor, too, is therefore an

entirely empirical matter.

4 On the form of the rivers

Thus, it is the language that re-injects the evenementiality of the history into the

abstractness of the structure, which otherwise would remain - as Derrida would

say - a totality deserted by the forces. History and structure: this two poles alter-

nate and intermingle endlessly while reading the numbers and counting the letters.
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Hence the purity of TINFIT as a Boettian prototype: a work without support that

still links the formality of the function to the materiality of language, or to say it

with a famous Boettian couple, the order of the number to the disorder of history.

The most general feature, apparently independent from cultural parameterizations,

is probably the limit to zero of the ratio y
x , precisely for reasons related to memory

performance. It is for anthropological and phenomenological reasons that typically

(though not always) the first ten numbers receive a name in the languages, as the

result of the somatic constitution of the hand6. The infinite series of numbers and

the infinity discreteness of language originate and converge at the same time in the

“small quantity” of the fingers. Boetti has provided an admirable application of this

duality between the number and the world, between order and disorder, in one of

his most famous works, created in collaboration with Anne-Marie Sauzeau, Classi-
fying the Thousand Longest Rivers in the World, a book resulting from an extensive

research that progressively lists the World’s 1000 longest rivers, each one with their

basic geographical data. Here “the crazy bet” consists in “applying the classification

to water” [11]. With an inversion that, however, retains the same terms, in Classify-
ing the number represents a cultural order imposed on the complexity of nature. Not

by chance, Boetti noted:

rivers are liquid, there is water, the female element, they move, there is the time.

But in the Platonic list of Classifying the number seems to lose its Pythagorean

connotation, as a form of the becoming, so evident in Alternando and in TINFIT.

Yet, is there a “form of the river”? While the empirical shape of the river depends on

many factors, the (usually) convergent branching structure can be modeled through

a fractal methodology [12]. The series of TINFIT, no matter how far it departs,

gradually converges, step by step, to a single element. Put it in another way, each

number is the source of a stream that gradually connects to a main course. In Italian,

each number is therefore a tributary of 3, of a different order: a tributary of the

tributary, a tributary of the tributary of the tributary, and so on. A main course,

his few major tributaries, a series of tributaries that grows. Remarkably, the form

that Boetti seals in the progression of TINFIT is thus the form of the river. The

infinite numbers are the infinite streams that converge on the lower-order tributaries.

In hydrology, the value representing the branching order for a tree structure is known

as the Strahlen Stream Number. Fig. 15 represent the basin of the Amazon river

(the longest reported in Boetti’s book) as a graph connecting each river with its

tributaries. While most British rivers have a Strahlen number between 3 or 5, the

Amazon is the only river reaching 127.

In conclusion, even in its minimalism, the little conceptual work of TINFIT

shows different aspects of Boetti’s aesthetics linking together works that are ap-

parently very different, above all through a common attitude to procedurality.

6 Boetti explicits the relationship between the hand and the decimal system in Postali 80, [1], 51, where

the sequence 1-10 is achieved through a system of contours of the fingers, as usually drawn on paper

with pencil.
7 http://en.wikipedia.org/wiki/Strahler Stream Order
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Fig. 15 Graph representing
the Amazon Basin (recon-
structed after Wikipedia)
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Not by chance, rivers prompt Boetti to formulate a general reflection on ethics,

precisely by taking into consideration their typical topology:

The river has two senses. If you go upstream, at a certain moment you will have to choose,
when you find a river crossing [...] you will face a crossroads, and after you will have to
choose again. Whereas if you go along with the current towards the sea, you do not ever
choose. Strangely enough, you will have two different attitudes using the same path8.
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The Unreasonable Effectiveness of Mathematics
in Human Sciences: the Attribution of Texts
to Antonio Gramsci
Dario Benedetto, Emanuele Caglioti and Mirko Degli Esposti

1 Style, where are you?

From the online Oxford vocabulary we can read the following definition:

[style] noun

a particular procedure by which something is done; a manner or way;

a way of painting, writing, composing, building, etc., characteristic of a partic-

ular period, place, person, or movement;

a way of using language;

a distinctive appearance, typically determined by the principles according to

which something is designed: a particular design of clothing.

Does it sound strange that mathematicians are interested in this? As we try to argue,

it is probably not completely silly that certain topics are faced with pure or almost

pure mathematical eyes. Creativity means generation of novel, original and, hope-

fully, coherent structures from the use of elementary elements and with the use of

old or newly created rules. This is, of course, a very general and debatable defini-

tion, but one that works not only for literature, but also for music, painting and any

other form of artistic creativity.

But generation of structures is exactly what mathematicians usually do and study

(well, roughly speaking) and we think that some of the aspects related to creativity,

style (whatever it means) and the like can be modeled, quantified and sometime

measured and simulated. Of course, we are researchers and we must be very careful

to not abandon too quickly the safe shore of a rigorous scientific method in trying

to catch the phlogiston of style and creativity. Asserting that a given author has a

unique and detectable style that can be measured in any of his creations is of course

not only a poor scientific statement, but also completely wrong in its generality.
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This is why we say that, as for the concept of race, style does not exist. But still

in any creative process, nothing is really generated from scratch and any process of

content creation (a piece of a text, for example) is always the result of a complex

interaction between the author’s experience and skills from the past, what the author

has created up to now, the topic of the content, the author’s desire for originality, and

much more of course. Because of this, it is not completely foolish to imagine that

some patterns characterizing the author’s style might be hidden in the created work.

These features are probably not always sufficient to identify and discriminate the

author with respect the rest of the universe, but are probably sufficient to identify

and distinguish the author within a coherent and limited framework made of a few

properly selected authors and topics.

More precisely, in case of written texts, even if a general definition of style does

not means anything and probably it does not even exists, we believe that certain

abstract quantities, a little bit more general than the usual semantic or syntactic
(e.g. words) structures, sometimes contains useful information that allows use to

discriminate the real author of the text among a finite set of possible authors. This

is basically the aim of Authorship Attribution (often denoted by A.A), a quite old

area, a field where philology, computer science and (we believe) pure mathematics

and physics come together.

Again with the aim of being general and, even more, generic, let us start with a

very simple example in visual attribution. Look, for example, at the fragments of

picture in Fig. 1: two of them are from Henry de Toulouse-Lautrec and the other two

from Pierre-Auguste Renoir. Our guess is that it will take you just a small fraction

of a second to clusterize them with respect the author.

Can we do it with an algorithm? Well, in this case it should not be difficult to

recognize some very natural features, that can be extracted from each image and

makes it possible to discriminate between the artists. Here it would be enough to

extract very general and simple information about the statistical distribution of small

geometrical features, such as segments or circles and arcs. But things might be a

little bit more complicated: think about being able to distinguish a set of drawings

securely attributed to the great Flemish artist Pieter Bruegel the Elder (1525-1569)

from a set of imitation Bruegels, whose attribution is generally accepted among art

historians. Here the task is much more difficult, even for humans, and was attacked

Fig. 1 A simple problem in visual attribution [16]
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only very recently with quite sophisticated mathematical tools, such as wavelets and

sparse coding [5].

Computer science has in fact been grappling with the very general problem of

clustering and discriminating objects of different nature for very long time now and

a very fundamental type of approach has been developed in the last decades: first of

all, define and extract suitable features and then, in the spirit of machine learning,

train and use a suitable algorithm/machine (neural nets, supported vector machine,

Bayesian tools, etc...) to discriminate, classify and clusterize objects into several

known or unknown classes.

Here, as already stated, we would like to concentrate on literary texts and the

the task of using quantitative tools, either statistical or more purely mathematical,

to attribute a given anonymous or apocryphal text to a specific author. This area of

research has a quite long history but we can trace one of its crucial and fundamental

steps back to the work of the physicist Thomas Corwin Mendenhall (1841-1924).

As described and discussed in [6], in the article “The characteristic curves of com-

position” [8] T. C. Mendenhall was attracted by the similarity between the statistical

distribution of words of various lengths (how many words of length 1, 2, 3, and so

on) and the spectrum generated by the spectroscopic analysis, a very innovative and

much discussed technique in the last decades of the nineteenth century. In fact, as

he wrote in the 1887 issue of Science (see [6] and references therein):

It is proposed to analyse a composition by forming what may be called a “word spectrum” or
“characteristic curve” which shall be a graphic representation of the arrangement of words
according to their length and the relative frequency of their occurrence.

In 1901 T.C. Mendenhall published in The Popular Science Monthly an article with

the title A Mechanical Solution of a Literary Problem [7] where he studied and

compared body of works by Shakespeare, Marlowe and Bacon facing the already

classical open question regarding the real identity of the author of the literary works

traditionally transmitted under the name of Shakespeare. The aim of Mendenhall

was to verify whether the style of Shakespeare’s works was either unique and de-

tectable or if it was similar (if not identical) to the style expressed in the work of

Marlowe or Bacon, under the (wrong) assumption that the frequency distribution of

word lengths was a unique finger print of the author’s style (we now know that this

simple assumption is unfortunately very far from true).

In this contribution, following [1] and in particular [2], we want to describe the

method used to attribute articles whose author was unknown to Antonio Gramsci

(a famous politician, philosopher and journalist, who was one of the founders of

Fig. 2 Word spectra traced by Thomas Corwin Mendenhall in [8]



146 D. Benedetto, E. Caglioti and M. Degli Esposti

the Italian Communist Party in the 1921), which we have developed together with

M. Lana [6]. The techniques we used are not the mere result of experiments; on

the contrary they are based on some important ideas of modern mathematics that

we believe are useful for distinguishing this kind of research from the substantially

empirical approach generally used in this field, as we show in the following section.

2 The measure of information content

Information theory was born in 1948 with the article [10] by Claude E. Shannon “A

Mathematical Theory of Communication”, which poses and solves the problem of

defining the amount of information contained in a “message”, for example a text or

more generally any sequence of symbols (for a more extended account see the book

of Pierce [9]).

The unit of measurement of information is the bit (“binary unit”), it is the mea-

sure of the information which chooses one of the two elements of an alternative:

on/off, open/closed, right/wrong, true/false, 0/1 (which are the two symbols used in

the binary numeration system). With one bit available you can make just two dis-

tinct assertions; with two bits, four “words” can be made (in binary digits the four

words are: 00, 01, 10, 11); with three bits, eight words can be made, and so on.

The amount of information corresponding to eight bits is called byte; with one byte

you can generate 256 different words. With 256 possibilities, an entire alphabet of

a western language can be codified; indeed the letters (including capitals, accented

letters, punctuation marks, special symbols) are never more than 256. Each letter

is therefore represented by a sequence of eight bits, through universally accepted

“codings” (like ASCII and iso 8859-15).

An example: the DNA sequence AGCTTTTCATTCTGACTGCA is composed of 20

characters and a text file containing it is 20 byte large. One could therefore think

that this sequence contains 20× 8 = 160 bits of information. Actually to write a

DNA sequence an alphabet consisting of the 4 letters A,C,G,T is sufficient, and

since you can codify 4 letters with just 2 bits, the given sequence contains (at most)

20×2 = 40 bits of information.

So the coding affects the quantity of information used to write a message: while 8

bits per character are used for an English text, for a “genetic text” 2 bits per character

are enough. One can imagine the strangest codings: for the sequence

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

(50 times T), the information content is 400 bits if it is codified in the Latin alphabet,

100 bits if codified in the DNA alphabet, a few bytes in any programming language,

using a command which corresponds in human language to “write 50 T’s”. So the

question is: what is the information size of the sequence?

In his 1948 work Shannon determined that the quantity of information contained

in a message is the minimum number of bits needed to codify it, and defined entropy
as the minimum number of bits per character. There are programs which attempt to
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codify a message using the least possible number of bits: they are the data com-

pression programs (for example WinZip on Windows OS, gzip and bzip2 on Unix

OS; for a general description of compressors see for example [12]). The compres-

sion rate (obtained by comparing the dimension of the compressed text with that of

the original text) allows us estimate the entropy of a text (see also [13]). Shannon’s

theory has a rigorous and consistent formulation only for well-defined mathemat-

ical objects, but mathematicians find it natural to use his ideas in the field of text

analysis as well: one can indeed make the hypothesis that, by measuring the com-

pression rate of an author’s texts, an intrinsic quantity of it is measured. Shannon

himself, through an experiment, estimated that the the average quantity of informa-

tion of the “English language” is between 0.6 and 1.3 bits per character. Though the

entropic characteristics of an author’s writing are certainly interesting, they are not

very useful for attribution problems.

By developing Shannon’s ideas, one can obtain an effective instrument for the

attribution problem: the concept of relative entropy. In order to illustrate this concept

it is useful to analyse in detail how some methods (algorithms) for data compression

work. Those which were discovered first (Shannon-Fano, Huffman) use a priori

knowledge of the character statistics of the text and codify just one character (or

a few characters) at a time. The more frequent the character is used, the shorter

the code assigned to it. As an example, consider Morse code, which, even though

it is not a compression code, has been conceived to meet a similar requirement:

speeding up the transmission of messages in the English language. Morse code uses

5 characters: line, dot and short break to codify letters, medium break to separate

words, long break to separate sentences. The more frequently used letters in English

are codified with a shorter sequence, and so transmitted faster: “e” is codified with

“.” while “z” is codified with “–..”. The letter frequency distribution was studied a

priori: Morse visited a print shop to obtain it. The entropy is the minimal number

of bits per character needed to codify a sequence, so if the sequence is codified in

a non-optimal way more bits than necessary are used; given two sequences, their

relative entropy is precisely the number of bits per character which are added when

one sequence is codified with the code which is optimal for the other sequence. The

example of Morse code is useful to understand this concept. Let us suppose that

Morse code is optimal for the English language: if it is used to codify an Italian

message it gives a text longer than the one which would have been obtained by

using a Morse code optimized for the Italian language. The difference of length (per

character) is a measure of the relative entropy between English and Italian.

Relative entropy is a very powerful tool to quantify the difference among se-

quences, and therefore among authors. As early as 1993 Ziv and Merhav in [15]

had proposed the use of relative entropy to deal with problems of categorization and

suggested definite methods to measure it. These methods have been proposed and

used on more specific problems in the fields of biological sequence analysis and of

authorship attribution (see the survey of Stamatatos [11]).

In particular, we have used a method based on the ideas of the compression

algorithm LZ77 of Ziv and Lempel [14], which is the origin of the compression

softwares zip/WinZip/gzip (see [3] for an explanation of the method you can eas-
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ily implement!). For example, as an estimate of the relative entropies of the tragedy

Oedipus at Colonus by Sophocles and the tragedy Alcestis by Euripides with respect

to Antigone by Sophocles, we obtain the following values:

D(Oedipus at Colonus||Antigone) = 0.130, D(Alcestis||Antigone) = 0.244

In this example the relative entropy of two texts by Sophocles is lower than that

between a text of Euripides and a text of Sophocles.

3 The statistics in the texts

Assuming that the text is “just” a symbol sequence means not taking into consider-

ation either the content of the text or its grammatical aspects: letters of the alphabet,

punctuation marks, blank spaces between words are just abstract symbols, without a

hierarchy. Moreover, as a basic constituent of the text, the word has no more mean-

ing than other aggregates of symbols, and its role as a unit of higher level than the

single character is described by the n-gram. Here are some useful examples:

by monogram (1-gram) we mean one single symbol of the alphabet;

by bigram (2-gram) we mean a sequence of two symbols, for example “me” but

also also “e ” (i.e. “e” followed by a blank space);

by trigram (3-gram) we mean a sequence of three symbols, for example “the”,

but also “e.L”;

by n-gram we mean any sequence of n symbols; for example “the entr” is

an 8-gram.

From a simplifying mathematical point of view, besides considering the text as an

abstract sequence of symbols, we also assume that it has been generated by a source,

symbol after symbol. The nature of the source is not the object of analysis, but is

only an abstract model of all the entities which can generate texts. The source emits

its messages (texts) choosing the symbol to be emitted each time according to prob-

abilistic rules. The difference between sources is due to the different probabilistic

rules used to generate the messages.

Obviously, this source/message scheme is too rigid and abstract to be a reason-

able interpretation of the author/text relationship. In particular, in the mathematical

models for symbol sources it is possible to make the rules for symbol generation

explicit, while it is at least doubtful that such rules exist for a real author writing

a text. On the other hand this approach gives some useful indications, as Shannon

showed in constructing the approximations of the texts [10].

He defined the approximation of “order 0” simply by extracting symbols ran-

domly, all with the same probability. Obviously the texts obtained in this way are

far from resembling an English text, as can be seen from the following example:

pmR!.ALvPRW;sVfjyaicGlWsN;lDADdHWiCAWEF.cbLG;UgdPYCFbUGmH:eMiVtK



The Unreasonable Effectiveness of Mathematics in Human Sciences 149

The “first order” approximation is obtained by extracting symbols with probabilities

equal to the relative frequencies with which they are found in the reference corpus.

An example of text obtained like this is:

orklpa tea yohhranKgoc suhoruhytenffari, ed e aelutnGb u.ifaaepn

With the “second order” approximation a significant difference is introduced: the

new character is chosen in relation to its antecedent. For example, to choose the

character following a c, we have to compute the frequencies of the bigrams begin-

ning with c in the corpus and divide them by the overall frequency of c; the values

obtained in this way are the conditioned frequencies. A text generated with such

rules is for example:

he cerye Huro ut thowaverowolesthirliror me g imen andy lind f g

Correspondingly, a model of third order is obtained by measuring the frequencies

of a character with respect to the two previous ones. An example is

at st the waid heithand by hinglittlyints napt th hothed that han

and an example of approximation of the 9th order is

and their guns across their wandering which would no more left

The number of the characteristics of the original texts which are preserved in the

models grows with the order of approximation: in the first order approximation

the separation into words is similar to the one of English language; in the sec-

ond order the syllables are substantially correct, and the beginning and end of

words are plausible; the ninth order approximation roughly respects grammatical

rules.

With this idea in mind, we can suppose that the “stylistic” differences among

authors must result in numerical differences between n-gram frequencies. In this

way, once the n-gram frequencies of an unknown text are measured and compared

with the “typical” n-gram frequencies of an author, it is possible to perform the

attribution by choosing the author for which the difference between the known and

calculated frequencies is minimal.

4 Mathematical methods for attribution

Using the description of texts as n-gram sequences and the entropy as a measure of

information content, one can develop procedures for the attribution of a text whose

author is unknown using two basical tools:

for n-grams: their frequencies in the text are measured and compared with the

ones of the available authors;

for entropy: the relative entropy of the text in respect to the available authors is

calculated.



150 D. Benedetto, E. Caglioti and M. Degli Esposti

Any mathematical method for attribution will be characterized, in brief, by the fol-

lowing two aspects:

1. choice of the “objects” for which the counting is significant, that is, of the ob-

jects which are supposed to be used with frequencies of occurrence significantly

different from that of the other authors;

2. choice of the way of translating the measures of the quantities described in 1.

into attributions.

The n-gram frequencies of occurrence and the relative entropy are two possible

choices for the counted objects in 1. The most used methods for the choices in 2 are

those involving probabilistic/statistical techniques and those of metrics or similarity

ones. Probabilistic and statistical methods start from the basic assumption that the

characteristics of a text (the ones chosen in point 1. are not univocally linked to an

author, but occur with different frequencies of occurrence for the different authors).

There are very well-established mathematical techniques (for example, Bayes’ for-

mula and more generally statistical tests) for the study of the inverse problem, that is

to calculate the probability that a text with certain observed characteristics has been

written by a given author.

A different approach consists in synthesizing as a single quantity the differ-

ence/dissimilarity observed measuring the quantities chosen in point 1). This value

will be a measure of the proximity of two texts or of a text and an author; in general,

the number is lower when the measured difference is smaller, i.e., when the texts

are closer to one another. At that point a mathematician will prefer to define this

proximity as a “distance” (or “metric”), which is a definite mathematical concept,

obtained by abstracting the characteristics of the usual distance between points in

space 1.

There are two advantages with respect to a generic measure of “proximity” are

two: “distance” is a mathematically solid, unambiguous concept, and it allows the

use of other mathematical tools that have been developed using the notion of dis-

tance. It is important to remark that the metric description allows among other things

the construction of “phylogenetic trees”, where attribution corresponds to the inclu-

sion in different branches of the tree (see e.g. [4]).

5 Gramsci or not Gramsci?

The basic ideas and considerations described up to now were further developed

and implemented for the attribution of journal articles whose author was unknown

but which were probably written by Antonio Gramsci (we did this work for the

new “Edizione nazionale degli scritti di Antonio Gramsci”, in collaboration with

“Fondazione Istituto Gramsci Onlus”2) While we do not go here into the details of

our attribution procedure (we refer the interested reader to [1] and [2] for further

1 Specifically the distance satisfies the “triangular inequality”, which in essence states that if going from

A to B one deviates passing through C, the path becomes longer.
2 http://www.fondazionegramsci.org/ag edizione nazionale.htm
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mathematical and methodological details), we would like to give here just a brief

overview of the fundamental steps, together with a sketchy graphical visualization

of some achievements.

We started with a tuning stage, in which we selected two methods, one based

on n-gram (with n=8) and the other based on entropic techniques, and we tested it

measuring the distance between any given text X out of a group of 50 Gramscian
and 50 known non-Gramscian texts and the other 99.

Having fixed a distance method (say the one based on n-grams) and having cho-

sen text X , we now have 99 numbers representing the distances of X from the indi-

vidual elements of the the corpus. This suggests two questions:

What can we expect about the distance of X from the 49 texts of the class to

which it belongs?

Is it possible to consider conveniently all the information contained in these

numbers, hence going beyond the simple (and inefficient) attribution given by

the author of the nearest text?

With these questions in mind one can in fact define, for any given text X and for each

distance method, a Gramscianity index −1 ≤ v(X)≤ 1 calculated from the above 99

numbers;the index value will be greater the closer the unknown text is to the group

of Gramscian texts. A value near to 1 (-1) provides a strong indication of a correct

attribution to Gramsci (to non-Gramsci), while values near to 0 are a mark of great

undecidability. The index allows a quite direct and useful graphical visualization of

the attribution, as shown for the training set in Fig. 3 (see [1, 2] for more details).

Fig. 3 Attribution of the 100 texts, using the Gramscianty index given by the n-grams method
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We can now repeat the same procedure with the entropic distance, which is based

upon completely different principles. On the other hand, one might fear that they in

fact will give the same information, adding nothing to the accuracy of the global

method. We have therefore made sure, with suitable methods, of the statistical inde-

pendence of the rankings of the texts ordered following the two distances.

In the end, we have attributed to Gramsci only the texts that both methods assign

to him. Moreover, both methods give a numerical value for the attribution, so that

it is possible (and very useful) to give a two-dimensional graphical representation

of the overall results: the Gramscianity index obtained with the n-gram method is

plotted on the horizontal axis where positive values correspond to the attribution to

Gramsci, negative values to “non-Gramsci”. The rightmost points are the texts for

which the attribution to Gramsci is more certain, the leftmost are those for which the

method suggests with greatest certainty an attribution to authors other than Gramsci.

On the vertical axis the value of the analogous index given by the relative entropy

method is shown; in this case advancing from bottom up means moving from sug-

gested non-Gramscian texts to suggested Gramscian ones.

The results of the tuning stage is shown in Fig. 4.

The first quadrant, therefore, contains the texts that both method attribute to

Gramsci. In this case, for example, there is no triangular point among them, meaning

that there are no false positives (no wrong attributions to Gramsci). The number of

texts correctly attributed to Gramsci is 43, the 86% of the total. In the second quad-

rant lie the texts attributed to Gramsci by the relative entropy method but not by the

n-grams method. There are no texts in the fourth quadrant: these would be those

Fig. 4 Attributions for the 100 texts of the tuning stange
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Fig. 5 Attributions for the 40 texts of the blind test

attributed to Gramsci by the n-gram method but not by the entropic method. Finally,

the third quadrant contains the texts not attributed to Gramsci by either methods.

The second stage was a blind test, performed on 40 texts (attributions were known

but communicated to us only a posteriori). The results we obtained is shown in

Fig. 5. One can see that 18 Gramscian texts out of 20 are correctly attributed to

Gramsci, which is the 90%, with no false positives.

This was just a very brief description of the beginning of the analysis, which was

followed by a systematic attribution of thousands of actual unattributed articles. The

attributions obtained with these mathematical methods are at present in the hands of

experts of Gramsci, who are re-elaborating and re-discussing the results in light of a

more traditional philological approach. We do not intend to go here into the details

of this interesting (and regarding some aspects, original) interaction between math-

ematical based quantitative methods and philological methods, besides confirming

a fruitful coherence between the approaches, which will be discussed elsewhere.

Of course, it’s a long way to the top3 and a lot of interesting questions are still not

completely answered: for example, Why do these abstract methods work? Which n-

grams really contain the signature of Gramsci’s style?

To put it another way: style, style, where are you?

3 . . . if You Wanna Rock ’n’ Roll: AC/DC, from the album T.N.T.
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Lost in a Good Book:
Jorge Borges’ Inescapable Labyrinth

William Goldbloom Bloch

1 Entrance

“Entrance” is a marvelous example of a heteronym, a word endowed with (at least)

two separate pronunciations, each of which has a meaning distinct from the oth-

ers. In this case, in the context of what I am writing about, the two pronunciations

and meanings complement each other very well: Entrance, a place to enter, and:

Entrance, to delight and fill with wonder.

Many might say that Fiction is the art of putting together words to evoke images

that, in turn, provoke feelings and touch beliefs in the readers. Many might also

say that Mathematics is the art of assembling axioms and instantiations of Platonic

Forms to express that which Must Necessarily Be So. These descriptions make the

prospect of combining Mathematics and Fiction akin to the workings of a cinematic

mad scientist, wildly pouring chemicals together, boiling and distilling them, and

hoping that an improbable outcome will occur (some critics might allege that all

of Mathematics is Dreary and Boring Fiction, but I do not imagine I am able to

convince them of the error of their ways).

It is difficult to envision how the two fields may be brought together in a way that

does justice to the artistry, the precision, and the profundity of these human projects.

