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Introduction

Ready to load your statistical toolbox with a new level of tools? 
Intermediate Statistics For Dummies picks up where Statistics For

Dummies (or your introductory statistics course) leaves off, and keeps you
moving along the road of statistical ideas and techniques in a positive step-
by-step way.

The focus of intermediate statistics is on building and testing models based
on data. You’re trying to estimate, investigate, correlate, and congregate cer-
tain variables based on the information at hand. The process for doing this is
two-fold. First you build a model that you think describes your situation (the
model-building phase), and then you test your model, using the data you’ve
collected (the data analysis phase).

The techniques presented in intermediate statistics are used even more heav-
ily in medical and scientific studies than the introductory topics were. The
reason is that most real-world studies have more complex problems to solve;
they ask more questions and collect more data. Given that the results of
these more complex studies are used to make decisions in a host of different
areas (including medical science, biology, engineering, business, and politics
to name a few) most anyone can benefit from reading this book. You can see
applications that give you exposure to real problems and to the process of
interpreting and understanding other people’s results.

About This Book
This book is designed for people who want to get into (or at least be able to
understand and interpret) some of the more involved techniques in statistics,
beyond medians and means, the Central Limit Theorem, and confidence
intervals and hypothesis tests. (However, I do add some brief overviews of
introductory statistics as needed, just to remind everyone of what was cov-
ered and get new readers up to speed.) The topics this time around are many
flavors of regression (including simple, multiple, nonlinear, and logistic);
ANOVA (one-way and two-way); Chi-square tests (for independence and 
goodness-of-fit); and nonparametric procedures.

I also include interpretation of computer output for data analysis purposes. I
do show how to use the software to get the results, but I focus more on how
to interpret the results found in the output. It’s likely that more people will 
be interpreting this kind of information rather than doing the programming
specifically. And because the equations and calculations can get too involved
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by hand, you often use a computer to get your results. I include instructions
for using Minitab to conduct many of the calculations in this book. Most sta-
tistics teachers who cover these intermediate topics hold this philosophy as
well. (What a relief!)

This book is different from the other intermediate statistics books in many
ways, including the following:

� Full explanations of intermediate statistical ideas. Many statistics text-
books squeeze all the intermediate level topics at the very end of their
huge introductory-level textbooks; as a result, these topics tend to get
condensed and presented as if they were optional topics. But no wor-
ries; I take the time to clearly and fully explain all the information you
need to survive and thrive.

� Dissection of computer output. Throughout the book, I present many
examples that use statistical software to analyze the data. In each case, 
I present the computer output as well as an explanation of how I got the
output and what it means.

� An extensive number of examples. I include several examples to cover
the many different types of problems you will face.

� Lots of tips, strategies, and warnings. I share with you some of the
trade secrets, based on my experience teaching and supporting students
and grading their papers.

� Nonlinear approach. The setup of this book allows you to skip around
in the book and still have easy access and understanding of any given
topic.

� Understandable language. I try to keep things conversational to help
you understand, remember, and put into practice statistical definitions,
techniques, and processes.

� Clear and concise step-by-step procedures. In most chapters, you can
find steps that intuitively explain how to work through intermediate sta-
tistics problems, and remember how to do it later on.

Conventions Used in This Book
Throughout this book, I’ve used several conventions that I want you to be
aware of:

� I indicate multiplication by using a times sign, indicated by a lowered
asterisk, *.

� I also indicate the null and alternative hypotheses as Ho (for the null
hypothesis) and Ha (for the alternative hypothesis).
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� The statistical software package I use and display throughout the book
is Minitab 14, but I simply refer to it as Minitab.

� Whenever I introduce a new term, I italicize it.

� Keywords and numbered steps appear in boldface.

� Web sites and e-mail addresses appear in monofont.

What You’re Not to Read
At times I get into some of the more technical details of formulas and proce-
dures for those individuals who may need to know (or just really want to).
These minutiae are marked with a Technical Stuff icon. I also include sidebars
as an aside to the essential text, usually in the form of a real-life statistics
example or some bonus info you may find interesting. You can feel free to
skip those icons and sidebars because you won’t miss any of the main infor-
mation you need (but by reading it, you may just be able to impress your stat
professor with your above-and-beyond knowledge of intermediate statistics!).

Foolish Assumptions
Because this books deals with intermediate statistics, I assume you have had
one previous course in introductory statistics under your belt (or have at
least read Statistics For Dummies [Wiley]), with topics taking you up through
the Central Limit Theorem and perhaps an introduction to confidence inter-
vals and hypothesis tests (although I review these concepts briefly in Chap-
ter 3). Prior experience with simple linear regression isn’t necessary. Only
college algebra is needed for the mathematics details. Some experience using
statistical software is a plus but not required.

As a student, you may be covering these topics in one of two ways: either at
the tail end of your introductory statistics course (perhaps in a hurried way,
but in some way nonetheless); or through a two-course sequence in statistics
in which the topics in this book are the focus of the second course. If so, this
book provides you just the information you need to do well in those courses.

You may simply be interested in intermediate statistics from an everyday
point of view or want to add to your understanding of studies and statistical
results presented in the media. If this is you, you can find plenty of real-world
examples and applications of these statistical techniques in action as well as
cautions for interpreting them.

3Introduction
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How This Book Is Organized
This book is organized into five major parts that explore the main topic areas
in intermediate statistics, along with one bonus part that offers a series of
quick top-ten references for you to use. Each part contains chapters that
break down the part’s major objective into understandable pieces.

Part I: Data Analysis and 
Model-Building Basics
This part goes over the big ideas of descriptive and inferential statistics 
and simple linear regression in the context of model building and decision
making. Some material from introductory statistics receives a quick review. 
I also present you with the typical jargon of intermediate statistics.

Part II: Making Predictions 
by Using Regression
Here, you can review and extend the ideas of simple linear regression to that
of using more than one predictor variable. This part presents techniques for
dealing with data that follows a curve (nonlinear models) and models for yes
or no data used to make predictions about whether or not an event will happen
(logistic regression). It includes all you need to know about conditions, diag-
nostics, model building, data-analysis techniques, and interpreting results.

Part III: Comparing Many 
Means with ANOVA
You may want to compare the means of more than two populations. In this
case, you use analysis of variance (ANOVA). I discuss the basic conditions
required, the F-test, one-way and two-way ANOVA, and multiple comparisons.
The final goal of these analyses is to show whether the means of the given
populations are different and if so, which ones are higher or lower than 
the rest.
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Part IV: Building Strong Connections 
with Chi-Square Tests
This part deals with the Chi-square distribution and how you can use it to
model and test qualitative (categorical) data. You see how to test for inde-
pendence of two categorical variables using a Chi-square test. (No more spec-
ulations just by looking at the data in a two-way table!) You also see how to
use Chi-square to test how well a model for categorical data fits.

Part V: Rebels without a Distribution:
Nonparametric Statistics
You can look at techniques used in situations where you can’t (or don’t want
to) assume your data comes from a population with a certain distribution.
For example, when your population isn’t normal (the condition required by
most other methods in intermediate statistics).

Part VI: The Part of Tens
Reading this part can give you an edge in two major areas that go beyond the
formulas and techniques of intermediate statistics. Those areas are starting
the problem right (knowing what type of problem it is and how to attack it)
and ending the problem right (knowing what kinds of conclusions you can
and can’t make).

You also find an appendix at the back of the book that contains all the tables
you need to understand and complete the calculations used in this book.

Icons Used in This Book
I use icons in this book to draw your attention to certain features that occur
on a regular basis. Think of them as road signs that you encounter on a trip.
Some signs tell you about shortcuts, but others offer more information that
you may need; some signs alert you to possible warnings, while others leave
you with something to remember.

When you see this icon, it means I’m explaining how to carry out that particu-
lar data analysis using Minitab. I also explain the information you get in the
computer output so you can interpret your results.

5Introduction
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I use this icon to reinforce certain ideas that are critical for success in inter-
mediate statistics, such as things I think are important to go over as you 
prepare for an exam.

This icon points out exciting and perhaps surprising situations where inter-
mediate statistics is being used in the real world.

When you see this icon, you can skip over it if you don’t want to get into the
nitty-gritty details. They exist mainly for people who have a special interest
or obligation to know more about the more technical aspects of the statistical
issues.

Tips refer to helpful hints, ideas, or shortcuts that you can use to save time,
or alternative ways to think about a particular concept.

I use warning icons to help you stay away from common misconceptions 
and pitfalls you can face when dealing with intermediate statistics ideas and
techniques.

Where to Go from Here
This book is written in a nonlinear way, so you can start anywhere and still
be able to understand what’s happening. However, I can make some recom-
mendations to those who are interested in knowing where to start.

If you’re thoroughly familiar with the ideas of hypothesis testing and simple
linear regression, start with Chapter 5 (multiple regression). Use Chapter 1 
if you need a reference for the jargon that statisticians use in intermediate
statistics.

If you have covered all topics up through the various types of regression
(simple, multiple, nonlinear, and logistic) or a subset of those as your professor
deemed important, proceed to Chapter 9, the basics of analysis of variance
(ANOVA).

Chapter 14 is the place to begin if you want to tackle qualitative (categorical)
variables before hitting the quantitative stuff. You can work with the Chi-
square test there.

Nonparametric statistics are presented starting with Chapter 16. This area is
a hot topic in today’s statistics courses, yet one that doesn’t seem to get as
much space in textbooks as it should. Start here if you want the full details on
the most common nonparametric procedures.
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Part I
Data Analysis 

and Model-
Building Basics
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In this part . . . 

To get everyone on the same page moving from 
introductory to intermediate statistics, I go over the

basics of data analysis, important terminology, the main
goals and concepts of model building, tips for choosing
appropriate statistics to fit the job, and a review of the
most heavily referred to items from introductory statis-
tics. You also get a head start on making and looking at
some basic computer output.
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Chapter 1

Beyond Number Crunching: The
Art and Science of Data Analysis

In This Chapter
� Realizing your role as a data analyst

� Avoiding statistical faux pas

� Delving into the jargon of intermediate statistics

Because you’re reading this book, you’re likely familiar with the basics 
of statistics. You’re now ready to take it up a notch. That next level

involves using what you know, picking up a few more tools and techniques 
at the intermediate level, and finally putting it all to use to help you answer
more realistic questions by using real data. 

In statistical terms, you’re ready to enter the world of the data analyst. This
world’s an exciting one, with many options to explore and many tools avail-
able. But, as you may have guessed, you have to navigate this world very
carefully, choosing the right methods for each situation. In this book, you can
see that I’m including the underlying theories and ideas behind the methods
where necessary to help you make good decisions — and not just get into the
point-and-click mode that today’s software packages offer.

In this chapter, you review the terms involved in statistics as they pertain to
data analysis at the intermediate level. You get a glimpse of the impact that your
results can have by seeing what these analysis techniques can do. You also gain
insight into some of the common misuses of data analysis and their effects.

Data Analysis: It’s Not Just for
Statisticians Anymore

It used to be that statisticians were the only ones who really analyzed data.
The reason for this is because the only computer programs that were available

05_045206 ch01.qxd  2/1/07  9:41 AM  Page 9



then were very complicated to use, requiring a great deal of knowledge about
statistics to set up and carry out. The calculations were tedious and at times
unpredictable and required a thorough understanding of the theories and
methods behind the calculations to get correct and reliable answers.

Today, anyone who wants to analyze data can do it easily. Many user-friendly
statistical software packages are made expressly for that purpose — Microsoft
Excel, Minitab, SAS, and SPSS, just to name a few. Free online programs are
even available, such as Stat Crunch, to help you do just what it says — crunch
your numbers and get an answer. As you see in this section, the modern 
easy-to-use statistical packages are good in some ways, and not-so-good in
other ways.

The most important idea when applying statistical techniques to analyze data
is to know what’s going on behind the number crunching, so you (not the
computer) are in control of the analysis. That’s why knowledge of intermedi-
ate statistics is so critical.

Remembering the old days
In the old days, in order to determine whether methods gave different
results, you had to write a computer program to do it, using code that you
had to take a class to learn. You had to type in your data in a specific way
that the computer program demanded, and you had to submit your program
to a mainframe computer and wait for the printer to print out your results.
This method was time consuming and a general all-around pain.

I remember the day in college when I reached bottom. I was just learning to
write those sophisticated programs you needed to do the simplest analysis.
No matter how hard I tried to write the perfect program, the computer kept
spitting my work back at me without doing my analysis, noting error after
error in the way I typed the commands. The last straw came when I gave my
program to the computer for the umpteenth time: At the end of the printout,
the computer told me on the very last line: “Error #34410: Too many errors.”

Now, don’t get the idea that your author doesn’t know what she’s doing. I had
all the statistical methods right; I just wasn’t very good at writing computer
programs. So for anyone out there who’s ever been frustrated by a computer,
I feel your pain, and I try to minimize your troubles throughout this book.

Enough lamenting about having to walk to school uphill both ways in the
snow with plastic bags on my feet instead of boots. The point is, statistical
software packages have undergone an incredible evolution in the last 10 to 15
years, to the point where you can now enter your data quickly and easily in
almost any format. Moreover, the choices for data analysis are well organized
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and listed in pull-down menus. Now almost anyone (even me) can quickly see
how to find the necessary procedure and tell the computer what to do. The
results come instantly and successfully, and you can cut and paste them into
a word-processing document without blinking an eye. For example, compar-
ing the weight loss for people on different weight-loss programs now takes
less than three clicks of the mouse to perform, which is great news for folks
like me.

Many very useful and efficient statistical software packages exist, including
SAS, SPSS, Data Desk, Stat Crunch, MS Excel, and Minitab, and each one has
its own pros and cons (and its own users and protesters). My software of
choice, and the one I reference throughout this book, is Minitab, because it’s
very easy to use, the results are correct, the output is very clear and profes-
sional looking, and the software’s loaded with all the data-analysis techniques
that are used in intermediate statistics as well as in this book. While a site
license for Minitab can be expensive, the downloadable student version is
available for rent for only a few bucks a semester.

The downside of today’s 
statistical software
You may be wondering where the downside is in all of this. Is it too good to
be true that what was once a tedious, complicated process for analyzing data
has now become as easy as checking your e-mail on your cell phone? Yes and
no. Yes, it’s too good to be true that the software practically does everything
for you — if you don’t pay attention to what the programs are really doing.
Yes, it’s too good to be true if you don’t understand that conditions need to
be checked in every situation before an analysis should be applied. Yes, it’s
too good to be true if you take all the results as complete and utter gospel 
(as too many statistician wannabees do).

Bottom line: Today’s software packages are too good to be true if you don’t
have a clear and thorough understanding of the intermediate level of statis-
tics that lie underneath them.

Here’s the good news, though. By reading this book, you gain the understand-
ing you need to set you up for success. You get enough of the underlying
intermediate statistical concepts to be empowered, but not be dangerous.
You find out what conditions need to be checked on the data before applying
an analysis and how to check them. You get a good feel for which analyses to
use to answer your question (and which ones can cause you trouble), and
you become aware of the kinds of results you can expect. Most importantly,
you discover what’s possible and appropriate to conclude from your analysis
and what limitations and caveats you need to make.
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Rule #1: Look Before You Crunch
Many people don’t realize that statistical software can’t tell you when to use
and not to use a certain statistical technique. You have to determine that on
your own. As a result, people think they’re doing their analyses correctly, but
they can end up making all kinds of mistakes. Statistical software packages
are centered on mathematical formulas, and mathematical formulas aren’t
smart enough to know how you’re applying them or to warn you when you’re
doing something wrong (that’s where this book comes in).

In this section, I give some examples of some of the major situations where
innocent data analyses can go wrong and why it’s important to know what’s
happening behind the scenes from a statistical standpoint before you start
crunching numbers.

Nothing (even a straight line) 
lasts forever 
After you get a statistical equation, or model, that tries to explain or predict
some random phenomena, you need to specify for what values the equation
applies and for what values the equation doesn’t apply. Equations don’t know
when they work and when they don’t; it’s up to the data analyst to determine
that. This idea is the same for applying the results of any data analysis that
you do.

Bill Prediction is a statistics student, studying the affect of study time on
exam score. Based on his experience, and that of a few friends, Bill comes up
with the equation y = 10x + 30, where y represents the test score you get if
you study a certain number of hours (x). This equation is Bill’s model for pre-
dicting exam score using study time. Notice that this model is the equation of
a straight line with a y-intercept of 30 and a slope of 10.

So Bill predicts, using this model, that if you don’t study at all, you’ll get a 30
on the exam (plugging x = 0 into the equation and solving for y; this point rep-
resents the y-intercept of the line). And he predicts, using this model, that if
you study for five hours, you’ll get an exam score of y = 10 * 5 + 30 = 80. So,
the point (5, 80) is also on this line. (I won’t talk in detail at this point about
how well Bill’s model does at predicting exam score, but you can just say he’s
got some work to do on this and leave it at that for now.)

I’m sure you would agree that because x is the amount of study time, that x
can never be a number less than zero. If you plug a negative number in for x,
say x = –10, you get y = 10 * –10 + 30 = –70, which makes no sense. The worst
possible score, according to Bill’s model, is 30, which occurs when x equals 0.
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And, you can’t study a negative number of hours, so a negative number for x
itself isn’t even possible.

On the other side of the coin, x probably isn’t a number in the two-digit range
(10 or more). Why is this? Say someone did study ten hours for this exam.
Plugging in 10 for x in Bill’s equation, you get y = 10 * 10 + 30, which equals
130. Remember, y is the predicted exam score. Because most exams are out
of 100 possible points, a score of 130 isn’t possible. (I’m all for extra credit on
exams, but 30 points of extra credit is too much, even for me.)

The point is that there are limits on the values of x that make sense in this
equation. However, the equation itself, y = 10x + 30, doesn’t know that, and if
you graph this line, it’ll go on forever in both the positive and negative direc-
tions (see Figure 1-1).

Data snooping isn’t cool
Statisticians have come up with a saying that you may have heard of: “Figures
don’t lie. Liars figure.” Make sure that you find out about all the analyses that
were performed on a data set, not just the ones reported as being statistically
significant.

Suppose Bill Prediction tries to apply his simple model (from the preceding
section) to predict exam scores for his whole class, based on their reported
amounts of study time, and he finds out that his results fall flat. He figures out
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Figure 1-1:
The line y =
10x + 30, for
all possible
values of x.
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that he needs more information, so he tries to uncover what other factors
help determine exam score on a statistics test besides study time. Bill mea-
sures everything from soup to nuts. His set of possible variables includes
study time, GPA, previous experience in statistics, math grades in high
school, attitudes toward statistics, whether you listen to classical music
while studying, shoe size, whether you chew gum during the exam, and even
what your favorite color is (after all, you never know, he figures). For good
measure, he includes 11 other variables, for a total of 20 possible factors that
he thinks may relate to exam score.

Bill starts out by looking for relationships between each of these variables
and exam score, so he does 20 correlations. (Correlation is a measure of the
linear relationship between two variables; see the section on correlation later
in this chapter). He finds out that four variables have a statistically signifi-
cant relationship with exam score (that means the results are supposed to be
correct with a 95 percent chance — but only if he collected the data properly
and did the analysis correctly).

The variables that Bill found to be related to exam score were study time,
math grades in high school, GPA, and whether the person chews gum during
the exam. It turns out that his new model fits pretty well (by criteria I discuss
in Chapter 5 on multiple linear regression models). Bill now thinks he’s
scored a home run and has answered that all-elusive question: How can I do
better on my statistics test?

But as they said in Apollo 13, “Houston, we have a problem.” By looking at all
possible correlations between his 20 variables and exam score, Bill is actually
doing 20 separate statistical analyses. Under typical conditions (I describe
these conditions in Chapter 3), each statistical analysis has a 5 percent
chance of being wrong just by chance (this value of 5 percent is called the sig-
nificance level of the test).

Because 5 percent of 20 analyses is equal to one, you can expect that when
you do 20 statistical analyses, one of them will give the wrong result, just by
chance, over the long term. I bet you can guess which one of Bill’s correla-
tions likely came out wrong in this case. Of course, study time has nothing to
do with exam score, and gum-chewing is the answer to all of our problems,
right? (If that were the case, all statisticians would be out of business and
working for chewing-gum companies instead.)

What Bill is doing is called data snooping in the data-analysis business. Bill
looks around until he finds something, and then he believes the result. This
strategy is dangerous, but one that’s done all too often in the real world. One
of the reasons data snooping is running rampant today is because everyone
and his brother is out there collecting data and analyzing it — and everyone
wants to find something. They’re using statistical software that allows them
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to just point and click to do as many analyses as they want, without any warn-
ing about what statisticians call the overall error rate (that is, the probability
of making an error due to chance during any step of the entire analysis, not
just the probability of making an error due to chance on any single analysis).

No (data) fishing allowed
Redoing analyses in different ways to try to get the results you want is called
data fishing in the statistics business, and folks in the stat biz consider it to
be a major no-no (however, people unfortunately do it all too often in the
name of research).

For example, Ellen Go-getter is convinced that dissolving sugar in the water
helps cut flowers last longer. She performs an experiment to prove her
hypothesis. She cuts two dozen roses and puts one rose in each vase. She
fills each vase with 3 cups of water, but in 12 of the vases she adds 1 table-
spoon of sugar (the other 12 vases constitute the control group, meaning that
Ellen doesn’t apply any new treatment to them to show what happens if she
adds nothing). In the next sections, you follow Ellen through her experiment,
keeping an eye on the statistical analyses that pop up along the way.

Examining Ellen’s data
Ellen counts how many days the flowers still look nice and uses the same cri-
teria for each flower. After ten days, all the flowers have withered to the point
where they need to be thrown away, so the experiment is over. You can see
Ellen’s data in Table 1-1.

Table 1-1 Ellen’s Data: Days Roses Lasted in Sugar Water 
versus Regular Water (Control Group)

Observation Days Lasted: Water Only Days Lasted: Sugar Water

1 3 5

2 3 5

3 4 5

4 4 4

5 4 4

6 4 4

7 3 3

(continued)
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Table 1-1 (continued)
Observation Days Lasted: Water Only Days Lasted: Sugar Water

8 3 4

9 2 3

10 4 3

11 4 5

12 4 5

Setting the hypothesis
Ellen wants to compare the two methods, water and sugar, to see whether
the roses that had sugar added lasted longer than the regular water group.
She needs to conduct a hypothesis test whose null hypothesis is Ho: There is
no difference in days lasted for sugar group versus control group. Her alter-
native hypothesis, which she hopes to show, is Ha: The roses in the sugar
group lasted longer than the control group. She figures a two-sample t-test is
in order here. (I discuss hypothesis tests in Chapter 3.)

Checking the conditions
Ellen has taken a few statistics classes before and knows that before she
plunges into an analysis, she needs to check the proper conditions. For a
comparison of two groups, she has to plot the data from each group on a 
histogram (a bar graph showing the number of days the flowers lasted, 
organized into groupings in numerical order versus the number of flowers
that lasted each number of days). According to what she knows about a two-
sample t-test, the data in each group has to have a normal distribution before
she starts. That is, the data has to have a bell-shaped curve when you look at
the histogram. Ellen plots the data in histograms for the two groups and gets
the following results (see Figures 1-2a and 1-2b).
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Getting the bad news
As you can see in Figures 1-2a and 1-2b, Ellen’s data doesn’t follow the typical
bell-shaped curve. One of the problems is her data only takes on values that
are positive whole numbers, so numbers like 1.2, 2.3, and the like aren’t pos-
sible. (Normal distributions are supposed to have many possible values.) The
other problem is that the data has no values outside the typical two-, three-,
four-, or five-day range, so the histogram doesn’t have a chance to take on a
bell shape. Perhaps more data would have curbed this problem. At any rate,
Ellen knows that the conditions for a two-sample t-test aren’t met here;
namely that the data doesn’t have a normal distribution and is, in fact,
skewed (meaning set off to one side or the other).

Going nonparametric
Undaunted by this turn of events, Ellen employs a nonparametric test of her
data, which is the right thing to do. Statisticians use nonparametric statistics
in situations where the assumptions of the typical analyses aren’t met (like
not having a normal distribution). However, nonparametric stats often give
more conservative (albeit more accurate) results than the typical (paramet-
ric) procedures you’re used to using. (I discuss nonparametrics a bit more in
the last section of this chapter. Nonparametric procedures are discussed in
full detail in Chapters 16–19.)

Because Ellen’s data doesn’t have a normal distribution or even a symmetric
distribution (meaning one that looks the same on each side when you split it
down the middle), the mean (or average) isn’t a good measure of the center
of the data, so a two-sample t-test isn’t possible. As an alternative, she can
test whether the two histograms are the same or not, if she compares the his-
tograms of the two populations in question (all roses given water, versus all
roses given sugar water).

Because she’s comparing two groups, Ellen uses a Wilcoxon Rank Sum test,
also known as the Mann-Whitney test (see Chapter 19). The Wilcoxon Rank
Sum test checks whether two populations have the same distribution (mean-
ing whether the two histograms look the same) versus one of the populations
shifting to the right or left. Ellen’s theory is that the sugar group lasts longer,
so she tests Ho: Sugar group and control group have the same distribution
versus Ha: Sugar group is shifted to the right of the control group.

Ellen strikes out
To cut to the chase, the Wilcoxon Rank Sum test unfortunately fails to reject
Ellen’s null hypothesis. She didn’t prove what she wanted to confirm by her
experiment. Not enough roses in the sugar group lasted longer than those
roses in the control group. You can see the underlying reason for this result
by comparing the medians of the two groups. When you find the median of
each of the data sets in Table 1-1, you get the value of 4 in each case. Because
the medians of the two data sets are equal, it’s unlikely that Ellen can find a
statistically significant result by using this test.
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Breaking the rules
According to the rules that all good statisticians live by, Ellen’s story should
end there. She may still be convinced that sugar indeed helps roses last
longer. She may use sugar with her roses for the rest of time and tell her
friends to use it too. But, she isn’t allowed to say that sugar water gives sta-
tistically different results than water alone; her analysis failed to show that.

But remember, Ellen’s last name is Go-getter, so she’s out to get those results.
She knows that nonparametric tests usually give more conservative results
than regular tests, and despite the fact that the conditions aren’t met, she
decides to analyze her data again, this time using the two-sample t-test.

Putting her data into a two-sample t-test takes only two more clicks of the
mouse, and Ellen’s results give her a p-value of 0.043. Using the usual signifi-
cance level used for hypothesis tests, 0.050, her p-value is less than this
number, so she can reject Ho. (In a two-sample t-test, Ho is that there’s no 
difference in the means of the two groups. And her Ha in this case is that 
the mean of the sugar group is larger than the mean of the control group.) 
So Ellen gleefully cheers herself on for getting the results she wanted and
decides there’s no harm in trying a different analysis when all else fails.

Seeing the error of Ellen’s ways
But again, “Houston. . .” — you know the rest. Ellen’s problem is that she
cheated her way to getting a result that’s incorrect. She knew that the condi-
tions for the two-sample t-test weren’t met, but when the correct analysis
failed to get the results she wanted, she found an analysis that did. The trou-
ble is, the results of the two-sample t-test are bogus.

Now it may not be a life-and-death situation whether your roses actually do
last a little bit longer on sugar or not. (Incidentally, the gardening crowd says
they don’t, and that sugar in fact can encourage the growth of stem-clogging
bacteria so the flower can’t take in water.) But imagine a situation where doc-
tors are trying to test to see whether a certain medication helps people get
over an illness faster or whether some procedure helps cancer patients live
longer. Now you’re talking about results with a very serious impact.

Using the wrong data analysis for the sake of getting the results you desire
results in two major problems:

� You mislead your audience into thinking that your hypothesis is actually
correct, which it may not be.

� Sooner or later someone is going to try to replicate those results and
will find out that they can’t be replicated. This discovery will result in a
loss of your credibility big time. And unfortunately, you mislead many
people in the meantime.
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Getting the Big Picture: An Overview 
of Intermediate Statistics

Because of the dangers and lingering effects of using the wrong techniques in
the wrong situation to analyze data to answer questions, knowing what’s hap-
pening behind the scenes of any data analysis and staying within the rules of
well-chosen techniques and appropriate practices is very important. In other
words, it’s crucial for you to take your knowledge of statistics to the next level.

Intermediate statistics is an extension of introductory statistics, so the jargon
follows suit and the techniques build on what you already know. If you’ve
been able to grasp the ideas from the first course, you’ll find no trouble with
the terminology for intermediate statistics. If you’re still unsure about some
of the terms from introductory statistics, you can consult your textbook from
your first course or see my other book, Statistics For Dummies (Wiley), for a
complete rundown.

In this section, you get an introduction to the terminology you use in interme-
diate statistics, and you get a broad overview of the techniques that statisti-
cians use for the purpose of analyzing data and the big picture behind them.

Population parameter
A parameter is a number that summarizes the population (the entire group
you’re interested in investigating). Examples of parameters include the mean
of a population, the median of a population, or the proportion of the popula-
tion that falls into a certain category. 

Suppose you want to determine the average length of a cell-phone call among
teenagers (ages 13 to 18). You’re not interested in making any comparisons;
you just want to make a good guesstimate as to what the average time is. So
you want to estimate a population parameter (such as the mean or average).
The population is all cell-phone users between the ages of 13 and 18 years old.
The parameter is the average length of a phone call this population makes.

Sample statistic
You normally can’t study every member of an entire population (how would
you like to measure and record the length of every single cell-phone call
made by all teenagers?). So you can’t determine population parameters
exactly; you can only estimate them. But all is not lost; by taking a sample (a
subset of individuals) from the population and studying them, you can come
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up with a good guess (estimate) of the population parameter, if you play your
cards right. A subset of this population is called a sample. A sample statistic is
a single number that summarizes that subset of the population.

For example, in the cell-phone scenario, you select a sample of teenagers and
measure the length of their cell-phone calls over a period of time (or look at
their cell-phone records if you can gain access legally). You take the average
of the cell-phone call lengths. For example, the average length of 100 cell-
phone calls may be 12.2 minutes — this average is a statistic. This particular
statistic is called the sample mean, because it’s the average value from your
sample data.

You can also find a statistic called the sample proportion (the proportion of
individuals in the sample that have a certain characteristic — for example, the
percentage of female teens who use cell phones). Many different statistics are
available (which you probably picked up in intro stats) to study different char-
acteristics of a sample, such as the median, variance, and standard deviation.

Confidence interval
A confidence interval is a range of values that provides reasonable estimates
for a population parameter. A confidence interval is based on a sample and
the statistics that come from that sample. The main reason you want to pro-
vide a range of possible values rather than a single number is that sample
results vary from sample to sample.

For example, say you want to estimate the percentage of people who eat
chocolate. According to the Simmons Research Bureau, 78 percent of adults
reported eating chocolate, and of those, 18 percent admitted to eating sweets
frequently. What’s missing in these results? These numbers are only a single
sample of people, and those sample results are guaranteed to vary from
sample to sample. You need some measure of how much you can expect
those results to move if you were to repeat the study.

This expected movement in your statistic is measured by the margin of error,
which reflects a certain number of standard deviations of your statistic you
add and subtract to have a certain confidence in your results (see Chapter 3
for more on margin of error). If the chocolate-eater results were based on
1,000 people, the margin of error would be approximately 3 percent, meaning
the actual percentage of people who eat chocolate in the entire population is
expected to be 78 percent, plus or minus 3 percent. In other words, it’s some-
where between 75 percent and 81 percent. Now if you only base these results
on a sample of 100 people, the margin of error balloons to 10 percent, mean-
ing the percentage of chocolate eaters can only be reported to be between 68
and 88 percent. Notice how much wider the interval becomes when a smaller
sample size is used. This result confirms that more data means more preci-
sion in your results (provided the data is collected properly).
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Hypothesis test
A hypothesis test is a statistical procedure that you use to test an existing
claim about the population, using your data. The claim is noted by Ho (the
null hypothesis). If your data support the claim, you fail to reject Ho. If your
data don’t support the claim, you reject Ho and conclude an alternative
hypothesis, Ha. The reason most people conduct a hypothesis test is not to
merely show that their data support an existing claim, but rather to show
that the existing claim is false, in favor of the alternative hypothesis.

The Pew Research Center studied the percentage of people who go to ESPN
for their sports news. Their statistics, based on a survey of about 1,000
people, found that in 2000, 23 percent of people said they go to ESPN; while in
2004, only 20 percent reported going to ESPN. The question is this: Does this
3-percent reduction in viewers from 2000 to 2004 represent a significant trend
that ESPN should worry about?

To test these differences formally, you can set up a hypothesis test. You set
up your null hypothesis as the result you have to believe without your study,
Ho = no difference exists between 2000 and 2004 data for ESPN viewership.
Your alternative hypothesis (Ha) is that a difference is there.

In very general terms, here’s what’s happening with a hypothesis test. You
have the sample data, and you find the statistics that are relevant. In this
case, you have two sample percentages, one for 2000 and one for 2004. You
take the difference between the two samples (3 percent), and divide it by the
standard error for the difference. The standard error measures how much the
difference in the statistics is expected to change from sample to sample. In
this case, the standard error comes to about 1.8 percent (for specific calcula-
tions see Chapter 3).

Taking the difference in the statistics (3 percent = 0.03) divided by the stan-
dard error (1.8 percent = 0.018) gives you the value of 1.67 (called the test 
statistic). This value represents the difference between the two statistics, in
terms of number of standard errors. This result has a universal interpreta-
tion. Roughly speaking, if your test statistic falls between –2.00 and +2.00,
that means the results you found don’t differ enough to get excited about,
because 95 percent of the time, this outcome happens just by chance. (And
this example falls right into that situation.) After you take the variability of
the sample results into account, the difference in these particular samples
doesn’t transfer over to the populations they represent. So, because you
can’t reject Ho, you have to say the percentage of viewers of ESPN in the
entire population probably didn’t change from 2000 to 2004.

Because you have a 95 percent confidence level, this test uses a significance
level (α level) of 1 – 0.95 = 0.05 or 5 percent. This percentage measures how
likely your results would have been just by chance.
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The trouble is that people often just report the sample statistics and give no
regard to the expected amount of change with a new sample. This disregard
leads to big mistakes in the conclusions (more on hypothesis testing in
Chapter 3).

Analysis of variance (ANOVA)
ANOVA is the acronym for analysis of variance. You use ANOVA in situations
where you want to compare the means of more than two populations. For
example, you want to compare the lifetime of four brands of tires, in number
of miles. You take a random sample of 50 tires from each group, for a total of
200 tires, and set up an experiment to compare the lifetime of each tire, and
record it. You have four means and four standard deviations now, one for
each data set. But you have different types of variability in your data, each
measured by using various sums of squares. (Remember from your intro stats
that the variance of a data set is the total of all the squared distances
between the data and the mean, all divided by n – 1.)

One of the types of variability in your data is called the variability between
treatments (also known as SST, the treatment sums of squares). SST mea-
sures the variation in the average lifetimes of each brand of tire, compared to
the overall average lifetime. If SST is large, you have a chance that there’s a
difference in lifetimes due to the treatment (in this case, the brand of tire).

Next, you have the variability within the treatments (also known as SSE, the
error sums of squares). SSE measures the overall average amount of variabil-
ity of the tire lifetimes within each particular brand (after all, not all tires are
created equal, even if they’re of the same brand). If SSE is large, you have so
much variability within the tire brands themselves, that it will be harder to
see any real difference between the brands, even if it actually exists.

And finally, you have the total overall variability in the data values if you just
put them all together into one big data set. This variability is known as SSTO,
the total sums of squares. ANOVA splits up the total variability (SSTO) into
the between-groups variability (SST) plus the within-groups variability (SSE).

Then, to test for differences in average lifetime for the four brands of tires, you
compare the mean sums of squares for treatments (MST) to the mean sums 
of squares for error (MSE) in a ratio called the F-statistic. If this ratio is large,
then the variability between the brands is more than the variability within the
brands, giving evidence that not all the means are the same for the different
tire brands. If the F-statistic is small, that means not enough difference was
between the treatment means, compared to the general variability within the
treatments themselves. In this case, you can’t say that the means are different
for the groups. (I give you the full scoop on ANOVA in Chapters 9 and 10.)
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Multiple comparisons
Suppose you conduct ANOVA, and you find a difference in the average life-
times of the four brands of tire (see preceding section). Your next questions
would probably be, which brands are different, and how different are they?
To answer these questions, you use multiple-comparison procedures.

A multiple-comparison procedure is a statistical technique that compares
means to each other and finds out which ones are different and which ones
aren’t. You’re then able to put the groups in order, from those with the largest
mean to those with the smallest mean, realizing that sometimes two or more
groups were too close to tell and so you put them in the same group.

Suppose you compare the exam scores of four different classes (call them
class one, class two, class three, and class four), and your ANOVA procedure
finds out that not all the means were the same. That means the F-statistic is
large. Next, you use multiple-comparison procedures in order to make sepa-
rate comparisons and figure out which classes were about the same and
which ones were different, and come up with an ordering of the classes. It
may be, for example, that class four was statistically higher than all the
others; classes one and two were statistically equivalent, but both were lower
than class four. And class one was in a group all by itself at the bottom. The
ordering is: class four (highest average), classes two and three (tied for
second highest), and class one (the lowest average).

Never take that second step to compare the means of the groups if the ANOVA
procedure doesn’t find any significant results during the first step. (See Chap-
ter 11 for more information.)

Many different multiple-comparison procedures exist to compare individual
means and come up with an ordering in the event that your F-statistic does
find that some difference exists. Some of the multiple-comparison procedures
include Tukey’s test, LSD, and pairwise t-tests. (While these tests’ names may
cause you to raise an eyebrow, don’t worry. They’re legitimate statistical
tests.) Some procedures are better than others, depending on the conditions
and your goal as a data analyst. I discuss multiple-comparison procedures in
detail in Chapter 11.

Interaction effects
An interaction effect in statistics operates the same way that it does in the
world of medicine. Sometimes if you take two different medicines at the same
time, the combined effect is much different than if you take the two individual
medications separately.
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Interaction effects come up when you have a model that includes two or
more variables, and you’re using those variables to explain differences or to
make comparisons regarding some outcome. When you have two or more
variables in a model, you can’t automatically study the effect of each variable
separately; you also have to take into account the way those variables inter-
act in terms of the outcome. In other words, you have to examine whether or
not an interaction effect is present.

For example, suppose medical researchers are studying a new drug for
depression and want to know how this drug affects the change in blood pres-
sure for a low dose versus a high dose of the drug. They also compare the
effects for children versus adults. In total, the model being studied has one
response variable, an increase in blood pressure, and two factors that may
possibly explain changes in the outcome, namely age group (adults versus
children) and dosage level (low versus high). It could be that dosage level
affects the blood pressure of adults differently than the blood pressure of
children. This type of model is called a two-way ANOVA model, with a possible
interaction effect between the two factors (age group and dosage level). See
Chapter 11 for more.

One of the first things statisticians do when they have a two-way ANOVA is to
plot the mean outcomes for each group they’re comparing and look for pat-
terns. This is called an interaction plot. One interaction plot for the drug-
study scenario is in Figure 1-3.
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As you can see by Figure 1-3, the lines cross. If you look at the line represent-
ing children, you can see that the mean increase in blood pressure is low for
the low dose of the drug, but then for the high dose of the drug; the increase
in blood pressure goes way up. Alternatively, the reaction is the exact oppo-
site for adults; on the low dose, the mean increase in blood pressure is very
high, but for the high dose, the increase is very low. If the doctors neglected to
study children as well as adults, the results of this study could be extremely
damaging to children if doctors applied the rules for adults to children. This
example shows that interaction effects are very important to look at.

Figure 1-4 shows the situation where you have no interaction effect for this
drug. The lines are parallel, which tells you that the mean blood pressure
increases more on a higher dosage of the drug for both adults and children.
Because the line for the adults is higher up than the line for children, that
means that overall, the increase in blood pressure is more for adults than the
increase in blood pressure for children, no matter what the dosage level is. 

Correlation
The term correlation is often misused. Statistically speaking, the correlation
measures the strength and direction of the linear relationship between two
quantitative variables (variables that represent counts or measurements only).

You aren’t supposed to use the word correlation to talk about relationships 
of any other kind. For example, it’s wrong to say that a correlation exists
between eye color and hair color. While these variables may be related in
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some way, they’re not quantitative variables, so you can’t discuss their rela-
tionship in terms of a correlation. (In this case, you would use the term asso-
ciation; in Chapter 14, you see how to test for association of two categorical
variables.)

The long and short of correlation is the following: Correlation is a number
between –1.0 and +1.0. Positive one indicates a perfect positive relationship;
in other words, as you increase one variable, the other one increases in per-
fect sync. On the other side of the coin, a correlation that is –1.0 indicates a
perfect negative relationship between the variables. As one variable increases,
the other one decreases in perfect sync. A correlation of zero indicates that
you found no linear relationship at all between the variables. Most correla-
tions in the real world aren’t exactly +1.0, –1.0, or 0 — they fall somewhere in
between. The closer to +1.0 or –1.0, the stronger the relationship is; the
closer to 0, the weaker the relationship is.

Figure 1-5 shows an example of a plot showing the number of coffees sold 
at football games in Buffalo, New York, as well as the air temperature (in
Fahrenheit) at each game. This data set seems to follow a downhill straight line
fairly well, indicating a negative correlation. When you calculate the correla-
tion, you get the value of –0.741. This value says that coffees sold has a fairly
strong negative relationship with the temperature of the football game. This
makes sense, because on days when the temperature is low, people will get
cold and want more coffee. On days when the temperature is higher, people
will tend to drink less coffee and perhaps tend more toward soft drinks, which
are cold. I discuss correlation further, as it applies to model building, in
Chapter 4.
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Linear regression
After you’ve determined that two variables have a fairly strong linear rela-
tionship, you may want to try to make predictions for one variable based on
the value of the other variable. For example, if you know that a fairly strong
negative linear relationship exists between coffees sold and the air tempera-
ture at a football game, you may want to use this information to predict how
much coffee is needed for a game, just by knowing the temperature. This
method of finding the best-fitting line is called linear regression.

In the coffees and temperature example (see Figure 1-5), the best-fitting line
has the equation y = 49,337 – 554 * x , where x is temperature and y is the
number of coffees sold. So when the temperature (x) is zero degrees, you can
expect to sell around 49,337 coffees (this is how you interpret the y-intercept
of the line). To interpret the slope of this line, think of –554 as –554 divided
by one and use the old rise-over-run idea using coffees and degrees of tem-
perature. Applied here, it means that for every one degree increase in tem-
perature, you can expect the coffee sales to decrease by 554. You can use this
line to make predictions for reasonable values of the temperature (x). For
example, if the temperature is a cold 20-degrees Fahrenheit, you can predict
that the number of coffees sold will be around 49,337 – 554 * 20 = 38,257.

When you use only one variable to predict the response, the method of
regression is called simple linear regression. (I review the basics of simple
linear regression in Chapter 4. But many other types of regression are out
there, many of which I discuss in this book.)

Most researchers use more than one variable to predict a response; this tech-
nique is called multiple linear regression. (Check out Chapter 5 for the details
about multiple linear regression.) Multiple linear regression has many issues
of its own because some variables you can use in the model may be related
to each other, making overlapping contributions to the response. That possi-
bility of overlapping makes their individual contributions hard to track. You
also have to watch for interaction effects when using more than one variable
to predict a response.

Simple and multiple linear regression assume that the response variable (the
one being studied) is quantitative in nature (that is, it measures or counts
something). However, you may be interested in making predictions about a
variable that has only two outcomes: yes or no. For example, whether or not
a certain horse will win a race; whether a baby will be a girl or a boy; or
whether or not a tropical storm is going to make landfall. These situations
require a different kind of regression called logistic regression. (I discuss logis-
tic regression in Chapter 8.)
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Finally, you may be interested in building a model for which a straight line
doesn’t fit. For example, you may want to predict miles per gallon, using the
speed of the car. While high speeds get low miles per gallon, low speeds can
get low miles per gallon as well. So the relationship between speed and miles
per gallon actually follows that of a parabola (an upside-down bowl, in this
case). This kind of relationship is called a quadratic relationship. More gener-
ally speaking, relationships that don’t follow a straight line are called nonlin-
ear relationships, and the technique you use to handle these situations is
called (no surprise) nonlinear regression. I get into the meat of this technique
in detail in Chapter 7.

Chi-square tests
Correlation and regression techniques all assume that the variable being
studied in most detail (the response variable) is quantitative. That is, the
variable measures or counts something. However, you can run into many sit-
uations where the data being studied isn’t quantitative, but rather qualitative.
In other words, the data themselves represent categories, not measurements
or counts.

For example, suppose you want to compare the views of the president by
political affiliation. Say that in this particular year, the president is a
Republican, and you select a random sample of 150 Republicans, 150
Democrats, and 150 Independents to find out their views on the president.
The data may look like Table 1-2.

Table 1-2 Views on a (Republican) President 
by Political Affiliation

Approve Neutral Disapprove

Republican 100 40 10

Democrat 40 10 100

Independent 50 50 50

In looking at how the numbers appear across the columns for various rows 
in Table 1-2, you may suspect that something is up. It appears that Republicans
tend to approve of the president, while Democrats tend to disapprove, 
and Independents are split down the middle. (So much for the spirit of 
bipartisanship. . . .)
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Now does this association you found in the data set for this sample of 450
people carry over to the entire population? In order to answer this question,
you need to conduct a hypothesis test. And not just any hypothesis test — a
Chi-square test for independence. You’re testing to see whether the two quali-
tative variables, political affiliation and views on the president, are related or
not. If they are related, the variables are deemed not independent; if they are
unrelated, the variables are independent.

A Chi-square test basically does the following: It figures out the number of
values that you expect to see in each cell of the table if the variables are inde-
pendent (these values are brilliantly called the expected cell counts). The Chi-
square test then compares these expected cell counts to what you actually
saw in the data (called the observed cell counts) and compares them to each
other in a Chi-square statistic (see Chapter 14).

If the Chi-square test statistic is large, you’re likely to find an association
between the two variables, because the total differences are large between
the observed and expected cell counts. In other words, the variables are not
independent, and you can look at the observed cell counts to discuss the
relationship you see. If the Chi-square test statistic is small, then you can’t
conclude you’ve found a relationship, and the two variables are independent.

In the case of political affiliation and views on the president, the Chi-square
test statistic is huge, and you conclude a relationship is there somewhere.
You can say that in the population, Republicans tend to support the presi-
dent, Democrats tend to oppose the president, and the Independents are
split down the middle. (You can find the details of how to find the expected
counts and conduct the Chi-square test in Chapter 14.)

You can also use the Chi-square test to see whether your theory about what
percent of each group falls into a certain category is true or not. For example,
can you guess what percentage of M&Ms fall into each color category? More
on these Chi-square variations, as well as the M&Ms question, in Chapter 15.

Nonparametrics
Nonparametrics is an entire area of statistics that provides analysis tech-
niques to use when the conditions for the more traditional and commonly
used methods aren’t met. For example, in order to use a t-test, the data needs
to be collected from a population that has a normal distribution (that is, it
has to have a bell-shaped curve). In order to do a hypothesis test for two
means, the data from each group must be from its own normal population. In
fact, most all of the commonly used data-analysis procedures have condi-
tions that must be met in order to use them.
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The trouble with these requirements is that many times people forget or just
don’t bother to check those conditions, and if the conditions are actually not
met, the entire analysis goes out the window, and the researcher doesn’t
even know it. Or, someone finds out that the conditions aren’t being met, yet
she still goes ahead and uses the procedures anyway (for more on this faux
pas, see the section in this chapter “No [data] fishing allowed”).

While many of the traditional methods are what statisticians call robust, with
respect to violations of their conditions (that’s fancy terminology for the fact
that they’re pretty forgiving), you can only push the window so far. Proceeding
to use a statistical procedure that isn’t appropriate causes a great deal of trou-
ble with respect to the correctness of the conclusions and the credibility of the
researcher.

Have no fear, nonparametrics comes to your rescue. If the conditions aren’t
met for a data-analysis procedure that you want to do, chances are that an
equivalent nonparametric procedure is waiting in the wings. And the good
news is that they’re generally pretty tame, in terms of formulas, and most sta-
tistical software packages can do them just as easily as the regular (paramet-
ric) procedures.

Conditions aren’t checked automatically by statistical software packages,
before doing a data analysis. It’s up to the user to check any and all appropri-
ate conditions, and if they’re seriously violated, to take another course of
action. Many times a nonparametric procedure is just the ticket. For much
more information on different nonparametric procedures, see Chapters 16
through 19.
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Chapter 2

Sorting through Statistical
Techniques

In This Chapter
� Deciphering the difference between qualitative and quantitative variables

� Choosing appropriate statistical techniques for the task at hand

� Evaluating bias and precision levels

� Interpreting the results properly

One of the most critical elements of statistics and data analysis is the
ability to choose the right statistical technique for each job. Carpenters

and mechanics know the importance of having the right tool when they need
it and the problems that can occur if they use wrong tool. They also know
that the right tool helps to increase their odds of getting the results they
want the first time around, using the “work smarter not harder” approach.

In this chapter, you look at the some of the major statistical analysis tech-
niques from the point of view of the mechanics and carpenters — knowing
what each statistical tool is meant to do, how to use it, and when to use it.
You also zoom in on mistakes some number crunchers make in applying the
wrong analysis or doing too many analyses. Knowing how to spot these prob-
lems can help you avoid making the same mistakes, but it also helps you to
steer your way through the ocean of statistics that may await you in your job
and in everyday life.

If many of the ideas you find in this chapter seem like a foreign language to
you and you feel like you need more background information, don’t fret. Before
continuing on in this chapter, head to your nearest intro stats book or check
out another one of my books, Statistics For Dummies (Wiley).
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Qualitative versus Quantitative Variables
in Statistical Analysis

After you’ve collected all the data you need from your sample, you want to
organize it, summarize it, and analyze it. Before plunging the data in to do 
all the number crunching though, you need to first identify the type of data
you’re dealing with. The type of data you have points you to the proper types
of graphs, statistics, and analyses you’re able to use.

Before I begin, here’s an important piece of jargon: Statisticians call any quan-
tity or characteristic you measure on an individual a variable; the data col-
lected on a variable is expected to vary from person to person (hence the
creative name).

The two major types of variables are the following:

� Qualitative: A qualitative variable classifies the individual based on cat-
egories. For example, political affiliation may be classified into four cate-
gories: Democrat, Republican, Independent, and other; gender as a
variable takes on two possible categories: male and female. A person
may be categorized as a female Republican, which means that, regarding
the gender variable, she falls into the female category, and regarding the
political affiliation variable, she falls into the Republican category.
Another name for a qualitative variable is a categorical variable.

� Quantitative: A quantitative variable measures or counts a quantifiable
characteristic, such as height, weight, number of children you have,
your GPA in college, or the number of hours of sleep you got last night.
The quantitative variable value represents a quantity (count) or a mea-
surement and has numerical meaning. That is, you can add, subtract,
multiply, or divide the values of a quantitative variable, and the results
make sense as numbers. This characteristic isn’t true of qualitative vari-
ables, which can take on numerical values only as placeholders.

Because the two types of variables represent such different types of data, it
makes sense that each type has its own set of statistics. Qualitative variables,
such as gender, are somewhat limited in terms of the statistics that can be per-
formed on them. For example, suppose you have a sample of 500 classmates
classified by gender — 180 of them are male, and 320 are female. How can you
summarize this information? You already have the total number in each cate-
gory (this statistic is called the frequency). You’re off to a good start, but fre-
quencies are hard to interpret because you find yourself trying to compare
them to a total in your mind in order to get a proper comparison. In the previ-
ous example, you may be thinking “One hundred and eighty males out of what?
Let’s see, it’s out of 500. Hmmm . . . what percentage is that? I can’t think.” 
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The next step is to find a means to relate these numbers to each other in an
easy way. You can do this by using what is called a relative frequency. The rel-
ative frequency is the percentage of data that falls into a specific category of a
qualitative variable. You can find a category’s relative frequency by dividing
the frequency by the sample total (500, using this example) and multiplying 

by 100. In this case, you have .500
180 0 36 100 36= =* percent males and 

.500
320 0 64 100 64= =* percent females.

You can also express the relative frequency as a proportion in each group by
leaving the result in decimal form and not multiplying by 100. This statistic 
is called the sample proportion. If you continue with the same example, the
sample proportion of males is 0.36, and the sample proportion of females 
is 0.64.

You mainly summarize qualitative variables by using two statistics — the
number in each category (frequency) and the percentage (relative frequency)
in each category.

Statistics for Qualitative Variables
The types of statistics done on qualitative data may seem to be limited; how-
ever, the wide variety of analyses you can perform using frequencies and rela-
tive frequencies offers answers to an extensive range of possible questions
you may want to explore.

In this section, you see that the proportion in each group is the number-one
statistic for summarizing qualitative data. Beyond that, you see how you can
use proportions to estimate, compare, and look for relationships between the
groups that compose the qualitative data.

Comparing proportions
Researchers, the media, and even everyday folk like you and me love to com-
pare groups (whether you like to admit it or not). For example, what propor-
tion of Democrats support oil drilling in Alaska, compared to Republicans?
What percentage of women watch college football versus men? What propor-
tion of readers of Intermediate Statistics For Dummies pass their stats exams
with flying colors, compared to nonreaders? To answer these questions, you
need to compare the sample proportions using a hypothesis test for two pro-
portions (see Chapter 3 or your intro stat textbook).
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Suppose you’ve collected data on a random sample of 1,000 United States
voters. You may want to compare the proportion of female voters to the pro-
portion of male voters and find out whether they’re equal. Suppose in your
sample you find that the proportion of females is 0.53, and the proportion of
males is 0.47. So for this sample of 1,000 people, you have a higher propor-
tion of females than males. But here’s the big question: Are these sample pro-
portions different enough to say that the entire population of U.S. voters has
more females in it than males? After all, sample results vary from sample to
sample. The answer to this question requires comparing the sample propor-
tions by using a hypothesis test for two proportions. I demonstrate and
expand on this technique in Chapter 3.

Estimating a proportion
You can also use relative frequencies (check out the section “Qualitative
versus Quantitative Variables in Statistical Analysis”) to make estimates
about a single population proportion.

Say, for example, you want to know what proportion of females in the United
States are Democrats. According to a sample of 29,839 female voters from the
U.S. conducted by the Pew Research Foundation in 2003, the percentage of
female Democrats was 36. Now because the Pew researchers based these
results on only a sample of the population and not on the entire population,
these results may vary from sample to sample. The amount of variability is
measured by the margin of error (the amount that you add and subtract from
your sample statistic), which for this sample is only about 0.5 percent. (To
find out how to calculate margin of error, explore Chapter 3.) That means that
the estimated percentage of female Democrats in the U.S. voting population is
estimated to be somewhere between 35.5 percent and 36.5 percent.

The margin of error, combined with the sample proportion, forms what statis-
ticians call a confidence interval for the population proportion. Recall from
intro stats that a confidence interval is a range of likely values for a popula-
tion parameter, formed by taking the sample statistic plus or minus the
margin of error. (For more on confidence intervals, see Chapter 3.)

Looking for relationships between 
qualitative variables
Suppose you want to know whether two qualitative variables are related 
(for example, is gender related to political affiliation?). Answering this ques-
tion requires putting the sample data into a two-way table (using rows and
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columns to represent the two variables), and analyzing the data by using a
Chi-square test (see Chapter 14). By following this process, you can deter-
mine whether two categorical variables are independent (unrelated) or
whether a relationship exists between them. If you find a relationship, you
can use percentages to describe it.

Table 2-1 shows an example of data organized in a two-way table. The data
was collected by the Pew Research Foundation.

Table 2-1 Gender and Political Affiliation for 56,735 U.S. Voters 
Gender Republican Democrat Other

Males 32% 27% 41%

Females 29% 36% 35%

Notice that the percentage of male Republicans in the sample is 32 and the
percentage of female Republicans in the sample is 29. These percentages are
quite close in relative terms. However, the percentage of female Democrats
seems much higher than the percentage of male Democrats (36 percent
versus 27 percent); also, the percentage of males in the “Other” category is
quite a bit higher than the percentage of females in the “Other” category (41
percent versus 35 percent). These large differences in the percentages indi-
cates that gender and political affiliation are related in the sample. But do
these trends carry over to the population of all U.S. voters? This question
requires a hypothesis test to answer. The particular hypothesis test you need
in this situation is a Chi-square test, which I discuss in detail in Chapter 14.

To make a two-way table from a data set by using Minitab, first enter the data
in two columns, where column one is the row variable (continuing with the
previous example, this variable would be gender) and column two is the
column variable (in this case, political affiliation). For example, suppose the
first person is a male Democrat. In row one of Minitab, enter M (for male) in
column one and D (Democrat) in column two. Then go to Stat>Tables>Cross
Tabulation and Chi-square. Highlight column one and click Select to enter this
variable in the For Rows line. Highlight column two and click Select to enter
this variable in the For Columns line. Click on OK.

People often use the word correlation to discuss relationships between vari-
ables, but in the statistical world, you can use correlation only to discuss the
relationship between two quantitative (numerical) variables, not two qualita-
tive (categorical) variables. Correlation measures how closely the relation-
ship between two quantitative variables, such as height and weight, follows a
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straight line and tells you the direction of that line as well. In total, for any
two quantitative variables, x and y, the correlation measures the strength 
and direction of their linear relationship. As one increases, what does the
other one do?

Because qualitative variables don’t have a numerical order to them, they
don’t increase or decrease in value. For example, just because male = 1 and
female = 2 doesn’t mean that a female is worth twice a male. (Although some
women may want to disagree.) These numbers represent categories, not
values. Therefore, you can’t use the word correlation to describe the relation-
ship between, say, gender and political affiliation. The appropriate term to
describe the relationships of qualitative variables is association. You can say
that political affiliation is associated with gender, and explain how. (For full
details on association, see Chapter 13. For more information on correlation,
see Chapter 4.)

Building models to make predictions
You can also build models to predict the value of a qualitative variable based
on other related information. In this case, building models is more than a lot
of little plastic pieces and some irritatingly sticky glue. When you build a
model, you look for variables that help explain, estimate, or predict some
response you’re interested in (the variables that do this are called explana-
tory variables). You sort through the explanatory variables and figure out
which ones do the best job of predicting the response, and you put them
together into a type of equation like y = 2x + 4 where x = shoe size and y =
length of your calf. That equation is a model.

For example, what if you want to know which factors or variables can help
you predict someone’s political affiliation? Is a woman without children more
likely to be a Republican or a Democrat? What about a middle-aged man who
proclaims Hinduism as his religion? In order for you to compare these com-
plex relationships, you must build a model to evaluate each group’s impact
on political affiliation (or some other qualitative variable). This kind of model
building is explored more in-depth in Chapter 8, where I discuss the topic of
logistic regression.

Logistic regression builds models to predict the outcome of a qualitative vari-
able, such as political affiliation. If you want to make predictions about a
quantitative variable, such as income, you need to use the standard type of
regression (check out Chapters 4 and 5).
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In 2003, the Pew Research Foundation studied the following variables in terms
of their relationship with political affiliation: gender, race, state of residence,
income level, age, education, religion, marital status, and whether or not you
have children. While you can do individual Chi-square analyses to examine 
possible connections between each of these variables and political affiliation
separately, you can’t find out which combinations of these variables increase
the likelihood of someone being a Democrat, Republican, or other.

For example, the Foundation found that women are more likely to be
Democrats than men, but age is also a factor. Younger people tend to be more
inclined to be Republican, and older people lean toward being Democrat.
However, if you look at the combination of gender and age, you can see 
mixed results; males who are older are more likely than young females to be
Democrat rather than Republican, for example. This kind of result is called an
interaction effect between gender and age group. An interaction effect occurs
when certain combinations of variables produce different results than other
combinations. The only way to look for these kinds of more-complex relation-
ships is to do model building, which allows you to examine the combinations
of variables and their impact on political affiliation. The Pew Foundation was
able to make conclusions about the United States population based on its
model linking political affiliation, age and gender, as well as their interactions.

Statistics for Quantitative Variables
Quantitative variables, unlike qualitative variables, have a wider range of statis-
tics that you can do, depending on what questions you want to ask. The main
reason for this wider range is that quantitative data are numbers that represent
measurements or counts, so it makes sense that you can order, add or sub-
tract, and multiply or divide them — and the results all have numerical mean-
ing. Examining quantitative date opens up a whole world of possibilities for
analysis. In this section, I present the major data-analysis techniques for quan-
titative data. I further expand each technique in later chapters of this book.

Making comparisons
Suppose you want to look at income (a quantitative variable) and how it
relates to a qualitative variable, such as gender or region of the country. Your
first question may be: Do males still make more money than females? In this
case, you can compare the mean incomes of two populations — males and
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females. This assessment requires a hypothesis test of two means (often-
times called a t-test for independent samples). I present more information 
on this technique in Chapter 3.

When comparing the means of more than two groups, don’t simply look at all
the possible t-tests that you can do on the pairs of means, because you have
to control for an overall error rate in your analysis. Too many analyses can
result in errors — adding up to disaster. For example, if you conduct 100
hypothesis tests, each one with a 5 percent error rate, then 5 of those 100
tests give wrong results on average, just by chance.

If you want to compare the average wage in different regions of the country
(the East, the Midwest, the South, and the West, for example), this compari-
son requires a more sophisticated analysis, because you’re looking at four
groups rather than just two. The procedure you can use to compare more
than two means is called analysis of variance (ANOVA), and I discuss this
method in detail in Chapters 9 and 10.

Finding connections
Suppose you’re an avid golfer and you want to figure out how much time you
should spend on your putting game. The question is this: Is the number of
putts related to your total score? If the answer is yes, then spending time on
your putting game makes sense. If not, then you can slack off on it a bit. Both 
of these variables are quantitative variables, and you’re looking for a connec-
tion between them. You collect data on 100 rounds of golf played by golfers 
at your favorite course over a weekend. Table 2-2 shows the first few lines of
your data set.

Table 2-2 First Ten Golf Scores (ordered)
Number of Putts Total Score

23 76

27 80

28 80

29 80

30 80

29 82
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Number of Putts Total Score

30 83

31 83

33 83

26 84

The first step in looking for a connection between putts and total scores (or
any other quantitative variables) is to make what is called a scatterplot of the
data, which graphs your data set in two-dimensional space by using an x and
y plane. You can take a look at the scatterplot of the golf data in Figure 2-1.
Here, x represents the number of putts, and y represents the total score. For
example, the point in the lower-left corner of the graph represents someone
who had only 23 putts and a total score of 75. (For instructions on making a
scatterplot by using Minitab, see Chapter 4.)

According to Figure 2-1, it appears that as the number of putts increases, so
does total score. The relationship seems pretty strong — the number of putts
plays a big part in determining the total score.

Now you need a measure of how strong the relationship is between x and y
and whether it goes uphill or downhill. Correlation is the number that mea-
sures how close the points follow a straight line. Correlation is always
between –1.0 and +1.0, and the more closely the points follow a straight line,
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the closer the correlation is to –1.0 or +1.0. A positive correlation means that
as x increases on the x-axis, y also increases on the y-axis. Statisticians call
this type of relationship an uphill relationship. A negative correlation means
that as x increases on the x-axis, y goes down. Statisticians call this type of
relationship — you guessed it — a downhill relationship.

For the golf data set, the correlation is 0.896 = 0.90, which is extremely high
as correlations go. This strong correlation (close to +1.0) is a good thing
because it means number of putts can do a great job of predicting total score.
Because the sign of the correlation is positive, it means as you increase
number of putts, your total score increases (an uphill relationship). For
instructions on calculating a correlation in Minitab, see Chapter 4.

Making predictions
If you want to predict some response variable (y) using one explanatory vari-
able (x), and you want to use a straight line to do it, you can use simple linear
regression (see Chapter 4 for all the fine points on this topic). Linear regres-
sion finds the best-fitting line that cuts through the data set, called the regres-
sion line. After you get the regression line, you can plug in a value of x and
get your prediction for y. (For instructions on using Minitab to find the best-
fitting line for your data, see Chapter 4.)

To use the golf example from the previous section, suppose you want to pre-
dict the total score you can get for a certain number of putts. In this case, you
want to calculate the linear regression line. By using the data set shown in
Table 2-2, and running a regression analysis, the computer tells you that the
best line to use to predict total score using number of putts is the following:

Total score = 39.6 + 1.52 * Number of putts

So if you have 35 putts in an 18-hole golf course, your total score is predicted
to be about 39.6 + 1.52 * 35 = 92.8, or 93. (Not bad for 18 holes!)

Notice that the slope of the regression line tells you what you really want to
know — how much does your total score increase with every additional putt?
In other words, how much damage is done when you miss the hole on your
first, or second, or third putt? The slope of the regression line for the golf
data set is 1.52. Because the slope of a line is the ratio of the change in y
(total score) to the change in x (number of putts) this means that every addi-
tional putt you need results in an overall increase in total score by 1.52.
Maybe that’s why Tiger Woods spends so much time on his short game.
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Don’t try to predict y for x-values that fall outside the range of where the data 
was collected; you have no guarantee that the line still works outside of that
range, or that it will even make sense. For the golf example, you can’t say that
if x (the number of putts) = 0 the total score would be 39.6 + 1.52 * 0 = 39.6
(unless you just call it good after your ball hits the green). This mistake is
called extrapolation.

You can discover more about simple linear regression, and expansions on it,
in Chapters 4 and 5.

Avoiding Bias
Bias is the bane of a statistician’s existence; it’s easy to create and very hard
to deal with, if not impossible in most situations. The statistical definition of
bias is the systematic overestimation or underestimation of the actual value.
In language the rest of us can understand, it means that the results are always
off by a certain amount in a certain direction. For example, a bathroom scale
may always report a weight that’s five pounds more than it should be (I’m
convinced this is true of my doctor’s office scale); this consistent adding of
five points to every outcome represents a systematic overestimation of the
actual weight.

The most important idea when dealing with bias is prevention, or at least
minimizing it. Bias is like weeds in a garden: After they’re present, they’re
very hard to deal with, and it’s always better to eliminate them from the start.
In this section, you see ways bias can creep into a data set, or even into a sta-
tistic, and what you can do about it.

Looking at bias through statistical glasses
Bias can show up in a data set a variety of different ways. Here are some of
the most common ways bias can creep into your data:

� Selecting the sample from the population: Bias occurs when you leave
some intended groups out of the process, and/or give certain groups too
much weight.

For example, TV surveys (the ones where they ask you to phone in 
your opinion) are biased because no one has selected a prior sample of
people to represent the population — people call in on their own. When
people participate in a survey on their own, they’re more likely to have
stronger opinions than those who don’t choose to participate. Such sam-
ples are called self-selected samples and are typically very biased.
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� Designing the data-collection instrument: Poorly designed instruments
(including surveys) can result in inconsistent or even incorrect data.

For example, a survey question’s wording plays a large role in whether
or not results are biased. A leading question can make people feel like
they should answer a certain way. For example: “Don’t you think that 
the president should be allowed to have a line-item veto to prevent gov-
ernment spending waste?” Who would feel they should say no to that?

� Collecting the data: In this case, bias can infiltrate the results if some-
one makes errors in the recording of the data or if interviewers deviate
from the script.

� Deciding how and when the data is collected: The time and place you
collect data can affect whether your results are biased. For example, if
you conduct a telephone survey during the middle of the day, people
who work from nine to five aren’t able to participate. Depending on the
issue, the timing of this survey could lead to biased results.

Bias can creep into a data set very easily. The best way to deal with bias is to
avoid it in the first place. You can do this in two major ways:

� Use a random process to select the sample from the population. The
only way a sample is truly random is if every single member of the popu-
lation has an equal chance of being selected. Self-selected samples aren’t
random.

� Make sure that the data is collected in a fair and consistent way. Be
sure to use neutral question wording and time the survey properly.

Settling the variance controversy: 
The battle of n–1 versus n
Not all statistical formulas are free of bias. In other words, some statistics
have good characteristics (like offering great precision) and some not-so-
good characteristics (like not giving the best possible result in all situations).
Statisticians definitely prefer statistics that are both precise and unbiased,
and the techniques you find in this book have both qualities. However, pre-
cise and unbiased statistics doesn’t always happen naturally; sometimes the
basic idea requires a little tweaking to get a statistic that actually meets the
standards of the statistical powers that be (of which I am not one). The clas-
sic example of this need to fine-tune is the formula for the variance of a data
set, which I describe in the following section.

42 Part I: Data Analysis and Model-Building Basics 

06_045206 ch02.qxd  2/1/07  9:42 AM  Page 42



The problem
Statistics textbooks sometimes show two formulas for the variance of a data 

set. One formula shown for the variance is s n
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ance, you may note, contains an n all by itself in the denominator. The fact
that the denominator is n and not n – 1 makes a teacher’s job of explaining
variance a whole lot easier, because it represents the average squared 
distance from the mean. In this case, the values being squared are the differ-
ences between the data values and their mean. You get the average of these
squared values by summing them up and dividing by n, the sample size.

However, this version of a formula for variance, as it’s written, is biased. That
means in a statistical sense, you know that in the long term, the results are
always off by a very small amount from their target value. If you take repeated
samples, find the variance, and do this over and over, the results on average
are a little smaller than they should be. (Statisticians can prove this, but you
don’t have to worry about that. I’m sure you have better things to do.)

The solution
Because statisticians prefer results being correct to results that can be more
easily explained, they decided to do something about this bias problem in
the formula for the sample variance. A group of stat big wigs figured out that
dividing by n was the problem, and if you divide by n – 1 rather than n, you
can get answers that are right on target. That’s how the following commonly
used formula for sample variance came into being:
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Notice that an n – 1 rather than an n is now in the denominator. However,
trying to explain why the formula isn’t dividing by n does tend to open up a
can of worms for statistics professors (and explains why biased statistics are
a topic left for the intermediate-level students, like you!).

Because statistics can be biased too, in terms of the results they create
through their formulas alone, it’s always a good idea to check with a statisti-
cian or someone else in the know whether a particular statistic is unbiased
before you use it.
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Getting Good Precision
Precision is the amount of movement you expect to have in your sample
results if you repeat your entire study again with a new sample. Low precision
means that you expect your sample results to move a lot (not a good thing).
High precision means you expect your sample results to remain fairly close in
the repeated samples (a good thing). In this section, you find out what preci-
sion does and doesn’t measure, and you see how to measure the precision of
a statistic in general terms.

Understanding precision from 
a statistical point of view
You may think that precision means the level of correctness you have in your
statistical results. But precision only measures the level of consistency in the
results from sample to sample. Your results can be consistently correct or
consistently incorrect.

For example, a field-goal kicker on a football team may consistently kick the
ball two feet to the right of the goalposts every single time. Even though he’s
consistent, he never gets to score, because his results are systematically off
by the same amount each time. In other words, his results are biased, even
though they’re precise.
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Don’t put all your data into one basket!
An animal science researcher came to me one
time with a data set he was so proud of. He was
studying cows and the variables involved in
helping determine their longevity. He came in
with a super-mega data set that contained over
100,000 observations. He was thinking “Wow,
this is gonna be great! I’ve been collecting this
data for years and years, and I can finally have
it analyzed. There’s got to be loads of informa-
tion I can get out of this. The papers I’ll write,
the talks I’ll be invited to give . . . the raise I’ll
get!” He turned his precious data over to me
with an expectant smile and sparkling eyes.

But after looking at his data for a few minutes I
made a terrible realization — all of his data came
from exactly one cow. With no other cows to
compare with and a sample size of just one, he
had no way to even measure how much those
results would vary if he wanted to apply them to
another cow. His results were so biased toward
that one animal that I couldn’t do anything with
the data. After I summed up the courage to tell
him, it took a while to peel him off the floor. The
moral of the story, I suppose, is to find a statisti-
cian and check out your big plans with her
before you go down a cow path like this guy did.
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A statistic can be precise with or without bias, and vice versa. The best situa-
tion is when your results are both precise (consistent) as well as unbiased
(on target). That goal is what statisticians always strive for. How often does 
it happen? You can have a lot of control of the precision part by simply taking
a larger sample. However, the goal of completely unbiased results is rarely
achieved, but that doesn’t stop statisticians from trying. And you do have
ways to minimize it (keep reading).

Measuring precision with margin of error
You can measure precision by the margin of error. The margin of error is the
amount that you expect your statistical results to change from one sample 
to the next. While you always hope, and may even assume, that statistical
results shouldn’t change much with another sample, that’s not always the
case. It’s like a commercial that tries to sell a weight-loss product by showing
a person who lost 50 pounds in a single weekend; then in small letters at the
bottom of the screen, you see the words “results will vary.” Before you report
or try to interpret any statistical results, you need to have some measure-
ment of how much those results are expected to vary from sample to sample.

The following sections show how to calculate the precision of your statistic
and how to come up with a margin of error.

Calculating precision
The exact formulas for margin of error differ depending on the type of data
that you’re analyzing; however, they all contain two major components:

� Confidence coefficient

� Standard error of the statistic

The general structure of a formula for margin of error is the following, where
standard error is the standard deviation of the population divided by the
square root of the sample size (you can see all the details on margin of error
in Chapter 3):

Margin of error = ± Confidence coefficient * Standard error

The big idea is that the confidence coefficient tells you the number of stan-
dard errors you’re willing to add and subtract in order to have a certain level
of confidence in your results. If you want to be more confident in your results,
you add or subtract more standard errors. If you don’t have to be as confi-
dent, you don’t have to add or subtract as many standard errors. Typically,
you add and subtract about two standard errors if you want to be 95 percent
confident and three standard errors if you want to be more than 99 percent
confident. This rule of thumb follows a statistical result called the Empirical
Rule, also known as the 68-95-99.7 Rule.
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The standard error is the average amount of movement in the statistic you’re
using. It’s a function of two quantities:

� Sample size: Sample size is perhaps the most important factor in con-
trolling margin of error. The sample size is in the denominator of the
standard error, meaning that as your sample size increases, the standard
error goes down, and that’s why the margin of error goes down.

This result makes sense, because having a larger sample means having
more information in your analysis, which should lead to greater precision.
As the sample size decreases, the margin of error goes up, because you
have less information to work with and that makes for less-precise results.

� Standard deviation in the population: Standard deviation is close to the
average distance from the mean. If the population you took your sample
from has a large amount of variability, the standard deviation is large,
and the margin of error for your statistic goes up (because standard
deviation is in the numerator of the margin of error). If the population is
more homogeneous, your sample results are more homogeneous as well,
and the margin of error goes down (because the standard error gets
smaller).
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Up close and personal: Survey results
The Gallup Organization states its survey results
in a universal, statistically correct format. Using
a specific example from a recent survey it con-
ducted, you can see the language it uses to
report its results:

“These results are based on telephone inter-
views with a randomly selected national
sample of 1,002 adults, aged 18 years and
older, conducted June 9–11, 2006. For results
based on this sample, one can say with 95%
confidence that the maximum error attribut-
able to sampling and other random effects is
±3 percentage points. In addition to sampling
error, question wording and practical diffi-
culties in conducting surveys can introduce
error or bias into the findings of public opin-
ion polls.”

The first sentence of the quote refers to how the
Gallup Organization collected the data, as well

as the size of the sample. As you can guess, pre-
cision is related to the sample size, as seen in the
section “Calculating precision.”

The second sentence of the quote refers to the
precision measurement: How much did Gallup
expect these sample results to vary? The fact
that Gallup is 95 percent confident means that if
this process were repeated a large number of
times, in 5 percent of the cases the results would
be wrong, just by chance. This inconsistency
occurs if the sample selected for the analysis
doesn’t represent the population — not due to
biased reasons, but due to chance alone (more
on this in Chapter 3).

(Check out the section “Bias not included” to get
the info on why the third sentence is included in
this quote.)
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For more details on how to calculate margin of error in various statistical
techniques, see Chapter 3.

Interpreting margin of error
Finding the margin of error is one thing — figuring out what it means is a
whole other ball o’ wax. But don’t fear; it’s actually not so bad. To interpret
the margin of error, just think of it as the amount of play you allow in your
results to cover most of the other samples you could have taken.

Suppose you’re trying to estimate the proportion of people in the population
who support a certain issue, and you want to be 95 percent confident in your
results. You sample 1,002 individuals and find that 65 percent support the
issue. The margin of error for this survey turns out to be plus or minus 3 per-
centage points (you can find the details of this calculation in Chapter 3). That
result means that you can expect the sample proportion of 65 percent to
change by as much as 3 percentage points either way if you took a different
sample of 1,002 individuals. In other words, you believe the actual population
proportion is somewhere between 65 – 3 = 62 percent and 65 + 3 = 68 percent.
That’s the best you can say.

Bias not included!
Realizing that the margin of error measures the consistency (precision) of a
statistic only, not its level of bias is extremely important. In other words, a
margin of error can appear on paper to be very small yet actually be way off
target because of bias in the data that was collected. (In the nearby sidebar,
you can see that Gallup discusses margin of error and bias separately.)

Any reported margin of error was calculated on the basis of having zero bias
in the data. However, this assumption is rarely true. Before interpreting any
margin of error, check first to be sure that the sampling process and the data-
collection process don’t contain any obvious sources of bias. If a great deal of
bias exists, you should ignore the results, or take them with a great deal of
skepticism.

