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Preface

During the summer before my final undergraduate year at Caltech | set out to write a math text unlike any other,
namely, one written by me. In that respect | have succeeded beautifully. Unfortunately, the text is neither complete nor
polished. | have a “Warnings and Disclaimers” section below that is a little amusing, and an appendix on probability
that | feel concisesly captures the essence of the subject. However, all the material in between is in some stage of
development. | am currently working to improve and expand this text.

This text is freely available from my web set. Currently I'm at http://www.its.caltech.edu/"sean. | post new
versions a couple of times a year.

0.1 Advice to Teachers

If you have something worth saying, write it down.

0.2 Acknowledgments

| would like to thank Professor Saffman for advising me on this project and the Caltech SURF program for providing
the funding for me to write the first edition of this book.
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0.3 Warnings and Disclaimers

This book is a work in progress. It contains quite a few mistakes and typos. | would greatly appreciate your
constructive criticism. You can reach me at ‘sean@its.caltech.edu’.

Reading this book impairs your ability to drive a car or operate machinery.

This book has been found to cause drowsiness in laboratory animals.

This book contains twenty-three times the US RDA of fiber.

Caution: FLAMMABLE - Do not read while smoking or near a fire.

If infection, rash, or irritation develops, discontinue use and consult a physician.

Warning: For external use only. Use only as directed. Intentional misuse by deliberately concentrating contents
can be harmful or fatal. KEEP OUT OF REACH OF CHILDREN.

In the unlikely event of a water landing do not use this book as a flotation device.
The material in this text is fiction; any resemblance to real theorems, living or dead, is purely coincidental.
This is by far the most amusing section of this book.

Finding the typos and mistakes in this book is left as an exercise for the reader. (Eye ewes a spelling chequer
from thyme too thyme, sew their should knot bee two many misspellings. Though | ain't so sure the grammar’s
too good.)

The theorems and methods in this text are subject to change without notice.

This is a chain book. If you do not make seven copies and distribute them to your friends within ten days of
obtaining this text you will suffer great misfortune and other nastiness.

The surgeon general has determined that excessive studying is detrimental to your social life.
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e This text has been buffered for your protection and ribbed for your pleasure.

e Stop reading this rubbish and get back to work!

0.4 Suggested Use

This text is well suited to the student, professional or lay-person. It makes a superb gift. This text has a boquet that
is light and fruity, with some earthy undertones. It is ideal with dinner or as an apertif. Bon apetit!

0.5 About the Title

The title is only making light of naming conventions in the sciences and is not an insult to engineers. If you want to
learn about some mathematical subject, look for books with “Introduction” or “Elementary” in the title. If it is an
“Intermediate” text it will be incomprehensible. If it is “Advanced” then not only will it be incomprehensible, it will
have low production qualities, i.e. a crappy typewriter font, no graphics and no examples. There is an exception to this
rule: When the title also contains the word “Scientists” or “Engineers” the advanced book may be quite suitable for
actually learning the material.
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Chapter 1

Sets and Functions

1.1 Sets

Definition. A set is a collection of objects. We call the objects, elements. A set is denoted by listing the elements
between braces. For example: {e,s,7m,1}. We use ellipses to indicate patterns. The set of positive integers is
{1,2,3,...}. We also denote a sets with the notation {z|conditions on x} for sets that are more easily described than
enumerated. This is read as “the set of elements x such that x satisfies ...". = € S is the notation for “z is an
element of the set S.” To express the opposite we have = &€ S for “z is not an element of the set S."

Examples. We have notations for denoting some of the commonly encountered sets.
e () ={} is the empty set, the set containing no elements.
o Z={...,—1,0,1...} is the set of integers. (Z is for “Zahlen", the German word for “number”.)

e Q={p/qlp,q € Z,q # 0} is the set of rational numbers. (Q is for quotient.)

o R={z|x =ajas---a,.biby---} is the set of real numbers, i.e. the set of numbers with decimal expansions. '

LGuess what R is for.



e C={a+1|a,be R,2>=—1} is the set of complex numbers. 1 is the square root of —1. (If you haven't seen
complex numbers before, don't dismay. We'll cover them later.)

e 71, Q" and R are the sets of positive integers, rationals and reals, respectively. For example, Z* = {1,2,3,...}.

o 7%, Q" and R%* are the sets of non-negative integers, rationals and reals, respectively. For example, Z°" =

{0,1,2,...}.
e (a...b) denotes an open interval on the real axis. (a...b) ={z|z € R,a <z < b}

e We use brackets to denote the closed interval. [a...b] = {z|r € R,a < x < b}

The cardinality or order of a set S is denoted |S|. For finite sets, the cardinality is the number of elements in the
set. The Cartesian product of two sets is the set of ordered pairs:

X xY={(z,y)lr e X,y e Y}
The Cartesian product of n sets is the set of ordered n-tuples:

Xy x Xgx - x X,y ={(21,29,...,2,) |11 € X1,29 € Xo, ..., 2, € X, }.

Equality. Two sets S and T are equal if each element of S is an element of T" and vice versa. This is denoted,
S =T. Inequality is S # T, of course. S is a subset of T\, S C T, if every element of S is an element of T. S is a
proper subset of T, S C T, if S C T and S # T. For example: The empty set is a subset of every set, ) C S. The
rational numbers are a proper subset of the real numbers, Q C R.

Operations. The union of two sets, S U T, is the set whose elements are in either of the two sets. The union of n
sets,
;L:lSjESlUSQU"'USn

is the set whose elements are in any of the sets ;. The intersection of two sets, SN T, is the set whose elements are
in both of the two sets. In other words, the intersection of two sets in the set of elements that the two sets have in
common. The intersection of n sets,

P19 =51 NS N---NS,



is the set whose elements are in all of the sets S;. If two sets have no elements in common, SNT = (0, then the sets
are disjoint. If T C S, then the difference between S and T', S'\ T, is the set of elements in S which are not in 7.

S\T ={z|x € S,x ¢ T}

The difference of sets is also denoted S — T.

Properties. The following properties are easily verified from the above definitions.
e SUD=S,5N0=0, S\0=25,S\S=0.
e Commutative. SUT =TUS, SNT=TnNS.
e Associative. (SUT)UU =SU((TUU)=SUTUU, (SNT)NU=SN(TNU)=SNTnNU.
e Distributive. SU(T'NU)=(SUT)N(SUU), SN(TUU)=(SNT)U(SNU).

1.2 Single Valued Functions

Single-Valued Functions. A single-valued function or single-valued mapping is a mapping of the elements z € X

into elements y € Y. This is expressed as f : X — Y or X LY. If such a function is well-defined, then for each
x € X there exists a unique element of y such that f(x) = y. The set X is the domain of the function, Y is the
codomain, (not to be confused with the range, which we introduce shortly). To denote the value of a function on a
particular element we can use any of the notations: f(x) =y, f:x +— y or simply z +— y. [ is the identity map on
X if f(x) = x forall x € X.

Let f: X — Y. The range or image of f is

f(X) =A{yly = f(z) for some x € X}.
The range is a subset of the codomain. For each Z C Y, the inverse image of Z is defined:

f(2)={x € X|f(z) = 2 for some z € Z}.



Examples.

e Finite polynomials and the exponential function are examples of single valued functions which map real numbers
to real numbers.

e The greatest integer function, |-|, is a mapping from R to Z. |x] in the greatest integer less than or equal to .
Likewise, the least integer function, [x], is the least integer greater than or equal to .

The -jectives. A function is injective if for each x1 # x2, f(x1) # f(x2). In other words, for each x in the domain
there is a unique y = f(z) in the range. f is surjective if for each y in the codomain, there is an z such that y = f(z).
If a function is both injective and surjective, then it is bijective. A bijective function is also called a one-to-one mapping.

Examples.

e The exponential function y = e” is a bijective function, (one-to-one mapping), that maps R to R*. (R is the set
of real numbers; R is the set of positive real numbers.)

e f(x) = 2% is a bijection from RT to R™. f is not injective from R to RT. For each positive y in the range, there
are two values of x such that y = 2.

e f(z) =sinx is not injective from R to [—1..1]. For each y € [—1, 1] there exists an infinite number of values of
x such that y = sin x.

1.3 Inverses and Multi-Valued Functions

If y = f(z), then we can write x = f~!(y) where f~! is the inverse of f. If y = f(z) is a one-to-one function, then
f~Y(y) is also a one-to-one function. In this case, z = f~!(f(z)) = f(f'(x)) for values of x where both f(z) and
f~Y(x) are defined. For example log z, which maps R™ to R is the inverse of €*. z = €!°6% = log(e?) for all z € R,
(Note the x € R ensures that log x is defined.)
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Injective Surjective Bijective

Figure 1.1: Depictions of Injective, Surjective and Bijective Functions

If y = f(x) is a many-to-one function, then x = f~!(y) is a one-to-many function. f~!(y) is a multi-valued function.
We have z = f(f~'(x)) for values of z where f~1(z) is defined, however z # f~'(f(x)). There are diagrams showing
one-to-one, many-to-one and one-to-many functions in Figure 1.2.

one-to-one many-to-one one-to-many
domain range domain range domain range

Figure 1.2: Diagrams of One-To-One, Many-To-One and One-To-Many Functions

Example 1.3.1 y = 22, a many-to-one function has the inverse x = y'/>. For each positive i, there are two values of
x such that x = y'/?. y = 2% and y = x'/? are graphed in Figure 1.3.
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Figure 1.3: y = 2% and y = z'/2

We say that there are two branches of y = z'/2: the positive and the negative branch. We denote the positive

branch as y = /7; the negative branch is y = —/z. We call /= the principal branch of z'/2. Note that 1/ is a
one-to-one function. Finally, z = (2'/2)? since (+v/7)? = z, but 2 # (22)'/? since (2?)'/?2 = £2. y = /7 is graphed
in Figure 1.4.

Figure 1.4: y = \/x

Now consider the many-to-one function y = sinz. The inverse is x = arcsiny. For each y € [—1, 1] there are an
infinite number of values = such that z = arcsiny. In Figure 1.5 is a graph of y = sinx and a graph of a few branches
of y = arcsin z.

Example 1.3.2 arcsinx has an infinite number of branches. We will denote the principal branch by Arcsinx which

maps [—1,1] to [~Z,2]. Note that z = sin(arcsinz), but x # arcsin(sinz). y = Arcsinx in Figure 1.6.



AN ==
V==

Figure 1.5: y = sinx and y = arcsinx

Figure 1.6: y = Arcsinzx

1/3

Example 1.3.3 Consider 1'/3. Since x® is a one-to-one function, z'/® is a single-valued function. (See Figure 1.7.)

J
o

Figure 1.7: y = 2% and y = 2'/3



Example 1.3.4 Consider arccos(1/2). cosxz and a few branches of arccosx are graphed in Figure 1.8. cosx = 1/2

VA =—
VIV ==

Figure 1.8: y = cosz and y = arccosx

has the two solutions x = +7/3 in the range x € [—m,w|. Since cos(x + ) = — cos z,

arccos(1/2) = {xn/3 + nr}.

1.4 Transforming Equations

We must take care in applying functions to equations. It is always safe to apply a one-to-one function to an equation,
(provided it is defined for that domain). For example, we can apply y = z?® or y = €® to the equation x = 1. The
equations 2% = 1 and e” = ¢ have the unique solution z = 1.

2

If we apply a many-to-one function to an equation, we may introduce spurious solutions. Applying y = z* and

™

y = sinx to the equation x = 7 results in x? = %2 and sinx = 1. The former equation has the two solutions z = +7;
the latter has the infinite number of solutions x = 5+ 2nm, n€Z.

We do not generally apply a one-to-many function to both sides of an equation as this rarely is useful. Consider the
equation
sin?z = 1.



Applying the function f(z) = x'/? to the equation would not get us anywhere
(sin )12 = 11/2,

Since (sin?z)'/? # sinx, we cannot simplify the left side of the equation. Instead we could use the definition of

f(z) = 2'/? as the inverse of the 22 function to obtain
sinz = 1Y% = +1.
Then we could use the definition of arcsin as the inverse of sin to get
x = arcsin(=£1).
x = arcsin(1) has the solutions x = 7/2 + 2nm and x = arcsin(—1) has the solutions © = —7/2 + 2n7w. Thus

T
x:§+n7r, n e Z.

Note that we cannot just apply arcsin to both sides of the equation as arcsin(sinz) # x.

10



1.5 Exercises

Exercise 1.1
The area of a circle is directly proportional to the square of its diameter. What is the constant of proportionality?
Hint, Solution

Exercise 1.2
Consider the equation
r+1 2?2 —1
y—2 yP—4
1. Why might one think that this is the equation of a line?

2. Graph the solutions of the equation to demonstrate that it is not the equation of a line.

Hint, Solution

Exercise 1.3
Consider the function of a real variable,

What is the domain and range of the function?
Hint, Solution

Exercise 1.4

The temperature measured in degrees Celsius ? is linearly related to the temperature measured in degrees Fahrenheit .
Water freezes at 0° C' = 32° F' and boils at 100° C' = 212° F'. Write the temperature in degrees Celsius as a function
of degrees Fahrenheit.

2 QOriginally, it was called degrees Centigrade. centi because there are 100 degrees between the two calibration points. It is now
called degrees Celsius in honor of the inventor.

3 The Fahrenheit scale, named for Daniel Fahrenheit, was originally calibrated with the freezing point of salt-saturated water to
be 0°. Later, the calibration points became the freezing point of water, 32°, and body temperature, 96°. With this method, there are
64 divisions between the calibration points. Finally, the upper calibration point was changed to the boiling point of water at 212°.
This gave 180 divisions, (the number of degrees in a half circle), between the two calibration points.

11



Hint, Solution

Exercise 1.5
Consider the function graphed in Figure 1.9. Sketch graphs of f(—=z), f(z+3), f(3 — )+ 2, and f~!(z). You may
use the blank grids in Figure 1.10.

Figure 1.9: Graph of the function.

Hint, Solution

Exercise 1.6
A culture of bacteria grows at the rate of 10% per minute. At 6:00 pm there are 1 billion bacteria. How many bacteria

are there at 7:00 pm? How many were there at 3:00 pm?
Hint, Solution

Exercise 1.7
The graph in Figure 1.11 shows an even function f(z) = p(z)/q(x) where p(x) and ¢(x) are rational quadratic

polynomials. Give possible formulas for p(x) and ¢(x).
Hint, Solution

12



Figure 1.10: Blank grids.

Exercise 1.8
Find a polynomial of degree 100 which is zero only at x = —2,1, 7 and is non-negative.

Hint, Solution

Exercise 1.9
Hint, Solution

13



Exercise 1.10
Hint, Solution

Exercise 1.11
Hint, Solution

Exercise 1.12
Hint, Solution

Exercise 1.13
Hint, Solution

Exercise 1.14
Hint, Solution

Exercise 1.15
Hint, Solution

Exercise 1.16
Hint, Solution

Figure 1.11: Plots of f(x) = p(x)/q(x).

14
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1.6 Hints
Hint 1.1

area = constant x diameter?.

Hint 1.2
A pair (x,y) is a solution of the equation if it make the equation an identity.

Hint 1.3
The domain is the subset of R on which the function is defined.

Hint 1.4
Find the slope and x-intercept of the line.

Hint 1.5
The inverse of the function is the reflection of the function across the line y = .

Hint 1.6
The formula for geometric growth /decay is z(t) = xor!, where r is the rate.

Hint 1.7

Note that p(z) and ¢(z) appear as a ratio, they are determined only up to a multiplicative constant. We may take the
leading coefficient of ¢(z) to be unity.

p(x)  ar®+bxr+c

€T) = =
/(@) q(z) 2?2+ Pxr+yx
Use the properties of the function to solve for the unknown parameters.

Hint 1.8
Write the polynomial in factored form.

15



1.7 Solutions

Solution 1.1

area = 7 x radius?
™ .
area = 1 x diameter?

The constant of proportionality is 7.
Solution 1.2
1. If we multiply the equation by y? — 4 and divide by = + 1, we obtain the equation of a line.
y+2=x-1

2. We factor the quadratics on the right side of the equation.
r+1  (z+1)(z—1)
y—-2 (y-2)(y+2)
We note that one or both sides of the equation are undefined at y = +2 because of division by zero. There are
no solutions for these two values of y and we assume from this point that y # +2. We multiply by (y —2)(y +2).

(x+1D)y+2)=(x+1)(z—-1)

For x = —1, the equation becomes the identity 0 = 0. Now we consider x # —1. We divide by x + 1 to obtain
the equation of a line.

y+2=x-1
y=x—3
Now we collect the solutions we have found.
{(—1Ly):y # 2} U{(z,2 —3) : x # 1,5}

The solutions are depicted in Figure /reffig not a line.

16



-6 -4 -2 p) 4 6
-2

Figure 1.12: The solutions of Z—Jj; = z;:i.

Solution 1.3
The denominator is nonzero for all z € R. Since we don't have any division by zero problems, the domain of the
function is R. For 2 € R,

1
0< < 2.
242~
Consider
- (L.1)
Yy = N .

For any y € (0...1/2], there is at least one value of = that satisfies Equation 1.1.

Thus the range of the function is (0...1/2]

17



Solution 1.4
Let ¢ denote degrees Celsius and f denote degrees Fahrenheit. The line passes through the points (f,¢) = (32,0) and
(f,c) = (212,100). The z-intercept is f = 32. We calculate the slope of the line.

100 -0 100 5

slope= —— = — = —
212-32 180 9

The relationship between fahrenheit and celcius is

c= g(f—32).

Solution 1.5
We plot the various transformations of f(z).

Solution 1.6
The formula for geometric growth/decay is x(t) = xor?, where r is the rate. Let ¢ = 0 coincide with 6:00 pm. We

determine xg.
11"
2(0) = 10° = (—) = 19

zo = 10°

At 7:00 pm the number of bacteria is

11\% 1160
10° [ = = ~3.04 x 10"
<10) 10°1 8

At 3:00 pm the number of bacteria was

11\ 18 10189
9 _ ~
10 (—10> = T 354

18



Figure 1.13: Graphs of f(—z), f(z +3), f(3 —x)+ 2, and f~!(x).

Solution 1.7
We write p(x) and ¢(x) as general quadratic polynomials.

p(r)  ax®+br+c
q(r)  ax?+ Br+x

fz) =

We will use the properties of the function to solve for the unknown parameters.

19



Note that p(x) and ¢(x) appear as a ratio, they are determined only up to a multiplicative constant. We may take
the leading coefficient of g(z) to be unity.

p(x)  ar*+bx+c
q(z) 224 Pr+x

fx) =

f(z) has a second order zero at = = 0. This means that p(z) has a second order zero there and that y # 0.
az?

0=«

We note that f(x) — 2 as & — oo. This determines the parameter a.

2

ax
lim f(z) = lim ———
;Hoof( ) z—o0 12 + B + X
) 2ax
= lim
z—o00 20 + 3
. 2a
= lim —
z—00 2
=a
222
r)=—57—"—
/(@) 2?2+ fr+ x
Now we use the fact that f(z) is even to conclude that ¢(z) is even and thus 3 = 0.
222
f(z) = O
Finally, we use that f(1) = 1 to determine Y.
222
fw) = x?+1
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Solution 1.8
Consider the polynomial

p(@) = (z+2)"(z — )*(x —m)*.

It is of degree 100. Since the factors only vanish at © = —2, 1,7, p(x) only vanishes there. Since factors are non-
negative, the polynomial is non-negative.
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Chapter 2

Vectors

2.1 Vectors

2.1.1 Scalars and Vectors

A vector is a quantity having both a magnitude and a direction. Examples of vector quantities are velocity, force
and position. One can represent a vector in n-dimensional space with an arrow whose initial point is at the origin,
(Figure 2.1). The magnitude is the length of the vector. Typographically, variables representing vectors are often
written in capital letters, bold face or with a vector over-line, A, a,d. The magnitude of a vector is denoted |a].

A scalar has only a magnitude. Examples of scalar quantities are mass, time and speed.

Vector Algebra. Two vectors are equal if they have the same magnitude and direction. The negative of a vector,
denoted —a, is a vector of the same magnitude as a but in the opposite direction. We add two vectors a and b by
placing the tail of b at the head of a and defining a + b to be the vector with tail at the origin and head at the head
of b. (See Figure 2.2.)

The difference, a — b, is defined as the sum of a and the negative of b, a + (—b). The result of multiplying a by
a scalar «a is a vector of magnitude || |a| with the same/opposite direction if « is positive/negative. (See Figure 2.2.)
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Figure 2.1: Graphical Representation of a Vector in Three Dimensions

b 2a

a
a
b 5 |

Figure 2.2: Vector Arithmetic

Here are the properties of adding vectors and multiplying them by a scalar. They are evident from geometric
considerations.

a+b=b+a aa = aq commutative laws
(a+b)+c=a+(b+c) «ffa)=(af)a associative laws
ala+b)=caa+ab (a+ f)a=aa+ fa distributive laws
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Zero and Unit Vectors. The additive identity element for vectors is the zero vector or null vector. This is a vector
of magnitude zero which is denoted as 0. A unit vector is a vector of magnitude one. If a is nonzero then a/|a| is a
unit vector in the direction of a. Unit vectors are often denoted with a caret over-line, n.

Rectangular Unit Vectors. In n dimensional Cartesian space, R™, the unit vectors in the directions of the
coordinates axes are ey, ...e,. These are called the rectangular unit vectors. To cut down on subscripts, the unit
vectors in three dimensional space are often denoted with i, j and k. (Figure 2.3).

Figure 2.3: Rectangular Unit Vectors

Components of a Vector. Consider a vector a with tail at the origin and head having the Cartesian coordinates
(a1,...,a,). We can represent this vector as the sum of n rectangular component vectors, a = aje; + - -+ + a,€,.
(See Figure 2.4.) Another notation for the vector a is (ay,...,a,). By the Pythagorean theorem, the magnitude of

the vector a is |a] = /a2 + -+ + a2,
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agk

al

&

Figure 2.4: Components of a Vector

2.1.2 The Kronecker Delta and Einstein Summation Convention

The Kronecker Delta tensor is defined
5= Ti=a
0 ifis#jy.

This notation will be useful in our work with vectors.

Consider writing a vector in terms of its rectangular components. Instead of using ellipses: a = a,e;+- - -+ a,e,, we
could write the expression as a sum: a = Z?:l a;e;. We can shorten this notation by leaving out the sum: a = qa;e;,
where it is understood that whenever an index is repeated in a term we sum over that index from 1 to n. This is the
Einstein summation convention. A repeated index is called a summation index or a dummy index. Other indices can
take any value from 1 to n and are called free indices.
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Example 2.1.1 Consider the matrix equation: A -x = b. We can write out the matrix and vectors explicitly.

@11 -+ Ain X1 by

Qp1 - Qpn T, bn
This takes much less space when we use the summation convention.
aijxj = bl

Here j is a summation index and i is a free index.

2.1.3 The Dot and Cross Product
Dot Product. The dot product or scalar product of two vectors is defined,
a-b = |a||b|cos¥,
where 6 is the angle from a to b. From this definition one can derive the following properties:
e a-b=Db-a, commutative.

a(a-b) = (aa)-b =a- (ab), associativity of scalar multiplication.

a-(b+c)=a-b+a-c, distributive.
e e;e; = J;;. In three dimension, this is

i-i=j-j=k-k=1, i-j=j k=k-i=0.

a-b=ab; =ab +---+ a,b,, dot product in terms of rectangular components.

If a-b =0 then either a and b are orthogonal, (perpendicular), or one of a and b are zero.
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The Angle Between Two Vectors. We can use the dot product to find the angle between two vectors, a and
b. From the definition of the dot product,

a-b = |a||b|cos¥.

H—arccos<a.b)
la|[b[ }

Example 2.1.2 What is the angle between i and i+ j?

Jif[i + ]

™
1 .

If the vectors are nonzero, then

Parametric Equation of a Line. Consider a line that passes through the point a and is parallel to the vector t,
(tangent). A parametric equation of the line is

x=a+ut, uek

Implicit Equation of a Line. Consider a line that passes through the point a and is normal, (orthogonal, per-
pendicular), to the vector n. All the lines that are normal to n have the property that x - n is a constant, where x is
any point on the line. (See Figure 2.5.) x-n = 0 is the line that is normal to n and passes through the origin. The
line that is normal to n and passes through the point a is

X-n=a-n.
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wn=1 RXen=an

X-n=0

x-n=-1

Figure 2.5: Equation for a Line

The normal to a line determines an orientation of the line. The normal points in the direction that is above the
line. A point b is (above/on/below) the line if (b — a) - n is (positive/zero/negative). The signed distance of a point
b from the linex-n=a-n's

n
(b—a)  —.
0|

Implicit Equation of a Hyperplane. A hyperplane in R™ is an n — 1 dimensional “sheet” which passes through
a given point and is normal to a given direction. In R3 we call this a plane. Consider a hyperplane that passes through
the point a and is normal to the vector n. All the hyperplanes that are normal to n have the property that x - n is a
constant, where x is any point in the hyperplane. x - n = 0 is the hyperplane that is normal to n and passes through
the origin. The hyperplane that is normal to n and passes through the point a is

X-n=a-n.

The normal determines an orientation of the hyperplane. The normal points in the direction that is above the
hyperplane. A point b is (above/on/below) the hyperplane if (b — a) - n is (positive/zero/negative). The signed
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distance of a point b from the hyperplane x-n=a-n is

(b—a)

n|’

Right and Left-Handed Coordinate Systems. Consider a rectangular coordinate system in two dimensions.
Angles are measured from the positive = axis in the direction of the positive y axis. There are two ways of labeling the
axes. (See Figure 2.6.) In one the angle increases in the counterclockwise direction and in the other the angle increases
in the clockwise direction. The former is the familiar Cartesian coordinate system.

Yy X

A Y

Figure 2.6: There are Two Ways of Labeling the Axes in Two Dimensions.

There are also two ways of labeling the axes in a three-dimensional rectangular coordinate system. These are called
right-handed and left-handed coordinate systems. See Figure 2.7. Any other labelling of the axes could be rotated into
one of these configurations. The right-handed system is the one that is used by default. If you put your right thumb in
the direction of the z axis in a right-handed coordinate system, then your fingers curl in the direction from the x axis
to the y axis.

Cross Product. The cross product or vector product is defined,
a x b = |a||b|sinf n,

where @ is the angle from a to b and n is a unit vector that is orthogonal to a and b and in the direction such that a,
b and n form a right-handed system.
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Figure 2.7: Right and Left Handed Coordinate Systems

You can visualize the direction of a x b by applying the right hand rule. Curl the fingers of your right hand in the
direction from a to b. Your thumb points in the direction of a x b. Warning: Unless you are a lefty, get in the habit
of putting down your pencil before applying the right hand rule.

The dot and cross products behave a little differently. First note that unlike the dot product, the cross product is not
commutative. The magnitudes of a x b and b x a are the same, but their directions are opposite. (See Figure 2.8.)

axb

bxa

Figure 2.8: The Cross Product is Anti-Commutative.
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Let
ax b= |a|]|b|sinf n and b xa=|b|la|sin¢ m.

The angle from a to b is the same as the angle from b to a. Since {a,b,n} and {b,a, m} are right-handed systems,
m points in the opposite direction as n. Since a x b = —b x a we say that the cross product is anti-commutative.

Next we note that since
la x b| = |a]|b| sin#,

the magnitude of a X b is the area of the parallelogram defined by the two vectors. (See Figure 2.9.) The area of the
triangle defined by two vectors is then 3|a x b|.

b b
bsinG

Figure 2.9: The Parallelogram and the Triangle Defined by Two Vectors

From the definition of the cross product, one can derive the following properties:
e a X b= —b X a, anti-commutative.

e a(axb)=(aa) x b=a x (ab), associativity of scalar multiplication.

ax (b+c)=axb+a xc, distributive.

(ax b) xc#ax (bxc). The cross product is not associative.

eixi=jxj=kxk=0.

31



eixj=k jxk=1ikxi=j.

[ ]
i j k
axb= (CLng — agbg)i -+ (a361 — Cllbg)j + ((lle - agbl)k = (a1 ag as|,
by by b3

cross product in terms of rectangular components.

e |f a-b = 0 then either a and b are parallel or one of a or b is zero.

Scalar Triple Product. Consider the volume of the parallelopiped defined by three vectors. (See Figure 2.10.)
The area of the base is ||b||c| sin §|, where 0 is the angle between b and c. The height is |a| cos ¢, where ¢ is the angle
between b x ¢ and a. Thus the volume of the parallelopiped is |a||b||c|sin 6 cos ¢.

Figure 2.10: The Parallelopiped Defined by Three Vectors

Note that

la- (b xc)|=|a-(|bllc|sinf n)|
= ||a||bl|c| sin @ cos ¢| .
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Thus |a - (b x c)| is the volume of the parallelopiped. a- (b X c) is the volume or the negative of the volume depending
on whether {a, b, c} is a right or left-handed system.

Note that parentheses are unnecessary in a-b x c. There is only one way to interpret the expression. If you did the
dot product first then you would be left with the cross product of a scalar and a vector which is meaningless. a-b x ¢
is called the scalar triple product.

Plane Defined by Three Points. Three points which are not collinear define a plane. Consider a plane that
passes through the three points a, b and c. One way of expressing that the point x lies in the plane is that the vectors
x —a, b—a and ¢ — a are coplanar. (See Figure 2.11.) If the vectors are coplanar, then the parallelopiped defined by
these three vectors will have zero volume. We can express this in an equation using the scalar triple product,

(x—a)-(b—a)x(c—a)=0.

X

Figure 2.11: Three Points Define a Plane.

2.2 Sets of Vectors in n Dimensions

Orthogonality. Consider two n-dimensional vectors

X:('Ilaan"')'In)) y:(y17y27"'ayn)‘
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The inner product of these vectors can be defined
xly)=x-y= szyz
i=1

The vectors are orthogonal if x - y = 0. The norm of a vector is the length of the vector generalized to n dimensions.
[l = vx - x

Consider a set of vectors
{X1,X2, ..., X}

If each pair of vectors in the set is orthogonal, then the set is orthogonal.

If in addition each vector in the set has norm 1, then the set is orthonormal.

1 ifi=j
XiXj = 0; = e
0 ifi=£7
Here 6;; is known as the Kronecker delta function.
Completeness. A set of n, n-dimensional vectors
{X17X27 oo 7Xn}

is complete if any n-dimensional vector can be written as a linear combination of the vectors in the set. That is, any
vector y can be written
n
Yy = Z CiX;.
i=1
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Taking the inner product of each side of this equation with x,,,

Yy X = <iCiXi> “Xm

i=1
n
= Z CiX; * Xm
i=1
= CnXm * Xm,
Cm = Y Xom
%l
Thus y has the expansion
y y X
<l
If in addition the set is orthonormal, then
n
y = (y : Xz)Xz
=1
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2.3 Exercises

The Dot and Cross Product

Exercise 2.1
Prove the distributive law for the dot product,

a-(b+c)=a-b+a-c.

Exercise 2.2
Prove that
a-b:aibi5a1b1+--~+anbn.

Exercise 2.3
What is the angle between the vectors i + j and i + 3j?

Exercise 2.4
Prove the distributive law for the cross product,

ax(b+c)=axb+axb.

Exercise 2.5

Show that
i j k
axb=|a a as
by by b3

Exercise 2.6
What is the area of the quadrilateral with vertices at (1, 1), (4,2), (3,7) and (2,3)?

Exercise 2.7
What is the volume of the tetrahedron with vertices at (1,1,0), (3,2,1), (2,4,1) and (1,2,5)?
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Exercise 2.8
What is the equation of the plane that passes through the points (1,2, 3), (2,3,1) and (3,1,2)? What is the distance
from the point (2,3,5) to the plane?
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2.4 Hints

The Dot and Cross Product

Hint 2.1
First prove the distributive law when the first vector is of unit length,

n-(b+c)=n-b+n-c
Then all the quantities in the equation are projections onto the unit vector n and you can use geometry.

Hint 2.2
First prove that the dot product of a rectangular unit vector with itself is one and the dot product of two distinct
rectangular unit vectors is zero. Then write a and b in rectangular components and use the distributive law.

Hint 2.3
Use a- b = |a]|b]| cos¥.

Hint 2.4
First consider the case that both b and c are orthogonal to a. Prove the distributive law in this case from geometric
considerations.
Next consider two arbitrary vectors a and b. We can write b = b, + b where b, is orthogonal to a and by is
parallel to a. Show that
axb=axb,.

Finally prove the distributive law for arbitrary b and c.

Hint 2.5
Write the vectors in their rectangular components and use,

ixj=k, jxk=i, kxi=]j,
and,

ixi=jxj=kxk=0.
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Hint 2.6
The quadrilateral is composed of two triangles. The area of a triangle defined by the two vectors a and b is %|a -b|.

Hint 2.7

Justify that the area of a tetrahedron determined by three vectors is one sixth the area of the parallelogram determined
by those three vectors. The area of a parallelogram determined by three vectors is the magnitude of the scalar triple
product of the vectors: a-b X c.

Hint 2.8
The equation of a line that is orthogonal to a and passes through the point b is a-x = a-b. The distance of a point

c from the plane is

(c—b)-—

al
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2.5 Solutions

The Dot and Cross Product

Solution 2.1
First we prove the distributive law when the first vector is of unit length, i.e.,

n-(b+c)=n-b+n-c (2.1)

From Figure 2.12 we see that the projection of the vector b 4 c onto n is equal to the sum of the projections b -n and
c-n.

o,
=

n-(b+c)

Figure 2.12: The Distributive Law for the Dot Product

Now we extend the result to the case when the first vector has arbitrary length. We define a = |ajn and multiply
Equation 2.1 by the scalar, |a].

lajn- (b+c)=lajn-b+an-c

a-(b+c)=a-b+a-c.

Solution 2.2
First note that
e, e = |e1||e,| COS(O) = 1.
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Then note that that dot product of any two distinct rectangular unit vectors is zero because they are orthogonal. Now
we write a and b in terms of their rectangular components and use the distributive law.

a-b= a;e; - bjej
= aibjei . ej

= CLibj(Sij

a;b;

Solution 2.3
Since a- b = |a||b| cosf, we have

H—arccos<a.b)
|al|b|

when a and b are nonzero.

s . 4 9
f = arccos ((1+J) ,<1 + 3'])) = arccos (7) = arccos ﬁ ~ (0.463648
i+ j][i+ 3j V2V/10 5

Solution 2.4

First consider the case that both b and c are orthogonal to a. b + c is the diagonal of the parallelogram defined by
b and c, (see Figure 2.13). Since a is orthogonal to each of these vectors, taking the cross product of a with these
vectors has the effect of rotating the vectors through /2 radians about a and multiplying their length by |a|. Note
that a X (b + c) is the diagonal of the parallelogram defined by a x b and a x c. Thus we see that the distributive law
holds when a is orthogonal to both b and c,

ax(b+c)=axb+axc.

Now consider two arbitrary vectors a and b. We can write b = b, + b where b is orthogonal to a and b is
parallel to a, (see Figure 2.14).
By the definition of the cross product,
a x b = |a||b|sinf n.
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ax(b+c)

Figure 2.13: The Distributive Law for the Cross Product

h\b

Figure 2.14: The Vector b Written as a Sum of Components Orthogonal and Parallel to a

Note that
|b_| = [b[sind,
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and that a x b, is a vector in the same direction as a x b. Thus we see that
a x b = |a||b|sinf n
= |a|(sinf|b|)n
= |a[[bi[n = |a[[b_|sin(7/2)n
axb=axbj.

Now we are prepared to prove the distributive law for arbitrary b and c.

ax(b+c)=ax (b, +bj+ci+c)
—ax((b+c) +(b+o))
—ax((b+c))
—axb,+axc,

=axb+axc

ax(b+c)=axb+axc

Solution 2.5
We know that
in:k, ij:i7 kXi:j7
and that
ixi=jxj=kxk=0.

Now we write a and b in terms of their rectangular components and use the distributive law to expand the cross
product.

ax b = (a1i+ asj + azk) x (b1i+ boj + bsk)
= a1i X (bii + boj + bsk) + asj x (b1i + boj + bsk) + ask x (b1i + baj + b3k)
= ar1bok + a1bs3(—J) + azbi(—k) + asb3i + aszbij + azba(—1i)
= (agbs — asby)i — (a1bs — asby)j + (a1b2 — azby )k
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Next we evaluate the determinant.

! J k . |Q2 Asg .|ap as a; Qs
a; as as| =1 -] +k

by b3 by b3 by by
b1 by b3

= (a263 — agbg)i — (G,lbg — agbl)j + (CleQ — agbl)k

Thus we see that,

i j k
axb=|a; ay as
by by bs

Solution 2.6

The area area of the quadrilateral is the area of two triangles. The first triangle is defined by the vector from (1, 1) to
(4,2) and the vector from (1,1) to (2,3). The second triangle is defined by the vector from (3,7) to (4,2) and the
vector from (3,7) to (2,3). (See Figure 2.15.) The area of a triangle defined by the two vectors a and b is 3|a - b|.
The area of the quadrilateral is then,

S1(3+3) - G4 20)| + 51— 50) - (i — 41)] = £(5) + 5(19) = 12

Solution 2.7

The tetrahedron is determined by the three vectors with tail at (1,1,0) and heads at (3,2,1), (2,4,1) and (1,2,5).
These are (2,1,1), (1,3,1) and (0,1,5). The area of the tetrahedron is one sixth the area of the parallelogram
determined by these vectors. (This is because the area of a pyramid is %(base)(height). The base of the tetrahedron is
half the area of the parallelogram and the heights are the same. %% = % ) Thus the area of a tetrahedron determined
by three vectors is ¢|a- b x c|. The area of the tetrahedron is

1 1 7
6 [(2,1,1) - (1,3,1) x (1,2,5)| = G 1(2,1,1) - (13, -4, —1)| = 3
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y @)

(23)
(4.2)

1, X

Figure 2.15: Quadrilateral

Solution 2.8
The two vectors with tails at (1,2,3) and heads at (2,3,1) and (3,1,2) are parallel to the plane. Taking the cross
product of these two vectors gives us a vector that is orthogonal to the plane.

(1,1,-2) x (2,—1,-1) = (-3, -3, -3)

We see that the plane is orthogonal to the vector (1,1, 1) and passes through the point (1,2,3). The equation of the
plane is

(1,1,1) - (z,y,2) = (1,1,1) - (1,2, 3),
r+y+z=0.

Consider the vector with tail at (1,2,3) and head at (2,3,5). The magnitude of the dot product of this vector with
the unit normal vector gives the distance from the plane.

<1,172>-7<1’1’1> _ 4

(LLDIT v3 3
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Part 11

Calculus
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Chapter 3

Differential Calculus

3.1 Limits of Functions

Definition of a Limit. If the value of the function y(x) gets arbitrarily close to ¢ as x approaches the point ¢,
then we say that the limit of the function as x approaches ¢ is equal to . This is written:

lim y(z) =1

T—E€

To make the notion of “arbitrarily close” precise: for any ¢ > 0 there exists a § > 0 such that |y(z) — ¢| < € for all
0 < |z —&| < 4. Thatis, there is an interval surrounding the point x = £ for which the function is within € of 1. See
Figure 3.1. Note that the interval surrounding x = £ is a deleted neighborhood, that is it does not contain the point
x = &. Thus the value function at x = £ need not be equal to v for the limit to exist. Indeed the function need not
even be defined at z = €.

To prove that a function has a limit at a point & we first bound |y(z) — v| in terms of § for values of x satisfying
0 < |z —¢&| < 4. Denote this upper bound by w(d). Then for an arbitrary € > 0, we determine a § > 0 such that the
the upper bound u(d) and hence |y(z) — 1| is less than e.
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n+e

/ - X

n—¢
= [ &8 &
w

Figure 3.1: The ¢ neighborhood of x = £ such that |y(z) — ¥| <.

Example 3.1.1 Show that
lim 2% = 1.

m—)l

Consider any ¢ > 0. We need to show that there exists a 6 > 0 such that |z — 1| < ¢ for all |x — 1| < 6. First we
obtain a bound on |z* — 1|.

[2* =1 = [(z = 1)(z + 1)|
= |z — 1|z + 1|
< dlz + 1|
=d|(z — 1) +2|
<o(d+2)

Now we choose a positive ¢ such that,
I(d+2)=e

We see that
d=v1+e—1,

is positive and satisfies the criterion that |z* — 1| < € for all 0 < |x — 1| < §. Thus the limit exists.
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Note that the value of the function y(£) need not be equal to lim,_.¢ y(x). This is illustrated in Example 3.1.2.

Example 3.1.2 Consider the function

1 forxeZ,
y(x) =
0 forx ¢ Z.

For what values of { does lim,_.¢ y(x) exist?

First consider & ¢ 7. Then there exists an open neighborhood a < £ < b around & such that y(x) is identically zero
for x € (a,b). Then trivially, lim,_.¢ y(x) = 0.

Now consider & € Z. Consider any € > 0. Then if |[v — &| < 1 then |y(z) — 0] = 0 < e. Thus we see that
lim, ¢ y(z) = 0.

Thus, regardless of the value of €, lim,_.¢ y(z) = 0.

Left and Right Limits. With the notation lim, .+ y(z) we denote the right limit of y(z). This is the limit as x
approaches & from above. Mathematically: lim, ¢+ exists if for any € > 0 there exists a 6 > 0 such that |y(z) —1| <€
forall 0 < { —x < 4. The left limit lim, .- y(x) is defined analogously.

Example 3.1.3 Consider the function, Sig‘x defined for x # 0. (See Figure 3.2.) The left and right limits exist as x
approaches zero.

sin x sin

lim — =1, lim —— = -1
-0+ |z z—0- |z
However the limit,
. sinx
lim ——,
% Tal

does not exist.

Properties of Limits. Let lim, . u(x) and lim,_.¢ v(z) exist.

o lim, . (au(z) + bv(z)) = alim, ¢ u(x) + blim, ¢ v(z).
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Figure 3.2: Plot of sin(z)/|x|.

o lim, ¢ (u(z)v(x)) = (lim,—e u(z)) (lim,—¢ v(x)).

o lim, . <M> = M if lim,_¢ v(z) # 0.

v(x) lim, ¢ v(z
Example 3.1.4 Prove that if lim, . u(x) = p and lim,_.¢ v(z) = v exist then

liné (u(z)v(x)) = (lirré u(x)) <lin% v(;z:)) .
Assume that p and v are nonzero. (The cases where one or both are zero are similar and simpler.)

Ju()o(e) — ] = Juv — (u+ = u)v]
— Ju(v — ) + (u— )]
= Jullv — | + |u— ullv]

A sufficient condition for |u(z)v(x) — uv| < € is

|u—,u]<L and |U—V|<;.
2 (11 + 57

2|y
Since the two right sides of the inequalities are positive, there exists 61 > 0 and d, > 0 such that the first inequality is
satisfied for all |z — &| < 01 and the second inequality is satisfied for all |x — £| < d2. By choosing 0 to be the smaller
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of §; and §, we see that

lu(x)v(z) — pv| < € for all |x —&| < 6.
Thus

i (ufe)o() = (o)) (tim o)) = v

Result 3.1.1 Definition of a Limit. The statement:

lim () = ¢
means that y(x) gets arbitrarily close to 1) as x approaches £. For any € > 0 there exists a
o > 0 such that |y(x) — ¥| < € for all z in the neighborhood 0 < |z — &| < §. The left and
right limits,
lim y(z) =+ and lim y(z) =1

x—E~ r—Et
denote the limiting value as x approaches & respectively from below and above. The neigh-

borhoods are respectively —6 < x — & <0and 0 <z — & < 4.
Properties of Limits. Let lim, ¢ u(z) and lim, .. v(z) exist.

o lim, . (au(x) + bv(x)) = alim, ¢ u(x) + blim, .. v(x).

o lim, ¢ (u(x)v(z)) = (limy—e u(z)) (imy_¢ v(z)).

° hmx—>§ <7;(a:)> _ limg e u(x) if limx_,gv(a:) 7& 0.

() ) 7 limg_ev(x)

o1




3.2 Continuous Functions

Definition of Continuity. A function y(z) is said to be continuous at x = ¢ if the value of the function is
equal to its limit, that is, lim, .. y(z) = y(£). Note that this one condition is actually the three conditions: y(¢) is
defined, lim, ¢ y(x) exists and lim,_.¢ y(x) = y(£). A function is continuous if it is continuous at each point in its
domain. A function is continuous on the closed interval [a,b] if the function is continuous for each point x € (a, b) and

lim, .+ y(x) = y(a) and lim,_;,_ y(z) = y(b).

Discontinuous Functions. If a function is not continuous at a point it is called discontinuous at that point. If
lim,_.¢ y(x) exists but is not equal to y(&), then the function has a removable discontinuity. It is thus named because
we could define a continuous function

y(z) for z # ¢,
z(z) = {7
lim, ¢ y(z) forz =¢,
to remove the discontinuity. If both the left and right limit of a function at a point exist, but are not equal, then the
function has a jump discontinuity at that point. If either the left or right limit of a function does not exist, then the

function is said to have an infinite discontinuity at that point.

Example 3.2.1 % has a removable discontinuity at x = 0. The Heaviside function,
0 for x < 0,
H(x)=<1/2 forxz =0,

1 for x > 0,

has a jump discontinuity at x = 0. % has an infinite discontinuity at x = 0. See Figure 3.3.

Properties of Continuous Functions.

52



-
+ o

Figure 3.3: A Removable discontinuity, a Jump Discontinuity and an Infinite Discontinuity

Arithmetic. If u(z) and v(z) are continuous at = = £ then u(z) + v(x) and u(z)v(z) are continuous at = = £. %2
is continuous at z = £ if v(§) # 0.

Function Composition. If u(z) is continuous at z = & and wv(x) is continuous at z = p = u(§) then u(v(z)) is
continuous at x = £. The composition of continuous functions is a continuous function.

Boundedness. A function which is continuous on a closed interval is bounded in that closed interval.

Nonzero in a Neighborhood. If y(£) # 0 then there exists a neighborhood (£ — €,& + €), € > 0 of the point £ such
that y(z) # 0 for x € (£ — €, +€).

Intermediate Value Theorem. Let u(x) be continuous on [a,b]. If u(a) < p < u(b) then there exists & € [a, b] such
that w(§) = p. This is known as the intermediate value theorem. A corollary of this is that if u(a) and u(b) are
of opposite sign then u(x) has at least one zero on the interval (a,b).

Maxima and Minima. If u(x) is continuous on [a, b] then u(x) has a maximum and a minimum on [a, b]. That is, there

is at least one point £ € [a, b] such that u(§) > u(x) for all z € [a,b] and there is at least one point ¥ € [a, b]
such that u(v)) < u(x) for all x € [a, b].

Piecewise Continuous Functions. A function is piecewise continuous on an interval if the function is bounded on
the interval and the interval can be divided into a finite number of intervals on each of which the function is continuous.
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For example, the greatest integer function, |z |, is piecewise continuous. (|z] is defined to the the greatest integer less
than or equal to x.) See Figure 3.4 for graphs of two piecewise continuous functions.

\ S —
U\ L

Figure 3.4: Piecewise Continuous Functions

Uniform Continuity. Consider a function f(z) that is continuous on an interval. This means that for any point £
in the interval and any positive € there exists a § > 0 such that |f(z) — f(§)| < e for all 0 < |x —&| < . In general,
this value of & depends on both & and e. If § can be chosen so it is a function of € alone and independent of £ then
the function is said to be uniformly continuous on the interval. A sufficient condition for uniform continuity is that the
function is continuous on a closed interval.

3.3 The Derivative

Consider a function y(z) on the interval (z ...z + Ax) for some Az > 0. We define the increment Ay = y(z + Azx) —
y(x). The average rate of change, (average velocity), of the function on the interval is ﬁ—z. The average rate of change
is the slope of the secant line that passes through the points (z,y(x)) and (z + Az, y(z + Ax)). See Figure 3.5.

If the slope of the secant line has a limit as Ax approaches zero then we call this slope the derivative or instantaneous
rate of change of the function at the point z. We denote the derivative by S—Z, which is a nice notation as the derivative
is the limit of £% as Az — 0.

dy _ . vz +Az) —y(2)
dr  Az—o0 Ax
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Ay
AX

Figure 3.5: The increments Ax and Ay.

Ax may approach zero from below or above. It is common to denote the derivative % by %y, y'(z), y' or Dy.

A function is said to be differentiable at a point if the derivative exists there. Note that differentiability implies
continuity, but not vice versa.

Example 3.3.1 Consider the derivative of y(x) = z* at the point x = 1.

/ — .
y(1)= AlalcrEO Ax
. (1+Az)? -1
a Al;lz;rilo Ax
= lim (2 + Ax)
Ax—
=2

Figure 3.6 shows the secant lines approaching the tangent line as Ax approaches zero from above and below.
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Figure 3.6: Secant lines and the tangent to z2 at z = 1.

Example 3.3.2 We can compute the derivative of y(x) = x* at an arbitrary point x.

d (x + Aw)? — 22
ae )= AR
= lim (2z + Ax)
Azx—
= 2x
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Properties.
derivatives are:

Let u(x) and v(z) be differentiable. Let a and b be

d du dv
a(auijv)—aa—i—b@

4y du e

dx u _dxv udx
i(ﬁ)_vi—’;—u%

de \v/ v2

d ., B a1 du

a(u)fau e

d _dudv ,
S ulv(@) = T = (wl)' ()

These can be proved by using the definition of differentiation.

Example 3.3.3 Prove the quotient rule for derivatives.

u(z+Az)  u(x)
v(z+Az) v(z)

Az—0 Ax

u(r + Ax)v(x) — u(z)v(z + Ax)

constants. Some fundamental properties of

Linearity
Product Rule
Quotient Rule

Power Rule

Chain Rule

(u(z + Az) — u(x))v(x) — u(z)(v(z + Az) — v(z))

= lim
Az—0 Azv?(z)
_ limas—p et By (1) — () limpgp “EHED=E
v?()
du dv
_ Vi " Y4
02
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Trigonometric Functions.

Some derivatives of trigonometric functions are:

d .
—sinx = cosx
dx

—cosx = —sinx
dx
; 1

—tanx =

dz cos? x
d

—et ="

dx

—sinh z = cosh z
dx

— coshx = sinhzx
dx

1
— tanhz =

dx cosh? r

d ) 1
— arcsinyr = —m—=
dz (1 —22)1/2
1
@ arccosxr = —m
— arctanx =
dx 1+ 22
d | 1
— nr = —
dz x
. 1
a arcsinh z = m
1
@ arccoshx = W
1
a arctanhx = _—332

Example 3.3.4 We can evaluate the derivative of x* by using the identity a® = e*!"@.

— exlnx

—(znx)

dx

1
=2°(1-Inz + x;)

=2"(1+Inx)
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Inverse Functions. If we have a function y(x), we can consider = as a function of y, z(y). For example, if
2—y

y(x) = 82% then x(y) = 2y/y; if y(x) = L then z(y) = =1 The derivative of an inverse function is
d 1
d_yx(y) = %-

Example 3.3.5 The inverse function of y(x) = €* is x(y) = Iny. We can obtain the derivative of the logarithm from
the derivative of the exponential. The derivative of the exponential is

% =e".
dx
Thus the derivative of the logarithm is
d 1 d ) 1 1 1
— 1N = — = u—= — = —,
dy Y dy Y @ oer oy

3.4 Implicit Differentiation

An explicitly defined function has the form y = f(x). A implicitly defined function has the form f(z,y) = 0. A few
examples of implicit functions are 22+ 4% —1 = 0 and x + y +sin(xy) = 0. Often it is not possible to write an implicit
equation in explicit form. This is true of the latter example above. One can calculate the derivative of y(z) in terms
of 2 and y even when y(x) is defined by an implicit equation.

Example 3.4.1 Consider the implicit equation
2

2 —ay—y? =1

This implicit equation can be solved for the dependent variable.

y(zr) = % <—x:|: \/m> :
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We can differentiate this expression to obtain

1
g/:—<—1i——@L—).
2 512 — 4

One can obtain the same result without first solving for y. If we differentiate the implicit equation, we obtain

d
20—y —x— —2y— =20
vy xdx yd:v
We can solve this equation for g—z.
dy 2x—vy
dr x4+ 2y

We can differentiate this expression to obtain the second derivative of y.

®y _ (@+29)2—y) - Qz—y)(1+2y)
da? (x 4 2y)?
_ 5y —=y)
(z +2y)?

Substitute in the expression for i’ .

10(z? — 2y — y?)
(z +2y)?

Use the original implicit equation.

10
(z +2y)?
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3.5 Maxima and Minima

A differentiable function is increasing where f'(x) > 0, decreasing where f’(x) < 0 and stationary where f'(z) = 0.

A function f(x) has a relative maxima at a point z = £ if there exists a neighborhood around ¢ such that f(x) < f(§)
forx € (x — 6,2+ 9), 6 > 0. The relative minima is defined analogously. Note that this definition does not require
that the function be differentiable, or even continuous. We refer to relative maxima and minima collectively are relative
extrema.

Relative Extrema and Stationary Points. If f(z) is differentiable and f(£) is a relative extrema then x = ¢
is a stationary point, f’(£) = 0. We can prove this using left and right limits. Assume that f(£) is a relative maxima.
Then there is a neighborhood (z — §,z + 4), § > 0 for which f(x) < f(£). Since f(z) is differentiable the derivative

at x = ¢,
- f(E+Ax) — f(S)
! —
&) = Alggo Az
exists. This in turn means that the left and right limits exist and are equal. Since f(z) < f(§) for £ — 0 < x < £ the

left limit is non-positive,
/ T f(f—FAl’)—f(f)
119 = A}clir(l)— Az

Since f(x) < f(§) for £ < x < &+ 4 the right limit is nonnegative,
ey — e JEEAT) = f(E)
f&) = Jm, Ax
Thus we have 0 < f'(£) < 0 which implies that f'(¢) = 0.

?

<0.

> 0.

It is not true that all stationary points are relative extrema. That is, f'({) = 0 does not imply that z = £ is an
extrema. Consider the function f(z) = 2. x = 0 is a stationary point since f'(z) = 2%, f'(0) = 0. However, z =0 is

neither a relative maxima nor a relative minima.

It is also not true that all relative extrema are stationary points. Consider the function f(z) = |x|. The point z =0
is a relative minima, but the derivative at that point is undefined.
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First Derivative Test. Let f(z) be differentiable and f/(£) =0
e If f'(z) changes sign from positive to negative as we pass through = = £ then the point is a relative maxima.
o If f/(x) changes sign from negative to positive as we pass through = = £ then the point is a relative minima.
e If f'(x) is not identically zero in a neighborhood of # = £ and it does not change sign as we pass through the

point then x = £ is not a relative extrema.

Example 3.5.1 Consider y = x? and the point x = 0. The function is differentiable. The derivative, ' = 2x, vanishes
atx = 0. Since y'(x) is negative for x < 0 and positive for x > 0, the point x = 0 is a relative minima. See Figure 3.7.

Example 3.5.2 Consider y = cosx and the point x = 0. The function is differentiable. The derivative, y’ = —sinx
is positive for —m < x < 0 and negative for 0 < x < m. Since the sign of y' goes from positive to negative, t =0 is a
relative maxima. See Figure 3.7.

Example 3.5.3 Consider y = 2 and the point x = 0. The function is differentiable. The derivative, iy = 32 is
positive for x < 0 and positive for 0 < x. Since y' is not identically zero and the sign of i/ does not change, x = 0 is
not a relative extrema. See Figure 3.7.

Figure 3.7: Graphs of 22, cosz and z3.
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Concavity. If the portion of a curve in some neighborhood of a point lies above the tangent line through that point,
the curve is said to be concave upward. If it lies below the tangent it is concave downward. If a function is twice
differentiable then f”(x) > 0 where it is concave upward and f”(x) < 0 where it is concave downward. Note that
f"(x) > 0 is a sufficient, but not a necessary condition for a curve to be concave upward at a point. A curve may be
concave upward at a point where the second derivative vanishes. A point where the curve changes concavity is called
a point of inflection. At such a point the second derivative vanishes, f”(z) = 0. For twice continuously differentiable
functions, f”(x) = 0 is a necessary but not a sufficient condition for an inflection point. The second derivative may
vanish at places which are not inflection points. See Figure 3.8.

Figure 3.8: Concave Upward, Concave Downward and an Inflection Point.

Second Derivative Test. Let f(z) be twice differentiable and let = = ¢ be a stationary point, f'(§) = 0.
o If f7(£) < 0 then the point is a relative maxima.
o If f7(£) > 0 then the point is a relative minima.
o If f7(£) = 0 then the test fails.
Example 3.5.4 Consider the function f(x) = cosx and the point x = 0. The derivatives of the function are

f'(z) = —sinx, f"(z) = —cosx. The point x = 0 is a stationary point, f'(0) = —sin(0) = 0. Since the second
derivative is negative there, f"(0) = — cos(0) = —1, the point is a relative maxima.
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Example 3.5.5 Consider the function f(x) = z* and the point x = 0. The derivatives of the function are f'(x) = 43,
f"(x) = 122% The point x = 0 is a stationary point. Since the second derivative also vanishes at that point the
second derivative test fails. One must use the first derivative test to determine that x = 0 is a relative minima.

3.6 Mean Value Theorems

Rolle’s Theorem. If f(z) is continuous in [a,b], differentiable in (a,b) and f(a) = f(b) = 0 then there exists a
point £ € (a,b) such that f'(§) = 0. See Figure 3.9.

N

Figure 3.9: Rolle’s Theorem.

To prove this we consider two cases. First we have the trivial case that f(z) = 0. If f(z) is not identically zero
then continuity implies that it must have a nonzero relative maxima or minima in (a,b). Let z = £ be one of these
relative extrema. Since f(x) is differentiable, x = £ must be a stationary point, f'(£) = 0.

Theorem of the Mean. If f(x) is continuous in [a,b] and differentiable in (a,b) then there exists a point z = £

such that
1) = f(@)

1) = =5

That is, there is a point where the instantaneous velocity is equal to the average velocity on the interval.
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Figure 3.10: Theorem of the Mean.

We prove this theorem by applying Rolle’s theorem. Consider the new function

f(b) — fla
o(@) = F@) — f(a) - 1O T Doy
Note that g(a) = g(b) = 0, so it satisfies the conditions of Rolle's theorem. There is a point x = £ such that ¢'(§) = 0.
We differentiate the expression for g(z) and substitute in x = £ to obtain the result.

g() = () - TU T

g6 = e - =S

o= 10 -1

Generalized Theorem of the Mean. If f(x) and g(x) are continuous in [a,b] and differentiable in (a,b), then
there exists a point x = ¢ such that
f'€) _ f(b) - f(a)

g€ gb) —gla)
We have assumed that g(a) # g¢(b) so that the denominator does not vanish and that f’(z) and ¢'(z) are not
simultaneously zero which would produce an indeterminate form. Note that this theorem reduces to the regular
theorem of the mean when g(z) = z. The proof of the theorem is similar to that for the theorem of the mean.
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Taylor’s Theorem of the Mean. If f(z) is n+ 1 times continuously differentiable in (a,b) then there exists a
point z = £ € (a,b) such that

(b—a)?
2l

(b—a)"t!

CEREAC (3.1)

f(b) = f(a) + (b—a)f'(a) +

f//(a) +

For the case n = 0, the formula is
f() = fa) + (b—a)f'(§),
which is just a rearrangement of the terms in the theorem of the mean,

F(b) - fla)

fe) =

3.6.1 Application: Using Taylor’s Theorem to Approximate Functions.

One can use Taylor's theorem to approximate functions with polynomials. Consider an infinitely differentiable function
f(z) and a point = a. Substituting = for b into Equation 3.1 we obtain,

(x —a)?
2l

(z —a)"

(33 _ a)n—H
T o 7

(n+1)!

@)+ + f™(a) + Fr©).

If the last term in the sum is small then we can approximate our function with an n'* order polynomial.

(z = a)?

2!

f'(@)+ oo
The last term in Equation 3.6.1 is called the remainder or the error term,

(l’ _ a)n—i—l (nt1)
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Since the function is infinitely differentiable, f("+1) (&) exists and is bounded. Therefore we note that the error must
vanish as x — 0 because of the (z — a)""! factor. We therefore suspect that our approximation would be a good one
if x is close to a. Also note that n! eventually grows faster than (z — a)”,

) r—a)"
lim u =0.

n—oo n'
So if the derivative term, (1) (¢), does not grow to quickly, the error for a certain value of x will get smaller with
increasing n and the polynomial will become a better approximation of the function. (It is also possible that the
derivative factor grows very quickly and the approximation gets worse with increasing n.)

Example 3.6.1 Consider the function f(x) = e*. We want a polynomial approximation of this function near the point
x = 0. Since the derivative of €* is ¢®, the value of all the derivatives at x = 0 is f(™(0) = e” = 1. Taylor's theorem

thus states that
T=1+z+ 2+x3+ LTy A
e’ = r+—+—4+--4+—4+-——e
2l " 3l nl " (n+1)

for some & € (0,z). The first few polynomial approximations of the exponent about the point x = 0 are

fl(.ﬁE):l
folz)=1+z

The four approximations are graphed in Figure 3.11.

Note that for the range of x we are looking at, the approximations become more accurate as the number of terms
increases.
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Figure 3.11: Four Finite Taylor Series Approximations of e”

Example 3.6.2 Consider the function f(x) = cosx. We want a polynomial approximation of this function near the
point x = 0. The first few derivatives of f are

It's easy to pick out the pattern here,

£ (2) (—=1)"2cosx for even n,
xr) =
(=1)"*D2sinx  for odd n.

Since cos(0) = 1 and sin(0) = 0 the n-term approximation of the cosine is,

2 4 6 2(n—1) 22n
fd ]_ _—— _— “ e _1 2(n_1) x
cosw P T S A Ypra vy TR G

cosé.

Here are graphs of the one, two, three and four term approximations.
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Figure 3.12: Taylor Series Approximations of cos x

Note that for the range of x we are looking at, the approximations become more accurate as the number of terms
increases. Consider the ten term approximation of the cosine about x = 0,

R 218 420
cosx:1—5+1 ————— 1—8!—1—2—0!cos§.

Note that for any value of &,

cos&| < 1. Therefore the absolute value of the error term satisfies,

20

|R| =

22°/20! is plotted in Figure 3.13.

Note that the error is very small for x < 6, fairly small but non-negligible for x ~ 7 and large for x > 8. The ten
term approximation of the cosine, plotted below, behaves just we would predict.

The error is very small until it becomes non-negligible at x ~ 7 and large at x ~ 8.

Example 3.6.3 Consider the function f(x) = Inz. We want a polynomial approximation of this function near the
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Figure 3.13: Plot of 2%°/20!.
10 - 5 10
-1
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Figure 3.14: Ten Term Taylor Series Approximation of cosz

point x = 1. The first few derivatives of f are

f(z)=Inx
, 1
fi(z) = .
1
f'(x) = )
f///(x) %
F@ () = — 2



The derivatives evaluated at x = 1 are
f(0) =0, f™0) = (=1)"Yn —1)!, forn>1.
By Taylor's theorem of the mean we have,

(x—1)2% (z—1)3 (z—-1)* ooy (@ —=1)" L (=11
I R A e g grtt’

Inz=(zx—-1)—

Below are plots of the 2, 4, 10 and 50 term approximations.

1.522.5 1.522.

QUIRWNE |, N
QUIRWNE | N

Figure 3.15: The 2, 4, 10 and 50 Term Approximations of Inx

Note that the approximation gets better on the interval (0,2) and worse outside this interval as the number of terms
increases. The Taylor series converges to Inx only on this interval.

3.6.2 Application: Finite Difference Schemes

Example 3.6.4 Suppose you sample a function at the discrete points nAx, n € Z. In Figure 3.16 we sample the
function f(x) = sinx on the interval [—4,4] with Ax = 1/4 and plot the data points.

We wish to approximate the derivative of the function on the grid points using only the value of the function on
those discrete points. From the definition of the derivative, one is lead to the formula

o) o TEEED 2T (3.2)

71



Figure 3.16: Sampling of sinz

Taylor’s theorem states that
Ax?

4G

flz+ Ax) = f(z) + Az f'(z) +
Substituting this expression into our formula for approximating the derivative we obtain

x zf!(x) + A2 f1(¢) — f(x x
flot Aa) = f(a) _ Se) + Aef @)+ 01O = 1) _ 0 Br

Ax Ax

Thus we see that the error in our approximation of the first derivative is % 1"(€). Since the error has a linear factor
of Ax, we call this a first order accurate method. Equation 3.2 is called the forward difference scheme for calculating
the first derivative. Figure 3.17 shows a plot of the value of this scheme for the function f(x) = sinz and Az = 1/4.
The first derivative of the function f'(x) = cosx is shown for comparison.

Another scheme for approximating the first derivative is the centered difference scheme,

) ~ f($+AZE)2;;(£B— AZE).
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Figure 3.17: The Forward Difference Scheme Approximation of the Derivative

Expanding the numerator using Taylor's theorem,

flz+ Ax) — f(e — Ax)

2Ax
_ f(x) + Axf'(z) + AT“"Qf”(I) + ATJPJC///(Q — f(z) + Azxf'(z) — ATIQf//(:C) + ATaﬁf///(w)
2Ax
/ Az? m m
= F@)+ S5 + 1))

The error in the approximation is quadratic in Ax. Therefore this is a second order accurate scheme. Below is a plot
of the derivative of the function and the value of this scheme for the function f(x) = sinz and Az = 1/4.
Notice how the centered difference scheme gives a better approximation of the derivative than the forward difference

scheme.

3.7 L’Hospital’s Rule

Some singularities are easy to diagnose. Consider the function > at the point x = 0. The function evaluates
to % and is thus discontinuous at that point. Since the numerator and denominator are continuous functions and the
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Figure 3.18: Centered Difference Scheme Approximation of the Derivative

denominator vanishes while the numerator does not, the left and right limits as + — 0 do not exist. Thus the function
has an infinite discontinuity at the point x = 0. More generally, a function which is composed of continuous functions
and evaluates to § at a point where a # 0 must have an infinite discontinuity there.

Other singularities require more analysis to diagnose. Consider the functions S“;,x, Si‘gf and lfiélo::x at the point = = 0.
All three functions evaluate to % at that point, but have different kinds of singularities. The first has a removable

discontinuity, the second has a finite discontinuity and the third has an infinite discontinuity. See Figure 3.19.

sing sinz o, q _sinz
z 7 |z 1—cosz

Figure 3.19: The functions
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An expression that evaluates to 8, 22, 0-00, 00 —00, 1%, 0° or ooV is called an indeterminate. A function f(z) which
is indeterminate at the point x = £ is singular at that point. The singularity may be a removable discontinuity, a finite
discontinuity or an infinite discontinuity depending on the behavior of the function around that point. If lim,_.¢ f(z)
exists, then the function has a removable discontinuity. If the limit does not exist, but the left and right limits do exist,
then the function has a finite discontinuity. If either the left or right limit does not exist then the function has an infinite
discontinuity.

L’Hospital’s Rule. Let f(x) and g(z) be differentiable and f(§) = g(§) = 0. Further, let g(z) be nonzero in a
deleted neighborhood of = = ¢, (g(x) #0 for z € 0 < |x — £| < J). Then

lim M = lim f'(@)
D gle) vt gla)

To prove this, we note that f(£) = g(£) = 0 and apply the generalized theorem of the mean. Note that

fl@) _ fl@) = &) _ @)
g(x)  g(r)—g(&) g{)

for some 1) between £ and x. Thus

!/ !/
lim M = lim f/<w) = lim f/(x)
= g(z) vt g (¥) et g(x)
provided that the limits exist.
L'Hospital's Rule is also applicable when both functions tend to infinity instead of zero or when the limit point, &,
is at infinity. It is also valid for one-sided limits.

L'Hospital’s rule is directly applicable to the indeterminate forms % and =,
(o ¢]

Example 3.7.1 Consider the three functions 83 ST gpd ST _ ot the point x = 0.
x |z| 1—cosz




Thus S‘% has a removable discontinuity at x = 0.

sinz . sinzx
lim —— = lim =1
e—0t |x|  a—0t
. sinxz sin x
lim = lim =1
r—0~ |$’ r—0~- —X
Thus 57 has a finite discontinuity at x = 0.
. sin x . COSZX 1
lim —— = lim = - =0

z—01 —cosx z—0s8inx 0

Thus f” has an infinite discontinuity at x = 0.
cosx

Example 3.7.2 Let a and d be nonzero.

Y ar® + bx + ¢ . 2axr+b
im ——m— = lim ———
z—oo dx? +exr+ [ 12— 2dr + €
. 2a
= lim —
z—o00 2d
_a
d
Example 3.7.3 Consider
cosx — 1
im ——.

z—0 xsing

This limit is an indeterminate of the form %. Applying L'Hospital’s rule we see that limit is equal to

. —singx
lim —mM8M8M .
z—0 x coSx + sinx
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This limit is again an indeterminate of the form 8. We apply L’Hospital’s rule again.

. —Ccoszx 1
lim y = ——
z—0 —xrsSInx + 2CoSx 2

Thus the value of the original limit is —%. We could also obtain this result by expanding the functions in Taylor series.

$2 I‘4
cosx — 1 . (1 5 T 31 1
lim ——— = lim -
x—0 1n x—0 _ = L L.,
TS . ($ s T 120 )
x2 I4
. 5+ 5
= hn% 5 2334 24336
T —_ = =
-z ¢ T 10
1 22
. 5+ 57—
= lim 224
z—0 ] zZ x=
6 120
1
2

We can apply L'Hospital’s Rule to the indeterminate forms 0 - oo and oo — oo by rewriting the expression in a
different form, (perhaps putting the expression over a common denominator). If at first you don't succeed, try, try
again. You may have to apply L'Hospital’s rule several times to evaluate a limit.

Example 3.7.4
1 . xcosx —sinx
lim({cotz —— | =lim ————
T— €T z—0 Trsinx
. COST —xsinx — cosx
= lim -
z—0 SINT + T cosx
. —xrsinx
= lim

z—0sinx + x cosx
—rcosx —sinx

= lim -
z—0 COST + COST —xsSInx

=0
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You can apply L'Hospital’s rule to the indeterminate forms 1>, 0° or oc” by taking the logarithm of the expression.
Example 3.7.5 Consider the limit,
lim x%,
z—0
which gives us the indeterminate form 0°. The logarithm of the expression is

In(z2®) = xlnz.

As x — 0 we now have the indeterminate form O - co. By rewriting the expression, we can apply L’'Hospital’s rule.

. Inz . 1/x

lim — = lim ————

z—0 1/:C z—0 —1/:132
=)
=0

Thus the original limit is
limz® = e’ = 1.

x—0
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3.8 Exercises

Limits and Continuity

Exercise 3.1
Does

| | ( 1 )
lim sin | —
x—0 x

exist?
Hint, Solution

Exercise 3.2
Does

| | ( 1 )
lim zsin | —
x—0 x

exist?
Hint, Solution

Exercise 3.3
Is the function sin(1/x) continuous in the open interval (0,1)? Is there a value of a such that the function defined by

fla) = {sin(l/x) for z # 0,

a forx =0

is continuous on the closed interval [0, 1]?
Hint, Solution

Exercise 3.4
Is the function sin(1/x) uniformly continuous in the open interval (0,1)?
Hint, Solution
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Exercise 3.5

Are the functions \/z and < uniformly continuous on the interval (0, 1)?
. - z

Hint, Solution

Exercise 3.6
Prove that a function which is continuous on a closed interval is uniformly continuous on that interval.
Hint, Solution

Exercise 3.7
Prove or disprove each of the following.

1. If lim, .. a, = L then lim, ., a? = L2

2. If lim,, .o a® = L? then lim,, ., a, = L.

3. If a, > 0 for all n > 200, and lim,,_,o, a,, = L, then L > 0.

4. If f: R~ R is continuous and lim, .., f(z) = L, then for n € Z, lim,,_., f(n) = L.

5. If f: R+ R is continuous and lim,, ., f(n) = L, then for z € R, lim, ., f(z) = L.
Hint, Solution

Definition of Differentiation

Exercise 3.8 (mathematica/calculus/differential /definition.nb)
Use the definition of differentiation to prove the following identities where f(x) and g(x) are differentiable functions
and n is a positive integer.

1. (") =na"t, (I suggest that you use Newton's binomial formula.)

dz
(f(2)g(x)) = f2 4 gUf

(sinz) = cosz. (You'll need to use some trig identities.)

d
2. 4
d
3. &
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4. £ (flg(@) = f'(g(x))g'(x)

Hint, Solution

Exercise 3.9
Use the definition of differentiation to determine if the following functions differentiable at x = 0.

1 fz) =l
2. f(x) =1+ ||

Hint, Solution

Rules of Differentiation

Exercise 3.10 (mathematica/calculus/differential /rules.nb)
Find the first derivatives of the following:

a. sin(cosx)

b. f(cos(g(x)))

1
Finz)

d. z*°

C.

(0]

. || sin |z
Hint, Solution

Exercise 3.11 (mathematica/calculus/differential /rules.nb)

Using
) d 1
—sinz =cosz and —tanz =
dz z cos? x
find the derivatives of arcsin x and arctan x.
Hint, Solution
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Implicit Differentiation

Exercise 3.12 (mathematica/calculus/differential /implicit.nb)
Find y/(x), given that 22 + y* = 1. What is ¢/(1/2)?

Hint, Solution

Exercise 3.13 (mathematica/calculus/differential /implicit.nb)
Find ¢/(z) and y"(x), given that 2% — zy + y? = 3.

Hint, Solution

Maxima and Minima

Exercise 3.14 (mathematica/calculus/differential/maxima.nb)
Identify any maxima and minima of the following functions.

a. f(z)=z(12 — 21)%
b. f(x) = (v —2)%/3.
Hint, Solution

Exercise 3.15 (mathematica/calculus/differential/maxima.nb)

A cylindrical container with a circular base and an open top is to hold 64 ¢cm?. Find its dimensions so that the surface
area of the cup is a minimum.

Hint, Solution

Mean Value Theorems

Exercise 3.16
Prove the generalized theorem of the mean. If f(x) and g(x) are continuous in [a, b] and differentiable in (a,b), then
there exists a point x = £ such that




Assume that g(a) # g(b) so that the denominator does not vanish and that f’(x) and ¢'(x) are not simultaneously
zero which would produce an indeterminate form.
Hint, Solution

Exercise 3.17 (mathematica/calculus/differential /taylor.nb)

Find a polynomial approximation of sin  on the interval [—1, 1] that has a maximum error of ﬁ. Don't use any more
terms that you need to. Prove the error bound. Use your polynomial to approximate sin 1.

Hint, Solution

Exercise 3.18 (mathematica/calculus/differential /taylor.nb)

You use the formula f(”Ax)*zgiﬁ)H(%Ax) to approximate f”(z). What is the error in this approximation?

Hint, Solution

Exercise 3.19

The formulas %W and f(”m;);j:(x_m) are first and second order accurate schemes for approximating the first
derivative f'(x). Find a couple other schemes that have successively higher orders of accuracy. Would these higher
order schemes actually give a better approximation of f’(x)? Remember that Ax is small, but not infinitesimal.

Hint, Solution

L’Hospital’s Rule

Exercise 3.20 (mathematica/calculus/differential /Ihospitals.nb)
Evaluate the following limits.

a. lim, .o I’;#
: 1
b. lim,_, (cscx — E)
. 1\ T
c. lim, .y (1 + ;)
d. lim,_. (csczx — m%) (First evaluate using L'Hospital’s rule then using a Taylor series expansion. You will find

that the latter method is more convenient.)
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Hint, Solution

Exercise 3.21 (mathematica/calculus/differential /Ihospitals.nb)
Evaluate the following limits,

bx
lim 27, lim (1 + ﬁ) ,
x

r—00 T— 00

where @ and b are constants.
Hint, Solution
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3.9 Hints

Limits and Continuity

Hint 3.1
Apply the €, ¢ definition of a limit.

Hint 3.2
Set y = 1/x. Consider lim,_, .

Hint 3.3
The composition of continuous functions is continuous. Apply the definition of continuity and look at the point x = 0.

Hint 3.4
Note that for x; = m and o = m where n € Z we have |sin(1/z;) — sin(1/xq)| = 2.

Hint 3.5
Note that the function vz + § — \/x is a decreasing function of z and an increasing function of § for positive 2 and
0. Bound this function for fixed ¢.

Consider any positive ¢ and €. For what values of z is

1 1

Hint 3.6
Let the function f(z) be continuous on a closed interval. Consider the function

e(r,0) = sup [f(£) — f(z)l.

|E—x|<é
Bound e(x, §) with a function of § alone.

Hint 3.7
CONTINUE
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1. If lim,, .o a, = L then lim, .., a?> = L%

2. If lim,, .o @® = L? then lim,, ., a, = L.

3. If a,, > 0 for all n > 200, and lim,, .o, a,, = L, then L > 0.

4. If f: R~ R is continuous and lim, .., f(z) = L, then for n € Z, lim,,_., f(n) = L.
5. If f: R+~ R is continuous and lim,,_,, f(n) = L, then for z € R, lim, ., f(z) = L.

Definition of Differentiation

Hint 3.8
a. Newton's binomial formula is

= -1
(a+b)" = Z <n> a"*F = a" 4+ a" b + n(n—1) )a"*2b2 e nab™ Tt b

k 2
k=0
Recall that the binomial coefficient is
n\ n!
(k) C(n—k)k!
b. Note that q Flz + Ax)g(z + Az) — f(z)g(x)
a(f(x)g(l’)) _ Algiclilo [ x x)g(x L x x)g(x ]
and flx + Az) — f(2) (z + Az) — g(z)
9@ f'(x) + f2)g' (@) = g(2) Alggo{ BRURS } + f() Jim {g — } '
Fill in the blank.
c. First prove that
. sinf
lim =1.
6—0 0



and

i cosf — 1
MERR

d. Let u = g(x). Consider a nonzero increment Az, which induces the increments Au and Af. By definition,
Af = flutAu) = f(u),  Au=g(z+ Azr) - g(z),
and Af, Au — 0 as Ax — 0. If Au # 0 then we have

A
EZA_i_g_)O as Au— 0.

If Au = 0 for some values of Az then Af also vanishes and we define ¢ = 0 for theses values. In either case,

Ay = ﬂAu + eAu.
du

Continue from here.

Hint 3.9

Rules of Differentiation

Hint 3.10
a. Use the product rule and the chain rule.

b. Use the chain rule.
c. Use the quotient rule and the chain rule.
d. Use the identity a® = e?In@,

e. For 2 > 0, the expression is zsinz; for z < 0, the expression is (—x)sin(—xz) = xsinz. Do both cases.
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Hint 3.11

Use that 2/(y) = 1/9/(x) and the identities cosz = (1 — sin? x)/? and cos(arctan r) = W

Implicit Differentiation

Hint 3.12
Differentiating the equation

2’ + [y(x))* =1
yields
2z 4 2y(x)y'(z) = 0.

Solve this equation for y/'(z) and write y(x) in terms of z.

Hint 3.13
Differentiate the equation and solve for y/(x) in terms of x and y(z). Differentiate the expression for 3/(x) to obtain
y"(z). You'll use that

2 —xy(z) + [y(x))* =3
Maxima and Minima

Hint 3.14
a. Use the second derivative test.

b. The function is not differentiable at the point x = 2 so you can't use a derivative test at that point.

Hint 3.15

Let r be the radius and A the height of the cylinder. The volume of the cup is 7r2h = 64. The radius and height are
related by = 25, The surface area of the cup is f(r) = mr® + 2wrh = mr? + 228, Use the second derivative test to
find the minimum of f(r).

Mean Value Theorems
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Hint 3.16
The proof is analogous to the proof of the theorem of the mean.

Hint 3.17
The first few terms in the Taylor series of sin(x) about x = 0 are
, 3 2f z’ z?
sinr) = =5+ 750 ~ 5040 362880 T

When determining the error, use the fact that |coszo| < 1 and |z"| < 1 for z € [—1, 1].