The Argentine writer, Jorge Luis Borges, is one of the earliest, and one of the finest

writers to do so. Borges was born in Buenos Aires in 1899, spent time in Switzerland

and Spain during and after World War I, then moved back to his beloved Buenos

Aires in 1921. During the 1920s and the early 1930s, he gained notice, in Argentina

at least, for his manifestos on poetry, his poetry, his minor fiction, and for his essays

that appeared in unusual venues, such as the Argentine version of the Ladies’ Home

Journal. When Borges was approaching his 40th birthday, it would have been easy to

dismiss him as a failure: He was unmarried, living with his mother, and was working

in a menial capacity at a small local library in Buenos Aires, dreaming of the days
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when gauchos and vaqueros strode the grassy plains of Argentina and were as minor

deities.

During this period of his life, as he was slowly going blind, along with many

eclectic and varied offerings at the National Library of Argentina, Borges was vo-

raciously reading and rereading books by Bertrand Russell on the philosophy and

practice of mathematics. His searches and researches were actuated, as were mine

initially, by the desire to understand infinity in both the large and in the small; in the

large in the form of the vastness of the space time continuum, particularly as seen

in Nietzsche’s meditation on eternal recurrence,1 and in the small in the form of the

increasingly tiny steps taken by both Achilles and the Tortoise in Zeno’s famous

paradox.2

In no way should we consider Borges a mathematician, nor would he have called

himself one, either, but by virtue of his immersion in the ideas of the combinations

of atoms, and the manifestations of infinity in the large and small, and in Russell’s

resolutions of Zeno’s paradoxes and musings on transfinite numbers, Borges trans-

formed himself into a sort of receptacle of the ideas of the mathematics of permuta-

tions and of the infinite. His ruminations about these ideas and how they played out

in the world around him, finally found expression in Ficciones, a slim collection of

remarkable short stories that account for the beginning of his literary fame outside

of Argentina.

It is possible, and very tempting, to look to the vast, increasing, swampy river-

delta of literary works and figures, and pigeonhole Borges as a successor to the

gothic inventions of Edgar Allan Poe, as the inventor of magic realism, and as a

precursor to many of the writers of science fiction, metafiction, and hyperfiction.

It is equally possible, and maybe even more tempting, to reference his unique and

memorable prose style; Nobelists Gabriel Garcı́a Márquez and Maria Vargas Llosa,

and other eminent writers in Spanish such as Carlos Fuentes and Julio Cortázar, all

cite Borges as a profound influence.

But I come not to bury Borges with praise, nor as an exegete, nor as a literary

analyst or theorist. For that matter, I am not even going to address the most obvious

incursions of mathematics in his short stories.3 Rather, the rest of this paper focuses

on the largest conceivable labyrinth in one of his Ficciones, the sublime story “La

Biblioteca de Babel.” The idea of the Library of Babel is based on simple combina-

torial mathematics, and Borges admits to expanding it from a perfunctory science

fiction story, Kurd Lasswitz’s “Die Universalbibliothek” (1901).

1 If time is unlimited, and the Universe is bounded, Nietzsche argued that given the existence of only

a finite number of atoms, all events must eventually recur infinitely often. A similar argument has been

made by those who postulate that if the Universe is unlimited spatially, then infinitely many exact replicas

of this moment of you reading this footnote are simultaneously distributed throughout the Universe.
2 Zeno claims that the fastest, Achilles, may never catch the slowest, the Tortoise, for by the time Achilles

has caught up to where the Tortoise was, to Achilles’ dismay, the Tortoise has moved on, and Achilles

must chase him further yet.
3 There is a whole Universe of approaches I am not taking with this article, and while it may be an

interesting exercise to catalogue more of them, including the one in which I misunderstand him to be

a South African writer who mysteriously writes in Spanish and avoids discussion of serious racial and

ethnic identity issues, there are only so many footnotes available to me.
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2 The Unlimited Labyrinth

In a nutshell: Imagine an alphabet consisting of 25 symbols, including the period,

the comma, and the blank space. The Library consists of all books containing every

single possible sequence of those symbols contained in 410 pages, where each page

has 40 lines, and each line has 80 symbols. As Borges writes:

The Universe (which others call the Library) is composed of an indefinite, perhaps infinite
number of hexagonal galleries. In the center of each gallery is a ventilation shaft, bounded
by a low railing. From any hexagon one can see the floors above and below - one after an-
other, endlessly. The arrangement of the galleries is always the same: Twenty bookshelves,
five to each side, line four of the hexagon’s six sides; the height of the bookshelves, floor
to ceiling, is hardly greater than the height of a normal librarian. One of the hexagon’s free
sides opens onto a narrow sort of vestibule, which in turn opens onto another gallery, identi-
cal to the first - identical in fact to all. [. . . ] Each wall of each hexagon is furnished with five
bookshelves; each bookshelf holds thirty-two books identical in format; each book contains
four hundred ten pages; each page, forty lines; each line, eighty black letters.4

The joy of Borges’ story is that in a few paragraphs, he creates an entire universe

dedicated to holding the many, many books of the Library,5 to evoke the miasmic

atmosphere of an all-encompassing Library, and to educe metaphysical, moral, and

psychological consequences of residence in such an uncompromising milieu. The

narrator of the story is an aged Librarian, who has spent a lifetime speculating on

the meanings and ways of the unfathomable Library, and a question that puzzles

him is similar to one that puzzles us: What is the shape, the configuration, of the

vast edifice? Early in the story, narrating as the Librarian, Borges writes:

Let it suffice for the moment that I repeat the classic dictum: The Library is a sphere whose
exact center is any hexagon and whose circumference is unattainable.6

Then, after many meditations, the final sentences of the story invite us to reopen the

question of the topology of the Library:

I am perhaps misled by old age and fear, but I suspect that the human species - the only
human species - teeters at the verge of extinction, yet that the Library - enlightened, solitary,
infinite, perfectly unmoving, armed with precious volumes, pointless, incorruptible, and
secret - will endure.

I have just written the word “infinite.” I have not included that adjective of out of mere
rhetorical habit; I hereby state that it is not illogical to think that the world is infinite. Those
who believe it to have limits hypothesize that in some remote place or places the corri-
dors and stairs and hexagons may, inconceivably, end - which is absurd. And yet those who
picture the world as unlimited forget that the number of possible books is not. I will be
bold enough to suggest this solution to the ancient problem: The Library is unlimited but

4 From “The Library of Babel,” pages 112-113, as translated by Andrew Hurley in Collected Fictions.
5 251,312,000 books, enough to completely fill 101,834,013 universes the size of our own (using the current

best estimate). To gain intuition about these numbers, and for many other insights and perspectives, see:

The Unimaginable Mathematics of Borges’ Library of Babel [1].
6 Ibid, p. 113.
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periodic. If an eternal voyager should journey it in any direction, he would find after un-
told centuries that the same volumes are repeated in the same disorder - which, repeated,
becomes order: The Order. My solitude is cheered by that elegant hope.7

As satisfying as it may be to the Librarian to invoke infinity in the large, and have

a Universe unfettered by walls or boundaries, most of our minds balk at that sort

of forever. (To say nothing of the construction costs or upkeep!) Furthermore, one

must also ask, “What does a hexagon rest on?” The only possible answer is the

hexagon below it, which leads to the next question, “And what does that hexagon

rest on?” This evokes the old joke that the earth rests on a elephant, and the elephant

on a tortoise, and then when curious about what the tortoise rests on, the punch

line emerges: It’s all tortoises from there on down. If the construction truly is “all

hexagons from there on down,” the Library is certainly worse than a castle built

on sand. Rather remarkably, the architectural model of the Library proposed below

provides a satisfying answer to this question.

A note regarding the gravity of the situation. If the Universe and the Library are

synonymous, and if we make the reasonable assumption that the Universe is neither

expanding nor contracting, it follows that the natural gravitational field would be

identically zero everywhere. Even though there are vast amounts of matter in the

Universe/Library, its homogeneous distribution entails that the gravitational effect

from any one direction would be canceled out by precisely the same effect from

the opposite direction. Since the builders of a Library must be, at least from our

perspective, omnipotent, their talents surely must include the ability of imposing a

useful constant gravitational field on the Library.

Even with these constraints (or allowances), is it possible, then, to find an elegant

path through the maze that is the Universe that is the Library? In other words, is

it possible to find an appropriate description for the Universe that is the Library

that best satisfies the Librarian’s perspectives while not violating the intuition that

infinite is too big?

Topology is a branch of mathematics that explores properties and invariants of

spaces, and for the purposes of this paper a space will be considered as a set of

points unified by a description. It is not unreasonable to speculate as to a topology

of the Library that best reflects the anonymous Librarian’s received wisdom and

secret hopes.

Collecting from above the properties of the classic dictum (CD) and the Librar-

ian’s solution (LS):

1. The Library is spherical. (CD)

2. The center can be anywhere - there is uniform symmetry. (CD)

3. The circumference is unattainable. (CD)

4. There are no boundaries. (LS)

5. The Library is limitless. (LS)

6. The Library is periodic. (LS)

7 Ibid, p. 118.
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Is there a space that embodies all six of these properties? If so, how can it be best en-

visioned and grasped by the intellect? As it turns out, there is an excellent candidate

that almost perfectly addresses these properties.

To understand the candidate space, it is reasonable to begin with the space most

familiar to the intuitive geometric sense: Euclidean three-dimensional space (hence-

forth, 3-space). It is a space that possesses volume, it has three axes of orientation

with ourselves as the central point, and we may move forward or backwards, we

may move left or right, and we may move up or down. And, of course, we may also

move in combinations of these directions. Notice that from this description, there is

no fixed preferred center point: We are our own central points.

Indeed, one of Descartes’ deepest ideas was to specify a point - some point, any

point - in 3-space and call it the origin. Three axes intersecting at the origin, typically

called the x-, y-, and z-axes, are set with each axis positioned at right angles to the

other two. They abstract our innate, intuitive orientation and, with the introduction

of a unit length, which naturally induces a numbering of the axes, give rise to a

coordinatization of space.

But there are no distinguished points of any kind in Euclidean 3-space; in fact,

the view from any point is the same as from any other point. There are no walls, no

boundaries, and no limits. At the end of the story the Librarian envisioned this kind

of space, partitioned into hexagons, filled with books, extending infinitely through-

out the totality of 3-space. The books’ shelving pattern repeats endlessly along each

of the three axes, much as a symmetric wallpaper pattern does in two dimensions.

While this conception of the Library satisfies points (2), (4), (5), and (6) from the

list above, it also induces a vertiginous disorientation described above.

So it is seen that Euclidean 3-space embodies some of the qualities of interest

in the quest to understand the large-scale structure of the Library. It is necessary to

sketch two more ideas, one mathematical, one mystical, before describing a sub-

structure for the Library that better reconciles the characteristics of the Classic Dic-

tum and the Librarian’s Solution.

The mathematical idea is relatively recent - it comes from the early part of the

twentieth century. For the purposes of this paper, it suffices to say that a manifold is

a space that is locally Euclidean, but that on a global scale may be non-Euclidean.

Perhaps the simplest possible example is that of a sphere, or the surface of the

earth. Locally, assuming that we are so small we can’t detect the curvature, each

micropatch of a sphere is, in essence, a two-dimensional Euclidean plane (2-space).

Think of the steppes of Central Asia, of the corn belt of the United States, of the

Sahara desert, or of any large, calm body of water to engage vivid testimony on

this point. Globally, despite the essential flatness of each little patch, there is non-

Euclidean behavior: If we begin at a point, pick a direction, and continue moving

in that direction, we circumscribe the sphere and return to our starting point. This

can’t occur in 2-space, where we travel forever in one direction and do not ever

come close again to a previously visited point.

Again, a manifold is locally Euclidean. If we start at any point in space, look

around and take a few steps in any direction, do we think we are in Euclidean space?

If the answer is yes, then we are in a manifold. If we continue walking, and some
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unusual phenomenon occurs, such as returning to our starting point, then we realize

we are in a nontrivial manifold; that is, one with global non-Euclidean properties.

Our universe, for example, seems to be a manifold, although interesting questions

arise at black holes. Certainly one cannot imagine standing at a black hole and taking

a step in any direction!

The mystical idea is relatively ancient - I leave it to a Borgesian intellect to trace

its roots and age-long echoes. Begin in a familiar place, our own universe. If we talk

about an object in our universe - for example, a tomato, or a desk, or a chair - we

view it as embedded in a larger space.

Consequently, we often use our relative coordinate system to refer to objects, as

when we say “It’s on my right,” or “Over there! Directly behind you, to the left,”

or “Scratch my back . . . lower . . . lower . . . to the right . . . now up . . . that’s

it!” Over the millennia, primarily as navigation aids, we’ve settled upon somewhat

less arbitrary reference points, such as the North Star, the magnetic North Pole, and

the true North Pole. The point is, though, that these references, these origins, are

all within our universe. “Outside the universe” is a phrase beyond normal compre-

hension. Some theories place our universe in a larger matrix, such as a superheated

gas cloud containing an infinite number of inaccessible universes, or in a higher-

dimensional space, or in a multiplicitous welter of bifurcating universes. However,

these theories inevitably (should) raise the question,

What is outside of the larger universe?

The answer is no thing; nothing; non-space; indescribability; un-thing-ed-ness; Void

beyond Vacuum: All these non-things are the “outside” of the universe. These two

ideas, the mathematical and the mystical, are woven together in this question and its

answer.

Where is the center of a sphere?

If the sphere is considered as an everyday object embedded in 3-space, the answer

may take a form such as “at the intersection of two diameters,” or, pointing at it dra-

matically, saying with particular emphasis, “There! In the middle, in the interior!”

If, though, we consider the surface of the sphere as a manifold, as a space in

itself and of itself, then the question and answer are subtler. As in the case of our

universe, as if we were points residing in the sphere itself, there is no legitimate

referral to a point outside the universe of the surface of the sphere. There is only the

sphere; everything else is no-thing. Where is the center of a sphere? Considered as

a manifold the answer is

Everywhere and nowhere.

Every point has the property that locally, it looks like Euclidean space, and regard-

less of the direction taken, consistently moving in any chosen direction returns an

intrepid traveler to the starting point. No point is distinguished in any way.

One more idea is necessary to provide a satisfying topology for the Library. The

example of a manifold used above is a two-dimensional sphere (2-sphere). There

are a number of ways to rigorously define a 2-sphere. Euclid might write something
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Fig. 1 In which the coordinate axes in Euclidean 3-space are seen to intersect at a point that is
inside, but not part of, the 2-sphere

Fig. 2 A disk curls up out of Euclidean 2-space, and when the boundary contracts to a point, a
2-sphere is formed

like, “Given a point p in 3-space, a sphere with center p is the collection of all points

a specified uniform distance away from p.” An analytic geometric equation for the

standard unit sphere is

x2 + y2 + z2 = 1.

In Fig. 2, using words and pictures, is a topological construction of a 2-sphere.

Start with a disk in the Euclidean plane, and while preserving the interior of the

disk except for bending and stretching, crimp the entire boundary circle up out of

2-space, and then contract the boundary to one point. This point, the contraction of

the boundary, becomes the north pole and vanishes into the surface of the sphere

created as the process is completed.

An interesting point: The way it’s been described, and the way the picture shows

this process, it may seem as though a disk is being modified over time. By contrast,

though, one should simply say, “Identify the boundary of the disk to a point.” Thus,

in some sense, the creation of the sphere is a timeless step that happens “all at once.”

The three-dimensional sphere (3-sphere) provoked many advances in topology

over the past century, and due to the recently solved Poincaré conjecture, it remains

a vibrant research topic. The 3-sphere is a generalization of the 1-sphere - a circle
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- and the 2-sphere. Euclid might write something such as, “Given a point p in four-

dimensional Euclidean space, a sphere with center p is the collection of all points

a specified uniform distance away from p.” An analytic geometric equation for the

standard unit 3-sphere is

w2+x2+y2+z2= 1.

An analogous topological construction for the 3-sphere is difficult to envision, but

by pushing the limits of understanding, much may be intuited.

Take a solid ball and, while leaving the interior of the ball uncompressed, crimp

the entire boundary 2-sphere “upwards,” and then simply contract the boundary 2-

sphere to one point. That’s it! But how can it possibly be done? At least the difficulty

is easy to understand, for the construction of the 2-sphere took a two-dimensional

object, the disk, and bent it into the third dimension in order to contract the bound-

ary. Starting with a solid ball in three dimensions, we must “bend” the ball into the

fourth dimension before we can contract the boundary.

At this juncture, the mathematics becomes unimaginable; the best to be hoped

for is that by meditating on the lower-dimensional examples accessible to the imag-

ination, it may be possible gain some sense of what is possible. By proceeding from

analogies with the 2-sphere, two methods to visualize the 3-sphere follow below.

If we take a two-dimensional Euclidean slice of a 2-sphere, the resulting geomet-

ric object is either a point - at the north and south poles - or a 1-sphere.

Using a mild updating of an idea from Flatland, imagine a movie of a planar

slice moving from the north pole to the south pole. The frames show a point that

grows into a unit circle, which then shrinks back down to a point (figure 4, left). In

a similar fashion, imagine taking a three-dimensional Euclidean slice of a 3-sphere.

In that case, the resulting geometric object is either a point - at the “top” or “bottom”

- or a 2-sphere. If we make a movie of the voluminous slice moving from the top

to the bottom, a viewer would see a point that grows into a unit sphere, and then

shrinks back down to a point (Fig. 4, right).

Expanding this idea, suppose we were forced to squish the 2-sphere, whose nat-

ural home is in 3-space, down into 2-space. Since the 2-sphere can be conceived

as a collection of stacked circles combined with two poles, it may be envisioned as

Fig. 3 Planar slices of a 2-sphere yield a single point at the north and south poles, and a circle
everywhere else
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Fig. 4 On the left side, planar slices are taken from the north pole of a 2-sphere to the bottom,
while on the right side, analogously, a volume slice is passed from the “north pole” of a 3-sphere
to the “south pole”

Fig. 5 A representation of a flattened 2-sphere in the Euclidean plane as an infinite collection of
circles plus the two points of the poles

a flattened planar depiction of a collection of intersecting circles with two points

signifying the north and south poles.

The related problem is how to represent the 3-sphere after it has been down-

dimensioned into 3-space. By thinking of the 3-sphere as “stacked” 2-spheres - in

the same sense that a 2-sphere is stacked 1-spheres - the analogous 3-space repre-

sentation is a collection of intersecting 2-spheres.

All the girders and struts of the framework are now in place to finish assembling

the topology and cosmology of the Universe that is the Library. The 3-sphere is a

three-dimensional manifold; at every point of the 3-sphere, an inhabitant would say

– locally - that space is Euclidean. If a group of travelers walked what was perceived
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Fig. 6 An analogous operation is performed on a 3-sphere, in which it is “flattened” out into
Euclidean 3-space to an infinite collection of spheres along with the two points of the poles

to be a straight line in any direction, they would - possibly after countless ages -

return to their starting point; as such, the 3-sphere can be construed as periodic.

There are no boundaries, no walls to bump into; the 3-sphere is limitless. Moreover,

in his luminous story “The Garden of Forking Paths,” Borges has the sympathetic

sinologist Stephen Albert say, “I had wondered how a book could be infinite. The

only way I could surmise was that it be a cyclical, or circular, volume, a volume

whose last page would be identical to the first, so that one might go on indefinitely.”

Even though Albert rejects this line of reasoning for “The Garden of Forking Paths,”

this quote, coupled with Borges’ interest in Nietzsche’s idea of eternal recurrence,

indicates that Borges was willing to consider cyclic or recurrent structures as tokens

of, or synonymous with, infinity.

Considered as a three-dimensional manifold, the center of the 3-sphere is every-

where and nowhere. Furthermore, if the 3-sphere is so large that, regardless of our

transport, it could never be circumnavigated, it would not be illegitimate to say that

the circumference is unattainable. (And finally, this answers the question concerning

what the hexagons “rest on.” By forming great circles - circles which are equators

of a sphere - the hexagons all rest upon each other and ultimately themselves, and

thus there is no need for an impossible “external” foundation for the Library8).

If the Library is the Universe, and the Universe is a 3-sphere, then the Library is a

sphere whose exact center is any hexagon and whose circumference is unattainable;

moreover, it is limitless and periodic. That is, the 3-spherical Library satisfies both

the classic dictum and the Librarian’s cherished hope.

3 Exit

In a classical maze or labyrinth, there is one entrance and one exit. In the novice’s

conception of mathematics, a problem has exactly one entrance, which is the prob-

lem itself, and the problem has exactly one exit, precisely that of the correct so-

8 The spherical “volume slices” from figure 6 encourage the viewpoint that a 3-sphere is a collection of

two points and infinitely many 2-spheres, which is, perhaps, the easiest way to visualize it. However, in

1931 the great mathematical theorist Heinz Hopf developed a way to fiber the 3-sphere into a collection

of infinitely many 1-spheres (circles); that is, every point of the 3-sphere lies on one of infinitely many

unit circles. There are no isolated poles in this decomposition of 3-sphere.
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lution. A more experienced practitioner of mathematics knows that good problems

have many points of embarkation and many ways of solving the puzzle, success-

fully leaving it in the past. Indeed, the more entrances and the more resolutions, the

richer the implications of the problem, and the more likely it will be to resonate in

the Sphere of Mathematics beyond itself.

In Borges’ Library, and in Borges’ conception of our Universe, the construct is

that of a maze of interconnected layered labyrinths, and that form suggests a sin-

gle entrance paired with a single exit. But Borges helped lead us beyond classical

conceptions while still respecting them. The Library of his story is a labyrinth syn-

onymous with the Universe. There are simultaneously no entrances, yet many en-

trances, for any entity capable of spawning life provides entrance for another being

into the Library.

Similarly, there are no exits from the Library that is the Universe, and simultane-

ously many exits, although each such one partakes of the same stark fact of death.

It is possible that such an exit allows entrance into a world of clarity that leaves

all labyrinths behind, but that is not given for us to know, nor for Borges’ fictitious

Librarian to know, either.

From the outside, looking in, Mathematics provides a way to finesse the idea of

infinity in the large, and see the Library as an enormous 3-sphere, a manifold of size

beyond comprehension, a way to organize a cosmological substructure for the many

books. From inside the story, looking out, the fictional Librarian knows just enough

mathematics to understand that a profound joke has been played on him, but not

enough to laugh at it.
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Mathematics and Applications



The Many Faces of Lorenz Knots

Marco Abate

One of the greatest pleasures in doing mathematics (and one of the surest signs of

being onto something really relevant) is discovering that two apparently completely

unrelated objects actually are one and the same thing. This is what Étienne Ghys,

of the École Normale Superieure de Lyon, did a few years ago (see [1] for the

technical details), showing that the class of Lorenz knots, pertaining to the theory

of chaotic dynamical systems and ordinary differential equations, and the class of

modular knots, pertaining to the theory of 2-dimensional lattices and to number

theory, coincide. In this short note we shall try to explain what Lorenz and modular

knots are, and to give a hint of why they are the same. See also [2] for a more detailed

but still accessible presentation, containing the beautiful pictures and animations

prepared by Jos Leys [3], a digital artist, to illustrate Ghys’ results.

1 What is a knot?

Informally speaking, a knot is a closed piece of string in space. More formally, a knot
is a (globally injective) embedding of the circumference S1 in the Euclidean 3-space

R3. Two knots are considered the same if there is a way of continuously deform the

space R3so to bring the first knot exactly onto the second knot (or its mirror image).

In more technical terms, two knots are equivalent if there is a homeomorphism of

R3 (a bijective continuous transformation of the space onto itself with a continuous

inverse) transforming the first knot in the second. In particular, a knot equivalent to

the standard unit circumference in the plane is actually unknotted, and thus consid-

ered a trivial knot. See, e.g., [4] for a not exceedingly technical introduction to the

mathematical theory of knots.

Mathematicians are entomologists at heart; they are prone to uncontrollable clas-

sification urges. For instance, one would like to have a list of all possible knots (up

to equivalence, of course). The usual way for representing a knot consists in project-

ing it onto a plane so that the projection crosses itself in a finite number of points,

and only two strands of the knot pass through any crossing point. So one may look

for the projection with the least number of self-crossings of a given knot (or, more

precisely, of all equivalent forms of a given knot), and try to organize the knots

Marco Abate
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Fig. 1 Knots (modified from www.knotplot.com)

according to this least number of self-intersections. For instance, the trivial knot

clearly admits a representation with no self-crossings: the standard circumference.

It is not difficult to see that knots admitting representations with only one or two

self-crossings are actually unknots; so the first non-trivial knot is the trefoil knot,
whose representation (see knot 31 in Fig. 1) has exactly three self-crossings. Fig. 1

contains representations of all distinct knots with at most 9 self-crossings.

A particular subclass of knots will be useful later on. A torus is a doughnut-

shaped surface, that is the Cartesian product of two circumferences; a torus knot is

a knot on a torus. In other words, in a torus knot the string winds on the surface of

a torus. Fig. 2 contains the representations of the simplest torus knots; see [5] for

more pictures of knots.

Fig. 2 Torus knots (modified from www.knotplot.com)
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2 What is a Lorenz knot?

Lorenz knots appear in the first, and still most famous, example of chaotic dynam-

ical system, introduced by Edward N. Lorenz in 1963 [6] as a simplified model

for convection in the atmosphere. This model consists of three (mildly non linear)

ordinary differential equations:

x′ = 10(y− x), y′ = x(28− z)− y, z′ = xy− (8/3)z.

How Lorenz noticed the presence of chaos in this system is by now almost leg-

endary. He was solving numerically this system on a (large, for the time) computer,

but he had to interrupt the computations for the night. The next day he gave as input

to the computer the results of the computations of the previous afternoon, and soon

noticed that the results he was obtaining were sensibly different from the ones he

got the day before, even though the initial conditions were the same. Or were they?

After several weeks of careful checking of the programs and computers involved to

rule out any possible mistake, Lorenz realized that the data he entered the second

day were only approximations of the data stored into the computer; and even though

they were very good approximations (to the sixth decimal digit or so), this appar-

ently negligible difference at the beginning provoked hugely different outcomes at

the end.

Lorenz had discovered one of the most distinctive characteristics of chaotic dy-

namical systems: sensitive dependence on initial conditions. The slightest change in

the initial state can cause a completely different result, the so-called (and by now ex-

ceedingly famous) butterfly effect. But in his model Lorenz also discovered another

butterfly, which is more relevant to the present discussion.