Making Conclusions and Knowing 
Your Limitations

The most important goal of any data analyst is to remain focused on the big
picture — the question that you or someone else is asking — and make sure
that the data analysis used is appropriate and comprehensive enough to
answer that question correctly and fairly.
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Here are some tips for analyzing data and interpreting the results, in terms of
the statistical procedures and techniques that you may use — at school, in
your job, and in everyday life. These tips are implemented and reinforced
throughout this book:

� Be sure that the research question being asked is clear and definitive.
Some researchers don’t want to be pinned down on any particular set of
questions because they have the intent of mining the data (looking for
any relationship they can find, and then stating their results after the
fact). This can lead to overanalyzing the data, making the results subject
to skepticism by statisticians.

� Double-check that you clearly understand the type of data being col-
lected. Is the data qualitative or quantitative? The type of data used
drives the approach that you take in the analysis.

� Make sure that the statistical technique you use is designed to answer
the research question. If you want to make comparisons between two
groups and your data is quantitative, use a hypothesis test for two
means. If you want to compare five groups, use analysis of variance
(ANOVA). You can use this book as a resource to help you determine 
the technique you need.

� Look for the limitations of the data analysis. For example, if the
researcher wants to know whether negative political ads affect the popu-
lation of voters, and she bases her study on a group of college students,
you can find severe limitations here. For starters, student reactions to
negative ads don’t necessarily carry over to all voters in the population.
And even if the population were limited to all student voters, the stu-
dents from this particular class don’t represent all students. In this case,
it’s best to limit the conclusions to college students in that class (which
no researcher would ever want to do). Ultimately what needs to be 
done is design the study so the sample contains a representation of the
intended population of all voters in the first place (a much more difficult
task, but well worth it).

One of the hardest parts of my job as a statistical consultant is dealing with
analyses after the design was already done — and done incorrectly. It’s much
better to put in a little work to get a good design together first, and then the
analysis will take care of itself.
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Chapter 3

Building Confidence 
and Testing Models

In This Chapter
� Utilizing confidence intervals to estimate parameters

� Testing models by using hypothesis tests

� Finding the probability of getting it right and getting it wrong

� Discovering power in a large sample size

One of the major goals in statistics is to use the information you collect
from a sample in order to get a better idea of what’s going on in the

entire population you’re studying (because populations are generally large
and exact info is often unknown). The most common items to study are the
mean of the population, the proportion of the population that has a certain
characteristic, or a comparison of the means or proportions from two differ-
ent populations. These unknown values that summarize the population are
called population parameters. Researchers typically either want to get a
handle on what those parameters are, or they want to test a hypothesis
about the population parameters. In introductory statistics, you typically go
over confidence intervals and hypothesis tests for one and two population
means and one and two population proportions. Your instructor hopefully
emphasized that no matter which parameters you’re trying to estimate or
test, the general process is the same. If not, don’t worry; that’s what this
chapter’s all about.

The most important idea you can gain from this chapter is that intermediate
statistics focuses on building and testing models. You’re typically faced with
some random phenomena, and you’re trying to build a model that explains or
predicts that phenomena. The situation is more complex than it was in intro
stats, where you used one variable to predict another variable in simple
linear regression. Intermediate statistics takes it up a notch to using many
variables to predict another one. But as long as you keep the big picture of
how the process works in your mind, you’ll be okay.
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It all comes down in the end to testing hypotheses to see whether certain
models fit, and if they do, to using confidence intervals to estimate certain
values in the population or to make predictions based on the model that you
built.

This chapter reviews the basic concepts of confidence intervals and hypothe-
sis tests, including the probabilities of making errors by chance. I also dis-
cuss how statisticians measure the ability of a statistical procedure to do a
good job — of detecting a real difference in the populations, for example.
Hang on — you’re in for quite a ride.

Estimating Parameters by Using
Confidence Intervals

Confidence intervals are a statistician’s way of covering themselves when it
comes to estimating a population parameter. For example, instead of just
giving a one-number guess as to what the average household income is in the
United States, a statistician would give a range of likely values for this
number. Statisticians do this for two reasons:

� All good statisticians know sample results vary from sample to sample,
so a one-number estimate isn’t any good.

� Statisticians have developed some awfully nice formulas you can use to
give a range of likely values, so why not use them?

In this section, you get the general formula for a confidence interval, includ-
ing the margin of error, and a good look at the common approach to building
confidence intervals. I also discuss interpretation and the chance of making
an error.

Getting the basics: The general form 
of a confidence interval
The big idea of a confidence interval is coming up with a range of likely
values for a population parameter. The confidence level represents the
chance that if you repeated your sample-taking over and over, you’d get a
range of likely values that actually contains the actual population parameter.
In other words, it’s the long-term chance of being correct.
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The general formula for a confidence interval is the following:

Confidence interval = Sample statistic ± Margin of error

The confidence interval has a certain level of precision (measured by the
margin of error). Precision calculates how close you expect your results 
to be to the truth.

For example, you want to know the average amount of time a student at Ohio
State University spends listening to music per day, using an MP3 player. The
average time for the entire population of OSU students that are MP3-player
users is the parameter you’re looking for. Certain that you can’t ask every
student who uses an MP3 player at OSU this question, you take a random
sample of students and find the average from there.

Suppose the average time a student uses an MP3 player per day to listen to
music based on a random sample of 1,000 OSU students is 2.5 hours, and the
standard deviation is 0.5 hours. Is it right to say that the population of all
OSU-student MP3-player owners use their players an average of 2.5 hours 
per day for music listening? No. You hope and may assume that the average
for the whole population is close to 2.5, but it probably isn’t exact. After all,
you’re only sampling a tiny fraction of the 60,000 member population of all
OSU students. The fact is that sample results vary from sample to sample.

What’s the solution to this problem? The solution is to not only report the
average from your sample, but along with it, report some measure of how
much you expect that sample average to vary from one sample to the next,
with a certain level of confidence. You want to cover your bases, so to speak
(at least most of the time). The number that you use to represent this level of
precision in your results is called the margin of error. You take your sample
average and add and subtract the margin of error (to get that plus-or-minus
factor going), which gives you a confidence interval for the average time all
OSU students use their MP3 players.

Finding the confidence interval 
for a population mean
The sample statistic part of the confidence-interval formula is fairly straight-
forward. If you want to estimate the population mean, you use the sample
mean. If you want to estimate the population proportion, use the sample 
proportion. If you want to find the difference of two population means,
take two samples, find their sample means, and subtract them.
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In the case of the population mean, you use the sample mean to estimate it. 

The sample mean has a standard error of 
n

σ . In this formula, you can see the 

population standard deviation (σ) and the sample size (n).

If you think about it though, why would you know the standard deviation of
the population, σ, when you don’t even know the mean (recall that the mean
is what you’re trying to estimate)? To handle this additional unknown, do
what statisticians always do — estimate it and move on. So you estimate σ,
the population standard deviation, using (what else?) the standard deviation
of the sample, denoted by s. So you replace σ by s in the formula for the stan-
dard error of the mean.

To estimate the population mean by using a confidence interval when σ is 

unknown, you use the formula x t
n
s

n 1! -

J

L

K
K

N

P

O
O. This formula contains the sample 

standard deviation (s), the sample size (n), and a t-value representing how
many standard errors you want to add and subtract to get the confidence
you need. To get the margin of error for the mean, you see the standard error, 

n
s , is being multiplied by a factor of t. Notice that t has n – 1 as a subscript 

to indicate which of the myriad t-distributions you use for your confidence
interval. The n – 1 is called degrees of freedom, where n is the sample size.

The value of t in this case represents the number of standard errors you add
and subtract to or from the sample mean to get the confidence you want. If you
want to be 95 percent confident, for example, you add and subtract about two
of those standard errors. If you want to be 99.7 percent confident, you add or
subtract about three of them. (Table A-1 in the Appendix presents the t-distribu-
tion from which you can find t-values for any confidence level you want.)

If you do know the population standard deviation for some reason, you would
certainly use it. In that case, you use the corresponding number from the 
Z-distribution (standard normal distribution) in the confidence interval for-
mula. (The Z-distribution from your intro stat book can give you the numbers
you need.) Or if you know σ and have a large sample size, you can simply use
the bottom line of the t-distribution, because a t-distribution with a large
number of degrees of freedom gives very similar values to the Z-distribution.

For the MP3 player example from the preceding section, a random sample of
1,000 OSU students spends an average of 2.5 hours using their MP3 players to
listen to music. The standard deviation is 0.5 hours. Plugging this information 

into the formula for a confidence interval, you get 2.5 ± 1.96 
,
.

1 000
0 5
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O
O

= 2.5 ±

0.03 hours. You can conclude that OSU MP3-player owners spent an average 
of between 2.47 and 2.53 hours listening to music on their players. (The value
for t in this example came from the last line of Table A-1 in the Appendix,
because this line represents the situation where n is large.)
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What changes the margin of error?
What do you need to know in order to come up with a margin of error?
Margin of error, in general, depends on three elements:

� The standard deviation of the population, σ (or an estimate of it,
denoted by s, the sample standard deviation)

� The sample size, n

� The level of confidence you need

You can see these elements in action in the following formula for margin of 

error of the sample mean: t
n
s

n 1- * . Here I assume that σ isn’t known; tn – 1 

represents the value on the t-distribution (Table A-1 in the Appendix) with
n – 1 degrees of freedom.

Each of these three elements has a major role in determining how large the
margin of error will be when you estimate the mean of a population. At times
it may seem that different elements work against each other (and they do!),
but you can find ways around that. In the following sections, I show how each
of the elements of the margin of error formula work separately and together
to affect the size of the margin of error.

The population standard deviation’s affect on margin of error
The standard deviation of the population is typically combined with the
sample size in the margin of error formula, with the population standard 
deviation on top of the fraction, and n in the bottom. (In this case, the 
standard error of the population, σ, is estimated by the standard deviation 
of the sample, s, because σ is typically unknown.)

This combination of standard deviation of the population and sample size is
known as the standard error of your statistic. It measures how much the sample
statistic deviates from its mean in the long term.

How does the standard deviation of the population (σ) affect margin of error?
As the standard deviation of the population (or its estimate, s) gets larger, the
margin of error increases, so your range of likely values is wider. That’s why
you typically see the population standard deviation in the numerator of
margin of error formulas. The formula for the margin of error for one popula-
tion is an example of this.

Suppose you have two gas stations, one on a busy corner (gas station #1) 
and one farther off the main drag (gas station #2). You want to estimate the
average time between customers at each station. At the busy gas station #1,
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customers are constantly using the gas pumps, so you basically have no time
between customers, and that model holds day after day. At gas station #2,
customers sometimes come all at once, and sometimes you don’t see a 
single person for an hour or more. So the time between customers varies
quite a bit.

For which gas station would it be easier to estimate the overall average time
between customers as a whole? Gas station #1 has much more consistency,
which represents a smaller standard deviation of times between customers.
Gas station #2 has much more heterogeneity of times between customers, 
so that one is harder to get a handle on. That means σ for gas station #1 is
smaller than σ for gas station #2.

Sample size and margin of error
Sample size affects margin of error in a very intuitive way. Suppose you’re
trying to estimate the average number of pets per household in your city.
Which sample size would give you better information: 10 homes or 100
homes? You’d agree that 100 homes would give more precise information 
(as long as the data on those 100 homes was collected properly).

If you have more data to base your conclusions on, and that data is collected
properly, your results will be more precise. Precision is measured by margin
of error; so as the sample size increases, the margin of error of your estimate
goes down. That’s why you typically see an n (sample size) in the denomina-
tor of margin of error formulas. In the formula for the margin of error of the
sample mean, you can see n in the denominator.

Bigger is only better in terms of sample size if the data is collected properly.
That is, you should find no bias in the way the members of the sample were
selected or in the way the data was collected on those subjects. If the quality
of the data can’t be maintained with a larger sample size, it does no good to
have it.

Confidence level and margin of error
The amount of confidence you need to have differs from problem to problem.
Suppose you’re estimating the mean weight that an elevator can hold. You
would want to be pretty confident about your results, right? But, if you
wanted to estimate the percentage of females that may come to your party on
Saturday night, you may not need to be so confident (despite the desperation
you see in your single buddies’ eyes). For each problem at hand, you have to
address how confident you need to be in your results over the long term,
and, of course, more confidence comes with a price in the margin of error for-
mula. This level of confidence in your results over the long term is reflected
in a number called the confidence level, reported as a percentage. In general,
more confidence requires a wider range of likely values. Ninety-five percent 
is the most common confidence level statisticians use.
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Every margin of error is interpreted as plus or minus a certain number of
standard errors. The number of standard errors added and subtracted is
determined by the confidence level. If you need more confidence, you add
and subtract more standard errors. If you need less confidence, you add and
subtract fewer standard errors. The number that represents how many stan-
dard errors to add and subtract is different from situation to situation. For
one population mean, you use a value on the t-distribution, represented by 
tn – 1, where n is the sample size. See Table A-1 in the Appendix.

Here’s an example. Suppose you have a sample size of 20, and you want to
estimate the mean of a population. The number of standard errors you add
and subtract is represented by tn – 1, which in this case is t19. Suppose your
confidence level is 90 percent. To find the value of t, you look at row 19 in the
t-distribution table (Table A-1 in the Appendix). The table uses the area to the
right, so that area in this case is 0.05. (You get this value because 90 percent
is within the confidence interval, so 10 percent is outside of it. Half of that 10
percent lies above the confidence interval, and the other half lies below it.)
So look at row 19 and the column headed by the value 0.05. You get the value
of t = 1.73. So to be 90 percent confident with a sample size of 20, you need to
add and subtract 1.73 standard errors.

Now suppose you want to be 95 percent confident in your results, with the
same sample size of n = 20. The area above the interval is now half of 5 percent,
which is 2.5 percent or 0.025. Row 19 and column 0.025 in Table A-1 gives you
the value of t19 = 2.09. Notice that this value of t is larger than the value of t for
90 percent confidence, because in order to be more confident, you need to go
out more standard deviations on the t-distribution table to cover more possible
results.

Large confidence, narrow intervals — just the right size
A narrow confidence interval is much more desirable than a wide one. For
example, if you said that you think the average cost of a new home is $150,000
plus or minus $100,000, that wouldn’t be helpful at all because this makes
your estimate anywhere between $50,000 and $250,000. (Who has an extra
hundred grand to throw around?) But you have to be 99 percent confident, so
your statistician has to add and subtract more standard errors to get there,
which makes the interval that much wider (a downer). She tells you to be
happy with 95 percent confidence, but no!

Wait, don’t panic — you can have your cake and eat it too! If you know you
want to have a high level of confidence, but you don’t want a wide confidence
interval, just increase your sample size to meet that level of confidence. The
effect of sample size and the effect of confidence level cancel each other out,
so you can have a precise (narrow) confidence interval and a high level of
confidence at the same time. It all depends on sample size, something you
can control (up to the size of your pocketbook of course).
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For example, say the standard deviation of the house prices from a previous
study is s = $15,000, and you want to be 95 percent confident in your estimate
of average house price. Using a large sample size, your value of t (from the
last row of Table A-1 in the Appendix) would be 1.96. With a sample of 100
homes, your margin of error would be plus or minus 1.96 times $15,000
divided by the square root of 100, which comes out to $2,940. If this is too
large for you but you still want 95 percent confidence, crank up your value of
n. If you sample 500 homes, the margin of error decreases to plus or minus
1.96 times $15,000 divided by the square root of 500, which brings you down
to $1,314.81.

You can actually use a formula to find the sample size you need to meet a 

desired margin of error. That formula is n MOE
t sn 1

2

= -
d n , where MOE is the 

desired margin of error (as a proportion), s is the sample standard deviation,
and t is the value on the t-distribution that corresponds with the confidence
level you want. (You can use the last line of Table A-1 in the Appendix, which
will work fine, assuming that your sample size is fairly beyond 30.)

Interpreting a confidence interval
Interpreting a confidence interval involves a couple of subtle but important
issues, which I discuss in this section. The big idea is that a confidence inter-
val presents a range of likely values for the population parameter, based on
your sample. It includes this range because your sample results are going to
vary, and you want to address that. A 95 percent confidence interval, for
example, provides a range of likely values for the parameter such that the
parameter is included in the interval 95 percent of the time in the long term.

A 95 percent confidence interval doesn’t mean that your particular confi-
dence interval has a 95 percent chance of capturing the actual value of the
parameter; after the sample has been taken, it’s either in the interval or it
isn’t. A confidence interval represents the long-term chances of capturing the
actual value of the population parameter over many different samples.

Suppose a polling organization wants to estimate the percentage of people 
in the United States who drive a car with more than 100,000 miles on it, and 
it wants to be 95 percent confident in its results. The organization takes a
random sample of 1,200 people and finds that 420 of them (35 percent) drive
a much-driven car.

The meaty part of the interpretation lies in the confidence level — in this case,
the 95 percent. Because the organization took a sample of 1,200 people in the
U.S., asked each of them whether his or her car has more than 100,000 miles 
on it and made a confidence interval out of it, the polling organization is, in

56 Part I: Data Analysis and Model-Building Basics 

07_045206 ch03.qxd  2/1/07  9:46 AM  Page 56



essence, accounting for all of the other samples out there that it could have
gotten by building in the margin of error (±3 percent). The organization wants
to cover its bases on 95 percent of those other situations, and the ±3 percent
satisfies that.

Another way of thinking about the confidence interval is to say that if the
organization sampled 1,200 people over and over again and made a confi-
dence interval from its results each time, 95 percent of those confidence
intervals would be right. (You just have to hope that yours is one of those
right results.)

Using stat notation, you can write confidence levels as 1 – α. So if you want 
95 percent confidence, you write it as 1 – 0.05. The number that α represents
is the chance that your confidence interval is one of the wrong ones. This
number, α, is also related to the chance of making a certain kind of error with
a hypothesis test, which I explain in the hypothesis-testing section.

Setting Up and Testing Models
A model is an equation that attempts to describe how a population behaves.
It can be a claim that’s made about a population parameter; for example, a
shipping company might say that its packages are on time 95 percent of the
time, or a campus official claims that 75 percent of students live off campus.
It is important to test these models to see whether they actually hold up in
the population, which you can do by using hypothesis tests.

In this section, you see the big ideas of hypothesis testing that are the basis
for the data-analysis techniques in this book. You review and expand on the
concepts involved in a hypothesis test, including the hypotheses, the test
statistic, and the p-value.

What do Ho and Ha represent — really?
The big idea here is that you set up a hypothesis test to see whether your
model fits the population, based on your data. In the intro stat course, you
tested simple hypotheses — like whether the population mean is equal to
ten. At the intermediate statistics level, you get to look at much more sophis-
ticated and relevant models that involve several variables and/or several 
different populations in a variety of situations. The good news, though, is 
that the basic ideas from intro stats apply here as well. (If you need a brief
refresher before barreling through this section, feel free to flip through your
intro stats book or check out my other book Statistics For Dummies [Wiley].)
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You use a hypothesis test in situations where you have a certain model in
mind, and you want to see whether that model fits your data. Your model may
be one that just revolves around the population mean (testing whether that
mean is equal to ten, for example). Your model may be testing the slope of a
regression line (whether or not it’s zero, for example, with zero meaning you
find no relationship between x and y). You may be trying to use several differ-
ent variables to predict the marketability of a product, and you believe a model
using customer age, price, and shelf location can help predict it, so you need to
run one or more hypothesis tests to see whether that model works. (This
process is called multiple regression; more info on this in Chapter 5.)

A hypothesis test is made up of two hypotheses:

� The null hypothesis (Ho): Ho symbolizes the current situation — the
one that everyone assumed was true until you got involved.

� The alternative hypothesis (Ha): Ha represents the alternative model
that you want to consider. It stands for the researcher’s hypothesis, and
the burden of proof lies on the researcher to prove it.

Ho is the model that’s on trial. If you get enough evidence against it, you con-
clude Ha, which is the model you’re claiming is the right one. If you don’t get
enough evidence against Ho, then you can’t say that your model (Ha) is the
right one.

Gathering your evidence 
into a test statistic
A test statistic is the statistic from your sample, standardized so you can look
it up on a table, basically. While each hypothesis test is a little different, the
main thought is the same. For whatever model you’re trying to test, you
come up with a statistic that you use to test that model. Take that statistic,
standardize it (take the statistic minus its expected value from Ho and divide
all that by the standard error). Then look up your test statistic on a table to
see where it stands. That table may be the t-table (Table A-1 in the Appendix),
it may be the Chi-square table (Table A-3 in the Appendix), or it may be a dif-
ferent table. The type of test you need to you use on your data dictates which
table you use.

In the case of testing a hypothesis for a population mean, µ, you use the sample
mean, x , as your statistic. To standardize it, you take x and convert it to a 

value of t by using the formula t

n
s

x µ
n 1

0=
-

- , where µ0 is the value in Ho. This 

value is your test statistic. You compare your test statistic to the t-distribution
(check out Table A-1 in the Appendix).

58 Part I: Data Analysis and Model-Building Basics 

07_045206 ch03.qxd  2/1/07  9:46 AM  Page 58



Determining strength of 
evidence with a p-value
If you want to know whether your data has the brawn to stand up against Ho,
you want to figure out the p-value and compare it to a prespecified cutoff, α
(typically 0.05). The p-value is a measure of the strength of your evidence
against Ho. You can calculate the p-value by doing the following:

1. Calculate the test statistic. See the preceding section for more info 
on this.

2. Look up the test statistic on the appropriate table (such as the t-table,
A-1 in the Appendix).

3. Find the percentage of values on the table that fall beyond your test
statistic. This percentage is the p-value.

Suppose you’re conducting a hypothesis test and have already decided you
will reject Ho at level α = 0.05. You collect your data and find the test statistic
(see preceding section). If your test statistic is extremely high or extremely
low compared to other values on the table (whatever that table is), then you
reject Ho. 

For example, say the cutoff value for rejecting Ho at a level α = 0.05 is 1.645,
where you’re testing for the mean of one population. If you get a test statistic
of 1.7, you reject Ho. If you get a test statistic of 2.7, you really reject Ho. That
is, you have more evidence against Ho with a test statistic of 2.7 than with a
test statistic of 1.7. The two p-values of 1.7 and 2.7 are what statisticians call
marginally significant and highly significant results respectively, to use proper
terms.

Your friend, α, is the cutoff for your p-value — and the star of this chapter. 
(α is typically set at 0.05 — sometimes 0.10.) If your p-value is less than your
predetermined value of α, reject Ho, because you have sufficient evidence
against it. If your p-value is greater than or equal to α, you can’t reject Ho.

For example, if your p-value is 0.002, then your test statistic is so far away
from Ho that the chance of getting this result only by chance is only 2 out 
of 1,000. So, you conclude that Ho is very likely to be false. However, if your 
p-value turns out to be 0.30, then this result happens 30 percent of the time
anyway, so you see no red flags there, and you can’t reject Ho. You don’t have
enough evidence against it. It doesn’t mean Ho is true, but you don’t have the
evidence to say it’s false — a subtle, but important, difference.

When I compare the p-value to the α (the cutoff value), I like to think of a foot-
ball analogy, assuming that Ho is “the opposing team can’t make a touch-
down.” The burden is on the other team to show enough evidence to reject
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Ho. Now, imagine that their running back makes a touchdown by pushing the
ball just barely over the goal line, so close that his team needs to have a ref-
eree review the film before calling it a touchdown. This situation is equivalent
to rejecting Ho with a p-value just below your prespecified value of α = 0.05.
In this case, the p-value is close to the borderline, say 0.045. But, if their team
makes a touchdown by catching a pass deep in the end zone, no one has 
any doubt about the result because the ball was obviously past the goal line,
which is equivalent to the p-value being very small, say something like 0.001.
The opposing team’s showing a lot of evidence against Ho (and your team
could be in a lot of trouble).

Deconstructing Type I and Type II errors
Any technique you use in statistics to make a conclusion about a population
based on a sample of data has the chance of making an error. The errors I am
talking about, Type I and Type II errors, are due to random chance.

For example, you could flip a fair coin ten times and get all heads, making you
think that the coin isn’t fair at all. This thinking would result in an error,
because the coin actually was fair, but the data just wasn’t confirming that
due to chance. On the other hand, another coin may be unfair, and, just by
chance, you flip it ten times and get exactly five heads, which makes you
think that particular coin is equally balanced and doesn’t present any prob-
lem. (This tells you strange things can happen, especially when the sample
size is small.)

The way you set up your test can help to reduce these kinds of errors, but
they are always out there. As a data analyst, you need to know how to mea-
sure and understand the impact of the errors that can occur with a hypothe-
sis test and what you can do to possibly make those errors smaller. In the
following sections, I show you how you can do just that.

Making false alarms with Type I errors
A Type I error represents the situation where the coin was actually fair (using
the example from the preceding section), but your data led you to conclude
that it wasn’t, just by chance. I think of a Type I error as a false alarm: You
blew the whistle when you shouldn’t have.

To include a definition that makes all those stat experts happy, a Type I error
is the conditional probability of rejecting Ho, given that Ho is true.

The chance of making a Type I error is equal to α, which is predetermined
before you begin collecting your data. This α is the same α that represents
the chance of missing the boat in a confidence interval. It makes some sense
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that these two probabilities are both equal, because the probability of reject-
ing Ho when you shouldn’t (Type I error) is the same as the chance that 
the true population parameter falls out of the range of likely values when it
shouldn’t. That chance is α.

Say someone claims that the mean time to deliver packages for a company is
3.0 days on average (so Ho is µ = 3.0), but you believe it’s not equal to that (so
Ha is µ ≠ 3.0). Your alpha level is 0.05, and because you have a two-sided test,
this means you have 0.025 on each side. Your sample of 100 packages has a
mean of 3.5 days with a standard deviation of 1.5 days. You find the test 

statistic .
. .t

n
s

x µ

100
1 5

3 5 3 0
n 1

0=
-

= -
- , which equals 3.33. This value falls beyond 

1.96 (the value on the last row and the 0.025 column of the t-distribution, 
Table A-1 in the Appendix). So you don’t think 3.0 is a likely value for the mean
time of delivery, over all possible packages, and you reject Ho. Your data led
you to that decision and you stick to it.

But suppose your sample just by chance contained some longer than normal
delivery times, and that in reality, the company’s claim is right. You just made
a Type I error. You made a false alarm about the company’s claim.

To reduce the chance of a Type I error, reduce your value of α. However I
wouldn’t recommend reducing α too far. On the positive side, this reduction
makes it harder to reject Ho, because you need more evidence in your data to
do so. On the negative side, by reducing your chance of a Type I error, you
increase the chance of another type of error — the Type II error. To tackle
Type II errors, keep reading!

Missing an opportunity with a Type II error
A Type II error represents the situation where (continuing with the coin
example) the coin was actually unfair, but your data didn’t have enough evi-
dence to catch it, just by chance. You can think of a Type II error as a missed
opportunity — you didn’t blow the whistle when you should have. In statisti-
cal terms, a Type II error is the conditional probability of not rejecting Ho,
given that Ho is false. I call it a missed opportunity, because you were sup-
posed to be able to find a problem with Ho and reject it, but you didn’t.

The chance of making a Type II error depends on a couple of things:

� Sample size: If you have more data, you’re less likely to miss something
that’s going on. For example, if a coin actually is unfair (and you don’t
know it), flipping the coin only ten times may not reveal the problem,
because results can go all over the place when the sample size is small.
But if you flip the coin 1,000 times, you have a good chance of seeing a
pattern that favors heads over tails or vice versa.

61Chapter 3: Building Confidence and Testing Models

07_045206 ch03.qxd  2/1/07  9:47 AM  Page 61



� Actual value of the parameter: A Type II error is also related to how big
the problem is that you’re trying to uncover. For example, suppose a com-
pany claims that the average delivery time for packages is 3.5 days. If the
actual average delivery time is 5 days, you won’t have a very hard time
detecting that with your sample (even a small sample). Evidence will
mount up fast for rejecting Ho, which is exactly what you’re supposed to
do in this situation. But if the actual average delivery time is 4.0 days, you
have to do more work to actually detect the problem. Note that you never
do know the actual value of a parameter, but you want to protect yourself
against the different possibilities, which is why you consider them.

To reduce the chance of a Type II error, take a larger sample size. A greater
sample size makes it easier to reject Ho, but increases the chance of a Type I
error. Type I and Type II errors sit on opposite ends of a seesaw — as one
goes up, the other goes down. To try to meet in the middle, choose a large
sample size (the bigger, the better; see Figures 3-1 and 3-2) and a small α level
(0.05 or less) for your hypothesis test.

Getting empowered by the 
power of a hypothesis test
Type II errors (see preceding section) show the downside of a hypothesis
test. Statisticians, despite what many may think, actually try to look on the
bright side once in a while, and this case is one of those times. Instead of
looking at the chance of missing a difference from Ho that actually is there,
you can look at the chance of detecting a difference that really is there. This
detection is called the power of a hypothesis test.

The power of a hypothesis test is one minus the probability of making a 
Type II error. So power is a number between 0 and 1 that represents the
chance that you rejected Ho when Ho was false. (You can even sing about it 
“If Ho is false and you know it, clap your hands. . . .”) Remember that power
(just like Type II errors) depends on two elements: the sample size and the
actual value of the parameter (see the preceding section for a description of
these elements).

In the following sections, you discover what power means in statistics (not
being one of the big wigs, mind you); you also find out how to quantify power
by using a power curve.
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Quantifying power with a power curve
The specific calculations for the power of a hypothesis test are beyond the
scope of this book (so, take that sigh of relief), but computer programs and
graphs are available online to show you what the power is for different hypoth-
esis tests and various sample sizes (just type “power curve for the [blah blah
blah] test” into an Internet search engine). These graphs are called power
curves for a hypothesis test. A power curve is a special kind of graph. It gives
you an idea of how much of a difference from Ho you can detect with the
sample size that you have. Because the precision of your test statistic
increases as your sample size increases, sample size is directly related to
power. But it also depends on how much of a difference from Ho you’re trying
to detect. For example, if a package delivery company claims that its pack-
ages arrive in 2 days or less, do you want to blow the whistle if it’s actually
2.1 days? Or wait until it’s 3 days? You need a much larger sample size to
detect the 2.1-days situation versus the 3-days situation just because of the
precision level needed.

In Figure 3-1, you can see the power curve for a particular test of Ho: µ = 0
versus Ha: µ > 0. You can assume that σ (the standard deviation of the popu-
lation) is equal to two (I give you this value in each problem) and doesn’t
change. I set the sample size at ten throughout.

The horizontal (x) axis on the power curve shows a range of actual values of
µ. For example, you hypothesize that µ is equal to 0, but it may actually be
0.5, 1.0, 2.0, 3.0, or any other possible value. If µ equals 0, then Ho is true, and
the chance of detecting this (rejecting Ho) is equal to 0.05, the set value of α.
You work from that baseline. So, on the graph in Figure 3-1, when x = 0, you
get a y-value of 0.05.

Actual Value of the Parameter

Power
(n=10)

0.2

0.5 1.0 1.5 2.0 2.5 3.0
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Figure 3-1:
Power

curve for
Ho: µ = 0

versus Ha: 
µ > 0, for

n = 10 and 
σ = 2.
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Suppose that µ is actually 0.5, not 0, as you hypothesized. A computer tells
you that the chance of rejecting Ho (what you’re supposed to do here) is
0.197 = 0.20, which is the power. So, you have about a 20 percent chance of
detecting this difference with a sample size of ten. As you move to the right,
away from zero on the horizontal (x) axis, you can see that the power goes
up, and the y-values get closer and closer to 1.0.

For example, if the actual value of µ is 1.0, the difference from 0 is easier to
detect than if it’s 0.50. In fact, the power at 1.0 is equal to 0.475 = 0.48, so you
have almost a 50 percent chance of catching the difference from Ho in this
case. And as the values of the mean increase, the power gets closer and
closer to 1.0. Power never reaches 1.0, because statistics can never prove
anything with 100 percent accuracy. But you can get close to 1.0 if the actual
value is far enough from your hypothesis.

Controlling the sample size
You don’t have any control over what the actual value of the parameter is,
though, because that number is unknown. So what do you have control over?
The sample size. As the sample size increases, it becomes easier to detect a
real difference from Ho.

Figure 3-2 shows the power curve with the same numbers as Figure 3-1,
except for the sample size (n), which is 100 instead of 10. Notice that the
curve increases much more quickly and approaches 1.0 when the actual
mean is 1.0, compared to your hypothesis of 0. You want to see this kind of
curve — one that moves up quickly toward the value of 1.0, while the actual
values of the parameter increase on the x-axis.

Actual Value of the Parameter

Power
(n=100)
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Figure 3-2:
Power

curve for
Ho: µ = 0

versus Ha: 
µ > 0, for

n = 100 and
σ = 2.
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If you compare the power of your test when µ is 1.0 for the n = 10 situation (in
Figure 3-1) versus the n = 100 situation (in Figure 3-2), you see that the power
increases from 0.475 to more than 0.999. Table 3-1 shows the different values
of power for the n = 10 case versus the n = 100 case, when you test Ho: µ = 0
versus Ha: µ > 0, assuming a value of σ = 2.

Table 3-1 Comparing the Values of Power 
for n = 10 versus n = 100 (Ho is µ = 0)

Actual Value of µ Power when n = 10 Power when n = 100

0.00 0.050 = 0.05 0.050 = 0.05

0.50 0.197 = 0.20 0.804 = 0.81

1.00 0.475 = 0.48 approx. 1.0 

1.50 0.766 = 0.77 approx. 1.0

2.00 0.935 = 0.94 approx. 1.0

3.00 0.999 = approx. 1.0 approx. 1.0

You can find power curves for a variety of hypothesis tests under many dif-
ferent scenarios. Each has the same general look and feel to it: starting at the
value of α when Ho is true, increasing in an S-shape as you move from left to
right on the x-axis, and finally approaching the value of 1.0 at some point.
Power curves with large sample sizes approach 1.0 faster than power curves
with low sample sizes.

You can have too much power. For example, if you make the power curve for
n = 10,000 and compare it to Figures 3-1 and 3-2, you can find that it’s practi-
cally at 1.0 already for any number other than 0.0 for the mean. In other
words, the actual mean could be 0.05 and with your hypothesis Ho: µ = 0.00,
you would reject Ho, because of the huge sample size you’ve got. If you zoom
in enough, you can always detect something, even if that something makes no
practical difference. If the sample size is incredibly large, it can inflate power
to the point where you can detect differences from Ho that are smaller than
you really want, from a practical standpoint. Beware of surveys and experi-
ments that have what appears to be an excessive sample size — for example,
in the tens of thousands. They may be reporting “statistically significant”
results that don’t mean diddly.
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Power in manufacturing
The power of a test plays a role in the manufac-
turing process. Manufacturers often have very
strict specifications regarding the size, weight,
and/or quality of their products. During the man-
ufacturing process, manufacturers want to be
able to detect deviations from these specifica-
tions, even small ones, so they must think about
how much of a difference from Ho they want 
to detect, and then figure out the sample size
they need in order to detect that difference
when it appears. For example, if the candy bar is
supposed to weight 2.0 ounces, the manufac-
turer may want to blow the whistle if the actual

average weight shifts to, say, 2.5 ounces.
Statisticians can work backwards in calculat-
ing the power and find the sample size they
need to know to stop the process.

Medical scientists also think about power when
they set up their studies (called clinical trials).
Suppose they’re checking to see whether an
antidepressant adversely affects blood pressure
(as a side effect of taking the drug). Scientists
need to be able to detect small differences in
blood pressure, because for some patients, any
change in blood pressure is important to note.
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In this part . . . 
You really get into the modeling process, using various

pieces of known info to predict one elusive variable.
(Sounds sneaky? In a way, it is . . . )  This part goes way
beyond using one variable to predict another, beyond
simple linear regression to multiple, nonlinear, and 
even logistic regression. These methods can solve more 
complex problems, so they lend themselves to many real-
world applications. 
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Chapter 4

Getting in Line with 
Simple Linear Regression

In This Chapter
� Using scatterplots and correlation coefficients to examine relationships

� Building a simple linear regression model to estimate y from x

� Testing how well the model fits

� Interpreting the results and making good predictions

Looking for relationships and making predictions is one of the staples of
data analysis. Everyone wants to answer questions like “Can I predict

how many units I’ll sell if I spend x amount of advertising dollars?”; or “Does
drinking more diet cola really relate to more weight gain?”; or “Do children’s
backpacks seem to be getting heavier each year in school, or is it just me?”

Linear regression tries to find relationships between two or more variables
and comes up with a model that tries to describe that relationship, much like
the way the line y = 2x + 3 explains the relationship between x and y. But
unlike math where functions like y = 2x + 3 tell the entire story about the two
variables, in statistics, things don’t come out that perfectly; some variability
and error is involved (that’s what makes it fun!).

This chapter is partly a review of the concepts of simple linear regression
presented in an intro stats book. But the fun doesn’t stop there. I expand on
the ideas you learned about regression in your intro stat course and set you
up for some of the other types of regression models you see in Chapters 5
through 8.

In this chapter, you see how to build a simple linear regression model that
examines the relationship between two variables. You also see how simple
linear regression works from a model-building standpoint.
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Exploring Relationships with 
Scatterplots and Correlations

Before looking ahead to predicting a value of y by using a value of x, you 
need to first establish that you have a legitimate reason to do so by using a
straight line, and you also need to feel confident that using a line to make that
prediction will actually work well. In order to achieve both of these important
steps, you need to first plot the data in a pairwise fashion so you can visually
look for a relationship; then you need to somehow quantify that relationship
in terms of how well those points follow a line. In this section, you do just
that, using scatterplots and correlations.

Here’s a perfect example of a situation where simple linear regression is useful:
In 2004, the California State Board of Education wrote a report entitled “Text-
book Weight in California: Analysis and Recommendations.” In this report, they
discussed the great concern over the weight of the textbooks in student’s back-
packs, and the problems it presents for students. They conducted a study
where they weighed a variety of textbooks from each of four core areas studied
in grades 1 through 12 (reading, math, science, and history — where’s statis-
tics?) over a range of textbook brands and found the average total weight for
all four books for each grade.

The California Board of Education consulted pediatricians and chiropractors,
who recommended that the weight of a student’s backpack should not
exceed 15 percent of his body weight. From there, the Board hypothesized
that the total weight of the textbooks in these four areas increases for each
grade level and wanted to see whether they could find a relationship between
the average child’s weight in each grade and the weight of his books. So along
with the average weight of the four core-area textbooks for each grade, they
also recorded the average weight for the students in that grade. Their results
are shown in Table 4-1.

Table 4-1 Average Textbook Weight and Student Weight 
(Grades 1–12)

Grade Average Student Wt. (lbs.) Average Textbook Wt. (lbs.)

1 48.50 8.00

2 54.50 9.44

3 61.25 10.08

4 69.00 11.81

5 74.50 12.28
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Grade Average Student Wt. (lbs.) Average Textbook Wt. (lbs.)

6 85.00 13.61

7 89.00 15.13

8 99.00 15.47

9 112.00 17.36

10 123.00 18.07

11 134.00 20.79

12 142.00 16.06

In this section, you begin exploring whether or not a relationship exists
between these two quantitative variables. You start by displaying the pairs of
data using a two-dimensional scatterplot to look for a possible pattern, and
you quantify the strength and direction of that pattern using the correlation
coefficient.

Data analysts should never make any conclusions about a relationship
between x and y based solely on either the correlation or the scatterplot
alone; the two elements need to be examined together. It is possible (but of
course not a good idea) to manipulate graphs to look better or worse than
they really are just by changing the scales on the axes. Because of this, statis-
ticians never go with the scatterplot alone to determine whether or not a
linear relationship exists between x and y. A correlation without a scatterplot
is dangerous too, because the relationship between x and y may be very
strong, but just not linear.

Using scatterplots to explore relationships
In order to explore a possible relationship between two variables, such as
textbook weight and student weight, you first plot the data in a special graph
called a scatterplot. A scatterplot is a two-dimensional graph that displays
pairs of data, one pair per observation in the (x, y) format. Figure 4-1 shows 
a scatterplot of the textbook weight data from Table 4-1.

You can see that the relationship appears to follow the straight line that’s
included on the graph, except possibly for the last point, where textbook
weight is 16.06 pounds and student weight is 142 pounds (for grade 12). This
point appears to be an outlier — it’s the only point that doesn’t fall into the

71Chapter 4: Getting in Line with Simple Linear Regression

09_045206 ch04.qxd  2/1/07  9:49 AM  Page 71



pattern. So overall, an uphill, or positive linear relationship appears to exist
between textbook weight and student weight; as student weight increases, so
does textbook weight.

To make a scatterplot in Minitab, enter the data in columns one and two of
the spreadsheet. Go to Graphs>Scatterplot. Click Simple and then OK. High-
light the response variable (y) in the left-hand box, and click Select. This vari-
able shows up as the y variable in the scatterplot. Click on the explanatory
(x) variable in the left-hand box and click Select. It shows up in the x variable
box. Click OK, and you get the scatterplot.

Collating the information by using 
the correlation coefficient
After you’ve displayed the data using a scatterplot (see preceding section), the
next step is to find a statistic that quantifies the relationship somehow. The
correlation coefficient (also known as Pearson’s correlation coefficient) mea-
sures the strength and direction of the linear relationship between two quan-
titative variables x and y. It’s a number between –1 and +1 that’s unit-free;
that means if you change from pounds to ounces, the correlation coefficient
doesn’t change. (What a messed-up world it would be if this wasn’t the case!)

Statistical software packages, such as Minitab, refer to the correlation coeffi-
cient as Pearson’s correlation coefficient. (Don’t worry — they’re the same!)
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If the relationship between x and y is uphill, or positive (as x increases so
does y), the correlation is a positive number. If the relationship is downhill, or
negative (as x increases, y gets smaller), then the correlation is negative. If
the correlation is zero, you can find no linear relationship between x and y. 
(It may be that a different relationship exists, such as a curve; see Chapter 7
for more on this.)

If the value of the correlation is +1 or –1, this value indicates that the points
fall in a perfect, straight line. If the correlation is close to +1 or –1, this corre-
lation value signifies a strong relationship. If the correlation is closer to +0.5
or –0.5, these values show a moderate relationship. A value close to 0 signi-
fies a weak relationship or no linear relationship at all.

You can calculate the correlation coefficient by using a formula involving the
standard deviation of x, the standard deviation of y, and the covariance of x
and y, which measures how x and y move together, in relation to their means.
However, the formula isn’t the focus here (you can find it in your intro stats
text or in my other book Statistics For Dummies [Wiley]); it’s the concept
that’s important. Any computer package can calculate the correlation coeffi-
cient for you with a simple click of the mouse.

To have Minitab calculate a correlation for you, go to Stat>Basic Statistics>
Correlation. Highlight the variables you want correlations for and click Select.
Then click on OK.

The correlation for the textbook weight example is (can you guess before
looking at it?) 0.926, which is very close to 1.0. This correlation means that a
very strong linear relationship is present between average textbook weight
and average student weight for grades 1 through 12, and that relationship is
positive and linear (follows a straight line). This correlation is confirmed by
the scatterplot shown in Figure 4-1.

Building a Simple Linear 
Regression Model

After you have a handle on which x variables may be related to y in a linear
way, you go about the business of finding that straight line that best fits the
data. You find the slope and y-intercept, put them together to make a line,
and you use the equation of that line to make predictions for y. All of this is
part of building a simple linear regression model.

In this section, you set the foundation for regression models in general
(including those you can find in Chapters 5 through 8). You plot the data,
come up with a model that you think makes sense, assess how well it fits, 
and use it to guesstimate the value of y given another variable, x.
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Finding the best-fitting line 
to model your data
After you’ve established that x and y have a strong linear relationship, as evi-
denced by both the scatterplot and the correlation coefficient (see the previ-
ous sections), you’re ready to build a model that estimates y using x. In the
textbook-weight case, you want to estimate average textbook weight using
average student weight.

The most basic of all the regression models is the simple linear regression
model that comes in the general form of y = a + bx. Here a represents the y-
intercept of the line; b represents the slope.

A straight line that’s used in simple linear regression is just one of an entire
family of models (or functions) that statisticians use to express relationships
between variables. A model is just a general name for a function that you can
use to estimate or guess what outcome will occur if you have some given
information about related items.

To find the right model for your data, the idea is to scour all possible lines and
choose the one that fits the data best. Thankfully, you have an algorithm that
does this for you (computers use it in their calculations). Formulas also exist
for finding the slope and y-intercept of the best-fitting line by hand. (You can
find those formulas in your intro stats text or in Statistics For Dummies [Wiley].)

To run a linear regression analysis in Minitab, go to Stat>Regression>
Regression. Highlight the response (y) variable in the left-hand box, and click
on Select. The variable shows up in the Response Variable box. Then high-
light your explanatory (x) variable, and click on Select. This variable shows
up in the Predictor Variable box. Click OK.

The equation of the line that best describes the relationship between average
textbook weight and average student weight is: y = 3.69 + 0.113x, where x is
the average student weight for that grade, and y is the average textbook
weight. Figure 4-2 shows the Minitab output of this analysis.

The regression equation is
textbook wt = 3.69 + 0.113 student wt

Predictor
Constant
student wt

S = 1.51341     R-Sq = 85.8%     R-Sq(adj) = 84.4%

Coef
3.694

0.11337

SE Coef
1.395

0.01456

T
2.65
7.78

P
0.024
0.000

Figure 4-2:
Simple

linear
regression

analysis for
the textbook

weight
example.
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By writing y = 3.69 + 0.113x, you mean that this equation represents your 
estimated value of y, given the value of x that you observe with your data.
Statisticians write this equation by using a carrot (or hat as statisticians call
it), like y/ , so everyone can know it’s an estimate, not the actual value of y.
This y-hat is your estimate of the average value of y over the long term, based
on the observed values of x. However, in many intro stats texts, the hat is left
off because statisticians have an unwritten understanding as to what y repre-
sents. This issue comes up again in Chapters 5 through 8. (By the way, if you
think y-hat is a funny term here, it’s even funnier in Mexico, where statisti-
cians call it y-sombrero — no kidding!)

The y-intercept of the regression line
Selected parts of that Minitab output shown in Figure 4-2 are of importance to
you at this point. First, you can see that under the column “Coef” you have
the numerical values on the right side of the equation of the line — in other
words, the slope and y-intercept. The number 3.69 represents the coefficient
of “Constant,” which is a fancy way of saying that’s the y-intercept (because
the y-intercept is just a constant, it never changes). The y-intercept is the
point where the line crosses the y-axis, in other words, the value of y when
x equals 0.

The y-intercept of a regression line may or may not have a practical meaning
depending on the situation. To determine whether the y-intercept of a regres-
sion line has practical meaning, look at the following:

� Does the y-intercept fall within the actual values in the data set? If yes,
then it has practical meaning.

� Does the y-intercept fall into negative territory where negative y-values
aren’t possible? For example if the y-values, are weights, they can’t be
negative. Then the y-intercept has no practical meaning. It is still correct
though, because it just happens to be the place where the line, if
extended to the y-axis, crosses the y-axis.

� Does the value x = 0 have practical meaning? For example, if x is temper-
ature at a football game in Green Bay, then x = 0 is a value that’s relevant
to examine. If x = 0 has practical meaning, then the y-intercept would
also because it represents the value of y when x = 0. If not, for example,
when x represents height of a toddler, then the y-intercept has no practi-
cal meaning.

In the textbook example, the y-intercept doesn’t really have a practical mean-
ing because students don’t weigh zero pounds, so you don’t really care what
the estimated textbook weight is for that situation. But you do need to find a
line that fits the data you do have (where average student weights go from
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48.5 pounds to 142 pounds). That best-fitting line must include a y-intercept,
and for this problem, that y-intercept happens to be 3.69.

The slope of the regression line
The value 0.113 from Figure 4-2 indicates the coefficient (or number in front of)
of the student-weight variable. This number is also known as the slope. It repre-
sents the change in y (textbook weight) due to a one-unit increase in x (student
weight). As student weight increases by one pound, textbook weight increases
by about 0.113 pounds, on average. To make this relationship more meaningful,
you can multiply both quantities by ten to say that as student weight increases
by 10 pounds, the textbook weight goes up by about 1.13 pounds on average.

Whenever you get a number for the slope, just take that number and put it over
1. Doing this can help you get started on a proper interpretation of slope. For
example, a slope of 0.113 is rewritten as 0.113⁄1. Using the idea that slope equals rise
over run, or change in y over change in x, you can interpret the value of 0.113 in
the following way: As x increases by one pound, y increases by 0.113 pounds.

Making estimates by using 
the regression line
Now that you have a line that estimates y given x, you can use it to estimate
the (average) value of y for a given value of x. The basic idea is to take a rea-
sonable value of x, plug it in to the equation of the regression line, and see
what the value of y gives you.

In the textbook-weight example, the best-fitting line (or model) is the line y =
3.69 + 0.113x. For an average student that weighs 60 pounds, for example, the
estimated average textbook weight is 3.69 + 0.113 * 60 = 10.47 pounds (those
poor little kids!). If the average student weighs 100 pounds, the estimated aver-
age textbook weight is 3.69 + 0.113 * 100 = 14.99, or nearly 15 pounds.

Checking the Model’s Fit (The Data, 
Not the Clothes!)

After you’ve established a relationship between x and y and have come up
with an equation of a line that represents that relationship, you may think
your job is done. (Many researchers erringly stop here, so I’m depending on
you to break the cycle on this!) But the most-important job remains to be
completed: checking to be sure that the conditions of the model are truly met
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and that the model fits well in more specific ways than the scatterplot and
correlation measure. This section presents methods for defining and assess-
ing the fit of a simple linear regression model.

Defining the conditions
Two major conditions must be met before you apply a simple linear regres-
sion model to a data set:

� The y’s have to have a normal distribution for each value of x.

� The y’s have to have a constant amount of spread (standard deviation)
for each value of x.

In the following sections, you look at these important conditions in depth.

Normal y’s for every x
For any value of x, the population of possible y-values must have a normal
distribution. The mean of this distribution is the value for y that is on the
best-fitting line for that x-value. That is, some of your data falls above the
best-fitting line, some data falls below the best fitting line, and a few may
actually land right on the line.

If the regression model is fitting well, the data values should be scattered
around the best-fitting line in such a way that about 68 percent of the values
lie within one standard deviation of the line, about 95 percent of the values
should lie within two standard deviations of the line, and about 99.7 percent
of the values should lie within three standard deviations of the line. This
specification, as you may recall from your intro stats course, is called the 
68-95-99.7 rule, and it applies to all bell-shaped data (for which the normal
distribution applies).

You can see in Figure 4-3 how for each x-value, the y-values you may observe
tend to be located near the best-fitting line in greater numbers, and as you
move away from the line, you see fewer and fewer y-values, both above and
below the line. More than that, they’re scattered around the line in a way that
reflects a bell-shaped curve, the normal distribution.

Why does this condition makes sense? The data you collect on y for any partic-
ular x-value varies from individual to individual (for example, not all students’
textbooks weigh the same, even for students who weigh the exact same
amount). But those values aren’t allowed to vary any way they want to. To fit
the conditions of a linear regression model, for each given value of x, the data
should be scattered around the line according to a normal distribution. Most of
the points should be close to the line, and as you get farther and farther from
the line, you can expect fewer and fewer data points to occur. So condition
number one is that the data have a normal distribution for each value of x.
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Same spread for every x
The second condition for being able to use the simple linear regression model
is the following: As you move from left to right on the x-axis, the spread in the 
y-values around the line should be the same, no matter which value of x you’re
looking at. This requirement is called the homoscedasticity condition. (How they
came up with that mouthful of a word just for describing the fact that the stan-
dard deviations stay the same across the x-values, I’ll never know.) This condi-
tion ensures that the best-fitting line works well for all relevant values of x, not
just in certain areas where the y-values lie close to each other.

You can see in Figure 4-3 that no matter what the value of x is, the spread in
the y-values stays the same throughout. If the spread got bigger and bigger as
x got larger and larger, for example, the line would lose its ability to fit well
for those large values of x.

In the next sections, you can find out how to check the two conditions for
simple linear regression, so keep reading.

Finding and exploring the residuals
To check to see whether the y-values come from a normal distribution, you
need to measure how far off your predictions were from the actual data that
came in, and you need to check those errors and see how they stack up.

In the following sections, you center on finding a way to measure these errors
that the model makes. You also explore the errors to identify particular prob-
lems that occurred in the process of trying to fit a straight line to the data. In

y

x

Figure 4-3:
Conditions
of a simple

linear
regression

model.
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other words, you can discover that looking at errors helps you assess the fit of
the model and diagnose problems that caused a bad fit, if that was the case.

Finding the residuals
A residual is the difference between the observed value of y (from the best-
fitting line) and the predicted value of y (from the data set). Specifically, for
any data point, you take its observed y-value (from the data) and subtract the
expected y-value (from the line). If the residual is large, the line doesn’t fit
well in that spot. If the residual is small, the line fits well in that spot.

For example, suppose you have a point in your data set (2, 4) and the equa-
tion of the best-fitting line is y = 2x +1. The expected value of y in this case 
is 2 * 2 + 1 = 5. The observed value of y from the data set is 4. Taking the
observed value minus the estimated value you get 4 – 5 = –1. The residual for
that particular data point (2, 4) is –1. If you observe a y-value of 6 and use the
same straight line to estimate y, then the residual would be 6 – 5 = +1.

In general, a positive residual means you underestimated y at that point, and
a negative residual means you overestimated y at that point.

Standardizing the residuals
To make interpreting the residuals easier, statisticians typically standardize
them; that is, subtract the mean of the residuals (zero) and divide by the stan-
dard deviation of all the residuals. The residuals are a data set just like any
other data set, so you can find their mean and standard deviation like you
always do. Standardizing just means converting to a Z-score, so you see where
it falls on the standard normal distribution.

Making residual plots
You can plot the residuals on a graph called a residual plot. (If you’ve stan-
dardized the residuals, you call it a standardized residual plot.) Figure 4-4
shows Minitab output for a variety of standardized residual plots, all getting
at the same idea: checking to be sure the conditions of the simple linear
regression model are met.

Checking normality
If the condition of normality is met, you can see on the residual plot lots of
(standardized) residuals close to zero; as you move farther and farther away
from zero, you can see fewer and fewer residuals. Note: A standardized resid-
ual at or beyond +3 or –3 is something you shouldn’t expect to see. If this
occurs, you can consider that point an outlier, which warrants further investi-
gation. (For more on outliers, see the section “Scoping for outliers.”)

The residuals should also occur at random — some above the line, some below
the line. If a pattern occurs in the residuals, the line may not be fitting right.
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The plots in Figure 4-4 seem to have an issue with the very last observation,
the one for twelfth graders. In this observation, the average student weight
(142) seemed to follow the pattern of increasing with each grade level, but
the textbook weight (16.06) was less than for eleventh graders (20.79) and is
the first point to break the pattern.

You can also see in the plot in the upper-right corner of Figure 4-4 that the
very last data value has a residual that sticks out from the others and has a
value of –3.0 (something that should be a very rare occurrence). So the value
you expected for y based on your line was off by a factor of 3 standard devia-
tions. And because this residual is negative, what you observed for y was
much lower than you may have expected it to be using the regression line.

The other residuals seem to fall in line with a normal distribution, as you can
see in the upper-right plot of Figure 4-4. The residuals concentrate around zero,
with fewer appearing as you move farther away from zero. You can also see
this pattern in the upper-left plot of Figure 4-4, which shows how close to
normal the residuals are. The line in this graph represents the equal-to-normal
line. If the residuals follow close to the line, then normality is okay. If not, you
have problems (in a statistical sense, of course). You can see the residual with
the highest magnitude is –3, and that number falls outside the line quite a bit.

The lower-left plot in Figure 4-4 makes a histogram of the standardized resid-
uals, and you can see it doesn’t look much like a bell-shaped distribution. It
doesn’t even look symmetric (the same on each side when you cut it down the
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Residual Plots for Textbook Wt. (full data set)
Normal Probability Plot of the Residuals
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Residuals versus the Fitted Values

Histogram of the Residuals Residuals versus the Order of the Data
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middle). The problem again seems to be the residual of –3, which makes the
histogram be skewed to the left.

The lower-right plot of Figure 4-4 plots the residuals in the order presented in
the data set in Table 4-1. Because the data was ordered already, the lower-
right residual plot looks like the upper-right residual plot in Figure 4-4, except
the dots are connected. This lower-right residual plot makes the residual 
of –3 stand out even more.

Checking the spread of the y’s for each x
The graph in the upper-right corner of Figure 4-4 also addresses the
homoscedasticity condition. If the condition is met, then the residuals for
every x-value have about the same spread. If you cut a straight line down
through each x-value, the residuals have about the same spread (standard
deviation) each time, except for the last x-value, which again represents
grade twelve. That means the condition of equal spread in the y-values is met
for the backpack example.

If you look at only one residual plot, choose the one in the upper-right corner
of Figure 4-4, the plot of the fitted values (the values of y on the line) versus
the standardized residuals. Most problems with model fit pop up on that plot
because a residual is defined as the difference between the observed value 
of y and the fitted value of y. In a perfect world, all the fitted values have no
residual at all; a large residual (such as the one where the estimated weight is
20 pounds for twelfth graders; see Figure 4-4) is indicated by a point far off
from zero. This graph also shows you deviations from the overall pattern of
the line; for example, if large residuals are on the extremes of this graph (very
low or very high fitted values), that shows the line isn’t fitting in those areas.

Using r2 to measure model fit
One important way to assess how well the model fits is to measure the value
of r 2, where r is the correlation coefficient. Statisticians measure how well a
model fits by looking at what percentage of the variability in y is explained by
the model.

The y-values of the data you collect have a great deal of variability in and of
themselves. You look for another variable (x) that helps you explain that vari-
ability in the y-values. After you put that x variable into the model, and you
find it’s highly correlated with y, you want to find out how well this model did
at explaining why the values of y are different.

As it turns out, the value of r 2, gives you that measure of model fit. Because
squaring a number between 0 and +1 makes the result get smaller (except for
0 and +1), how do you interpret r 2? A value of r = +0.9 or –0.9 is quite high;
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note that when you square either one of them, you get 0.81, which you
should also interpret as being high.

The following are some general guidelines for interpreting the value of r 2:

� If the model containing x explains a lot of the variability in the y-values,
then r 2 is high (in the 80 to 90 percent range is considered to be
extremely high). Values like 0.70 are still considered fairly high. A high
percentage of variability means that the line fits well because there is
not much left to explain about the value of y other than using x and its
relationship to y. So a larger value of r 2 is a good thing.

� If the model containing x doesn’t help much in explaining the difference
in the y-values, then the value of r 2 is small (closer to zero; say between
0.00 and 0.30 roughly). The model, in this case, would not fit well. You
need another variable to explain y other than the one you already tried.

� Values of r 2 that fall in the middle (between, say, 0.30 and 0.70) mean 
that x does help somewhat in explaining y, but it doesn’t do the job well
enough on its own. In this case, statisticians would try to add one or
more variables to the model to help explain y more fully as a group (read
more about this in Chapter 5).

For the textbook weight example, the value of r (the correlation coefficient) 
is 0.93. Squaring this result, you get r 2 = 0.8649. That number means approxi-
mately 86 percent of the variability you find in average textbook weights for
all students (y-values) is explained by the average student weight (x-values).
This percentage tells you that the model of using year in school to estimate
backpack weight is a good bet.

In the case of simple linear regression, you have only one x variable, but in
Chapter 5, you can see models that contain more than one x variable. In this
situation, you use r 2 to help sort out the contributions each individual vari-
able brings to the model.

Scoping for outliers
Sometimes life isn’t perfect (oh really?), and you may find a residual in your
otherwise tidy data set that totally sticks out, which is called an outlier. That
is, it has a standardized value at or beyond +3 or –3. It threatens to blow the
conditions of your regression model and send you crying to your professor.

Before you panic, the best thing to do is to examine that outlier more closely.
First, can you find an error in that data value? Did someone report her age as
642, for instance? (After all, mistakes do happen.) If you do find a certifiable
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error in your data set, you remove that data point (or fix it if possible) and
analyze the data without it. However, if you can’t explain away the problem
by finding a mistake, you must think of another approach.

If you can’t find a mistake that caused the outlier, you don’t necessarily have
to trash your model; after all, it’s only one data point. What you do is analyze
the data with that data point and analyze the data again without it. Then
report and compare both analyses. This comparison can give you a sense of
how influential that one data point is. It may lead other researchers to con-
duct more research to zoom in on the issue you brought to the surface.

In Figure 4-1, you can see the scatterplot of the full data set for the textbook
weights example. Figure 4-5 shows the scatterplot for the data set minus the
outlier. The scatterplot fits the data better without the outlier. The correla-
tion increases to 0.993. The value of r 2 increases to 0.986. The equation for
the regression line for this data set is y = 1.78 + 0.139x.

The slope of the regression line hasn’t changed much by removing the outlier
(compare it to Figure 4-2, where the slope is 0.113). However, the y-intercept
has changed; it’s now 1.78 without the outlier compared to 3.69 with the out-
lier. The slope of the lines are about the same, but the lines cross the y-axis in
different places. It appears that the outlier (the last point in the data set) has
quite an affect on the best-fitting line.

Figure 4-6 shows the residual plots for the regression line for the data set with-
out the outlier. Each of these plots shows a much better fit of the data to the
model compared to Figure 4-4. This result tells you that the data for grade
twelve is influential in this data set, and that outlier needs to be noted and 
perhaps explored further. Do students peak out when they’re juniors in high
school? Or do they just decide when they’re seniors that it isn’t cool to carry
books around? (A statistician’s job isn’t to wonder why, but to do and analyze.)
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Making Correct Conclusions
The bottom line of any data analysis is to make the correct conclusions given
your results. When you’re working with a simple linear regression model,
three major errors can be made. In this section, you see those errors and how
to avoid them.

Avoiding slipping into cause-
and-effect mode
In a simple linear regression, you investigate whether x is related to y, and if
you get a strong correlation and a scatterplot that shows a linear trend, then
you find the best-fitting line and use it to estimate the value of y for reason-
able values of x.

There is a fine line, however (no pun intended), that you don’t want to cross
with your interpretation of regression results. Be careful to not interpret
slope in a cause-and-effect mode when you’re using the regression line to
estimate the value of y using x. Doing so can result in a leap of faith that can
send you into the frying pan. Unless you have used a controlled experiment
to get the data, you can only assume that the variables are correlated; you
can’t really give a stone-cold guarantee why they are related.
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Residual Plots for Textbook Weight Data (outlier removed)
Normal Probability Plot of the Residuals
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Residuals versus the Fitted Values

Histogram of the Residuals Residuals versus the Order of the Data
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In the textbook weight example, you estimate the average weight of the stu-
dents’ textbooks by using the students’ average weight, but that doesn’t
mean that increasing a particular child’s weight causes his textbook weight
to increase. For example, because of the strong positive correlation, you do
know that students with lower weights are associated with lower total text-
book weights, and students with higher weights tend to have higher textbook
weights. But you can’t take one particular third-grade student, increase his
weight, and presto — suddenly his textbooks weigh more.

The variable that is underlying the relationship between a child’s weight and
the weight of his backpack is the grade level of the student; as grade level
increases, so does the size of his books. Student grade level drives both stu-
dent weight and textbook weight. In this situation, student grade level is what
statisticians call a confounding variable: it’s a variable that wasn’t included in
the study but is related to both the outcome and the response, and the vari-
able confounds or confuses the issue of what is causing what to happen.

If the collected data was the result of a well-designed experiment that con-
trols for possible confounding variables, you can establish a cause-and-effect
relationship between x and y if they’re strongly correlated. Otherwise, you
can’t.

Extrapolation: The ultimate no-no
Plugging values of x into the model that fall outside of the reasonable bound-
aries of x is called extrapolation. And one of my colleagues sums up this idea
very well, “Friends don’t let friends extrapolate.”

When you determine a best-fitting line for your data, you come up with an
equation that allows you to plug in a value for x and get a predicted value 
for y. In algebra, if you found the equation of a line and graphed it, the line
would typically have an arrow on each end indicating it goes on forever in
either direction. But that doesn’t work for statistical problems ( ’cause statis-
tics represents the real world). What I mean is that when you’re dealing with
real-world units like height, weight, IQ, GPA, house prices, and the weight of
your statistics textbook, only certain numbers make sense.

So the first point is, don’t plug in values for x that don’t make any sense. For
example, if you’re estimating the price of a house (y), using its square footage
(x), you wouldn’t think of plugging in a value of x like 10 square feet or 100
square feet, because houses simply aren’t that small. You also wouldn’t think
about plugging in values like 1,000,000 square feet for x (unless your “house”
is the Ohio State football stadium or the like). It wouldn’t make sense. If
you’re estimating tomorrow’s temperature using today’s temperature, nega-
tive numbers for x could possibly make sense, but if you’re estimating the
amount of precipitation tomorrow given the amount of precipitation today,
negative numbers for x (or y for that matter) don’t make sense.
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Second, choose only reasonable values of x for which you try to make esti-
mates about y. That is, look at the values of x for which your data was collected
and stay within those bounds when making predictions. In the textbook weight
example, the smallest average student weight is 48.5 pounds, and the largest
average student weight is 142 pounds. Choosing student weights between 48.5
and 142 to plug in for x in the equation is okay, but choosing values less than
48.5 or above 142 isn’t a good idea. You can’t guarantee that the same linear
relationship (or any linear relationship for that matter) continues outside the
given boundaries.

Think about it: If the relationship you found actually continued for any value
of x, no matter how large, then a 250-pound linebacker from OSU would have
to carry 3.69 + 0.113 * 250 = 31.94 pounds of books around in his backpack.
Of course this would be easy for him, but what about the rest of us?

Knowing the limitations of a simple 
linear regression model
A simple linear regression model is just what it says it is: simple. I don’t 
mean easy to work with, necessarily, but simple in the uncluttered sense. The
model tries to estimate the value of y by only using one variable, x. However,
the number of real-world situations that can be explained by using a simple,
one-variable linear regression is small. Oftentimes one variable just can’t do
all the predicting.

If one variable alone doesn’t result in a model that fits, add more variables.
Oftentimes it takes many variables to make a good estimate for y. In the 
case of stock market prices, they’re still looking for that ultimate prediction
model.

As another example, health insurance companies try to estimate how long
you will live by asking you a series of questions (each of which represents a
variable in the regression model). You can’t find one single variable that esti-
mates how long you’ll live; you must consider many factors: your health,
your weight, whether or not you smoke, genetic factors, how much exercise
you do each week, and the list goes on and on and on.

The point is, regression models don’t always use just one variable, x, to esti-
mate y. Some models use two, three, or even more variables to estimate y.
Those models aren’t called simple linear regression models; they’re called
multiple linear regression models, because of their employment of multiple
variables to make an estimate. (You can explore multiple linear regression
models in Chapter 5.)
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Chapter 5

When Two Variables Are Better
than One: Multiple Regression

In This Chapter
� Getting the basic ideas behind a multiple regression model

� Finding, interpreting, and testing coefficients

� Checking model fit

The idea of regression is to build a model that estimates or predicts one
quantitative variable (y) by using at least one other quantitative variable

(x). Simple linear regression uses exactly one x variable to estimate the y
variable. (See Chapter 4 for all the information you need on simple linear
regression.) Multiple linear regression, on the other hand, uses more than
one x variable to estimate the value of y.

In this chapter, you see how multiple regression works and how to apply it to
build a model for y. You see all the steps necessary for the process, including
determining which x variables to include, estimating their contributions to
the model, finding the best model, using the model for estimating y, and
assessing the fit of the model. It may seem like a mountain of information, but
you won’t regress on the topic of regression if you take this chapter one step
at a time.

The Multiple Regression Model
Before being able to jump right into using the multiple regression model, its
good to get a feel for what it’s all about. In this section, you see the useful-
ness of multiple regression as well as the basic elements of the multiple
regression model. Some of the ideas are just an extension of the simple linear
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regression model (Chapter 4). Some of the concepts are a little more com-
plex, as you may guess because the model is more complex. But the concepts
and the results should make intuitive sense, which is always good news.

Discovering the uses of multiple regression
One situation in which multiple regression is useful is when the y variable is
hard to track down; that is, its value can’t be measured straight up, and you
need more than one other piece of information to help get a handle on what
its value will be. For example, you may want to estimate the price of gold
today. It would be hard to imagine being able to do that with only one other
variable. You may base it on recent gold prices, the price of other commodi-
ties on the market that move with or against gold, and a host of other possi-
ble economic conditions associated with the price of gold.

Another case for using multiple regression is when you want to figure out
what factors play a role in determining the value of y. For example, what
information is important to real estate agents in setting a price for a house
going on the market?

Looking at the general form of 
the multiple regression model
The general idea of simple linear regression is to fit the best straight line
through that data that you possibly can and use that line to make estimates
for y based on certain x-values. The equation of the best-fitting line in simple
linear regression is y = b0 + b1x1, where b0 is the y-intercept and b1 is the slope.
(The equation also has the form y = a +bx; see Chapter 4.)

In the multiple regression setting, you have more than one x variable that is
related to y. Call these x variables x1, x2, . . . xk. In the most basic multiple
regression model, you use some or all of these x variables to estimate y
where each x variable is taken to the first power. This process is called find-
ing the best-fitting linear function for the data. This linear function looks like
the following: y = b0 + b1x1 + b2x2 + . . . + bk xk, and you can call it the multiple
(linear) regression model. You use this model to make estimates about y
based on given values of the x variables.

A linear function is an equation whose x terms are taken to the first power
only. For example y = 2x1 + 3x2 + 24x3 is a linear equation using three x vari-
ables. If any of the x terms are squared, the function would be a quadratic
one; if an x term is taken to the third power, the function would be a cubic
function, and so on. In this chapter, I consider only linear functions.
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Stepping through the analysis
Your job in conducting a multiple regression analysis is to do the following
(the computer can help you do steps three through six):

1. Come up with a list of possible x variables that may be helpful in 
estimating y.

2. Collect data on the y variable and your x variables from step one.

3. Check the relationships between each x variable and y (using scatter-
plots and correlations) and use the results to eliminate those x vari-
ables that aren’t strongly related to y.

4. Look at possible relationships between the x variables themselves to
make sure you aren’t being redundant (in statistical terms, you’re
trying to avoid the problem of multicolinearity).

If two x variables relate to y the same way, you don’t need both in the
model.

5. Use those x variables (from step four) in a multiple regression analysis
to find the best-fitting model for your data.

6. Use the best-fitting model (step five) to predict y for given x-values by
plugging those x-values into the model.

I outline each of these steps in the sections to follow.

Looking at X’s and Y’s
The first step of a multiple regression analysis comes way before the number
crunching on the computer; it occurs even before the data is collected. Step
one is where you sit down and think about what variables may be useful in pre-
dicting your response variable y. This step will likely take more time than any
other step, except maybe the data-collection process. Deciding which x vari-
ables may be candidates for consideration in your model is a deal-breaking
step, because you can’t go back and collect more data after the analysis 
is over.

Always check to be sure that your response variable, y, and at least one of
the x variables are quantitative. For example, if y isn’t quantitative but at
least one x is, a logistic regression model may be in order (see Chapter 8).
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Suppose you’re in the marketing department for a major national company
that sells plasma TVs. You want to sell as many TVs as you can, so you want
to figure out which factors play a role in plasma TV sales. In talking with your
advertising people and remembering what you learned in those college
classes on business, you know that one powerful way to get sales is through
advertising. You think of the types of advertising that may be related to sales
of plasma TVs and your team comes up with two ideas:

� TV ads: Of course, how better to sell a TV than through a TV ad?

� Newspaper sales: Hit ’em on Sunday when they’re watching the game
through squinty eyes that are missing all the good plays and the terrible
calls the referees are making.

By coming up with a list of possible x variables to predict y, you have just
completed step one of a multiple regression analysis, according to the list in
the previous section. Note that all three variables I use in the TV example are
quantitative (the TV ad and newspaper sales variables and the TV sales
response variable), which means you can go ahead and think about a multi-
ple regression model by using the two types of ads to predict TV sales.

Collecting the data
Step two in the multiple regression analysis process is to collect the data for
your x and y variables. To do this, make sure that for each individual in the
data set, you collect all the data for that individual at the same time (including
the y-value and all x-values) and keep the data all together for each individ-
ual, preserving any relationships that may exist between the variables. You
must then enter the data into a table format by using Minitab or any other
software package (each column represents a variable and each row repre-
sents all the data from a single individual) to get a glimpse of the data and to
organize it for later analyses.

To continue with the TV sales example from the preceding section, say that
you start thinking about all the reams of data you have available to you
regarding the plasma TV industry. You remember you’ve worked with the
advertising department before to do a media blitz by using, among other
things, TV and newspaper ads. So you have data on these variables from a
variety of store locations. You take a sample of 22 store locations in different
parts of the country and put together the data on how much money was
spent on each type of advertising, along with the plasma TV sales for that
location. You can see the data in Table 5-1.
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Table 5-1 Advertising Dollars and Sales of Plasma TVs
Location Sales ($ mil) TV Ads ($1,000) Newspaper Ads ($1,000)

1 9.73 0 20

2 11.19 0 20

3 8.75 5 5

4 6.25 5 5

5 9.10 10 10

6 9.71 10 10

7 9.31 15 15

8 11.77 15 15

9 8.82 20 5

10 9.82 20 5

11 16.28 25 25

12 15.77 25 25

13 10.44 30 0

14 9.14 30 0

15 13.29 35 5

16 13.30 35 5

17 14.05 40 10

18 14.36 40 10

19 15.21 45 15

20 17.41 45 15

21 18.66 50 20

22 17.17 50 20

The question is, can the amount of money spent on these two forms of adver-
tising do a good job of estimating sales (in other words, are the ads worth the
money)? And if so, do you need to include spending for both types of ads to
estimate sales, or is one of them enough? Looking at the numbers in Table 5-1,
you can see that higher sales may be related at least to higher amounts spent
on TV advertising; the situation with newspaper advertising may not be so
clear. So will the final multiple regression model contain both x variables or
only one? In the following sections, you can find out.
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Pinpointing Possible Relationships
The third step in doing a multiple regression analysis (see the list in the
“Stepping through the analysis” section) is to find out which (if any) of your
possible x variables are actually related to y. If an x variable has no relationship
with y, including it in the model is pointless. Data analysts use a combination 
of scatterplots and correlations to examine relationships between pairs of vari-
ables (as you can see in Chapter 4). While these two techniques can be viewed
under the heading of looking for relationships, I walk you through each one
separately in the following sections to discuss their nuances.

Making scatterplots
You make scatterplots in multiple linear regression to get a handle on whether
your possible x variables are even related to the y variable you’re studying. To
investigate these possible relationships, you make one scatterplot of each x
variable with the response variable y. If you have k different x variables being
considered for the final model, you make k different scatterplots.

To make a scatterplot in Minitab, enter your data in columns, where each
column represents a variable and each row represents all the data from one
individual. Go to Graph>Scatterplots>Simple. Select your y variable on the
left-hand side and click Select. That variable appears in the y-variable box on
the right-hand side. Then select your x variable on the left-hand side and
click Select. That variable appears in the x-variable box on the right-hand
side. Click OK.

Scatterplots of TV ad spending versus TV sales and newspaper spending
versus TV sales are shown in Figure 5-1.
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You can see from Figure 5-1a that TV spending does appear to have a fairly
strong linear relationship with sales. This observation gives evidence that TV
ad spending may be useful in estimating plasma TV sales. Figure 5-1b shows a
linear relationship between newspaper ad spending and sales, but the rela-
tionship isn’t as strong as the one between TV ads and sales. However it may
be somewhat helpful in estimating sales.

Correlations: Examining the bond
The second portion of step three involves calculating and examining the cor-
relations between the x variables and the y variable. (Of course, if a scatter-
plot of an x variable and the y variable fails to come up with a pattern, then
you drop that x variable altogether and don’t proceed to find the correlation.)

Whenever you employ scatterplots to explore possible linear relationships,
correlations are typically not far behind. The correlation coefficient is a
number that measures the strength and direction of the linear relationship
between two variables, x and y. (See Chapter 4 for all the information you
need on correlation.) This process involves two parts:

� Finding and interpreting the correlations

� Testing the correlations to see which ones are statistically significant
(thereby determining which x variables are significantly related to y)

I explain these two steps in the following sections.

Finding and interpreting correlations
You can calculate a set of all possible correlations between all pairs of vari-
ables in Minitab. This set of all possible correlations between all pairs of vari-
ables in a given set is called a correlation matrix. You can see the correlation
matrix output for the TV data from Table 5-1 in Figure 5-2. You can see the
correlations between the y variable (sales) and each x variable (TV = TV ads;
and Newspaper = newspaper ads). You also get the correlation between TV
ads and newspaper ads.

TV
TV

Newspaper

Sales
0.791
0.000

0.594
0.004

0.058
0.799

Correlations: Sales, TV, NewspaperFigure 5-2:
Correlation
values and

p-values for
the TV sales

example.
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Minitab can find a correlation matrix between any pairs of variables in the
model, including the y variable and all the x variables as well. To calculate a
correlation matrix for a group of variables in Minitab, first enter your data in
columns (one for each variable). Then go to Stat>Basic Statistics>Descriptive
Statistics>Correlation. Highlight the variables from the left-hand side for
which you want correlations, and click on Select. Typically you also want to
test those correlations, so check the Display p-values box as well. (I discuss
how to interpret those p-values later in this section.)