Hint 3.18
The terms in the approximation have the Taylor series,
Ax? Ax? Azx?
Jo+ &) = f(@) + Aaf'(@) + 1" (@) + =" (@) + S 0" (@),
Az? Az3 Ax?
flz = Az) = f(z) — Axf'(z) + Tf”(@ - Tf’”(x) + ﬂf’lﬂ(@);
where v < 2y <z + Az and 2 — Az < 25 < z.
Hint 3.19
L’Hospital’s Rule
Hint 3.20
a. Apply L'Hospital’s rule three times.
b. You can write the expression as
T —sinx
rsinx

c. Find the limit of the logarithm of the expression.
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d. It takes four successive applications of L'Hospital’s rule to evaluate the limit.

For the Taylor series expansion method,

1 22—sinz 2% — (z—2%/6+O(2%))?

2
s’ r — — = =
x? 22 sin® 22(x + O(x?))?

Hint 3.21

To evaluate the limits use the identity a® = e®n¢

and then apply L'Hospital's rule.
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3.10 Solutions

Limits and Continuity

Solution 3.1

Note that in any open neighborhood of zero, (—d,0), the function sin(1/x) takes on all values in the interval [—1,1].
Thus if we choose a positive € such that € < 1 then there is no value of ¢ for which |sin(1/x) — ¢| < € for all
x € (—¢€,€). Thus the limit does not exist.

Solution 3.2
We make the change of variables y = 1/x and consider y — oo. We use that sin(y) is bounded.

lim z sin (l) = lim lsin(y) =0
z—0 x y—oo Y
Solution 3.3
Since 1 is continuous in the interval (0, 1) and the function sin(z) is continuous everywhere, the composition sin(1/x)
is continuous in the interval (0, 1).

Since lim, o sin(1/x) does not exist, there is no way of defining sin(1/z) at = 0 to produce a function that is
continuous in [0, 1].

Solution 3.4
Note that for x; = m and zy = m where n € Z we have |sin(1/z;) — sin(1/z3)| = 2. Thus for any
0 < € < 2 there is no value of § > 0 such that |sin(1/z;) — sin(1/x5)| < € for all 21,25 € (0,1) and |z — 23] < .

Thus sin(1/z) is not uniformly continuous in the open interval (0,1).

Solution 3.5
First consider the function \/z. Note that the function v + 0 — /x is a decreasing function of x and an increasing

function of & for positive z and 6. Thus for any fixed §, the maximum value of vz + 0 — \/z is bounded by /4.
Therefore on the interval (0, 1), a sufficient condition for |\/z — \/§| < €is |x — £| < €%. The function /z is uniformly
continuous on the interval (0, 1).
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Consider any positive § and €. Note that

1 1 -
- — €
z x+0
for
1 / 46
T < = < 02+ — — 5) )
2 €
Thus there is no value of ¢ such that -
— -l <
xr £ ¢

for all |z — &| < 6. The function % is not uniformly continuous on the interval (0, 1).

Solution 3.6
Let the function f(z) be continuous on a closed interval. Consider the function

e(r,0) = sup |f(§) - f(2)].
[E—x|<o
Since f(z) is continuous, e(x,d) is a continuous function of x on the same closed interval. Since continuous functions
on closed intervals are bounded, there is a continuous, increasing function €(d) satisfying,

e(z,d) < e€(0),

for all = in the closed interval. Since ¢(J) is continuous and increasing, it has an inverse §(¢). Now note that
|f(z) — f(§)|] < € for all z and & in the closed interval satisfying |x — &| < d(¢). Thus the function is uniformly
continuous in the closed interval.

Solution 3.7
1. The statement
lim a, = L

n—oo
is equivalent to
Ve > 0dNs.t.n > N = |a, — L| <e.
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We want to show that
Vo > 03Ms.t.m > M = |a2 — L?| < 4.

Suppose that |a, — L| < e. We obtain an upper bound on |a? — L?|.
la2 — L?| = |a, — L||a, + L| < €(|2L] +¢€)
Now we choose a value of ¢ such that |a? — L% < §

€(|2L] +€) =46
e=VL2+0—|L|

Consider any fixed § > 0. We see that since
fore =V L2+ 6§ — |L|,INst.n > N = |a, — L| <€
implies that
n> N =|a} — L*| <.

Therefore
V6 > 03Ms.t.m > M = |a2 — L?| < 6.

We conclude that lim,, ., a? = L2

. lim,, .o a? = L? does not imply that lim,, .., a, = L. Consider a, = —1. In this case lim,, .,,a? = 1 and
lim,, oo G, = —1.

. If a, > 0 for all n > 200, and lim, ., a, = L, then L is not necessarily positive. Consider a,, = 1/n, which

satisfies the two constraints.

1
lim — =0

n—oo 1,
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4. The statement lim, .., f(x) = L is equivalent to
Ve > 03Xs.t.x > X = |f(z) — L| <e.
This implies that for n > [ X1, |f(n) — L| <e.
Ve > 0dNs.tn > N = |f(n) — L| <e
g fm) =1L

5. If f: R — Ris continuous and lim,,_,, f(n) = L, then for z € R, it is not necessarily true that lim, ., f(z) = L.
Consider f(x) = sin(mz).
lim sin(7n) = lim 0 =0

lim, ., sin(7x) does not exist.
Definition of Differentiation
Solution 3.8
a.
d, .. . (x + Az)" — 2"
a(x ) o Algllo { Az }
(x” +na" Az + —n(n;l)x”_zsz 4+ 4+ Am”) — "
- Algllo Az
-1
= Alimo [nx”l + %x”2AJJ 4+ -+ Ax"l}
— nxn—l
d
d—(x”) = ng" !
x
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;—x(f(x)g(a:)) = Algilo [f(x + Az)g(x Zfﬂ:) — f(a:)g(:c)]
- g [Vl Srkle +20) St + A ot + )~ o]
Az—0 Az
= Alair;IEO [9(z + Ax)] Ah;llo {f(x + AA:L‘x) — f(x)} ) Alilllo {g(m + AAxgz — g(x)}
= g(x)f'(x) + f(x)g'(x)

d

—(f(@)g(@) = f(@)g' () + F(@)g(x)

c. Consider a right triangle with hypotenuse of length 1 in the first quadrant of the plane. Label the vertices A, B,
C, in clockwise order, starting with the vertex at the origin. The angle of A is §. The length of a circular arc of
radius cos 6 that connects C' to the hypotenuse is # cosf. The length of the side BC is sinfl. The length of a
circular arc of radius 1 that connects B to the x axis is 6. (See Figure 3.20.)

Considering the length of these three curves gives us the inequality:

fcosf <sinf < 4.

Dividing by 6,
cosf < sin 0 <1
0
Taking the limit as 8§ — 0 gives us
i sinf )
im0 6



0
6 cosO sin@
0
A
C
Figure 3.20:
One more little tidbit we'll need to know is
~ [cosf—1 .~ [cos® —1cosf+1
lim | ——— | = lim
00 6 0—0 | 0 cosf +1
— lim [ cos?6 —1
-0 | O(cosh + 1)
i —gin’6
~ ol | O(cosf + 1)
- [—sinf] .. sin 6
= lim lim | ———m—
6—0 | 6 ] 6-0|(cosf+1)
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Now we're ready to find the derivative of sin z.

d . , sin(z + Az) —sinz
R
~ lim |:COS x sin Az + sin x cos Az — sin x}
Az—0 Ax
= cosx lim [sin Aa:} + sinx lim {cosA_x—l}
Az—0 | Ax Az—0 Ax
= CoST
%(sin T) = CcoST

d. Let u = g(x). Consider a nonzero increment Az, which induces the increments Au and Af. By definition,
Af = flu+Au) = f(u),  Au=g(z+Az)—g(a),
and Af, Au — 0 as Ax — 0. If Au # 0 then we have

_Af df
E—E—@HO as AU—>0

If Au = 0 for some values of Ax then Af also vanishes and we define ¢ = 0 for theses values. In either case,

df

Ay = —L
Y du

Au + eAu.
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We divide this equation by Az and take the limit as Az — 0.

df _ o B
dr  Ar—0 Ax
df Au Au

= A, (@ Azt A—x)
_(4df . Af ) . Au
= (55 (i, 52) + (i, e) (im, 52

_dfdu du
=3t (0) (@)

A
 dudzx

Thus we see that

Solution 3.9
1.
£(0) = lime — 051 =0
€
= lime — Ole]
=0

The function is differentiable at z = 0.
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1+ e -1
€
3(1+ le)~"/2 sign(e)
1

f(0) =lime — 0

=lime — 0
) 1 .
= lime — 05 sign(e)
Since the limit does not exist, the function is not differentiable at z = 0.

Rules of Differentiation
Solution 3.10

d, . d . d, .
a[x sin(cos x)] = e [x] sin(cos z) + T [sin(cos z)]
= sin(cos x) + x cos(cos x) % [cos x]
= sin(cosx) — z cos(cos x) sin x
d : . .
L [z sin(cos x)] = sin(cos x) —  cos(cos z) sin x
b.
L f(cos(g()))] = F(cos(g(r))) = [cosg(e))]
= — (cos(g(e))) sin(g(x) < [o(x)



I (cos(g(2)))] = —f(cos(g(2))) sin(g(x))g' ()

N PO )
F(na)?

B _f’(ln:v)(f—x[lnx]
- [f(na)?
___fno)
z[f(Inz)]?
i{ 1 }:_ f'(Inz)

dz | f(lnz) z[f(Inz)]?

d. First we write the expression in terms exponentials and logarithms,

f

= = xexp(ac Inz)

= exp(exp(zInz)lnx).

Then we differentiate using the chain rule and the product rule.

d
e exp(exp(zlnz)Inz) = exp(exp(x Inz)Inz) P (exp(zInz)lnz)
T T

T

d 1
=z (exp(m In m)d—(x Inz)Inz + exp(zln :1:')—)
T T

. 1
=z (:c’”(lna: +2=)Inz + 2 "exp(zIn :c))
T

=2" (z*(lnz+ 1) Inz + 2~ '2%)

— ot (93_1 +Inx +In? )

d xT x
— gt =gt e (x_l +1Inz +In? I)

dx
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e. For x > 0, the expression is  sin z; for z < 0, the expression is (—x)sin(—xz) = xsinz. Thus we see that
|z| sin || = xsinz.

The first derivative of this is

sinx + x cos x.

d . :
—(|z|sin|z|) = sinz + x cosx

dx
Solution 3.11
Let y(z) = sinz. Then y/(z) = cosx.
d , 1
— arcsiny =
dy y'(x)
1
~ cosz
B 1
(1 —sin®z)1/2
B 1
R
, 1
@ arcsinxT — m
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Let y(z) = tanz. Then y/(z) =1/ cos®z.

—arctany =
dy y'(x)

= COS2 T

= cos?(arctany)

~(wwem)

1
1492

1
— arctanx =
dz 1+ 22

Implicit Differentiation

Solution 3.12
Differentiating the equation

yields

We can solve this equation for /().

x
y'(z) = —@
To find y'(1/2) we need to find y(z) in terms of .
y(z) = V1 —a?
Thus ¢/(z) is
Y (x) = i\/lx—igﬂ‘



y'(1/2) can have the two values:

Solution 3.13
Differentiating the equation

yields

Solving this equation for 3/ (x)

Now we differentiate /() to get y"(x).




Maxima and Minima

Solution 3.14
a.

fl(x) = (12 — 22)* + 22(12 — 22)(—2)
= 4(z — 6)* + 8z(x — 6)
=12(z — 2)(z — 6)

There are critical points at x = 2 and = = 6.

f(z) =12(z — 2) + 12(x — 6) = 24(z — 4)

Since f”(2) = —48 < 0, x = 2 is a local maximum. Since f”(6) =48 > 0, z = 6 is a local minimum.

fa)= 5 —2)78

The first derivative exists and is nonzero for x # 2. At x = 2, the derivative does not exist and thus x = 2 is a
critical point. For z < 2, f'(x) < 0 and for z > 2, f'(x) > 0. x = 2 is a local minimum.

Solution 3.15

Let  be the radius and h the height of the cylinder. The volume of the cup is 7r?h = 64. The radius and height are

related by h = %. The surface area of the cup is f(r) = wr? + 27rh = mr? + %. The first derivative of the surface
area is f'(r) = 2mr — 2%, Finding the zeros of f'(r),

128
2mr — — =0,
T
213 — 128 = 0,
4
T = 3—ﬁ



The second derivative of the surface area is f”(r) = 2r + 252, Since f”(giﬁ) = 67, 7 = -~ is a local minimum of

Ur
f(r). Since this is the only critical point for r > 0, it must be a global minimum.

The cup has a radius of %ﬁ cm and a height of 3%/%'

Mean Value Theorems

Solution 3.16
We define the function

h@%:ﬂ@—f@»—%%{é%%am—gm»

Note that h(x) is differentiable and that h(a) = h(b) = 0. Thus h(x) satisfies the conditions of Rolle's theorem and
there exists a point £ € (a,b) such that

/ / f(b) — f(a) /
W(§) = — —
€)= 716~ rsd @ =0
19 _ F0) - f(@)
g 9b)—gla)
Solution 3.17
The first few terms in the Taylor series of sin(x) about x = 0 are
. 3 b z’ z?
(@) = =5+ 156 ~ 5040 * 362880 |

The seventh derivative of sinz is — cosz. Thus we have that

w3 x5 coszy

sm(:c):x—€+m— 50403;,

where 0 < 25 < x. Since we are considering = € [—1, 1] and —1 < cos(zg) < 1, the approximation

3 x°

Slnx%m—g—Fm
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. 1 ~ . . . . .
has a maximum error of =55 &~ 0.000198. Using this polynomial to approximate sin(1),

13 5

1——+—~=~0.841 .
6+120 0.841667

To see that this has the required accuracy,
sin(1) ~ 0.841471.

Solution 3.18
Expanding the terms in the approximation in Taylor series,

flo+Aa) = f(@) + Aaf (@) + S f' (@) + =—f"(@) + S f" (@),
Ax? Ax? Ax?
fle = Aa) = J(x) = Acf (@) + == f"(@) = =—f"(2) + S -] (@2)

where x < x1 <z + Az and v — Az < x5 < z. Substituting the expansions into the formula,

Ax) —2 — A Ax?
f(x + l’) iiﬁ) + f(l‘ ZL’) _ f”(.CC) + 22 [f////(xl) + f”//(l'g)].
Thus the error in the approximation is
AIQ " "

Solution 3.19

L’Hospital’s Rule
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Solution 3.20

a.
[z —sinzx o [1—=cosz
im | ——| =lim | ———
x—0 x3 r—0 L 3%2
. [sinz
= lim
a—0 | 6z ]
. [cosx
= lim ]
z—0L ©
1
6
) l:p — smx} 1
lim = —
z—0 3 6
b.

. 1 )
lim | cscx — — ) = lim
x—0 x r—0

1 —cosz
T CcosST + sinx

sin
—xsinx + cosx + cosx
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ln( lim {(1_._1) ]) = lim 1n(<1—|—1) )}
xr——+00 T xr——+00 L T
| 1
= lim |zln (1—1——)}
T—+00 L €T
[In (1 + 1
= lim 411( *3)
r——+00 ]_/ZE
(14 1)y (L
ZT—+00 —1/1‘2
w02
= lim 1+ —
Tr— 400 €T
=1

Thus we have




d. It takes four successive applications of L'Hospital’s rule to evaluate the limit.

_ 9 1 .2t —sin®x
lim | csc” 2 — — | = lim ————
z—0 22 z—0 x28in”x

2 — 2coszxsinx

= lim 5 : —
z—0 2x¢ cosxsinx + 2z sin“ x

’ 2 —2cos?x + 2sin’x

= lim

a—0 202 cos? x + 8x cos rsinx + 2sin® x — 222sin’ x
8cosxsinx

1m B : :
2—0 122 cos?2x + 12 cos zsinx — 8x2 cosxsinx — 12z sin? x
y 8cos?x — 8sin’x
= lim
2—0 24 cos? & — 8x2 cos? x — 64x cos xsinx — 24 sin’ x + 8x2sin’ x

It is easier to use a Taylor series expansion.

. 9 1 . 22 —sinz
lim | csc”2 — — | = lim ————
z—0 x2 z—0 x28in”x

— im 22 — (z — 23/6 + O(2°))?
z—0 22(z + O(23))?
22 — (22 — 21/3 + O(%))

p— 1.
220 x* + O(29)
_ 1 1 2
1
-3
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Solution 3.21

To evaluate the first limit, we use the identity a® = e®!?@

and then apply L'Hospital's rule.

. . alnzx
lim 2%% = lim e*=

Tr—00 T—00

( , alnx)
=exp | lim
T—00 €T

= exp (lim a/Tx)

lim 2%% =1

T—00

We use the same method to evaluate the second limit.

lim (1 + %)bx = lim exp (bx In (1 + ))

r—00 r—00

= exp (hm bx In (1+ —))

In(1
— oxp ({}_{gob n 1—1/-::/:6))

—a/x?
1+a/x
= lim b
o (g& =y
~ exp (

e 1 + a/x)

bx
lim (1 + E) =
xXr

T—00
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Chapter 4

Integral Calculus

4.1 The Indefinite Integral

The opposite of a derivative is the anti-derivative or the indefinite integral. The indefinite integral of a function f(x)

is denoted,

d
& [ f@)do = sia).

While a function f(x) has a unique derivative if it is differentiable, it has an infinite number of indefinite integrals, each
of which differ by an additive constant.

It is defined by the property that

Zero Slope Implies a Constant Function. If the value of a function’s derivative is identically zero, % = 0,
then the function is a constant, f(xz) = ¢. To prove this, we assume that there exists a non-constant differentiable
function whose derivative is zero and obtain a contradiction. Let f(x) be such a function. Since f(z) is non-constant,
there exist points a and b such that f(a) # f(b). By the Mean Value Theorem of differential calculus, there exists a
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point £ € (a,b) such that
f(b) = f(a)

0
b—a % Y

f'(€) =

which contradicts that the derivative is everywhere zero.

Indefinite Integrals Differ by an Additive Constant. Suppose that F'(z) and G(x) are indefinite integrals

of f(x). Then we have
d

1 F@) = G(2)) = F(x) = G'(2) = f(z) = f(x) = 0.
Thus we see that F'(z) — G(z) = ¢ and the two indefinite integrals must differ by a constant. For example, we have
f sinx dx = — cos x 4+ ¢. While every function that can be expressed in terms of elementary functions, (the exponent,
logarithm, trigonometric functions, etc.), has a derivative that can be written explicitly in terms of elementary functions,
the same is not true of integrals. For example, [ sin(sinz)dz cannot be written explicitly in terms of elementary
functions.

Properties. Since the derivative is linear, so is the indefinite integral. That is,
/(af(x) +bg(z))dx = a/f(x) dz + b/g(x) dz.

For each derivative identity there is a corresponding integral identity. Consider the power law identity, d%(f(:v))“ =
a(f(x))* 1 f'(x). The corresponding integral identity is

Juwrrwar =Yy,

where we require that a # —1 to avoid division by zero. From the derivative of a logarithm, % In(f(x)) oy we
obtain,

fl(x) = 1n s C
[ FE e = mire)+e
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~

Figure 4.1: Plot of In |z| and 1/x.

Note the absolute value signs. This is because (f—z In|z| = % for x # 0. In Figure 4.1 is a plot of In |z| and % to reinforce
this.

Example 4.1.1 Consider
_/‘ T4
= | Greiy x.

We evaluate the integral by choosing u = x* + 1, du = 2z dx.

1 2x
Izﬁ/(ﬁﬂ)?dz
1 [du
2/ w?
11
T 2w
1
222+ 1)

I:/tanxdxz/smxdx.
COS T
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Example 4.1.2 Consider




By choosing f(x) = cosx, f'(x) = —sinz, we see that the integral is

—sinw
I=- dz = —1In|cosz| + c.
cos

Change of Variable. The differential of a function g(z) is dg = ¢'(x)dx. Thus one might suspect that for

£ =g(x),
/ £(6)de = / F(9(0)) (@) da, (4.1)

since d§ = dg = ¢'(x) dz. This turns out to be true. To prove it we will appeal to the the chain rule for differentiation.
Let ¢ be a function of x. The chain rule is

210 = 1)

d B df d¢
We can also write this as
df _drdf
d¢  d¢da’
or in operator notation,
4 _ded
d¢ - d¢ dx’

Now we're ready to start. The derivative of the left side of Equation 4.1 is
T [ rod=re©
d¢ e

114



Next we differentiate the right side,

& [ 1etang@ jg = / (g

to see that it is in fact an identity for £ = g(z).

Example 4.1.3 Consider
/xsin(:z:Z) dz.

We choose & = x2, d¢ = 2xdx to evaluate the integral.
. 2 ]- . 2
/xsm(x )dz = 5 /sm(x )2z dx

= %/smgdg

1

= 5(— cosé) + ¢
1
=3 cos(z?) + ¢
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Integration by Parts. The product rule for differentiation gives us an identity called integration by parts. We start
with the product rule and then integrate both sides of the equation.

L u@)ele) = u@o(e) + ua)(2)

/(u'(x)v(:v) + u(z)v'(x)) dz = u(z)v(z) + ¢

The theorem is most often written in the form

/udv:uv—/vdu.

So what is the usefulness of this? Well, it may happen for some integrals and a good choice of © and v that the integral
on the right is easier to evaluate than the integral on the left.

Example 4.1.4 Consider [ ze* dx. If we choose u = x, dv = e* dx then integration by parts yields

/:pem dx:mex—/e” de=(x—1)e".

Now notice what happens when we choose u = e*, dv = x dx.

1 1
/xex dx:—x2€$—/—x2e””’" dx
2 2

The integral gets harder instead of easier.

When applying integration by parts, one must choose u and dv wisely. As general rules of thumb:
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e Pick u so that « is simpler than w.

e Pick dv so that v is not more complicated, (hopefully simpler), than dw.

Also note that you may have to apply integration by parts several times to evaluate some integrals.

4.2 The Definite Integral

4.2.1 Definition

The area bounded by the z axis, the vertical lines x = a and = = b and the function f(z) is denoted with a definite

integral,
b

The area is signed, that is, if f(x) is negative, then the area is negative. We measure the area with a divide-and-conquer
strategy. First partition the interval (a,b) with a = zy < 1 < -+- < x,_1 < ,, = b. Note that the area under the
curve on the subinterval is approximately the area of a rectangle of base Ax; = x;11 — x; and height f(&;), where
& € [wi,xit1]. If we add up the areas of the rectangles, we get an approximation of the area under the curve. See
Figure 4.2

b n—1
J RO SIS
a =0

As the Ax;'s get smaller, we expect the approximation of the area to get better. Let Azx = maxp<i<,—1 Az;. We
define the definite integral as the sum of the areas of the rectangles in the limit that Az — 0.

b n—1
Lfmm:g%;ﬂ@mi

The integral is defined when the limit exists. This is known as the Riemann integral of f(z). f(z) is called the
integrand.
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\\j{(&l) \\\\\\\\

a X; Xy Xz A Xn2 Xn1 b

Figure 4.2: Divide-and-Conquer Strategy for Approximating a Definite Integral.

4.2.2 Properties

Linearity and the Basics. Because summation is a linear operator, that is

—_

n—

n—1 n—1
(cfi +dgi) = CZfi + dzgia
=0 =0

7

Il
=)

definite integrals are linear,

/ab(Cf(a:) +dg(z)) de = c/abf(:c) da + d/abg<x) dz.

One can also divide the range of integration.

[ﬂmmzL7mm+L%@m

118



We assume that each of the above integrals exist. If a < b, and we integrate from b to a, then each of the Ax; will be
negative. From this observation, it is clear that

/abf(x)dx:—/baf(ar)dx

If we integrate any function from a point a to that same point a, then all the Ax; are zero and

RO

Bounding the Integral. Recall that if f; < g;, then

—1 n—1
=0 =0
Let m = min,cpp) f(2) and M = max,cqp) f(2). Then
—1 n—1
(b—a)m ZmAmz SZ (&) Ax; SZMA@-: (b—a)M
=0 =0
implies that
b
(b— a)m < / (@) de < (b— a)M
Since
n—1 n—1
Z fil < Z |fil
i=0 i=0
we have
b b
fla)ds| < [ 17(@)]da




Mean Value Theorem of Integral Calculus. Let f(z) be continuous. We know from above that

(b—a)m < / flz)dz < (b—a)M.

Therefore there exists a constant ¢ € [m, M] satisfying

/abf(x) dz = (b— a)c.

Since f(z) is continuous, there is a point £ € [a, b] such that f(£) = ¢. Thus we see that

b
/ f(x)de = (b - a) f(€),

for some £ € [a, b].

4.3 The Fundamental Theorem of Integral Calculus

Definite Integrals with Variable Limits of Integration. Consider a to be a constant and x variable, then
the function F'(x) defined by

F(z) = / oL (4.2)
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is an anti-derivative of f(z), that is F’(z) = f(x). To show this we apply the definition of differentiation and the
integral mean value theorem.

F(z + Az) — F(x)

F’(a;‘) - Alggo Az
z+Az T
I e (L AL
Az—0 Az
I N IOL
7A1¥EO Az
= f()

The Fundamental Theorem of Integral Calculus. Let F(x) be any anti-derivative of f(x). Noting that all
anti-derivatives of f(z) differ by a constant and replacing x by b in Equation 4.2, we see that there exists a constant ¢
such that

/ f(z)dz = F(b) + c.

Now to find the constant. By plugging in b = q,
/ f(z)de = F(a)+c=0,

we see that ¢ = —F'(a). This gives us a result known as the Fundamental Theorem of Integral Calculus.

/ f@)dz = F(b) — F(a).

We introduce the notation
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Example 4.3.1
/ sinz dz = [— cos x| = — cos(m) + cos(0) = 2
0

4.4 Techniques of Integration

4.4.1 Partial Fractions

A proper rational function

Can be written in the form

p(z) :( “© @ +...+an—1>+(...)

(x—a)  (x—a)*! T—a«

where the a;'s are constants and the last ellipses represents the partial fractions expansion of the roots of r(z). The
coefficients are
1 d* (p()
ap = ——— | —=
T kN dak \ r(2)

Example 4.4.1 Consider the partial fraction expansion of

r=«

1+a+22
(x—1)3

The expansion has the form
ag ay a2

@—18 (w17 o-1
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The coefficients are

1
ap = —(1+x +2%)|,=1 = 3,

0!
) = (1420 = 3
a, = 1l de TT X )|g=1 = T)|z=1 = 9,
1 d? 9 1
g — 5@(14—564-% )’le = 5(2)’$:1 =1.
Thus we have
14z + 22 3 3 1

@—1P (@—1P (@=12 z-1

Example 4.4.2 Suppose we want to evaluate

/1+x+x2d
—(x—1)3 xZ.

If we expand the integrand in a partial fraction expansion, then the integral becomes easy.

/de'/((2)31)3*(2—31)”;1) o

=— — In(x — 1
-1 @op The-b
Example 4.4.3 Consider the partial fraction expansion of
1+ 2+ 22
r2(x — 1)
The expansion has the form
ao i ai i bo i by
2 oz (zr—12 x-1
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The coefficients are

. _l(l+x+a¢2> _
T\ (z—1)2 o
al:li(1+x+x2 :(1+2x _2(1+$+x2)> 3
de \ (z—-1)%2 /|, (x —1)2 (x—1)3 o0
2
blzii(ux—Jr:c?) :<1+2x_2(1+x+x2)> _ 3
1!'dx x? o1 x? x3 1

Thus we have
142+ 22 1 3 3 3

xQ(x—l)Q_?jLE—i_(x—l)Q_x—l'

If the rational function has real coefficients and the denominator has complex roots, then you can reduce the work
in finding the partial fraction expansion with the following trick: Let o and @ be complex conjugate pairs of roots of
the denominator.

(o - a)ﬂfiﬁ ) ((x R e R a:an—;)
* ((:cf_oa)" * (x—a_é)nl o xan—la) )

Thus we don't have to calculate the coefficients for the root at @. We just take the complex conjugate of the coefficients

for a.

Example 4.4.4 Consider the partial fraction expansion of

1+
24+ 1
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The expansion has the form

The coefficients are

1 /14+=x
- - (1 —
0 0!(95—1—2') i (1=,
1 ) )
aozﬁ(l—z):—(l—kz)
Thus we have
14+ 1—14 1414

4.5 Improper Integrals

If the range of integration is infinite or f(z) is discontinuous at some points then f: f(z)dz is called an improper
integral.

Discontinuous Functions. |If f(z) is continuous on the interval a < = < b except at the point z = ¢ where
a < c¢ <bthen

b =5 b
/ f(z)dx = lim / f(z)dx + lim f(z)dz

6—0+ e—0t ote

provided that both limits exist.

Example 4.5.1 Consider the integral of Inx on the interval [0, 1]. Since the logarithm has a singularity at x = 0, this
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is an improper integral. We write the integral in terms of a limit and evaluate the limit with L 'Hospital's rule.

1 1
/ Inzdz = lim Inxzdz

= (lsim[x Inz — zl;

—0

=1In(l)—1- (lsirr(l)(élné —0)
=—1 —%1_r)r(1)(5ln5)

Example 4.5.2 Consider the integral of x® on the range [0,1]. If a < O then there is a singularity at x = 0. First

assume that a # —1.
1 at+1 71
/ 2*dz = lim |2
0 5—0t la+1];

1 5a+1
— lim
a+1 es—ota-+1

This limit exists only for a > —1. Now consider the case that a = —1.

1
/ 27 dz = lim [Inz];
0

6—0t

=In(0) — lim Iné

6—0t
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This limit does not exist. We obtain the result,

! 1
/ xdr = , fora>—1.
0 1

a—+

Infinite Limits of Integration. If the range of integration is infinite, say [a, c0) then we define the integral as

a—00
a

/oo f(x)dzx = lim Oéf(:zc) dz,

provided that the limit exists. If the range of integration is (—o0, 00) then

00 a B
/_Oo flx)de = im f(x)dz + 5E1}rloo/a f(x)dz.

[0}

Example 4.5.3
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Example 4.5.4 Consider the integral of z® on [1,00). First assume that a # —1.

0 a+1 B
/ 2tdz = lim |2
1 Botoo |a+ 1],

ﬁa+1 1
= lim —
B—4o00 a + 1 a—+1

The limit exists for 3 < —1. Now consider the case a = —1.
/ ¢t de = lim [Inz]?
1 B—rtoo
lim Inpg !
= lim Ing— ——
B—+o0 a+1
This limit does not exist. Thus we have
/ r¢der=———, fora< —1
1 1
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4.6 Exercises

Fundamental Integration Formulas

Exercise 4.1 (mathematica/calculus/integral /fundamental.nb)
Evaluate [(2z + 3)' dz.
Hint, Solution

In

Evaluate f(de
Hint, Solution

Exercise 4.2 grQnathematica/caIcuIus/integral/fundamental.nb)

Exercise 4.3 (mathematica/calculus/integral /fundamental.nb)

Evaluate [ zv2? + 3dz.

Hint, Solution

Exercise 4.4 (mathematica/calculus/integral /fundamental.nb)
Evaluate [ <52 dz.

sin x

Hint, Solution

Exercise 4.5 (mathematica/calculus/integral /fundamental.nb)
2

Evaluate [ —— dux.

Hint, Solution

Integration by Parts

Exercise 4.6 (mathematica/calculus/integral /parts.nb)
Evaluate [z sinxzd.
Hint, Solution

Exercise 4.7 (mathematica/calculus/integral /parts.nb)
Evaluate [ 2°e* dz.
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Hint, Solution

Partial Fractions

Exercise 4.8 (mathematica/calculus/integral/partial.nb)
Evaluate [ —— dz.
Hint, Solution

Exercise 4.9 (mathematica/calculus/integral /partial.nb)
Evaluate [ 28— du.

r34+22—62

Hint, Solution

Definite Integrals

Exercise 4.10 (mathematica/calculus/integral /definite.nb)
Use the result

b N-1
/ flz)dz = ]\}1_:()1100 Z f(z,)Ax
a n=0

b—a

~ and z, = a + nAx, to show that

where Az =

1
1

/ rzdr = —.
0 2

Hint, Solution

Exercise 4.11 (mathematica/calculus/integral /definite.nb)
Evaluate the following integral using integration by parts and the Pythagorean identity. foﬁ sin? z dx

Hint, Solution
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Exercise 4.12 (mathematica/calculus/integral /definite.nb)
Prove that

f(x)
iz [, MO = RIS )~ o) @)

(Don't use the limit definition of differentiation, use the Fundamental Theorem of Integral Calculus.)
Hint, Solution

Exercise 4.13 (mathematica/calculus/integral/definite.nb)
Let A, be the area between the curves x and x, on the interval [0...1]. What is lim, ., 4,7 Explain this result
geometrically.

Hint, Solution
Improper Integrals

Exercise 4.14 (mathematica/calculus/integral /improper.nb)
Evaluate f04 ﬁ dz.
Hint, Solution

Exercise 4.15 (mathematica/calculus/integral /improper.nb)
Evaluate fol % dx.

Hint, Solution

Exercise 4.16 (mathematica/calculus/integral /improper.nb)

o0
Evaluate fo I%Hdaz.

Hint, Solution

Taylor Series
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Exercise 4.17 (mathematica/calculus/integral /taylor.nb)
a. Show that

flz) = f(0) + "z — &) de.

b. From the above identity show that

c. Using induction, show that
Fl@) = F(0) + 2 f/(0) + 2a2f(0) + - + S [ (0) + / Lo @ — ) ag
B 2 n! o n! ‘

Hint, Solution

Exercise 4.18
Find a function f(z) whose arc length from 0 to z is 2x.
Hint, Solution

Exercise 4.19
Consider a curve C', bounded by —1 and 1, on the interval (—1...1). Can the length of C' be unbounded? What if we

change to the closed interval [—1...1]?
Hint, Solution
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4.7 Hints

Fundamental Integration Formulas

Hint 4.1
Make the change of variables u = 2z + 3.

Hint 4.2
Make the change of variables u = In z.

Hint 4.3
Make the change of variables u = 2% 4 3.

Hint 4.4
Make the change of variables u = sin x.

Hint 4.5
Make the change of variables v = 23 — 5.

Integration by Parts

Hint 4.6
Let v = 2, and dv = sinz dx.

Hint 4.7
Perform integration by parts three successive times. For the first one let u = 2 and dv = e€** dz.

Partial Fractions
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Hint 4.8
Expanding the integrand in partial fractions,

1 1 a b

21 @-2@+2) @-2 @+2

l=a(z+2)+b(z—2)
Set £ = 2 and x = —2 to solve for a and b.

Hint 4.9
Expanding the integral in partial fractions,

x4+ 1 z+1 a b c

w34+ 22— 6  x(r—2)(x+3) E+:U—2+:U+3

r+1=a(x—2)(z+3)+bx(x+3)+ cx(x —2)

Setz =0, x =2 and x = —3 to solve for a, b and c.

Definite Integrals

Hint 4.10

1 N-1

rdzr = lim T Ax
/O N—oo ;
N-1
= lim (nAx)Ax
N—oo

n=0

Hint 4.11

Let u = sinz and dv = sinx dx. Integration by parts will give you an equation for foﬂ sin? z dz.
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Hint 4.12
Let H'(z) = h(x) and evaluate the integral in terms of H(x).

Hint 4.13
CONTINUE

Improper Integrals

Hint 4.14
4 1-6 4
e A e L
Hint 4.15
1
[ gt [ Jree
Hint 4.16

1 1 T
- dx = — arctan <—>
T4+ a a a

Taylor Series

Hint 4.17
a. Evaluate the integral.

b. Use integration by parts to evaluate the integral.

c. Use integration by parts with « = "D (z — ¢) and dv = %5".
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Hint 4.18
The arc length from 0 to x is

/0 VI @R de (43)

First show that the arc length of f(x) from a to bis 2(b— a). Then conclude that the integrand in Equation 4.3 must
everywhere be 2.

Hint 4.19
CONTINUE
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4.8 Solutions

Fundamental Integration Formulas

Solution 4.1

Let u=2r+3, glu) =2 =52, ¢'(u) = L.

Solution 4.2
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Solution 4.3

/x\/mdx:/\/mlm

2 dx
1 (22 + 3)3/2
T2 3/2
(2% + 3)3/2
=

Solution 4.4

1 :
/69swd$:/ ‘ d(sinz) de
sinx sinx dx

= In | sin x|

Solution 4.5

dx

z? 1 1d(2?)
/x3—5dx_/x3—5§ dz dz

1
=3 In|z® — 5|
Integration by Parts
Solution 4.6
Let w = 2, and dv = sinxz dx. Then du = dz and v = — cos .

/xsinxdm——xcosx—i—/cos:vdx

= —gcosx +sinz + C
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Solution 4.7

Let u = 22 and dv = €2* dx. Then du = 3z?>dz and v = %eh.
1 3
/ 3 Qxdl,_2x362x_§/x262xdx
Let u = 22 and dv = e?* dz. Then du = 2z dz and v = %e%.

1 1
/ 3 22 de = 3e2:v_§ _:L,2621_/x62$ dz
2 2\2

1 3 3
/ 3 233 dr = 2{L‘362Z—Zl’2€2x+§/l’82$ dr

2x

Let u =2 and dv =e** dz. Then du =dz and v =1e

1
2

1 3 3 (1 1
3 21’ dr = :L,S eQx__xZ eQx 4= _xe2a;__ eQa: dz
2 4 2\2 2

1 3 3 3
/ 3 296 dr = 2.(13362I 4x2€2x+4$62x_§62x+0

Partial Fractions
Solution 4.8

Expanding the integrand in partial fractions,

1 1 A B
24 (z-2(x+2) (x-2) (z+2)

1=A(x+2)+ B(z—2)
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Setting x = 2 yields A = i. Setting x = —2 yields B = —<. Now we can do the integral.

1
1

/x21—4d$:/(4(m1—2) _4(x1+2)> de

1 1
ziln|x—2\—zln]a:+2]+c

1jx—2
= - C
4|z + 2‘ *
Solution 4.9
Expanding the integral in partial fractions,
r+1 r+1 A B C

w3+ 22— 6 x(r—2)(x+3) E+x—2+x+3
r+1=Ax—2)(z+3)+ Bx(z+3) + Cx(x — 2)

Setting x = 0 yields A = —%. Setting x = 2 yields B = 1%. Setting x = —3 yields C' = —1—25.

r+1 1 3 2
x® + 2% — 6z 6x 10(x —2) 15(z + 3)

1 3 2
:—Eln|x\+1—01n|x—2|—Eln]a:+3|+0

B ‘x _ 2’3/10
=In ‘x|1/6|x 4 3|2/15 +C

Definite Integrals
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Solution 4.10

Solution 4.11
Let w = sinz and dv = sinxz dx. Then du = cosxzdx and v = — cos z.

T ™
/ sin?zdz = [ — smmcosm]o +/ cos? z dx
0 0

cos? z dx

l—sm x dx

Iﬂ'—/ sin® x dz

2

I
o\o\

sin?zdr =7

o\
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Solution 4.12
Let H'(z) = h(x).

Solution 4.13
First we compute the area for positive integer n.

1 2 n+l 71 1 1
An:/(x—x")dx: o7 =-—
0 2 n+lj, 2 n+l

Then we consider the area in the limit as n — oo.

1 1 1
lim A, = lim [ = — = —
n—00 n—oo \2 n+1 2

In Figure 4.3 we plot the functions zt, 2%, 2%, 28, ... 2'%%4. In the limit as n — oo, 2" on the interval [0
the function

0 0<zx«1

1 =1

Thus the area tends to the area of the right triangle with unit base and height.

Improper Integrals
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Figure 4.3: Plots of z', 22, o, 28, ... 21024

Solution 4.14

The integral diverges.
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Solution 4.15

Solution 4.16

Taylor Series

Solution 4.17
1.

L | L |
—dr = i —d
/O\/;I ot . Vz o
= lim [2V/7],

e—0+

= lim 2(1 — Ve)

e—0t

o0 (6% 1

dx = 1i d
/0 22140 ol 0 r2+4 v
) 1 xy |
m —arctan(—)
00{2 2 L
s
(z-9)

|
-
|

|
|
o

A~ N0~

£(0) + /0 e — &) de = £(0) + [~flz— )

= f(0) = f(0) + f(x)
= f(x)
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0) + 2f (0 /éf” = F(O) + 2/ (0) + [~/ (x — O —/Ox—f’(x—f)df
— F(0) + S (0) — 2(0) - [f(x— )
— £(0)— £(0) + f(a)
_ f()

3. Above we showed that the hypothesis holds for n = 0 and n = 1. Assume that it holds for some n =m > 0.

@) = F0)+af (0) 4 5 £'(0) o4 2o SO0 + [ e )

T

/ 1 2 ¢l 1 n g(n 1 n+1 p(n+1
= O+ 2O+ GO0+ 4 F0) + [ e -6

1 1

/ 12// n g£(n
:f(0)+xf(0)+§a:f (0)+"'+HI £ )(0)+m

ey AR CEGE

This shows that the hypothesis holds for n = m + 1. By induction, the hypothesis hold for all n > 0.

xn+1 f(n+1) (O)

Solution 4.18
First note that the arc length from a to b is 2(b — a).

b b a
/ V1+(f'(z))?de = / V14 (f(2)?de — / V1+ (f(z)2de = 2b - 2a
a 0 0
Since a and b are arbitrary, we conclude that the integrand must everywhere be 2.

L+ (f'(2)? =2
fl(w) = +V3
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f(z) is a continuous, piecewise differentiable function which satisfies f’(z) = ++/3 at the points where it is differentiable.
One example is

Solution 4.19
CONTINUE
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Chapter 5

Vector Calculus

5.1 Vector Functions

Vector-valued Functions. A vector-valued function, r(¢), is a mapping r : R +— R" that assigns a vector to each
value of t.

r(t) =ri(t)er + -+ ru(t)e,.
An example of a vector-valued function is the position of an object in space as a function of time. The function is

continous at a point t = 7 if
limr(t) = r(7).

t—T1

This occurs if and only if the component functions are continuous. The function is differentiable if
dr t+ At) —r(t
— = lim r(t+AY —r(t)
dt a0 At
exists. This occurs if and only if the component functions are differentiable.
If r(t) represents the position of a particle at time ¢, then the velocity and acceleration of the particle are
dr d d’r
dt de?’
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respectively. The speed of the particle is |r/(%)].

Differentiation Formulas. Let f(¢) and g(t) be vector functions and a(t) be a scalar function. By writing out
components you can verify the differentiation formulas:

d
g e=fg+f-g
%(fxg):f’xg+fxg’

d
a(af) = da'f + af’

5.2 Gradient, Divergence and Curl

Scalar and Vector Fields. A scalar field is a function of position u(x) that assigns a scalar to each point in space.
A function that gives the temperature of a material is an example of a scalar field. In two dimensions, you can graph a
scalar field as a surface plot, (Figure 5.1), with the vertical axis for the value of the function.

A vector field is a function of position u(x) that assigns a vector to each point in space. Examples of vectors fields
are functions that give the acceleration due to gravity or the velocity of a fluid. You can graph a vector field in two or
three dimension by drawing vectors at regularly spaced points. (See Figure 5.1 for a vector field in two dimensions.)

Partial Derivatives of Scalar Fields. Consider a scalar field u(x). The partial derivative of u with respect to
x}, i1s the derivative of w in which z, is considered to be a variable and the remaining arguments are considered to be

parameters. The partial derivative is denoted %u(x), 8% or uy, and is defined
du _ I w(ry, .o+ Az, ) —w(Xy, e Ty, )
axk T Az—0 Az

Partial derivatives have the same differentiation formulas as ordinary derivatives.
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Figure 5.1: A Scalar Field and a Vector Field

Consider a scalar field in R?, u(z,y, ). Higher derivatives of u are denoted:

_Qu_ 90u
Yoo =502 = Bz oz’
Pu 0 Ou

tay = 0xdy — Oz Oy’
W O _F oo
TR 0220y0z — 0220y 0z
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If u,, and u,, are continuous, then
Pu  u
oxdy  Oydx’

This is referred to as the equality of mixed partial derivatives.

Partial Derivatives of Vector Fields. Consider a vector field u(x). The partial derivative of u with respect to

xy, is denoted 5-u(x), 5.- or uy, and is defined
5)_11 = lim u(ry,.. ., v+ Az, ) — (X0, Ty, D)
0xr,  Az—0 Az :

Partial derivatives of vector fields have the same differentiation formulas as ordinary derivatives.
Gradient. We introduce the vector differential operator,

0 0
V=—e + 4+ —e,,

8x1 8xn
which is known as del or nabla. In R3 it is
0 0 0
V=—i+—j+=—k
(‘9:1:1 + ayJ + 0z

Let u(x) be a differential scalar field. The gradient of u is,

V = % + + %
U= 0x; e axne”’

Directional Derivative. Suppose you are standing on some terrain. The slope of the ground in a particular
direction is the directional derivative of the elevation in that direction. Consider a differentiable scalar field, u(x). The
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derivative of the function in the direction of the unit vector a is the rate of change of the function in that direction.
Thus the directional derivative, D u, is defined:

u(x + ea) — u(x)

Dau(x) = liné
€— €
 lim u(ry +€ay, ..., T, +€ay) —u(zy, ..., T,)
e—0 €
o (000 €11, () -t () + O() — u(x)
e—0 €

= A Uy, (X) + - - + aplly, (X)

Dyu(x) = Vu(x) - a.

Tangent to a Surface. The gradient, V[, is orthogonal to the surface f(x) = 0. Consider a point £ on the
surface. Let the differential dr = dx,e; + - - - dx, e, lie in the tangent plane at £&. Then

_of Of 4o _
df = axldxl—l—----l—axndxn—o
since f(x) = 0 on the surface. Then
0 9,
Vf -dr = <a—iel 4+ 4 a—leen) . (dﬂ?lel + - +d:1:nen)
_of of
= o dxy + + Bz, dz,

=0
Thus V f is orthogonal to the tangent plane and hence to the surface.
Example 5.2.1 Consider the paraboloid, x> + y?> — z = 0. We want to find the tangent plane to the surface at the

point (1,1,2). The gradient is
Vf=2xi+2yj—k
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At the point (1,1,2) this is
Vf(1,1,2) =2i+2j — k.

We know a point on the tangent plane, (1,1,2), and the normal, V f(1,1,2). The equation of the plane is

Vi,1,2) (z,y,2) =Vf(1,1,2)-(1,1,2)
‘2x+2y—z:2‘

The gradient of the function f(x) = 0, Vf(x), is in the direction of the maximum directional derivative. The
magnitude of the gradient, |V f(x)], is the value of the directional derivative in that direction. To derive this, note that

D.f =V f-a=|Vf|cosb,

where 6 is the angle between V f and a. D, f is maximum when 6 = 0, i.e. when a is the same direction as Vf. In
this direction, D,f = |V f|. To use the elevation example, V f points in the uphill direction and |V f| is the uphill
slope.

Example 5.2.2 Suppose that the two surfaces f(x) = 0 and g(x) = 0 intersect at the point x = £. What is the angle
between their tangent planes at that point? First we note that the angle between the tangent planes is by definition the
angle between their normals. These normals are in the direction of V f (&) and Vg(&). (We assume these are nonzero.)
The angle, 0, between the tangent planes to the surfaces is

BNALGRZE
V= (IVf(£)| |v9<s>|> |

Example 5.2.3 Let u be the distance from the origin:

u(x) = VX - x = /7,7

In three dimensions, this is

w(@,y,2) = Va? +y? + 22
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The gradient of u, V(x), is a unit vector in the direction of x. The gradient is:

Z;€e;

vu<x)=<¢f_x,..v%> N

In three dimensions, we have

T Y Z
\/x2+y2+z2’\/x2+y2+z2’\/x2+y2+z2>'

Vu(x,y,z) = <

This is a unit vector because the sum of the squared components sums to unity.

T;€; Trer I;T;
VEUjTj A/ TIT] TjT;

Figure 5.2 shows a plot of the vector field of Vu in two dimensions.

Vu-Vu= =1

Example 5.2.4 Consider an ellipse. An implicit equation of an ellipse is

2 2
? y
StE=1

We can also express an ellipse as u(x,y) + v(z,y) = ¢ where u and v are the distance from the two foci. That is, an
ellipse is the set of points such that the sum of the distances from the two foci is a constant. Let n = V(u+ v). This
is a vector which is orthogonal to the ellipse when evaluated on the surface. Let t be a unit tangent to the surface.
Since n and t are orthogonal,

n-t=20
(Vu+Vv)-t=0
Vu-t=Vuv-(-t).
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Figure 5.3: An ellipse and rays from the foci.

Since these are unit vectors, the angle between Vu and t is equal to the angle between Vv and —t. In other words:
If we draw rays from the foci to a point on the ellipse, the rays make equal angles with the ellipse. If the ellipse were
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a reflective surface, a wave starting at one focus would be reflected from the ellipse and travel to the other focus. See
Figure 6.4. This result also holds for ellipsoids, u(x,y, z) + v(z,y,z) = c.

We see that an ellipsoidal dish could be used to collect spherical waves, (waves emanating from a point). If the
dish is shaped so that the source of the waves is located at one foci and a collector is placed at the second, then any
wave starting at the source and reflecting off the dish will travel to the collector. See Figure 5.4.

Figure 5.4: An elliptical dish.
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5.3 Exercises

Vector Functions

Exercise 5.1
Consider the parametric curve

t . t\ .
I = COS — 1 S1n — .
2 2 )9

2 . . .
4T Plot the position and some velocity and acceleration vectors.

dr
Calculate & and =

Hint, Solution

Exercise 5.2

Let r(¢) be the position of an object moving with constant speed. Show that the acceleration of the object is orthogonal
to the velocity of the object.

Hint, Solution

Vector Fields

Exercise 5.3

Consider the paraboloid 22 + y? — z = 0. What is the angle between the two tangent planes that touch the surface at
(1,1,2) and (1, —1,2)? What are the equations of the tangent planes at these points?

Hint, Solution

Exercise 5.4
Consider the paraboloid 2% + 32 — z = 0. What is the point on the paraboloid that is closest to (1,0,0)?
Hint, Solution

Exercise 5.5
Consider the region R defined by 22 + 2y + y?> < 9. What is the volume of the solid obtained by rotating R about the
y axis?

Is this the same as the volume of the solid obtained by rotating R about the x axis? Give geometric and algebraic
explanations of this.
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Hint, Solution

Exercise 5.6
Two cylinders of unit radius intersect at right angles as shown in Figure 5.5. What is the volume of the solid enclosed

by the cylinders?

Figure 5.5: Two cylinders intersecting.

Hint, Solution

Exercise 5.7
Consider the curve f(x) = 1/ on the interval [1...00). Let S be the solid obtained by rotating f(x) about the x
axis. (See Figure 5.6.) Show that the length of f(z) and the lateral area of S are infinite. Find the volume of S. !

Hint, Solution

Exercise 5.8
Suppose that a deposit of oil looks like a cone in the ground as illustrated in Figure 5.7. Suppose that the oil has a

You could fill S with a finite amount of paint, but it would take an infinite amount of paint to cover its surface.
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Figure 5.6: The rotation of 1/z about the z axis.

density of 800kg/m? and it's vertical depth is 12m. How much work? would it take to get the oil to the surface.
Hint, Solution

Exercise 5.9

Find the area and volume of a sphere of radius R by integrating in spherical coordinates.
Hint, Solution

2 Recall that work = force x distance and force = mass X acceleration.
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Figure 5.7: The oil deposit.

5.4 Hints

Vector Functions

Hint 5.1
Plot the velocity and acceleration vectors at regular intervals along the path of motion.

Hint 5.2

If r(t) has constant speed, then [r'(f)| = c¢. The condition that the acceleration is orthogonal to the velocity can be
stated mathematically in terms of the dot product, r”(¢) - r'(t) = 0. Write the condition of constant speed in terms of
a dot product and go from there.

Vector Fields

Hint 5.3
The angle between two planes is the angle between the vectors orthogonal to the planes. The angle between the two
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vectors is

= arccos (2,2,-1)-(2,-2,~1)
/= (r<2,2,—1>|r<2,—2,—1>r>

The equation of a line orthogonal to a and passing through the point bisa-x =a-b.

Hint 5.4

Since the paraboloid is a differentiable surface, the normal to the surface at the closest point will be parallel to the
vector from the closest point to (1,0,0). We can express this using the gradient and the cross product. If (z,y, z) is
the closest point on the paraboloid, then a vector orthogonal to the surface there is Vf = (2x,2y, —1). The vector
from the surface to the point (1,0,0) is (1 — z, —y, —z). These two vectors are parallel if their cross product is zero.

Hint 5.5
CONTINUE

Hint 5.6
CONTINUE

Hint 5.7
CONTINUE

Hint 5.8
Start with the formula for the work required to move the oil to the surface. Integrate over the mass of the oil.

Work = /(acceleration) (distance) d(mass)

Here (distance) is the distance of the differential of mass from the surface. The acceleration is that of gravity, g.

Hint 5.9
CONTINUE
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5.5 Solutions

Vector Functions

Solution 5.1
The velocity is

r = 1sin ! i+1cos LY.
-3 2 2 2 )
r = 1cos ! i 1sim LY
Ty 2 1 2 )

See Figure 5.8 for plots of position, velocity and acceleration.

The acceleration is

o

Figure 5.8: A Graph of Position and Velocity and of Position and Acceleration

Solution 5.2
If r(t) has constant speed, then |r/(t)| = ¢. The condition that the acceleration is orthogonal to the velocity can be
stated mathematically in terms of the dot product, r”(¢) - r'(¢) = 0. Note that we can write the condition of constant
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speed in terms of a dot product,

Differentiating this equation yields,

r’(t) -1’ (t) = 0.
This shows that the acceleration is orthogonal to the velocity.

Vector Fields

Solution 5.3

The gradient, which is orthogonal to the surface when evaluated there is V f = 2xi+2yj—k. 2i+2j—k and 2i—2j—k
are orthogonal to the paraboloid, (and hence the tangent planes), at the points (1,1,2) and (1, —1,2), respectively.
The angle between the tangent planes is the angle between the vectors orthogonal to the planes. The angle between

the two vectors is
2.2 —-1)-(2. -2, -1
Q:arccos(<” ) (2,72, >>

1
6 = arccos <§) ~ 1.45946.

Recall that the equation of a line orthogonal to a and passing through the point b is a-x = a - b. The equations of
the tangent planes are

(2,£2,—1) - (z,y,z) = (2,42, —1) - (1, £1,2),

2042y —z=2.|

The paraboloid and the tangent planes are shown in Figure 5.9.
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Figure 5.9: Paraboloid and Two Tangent Planes

Solution 5.4

Since the paraboloid is a differentiable surface, the normal to the surface at the closest point will be parallel to the
vector from the closest point to (1,0,0). We can express this using the gradient and the cross product. If (z,y, 2) is
the closest point on the paraboloid, then a vector orthogonal to the surface there is Vf = (2x,2y, —1). The vector
from the surface to the point (1,0,0) is (1 — x, —y, —z). These two vectors are parallel if their cross product is zero,

(2x,2y,—1) x (1 —z,—y,—2) = (—y — 2yz,—1 + o + 22z, —2y) = 0.

This gives us the three equations,

-y —2yz =0,
—1+2+4+222=0,
—2y = 0.

The third equation requires that y = 0. The first equation then becomes trivial and we are left with the second equation,
—14+24+222=0.
Substituting z = 22 + y? into this equation yields,

23+ —1=0.
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The only real valued solution of this polynomial is

672 (94 VY)Y 61/
(9+ V87"

Thus the closest point to (1,0,0) on the paraboloid is

~ 0.589755.

6-2/3 (94 v3T)** — 1/ . <62/3 9+ v87)* — 6

1/3
~ (0.589755, 0, 0.34781).
(9+ V87" (9+ v&T)"? )

The closest point is shown graphically in Figure 5.10.

1-1

A

| 77777
'0,1111/1

%5 'I/I///l/III

XL IR
- "é i’zl//%l;l

A

Figure 5.10: Paraboloid, Tangent Plane and Line Connecting (1,0,0) to Closest Point
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Solution 5.5
We consider the region R defined by 22 + 2y + y* < 9. The boundary of the region is an ellipse. (See Figure 5.11 for
the ellipse and the solid obtained by rotating the region.) Note that in rotating the region about the y axis, only the

Figure 5.11: The curve 2% + zy + y> = 9.

portions in the second and fourth quadrants make a contribution. Since the solid is symmetric across the xz plane, we
will find the volume of the top half and then double this to get the volume of the whole solid. Now we consider rotating
the region in the second quadrant about the 3 axis. In the equation for the ellipse, 2% + zy + y? = 9, we solve for .

(v+ VBV~ 2)

1
T ==
2

In the second quadrant, the curve (—y — v/3./12 —y2)/2 is defined on y € [0...1/12] and the curve (—y —
V/3+/12 — 42)/2 is defined on y € [3...1/12]. (See Figure 5.12.) We find the volume obtained by rotating the
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Figure 5.12: (—y — v/34/12 —42)/2 in red and (—y + v/31/12 — 42)/2 in green.
first curve and subtract the volume from rotating the second curve.

2 2
V— 9 /V12W<—y—\/§\/12—y2> dy_/“%(—yﬂ/ﬁ\/u—yz)
B 2 2
0 3

=" (/Om<y+\/§\/ﬂ>2dy—/gm(—y+\/§\/—12—y2)2dy>

2
- Vi2 V12
V:§ / (—2y2+\/ﬁy\/12—y2+36 dy — / (Qy—fy\/12— —1—36) dy
0 3
Vi2 V12
2 2 2 2
V:%([—g3——(12—y2)3/2+36y] [53 12—y)3/2+36y] )

3
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Now consider the volume of the solid obtained by rotating R about the x axis? This as the same as the volume of
the solid obtained by rotating R about the y axis. Geometrically we know this because R is symmetric about the line
Yy =x.

Now we justify it algebraically. Consider the phrase: Rotate the region 2% + zy + y?> < 9 about the z axis. We
formally swap z and y to obtain: Rotate the region y? 4+ yx + 22 < 9 about the y axis. Which is the original problem.

Solution 5.6

We find of the volume of the intersecting cylinders by summing the volumes of the two cylinders and then subracting the
volume of their intersection. The volume of each of the cylinders is 2. The intersection is shown in Figure 5.13. If we
slice this solid along the plane z = const we have a square with side length 21/1 — 22. The volume of the intersection

of the cylinders is
1
/ 4 (1 — z2) dz.
-1

We compute the volume of the intersecting cylinders.

/
"";"/””’!!!m\\\\\ \\
\\

Figure 5.13: The intersection of the two cylinders.
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Solution 5.7
The length of f(x) is

L:/ V1+1/22dx.
1

Since /1 + 1/2% > 1/z, the integral diverges. The length is infinite.
We find the area of S by integrating the length of circles.

<2
A= / e
Lz
This integral also diverges. The area is infinite.
Finally we find the volume of S by integrating the area of disks.

o T
V:/1 adr=[=7]"=n
Solution 5.8

First we write the formula for the work required to move the oil to the surface. We integrate over the mass of the oil.

Work = /(acceleration) (distance) d(mass)

Here (distance) is the distance of the differential of mass from the surface. The acceleration is that of gravity, g. The
differential of mass can be represented an a differential of volume time the density of the oil, 800 kg/m?3.

Work = /SOOQ(distance) d(volume)
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We place the coordinate axis so that z = 0 coincides with the bottom of the cone. The oil lies between z = 0 and
2 = 12. The cross sectional area of the oil deposit at a fixed depth is m2z2. Thus the differential of volume is 7 2% dz.
This oil must me raised a distance of 24 — z.

12
W:/ 800¢ (24 — 2) 7 22 dz
0

W = 69120009

k 2
W~ 2.13 x 108 2

g2

Solution 5.9
The Jacobian in spherical coordinates is 72 sin ¢.

2m s
area = / / R%sin ¢ d¢ dd
o Jo

= 27TR2/ sin ¢ do
0
= 27 R*[— cos @]

area = 47 R?

R 27 T
volume :/ / / r?sin ¢ dp df dr
o Jo Jo

R 7
=2 2
7T/0 /0 resin g de dr
31"
=27 {gh [— cos ¢

4
volume = §7TR3
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Part 111

Functions of a Complex Variable
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Chapter 6

Complex Numbers

I'm sorry. You have reached an imaginary number. Please rotate your phone 90 degrees and dial again.

-Message on answering machine of Cathy Vargas.

6.1 Complex Numbers

Shortcomings of Real Numbers. When you started algebra, you learned that the quadratic equation: x4 2ax +
b = 0 has either two, one or no solutions. For example:

e 12 — 32 4+ 2 =0 has the two solutions x = 1 and z = 2.
e For 22 — 224+ 1 =0, 2 = 1 is a solution of multiplicity two.

e 22+ 1 =0 has no solutions.
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This is a little unsatisfactory. We can formally solve the general quadratic equation.

224+ 2ax+b=0
(x+a)?=a*>—b
rT=—axVa?—-0>

However, the solutions are defined only when the discriminant, a®> — b is positive. This is because the square root
function, 1/, is a bijection from R%" to R%". (See Figure 6.1.)

Figure 6.1: y = /x

A New Mathematical Constant. We cannot solve 2> = —1 because v/—1 is not defined. To overcome this
apparent shortcoming of the real number system, we create a new symbolic constant v/—1. Note that we can express
the square root of any negative real number in terms of v/—1: /—r = v/—14/r. Now we can express the solutions of

22 = —1asx=+/—1and z = —/—1. These satisfy the equation since (\/—1)2 = —1 and (—\/—1)2 =1

Euler’s Notation. Euler introduced the notation of using the letter ¢ to denote v/—1. We will use the symbol
2, an i without a dot, to denote /—1. This helps us distinguish it from i used as a variable or index.! We call any

! Electrical engineering types prefer to use j or j to denote /—1.
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number of the form b, b € R, a pure imaginary number.> We call numbers of the form a + b, where a,b € R,
complex numbers®

The Quadratic. Now we return to the quadratic with real coefficients, 22 + 2az + b = 0. It has the solutions

¥ = —a £+ v/a? — b. The solutions are real-valued only if a> —b > 0. If not, then we can define solutions as complex
numbers. If the discriminant is negative, we write x = —a 4 1/b — a®. Thus every quadratic polynomial with real

coefficients has exactly two solutions, counting multiplicities. The fundamental theorem of algebra states that an n'®

degree polynomial with complex coefficients has n, not necessarily distinct, complex roots. We will prove this result
later using the theory of functions of a complex variable.

Component Operations. Consider the complex number z = z + 1y, (z,y € R). The real part of z is R(z) = z;
the imaginary part of z is §(z) = y. Two complex numbers, z; = x1 + 1y; and z3 = x5 + 135, are equal if and only if
21 = 9 and y; = 1. The complex conjugate® of z = x + 1y is Z = x — 1y. The notation z* = x — 1y is also used.

Field Properties. The set of complex numbers, C, form a field. That essentially means that we can do arithmetic
with complex numbers. We treat 1 as a symbolic constant with the property that 1> = —1. The field of complex
numbers satisfy the following properties: (Let z, 21, 29, 23 € C.)

1. Closure under addition and multiplication.

21+ 22 = (x1 + 1) + (2 + 1y0)
(w1 +22) +2 (1 +12) €C
2129 = (w1 + wy1) (o + 232)
= (T122 — y1y2) + 1 (v1y2 + 22y1) € C

2 “Imaginary” is an unfortunate term. Real numbers are artificial; constructs of the mind. Real numbers are no more real than
imaginary numbers.

3 Here complex means “composed of two or more parts”, not “hard to separate, analyze, or solve”. Those who disagree have a
complex number complex.

4 Conjugate: having features in common but opposite or inverse in some particular.
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2. Commutativity of addition and multiplication. z; + 25 = 25 + 21. 2129 = 2921.

3. Associativity of addition and multiplication. (27 + 22) + 23 = 21 + (22 + 23). (2122) 23 = 21 (2223).
4. Distributive law. z1 (20 4 23) = 2129 + 2123.

5. Identity with respect to addition and multiplication. z +0 = z. 2(1) = z.

6. Inverse with respect to addition. z 4 (—z) = (x +wy) + (—x —1y) = 0.

7. Inverse with respect to multiplication for nonzero numbers. zz~! = 1, where

1 1 T — 1y T Y
A = — = = = — 1
2 x4y 2?24y? 2r4y? 2?4y

Properties of the Complex Conjugate. Using the field properties of complex numbers, we can derive the
following properties of the complex conjugate, Z = = — wy.

1. (Z) =z,

ha
VRS
IR
~_

Il
YIRSy

6.2 The Complex Plane

Complex Plane. We can denote a complex number z = z 4 1y as an ordered pair of real numbers (x,y). Thus we
can represent a complex number as a point in R? where the first component is the real part and the second component
is the imaginary part of z. This is called the complex plane or the Argand diagram. (See Figure 6.2.) A complex
number written as z = = + 1y is said to be in Cartesian form, or a + 1b form.
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Im(z)

(x,y)

Re(2)

Figure 6.2: The Complex Plane

Recall that there are two ways of describing a point in the complex plane: an ordered pair of coordinates (z,y) that
give the horizontal and vertical offset from the origin or the distance r from the origin and the angle 6 from the positive
horizontal axis. The angle 6 is not unique. It is only determined up to an additive integer multiple of 27.

Modulus. The magnitude or modulus of a complex number is the distance of the point from the origin. It is
defined as |z| = |z + | = /22 +y2. Note that 2z = (v + wy)(z — ) = 2® + y* = |2]|*>. The modulus has the
following properties.

L |z122| = |21 [22]
2. |2 :@foer#O.
Z9 |22‘

3. |21 + 22| < 21| + |29
4. |21 + 20| 2 ||21] — |22

We could prove the first two properties by expanding in x + 2y form, but it would be fairly messy. The proofs will
become simple after polar form has been introduced. The second two properties follow from the triangle inequalities in
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geometry. This will become apparent after the relationship between complex numbers and vectors is introduced. One
can show that
2122+ 2| = |21] |22] -+ - |2

and
|21+ 20+ -+ 2| <]+ 22| + -+ |24
with proof by induction.

Argument. The argument of a complex number is the angle that the vector with tail at the origin and head at
z = = + 1y makes with the positive z-axis. The argument is denoted arg(z). Note that the argument is defined for all
nonzero numbers and is only determined up to an additive integer multiple of 2. That is, the argument of a complex
number is the set of values: {0 + 27n | n € Z}. The principal argument of a complex number is that angle in the set
arg(z) which lies in the range (—7, w]. The principal argument is denoted Arg(z). We prove the following identities in
Exercise 6.10.

arg(z() = arg(z) + arg(()
Arg(z() # Arg(z) + Arg(()
arg (2°) = arg(z) + arg(z) # 2arg(z)

Example 6.2.1 Consider the equation |z — 1 —1| = 2. The set of points satisfying this equation is a circle of radius
2 and center at 1 + 1 in the complex plane. You can see this by noting that |z — 1 — 1| is the distance from the point
(1,1). (See Figure 6.3.)

Another way to derive this is to substitute z = x + 1y into the equation.

lz+wy—1—19 =2

VCERVENURSVES:
(-1 +(y—1)72=4

This is the analytic geometry equation for a circle of radius 2 centered about (1,1).
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-1

Figure 6.3: Solution of [z — 1 —1| =2
Example 6.2.2 Consider the curve described by
|z| + |z — 2| = 4.

Note that |z| is the distance from the origin in the complex plane and |z — 2| is the distance from z = 2. The equation
s

(distance from (0,0)) + (distance from (2,0)) = 4.

From geometry, we know that this is an ellipse with foci at (0,0) and (2,0), major axis 2, and minor axis \/3. (See
Figure 6.4.)
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Figure 6.4: Solution of |z| 4+ |z — 2| =4

We can use the substitution z = x + 1y to get the equation in algebraic form.

|z| +1]z —2| =4
[z |+ |z +wy—2[=4
Vat+yr /(- 22 +y? =4
2yt =16 -8\ (z =22+ 2 +2? —da + 4+
r—5=-=2(x—2)2+y?
2? — 10z + 25 = 42% — 162 + 16 + 49/°
1 1

Z(x—l)Q—i—gyZ: 1

Thus we have the standard form for an equation describing an ellipse.
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6.3 Polar Form

Polar Form. A complex number written in Cartesian form, z = z 4 1y, can be converted polar form, z = r(cos 6 +
18in 0), using trigonometry. Here r = |z| is the modulus and 6 = arctan(z,y) is the argument of z. The argument is
the angle between the x axis and the vector with its head at (z,y). (See Figure 6.5.) Note that 6 is not unique. If
z =r(cosf +1sinf) then z = r(cos(f + 2nm) + 1sin(f + 2nm)) for any n € Z.

Figure 6.5: Polar Form

The Arctangent. Note that arctan(x,y) is not the same thing as the old arctangent that you learned about in
trigonometry arctan(z,y) is sensitive to the quadrant of the point (z,y), while arctan (y) is not. For example,

xT

-3
arctan(1,1) = % +2nm and arctan(—1,—1) = Tﬂ + 2nm,

-1 1
arctan = = arctan 1 = arctan(1).

Euler’s Formula. Euler’s formula, ¥ = cos6+1sin,” allows us to write the polar form more compactly. Expressing
the polar form in terms of the exponential function of imaginary argument makes arithmetic with complex numbers

whereas

5 See Exercise 6.17 for justification of Euler’s formula.
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much more convenient.

z =r(cosf +1sinf) = re?

The exponential of an imaginary argument has all the nice properties that we know from studying functions of a real
variable, like €' ¢ = e+ | ater on we will introduce the exponential of a complex number.
Using Euler's Formula, we can express the cosine and sine in terms of the exponential.

5 = cos(6)

e —e™  (cos(0) +usin(f)) — (cos(—0) + 1sin(—0)) |
- = 5 = sin(0)

e? +e7  (cos(f) + vsin(f)) + (cos(—0) + 2sin(—0))
2
8)) — (cos(—0

Arithmetic With Complex Numbers. Note that it is convenient to add complex numbers in Cartesian form.

(z1 4+ w1) + (22 + 1) = (21 + 22) + 2 (y1 + 12)

However, it is difficult to multiply or divide them in Cartesian form.

(@1 +un) (22 +192) = (T122 — Y1y2) + 1 (T1y2 + 2241)
it (@ twn) (T —we) 1T+ iy JLah — 1Yo

Totays (o +1y2) (T2 — 1)) T3+ 3 3+ 2

On the other hand, it is difficult to add complex numbers in polar form.

rie® 4rye® =) (cosf +1sin b)) + ry (cos By + 15in 6,)

= rycos6y + rocosby + 1 (r sin by + rosinby)

= \/(T1 cos b1 + 15 cos 05)° + (1 8in 0y + o sin 65)*

% @ arctan(ry cos 01 +72 cos 02,71 sin 1472 sin 62)

_ T% + T% + 2 cos (01 . 92) et arctan(ry cos 61 +7ra cos f2,r1 sin 01472 sin 62)
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However, it is convenient to multiply and divide them in polar form.
€%y €2 = ppy e 01402)

201
e _ Q 61(91—92)

T9 e1f2 T2

Keeping this in mind will make working with complex numbers a shade or two less grungy.

Result 6.3.1 Euler's formula is

e = cosf + 1sin 6.

We can write the cosine and sine in terms of the exponential.

ez@ 6710 ezﬂ _ efzﬂ
cos(f) = %, sin(f) = 5
[

To change between Cartesian and polar form, use the identities

re’ =rcosf +wrsiné,

T4y = /2 + y2 e arctan(zx,y) .

Cartesian form is convenient for addition. Polar form is convenient for multiplication and

division.
Example 6.3.1 We write 5 + 17 in polar form.

5417 = \/7_462arctan(5,7)
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We write 2¢/% in Cartesian form.
2e"/6 = 9 cos <E> + 228in (E)
6 6

=V3+1

Example 6.3.2 We will prove the trigonometric identity

1 1 3
cos'f = S cos(40) + 5 cos(20) + 3

We start by writing the cosine in terms of the exponential.
4
ez@ + 6719
cos' f = (T

1 46 20 120 | 240
— (e 4¢* 6+4e™ e "
16( +4e% +6 + +e)

e240 —|—€_Z49 1 6129 _'_6—126' 3
(5) 4 (5)

1
= —cos(40) + 3 cos(26) + 3

— ool =

8

co

By the definition of exponentiation, we have ¥ = (e“’)" We apply Euler’s formula to obtain a result which is useful
in deriving trigonometric identities.
cos(nf) + 1sin(nf) = (cos(6) + 2sin(f))"

Result 6.3.2 DeMoivre’s Theorem.*
cos(nf) + 1sin(nd) = (cos(#) + 2sin(0))"

°It’s amazing what passes for a theorem these days. I would think that this would be a corollary at most.
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Example 6.3.3 We will express cos(50) in terms of cosf and sin(56) in terms of sinf. We start with DeMoivre's

theorem.
ot5f (629)5

cos(50) + 1sin(50) = (cos § + 1sin )°

= o cos® 0 +1 > cos* Osinf — o cos® @sin 6 — 1 o cos? 6 sin® 0
0 1 2 3
+ (i) cos @ sin® 6 + 1 <§> sin® 6

= (cos5 0 — 10 cos® fsin @ + 5 cos O sin* 6’) +1 (5 cos* @ sin @ — 10 cos® O sin® @ + sin® 6’)
Then we equate the real and imaginary parts.
cos(56) = cos® § — 10 cos® fsin® § + 5 cos fsin* f
sin(560) = 5cos® fsin § — 10 cos? fsin® § + sin® 0
Finally we use the Pythagorean identity, cos® 6 + sin?6 = 1.
cos(50) = cos® @ — 10cos® 6 (1 — cos* ) + 5cosf (1 — cos? 0)2
cos(50) = 16 cos® § — 20 cos® @ + 5 cos 0

sin(56) = 5 (1 — sin® 9)2 sind — 10 (1 — sin® ) sin® 6 + sin® ¢
sin(56) = 16sin° @ — 20sin® § + 5sin 0

6.4 Arithmetic and Vectors

Addition. We can represent the complex number z = x 4 1y = r e" as a vector in Cartesian space with tail at the
origin and head at (x,y), or equivalently, the vector of length r and angle §. With the vector representation, we can
add complex numbers by connecting the tail of one vector to the head of the other. The vector z + ( is the diagonal
of the parallelogram defined by z and (. (See Figure 6.6.)
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Negation. The negative of z = x + 1y is —2 = —z —2y. In polar form we have z = r e and —z = r¢®*™)  (more
generally, z = 7 e(0+2n+1m ' € 7. |n terms of vectors, —z has the same magnitude but opposite direction as z. (See
Figure 6.6.)

Multiplication. The product of z = re¥ and ( = pe? is 2( = rpe®™ 9 The length of the vector z( is the
product of the lengths of z and {. The angle of z( is the sum of the angles of z and (. (See Figure 6.6.)

Note that arg(z() = arg(z) + arg({). Each of these arguments has an infinite number of values. If we write out
the multi-valuedness explicitly, we have

{0+¢+2mm:neZ}={0+2m:ne}+{p+2mn:ne’l}

The same is not true of the principal argument. In general, Arg(z() # Arg(z) + Arg(¢). Consider the case z = ( =
em/4 Then Arg(z) = Arg(¢) = 37/4, however, Arg(z() = —7/2.

Im(2) Im(2) Z=(E-yHoa e |
z+(=(x+&)+i(y+n) Z=x+iy =rpe®+e) (=E+in=pe*
{=&+in Z=x+iy =re? Z=x+iy=ret
Re(2) Re(2) Re(z)
-Z=-X-I
=rg®+m
Figure 6.6: Addition, Negation and Multiplication
Multiplicative Inverse. Assume that z is nonzero. The multiplicative inverse of z = re¥ is % = %e"e. The

length of % is the multiplicative inverse of the length of 2. The angle of % is the negative of the angle of z. (See
Figure 6.7.)
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Division. Assume that ( is nonzero. The quotient of z = re* and ( = pe* is % = %e2(9*¢). The length of the

vector % is the quotient of the lengths of z and (. The angle of % is the difference of the angles of z and (. (See

Figure 6.7.)

10 —10

Complex Conjugate. The complex conjugate of z =x 4+ w=revisz=x —w =re Z is the mirror image
of z, reflected across the x axis. In other words, Z has the same magnitude as z and the angle of Z is the negative of
the angle of z. (See Figure 6.7.)

Im(2) Im(z) {=pe® Im(z)
z=reé Z=x+iy=re®
z=re®
Re(2) ~z e Re()
_%:-I;_Lei 6 p
Z=x-iy=re"®

Figure 6.7: Multiplicative Inverse, Division and Complex Conjugate

6.5 Integer Exponents

Consider the product (a + b)", n € Z. If we know arctan(a,b) then it will be most convenient to expand the product
working in polar form. If not, we can write n in base 2 to efficiently do the multiplications.
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Example 6.5.1 Suppose that we want to write (\/§ + z) " in Cartesian form.® We can do the multiplication directly.
Note that 20 is 10100 in base 2. That is, 20 = 2* + 22. We first calculate the powers of the form (\/5—1— 2)2 by
successive squaring.

2

(\/§+ z) = 2+412V3
(\/§+z>4 — 8418V3
<@+ z>8 — 128 —1128V/3

16
(\/5 n @) — 32768 +132768V/3
Next we multiply (\/5 + 1)4 and (\/3 + 2)16 to obtain the answer.

20
<\/§ + z) _ <—32768 n @32768\/5) (—8 + 28\/§> — 524288 — 1524288+/3

Since we know that arctan (\/g, 1) = 7/6, it is easiest to do this problem by first changing to modulus-argument
form.

20
20 2 .
<\/§ + Z) — ( <\/§> 412 ezarctan(ﬁ,l))

_ (2 ez7r/6) 20
— 220 ez47r/3

1 V3
= 1048576 | —= —1——

— 5249288 — 1524288+/3

6No, I have no idea why we would want to do that. Just humor me. If you pretend that you're interested, I'll do the same. Believe
me, expressing your real feelings here isn’t going to do anyone any good.
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Example 6.5.2 Consider (5 +17)'. We will do the exponentiation in polar form and write the result in Cartesian
form.

11
(5.4+17)" = (V7deeim0)

= 74°V/T4(cos(11 arctan(5, 7)) + 2sin(11 arctan(5, 7)))
— 221900662474 cos(11 arctan(5, 7)) + 12219006624+/74 sin(11 arctan(5, 7))

The result is correct, but not very satisfying. This expression could be simplified. You could evaluate the trigonometric
functions with some fairly messy trigonometric identities. This would take much more work than directly multiplying
(5+27)H.

6.6 Rational Exponents

In this section we consider complex numbers with rational exponents, z/7, where p/q is a rational number. First we
consider unity raised to the 1/n power. We define 1/ as the set of numbers {2} such that 2" = 1.

1= {z| 2" =1}
We can find these values by writing z in modulus-argument form.

2" =1
Tnem0:1
r" =1 nd =0 mod 27
r=1 0 =2rk for k € Z

11/n — {eZQWk/n | ke Z}

There are only n distinct values as a result of the 27 periodicity of €. ¢2™ = ¢®0.

1= {e?™/m | g =0,...,n—1}
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These values are equally spaced points on the unit circle in the complex plane.
Example 6.6.1 1'/6 has the 6 values,
{620, ez7r/37 ez27r/37 em’ ez47r/3’ esz/3} )

In Cartesian form this is

{1 14+/3 —1+4/3 1 —1—1/3 1—2\/5}
3 9 ) 9 y T by 9 ) 9 .

The sixth roots of unity are plotted in Figure 6.8.

-1
Figure 6.8: The Sixth Roots of Unity.