The Lorenz model, as any system of ordinary differential equations in three vari-

ables, prescribes at each point in space a velocity vector; we can then start from any

point in space, and move according to the speed and direction given by these ve-

locity vectors. The itinerary we follow is an orbit of the model. Lorenz noticed that

almost all orbits tended to accumulate onto a peculiar and approximately butterfly-

shaped set, having a very intricate geometric structure (later on it was proved that it

is a fractal set of dimension slightly larger than two). This set, the Lorenz attractor,

was the first example of strange attractor for a chaotic dynamical system; check [3]

for beautiful pictures of the Lorenz attractor, and [7] to play with different orbits

and see in real time how they accumulate onto the Lorenz attractor (and how they

depend on the choice of initial conditions).

Most orbits go around wildly getting closer and closer to the Lorenz attractor; but

a few special ones actually lives in the Lorenz attractor itself. These are the periodic
orbits: orbits that after a finite amount of time come back to their starting point.

Periodic orbits are thus (never self-intersecting) closed curves in Euclidean space,

that is, they are knots. And yes, the Lorenz knots are exactly the periodic orbits of

the Lorenz model.

It turns out that Lorenz knots fill out (they are dense, another typical feature of

chaotic dynamical systems is the coexistence of periodic behavior with very wild
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behavior) the Lorenz attractor, and so understanding them might give important

information on the structure of the Lorenz attractor. In the Eighties Joan Birman and

Bob Williams [8] started studying Lorenz knots, trying to understand and classify

them. They showed that all torus knots are Lorenz knots; and very recently Birman

and Ilya Kofman have proved that every Lorenz knot is a twisted torus knot, a knot

that can be obtained from a torus knot by a simple procedure (amounting to cutting

the knot in several carefully chosen places, twisting the strands according to specific

rules, and then gluing the strands back together; see [9] for details).

3 What is a modular knot?

To explain what is a modular knot we must first explain what a lattice is.

Roughly speaking, a lattice is a discrete family of points (in a line, a plane, a

space) uniformly distributed. The easiest example of lattice is the set of integer

numbers in the real line; and, in a sense, this is the only example of lattice in the

line. Indeed, if we take any lattice in the line, up to a translation we can assume

that it contains the origin; and up to a rescaling we can assume that it is normalized,

that is that the distance between two consecutive points in the lattice is exactly one

- and thus we have recovered the integers. From a geometrical point of view, then, a

lattice in the line is obtained by covering the line with infinitely many copies of the

same basic block, an interval (of length one if the lattice is normalized).

In the plane, the situation is considerably more complex. As building block for a

lattice we can use a parallelogram; but even assuming (as we may up to a transla-

tion) that one of the vertices of the parallelogram is the origin, we still have infinitely

many distinct cases to consider. If one vertex is the origin, to describe the parallelo-

gram (and hence the lattice obtained by covering the plane with copies of the basic

parallelogram) it suffices to give the coordinates of two other vertices, v1 = (a1,

b1) and v2 = (a2, b2). Furthermore, we can also assume that (up to a rescaling) the

lattice is normalized, that is that the basic parallelogram has area one (conditions

amounting to requiring that a1b2 – a2b1 is equal to one).

So to describe a normalized lattice we need four real numbers (the coordinates of

two vertices of the basic parallelogram) satisfying one condition (area equal to 1);

this means that we can identify the space of all normalized lattices with a suitable

subset of the Euclidean 3-space (actually one needs to add a point at infinity, getting

a subset of the 3-dimensional sphere, but this is a detail). It turns out that this subset

is exactly the complement of a trefoil knot – the first but not last appearance of knots

in this setting.

There is another way of describing the space of normalized lattices. Instead of

considering the two vertices separately, we can put their coordinates in a 2x2 ma-

trix; the normalization condition then amounts to saying that the determinant of this

matrix is 1. If we multiply a matrix with determinant 1 by another matrix with deter-

minant 1 we still get a matrix with determinant 1, that is another normalized lattice.

In particular, this holds if we multiply by the diagonal matrix having et and e−t as
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diagonal elements, where t is any real number. Letting t vary in the real numbers,

we then get a whole family of normalized lattices, that can be thought of as a curve

in the complement of the trefoil knot, an orbit of the modular flow. See [10] for (a

lot) more details.

The modular flow appears and is very important in several areas of number theory

and one-dimensional complex analysis; but the aspect that is interesting for us now

is that the modular flow has periodic orbits, forming knots contained in the comple-

ment of the trefoil knot; these periodic orbits are (of course) called modular knots. It

turns out that they are in one-to-one correspondence with (similarity classes of) 2x2

matrices with integer coefficients, determinant one and absolute value of the trace

(the sum of the diagonal elements) greater than 2; these matrices are the hyperbolic
elements of the modular group (the group of 2x2 matrices with integer coefficients

and determinant 1). Notice that to give a modular knots it then suffices to give four

integer numbers (satisfying a bunch of conditions); so it is not surprising that topo-

logical properties of modular knots have something to do with number theoretical

properties of integer numbers.

Modular knots have been studied for a long time; however, Ghys found a new

way of looking at them, giving unexpected results.

4 What do they have to do with each other?

Ghys’ surprising discovery is that a knot can be realized as a Lorenz knot if and

only if it can be realized as a modular knot. In other words, the class of Lorenz

knots coincide with the class of modular knots.

To prove this, Ghys gave a way to pass from a Lorenz knot to a modular knot and

conversely, based on the idea of Lorenz template previously introduced by Birman

and Williams. The Lorenz template (see again [2] and [3] for beautiful pictures) is a

figure-eight-shaped surface, similar to - and thus still sort of butterfly-like - but much

simpler than the Lorenz attractor, with the very useful property that every Lorenz

knot can be continuously pushed onto the Lorenz template (remaining equivalent to

the original knot). Furthermore, the left wing and the right wing of the butterfly in

the Lorenz template are joined by a central one-dimensional stick; and every Lorenz

knot must cross this central stick. More precisely, Birman and Williams showed that

a Lorenz knot is completely determined by the way it crosses the central stick, going

into the left wing or the right wing after each crossing; the sequence of left/right

choices is enough to completely reconstruct the given Lorenz knot.

What Ghys did was to find a (topologically equivalent) copy of the Lorenz tem-

plate inside the space of normalized lattices (the complement of the trefoil knot),

and to show how modular knots can be (following a natural geometric procedure)

pushed down on this Lorenz template so to become Lorenz knots. Conversely, he

also showed that every sequence of left/right choices at the central stick can be re-

alized by a modular knot, and so all Lorenz knots are modular knots too.
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This discovery has already had profound consequences in the theory of the mod-

ular flow (and thus in number theory and related areas). All properties of Lorenz

knots must be enjoyed by modular knots, and conversely. For instance, modular

knots must be fibered (that is, it should be possible to fill the complement of the

knot by surfaces all having the boundary lying on the given knot, quite an unusual

property for a knot to have) because (as Birman and Williams showed) all Lorenz

knots are; at present a direct proof (that is a proof not using Lorenz knots) of this

fact is not known.

Another unexpected consequence consists in a new way to compute the Rade-

macher function, a very useful number-theoretic object whose classical definition

is very cumbersome, involving taking the complex logarithm of the 24th root of

something known as the Weierstrass discriminant, and then following the complex

logarithm along a closed curve associated to a (hyperbolic) element of the modular

group. Going along a closed curve the complex logarithm changes by an integer

multiple of 2πi; this integer is the value of the Rademacher function computed in

the given element of the modular group. Well, Ghys has shown that the Rademacher

function is simply given by the number of the left choices minus the number of right

choices made by the corresponding modular knot pressed onto the Lorenz template!

Ghys’ discovery prompted new advances in the study of the Lorenz model too;

for instance, the characterization of Lorenz (and hence modular) knots as twisted

torus knots given by Birman and Kofman was inspired by Ghys’ results. Further-

more, modular knots are much easier to generate than Lorenz knots, and since they

still preserve all the topological features of Lorenz knots, in principle they might

be used to explore the intricacies of the Lorenz attractor. In general, the appearance

of important features of the Lorenz model in a completely different context seems

to indicate that it was not a complete accident that the first chaotic system to be

discovered was Lorenz’; possibly the Lorenz model is more basic, more intrinsic

than we actually imagine. This is probably just the beginning of a long and exciting

story: new discoveries, new results and new unexpected connections might be wait-

ing just around the corner. But even if this will not be the case, Ghys’ work remains

a beautiful piece of contemporary mathematics that will be studied and admired for

a long time.
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1. É. Ghys, Knots and dynamics. In: International Congress of Mathematicians. Vol. I: European
Mathematical Society, Zürich, pp. 247–277, 2007.

2. http://www.josleys.com/articles/ams article/Lorenz3.htm
3. http://www.josleys.com/
4. C. Adams, The knot book. American Mathematical Society, Providence RI, 2004.
5. http://www.knotplot.com
6. E. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141, 1963.
7. http://www.cmp.caltech.edu/∼mcc/Chaos Course/Lesson1/Demo8.html
8. J. Birman, R. Williams, Knotted periodic orbits in dynamical systems. I. Lorenz’s equations.

Topology 22, 47–82, 1983.
9. J. Birman, I. Kofman, A new twist on Lorenz links. J. Topology 2, 227–248, 2009.

10. J-P. Serre, A course in arithmetic. Springer-Verlag, Heidelberg, 1973.



Waiting for ABRACADABRA.
Occurrences of Words and Leading Numbers

Emilio De Santis and Fabio Spizzichino

In this paper we introduce the readers to the concept of “leading number”, as pro-

posed by J. H. Conway in the seventies of the last century. The leading number,

associated to a word w, is a binary vector that describes some special aspects of the

structure of w. We shall see that it conveys the essential information that is needed

in the analysis of the time of occurrence of w in a random sequence of letters.

The theme of time of occurrence of words, a sort of classical topic of applied

probability, presents several aspects of interest. In particular, it gives rise to some

apparently paradoxical conclusions. Furthermore it is related with the notion of fair

games and leads to interesting mathematical problems.

1 Words and Leading Numbers

Here we fix a (finite) set containing N elements a1, ...,aN :

A ≡ {a1, ...,aN}.

For our purposes, A will be called an Alphabet and its elements will also be termed

as letters.

An ordered sequence w ≡ w1w2...wk, where any of the elements w j is one of the

letters taken from A , will be called a word of length k on the alphabet A .

Here are at once some simple examples:

a) if N = 26 and a1 = A,a2 = B, ...,a26 = Z then A is the alphabet of the English

language and w1 ≡BLUE, w2 ≡PINK are two different words of length 4 on

A ;

b) if N = 2 and a1 = 0,a2 = 1, a word of length k on A ≡ {0,1} can be seen as an

integer number M written in the binary system (0 ≤ M ≤ 2k+1 −1, with M = 0

if w1 = w2 = ...= wk = 0 and M = 2k+1 −1 if w1 = w2 = ...= wk = 1);

c) whenever N = 10 and A ≡ {0,1, ...,9}, a word on A can be seen as an integer

number written in the ordinary decimal system;
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d) when R stands for Red and B stands for Black, and 0 for zero, a sequence of

outcomes, such as BRRR0BRRRB0BR, at a Casino’s roulette, can be seen as a

word of length 13 on the alphabet A ≡ {R,B,0} with N = 3.

We stop here, but of course a lot of further pertinent examples could be produced.

Before continuing, some almost obvious, but useful, remarks are also in order:

α) for a fixed alphabet A ≡ {a1, ...,aN}, and for a length k, any choice w1w2...wk
is admissible. No other structure, possibly giving rise to special constrains, is

considered; in other terms, there is no dictionary to be respected. Notice for

instance that, like BLUE and PINK, also CIAO or TTTT are considered as

words of four letters on the English alphabet, even if they do not belong to the

dictionary of English language;

β ) it can happen that a same symbol can represent letters from two, or more, dif-

ferent alphabets. For instance 0 can be seen as the ordinary integer number zero

or the special outcome of a roulette;

γ) a same real object might be represented by means of two (or more) different

words on two different alphabets;

δ ) repetitions of letters are allowed in a word, so that we can admit the case k > N.

We can say more about item δ ): repetitions of pattern of letters in a word are impor-

tant in our context, as it will be explained in the next section. Our interest there will

just be concentrated on some special effects of such repetitions in random sequences

of letters from an alphabet.

For our purposes, and in order to describe particular aspects of the pattern of

repetitions in a word w, it is interesting to recall the concept of leading number, as

introduced by Conway (see in particular the citation in [3]).

Let w ≡ w1w2...wk be a word of length k on the alphabet A . Then we define as

leading number associated to w, the k-coordinates binary vector

εw ≡ (εw (1) ,εw (2) , . . . ,εw (k)),

where each εw (u) is equal to 0 or to 1, according to the following position: for

u = 1,2, . . . ,k
εw (u) = 1{wk−u+1 . . .wk = w1 . . .wu},

that is

1. εw (u) = 1 if the sub-word made with the first u letters of w coincides with the

sub-word made with the last u letters of w.

2. εw (u) = 0 otherwise. Notice that two words are different if there is at least one

position at which they present two different letters.

Example 1. Let k = 11 and let w be the word ABRACADABRA, a word of 11 letters

on the alphabet of English language (or any other European language based on the

Latin letters).
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Then

εw ≡ (1,0,0,1,0,0,0,0,0,0,1).

Looking in fact at the structure of the word, we have:

A = A,AB 
= RA,ABR 
= BRA,ABRA = ABRA,ABRAC 
= DABRA,ABRACA 
=

= ADABRA, . . . ,ABRACADABR 
= BRACADABRA,ABRACADABRA =

= ABRACADABRA.

From this example we easily understand that the leading number εw of a word

w must have some precise properties. In particular, whatever word w of length k
is considered, one must have εw (k) = 1, since the sub-word made with the first k
letters and the sub-word made with the last k letters are the same object, namely

they obviously coincide with the entire word w. Furthermore, we have εw (1) = 1 or

εw (1) = 0 depending on the fact that the first letter w1 coincides, or not coincide,

with the last letter wk.

One can also understand that an arbitrary vector ε , with k binary coordinates and

such that ε (k) = 1, does not necessarily coincide with the leading number εw of a

word w, of k letters. However, if ε = εw for some word w, we can find also some

other word w′, such that ε = εw′ . For example, the two words AABB and AAAB
admit the same leading number, namely (0,0,0,1).

If w and w′ are such that εw = εw′ , what have they in common? Of course they,

in particular, should share the same length. We will discover in the next section

a further remarkable aspect that they have in common. In order to prepare such a

discussion, we consider the natural number Mw, defined by

Mw =
k

∑
u=1

εw (u)Nu, (1)

where N is the cardinality of the Alphabet.

For example, for the word w =ABRACADABRA, seen as a word on the English

alphabet (N = 26), we have

Mw = 26+264 +2611.

Thus we associate an integer number to any word w. More precisely, we associate

an integer number to any pair (w,N).
This operation may appear just as one related to word-games or, at a different

level, to Cabalistic tradition. However, as we shall see next, the number Mw will

be of use in the field of applied probability and its meaning can be understood just

through very basic probability concepts.
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2 Random sequences of letters and waiting times of word
occurrences

In this section we deal with sequences of random letters from an alphabet. On this

purpose, a few elementary concepts from Probability theory are needed. For those

readers, who are not familiar with basic language and notation of this theory, it can

be useful to read the short Appendix at the end of this article.

Let an alphabet A ≡ {a1, ...,aN} and a word w ≡w1w2...wk on A be given (the

choice of A and w will remain fixed once for ever along this section).

At different instants, letters are progressively drawn at random from A . At time

t = 1 we get the (random) letter ω1, at time t = 2 we get the (random) letter ω2, and

so on.

Here we admit that ω1, ω2, . . . are independent and uniformly distributed; i.e. we

assume that, at any instant t, each letter a1, ...,aN has the same probability 1
N to be

drawn, independently of what happened at the previous instants 1,2, ..., t −1; more

formally we can write

P(ωt = a j) =
1

N
, for t = 1,2, ..., j = 1,2, ...,N;

and, for any m > 1 and (a j1 ,a j2 , ...,a jm),

P((ω1 = a j1)∩ (ω2 = a j2)∩ ...∩ (ωm = a jm)) =
1

Nm .

We consider now the number of drawings needed until we see a series of k consec-

utive letters forming the word w. This number is a random quantity, that we denote

by Tw. More formally it is defined by:

Tw ≡ inf{n ≥ k|ωn−k+1 = w1, ...,ωn = wk}.

Example 2. Let us fix the word w = AAB and sample the letters from the alphabet

{A,B}. Suppose that we observed the sequence

ABAAABAABBAA . . .

In this case we have then Tw = 6.

It is obvious that Tw is greater or equal to k, and that it is a random variable.

The probability distribution of Tw is then given by the probabilities:

P(Tw = k) , P(Tw = k+1) , ... .

This distribution depends on N and on k. In particular, it is immediate to see that

P(Tw = k) =
1

Nk .
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What may appear surprising, at least at a first glance, is that this probability distri-

bution not only depends on N and on k, but for fixed N and k, it also depends on

the particular structure of w: it is very simple to realize that already the probability

P(Tw = k+1) does depend on the structure of w. An important fact is that the prob-

ability distribution of Tw is determined by the leading number εw (see, in particular,

the paper [4]).

More specifically it can be proved that the expected value of Tw, i.e.

E(Tw)≡
∞

∑
h=k

hP(X = h) ,

is exactly given by the number Mw, as defined by the formula (1) given in the previ-

ous section! In other words, here is a clear meaning for Mw: one can prove that

E(Tw) =
k

∑
u=1

ε (u) ·Nu = Mw. (2)

A direct computation of E(Tw) is not at all easy, however. The proof of the iden-

tity (2) has been given in the frame of Martingale theory, by exploiting a heuristic

idea based on the notion of fair game. Such an idea is particularly smart and sug-

gestive. It is well known by now to experts in Probability theory; in the following

section, we will give a sketch of it, by looking at the special example of the word

ABRACADABRA and after briefly recalling the concept of fair game.

3 Leading numbers and Fair Games

The analysis of situations where we exchange a random quantity with a determinis-

tic one (or viceversa) is at the basis of applications of Probability such as Finance,

Insurance, and Gambling and it is at the core of Risk Theory. The concept of fair
game is central.

It is clear that, in these fields, the quantities of concern have the meaning of

amounts of money; but one can still think of other types of problems where quanti-

ties of interest can be the amounts of other goods.

Let X be a random income that Ann can buy from Joe at the (deterministic) price

m. The table of what is exchanged is as follows:

+ −
Ann X m
Joe m X .
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We call this exchange a game. Ann gains the (possibly negative) amount X −m,

whereas Joe gains the opposite amount −X + m. One says that the game is fair
when E(X) = m; the game is favorable for Ann when E(X)> m.

The concept of fair game has a basic importance in the analysis of risk problems.

Typically, however, the games that we encounter in common life are not at all fa-

vorable for us; think for instance of the cases when we buy the ticket of a lottery

or stipulate a contract with an insurance company. An interesting property of such a

concept is that a sum of independent fair games results in a fair game. More prop-

erties are formalized and studied in the frame of the Martingale theory (see e.g. [6]

and references therein).

In order to explain the heuristic idea behind the formula (2), we can consider a

special fair game.

Here, in order to be a winner, a player must enter the game at a right moment in

connection with the time when the word w = ABRACADABRA occurs for the first

time in a random sequence of letters. More precisely, we can describe the game as

follows.

The random sequence of letters ω1,ω2, ... is drawn at random from the 26 letters

of English alphabet. At any time s = 1,2, ..., a new player Is enters the game and

pays one euro. Then the letter ωs is drawn. The game stops at the random time Tw
when w occurs for the first time in the sequence.

At time s = 1, the player I1 enters the game and pays one euro to the bank.

Actually he bets on the event (ω1 = A). If really (ω1 = A) occurs, I1 gains 26 euros,

remains in the game, and bets the 26 euros on the event (ω2 = B); otherwise he has

to leave the game and looses the initial stake of one euro. If ω1 = A and ω2 = B, I1

gains 262 euros, bets all this amount of money on the event (ω3 = R) and so on.

In the case when I1 is extremely lucky, Tw = 11, i.e.

ω1ω2 . . .ω11 = ABRACADABRA,

then I1 gains 2611 euros. Otherwise I1 is forced to leave the game and even looses

the initial stake of one euro.

The probability of observing the event (Tw = 11) is 1
2611 . Then, we can say, I1

pays one euro and receives the random amount X1, where the probability distribution

of X1 is described by

P(X1 = 2611) =
1

2611
,P(X1 = 0) = 1− 1

2611
.

Thus E(X1) = 1 and the game is fair for I1. Similarly it happens for the other players

I2, I3, . . .: each of them plays a fair game against the bank.

Let us now analyze what happens, from the collective view-point, to the bank at

time Tw, i.e. at the end of the game. We can summarize by saying that the bank pays

a deterministic amount (at a random instant) and receives a random reward. More

precisely the reward is exactly Tw euros, since Tw players - each paying one euro

- have participated in the game. On the other hand the bank pays 2611 + 264 + 261

euros. These three quantities are respectively due to the players ITw−10, ITw−3, ITw .
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In fact ITw−10 is the completely lucky player who sees the occurrence of the whole

word ABRACADABRA and wins 2611euros. The other two players, ITw−3 and ITw ,

who see the occurrence of the words ABRA and A respectively, win 264 and 261

euros.

Notice at this point that, among all the 11 players present in the game at time Tw,

the winners are indicated by the positions of the 1’ s in the leading number εw!

Now, concerning the computation of E(Tw), one can argue that the overall game

is fair for the bank. This put us in a position to conclude:

E(Tw) = 2611 +264 +261.

This heuristic argument can be made completely rigorous by using the tools of Mar-

tingale theory (see [3, 6]).

4 Apparent paradoxes: some concluding remarks

In the analysis of occurrences of words the theme of waiting times, that we have

briefly sketched so far, is of interest for a number of different respects. It is by now a

sort of classical topic of applied probability that had already been considered in the

early times of this field; see for instance the discussion about runs of successes in

coin-tossing [2]. Deep contributions, exploring unexpected features of this theme,

continue to appear from time to time in the literature (see e.g. [5] and references

therein).

A further issue of interest can be found in the multiplicity of fields where related

results can be applied. The connections with several apparently distant concepts of

Mathematics (such as martingales and fair games, algebraic properties and leading

numbers) also constitute a further source of attraction.

Concerning the probability calculus related to occurrences of words, we can men-

tion that different problems have been studied and solved. Here we only dealt with

the computation of E(Tw), but also other different issues, apparently difficult, turned

out to admit mathematically interesting and nice solutions.

Let us in particular fix, on the same alphabet, two different words w1 and w2 of a

same length k. One can consider the game where w1 and w2 are respectively chosen

by two different players, each one betting one euro. The winner of the game is the

one whose word occurs first, so that the probability that the player 1 wins is given

by

P(Tw1
< Tw2

) , (3)

. . . and the winner takes it all.

Thus the game is fair if and only if P(Tw1
< Tw2

) = 1/2. The game is favorable

to player 1 if and only if P(Tw1
< Tw2

)> 1/2.

An interesting algorithm for the computation of (3) is presented in [1].

What we especially want to point out here, however, is the circumstance that

several different facts, that may appear as surprising, conflicting, and controversial,
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emerge within the area of word occurrences. Only a few facts will be reported below,

even though several other nice surprises can be found in the relevant literature. An

interesting issue is, in particular, the comparison between the waiting times Tw1
, Tw2

for two given words w1 and w2, still of a same length k and on a same alphabet of

N letters.

Whereas all words of a same length k, as already noticed above, admit the same

probability 1
Nk to appear at once at the first k drawing of letters, Tw1

and Tw2
can

have different probability distributions, depending on the structures described by

the leading numbers εw1
, εw2

(see [4]).

One can be interested in detecting which are the words that - in the random

sequence of letters - appear in a sufficiently small time or, at least, before than some

others words.

On the purpose of such a study, one can hinge on different types of comparisons
between random variables. In particular the following, reasonable, ones have been

considered in the relevant literature.

a) Tw1
≤a Tw2

if and only if P(Tw1
> Tw2

)≤ P(Tw1
< Tw2

);
b) Tw1

≤b Tw2
if and only if E(Tw1

)≤ E(Tw2
);

c) Tw1
≤c Tw2

if and only if, for each positive t, P(Tw1
> t)≤ P(Tw2

> t).

The last definition corresponds to what is called the stochastic ordering among ran-

dom variables.

Generally, for two random times T1 and T2, it is well known that T1 ≤c T2 ⇒
T1 ≤b T2 and T1 ≤b T2 � T1 ≤c T2. A different picture is encountered however in

the special frame of waiting times of words. As, at least, to our knowledge no pair

of words (of a same length) have been found such that

Tw1
≤b Tw2

, Tw1
≮c Tw2

and some work in progress at present time may lead to consider the conjecture that

Tw1
≤b Tw2

⇐⇒ Tw1
≤c Tw2

.

Heuristically, we can say that all the three relations Tw1
≤a Tw2

, Tw1
≤b Tw2

and

Tw1
≤c Tw2

convey the information that, at least in a probability sense, Tw1
is smaller

than Tw2
. It can therefore appear as surprising that one can easily find examples

showing that

Tw1
≤c Tw2


⇒ Tw1
≤a Tw2

,

Tw1
≤a Tw2


⇒ Tw1
≤b Tw2

,

and then, (since ≤c⇒≤b), also Tw1
≤b Tw2


⇒ Tw1
≤a Tw2

, Tw1
≤a Tw2


⇒ Tw1
≤c Tw2

.

We furthermore point out that, while the relations ≤b and ≤c obviously satisfy

the transitive property, such a property is not respected by the relation ≤a. In fact one

can find an integer n and choose a finite sequence of words w1,w2, . . . ,wn such that

Twi ≤a Twi+1
, Twi+1


≤a Twi , for i= 1, . . . ,n−1, and moreover Twn ≤a Tw1
, Tw1


≤a Twn

(see the arguments presented in [1]).

Reasoning on these arguments on the basis of simple examples, for instance

about runs of successes in coin-tossing or of sequences of red numbers at a roulette
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table in a Casino, may allow the reader to appreciate the apparently paradoxical

character of the above statements.