To interpret the values of the correlation matrix from the computer output,
intersect the row and column variables you want to find the correlation for,
and the top number in that intersection is the correlation of those two vari-
ables. (I discuss the bottom number later in this section.) For example, the
correlation between TV ads and TV sales is 0.791, because it intersects the
TV row with the Sales column in the correlation matrix in Figure 5-2. This
result indicates a fairly strong positive linear relationship between these two
variables. (That is, as dollars spent on TV ads increase, so do plasma TV
sales.) You can also see that the correlation between newspaper ads and
plasma TV sales is 0.594, showing a moderately strong positive linear rela-
tionship. This correlation isn’t as strong as that of the TV ads, but it’s still
worth examining further. These results together indicate that TV and news-
paper ads are each somewhat related to TV sales.

Testing correlations for significance
Many times in statistics a rule-of-thumb approach to interpreting a correlation
coefficient is sufficient. However, you’re in the big leagues now, so you need a
more precise tool for determining whether or not a correlation coefficient is
large enough to be statistically significant — that’s the real test of any statistic.
Not that the relationship is fairly strong or moderately strong in the sample,
but whether or not the relationship can be generalized to the population.

Now that phrase statistically significant should ring a bell in your memory. It’s
your old friend the hypothesis test calling to you (see Chapter 3 for a brush-
up on hypothesis testing). Just like a hypothesis test for the mean of a popu-
lation or the difference in the means of two populations, you also have a test
for the correlation between two variables within a population.

The null hypothesis to test a correlation is Ho: ρ = 0 versus Ha: ρ ≠ 0. If you
can’t reject Ho based on your data, you can’t conclude that the correlation
between x and y differs from zero, indicating you don’t have evidence that
the two variables are related and x shouldn’t be in the multiple regression
model. However, if you can reject Ho, you conclude that the correlation isn’t
equal to zero, based on your data, so the variables are related. More than
that, their relationship is deemed to be statistically significant; that is, the
relationship would occur very rarely in your sample just by chance.
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The letter ρ is the Greek version of r and represents the true correlation of x
and y in the entire population; r is the correlation coefficient of the sample.

Any statistical software package can calculate a hypothesis test of a correla-
tion for you. The actual formulas used in that process are beyond the scope
of this book. However the interpretation is the same as for any test: If the p-
value is smaller than your prespecified value of α (typically 0.05), reject Ho
and conclude x and y are related. Otherwise you can’t reject Ho, and you con-
clude you don’t have enough evidence that the variables are related.

In Minitab, you can conduct a hypothesis test for a correlation by clicking 
on Stat>Basic Statistics>Correlation, and checking the Display p-values box.
Choose the variables you want to find correlations for, and click Select. You’ll
get output that is in the form of a little table that shows the correlations
between the variables for each pair with the respective p-values under each
one. You can see the correlation output for the ads and sales example in
Figure 5-2.

Looking at Figure 5-2, the correlation of 0.791 between TV ads and sales has a
p-value of 0.000, which means it’s actually less than 0.001. That’s a highly sig-
nificant result, much less than 0.05 (your predetermined α level). So TV ad
spending is strongly related to sales. The correlation between newspaper ad
spending and sales was 0.594, which is also found to be statistically signifi-
cant with a p-value of 0.004.

Checking for Multicolinearity
You have one more very important step to complete in the relationship-
exploration process before going on to using the multiple regression model.
That is, you need to complete step four: looking at the relationship between
the x variables themselves and checking for redundancy. Failure to do so can
lead to problems during the model-fitting process.

Multicolinearity is a term you use if two x variables are highly correlated. Not
only is it redundant to include both related variables in the multiple regres-
sion model, but it’s also problematic. The bottom line is this: If two x vari-
ables are significantly correlated, only include one of them in the regression
model, not both. If you include both, the computer won’t know what numbers
to give as coefficients for each of the two variables, because they share their
contribution to determining the value of y. Multicolinearity can really mess
up the model-fitting process and give answers that are inconsistent and often-
times not repeatable in subsequent studies.
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To head off the problem of multicolinearity, along with the correlations you
examine regarding each x variable and the response variable y, also find the
correlations between all pairs of x variables. If two x variables are highly cor-
related, don’t leave them both in the model, or multicolinearity will result. To
see the correlations between all the x variables, have Minitab calculate a cor-
relation matrix of all the variables (see the section “Finding and interpreting
correlations”). You can ignore the correlations between the y variable and the
x variables and only choose the correlations between the x variables shown
in the correlation matrix. Find those correlations by intersecting the rows
and columns of the x variables for which you want correlations.

If two x variables x1 and x2 are strongly correlated (that is their correlation is
beyond +0.7 or –0.7), then one of them would do just about as good a job of
estimating y as the other, so you don’t need to include them both in the model.

Now if x1 and x2 aren’t strongly correlated, then both of them working together
would do a better job of estimating sales than either variable alone. For the ad
spending example, you have to examine the correlation between the two x 
variables, TV ad spending and newspaper ad spending, to be sure no multi-
colinearity is present. The correlation between these two variables (as you can
see in Figure 5-2) is only 0.058. You don’t even need a hypothesis test to tell you
whether or not these two variables are related; they’re clearly not. However, if
you want to know, the p-value for the correlation between the spending for the
two ad types is 0.799 (see Figure 5-2), which is much, much larger than 0.05
ever thought of being and therefore not statistically significant.

The large p-value for the correlation between spending for the two ad types
confirms your thoughts that both variables together may be helpful in esti-
mating y because each makes its own contribution. It also tells you that 
keeping them both in the model will not create any multicolinearity prob-
lems. (This completes step four of the multiple regression analysis, as listed
in the “Stepping through the analysis” section.)

Finding the Best-Fitting Model
After you have a group of x variables that are all related to y and not related
to each other (see previous sections), you’re ready to perform step five of the
multiple regression analysis (as listed in the “Stepping through the analysis”
section). That is, you’re ready to find the best-fitting model that fits the data.

In the multiple regression model with two x variables, you have the general
equation y = b0 + b1x1 + b2x2, and you already know which x variables to
include in the model (by doing step four); the task now is to figure out which
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coefficients (numbers) to put in for b0, b1, and b2, so you can use the resulting
equation to estimate y. This specific model is the best-fitting multiple linear
regression model. In this section, you see how to get, interpret, and test those
coefficients in order to complete step five in the multiple regression analysis.

Finding the best-fitting linear equation is like finding the best-fitting line in
simple linear regression, except that you’re not finding a line. When you have
two x variables in multiple regression, for example, you’re estimating a best-
fitting plane for the data.

Getting the multiple regression 
coefficients
In the simple linear regression model, you have the straight line y = b0 + b1x;
the coefficient of x is the slope, and it represents the change in y per unit
change in x. In a multiple linear regression model, the coefficients b1, b2, and
so on quantify in a similar matter the sole contribution that each correspond-
ing x variable (x1, x2) makes in predicting y. The coefficient b0 indicates the
amount by which to adjust all of these values in order to provide a final fit to
the data (like the y-intercept does in simple linear regression).

Computer software does all the nitty-gritty work for you to find the proper
coefficients (b0, b1, and so on) that fit the data best. The coefficients that
Minitab settles on to create the best-fitting model are the ones that as a
group minimize the sum of the squared residuals (sort of like the variance in
the data around the selected model). The equations for finding these coeffi-
cients by hand are too unwieldy to include in this book; a computer can do
all the work for you. The results appear in the regression output in Minitab.
You can find the multiple regression coefficients (b0, b1, b2, . . . , bk) on the
computer output under the column labeled Coef.

To run a multiple regression analysis in Minitab, click on Stat>Regression>
Regression. Then choose the response variable (y) and click on Select. Then
choose your predictor variables (x variables), and click Select. Click on OK,
and the computer will carry out the analysis.

For the plasma TV sales example from the previous sections, Figure 5-3
shows the multiple regression coefficients in the Coef column for the multiple
regression model. The first coefficient (5.257) in Figure 5-3 is just the constant
term (or b0 term) in the model and isn’t affiliated with any x variable. This
constant just sort of goes along for the ride in the analysis — the number
that you tack on the end to make the numbers work out right. The second

97Chapter 5: When Two Variables Are Better than One: Multiple Regression

10_045206 ch05.qxd  2/1/07  9:49 AM  Page 97



coefficient in the Coef column of Figure 5-3 is 0.162; this value is the coeffi-
cient of the x1 (TV ads) term, also known as b1. The third coefficient in the
Coef column of Figure 5-3 is 0.249, which is the value for b2 in the multiple
regression model and is the coefficient that goes with x2 (newspaper ad
amount).

Putting these coefficients into the multiple regression equation, you see the
regression equation is Sales = 5.267 + 0.162 (TV ads) + 0.249 (Newspaper ads).

So you have your coefficients (no sweat, right?), but where do you go from
here? What does it all mean? Keep reading.

Interpreting the coefficients
In simple linear regression (Chapter 4), the coefficients represented the slope
and y-intercept of the best-fitting line and were straightforward to interpret.
The slope in particular represents the change in y due to a one-unit increase
in x, because you can write any slope as a number over one (and slope is rise
over run).

In the multiple regression model, the interpretation’s a little more compli-
cated. Due to all the mathematical underpinnings of the model and how it’s
finalized (believe me you don’t want to go there unless you want a PhD in sta-
tistics), the coefficients have a different meaning.

The coefficient of an x variable in a multiple regression model is the amount
by which y changes if that x variable increases by one and the values of all
other x variables in the model don’t change. So basically, you’re looking at the
marginal contribution of each x variable when you hold the other variables in
the model constant.

The regression equation is
Sales = 5.267 + 0.162 TV ads + 0.249 Newsp ads

S = 0.976613 R-Sq = 92.8% R-Sq(adj) = 92.0%

Predictor
Constant
TV ads
Newsp ads

Coef
5.2574

0.16211
0.24887

SE Coef
0.4984
0.01319
0.02792

T
10.55
12.29
8.91

P
0.000
0.000
0.000

Figure 5-3:
Regression

output for
the ads and

plasma TV
sales

example.
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In the ads and sales regression analysis (see Figure 5-3), the coefficient of x1

(TV ad spending) equals 0.16211. So y (plasma TV sales) increases by 0.16211
million dollars when TV ad spending increases by $1,000 and spending on
newspaper ads doesn’t change. (Note that keeping more digits after the deci-
mal point reduces rounding error when in units of millions.)

You can more easily interpret the number 0.16211 million dollars by converting
it to a dollar amount without the decimal point: $0.16211 million is equal to
$162,110. (To get this value, I just multiplied 0.16211 by 1,000,000.) So plasma
TV sales increases by $162,110 for each $1,000 increase in TV ad spending and
newspaper ad spending remains the same.

Similarly, the coefficient of x2 (newspaper ad spending) equals 0.24887. So
plasma TV sales increases by 0.24887 million dollars (or $248,870) when news-
paper ad spending increases by $1,000 and TV ad spending remains the same.

Don’t forget the units of each variable in a multiple regression analysis. 
This mistake is one of the most common in intermediate statistics. If you
forgot about units in the ads and sales example, you would think that sales
increased by 0.24887 dollars with a dollar in newspaper ad spending!

Knowing the multiple regression coefficients (b1 and b2, in this case) and 
their interpretation, you can now answer the original question: Is the money
spent on TV or newspaper ads worth it? The answer is a resounding Yes!
Not only that, but you can also say how much you expect sales to increase
per $1,000 you spend on TV or newspaper advertising. Note that this conclu-
sion assumes the model fits the data well. You have some evidence of that
through the scatterplots and correlation tests, but more checking needs to 
be done before you can run to your manager and tell her the good news. (See
the section “Testing the coefficients” to figure out what to do next.)

Testing the coefficients
Another step in determining whether you have the right x variables in your
multiple regression model is to do a formal hypothesis test to make sure the
coefficients are not equal to zero. Note that if the coefficient of an x variable is
zero, then when you put that coefficient into the model, you get zero times that
x variable (which equals zero). This result is essentially saying that if an x vari-
able’s coefficient is equal to zero, you don’t need that x variable in the model.

The computer performs all the necessary hypothesis tests for the regression
coefficients automatically with any regression analysis. Along with the regres-
sion coefficients you can find on the computer output, you see the test 
statistics and p-values for a test of each of those coefficients in the same 
row for each coefficient. Each one is testing Ho: Coefficient = 0 versus Ha:
Coefficient ≠ 0.
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The general format for finding a test statistic in most any situation is to take
the statistic (in this case, the coefficient), subtract the value in Ho (zero), and
divide by the standard error of that statistic (for this example, the standard
error of the coefficient). (For more info on the general format of hypothesis
tests, see Chapter 3.)

To test a regression coefficient, the test statistic (using the labels from Fig-
ure 5-3) is (Coef – 0)/SE Coef. In non-computer language, that means you take
the coefficient, subtract zero, and divided by the standard error (SE) of the
coefficient. The standard error of a coefficient here is a measure of how much
the coefficient is expected to vary when you take a new sample. (See Chapter
3 for more on standard error.)

The test statistic has a t-distribution with n – k – 1 degrees of freedom, where
n equals the sample size and k is the number of predictors (x variables) in 
the model. This number of degrees of freedom works for any coefficient in the
model (except you don’t bother with a test for the constant, because it has no
x variable associated with it).

The test statistic for testing each coefficient is listed in the column marked 
T (because it has a t-distribution) on the Minitab output. You compare the
value of the test statistic to the t-distribution with n – k – 1 degrees of free-
dom (using Table A-1 in the Appendix) and come up with your p-value. If the
p-value is less than your prespecified α (usually 0.05), then you reject Ho and
conclude that the coefficient of that x variable isn’t zero and that variable
makes a significant contribution toward estimating y (given the other vari-
ables are also included in the model). If the p-value is larger than 0.05, you
can’t reject Ho, so that x variable makes no significant contribution toward
estimating y (when the other variables are included in the model).

In the case of the ads and plasma TV sales example, Figure 5-3 shows that the
coefficient for the TV ads is 0.1621 (the second number in column two). The
standard error is listed as being 0.0132 (the second number in column three).
To find the test statistic for TV ads, take 0.1621 minus zero and divide by 
the standard error, 0.0132. You get a value of t = 12.29, which is the second
number in column four). Comparing this value of t to a t-distribution with
n – k – 1 = 22 – 2 – 1 = 19 degrees of freedom (Table A-1 in the Appendix), you
see the value of t is way off the scale. That means the p-value is smaller than
can be measured on Table A-1. Minitab lists the p-value in column five of
Figure 5-3 as 0.000 (meaning it’s less than 0.001). This result leads you to 
conclude that the coefficient for TV ads is statistically significant, and TV ads
should be included in the model for predicting TV sales.

The newspaper ads coefficient is also significant with a p-value of 0.000 by
the same reasoning; these results can be found by looking across the news-
paper ads row of Figure 5-3. From this you should include both the TV ads
variable and the newspaper ads variable in the model for estimating TV sales.
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Predicting Y by Using the X Variables
By now, you should have your multiple regression model. You’re finally ready
to complete step six of the multiple regression analysis: to predict the value 
of y given a set of values for the x variables. To make this prediction, you take
those x values for which you want to predict y, plug them into the multiple
regression model, and simplify. 

In the ads and plasma TV sales example (see analysis from Figure 5-3), the
best-fitting model is y = 5.26 + 0.162x1 + 0.249x2. In the context of the problem,
the model is Sales = 5.26 + 0.162 TV ad spending (x1) + 0.249 newspaper ad
spending (x2).

Remember that the units for plasma TV sales is in millions of dollars and the
units for ad spending for both TV and newspaper ads is in the thousands of
dollars. That is, $20,000 spent on TV ads means x1 = 20 in the model. Similarly,
$10,000 spent on newspaper ads means x2 = 10 in the model. Forgetting the
units can lead to serious miscalculations.

Suppose you want to estimate plasma TV sales if you spend $20,000 on TV
ads and $10,000 on newspaper ads. Plug x1 = 20 and x2 = 10 into the multiple
regression model, and you get y = 5.26 + 0.162(20) + 0.249(10) = 10.99. In other
words, if you spend $20,000 on TV advertising and $10,000 in newspaper
advertising, you estimate that sales will be $10.99 million dollars.

This estimate at least makes some sense in terms of the data shown in 
Table 5-1. At location ten, they spent $20,000 on TV ads and $5,000 on news-
paper ads (short of what you had) and got sales of $9.82 million. Location
eleven spent a little more on TV ads and a lot more on newspaper ads than
what you had, and got sales of $16.28 million. Your spending amounts fall
between the amounts of locations ten and eleven, and your estimated sales
fall in between theirs also.

Be careful to put in only values for the x variables that fall in the range of
where the data lies. In other words, Table 5-1 shows data for TV ad spending
between $0 and $50,000; newspaper ad spending goes from $0 to $25,000. It
would not be appropriate, say, to try to estimate sales for spending amounts
of $75,000 for TV ads and $50,000 for newspaper ads, respectively. The reason
is that the regression model you came up with only fits the data that you col-
lected; you have no way of knowing whether that same relationship contin-
ues outside that area. This no-no of estimating y for values of the x variables
outside their range is called extrapolation. As one of my colleagues says,
“Friends don’t let friends extrapolate.”
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Checking the Fit of the Model
Before you run to your boss in triumph saying you’ve slam-dunked the ques-
tion of how to estimate plasma TV sales, you first have to make sure all your
i ’s are dotted and all your t ’s are crossed, as you do with any other statistical
procedure. In this case, you have to check the conditions of the multiple
regression model. These conditions mainly focus on the residuals (the differ-
ence between the estimated values for y and the observed values of y from
your data). If the model is close to the actual data you collected, you can 
feel somewhat confident that if you collected more data, it would fall in line
with the model as well, and your predictions shouldn’t be too bad.

In this section, you see what the conditions are for multiple regression, and
specific techniques statisticians use to check each of those conditions. The
main character in all of this condition checking is the residual.

Noting the conditions
The conditions for multiple regression concentrate on the error terms, or resid-
uals. The residuals are the amount that’s left over after the model has been fit.
They represent the difference between the actual value of y observed in the
data set and the estimated value of y based on the model. The conditions of
the multiple regression model are the following (note that all need to be met in
order to give the go-ahead for a multiple regression model):

� The residuals have a normal distribution with mean zero.

� The residuals have the same variance for each fitted (predicted) 
value of y.

� The residuals are independent (don’t affect each other).

Plotting a plan to check the conditions
It may sound like you have a ton of things to check here and there, but luck-
ily, Minitab gives you all the info you need to know in a series of four graphs,
all presented at one time. These plots are called the residual plots, and they
graph the residuals against the values of a normal distribution to see whether
the normality condition fits.
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You can get the set of residual plots in two flavors:

� Regular residuals: The regular residual plots (the vanilla-flavored ones)
show you exactly what the residuals are for each value of y. Figure 5-4
shows the plots of the regular residuals for the TV sales example. Use
these plots if you want to mainly look for patterns in the data.

� Standardized residuals: The standardized residual plots (the strawberry-
flavored kind) take each residual and convert it to a Z-score by subtract-
ing the mean and dividing by the standard deviation of all the residuals.
Figure 5-5 shows the plots of the standardized residuals for the TV sales
example. Use these plots if you want to not only look for patterns in the
data, but you want to assess the standardized values of the residuals in
terms of values on a Z-distribution to check for outliers. (Most statisti-
cians use standardized residual plots.)

To make residual plots in Minitab, go to Stat>Regression>Regression. Select
your response (y) variable and your predictor variables (x) variables. Click
on Graphs, and choose either Regular or Standardized for the residuals,
depending on which one you want. Then click on Four-in-one, which indi-
cates you want to get all four residual plots shown in Figure 5-4 (using regular
residuals) and Figure 5-5 (using standardized residuals).
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In the following sections, you see how to check the residuals to see whether
these three conditions are met in your data set.

Meeting the first condition
The first condition to meet (outlined in the previous section “Noting the con-
ditions”) is that the residuals must have a normal distribution with mean
zero. The upper-left plot of Figure 5-4 shows how well the residuals match a
normal distribution. If the residuals fall in a straight line, that means the nor-
mality condition is met. By the looks of this plot, I’d say that condition is met
for the ad and sales example.

The upper-right plot of Figure 5-4 shows what the residuals look like for the
various estimated y values. Look at the horizontal line going across that plot;
it’s at zero as a marker. The residuals should average out to be at that line
(zero). This Residuals versus Fitted Values plot checks the mean-of-zero con-
dition and holds for the ads and sales example looking at Figure 5-4.

You need the regular residual plots to see whether the mean of the residuals
equals zero (via the plot on the upper right of Figure 5-4). If you look at the
standardized residuals, they will always have mean zero due to the fact that
they have been standardized to have a mean of zero. If the mean of zero con-
dition isn’t met for the regular residuals, that means that many of the esti-
mated values are off in the same direction by a certain amount, which would
not be good.
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As an alternative check for normality apart from using the regular residuals,
you can look at the standardized residuals plot (Figure 5-5) and check out the
upper-right plot. It shows how the residuals are distributed across the vari-
ous estimated (fitted) values of y. Standardized residuals are supposed to
follow a standard normal distribution. That is, they should have mean zero
and standard deviation one. So when you look at the standardized residuals,
they should be centered around zero in a way that has no predictable pat-
tern, with the same amount of variability around the horizontal line that
crosses at zero as you move from left to right.

You should also find looking at the upper-right plot of Figure 5-5 that most (95
percent) of the standardized residuals fall within two standard deviations of
the mean, which in this case is –2 to +2 (via the 68-95-99.7 Rule — remember
that from intro stats?). You should see more residuals hovering around zero
(where the middle lump would be on a standard normal distribution), and
you should have fewer and fewer of the residuals as you go away from zero.
The upper-right plot in Figure 5-5 confirms a normal distribution for the ads
and sales example on all the counts I just mentioned.

The lower-left plot of Figures 5-4 and 5-5 show histograms of the regular 
and standardized residuals, respectively. These histograms should reflect a
normal distribution; that is, the shape of the histograms should be approxi-
mately symmetric and look like a bell-shaped curve. Note that if the data set 
is small (as is the case here with only 22 observations), the histogram may
not be as close to normal as you would like; in that case, consider it part of
the body of evidence that all four residual plots show you. The histograms
shown in the lower-left plots of Figure 5-4 and 5-5 aren’t terribly normal look-
ing; however, because you can’t see any glaring problems with the upper-
right plots, don’t be worried.

Satisfying the second condition
To look at the variance issue (condition two from a previous section), you can
look again at the upper-right plot of Figure 5-4 (or Figure 5-5). You shouldn’t
see any change in the amount of spread (variability) in the residuals around
that horizontal line as you move from left to right. Looking at Figure 5-4, the
upper-right graph, you can see no reason to say that condition number two
(the residuals have the same variance for each combination of the x vari-
ables) hasn’t been met.

One particular problem that raises a red flag is if the residuals fan out, or
increase in spread, as you move from left to right on the upper-right plot.
This fanning out means that the variability increases more and more for
higher and higher predicted values of y, so the condition of equal variability
around the fitted line isn’t met, and the regression model would not fit well in
that case.
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Checking the third condition
The third condition is that the residuals are independent (in other words,
they don’t affect each other). Looking at the lower-right plot on either Figure
5-4 or 5-5, you can see the residuals plotted by observation number, which is
the order in which the data came in the sample. If you see a pattern (if you
were to connect the dots so to speak, you get a straight line, or a curve, or
any kind of predictable up or down trend), you have trouble. You can see no
patterns in the lower-right plots, so the independence condition is met for
the ads and plasma TV sales example.

If the data must be collected over time, such as stock prices over a ten-year
period, the independence condition may be a big problem because the data
from the previous time period may be related to the data from the next time
period. This kind of data requires time series analysis and is beyond the
scope of this book.
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Chapter 6

One Step Forward and Two 
Steps Back: Regression 

Model Selection
In This Chapter
� Evaluating different methods for choosing a multiple regression model

� Understanding how forward selection and backward selection works

� Using the best subsets methods to find a good model

Suppose you’re trying to estimate some quantitative variable, y, and you
have many x variables available at your disposal. You have so many 

variables related to y, in fact, that you feel like I do in my job every day —
overwhelmed with opportunity. Where do you go? What do you do? Never
fear, this chapter is for you.

In this chapter, you see three different procedures statisticians use to find a
best possible model — forward selection, backward selection, and best sub-
sets selection. Each procedure can lead you to a different final model, and you
can’t find one single procedure that everyone agrees is the one to use. Each
selection method has positives and negatives associated with it, as you can see
in this chapter. No matter what method you choose, each method has the same
goal: to get the best possible model for y by using a set of x variables. Yet the
road that each procedure takes to get there is a bit different, so read on!

Note that the term best has many connotations here. You can’t find one end-
all-be-all model that everyone comes up with in the end. That is to say that
each data analyst can come up with a different model, and each model still
does a good job of predicting y.
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Getting a Kick out of Estimating 
Punt Distance

Before you jump into a model selection procedure to predict y by using a set
of x variables, you have to do some legwork. The variable of interest is y, and
that’s a given. But where do the x variables come from? How do you choose
which ones to investigate as being possible candidates for predicting y? And
how do those possible x variables interact with each other toward making
that prediction? All of these questions must be answered before any model
selection procedure can be used. However, this part is the most challenging
and the most fun; a computer can’t think up x variables for you!

Suppose you’re at a football game and the opposing team has to punt the
ball. You see the punter line up and get ready to kick the ball, and a question
comes to you. “Gee, I wonder how far this punt will go? I wonder what factors
influence the distance of a punt? Can I use those factors in a multiple regres-
sion model to try to estimate punt distance? Hmm, I think I’ll consult my
Intermediate Statistics For Dummies book on this and analyze some data
during half-time. . . .” Well, maybe that’s pushing it, but it’s still an interest-
ing question for football players, golfers, soccer players, and even baseball
players. Everyone’s looking for more distance and a way to get it.

In the following sections, you can see how to identify and assess different x
variables in terms of their potential contribution to predicting y.

Brainstorming variables 
and collecting data
Starting with a blank slate and trying to think of a set of x variables that may
be related to y may sound like a daunting task, but in reality, this task is prob-
ably not as bad as you think. Most researchers who are interested in predict-
ing y in the first place have some ideas about which variables may be related
to it. After you come up with a set of logical possibilities for x, you collect
data on those variables, as well as y, to see what their actual relationship
with y may be.

The Virginia Polytechnic Institute did a study to try to estimate the distance
of a punt in football (something Ohio State fans aren’t familiar with). Possible
variables they thought may be related to the distance of a punt included the
following: hang time (time in the air, in seconds), right leg strength (measured
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in pounds of force), left leg strength (in pounds of force), right leg flexibility
(in degrees), left leg flexibility (in degrees), and overall leg strength (in
pounds). The data collected on a sample of 13 punts (by right-footed pun-
ters) is shown in Table 6-1. (Distance is measured in feet.)

Table 6-1 Data Collected for Punt Distance Study
R L R L O 

Distance Hang Strength Strength Flexibility Flexibility Strength

162.50 4.75 170 170 106 106 240.57

144.00 4.07 140 130 92 93 195.49

147.50 4.04 180 170 93 78 152.99

163.50 4.18 160 160 103 93 197.09

192.00 4.35 170 150 104 93 266.56

171.75 4.16 150 150 101 87 260.56

162.00 4.43 170 180 108 106 219.25

104.93 3.20 110 110 86 92 132.68

105.67 3.02 120 110 90 86 130.24

117.59 3.64 130 120 85 80 205.88

140.25 3.68 120 140 89 83 153.92

150.17 3.60 140 130 92 94 154.64

165.17 3.85 160 150 95 95 240.57

Other variables you may think of that are related to punt distance may
include the direction and speed of the wind at the time of the punt, the angle
at which the ball was snapped, the average distance of punts made in the
past by this punter, whether the game is at home or away in a hostile environ-
ment, and so on. However, these researchers seem to have enough informa-
tion on their hands to build a model to estimate punt distance. For the sake
of simplicity, you can assume the kicker is right-footed, which isn’t always the
case, but it represents the overwhelming majority of kickers.

Looking just at this raw data set in Table 6-1, you can’t figure out which vari-
ables, if any, are related to distance of the punt or how those variables may
be related to punt distance. You need more analyses to get a handle on this.
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Examining scatterplots and correlations
After you’ve identified a set of possible x variables, the next step is to find
out which of these variables are highly related to y in order to start trimming
down the set of possible candidates for the final model. In the punt distance
example, the goal is to see which of the six variables in Table 6-1 are strongly
related to punt distance. The two ways to look at these relationships are the
following:

� Scatterplots: A graphical technique

� Correlation: A one-number measure of the linear relationship between
two variables

Both of these elements are important, and I discuss each of them in the fol-
lowing sections.

Seeing relationships through scatterplots
To begin examining the relationships between the x variables and y, you use
a series of scatterplots. Figure 6-1 shows all the scatterplots, not only of each
x variable with y, but each x variable with itself. The scatterplots are in the
form of a matrix, which is a table made of rows and columns. For example,
the first scatterplot in row two of Figure 6-1 looks at the variables of distance
(which appears in column one) and hang time (which appears in row two).
This scatterplot shows a possible positive (uphill) linear relationship
between distance and hang time.

Matrix Plot of Distance, Hang, R_Strength, L_Strength . . .
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Note that Figure 6-1 is essentially a symmetric matrix across the diagonal
line. That is, the scatterplot for distance and hang time is the same as the
scatterplot for hang time and distance; the x and y axes are just switched.
The essential relationship shows up either way. So you only have to look at
all the scatterplots below the diagonal (where the variable names appear) 
or all the scatterplots above the diagonal. You need not examine both.

To get a matrix of all scatterplots between a set of variables in Minitab, go to
Graph>Matrix Plot> and choose Matrix of Plots>Simple. Highlight all the vari-
ables in the left-hand box for which you want scatterplots by clicking on
them; click Select, and then click OK. You will see the matrix of scatterplots
with a format similar to Figure 6-1.

Looking across row one of Figure 6-1, you can see that all the variables seem
to have a positive linear relationship with punt distance except left leg flexibil-
ity. Perhaps the reason left leg flexibility isn’t much related to punt distance is
because the left foot is planted into the ground when the kick is made — for a
right-footed kicker, the left leg doesn’t have to be nearly as flexible as the right
leg, which does the kicking. So it doesn’t appear that left leg flexibility con-
tributes a great deal to the estimation of punt distance on its own.

You can also see in Figure 6-1 that the scatterplots showing relationships
between pairs of x variables are to the right of column one and below row one.
(Remember you need to look on only the bottom part of the matrix or the top
part of the matrix to see the relevant scatterplots.) It appears that hang time 
is somewhat related to each of the other variables (except left leg flexibility,
which doesn’t contribute to estimating y). So hang time could possibly be the
most important single variable in estimating the distance of a punt.

You also need to look at the scatterplots showing the relationships between
each pair of x variables. It’s important to be mindful that if two x variables
are strongly related to each other, then including them both in the model is
not a good idea. First, adding the second of those two variables adds virtually
nothing toward helping predict y. But more important than that, if two x vari-
ables are highly correlated and both are included in the model, the computer
gets confused and doesn’t know how much of the model to attribute to which
x variable. This problem is called multicolinearity. (See Chapter 5 for more on
how you can spot multicolinearity and avoid it.)

Finding connections by using correlations
Scatterplots can give you some general ideas as to whether two variables 
are related in a linear way. However, pinpointing that relationship requires a
numerical value to tell you how strongly the variables are related (in a linear
fashion) as well as the direction of that relationship. That numerical value is
the correlation (also known as Pearson’s correlation; see Chapter 4). So the
next step toward trimming down the possible candidates for x variables is to
calculate the correlation between each x variable and y.
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To get a set of all the correlations between any set of variables in your model
by using Minitab, go to Stat>Basic Statistics>Correlation. Then highlight all the
variables you want correlations for and click Select. (To include the p-values
for each correlation, click the Display p-values box.) Then click OK. You can 
see a listing of all the variables’ names across the top row and down the first
column. Intersect the row depicting the first variable with the column depicting
the second variable, and you can find the correlation for that pair.

Table 6-2 shows the correlations you can calculate between y = punt distance
and each of the x variables. These results confirm what the scatterplots were
telling you. Distance seems to be related to all the variables except left leg
flexibility, because that’s the only variable that didn’t have a statistically sig-
nificant correlation with distance using the α level 0.05. (For more info on the
test for correlation, see Chapter 5.)

Table 6-2 Correlations between Distance of a Punt 
and Other Variables

X Variable Correlation with Punt Distance P-value

Hang time 0.819 0.001*

Right leg strength 0.791 0.001*

Left leg strength 0.744 0.004*

Right leg flexibility 0.806 0.001*

Left leg flexibility 0.408 0.167

Overall leg strength 0.796 0.001*
* statistically significant at level α = 0.05

If you take a look at Figure 6-1, you can see that hang time is related to other
variables such as right foot and left foot strength, right leg flexibility, and so
on. This is where things start to get sticky. You have hang time related to dis-
tance, and lots of other variables related to hang time. While hang time is
clearly the most related to distance, the final multiple regression model may
not include hang time. Here’s one possible scenario: You find a combination of
other x variables that can do a good job estimating y together. And all of those
other variables are strongly related to hang time. This result might mean that
in the end you don’t need to include hang time in the model. Strange things
happen when you have many different x variables to choose from.

After you narrow down the set of possible x variables for inclusion in the
model to predict punt distance, the next step is to put those variables through
a selection procedure of some sort, which trims down the list to a set of essen-
tial variables for predicting y. The next sections show various techniques for
going through this model selection process.
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Using the Forward Model 
Selection Procedure

The first of the three model selection procedures I present in this chapter is
called forward selection. This process gives a systematic way of selecting a
good model to predict y. It starts out with no variables at all, and then adds
one variable, then another one, and then another one — each time including
the variable that contributes the highest amount toward estimating y, given
the other variables that are already in the model.

This section shows you how the forward selection procedure works for
selecting a final regression model, and what the philosophy is for doing so. 
It also shows you how to assess the fit of the final model by using some new
criterion.

Adding variables — one at a time
The forward selection procedure starts with a model that contains no x vari-
ables and then adds x variables one at a time until the final model has been
reached. 

Here’s how the forward selection procedure works in general, but before the
hair begins to stand up on the back of your neck, note that Minitab or any
other statistical software takes care of all the heavy lifting used for this and
all the other model selection procedures:

1. Choose a prespecified value of α for determining when to add a vari-
able to the model.

This α is called the entry level for a variable. Typically you want to
choose the value α = 0.05 or 0.10 as the entry level. The higher the α
level, the easier it is to add a variable to the model.

2. Start with the model containing no variables: y = b0.

You are left with just the constant b0 term.

3. Go through each possible x variable that could be included in the
model and test each one’s coefficient to see whether it’s statistically
significant by using a t-test.

If the variable is statistically significant, it has a significant contribution
to determining y, given that the rest of the variables in the model are
fixed. Any variable that isn’t statistically significant is out of the running
to be added to the model at this point. (See Chapter 5 on conducting 
t-tests for regression coefficients.)
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4. Examine the p-values from each of the t-tests in step three (listed on
the Minitab output) and choose the smallest one.

The variable associated with that p-value is the best candidate to be
added to the model, because that variable is the most statistically signif-
icant of all the possible x variables at this point.

5. If the p-value for the x variable found in step four is smaller than the
prespecified α, add that x variable to the model.

After the first round, you have the model y = b0 + bixi where xi refers to
the first x variable you added to the model.

6. Repeat steps three through five, using the new model from step 
five, and keep adding variables one at a time as long as the smallest 
p-value of each round is less than the prespecified α = 0.05.

If the smallest p-value is larger than the prespecified α, don’t add any
more variables to the model and stop the forward selection process.
Your final model contains all of the x variables that were added during
each phase of the forward selection process.

To find a best multiple linear regression model by using the forward selection
procedure in Minitab, go to Stat>Regression>Stepwise. Highlight which vari-
able is the response (y) variable and click Select. This variable will show up
in the Response box. Then highlight which variables are the predictor (x)
variables and click Select. These variables will show up in the Predictor box.
Click on Methods, and click on Forward Selection. In the Alpha to Enter box,
put in your prespecified value of α you want to require to allow an x variable
to be included in the model. Typically statisticians would set this value at
between 0.05 and 0.10. (I use 0.05.) This prespecified α level is called the
entry level for the forward selection procedure. The higher the entry level,
the easier it is for a variable to be entered, but the greater chance that the
variable was just significant by random chance. (In the F-value box, the
default is 4.0, which should be fine. The F-value is beyond the scope of this
book in this context, although you do work with it when you do analysis of
variance — see Chapter 10. ) Click OK and you get the output from the for-
ward selection procedure.

You use a prespecified α level as the entry criteria for adding a variable
because it represents the chance of making a Type I error and inadvertently
putting in a variable based on your sample when it shouldn’t be included.
(See Chapter 3 for more on Type I errors.) You choose a small α level because
you don’t want to make it too easy to add a variable, because it increases the
chance of adding something that isn’t truly meaningful. (You have to put a lid
on it somehow!)
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How well does the model fit?
The details regarding the formulas used behind the model selection proce-
dures in this chapter are beyond the scope of this book. However, knowing
what the procedure is doing and how to interpret the results are what’s most
important. To assess the fit of any multiple regression model, you can use the
following three techniques: R2, R2 adjusted, and Mallows’s C-p. You can find
all three on the bottom line of the Minitab output when you do any sort of
model selection procedure.

I describe these techniques in the following:

� R2: R2 is the percentage of the variability in the y values that’s explained
by the model. It falls between 0 percent and 100 percent (0 and 1.0).
Values closer to 0 mean the model doesn’t do a good job of explaining y.
Values closer to 1.0 mean the model does an excellent job. Typically, I
say that you can consider R2 values higher than 0.70 to be good.

� R2 adjusted: R2 adjusted is the value of R2, adjusted down for a higher
number of variables in the model (which makes it much more useful
than the regular value of R2). A high value of R2 adjusted means the
model you have is fitting the data very well. I typically find a value of
0.70 to be considered high for R2 adjusted.

� Mallow’s C-p: Mallow’s C-p is another measure of how well a model fits.
It basically looks at how much error is left unexplained by a model with
k predictor (x) variables compared to the average error left over from
the full model (with all the x variables) and adjusts it for the number of
variables in the model. The smaller Mallow’s C-p is, the better. Because
when it comes to the amount of error in your model, less is more.

Always use R2 adjusted rather than the regular R2 to assess the fit of a multi-
ple regression model. With every addition of a new variable into a multiple
regression model, the value of R2 stays the same or increases; it will never go
down. That’s because a new variable will either help explain some of the vari-
ability in the y’s (thereby increasing R2 by definition), or it will do nothing
(leaving R2 exactly where it was before). So theoretically, you could just keep
adding more and more variables into the model just for the sake of getting a
larger value of R2. Here’s why the R2 adjusted is important: It keeps you from
adding more and more variables by taking into account how many values are
in the model. This way, the value of R2 adjusted can actually decrease if the
added value of the additional variable is outweighed by the number of vari-
ables in the model. This gives you an idea of how much or how little added
value you get from a bigger model (bigger isn’t always better).

115Chapter 6: One Step Forward and Two Steps Back: Regression Model Selection

11_045206 ch06.qxd  2/1/07  9:52 AM  Page 115



The goal of any model selection procedure is to have the smallest number of
x variables in the model as possible, with a high enough value of R2 adjusted
and a small enough Mallow’s C-p to feel good about it.

Applying forward selection 
to punt distances
To get a better feel for the forward selection procedure, you can apply it to the
punt distance example. The researchers turn their data over to your capable
hands for model selection. Using Minitab, you decide to apply the forward
selection procedure to the punt distance data shown in Table 6-1, using an
entry level of α = 0.05. You can now examine your results, shown in Figure 6-2.

In this section, you see the step-by-step process Minitab used to come up
with your results; you also see how to interpret those results in a way your
client researchers will appreciate and understand (which is the goal of all
things data analytical). You also get a heads up on how your choice of entry
level can impact your results.

Breaking down the results
You can see in Figure 6-2 that the procedure you asked Minitab to use is 
forward selection (line one) and that you set the α level for entering a new
variable to be 0.05. In line two, you can see the response (y) variable is dis-
tance, and you have six predictor (x) variables to start with, all based on a
sample of N = 13 observations.

Stepwise Regression: Distance versus Hang, R_Strength . . .

Forward Selection. Alpha-to-Enter: 0.05
Response is Distance on 6 predictors, with N = 13

Step
Constant  

1
−22.33

Hang       
T-Value      
P-Value     

43.5
4.73

0.001

S
R-Sq
R-Sq(adj)
Mallows C-p

15.6
67.05
64.06
1.7

Figure 6-2:
Forward

selection
results for

the punt
distance

data with
entry level

0.05.
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In the next part of the output, you see that at Step 1 the model has the constant
listed as –22.33. You can also see it includes hang time as the first variable in
the model. In the section “Exploring scatterplots and correlations,” you can see
that hang time is one of the more prominent variables, so you may not be sur-
prised that it shows up in the model selection process right away.

The p-value of hang time is 0.001, indicating that the variable is significant 
(less than α = 0.05). However, no Step 2 is in this output. That means after hang 
time was included, no other variables made a significant enough contribution
beyond hang time. The other variables’ p-values were all greater than 0.05.

The forward selection procedure’s modus operandi is that you have to be 
in the in-crowd in order to be added to the model. The model is like an A-list
in a way.

The final model for the punt distance data using the forward selection proce-
dure with α = 0.05 is y = –22.33 + 43.50x where y = punt distance and x = punt
hang time. Note that this is a simple linear regression model (Chapter 4 style),
because it has only one x variable in it.

You can now use this final model to predict punt distance by using hang time.
Say the hang time is three seconds. That means the punt is expected to go
y = –22.33 + 43.50 * 3 = 108.17 feet, or 36.06 yards. (Hang times for punts can
range anywhere from 0 seconds if the punt is blocked to around 5.00 seconds
(see Table 6-1), so don’t put numbers into this equation like 8 seconds. That
would make for an unbelievable punt distance — seriously!).

You can find the coefficient of an x variable by looking at the value in the
output directly across from the name of the variable. Under that value is the
t-value of this coefficient, and its p-value follows.

Looking at the fit of the final model
The value of R2 adjusted for this model as shown in Figure 6-2 is 64.06 per-
cent, which may not seem all that great. However, you’re dealing with a
simple linear regression model, and the value of R in this case is the correla-
tion coefficient between hang time and distance. This value of R (denoted 
by small r in its own simple regression context) is the square root of 0.6406,
which is 0.80. This correlation is somewhat strong, actually, so the model fits
fairly well. Mallow concurs, with a relatively small value of 1.7, as you can see
on the last line of Figure 6-2.

A cautionary word about entry level
So you can have an example where you see more than one variable added to
a model via forward selection, I conducted a forward selection procedure on
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the punt distance data. I bumped the entry level of α up to 0.25. (Don’t try
this at home; it’s much too high of an entry level for practical use. I reran the
analysis, and I’ve included the results in Figure 6-3.

Looking at Figure 6-3, you see the coefficient of the variables in the final
model, located in the Step 3 column. The final model, using forward selection
with this way-too-large entry level of α = 0.25, is y = 1.67 + 8.9x1 + 0.24x2 +
0.44x3 where y = punt distance, x1 = punt hang time, x2 = overall leg strength,
and x3 = right leg strength. With this three-variable model, the R2 adjusted is
72.04 percent (this number is found in Figure 6-3 in the third column, second
value up from the bottom). This value of R2 adjusted is a fairly small increase
over the one-variable model you found by doing the forward selection proce-
dure, using the more reasonable entry level of 0.05 (see Figure 6-2).

Shifting into Reverse: The Backward
Model Selection Procedure

The backward selection procedure for selecting a best multiple linear regres-
sion model works in a similar way as the forward selection procedure from
the previous section. The big difference is that instead of starting with no x

Stepwise Regression: Distance versus Hang, R_Strength . . .
Forward selection. Alpha-to-Enter: 0.25
Response is Distance on 6 predictors, with N = 13

Step    1
Constant   −22.326

2
−1.300

3
1.672

Hang       43.5
T-Value       4.73
P-Value      0.001

O_Strength
T-Value
P-Value

R_Strength
T-Value
P-Value

S
R-Sq
R-Sq(adj)
Mallows C-p

15.6
67.05
64.06
1.7

14.4
74.38
69.26

1.3

13.7
79.03
72.04
1.8

0.44
1.41
0.191

0.22
1.69

0.122

0.24
1.86
0.096

26.9
2.07

0.065

8.9
0.50
0.630

Figure 6-3:
Forward

selection
results for

the punt
data, using
entry level

0.25.
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variables and adding x variables one by one until you stop, you start with 
all the x variables in the model and remove x variables one by one until you
stop. You may think that the forward selection procedure and the backward
selection procedure would give you the same final model, but in many cases
they don’t, which you can discover in the sections that follow.

Eliminating variables one by one
The backward selection procedure starts out with the full multiple regression
model containing all of the x variables (of which there are k of them.) The
starting model is y = b0 + b1x1 + . . . + bkxk. The object is to whittle down the
model so it includes the fewest number of variables needed to still fit well.
(Statisticians, as mysterious, mystical, and complicated as they may seem,
actually like their models to be as simple as possible!)

The computer does all the work for all model selection procedures, but you
have to set the criteria for when to allow a variable to be removed. You’re
also left standing with the output that needs to be interpreted. Don’t worry
though. It’s all a step-by-step process that you take one at a time. (Hopefully
those steps are forward and not backward, right? Right.)

In general, here’s how the backward selection procedure works (note that
Minitab does all the work for you on this procedure; all you have to do is
interpret the results and understand the process by which those results 
were attained):

1. Choose a prespecified value of α for determining when to remove a
variable from the model.

In the backward selection procedure, you call α the removal level.
Typically you want to choose the removal level α = 0.10. The higher the
α level, the easier it is to remove a variable from the model. Statisticians
warn against using a removal level higher than the traditional value of 0.10
for fear of dropping variables out of the model too quickly, removing
important contributions that may be made by those variables. However,
if α is too small, the model could wind up being overly complex.

2. Start with the model containing all of the x variables: y = bo + b1x1 +
b2x2 + . . . + bkxk, where k is the total number of x variables.

Remember that this model is called the full model.

3. Conduct a t-test on the coefficient of each x variable to see whether
it’s statistically significant (see Chapter 5 for conducting t-tests on
coefficients of a multiple regression model), and note the p-value of
each t-test.
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If the x variable is statistically significant (its p-value is less than the pre-
selected α level), it makes a significant contribution to determining y,
given that the rest of the variables in the model are fixed. In that case,
that x variable remains a possible candidate for inclusion in the model 
at this point. If the x variable isn’t statistically significant, then it is con-
sidered for removal at this particular point.

4. Find the variable with the largest p-value on the Minitab output.

This variable is the one that has the least contribution toward y given
the rest of the variables in the model.

5. If the p-value for the variable found in step four is larger than the
removal level, then remove the variable from the model.

6. Repeat steps three through five on the new model, removing one vari-
able at a time; after the largest p-value from step four falls below the
removal level, stop the backward selection process and don’t remove
that variable or more variables.

You now have your final model, which will include some subset of x vari-
ables from the full model in step two.

To find a best multiple linear regression model by using the backward selec-
tion procedure in Minitab, go to Stat>Regression>Stepwise. Highlight the 
variable that is the response (y) variable, and click Select. Then highlight 
the variables that are the predictor (x) variables, and click Select. Click on
Methods, and choose Backward Selection. Choose the α to remove (the
removal level for a variable chosen by you). The F-value for removal has a
default at 4.0, which should be fine. Click OK, and you get the output for the
backward selection procedure similar to Figure 6-4.

Assessing model fit
The fit of the models at each stage of the backward selection procedure 
are the same as those for the forward selection procedure in the previous
section. The computer output shows you the value of R2, the value of R2

adjusted, and Mallow’s C-p. (See an earlier section “How well does the model
fit?” for more information on each of these measures.)

Kicking variables out to 
estimate punt distance
This section applies the backward selection procedure to the punt distance
data so you can see how the process works and how to interpret the results
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at each step. Note that each type of model selection procedure can produce a
different final model, which is normal. After all, if all the techniques led you
to the same result, why bother having more than one technique?

Using the punt distance data presented in Table 6-1, imagine that you ana-
lyzed the data by using the backward selection procedure with level of
removal α = 0.10. I show your results in Figure 6-4. Each stage in the model
selection process is represented by a column in the results.

Examining the x variables: The Step 1 column
The Step 1 column of Figure 6-4 shows all the x variables in the model.
Looking at the p-values in that first column, you can see that the largest one
turns out to be 0.953. This p-value is associated with the left leg strength vari-
able. (Check out the next section on the Step 2 column to find out what hap-
pens to this variable.)

Stepwise Regression: Distance versus Hang, R_Strength . . . 
Backward elimination. Alpha-to-Remove: 0.1
Response is Distance on 6 predictors, with N = 13

Step    1
Constant    −31.26

2
−33.29

3
−33.30

4
−35.25

5
12.77

Hang   
T-Value   
P-Value     

R_Strength
T-Value
P-Value

L_Strength
T-Value
P-Value

R_Flexibility
T-Value
P-Value

L_Flexibility
T-Value
P-Value

O_Strength
T-Value
P-Value

0.21
1.21
0.271

0.21
1.50

0.177

0.22
1.87
0.098

0.22
2.00
0.077

0.27
2.71
0.022

−0.41
−0.50
0.634

−0.42
−0.57
0.588

−0.41
−0.59
0.574

1.24
0.79

0.457

1.28
0.96

0.371

1.34
1.10
0.303

0.86
0.99
0.346

S
R-Sq
R-Sq(adj)
Mallows C-p

15.8
81.47
62.93
7.0

14.6
81.45
68.21

5.0

13.7
81.38
72.07
3.0

13.2
80.58
74.11
1.3

13.2
78.45
74.14

−0.0

0.04
0.06

0.953

0.33
1.08
0.310

0.39
1.46
0.178

0.56
2.64
0.025

0.28
0.56
0.596

0.29
0.78
0.461

4
0.16
0.874

3
0.10
0.927

Figure 6-4:
Backward

selection
procedure

for
estimating

punt
distance.
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Removing one variable: The Step 2 column
Notice in the Step 2 column of Figure 6-4 that the left leg strength variable 
no longer appears as a result (and it stays that way), because it has the high-
est p-value at Step 1 and that p-value is larger than the entry level of 0.10.
This is the work of the backward selection procedure. It operates in the only-
the-strong-survive mode when it comes to variable elimination.

In looking at the p-values for this new model in the Step 2 column, you see
the variable with the highest p-value is hang time (0.874). This result doesn’t
make sense at first because in Table 6-2 you saw hang time had the strongest
relationship with punt distance.

However, remember what the p-value represents here — the significance of
the variable in its contribution to y, given all the other variables already in
the model. Because so many of the other variables in the model were shown
to be correlated with hang time (see Figure 6-1), it makes sense that hang
time could possibly be eliminated somewhere near the beginning of this 
procedure.

Working down to the final model: The Step 3 column and beyond
The Step 3 column of Figure 6-4 shows the model without left leg strength or
hang time. The next variable to be removed is left leg flexibility, which has a
p-value = 0.574. Looking at the Step 4 column of Figure 6-4, the next variable
to be removed is right leg flexibility, which has a p-value of 0.346.

After right leg flexibility is removed from the model, you can see the result in
Step 5 of Figure 6-4. All the remaining variables in the model have p-values
smaller than the level for removal, which is 0.10. This means you stop the
backward selection procedure and keep the model you’ve got. The final
model for the punt distance data using the backward selection procedure
with removal level 0.10 is y = 12.77 + 0.56 x1 + 0.27x2, where x1 = right leg
strength and x2 = overall leg strength. The final value of R2 adjusted is 74.14
percent, which isn’t all that bad. (I’ve seen higher values of R2, but I’ve also
seen a lot worse.) Mallow cheers this model on with a C-p value of 0, which
has been rounded off a bit.

Always remember to use the R2 adjusted rather than R2 to assess the fit of
your model at each step of any selection procedure, and here’s why: In the
punt distance example, the values of R2 and R2 adjusted appear on the second
and third lines from the bottom of the Minitab output in Figure 6-4. You can
see that with each step, the values of R2 decrease because fewer variables are
in the model to contribute something to predicting y. However, the values of
R2 adjusted increase because the adjustment needed for the number of vari-
ables in the model goes down. Each variable left in the model is providing
more bang for the buck in terms of helping predict y.
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Using the Best Subsets Procedure
The best subsets procedure presents yet another way to find a best multiple
regression model. It basically examines the fit of every single possible model
that could be formulated from your x variables. You then use those model-
fitting results to make a decision about which model is the best one to use.

In this section, you see how the best subsets procedure works for model
selection in a step-by-step manner. Then you see how to take all the informa-
tion given to you and wade through it to make your way to the answer — the
best-fitting model based on a subset of the available x variables. Finally, you
see how this procedure is applied to find a model to predict punt distance.

Forming all models and 
choosing the best one
The best subsets procedure has fewer steps than the forward or backward
selection model because the computer formulates and analyzes all possible
models in a single step. In this section, you see how to get the results and then
use them to come up with a best multiple regression model for predicting y.

Here are the steps for conducting the best subsets model selection proce-
dure to select a multiple regression model (note that Minitab does all the
work for you to crunch the numbers):

1. Conduct the best subsets procedure in Minitab, using all possible 
subsets of the x variables being considered for inclusion in the 
final model (see the nearby Computer Output icon).

The output contains a listing of all models that contain one x variable,
all models that contain two x variables, all models that contain three
x variables, and so on, all the way up to the full model (containing all the
x variables). Each model is presented in one row of the output.

2. Choose the best of all the models shown in the best subsets Minitab
output by finding the model with the largest value of R2 adjusted and
the smallest value of Mallow’s C-p; if two competing models are about
equal, choose the model with the fewer number of variables.

Mallow’s C-p is a measure of the amount of error in the predicted values
compared to the overall amount of variability in the data. If the model
fits well, the amount of error in the predicted values is small compared
to the overall variability in the data, and Mallow’s C-p will be small. So
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look for a model that has a small value of Mallow’s C-p compared to its
competitors. R2 adjusted measures how much of the variability in the
y-values can be explained by the model, adjusted for the number of vari-
ables included. (R2 adjusted ranges from 0 to 100 percent; see the section
“How well does the model fit?” earlier in this chapter.) If the model fits
well, R2 adjusted is high. So you also want to look for the smallest possi-
ble model that has a high value of R2 adjusted, and a small value of
Mallow’s C-p compared to its competitors. And if it comes down to two
similar models, you always want to make your final model as easy to
interpret as possible by selecting the model with the fewer variables.

To carry out the best subsets selection procedure in Minitab, go to Stat>
Regression>Best Subsets. Highlight the response variable (y), and click Select.
Highlight all the predictor (x) variables, and click Select. Click on OK.

Applying best subsets to the 
punt distance example
Say that you analyzed the punt distance data by using the best subsets model
selection procedure. Your results are shown in Figure 6-5. This section fol-
lows Minitab’s footsteps in getting these results, and provides you with a
guide for interpreting the results.

Pouring over the output
Assuming that you already used Minitab to carry out the best subsets selec-
tion procedure on the punt distance data, you can now analyze the output
from Figure 6-5. Each variable shows up as a column on the right side of the
output. Each row represents the results from a model containing the number
of variables shown in column one. The X’s at the end of each row tell you
which variables were included in that model. The number of variables in the
model starts at one and increases to six because six x variables are available
in the data set. 

The models with the same number of variables are ordered by their values of
R2 adjusted and Mallows C-p, from best to worst. The top-two models (for
each number of variables) are included in the computer output.

For example, rows one and two of Figure 6-5 (both marked 1 in the Vars
column) show the top-two models containing one x variable; rows three and
four show the top two models containing two x variables (and so on). Finally
the last row of Figure 6-5 shows the results of the full model containing all six
variables. (Only one model contains all six variables, so you don’t have a
second-best model in this case.)
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Looking at the first two rows of Figure 6-5, the top one-variable model is the
one including hang time only. The second-best one-variable model includes
only right foot flexibility. The right foot flexibility model has a lower value of
R2 and a higher Mallow’s C-p than the hang time model, which is why it’s the
second best.

Row three shows that the best two-variable model for estimating punt dis-
tance is the model containing right leg strength and overall leg strength. The
best three-variable model is in row five. It shows that the best three-variable
model includes right foot strength, right foot flexibility, and overall leg
strength. The best four-variable model is found in row seven, and includes
right foot strength, right and left foot flexibility, and overall foot strength. 
The best five-variable model is found in row nine and includes every variable
except left foot strength. The only six-variable model is listed in the last row.

Choosing the best model by using R2 adjusted and Mallow’s C-p
Now among the best one-variable, two-variable, three-variable, four-variable,
and five-variable models, which one should you choose for your final multi-
ple regression model? That is, which model is the best of the best? With all
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these results, it would be easy to have a major freak out over which one to
pick, but never fear — Mallow’s is here (along with his friendly sidekick, the
R2 adjusted).

Looking at Figure 6-5, you see that as the number of variables in the model
increase, R2 adjusted peaks out and then drops way off. That’s because R2

adjusted takes into account the number of variables in the model and reduces
R2 accordingly. You can see that R2 adjusted peaks out at a level of 74.1 per-
cent for two models. The corresponding models are the top two-variable
model (right leg strength and overall leg strength) and the best three-variable
model (right foot strength, right foot flexibility, and overall leg strength).

Now look at Mallow’s C-p for these two models. Notice that Mallow’s C-p is 0
for the two-variable model and 1.3 for the three-variable model. Both values
are small compared to others in Figure 6-5, but because Mallow’s C-p is
smaller for the two-variable model and because it has one less variable in it,
you should choose the two-variable model (right leg strength and overall leg
strength) as the final model, using the best subsets procedure.

Comparing Model Selection Procedures
Upon examining the results of the previous sections, the first concern you
may have is why you don’t get the same results with all three model selection
procedures. (I suppose one could argue that if you got the same results all
the time, you would have no need for three different procedures, right? But
that’s beside the point.) All attempts at humor aside, I address this issue, as
well as compare how the procedures (from the previous sections) stack up
against one another here in this section.

Why don’t all the procedures 
get the same results?
The forward and backward selection procedures’ overall goals and general
process are similar. In both the forward and backward selection procedures,
you’re trying to fit a good model to the data. In both procedures, you evalu-
ate each new model based on how it compares to the previous model that
you examined (which has only a one-variable difference). But because the
forward selection model starts at one end of the number of x variables spec-
trum and the backward selection model starts at the other end, the two pro-
cedures build their final models differently, one variable at a time. Therefore
these two models might meet in the middle and give the same model, but it is
certainly not the norm.
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In the punt distance example, you can see that in Figure 6-2 (forward selec-
tion) the computer includes hang time first because it makes the biggest con-
tribution toward estimating y. But in Figure 6-4 (backward selection), all the
variables are in the model from the get-go, and after the weakest variable (on
all counts) was eliminated (left foot flexibility), the remaining variables were
the ones strongly related to hang time (see Figure 6-1). That made hang time
a redundant variable, so it was removed.

The best subsets model takes a totally different approach from forward and
backward selection. It just looks at all possible models you could have and
chooses the best ones at each level (one, two, three variables, and so on).
This model selection procedure has no building process that goes on where
subsequent models depend on what was selected in previous steps. That
means the best subsets procedure can easily give different results than either
of the other two procedures simply because it has many more possible
models to choose from.

How do the procedures stack 
up against each other?
So the big question is which model selection procedure is the best one? You
can’t find a straight answer to that. The debate over this issue goes on and
on among the various research groups that analyze their data by using model
selection procedures. All three procedures, for example, are available in
Minitab, so they are considered viable procedures. However, many statisti-
cians do prefer one model selection procedure over the others, which I reveal
to you later in this section along with the positives and negatives of each 
procedure.

Looking at the positives
What is nice about each of these procedures is that they have some order to
them and they make sense. You don’t take a haphazard approach with any of
the procedures, and any two people choosing the same procedure for build-
ing the best model with the same data set would get the same answer, which
is reassuring. All three procedures also usually provide results that are rea-
sonable and final models that have interpretative value, and each has its 
own plus side. The forward selection keeps the models as simple as possible;
backward selection helps you not miss any important variables; and the best
subsets model examines every possible model and makes straight compar-
isons between them.
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Because all three model selection procedures are available in Minitab, the
temptation may be to just run all three procedures, see what you get, and
choose the one you like the best. This approach wouldn’t be a good idea and
is called data fishing or data snooping, which can lead to conclusions that
others can’t confirm (for more on these no-no’s, flip to Chapter 1).

Examining the downsides
The forward and backward selection procedures are somewhat limiting in 
the way they build their models. After hang time, for example, is eliminated 
in the backward selection procedure (in Figure 6-4), it never appears again 
in any later models. After hang time is added in the forward selection proce-
dure, it stays in every model from then on. The best subsets procedure (in
Figure 6-5), on the other hand, examines all possible models including those
containing hang time and those that don’t.

Standing out above the rest: The best subsets procedure
Because of its versatility and the comprehensive way it looks at all possible
models, the best subsets model is generally the model of choice by statisti-
cians. With six possible variables having two possibilities for each one (being
included or not being included in the model), you have 2 * 2 * 2 * 2 * 2 * 2 =
64 possible models to look at in the best subsets procedure. Notice that this
set of all possible (64) models includes all the models shown in the step-by-
step process of forward and backward selection.
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Chapter 7

When Data Throws You a Curve:
Using Nonlinear Regression

In This Chapter
� Determining when a straight-line regression model isn’t enough

� Fitting a polynomial to your data set

� Exploring exponential models to fit your data

In introductory statistics, you concentrate on the simple linear regression
model, where you look for one quantitative variable, x, that you can use to

make a good estimate of another quantitative variable, y. The examples you
look at fell right in line with this kind of model, such as using height to esti-
mate weight or using GPA to estimate exam score. (For information on simple
linear regression models, see Chapter 4.)

Nonlinear regression comes into play in situations where you have graphed
your data on a scatterplot (a two dimensional graph showing the x variable 
on the x-axis and the y variable on the y-axis), and you see a pattern emerging
that doesn’t look like a straight line, but instead looks like some type of curve.
Examples of data that follow a curve include population sizes over time,
demand for a product as a function of supply, or the length of time that a bat-
tery lasts. When a data set follows a curved pattern, the time has come to
move away from the linear regression models (Chapters 4 and 5) and move 
on to a nonlinear regression model.

In this chapter, you see how to make your way around the curved road of
data that leads to nonlinear regression models. The good news is that you
can use many of the same techniques you use for regular regression and that
Minitab, in the end, does the analysis for you.
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Starting Out with Scatterplots
As with any type of data analysis, before you plunge in and select a model
that you think fits the data, or that is supposed to fit the data, you have to
step back and take a look at the data and see whether any patterns emerge.
To do this, look at a scatterplot of the data, and see whether or not you can
draw a smooth curve through the data and find that most of the points follow
along that curve.

Suppose you’re interested in modeling how quickly a rumor spreads. One
person knows a secret, tells another person, and now two know the secret;
each of them tells a person, and now four know the secret; some of those
people may pass it on, and so it goes on down the line. Pretty soon, a large
number of people know the secret (which is a secret no longer). To collect your
data, you count the number of people who know a secret by tracking who tells
who over a six-day period. You can see a scatterplot of the data in Figure 7-1.

In this situation, the explanatory variable, x, is day, and the response vari-
able, y, is the number of people who know the secret. Looking at Figure 7-1,
you can see a pattern between the values of x and y. But this pattern isn’t
linear. It curves upwards. If you tried to fit a line to this data set anyway, how
well would it fit?

To figure this out, you can look at the correlation coefficient between x and y,
which is found on Figure 7-1 to be 0.906 (see Chapter 4 for more on correla-
tion). You can interpret this correlation as a strong, positive (uphill) linear
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relationship between x and y. However in this case, the correlation is mislead-
ing, because the scatterplot appears to be curved. As with any regression
analysis, taking into account both the scatterplot and the correlation when
making a decision about how well the model being considered would fit the
data is very important. The contradiction in this example between the scat-
terplot and the correlation is a red flag telling you that a straight-line model
isn’t the best idea.

The correlation coefficient measures only the strength and direction of the
linear relationship between x and y (see Chapter 4). However, you may run
into situations (like the one shown in Figure 7-1) where a correlation can be
strong, yet the scatterplot shows a curve would fit better. Don’t rely solely 
on either the scatterplot or the correlation coefficient alone to make your
decision about whether to go ahead and fit a straight line to your data.

The bottom line here is that fitting a line to data that appears to have a curved
pattern isn’t the way to go. What you need to do in this situation is explore
models that have curved patterns themselves. In the following sections, you
see two major types of nonlinear (or curved) models that are used to model
curved data: polynomials (beyond a straight line) and exponential models
(that start out small and quickly increase, or the other way around). Because
the pattern of the data in Figure 7-1 starts low and bends upward, the correct
model to fit this data is an exponential regression model. (This model would
also be appropriate for data that starts out high and bends down low.)

Handling Curves in the Road 
with Polynomials

One major family of nonlinear models is the polynomial family. You use these
models when a polynomial function (beyond a straight line) best describes
the curve in the data. (For example, the data may follow the shape of a
parabola, which is a second-degree polynomial.) You typically use polynomial
models when the data follow a pattern of curves going up and down a certain
number of times. For example, suppose a doctor examines the occurrence of
heart problems in patients as it relates to their blood pressure. She finds that
patients with very low or very high blood pressure had a higher occurrence
of problems, while patients whose blood pressure fell in the middle, consti-
tuting the normal range, had fewer problems. This pattern of data has a 
U-shape, and a parabola would fit this data well.

In this section, you see what a polynomial regression model is, how you can
search for a good-fitting polynomial for your data, and how you can assess
polynomial models.
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Bringing back polynomials
You may recall from algebra that a polynomial is a sum of x terms raised to a
variety of powers, and each x is preceded by a constant called the coefficient of
that term. For example, the model y = 2x + 3x2 + 6x3 is a polynomial. The general
form for a polynomial regression model is y = β0 + β1x

1 + β2x
2 + β3x

3+ . . . + βkxk.
Here, k represents the total number of terms in the model.

An example of a polynomial regression model is y = 2x + 3x2. This model is
called a second-degree (or quadratic) polynomial, because the largest exponent
is a 2. A second-degree polynomial forms a parabola shape — either an upside-
down or right-side-up bowl; it changes direction one time (see Figure 7-2a). A
third-degree polynomial typically (those having 3 as the highest power of x) has
a sideways S-shape, changing directions two times (see Figure 7-2b). Fourth-
degree polynomials (those involving x4) typically change directions in curva-
ture three times to look like the letter W or the letter M, depending on whether
they’re upside down or right-side up (see Figure 7-2c). In general, if the largest
exponent on the polynomial is n, the number of curve changes in the graph is
typically n – 1. (For more information on graphs of polynomials, see your alge-
bra textbook or Algebra For Dummies by Mary Jane Sterling [Wiley].)

The nonlinear models in this chapter involve only one explanatory variable,
x. You can include more explanatory variables in a nonlinear regression, rais-
ing each separate variable to a power. These models are beyond the scope 
of this book; I give you information on basic multiple regression models in
Chapter 5.
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Searching for the best polynomial model
When fitting a polynomial regression model to your data, the most important
idea is to always start with the simplest model possible and work your way
up as you need to. Don’t plunge in with a high-order polynomial regression
model right off the bat. Here are a couple reasons why:

� High-order polynomials are hard to interpret, and their models are
complex. For example, with a straight line you can interpret the values
of the y-intercept and slope easily, but interpreting a tenth-degree poly-
nomial is hard (putting it mildly).

� High-order polynomials also tend to cause overfitting. If you’re fitting
the model as close as you can to every single point in a data set, your
model may not hold for a new data set; your estimates for y could be
way off.

To fit a polynomial to a dataset in Minitab, go to Stat>Regression>Fitted Line
Plot> and click on the type of regression model you want: linear, quadratic, 
or cubic. (It doesn’t go beyond a second-degree polynomial; however, these
options should cover 90 percent of the cases.) Click on the y variable from
the left-hand box and click Select; this variable will appear in the Response
(y) box. Click on the x variable from the left-hand box and click Select; it will
appear in the Predictor (x) box. Click OK.

Following are the steps for fitting a polynomial model to your data (statistical
software can jump in and fit the models for you after you tell it which ones 
to fit):

1. Try to fit a first-degree polynomial (straight line) to the data first: 
y = b0 + b1x.

This model is for a straight line. If it doesn’t fit (using both the correla-
tion coefficient, r, and the scatterplot), move to step two.

2. Try to fit a second-degree polynomial (parabola): y = b0 + b1x + b2x2.

If the data fits the model well, stop here (see the section on assessing
model fit). If the model still doesn’t fit well, go to step three.

3. Try to fit a third-degree polynomial: y = b0 + b1x + b2x2 + b3x3.

If the data fits the model well (check out the section on assessing model
fit), don’t go on to the next polynomial. If the model still doesn’t fit well,
go to step four.

4. Continue trying to fit higher-order polynomials until you find one that
fits or until the order of the polynomial (largest exponent) is simply
getting too large to find a reliable pattern.
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How large is too large? Typically, if you can’t fit the data by the time the
degree of the polynomial reaches three, then perhaps a different type of
model would work better. Or you may determine that you observe too
much scatter and haphazard behavior in the data to try to fit any model.

Minitab can do each of these steps for you up to degree two (step two); from
there, you need a more sophisticated statistical software program, such as
SAS or SPSS. However, most of the models you need to fit go up to the
second-degree polynomials. In the next section, you use a second-degree
polynomial to predict a student’s quiz score based on his or her study time.

Using a second-degree polynomial 
to pass the quiz
The first step in fitting a polynomial model is to graph the data in a scatter-
plot and see whether the data fall into a particular pattern. Many different
types of polynomials exist to fit data that has a curved type of pattern. One 
of the most common patterns found in curved data is the quadratic pattern,
or second-degree polynomial, which goes up and comes back down, or goes
down and comes back up, as the x values move from left to right (see Fig-
ure 7-2a). The second-degree (quadratic) polynomial is the simplest and most
commonly used polynomial beyond the straight line, so it deserves special
consideration.

This section is dedicated to looking at a second-degree polynomial. You can
see the exploratory process of graphing data and looking at the graph’s
shape by using the data involving quiz scores and study time. (After you
master the basic ideas based on second-degree polynomials, you can apply
them to polynomials with higher powers.)

Suppose 20 students take a statistics quiz. You record the quiz scores (which
have a maximum score of ten) and the number of hours students reported
studying for the quiz. (You can see the results in Figure 7-3.)

Looking at Figure 7-3, it appears that three camps of students are in this
class. Camp One, on the left end of the x-axis, understands the stuff (as
reflected in their higher scores) but didn’t have to study hardly at all
(because their study time on the x-axis is low). Camp Three also did very well
on the quiz (as indicated by their high quiz scores), but had to study a great
deal to get that grade (as seen on the far-right end of the x-axis). The stu-
dents in the middle, Camp Two, didn’t seem to fare well. All in all, from the
scatterplot in Figure 7-3, it does appear that study time may explain quiz
scores on some level, and explains it in a way indicative of a second-degree
polynomial. So a quadratic regression model may fit this data.
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Suppose a data analyst (not you!) doesn’t know about polynomial regression
and just tries to fit a straight line to the quiz-score data. In Figure 7-4, you can
see the data and the straight line that he tried to fit it in. The correlation as
shown in the figure is –0.033, which is basically zero. This correlation means
that no linear relationship lies between x and y. (It doesn’t mean that no rela-
tionship is present at all, just not a linear relationship — see Chapter 4 for
more on linear relationships.) So trying to fit a straight line here was indeed a
bad idea.
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After you know that a quadratic polynomial seems to be a good fit for the
data, the next challenge is finding the equation for that particular parabola
that fits the data, among all the possible parabolas out there. Remember from
algebra that the general equation of a parabola is y = ax 2 + bx + c. Now you
have to find the values of a, b, and c that create the best-fitting parabola to
the data (just like you find the a and the b that create the best-fitting line to
data in a linear regression model). That is the object of the regression model.

Say that you fit a quadratic regression model to the quiz-score data by using
Minitab (see the Minitab output in Figure 7-5 and the instructions for using
Minitab to fit this model in the previous section). On the top line of the
output, you can see that the equation of the best-fitting parabola is quiz 
score = 9.82 – 6.15 * study time + 1.00 * study time squared. (Note that y is
quiz score and x is study time in this example because you’re using study
time to predict quiz score.)

The scatterplot of the quiz-score data and the parabola that was fit to the
data via the regression model is shown in Figure 7-6. From algebra, you may
remember that a positive coefficient on the quadratic term (here a = 1.00)
means the bowl is right-side-up, which you can see is the case here.

Looking at Figure 7-6, it appears that the quadratic model fits this data pretty
well, because the data fall closely to the curve that Minitab found. However,
data analysts can’t live by scatterplots alone. In the next section, you figure
out how to assess the fit of a polynomial model in more detail.

Assessing the fit of a polynomial model
You have made a scatterplot of your data, and you saw a curved pattern. You
used polynomial regression to fit a model to the data; the model appears to
fit well because the points follow closely to the curve Minitab found. But
don’t stop there. To make sure your results can be generalized to the popula-
tion from which your data was taken, you need to do a little more checking
beyond just the graph to make sure your model fits well.

The regression equation is
Quiz score = 9.823 − 6.149 study time + 1.003 study time**2

S = 1.04825 R−Sq = 91.7% R−Sq(adj) = 90.7%

Polynomial Regression Analysis: Quiz Score versus Study TimeFigure 7-5:
Minitab

output for
fitting a

parabola to
the quiz-

score data.
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To assess the fit of any model beyond the usual suspect, a scatterplot of 
the data, you look at two additional items. Those items are the value of R2

adjusted and the residual plots, which you typically check in that order after
assessing the scatterplot.

All three assessments must agree before you can conclude that the model
fits. If the three assessments don’t agree, you’ll likely have to use a different
model to fit the data besides a polynomial model, or you’ll have to change
the units of the data to help a polynomial model fit better. However, the latter
fix is outside the scope of intermediate statistics, and you probably will not
encounter that situation.

In the following sections, you take a deeper look at the value of R2 adjusted
and the residual plots and figure out how you can use them to assess your
model’s fit. (You can find more info on the scatterplot in the section “Starting
out with Scatterplots” earlier in this chapter.)

Examining R2 and R2 adjusted
Finding R2, the coefficient of determination (see Chapter 5 for full details), is
like the day of reckoning for any model. You can find R2 on your regression
output, listed as “R-Sq” right under the portion of the output where the 
coefficients of the variables are shown (see Figure 7-5).
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Figure 7-5 shows the Minitab output for the quiz-score data example; the
value of R2 in this case is 91.7 percent. The value of R2 tells you what percent-
age of the variation in the y-values the model can explain. To interpret this
percentage, the closer a value of R2 is to 100 percent, the better. You can con-
sider values of R2 over 80 percent good. Values under 60 percent aren’t good.
Those in between I’d consider to be so-so; they could be better. (This assess-
ment is just my rule of thumb; opinions may vary a bit from one statistician
to another.)

However, you can find such a thing in statistics as too many variables spoil-
ing the pot. Right beside R2 on the computer output from any regression
analysis is the value of R2 adjusted, which adjusts the value of R2 down a
notch for each variable (and each power of each variable) entered into the
model. That way, you can’t just throw in a ton of variables into a model
whose tiny increments all add up to an acceptable R2 value, without taking a
hit for throwing everything in the model but the kitchen sink.

To be on the safe side, you can always use R2 adjusted to assess the fit of
your model, rather than R2. But you should always use R2 adjusted if you
have more than one x variable in your model (or more than one power of an 
x variable). The values of R2 and R2 adjusted will be close if you have only a
couple of different variables (or powers) in the model, but as the number of
variables (or powers) increases, so does the gap between R2 and R2 adjusted.
In that case, R2 adjusted is the most fair and consistent coefficient to use to
examine model fit.

In the quiz-score example (analysis shown in Figure 7-5), the value of R2

adjusted is 90.7 percent, still a very high value, meaning the quadratic 
model fits this data very well. (See Chapter 6 for more on R2 and R2 adjusted.)

Checking the residuals
You’ve looked at the scatterplot of your data and the value of R2 is high. What’s
next? Now you want to examine how well the model fits each individual point
in the model, to make sure you can’t find any spots where the model is way off
or places where you missed another underlying pattern in the data.

A residual is the amount of error, or leftover, that occurs when you fit a model
to a data set. For each observed y-value in the data set, you also have a pre-
dicted value from the model, typically called y-hat. The residual is the differ-
ence between value of y and y-hat. Each y-value in the data set has a residual;
you examine all the residuals together as a group, looking for patterns or
unusually high values (indicating a big difference between the observed y
and the predicted y at that point; see Chapter 4 for the full info on residuals
and their plots).
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In order for the model to fit well, the residuals need to meet two conditions:

� The residuals are independent. The independence of residuals means
that as you plot the residuals you don’t see any pattern; they don’t affect
each other and should be random.