The n'™ roots of the complex number ¢ = e’ are the set of numbers z = re* such that

M =c=aqe”
rh ezn@ — aezﬁ

r= a nd =3 mod 27
r=Ja 0= (8+2rk)/nfork=0,...,n—1.
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Thus
= {{L/ael(ﬁ””k)/” |k=0,...,n— 1} = {Wez(mg(c)*z“’“)/" |k=0,...,n— 1}

Principal Roots. The principal n'® root is denoted

% = %ezArg(z)/n )

Thus the principal root has the property

—m/n < Arg ({/z) < w/n.
This is consistent with the notation from functions of a real variable: {/x denotes the positive n** root of a positive
real number. We adopt the convention that z!/" denotes the n'" roots of z, which is a set of n numbers and {/Z is

the principal n'" root of z, which is a single number. The n'" roots of z are the principal n'" root of z times the n'®
roots of unity.

h

V= {fr s ko 1)
U _ {%eﬁﬂ'k‘/n | k=0,...,n— 1}
S/n %1l/n

Rational Exponents. We interpret 27/9 to mean z/9. That is, we first simplify the exponent, i.e. reduce the
fraction, before carrying out the exponentiation. Therefore 22/4 = 21/2 and 2'%% = 22, If p/q is a reduced fraction, (p
and q are relatively prime, in other words, they have no common factors), then

Pl = (P14
Thus 27/% is a set of ¢ values. Note that for an un-reduced fraction /s,
(Zr)l/s 7§ (Zl/s)r.
The former expression is a set of s values while the latter is a set of no more that s values. For instance, (12)1/2 =

172 = +1 and (11/2)" = (+1)2 = 1.
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Example 6.6.2 Consider 2'/°, (1 +1)'/3 and (2 +1)/5.

V5 = /2™ /5  for k =0,1,2,3,4

1/3
(1 JFZ)1/3 _ (ﬂezﬂﬂl)
— \6/§e7,7r/12 e7,27rk:/37 for k — 0,1,2

5/6

(2 + 2)5/6 _ <\/gezArctan(2,1))

— ( 55 ez5Arctan(2,1)>

= /55 erg Arctan(2 1) gimk/3 - for k= 0,1,2,3,4,5

1/6

Example 6.6.3 We find the roots of z° + 4.

(—4)/° = (4em)/
= V4em 2R/ for =0,1,2,3,4
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6.7 Exercises

Complex Numbers

Exercise 6.1
If 2 =2 4+ 1y, write the following in the form a + 1b:
1 (1+:2)
1
2. —
ZZ
3 1z+Z
(3412)°
Hint, Solution

Exercise 6.2

Verify that:
] 1+12+2—2_ 2
"3—4 55

2. (1—2)*=—4
Hint, Solution

Exercise 6.3
Write the following complex numbers in the form a + 1b.

1. <1 + Z\/§> -

2. (11 +4124)?

Hint, Solution

191



Exercise 6.4
Write the following complex numbers in the form a + 20

2. (1—2)7
Hint, Solution

Exercise 6.5
If 2 = x + 1y, write the following in the form u(z,y) + w(x,y).

1 ()
z
z +12

22—z
Hint, Solution

2.

Exercise 6.6
Quaternions are sometimes used as a generalization of complex numbers. A quaternion u may be defined as

u = ug + iy + Jus + kug
where ug, uy, us and ug are real numbers and 2, j and k are objects which satisfy
Z2:j2:k2:—1, =k, n=-k

and the usual associative and distributive laws. Show that for any quaternions u, w there exists a quaternion v such

that
uv = w

except for the case uy = u; = us = us.
Hint, Solution
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Exercise 6.7
Let « # 0, 5 # 0 be two complex numbers. Show that oo = ¢/3 for some real number ¢ (i.e. the vectors defined by «

and (3 are parallel) if and only if & (ozB) = 0.
Hint, Solution

The Complex Plane

Exercise 6.8
Find and depict all values of

L (142
2. M4

Identify the principal root.
Hint, Solution

Exercise 6.9
Sketch the regions of the complex plane:

L RG2)|+2|3(2)] <1

2. 1< |z—1 <2

3. |z =1 < |2+
Hint, Solution

Exercise 6.10
Prove the following identities.

1. arg(z() = arg(z) + arg(()
2. Arg(z¢) # Arg(z) + Arg(¢)
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3. arg (2?) = arg(z) + arg(z) # 2arg(z)
Hint, Solution

Exercise 6.11
Show, both by geometric and algebraic arguments, that for complex numbers z; and 25 the inequalities

21| = |22|] < |21+ 22| < 21| + |22]

hold.
Hint, Solution

Exercise 6.12
Find all the values of

1. (—1)=3/4
2. 8l/6

and show them graphically.
Hint, Solution

Exercise 6.13
Find all values of

1. (—1)~ 4
2. 16Y/8

and show them graphically.
Hint, Solution

Exercise 6.14
Sketch the regions or curves described by
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L1<|z—12[<2

2. [R(2)|+5[3(2)| =1

3. |z =1 = |2+
Hint, Solution

Exercise 6.15
Sketch the regions or curves described by

L jJz—1+4+ <1

2. R(z) —3(2) =5

3.z =+ ]z+1 =1
Hint, Solution

Exercise 6.16
Solve the equation

e —1] =2
for 6 (0 < 6 < ) and verify the solution geometrically.
Hint, Solution
Polar Form

Exercise 6.17

Show that Euler's formula, € = cos6 +1sin 6, is formally consistent with the standard Taylor series expansions for the
real functions e”, cosx and sinz. Consider the Taylor series of e about z = 0 to be the definition of the exponential
function for complex argument.

Hint, Solution
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Exercise 6.18
Use de Moivre's formula to derive the trigonometric identity

cos(30) = cos®(6) — 3 cos(f) sin?(8).
Hint, Solution

Exercise 6.19
Establish the formula
1— Zn—i—l
1—2
for the sum of a finite geometric series; then derive the formulas
1 sin((n+1/2))

1. 1+ cos(6) + cos(20) + - -~ + cos(nd) = 5 + © 2sin(6/2)

142422+ 42" = (z #£1),

2. sin(#) + sin(26) + - - - + sin(nd) = %Cotg B COZ(SLE;/Z/)Q))

where 0 < 6 < 2.
Hint, Solution

Arithmetic and Vectors
Exercise 6.20

Prove |z123| = |21]|22| and
Hint, Solution

Exercise 6.21
Prove that

a| — Al g
- ] Using polar form.

2+ P+ 2 =P =2 (2P + 1<) -

Interpret this geometrically.
Hint, Solution
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Integer Exponents

Exercise 6.22
Write (1 +2)'% in Cartesian form with the following two methods:

1. Just do the multiplication. If it takes you more than four multiplications, you suck.
2. Do the multiplication in polar form.

Hint, Solution

Rational Exponents

Exercise 6.23
Show that each of the numbers z = —a + (a® — b)
Hint, Solution

12 satisfies the equation 22 + 2az + b = 0.
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6.8 Hints

Complex Numbers

Hint 6.1

Hint 6.2

Hint 6.3

Hint 6.4

Hint 6.5

Hint 6.6

Hint 6.7

The Complex Plane
Hint 6.8

Hint 6.9
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Hint 6.10
Write the multivaluedness explicitly.

Hint 6.11
Consider a triangle with vertices at 0, z; and z; + 2.
Hint 6.12
Hint 6.13
Hint 6.14
Hint 6.15

Hint 6.16

Polar Form

Hint 6.17
Find the Taylor series of €, cos and sinf. Note that :** = (—1)".

Hint 6.18

Hint 6.19

Arithmetic and Vectors
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Hint 6.20
e | = 1.

Hint 6.21
Consider the parallelogram defined by z and (.

Integer Exponents

Hint 6.22
For the first part,

(1 + 2)10 _ <((1 +Z)2)2>2 (1 —}-1)2‘
Rational Exponents

Hint 6.23
Substitite the numbers into the equation.
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6.9 Solutions

Complex Numbers

Solution 6.1
1. We can do the exponentiation by directly multiplying.

(14+12)" = (14+122)(1 +122)%(1 +12)*
= (1+12)(=3 +14) (=3 + 14)?
= (11 —22) (=7 —124)
= 29 41278

We can also do the problem using De Moivre's Theorem.

7
(1 + Z2)7 _ (ﬁezarctan(1,2)>

— 125\/gez7arctan(1,2)
= 125v/5 cos(7 arctan(1, 2)) + 2125v/5 sin(7 arctan(1, 2))

2.

11

7z (v —w)?
1 (ztw)
(z—w)? (2 +ay)?
_ (z+wy)?
(24 y?)?

% —y? 2xy




3. We can evaluate the expression using De Moivre's Theorem.

=(~y+w+z—w)B+2)?

-9
= (1 + Z) ($ _ y) (mezarc‘can(&l))

1
=(1+o)(r - y)il()OOO\/Ee
(1+9)(—y)

= T 10000vi0 (cos(9 arctan(3, 1)) — 2sin(9 arctan(3,1)))
_ -y
~10000v/10
=y
10000+/10

—19 arctan(3,1)

(cos(9arctan(3, 1)) + sin(9 arctan(3,1)))

(cos(9arctan(3,1)) — sin(9 arctan(3,1)))
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We can also do this problem by directly multiplying but it's a little grungy.

1+zZ  (—y+w+az—w)(B—1)°

(3+12) 109
(140 - 93— ((6-027)
B 10
(140 - B -1 (8-1)°)
109
_ (+)(z—y)(3—1)(28 - 196)?
10?
(I +)(z —y)(3 —12)(—8432 —15376)
B 109
(z — y)(—22976 — 138368)
B 109

359(y — x) N 1199(y — x)
= 1
15625000 31250000

Solution 6.2
1.
1+22+2—z_1+223+24+2—z—z
3—14 15 3—143+14 1D —1
_—5+@10+—1—22
25 5
2
5
2.

(1—2)*=(—2)*= —4
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Solution 6.3
1. First we do the multiplication in Cartesian form.

1 —1

:ﬁlvw\/g
1 -1 1—1/3

:531+@\/§1—2\/§

1
2048

204
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Now we do the multiplication in modulus-argument, (polar), form.

(1 + @\/5) = (2e7/3) 7"

_ 2—10 e—1107r/3

B 1 107 4o 107
= 1024 Cos 3 728in 3

1 V3

= 2048 " '2048
(11 +24)* = 105 + 188

Solution 6.4
1.

241 2_ 2+ 2
(26—(1—22)) _(—1+28>
344
—63 — 116
3+114 —63+1:16

—63 — 116 —63 + 216
253 204

1225 1225
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Solution 6.5
1.

- (=)

T+

T — 1y

T +wx 4wy

T =T+
x? —g? 21
:r;2—|—52 +Z:c2 +yy2
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z+12  rtay +a2

2—1Z  2—(x—1y)
oty +2)

Solution 6.6

2—y—wx
r+iu(y+2)2—y+w

2—y—w 2—y+wx
22—y -tz | P+ (y+2)2-y)

O I e L

—2xy 4+ 2% —y?

C-yp+at By

Method 1. We expand the equation uv = w in its components.

uv = w

(o + wuy + Jug + kus) (v + wy + Jue + kvg) = wo + 1wy + Jwe + kws

(UoUO — U1V — UV — U3U3) +1 (uwo + UgV1 — U3Vg + U2U3) + J (UQU() + U3t + UV — U11)3>

We can write this as a matrix equation.

—uy
Uo
Us

— U

+ k (U3U0 — UV + UV + UQ’U3) = wo + 1wy + Jwsg + k’wg

—Uz —Ug Vo Wo
—Uuz U2 L% I %1
Uy —Up v | | we
Uy Ug U3 w3

This linear system of equations has a unique solution for v if and only if the determinant of the matrix is nonzero. The

determinant of the matrix is (u2 4 u2 + u2 + u2)”.

This is zero if and only if ug = u; = uy = uz = 0. Thus there
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exists a unique v such that uv = w if v is nonzero. This v is

v = ((uowo + wwy + ugwy + uzws) + 1 (—urwg + upw; + uzwy — usws) + J (—uswo — uzwy + Ugwy + U W3)
+ k (—uzwo + uswy — ugwa + uows) )/ (ug + uf + uj + u3)
Method 2. Note that @u is a real number.
uu = (ug — 1y — Jug — kug) (uo + 1wy + Jug + kug)
= (ug +ui +us + u3) + 1 (uour — wrtp — usuz + uzus)
+ 7 (ugug + ugug — ugug — uzuy) + k (ugug — ugus + usuy — usug)
= (uf +ui +u3 + u3)
uu = 0 only if u = 0. We solve for v by multiplying by the conjugate of v and dividing by wu.
uv = w
UuUv = uw
uw
U=
(ug — 1y — Jug — kug) (wo + 101 + Jwy + kws)
u% + u% + u% + u%

v =

v = ((uowo + wwy + ugwy + ugws) + 1 (—ugwg + upw; + uzwy — usws) + J (—uswy — uzwy + Ugwy + U W3)
+ k (—uswo + upwy — ugwa + uows) )/ (ug + ui + uj + u3)
Solution 6.7 B
If o = t3, then a3 = t|B3|?, which is a real number. Hence & (aﬁ) =0.
Now assume that & (oﬁ) = 0. This implies that a3 = r for some r € R. We multiply by 3 and simplify.
alpf =rp

r
o=
1617

,

By taking t = e We see that o =t for some real number ¢.
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The Complex Plane

Solution 6.8
1.

(140 = (vaer) "
_ Y em/12 11/3
_ Y2122k — 01,2
_ {\6/56271'/12’ o2 e/ ¢ 26217#/12}
The principal root is
V1+1=v2em12,

The roots are depicted in Figure 6.9.

el

Figure 6.9: (1 +1)'/3
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Z1/4 _ (em/2)1/4
_ ez7r/8 11/4
_ ek 0,1,2,3

— {emT/S, e7,57r/87 ezQw/87 e7,137r/8}

The principal root is

Vi =em/®,
The roots are depicted in Figure 6.10.
o 1
°
-1 1
°
-1 @

Figure 6.10: o'/

Solution 6.9
1.

1R(2)| +2[(2)] < 1
2] + 2]y < 1
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In the first quadrant, this is the triangle below the line y = (1—x)/2. We reflect this triangle across the coordinate
axes to obtain triangles in the other quadrants. Explicitly, we have the set of points: {z =z +wy | -1 <z <
1A Jy] < (1—|z])/2}. See Figure 6.11.

Figure 6.11: |R(2)| +2|3(2)| <1

2. |z — 1 is the distance from the point ¢ in the complex plane. Thus 1 < |z — | < 2 is an annulus centered at
z =1 between the radii 1 and 2. See Figure 6.12.

3. The points which are closer to z =2 than z = —1 are those points in the upper half plane. See Figure 6.13.
Solution 6.10
Let z =re? and ¢ = pe.

1.

arg(z() = arg(z) + arg(¢)
arg (rpe' ™) = {0+ 2mm} + {¥ + 27n}
{0+ 9+ 27k} ={0+ 9+ 2mm}
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D

Figure 6.12: 1 < |z — 1] < 2

Figure 6.13: The upper half plane.

Arg(z¢) # Arg(z) + Arg(¢)
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Consider z = ¢ = —1. Arg(z) = Arg(¢) = 7, however Arg(z() = Arg(1l) = 0. The identity becomes 0 # 27.

3.
arg (2°) = arg(z) + arg(z) # 2arg(z)
arg (1’ e?’) = {0 + 2k} + {0 + 2mrm} # 2{0 + 27n}
{20 + 27k} = {20 + 2mm} # {20 + 47n}

Solution 6.11

Consider a triangle in the complex plane with vertices at 0, z; and z; + z3. (See Figure 6.14.)

{2
|z,|
gl
|Z;|! |2tz

Figure 6.14: Triangle Inequality

The lengths of the sides of the triangle are |z1|, |22| and |21 + 22| The second inequality shows that one side of the
triangle must be less than or equal to the sum of the other two sides.

|21 + 22| < |z1| + |22]

The first inequality shows that the length of one side of the triangle must be greater than or equal to the difference in
the length of the other two sides.
|21+ 22| 2 [|21] — [22]]
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Now we prove the inequalities algebraically. We will reduce the inequality to an identity. Let z; = r €', 2o = rye

21| = |22]| < |21 + 22| < [21] + |22
1= o] e rpe® [ <
(r1 —12)” < (rie 4y e®) (e frye®) < (ry +1y)°
1242 — 2y <2 4 oy 0170 Ly (500D <2 402 L 9y
—2r119 < 21179 COS (61 — O2) < 21179
—1<cos(#y—06,) <1

Solution 6.12
1.

(1) = (=)
= (-
= ()"
_ im/Aq1/4
=e™het 2 | =0,1,2,3
_ { em/4’ ezSTr/4’ 61571’/47 ez77r/4}

_{1—|—z —14+1 —1—1 1—2}
See Figure 6.15.
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Figure 6.15: (—1)=%/4

81/6 — %11/6
=V2e*3 | =0,1,2,3,4,5
_ {\/57 \/§em/37 \/56127r/37 \/58”, \/581471'/37 \/§GZ5W/3}

:{\/il-l-l\/g —1+2\/§7_\/§,—1—z\/§ 1—2\/5}

V2 V2 V2T V2

See Figure 6.16.
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{ 1 ([ ]
-2 ®1 1% 2
-1
] [ ]
-2

Figure 6.16: 8'/¢

Solution 6.13
1.

(=)~ = ((=)~HV
= (-1
= (em)/!

— im/4 q1/4

—em/ethT/2 | =0,1,2,3

— {6171'/47 ez37r/47 ez57r/47 ez77r/4}

_{1+@ 142 —1—2 1—2}
Slv2T V2T V2 V2
See Figure 6.17.
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Figure 6.17: (—1)"1/4

16"/ = V161"
=V2e* 4 | =0,1,2,3,4,5,6,7

_ {\/57 \/§ez7r/4’ \/éewr/2’ \/§GZ3TF/4’ \/éewr’ \/58157'(/4’ \/ieZSﬂ/27 \/§e7,77r/4}
= {\/5,1—1—2,2\/5,—1—}—2,—\/5,—1—z,—zﬂ,l—z}

See Figure 6.18.
Solution 6.14

1. |z — 42| is the distance from the point 12 in the complex plane. Thus 1 < |z — 42| < 2 is an annulus. See
Figure 6.19.
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[ ]
=
[ ]

Figure 6.18: 1671/8

Figure 6.19: 1 < |z — 12| < 2
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[R(2)| +5[3(2)| =1
|z + 5]yl =1

In the first quadrant this is the line y = (1 — x)/5. We reflect this line segment across the coordinate axes to
obtain line segments in the other quadrants. Explicitly, we have the set of points: {z =z +wy | -1 < 2 <
1Ny ==%(1—|z])/5}. See Figure 6.20.

0.4;

/\
\ i

-0. 4

Figure 6.20: |R(z)| + 5|S(2)| = 1

3. The set of points equidistant from 2 and — is the real axis. See Figure 6.21.

Solution 6.15
1. |z — 1 41| is the distance from the point (1 —2). Thus |z — 1 + | < 1 is the disk of unit radius centered at
(1 —12). See Figure 6.22.
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Figure 6.21: |z — 1| = |z + 1]

Figure 6.22: |z — 14/ <1
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R(z) —3(z) =5
r—y=

y=z—95

See Figure 6.23.

5’ /

-10 -5 5 10
-_']_0
_15

Figure 6.23: R(z) — () =5

3. Since |z — 1| + |z + 1| > 2, there are no solutions of |z — 1| + |z +1¢| = 1.
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Solution 6.16

e —1] =2
(e =1) (e -1) =4
1—e?—e®y41=4
—2cos(f) =2
0=m
{e“’ |0<6< 7r} is a unit semi-circle in the upper half of the complex plane from 1 to —1. The only point on this
semi-circle that is a distance 2 from the point 1 is the point —1, which corresponds to 6 = .
Polar Form

Solution 6.17
We recall the Taylor series expansion of e* about x = 0.

[oe)
X :L'n
e’ = E —_—.
n!
n=0

We take this as the definition of the exponential function for complex argument.

n=0
S
n:On
— (=" — (D" o
= 6% +1 et
; (2n)! ; 2n + 1)



We compare this expression to the Taylor series for the sine and cosine.

D", O T G e
COSG—Z (2n)!9 , Sln9_2(2n+1)!6 ,

n=0 n=0

Thus € and cos 4 2sin 6 have the same Taylor series expansions about 6 = 0.

e = cosO +1sin b

Solution 6.18
cos(360) + 1sin(30) = (cos(8) + 1sin(f))?
cos(36) + 1sin(36) = cos®(0) + 13 cos®(6) sin(#) — 3 cos(f) sin®(6) — 1sin®(9)
We equate the real parts of the equation.

cos(36) = cos®(f) — 3 cos(#) sin*()

Solution 6.19
Define the partial sum,

Now consider (1 — 2)S,(2).



We divide by 1 — z. Note that 1 — 2 is nonzero.

1 — Zn+1
Snle) =
1— ZnJrl
Ltz+24 42" =— , (2 #1)
—z
Now consider z = ¢ where 0 < # < 27 so that z is not unity.
n 2 n+1
Z (e“’)k _ 1- (e 9)
1—e¥
k=0
n _ at(n+1)0
Zezke _ l—e
1—e?
k=0
In order to get sin(6/2) in the denominator, we multiply top and bottom by e~*//2,
n ' e—W/2 _ gu(n+1/2)0
Z(cos(k:@) +1sin(kf)) = T RRTYT
k=0
g - 2) —1sin(0/2) — 1/2)0) — usi 1/2
cos(k0) + 13 sin(k) cos(0/2) —1sin(6/2) cos((n +1/2)0) —1sin((n + 1/2)0)
prrd prd —215in(6/2)
= = . 1 sin((n+1/2)6) 1 cos((n +1/2)8)
ko k6) = = —cot(0/2) —
kzocos( )+@k:1sm( ) 5t sin(0/2) +a| 5o (0/2) Sn(072)

1. We take the real and imaginary part of this to obtain the identities.

& 1 sin((n+1/2)0)
; cos(kd) = 5+ 3 sn(8/2)
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cos((n + 1/2)0)
2sin(0/2)

isin(k@) _ %cot(@/Q) _

Arithmetic and Vectors
Solution 6.20

|2129] = |y ey e |
= |ryry e01+82) |

= |72

= [r1[[r]

= |Zl\|z2|

Z1 (a1 6201

Ty etz

_ | et(01—02)
)

r

]
_Inl
|79

_lal
|22
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Solution 6.21

(Pl =P =) EF) + (-0 (-0
=22+ 20+ (Z+((+ 22— 20— (Z+(C
=2(|2I” + [¢)
Consider the parallelogram defined by the vectors z and (. The lengths of the sides are z and ( and the lengths of

the diagonals are z 4+ ¢ and z — (. We know from geometry that the sum of the squared lengths of the diagonals of a
parallelogram is equal to the sum of the squared lengths of the four sides. (See Figure 6.24.)

Figure 6.24: The parallelogram defined by z and (.

Integer Exponents
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Solution 6.22

1.
140" = (@ +07)°) @4y
= ((12)%)" (12)
= (—4)*(:2)
= 16(22)
=132
2.

Rational Exponents

Solution 6.23
We substitite the numbers into the equation to obtain an identity.

22 4+2z+b=0

<—a—|— (a2 —l))l/2>2 +2a (—a—l— (a2 —b)1/2> +

1/2

a2—2a(a2—b)1/2—|—a2—b—2a2+2a(a2—b)
0=0
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Chapter 7

Functions of a Complex Variable

If brute force isn’t working, you're not using enough of it.

-Tim Mauch

In this chapter we introduce the algebra of functions of a complex variable. We will cover the trigonometric and
inverse trigonometric functions. The properties of trigonometric functions carry over directly from real-variable theory.
However, because of multi-valuedness, the inverse trigonometric functions are significantly trickier than their real-variable
counterparts.

7.1 Curves and Regions

In this section we introduce curves and regions in the complex plane. This material is necessary for the study of
branch points in this chapter and later for contour integration.

Curves. Consider two continuous functions, z(t) and y(t), defined on the interval t € [to...t1]. The set of points
in the complex plane

{z(t)=x(t)+w(t) |t € [to...11]}
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defines a continuous curve or simply a curve. If the endpoints coincide, z (ty) = z (1), it is a closed curve. (We
assume that ¢y # t;.) If the curve does not intersect itself, then it is said to be a simple curve.

If 2(t) and y(t) have continuous derivatives and the derivatives do not both vanish at any point' , then it is a
smooth curve. This essentially means that the curve does not have any corners or other nastiness.

A continuous curve which is composed of a finite number of smooth curves is called a piecewise smooth curve. We
will use the word contour as a synonym for a piecewise smooth curve.

See Figure 7.1 for a smooth curve, a piecewise smooth curve, a simple closed curve and a non-simple closed curve.

(a (b) (c (d

Figure 7.1: (a) Smooth Curve, (b) Piecewise Smooth Curve, (¢) Simple Closed Curve, (d) Non-Simple Closed
Curve

Regions. A region R is connected if any two points in R can be connected by a curve which lies entirely in R. A
region is simply-connected if every closed curve in R can be continuously shrunk to a point without leaving R. A region
which is not simply-connected is said to be multiply-connected region. Another way of defining simply-connected is
that a path connecting two points in R can be continuously deformed into any other path that connects those points.
Figure 7.2 shows a simply-connected region with two paths which can be continuously deformed into one another and
a multiply-connected region with paths which cannot be deformed into one another.

Jordan Curve Theorem. A continuous, simple, closed curve is known as a Jordan curve. The Jordan Curve
Theorem, which seems intuitively obvious but is difficult to prove, states that a Jordan curve divides the plane into

"Why is it necessary that the derivatives do not both vanish?
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Figure 7.2: Simply-connected and multiply-connected regions.

a simply-connected, bounded region and an unbounded region. These two regions are called the interior and exterior
regions, respectively. The two regions share the curve as a boundary. Points in the interior are said to be inside the
curve; points in the exterior are said to be outside the curve.

Traversal of a Contour. Consider a Jordan curve. If you traverse the curve in the positive direction, then the
inside is to your left. If you traverse the curve in the opposite direction, then the outside will be to your left and you
will go around the curve in the negative direction. For circles, the positive direction is the counter-clockwise direction.
The positive direction is consistent with the way angles are measured in a right-handed coordinate system, i.e. for a
circle centered on the origin, the positive direction is the direction of increasing angle. For an oriented contour C, we
denote the contour with opposite orientation as —C'.

Boundary of a Region. Consider a simply-connected region. The boundary of the region is traversed in the positive
direction if the region is to the left as you walk along the contour. For multiply-connected regions, the boundary may
be a set of contours. In this case the boundary is traversed in the positive direction if each of the contours is traversed
in the positive direction. When we refer to the boundary of a region we will assume it is given the positive orientation.
In Figure 7.3 the boundaries of three regions are traversed in the positive direction.
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Figure 7.3: Traversing the boundary in the positive direction.

Two Interpretations of a Curve. Consider a simple closed curve as depicted in Figure 7.4a. By giving it an
orientation, we can make a contour that either encloses the bounded domain Figure 7.4b or the unbounded domain
Figure 7.4c. Thus a curve has two interpretations. It can be thought of as enclosing either the points which are “inside”

or the points which are “outside”.?

7.2 The Point at Infinity and the Stereographic Projection

Complex Infinity. In real variables, there are only two ways to get to infinity. We can either go up or down the
number line. Thus signed infinity makes sense. By going up or down we respectively approach +o0co and —oo. In the
complex plane there are an infinite number of ways to approach infinity. We stand at the origin, point ourselves in any
direction and go straight. We could walk along the positive real axis and approach infinity via positive real numbers.
We could walk along the positive imaginary axis and approach infinity via pure imaginary numbers. We could generalize
the real variable notion of signed infinity to a complex variable notion of directional infinity, but this will not be useful

2 A farmer wanted to know the most efficient way to build a pen to enclose his sheep, so he consulted an engineer, a physicist
and a mathematician. The engineer suggested that he build a circular pen to get the maximum area for any given perimeter. The
physicist suggested that he build a fence at infinity and then shrink it to fit the sheep. The mathematician constructed a little fence
around himself and then defined himself to be outside.
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(a) (b) (c)

Figure 7.4: Two interpretations of a curve.

for our purposes. Instead, we introduce complex infinity or the point at infinity as the limit of going infinitely far along
any direction in the complex plane. The complex plane together with the point at infinity form the extended complex
plane.

Stereographic Projection. We can visualize the point at infinity with the stereographic projection. We place a
unit sphere on top of the complex plane so that the south pole of the sphere is at the origin. Consider a line passing
through the north pole and a point z = x 4 2y in the complex plane. In the stereographic projection, the point point z
is mapped to the point where the line intersects the sphere. (See Figure 7.5.) Each point z = 2 + 1y in the complex
plane is mapped to a unique point (X,Y, Z) on the sphere.

dx 4y 2|2|?
X = — Y = — = —
|22 + 4 2|2 + 4 |2]2 + 4

The origin is mapped to the south pole. The point at infinity, |z| = oo, is mapped to the north pole.

In the stereographic projection circles in the complex plane are mapped to circles on the unit sphere. Figure 7.6
shows circles along the real and imaginary axes under the mapping.

Lines in the complex plane are also mapped to circles on the unit sphere. Figure 7.7 shows lines emanating from
the origin under the mapping.
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Figure 7.5: The stereographic projection.

7.3 Cartesian and Modulus-Argument Form

We can write a function of a complex variable z as a function of z and y or as a function of r and # with the substitutions
2 =x+1y and z = re?, respectively. Then we can separate the real and imaginary components or write the function

in modulus-argument form,
f(2) = u(z,y) +w(z,y), or f(z)=u(rb)+w(rb),
F(2) = ol ) 0, or f(2) = plr,0) €0,

Example 7.3.1 Consider the functions f(z) = z, f(z) = z* and f(z) = 7&. We write the functions in terms of
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Figure 7.6: The stereographic projection of circles.

and y and separate them into their real and imaginary components.

f(z) ==
=x+wy

flz) =7
= (z +w)’
=13 + wa - ny - zy3
= (% —ay®) +o (2% — o)
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Figure 7.7: The stereographic projection of lines.

1

f2) = 1
B 1
o l-z— 1y
B 1 1 -2+
N l—z—wl—-—ao+w
B 11—z Y
BREEE R (e

Example 7.3.2 Consider the functions f(z) = z, f(z) = 2° and f(z) = ~. We write the functions in terms of
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and 0 and write them in modulus-argument form.

f(z) ==
=re?
flz) =7
= (relé')3
:7,3e130
1
f(2) =1
B 1
S 1l—re?
1 1
S l—refl —pe?

1—re

1—red —re4r2
1 —1rcos@ +rsind
1 —2rcosf +r?

Note that the denominator is real and non-negative.

! .
- 1 2 0 + 12 |1 — rcos @ + rsin 8| et arctan(1—r cos 0,r sin 0)
— 2r cos r
! .
— T 0.2 \/(1 — rCOS 9)2 + 2 sin2 0 ezarctan(lfr cos 0,7 sin 0)
— 2r cos r
1 .
= 1—9 0+ r2 \/1 — 2rcos@ + r?cos2 0 + r? sinZ @ grarctan(l—r cos 6,r sin )
— 27 cos r
1

varctan(1—r cos 6,r sin 0)

V1 —=2rcosf + r2
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7.4 Graphing Functions of a Complex Variable

We cannot directly graph functions of a complex variable as they are mappings from R? to R2. To do so would require
four dimensions. However, we can can use a surface plot to graph the real part, the imaginary part, the modulus or the
argument of a function of a complex variable. Each of these are scalar fields, mappings from R? to R.

Example 7.4.1 Consider the identity function, f(z) = z. In Cartesian coordinates and Cartesian form, the function
is f(z) = x +wy. The real and imaginary components are u(x,y) = x and v(x,y) = y. (See Figure 7.8.) In modulus

Figure 7.8: The real and imaginary parts of f(z) =z =z +wy

argument form the function is
f(Z) S — Tez@ — /1,2 + yg elarctan(x,y) )

The modulus of f(z) is a single-valued function which is the distance from the origin. The argument of f(z) is a multi-
valued function. Recall that arctan(x,y) has an infinite number of values each of which differ by an integer multiple
of 2m. A few branches of arg(f(z)) are plotted in Figure 7.9. The modulus and principal argument of f(z) = z are
plotted in Figure 7.10.

Example 7.4.2 Consider the function f(z) = 2%. In Cartesian coordinates and separated into its real and imaginary
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Figure 7.10: Plots of |z| and Arg(z)

components the function is
f(z)=22=(z+w)? = (xz — yz) + 2xy.
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Figure 7.11 shows surface plots of the real and imaginary parts of 2. The magnitude of 2* is

Figure 7.11: Plots of R (2?) and S (2?)

122 = V2222 =22 = (z +w)(z —w) = 22 + ¢

Note that

In Figure 7.12 are plots of |22| and a branch of arg (2?).

7.5 'Trigonometric Functions

The Exponential Function. Consider the exponential function e*. We can use Euler's formula to write e* = e**%
in terms of its real and imaginary parts.

e =e" =¢e"e" = e cosy +1€”siny
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Figure 7.12: Plots of |2?| and a branch of arg (2?)

From this we see that the exponential function is 27 periodic: e

Z+12T
Figure 7.13 has surface plots of the real and imaginary parts of €* which show this periodicity.

= e?, and 7w odd periodic: e**T'"

Figure 7.13: Plots of R (¢*) and I (e*)
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The modulus of €7 is a function of = alone.
o] = [em | = e”
The argument of €* is a function of y alone.
arg (¢*) = arg (") = {y + 2mn | n € Z}
In Figure 7.14 are plots of |e* | and a branch of arg (e*).

Figure 7.14: Plots of | e* | and a branch of arg (e*)

Example 7.5.1 Show that the transformation w = €* maps the infinite strip, —oco < x < oo, 0 < y < m, onto the
upper half-plane.
Method 1. Consider the line z = x +1c, —00 < x < oo. Under the transformation, this is mapped to

T+c 1C AT

w=-e =e“e", —oo<x < o0.

This is a ray from the origin to infinity in the direction of €. Thus we see that z = x is mapped to the positive, real
w axis, z = x +w Is mapped to the negative, real axis, and z = x +1c, 0 < ¢ < 7 is mapped to a ray with angle c in
the upper half-plane. Thus the strip is mapped to the upper half-plane. See Figure 7.15.
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Figure 7.15: € maps horizontal lines to rays.

Method 2. Consider the line z = ¢+ 1y, 0 < y < w. Under the transformation, this is mapped to
w=eTYpee” 0<y<m.

This is a semi-circle in the upper half-plane of radius e°. As ¢ — —o0, the radius goes to zero. As ¢ — 00, the radius
goes to infinity. Thus the strip is mapped to the upper half-plane. See Figure 7.16.

31 | |

Figure 7.16: ¢* maps vertical lines to circular arcs.

=N
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The Sine and Cosine. We can write the sine and cosine in terms of the exponential function.

e +e ™  cos(z) +sin(z) + cos(—z) + 1sin(—z)
2 2
cos(z) +18in(z) 4 cos(z) — 2sin(2)
2

— COS 2

e —e "  cos(z) +usin(z) — cos(—z) — zsin(—z)
12 2
cos(z) + 1sin(z) — cos(z) + 2sin(z)
2

=sinz
We separate the sine and cosine into their real and imaginary parts.
cos z = cosx coshy — 2sinx sinhy sin z = sinx cosh y + 2 cos z sinh y

For fixed y, the sine and cosine are oscillatory in . The amplitude of the oscillations grows with increasing |y|. See
Figure 7.17 and Figure 7.18 for plots of the real and imaginary parts of the cosine and sine, respectively. Figure 7.19
shows the modulus of the cosine and the sine.

The Hyperbolic Sine and Cosine. The hyperbolic sine and cosine have the familiar definitions in terms of the
exponential function. Thus not surprisingly, we can write the sine in terms of the hyperbolic sine and write the cosine
in terms of the hyperbolic cosine. Below is a collection of trigonometric identities.
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Figure 7.18: Plots of R(sin(z)) and (sin(z))

Result 7.5.1
e® = e“(cosy + 1siny)
e’LZ + e—ZZ eZZ _ e—’LZ
COS 2 = uUpin z = —
2 12
cos z = cosx coshy —2sinz sinh y sin z = sin x cosh y + 2 cos x sinh y
e +e* ) e’ —e *
coshz = ———— sinhz = ———
2 2
cosh z = cosh x cos y + ¢ sinh x siny sinh z = sinh x cosy + 1 cosh x siny
sin(zz) = ¢sinh z sinh(zz) = 2sin z
cos(1z) = cosh z cosh(1z) = cos z

logz = In|z| +rarg(z) = In|z| + 1 Arg(2) + 27n,

n € 7z




Figure 7.19: Plots of | cos(z)| and |sin(z)|

7.6 Inverse Trigonometric Functions

The Logarithm. The logarithm, log(z), is defined as the inverse of the exponential function €*. The exponential
function is many-to-one and thus has a multi-valued inverse. From what we know of many-to-one functions, we conclude
that

8% = 2 but log(e*) # z.
This is because €!°¢* is single-valued but log (¢%) is not. Because e* is 127 periodic, the logarithm of a number is a set
of numbers which differ by integer multiples of 127. For instance, €™ = 1 so that log(1) = {12mn : n € Z}. The
logarithmic function has an infinite number of branches. The value of the function on the branches differs by integer
multiples of «27. It has singularities at zero and infinity. |log(z)| — oo as either z — 0 or z — oc.

We will derive the formula for the complex variable logarithm. For now, let In(x) denote the real variable logarithm
that is defined for positive real numbers. Consider w = log z. This means that e” = z. We write w = u + w in
Cartesian form and z = r¢? in polar form.

utew 10

e re
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We equate the modulus and argument of this expression.

e =r v=0+2mn

u=Inr v=~0+2mn

With log z = u + wv, we have a formula for the logarithm.

log z = In|z| + rarg(z)

If we write out the multi-valuedness of the argument function we note that this has the form that we expected.
logz = In|z| +1(Arg(z) + 27n), neZ

We check that our formula is correct by showing that '8 = »

log z In |z|+rarg(z) _ plnr+ef+i2mn 10

e =€

Note again that log (%) # z.
log (¢*) =In|e* | 4+ rarg (¢*) = In(e”) +rarg (") =z 4+ 1(y + 2mn) = 2z + 2n7w # 2

The real part of the logarithm is the single-valued In r; the imaginary part is the multi-valued arg(z). We define the
principal branch of the logarithm Log z to be the branch that satisfies —7 < &(Log z) < 7. For positive, real numbers
the principal branch, Log z is real-valued. We can write Log z in terms of the principal argument, Arg 2.

Log z = In|z| 4+ 1 Arg(z)
See Figure 7.20 for plots of the real and imaginary part of Log z.

The Form: aP. Consider a® where a and b are complex and a is nonzero. We define this expression in terms of the

exponential and the logarithm as

Clb — ebloga )
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Figure 7.20: Plots of ®(Log z) and ¥(Log z).

Note that the multi-valuedness of the logarithm may make a® multi-valued. First consider the case that the exponent

m Loga

is an integer.
m(Log a+i2nm) _ em Loga ez?mnw —e

a™ = emloga —e

Thus we see that a™ has a single value where m is an integer.
Now consider the case that the exponent is a rational number. Let p/q be a rational number in reduced form.

ap/q _ egloga _ e%(Loga—&-anW) _ e% Logaeanpw/q )

Finally consider the case that the exponent b is an irrational number.

b _ ebloga _ eb(Loga—l—z?mr) _ ebLoga eszrwr

a
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Note that €™ and €2’ are equal if and only if :2bn7 and 2bmm differ by an integer multiple of 227, which means
that bn and bm differ by an integer. This occurs only when n = m. Thus €?*"™ has a distinct value for each different
integer n. We conclude that a® has an infinite number of values.

You may have noticed something a little fishy. If b is not an integer and a is any non-zero complex number, then
a’ is multi-valued. Then why have we been treating €’ as single-valued, when it is merely the case a = e? The answer
is that in the realm of functions of a complex variable, €* is an abuse of notation. We write ¢ when we mean exp(z),
the single-valued exponential function. Thus when we write €* we do not mean “the number e raised to the z power”,
we mean “the exponential function of z". We denote the former scenario as (e)*, which is multi-valued.

Logarithmic Identities. Back in high school trigonometry when you thought that the logarithm was only defined
for positive real numbers you learned the identity logz* = alogz. This identity doesn't hold when the logarithm is
defined for nonzero complex numbers. Consider the logarithm of 2.

log z* = Log z% + 127n

alog z = a(Log z +12mn) = a Log z + 12amn

Note that
log 2% # alog 2z

Furthermore, since
Logz® =In|2? +1Arg(2?), alLogz=aln|z|+ 1 Arg(z)

and Arg (z%) is not necessarily the same as a Arg(z) we see that

Log z* # aLog z.

Consider the logarithm of a product.

log(ab) = In |ab| 4 varg(ab)
= In|a| 4 In |b| +2arg(a) + varg(b)
=loga + logb
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There is not an analogous identity for the principal branch of the logarithm since Arg(ab) is not in general the same as
Arg(a) + Arg(b).

Using log(ab) = log(a) + log(b) we can deduce that log (a") = >"7_,loga = nloga, where n is a positive
integer. This result is simple, straightforward and wrong. | have led you down the merry path to damnation.® In fact,
log (a?) # 2loga. Just write the multi-valuedness explicitly,

log (a*) = Log (a®) + «2n, 2loga = 2(Loga + 12nmw) = 2 Loga + n.

1
log <—> = —loga.
a

We can use this and the product identity to expand the logarithm of a quotient.

You can verify that

log (%) =loga —logb

For general values of a, log z* # alog z. However, for some values of a, equality holds. We already know that a = 1
and a = —1 work. To determine if equality holds for other values of a, we explicitly write the multi-valuedness.

log z* = log (ealogz) =alogz+ 127k, keZ
alogz =aln|z| + 1w Arg z +1wa2mm, meZ

We see that log 2* = alog z if and only if
{am |m e Z} ={am + k| k,m € Z}.

The sets are equal if and only if @ = 1/n, n € Z*. Thus we have the identity:

1

log (zl/”) = —logz, neZ*
n

3 Don’t feel bad if you fell for it. The logarithm is a tricky bastard.
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Result 7.6.1 Logarithmic Identities.

ot — ebloga
Qlogz _ glogz _
log(ab) =loga + logb
log(1/a) = —loga
log(a/b) = loga — logb

1
log (z”") = —logz, neZ*
n
Logarithmic Inequalities.

Log(uv) # Log(u) + Log(v)
log 2% # alog z

Log 2% # a Log z

loge® # z

Example 7.6.1 Consider 1*. We apply the definition a® = e?1°8
1™ — ™ log(1)
_ ew(ln(1)+12n7r)

2
— eanW

Thus we see that 1™ has an infinite number of values, all of which lie on the unit circle |z| = 1 in the complex plane.
However, the set 1™ is not equal to the set |z| = 1. There are points in the latter which are not in the former. This is
analogous to the fact that the rational numbers are dense in the real numbers, but are a subset of the real numbers.
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Example 7.6.2 We find the zeros of sin z.

e _ 12

1 :7:0
sz )

ez?z -1

2z mod 2r =0

z=nmw, nEL

Equivalently, we could use the identity

sin z = sinz cosh y + 1 cos rsinhy = 0.

This becomes the two equations (for the real and imaginary parts)

sinx coshy =0 and coszsinhy = 0.

Since cosh is real-valued and positive for real argument, the first equation dictates that x = nmw, n € Z. Since

cos(nm) = (=1)" for n € Z, the second equation implies that sinhy = 0. For real argument, sinhy is only zero at

y = 0. Thus the zeros are

z=nm, nNEL

Example 7.6.3 Since we can express sin z in terms of the exponential function, one would expect that we could express

251



the sin~! z in terms of the logarithm.

w=sin"!z

z = sinw

eW _ g

22
e 22" —1 =0

e =1zE V1 — 22
w = —1log (zzi\/1—22>

is related to the logarithm.

z =

Thus we see how the multi-valued sin™!

sin™! 2z = —1log (zz +V1-— z2>

Example 7.6.4 Consider the equation sin® z = 1.
sin®z =1
sinz = 1Y/3

P
—
e —2()Y? —e =0
e 2(1)3e* —1 =0
e 20 /AP
2
e = o(1)/3 4+ /1 — (1)2/3

_ 113

2= —ilog (1(1)1/3 +/1- 12/3>
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Note that there are three sources of multi-valuedness in the expression for z. The two values of the square root are
shown explicitly. There are three cube roots of unity. Finally, the logarithm has an infinite number of branches. To
show this multi-valuedness explicitly, we could write

z = —1Log (zeﬁm”/:}i 1—614””/3) + 27n, m=0,1,2, n=...,—1,0,1,...

Example 7.6.5 Consider the harmless looking equation, 1* = 1.

Before we start with the algebra, note that the right side of the equation is a single number. * is single-valued only
when z is an integer. Thus we know that if there are solutions for z, they are integers. We now proceed to solve the
equation.

Use the fact that z is an integer.
emz/2 -1

1mz/2 =12nmw,  for somen € 7

‘z:4n, n et

Here is a different approach. We write down the multi-valued form of 1. We solve the equation by requiring that
all the values of v* are 1.

P =1

ezlogz -1
zlogr =12mwn, for somen € Z

z (zg + 227rm> =12mn, Vm € 7Z, forsomen €7

zgz +12mmz =12mn, VYm € Z, for somen € Z
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The only solutions that satisfy the above equation are

z=4k, ke Z.

Now let’s consider a slightly different problem: 1 € +*. For what values of z does 1* have 1 as one of its values.

1er
1e ezlogz
1e {ez(wr/2+127rn) | n e Z}
2(1m/2 +127n) =12rm, m,n € Z

4dm
Z:
1+ 4n’

m,n € 7

There are an infinite set of rational numbers for which +* has 1 as one of its values. For example,

24/5 _ 11/5 _ {1’ e7,271'/57 ez47r/5’ ez67r/57 ez87r/5}

7.7 Riemann Surfaces

Consider the mapping w = log(z). Each nonzero point in the z-plane is mapped to an infinite number of points in

the w plane.
w = {In|z| +rarg(z)} = {In|z| + 2(Arg(z) + 27n) | n € Z}

This multi-valuedness makes it hard to work with the logarithm. We would like to select one of the branches of the
logarithm. One way of doing this is to decompose the z-plane into an infinite number of sheets. The sheets lie above
one another and are labeled with the integers, n € Z. (See Figure 7.21.) We label the point z on the n'® sheet as
(z,m). Now each point (z,7) maps to a single point in the w-plane. For instance, we can make the zeroth sheet map
to the principal branch of the logarithm. This would give us the following mapping.

log(z,n) = Log z + 12mn
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Figure 7.21: The z-plane decomposed into flat sheets.

This is a nice idea, but it has some problems. The mappings are not continuous. Consider the mapping on the
zeroth sheet. As we approach the negative real axis from above z is mapped to In |z| + 27 as we approach from below
it is mapped to In |z| — 2. (Recall Figure 7.20.) The mapping is not continuous across the negative real axis.

Let's go back to the regular z-plane for a moment. We start at the point z = 1 and selecting the branch of the
logarithm that maps to zero. (log(1) = 227mn). We make the logarithm vary continuously as we walk around the origin
once in the positive direction and return to the point z = 1. Since the argument of z has increased by 27, the value
of the logarithm has changed to 27. If we walk around the origin again we will have log(1) = 24m. Our flat sheet
decomposition of the z-plane does not reflect this property. We need a decomposition with a geometry that makes the
mapping continuous and connects the various branches of the logarithm.

Drawing inspiration from the plot of arg(z), Figure 7.9, we decompose the z-plane into an infinite corkscrew with
axis at the origin. (See Figure 7.22.) We define the mapping so that the logarithm varies continuously on this surface.
Consider a point z on one of the sheets. The value of the logarithm at that same point on sheet directly above it is
127 more than the original value. We call this surface, the Riemann surface for the logarithm. The mapping from the
Riemann surface to the w-plane is continuous and one-to-one.
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Figure 7.22: The Riemann surface for the logarithm.

7.8 Branch Points

Example 7.8.1 Consider the function z'/?. For each value of z, there are two values of z'/2. We write z'/? in
modulus-argument and Cartesian form.

S1/2 _ 2] erarg(z)/2
212 = \/|z| cos(arg(2)/2) + 1/ 2| sin(arg(z) /2)

Figure 7.23 shows the real and imaginary parts of z'/? from three different viewpoints. The second and third views are
looking down the x axis and y axis, respectively. Consider R (21/ 2). This is a double layered sheet which intersects
itself on the negative real axis. (3(z'/?) has a similar structure, but intersects itself on the positive real axis.) Let’s
start at a point on the positive real axis on the lower sheet. If we walk around the origin once and return to the positive
real axis, we will be on the upper sheet. If we do this again, we will return to the lower sheet.

Suppose we are at a point in the complex plane. We pick one of the two values of z'/2. If the function varies
continuously as we walk around the origin and back to our starting point, the value of z'/? will have changed. We will
be on the other branch. Because walking around the point z = 0 takes us to a different branch of the function, we
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refer to z = 0 as a branch point.

from three viewpoints.

)

1/2) (right

Figure 7.23: Plots of R (2'/2) (left) and S (=
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Now consider the modulus-argument form of z'/?:

21/2 _ ’Z‘ ezarg(z)/2 )

Figure 7.24 shows the modulus and the principal argument of z'/%. We see that each time we walk around the origin,

the argument of z'/? changes by m. This means that the value of the function changes by the factor €™ = —1, i.e.
the function changes sign. If we walk around the origin twice, the argument changes by 2w, so that the value of the
function does not change, €™ = 1.

Figure 7.24: Plots of |2/?| and Arg (z'/%).

212 s a continuous function except at = = (. Suppose we start at z = 1 = ¢° and the function value (610)1/2 =1.

s

If we follow the first path in Figure 7.25, the argument of z varies from up to about Z, down to about -7 and back
to 0. The value of the function is still (€")"/*,

Now suppose we follow a circular path around the origin in the positive, counter-clockwise, direction. (See the
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Figure 7.25: A path that does not encircle the origin and a path around the origin

second path in Figure 7.25.) The argument of z increases by 2m. The value of the function at half turns on the path is

(ez0)1/2 —1,
(ez7r>1/2 _ ez7r/2 =,
<e7,27r>1/2 — e —

As we return to the point z = 1, the argument of the function has changed by m and the value of the function has
changed from 1 to —1. If we were to walk along the circular path again, the argument of z would increase by another
2m. The argument of the function would increase by another m and the value of the function would return to 1.

(e"”)l/2 =e?" =1
In general, any time we walk around the origin, the value of z'/?> changes by the factor —1. We call z =0 a branch
point. If we want a single-valued square root, we need something to prevent us from walking around the origin. We
achieve this by introducing a branch cut. Suppose we have the complex plane drawn on an infinite sheet of paper.
With a scissors we cut the paper from the origin to —oo along the real axis. Then if we start at z = ¢, and draw a
continuous line without leaving the paper, the argument of z will always be in the range —m < argz < w. This means
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that —Z < arg (2'/?) < Z. No matter what path we follow in this cut plane, z = 1 has argument zero and (1)"/* = 1.
By never crossing the negative real axis, we have constructed a single valued branch of the square root function. We
call the cut along the negative real axis a branch cut.

Example 7.8.2 Consider the logarithmic function log z. For each value of z, there are an infinite number of values of
log z. We write log z in Cartesian form.
logz =1In|z| +arg z

Figure 7.26 shows the real and imaginary parts of the logarithm. The real part is single-valued. The imaginary part is
multi-valued and has an infinite number of branches. The values of the logarithm form an infinite-layered sheet. If we
start on one of the sheets and walk around the origin once in the positive direction, then the value of the logarithm
increases by 121 and we move to the next branch. z = 0 is a branch point of the logarithm.

Figure 7.26: Plots of R(log z) and a portion of J(log z).

The logarithm is a continuous function except at = = 0. Suppose we start at z = 1 = ¢° and the function value
log (¢?) = In(1) + 120 = 0. If we follow the first path in Figure 7.25, the argument of z and thus the imaginary part of
the logarithm varies from up to about 7, down to about —7 and back to 0. The value of the logarithm is still 0.
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Now suppose we follow a circular path around the origin in the positive direction. (See the second path in Fig-
ure 7.25.) The argument of z increases by 2m. The value of the logarithm at half turns on the path is

log (eZO) =0,
log (') = um,
log (812”) =127
As we return to the point z = 1, the value of the logarithm has changed by 127. If we were to walk along the circular

path again, the argument of z would increase by another 21 and the value of the logarithm would increase by another
127

Result 7.8.1 A point z; is a branch point of a function f(z) if the function changes value
when you walk around the point on any path that encloses no singularities other than the one
at z = 2.

Branch Points at Infinity : Mapping Infinity to the Origin. Up to this point we have considered only
branch points in the finite plane. Now we consider the possibility of a branch point at infinity. As a first method of
approaching this problem we map the point at infinity to the origin with the transformation { = 1/z and examine the
point ¢ = 0.

Example 7.8.3 Again consider the function z'/?>. Mapping the point at infinity to the origin, we have f(() =
(1/C)Y? = ¢~'/2. For each value of ¢, there are two values of (~/2. We write (~*/* in modulus-argument form.

1 a2

—1/2 _
‘ 1§

Like 22, (='/2 has a double-layered sheet of values. Figure 7.27 shows the modulus and the principal argument of
(=2, We see that each time we walk around the origin, the argument of (/% changes by —m. This means that the

261



Figure 7.27: Plots of [(7!/?] and Arg ((7'/?).

value of the function changes by the factor e™™ = —1, i.e. the function changes sign. If we walk around the origin
twice, the argument changes by —2r, so that the value of the function does not change, e~ = 1.
Since (~'/2 has a branch point at zero, we conclude that z'/? has a branch point at infinity.

Example 7.8.4 Again consider the logarithmic function log z. Mapping the point at infinity to the origin, we have
f(¢) =log(1/¢) = —log(¢). From Example 7.8.2 we known that —log(() has a branch point at ( = 0. Thus log z
has a branch point at infinity.

Branch Points at Infinity : Paths Around Infinity. We can also check for a branch point at infinity by
following a path that encloses the point at infinity and no other singularities. Just draw a simple closed curve that
separates the complex plane into a bounded component that contains all the singularities of the function in the finite
plane. Then, depending on orientation, the curve is a contour enclosing all the finite singularities, or the point at infinity
and no other singularities.
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Example 7.8.5 Once again consider the function z'/?. We know that the function changes value on a curve that goes
once around the origin. Such a curve can be considered to be either a path around the origin or a path around infinity.
In either case the path encloses one singularity. There are branch points at the origin and at infinity. Now consider a
curve that does not go around the origin. Such a curve can be considered to be either a path around neither of the
branch points or both of them. Thus we see that z'/?> does not change value when we follow a path that encloses
neither or both of its branch points.

Example 7.8.6 Consider f(z) = (2* — 1)1/2. We factor the function.
f(2)=(z =)z + 1)1

There are branch points at z = +1. Now consider the point at infinity.

)= (=) =+ (1-¢)
Since f ({™') does not have a branch point at ( = 0, f(z) does not have a branch point at infinity. We could reach
the same conclusion by considering a path around infinity. Consider a path that circles the branch points at z = +1
once in the positive direction. Such a path circles the point at infinity once in the negative direction. In traversing this
path, the value of f(z) is multiplied by the factor (¢27)"/* (e27)!'/? — @27 — 1. Thus the value of the function does
not change. There is no branch point at infinity.

1/2 1/2

Diagnosing Branch Points. We have the definition of a branch point, but we do not have a convenient criterion
for determining if a particular function has a branch point. We have seen that log z and z® for non-integer o have
branch points at zero and infinity. The inverse trigonometric functions like the arcsine also have branch points, but they
can be written in terms of the logarithm and the square root. In fact all the elementary functions with branch points
can be written in terms of the functions log z and z®. Furthermore, note that the multi-valuedness of z* comes from
the logarithm, 2 = e*!°8%_ This gives us a way of quickly determining if and where a function may have branch points.

Result 7.8.2 Let f(z) be a single-valued function. Then log(f(z)) and (f(z))* may have
branch points only where f(z) is zero or singular.
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Example 7.8.7 Consider the functions,

1 (%)

2. (:12)?

3. (21/2)3

Are they multi-valued? Do they have branch points?

1.

(22)1/2 =+V22 = +2
Because of the (-)'/2, the function is multi-valued. The only possible branch points are at zero and infinity. If

102 1/2 1272 1/2 wamy1/2 127 H
(e) =1, then ((e*™) = (e"™)/" = €™ = 1. Thus we see that the function does not change

value when we walk around the origin. We can also consider this to be a path around infinity. This function is
multi-valued, but has no branch points.

()" = (2v3)' = -

This function is single-valued.

() = (£v2)’ = £ (v2)°
3
This function is multi-valued. We consider the possible branch point at z = 0. If <(e°)1/ 2) = 1, then

3
<(e’2”)1/ 2) — (")’ = €37 = —1. Since the function changes value when we walk around the origin, it has a
branch point at z = 0. Since this is also a path around infinity, there is a branch point there.
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Example 7.8.8 Consider the function f(z) = log (ﬁ) Since 1= is only zero at infinity and its only singularity is at

z—1

z = 1, the only possibilities for branch points are at z = 1 and z = co. Since

o (1) e

and logw has branch points at zero and infinity, we see that f(z) has branch points at z =1 and z = occ.

Example 7.8.9 Consider the functions,
1. elog=
2. loge?.

Are they multi-valued? Do they have branch points?

1.
8% = exp(Log z + 12mn) = el8% 2™ =

This function is single-valued.

loge®* = Loge® +12mn = z +12mm

This function is multi-valued. It may have branch points only where €* is zero or infinite. This only occurs at
z = o0. Thus there are no branch points in the finite plane. The function does not change when traversing a
simple closed path. Since this path can be considered to enclose infinity, there is no branch point at infinity.

Consider (f(z))* where f(z) is single-valued and f(z) has either a zero or a singularity at z = z5. (f(2))* may
have a branch point at z = 2. If f(2) is not a power of z, then it may be difficult to tell if (f(z))® changes value when
we walk around zy. Factor f(z) into f(z) = g(2)h(z) where h(z) is nonzero and finite at z;. Then g(z) captures the
important behavior of f(z) at the zy. g(z) tells us how fast f(z) vanishes or blows up. Since (f(z))* = (g(2))*(h(2))“
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and (h(z))® does not have a branch point at 2y, (f(z))* has a branch point at z if and only if (g(z))* has a branch
point there.
Similarly, we can decompose

log(f(2)) = log(g(2)h(z)) = log(g(z)) + log(h(z))

to see that log(f(z)) has a branch point at 2, if and only if log(g(z)) has a branch point there.

Result 7.8.3 Consider a single-valued function f(z) that has either a zero or a singularity at
z = z9. Let f(2) = g(2)h(2) where h(z) is nonzero and finite. (f(z))* has a branch point
at z = 2 if and only if (g(z))® has a branch point there. log(f(z)) has a branch point at
z = 2y if and only if log(g(z)) has a branch point there.

Example 7.8.10 Consider the functions,
1. sin z!/?
2. (sinz)/?
3. 21/?sin 21/?
4. (sinz%)"/?
Find the branch points and the number of branches.

1.
sin 212 = sin (£vz) = £siny/z

sin 2'/2 is multi-valued. It has two branches. There may be branch points at zero and infinity. Consider the unit
circle which is a path around the origin or infinity. If sin ((610)1/2> = sin(1), then sin <(612”)1/2> = sin (&) =
sin(—1) = —sin(1). There are branch points at the origin and infinity.
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(sin 2)/2 = +/sin 2

The function is multi-valued with two branches. The sine vanishes at z = nm and is singular at infinity. There
could be branch points at these locations. Consider the point z = nw. We can write

sin z

sinz = (z — nm)
z—nm

Note that == is nonzero and has a removable singularity at z = nr.

. sin z . cosz
lim = lim =(=1)"
znm 2 — NI z—nm 1

Since (2 — n)Y/2 has a branch point at z = nm, (sin 2)'/? has branch points at z = nr.

Since the branch points at z = nm go all the way out to infinity. It is not possible to make a path that encloses
infinity and no other singularities. The point at infinity is a non-isolated singularity. A point can be a branch
point only if it is an isolated singularity.

2%6in 2% = £4/zsin EVE)
= 4/ (£sinV/z)
= /zsiny/z

The function is single-valued. Thus there could be no branch points.

(sin 22) V2 _ +/sin 22

This function is multi-valued. Since sin z? = 0 at z = (nm)"/2, there may be branch points there. First consider

the point z = 0. We can write

.5 osinz?
sinz® = 2

22
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where sin (2?) /2? is nonzero and has a removable singularity at z = 0.

2 22 cos 22

lim =lim — =
z—0 2’2 z—0 Wy

sin z

Since (zz)l/2 does not have a branch point at z = 0, (sin 22)1/2 does not have a branch point there either.
Now consider the point z = \/nm.
sin 22

. 2 . _ v
sinz* = (z — v/n) P
sin (22) / (z — v/nm) in nonzero and has a removable singularity at z = \/nr.
sin 2? 2z cos 2*

lim ———— = lim =" = 2/nr(-1)"
z—}f/nﬁz—\/ﬁ z—}H}’m 1 nﬂ—( )

Since (z — \/mr)l/2 has a branch point at z = \/nm, (sin 22)1/2 also has a branch point there.

Thus we see that (sin 22)1/2 has branch points at z = (nm)'/? forn € Z\ {0}. This is the set of numbers:
{7, £V2m, ..., +1/7, £23/2m,...}. The point at infinity is a non-isolated singularity.

Example 7.8.11 Find the branch points of
f(z) = (° - 2)1/3‘

Introduce branch cuts. If f(2) = /6 then what is f(—2)7
We expand f(z).
f(z) =23z = 1)Y3(z 4+ 1)V3.

There are branch points at z = —1,0,1. We consider the point at infinity.

0)-(0"C)" ()”

268



Since f(1/() does not have a branch point at { =0, f(z) does not have a branch point at infinity. Consider the three
possible branch cuts in Figure 7.28.

S (1N

Figure 7.28: Three Possible Branch Cuts for f(z) = (2* — 2)1/3

The first and the third branch cuts will make the function single valued, the second will not. It is clear that the first
set makes the function single valued since it is not possible to walk around any of the branch points.

The second set of branch cuts would allow you to walk around the branch points at z = +1. If you walked around
these two once in the positive direction, the value of the function would change by the factor e**™/3.

The third set of branch cuts would allow you to walk around all three branch points together. You can verify that
if you walk around the three branch points, the value of the function will not change (e'™/3 = €™ = 1).
Suppose we introduce the third set of branch cuts and are on the branch with f(2) = /6.

£2) = (2677 (16 (300)"° — V5
The value of f(—2) is
f(=2) = 2P Bem) P (1em)t?
= /2e"™/3 /3 e™/3 /1 e/3
=V6em

-
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Example 7.8.12 Find the branch points and number of branches for

f(z)=2"".

2 = exp (22 log z)

There may be branch points at the origin and infinity due to the logarithm. Consider walking around a circle of radius
r centered at the origin in the positive direction. Since the logarithm changes by 127, the value of f(z) changes by the
factor €™ There are branch points at the origin and infinity. The function has an infinite number of branches.

Example 7.8.13 Construct a branch of
1/3

fz) = (= +1)
such that

£(0) = (—1 —I—Z\/§> .

N | —

First we factor f(z).
£ = (2 =0+ )

There are branch points at z = 4. Figure 7.29 shows one way to introduce branch cuts.
Since it is not possible to walk around any branch point, these cuts make the function single valued. We introduce
the coordinates:

z—1=pe? z41=re’.

f(Z) — <pe2¢>)1/3 (7"810)1/3
_ o ei(et0)3

The condition

(_1 + Z\/§> _ ez(27r/3+27rn)

N —

f(0) =
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Figure 7.29: Branch Cuts for f(z) = (22 + 1)"/?

can be stated
\3/Iez(¢>+9)/3 — el(27r/3+27rn)
¢+ 0 =21+ 61n

The angles must be defined to satisfy this relation. One choice is

Principal Branches. We construct the principal branch of the logarithm by putting a branch cut on the negative
real axis choose z = e, § € (—m, ). Thus the principal branch of the logarithm is

Logz =1Inr 40, —T <0<

Note that the if x is a negative real number, (and thus lies on the branch cut), then Log z is undefined.

The principal branch of z% is

«

P - eaLogz
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Note that there is a branch cut on the negative real axis.
—am < arg (eO‘Logz) < am
The principal branch of the 2/ is denoted /z. The principal branch of z'/" is denoted </z.

Example 7.8.14 Construct /1 — 22, the principal branch of (1 — 22)1/2.

First note that since (1 — 22)"/% = (1 — 2)Y2(1 + 2)Y/? there are branch points at = = 1 and = = —1. The
principal branch of the square root has a branch cut on the negative real axis. 1 — 2% is a negative real number for
z€ (—o0...—1)U(1...00). Thus we put branch cuts on (—oco...— 1] and [1...00).
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7.9 Exercises

Cartesian and Modulus-Argument Form

Exercise 7.1
Find the image of the strip 2 < x < 3 under the mapping w = f(z) = 2%. Does the image constitute a domain?
Hint, Solution

Exercise 7.2

For a given real number ¢, 0 < ¢ < 27, find the image of the sector 0 < arg(z) < ¢ under the transformation w = 24
How large should ¢ be so that the w plane is covered exactly once?

Hint, Solution

Trigonometric Functions

Exercise 7.3
In Cartesian coordinates, z = x + 1y, write sin(z) in Cartesian and modulus-argument form.
Hint, Solution

Exercise 7.4
Show that €* is nonzero for all finite z.
Hint, Solution

Exercise 7.5
Show that

e*| < el#l?

When does equality hold?
Hint, Solution

Exercise 7.6
Solve coth(z) = 1.
Hint, Solution
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Exercise 7.7

Solve 2 € 2%, That is, for what values of z is 2 one of the values of 2?7 Derive this result then verify your answer by
evaluating 2 for the solutions that your find.

Hint, Solution

Exercise 7.8

Solve 1 € 1%, That is, for what values of z is 1 one of the values of 1?7 Derive this result then verify your answer by
evaluating 17 for the solutions that your find.

Hint, Solution

Logarithmic ldentities

Exercise 7.9
Show that if R (z;) > 0 and R (22) > 0 then

Log(z129) = Log(z1) + Log(z2)

and illustrate that this relationship does not hold in general.
Hint, Solution

Exercise 7.10
Find the fallacy in the following arguments:

1. log(—1) =log (<) = log(1) — log(—1) = —log(—1), therefore, log(—1) = 0.

2. 1 =12 = ((=1)(=1)Y2 = (=1)V?(=1)/2 = . = —1, therefore, 1 = —1.
Hint, Solution

Exercise 7.11
Write the following expressions in modulus-argument or Cartesian form. Denote any multi-valuedness explicitly.

92/5  gl+t, (\/5—2)1/4, 144

Hint, Solution

274



Exercise 7.12
Solve cos z = 69.
Hint, Solution

Exercise 7.13
Solve cot z = 147.
Hint, Solution

Exercise 7.14
Determine all values of

1. log(—)
2. (=)
3. 3"

4. log(log(z))

and plot them in the complex plane.
Hint, Solution

Exercise 7.15

Evaluate and plot the following in the complex plane:

1. (cosh(im))?

1

3. arctan(z3)

Hint, Solution
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Exercise 7.16
Determine all values of ¢* and log ((1 4 2)'™) and plot them in the complex plane.
Hint, Solution

Exercise 7.17
Find all z for which

1. e =1

2. cosz =sinz

3. tan?z = —1
Hint, Solution

Exercise 7.18
Prove the following identities and identify the branch points of the functions in the extended complex plane.

1. arctan(z) = %log (Z + Z)

11—z

1 1
2. arctanh(z) = 3 log ( a Z)

1—=2
3. arccosh(z) = log (z + (2* - 1)1/2>
Hint, Solution

Branch Points and Branch Cuts

Exercise 7.19
Identify the branch points of the function




and introduce appropriate branch cuts to ensure that the function is single-valued.
Hint, Solution

Exercise 7.20
Identify all the branch points of the function

w=f(z)=(z*+2* - 62)1/2

in the extended complex plane. Give a polar description of f(z) and specify branch cuts so that your choice of angles
gives a single-valued function that is continuous at z = —1 with f(—1) = —/6. Sketch the branch cuts in the

stereographic projection.
Hint, Solution

Exercise 7.21
Consider the mapping w = f(z) = z'/% and the inverse mapping z = g(w) = w®.

1. Describe the multiple-valuedness of f(z).
2. Describe a region of the w-plane that g(w) maps one-to-one to the whole z-plane.

3. Describe and attempt to draw a Riemann surface on which f(z) is single-valued and to which g(w) maps one-
to-one. Comment on the misleading nature of your picture.

4. ldentify the branch points of f(z) and introduce a branch cut to make f(z) single-valued.
Hint, Solution

Exercise 7.22
Determine the branch points of the function

fz) = (2% - 1)1/2.
Construct cuts and define a branch so that z = 0 and z = —1 do not lie on a cut, and such that f(0) = —:. What is

f(—1) for this branch?
Hint, Solution
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Exercise 7.23
Determine the branch points of the function

w(z) = ((z = 1)(z = 6)(z +2))""*

Construct cuts and define a branch so that z = 4 does not lie on a cut, and such that w = 16 when z = 4.
Hint, Solution

Exercise 7.24
Give the number of branches and locations of the branch points for the functions

1. cos (21/2)
2. (z41)77

Hint, Solution

Exercise 7.25
Find the branch points of the following functions in the extended complex plane, (the complex plane including the point
at infinity).

1 (24 1)
2. (23 — 2)1/2

3. log (z2 — 1)

1
4. log (z+1)
Z_

Introduce branch cuts to make the functions single valued.
Hint, Solution
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Exercise 7.26
Find all branch points and introduce cuts to make the following functions single-valued: For the first function, choose
cuts so that there is no cut within the disk |z| < 2.

1 f(z) = (*+8)"

2. f(z) =log <5+ (itDlﬂ)

3. f(z) = (2 413)1/2

Hint, Solution

Exercise 7.27
Let f(z) have branch points at z = 0 and z = =1, but nowhere else in the extended complex plane. How does the
value and argument of f(z) change while traversing the contour in Figure 7.307 Does the branch cut in Figure 7.30

make the function single-valued?
Sk

Figure 7.30: Contour Around the Branch Points and Branch Cut.

Hint, Solution
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Exercise 7.28

Let f(z) be analytic except for no more than a countably infinite number of singularities. Suppose that f(z) has only
one branch point in the finite complex plane. Does f(z) have a branch point at infinity? Now suppose that f(z) has
two or more branch points in the finite complex plane. Does f(z) have a branch point at infinity?

Hint, Solution

Exercise 7.29
Find all branch points of (24 + 1
function single-valued.

NS —|
/TN B

Figure 7.31: Four Candidate Sets of Branch Cuts for (2% + 1)

)1/4 in the extended complex plane. Which of the branch cuts in Figure 7.31 make the

1/4

Hint, Solution

Exercise 7.30
Find the branch points of

J(z) = (zQi 1)1/3

in the extended complex plane. Introduce branch cuts that make the function single-valued and such that the function
is defined on the positive real axis. Define a branch such that f(1) = 1/+/2. Write down an explicit formula for the
value of the branch. What is f(1 +¢)? What is the value of f(z) on either side of the branch cuts?

Hint, Solution
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Exercise 7.31
Find all branch points of

f2) = ((z = 1)(z = 2)(= = 3))/*

in the extended complex plane. Which of the branch cuts in Figure 7.32 will make the function single-valued. Using
the first set of branch cuts in this figure define a branch on which f(0) = 2v/6. Write out an explicit formula for the
value of the function on this branch.

1[

Figure 7.32: Four Candidate Sets of Branch Cuts for ((z — 1)(z — 2)(z — 3))'/2

Hint, Solution

Exercise 7.32
Determine the branch points of the function

w=((*-2) (z~|—2))1/3.
Construct and define a branch so that the resulting cut is one line of finite extent and w(2) = 2. What is w(—3) for

this branch? What are the limiting values of w on either side of the branch cut?
Hint, Solution
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Exercise 7.33
Construct the principal branch of arccos(z). (Arccos(z) has the property that if x € [—1, 1] then Arccos(x) € [0, 7].

In particular, Arccos(0) = 7).
Hint, Solution

Exercise 7.34

Find the branch points of (21/2 — 1)1/2 in the finite complex plane. Introduce branch cuts to make the function
single-valued.

Hint, Solution

Exercise 7.35
For the linkage illustrated in Figure 7.33, use complex variables to outline a scheme for expressing the angular position,
velocity and acceleration of arm ¢ in terms of those of arm a. (You needn’t work out the equations.)

Figure 7.33: A linkage

Hint, Solution

Exercise 7.36
Find the image of the strip |R(z)| < 1 and of the strip 1 < J(z) < 2 under the transformations:

1. w=22%
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_ z+1
Hint, Solution

Exercise 7.37
Locate and classify all the singularities of the following functions:

(z+1)1/2
z42
1
2. cos< )
1+ 2
1
3. ———
(1—e7)

In each case discuss the possibility of a singularity at the point oo.
Hint, Solution

Exercise 7.38
Describe how the mapping w = sinh(z) transforms the infinite strip —0co < x < 00, 0 < y < 7 into the w-plane. Find

cuts in the w-plane which make the mapping continuous both ways. What are the images of the lines (a) y = 7 /4; (b)
x =17
Hint, Solution
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7.10 Hints

Cartesian and Modulus-Argument Form

Hint 7.1

Hint 7.2

Trigonometric Functions

Hint 7.3

Recall that sin(z) = % (e'* —e™"). Use Result 6.3.1 to convert between Cartesian and modulus-argument form.

Hint 7.4
Write €* in polar form.

Hint 7.5
The exponential is an increasing function for real variables.

Hint 7.6
Write the hyperbolic cotangent in terms of exponentials.

Hint 7.7
Write out the multi-valuedness of 2%. There is a doubly-infinite set of solutions to this problem.

Hint 7.8
Write out the multi-valuedness of 17.

Logarithmic ldentities
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Hint 7.9

Hint 7.10
Write out the multi-valuedness of the expressions.

Hint 7.11
Do the exponentiations in polar form.

Hint 7.12
Write the cosine in terms of exponentials. Multiply by €** to get a quadratic equation for €.

Hint 7.13
Write the cotangent in terms of exponentials. Get a quadratic equation for e'*.

Hint 7.14

Hint 7.15

Hint 7.16
7* has an infinite number of real, positive values. 1* = €6, log ((1 +2)"") has a doubly infinite set of values.

log ((1 +12)™) = log(exp(emlog(1 +12))).
Hint 7.17

Hint 7.18

Branch Points and Branch Cuts
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Hint 7.19

Hint 7.20

Hint 7.21

Hint 7.22

Hint 7.23

Hint 7.24

Hint 7.25
1 (22+ DY = (2 — )V2(z +9)1/2
2. (2% — 2)1/2 =22z — )V2(2 4+ 1)1/2
3. log (22 — 1) =log(z — 1) + log(z + 1)

4. log (211) =log(z + 1) — log(z — 1)

Hint 7.26

Hint 7.27
Reverse the orientation of the contour so that it encircles infinity and does not contain any branch points.
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Hint 7.28
Consider a contour that encircles all the branch points in the finite complex plane. Reverse the orientation of the
contour so that it contains the point at infinity and does not contain any branch points in the finite complex plane.

Hint 7.29
Factor the polynomial. The argument of z'/4 changes by 7/2 on a contour that goes around the origin once in the
positive direction.

Hint 7.30
Hint 7.31
To define the branch, define angles from each of the branch points in the finite complex plane.
Hint 7.32
Hint 7.33
Hint 7.34
Hint 7.35

Hint 7.36

Hint 7.37
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Hint 7.38
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7.11 Solutions

Cartesian and Modulus-Argument Form

Solution 7.1
Let w = u 4+ 1w. We consider the strip 2 < x < 3 as composed of vertical lines. Consider the vertical line: z = ¢ + uy,
y € R for constant c¢. We find the image of this line under the mapping.

w = (c+1y)?
w=c? —1y* +12cy

u=c*—y* v=2cy

This is a parabola that opens to the left. We can parameterize the curve in terms of v.

1
_ 2 2
uU=c —40221, veR
The boundaries of the region, x = 2 and x = 3, are respectively mapped to the parabolas:

1 1
UZ4_EU2’ veR and u:9—%v2, velR

We write the image of the mapping in set notation.

1 1
= : R and 4 — —¢? 9— —v? .
{w u—4+w:v e an 16U <u< SGU}

See Figure 7.34 for depictions of the strip and its image under the mapping. The mapping is one-to-one. Since the
image of the strip is open and connected, it is a domain.

Solution 7.2
We write the mapping w = z* in polar coordinates.

w= 2= (r 6’9)4 = pher?

289



3 1
5
-1 1 2B 4 5 -5 0 15
-1
-5
-2
.3 - 16

Figure 7.34: The domain 2 < x < 3 and its image under the mapping w = 2.

Thus we see that
w:{re?|r>00<0<¢}—{rte?? |r>00<0<o}={re?|r>0,0<0<4¢}.

We can state this in terms of the argument.

w:{z|0<arg(z) < ¢} — {2]0<arg(z) < 4¢}

If ¢ = /2, the sector will be mapped exactly to the whole complex plane.

Trigonometric Functions
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Solution 7.3

: 1 1z —iz
sinz = — (e¥ —e

= ( )

— i (e—y+zac o ey—z;t)
12
1

=5 (e7¥(cosz +1sinz) — e¥(cosz — 1sinz))
?
1

=5 (e7¥(sinz —2cosx) + €¥(sinz + 1 cos x))

= sinx coshy + 2cos xsinh y

sin z = y/sin? 2 cosh® y 4 cos? x sinh® yy exp(z arctan(sin z cosh y, cos x sinh 7))

= \/cosh2 y — cos? z exp(zarctan(sin z cosh y, cos x sinh y))

1
= \/5 (cosh(2y) — cos(2x)) exp(z arctan(sin x cosh y, cos x sinh y))

Solution 7.4
In order that e* be zero, the modulus, €* must be zero. Since €* has no finite solutions, €* = 0 has no finite solutions.

Solution 7.5
We write the expressions in terms of Cartesian coordinates.

2
eZ

’e<x+zy>2

2,2
— |e® y“+12zy




P — gl _ e+

. . . . . . . . 2 .2 2.2
The exponential function is an increasing function for real variables. Since 22 — y? < 22 + 9%, ¥ ¥ < e¥ TV,

ez2 S e‘z|2
Equality holds only when y = 0.
Solution 7.6
coth(z) =1
(e*+e%)/2
=1
(e —e=?) /2
e teF=¢e"—e?
e =0
There are no solutions.
Solution 7.7
We write out the multi-valuedness of 27.
2 €27

eln2 c ezlog(2)
eln2 e {ez(ln(2)+127rn) ’ n e Z}
In2 e 2{In2+2mn +12rm | m,n € Z}

[ In(2) +127m
| In(2) +2mn

|m,n€Z}

We verify this solution. Consider m and n to be fixed integers. We express the multi-valuedness in terms of k.

2(ln(2)+127rm)/(ln(2)+127rn) _ e(ln(2)+127rm)/(1n(2)+z27rn) log(2)

— e(ln(2)+7,27rm)/(1n(2)+7,27rn) (In(2)+227k)
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For k = n, this has the value, e@+2mm — on(2) — 9

Solution 7.8
We write out the multi-valuedness of 17.

1el”
1e ezlog(l)

1 c {612271% | n e Z}

The element corresponding to n = 0 is ¢ = 1. Thus 1 € 1* has the solutions,

That is, z may be any complex number. We verify this solution.

17 = ezlog(l) — w¥2mn
For n = 0, this has the value 1.
Logarithmic ldentities

Solution 7.9

We write the relationship in terms of the natural logarithm and the principal argument.