At this point one can wonder: why the above-mentioned mathematical facts

may be perceived as surprising and contradicting common intuition? A possible

response, in our opinion, can be the following one. Apart from being, or not be-

ing, familiar with probability theory, common intuition of people about (discrete)

waiting times is biased by the experience with geometrically distributed random

variables. We saw above that, for the case of waiting times of words occurrences,

the properties a), b), c) are not at all equivalent; actually they can be even conflict-

ing. In the geometric case, on the contrary, corresponding properties a’), b’), c’) turn

out to be equivalent, as shown by Proposition 1 in the Appendix.

It is rather common that a detailed and logically rigorous analysis of intriguing

problems leads sometimes to surprising and apparently paradoxical conclusions.

Cases of this type are frequent in the frame of applied probability and statistics,

where the analysis is made complicate by the subtle effects of uncertainty. In this

respect, we conclude by claiming that ruses and surprising results can be specially

met in the frame of word occurrences.

5 Appendix: a few basic notions about discrete random variables

Given a random event E, P(E) denotes the probability that E happens (or that it

results in a success); 1−P(E) is then the probability that E does not happen. The

indicator of E, denoted by 1E , is a binary random variable, i.e. a random variable

whose possible values are the only two values 0 and 1: 1E = 1, if E results in a

success, and 1E = 0 otherwise. Thus we can also write

P(E) = P(1E = 1) .

Let us consider a sequence of events E1,E2, .... It is said that E1,E2, ... are Bernoulli
trials when they are equiprobable and independent. This means that, for a given p
(0 < p < 1), one has

P(E1) = P(E2) = ...= p

and, for any choice of m,

P(1E1
= 1, ...,1Em = 1) = pm.

Let X be a discrete random variable whose possible values are x1,x2, .... The prob-
ability distribution of X is specified by the probabilities

P(X = x1) ,P(X = x2) , ...
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The expected value of X is given by

E(X)≡
∞

∑
h=1

xh ·P(X = xh) ,

provided that the sum of the series is absolutely convergent. Basic properties of the

operator E(·) are the following: in the special case when X = 1E we have

E(X) = P(E) .

In the special case when X is a deterministic (or, better, a degenerate) random vari-

able, i.e. when there exists x ∈ R, such that P(X = x) = 1, then

E(X) = x.

The expected value E(·) is a linear operator: if a,b are two real numbers and X ,Y
two random variables, then for the random variable Z = aX +bY we have

E(Z) = aE(X)+bE(Y ) .

A random variable X , whose possible values are 1,2, ..., is said to have a geometric
distribution with parameter θ , when

P(X = k) = θ (1−θ)k−1 ,k = 1,2, ...

In this case, it is easily seen that

E(X) =
1

θ
.

Let E1,E2, ... be a sequence of random events and denote by T the number of trials

until the first success among E1,E2, ... occurs; more formally: T = r if and only if

we observe

1E1
= 0,1E2

= 0, ...,1Er−1
= 0,1Er = 1.

The random variable T is then the waiting time until the first success.

In the case when E1,E2, ... is a sequence of Bernoulli trials of probability p, then

the probability distribution of T is geometric with parameter θ = p.

We fix our attention on an experiment that can result in d different outcomes

A1, ...,Ad with probabilities p1, ..., pd , respectively (p1 + ...+ pd = 1). Suppose that

the experiment can be repeated an arbitrary number of times, maintaining the same

probabilities of outcomes and ensuring a condition of independence among the dif-

ferent trials. Consider now, for the indices v = 1,2, the sequence of events

E(v)
1 ,E(v)

2 ,E(v)
3 , . . . (4)
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where

E(v)
j ≡ (the experiment results in the outcome v at the j-th trial) .

Thus, for v = 1,2, E(v)
1 ,E(v)

2 ,E(v)
3 , . . . is a sequence of Bernoulli trials, of probability

pv. Furthermore, with an obvious meaning of notation, we have that the random

waiting time T (v),

T (v) = inf{n ≥ 1|1
E(v)

n
= 1},

has a geometric distribution and

E
(

T (v)
)
=

1

pv
.

Fix now attention on the comparison between T (1), T (2). We notice that, by defini-

tion, the event
(

T (1) = T (2)
)

is impossible. In this respect one can easily prove

P
(

T (1) < T (2)
)
=

p1

p1 + p2
.

Concerning the above sequence of Bernoulli trials, we can then state a very simple

result:

Proposition 1. The following conditions are equivalent:

a′)P
(

T (1) > T (2)
)
≤ P

(
T (2) > T (1)

)
;

b′)E
(

T (1)
)
≤ E

(
T (2)

)
;

c′) for any positive t, P(T (1) > t)≤ P(T (2) > t);
d′) p2 = P(E(2)

j )≤ P(E(1)
j ) = p1.
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Aperiodic Tiling

Gian Marco Todesco

There is an aesthetic pleasure when contemplating orderly structures that contain

some disorder. A completely disordered pattern is typically not very interesting, but

neither is a very regular one, like a check board. The check board and most images

that we will meet in the following are examples of tessellations. A plane tessellation

(or tiling) is a covering without gaps or overlaps, by figures called tiles. Tessellations

can have very different degrees of order and disorder and illustrate well the concept

expressed in the first statement.

1 Periodic tiling

A tessellation is periodic if it has translational symmetry, i.e. if it remains unchanged

after certain translations. A periodic tessellation is a highly ordered pattern that can

be summarized by a finite region that tessellates the whole plane just by translations.

Periodic tessellations can also present non-translational symmetries. All these sym-

metries interact with each other in a complex way, creating constraints. For instance,

only a two, three, four and six-fold rotational symmetry is allowed: a periodic tiling

cannot have a five-fold rotational symmetry.

The subject is mathematically interesting and has many applications in architec-

ture, decorative arts, technology and crystallography. Periodic tessellations appear

everywhere in our lives. In fact, they are so common that one might not realize that

there exist also non-periodic tessellations.

Gian Marco Todesco

Digital Video S.r.l., Rome (Italy).

Emmer M. (Ed.): Imagine Math. Between Culture and Mathematics
DOI 10.1007/978-88-470-2427-4 19, c© Springer-Verlag Italia 2012
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2 Non-periodic tiling

There are many classes of non-periodic tessellations. The tilings below present scale

symmetry instead of translational symmetry (Fig. 1).

a) b) c)

Fig. 1 Self-similar non-periodic tessellations: a) image inspired by ”Smaller and Smaller” by M.C.
Escher; b) non-archimedean tiling discovered by L. Saffaro; c) a plane tessellation with regular
pentagons

The following examples exclude scale transformation, but are still non-periodic

(Fig. 2).

The tiles of the tessellations above can be rearranged to form periodic patterns.

A tile set that formed only non-periodic tiling would be called an aperiodic set. One

could think that such a set does not exist and indeed this conjecture was formulated

in 1961 by the mathematician Hao Wang. Wang was working on a decision prob-

lem in symbolic logic and found an interesting connection between his problem and

some particular tiles called Wang dominoes. In 1966 Robert Berger demonstrated

that the conjecture is false and found a set of 20426 Wang dominoes that can tessel-

late the plane only non-periodically. The number of tiles has then been reduced to

104 by Berger himself, to 92 by Donald Knuth, to 40 by Hans Läuchli, and to 13 by

Karel Culik. In 1971 Raphael M. Robinson found a new set of six aperiodic tiles,

that are not Wang dominoes [2].

a) b) c)

Fig. 2 Non-periodic tilings with identical tiles: a) a trapezoid; b) the sphinx, a self-replicating
pentagon; c) a curved triangular shape forming a spiral pattern created by H. Voderberg
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Some years later Roger Penrose tried to find a tile set including the pentagon

(a polygon with the five-fold symmetry forbidden in the periodic tessellation) [3].

He was inspired by a tessellation with pentagons in the Harmonices mundi (1619)

by Kepler. It is interesting to note that also Albrecht Dürer in his Painter’s Man-
ual (1525) describes a partial tiling with pentagons. Eventually, in 1973 and 1974,

Penrose discovered three new periodic sets, two of which with only two tiles.

Three years later Robert Ammann discovered several new sets with similar prop-

erties.

The quest for an even simpler tile set has continued up to very recently. A single

tile that form an aperiodic set is jokingly called an einstein (the name does not refer

to the famous physicist, but to the German words ein Stein that mean “one stone”,

thus one tile). In 2010, Joshua Socolar and Joan Taylor claimed to have solved the

einstein problem.

The discovery of aperiodic tessellation has been a breakthrough. One of the Pen-

rose aperiodic sets is the subject of this conference.

a) b)

Fig. 3 a) The Penrose rhombs tiling; b) the thick and thin rhombs. Three different ways to enforce
the matching rules

3 Thick and Thin Rhombs

The tessellation above is one of Penrose’s aperiodic tessellations and is made of

the thick and thin rhombs displayed on the right. Either of them or both in some

combinations could tessellate the plane periodically, thus, to form an aperiodic set,

the two tiles must be altered in some way. For instance one can add tabs and blanks

to the edges as in the jigsaw puzzle pieces. A more common and pleasing approach

(used in the following images) is to add colored curves that must match in color and

position to the tiles.
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These changes define a set of matching rules that allow only some configurations.

The rules admit only seven (instead of 54) combinations of pieces around a vertex,

shown in the image below.

Fig. 4 The eight available vertex configurations

The tessellations made with these rhombs have many interesting features.

First of all there is an uncountably infinite number of different tessellations and

each tessellation, being non-periodic, contains infinite different patterns. Many pat-

terns are meaningful and aesthetically pleasant.

Fig. 5 A tiling with some patterns highlighted

Then, different patterns and different tilings look very similar to each other. In-

deed it is possible to demonstrate a very surprising theorem: any limited region

(even very large ones) is replicated infinite times in any tessellation. Such order

within disorder is known as quasiperiodicity.

The patterns have a local five-fold rotational symmetry. In other words there are

regions that remain unchanged after a 72 ˚ rotation. Some of the tilings present

even a global five-fold rotational symmetry (i.e. the 72 ˚ rotation does not change

the whole tessellation).

To summarize, these tessellations have a strong and complex internal structure,

that is not easy to grasp. Even assembling the tiling is not an easy task. A wrong

choice can lead to patch that cannot be further extended and we discover this only

after many moves. Assembling a given number of tiles is very much like finding a

way out in a maze where the dead ends can be arbitrarily long.

There is a phenomenon, called inflation and deflation, that can be used to as-

semble large patterns without errors. Inflation and deflation transform a tiling into a
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new one at a different scale. The rules for the deflation are represented in the image

below.

The tiles are replaced by a larger number of smaller tiles forming a new tes-

sellation. This process can be iterated an arbitrary number of times, generating a

sequence of tilings. It is possible to start with a single tile and create a tiling that

covers an arbitrarily large region.

The process implies a hierarchical structure: each tile in a tessellation can be

considered the “parent” of some of the tiles in the deflated tessellation. (Note that

a tile has two parents). This hierarchical structure plays the role that the translation

has for periodic patterns.

Fig. 6 The deflation rules

4 Applications

The difficulty of assembling many pieces and the beauty of the patterns they form

lead naturally to use them for puzzles. Indeed Penrose licensed a company called

Pentaplex to produce and sell jigsaw puzzles based on his tilings. Some years later,

Kleenex designed a toilet paper tissue using rhombs tiling (which apparently saves

paper and makes it fluffier without bunching when rolled up). Penrose, who had

patented his tiles (in spite of the criticism raised for patenting a mathematical con-

cept), sued the company and eventually won. The patents have now expired.

Non-periodic tilings have been used as decorative patterns for floors and walls.

Some examples are the Storey Hall at the Federation Square and the Royal Mel-

bourne Institute of Technology (Australia), the Liberal Arts and Science Building

in Education City in Doha (Qatar) and the Ravensbourne College of Design and

Communication in London.

There are also surprising examples from the past. Some decorations in medieval

Islamic architecture, and in particular patterns in the Darb-e Imam shrine, built in

1453, at Isfahan, Iran, present five-fold symmetry and a hierarchical structure (large

tiles are decorated with pattern formed by smaller identical tiles), strongly resem-

bling to Penrose tilings (formalized five centuries later) [4].

The most important application started ten years after the Penrose’s discovery,

solving a big crystallographic problem and eventually leading to a paradigm shift

and the Nobel Prize in chemistry in 2011.
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In 1982 Dan Shechtman and his colleagues Ilan Blech, Denis Gratias and John

Cahn observed ten-fold electron diffraction patterns (forbidden by the usual crys-

tallographic restrictions) in a rapidly solidified metal alloy [5]. Two years later Ilan

Blech, using computer simulations, suggested that the diffraction patterns could re-

sult from an aperiodic structure. The scientific community took some time to accept

the concept, but eventually, in 1992, the International Union of Crystallography al-

tered its definition of crystal, broadening it to include quasicrystals, i.e. ordered but

not periodic arrangements of atoms.

Since then hundreds of quasicrystals with various compositions and symmetries

have been discovered, opening the door to potential applications (with side-effects

in everyday life: e.g. they make excellent non-scratch coating for frying pans). Re-

cent evidence found that they can even form naturally under suitable geological

conditions. Today the study of quasicrystals is a very active and promising field and

aperiodic tiles are no more a mathematical curiosity but an object of intense study.

Fig. 7 Deflation can be used to extend the tiling in different ways

5 Assembling the tiles

The image above shows how repeated applications of the deflation process can tes-

sellate a finite region starting from a single ancestor tile. This technique can generate

an arbitrarily large tessellation, but if we want to extend a given tessellation outside

its boundaries then we need to go back to the ancestor and re-parent it. In other

words we need to find a new tile that, when deflated, generates the old ancestor and

other siblings. The grand-children of these siblings extend our tessellation.

To extend the pattern we must know the ancestor, therefore we need a global

knowledge of the pattern. Moreover the process is not deterministic. There are two

possible new ancestors that generate the old one. Each one can properly extend the

initial tiling, but the two extensions differ. To cover the infinite plane we have to

make an infinite number of choices.
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The deflation process does not generate a given tiling in a foreseeable way: at

each step the whole tiling is still undetermined because of the infinite sequence of

choices that are still to be made.

6 The cut-and-project method

In 1981 the Dutch mathematician Nicolaas Govert de Bruijn discovered that there is

a relation between some aperiodic patterns and regular lattices at higher dimensions.

This result sheds a different light on the subject and also offers a new method to

generate incrementally the patterns using only local information.

The following aperiodic tessellation offers a first glance of the technique.

It looks like a pile of cubes arranged along a steep slope and actually it can be

generated this way, projecting onto a properly inclined plane the faces of a regular

cubic grid that interpolate the plane itself.

To generate the Penrose rhombs, with their typical 5-fold rotational symmetry,

we need five axes instead of three. Therefore we must consider a cubic grid in

a space with 5 dimensions: a challenge for our imagination. Before applying the

method in five dimensions, we must acquaint ourselves with it in a much simpler

configuration.

Fig. 8 A non-periodic tiling that can be seen as parallel projection of a set of cubes

7 The Fibonacci tiling

The Fibonacci Tiling is a one-dimensional non-periodic tiling of the line, made of

an infinite number of adjacent segments. Only two types of segments with different

lengths are used and the segments sequence does not repeat.

To generate this tiling with the cut-and-project method, we must consider a two-

dimensional square lattice, i.e. a grid of evenly spaced points. Only horizontal or

vertical straight lines can be drawn by connecting adjacent points of the grid. A
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diagonal line can only be approximated by a staircase-like polygonal chain. The

staircase is made of two kinds of segments: vertical and horizontal, both of unit

length. These segments, projected on the line, form a one-dimensional tessellation

of the line with two tiles.

In the following, we suppose that the line slope is less than 45 ˚ . On this line,

the projection of the vertical staircase steps is shorter than the projection of hori-

zontal steps. Let us call L and S (for long and short) the horizontal and vertical steps

respective projections. They are the tiles.

The line slope determines the sizes of the two tiles, but also their relative fre-

quencies. Indeed the slope of the line is the ratio between the frequencies of S and

L. If the tessellation is periodic this ratio must be a rational number because in each

(finite) repeating pattern there is the same given number of S and L. If the line has

an irrational slope, then the tessellation must be non-periodic.

In the above picture the slope of the line is the inverse of the golden ratio, the

well-known irrational number Φ .

Having the line and the grid we must build the staircase made of vertices and

edges that belong to the grid. We can select the vertices first and then select the

edges that connect them. Thus the core of the cut-and-project method is a criterion

to select grid vertices.

A suitable criterion is based on a unit square whose center slides along the line.

The square edge length is equal to the distance of adjacent points in the grid, so

the square contains always one grid point and only exceptionally two or four. If we

position the line so that it touches a grid point, then the four-point exception cannot

occur, as it is possible to demonstrate.

The moving square leaves a trail (the gray strip in the picture above). The stair-

case is made by all the grid points that lie in that trail.

Fig. 9 The Fibonacci tiling: a non-periodic one-dimensional tiling of the line
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8 One-dimensional tiling from a three-dimensional lattice

The Fibonacci tiling is an effective introduction to the cut-and-project method. It

shows that an aperiodic pattern can be derived from a regular grid in a higher di-

mensional space and explains how the fascinating mixture of order and disorder of

the aperiodic tessellations derives from the ordered lattice structure and from the

irrational slope between the grid and the tiles.

In the general case we must consider three spaces: the n-dimensional space that

contains the grid, the m-dimensional direct space that we want to tessellate and its

orthogonal complement which is an (m− n)-dimensional space called the internal
space. To select the points we use an n-dimensional grid unit cell, sliding along the

direct space.

The internal space can be used to effectively select the grid points. The key con-

cept is that the projection of the unit cell on the internal space remains still while the

cell slides along the direct space. Thus, instead of matching the grid points against

the unit cell trail (the gray strip of the previous example), we can project everything

on the internal space and then select the grid points whose projections are contained

in a control shape that is the projection of the unit cell.

Our target case has a five-dimensional grid, a bi-dimensional direct space and

therefore it has a three-dimensional internal space. It is convenient to investigate first

another simpler case which involves three dimensions only, but presents an internal

space more complex than a line. We can consider a line tessellation generated by a

three-dimensional lattice. In this case the unit cell is a cube and the internal space

has two dimensions, i.e. it is a plane.

Following the same strategy of the previous example, we consider a three-

dimensional cubic grid and a straight line whose slope is irrational with respect to

all the three axes. The line is then approximated by a polygonal chain that connects

adjacent points of the grid and plays the role of the staircase. Because of the irra-

tional slope of the line, the polygonal chain will follow it and curl almost randomly

around it.

Fig. 10 A non periodic tiling of the line pro-
jected from a three-dimensional grid
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The tessellation is generated by projecting the polygonal chain segments to the

line. The projected segments have three different lengths that depend on the angle

between the line and the three coordinate axes. Therefore the tessellation is made of

three different tiles. As in the previous example, their sequence is not periodic.

The internal space is a plane perpendicular to the line and the control shape (i.e.

the projection of the unit cube to the plane) is a hexagon. We select the grid points

whose projections on the plane are contained in the hexagon.

We notice that the projections of the selected points fill evenly the hexagon. This

is due to the irrationality of the line slope.

9 Bi-dimensional tiling from a five-dimensional lattice

Now we can face the thick and thin rhombs challenge. We must consider a five-

dimensional lattice and a plane with proper slope with respect to the lattice. We

choose the plane perpendicular to the space diagonal (1,1,1,1,1) so to generate five-

fold rotational symmetry on the plane. This constraint does not determine com-

pletely the plane orientation in a five dimensional space. We have two more degrees

of freedom that we can use so that all the faces of the five-dimensional grid have the

shape of the thick and thin rhombs, when projected onto the plane.

The internal space has three dimensions and it is perpendicular to the plane (this

is not so easy to visualize). The control shape is the projection of the unit 5-cube on

the internal space, analogous of the hexagon in the previous example. In this case it

is a rhombic dodecahedron, i.e. a convex polyhedron delimited by twelve rhombs.

To select a grid point we have to project it on the internal space and check if it

is contained in the dodecahedron. Then we select all the grid square faces whose

vertices have all been selected. They form a faceted surface that is analogous to the

Fibonacci tiling staircase. This faceted surface, projected on the plane, generates a

thick and thin rhombs tessellation.

It is possible to demonstrate that, if the plane has the correct distance from the

grid origin, then the generated tessellation respects the matching rules and therefore

it is a Penrose tessellation.

10 “My God - it’s full of stars!”

The projections on the internal space of all the selected points are contained in the

rhombic dodecahedron. The actual distribution of the projections in the polyhedron

is interesting and contains information about the tiling.

The projections do not fill all the space inside the control shape, but they dis-

tribute on four parallel planes. These planes contain the vertices of the polyhedron

and their intersections with the polyhedron are pentagons. The projections of the

selected points fill evenly the four pentagons.
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Analyzing the tiling, we have already noticed that there are only seven different

type of tile configuration around each vertex (see Fig. 4). Categorizing the vertices

according to their tile configuration, there are seven types of vertices. If we consider

again the internal space and we color the projected points according to the type of

the correspondent tessellation vertex, the colors do not mix chaotically, but form a

beautiful pattern made of five-pointed stars.

a) b)

Fig. 11 a) Different vertex configurations painted with different colors; b) the related points in the
internal space

References

1. L. Saffaro, Tassellature centrali e non-archimedee. Le Scienze 271, pp. 32-40, 1991.
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Connecting Ventricular Assist Devices
to the Aorta: a Numerical Model

Jean Bonnemain, Simone Deparis and Alfio Quarteroni

Mechanical circulatory support, in particular ventricular assist devices (VAD), has

been recently proposed as an alternative to transplantation in the treatment of termi-

nal heart failure in the context of the lack of donors and raising number of patients

on the waiting list. Although these systems have proved their efficiency through a

rigorous patient selection, the complication rate remains high and experience shows

that many of them are related to haemodynamic modifications due to VAD implan-

tation. Furthermore, VAD themselves have been widely studied, while the flow near

the anastomosis VAD-aorta is still not well-known, although many complications

arise at this site. We present here the mathematical settings and some preliminary

results of a numerical model of the anastomosis between the outflow cannula of left

ventricular assist devices (LVAD) and the aorta.

1 Introduction - The Clinical Problem

Heart failure is a clinical syndrome that expresses the inability of the heart to pro-

vide enough blood to the organs in order to satisfy their metabolic needs. In other

terms, the pump is failing. The causes of heart failure are numerous (coronary artery

disease and myocardial infarction, valvular disease, cardiomyopathy, myocarditis,

to mention a few) as well as their symptoms (e.g. dyspnea, fatigue, peripheral

edema) [8].

Within the population studied by the European Society of Cardiology (>900 mil-

lion people in 51 countries), heart failure prevalence is around 2-3% and affects at

least 15 millions patients [4]. In the USA, 2.5% of the adult population (5.7 million

people) suffer from heart failure and 670’000 new cases occur each year. Further-
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Fig. 1 The VAD HeartMate
II. Reprinted with the permis-
sion of Thoratec Corporation

more, prevalence is higher in the elderly - 6-10% of people older than 65 years.

Among the deaths reported in 2004, 292’000 were caused directly or indirectly by

heart failure. The estimated overall cost of heart failure in the USA in 2009 was 37.2

billion dollars [10].

The first line of the treatment of heart failure includes lifestyle modifications, like

sodium and fluid restriction, smoking cessation or weight loss. These are necessary

but usually not sufficient. The second line of treatment is the use of drugs, like

angiotensin-converting enzyme (ACE) inhibitors, angiotensin-receptor blockers, di-

uretics and β -blockers. Finally, invasive treatment includes cardiac resynchronisa-

tion therapy, that consists in the implantation of a pacemaker (biventricular pac-

ing, with or without implantable cardioverter defibrillator) and transplantation [14].

However, heart donors are scarce (2210 transplantations in 2007 in the USA) and,

in June 2008, 2607 patients were still on the waiting list [10]. An alternative ap-

proach has been recently suggested in order to compensate the lack of donors and to

provide a treatment for terminal heart failure: the mechanical circulatory support.
Various types of mechanical circulatory support exist with different clinical in-

dications, but their goal is always the same: assist (or replace) the pump function of

the heart. They are classified as follows:

Intra-Aortic Balloon Pump (IABP);

Extracorporeal Membrane Oxygenation (ECMO);

Ventricular Assist Devices (VAD);

Total Artificial Heart (TAH).

IABP and ECMO are short-term assist devices (hours to days) while VAD and TAH

have an intermediate or long-term use (days to years). Depending on the indications,

they can be considered as:

Bridge to transplantation, for patients on waiting list;

Bridge to recovery, as temporary circulatory support;
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Bridge to decision, gives time to the clinician to find the best therapeutic option;

Bridge to eligibility, for patients initially ineligible for transplantation who be-

come eligible after VAD implantation, due to the normalization of several clin-

ical parameters;

Destination therapy, for patients who are ineligible for transplantation [20].

In this paper, we will focus on Ventricular Assist Devices (VAD) (see Fig. 1). They

can assist right, left or both sides of the heart, according to the underlying pathol-

ogy. Furthermore, they can deliver pulsatile or non-pulsatile flows, and they can be

paracorporeal, partially or totally implantable. It is important to notice that newer,

smaller, continuous flow pumps (e.g. see Fig. 2) showed better results, as reduction

of complications, durability and mortality [21].

All these systems have proved their efficiency through a rigorous patient selec-

tion. However, the complication rate remains high, e.g. [7], in particular they may

take the following form:

Fig. 2 Left Ventricle Assist Device, Reprinted with the permission of Thoratec Corporation. The
inflow cannula is inserted in the apex of the deficient ventricle and the outflow cannula is anasto-
mosed to the ascending aorta. Blood flow exits the ventricle through the inflow cannula, is actively
pumped by the pumping chamber and goes through the outflow cannula to the aorta. A percuta-
neous drive line carries the electrical cable to the battery packs and electronic controls
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Bleeding (30%);

Thromboembolism (3-35%);

Infections (18-59%);

Right ventricular failure (20-30%);

Primary device failure (6% at 6 months to 64% at 2 years).

VAD as a destination therapy showed clinical benefits [20], however there is still

room for better outcomes and for a reduction of the costs, which, for the time being,

remain high [1].