� The residuals have a normal distribution centered at zero, and the
standardized residuals follow suit. Having a normal distribution with
mean zero means that most of the residuals should be centered around
zero, with fewer of them occurring the farther from zero you get. You
should observe about as many residuals above the zero line as below it.
If the residuals are standardized, their standard deviation is one; you
should expect about 95 percent of them to lie between –2 and +2, follow-
ing the 68-95-99.7 Rule (see your intro stats text).

The way to determine whether or not these two conditions are met for the
residuals is by using a series of four graphs called residual plots. (The resid-
uals are the distances between the predicted values in the model and the
observed values of the data themselves.) Most statisticians prefer to stan-
dardize the residuals (convert them to Z-scores by subtracting their mean
and dividing by their standard deviation) before looking at them, because
then you can compare them with values on a Z-distribution. Hence, you 
can ask Minitab to give you a series of four standardized residual plots with
which to check the conditions.

Figure 7-7 shows the standardized residual plots for the quadratic model,
using the quiz-score data from previous sections. The upper-left plot shows
that the standardized residuals follow one-to-one with a normal distribution.
The upper-right plot shows that most of the standardized residuals fall
between –2 and +2 (see Chapter 4 for more on standardized residuals). The
lower-left plot shows that the residuals bear some resemblence to a normal
distribution, and the lower-right plot demonstrates how the residuals have
no pattern. They appear to occur at random. All of these plots together sug-
gest that the conditions on the residual are met to apply the selected qua-
dratic regression model.

Making predictions
After you’ve found the model that fits well, you can now use that model to
make predictions for y given x by simply plugging in the desired x-value, and
out comes your predicted value for y. (Make sure any values you plug in for x
occur within the range of where data was collected; if not, you can’t guaran-
tee the model holds.)
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Returning to the quiz-score data from previous sections, can you use study
time to predict quiz score by using a quadratic regression model? By looking 
at the scatterplot and the value of R2 adjusted (see Figures 7-5 and 7-6, respec-
tively), you can see the quadratic regression model appears to fit the data well
(isn’t it nice when you find something that fits?). By looking at the residual
plots (Figure 7-7), the conditions seem to be met to fit this model; you can find
no major patterns in the residuals, they appear to center at one, and most of
them stay within the normal boundaries of standardized residuals: –2 and +2.

With all this evidence together, study time does appear to have a quadratic
relationship with quiz score in this case. You can now use the model to make
estimates of quiz score given study time. For example, because the model
(shown in Figure 7-5) is y = 9.82 – 6.15x + 1.00x2, if your study time is 5.5 hours,
then your estimated quiz score is 9.82 – 6.15 * 5.5 + 1.00 * 5.52 = 9.82 – 33.83 +
30.25 = 6.25. That value corresponds to what you see on the graph in Figure 7-3
if you look at the place where x = 5.5; the y-values are in the vicinity of 6 to 7.

As with any regression model, you can’t estimate the value of y for x-values
outside the range of where data was collected. This error is called extrapola-
tion. You can’t be sure that the model you fit to your data actually continues
ad infinitum for any old value of x. In the quiz-score example (see Figure 7-3), it
doesn’t make sense to estimate quiz scores for study times higher than six
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hours when using this model because the scores on this quiz don’t go above
ten. The model likely levels off after six hours to a score of ten, indicating
that studying more than six hours is overkill.

Going Up? Going Down? Go Exponential!
Exponential models work well in situations where a y variable either increases
or decreases exponentially over time. That means, the y variable starts out
slow, then increases at a faster and faster rate, or it starts out high and
decreases at a faster and faster rate. Many processes in the real world
behave like an exponential model: for example, population size over time,
average household incomes over time, the length of time a product lasts, or
the level of patience one has as the number of statistics homework problems
goes up (of course, using this book should cut that time in half, no?).

In this section, you familiarize yourself with the exponential regression
model, and see how to use it to fit data that either rises or falls at an expo-
nential rate. You also discover how to build and assess exponential regres-
sion models to make accurate predictions for a response variable y, using an
explanatory variable x.

Recollecting exponential models
Exponential models have the form y = αβx . These models involve a constant,
β, raised to higher and higher powers of x multiplied by a constant, α. The
constant β represents the amount of curvature in the model. The constant α
is a multiplier in front of the model that shows where the model crosses the
y-axis (because when x = 0, y = α * 1). 

An exponential model generally looks like the upper part of a hyperbola
(remember those from advanced algebra?). A hyperbola is a curve that
crosses the y-axis at a point and curves downward toward zero or starts 
at some point and curves upward to infinity (see Figures 7-8a and 7-8b for
examples). If β is greater than one in an exponential model, the graph curves
upward toward infinity. If β is less than one, the graph curves downward
toward zero. All exponential models stay above the x-axis.

For example, the model y = 1 * 3x is an exponential model. Here, say you
made α = 1, indicating that the model crosses the y-axis at 1 (because plug-
ging x = 0 into the equation gives you 1). You set the value of β equal to three,
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indicating that you want a bit of curvature to this model. The y-values curve
upward quickly from the point (0, 1). For example, when x = 1, you get 1 * 31 =
3; for x = 2, you get 1 * 32 = 9; for x = 3, you get 1 * 33 = 27, and so on. Figure 7-8a
shows a graph of this model. Notice the huge scale needed on the y-axis when
x is only 10.

Now suppose you let α = 1 and β = 0.5. These values give you the model y = 
1 * 0.5x . This model takes 0.5 (a fraction between 0 and 1) to higher and
higher powers, which makes the y-values smaller and smaller, never reaching
zero but always getting closer. (For example, 0.5 to the second power is 0.25,
which is less than 0.50, and 0.50 to the tenth power is 0.00098.) Figure 7-8b
shows a graph of this model.

Searching for the best exponential model
Finding the best-fitting exponential model requires a bit of a twist compared to
finding the best-fitting line by using simple linear regression (Chapter 4).
Because fitting a straight-line model is much easier than fitting an exponential
model directly from data, you transform the data into something for which a
line fits. Then you fit a straight-line model to that transformed data. Finally you
undo the transformation, getting you back to an exponential model. The trans-
formation used is logarithms (because they are the inverse of exponentials).
But before you start sweating, don’t worry; these math gymnastics aren’t some-
thing you do by hand — the computer does most of the grit work for you.

The exponential model looks like this (if you’re using base 10): y 10b b x0 1= + .
Follow these steps for fitting an exponential model to your data and using it
to make predictions:

1. Make a scatterplot of the data and see whether the data appears to
have a curved pattern that resembles an exponential curve.
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If the data follows an exponential curve, proceed on to the next step;
otherwise, consider alternative models (such as multiple regression in
Chapter 5).

To see how to make a scatterplot in Minitab, check out Chapter 4. For
more details on what shape to look for, see the section “Recollecting
exponential models.”

2. Use Minitab to fit a line to the log(y) data.

In Minitab, you go to the regression model (curve fit). Under Options,
select Logten of y. Then select Using scale of logten to give you the
proper units for the graph.

Understanding the basic idea of what Minitab does during this step is
important; being able to calculate it by hand isn’t. You can see what
Minitab does during this step in the following:

• Minitab applies the log (base 10) to the y-values. For example, if y
is equal to 100, log10100 equals 2 (because 10 to the second power
equals 100). Note that if the y-values fell close to an exponential
model before, the log(y) values will fall close to a straight-line
model. This phenomenon occurs because the logarithm is the
inverse of the exponential function, so they basically cancel each
other out, and you’re left with a straight line.

• Minitab fits a straight line to the log(y) values by using simple
linear regression (from Chapter 4). The equation of the best-fitting
straight line for the log(y) data is log(y) = b0 + b1x. Then Minitab
passes this model on to you in its output; you take it from here.

3. Transform the model back to an exponential model by starting with
the straight-line model, log(y) = b0 + b1x, that was fit to the log10(y) data
and then applying ten to the power of the left side of equation and ten
to the power of the right side.

By the definition of logarithm, you get y on the left side of the model and
ten to the power of b0 + b1x on the right side. The resulting exponential
model for y is y 10b b x0 1= + . 

4. Use the exponential model found in step three to make predictions for
y (your original variable) by plugging your desired value of x into the
model.

Only plug in values for x that are in the range of where the data are
located.

5. Assess the fit of the model by looking at the scatterplot of the log(y)
data, checking out the value of R2 adjusted for the straight-line model
for log(y), and checking the residual plots for the log(y) data.
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The techniques and criteria you use to do this are the same as those I dis-
cuss in a previous section “Assessing the fit of a polynomial model.”

The math magic from step three works courtesy of the definition of loga-
rithm, which says log a y b ab

y
+= =^ h . Suppose you have the equation 

log10y = 2 + 3x. Now if you take ten to the power of each side, you get 
10 10( )log y x2 310 = + . By the definition of logarithm, the tens cancel out on the left
side and you get y = 102+3x. This model is exponential because x is in the expo-
nent. You can take step two up another notch to include the general form of
the straight line model y = b0 + b1x. Using the definition of logarithm on this
line, you get log y b b x y10b b x

10 0 1
0 1

+= + =+
_ i .

If these steps seem dubious to you, stick with me. By looking at the example
in the next section, you can see each step firsthand and that will help a great
deal. In the end, actually finding predictions by using an exponential model is
a lot easier to do than it is to explain.

Spreading secrets at an exponential rate
Often, the best way to figure something out is to see it in action. By using 
the secret-spreading quiz example from Figure 7-1, you can work through the
series of steps from the preceding section to find the best-fitting exponential
model and use it to make predictions.

Checking the scatterplot
Your goal in step one is to make a scatterplot of the secret-spreading data
and determine whether the data resembles the curved function of an expo-
nential model. Figure 7-1 shows the data for the spread of a number of people
knowing the secret, as a function of the number of days. You can see that the
number of people starts out small, but then as more and more people tell
more and more people, the number grows quickly until the secret isn’t a
secret anymore. This is a good situation for an exponential model, due to the
amount of upward curvature in this graph.

Letting Minitab do its thing to log(y)
In step two, you let Minitab find the best-fitting line to the log(y) data 
(see the section “Searching for the best exponential model” to find out how
to do this in Minitab). The output for the analysis of the secret-spreading
data is in Figure 7-9. You can see in Figure 7-9 that the best-fitting line is 
log(y) = –0.19 + 0.28 * x, where y is the number of people knowing the secret
and x is the number of days.
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Going exponential
After you have your Minitab output, you’re ready for step three. You trans-
form the model log(y) = –0.19 + 0.28 * x into a model for y. Do this by taking
10 to the power of the left-hand side and 10 to the power of the right-hand
side. Transforming the log(y) equation for the secret-spreading data, you get 
y = 10–0.19+0.28x.

Making predictions
By using the exponential model from step three, you can move on to step
four: Make predictions for appropriate values of x (within the range of where
data was collected). Continuing to use the secret-spreading data, suppose
you want to estimate the number of people knowing the secret on day 
five (see Figure 7-1). Just plug x = 5 into the exponential model to get 
y = 10–0.19+0.28 * 5 = 101.21 = 16.22. Looking at Figure 7-1, you can see that this 
estimation falls right in line with the graph.

Assessing the fit of your exponential model
Now that you’ve found the best-fitting exponential model, you have the worst
behind you. You have arrived at step five and are ready to further assess the
model fit (beyond the scatterplot of the original data) to make sure no major
problems arise.

In general, to assess the fit of an exponential model, you do three things, in
the following order:

1. Check the scatterplot of the log(y) data to see how well it resembles a
straight line.

2. Examine the value of R2 adjusted for the model of the best-fitting line
for log(y), done by Minitab.

3. Look at the residual plots from the fit of a line to the log(y) data.

The regression equation is
logten (number) = − 0.1883 + 0.2805 day

S = 0.157335 R−Sq = 93.3% R−Sq(adj) = 91.6%

Regression Analysis: Day versus NumberFigure 7-9:
Minitab fits
a line to the

log(y) for the
secret-

spreading
data.

146 Part II: Making Predictions by Using Regression 

12_045206 ch07.qxd  2/1/07  9:56 AM  Page 146



If you look at the section “Assessing the fit of a polynomial model,” you can
figure out how to apply these assessment strategies to the straight-line fit 
of log(y).

You assess the fit of the log(y) for the secret spreading first through the scat-
terplot shown in Figure 7-10. The scatterplot shows that the model appears
to fit the data well, because the points are scattered in a tight pattern around
a straight line.

The value of R2 adjusted for this model is found in Figure 7-10 to be 91.6 
percent. This value also indicates a good fit because it is very close to 100
percent. Therefore, 91.6 percent of the variation in the number of people
knowing the secret is explained by how many days it has been since the
secret spreading started. (Makes sense.)

The residual plots from this analysis (see Figure 7-11) show no major depar-
tures from the conditions that the errors are independent and have a normal
distribution. Note that the histogram in the lower-left corner doesn’t look all
that bell-shaped, but you don’t have a lot of data in this example, and the rest
of the residual plots seem okay. So, you have little cause to really worry.

All in all, it appears that the secret’s out on the secret-spreading data, now
that you have an exponential model that explains how it happens.

x

Fitted Line Plot
log(y) =  − 0.1883 + 0.2805 x
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Residual Plots for log(y)
Normal Probability Plot of the Residuals
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Chapter 8

Yes, No, Maybe So: Making
Predictions by Using Logistic

Regression
In This Chapter
� Knowing when logistic regression is appropriate

� Building logistic regression models for yes or no data

� Checking model conditions and making the right conclusions

Everyone (even yours truly) tries to make predictions about whether or
not a certain event is going to happen. For example, what’s the chance

it’s going to rain this weekend? What is our team’s chances of winning our
next game? What is the chance that I’ll have complications during this
surgery? These predictions are often based on probability, the long-term per-
centage of time an event is expected to happen. In the end, you want to esti-
mate p, the probability of an event occurring. In this chapter, you see how to
build and test models for p based on a set of explanatory (x) variables. This
technique is called logistic regression.

Setting Up the Logistic Regression Model
Yes or no data that comes from a random sample has a binomial distribution
with probability of success (the event occurring) equal to p. In the binomial
problems you saw in intro stats, you had a sample of size n trials, you had
yes or no data, and you had a probability of success on each trial, denoted 
by p. In your intro stat course, for any binomial problem the value of p was
somehow given to be a certain value, but in intermediate stats, you operate
under the much more realistic scenario that it’s not. In fact, because p isn’t
known, your job is to estimate what it is and use a model to do that. 

13_045206 ch08.qxd  2/1/07  9:57 AM  Page 149



To estimate p, the chance of an event occurring, you need data that comes in
the form of yes or no, indicating whether or not the event occurred for each
individual in the data set. Now because yes or no data don’t have a normal
distribution, a condition needed for other types of regression, you need a
new type of regression model to do this job — logistic regression. Keep read-
ing this section to find out more about this model.

Defining a logistic regression model
A logistic regression model ultimately gives you an estimate for p, the 
probability that a particular outcome will occur in a yes or no situation (for
example, the chance that it will rain versus not). The estimate is based on
information from one or more explanatory variables; you can call them x1, x2,
x3, . . . xk. (For example, x1 = humidity, x2 = barometric pressure, x3 = cloud
cover, . . . and xk = wind speed.) Note: In this chapter, I present only the case
where you use one explanatory variable. You can extend the ideas in exactly
the same way as you can extend the simple linear regression model (Chap-
ter 4) to a multiple regression model (Chapter 5).

Using an S-curve to estimate probabilities
In a simple linear regression model, the general form of a straight line is
y = β0 + β1x. In the case of estimating p, the linear regression model is the
straight line p = β0 + β1x. However, it doesn’t make sense to use a straight line
to estimate the probability of an event occurring based on another variable,
due to the following reasons:

� The estimated values of p can never be outside of [0, 1], which goes
against the idea of a straight line (a straight line continues on in both
directions).

� It doesn’t make sense to force the values of p to increase in a linear
way based on x. For example, an event may occur very frequently with a
range of large values of x and very frequently with a range of small
values of x, with very little chance of the event happening in an area
in between. This type of model would have a U-shape, rather than a
straight-line shape.

To come up with a more appropriate model for p, statisticians created a new
function of p whose graph is called an S-curve. The S-curve is a function that
involves p, but it also involves e (the natural logarithm) as well as a ratio of
two functions. The values of the S-curve always fit between 0 and 1 and allows
the probability, p, to change from low to high or high to low, according to
a curve that is shaped like an S. The general form of the logistic regres-

sion model based on an S-curve is p
e

e
1 x

x

β β

β β

0 1

0 1

=
+ +

+

.
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Interpreting the coefficients of 
the logistic regression model
The sign on the parameter β1 tells you the direction of the S-curve. If β1 is pos-
itive, the S-curve goes from low to high (see Figure 8-1a); if β1 is negative, the
S-curve goes from high to low (Figure 8-1b).

The magnitude of β1 (indicated by its absolute value) tells you how much cur-
vature is in the model. High values indicate a steep curvature and low values
indicate slow curvature. The parameter β0 just shifts the S-curve to the
proper location to fit your data. It shows you the cutoff point where x-values
change from high to low probability and vice versa. 

Estimating the chance a movie will be 
a hit by using logistic regression
Often, the best way to figure something out is to see it in action. In this sec-
tion, I give you an example of a situation where you can use a logistic regres-
sion model to estimate a probability. (I expand on this example later in this
chapter; for now, I’m just setting up a scenario for logistic regression.)

Suppose movie marketers want to estimate the chance that someone will
enjoy a certain family movie, and you believe age may have something to do
with it. Translating this research question into x’s and y’s, the response vari-
able (y) is whether or not a person will enjoy the movie, and the explanatory
variable (x) is the person’s age. You want to estimate p, the chance of some-
one enjoying the movie. You collect data on a random sample of 40 people,
shown in Table 8-1. Based on your data, it appears that younger people
enjoyed the movie more than older people, and that at a certain age, the
trend switches from liking the movie to disliking it; so, you can build a logistic
regression model to estimate p.
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Table 8-1 Movie Enjoyment (Yes or No Data) Based on Age
Age Enjoyed the Movie Total Number Sampled

10 3 3

15 4 4

16 3 3

18 2 3

20 2 3

25 2 4

30 2 4

35 1 5

40 1 6

45 0 3

50 0 2

General Steps for Logistic Regression
The basic idea of any model-fitting process is to look at all possible models
you can have under the general format and find the one that fits your data
best. The general form of the best-fitting logistic regression model is 

p
e

e
1 b b x

b b x

0 1

0 1

=
+

/

+

+

, where p
/

is the estimate of p, b0 is the estimate of β0, and b1 is 

the estimate of β1 (from the previous section). The only values you have a
choice about to form your particular model are the values of b0 and b1. These
values are the ones you’re trying to estimate through the logistic regression
analysis.

To find the best-fitting logistic regression model for your data, complete the
following steps:

1. Run a logistic regression analysis on the data you collected (see the
section “Running the analysis in Minitab” for these instructions.)

2. Find the coefficients of constant and x, where x is the name of your
explanatory variable.

These coefficients are b0 and b1, the estimates of β0 and β1 in the logistic
regression model.
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3. Plug the coefficients from step one into the logistic regression model: 

p
e

e
1 b b x

b b x

0 1

0 1

=
+

/

+

+

This equation is your best-fitting logistic regression model for the data.
Its graph is an S-curve (for more on the S-curve, see the section “Using
an S-curve to estimate probabilities” earlier in this chapter).

In the sections that follow, you see how to ask Minitab to do the above steps
for you. You also see how to interpret the resulting computer output, find the
equation of the best-fitting logistic regression model, and use that model to
make predictions (being ever mindful that all conditions are met).

Running the analysis in Minitab
Using Minitab, here’s how to perform a logistic regression (other statistical
software packages are similar):

1. Input your data in the spreadsheet as a table that lists each value of
the x variable in column one, the number of yeses for that value of x
in column two and the total number of trials at that x-value in column
three.

These last two columns represent the outcome of the response variable
y. (For an example of how to enter your data, see Table 8-1 based on the
movie-age data.)

2. Go to Stat>Regression>Binary Logistic Regression.

3. Beside the Success option, select your variable name from column
two, and beside Trial, select your variable name for column three.

4. Under Model, select your variable name from column one, because
that’s the column containing the explanatory (x) variable in your model.

5. Click OK, and you get your logistic regression output.

When you fit a logistic regression model to your data, the computer output is
composed of two major portions:

� The model-building portion: In this part of the output, you can find the
coefficients b0 and b1 (I describe coefficients in the section “Finding the
coefficients and making the model”).

� The model-fitting portion: You can see the results of a Chi-square 
goodness-of-fit test (see Chapter 15) as well as the percentage of con-
cordant and discordant pairs in this section of the output. (A concordant
pair means the predicted outcome from the model matches the observed
outcome from the data. A discordant pair is one that doesn’t match.)
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In the case of the movie and age data, the model-building part of the Minitab
output is shown in Figure 8-2. The model-fitting part of the Minitab output
from the logistic regression analysis is in Figure 8-4. In the following sections,
you see how to use this output to build the best-fitting logistic regression
model for your data and to check the model’s fit.

Finding the coefficients 
and making the model
After you have Minitab run a logistic regression analysis on your data, you
can find the coefficients b0 and b1 and put them together to form the best-
fitting logistic regression model for your data.

Figure 8-2 shows part of the Minitab output for the movie enjoyment and age
data. I call this portion of the output the model-building part of the output. (I
discuss the remaining output in the section “Checking the fit of the model.”)
The first column of numbers is labeled Coef, which stands for the coefficients
in the model. The first coefficient, b0, is labeled Constant. The second coeffi-
cient is in the row labeled by your explanatory variable, x. (In the movie and
age data, the explanatory variable is age. This age coefficient represents the
value of b1 in the model.)

According to the Minitab output in Figure 8-2, the value of b0 is 4.87 and the
value of b1 is –0.18. After you’ve determined the coefficients b0 and b1 from
the Minitab output to find the best-fitting S-curve for your data you put these 

two coefficients into the general logistic regression model: p
e

e
1 b b x

b b x

0 1

0 1

=
+

/

+

+

. For 

the movie and age data, you get p
e

e
1 . .

. .

x

x

4 87 0 18

4 87 0 18

=
+

/

-

-

, which is the best-fitting logis-

tic regression model for this data set.

Predictor Coef SE Coef Z  P  Ratio Lower Upper
Constant 4.86539 1.43434 3.39 0.001 
Age –0.175745 0.0499620 –3.52 0.000 0.84 0.76 0.93 

     Odds        95% CI

Logistic Regression Table

Figure 8-2:
The model-

building part
of the movie

and age
data’s

logistic
regression

output.
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The graph of the best-fitting logistic regression model for the movie and age
data is shown in Figure 8-3. Notice it has an S-shaped curve to it. Note that
the graph’s a downward-sloping S-curve, because higher probabilities of
liking the movie are affiliated with lower ages and lower probabilities are 
affiliated with higher ages. The movie marketers now have the answer to
their question. This movie has a higher chance of being well liked by kids
(and the younger, the better) and a lower chance of being well liked by adults
(and the older they are, the lower the chance of liking the movie).

The point where the probability changes from high to low is between ages 25
and 30. That means that the tide of probability of liking the movie appears to
turn from higher to lower in that age range. Using calculus terms, this point 
is called the saddle point of the S-curve, which is the point where the graph
changes from concave up to concave down, or vice versa. 

Estimating p
You’ve determined the best-fitting logistic regression model for your data,
obtained the values of b0 and b1 from the logistic regression analysis, and
know the precise S-curve that fits your data best (check out the previous 
sections). You’re now ready to estimate p and make predictions about the
probability that the event of interest will happen, given the value of the
explanatory variable x.
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To estimate p for a particular value of x, plug that value of x into your equa-
tion (the best-fitting logistic regression model) and simplify it by using your
algebra skills. The number you get is the estimated chance of the event
occurring for that value of x, and it should be a number between 0 and 1,
being a probability and all.

Continuing with the movie and age example from the preceding sections, sup-
pose you want to predict whether a child of age 15 would enjoy the movie. To 

estimate p, plug 15 in for x in the logistic regression model p
e

e
1 b b x

b b x

0 1

0 1

=
+

/

+

+

to 

get .
. .p

e
e

e
e

1 1 9 76
8 76 0 90. . *

. . *

.

.

4 87 0 18 15

4 87 0 18 15

2 17

2 17

=
+

=
+

= =
/

-

-

. That answer means you’ve found 

a 90 percent chance that a 15-year-old child will like the movie. You can see in
Figure 8-3 that when x is 15, p is approximately 0.90. On the other hand, if the 

person is 50 years old, the chance he will like this movie is p
e

e
1 . . *

. . *

4 87 0 18 50

4 87 0 18 50

=
+

/

-

-

,

or 0.02 (shown in Figure 8-3 for x = 50), which is only a 2 percent chance.

The results you get from a logistic regression analysis, as with any other data
analysis, are all subject to the model fitting appropriately. The following sec-
tion deals with that.

Checking the fit of the model
To determine whether or not your logistic regression model fits, follow these
steps:

1. Locate the p-value of the goodness-of-fit test (found in the Goodness-of-
Fit portion of the computer output; see Figure 8-4 for an example); if
the p-value is larger than 0.05, conclude that your model fits, and if
the p-value is less than 0.05, conclude that your model doesn’t fit.

2. Find the p-value for the b1 coefficient (it’s listed under P in the row 
for your column one [explanatory] variable); if the p-value is less than
0.05, the x variable is statistically significant in the model, so it should
be included.

If the p-value is greater than or equal to 0.05, the x variable isn’t statisti-
cally significant and shouldn’t be included in the model.

3. Look later in the output at the percentage of concordant pairs to
determine how well the model fits; the higher the percentage, the
better the model fits.

That percentage pertains to the number of times that the data and the
model actually agree with each other.
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The conclusion in step one based on the p-value may seem backwards to you,
but here’s what’s happening: Chi-square goodness-of-fit tests measure the
overall difference between what you expect to see via your model versus
what you actually observe in your data. (Chapter 15 gives you the lowdown
on Chi-square tests.) The null hypothesis (Ho) for this test says you have a
difference of zero between what you observed and what you expected from
the model; that is, your model fits. The alternative hypothesis, denoted Ha,
says that the model doesn’t fit. If you get a small p-value (under 0.05), reject
Ho and conclude the model doesn’t fit. If you get a larger p-value (above 0.05),
you can stay with your model.

Failure to reject Ho here (having a large p-value) only means that you can’t
say your model doesn’t fit the population from which the sample came. It
doesn’t necessarily mean the model fits with 100 percent certainty. Your data
could be unrepresentative of the population just by chance.

Using Figure 8-4 to complete the first step of checking the model’s fit, you 
can see many different goodness-of-fit tests. The particulars of each of these
tests are beyond the scope of this book; however, in this case (as with most
cases), each test has only slightly different numerical results and the same
conclusions. All the p-values in Column 4 of Figure 8-4 are over 0.80, which is
much higher than the 0.05 you need to reject the model. After looking at the
p-values, the model appears to fit this data.

For step two, you look at the significance of the x variable age. In Figure 8-2,
you can see the constant for age, –0.18, and farther along in its row, you can
see that the Z-value is –3.52; this Z-value is the test statistic for testing Ho: 
β1 = 0 versus Ha: β1 ≠ 0. The p-value is listed as 0.000, which means it’s smaller
than 0.001 (a highly significant number). So you know that the coefficient in
front of x, also known as β1, is statistically significant (not equal to zero), and
you should include x (age) in the model. 

To complete step three of the fit-checking process, look at the percentage of 
concordant pairs reported in Figure 8-4. This value shows the percentage of
times the data actually agreed with the model (87.3). To get this result make

Goodness-of-Fit Test
Method Chi-Square DF P
Pearson 2.83474 9 0.970
Deviance 3.63590 9 0.934
Hosmer-Lemeshow 2.75232 6 0.839

Measures of Association:
 (Between the Response Variable and Predicted Probabilities)
Pairs Number Percent Summary Measures
Concordant 349 87.3 Somers’ D 0.80
Discordant 30 7.5 Goodman-Kruskal Gamma 0.84
Ties 21 5.3 Kendall’s Tau-a 0.41
Total 400 100.0

Figure 8-4:
The model-
fitting part

of the movie
and age

data’s
logistic

regression
output.
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predictions as to whether the event should have occurred for each individual
based on the model and compare those results to what actually happened.
Now the logistic regression model is for p, the probability of the event occur-
ring, so if p is estimated to be > 0.50 for some value of x, your best guess is
that the event will occur (versus not occurring). If the estimated value of p is
< 0.50 for a particular x-value, your best guess is that it won’t occur.

For the movie and age data, the percentage of concordant pairs (that is, the
percentage of times the model made the right decision in predicting what
would happen) is 87.3 percent, which is quite high. The percentage of concor-
dant pairs was obtained by taking the number of concordant pairs and divid-
ing by the total number of pairs. I’d start getting excited if the percentage of
concordant pairs got over 75 percent; the higher, the better.

Figure 8-5 shows the logistic regression model for the movie and age data,
with the actual values of the observed data added as circles. Much of the
time, the model made the right decision; probabilities above 0.50 are associ-
ated with more circles at the value of 1, and probabilities below 0.50 are asso-
ciated with more circles at the value of 0. It’s the outcomes that have p near
0.50 that are hard to predict, because the results can go either way.

All of this evidence helps confirm that your model fits your data well. You can
go ahead and make estimates predictions based on this model for the next
individual that comes up, whose outcome you don’t know. (See the section
“Estimating p” earlier in this chapter.)
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In this part . . . 
You get all the nuts and bolts you need to understand

one-way and two-way analyses of variance (also
known as ANOVA), which compare the means of several
populations at one time, based on one or two different
characteristics. You see how to read and understand
ANOVA tables and computer output and go behind the
scenes to understand the big ideas behind the formulas
used in ANOVA. (Don’t sweat it, I always present formulas
only on a need-to-know basis.)
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Chapter 9

Going One-Way with 
Analysis of Variance

In This Chapter
� Extending the t-test for comparing two means by using ANOVA

� Discovering and utilizing the ANOVA process

� Carrying out an F-test

� Navigating the ANOVA table

One of the most commonly used statistical techniques at the interme-
diate level is analysis of variance (affectionately known as ANOVA).

Because the name has the word variance in it, you may think that this tech-
nique has something to do with variance — and you would be right. Analysis
of variance is all about examining the amount of variability in a y (response)
variable and trying to understand where that variability is coming from.

One way that you can use ANOVA is to compare several populations regard-
ing some quantitative variable, y. The populations you want to compare 
constitute different groups (denoted by an x variable), such as political affilia-
tions, age groups, or different brands of a product. ANOVA is also particularly
suitable for situations involving an experiment where you apply certain treat-
ments (x) to subjects, and you measure a response (y).

In this chapter, you start with the t-test for two population means, the precur-
sor to ANOVA. Then you move on to the basic concepts of ANOVA: sums of
squares, the F-test, and the ANOVA table. You apply these basics to the one-
factor or one-way ANOVA, where you compare the responses based only on
one treatment variable. (In Chapter 11, you can see them applied to a two-
way ANOVA, which has two treatment variables.)
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Comparing Two Means with a t-Test
The two sample t-test is designed to test to see whether two population means
are different. The conditions for the two sample t-test are the following:

� The two populations are independent (in other words, their outcomes
don’t affect each other).

� The response variable (y) is a quantitative variable (meaning that its
values represent counts or measurements).

� The y-values for each population have a normal distribution (however,
their means may be different; that is what the t-test determines).

� The variances of the two normal distributions are equal.

For large sample sizes when you know the variances, you use a Z-test for the
two population means. However, a t-test allows you to test two population
means when the variances are unknown or the sample sizes are small. This
occurs quite often in situations where an experiment is performed and the
number of subjects is limited.

Although you have seen t-tests before in your intro stats class, it may be good
to review the main ideas. The t-test tests the hypotheses Ho: µ1 = µ2 versus 
Ha: µ1 is ≤, ≥, or ≠ µ2, where the situation dictates which of these hypotheses
you use. (Just a note that with ANOVA, you extend this idea to k different
means from k different populations, and the only version of Ha of interest is ≠.)

To conduct the two sample t-test, you collect two data sets from the two 
populations, using two independent samples. To form the test statistic (the 
t-statistic), you subtract the two sample means and divide by the standard
error (a combination of the two standard deviations from the two samples
and their sample sizes). You compare the t-statistic to the t-distribution with
n1 + n2 – 2 degrees of freedom and find the p-value.

If the p-value is less than the prespecified α level, say 0.05, you have enough
evidence to say the population means are different. (For information on
hypothesis tests, see Chapter 3.)

For example, suppose you’re at a watermelon seed spitting contest where
contestants each put watermelon seeds in their mouths and spit them as 
far as they can. Results are measured in inches and are treated with the 
reverence of the shot-put results at the Olympics. You want to compare the 
watermelon seed spitting distances of female and male adults. Your data set
includes ten people from each group.
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You can see the results of the t-test in Figure 9-1. The mean spitting distance 
for females was 47.8 inches; the mean for males was 56.5 inches. The t-statistic 
for the difference in the two means (females – males) is t = –2.23, which has a 
p-value of 0.039 (see last line of Figure 9-1 output). At a level of α = 0.05, this dif-
ference is significant (because 0.039 < 0.05). You conclude that males and
females differ with respect to their mean watermelon seed spitting distance.
And you can say males are likely spitting farther because their sample mean
was higher.

Evaluating More Means with ANOVA
Now that you can compare two independent populations inside and out, at
some point two populations will not be enough. Suppose you want to com-
pare more than two populations regarding some response variable (y). This
idea kicks the t-test up a notch into the territory of ANOVA. The ANOVA pro-
cedure is built around a hypothesis test called the F-test, which compares
how much the groups differ from each other, compared to how much variabil-
ity is in each group. In this section, I set up an example of when to use ANOVA
and show you the steps involved in the ANOVA process. You can then apply
the ANOVA steps to the following example throughout the rest of the chapter.

Spitting seeds: A situation 
just waiting for ANOVA
Before you can jump into using ANOVA, you must figure out what question
you want answered and collect the necessary data.

Suppose you want to compare the watermelon seed spitting distances for
four different age groups: 6–8, 9–11, 12–14, and 15–17. The hypotheses for
this example are Ho: µ1 = µ2 = µ3 = µ4 versus Ha: At least two of these means

Two-sample T for females vs males

females 10 47.80 9.02 2.9
males 10 56.50 8.45 2.7

Difference = mu (females) – mu (males)
Estimate for difference:  –8.70000
95% CI for difference:  (–16.90914, –0.49086)
T–Test of difference = 0 (vs not =): T–Value = –2.23 P–Value = 0.039 DF = 18

 N Mean StDev SE Mean

Figure 9-1:
A t-test

comparing
mean water-

melon seed
spitting

distances
for females

versus
males.
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are different, where the population means µ represent those from the age
groups, respectively. Over the years of this contest, you have collected data
on 200 children from each age group, so you have some prior ideas about
what the distances typically look like. This year, you have 20 entrants, 5 in
each age group. You can see the data from this year, in inches, in Table 9-1.

Table 9-1 Watermelon Seed Spitting Distances for Four Child 
Age Groups (Measured in Inches)

6–8 Years 9–11 Years 12–14 Years 15–17 Years

38 38 44 44

39 39 43 47

42 40 40 45

40 44 44 45

41 43 45 46

Do you think you see a difference in distances for these age groups based 
on this data? If you just combined all the data, you would see quite a bit of
difference (the range of the combined data goes from 38 inches to 47 inches).
Perhaps accounting for which age groups each contestant is in does explain
at least some of what’s going on. But don’t stop there. In the next section, you
see the official steps you need to do to answer your question.

Walking through the steps of ANOVA
You have decided on the quantitative response variable (y) you want to com-
pare for your k various population (or treatment) means, and you collected a
random sample of data from each population. Now you’re ready to conduct
ANOVA on your data to see whether the population means are different for
your response variable, y.

The characteristic that defines these populations is called the treatment vari-
able, x. Statisticians use the word treatment in this context because one of the
biggest uses of ANOVA is for designed experiments where subjects are 
randomly assigned to treatments, and the responses are compared for the
various treatment groups. So statisticians oftentimes use the word treatment
even when the study isn’t an experiment, and they’re comparing regular 
populations. Hey, don’t blame me! I’m just following the proper statistical 
terminology.
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Just to get a feeling for what an ANOVA procedure involves and to give you a
quick reference for a later time, here are the general steps in a one-way ANOVA:

1. Check the ANOVA conditions, using the data collected from each of
the k populations.

See the next section, “Checking the conditions,” for the specifics on
these conditions.

2. Set up the hypotheses Ho: µ1 = µ2 = . . . = µk versus Ha: At least two of
the population means are different.

Another way to state your alternative hypothesis is by saying Ha: At
least two of µ1, µ2, . . . µk are different.

3. Collect data from k random samples, one from each population.

4. Conduct an F-test on the data from step three, using the hypotheses
from step two, and find the p-value.

See the section “Doing the F-test” later in this chapter for these 
instructions.

5. Make your conclusions: If you reject Ho (when your p-value is less
than 0.05 or your prespecified α level), you conclude that at least two
of the population means are different; otherwise, you conclude that
you didn’t have enough evidence to reject Ho (you can’t say the
means are different).

If these steps look like a foreign language to you, don’t fear — I describe each
of these steps in detail in the sections to follow.

Checking the Conditions
Step one of ANOVA is checking to be sure all necessary conditions are met
before diving into the data analysis. The conditions for using ANOVA are just
an extension of the conditions for a t-test (see the section “Comparing Two
Means with a t-Test”). The following conditions all need to hold in order for
ANOVA to be conducted:

� The k populations are independent (in other words, their outcomes
don’t affect each other).

� The k populations each have a normal distribution.

� The variances of the k normal distributions are equal.

I go into more detail about these conditions in the following sections.
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Checking off independence
To check the first condition, examine how the data was collected from each
of the separate populations. In order to maintain independence, the out-
comes from one population can’t affect the outcomes of the other popula-
tions. If the data has been collected by using a separate random sample from
each population (random here meaning that each individual in the population
had an equal chance of being selected), this factor ensures independence at
the strongest level.

In the watermelon seed spitting data (see Table 9-1), the data aren’t randomly
sampled from each age group because the data represents everyone who 
participated in the contest. But, you can argue that the seed spitting dis-
tances from one age group don’t affect the seed spitting distances from the
other age groups, so the independence assumption is okay here also.

Looking for what’s normal
The second ANOVA condition is that each of the k populations has a normal
distribution. To check this condition, make a separate histogram of the data
from each group and see whether it resembles a normal distribution. Data
from a normal distribution should look symmetric (in other words, if you
split the histogram down the middle, it looks the same on each side) and
have a bell-shape. Don’t expect the data in each histogram to follow a 
normal distribution exactly (remember it’s only a sample), but it shouldn’t 
be extremely different from a normal, bell-shaped distribution.

Since the data contains only five children per age group, checking conditions
can be iffy. But in this case, you have past data for 200 children in each age
group, so you can use that to check the conditions. The histograms and descrip-
tive statistics of the seed spitting data for the four age groups are shown in
Figure 9-2, all in one panel, so you can easily compare them to each other on the
same scale. Looking at the four histograms in Figure 9-2, you can see that each
graph resembles a bell shape; the normality condition isn’t being violated here.
(Red flags should come up if you see two peaks in the data, or a skewed shape
where the peak is off to one side, or if the histogram is flat, for example.)

You can use Minitab to make histograms for each of your samples and have
all of them appear on one large panel, all using the same scale. To do this, go
to Graph>Histogram and click OK. Choose the variables that represent data
from each sample by highlighting them in the left-hand box and clicking
Select. Then click on Multiple Graphs, and a new window opens. Under the
Show Graph Variables option, check the following box: In separate panels of
the same graph. On the Same Scales for Graphs option, check the box for x
and the box for y. This option gives you the same scale on both the x and y
axes for all the histograms. Then click OK.
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Taking note of spread
The third condition for ANOVA is that the variance in each of the k popula-
tions is the same. To check this out on your data, use Minitab to find the 
variance in each sample and compare them. The variances for each sample
should be close. What does close mean? A hypothesis test can handle this
question; however, it falls outside the scope of most intermediate statistics
courses. So you are left with a judgment call. Compare all the variances as a
group and look for any glaring differences. If a difference is large enough for
you to write home about (say 10 percent or more), this variance indicates a
problem. (Not only do you have a problem with the ANOVA conditions, but if
you’re writing your mom about your stats problems you might need to get a
bit of a life.) If no big differences exist in the variances, you can say that the
equal variance condition is met. The variances for the seed spitting data are
shown in Figure 9-2 for each age group. They are quite close, so this condition
is met.

Age Group 1 Age Group 2

Histogram of Age Group 1, Age Group 2, Age Group 3, Age Group 4

Pe
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Age Group 3
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Age Group 4
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39 42 45 48 51

36 39 42 45 48 51

Descriptive Statistics: Age Group 1, Age Group 2, Age Group 3, Age Group 4

Variable Count Mean Variance
Age Group 1 200 40.116 4.256
Age Group 2 200 41.880 4.994
Age Group 3 200 44.165 3.249
Age Group 4 200 47.405 5.154  

 Total

Figure 9-2:
Checking

ANOVA
conditions

by using
histograms

and
descriptive

statistics.
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To find descriptive statistics for each sample, go to Stat>Basic Statistics>
Display Descriptive Statistics. Click on each variable in the left-hand box for
which you want the descriptive statistics and then click Select. Click on the
Statistics option, and a new window appears with tons of different types of
statistics. Click on the ones you want and click off the ones you don’t want.
Click OK. Then click OK again. Your descriptive statistics are calculated.

Note that you don’t need the sample sizes in each group to be equal to carry
out ANOVA; however, in intermediate stats, you’ll typically see what statisti-
cians call a balanced design, where each sample from each population has the
same sample size. (For more precision in your data, the larger the sample
sizes, the better; see Chapter 3.)

Setting Up the Hypotheses
Step two of ANOVA is setting up the hypotheses to be tested. You’re testing
to see whether or not all the population means can be deemed equal to each
other. The null hypothesis for ANOVA is that all the population means are
equal. That is, Ho: µ1 = µ2 = . . . = µk, where µ1 is the mean of the first popula-
tion, µ2 is the mean of the second population, and so on until you reach µk

(the mean of the kth population).

Now what appears in the alternative hypothesis (Ha) must be the opposite of
what is in the null hypothesis (Ho). What’s the opposite of having all k of the
population’s means equal to each other? You may think the opposite is that
they’re all different. But that’s not the case. In order to blow Ho wide open, all
you need is for at least two of those means to not be equal. The alternative
hypothesis, Ha, is that at least two of the population means are different from
each other. That is, Ha: At least two of µ1, µ2, . . . µk are different.

Note that Ho and Ha for ANOVA are an extension of the hypotheses for a two
sample t-test (which only compares two independent populations). And while
the alternative hypothesis in a t-test may be that one mean is greater than, less
than, or not equal to the other, you don’t consider any alternative other than ≠
in ANOVA. You only want to know whether or not the means are equal — at this
stage of the game anyway. After you reach the conclusion that Ho is rejected in
ANOVA, you can proceed to figure out how the means are different, which ones
are bigger than others, and so on, using multiple comparisons. Those details
appear in Chapter 10.

Doing the F-Test
Step three, collecting the data, includes taking k random samples, one from
each population. Step four of ANOVA is doing the F-test on this data, which is
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the heart of the ANOVA procedure. This test is the actual hypothesis test of
Ho: µ1 = µ2 = . . . = µk versus Ha: At least two of µ1, µ2, . . . µk are different. 

You have to carry out three major steps in order to complete the F-test (don’t
get these steps confused with the main ANOVA steps; consider the F-test a
few steps within a step):

1. Break down the variance of y into sums of squares.

2. Find the mean sums of squares.

3. Put the mean sums of squares together to form the F-statistic.

I describe each step of the F-test in detail and apply it to the example of com-
paring watermelon seed spitting distances (see Table 9-1) in the following
sections.

Because data analysts rely heavily on computer software to conduct each
step of the F-test, you can do the same. All computer software packages orga-
nize and summarize the important information from the F-test into a table
format for you. This table of results for ANOVA is called (what else?) the
ANOVA table. Because the ANOVA table is a critical part of the entire ANOVA
process, I start the following sections out by describing how to run ANOVA in
Minitab to get the ANOVA table, and I continue to reference this section as I
describe each step of the ANOVA process.

Running ANOVA in Minitab
Using Minitab to run ANOVA, you first have to enter the data from the k sam-
ples. You can enter the data one in of two ways:

� Stacked data means that you enter all the data into two columns.
Column one includes the number indicating what sample the data value
is from (1 to k), and the responses (y) are in column two. To analyze this
data, go to Stat>ANOVA>One-Way Stacked. Highlight the response (y)
variable and click Select. Highlight the factor (population) variable and
click Select. Click OK.

� Unstacked is the other method of entering data: a separate column for
the data in each sample. To analyze the data entered this way, go to
Stat>ANOVA>One-Way Unstacked. Highlight the names of the columns
where your data are located. Click OK.

I typically use the unstacked version just because I think it helps visualize the
data. However, the choice is up to you, and the results come out the same no
matter which one you choose.
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Breaking down the variance 
into sums of squares
The first step of the F-test is splitting up the variability in the y variable into
portions that define where the variability is coming from. The term analysis
of variance is a great description for exactly how you conduct a test of k
population means. With the overall goal of testing whether k population (or
treatment) means are equal, you take a random sample from each of the k
populations. You first put all the data together into one big group and mea-
sure how much total variability there is; this variability is called the sums of
squares total, or SSTO. If the data are really diverse, SSTO is large. If the data
are very similar, SSTO is small.

Now the total variability in the combined data set (SSTO) can be split into
two parts:

� SST: The variability between the groups, known as the sums of squares
for treatment 

� SSE: The variability within the groups, known as the sum of squares
for error 

This splitting up of the variability in your data results in one of the most
important equalities in ANOVA. That equality is SSTO = SST + SSE.

The formula for SSTO is the numerator of the formula for s2, the variance of a 
single data set, so x xΣΣSSTO ij

2

= -` j , where i and j represent the j th value 
in the sample from the i th population. SSTO represents the total squared dis-
tance between the data values and their overall mean. The formula for SST is 

n x xΣSST i i

2
= -_ i , where ni is the size of the sample coming from the i th pop-

ulation. SST represents the total squared distance between the means from
each sample and the overall mean. The formula for SSE is x xΣΣSSE ij i

2

= -` j , 
where xij is the j th value in the sample from the i th population and x i is the
mean of the sample coming from the i th population. This formula represents
the total squared distance between the values in each sample and their corre-
sponding sample means. Using algebra, you can show (with some serious
elbow grease) that SSTO = SST + SSE.

The Minitab output for the watermelon seed spitting contest for the four age
groups is shown in Figure 9-3. Under the Source column of the ANOVA table,
you see Factor listed in row one. The factor variable (as described by Minitab)
represents the treatment or population variable. In column three of the Factor
row, you see the SST, which is equal to 89.75. In the Error row (row two), you
locate the SSE in column three, which equals 56.80. In row three (Total), column
three, you see the SSTO, which is 146.55. Using the values of SST, SSE, and
SSTO from the Minitab output, you can verify that SST + SSE = SSTO.
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Now you’re ready to use these sums of squares to complete the next step of
the F-test (keep reading).

Locating those mean sums of squares
After you have the sums of squares for treatment, SST, and the sums of
squares for error, SSE (see preceding section for more on these), you want to
compare them to see whether the variability in the y-values that is due to the
model (SST) is large compared to the amount of error left over in the data
after the groups have been accounted for (SSE). So you ultimately want a
ratio comparing SST to SSE somehow. To make this ratio form a statistic that
statisticians know how to work with (in this case, an F-statistic), they decided
to find the mean of each of SST and SSE and work with that. Finding the mean
sums of squares is the second step of the F-test.

MST is the mean sums of squares for treatments, which measures the mean
variability that occurs between the different treatments (the different sam-
ples in the data). What you’re looking for is the amount of variability in the
data as you move from one sample to another. A great deal of variability
between samples (treatments) may indicate that the populations are different
as well. You can find MST by taking SST and dividing by k – 1 (where k is the
number of treatments).

MSE is the mean sums of squares for error, which measures the mean within-
treatment variability. The within-treatment variability is the amount of variabil-
ity that you see within each sample itself, due to chance and/or other factors
not included in the model. You can find MSE by taking SSE divided by n – k
(where n is the total sample size and k is the number of treatments). The
values of k – 1 and n – k, respectively, are called the degrees of freedom for
SST and SSE. Minitab calculates and posts the degrees of freedom for SST and
SSE, as well as the values of MST and MSE, in the ANOVA table in columns
two and four, respectively.

One-Way ANOVA: Age Group 1, Age Group 2, Age Group 3, Age Group 4

Source DF SS MS F P
Factor 3 89.75 29.92 8.43 0.001
Error 16 56.80 3.55 
Total 19 146.55 

S = 1.884   R–Sq = 61.24%   R–Sq(adj) = 53.97% 

Figure 9-3:
ANOVA
Minitab

output for
the water-

melon seed
spitting

example.
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From the ANOVA table for the seed spitting data in Figure 9-3, you can see
that column two has the heading DF, which stands for degrees of freedom.
You can find the degrees of freedom for SST in the Factor row (row two); this
value is equal to k – 1 = 4 – 1 = 3. The degrees of freedom for SSE is found to
be n – k = 20 – 4 = 16. (Remember you have four age groups and five children
in each group for a total of n = 20 data values.) The degrees of freedom for
SSTO is n – 1 = 20 – 1 = 19 (found in the Total row under DF.) You can verify
that the degrees of freedom for SSTO = degrees of freedom for SST + degrees
of freedom for SSE.

The values of MST and MSE are shown in column four of Figure 9-3, with the
heading MS. You can see the MST in the Factor row, which is 29.92. This value
was calculated by taking SST = 89.75, and dividing it by degrees of freedom, 3.
You can see MSE in the Error row, equal to 3.55. MSE is found by taking SSE =
56.80 and dividing that value by its degrees of freedom, 16.

By finding the mean sums of squares, you’ve completed step two of the F-test,
but don’t stop here! You need to continue to the next section if you want to
complete the process.

Figuring the F-statistic
The test statistic for the test of the equality of the k population means is 

F = MSE
MST . The result of this formula is called the F-statistic. The F-statistic 

has an F-distribution, which is equivalent to the square of a t-test (when the
numerator degrees of freedom is 1). All F-distributions start at zero and are
skewed to the right. The degree of curvature and the height of the curvature
of each F-distribution is reflected in two degrees of freedom, represented by
k – 1 and n – k. (These come from the denominators of MST and MSE, respec-
tively, where n is the total sample size and k is the total number of treatments
or populations.) A shorthand way of denoting the F-distribution for this test
is F(k – 1, n – k).

In the watermelon seed spitting example, you’re comparing four means and
have a sample of size five from each population. Figure 9-4 shows the corre-
sponding F-distribution, which has degrees of freedom 4 – 1 = 3 and 20 – 4 =
16; in other words F(3, 16).

You can see the F-statistic on the Minitab ANOVA output (see Figure 9-3) in
the Factor row, under the column indicated by F. For the seed spitting exam-
ple, the value of the F-statistic is 8.43. This number was found by taking MST =
29.92 divided by MSE = 3.55. You can then locate 8.43 on the F-distribution in
Figure 9-4 to see where it stands. (More on that in the next section.)
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Be sure to not to exchange the order of the degrees of freedom for the 
F-distribution. The difference between F(3, 16) and F(16, 3) is big.

Making conclusions from ANOVA
If you’ve completed the F-test and found your F-statistic (step four in the
ANOVA process), you’re ready for step five of ANOVA: making conclusions for
your hypothesis test of the k population means. If you haven’t already, you
can compare the F-statistic to the corresponding F-distribution with k – 1, 
n – k degrees of freedom, to see where it stands and make a conclusion. You
can make the conclusion in one of two ways: the p-value approach or the 
critical-value approach. (The approach you use depends primarily on whether
you have access to a computer, especially during exams.) I describe these two
approaches in the following sections.

Using the p-value approach
On Minitab ANOVA output (see Figure 9-3), the value of the F-statistic is
located in the Factor row, under the column noted by F. The associated 
p-value for the F-test is located in the Factor row under the column headed
by P. The p-value tells you whether or not you can reject Ho. If the p-value is
less than your prespecified α (typically 0.05), reject Ho. Conclude that the k
population means aren’t all equal and that at least two of them are different.
If the p-value is greater than α, then you can’t reject Ho. You don’t have enough
evidence in your data to say the k population means have any differences.
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Figure 9-4:
F-distribution

with (3, 16)
degrees of

freedom.
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The F-statistic for comparing the mean watermelon seed spitting distances
for the four age groups is 8.43. The p-value as indicated in Figure 9-3 is 0.001.
That means the results are highly statistically significant. You reject Ho and
conclude that at least one pair of age groups differ in its mean watermelon
seed spitting distances. (You would hope that a 17-year-old could do a lot
better than a 6-year-old, but maybe those 6-year-olds have a lot more spitting
going on in their lives than 17-year-olds do.)

Using Figure 9-4, you see how the F-statistic of 8.43 stands on the F-distribution
with (4 – 1, 20 – 4) = (3, 16) degrees of freedom. You can see it’s way off to the
right, out of sight. It makes sense that the p-value, which measures the proba-
bility of being beyond that F-statistic, is 0.001.

If you’ve gotta use critical values . . .
If you’re in a situation where you don’t have access to a computer (as is still
the case in many statistics courses today when it comes to taking exams),
finding the exact p-value for the F-statistic isn’t possible. However, statistical
software packages automatically calculate all p-values exactly (so on any
computer output you can see them as such).

To approximate the p-value from your F-statistic (in the event you don’t have
a computer or computer output available), you find a cutoff value on the 
F-distribution with (k – 1, n – k) degrees of freedom that draws a line in the
sand between rejecting Ho and not rejecting Ho. This cutoff (also known as
the critical value) is determined by your prespecified α (typically 0.05). You
choose the critical value so that the area to its right on the F-distribution is
equal to α.

Table A-5 in the Appendix shows the critical values of the F-distribution with
various degrees of freedom, all using α = 0.05. Other F-distribution tables
are available in various statistics textbooks and Internet links for other
values of α; however, α = 0.05 is by far the most common α level used for
the F-distribution and is sufficient for your purposes.

This table of values for the F-distribution is called the F-table (students are
typically given these with their exams). For the seed spitting example, the 
F-statistic has an F-distribution with degrees of freedom (3, 16), which I calcu-
late in a previous section. To find the critical value, go to Table A-5 in the
Appendix. Because the degrees of freedom are (3, 16), go to column 3 and
row 16 on the F-table. The critical value is 3.2389 (or 3.24). Your F-statistic for
the seed spitting example is 8.43, which is well beyond this critical value (you
can see how 8.43 compares to 3.24 by looking at Figure 9-4). Your conclusion
is to reject Ho at level α. At least two of the age groups differ on mean seed
spitting distances.
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With the critical value approach, any F-statistic that lies beyond the critical
value results in rejecting Ho, no matter how far or close to the line it is. If
your F-statistic is beyond the value found in Table A-5, then you reject Ho
and say at least two of the treatments (or populations) have different means.

What’s next?
After you’ve rejected Ho in the F-test and concluded that not all the popula-
tions means are the same, your next question may be: Which ones are differ-
ent? You can answer that question by using a statistical technique called
multiple comparisons. Statisticians use many different multiple comparison
procedures to further explore the means themselves after the F-test has been
rejected. I discuss and apply some of the more common multiple comparison
techniques in Chapter 10.

Checking the Fit of the ANOVA Model
As with any other model, you must determine how well the ANOVA model fits
before you can use its results with confidence. In the case of ANOVA, the model
basically boils down to a treatment variable (also known as the population
you’re in) plus an error term. To assess how well that model fits the data, see
the values of R2 and R2 adjusted on the last line of the ANOVA output below the
ANOVA table. For the seed spitting data, you see those values at the bottom of
Figure 9-3.

The value of R2 measures the percentage of the variability in the response vari-
able (y) explained by the explanatory variable (x). In the case of ANOVA, the x
variable is the factor due to treatment (where the treatment can represent a
population being compared). A high value of R2 (say above 80 percent) means
this model fits well. The value of R2 adjusted, the preferred measure, takes R2

and adjusts it for the number of variables in the model. In the case of one-way
ANOVA, you have only one variable, the factor due to treatment so R2 and R2

adjusted won’t be very far apart. For more on R2 and R2 adjusted, see Chapter 5.

For the watermelon seed spitting data, the value of R2 adjusted (as found in 
the last row of Figure 9-3) is only 53.97 percent. That means age group (while
shown to be statistically significant by the F-test; see the section “Making
conclusions from ANOVA”) explains just over half of the variability in the
watermelon seed spitting distances. Because age group alone explains only a
little over half of what’s going on in the seed spitting distances, you may find
other variables you can examine in addition to age group, making an even
better model.
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The results of the t-test done to compare the spitting distances of males and
females in the section “Comparing Two Means with a t-Test” (see Figure 9-1)
showed that males and females were significantly different on mean seed spit-
ting distances. So I would venture a guess that if you include gender as well as
age group thereby creating what statisticians call a two-factor ANOVA (or two-
way ANOVA), the resulting model would fit the data even better, resulting in
higher values of R2 and R2 adjusted. (See Chapter 11 for two-way ANOVA.)
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Up-front rejection the best policy 
for most refusal letters

Many medical and psychological studies use
designed experiments to compare the responses
of several different treatments, looking for differ-
ences. A designed experiment is a study in
which subjects are randomly assigned to treat-
ments (experimental conditions) and their
responses are recorded. The results are used to
compare treatments to see which one(s) work
best, which ones work equally well, and so on.

One example of one such experiment that
employs ANOVA is from The Ohio State
University research press release Web site. The
experiment tested three traditional principles
of writing refusal letters:

� Using a buffer — a neutral or positive sen-
tence that delays the negative information

� Placing the reason before the refusal

� Ending the letter on a positive note as a way
of reselling the business

Subjects were randomly assigned to treat-
ments, and their responses to the rejection let-
ters were compared (likely on some sort of
scale such as 1 = very negative to 7 = very pos-
itive with 4 being a neutral response).

This scenario can be analyzed by using ANOVA.
It compares three treatments (forms of the
rejection letters) on some quantitative variable
(response to the letter). You can argue that this
isn’t a continuous variable, because it has

enough possible values that ANOVA isn’t unrea-
sonable. The data were also shown to have a
bell shape.

The null hypothesis would be Ho: Mean
responses to the three types of rejection letters
are equal, versus Ha: At least two forms of the
rejection letter resulted in different mean
responses.

In the end, the researcher did find some signif-
icant results. In other words, the different ways
the rejection letter was written affected the par-
ticipants in different ways. Using multiple com-
parison procedures (see Chapter 10), you would
be able to go in and determine which forms of
the rejection letters gave different responses
and how the responses differed.

So in case you have to write a rejection letter at
some point, the researcher recommends the
following guidelines for writing it:

� Don’t use buffers to begin negative 
messages.

� Give a reason for the refusal when it makes
the sender’s boss look good.

� Present the negative positively but clearly;
offer an alternative or compromise if 
possible.

� A positive ending isn’t necessary.
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Chapter 10

Pairing Things Down with
Multiple Comparisons

In This Chapter
� When and how to follow up ANOVA with multiple comparisons

� Comparing two well-known multiple comparison procedures

You’re comparing the means of not two, but k independent populations,
and you find out (using ANOVA — see Chapter 9) that you reject Ho: All

the population means are equal, and you conclude Ha: At least two of the
population means are different. Now you gotta know — which of those popu-
lations are different? Answering this question requires a follow-up procedure
to ANOVA called multiple comparisons, which makes sense because you want
to compare the multiple means you have and see which ones are different.

In this chapter, you figure out when you need to use a multiple comparison
procedure. You see two of the most well-known multiple comparison proce-
dures: Fisher’s LSD (least significant difference) and Tukey’s test. They can
help you answer that burning question: So some of the means are different,
but which ones are different?

Following Up after ANOVA
This section runs through the ANOVA procedure in the case where Ho is
rejected and leads you to the next step: multiple comparisons.

Suppose you want to compare the average number of cell-phone minutes
used per month for children and young adults, where the age groups are the
following:

� Group 1: 19 years old and under

� Group 2: 20-39 years old
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� Group 3: Adult males 40-59 years old 

� Group 4: Adult females 60 years old and over

You collect data on a random sample of 10 people from each group (where no
one knows anyone else to keep independence), and you record the number of
minutes each person used their cell phone in one month. The first ten lines of
a hypothetical data set are shown in Table 10-1.

Table 10-1 One Month’s Cell Phone Minutes for Four Age Groups
19 and Under 20–39 40–59 60 and Over 
(Group 1) (Group 2) (Group 3) (Group 4)

800 250 700 200

850 350 700 120

800 375 750 150

650 320 650 90

750 430 550 20

680 380 580 150

800 325 700 200

750 410 700 130

690 450 590 160

710 390 650 30

The means and standard deviations of the sample data are shown in Figure 10-1,
as well as confidence intervals for each of the population means separately (see
Chapter 3 for info on confidence intervals). Looking at Figure 10-1, it appears
that all four means are different, with 19 and under heading the pack, with 
40- to 59-year-olds not far behind, and with 20- to 39-year-olds and those over
60 bringing up the rear (in that order).

Knowing that man can’t live by sample results alone, you decide that ANOVA
is needed to see whether any differences that appear in the samples can 
be extended to the population (see Chapter 9). By using the ANOVA proce-
dure, you test whether the average cell minutes used is the same across all
groups. The results of the ANOVA, using the data from Table 10-1, are shown 
in Figure 10-2.

178 Part III: Comparing Many Means with ANOVA 

16_045206 ch10.qxd  2/1/07  10:14 AM  Page 178



Looking at Figure 10-2, the F-test for equality of all four population means has
a p-value of 0.000, meaning it is less then 0.001. That says at least two of these
groups have a significant difference in their cell-phone use (see Chapter 9 for
info on the F-test and its results).

Okay, so what’s your next question? You just found out that the average
number of cell-phone minutes per month isn’t the same across these four
groups. Remember, this doesn’t mean all four groups are different (see Chap-
ter 9). However, it does mean that at least two groups are significantly differ-
ent in their cell-phone use. So your questions are: Which groups are different,
and how are they different?

Determining which populations have differing means after ANOVA has been
rejected involves a new data-analysis technique called multiple comparisons.
While many different multiple comparison procedures are out there, statisti-
cians have their favorites, which I present in the next section.

Don’t attempt to explore the data with a multiple comparison procedure if the
test for equality of the populations isn’t rejected. In this case, you must con-
clude that you don’t have enough evidence to say the population means aren’t
equal, so you must stop there. Always look at the p-value of the F-test on the
ANOVA output before moving on to conduct any multiple comparisons.

One-way ANOVA: Group 1, Group 2, Group 3, Group 4

Source DF SS MS F P
Factor 3 2416010 805337 204.13 0.000
Error 36 142030 3945
Total 39 2558040 

S = 62.81   R–Sq = 94.5%   R–Sq(adj) = 93.99%

Figure 10-2:
ANOVA

results for
comparing
cell-phone

use for four
age groups.

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev ––––––+–––––––––+–––––––––+–––––––––+–––
Group 1 10 748.00 64.60          (–*–)
Group 2 10 368.00 59.08             (–*–)
Group 3 10 657.00 64.99                            (–*–)
Group 4 10 125.00 62.41 (–*–)
    ––––––+–––––––––+–––––––––+–––––––––+–––
        200      400       600       800

Figure 10-1:
Basic

statistics
and

confidence
intervals for

the cell-
phone data.
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Pinpointing Differing Means 
with Fisher and Tukey

You’ve conducted ANOVA to see whether a group of k populations have the
same mean, and you rejected Ho. You conclude that at least two of those pop-
ulations have different means. But you don’t have to stop there; you can go
on to find out how many and which means are different by conducting multi-
ple comparison tests.

In this section, you see two of the most well-known multiple comparison pro-
cedures: Fisher’s paired differences (also known as Fisher’s test or Fisher’s LSD)
and Tukey’s simultaneous confidence intervals (also known as Tukey’s test).

Although I only discuss two procedures in this section, tons of other multiple
comparison procedures are out there. Although the other procedures’ 
methods differ a great deal, their overall goal is the same: to figure out
which population means differ by comparing their sample means.

Fishing for differences with Fisher’s LSD
In this section, I outline Fisher’s LSD and apply it to the cell-phone example.

Examining Fisher’s LSD procedure
Suppose you’re comparing k population means. Fisher’s LSD (short for least 

significant difference) conducts a t-test on each of the 
k k

2
1-^ h

pairs of popu-

lations in the study, each one at level α = 0.05. For example, if you have four 

populations labeled A, B, C, D, you would have 2
4 4 1

6
-

=
^ h

t-tests to perform: 

A versus B; A versus C; A versus D; B versus C; B versus D; and C versus D. 

The number of tests is calculated by knowing that you have k possible means
for the first one in the pair, then k – 1 left for the second one in the pair.
Because the order of the means doesn’t matter, you can divide by 2 to avoid
overcounting.

Fisher’s LSD is very straightforward, easy to conduct, and easy to understand.
However, Fisher’s LSD has some issues. Because each t-test is conducted at α
level 0.05, each test done has a 5 percent chance of making a Type I error
(rejecting Ho when you shouldn’t have — see Chapter 3). Although a 5-percent
error rate for each test doesn’t seem too bad, the errors have a multiplicative
effect as the number of tests increases. For example, the chance of making at
least one Type I error with six t-tests, each at level α = 0.05, is 26.50 percent,
which would be your overall error rate for the procedure.
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You could help lower the error rate for Fisher’s test if you lower the value of
α for each test from 0.05 to, say, 0.01. However, doing so makes it harder to
reject Ho for each pair of means. A lower value of α also doesn’t solve the
error-rate problem; it just slows it down for a bit, until the number of tests
gets larger, and the error rate goes back up again.

If you want or need to know how I arrived at the number 26.50 percent as
the overall error rate in that last example, here it goes: The probability of
making a Type I error for each test is 0.05. The chance of making at least one
error in six tests equals one minus the probability of making no errors in six
tests. The chance of not making an error in one test is 1 – α = 0.95. The chance
of no error in six tests is this quantity times itself six times, or (0.95)6, which
equals 0.735. Now take one minus this quantity to get 1 – 0.735 = 0.2650 or
26.50 percent.

To conduct Fisher’s LSD, go to Stat>ANOVA>One-way or One-way unstacked.
(If your data appear in two columns with Column 1 representing the popula-
tion number and Column 2 representing the response, just click One-way
because your data is stacked. If your data is shown in k columns, one for
each of the k populations, click One-way unstacked.) In either case, the next
step is to highlight the data for the groups you’re comparing and click Select.
Then click on Comparisons. Click on Fisher’s. The individual error rate is
listed at 5 (percent), which is typical. If you want to change it, type in the
desired error rate (between 0.5 and 0.001) and click OK. You may type in
your error rate as a decimal, 0.05, or as a number greater than one, such as 5.
Numbers greater than one are interpreted as a percentage.

Applying Fisher’s LSD to cell phones
An ANOVA procedure was done on the cell-phone data presented in Table 10-1
to compare the mean number of minutes used for four age groups. Looking at
Figure 10-2, you see Ho (all the populations means are equal) was rejected.
The next step is to conduct multiple comparisons by using Fisher’s LSD to see
which population means differ. Figure 10-3 shows the Minitab output.

The first block of results shows “Group 1 subtracted from” where Group 1 = age
19 and under. Each line after that represents the other age groups (Group 2 =
20- to 39-year-olds, Group 3 = 40- to 59-year-olds, and Group 4 = 60 and over).
Each line shows the results of comparing the mean for the other group minus
the mean for Group 1. For example, the first line shows Group 2 being com-
pared with Group 1.

Moving to the right in that same row, you see the confidence interval for 
the difference in these two means, which turns out to be –436.97 to –323.03.
Because 0 isn’t contained in this interval, you conclude that these two means
are different in the populations also. You can also say, because this difference
µ2 – µ1 is negative, that µ2 is less than µ1. Or, a better way to think of it may 
be that µ1 is greater than µ2. That is, Group 1’s mean is greater than Group 2’s
mean.
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Each subsequent row in the “Group 1 subtracted from” section of Figure 10-3
shows similar results. None of the confidence intervals contain 0, so you con-
clude that the mean cell-phone use for Group 1 isn’t equal to the mean cell-
phone use for any other group. Moreover, because all confidence intervals
are in negative territory, you can conclude that the mean cell-phone use time
for those 19 and under is greater than all the others. This process continues
as you move down through the output until all six pairs of means are com-
pared. Then you put them all together into one conclusion.

For example, in the second portion of the output, Group 2 is subtracted from
Groups 3 and 4. You see the confidence interval for the “Group 3” line is 232.03,
345.97; this gives possible values for Group 3’s mean minus Group 2’s mean.
The interval is entirely positive, so conclude that Group 3’s mean is greater
than Group 2’s mean (according to this data). On the next line, the interval for
Group 4 minus Group 2 is –299.97 to –186.03. All these numbers are negative, so
conclude Group 4’s mean is less than Group 2’s. Combine conclusions to say
that Group 3’s mean is greater than Group 2’s, which is greater than Group 4’s.

In the cell-phone example, none of the means are equal to each other, and
based on the signs of confidence intervals and the results of all the individual
pairwise comparisons, the following order of cell-phone mean usage prevails:
µ1 > µ3 > µ2> µ4. (Hypothetical data aside, it might be the case that 40- to 
59-year-olds use a lot of cell phone time because of their jobs.)

Notice near the top of Figure 10-3 that you see “simultaneous confidence
level = 80.32 percent.” That means the overall error rate for this procedure
is 1 – 0.8032 = 0.1968, which is close to 20 percent.

Fisher 95% Individual Confidence Intervals
All Pairwise Comparisons
Simultaneous confidence level = 80.32%

Group 1 subtracted from:
 Lower Center Upper  –––––––––+–––––––––+–––––––––+–––––––––+
Group 2 –436.97 –380.00 –323.03   (*–)
Group 3 –147.97 –91.00  –34.03     (*–)
Group 4 –679.97 –623.00 –566.03    (*–)
      –––––––––+–––––––––+–––––––––+–––––––––+
           –350         0       350       700

Group 2 subtracted from:
 Lower Center Upper  –––––––––+–––––––––+–––––––––+–––––––––+
Group 3 232.03 289.00 345.97                     (*–)
Group 4 –299.97 –243.00 –186.03     (–*–)
      –––––––––+–––––––––+–––––––––+–––––––––+
           –350         0       350       700

Group 3 subtracted from:
 Lower Center Upper  –––––––––+–––––––––+–––––––––+–––––––––+
Group 4 –588.97 –532.00 –475.03    (–*)
      –––––––––+–––––––––+–––––––––+–––––––––+
           –350         0       350       700

Figure 10-3:
Output

showing
Fisher’s LSD

applied to
the cell-

phone data.
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Separating the turkeys with Tukey’s test
This section dives into Tukey’s test and applies it to the cell-phone example.

Setting up Tukey’s test
The basic idea behind Tukey’s test is to provide a series of simultaneous con-
fidence intervals for the differences in the means. It still examines all possible
pairs of means and keeps the overall error rate (also known as the familywise
error rate) at α (like Fishers LSD), but it also keeps the individual Type I error
rate for each pair of means at α as well. This difference takes care of a lot of
issues raised with Fisher’s LSD procedure (refer to the preceding section).

Although the details of the formulas used for Tukey’s test are beyond the scope
of this book, they’re not based on the t-test, but rather something called a stu-
dentized range statistic, which is based on the highest and lowest means in the
group, and their difference. The individual error rates are held at 0.05 because
Tukey developed a cutoff value for his test statistic, which is based on all pair-
wise comparisons (no matter how many means are in each group).

If you calculate the results by hand, you can look at tables to make your con-
clusions. However, all applications I have ever seen both in the classroom
and outside of it use a computer for these calculations. (For sanity’s sake, I
suggest you do the same.)

To conduct Tukey’s test, go to Stat>ANOVA>One-way or One-way unstacked.
(If your data appears in two columns with Column 1 representing the popula-
tion number and Column 2 representing the response, just click One-way
because your data is stacked. If your data is shown in k columns, one for
each of the k populations, click One-way unstacked.) The next step is to 
highlight the data for the groups you’re comparing and click Select. Then
click on Comparisons. Click on Tukey’s. The familywise (overall) error rate
is listed at 5 (percent), which is typical. If you want to change it, type in the
desired error rate (between 0.5 and 0.001) and click OK. You may type in your
error rate as a decimal, such as 0.05, or as a number greater than one, such
as 5. Numbers greater than one are interpreted as a percentage.

Doing Tukey’s test on the cell phone data
The Minitab output for comparing the groups regarding cell-phone use by using
Tukey’s test appears in Figure 10-4. Looking at Figure 10-4, you see that its
results can be interpreted in the same was as for Figure 10-3. Some of the num-
bers in the confidence intervals are different, but in this case, the main conclu-
sions are the same: Those 19 and under use their cell phones most, followed
by 40- to 59-year-olds, then 20- to 39-year-olds, and finally those 60 and over.
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The results of Fisher and Tukey don’t always agree, usually because the 
overall error rate of Fisher’s procedure is larger than Tukey’s (except
when only two means are involved). Most statisticians I know prefer Tukey’s
procedure over Fisher’s. That doesn’t mean they don’t have other procedures
they like even better than Tukey’s, but Tukey’s is the most common proce-
dure, and many people like to use it.

Another multiple comparison procedure is listed on Minitab’s repertoire after
you ask it to do multiple comparisons. This procedure is called Dunnett’s test.
Dunnett’s test is a special multiple comparison procedure used in a designed
experiment that contains a control group. The test compares each treatment
group to the control group and determines which treatments do better than
others that way. Dunnett’s test is better able to find real differences in this 
situation than other multiple comparison procedures, because it focuses only
on the differences between each treatment and the control — not the differ-
ences between every single pair of treatments in the entire study.

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons

Individual confidence level = 98.93%

Group 1 subtracted from:

 Lower Center Upper   +–––––––––+–––––––––+–––––––––+–––––––––
Group 2 –455.68 –380.00 –304.32    (–*–)
Group 3 –166.68 –91.00  –15.32            (–*–)
Group 4 –698.68 –623.00 –547.32   (–*–)
       +–––––––––+–––––––––+–––––––––+–––––––––
          –700      –350         0       350

Group 2 subtracted from:

 Lower Center Upper   +–––––––––+–––––––––+–––––––––+–––––––––
Group 3 213.32 289.00 364.68                       (–*-)
Group 4 –318.68 –243.00 –167.32       (–*–)
       +–––––––––+–––––––––+–––––––––+–––––––––
          –700      –350         0       350

Group 3 subtracted from:

 Lower Center Upper   +–––––––––+–––––––––+–––––––––+–––––––––
Group 4 –607.68 –532.00 –456.32      (–*–)
       +–––––––––+–––––––––+–––––––––+–––––––––
          –700      –350         0       350

Figure 10-4:
Output for

Tukey’s test
used to

compare
cell-phone

usage.
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Chapter 11

Getting a Little Interaction 
with Two-Way ANOVA

In This Chapter
� Building and carrying out ANOVA with two factors

� Getting familiar with (and looking for) interaction effects and main effects

� Putting the terms to the test

� Demystifying the two-way ANOVA table

Analysis of variance (ANOVA) is often used in experiments to see whether
different levels of an explanatory variable (x) get different results on

some quantitative variable y. (See Chapter 9.) The x variable in this case is
called a factor, and it has certain levels to it, depending on how the experiment
is set up. For example, say you want to compare the average reduction in blood
pressure on certain dosages of a drug. The factor is drug dosage. Suppose it
has three levels: 10mg per day, 20mg per day, or 30mg per day. Suppose some-
one else studies the response to that same drug and examines whether the
times taken per day (one time or two times) has any effect on blood pressure.
In this case, the factor is number of times per day, and it has two levels: once
and twice.

Suppose you want to study the effects of dosage and number of times taken
together, because you believe both may have an affect on the response. So
what you have is called a two-way ANOVA, using two factors together to com-
pare the average response. So it’s an extension of one-way ANOVA (refer to
Chapter 9) with a twist, because the two factors you use may operate on the
response differently together than they would separately. 

In this chapter, you examine two-way ANOVA — setting up the model, making
your way through the ANOVA table, taking the F-tests, and drawing the appro-
priate conclusions.
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Setting Up the Two-Way ANOVA Model
The two-way ANOVA model extends the ideas of the one-way ANOVA model
and adds an interaction term to examine how various combinations of the
two factors affect the response. In this section, you see the building blocks of
a two-way ANOVA: the treatments, main effects, the interaction term, and the
sums of squares equation that puts everything together.

Determining the treatments
The two-way ANOVA model contains two factors, A and B, and each factor
has a certain number of levels (say i levels of factor A and j levels of factor
B). In the drug study example from the chapter intro, you have A = drug
dosage with i = 1, 2, or 3 and B = number of times taken per day with j = 1 or
2. Each person involved in the study is subject to one of the three different
drug dosages and will take the drug in one of the two methods given. That
means you have 3 * 2 = 6 different combinations of factors A and B that you
can apply to the subjects, and you can study it in the two-way ANOVA model.