Log(z122) = Log(z1) + Log(z2)

In[2120] + 1 Arg(2122) = In |21] + 1 Arg(z1) + In[2s] 4 2 Arg(22)

Arg(z122) = Arg(21) + Arg(22)

R (zx) > 0 implies that Arg(z;) € (—7/2...7/2). Thus Arg(z) + Arg(zs) € (—7..

holds.

.7). In this case the relationship

The relationship does not hold in general because Arg(z;) + Arg(zy) is not necessarily in the interval (=7 ...

Consider z; = 29 = —1.

Arg((=1)(=1)) = Arg(1) =
Log((=1)(=1)) = Log(1)
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Solution 7.10
1. The algebraic manipulations are fine. We write out the multi-valuedness of the logarithms.

log(—1) = log (%) = log(1) —log(—1) = —log(—1)

{mm+2mn:ne€Z} = {aim+12mn:n € Z}
={2mm :neZ}—{ir+2rn:n €} ={—wr—12mn:n €7}

Thus log(—1) = —log(—1). However this does not imply that log(—1) = 0. This is because the logarithm is a
set-valued function log(—1) = —log(—1) is really saying:

{im+2mn:ne€Z}={—wr—2mn:n € Z}
2. We consider
1=1"2 = ((-1)(=1)"2 = (=)} (-D)"? == —1.
There are three multi-valued expressions above.
12 =41
(~1)(=1)"* = +1
(—D)YA(=1)"? = (£1)(+0) = 1
Thus we see that the first and fourth equalities are incorrect.
1#1Y2 (=DYV2(=DY2 £u
Solution 7.11

22/5 — 41/5

_ s

= V4e?m/5 n=0,1,2,3,4
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31+z _ e(l—f—z) log 3
_ e(1+z)(ln3+127rn)

_ eln 3—27n ez(ln 3—i—27rn)7 nez

1/4
(\/3 — z) = (2 e_”r/ﬁ)l/4
_ g/ 1/4
— \‘7561(7rn/2—7r/24)7 n=0,1,273

11/4 — e(z/4) log1
— e(z/4)(7,27rn)

—e ™2 nelk

295



Solution 7.12

cosz = 69
e'LZ + e*ZZ
T 69

2
027 1386 +1 =
1
e = (138 + V1382 = 4)
2= —1log <69 + 2\/119())

L= <1n (69 n 2\/119()) n 227m>

2= 2 —1ln <69 + 2\/1190) . nez
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Solution 7.13

cot z =147
(¢ + ) /2
(¢ —e7%) /(12)
e e =47 (e —e ™)
46e%* —48 = 0

=47

]

2

z =

24
(1n2—3+127m), n ez

1, 24
=7mn——Iln— Z
Z=Tn 21123, nec

Solution 7.14
1.

log(—2) = 1In| — o] + 2arg(—2)
7r
zln(1)+@<—§+27m> , neZ

log(—1) = —zg +12mn, n€Z

These are equally spaced points in the imaginary axis. See Figure 7.35.

(_Z)—z — et log(—1)

(= /2442
—e o( z7r/+27rn)’ nez
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Figure 7.35: log(—1)

(_Z>71 — efrr/2+27rn’ nez

These are points on the positive real axis with an accumulation point at the origin. See Figure 7.36.

1

Figure 7.36: (—2)~"

3T — e log(3)

_ e7r(ln(3)+z arg(3))

298



37— eﬂ'(ln(3)+z27rn)7 nez

These points all lie on the circle of radius |e™| centered about the origin in the complex plane. See Figure 7.37.

Figure 7.37: 3™

log(log(2)) = log (z <g + 27Tm>) , MmEeZ
=In )g + 27Tm’ +1Arg <z (g + 27rm)> +1127n, m,n €7

=In ’g + 27Tm’ + 2sign(1 +4m)g +127n, m,n €Z

These points all lie in the right half-plane. See Figure 7.38.
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20
10

-10
-20

Figure 7.38: log(log(z))

Solution 7.15
1.

T —ur | %2
(cosh(u))™? = (%)

— (-1)°
_ ez2log(—1)

_ ez2(1n(1)+17r+127rn) nez

I

_ e—27r(1+2n)’ ne7

These are points on the positive real axis with an accumulation point at the origin. See Figure 7.39.
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1000

-1

Figure 7.39: The values of (cosh(ur))®.

1
1 ) ==
og (1 Z) log(1 +1)

= —log (\/5 e”r/4>
= —% In(2) — log (e™/*)
1

= —5111(2) —a/4d+22mn, ne€Z

These are points on a vertical line in the complex plane. See Figure 7.40.
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10

1
=

e 6 ¢ 6 0 ¢
=

-10

Figure 7.40: The values of log (%ﬂ)

1 1
:E<ln(§)+m—l—22ﬂn>, neus

:g+7rn+%ln(2)

These are points on a horizontal line in the complex plane. See Figure 7.41.
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Figure 7.41: The values of arctan(z3).

Solution 7.16

)= e log(z)
_ ez(ln|z\+zArg(z)+127rn)’ nez
ez(zw/2+7,27rn)’ nez

_ e—7r(1/2+2n)’ ney

These are points on the positive real axis. There is an accumulation point at z = 0. See Figure 7.42.

lOg ((1 + Z)wr) _ lOg (emlog(1+z))
=mlog(l +1) + 21, ne€Z
= (In|1 4+ +2Arg(l +1) +2mm) +22mn, m,n €Z

1
=am <§1n2+z£ +227rm) +12mn, m,n € 7

1 1
= —72 (Z+2m> +am <§ln2+2n>, m,n € 7
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% 25 50 75 100°
-1
Figure 7.42: ¢
See Figure 7.43 for a plot.
10
5
-40 -20 20
L[] L[] - 5 L[]
L[] L[] B 19 L[]

Figure 7.43: log ((1 4 2)™™)

304



Solution 7.17
1.

e* =1
z =log
z=In 1| +varg(z)
z:ln(l)—i-z(g—i-%m), nez

z:zg+227m, n ez

2. We can solve the equation by writing the cosine and sine in terms of the exponential

cosz =sinz

eZZ + e—’LZ e’lZ _ e—ZZ

2 12
(I+2)e” =(—1+2)e™"
Q2% _ -1+

141
ezZz =
12z = log(2)
s
122 25 +12mn, n €7
z % +7mn, nez
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There are no solutions for finite z.

tan?z = —1

sin® z = —cos? 2

Ccosz = *+1

¥ et
— =1

S
e =0 or
e/ =0 or

ey =0 or

sin z

e _ o2

12

e” =0

e—y+zx —

e V=0

z=10
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Solution 7.18

1.
w = arctan(z)
z = tan(w)
sin(w
z =
cos(w)

(e —e™) /(12)
(ezw + e—zw) /2
zetze " = — e fge "

(14 2)e?" = (1— 2)
. (Z_Z)I/Q
(& =
1+ z
| L — > 1/2
w = —1tlo
& 1+ 2

arctan(z) = %log <Z il z)

11—z

z =

We identify the branch points of the arctangent.
arctan(z) = % (log(z + 2z) — log(z — 2))

There are branch points at z = 41 due to the logarithm terms. We examine the point at infinity with the change
of variables ¢ = 1/z.

arctan(1/¢) = — log <@ + 1/C)

2 1—1/¢
arctan(1/¢) = %log (Eg i_ 1)
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As ( — 0, the argument of the logarithm term tends to —1 The logarithm does not have a branch point at that
point. Since arctan(1/{) does not have a branch point at ( = 0, arctan(z) does not have a branch point at

infinity.

w = arctanh(z)
z = tanh(w)
sinh(w)

°T cosh(w

)
_ (¥ —e ™) /2

(@ o) 2
ze¥ +ze™ v

(z—1)e*=—2-1
L1\ /2
e’ =
=
L1\ /2
w—log( )
1—-2

1 1
arctanh(z) = 5 log (1 i Z)
—z

=e¥—e™¥

We identify the branch points of the hyperbolic arctangent.

arctanh(z) = = (log(1 + z) — log(1 — 2))

N =

There are branch points at z = +1 due to the logarithm terms. We examine the point at infinity with the change
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of variables ( = 1/z.

arctanh(1/¢) = %log (1 i_ 1;2)

arctanh(1/¢) = %log (%)

As ( — 0, the argument of the logarithm term tends to —1 The logarithm does not have a branch point at that

point. Since arctanh(1/¢) does not have a branch point at ( = 0, arctanh(z) does not have a branch point at
infinity.

w = arccosh(z)
z = cosh(w)
e 4e™v
2
e —2ze" 41 =0
e’ =2+ (22—1)1/2
w = log <Z+ (22 — 1)1/2>

arccosh(z) = log (z + (2* - 1)1/2)

z =

We identify the branch points of the hyperbolic arc-cosine.
arccosh(z) = log (z + (z — 1)2(2 + 1)"/?)

First we consider branch points due to the square root. There are branch points at z = 41 due to the square
root terms. If we walk around the singularity at = = 1 and no other singularities, the (2% — 1)1/2 term changes
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sign. This will change the value of arccosh(z). The same is true for the point z = —1. The point at infinity is
not a branch point for (2% — 1)1/2. We factor the expression to verify this.

(2’2 . 1)1/2 _ (22)1/2 (1 . 2_2)1/2
(22)"? does not have a branch point at infinity. It is multi-valued, but it has no branch points. (1 — z2=2)"/* does
not have a branch point at infinity, The argument of the square root function tends to unity there. In summary,
there are branch points at z = +1 due to the square root. If we walk around either one of the these branch

points. the square root term will change value. If we walk around both of these points, the square root term will
not change value.

Now we consider branch points due to logarithm. There may be branch points where the argument of the
logarithm vanishes or tends to infinity. We see if the argument of the logarithm vanishes.

z+(22—1)1/2:()
=221
1/2

2+ (22— 1) is non-zero and finite everywhere in the complex plane. The only possibility for a branch point

in the logarithm term is the point at infinity. We see if the argument of z + (2% — 1)1/2 changes when we walk
around infinity but no other singularity. We consider a circular path with center at the origin and radius greater
than unity. We can either say that this path encloses the two branch points at z = £1 and no other singularities
or we can say that this path encloses the point at infinity and no other singularities. We examine the value of
the argument of the logarithm on this path.

(=)= (D) (1=

Neither (22)1/2 nor (1 — z‘2)1/2 changes value as we walk the path. Thus we can use the principal branch of the
square root in the expression.

z+(22—1)1/2:z:l:zx/l—z—2:z<1:l:\/1—z—2)
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First consider the “+" branch.

z<1+m>

As we walk the path around infinity, the argument of = changes by 27 while the argument of (1 + /1 — z72)

does not change. Thus the argument of z + (2% — 1)1/2 changes by 27 when we go around infinity. This makes
the value of the logarithm change by :27. There is a branch point at infinity.

" branch.
z(1—m) — (1 - (1 - %Z_2+O(z_4)>>
_. (%Z—Q Lo (z_4)>

= (140 (=)

First consider the

As we walk the path around infinity, the argument of 2! changes by —27 while the argument of (1 + O (272))
does not change. Thus the argument of z + (2% — 1)1/2 changes by —27 when we go around infinity. This makes
the value of the logarithm change by —:27. Again we conclude that there is a branch point at infinity.

For the sole purpose of overkill, let's repeat the above analysis from a geometric viewpoint. Again we consider
the possibility of a branch point at infinity due to the logarithm. We walk along the circle shown in the first plot
of Figure 7.44. Traversing this path, we go around infinity, but no other singularities. We consider the mapping
w=z+ (2% — 1)1/2. Depending on the branch of the square root, the circle is mapped to one one of the contours
shown in the second plot. For each branch, the argument of w changes by +27 as we traverse the circle in the

z-plane. Therefore the value of arccosh(z) = log (z + (2% — 1)1/2> changes by +:27 as we traverse the circle.
We again conclude that there is a branch point at infinity due to the logarithm.

To summarize: There are branch points at z = 41 due to the square root and a branch point at infinity due to
the logarithm.

Branch Points and Branch Cuts
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Figure 7.44: The mapping of a circle under w = z + (2% — 1)1/2.

Solution 7.19
We expand the function to diagnose the branch points in the finite complex plane.

1
f(z) =log (2(22_4-1 )> = log(z) +log(z + 1) —log(z — 1)
The are branch points at z = —1,0, 1. Now we examine the point at infinity. We make the change of variables z = 1/(.
1 1 1 1
7 (L) =g (WSS 1Y
¢ (1/¢=1)
= log (l—<1 i C)
¢1-¢

= log(1 +¢) — log(1 — ¢) — log(¢)

log(¢) has a branch point at ¢ = 0. The other terms do not have branch points there. Since f(1/() has a branch point
at ( =0 f(z) has a branch point at infinity.

Note that in walking around either z = —1 or z = 0 once in the positive direction, the argument of z(z+1)/(z —1)
changes by 27. In walking around z = 1, the argument of z(z 4+ 1)/(z — 1) changes by —27. This argument does not
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change if we walk around both z = 0 and z = 1. Thus we put a branch cut between z = 0 and z = 1. Next be put
a branch cut between z = —1 and the point at infinity. This prevents us from walking around either of these branch
points. These two branch cuts separate the branches of the function. See Figure 7.45

Figure 7.45: Branch cuts for log <z(z+1)>

z—1

Solution 7.20
First we factor the function.

f(z) = (2(z+3)(z — 2))1/2 = 212(z 4 3)/2(z — 2)1/2

There are branch points at z = —3,0,2. Now we examine the point at infinity.

()= () () -

Since (~*/2 has a branch point at ( = 0 and the rest of the terms are analytic there, f(z) has a branch point at infinity.

Consider the set of branch cuts in Figure 7.46. These cuts do not permit us to walk around any single branch point.
We can only walk around none or all of the branch points, (which is the same thing). The cuts can be used to define
a single-valued branch of the function.
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* 5 * H

Figure 7.46: Branch Cuts for (23 + 22 — 6,2')1/2

Now to define the branch. We make a choice of angles.

z4+3=re", <l <7
0 T 3m
z=r9e"2  —— <y < —

2 ) 9 9

z2—2=r3e®  0<by<2m

Ihe function is
1/2 .
f(z) = (7‘1 e r, €192 g 6193) /2 _ N e!(01+02403)/2

We evaluate the function at z = —1.
F(=1) = V/(2)(1)(3) e = — /6

We see that our choice of angles gives us the desired branch.
The stereographic projection is the projection from the complex plane onto a unit sphere with south pole at the
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origin. The point z = x + 1y is mapped to the point (X,Y, Z) on the sphere with

4x 4y 22

Y = :
|2[* + 4 |2[* + 4 |2* + 4

Figure 7.47 first shows the branch cuts and their stereographic projections and then shows the stereographic projections
alone.

Figure 7.47: Branch cuts for (2% + 22 — 6,2)1/2 and their stereographic projections.

Solution 7.21
1. For each value of 2, f(z) = 2/ has three values.

f(Z) — 21/3 — \?/;elkﬂﬂ'/zﬂ’ k — O, 1’2

g(w) — ’LU3 _ |UJ|3 ezBarg(w)

315



Any sector of the w plane of angle 27/3 maps one-to-one to the whole z-plane.
g: {re’e |7 >0,00 <0< (90—1—27?/3} — {r3e’39 |r>0,0) <0< 90+27r/3}
g: {rew |r>0,00 <0< 90+27T/3} — {7’6“9 |7 >0,30) <0< 390+27r}
g:{re | r>0,00<0<0y+2r/3} —C
See Figure 7.48 to see how g(w) maps the sector 0 < 6 < 27/3.
3. See Figure 7.49 for a depiction of the Riemann surface for f(z) = z'/3. We show two views of the surface and a

curve that traces the edge of the shown portion of the surface. The depiction is misleading because the surface
is not self-intersecting. We would need four dimensions to properly visualize the this Riemann surface.

4. f(z) = z'/3 has branch points at z = 0 and z = co. Any branch cut which connects these two points would
prevent us from walking around the points singly and would thus separate the branches of the function. For
example, we could put a branch cut on the negative real axis. Defining the angle —7m < 6 < 7 for the mapping

f (7” ez@) — \3/;620/3
defines a single-valued branch of the function.

Solution 7.22
The cube roots of 1 are

{1 6127'(/3 e7,47r/3} _ {1 —1+'Z\/§ —1—2\/3}
) ) ’ 9 ) 9 .

We factor the polynomial.

2 2

1/2 1/2
(23—1)1/2:(2—1)1/2 (z—l—l_z\/g) (2+1+Z\/§>

There are branch points at each of the cube roots of unity.

_ {1 —1+14/3 —1—2\/5}

- 9 9
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3

Figure 7.48: The mapping g(w) = w”® maps the sector 0 < 6 < 27/3 one-to-one to the whole z-plane.

Now we examine the point at infinity. We make the change of variables z = 1/(.
FO/C) = (1/¢F = 1) = ¢ (1= ¢

(%2 has a branch point at ¢ = 0, while (1 — C3)1/2 is not singular there. Since f(1/¢) has a branch point at { = 0,
f(2) has a branch point at infinity.
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Figure 7.49: Riemann surface for f(z) = z!/3.

There are several ways of introducing branch cuts to separate the branches of the function. The easiest approach is
to put a branch cut from each of the three branch points in the finite complex plane out to the branch point at infinity.
See Figure 7.50a. Clearly this makes the function single valued as it is impossible to walk around any of the branch
points. Another approach is to have a branch cut from one of the branch points in the finite plane to the branch point
at infinity and a branch cut connecting the remaining two branch points. See Figure 7.50bcd. Note that in walking
around any one of the finite branch points, (in the positive direction), the argument of the function changes by 7. This
means that the value of the function changes by €', which is to say the value of the function changes sign. In walking
around any two of the finite branch points, (again in the positive direction), the argument of the function changes by
27. This means that the value of the function changes by e**™, which is to say that the value of the function does not
change. This demonstrates that the latter branch cut approach makes the function single-valued.

Now we construct a branch. We will use the branch cuts in Figure 7.50a. We introduce variables to measure radii
and angles from the three finite branch points.

z—lzrlewl, 0<6; <2m
1—1/3 0 27 T
=rqe€e'”?, —— <y < =
N 2 e Ty sy
1+1/3 ot T <27r
z =r —— —
2 T
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2/ : ./ :

Figure 7.50: (23 — 1)"/?

We compute f(0) to see if it has the desired value.

[(2) = iy 0 0002
£(0) = /s

Since it does not have the desired value, we change the range of 0.

01
)

z—1=r € 2 < 0y < 4m

f(0) now has the desired value.
f(O) _ ez(37r77r/3+71'/3)/2 —

We compute f(—1).
f(_1> — \/562(37r727r/3+27r/3)/2 — —Z\/§

Solution 7.23
First we factor the function.

w(z) = ((z+2)(z = Dz = 6))"* = ( +2)/*(= = 1)/*(z - 6)"/*

There are branch points at z = —2,1,6. Now we examine the point at infinity.

(- ()G e (D (-0
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Since (~%/2 has a branch point at ¢ = 0 and the rest of the terms are analytic there, w(2) has a branch point at infinity.

Consider the set of branch cuts in Figure 7.51. These cuts let us walk around the branch points at z = —2 and
z = 1 together or if we change our perspective, we would be walking around the branch points at 2 = 6 and 2z =
together. Consider a contour in this cut plane that encircles the branch points at z = —2 and z = 1. Since the

argument of (z — zo)l/2 changes by m when we walk around zy, the argument of w(z) changes by 27 when we traverse

the contour. Thus the value of the function does not change and it is a valid set of branch cuts.

Figure 7.51: Branch Cuts for ((z + 2)(z — 1)(z — 6))*/?

Now to define the branch. We make a choice of angles.

Z+2:T18Z91, 91:92for26(1...6),
2 Gy =0, for z € (1...6),
, 0< ;<2

z—1=ry€’

z—6=rye®

I'he function is
1/2
w(z) = (7"1 e T9 g2 r3 eles) = \/r17rors e!(011+02+03)/2

We evaluate the function at z = 4.

w(4) = V/(6)(3)(2) 'R =46

We see that our choice of angles gives us the desired branch.
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Solution 7.24
1.

cos (21/2) = cos (+v/z) = cos (V%)

This is a single-valued function. There are no branch points.

2.
(Z + Z)_Z _ e—zlog(z-i—z)
_ efz(ln|z+l\+ZArg(z+Z)+22ﬂ'n)’ nez
There is a branch point at z = —1. There are an infinite number of branches.
Solution 7.25
1.

f(Z) = (2;2 + 1)1/2 _ (Z+Z)1/2<Z _2)1/2

We see that there are branch points at z = 2. To examine the point at infinity, we substitute z = 1/¢ and

examine the point ¢ = 0.
~N 1/2 . o
((g) “) :W(HCQ)

Since there is no branch point at ( = 0, f(z) has no branch point at infinity.

A branch cut connecting z = +1 would make the function single-valued. We could also accomplish this with two
branch cuts starting z = 42 and going to infinity.

f(Z) = (23 — Z)l/Q _ 21/2(2 . 1)1/2(2 + 1)1/2

There are branch points at z = —1,0, 1. Now we consider the point at infinity.

1(0)- ((%)3‘ i)w ==
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There is a branch point at infinity.

One can make the function single-valued with three branch cuts that start at z = —1,0, 1 and each go to infinity.
We can also make the function single-valued with a branch cut that connects two of the points 2 = —1,0,1 and
another branch cut that starts at the remaining point and goes to infinity.

f(z) =log (2* — 1) =log(z — 1) + log(z + 1)

There are branch points at z = +1.

f <%) = log (é — 1) = log (C72) + log (1 — CQ)
log (¢™2) has a branch point at ¢ = 0.

log (C_2) =In ‘C_2| + rarg (C_Q) =1In |C_2‘ —2arg(()
Every time we walk around the point ( = 0 in the positive direction, the value of the function changes by —u4r.
f(2) has a branch point at infinity.

We can make the function single-valued by introducing two branch cuts that start at z = +1 and each go to
infinity.

z+1
z—1

7(2) = log (

There are branch points at z = +1.

/() e i) =+ (50)

There is no branch point at ( = 0. f(z) has no branch point at infinity.

) =log(z+1) —log(z — 1)
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We can make the function single-valued by introducing two branch cuts that start at z = +1 and each go to
infinity. We can also make the function single-valued with a branch cut that connects the points z = +1. This is
because log(z + 1) and — log(z — 1) change by 127 and —:27, respectively, when you walk around their branch
points once in the positive direction.

Solution 7.26
1. The cube roots of —8 are

{_27 _28127r/3, _2ez47r/3} = {—27 1+ Z\/g, 1— 1\/5} .

Thus we can write ,
1/2

(z?’+8)1/2 = (2 +2)1/? (z— 1 —Z\/g)l/z (z—1+1\/§)

There are three branch points on the circle of radius 2.
z = {—2,1+2\/§,1—@\/§}.

We examine the point at infinity.

1/2

FOL/C) = (1/¢3 +8) 2 = ¢73/7 (1 4-8¢%)

Since f(1/¢) has a branch point at ( = 0, f(z) has a branch point at infinity.

There are several ways of introducing branch cuts outside of the disk |z| < 2 to separate the branches of the
function. The easiest approach is to put a branch cut from each of the three branch points in the finite complex
plane out to the branch point at infinity. See Figure 7.52a. Clearly this makes the function single valued as it
is impossible to walk around any of the branch points. Another approach is to have a branch cut from one of
the branch points in the finite plane to the branch point at infinity and a branch cut connecting the remaining
two branch points. See Figure 7.52bcd. Note that in walking around any one of the finite branch points, (in
the positive direction), the argument of the function changes by 7. This means that the value of the function
changes by e, which is to say the value of the function changes sign. In walking around any two of the finite
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)
a \ b C - d \

1/2

Figure 7.52: (2% + 8)

branch points, (again in the positive direction), the argument of the function changes by 27. This means that
the value of the function changes by €’?™, which is to say that the value of the function does not change. This
demonstrates that the latter branch cut approach makes the function single-valued.

£(2) = log (5 + (j + Dl/z)

9(z) = (jti)m

Note that it has branch points at z = +1. Consider the point at infinity.

9(1/) = Gfgi)/ _ (%ﬁ)/

Since ¢(1/¢) has no branch point at ¢ = 0, g(z) has no branch point at infinity. This means that if we walk
around both of the branch points at z = +1, the function does not change value. We can verify this with another
method: When we walk around the point z = —1 once in the positive direction, the argument of z + 1 changes

First we deal with the function
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by 27, the argument of (z 4 1)!/2? changes by 7 and thus the value of (z +1)'/2 changes by ¢™ = —1. When we

walk around the point z = 1 once in the positive direction, the argument of z — 1 changes by 27, the argument
of (z — 1)7'/2 changes by —7 and thus the value of (z — 1)~'/2 changes by €™ = —1. f(z) has branch points
at z = +1. When we walk around both points z = +1 once in the positive direction, the value of (if—l)l/z does
not change. Thus we can make the function single-valued with a branch cut which enables us to walk around

either none or both of these branch points. We put a branch cut from —1 to 1 on the real axis.

1\ /2
. (z—l— )
z—1

is either zero or infinite. The only place in the extended complex plane where the expression becomes infinite is

at z = 1. Now we look for the zeros.
1 1/2
5+ (” ) =0
z—1

Z+1 1/2
=5
(5)

z+1_

f(2) has branch points where

1 25
z4+1=252—-25
13
T2

Note that

13/12+ 1\ /2
(12%%) =952 — 45,

On one branch, (which we call the positive branch), of the function g(z) the quantity

1\ /2
. (z—l— >
z—1
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is always nonzero. On the other (negative) branch of the function, this quantity has a zero at z = 13/12.

The logarithm introduces branch points at z = 1 on both the positive and negative branch of g(z). It introduces
a branch point at z = 13/12 on the negative branch of g(z). To determine if additional branch cuts are needed

to separate the branches, we consider
(z +1 > 1/2
w=>5H+
z—1

and see where the branch cut between +1 gets mapped to in the w plane. We rewrite the mapping.

9 1/2
w:5—|—<1+ )
z—1

The mapping is the following sequence of simple transformations:

We show these transformations graphically below.

-1 1 -2 0 -1/2 -1
O O
1
Zz—z—1 2 — zZ 2z z—z+1
z
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For the positive branch of g(z), the branch cut is mapped to the line z = 5 and the z plane is mapped to the
half-plane x > 5. log(w) has branch points at w = 0 and w = oco. It is possible to walk around only one of these
points in the half-plane > 5. Thus no additional branch cuts are needed in the positive sheet of g(z).

For the negative branch of g(z), the branch cut is mapped to the line = 5 and the z plane is mapped to the
half-plane x < 5. It is possible to walk around either w = 0 or w = oo alone in this half-plane. Thus we need an
additional branch cut. On the negative sheet of g(z), we put a branch cut beteen z = 1 and z = 13/12. This
puts a branch cut between w = 0o and w = 0 and thus separates the branches of the logarithm.

Figure 7.53 shows the branch cuts in the positive and negative sheets of g(z).

Im(2) Im(2)

9(13/12)=5 9(13/12)=-5
¢ o Re(z) o o Re(2)

Figure 7.53: The branch cuts for f(z) = log (5 + (%})1/2).

3. The function f(z) = (z+13)"/? has a branch point at z = —13. The function is made single-valued by connecting
this point and the point at infinity with a branch cut.

Solution 7.27
Note that the curve with opposite orientation goes around infinity in the positive direction and does not enclose any
branch points. Thus the value of the function does not change when traversing the curve, (with either orientation, of
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course). This means that the argument of the function must change my an integer multiple of 27. Since the branch
cut only allows us to encircle all three or none of the branch points, it makes the function single valued.

Solution 7.28
We suppose that f(z) has only one branch point in the finite complex plane. Consider any contour that encircles this
branch point in the positive direction. f(z) changes value if we traverse the contour. If we reverse the orientation of
the contour, then it encircles infinity in the positive direction, but contains no branch points in the finite complex plane.
Since the function changes value when we traverse the contour, we conclude that the point at infinity must be a branch
point. If f(z) has only a single branch point in the finite complex plane then it must have a branch point at infinity.
If f(2) has two or more branch points in the finite complex plane then it may or may not have a branch point at
infinity. This is because the value of the function may or may not change on a contour that encircles all the branch
points in the finite complex plane.

Solution 7.29
First we factor the function,

There are branch points at z = . We make the substitution z = 1/( to examine the point at infinity.

1 1 1/4
d (<) - (@ * 1>
_ 1 (1 +C4)1/4

(Okh

((1/4)4 has a removable singularity at the point ¢ = 0, but no branch point there. Thus (z* + 1)1/4 has no branch
point at infinity.
Note that the argument of (z* — z)'

/4 changes by 7/2 on a contour that goes around the point 2z, once in the

positive direction. The argument of (2* + 1)1/4 changes by n7/2 on a contour that goes around n of its branch points.
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Thus any set of branch cuts that permit you to walk around only one, two or three of the branch points will not make
the function single valued. A set of branch cuts that permit us to walk around only zero or all four of the branch points
will make the function single-valued. Thus we see that the first two sets of branch cuts in Figure 7.31 will make the
function single-valued, while the remaining two will not.

Consider the contour in Figure ??. There are two ways to see that the function does not change value while
traversing the contour. The first is to note that each of the branch points makes the argument of the function increase
by 7/2. Thus the argument of (2* + 1)1/4 changes by 4(m/2) = 27 on the contour. This means that the value of the
function changes by the factor 2™ = 1. If we change the orientation of the contour, then it is a contour that encircles
infinity once in the positive direction. There are no branch points inside the this contour with opposite orientation.
(Recall that the inside of a contour lies to your left as you walk around it.) Since there are no branch points inside this
contour, the function cannot change value as we traverse it.

Solution 7.30

f(z) = ( - )1/3 = 23z =) V3 (2 40)7 V3

There are branch points at z = 0, £.
1 B 1/< 1/3 B C1/3
/ (Z) - ((1/02 + 1) C(14¢2)

There is a branch point at ( = 0. f(z) has a branch point at infinity.

We introduce branch cuts from z = 0 to infinity on the negative real axis, from z = 2 to infinity on the positive
imaginary axis and from z = — to infinity on the negative imaginary axis. As we cannot walk around any of the branch
points, this makes the function single-valued.

We define a branch by defining angles from the branch points. Let

z=re?¥ —w<O<m,
(z—1)=s€? —31/2<¢<7/2,
(z412) =te¥ —7/2 < <371/2.
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With

f(z) =2 =) P4 0)7
_ 3 TezG/B L e—z¢/3 i e—u/}/?)

Vs vt

— 3/ qo—¢—v)/3
st

we have an explicit formula for computing the value of the function for this branch. Now we compute f(1) to see if we
chose the correct ranges for the angles. (If not, we'll just change one of them.)

F(1) = 3 er0=ma—(mfanys — L

V2V2 V2

We made the right choice for the angles. Now to compute f(1 + 1).

\)

f(l + ’l) _ 3 1\/\/55 ez(ﬂ/4707Arctan(2))/3 — i/gez(ﬂ'/4Arctan(2))/3

Consider the value of the function above and below the branch cut on the negative real axis. Above the branch cut the
function is

Y(r—9p—)/3

f(—:c+20):1\3/\/x2+1\/$2+1e

T r 1+1/3
. 0) = /3 3 )
Jma ) = {77 e Vezr1l 2

Below the branch cut 8 = —7 and

T T 1—1\/3
—r—0) = 3 L e=m/3 _ 3 _
Jme =)= 7 211 2
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For the branch cut along the positive imaginary axis,

ez(w/277r/277r/2)/3

~
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<
_l_
@)
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<
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=
~|<=
<
+
—_
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_ Yy W(—m/2—(~7/2)—(37/2))/3
f(=wy —0) = i/—e
(y+1)(y—1)

_ i,/ Y o2
(y+1Dy—-1)

:_26/4
(y+1y—1)

Solution 7.31
First we factor the function.

fG) = ((z =Dz =2)(z=3)"" = (: = )/*(= = 2)*(z - 3)"?

There are branch points at z = 1,2, 3. Now we examine the point at infinity.

(- () E2) @) = (-9 0-90-9)

Since (~*/2 has a branch point at ¢ = 0 and the rest of the terms are analytic there, f(z) has a branch point at infinity.
The first two sets of branch cuts in Figure 7.32 do not permit us to walk around any of the branch points, including
the point at infinity, and thus make the function single-valued. The third set of branch cuts lets us walk around the
branch points at z = 1 and z = 2 together or if we change our perspective, we would be walking around the branch
points at z = 3 and z = oo together. Consider a contour in this cut plane that encircles the branch points at z = 1
and z = 2. Since the argument of (z — 20)1/2 changes by ™ when we walk around zj, the argument of f(z) changes by
21 when we traverse the contour. Thus the value of the function does not change and it is a valid set of branch cuts.
Clearly the fourth set of branch cuts does not make the function single-valued as there are contours that encircle the
branch point at infinity and no other branch points. The other way to see this is to note that the argument of f(z)
changes by 37 as we traverse a contour that goes around the branch points at z = 1, 2, 3 once in the positive direction.
Now to define the branch. We make the preliminary choice of angles,

z—1=re? 0<6, <2r,
z—2=re%  0<6,<2m,
z—3=rye®  0<0y <2
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Ihe function is
1/2
f(2) = (r e rye®rye®) " = \/rirers eU01402+03)/2

The value of the function at the origin is
F(0) = VB2 = —/G,

which is not what we wanted. We will change range of one of the angles to get the desired result.

01
)

z—1=r € 0 <6 < 2m,

z—2=mre%  0<6,<2m,
03
)

z—3=r3€' 21 < O3 < 4.

F(0) = V602 = 2/6,
Solution 7.32

1/3 1/3
w=((z*-2) (z+2))1/3 <z+\/§> (z—\/§> (24 2)/3
There are branch points at z = ++/2 and z = —2. If we walk around any one of the branch points once in the positive
direction, the argument of w changes by 27/3 and thus the value of the function changes by €>™/3. If we walk around

all three branch points then the argument of w changes by 3 x 27/3 = 27. The value of the function is unchanged as
e2™ — 1. Thus the branch cut on the real axis from —2 to v/2 makes the function single-valued.

Now we define a branch. Let
2—V2=ac", z4+V2=0be", z42=ce".

We constrain the angles as follows: On the positive real axis, « = 3 = . See Figure 7.54.
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Im(z)

X Re(2)

Figure 7.54: A branch of ((22 — 2) (z + 2))"/*.

Now we determine w(2).
w(2) = (2~ v2) v (2+2) RCEITE

= 1/2—V2e0 /2 + 260 /4
= /24

=2

Note that we didn’t have to choose the angle from each of the branch points as zero. Choosing any integer multiple
of 2w would give us the same result.

= (40" () v

— 13/3 + \/iewr/S ‘3/3 _ \/iewr/S \C*/Iezw/S
— e/?em
i
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The value of the function is
w = Vabee'etB/3

Consider the interval (—\/§ .. \/5) As we approach the branch cut from above, the function has the value,

w = Vabce™3 = i’/(ﬂ—x) (a:—l—\@) (x4 2) /.

As we approach the branch cut from below, the function has the value,

w = Vabce ™% = i’/(\@—m) (m+ \/§> (x+2)e/?,

Consider the interval (—2 = \/5) As we approach the branch cut from above, the function has the value,

w = Vabee?™/3 = i’/(\/ﬁ—x) (—x— \/5) (x4 2) /3.

As we approach the branch cut from below, the function has the value,

w = Vabce 23 = i’/(\/ﬁ — :c) (—x — \/5) (x+2)e7/3,

Solution 7.33
Arccos(z) is shown in Figure 7.55 for real variables in the range [—1...1].
First we write arccos(z) in terms of log(z). If cos(w) = z, then w = arccos(z).

cos(w) = z
elw _'_ e*lw
2
(e™)? —2ze™ +1 =0
e =z + (22 — 1)1/2

w = —1log (z—i— (22 = 1)1/2>

=z
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-1 -0.5 0.5 1

Figure 7.55: The Principal Branch of the arc cosine, Arccos(x).

Thus we have

arccos(z) = —ulog (z + (* - 1)1/2> :

Since Arccos(0) = 7, we must find the branch such that
—1log <0 + > =
—log ((— )1/2) 0.
Since - .
—log(z) = —1 <@§ + 227m> =5+ 2mn
and

-1 10g<_2) =1 <_Zg + ZQ?Tn) = —g + 2mn

we must choose the branch of the square root such that (—1)'/2

log(1) =13
First we construct the branch of the square root.

= 1 and the branch of the logarithm such that

(2= 1) = (z + )Yz — )12
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We see that there are branch points at z = —1 and z = 1. In particular we want the Arccos to be defined for z = z,
x € [-1...1]. Hence we introduce branch cuts on the lines —oo < # < —1 and 1 < z < oo. Define the local
coordinates

z4+1=re? z—1=pe?.

With the given branch cuts, the angles have the possible ranges

O =1{. . (—r..m),(r...30),...Y,  {oy={..,(0..2¢),(2r...47),...}.

Now we choose ranges for 6 and ¢ and see if we get the desired branch. If not, we choose a different range for one of
the angles. First we choose the ranges

e (—m...m), $e(0...2m).

If we substitute in 2 = 0 we get
(02 . 1)1/2 _ (1 ezO)l/Q (1 e’LTl’)]./Q _ eZO e”/2 —,

Thus we see that this choice of angles gives us the desired branch.

0=t =0

0=-T11 =21

Figure 7.56: Branch Cuts and Angles for (22 — 1)1/2
Now we go back to the expression

arccos(z) = —ulog <z + (2* - 1)1/2> :
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We have already seen that there are branch points at z = —1 and z = 1 because of (2% — 1)1/2. Now we must
determine if the logarithm introduces additional branch points. The only possibilities for branch points are where the
argument of the logarithm is zero.

We see that the argument of the logarithm is nonzero and thus there are no additional branch points. Introduce the
variable, w = z + (22 — 1)1/2. What is the image of the branch cuts in the w plane? We parameterize the branch cut
connecting z =1 and z = +oo with z=r+ 1, r € [0...00).

w:r+1+((r+1)2—1)1/2

A 1EVIEED)
=r (1 rV/I+2/r) +1

r (1 + 1+ 2/r> + 1 is the interval [1...00); 7 (1 — 1+ 2/r) + 1 is the interval (0...1]. Thus we see that this

branch cut is mapped to the interval (0. ..00) in the w plane. Similarly, we could show that the branch cut (—oco...—1]
in the z plane is mapped to (—o0o...0) in the w plane. In the w plane there is a branch cut along the real w axis
from —oo to co. Thus cut makes the logarithm single-valued. For the branch of the square root that we chose, all the
points in the z plane get mapped to the upper half of the w plane.

With the branch cuts we have introduced so far and the chosen branch of the square root we have

arccos(0) = —ulog (0 +(0* - 1)1/2>
= —1logs
= —1 (zg + @27Tn>

™
— 2
2+ ™
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Choosing the n = 0 branch of the logarithm will give us Arccos(z). We see that we can write
2 1/2
Arccos(z) = —1 Log (2 + (2 —1) ) :

Solution 7.34

We consider the function f(z) = (2!/% — 1)1/2. First note that z'/2 has a branch point at z = 0. We place a branch
cut on the negative real axis to make it single valued. f(z) will have a branch point where z'/2 — 1 = 0. This occurs
at z = 1 on the branch of z!/2 on which 1/2 = 1. (1'/2 has the value 1 on one branch of z!/? and —1 on the other
branch.) For this branch we introduce a branch cut connecting z = 1 with the point at infinity. (See Figure 7.57.)

Figure 7.57: Branch Cuts for (2/2 — 1)1/2

Solution 7.35
The distance between the end of rod a and the end of rod c is b. In the complex plane, these points are ae
[ 4 ce?, respectively. We write this out mathematically.

@ and

’l +ce? —qe?| = b
(l +ce?—q ew) (l +ce ™ —q e_w) = b2

2tcle™ —ale™ tele? +c2 — ace®? _gle? —qee®=9) 1 g2 = p?

(1)2 R —12)

1
clcos ¢ — accos(¢p — 0) — al cosh = 3
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This equation relates the two angular positions. One could differentiate the equation to relate the velocities and
accelerations.

Solution 7.36
1. Let w = u + w. First we do the strip: |R(z)| < 1. Consider the vertical line: z = ¢+ 1y, y € R. This line is
mapped to

w = 2(c +wy)*
w = 2% — 2% +1dey
w=2c* -2y wv=decy

This is a parabola that opens to the left. For the case ¢ = 0 it is the negative u axis. We can parametrize the
curve in terms of v.
_ 92 1 o9
u = 2c 8021; , veER

The boundaries of the region are both mapped to the parabolas:

1
=2— 0%, veER.
u 8U v

The image of the mapping is

1
{w:u+w:v€Randu<2—§v2}.

Note that the mapping is two-to-one.
Now we do the strip 1 < &(z) < 2. Consider the horizontal line: z = x +1c, x € R. This line is mapped to
w = 2(x +1c)?
w = 22* — 2¢% + dex

w=2z?—2¢ wv=dcx
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This is a parabola that opens upward. We can parametrize the curve in terms of v.

1
u:@02—2c2, velR

The boundary &(z) = 1 is mapped to

1 2
= 2 —2, weR
u 8U v

The boundary &(z) = 2 is mapped to

The image of the mapping is

1 1
{w:u+w:v€Rand §v2—8<u<gv2—2}.

. We write the transformation as

z+1 14+ 2
z2—1 z—1
Thus we see that the transformation is the sequence:

(a) translation by —1
(b)

(c) magnification by 2

(d)

Consider the strip |R(z)| < 1. The translation by —1 maps this to —2 < R(z) < 0. Now we do the inversion.

The left edge, R(2) = 0, is mapped to itself. The right edge, $(z) = —2, is mapped to the circle |z+1/4| = 1/4.
Thus the current image is the left half plane minus a circle:

inversion

translation by 1

R(2) <0 and
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The magnification by 2 yields

1 1
R(z) <0 d - > =
(2) an z+ 5 5
The final step is a translation by 1.
1 1
R(z) <1 d —=|>=.
(2) an 25> 3

Now consider the strip 1 < (z) < 2. The translation by —1 does not change the domain. Now we do the
inversion. The bottom edge, &(z) = 1, is mapped to the circle |z + :/2| = 1/2. The top edge, S(z) = 2, is
mapped to the circle |z 4 1/4| = 1/4. Thus the current image is the region between two circles:

’ + Z) < = d ‘ + Z‘ > !
—| <= an - > -.
“Tal T Tl
The magnification by 2 yields
1 1
<1 d —’ > —.
|z + 1| an 2t 5] >3

The final step is a translation by 1.

7 1
144 <1 and |z—1 —‘>—.
|z + 1| an z +2 5

Solution 7.37
1. There is a simple pole at z = —2. The function has a branch point at z = —1. Since this is the only branch
point in the finite complex plane there is also a branch point at infinity. We can verify this with the substitution
z=1/C.
F 1) C(1/¢+ 1)
¢)  1/¢+2
¢+
142

Since f(1/¢) has a branch point at ( =0, f(z) has a branch point at infinity.
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2. cos z is an entire function with an essential singularity at infinity. Thus f(z) has singularities only where 1/(1+ 2)
has singularities. 1/(1+ z) has a first order pole at z = —1. It is analytic everywhere else, including the point at
infinity. Thus we conclude that f(z) has an essential singularity at z = —1 and is analytic elsewhere. To explicitly
show that z = —1 is an essential singularity, we can find the Laurent series expansion of f(z) about z = —1.

(i) - Bt

n=0

3. 1 —¢® has simple zeros at z = 12nm, n € Z. Thus f(z) has second order poles at those points.

The point at infinity is a non-isolated singularity. To justify this: Note that

1

f(@zm

has second order poles at z = 12nm, n € Z. This means that f(1/() has second order poles at ¢ = ﬁ n € 2.
These second order poles get arbitrarily close to ( = 0. There is no deleted neighborhood around ¢ = 0 in which
f(1/¢) is analytic. Thus the point ¢ = 0, (2 = ©0), is a non-isolated singularity. There is no Laurent series

expansion about the point ( =0, (z = c0).

The point at infinity is neither a branch point nor a removable singularity. It is not a pole either. If it were, there
would be an n such that lim,_,., 27" f(z) = const # 0. Since 27" f(z) has second order poles in every deleted
neighborhood of infinity, the above limit does not exist. Thus we conclude that the point at infinity is an essential
singularity.

Solution 7.38
We write sinh z in Cartesian form.

w = sinh z = sinhx cosy +1coshxsiny = u + w
Consider the line segment z = ¢, y € (0...7). Its image is

{sinhccosy +1coshesiny [y € (0...m)}.
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This is the parametric equation for the upper half of an ellipse. Also note that u and v satisfy the equation for an

ellipse.

u? v?

sinh?c  cosh’c !

The ellipse starts at the point (sinh(c), 0), passes through the point (0, cosh(c)) and ends at (—sinh(c),0). As c varies

from zero to oo or from zero to —oo, the semi-ellipses cover the upper half w plane. Thus the mapping is 2-to-1.
Consider the infinite line y = ¢, © € (—00...00).Its image is

{sinhzcosc+rcoshxsine |z € (—o0...00)}.

This is the parametric equation for the upper half of a hyperbola. Also note that w and v satisfy the equation for a

hyperbola.
u? v?
=1

cos?¢  sin’ec

As ¢ varies from 0 to 7/2 or from 7/2 to m, the semi-hyperbola cover the upper half w plane. Thus the mapping is
2-to-1.
We look for branch points of sinh ™' w.

w = sinh z
e —e™*
2
e —2we*—1=0
1/2

w =

e =w+ (w2 + 1)

z=log (w+ (w— )Y (w + 1)1/2)
There are branch points at w = 42. Since w + (w? + 1)1/2 is nonzero and finite in the finite complex plane, the
logarithm does not introduce any branch points in the finite plane. Thus the only branch point in the upper half w

plane is at w = 1. Any branch cut that connects w = 7 with the boundary of &(w) > 0 will separate the branches
under the inverse mapping.
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Consider the line y = w/4. The image under the mapping is the upper half of the hyperbola
2u® 4+ 20° = 1.

Consider the segment x = 1.The image under the mapping is the upper half of the ellipse

u? v?

+ = 1.
sinh?1  cosh?1
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Chapter 8

Analytic Functions

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they
develop a good, lucky feeling.!

-Jack Handey

8.1 Complex Derivatives

Functions of a Real Variable. The derivative of a function of a real variable is

oy — i LA )

dx Az Ax

If the limit exists then the function is differentiable at the point x. Note that Az can approach zero from above or
below. The limit cannot depend on the direction in which Az vanishes.
Consider f(x) = |x|. The function is not differentiable at z = 0 since

|0+ Az — o]
hm —_— =

1
Az—0t Az

LQuote slightly modified.
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and
. |0+ Az| — |0]
lim ——mMMM —— =

—1.
Axr—0~ Ax

Analyticity. The complex derivative, (or simply derivative if the context is clear), is defined,

d . [l AzZ) — f(2)
&f(z) o Algilo Az '

The complex derivative exists if this limit exists. This means that the value of the limit is independent of the manner
in which Az — 0. If the complex derivative exists at a point, then we say that the function is complex differentiable
there.

A function of a complex variable is analytic at a point 2, if the complex derivative exists in a neighborhood about
that point. The function is analytic in an open set if it has a complex derivative at each point in that set. Note that
complex differentiable has a different meaning than analytic. Analyticity refers to the behavior of a function on an open
set. A function can be complex differentiable at isolated points, but the function would not be analytic at those points.
Analytic functions are also called regular or holomorphic. If a function is analytic everywhere in the finite complex
plane, it is called entire.

Example 8.1.1 Consider 2", n € Z™, Is the function differentiable? Is it analytic? What is the value of the derivative?
We determine differentiability by trying to differentiate the function. We use the limit definition of differentiation.
We will use Newton's binomial formula to expand (z + Az)".

d Y (z 4+ Az)" — 2"
—2" = lim
dz Az—0 Az
(z” +nz" TAz + @z”_QAzQ 4o+ Az”) — 2"
—
Airilo Az
: n—1 TL(TL - 1) n—2 n—1
= lim ([ nz 4+ = 2" Az Az
Az—0 2
=nz"!
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The derivative exists everywhere. The function is analytic in the whole complex plane so it is entire. The value of the
d n—1

derivative is L =nz
z

Example 8.1.2 We will show that f(z) = Z is not differentiable. Consider its derivative.

d L fle+Az) — f(2)
@f(z) - Al,lzlllo Az '
iz_ lim z+ Az —Z
dz"  azoo Az
i
- Agilo Az

First we take Az = Ax and evaluate the limit.

Then we take Az = 1Ay.

Since the limit depends on the way that Az — 0, the function is nowhere differentiable. Thus the function is not
analytic.

Complex Derivatives in Terms of Plane Coordinates. Let z = ((£,1) be a system of coordinates in
the complex plane. (For example, we could have Cartesian coordinates z = ((z,y) = x + wy or polar coordinates
z={((r,0) =re?). Let f(z) = ¢(&, ) be a complex-valued function. (For example we might have a function in the
form ¢(z,y) = u(x,y) +w(z,y) or ¢(r,0) = R(r,0)e®T9 ) If f(z) = ¢(£,1) is analytic, its complex derivative is
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equal to the derivative in any direction. In particular, it is equal to the derivatives in the coordinate directions.

df _ o FEtDA) —f() Lo+ ALY) — 66 Y) _ (g) 90
dz  Ae—0,Ap=0 Az A0 g—gAg - \o¢ 73
df o FEEA) = () 6+ AY) — (&) _ <g) 9%
dz ~ AE=0.Ap—0 Az T AP0 g—iA@Z) A\ oY

Example 8.1.3 Consider the Cartesian coordinates z = x + 1y. We write the complex derivative as derivatives in the
coordinate directions for f(z) = ¢(x,y).

df (a(ﬁzy))‘l@ 9

dz ox oxr  Ox
df _ (0e+w)\ "0 _ 0
dz Jy oy Oy
We write this in operator notation.
d 0 0

—_— = — = ——

dz 0Oz oy’

Example 8.1.4 In Example 8.1.1 we showed that 2™, n € Z™, is an entire function and that %z" =nz""1. Now we
corroborate this by calculating the complex derivative in the Cartesian coordinate directions.

d , 0 "

o0 = %(a: + )
= n(z + )"
=nz"!
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d n 8 n

oo = —zﬁ—y(x + 1)
= —un(z + )"
=nz"!

Complex Derivatives are Not the Same as Partial Derivatives Recall from calculus that

0 dg 0 dg Ot
0f _ 0905 0g0t

f(x7y):g<8,t> ax_gax aax

Do not make the mistake of using a similar formula for functions of a complex variable. If f(z) = ¢(z,y) then

df | 060z 900y
dz " 0rdz 0Oyoz

This is because the % operator means “The derivative in any direction in the complex plane.” Since f(z) is analytic,
f'(z) is the same no matter in which direction we take the derivative.

Rules of Differentiation. For an analytic function defined in terms of 2z we can calculate the complex derivative
using all the usual rules of differentiation that we know from calculus like the product rule,

S 12)0() = F(2)a() + F (),

or the chain rule,

© 1l9(2) = Fo() )

This is because the complex derivative derives its properties from properties of limits, just like its real variable counterpart.
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Result 8.1.1 The complex derivative is,

d L fleH+Az) = f(2)
/(@) = fim A -

The complex derivative is defined if the limit exists and is independent of the manner in which
Az — 0. A function is analytic at a point if the complex derivative exists in a neighborhood
of that point.

Let = = ((&,v) define coordinates in the complex plane. The complex derivative in the

coordinate directions is . .
d_ (oo (oo
dz \o¢) o9& \oyw) o

In Cartesian coordinates, this is

d 0 0

—_— = — = —7—

dz Oz oy

In polar coordinates, this is

4wl teuw?

dz or r 00
Since the complex derivative is defined with the same limit formula as real derivatives, all the
rules from the calculus of functions of a real variable may be used to differentiate functions
of a complex variable.

Example 8.1.5 We have shown that 2", n € Z*, is an entire function. Now we corroborate that %z” = nz""! by
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calculating the complex derivative in the polar coordinate directions.

d n 6719 2

rn ezn@

_Z f—
dz or
— e—ze nrn—l ezn@

— 7’L’f’n_1 ez(n—l)@

Analytic Functions can be Written in Terms of z. Consider an analytic function expressed in terms of x and
y, &(x,y). We can write ¢ as a function of z = x 4+ 1y and Z = = — 1y.

f(275)2¢(z—52722_22)

We treat z and Z as independent variables. We find the partial derivatives with respect to these variables.
0 _0r9 o 170 0
0z 0z0r 020y 2\0x Oy
9 w0 o 1(0 0
0z 0z0x 0zoy 2\0x Oy
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Since ¢ is analytic, the complex derivatives in the z and y directions are equal.

o9 _ 09

——

or Oy
The partial derivative of f (z,Z) with respect to % is zero.
of 1[0 0o\
9z 2 (% * a—y) =0

Thus f (z,%) has no functional dependence on Z, it can be written as a function of z alone.
If we were considering an analytic function expressed in polar coordinates ¢(r, @), then we could write it in Cartesian

coordinates with the substitutions:
r=+/2?2+y? 0 =arctan(z,y).

Thus we could write ¢(r, 0) as a function of z alone.

Result 8.1.2 Any analytic function ¢(x,y) or ¢(r,0) can be written as a function of z alone.

8.2 Cauchy-Riemann Equations

If we know that a function is analytic, then we have a convenient way of determining its complex derivative. We just
express the complex derivative in terms of the derivative in a coordinate direction. However, we don't have a nice way
of determining if a function is analytic. The definition of complex derivative in terms of a limit is cumbersome to work
with. In this section we remedy this problem.

A necessary condition for analyticity. Consider a function f(z) = ¢(z,y). If f(z) is analytic, the complex
derivative is equal to the derivatives in the coordinate directions. We equate the derivatives in the x and y directions
to obtain the Cauchy-Riemann equations in Cartesian coordinates.

¢x = _Z¢y (81)
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This equation is a necessary condition for the analyticity of f(z).

Let ¢(x,y) = u(z,y) + w(x,y) where u and v are real-valued functions. We equate the real and imaginary parts
of Equation 8.1 to obtain another form for the Cauchy-Riemann equations in Cartesian coordinates.

Uy = Uy, Uy = —Vy.

Note that this is a necessary and not a sufficient condition for analyticity of f(z). That is, u and v may satisfy the
Cauchy-Riemann equations but f(z) may not be analytic. At this point, Cauchy-Riemann equations give us an easy
test for determining if a function is not analytic.

Example 8.2.1 In Example 8.1.2 we showed that Z is not analytic using the definition of complex differentiation. Now
we obtain the same result using the Cauchy-Riemann equations.

zZ=x =

u, =1, vy, =-1

We see that the first Cauchy-Riemann equation is not satisfied; the function is not analytic at any point.

A sufficient condition for analyticity. A sufficient condition for f(z) = ¢(z,y) to be analytic at a point
20 = (Zo,Yo) is that the partial derivatives of ¢(x,y) exist and are continuous in some neighborhood of z, and satisfy
the Cauchy-Riemann equations there. If the partial derivatives of ¢ exist and are continuous then

o(x + Ax,y + Ay) = ¢(,y) + Axd,(v,y) + Ay, (v, y) + o(Ax) + o(Ay).
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Here the notation o(Ax) means “terms smaller than Az". We calculate the derivative of f(z).

fz+Az) = f(2)

Flz) = Alirilo Az

_ oy Pt ATy Ay) - g, y)

= 11m
Az,Ay—0 Ax 4+ 1Ay

_ i P@y) + Azgu(2,y) + Ayey(2,y) + o(Az) + o(Ay) — d(z,y)
Az, Ay—0 Az + 1Ay

_ i A9a(ay) + Ayey(2,y) + o(Az) + o(Ay)

= 11m
Az, Ay—0 A[L‘ =+ ’LA’y

Here we use the Cauchy-Riemann equations.

o (Ar Ay g.(T,y) . o(Az) +o(Ay)
N Aoc%lAI?—»O Ax + 1Ay + Axl,lAer}—@ Ax + 1Ay

= ¢x(x7 y)

Thus we see that the derivative is well defined.

Cauchy-Riemann Equations in General Coordinates Let z = (({,%) be a system of coordinates in the
complex plane. Let ¢(&,1) be a function which we write in terms of these coordinates, A necessary condition for
analyticity of ¢(&, 1)) is that the complex derivatives in the coordinate directions exist and are equal. Equating the
derivatives in the £ and 1 directions gives us the Cauchy-Riemann equations.

0C\ o0 _ (¢ oo
o) oc \oy) 9y
We could separate this into two equations by equating the real and imaginary parts or the modulus and argument.
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Result 8.2.1 A necessary condition for analyticity of ¢(&,1)), where z = ((&,1), at z = z
is that the Cauchy-Riemann equations are satisfied in a neighborhood of z = z.

o\ 9o _ (9C T 00

o) o \oy) I
(We could equate the real and imaginary parts or the modulus and argument of this to obtain
two equations.) A sufficient condition for analyticity of f(z) is that the Cauchy-Riemann
equations hold and the first partial derivatives of ¢ exist and are continuous in a neighborhood

of z = 20-
Below are the Cauchy-Riemann equations for various forms of f(z).

f(z) = ¢(z,y), Gr = —10y

f(2) =u(z,y) +w(zy), u=v, u=-u

/(=) = (r.0), b = —=dy

F(2) = u(r.0) + w(r0),  up— %vg, "y = —ru,

f(2) = R(r,0)e®"?) R, = g@g, %Rg = RO,
f(2) = R(z,y) e®v), R,= RO, R,=—-RO,

Example 8.2.2 Consider the Cauchy-Riemann equations for f(z) = u(r,0) + w(r,8). From Exercise 8.3 we know

that the complex derivative in the polar coordinate directions is
d _ —z@ﬁ__ie—zﬁ a

&_e or r 00"
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From Result 8.2.1 we have the equation,

e g[u +w| = e 2[u + w.

or r ol
We multiply by ¢ and equate the real and imaginary components to obtain the Cauchy-Riemann equations.

1
Uyr = —Vp, Ug = — TV,
r

Example 8.2.3 Consider the exponential function.

e® = ¢(x,y) = e*(cosy + usin(y))

We use the Cauchy-Riemann equations to show that the function is entire.

bp = _w)y
e”(cosy +1sin(y)) = —1e”(—siny + 1cos(y))
e”(cosy +1sin(y)) = €*(cosy + 1sin(y))

Since the function satisfies the Cauchy-Riemann equations and the first partial derivatives are continuous everywhere
in the finite complex plane, the exponential function is entire.
Now we find the value of the complex derivative.

d 9

z

Az ox

The differentiability of the exponential function implies the differentiability of the trigonometric functions, as they can
be written in terms of the exponential.

z

= e”(cosy +usin(y)) =e

In Exercise 8.13 you can show that the logarithm log z is differentiable for z # 0. This implies the differentiability
of 2% and the inverse trigonometric functions as they can be written in terms of the logarithm.
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Example 8.2.4 We compute the derivative of z*.

d . d
T dz
= (14 log z) e*'8*
= (1 +logz2)z*

=2+ 2"logz

e? log z

8.3 Harmonic Functions

A function u is harmonic if its second partial derivatives exist, are continuous and satisfy Laplace’s equation Au = 0.2
(In Cartesian coordinates the Laplacian is Au = uy, + uy,.) If f(2) = w+w is an analytic function then u and v are
harmonic functions. To see why this is so, we start with the Cauchy-Riemann equations.

Uy = Vy, Uy = —Vy

We differentiate the first equation with respect to x and the second with respect to y. (We assume that u and v are
twice continuously differentiable. We will see later that they are infinitely differentiable.)

Ugy = Vgy, Uyy = —Uyg

Thus we see that « is harmonic.

AU = Uy + Uyy = Vgy — Vyy = 0

One can use the same method to show that Av = 0.

2 The capital Greek letter A is used to denote the Laplacian, like Au(x,y), and differentials, like Ax.
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If u is harmonic on some simply-connected domain, then there exists a harmonic function v such that f(z) = u+w
is analytic in the domain. v is called the harmonic conjugate of u. The harmonic conjugate is unique up to an additive
constant. To demonstrate this, let w be another harmonic conjugate of u. Both the pair « and v and the pair v and
w satisfy the Cauchy-Riemann equations.

Uy = Vy, Uy = —Uy, Up = Wy, Uy = —Wy
We take the difference of these equations.
Vg — W, =0, v, —w, =0
On a simply connected domain, the difference between v and w is thus a constant.
To prove the existence of the harmonic conjugate, we first write v as an integral.
(z.y)
v(z,y) = v (2, yo) —|—/ vy do 4+ v, dy
(z0,90)

On a simply connected domain, the integral is path independent and defines a unique v in terms of v, and v,. We use
the Cauchy-Riemann equations to write v in terms of u, and w,,.

()
v(z,y) :U(x07y0)+/ —Uy dx + u, dy

(z0,y0)

Changing the starting point (xg,yo) changes v by an additive constant. The harmonic conjugate of u to within an
additive constant is

v(x,y) = /—uy dz + u, dy.

This proves the existence® of the harmonic conjugate. This is not the formula one would use to construct the harmonic
conjugate of a u. One accomplishes this by solving the Cauchy-Riemann equations.

3 A mathematician returns to his office to find that a cigarette tossed in the trash has started a small fire. Being calm and a
quick thinker he notes that there is a fire extinguisher by the window. He then closes the door and walks away because “the solution
exists.”
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Result 8.3.1 If f(z) = w4+ v is an analytic function then « and v are harmonic functions.
That is, the Laplacians of u and v vanish Au = Av = 0. The Laplacian in Cartesian and
polar coordinates is

2 2 2
AP0 A_m(@) 10

=—+ = =-—(r= )+ 555
ox? = Oy?’ ror \ Or r2 062
Given a harmonic function « in a simply connected domain, there exists a harmonic function

v, (unique up to an additive constant), such that f(z) = u + w is analytic in the domain.
One can construct v by solving the Cauchy-Riemann equations.

Example 8.3.1 /s 22 the real part of an analytic function?

The Laplacian of 22 is
Alz?] =240

2% is not harmonic and thus is not the real part of an analytic function.

Example 8.3.2 Show that u = e *(xsiny — ycosy) is harmonic.

ou _
or

=e “siny —xe “siny+ye “cosy

e “siny —e*(xsiny — ycosy)

62“ —x —x —x 3 —x
— =—€ "siny—€ "siny+xre "siny —ye T Ccosy
Ox?
= —2e 'siny+xe Tsiny —ye “cosy
ou a :
8_y:e (xcosy — cosy + ysiny)
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u
oy
= —xe “siny+2e “siny+ye “cosy

e “(—zsiny +siny + ycosy + siny)

2 2 . .
Thus we see that % + 2712‘ = 0 and u is harmonic.

Example 8.3.3 Consider u = cos x coshy. This function is harmonic.
Ugy + Uyy = — cos T coshy + cosx coshy = 0

Thus it is the real part of an analytic function, f(z). We find the harmonic conjugate, v, with the Cauchy-Riemann
equations. We integrate the first Cauchy-Riemann equation.

vy = U, = —sinx coshy

v = —sinzsinhy + a(z)

Here a(x) is a constant of integration. We substitute this into the second Cauchy-Riemann equation to determine a(x).

Uy = —Uy
—coszsinhy + a'(x) = — cosxsinh y
a(x)=0
a(x) =c¢

Here c is a real constant. Thus the harmonic conjugate is
v = —sinzsinhy + c.

The analytic function is
f(2) = coszcoshy —esinzsinhy + 1c

We recognize this as
f(z) = cosz +c.
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Example 8.3.4 Here we consider an example that demonstrates the need for a simply connected domain. Consider
u = Logr in the multiply connected domain, r > 0. w is harmonic.

10 0 1 0
ALogr =—— <7’—Logr) + —-—=Logr=20
r

or \_ or r2 00?
We solve the Cauchy-Riemann equations to try to find the harmonic conjugate.
1
Up = —Vp, Uy = —TUp
T

v, =0, vg=1
v=0+c¢c

We are able to solve for v, but it is multi-valued. Any single-valued branch of 6 that we choose will not be continuous
on the domain. Thus there is no harmonic conjugate of u = Logr for the domain r > 0.

If we had instead considered the simply-connected domain r > 0, | arg(z)| < m then the harmonic conjugate would
be v = Arg(z) + c¢. The corresponding analytic function is f(z) = Log z + uc.

Example 8.3.5 Consider u = x3 — 3xy* + x. This function is harmonic.
Ugg + Uyy = 62 — 62 =0

Thus it is the real part of an analytic function, f(z). We find the harmonic conjugate, v, with the Cauchy-Riemann
equations. We integrate the first Cauchy-Riemann equation.

vy:ux:3x2—3y2+1
v:3x2y—y3—|—y+a(x)

Here a(x) is a constant of integration. We substitute this into the second Cauchy-Riemann equation to determine a(x).

Uy = —Uy
6zy + o' (z) = 6xy
a(x)=0
a(x) =c



Here c is a real constant. The harmonic conjugate is
v=32% -y +ytec
The analytic function is

f(z) =2 =3zy*+ 2 +1(32°y —y° +y) +c
f(2) = 2% +132%y — 329® — 1 + 2+ +ac
f(z)=2+2z+ac

8.4 Singularities

Any point at which a function is not analytic is called a singularity. In this section we will classify the different flavors
of singularities.

Result 8.4.1 Singularities. If a function is not analytic at a point, then that point is a
singular point or a singularity of the function.

8.4.1 Categorization of Singularities

Branch Points. If f(z) has a branch point at zj, then we cannot define a branch of f(z) that is continuous in a
neighborhood of z;. Continuity is necessary for analyticity. Thus all branch points are singularities. Since function are
discontinuous across branch cuts, all points on a branch cut are singularities.

Example 8.4.1 Consider f(z) = z3/2. The origin and infinity are branch points and are thus singularities of f(z). We
choose the branch g(z) = V23, All the points on the negative real axis, including the origin, are singularities of g(2).

363



Removable Singularities.

Example 8.4.2 Consider

sin z

f(z) =

This function is undefined at z = 0 because f(0) is the indeterminate form 0/0. f(z) is analytic everywhere in the
finite complex plane except z = 0. Note that the limit as z — 0 of f(z) exists.

z—0 Zz 2—0 1

If we were to fill in the hole in the definition of f(z), we could make it differentiable at z = 0. Consider the function

Si% 2 #0,
g(z)_{l 2=0.

We calculate the derivative at z = 0 to verify that g(z) is analytic there.

. f(0) = f(2)
/ —
F1(0) = Ll_r% z
.. 1—sin(z)/z
=
.. z—sin(z)
“ iy
. 1—cos(2)
g 1 _—
) 2z
— lim sin(z)
z—0 2

=0

We call the point at z = 0 a removable singularity of sin(z)/z because we can remove the singularity by defining the
value of the function to be its limiting value there.
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Consider a function f(z) that is analytic in a deleted neighborhood of z = zy. If f(z) is not analytic at z,, but
lim, ., f(2) exists, then the function has a removable singularity at zy. The function

_Jf(®) z# 2
9(2) =47,
lim, .., f(z2) z=2
is analytic in a neighborhood of z = z;. We show this by calculating ¢’ (z9).

g/ (ZO) — lim g ('ZO) _ g(Z)
Z—20 ZO — 2

A
= lim 2 (2)
z—20 —
= lim f'(2)
z—20

This limit exists because f(z) is analytic in a deleted neighborhood of z = z,.

Poles. If a function f(z) behaves like ¢/ (z — 29)" near z = z; then the function has an n'" order pole at that point.
More mathematically we say

lim (z — 29)" f(2) = ¢ #0.

2—20
We require the constant ¢ to be nonzero so we know that it is not a pole of lower order. We can denote a removable
singularity as a pole of order zero.
Another way to say that a function has an n'® order pole is that f(z) is not analytic at z = 2, but (2 — 2)" f(2)
is either analytic or has a removable singularity at that point.

Example 8.4.3 1/sin (22) has a second order pole at z = 0 and first order poles at z = (nm)'/?, n € Z*.

I 22 gt 2z
B 2
20 2 cos (22) — 422 sin (2?)
=1
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. z— (n7r)1/2 L 1

lm ———FF—= Ilim —-——

2—(nm)1/2 sin (22) 2—(nm)1/2 22 cos (22)
1

2(nm) 2 (—1)"

Example 8.4.4 ¢'/* is singular at z = 0. The function is not analytic as lim._,qe'/* does not exist. We check if the
function has a pole of order n at z = 0.

¢
€
lim 2" e!/* = lim —
z—0 {—o0 Cn
¢
€
= lim —
¢—oo n!

Since the limit does not exist for any value of n, the singularity is not a pole. We could say that e*/? is more singular

than any power of 1/z.

Essential Singularities. If a function f(z) is singular at z = z;, but the singularity is not a branch point, or a
pole, the the point is an essential singularity of the function.

The point at infinity. We can consider the point at infinity z — oo by making the change of variables z = 1/¢
and considering ¢ — 0. If f(1/() is analytic at ( = 0 then f(z) is analytic at infinity. We have encountered branch
points at infinity before (Section 7.8). Assume that f(z) is not analytic at infinity. If lim,_, f(z) exists then f(z) has
a removable singularity at infinity. If lim, .., f(2)/2" = ¢ # 0 then f(z) has an n'" order pole at infinity.
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Result 8.4.2 Categorization of Singularities. Consider a function f(z) that has a singu-
larity at the point z = z,. Singularities come in four flavors:

Branch Points. Branch points of multi-valued functions are singularities.

Removable Singularities. If lim, .. f(z) exists, then z, is a removable singularity. It
is thus named because the singularity could be removed and thus the function made
analytic at zy by redefining the value of f (zp).

Poles. If lim, ., (z — 20)" f(2) = const # 0 then f(z) has an n'™ order pole at z.

Essential Singularities. Instead of defining what an essential singularity is, we say what it
is not. If zy neither a branch point, a removable singularity nor a pole, it is an essential
singularity.

A pole may be called a non-essential singularity. This is because multiplying the function by an integral power of
z — zo will make the function analytic. Then an essential singularity is a point zg such that there does not exist an n
such that (z — z0)" f(2) is analytic there.

8.4.2 Isolated and Non-Isolated Singularities

Result 8.4.3 Isolated and Non-Isolated Singularities. Suppose f(z) has a singularity at
2o. If there exists a deleted neighborhood of 2, containing no singularities then the point is
an isolated singularity. Otherwise it is a non-isolated singularity.
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If you don't like the abstract notion of a deleted neighborhood, you can work with a deleted circular neighborhood.
However, this will require the introduction of more math symbols and a Greek letter. z = z is an isolated singularity
if there exists a & > 0 such that there are no singularities in 0 < |z — zy| < 6.

Example 8.4.5 We classify the singularities of f(z) = z/sin z.

z has a simple zero at z = 0. sinz has simple zeros at z = nw. Thus f(z) has a removable singularity at z = 0
and has first order poles at z = nm for n € Z*. We can corroborate this by taking limits.

1
li =1 =1 =1
zl—% f(z) zli% sin z zlg(l) COS 2
, . (z—nm)z
lim (z — nm)f(2) = lim _
Z—nTm Z—NnT Sin z
. 2z—nm
= lim
Z—nm  COS 2
_onrm
(=1~
#0

Now to examine the behavior at infinity. There is no neighborhood of infinity that does not contain first order
poles of f(z). (Another way of saying this is that there does not exist an R such that there are no singularities in
R < |z| < 00.) Thus z = oo is a non-isolated singularity.

We could also determine this by setting ( = 1/z and examining the point ( = 0. f(1/C) has first order poles at
¢ =1/(nm) forn € Z \ {0}. These first order poles come arbitrarily close to the point ( = 0 There is no deleted
neighborhood of { = 0 which does not contain singularities. Thus ( = 0, and hence z = oo is a non-isolated singularity.

The point at infinity is an essential singularity. It is certainly not a branch point or a removable singularity. It is not a

pole, because there is no n such that lim, .., 2" f(z) = const # 0. z=" f(z) has first order poles in any neighborhood
of infinity, so this limit does not exist.

368



8.5 Application: Potential Flow

Example 8.5.1 We consider 2 dimensional uniform flow in a given direction. The flow corresponds to the complex
potential

®(z) = voe % 2,

where vy is the fluid speed and 6 is the direction. We find the velocity potential ¢ and stream function ).

O(z)=d+w)
¢ = vo(cos(bp)x + sin(bp)y), ¥ = vo(—sin(bp)z + cos(6y)y)

These are plotted in Figure 8.1 for 6y = /6.

27
(AT 772
et e i
2.
e a7

Z7

i 2y )
2T

Figure 8.1: The velocity potential ¢ and stream function ¢ for ®(z) = vye " 2.
Next we find the stream lines, 1) = c.
vo(—sin(fp)z + cos(fy)y) = ¢

Cc
Yy = m + tan(@o)x
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Figure 8.2: Streamlines for ¢ = vy(— sin(y)z + cos(6p)y).

Figure 8.2 shows how the streamlines go straight along the 0, direction. Next we find the velocity field.

v=Vo

vV = qb:cf( + gby@
v = v cos(fy)X + vo sin(bp)y

The velocity field is shown in Figure 8.3.

Example 8.5.2 Steady, incompressible, inviscid, irrotational flow is governed by the Laplace equation. We consider
flow around an infinite cylinder of radius a. Because the flow does not vary along the axis of the cylinder, this is a
two-dimensional problem. The flow corresponds to the complex potential

mn (%)
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Figure 8.3: Velocity field and velocity direction field for ¢ = vy(cos(bp)x + sin(6y)y).

We find the velocity potential ¢ and stream function .
O(z) = o+ up

a’ a?
o =1y <r—i——) cost, =y (r——) sin ¢
r r
These are plotted in Figure 8.4.

Next we find the stream lines, 1) = c.

a’\ .
v |7r——)sinf =c
r

¢+ /2 + 4ugsin® 0
r= -
20 sin f

Figure 8.5 shows how the streamlines go around the cylinder. Next we find the velocity field.
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Figure 8.4: The velocity potential ¢ and stream function ¢ for ®(z) = vy (z + ﬁ)

z

G
il

Figure 8.5: Streamlines for 1) = vg (r — aT_Z) sin 6.

v=Vo
v:gbrf'—kﬁé

r
2

a® . a .
vV =1 (1 - ﬁ) cos§~f2— Vo <1 + r_2) sin 00



The velocity field is shown in Figure 8.6.

d , R e

P ///C’///V}A\'\ NN o

/']/'/'/: 74 \ \\\\;\\\
v, NG

/
/
U i
\\ N \\\\}?\?&\\4’/’/./1/(// ///

Figure 8.6: Velocity field and velocity direction field for ¢ = vy (7“ + ”;n—z) cosf.
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8.6 Exercises

Complex Derivatives

Exercise 8.1
Consider two functions f(z) and g(z) analytic at zo with f(z) = g(20) = 0 and ¢'(z0) # 0.

1. Use the definition of the complex derivative to justify L'Hospital’s rule:

/&) _ =)
= g(2)  g(z0)

2. Evaluate the limits
. 1422 . sinh(z)
lim 1

D —— m
z—1 2 + 2267 zl—>zﬂ' e +1

Hint, Solution

Exercise 8.2
Show that if f(z) is analytic and ¢(z,y) = f(z) is twice continuously differentiable then f’(z) is analytic.
Hint, Solution

Exercise 8.3
Find the complex derivative in the coordinate directions for f(z) = ¢(r,0).
Hint, Solution

Exercise 8.4
Show that the following functions are nowhere analytic by checking where the derivative with respect to z exists.

1. sinx coshy —1cosxsinhy
2. 2 —y P + 1+ 1(2xy — )

Hint, Solution
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Exercise 8.5

f(z) is analytic for all z, (|z] < 00). f(z1+22) = f(2z1) f(22) for all z; and z5. (This is known as a functional
equation). Prove that f(z) = exp (f'(0)z).

Hint, Solution

Cauchy-Riemann Equations

Exercise 8.6

If f(2) is analytic in a domain and has a constant real part, a constant imaginary part, or a constant modulus, show
that f(z) is constant.

Hint, Solution

Exercise 8.7
Show that the function

e™* " for z %0,
J(2) = {0 for z = 0.

satisfies the Cauchy-Riemann equations everywhere, including at z = 0, but f(z) is not analytic at the origin.
Hint, Solution

Exercise 8.8
Find the Cauchy—Riemann equations for the following forms.

L () = R(r,0) o0
2. () = Rla.y) e

Hint, Solution

Exercise 8.9
1. Show that e* is not analytic.

2. f(z) is an analytic function of z. Show that f(z)
Hint, Solution

f (%) is also an analytic function of z.
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Exercise 8.10
1. Determine all points z = x + 2y where the following functions are differentiable with respect to z:
(a) «* +y°
—1
(b) — —
(@-12+y?  (z-1)7+y°

2. Determine all points z where these functions are analytic.

3. Determine which of the following functions v(z, y) are the imaginary part of an analytic function u(x, y)+w(zx,y).
For those that are, compute the real part u(x,y) and re-express the answer as an explicit function of z = x +wy:

(@) 2* —y*

(b) 3z%y
Hint, Solution

Exercise 8.11

Let
4/3,5/3_,.5/3,4/3
Ty ey for z #£ 0,

_ 2212
/) {0 for z = 0.

Show that the Cauchy-Riemann equations hold at z = 0, but that f is not differentiable at this point.
Hint, Solution

Exercise 8.12
Consider the complex function

23 (141)—y3(1—2)
0

for z = 0.
Show that the partial derivatives of u and v with respect to x and y exist at z = 0 and that uw, = v, and u, = —v,
there: the Cauchy-Riemann equations are satisfied at z = 0. On the other hand, show that
lim _f(z)
z—0 z
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does not exist, that is, f is not complex-differentiable at z = 0.
Hint, Solution

Exercise 8.13
Show that the logarithm log z is differentiable for z # 0. Find the derivative of the logarithm.
Hint, Solution

Exercise 8.14
Show that the Cauchy-Riemann equations for the analytic function f(z) = u(r,8) +w(r,0) are

U = vg/7T,  Ug = —TU;.
Hint, Solution

Exercise 8.15
w = u + w is an analytic function of z. ¢(z,y) is an arbitrary smooth function of z and y. When expressed in terms
of u and v, ¢(z,y) = ®(u,v). Show that (w' # 0)

go 0w _(aw\ (a0 o
gu ov  \dz Ox Z@y '

—2
o2 2
o o\
ox? = 0y?

Deduce
0?d  0%® _|dw

9 T o |4

Hint, Solution

Exercise 8.16

Show that the functions defined by f(2) = log |z| +1arg(2) and f(z) = \/|z| €'®#()/2 are analytic in the sector |2| > 0,
|arg(z)| < m. What are the corresponding derivatives df/dz?

Hint, Solution

Exercise 8.17
Show that the following functions are harmonic. For each one of them find its harmonic conjugate and form the
corresponding holomorphic function.
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)

)
3. u(z,y) = r" cos(nb)
4. u(z,y)
Hint, Solution

Exercise 8.18
1. Use the Cauchy-Riemann equations to determine where the function

f(z)=(z —y)?* +2(x +y)
is differentiable and where it is analytic.

2. Evaluate the derivative of
f(2) = €Y (cos(2zy) + 1sin(2zy))

and describe the domain of analyticity.
Hint, Solution

Exercise 8.19
Consider the function f(z) = u + w with real and imaginary parts expressed in terms of either x and y or r and 6.

1. Show that the Cauchy-Riemann equations
Uy = Uy, Uy = —Vy

are satisfied and these partial derivatives are continuous at a point z if and only if the polar form of the Cauchy-

Riemann equations

1 1
U, = —y, —Up = —Ur
r r

is satisfied and these partial derivatives are continuous there.
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2. Show that it is easy to verify that Logz is analytic for > 0 and —7 < 6 < 7 using the polar form of the
Cauchy-Riemann equations and that the value of the derivative is easily obtained from a polar differentiation
formula.