As mentioned before, complications remain a major issue. Many of them are

related to haemodynamic modifications due to the VAD implantation. In fact, ab-

normalities in flow and shear patterns can lead to platelet activation and to the for-

mation of clots. In particular, regions of turbulent flow, recirculation and stagnation

have a high thrombogenicity. Finally, subsequent shear stress distribution on the

arterial wall can have short term negative effects (e.g. thrombus formation) and in

the long-term has an impact on arterial remodeling and atherosclerosis [13]. While

VAD themselves have been widely studied, e.g. [23] and [15], the flow near the

anastomosis VAD-aorta is still not well-known, although many complications arise

at this site.

2 Methods and Results

The main motivation of this work is to describe a mathematical model that allows

a better understanding of the flow behavior occuring in the anastomotic region be-

tween the VAD and the aorta. When creating a numerical model, especially with

patient-specific data, the procedure comprises three stages:

pre-processing (before the numerical simulation)

– data acquisition (DICOM images),

– geometry construction,

– mesh generation;

processing (numerical simulation itself)

– set-up of mathematical equations for blood motion,

– set-up of numerical algorithms,

– parallel execution;

post-processing (after the numerical simulation)

– analysis of results,

– model validation.

A short description follows.
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2.1 Pre-processing

For patients under ventricular assistance, the most frequent image acquisition method

is CT-scan (computed tomography), because it is fast and vessels can be seen us-

ing intravenous contrast. CT-scan uses X-rays that provide a set of bidimensional

images (slices) of a given region of the body (e.g. thorax, see Fig. 3).

Fig. 3 Example of a CT-scan
image at the level of the aortic
valve

Fig. 4 CT-scan slice of a
patient with a continuous
flow LVAD at the level of the
LVAD itself. On the top of the
image, the VAD itself and the
inflow cannula that connects
the left ventricle to the LVAD.
Note the noise and artifacts
induced by the presence of the
device

Unfortunately, the presence of the device, due to its metallic components, induces

a lot of noise and artifacts on images (See Fig. 4). Consequently the geometry of the

region of interest (outflow cannula of the LVAD, aorta and its branches) cannot be

reconstructed directly on the native image (this would indeed produce an aberrant

geometry). Therefore the images need to be cleaned by filters of various kind.

Treatment of images is performed by reducing the level window (i.e. focusing

only on a defined grey range) and enhancing the contrast of the greyscale image
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using contrast-limited adaptive histogram equalization. In particular this filter allows

to enhance the differences between the vessel with contrast (the region of interest)

and the surrounding tissues (to be neglected in the segmentation). Then a gradient

anisotropic diffusion filter is applied to reduce the noise, resulting in a smoothed

image. Fig. 5 shows these different filters.

Fig. 5 Effects of the different filters applied to the DICOM images, seen at the level of the anasto-
mosis between the outflow cannula of the LVAD and the aorta

Having convenient images for segmentation, the geometry of the region of in-

terest can be reconstructed. The gradient of the previously treated images is then

calculated and the watershed segmentation algorithm [22] is applied to the result.

To improve the obtained segmentation, mathematical morphology filters are then

performed and the final surface is extracted. All these steps are performed using

the InsightToolKit library1. These methods allow to reconstruct only the geometry

1 www.itk.org
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of the fluid, i.e., the volume inside the artery corresponding to the blood (the lu-

men). The arterial wall itself is usually not seen on DICOM images like CT-scan or

MRI, consequently its geometry cannot be directly reconstructed. Since we want to

perform numerical simulations that takes into account arterial wall deformation (i.e.

the so-called Fluid-Structure Interaction, FSI), we have to artificially reconstruct the

arterial wall, assuming that arterial wall thickness is proportional to the local vessel

radius [9].

Finally we used the library vmtk2 to create meshes for the fluid (blood) and

structure (arterial wall, outflow cannula) and to a-priori identify the boundary layers.

Fig. 6 Geometry and computational grids

2 www.vmtk.org
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2.2 Processing

We aim at modeling the flow in the whole computational domain in Fig. 6 (com-

prising (a) cannula, (b) ascending aorta, (c) brachiocephalic trunk, (d) left common

carotid, (e) left subclavian, (f) descending aorta) by a fluid-structure coupled prob-

lem. More precisely, the blood flow in the lumen is described by the Navier-Stokes

equations for a Newtonian fluid in the Arbitrary Lagrangian Eulerian (ALE) frame

of reference [16], while the arterial wall is modeled by a 3D elastodynamic equa-

tion. The same model is adapted for the artifical cannula (which is made of woven

polyester), the only difference in our model being represented by a larger Youg

modulus, corresponding to a higher stiffness.

Let Ω f and Ωs be the reference domain for the fluid and the structure, respec-

tively, and ΓFSI = ∂Ω f ∩∂Ωs the fluid-structure interface. In the case at hand, Ω f (t)
is in fact the lumen of the whole domain in Fig. 6 (comprising the cannula, the aorta

and its branches) whereas Ωs(t) indicates the arterial and cannula walls. At every

time t > 0, the current configuration of the fluid domain, Ω f (t), is given by the ALE

map

At : Ω f → Ω f (t)

x → At(x) = x+d f (x),

where d f is the displacement of the fluid domain, therefore Ω f (t) =At(Ω f , t). Prac-

tically d f =Ext(ds|ΓFSI ), where ds is the solid displacement and the extension Ext(·)
is an harmonic lifting (or extension) operator from ΓFSI to Ω f (see [6]).

The Navier-Stokes equations are coupled with a linear elastic model describing

the structure’s behavior [6]. The partial differential equations modeling the fluid and

the structure are:{
ρ f ∂tu+ρ f (u−w) ·∇u−∇ ·σ f = 0 in Ω f (t),

∇ ·u = 0 in Ω f (t),

ρs∂ttds −∇ ·Π = 0 in Ωs,

and the coupling at the fluid-structure interface is expressed by the continuity of the

velocity, the equilibrium of the stresses, and the geometric adherence:⎧⎪⎪⎨
⎪⎪⎩

u = ∂tds on ΓFSI(t),

Πns =−J f σ f (F f )
−T n f on ΓFSI ,

d f = Ext(ds|ΓFSI ), w = ∂td f in Ω f .

Here: u= u(x, t) is the fluid velocity, p= p(x, t) the pressure, w=w(x, t)= ∂td f the

domain velocity; ∂t the partial derivative with respect to the time; ρ f and ρs the fluid

and solid densities; σ f = σ f (u, p) =−pI+με(u) the fluid Cauchy stress tensor, μ
the fluid dynamic viscosity, ε(u) = (∇u+∇uT )/2 the strain rate tensor, and Π =
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Π(ds) the first Piola-Kirchhoff stress tensor of the structure. Moreover F f = ∇At
is the fluid domain gradient of deformation, J f = detF f the jacobian, n f and ns the

outward unit normals to the fluid and solid domains. Additional condititions on the

external boundary are necessary to close the equations.

Regarding the numerical approximation, we use here a geometry-convective ex-

plicit (GCE) time discretization of the 3-D FSI problem [3]. It means that both the

convective field and the fluid computational domain are extrapolated from the previ-

ous time step. The other terms are treated with a first order backward Euler scheme.

These equations are discretized in space by a P1-P1 Finite Element (FE) method

stabilized by interior penalty. This implies that the Navier-Stokes equations are re-

duced to a linear problem at each time step. The equations for the structure are also

linear, requiring no special treatment. Due to the explicit treatment of the geome-

try, the discrete coupled problem is linear. It can therefore be solved by a GMRES

method preconditioned by overlapping algebraic Schwarz preconditioners based on

an inexact block factorization of the system (see [3]).

The software used is based on LifeV (www.lifev.org), a parallel finite element

library providing implementations of state-of-the-art mathematical and numerical

methods. It has been used already in medical and industrial marks to simulate fluid

structure interaction and mass transport processes [3]. The kind of simulations we

are interested in are very heavy in term of computational costs, therefore supercom-

puters like the Blue Gene/P (IBM) or Cray XT or XE series are necessary [2].

2.3 Post-processing

Post-processing of the data is also an important issue since the solutions given by

the simulations are heavy in terms of data size. Therefore critical parameters have

to be carefully identified in order to provide a relevant and meaningful analysis of

the results both from the mathematical and clinical points of view. Their description

with respect to the model that is applied is made in chapter 3. We used ParaView3

to perform the post-processing of the data. It allows to analyze results both in a

qualitative (e.g. flow pattern at a given location) and quantitative manner (flowrate

at a given vessel).

Finally the model has to be validated. We are currently performing in vitro val-

idation. It is conducted by comparing values obtained with the in vitro model with

the in silico one, based on the same geometries and input parameters, using the PIV

(Particle Image Velocimetry) method.

3 www.paraview.org
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3 Results

We present here preliminary results of our numerical simulations. On a background

of a network made of the coupling of 1D models for the systemic vasculature [5],

[11], and [19], we overlay a 1D model for the cannula on the ascending aorta. This

model has the advantage to have a low computational cost; simulating 6 heartbeats

takes typically 8 hours using 8 processors (64 CPU hours). It also allows to evaluate

the systemic effects of the LVAD. As a drawback it cannot evaluate local tridimen-

sional features, e.g., the zones of flow recirculation or stagnation at the anastomo-

sis site, nor the charge loss due to the anastomosis. Fig. 7 shows the flowrate and

pressure at several critical arteries. Note that it is possible to evaluate pressure and

flowrate at the main arteries.
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Fig. 7 Arterial tree model composed by 1D elements

We then enrich our model by using a 3D model of the region depicted in Fig. 6

comprising the connection of the outflow cannula, the aorta and its branches. Its

coupling with a 1D model of the entire cardiovascular system (see Fig. 8) yields

a geometric multiscale model [11], [12], [18], and [17]. The advantages of using

such a multiscale model are numerous. In particular it is possible to evaluate the

local effects of the insertion of the LVAD (with the 3D model) and evaluate its inter-

action with the cardiovascular system (with the coupling with the 1D model). The

drawback is its elevated computational cost. E.g., using 64 cores on an IBM Intel

Nehalem cluster composed by blades containing two quad-core 2.66 GHz nodes



Connecting Ventricular Assist Devices to the Aorta: a Numerical Model 221

each, takes 72 hours to simulate 3 heartbeats (corresponding to as many as 4608

CPU hours). In particular, Fig. 10 shows secondary flows and stagnation zones in

the region of anastomosis. In this case the aortic valve is closed and all the inflow

comes from the cannula of the LVAD.

Fig. 8 Multiscale model. Arterial tree composed by a 3D FSI model for the domain of Fig. 6 and
by 1D elements for the remaining circulation

4 Conclusions

This work represents the first step towards a clinical tool for patient-specific opti-

mized VAD implantation. In that sense, we join the idea of the well-known expres-

sion: from bench to bedside.

More specifically in this study we have focused on the anastomosis of LVAD

to the aorta. The techniques we developed allow us to run patient-specific simula-

tions giving the opportunity to understand the behavior of the blood flow near the

anastomosis and the interaction between LVAD and the cardiovascular system in

a complete non-invasive way. In the long run, hopefully this will open the way to

predictive surgery.
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Fig. 9 Multiscale model.
Focus on the 3D FSI model
and its coupling with 1D
elements. The stars denote the
coupling interfaces

Fig. 10 Multiscale model.
Focus on the 3D model show-
ing the streamlines and the
wall shear stress distribution
(WSS), posterior view
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to haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 2001.

17. T. Passerini, M. de Luca, L. Formaggia, A. Quarteroni, A. Veneziani, A 3D/1D geometrical
multiscale model of cerebral vasculature. Journal of Engineering Mathematics 64(4), 319–
330, 2009.

18. A. Quarteroni, A. Veneziani, Analysis of a geometrical multiscale model based on the coupling
of PDE’s and ODE’s for blood flow simulations. Multiscale Modeling & Simulation 1(2),
173–195, 2003.

19. P. Reymond, F. Merenda, F. Perren, D. Rufenacht, N. Stergiopulos, Validation of a one-
dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297(1),
H208–222, 2009.

20. E.A. Rose, A.C. Gelijns, A.J. Moskowitz, D.F. Heitjan, L.W. Stevenson, W. Dembitsky, J.W.
Long, D.D. Ascheim, A.R. Tierney, R.G Levitan, J.T. Watson, P. Meier, N.S. Ronan, P.A.
Shapiro, R.M. Lazar, L.W. Miller, L. Gupta, O.H. Frazier, P. Desvigne-Nickens, M.C. Oz,
V.L. Poirier, Randomized evaluation of Mechanical Assistance for the Treatment of Conges-
tive Heart Failure (REMATCH) Study Group, R.E.: Long-term mechanical left ventricular
assistance for end-stage heart failure. N Engl J Med 345(20), 1435–43, 2001.

21. M. Slaughter, J. Rogers, C. Milano, S. Russell, J., Conte, D. Feldman, B. Sun, A. Tatooles,
Delgado III, R., Long, J., Wozniak, T., Ghumman, W., Farrar, D., Frazier, O.: Advanced heart
failure treated with continuous-flow left ventricular assist device. The New England journal
of medicine 361(23), 2241–2251, 2009.

22. L. Vincent, P. Soille, Watersheds in digital spaces: An efficient algorithm based on immersion
simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 583–598,
1991.

23. Y. Zhang, Z. Zhan, X. Gui, H. Sun, H. Zhang, Z. Zheng, J. Zhou, X. Zhu, G. Li, S. Hu, D.
Jin, Design optimization of an axial blood pump with computational fluid dynamics. ASAIO
J 54(2), 150–5, 2008.



Mathematics Elsewhere



Numeracy, Metrology and Mathematics
in Mesopotamia: Social and Cultural Practices

Grégory Chambon

Introduction

Since the first decipherments of cuneiform writing in the XIX century, academics

have been interested in the reconstruction of the ancient Near Eastern numerical and

metrological systems as well as abstract ideas and techniques, which were identified,

in modern times, as mathematics.

On the one hand, numerical and metrological data are usually assumed to directly

reflect the concrete world that scribes have tried to describe, quantify and organise.

Thus Assyriologists – historians working on the Ancient Near East – have often

tried to approach ancient political and economical reality through studies of ancient

weight- and measurement-systems; but, as they think that mathematical practices

are by nature only for mathematicians, they are not interested in them.

On the other hand, since the great works carried out in the 1930s and 1940s1, the

aim of historians of mathematics has been to provide evidence for metrology and

mathematics in scribal schooling. But for many decades, their attention has been al-

most exclusively focused on the internal features of mathematics, and then they have

put aside historical and social concerns so as to compare the content and concepts of

Mesopotamian and Greek mathematics. For example, in the secondary literature, the

so-called Babylonian mathematics is often assumed to represent the first true math-

ematics, with abstract ideas and procedures, considered as proto-Greek because of

the lack of an organised and independent discipline before the classical Greek period

from 600 to 300 BC2.

However, it is misleading for historians of mathematics to focus only on inter-

nal features and developments of mathematics with no exploration of the social,

cultural and intellectual activities that have made possible its creation, transforma-

tion and diffusion; in other words, they need to contextualise mathematics. Con-

versely, Assyriologists have gained a deeper understanding of the ancient societies

Grégory Chambon

Université de Bretagne Occidentale, Brest (France).
1 See [17], [30], [18].
2 For this topic, see [28], 268-274.
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and cultures by considering mathematical techniques as culturally embedded prac-

tices; mathematical techniques are expressions of social and intellectual groups of a

given culture3.

In order to highlight the importance of such an interdisciplinary and contextual-

ising approach, this paper explores some interactions between mathematical tech-

niques, material culture and scribal activities through a close examination of two

case-studies.

1 Mathematicians, historians and “Babylonian Mathematics”

1.1 The received picture of “Babylonian Mathematics” in the
modern world

In the secondary literature, the term Babylonian mathematics usually refers to any

mathematics developed by the people of Mesopotamia over the period of time

extending from the beginning of the third millennium to the fall of Babylon, in

539 BC.

At first glance this terminology appears to be misleading. How can one use

the simple word Babylonian to refer to a broad and complex three-thousand-

year tradition at the crossroads of many cultures and languages of the Ancient

Near East? In fact, Babylon, even during its existence, was not always the great-

est city in Mesopotamia. Even if the city played an important role in developing

and transmitting cultural, intellectual and religious knowledge, it was not at the

crossroads of intellectual life and scholarship at any time of the Mesopotamian

history4.

For a long time Mesopotamia (from the Ancient Greek “between rivers”) has re-

ferred to the area of the Euphrates and Tigris river system set in modern-day Iraq

and north-eastern Syria; an overview of its long history is available in Reference5.

Archaeologists have highlighted the emergence of urban societies in the surround-

ing mountains during the course of the fifth millennium BC. Over the forth mil-

lennium BC, the first sophisticated urban society grew up in south Mesopotamia.

It was in this region, perhaps in the large city of Uruk on the Euphrates, that

writing begun around 3100 BC6. Mesopotamia is considered, in particular, as the

land where not only writing, but also the wheel, bureaucracy and state have been

invented.

3 See the recent study by Eleanor Robson on the social history of mathematics from ancient Iraq [28].

For a summary of the main ideas developed in this work, see [23].
4 See the recent study on Hammurabi of Babylon by Dominique Charpin [6].
5 For an overview of the ancient Near East history, [31].
6 For the invention of cuneiform writing, see [13].
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What about mathematics? It is usually assumed by mathematicians that Babylo-

nians:

i) used a sexagesimal place value system (base 60) for counting and calculation,

which brought to mind the modern divisions of the circle and the hour;

ii) worked with Pythagorean triples according to the famous tablet Plimpton 322

and extracted square roots;

iii)were able to solve linear systems and cubic equations, but their geometry was

sometimes incorrect and not really developed;

iv)knew Pythagoras theorem a millennium before the time at which it is assumed

to have been invented by Pythagoras7.

The reason why these practices and conceptualisations are commonly called Baby-
lonian mathematics is that most of the Mesopotamian mathematics known by the

general public actually comes from the so-called Old Babylonian period (roughly

1800-1600 BC). We possess several hundred Old Babylonian mathematical tablets,

and it is precisely this form of mathematics that historians in general have con-

sidered as being “proto-Greek”. But, almost any of Babylonian mathematics come

actually from Babylon itself; excavating the city from the second millennium has

become impossible because it is situated under the water table.

In fact, the various documents providing convincing evidence of mathematics in

Mesopotamia come mainly from two widely separated time spans: the Old Baby-

lonian period and the period from around 600 BC to the first century BC8. Histo-

rians have often ignored such evidence of mathematics dated back to the second

period because they considered that mathematics consisted almost exclusively of

mathematical procedures and calculations dedicated to astronomy. But, the discov-

ery of few tablets containing mathematical problems with no relation to astron-

omy has shown that this assertion is not strictly true. In fact, it seems that, al-

though the terminology and external features have changed since the Old Baby-

lonian times, mathematical traditions of the early second millennium have not

died out.

Thus, the cuneiform mathematical corpus is more varied and much richer than

it has generally been supposed. It ensues that, even though using the expression

Babylonian is convenient to describe this corpus, this term is unable to exactly and

totally reflect the corpus features over more than two thousands years.

7 See, for example [32].
8 After 1600 BC, mathematical activity appeared to come to a halt in Mesopotamia. But our picture of

Mesopotamian mathematics is skewed by the accidents of discovery and depends on excavations. Never-

theless, one knows that, between 1600 and 1000 BCE, mathematical and metrological texts continued to

be copied and learnt by apprentice scribes (for example in Aššur on the Tigris or in Hazor on the western

coast).



230 G. Chambon

1.2 Sources and methods

The first mathematical cuneiform texts were published in the years before the First

World War. Though it was a few decades after the first decipherments of the two

main languages using the cuneiform script9, Akkadian and Sumerian, no true inter-

pretation was made available. The cuneiform script is composed of wedge-shaped

impressions on clay tablets and runs horizontally from left to right.

Over the following decades, François Thureau-Dangin and Otto Neugebauer

opened the field of Babylonian mathematics with the publication of Textes mathéma-
tiques de Suse and Mathematische Keilschrifttexte in the 1930’. As the historical and

cultural contexts of both texts were poorly known at that time10, the internal math-

ematical features in the tablets were explored by scholars through reconstruction of

the techniques and procedures in use11.

After the Second World War, the methodology in use for working and editing

texts has been followed by historians of cuneiform mathematics12. In particular, the

mathematical content of the texts were translated into a modern language as well

as rewritten in the modern mathematical idiom of symbolic algebra. The aim was

to, first, approach the ancient calculation techniques and, second, to compare them

with the content and concepts of Greek mathematics. Cuneiformists, on the other

hand, paid little attention to Babylonian mathematics that was considered to be too

technical and only interpretable by mathematicians.

In the 1970s and 1980s, the attention of scholars, such as Marvin Powell and

Jöran Friberg, turned their attention to arithmetic and metrology of the third mil-

lennium BC, and Denise Schmandt-Besserat developed her theory on the origins of

writing and accounting, which were closely intertwined13. The interpretation of this

early numeracy and metrology needed now to take into account the cultural, politi-

cal and socio-economic context. This trend led to a revolution of our understanding

of ancient mathematical techniques, with the investigations on the language of Old

Babylonian algebra carried out by Jens Høyrup and published in 199014. This study

was mainly focused on the Akkadian word problems used in mathematical texts and

showed that the underlined algebra is based on a naı̈ve geometry with a concrete

conception of numbers as measured line and area; this method gave an equal weight

to numbers and words in text. In order to illustrate it, let us compare two differ-

ent translations of the same Old Babylonian problem on the difference between the

length and width of a rectangle.

9 See the historiography available in [15] and [24].
10 One should note that, given the lack of archaeological context for most tablets, placing them in an

accurate historical context was difficult.
11 See the remarks in [15] and [28], 268-274.
12 See [18] and [1].
13 See, for example, [20], [21], [9], [11] and [29]
14 See [14].
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Two translations of the Old Babylonian Problem AO 889215:

van der Waerden’s Translation
([32], 63)

Høyrup’s Translation ([16], 164-5)

Length, width. I have multiplied length
and width, thus obtaining the area.
Then I added to the area, the excess
of the length over the width: 3 03
(i.e., 183 was the result). Moreover, I
have added the length and width: 27.
Required length, width, and area.
(given:) 27 and 3 03, the sums
(result:) 15 length 3 00, area 12 width
One follows this method:
27 + 3 03 = 3 30
2 + 27 = 29
Take one half of 29 (this gives 14;30).
14;30 + 14;30 = 3 30;15
3 30;15 + 3 30 = 0;15
The square root of 0;15 is 0;30.
14;30 + 0;30 = 15 length
14;30 + 0;30 = 14 width.
Subtract 2, which has been added to 27,
from 14, the width. 12 is the actual width.
I have multiplied 15 length by 12 width.
15 + 12 = 3 00 area
15 + 12 = 3
3 00 + 3 = 3 03.

Length, width. I have made length and
width hold each other. I have built a surface. I turned
around (it). As much as length went beyond width, I
have appended to inside the surface: 3 03.
I turned back. I have accumulated length and width:
27.
What are the length, width, and surface?
27 3 03 the things accumulated
15 the length
12 the width 3 00 the surface
You, by your proceeding, append 27,
the things accumulated, length and width, to inside 3
03: 3 30.
Append 2 to 2: 29. You break its moiety,
that of 29: 14;30 steps of 14;30 is 3 30;15. From in-
side 3 30;15 you tear out 3 30: 0;15, the remainder.
The equal-side of 0;15 is 0;30.
You append 0;30 to one 14;30: 15, the
length.
You tear out 0;30 from the
second 14;30: 12, the true width.
I have made 15, the length, and 12,
the width, hold each other: 15 steps
of 12 is 3 00, the surface.
By what does 15, the length, go beyond 12,
the width? It goes beyond by 3.
Append 3 to inside 3 00, the surface: 3 03, the surface.

The former is the translation proposed by van der Waerden in 1954, where the

problem statement is formulated through two algebraic equations with two un-

knowns, which can be written as follows:

xy+ x− y = 183

and

x+ y = 2.

The second interpretation, which was proposed by Jens Høyrup, gives special di-

mension and signification to numbers. They are considered as geometric lengths or

areas, which can be manipulated physically (accumulated, appended, etc.). Høyrup,

15 I give here an example, which was already described in details by Robson, because it is clear and

convenient (for further commentary, see [28], 276-277). All the numbers are given in the modern

transliteration of the sexagesimal place value system. Sexagesimal places are separated by a space. In

order to approach the absolute value of a sexagesimal number, academics use a semicolon to mark

the boundary between the whole and fractional parts of the number. For example, 14; 30 stands for

14+30×60−1 = 141/2 and 3 03 for 3 ×60+3 = 183.
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thus, underlined a kind of implicit cut-and-paste diagram, contrary to the interpre-

tation by van der Waerden of an ancient algebra with equations and symbols like the

one in use nowadays.

An interdisciplinary picture based on this new trend has developed over the

last few decades and from the perspective of the social and cultural history of

Mesopotamia. Nowadays, historians of cuneiform mathematics try to recover the

mathematical thinking and concept of the ancient Mesopotamians from thorough

studies of the internal features of mathematical texts (original vocabulary, syntax,

etc.) and art factual details of the tablets themselves (visual properties, structure,

layout, etc.).

Although it is still very difficult to identify the work of influence of ancient indi-

viduals within this almost completely anonymous mathematical tradition, it is only

recently that gaining more insight into the people who have used, learned and trans-

mitted mathematical skills and techniques has become possible; let us cite, for ex-

ample, the recent contribution by Eleanor Robson where she sketched a big picture

of the social and cultural history of cuneiform mathematics and opened a unique

window onto the material, social, and intellectual world of the mathematics in an-

cient Iraq16.

These new perspectives enable one to rethink the relationship between Baby-

lonian and Greek mathematics by interpreting the former as something other than

the precursor to the latter. On the one hand, Babylonian mathematics seems to be

entirely inductive and based on a repetition of specific problems used as generic ex-

amples and from which generalisations and conceptualisation are inferred. On the

other hand, Greek mathematics is deductive and gives explicitly stated theorems and

axioms. Old Babylonian mathematics is based on metric features unlike the classical

Greek tradition, which is inherently geometric.

The entire published corpus of cuneiform mathematics comprises now more than

950 tablets. Over 80% of them deal with mathematical and metrological exercises

and tables from the Old Babylonian period.