Each different combination of levels of factors A and B is called a treatment in
the model. Table 11-1 shows the six treatments in the drug study. For exam-
ple, Treatment 4 is the combination of 20mg of the drug taken in two doses of
10mg each per day.

Table 11-1 The Six Treatment Combinations for the Drug Study
Amount One Time/Day Two Times/Day

10mg Treatment 1 Treatment 2

20mg Treatment 3 Treatment 4

30mg Treatment 5 Treatment 6

If factor A has i levels and factor B has j levels, you have i * j different combi-
nations of treatments in your two-way ANOVA model.

Stepping through the sums of squares
The two-way ANOVA model contains three terms:
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� The main effect A: A term for the effect of factor A on the response

� The main effect B: A term for the effect of factor B on the response

� The interaction of A and B: The effect of the combination of factors A
and B (denoted AB)

The sums of squares equation for the one-way ANOVA (see Chapter 9) is 
SSTO = SST + SSE, where SSTO is the total variability in the response variable,
y; SST is the variability explained by the treatment variable (call it factor A);
and SSE is the variability left over as error. The purpose of this model is to test
to see whether the different levels of factor A produce different responses in
the y variable. The way you do it is by using Ho: µ1 = µ2 = . . . = µi, where i is the
number of levels of factor A (the treatment variable). If you reject Ho, then
factor A (which separates the data into the groups being compared) is signifi-
cant. If you can’t reject Ho, you can’t conclude that factor A is significant.

In the two-way ANOVA, you add another factor to the mix (B) plus an interac-
tion term (AB). The sums of squares equation for the two-way ANOVA model
is SSTO = SSA + SSB + SSAB + SSE. Here SSTO is the total variability in the 
y-values; SSA is the sums of squares due to factor A (representing the variabil-
ity in the y-values explained by factor A.); and similarly for SSB and factor B.
SSAB is the sums of squares due to the interaction of factors A and B, and SSE
is the amount of variability left unexplained, and deemed error. (While the
mathematical details of all the formulas for these terms are unwieldy and
beyond the focus of this book, they just extend the formulas for one-way
ANOVA found in Chapter 9. ANOVA handles the calculations for you, so you
don’t have to worry about that part.)

To carry out a two-way ANOVA in Minitab, enter your data in three columns.
Column 1 contains the responses (the actual data). Column 2 represents the
level of factor A (Minitab calls it the row factor). Column 3 represents the
level of factor B (Minitab calls it the column factor). Go to Stat>Anova>Two-
way. Click on Column 1 in the left-hand box and it appears in the Response
box on the right-hand side. Click on Column 2 and it appears in the row factor
box; click on Column 3 and it appears in the column factor box. Click OK.

For example, suppose you have six data values in Column 1: 11, 21, 38, 14, 15,
62. Suppose Column 2 contains 1, 1, 1, 2, 2, 2, and Column 3 contains 1, 2, 3, 1,
2, 3. This means that factor A has two levels (1, 2), and factor B has three
levels (1, 2, 3). The number 11 was the response when Level 1 of factor A and
Level 1 of factor B were applied. The second data value, 21, came from Level
1 of A and Level 2 of B. The third value, 38, came from Level 1 of A and Level 3
of B. The fourth number, 14, came from Level 2 of A and Level 1 of B. The
number 15 is the response from Level 2 of A and Level 2 of B, and finally, the
number 62 corresponds to the result of Level 2 of A and Level 3 of B.
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Suppose factor A has i levels and factor B has j levels, with a sample of size m
collected on each combination of A and B. The degrees of freedom for factor
A, factor B, and the interaction term AB are (i – 1), (j – 1), and (i – 1) * (j – 1)
respectively. This formula is just an extension of the degrees of freedom for
the one-way model for factors A and B. The degrees of freedom for SSTO is 
i * j * m – 1, and the degrees of freedom for SSE is i * j * (m – 1).

Understanding Interaction Effects
The interaction effect is the heart of the two-way ANOVA model. Knowing
that the two factors may act together in a different way than they would sepa-
rately is important and must be taken into account. In this section, you see
the many ways in which the interaction term AB and the main effects of fac-
tors A and B affect the response variable in a two-way ANOVA model. 

What is interaction anyway?
Interaction is when two factors meet, or interact with each other, on the
response in a way that’s different from how each factor affects the response
separately. For example, before you can test to see whether dosage of medi-
cine (factor A) or number of times taken (factor B) are important in explaining
changes in blood pressure, you have to look at how they operate together to
affect blood pressure. That is, you have to examine the interaction term.

Suppose you’re taking one type of medicine for cholesterol and one medicine
for a heart problem. Suppose researchers only looked at the effects of each
drug alone, saying each one was good for managing the problem for which it
was designed, with little to no side effects. Now you come along and mix the
two drugs in your system. As far as the individual study results are con-
cerned, all bets are off. With only those separate studies to go on, they will
have no idea how the drugs will interact with each other, and you can be in a
great deal of trouble very quickly. Fortunately, drug companies and medical
researchers do a great deal of work studying drug interactions, and your
pharmacist knows which drugs interact as well. You can bet a statistician
was involved in this work from day one!

Baking is another good example of how interaction works. Slurp down one
raw egg, drink a cup of milk, and eat a cup of sugar, a cup of flour, and a stick
of margarine. Then eat a cup of chocolate chips. Each one of these items has
a certain taste, texture, and affect on your taste buds that, in most cases,
won’t be all that great. But mix them all together in a bowl and voilà! You
have a batch of chocolate chip cookie dough, thanks to the magic effects of
interaction.
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Interacting with interaction plots
In the two-way ANOVA model, you have two factors and their interaction. A
number of results could come out of this model in terms of significance of the
individual terms, as you can see in the following:

� Factors A and B are both significant.

� Factor A is significant but not factor B.

� Factor B is significant but not factor A.

� Neither factors A nor B are significant.

� The interaction term AB is significant.

Figure 11-1 depicts each of these five situations, respectively, in terms of a
diagram, using the drug-study example. Plots that show how factors A and B
react separately and together on the response variable y are called interaction
plots. In the following sections, I describe each of these five situations in
detail in terms of what the plots are telling you and what the results mean in
the context of an example.

Factors A and B are significant
Figure 11-1a shows the situation when both A and B are significant in the
model (no interaction present). The lines represent the levels of the times-
per-day factor (B); the x-axis represents the levels of the dosage factor (A);
and the y-axis represents the average value of the response variable y, change
in blood pressure, at each combination of treatments.

The top line moving across Figure 11-1a shows that when the drug is taken two
times per day, the change in blood pressure increases with dosage level. The
bottom line shows the same thing happens when the drug is taken once per
day, except that the effects on blood pressure are lower overall than the effects
of taking the drug twice a day. That means factor A is significant because blood
pressure changes across dosage levels, and factor B is significant because
blood pressure is different from one line to another. (Assume the difference is
large enough to be significant.) Here the different combinations of factors A
and B don’t affect the overall trends, so there’s no interaction effect.

Two parallel lines in an interaction plot means a lack of an interaction effect.
In the drug-study example, the levels of A don’t change blood pressure differ-
ently for different levels of B.

Factor A is significant but not factor B
Figure 11-1b shows that blood pressure changes across dosage levels for
taking the drug once or twice a day. However, the two lines are so close
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together that whether you take the drug once or twice a day has no effect.
So factor A (dosage) is significant, and factor B (times per day) isn’t. Parallel
lines again means no interaction effect.
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Five
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ANOVA with
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Factor B is significant but not factor A
Figure 11-1c shows where factor B is significant but A isn’t. The lines are flat
across dosage levels indicating that dosage has no effect on blood pressure.
However, the two lines for times per day are spread apart, so their effect on
blood pressure is significant. Parallel lines mean no interaction effect.

Neither factor is significant
Figure 11-1d shows two flat lines that are very close to each other. By the 
previous discussions about Figures 11-1b and 11-1c, you can guess that this
figure represents the case where neither factor A nor factor B are significant,
and you don’t have an interaction effect because the lines are parallel.

Interaction term is significant
Finally you get to Figure 11-1e, the most interesting interaction plot of all. The
big picture is that because the two lines cross, then factors A and B interact
with each other in the way that they operate on the response. If they didn’t
interact, then the lines would be parallel.

Start with the top line of Figure 11-1e. When you take the drug two times per
day at the low dose, you get a low change in blood pressure; as you increase
dosage, blood pressure increases also. But when you take the drug once per
day, the opposite result happens.

If you didn’t look for a possible interaction effect before you examined the main
effects, you may have thought no matter how many times you take this drug
per day, the effects will be the same. Not so! Always check out the interaction
term first in any two-way ANOVA. If the interaction term is significant, you have
no way to pull out the effects due to just factor A or just factor B; they’re moot.
Checking the main effects of factor A or B without checking out the interaction
AB term is considered a no-no in the two-way ANOVA world. Another taboo is
examining the factors individually (also known as the main effect) if the inter-
action term is significant.

Testing the Terms in Two-Way ANOVA
In a one-way ANOVA, you have only one hypothesis test. You use an F-test 
to determine whether the means of the y values are the same or different as
you go across the levels of the one factor. In two-way ANOVA you have more
items to test besides the overall model. You have the interaction term AB
and possibly the main effects of A and B. Each test in a two-way ANOVA is an 
F-test based on the ideas of one-way ANOVA (see Chapter 9 for more on this).

First, you test whether the interaction term AB is significant. To do this, you 

use the test statistic F MSE
MS AB= , which has an F-distribution with (i – 1) * ( j – 1) 

degrees of freedom from MSAB (mean sum of squares for the interaction term
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of A and B) and i * j * (m – 1) degrees of freedom from MSE (mean sum of
squares for error), respectively. (Recall that i and j are the number of levels 
of A and B, and m is the sample size at each combination of A and B.) You
basically want to see whether more of the total variability in the y’s can be
explained by the AB term compared to what is left in the error term. A large
value of F means that the AB term is significant, and you leave it in the model. 

If the interaction term isn’t significant, you take the AB term out of the model,
and you can explore the effects of factors A and B separately regarding the 

response variable y. The test for Factor A uses the test statistic F MSE
MS A= , 

which has an F-distribution with i – 1 degrees of freedom from MSA (mean sum
of squares for factor A) and i * j * (m – 1) degrees of freedom from MSE (mean 

sum of squares for error), respectively. Testing for factor B uses F MSE
MS B= , 

which has an F-distribution with j – 1 and i * j * (m – 1) degrees of freedom.

The results you can get from testing the terms of the ANOVA model are the
same as those represented in Figure 11-1. They’re all provided in Minitab
output outlined in the next section, including their sum of squares, degrees
of freedom, mean sum of squares, and p-values for their appropriate F-tests.

Running the Two-Way ANOVA Table
The ANOVA table for two-way ANOVA includes the same elements as the
ANOVA table for one-way ANOVA (see Chapter 9). But where in the one-way
ANOVA you had one line for Factor A’s contributions, now you add lines for
the effects of Factor B and the interaction term AB. Minitab calculates the
ANOVA table for you as part of the output from running a two-way ANOVA.

In this section, you can figure out how to interpret the results of a two-way
ANOVA, assess the model’s fit, and use a multiple comparisons procedure, using
the drug-data study.

Interpreting the results: Numbers and graphs
The drug-study example has, say, four people in each treatment combination of
three possible dosage levels (10, 20, 30mg per day) and two possible times for
taking the drug (one time per day and two times per day). The total sample
size is 4 * 3 * 2 = 24. I made up five different data sets in which the analyses
represent each of the five scenarios shown in Figure 11-1. Their ANOVA tables,
as created by Minitab, are shown in Figure 11-2.

The order of the graphs in Figure 11-1 and the ANOVA tables in Figure 11-2 isn’t
the same. Can you match them up? (I promise to give you the answers, so keep
reading.)
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Notice that each ANOVA table in Figure 11-2 shows the degrees of freedom
for dosage is 3 – 1 = 2; the degrees of freedom for times per day is 2 – 1 = 1;
the degrees of freedom for the interaction term is (3 – 1)(2 – 1) = 2; the

Two-way ANOVA: BP versus Dosage, Times
Scarce
Dosage
Times
Interaction
Error
Total

DF
2
1
2

18
23

SS
56.3333
4.1667
0.3333
4.5000
65.3333

MS
28.1667
4.1667
0.1667
0.2500

F
112.67
16.67
0.67

P
0.000
0.001
0.526

S = 0.5 R-Sq = 93.11% R-Sq(adj) = 91.20%

Two-way ANOVA: BP versus Dosage, Times
Source
Dosage
Times
Interaction
Error
Total

S

S

= 0.5137

DF SS
2 0.0833
1 0.3750
2 16.7500

18 4.7500
23 21.9583

R-Sq = 78.37%

MS
0.04167
0.37500
8.37500
0.26389

F
0.16
1.42

31.74

P
0.855
0.249
0.000

R-Sq(adj) = 72.36%

Two-way ANOVA: BP versus Dosage, Times

c

b

a

d

e

Source DF SS MS F P
Dosage 2 0.0833 0.041667 0.08 0.926
Times 1 0.3750 0.375000 0.69 0.416
Interaction 2 0.7500 0.375000 0.69 0.513
Error 18 9.7500 0.541667
Total 23 10.9583

S = 0.7360 R-Sq = 11.03% R-Sq(adj) = 0.00%

Two-way ANOVA: BP versus Dosage, Times
Source DF SS MS F P
Dosage 2 36.7500 18.3750 47.25 0.000
Times 1 0.6667 0.6667 1.71 0.207
Interaction 2 0.0833 0.0417 0.11 0.899
Error 18 7.0000 0.3889
Total 23 44.5000

= 7.6236 R-Sq = 84.27% R-Sq(adj) = 79.90%

S

Two-way ANOVA: BP versus Dosage, Times
Source DF SS MS F P
Dosage 2 0.0833 0.0417 0.16 0.855
Times 1 12.0417 12.0417 45.63 0.000
Interaction 2 0.0833 0.0417 0.16 0.855
Error 18 4.7500 0.2639
Total 23 16.9583

= 0.5137 R-Sq = 71.99% R-Sq(adj) = 64.21%

Figure 11-2:
ANOVA

tables 
for the

interaction
plots from

Figure 11-1.
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degrees of freedom for total is 3 * 2 * 4 – 1 = 23; and degrees of freedom for
error is 3 * 2 * (4 – 1) = 18.

Here are the answers to match the graphs from Figure 11-1 with the output
from Figure 11-2:

� In the ANOVA table for Figure 11-2a, you see that the interaction term
isn’t significant (p-value = 0.526), so the main effects can be studied. The 
p-values for dosage and times taken are 0.000 and 0.001, indicating both
factors A and B respectively are significant; this matches the plot in
Figure 11-1a.

� In Figure 11-2b, you see that the p-value for interaction is significant 
(p-value = 0.000) so you can’t examine the main effects of factors A and B
(in other words, don’t look at their p-values). This represents the situa-
tion in Figure 11-1e.

� Figure 11-2c shows nothing is significant (p-value for interaction term is
0.513; p-values for main effects of A (dosage) and B (times taken) are
0.926 and 0.416, respectively). These results coincide with Figure 11-1d.

� Figure 11-2d matches Figure 11-1b, with no interaction effect (p-value =
0.899), dosage (factor A) is significant (p-value = 0.000), and times per
day (factor B) isn’t (p-value = 0.207).

� Figure 11-2e matches Figure 11-c. Dosage * times per day is not signifi-
cant (p-value = 0.855); times per day is significant with p-value 0.000 but
not dosage level (p-value = 0.855).

Assessing the fit
To assess the fit of the two-way ANOVA models, you can use the R2 adjusted
(see Chapter 5). The higher this number is, the better (the maximum is 100
percent or 1.00). Notice that all the ANOVA tables in Figure 11-2 show a fairly
high R2 adjusted except for Figure 11-2c. In this table, none of the terms was
significant.

Multiple comparisons
In the case where you find that an interaction effect is statistically significant,
you can conduct multiple comparisons to see which combinations of factors
A and B create different results in the response. The same ideas hold here as
those for Chapter 10 on multiple comparisons, except the tests are performed
on all i * j interactions.

To perform multiple comparisons for a two-way ANOVA by using Minitab, enter
your responses (data) in Column 1, your levels of Factor A in Column 2, and
your levels of Factor B in Column 3. Choose Stat>ANOVA>General Linear Model.
In the Responses box, enter your Column 1 variable. In Model, enter 1 <space> 2
<space> 1*2 (for the main effects and the interaction effect, respectively; here
<space> means leave a space where indicated). Click on Comparisons. In Terms,
enter columns 2 and 3. Check the Method you want to use for your multiple
comparisons (see Chapter 10). Click OK.
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Chapter 12

Rock My World: Relating
Regression to ANOVA

In This Chapter
� Relating the formulas and procedures for one-way ANOVA and regression

� Making the connection between these two seemingly unrelated procedures

So you’re motoring on in your intermediate stat course, working your 
way through regression (where you estimate y, using one or more x

variables — see Chapter 4). Then you hit a new topic, ANOVA, which stands 
for analysis of variance — comparing the means of several populations (see
Chapter 9). That seems to be no problem. But wait a minute; now your pro-
fessor starts talking about how ANOVA is related to regression — suddenly
everything starts to spin out of control. How do you reconcile two techniques
that appear to be as different as apples and oranges? That’s what this chap-
ter is all about.

Think of this chapter as your bridge across the gap that lies between regres-
sion and ANOVA, allowing you to walk smoothly across, answering any ques-
tions that a professor may throw into your path. You don’t apply these two
techniques in this chapter (you can find that information in Chapters 4 and 9).
The goal of this chapter is to determine and describe the relationship
between regression and ANOVA so they don’t look quite so much like an
apple and an orange.

Seeing Regression through 
the Eyes of Variation

Every statistical model tries to explain why the different outcomes (y) are
what they are. It tries to figure out what factors or explanatory variables (x)
can help explain that variability in those y’s. In this section, you start with the
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y-values by themselves and see how their variability plays a central role 
in the regression model. This is the first step toward applying ANOVA 
(the analysis of variance) to the regression model.

Verifying variability in the y’s 
and looking at x to explain it
No matter what y variable you’re interested in predicting, you will always
have variability in those y-values. If you want to predict the length of a fish,
you may notice that fish have many different lengths (indicating a great deal
of variability). Even if you put all the fish of the same age and species together,
you still have some variability in their lengths (it will be less than before, but
still there nonetheless). The first step to understanding the basic ideas of
regression and ANOVA is to understand that variability in the y’s is to be
expected, and your job is to try to figure out what can explain most of it. This
section deals with seeing and explaining variability in the y-values.

Seeing the variability in Internet use
Both regression and ANOVA work to get a handle on explaining the variability
in the y variable using an x variable. After you collect your data, you can find
the standard deviation in the y variable to get a sense of how much the data
varies within the sample. From there, you collect data on an x variable and
see how much it contributes to explaining that variability.

Suppose you notice that people spend different amounts of time on the
Internet, and you want to explore why that may be. You start by taking a
small sample of 20 people and record how many hours per month they spend
on the Internet. The results (in hours) are 20, 20, 22, 39, 40, 19, 20, 32, 33, 29,
24, 26, 30, 46, 37, 26, 45, 15, 24, and 31. The first thing you notice about this
data is the large amount of variability in it. The standard deviation (average
distance from the data values to their mean) of this data set is 8.93, which is
quite large given the size of the numbers in the data set.

Finding an “x-planation” for Internet use
So you figure out that the y-values (such as amount of time someone uses the
Internet from the preceding section) have a great deal of variability in them.
What can help explain this? Part of the variability is due to chance. But you
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suspect some variable is out there (call it x) that has some connection to the
y variable, and that variable can help you make more sense out of this seem-
ingly wide range of y-values.

For example, if you record the calories for five types of candy bars as 100,
200, 300, 400, and 500, you would say “Wow, that’s a lot of variation in calo-
ries; I wonder why that is?” Then you notice that the weights of the candy
bars are 1, 2, 3, 4, and 5 ounces, respectively. This relationship can be
expressed as y = 100x, where y equals calories and x equals weight.

Now you can look at what before was a bunch of variability in the y-values
and say, “Hey, that’s not just random variability; the differing y-values can 
be explained by the weight of candy bar (x).” You can now use x in a nice
regression model to estimate y. Notice that you’re talking about splitting the
total variability in the y’s into the part due to x and the part due to chance
(error). That’s ANOVA language! Hey, perhaps regression and ANOVA are
related after all . . .

To continue with the Internet use example, suppose you have a brainstorm
that number of years of education could possibly be related to Internet use.
In this case, the explanatory variable (input variable, x) is years of education,
and you want to use it to try to estimate y, the number of hours on the
Internet in a month. You take a larger random sample of 250 Internet users
and ask them how many years of education they had (so n = 250). You can
check out the first ten observations from your data set containing the (x, y)
pairs in Table 12-1. If a significant connection of some sort exists between the
x-values and the y-values, then you can say that x is helping to explain some
of the variability in the y’s. If it explains enough variability, you can place x
into a simple regression model and use it to estimate y.

Table 12-1 First Ten Observations from the Education 
and Internet Use Example

Years of Education Hours on Internet (For One Month)

15 41

15 32

11 33

10 42

10 28

10 21

(continued)
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Table 12-1 (continued)
Years of Education Hours on Internet (For One Month)

10 17

10 14

9 18

9 14

Getting results with regression
After you have a possible x variable picked, you collect pairs of data (x, y)
on a random sample of individuals from the population, and you look for a
possible linear relationship between them. To do this, use Minitab to make 
a scatterplot of the data and calculate the correlation (r). If the data appear
to follow a straight line (as shown on the scatterplot), you go ahead and per-
form a simple linear regression of the response variable y based on the x
variable. The p-value of the x variable in the simple linear regression analysis
tells you whether or not the x variable does a significant job in predicting y.
Some of the details of getting the regression results are described below (for
full information, see Chapter 4).

Looking at the small snippet of 10 out of the 250 person data set in Table 12-1,
you can begin to see that you may have a pattern between education and
Internet use. It looks like as education increases so does Internet use.

To do a simple linear regression using Minitab, enter your data in two
columns: the first column for your x variable and the second column for your
y variable (as in Table 12-1). Go to Stat>Regression>Regression. Click on your
y variable in the left-hand box; the y variable then appears in the Response
box on the right-hand side. Click on your x variable in the left-hand box; the x
variable then appears in the Predictor box in the right-hand side. Click OK,
and your regression analysis is done. As part of every regression analysis,
Minitab also provides you with the corresponding ANOVA results, found at
the bottom of the output.

The simple linear regression output that Minitab gives you for the education
and Internet example is in Figure 12-1. (Notice the ANOVA output at the
bottom; you can see the connection in the upcoming section “Regression and
ANOVA: A Meeting of the Models.”)
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Looking at Figure 12-1, you see that the p-value on the row marked Education
is 0.000, which means the p-value’s less than 0.001. Therefore the relationship
between years of education and Internet use is statistically significant. A scat-
terplot of the data (not shown here) also indicates that the data appear to
have a positive linear relationship. That means as you increase number of
years of education, Internet use also tends to increase (on average).

Assessing the fit of the regression model
Before you go ahead and use a regression model to make predictions for y
based on an x variable, you must first assess the fit of your model. One way
to get a rough idea of how well your regression model fits is by using a scatter-
plot (a graph showing all the pairs of data plotted in the x-y plane). Use the
scatterplot to see whether the data appears to fall in the pattern of a line. If
the data appears to follow a straight-line pattern (or even something close to
that — anything but a curve or a scattering of points that has no pattern at
all), you calculate the correlation, r, to see how strong the linear relationship
between x and y is (the closer r is to +1 or –1, the stronger the relationship;
the closer r is to zero, the weaker the relationship). Minitab can do scatter-
plots and correlations for you; see Chapter 4 for more on simple linear regres-
sion, including making a scatterplot and finding the value of r.

If the data doesn’t have a significant correlation, stop the analysis; you can’t
go further to find a line that fits a relationship that doesn’t exist.

Regression Analysis: Internet versus Education
The regression equation is
Internet = −8.29 + 3.15 Education

Predictor

Constant

Education

Source

Regression

Residual Error

Total

DF

1

248

249

SS

9085.6

12968.5

22054.0

MS

9085.6

52.3

F

173.75

P

0.000

S = 7.23134 R—Sq = 41.2% R—Sq(adj) = 41.0% 

Analysis of Variance 

Coef

−8.290
3.1460

SE Coef

2.665

0.2387

T

−3.11
13.18

P

0.002

0.000
Figure 12-1:

Output for
simple
linear

regression
applied to
education

and Internet
use data.
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Next you come to the more general way of assessing not only the fit of a
simple linear regression model, but many other models too (for example:
multiple, nonlinear, and logistic regression models in Chapters 5, 7, and 8, 
to name a few). In simple linear regression, the value of R2, as indicated by
Minitab and statisticians as a capital R (squared), is equal to the square of
the Pearson correlation coefficient, r (indicated by Minitab and statisticians
by a small r). In all other situations, R2 provides a more general measure of
model fit. (Note that r only measures the fit of a straight-line relationship
between one x variable and one y variable; see Chapter 4.) Finally, R2 adjusted
modifies R2 to account for the number of variables in the model. R2 is what sta-
tisticians use to assess model fit (see Chapter 5 for more).

The value of R2 adjusted for the model of using education to estimate Internet
use (Figure 12-1) is equal to 41 percent. This value reflects the percentage of
variability in Internet use that can be explained by a person’s years of educa-
tion. This number isn’t great, but it’s not terrible either. Note the square root
of 41 percent is 0.64 for r itself, which in the case of linear regression indi-
cates a moderate relationship.

This evidence gives you the green light to use the results of the regression
analysis to estimate number of hours of Internet use in a month by using
years of education. The regression equation as it appears in the top part of
the Figure 12-1 output is Internet = –8.29 + 3.15 * 16 = 42.11. So if you have 
16 years of education, for example, your estimated Internet use is 42.11, or
about 42 hours per month (about 10.5 hours per week).

But wait! Look again at Figure 12-1 and zoom in on the bottom part. I didn’t
ask for anything special to get this info on the Minitab output, but you can
see an ANOVA table there. That seems like a fish out of water doesn’t it? But
in the next section you see how an ANOVA table can describe regression
results (albeit it in a different way).

Regression and ANOVA: 
A Meeting of the Models

Okay, here it comes. You’ve already broken down the regression output into
all its pieces and parts. The next step toward understanding the connection
between regression and ANOVA is to apply the sums of squares from ANOVA
to regression (something that is typically not done in a regression analysis).
Before you start, think of this process as going to a 3-D movie, where you
have to wear special glasses in order to see all the special effects!
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In this section, you see the sums of squares in ANOVA applied to regression
and how the degrees of freedom work out. You build an ANOVA table for
regression and discover how the t-test for a regression coefficient is related
to the F-test in ANOVA. I know you can hardly wait, so I won’t keep you in sus-
pense any longer.

Comparing sums of squares
Sums of squares is a term you may remember from ANOVA (see Chapter 9),
but it certainly isn’t a term you normally use when talking about regression
(as in Chapter 4). Yet, both types of models can be broken down into sums of
squares, and that similarity gets at the true connection between ANOVA and
regression. In step-by-step terms, you first partition out the variability in the
y variable by using formulas for sums of squares from ANOVA (sums of
squares for total, treatment, and error). Then you find those same sums of
squares for regression — this is the twist on the process because you typi-
cally don’t find sums of squares for regression. You compare the two proce-
dures through their sums of squares. This section shows you the details of
how this comparison is done.

Partitioning variability by using SSTO, SSE, and SST for ANOVA
ANOVA is all about partitioning the total variability in the y-values into sums
of squares (see all the info you ever need on one-way ANOVA in Chapter 9).
The key idea is that SSTO = SST + SSE, where SSTO is the total variability in
the y-values; SST measures the variability explained by the model (also
known as the treatment, or x variable in this case); and SSE measures the
variability due to error (what’s left over after the model is fit).

The corresponding formulas for SSTO, SSE, and SST are y yΣ i

2

-_ i , y yΣ i i

2

-
/

c m ,

and y yΣ
i

2

-
/

c m respectively, where y is the mean of the y’s, yi is each observed 

value of y, and y
i

/

is each predicted value of y from the ANOVA model. Use these
formulas to calculate the sums of squares for ANOVA (Minitab does this for you
when it performs ANOVA). Keep these values of SSTO, SST, and SSE. You will
use them to compare to the results from regression.

Finding sums of squares for regression
In regression, you measure the deviations in the y-values by taking each yi

minus its mean, y . Square each result and add them all up, and you have
SSTO. Next, take the residuals, which represent the difference between each
yi and it’s estimated value from the model, y

i

/

. Square the residuals and add
them up, and you get the formula for SSE.
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Now that you have calculated SSTO and SSE, you need the bridge between
them. That is, you need a formula that connects the variability in the yi’s
(SSTO) and the variability in the residuals after fitting the regression line 
(SSE). That bridge is SSR (equivalent to SST in ANOVA). In regression, y

i

/

rep-
resents the predicted value of yi based on the regression model. These are
the values on the regression line. To assess how much this regression line
helps to predict the y-values, you compare it to the model you would get
without any x variable in it.

Without any other information, the only thing you can do to predict y is look
at the average, y . So, SST compares the predicted value from the regression
line to the predicted value from the flat line (the mean of the y’s) by subtract-

ing them. The result is y y
i
-

/

c m. Square each result and sum them all up, and 

you get the formula for SST.

Now for one last hoop to jump through (as if you haven’t had enough
already). Instead of calling the sum of squares for the regression model SST
as is done in ANOVA, statisticians call it SSR for sum of squares regression.
Consider SSR from regression to be equivalent to the SST from ANOVA. 
The reason this is important is because computer output lists the sums of
squares for the regression model as SSR not SST.

To summarize the sums of squares as they apply to regression, you have
SSTO = SSR + SSE where

� SSTO measures the variability in the observed y-values around their
mean. This value represents the variance of the y-values.

� SSE represents the variability between the predicted values for y (the
values on the line) and the observed y-values. SSE represents the vari-
ability left over after the line has been fit to the data.

� SSR measures the variability in the predicted values for y (the values on
the line) from the mean of y. SSR is the sum of squares due to the regres-
sion model (the line) itself.

Minitab calculates all the sums of squares for you as part of the regression
analysis. You can see this calculation in the section “Bringing regression to
the ANOVA table.”

Dividing up the degrees of freedom
In ANOVA, you test a model for the treatment (population) means by using an 

F-test, which is F MSE
MST= . To get MST (the mean sum of squares for treatment), 

you take SST (the sum of squares for treatment) and divide by its degrees of
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freedom. You do the same with MSE (that is, take SSE, the sum of squares 
for error, and divide by its degrees of freedom). The question now is, what do
those degrees of freedom represent and how do they relate to regression?
This section addresses that issue.

Degrees of freedom in ANOVA
In ANOVA, the degrees of freedom for SSTO is n – 1, which represents the 
sample size minus one. In the formula for SSTO, y yΣ i

2

-_ i , you see there are 
n observed y-values minus one mean. That in a very general way is where the
n – 1 comes from.

Note that if you divide SSTO by n – 1, you get n
y yΣ

1
i

2

-

-_ i
, the variance in the 

y-values. This calculation makes good sense because the variance also mea-
sures the total variability in the y-values.

The degrees of freedom for SSE is n – k. In the formula for SSE, y yΣ
i

2

-
/

c m , 

you see there are n observed y-values, and k is the number of treatments in
the model. In regression, the number of coefficients in the model is k = 2 (the
slope and the y-intercept). So you have degrees of freedom n – 2 associated
with SSE when you’re doing regression.

Degrees of freedom in regression
The degrees of freedom for SST in ANOVA equals the number of treatments
minus one. How does the degrees of freedom idea relate to regression? The
number of treatments in regression is equivalent to the number of parame-
ters in a model (a parameter being an unknown constant in the model that
you’re trying to estimate).

When you test a model you’re always comparing it to a different (simpler)
model to see whether it fits the data better. In linear regression you compare
your regression line y = b0 + b1x, to the horizontal line y = y . This second, sim-
pler model just uses the mean of y to predict y all the time, no matter what x
is. In the regression line, you have two coefficients: one to estimate the para-
meter for the y-intercept (b0 ) and one to estimate the parameter for slope
(b1 ) in the model. In the second, simpler model, you have only one parameter:
the value of the mean. The degrees of freedom for SSR in simple linear regres-
sion is the difference in the parameters of the two models: 2 – 1 = 1.

Putting all this together, the degrees of freedom for regression must add up
for the equation SSTO = SSR + SSE. The degrees of freedom corresponding to
this equation are (n – 1) = (2 – 1) + (n – 2), which is true if you do the math. So
the degrees of freedom for regression, using the ANOVA approach, all check
out. Whew!
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In Figure 12-1, you can see the degrees of freedom for each sums of squares
listed under the DF column of the ANOVA part of the output. You see SSR 
has 2 – 1 = 1 degree of freedom, SSE has 250 – 2 = 248 degrees of freedom
(because n = 250 observations were in the data set and k = 2 and you find 
n – k to get degrees of freedom for SSE). The degrees of freedom for SSTO is
250 – 1 = 249.

Bringing regression to the ANOVA table
In ANOVA, you test your model Ho: All k population means are equal versus
Ha: At least two population means are different by using a F-test. You build
your F-test statistic by relating the sums of squares for treatment to the sum
of squares for error. To do this, you divide SSE and SST by their degrees of
freedom (n – k and k – 1, respectively, where n is the sample size and k is the
number of treatments) to get the mean sums of squares for error (MSE) and
mean sums of squares for treatment (MST). In general, you want MST to be
large compared to MSE, which would indicate that the model fits well. The
results of all these statistical gymnastics are summarized by Minitab in a
table called (cleverly) the ANOVA table.

The ANOVA table shown in the bottom part of Figure 12-1 for the Internet-use
data represents the ANOVA table you get from using the regression line as
your model. Under the Source column, you may be used to seeing treatment,
error, and total. For regression, the treatment is the regression line, so you
see regression instead of treatment. The error term in ANOVA is labeled resid-
ual error, because in regression, you measure error in terms of residuals.
Finally you see total, which is the same the world around.

The SS column represents the sums of squares for the regression model. The
three sums of squares listed in the SS column are SSR (for regression), SSE
(for residuals), and SST (total). These sums of squares are calculated using
the formulas from the previous section; the degrees of freedom, DF in the
table, are found by using the formulas from the previous section also.

The MS column takes the value of SS “whatever”(you fill in the blank) and
divides it by the respective degrees of freedom, just like ANOVA. For example
in Figure 12-1, SSE is 12,968.5, and the degrees of freedom is 248. Take the first
value divided by the second one to get 52.29 or 52.3, which is listed in the
ANOVA table for MSE.

The value of the F-statistic, using the ANOVA method, is .
, .F MSE

MST
52 3

9 085 6
= = =

173.7 in the Internet example, which you can see in column five of the ANOVA
part of Figure 12-1 (subject to rounding). The F-statistics’s p-value is calcu-
lated based on an F-distribution with 2 – 1 = 1 and 250 – 2 = 248 degrees of 
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freedom, respectively. (In the Internet example, the p-value listed in the last
column of the ANOVA table is 0.000, meaning the regression model fits.) But
remember, in regression you don’t use an F-statistic and an F-test. You use a 
t-statistic and a t-test. What gives? The next section explains.

Relating the F- and t-statistics: 
The final frontier
In regression, one way of testing whether the best-fitting line is statistically
significant is to test Ho: slope = 0 versus Ha: slope ≠ 0. To do this, you use a 
t-test (see Chapter 3). The slope is the heart and soul of the regression line,
because it describes the main part of the relationship between x and y. If the
slope of the line equals zero (you can’t reject Ho), you’re just left with y = b1,
a horizontal line, and your model y = b0 + b1x isn’t doing anything for you.

In ANOVA, you test to see whether the model fits by testing Ho: The means of
the populations are all equal, versus Ha: At least two of the population means
aren’t equal. To do this you use an F-test (taking MST and dividing it by MSE;
see Chapter 10).

The sets of hypotheses in regression and ANOVA seem totally different, but in
essence, they’re both doing the same general thing: testing whether a certain
model fits. In the regression case, the model you want to see fit is the straight
line, and in the ANOVA case, the model of interest is a set of (normally distrib-
uted) populations with at least two different means (and the same variance).
Here each population is labeled as a treatment by ANOVA.

But more than that, you can think of it this way: Suppose you took all the
populations from the ANOVA and lined them up side by side on an x-y plane
(see Figure 12-2). If the means of those distributions are all connected by a
flat line (representing the mean of the y’s), then you would have no evidence
against Ho in the F-test, so you can’t reject it — your model isn’t doing any-
thing for you (it doesn’t fit). This idea is similar to the idea of fitting a flat hor-
izontal line through the y-values in regression; a straight-line model with a
nonzero slope doesn’t work in that case.

The big thing is that statisticians can prove (so you don’t have to) that an 
F-statistic is equivalent to the square of a t-statistic, and the F-distribution is
equivalent to the square of a t-distribution when the SSR has df = 2 – 1 = 1.
And when you have a simple linear regression model, the degrees of freedom
is exactly one! (Note that F is always greater than or equal to zero, which is
needed if you’re making it the square of something.) So there you have it! The
t-statistic for testing the regression model is equivalent to an F-statistic for
ANOVA when the ANOVA table is formed for the simple regression model.

205Chapter 12: Rock My World: Relating Regression to ANOVA

18_045206 ch12.qxd  2/1/07  10:20 AM  Page 205



Indeed (the stat professor’s way of saying “and this is the really cool part. . .”),
if you look at the value of the t-statistic for testing the slope of the education
variable in Figure 12-1, you see that it’s 13.18 (look at the row marked
Education and the column marked T). Square that value, and you get 173.71.
The F-statistic in the ANOVA table of Figure 12-1 is equal to 173.75. The 
F-statistic from ANOVA and the t-statistic from regression are equal to each
other in Figure 12-2, subject to a little round-off error done by Minitab on the
output. (Just like magic! I still get chills just thinking about it.)

1 2 3 4
x

y

y
Figure 12-2:
Connecting

means of
populations
to the slope

of a line.
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In this part . . . 

Have you ever wondered if the percentage of M&Ms
of each color is the same in every bag? Or whether

someone’s vote in an election is related to gender? Have
you ever wondered if banks really have a case for deny-
ing loans based on a low credit score? This part answers
all of those questions and more, using the Chi-square 
distribution.
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Chapter 13

Forming Associations 
with Two-Way Tables

In This Chapter
� Reading and interpreting two-way tables

� Figuring probabilities and checking for independence

� Watching out for Simpson’s Paradox

Looking for relationships between two categorical (qualitative) variables
is a very common goal for researchers. For example, many medical stud-

ies center on how some characteristic about a person either raises or lowers
his chance of getting some disease. Marketers ask questions like, “Who is
more likely to buy our product: males or females?” Sports stat freaks wonder
about things like “Does winning the coin toss at the beginning of a football
game increase your team’s chance of winning the game?”

To answer each of the above questions, you must first collect data (from a
random sample) on the two categorical variables being compared — call
them x and y. Then you organize that data into a table that contains columns
and rows, showing how many individuals from the sample appear in each
combination of x and y. Finally, you use the information in the table to con-
duct a hypothesis test (called the Chi-square test). Using the Chi-square test,
you can determine whether you can see a relationship between x and y in the
population from which the data was drawn. This last step needs the machin-
ery from Chapter 14 to accomplish it. The goals of this chapter are to under-
stand what it means for two qualitative variables (x and y) to be associated
and to discover how to use percentages to determine whether a sample data
set appears to show a relationship between x and y.

Suppose you’re collecting data on cell-phone users, and you want to find out
whether more females use cell phones than males. A study of 508 randomly
selected male cell-phone users and 508 randomly selected female cell-phone
users conducted by a wireless company found that women tend to use their
phones for personal calls more than men (big shocker). The survey showed
that 427 of the women said they used their wireless phones primarily to talk
with friends and family, while only 325 of the men admitted to doing so.
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But you can’t stop there. You need to break down this information, calculate
some percentages, and compare them to see how close they really are. Sample
results vary from sample to sample, and differences can appear by chance.

In this chapter, you find out how to organize data from qualitative variables
(data based on categories rather than measurements) into a table format.
This skill is especially useful when you’re trying to look for relationships
between two qualitative variables, such as using a cell phone for personal
calls (a yes or no category) and gender (male or female). You also summarize
the data to answer your questions. And, finally, you get to figure out, once
and for all, what’s going on with that Simpson’s Paradox thing.

Breaking Down a Two-Way Table
A two-way table is a table that contains rows and columns, which help you
organize data from categorical (qualitative) variables in the following ways:

� The rows represent the possible categories for one categorical variable,
such as males and females.

� The columns represent the possible categories for a second categorical
variable, such as using your cell phone for personal calls, or not.

Here I review the basic ideas of organizing and filling in a two-way table.

Organizing data into a two-way table
To organize your data into a two-way table, first set up the rows and columns.
Table 13-1 shows the setup for the cell-phone data (refer to the example I give
at the beginning of the chapter).

Table 13-1 Two-Way Table Set Up for the Cell-Phone Data
Personal Calls: Yes Personal Calls: No 

Males

Females
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Notice that Table 13-1 has four empty cells inside of it (not counting the
empty space in the upper-left corner). Because gender has two choices (male
or female), and personal cell-phone use has two choices (yes or no), the
resulting two-way table has 2 * 2 = 4 cells.

To figure out the number of cells in any two-way table, multiply the number
of possible categories for the row variables times the number of possible 
categories for the column variable.

Filling in the cell counts
After you set up the table with the appropriate number of rows and columns,
you need to fill in the appropriate numbers in each of the cells of the two-way
table. The number in each cell of a two-way table is called the cell count for
that cell. The upper-left cell in the two-way table shown in Table 13-1 repre-
sents the number of males who use their cell phones for personal calls. With
the information you have in the cell-phone problem, the cell count for this
cell is 325. Because you know that 427 females use their cell phones for per-
sonal calls, this number goes into the lower-left cell.

Now, to figure out the numbers in the remaining two cells, you do a bit of sub-
traction. You know from the information given that the total number of male
cell-phone users in the survey is 508. Each male either uses his cell phone for
personal calls (falling into the yes group), or he doesn’t (falling into the no
group). Because 325 males fall into the yes group, and you have 508 males
total, 183 males (508 – 325 = 183) don’t use their cell phones for personal
calls. This number is the cell count for the upper-right cell of the two-way
table. Finally, because 508 females took the survey, and 427 of them use 
their cell phones for personal calls, you know that the rest of them (508 – 
427 = 81) don’t. Therefore, 81 is the cell count for the lower-right cell of the
table. Table 13-2 shows the completed table for the cell-phone user problem,
with the four cell counts filled in.

Table 13-2 Completed Two-Way Table for the Cell-Phone Data
Personal Calls: Yes Personal Calls: No 

Males 325 183 (508 – 325)

Females 427 81 (508 – 427)
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Just to save you a little time, if you have the total number in a group and how
many of those individuals fall into one of the categories of the two-way table,
you can determine the number falling into the remaining category by sub-
tracting the total number in the group minus the number in the given cate-
gory. You can complete this process for each remaining group in the table.

Making marginal totals
One of the most important aspects of a two-way table is to have easy access
to all the pertinent totals. Because every two-way table is made up of rows
and columns, you can imagine that the totals for each row and the totals for
each column are important. Also, the grand total is important to know.

If you take a single row and add up all the cell counts in the cells of that row,
you get what is called a marginal row total for that row. Where does this mar-
ginal row total go on the table? You guessed it — out in the margin at the end
of that row. You can find the marginal row totals for every row in the table
and put them into the margins at the end of the rows. This group of marginal
row totals for each row represents what statisticians call the marginal distrib-
ution for the row variable. The marginal row totals should add up to the grand
total, which is the total number of individuals in the study. (The individuals
may be people, cities, dogs, companies, and so on, depending on the scenario
of the problem at hand.)

Similarly, if you take a single column and add up all the cell counts in the 
cells of that column, you get the marginal column total for that column. This
number goes in the margin at the bottom of the column. Follow this pattern
for each column in the table, and you have the marginal distribution for the
column variable. Again, the sum of all the marginal column totals equals the
grand total. The grand total is always located in the lower-right corner of the
two-way table.

The marginal row total, marginal column totals, and the grand total for the
cell-phone example are shown in Table 13-3.

Table 13-3 Marginal and Grand Totals for the Cell Phone Data
Personal Personal Marginal 
Calls: Yes Calls: No Row Totals

Males 325 183 (508 – 325) 508

Females 427 81 (508 – 427) 508

Marginal Column Totals 752 264 1,016 (Grand Total)
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The marginal row totals add the cell counts in each row; yet the marginal row
totals show up as a column in the two-way table. This phenomenon occurs
because when summing the cell counts in a row, you put the result in the
margin at the end of the row, and when you do this for each row, you’re stack-
ing the row totals into a column. Similarly, the marginal column totals add the
cell counts in each column; yet they show up as a row in the two-way table.
Don’t let this be a source of confusion when you’re trying to navigate or set
up a two-way table. It’s always a good idea to label your totals as marginal
row, marginal column, or grand total to help keep it clear.

Breaking Down the Probabilities
A percentage, when applied to a two-way table, represents the portion of 
the individuals in the sample falling into a certain group. This idea can be
expanded to a probability, which gives the chance that an individual person
selected from this group falls into a certain category. 

A two-way table gives you the opportunity to find many different kinds of
probabilities to help you find the answers to different questions about your
data or to look at the data another way. In this section, I cover the three most
important types of probabilities found in a two-way table: marginal probabili-
ties, joint probabilities, and conditional probabilities. (If you need more info
on these terms, check out Probability For Dummies [Wiley].)

When you find probabilities based on a sample, as you do in this chapter, you
have to realize that those probabilities pertain to that sample only. They do
not transfer automatically to the population being studied. For example, if
you take a random sample of 1,000 adults and find that 55 percent of them
watch reality TV, this study doesn’t mean that 55 percent of all adults in the
entire population watch reality TV. (The media makes this mistake every
day.) You need to take into account the fact that sample results vary. In
Chapters 14 and 15, you do just that. But this chapter zeros in on summariz-
ing the information in your sample, which is the first step toward that end
(but not the last step in terms of making conclusions about your correspond-
ing population).

Marginal probabilities
A marginal probability makes a probability out of the marginal total, for either
the rows or the columns. A marginal probability represents the proportion of
the entire group that belongs in that single row or column category. Each
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marginal probability represents only one category for only one variable — it
doesn’t consider the other variable at all. In the cell-phone example, you have
four possible marginal probabilities (refer to Table 13-3):

� Marginal probability of female (508⁄1,016 = 0.50). That means, 50 percent of
all the cell-phone users in this sample were females.

� Marginal probability of male (508⁄1,016 = 0.50). That means, 50 percent of all
the cell-phone users in this sample were males.

� Marginal probability of using a cell phone for personal calls (752⁄1,016 =
0.74). Therefore, 74 percent of all cell-phone users in this sample make
personal calls with their cell phones.

� Marginal probability of not using a cell phone for personal calls (264⁄1,016 =
0.26). In other words, 26 percent of all the cell-phone users in this
sample don’t make personal calls with their cell phones.

Statisticians use shorthand notation for all probabilities. If you let M = male, 
F = female, Yes = personal cell-phone use, and No = no personal cell-phone
use, then each of the preceding marginal probabilities is written this way:

� P(F) = 0.50

� P(M) = 0.50

� P(Yes) = 0.74

� P(No) = 0.26

Notice that P(F) and P(M) add up to 1.00. This result is no coincidence,
because these two categories make up the entire gender variable. Similarly,
P(Yes) and P(No) sum up to 1.00 because those choices are the only two 
for the personal cell-phone use variable. Everyone has to be classified 
somewhere.

Be advised that some probabilities aren’t useful in terms of discovering infor-
mation about the population in general. For example, P(F) = 0.50 in the previ-
ous example because the researchers determined ahead of time that they
wanted exactly 508 females and exactly 508 males. The fact that 50 percent of
the sample is female and 50 percent of the sample is male doesn’t mean that
in the entire population of cell-phone users 50 percent are males and 50 per-
cent are females. The sample was just set up that way. If you want to study
what proportion of cell-phone users are females and males, you need to take
a combined sample instead of two separate ones, and see how many males
and females appear in the combined sample.
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Joint probabilities
A joint probability gives the probability of the intersection of two categories,
one from the row variable and one from the column variable. It’s the probabil-
ity that someone selected from the whole group has two particular character-
istics at the same time. A joint probability is found by taking the cell count
for those having both characteristics and dividing by the grand total. In other
words, both characteristics happen jointly, or together.

The cell-phone example has four joint probabilities:

� The probability that someone from the entire group is male and uses his
cell phone for personal calls. This probability is 325⁄1,016 = 0.32, meaning
that 32 percent of all the cell-phone users in this sample are males using
their cell phones for personal calls.

� The probability that someone from the entire group is male and doesn’t
use his cell phone for personal calls is 183⁄1,016 = 0.18.

� The probability that someone from the entire group is female and makes
personal calls with her cell phone is 427⁄1,016 = 0.42.

� The probability that someone from the entire group is female and 
doesn’t make personal calls with her cell phone is 81⁄1,016 = 0.08.

The notation for the joint probabilities previously listed is as follows, where +
represents the intersection of the two categories listed:

� P(M + Yes) = 0.32

� P(M + No) = 0.18

� P(F + Yes) = 0.42

� P(F + No) = 0.08

The sum of all the joint probabilities for any two-way table should be 1.00,
unless you have a little round-off error, which makes it very close to, but not
exactly, 1.00. The sum is 1.00, because everyone in the group is classified
somewhere with respect to both variables. It’s like dividing the entire group
into four parts and showing which proportion falls into each part.

Conditional probabilities
A conditional probability is what you use if you want to compare subgroups in
the sample. In other words, if you want to break down the table further, a con-
ditional probability is what you use. Each row has a conditional probability 
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for each cell within the row, and each column has a conditional probabil-
ity for each cell within that column.

Note: Because conditional probability is one of the sticking points for a lot of
students, I want to spend extra time on it. My goal in this section is for you 
to have a good understanding of what a conditional probability really means
and how you can use it in the real world (something many statistics text-
books neglect to mention, I have to say).

Figuring conditional probabilities
Consider the cell-phone example in Table 13-3. Suppose you want to look at
just the males who took the survey. The total number of males is 508. You can
break this group down into two subgroups by using conditional probability.
You can find the probability of using cell phones for personal calls (males
only), and you can find the probability of not using cell phones for personal
calls (males only). Similarly, you can break down the females by those
females who use cell phones for personal calls and those females who don’t.

In each case, to find a conditional probability, you first look at a single row 
or column of the table that represents the known characteristic about the
individuals. The marginal total for that row or column now represents your
new grand total, because this group becomes your entire universe when you
examine it. Then take the cell counts from that row or column and divide the
sum by that row or column’s marginal total.

In the cell-phone example, you have the following conditional probabilities
when you break the table down by gender:

� The conditional probability that a male uses a cell phone for personal
calls is 325⁄508 = 0.64.

� The conditional probability that a male doesn’t use a cell phone for per-
sonal calls is 183⁄508 = 0.36.

� The conditional probability that a female uses a cell phone for personal
calls is 427⁄508 = 0.84.

� The conditional probability that a female doesn’t use a cell phone for
personal calls is 81⁄508 = 0.16.

To interpret these results, you say that within this sample if you’re male,
you’re more likely than not to use your cell phone for personal calls (64 per-
cent compared to 36 percent). However, the percentage of personal-call
makers is higher for females (84 percent versus 16 percent).

The conclusions you can make from two-way tables in this chapter must refer
only to the sample, not the population it came from. Before going on to make
general statements about the conditional probability within a population, you
need to conduct a confidence interval for a population proportion (which is
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equivalent to a probability). See Chapter 3 or your intro stats book for infor-
mation on a hypothesis test for a population proportion.

Notice that for the males in the previous example, the two probabilities (0.64
and 0.36) add up to 1.00. This is no coincidence. The males have been broken
down by cell-phone use for personal calls, and because everyone in the study
is a cell-phone user, each male has to be classified in one group or the other.
Similarly, the two probabilities for the females sum to 1.00.

Notation for conditional probabilities
Conditional probabilities are denoted by a straight up-and-down line that lists
and separates the event that is known to have happened (what’s given) and
the event for which you want to find the probability. You can write the nota-
tion like this: P(XX|XX). You place the given event to the right of the line and
the event for which you want to find the probability to the left of the line. For
example, suppose you know someone is female (F) and you want to find out
the chance she is a Democrat (D). In this case, you’re looking for P(D|F). On
the other hand, say you know a person is a Democrat and you want the prob-
ability that person is female — you’re looking for P(F|D).

The straight up-and-down line in the conditional probability notation isn’t a
division sign; the line is just a line separating events A and B. Also, be careful
of the order in which you place A and B into the conditional probability nota-
tion. In general, P(A|B) ≠ P(B|A).

Following is the notation used for the conditional probabilities in the 
cell-phone example:

� P(Yes | M) = 0.64. You can say it this way: “The probability of Yes given
Male is 0.64.”

� P(No | M) = 0.36. In human terms, say “The probability of No given Male
is 0.36.”

� P(Yes | F) = 0.84. Say this one with gusto: “The probability of Yes given
Female is 0.84.”

� P(No | F) = 0.16. You translate this notation by saying “The probability
of No given Female is 0.16.”

You can see that P(Yes | M) + P(No | M) = 1.00 because you’re breaking all
males into two groups: those using cell phones for personal calls (Y) and
those not (N). Notice however, that P(Yes | M) + P(Yes | F) doesn’t sum to
1.00. In the first case, you’re looking only at the males, and in the second
case, only at the females.
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Comparing two groups with conditional probabilities
One of the most common questions regarding two categorical (qualitative)
variables is this: Are they related? To answer this question, you use conditional
probabilities. You set up and find the conditional probabilities you need to see
whether two variables are related. 

To compare the conditional probabilities, take one variable and find the con-
ditional probabilities based on the other variable. Do this for each category
of the first variable. Compare those conditional probabilities (you can even
graph them for the two groups) and see whether they’re different or the
same. (If the conditional probabilities are the same for each group, the vari-
ables aren’t related in the sample. If they’re different, the variables are related
in the sample.) To be able to generalize the results, you need to use the
sample results to draw a conclusion from the overall population involved by
doing a Chi-square test (see Chapter 14).

Revisiting the cell-phone example from the previous section, you can ask
specifically: Is personal use related to gender? You know that you want to
compare cell-phone use for males and females to find out whether use is
related to gender. However, it’s very difficult to compare cell counts — for
example, 325 males use their phones for personal calls, compared to 427
females. In fact, it’s impossible to compare these numbers without using
some total for perspective. Three hundred twenty-five out of what?

You have no way of comparing the cell counts in two groups without creating
percentages (dividing each cell count by the appropriate total). Percentages
give you a means of comparing two numbers on equal terms. For example,
suppose you give a one-question opinion survey (yes, no, no opinion) to a
random sample of 1,099 people; 465 respondents said yes, 357 said no, and
277 had no opinion. To truly interpret this information, you’re probably in
your head trying to compare these numbers to each other. That’s what per-
centages do for you. Showing the percentage in each group in a side-by-side
fashion gives you a relative comparison of the groups with each other.

But first, you need to bring conditional probabilities into the mix. In the cell-
phone example, if you want the percentage of females who use their cell
phones for personal calls, you take 427 divided by the total number of
females (508) to get 84 percent. Similarly, to get the percentage of males who
use their cell phones for personal calls, take the cell count (325) and divide it
by that row total for males (508), which gives you 64 percent. This percent-
age is the conditional probability of using a cell phone for personal calls,
given the person is male.

Now you’re ready to compare the males and females by using conditional
probabilities. Take the percentage of females who use their cell phones for
personal calls and compare it to the percentage of males who use their cell
phones for personal calls. By finding these conditional probabilities, you 
can easily compare the two groups and say that in this sample at least, more
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females use their cell phones (84 percent) for personal calls than men 
(64 percent).

Using graphs to display conditional probabilities
One way to highlight conditional probabilities as a tool for comparing two
groups is to use graphs such as a pie chart comparing the results of the other
variable for each group or a bar chart comparing the results of the other vari-
able for each group.

Figures 13-1a and 13-1b use two pie charts to compare males and females on
cell-phone use. Figure 13-1a shows cell-phone use for only the males; this pie
chart shows the conditional distribution of use for (given) males. Figure
13-1b shows the conditional distribution of cell phone use for (given)
females. A comparison of Figures 13-1a and 13-1b shows the slices for cell-
phone use aren’t equal (or even close) for males compared to females. That
result means that gender and cell-phone use for personal calls are dependent
in this sample. 

You may be wondering how close the two pie charts need to look (in terms of
how close the slice amounts are for one pie compared to the other) in order
to say the variables are independent. This question isn’t one you can answer
completely until you conduct a hypothesis test for the proportions them-
selves (see the Chi-square test in Chapter 14). For now, with respect to your
sample data, if the difference in the appearance of the slices for the two
graphs is enough that you would write a newspaper article about it, then I’d
go for dependence. Otherwise, conclude independence.

You can also make a bar chart to show the same idea. (For more info on pie
charts and bar charts, see Statistics For Dummies [written by me and pub-
lished by Wiley] or your intro stats textbook.)

Another way you can make comparisons is to break down the two-way table
by the column variable. (You don’t always have to use the row variable for
comparisons.) In the cell-phone example (Table 13-3), you can compare the
group of personal-call makers to the group of no-personal-call makers and see
what percentage in each group is male and female. This type of comparison
puts a different spin on the information, because you’re comparing the
behaviors to each other, in terms of gender.

With this new breakdown of the two-way table, you get the following:

� The conditional probability of being male, given you use your cell phone
for personal calls, is P(M | Yes) = 325⁄752 = 0.43. Note: The denominator is
752, the total number of people who make personal calls with their cell
phones.

� The conditional probability of being female, given you use your cell
phone for personal calls, is P(F | Yes) = 427⁄752 = 0.57.
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Again, these two probabilities add up to 1.00, because you’re breaking down
the personal-call makers according to gender (male or female), and the 
last two probabilities sum to 1.00, because you’re breaking down the non-
personal-call makers by gender (male and female).

The overall conclusions are similar to those found in the previous section,
but the specific percentages and the interpretation are different. Interpreting
the data this way, if you use your cell phone for personal calls, you’re more
likely to be female than male (57 percent compared to 43 percent). And if you
don’t use your cell phone to make personal calls, you’re more likely to be
male (69 percent versus 31 percent).

Male cell-phone users

Category
personal calls
no personal calls

Female cell-phone users

ba

Category
personal calls
no personal calls

15.9%
36.0%

84.1%
64.0%

Figure 13-1:
Pie charts

comparing
male versus

female
personal

cell-phone
use.
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What should you divide by? That is the question!
To get the correct answer for any probability in
a two-way table, here’s the trick: Always be
sure to identify the group that is being exam-
ined. What is the probability “out of”? In the cell
phone example (refer to Table 13-3):

� If you want the percentage of all users who
are males using their phones for personal
calls, then you take the cell count 325, and
divide by 1,016, the grand total.

� If you want the percentage of males who
are using their cell phones for personal
calls, you take 325 divided by 508, the total
number of males.

� If you want the percentage of personal-call
makers who are male, you take 325 divided
by 752 (the total number of people who
make personal calls with their cell phones).

In each of these three cases, the numerator is
the same, but the denominators are different,
leading you to very different answers. Deciding
which number to divide by is a very common
source of confusion for people, and this trick
can really help give you an edge on keeping it
straight.
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Trying to be Independent
Independence is a big deal in statistics. The term generally means that two
items have outcomes whose probabilities don’t affect each other. The items
could be events A and B, variables x and y, or survey results from two people
selected at random from a population, and so on. If the outcomes of the two
items do affect each other, statisticians call those two items dependent (or
not independent). In this section, you check for and interpret independence
of two categories of qualitative variables in a sample, and you check for and
interpret independence of two qualitative variables in a sample.

Checking for independence 
between two categories
Statistics instructors often have students check to see whether two categories
(one from a qualitative variable x and the other from a qualitative variable y)
are independent. I prefer to just compare the two groups and talk about how
similar or different the percentages are, broken down by another variable.
However, to cover all the bases and make sure you can answer this very pop-
ular question, here’s the official definition of independence, straight from the
statistician’s mouth: Two categories are independent if their joint probability
equals the product of their marginal probabilities. The only caveat here is
that neither of the categories can be completely empty. 

For example, if being female is independent of being a Democrat, then 
P(F + D) = P(F) * P(D), where D = Democrat and F = Female. So, to show that
two categories are independent, find the joint probability and compare it to
the product of the two marginal probabilities. If you get the same answer
both times, the categories are independent. If not, then the categories are 
not independent, but rather, they are dependent.

You may be wondering: Don’t all probabilities work this way, where the joint
probability equals the product of the marginals? No, they don’t. For example,
if you draw a card from a standard 52-card deck, you get a red card with prob-
ability 1⁄2. You draw a black card with probability 1⁄2. The chance, though, of
drawing both a black and red card with one draw is 0, while the product of
the probabilities for black times red comes out to 1⁄2 * 1⁄2 = 1⁄4.
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Now, if you look at a red card that is a two, the joint probability of a red two,
which is 2⁄52 = 1⁄26, equals the probability of a red card (1⁄2) times the probability
of a two, which is 4⁄52 (because 1⁄2 * 4⁄52 = 1⁄26).

Another way to check for independence is to compare the conditional proba-
bility to the marginal probability. Specifically, if you want to check whether
being female is independent of being Democrat, check either of the following
two situations (they’ll both work if the variables are independent):

� Is P(F | D) = P(F)? That is, if you know someone is a Democrat, does 
that affect the chance that they will also be female? If yes, F and D are
independent. If not, F and D are dependent.

� Is P(D | F) = P(D)? This question is asking whether being female
changes your chances of being a Democrat. If yes, D and F are 
independent. If not, D and F are dependent.

Is knowing that you’re in one category going to change the probability of
being in another category? If so, the two categories aren’t independent. 
If it doesn’t affect the probability, then the two categories are independent.

Checking for independence 
between two variables
The discussion in the previous section focuses on checking if two specific
categories are independent in a sample. If you want to extend this idea to
showing that two entire categorical variables are independent, you must
check the independence conditions for every combination of categories in
those variables. All of them must work, or independence is lost. The first case
where dependence is found between two categories means that the two vari-
ables are dependent. If you find that the first case shows independence, you
must continue checking all the combinations before declaring independence.

Suppose a doctor’s office wants to know whether calling patients to confirm
their appointments is related to whether they actually show up. The vari-
ables are x = called the patient (called or didn’t call) and y = patient showed
up for their appointment (showed or didn’t show). Here are the four condi-
tions that need to hold before you declare independence:

1. P(showed) = P(showed | called)

2. P(showed) = P(showed | didn’t call)

3. P(didn’t show) = P(didn’t show | called)

4. P(didn’t show) = P(didn’t show | didn’t call)
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If any one of these conditions isn’t met, you stop there and declare the two
variables to be dependent in the sample. If (and only if) all the conditions are
met, you declare the two variables independent in the sample.

You can see the results of a sample of 100 randomly selected patients in 
Table 13-4.

Table 13-4 Confirmation Calls Related to 
Showing Up for the Appointment

Called Didn’t Call Row totals

Showed 57 33 90

Didn’t Show 3 7 10

Column Totals 60 40 100

Checking the conditions for independence, you can start at the first condition
and check to see whether P(showed) = P(showed | called). From the last
column of Table 13-4, you can see that P(showed) is equal to 90⁄100 = 0.90, or 
90 percent. Next, you can find P(showed | called) by looking at the first
column of Table 13-4. This probability is 57⁄60 = 95 percent. Because these two
probabilities aren’t equal (although they’re close), then you say that showing
up and calling first are dependent. In other words, people come a little more
often when you call them first. (To determine whether these sample results
carry through to the population, which also takes care of the question of how
close the probabilities need to be in order to conclude independence, see
Chapter 14.)

Demystifying Simpson’s Paradox
Simpson’s Paradox is a phenomenon where results appear to be in direct con-
tradiction to one another, which can make even the best student’s heart race.
This situation can go unnoticed unless three variables (or more) are exam-
ined, in which case you organize the results into a three-way table, with
columns within columns or rows within rows.

Simpson’s Paradox is a favorite among statistics instructors (because it’s so
mystical and magical — and the numbers get so gooey and complex) but
Simpson’s Paradox is a nonfavorite among many students, mainly because of
the following two reasons (in my opinion):

223Chapter 13: Forming Associations with Two-Way Tables

20_045206 ch13.qxd  2/1/07  10:21 AM  Page 223



� Due to the way Simpson’s Paradox is presented in most statistics
courses, you can easily get buried in the details and have no hope of
seeing the big picture: Simpson’s Paradox presents a big problem in
terms of interpreting data, and you need to understand it fully in order
to avoid it.

� Most textbooks do a good job of showing you examples of Simpson’s
Paradox, but they do a not-so-good job of explaining why it occurs
(some even neglect to explain the why part at all).

My goals in this section are for you to know what Simpson’s Paradox is, to be
able to understand and explain why and how it happens, and to know how to
be watchful for it. This is a tall order, I know, but stick with me.

Experiencing Simpson’s Paradox
Simpson’s Paradox was discovered in 1951 by an American Statistician
named E. H. Simpson. He realized that if you analyze some data sets one way,
by breaking them down by two variables only, you can get one result, but
when you break the data down further by a third variable, the results switch
direction. That’s why his result is called Simpson’s Paradox — a paradox
being an apparent contradiction in results.

In the following sections, you can see Simpson’s Paradox play out in an exam-
ple and all the details in between.

Simpson’s Paradox in action: Video games and the gender gap
Suppose I am interested in finding out who is better at playing video games,
men or women. I watch males and females choose and play a variety of video
games, and each time someone plays a video game, I record whether he or
she wins or loses. Suppose I record the results of 200 video games, as seen 
in Table 13-5. (Note that the females played 120 games, and the males played
80 games.)

Table 13-5 Video Games Won and Lost for Males versus Females
All Games Won Lost Marginal Row Totals

Males 44 36 80

Females 84 36 120

Marginal Column Totals 128 72 200 (Grand Total)
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Looking at Table 13-5, you see the proportion of males who won their video
games, P(Won | Male), is 44⁄80 = 0.55. The proportion of females who won their
video games, P(Won | Female), is 84⁄120 = 0.70. So overall, the females won more
of their video games than the males did. Does this finding mean that women
are better than men at video games in general in the sample?

Not so fast, my friend. Notice that the people in the study were allowed to
choose the video games they played. This factor blows the study wide open.
Suppose females and males choose different types of video games: Can this
affect the results? The answer may be yes. Considering other variables that
could be related to the results but weren’t included in the original study (or
at least not in the original data analysis) is important. These additional vari-
ables that cloud the results are called confounding variables.

Factoring in difficulty level
Many people may expect the video game results from the previous section to
be turned around, that men are better at playing video games than women.
According to the research, men spend more time playing video games, on
average, and are by far the primary purchaser of video games, compared to
women. So what explains the eyebrow-raising results in this study? Is there
another possible explanation? Is important information missing that is rele-
vant to this case?

One of the variables that wasn’t considered when I made Table 13-5 was the
difficulty level of the video game being played. Suppose I go back and include
the difficulty level of the chosen game each time, along with each result (won
or lost). Level one indicates easy video games, comparable to the level of Ms.
Pac Man (games that are my speed), and level two means more challenging
video games (like war games or sophisticated strategy games).

Table 13-6 represents the results with this new information added on diffi-
culty level of games played. You have three variables now: level of difficulty
(one or two); gender (male or female); and outcome (won or lost). Statisticians
therefore call Table 13-6 a three-way table.

Table 13-6 A Three-Way Table for Gender, 
Game Level, and Game Outcome

Level-One Games Level-Two Games 

Won Lost Won Lost

Males 9 1 35 35

Females 72 18 12 18
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Note in Table 13-6 that the number of level-one video games chosen was 9 + 
1 + 72 + 18 = 100, and the number of level-two video games chosen was 35 +
35 + 12 + 18 = 100. But now you need to look at who chose which level of
game. The next section probes this very issue.

Comparing success rates with conditional probabilities
To compare the success rates for males versus females using Table 13-6, you
can figure out the appropriate conditional probabilities, first for level-one
games and then for level-two games.

For level-one games (only), the conditional probability of winning given male
is P(Won | Male) = 9⁄10 = 0.90. So for the level-one games, males won 90 percent
of the games they played. For level-one games, the percentage of games won
by the females is P(Won | Female) = 72⁄90 = 0.80, or 80 percent. These results
mean that at level one, the males did 10 percent better than the females at
winning their games. But this percentage appears to contradict the results
found in Table 13-5. (Just wait — the contradictions don’t end here!)

Now figure the conditional probabilities for the level-two video games won.
For the men, the percentage of males winning level-two games was 35⁄70 = 0.50,
or 50 percent. For the ladies, the percentage of women winning level-two
games was 12⁄30 = 0.40, or 40 percent. Once again, the males outdid the females!

Step back and think about this scenario for a minute. Table 13-5 shows that
females won a higher percentage of the video games they played overall. But
Table 13-6 shows that males won more of the level-one games and that males
won more of the level-two games. What’s going on? No need to check your
math. No mistakes were made — no tricks were pulled. This inconsistency in
results happens in real life from time to time in situations where an important
third variable is left out of a study, a situation aptly named Simpson’s Paradox.
(See why it’s called a paradox?)

Asking why: Simpson’s Paradox
Confounding variables are the underlying cause of Simpson’s Paradox. 
(A confounding variable is a third variable that’s related to each of the 
other two variables and can affect the results if not accounted for.)

In the video game example, when you look at the video game outcomes (won
or lost) broken down by gender only (Table 13-5), females won a higher per-
centage of their overall games than males (70 percent overall winning per-
centage for females compared to 55 overall winning percentage for males).
Yet, when you split up the results by the level of the video game (level one or
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level two; see Table 13-6), the results reverse themselves, and you see that
males did better than females on the level-one games (90 percent to 80 per-
cent), and males also did better on the level-two games (50 percent versus 40
percent).

To see why this seemingly impossible result happens, take a look at the mar-
ginal row probabilities versus the marginal row totals in Table 13-6 (for the
level-one games). The percentage of times a male won when he played an
easy video game was 90 percent. However, males chose level-one video
games only 10 times (out of 80 total level-one games played by men. That’s
only 12.5 percent).

To break this idea down further, the males’ non-stellar performance on the
challenging video games (50 percent — but still better than the females) 
coupled with the fact that the males chose challenging video games 70 out 
of 80 = 87.5 percent of the time really brought down that overall winning per-
centage (55 percent). And even though the men did really well on the level-
one video games, they didn’t play many of them (compared to the females),
so their high winning percentage on level-one video games (90 percent)
didn’t count much toward their overall winning percentage.

Meanwhile, in Table 13-6, you see that females chose level-one video games
90 times (out of 120). Even though the females only won 72 out of the 90
games (80 percent, a lower percentage than the males), they chose to play
many more of the level-one games, boosting their overall winning percentage.

Now the opposite situation happens when you look at the level-two video
games in Table 13-6. The males chose the harder video games 70 times (out of
80), while the females only chose the harder ones 30 times out of 120. The
males did better than the females on level-two video games (winning 50 per-
cent of them versus 40 percent for the females). However, level-two video
games are harder to win than level-one video games. This factor means that
the males’ winning percentage on level-two video games, being only 50 per-
cent, doesn’t contribute much to their overall winning percentage. However,
the low winning percentage for females on level-two video games doesn’t
hurt them much, because they didn’t play many level-two video games.

The bottom line is that the occurrence or non-occurrence of Simpson’s
Paradox is a matter of weights. In the overall totals from Table 13-5, the males
don’t look as good as the females. But when you add in the difficulty of the
games (shown in Table 13-6), you see that most of the males’ wins came from
harder games (which have a lower winning percentage). The females played
many more of the easier games on average, and easy games have a higher
chance of winning no matter who plays them. So it all boils down to this:
Which games did the males choose to play, and which games did the females
choose to play? The males chose harder games, which contributed in a nega-
tive way to their overall winning percentage and made the females look
better than they actually were.
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Level of game wasn’t included in the original summary, Table 13-5, but it
should have been included because it’s a variable that affected the results.
Level of game, in this case, was the confounding variable.

Keeping one eye open for 
Simpson’s Paradox
Simpson’s Paradox shows you the importance of including data about possi-
ble confounding variables when attempting to look at relationships between
qualitative variables.

In the video game example I use in previous sections, level of difficulty of the
game was a confounding variable; more men chose to play the more difficult
games, which are harder to win, thereby lowering their overall success rate.

You can avoid Simpson’s Paradox by making sure that obvious confounding
variables are included in a study; that way, when you look at the data you get
the relationships right the first time, and no room exists for misconstruing
the results. And as with all other statistical results, if it looks too good to be
true, or too simple to be correct, it probably is! Beware of someone that tried
to oversimplify any result. While three-way tables are more difficult to exam-
ine, they are often worth using.
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Chapter 14

Being Independent Enough 
for the Chi-Square Test

In This Chapter
� Testing for independence in the population (not just the sample)

� Using the Chi-square distribution

� Discovering the connection between the Z-test and the Chi-square test

You’ve seen these hasty judgments before — people who collect one
sample of data and try to use it to make conclusions about the whole

population. When it comes to two qualitative variables (where data falls into
categories and don’t represent measurements), the problem seems to be
even more widespread.

For example, a TV news show finds that out of 1,000 presidential voters, 200
females are voting Republican, 300 females are voting Democrat, 300 males are
voting Republican, and 200 males are voting Democrat. The news anchor
shows the data and then states that 30 percent ( 300⁄1,000) of all voters are females
voting Democrat (and so on for the other counts). This conclusion is mis-
leading. It is true that in this sample of 1,000 voters, 30 percent of them are
females voting Democrat. However, this result doesn’t automatically mean
that 30 percent of the entire population of voters are females voting Democrat.
Results change from sample to sample.

People often understand that they can expect sample results to change, yet
they don’t seem to realize that some conclusions come out differently due 
to even small changes in the sample results. For example, if you ask ten people
about their views on an issue, you may get six people in favor (the majority)
and four against. But the next time you take a sample of ten people, the results
may reverse, and you’ll have four people in favor and six people against (the
majority). This inconsistency is especially prone to happening if the sample
size is small.

In this chapter, you see how to move beyond just summarizing the sample
results from a two-way table (discussed in Chapter 13) to using those results in
a hypothesis test to make conclusions about an entire population. This process
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requires a new probability distribution called the Chi-square distribution, which
you get very familiar with in this chapter. You also find out how to answer a
very popular question among researchers: Are these two categorical (qualita-
tive) variables independent (not related to each other) in the entire population?

A Hypothesis Test for Independence
A recent survey conducted by American Demographics asked men and
women about the color of their next house. The results showed that 36 per-
cent of the men wanted to paint their houses white, and 25 percent of the
women wanted to paint their houses white. Table 14-1 illustrates the results
from a sample of 1,000 people (500 men and 500 women).

Table 14-1 Gender and House-Paint Preference: 
Observed Cell Counts

White Paint Nonwhite Paint Marginal Row Totals

Men 180 320 500

Women 125 375 500

Marginal Column Totals 305 695 1,000 (Grand Total)

The marginal row totals represent the total number in each row; the marginal
column totals represent the total number in each column (see Chapter 13 for
more information on row and column marginal totals). Notice that of the
males, the percentage who want to paint their houses white is 180⁄500 = 0.36, or
36 percent, as stated previously. And the percentage of females who want to
paint their houses white is 125⁄500 = 0.25, or 25 percent. (Both of these percent-
ages represent conditional probabilities as explained in Chapter 13.)

The American Demographics report concluded from this data that “. . . men
and women agree on exterior house paint colors; the main exception being
the top male choice, white (36 percent would paint their next house white
versus 25 percent of women).” This type of conclusion is commonly formed,
but it’s an overgeneralization of the results at this point. You know that in this
sample, more men wanted to paint their houses white than women, but is 
180 really that different from 125, with a sample size of 1,000 people whose
results will vary the next time you do the survey? How do you know these
results carry over to the population of all men and women? That question
can’t be answered without a formal statistical procedure called a hypothesis
test (see Chapter 3 for the basics on hypothesis tests).
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To show that men and women in the population differ according to favorite
house color, first note that you have two qualitative variables — gender
(male or female) and paint color (white or nonwhite). What you really want
to know is whether these two variables are related to each other or not. If
they are related, then favorite paint color depends on gender, which means
these two variables are dependent. If they aren’t related, then favorite paint
color doesn’t depend on gender, and the two variables are independent.

To test whether two qualitative variables are independent, you need a 
Chi-square test. The steps for the Chi-square test are the following, with 
full details supplied in the next sections (note that Minitab can conduct this
test for you also, from step three on down):

1. Collect your data and summarize it in a two-way table.

These numbers represent the observed cell counts. (For more on two-
way tables, see Chapter 13.)

2. Set up your null hypothesis, Ho: Variables are independent; and the
alternative hypothesis, Ha: Variables are dependent.

3. Calculate the expected cell counts under the assumption of 
independence.

The expected cell count for a cell is the row total times the column total
divided by the grand total.