3. Show that in polar coordinates, Laplace's equation becomes
1 1
¢T7’ + _¢T + _2¢00 = 0.
r r

Hint, Solution

Exercise 8.20
Determine which of the following functions are the real parts of an analytic function.

Lou(x,y) =a® -y’
2. u(x,y) =sinhxcosy + z
3. u(r,8) = r"cos(nb)

and find f(z) for those that are.
Hint, Solution

Exercise 8.21
Consider steady, incompressible, inviscid, irrotational flow governed by the Laplace equation. Determine the form of
the velocity potential and stream function contours for the complex potentials

1. (2) = o(x,y) + wp(z,y) = log z + 1log =
2. &(z) =log(z —1) +log(z + 1)

Plot and describe the features of the flows you are considering.
Hint, Solution
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8.7 Hints

Complex Derivatives

Hint 8.1

Hint 8.2
Start with the Cauchy-Riemann equation and then differentiate with respect to x.

Hint 8.3
Read Example 8.1.3 and use Result 8.1.1.

Hint 8.4
Use Result 8.1.1.

Hint 8.5
Take the logarithm of the equation to get a linear equation.

Cauchy-Riemann Equations

Hint 8.6
Hint 8.7
Hint 8.8
For the first part use the result of Exercise 8.3.
Hint 8.9

Use the Cauchy-Riemann equations.
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Hint 8.10

Hint 8.11
To evaluate u,(0,0), etc. use the definition of differentiation. Try to find f/(z) with the definition of complex
differentiation. Consider Az = Are?.

Hint 8.12
To evaluate u,(0,0), etc. use the definition of differentiation. Try to find f/(z) with the definition of complex
differentiation. Consider Az = Are¥.

Hint 8.13

Hint 8.14

Hint 8.15

Hint 8.16

Hint 8.17

Hint 8.18

Hint 8.19
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Hint 8.20

Hint 8.21
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8.8 Solutions

Complex Derivatives

Solution 8.1
1. We consider L'Hospital's rule.

o 1) £

=== g(2)  g'(20)

We start with the right side and show that it is equal to the left side. First we apply the definition of complex
differentiation.

f,(Zo) lim, .o f(ZoJrEi*f(Zo) B lim, .o f(z(:rf)

9'(20) lims_ 9(20+9)=g(z0) lims_.o g(z%+6)

Since both of the limits exist, we may take the limits with ¢ = §.

f'(z0) _ lim f(z0 +¢)
9 (20) 0 g(z0+e)
1)y, 10

g (z0) == g(2)

This proves L'Hospital'’s rule.

I _
Hn 1225

1+22 [2:7 1
z—>z2—|—2z6 Z=l_

. sinh(2) [cosh(Z)] _1

1m =
z—m €7 —|—1 e?

383



Solution 8.2
We start with the Cauchy-Riemann equation and then differentiate with respect to z.

by = —10y
Poz = —1Pya
We interchange the order of differentiation.
(02), = —1(¢s),
(f)e = —2(f),
Since f’(z) satisfies the Cauchy-Riemann equation and its partial derivatives exist and are continuous, it is analytic.

Solution 8.3
We calculate the complex derivative in the coordinate directions.

df _ (a(re”))l@ :e—ze@

dz or or or’
df _(9(re)\ a0 _ 1 00
=\ o0 20~ r° a0

We can write this in operator notation.
d _ 87192 _ _EeszE

dz or r 00
Solution 8.4
1. Consider f(z,y) = sinx coshy —2cosxsinhy. The derivatives in the = and y directions are
0
—f = cosx coshy + ¢sinxsinhy
Ox
0
—z—f = —cosx coshy — ¢sinz sinhy
Iy
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These derivatives exist and are everywhere continuous. We equate the expressions to get a set of two equations.

cosx coshy = — cosx coshy, sinz sinhy = —sinx sinh y

cosx coshy = 0, sinzsinhy =0

(x:g—l—mr) and (z =mm ory =0)

The function may be differentiable only at the points

x:g—l—mr, y=0.

Thus the function is nowhere analytic.

2. Consider f(z,y) = 2* —y*> + x +1(2xy — y). The derivatives in the = and y directions are

0

—f:2x+1+22y

ox

0
—z—f:z2y+2x—1

Ay

These derivatives exist and are everywhere continuous. We equate the expressions to get a set of two equations.
20 +1=2x—1, 2y = 2y.

Since this set of equations has no solutions, there are no points at which the function is differentiable. The
function is nowhere analytic.

Solution 8.5

[+ 2) = f(21) f(22)
log (f (21 + 22)) = log (f (21)) +log (f (22))
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We define g(z) = log(f(2)).

9(z1+22) =g(x1) +9(=)

This is a linear equation which has exactly the solutions:

g9(z) = cz.
Thus f(z) has the solutions:

f(z) =%,
where ¢ is any complex constant. We can write this constant in terms of f’(0). We differentiate the original equation
with respect to z; and then substitute z; = 0.

f+2)=f(21) f ()
f! (22) = f’(o)f (22)
f'(z)=f(0)f(2)

We substitute in the form of the solution.

Thus we see that

Cauchy-Riemann Equations

Solution 8.6
Constant Real Part. First assume that f(z) has constant real part. We solve the Cauchy-Riemann equations to
determine the imaginary part.

Uy = Vy, Uy = —Uy

Ve = VU, Uy =
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We integrate the first equation to obtain v = a + g(y) where a is a constant and ¢(y) is an arbitrary function. Then
we substitute this into the second equation to determine g(y).

9'(y) =0
gly) =10

We see that the imaginary part of f(z) is a constant and conclude that f(z) is constant.
Constant Imaginary Part. Next assume that f(z) has constant imaginary part. We solve the Cauchy-Riemann
equations to determine the real part.

Uy = Uy, Uy = —Vg

u, =0, u,=0

We integrate the first equation to obtain u = a + g(y) where a is a constant and ¢(y) is an arbitrary function. Then
we substitute this into the second equation to determine g(y).

g'(y)=0
g(y)="b

We see that the real part of f(z) is a constant and conclude that f(z) is constant.
Constant Modulus. Finally assume that f(z) has constant modulus.

|f(2)| = constant

vu? + v?2 = constant

u? 4+ v* = constant
We differentiate this equation with respect to = and y.

2uuy + 2vv, =0,  2uuy + 2vv, =0
(o ) (1) =
Uy Uy v
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This system has non-trivial solutions for u and v only if the matrix is non-singular. (The trivial solution u = v =0 is
the constant function f(z) = 0.) We set the determinant of the matrix to zero.

UgVy — UyVy = 0
We use the Cauchy-Riemann equations to write this in terms of u, and u,,.

u + uf/ =0
Uy = Uy =0
Since its partial derivatives vanish, u is a constant. From the Cauchy-Riemann equations we see that the partial
derivatives of v vanish as well, so it is constant. We conclude that f(z) is a constant.
Constant Modulus. Here is another method for the constant modulus case. We solve the Cauchy-Riemann

equations in polar form to determine the argument of f(z) = R(z,%)e*®(@¥). Since the function has constant modulus
R, its partial derivatives vanish.

Rl‘ == R@ya Ry - _R@l‘
RO, =0, RO, =0

The equations are satisfied for R = 0. For this case, f(z) = 0. We consider nonzero R.
0,=0, 6,=0

We see that the argument of f(z) is a constant and conclude that f(z) is constant.

Solution 8.7
First we verify that the Cauchy-Riemann equations are satisfied for z # 0. Note that the form
fx - _ny
will be far more convenient than the form
Uy = Vy, Uy = —Vy
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for this problem.
fo =4z +ay)Pem
_ny = —7/4:(1; + Zy)_5’l/ e_(x+ly)74 = 4(1‘ + Zy)_5 e—(x-l-zy)*

The Cauchy-Riemann equations are satisfied for z # 0.
Now we consider the point z = 0.

f(Ava) _ f(OvO)

fx(o’ 0) - Alirilo Ax
) e—AZ‘74
- Algilo Ax
=0

0f,(0,0) = —t Jim 10:AY) = J(0.0)

Ay—0 Ay
i o
= — lim
Ay—0 Ay

=0

The Cauchy-Riemann equations are satisfied for z = 0.
f(2) is not analytic at the point z = 0. We show this by calculating the derivative.

7(0) = tim L8 =Sy S(A2)

Az—0 Az Az—0 Az

Let Az = Are”, that is, we approach the origin at an angle of 6.

[ (Are?)
/ —
11(0) = Alirilo Ar e
e_T74 e7140
- Alirilo Ar e
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For most values of # the limit does not exist. Consider § = 7 /4.

er !

f(0)=lim —— =00

Ar—0 Ar em/4

Because the limit does not exist, the function is not differentiable at z = 0. Recall that satisfying the Cauchy-Riemann
equations is a necessary, but not a sufficient condition for differentiability.

Solution 8.8
1. We find the Cauchy-Riemann equations for

1(2) = R(r,0) )

From Exercise 8.3 we know that the complex derivative in the polar coordinate directions is

i_ —10 9 o 6719 9
dz 8r r 09’

We equate the derivatives in the two directions.

719 a 710 a
or r a0
(R, +1RO,)e® = _; (Rp +1ROy) €©

[Re©] = Lo D (o]

We divide by €© and equate the real and imaginary components to obtain the Cauchy-Riemann equations.

1
Rr = 5697 _R9 = _R@r
T T

2. We find the Cauchy-Riemann equations for

f(z) = R(z,y) e®¥).
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We equate the derivatives in the x and y directions.

a ‘A a 2
B [Ree} = —za—y [Re@]

(R, +1RO,)e© = —1 (R, +1RO,) e*®
We divide by €' and equate the real and imaginary components to obtain the Cauchy-Riemann equations.
R, = RO,, R, = —RO,

Solution 8.9
1. A necessary condition for analyticity in an open set is that the Cauchy-Riemann equations are satisfied in that
set. We write e* in Cartesian form.

z

e* =e""" =¢c"cosy —1e"siny.
Now we determine where u = e cosy and v = — e” siny satisfy the Cauchy-Riemann equations.
Uy = Uy, Uy = —Uy
e’ cosy = —e” cosy, —e’siny = e’siny

cosy =0, siny =0

m
y:§+7rm, Yy=mn

Thus we see that the Cauchy-Riemann equations are not satisfied anywhere. e* is nowhere analytic.

2. Since f(z) = u + w is analytic, u and v satisfy the Cauchy-Riemann equations and their first partial derivatives
are continuous.

f(2) = f(2) = ulz, —y) +w(z, —y) = u(z, —y) — w(z, —y)
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We define f(2) = p(x,y) +w(x,y) = u(z, —y) —w(x,y). Now we see if 1 and v satisfy the Cauchy-Riemann

equations.
Mz = Vy, Hy = —Vz
(u(@, =y))e = (—v(z, =y))y,  (w(@, —y))y = —(=v(z, =Y))a
ux(x7 _y) = Uy(*ra _y>7 _uy(xv _y) = U:v(xv _y)

Thus we see that the Cauchy-Riemann equations for i and v are satisfied if and only if the Cauchy-Riemann
equations for u and v are satisfied. The continuity of the first partial derivatives of u and v implies the same of
w and v. Thus f(z) is analytic.

Solution 8.10
1. The necessary condition for a function f(z) = u + v to be differentiable at a point is that the Cauchy-Riemann
equations hold and the first partial derivatives of u and v are continuous at that point.

(a)
f(z) =2° +y* +10
The Cauchy-Riemann equations are
Uy =vy, and u, = —v,

322 =0 and 3y*=0
r=0 and y=0

The first partial derivatives are continuous. Thus we see that the function is differentiable only at the point
z=0.

(b)




The Cauchy-Riemann equations are

Uy =vy, and u, = —v,
—(r—1)2 492 _ —(z —1)* + ¢? and 2(x — 1)y _ 2(x — 1)y
(z=12+92)?* ((z-12+y%)? (z=12+9*)?* ((z-12+y%)?

The Cauchy-Riemann equations are each identities. The first partial derivatives are continuous everywhere
except the point x = 1, y = 0. Thus the function is differentiable everywhere except z = 1.

(a) The function is not differentiable in any open set. Thus the function is nowhere analytic.

(b) The function is differentiable everywhere except z = 1. Thus the function is analytic everywhere except
z =1

(a) First we determine if the function is harmonic.

v =12 —y?

Vg + Vyy = 0
2—-2=0

The function is harmonic in the complex plane and this is the imaginary part of some analytic function. By
inspection, we see that this function is

127+ o= =2zy+c+(a® —y7),
where ¢ is a real constant. We can also find the function by solving the Cauchy-Riemann equations.

Uy = vy, and u, = —v,

uy =—2y and wu, = —2z
We integrate the first equation.

u=—2zy+ g(y)
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Here g(y) is a function of integration. We substitute this into the second Cauchy-Riemann equation to

determine g(y).

Uy = —2x
—2x+¢'(y) = -2z
g'(y) =0
gly) =c
u=—2zy+c
f(z) = =2zy +c+1(2® — )
f(z) =122 +¢

(b) First we determine if the function is harmonic.

v = 32%y

Vg + Vyy = 6y

The function is not harmonic. It is not the imaginary part of some analytic function.

Solution 8.11
We write the real and imaginary parts of f(z) = u + w.
4/3,,5/3 5/3,4/3
u = $x2fy2 for z # 0, ’ v — $x2fy2 for 2 # 0,
0 for z = 0. 0 for z = 0.
The Cauchy-Riemann equations are
Uy = Uy, Uy = —Vg.
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We calculate the partial derivatives of u and v at the point x = y = 0 using the definition of differentiation.

12(0,0) = Algiglo u(Az, O)A; u(0,0) _ Algiﬁrilo % .
000 = Jim MEETEE < S8 <o
u,(0,0) = Alifilo u(0, Ay)A; u(0,0) _ AE}EO OA—_yO L
000 = [, = Ay)A; Hed A, % =0

Since u,(0,0) = u,(0,0) = v,(0,0) = v,(0,0) = 0 the Cauchy-Riemann equations are satisfied.
f(2) is not analytic at the point z = 0. We show this by calculating the derivative there.

) — i BD SO ()

Az—0 Az A0 Az
We let Az = Are?, that is, we approach the origin at an angle of #. Then z = Arcosf and y = Arsiné.
f (Ar e’g)

, .
F10) = AI}EIO Ar e
Art/3 cos?/3 9 Ar®/3 sinb/3 9+12Ar5/3 cos®/3 O Art/3 sin?/3 ¢
= Ared
_ cos?/3 0 sin®? 0 + 1 cos®? O sin?/3 @
~ Ao e

The value of the limit depends on # and is not a constant. Thus this limit does not exist. The function is not
differentiable at z = 0.

Solution 8.12

x37y3 x3+y3
S == for z #£ 0, | o= )T for 2 #£ 0,
0 for z = 0. 0 for z = 0.
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The Cauchy-Riemann equations are
Uy = Uy, Uy = —Vy.

The partial derivatives of u and v at the point x = y = 0 are,

u(Ax,0) — u(0,0)

uz(0,0) = Alimo "
_ 1 Axr —0
T At Az
Az, 0 0,0
i Az —0
T At Az
=1,
. u(0,Ay) — u(0,0)
y(0,0) = Aliffo ( )Ay |
= lim —Ay =0
Ay—0 Ay
= —17
. v(0,Ay) —v(0,0
vy (0,0) = Ali,rilo ( )Ay o
. y—0
= lim
Ay—0 Yy
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We see that the Cauchy-Riemann equations are satisfied at z =y =0
f(2) is not analytic at the point z = 0. We show this by calculating the derivative.

iy e J(A2) = f(0) . f(Az)
f(o)_Al,lzrilo Az _Alggo Az

Let Az = Are”, that is, we approach the origin at an angle of #. Then z = Arcos# and y = Arsiné.

f (Ar e“’)
! _ .
710 = A, Ar e
(142) Ar3 cos® f—(1—2) Ar3 sin® 9

= lim Ar?
Ar—0 Ar e

_ (14+1)cos®d — (1 —1)sin®0
T Arbo et

The value of the limit depends on 6 and is not a constant. Thus this limit does not exist. The function is not
differentiable at z = 0. Recall that satisfying the Cauchy-Riemann equations is a necessary, but not a sufficient
condition for differentiability.

Solution 8.13
We show that the logarithm log 2z = ¢(r, 8) = Logr + 10 satisfies the Cauchy-Riemann equations.

| =

(br:_ Qb@
r
1 7
_ = ——1
T T
171
roor

Since the logarithm satisfies the Cauchy-Riemann equations and the first partial derivatives are continuous for z # 0,
the logarithm is analytic for z # 0.
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Now we compute the derivative.

Solution 8.14
The complex derivative in the coordinate directions is
i _ esz 2 — _36719 2
dz or r 00
We substitute f = u + v into this identity to obtain the Cauchy-Riemann equation in polar coordinates.

e—zG 8f _ _3 e—zQ g

o7 00
af  10f
o rol
1
Uy + 1w, = —— (ug + 1vg)
r
We equate the real and imaginary parts.
1 1
Up = —Vp, Up = ——"Ug
r r
1
Uy —Vg, Ug = — TV,

Solution 8.15
Since w is analytic, v and v satisfy the Cauchy-Riemann equations,

Uy =v, and u, = —v,.
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Using the chain rule we can write the derivatives with respect to = and y in terms of u and v.

90,0
ox ““’”au UI(%
0 g 0

Now we examine ¢, — 1¢,.

Oz — 10y = uy @y + 0,0, — 1 (uy Py + v, P,)
br — 1Py = (g — 1uy) Doy + (v, — 0y) D,y
Gr — 10y = (uy — 1uy) Py — 1 (vy +0,) Dy

We use the Cauchy-Riemann equations to write u, and v, in terms of u, and v,

bz — 10y = (Uy + 103) Py — 1 (uy + 10,) P,

Recall that w' = u, + 1w, = v, — 1y,

Thus we see that,

We write this in operator notation.



The complex conjugate of this relation is

90 (@\ (o 0
u ov - \dz ox Zay

Now we apply both these operators to & = ¢.

0 LON(D 0o (W (0 0N ()T (o 0,
du ' ov du ' ov - \dz ox Z@y dz or 0Oy

0? 0? 0? 0*
(8u2 * "oudv " ovou i @) ¢

(N (2 2N (Y (2,0 (A (20 (2 20,
- \dz ox Z(?y dz ox Z@y dz or Oy or Oy
w') "' is an analytic function. Recall that for analytic functions f, f’ = f, = —f,. So that f, +¢f, = 0.
) Yy
02_(1)+a2_q)_ @71 d_w - 8_2+8_2 ¢
ouz  ov:  \dz dz ox?  Oy?

Po o _|du|? (0 o
oz o |dz ox? = 0y

Solution 8.16
1. We consider

f(z) =log|z| +rarg(z) = logr + 0.
The Cauchy-Riemann equations in polar coordinates are
1

Uy = —Vg, Ug = —TUp.
r
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We calculate the derivatives.

1 1 1
Up = —, —Vg = —
roor T
ug =0, —rv.=0

Since the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous, f(z) is analytic in
|z] > 0, |arg(z)| < m. The complex derivative in terms of polar coordinates is

d _esz 0 __3 7102

dz o r ¢ 00
We use this to differentiate f(z).
df 5 0 el 1
3 = ar[logr—l-w]_e S=

. Next we consider
f(Z) — ‘Z|elarg(z)/2 — \/;629/2.

The Cauchy-Riemann equations for polar coordinates and the polar form f(z) = R(r,0)e*©"? are

1
r - o, lm,—_go,
r r

We calculate the derivatives for R = /r, © = 0/2.

1 R 1
= T as

1
-Ry=0, —RO,=0
,
Since the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous, f(z) is analytic in
|z| >0, |arg(z)| < 7. The complex derivative in terms of polar coordinates is
d_e_w@_ 1, O

dz or r 00"
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We use this to differentiate f(z).

df _ =0 0 0/27 1 _ 1
dz ° 87“[\/;6 I= 2e9/2\/r  2\/z

Solution 8.17
1. We consider the function

u = x Logr — yarctan(z,y) = rcosf Logr — rf sin 0

We compute the Laplacian.

A —12 @ +i@
u_rﬁr r@r 72 00?2

1 1
= ;% (cosO(r +rLogr) — 0sinf) + 2 (r(@sinf — 2cosf) — rcosf Logr)

1 1
= —(2cosf + cosf Logr —Osinf) + —(#sinf — 2 cos — cos Logr)
r r
=0
The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

1
Uy = ——Ug, Vp = TUyr
r

v, =sin@(1 + Logr) + 0cosf, vy =r(cosf(1+ Logr)— Osinb)
We integrate the first equation with respect to r to determine v to within the constant of integration g(#).
v = r(sinf Logr + 6 cos0) + g(0)
We differentiate this expression with respect to 6.

vg =1 (cos (1 + Logr) — 0sin6) + ¢'(9)
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We compare this to the second Cauchy-Riemann equation to see that ¢’(#) = 0. Thus g(f) = c¢. We have
determined the harmonic conjugate.

v =r(sinf Logr + 6 cosf) + c

The corresponding analytic function is
f(z) =rcosfLogr — rfsinf + 1(rsinf Logr + r0 cos 0 + ¢).
On the positive real axis, (6 = 0), the function has the value
f(z=r)=rLogr+c.

We use analytic continuation to determine the function in the complex plane.

f(z) = zlogz +c

. We consider the function

u=Arg(z) =4.
We compute the Laplacian.
10 [ Ou 1 0%u
Au=—-——(r— —— =0
Y or (TﬁT) i r2 00?
The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.
1
Ur = —— Uy, Vg = T'Uy
r
1
Up=——, vg=20
T

We integrate the first equation with respect to r to determine v to within the constant of integration g(9).

v=—Logr+ g(0)
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We differentiate this expression with respect to 6.

v = ¢'(0)

We compare this to the second Cauchy-Riemann equation to see that ¢'(f) = 0. Thus g(f) = c.

determined the harmonic conjugate.

‘v:—LogTch‘

The corresponding analytic function is
f(z) =0 —1Logr +c

On the positive real axis, (6 = 0), the function has the value
f(z=71)=—1Logr +c

We use analytic continuation to determine the function in the complex plane.

f(z) = —tlogz+1c

. We consider the function
u = r" cos(nb)

We compute the Laplacian.

A —lg % _|_i82_u
u_rar Tar rZ 002

_ ]' 8 n 2 n—2
=% (nr™ cos(nf)) — n“r" =< cos(nf)
= n*r""? cos(nh) — n*r""2 cos(nb)
=0
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The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

1

Up == up, Vg =Ty
v, = nr" sin(n), vy = nr" cos(nd)
We integrate the first equation with respect to 7 to determine v to within the constant of integration g(@).
v =r"sin(nd) + g()
We differentiate this expression with respect to 6.
vg = nr" cos(nb) + ¢'(6)

We compare this to the second Cauchy-Riemann equation to see that ¢/(f) = 0. Thus g(f) = c¢. We have
determined the harmonic conjugate.

v=r"sin(nd) +c

The corresponding analytic function is
f(z) = r"cos(nf) + " sin(nh) + wc
On the positive real axis, (6 = 0), the function has the value
flz=r)=1r"+1c

We use analytic continuation to determine the function in the complex plane.

fz)=2"
4. We consider the function )
y  sinf
U= — =
72 r



We compute the Laplacian.

1

Au__ﬁ 7«@ +i@
- ror or r2 002
10

sin 8 sin 6
ror r r3

sinff  siné

r3 r3
=0
The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.
1
Ur = —— Uy, Vg = T'Uy
r
cosf sin 0
Up = =75 Vo= —
r r

We integrate the first equation with respect to r to determine v to within the constant of integration g(#).

cos
v = + g(0)
We differentiate this expression with respect to 6.
sin ¢
Vo = —— +4'(0)

We compare this to the second Cauchy-Riemann equation to see that ¢’(#) = 0. Thus g(f#) = c. We have
determined the harmonic conjugate.

cos

The corresponding analytic function is




On the positive real axis, (6 = 0), the function has the value
fz=r)="+
2=7r)=—-+1c
r

We use analytic continuation to determine the function in the complex plane.

f(2) zé—i-zc

Solution 8.18
1. We calculate the first partial derivatives of u = (z — y)? and v = 2(x + y).

uy:2(y—x)
Vyp =
vy = 2

We substitute these expressions into the Cauchy-Riemann equations.

Uy = Vy, Uy = —Vy
20r—y)=2, 2y—z)=-2
r—y=1 y—z=-1
y=x—1

Since the Cauchy-Riemann equation are satisfied along the line y = z—1 and the partial derivatives are continuous,
the function f(z) is differentiable there. Since the function is not differentiable in a neighborhood of any point,
it is nowhere analytic.
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2. We calculate the first partial derivatives of v and v.

uy = 2”7V (x cos(2zy) — ysin(2zy))
Uy = —2 ™~V (y cos(2zy) + x sin(2xy))
v, = 2% 7Y (y cos(2xy) + xsin(2zy))
vy =2 e Y (z cos(2ay) — y sin(2zy))
Since the Cauchy-Riemann equations, u, = v, and u, = —v,, are satisfied everywhere and the partial derivatives

are continuous, f(z) is everywhere differentiable. Since f(z) is differentiable in a neighborhood of every point, it
is analytic in the complex plane. (f(z) is entire.)

Now to evaluate the derivative. The complex derivative is the derivative in any direction. We choose the z
direction.

1'(z) = ugp + 0,
F'(2) = 2% 7 (z cos(2zy) — ysin(2zy)) + 12 e” ¥ (y cos(2xy) + x sin(2zy))
F/(2) = 2”7V ((x + ) cos(2zy) + (—y + 1) sin(2zy))

Finding the derivative is easier if we first write f(z) in terms of the complex variable z and use complex differen-
tiation.

f(2) = €Y (cos(2z, y) + 1sin(2zy))

f(Z) — e:vzny eszy

(z) = oo
f(z) =
F(z) =2z¢”
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Solution 8.19
1. Assume that the Cauchy-Riemann equations in Cartesian coordinates

Uy = Vy, Uy = —Uy

are satisfied and these partial derivatives are continuous at a point z. We write the derivatives in polar coordinates
in terms of derivatives in Cartesian coordinates to verify the Cauchy-Riemann equations in polar coordinates. First
we calculate the derivatives.

r=rcosf, y=rsinf

0 0
w, = a—fwx + a—i{wy = cos w, + sin Ow,
0 0
Wy = a—zwx + 8—Zwy = —rsin fw, + r cos Ow,

Then we verify the Cauchy-Riemann equations in polar coordinates.

u, = cos Ou, + sin u,,
= cos fv, — sin v,
1

= —Vy
r

1 .
—ug = — sin Qu, + cos Ou,
-

= —sin Ov, — cos Ov,
= _U'f‘
This proves that the Cauchy-Riemann equations in Cartesian coordinates hold only if the Cauchy-Riemann equa-
tions in polar coordinates hold. (Given that the partial derivatives are continuous.) Next we prove the converse.
Assume that the Cauchy-Riemann equations in polar coordinates
1 1

Up = —Vp, —Up = —Up
r r
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are satisfied and these partial derivatives are continuous at a point z. We write the derivatives in Cartesian
coordinates in terms of derivatives in polar coordinates to verify the Cauchy-Riemann equations in Cartesian
coordinates. First we calculate the derivatives.

r=\a>+¢?, 6= arctan(z,y)

or 00 x

Wy = —Wyp + — Wy = —W, — Wy
0 Ox ro o2
or 00 Y
Wy = =W + =Wy = ~Wp + —5Wp
oy oy r r
Then we verify the Cauchy-Riemann equations in Cartesian coordinates.
z Y
Uy = — Uy — —2U9
r r
z Y
- _ZUG + =,
r
—= uy
Y x
Uy = —Upr + —Ug
Yoot 2
Y x
= 5V —Ur
r r
—= _u.’lt

This proves that the Cauchy-Riemann equations in polar coordinates hold only if the Cauchy-Riemann equations
in Cartesian coordinates hold. We have demonstrated the equivalence of the two forms.

2. We verify that log z is analytic for > 0 and —7 < 6 < 7 using the polar form of the Cauchy-Riemann equations.

Logz =1Inr 46

1 1
Upr = —Vp, —Up = —VUr
r r
1 1 1
=21, S0=-0
T T r
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Since the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous for r > 0, log z is

analytic there. We calculate the value of the derivative using the polar differentiation formulas.
d 0 1 1
_L :e_ze— 1 0 :e—’L@_:_
dz 8% 8T( nr ) ro oz

d —1 0 —1 1
—L =——(1 ) = —1=—
dz 08 % z 89(nT+Z ) zZ z

. Let {x;} denote rectangular coordinates in two dimensions and let {{;} be an orthogonal coordinate system .
The distance metric coefficients h; are defined

. 8x1 2 8@ 2
hi_\/(@&) —i—(agi).

Phum (2 (), o (i)
hl h2 8&1 hl 851 852 h2 852 '

First we calculate the distance metric coefficients in polar coordinates.

2 2
hT:\/<a—$) + (@) = v/ cos26 +sin?f = 1

The Laplacian is

or or

he = @ 2+ @ 2:\/T281n20+r200829:r
’ 90 06

Then we find the Laplacian.
o, 1[0 9 (1
Vo= r 87’(T¢T) * 00 r¢0

In polar coordinates, Laplace’s equation is

1 1
¢7’r + _(;57" + _292596 =0.
T r
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Solution 8.20
1. We compute the Laplacian of u(z,y) = 2% — ¢°.

Vu = 6x — 6y
Since u is not harmonic, it is not the real part of on analytic function.
2. We compute the Laplacian of u(z,y) = sinhz cosy + .
V2u = sinh z cosy — sinh z cosy = 0

Since w is harmonic, it is the real part of on analytic function. We determine v by solving the Cauchy-Riemann
equations.

Up = —Uy, Uy = Uy

v, = sinhxsiny, v, =coshxcosy+1
We integrate the first equation to determine v up to an arbitrary additive function of y.
v = coshzsiny + g(y)
We substitute this into the second Cauchy-Riemann equation. This will determine v up to an additive constant.

vy = coshz cosy + 1
coshz cosy + ¢'(y) = coshx cosy + 1
g'(y) =1
9(y) =y +a
v=coshzsiny+y+a
f(z) =sinhxcosy + x + 1(coshxsiny + y + a)

Here a is a real constant. We write the function in terms of z.

f(z) =sinhz+ z +1a
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3. We compute the Laplacian of u(r,6) = r™ cos(nf).
V2u = n(n — 1)r" % cos(nf) + nr" 2 cos(nh) — n*r" 2 cos(nf) = 0

Since w is harmonic, it is the real part of on analytic function. We determine v by solving the Cauchy-Riemann
equations.

1
Uy = ——Ug, Vyp = TUyr
r

v, = nr" 'sin(nd), vy = nr" cos(nf)
We integrate the first equation to determine v up to an arbitrary additive function of 6.
v =r"sin(nd) + g(0)
We substitute this into the second Cauchy-Riemann equation. This will determine v up to an additive constant.
vg = nr" cos(nd)
nr" cos(nf) + ¢'(0) = nr™ cos(nd)
g'(0)=0
9(0) =a
v=r"sin(nd) + a
f(z) = 1" cos(nf) + 1(r" sin(nd) + a)
Here a is a real constant. We write the function in terms of z.
f(z) =2"+1a

Solution 8.21
1. We find the velocity potential ¢ and stream function .

P(z) =logz+1logz
O(z) =Inr +10 +1(Inr + 20)
o=Inr—=0, Y=Inr+40
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Figure 8.7: The velocity potential ¢ and stream function ¢ for ®(z) = log z + 2log z.

A branch of these are plotted in Figure 8.7.

Next we find the stream lines, 1) = c.

Inr+60=c

r=e?

These are spirals which go counter-clockwise as we follow them to the origin. See Figure 8.8. Next we find the
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Figure 8.8: Streamlines for ¢ = Inr + 6.

velocity field.

The velocity field is shown in the first plot of Figure 8.9. We see that the fluid flows out from the origin along
the spiral paths of the streamlines. The second plot shows the direction of the velocity field.

2. We find the velocity potential ¢ and stream function ).

O(2) =log(z — 1) +log(z + 1)
O(z) =In|z — 1| +rarg(z — 1)+ In|z + 1| +rarg(z + 1)
¢=1In|z*—1|, o =arg(z—1)+arg(z+1)
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Figure 8.9: Velocity field and velocity direction field for ¢ = Inr — 6.

Figure 8.10: The velocity potential ¢ and stream function ¢ for ®(z) =log(z — 1) + log(z + 1).

The velocity potential and a branch of the stream function are plotted in Figure 8.10.

The stream lines, arg(z — 1) + arg(z + 1) = ¢, are plotted in Figure 8.11.
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Figure 8.11: Streamlines for ¢ = arg(z — 1) + arg(z + 1).

Next we find the velocity field.

v=Vo
2r(x? +y? — 1) - 2y(x? +y* +1) .
VvV = X
22— 1)+ (P 0P at 222 — 1)+ (P + )2

The velocity field is shown in the first plot of Figure 8.12. The fluid is flowing out of sources at z = £1. The
second plot shows the direction of the velocity field.
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Figure 8.12: Velocity field and velocity direction field for ¢ = In|2z? — 1|.
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Chapter 9

Analytic Continuation

For every complex problem, there is a solution that is simple, neat, and wrong.

- H. L. Mencken

9.1 Analytic Continuation

Suppose there is a function, fi(z) that is analytic in the domain D; and another analytic function, f(z) that is
analytic in the domain D,. (See Figure 9.1.)

If the two domains overlap and fi(z) = fa(z) in the overlap region D; N Dy, then fy(z) is called an analytic
continuation of fi(z). This is an appropriate name since f5(z) continues the definition of fi(z) outside of its original
domain of definition D;. We can define a function f(z) that is analytic in the union of the domains D; U Ds. On the
domain Dy we have f(2) = fi(z) and f(z) = fa(z) on Ds. fi(z) and fy(z) are called function elements. There is an
analytic continuation even if the two domains only share an arc and not a two dimensional region.

With more overlapping domains D3, Dy, ... we could perhaps extend f;(z) to more of the complex plane. Sometimes
it is impossible to extend a function beyond the boundary of a domain. This is known as a natural boundary. If a
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Im(2)

= o

Figure 9.1: Overlapping Domains

Re(2)

function fi(z) is analytically continued to a domain D,, along two different paths, (See Figure 9.2.), then the two
analytic continuations are identical as long as the paths do not enclose a branch point of the function. This is the
uniqueness theorem of analytic continuation.

Figure 9.2: Two Paths of Analytic Continuation

Consider an analytic function f(z) defined in the domain D. Suppose that f(z) = 0 on the arc AB, (see Figure 9.3.)
Then f(z) =0 in all of D.

Consider a point ( on AB. The Taylor series expansion of f(z) about the point z = ( converges in a circle C' at
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Figure 9.3: Domain Containing Arc Along Which f(z) Vanishes

least up to the boundary of D. The derivative of f(z) at the point z = ( is

/ —
fi(Q) = Jim N
If Az is in the direction of the arc, then f’(() vanishes as well as all higher derivatives, f'(¢) = f"(¢) = f"(() =---=0.

Thus we see that f(z) = 0 inside C. By taking Taylor series expansions about points on AB or inside of C' we see that
f(z)=0in D.

Result 9.1.1 Let fi(z) and f(z) be analytic functions defined in D. If fi(z) = fa(2) for
the points in a region or on an arc in D, then fi(z) = f2(2) for all points in D.

To prove Result 9.1.1, we define the analytic function g(z) = fi(z) — fa(z). Since g(z) vanishes in the region or
on the arc, then g(z) = 0 and hence fi(z) = fa(z) for all points in D.
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Result 9.1.2 Consider analytic functions fi(z) and f>(z) defined on the domains D; and
Dy, respectively. Suppose that Dy N D5 is a region or an arc and that fi(z) = fo(2) for all
z € D1 N Dy. (See Figure 9.4.) Then the function

fi(z) for z € Dy,
fo(2) for z € Da,

QSPROD

Figure 9.4: Domains that Intersect in a Region or an Arc

f(z) =

Is analytic in Dy U Ds.

Result 9.1.2 follows directly from Result 9.1.1.

9.2 Analytic Continuation of Sums

Example 9.2.1 Consider the function
filz) = Z 2"
n=0

The sum converges uniformly for D1 = |z| < r < 1. Since the derivative also converges in this domain, the function is
analytic there.
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Figure 9.5: Domain of Convergence for )" ;2"

Now consider the function

1
1—2

fo(2) =

This function is analytic everywhere except the point z = 1. On the domain D,

fa2) = 1 = D" = fi2)

Analytic continuation tells us that there is a function that is analytic on the union of the two domains. Here, the
domain is the entire z plane except the point z = 1 and the function is

1

. : : . ©
— Is said to be an analytic continuation of )~ 2"
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9.3 Analytic Functions Defined in Terms of Real Variables

Result 9.3.1 An analytic function, u(x,y) + w(z,y) can be written in terms of a function
of a complex variable, f(z) = u(z,y) + w(z,y).

Result 9.3.1 is proved in Exercise 9.1.
Example 9.3.1

f(2) = coshysinz (ze®cosy —ye®siny) — coszsinhy (ye® cosy + x e* siny)

+ o[ coshysinz (ye” cosy + ze”siny) + coswsinhy (ze” cosy — ye”siny) |

is an analytic function. Express f(z) in terms of z.

On the real line, y =0, f(z) is
f(z=2x)=xe"sinx
(Recall that cos(0) = cosh(0) = 1 and sin(0) = sinh(0) = 0.)
The analytic continuation of f(z) into the complex plane is

f(z) = ze“sin z.

Alternatively, for x = 0 we have
f(z =1y) = ysinhy(cosy — 2siny).

The analytic continuation from the imaginary axis to the complex plane is

f(2) = —1zsinh(—22)(cos(—12) — 2sin(—12))
=1z sinh(22)(cos(22) + ¢sin(22))

= zsinze”.

424



Example 9.3.2 Consider w = e *(xsiny — ycosy). Find v such that f(z) = u + w is analytic.
From the Cauchy-Riemann equations,

ov  Ou . . o

— =—=e"siny—ze “siny+ye “cosy
oy O

ov ou Ly y .

— =——=e"cosy—xe Tcosy —ye “siny
ox Jy

Integrate the first equation with respect to y.

v=—e Ycosy+xe “cosy+e “(ysiny+ cosy)+ F(x)
=ye “siny+xze “cosy+ F(x)

F(x) is an arbitrary function of x. Substitute this expression for v into the equation for Ov/0x.
—ye Psiny —xe Tcosy+e Fcosy+ F(x) = —ye Tsiny —xe Tcosy +e T cosy
Thus F'(z) =0 and F(z) = c.
v=e"(ysiny + xcosy) + ¢

Example 9.3.3 Find f(z) in the previous example. (Up to the additive constant.)

Method 1

f(z)=u+w
=e “(xsiny —ycosy) + e “(ysiny + x cosy)

C eV —e™W eV e 4 eT e —e™W L e e
"\ Y\ 2 R LA Y T\

=1(x + 1) e~ (ztw)

=ze ”

425



Method 2 f(2) = f(z 4+ w) = u(z,y) + w(x,y) is an analytic function.
On the real axis, y =0, f(z) is

F( = ) = u(z,0) + w(x,0)
=e “(xsin0 —0cos0) +2e “(0sin0 + z cos 0)

=ze ’

Suppose there is an analytic continuation of f(z) into the complex plane. If such a continuation, f(z), exists, then it
must be equal to f(z = x) on the real axis An obvious choice for the analytic continuation is

f(z) = u(z,0) +w(z,0)
since this is clearly equal to u(x,0) + w(z,0) when z is real. Thus we obtain

f(z) =1ze™”

Example 9.3.4 Consider f(z) = u(z,y) +w(z,y). Show that f'(z) = uy(z,0) — w,(2,0).

() = ug + w,

= Uy — WUy
f'(z) is an analytic function. On the real axis, z = x, f'(z) is
f'(z=12) = uy(x,0) —wy(z,0)

Now f'(z = x) is defined on the real line. An analytic continuation of f'(z = x) into the complex plane is

f'(2) = ux(z,0) — 1wy (z,0).
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Example 9.3.5 Again consider the problem of finding f(z) given that u(x,y) = e *(zsiny — ycosy). Now we can
use the result of the previous example to do this problem.

ou

uz(z,y) = Fr e siny —xe “siny +ye T cosy
ou
uy(z,y) = By =xe cosy+ye “siny —e “cosy

() = ug(2,0) — 2wy (z,0)
=0-—1 (ze_z—e_z)

=9 (—z e %+ e_z)

Integration yields the result

f(z) =w1ze " +c

Example 9.3.6 Find f(z) given that

u(z,y) = cosx cosh® ysin & + cos x sin 2 sinh? y

v(x,y) = cos® z coshy sinhy — coshy sin® z sinh y

f(2) = u(x,y) +w(x,y) is an analytic function. On the real line, f(z) is

f(z=2) =u(z,0)+w(z,0)
= cos x cosh? 0'sin z + cos z sin 2 sinh? 0 + 1 (0052 x cosh 0sinh 0 — cosh 0 sin? x sinh O)

=cosxsinz

Now we know the definition of f(z) on the real line. We would like to find an analytic continuation of f(z) into the
complex plane. An obvious choice for f(z) is
f(2) = cos zsin z
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Using trig identities we can write this as

Example 9.3.7 Find f(z) given only that
u(z,y) = cosx cosh? y sin z + cos x sin  sinh? y.
Recall that

() = ug + w,

= Uy — 2y,
Differentiating u(x,y),

Uy = cos® x cosh? y — cosh? y sin® x + cos? z sinh? y — sin? 2 sinh? y

Uy = 4 cos x cosh y sin x sinh y
f'(z) is an analytic function. On the real axis, f'(z) is
f'(z=12) =cos*z —sin’x

Using trig identities we can write this as
f'(z = x) = cos(2x)

Now we find an analytic continuation of f'(z = x) into the complex plane.
f'(2) = cos(22)

Integration yields the result
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9.3.1 Polar Coordinates

Example 9.3.8 /s
u(r,0) = r(logrcos — 0sinf)

the real part of an analytic function?
The Laplacian in polar coordinates is

10 [ 0¢ 1 0%
Ap=—-——(r— — .
¢ ror (Tar) * r2 002
We calculate the partial derivatives of u.
? = cosf + logrcost — fsinf
-
r? =rcosf +rlogrcosf —résind
r
83 (r?) = 2cosf + logrcosf — Osinf
r r
1 1
—ag (r%) = —(2cosf + logrcosf — fsinb)
ror r r
ou . .
9= " (6 cosf + sin 6 + log rsin )
0?u .
%5 =71 (—2cosf —logrcosf + 0sinh)
1 0 1
—2% = —(—2cosf —logrcosf + sinf)
r r
From the above we see that
Crdr \_ Or r20602

Therefore u is harmonic and is the real part of some analytic function.
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Example 9.3.9 Find an analytic function f(z) whose real part is
u(r,0) = r (logrcos@ — Osind) .
Let f(z) = u(r,0) +w(r,0). The Cauchy-Riemann equations are

U, = —, Ug = —TU,.
r

Using the partial derivatives in the above example, we obtain two partial differential equations for v(r,0).
vy = —% =0 cosf + sinf + logrsinf
vg = ru, =1 (cosf + logrcosf — Osinf)
Integrating the equation for vy yields
v=r(0cosf+logrsinf) + F(r)

where F'(r) is a constant of integration.
Substituting our expression for v into the equation for v, yields

6 cosf +logrsinf +sinf + F'(r) = 6 cosf + sinf + logrsin
F'(r)y=0
F(r) = const

Thus we see that

f(z) =u+w
=r (logrcos® — Osinf) + ur (6 cos§ + logrsin @) + const

f(2) is an analytic function. On the line @ =0, f(z) is

f(z=1r)=r(logr)+wr(0) + const
= rlogr + const
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The analytic continuation into the complex plane is

f(2) = zlog z + const

Example 9.3.10 Find the formula in polar coordinates that is analogous to
f'(2) = uy(2,0) — 2uy(z,0).

We know that

g — e_le a_f
dz or’
If f(2) = u(r,0) 4+ w(r,0) then
d
d—‘z =e " (u, +w,)
From the Cauchy-Riemann equations, we have v, = —uy/r.
df . —f Ug
o)

f'(2) is an analytic function. On the line § =0, f(z) is

f'(z=r)=u.(r,0) —1

The analytic continuation of f'(z) into the complex plane is

F1(2) = un(2,0) — %ug(z, 0).
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Example 9.3.11 Find an analytic function f(z) whose real part is

u(r,0) = r (logrcosf — fsinb) .

u,(r,0) = (logrcos® — Osinf) + cos
ug(r,0) = r(—logrsin@ — sinf — 6 cos )

F'(2) = r(2,0) = ~u(2,0)
=logz+1

Integrating f'(z) yields

f(z) = zlog z + 1c.

9.3.2 Analytic Functions Defined in Terms of Their Real or Imaginary Parts

Consider an analytic function: f(z) = u(z,y) + w(x,y). We differentiate this expression.
1'(2) = up(z,y) + we(x,y)

We apply the Cauchy-Riemann equation v, = —u,,.
f1(2) = us(,y) — wy(z,y).

Now consider the function of a complex variable, g({):

9(Q) = ua(, Q) = wuy(,¢) = (2, & + 1) — 2y (z,§ + 1))
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This function is analytic where f(() is analytic. To show this we first verify that the derivatives in the £ and 1) directions
are equal.

0
a—ég((’) = Ugy (2, & + 1)) — 1y, (2, +10))
0
_Z%Q(C) =1 (Zuwy(x7 5 + “/)) + uyy(xaf + Z,lvb)) = uxy(xa g + W) - Zuyy(xaf + 2770)
Since these partial derivatives are equal and continuous, ¢g(¢) is analytic. We evaluate the function g(¢) at ( = —u.

(Substitute y = —uz into Equation 9.1.)
(2x) = ug(x, —1x) — 2wy (z, —1x)

We make a change of variables to solve for f'(x).

fl(x) =u, (g, —Zg) — 1y, (g, —z%) .

If the expression is non-singular, then this defines the analytic function, f’(z), on the real axis. The analytic continuation

to the complex plane is
z z z z
fe) = (5-15) — e (5-3)

Note that L2u(z/2, —12/2) = u,(2/2, —12/2) — w,(2/2, —12/2). We integrate the equation to obtain:

z oz
z) =2u <— —Z—) + c.
£ =2u (5,2
We know that the real part of an analytic function determines that function to within an additive constant. Assuming
that the above expression is non-singular, we have found a formula for writing an analytic function in terms of its real
part. With the same method, we can find how to write an analytic function in terms of its imaginary part, v.
We can also derive formulas if u and v are expressed in polar coordinates:

f(z) =u(r,0) 4+ w(r,0).
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Result 9.3.2 If f(2) = u(x,y) + w(x,y) is analytic and the expressions are non-singular,
then

f(z) =2u (g, —z%) + const (9.2)
f(z) =12v (%, —2%) + const. (9.3)
If f(z) =u(r,0)+w(r,0) is analytic and the expressions are non-singular, then
f(z) =2u <zl/2, —% log z) + const (9.4)
f(z) =12v (zl/Q, —% log z) + const. (9.5)

Example 9.3.12 Consider the problem of finding f(z) given that u(x,y) = e *(zsiny — ycosy).

z z
- 2 <_’ B _>
— ¢ %/2 (g sin (—z%) + zg CoS <—zg>> +c

—qze #/? (z sin (ZE) ~+ cos (—@E)> +c
N 2 2
— gz e /2 (e_z/Q) +c

=ze “4c

Example 9.3.13 Consider
1
Log z = 5 Log (x2 + y2) + 2 Arctan(zx, y).
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We try to construct the analytic function from it's real part using Equation 9.2.

f(z) =2u (%, —z%) +c

~ 2% Log ((g)? + (_ng) fe
= Log(0) + ¢

We obtain a singular expression, so the method fails.

Example 9.3.14 Again consider the logarithm, this time written in terms of polar coordinates.

Log z = Logr + 10
We try to construct the analytic function from it'’s real part using Equation 9.4.
f(z) =2u (21/2, —z% log z) +c

= 2 Log (z1/2) +c
=Logz+c

With this method we recover the analytic function.
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9.4 Exercises

Exercise 9.1
Consider two functions, f(x,y) and g(z,y). They are said to be functionally dependent if there is a an h(g) such that

f(z,y) = h(g(z,y)).

f and g will be functionally dependent if and only if their Jacobian vanishes.
If f and ¢ are functionally dependent, then the derivatives of f are

fy = hl(Q)gy'
Thus we have 5
aéij z; = ;z gz = f:vgy - fyg;v = h'(g)gxgy — h/(g)gygm = 0.

If the Jacobian of f and g vanishes, then
Je9y — Jy9= = 0.
This is a first order partial differential equation for f that has the general solution

f(z,y) = h(g(z,y)).

Prove that an analytic function u(z,y) + w(z,y) can be written in terms of a function of a complex variable,
f(z) = u(z,y) +w(z,y).

Exercise 9.2
Which of the following functions are the real part of an analytic function? For those that are, find the harmonic
conjugate, v(z,y), and find the analytic function f(z) = u(x,y) + w(z,y) as a function of z.

1. 2% — 3ay? — 22y +y

2. e*sinhy
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3. e (sinx cosy coshy — cos x sin y sinh y)

Exercise 9.3
For an analytic function, f(z) = u(r,8) + w(r, ) prove that under suitable restrictions:

f(z) =2u <zl/2, —% log z) + const.
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9.5 Hints

Hint 9.1
Show that u(x,y) 4+ w(x,y) is functionally dependent on x + w1y so that you can write f(z) = f(z + 1wy) = u(x,y) +

w(z,y).
Hint 9.2

Hint 9.3
Check out the derivation of Equation 9.2.
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9.6 Solutions

Solution 9.1
u(z,y) +w(x,y) is functionally dependent on z = x + 1y if and only if

O(u~+ w,x + 1y)

Nz, y) =0

Ou+w,z+w)  |ug+w, uy+w,
A(z,y) 1 ?

= —Up — Uy + 2 (Uy — Vy)

Since u and v satisfy the Cauchy-Riemann equations, this vanishes.
=0
Thus we see that u(z,y) + w(x,y) is functionally dependent on x + 1y so we can write

f(z) = f(z +y) = u(x,y) +w(z,y).

Solution 9.2
1. Consider u(x,y) = 23 — 3zy? — 2xy + y. The Laplacian of this function is

AU = Uy + Uy,
= 6x — 6
=0

Since the function is harmonic, it is the real part of an analytic function. Clearly the analytic function is of the
form,
az® + bz? + ¢z +d,
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with a, b and ¢ complex-valued constants and d a real constant. Substituting z = = 4 1y and expanding products
yields,

a (1;3 + 1322y — 3zy® — zy3) +b (x2 +12xy — y2) + c(z + 1) + od.

By inspection, we see that the analytic function is

f(z) =2° +12° —1z +d.

The harmonic conjugate of u is the imaginary part of f(z),

v(z,y) =32y —y* +a* — P —w+d.

We can also do this problem with analytic continuation. The derivatives of u are

uy = 322 — 3y° — 2y,
uy = —6xy — 2x + 1.

The derivative of f(z) is
f'(2) = up — wy, = 32% — 2y* — 2y +1(62y — 2z + 1).

On the real axis we have
fl(z=2) =32 — 12z +1.

Using analytic continuation, we see that
f'(z) = 32* =12z +.

Integration yields
f(2) = 2 —12® + 12 + const
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2. Consider u(z,y) = e”sinhy. The Laplacian of this function is

Au = e*sinhy + e” sinhy
= 2¢e"sinhy.

Since the function is not harmonic, it is not the real part of an analytic function.

3. Consider u(z,y) = e”(sinx cos y coshy — cos xsiny sinhy). The Laplacian of the function is

Au = — (e” (sinz cos y cosh y — cos x sin y sinh y + cos x cos y cosh y + sin z sin y sinh y))

ox
+ — (e” (—sinzsiny coshy — cos x cos y sinh y + sin x cos y sinh y — cos z sin y cosh y))

= 2¢e” (cosx cosy coshy + sin z sin y sinh y) — 2 €® (cos x cos y cosh y + sin z sin y sinh y)
=0.

Thus u is the real part of an analytic function. The derivative of the analytic function is
(%) = ug + 2w, = up — 1wy,
From the derivatives of © we computed before, we have

f(2) = (€* (sinx cosy coshy — cos z sin y sinh y + cos x cos y cosh y + sin x sin y sinh )

— 1 (e” (—sinxsiny coshy — cosz cos y sinh y + sin x cos y sinh y — cos x siny cosh y))
Along the real axis, f'(z) has the value,
f'(z=1xz) =¢€"(sinz + cosz).
By analytic continuation, f'(z) is

f'(z) = €*(sin z + cos 2)
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We obtain f(z) by integrating.
f(z) = e”sin z + const.

u is the real part of the analytic function

f(z) =e*sinz + ¢,

where ¢ is a real constant. We find the harmonic conjugate of u by taking the imaginary part of f.

f(z) = e*(cosy + 1siny)(sin x cosh y + 1 cos zsinh y) + uc

v(x,y) = e®sinxsiny coshy + cos x cosysinhy + ¢

Solution 9.3
We consider the analytic function: f(z) = u(r,0) + w(r,0). Recall that the complex derivative in terms of polar
coordinates is
d _0 0 1 e 0
— = — = ——e¢ —
dz or r 00
The Cauchy-Riemann equations are
1 1
Ur = —Vg, Uy = ——Up.
r T

We differentiate f(z) and use the partial derivative in 7 for the right side.
f(z) = e (ur +2vy)
We use the Cauchy-Riemann equations to right f’(z) in terms of the derivatives of w.

fl(z)=e" (ur — zlu@)

r

Now consider the function of a complex variable, g(¢):

() = (1) = un(r: ) ) = (€4 10) = Ll +.10))
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This function is analytic where f(() is analytic. It is a simple calculus exercise to show that the complex derivative in
the £ direction, 3%, and the complex derivative in the v direction, —z%, are equal. Since these partial derivatives are

equal and continuous, ¢({) is analytic. We evaluate the function g(¢) at ( = —ulogr. (Substitute § = —2logr into
Equation 9.6.)

1
£ (retrloan)) = emilrloar) (ur(r, —ilogr) —1—ug(r, —1log 7“))
r
1
rf' (r*) = u,(r, —1logr) — 1=ug(r, —1logr)
r

If the expression is non-singular, then it defines the analytic function, f’(z), on a curve. The analytic continuation to
the complex plane is

1
2f'(2%) = u,(z, —tlog z) — 1=up(z, —tlog 2).
z
(

We integrate to obtain an expression for f (z?).

1
§f (2%) = u(z, —1log z) + const

We make a change of variables and solve for f(z).

f(z) =2u ( 12 _ 3 " log z) + const.

Assuming that the above expression is non-singular, we have found a formula for writing the analytic function in terms
of its real part, u(r, ). With the same method, we can find how to write an analytic function in terms of its imaginary
part, v(r,0).
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Chapter 10

Contour Integration and the Cauchy-Goursat
Theorem

Between two evils, | always pick the one | never tried before.

- Mae West

10.1 Line Integrals

In this section we will recall the definition of a line integral in the Cartesian plane. In the next section we will use
this to define the contour integral in the complex plane.

Limit Sum Definition. First we develop a limit sum definition of a line integral. Consider a curve C'in the Cartesian
plane joining the points (ag, by) and (a1, by). We partition the curve into n segments with the points (o, o), - - -, (T, Yn)
where the first and last points are at the endpoints of the curve. We define the differences, Az, = xp.1 — x; and
Ayr = Yg+1 — Yk, and let (&, ¥x) be points on the curve between (xy,yx) and (i1, yYxs1). This is shown pictorially
in Figure 10.1.
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Figure 10.1: A curve in the Cartesian plane.

Consider the sum

i
L

(P (&> V) Az + Q &k, Yr) Ayr)

0

i

where P and @) are continuous functions on the curve. (P and () may be complex-valued.) In the limit as each of the
Azy, and Ay, approach zero the value of the sum, (if the limit exists), is denoted by

/CP(x, y)dz + Q(x,y) dy.

This is a line integral along the curve C. The value of the line integral depends on the functions P(x,y) and Q(z,y),
the endpoints of the curve and the curve C'. We can also write a line integral in vector notation.

/C f(x) - dx

Here x = (z,y) and f(x) = (P(z,y),Q(x,y)).
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Evaluating Line Integrals with Parameterization. Let the curve C' be parametrized by = = z(t), y = y(t)
for tg <t < t;. Then the differentials on the curve are dx = 2/(¢) dt and dy = y/(t) d¢t. Using the parameterization we
can evaluate a line integral in terms of a definite integral.

/C P, g) dz + Qe y) dy — / L (PC(t), y(0) () + Qla(t), y(D)y (1)) e

to
Example 10.1.1 Consider the line integral

/xzdx—i-(:c—l—y)dy,
c

where C' is the semi-circle from (1,0) to (—1,0) in the upper half plane. We parameterize the curve with © = cost,
y=sint for 0 <t <.

/ p?dz+ (z+y)dy = / (cos® t(—sint) + (cost + sint) cost) dt
c 0

| N
|
Wl p

10.2 Contour Integrals

Limit Sum Definition. We develop a limit sum definition for contour integrals. It will be analogous to the definition
for line integrals except that the notation is cleaner in complex variables. Consider a contour C' in the complex plane
joining the points ¢y and ¢;. We partition the contour into n segments with the points zg, ..., 2, where the first and
last points are at the endpoints of the contour. We define the differences Az, = 2,1 — 2 and let (i be points on the
contour between z; and z;,;. Consider the sum

i
L

f(Ck)AZk7

0

£
Il
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where f is a continuous function on the contour. In the limit as each of the Az, approach zero the value of the sum,
(if the limit exists), is denoted by
c
This is a contour integral along C'.
We can write a contour integral in terms of a line integral. Let f(z) = ¢(z,y). (¢ : R?* — C.)
| H@az= [ o)+ oy
c c
[ 108 = [ 6l) o+ 10o.) i) (10.1)
c c
Further, we can write a contour integral in terms of two real-valued line integrals. Let f(z) = u(z,y) + w(x,y).
[ 7@d: = [ ulep) + 0w )de +1dy)
c c
[ #1a:= [ (@) de = ooy dg) + 1 [ (o) do+ule. ) dy (10.2)
c c

C

Evaluation. Let the contour C' be parametrized by z = z(t) for ty < t < t;. Then the differential on the contour
is dz = 2/(t) dt. Using the parameterization we can evaluate a contour integral in terms of a definite integral.

JREES / F()() dr

Example 10.2.1 Let C be the positively oriented unit circle about the origin in the complex plane. Evaluate:
1 f o2 dz

2. fcédz
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3. fc % |dz|

In each case we parameterize the contour and then do the integral.

1.
z=¢eY dz=1¢?db
27
/ :/ e?qe? do
c 0
o
—_ 1129
2
B 1
—2°
=0
1 27 1 2
/—dz:/ —azewdﬁzz/ df =27
c? o € 0

|dz| = 1€ 6] = [1e”] |df] = |d)|
Since df is positive in this case, |df| = d#.

1 2 1 o
/—|dz|:/ 740 = [re™] " =0
cz o ¢
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10.2.1 Maximum Modulus Integral Bound

The absolute value of a real integral obeys the inequality

b
r)da Sl/m|f@0Hd$|§(b——a)wa|f()|

<z<b

Now we prove the analogous result for the modulus of a contour integral.

n—1
|, 5 rcoa
k=0

n—1

< Jim, 311Gl 145

- [1rela
< [ (max1s) las
~ (maxls21) [ as

_ (max|f( )|> « (length of C)

eC

Result 10.2.1 Maximum Modulus Integral Bound.

s < [ 17 lasl < (Igeag!f(Z)\) (length of ()
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10.3 The Cauchy-Goursat Theorem

Let f(z) be analytic in a compact, closed, connected domain D. We consider the integral of f(z) on the boundary of
the domain.
f(z)dz = Y(z,y)(de +dy) = Ydr +wpdy
oD oD oD
Recall Green's Theorem.

/ de+Qdy=/(Qm—Py)dxdy
oD D

If we assume that f’(z) is continuous, we can apply Green's Theorem to the integral of f(z) on OD.

fe = [ pdrrwdy= [ (- v)dsdy
oD D

oD

Since f(z) is analytic, it satisfies the Cauchy-Riemann equation 1, = —u),. The integrand in the area integral,
1), — 1)y, is zero. Thus the contour integral vanishes.

f(z)dz=0
oD

This is known as Cauchy’s Theorem. The assumption that f’(z) is continuous is not necessary, but it makes the
proof much simpler because we can use Green's Theorem. If we remove this restriction the result is known as the
Cauchy-Goursat Theorem. The proof of this result is omitted.

Result 10.3.1 The Cauchy-Goursat Theorem. If f(z) is analytic in a compact, closed,
connected domain D then the integral of f(z) on the boundary of the domain vanishes.

f(z)dz:z f(z)dz=0
D . Y Ck

Here the set of contours {C} make up the positively oriented boundary 9D of the domain
D.
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As a special case of the Cauchy-Goursat theorem we can consider a simply-connected region. For this the boundary
is a Jordan curve. We can state the theorem in terms of this curve instead of referring to the boundary.

Result 10.3.2 The Cauchy-Goursat Theorem for Jordan Curves. If f(z) is analytic
inside and on a simple, closed contour C', then

j(éf(z)dz:()

Example 10.3.1 Let C be the unit circle about the origin with positive orientation. In Example 10.2.1 we calculated

that
/zdz:O
c

Now we can evaluate the integral without parameterizing the curve. We simply note that the integrand is analytic
inside and on the circle, which is simple and closed. By the Cauchy-Goursat Theorem, the integral vanishes.

We cannot apply the Cauchy-Goursat theorem to evaluate
1
/ —dz =27
c <
as the integrand is not analytic at z = 0.

Example 10.3.2 Consider the domain D = {z | |z| > 1}. The boundary of the domain is the unit circle with negative
orientation. f(z) = 1/z is analytic on D and its boundary. However [, f(z)dz does not vanish and we cannot apply
the Cauchy-Goursat Theorem. This is because the domain is not compact.
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10.4 Contour Deformation

Path Independence. Consider a function f(z) that is analytic on a simply connected domain a contour C' in that
domain with end points @ and b. The contour integral fc f(2) dz is independent of the path connecting the end points
and can be denoted f:f(z) dz. This result is a direct consequence of the Cauchy-Goursat Theorem. Let C'; and C,
be two different paths connecting the points. Let —C'5 denote the second contour with the opposite orientation. Let
C' be the contour which is the union of C'; and —C5. By the Cauchy-Goursat theorem, the integral along this contour
vanishes.
/f(z)dz: f(z)dz+ f(z)dz=0
C Ci —Cs
This implies that the integrals along C'; and C are equal.

f(z)dz= [ [f(z)dz
C Cs

Thus contour integrals on simply connected domains are independent of path. This result does not hold for multiply
connected domains.

Result 10.4.1 Path Independence. Let f(z) be analytic on a simply connected domain.
For points a and b in the domain, the contour integral,

/abf(z)dz

is independent of the path connecting the points.

Deforming Contours. Consider two simple, closed, positively oriented contours, C; and Cs. Let C5 lie completely
within Cy. If f(z) is analytic on and between C and C; then the integrals of f(z) along C; and C are equal.

f(z)dz= [ [f(2)dz
Cq Cs
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Again, this is a direct consequence of the Cauchy-Goursat Theorem. Let D be the domain on and between C; and Cs.
By the Cauchy-Goursat Theorem the integral along the boundary of D vanishes.

f(z)dz + f(z)dz=0
C1 C2

e = [ f)a
Ch Cs

By following this line of reasoning, we see that we can deform a contour C' without changing the value of fc f(z)dz
as long as we stay on the domain where f(z) is analytic.

Result 10.4.2 Contour Deformation. Let f(z) be analytic on a domain D. If a set of
closed contours {C),} can be continuously deformed on the domain D to a set of contours
{I',,} then the integrals along {C,,} and {I',} are equal.

(z2)dz = f(z)dz
{Com} {0}

10.5 Morera’s Theorem.

The converse of the Cauchy-Goursat theorem is Morera's Theorem. If the integrals of a continuous function f(z)
vanish along all possible simple, closed contours in a domain, then f(z) is analytic on that domain. To prove Morera's
Theorem we will assume that first partial derivatives of f(2) = u(z,y) + w(x,y) are continuous, although the result
can be derived without this restriction. Let the simple, closed contour C' be the boundary of D which is contained in
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the domain 2.

jl{cf(z) dz = Y{C(u—l—w)(dx%—zdy)

:]{udx—vdy+z7{vdx+udy
c c

:/(—vz—uy)dxdy—l-z/(uw—vy)dxdy
D D
=0

Since the two integrands are continuous and vanish for all C' in €2, we conclude that the integrands are identically zero.
This implies that the Cauchy-Riemann equations,

Uy = Uy, Uy = —Vg,

are satisfied. f(z) is analytic in €.

The converse of the Cauchy-Goursat theorem is Morera's Theorem. If the integrals of a continuous function f(z)
vanish along all possible simple, closed contours in a domain, then f(z) is analytic on that domain. To prove Morera's
Theorem we will assume that first partial derivatives of f(z) = ¢(x,y) are continuous, although the result can be
derived without this restriction. Let the simple, closed contour C' be the boundary of D which is contained in the
domain €.

fcf(z) dzzfcwdmwdy)
—/D(ngx—%) dx dy
—0

Since the integrand, 1¢, — ¢, is continuous and vanishes for all C' in €2, we conclude that the integrand is identically
zero. This implies that the Cauchy-Riemann equation,

¢x = _Z¢ya
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is satisfied. We conclude that f(z) is analytic in €.

Result 10.5.1 Morera’s Theorem. If f(z) is continuous in a simply connected domain 2

and
#.16

for all possible simple, closed contours C' in the domain, then f(z) is analytic in €.

10.6 Indefinite Integrals

Consider a function f(z) which is analytic in a domain D. An anti-derivative or indefinite integral (or simply integral)
is a function F'(z) which satisfies F’(z) = f(z). This integral exists and is unique up to an additive constant. Note
that if the domain is not connected, then the additive constants in each connected component are independent. The

indefinite integrals are denoted:
/f(z) dz=F(2)+c.

We will prove existence later by writing an indefinite integral as a contour integral. We briefly consider uniqueness
of the indefinite integral here. Let F(z) and G(z) be integrals of f(z). Then F'(z) — G'(2) = f(2) — f(2) = 0.
Although we do not prove it, it certainly makes sense that F'(z) — G(z) is a constant on each connected component
of the domain. Indefinite integrals are unique up to an additive constant.

Integrals of analytic functions have all the nice properties of integrals of functions of a real variable. All the formulas
from integral tables, including things like integration by parts, carry over directly.
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10.7 Fundamental Theorem of Calculus via Primitives

10.7.1 Line Integrals and Primitives

Here we review some concepts from vector calculus. Analagous to an integral in functions of a single variable is
a primitive in functions of several variables. Consider a function f(x). F(z) is an integral of f(z) if and only if
dF = fdz. Now we move to functions of x and y. Let P(x,y) and Q(z,y) be defined on a simply connected domain.

A primitive ® satisfies
d® = Pdx + Qdy.

A necessary and sufficient condition for the existence of a primitive is that P, = (),. The definite integral can be
evaluated in terms of the primitive.

(C7d)
/ Pdx+ Qdy = ®(c,d) — ®(a,b)
(

a,b)

10.7.2 Contour Integrals

Now consider integral along the contour C' of the function f(z) = ¢(x,y).

[ 16az = [ @aesiway

A primitive ® of ¢ dx + 19 dy exists if and only if ¢, = 1¢,. We recognize this as the Cauch-Riemann equation,
¢ = —1p,. Thus a primitive exists if and only if f(z) is analytic. If so, then

d® = ¢dx + 10 dy.

How do we find the primitive ® that satisfies ®, = ¢ and ®, = 1¢? Note that choosing ¥ (z,y) = F(2) where F'(z)
is an anti-derivative of f(z), F'(z) = f(2), does the trick. We express the complex derivative as partial derivatives in
the coordinate directions to show this.

Fi(z) = f(z) = (), F'(z) = B, = —d,
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From this we see that ®, = ¢ and ®, = 1¢ so ®(z,y) = F(z) is a primitive. Since we can evaluate the line integral

of (¢pdx + 10 dy), "
/ (¢dz + 6 dy) = (e, d) — D(a,b),
(

a,b)
We can evaluate a definite integral of f in terms of its indefinite integral, F'.

/ f(2)dz = F(b) - F(a)

This is the Fundamental Theorem of Calculus for functions of a complex variable.

10.8 Fundamental Theorem of Calculus via Complex Calculus

Result 10.8.1 Constructing an Indefinite Integral. If f(z) is analytic in a simply con-
nected domain D and a is a point in the domain, then

Fe) = [ CHO) ¢

is analytic in D and is an indefinite integral of f(2), (F'(z) = f(z)).

Now we consider anti-derivatives and definite integrals without using vector calculus. From real variables we know
that we can construct an integral of f(x) with a definite integral.

F(z) = / T fe)de

Now we will prove the analogous property for functions of a complex variable.

F(z) = / CHO)de
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Let f(z) be analytic in a simply connected domain D and let a be a point in the domain. To show that F'(z) = f: f(¢)d¢
is an integral of f(z), we apply the limit definition of differentiation.

F(z+ Az) — F(z)
m
Az—0 Az

1 z+Az z
=t ([ 0@ [Croac)

The integral is independent of path. We choose a straight line connecting z and z + Az. We add and subtract
Azf(z) = f;JFAZ f(z)d¢ from the expression for F’(z).

Fi(z) = lim — (Azf(z) +f 00 - 1) dc)

Az—0 AZ

Az—0 Az

= 56+ Jm - [ O = FE) A

Since f(z) is analytic, it is certainly continuous. This means that

lim £(¢) = 0.
The limit term vanishes as a result of this continuity.
1 z+Az 1
b B < Tim _E _
dm o [ U = P < Jim lasl _max 1O = 1)

= lim max |[f({)— f(2)]

Az—0 (€[z...2+AZ]
=0

Thus F'(2) = f(z).
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This results demonstrates the existence of the indefinite integral. We will use this to prove the Fundamental Theorem
of Calculus for functions of a complex variable.

Result 10.8.2 Fundamental Theorem of Calculus. If f(z) is analytic in a simply con-
nected domain D then

| 124 =Fo) - Fa

where F'(z) is any indefinite integral of f(2).

/f F(b) +c.

(Here we are considering b to be a variable.) The case b = a determines the constant.

/f Jdz=F(a)+c¢=0
c=~Fla)

This proves the Fundamental Theorem of Calculus for functions of a complex variable.

1
/ dz
CZ—CL

where C' is any closed contour that goes around the point z = a once in the positive direction. We use the Fundamental
Theorem of Calculus to evaluate the integral. We start at a point on the contour z —a = r¢'’. When we traverse the
contour once in the positive direction we end at the point z — a = r e"(0+27),
1 _q—n o2(0427)
| e = logle - )i
c

zZ—a

From Result 10.8.1 we know that

Example 10.8.1 Consider the integral

= Logr + (0 4+ 2m) — (Logr + 10)

=27
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10.9 Exercises

Exercise 10.1
C'is the arc corresponding to the unit semi-circle, |z| = 1, S(z) > 0, directed from z = —1 to z = 1. Evaluate

1. /z2dz
c

2. /‘zQ‘ dz
c

3. /z2\dz|
c

4. /‘22‘ |dz|
c

Hint, Solution

Exercise 10.2
Evaluate

where a,b € C and R(a) > 0. Use the fact that

Hint, Solution

Exercise 10.3
Evaluate

2/ e~ cos(wz)dz, and 2/ z e sin(wr)dz,
0 0
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where R(a) > 0 and w € R.
Hint, Solution

Exercise 10.4
Use an admissible parameterization to evaluate

/(z —z)"dz, neZ
c
for the following cases:
1. C'is the circle |z — 25| = 1 traversed in the counterclockwise direction.
2. C'is the circle |z — zy — 12| = 1 traversed in the counterclockwise direction.

3. z0=0,n=—1 and C' is the closed contour defined by the polar equation

0
— 2 — si 2 -
r Sin ( )

Is this result compatible with the results of part (a)?

Hint, Solution

Exercise 10.5
1. Use bounding arguments to show that
. z + Log z
lim —_—

: dz =0
R—o0 CR Zd‘l_l &

where C§ is the positive closed contour |z| = R.

2. Place a bound on

/ Log zdz
c

where C' is the arc of the circle |z| = 2 from —i2 to 2.
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3. Deduce that

21 R2+1
/22 dz| < nr +
CZ +1 R2—1

where C'is a semicircle of radius R > 1 centered at the origin.
Hint, Solution

Exercise 10.6
Let C denote the entire positively oriented boundary of the half disk 0 <7 < 1, 0 < # < 7 in the upper half plane.
Consider the branch

3
f(z) = Vref? —g <f< ;

. Show by separate parametric evaluation of the semi-circle and the two radii constituting

/C f(z)dz = 0.

of the multi-valued function z%/2

the boundary that

Does the Cauchy-Goursat theorem apply here?
Hint, Solution

Exercise 10.7
Evaluate the following contour integrals using anti-derivatives and justify your approach for each.

1.
/ (z23 + 273) dz,
c

where C'is the line segment from z; = 1+ 1 to 2 = 1.

/ sin® z cos z dz
e,

where C'is a right-handed spiral from z; = 7 to 25 = .

462



with
v=etleer < Argz <.

C joins z; = —1 and 2z, = 1, lying above the real axis except at the end points. (Hint: redefine z* so that it
remains unchanged above the real axis and is defined continuously on the real axis.)

Hint, Solution
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10.10 Hints
Hint 10.1

Hint 10.2
Let C be the parallelogram in the complex plane with corners at =R and £R + b/(2a). Consider the integral of em0?’
on this contour. Take the limit as R — oc.

Hint 10.3
Extend the range of integration to (—oo...00). Use e“* = cos(wz) + ¢sin(wz) and the result of Exercise 10.2.
Hint 10.4
Hint 10.5

Hint 10.6

Hint 10.7
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10.11 Solutions

Solution 10.1
We parameterize the path with z = ¢, with 6 ranging from 7 to 0.

dz = e do
|dz| = |2 df| = |df| = —db

S~
N
[\V)
[oN
N
1

| I I
LWl = =NO=]\

—~
—_
|
—~
|
—_
~—
~—

WINW| =W = r—
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0
/|22|dz:/ | e |1e' df
C T
0
:/ 1e? do

=[],
—1-(-1)
=2

0
/z2|dz|:/ &2 |, |
C T
0
:/ 229 de

[ 129} )
=s01-1)
0

0
/\z2||dz|:/ 29[| )
C T
0
:/ a9



Solution 10.2

I= / T olantin) g,

o0

First we complete the square in the argument of the exponential.

[ = /) / " eralatb/Ga)? g,

Consider the parallelogram in the complex plane with corners at +R and R + b/(2a). The integral of e~ on this
contour vanishes as it is an entire function. We relate the integral along one side of the parallelogram to the integrals
along the other three sides.

R+b/(2a) , -R R R+b/(2a) ,
/ e ¥ dz = / +/ —|—/ e % dz.
—R+b/(2a) —R+b/(2a) R R

The first and third integrals on the right side vanish as R — oo because the integrand vanishes and the lengths of the
paths of integration are finite. Taking the limit as R — oo we have,

o0o+b/(2a) 9 S
/ e % dz = / e~ tb/(20))* g :/ e %" dx.
—oo+b/(2a) —00 —00

__ . b?/(4a) OO —ax?
I=e e dx.

Now we have

We make the change of variables £ = /ax.

1 e
I = b?/(da) — e € d¢
Va

—00

/OO ef(aszrbz) dr = \/EebQ/Ma)
oo a
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Solution 10.3
Consider

I= 2/ e cos(wz) dz.
0
Since the integrand is an even function,
]:/ e~ cos(wz) dz.

—00

* 2
I :/ e " e dux.
—00

We evaluate this integral with the result of Exercise 10.2.

*° 2 ™ 2
2/ o COS(COZL‘) dr = \/ie—w /(4a)
0 a

I = 2/ z e~ sin(wr) da.
0

. 2. . .
Since e~ sin(wx) is an odd function,

Consider

Since the integrand is an even function,
o0
I:/ ze " sin(wz) dz.

: 2 . .
Since x e " cos(w) is an odd function,

© 2
I = —z/ e e dx.

o0

We add a dash of integration by parts to get rid of the x factor.

1 o o0 1
I = — |:_%e—aac2 ezwa::| - + Z/_oo (_% e—a:c2 " ezwx) dz

w & 2

I =— e Y e dx
2a

—00
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2/ e sin(wzx) dz = i\/ge—“ﬁ/(‘la)
0 2a '\ a
Solution 10.4

1. We parameterize the contour and do the integration.

z—z=¢% Hecl0...2m)

2m
/(z —2p)"dz = / e e
c 0

er(n+1)0 2
_ [nil }0 for n # —1 _ 0 forn # —1
WEW forn — —1 127 forn = —1
2. We parameterize the contour and do the integration.
z—z=12+e% 0c[0...2n)
27
/(z —zp)"dz = / (12 +e?)"1e? d
c 0
(7,2+e’9)n+1 2
_ [—nH L forn # —1 _0

2

o forn=—1

[log (12 + )]
3. We parameterize the contour and do the integration.

0
z=re?, r=2—sin? <1>, 6el0...4m)
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Figure 10.2: The contour: r = 2 — sin? (%).

The contour encircles the origin twice. See Figure 10.2.

(7'(8) + ur(6)) e’ db

)

= [log(r(9)) + 18]y

Since 7(f) does not vanish, the argument of () does not change in traversing the contour and thus the
logarithmic term has the same value at the beginning and end of the path.

/ 2 Yz = wdr
c

This answer is twice what we found in part (a) because the contour goes around the origin twice.
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Solution 10.5
1. We parameterize the contour with z = Re and bound the modulus of the integral.
z + Log z

/ z—i—Logzdz </
Cr 23+1 - Cr 23+1

</%R+mR+w

=~ Jo RF—1

R+InmR+m
R?—1

|dz|

Rdo
= 2nr
The upper bound on the modulus on the integral vanishes as R — oo.

) R+lmR+7
[

We conclude that the integral vanishes as R — oo.

2. We parameterize the contour and bound the modulus of the integral.

z=2e 9e[-n/2...7/2
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/ Log zdz
c

< / [Log 2] |dz]
C
/2

:1/ |In2 + 10]2d6

—7/2

/2
§2/ (In2 + [6]) 6

—7/2
w/2
:4/‘<m2+mde
0

(m+41n2)

(GRS

3. We parameterize the contour and bound the modulus of the integral.

z:Rela, 96[90...90+7T]

22 -1

2241

S /
C

Qo+
< -

90+7rR2+1
<R de
LT =

R2+1
R -1

|dz|

2
—1
/22 dz
o R +1

MRM|

=7r
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Solution 10.6

/Cf(z)dz:/le/Fdqu/oﬂew/%eze d0+/10@\/77(—dr)

2 (22, 2 ,
~ 3 37 '3) 73 -

The Cauchy-Goursat theorem does not apply because the function is not analytic at z = 0, a point on the boundary.

Solution 10.7
1.

4 A
3 _3 12 1
dz = |— — —
/C(ZZ e ) : [4 222]1+z
1+
= — 41
2

In this example, the anti-derivative is single-valued.

= — (sin®(u7r) — sin®(m))
3

.. 3 s
/SiHQZCOSZdZ = {sm Z]
C 3 s
1
3

= —1

Again the anti-derivative is single-valued.
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3. We choose the branch of z* with —7/2 < arg(z) < 37/2. This matches the principal value of z* above the real
axis and is defined continuously on the path of integration.