2 Different forms of mathematical thinking and practices

Rather than giving in this paper a likely too short and maybe imprecise overview of

cuneiform mathematics it seemed to me worthwhile to focus on two case-studies,

both connected with arithmetical and mathematical practices, but over one thousand

years distant from each other, so as to describe different way of using and thinking

mathematics.

16 [28], 290.
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2.1 Counting and accounting around 3000 BC

Since the beginning of writing in southern Mesopotamia, numeracy and literacy

have been closely intertwined17. It even seems that numeracy has predated liter-

acy by several centuries in Mesopotamia. From about 6000 BC, that is to say sev-

eral thousand years before writing, Neolithic villagers used geometrically shaped

clay or stone counters (or tokens) to represent fixed quantities of goods so as to

record exchange transactions. Later, in the early fourth millennium, administrators

and bureaucrats of the first city states developed systematic accounting techniques

by adapting these counters to their increasingly complex needs.

These new practices led to an important change: the use of permanent impres-

sions of the counters on clay in place of ephemeral groups of counters. Whereas

the clay counters, or their impression, represented both a number and an object – in

other words, a counter had both a quantitative and a qualitative value - the invention

of writing around 3200 BC enabled a visual, and certainly conceptual18, separation

of the counting system from the objects to be counted: as a result, the recording num-

bers were, thus, impressed on clay with a round reed, and the drawing of objects was

incised with a sharp reed. These two kinds of writing have evolved from increasing

needs of local administrations and bureaucracies for management of goods.

A consequence of this evolution is the possibility to record metric data as well

as arithmetic operations, like the sums of counted objects or the total of measured

products. Whereas the identification of most of the commodities being counted is

still uneasy because of the difficult interpretation of the earliest signs, the com-

parison of totals and sub-totals of quantities written on many tablets has led to a

better understanding of the counting and measuring systems. In 1990’s, an interdis-

ciplinary team in Berlin identified more than twelve different systems used on the

archaic tablets from Uruk, a large city of around 250 hectares in size, located in

southern Mesopotamia19. Each system depended on the products to be counted or

the quantities to be represented. For example, a given system, i.e. a set of units, was

used to count discrete things such as containers, fish or human beings; another one

was employed to count discrete grain products and cheese. About the systems used

for noting down capacity measures, each of them depended on specific cereal prod-

ucts (such as barley, kinds of emmer, malt). Other specific systems were dedicated,

respectively, to area measurements or to the recording of weights, etc.

One should note that these counting and measuring systems followed strict arith-

metic rules. Rigid relationships existed between the units in each system. Depend-

ing on the context, a certain number of signs was always replaced by a higher unit.

In this respect, most of the numerical and metrological signs changed their arith-

metical value according to their field of application. For example, the arithmetic

17 See [27].
18 See [2].
19 See [19].
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relationships of the signs and impressed in clay, depended on the context.

1 = 10 in context with sheep

1 = 6 in context with barley

1 = 18 in context with field

During the late fourth to the early third millennium, the administrators developed,

thus, simultaneously cuneiform script and arithmetic in order to register palace and

temple stocks. The invention of the former had consequence for the latter: it enabled

one to express a numerical total of different entries on the obverse of a tablet. For

example, on the observe of the tablet denoted by W 20274,37 (Vorderasiatisches

Museum, Berlin) the sign appears in seven entries, and each sign represents a

jar filled with beer. On the reverse of the tablet, the seven signs are written again,

with the sign for “jar” representing the total of the registered jars.

This finding allows one to define, for the first time, this kind of operation as

calculation or addition, even though this addition was not an arithmetical operation

in the proper sense of the word; it, indeed, corresponds to a kind of manipulation of

the counted objects. But this principle was actually complex, because repeated signs

within each system were replaced with larger units: for example, the sum of twelve

signs for counting animals would have been written and followed

with the sign corresponding to sheep.

Even though this activity should not be called mathematics, this “proto-arithmetic”,

with the expressed and real summarising process, formed the point of departure of

an abstraction concerning symbolic operation with numbers, which does not depend

on counted objects20.

2.2 Elementary Mathematics education in the Early Second
Millennium

Around one thousand years later, there was in Mesopotamia a highly centralized

bureaucratic state during the so-called Ur-III period, with its enormous bureaucratic

apparatus. In order to form scribes and provide them with administrative training, a

system of standardised schools was created in the state.

Unfortunately, little is known about this kind of scribal education. A hymn of

the king Shulgi (2094-2047 BC), a famous king of the Ur-III period gives us some

clues:

When I was young, I learnt at school the scribal art on the tablets of Sumer and Akkad.
Among the high born no-one could write like me. Where people go for instruction in the
scribal art there, I mastered completely subtraction, addition, calculation and accounting.
(Hymne B l.13-20: see [34], 24-25).

20 See [7] for this development of the number concept.
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As already seen, most of the excavated mathematical tablets dated back to the so-

called Old Babylonian period, at the early second millennium. After the implo-

sion of the Ur-III Empire, which had collapsed under its too heavy bureaucracy,

Mesopotamia was divided into small city-states, with their own administrative and

economic functions. Private entrepreneurs played an important role in these local

administrations.

These economic centres still needed scribes for accounting and stock manage-

ment, and many thousands of school tablets have been excavated. Although most

of them are from an unknown provenance, archaeologists have, nevertheless, found

mathematical tablets in some sites such as Mari by the Euphrates or Susa in south-

west Iran, as well as several school houses from southern Irak21.

Mathematics was part of the scribal curriculum, which also included grammar,

literature and good practice in the writing of legal documents, letters and accounts;

the Old Babylonian education system was targeted to the production of numerate

and literate scribes22.

The Old Babylonian mathematical texts are usually categorised as problems, ta-
bles (usually including metrological lists), round tablets for calculations, solution
lists and coefficient lists in the modern literature. The very first text was usually

composed and transmitted by the scribal teachers, and further copied by the ap-

prentice scribes. They contained series of problems with their numerical answers,

which consisted in some instructions expressed in the imperative form, or in the

second-person singular, often written in Akkadian (see the Old Babylonian Prob-

lem AO 8892 above) and ending with the expression this is the procedure. Series of

problems often differed minimally: indeed, the procedure was alike, and they only

contained alternative sets of parameters, in a pedagogical order.

Students wrote out tables, often with Sumerian words; they consisted in multi-

plication tables and reciprocal tables (pair of numbers written in sexagesimal place

value system with their inverses). For example, Ashmolean 1924.447 is a multipli-

cation table for 24:23

Obverse
1. steps of 16 6 24

steps of 17 6 48

steps of 18 7 12

steps of 20-lá-1 7 36

5. steps of 20 8

steps of 6 2 24

steps of 7 2 48

steps of 8 3 12

steps of 9 3 36

21 See [5], 419-33.
22 For this curriculum, see [25], [28], 85-113 and [33]. An example of mathematical education at Ur is

given [12].
23 See [26].
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10. steps of 10 4

steps of 11 4 24

steps of 12 4 48

steps of 13 5 12

steps of 14 5 36

15. steps of 15 6

Reverse
1. steps of 16 6 24

steps of 17 ��6 48��
steps of 18 7 12

steps of 20-lá-1 7 36

5. steps of 20 ��8��
steps of 30 12

steps of 40 16

steps of 50 20

(erasures)

10. ‘Long tablet’ of (the scribe) Suen-apil-Urim

Month XII, day 9

Upper edge
Praise (the gods) Nisaba (and) Ea!

Apprentice scribes had to copy and memorise the so-called metrological lists, which

enumerate measures of capacity, weight, surface and length in increasing order. The

pedagogical aims of this work were twofold; the lists provided information about

the units in use in each metrological system and their notations24. Their vertical

enumeration enabled trainee scribes to express and to memorise the ratios between

the units in each system. It can be seen, for instance, in a sequence from the weight

system. The numerical signs u (diagonal wedge) and diš (vertical wedge) were used

to express 10 and 1, respectively. The signs for the weight measures were, in order

of size, gin2 for “shekel” (c . 8 g) and ma-na for “mina” (c. 500 g):

Transliteration Translation
1(u) 1(diš) gin2 11 shekels

1(u) 2(diš) gin2 12 shekels

1(u) 3(diš) gin2 13 shekels

1(u) 4(diš) gin2 14 shekels

1(u) 5(diš) gin2 15 shekels

1(u) 6(diš) gin2 16 shekels

1(u) 7(diš) gin2 17 shekels

1(u) 8(diš) gin2 18 shekels

1(u) 9(diš) gin2 19 shekels

24 See comments in [28], 96-106, [3] and [4].
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1/3 ma-na 1/3 mina

1/2 ma-na 1/2 mina

2/3 ma-na 2/3 mina

5/6 ma-na 5/6 mina

1 ma-na 1 mina

The ratio between the two units is expressed with fractional values: the notation

“1/3 mina” directly follows the increasing progression “11 shekels, 12 shekels, 13

shekels . . . 19 shekels”, indicating that “1/3 mina” is equal to “20 shekels”, and,

thus, that “1 mina” is equal to 60 shekels.

With these tables, scribes performed calculations in the sexagesimal place value

system on small round tablets, called hand tablets in Sumerian. Solution lists, with

sets of parameters giving integer answers for individual problems, were kept by the

teachers25.

Finally, technical constants – work-rates and standards already in use in the Ur-

III period – were organised into lists in order to solve problems26.

Although mathematical problems seem to be based on practical needs (measure-

ments of grain-piles, calculations for earthworks and waterworks, and for manu-

facturing standardised bricks, etc.), the non-utilitarian data of some problems sug-

gest that Old Babylonian mathematics was concerned with approximation of the

real world, without tempting to be “abstract mathematics” focused on mathematical

modelling.

3 Conclusions

This paper attempted to highlight the interactions between ancient mathematics and

society. It is now incorrect to consider Babylonian mathematics as the precursor to

deductive Greek mathematics. Babylonian mathematics had its own features, which

were products of the daily life needs for administration, economy and politics, and

more generally of the society that invented, used and transmitted them.

Wherever possible the interpretation of a mathematical text thus needs to take

into account both the context of its drafting (layout of the document, vocabulary,

scribal traditions, etc.) and the context of actual practice (surveying fields, trading

and pilling up grain, methods of accounting, etc.), rather than focusing only on the

mathematical content of the text. The recent studies on mathematics in Mesopotamia

have shown that this contextualisation has now become a guiding thread enabling

one to evidence that the mathematical cuneiform corpus is more varied and complex

than it had usually been acknowledged.

To sum up, the study of the ancient cultures, which have produced and expressed

mathematics, has become necessary and gives rise to new interdisciplinary cooper-

ation between mathematicians, historians of mathematics and archaeologists.

25 See [8].
26 See [22].
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Origami and Partial Differential Equations

Paolo Marcellini and Emanuele Paolini

Origami is the ancient Japanese art of folding paper and it has well known algebraic

and geometrical properties, but it also has unexpected relations with partial differen-

tial equations. In this note we describe these relations for a large audience, leaving

the technical aspects to other specialized papers.

Introduction

Origami is the ancient Japanese art of folding paper. One of the most known origami

is the crane, represented on the right-hand side of Fig. 1. Other than their artistic

interest, why and how to associate origami with mathematics?

A motivation comes from the properties of origami. Many mathematicians in-

terested in geometry or algebra (for example in group theory, Galois theory, graph

theory) studied origami constructions.

An important issue is the geometrical construction of numbers. In some aspect

origami turns out to be more powerful than the classical rule and compass construc-

tion. In fact, in order to determine what can be constructed through origami, it is

important to formalize the rules. These are known as Huzita axioms and have been

proposed by Hatori, Huzita, Justin and Lang, see [1].

On the contrary, in this exposition we present an analytic approach to origami,

based on maps which satisfy a suitable system of partial differential equations. We

remain here to a non-technical level of exposition. The interested reader might refer

to the papers [5,7] obtained by the authors in collaboration with Bernard Dacorogna

(École Polytechnique Fédérale de Lausanne). In these papers fractal constructions

of origami are shown to solve a special class of Dirichlet problems arising in non-

linear elasticity (see [4]).
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1 Axiomatic construction of origami

As already said in the introduction, origami constructions can be considered from

an axiomatic point of view in a similar way as rule and compass construction. We

give here few details about this geometric approach to origami (the interested reader

may refer to [1]).

Here are the seven axioms.

Axiom 1: given two points P1 and P2 , there is a unique fold passing through

both of them;

Axiom 2: given two points P1 and P2 , there is a unique fold placing P1 onto P2;

Axiom 3: given two lines L1 and L2 , there is a fold placing L1 onto L2;

Axiom 4: given a point P and a line L, there is a unique fold perpendicular to L
passing through P;

Axiom 5: given two points P1 and P2 and a line L, there is a fold placing P1 onto

L and passing through P2;

Axiom 6: given two points P1 and P2 and two lines L1 and L2 , there is a fold

placing P1 onto L1 and P2 onto L2;

Axiom 7: given a point P and two lines L1 and L2 , there is a fold placing P onto

L1 and perpendicular to L2 .

However this is not the only possible mathematical motivation and in the following

we propose a different approach. We will present a mathematical model of origami

which has a double purpose. In one hand we give an analytical approach which

provides a new perspective to the existing algebraic and geometrical models. In the

other hand we use origami as a tool to exhibit explicit solutions to some systems of

partial differential equations.

2 A global definition of origami as a map

Instead of listing a set of properties, we identify an origami with a mathematical

object, i.e., we give a mathematical model. We skip the overlapping and interpene-
tration problems (see [5]).

If we denote by Ω ⊂ R2 a two dimensional domain (usually Ω is a rectangle),

then an origami is a suitable immersion of the sheet of paper in the three dimensional

space. Hence it can be identified with a map u

u : Ω ⊂ R2 → R3.

Since origami is a folded paper, the map u cannot be everywhere smooth; it is only

piecewise smooth. In fact folding creates discontinuities in the gradient. But we do

not allow cutting the sheet of paper. Thus u is a continuous map.

The singular set Σ = Σu is the set of discontinuities of the gradient Du. This

set represents the union of curves where the paper is folded and hence it is also
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u→

Fig. 1 On the right: the crane is the most famous origami. On the left: the corresponding singular
set

called crease pattern in the origami context. Usually this set is composed by straight

segments.

In the model – at the same time – we construct the origami and we unfold it. We

now explain in which sense.

Let’s consider the crane origami represented in Fig. 1. If we unfold the origami

we see the crease pattern Σ impressed in the sheet of paper. Clearly the singular set
Σ is uniquely determined by the origami. In this case Σ is the set of segments repre-

sented on the left in Fig. 1. What we really consider is a function, an application, a

map u from the sheet of paper to the three-dimensional space.

As we said, usually the singular set is composed by straight segments, but it is

also possible to make origami with curved folds: this happens for instance in the

representation of a map u : R2 → R3, which has as singular set Σu along a circular

curve, as in Fig. 2.

A sheet of paper Ω (again recall that usually Ω is a rectangle) is rigid in tan-

gential directions. If a sheet of paper is constrained on a plane, it would only be

possible to achieve rigid motions, i.e., rotations and translations of the whole sheet.

Fig. 2 A non-flat origami with a curved singular set



244 P. Marcellini and E. Paolini

On the other hand, in the normal direction it can be easily folded. This property can

be expressed in analytic form either with local isometries or with orthogonality.

That is, where the gradient of the map u exists (where the paper is not folded)

angles and distances must be respected, they cannot change in the image of the map.

The map must be a local isometry and its gradient matrix must be orthogonal.
In more details, the origami u =

(
u j (x1,x2)

)
j=1,2,3

is a vector-valued map in two

variables

u : R2 → R3.

That is, u is a map from R2 to R3 and its gradient Du =
(

∂u j

∂xi

)
is a 3×2 matrix

u =

⎛
⎜⎝ u1

u2

u3

⎞
⎟⎠ , Du =

⎛
⎜⎜⎜⎝

∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

∂u3

∂x1

∂u3

∂x2

⎞
⎟⎟⎟⎠ .

The gradient Du(x) has to be an orthogonal 3×2 matrix, i.e.,

Dut ·Du = I.

This orthogonality condition is equivalent to the differential system

3

∑
i=1

∂ui

∂xh
· ∂ui

∂xk
= δhk , ∀ h,k = 1,2,

which, in explicit form, means⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂u1

∂x1

)2
+
(

∂u2

∂x1

)2
+
(

∂u3

∂x1

)2
= 1

(
∂u1

∂x2

)2
+
(

∂u2

∂x2

)2
+
(

∂u3

∂x2

)2
= 1

∂u1

∂x1

∂u1

∂x2
+ ∂u2

∂x1

∂u2

∂x2
+ ∂u3

∂x1

∂u3

∂x2
= 0.

As we already said, we do not allow cutting the sheet of paper Ω . Thus u : Ω ⊂
R2 → R3 is a continuous map, more precisely a Lipschitz-continuous map. The

singular set Σ = Σu, i.e., the set of discontinuities of the gradient Du, may have

a very complicated structure, even no-structure, for a general Lipschitz-continuous

map.

If we limit ourselves to piecewise smooth maps, precisely to piecewise C1 rigid
maps, then we have a more readable situation. For instance, for the map whose graph

is represented in Fig. 3 the singular set Σ = Σu is empty.

As we said the singular set Σ = Σu is uniquely determined by the map u, but

in general the reverse is not true; in fact many rigid maps u may have the same

singular set. On the contrary a special attention will be given to the so-called flat
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Fig. 3 This sheet of paper u(Ω) is bended but not folded. The corresponding singular set Σu is
empty (in correspondence to several (not folded) maps)

origami. A flat origami is defined as a map whose image is contained in a plane. It

can be represented, up to a change of coordinates, as a map u : Ω ⊂ R2 → R2. Let

us consider a flat origami, i.e., instead of

u : Ω ⊂ R2 → u(Ω)⊂ R3,

we consider an application of the form

u : Ω ⊂ R2 → u(Ω)⊂ R2.

3 Analytic properties of flat origami

In the case of flat origami we have the possibility of reconstructing the map u from

its singular set Σu. That is, if u(Ω)⊂R2, it is possible to uniquely reconstruct a map,

with orthogonal gradient, from a given set of singularities; i.e., from a given singular

set. A fundamental ingredient in this reconstruction is a necessary and sufficient

compatibility condition on the geometry of the singular set.

Following the terminology that can be found in the not numerous mathemati-

cal literature on origami (see for instance [2]), we call it angle condition. It was

discovered by Kawasaki in the origami setting.

Let Σ ⊂ Ω ⊂ R2 be a locally finite union of segments. Then Σ is the singular
set of a piecewise C1 rigid map if and only if the following angle condition holds at

every internal vertex of Σ . If we let α1, . . . ,αN be the amplitude of the consecutive
angles determined by the N edges of Σ meeting in the vertex, then N is even and

(see Fig. 4)

α1 +α3 + . . .+αN−1 = α2 +α4 + . . .+αN = π.
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Fig. 4 the angle condition: at every internal vertex an even number of angles meet. The alternating
sum of angles is equal each other

We prove that every polyhedral pattern Σ which satisfies the angle condition is

the singular set Σu of some rigid map u. Precisely the following result holds (the

result is valid in the general n−dimensional setting, with Ω ⊂ Rn).

The following result has been proved in [5].

Theorem 1 (Recovery Theorem). Let Ω be a simply connected open subset of R2.
Let Σ ⊂ Ω be a locally finite polyhedral set satisfying the angle condition at every
vertex. Then there exists a map u with orthogonal gradient (flat origami) such that
Σ = Σu is the singular set of u. Moreover u is uniquely determined once we fix the
value y0 = u(x0) and the Jacobian gradient J0 = Du(x0) at a point x0 ∈ Ω \Σ .

For a flat origami u : Ω ⊂R2 → u(Ω)⊂R2, with components (with a little abuse

of notation we identify R2 with a subset of R3)

u =

⎛
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u2

0
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⎟⎠=
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u1
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)
, Du =
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⎜⎜⎝
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⎛
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∂u2
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∂u2
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⎞
⎠ ,

the orthogonality condition Dut ·Du = I is equivalent to the differential system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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= 0

(1)
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and this gives a representation for the determinant of the 2× 2 matrix Du. In fact,

by an algebraic computation, we also find

(detDu)2 =

(
∂u1

∂x1

∂u2

∂x2
− ∂u2
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∂u1

∂x2

)2
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−2
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∂u1

∂x2
.

By multiplying side by side the first two equations of (1) we get
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and therefore
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.

Then, by the third equation in (1), we finally get

detDu =±1.

The sign of the determinant of the matrix Du gives a coloration of the domain Ω , as

in Fig. 5.

Fig. 5 The domain Ω colored by means of the sign of detDu =±1
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4 Boundary value problems and fractal constructions

We have another condition to satisfy: it is a boundary condition. That is, we look

for maps u with a given value at the boundary ∂Ω of Ω :

u(x) = ϕ(x), x ∈ ∂Ω .

For instance u(x) = 0 for x ∈ ∂Ω . In order to achieve the boundary datum we must

arrive at the boundary with finer and finer subdivisions of the set Ω ; i.e., we must

have a singular set Σu of fractal form. This is due to the fact that detDu = ±1,

in particular detDu 
= 0 and hence, by the implicit function theorem, the map u is

locally invertible if it is smooth. This is in contrast with a constant boundary value.

We apply the recovery theorem to a singular set Σu of fractal form (at the bound-

ary, with the aim to satisfy a boundary condition), for which the angle condition is

satisfied. In fact the set Σu which we are going to consider has the property that it

divides Ω into two families of colored sets (see Fig. 6):

grey rectangles, where detDu =−1;

white convex polygons, where detDu =+1.

Each vertex of the singular set Σu is shared by two rectangles, hence the angle
condition holds. We see the shape of the sets that we consider: it is an Escher-type
not-periodic picture.

Fig. 6 Escher-type not-periodic picture satisfying the angle condition at every vertex, with fractal
structure at the boundary which allows to fix a boundary value
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There exists a piecewise C1 rigid map u : Ω̄ → R2 (flat origami), with singular

set Σu as in Fig. 6, such that u = ϕ on ∂Ω . Thus u satisfies the Dirichlet problem{
Du ∈ O(2), a.e. x ∈ Ω
u(x) = ϕ(x), x ∈ ∂Ω

for some given boundary values ϕ (see [5]).

From the scalar picture (see Fig. 6) we can also read the boundary value of the

vectorial map u.

We end by giving a picture with a 3−dimensional flat origami. It is a mathemat-
ical origami, being a rigid application from R3 → R3.

Theorem 2 (3D Dirichlet Problem). On the cube Ω = [0,1]3 it is possible to define
a piecewise C1 rigid map u : Ω →R3 such that u = 0 on the boundary. The singular
set Σu is represented in Fig. 7.

This result was first obtained by Cellina and Perrotta [3] and extended in [6] to

general n-dimensional origami.

Fig. 7 The singular set which defines a 3-dimensional origami. The angle condition is satisfied on
every edge (the rings highlight the measures of the alternating angles)
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The Möbius Strip

a film by Edouard Blondeau

Who is this guy sitting on the couch of the heroine? Why does he punch her in the

face? But above all why does the story keep on starting over and over? The Möbius

strip is a short film about two main movie characters running away from the situation

they have to act in a movie to live their own live.

1 Synopsis

As she wakes up the heroine finds the hero she doesn’t know sitting on her couch.

She wants him to leave so he stuns her with a punch. The story starts from the

beginning again without the heroine and the hero noticing it. So, as she wakes up

the heroine finds the hero she doesn’t know sitting on her couch. She wants him to

leave so he stuns her with a punch.

The heroine wakes up again in her bed. However she has a feeling of “déjà vu”.

She says it to the hero who doesn’t care about it. He stuns her again. For the fourth

time the heroine wakes up in her bed. She’s irritated by the repetitions and asks the

hero for explications. He answers her they are the main characters of a movie but he

doesn’t know why the story keeps on starting over and over.

So they meet the producer of the movie who explains them that the director

doesn’t know how to continue the story. That’s why he keeps on rehashing the same

part over and over and despite himself condemns the heroine and the hero to live

indefinitely the same scene. To stop this situation the hero threatens the producer

so that he doesn’t finance the movie anymore. The producer gives up and tears to

pieces the screenplay.

Immediately the heroes are projected on a blank page where they can write their

own story thanks to doors opening on different places. So the hero invites the heroine

to drink a cocktail on a beach. While they bask in the sun, a director proposes them

acting in a movie. They accept.

Whereas the frame remains black until the end, the director calls “action” and we

can hear the same conversation between the heroes as in the beginning of the movie.

Edouard Blondeau

Movie director, Paris (France).
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2 Director’s statement

Through the story of “The Möbius strip” I want to show the imprisonment of the

individual in his own background. The individual gives rise to his own barrier (the

religion, the social order, other people’s look. . . ) what prevents him from evolving.

However when he succeeds in crossing these barriers, he often inflicts himself new

barriers, and so can be in the quite same situation as before.

To describe the characters obtaining the freedom little by little, the frame be-

comes gradually bigger until the heroes are meeting the director on the beach. After

this moment, the frame becomes smaller: the close shot on the heroes sitting on

deckchairs, and then the close-up on the director smiling. The film ends without

picture and only the sound suggesting that the story keeps going over and over.

Until the scene with the producer, in order to emphasize the sensation that the

character of movie director is short of fantasy the sets are sober with white as main

colour and the sound is bared. So the sensation that there is no world outside the

story the heroes live, is increased. This fantasy blank is showed also by the neutral

personalities of the main characters compared with the charismatic personality of

the producer. The only coloured scene takes place on the beach where the sea, the

wind and the birds can be heard. As well this is the moment when the heroes are

living the life they want. That’s what the music enhances with a slight and melodious

theme.

The title makes reference to the famous Möbius strip, symbol of infinity that has

the particularity of being a 3D geometric form while it has only one surface.

So it is possible to follow endless the strip with the finger on the two sides without

crossing the edge. We think we are on a side and then on the other side, but we don’t.

There is only one side. It’s the same progress for the characters who think they are

free and finally live again the situation they run away.

3 Script

The short film is also viewable under this web link:

http://www.youtube.com/watch?v=wfkxEsKrOyo

Sequence 1
Sleeping in bed the heroine opens her eyes, seats on the bed and goes out the room.

Sequence 2
The heroine walks to the kitchen. In the living room, she sees a stranger, the hero,

sitting on the couch.

The heroine surprised: - Hello.