4. Check the conditions of the Chi-square test before proceeding; each
expected cell count must be greater than or equal to five.

5. Figure the Chi-square test statistic.

This statistic finds the observed cell count minus the expected cell
count, squares the difference, and divides it by the expected cell count.
Do these steps for each cell and then add them all up.

6. Look up your test statistic on the Chi-square table (Table A-3 in the
Appendix) and find the p-value (or one that’s close).

7. If your result is less than your prespecified cutoff ( the α level), usu-
ally 0.05, reject Ho and conclude dependence of the two variables.

If your result is greater than the α level, fail to reject Ho; the variables
can’t be deemed dependent.

To conduct a Chi-square test in Minitab, enter your data in the spreadsheet
exactly as it appears in your two-way table (see Chapter 13 for setting up a
two-way table for qualitative data). Go to Stat>Tables>Chi-Square Test. Click
on the two variable names in the left-hand box corresponding to your column
variables in the spreadsheet. They appear in the Columns Contained in the
Table box. Then click on OK.
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Collecting and organizing the data
The first step toward any data analysis is collecting your data. In the case of
two categorical (qualitative) variables, you collect data on the two variables at
the same time for each person. In the house-color example from the previous
section, you note each person’s gender, and then ask each person his or her
preference for exterior house color. Keeping the data together in pairs (for
example: male, white paint; female, nonwhite paint), you then organize it into a
two-way table where the rows represent the categories of one qualitative vari-
able (for example, males and females for gender), and the columns represent
the categories of the other qualitative variable (for example, white paint and
nonwhite paint).

The data for the house-paint example is organized in Table 14-1. You can see
by looking at the grand total in the lower-right-hand corner of the table that
1,000 people participated in the survey; you see by the row totals that the
1,000 people were comprised of 500 men and 500 women. The connection
between the two pieces of information collected is kept by organizing the
data into one two-way table versus two individual tables, one for gender and
one for house-paint preference. That way, you can look at the relationship
between the two variables. (For the full details on organizing and interpreting
the results from a two-way table, see Chapter 13.)

Determining the hypotheses
Every hypothesis test (whether it be a Chi-square test or some other test)
has two hypotheses:

� A null hypothesis, which you have to believe unless someone showed
you otherwise. The notation for this hypothesis is Ho.

� An alternative hypothesis, which you want to conclude in the event that
you can’t support the null hypothesis anymore. The notation for this
hypothesis is Ha.

For a full discussion of hypothesis testing, see my other book Statistics For
Dummies (Wiley) or your intro stats textbook. For a quick review, see Chap-
ter 3 of this book.

In the case where you’re testing for the independence of two qualitative vari-
ables, the null hypothesis is when no relationship exists between them. In
other words, they’re independent. The alternative hypothesis is when the
two variables are related, or dependent.

For the paint color example from the previous section, you write Ho: gender
and paint color are independent versus Ha: gender and paint color are 
dependent. You have now completed step two of the Chi-square test.
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Figuring expected cell counts
When you’ve collected your data and set up your two-way table (for example,
see Table 14-1), you already know what the observed values are for each cell
in the table. Now you need something to compare them to. You’re now ready
for step three of the Chi-square test — finding expected cell counts. The null
hypothesis says that the two variables x and y are independent. That’s the
same as saying x and y have no relationship. Assuming independence, you
can determine which numbers should be in each cell of the table by using a
formula for what is called the expected cell counts. (Each individual square
in a two-way table is called a cell, and the number that falls into each cell is
called the cell count; see Chapter 13 for more information.)

Standing alone: Independent data
In general, independence means that you can find no major difference in the
way the rows look, as you move down a column. That is, the proportion of
the data falling into each column across the row is about the same for each
row. So to find the expected cell counts for any two-way table, take the row
total times the column total divided by the grand total, and do this process
for each cell in the table.

Table 14-2 shows an example of independent data from a two-way table.
Suppose that in this case the table represents data collected from men and
women regarding whether they agree with a certain policy (yes or no). The
proportion of all men who said yes is 10⁄60 = 0.17, or 17 percent. When you look
at the same percentage for the women, you get the same number, 0.17. For
both males and females, you get 50⁄60 = 0.83, or 83 percent, for the No group.
Because males and females voted exactly the same way, these variables are
likely going to be independent in the population as well as the sample.

Table 14-2 Gender and Opinion: Observed Cell 
Counts = Expected Cell Counts (Independent)

Yes No Marginal Row Totals

Men 10 50 60

Women 10 50 60

Marginal Column Totals 20 100 120 (Grand Total)

To get the expected cell counts for the upper-left cell in Table 14-2, take 60
(row one total) times 20 (column one total) divided by 120 (grand total) = 10.
For the next cell in the first row, you multiply 60 by 100⁄120 = 50. The same results
occur in row two, because the numbers are all the same as in row one. Because
Table 14-2 represents two independent variables, you get the same expected
cell counts for each row.
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Under independence, you can find no difference between what you observed
and what you expected.

The expected cell-count formula can actually make sense if you look at it the
right way. That is, if the two variables are independent, the proportion of the
data falling into each column across the row is about the same for each row.
So to find the expected cell count for any cell, you take the row total for the
row that cell is in, and you multiply that total by the proportion of the table
that falls into the column that cell is in (that is, the column total divided by
the grand total).

Tying the knot: Dependent data
If two variables are dependent, then the value of one variable affects the
value of the other variable. For example, suppose you believe women chew
gum more than men. Then gender and gum chewing would be dependent,
because if you knew someone’s gender, that would change the probability of
them being a gum chewer. Dependent variables affect each other’s probabili-
ties. In the end, the cell counts you actually observe from variables that are
dependent won’t match what you expected the cell counts to look like under
Ho: The variables are independent. Big differences between observed and
expected cell counts means that the variables are dependent.

Table 14-3 shows some data that is dependent because the relationship isn’t
the same for each row. More men in the sample said no to gum chewing (35⁄60 = 
58 percent) than women in this sample (25⁄60 = 42 percent). However, this may
not hold for all men and women in the population.

Table 14-3 Gum Chewing: Observed Cell Counts
Yes No Marginal Row Totals

Men 25 35 60

Women 35 25 60

Marginal Column Totals 60 60 120 (Grand Total)

Making conclusions about the population based on the sample (observed)
data in a two-way table is taking too big of a leap. You need to conduct a Chi-
square test in order to broaden your conclusions to the entire population.
Ignoring the fact that sample results vary is where the media, and even some
researchers, can get into trouble. Stopping with the sample results only and
going merrily on your way can lead to conclusions that others can’t confirm
when they take new samples.
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To check whether a two-way table is dependent, you first find the expected
cell counts by taking the row total times the column total divided by the
grand total and do this for each cell in the table. For Table 14-3, the expected
cell count for the males who chew gum is 60 * 60⁄120 = 30. The expected cell
count for the males who don’t chew gum is 60 * 60⁄120 = 30. For the females who
chew gum, you take 60 * 60⁄120 = 30, and the same for females who don’t chew
gum. If gender and gum chewing are independent, you should expect to
observe 30 in each cell (on average).

Next you compare the expected cell counts to the actual observed cell counts
by looking at their differences (see Table 14-3 for the observed cell counts and
Table 14-4 for the expected cell counts for the gum chewing example). You can
see by Table 14-3 that the observed cell counts are 25, 35, 35, and 25. The
expected cell count is 30 for each cell, as you can see in Table 14-4. The differ-
ences between the observed and expected cell counts are 25 – 30 = –5; 35 – 30 =
5; 35 – 30 = 5; and 25 – 30 = –5. These differences appear to be small with the
naked eye, which may indicate gum chewing preference knows no gender.
However, until you do a Chi-square test for independence (Chapter 15), you
can never really know for sure.

Table 14-4 Gum Chewing: Expected Cell Counts 
Yes No Marginal Row Totals

Men 60 * (60⁄120) = 30 60 * (60⁄120) = 30 60

Women 60 * (60⁄120) = 30 60 * (60⁄120) = 30 60

Marginal Column Totals 60 60 120 (Grand Total)

Checking the conditions for the test
The time has come for step four of the Chi-square test: checking conditions.
The Chi-square test has one main condition that must be met in order to test
for independence on a two-way table: The expected count for each cell must
be at least five, that is, greater than or equal to five. Expected cell counts that
fall below five aren’t reliable in terms of the variability that can take place.
This problem is similar to trying to predict the outcome of only five flips of a
coin — almost anything can happen. But if you flip the coin more times, you
have a better idea of what you can expect to flip.

If you’re analyzing data and you find that your data set doesn’t meet the
expected cell count of at least five for one or more cells, you can combine
some of your rows and/or columns. This combination makes your table
smaller, but it increases the cell counts for the cells that you do have, and
that helps.
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Calculating the Chi-square test statistic
Every hypothesis test uses data to make the decision about whether or not
to reject Ho in favor of Ha. In every hypothesis test, you take information
from the data and put it together into a test statistic. The test statistic, in gen-
eral, finds the distance between your observed results (your data) and the
results you expect if Ho were true. If that difference is large, then you reject
Ho in favor of Ha. If that difference is small, you fail to reject Ho. (For more
information on test statistics, see another book I wrote, Statistics For Dummies
[Wiley], or your intro stats book.)

In the case of testing for independence in a two-way table, you use a hypothe-
sis test based on the Chi-square test statistic. In the following sections, you
can see the steps for calculating and interpreting the Chi-square test statistic,
which is step five of the Chi-square test.

Working out the formula
A major component of the Chi-square test statistic is the expected cell count
for each cell in the table. The formula for finding the expected cell count, eij, 

for the cell in row i, column j is e
i j

grand total
row total column total

ij = * . Note that 

the values of i and j vary for each cell in the table. In a two-way table, the
upper-left cell of the table is in row one, column one. The cell in the upper-
right corner is in row one, column two. The cell in the lower-left corner is in
row two, column one, and the lower-right-hand cell is in row two, column two.

The formula for the Chi-square test statistic is e
o e

χ
ij

ij ij

ji

2

2

=
-

!!
` j

, where oij is 

the observed cell count for the cell in row i, column j, and eij is the expected
cell count for the cell in row i, column j.

When you calculate the expected cell count for some cells, you typically get 
a number that has some digits after the decimal point (in other words, the
number isn’t a whole number). Don’t round this number off, despite the
temptation to do so. This expected cell count is actually an overall-average
expected value, and you can keep the count as it is, with decimal included.

Here are the major steps in how the Chi-square test statistic is calculated
(Minitab does these steps for you as well):

1. Subtract the observed cell count from the expected cell count for the
upper-left-hand cell in the table.

2. Square the result from step one to make the number positive.
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3. Divide the result from step two by the expected cell count.

4. Repeat this process for all the cells in the table and add up all the
results.

The final sum that you get is your Chi-square test statistic.

The reason you divide by the expected cell count in the Chi-square test sta-
tistic is to account for cell-count sizes. If you expect a big cell count, say 
100, and are off by only 5 for the observed count of that cell, that difference
shouldn’t count as much as if you expected a small cell count (like 10) and
the observed cell count was off by 5. Dividing by the expected cell count puts
a more fair weight on the differences that go into the Chi-square test statistic.

To perform a Chi-square test in Minitab, enter the raw data (the data on each
person) in two columns. The first column is the values of your first variable in
your data set. (For example, if your first variable is gender, go down the column
entering the gender of each person.) Then enter your second variable in the
second column, using the same row to represent each person in the data set.
(If your second variable is paint preference, for example, enter each person’s
house-paint preference in column two, keeping the data from each person
together in each row.) Go to Stat>Tables>Cross-tabulation and χ-square. (But
don’t stop here: Keep reading.)

On the left-hand side, click on the variable that you wish to be in the rows of
your two-way table (you may click on the first variable if you wish). Click
Select, and the variable name appears in the row variable portion of the table
on the right. Then go to the column variable blank on the right-hand side and
click on it. You will be asked to choose your column variable. Go to the left-
hand side and click on the name of your second variable. Click Select. Then
click on the Chi-square button and choose Chi-square analysis by checking
the box. If you want the expected cell counts included, check that box also.
Then click OK, and OK.

The Chi-square test statistic can never be negative, because it’s built on sums
of squares of differences in the numerator and expected cell counts in the
denominator (which are always positive).

The Minitab output for the Chi-square analysis for the house-paint example
(from Table 14-1) is shown in Figure 14-1. You can pick out quite a few num-
bers from the output in Figure 14-1 that are especially important. First, you
see three numbers listed in each cell. The first (top) number is the observed
cell count for that cell; this matches the observed cell count for each cell
shown in Table 14-1. (Notice the marginal row and column totals of Figure 14-1
also match those from Table 14-1.) 
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The second number in each cell of Figure 14-1 is the expected cell count for
that cell; you find it by taking the row total times the column total divided by
the grand total (see the section “Figuring the expected cell counts”). For
example, the expected cell count for the upper-left cell (males who prefer
white house paint) is 500 * 305⁄1,000 = 152.50. 

The third number in each cell of Figure 14-1 is that part of the Chi-square test
statistic that comes from that cell. (See steps one through three of the previ-
ous section, “Working out the formula.”) The sum of the third numbers in each
cell equals the value of the Chi-square statistic listed in the last line of the
output. (For the house-paint example, the Chi-square test statistic is 14.27.)

Interpreting the Chi-square test statistic is step six of the Chi-square test; you
work through that process in the next section.

Finding your results on 
the Chi-square table
The only way to be able to make an assessment about your Chi-square test
statistic is to compare it to all the possible Chi-square test statistics you
would get if you had a two-way table with the same row and column totals,
yet you distributed the numbers in the cells in every way possible. (You can
do that in your sleep, right?) Some resulting tables give large Chi-square test
statistics, and some give small Chi-square test statistics.

Putting all these Chi-square test statistics together gives you what’s called a
Chi-square distribution. You find your particular test statistic on that distribu-
tion (step six of the Chi-square test), and see where it stands compared to

Chi-Square Test: Gender, House-Paint Preference

Expected counts are printed below observed counts
Chi-Square contributions are printed below expected counts

White Paint Nonwhite Paint Total
M 180 320 500

152.50 347.50
4.959 2.176

F 125 375 500
152.50 347.50
4.959 2.176

Total 305 695 1000

Chi-Sq = 14.271, DF = 1, P-Value = 0.000

Figure 14-1:
Minitab

output for
the house-
paint data.
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the rest. If your test statistic is large enough that it appears way out on the
right tail of the Chi-square distribution (boldly going where no test statistic
has gone before), you reject Ho. If the test statistic isn’t that far out, then you
can’t reject Ho.

In the next sections, you find out more about the Chi-square distribution and
how it behaves, so you can make a decision about the independence of your
two variables based on your Chi-square statistic.

Determining degrees of freedom
Each type of two-way table has its own Chi-square distribution, depending on
the number of rows and columns it has, and each Chi-square distribution is
identified by its degrees of freedom. In general, a two-way table with r rows
and c columns uses a Chi-square distribution with (r – 1) * (c – 1) degree of
freedom. A two-way table with two rows and two columns uses a Chi-square
distribution with one degree of freedom. Notice that 1 = (2 – 1) * (2 – 1). A
two-way table with three rows and two columns uses a Chi-square distribu-
tion with (3 – 1) * (2 – 1) = 2 degrees of freedom.

Understanding why degrees of freedom are calculated this way is likely to be
beyond the scope of your statistics class. But if you really want to know, the
degrees of freedom represents the number of cells in the table that are flexi-
ble, or “free,” given all the marginal row and column totals. For example, 
suppose that a two-way table has all row and column totals equal to 100 and
the upper-left cell is 70. Then the upper-right cell must be 100 (row total) – 
30 = 70. Because the column one total is 100, and the upper-left cell count is
70, the lower-left cell count must be 100 – 70 = 30. Similarly, the lower-right
cell count must be 70. 

So you have only one free cell in a two-way table after you have the marginal
totals set up. That’s why the degree of freedom for a two-way table is 1. In
general, you always lose one row and one column because of knowing the
marginal totals, because these last row and column values can be calculated
through subtraction. That’s where the formula (r – 1) * (c – 1) comes from.
(That’s more than you wanted to know, isn’t it?)

Discovering how Chi-square distributions behave
Figure 14-2 shows pictures of Chi-square distributions with one, two, four, six,
eight, and ten degrees of freedom, respectively. Here are some important
points about Chi-square distributions:

� For one degree of freedom, the distribution looks like a hyperbola (see
Figure 14-2, top left); for more than one degree of freedom, it looks like a
mound that has a long right tail (see Figure 14-2, lower right).

� All the values are greater than or equal to zero.
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� The shape is always skewed to the right (tail going off to the right).

� As the number of degrees of freedom increases, the mean (the overall
average) increases (moves to the right) and the variances increase
(resulting in more spread).

� No matter what the degree of freedom is, the values on the Chi-square
distribution (known as the density) approaches zero for increasingly
larger Chi-square values. That means that larger and larger Chi-square
values are less and less likely to happen.

Using the Chi-square table
After you find your Chi-square test statistic and its degrees of freedom, you
want to determine how large your statistic is, relative to its corresponding
distribution. (You’re now venturing into step seven of the Chi-square test.) 
If you think about it graphically, you want to find the probability of being
beyond (getting a larger number than) your test statistic. If that probability is
small, your Chi-square test statistic is something unusual — it’s out there —
and you can reject Ho. You then conclude that your two variables are not
independent (they are related somehow).

In case you’re following along at home, the Chi-square test statistic for the
independent data from Table 14-2 is zero, because the observed cell counts
are equal to the expected cell counts for each cell, and their differences are
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always equal to zero. (This result never happens in real life!) This scenario
represents a perfectly independent situation and results in the smallest possi-
ble value of a Chi-square test statistic.

If the probability of being to the right of your Chi-square test statistic (on a
graph) isn’t small enough, you don’t have enough evidence to reject Ho. You
then stick with Ho; you can’t reject it. You conclude that your two variables
are independent (unrelated).

How small of a probability do you need to reject Ho? For most hypothesis
tests, statisticians generally use 0.05 as the cutoff. (For more information on
cutoff values, also known as α levels, flip to Chapter 3, or check out my other
book Statistics For Dummies [Wiley].)

Your job now is to find the probability of being beyond your Chi-square test
statistic on the corresponding Chi-square distribution with (r – 1) * (c – 1)
degrees of freedom. Each Chi-square distribution is different, and because the
number of possible degrees of freedom is infinite, showing every single value
of every Chi-square distribution isn’t possible. In Table A-3 (in the Appendix
in the back of this book), you see some of the most important values on each
Chi-square distribution with degrees of freedom from 1 to 50.

To use the Chi-square table (Table A-3 in the Appendix), you find the row that
represents your degrees of freedom (abbreviated df ). Move across that row
until you reach the value that is closest to your Chi-square test statistic, 
without going over. (It’s like a game show, when you’re trying to win the
showcase by guessing the price.) Then go to the top of the column you’re in.
That number represents the area to the right (above) of the Chi-square test
statistic you saw in the table. The area above your particular Chi-square test
statistic is less than or equal to this number. This result is the approximate 
p-value of your Chi-square test.

Using the house-paint example (see Figure 14-1), the Chi-square test statistic
was 14.27. You have (2 – 1) * (2 – 1) = 1 degree of freedom. On Table A-3 
(in the Appendix), you go to the row for df = 1, and go across to the number
closest to 14.27 (without going over). That number is 7.88, in the last column.
(This number is much less than 14.27, but it’s the biggest number on the
table for that row.) The number at the top of that column is 0.005.

Drawing your conclusions
You have two alternative ways to draw conclusions from the Chi-square test
statistic. You can look up your test statistic on the Chi-square table (located
in Table A-3 in the Appendix) and see the probability of being greater than
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that. This method is known as approximating the p-value.(The p-value of a test
statistic is the probability of being at or beyond your test statistic on the 
distribution to which the test statistic is being compared — in this case, the
Chi-square distribution.) Or you can have the computer calculate the exact 
p-value for your test. (For more on p-values and α levels, see my other book
Statistics For Dummies. For a quick review on these topics, see Chapter 3 of
this book.)

Before you do anything though, set your α, the cutoff probability for your 
p-value, in advance. If your p-value is less than your α level, reject Ho. If it is
more, you can’t reject Ho.

Approximating p-value from the table
For the house-paint example (see Figure 14-1), the Chi-square test statistic
was 14.27 with 1 df (degree of freedom). The closest number in row one of
Table A-3 (in the Appendix), without going over, is 7.88 (in the last column).
The number at the top of that column is 0.005. This number is less than your
typical α level of 0.05, so you reject Ho. You know that your p-value is less
than 0.005 because your test statistic was more than 7.88. In other words, if
7.88 is the minimum evidence you need to reject Ho, you have more evidence
than that with a value of 14.28. More evidence against Ho means a smaller 
p-value. However, because Table A-3 only gives a few values for each Chi-
square distribution, the best you can say using this table is that your p-value
for this test is less than 0.005.

Here’s the big news: Because your p-value is less than 0.05, you can conclude
based on this data that gender and house-paint color are likely to be related
in the population (dependent), like the Demographics Survey said (located at
the beginning of this chapter). Only now, you have a formal statistical analy-
sis that says this result found in the sample is also likely to occur in the
entire population. This statement is much stronger!

If your data shows you can reject Ho, you only know at that point that the
two variables have some relationship. The Chi-square test statistic doesn’t
tell you what that relationship is. In order to explore the relationship between
the two variables, you find the conditional probabilities in your two-way table
(see Chapter 13). You can use those results to give you some ideas as to what
may be happening in the population. For example, in the house-paint data
(because paint preference is related to gender), you can examine the relation-
ship further by first finding the percentage of men that prefer white houses,
which comes out to 180⁄500 = 0.36, or 36 percent, calculated from Table 14-1. Now
compare this result to the percentage of women who prefer white houses:
125⁄500 = 0.25, or 25 percent. You can now conclude that in this population (not
just the sample), men prefer white houses more than women do.
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Extracting the p-value from computer output
After Minitab calculates the test statistic for you, it reports the exact p-value
for your hypothesis test. The p-value measures the likelihood that your
results were found just by chance while Ho is still true. It tells you how much
strength you have against Ho. If the p-value is 0.001, for example, you have
much more strength against Ho than if the p-value, say, is 0.10.

Looking at the Minitab output for the house-paint data in Figure 14-1, the 
p-value is reported to be 0.000. This means that the p-value is smaller than
0.001; for example, it may be 0.0009. That’s a very small p-value! (Minitab only
reports results to three decimal points, which is typical of many statistical
software packages.)

The Chi-square test for the gum-chewing data from Table 14-3 results in a 
p-value of 0.068. This calculation is what statisticians call a marginal result,
because it’s just on the other side of 0.05. (The test statistic turned out to be
only 3.33, and that didn’t seem to be very large.) This p-value is larger than
the typical α of 0.05, but not a lot larger. Technically speaking, you can’t
reject Ho at level α = 0.05. In practical terms, even though gum chewing and
gender seem to be dependent in the sample, you can’t say that you can
expect to find this relationship in the population.

I’ve seen situations where people who get a result that isn’t quite what they
want (like a p-value of 0.068) do some tweaking to get what they want. What
they do is change their α level from 0.05 to 0.10 after the fact. This change
makes the p-value less than the α level, and they feel they can reject Ho and
say that a relationship exists. But what’s wrong with this? They changed the α
after they looked at the data, which isn’t allowed. That’s like changing your bet
in blackjack after you find out what the dealer’s cards look like. (Tempting, but
a serious no-no.) Always be wary of large α levels, and make sure that you
always choose your α before collecting any data — and stick to it. The good
news is that when p-values are reported, anyone reading them can make his
own conclusion; no cut-and-dry rejection and acceptance region is set in stone.
But setting an α level once, then changing it after the fact to get a better con-
clusion is never good!

Comparing Two Tests for Comparing 
Two Proportions

You can use the Chi-square test to check whether two population proportions
are equal (for example, is the proportion of female cell-phone users the same
as the proportion of male cell-phone users?). Now you may be thinking, “But
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wait a minute, don’t statisticians already have a test for two proportions? I
seem to remember it from my intro stats course . . . I’m thinking . . . yeah, it’s
the Z-test for two proportions. What’s that test got to do with a Chi-square
test?” In this section, you answer that question, and use both methods to
investigate a possible gender gap in cell-phone use.

Getting reacquainted with the Z-test 
for two population proportions
The way that most people figure out how to test the equality of two popula-
tion proportions is to use a Z-test for two population proportions (where you
collect a random sample from each of the two populations, find and subtract
their two sample proportions, and divide by their pooled standard error; see
your intro stats book for details on this particular test). This test is possible
to do as long as the sample sizes from the two populations are large — at
least five successes and five failures in each sample.

The null hypothesis for the Z-test for two population proportions is Ho: p1 =
p2, where p1 is the proportion of the first population that falls into the cate-
gory of interest and p2 is the proportion of the second population that falls
into the category of interest. And as always, the alternative hypothesis is 
one of the following choices Ha: not equal to, greater than, or less than.

Suppose you want to compare the proportion of cell-phone users for men
versus women. You make p1 be the proportion of males who own a cell phone,
and p2 is the proportion of all females who own a cell phone. You collect data, 
find the sample proportions from each group, p and p

1 2

/ /

, take their difference 

and make a Z-statistic out of it using the formula ,Z
p p n n

p p

1 1 1
1 2

1 2=
- +

-
/ /

/ /

b l

p n n
x x

where
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. Here, x1 and x2 are the number of individuals from sam-

ples one and two, respectively, with the desired characteristic; n1 and n2 are
the two sample sizes.

Suppose that you collect data on 100 men and 100 women and find 45 male 
cell-phone owners and 55 female cell-phone owners,. This means that p

1

/

equals 45⁄100 = 0.45, and p
2

/

equals 55⁄100 = 0.55. Your samples have at least five suc-
cesses (having the desired characteristic; in this case, cell-phone ownership)
and five failures (not having the desired characteristic, which is cell-phone
ownership.) So you go ahead and compute the Z-statistic for comparing the
two population proportions (males versus females) based on this data is
–1.41, as shown on the last line of the Minitab output in Figure 14-3.
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The p-value for the test statistic of Z = –1.41 is 0.157 (calculated by Minitab,
or by looking at the area below the Z-value of –1.41 on a Z-table; see your
intro stats text for one of those). This p-value (0.157) is greater than the typi-
cal α level (prespecified cutoff) of 0.05, so you can’t reject Ho. You can’t say
that the two population proportions aren’t equal. That is, you must conclude
that the proportion of cell-phone owners for males is no different than for
females. Even though the sample seemed to have evidence for a difference
(after all, 45 percent isn’t equal to 55 percent), you don’t have enough evi-
dence in the data to say that this same difference carries over to the popula-
tion. So you can’t lay claim to a gender gap in cell-phone use, at least with
this sample.

Equating Chi-square tests and 
Z-tests for a two-by-two table
Here’s the key to relating the Z-test to a Chi-square test for independence. If
you use the Z-test to see whether the proportion of male cell-phone owners 
is equal to the proportion of female cell-phone owners, you’re really looking
at whether you can expect the same proportion of cell-phone owners despite
gender (after you take the sample sizes into account). And that means you
are testing whether gender (male or female) is independent of cell-phone
ownership (yes or no).

If the proportion of female cell-phone owners equals the proportion of male
cell-phone owners, then the proportion of cell-phone owners is the same
regardless of gender, so gender and cell-phone ownership are independent.
On the other hand, if you find the proportion of male cell-phone owners to be
unequal to the proportion of female cell phone owners, then you can say that
cell-phone use differs by gender — so gender and cell-phone ownership are
dependent.

Test Cell Phone for Two Proportions

Sample X N Sample p
M 45 100 0.450000
F 55 100 0.550000

Difference = p (1) - p (2)
Estimate for difference: -0.1
95% CI for difference:(-0.237896, 0.0378957)
Test for difference = 0 (vs not = 0): Z = –1.41 P-Value = 0.157

Figure 14-3:
Minitab

output
comparing
proportion

of male and
female 

cell-phone
owners.
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Therefore, the Z-test for two proportions and the Chi-square test for indepen-
dence in a two-by-two table (one with two rows and two columns) are equiva-
lent if the sample sizes from the two populations are large enough; that is,
when the number of successes and the number of failures in each cell of the
two samples is at least five.

With the cell-phone data from the previous section, you have 45 males using
cell phones (out of 100 males) and 55 females using cell phones (out of 100
females). The Minitab output for the Chi-square test for independence (com-
plete with observed and expected cell counts, degrees of freedom, test statis-
tic, and p-value) is shown in Figure 14-4. The p-value for this test is 0.157,
which is greater than the typical α level (prespecified cutoff) of 0.05, so you
can’t reject Ho.

Because the Chi-square test for independence and the Z-test tests are equiva-
lent when you have a two-by-two table, the p-value from the Chi-square test
for independence is identical to the p-value from the Z-test for two propor-
tions. If you compare the p-values from Figures 14-3 and 14-4, you can see
that for yourself.

Also, note that if you take the Z-test statistic for this example (from Figure 14-3),
which is –1.41, and square it, you get 2.02, which is equal to the Chi-square
test statistic for the same data (last line of Figure 14-4). It is also the case 
that when the square of the Z-test statistic (when testing for the equality of
two proportions) is equal to the corresponding Chi-square test statistic for
independence.

Chi-Square Test: Gender, Cell Phone

Expected counts are printed below observed counts
Chi-Square contributions are printed below expected counts

Y N Total
M 45 55 100

50.00 50.00
0.500 0.500

F 55 45 100
50.00 50.00
0.500 0.500

Total 100 100 200

Chi-Sq = 2.000, DF = 1, P-Value = 0.157

Figure 14-4:
Minitab

output
testing inde-
pendence of
gender and
cell-phone
ownership.
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The Chi-square test and Z-test are equivalent only if the table is a two-by-two
table (two rows and two columns) and if the Z-test is two tailed (the alterna-
tive hypothesis is that the two proportions aren’t equal, instead of using Ha:
one proportion is greater than or less than the other). If the Z-test is not two
tailed, a Chi-square test isn’t appropriate. If the two-way table has more than
two rows or columns, use the Chi-square test for independence (because 
you no longer have only two proportions if you have many categories, so the
Z-test isn’t applicable). 
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The car accident–cell phone connection
Researchers are doing a great deal of study of
the effects of cell-phone use while driving. One
study published in the New England Journal of
Medicine observed and recorded data in 1997
on 699 drivers who had cell phones and were
involved in motor vehicle collisions resulting in
substantial property damage but no personal
injury. Each person’s cell-phonecalls on the day
of the collision and during the previous week
were analyzed through the use of detailed
billing records.A total of 26,798 cell-phone calls
were made during the 14-month study period.

One conclusion the researchers made was that
“. . . the risk of a collision when using a cell
phone is four times higher than the riskof a col-
lision when a cell phone was not being used.”
They basically conducted a test to see whether
cell-phone use and having a collision are inde-
pendent, and when they found out they were
not, they were able to examine the relationship
further using appropriate ratios. In particular,
they found that the risk of a collision is four
times higher for those drivers using cell phones
than for those who aren’t.

Researchers also found out that the relativerisk
was similar for drivers who differed in personal
characteristics,such as age and driving experi-
ence. (This finding means that they conducted
similar tests to see whether the results were the
same for drivers of different age groups and 

drivers of different levels of experience, and the
results always came out about the same.
Therefore, age and the experience of the driver
were not related to the collision outcome.)

The research also shows that “. . . calls made
close to the time of the collision were found to
be particularly hazardous (p < 0.001). Hands-free
cell phones offered no safety advantage over
hand-held units (p-value not significant) . . .”
Note:The items in parentheses show the typical
way that researchers report their results —
using p-values. The p in both cases of parenthe-
ses represent the p-value of each test.

In the first case, the p-value is very tiny, less
than 0.001, indicating strong evidence for a rela-
tionship between collisions and cell-phone use
at the time. The second p-value in parentheses
was stated to be insignificant, meaning that it
was substantially more than 0.05, the usual α
level people use. This second result indicates
that whether or not the drivers used hands-free
equipment didn’t affect the chances of a colli-
sion happening. That is, the proportion of colli-
sions using hands-free cell phones versus using
regular cell phones were found to be statisti-
cally the same (they could’ve easily occurred by
chance under independence). Whether you use
a regular or hands-free cell phone, may this
study be a lesson to everyone!
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Chapter 15

Using Chi-Square Tests for
Goodness-of-Fit (Your Data, 

Not Your Jeans)
In This Chapter
� Understanding what goodness-of-fit really means

� Using the Chi-square model to test for goodness-of-fit

� Looking at the conditions for goodness-of-fit tests

Many phenomena in life may appear to be random in the short term, 
but actually occur according to some preconceived, preselected, or

predestined model over the long term. For example, while you don’t know
whether it will rain tomorrow, your local meteorologist can give you her
model for the percentage of days that it rains, snows, is sunny, or cloudy,
based on the last five years. Whether or not this model is still relevant this
year is anyone’s guess, but it’s a model nonetheless. As another example, a
biologist can produce a model for predicting the number of goslings raised
by a pair of geese per year, even though you have no idea what the pair in
your backyard will do. Is his model correct? Here’s your chance to find out.

In this chapter, you build models for the proportion of outcomes that fall into
each category for a categorical variable. You then test these models by collect-
ing data and comparing what you observe in your data to what you expect
from the model. You do this through a goodness-of-fit test that’s based on the
Chi-square distribution. In a way, a goodness-of-fit test is likened to a reality
check of a model for categorical data.

Finding the Goodness-of-Fit Statistic
The general idea of a goodness-of-fit procedure involves determining what you
expect to find and comparing it to what you actually observe in your own
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sample through the use of a test statistic. This test statistic is called the 
goodness-of-fit test statistic, because it measures how well your model (what
you expected) fits your actual data (what you observed).

In this section, you see how to figure out the numbers that you should expect
in each category given your proposed model, and you also see how to put
those expected values together with your observed values to form the 
goodness-of-fit test statistic.

What’s observed versus what’s expected
For an example of something that can be observed versus what’s expected,
look no further than a bag of tasty M&M’S Milk Chocolate Candies. (A ton of
different kinds of M&M’S are out there, and each kind has its own variation of
colors and tastes. But for this study, any reference I give to M&M’S is to the
original milk chocolate candy – my favorite.) The percentage of each color 
of M&M’S that appear in a bag is something Mars (the company that makes
M&M’S) spends a lot of time thinking about. Mars does have specific percent-
ages of each color that they want in their M&M’S bags, which it determines
through comprehensive marketing research based on what people like and
want to see. Mars then posts their current percentages for each color of
M&M’S on their Web site. Table 15-1 shows the percentage of M&M’S of each
color in 2006.

Table 15-1 Expected Percentage of Each Color of M&M’S 
Milk Chocolate Candies (2006)

Color Percentage

Brown 13%

Yellow 14%

Red 13%

Blue 24%

Orange 20%

Green 16%

Now that you know what to expect from a bag of M&M’S, the next question is
how does Mars deliver? If you open a bag of M&M’S right now, would you get
the percentages of each color that you’re supposed to get? You know from
your previous studies in statistics that sample results vary (for a quick
review of this idea, see Chapter 3). So you can’t expect each bag of M&M’S to
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have exactly the correct number of each color of M&M’S as listed in Table 15-1.
However, in order to keep customers happy, Mars should get close to the
expectations. How can you determine how close they do get?

You now know what percentages are expected to fall into each category in
the entire population of all M&M’S (that means every single M&M’S Milk
Chocolate Candy that’s currently being made), from Table 15-1. This set of
percentages is called the expected model for the data. You want to see
whether the percentages in the expected model are actually occurring in the
packages you buy. To start this process, you can take a sample of M&M’S
(after all, you can’t check every single one in the population) and make a
table showing what percentage of each color you observed. Then you can
compare this table of observed percentages to the expected model.

The expected percentages are either given to you, as they are for the M&M’S,
or you can figure them out by using math techniques. For example, if you’re
examining a single die to determine whether or not it’s a fair die, you know
that if the die is fair, you should expect 1⁄6 of the outcomes to fall into each
category of 1, 2, 3, 4, 5, and 6.

As an example, I examined one 1.69-ounce bag of plain, milk-chocolate M&M’S
(tough job, but someone has to do it), and you can see my results in Table 15-2.
(Think of this bag as a random sample of M&M’S, even though it’s not techni-
cally the same as reaching into a silo filled with M&M’S and pulling out a true
random sample of 1.69 ounces. For the sake of argument, one bag is okay.)

Table 15-2 Percentage of M&M’S Observed in One Bag (1.69 oz.)
Color Number Observed Percentage Observed

Brown 4 7.14%

Yellow 10 17.86%

Red 4 7.14%

Blue 10 17.86%

Orange 15 26.79%

Green 13 23.21%

TOTAL 56 100.00%

Now you look at what I observed in my sample (Table 15-2) and compare it to
what I expected to get (Table 15-1, last column). Notice that I observed a lower
percentage of brown and red M&M’S than expected and a lower percentage 
of blues than expected. I also observed a higher percentage of yellow, orange,
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and green M&M’S than expected. You know that sample results vary by
random chance, from sample to sample, and that the difference I observed
may just be due to this chance variation. But could the differences indicate
that the expected percentages, reported by Mars, aren’t being followed?

It stands to reason that if the differences between what you observed and what
you expected are small, you should attribute that difference to chance and let
the expected model stand. On the other hand, if the differences between what
you observed and what you expected are large enough, you may have enough
evidence to indicate that the expected model has some problems. How do you
know which conclusion to make? The operative phrase is “if the differences are
large enough.” You need to quantify this term large enough. Doing so takes a bit
more machinery, so keep reading.

Calculating the goodness-of-fit statistic
The goodness-of-fit statistic is one number that puts together the total amount
of difference between what you expect in each cell compared to the number
you observe. The term cell is used to express each individual category within
a table format. For example, with the M&M’S example, the first column of
Tables 15-1 and 15-2 contain six cells, one for each color of M&M’S. For any
cell, the number of items you observe in that cell is called the observed cell
count. The number of items you expect in that cell (under the given model) is
called the expected cell count for that cell. You get the expected cell count by
taking the expected cell percentage times the sample size.

The expected cell count is just a proportion of the total, so it doesn’t have to
be a whole number. For example, if you roll a fair die 200 times, you should
expect to roll ones 1⁄6, or 16.67 percent, of the time. In terms of the number 
of ones you expect, it should be 0.1667 * 200 = 33.33. Use the 33.33 in your
calculations for goodness-of-fit; don’t round to a whole number. Your final
answer is more accurate that way.

The reason the goodness-of-fit statistic is based on the number in each cell
rather than the percentage in each cell is because percents are a bit deceiv-
ing. If you know that 8 out of 10 people support a certain view, that’s 80 
percent. But 80 out of 100 is also 80 percent. Which one would you feel is a
more precise statistic? The 80 out of 100 percent, because it uses more infor-
mation. Using percents alone disregards the sample size. Using the counts
(the number in each group) keeps track of the amount of precision you have.

For example, if you roll a fair die, you expect the percentage of ones to be 1⁄6. If
you roll that fair die 600 times, the expected number of ones will be 1⁄6 * 600 =
100. That number (100) is the expected cell count for the cell that represents
the outcome of one. If you roll this die 600 times and get 95 ones, then 95 is the
observed cell count for that cell.
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The formula for the goodness-of-fit statistic is given by the following: 

E
O E

all cells

2
-! ^ h

where E is the expected number in a cell and O is the observed

number in a cell. The steps for this calculation are as follows:

1. For the first cell, find the expected number for that cell (E) by taking
the percentage expected in that cell times the sample size.

2. Take the observed value in the first cell (O) minus the number of
items that are expected in that cell (E).

3. Square that difference.

4. Divide the answer by the number that’s expected in that cell.

5. Repeat steps 1 through 4 for each cell.

6. Add up the results to get the goodness-of-fit statistic.

The reason you divide by the expected cell count in the goodness-of-fit 
statistic (step four) is to take into account the magnitude of any differences
you find. For example, if you expect 100 items to fall in a certain cell and you
get 95, the difference is 5. But in terms of a percentage, this difference is 
only 5⁄100 = 5 percent. However, if you expected 10 items to fall into that cell
and you observed 5 items, the difference is still 5, but in terms of a percent-
age, it’s 5⁄10 = 50 percent. This difference is much larger in terms of its impact.
The goodness-of-fit statistic operates much like a percentage difference. The
only added element is to square the difference to make it positive. (That’s
done because whether you expected 10 and got 15, or whether you expected
10 and got 5 makes no difference to others, you’re still off by 50 percent.)

Table 15-3 shows the step-by-step calculation of the goodness-of-fit statistic
for the M&M’S example, where O indicates observed cell counts and E indi-
cates expected cell counts. To get the expected cell counts, you take the
expected percentages shown in Table 15-1 and multiply by 56, because 56 is
the number of M&M’S I had in my sample. The observed cell counts are the
ones found in my sample, shown in Table 15-2.

Table 15-3 Goodness-of-Fit Statistic for M&M’S Example

Color O E O – E O E
2

-^ h E
O E

2
-^ h

Brown 4 0.13 * 56 = 7.28 4 – 7.28 = –3.28 10.76 1.48

Yellow 10 0.14 * 56 = 7.84 10 – 7.84 = 2.16 4.67 0.60

Red 4 0.13 * 56 = 7.28 4 – 7.28 = –3.28 10.76 1.48

(continued)
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Table 15-3 (continued)

Color O E O – E O E
2

-^ h E
O E

2
-^ h

Blue 10 0.24 * 56 = 13.44 10 – 13.44 = –3.44 11.83 0.88

Orange 15 0.20 * 56 = 11.20 15 – 11.20 = 3.80 14.44 1.29

Green 13 0.16 * 56 = 8.96 13 – 8.96 = 4.04 16.32 1.82

TOTAL 56 56 7.55

The goodness-of-fit statistic for the M&M’S example turns out to be 7.55, the
bolded number in the lower-right corner of Table 15-3. This number repre-
sents the total squared difference between what I expected and what I
observed, adjusted for the magnitude of each expected cell count. The next
question is how to interpret this value of 7.55. Is it large enough to indicate
that colors of M&M’S in the bag aren’t following the percentages posted by
Mars? The next section addresses how to make sense of these results.

Interpreting the Goodness-of-Fit 
Statistic By Using Chi-Square

After you get your goodness-of-fit statistic, your next job is to interpret it. To
do this, you need to figure out the possible values you could have gotten and
where your statistic fits in among them. You can accomplish this task with a
Chi-square goodness-of-fit test.

The values of a goodness-of-fit statistic actually follow a Chi-square distri-
bution with k – 1 degrees of freedom, where k is the number of categories in
your particular population (see Chapter 14 for the full details on Chi-square).
You can use the Chi-square table (Table A-3 in the Appendix) to determine
how far out your particular goodness-of-fit statistic is, compared to all the
others that were possible to get. If your Chi-square statistic is large compared
to other values on the Chi-square distribution, the model doesn’t fit; there’s
too much of a difference between what you observed and what you expected
under the model. However, if your goodness-of-fit statistic is small, you can’t
reject the model. (What constitutes a high or low value of a Chi-square test
statistic varies for each problem.) This section provides the details on using
the Chi-square distribution to test for goodness-of-fit.
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The goodness-of-fit statistic follows the main characteristics of the Chi-square
distribution. The smallest possible value of the goodness-of-fit statistic is
zero. If the M&M’s found in my sample (continuing the example from the 
previous section) followed the exact percentages found in Table 15-1, the
goodness-of-fit statistic would be zero. That’s because the observed counts
and the expected counts would be the same, so the values of the observed
cell count minus the expected cell count would all be zero, so calculating the
goodness-of-fit statistic here would result in zero.

The largest possible value of Chi-square isn’t specified, although some values
are more likely to occur than others. Each Chi-square distribution has its own
set of likely values, as you can see in Figure 15-1. (Figure 15-1 shows a simu-
lated Chi-square distribution with 6 – 1 = 5 degrees of freedom (relevant to
the M&M’s example). This figure basically gives a breakdown of all the possi-
ble values you could have for the goodness-of-fit statistic in this situation and
how often they occur. You can see on Figure 15-1 that a Chi-square test statis-
tic of 7.55 isn’t unusually high, indicating that the model for M&M’s colors
probably can’t be rejected. However, more particulars are needed before you
can formally make that conclusion.

Checking the conditions before you start
Every statistical technique seems to have a catch, and this case is no excep-
tion. In order to use the Chi-square distribution to interpret your goodness-
of-fit statistic, you have to be sure you have enough information to work with
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in each cell. The stat gurus usually recommend that the expected count for
each cell turns out to be greater than or equal to five. If it doesn’t, one option
is to combine categories together to increase the numbers.

In the M&M’S example, the expected cell counts are all above seven (see
Table 15-3), so the conditions are met. If this weren’t the case, you could use
a larger sample size, because you calculate the expected cell counts by taking
the expected percentage in that cell times the sample size. If you increase the
sample size, you increase the expected cell count. A higher sample size also
increases your chances of detecting a real deviation from the model. This
idea is related to the power of the test (see Chapter 3 for information on
power).

After you collect your data, it’s not really right to go back and take a new and
larger sample. It’s best to set up your sample size ahead of time, and you can
do this by determining what sample size you need to get the expected cell
counts to be at least five. For example, if you roll a fair die, you expect 1⁄6 of
the outcomes to be ones. If you only take a sample of six rolls, you have an
expected cell count of 1⁄6 * 6 = 1, which isn’t enough. However, if you roll the
die 30 times, your expected cell count is 1⁄6 * 30 = 5, which is just enough to
meet the condition.

The steps of the Chi-square 
goodness-of-fit test
Assuming the necessary condition is met (see the previous section), you can
get down to actually conducting a formal goodness-of-fit test.

The general version of the null hypothesis for the goodness-of-fit test is Ho:
The model holds for all categories, versus the alternative hypothesis Ha: The
model doesn’t hold for at least one category. Each situation will dictate what
proportions should be listed in Ho for each category. (For example, if you’re
rolling a fair die, you have Ho: proportion of 1s = 1⁄6; proportion of 2s = 1⁄6; . . . ;
proportion of 6s = 1⁄6.)

Following are the general steps for the Chi-square goodness-of-fit test, with
the M&M’S example illustrating how you can carry out each step:

1. Write down Ho using the percentages that you expect in your model
for each category.

Using a subscript to indicate the proportion (p) of M&M’s you expect 
to fall into each category (see Table 15-1), your null hypothesis is 
Ho: pbrown = 0.13, pyellow = 0.14, pred = 0.13, pblue = 0.24, porange = 0.20, and 
pgreen = 0.16. All these proportions must hold in order for the model to be
upheld.
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2. Write your Ha: This model doesn’t hold for at least one of the 
percentages.

Your alternative hypothesis, Ha, in this case, would be: One (or more) of
the probabilities given in Ho isn’t correct. In other words you know that
at least one of the colors of M&M’S has a different proportion of colors
than what is stated in the model.

3. Calculate the goodness-of-fit statistic using the steps in the previous
section.

The goodness-of-fit statistic for M&M’S, from the previous section, is
7.55. As a reminder, you take the observed number in each cell minus
the expected number in that cell, square it, and divide by the expected
number in that cell. Do that for every cell in the table and add up the
results. For the M&M’S example that total is equal to 7.55, the goodness-
of-fit statistic.

4. Look up the Chi-square distribution with k – 1 degrees of freedom,
where k is the number of categories you have (use Table A-3 in the
Appendix).

You compare this statistic (7.55) to the Chi-square distribution with 
6 – 1 = 5 degrees of freedom (because you have k = 6 possible colors 
of M&M’S).

Looking at Figure 15-1 you can see that the value of 7.55 is nowhere near
the high end of this distribution, so you likely don’t have enough evi-
dence to reject the model provided by Mars for M&M’S colors.

5. Find the p-value of your goodness-of-fit statistic.

You can use Table A-3 in the Appendix to find the p-value (the probabil-
ity of being beyond your test statistic; see Chapter 3) of your test statis-
tic using the Chi-square distribution. (For more info on the Chi-square
distribution, see Chapter 14.)

Because the Chi-square table (Table A-3 in the Appendix) can only list a
certain number of results for each of the degrees of freedom, the exact 
p-value for your test statistic may fall between two p-values listed on the
table.

To find the p-value for the test statistic in the M&M’S example (7.55), 
you go to Table A-3 (Appendix) and find the row for 5 degrees of free-
dom and look at the numbers (the degrees of freedom is k – 1 = 6 – 1 = 5,
where k is the number of categories). You see that the number 7.55 is
less than the first value in the row (9.24), which has a p-value of 0.10.
(Find the p-value by looking at the column heading above the number.)
So the p-value for 7.55, which is the area to the right of 7.55 on Figure 15-1,
must be greater than 0.10, because 7.55 is to the left of 9.24 on that 
Chi-square distribution.
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Many computer programs exist (online or via a graphing calculator) that
will find exact p-values for a Chi-square test, saving time and headaches
when you have access to them (the technology, not the headaches).
Using one such online “p-value calculator” I found that the exact p-value
for the goodness-of-fit test for the M&M’S example (test statistic 7.55, 5
degrees of freedom for Chi-square) is 0.1828 = 0.18. To find online p-value
calculators, simply type in the name of the distribution and the word 
p-value in an Internet search engine. For this example, type in Chi-
square p-value.

6. If your p-value is less than your predetermined cutoff (α), reject Ho.
The model doesn’t hold. If your p-value is greater than α, you can’t
reject the model.

A typical value of α is 0.05. Some data analysts might use a higher value
(up to 0.10) and others might go lower (for example 0.010.) See Chapter 3
for more information on choosing α and comparing your p-value to it.

Going again to the M&M’S example, the p-value, 0.18, is greater than 
0.05, so you fail to reject Ho. You can’t say the model is wrong. So, Mars
does appear to deliver on the percentages of M&M’S of each color, as
advertised. At least you can’t say they don’t. (I’m sure Mars already
knew that.)

While some hypothesis tests are two-sided tests, the goodness-of-fit test is
always a right-tailed test, meaning that you have a greater than sign (>) in the
alternative hypothesis, Ha (see Chapter 3 for the skinny on hypothesis testing).
You’re only looking at the right tail of the Chi-square distribution when you’re
doing a goodness-of-fit test. That’s because a small value of the goodness-of-fit
statistic means that the observed data and the expected model don’t differ
much, so you stick with the model. If the value of the goodness-of-fit statistic is
way out on the right tail of the Chi-square distribution, however, that’s a differ-
ent story. That situation means the difference between what you observed and
what you expected is larger than what you should get by chance, and, there-
fore, you have enough evidence to say the expected model is wrong.
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Part V
Rebels without 
a Distribution
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In this part . . . 

Suppose you’re driving home and one of the streets is
blocked. What do you do? You back up and find

another way to get home. Nonparametric statistics is that
alternative route you take if the regular parametric statis-
tical methods aren’t allowed. Beyond that, this alternate
route actually turns out to be better when the regular
route isn’t available. In this part, you see how.
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Chapter 16

Going Nonparametric
In This Chapter
� Seeing the need for nonparametric techniques

� Distinguishing regular methods from nonparametric methods

� Laying the groundwork: The basics of nonparametric statistics

Many researchers do analyses involving hypothesis tests, confidence
intervals, Chi-square tests, regression, and ANOVA. But nonparametric

statistics doesn’t seem to gain the same popularity as the other methods. It’s
more in the background — an unsung hero, if you will. However, nonparametric
statistics is, in fact, a very important and very useful area of statistics because
it gives you accurate results when other, more common methods fail.

In this chapter, you see the importance of nonparametric techniques and
why they should have a prominent place in your data-analysis toolbox. You
also discover some of the basic terms and techniques involved with non-
parametric statistics.

Arguing for Nonparametric Statistics
Nonparametric statistics plays an important role in the world of data analy-
sis. Nonparametric techniques can save the day when you can’t use other
methods. The problem is that researchers often disregard, or don’t even
know about, nonparametric techniques and don’t use them when they
should. In that case, you never know what kind of results you get; what you
do know is they could very well be wrong.

In the following sections, you see the advantages and the flexibility of using a
nonparametric procedure. You also find out the downside is minimal, which
makes it a win-win situation most of the time.
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No need to fret if conditions aren’t met
Many of the techniques that you typically use to analyze data, including
many shown in this book, have one very strong condition on the data that
must be met in order to use them. That is the population(s) from which your
data are collected must follow a typically required normal distribution. These
methods are called parametric methods.

There are a couple of ways to help you decide whether a population has a
normal distribution, based on your sample:

� You can graph the data, using a histogram, and see whether it appears
to have a bell shape (a mound of data in the middle, trailing down on
each side).

� You can make a normal probability plot, which compares your data to
that of a normal distribution, using an x-y graph (similar to the ones
used when you graph a straight line). If the data do follow a normal dis-
tribution, your normal probability plot will show a straight line. If the
data do not follow a normal distribution, the normal probability plot will
not show a straight line; it may show a curve off to one side or the other,
for example.

To make a histogram in Minitab, enter your data into a column. Go to Graph>
Histogram, and click OK. Click on your variable in the left-hand box, and it
appears in the Graph Variables box. Click OK, and you get a histogram.

To make a normal probability plot in Minitab, enter your data in a column. Go
to Graph>Probability Plot and click OK. Click on your variable in the left-hand
column, and it appears in the Graph Variables column. Click OK, and you see
your normal probability plot.

When you find that the normal distribution condition is clearly not met,
that’s where nonparametric methods come in. Nonparametric methods are
those data-analysis techniques that don’t require the data to have a specific
distribution. Nonparametric procedures may require one of the following two
conditions (and these are only in certain situations):

� The data come from a symmetric distribution (which looks the same on
each side when you cut it down the middle).

� The data from two populations come from the same type of distribution
(they have the same general shape).

Note also that the normal distribution centers solely on the mean as its main
statistic (for example, the Z-value for the hypothesis test for one population
mean is calculated by taking the data value, subtracting the mean, and dividing
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by the standard deviation). So the condition that the population has a normal
distribution automatically says you are working with the mean. However,
many nonparametric procedures work with the median, which is a much
more flexible statistic because the median isn’t affected by outliers or skew-
ness as the mean is.

The median’s in the spotlight for a change
Many times, any particular statistics question at hand revolves around the
center of a population —that is, the number that represents a typical value,
or a central value, in the population. One of those measures of center is the
mean. The population mean is the average value over the entire population,
which is something that is typically not known (that’s why you take a sample).
Many data analysts focus heavily on the population mean; they want to esti-
mate it, test it, compare the means of two or more populations, or predict the
mean value of a y variable given an x variable. However, the mean isn’t the
only measure of the center of a population; you also have the good ol’ median.

You may recall that the median of a data set is the value that represents the
exact middle, when you order the data from smallest to largest. For example,
in the data set 1, 5, 4, 2, 3, you order the data to get 1, 2, 3, 4, 5 and find that
the number in the middle is 3, the median. If the data set has an even number
of values, for example, 2, 4, 6, 8, then you average the two middle numbers to
get your median (5 in this case).

As you may recall from your introductory statistics course, you can find the
mean and the median and compare them to each other. You organize your
data into a histogram, and you look at its shape. If the data set is symmetric,
meaning it looks the same on either side when you draw a line down the
middle, the mean and median are the same. Figure 16-1a shows an example 
of this situation. In this case, the mean and median are both 5.

If the histogram is skewed to the right, meaning that you have a lot of smaller
values and a few larger values, the mean increases due to those few large
values, but the median isn’t affected. In this case, the mean is larger than 
the median. Figure 16-1b shows an example of this situation. In this case, the
mean is 4.5 and the median is 4.0.

When a data set is skewed left, you have many larger values that pile up, but
only a few smaller values. In this case, the mean goes down because of the
few small values, but the median still isn’t affected. In this case, the mean is
lower than the median. Figure 16-1c pictures this case, with a 6.5 mean and a
7.0 median. 
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My point is that the median is important! It’s a measure of the center of a
population, or a sample data set. The median competes with the mean and
often wins. Researchers use nonparametric procedures when they want to
estimate, test, or compare the median(s) of one or more populations. They
also want to use the median in cases where their data are symmetric but
don’t necessarily follow a normal distribution, or when they want to focus on
a measure of center that’s not influenced by outliers (extreme values either
above or below the mean) or skewedness.

For example, if you look at house prices in your neighborhood, you may find
a large number of houses within a certain relatively small price range, and
then you have a few homes that cost a great deal more. If a real estate agent
wants to sell a house and intends to justify a high price for it, she may report
the mean price of homes in your neighborhood because the mean is affected
by outliers. The mean is higher than the median in this case. But if the agent
wants to help someone buy a house, she wants to look at the median of the
house prices in the neighborhood, because the median isn’t affected by those
few higher-priced homes and is lower than the mean.

Now suppose you want to come up with a number that describes the typical
house price in your entire county. Should you use the mean or the median?
You gathered techniques in your introductory statistics class for estimating
the mean of a population (see Chapter 3 for a quick review), but you proba-
bly didn’t hear about how to come up with a confidence interval for the
median of a population. Oh sure, you can take a random sample and calculate
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the median of that sample. But you need a margin of error to go with it. And
I’ll tell you something — the formula for the margin of error for the mean
doesn’t work for the margin of error associated with the median. (See Chap-
ter 17 for the margin of error for the median.)

So, what’s the catch?
You may be wondering, what’s the catch if I use a nonparametric technique?
A downside must be around here somewhere. Well, many researchers believe
that nonparametric techniques water down statistical results; for example,
say you find an actual difference between two population means, and the
populations really do have a normal distribution. A parametric technique, 
the hypothesis test for two means, would likely detect this difference (if the
sample size was large enough).

The question is, if you use a nonparametric technique (which doesn’t need
the populations to be normal), do you risk the chance of not finding the dif-
ference? The answer is maybe, but the risk isn’t as big as you think. More
often than not, nonparametric procedures are only slightly less efficient than
parametric procedures (meaning they don’t work quite as well at detecting a
significant result, or at estimating a value as parametric procedures are when
the normality condition is met, but this difference in efficiency is small). But
the big payoff occurs when the normal distribution conditions aren’t met.
Parametric techniques can make the wrong conclusion, and corresponding
nonparametric techniques can lead to a correct answer. Many researchers
don’t know this, so spread the word!

The bottom line: Always check for normality first. If you’re very confident
that the normality condition is met, go ahead and use parametric procedures
because they are more precise. If you have any doubt about the normality
condition, use nonparametric procedures. Even if the normality condition is
met, nonparametric procedures are only a little less precise than parametric
procedures. If the normality condition isn’t met, nonparametrics provide
appropriate and justifiable results where parametric procedures may not.

Getting the Basics of Nonparametric
Statistics

Because you may not have run into nonparametric statistics during your intro
to stats class, figuring out some of the basics needs to be your first step
toward using nonparametric techniques. In this section, you get used to some
of the terminology and major concepts involved in nonparametric statistics.
These terms and concepts are commonly used in Chapters 17 through 20 of
this book (and hopefully in your intermediate stats course).
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Sign
The sign is a value of 0 or 1 that’s assigned to each number in the data set.
The sign for a value in the data set represents whether that data value is
larger or smaller than some specified number. The value of +1 is given if the
data value is greater than the specified number, and the value of 0 is given 
if the data value is less than or equal to the specified number. For example,
suppose your data set is 10, 12, 13, 15, 20, and your specified number for
comparison is 16. Because 10, 12, 13, and 15 are all less than 16, they each
receive a sign of 0. Because 20 is greater than 16, it receives a sign of +1.

Several uses of the sign statistic appear in nonparametric statistics. You can
use signs to test to see if the median of a population equals some specified
value. Or you can use signs to analyze data from a matched-pairs experiment
(where subjects are matched up according to some variable and a treatment
is applied and compared). You can also use signs in combination with other
nonparametric statistics. For example, you can combine signs with ranks to
develop statistics for comparing the median of two populations. (Ranks are
discussed in the next section and are used in a hypothesis test for two popu-
lation medians in Chapter 18.)

In the following sections, you see exactly how the sign statistic is used to test
the median of a population and analyze data in a matched pairs experiment.

Testing the median
You can use signs to test whether the median of a population is equal to
some value m. You do this by conducting a hypothesis test based on signs.
You have Ho: Median = m versus Ha: Median ≠ m (or, you can use a > or < sign
in Ha also). Your test statistic is the sum of the signs for all the data. If this
sum is significantly greater or significantly smaller than what is expected if
Ho were true, you reject Ho. Exactly how large or how small the sum of the
signs must be to reject Ho is given by the sign test (Chapter 17).

Suppose you’re testing whether the median of a population is equal to 5. That
is, you’re testing Ho: Median = 5 versus Ha: Median ≠ 5. You collect the follow-
ing data: 4, 4, 3, 3, 2, 6, 4, 3, 3, 5, 7, 5. Ordering the data, you get 2, 3, 3, 3, 3, 4,
4, 4, 5, 5, 6, 7. Now you find the sign for each value in the data set, determined
by whether the value is greater than 5. The sign of the first data value, 2, is 0,
because it’s below 5. Each of the 3s receives a sign of 0, as do the three 4s,
and the 5s, for the same reason. Only the numbers 6 and 7 receive a sign of
+1, being the only values in the data set that are greater than 5 (the number
of interest for the median).

By summing the signs, you’re in essence counting the number of values in the
data set that are greater than the given quantity in Ho. For example, the total
of all the signs of the ordered data values is 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0+ 0 +
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1 + 1 = 2, and you can see that the total number of data values above 5 (the
number of interest for the median) is 2. The fact that the total of the signs 
(2) is much less than half the sample size gives you some evidence that the
median is probably not 5 here, because the median represents the middle 
of the population. If the median were truly 5 in the population, your sample
should yield about 6 values below it and 6 values above.

Doing a matched-pairs experiment
You can use signs in a matched-pairs experiment (where you use the same
subject twice or pair them on some important variables). For example, you
can use signs to test whether or not a certain treatment resulted in an improve-
ment in patients, compared to a control. In the cases where the sign statistic
is used, improvement is measured not by the mean of the differences in the
responses for treatment versus control (as in a paired t-test), but by the
median of the differences in the responses.

Suppose you’re testing a new antihistamine for allergy patients. You take a
sample of 100 patients and have each patient assess the severity of his allergy
symptoms before and after taking the medication on a scale from 1 (best) to
10 (worst). (Of course, you do a controlled experiment where some of the
patients get a placebo to adjust for the fact that some people may perceive
their symptoms going away just because they took something, anything.)

In this study, you’re not interested in what level their symptoms are at, but in
how many patients had a lower level of symptoms after taking the medicine.
So you take the symptom level before the experiment minus the symptom
level after the experiment. If that difference is positive, the medicine appears
to have helped, and you give that person a sign of +1 (in other words, count
them as a success). If the difference is zero, the medicine had no effect, and
you give that person a sign of 0. Remember, though, that the difference could
be negative, indicating that the symptoms before were lower than the symp-
toms after; in other words, the medicine made their symptoms worse. This
scenario results in a sign of 0 as well.

After you’ve found the sign for each value or pair in the data set, you’re ready
to analyze it by using the sign test or the signed rank test (see Chapter 17).

Rank
Ranks are a nice way to use important information from a data set without
using the actual values of the data themselves. Rank comes into play in non-
parametric statistics when you’re not interested in what the values of the
data are, but where they stand, compared to some supposed value for the
median or to the ranks of values in another data set from another population.
(You can see ranks in action in Chapter 18.)
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The rank of a value in a data set is the number that represents its place in the
ordering, from smallest to largest, within the data set. For example, if your
data set is 1, 10, 4, 2, 1,000, you can assign the ranks in the following way: 1
gets the rank of one (because it’s the smallest), 2 gets the rank of two, 4 gets
the rank of three (being the third smallest number in the ordered data set),
10 gets the rank of four, and 1,000 gets the rank of five (being the largest).

Now suppose your data set is 1, 2, 20, 20, 1,000. How would the ranks be
assigned? You know that 1 would get the rank of one (being the smallest), 2
would get the rank of two, and 1,000 would get the rank of five (being the
largest). But what about the two 20s in this data set? Should the first 20 get a
rank of three and the second 20 get the rank of four? That order doesn’t seem
to make sense, because you can’t distinguish between the two 20s.

When two values in a data set are the same, you take the average of the two
ranks the values need to fill and assign each tied value that average rank. If
you have a tie between three numbers, you have three ranks, so take the sum
of the ranks divided by three.

In this case, because both 20s are vying for the ranks of three and four, assign
each of them the rank of 3.5, the average of the two ranks they must share. I
show the final ranking for the data set 1, 2, 20, 20, 1,000 in Table 16-1.

Table 16-1 Ranks of the Values in the Data Set 1, 2, 20, 20, 1,000
Data Value Rank Assigned

1 1

2 2

20 3.5

20 3.5

1,000 5

The lowest a rank can be is one, and the highest a rank can be is n, where n is
the number of values in the data set. If you have a negative value in a data
set, for example, if your data set is –1, –2, –3, you still assign the ranks one
through three to those data values. Never assign negative ranks to negative
data. (By the way, when you order the data set –1, –2, –3, you get –3, –2, –1, so
–3 gets the rank of one, –2 gets the rank of two, and –1 gets the rank of three.)

Signed rank
A signed rank combines the idea of the sign and the rank of a value in a data
set, with a small twist. The sign indicates whether that number is greater than,
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less than, or equal to a specified value. The rank indicates where that number
falls in the ordering of the data set from smallest to largest.

To calculate the signed rank for each value in the data set, follow these steps:

1. Assign a sign of +1 or 0 to each value in the data set, according to
whether it’s greater than some value specified in the problem.

If it’s greater than the specified value, give it a sign of +1; if it’s less than
or equal to the specified value, give it a sign of 0.

2. Rank the original data from smallest to largest, according to their
absolute values.

Statisticians call these values the absolute ranks.

3. Multiply the sign times the absolute rank to get the signed rank for
each value in the data set.

The absolute value of any number is the positive version of that number. 
The notation for absolute value is | |, where the number goes between 
those lines. For example, |–2| = 2 and |+2| = 2. Remember that |0| = 0.

One scenario in which you can use signed ranks is an experiment where a
response variable is compared for a treatment group versus a control group.
You can test for difference due to a treatment by collecting the data in pairs,
either both from the same person (pretest versus post-test) or from two indi-
viduals that are matched up to be as similar as possible.

For example, suppose you compare four patients regarding their weight loss
on a diet program. You’re really wondering whether the overall change in
weight is less than zero for the population. Two factors are important:

� Whether or not the person lost weight

� How the person’s weight change measures up, compared to everyone
else in the data set

You measure the person’s weight before the program (the pretest) as well as
his weight after the program (the post-test). The change is the important
facet of the data you’re interested in, so you apply the signs to the changes in
weight. You give the change a sign of +1 if the person lost weight (constitut-
ing a success for the program) and a sign of 0 if the person stayed the same
or gained weight (thus not contributing to the success of the program). You
convert all the changes in weight loss to their absolute values, and then you
rank the absolute values (in other words, you’ve found the absolute ranks of
the changes in weight). The signed rank is the product of the sign and the
absolute rank. After determining the signed rank, you can really compare the
effectiveness of the program. Large signed ranks indicate a big weight loss;
small signed ranks don’t.
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For example, weight changes of –20, –10, +1, and +5 have signs of +1, +1, 0, 0.
The absolute values of the weight changes are 20, 10, 1, and 5. Their absolute
ranks, respectively, are 4, 3, 1, and 2. The signed ranks are 4 * 1 = 4, 3 * 1 = 3,
1 * 0 = 0, and 2 * 0 = 0.

Rank sum
A rank sum is just what it sounds like: The sum of all the ranks. You typically
use rank sums in situations when you’re comparing two or more populations
to see whether one has a central location that’s higher than the other. (In
other words, if you looked at the populations in terms of their histograms,
one would be shifted to the right of the other on the number line.)

Here’s a way in which researchers use rank sums: Suppose you’re looking at
quiz scores for two classes, and they don’t have a normal distribution, hence
you want to use nonparametric techniques to compare them. The total possi-
ble points on this quiz is 30. You collect random samples of five quiz scores
from each of the classes. Suppose the sample data from class number one is:
22, 23, 20, 25, 26, and the sample data from class number two is: 23, 30, 27, 28,
25. The twist here is to combine all the data into one big data set, rank all the
values, and sum the ranks for the first sample and then the second sample.
Then compare the two rank sums. If one rank sum is higher, this outcome
may indicate that a particular class did better on the quiz.

In the quiz example, the ordered data for the combined classes is 20, 22, 23,
23, 25, 25, 26, 27, 28, 30. Their ranks, respectively, are 1, 2, 3.5, 3.5, 5.5, 5.5, 7,
8, 9, and 10. The ranks from the first class are 1 (associated with the score
20); 2 (22); 3.5 (23); 5.5 (25); and 7 (26). The rank sum for the first class is 
1 + 2 + 3.5 + 5.5 + 7 = 19, which is quite a bit lower than the rank sum for the
second class (3.5 + 5.5 + 8 + 9 + 10 = 36). This result tells you that the second
class did better on the quiz than the first class, for this sample.

In Chapter 18, you can see how to use a rank sum test to see whether the
shapes of two population distributions are the same, meaning the values they
take on and how often those values occur in each population. In Chapter 19,
you can find even more on rank sums and also discover how to conduct
Kruskal-Wallis tests. 

Note that taking the mean of each data set and comparing them by using a 
two-sample t-test would be wrong in the quiz example because the quiz scores
admittedly don’t have a normal distribution. Indeed if the quiz were easy, you’d
get many high scores and few low ones, and the population would be skewed
left. On the other hand, if the quiz were hard, you’d get many low scores and
few high ones, and the population would be skewed right (don’t think too
much about that scenario). In either case, you need a nonparametric proce-
dure. See Chapter 18 for more on the nonparametric equivalent of the t-test.
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Chapter 17

The Sign Test and 
Signed Rank Test

In This Chapter:
� Testing and estimating the median: The sign test

� Figuring out when and how to use the signed rank test

Situations often arise where your data doesn’t meet the conditions to test
or estimate the mean, or you just don’t have enough data (the biggest

hurdle is whether the data come from a population with a normal distribu-
tion), or, your data is just of a different type than quantitative data, such as
ranks (where you don’t collect numerical data, but instead just order the data
from low to high or vice versa).

In these situations, your best bet is a nonparametric procedure (see Chapter
16 for background info). These procedures have very few assumptions tied 
to them. Moreover, you can find that nonparametric procedures are easy to
carry out and that their formulas make sense. Most importantly, they give
accurate results compared to the use of parametric procedures when the
conditions of parametric procedures aren’t met or aren’t appropriate.

In this chapter, you use the sign test and the Wilcoxon signed rank test to test
or estimate the median of one population. These nonparametric procedures
are the counterparts to the one-sample and matched pairs t-tests, which
require data from a normal population.

Reading the Signs: The Sign Test
The sign test is a nonparametric alternative for the one sample t-test. What
makes the sign test so nice is that it’s based on a very basic distribution, the
binomial (for full info on the binomial, see your intro stats text).
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The only condition of the sign test is that the data are ordinal or quantitative —
not categorical. However, this is no big deal; if you are interested in the median,
you wouldn’t collect categorical data anyway.

Here are the steps for conducting the sign test. Note that Minitab can do
Steps 4–7 for you; however, understanding what Minitab does behind the
scenes is important, as always.

1. Set up your null hypothesis: Ho: m = mo.

The true value of the median is m, and mo is the claimed value of the
median (the value you’re testing).

2. Set up your alternative hypothesis. Your choices are Ha: m ≠ mo, or
Ha: m > mo, or Ha: m < mo.

Which Ha you choose depends on what conclusion you want to make in
the case that Ho is rejected. For example if you only want to know when
the median is greater than m, use Ho: m > mo. See Chapter 3 for more on
setting up alternative hypotheses.

3. Collect a random sample of (ordinal or quantitative) data from the
population.

4. Assign a plus or minus sign to each value in the data set.

If an observation is less than mo, assign it a minus (–) sign. If the obser-
vation is greater than mo, give it a plus (+) sign. If the observation equals
mo, disregard it and let the sample size decrease by one.

5. Count up all the plus signs — this sum is your test statistic.

6. Find the p-value for your test statistic.

Look up your test statistic on Table A-2 (binomial distribution) corre-
sponding to your sample size n, the value of p = 0.50, and k equal to the
test statistic from step five. If Ha has a < sign, add up all the probabilities
for x ≤ k. If Ha has a > sign, added up all the probabilities for x ≥ k. If Ha
has a ≠ sign, add up the probabilities of being greater than or equal to k
and double this value. This gives you the p-value of the test.

7. Make your conclusion.

If the p-value from step six is less than the prespecified value of α (typi-
cally 0.05), reject Ho and say the median is greater than, less than, or ≠
m0, depending on Ha. Otherwise, you can’t reject Ho.

To run a sign test in Minitab, enter your data in a single column. Go to Stat>
Nonparametric>One-sample Sign. Click on your variable in the left-hand box,
and click Select. The variable will appear in the Variables box. Then click OK,
and you get the results of the sign test.

272 Part V: Rebels without a Distribution: Nonparametric Statistics 

25_045206 ch17.qxd  2/1/07  10:27 AM  Page 272



In the sections that follow, I show you two different ways in which you can
use the sign test:

� To test or estimate the median of one population

� To test or estimate the median difference of data where the observations
come in pairs, either from the same individual (pretest versus post-test)
or individuals paired up according to relevant characteristics

Now that you know what you’re getting into, take a deep breath and jump in!

Testing the median
Situations arise when you aren’t interested in the mean, but rather the median
of a population (see Chapter 16) — for example, when the data doesn’t have a
normal, or even a symmetric, distribution. When you want to estimate or test
the median of a population (call it m), the sign test is a great option.

Suppose you’re a real estate agent selling homes in a particular neighbor-
hood and you hear from other agents that the median house price in that
neighborhood is $110,000. You think the median is actually higher. Because
you’re interested in the median price of a home rather than the mean price,
you decide to test this claim by using a sign test.

Following the steps of the sign test, you first set up your null hypothesis.
Because the original claim is that the median price of a home is $110,000, you
have Ho: m = $110,000. Next, you set up the alternative hypothesis. Because
you believe the median is higher than $110,000, your alternative hypothesis
is Ha: m > $110,000.

In step three of the sign test, you take a random sample of ten homes in your
neighborhood. You can see the data in Table 17-1. Its histogram is shown in
Figure 17-1. Now the question is, is the median selling price of all homes in
the neighborhood equal to $110,000, or is it more than that (as you suspect)?

Table 17-1 Sample of House Prices in a Neighborhood 
House Price Sign (Compared to $110,000)

1 $132,000 +

2 $107,000 –

3 $111,000 +

4 $105,000 –

(continued)
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Table 17-1 (continued)
House Price Sign (Compared to $110,000)

5 $100,000 –

6 $113,000 +

7 $135,000 +

8 $120,000 +

9 $125,000 +

10 $126,000 +

In step four, you assign a plus sign to any house price that is more than
$110,000, and you assign a minus sign to any house that is less than $110,000.
(See column three of Table 17-1.)

Step five of the sign test involves finding your test statistic. Your test statistic
is 7, the number of “+” signs in your data set (Table 17-1), representing the
number of houses in your sample whose prices were above $110,000.

In step six, you compare your test statistic to the binomial distribution (see
Table A-2 in the Appendix) to find the p-value. While examining Table A-2, you
look at the row where n = 10 (the sample size) and k = 7 (the test statistic)
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Figure 17-1:
Histogram

of ten house
selling
prices.
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and the column where p = 0.50 (because if the population median equals m0,
50 percent of the values in the population should be above it, and 50 percent
below it). According to the table, you find the probability that x equals 7 is
0.117. Because you have a right-tailed test (meaning Ha has a > sign in it), you
add up the probabilities of being at or beyond 7 to get the p-value. The p-value
in this case is 0.117 + 0.044 + 0.010 + 0.001 = 0.172. Note that all remaining prob-
abilities are too small to include Table A-2, so they don’t appear in this sum.

Step seven is the conclusion step. You compare the p-value (0.172) to the pre-
specified α (I always use 0.05). Because the p-value is greater than 0.05, you
can’t reject Ho. There is not enough evidence to say the median house selling
price is more than $110,000.

Figure 17-2 shows these results as calculated by Minitab. These numbers con-
firm what was just shown.

If your data are close to normal and the mean is the more appropriate mea-
sure of center for your situation, don’t use the sign test; use the one sample 
t-test (or Z-test). The sign test isn’t quite as powerful (able to reject Ho when
it should) as the t-test in situations where the conditions for the t-test are
met. More importantly, though, don’t run to the t-test to reanalyze your data
if the sign test doesn’t reject Ho. That would be improper and unethical. In
general, the idea of following a nonparametric procedure by a parametric
procedure in hopes of getting more significant results is considered by statis-
ticians to be data fishing; in other words, analyzing data in different ways
until a statistically significant result appears.

Estimating the median
You can also use the sign test to find a confidence interval for one population
median. This comes in handy when you’re interested in estimating what the
median value of a population is. For example, what is the median income of a
household in the United States? Or what is the median salary of people just
coming out of an MBA program?