142 7€
/zldz:{z }
C 1+Z e

_ [ﬁ o1+ 1ogz]

2 elﬂ'
_ 1 ; ] (eo o e(l—i—z)lﬂ')
14+e™™
“ LTy
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Chapter 11

Cauchy’s Integral Formula

If | were founding a university | would begin with a smoking room; next a dormitory; and then a decent reading room
and a library. After that, if | still had more money that | couldn’t use, | would hire a professor and get some text books.

- Stephen Leacock
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11.1 Cauchy’s Integral Formula

Result 11.1.1 Cauchy’s Integral Formula. If f({) is analytic in a compact, closed, con-
nected domain D and z is a point in the interior of D then

iy L 1Q mz%@ P (11.1)

12T 8DC—Z

Here the set of contours {C}} make up the positively oriented boundary 9D of the domain
D. More generally, we have

n ! f(¢
f"(2) = ZZ_W 8Dﬁ o Z]ék n+1 : (11.2)

Cauchy's Formula shows that the value of f(z) and all its derivatives in a domain are determined by the value of
f(2) on the boundary of the domain. Consider the first formula of the result, Equation 11.1. We deform the contour
to a circle of radius ¢ about the point ( = z.

§ 18 0 f 1O 4

¢—=z C(;C—Z
) JE) oy f TO=1C)
05§—2 Cs -z

We use the result of Example 10.8.1 to evaluate the first integral.

PR PSRN (SELCP,
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The remaining integral along Cs vanishes as § — 0 because f(() is continuous. We demonstrate this with the maximum
modulus integral bound. The length of the path of integration is 2.

Mdg' < lim ((%5)% max | f(¢) —f(Z)\)

[¢—2|=5

lim
6—0

Cs -z
0—0 [¢—z|=68

<ty (20 na 17(0) - )]
=0

This gives us the desired result.

16)= 5= ¢ 1 ac

_E CC—Z

We derive the second formula, Equation 11.2, from the first by differentiating with respect to z. Note that the
integral converges uniformly for z in any closed subset of the interior of C'. Thus we can differentiate with respect to
z and interchange the order of differentiation and integration.

e Lodm o f(Q)
/) = 12 dzn CC—de

T 2 cdzn( — 2
_ f(©)
T

Example 11.1.1 Consider the following integrals where C' is the positive contour on the unit circle. For the third
integral, the point z = —1 is removed from the contour.

L 740 sin (cos (=) d=
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w

1
%C (> —3)(3z - 1) dz

/C\/Edz

. Since sin (cos (2°)) is an analytic function inside the unit circle,

fé sin (cos (=) dz = 0

m has singularities at = = 3 and z = 1/3. Since z = 3 is outside the contour, only the singularity at

z = 1/3 will contribute to the value of the integral. We will evaluate this integral using the Cauchy integral

formula.
frmstiy o )+

Since the curve is not closed, we cannot apply the Cauchy integral formula. Note that \/z is single-valued and
analytic in the complex plane with a branch cut on the negative real axis. Thus we use the Fundamental Theorem
of Calculus.

[oveee= 57,
_ § ( 7,37r/2 e—z37r/2)
2
=2
4
= Z3

478



Cauchy’s Inequality. Suppose the f(() is analytic in the closed disk | — z| < r. By Cauchy's integral formula,

1) = g f

where C' is the circle of radius r centered about the point z. We use this to obtain an upper bound on the modulus of

fF(2).
§ el

f(©)
(€ — 2t

£ () =

T or

n!
< —27r max
s [(—z|=r

Result 11.1.2 Cauchy’s Inequality. If f({) is analytic in | — z| < 7 then
n!M

<
=T

)

where |f(¢)| < M for all | — z| = 7.

Liouville’s Theorem. Consider a function f(z) that is analytic and bounded, (|f(z)| < M), in the complex plane.
From Cauchy's inequality,

M
OEE-
for any positive r. By taking r — oo, we see that f’(z) is identically zero for all z. Thus f(z) is a constant.

Result 11.1.3 Liouville’s Theorem. If f(z) is analytic and | f(2)| is bounded in the complex
plane then f(z) is a constant.
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The Fundamental Theorem of Algebra. We will prove that every polynomial of degree n > 1 has exactly n
roots, counting multiplicities. First we demonstrate that each such polynomial has at least one root. Suppose that an
n'™ degree polynomial p(z) has no roots. Let the lower bound on the modulus of p(z) be 0 < m < |p(z)|. The function
f(2) = 1/p(z) is analytic, (f'(2) = p'(z)/p*(2)), and bounded, (|f(z)| < 1/m), in the extended complex plane. Using
Liouville's theorem we conclude that f(z) and hence p(z) are constants, which yields a contradiction. Therefore every
such polynomial p(z) must have at least one root.

Now we show that we can factor the root out of the polynomial. Let

p(z) = Zpkzk.
k=0

We note that

Suppose that the n'" degree polynomial p(z) has a root at z = c.

p(2) = p(z) —p(c)

=2 m =)
k=0 k=0

=2 (=)
k=0

n
= Zpk(z —0) e P
k=0

— (2= ()

o
Ju

Il
=)

Here ¢(z) is a polynomial of degree n — 1. By induction, we see that p(z) has exactly n roots.
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Result 11.1.4 Fundamental Theorem of Algebra. Every polynomial of degree n > 1 has
exactly n roots, counting multiplicities.

Gauss’ Mean Value Theorem. Let f(() be analytic in | — z| < r. By Cauchy's integral formula,

6= o ¢ L

_E CC—Z

where C'is the circle |¢ — z| = r. We parameterize the contour with ¢ = z + re®.

1(2) = L [* f(z+re?)

= — T e do
127 J, ret

Writing this in the form,
1 27
f(z) = —/ f(z+re?)rdd,
2mr Jg

we see that f(z) is the average value of f(() on the circle of radius r about the point 2.

Result 11.1.5 Gauss’ Average Value Theorem. If f(({) is analytic in [( — z| < r then
1 2w

S f(z—l—?“e“g) do.
27T 0

f(z)

That is, f(z) is equal to its average value on a circle of radius r about the point z.

Extremum Modulus Theorem. Let f(z) be analytic in closed, connected domain, D. The extreme values of the
modulus of the function must occur on the boundary. If | f(2)| has an interior extrema, then the function is a constant.
We will show this with proof by contradiction. Assume that |f(z)| has an interior maxima at the point z = ¢. This

481



means that there exists an neighborhood of the point z = ¢ for which |f(2)| < |f(¢)|
|z — ¢| < € lies inside this neighborhood. First we use Gauss' mean value theorem.

1

2
fo) = %/0 f(c+ee?) do

We get an upper bound on |f(c)| with the maximum modulus integral bound.

27
1f(c)| < i/ﬂ |f(c+ee?)| do

- 27

Since z = ¢ is a maxima of |f(z)| we can get a lower bound on |f(c)].

- 27

2T
|f(c)| > i/ﬂ |f(c+ee?)| do

. Choose an € so that the set

If |f(2)] < |f(c)| for any point on |z —c| = ¢, then the continuity of f(z) implies that |f(z)| < |f(c)| in a neighborhood
of that point which would make the value of the integral of |f(2)| strictly less than |f(c)|. Thus we conclude that
|f(2)] = |f(c)| for all |z — ¢| = e. Since we can repeat the above procedure for any circle of radius smaller than e,
|f(2)] = |f(c)] for all |z —c| <¢, i.e. all the points in the disk of radius € about z = ¢ are also maxima. By recursively
repeating this procedure points in this disk, we see that |f(z)| = |f(c)| for all z € D. This implies that f(z) is a
constant in the domain. By reversing the inequalities in the above method we see that the minimum modulus of f(2)

must also occur on the boundary.

has an interior extrema, then the function is a constant.

If /(=)

Result 11.1.6 Extremum Modulus Theorem. Let f(z) be analytic in a closed, connected
domain, D. The extreme values of the modulus of the function must occur on the boundary.
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11.2 The Argument Theorem

Result 11.2.1 The Argument Theorem. Let f(z) be analytic inside and on C' except for
isolated poles inside the contour. Let f(z) be nonzero on C.

z27r/f c=N=FP

Here N is the number of zeros and P the number of poles, counting multiplicities, of f(2)
inside C'.

First we will simplify the problem and consider a function f(z) that has one zero or one pole. Let f(z) be analytic
and nonzero inside and on A except for a zero of order n at z = a. Then we can write f(z) = (z —a)"g(z) where g(z)
is analytic and nonzero inside and on A. The integral of f 5 anng Als

- J}((; de = o [ < Gog(s(2)) a:

_ 2% (j (log((z — a)") + log(g(2))) d=
1 d

= 57 | 3 tor((z — @) dz
1 n

121 Jq 2 —a
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Now let f(z) be analytic and nonzero inside and on B except for a pole of order p at z = b. Then we can write
f(z) = (ng’z))p where ¢(z) is analytic and nonzero inside and on B. The integral of % along B is

o | 5 =g [ ot a:
- % ; % (log((z — b)™") +log(g(2))) d=
% ; % (log((z — b)™7)+) dz
B é B z_—pb dz
=P

Now consider a function f(z) that is analytic inside an on the contour C' except for isolated poles at the points

bi,...,b,. Let f(z) be nonzero except at the isolated points ay, ..., a,. Let the contours Ay, k =1,...,n, be simple,
positive contours which contain the zero at a; but no other poles or zeros of f(z). Likewise, let the contours By,
k = 1,...,p be simple, positive contours which contain the pole at b; but no other poles of zeros of f(z). (See

Figure 11.1.) By deforming the contour we obtain

IR EEE AT

From this we obtain Result 11.2.1.

11.3 Rouche’s Theorem

Result 11.3.1 Rouche’s Theorem. Let f(z) and g(z) be analytic inside and on a simple,

closed contour C. If |f(z)| > |g(2)| on C then f(z) and f(z) + g(z) have the same number
of zeros inside C' and no zeros on C.
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Figure 11.1: Deforming the contour C'.

First note that since |f(z)| > |g(z)| on C, f(z) is nonzero on C. The inequality implies that |f(z) + g(z)| > 0
on C' so f(z) + g(z) has no zeros on C. We well count the number of zeros of f(z) and g(z) using the Argument
Theorem, (Result 11.2.1). The number of zeros N of f(z) inside the contour is

L [ f(z)
= — dz.
127 Jo f(2)

Now consider the number of zeros M of f(z) + g(z). We introduce the function h(z) = g(2)/f(2).

_ 1 () +d(R)
M= 0.7 v o) ¢

z

_ L [ G+ PR + FRNE)
m c (Z)+f(2) (2)

_ f’ () h’(z

_E f(z) d o PTG

=N + — [log(l + h(2))]-

=N
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(Note that since |h(z)] < 1 on C, R(1 + h(z)) > 0 on C and the value of log(1 + h(z)) does not not change in
traversing the contour.) This demonstrates that f(z) and f(z) + g(z) have the same number of zeros inside C' and
proves the result.
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11.4 Exercises
Exercise 11.1
What is
(arg(sin z)) ’C
where C is the unit circle?
Exercise 11.2

Let C' be the circle of radius 2 centered about the origin and oriented in the positive direction. Evaluate the following
integrals:

1. 35'0 sin z dZ

Z2+5
z
2. fo 7y dz

3. §, 5 de

z

Exercise 11.3
Let f(z) be analytic and bounded (i.e. |f(z)| < M) for |z] > R, but not necessarily analytic for |z|] < R. Let the
points « and (3 lie inside the circle |z| = R. Evaluate

£(2)
?icz—a)(z—m @

where C'is any closed contour outside |z| = R, containing the circle |z| = R. [Hint: consider the circle at infinity] Now
suppose that in addition f(z) is analytic everywhere. Deduce that f(a) = f(5).

Exercise 11.4
Using Rouche’s theorem show that all the roots of the equation p(z) = 2% —522+10 = 0 lie in the annulus 1 < |2| < 2.

Exercise 11.5
Evaluate as a function of ¢

1 ]{ et d
w=—¢ ———dz
27 Jo 22(22 4+ a?)
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where C' is any positively oriented contour surrounding the circle |z| = a.

Exercise 11.6

Consider C1, (the positively oriented circle |z|] = 4), and Cy, (the positively oriented boundary of the square whose
sides lie along the lines x = +1, y = +1). Explain why

f(z)dz= [ f(2)dz
C1 c2
for the functions

1
1. -
1) 32241
I
o 1—e?
Exercise 11.7
Show that if f(z) is of the form

2. f(2)

(6% (07 (6%
f(z):—k—l—z,]zfll+---+?1+g(z), E>1

where g is analytic inside and on C, (the positive circle |z| = 1), then

/ f(z)dz = 27ay.
c

Exercise 11.8
Show that if f(z) is analytic within and on a simple closed contour C' and z is not on C' then

16 g, [ S,
| |

oz =20 z— 2p)?

Note that z5 may be either inside or outside of C'.
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Exercise 11.9

If C' is the positive circle z = ¢*

show that for any real constant a,

az
—dz =27
C z

and hence .
/ %% cos(asin ) df = .
0

Exercise 11.10
Use Cauchy-Goursat, the generalized Cauchy integral formula, and suitable extensions to multiply-connected domains
to evaluate the following integrals. Be sure to justify your approach in each case.

1.
z
d
/023—9 -

where C' is the positively oriented rectangle whose sides lie along © = £5, y = +£3.

sin z
B |
/cz%z—zx) -

where C'is the positively oriented circle |z| = 2.

3 .
/(z +4z+z)s1nzd27
c 24 423

where C' is the positively oriented circle |z| = 7.

ezt
—d
/c 22(z+1) i

where C'is any positive simple closed contour surrounding |z| = 1.
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Exercise 11.11
Use Liouville's theorem to prove the following:

1. If f(2) is entire with R(f(z)) < M for all z then f(z) is constant.
2. If f(2) is entire with |f®)(2)| < M for all z then f(z) is a polynomial of degree at most five.

Exercise 11.12
Find all functions f(z) analytic in the domain D : |z| < R that satisfy f(0) =e" and |f(z)| <1 for all zin D.

Exercise 11.13 i
Let f(2) =D oo k* (i) and evaluate the following contour integrals, providing justification in each case:

1. / cos(1z) f(z)dz  C'is the positive circle |z — 1| = 1.
c

2. (5) dz  C'is the positive circle |z| = .
o <
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11.5 Hints
Hint 11.1

Use the argument theorem.

Hint 11.2

Hint 11.3

To evaluate the integral, consider the circle at infinity.
Hint 11.4

Hint 11.5

Hint 11.6

Hint 11.7

Hint 11.8

Hint 11.9

Hint 11.10
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Hint 11.11

Hint 11.12

Hint 11.13
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11.6 Solutions

Solution 11.1
Let f(z) be analytic inside and on the contour C'. Let f(z) be nonzero on the contour. The argument theorem states

that

L[,
27 ) 700 dz =N — P,

where N is the number of zeros and P is the number of poles, (counting multiplicities), of f(z) inside C'. The theorem
is aptly named, as

L[z, 1
a7 | dz = o log(f(2))]le
= % log|f(2)] +varg(f(2))]
= - ()l

Thus we could write the argument theorem as

1L (=), 1 _
E o f(Z) dz = % [arg(f(z))]c =N-P

Since sin z has a single zero and no poles inside the unit circle, we have

1 :
Dy arg(sm(z))‘c =1-0

arg(sin(z)) ‘C =27

Solution 11.2

1. Since the integrand 5;125 is analytic inside and on the contour, (the only singularities are at z = +1/5 and at

infinity), the integral is zero by Cauchy's Theorem.
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2. First we expand the integrand in partial fractions.

z a b

= +
2241 z—1 z4+1

z
Z+1

Now we can do the integral with Cauchy’s formula.

1/2 1/2
/ 22 dz = / dz—l—/ / dz
cz*+1 cZ—1 cZt

1 1
= 5227 + 522%

a =

zZ=1

=27
3.
2
/Z +1dz:/ (z+}) dz
c < c Z
1
:/zdz—l—/—dz
c c <
=04+ 27
=27
Solution 11.3

Let C' be the circle of radius , (r > R), centered at the origin. We get an upper bound on the integral with the
Maximum Modulus Integral Bound, (Result 10.2.1).

£(2) (2)
?icz—a)(z—m @

(z = a)(z = B)

M
(r = laf)(r = 15])

< 27mr max
|z|=r

’SQWT
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By taking the limit as r — oo we see that the modulus of the integral is bounded above by zero. Thus the integral
vanishes.
Now we assume that f(z) is analytic and evaluate the integral with Cauchy’s Integral Formula. (We assume that

o 8)
e
| Nemryemr Ll
f(2) f(2) _
e e LR N e Ll
f(a) f(8)
ZZWQ_6+Z2Wﬂ_a =0
fla) = f(B)
Solution 11.4
Consider the circle |z| = 2. On this circle:
25| = 64

| =522 410 < | — 52% 4 (10| = 30

Since |2% < | =522+ 10| on |z| = 2, p(z) has the same number of roots as 2° in |z| < 2. p(z) has 6 roots in |2| < 2.
Consider the circle |z| = 1. On this circle:
|10 = 10
26 — 522 < 2% + | — 52%| =6
Since |2% — 52%| < |10] on |z] = 1, p(z) has the same number of roots as 10 in |z| < 1. p(z) has no roots in |z| < 1.

On the unit circle,
Ip(2)] > 110] — [2°] — [52%| = 4.

Thus p(z) has no roots on the unit circle.
We conclude that p(z) has exactly 6 roots in 1 < |z| < 2.
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Solution 11.5

We evaluate the integral with Cauchy’s Integral Formula.

Solution 11.6

B 174 et q
YT e o 22(22 + a?) :

1 j{ et Lt et 1%t d
w=— — z
121 Jo \a?2?  2a3(z —1a)  2a3(z +1a)

[ d ezt:| 2 ewt 2 e—wt
w=|—— —
dza?| _, 2a° 2a3
_t sin(at)
T2 a3
at — sin(at
, - ot —sin(at)
a3

1. We factor the denominator of the integrand.

There are two first order poles which could contribute to the value of an integral on a closed path. Both poles
lie inside both contours. See Figure 11.2. We see that C'; can be continuously deformed to C; on the domain

1 1
32241 3(z —1v/3/3)(2 + 1v/3/3)

where the integrand is analytic. Thus the integrals have the same value.

2. We consider the integrand

Since €* = 1 has the solutions z = 127n for n € 7Z, the integrand has singularities at these points. There is a
removable singularity at z = 0 and first order poles at z = 127n for n € Z\ {0}. Each contour contains only the
singularity at z = 0. See Figure 11.3. We see that ('} can be continuously deformed to C; on the domain where

z
1—e®’

the integrand is analytic. Thus the integrals have the same value.
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Figure 11.2: The contours and the singularities of BZQ—IH

Solution 11.7
First we write the integral of f(z) as a sum of integrals.

[ e [ (B ) 0

= a—:dz—i— &zjdz+---+ Mgz + g(z)dz
z z z
c c c c

The integral of g(z) vanishes by the Cauchy-Goursat theorem. We evaluate the integral of oy /2 with Cauchy's integral

formula.
o
—dz = 27y
C <
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Figure 11.3: The contours and the singularities of =

We evaluate the remaining «a,, /2" terms with anti-derivatives. Each of these integrals vanish.

/Cf(z) /—dz%—/&k Sy e+ C%dz+/cg(z)dz

k &%)
- [‘Uc—nzk 1L+'”+ 2o

= 12Ty
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Solution 11.8
We evaluate the integrals with the Cauchy integral formula. (2 is required to not be on C' so the integrals exist.)

=) ds = {ZQWfI(Zo) if 2o is inside C'

cZ— 20 0 if 2o is outside C'
/ f(2) & — 2% f'(20) if 2o is inside C
c(z—2)" ]o if 2o is outside C'

Thus we see that the integrals are equal.

Solution 11.9
First we evaluate the integral using the Cauchy Integral Formula.

< dz = [e**]

_o =127
c <

z

Next we parameterize the path of integration. We use the periodicity of the cosine and sine to simplify the integral.

eaz

—dz =27
C z
16

2 ea®
/ " 1 40 = 27
0 e

2T
/ ea(6059+zsin9) do = 21
0

2w
/ e®“%(cos(sin A) 4 2sin(sin 6)) df = 27
’ 2
/ e®“5% cos(sin 0) df = 2
0

/ %% cos(sinf) df = 7
0
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Solution 11.10
1. We factor the integrand to see that there are singularities at the cube roots of 9.

z z

B=9 (2—9) (» — V9e2r/3) (2 — 9 e2n/3)

Let C,, Cy and Cj5 be contours around z = v/9, z = v/9¢2™/3 and z = v/9e >7/3. See Figure 11.4. Let D be
the domain between C', C'; and (s, i.e. the boundary of D is the union of C', —C} and —C5. Since the integrand
is analytic in D, the integral along the boundary of D vanishes.

z ya z 4 y4
/3D23—9 g /023—9 z+/_0123_9 Z+/_02z3—9 Z+/_03z3—9 :

From this we see that the integral along C' is equal to the sum of the integrals along C, Cy and C5. (We could
also see this by deforming C' onto €, C5 and Cj.)

VA VA z ¥4
dz = d d d
|75 /(;1z3—9 Z*/cz,z?’—@) z+/0323_9 ’
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We use the Cauchy Integral Formula to evaluate the integrals along C;, C5 and C.

z

|.7=%= | e e e

z

+ /02 (= = ¥9) (z — V9e2m3) (2 — ¥/9e27/3) dz

z

" /(,‘3 (z = V9) (z — V9e2n/3) (z — V9 e127/3) dz

z

=12
12T [(Z— \3/§el27r/3) (Z— \3/§el27r/3)]z:%

[ z
+ 12
o _(Z - \3/5) (Z - \3>/§e_127r/3)]z%ez%/3
+ 127 P i e T3
_(z - \/§> (z - \/gel v/ ) 2= 3ge—127/3

_ 2271'3_5/3 (1 o e7,7r/3 +ez27r/3>
=0

2. The integrand has singularities at z = 0 and z = 4. Only the singularity at z = 0 lies inside the contour. We use
the Cauchy Integral Formula to evaluate the integral.

/ sin z d 5 d sinz
——dz =27 | —
c22(z—4) dzz—4]__,

5 CoS 2 sin z
=27 —

z—4 (z—4) 0
_

2
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z

Figure 11.4: The contours for

PR
3. We factor the integrand to see that there are singularities at z = 0 and z = —.
3 : 3 :
2° 4+ z+41)sinz 2° 4+ z+41)sinz
/(+4+) dz:/(++) &
c 2 4023 c  2(z+)

Let C'; and C5 be contours around z = 0 and z = —1. See Figure 11.5. Let D be the domain between C', C'; and
(s, i.e. the boundary of D is the union of C', —C; and —C5. Since the integrand is analytic in D, the integral

along the boundary of D vanishes.
R
oD C —-C1 —Cs

From this we see that the integral along C'is equal to the sum of the integrals along C; and C5. (We could also
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We use the Cauchy Integral Formula to evaluate the integrals along C; and Cs.

/(zg—l—z—l—z)sinzdzz/ (z3+z+z)sinzdz+/ (z3+z—|—z)sinzdz
C C C2

24 423 23(z +1) 23(z +1)
9 (z°+z+1)sinz 2m [ d? (2% + 2 +1)sinz
- 23 ., 20 |de? z+1 o

322+ 1 3
=121 (—2sinh(1)) + 7 {2 ( Z_:—Z - Z(;:_ZZ;Z) oS 2
6z  2(322+1) 2(z%4+z2+1) 2Z2Hz+1) |
_ — sin z
z+1 (2 +12)2 (2 412)3 Z 41 o
= 27 sinh(1)

4. We consider the integral

ezt
—dz.
/cz%zﬂ) :

There are singularities at z =0 and z = —1.

Let C and C5 be contours around z = 0 and z = —1. See Figure 11.6. We deform C onto C; and Cs.

=Ll
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(23+4241) sin z
244023

Figure 11.5: The contours for

We use the Cauchy Integral Formula to evaluate the integrals along C; and Cs.
ezt ezt ezt
——dz = ——dz + / —dz
/C 22(z +1) /Cl 22(z +1) o, 22z +1)

5 ezt N 5 d ezt
=127 | — 27 | ———
2] _ dz(z+1)]._,
27 et 12 { te” o }
=127 127 —
EEST R FETEl I

=2r(e "+t — 1)
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ezt

Figure 11.6: The contours for 21D

Solution 11.11
Liouville's Theorem states that if f(z) is analytic and bounded in the complex plane then f(z) is a constant.

1. Since f(2) is analytic, e/() is analytic. The modulus of /() is bounded.
‘ef(z)‘ — e%(f(z)) S eM
By Liouville’s Theorem we conclude that e/(*) is constant and hence f(z) is constant.

2. We know that f(z) is entire and | f(®)(2)| is bounded in the complex plane. Since f(z) is analytic, so is f(°)(z).
We apply Liouville's Theorem to f(*)(z) to conclude that it is a constant. Then we integrate to determine the

form of f(z).
f(2) =2 + ezt + 32 + 2 ez +
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Here cs is the value of f®)(z) and ¢, through ¢ are constants of integration. We see that f(z) is a polynomial
of degree at most five.

Solution 11.12

For this problem we will use the Extremum Modulus Theorem: Let f(z) be analytic in a closed, connected domain, D.
The extreme values of the modulus of the function must occur on the boundary. If |f(z)| has an interior extrema, then
the function is a constant.

Since |f(z)| has an interior extrema, |f(0)| =|e"| =1, we conclude that f(z) is a constant on D. Since we know
the value at z = 0, we know that f(z) = e

Solution 11.13
First we determine the radius of convergence of the series with the ratio test.

) k4/4k
R= ,}1_{20 ‘ (k 4 1)4/4k+1
k4

koo (k + 1)

The series converges absolutely for |z| < 4.

1. Since the integrand is analytic inside and on the contour of integration, the integral vanishes by Cauchy's Theorem.
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:/Zﬂzk 3dz
C k=1
(k + 3)* k
/Ck—2 Ak+3 dz
(k +3)* N
/@dz—l—/ dz —l—/c W dz

k=0

We can parameterize the first integral to show that it vanishes. The second integral has the value 27 by the
Cauchy-Goursat Theorem. The third integral vanishes by Cauchy's Theorem as the integrand is analytic inside
and on the contour.

f(2)

3 dz =27
C z
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Chapter 12

Series and Convergence

You are not thinking. You are merely being logical.

- Neils Bohr

12.1 Series of Constants

12.1.1 Definitions

Convergence of Sequences. The infinite sequence {a,}>°, = ao, a1, as, . .. is said to converge if
lim a, = a
n—oo

for some constant a. If the limit does not exist, then the sequence diverges. Recall the definition of the limit in the
above formula: For any € > 0 there exists an N € Z such that |a — a,,| < € for all n. > N.

Example 12.1.1 The sequence {sin(n)} is divergent. The sequence is bounded above and below, but boundedness
does not imply convergence.
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Cauchy Convergence Criterion. Note that there is something a little fishy about the above definition. We
should be able to say if a sequence converges without first finding the constant to which it converges. We fix this
problem with the Cauchy convergence criterion. A sequence {a,} converges if and only if for any € > 0 there exists an
N such that |a,, — a,,| < € for all n,m > N. The Cauchy convergence criterion is equivalent to the definition we had
before. For some problems it is handier to use. Now we don't need to know the limit of a sequence to show that it
converges.

. : . . N-1
Convergence of Series. The series >~ | a, converges if the sequence of partial sums, Sy =, _, a,, converges.

That is,

N-1
lim Sy = lim E a,, = constant.
N—o0 N—oo 0

n—=

If the limit does not exist, then the series diverges. A necessary condition for the convergence of a series is that

lim a, = 0.

n—oo

Otherwise the sequence of partial sums would not converge.

Example 12.1.2 The series >~ (—1)" =1—1+1—1+--- is divergent because the sequence of partial sums,
{Sy}=1,0,1,0,1,0,... is divergent.

Tail of a Series. An infinite series, >~ a,, converges or diverges with its tail. That is, for fixed N, > a,
converges if and only if "7 . a, converges. This is because the sum of the first N terms of a series is just a number.
Adding or subtracting a number to a series does not change its convergence.

Absolute Convergence. The series >~ a, converges absolutely if >~ |a,| converges. Absolute convergence
implies convergence. If a series is convergent, but not absolutely convergent, then it is said to be conditionally
convergent.
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The terms of an absolutely convergent series can be rearranged in any order and the series will still converge to
the same sum. This is not true of conditionally convergent series. Rearranging the terms of a conditionally convergent
series may change the sum. In fact, the terms of a conditionally convergent series may be rearranged to obtain any
desired sum.

Example 12.1.3 The alternating harmonic series,

TR
2 3 4 ’
converges, (Exercise 12.4). Since
1+ ! + L + - +
2 3 4

diverges, (Exercise 12.5), the alternating harmonic series is not absolutely convergent. Thus the terms can be rearranged
to obtain any sum, (Exercise 12.6).

Finite Series and Residuals. Consider the series f(z) = > a,(z). We will denote the sum of the first N
terms in the series as

We will denote the residual after N terms as

Ry(2) = f(2) = Sn(2) = ) an(2);
12.1.2 Special Series
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Geometric Series. One of the most important series in mathematics is the geometric series, '

Zz”:1+z—|—22+z3+---.
n=0

The series clearly diverges for |z] > 1 since the terms do not vanish as n — oo. Consider the partial sum, Sy(z) =
SOV 2, for |z] < 1.

N-1
(1= 2)8u(s) = (1-2) 3 &
N-1 N
n=0 n=1
=(1+z+--+2") = (24224 +2V)
=12
N-1
1— 2N 1
2" = SENN as N — oo
1—2 —z

The limit of the partial sums is é

S 1
Zz”:— for |z| <1
—z

Harmonic Series. Another important series is the harmonic series,

o)

Loy Ly
n:1na_ 2 3o :

I The series is so named because the terms grow or decay geometrically. Each term in the series is a constant times the previous
term.
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The series is absolutely convergent for («) > 1 and absolutely divergent for ®(«) < 1, (see the Exercise 12.8).

Riemann zeta function ((«) is defined as the sum of the harmonic series.

The alternating harmonic series is

Again, the series is absolutely convergent for ®(«) > 1 and absolutely divergent for #(a) < 1.

12.1.3 Convergence Tests
The Comparison Test.

Result 12.1.1 The series of positive terms ) _ a,, converges if there exists a convergent series
> by, such that a,, < b, for all n. Similarly, > a,, diverges if there exists a divergent series
> b, such that a, > b, for all n.

Example 12.1.4 Consider the series

=1

We can rewrite this as

n=1
n a perfect square
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Then by comparing this series to the geometric series,

=1

we see that it is convergent.

Integral Test.

Result 12.1.2 If the coefficients a,, of a series )", a, are monotonically decreasing and
can be extended to a monotonically decreasing function of the continuous variable z,

a(z) =a, forxecZ',

then the series converges or diverges with the integral

/OOO a(x)dx.

Example 12.1.5 Consider the series >~ | 5. Define the functions s;(x) and s.(z), (left and right),

1 1
R E A P

Recall that |x| is the greatest integer function, the greatest integer which is less than or equal to x. [x] is the least
integer function, the least integer greater than or equal to x. We can express the series as integrals of these functions.

g%:/o‘”&(x)dx:/loo&(x)dx
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In Figure 12.1 these functions are plotted against y = 1/x. From the graph, it is clear that we can obtain a lower and
upper bound for the series.

<1
pdl‘

[e’e) oo 1
—dx < — <1
| sy

n=1

=1
1§Zﬁ§2
n=1

N

1 2 3 4 1 2 3 4

Figure 12.1: Upper and Lower bounds to Y o7, 1/n?.

n=1

In general, we have

Thus we see that the sum converges or diverges with the integral.
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The Ratio Test.

Result 12.1.3 The series ) | a,, converges absolutely if

Ap+1
Qp

lim

n—oo

If the limit is greater than unity, then the series diverges. If the limit is unity, the test fails.

If the limit is greater than unity, then the terms are eventually increasing with n. Since the terms do not vanish,
the sum is divergent. If the limit is less than unity, then there exists some NN such that

Qp41
Qap,

<r<1l foralln>N.

From this we can show that > ° ' a,, is absolutely convergent by comparing it to the geometric series.

[o.¢] [o.¢]
> lanl <laxl D"
n=N n=0

an]—
= |aN|————
Nl—r

Example 12.1.6 Consider the series,

015



We apply the ratio test to test for absolute convergence.

. An+1 en+1 n!
lim = lim —
n—oo an n—0o0 e”(n + 1)'
. e
= lim
n—oon + 1
=0

The series is absolutely convergent.

Example 12.1.7 Consider the series,
f: 1
n=1 n2

which we know to be absolutely convergent. We apply the ratio test.

n 1 1)?
lim Ani1) _ lim 7/(71—{— )
n—oo (07% n—oo 1/n2
. n?
= ].lm U —
n—oon? 4+ 2n 4+ 1
I 1
= 11m
n—oo | + 2/n + 1/n2
=1

The test fails to predict the absolute convergence of the series.
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The Root Test.

Result 12.1.4 The series > a,, converges absolutely if

lim |a,|"" < 1.

n—oo

If the limit is greater than unity, then the series diverges. If the limit is unity, the test fails.
More generally, we can test that

1/n

lim sup |a,| /" < 1.

If the limit is greater than unity, then the terms in the series do not vanish as n — co. This implies that the sum
does not converge. If the limit is less than unity, then there exists some N such that

lap|Y" <r <1 foralln> N.

We bound the tail of the series of |a,|.

o9 oo
Z ‘an| _ Z (|an|1/n)n
n=N n=N
oo
< Z r
n=N
,'nN
B 1—r

>°°° , an is absolutely convergent.

n=0

Example 12.1.8 Consider the series



where a and b are real constants. We use the root test to check for absolute convergence.

lim """ <1

b| lim n%/™ < 1

n—oo

|b| exp (lim 1lnn) <1
n

n—oo

b]e? <1
bl < 1

Thus we see that the series converges absolutely for |b| < 1. Note that the value of a does not affect the absolute
convergence.

Example 12.1.9 Consider the absolutely convergent series,

o0

We aply the root test.

It fails to predict the convergence of the series.
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Raabe’s Test

Result 12.1.5 The series > a,, converges absolutely if

limn<1— )>1.

If the limit is less than unity, then the series diverges or converges conditionally. If the limit
is unity, the test fails.

An+1
Qp

Gauss’ Test

Result 12.1.6 Consider the series > a,,. If

n L by
a+1:1__+_2
Qn, n o on

where b, is bounded then the series converges absolutely if L > 1. Otherwise the series
diverges or converges conditionally.

12.2 Uniform Convergence

Continuous Functions. A function f(z) is continuous in a closed domain if, given any € > 0, there exists a § > 0
such that |f(2) — f(¢)] < e for all |z — (| < J in the domain.
An equivalent definition is that f(z) is continuous in a closed domain if

lim f(¢) = f(2)

(—z
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for all z in the domain.

Convergence. Consider a series in which the terms are functions of z, > a,(z). The series is convergent in a
domain if the series converges for each point z in the domain. We can then define the function f(z) = >"°°  a,(2).
We can state the convergence criterion as: For any given € > 0 there exists a function N(z) such that

N(z)—1

[f(2) = Snw(2) = |f(2) = Y anl2)| <e

n=0

for all z in the domain. Note that the rate of convergence, i.e. the number of terms, N(z) required for for the absolute
error to be less than ¢, is a function of z.

Uniform Convergence. Consider a series >~ a,(z) that is convergent in some domain. If the rate of convergence
is independent of z then the series is said to be uniformly convergent. Stating this a little more mathematically, the
series is uniformly convergent in the domain if for any given ¢ > 0 there exists an N, independent of z, such that

() = Sn(2)| = | f(z) = Y an(z)| <e

n=1

for all z in the domain.

12.2.1 Tests for Uniform Convergence

Weierstrass M-test. The Weierstrass M-test is useful in determining if a series is uniformly convergent. The series
> > gan(z) is uniformly and absolutely convergent in a domain if there exists a convergent series of positive terms
> > o M, such that |a,(z)| < M, for all z in the domain. This condition first implies that the series is absolutely
convergent for all z in the domain. The condition |a,(z)| < M,, also ensures that the rate of convergence is independent
of z, which is the criterion for uniform convergence.

Note that absolute convergence and uniform convergence are independent. A series of functions may be absolutely
convergent without being uniformly convergent or vice versa. The Weierstrass M-test is a sufficient but not a necessary

520



condition for uniform convergence. The Weierstrass M-test can succeed only if the series is uniformly and absolutely
convergent.

Example 12.2.1 The series
=, sinz
fla) =) ——

n(n+1)

n=1

is uniformly and absolutely convergent for all real x because |n?;nfl)| < # and > >, # converges.

Dirichlet Test. Consider a sequence of monotone decreasing, positive constants ¢, with limit zero. If all the partial
sums of a,(z) are bounded in some closed domain, that is

N

Z an(z)| < constant

n=1

for all N, then Y~ | ¢,a,(2) is uniformly convergent in that closed domain. Note that the Dirichlet test does not

imply that the series is absolutely convergent.

Example 12.2.2 Consider the series,
i sin(nx)
n=1 n ‘

We cannot use the Weierstrass M-test to determine if the series is uniformly convergent on an interval. While it is easy
to bound the terms with |sin(nz)/n| < 1/n, the sum

o0

1
2
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does not converge. Thus we will try the Dirichlet test. Consider the sum Zflv:_ll sin(nx). This sum can be evaluated

in closed form. (See Exercise 12.9.)

Nz_:l( ) {0 for v = 27k
sin(nz) =

s(z/2)—cos((N—1/2)x)
— © 25‘;’@ ) for x # 27k

The partial sums have infinite discontinuities at x = 2rk, k € Z. The partial sums are bounded on any closed interval
that does not contain an integer multiple of 2m. By the Dirichlet test, the sum >~ sne) s yniformly convergent
on any such closed interval. The series may not be uniformly convergent in neighborhoods of x = 2km.

12.2.2 Uniform Convergence and Continuous Functions.

Consider a series f(z) = Y ° | a,() that is uniformly convergent in some domain and whose terms a,,(z) are continuous
functions. Since the series is uniformly convergent, for any given ¢ > 0 there exists an N such that |Ry| < € for all z

in the domain.
Since the finite sum Sy is continuous, for that € there exists a § > 0 such that |Sx(z) — Sy (¢)| < € for all ¢ in the

domain satisfying |z — (] < 0.
We combine these two results to show that f(z) is continuous.

1£(z) = F(Ol = [Sn(2) + By (2) = Sn(¢) — Bn ()]
< |9n(2) = Sn (O] + [By (2)] + [Bx (Q)]
<3e for|z—(| <o

Result 12.2.1 A uniformly convergent series of continuous terms represents a continuous
function.

Example 12.2.3 Again consider )" sinnz) Example 12.2.2 we showed that the convergence is uniform in any

n

closed interval that does not contain an integer multiple of 2. In Figure 12.2 is a plot of the first 10 and then 50 terms

522



in the series and finally the function to which the series converges. We see that the function has jump discontinuities
at x = 2km and is continuous on any closed interval not containing one of those points.

Figure 12.2: Ten, Fifty and all the Terms of )~ , sin(nz)

n

12.3 Uniformly Convergent Power Series

Power Series. Power series are series of the form

Z an(z — z0)".

n=0

Domain of Convergence of a Power Series Consider the series >~ ja,z". Let the series converge at some
point zo. Then |a,z{| is bounded by some constant A for all n, so

n
z

20

< A

z
an2"| = lanzg] | =

This comparison test shows that the series converges absolutely for all z satisfying |z| < |zo].
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Suppose that the series diverges at some point z;. Then the series could not converge for any |z| > |z;| since
this would imply convergence at z;. Thus there exists some circle in the z plane such that the power series converges

absolutely inside the circle and diverges outside the circle.

Result 12.3.1 The domain of convergence of a power series is a circle in the complex plane.

Radius of Convergence of Power Series. Consider a power series

f(z) = Z 2"
n=0

Applying the ratio test, we see that the series converges if

lim M <1
n—oo  |a,z"|
1; |an+1|

|z] <1

2 < Tim %
n—00 ‘anJrl‘

Result 12.3.2 Ratio formula. The radius of convergence of the power series

o
E an2"

n=0

R = lim 0|
n—0oo |an+1’

when the limit exists.
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Result 12.3.3 Cauchy-Hadamard formula. The radius of convergence of the power series:

0
E an2"

n=0

1

R = :
lim sup {/|ay|

Absolute Convergence of Power Series. Consider a power series

f(z) = Z an 2"

n=0

that converges for z = z;. Let M be the value of the greatest term, a,z{/. Consider any point z such that |z| < |z|.
We can bound the residual of >~ 7 |a,z"|,




Since |z/z| < 1, this is a convergent geometric series.

2 |V 1

=M

1 —|2/2|

—0 as N —

20

Thus the power series is absolutely convergent for |z| < |zo].

Result 12.3.4 If the power series Y~ a,z" converges for z = z, then the series converges
absolutely for |z| < |zo|.

Example 12.3.1 Find the radii of convergence of the following series.

o

1. E nz"
n=1
o

2. E nlz"
n=1
o0

3. E nlz™
n=1

1. We apply the ratio test to determine the radius of convergence.

R = lim "

n—oo

= lim
n—oomn 4+ 1

Qp+1

The series converges absolutely for |z| < 1.
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2. We apply the ratio test to the series.

R = lim

n—oo

n!
(n + 1)!’

. 1
= lim
n—oon + 1

=0

The series has a vanishing radius of convergence. It converges only for z = 0.
3. Again we apply the ration test to determine the radius of convergence.

(TL + 1>!Z(n+1)!
nlzm

lim (n + 1)]z|™D= <1

lim <1

n—oo

lim (n + 1)[2|™™ < 1

n—oo

lim (In(n+ 1)+ (n)n!ln|z|) <0

n—oo

—1 1
In|z| < lim —inp+1)
n—oo  (n)n!

Injz| <0
2| < 1

The series converges absolutely for |z| < 1.

Alternatively we could determine the radius of convergence of the series with the comparison test.
o0 o0
Z |n!z”!‘ < Z |nz"|
n=1 n=1
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Yoo nz" has a radius of convergence of 1. Thus the series must have a radius of convergence of at least 1.
Note that if |z| > 1 then the terms in the series do not vanish as n — oo. Thus the series must diverge for all
|z| > 1. Again we see that the radius of convergence is 1.

Uniform Convergence of Power Series. Consider a power series >~ a,2" that converges in the disk |z| < ry.
The sum converges absolutely for z in the closed disk, |z| < r < 7. Since |a,2"| < |a,r™| and >~ 7 |a,r"| converges,
the power series is uniformly convergent in |z| < r < r.

Result 12.3.5 If the power series > a,2" converges for |z| < r( then the series converges
uniformly for |z| < r < .

Example 12.3.2 Convergence and Uniform Convergence. Consider the series

00
2"

log(1 — 2) —
n’
This series converges for |z| < 1,z # 1. Is the series uniformly convergent in this domain? The residual after N terms
RN is

00 o
n=N+1

We can get a lower bound on the absolute value of the residual for real, positive z.

By(@)] = Y =

n=N-+1
g/ T da
N+1 &
=—Ei((N+1)Inz)

228



The exponential integral function, Ei(z), is defined

o0 L—t
Ei(z):—/ ert.

z

The exponential integral function is plotted in Figure 12.3. Since Ei(z) diverges as z — 0, by choosing x sufficiently
close to 1 the residual can be made arbitrarily large. Thus this series is not uniformly convergent in the domain
|z| <1,z # 1. The series is uniformly convergent for |z| < r < 1.

Figure 12.3: The Exponential Integral Function.

Analyticity. Recall that a sufficient condition for the analyticity of a function f(z) in a domain is that §,, f(z)dz =0
for all simple, closed contours in the domain.
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Consider a power series f(z) = >~ a,z" that is uniformly convergent in |z] < r. If C is any simple, closed
contour in the domain then ¢, f(z) dz exists. Expanding f(z) into a finite series and a residual,

}é f(z)dz = 75; (Sn(2) + Ry(2)) dz.

Since the series is uniformly convergent, for any given ¢ > 0 there exists an N, such that | Ry,
Let L be the length of the contour C.
fRNE(Z) dz
c

jqfcf(z) de = lim i (Z 12" —I—RN(Z)) dz

n=0

o
= % Z an2"
¢ n=0
(o]
= Z an?{ 2" dz
n=0 c

=0

< eforall zin |z| <r.

<Le—0 as N, — o0

Thus f(z) is analytic for |z| < r.

Result 12.3.6 A power series is analytic in its domain of uniform convergence.

12.4 Integration and Differentiation of Power Series

Consider a power series f(z) = Y a,z" that is convergent in the disk |z| < ro. Let C' be any contour of finite
length L lying entirely within the closed domain |z| < r < ry. The integral of f(z) along C'is

/C f(z)dz = /C (Sn(2) + Rn(2))dz.
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Since the series is uniformly convergent in the closed disk, for any given € > 0, there exists an N, such that
|Rn.(2)] <€ forall |z] <7

We bound the absolute value of the integral of Ry (z).

/CRNe(z) dz

< /C (R (2)] a2

< el

—0 as N, — o

Thus

:Zan/z”dz

n=0 c

Result 12.4.1 If C' is a contour lying in the domain of uniform convergence of the power

series Y ", apz™ then
o0 o0
/ g a2 dz = g an/z"dz.
¢ n=0 n=0 ¢

In the domain of uniform convergence of a series we can interchange the order of summation and a limit process.
That is,

oo o
lim Zan(z) = Z lim a,(z).
TR0 n=o
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We can do this because the rate of convergence does not depend on z. Since differentiation is a limit process,

4y FEER =0

h—0 h ’

we would expect that we could differentiate a uniformly convergent series.

Since we showed that a uniformly convergent power series is equal to an analytic function, we can differentiate a
power series in it's domain of uniform convergence.

Result 12.4.2 Power series can be differentiated in their domain of uniform convergence.

% Z a,z" = Z(n + Dap12".
n=0 n=0

Example 12.4.1 Differentiating a Series. Consider the series from Example 12.3.2.

log(l—2) = =

We differentiate this to obtain the geometric series.

The geometric series is convergent for |z| < 1 and uniformly convergent for |z| < r < 1. Note that the domain of
convergence is different than the series for log(1 — z). The geometric series does not converge for |z| = 1,z # 1.
However, the domain of uniform convergence has remained the same.
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12.5 Taylor Series

Result 12.5.1 Taylor’'s Theorem. Let f(z) be a function that is single-valued and analytic
in |z — 29| < R. For all z in this open disk, f(z) has the convergent Taylor series

) (4
f(z) = Z fT(')(z — 20)". (12.1)

n=0

We can also write this as

- () (2 z
f(z)=) an(z—2)", a,= [z0) L 7{}( /(2) dz (12.2)

n! 127 z— zo)"tl T

n=0

where C'is a simple, positive, closed contour in 0 < |z — zy| < R that goes once around the
point z.

Proof of Taylor’s Theorem. Let's see why Result 12.5.1 is true. Consider a function f(z) that is analytic in
|z| < R. (Considering zy # 0 is only trivially more general as we can introduce the change of variables ( = z — 2.)
According to Cauchy’s Integral Formula, (Result 77?),

) = — 7{ 1) g (12.3)

_E CC_Z

where C'is a positive, simple, closed contour in 0 < | — z| < R that goes once around z. We take this contour to be
the circle about the origin of radius  where |z| < r < R. (See Figure 12.4.)
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Im(z)

AA. .
LY

Figure 12.4: Graph of Domain of Convergence and Contour of Integration.

We expand == in a geometric series,
(—z

1 B 1/(
(—z 1-2z/C
1 "
= (Z) for |2] < I¢|
n=0
=3 <i+1’ for || < [¢]
n=0




The series converges uniformly so we can interchange integration and summation.

2 )
_;Eﬁgnﬂdg

Now we have derived Equation 12.2. To obtain Equation 12.1, we apply Cauchy's Integral Formula.

— /™) ,
:; n! :

There is a table of some commonly encountered Taylor series in Appendix H.

Example 12.5.1 Consider the Taylor series expansion of 1/(1 — z) about z = 0. Previously, we showed that this
function is the sum of the geometric series >~ 2" and we used the ratio test to show that the series converged
absolutely for |z| < 1. Now we find the series using Taylor's theorem. Since the nearest singularity of the function is
at z = 1, the radius of convergence of the series is 1. The coefficients in the series are

1 [d 1
ap = — | —
n! [de"1—2z] _,

“alil
—1

Thus we have

1 oo
. = g 2", for |z| < 1.
—z
n=0
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12.5.1 Newton’s Binomial Formula.

Result 12.5.2 For all |z] < 1, a complex:

(1+2)"=1+ <T>z+ (;>z2+ <g>z3+

where

r r!

(a) ale—1(a—2)--(a—r+1)

If a is complex, then the expansion is of the principle branch of (1 + z)®. We define

(g) =1, (S) =0, forr=#£0, (8) = 1.

Example 12.5.2 Evaluate lim,_.(1+ 1/n)".
First we expand (1 + 1/n)" using Newton’s binomial formula.

i (10 2) = (1 (M) (M) (ML
im — ] = lim — — — 4+
n— 00 n n—oo 1/ n 2 n2 3 n3

(n—1) N n(n—1)(n —2)

— lim (1+1+"

n—oo

2In? 3In3

11
:(1+1+5+§+--~)

We recognize this as the Taylor series expansion of e'.

=€
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We can also evaluate the limit using L’Hospital’s rule.

1\* 1\*
ln<lim (1+—> ): lim 1n((1+—> )
T—00 x T—00 xr

1
= lim zIn (1 + —)
T—00 €T
~ lim In(1+1/z)

—1/x2
— ; 1+1/x

N :EHIEO —1/{172
=1

) 1\"
lim (1 + —) =e
Tr—00 €T

Example 12.5.3 Find the Taylor series expansion of 1/(1 + z) about z = 0.

For |z| < 1,
1 -1 -1 -1
-1 2 3.,
1+2 +<1)z+(2)z+(3)z+
=1+ (=124 (=122 + (=12 + - -
=l—z4+22 -2+

Example 12.5.4 Find the first few terms in the Taylor series expansion of
1
V22 +52+6

about the origin.
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We factor the denominator and then apply Newton's binomial formula.

1 1 1
VZ2Z+524+46 Vz+3vVz+2
1 1
VBV 23V T+ 2)2

(P () e (15 ()6
1 z 22 2 322
:%<1_6+ﬂ+...><1_1+3_2+...>
1 5 0 17,
:%<1—Ez+%z +)

12.6 Laurent Series

Result 12.6.1 Let f(z) be single-valued and analytic in the annulus Ry < |z — 29| < Ro.
For points in the annulus, the function has the convergent Laurent series

oo

f(z) = Z anz",

n—=—oo

_ 1 f(2)
@ = or \%C' (z — zo)"H! dz

and C'is a positively oriented, closed contour around zy lying in the annulus.

where

To derive this result, consider a function f({) that is analytic in the annulus R; < || < Rs. Consider any point z
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in the annulus. Let C} be a circle of radius r; with Ry < r; < |z|. Let Cy be a circle of radius ro with |z| < ro < Rs.
Let C, be a circle around z, lying entirely between C and C5. (See Figure 12.5 for an illustration.)

Consider the integral of % around the C'5 contour. Since the the only singularities of % occur at ( = z and at
points outside the annulus,
PSRV O (GRVF  (
C—2 c.C—%2 o C—z

By Cauchy’s Integral Formula, the integral around C, is

j{ f(©) d¢ =227 f(2).
c.C— =z

This gives us an expression for f(z).

F(2) = — fc HQ) ge L HQ 4 (12.4)

T 2r (—z 127 Jo, C — 2

On the C; contour, |z| < [(|. Thus

1 B 1/C
C—z_l—z/C
= (Z) for 2] < I¢]
n=0
= gjﬂ, for |2] < |(]
n=0



On the C contour, [(] < |z|. Thus
1 1/z
(=2 1-(/z

I (Y
—ZZQ forlcl < |4

=Z S forldl <]

-1 n

z
= Z I for |¢] < [2]

n=—oo

We substitute these geometric series into Equation 12.4.

flz) = 201 (Z n+1 ) C—I—ﬂf{ (Z fn+1 ) d¢

Since the sums converge uniformly, we can interchange the order of integration and summation.

RS (C)z”
z) _%;%jéz n+1 227T Z j{ n+1

Since the only singularities of the integrands lie outside of the annulus, the C; and C5 contours can be deformed to
any positive, closed contour C' that lies in the annulus and encloses the origin. (See Figure 12.5.) Finally, we combine
the two integrals to obtain the desired result.

[e.e]

- 5 4 (f00)-

For the case of arbitrary zy, simply make the transformation z — z — z,.
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Im(z)
J

2

Im(2)

By

Re(2)

Figure 12.5: Contours for a Laurent Expansion in an Annulus.

Example 12.6.1 Find the Laurent series expansions of 1/(1 + z).

For |z| < 1,

L (L, (!
14z 1 /)77 2

=1l—z4+22-22+..

041

(5)=

22+
=1+ (-2 + (-1 + (-1 + - -



For |z| > 1,
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12.7 Exercises

Exercise 12.1
Answer the following questions true or false. Justify your answers.

1. There exists a convergent series whose terms do not converge to zero.

2. There exists a sequence which converges to both 1 and —1.

3. There exists a sequence {a,} such that a,, > 1 for all n and lim,,_., a,, = 1.
4. There exists a divergent geometric series whose terms converge.

5. There exists a sequence whose even terms are greater than 1, whose odd terms are less than 1 and that converges
to 1.

6. There exists a divergent series of non-negative terms, >  a,, such that a, < (1/2)".
7. There exists a convergent sequence, {a,}, such that lim, .. (a,+1 — a,) # 0.
8. There exists a divergent sequence, {a,}, such that lim,, . |a,| = 2.
9. There exists divergent series, > a, and >_ b,, such that Y (a, + b,) is convergent.
10. There exists 2 different series of nonzero terms that have the same sum.
11. There exists a series of nonzero terms that converges to zero.
12. There exists a series with an infinite number of non-real terms which converges to a real number.
13. There exists a convergent series » _ a,, with lim,, o |ani1/as| = 1.
14. There exists a divergent series > a,, with lim, o |an41/a,| = 1.

15. There exists a convergent series Y a,, with lim,, ., ¥/|a,| = 1.
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16. There exists a divergent series > a,, with lim,, ., m = 1.

17. There exists a convergent series of non-negative terms, >_ a,,, for which Y a? diverges.

18. There exists a convergent series of non-negative terms,  a,, for which > ,/a, diverges.

19. There exists a convergent series, Y a,, for which > |a,| diverges.

20. There exists a power series » _ a,(z — zp)™ which converges for z = 0 and z = 3 but diverges for z = 2.
21. There exists a power series > a,(z — z0)"™ which converges for z = 0 and z = 12 but diverges for z = 2.

Hint, Solution

Exercise 12.2
Determine if the following series converge.

= 1
1.
nz_; nln(n)

1
n")

)
L]

1
n

3. iln Vinn
n=2

= 1
+ Z n(Inn)(ln(lnn))

n=10
= In(2V)
> ; In(37)+1
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(@)]

10.

11.

12.

13.

14.

15.
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= (n!)?
16. > En;)!

17.

= /1 1
18. E - —
— (n n—l—l)

10, i cos(n)

= lnn
20. Z n11/10
Hint, Solution

Exercise 12.3
Determine the domain of convergence of the following series.

n

L) Gy

n=0

= Log =
2.
nz:; Inn

32%
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T L
ZTL
n=0

Hint, Solution

Exercise 12.4 (mathematica/fcv/series/constants.nb)
Show that the alternating harmonic series,

i(_l)n+1_1 1+1_1+
B 2 3 4

n

n=1

is convergent.
Hint, Solution
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Exercise 12.5 (mathematica/fcv/series/constants.nb)
Show that the series

=1
2

is divergent with the Cauchy convergence criterion.
Hint, Solution

Exercise 12.6
The alternating harmonic series has the sum:

n=1

Show that the terms in this series can be rearranged to sum to 7.
Hint, Solution

Exercise 12.7 (mathematica/fcv/series/constants.nb)
Is the series,

= nl

nn’
n=1

convergent?
Hint, Solution

Exercise 12.8
Show that the harmonic series,

converges for a > 1 and diverges for a < 1.
Hint, Solution
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Exercise 12.9
Evaluate 32" sin(nx).
Hint, Solution

Exercise 12.10

Using the geometric series, show that

and

Hint, Solution

Exercise 12.11
Find the Taylor series of

Hint, Solution

Exercise 12.12

1

I+
singularities of the function. Determine the radius of convergence with the ratio test.

22

(n+1)2", for|z] <1,

—~
—_
=
N
SN~—
[\
I
(¢

log(l—2) = —Z%, for |z] < 1.

about the z = 0. Determine the radius of convergence of the Taylor series from the

Use two methods to find the Taylor series expansion of log(1+ z) about z = 0 and determine the circle of convergence.
First directly apply Taylor's theorem, then differentiate a geometric series.

Hint, Solution

Exercise 12.13

Find the Laurent series about z = 0 of 1/(z — 1) for |z] < 1 and |z]| > 1.

Hint, Solution
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Exercise 12.14
Evaluate

for z # 1.
Hint, Solution

Exercise 12.15

ik‘zk and ik?zk
k=1 k=1

Find the circle of convergence of the following series.

6. Y (n+a")z" (la>1)

Hint, Solution
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Exercise 12.16

Let f(z) = (1 + 2)® be the branch for which f(0) = 1. Find its Taylor series expansion about z = 0. What is the
radius of convergence of the series? (« is an arbitrary complex number.)

Hint, Solution

Exercise 12.17
Obtain the Laurent expansion of

centered on z = 0 for the three regions:
L |z] <1
2. 1< 2] <2
3. 2< |7

Hint, Solution

Exercise 12.18
By comparing the Laurent expansion of (z + 1/2)™, m € Z*, with the binomial expansion of this quantity, show that

T ( m ) _mgngmandm—neven

2w
/ (cos0)™ cos(nf) df = {(2]’"1 (m—n)/2
0

otherwise

Hint, Solution

Exercise 12.19
The function f(z) is analytic in the entire z-plane, including oo, except at the point z = 1/2, where it has a simple
pole, and at z = 2, where it has a pole of order 2. In addition

z)dz = 12m, z)dz =0, z—1)f(2)dz = 0.
) ) $ e

|z|=1
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Find f(z) and its complete Laurent expansion about z = 0.
Hint, Solution

Exercise 12.20 i
Let f(z) = >, K? (%) . Compute each of the following, giving justification in each case. The contours are circles of

radius one about the origin.

1. /z|1 e f(z)dz

2 (2) dz
' |z]=1 24
3 f@)e .
' =1 22
Hint, Solution

Exercise 12.21
Find the Taylor series expansions about the point z = 1 for the following functions. What are the radii of convergence?

4. zLogz — z

Hint, Solution
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Exercise 12.22

Find the Taylor series expansion about the point z = 0 for €. What is the radius of convergence? Use this to find the
Taylor series expansions of cos z and sin z about z = 0.

Hint, Solution

Exercise 12.23

Find the Taylor series expansion about the point z = 7 for the cosine and sine.
Hint, Solution

Exercise 12.24
Sum the following series.

(In2)"
n!

(2n 4+ 1)!
5' ( 1)n7r2n
(2n)!
(=m)"
6.
“— (2n)!
Hint, Solution
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Exercise 12.25
Show that if > a, converges then lim, ., a, = 0.
Hint, Solution

Exercise 12.26
Which of the following series converge? Find the sum of those that do.

Hint, Solution

Exercise 12.27
Evaluate the following sum.

0o 00 00
1

20 2

k1=0 ka=k1 kn=kn—1

Hint, Solution

Exercise 12.28
1. Find the first three terms in the following Taylor series and state the convergence properties for the following.

(a) e *around 2y =0

1
(b) . i_z around zp =1
(c) o around zp =0

554



It may be convenient to use the Cauchy product of two Taylor series.

2. Consider a function f(z) analytic for |z — zy| < R. Show that the series obtained by differentiating the Taylor
series for f(z) termwise is actually the Taylor series for f’(z) and hence argue that this series converges uniformly
to f'(z) for |z — 20| < p < R.

3. Find the Taylor series for
1

(1-2p

by appropriate differentiation of the geometric series and state the radius of convergence.

4. Consider the branch of f(z) = (2+1)" corresponding to f(0) = 1. Find the Taylor series expansion about zy = 0
and state the radius of convergence.
Hint, Solution

Exercise 12.29
Find the circle of convergence of the following series:
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5. i(/{: 4 2F)

k=0
Hint, Solution
Exercise 12.30
1. Expand f(z) = ﬁ in Laurent series that converge in the following domains:
(a) 0< |zl <1
(b) [z >1
() |z +1]>2
2. Without determining the series, specify the region of convergence for a Laurent series representing f(z) =

1/(z* +4) in powers of z — 1 that converges at z = 1.
Hint, Solution

Exercise 12.31

1. Classify all the singularities (removable, poles, isolated essential, branch points, non-isolated essential) of the
following functions in the extended complex plane

()

(b)

22+1

1
(c) log (1 + 2?)
(d) zsin(1/z2)
tan~1(2)

zsinh?(72)

2. Construct functions that have the following zeros or singularities:
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(a) a simple zero at z =1 and an isolated essential singularity at z = 1.
(b) a removable singularity at z = 3, a pole of order 6 at 2 = — and an essential singularity at z...

Hint, Solution
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12.8 Hints

Hint 12.1
CONTINUE

Hint 12.2
1.

Use the integral test.

Simplify the summand.

3.
Z In Vinn
n=2
Simplify the summand. Use the comparison test.
4.
> i
“— n(lnn)(In(Inn))
Use the integral test.
5.
=, In (2")
ln (3")+1

Show that the terms in the sum do not vanish as n — oo

258



10.

11.

- 1
; In(n + 20)

Shift the indices.

i 4"+ 1
— 3n — 2
Show that the terms in the sum do not vanish as n — oo

oo

> (Log, 2)"
n=0
This is a geometric series.
4 _
o 1

Simplify the integrand. Use the comparison test.

Compare to a geometric series.

g(—l)”ln <%>

Group pairs of consecutive terms to obtain a series of positive terms.
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12.

13.

14.

15.

16.

17.

Use the comparison test.

i3"+4”+5
£ 5n —4n — 3

Use the root test.

Show that the terms do not vanish as n — oo.

Show that the terms do not vanish as n — oo.

Apply the ratio test.

Use the comparison test.
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18.

19.

20.

Use the comparison test.

Simplify the integrand.

Use the integral test.

Hint 12.3

1.

nz% (z43)"

[e.9]

Log z
' Z Inn

n=2
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10. —
n=0 “

Hint 12.4
Group the terms.

Hint 12.5
Show that

1 1
1— ===
2 2
1 1 1
3 4 12
1 1 1
5 6 30
|SQn - Sn| > 5



Hint 12.6

The alternating harmonic series is conditionally convergent. Let {a,} and {b,} be the positive and negative terms in
the sum, respectively, ordered in decreasing magnitude. Note that both "> a,, and Y ° | b, are divergent. Devise a
method for alternately taking terms from {a,} and {b,}.

Hint 12.7
Use the ratio test.

Hint 12.8
Use the integral test.

Hint 12.9
Note that sin(nx) = I(e™”). This substitute will yield a finite geometric series.

Hint 12.10
Differentiate the geometric series. Integrate the geometric series.

Hint 12.11
The Taylor series is a geometric series.

Hint 12.12
Hint 12.13
Hint 12.14

Let .S,, be the sum. Consider S,, — z.5,,. Use the finite geometric sum.

Hint 12.15
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Hint 12.16
Hint 12.17
Hint 12.18
Hint 12.19
Hint 12.20

Hint 12.21
1.

1+ (z—1)
The right side is the sum of a geometric series.

2. Integrate the series for 1/z.

3. Differentiate the series for 1/z.

4. Integrate the series for Log z.

Hint 12.22
Evaluate the derivatives of €* at z = 0. Use Taylor's Theorem.
Write the cosine and sine in terms of the exponential function.
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Hint 12.23

cos z = —cos(z — )
sinz = —sin(z — )
Hint 12.24
CONTINUE
Hint 12.25

If > a, converges then
Ve >0 3dN st. myn> N = |5, — S,| <e

Hint 12.26
1. The summand is a rational function. Find the first few partial sums.

2.

3. This a geometric series.

Hint 12.27
CONTINUE

Hint 12.28
CONTINUE

Hint 12.29
CONTINUE

Hint 12.30
CONTINUE
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Hint 12.31
CONTINUE
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12.9 Solutions

Solution 12.1
CONTINUE

Solution 12.2
1.

= 1
; nln(n)

Since this is a series of positive, monotone decreasing terms, the sum converges or diverges with the integral,

o0 1 oo
do = —d
/2 zlnz v A}Qé ¢

Since the integral diverges, the series also diverges.

The sum converges.

Zln\/— Z In(lnn) 22%

The sum is divergent by the comparison test.

= 1
Z n(lnn)(In(lnn))

n=10
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Since this is a series of positive, monotone decreasing terms, the sum converges or diverges with the integral,

[l [t [
10 rlnzin(lnx) m(10) ¥ Ny In(In(10)) #

Since the integral diverges, the series also diverges.

= In(2") . nln2 = In2
;m(S”)—i—l anniﬂ—i—l ZlnS—l—l/n

Since the terms in the sum do not vanish as n — oo, the series is divergent.

Zln —|—20 Zlnn

The series diverges.

i 4n +1
n __
= 3" —2
Since the terms in the sum do not vanish as n — oo, the series is divergent.

[e.e]

> (Log,2)"

n=0
This is a geometric series. Since | Log, 2| < 1, the series converges.

“n2-1 = 1 =1
224—1 Zn2+1<n2ﬁ

The series converges by comparison to the harmonic series.
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10.

11.

12.

13.

(Inn)" Inn
n=2 n=2

Since n?/" — 1 asn — oo, n?"/Inn — 0 as n — oo. The series converges by comparison to a geometric
series.

We group pairs of consecutive terms to obtain a series of positive terms.

Srn(l)-$ (e (2)+(55)-Eu(5)

n=2 n=1

The series on the right side diverges because the terms do not vanish as n — oc.

= ) & ()@)n = |
;(271)!:;(n+1)(n+2)---(2n)<22_”

The series converges by comparison with a geometric series.

3" +4" +5
5" —4n -3
We use the root test to check for convergence.
n qn 1/n
lim ‘an‘l/n — 1 3"+4"+5

o A BA s/ L/n
~ n—oo 5 |1 — (4/5)" —3/5n
4
5
<1
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We see that the series is absolutely convergent.

14. We will use the comparison test.

>l < (/2" S (2
> A aa—
Z (Inn)" Z (Inn)" ; Inn
Since the terms in the series on the right side do not vanish as n — oo, the series is divergent.

15. We will use the comparison test.

= e = e > e
. > =
nz_; In(n!) ; In(nn) ; nln(n)
Since the terms in the series on the right side do not vanish as n — oo, the series is divergent.
16.
“— (n?)!
We apply the ratio test.
n 1)N2(n?)!
e | ] (0 DY20)
n—oo | G, Nn—00 ((n -+ 1)2)'(71')2
2
— lim (n+1)
n— o0 ((n —+ 1)2 — n2)'
1 2
= lim —(n +1)
n—oo | (2n 4 1)!

The series is convergent.
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— 3n% —nd® 4+ 9In “—~n 3—n"44+9n-8

ey |
"1

We see that the series is divergent by comparison to the harmonic series.

in8+4n4+8 . 11+4n 4+ 8n8

— — = < —_—
;(n n—|—1> ;nQ—i-n = n?

The series converges by the comparison test.

n

2. cos(nw = (-1
s el $~ (1

n=1 n=1

We recognize this as the alternating harmonic series, which is conditionally convergent.

0o

Z lnn
nll/lO

n=2

Since this is a series of positive, monotone decreasing terms, the sum converges or diverges with the integral,

*® Inx e
——dzr = / ye ¥10 dy
/2 211/10 o

Since the integral is convergent, so is the series.
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Solution 12.3,

1.

10.

; (z43)"

= Log 2

In
n=2 n

D72



Solution 12.4

Thus the series is convergent.

Solution 12.5
Since

2n—1 1
2n—1

1
2;271—1
n

T on—1
1
2

the series does not satisfy the Cauchy convergence criterion.

|32n - Sn| -
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Solution 12.6
The alternating harmonic series is conditionally convergent. That is, the sum is convergent but not absolutely conver-
gent. Let {a,} and {b,} be the positive and negative terms in the sum, respectively, ordered in decreasing magnitude.

Note that both Y >, a, and ) 7 b, are divergent. Otherwise the alternating harmonic series would be absolutely
convergent.

To sum the terms in the series to ™ we repeat the following two steps indefinitely:
1. Take terms from {a,} until the sum is greater than 7.
2. Take terms from {b,} until the sum is less than 7.

Each of these steps can always be accomplished because the sums, > " a, and Y, b, are both divergent. Hence the
tails of the series are divergent. No matter how many terms we take, the remaining terms in each series are divergent.
In each step a finite, nonzero number of terms from the respective series is taken. Thus all the terms will be used.
Since the terms in each series vanish as n — oo, the running sum converges to 7.

Solution 12.7
Applying the ratio test,

i | @t i (n+1)n"
n—oo | Gy n— oo n'(n -+ 1)(”+1)
= lim "
n—oo (n 4 1)7
= lim < " )
n—oo \ (n + 1)
1
e
<1,

we see that the series is absolutely convergent.
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Solution 12.8
The harmonic series,

converges or diverges absolutely with the integral,

RN

/00 1 dx_/oo 1 L — [In z|$° N for R(a) =1,
Y O R [w] for R(a) # 1.

1-R(e) 1

The integral converges only for ®(«) > 1. Thus the harmonic series converges absolutely for R(«) > 1 and diverges
absolutely for ®(«) < 1.
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Solution 12.9

I
P
@

")

i
o

Il
&
PR
M:
‘o
15

)

3
|

A
=
~— O

s for x = 27k
S (A=) for o # 27k
0 for x = 27k
g (eizjbzel_(zz;}f)z) for x # 27k
0 for x = 27k
o) eosm
0 for x = 27k
— 5 (eﬂz/;;ne(;iz/vzf)l/mz) for r 7£ 2k

N-1 in(na) {O for x = 27k
sin(nx) =
(/2)—cos((N—1/2)z)
wola/2) el for = # 2mk
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Solution 12.10
The geometric series is

1 =
1—22,1222'

This series is uniformly convergent in the domain, |z| < r < 1. Differentiating this equation yields,

Integrating the geometric series yields

0 ntl
“log(1— 2) =

og(1 — 2) ;wr -

log(l—2) = —ZZ—, for |z] < 1.
n=1
Solution 12.11
I D DS
1+ 2 n=0 n=0

The function has singularities at z = 4. Thus the radius of convergence is 1. Now we use the ratio

1 1
1422 = (1—12)(1+e2)
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test to corroborate that the radius of convergence is 1.

lim %G|
n—oo an(z)
—1)n+1 2(n+1)
lim |20 <1
n— 00 ( 1)n22n
lim |z2| <1
2| < 1
Solution 12.12
Method 1.
d d?
log(1+ z) = [log(1 + 2)].=0 + o log(1 + z) — —|— 2 log(1 + z)
_ 04 1 z n -1 22 n 2 23 n
B 1+2z] _, 1 (1+2)2] _, 2! (1+2)3] _, 3
B 22 N 22 24 N
I R
= (s
n=1 n
Since the nearest singularity of log(1 + z) is at z = —1, the radius of convergence is 1.

Method 2. We know the geometric series converges for |z| < 1.
1 [o.¢]
1+2z ;(_
We integrate this equation to get the series for log(1 + z) in the domain |z| < 1.

— § n—l—lz

[e.9]

log(1+ 2) = Z(—

n=0
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We calculate the radius of convergence with the ratio test.

- 1
R = lim —lim’M‘—l
n—00 | Up 11 n— 00 n
Thus the series converges absolutely for |z| < 1.
Solution 12.13
For |z| < 1:
1 {

(Note that |2| < 1< | —1z| < 1.)
For |z| > 1:

(Note that |2| > 1< | —1/2| < 1.)



Solution 12.14
Let

(1—-2)?

Let

3

n

S = 28, = Y (K = (k —1)%)2* — n?2"*!

k=1
= QZk:zk — sz — nZyntl
k=1 k=1
_ 2z(l — (n+1)2" + nz"*t) i 2t 2t

(1—2)2 1—=2
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2k _ 214+z2z—=2"14+z4+n(n(z—-1)—-2)(z—1)))
Zk (1—2)3

Solution 12.15
1. We assume that 3 # 0. We determine the radius of convergence with the ratio test.

R = lim

n—oo an—l—l

(@=f)---(a=(n—-1)B)/n!

= T A (@ —nB)(n + 1]
_ n-+1

—nl—{go Q{—nﬁ

_ b

]

The series converges absolutely for |z| < 1/|3].

2. By the ratio test formula, the radius of absolute convergence is

n/2"
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By the root test formula, the radius of absolute convergence is

1
R—
lim,, .o, {/|n/2"|
B 2
~ limy, o /0

The series converges absolutely for |z — 1| < 2.

3. We determine the radius of convergence with the Cauchy-Hadamard formula.

R

1
 limsup /Ja,|
B 1

lim sup {/|n"|

B 1
~ limsupn
=0

The series converges only for z = 0.
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4. By the ratio test formula, the radius of absolute convergence is
n!/n™

(n+ 1)!/(n+ 1)n+!

(n+1)"

R = lim

n—oo

The series converges absolutely in the circle, |z] < e.

5. By the Cauchy-Hadamard formula, the radius of absolute convergence is
1
R = - —
limsup /| (3 + (=1)")" |
B 1
~ limsup (3 + (=1)")
1

4
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Thus the series converges absolutely for |z| < 1/4.

6. By the Cauchy-Hadamard formula, the radius of absolute convergence is

1
 limsup /[n + o]
1
~ limsup la| /|1 + n/an|
1

G

Thus the sum converges absolutely for |z| < 1/|a].

Solution 12.16
The Taylor series expansion of f(z) about z =0 is

f(n)
Z

The derivatives of f(z) are

Thus ™ (0) is
F©0) = [ [ = k).

k=0
If « = m is a non-negative integer, then only the first m 4 1 terms are nonzero. The Taylor series is a polynomial and
the series has an infinite radius of convergence.

(1+2)™ ZH )
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If a is not a non-negative integer, then all of the terms in the series are non-zero.
e e} n—1
[leo(r—F)
1 +z o k=0 P
(1+2) 2% o

The radius of convergence of the series is the distance to the nearest singularity of (1 + 2)®. This occurs at z = —1.
Thus the series converges for |z| < 1. We can corroborate this with the ratio test. The radius of convergence is

(TT1 = (e — k)) /m!
(ITe—o(e — k)) /(n + 1)!

If we use the binomial coefficient, we can write the series in a compact form.

(z) _ I S — k)

(14 2)* = i (Z)z”

n=0

n+1
a—n

R = lim =1.

n—oo

n—oo

Solution 12.17
We expand the function in partial fractions.

1 1 1
f(z) = = -
(z+1D)(z+2) z4+1 z+2
The Taylor series about z =0 for 1/(z + 1) is
1 1

l+z 1—(—2)

NE

(—2)", for|z| <1

3
Il
=)

(=1)"z", for |z| <1

NE

3
Il
=)
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The series about z = oo for 1/(z 4+ 1) is

1 1/z
1+2 1+1/z

1 e¢]
= - E (—=1/2)", for|1/z| <1
2
n=0

=> (=1)"zh, for [2] > 1

n=0
—1

= Z (=1)" 2" for |z] > 1

n=—0oo

The Taylor series about z = 0 for 1/(z + 2) is

_ %Z(—z/m for |2/2] < 1

— (-1
:Z )z”, for |z] <2
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The series about z = oo for 1/(z 4 2) is

1/z

24z

14+2/2

1 o0
- E (=2/2)", for|2/z| <1
z

n=0

=> (=yr2mz !, for 2] > 2
n=0

Z (_2n+1

n=—oo

1)n+1
2",

for |z| > 2

To find the expansions in the three regions, we just choose the appropriate series.

1.
1 1
fz) = 1+2 2+2
- n_n = (_1)n
:Z(—l) z —Z STESEEA for |z| <1
n=0 n=0
- n 1 n
:Z(—l) 1_2n+1 2", for|z| <1
n=0
= 2ntl 1
f(Z) = Z(—l)nwzn, for |Z| < 1
n=0
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1 1
1(z) 1+ 2 B 24z
- N
f(z) = Z (=)™t — Z s 2" for 1l < |z| <2
n=—oo n=0
3.
1 1
—1 -1 (_1)n+1
= D (Y= YT e for 2.< ]

n=—oo n=—oo

Solution 12.18
Laurent Series. We assume that m is a non-negative integer and that n is an integer. The Laurent series about the

point z = 0 of
1 m
f(z) = <Z + ;)
is N
f(Z) - Z anzn
where



and (' is a contour going around the origin once in the positive direction. We manipulate the coefficient integral into
the desired form.

1 1/z)™
RN JCRETELe
21 Jo o 2t

1 2 (619_’_8710)771

20
= % . Wz e do
1 2w
= — 2™ cos™ e 46
2 Jo
2m71

2w
= / cos™ (cos(nf) — 1sin(nh)) dd
0

™

Note that cos™ @ is even and sin(nd) is odd about 6 = 7.

2m—1

2
= / cos™ 0 cos(nf) dd
0

™

Binomial Series. Now we find the binomial series expansion of f(z).

(+) = () ()



The coefficients in the series f(2) = > 77 a,z" are

n=—oo

m —m <n <mand m —n even
a, = ((m—n)/Z) —. —
0 otherwise

By equating the coefficients found by the two methods, we evaluate the desired integral.

/QW(COS 6)™ cos(nf) df = {Tf—l((mi)/?) —m<n<mandm-—neven
0 0

otherwise

Solution 12.19
First we write f(z) in the form

B 9(2)
1&) = o

g(2) is an entire function which grows no faster that 2* at infinity. By expanding g(z) in a Taylor series about the

origin, we see that it is a polynomial of degree no greater than 3.

azd+ B22 +yz+6
(z —1/2)(z — 2)

Since f(z) is a rational function we expand it in partial fractions to obtain a form that is convenient to integrate.

f(z) =

a b c
f(z):z—z/2+z—2+(z—2)2+d

We use the value of the integrals of f(z) to determine the constants, a, b, ¢ and d.

a b c
d) dz =2
7{21(2—@/2+z—2+(z—2)2+) T en

127a = 127

a=1

290



1 b c
d|dz=0
£|3<z—z/2+z—2+(z—2)2+ ) -

21(1+b) =0
b=—1

Note that by applying the second constraint, we can change the third constraint to

fizg f(2)dz = 0.

%Zl32(2—12/2_Zi2+(z_02)2+d> dz=0
7{ ((2—1/2)—1-2/2_(z—2)+2+c(2_2)+20) .
|2|=3

z—1/2 z—2 (z —2)2
ZZW(%—Z—FC)zO

—9__Z
¢ 2

Thus we see that the function is

1 1 2 —1/2

f(z):z—z/2_2—2+(z—2)2

+d,

where d is an arbitrary constant. We can also write the function in the form:

dz? +15 — 18
/D 2F

£2) =

Complete Laurent Series. We find the complete Laurent series about z = 0 for each of the terms in the partial

291



fraction expansion of f(z).

L a2
z—1/2 1412z

=12 Z(—ZQZ)”, for | —12z] < 1
n=0

= —Z(—zQ)”“z”, for |z| < 1/2
n=0

I — n
_ (i) . for [o/(22)] < 1
z
= i (1)712_”_1 for |z| <2
2 Y
7 —n—1
(—) 2", for |z <2

(—22)" 12" for |2] < 2

n=—0oo
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112
z—2 1-—2/2

- %Z (g)n, for |z/2] < 1

oo
n=0

n

2z
222n+1, for |z| <2
n=0

r 1/z
z—2 1-2/z

I <= /2)\"
= ——Z (—) , for|2/z] <1
Zn:O z

[e.9]

= — 22”2_”_1, for |z| > 2
n=0

—1
=— Z 271 for |z| > 2

n=—0o0
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(2 —2)?