The hero: - Hello.

The heroine: - Who are you? What are doing in my apartment?
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The hero: - Ah, so this your place?

The heroine: - Yes it is! So get out of here!

The hero looks around.

The hero: - Nice place.

The heroine walks up to him kick him out.

The heroine: - I don’t ask you for opinion! Get the hell out of here!

The hero: - Hey oh!

The hero punches the heroine who falls K.O. on the ground.

Sequence 3
Sleeping in bed the heroine opens her eyes, seats on the bed and goes out the room.

Sequence 4
The heroine walks to the kitchen. In the living room, she sees a stranger, the hero,

sitting on the couch.

The heroine surprised: - Hello.

The hero: - Hello.

The heroine: - Who are you? What are doing in my apartment?

The hero: - Ah, so this your place?

The heroine: - Yes it is! So get out of here!

The hero looks around.

The hero: - Nice place.

The heroine walks up to him kick him out.

The heroine: - I don’t ask you for opinion! Get the hell out of here!

The hero: - Hey oh!

The hero punches the heroine who falls K.O. on the ground.

Sequence 5
Sleeping in bed the heroine opens her eyes remembering something happened.

Sequence 6
The heroine comes in the living room but stays away from the hero.

The heroine: - Tell me. . . Don’t you this feeling of “déjà vu”?

The hero: - No, not really. I’m pretty good with faces and if we’d already met, I’d

remember.

The heroine: - No. . . Don’t you have the feeling you and I have already experienced

this?

The hero: - . . .
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The heroine coming to the hero: - What I mean is it’s the third time I get up, the

third time I see you sitting on the couch, and the second time you’ve punched me in

the face.

The hero getting up: - How would I know? You’re pissing me off.

The hero punches the heroine who falls K.O. on the ground.

Sequence 7
Sleeping in bed the heroine opens her eyes massaging her face

Sequence 8
The heroine comes in the living room but stays away from the hero.

The heroine: - Tell me. . . Why did you hit me?

The hero: - I don’t know. Because that’s the story.

The heroine: - The story? What story?

The hero: - Well. . . The story of the movie.

The heroine: - What movie?

The hero: - The movie where we’re the characters! The main characters!

The heroine: - Ok. . . But why does the story keeps on starting over and over?

The hero: - I’m not writing it. You should ask the director.

Sequence 9
The heroes are standing in the office of the producer who finances the movie they

are the main characters.

The producer: - Please have a seat. So, what can I do for you?

The heroine: - Well it’s simple, we would like to meet the director of the movie.

The producer: - Which movie? As you know, I produce a lot of movies. . .

The heroine: - The movie where we are the main characters.

The hero: - Well, her and me!

The producer: - That part I understood. I’m not a meat head.

The heroine: - It’s morning, I wake up. I find this stranger sitting on my couch. I

walk up to him kick him out, and he punches me in the face.

The producer catching a file: - Ah, that movie! Wait. . . It doesn’t look promising. . .

The director left for the Bahamas to relax, because he has. . .

The producer waves his fingers.

The hero: - A piano?

The producer: - No, not at all. In fact, he has writer’s block.

The heroine: - Writer’s block?

The producer: - Yes. He has no idea how to carry on with the story. He has the

opening scene: you discovering this guy who never met sitting on your couch, but,

for the moment, the story ends right there. So he keeps on rewriting the same part

over and over, without knowing how he wants to go on the story, idiot.

The heroine: - So what’s going to happen to us?
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The producer: - Well, you both are in the shit. I mean. . . it’s annoying. As long as

the director doesn’t come up with any new ideas, you’ll be stuck in the same scene

over and over again: the wake-up. . . and the punch in the face.

The heroine: - So, as long as this idiot doesn’t rack his brain, we’re stuck?

The producer: - Well, you are the characters in his movie. You’re at his disposal.

Even more: he has the right of life or death over you.

The hero: - But if you stopped financing him, he would give up his movie?

The producer: - True. But, even if it isn’t going to be the blockbuster of the century,

the director is kind of my nephew. I’m sure you understand.

The hero catching the producer by his collar and threatening him with a pen on his
throat: - I’m gonna bleed you like a stuck pig if you don’t do anything.

The producer: - Ok, ok, ok, ok. Ok. You won. I’ll stop financing the movie!

The producer tears up the file.

Sequence 10
Suddenly the heroes stand in a big white empty room and looks around them.

The heroine: - Fuck! Where are we?

The hero: - No idea. On a blank page, I guess.

The heroine: - Great, what’s going happen to us? Did you really have to resort to

violence?

The hero: - You don’t get it? We are free! Free to do what we want, free to write

our own story, free to go wherever we want!

The hero goes to a door standing in the middle of the room.

The hero: - Just imagine a place you’d like to go! So where shall I take you?

The hero opens the door. Behind it there are toilets.

The heroine: - Sorry, I didn’t go all day!

The hero closing the door: - But not now. You can go later. I don’t know. Do you

like the countryside?

The hero opens the door. Behind it there are cows in a meadow.

The hero closing the door: - Do you prefer the city?

The hero opens the door. Behind it there is the Eiffel Tower.

The hero closing the door: -You see. It’s simple. You just have to want it. Please,

be my guest.

The hero opens the door. Behind it there is a beach.

Sequence 11
The heroes walk on the beach. Then they sit in deckchairs and drink cocktails.

The hero: - So? Isn’t this nice?
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The heroine: - Yeah. But you’ve got to like the sea.

The hero: - To like the sea, to like the sea. . . Isn’t it better than taking my punches

in your face?

The heroine: - Yeah, I suppose so. . .

Sequence 12
The heroes are looking at the sea. A director is walking on the beach to them.

The director: - Hello.

The hero: - Hello.

The director: - I’m a movie director and I came up with an idea when I saw you.

Would you be interested in acting in a movie?

The hero: - Yeah.

The heroine: - Why not?

Sequence 13
The frame is black. There is only the sound.

The director: - Action!

The heroine: - Hello.

The hero: - Hello.

The heroine: - Who are you? What are doing in my apartment?

The hero: - Ah, so this your place?

The end.

Credits
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From Brigitte Bardot to Angelina Jolie

Michele Emmer

It is the 1960s, and Brigitte Bardot is at the height of her success. She appears as

herself in a film entitled simply Dear Brigitte [1]. By simply calling the film that
everyone immediately knew what is was about. She was the dream girl of the son

of the character played by James Stewart. Stewart’s character, Robert Leaf, is a poet

and professor of English literature in an American university. He is perennially in

conflict with the scientists at his university, holding science to be dry, and scientific

training, particularly mathematics, to be of little use. One day tragedy strikes at

home (a sort of tragedy, of course, since the film is a family comedy). Leaf’s son,

who goes to elementary school, is a mathematical genius. Or better, the boy has a

gift for mental calculation. In ordinary language, and thus also in movies, we often

find ‘mathematical genius’ used for those who can perform rapid calculations in

their heads. His teacher discovered this by chance, and quite pleased, goes to tell

the boy’s parents. When he hears that his son is a mathematics whiz (at elementary

mathematics, obviously), the father becomes white as a sheet and puts a hand on

the mother’s shoulder to comfort her. Then, when the teacher leaves, he begins to

talk to the boy, begging him not to tell anyone about this skill he has, since it will

lead to no end of grief, especially when people begin to shout, when they pass him

on the street, ‘He is a mathematician!’, a phrase Stewart pronounces with disgust,

saying, ‘And we don’t want that, do we?’, ‘No, Sir’, ‘Of course not.’ Anyway, when

the boy goes for a check-up with the doctor, when asked what he is interested in,

numbers perhaps, he replies without hesitation, ‘Brigitte Bardot’. And when at the

end of movie, his dream comes true and he finally sees la Bardot in person, he

is completely dumbstruck, frozen and blushing in front of his idol. So much for

numbers! The movie was made in 1965.

Almost fifty years have passed, and mathematicians have begun to play an im-

portant role in films. Their characters are interesting, sometimes even fascinating.

Our heroine, Angelina Jolie, is a British secret agent, actually a double agent, and

lover of Alexander Pearce, who cheated the British tax system out of hundreds of

millions of pounds. Jolie is continually followed, taped and spied upon. She receives
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a message telling her to go to Venice, and in the message, extremely astute (in its

way), it is suggested that she pick up a stranger in a train that looks like Pearce.

Now we are on the train, and Jolie is looking for the right person, and she finds,

in second class, a man who is smoking. In reality, he has an electronic cigarette that

steams and has a light that looks like the burning tip of the cigarette. This is the

character played by Johnny Depp. And who would this fortunate man be, chosen to

be seduced by Jolie, the man who has to be interesting, resourceful, and fascinating?

When she asked him what he does, he answers, ‘Math. I teach Math’. And she says,

‘I would have not guessed that, I imagine you are a cool math teacher’. ‘Still a math

teacher’, he replies.

The math teacher plays detective, earning right away from Jolie the label of para-

noid professor. But actually he isn’t that at all. He is nice, kind, helpful, as we grad-

ually discover.

And finally, in the luxurious hotel room where Jolie has invited him, the math

teacher kisses her passionately, but maybe it’s only a dream. . .

When the trouble begins – chase scenes, shoot-outs – we see that Depp’s mathe-

matican is actually quite agile as he escapes across the rooftops of Venice. And he

can dance really well too. Then we learn that it is all a cover, that he is a fake math

teacher. It’s really Pearce, which was clear from the first close-up of Depp. Right,

because the film is predictable, to put it nicely. No suspense, slow motion action, a

nothing film. But, the fact remains that the great gentleman trickster Pearce, who has

to at least apparently woo Angeline Jolie, chooses to pretend to be a mathematics

teacher. This is quite a leap from when James Stewart tells his son that he doesn’t

want anyone on the street to mistake him in mathematician!

In short, fifty years have passed between the two films, and they haven’t passed

in vain. In those fifty years it has become credible that a mathematician is not the

usual oddball who can’t manage his own life, but is so fascinating that he can make

Angelina Jolie fall in love with him. We could nitpick and object that in fact Depp’s

character is not a mathematics teacher, but is just hiding behind that identity in

order to appear innocuous and inoffensive, but that is really being picky. The fact

remains that they thought of a mathematician. Who knows what the future holds.

The film we have been talking about is The Tourist [2] directed by Florian Henckel

von Donnersmarck, the brilliant director of The Lives of Others. Unrecognisable.

In contrast, a very interesting film is Incendies by Denis Villeneuve [3], in which

one of the main characters is a young mathematician. The film begins with a con-

versation between her, Jeanne Marwan, and Coen, a mathematics professor at the

university where she is an assistant:

Coen: ‘Mathematics, as you have known it until today, has tried to provide answers that
are certain. Now you are about to enter into an entirely different adventure. The subject
will be intractable problems that will always lead to other problems just as intractable.
People around you will repeatedly insist that what you are doing is hopeless. You’ll have no
argument to defend yourself, because the arguments themselves will be of an overwhelming
complexity. Welcome to pure mathematics, the land of loneliness. Please meet my assistant,
Miss Jeanne Marwan’.

Jeanne: ‘Hello’.
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We will begin with the Syracuse Problem [4]. Film critic Edoardo Becattini com-

pared the film to the proof of a theorem:

Denis Villeneuve shows himself to be a director with two obsessions: mathematics, and con-
temporary tragedies. . . . Incendies is a film constructed like a formula, and the first scene
is its equation . . . Jeanne’s investigation and the life of ‘Mother Courage’ Niwal represent
in fact proof and corollary of the same statement: two paths that not only arrive at the same
truth, but also narrate, in essence, the same story twice. But redundancy doesn’t frighten
Villeneuve. He knows that the mathematician only creates certainties and thus avoids leav-
ing any possible doubt, building the tension by recurring to a logic that is so ironclad that he
thinks he can make even the most paradoxical numeric expressions (1+1=1) credible. The
film’s ambitions are thus many and lofty, but the twists of the story and of contemporary
politics, so thorny and undecipherable, are not well-suited to the smooth perfection of the
mathematical functions (quoted in http://mymovies.it). I think that the director fully under-
stood the difficulty of telling such a complex story about war, fanaticism and hate in a way
that was logical and consequential. The film takes place in Lebanon during one of the many
civil wars between Muslims and Christians. With the opening scene, Villeneuve tells us that
being a person who is rigorous, intelligent, consequential – in short, being a mathematician
– as the paradigm of the capacity to face new, unpredictable and complicated situations, is
precisely the trait which is needed. Without having to give up one’s own feelings, fears, and
inadequacy.

Mathematician Coen says, ‘What does your intuition tell you? Your intuition is al-

ways right. This is why you have what it takes to become a real mathematician’.

As another critic, Fabio Ferzetti, has underlined in a review in Il Messaggero
(January 21, 2011), the director insists on ‘an intellectual framework – Jeanne is a

talented mathematician – which makes that ungovernable chaos even more cruel . . .

We are on very high ground, capable of uniting blood and abstraction, the tumult of

bodies and the incessant intrigue of intelligence and of pity’.

Didn’t Plato say that perhaps the world should be governed by mathematicians?

Geometry is the knowledge of the eternally existent [. . . ] [geometry] will tend to draw the
soul to truth, and would be productive of the philosophical attitude of mind, directing up-
ward the faculties that now wrongly are turned earthward. [. . . ] Then nothing is surer than
[. . . ] than that we must require that the men of your fair city shall never neglect geome-
try [5].

Fig. 1 Incendies by Denis Villeneuve



262 M. Emmer

In Scorched by Wajdi Mouawad, the play on which the film was based, the con-

nection with mathematics is made even more explicit. The lesson that Jeanne Mar-

wan gives is on graph theory. In the course introduction that she gives to the students,

she says:

People will often criticise you for squandering your intelligence on absurd theoretical exer-
cises, rather than devoting it to research for a cure for AIDS or a new cancer treatment. You
won’t be able to argue in your defense, since your arguments themselves will be of an ab-
solutely exhausting theoretical complexity. Welcome to pure mathematics, in other words,
to the world of solitude. Introduction to graph theory [6: p. 11].

Jeanne tries to use the structure of graph theory to understand what is happening,

establishing a connection between the polygons of the theory and the people that

she has to deal with:

Beginning with a theoretical application, for instance, can I draw the visibility graph and the
corresponding diagram? What is the shape of the house where the members of the family
represented in the application live? Try to draw the polygon. You can’t do it. The whole of
graph theory rests essentially on this problem, impossible to solve for no. Now, it is this
impossibility that is wonderful [6: p. 13].

Faced with the devastating information that the notary gives her following the death

of her mother, she cries, ‘What is my place in this polygon? My father is dead, that

is the conjecture. Everything leads me to believe that it is true. But nothing proves

it. I haven’t seen his body, nor his grave. So it could be that, between 1 and ?, my

father is alive’. The young mathematician often tries to construct a graph to explain

what is happening to her. It will be her mother who tells her that her place is in the

very heart of the polygon.

In 2010, thanks to the courtesy of Gianni Amelio, I had the chance to see his

first film, created for RAI in 1979 and absolutely impossible to find [7]. This too is

the story of a child prodigy who is interested in mathematics and music. Amelio’s

film is based on a story by Aldous Huxley, Young Archimedes, published for the first

time in 1924 [8]. When Clifton Fadiman published the anthology of stories related

to mathematics in 1958, he put Huxley’s story as the first one. The main character

is an English scholar of medieval Italian painting, Mr Heinz. The film is slow, con-

templative, as gentle as the Tuscan hills where it takes place, and in which nature

also becomes a kind of character. Into this kind of Eden comes a boy, Guido, the son

of farmers, without any education at all. Mr Heinz’s son, the same age, is captivated

by his vivaciousness and curiosity. Guido discovers music, hears some records. He

immediately recognises in the music he is listening to two violins that play different

melodic lines, and gradually he discovers and falls in love with Mozart, Bach. He be-

gins to play the piano, he is a natural talent, and after a short time, he begins to write

music.

The film’s bad guy, or better, the bad gal, is the mistress of the house where

Mr Heinz lives, Mrs Bondi, played by a mysterious Laura Betti. She doesn’t

have any children, and she wants to adopt the little farm boy, make him her

own.
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Fig. 2 Fantasia Mathematica edited by C.
Fadiman, 1958

In the meantime, Mr Heinz discovers another extraordinary quality in the boy:

What I actually saw was Guido, with a burnt stick in his hand, demonstrating on the smooth
paving stones of the path, that the square on the hypotenuse of a right-angled triangle is
equal to the sum of the squares on the other two sides. Kneeling on the floor, he was draw-
ing with the point of his black-ended stick of the flagstones ... and he proceeded to prove
the theorem of Pythagoras – not in Euclid’s way, but by the simpler and more satisfying
method which was, in all probability, employed by Pythagoras himself... In a very untech-
nical language, but clearly and with a relentless logic, Guido expounded his proof . . .

Guido: ‘Wait a moment. But do just look at this. Do. . . . It’s so beautiful. It’s so easy.’

So easy . . . The theorem of Pythagoras seemed to explain for me Guido’s musical predilec-
tions. It was not an infant Mozart we had been cherishing; it was a little Archimedes with,
like most of his kind, an incidental musical twist . . .

‘Guido, who taught you to draw those squares?’ ‘Nobody.’ ‘You see, it seemed to me so
beautiful . . . ’

Mr Heinz concludes that, ‘Perhaps the men of genius are the only true men. In all

the history of the race there have been only a few thousand real men. And the rest of

us – what are we? Teachable animals’. The story takes place during the Fascist era.

Guido has never been to school, but he can read and write. Mr. Heinz begins to

teach him formal mathematics. At a certain point the idyll is broken. Heinz has to

leave, staying away for several months. He receives a letter from Guido, who has

learned to write a few words. It is a cry for help: the mistress has taken away all

the mathematics books, he can’t play the piano anymore, he doesn’t like how things

are, and he asks for help.
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Heinz comes straight back, but the boy is dead, either by purposely throwing

himself out of a window, or by accidentally falling. This is the price that the simple

but brilliant boy pays for being different, for being exceptional.

Final observations

Mathematics is not rigidly applied in films like it is in art, because here mathematics

– as the last twenty years of films and theatre inspired by mathematics, or better,

by mathematicians, have shown – is used for its power to inspire, evoke, mystify,

and fascinate. As Max Bill said about the relationships between modern art and

mathematics:

By a mathematical approach to art it is hardly necessary to say I do not mean any fanci-
ful ideas for turning out art by some ingenious system of ready reckoning with the aid of
mathematical formulas. [. . . ] It must not be supposed that an art based on the principles of
mathematics [. . . ] is in any sense the same thing as a plastic or pictorial interpretation of
the latter. Indeed it employs virtually none of the resources implicit in the term ‘pure math-
ematics’. The art in question can best be defined as the building up of significant patterns
from the ever-changing relations, rhythms and proportions of abstract forms, each one of
which, having its own causality, is tantamount to a law unto itself. As such, it presents some
analogy to mathematics itself [9: p. 5, 8].
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Homage to Luca Pacioli



The Mathematical Ideas of Luca Pacioli
Depicted by Iacopo de’ Barbari
in the Doppio ritratto
Enrico Gamba

Of the paintings that are part of Urbino’s history, the one that is usually considered

the most mysterious and problematic is Piero della Francesca’s Flagellation. But

there is another painting that also comes from Urbino which is just as mysterious

and problematic: the so-called Doppio ritratto, or dual portrait, by the Venetian

painter Iacopo de’ Barbari.

In its own way, each painting embodies the definition of mathematical human-
ism, the expression coined by André Chastel to describe the cultural climate of the

1400s, highlighting the peculiar and distinctive role played by mathematics in the

cultural environment of the Urbino court with respect to other courts in Italy. Math-

ematics, in the sense of the term of those times, comprised the traditional arts of the

quadrivium – arithmetic, geometry, astronomy-astrology, and music – and extended

to perspective, architecture, and the construction of machines for civil and military

use.

Going back to the paintings mentioned, we should note right away that an enor-

mous number of specialised studies have been written about the Flagellation, in-

cluding books conceived for a popular readership of non-specialists, while the

Doppio ritratto, in spite of its being well-known and frequently reproduced, hasn’t

been the object a similar share of attention by critics.

The aim of this paper is to examine only the painting’s mathematical aspects, the

typical fruit, or better, visual expression, of Urbino’s mathematical humanism. I will

not, for instance, enter into the question of the identity of the person to whom Luca

Pacioli is giving a lesson in mathematics. I will only say that the erudite Urbino

mathematician Bernardino Baldi reported in 1589 that the painting was kept ne la
guardaroba de’ nostri serenissimi Principi in Urbino, ‘in the wardrobe of our most

serene Princes in Urbino’ (a wardrobe in the Renaissance was more than a closet; it

housed precious belongings).

From the point of view of the history of mathematics, this painting by Iacopo de’

Barbari is the first portrait of a living, working mathematician, surrounded by the

tools of the trade, caught in the act, so to speak. It is not an imaginary portrait of the

auctoritates such as Euclid, Archimedes and Ptolemy, nor are the figures accom-

panied by stereotypical objects in the way, for example, Ptolemy is often portrayed
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Fig. 1 Iacopo de’ Barbari,
Doppio ritratto, Museo
e Galleria Nazionali di
Capodimonte, Napoli

next to an astrolabe. To the contrary, this painting presents a precise narrative: Pa-

cioli has personally guided the hand of Iacopo de’ Barbari, indicating down to the

smallest detail what to represent and how to do it; everything in the painting is

mathematically purposeful and contrived. The aim is to communicate visually the

concept of mathematics professed by the Franciscan friar; if you will, the painting

functions as a kind of visual curriculum vitae for Pacioli.

In short, Pacioli’s aim was to present a global image of mathematics, a disci-

pline that came to include three components: the rational-scientific, the mystical-

philosophical, and the technical-practical. These three components – or better, tra-

ditions – are clearly and knowingly illustrated in the painting. Let us look at them

in order.

On the edge of the frame of the small slate on the left of the table is written

EUCLIDES, while the open book on which Pacioli’s left hand rests is a copy of the

first edition of Euclid’s Elements, published in Venice in 1482. The text is depicted

with absolute precision, allowing us to see easily that it is opened to proposition 8

of Book XIII.1 It hardly needs saying that the Elements, for centuries and centuries,

was the text responsible for the spread of a rigorously deductive mathematics, whose

propositions enjoyed absolute certainty.

1 Before the Greek text of Euclid’s Elements prepared by Simon Grynaeus (1493-1541) in 1533 (and

occasionally afterwards as well, as shown by the Italian translation by Tartaglia), the Elements were

known only in Latin translations of Arabic translations from the Greek. In all these translations, the

proposition in Book XIII which in Greek we find denoted as proposition 12 is indicated as proposition 8.

In the portrait of Pacioli, the book on which his hand rests is his own edition of 1509, which he says is

the corrected text of the ‘translation’ (in quotation marks because it the interventions are major) done by

Campano in the mid-thirteenth century, based on a variety of Arabic sources. Thus, although the modern

reader will identify it as proposition 12, here it is identified as proposition 8 because we are referring

to the text that Pacioli knew. Many thanks to Fabio Acerbi, editor of Euclide, Tutte le Opere, Milan:

Bompiani, 2007.
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The philosophical-mystical tradition is not represented by a book such as, for ex-

ample, the Arithmetica by Boethius, but rather by two geometrical figures: a dodec-

ahedron resting on a copy of Pacioli’s Summa de arithmetica, geometria proportioni
et proportionalità printed in Venice in 1494, and a rhombicuboctahedron.

The dodecahedron is made out of wood, and is intentionally an object that is

material, physical and concrete. In contrast, the rhombicuboctahedron is a meta-

physical object: it is a Platonic idea that appears before our eyes; an idea that comes

from on high, because there is no way to tell what it is hanging from; an apparition

that suddenly materialises out of the black background. It is, in fact, an object that,

technically speaking, cannot be built; it appears to be made of the perfect crystalline

material that the celestial spheres were believed to be made out of. This is a declara-

tion in favour of the Platonic nature of mathematical objects. Mathematical objects

are part of an ideal, perfect world, a reality of a higher order, certain, immutable;

this was Pacioli’s belief. However, they are not separate, unattainable entities: there

is the crystalline, ideal polyhedron and there is its material equivalent, the wooden

polyhedron. Pacioli was a man of the world, not a metaphysicist. He uses Platonism

to affirm the cultural dignity of mathematics within the cultural debates of the day, a

dignity that he believes to be valid for all of mathematics, commercial and technical

included. Here Plato would disagree. The wooden dodecahedron provides assurance

that the pure mathematical ideas can be applied to the concrete things of this world;

this is an advantage, not a outrage.

Now we arrive to the technical-practical component, fittingly represented by the

conspicuous volume of the Summa, which, although closed, Pacioli wants to make

sure is recognisable by the writing on the edges: L[IBER] R[EVERENDI] LUC[AE]

BUR[GENSIS]. The Summa was dedicated to the Duke of Urbino Guidubaldo da

Montefeltro, and remained widely-read and influential throughout the 1500s. In its

first pages we find examples of numeric philosophy. It is sufficient to cite the exam-

ple of the qualities of the number 1:

Essa unità non è numero, ma ben principio de ciascun numero, ed è quella mediante
la quale ogni cosa è detta essere una. E secondo el Severin Boezio in sua musica, è
l’unità ciascun numero in potentia.

(This unit is not a number, but rather the beginning of each number, and is that by

means of which each thing is said to be one. And according to Boethius in his music,

the unit is each number in potential).

However, after these first few pages the general structure of the work is clearly

practical. Outstanding among problems of capitalisation, society, measuring of ar-

eas of land, and so forth, is the treatise De computis et scripturis, the first printed

version of the techniques of commercial bookkeeping. The famous double-entry

bookkeeping had already been used by merchants for a couple of centuries; Pacioli

turned it into an instrument for understanding and managing the economic, financial

and patrimonial aspects of commercial activities.

Finally, the painting poses a challenge, something that was not at all unusual

among mathematicians of the day. Drawn on the small slate mentioned earlier, is a

circle in which is inscribed an equilateral triangle, from whose upper vertex is drawn

a line that is purposely left incomplete. With one hand Pacioli points to proposition
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8 of Book XIII of the Elements; in his other hand he holds a stick that points to the

incomplete line. All that is missing is his voice saying, ‘And now how do we go on?

How do we put these things together?’