Sign Test for Median: Selling Price

Sign test of median = 110000 versus > 110000

N Below Equal Above P Median
Selling Price 10 3 0 7 0.1719 116500

Figure 17-2:
Sign test

conducted
by Minitab.
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Following are the steps for conducting a confidence interval for the median
by using the test statistic for the sign test, assuming your random sample of
data has already been collected. Note that Minitab can calculate the confi-
dence interval for you (steps two to five), but knowing how Minitab does the
steps is important:

1. Determine your level of confidence, 1 – α (that is, how confident you
want to be that this process will correctly estimate m over the long
term).

The typical confidence level data analysts use is 95 percent. See 
Chapter 3 for more information.

2. Go to Table A-2 in the Appendix (binomial distribution), and find the
section for n equal to your sample size, and the column where p =
0.50 (because the median is the point where 50 percent of the data
lies below and 50 percent lies above).

You will find probabilities for values of x from 0 to n in that section.

3. Starting at each end (x = 0 and x = n) and moving one step at a time
toward the middle of the x values, add up the probabilities for those
values of x until you pass the total of α (which is one minus your con-
fidence level).

4. Record the number of steps that you had to make just before you
passed the value of 1 – α. Call this number c.

5. Take your data set and order it from smallest to largest. Starting 
at each end, work your way to the middle until you reach the 
cth number from the bottom and the cth number from the top.

This result is your confidence interval for the median.

You can use these steps to find a confidence interval for the median in the
house-price example from the preceding section. As the first step, let your
confidence level be set at 1 – α = 0.95. In step two, go to Table A-2 (Appendix)
and look at the section where n = 10 (the sample size) and p = 0.50. These
values are listed in Table 17-2.

Table 17-2 Binomial Probabilities to Help Calculate a 
Confidence Interval for the Median (n = 10, p = 0.50)

x p(x)

0 0.001

1 0.010
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x p(x)

2 0.044

3 0.117

4 0.205

5 0.246

6 0.205

7 0.117

8 0.044

9 0.010

10 0.001

In step three, you start with the outermost values of x (x = 0 and x = 10) and
sum those probabilities to get 0.001 + 0.001 = 0.002. Because you haven’t yet
passed 0.05 (the value of α), you go in to the second-innermost values of x
(x = 1 and x = 9). Add their probabilities to what you have so far to get 0.002
(old total) + 0.010 + 0.010 = 0.022. You are still not past 0.05 (α), so continue
one more step. Add the third-innermost probabilities for x = 2 and x = 8 to the
grand total to get 0.022 (old total) + 0.044 + 0.044 = 0.110. You’ve now passed
the value of α = 0.05. That means the value of c equals 2 because at the third-
innermost values of x, you passed 0.05, and you back off one step from there
to get your value of c.

Step four says to order your data (Table 17-1) from smallest to largest. This
gives you (in dollars): 100,000, 105,000, 107,000, 111,000, 113,000, 120,000,
125,000, 126,000, 132,000, and 135,000. For step five, work your way in from
each end of the data set to take the second-innermost values (because c = 2).
This gives you the numbers $105,000 and $132,000. Put these two numbers
together to form an interval, and you conclude that a 95-percent confidence
interval for the median selling price for a home in this neighborhood is
between $105,000 and $132,000.

To find a 1 – α percent confidence interval for the median using Minitab
based on the sign test, enter your data into a single column. Go to Stat>
Nonparametrics>One-sample Sign. Click on the variable in the left-hand
column for which you want the confidence interval, and it appears in the
Variables column. Click the circle that says Confidence Interval, and type in
the value of 1 – α you want for your confidence level. (The default is 95 per-
cent, written as 95.) Click OK to get the confidence interval.
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Testing matched pairs
The most useful application of the sign test is in testing matched pairs of
data, that is, data that come in pairs and represent two observations from the
same person (pretests versus post-tests, for instance) or one set of data from
each pair of people who are matched according to relevant characteristics. In
this section, you see how you can compare data from a matched-pairs study
to look for a treatment effect, using a sign test for the median.

The idea of using a sign test for the median difference with matched-pairs
data is similar to using a t-test for the mean differences with matched-pairs
data. A test of the median (rather than the mean) is used when the data don’t
necessarily have a normal distribution, or if you’re only interested in the
median difference rather than the mean difference.

First, you set up your hypotheses, Ho: The median is zero (indicating no differ-
ence between the pairs). Your alternative hypothesis is Ha: The median is ≠ 0, 
> 0, or < 0, depending on whether you want to know if the treatment made any
difference, made a positive difference, or made a negative difference compared
to the control. Then you collect your data (two observations per person or a
pair of observations from each pair of people you have matched up). After
that, you use Minitab to conduct steps four to seven of the sign test.

For example, suppose you wonder whether taking a test while chewing gum
decreases test anxiety. You pair 20 students according to relevant factors
such as GPA, score on previous midterms, and so on. One member of each
pair is randomly selected to chew gum during the exam, and the other
member of the pair doesn’t. You measure test anxiety on each person via a
very short survey right after they turn in their exams. You measure the
results on a scale of 1 (lowest anxiety level) to 10 (highest anxiety level). The
data based on a sample of ten pairs is shown in Table 17-3.

Table 17-3 Testing the Effectiveness of Chewing 
Gum in Lowering Test Anxiety

Pair Gum No Gum Difference (Gum/No Gum) Sign

1 9 10 –1 –

2 6 8 –2 –

3 3 1 +2 +

4 3 5 –2 –

5 4 4 0 none

6 2 7 –5 –

7 2 6 –4 –
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Pair Gum No Gum Difference (Gum/No Gum) Sign

8 8 10 –2 –

9 6 8 –2 –

10 1 3 –2 –

The actual levels of test anxiety aren’t important here; what matters is the
difference between anxiety levels within each pair. So, instead of looking at all
the individual anxiety levels, you can look at the difference in anxiety levels
for each pair. This method gives you one data set, not two. (In this case, to
calculate the differences in each pair, you can use the formula test anxiety
without gum minus text anxiety with gum, and look for an overall difference
that’s positive.) Typically, in the case of matched-pairs data, you’re testing
whether the median difference equals zero. In other words, Ho: m = 0; the
same holds in the test anxiety example.

The differences in anxiety levels for each pair in your data set now become a
single data set (see column four of Table 17-3). You can now use the regular
sign test methods to analyze this data, using Ho: m = 0 (no median difference
in test anxiety of gum versus no gum) versus Ha: m < 0 (chewing gum reduces
test anxiety).

Assign each difference a plus or minus sign, depending on whether it’s greater
than zero (plus sign) or less than zero (minus sign.) Your test statistic is the
total number of plus signs, 1, and the relevant sample size is 10 – 1 = 9. (You
don’t count the data that hit the median of zero right on the head.)

Now compare this test statistic to the binomial distribution with p = 0.50 and 
n = 9, using Table A-2 in the Appendix. You have a test statistic of k = 1, and you
want to find the probability that x ≤ 1 (because you have a left-tailed test, see
step six of the sign test from a previous section). Under the column for p = 0.50
in the section for n = 9, you get the probability of 0.018 for x = 1 and 0.002 for 
x = 0. Add these values to get 0.020, your p-value. This result means that you
reject Ho at the prespecified α level of 0.05. You conclude that, based on this
data, chewing gum on an exam is related to lower test anxiety.

Going a Step Further with 
the Signed Rank Test

The signed rank test is more powerful at detecting real differences in the
median than the sign test is. The most common use of the signed rank test is
with matched-pairs data, to test for a median difference due to some treatment
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(like chewing-gum use during an exam and its affect on test anxiety). In this
section, you see what the signed rank test is, how it is carried out, and an
application involving the test of a weight-loss program.

A limitation of the sign test
The sign test has the advantage of being very simple and easy to do by hand.
However, because it only looks at whether a value is above or below the
median, it doesn’t take the magnitude of the difference into account.

Looking at Tables 17-1 and 17-3 from the previous section on the sign test, you
see that for each data value, the test statistic for the sign test only counts
whether or not each data value is greater than or equal to the median in the
null hypothesis, mo. It doesn’t count how great those differences are. For exam-
ple, in Table 17-3, you can see that the sixth pair had a huge reduction in test
anxiety when chewing gum (from 7 down to 2), but the first pair had a very
small reduction in test anxiety (from 10 down to 9). Yet both of these differ-
ences received the same outcome (a minus sign) in the test statistic.

This shows a bit of a limitation in the sign test in that it doesn’t take into
account how much the values in the data differ from the median. The sign
test is less powerful (less able to detect when Ho is false) than it could be. So
if you want to test the median and you want to take the magnitude of the dif-
ferences into account (and you’re willing to go through some math hoops to
get there), you can conduct the signed rank test, (also known as the Wilcoxon
signed rank test). The next section walks you through it.

Stepping through the signed rank test
Just like the sign test, the only condition of the signed rank test is that the
data are ordinal or quantitative. 

Following are the steps in carrying out the signed rank test on paired data:

1. Set up your hypotheses.

The null hypothesis is Ho: m = 0. Your choices for an alternative hypoth-
esis are Ha: m ≠ 0, or Ha: m > 0, or Ha: m < 0, depending on whether you
want to detect any difference, a positive difference or a negative differ-
ence in the pairs.

2. Collect a random sample of paired data.

3. For each observation, calculate the difference for each pair of 
observations.
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4. Calculate the absolute value of each of the differences.

5. Rank the absolute values from smallest to largest.

If two of the absolute values are tied, give each one the average rank of
the two values. For example if the fourth and fifth numbers, in order, are
tied, give each one the rank of 4.5.

6. Add up the ranks that correspond to those original differences from
step three that are positive.

The sum of the positive differences is your signed rank test statistic,
denoted by SR.

7. Find the p-value.

Look at all possible ways that the absolute differences could’ve appeared
in a sample, with either plus or minus signs, assuming that Ho is true.
Find all their test statistics (SR values) from all these possible arrange-
ments by using steps four to six and compare your SR value to those.
The percentage of SR values that are at or beyond your test statistic is
your p-value.

8. Make your conclusion.

If the p-value is less than the pre-specified α (typically 0.05), reject Ho
and conclude the median difference is not zero. Otherwise, you can’t
reject Ho.

Before you go crazy looking at step seven, don’t worry; Minitab can do steps
four to eight for you.

To conduct the Wilcoxon signed rank test using Minitab, enter the differences
from step three in a single column. Go to Stat>Nonparametrics>1-Sample
Wilcoxon. Click on the name of the variable for your differences in the left-hand
box, and it appears in the right-hand Variables box. Click on the circle that 
says Test Median, and indicate which Ha you want (>0, <0, or ≠). Click OK, 
and your test is done. (Note that Minitab calculates the test statistic for the
signed rank test a little differently than what you will get by hand, although the
results will be close. The reason for the slight calculation difference is beyond
the scope of this book.)

How do you handle situations where a piece of data is exactly equal to the
median? Most of the time (including all data sets you will encounter) this
occurrence is rare, and can be handled by ignoring those data values and
reducing the sample size by one for each time this occurs.

You can see this test in action in the following example of looking to see
whether a weight-loss program actually works. I first show you each step 
as if you were doing the process by hand. Then you see the results in Minitab.
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Losing weight with signed ranks
Suppose you want to test whether or not a weight-loss plan is effective. You
want to look at the median weight loss for people on the plan by using a
matched-pairs experiment. You want the magnitude of weight loss to factor
into the analysis. That means you use a signed rank test to analyze the data.

Following the steps from the preceding section, you first set up your hypothe-
ses. Test Ho: m = 0, where m represents the median weight loss (before the pro-
gram versus after the program). Your alternative hypothesis is Ha: m > 0,
indicating the median difference in weight loss is positive.

For step two, you take a random sample of, say, three people and measure
them before and after an 8-week weight loss program. Step three says that for
each person, you calculate the difference in weight (weight before the pro-
gram minus weight after the program); a positive difference means the
person lost weight, and a negative difference means they gained weight.
(Note the small value of n = 3 here is used for illustrative purposes only.)

The data and relevant statistics for the weight-loss signed rank test are
shown in Table 17-4. You can see the differences in weight (before – after) 
in column four of Table 17-4.

Table 17-4 Data on Weight Loss Before and After Program 
Person Before After Difference |Difference| Rank

1 200 205 –5 5 1

2 180 160 +20 20 2*

3 134 110 +24 24 3*
* Represents ranks associated with a positive difference in weight loss

In step four, take the absolute values of the differences. You can see those 
in column five of Table 17-4. Step 5 says to rank those absolute differences;
column six reflects the ranks of those absolute values, from 1 to 3.

In step six, you find your test statistic, which is the sum of the ranks corre-
sponding to positive differences. (In other words, you only count ranks of
people who lost weight.) For this data set, those ranks you can count are 
indicated by * in Table 17-4. The sum turns out to be 2 + 3 = 5. This number, 
5, is your test statistic; you can call it SR to designate the signed rank test 
statistic.

282 Part V: Rebels without a Distribution: Nonparametric Statistics 

25_045206 ch17.qxd  2/1/07  10:27 AM  Page 282



Step seven says to calculate the p-value. Now you need to compare that test
statistic to some distribution to see where it stands. To do this, you deter-
mine all the possible ways that the three absolute differences (column five 
of Table 17-4) — 5, 20, and 24 — could have appeared in a sample, with their
actual differences taking on plus signs or minus signs. (Assume Ho is true,
that is, the actual differences have a 50 percent chance of being positive or
negative, like the flip of a coin.)

Then you find all their test statistics (SR values) from all of these possible
arrangements and compare your SR value, 5, to those. The percentage of the
other SR values that are at or beyond your test statistic is your p-value.

Here’s how step seven looks for the weight-loss example. First, you have
eight possible ways that you can have absolute differences of 5, 20, and 24 by
including either plus or minus signs on each difference (two possible signs
for each equals 2 * 2 * 2 = 8). Those eight possibilities are listed in separate
columns of Table 17-5. SR denotes the sum of the positive ranks in each case
(these are the test statistics for each possible arrangement).

Table 17-5 Possible Samples with Absolute 
Differences of 5, 20, and 24

Rank of 
1 2 3 4 5 6 7 8 |Diff.|

5 –5* 5 5 –5* –5* 5 –5* 1

20 20 –20* 20 –20* 20 –20* –20* 2

24 24 24 –24* 24 –24* –24* –24* 3

SR = 6 SR = 5 SR = 4 SR = 3 SR = 3 SR = 2 SR = 1 SR = 0 —
* denotes negative differences

To make sense of Table 17-5, consider the following: The three absolute 
differences you have in your data set are 5, 20, and 24, which have ranks 1, 2,
and 3, respectively (which you can see in Table 17-4). You can find the eight
different combinations of 5, 20, and 24 that exist, where you can put either a
minus or plus sign on any of those values. For each scenario, I found the
signed rank statistic by summing the ranks for only those differences that are
positive (the person lost weight). Those ranks are the column 9 values in
Table 17-5 for data values without an asterisk (*).
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For example, column seven has two negative differences, –20 and –24, and one
positive difference of 5 (whose rank among the absolute differences is 1; see
column 9). Summing the positive ranks you get a signed rank statistic (SR) of
one because 5 is the only positive number. (You can see in column two the data
that you actually observed in the sample.)

Now compare the test statistic, 5, to all the values of SR in the last row of
Table 17-5. Because you’re using Ha: m > 0, you can find the percentage of
signed ranks (SR) that are at or above the value of 5. You have two of them
out of eight, so your p-value (the percentage of possible test statistics beyond
or the same as yours if Ho were true), is 2⁄8 = 0.25 or 25 percent.

Finally, you arrive at step eight! Because the p-value (0.25) is greater than the
pre-specified value of α (typically 0.05), you can’t reject Ho, and you can’t say
there’s a positive weight loss via this program. (With a sample size of only 3,
it’s difficult to find any real difference, so the weight-loss program may actu-
ally be working and this small data set just couldn’t determine that.)

Figure 17-3 shows the Minitab output for this test, using the data from Table
17-4. The p-value turns out to be 0.211; this is due to a slight difference in the
way that Minitab calculates the test statistic. Note the estimated median
found in Figure 17-3 refers to a calculation made over all possible samples,
and the medians you would get from them.

You can also use the SR statistic to estimate the median of one population (or
the median of the difference in a matched-pairs situation). To find a 1 – α per-
cent confidence interval for the median using Minitab based on the signed
rank test, enter your data into a single column. (If your data represents differ-
ences from a matched-pairs data set, enter those differences as one column.)
Go to Stat>Nonparametrics>1-Sample Wilcoxon. Click on the name of the vari-
able in the left-hand column, and it appears in the Variables column on the
right-hand side. Click the circle that says Confidence Interval, and type in the
value of 1 – α, your confidence level. Click OK. 

Wilcoxon Signed Rank Test: Wt loss
Test of median = 0.000000 versus median > 0.000000

N
for Wilcoxon Estimated

N Test Statistic P Median
Wt loss 3 5.0 0.211 14.75

Figure 17-3:
Computer
output for

signed rank
test of

weight-loss
data.
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Chapter 18

Pulling Rank with 
the Rank Sum Test

In This Chapter
� Comparing two populations by using medians not means

� Conducting the rank sum test

In introductory statistics when you want to compare two populations, you
conduct a hypothesis test for two population means. You may remember

that, in order to conduct a test for two means, one of the following two condi-
tions must be met:

� The populations have normal distributions (with no restrictions on the
sample sizes).

� The populations don’t have normal distributions, but the sample sizes
are large enough (the larger, the better).

If either of these conditions are met, you go ahead and use the Z-distribution
to analyze your data (because in the second case the Central Limit Theorem
says it’s okay; for more on this theory, see Statistics For Dummies [Wiley] or
your introductory statistics text). If neither of these conditions are met, you
can’t use the Z-distribution to conduct the test. However, this result doesn’t
mean you can’t do anything and have to throw in the towel. When conditions
for parametric procedures (ones involving normal distributions) aren’t met, a
nonparametric alternative is always there to save the day.

In this chapter, you see a nonparametric test that compares the centers of 
two populations — the rank sum test. This test focuses on the median, the
measure of center that’s most appropriate in situations where the data isn’t 
symmetric. Two other names you may also see used for this test are the two-
sample Wilcoxon rank sum test and the Mann-Whitney test. (The two different
names acknowledge two sets of independent inventors of the same test at
around the same time; one of which [Whitney] is a professor emeritus in my
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department at Ohio State, and I know the guy — how cool is that?). However,
for this book (and because I don’t want to play favorites), I stick with just
calling it the rank sum test.

Conducting the Rank Sum Test
In this section you see the conditions for the rank sum test and steps for con-
ducting the test. An example is provided in the next section, “Which real
estate agent sells homes faster?”

Checking the conditions
Before you can think about conducting the rank sum test to compare the
medians of two populations, you have to make sure your data sets meet the
conditions for the test. The conditions for the rank sum test are the following:

� The two random samples, one taken from each population, are inde-
pendent of each other.

The first condition is taken care of in the way you collect your data. Just
make sure you aren’t using matched pairs, for example, using data from
the same person in a pretest and post-test manner. Then the two sets of
data would be dependent.

� The two populations have the same distribution. (That is, their his-
tograms have the same shape.)

You can check the second condition by making histograms to compare
the shapes of the sample data from the two populations.

� The two populations have the same variance. (In other words, the
amount of spread in the values is the same.)

You can check the third condition by finding the variances or standard
deviations of the two samples. They should be close, meaning that they
shouldn’t be different enough for you to want to write home about it. 
(A hypothesis test for two variances actually exists, but that’s outside
the scope of this book.)

Notice that the centers of the two populations need not be equal; that’s what
the test is going to decide.

More sophisticated methods for checking conditions two and three fall out-
side the scope of this book. However, checking the conditions as I describe
above allows you to find and stay clear of any major problems.
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Stepping through the test
The rank sum test is a test for the equality of the two population medians —
call them η1 and η2. After you’ve checked the conditions for using the rank sum
test, you conduct the test by following these steps. (Note: Minitab can run this
test for you, but knowing what it is doing behind the scenes is important.)

1. Set up Ho: η1 = η2 versus Ha: η1 >, <, (one-sided test) or ≠ η2 (two-sided
test) depending on whether you’re looking for a positive difference, 
a negative difference, or any difference between the two population
medians.

2. Think of the data as one combined group and assign overall ranks to
the values from lowest (rank = 1) to highest.

In the case of ties, give both values the average of the ranks they would
have normally been given. For example, suppose the third and fourth
numbers (in order) both have the same rank; assign each of them a rank
of 3.5 (the average of 3 and 4.)

3. Sum the ranks assigned to the sample that has the smallest sample
size; call this statistic T.

The reason the smallest sample is used is convention — statisticians like
to be consistent. If the sample sizes are equal, sum the ranks for the first
sample to get T. If the value of T is small (relative to the total sum of all
the ranks from both data sets), that means the numbers from the first
sample tend to be smaller than the second sample, hence the median of
the first population may be smaller than the median of the second one.

4. Look at Table A-4, the rank sum table (in the Appendix), and find 
the column and row for the sample sizes of group one and two,
respectively.

You see two critical values, TL (the lower critical value) and TU (the
upper critical value). These critical values are the boundaries between
rejecting Ho and not rejecting Ho.

5. Compare your test statistic, T, to the critical values on Table A-4 to
conclude whether you can reject Ho — that the population medians
are different.

The method you use to compare these values depends on the type of
test you’re conducting:

• One-sided test (Ha has a > or < sign in it): Table A-4 shows the
critical values for α level 0.025. For a right-sided test (that means
you have Ha: η1 > η2) reject Ho if T ≥ TU. For a left-sided test (that
means where Ha: η1 < η2) reject Ho if T ≤ TL. If you reject Ho, con-
clude that the population medians are different and that one of
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them is greater than the other depending on Ha. (Otherwise you
can’t conclude that there’s a difference in their medians.)

• Two-sided test: Table A-4 shows the critical values for α level 0.05.
Reject Ho if T falls outside of the interval (TL,TU); that is, reject Ho if 
T ≤ TL or ≥ TU. Conclude that the population medians are not equal.
(Otherwise you can’t conclude there is a difference in their medians.)

To conduct a rank sum test in Minitab, enter your data from the first sample
in Column 1, and your data from the second sample in Column 2. Go to 
Stat>Nonparametrics>Mann-Whitney. Click on the name of your Column 1
variable; it appears in the First Sample box. Click on the name of your
Column 2 variable; it appears in the Second Sample box. Under Alternative,
there is a pull-down menu to select whether your Ha is not equal, greater
than, or less than (as indicated by your particular problem). Click OK, and
the test is done.

Stepping up the sample size
After the sample sizes reach a certain point, the table values run out. Table 
A-4 (which shows the critical values for rejecting Ho in the rank sum test)
only shows the critical values for sample sizes between three and ten. If 
both sample sizes are larger than ten, you use a two-sample Z-test to get an
approximation for your answer. That’s because for large sample sizes the test
statistic T for the rank sum test resembles a normal distribution. (So why not
use it? It’s a lot easier!) The larger the two sample sizes are, the better the
approximation will be.

So if both sample sizes are more than ten, you conduct steps one through
three of the rank sum test as before. Then, instead of looking up the value of
T on Table A-4 in step four of the rank sum test, you change it to a Z-value (a
value on the standard normal distribution) by subtracting its mean and divid-
ing by its standard error.

The formula you use to get this Z-value for the test statistic is  

Z = 
n n n n

T
n n n

12
1

2
1

1 2 1 2

1 1 2

+ +

-
+ +

_

_

i

i

, where T is given by step three in the previous section,

n1 is the sample size for the first data set (taken from the first population)
and n2 is the sample size for the second data set (taken from the second pop-
ulation). After you have the Z-value, follow the same procedures that you do
for any test involving a Z-value, such as the test for two population means.
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That is, find the p-value by looking up the Z-value on the bottom row of the t-
table, which you can find in Table A-1 (in the Appendix), and finding the area
beyond it. (If the test is 
a two-sided test, double the p-value.) If your p-value is less than α, reject Ho.
Otherwise fail to reject Ho.

In the case where n is large and you use a Z-value for the test statistic, you
can still use Minitab (in fact, that is recommended to save the tedium of
working through a big example by hand). The Minitab directions are shown
just after the steps earlier in this section.

Performing a Rank Sum Test: Which Real
Estate Agent Sells Homes Faster?

Suppose you want to choose a real estate agent to sell your house, and two
agents are in your area. Your most important criteria is to get the house 
sold fast, so you decide to find out whether one agent sells homes faster. You
choose a random sample of eight homes each agent sold in the last year, and
for each home, you record the number of days it was on the market before
being sold. You can see the data in Table 18-1.

Table 18-1 Days on the Market for Homes Sold by 
Two Real Estate Agents

Suzy Sellfast Tommy Nowait

48 109

97 145

103 160

117 165

145 185

151 250

220 251

300 350
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Check out the data summarized in boxplots (a graph summarizing the data by
showing its minimum, first quartile, median, third quartile, and maximum
values) in Figure 18-1a and the descriptive statistics in Figure 18-1b. In the fol-
lowing sections, you use this data to see the rank sum test in action. Be pre-
pared to be amazed.

To make two boxplots side by side in Minitab, go to Graph>Boxplots>Simple
Multiple Y’s. Click on each of your two variables in the left-hand box; they will
appear in the right-hand Variables box. Click OK.

Checking the conditions for this test
Checking the conditions, you know that the data from the two samples are
independent, assuming that Suzy and Tommy are competitors. Next, the box-
plots in Figure 18-1a show the same basic shape and amount of variability for

Descriptive Statistics: Suzy, Tommy

Variable Mean StDev Minimum Median Maximum
Total
Count

Suzy
Tommy

8
8

147.6
201.9

79.2
77.4

48.0
109.0

131.0
175.0

300.0
350.0

b

Figure 18-1:
Boxplots

and
descriptive

statistics for
real estate

agent data.
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each data set. (You don’t have enough data to make histograms to check this
further.) So based on this data, it isn’t unreasonable to assume that the two
population distributions of days on the market are the same for the two
agents. In Figure 18-1b, the sample standard deviations are close: 79.2 days
for Suzy and 77.4 days for Tommy. Because the data meets the conditions for
the rank sum test, you can have the confidence to go ahead and apply it to
analyze your data.

To find descriptive statistics (such as the standard deviation) in Minitab, go
to Stat>Basic Statistics>Display Descriptive Statistics. Click on Options. Click
on the box for each statistic you want to calculate. If a box is checked for a
statistic you don’t want, click on it again and the check mark disappears.

Figure 18-1b shows that the median for Suzy (131 days on the market) is less
than the median for Tommy (175 days). It may appear Suzy sells homes faster
than Tommy. However, the results aren’t exactly clear-cut. A portion of the
two boxplots (Figure 18-1a) overlap with each other. You may not be able to
declare Suzy the clear winner as being the fastest real estate agent. You need
a hypothesis test to make that final determination.

Testing the hypotheses
The null hypothesis for the real estate agent test (from previous sections) is
Ho: η1 = η2, where η1 = median days on the market for the population of all
Suzy’s homes sold in the last year, and η2 = median days on the market for 
the population of all Tommy’s homes sold in the last year. The alternative
hypothesis is Ha: η1 ≠ η2.

After you looked at the data, you developed a hunch that if one of the agents
sold homes faster, it was Suzy. However, before you saw the data, you had no
preconceived notion as to whom was faster. You must base your Ho and Ha
on what your thoughts were before you looked at the data, not after. Setting
up your hypotheses after you collect the data is unfair and unethical.

After you determine your Ho and Ha, the time has come to test your data. So,
keep reading to figure out what this test looks like in a real-life example.

Combining and ranking
The first step in the data analysis is to combine all the data together and rank
the days on the market from lowest (rank = 1) to highest. You can see the
overall ranks for the combined data in Table 18-2.
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In the case of ties, you give both of the values the average of the ranks they
normally would have received. You can see in Table 18-2 that two values of
145 are in the data set. Because they represent the sixth and seventh num-
bers in the ordered data set, you give each of them the same rank of (6+7)⁄2 = 6.5.

Table 18-2 Ranks of Combined Data from the Real Estate Example
Suzy Sellfast Overall Rank Tommy Nowait Overall Rank

48 1 109 4

97 2 145 6.5

103 3 160 9

117 5 165 10

145 6.5 185 11

151 8 250 13

220 12 251 14

300 15 350 16

Finding the test statistic
After you’ve ranked your data, you can determine which group is group one,
so you can find your test statistic, T. Because the sample sizes are equal, let
group one be Suzy, because her data is given first. Now sum the ranks from
Suzy’s data set. The sum of Suzy’s ranks is 1 + 2 + 3 + 5 + 6.5 + 8 + 12 + 15 =
52.5; this value of T is your rank sum test statistic.

Determining whether you can reject Ho

Suppose you want to use α = 0.05 for this test; using this cutoff means that
you use Table A-4 (see Appendix), because you have a two-sided test at level
α = 0.05. Looking at Table A-4, you go to the column for n1 = 8 and the row for
n2 = 8. You see TL = 49 and TU = 87. You reject Ho if T is outside this range; in
other words, reject Ho if T ≤ TL = 49 or if T ≥ TU = 87. Your statistic T = 52.5
doesn’t fall outside this range; you don’t have enough evidence to reject Ho
at the α = 0.05 level. So you can’t say that you see a difference in the median
days on the market for Suzy and Tommy.

These results may seem very strange given the fact that the medians for the
two data sets were so different: 131 days on the market for Suzy compared to
175 days on the market for Tommy. However you have two strikes against
you in terms of being able to find a real difference here:
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� The sample sizes are quite small (only eight in each group). A small
sample size makes it very hard to get enough evidence to reject Ho.

� The standard deviations are both in the high 70s, which is quite large
compared to the medians.

Both of these problems make it hard for the test to actually find anything
through all the variability the data shows.

To conduct the rank sum test by using Minitab, click on Stat>Nonparametric>
Mann-Whitney. Select your two samples and choose your alternate Ha as >, <,
or ≠. The Confidence Level is equal to one minus your value of α. After you
make all of these settings, click on OK.

Figure 18-2 shows the Minitab output when you conduct the rank sum test 
on the real estate data. To interpret the results in Figure 18-2, you must note
that the Mann-Whitney test is just another word for the rank sum test. Also,
Minitab writes ETA rather than η for the medians. The results at the bottom
of the output say that the test for equal (versus nonequal) medians is signifi-
cant at the level 0.1149, when adjusting for ties. This is your p-value adjusted
for ties. (Note that if no ties are present in your data, you use the results just
above that line. That gives you the p-value not adjusted for ties.)

To make your final conclusion, compare your p-value to your pre-specified
level of α (typically 0.05.) If your α level is 0.1149 (or larger), you reject Ho;
otherwise you can’t. In this case, because 0.1149 is greater then 0.05, you
can’t reject Ho. That means you don’t have enough evidence to say the popu-
lation medians for days on the market for Suzy’s versus Tommy’s houses are
different based on this data. These results confirm your conclusions from the
previous section.

Mann-Whitney Test and CI: Suzy, Tommy
N Median

Suzy 8 131.0
Tommy 8 175.0

Point estimate for ETA1-ETA2 is –49.0
95.9 Percent CI for ETA1-ETA2 is (–137.0, 36.0)
W = 52.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.1152
The test is significant at 0.1149 (adjusted for ties)

Figure 18-2:
Using the
rank sum

test to figure
out who

sells homes
faster.
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The Minitab output in Figure 18-2 also provides a confidence interval for the
difference in the medians between the two populations, based on the data from
these two samples. The difference in the sample medians (Suzy – Tommy) is
131.0 – 175.0 = –44.0. Adding and subtracting the margin of error (these calcula-
tions are beyond the scope of this book), Minitab finds the confidence interval
for the difference in medians (Suzy – Tommy) is –137.0, +36.0. The difference in 
the population medians could be anywhere from –137.0 to 36.0. Because 0, the
value in Ho, is in this interval, you can’t reject Ho in this case. So again, you
can’t say that the medians are different, based on this (limited) data set.
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Using a rank sum test to compare Olympic judges
Rank sum tests can be used to compare two
groups of judges of a competition, to see
whether there is a difference in their scores. For
example, in the Olympic ice-skating events, the
gender of the judges is sometimes suspected to
play a role in the scores they give to certain
skaters. Suppose you have a men’s ice-skating
competition and you have ten judges: five males
and five females. You want to know whether
male and female judges score the competitors
in the same way, so you do a rank sum test to
compare their median scores. Your hypotheses
are Ho: male and female judges have the same
median score versus Ha: they have different
median scores. For your sample, you let each

judge score the same individual. You rank their
scores in order from lowest to highest and label
M for a male judge and F for a female judge.
Your results are the following: F M M M M F F F
F M. The value of the test statistic T is the sum
of the ranks for group one (say the males),
which gives you T = 2 + 3 + 4 + 5 + 10 = 24. Now
compare that to the critical values in Table A-4
(Appendix), where both sample sizes equal five,
and you get TL = 18 and TU = 37. Because your
test statistic, T = 24, is inside this interval, you
fail to reject Ho: judging is the same for male
and female judges. You just don’t have enough
evidence to say that they differ.
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Chapter 19

Do the Kruskal-Wallis and Rank
the Sums with Wilcox

In This Chapter
� Comparing more than two population medians with the Kruskal-Wallis test

� Determining which populations are different by using the Wilcoxon rank sum test

Statisticians who are in the nonparametrics business make it their jobs to
always find a nonparametric equivalent to a parametric procedure (one

that doesn’t depend on the normal distribution). And in the case of compar-
ing more than two populations, these stats superheroes didn’t let us down. In
this chapter, you see how the Kruskal-Wallis test works to compare more
than two populations as a nonparametric procedure. If Kruskal-Wallis tells
you at least two populations differ, you also figure out how to use the
Wilcoxon rank sum test to determine which population is different.

Doing the Kruskal-Wallis Test to
Compare More than Two Populations

The Kruskal-Wallis test compares the medians of several (more than two)
populations to see whether or not they are different. The basic idea of
Kruskal-Wallis is to collect a sample from each population, rank all the com-
bined data from smallest to largest, and then look for a pattern in how those
ranks are distributed among the various samples. For example, if one sample
gets all the low ranks and another sample gets all the high ranks, perhaps
their population medians are different. Or if all the samples have an equal
mix of all the ranks, perhaps the medians of the populations are all deemed
to be the same. In this section, you see exactly how the Kruskal-Wallis test is
conducted using ranks and sums and all that good stuff, and you see it
applied to an example comparing airline ratings.
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Suppose your boss flies a lot, and she wants you to determine which of three
airlines gets the best ratings from customers. You know that ratings involve
data that is just not normal (pun intended), so you opt to use the Kruskal-
Wallis test. You take three random samples of nine people each from three
different airlines. You ask each person to rate his satisfaction with the one
airline for which you chose that person to rate. Each person uses a scale
from 1 (the worst) to 4 (the best). You can see the data from your samples in
Table 19-1.

Table 19-1 Customer Ratings of Three Airlines
Airline A Rating Airline B Rating Airline C Rating

4 2 2

3 3 3

4 3 3

4 3 2

3 4 2

3 4 1

2 3 3

3 4 2

4 3 2

In looking at the data in Table 19-1, it appears that airlines A and B have
better ratings than airline C. However, the data has a lot of variability in it, 
so you have to conduct a hypothesis test before you can make any general
conclusions beyond this data set.

You may be thinking of using ANOVA to analyze this data (the test that com-
pares the means of several populations and is found in Chapter 9). But the
data from each airline is ratings from 1 to 4, and this blows the strongest con-
dition of ANOVA — the data from each population must follow a normal dis-
tribution. (A normal distribution is continuous, meaning it takes on all real
numbers in a certain range. Data that are whole numbers like 1, 2, 3, and 4
don’t fall under this category.)

But don’t sweat; a nonparametric alternative fits the bill. The Kruskal-Wallis
test compares the medians of several (more than two) populations to see
whether they are all the same or not. In other words, it’s like ANOVA, except
it’s done with medians not means.

296 Part V: Rebels without a Distribution: Nonparametric Statistics 

27_045206 ch19.qxd  2/1/07  10:29 AM  Page 296



In this section, you discover how to check the conditions of the Kruskal-
Wallis test, set it up, and carry it out step by step.

Checking the conditions
Following are all of the conditions of the Kruskal-Wallis test that must be met:

� The random samples taken from each population are independent. (This
means matched-pairs data like in Chapter 17 are out of this picture.)

� All the populations have the same distribution. (That is, their shapes are
the same as seen on a histogram.)

� The variances of the populations are the same. That means the amount
of spread in the population values is the same from one population to
the next.

Note that these conditions mention shape and spread, but they don’t men-
tion the center of the distributions. That’s what the test is trying to deter-
mine, whether the populations are centered at the same place.

In nonparametrics, you often see the word location in reference to a population
distribution rather than the center, although the two words mean about the
same thing. Location indicates where the distribution is sitting on the number
line. If you have two bell-shaped curves with the same variance, and one has
mean 10 and the other has mean 15, the second distribution is located five
units to the right of the first. In other words, it’s location is a five-unit shift to
the right of the first distribution. In nonparametrics, where you don’t have bell-
shaped distributions, you typically use the median as a measure of location
(center) of a distribution. So throughout this discussion, you could use the
word median instead of location (although location leaves it a bit more open).

Regarding the airline survey, you know that the samples are independent,
because you didn’t use the same person to rate more than one airline. The
other two conditions have to do with the distributions the samples came from;
each population must have the same shape and the same spread. You can
examine both conditions by looking at boxplots of the data (see Figure 19-1)
and descriptive statistics, such as the median, standard deviation, and the rest
of the summary statistics making up the boxplots (see Figure 19-2).

The boxplots in Figure 19-1 all have the same shape, and their standard 
deviations, shown in Figure 19-2, are very close. All of this evidence taken
together allows you to go ahead with the Kruskal-Wallis test. (Now looking at
the overlap in the boxplots for airlines A and B, in Figure 19-1, you can also
make an early prediction that airlines A and B have similar ratings; whether 
C is different enough from A and B is impossible to say without running the
hypothesis test.)
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Either a boxplot or a histogram can tell you about the shape and spread of a
distribution (as well as the center). The boxplot is a common type of graph to
use for nonparametric procedures because it displays the median (the non-
parametric statistic of choice) rather than the mean. A histogram is at its best
showing the shape of the data; it doesn’t directly tell where the center is — you
just have to eyeball it. Go ahead with the boxplot versus the histogram for the
airline data.

To make boxplots of each sample of data show up side by side on one graph
(called side-by-side boxplots, cleverly) in Minitab, click on Graph>Box Plots
and select the Multiple Y’s Simple version. In the left-hand box, click on each of
the column names for your data sets. They each appear in the Graph Variables
window on the right. Click OK and you get a set of boxplots that are side by
side, all on the same graph using the same scale (slick, huh?).

Descriptive Statistics: Rating

Variable Airline StDev Minimum Q1 Median Q3 Maximum
Rating A 0.707 2.000 3.000 3.000 4.000 4.000

B 0.667 2.000 3.000 3.000 4.000 4.000
C 0.667 1.000 2.000 2.000 3.000 3.000

Figure 19-2:
Descriptive

statistics
comparing
the ratings

of three
airlines.
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Figure 19-1:
Boxplots

comparing
the ratings

of three
airlines.

298 Part V: Rebels without a Distribution: Nonparametric Statistics 

27_045206 ch19.qxd  2/1/07  10:29 AM  Page 298



Setting up the test
The Kruskal-Wallis test assesses Ho: All k populations have the same location
versus Ha: The location of at least two of the k populations are different.
(Here, k is the number of populations you’re comparing.)

In Ho, you see that all the populations have the same location (which means
they all sit on top of each other on the number line and are in essence the
same population). Ha is looking for the opposite situation in this case. How-
ever, the opposite of “the locations are all equal” isn’t “the locations are all
different.” The opposite is that at least two of them are different. Failure to
recognize this difference will lead you to believe all the populations differ
when, in reality, there may only be two that differ, and the rest are all the
same. That’s why you see Ha stated the way it is in the Kruskal-Wallis test.
(The same idea holds for comparing means using ANOVA; see Chapter 9.)

For the airline satisfaction example (see Table 19-1), your setup looks like this:
Ho: The satisfaction ratings of all three airlines have the same median versus
Ha: The median satisfaction ratings of at least two airlines are different.

Conducting the test step by step
After you’ve determined your hypotheses, and checked the conditions, you
must carry out the test. Here are the steps for conducting the Kruskal-Wallis
test, using the airline example to show how each step works:

1. Rank all the numbers in the entire data set from smallest to largest
(using all samples combined); in the case of ties, use the average of
the ranks that the values would have normally been given.

For an example of a tie, say that on a scale from 1 to 4, the observations
1, 1, 1 would normally have gotten ranks 1, 2, 3 if they were different, 
but because they’re equal, give each one the average of 1, 2, 3, which is 

3
1 2 3

2
+ +

=
^ h

. Figure 19-3 shows the results for ranking and summing 

the data in the airline example.

In Figure 19-3, you can see how to rank the ties. For example, you have
only one 1, which is given rank 1. Then you have seven 2s, which nor-
mally would have gotten ranks 2, 3, 4, 5, 6, 7, and 8. Because the 2s are
all equal, you give each of them the average of all these ranks, which is 

7
2 3 4 5 6 7 8

5
+ + + + + +

=
^ h

. Similarly, you see twelve 3s, whose ranks 

would be 9 through 20. Because they’re all equal, give them each a rank 

equal to .12
9 10 20

14 5
f+ + +

=
^ h

. Finally, you see seven 4s, each with rank 

24, which is the average of their would-be ranks, ranging from 21 to 27.
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2. Total the ranks for each of the samples; call those totals T1, T2, . . ., Tk,
where k is the number of populations.

The totals of the ranks in each column of Figure 19.3 for the airline data
are T1 = 159, T2 = 149.5, and T3 = 69.5. In the steps that follow, you use
these rank totals in the Kruskal-Wallis test statistic (denoted KW). (Note
T1 and T2 are close to equal, but T3 is much lower, giving the idea that air-
line C may be the odd man out.)

3. Calculate the Kruskal-Wallis test statistic, 
n n n

T
n

1
12 3 1KW

j

j
2

=
+

- +!
^

^
h

h, 

where n is the total number of observations (all sample sizes combined).

Continuing with the airline example, the Kruskal-Wallis test statistic 

is . .
27 27 1

12
9

159
9

149 5
9

69 5 3 27 1KW
2 2 2

=
+

+ + - +
^

c ^
h

m h, which equals 

0.0159 * 5,829.056 – 3(28) = 8.52.

4. Find the p-value.

You find the p-value for your KW test statistic by comparing it to the 
Chi-square distribution with k – 1 degrees of freedom (Table A-3 in the
Appendix). For the airline example, you look at the Chi-square table
(Table A-3 in Appendix) and find the row for with 3 – 1 = 2 degrees of
freedom. Then look at where your test statistic (8.52) falls in that row.
Because 8.52 lies between 7.38 and 9.21 (shown on the table in row two)
that means the p-value for 8.52 lies between 0.025 and 0.010 (shown in
their respective column headings.)

Airline A Airline B Airline C

Rating Rank Rating Rank Rating Rank

4 24 2 5 2 5

3 14.5 3 14.5 3 14.5

4 24 3 14.5 3 14.5

4 24 3 14.5 2 5

3 14.5 4 24 2 5

3 14.5 4 24 1 1

2 5 3 14.5 3 14.5

3 14.5 4 24 2 5

4 24 3 14.5 2 5

T1 = 159 T2 = 149.5 T3 = 69.5

Figure 19-3:
Rankings
and rank

sum for the
airline

example.
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5. Make your conclusion about whether you can reject Ho by examining
the p-value.

You can reject Ho: All populations have the same location, in favor of Ha:
At least two populations have differing locations, if the p-value associated
with KW is < α, where α is 0.05 (or your prespecified α level). Otherwise,
you must fail to reject Ho.

Following the airline example, because the p-value is between 0.010 and
0.025, which are both less than α = 0.05, you can reject Ho. You conclude
that the ratings of at least two of the three airlines are different.

To conduct the Kruskal-Wallis test by using Minitab, enter your data in two
columns, the first column represents the actual data values and the second
column represents which population the data came from (for example, 1, 2, 3).
Then click on Stat>Nonparametrics>Kruskal-Wallis. In the left-hand box, click
on column one; it appears on the right side as your response variable. Then
click on column two in the left-hand box. This column appears on the right
side as the factor variable. Click OK, and the KW test is done. The main
results of the KW test are shown in the last two lines of the Minitab output.

The results of the Minitab data analysis of the airline data are shown in 
Figure 19-4. On the second-to-last line of Figure 19-4, you can see the KW test
statistic for the airline example is 8.52, which matches the one you found by
hand (whew!). The exact p-value from Minitab is 0.014.

However, quite a few ties are in this data set, and the formulas adjust a bit for
that (in ways that go outside the scope of this book). Taking those ties into
account, the computer gives you KW = 9.70 with a p-value of 0.008. The total
evidence here says the same result loud and clear — reject Ho: The ratings
for the three airlines have the same location. You conclude that the ratings of
at least two of the airlines are different. (But which ones? The answer comes
in the next section.)

Kruskal-Wallis Test: Rating versus Airline

Kruskal-Wallis Test on Rating

Airline N Median Ave Rank Z
A 9 3.000 17.7 1.70
B 9 3.000 16.6 1.21
C 9 2.000 7.7 -2.91
Overall 27 14.0

H = 8.52 DF = 2 P = 0.014
H = 9.70 DF = 2 P = 0.008 (adjusted for ties)

Figure 19-4:
Comparing

ratings 
of three

airlines by
using the
Kruskal-

Wallis test.
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Pinpointing the Differences: The
Wilcoxon Rank Sum Test

Suppose you reject Ho in the Kruskal-Wallis test. That means you have
enough evidence to conclude that at least two of the populations have differ-
ent medians. But you don’t know which ones are different. When someone
finds that a set of populations don’t all share the same median, the next ques-
tion is very likely to be, “Well then, which ones are different?” To find out
which populations are different after the Kruskal-Wallis test has rejected Ho,
you can use the Wilcoxon rank sum test (also known as the Mann-Whitney
test; refer to Chapter 18).

You can’t go looking for differences in specific pairs of populations until
you’ve first established that the populations aren’t all the same (that is, Ho 
is rejected in the Kruskal-Wallis test). If you don’t make this check first, you
can encounter a ton of problems, not the least of which being much-increased
chance of making the wrong decision.

In the following sections, you see how pairwise comparisons are conducted
and interpreted in order to find out where the differences lie among the k
population medians you’re studying.
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Leveling the playing field
Most people want life — from football to food
portions — to be fair.  And nothing appears to
be more unfair than car insurance rates, right?
You’ve heard the ads; one company claims to
offer the lowest possible rates one day and a
competing company makes the same claim the
very next day. Who can you believe? You decide
to grab the wheel and run your own test. You
take a random sample of 20 different car and
driver combinations (for example, a 40-year-old
female with a Ford pickup, or a 78-year-old lady
driving a Caddy) and you get the corresponding
car insurance estimates from each company for
each car and driver combo based on a six-
month premium. Knowing that the distribution of
prices for each company has no real reason to

be normal (as in distribution) you go for the
Kruskal-Wallis test of their medians. You rank all
the premiums from smallest to largest, you sum
the ranks that correspond to estimates from
each company, and you compare them using
the KW statistic. In the end, you might very well
find that the companies’ prices don’t look that
different after all, because the prices they talk
about in their advertisements represent a selec-
tive sample of the population of all their prices,
and your sample gets more at the heart of the
pricing that is actually going on overall. The
moral of the story is don’t listen to everything
you hear about car insurance rates. Get a cross
section of prices and do the Kruskal-Wallis.
Your pocketbook will thank you for it.
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Pairing off with pairwise comparisons
The rank sum test is a nonparametric test that compares two population
locations (for example, their medians). When you have more than two popu-
lations, you conduct the rank sum test on every pair of populations in order
to see whether differences exist. This procedure is called conducting pairwise
comparisons or multiple comparisons. (See Chapter 10 for info on the paramet-
ric version of multiple comparisons.) For example, because you’re comparing
three airlines in the airline satisfaction example (see Table 19-1), you have 
to run the rank sum test three times to compare airlines A and B, A and C,
and B and C, respectively. So you need three pairwise comparisons to figure
out which populations are different.

To determine how many pairs of comparisons you need if you’re given k pop-

ulations, you use the formula 
k k

2
1-^ h

. You have k populations to choose 

from first, and then k – 1 populations left to compare them with. Finally, you
don’t care what the order is among the populations (as long as you keep
track of them); so you divide by two because you have two ways to order 
any pair (for example, comparing A and B gives you the same results as com-
paring B and A). In the airlines example, you have k = 3 populations, so you 

should have 
k k

2
1

2
3 3 1

3
-

=
-

=
^ ^h h

pairs of populations to compare, which 

matches what was determined previously. (For more information and exam-
ples on how to count the number of ways to choose or order a group of items
by using permutations and combinations, see another book I authored,
Probability For Dummies [Wiley].)

Carrying out comparison tests 
to see who’s different
The Wilcoxon rank sum test assesses Ho: The two populations have the same
location versus Ha: The two populations have different locations. Here are the
general steps for using the Wilcoxon rank sum test for making comparisons
(for detailed step-by-step instructions for the Wilcoxon rank sum test see
Chapter 18):

1. Check the conditions for the test by using descriptive statistics and
histograms for the last two and proper sampling procedures for the 
first one:

• The two samples must be from independent populations

• The populations must have the same distribution (shape)

• The populations must have the same variance
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2. Set up your Ho: Medians are equal versus Ha: Medians aren’t equal.

3. Combine all the data and rank the values from smallest to largest.

4. Add up all the ranks from the first sample (or the smallest sample if
the sample sizes are not equal).

This result is your test statistic, T.

5. Compare T to the critical values in Table A-4 (Appendix) in the row
and column corresponding to the two sample sizes.

If T is at or beyond the critical values (less than or equal to the lower one
or greater than or equal to the upper one), reject Ho and conclude the two
population medians are different. Otherwise, you can’t reject Ho.

6. Repeat Steps 1–5 on every pair of samples in the data set and draw
conclusions.

Sort through all the results to see the overall picture of which pairs of
populations have the same median and which ones don’t.

To conduct the Wilcoxon rank sum test for pairwise comparisons in Minitab,
refer to Chapter 18. Note that Minitab calls this test by its other name, the
Mann-Whitney test.

You can see the Minitab results of the three Wilcoxon rank sum tests compar-
ing airlines A and B, A and C, and B and C, respectively, in Figures 19-5a,
19-5b, and 19-5c.

Before you make any judgments about your hypotheses, you must analyze
your data. Figure 19-5a compares the ratings of airlines A and B. The p-value
(adjusted for ties) is 0.7325, which is much higher than the 0.05 you need to
reject Ho. So you can’t conclude that airlines A and B have satisfaction rat-
ings with different medians. Figure 19-5b shows that the p-value for compar-
ing airlines A and C is 0.0078. Because this p-value is a lot smaller than the
typical α level of 0.05, this is very convincing evidence that airlines A and C
don’t have the same median ratings. Figure 19-5c also has a small p-value
(0.0107), which gives evidence that airlines B and C have significantly differ-
ent ratings.

Examining the medians to see 
how they’re different
Now that you know two or more populations have different medians, the next
question to answer is how they are different; which one has the higher
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median, which one has the lower median. In this section, you see how to take
the results of your pairwise comparisons combined with some descriptive
statistics to get your answers.

Mann-Whitney Test and CI: Airline A, Airline B

a

b

c

N Median
A 9 3.000
B 9 3.000

Point estimate for ETA1-ETA2 is -0.000
95.8 Percent CI for ETA1-ETA2 is (-1.000,1.000)
W = 89.5
Test of ETA1 = ETA2 vs ETA1 not =
The test is significant at 0.7325

ETA2 is significant at 0.7573
(adjusted for ties)

Mann-Whitney Test and CI: Airline A, Airline C

N Median
A 9 3.000
C 9 2.000

Point estimate for ETA1-ETA2 is 1.000
95.8 Percent CI for ETA1-ETA2 is (0.000,2.000)
W = 114.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0118
The test is significant at 0.0078 (adjusted for ties)

Mann-Whitney Test and CI: Airline B, Airline C

N Median
B 9 3.000
C 9 2.000

Point estimate for ETA1-ETA2 is 1.000
95.8 Percent CI for ETA1-ETA2 is (0.000,2.000)
W = 113.0
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0171
The test is significant at 0.0107 (adjusted for ties)

Figure 19-5:
Wilcoxon
rank sum

tests
comparing

ratings of
two airlines

at a time.
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After you’ve rejected Ho for a multiple comparison, that means the two popu-
lations you examined have different medians. There are two ways to proceed
from here to see how the medians differ:

� You can look at side-by-side boxplots of all the samples and compare
their medians (located at the line in the middle of each box).

� You can calculate the median of each sample and see which ones are
higher and which ones are lower (from the populations you have con-
cluded are statistically different).

From the previous section, you see that the pairwise comparisons for the air-
line data conducted by Wilcoxon rank sum tests conclude that the ratings of
airlines A and B aren’t found to be different, but both of them are found to be
different from airline C.

But you can say even more; you can say how the differing airline compares 
to the others. Going back to Figure 19-2, you see the medians of both airlines
A and B are 3.0, while the median of airline C is only 2.0. That difference
means airlines A and B have similar ratings, but airline C has lower ratings
than A and B.

The boxplots in Figure 19-1 confirm these results. By looking at these box-
plots first, you may have had an idea that A and B were the same, but you
didn’t know whether airline C was statistically significantly different from 
airlines A and B. And now you know it is.
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Chapter 20

Pointing Out Correlations 
with Spearman’s Rank

In This Chapter
� Understanding correlation from a nonparametric point of view

� Finding and interpreting Spearmen’s rank correlation

Data analysts commonly look for and try to quantify relationships
between two variables, x and y. Depending on the type of data you’re

dealing with in x and y, there are different procedures to use for quantifying
their relationship.

When x and y variables are quantitative (that is, their possible outcomes 
are measurements or counts), the correlation coefficient (also known as the
Pearson’s correlation coefficient) measures the strength and direction of their
linear relationship. (See Chapter 4 for all the info on Pearson’s correlation
coefficient, denoted by r.) If x and y are both categorical variables (their pos-
sible outcomes are categories that have no numerical meaning; for example
male and female), you use Chi-square procedures and conditional probabili-
ties to look for and describe their relationship. All of that machinery is laid
out in Chapters 13 and 14.

Then there is a third type of variable, called ordinal variables (their values
fall into categories, but the possible values can be placed into an order and
given a numerical value that has some meaning, for example, grades on a
scale of A = 4, B = 3, C = 2, D = 1, and E = 0 or a student’s evaluation of a
teacher on a scale from best [5] to worst [1]). To look for a relationship
between two ordinal variables like these, use Spearman’s rank correlation;
it’s the nonparametric counterpart to Pearson’s correlation coefficient
(Chapter 4). In this chapter, you see why ordinal variables don’t meet
Pearson’s conditions, and you see how to use and interpret Spearman’s rank
correlation to correctly quantify and interpret the relationship between two
ordinal variables.
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Pickin’ On Pearson and His 
Precious Conditions

Pearson’s correlation coefficient is the most common correlation measure
out there, and many data analysts think it’s the only one out there. Trouble is,
Pearson’s correlation has certain conditions that must be met before using 
it. If those conditions are not met, Spearman’s correlation is waiting in the
wings. In this section, you see the conditions for Pearson’s correlation and
how they are easy pickin’s for Spearman’s rank correlation.

The Pearson correlation coefficient r (the correlation) is a number that mea-
sures the direction and strength of the linear relationships between two vari-
ables x and y. (For more info on the correlation, see Chapter 4.)

Several conditions have to be met for ol’ Pearson:

� The variables x and y must have a linear relationship (as shown on a
scatterplot; see Chapter 4).

� Both variables x and y must be numerical (or quantitative). That is,
they must represent measurements with no restriction on their level of
precision. For example, numbers with many places after the decimal
point (such as 12.322 or 0.219) must be possible.

� The y values must have a normal distribution for each x, with the
same variance at each x.

One of the most common instances where Pearson’s conditions aren’t met is
when the two variables are ordinal. Ordinal data comes in categories that can
be assigned numerical values that make sense. However, typically with ordi-
nal variables, you won’t see many different categories offered or compared
for simplicity reasons. This means there won’t be enough numerical values to
try to build a linear regression model for two ordinal variables like you can
with two quantitative variables. (Because there are typically not enough cate-
gories offered with an ordinal variable, Pearson’s conditions aren’t met.) That
also makes condition three impossible.

As well, if you have a gender variable with categories male and female, you
can assign the numbers 1 and 2 to each gender, but those numbers have no
numerical meaning. Gender isn’t an ordinal variable; rather it is a categorical
variable (a variable that places individuals into categories only). Categorical
variables, such as gender, also don’t lend themselves to linear relationships,
so they don’t meet Pearson’s conditions either. (To explore relationships
between categorical variables, see Chapter 14.)
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Scoring with Spearman’s 
Rank Correlation

Spearman’s rank correlation doesn’t require the relationship between the 
variables x and y to be linear, nor does it require the variables to be numerical.
You use Spearman’s rank when the variables are ordinal and/or quantitative.
Rather than examining a linear relationship between x and y, Spearman’s 
rank correlation tests whether two ordinal and/or quantitative variables are
dependent (in other words, related to each other).

Note: Spearman’s rank applies to ordinal data only. To test to see if two cate-
gorical (and non-ordinal) variables are independent, you use a Chi-square
test; see Chapter 14.

Spearman’s rank correlation is the same as Pearson’s correlation except that
it’s calculated based on the ranks of the x variable and the ranks of the y vari-
able rather than their actual values. You interpret the value of Spearman’s
rank correlation, rs the same way you interpret Pearson’s correlation, r (see
Chapter 4). The values of rs can go between –1 and +1. The higher the magni-
tude of rs (in the positive or negative directions), the stronger the relationship
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Who are these guys? A look at the 
people behind the statistics

Some people are lucky enough to have a statis-
tic actually named after them. Typically, the
person who came up with the statistic in the
first place, recognizing a need for it and coming
up with a solution, gets the honor. If the new sta-
tistic gets picked up and used by others, it even-
tually takes on the name of its inventor.

Spearman’s rank correlation is named after its
inventor, Charles Edward Spearman, who lived
from 1863 to 1945. He was an English psycholo-
gist who studied experimental psychology and
worked in the area of human intelligence. He
was a professor for many years at the University
College London. Spearman followed closely the

work of Francis Galton, who originally developed
the concept of correlation. Spearman developed
his rank correlation in 1904.

Pearson’s correlation coefficient was devel-
oped several years prior, in 1893 by Karl Pearson,
one of Spearman’s fellow colleagues at Uni-
versity College London and another follower of
Galton. Pearson and Spearman didn’t get along.
Pearson had an especially strong and volatile
personality, and had problems getting along
with quite a few people in fact. Such is the way
of some of the more brilliant people of the 19th
century.
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between x and y. If rs is zero, this indicates that x and y are independent.
However, if the correlation between x and y is not zero, you can’t say whether
or not they’re independent.

In this section, you see how to calculate and interpret Spearman’s rank corre-
lation and apply it to an example.

Figuring Spearman’s rank correlation
The notation for Spearman’s rank correlation is rs, where s stands for
Spearman. To find rs, you do the steps listed in this section. Minitab does the
work for you in steps two through six, although some professors may ask you
to do the work by hand (not me of course).

1. Collect the data in the form of pairs of values x and y.

2. Rank the data from the x variable where 1 = lowest to n = highest,
where n is the number of pairs of data in the data set. (This gives you
a new set of data for the x variable called the ranks of the x values.)

If any of the values appear more than once, Minitab assigns each tied
value the average of the ranks they would normally be given if they 
were not tied.

3. Complete step two with the data from the y variable. (This gives you a
new data set called the ranks of the y-values.)

4. Find the standard deviation of the ranks of the x-values, using the 

usual formula for standard deviation, s n
x xΣ

1x

2

=
-

-^ h
; call it sx. In 

a similar manner find the standard deviation of the ranks of the 

y-values using s n
y yΣ

1y

2

=
-

-_ i
; call it sy.

(Note that n is the sample size, x is the mean of the ranks of the x
values, and y is the mean of the ranks of the y values.

5. Find the covariance of the x-y values, using the formula 

n
x x y yΣΣ

1Cov x,y =
-

- -
_

^ _
i

h i
; call it sxy.

The covariance of x and y is a measure of the total deviation of the 
x and y values from the point ,x y_ i.

6. Calculate the value of Spearman’s rank correlation by using the for-

mula r s s
s

s
x y

xy
= .
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Notice that the formula for Spearman’s rank correlation is just the same as
the formula for Pearson’s correlation coefficient, except the data Spearman
uses for his correlation formula is the ranks of x and the ranks of y, rather
than the original x- and y-values as used by Pearson. So Spearman just cares
about the order of the values of the x’s and the y’s, not their actual values.

To calculate Spearman’s rank correlation straightaway by using Minitab, rank
the x-values, rank the y-values, and then find the correlation of the ranks.
That is, go to Data>Rank and click on the x variable to get x ranks. Then do
the same thing to get the y ranks. Now go to Stat>Basic Statistics>Correlation,
click on the two columns representing ranks, and click OK.

Watching Spearman at work: Relating
aptitude to performance
Knowing the process of how to calculate Spearman’s rank correlation is one
thing, but if you can apply it to real-world situations, you’ll be the golden
child of the statistics world (or at least your intermediate stats class). So, try
to put yourself in this section’s scenario to get the full effect of Spearman’s
rank correlation.

You’re a statistics professor, and you give exams every now and then (it’s a
dirty job, but someone’s got to do it). After looking at students’ final grades
over the years (yes, you’re an old professor, or at least in your mid-forties),
you notice that students who do well in your class tend to have a better apti-
tude (background ability) for math and statistics. You want to check out this
theory, so you give students a math and statistics aptitude test on the first
day of the course; you want to compare students’ aptitude test scores with
their final grades at the end of the course.

Now for the specifics. Your variables are x = aptitude test score (using a 100-
point pretest on the first day of the course) and y = final grade, on a scale
from 1 to 5 where 1 = F (failed the course); 2 = D (passed); 3 = C (average); 
4 = B (above average); and 5 = A (excellent). The y variable, final grade, is an
ordinal variable, and the x variable, aptitude, is a numerical variable. You
want to find out whether there’s a relationship between x and y. You collect
data on a random sample of 20 students; the data are shown in Table 20-1.
This is step one of the process of calculating Spearman’s rank correlation
(from the steps listed in the previous section).
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Table 20-1 Aptitude Test Scores and Final Grades in Statistics
Student Aptitude Final Grade

1 59 3

2 47 2

3 58 4

4 66 3

5 77 2

6 57 4

7 62 3

8 68 3

9 69 5

10 36 1

11 48 3

12 65 3

13 51 2

14 61 3

15 40 3

16 67 4

17 60 2

18 56 3

19 76 3

20 71 5

Using Minitab for the aptitudes and final grades example, you get a correla-
tion of 0.379. The following discussion walks you through steps two through
six as you do this correlation yourself. This is likely what you may be asked
to do on an exam.

Steps two and three of finding Spearman’s rank correlation are to rank the
aptitude test scores (x) from lowest (1) to highest; then rank the final grades
(y) from lowest (1) to highest. Note that the final exam grades have several
ties, so you use average ranks. For example, in column three of Table 20-1 you
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see a single 1, which gets rank 1. Then you see four 2s. Their ranks, had they 
not been tied, would be 2, 3, 4, and 5. The average of these four ranks is 

.r 4
2 3 4 5

4
14 3 5s =

+ + + = = . Each of the 2s in column three, therefore, receive 

rank 3.5.

Table 20-2 shows the original data, the ranks of the aptitude scores (x), and
the ranks of the final grades (y) as calculated by Minitab.

Table 20-2 Aptitude Test Scores, Final Exam Grades, and Rank
Student Aptitude Rank of Aptitude Final Grade Rank of Final Grade

1 59 9 3 10.5

2 47 3 2 3.5

3 58 8 4 17.0

4 66 14 3 10.5

5 77 20 2 3.5

6 57 7 4 17.0

7 62 12 3 10.5

8 68 16 3 10.5

9 69 17 5 19.5

10 36 1 1 1.0

11 48 4 3 10.5

12 65 13 3 10.5

13 51 5 2 3.5

14 61 11 3 10.5

15 40 2 3 10.5

16 67 15 4 17.0

17 60 10 2 3.5

18 56 6 3 10.5

19 76 19 3 10.5

20 71 18 5 19.5
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For step four of the process of finding Spearman’s rank correlation, you have
Minitab calculate the standard deviation of the aptitude test score ranks
(located in column two of Table 20-2) and the standard deviation of the final
grades (located in column four of Table 20-2). In step five, you have Minitab 
calculate the covariance of the ranks of aptitude test scores and final grade
ranks. These statistics are shown in Figure 20-1.

For the sixth and final step of finding Spearman’s rank correlation, calculate rs

by taking the covariance of the ranks of x and y, divided by the standard devi-
ation of the ranks of x (sx) times the standard deviation of the ranks of y (sy).

You get 
. .

. .
5 92 5 50

12 34 0 379=
*

. This matches the value for Spearman’s correla-

tion that was found by Minitab straightaway.

This correlation of 0.379 is fairly low, indicating a weak relationship between
aptitude scores before the course and final grades at the end of the course.
The moral of the story? If you aren’t the sharpest tack in the bunch, you can
still hope, and if you come in on top, you may not go out the same way.
Although, there is still something to be said about working hard during the
course (buying Intermediate Statistics For Dummies certainly doesn’t hurt!).

Descriptive Statistics: Ranks of X, Ranks of Y
Variable StDev
Ranks of X 5.92
Ranks of Y 5.50

Covariances: Ranks of X, Ranks of Y
Ranks of X Ranks of Y

Ranks of X 35.0000
Ranks of Y 12.3421 30.2632

Figure 20-1:
Standard

deviations
and

covariance
of ranks of

aptitude (x)
and final

grade (y).
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Part VI
The Part of Tens
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In this part . . . 
You get a quick, concise reference that you can use 

to brush up on your problem-solving strategies. 
This part also gives you a reminder of some of the most
common misconceptions that can occur and how to avoid
them. In short, this part helps you start and end each
problem right.
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Chapter 21

Ten Errors in Statistical
Conclusions

In This Chapter
� Recognizing and avoiding mistakes when interpreting statistical results

� Knowing how to decide whether or not someone’s conclusions are credible

Intermediate statistics is all about building models and doing data analysis.
It focuses on looking at data and figuring out the story behind it. It’s about

making sure that the story is told correctly, fairly, and comprehensively. In
this chapter, I discuss some of the most common errors I’ve seen as a teacher
and statistical consultant for many moons. You can use this list to pull ideas
together for homework and reports or as a quick review before a quiz or
exam. Trust me — your professor will love you for it!

These Statistics Prove . . .
Be skeptical of anyone who uses the words these statistics and prove in the
same sentence. The word prove is a definitive, end-all-be-all, case-closed, lead-
pipe-lock sort of concept, and statistics by nature isn’t definitive. Instead, sta-
tistics gives you evidence for or against your theory, model, or claim, based
on the data you collected; then it leaves you to your own conclusions. Because
the evidence is based on data, and data changes from sample to sample, the
results can change as well — that’s the challenge, the beauty, and sometimes
the frustration of statistics. The best you can say is that your statistics sug-
gest, lead you to believe, or give you sufficient evidence to conclude — but
never go as far as to say that your statistics prove anything.
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It’s Not Technically Statistically
Significant, But . . .

After you set up your model and test it with your data, you have to stand by
the conclusions no matter how much you believe they’re wrong. Statistics
must lend objectivity to every process.

Suppose Barb, a researcher, has just collected and analyzed the heck out of
her data, and she still can’t find anything. However, she knows in her heart
that her theory holds true, even if her data can’t confirm it. Barb’s theory is
that dogs have ESP — in other words, a “sixth sense.” She bases this theory
on the fact that her dog seems to know when she’s leaving the house, when
he’s going to the vet, and when a bath is imminent, because he gets sad and
finds a corner to hide in.

Barb tests her ESP theory by studying ten dogs, placing a piece of dog food
under one of two bowls and asking each dog to find the food by pushing on a
bowl. (Assume the bowl is thick enough that the dogs can’t cheat by smelling
the food.) She repeats this process ten times with each dog and records the
number of correct answers. If the dogs don’t have ESP, you would expect that
they would be right 50 percent of the time, because each dog has two bowls
to choose from and each bowl has an equal chance of being selected.

As it turns out, the dogs were right 55 percent of the time. Now this percent-
age is technically higher than the long-term expected value of 50 percent, but
it’s not enough (especially with so few dogs and so few trials) to warrant sta-
tistical significance. In other words, Barb doesn’t have enough evidence for
the ESP theory. But when Barb presents her results at the next conference
she attends, she puts a spin on her results by saying “The dogs were correct
55 percent of the time, which is more than 50 percent. These results are tech-
nically not enough to be statistically significant, but I believe they do show
some evidence that dogs have ESP.”

Some statistically incorrect researchers use this kind of conclusion all the
time — skating around the statistics when they don’t go their way. This game
is very dangerous, because the next time someone tries to replicate Barb’s
results (and believe me, someone always does), they find out what you knew
from the beginning (through ESP?): When Barb starts packing for a trip, her
dog senses trouble coming and hides. That’s all.

This Means X Causes Y
Do you see the word that makes statisticians nervous? Because the words
this and means seem pretty tame, and x and y are just letters of the alphabet,
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it’s got to be that word cause. Of all the words on a final exam that aren’t sup-
posed to be there, cause probably tops the list.

Here’s an example of what I mean. For your final report in stats class, you study
which factors are related to your final exam score. You collect data on 500 sta-
tistics students, asking each one a variety of questions, such as “What was
your grade on the midterm?”; “How much sleep did you get the night before
the final?”; and “What is your GPA?” You conduct a multiple linear regression
analysis (using techniques from Chapter 5), and you conclude that study time
and the amount of sleep the night before are the most-important factors in
determining exam scores. You write up all your analyses in a paper, and at the
very end you say, “These results demonstrate that more study time and a good
night of sleep the night before causes your exam grade to be higher.”

I was with you until you said the word cause. You can’t say that more sleep or
more study time causes an increase in exam score. The data you collected
shows that people who get a lot of sleep and study a lot do get good grades,
and those who don’t don’t get the good grades. But that result doesn’t mean
you can take a flunky and just have him sleep and study more, and all will be
okay. This theory is like saying that because an increase in height is related
to an increase in weight, you can get taller by gaining weight.

The problem is that you didn’t take an individual person, change his sleep
time and study habits, and see what happened in terms of exam performance
(using two different exams of the same difficulty). That study requires a
designed experiment. When you conduct a survey, you have no way of control-
ling other related factors going on, which can muddy the waters.

The only way to control for other factors is to do a randomized experiment
(complete with a treatment group, a control group, and controls for other fac-
tors that may ordinarily affect the outcome). Claiming causation without con-
ducting a randomized experiment is a very common error some researchers
make when they draw conclusions.

I Assumed the Data Was Normal . . .
The operative word here is assumed. To break it down simply, an assumption
is something you believe without checking. Assumptions can lead to wrong
analyses and incorrect results — all without the person doing the assuming
even knowing it.

Many analyses have certain requirements. For example, data should come
from a normal distribution (the classic distribution that has a bell shape to
it). If someone says “I assumed the data was normal,” she just assumed that
the data came from a normal distribution. But is having a normal distribution
an assumption you just make and then move on, or is more work involved?
You guessed it — more work.
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For example, in order to conduct a one-sample t-test (see Chapter 3), your
data must come from a normal distribution unless your sample size is large,
in which you get an approximate normal distribution anyway by the Central
Limit Theorem (remember those three words from intro stats?). Here, you
aren’t making an assumption, but examining a condition (something you
check before proceeding). You plot the data, see if it meets the condition, 
and if it does, you proceed. If not, you can use nonparametric methods
instead (Chapter 16).

Nearly every statistical technique for analyzing data has at least some condi-
tion(s) on the data in order for you to use it. Always find out what those con-
ditions are, and check to see whether your data meets them. Be aware that
many statistics textbooks wrongly use the word assumption when they actu-
ally mean condition. It’s a subtle, but very important, difference.

I’m Only Reporting “Important” Results
As a data analyst, you must not only avoid the pitfall of reporting only the 
significant, exciting, and meaningful results, but you also have to be able to
detect when someone else is doing so. Some number crunchers examine every
possible option and look at their data in every possible way before settling
on the analysis that got them the desired result.

You can probably see the problem here. Every technique has a chance for
error along with it. If you’re doing a t-test, for example, and the α level is 0.05,
over the long term 5 out every 100 t-tests you conduct will result in a false
alarm just by chance (you declare a statistically significant result when it
wasn’t really there). So, if an eager researcher conducts 20 hypothesis tests
on the same data set, odds are that at least one of those tests could result 
in a false alarm just by chance, on average. As this researcher conducts more
and more tests, he’s unfairly increasing his odds of “finding something” and
running the risk of a wrong conclusion in the process.

It’s not all the eager researcher’s fault. He’s pressured by a result-driven
system. It’s a sad state of affairs when the only results that get broadcasted
on the news and appear in journal articles are the ones that show a statisti-
cally significant result (when Ho is rejected). Perhaps it was a bad choice when
statisticians came up with the term significance to denote rejecting Ho — as 
if to say that rejecting Ho is the only important conclusion you can come to.
What about all the times when Ho couldn’t be rejected? For example, when
doctors failed to conclude that drinking diet cola causes weight gain, or when
pollsters didn’t find that people were unhappy with the president? The public
would be better served if researchers and the media were encouraged to
spend at least some time reporting the statistically insignificant but still
important results, along with the statistically significant ones.
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The bottom line is this: In order to find out whether a statistical conclusion is
correct, you can’t just look at the analysis the researcher is showing you. You
also have to find out about the analyses and results they’re not showing you
and ask questions. Avoid the urge to rush to reject Ho.

A Bigger Sample Is Always Better 
Bigger is better in some things, but not always with sample sizes. On one
hand, the bigger your sample is, the more precise the results are (if no bias 
is present). A bigger sample also increases the ability of your data analysis 
to detect differences from a model or to deny some claim about a population
(in other words, to reject Ho when you’re supposed to). This ability to detect
true differences from Ho is called the power of a test (see Chapter 3). However,
some researchers can (and often do) take the idea of power too far. They
increase the sample size to the point where even the tiniest difference from
Ho sends them screaming to press that all-important reject Ho button.

Suppose research claims that the typical in-house dog watches an average of
ten hours of TV per week. Bob thinks the true average is more, based on the
fact that his dog Fido watches at least ten hours of cooking shows alone each
week. Bob sets up the following hypothesis test: Ho: µ = 10 versus Ha: µ > 10.
He takes a random sample of 100 dogs and has their owners record how much
TV their dogs watch per week. The result turns out that the sample mean is
10.1 hours, and the sample standard deviation is 0.8 hours. This result isn’t
what Bob hoped for because 10.1 is so close to 10. He calculates the test sta-

tistic for this test using the formula t
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, which equals 1.25 for t. Because the test is a right-tailed 

test (> in Ha), he can reject Ho at α if t is beyond 1.645, and his t-value of 1.25
is far short of that value. Note that because n = 100 here, you find the value 
of 1.645 by looking at the very last row of the t-distribution table (Table A-1 
in the Appendix). The row is marked with the infinity sign to indicate a large
sample. So Bob can’t reject Ho.

To add insult to injury, Bob’s friend Joe conducts the same study and gets 
the same sample mean and standard deviation as Bob did, but Joe uses a
random sample of 500 dogs rather than 100. Consequently, Joe’s t-value is 

.
. .

.
.t

500
0 8

10 1 10 0
0 036

0 1=
-

=
^ h

, which equals 2.78. Because 2.78 is greater than 1.645, 

Joe gets to reject Ho (to Bob’s dismay).
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Why did Joe’s test find a result that Bob’s didn’t? The only difference was the
sample size. Joe’s sample was bigger, and a bigger sample size always makes
the standard error smaller (see Chapter 3). The standard error sits in the
denominator of the t-formula (as you just saw), so as it gets smaller, the t-value
gets larger. A larger t-value makes it easier to reject Ho. (See Chapter 3 for
more on precisions and margin of error.)

Now, Joe could technically give a big press conference or write an article on
his results (his mom would be so proud), but you know better. You know 
that Joe’s results are technically statistically significant, but not practically
significant — they don’t mean squat to any person or dog. After all, who
cares that he was able to show evidence that dogs watch just a tiny bit more
than ten hours of TV per week? This news isn’t exactly earth-shattering.

Sample sizes should be large enough to provide precision and repeatability of
your results, but there is such a thing as being too large, believe it or not. You
can always take sample sizes big enough to reject any null hypothesis, even
when the actual deviation from it is embarrassingly small. What can you do
about this? When you read or hear that a result was deemed statistically sig-
nificant, ask what the sample mean actually was (before it was put into the 
t-formula) and see how significant it is to you from a practical standpoint.
Beware of someone who says, “These results are statistically significant, and
the large sample size of 100,000 gives even stronger evidence for that.”

It’s Not Technically Random, But . . .
When you take a sample on which to build statistical results, the operative
word is random. You want the sample to be randomly selected from the popu-
lation. The problem is that people oftentimes collect a sample that they think
is mostly random or sort of random or random enough — and that doesn’t cut
it. The plan for taking a sample is either random or it isn’t.