4—1 = (=2 Z\"™

=3 ;(n)<_§>’ for |z/2] < 1
4_ZOO n no—mn_n

=3 > (=14 1)(=1)"27"2", for |2 < 2

n=0

4—1an+1

= no A 2

3 ; T or |z] <

2-1/2  2—1/2 (1_g>‘2

(z—2)2 22 z
_ 2 ;;/2 i (‘nQ) (_g)n for [2/2] < 1
=(2-1/2)> (~1)"(n+1)(=1)"2"z"%, for |2 > 2

-2
=(2-1/2) > (-n—1)27"722", for |z] > 2
_7_2 n+1
=—(2—-1/2) Z iz 2", for |z| > 2

n=—oo

We take the appropriate combination of these series to find the Laurent series expansions in the regions: |z| < 1/2,
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1/2 < |z] <2 and 2 < |z|. For |z| < 1/2, we have

= n n n+1n
fz) = =3 (-i2)"z +Zzn+1 Z o 2 d
n=0 n=0
= 1 4—in+1
_ __2n+1 n d

f(z) = i (—(—zz)”“ - 2n1+1 (1 - %(n - 1))) " 4d, for |z] <1/2

For 1/2 < |z| < 2, we have

-1

f(Z): Z n+1 n+22n+1 4;ZZH;1zn+d

n=-—o0o n=0

fe) =3 (- ”“"+Z(2n+1 (1+4;’<n+1>))z“+d, for 1/2 < || < 2

n=—oo

For 2 < |z|, we have

-1 -1 —2

f2)= Y (=2t = Y 2 —(2-0/2) Y Z;lzud

n=-—oo n=—oo n=—oo

—2

f(z) = Z ((_22)n+1 2:“ (I1+(1—2/4)(n+ 1))) 2" +d, for2 <|z|

n=—0oo

Solution 12.20
The radius of convergence of the series for f(z) is
k3/3k
(k + 1)3/3F+1

3
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Thus f(z) is a function which is analytic inside the circle of radius 3.

1. The integrand is analytic. Thus by Cauchy's theorem the value of the integral is zero.

}{ e f(z)dz =10
|z|=1

2. We use Cauchy's integral formula to evaluate the integral.

(2) 27 3 127 3133
)z O = g =
(j) dz =27
l2|l=1 %
3. We use Cauchy's integral formula to evaluate the integral.
13

f(z)e? 4o = 2r d

)1 22 °= 11 dz
e en
e 3

Solution 12.21

1. We find the series for 1/z by writing it in terms of z — 1 and using the geometric series.

11
z 1+ (z—-1)

LoS ey forfa—1] <1
z
n=0
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Since the nearest singularity is at z = 0, the radius of convergence is 1. The series converges absolutely for
|z — 1| < 1. We could also determine the radius of convergence with the Cauchy-Hadamard formula.

1

R=————
lim sup {/|a,|
1
B limsup {/|(—=1)"|

=1

2. We integrate 1/¢ from 1 to z for in the circle |z — 1] < 1.

/ %dcz Log (] = Log 2
1

The series we derived for 1/z is uniformly convergent for |z — 1| < r < 1. We can integrate the series in this
domain.
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3. The series we derived for 1/z is uniformly convergent for |z — 1| <r < 1. We can differentiate the series in this
domain.

mg

+1)(z—1)" for|z—1] <1

n=0

4. We integrate Log ¢ from 1 to z for in the circle |z — 1| < 1.

/ZLongC: [(Log¢ —(lj=zLogz—z+1
1

The series we derived for Log z is uniformly convergent for |z — 1| < r < 1. We can integrate the series in this
domain.

zLogz—z::—1+/zL0g§dC
C—l)
=-1 d
+/1 3 ¢

1)n+1

]_ —
_1+Z n+1)

zLogz—z——l#—Z%

for |z —1] <1
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Solution 12.22
We evaluate the derivatives of e* at z = (0. Then we use Taylor's Theorem.

n
4 e
dzm
n
d— e =¢? =1
n
dz 0
oo
zZ Zn
e® = -
n!
n=0

Since the exponential function has no singularities in the finite complex plane, the radius of convergence is infinite.

We find the Taylor series for the cosine and sine by writing them in terms of the exponential function.

eZZ_}_e*ZZ
cosz =
2
(= (1) s ()"
SIS
n=0 n=0
g
|
n=0 n




sinz = ——
12
I [ (12)" = (—12)
(S
n=0 n=0
B = (2)"
= ZO ~
odd n
> ( 1>nz2n+1
sinz =
nz:% (2n+1)
Solution 12.23
cos z = —cos(z — )
_ f: (=" (z —m)*
s (2n)!
B o (_1)n+1(2_,ﬂ.)2n
B — (2n)!
sinz = — sin(z — 7r)
)2n+1
N Z 2n +1)!
i 1) (2 — )2t

2n+1

n=0
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Solution 12.24
CONTINUE

Solution 12.25
> a, converges only if the partial sums, S,,, are a Cauchy sequence.

Ve >0 3IN st. myn > N = |S,, — Sy| <e,
In particular, we can consider m =n + 1.

Ve>0dN st.n>N=|S,41 — Sy <e¢
Ve >03dN st.n> N = |a,11] <e€

This means that lim,,_,o, a,, = 0.

Solution 12.26

1.
n:1"_2 6 12 20

We conjecture that the terms in the sum are rational functions of summation index. That is, a,, = 1/p(n) where
p(n) is a polynomial. We use divided differences to determine the order of the polynomial.

2 6 12 20
2 2

We see that the polynomial is second order. p(n) = an® + bn + c. We solve for the coefficients.

at+b+c=2
4a+2b+c=6
9a +3b4+c =12
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=

2
I
3

[\
+
3

We examine the first few partial sums.

ron
I Il

&
|

Sy

Ul lwwi NN =

We conjecture that S,, = n/(n+1). We prove this with induction. The base caseisn =1. S; = 1/(14+1) = 1/2.
Now we assume the induction hypothesis and calculate S, 1.

Sn—i—l - Sn + Ap+1

_on " 1
S n+l o (n+1)224(n+1)
n+1
n+2
This proves the induction hypothesis. We calculate the limit of the partial sums to evaluate the series.
Z 2 = lim
—n +tn n—oo n 4+ 1
— n2+4+n
(1) =14 (=) + 14 (-1)+
n=0
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Since the terms in the series do not vanish as n — oo, the series is divergent.

3. We can directly sum this geometric series.

i 111 1 1 2
£ on=13nhntl 751 —1/30 145
CONTINUE
Solution 12.27
The innermost sum is a geometric series.
Z 1 1 1 _ gl—ku
Ok~ ka1 | — 1/2
kn:kn—l
This gives us a relationship between n nested sums and n — 1 nested sums.
1
ZZ Y an=2ZZ > g
k’l Ok’g kn—kn 1 k’l Ok’Q kn 1= kn 2

We evaluate the n nested sums by induction.

oo oo oo 1
DD IR DIEE

k1=0 ko=Fk; kn=kn_1

Solution 12.28
1. (a)

flz) =e
f(0) =1
f(0)=-1
f1(0)=1



ZQ .
eF=1-24+4=+0(")

2
Since ™% is entire, the Taylor series converges in the complex plane.
(b)
1
o)== ) =1
2
! / —
f(z)_(1_2>27 f(l)_l

f') =g P =14

1+ 2 -1+ 9 3
1_Z:z—|—z(z—z)+ 5 (z=2)*+0((z—1)?

Since the nearest singularity, (at z = 1), is a distance of V2 from zo = 1, the radius of convergence is V2.
The series converges absolutely for |z — 2| < /2.
(c)
2

Ze_zl :—<1+z+%+(9(z3)) (1+z+224+0(2%)

——1—22—222—1-(9(23)

Since the nearest singularity, (at z = 1), is a distance of 1 from 2z, = 0, the radius of convergence is 1. The

series converges absolutely for |z| < 1.

2. Since f(z) is analytic in |z — zo| < R, its Taylor series converges absolutely on this domain.
RS YAMCHES
R
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The Taylor series converges uniformly on any closed sub-domain of |z — zy| < R. We consider the sub-domain
|z — 20| < p < R. On the domain of uniform convergence we can interchange differentiation and summation.

fiz) == Z% RIS ;Z!O)Z

. nf(zy)z" !
f/(Z) :Z f ( )

Note that this is the Taylor series that we could obtain directly for f/(z). Since f(z) is analytic on |z — 29| < R

sois f'(2). .
fio =y )

n!

The radius of convergence is 1, which is the distance to the nearest singularity at z = 1.
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4. The Taylor series expansion of f(z) about z =0 is

We compute the derivatives of f(z).

Now we determine the coefficients in the series.

F(0) = H(Z—/f)

(1+2) ZH

The radius of convergence of the series is the distance to the nearest singularity of (1 + z)*. This occurs at
z = —1. Thus the series converges for |z| < 1. We can corroborate this with the ratio test. We compute the

radius of convergence.
([Tizo (e — K)) /n!
(ITi—o(e = K)) /(n + 1)!

() = Mizke )

then we can write the series in a compact form.

-3 ()

n=0

n+1
1 —n|

R = lim

n—oo

= lim

n—oo

If we use the binomial coefficient,
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Solution 12.29
1.

o0
Z k2"
k=0

We determine the radius of convergence with the ratio formula.

R=jim |

o~
=+ | =
—_

The series converges absolutely for |z] < 1.

o0

Z Kk 2k

k=1
We determine the radius of convergence with the Cauchy-Hadamard formula.

1
R= ——
lim sup /|k*|
1

~ lim sup k
=0

The series converges only for z = 0.

k!,
Lk

k=1
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We determine the radius of convergence with the ratio formula.

K/
(k+1)!/(k + 1)k+D)
(k+ 1)k
k—oo kK

(1)
In(k+1) — 1n(k))
k—o0 1/k

(

( C1(k+1)—1/k
o )

E

k—oo

R = hm‘

s —1/k?

fim
kljgok—i—l

The series converges absolutely for |z| < e.

Z (z 4 15)%*(k + 1)
k=0
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We use the ratio formula to determine the domain of convergence.

(2 4 125)20+0) (k4 2)2

(z+15)%k(k +1)2
(k +2)?
(k +

lim

k—o0

|z +15)? 11

k—o0

1)?
|z +15)? 11 2k+2) <1

k—o00 2( 1)
2

|z 4457 lim = < 1
k—oo 2

|z +52 < 1

i k4 2%)z
k=0

We determine the radius of convergence with the Cauchy-Hadamard formula.

1
 limsup {/]k + 2]
1
 limsup2¢/[1 + k/2F]
1

2

The series converges for |z| < 1/2.
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Solution 12.30
1. (a)

1 1+
2(1—2) =z 1—=z
1

= "o for0< |zl <1
Z—l—Zz or ||

= -+ 2" for0 < |zl <1

. 1
1—=2

1 1

11
z
1
~—-
1
z

z2(1—2)

z21—1/z
1< /1\"
——E <—), for |z| > 1
z z
n=0
100
:——E 27", for|z| > 1
Zn:l

:_Zz”, for |z| > 1

n=-—2
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1 _1+ 1
2(1—2) 2z 1—=z
B 1 n 1
(z+1)—1 2—(z2+41)
1 1 1 1
= — , for|z+1|>1and|z+1|>2
(z+1)1=-1/(z+1) (z+1)1-2/(2+1) | | | |
1 «— 1 1 - 2"
= — , for|z+1|>1and |z+ 1| >2
(z—l—l)nz;(z—i—l)” (z4+1) = (2 + 1) | | | |
1 o 1-—2n
= , for|z+1|>2
(z+1);(z+1)" | |
—ii for |z 4+ 1| > 2
N n=1 (Z + 1)n+1’
= Z (1-=2"Y(z+1)", for|z+1|>2
n=-—2

2. First we factor the denominator of f(z) = 1/(z* + 4).
Ad=(z-1-)(z-1+21)(z+1=1)(z+1+2)

We look for an annulus about z = 1 containing the point z = 1 where f(z) is analytic. The singularities at
z =141 are a distance of 1 from z = 1; the singularities at z = —1 + 1 are at a distance of V/5. Since f(z)is
analytic in the domain 1 < |z — 1| < /5 there is a convergent Laurent series in that domain.

Solution 12.31
1. (a) We factor the denominator to see that there are first order poles at z = .

241 (z—1)(z+72)
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Since the function behaves like 1/z at infinity, it is analytic there.

The denominator of 1/sin z has first order zeros at z = nmw, n € Z. Thus the function has first order poles
at these locations. Now we examine the point at infinity with the change of variables z = 1/(.

1 1 12

sinz  sin(1/¢)  e/S—e/<

We see that the point at infinity is a singularity of the function. Since the denominator grows exponentially,
there is no multiplicative factor of (™ that will make the function analytic at ( = 0. We conclude that the
point at infinity is an essential singularity. Since there is no deleted neighborhood of the point at infinity
that does contain first order poles at the locations z = n, the point at infinity is a non-isolated singularity.

log (1 + 2*) =log(z + 1) + log(z — 1)

There are branch points at z = +:. Since the argument of the logarithm is unbounded as z — oo there is
a branch point at infinity as well. Branch points are non-isolated singularities.

zsin(l/z) = %Z (el/z +ez/z)

The point z = 0 is a singularity. Since the function grows exponentially at z = 0. There is no multiplicative
factor of 2" that will make the function analytic. Thus z = 0 is an essential singularity.

There are no other singularities in the finite complex plane. We examine the point at infinity.

zsin (%) = %sin{

The point at infinity is a singularity. We take the limit ( — 0 to demonstrate that it is a removable
singularity.
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tan"'(z) _ elog ()

zsinh®(wz) 2z sinh?(72)

There are branch points at z = 4 due to the logarithm. These are non-isolated singularities. Note that
sinh(z) has first order zeros at z = wnm, n € Z. The arctangent has a first order zero at z = 0. Thus there
is a second order pole at z = 0. There are second order poles at z = wn, n € Z \ {0} due to the hyperbolic
sine. Since the hyperbolic sine has an essential singularity at infinity, the function has an essential singularity
at infinity as well. The point at infinity is a non-isolated singularity because there is no neighborhood of
infinity that does not contain second order poles.

(z —1)e/(>71) has a simple zero at z = 2 and an isolated essential singularity at z = 1.

sin(z — 3)
(z—=3)(z+1)8

has a removable singularity at z = 3, a pole of order 6 at z = —2 and an essential singularity at z...
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Chapter 13

The Residue Theorem

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on.

- Winston Churchill

13.1 The Residue Theorem

We will find that many integrals on closed contours may be evaluated in terms of the residues of a function. We first
define residues and then prove the Residue Theorem.
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Result 13.1.1 Residues. Let f(z) be single-valued an analytic in a deleted neighborhood
of zp. Then f(z) has the Laurent series expansion

oo

) = 3 an(z— 20",

The residue of f(z) at z = z is the coefficient of the ﬁ term:
Res(f(z),z0) = a_;.

The residue at a branch point or non-isolated singularity is undefined as the Laurent series
does not exist. If f(z) has a pole of order n at z = 2 then we can use the Residue Formula:

Res(f(z), Zo) = lim ((n _1 1)' ddjn_l [(z — zo)nf(z)]) .

Z—20

See Exercise 13.4 for a proof of the Residue Formula.

Example 13.1.1 /n Example 8.4.5 we showed that f(z) = z/sin z has first order poles at z = nm, n € Z\ {0}. Now
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we find the residues at these isolated singularities.

Res( = ,z:mr): lim ((z—mr) - )

sin z z—nm sin z
zZ—nm

=nmT lim —
z—nm SIn z

= nr lim
z—nT COS 2

1
(="

= (—1)"nr

=nm

Residue Theorem. We can evaluate many integrals in terms of the residues of a function. Suppose f(z) has only
one singularity, (at z = zp), inside the simple, closed, positively oriented contour C'. f(z) has a convergent Laurent
series in some deleted disk about z;. We deform C' to lie in the disk. See Figure 13.1. We now evaluate fC f(z)dz by
deforming the contour and using the Laurent series expansion of the function.

Figure 13.1: Deform the contour to lie in the deleted disk.
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/C f()dz = / F(z)dz

:/ E an(z — 29)" dz

n=—oo
rer(0+2m)
(2 — 2zg)"t! e (6+27)
Y o [ T a_ flog(= — )7
n——oo n _'_ rez@
n#—1
=a_1127

/Cf(z) dz =127 Res(f(2), 20)

Now assume that f(z) has n singularities at {z1, ..., 2,}. We deform C' to n contours C1, ..., C,, which enclose the
singularities and Iie in deleted disks about the singularities in which f(z) has convergent Laurent series. See Figure 13.2.
We evaluate fc z) dz by deforming the contour.

/f dZ—Z dZ—ZQﬂ'ZReS 2), 2k)

Now instead let f(z) be analytic outside and on C except for isolated singularities at {(,} in the domain outside C
and perhaps an isolated singularity at infinity. Let a be any point in the interior of C'. To evaluate fo z) dz we make
the change of variables ( = 1/(z — a). This maps the contour C' to C’. (Note that C’ is negatively orlented.) All
the points outside C' are mapped to points inside C’ and vice versa. We can then evaluate the integral in terms of the
singularities inside C".
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Figure 13.2: Deform the contour n contours which enclose the n singularities.




C
Q > C,

Figure 13.3: The change of variables ( = 1/(z — a).

Result 13.1.2 Residue Theorem. If f(z) is analytic in a compact, closed, connected
domain D except for isolated singularities at {z,,} in the interior of D then

- f(z)dz = zk:jék f(z)dz = ZQW;RGS(f(Z),Zn).

Here the set of contours {C}} make up the positively oriented boundary 9D of the domain
D. If the boundary of the domain is a single contour C' then the formula simplifies.

éf(z) dz =27 Z Res(f(2), zn)

If instead f(z) is analytic outside and on C' except for isolated singularities at {(,} in the
domain outside C' and perhaps an isolated singularity at infinity then

ﬁf(z)dZZZZW;ReS (%f (%ﬂLa) ’Cn1_a> + 1227 Res (%f (%nta) ,O).

Here a is a any point in the interior of C'. 619




Example 13.1.2 Consider
1 / sin 2z
— | ——=dz
121 Jo z(z — 1)
where C' is the positively oriented circle of radius 2 centered at the origin. Since the integrand is single-valued with
only isolated singularities, the Residue Theorem applies. The value of the integral is the sum of the residues from

singularities inside the contour.
The only places that the integrand could have singularities are z = 0 and z = 1. Since
sin z COoS 2

lim = lim =1,
z2—0 z 2—0 1

there is a removable singularity at the point z = 0. There is no residue at this point.
Now we consider the point z = 1. Since sin(z)/z is analytic and nonzero at z = 1, that point is a first order pole
of the integrand. The residue there is

Res <%,z = 1) = lim(z — 1)ﬂ = sin(1).
z

z—1 z—1 Z(Z—l)

There is only one singular point with a residue inside the path of integration. The residue at this point is sin(1).

Thus the value of the integral is
1 .
— [ g —sin(1)
121 Jo z2(z — 1)

Example 13.1.3 Evaluate the integral

/ cot z coth z
.3 dz
C z

where C' is the unit circle about the origin in the positive direction.

The integrand is
cot z coth z _cosz cosh z

23 z3sin z sinh 2
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sin z has zeros at nr. sinh z has zeros at inw. Thus the only pole inside the contour of integration is at z = 0. Since
sin z and sinh z both have simple zeros at z = 0,

sinz = 2z + O(2%), sinhz = 2 + O(2%)

the integrand has a pole of order 5 at the origin. The residue at z =0 is

4

=1l

1
1 da (22 cot z coth z)
2—0 4! dz

lim ——

1 d* [ jcotzcothz
z—0 4! dz4 i

23

1
=1 lim (24 cot(z) coth(z)ese(z)? — 32z coth(z)esc(z)*

I 2—0

— 162z cos(2z) coth(z)esc(z)* + 2222 cot(z) coth(z)esc(z)*

+ 222 cos(3z) coth(z)esc(z)” + 24 cot(z) coth(z)csch(z)”

+ 24esc(z) esch(z)? — 482 cot(z)esce(z) esch(z)?

— 48z coth(z)esc(z) csch(z)? + 2422 cot(z) coth(z)csc(z)esch(z)”
+ 162%csc(2) esch(z)” + 822 cos(22)csc(z) esch(z)”

— 32z cot(z)esch(z)* — 16z cosh(2z) cot(z)esch(z
+ 2222 cot(z) coth(z)esch(z)" + 162%csc(z) esch(z)*

)
)

+ 82 cosh(2z)csc(z)esch(z)* + 222 cosh(3z) Cot(z)csch(z)5>

1 56
4! 15

T

45
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Since taking the fourth derivative of 2% cot z coth z really sucks, we would like a more elegant way of finding the
residue. We expand the functions in the integrand in Taylor series about the origin.

22 Z4 22 Z4
coszcoshz <1_7+ﬁ_"')<1+7+ﬁ+'”)
23 sin z sinh 2 23(2—%+%—'“)(2+%+%+"')

B 1_%4_...
- -1 1
23(224—26(%—’—@)4—"')
IR R
T o5 _ 2
z 1_®_|_...

1 71
25 452
Thus we see that the residue is —%. Now we can evaluate the integral.
/ cot z coth z 14
———dz=—1—7
C z 45

13.2 Cauchy Principal Value for Real Integrals

13.2.1 The Cauchy Principal Value

First we recap improper integrals. If f(x) has a singularity at =y € (a...b) then

/b f(z)dz = lim o f(z)dx + lim ’ f(z)dx.

=0t J, 6—0+ To+6
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For integrals on (—o0. .. 00),
/ flz)dz = hmb / f(x

Example 13.2.1 fjl % dx is divergent. We show this with the definition of improper integrals.

| -1 |
/ —dz = lim —dx + lim —dz

1z e—0t J_1 T =0t Js X

. —€ . 1
= lim [Infz]]Z; + lim [Infz]];

= lim Ine — lim Iné
e—0T 6—0Tt

The integral diverges because ¢ and § approach zero independently.
Since 1/x is an odd function, it appears that the area under the curve is zero. Consider what would happen if ¢ and
0 were not independent. If they approached zero symmetrically, 6 = €, then the value of the integral would be zero.

lim (/ /) dz = hm(lne—lne) 0
e—0F e—07F

We could make the integral have any value we pleased by choosing § = ce. *

6l_i)lgl+ </ / ) dr = GE%(IIIE —In(ce)) = —Inc

We have seen it is reasonable that
|
—dx
-1 xr

has some meaning, and if we could evaluate the integral, the most reasonable value would be zero. The Cauchy principal
value provides us with a way of evaluating such integrals. If f(z) is continuous on (a, b) except at the point zy € (a,b)

!This may remind you of conditionally convergent series. You can rearrange the terms to make the series sum to any number.
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then the Cauchy principal value of the integral is defined

]{bf(x) dz = lim (/jﬂ_ef(x) wt [ i da:).

e—0t Tote

The Cauchy principal value is obtained by approaching the singularity symmetrically. The principal value of the integral
may exist when the integral diverges. If the integral exists, it is equal to the principal value of the integral.

The Cauchy principal value of fjl % dx is defined

1 1 11
][ —dx = lim (/ —da:—i—/ —dx)
i —0t \J_; T . T

= lim (flog (] [log |)

= lim (log| - ¢| — log]e]

=0.

(Another notation for the principal value of an integral is PV [ f(z)dx.) Since the limits of integration approach zero
symmetrically, the two halves of the integral cancel. If the limits of integration approached zero independently, (the
definition of the integral), then the two halves would both diverge.

Example 13.2.2 [ —2_dx is divergent. We show this with the definition of improper integrals.

oo z2+1
[e’e) b
T T
dz = lim dx
/_OO 2?2 +1 a——o0, baoo/a 2 +1

1
=  lim [5 In(z* + 1)]
1 , b2 41
= — lim In
2 a——o0, b—oo a?+1
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The integral diverges because a and b approach infinity independently. Now consider what would happen if a and b

were not independent. If they approached zero symmetrically, a = —b, then the value of the integral would be zero.
lim 1 b +1\
20t \ B2+ 1
We could make the integral have any value we pleased by choosing a = —cb.

We can assign a meaning to divergent integrals of the form ffooo f(z)dx with the Cauchy principal value. The
Cauchy principal value of the integral is defined

h f(z)dx = lim ’ f(x)dx.

—0o0 —a

The Cauchy principal value is obtained by approaching infinity symmetrically.

The Cauchy principal value of ffooo -7 du is defined

][ < dz = lim $ dx
| a—oo |, x?+1

) 1 ¢
= lim {5 In (x2 + 1)] y

a—0o0
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Result 13.2.1 Cauchy Principal Value. If f(x) is continuous on (a, b) except at the point
xo € (a,b) then the integral of f(z) is defined

b To—€
/ f(z)dzx = lim f(z)dx + lim / f(x

e—0" J, 60—07t

The Cauchy principal value of the integral is defined

b To—E€ b
][ f(z)dzx = lim </ f(z)dx + f(x) dx) .
@ -0t a ZTote

If f(x) is continuous on (—o0, 00) then the integral of f(z) is defined

/Z flx)dx = a_}_})i@l(]ﬂ()_}OO /abf(::r;) dz

The Cauchy principal value of the integral is defined

][_Zf( )dz = lim f()

a—00

The principal value of the integral may exist when the integral diverges. If the integral exists,
it is equal to the principal value of the integral.

Example 13.2.3 Clearly ffooo x dx diverges, however the Cauchy principal value exists.

[e’s) 2
][ rdz = lim {%] a=20
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In general, if f(z) is an odd function with no singularities on the finite real axis then

][Z f(z)da = 0.

13.3 Cauchy Principal Value for Contour Integrals

Example 13.3.1 Consider the integral

1
/ dz,
C, z—1

where C.. is the positively oriented circle of radius r and center at the origin. From the residue theorem, we know that

the integral is
/ 1 0 forr <1,
dz =
o z2—1 127 forr > 1.

When r = 1, the integral diverges, as there is a first order pole on the path of integration. However, the principal value
of the integral exists.

1 2m—€ 1 ;
][ dz = lim 5 1e” df
o, z—1 e—0+ J, e’ —1

= lim [log(e” — 1)}?76

e—0F
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We choose the branch of the logarithm with a branch cut on the positive real axis and arglog z € (0, 2).

= lim (log (¢*79 —1) ~log (e — 1))

iy (g (1 ie + O(€) — 1) —Iog ({1 + ie + O(e) — 1)

= lim (log (—ie + O(e?)) — log (ie + O(")))

= el—ii% (Log (e + O(€?)) + varg (—ie + O(€®)) — Log (e + O(€®)) — varg (1e + O(¢?)))
3mom

=g g

Thus we obtain

0 forr <1,

1
][ po— dz = < forr =1,
o 127 forr > 1.

In the above example we evaluated the contour integral by parameterizing the contour. This approach is only
feasible when the integrand is simple. We would like to use the residue theorem to more easily evaluate the principal
value of the integral. But before we do that, we will need a preliminary result.

Result 13.3.1 Let f(2) have a first order pole at z = 2y and let (z — 2¢) f(2) be analytic in
some neighborhood of ;. Let the contour C. be a circular arc from zy + ee'® to zy + ee?’.
(We assume that § > o and  — a < 27.)

lim [ f(2)dz =10 — a)Res(f(2), 20)

The contour is shown in Figure 13.4. (See Exercise 13.9 for a proof of this result.)
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Figure 13.4: The C. Contour

Example 13.3.2 Consider

1
][ dz
CZ—l

where C' is the unit circle. Let C, be the circular arc of radius 1 that starts and ends a distance of € from z = 1. Let
C. be the positive, circular arc of radius € with center at z = 1 that joins the endpoints of C,,. Let C;, be the union of
C, and C.. (C, stands for Principal value Contour; C; stands for Indented Contour.) C; is an indented contour that
avoids the first order pole at z = 1. Figure 13.5 shows the three contours.

dR"
S

Figure 13.5: The Indented Contour.
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Note that the principal value of the integral is

1 1
][ dz = lim dz.
c R — 1 e—0t Cyp z—1
We can calculate the integral along C; with the residue theorem.

1
/ dz = 2mi
Ciz_]'

We can calculate the integral along C, using Result 13.3.1. Note that as ¢ — 0", the contour becomes a semi-circle,
a circular arc of w radians.

1 1
lim dz=wmRes| ——,1) =wr
1 z—1

e—0t c. % —

Now we can write the principal value of the integral along C' in terms of the two known integrals.

1 1 1
][ dz:/ dz—/ dz
02—1 CiZ—l C€Z—1

In the previous example, we formed an indented contour that included the first order pole. You can show that if we
had indented the contour to exclude the pole, we would obtain the same result. (See Exercise 13.11.)

We can extend the residue theorem to principal values of integrals. (See Exercise 13.10.)
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Result 13.3.2 Residue Theorem for Principal Values. Let f(z) be analytic inside and
on a simple, closed, positive contour C, except for isolated singularities at zq, ..., z,, inside
the contour and first order poles at (i, ..., (, on the contour. Further, let the contour be C!
at the locations of these first order poles. (i.e., the contour does not have a corner at any of
the first order poles.) Then the principal value of the integral of f(z) along C'is

][Cf(z) dz =27 Z Res(f(z),z;) + ZWZ Res(f(z), ().

J=1

13.4 Integrals on the Real Axis

Example 13.4.1 We wish to evaluate the integral

< 1
/_Oox2+1dx.

We can evaluate this integral directly using calculus.

< 1
/ o) dz = [arctan z]™_
T

—00

=7
Now we will evaluate the integral using contour integration. Let C'r be the semicircular arc from R to — R in the upper

half plane. Let C' be the union of Cr and the interval [—-R, R).
We can evaluate the integral along C' with the residue theorem. The integrand has first order poles at z = +1. For
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R > 1, we have

1 1
/ dz = 127 Res , 2
022+1 Z2+1

1
=127 —
22

= T.

Now we examine the integral along C'r. We use the maximum modulus integral bound to show that the value of the
integral vanishes as R — oo.
1
/ 5 dz
Cr z2+1

< mRmax
zeCpr

1
R2 -1
—0 as R — oo.

1
22 +1
=7R

Now we are prepared to evaluate the original real integral.

1
/ 2—|—ldzzﬂ
CZ

R 1
J R g R
_prt+1 op 2011

* 1
/ de =7
|

We would get the same result by closing the path of integration in the lower half plane. Note that in this case the
closed contour would be in the negative direction.

We take the limit as R — oo.
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If you are really observant, you may have noticed that we did something a little funny in evaluating

>~ 1
/ LI
|

The definition of this improper integral is

00 0 b
1
dr = li do+ = li d
/OO 2?2 +1 T a2 +1 T b—lfknoo 0 22 +1 ¢

In the above example we instead computed
R
1
dz.

lim [ ——
R—+00 _R7T + 1

Note that for some integrands, the former and latter are not the same. Consider the integral of

00 0 b
xT T X
doz = lim d lim d
/_Oozc2+1 ! a—1>+oo/_ax2+1 x+b—l>+oo/0 21

1 1
= lim_ (5 log |a* + 1|> + Jim (—5 log |b* + 1|)

Note that the limits do not exist and hence the integral diverges. We get a different result if the limits of integration
approach infinity symmetrically.

_r
241"

R

. . . 1 2 2
R1—1>I—|I-loo » $2+1dx7Rl—1>I—ir-loo <§(log]R + 1] —log |R +1])>
=0

(Note that the integrand is an odd function, so the integral from —R to R is zero.) We call this the principal value of
the integral and denote it by writing “PV" in front of the integral sign or putting a dash through the integral.

PV/_Zf(x)de][_Zf(x)de lim /_Zf(m)dm

R—+o0c0
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The principal value of an integral may exist when the integral diverges. If the integral does converge, then it is
equal to its principal value.

We can use the method of Example 13.4.1 to evaluate the principal value of integrals of functions that vanish fast
enough at infinity.

Result 13.4.1 Let f(z) be analytic except for isolated singularities, with only first order poles
on the real axis. Let C'z be the semi-circle from R to —R in the upper half plane. If

fim (Rmaxf)1) =0

—00 zeCR

then
]l f(x)dx = ZQ?TZRGS )y 2k +27TZR€S 2), xk)

where z1, ...z, are the smgularltles of f(2) in the upper half plane and z1,...,x, are the
first order poles on the real axis.
Now let C'z be the semi-circle from R to —R in the lower half plane. If

lim (Rmax\f( )|) =0

R— z€Cr
then . .
][ flz)dz = —ZQWZRGS (f(2),21) — mZRes(f(z),xk)
- k=1 k=1
where 21, ...z, are the singularities of f(z) in the lower half plane and zy,...,x, are the

first order poles on the real axis.
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This result is proved in Exercise 13.13. Of course we can use this result to evaluate the integrals of the form

/ T e ds,

where f(z) is an even function.

13.5 Fourier Integrals

In order to do Fourier transforms, which are useful in solving differential equations, it is necessary to be able to calculate
Fourier integrals. Fourier integrals have the form

/_ e fa) da.

[e.9]

We evaluate these integrals by closing the path of integration in the lower or upper half plane and using techniques of

contour integration.
w/2 )
/ efRsm9 de.
0

Consider the integral
e—Rsin9 < e—R29/7r for 0 < 0 < 7'(‘/2

w/2 _ w/2
/ efRsme do < / efR20/7r de
0 0

_ [_ie—Rze/n]”/2
2R 0

T (o—R

= (el
VA
T

2R

—0 as R — o

Since 20/m < sinf for 0 < 0 < /2,

IN
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We can use this to prove the following Result 13.5.1. (See Exercise 13.17.)

Result 13.5.1 Jordan’'s Lemma.
" —Rsin6 T
do < —.
/0 o <z

Suppose that f(z) vanishes as |z| — oco. If w is a (positive/negative) real number and Cp, is
a semi-circle of radius R in the (upper/lower) half plane then the integral

f(z)e“* dz
Cr

vanishes as R — oo.

We can use Jordan's Lemma and the Residue Theorem to evaluate many Fourier integrals. Consider ffooo f(x)e™” dx,
where w is a positive real number. Let f(z) be analytic except for isolated singularities, with only first order poles on
the real axis. Let C be the contour from —R to R on the real axis and then back to —R along a semi-circle in the
upper half plane. If R is large enough so that C' encloses all the singularities of f(z) in the upper half plane then

/C f(z)e** dz =27 Z Res(f(z) €% z) +um Z Res(f(z) €%, zy,)
k=1 k=1

where 21, ... z,, are the singularities of f(z) in the upper half plane and x4, ..., xz, are the first order poles on the real
axis. If f(z) vanishes as |z| — oo then the integral on Cg vanishes as R — oo by Jordan's Lemma.

/00 f(z)e™® dz = ZZWZ Res(f(z) €%, zx) + Z Res(f(z) €**, zy)
e k=1 k=1

For negative w we close the path of integration in the lower half plane. Note that the contour is then in the negative
direction.
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Result 13.5.2 Fourier Integrals. Let f(z) be analytic except for isolated singularities, with
only first order poles on the real axis. Suppose that f(z) vanishes as |z| — oo. If wis a
positive real number then

/OO f(x)e™* do = 227T§: Res(f(z)e™?, z) + zwzn: Res(f(z)e™“*, xy)
- k=1 k=1

where z1, ...z, are the singularities of f(z) in the upper half plane and x1, ..., x, are the
first order poles on the real axis. If w is a negative real number then

/OQ f(x) e da = —ZQ’]TZ Res(f(z)e"™?, z) — Z Res(f(z)e™“*, xy)
e k=1 k=1

where 21, ...z, are the singularities of f(z) in the lower half plane and zy,...,x, are the
first order poles on the real axis.

13.6 Fourier Cosine and Sine Integrals

Fourier cosine and sine integrals have the form,

/ f(z)cos(wx)dx and / f(z) sin(wx) dz.
0 0
If f(z) is even/odd then we can evaluate the cosine/sine integral with the method we developed for Fourier integrals.
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Let f(z) be analytic except for isolated singularities, with only first order poles on the real axis. Suppose that f(z)
is an even function and that f(z) vanishes as |z| — co. We consider real w > 0.

]{OO f(z) cos(wr) dr = % ][_Z f(z) cos(wzx) dx

Since f(x)sin(wz) is an odd function,

L[~ .
5 ][_oo f(x)sin(wzx) dzx = 0.

Thus

Now we apply Result 13.5.2.
][ f(z) cos(wz)dx = Z Res(f(z) €, zx) + % Z Res(f(z) €™, zy,)
0 k=1 k=1

where 21, ... z,, are the singularities of f(z) in the upper half plane and x4, ..., xz, are the first order poles on the real
axis.

If f(z) is an odd function, we note that f(x)cos(wz) is an odd function to obtain the analogous result for Fourier
sine integrals.
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Result 13.6.1 Fourier Cosine and Sine Integrals. Let f(z) be analytic except for isolated
singularities, with only first order poles on the real axis. Suppose that f(x) is an even function
and that f(z) vanishes as |z| — co. We consider real w > 0.

][OO f(z) cos(wx)dx = i Res(f(z)€e"™?, z) + %T z": Res(f(z) €™, xy)
0 k=1 k=1

where 21, ...z, are the singularities of f(z) in the upper half plane and zy,...,z, are the
first order poles on the real axis. If f(z) is an odd function then,

0 K n
]é f(z)sin(wz)dz =7 Z Res(f(z) e, (k) + g Z Res(f(z) €™, z)
k=1 k=1

where (i, ... (, are the singularities of f(z) in the lower half plane and z1, ..., x,, are the first
order poles on the real axis.

Now suppose that f(z) is neither even nor odd. We can evaluate integrals of the form:

/_: f(z)cos(wz)dz and /_Z f@) sin(we) dz

by writing them in terms of Fourier integrals

/_Z f(z) cos(wz) dz = %/:; Fz) e dz + % /_Z Flx) e do

/_Z f(z)sin(wz) dz = —%/_Z o) e dx—i—%/_z rRy——
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13.7 Contour Integration and Branch Cuts

Example 13.7.1 Consider

/ a dz, O0<a<l,
o T+1

where =% denotes exp(—aln(x)). We choose the branch of the function

f(z) = ZZ——I—l |z] >0, 0 <argz < 27w
with a branch cut on the positive real axis.
Let C. and Cy denote the circular arcs of radius ¢ and R where ¢ < 1 < R. C. is negatively oriented; Cr is
positively oriented. Consider the closed contour C' that is traced by a point moving from C. to Cr above the branch
cut, next around Cr, then below the cut to C,, and finally around C. (See Figure 13.11.)

Cr

Figure 13.6:

We write f(z) in polar coordinates.

_exp(—alogz)  exp(—a(logr +i0))
o z+l ref +1

f(2)
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We evaluate the function above, (z = re®), and below, (z = r e"*™), the branch cut.

_exp[—a(logr +140)]  r7®

ezO _
fre r+1 r+1

f(?“ ez27r) _ eXp[—a(logr + 227r)] B @ g—2am
B r+1 =11

We use the residue theorem to evaluate the integral along C'.

7{ f(z)dz = 2w Res(f(2),—1)
c

R ro eraefﬂaﬂ’
/E T+1dr—|— CRf(z)dz—/E Hildr—l—/csf(z)dzZZQWRes(f(z),—l)

The residue is
Res(f(2), —1) = exp(—alog(—1)) = exp(—a(log 1 + 1)) = e 7" .

We bound the integrals along C. and C'r with the maximum modulus integral bound.

€@ 6l—cL
(z)dz| < 2me =27
C. 1—6 1_6
R—@ Rl—a
dz| <27R =2
ch(Z> 2| S 2mRp— T

Since 0 < a < 1, the values of the integrals tend to zero as ¢ — 0 and R — oo. Thus we have
oo T—a e-laﬂ'
/ dr =121 ———
o T+1 1 — e—2am
< xm T
/ der = —
o r+1 sin am

641




Result 13.7.1 Integrals from Zero to Infinity. Let f(z) be a single-valued analytic func-
tion with only isolated singularities and no singularities on the positive, real axis, [0, 00). Let
a & 7. If the integrals exist then,

00 n

/Ooof(a:) logxdr = —%;Res (f(2)log® 2, zk) —I—ZTFZRGS (f(z)log z, zx)

k=1

o0 2 n
/0 2 f(x)logxdx = % kz:; Res (2°f(2) log z, 2x)

a4 <
+ Res (2 f(2), zx) ,
Sin2(7Ta) kz:; ( f( ) k/’)
* m om 27« "
/0 zf(x)log™ xdx = Py (1 o 521 Res (= f(z),zk)> :
where 21, ..., z, are the singularities of f(z) and there is a branch cut on the positive real

axis with 0 < arg(z) < 2.
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13.8 Exploiting Symmetry

We have already used symmetry of the integrand to evaluate certain integrals. For f(z) an even function we were
able to evaluate fooo f(x)dx by extending the range of integration from —oo to co. For

/0 T (@) da

we put a branch cut on the positive real axis and noted that the value of the integrand below the branch cut is a
constant multiple of the value of the function above the branch cut. This enabled us to evaluate the real integral with
contour integration. In this section we will use other kinds of symmetry to evaluate integrals. We will discover that
periodicity of the integrand will produce this symmetry.

13.8.1 Wedge Contours

We note that 2" = r"e™’ is periodic in @ with period 27 /n. The real and imaginary parts of 2™ are odd periodic
in @ with period 7/n. This observation suggests that certain integrals on the positive real axis may be evaluated by
closing the path of integration with a wedge contour.

Example 13.8.1 Consider




where n € N, n > 2. We can evaluate this integral using Result 13.7.1.

n—1
< 1 log =z
der = — R =Tl ez7r(1+2k)/n
/(; 14+ gn x Z 8 (1 + Zn’

k=0
n—1 el 1+2k)/n

_ lim (z — em(14+20)/n) Jog »
— e (1+2k) /n 1+ 2zn

. nz—l - (logz +(z— ez7r(1+2k)/n)/z)

2—erm(1+2k)/n nzn—l
=0
B (1 +2k)/n
- Z n e (1+2k)(n—1)/n

n—1
_ 1T Z(l + 2/{,‘) ezZTrk/n

o n2 ewr(n—1)/n
k=0

ur/n N1
. 127 e 27k /n
- 2 ke
n
k=1
127 e/ n

n2 e2m/n _q
™

nsin(m/n)

This is a bit grungy. To find a spiffier way to evaluate the integral we note that if we write the integrand as a function
of r and 0, it is periodic in 0 with period 27 /n.
o 1
1+27  1+rnent

The integrand along the rays 0 = 2 /n, 4w /n, 67 /n, ... has the same value as the integrand on the real axis. Consider
the contour C' that is the boundary of the wedge 0 < r < R, 0 < 0 < 2m/n. There is one singularity inside the
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contour. We evaluate the residue there.

1 _ elﬂ/n
Res /") = lim S
]_ + Zn z—»e“’/” 1 + Zn

= lim -
z—erm/n M

em/n

n

We evaluate the integral along C' with the residue theorem.

1 ) T /n
/ Qs — 127 e
cl+42z2m n

Let Cg be the circular arc. The integral along C'r vanishes as R — oc.

/ 1 ‘ 2R 1
dz| < — max
CR1+Zn n zeCg |14+ 2™

< 2rR 1
— n Rr-1

We parametrize the contour to evaluate the desired integral.

0 1 0 1 —12 u/n
/ dr +/ = e?m/n gy = e
o l4an o 1L+ n

© 1 —2 er™/n
/0 1+ an n(l — e2r/n)
<1 T
/0 1+z2" " n sin(m/n)
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13.8.2 Box Contours

Recall that e* = e**% s periodic in y with period 2. This implies that the hyperbolic trigonometric functions
cosh z, sinh z and tanh z are periodic in y with period 27 and odd periodic in y with period 7. We can exploit this
property to evaluate certain integrals on the real axis by closing the path of integration with a box contour.

Example 13.8.2 Consider the integral

[ i = [ (s (4 )]

=1log(1) —2log(—1)

= T.

We will evaluate this integral using contour integration. Note that

ex—‘rwr + e—T—ww

cosh(x + ) = 5

= — cosh(x).

Consider the box contour C' that is the boundary of the region —R < x < R, 0 < y < w. The only singularity of
the integrand inside the contour is a first order pole at z = 1 /2. We evaluate the integral along C' with the residue

theorem.
1 1
]{ dz =127 Res [ ——, il
¢ cosh z coshz’ 2

- 2
=27 lim ﬂ
z—m/2 COSh z

=27 lim —
z—nm/2 sinh z

=27
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The integrals along the sides of the box vanish as R — oc.

1
cosh z

2
et R+wy + eFR—wy

+ R+ 1
dz| <7 max
4R cosh z 2€[£R...£R+um]

<7 max
y€(0...7]

2
oR _o-R
T
< —
~— sinh R
—0as R — oo

The value of the integrand on the top of the box is the negative of its value on the bottom. We take the limit as
R — oo.

< 1 > 1
/_OO coshxdx—i_/OO —coshxdx_Z?T

< 1
dr —
/_oocoshx e

13.9 Definite Integrals Involving Sine and Cosine

Example 13.9.1 For real-valued a, evaluate the integral:

2 do
fla) _/0 1+ asing

What is the value of the integral for complex-valued a.
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Real-Valued a. For —1 < a < 1, the integrand is bounded, hence the integral exists. For |a| = 1, the integrand
has a second order pole on the path of integration. For |a| > 1 the integrand has two first order poles on the path of
integration. The integral is divergent for these two cases. Thus we see that the integral exists for —1 < a < 1.

For a = 0, the value of the integral is 2. Now consider a # 0. We make the change of variables = = ¢". The real

integral from 6 = 0 to @ = 2w becomes a contour integral along the unit circle, |z| = 1. We write the sine, cosine and
the differential in terms of z.

_ 1 -1 d
S S R PO I 1 R

sinf = , ,
12 2 12

We write f(a) as an integral along C, the positively oriented unit circle |z| = 1.

B 1/(2z) L 2/a 5
f<a)_]{cl+a(z—z_1)/(22)d £z2+(22/a)z—1d

We factor the denominator of the integrand.

f(a):]{C( 2/a dz

RS )

a

a

Because |a| < 1, the second root is outside the unit circle.

1++v1—a?
|22|:T>1.
a

Since |z120| = 1,

z1| < 1. Thus the pole at z, is inside the contour and the pole at z, is outside. We evaluate the
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contour integral with the residue theorem.

B 2/a
Ja) = %C 224+ (12/a)z — 1 dz
2/a

21 — 22
1

11— a?

=27

=27

21

fW=r—=

Complex-Valued a. We note that the integral converges except for real-valued a satisfying |a| > 1. On any closed
subset of C\ {a € R | |a| > 1} the integral is uniformly convergent. Thus except for the values {a € R | |a| > 1},
we can differentiate the integral with respect to a. f(a) is analytic in the complex plane except for the set of points

on the real axis: a € (—oo...— 1] and a € [1...00). The value of the analytic function f(a) on the real axis for the
interval (—1...1) is

2

V1—a®

By analytic continuation we see that the value of f(a) in the complex plane is the branch of the function

fla) =

27

f(a):m

where f(a) is positive, real-valued for a € (—1...1) and there are branch cuts on the real axis on the intervals:
(—oo...—1]and [1...00).
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Result 13.9.1 For evaluating integrals of the form
a+27m
/ F(sin 6, cos ) db

it may be useful to make the change of variables z = €. This gives us a contour integral
along the unit circle about the origin. We can write the sine, cosine and differential in terms

of z. . » 1
sinﬁzi, Cosezz_i_iz, d@z—z
12 2 12

13.10 Infinite Sums

The function g(z) = 7 cot(mz) has simple poles at z = n € Z. The residues at these points are all unity.

7(z —n) cos(mz)

Res(m cot(nz),n) = ll_rg Sn(r2)

mecos(mz) — m(z — n)sin(wz)

= lim
z—n T COS(T('Z)

=1
Let C,, be the square contour with corners at z = (n + 1/2)(£1 £1). Recall that

cos z = cosx coshy —usinxsinhy and sinz = sinx cosh y + 2 cos x sinh y.
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First we bound the modulus of cot(z).

cos x cosh y — ¢sin x sinh y
|cot(z)] =

sin x cosh y 4 2 cos x sinh y

\/ cos? x cosh® y + sin® xsinh” y

2 x cosh® y + cos? x sinh? g

sin

cosh? y

sinh? y
= | coth(y)|

The hyperbolic cotangent, coth(y), has a simple pole at y = 0 and tends to +1 as y — +o0.
Along the top and bottom of C,,, (z = z £(n + 1/2)), we bound the modulus of g(z) = 7 cot(nz).

|7 cot(mz)| < 7| coth(m(n + 1/2))]
Along the left and right sides of C,,, (z = £(n + 1/2) + wy), the modulus of the function is bounded by a constant.

cos(m(n + 1/2)) cosh(my) F esin(n(n + 1/2)) sinh(7y)
sin(m(n + 1/2)) cosh(my) + 1cos(m(n + 1/2)) sinh(my)
= |Fur tanh(7y)|

<

lg(£(n +1/2) + )| = |7

Thus the modulus of 7 cot(mz) can be bounded by a constant M on C,,.

Let f(2) be analytic except for isolated singularities. Consider the integral,

j[c E cot(2) f(2) dz.
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We use the maximum modulus integral bound.

74  cot(m2)f(2) dz| < (8n +4)M max| /(=)
Cn zeln
Note that if
T [£()] =0,
then

lim meot(mz) f(z)dz = 0.

n—oo C,
n

This implies that the sum of all residues of 7 cot(7z) f(z) is zero. Suppose further that f(z) is analytic at z = n € Z.
The residues of mcot(nz)f(z) at z =n are f(n). This means

i f(n) = —( sum of the residues of 7 cot(mz)f(z) at the poles of f(z) ).

n=—oo

Result 13.10.1 If
lim |2f(z)| =0,

|2|—00

then the sum of all the residues of 7 cot(7z)f(z) is zero. If in addition f(z) is analytic at
z =mn € Z then

Z f(n) = —( sum of the residues of 7 cot(7z)f(2) at the poles of f(z) ).

n=—oo

Example 13.10.1 Consider the sum

o0

1
2 Gy %F

n=—oo
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By Result 13.10.1 with f(z) = 1/(z + a)* we have

> by =~ Res (meot(r) )

n=—o00
= —m lim — cot(mz)
z——a g

—7sin®(7z) — 7 cos?(m2)

sin?(7z2)

oo

1 72
Z (n+a)?  sin®(ma)

n=—0oo

Example 13.10.2 Deriven/4=1—-1/3+1/5—-1/T+1/9—---.
Consider the integral
1 dw

" 2r o, w(w — z)sinw
where C,, is the square with corners at w = (n + 1/2)(£1 £ )7, n € Z*. With the substitution w = = + 1y,

|sinw|? = sin® x + sinh? y,

we see that |1/sinw| <1 on C,. Thus I,, — 0 as n — oco. We use the residue theorem and take the limit n — oc.
& —1)" —1)" 1 1
0= Z [ (=1) + (=1) } + — — =
“ |nm(nm—z)  nr(nm+ 2) zsinz =z
1 1 = (=)
— -2y ——
sinz 2 ; n?m? — 22

Los[er e

n=1
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We substitute z = w/2 into the above expression to obtain

T/4=1-1/3+1/5-1/T+1/9—---
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13.11 Exercises

The Residue Theorem

Exercise 13.1
Evaluate the following closed contour integrals using Cauchy’s residue theorem.

d
1. / 5 & T where C'is the contour parameterized by r = 2 cos(26), 0 < 0 < 2.
c

2. /C TP ;)(z ) dz,  where C'is the positive circle |z| = 3.

3. / e/#sin(1/2)dz,  where C is the positive circle |z| = 1.
c

Hint, Solution

Exercise 13.2
Derive Cauchy's integral formula from Cauchy’s residue theorem.
Hint, Solution

Exercise 13.3
Calculate the residues of the following functions at each of the poles in the finite part of the plane.

1
A gl

1.

sin 2

52
1+ 22
z(z—1)2
eZ
22 4+ a?
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(1 — cos 2)?

5. =

Hint, Solution

Exercise 13.4
Let f(z) have a pole of order n at z = zy. Prove the Residue Formula:

Res(f(2)20) = limn ( oty (G 0] )

zZ—20

Hint, Solution

Exercise 13.5

Consider the function

24

2241

f(z) =

Classify the singularities of f(z) in the extended complex plane. Calculate the residue at each pole and at infinity. Find
the Laurent series expansions and their domains of convergence about the points z =0, 2z =1 and 2z = oco.
Hint, Solution

Exercise 13.6
Let P(z) be a polynomial none of whose roots lie on the closed contour I'. Show that

1 P'(2)
2r | P(z)

dz = number of roots of P(z) which lie inside I

where the roots are counted according to their multiplicity.

Hint: From the fundamental theorem of algebra, it is always possible to factor P(z) in the form P(z) = (z—21)(2 —
29) -+ (2 — 2,). Using this form of P(z) the integrand P'(z)/P(z) reduces to a very simple expression.
Hint, Solution
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Exercise 13.7
Find the value of

]{e—dz
o (z—m)tanz

where C' is the positively-oriented circle

1 |z =2
2. |z| =4
Hint, Solution

Cauchy Principal Value for Real Integrals

Solution 13.1
Show that the integral

is divergent. Evaluate the integral

|
/ dr, aeR, a#0.

| T —x
Evaluate
L |
lim dx
a—0t J_1 & —
and )
i 1
lim dzx.
a—0- J_1 & —

The integral exists for « arbitrarily close to zero, but diverges when o« = 0. Plot the real and imaginary part of the
integrand. If one were to assign meaning to the integral for & = 0, what would the value of the integral be?
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Exercise 13.8
Do the principal values of the following integrals exist?

1. f_llx%dx,
2. f_lll,%dx,
3. 1 % qg,

Assume that f(x) is real analytic on the interval (—1,1).
Hint, Solution

Cauchy Principal Value for Contour Integrals

Exercise 13.9
Let f(z) have a first order pole at z = zy and let (z — z) f(2) be analytic in some neighborhood of z,. Let the contour
C, be a circular arc from zy + ee* to zp + ee*’. (Assume that 3 > o and 3 — o < 27.) Show that

lim /C f(z)dz =8 — a) Res(f(2), 20)

e—0F
Hint, Solution
Exercise 13.10
Let f(z) be analytic inside and on a simple, closed, positive contour C, except for isolated singularities at z1,. .., 2,
inside the contour and first order poles at (;, ..., (, on the contour. Further, let the contour be C'! at the locations of

these first order poles. (i.e., the contour does not have a corner at any of the first order poles.) Show that the principal
value of the integral of f(z) along C' is

][ f(z)dz =27 zm: Res(f(z), z;) +m Zn: Res(f(2), ;).
¢ j=1 j=1
Hint, Solution
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Exercise 13.11
Let C be the unit circle. Evaluate

1
][ dz
02—1

by indenting the contour to exclude the first order pole at z = 1.
Hint, Solution

Integrals on the Real Axis

Exercise 13.12
Evaluate the following improper integrals.

o0 12 T
1. dz = L
/0 2+ @2 +4) " " 6

e dz
2. - 0
/_oo(:z:+b)2+a2' @=

Hint, Solution

Exercise 13.13
Prove Result 13.4.1.
Hint, Solution

Exercise 13.14
Evaluate

][OO 2x
S
Hint, Solution

Exercise 13.15
Use contour integration to evaluate the integrals
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©  dz
1.
/m1+ﬁ'
5 /°° _atde
oo (1 27)?

3, / o) g

oo L+ 22

Hint, Solution

Exercise 13.16
Evaluate by contour integration

o0 ZE6
_ T
/0 @Ay

Hint, Solution

Fourier Integrals

Exercise 13.17
Suppose that f(z) vanishes as |z| — co. If w is a (positive / negative) real number and Ck is a semi-circle of radius
R in the (upper / lower) half plane then show that the integral

(z)e™* dz
Cr

vanishes as R — o0.
Hint, Solution

Exercise 13.18
Evaluate by contour integration

oo
cos 2x
/ dzx.
oo T — AT
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Hint, Solution

Fourier Cosine and Sine Integrals

Exercise 13.19
Evaluate

o .
sin «
/ dz.
o T
Hint, Solution

Exercise 13.20
Evaluate

Hint, Solution

Exercise 13.21
Evaluate

Hint, Solution

Contour Integration and Branch Cuts

Exercise 13.22
Evaluate the following integrals.
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Hint, Solution

Exercise 13.23
By methods of contour integration find

/°° dz
o 22+54+6

[ Recall the trick of considering [.. f(z)log z dz with a suitably chosen contour I' and branch for log z. ]
Hint, Solution

Exercise 13.24
Show that

oz Ta
/0' m dox = Sin('ﬂ'a) for —1< §R(a) < 1.

From this derive that ) )
/ log z dx =0, / log @ do = =
o (@H1p o w12 T3

Hint, Solution

Exercise 13.25
Consider the integral

1. For what values of a does the integral exist?
2. Evaluate the integral. Show that
I(a) = ————
(a) 2 cos(ma/2)

3. Deduce from your answer in part (b) the results
© 0 ] 2 3
/ SCEC Y / 8T qe="T"
0 1+ 22 0 1+ a2 8
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You may assume that it is valid to differentiate under the integral sign.

Hint, Solution

Exercise 13.26
Let f(z) be a single-valued analytic function with only isolated singularities and no singularities on the positive real
axis, [0, 00). Give sufficient conditions on f(x) for absolute convergence of the integral

/0 2 f () da.

Assume that a is not an integer. Evaluate the integral by considering the integral of z%f(z) on a suitable contour.
(Consider the branch of z% on which 1* = 1.)
Hint, Solution

Exercise 13.27
Using the solution to Exercise 13.26, evaluate

/ xf(z)log x dx,
0

and -
/ 2 f(x)log™ xdx,
0

where m is a positive integer.
Hint, Solution

Exercise 13.28
Using the solution to Exercise 13.26, evaluate

/0 " fa)ds,

i.e. examine a = 0. The solution will suggest a way to evaluate the integral with contour integration. Do the contour
. . o0

integration to corroborate the value of [~ f(z) dx.

Hint, Solution
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Exercise 13.29

Let f(z) be an analytic function with only isolated singularities and no singularities on the positive real axis, [0, 00).
Give sufficient conditions on f(x) for absolute convergence of the integral

o0
/ f(z)logzdx
0
Evaluate the integral with contour integration.

Hint, Solution

Exercise 13.30
For what values of a does the following integral exist?

/ de.
0 1+x4

Evaluate the integral. (Consider the branch of 2 on which 1* = 1.)
Hint, Solution

Exercise 13.31
By considering the integral of f(z) = z'/?1log z/(z + 1)? on a suitable contour, show that

/oo rl/2 IOg[L‘ q /oo rl/2 q T
———dx =, —dr = —.
o (z+1)? o (z+1)? 2

Hint, Solution
Exploiting Symmetry

Exercise 13.32
Evaluate by contour integration, the principal value integral

—00
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for a real and |a| < 1. [Hint: Consider the contour that is the boundary of the box, —R < z < R, 0 < y < 7, but
indented around z = 0 and z = .
Hint, Solution

Exercise 13.33
Evaluate the following integrals.

1/°° dx
CJo (T4

. /mi.
o 1+ a3

Hint, Solution

Exercise 13.34
Find the value of the integral

by considering the contour integral

with an appropriately chosen contour I'.
Hint, Solution

Exercise 13.35
Let C' be the boundary of the sector 0 < r < R, 0 < § < w/4. By integrating e on C' and letting R — 0o show

that - - . -
cos(z?) dx :/ sin(z?) dx = —/ e~ du.
| eostatyae = [Csintatar = —

Hint, Solution
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Exercise 13.36
Evaluate

using contour integration.
Hint, Solution

Exercise 13.37
Show that

/ ¢ dox = il for 0 < a < 1.

o € +1 sin(ma)

Use this to derive that

/°° cosh(bx) d s

= for —1<b< 1.
coshz cos(mb/2) o U=

—00

Hint, Solution

Exercise 13.38
Using techniques of contour integration find for real a and b:

T de
F -/ %Y
(a,5) /0 (@ + bcos0)?

What are the restrictions on a and b if any? Can the result be applied for complex a, b? How?
Hint, Solution

Exercise 13.39
Show that

> cosx T
x —z dr = w/2 —7/2
o€ te em/2 e

[ Hint: Begin by considering the integral of €' /(e* +e~%) around a rectangle with vertices: +R, +R + 17.]
Hint, Solution
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Definite Integrals Involving Sine and Cosine

Exercise 13.40
Evaluate the following real integrals.

1./ d—ez\/iﬂ

. 1+sin%4
w/2

2. / sin 6 d6
0

Hint, Solution

Exercise 13.41
Use contour integration to evaluate the integrals

) /27r de
“Jo 2+sin(f)’

" cos(nf) )
2 S R
/W1—2acos(9)+a2 orfa| <1, ne

Hint, Solution

Exercise 13.42
By integration around the unit circle, suitably indented, show that

][ cos(nb) 49 — 7rs.m(n&)
0

cos @ — cos a sina

Hint, Solution
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Exercise 13.43
Evaluate

Hint, Solution

Infinite Sums
Exercise 13.44

Evaluate
=1
na
n=1
Hint, Solution
Exercise 13.45
Sum the following series using contour integration:
= 1
>
n=—oo

Hint, Solution
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13.12 Hints

The Residue Theorem

Hint 13.1

Hint 13.2

Hint 13.3

Hint 13.4
Substitute the Laurent series into the formula and simplify.

Hint 13.5

Use that the sum of all residues of the function in the extended complex plane is zero in calculating the residue at
infinity. To obtain the Laurent series expansion about z = 7, write the function as a proper rational function, (numerator
has a lower degree than the denominator) and expand in partial fractions.

Hint 13.6

Hint 13.7

Cauchy Principal Value for Real Integrals

Hint 13.8
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Hint 13.9
For the third part, does the integrand have a term that behaves like 1/22?

Cauchy Principal Value for Contour Integrals

Hint 13.10
Expand f(z) in a Laurent series. Only the first term will make a contribution to the integral in the limit as ¢ — 0.

Hint 13.11
Use the result of Exercise 13.9.

Hint 13.12
Look at Example 13.3.2.

Integrals on the Real Axis

Hint 13.13

Hint 13.14
Close the path of integration in the upper or lower half plane with a semi-circle. Use the maximum modulus integral
bound, (Result 10.2.1), to show that the integral along the semi-circle vanishes.

Hint 13.15
Make the change of variables x = 1/¢.

Hint 13.16
Use Result 13.4.1.

Hint 13.17
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Fourier Integrals

Hint 13.18
Use
" —Rsin@ d@ E
/0 e < )
Hint 13.19

Fourier Cosine and Sine Integrals

Hint 13.20
Consider the integral of <.

Hint 13.21
Show that

® 1 —cosz 1 —ew

Hint 13.22
Show that

 sin(mx) v [ e
VY dr = —— —dux.
/0 (1 —x?) de 2 ][_oo (1 — x?) v
Contour Integration and Branch Cuts

Hint 13.23
Integrate a branch of log® z/(1 + 2?) along the boundary of the domain e < r < R, 0 < 6 < .

Hint 13.24
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Hint 13.25
Note that

1
/ z%dz
0

/ x*dx
1
converges for R(a) < 1.

Consider f(z) = 2%/(z + 1)? with a branch cut along the positive real axis and the contour in Figure 13.11 in the
limit as p — 0 and R — oc.

converges for R(a) > —1; and

To derive the last two integrals, differentiate with respect to a.

Hint 13.26

Hint 13.27
Consider the integral of z*f(z) on the contour in Figure 13.11.

Hint 13.28
Differentiate with respect to a.

Hint 13.29
Take the limit as @ — 0. Use L'Hospital’s rule. To corroborate the result, consider the integral of f(z)logz on an
appropriate contour.

Hint 13.30
Consider the integral of f(z)log® z on the contour in Figure 13.11.

672



Hint 13.31

Consider the integral of

ZCL

on the boundary of the region e <7 < R, 0 < 0 < 7/2. Take the limits as ¢ — 0 and R — oc.

Hint 13.32
Consider the branch of f(z) = 2/2logz/(z + 1)? with a branch cut on the positive real axis and 0 < argz < 2.
Integrate this function on the contour in Figure 13.11.

Exploiting Symmetry
Hint 13.33

Hint 13.34
For the second part, consider the integral along the boundary of the region, 0 < r < R, 0 < 0 < 27/3.

Hint 13.35

Hint 13.36
To show that the integral on the quarter-circle vanishes as R — oo establish the inequality,

4
cos20>1— -0, 0<0<
T

Hint 13.37
Consider the box contour C' this is the boundary of the rectangle, —R <z < R, 0 <y < m. The value of the integral
is 72 /2.

Hint 13.38
Consider the rectangular contour with corners at =R and +R + 127. Let R — oo.
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Hint 13.39

Hint 13.40

Definite Integrals Involving Sine and Cosine

Hint 13.41

Hint 13.42

Hint 13.43

Hint 13.44
Make the changes of variables z = sin ¢ and then z = e*.

Infinite Sums

Hint 13.45
Use Result 13.10.1.

Hint 13.46
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13.13 Solutions

The Residue Theorem

Solution 13.2
1. We consider

/ dz
022—1

where C' is the contour parameterized by r = 2cos(260), 0 < § < 2m. (See Figure 13.7.) There are first order

'
9
e

Figure 13.7: The contour r = 2 cos(20).

poles at z = £1. We evaluate the integral with Cauchy’s residue theorem.

dz 1 1
/sz_l =27 (Res (22—_1,2:1) + Res (ﬁ,z:—1)>
1 1
=12
Zﬂ-(z—i_l z:l)

+z—1
=0

z=1
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2. We consider the integral

eZZ
d
/C 22(z — 2)(z +15) =

where C'is the positive circle |z| = 3. There is a second order pole at z = 0, and first order poles at z = 2 and
z = —15. The poles at z = 0 and z = 2 lie inside the contour. We evaluate the integral with Cauchy’s residue
theorem.

e e L ZQ”(RGS (( = 2>< DN 0)
R (g 2))

d e'* e'?

=2 ( —2)(2415)]|_ + 22(z 4 15) 222)
e e’

= 2n (dz =215, 2o 222)

=27

(z —2)%(z 4 15)?

(5 ) )
+l—=—1— )€
I o8 116
3 ? 1 5 o2

25 58 '116

5 1 o6 1 5
=——+ —mcos2— —msin2+1| —— 4+ —mcos2 + —msin 2

=27

( 2+ Z7—2)z—5—212)
S

10 o8 29 25 29 o8

3. We consider the integral

/ e!/#sin(1/2) dz
c

where C' is the positive circle |z| = 1. There is an essential singularity at z = 0. We determine the residue there
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by expanding the integrand in a Laurent series.

1 1 1 1
Vegin(1/z) = (1+ -+ 0| = 4+ 0=
e/*sin(1/z2) ( +z+ <22>) (Z—I— =

1 1

Lol
z z
The residue at z = 0 is 1. We evaluate the integral with the residue theorem.
/ eY*sin(1/z)dz = 127
c

Solution 13.3
If £(¢) is analytic in a compact, closed, connected domain D and z is a point in the interior of D then Cauchy's integral

formula states
(n) .\ _ n_' f(<)
10 = 5§, T e

To corroborate this, we evaluate the integral with Cauchy's residue theorem. There is a pole of order n+ 1 at the point

(=z.
n! (<) ~onl 2 d7
27 o (C — 2)n 1 d¢. = EW@JC(O -
= 10(2)
Solution 13.4
1.
1 1

2 —at (2 —a)(z+a)(z —1a)(z +10)
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There are first order poles at z = +a and z = £1a. We calculate the residues there.

Res <# z= a) = ! = L

24 —a*’ (z+a)(z—w)(z+1a)|,_, 4a®
Res<#z:—a>: L 1
24 —a¥’ (z—a)(z—w)(z+1a)|,__, 4a?

1 1 1
Res <z4 Epibe za> B (z—a)(z+a)(z+1a)|,_, T 4d®
1 1 {

Res (24 EpiEe —za) - (z—a)(z+a)(z—a)|,__,, T4

sin z

2

z
Since denominator has a second order zero at 2z = 0 and the numerator has a first order zero there, the function
has a first order pole at z = 0. We calculate the residue there.

Res (—sz = O) = lim S 2

)
22

z—0 z
. COS 2
= lim
z—0 1

1+ 22
z(z—1)2

There is a first order pole at z = 0 and a second order pole at z = 1.

2 2
RQS(LZQ,ZZO):L
z ) (

=1
(z—1 z—1)2

z=0
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2 2
Res Hiz,zzl :il—i-z
z(z—1)?

4. ¢* / (22 + a®) has first order poles at z = 41a. We calculate the residues there.

eZ eZ Zew
Res <ﬁ,2—za> = = —
¢4 a z+aal,_,, 2a
eZ eZ Ze—za
Res S A=) = =
z¢ 4 a 2=, 2a

(1—cos z)

5. Since 1 — cos z has a second order zero at z = 0, — * has a third order pole at that point. We find the

residue by expanding the function in a Laurent series.

1— 2 2 4 2
%:zﬂ(l_(l_%g_ﬁo(zs))

The residue at z =0 is —1/24.
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Solution 13.5
Since f(z) has an isolated pole of order n at z = 2, it has a Laurent series that is convergent in a deleted neighborhood
about that point. We substitute this Laurent series into the Residue Formula to verify it.

) 1 dn—l .
Res(£(),0) = tim (s [ = )" 1))
. 1 dn—l [ . e
- (gt [ 35 o))
1 dr—1 [ >
= li a2z = 2)"
25 ((n— 1) dzn—1 _kzzo“’“ (z = 20) D
1 - k!
— i _ k—n+1
ZL%<(n_1)lk:n_l ’“”(k—n+1)!( %0) )
: 1 - (k+n—1) k
lim ((n— 1)! ; g (F ) )
1 (n—1)!
T - o
= a—l
This proves the Residue Formula.
Solution 13.6
Classify Singularities.
et 4
f(z) =

241 (z—=1)(z+12)

There are first order poles at z = 4. Since the function behaves like 22 at infinity, there is a second order pole there.
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To see this more slowly, we can make the substitution z = 1/ and examine the point { = 0.

IR ——
¢) (Al CH ¢+
f(1/¢) has a second order pole at ¢ = 0, which implies that f(z) has a second order pole at infinity.

Residues. The residues at z = £+ are,

The residue at infinity is

Res(/(),0¢) = Res ( (%) =

= Res (Z—
= Res( QQ ,C= 0)

Here we could use the residue formula, but it's easier to find the Laurent expansion.

:Res<g Z 42”4—0>

=0

—_
‘“f
S
J\
Il
(@)
N———

¢
ot

We could also calculate the residue at infinity by recalling that the sum of all residues of this function in the extended
complex plane is zero.

_72+ % + Res(f(z),00) =0
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Res(f(z),00) =0

Laurent Series about z = 0. Since the nearest singularities are at z = =41, the Taylor series will converge in the
disk |z] < 1.

2 _ 1
241 71— (—2)
— 4 Z(_Z2)n
n=0
— 24 Z(_l)nZQn
n=0
n=2

This geometric series converges for | — 22| < 1, or |z| < 1. The series expansion of the function is

4 [e.o]
i n n
FEa Ez(—l) 22 for |z| < 1

Laurent Series about z = 2. We expand f(z) in partial fractions. First we write the function as a proper rational
function, (i.e. the numerator has lower degree than the denominator). By polynomial division, we see that

flz) =22 =1+

2241
Now we expand the last term in partial fractions.

—1/2 1/2
/2,
Z—1 zZ+1

f(z)=22—1+
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Since the nearest singularity is at z = —1, the Laurent series will converge in the annulus 0 < |z — 1] < 2.

Z2—1=((z—1)+1)* -1
=(z—1)?+12(z—1) -2

/2 1/2

z4+1 124 (2 —1)
_ 1/4
1=z —1)/2

This geometric series converges for |1(z —1)/2| < 1, or |z — 2| < 2. The series expansion of f(z) is

—1/2 2 1 — z”
- 242z — )% 4= =
f(2) P +12(z —1) + (2 —1) +4; (2 —)"
4 —2/2 1 . ,n
22':_1:2@_/@—2—1—22(2—@) 2_22+ZHZZOZ”Z_Z for |z —1] < 2

Laurent Series about z = co. Since the nearest singularities are at z = 41, the Laurent series will converge in
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the annulus 1 < |z| < 0.

2241 141/22

n=—oo

This geometric series converges for | — 1/2%| < 1, or |z| > 1. The series expansion of f(z) is

1 1
= Z (—=1)"22" for1 < |z] < @

n=—oo

z
2241

Solution 13.7
Method 1: Residue Theorem. We factor P(z). Let m be the number of roots, counting multiplicities, that lie
inside the contour I'. We find a simple expression for P'(z)/P(z).



Now we do the integration

Method 2: Fundamental Theorem of Calculus. We factor the polynomial, P(z) = c¢[[;_,(z — zx). Let m be

j*l(z Z])
B 1
1 Z — Zk
using the residue theorem.
1 [ Pl(2) 1 S|
— dz = — d
7,27r/FP(z) : z27r/1~;z—zk -

> o1

2z inside T

=1m
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the number of roots, counting multiplicities, that lie inside the contour I'.

1 Plz) 1
2 | Pe) dz=— [log P(z)]

1 B n
=— |1 | | —
2r |0 k:1<z Zk)]

1 [ n
= o ;log(z - zk)]

C

C

The value of the logarithm changes by 127 for the terms in which z; is inside the contour. Its value does not change
for the terms in which z; is outside the contour.

— % [ Z log(z — Zk)]

2y, inside T’
1
= — E 127
12T =
2 inside T°
=m

Solution 13.8
1.

e® e”cos z
$oae = T
o (z—m)tan z c (z—m)sinz

The integrand has first order poles at z = nm, n € Z, n # 1 and a double pole at z = w. The only pole inside
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the contour occurs at z = (0. We evaluate the integral with the residue theorem.

e®cos z e?cos z
—————dz =27 Res | ———————,2=0
o (z—m)sinz (z —7)sinz
e®cos z

=2rlimz—-——
=0 (z —m)sinz

= —2lim —
z=0 sin z

= —21lim
z=0 COS 2
= —12

fo a2
o (z—m)tanz

2. The integrand has a first order poles at z = 0, —7 and a second order pole at z = 7 inside the contour. The
value of the integral is 227 times the sum of the residues at these points. From the previous part we know that

residue at z = 0. .
eZ

Res 7008'_2 2=0]=——

(z —7)sinz T

We find the residue at z = —7 with the residue formula.
e” cos z . e® cos z
Res| ———,z2=—7) = lim (2 +7)———————
(z —7)sinz 27 (z —m)sinz
e " (—1) .. z+4m
= L lim —
—27  z—-7m SInz
e ™ 1
= — lim
2T z——7m COS 2
e—’ﬂ'
- 27
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We find the residue at z = 7 by finding the first few terms in the Laurent series of the integrand.

e? cos 2 :(e”—l—e”(z—ﬂ)+(9((Z—7T)2))(1+O((2—7T)2))
(z —7)sin z (z—m)(=(z—m)+O((z—7)?))
—e"—e"(z—7)+ O ((z — 7)?)
—(z=7)?2+0((z —m)*)
o)
1+0((z —7)?)
= <(z—7r)2 +z—7r+0(1)> (1+O((z—7r) ))

:(z—ﬂ)2+z—7r+o(1)

e” cos z
Res | ————,z=m ) =¢€".
(z —7)sinz

With this we see that

The integral is
e* e® e®
%Lsédz:ﬂﬂ(Res LS,Z,Z:—W + Res Lsé,z:()
c (z—m)sinz (z —7)sinz (z—m)sinz
eZ
+ Res LS'Z,ZITF )
(z—m)sinz
1 —T
=27 (—— e —|—e“>
™ 27

]{ e—zdz:z(27re7r —2—6_”)
c

(z —m)tanz

Cauchy Principal Value for Real Integrals
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Solution 13.9
Consider the integral

1
1
/ —dux.
1T

| <1 |
/ —dx = lim —dx + lim —dz

1T e—0t 1 X d—0+ 5 T

By the definition of improper integrals we have

. € . 1
= lim [logz[]_} + lim [log |z];

= lim loge — lim logd
Jip loge = Ji, log

This limit diverges. Thus the integral diverges.
Now consider the integral

1
1
/ dz
1T —

where o € R, o # 0. Since the integrand is bounded, the integral exists.
1 1
1
/ dx :/ ?I—;mdx
1T — 24 a?
1
_ / oo
-1 1'2 + CYQ
1
0 T2+ a?

1/04 1
—o [
2/0 a1

=12 [arctan 5](1)/0‘

1
=2 arctan (—)
«Q
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Note that the integral exists for all nonzero real @ and that

|
lim de =
a—0Tt 1T =
and
|
lim dx = —r.
a—0- ) 1 —

The integral exists for « arbitrarily close to zero, but diverges when v = 0. The real part of the integrand is an odd
function with two humps that get thinner and taller with decreasing «. The imaginary part of the integrand is an even
function with a hump that gets thinner and taller with decreasing «.. (See Figure 13.8.)

P 1 _ T ’ 3 1 _ a
T — 2 + a? T — 22 + o2

Figure 13.8: The real and imaginary part of the integrand for several values of «.

Note that

1
1
3‘%/ dr — 400 as a — 0T
0 T —
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and

0
1
8‘%/ dr — —oc0casa— 0.
1T -
However,
1
lim R

a=0 | x —

dr =20

because the two integrals above cancel each other.
Now note that when oo = 0, the integrand is real. Of course the integral doesn't converge for this case, but if we

could assign some value to
t1
—dz
1T

! 1
lim 3‘%{ ] dr =0,

a—0 -1 xr — 1

it would be a real number. Since

This number should be zero.

Solution 13.10
1.

| <1 1
—de:hm (/ —2dx+/ —2dx>
1z e—0t 1z e I
= lim —— + [——
e—07F T]_4 T,

1 1
= lim (——1—1+—)
e—0t \ € €

The principal value of the integral does not exist.
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3. Since f(x) is real analytic,
f(z) = anx” for x € (—1,1).
n=1
We can rewrite the integrand as

@) _h ho fy S0 fo- o fa?
x x x x x

Note that the final term is real analytic on (—1,1). Thus the principal value of the integral exists if and only if
fo=0.

Cauchy Principal Value for Contour Integrals

Solution 13.11
We can write f(z) as

f(z) = io n (2 — Zo)_f(z) - fo.
z 20 z 20

Note that the second term is analytic in a neighborhood of z;. Thus it is bounded on the contour. Let M, be the
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maximum modulus of % on C.. By using the maximum modulus integral bound, we have

[ mmiGon,,

Z— 20

< (6 — a)eM,
—0 ase— 0T,

Thus we see that
dz.

lim/ f(z)dz lim Jo
Ce

e—0t =0t Jo 2 — 2o
We parameterize the path of integration with
r=z+e”, ¢ (a,p).

Now we evaluate the integral.

B
lim Jo dz = lim f—oezeew dé
=0t Jo 2 — 2o e—0t J, €€
B
= lim ’lfo de
=01 J,
=18 —a)fo

(6 — o) Res(f(2), 20)
This proves the result.

Solution 13.12
Let C; be the contour that is indented with circular arcs or radius € at each of the first order poles on C' so as to enclose
these poles. Let A;,..., A, be these circular arcs of radius € centered at the points (3, ..., (,. Let C, be the contour,
(not necessarily connected), obtained by subtracting each of the A;'s from C;.