Fig. 2 Detail of the Eu-
clides’ slate

One possible answer is that the line will end at point X, so that the completed

figure will be a square inscribed in the circle. According to proposition 8 of Book

XIII, the square of the side of the triangle is three times the square of the radius;

it states the relation between the radius of the circle and the side of the triangle

inscribed in it.

Fig. 3 Possible completion
of the figure drawn on Eu-
clides’ slate

The immediate next step is to derive the relation between the radius and the side

of the square inscribed in the circle. From this is easily derived the relation between

the triangle and the square: if the square of the side of the square is equal to twice

the square of the radius, then the square of the side of the square is 2/3 of the square

of the side of the equilateral triangle.

In my opinion, this hypothesis finds an indirect confirmation from the exact nu-

meric calculation that appears in the lower right-hand corner of the slate: 478 + 935
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+ 621 = 2034. How might these numbers be interpreted? Were they chosen at ran-

dom? Knowing Pacioli, it is hard to believe so. At first glance the numbers do not

appear to be special; for instance, they are not perfect numbers, or amicable num-

bers, or Fibonacci numbers, etc. Note that no digits are repeated; this might lead us

to think of a magic square arranged such that the sums of the numbers along the

rows, columns and diagonals are constant, but this is not the case. The only har-

mony, if you will, that I have found is between 621 and 478, that is, if 621 is the

perimeter of an equilateral triangle with a side of 207, then 478 is the perimeter of a

square constructed on the radius of the circle in which that triangle is inscribed. In

other words, in proposition 8 of Book XIII, Euclid the geometer puts the surfaces

into relation, while Pacioli, who is also an arithmetician and algebraist, puts spe-

cific cases of the perimeter into numerical relation, which is the customary way to

treat specific numeric cases in the context of practical mathematics, that is, abacus

mathematics.

In conclusion I would like to remark that the characteristic that renders the paint-

ing absolutely unique is that it unites a cutting-edge work of art – that is, the repre-

sentation of an empty, transparent rhombicuboctahedron – with cutting-edge avant-

garde science – such was the mathematics of polyhedra at the time. I believe that

no other painting in the whole history of art has been able to do that, thus providing

us with a unique example of a close collaboration between a mathematician and a

painter in order to achieve the depiction of the avant-garde in both mathematics and

painting.
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De divina proportione: from a Renaissance
Treatise to a Multimedia Work for Theatre

Simone Sorini

The theatrical work De Divina Proportione, which made its debut in Urbino in 2009

– the year which celebrated the five-hundredth anniversary of the print publication

of the book by Luca Pacioli – and performed again with success during the Ravenna

Festival of 2011, is a multimedia spectacle with live music, dance and video projec-

tions inspired by – indeed, taken from – the famous text of 1509. Pacioli’s text is not

only considered to be a watershed of scientific knowledge of the day, but one which

in many respects is interdisciplinary. It was precisely in virtue of the work’s interdis-

ciplinary nature that we developed the idea of bringing an ancient mathematical text

to the theatre in the form of a musical work in a modern key. In the very first pages

of the treatise we come upon an interesting declaration: the author explains at the

outset that his study will be useful and necessary for all ‘perspicacious and curious

minds’ interested in philosophy, perspective, painting, sculpture, architecture, music

and other kinds of mathematics.1 Where do we begin, what should we take from a

five-hundred year old treatise to construct a musical work for the present day?

Simone Sorini

Bella Gerit, Urbino (Italy).
1 Opera a tutti gli ingegni perspicaci e curiosi, ove ciascun studioso di Philosophia, Perspectiva, Pic-
tura, Sculptura, Architectura, Musica e altre Matematiche, suavissima, subtile e admirabile doctrina
conseguirà e delectarassi con varie questione de secretissima Scientia’ [Luca Pacioli, De Divina Pro-
portione, Venezia, 1509].
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First of all, the choice on the part of musicians like us to concern themselves

with things of mathematics might seem at first glance to be ill considered. But this

isn’t so if we think that from the times of antiquity music was placed alongside her

sister arts, arithmetic, astronomy and geometry, to make up the quadrivium, which

formed the basis of all scientific studies. Another factor that played a significant

role in this choice was our being from Urbino. The term ‘mathematical humanism’

was coined for the city of Urbino, because of the distinct role played by the city

during the Renaissance with regard to the sciences and mathematics. You only need

to wander the streets and by-ways of the city to see that among the many plaques

commemorating the birth of illustrious figures, a large number regard mathemati-

cians, builders of compasses and precision instruments, military architects, and so

forth. Moreover, a significant percentage of the hundreds of volumes housed in the

famous library of Federico da Montefeltro comprised works both ancient and con-

temporary of a scientific and technical nature, a much higher percentage than other

famous libraries of the day. Urbino can boast of a genuine vocation for the scien-

tific disciplines, and Pacioli went there on several occasions to study and work in

the court of the Dukes, where he had at his disposal all of the precious library’s

instruments. Without entering into the question of the famous accusation that Pa-

cioli had plagiarised the work of Piero della Francesca, first formulated by Vasari

and seconded by many others (Piero had written a treatise on the Platonic solids for

Federico, which was kept in the library just mentioned, and Pacioli included it in the

final printed version of his treatise without citing the source, in spite of the fact that

he had carefully noted the sources he used for the classics), Pacioli surely deserves

credit for being able to create a work that is beautiful as well as scientific, with the

kind of farsightedness that characterizes a good editor today: of knowing how to add

scientific experience and artistic skills together, in other words, to construct a bridge

between the two disciplines. Another bridge can be seen in the way ancient scien-

tific knowledge is joined with knowledge that was contemporary to Pacioli’s day,

so as to create a reliable reference work for scholars. Furthermore, the entire book

intended for distribution in print, and was in fact printed in the Italian vulgar and not

in Latin, as was the canonical form for this kind of work. Both of these decisions

surely corresponded to a desire to disseminate the work among the humanists, but
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also to make the work accessible to many thanks to the new technique of printing,

which would soon profoundly change the entire cultural panorama.

In the process of creating our theatrical work, we kept uppermost in our minds

the fact that for Pacioli himself, the effects of mathematics were often considered to

be spectacular, supernatural, a kind of practical illusion capable of arousing wonder

and amazement in those present.

Pacioli never underestimated the power of these instruments in carrying out his

intention of spreading knowledge, and to this end he wrote at least two treatises, the

De ludo scachorum and the Viribus quantitatis, written a few years before De divina
proportione.

As to the importance that the author attributed to the arts, we know that Pacioli

was constantly in the company of the artists of the day, especially the painters he

himself defined as ‘geometric painters’, many of whom he knew personally, includ-

ing – in addition to Leonardo (who drew the polyhedra for De divina proportione)

Sandro Botticelli, Domenico Ghirlandaio, Piero de la Francesca and Albrecht Dürer.

These painters used perspective as a genuine mathematical science. We know that

the study and application of mathematics in the 1400s were disseminated in at least

three different areas: in university teaching, in that of the abacus schools, and in

the botteghe, or workshops, of the artists, where knowledge of at least elementary

notions of abacus mathematics was mandatory in order to correctly set up what was

considered by the artists to be the discovery of the century, that is, perspective.

In this regard there is a dispute that Pacioli raises in the third chapter of the

treatise: he proposes adding perspective to the four arts of the quadrivium, and if

this is found objectionable, then he proposed taking away music, because in the

same way that music delights the ear, painting delights the eye, and so forth. This

is clear evidence of Pacioli’s complicity with the painters of his day, who shared

his ideas not least because the painters at that particular period felt a strong need to

redeem themselves from the mechanicalness of the profession of the painter, which

was not considered to be far removed from the humble labour of the blacksmith,

which was also learned after a long apprenticeship in the workshop. The aspirations

of the geometric painters in Pacioli’s circle – we need only think of Leonardo – were

of a completely different nature: to all intents and purposes, they were scientists.

The theories of proportion and perspective expressly refer to Euclid; the so-called

visual pyramid is drawn from his treatise on optics.

Proportions and anthropometry thus represent a paradigm, one capable of uniting

painting to architecture, and architecture to music. On the other hand, isn’t mathe-

matics still today, like art, a universal language.

Given these introductory remarks, what constitutes the particular nature and orig-

inality of the theatre piece? Without a doubt, it is based on choices that are rational
as well as aesthetic. Everything that is heard, seen and perceived in the theatre is the

result of numerical applications, completely in keeping with Pacioli’s treatise. The

design of the performance itself respects the three-part division of Pacioli’s book

of 1509; our project is divided into three distinct sections in golden ratio with re-

spect to each other, cadenced by voices off-stage (those of mathematician Piergior-

gio Odifreddi and actress Lucia Ferrati), who read several passages of the original
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text by Pacioli, thus making it possible to listen to the sound of this beautiful antique

Italian technical language.

The first part is that in which Pacioli states the thirteen admirable effects of the

Divine Proportion (thirteen, like the number of Christ added to that of the apostles),

after having presented the characteristics and properties of the segment divided ac-

cording the mean and extreme ratio, he chooses four that are similar to the divine

attributes: the first is uniqueness, the second is the trinity, the third is the irrational-

ity, the fourth is immutability. There is also a fifth characteristic which is above all

others in importance: just as the nature of God is identified with heavenly Virtue,

also called the Fifth Essence, or quintessence, and infuses all of the other four sim-

ple solids, that is, the four elements Earth, Air Fire and Water, in the same way, by

means of this proportion to heaven is attributed the figure of the dodecahedron, or

solid of twelve pentagons – in accordance with Plato’s Timaeus – whose construc-

tion is based on the divine proportion. In an analogous way, a form is assigned to

each of the other elements: to fire the pyramidal solid called the tetrahedron; to the

earth the cubic solid called the hexahedron; to air the solid called the octahedron;

and to water the icosahedron. These solids are defined as the regular polyhedra, and

from them it is possible to obtain the numerous variations that Pacioli calls elevate
(star polyhedra) or abscisse (truncated polyhedra). According to Pacioli, everything

arises from the golden ratio, which is the building block of the five polyhedra; on

these are based all that can be called material.

The golden section is represented in our theatrical work by the monochord, a

Pythagorean instrument which has a single chord that can be divided by means of a

moveable bridge, which reproduced it symbolically (even though in reality the divi-

sion of the chord to produce intervals that are pleasing to our ears and recognisable

is fixed according to precise ratios that do not have anything to do with the golden

section).

The entire universe of sound in the theatrical work originates in the physical

sounds of the monochord. These sounds, comprising the intervals of a fourth, a

fifth, a major third and the golden section, are recreated by electronic means and

spatialised in a three-dimensional acoustic context by means of original software

created expressly for this purpose.
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The machines interpret these intervals, elaborate them and give them back by

means of the ambisonic equipment in the form of a cube installed in the theatre,

in virtual form. In effect, all of the first part, that dedicated to the golden section

and the constitution and inscription of the polyhedra, is centred on the metaphysical

world. The Platonic world of ideas is also represented by the constant presence of a

scrim on stage, onto which are projected the images and videos created by Pierluigi

Alessandrini.

Following the finale of the first part, through the construction of the sphere fol-

lowing the intersection of the polyhedra with one another, we arrive at the second

part, where the harmonic series is constructed acoustically, and pure sounds are left

behind.

The second part is dedicated to the elements and their correspondence to the

polyhedra, in the way this was illustrated in antiquity by the Pythagorean School,

and in particular by Empedocles of Agrigentum. At this point in the performance

we found ourselves immersed in a harmonic acoustic universe, created by physical

instruments (since antiquity, each instrument has been associated with an element),

which improvise on the theme of the elements, against an electroacoustic back-

ground of sound landscapes. The final element to be represented is the quintessence,

which we interpret entirely with electronic means.

The final, third part is that inspired by the treatise on architecture contained in the

print edition of De divina Proportione. The screem is removed from the stage, and

all of the musicians and dancers appear, without the concealing diaphragm of the

projections. We are now in the physical world, and man projects his measurements

and his proportions onto works of architecture. The entire section is permeated by

the concept of anthropometry. With regard to the choice of ancient works of music,

we were extremely stimulated by the clear conviction that we had to start with num-

bers, and only with numbers, to create a universe of sound; obviously, we would

also have to take into account what history had produced, and there were no lack of

examples: Guillaume de Machaut, Philippe De Vitry, Guillaume Dufay. All of these

masters of the late Middle Ages – although in the case of Dufay we begin to speak,
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not entirely correctly, of the Renaissance – based their works, especially their sacred

works, on numerical allegories, isorhythms, canons, palindromes and the like.

Because of his proximity to Italy and because he is the closest in time to early

humanism, it seemed obvious to us that we had to consider Dufay an important

element in our musical study. Moreover, this master’s perhaps most universally fa-

mous work was the celebrated motet Nuper Rosarum Flores which he composed

and probably directed, organised you would say in Italy, specifically in Florence on

the occasion of the consecration to the Virgin Mary of the Cathedral of S. Maria

del Fiore, on 25 March 1436. This work, as musicology students know quite well,

possesses interesting characteristics of structure and composition. In fact, it is an

extremely original form of musical hermeneutics, since the whole composition is

based on some sacred numbers relative to the Solomon’s kingdom and temple, as

passed down in the first book of Kings in the Old Testament. Further, according

to the thesis by Craig Wright2 we find a particular and insistent reiteration of the

number 7, or 7 x 4 – the number of the Virgin characterized by her seven sorrows,

the seven days of exile in Egypt, her seven virgin companions – and the number

4, found in almost every ecclesiastic symbol. The formal framework consists of a

cantus firmus that the two tenors execute in notes that are long and rhythmically

staggered at a distance of a fifth on the motive Terribilis est locus iste.

The number 7 is found in the Nuper meanwhile in the choice of the seven-syllable

lines arranged in verses of seven strophes of the Latin text, perhaps the work of

Dufay himself, and thus in the 56 (7x4=28x2) breves in integer valor, or whole

beats, of each of the four sections of the motet for four voices.

The piece is divided into four parts, each of which comprises an exposition of

the cantus firmus a different metric indication. This means that the durations are

different for each section, even though each contains an identical number of beats

(fifty-six, of which the first twenty-eight are intoned only by motetus and triplum
and in the remaining parts they unite the two tenors in the melody of the introito).

However, while the number of beats is equal, the tactus (which corresponds to the

unit of measure of the pulse rate of a man breathing normally) differs from section to

2 C. Wright, Dufay’s ‘Nuper rosarum flores’, King Solomon’s Temple, and the Veneration of the Virgin.

Journal of the American Musicological Society, vol. 47, no. 3, 1994, pp. 395-427 and 429-441 (46-page

article).
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section. The values obtained for the tactus are 168, 112, 56 and 84, which, divided

by 28, give the ratios 6:4:2:3.

In fact, the mensural ratios of the four sections, excluding the brief amen, are

in the particular proportion 6-4-2-3. In modern terminology we say, although not

entirely correctly, that we go from a tempo of 6 to 2, 4 and 3. If we look at 1

Kings 6:2, we see that according to the measurements given in the description of

the temple that King Solomon had built in Jerusalem for his father David, the length

was 60 cubits, the width was 20 cubits, and the height was 30 cubits, while the cell

destined to contain the ark of the covenant was 20 cubits. All of the musical structure

makes clear reference to the temple’s architectural dimensions, without counting the

fact that musicologist Charles Warren3 has identified in Brunelleschi’s cathedral the

same proportions expressed in Florentine braccia, that is, once again the module

used by Dufay. This means that the musician and the architect worked together, or

if you prefer, that the musician built his structure on the basis of a clear dimensional

symbolism.

This could not help but bring to mind the treatise on architecture and anthropom-

etry contained in the book by Pacioli. Surely the Nuper Rosarum Flores is the most

distinguished example of musical architecture of the past, and perhaps of all time.

Thus the final part of our performance, that which takes the name Grandis Templum
Machinae, is dedicated to this composition, which is taken apart and reconstructed

by an electronic sound apparatus for electroacoustics, recomposed starting from its

talee and its colour in a virtual, technological context. The new composition is com-

prised of seven parts (in comparison to four parts in the original). The three addi-

tional parts are inserted after the first, second and third parts of the original motet,

and are intended to build on the sonorous considerations on the modus, tempus and

the prolatio expressed by Dufay through the proportions of the structure, acting as a

commentary and introduce the new integer valor for the breve, anticipating it with

rhythmic solutions obtained from the sound spectra generated by the computer. In

effect this is a temple within a temple; our Grandis Templum Machinae contains the

older composition, just as allegorically the Temple of Solomon contained in nuce
the entire Christian church.

3 C.W. Warren, Brunelleschi’s Dome and Dufay’s Motet. In: The Musical Quarterly, vol. 59, no. 1, 1973,

pp. 92-105 (14-page article).
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Towards a Rational Practice of Arithmetic.
A Model for Musical (and Multimedia)
Composition

Francesco Scagliola

1 Introduction

This paper proposes some practices in the field of art music composition. For the

type of insights and the approach taken, the theory and practice proposed can only

be computational. An introduction to the techniques necessary for the Computer-

Aided Algorithm Composition (CAAC) can be found in [5], [1], [10] and [13], with

particular reference to Formalized Music by Iannis Xenakis [16].

The choice to adopt the computer as a possible instrument available to the com-

poser comes from the idea that appropriate theoretical models may be capable of un-

ravelling the communication discomfort in which some composers find themselves

after the experience of the historical avant-garde.

A lot of artistic production of the historical avant-garde was created under the

influence of Marxian ideology dominant in the cultural circles of the Second World

War. In light of this consideration, it is possible to interpret properly, for example,

the work of Pierre Boulez (b. 1925) [3] or Luigi Nono (1924-1990) [14]. It is worth

noting that dissenting voices arose against some musical techniques derived from

the Marxian ideology, such as that of György Ligeti (1923 -2006) [9]. Nowadays,

only the strictly musical compositional techniques developed during the avant-garde

age remain as common practice.

Furthermore, during the period of avant-garde predominance different kinds of

music were successfully developed, such as those of Benjamin Britten (1913-1976),

Leonard Bernstein (1918-1990) and the minimalist Steve Reich (b. 1936).

However, in recent decades composers have opted for composing in ways that

depart from dogmas belonging to a bygone era. Most of them compose on the basis

of both the musical instinct, which must be the first nature of a composer, and music

theory, which appears to be inadequate with respect to the current expressive needs.

Francesco Scagliola

Conservatorio di Musica “Niccolò Piccinni”, Bari (Italy),

Founder and Director of Sin[x]Thésis, Group of Multimedia Research and Production (Italy).
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For these reasons, some composers of the younger generation feel the need for

an overhaul of the theory so that it is no longer tied solely to historical and social

needs, as happened, for example, in the case of both the Darmstadt Ferienkurse für
Neue Musik, and philosophical urgency, masterfully expressed by John Cage (1912-

1992).

The new theory should be derived from music itself, which is difficult because the

music is considered the ineffable art par excellence [7]. In fact, Gottfried Wilhelm

Leibniz (1646-1716), wrote in a letter dated 17 April 1712 to Christian Goldbach

(1690-1764): Music is a hidden arithmetic exercise of the soul, which counts un-

consciously1.

In this context, the objective of this paper is to show some hypotheses to ratio-

nalize this occult arithmetic practice, that is music, to shed light on general issues

which can guide the practice of music composition.

Finally, I would like to emphasize that this paper is written from the point of

view of a composer, which differs from the prospective of a mathematician, physi-

cist, engineer or computer scientist. As a musician, I am interested in the results of

computational models and not in the models themselves.

Indeed, brilliant models not necessarily produce musically meaningful results.

2 Symbols in Music

It is a common practice in music analysis to represent the entire piece or parts of

it by symbols. Each symbol can be decomposed into other symbols, recursively.

Thus, for example, you might segment the entire instrumental piece down to the

single note, or identify the individual sample in the case of a digitized piece.

Consider two musical structures: Canzone and Sonata Form. Fig. 1 shows the

ancient form of Canzone, whose structure is A B A’ where A’ is a variation of A.

One of the many forms that share this sequence of symbols is the Aria col ‘da capo’,
form that triumphed in the early 18th century.

Generally, A and B in this form contain tunes in different keys generated by

different musical materials. A breakdown of these symbols is meant to split the

melodies. Fig. 2 shows the Sonata Form, which according to the New Grove Dictio-
nary of Music and Musician “is the most important principle of the musical form,

or formal type, from Classical period well into the 20th century”.

Fig. 1 Structure of Canzone

1 Musica est exercitium arithmeticae occultum nescientis se numerare animi.
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Fig. 2 Structure of Sonata Form

It can be noted that the first two levels of the graphs shown in Fig. 1 and Fig. 2

are identical. However, the second level in Fig. 2 is further split. In A and A’ of the

second graph there are two groups of Subjects, plus other items such as Transition

and Codetta or Coda [15]. In B the materials of A are subjected to a greater degree

of tonal, harmonic, and rhythmic instability than in A.

It is worth noting that Canzone and Sonata Form differ in their amount of infor-

mation. In fact, in the Sonata Form sections of type A contain more information than

the homologous structures of the Canzone. Furthermore, in Sonata Form B differs

from A: B is not just different from A in the content of the materials as they are in

Canzone, but because B is a process of variation of the materials of A with a larger

quantity of information.

In the hypthesis of a phylogenetic relationship between the two forms, B of

Sonata Form is the youngest structure in terms of the theory of evolution.

3 Trees in Music

Rens Bod, an expert of Computational Linguistics, wrote: “It is widely accepted that

the human cognitive system tends to organize perceptual information into hierarchi-

cal descriptions that can be conveniently represented by tree structures” [2]. In fact,

trees have been used to describe the linguistic perception [4], the music perception

[8] and the visual perception [11]. An interesting unification of these perspectives is

proposed in “A Unified Model of Structural Organization in Language and Music”

[2].

The analysis discussed in the previous section illustrates that in practice the music

piece can be represented by a tree structure in which each node is identified by a

symbol.

In this work, the tree that produces the music piece is built using generative

grammar [13].
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Fig. 3 Tree generated by
grammar G

3.1 Formal Grammar

A grammar G is a quadruple (X, V, S, P) where:

X is the alphabet of terminal symbols;

V is the alphabet of nonterminal symbols;

S is the start symbol (which belongs to V);

P is the set of pairs (v, w) of symbols called production or rewriting rules. They

are built on the union of the two alphabets, X and V, and are denoted as A → B.

S is the start symbol to which rules are applied, then rules are applied to the results

previously obtained.

For example, let grammar G be formed by the quadruple (X, V, S, P):

X = {sX, aX, bX};

V = {sV, aV, bV};

S = sV;

initialRules = {sV → sX[aV, bV] , aV → aX[aV, bV] , bV → bX [bV,bV, aV]};

endingRules = {aV → aX[aX , bX] , bV → bX[bX , aX]}.

Applying the initialRules twice and the endingRules once results in the tree

shown in Fig. 3 results.

3.2 Tree nodes

In the second section, it was shown that the tree symbols of a musical analysis

contain the music piece or parts of it. Instead, in a tree structure used for composition

the nodes contain mechanisms for generating parts of the musical discourse.

The node can be:

non-terminal or terminal, i.e. leaf of the tree;

non-composer or composer, i.e. generating music.
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All tree nodes contain:

one Symbol. One property of the Symbols is: parameter fields pf1, control sig-

nals ks1, sound gestures g1 and algorithms a1 are associated to the symbol

sym1, regardless of which node n contains sym1. Type of the node is not asso-

ciated to sym1;

one Type of the node (which is addressed in Section 3.3);

the values of zero or more Parameter Fields for the computation of the global

structures, i.e. structures common to all nodes, such as metrical or harmonic

structure of the piece;

some Control Signals for the Algorithms for the Gesture Generation or Varia-

tion. The Control Signals are used to create Predictability, Surprise and Tension

as proposed in [6].

The non-terminal nodes also contain the rewriting rule, which has been calculated

or chosen, for the generation of the nodes of the next level. The composer nodes can

contain the following items:

zero or more Sound Gestures, described in a matrix form;

zero o more Algorithms for Gesture Generation [5], [15];

zero o more Algorithms for Reading the values of the Parameter Fields, the

Control Signals or Gestures contained in the other nodes. The nodes which are

likely read are:

– nodes that lie on the same branch;

– nodes that lie on the same level;

zero or more Algorithms of Gesture Variation.

It is worth noting that the algorithms that use the data which lie along the same

branch, partial or complete, facilitate the perception of hierarchy and the overall

vision that controls the materials generated. Moreover, the algorithms that use the

data which lie on the same level simulate the composer’s analytic listening.

3.3 Node Types

All nodes of a given level follow one after the other over time. In music, however,

it is sometimes necessary to have nodes at the same level which proceed in parallel,

i.e. nodes can generate two or more Gestures of the same musical quality as, for

example, two or more subjects superimposed.

The difference between the two Types of node can be shown by an example.

Let the composer nodes s and p be one node of Series Type and Parallel Type,

respectively. Let us suppose that the productions of their Gestures, i.e. of their music,

are timed between the instants [ts0, ts1] and [tp0, tp1]. Let us also suppose that s
and p are both fathers of two composer nodes. The timing of the materials produced

by the children of s will be a partition of the interval [ts0, ts1], whereas the timing

of both the children of p will be given by the whole interval [tp0, tp1].
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The use of this formalism makes it possible to generate multidimensional trees.

The multidimensionality of the trees permits the representation of the multime-

dia work.

To conclude, the model proposed supports both music and multimedia composi-

tion. As examples, Fig. 4, 5, 6 show frames of audio-video works by Sin[x]Thésis,

a group for Multimedia Research and Production that I founded and directed.

Fig. 4 Frame of audio-video
opera: Una Semplice Verità
by Giuseppe Salatino

Fig. 5 Frame of audio-video
opera: Fantômes Électrique
by Antonio Mazzotti

Fig. 6 Frame of audio-
video opera: Studio sull’
Intonazione della Carne by
Francesco Abbrescia
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4 Conclusions

The model which I have been designing over the past years has been adopted as a

tool by a small community of artists who have been investigating the deep connec-

tion between sound and emotional meaning. This bond is a fundamental part of the

composer’s research; it is also the most difficult part of our work to explain.

Models can produce highly complex musical objects. However, only the objects

selected by the composer will constitute the new language used for expressing him-

self. Models are meaningless without the composer’s knowledge. Without his pro-

found knowledge, music cannot exist.
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