One day I gave each student in my class of 50 a number from 1 to 50, and I
drew two numbers randomly from a hat. The two students I picked sat in the
first row, and not only that, they sat right next to each other. Students imme-
diately cried foul!

After these seemingly odd results appeared, I took the opportunity to talk to
my class about truly random samples. A random sample is chosen in such a
way that every member of the original population has an equal chance of
being selected. Sometimes people who sit next to each other are chosen. In
fact, if these seemingly strange results never happen, you may worry about
the process; in a truly random process, you’re going to get results that may
seem odd, weird, or even fixed. That’s part of the game.
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In my consulting experiences, I always ask how my clients chose or plan to
choose their samples. They always say they’ll make sure it’s random. But
when I ask them how they’ll do this, I sometimes get less-than-stellar answers.
For example, someone needed to get a random sample from a population of
500 free-range chickens in a farmyard. He needed five chickens and said that
he’d select them randomly by choosing the five that came up to him first.
The problem is, animals that come up to you may be friendlier, more docile,
older, or perhaps more tame. These characteristics aren’t present in every
chicken in the yard, so choosing a sample this way isn’t random. The results
are likely biased in this case.

Always ask the researcher how she selected a sample, and when you select
your own samples, stay true to the definition of random. And don’t use your
own judgment to choose a random sample; use a computer to do it for you!

1,000 Responses Is 1,000 Responses
A newspaper article on the latest survey says that 50 percent of the respon-
dents said blah blah blah. The fine print says the results are based on a survey
of 1,000 adults in the United States. But wait — is 1,000 the actual number of
people selected for the sample, or is it the final number of respondents? You
may need to take a second look; those two numbers hardly ever match.

For example, Jenny wants to know what percentage of people in the U.S. have
ever knowingly cheated on their taxes. In her statistics class, she found out
that if she gets a sample of 1,000 people, the margin of error for her survey is
only plus or minus 3 percent, which she thinks is groovy. So she sets out to
achieve the goal of 1,000 responses to her survey. She knows that in these
days it’s hard to get people to respond to a survey, and she’s worried that
she may lose a great deal of her sample that way, so she has an idea. Why not
send out more surveys than she needs, so that she gets 1,000 surveys back?

Jenny looks at several survey results in the newspapers, magazines, and on
the Internet, and she finds that the response rate (the percentage of people
who actually responded to the survey) is typically around 25 percent. (In
terms of the real world, I’m being generous with this number, believe it or
not. But think about it: How many surveys have your thrown away lately?
Don’t worry, I’m guilty of it too.) So, Jenny does the math and figures that if
she sends out 4,000 surveys and gets 25 percent of them back, she has the
1,000 surveys she needs to do her analysis, answer her question, and have
that small margin of error of plus or minus 3 percent.

Jenny conducts her survey, and just like clockwork, out of the 4,000 surveys
she sends out, 1,000 come back. She goes ahead with her analysis and finds
that 400 of those people reported cheating on their taxes (40 percent). She
adds her margin of error, and reports, “Based on my survey data, 40 percent
of Americans cheat on their taxes, plus or minus 3 percentage points.”
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Now hold the phone, Jenny. She only knows what those 1,000 people who
returned the survey said. She has no idea what the other 3,000 people said.
And here’s the kicker: Whether or not someone responds to a survey is often
related to the reason the survey is being done. It’s not a random thing. Those
nonrespondents (people who don’t respond to a survey) carry a lot of weight
in terms of what they’re not taking time to tell you.

For the sake of argument, suppose that 2,000 of the people who originally got
the survey were uncomfortable with the question because they do cheat on
their taxes, and they just didn’t want anyone to know about it, so they threw
the survey in the trash. Suppose that the other 1,000 people don’t cheat on
their taxes, so they didn’t think it was an issue and didn’t return the survey. If
these two scenarios were true, the results would look like this:

Cheaters = 400 (surveyed) + 2,000 (nonrespondents) = 2,400

These results raise the total percentage of cheaters to 2,400 divided by 4,000 —
60 percent. That’s a huge difference!

You could go completely the other way with the 3,000 nonrespondents. You
can suppose that none of them cheat, but they just didn’t take time to say so.
If you knew this info, you would get 600 (surveyed) + 3,000 (nonrespondents)
= 3,600 noncheaters. Out of 4,000 surveyed, this is 90 percent. The truth is
likely to be somewhere between the two examples I just gave you, but 
nonrespondents make it too hard to tell.

And the worst part is that the formulas Jenny uses for margin of error don’t
know that the information she put into them is based on biased data, so her
reported 3 percent margin of error is wrong. The formulas happily crank out
results no matter what. It’s up to you to make sure that what you put into the
formulas is good, clean info.

Getting 1,000 results when you send out 4,000 surveys is nowhere near as good
as getting 1,000 results when sending out 1,000 surveys (or even 100 results
from 100 surveys). Plan your survey based on how much follow-up you can do
with people to get the job done, and if it takes a smaller sample size, so be it. At
least the results have a better chance of being statistically correct.

Of Course These Results Apply 
to the General Population!

Making conclusions about a much broader population than your sample actu-
ally represents is one of the biggest no-no’s in statistics. This kind of problem is
called generalization, and it occurs more often than you may think. People
want their results instantly; they don’t want to wait for them, so well-planned
surveys and experiments take a back seat to instant Web surveys and conve-
nience samples.

324 Part VI: The Part of Tens 

30_045206 ch21.qxd  2/1/07  10:39 AM  Page 324



For example, a researcher wants to know how cable news channels have influ-
enced the way Americans get their news. He also happens to be a statistics
professor at a large research institution and has 1,000 students in his class. He
decides that instead of taking a random sample of Americans, which would be
difficult, time-consuming, and expensive, he just puts a question on his final
exam to get his students’ answers. His data analysis shows him that only 5 per-
cent of his students read the newspaper and/or watch network news programs
anymore; the rest watch cable news. For his class, the ratio of students who
exclusively watch cable news compared to those students who don’t is 20 to 1.
The professor reports this and sends out a press release about it. The cable
news channels pick up on it and the next day are reporting, “Americans choose
cable news channels over newspapers and network news by a 20 to 1 margin!”

Do you see what’s wrong with this picture? The problem is that the profes-
sor’s conclusions go way beyond his study, which is wrong. He used the stu-
dents in his statistics class to obtain the data that serves as the basis for his
entire report and the resulting headline. Yet the professor reports the results
about all Americans. I think it’s safe to say that a sample of 1,000 college stu-
dents taking a statistics class at the same time at the same college doesn’t
represent a cross section of America.

If the professor wants to make conclusions in the end about America, he has
to select a random sample of Americans to take his survey. If he uses 1,000
students from his class, then his conclusions can only be made about that
class and no one else.

To avoid or detect generalization, identify the population that you’re intend-
ing to make conclusions about and make sure the sample you selected repre-
sents that population. If the sample represents a smaller group within that
population, then the conclusions have to be downsized in scope also.

I Just Decided to Leave It Out
It seems easier sometimes to just leave information out. I see this all too
often when I read articles and reports based on statistics. But, this error isn’t
the fault of only one person or group. The guilty parties can include

� The producers: The researchers out there leave items out for a variety
of reasons, including time and space constraints. After all, you can’t
write about every element of the experiment from beginning to end.
However, other items they leave out may be indicative of a bigger prob-
lem. For example, reports often say very little about how they collected
the data or chose the sample. Or they may discuss the results of a survey
but not show the actual questions they asked. Ten out of 100 people may
have dropped out of their experiment, and they don’t tell you why. All
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these items are important to know before making a decision about the
credibility of someone’s results.

Another way in which some data analysts leave information out is by
removing data that doesn’t fit the intended model (in other words, 
“fudging” the data). Suppose a researcher records the amount of time surf-
ing the Internet and relates it to age. He fits a nice line to his data indicat-
ing that younger people surf the Internet much more than older people
and that surf time decreases as age increases. All is good except for
Claude the outlier, who is 80-years-old and surfs the Internet day and
night, leading his own bingo chat rooms and everything. What to do with
Claude? If not for him, the relationship looks beautiful on the graph; what
harm would it do to remove him? After all, he’s only one person, right?

No way. Everything is wrong with this idea. Removing undesired data
points from a data set is not only very wrong but also very risky. The
only time it’s okay to remove an observation from a data set is if you’re
certain beyond doubt that the observation is just plain wrong. For exam-
ple, someone writes on a survey that she spends 30 hours a day surfing
the Internet or that her IQ is 2,200.

� The communicators: When reporting statistical results, the media
leaves out important information all the time, which is often due to
space limitations and fast deadlines. However, part of it is a result of the
current, fast-paced society that feeds itself on sound bytes. The best
example is survey results, where they often leave out the size of the
sample. You can’t calculate margin of error without it.

� The consumers: The general public also plays a role in the leave-things-
out mindset. People hear a news story and instantly believe it’s true,
ignoring any chance for error or bias in the results. You need to make a
decision about what car to buy, and you ask your neighbors and friends
rather than examine the research and the meticulous, comprehensive
ratings that have resulted. Everyone neglects to ask questions as much
as he should, at one time or another, which indirectly feeds the entire
problem.

In the chain of statistical information, the producers (researchers) need to be
comprehensive and forthcoming about the process they conducted and the
results they got. The communicators of that information (the media) need to
critically evaluate the accuracy of the information they’re getting and report
it fairly. The consumers of statistical information (the rest of us) need to stop
taking results for granted and to rely on credible sources of statistical studies
and analyses to help make those important life decisions.

In the end, if a data set looks too good, it probably is. If the model fits too per-
fectly, be suspicious. If it fits exactly right, run and don’t look back! Sometimes
what is left out speaks much louder than what is put in.
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Chapter 22

Ten Practice Problems
In This Chapter
� Translating a word problem into a statistics problem

� Picking out the necessary info

Many students miss out on the fact that the most important and difficult
skill they need to develop in statistics is the ability to attack a problem

correctly, especially real-world problems. This skill requires identifying what
the problem is really asking, figuring out what the underlying statistical ques-
tion is, and determining which statistical technique will do the job. Because
professors give course exams usually over small chunks of information in cer-
tain chapters of a textbook, the synthesis process is underdeveloped. Then
comes the final exam, where you’re supposed to magically be able to put it all
together, which can spell disaster.

In this chapter, you discover the important skill of attacking problems cor-
rectly and with confidence — a skill that can no doubt help you to be suc-
cessful not only in your statistics course, but also in the workplace and
everyday life. I help you determine which statistical technique you need to
solve each problem (I don’t actually solve the problems in this chapter but
refer you to the appropriate chapters to get those details). The focus of this
chapter is how to start a problem.

Comparing Means with One-Way ANOVA
The key to knowing you need to use ANOVA is that you have a group of popu-
lations that you want to compare according to some quantitative variable y.
Suppose you have a population of consumers for each of the four brands of
cereal, and you’re interested in seeing whether ages differ across any of the
four populations. The response variable is age and the variable on which
ages are being compared is the brand of cereal the population buys. Cereal
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brand is the variable on which y is being compared; cereal brand is called a
factor in this case. The fact that you have a response variable being com-
pared according to different values of a factor tips you off that one-way
ANOVA is to be used in this situation; you have a quantitative response vari-
able whose means are compared on some categorical variable called a factor.

If your were to compare two populations, you’d use a hypothesis test for two
population means. If you have more than two means to compare, you must go
in the direction of ANOVA (see Chapter 9 for the big ideas of ANOVA). The
only factor to include in the model is cereal brand, because that variable is
the only one on which you’re making comparisons. So, you use a one-way
ANOVA versus a two-way ANOVA (see Chapter 9).

ANOVA first tests to see whether there’s an overall difference between popu-
lation means, using the F-test. If you reject Ho: The population means are
equal, you can conclude Ha: At least two of the population means are differ-
ent. The ANOVA table for comparing data from four brands of cereal is shown
in Table 22-1. Because a condition of ANOVA is that the populations are inde-
pendent, you take a random sample of ten boxes of each type of cereal, for a
total of 40 observations. (Table 22-1 gives you the general setup of the
ANOVA table; you can determine the sums of squares from the particular
data in the problem.)

Table 22-1 ANOVA Table Setup for the Cereal Example
Source DF SS MS F

Treatment 4 – 1 = 3 SST SST/3 MST/MSE

Error 40 – 4 = 36 SSE SSE/36

Total 40 – 1 = 39 SSTO

Doing Multiple Comparisons
When comparing multiple population means on some factor (such as brand
of cereal), you first conduct a one-way ANOVA (see Chapter 9) to determine
whether any differences at all are in the means. If you determine that at least
two population means are different (in other words, Ho is rejected in the
ANOVA procedure), your next step is to find out which ones are different and
how they compare to the others. This situation is where multiple comparison
procedures enter the picture (see Chapter 10). (If you can’t say the means are
different, you have no reason to proceed further.)
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While many multiple comparison procedures exist, in this book I discuss LSD
(least significant differences) and Tukey’s (not turkeys) procedure. LSD com-
pares all the pairs of n different means while keeping an overall eye on the
chance of making an error due to chance. Tukey uses pairs of confidence
intervals and looks for overlap and groups the means in order of magnitude.
(Each procedure has its pluses and minuses, but most statisticians use Tukey
or LSD. See Chapter 10 for full details on multiple comparison procedures.)

Sometimes, this process of answering questions is flipped around. Instead of
asking you a question that you use computer output to answer, your profes-
sor may give you computer output and ask you to determine what question
was answered by the analysis. To do this, you look for clues that tell you
what type of analysis was done, and fill in the details using what you already
know about that particular type of analysis.

For example, your prof gives you computer output comparing the ages of ten
consumers of each of the four cereal brands, labeled C1– C4 (see Figure 22-1).
On the analysis, you can see the mean consumer ages for the four cereals
being compared to each other, and the confidence intervals for the averages
are also shown and compared. Seeing confidence intervals being compared
tells you that you’re dealing with a multiple comparison procedure.

Remember you’re looking to see whether the confidence intervals for each
cereal group overlap; if they don’t, those cereals have different average ages
of consumers. If they do overlap, those cereals have mean ages that can’t be
declared different. From Figure 22-1, you can see that cereals one and two
aren’t significantly different, but for cereal three, consumers have a higher
average age than cereals one and two, while cereal four has a significantly
higher age then the three others. Now after the multiple comparison proce-
dure, you know which cereals are different and how they compare to the
others.

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -------+---------+---------+---------+-- 
C1 10 8.800 1.687 (--*--)

(--*--)
(--*--)

(--*--)

C2 10 11.800 1.033
C3 10 36.500 7.735
C4 10 55.400 10.309

Figure 22-1:
Multiple

comparison
results for

cereal
example.

329Chapter 22: Ten Practice Problems

31_045206 ch22.qxd  2/1/07  10:39 AM  Page 329



Looking at Two Factors 
with Two-Way ANOVA

You use two-way ANOVA when you want to compare the means of n popula-
tions that are classified according to two different categorical variables (fac-
tors). For example, suppose you want to see how four brands of detergent
(brands A, B, C, and D) and water temperature (cold, warm, hot) work together
to affect the whiteness of clothes being washed. Product-testing groups can
use this information as well as the detergent companies to investigate or
advertise how it measures up according to its competitors. The only way I
can think of to measure whiteness is on some sort of scale from least white
(say 1) to most white (say 10).

It makes sense that you would want to test different combinations of deter-
gents and water temperatures to see how they affect the mean whiteness of
the clothes. Because this question involves two different factors and their
affects on some numerical (quantitative) variable, you know that you need to
do a two-way ANOVA. (For all the information on two-way ANOVA, see Chap-
ter 11; I just discuss the overall setup here.)

You can’t assume that water temperature affects whiteness of clothes in the
same way for each brand, so you need to include an interaction effect of
brand and temperature in the two-way ANOVA model. Because brand of
detergent has four possible types (or levels) and water temperature has three
possible values (or levels), you have 4 * 3 = 12 different combinations to
examine in terms of how brand and temperature interact. Those combinations
are: brand A in cold water, brand A in warm water, brand A in hot water, brand
B in cold water, brand B in warm water, brand B in hot water, and so on.

The resulting model looks like this: y = bi + wj + bwij + ε, where b represents
the brand of detergent, w represents the water temperature, y represents 
the whiteness of the clothes after washing, and bwij represents the inter-
action of brand i of detergent (i = 1, 2, 3, and 4) and temperature j of the
water ( j = 1, 2, 3). (ε represents the amount of variation in the y values
[whiteness] that isn’t explained by either brand or temperature.)

Suppose that your experiment involves four brands of detergents, three
water temperatures, and ten data values for each combination (for a total of 
4 * 3 * 10 = 120 data values). You can see the setup of the ANOVA table to
analyze this data in Table 21-2. Now you’re off and running (hopefully not in
two directions) with a two-way ANOVA!
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Table 22-2 Two-Way ANOVA Table for Clothes Example
Source DF SS MS F

Brand of Detergent 4 – 1 = 3 SSb SSb/3 MSb/MSE

Water Temp 3 – 1 = 2 SSw SSw/2 MSw/MSE

Brand * Water Temp (4 – 1) * (3 – 1) = 6 SSbw SSbw/6 MSbw/MSE

Error 120 – 4 * 3 = 108 SSE SSE/108

Total 120 – 1 = 119 SSTO

Predicting a Quantitative Variable 
by Using Regression

You use regression when you have a response variable, y, that’s quantitative,
and you’re using another quantitative variable, x, to predict it. For example,
suppose you’re trying to estimate how much a house is going to cost (on aver-
age). You may think of many different factors that could come into play when
estimating house cost, such as house size, location, number of bedrooms,
number of bathrooms, or the cost of other homes in the neighborhood.

Suppose you focus on only one variable: house size. Certainly house size is
one of the factors that builders and realtors use to base house price. For
example, suppose the typical price for a new house in Columbus, Ohio is
approximately $100 per square foot. Then a home that has 2,000 square feet
would cost approximately $200,000 on average.

By trying to put yourself into the shoes of the person who’s asking this ques-
tion, you can get a much better idea of what the problem is really asking.
Here, you have one variable — house price — and you’re trying to estimate
that variable. That tells you that house price is a response (outcome) vari-
able, because you’re using one variable (house size) to estimate house price.
That means you’re treating house size as an explanatory (input) variable —
the variable on the x-axis. Trying to use x (house size) to estimate y (house
price) is what you do in simple linear regression. And that technique is
exactly what you need in order to answer this question.

If indeed house cost is based on a model of $100 per square foot, your data
would be fit, using the straight line shown in Figure 22-2. (This figure shows a
hypothetical data set of 22 homes.)
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You can add more x variables to the model to try to predict y. This procedure
is called multiple regression. (For more information on simple linear regression,
see Chapter 4; for multiple regression, see Chapter 5.)

Predicting a Probability with 
Logistic Regression

You use logistic regression when you use a quantitative variable to predict or
guess the outcome of some categorical variable with only two outcomes (for
example, using barometric pressure to predict whether or not it will rain).

Because you’re trying to use one variable (x) to make a prediction for another
variable (y), you may think about using regression — and you would be right.
However, you have many types of regression to choose from, and you need to
determine what kind is most appropriate here. You need the type of regression
that uses a quantitative variable (x) to predict the outcome of some categorical
variable (y) that has only two outcomes (yes or no).

So being the good intermediate statistics student that you are, you go to your
trusty list of statistical techniques, and you look under regression. You see
simple linear regression. . . no, you use that when you have one quantitative
variable predicting another. Multiple regression? No. . . that method just
expands simple linear regression to add more x variables. Nonlinear regres-
sion? Well no. . . that still works with two quantitative variables; it’s just that
the data forms a curve, not a line.
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But then you come across logistic regression, and. . . eureka! You see that
logistic regression handles situations where the x variable is numerical and
the y variable is categorical with two possible categories. Just what you’re
looking for! Logistic regression, in essence, estimates the probability of y
being in one category or the other, based on the value of some quantitative
variable, x. In the gender and height example, logistic regression predicts
whether someone is a male (or female) based on his height. If a “1” indicates
a male, then people who receive a probability of more than 0.5 of being male
(based on their heights) are predicted to be male, and the people who
receive a probability of less than 0.5 of being male (based on their heights)
are predicted to be female. (For all the details on logistic regression, see
Chapter 8.)

It may help at this point to sort out some situations that sound similar but
have subtle differences that lead to very different analyses. You can use the
following list to compare these subtle, but important, differences:

� If you want to compare three or more groups of numerical variables, use
ANOVA (Chapter 10). (For only two groups use a t-test; see Chapters 3
and 9.)

� If you want to estimate one numerical variable from another, use simple
linear regression (Chapter 4).

� If you want to estimate one numerical variable using many other numeri-
cal variables, use multiple regression (Chapter 5).

� If you want to estimate a categorical variable with two categories by using
a numerical variable, you want to use logistic regression (Chapter 8.)

� If you want to compare two categorical variables to each other, head
straight for a Chi-square test (Chapter 14).

Using Nonlinear Regression 
for Curved Data

Nonlinear regression takes the stage when you want to predict some quanti-
tative variable (y) by using another quantitative variable (x), but the pattern
you see in the data collected resembles not a straight line, but rather a 
curve.

Suppose a manager is considering the purchase of a new office management
software but is hesitating. She wants to know how long it typically takes 
someone to get up to speed using the software (that’s what a learning curve
shows — the decrease in time to do a task with more and more practice).
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What is the statistical question here? She wants a model that shows what the
learning curve looks like (on average). You have two variables — time to
complete the task and trial number (for example, the first try is designated
by 1, the second try by 2, and so on). Both of these variables are numerical,
or quantitative, and you want to find a connection between two quantitative
variables. At this point, you can start thinking regression.

A regression model produces a function (be it a line or otherwise) that
describes a pattern or relationship. The relationship here is task time versus
number of times the task is practiced. But what type of regression model do
you use? After all, you can see four types in this book: simple linear regres-
sion, multiple regression, nonlinear regression, and logistic regression. You
need more clues.

The word curve in learning curve is a clue that the relationship being mod-
eled here may not be linear. That word sends the signal that you’re talking
about a nonlinear regression model (see Chapter 7). If you think about what a
possible learning curve may look like, you can imagine task time on the y-
axis, and the number of the trial on the x-axis. You may guess that, at first,
the y-values will be high, because the first couple of times you try a new task,
it takes longer. Then, as the task is repeated, the task time decreases, but at
some point, more practice doesn’t reduce task time much. So the relation-
ship may be represented by some sort of curve, like the one I simulate in
Figure 22-3 (which can be fit by using an exponential function).
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Using Chi-Square to Test 
for Independence

When you read this section’s heading, you may notice one thing right off the
bat: the word independence. This word should remind you of the Chi-square
test of independence. Don’t forget to take a second look at how many and
what type of variables you’ve got (and be sure you do this for every problem
before you start it).

Suppose you want to study two variables — eating breakfast (yes or no data)
and gender (male or female). Each of these variables is categorical, or quali-
tative. Whenever you have two variables, x and y, that are both qualitative,
use a Chi-square test to see whether or not those variables are independent.
Use Ho: x and y are independent, versus Ha: x and y are dependent. (See
Chapter 14 for more on the Chi-square test.)

Table 22-3 shows how you would set up the table for the Chi-square test for
this particular question. You would enter the data in the cells marked by xx.

Table 22-3 Table Setup for the Breakfast and Gender Question
Eat Breakfast Don’t Eat Breakfast

Male xx xx

Female xx xx

Note that the Chi-square test for independence is equivalent to testing
whether two population proportions are equal, in other words Ho: p1 = p2

versus Ha: p1 ≠ p2. That is, if you took this same data and analyzed it using a
two-sample test for proportions, you’d test to see whether the proportion of
breakfast eaters (p) is the same for males and females. If you reject Ho, that
means breakfast eating is different for males and females. This result implies
then that gender and eating breakfast are dependent. Similarly, if Ho isn’t
rejected, you conclude you can’t find a difference in breakfast eating for
males versus females, which tells you gender and breakfast eating may be 
independent.
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Checking Specific Models with 
the Goodness-of-Fit Test

You can use the Chi-square goodness-of-fit test to check to see whether a
specified model fits. A specified model is a model in which each possible
value of the variable x is listed, along with its associated probability accord-
ing to the model. For example, suppose you want to know whether the colors
of Skittles candy are evenly mixed (that is, you have an equal percentage of
each color). Think about circumstances where you want to know whether a
situation is even, or fair. You may be flipping a coin. You can assess fairness
in this instance by testing whether the probability of heads equals 1⁄2 (using a
one-sample test for proportions; see Statistics For Dummies [Wiley] or your
intro stats textbook for more information).

But in this case, instead of heads and tails, you have five possible outcomes
representing each color of Skittles (purple, orange, red, green, and yellow).
You want to know whether the proportion of each color of Skittles is the
same. In other words, you want to test Ho: p1 = p2 = p3 = p4 = p5, where each p
represents the proportion of a different color of Skittles. In this case, each
proportion would have to equal 0.20 to spread the Skittle colors evenly. This
model is very specific. Which statistical technique requires your model to be
very specific? (Hold that thought for just a second. You’re not quite done.)

You can find another clue by again looking at the number and type of vari-
ables you’re working with. You have one variable — Skittles color — and that
variable is categorical. So you’re testing a model for one categorical variable
and that model is very specific. You want to see whether that specific model
fits. How do you do it? With a Chi-square goodness-of-fit test. (See Chapter 15
for all the information on the goodness-of-fit test.)

Estimating the Median with 
the Signed Rank Test

Many times when you hear the word median, you think of the middle number
in a data set. It’s true that the median is the middle number, when you order
all the values from smallest to largest. But you may be more accustomed 
to finding the median of a sample, rather than estimating the median of an
entire population. Estimating the median of a population is quite a bit differ-
ent from finding the median of a sample.
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If you want to estimate the mean cost of tuition per year, you would right
away think of a confidence interval for the population mean, based on x , the
sample mean, plus or minus a margin of error. You can’t use the same formula
to answer the given question about the median, but you can use the general
idea. You can’t know the median of a population any more than you can know
the mean; populations are generally too large to measure every value, so you
need to take a sample and calculate a confidence interval instead. That is,
you need a sample statistic plus or minus a margin of error. (See Chapter 3
for the full breakdown on confidence intervals and the whole margin-of-error
thing.) In this case, the sample statistic would be the sample median; it only
makes sense. But what about the margin of error? Where do you turn for a
formula for that?

Don’t forget the unsung hero: nonparametric statistics. Anytime you’re deal-
ing with data that doesn’t meet the conditions of the “normal” procedures,
pull out your nonparametric tools. Anytime you’re estimating or testing the
median, the data at hand likely doesn’t come from a normal distribution either.
The reason the data doesn’t come from a normal distribution is that in a
normal distribution, the mean and the median are the same, and you can use
the regular old (parametric) methods to estimate the median.

So far, you know that you need a confidence interval for the median that’s
based on nonparametric statistics. The signed rank test handles just that 
situation because its sole purpose is to rank data from smallest to largest 
and figure out where the middle lies (see Chapter 17 for all the details). The
biggest challenge is to remember that nonparametric statistics are available,
and you need to use them when you can’t use parametric procedures. (Chap-
ter 16 tells you what types of situations need nonparametric procedures.)

Checking Model Fit by Using R2

One of the most important ideas in intermediate statistics is using the right
technique for the right data and to answer the right question. To know
whether you have the right technique, you need to check the conditions for
that technique, using your data, to make sure those conditions are being met
in the population. (Each technique used in this book has a set of conditions
presented along with it in its corresponding chapter and section.) Because
most of these procedures are based on building a model from the data to
make predictions, you also need to make sure that the final model you chose
fits the data well, so you can sleep at night knowing you did the right thing.

Several different methods exist for checking the fit of models, and those
methods differ according to the model you use, of course. However, one 
particular method is universal no matter what kind of model you fit. Always
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check the value of R2, the coefficient of determination (also known as the coef-
ficient of extermination, because it can kill off a model in a matter of seconds
with a low number).

The coefficient of determination (R2) measures the amount to which the
model (which contains the x variable or variables) explains or accounts 
for the amount of variability in the y variable. The value of R2 is a number
between 0 and 1, and you can interpret it as a percentage. A high value of R2

(at least 0.70, but the higher, the better) indicates that the model fits well; a
value of R2 below 0.70 indicates the model doesn’t fit well (and the closer R2

is to zero, the worse the model fits).

For example, say you want to conduct a regression analysis of exam score
based on study time. Suppose you analyzed your data and got the computer
output listed in Figure 22-4.

You can see in Figure 22-4 that the value of R2 for this model is 98.2 percent.
So study time in this case explains 98.2 percent of why those exam scores
vary. Therefore, the model fits the data very well according to R2.

The most important use of R2 is in choosing the best model if given a variety
of possibilities. Typically you choose the model with the highest value of R2,
adjusting for the number of variables in the model. This variation of R2 is
called R2 adjusted (in Figure 22-4, R2 adjusted is 98.0 percent, which is very
high). (For the full scoop on model fit, see Chapter 6, where you can find
stepwise procedures to choose the best multiple regression model given a
choice of many variables.)

Predictor Coef SE Coef T P
Constant 51.410 1.290 39.84 0.000
C1 4.6227 0.2076 22.27 0.000

S = 2.36349   R-Sq = 98.2%   R-Sq(adj) = 98.0%

Figure 22-4:
Regression
analysis for
exam data.
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Appendix

Tables for Your Reference

This Appendix includes commonly used tables for five important distribu-
tions for intermediate statistics: the t-distribution, the binomial distribu-

tion, the Chi-square distribution, the distribution for the rank sum test
statistic, and the F-distribution.  

t-Table
Table A-1 shows right-tail probabilities for the t-distribution (refer to Chap-
ter 3). To use Table A-1, you need four pieces of information from the prob-
lem you’re working on:

� The sample size (n)

� The mean of x (the given normal distribution)

� The standard deviation of your data (s)

� The value of x for which you want the right-tail probability 

After you have this information, transform your value of x to a t-statistic 
(or t-value) by taking your value of x, subtracting the mean, and dividing by 

the standard error (see Chapter 3) by using the formula t

n
s

x µ
n 1 =

-
- .

Then look up this value of t on Table A-1 by finding the row corresponding to
the degrees of freedom for the t-statistic (n – 1). Go across that row until you
find two values between which your t-statistic falls. Then go to the top of those
columns and find the probabilities there. The probability that t is beyond your
value of x (the right-tail probability) is somewhere between these two probabil-
ities. Note that the last line of the t-table shows df = ∞, which represents the
values of the z-distribution because for large sample sizes t and z are close.

32_045206 app.qxd  2/1/07  10:40 AM  Page 339



Table A-1 t-Distribution

0.40 0.25 0.10 0.05

t-distribution showing area to the right

0.025

t (p, df)

0.01 0.005 0.0005

1

df/p

0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192

2 0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991

3 0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240

4 0270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103

5

6

0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688

0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588

7 0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079

8 0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413

9 0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809

10 0260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869

11 0259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370

12 0259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 43178

13 0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208

14 0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405

15 0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728

16 0257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150

17 0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651

18 0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216

19 0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834

20 0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495

21 0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193

22 0256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921

23 0256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676

24 0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454

25 0.256060 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251

26 0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066

27 0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896

28 0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739

29 0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594

30 0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460

∞∞ 0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905
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Binomial Table
Table A-2 shows probabilities for the binomial distribution (refer to Chap-
ter 17). To use Table A-2, you need three pieces of information from the par-
ticular problem you’re working on:

� The sample size, n

� The probability of success, p

� The value of x for which you want the cumulative probability

Find the portion of Table A-2 that’s devoted to your n, and look at the row for
your x and the column for your p. Intersect that row and column, and you can
see the probability for x. To get the probability of being strictly less than,
greater than, greater than or equal to, or between two values of x, you sum
the appropriate values of Table A-2, using the steps found in Chapter 16.
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Table A-2 The Binomial Table
Numbers in the table represent the probabilities for values of x from 0 to n.

p
Binomial probabilities:

(continued)

px(1 – p) n – x( )n
x

n x 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

1 0 0.900 0.800 0.750 0.700 0.600 0.500 0.400 0.300 0.250 0.200 0.100
1 0.100 0.200 0.250 0.300 0.400 0.500 0.600 0.700 0.750 0.800 0.900

2 0 0.810 0.640 0.563 0.490 0.360 0.250 0.160 0.090 0.063 0.040 0.010
1 0.180 0.320 0.375 0.420 0.480 0.500 0.480 0.420 0.375 0.320 0.180
2 0.010 0.040 0.063 0.090 0.160 0.250 0.360 0.490 0.563 0.640 0.810

3 0 0.729 0.512 0.422 0.343 0.216 0.125 0.064 0.027 0.016 0.008 0.001
1 0.243 0.384 0.422 0.441 0.432 0.375 0.288 0.189 0.141 0.096 0.027
2 0.027 0.096 0.141 0.189 0.288 0.375 0.432 0.441 0.422 0.384 0.243
3 0.001 0.008 0.016 0.027 0.064 0.125 0.216 0.343 0.422 0.512 0.729

4 0 0.656 0.410 0.316 0.240 0.130 0.063 0.026 0.008 0.004 0.002 0.000
1 0.292 0.410 0.422 0.412 0.346 0.250 0.154 0.076 0.047 0.026 0.004
2 0.049 0.154 0.211 0.265 0.346 0.375 0.346 0.265 0.211 0.154 0.049
3 0.004 0.026 0.047 0.076 0.154 0.250 0.346 0.412 0.422 0.410 0.292
4 0.000 0.002 0.004 0.008 0.026 0.063 0.130 0.240 0.316 0.410 0.656

5 0 0.590 0.328 0.237 0.168 0.078 0.031 0.010 0.002 0.001 0.000 0.000
1 0.328 0.410 0.396 0.360 0.259 0.156 0.077 0.028 0.015 0.006 0.000
2 0.073 0.205 0.264 0.309 0.346 0.312 0.230 0.132 0.088 0.051 0.008
3 0.008 0.051 0.088 0.132 0.230 0.312 0.346 0.309 0.264 0.205 0.073
4 0.000 0.006 0.015 0.028 0.077 0.156 0.259 0.360 0.396 0.410 0.328
5 0.000 0.000 0.001 0.002 0.010 0.031 0.078 0.168 0.237 0.328 0.590

6 0 0.531 0.262 0.178 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000
1 0.354 0.393 0.356 0.303 0.187 0.094 0.037 0.010 0.004 0.002 0.000
2 0.098 0.246 0.297 0.324 0.311 0.234 0.138 0.060 0.033 0.015 0.001
3 0.015 0.082 0.132 0.185 0.276 0.313 0.276 0.185 0.132 0.082 0.015
4 0.001 0.015 0.033 0.060 0.138 0.234 0.311 0.324 0.297 0.246 0.098
5 0.000 0.002 0.004 0.010 0.037 0.094 0.187 0.303 0.356 0.393 0.354
6 0.000 0.000 0.000 0.001 0.004 0.016 0.047 0.118 0.178 0.262 0.531

7 0 0.478 0.210 0.133 0.082 0.028 0.008 0.002 0.000 0.000 0.000 0.000
1 0.372 0.367 0.311 0.247 0.131 0.055 0.017 0.004 0.001 0.000 0.000
2 0.124 0.275 0.311 0.318 0.261 0.164 0.077 0.025 0.012 0.004 0.000
3 0.023 0.115 0.173 0.227 0.290 0.273 0.194 0.097 0.058 0.029 0.003
4 0.003 0.029 0.058 0.097 0.194 0.273 0.290 0.227 0.173 0.115 0.023
5 0.000 0.004 0.012 0.025 0.077 0.164 0.261 0.318 0.311 0.275 0.124
6 0.000 0.000 0.001 0.004 0.017 0.055 0.131 0.247 0.311 0.367 0.372
7 0.000 0.000 0.000 0.000 0.002 0.008 0.028 0.082 0.133 0.210 0.478
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Table A-2 (continued)
p

Binomial probabilities:

px(1 – p) n – x( )n
x

n x 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

8 0 0.430 0.168 0.100 0.058 0.017 0.004 0.001 0.000 0.000 0.000 0.000
1 0.383 0.336 0.267 0.198 0.090 0.031 0.008 0.001 0.000 0.000 0.000
2 0.149 0.294 0.311 0.296 0.209 0.109 0.041 0.010 0.004 0.001 0.000
3 0.033 0.147 0.208 0.254 0.279 0.219 0.124 0.047 0.023 0.009 0.000
4 0.005 0.046 0.087 0.136 0.232 0.273 0.232 0.136 0.087 0.046 0.005
5 0.000 0.009 0.023 0.047 0.124 0.219 0.279 0.254 0.208 0.147 0.033
6 0.000 0.001 0.004 0.010 0.041 0.109 0.209 0.296 0.311 0.294 0.149
7 0.000 0.000 0.000 0.001 0.008 0.031 0.090 0.198 0.267 0.336 0.383
8 0.000 0.000 0.000 0.000 0.001 0.004 0.017 0.058 0.100 0.168 0.430

9 0 0.387 0.134 0.075 0.040 0.010 0.002 0.000 0.000 0.000 0.000 0.000
1 0.387 0.302 0.225 0.156 0.060 0.018 0.004 0.000 0.000 0.000 0.000
2 0.172 0.302 0.300 0.267 0.161 0.070 0.021 0.004 0.001 0.000 0.000
3 0.045 0.176 0.234 0.267 0.251 0.164 0.074 0.021 0.009 0.003 0.000
4 0.007 0.066 0.117 0.172 0.251 0.246 0.167 0.074 0.039 0.017 0.001
5 0.001 0.017 0.039 0.074 0.167 0.246 0.251 0.172 0.117 0.066 0.007
6 0.000 0.003 0.009 0.021 0.074 0.164 0.251 0.267 0.234 0.176 0.045
7 0.000 0.000 0.001 0.004 0.021 0.070 0.161 0.267 0.300 0.302 0.172
8 0.000 0.000 0.000 0.000 0.004 0.018 0.060 0.156 0.225 0.302 0.387
9 0.000 0.000 0.000 0.000 0.000 0.002 0.010 0,040 0.075 0.134 0.387

10 0 0.349 0.107 0.056 0.028 0.006 0.001 0.000 0.000 0.000 0.000 0.000
1 0.387 0.268 0.188 0.121 0.040 0.010 0.002 0.000 0.000 0.000 0.000
2 0.194 0.302 0.282 0.233 0.121 0.044 0.011 0.001 0.000 0.000 0.000
3 0.057 0.201 0.250 0.267 0.215 0.117 0.042 0.009 0.003 0.001 0.000
4 0.011 0.088 0.146 0.200 0.251 0.205 0.111 0.037 0.016 0.006 0.000
5 0.001 0.026 0.058 0.103 0.201 0.246 0.201 0.103 0.058 0.026 0.001
6 0.000 0.006 0.016 0.037 0.111 0.205 0.251 0.200 0.146 0.088 0.011
7 0.000 0.001 0.003 0.009 0.042 0.117 0.215 0.267 0.250 0.201 0.057
8 0.000 0.000 0.000 0.001 0.011 0.044 0.121 0.233 0.282 0.302 0.194
9 0.000 0.000 0.000 0.000 0.002 0.010 0.040 0.121 0.188 0.268 0.387

10 0.000 0.000 0.000 0.000 0.000 0.001 0.006 0.028 0.056 0.107 0.349

11 0 0.314 0.086 0.042 0.020 0.004 0.000 0.000 0.000 0.000 0.000 0.000
1 0.384 0.236 0.155 0.093 0.027 0.005 0.001 0.000 0.000 0.000 0.000
2 0.213 0.295 0.258 0.200 0.089 0.027 0.005 0.001 0.000 0.000 0.000
3 0.071 0.221 0.258 0.257 0.177 0.081 0.023 0.004 0.001 0.000 0.000
4 0.016 0.111 0.172 0.220 0.236 0.161 0.070 0.017 0.006 0.002 0.000
5 0.002 0.039 0.080 0.132 0.221 0.226 0.147 0.057 0.027 0.010 0.000
6 0.000 0.010 0.027 0.057 0.147 0.226 0.221 0.132 0.080 0.039 0.002
7 0.000 0.002 0.006 0.017 0.070 0.161 0.236 0.220 0.172 0.111 0.016
8 0.000 0.000 0.001 0.004 0.023 0.081 0.177 0.257 0.258 0.221 0.071
9 0.000 0.000 0.000 0.001 0.005 0.027 0.089 0.200 0.258 0.295 0.213

10 0.000 0.000 0.000 0.000 0.001 0.005 0.027 0.093 0.155 0.236 0.384
11 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.020 0.042 0.086 0.314

(continued)
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Table A-2 (continued)

p
Binomial probabilities:

px(1 – p) n – x( )n
x

n x 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

12 0 0.282 0.069 0.032 0.014 0.002 0.000 0.000 0.000 0.000 0.000 0.000
1 0.377 0.206 0.127 0.071 0.017 0.003 0.000 0.000 0.000 0.000 0.000
2 0.230 0.283 0.232 0.168 0.064

0.142
0.016 0.002 0.000 0.000 0.000 0.000

3 0.085 0.236 0.258 0.240 0.054 0.012 0.001 0.000 0.000 0.000
4 0.021 0.133 0.194 0.231 0.213 0.121 0.042 0.008 0.002 0.001 0.000
5 0.004 0.053 0.103 0.158 0.227 0.193 0.101 0.029 0.011 0.003 0.000
6 0.000 0.016 0.040 0.079 0.177 0.226 0.177 0.079 0.040 0.016 0.000
7 0.000 0.003 0.011 0.029 0.101 0.193 0.227 0.158 0.103 0.053 0.004
8 0.000 0.001 0.002 0.008 0.042 0.121 0.213 0.231 0.194 0.133 0.021
9 0.000 0.000 0.000 0.001 0.012 0.054 0.142 0.240 0.258 0.236 0.085

10 0.000 0.000 0.000 0.000 0.002 0.016 0.064 0.168 0.232 0.283 0.230
11 0.000 0.000 0.000 0.000 0.000 0.003 0.017 0.071 0.127 0.206 0.377
12 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.014 0.032 0.069 0.282

13 0 0.254 0.055 0.024 0.010 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1 0.367 0.179 0.103 0.054 0.011 0.002 0.000 0.000 0.000 0.000 0.000
2 0.245 0.268 0.206 0.139 0.045 0.010 0.001 0.000 0.000 0.000 0.000
3 0.100 0.246 0.252 0.218 0.111 0.035 0.006 0.001 0.000 0.000 0.000
4 0.028 0.154 0.210 0.234 0.184 0.087 0.024 0.003 0.001 0.000 0.000
5 0.006 0.069 0.126 0.180 0.221 0.157 0.066 0.014 0.005 0.001 0.000
6 0.001 0.023 0.056 0.103 0.197 0.209 0.131 0.044 0.019 0.006 0.000
7 0.000 0.006 0.019 0.044 0.131 0.209 0.197 0.103 0.056 0.023 0.001
8 0.000 0.001 0.005 0.014 0.066 0.157 0.221 0.180 0.126 0.069 0.006
9 0.000 0.000 0.001 0.003 0.024 0.087 0.184 0.234 0.210 0.154 0.028

10 0.000 0.000 0.000 0.001 0.006 0.035 0.111 0.218 0.252 0.246 0.100
11 0.000 0.000 0.000 0.000 0.001 0.010 0.045 0.139 0.206 0.268 0.245
12 0.000 0.000 0.000 0.000 0.000 0.002 0.011 0.054 0.103 0.179 0.367
13 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.010 0.024 0.055 0.254

14 0 0.229 0.044 0.018 0.007 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1 0.356 0.154 0.083 0.041 0.007 0.001 0.000 0.000 0.000 0.000 0.000
2 0.257 0.250 0.180 0.113 0.032 0.006 0.001 0.000 0.000 0.000 0.000
3 0.114 0.250 0.240 0.194 0.085 0.022 0.003 0.000 0.000 0.000 0.000
4 0.035 0.172 0.220 0.229 0.155 0.061 0.014 0.001 0.000 0.000 0.000
5 0.008 0.086 0.147 0.196 0.207 0.122 0.041 0.007 0.002 0.000 0.000
6 0.001 0.032 0.073 0.126 0.207 0.183 0.092 0.023 0.008 0.002 0.000
7 0.000 0.009 0.028 0.062 0.157 0.209 0.157 0.062 0.028 0.009 0.000
8 0.000 0.002 0.008 0.023 0.092 0.183 0.207 0.126 0.073 0.032 0.001
9 0.000 0.000 0.002 0.007 0.041 0.122 0.207 0.196 0.147 0.086 0.008

10 0.000 0.000 0.000 0.001 0.014 0.061 0.155 0.229 0.220 0.172 0.035
11 0.000 0.000 0.000 0.000 0.003 0.022 0.085 0.194 0.240 0.250 0.114
12 0.000 0.000 0.000 0.000 0.001 0.006 0.032 0.113 0.180 0.250 0.257
13 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.041 0.083 0.154 0.356
14 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.018 0.044 0.229

(continued)
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Table A-2 (continued)

p
Binomial probabilities:

px(1 – p) n – x( )n
x

n x 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

15 0 0.206 0.035 0.013 0.005 0.000 0.000 0.000
1 0.343 0.132 0.067 0.031 0.005 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000 0.000

2 0.267 0.231 0.156 0.092 0.022 0.003 0.000

0.000
0.000
0.000

3 0.129 0.250 0.225 0.170 0.063 0.014 0.002 0.000 0.000 0.000 0.000
4 0.043 0.188 0.225 0.219 0.127 0.042 0.007 0.001 0.000 0.000 0.000
5 0.010 0.103 0.165 0.206 0.186 0.092 0.024 0.003 0.001 0.000 0.000
6 0.002 0.043 0.092 0.147 0.207 0.153 0.061 0.012 0.003 0.001 0.000
7 0.000 0.014 0.039 0.081 0.177 0.196 0.118 0.035 0.013 0.003 0.000
8 0.000 0.003 0.013 0.035 0.118 0.196 0.177 0.081 0.039 0.014 0.000
9 0.000 0.001 0.003 0.012 0.061 0.153 0.207 0.147 0.092 0.043 0.002

10 0.000 0.000 0.001 0.003 0.024 0.092 0.186 0.206 0.165 0.103 0.010
11 0.000 0.000 0.000 0.001 0.007 0.042 0.127 0.219 0.225 0.188 0.043
12 0.000 0.000 0.000 0.000 0.002 0.014 0.063 0.170 0.225 0.250 0.129
13 0.000 0.000 0.000 0.000 0.000 0.003 0.022 0.092 0.156 0.231 0.267
14 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.031 0.067 0.132 0.343
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.035 0.206

20 0 0.122 0.012 0.003 0.001 0.000 0.000 0.000 0.000

0.005

0.000 0.000 0.000
1 0.270 0.058 0.021 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.285 0.137 0.067 0.028 0.003 0.000 0.000 0.000 0.000 0.000 0.000
3 0.190 0.205 0.134 0.072 0.012 0.001 0.000 0.000 0.000 0.000 0.000
4 0.090 0.218 0.190 0.130 0.035 0.005 0.000 0.000 0.000 0.000 0.000
5 0.032 0.175 0.202 0.179 0.075 0.015 0.001 0.000 0.000 0.000 0.000
6 0.009 0.109 0.169 0.192 0.124 0.037 0.005 0.000 0.000 0.000 0.000
7 0.002 0.055 0.112 0.164 0.166 0.074 0.015 0.001 0.000 0.000 0.000
8 0.000 0.022 0.061 0.114 0.180 0.120 0.035 0.004 0.001 0.000 0.000
9 0.000 0.007 0.027 0.065 0.160 0.160 0.071 0.012 0.003 0.000 0.000

10 0.000 0.002 0.010 0.031 0.117 0.176 0.117 0.031
0.065 0.027 0.007 0.007

0.010 0.002 0.000
11 0.000 0.000 0.003 0.012 0.071 0.160 0.160
12 0.000 0.000 0.001 0.004 0.035 0.120 0.180 0.114 0.061 0.022 0.000
13 0.000 0.000 0.000 0.001 0.015 0.074 0.166 0.164 0.112 0.055 0.002
14 0.000 0.000 0.000 0.000 0.005 0.037 0.124 0.192 0.169 0.109 0.009
15 0.000 0.000 0.000 0.000 0.001 0.015 0.075 0.179 0.202 0.175 0.032
16 0.000 0.000 0.000 0.000 0.000 0.005 0.035 0.130 0.190 0.218 0.090
17 0.000 0.000 0.000 0.000 0.000 0.001 0.012 0.072 0.134 0.205 0.190
18 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.028 0.067 0.137 0.285
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.021 0.058 0.270
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.012 0.122
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Chi-Square Table
Table A-3 shows right-tail probabilities for the Chi-square distribution (you
can use Chapter 14 as a reference for the Chi-square test). To use Table A-3,
you need three pieces of information from the particular problem you’re
working on:

� The sample size, n.

� The value of χ-squared, for which you want the right-tail probability.

� If you’re working with a two-way table, you need r = number of rows and 
c = number of columns. If you’re working with a goodness-of-fit test, you
need k – 1, where k is the number of categories.

The degrees of freedom for the Chi-square test statistic is (r – 1) * (c – 1) if
you’re testing for an association between two variables, where r and c are 
the number of rows and columns in the two-way table, respectively. Or, the
degrees of freedom is k – 1 in a goodness-of-fit test, where k is the number of
categories; see Chapter 15.

Go across the row for your degrees of freedom until you find the value in that
row closest to your Chi-square test statistic. Look up at the number at the
top of that column. That value is the area to the right (beyond) that particu-
lar Chi-square statistic. 
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Table A-3 The Chi-Square Table
Numbers in the table represent Chi-square values whose area to the right equals p.

df
p 0.10 0.05 0.025 0.01 0.005

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2.71

4.61

6.25

7.78

9.24

10.65

12.02

13.36

14.68

15.99

17.28

18.55

19.81

21.06

22.31

23.54

24.77

25.99

27.20

28.41

29.62

30.81

32.01

33.20

34.38

35.56

36.74

37.92

39.09

40.26

3.84

5.99

7.82

9.49

11.07

12.59

14.07

15.51

16.92

18.31

19.68

21.03

22.36

23.69

25.00

26.30

27.59

28.87

30.14

31.41

32.67

33.92

35.17

36.42

37.65

38.89

40.11

41.34

42.56

43.77

5.02

7.38

9.35

11.14

12.83

14.45

16.01

17.54

19.02

20.48

21.92

23.34

24.74

26.12

27.49

28.85

30.19

31.53

32.85

34.17

35.48

36.78

38.08

39.36

40.65

41.92

43.20

44.46

45.72

46.98

6.64

9.21

11.35

13.28

15.09

16.81

18.48

20.09

21.67

23.21

24.73

26.22

27.69

29.14

30.58

32.00

33.41

34.81

36.19

37.57

38.93

40.29

41.64

42.98

44.31

45.64

46.96

48.28

49.59

50.89

7.88

10.60

12.84

14.86

16.75

18.55

20.28

21.96

23.59

25.19

26.76

28.30

29.819

31.32

32.80

34.27

35.72

37.16

38.58

40.00

41.40

42.80

44.18

45.56

46.93

48.29

49.65

50.99

52.34

53.67

40

50

51.81

63.17

55.76

67.51

59.34

71.42

63.69

76.15

66.77

79.49
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Rank Sum Table
Table A-4 shows the critical values for the rank sum test where α is 0.05 for
two-sided tests (equivalent to 0.025 for one-sided tests); see Chapter 18 for
more on this test. To use Table A-4, you need two pieces of information from
the particular problem you’re working on:

� The rank sum statistic, T

� The sample sizes of the two samples, n1 and n2

To find the critical value for your rank sum statistic using Table A-4, go to the
column representing n1 and the row representing n2. Intersect the row and the
column on Table A-4, and you find the lower and upper critical values
(denoted TL and TU) for the rank sum test.

Table A-4 Rank Sum Table

α = .025 One-Sided; α = .05 Two-Sided

n1

n2

3 6 18 6 21 7 23 7 26 8 28 8 31 9 33
4 11 25 12 28 12 32 13 35 14 38 15 41 16 44
5 12 28 18 37 19 41 20 45 21 49 22 53 24 56
6 12 32 19 41 26 52 28 56 29 61 31 65 32 70
7 13 35 20 45 28 56 37 68 39 73 41 78 43 83
8 14 38 21 49 29 61 39 73 49 87 53 93 54 98
9 15 41 22 53 31 65 41 78 51 93 63 108 66 114

10

3

TL TU

5 16
6 18
6 21
7 23
7 26
8 28
8 31
9 33 16 44 24 56 32 70 43 83 54 98 66 114 79 131

4

TL TU

5

TL TU

6 7 8 9 10

TL TU TL TU TL TU TL TU TL TU

(continued)
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Table A-4 (continued)

F-Table
Table A-5 shows the critical values on the F-distribution where α is equal to
0.05. (Critical values are those values that represent the boundary between
rejecting Ho and not rejecting Ho; refer to Chapter 9.) To use Table A-5, 
you need three pieces of information from the particular problem you’re
working on:

� The sample size, n

� The number of populations (or treatments being compared), k

� The value of F for which you want the cumulative probability

To find the critical value for your F-test statistic using Table A-5, go to the
column representing the degrees of freedom you need (k – 1, n – k). Intersect
the column degrees of freedom (k – 1) with the row degrees of freedom (n – k),
and you find the critical value on the F-distribution. For more on the F-test,
see Chapter 9.

α = .05 One-Sided; α = .10 Two-Sided

6 15 7 17 7 20 8 22 9 24 9 27 10 29 11 31
7 17 12 24 13 27 14 30 15 33 16 36 17 39 18 42
7 20 13 37 19 36 20 40 22 43 24 46 25 50 26 54
8 22 14 30 20 40 28 50 30 54 32 58 33 63 35 67
9 24 15 33 22 43 30 54 39 66 41 71 43 76 46 80
9 27 16 36 24 46 32 58 41 71 52 84 54 90 57 95

10 29 17 39 25 50 33 63 43 76 54 90 66 105 69 111
11 31 18 42 26 54 35 67 46 80 57 95 69 111 83 127

n1

n2

3
4
5
6
7
8
9

10

3

TL TU

4

TL TU

5

TL TU

6 7 8 9 10

TL TU TL TU TL TU TL TU TL TU
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df
2/

df
1

1
2

3
4

5
6

7
8

9
10

12
15

20
24

30
40

60
12

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

16
1.

44
76

18
.5

12
8

10
.1

28
0

7.
70

86
6.

60
79

5.
98

74
5.

59
14

5.
31

77
5.

11
74

4.
96

46
4.

84
43

4.
74

72
4.

66
72

4.
60

01
4.

54
31

4.
49

40
4.

45
13

4.
41

39
4.

38
07

19
9.

50
00

19
.0

00
0

9.
55

21
6.

94
43

5.
78

61
5.

14
33

4.
73

74
4.

45
90

4.
25

65
4.

10
28

3.
98

23
3.

88
53

3.
80

56
3.

73
89

3.
68

23
3.

63
37

3.
59

15
3.

55
46

3.
52

19

21
5.

70
73

19
.1

64
3

9.
27

66
6.

59
14

5.
40

95
4.

75
71

4.
34

68
4.

06
62

3.
86

25
3.

70
83

3.
58

74
3.

49
03

3.
41

05
3.

34
39

3.
28

74
3.

23
89

3.
19

68
3.

15
99

3.
12

74

22
4.

58
32

19
.2

46
8

9.
11

72
6.

38
82

5.
19

22
4.

53
37

4.
12

03
3.

83
79

3.
63

31
3.

47
80

3.
35

67
3.

25
92

3.
17

91
3.

11
22

3.
05

56
3.

00
69

2.
96

47
2.

92
77

2.
89

51

23
0.

16
19

19
.2

96
4

9.
01

35
6.

25
61

5.
05

03
4.

38
74

3.
97

15
3.

68
75

3.
48

17
3.

32
58

3.
20

39
3.

10
59

3.
02

54
2.

95
82

2.
90

13
2.

85
24

2.
81

00
2.

77
29

2.
74

01

23
3.

98
60

19
.3

29
5

8.
94

06
6.

16
31

4.
95

03
4.

28
39

3.
86

60
3.

58
06

3.
37

38
3.

21
72

3.
09

46
2.

99
61

2.
91

53
2.

84
77

2.
79

05
2.

74
13

2.
69

87
2.

66
13

2.
62

83

23
6.

76
84

19
.3

53
2

8.
88

67
6.

09
42

4.
87

59
4.

20
67

3.
78

70
3.

50
05

3.
29

27
3.

13
55

3.
01

23
2.

91
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• Numbers & Symbols •
68-95-99.7 Rule (Empirical Rule)

regression modeling and, 77–78
standard error and, 45

95 percent confidence level
hypothesis testing and the, 21
interpreting the, 56–57

• A •
Algebra For Dummies (Sterling), 132
alternative hypothesis (Ha). See Ha

(alternative hypothesis)
analysis of variance (ANOVA)

about, 22
comparison with quantitative 

variable, 38
degrees of freedom (n – 1), 202–203
designed experiments using, 176
multiple comparison

about, 177–180
Dunnett’s test, 184
Fisher’s LSD, 180–182
practice problem, 328–329
Tukey’s test, 182–184

one-way
about, 161
comparing means with, 163–164
following the steps for, 164–165
F-statistic, 172–173
F-test, 168–169
hypotheses for, 168
making conclusions with, 173–175

mean sums of squares, 171–172
meeting the conditions for, 165–168
model, checking fit, 175–176
practice problem, 327–328
sums of squares in, 170–171

regression and, 200–206
two-way

about, 176, 185
defining the model, 186–188
hypothesis testing, 191–192
interaction effects, 24, 188–191
interpreting the results, 192–194
practice problem, 330–331

ANOVA table
about, 161
generating a one-way, 169–172
generating a two-way, 192–194
practice problem, 327–328
for regression, 201, 204–206

association
Chi-square test and, 29
correlation versus, 26
qualitative variables and, 35–36, 209
two-way table, 210–213

assumptions
about, 319–320
independence, 166
margin of error, 47
nonparametric statistics and, 17, 271

• B •
backward model selection, 118–122
balanced design, 168
bar charts, 219
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bell-shaped curve. See also normal
distribution

ANOVA and the, 166–167
Empirical Rule and the, 77
model building and the, 16–17
nonlinear regression and, 147–148
nonparametric statistics and, 29–30,

262, 297
regression and, 79–81, 105

best subsets model selection, 123–126
best-fitting line

cause-and-effect error, 84–85
extrapolation and, 85–86
linear regression and, 74–75
logarithms and, 143–148
logistic regression and, 152–156
making predictions, 101
multiple regression and, 88–89, 97–98
nonlinear data and, 137
outlier effect on, 83
regression line and, 40, 205

bias
about, 41
common ways to create, 41–42
margin of error and, 47
sample size (n), 54, 321
in statistical analysis, 42–45

binomial distribution, 341
Binomial Table, 342
bivariate norm distribution, 308
boxplots, 290, 297–298

• C •
categorical variables. See qualitative

variables
cause-and-effect error, 84–85
Central Limit Theorem, 1, 3, 285, 320
Chi-square distribution

generating, 238–241
goodness-of-fit and, 249, 254–258
Kruskal-Wallis test and, 300

modeling with, 5, 230
right-tail probabilities, 346

Chi-Square Table
about, 58, 346
finding results in, 231, 238–241
goodness-of-fit and, 254–257

Chi-square test
about, 28–29
goodness-of-fit interpretation, 254–258
interpreting the, 241–243
logistic regression and, 153–154
practice problem, 335–336
qualitative variable relationships and,

34–35
steps for conducting, 231–241
for two population proportions,

243–245
Z-test comparison to, 245–247

coefficient of determination (R2).
See R2/R2 adjusted

computer output. See statistical software
packages

concordant pair, 153
conditional probability, 215–220, 226–227
confidence coefficient, 45
confidence interval

about, 20, 34
calculating, 51–52
elements of the, 50–51
interpreting, 56–57
margin of error and, 53–56
using sign test for, 275–277

confidence level
hypothesis testing and, 21
margin of error and, 54–56
t-values for, 52

confounding variable, 85, 225–228
consistency, level of, 44–45
conventions used in the book, 2–3
correlation

about, 14, 38–40
overview and examples of, 25–26
quantitative variables and, 35–36
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correlation coefficients
about, 307–308
logistic regression, 154–155
multiple regression analysis, 93–100
nonlinear regression, 130–131
Pearson’s correlation coefficient, 

72-73, 307, 309
regression model selection, 110–112
simple linear regression and, 70–73
Spearman’s rank correlation, 307–314

correlation matrix, 93–94

• D •
data analysis

appropriate uses and limitations of,
47–48

making errors in, 317–326
number crunching gone wrong, 12–18
simple linear regression errors in, 84–86
software packages for, 10–11

Data Desk, 11
data fishing

model selection and, 128
nonparametric statistics as, 275
statistical analysis and, 15–18

data snooping, 13–15, 128
degrees of freedom (n – 1)

in ANOVA, 171–174, 202–203
Chi-square, 239–240, 254–258
confidence interval and, 51–52
margin of error, 53
regression, 100
in regression, 200–205
two sample t-test, 162
two-way ANOVA, 188, 192–194
variance and, 43, 171

dependent variables, 221–223
designed experiments

ANOVA and, 164
data analysis and, 85
Dunnett’s test, 184

surveys as, 319
uses of, 176

discordant pair, 153
downhill relationship, 40
Dunnett’s test, 184

• E •
Empirical Rule (68-95-99.7 Rule)

regression modeling and, 77–78
standard error and, 45

error. See margin of error; overall error
rate

expected cell counts (E), 29, 231–238,
252–256

expected model, 251
explanatory variables, 36, 132
exponential regression model

about, 142–143
assessing the fit, 145–148
finding the best-fit, 143–145

extrapolation
defined, 85
multiple regression analysis, 101
predicting outcomes by, 41
regression model, 141–142
simple linear regression, 85–86

• F •
factors, 185, 189–191
familywise error rate. See overall error

rate
F-distribution, 172–174
F-Table, 349
first-degree polynomial, 134
Fisher’s LSD. See least significant

difference (LSD)
Fisher’s paired differences. See least

significant difference (LSD)
Fisher’s test. See least significant

difference (LSD)
forward model selection, 113–118
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fourth-degree polynomial, 132, 134–135
frequency, 32–33
F-statistic

ANOVA and the, 22, 168–169
bringing regression to, 204–206
calculating the, 172–173
sums of squares and, 171

F-table, 174
F-test

about, 163
performing the, 168–169
sums of squares and, 170–172
two-way ANOVA, 191–192

• G •
Gallup Organization, 46
Galton, Francis, 309
good guess (estimate), 19–20
goodness-of-fit statistic

about, 249–252
calculating the, 252–254
interpreting with Chi-square, 254–256
practice problem, 336
steps for Chi-square test on, 256–258

• H •
Ha (alternative hypothesis)

about, 232–233
author’s use of, 2
hypothesis testing and, 21, 57–58

histograms
creating, 16
tips for using, 298

Ho (null hypothesis)
about, 232–233
author’s use of, 2
hypothesis testing and, 21, 57–58
two sample t-test and, 18

homoscedasticity condition, 78, 81

hypothesis testing
about, 21–22
Chi-square test and, 232–233
data fishing and, 16–18, 275
goodness-of-fit, 258
for independence, 230–231
model for, 57–58
one-way ANOVA, 168, 173–175
power curve in, 62–66
p-value and, 59–60
for qualitative variables, 33–37
rank sum test, 291–294
statistical significance, 59, 94–95
test statistic and, 58
two-way ANOVA, 191–192
Type I and Type II errors in, 60–62

• I •
icons used in the book, 5–6
independence

about, 229–230
among variables, 221–223
assumptions, 166
Chi-square test and, 233–235
hypothesis testing for, 230–231
practice problem, 335
relating Z-test to Chi-square for, 245–247

interaction effects
about, 23–25, 188
qualitative variables and, 37
two-way ANOVA, 24–25, 189–191

• J •
joint probability, 215

• K •
Kruskal-Wallis test

about, 295–296
meeting the conditions for, 297–298
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steps for conducting, 299–301
using the, 302

• L •
least significant difference (LSD)

about, 177, 180
multiple comparisons with, 23, 180–182

level of consistency, 44–45
linear regression. See also multiple linear

regression; nonlinear regression;
simple linear regression

about, 195
applying ANOVA to, 195–198
connecting ANOVA with, 200–206
getting results with, 198–199
model, checking fit, 199–200
practice problem, 331–332

logarithms, 143–148
logistic regression

about, 27
interpreting coefficients of, 151–152
model, checking fit, 156–158
model, defining the, 149–150
practice problem, 332–333
predicting outcomes with, 36
running the analysis, 152–156
S-curve and, 150

• M •
main effects, 186–188
Mallow’s C-p, 115–116, 123–126
Mann-Whitney test. See rank sum test
margin of error

calculating, 45–46
confidence interval and, 20, 34, 51
elements of, 53–56
interpreting, 47
mean versus median, 265

marginal probability, 213–214
matched-pairs testing, 267, 278–279

mean, 262–265
mean sums of squares. See also sums of

squares
degrees of freedom (n – 1) and, 202–203
for error (MSE), 22, 171–172
F-test and, 169, 171–172
for treatments (MST), 22, 171–172

median
confidence interval, 275–277
in nonparametric statistics, 262–265
practice problem, 336–337
using sign to test, 266–267, 273–275

Microsoft Excel, 10–11
Minitab 14

author’s use of, 3
calculating confidence interval, 

276–277
calculating correlations with, 112, 311
calculating Fisher’s LSD, 181
calculating Tukey’s test, 183
Chi-square test, 231, 237
conducting rank sum test, 288
correlation testing with, 94–95
creating a scatterplot with, 72, 92
creating boxplots, 290, 297–298
creating histograms with, 166–167
creating scatterplot matrix, 111
data analysis using, 10–11, 291
exponential regression model, 143–145
Kruskal-Wallis test, 301
linear regression with, 74, 198
logistic regression, 150
making a two-way table with, 35
making residual plots with, 103–104
multiple regression model, 97–98, 114,

120, 124
normal distribution determination, 262
performing logistic regression, 153–154
polynomial regression modeling,

134–135
rank sum test, 293
running ANOVA, 169
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Minitab 14 (continued)
running two-way ANOVA, 187–188, 194
sign test using, 272
signed rank test, 284

model
about building and using a, 1, 249
best-fitting multiple regression, 96–97
expected, 251
exponential, 142–148
hypothesis testing, 57–65
leaving out data to fit, 325–326
linear regression, 73–76, 199–200
one-way ANOVA, 164–168
polynomial regression, 131–142
predicting random phenomena, 12–13
qualitative variable, 36–37
two-way ANOVA, 186

model selection procedure
backward model selection, 118–122
best subsets model selection, 123–126
comparison of, 126–128
forward model selection, 113–118

MSE. See mean sums of squares, for
error (MSE)

MST. See mean sums of squares, for
treatments (MST)

multicolinearity
multiple linear regression and, 95–96
regression model selection and, 111

multiple comparisons
about, 23, 177
ANOVA and, 177–179
Dunnett’s test, 184
Fisher’s LSD, 180–182
Kruskal-Wallis test, 295–302
rank sum test, 302–306

multiple linear regression
about, 27–28, 86
coefficient testing, 97–100
data collection, 90–91
finding correlations, 93–95

modeling, 87–89, 96–97
multicolinearity and, 95–96
predicting the value of y, 101
residual error, 102–106
scatterplots, 92–93
variables used in, 89–90

multiple regression model selection
about, 107
backward selection procedure, 118–122
best subsets procedure, 123–126
forward selection procedure, 113–118
identifying and assessing variables,

108–109
scatterplots and correlations, 110–112
selection procedure comparison,

126–128

• N •
New England Journal of Medicine, 247
95 percent confidence level

hypothesis testing and the, 21
interpreting the, 56–57

nonlinear regression
about, 28, 129
exponential regression model, 142–148
polynomial regression model, 131–142
practice problem, 333–334
scatterplots and correlations, 130–131

nonparametric statistics
about, 29–30, 261, 271
data fishing and, 17
Kruskal-Wallis test, 295–302
other than normal distributions,

262–264
practice problem, 336–337
rank of a value, 267–268
rank sum test, 270, 285–294, 302–306
risks in using, 265
sign test, 266–267, 271–279
signed rank, 268–270, 279–284
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normal distribution. See also bell-shaped
curve

bell-shaped curve and, 166–167
bivariate, 308
data fishing and, 16–17
hypothesis testing, 285
identifying a, 262–263
making assumptions about, 319–320

normality
histograms demonstrating, 166–167
multiple regression and, 102–105
nonparametric statistics and, 265
simple linear regression and, 79–80

null hypothesis (Ho). See Ho (null
hypothesis)

numerical variables. See quantitative
variables

• O •
observed cell counts (O), 29, 230–238,

252–256
Ohio State University, 176, 285–286
ordinal variables, 307–308
outliers

about, 71
identifying, 79, 82–84
nonparametric statistics, 263–264
simple linear regression, 82–84
throwing out the, 325–326

overall error rate
in data snooping, 14–15
Fisher’s LSD, 180–181
statistical analysis and, 38
Tukey’s test, 183

• P •
pairwise t-test, 23
parameter. See population parameters
Pearson, Karl, 309
Pearson’s correlation coefficient. See

correlation coefficients

Pew Research Foundation, 21, 34–37
pie charts, 219–220
polynomial regression model

about, 131–133
assessing the fit, 137–140
high-order, 134–135
making predictions, 140–142
second-degree, 135–137

population mean, 262–265
population parameters

about, 19, 49–50
confidence intervals to estimate, 50–57
hypothesis testing for, 57–65, 285
Type II errors and, 62

power curve, 62–66
precision

about, 44–45
confidence interval and, 51
margin of error for measuring, 45–47
numbers versus percentages, 252

probablility
calculating, 220
Chi-square distribution, 230
conditional, 215–220, 226–227
joint, 215
marginal, 213–214
practice problem, 332–333

Probability For Dummies (Rumsey), 
213, 303

probablility plot, 262
p-value

ANOVA and the, 173–174
Chi-square test and, 242–243
goodness-of-fit statistic, 257–258
hypothesis testing and the, 59–60
logistic regression, 150, 155–156

• Q •
quadratic polynomial. See second-degree

polynomial
quadratic relationship, 28
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qualitative variables
about, 32–33
Chi-square test for, 231
correlation of, 307–308
creating a two-way table for, 210–213
finding relationships between, 34–35,

209–210
independence among, 221–223
making predictions, 36–37
probabilities for comparing, 213–220
sample proportions and, 33–34
Simpson’s Paradox and, 223–228

quantitative variables
about, 32–33
correlation coefficients, 307–308
finding connections between, 38–40
making comparisons, 37–38
making predictions, 40–41
practice problem, 331–332

• R •
R2/R2 adjusted

ANOVA, 175–176
polynomial model, 138–139
practice problem, 337–338
regression analysis, 115–116, 

123–126, 200
two-way ANOVA, 194

r 2 for measuring fit, 81–82
random samples, 322–323
rank (of a value), 267–268
Rank Sum Table, 348
rank sum test

about, 270, 285–286
conducting the, 286–289
critical values, 348
data fishing and, 17
pairwise comparisons, 303–306
using the, 289–294

regression analysis. See linear regression;
logistic regression; multiple linear
regression; nonlinear regression

regression model
about, 40–41
best-fitting line, 137
bringing ANOVA to, 204–206
building the, 73–76
defining the, 77–78
knowing the limitations of, 86
logarithms and, 143–148

relative frequency, 32–33
residual error

linear regression, 78–81
multiple regression analysis, 102–106
polynomial model, 139–140

robust analysis, 30

• S •
sample mean, 20
sample proportion, 20, 33
sample size (n)

bigger isn’t always better in, 321–322
confidence interval and, 51–52
margin of error and, 46, 53–54
Type II errors and, 61
variance and, 43

sample standard deviation (s), 52–54
sample statistics, 19–20
sample variance, 42–44
sampling, creating bias in, 41–42
SAS, 10–11, 135
scatterplots

about, 38–40
linear regression, 199
model selection procedure with,

110–112
multiple linear regression, 92–93
nonlinear regression, 130–131
polynomial regression, 135–137
simple linear regression, 70–73

second-degree polynomial, 132, 134–137
self-selected samples, 41
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sign test
about, 266–267
estimating the median, 275–277
limitation of, 280
matched-pairs testing, 278–279
median testing, 272–275
steps for conducting, 271–272

signed rank test
about, 268–270
conducting the steps for, 279–281
practice problem, 336–337
using the, 282–284

significance, statistical
correlations and, 94–95
hypothesis testing, 59
selecting results to create, 320–321
two-way ANOVA, 189–191

significance level (α)
about, 14
hypothesis testing and the, 21
p-value and, 59–60
Type I errors and, 60–61

Simmons Research Bureau, 20
simple linear regression

about, 27–28
best-fitting line, 88
building a model, 73–76
cause-and-effect errors, 84–85
correlation coefficient in, 72–73
defining the model, 77–78
establishing relationships with, 69–71
extrapolation errors, 85–86
knowing the limitations of, 86
outliers, 82–84
predicting outcomes, 40–41
r 2 in measuring model fit, 81–82
residual error in, 78–81
using scatterplots, 71–72

Simpson, E. H., 224
Simpson’s Paradox, 223–228
68-95-99.7 Rule (Empirical Rule), 45,

77–78

skewed data, 17, 262–265
slope, regression line, 76
Spearman, Charles Edward, 309
Spearman’s rank correlation

about, 307
calculating, 309–311
using the, 311–314
when Pearson’s doesn’t work, 308

SPSS, 10–11, 135
SSE. See sums of squares for error (SSE)
SST. See sums of squares for treatment

(SST)
SSTO. See sums of squares; sums of

squares total (SSTO)
standard deviation (σ)

confidence interval and, 20, 46, 52
homoscedasticity condition, 78, 81
margin of error and, 53–54

standard error (SE)
coefficient of, 100
hypothesis testing and, 21
margin of error and, 45–46, 53–54

Stat Crunch, 10–11
statistical analysis

bias in, 41–44
dealing with bias in, 41–44
interpreting the results of, 47–48
qualitative variables in, 33–37
quantitative variables in, 37–41
types of variables in, 32–33
understanding precision in, 44–47

statistical software packages. See also
specific software

ANOVA and, 169
correlation testing with, 95
data analysis and, 10–11
data snooping with, 14–15
nonparametric procedures and, 30
on-line Internet, 258
polynomial regression with, 135
understanding the downside in, 11
writing your own code in lieu of, 10–11
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statistics
bigger isn’t always better in, 321–322
generalization in, 324–325
making assumptions with, 319–320
proving your point with, 317–318
random samples in, 322–323
removing data to fit the, 325–326
selecting significance in, 320–321
survey precision in, 323–324
terminology and techniques, 19–30
when x causes y, 318–319

Statistics For Dummies (Rumsey), 3, 19
Sterling, Mary Jane, 132
sums of squares. See also mean sums of

squares
ANOVA and, 170–171
for error (SSE), 22, 170–172
for regression (SSR), 201–202
total (SSTO), 22, 170–172
for treatment (SST), 22, 170–172
two-way ANOVA, 186–188

surveys, 318–319, 323–324
symmetric distribution, 17, 262–265

• T •
tables. See ANOVA table; Chi-square

table; three-way table; two-way
tables

t-distribution, 52, 339
Technical Stuff, when to use, 3, 6
third-degree polynomial, 132, 134–135
three-way table, 223–228
time series analysis, 106
treatment variables, 164, 186
t-statistic (test statistic)

Chi-square, 236–238
coefficient, 100–101
goodness-of-fit, 249–252
hypothesis testing and, 21, 58
regression, 205–206

t-test
data fishing and, 16–18
making comparisons with, 37–38,

162–163
nonparametric statistics and the,

270–271
Tukey’s simultaneous confidence

intervals, 180
Tukey’s test, 23, 177, 180, 183
t-value, 51–52
two sample t-test, 16–18, 162–163
two-way ANOVA. See analysis of variance

(ANOVA)
two-way tables

about, 209–210
Chi-square distribution and, 238–241
determining probabilities with, 213–220
independence between variables,

221–223
organizing data in, 210–213
relating Z-test to Chi-square, 245–247
Simpson’s Paradox and, 223–228

Type I errors
about, 60–61
Fisher’s LSD, 180–181
multiple linear regression, 114
Tukey’s test, 183

Type II errors, 61–62

• U •
University College London, 309
uphill relationship, 40

• V •
variables. See also qualitative variables;

quantitative variables
confounding, 85, 225–228
dependent, 221–223
explanatory, 36, 132
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ordinal, 307–308
treatment, 164, 186

variance, calculating, 42–43

• W •
Whitney, D. R., 285–286
Wilcoxon rank sum test. See rank sum

test
Wilcoxon signed rank test. See signed

rank test
Wiley

Algebra For Dummies (Sterling), 132
Probability For Dummies (Rumsey), 

213, 303
Statistics For Dummies (Rumsey), 

3, 19, 31

• Y •
y-hat, 75, 139

• Z •
Z-distribution, 52, 103, 140, 285
Z-score, 79, 103, 140
Z-test

Chi-square test comparison to, 245–247
making comparisons with, 162
nonparametric statistics and, 275
sample size (n), 288
for two population proportions,

243–245
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