Since the curve is C1, (or continuously differentiable), at each of the first order poles on C, the A,'s becomes
semi-circles as € — 0%. Thus

f(z)dz = Res(f(z),(;) forj=1,...,n.
Aj

693



The principal value of the integral along C is
fr@as =t [ LS
~ tim (Aif(z)dz—;Ajf(z)dz)
— 97 (i Res(f(2), z;) + ilRes( f(2), g)) — mi Res(f(2),¢)
j= j= =

][Cf(z) dz = 12m Y Res(f(2),2) + 1w Y Res(f(2), ).

Solution 13.13
Consider

1
][ dz
CZ—]_

where C'is the unit circle. Let C), be the circular arc of radius 1 that starts and ends a distance of € from z = 1. Let
C. be the negative, circular arc of radius € with center at z = 1 that joins the endpoints of C},. Let C;, be the union of
C, and C.. (C, stands for Principal value Contour; C; stands for Indented Contour.) C; is an indented contour that
avoids the first order pole at z = 1. Figure 13.9 shows the three contours.

Figure 13.9: The Indented Contour.

Note that the principal value of the integral is
1 1
][ dz = lim dz.
cr— 1 e—0t Cp z—1
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We can calculate the integral along C; with Cauchy's theorem. The integrand is analytic inside the contour.

1
/ dz=0
C.Z—l

3

We can calculate the integral along C. using Result 13.3.1. Note that as ¢ — 0%, the contour becomes a semi-circle,
a circular arc of 7 radians in the negative direction.

1
lim

1
dz = —um Res <—, 1> = —m
e—0t CEZ—]. z—1

Now we can write the principal value of the integral along C' in terms of the two known integrals.

1 1 1
][ dz:/ dz—/ dz
CZ—]_ C’L_Z—l Cez—]_

Integrals on the Real Axis

Solution 13.14
1. First we note that the integrand is an even function and extend the domain of integration.

00 2 e} 2
x 1 x
/ dr = —/ dx
o (@+1)(a2+4) 2 ) o (24 1)(x2+4)
Next we close the path of integration in the upper half plane. Consider the integral along the boundary of the
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domain 0 <r< R, 0<0 < 7.

1 22 1 22
5/0 (224 1)(224+4) A== 5/0 (z=1)(z+12)(z —12)(z +12) dz

2,2

=y (e (=)

Let C'r be the circular arc portion of the contour. fc = f_RR + fCR' We show that the integral along C'r vanishes
as R — oo with the maximum modulus bound.

< mRmax
zeCRr

52
(224 1)(22 —1—4)’
R2

(R — 1)(R? — 4)
— 0as R — o

/CR CES e

=7R

We take the limit as R — oo to evaluate the integral along the real axis.

R .CL’Q

I do = =
1m — €Tr = —
R—o02 J_p (224 1)(22+4) 6

o x? T
2 2 dz =&
o (2+1)(2%2+4) 6

696



2. We close the path of integration in the upper half plane. Consider the integral along the boundary of the domain
O<r<R 0<O<m.

/ dz _/ dz
c(z+02+a?2  Jo(z+b—1wa)(z+b+1a)

1
=127 R =-b
e es((z+b—za)(z+b+za)’z —i—m)
1

=27 ——

Z—f—b—'—ZCL z=—b+1a
oo
a

Let C'r be the circular arc portion of the contour. fc = fFR + fCR. We show that the integral along C'r vanishes
as R — oo with the maximum modulus bound.

1

<7mR —_—
< mRmax GCAD) o
1

zeCR

/ dz

Cr (z+0)2+a?
=R ey e

—0as R — oo

We take the limit as R — oo to evaluate the integral along the real axis.

. R dx
im — =
R—oo |_p (x4 )%+ a?

/OO dzx T
oo (D)2 402 a
Solution 13.15

Let Cr be the semicircular arc from R to —R in the upper half plane. Let C be the union of C'z and the interval

SIS
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[—R, R]. We can evaluate the principal value of the integral along C with Result 13.3.2.

][ flz)dz = 227TZReS (f(2),2k) + ZWZRGS(f(Z),xk)
¢ k=1 k=1
We examine the integral along C'r as R — oc.

(z)dz

<
. < rRmax|f(z)|

—0 as R — oo.

Now we are prepared to evaluate the real integral.

[eS) R
][ f(z)dz = lim g f(z)dx

R—oo J_p
=g )

=127 Z Res (f(2), zx) + Z Res(f(z), zx)
k=1 k=1
If we close the path of integration in the lower half plane, the contour will be in the negative direction.
][ flz)dx = —i2m Z Res (f(2), zx) — o Z Res(f(2), zx)
- k=1 k=1

Solution 13.16
We consider

& 2x
— dx.
][_oox2+x+1 v
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With the change of variables x = 1/¢, this becomes

D —1
f etemile)e

o0 2 —1
[ everi®
&2 F+E+1
There are first order poles at £ = 0 and & = —1/2 £11/3/2. We close the path of integration in the upper half plane

with a semi-circle. Since the integrand decays like €2 the integrand along the semi-circle vanishes as the radius tends
to infinity. The value of the integral is thus

2271 2271 1 3
1 Res (22— z = 0) + 127 Res (Zi —— 4+ 2£>
z

bl 7Z:
+2z+1 224241 2 2

_ 2 . 2277
wr lim - |+ 127 lim
=0\ 22+ 241 e (—1+v3)/2 \ 2 + (1 4121/3) /2

][OO 2x d 2m
—_— A = ——
o P2+ 1 V3

Solution 13.17
1. Consider

* 1
dz.
/_Oox4+1 v

The integrand ﬁ is analytic on the real axis and has isolated singularities at the points z = {7/ e®37/4 e57/4 /4
Let Cr be the semi-circle of radius R in the upper half plane. Since

1 | 1
z4+1D g <RR4—1) =0
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we can apply Result 13.4.1.

>~ 1 1 1
— I % 2! - a3w/4
/_Oox4+1dx—z27r<Res(z4+1,e )+Res(z4+1,e ))

The appropriate residues are,

24 + 1 z—serm/4 24 + 1
1

1m 3
z—erm/4 42

1 _ewr/4
Res (7,@/4) — im0

1
- e—137r/4

1 W3r/4 | 1
Res (24 + 1’e ) o 4(ew3m/4)3

We evaluate the integral with the residue theorem.
< 1 —1—2 1—1
——dr =27 +
/_ o Th+1 < 442 42 >

/°° 1 d T
r=—
| V2
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2. Now consider

') 33’2
—d=z.
/oo @112

The integrand is analytic on the real axis and has second order poles at z = +u. Since the integrand decays

sufficiently fast at infinity,
. R?
)= tim (R =0

00 [L'2 22
/_mmdx 2227TR,€S (W,Z :Z)

22 . d . 22
e () i ()

lim d il
= lim— [ —
== dz \ (2 +1)?

i <(z + 2)2?5;;2(2: + z))

2

. z
lim (RmaX m

R—o0 zeCpr

we can apply Result 13.4.1.

zZ—1

3. Since




is an odd function,

< cos(x) W
dr = d
/_Ool+a:2 v /_Ool+x2 ‘

Since ¢ /(1 + z?) is analytic except for simple poles at z = 42 and the integrand decays sufficiently fast in the

upper half plane,
. 1
)= () -0

o0 e’L$ e’LZ
dz = 12 S —
/—ool+$2 T lﬂReS((z—z)(z—l—z)’Z z)

1z

lim (R max

R—o00 zeCR

1+ 22
we can apply Result 13.4.1.

Solution 13.18
Consider the function

The value of the function on the imaginary axis:

(y* +1)?
is a constant multiple of the value of the function on the real axis:

1’6
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Thus to evaluate the real integral we consider the path of integration, C', which starts at the origin, follows the real
axis to R, follows a circular path to :R and then follows the imaginary axis back down to the origin. f(z) has second
order poles at the fourth roots of —1: (41 41)/v/2. Of these only (1 +1)/+/2 lies inside the path of integration. We
evaluate the contour integral with the Residue Theorem. For R > 1:

2° 2° /4
C(z4+1)2dz:127rRes 7(24%—1)2’226
6

=27 lim di ((z - e”/4)227>

z—erm/4 A2 (2,’4 + 1)2
or lim G
= 14T m —
Z_>ez7r/4 dZ (z _ e237l'/4)2(z _ 62571'/4)2(2 _ 61777/4)2
6

. z
=27 Zi1£/4 ((z _ eszr/4)2(Z _ ezEﬂr/Al)Q(Z _ ez77r/4)2

6 2 2 2
2y —eBT/4  , _ eibr/d  , _ euin/4 )

— (6\/§ 2 22 2)

141 V2 2+12 /2

The integral along the circular part of the contour, C'g, vanishes as R — oo. We demonstrate this with the maximum
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modulus integral bound.

4 (R*—1)2
—0as R — oo

Taking the limit R — oo, we have:

Fourier Integrals

Solution 13.19
We know that

T Reing Q
do < —.
/o ) R
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First take the case that w is positive and the semi-circle is in the upper half plane.

/ e* dz
Cr
T
S /
0

= R/7r e 501 df max | f(2)]
0

zeCR

<

max | f ()]

2eCpr

f(z)e™* dz
Cr

0
esz ev R ezH

df max | f(2)|

zeCpr

™
< B g max|f(2)]

™
= - max|f(2)]

—0 asR—

The procedure is almost the same for negative w.

Solution 13.20
First we write the integral in terms of Fourier integrals.

[e'S) 2 oo 122 0 —12x
/ cos xdx—/ eidx#—/ eidx
oo T — T oo 2(x —um) oo 2(x — )

Note that #_m) vanishes as |z| — co. We close the former Fourier integral in the upper half plane and the latter in
the lower half plane. There is a first order pole at z = 7 in the upper half plane.

00 esz ez2z
——  _dz=27Res(— 2=
/OO 2(1‘—27‘[‘) x 14T Ives (2(2—271‘)72 ZW)

e—27r
2

=27

There are no singularities in the lower half plane.



Thus the value of the original real integral is

o0
cos 2z _
/ de = e "

oo T — T

Fourier Cosine and Sine Integrals

Solution 13.21
We are considering the integral

o .
sin
/ dzx.
oo T

The integrand is an entire function. So it doesn't appear that the residue theorem would directly apply. Also the
integrand is unbounded as z — 41200 and x — —100, so closing the integral in the upper or lower half plane is not
directly applicable. In order to proceed, we must write the integrand in a different form. Note that

][ Cosxdxzo
T

—00

since the integrand is odd and has only a first order pole at x = 0. Thus

0 : oo 1xr
sin x e
/ dx :][ —dz.
oo T oo 1T

Let Cr be the semicircular arc in the upper half plane from R to —R. Let C' be the closed contour that is the union
of Cr and the real interval [— R, R]. If we close the path of integration with a semicircular arc in the upper half plane,

we have -
sinx . e* e*®
dr = lim —dz — —dz ),
— 0o i R—o00 C 1z Cr 1z

provided that all the integrals exist.
The integral along C'z vanishes as R — oo by Jordan's lemma. By the residue theorem for principal values we have

6—dz = Res (6— 0) = 7.

12 12
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Combining these results,

/ sin x de — 7.
oo T
Solution 13.22

Note that (1 — cos )/ has a removable singularity at z = 0. The integral decays like - at infinity, so the integral
exists. Since (sinx)/x? is a odd function with a simple pole at 2 = 0, the principal value of its integral vanishes.

]["O sin;v de — 0
.z

oo

OO1—(:osxd ‘X’l—cosx—zsinxd Oo1—e”d
2 v 22 v 2 v
—0o — 0 oo

Let Cr be the semi-circle of radius R in the upper half plane. Since

1_eZZ

z

lim | Rmax

R—>oo( 2eCR R—oo  R2

2
): lim R— =0

the integral along C'z vanishes as R — oo.

22

1 — e??
/ © dz—=0as R — o
Cr

We can apply Result 13.4.1.

(e} ]__er 1_eZZ 1_eZZ _ e’LZ
][ 5 dx:mRes( ,z:()):mlim = lim Zl

—00 s 22 z—0 z z—0

°°1—cosxd
— o0
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Solution 13.23
Consider

* sin(rx
|
o x(l—2a2)
Note that the integrand has removable singularities at the points = = 0, +1 and is an even function.

Note that cos(rz)

———— is an odd function with first order poles at x = 0, £1.
(1 —x?)

* cos(mr)
ST 4 = 0
f st
* sin(mz) v [0 e
ST qp= 24 0 g
/0 (1 —x?) v 27[_oox(1—x2) v

Let Cr be the semi-circle of radius R in the upper half plane. Since

T2
e

lim (R max m

R—o00 zeCRr

1
) R Y

the integral along C'g vanishes as R — oo.

Qimz
/CRde—)()aSR—)OO
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We can apply Result 13.4.1.

Contour Integration and Branch Cuts

Solution 13.24
Let C' be the boundary of the region ¢ < r < R, 0 < # < m. Choose the branch of the logarithm with a branch cut
on the negative imaginary axis and the angle range —7/2 < 0 < 37/2. We consider the integral of log” z/(1 4 2?) on

this contour.
log? log?
]{ %8 % 4z = 127 Res M,z:z
o1+ 22 1+ 22

log? 2

=27 lim
z—1 2+ 1
2 2
= 127?4(2%/ )
12



Let C'r be the semi-circle from R to —R in the upper half plane. We show that the integral along C'r vanishes as
R — 0o with the maximum modulus integral bound.
log? = log? =
; dz 2
Cr 1 +z 1 + z
In? R+ 2nln R + 72
<7R
R?—1
—0as R— o0

< mRmax
zeCRr

Let C, be the semi-circle from —e to € in the upper half plane. We show that the integral along C. vanishes as ¢ — 0
with the maximum modulus integral bound.
/ log? = log? =
dz
c. 1+ 22 1+ 22
In’ € — 2rlne + 72
e
- 1—¢?

—0ase—0

< memax
2€C,

Now we take the limit as € — 0 and R — oo for the integral along C'.

]{ log? = 3
dz = ——
01+Z2 4

* In’r O (Inr + om)? 3
d T =L
/0 14 r? T+/ 1+r2 4

o0

[e'e) 1 2 [e%e) 1 0 1 3
2/ nr dx+z27r/ nr d:L‘:7T2/ do — = (13.1)
0 2 0 + 22 0

1+2x

We evaluate the integral of 1/(1 + 2?) by extending the path of integration to (—occ...o0) and closing the path of
integration in the upper half plane. Since
) 1
=i\ M) =0
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the integral of 1/(1 + 2?) along Cg vanishes as R — oo. We evaluate the integral with the Residue Theorem.

o] 1 2 00 1
7T2/ dx:l/ dx
o 1422 2 J o 1+2?

2 1
= %Z2’/T Res (m, z = z)

. 1
= 72 lim
z—1 2+ 1
3
2

Now we return to Equation 13.1.

0012 | 3
2/ ”dﬁm/ DT =T
0o 1422 o 142 4

We equate the real and imaginary parts to solve for the desired integrals.
* In’x 3
/ de = =
o 1+ a2 8

]
/ il dr =0
0 1+.T2

Solution 13.25
We consider the branch of the function
log z
(z) = 22+ 5246
with a branch cut on the real axis and 0 < arg(z) < 2.

Let C. and Cr denote the circles of radius € and R where e < 1 < R. C. is negatively oriented; Cg is positively
oriented. Consider the closed contour, C, that is traced by a point moving from ¢ to R above the branch cut, next

around C back to R, then below the cut to €, and finally around C, back to e. (See Figure 13.11.)
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Figure 13.10: The path of integration.

We can evaluate the integral of f(z) along C' with the residue theorem. For R > 3, there are first order poles inside
the path of integration at z = —2 and z = —3.

z——2z4+3 z2>-3z+4+2

log(—2)  log(—3)
T )
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In the limit as € — 0, the integral along C vanishes. We demonstrate this with the maximum modulus theorem.

log 2z log 2z
——————dz| < 2memax | ————
c. 22 +52+6 2€Ce |22 4+ 5246
< 9me 2m — loge
6 — He — €2

—0ase—0

In the limit as R — oo, the integral along Ci vanishes. We again demonstrate this with the maximum modulus

theorem.
log 2 log 2
——dz| < 27R _
/CRz2+5z+6 #l=em gel%}; z2+52+6‘
log R + 27
<2tR—————
=R TER— 6

—0as R — o0
Taking the limit as € — 0 and R — oo, the integral along C'is:
log = < logzx /0 log z 4127
———dz = —d ——d
/022+5z+6 : /0 22+ 5246 S o L2+ 52 +6 v

<1
= —127r/ = -k dz
0 T¢+5xr+6

Now we can evaluate the real integral.

> logx 2
—42 0 e =2rloe [ 2
Z7T/0 2 4+ 5x +6 v Z7T0g(3)

/OO log x 3
——————dr=log | =
o r2+5xr+6 2
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Solution 13.26
We consider the integral

I(a) = /Ooo @ f_al)2 dz.

To examine convergence, we split the domain of integration.

e’} ZL‘a 1 Ia 0 l’a
——dz = d d
/o @1 / CESE "”/1 TRV

First we work with the integral on (0...1).

a

1 a 1
x x
——dz| < — | |dz
I e e L
/1 x%(a)
o (z+1)?
1
< / 2™ dy
0
This integral converges for R(a) > —1.
Next we work with the integral on (1...00).
< g o x®
dz| < dx
/1 (z+1)? —/1 (z +1)? ldal
00 Z.?R(a)
/1 (x+1)2

This integral converges for R(a) < 1.
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Thus we see that the integral defining I(a) converges in the strip, —1 < R(a) < 1. The integral converges uniformly
in any closed subset of this domain. Uniform convergence means that we can differentiate the integral with respect to
a and interchange the order of integration and differentiation.

> z%logx
I'a)= | =224
(@) /0 (x4 1)2 v

Thus we see that /(a) is analytic for —1 < R(a) < 1.
For —1 < R(a) < 1 and a # 0, 2* is multi-valued. Consider the branch of the function f(z) = 2%/(z + 1)* with a
branch cut on the positive real axis and 0 < arg(z) < 2w. We integrate along the contour in Figure 13.11.

The integral on C, vanishes as ¢ — 0. We show this with the maximum modulus integral bound. First we write 2¢
in modulus-argument form, z = ee?, where a = a + 15.
g ealogz
— e(a+2ﬂ)(lne+19)
— % In e—B0+1(51In e+ab)

Now we bound the integral.

/ Za d < 2 ZG
——dz Temax | ———
c. (z+1)2 - zeCe | (24 1)?
e® e277|ﬁ|
< 2me

(1—e)?

—0ase—0
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The integral on Cg vanishes as R — oc.

z¢ z®
———dz| < 27R —_—
/CR(ZH)? T e 1)
Rae%lﬂ\
< 2tR———
< 7TR<R—1>2

—0as R — o

Above the branch cut, (z = r¢?), the integrand is

20\ __ r
f(re ) - (T + 1)2
Below the branch cut, (z = re*7), we have,
2Ta .a
127 € r
f(re“m) = CESVER

Now we use the residue theorem.

00 a 0 .12ma ,.a a
T (& T z
—d —  dr=27Res | ———,—1
/0 (r+1) H/oo(rH)? e es<<z+1)2’ )

o a d
(1—e?™) / (7’— dr =27 lim —(2)
0

r+1)2 =—-1dz
00 a w(a—1)
r ace
/0 (7" + 1)2 r Lem 1 — e2ma

/ BT d —127a
_— = —
0 (7” + 1)2 e—ma _ gura

< a Ta
dr = for —1 <R 1 0
/0 (x4 1)2 v sin(rma) o <Rla) <1, a7
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The right side has a removable singularity at a = 0. We use analytic continuation to extend the answer to a = 0.

](a) :/ Ldl’: sin(ra) for —1 <%(CL) <1, a;éo
o (z+1)2 1 fora=0

We can derive the last two integrals by differentiating this formula with respect to a and taking the limit a — 0.

0 pa] 00 4.a] 2
I'(a):/ T 08T dz, I"(a):/ T8 Ty
0 0

(x +1)2 (x4 1)2
, > logx " * Jogz
I'(0) = /0 @+ 1) dz, I"(0) = /o @ +1) dz

We can find I'(0) and I”(0) either by differentiating the expression for I(a) or by finding the first few terms in the
Taylor series expansion of [(a) about a = 0. The latter approach is a little easier.

> Jn)
I(a) = Z [7((])&”

—~ n!
ma
I =
(a) sin(ma)
B Ta
ma — (ma)3/6 + O(ad)
1
11— (7a)?/6 + O(a?)
2 2
—1+ ”6“ +O(a?)
> logx
r'o) = =
(0) /0 CEE dr =0
* Jog’x 2
]’/I — —
© /0 CESVEAE




Solution 13.27
1. We consider the integral
:L,CL

I = — dzx.
(a) / s

To examine convergence, we split the domain of integration.

0 a 1 a o] a
T T T

dz = d —d

/0 T+a2 " /0 14 22 x+/1 T+a2 "

First we work with the integral on (0...1).

1 a 1 a
/ C_de| < / ° |dx|
o 1+ 2 o |1+ 22
1 . R(a)
= / - 5 dx
o 1+
1
§/ 7@ 4y
0
This integral converges for R(a) > —1.
Next we work with the integral on (1...00).
< a <l a®
dz| < d
/1 1+ a2 :1:‘_/1 ‘1+x2|x’

oo .R(a)
= / * dz
1 1 + 1'2

This integral converges for R(a) < 1.
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Thus we see that the integral defining I(a) converges in the strip, —1 < $(a) < 1. The integral converges
uniformly in any closed subset of this domain. Uniform convergence means that we can differentiate the integral
with respect to a and interchange the order of integration and differentiation.

I'(a) = /OO a:“logxdx
0

1+ 22
Thus we see that /(a) is analytic for —1 < R(a) < 1.

. For =1 < R(a) < 1 and a # 0, z* is multi-valued. Consider the branch of the function f(z) = 2%/(1 + 2%) with
a branch cut on the positive real axis and 0 < arg(z) < 27. We integrate along the contour in Figure 13.11.

Cr

Ce

Figure 13.11:

The integral on C), vanishes are p — 0. We show this with the maximum modulus integral bound. First we write
a

2% in modulus-argument form, where z = pe¥ and a = o + 3.
g ealogz
_ olataB)(log ptat)

— % log p—B0+1(B log p+ab)

_ pa efﬁe ez(ﬁ log p+ab)
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Now we bound the integral.

ZCL a
dz| <2 a
/Cp1+22 1= Wprzréc}j 14 22
a 2718
pre
< 2mp
1—p?

—0asp—0

The integral on Cg vanishes as R — oo.

a

z® z
dz| < 27R
/CR1+z2 =R T 2

Ra627r|,8\
<2TR—
=T T

—0as R — oo

Above the branch cut, (z = re?), the integrand is

20 r
(§] g
Below the branch cut, (z = re™™), we have,
127TQ .0
127 € r
e = )
fr ) 1+ 2
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Now we use the residue theorem.

oo a 0 L i27a ,.a a a
T (& T z V4
/0 m dr -+ L 1 T 7”2 dr = 27 <Res (m,l) + Res (m, —Z)>

(1 — el%“) / Y dr = 2r (lim = + lim :
0o 1+ a2 s z41 2—m—rz—
oo a wam/2 wa3m/2
x e e
1 — ezQﬂa dr =12
( ) /0 2T ( 12 i —12 )

1
o0 ga ezcm/2 _ eza37r/2
3 A0 =T
o 1t+a 1 — e2am

oo a ezmr/Q 1 — ewam
/ T sdr = ( )
o l+x (14 etm)(1 — etom)

< at d T
xr =
B 14+ x2 e—zaw/2+eza7r/2

<zt T
dr = for —1 1
/0 T 2= p——Y or <R(a) <1, a#0

We use analytic continuation to extend the answer to a = 0.

<zt T
I(a) = ——dr=———— for —1 1
(a) /0 1122 072 cos(ma/2) o < Rla) <

3. We can derive the last two integrals by differentiating this formula with respect to a and taking the limit a — 0

00 pa] 00 4] 2
I'(a) = / L0840 ) = / wtlog'z .
0 o L1422

14 a2
1'(0) = / e O / Tloge
o 12 Jo 14 a2
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We can find I'(0) and I”(0) either by differentiating the expression for I(a) or by finding the first few terms in
the Taylor series expansion of I(a) about a = 0. The latter approach is a little easier.

= 10
(0) .

I{a) = Z n!

n=0

I{a) = 2 cos(ma/2)
. 1
T 21— (ma/2)2/2 4+ O(ad)
_ g (14 (7a/2)%/2 + O(a*))

3
7r2/8a2+0(a4)

Ty
92

<]
1’(0):/ 8% qr=0
0

L+a22 7
> log® i
1'(0) = do = =
(0) /0 T +a2 "8

Solution 13.28
Convergence. If 2f(z) < 2% as © — 0 for some a > —1 then the integral

/01 zf(x)dx

will converge absolutely. If 2¢f(r) < 2° as 2 — oo for some 3 < —1 then the integral

| i@
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will converge absolutely. These are sufficient conditions for the absolute convergence of

/0 2 f () da

Contour Integration. We put a branch cut on the positive real axis and choose 0 < arg(z) < 2m. We consider
the integral of 2 f(2) on the contour in Figure 13.11. Let the singularities of f(z) occur at zy, ..., z,. By the residue
theorem,

/Czaf(z) dz = zQwZRes (z°f(2), z) -

On the circle of radius ¢, the integrand is o(e™!). Since the length of C, is 2me, the integral on C. vanishes as
¢ — 0. On the circle of radius R, the integrand is o( R™'). Since the length of C'r is 27 R, the integral on Cg vanishes
as R — oo.

The value of the integrand below the branch cut, z = x €™, is

f(.fL' 62271') = 7 ezZTra f(.fl?)

In the limit as ¢ — 0 and R — oo we have

/00 2 f(x)de + /0 r* e f(x)dr = z?wiRes (2%f(2), zx) -
0 - k=1

[e.o]

/0 2 f(z)dx = % ;Res (2% f(2), zx) -

Solution 13.29
In the interval of uniform convergence of th integral, we can differentiate the formula

/000 2 f(x)de = % ZRes (z*f(2), zk) ,
k=1
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with respect to a to obtain,

< 12T u 4rlg e "
/0 X f(JJ) logxda: = m kgl Res (Z f(Z) log Z, Zk) s —m kgl Res (Z f(Z), Zk) .
* 27 . 20 u
/0 2" f(x)logzde = [ oima ,;_1 Res (2 f(2)log 2, z1) +m ,}_1 Res (2" f(2), zk) ,

Differentiating the solution of Exercise 13.26 m times with respect to a yields

m

< m e 2T u
/0 zf(z)log™ xdx = D <1_el%a;Res(z f(z),zk)>,

Solution 13.30
Taking the limit as @ — 0 € Z in the solution of Exercise 13.26 yields

/ " () dr = a2rlim (22:1 - (Zaf(Z)’zk))

1 — ez27ra

The numerator vanishes because the sum of all residues of 2" f(z) is zero. Thus we can use L'Hospital’s rule.

/ N f(z)dz = 27 lim (Zﬁl Res (2°f(z) log 2, Zk))
0 a—0

—127 er?ra

/OOO Fla)do = =3 Res (£(2)log 2, )

This suggests that we could have derived the result directly by considering the integral of f(z)logz on the contour in
Figure 13.11. We put a branch cut on the positive real axis and choose the branch argz = 0. Recall that we have
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assumed that f(z) has only isolated singularities and no singularities on the positive real axis, [0,00). By the residue
theorem,

/ f(z)logzdz = ZQWZn:ReS (f(z)logz,z = z) .
¢ k=1

By assuming that f(z) < z* as z — 0 where a@ > —1 the integral on C, will vanish as ¢ — 0. By assuming that
f(2) < 2 as z — oo where 3 < —1 the integral on Cg will vanish as R — oco. The value of the integrand below the
branch cut, z = ze®" is f(x)(logx + 227). Taking the limit as ¢ — 0 and R — oo, we have

/00 f(z)logzdx + /0 f(z)(logx 4 127) do = zQwiRes (f(2)log z, z) .
0 [e%) k=1

Thus we corroborate the result.

/Ooo flz)dx = —ZRes(f(z) log z, z)

Solution 13.31
Consider the integral of f(z)log® z on the contour in Figure 13.11. We put a branch cut on the positive real axis and
choose the branch 0 < arg z < 2m. Let z1, ...z, be the singularities of f(z). By the residue theorem,

/ f(2)log? zdz = 127 i Res (f(z)log” z, z1) -
¢ k=1

If f(2) < 2 as z — 0 for some o > —1 then the integral on C. will vanish as ¢ — 0. f(2) < 2” as z — oo for some
3 < —1 then the integral on Cx will vanish as R — oco. Below the branch cut the integrand is f(z)(logz + 127)%.
Thus we have

/00 f(z)log® xdx + /0 f(2)(log? x + 147 log v — 47?) dw = 127 i Res (f(z)log” z, z1) -
0

00 k=1

—dm /00 f(z)logx dx + 47° /OO f(z)dz = zQwiRes (f(z) log? z,zk) .
0

0 k=1
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/000 f(z)logxdr = —%;Res (f(2)log® 2, 2,) + mZRes (f(2)log z, )

k=1

Solution 13.32
Convergence. We consider

o0 Ia
—dx.
/0 Trat

Since the integrand behaves like 2% near x = 0 we must have R(a) > —1. Since the integrand behaves like z%~* at
infinity we must have R(a — 4) < —1. The integral converges for —1 < R(a) < 3.
Contour Integration. The function

Za

f(Z):m

has first order poles at z = (£1 +1)/+/2 and a branch point at z = 0. We could evaluate the real integral by putting
a branch cut on the positive real axis with 0 < arg(z) < 27 and integrating f(z) on the contour in Figure 13.12.

G

a

Figure 13.12: Possible Path of Integration for f(z) = £

1424

Integrating on this contour would work because the value of the integrand below the branch cut is a constant times
the value of the integrand above the branch cut. After demonstrating that the integrals along C. and Cg vanish in the
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limits as € — 0 and R — oo we would see that the value of the integral is a constant times the sum of the residues at
the four poles. However, this is not the only, (and not the best), contour that can be used to evaluate the real integral.
Consider the value of the integral on the line arg(z) = 6.

a prald
0\ r-e
fre®) = 1+ 4 edd

If 6 is a integer multiple of 7/2 then the integrand is a constant multiple of

a

@) =1

Thus any of the contours in Figure 13.13 can be used to evaluate the real integral. The only difference is how many
residues we have to calculate. Thus we choose the first contour in Figure 13.13. We put a branch cut on the negative
real axis and choose the branch —7 < arg(z) < 7 to satisfy f(1) = 1.

G

)
o
fan

a

Figure 13.13: Possible Paths of Integration for f(z) = 1%

We evaluate the integral along C with the Residue Theorem.

2% 2° 142
/01—1—24 2 =12 es(1+z4,z \/§>
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Let @« = a + 13 and z = re?. Note that
|Za| — |(T‘ ez@)a+z,8| — o e—ﬁ& )

The integral on C, vanishes as ¢ — (0. We demonstrate this with the maximum modulus integral bound.

z¢ & < e z®
z — max
C€1+Z4 - 2 zeC. 1+Z4
e e emlBl/2
=2 ]

—0 ase—0

The integral on Cr vanishes as R — oo.

/ = dz <@max "
CR1+Z4 — 2 zeCp 1+Z4
TR R® em181/2
= 2 Rf-1

—0 as R —

z7r/2, is

The value of the integrand on the positive imaginary axis, z = ze

(I ez7r/2)a B 7@ etma/2

1+(xezw/2)4 - 1+$4 :
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We take the limit as € — 0 and R — o0.

oo a 0 .a nma/2 a
x x%e z
/ dz + / /2 dx = 127 Res et/
o l+at o 1+at 1+ 24

oo a af o _ /2
(1 _ ezrr(a+1)/2) / r dr = 27 lim (M)
0

1 + .flf4 z—serm/4 1 + 24
/°° ¢ dr — 12 lim az(z — e"/?) 4 20
0 1+ xt 1-— ezﬁ(a+1)/2 z—erm/4 423

oz 127 erma/4
pde = (a+1)/2 4 3m/4
o l+uw 1 —ewmia 4 5

< at Qo — —
0 1424 r= 2(e—z7r(a+1)/4 _ezTr(a+1)/4)

< at T m(a+1)
do = Tese (AT
/0 T A% 4csc( : )

Solution 13.33
Consider the branch of f(z) = z'/2log z/(z + 1) with a branch cut on the positive real axis and 0 < arg z < 27. We

integrate this function on the contour in Figure 13.11.
We use the maximum modulus integral bound to show that the integral on C, vanishes as p — 0.

/ 212 1og 2 q 212 1og 2
N — Z e —

C, (Z + 1)2 (Z + 1)2

p'/?(2m —log p)
(1—=p)?
—0asp—20

< 2mpmax
< 2mpma

=2mp
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The integral on C'z vanishes as R — oo.

/ 212 1og 2 ds 212 1og 2
cn (2 +1)2 (z4+1)2
RY?(log R + 27)
(R—1)

—0as R— o0

< 2w R max
Cr

=21R

Above the branch cut, (z = ze?), the integrand is,

1/21
0y r/?logx
J(we?) (x +1)2°
Below the branch cut, (z = z €™ ), we have,
_pel/2
127\ z (IOgLE + Z7T)
f(l’e ) - (l‘ + 1)2

Taking the limit as p — 0 and R — oo, the residue theorem gives us

0o 1/21 0 _ ,.1/2 1 2 1/21
/ T o8t ngdxjt/ v " (log +12m) dx =127 Res <—Z ng,—l).
o (z+1)2 o (x4 1)2 (z+1)2

0o 1/21 () 1/2 d
2/ xiogfdx+@27r/ (xidx =27 lim —(2/%log 2)
0 o @

(r+1) +1)2 z—-1dz
(9) 1/21 (3] 1/2 1 1
2/ wdx%—ﬂﬁ/ e =2n lim (=212 log z + 22~
o (z+1)2 o (z+1)2 z——1\ 2 z

o ,1/2] o0 1/2 1
2/ vl logw m/ L dr=a2r (—HWT) - Z)
; (:(: n 1)2 0 (x + 1)2 2
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00 ,1/2] o0 1/2
2/ wdx+l2ﬂ'/ de:27r+z7r2
o (er1p ) @i

Equating real and imaginary parts,

/oo rl/2 IOgl‘ q /oo rl/2 q T
———dx =, —dr = —.
o (z+1)? o (z+1)? 2

Exploiting Symmetry

Solution 13.34
Convergence. The integrand,

eCLZ eaz

F e 2sinh(z)’

has first order poles at z = wnmw, n € Z. To study convergence, we split the domain of integration.
00 -1 1 00
—00 —00 -1 1
1 ax
e
][ LAY

exists for any a because the integrand has only a first order pole on the path of integration.
Now consider the integral on (1...00).
B 00 gla—1)z 4
i 1—e *

00 eaT
JaE——t"
< ! 2/ ele=br g
1—e 1

The principal value integral

This integral converges fora — 1 < 0; a < 1.
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Finally consider the integral on (—oco...—1).

-1 eaT
——dx
et —e?

=1 L(a+l)z
e
Y L

1 —1
< - e(a+1)z dr
—1—e2)_

[e.e]

This integral converges for a +1 > 0; a > —1.
Thus we see that the integral for I(a) converges for real a, |a| < 1.

Choice of Contour. Consider the contour C' that is the boundary of the region: —R <z < R, 0 <y < m. The
integrand has no singularities inside the contour. There are first order poles on the contour at z =0 and z = . The
value of the integral along the contour is 7 times the sum of these two residues.

The integrals along the vertical sides of the contour vanish as R — oo.
R+am az az
e e
/ —dz
R eZ — e—Z

<7 max
z€(R...R+umr)

eaR

eZ — e—Z

<T—

—0as R — o0

eaz

— R+t eaz
—dz| <7 max
_R er —e~* 26(—R...—R+m)

eZ — e—Z
e—aR

< T—F—

— 0as R — oo
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Evaluating the Integral. We take the limit as R — oo and apply the residue theorem.

o0 o —ootT oz
[ i
__eT_e @ ot eF — e~ %
0% 0%
e m>

:'mRes< ,z:()>+z7rRes< z =
e* —e % e —e %

o0 ax —oo a(z+ur az ( _ ) az
[§] e ze z 1) e
/OO et /OO oot _g-a—um - 5D sinh(z) o 2sinh(z)
[e'e) eaz ] eaz —|—CLZ eaz ] eaz +CL<Z _ Z7T) eaz
1 4+ ewam —  dr= 1 L el 1
(1+¢7) /_Oo er—e—s 0 N0 cosh(z) o 2 cosh(z)
00 eaT 1 glam
(1+eww)/_oomd$:@ﬂ—§+z’ﬂ_2

v ez 2(1 + ewr)
T Z(e—mw/2 _ ezmr/2)

oo ea®
—dr =
eT _ e~ 2 euam/2 + ewam/2

e d T ; (mr)
— g n —_
et e * 2 a 2

/oo eax ’Z7T(1 _ ezaw)

Solution 13.35
1.

/°° dz _1/00 dx
o (1+22)° 2/ . (1+22)7

We apply Result 13.4.1 to the integral on the real axis. First we verify that the integrand vanishes fast enough

) =t () =

733

in the upper half plane.

R—o0 zeCpr

lim (R max



Then we evaluate the integral with the residue theorem.

> d 1
/ 71;2 =127 Res (—2,2 = z)
oo (14 22) (14 22)
1

=127 Res (

<z—z>2<z+z>2’zzl>

1
=27 lim ——
Zﬂzlgzdz(z—l—z)2

=2n 12121 (z+1)3

2. We wish to evaluate
/°° dz
o w3+ 1

Let the contour C' be the boundary of the region 0 < r < R, 0 < 6 < 27/3. We factor the denominator of the
integrand to see that the contour encloses the simple pole at €™/ for R > 1.

Brl=(z—e"(z+1)(z —e 3
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We calculate the residue at that point.

1 . . 1
/3 7 /3
Res(z3+1’z_e ) =1, ((Z ¢ )z3+1)

1
= 1
s ((z +1)(z - e—m/3>)

1
- (em/3 +1)(elﬂ/3 _ efm/S)
e’Lﬂ'/3
-3

We use the residue theorem to evaluate the integral.

]{ dz 121 ev/3
c23+1 3

Let C'r be the circular arc portion of the contour.

/ dz _/R dz +/ dz /Re’2”/3dx
e+l Jo B+1 0 Jo,2+1  Jy ad+1
R
dx dz
— (1 e—wr/3/ /
(1+ )0x3+1+0Rzg+1

We show that the integral along C'r vanishes as R — oo with the maximum modulus integral bound.
/ dz < 2rR 1

cn 21T 3 R3-1
We take R — oo and solve for the desired integral.

~ dz 127 /3
1 e—’L7T/3 / — _
( + ) o w341 3

— 0 as R — o

/OO dx _ 2r
o T¥+1 33
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Solution 13.36
Method 1: Semi-Circle Contour. We wish to evaluate the integral

I:/Oo dr
0 1‘|‘[E6

We note that the integrand is an even function and express I as an integral over the whole real axis.

I_}/Oo dx
2 ) 1+ ab

Now we will evaluate the integral using contour integration. We close the path of integration in the upper half plane.
Let ' be the semicircular arc from R to —R in the upper half plane. Let I" be the union of I'y and the interval
[—R, R]. (See Figure 13.14.)

Figure 13.14: The semi-circle contour.

We can evaluate the integral along I" with the residue theorem. The integrand has first order poles at z = e**(1+2k)/6,
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k=0,1,2,3,4,5. Three of these poles are in the upper half plane. For R > 1, we have

2
1 1
dz =122 R - e7,7r(1+2k:)/6
/Fzﬁ—i—l ‘ “Tkz:% es<z6+1’
2 _ er(142k) /6

) z
=27 E lim
£t s (1420)/6 26041

Since the numerator and denominator vanish, we apply L'Hospital's rule.

1
=27 E
Z_,em(1+2k)/6 625
2
w o—1m5(1+2k) /6
0

k=
( —15/6 +e—z7r15/6 +e—z7r25/6)
(

e—z7r5/6 +e—z7r/2 +e—27r/6)

3
o
3
o
3
w<_¢§_z ﬁ_l>
= 7_2_’_

~

2 2

3
2T
3

Now we examine the integral along I'r. We use the maximum modulus integral bound to show that the value of the
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integral vanishes as R — oo.

< TR max
zel'p

1
R6—1
— 0 as R — oo.

1
/ 5 dz
FRZ +1

1
2641
=7R

Now we are prepared to evaluate the original real integral.

1 2
/ dr =1
FZ6+1 3

R
1 1 2
/ 5 dx+/ dz:—ﬂ
7R'T +1 FRZ6+1 3

We take the limit as R — oo.

1 27
de —
/_OOI6—|—1 v

3

* 1 T
dr = —

/0 S110073

We would get the same result by closing the path of integration in the lower half plane. Note that in this case the

closed contour would be in the negative direction.

Method 2: Wedge Contour. Consider the contour I', which starts at the origin, goes to the point R along the

real axis, then to the point R e”/3

Figure 13.15.)

along a circle of radius R and then back to the origin along the ray § = 7/3. (See

We can evaluate the integral along I" with the residue theorem. The integrand has one first order pole inside the
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Figure 13.15: The wedge contour.

contour at z = e™/6_ For R > 1, we have

1 1
dz = 127 Res ,e'm/6
r28+1 26 4+1

5 — em’/ﬁ

=27 llm —
Z*)elﬂ-/ﬁ 26 + 1

Since the numerator and denominator vanish, we apply L'Hospital’s rule.

=21 lim
z—em/6 625

— Z_ﬂ. e—z7r5/6

e—z7r/3

Wl Ay

Now we examine the integral along the circular arc, I'r. We use the maximum modulus integral bound to show that
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the value of the integral vanishes as R — oc.

1 R
JRE
FRZ —|—1

— IMnax
3 ze€l'Rp

TR 1

T 3 RS 1

— 0 as R — oc.

IN

1
2641

Now we are prepared to evaluate the original real integral.

/761 dz = L em/3
r2b+1 3
R 0
1
/ dx—i—/ dz = Zem/3
0 $6+1 Tr Re”"/3Z +1 3

L | 0 T
/ ——dx + / T dz+ e/ dy = e/
0 x® + 1 T'r R .T 3

We take the limit as R — oo.

n
d :_67277/3
o a1 T3

.
o x0+1 31— en/3
(1—1v3)/2
— (14 1/3)/2

C\8
8
(<]
+ —
[S—y
wlx

Solution 13.37
First note that
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These two functions are plotted in Figure 13.16. To prove this inequality analytically, note that the two functions are
equal at the endpoints of the interval and that cos(26) is concave downward on the interval,

2
—c0s(20) = —4cos(20) <0 for0 <0 <

de?

e

while 1 — 460/ is linear.

Figure 13.16: cos(26) and 1 — 26

Let C'r be the quarter circle of radius R from § = 0 to § = 7/4. The integral along this contour vanishes as

R — .
w/4
/ eizQ dz S/ ) Rez@
Cr 0

< / Re—R2 cos(20) do
0

|Ree| do

</ R67R2(1 40 /) 46
0
/4

T —R(1- 49/7r)]
[RLLRZ ¢ 0

wl( ")

—>OasR—>oo
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Let C' be the boundary of the domain 0 < r < R, 0 < 6 < 7/4. Since the integrand is analytic inside C' the integral
along C'is zero. Taking the limit as R — oo, the integral from » = 0 to co along # = 0 is equal to the integral from

r =0 to oo along 0 = /4.
/ e dg = / e_(v%%) 1+: dx
0 0 V2

o] 1 o]
/ e—x2 dx _ + [/ / e—zx2 da:
0 \/§ 0

/OOO e dg = 1\;%2 /Ooo (cos(2?) —1sin(2?)) da

/OOO e dy — % (/OOO cos(a?) dr + /OOO sin(z?) dx) + % (/OOO cos(a?) d — /OOO sin(z?) d:c)

We equate the imaginary part of this equation to see that the integrals of cos(z?) and sin(z?) are equal.

/ Cos(xQ)d:B:/ sin(z?) da
0 0

The real part of the equation then gives us the desired identity.
/OO cos(x?) dx = /OO sin(2?) dr = 1 /OO e dx
0 0 V2 Jo
Solution 13.38

Consider the box contour C' that is the boundary of the rectangle —R < x < R, 0 < y < mw. There is a removable
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singularity at z = 0 and a first order pole at z = 7. By the residue theorem,

z z
dz =17 Res (=——, o)
]é sinhz - G2

=7 lim -
z—m  sinh z

2z —am

=7 lim
z—m cosh z

:7]’2

The integrals along the side of the box vanish as R — oc.

+ R+
z
/ dz‘ < max

4R sinh z 2€[+R, £ R+ur]
R+
= "sinh R

— 0as R — o

The value of the integrand on the top of the box is

T+ T +am

sinh(z 4+ ) sinhz’

Taking the limit as R — oo,

2(z — )

z

sinh 2

>z x4
dx — dz = 2.
/_oo sinh x +][_ sinh x T

o0

< 1
dz =0
][_OO sinhz

as there is a first order pole at x = 0 and the integrand is odd.
< x i
der = —
/_OO sinh x 2
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Solution 13.39

First we evaluate

oo ea:v
/ dz.
oo €71

Consider the rectangular contour in the positive direction with corners at +R and R + 27. With the maximum
modulus integral bound we see that the integrals on the vertical sides of the contour vanish as R — oc.

R+127 ez eaR
dz| <27 —0as R — o
e’ +1 eft —
@0z e—aR
<2r—— —0as R— >
‘/R+227r e +1 ' 1 —ef

In the limit as R tends to infinity, the integral on the rectangular contour is the sum of the integrals along the top and

bottom sides.
eaz 4 00 qar 4 —00  qa(z+12m) 4
/Cez—i—l Z_/_oo e” +1 JH_/OO errar 11 7

/ e d (1 eszaﬂ) /Oo e d
z=(1-— T
c e +1 oo €71

The only singularity of the integrand inside the contour is a first order pole at z = 1r. We use the residue theorem to

evaluate the integral.
e(lZ eCLZ
/ dz =127 Res | ——,
c e +1 e* +1

— 971 lim w
2T e? —f—]_
— o lim a(z — ) e + e

Z—m ez

= —27 e
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We equate the two results for the value of the contour integral.

oo eax
(1-— elz‘“’)/ 11 dz = —2me" ™

e 127
/ dp = — 27
oo er +1 enan _ g—wam
© ear T
/ dox = —
Lo €41 sin(ma)

/°° cosh(bx) e

w coshzx
First make the change of variables x — 2x in the previous result.

00 eZax
/ 2dr = — m
oo €27 41 sin(ma)

0 o(2a—1)z T
R
oo €T e sin(ma)

Now we derive the value of,

Now we set b = 2a — 1.

/ooiebx d il T for —1<b<l
_oo COShz v sin(w(b+1)/2)  cos(wb/2)
Since the cosine is an even function, we also have,
00 e—bw T
——dr=———= for —1<b<1
/OO coshz cos(mb/2) o
Adding these two equations and dividing by 2 yields the desired result.

/OO cosh(bx) dp — 0
—oo coshz ~ cos(7b/2)

for —1<b<1
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Solution 13.40

Real-Valued Parameters. For b = 0, the integral has the value: 7r/a2.

[T de
Fla,b) = b/(a/b+cos€)

as

We define the new parameter ¢ = a/b and the function,

If —1 < ¢ < 1 then the integrand has a double pole on the path of integration.

G(c) = b*F(a,b) = /07r ( 40

If b is nonzero,

¢+ cosf)?

then we can write the integral

The integral diverges. Otherwise

the integral exists. To evaluate the integral, we extend the range of integration to (0..27) and make the change of
variables, z = € to integrate along the unit circle in the complex plane.

For this change of variables, we have,

G(c) =

1 [ do
Gle) = 5/0 (c+ cos6)?

-1
cos@zz+z , d@zg.
2 1z
1 dz/(12)
2 Jo(c+ (24 271)/2)2

dz

- /C 20z+22—|—1)
z

Z2/0 (z4+c+V—1)2(z+c—
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If ¢ > 1, then —c — v/ — 1 is outside the unit circle and —c¢ + v/¢? — 1 is inside the unit circle. The integrand has
a second order pole inside the path of integration. We evaluate the integral with the residue theorem.

z
G(c) = —1227 R 2=—c+Ve2 -1
© ”Wes((z+c+\/c2j)2(z+c—\/c2j)22 crTve )

i i d :
= 47 1m -—
z——c+Vc2 -1 dz (Z +c+ c? — 1)2

1 2z

=47 lim —

2tV —1 ((z +ec+vVeE—12 (z4+c+VcE - 1)3>

_ c+vVe2—1—z2

=47 lim

zo—etVE—1 (2 +c+ Ve —1)3

4 2c

= R ——

(2v 2 —1)3

e

@—1p

47



If c <1, then —c — v/c2 — 1 is inside the unit circle and —c + /¢ — 1 is outside the unit circle.

z
G :—22 R , — 2_1
(€)= es((z+c+m)2(z+c—m)2z o )

d z
=4m lim —
z——c—V/c2—1 dz (Z +c— c? — 1)2

1 2z
=47 lim —
2 —c— c2—1((z+c—\/02—1)2 (z+c—\/02—1)3)
c—vV2—-1—-z

=47 lim
z——c—Vc?-1 (Z +c—Vc— 1)3
4 2c
= T
(—2v/c? —1)3
B e
@1y
Thus we see that
= ——=< forc > 1,
(c2-1)3
G(c) =~ Ty for c < 1,
is divergent  for —1 <c¢< 1.
In terms of F'(a,b), this is
=—2—  fora/b>1,
(a2—b2)3
F(a,b) < = —ﬁ for a/b < 1,

is divergent for —1<a/b< 1.

Complex-Valued Parameters. Consider

T de
G(e) :/0 (¢ + cosh)?’
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for complex c. Except for real-valued ¢ between —1 and 1, the integral converges uniformly. We can interchange
differentiation and integration. The derivative of G(c) is

, d [~ do
G(C)_&/O (¢ + cosh)?

T —2
_/0 (c+ cosh)3 a0

Thus we see that G(c) is analytic in the complex plane with a cut on the real axis from —1 to 1. The value of the
function on the positive real axis for ¢ > 1 is

We use analytic continuation to determine G(c) for complex c. By inspection we see that G/(c) is the branch of

G(ec) =

Ure
(2 —1)3/2

with a branch cut on the real axis from —1 to 1 and which is real-valued and positive for real ¢ > 1. Using F'(a,b) =
G(c)/b* we can determine F for complex-valued a and b.

o oo T
CcoS T e
—dx = —dzx
Lo T e Lo €T e

since sinz/(e” +e~") is an odd function. For the function

Solution 13.41
First note that

el®
1) = s
we have
flatom) = — “ f(a)
= — = —¢€ —_— = — € .
x v ex+17r_{_efx7m ex_i_efx x



Thus we consider the integral

e'LZ
dz
o€ e ?

where (' is the box contour with corners at + R and +R + 1w. We can evaluate this integral with the residue theorem.
We can write the integrand as

e’LZ

2cosh 2z

We see that the integrand has first order poles at z = w7(n + 1/2). The only pole inside the path of integration is at
z =am/2.

e’LZ e’LZ
/ dz =127 Res ,,z:E
o€ +e* ef e 2

_ 2) et?
_or lim E/2)e”
z—am/2 er e %
e +i(z —m/2) e

=127 lim
z—am/2 e —e*®
) e*ﬂ'/Q
=1t ﬂ-em/Z —e—m/2
— e /2
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The integrals along the vertical sides of the box vanish as R — oc.

+ R4 etz e¥®
/ — dz' <7 max —
iR er+e* z€[+R...tR+um] | €% + €77
< 1
- ﬂyg[loz‘l_};] el+ewy _‘_efszy
< 1
=7 yg[loé)ﬁr] efl e~ fi—2y
1

-7 2sinh R

—0as R — o

Taking the limit as R — oo, we have

o5} el —ootm e¥?
/ ﬁd$+/ . _ZdZ:TFe_ﬂ—/Q
—00 € + € oo+t € + €

oo eZ:B
(1+e_”)/ —dz=nme /2
et

< e Qo — ™
o € te r= e7r/2+e—7r/2

*  cosz T
x —x dr = /2 —7/2"
o €T Fe em/2 4 e

Definite Integrals Involving Sine and Cosine

Finally we have,

Solution 13.42
1. To evaluate the integral we make the change of variables = = €. The path of integration in the complex plane
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is the positively oriented unit circle.

/’r dé _/ 1 %
. 14sin?0 cl—(z—21)" /412
14z
:/Cmdz
_/ 14z
C(Z—l—ﬂ)(z—1+\/§)(z+1—\/§)(z—l—1+\/§

There are first order poles at z = +£1 + V2. The poles at z = —1 + V2 and 2z = 1 — /2 are inside the path of
integration. We evaluate the integral with Cauchy’s Residue Formula.

(Z% 1z
/C,Tﬂd ‘ZQW(RGS (Tﬂ - —”ﬁ)

+Res(l4—z z:l—\@))

2t — 62241

)dz

z

_—87r< (2 =1-v2) (z = 1++v2) (2 + 1+ V?2) Z=—1412

2=1—/2 )

z

(z=1-v2) (z+1-v2) (z +1+V2)

+

_ Von

2. First we use symmetry to expand the domain of integration.

w/2 1 2m
/ sint9df = = / sin* @ d6
0 4 Jo
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Next we make the change of variables z = €. The path of integration in the complex plane is the positively

oriented unit circle. We evaluate the integral with the residue theorem.

1 [ 1 (1 1\"d
/ sin40d9:—/— i--) =
4 /o 4 Jo 16 z) 1z
1

S .2
4 Jo T :

— , 6 4 1
- — - —— 4+ )4
64 C<Z z+z z3+z5) ©

(=}

—1
=127r—06

64
B 3T

16

Solution 13.43
1. Let C' be the positively oriented unit circle about the origin. We parametrize this contour.

z=e’ dr=1e?df, 0c(0...2n)
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We write sin # and the differential df in terms of z. Then we evaluate the integral with the Residue theorem.

IR PRS-
o 2+sinf " Jo 24 (2—1/2)/(2) w2

2
:]{ﬁdz
czr+idz—1
2

_%c(z+z(2+\/§)) (z+1(2—V3))
:227Res<<z+z<2+\/§)) (z+z<2—\/§>>,z:z<—2+\/§>)
2
22\/§

dz

=27

SIY

2. First consider the case a = 0.

o 2r forn =0

T fi z+t
/ cos(nf) df = {0 orm e

Now we consider |a| < 1, a # 0. Since
sin(nf)
1 —2acosf + a?

N cos(nb) B end
dg = dé
/ﬂ1—2acosH+a2 /W1—2a0039+a2

is an even function,

Let C' be the positively oriented unit circle about the origin. We parametrize this contour.

z=e? dz=1e?df, Oc(—7...7)
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We write the integrand and the differential df in terms of z. Then we evaluate the integral with the Residue
theorem.

/7r end ]{ 2" dz
do = —
_» 1 —2acosf + a? cl—alz+1/z)+a?z

fommr i
=— 2
c—az’2+(1+a*)z—a

:éfizt(a;/a)zﬂdz
:éji(z—a)(zz—l/a) dz

= arRes (—rte— =)

2 a”

aa—1/a
_ 2ma”
1 —a?

We write the value of the integral for |a| < 1 and n € Z°F.

/7r cos(nf) oy {27? fora=0,n=0

1 —2acosf + a? 214’ otherwise

Solution 13.44
Convergence. We consider the integral

I(a) :][ cos(nf) 40 — 7Tsm.(na)‘
o cosf —cosa sin «v

We assume that « is real-valued. If «v is an integer, then the integrand has a second order pole on the path of integration,
the principal value of the integral does not exist. If « is real, but not an integer, then the integrand has a first order
pole on the path of integration. The integral diverges, but its principal value exists.
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Contour Integration. We will evaluate the integral for real, non-integer «.

I(a):]{erQ

cos — cos o

2w
1 f cos(nb) 49
0

2 cosf — cosu

1 2m b
— _mf B 7
2 Jy cosf —cosa

We make the change of variables: z = ¢,

2" dz

1
Ia) = %f (z + 1/2)/2 — cos (v 12
—5)?][ dz
Z_ewz e—za)

Now we use the residue theorem.

= 8‘%<W(—2)<R€S ((Z — ela)i —ema)y T e”)

Zn —1x
+Res((z—em)(z—em)"z:e )))
—ﬂﬂ%<hm c ~ + lim i )

z—el z — e z—e—ta z — e
emna e
( — e e—za _ eza)
e _ g—ina
( o >

Sln na
SlIl

Il
)
ot

TR
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1(a) :]{Mdg _ WM.

cos — cos « sin «

Solution 13.45
Consider the integral

1 2
/ - dx.
o (14 a2)V/1— 22

We make the change of variables x = sin ¢ to obtain,

w/2 22
/ sin” & cos & d¢
0 (1+sin?¢)y/1—sin?¢

/msmi?idf
0 1 +sin”¢&

/2 1 — cos(2€)
/0 3 — cos(2¢) de

1 2 1 —
_/ cos & de
4 ), 3—cosé
Now we make the change of variables z = €% to obtain a contour integral on the unit circle.
1/ 1—(z+1/2)/2 [— d
- — | dz
4)c3—(24+1/2)/2 \ =
—1 (z —1)?

4 Cz(z—3—|—2\/§)(z—3—2\/§)dz

There are two first order poles inside the contour. The value of the integral is

g (Res (z(z 35 2(\2/5_)(1;2— 3- 2@)’0) e (z(z 34 2(35—)(12)2— 5_2va) S0 Nﬁ))
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g (Ei% ((z —3+ 2%;(2 3— 2\/5)) Y (z(z (—Z??E)QQ\E)D '

Infinite Sums

Solution 13.46
From Result 13.10.1 we see that the sum of the residues of 7 cot(mz)/2* is zero. This function has simples poles at
nonzero integers z = n with residue 1/n*. There is a fifth order pole at z = 0. Finding the residue with the formula

! li & t
77 @(Wz cot(mz))

would be a real pain. After doing the differentiation, we would have to apply L'Hospital’s rule multiple times. A better
way of finding the residue is with the Laurent series expansion of the function. Note that

1 1

sin(rz) 7z — (72)3/6 + (m2)5/120 — - -
1 1
721 — (72)2/6 + (m2)4/120 — - --
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4

Now we find the 2! term in the Laurent series expansion of 7 cot(mz)/z%.

M_”(l_ﬁerﬁz_ )L<1+(ﬂzz2_ﬂ_4z4+...
Zisin(mz) 24 2 24 Tz 6 120

(o (et ) )

23 120 36 12 24

B 1

Thus the residue at z = 0 is —7r4/45. Summing the residues,

-1 4 [e)

1 T 1
— - — =0
= nt 45 +;n4
n:1n4 90

Solution 13.47
For this problem we will use the following result: If

lim |zf(z)] =0,

|z]—o0

6

120

then the sum of all the residues of 7 cot(7z) f(z) is zero. If in addition, f(z) is analytic at z = n € Z then

Z f(n ( sum of the residues of 7 cot(mz)f(2) at the poles of f(z) ).

n=—oo

We assume that « is not an integer, otherwise the sum is not defined. Consider f(z) = 1/(2* — «

1

— a2

:O,

lim

|2 =00

z

22
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2). Since



and f(z) is analytic at z = n, n € Z, we have

o0

n? — a2

n=—oo

f(2) has first order poles at z = +a.

1 mcot(mz) 7 cot(mz)
D g = ~Res (ﬁ:‘*) ~ Res (ﬁ: —a

i T cot(mz) 7 cot(mz)

z—a 2+ « z——a 2 — (0
meot(ma)  weot(—ma)

2¢ —2a

i 1 wcot(na)
n2—a? Q

n=—0oo

760

1
Z ——— = —( sum of the residues of 7 cot(7z)f(z) at the poles of f(2) ).



Part 1V

Ordinary Differential Equations
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Chapter 14

First Order Differential Equations

Don't show me your technique. Show me your heart.

-Tetsuyasu Uekuma

14.1 Notation

A differential equation is an equation involving a function, it's derivatives, and independent variables. If there is only
one independent variable, then it is an ordinary differential equation. ldentities such as

d
dx

dydr

(f2(z)) = 2f(x)f'(x), and iy =]

are not differential equations.
The order of a differential equation is the order of the highest derivative. The following equations are first, second
and third order, respectively.

° y/ :a:y2
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° y”+3my’+2y = 72
" "

*C Yy =Yy

The degree of a differential equation is the highest power of the highest derivative in the equation. The following
equations are first, second and third degree, respectively.

oy —3y? =sinx
o (y)?+2zcosy =¢e®
* (¥)+y =0
An equation is said to be linear if it is linear in the dependent variable.
e y'cosz + x?y = 0 is a linear differential equation.
e v + zy? = 0 is a nonlinear differential equation.

A differential equation is homogeneous if it has no terms that are functions of the independent variable alone. Thus
an inhomogeneous equation is one in which there are terms that are functions of the independent variables alone.

e '+ xy+y = 0 is a homogeneous equation.
e 3 +y+ 2% = 0 is an inhomogeneous equation.

A first order differential equation may be written in terms of differentials. Recall that for the function y(x) the
differential dy is defined dy = ¢/(x) dz. Thus the differential equations

y =2% and ¢ +xy® = sin(x)

can be denoted:
dy = 2*ydr and dy + xy® dz = sin(z) d.
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A solution of a differential equation is a function which when substituted into the equation yields an identity. For
example, y = xIn|z| is a solution of

y -2 =1
x
and y = ce” is a solution of
y'—y=0

for any value of the parameter c.

14.2 One Parameter Families of Functions

Consider the equation
F(z,y(z);c) =0, (14.1)

which implicitly defines a one-parameter family of functions y(z). (We assume that F' has a non-trivial dependence on
y, that is F, # 0.) Differentiating this equation with respect to z yields
F,+Fy =0.

This gives us two equations involving the independent variable z, the dependent variable y(x) and its derivative and
the parameter c. If we algebraically eliminate ¢ between the two equations, the eliminant will be a first order differential
equation for y(x). Thus we see that every equation of the form (14.1) defines a one-parameter family of functions y(z)
which satisfy a first order differential equation. This y(z) is the primitive of the differential equation. Later we will
discuss why y(x) is the general solution of the differential equation.

Example 14.2.1 Consider the family of circles of radius ¢ centered about the origin,

Differentiating this yields,
2r +2yy = 0.
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It is trivial to eliminate the parameter and obtain a differential equation for the family of circles.

x+yy =0.
We can see the geometric meaning in this equation by writing it in the form

y =
y

The slope of the tangent to a circle at a point is the negative of the cotangent of the angle.

Example 14.2.2 Consider the one-parameter family of functions,
y(x) = f(z) + cg(),
where f(x) and g(x) are known functions. The derivative is
v =f+cq.
Eliminating the parameter yields

g9 —gdy=9f —4df
q qf

y—=y=f-==
g g

Thus we see that y(z) = f(x) + cg(x) satisfies a first order linear differential equation.

We know that every one-parameter family of functions satisfies a first order differential equation.

true as well.
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Result 14.2.1 Every first order differential equation has a one-parameter family of solutions,
y(z), defined by an equation of the form:

F(z,y(x);c) = 0.

This y(x) is called the general solution. If the equation is linear then the general solution
expresses the totality of solutions of the differential equation. If the equation is nonlinear,
there may be other special singular solutions, which do not depend on a parameter.

This is strictly an existence result. It does not say that the general solution of a first order differential equation
can be determined by some method, it just says that it exists. There is no method for solving the general first order
differential equation. However, there are some special forms that are soluble. We will devote the rest of this chapter to

studying these forms.

14.3 Exact Equations

Any first order ordinary differential equation of the first degree can be written as the total differential equation,
P(z,y)dz + Q(x,y)dy = 0.
If this equation can be integrated directly, that is if there is a primitive, u(z,y), such that
du = Pdx + Qdy,
then this equation is called exact. The (implicit) solution of the differential equation is

u(r,y) = c,
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where ¢ is an arbitrary constant. Since the differential of a function, u(x,y), is

ou ou
du=—d —d
U o7 r+ oy Y,
P and @) are the partial derivatives of u:
ou ou
P = — —
@y =5, Qy 3y
In an alternate notation, the differential equation
dy
x
is exact if there is a primitive u(x,y) such that
du Ou Oudy dy
—=—+——>-=P —.
= or  oyan (#,9) + Qw,y)

The solution of the differential equation is u(x,y) = c.

Example 14.3.1

d
x+yd—i:0

is an exact differential equation since
d (1, 5, 5 dy
Qo (5(95 Ty )) =Ty
The solution of the differential equation is
Loy, 9
E(x +y°)=c
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Example 14.3.2 | Let f(x) and g(x) be known functions.
g(@)y' + g (x)y = f()

is an exact differential equation since

The solution of the differential equation is

s@a) = [ fla)do+c
1
) = o [ e e

C
g(x

A necessary condition for exactness. The solution of the exact equation P 4+ Qy' = 0 is u = ¢ where u is

the primitive of the equation, % = P + Qy'. At present the only method we have for determining the primitive is

guessing. This is fine for simple equations, but for more difficult cases we would like a method more concrete than

divine inspiration. As a first step toward this goal we determine a criterion for determining if an equation is exact.
Consider the exact equation,

P+Qy =0,

with primitive u, where we assume that the functions P and () are continuously differentiable. Since the mixed partial
derivatives of u are equal,

Pu  u
oxdy  Oyox’
a necessary condition for exactness is
0P _0Q
oy Oz’
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A sufficient condition for exactness. This necessary condition for exactness is also a sufficient condition. We
demonstrate this by deriving the general solution of (14.2). Assume that P + Qy’' = 0 is not necessarily exact, but
satisfies the condition P, = (),. If the equation has a primitive,

du Ou Ou dy dy
o= - p =
- or T ogar (#,9) + Q. y)
then it satisfies 9 8
U U
——_p P 14.3

Integrating the first equation of (14.3), we see that the prim|t|ve has the form

ule,y) = / " Pe,y)de + fy).

zo
for some f(y). Now we substitute this form into the second equation of (14.3).

0
a—z — Q(,y)

/ "Py(ey)de+ 1) = Qe y)

o

Now we use the condition P, = Q).

/Qx W)+ '(y) = Q. )

T,y) — Q(xo, )+f/( ) =Q(z,y)
$07?J)

/QIO,
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Thus we see that

uz/;P@,y)du/:Q(xo,wdw

0

is a primitive of the derivative; the equation is exact. The solution of the differential equation is

z Yy
/ P(§,y)d§—|—/ Q(zo, ) dyp = c.

Even though there are three arbitrary constants: xg, 3o and ¢, the solution is a one-parameter family. This is because
changing x or yy only changes the left side by an additive constant.

Result 14.3.1 Any first order differential equation of the first degree can be written in the
form

d
P(z,y) + Q(, y)é = 0.

This equation is exact if and only if
P, = Q..

In this case the solution of the differential equation is given by

[ Plenact [ @i =c

Zo Yo

Exercise 14.1

Solve the following differential equations by inspection. That is, group terms into exact derivatives and then integrate.
f(x) and g(x) are known functions.

1 L8 = f(x)
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!
Yy tanz __
3. cosx +ycosx = Co8 %

Hint, Solution

14.3.1 Separable Equations
Any differential equation that can written in the form
Plz)+Qy)y' =0

is a separable equation, (because the dependent and independent variables are separated). We can obtain an implicit
solution by integrating with respect to x.

/P(w) dx+/Q(y)j—Z dz = ¢
/P(m)dx—l—/@(y)dy:c

Result 14.3.2 The general solution to the separable equation P(z) + Q(y)y' = 0 is

[ Paas+ [y =

Example 14.3.3 Consider the differential equation i/ = xy?. We separate the dependent and independent variables

771



and integrate to find the solution.

dx
y 2dy = xdx

/y‘Qdy:/xdx+c

Example 14.3.4 The equation

is separable.

We expand in partial fractions and integrate.
1 1
G5t
y y-—1
Inlyl]—Injly—1|=z+c¢
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We have an implicit equation for y(x). Now we solve for y(x).

In Y ‘zx%—c
y—1
y :eerc
'y—1‘
v = +e%tc
y—1
B 4 ete
- ferte_]
ez+c
Y= arvex]
B 1
y_liec—fﬂ

14.3.2 Homogeneous Coefficient Equations

Homogeneous coefficient, first order differential equations form another class of soluble equations. We will find that
a change of dependent variable will make such equations separable or we can determine an integrating factor that will
make such equations exact. First we define homogeneous functions.

Euler’s Theorem on Homogeneous Functions. The function F(z,y) is homogeneous of degree n if
F(Az, Ay) = \"F(z,y).

From this definition we see that
F(z,y) =a2"F (1, y) :
T
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(Just formally substitute 1/z for A.) For example,

2 3

9 x4y + 2y
xy°, _ zcos(y/x
Y Z+y (y/x)

are homogeneous functions of orders 3, 2 and 1, respectively.
Euler's theorem for a homogeneous function of order n is:

b, +yF, =nk.
To prove this, we define £ = Ax, 1 = Ay. From the definition of homogeneous functions, we have
F(€,4) = \"F(x, ).
We differentiate this equation with respect to .

OF(Ey) 08  OF () Oy
J,’Fg -+ yFw = nAnilF(l}y)

Setting A = 1, (and hence £ = x, ¥ = y), proves Euler’s theorem.

Result 14.3.3 Euler’s Theorem on Homogeneous Functions. If F(z,y) is a homoge-
neous function of degree n, then

xF, +yF, =nF.

Homogeneous Coefficient Differential Equations. If the coefficient functions P(x,y) and Q(x,y) are homo-
geneous of degree n then the differential equation,

P(z,y) + Q(w,y)j—i =0, (14.4)

is called a homogeneous coefficient equation. They are often referred to simply as homogeneous equations.
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Transformation to a Separable Equation. We can write the homogeneous equation in the form,

d
2P (1, 3) Npe) (1, 3) Yy,
T z/ dx

P(l,%)+@<1,g>%:0.

x/ dz

This suggests the change of dependent variable u(x) = y@),

T

puwame<u+ﬁ%>—o

This equation is separable.

P(1,u) + uQ(1,u) + zQ(1, u)% =0
1 Q(1, u) du

r P(lu)+uQ(l,u)dz
1

i+ [ g =

By substituting In || for ¢, we can write this in a simpler form.

/ 1 d | ’c‘

u=In|—|.
wt P(Lu)/Q(L,w) .
Integrating Factor. One can show that

1
vP(z,y) +yQ(x,y)

iz, y) =

is an integrating factor for the Equation 14.4. The proof of this is left as an exercise for the reader. (See Exercise 14.2.)
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Result 14.3.4 Homogeneous Coefficient Differential Equations. If P(z,y) and Q(x,y)
are homogeneous functions of degree n, then the equation

dy
P — =0
is made separable by the change of independent variable u(x) = —y(gf). The solution is deter-

mined by

/ L du =1In ‘E‘ :

u+ P(1,u)/Q(1,u) x

Alternatively, the homogeneous equation can be made exact with the integrating factor
1

zP(2,y) +yQ(z,y)

Wz, y) =

Example 14.3.5 Consider the homogeneous coefficient equation
d
2 =yt ay=L =
dx

The solution for u(x) = y(x)/x is determined by




Thus the solution of the differential equation is

y = tzv/2In|c/x|

Exercise 14.2
Show that
1

zP(z,y) +yQ(z,y)
is an integrating factor for the homogeneous equation,

w(z,y) =

P(z,y) + Q(fﬂ,y)d =0.

ay
dz
Hint, Solution

Exercise 14.3 (mathematica/ode/first_order/exact.nb)

Find the general solution of the equation
d 2
Y 2% v (Q) .

dt t
Hint, Solution

14.4 The First Order, Linear Differential Equation

14.4.1 Homogeneous Equations

The first order, linear, homogeneous equation has the form
dy
— =0.
1 T P@)y
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Note that if we can find one solution, then any constant times that solution also satisfies the equation. If fact, all the
solutions of this equation differ only by multiplicative constants. We can solve any equation of this type because it is
separable.

In |y| :—/p(x)dx—I—c

y = + o[ p@)dute

y = Ceffp(:p)d:p

Result 14.4.1 First Order, Linear Homogeneous Differential Equations. The first
order, linear, homogeneous differential equation,

dy
T
has the solution
y=ce Jr@dr (14.5)

The solutions differ by multiplicative constants.

Example 14.4.1 Consider the equation
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We use Equation 14.5 to determine the solution.

y(z) =ce  IV/%d  forx £ 0

y(x) = ce
y(x) = ﬁ
y(z) = g

14.4.2 Inhomogeneous Equations

The first order, linear, inhomogeneous differential equation has the form

Yt play = f(a). (14.6)

This equation is not separable. Note that it is similar to the exact equation we solved in Example 14.3.2,

9(x)y'(z) + ¢'(z)y(x) = f(z).

To solve Equation 14.6, we multiply by an integrating factor. Multiplying a differential equation by its integrating factor
changes it to an exact equation. Multiplying Equation 14.6 by the function, I(x), yields,

dy
1)L+ (@) ()y = F@) ().
In order that I(x) be an integrating factor, it must satisfy
d
1) = (@)1 (0)

This is a first order, linear, homogeneous equation with the solution
I(z) = cel pids.

This is an integrating factor for any constant c. For simplicity we will choose ¢ = 1.
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To solve Equation 14.6 we multiply by the integrating factor and integrate. Let P(x) = [ p(z) dz.
"™ L4 pla) ey = o) f(z)
x
= () = o f(2)
y=e @ /ep(w) f(x)dz + ce @
Y=Yp+Cyn

Note that the general solution is the sum of a particular solution, y,, that satisfies ¥’ + p(z)y = f(x), and an arbitrary
constant times a homogeneous solution, yy,, that satisfies y' + p(x)y = 0.

Example 14.4.2 Consider the differential equation

/ 1 2
y+—-y=z", x>0.
Xz

1oy ([ Lar) =

We multiply by the integrating factor and integrate.

First we find the integrating factor.

The particular and homogeneous solutions are

1
Yp = ng and Yp =
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Note that the general solution to the differential equation is a one-parameter family of functions. The general solution
is plotted in Figure 14.1 for various values of c.

Figure 14.1: Solutions to y' + y/z = 2.

Exercise 14.4 (mathematica/ode/first_order/linear.nb)
Solve the differential equation

1

/ «

y ——y=2z x>0.
x

Hint, Solution
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14.4.3 Variation of Parameters.

We could also have found the particular solution with the method of variation of parameters. Although we can
solve first order equations without this method, it will become important in the study of higher order inhomogeneous
equations. We begin by assuming that the particular solution has the form y, = u(z)y,(x) where u(z) is an unknown
function. We substitute this into the differential equation.

St ) = 1)

L fu) + plr)uy = (x)

w'yn +u(yy, + ple)yn) = f(z)

Since y;, is a homogeneous solution, v}, + p(z)y, = 0.

iG]
Yn
_ (i@
v / Yn() 4

Recall that the homogeneous solution is y;, = e~

u = /ep(m)f(x)dx
Thus the particular solution is

y, = e F@ /ep(m) f(z)dz.

14.5 Initial Conditions

In physical problems involving first order differential equations, the solution satisfies both the differential equation
and a constraint which we call the initial condition. Consider a first order linear differential equation subject to the
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initial condition y(zg) = yo. The general solution is
Y=y, +cy, =e @ /ep(“") f(x)dz + ce P,

For the moment, we will assume that this problem is well-posed. A problem is well-posed if there is a unique solution to
the differential equation that satisfies the constraint(s). Recall that [ eP® f(z) dz denotes any integral of e”® f(x).
For convenience, we choose f;o eP© f(£)d€. The initial condition requires that

o
y(xo) = yo = e_P(:Jco)/ P (©) F(6)de + ceP@) — .o—Plao)

o

Thus ¢ = yy e?*0). The solution subject to the initial condition is

Y = e P /I eP(©) £(€)deE + yo el (@o)=P(z)

0

Example 14.5.1 Consider the problem
y' + (cosz)y = z, y(0) = 2.

From Result 14.5.1, the solution subject to the initial condition is

y:esinx/ Eesing dg_i_Zefsinx.
0

14.5.1 Piecewise Continuous Coefficients and Inhomogeneities

If the coefficient function p(z) and the inhomogeneous term f(z) in the first order linear differential equation

Y+ plaly = f(x)



are continuous, then the solution is continuous and has a continuous first derivative. To see this, we note that the
solution

y=e @ /ep(x) f(x)dz + ce P@

is continuous since the integral of a piecewise continuous function is continuous. The first derivative of the solution
can be found directly from the differential equation.

Y = —p(x)y + f(x)

Since p(z), y, and f(z) are continuous, ¥y is continuous.
If p(z) or f(x) is only piecewise continuous, then the solution will be continuous since the integral of a piecewise
continuous function is continuous. The first derivative of the solution will be piecewise continuous.

Example 14.5.2 Consider the problem

where H(x) is the Heaviside function.

H(z) 1 forx >0,
:L‘ =
0 forz<O.

To solve this problem, we divide it into two equations on separate domains.

1, forx <1
y1(1), forx >1

yi — U1 = 07 y1(0>
vh—y2 =1, (1)

With the condition y5(1) = y1(1) on the second equation, we demand that the solution be continuous. The solution
to the first equation is y = e*. The solution for the second equation is

y:e“/ etdét+ele™! = 14" et
1
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Thus the solution over the whole domain is

et forx < 1,
V= (1+ele*—1 forx>1.

The solution is graphed in Figure 14.2.

Figure 14.2: Solution to v —y = H(x — 1).

Example 14.5.3 Consider the problem,



Recall that

—1 forz <0
signz = ¢ 0 forx =0
1 for z > 0.

Since sign x is piecewise defined, we solve the two problems,

Y. +yy =0, ye(1) =1, forz >0
y —y_ =0, y_(0) = y4(0), for x < 0,

and define the solution, y, to be

yi(x), for x > 0,
y(e) =
y_(x), for x < 0.

The initial condition for y_ demands that the solution be continuous.
Solving the two problems for positive and negative x, we obtain

el=2, for v > 0,
elt?, for v < 0.

This can be simplified to

= ellel,

y(x)

This solution is graphed in Figure 14.3.
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Figure 14.3: Solution to y' + sign(z)y = 0.

Result 14.5.1 Existence, Uniqueness Theorem. Let p(z) and f(x) be piecewise contin-
uous on the interval [a,b] and let xg € [a,b]. Consider the problem,

dy

iz +p(x)y = f(z),  y(zo) = vo.

The general solution of the differential equation is
y =e P /ep(m) f(x)dz + ce P

The unique, continuous solution of the differential equation subject to the initial condition is

y=e " / TP f(E) e + g PP
o

where P(x) = [ p(z) dz.




Exercise 14.5 (mathematica/ode/first_order/exact.nb)
Find the solutions of the following differential equations which satisfy the given initial conditions:

d
1.—y+xy:a:2"+1, y(l)=1, neZ
dx

dy
2. L _opy =1 —1
=1 y(0)

Hint, Solution

Exercise 14.6 (mathematica/ode/first_order/exact.nb)
Show that if & > 0 and A > 0, then for any real 3, every solution of

d
d—i + ay(z) = fe

satisfies lim, 1o y(x) = 0. (The case & = A requires special treatment.) Find the solution for 5 = A = 1 which
satisfies y(0) = 1. Sketch this solution for 0 < z < oo for several values of a.. In particular, show what happens when
a— 0 and a — oo.

Hint, Solution

14.6 Well-Posed Problems

Example 14.6.1 Consider the problem,
, 1
y—-y=0 y0)=1
x

The general solution is y = cx. Applying the initial condition demands that 1 = ¢ - 0, which cannot be satisfied. The
general solution for various values of ¢ is plotted in Figure 14.4.
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0.6

-0.6+

Figure 14.4: Solutions to y' — y/z = 0.

Example 14.6.2 Consider the problem

1 1
y—-y=-——  y0)=1
xr X

The general solution is
y=1+cx.

The initial condition is satisfied for any value of ¢ so there are an infinite number of solutions.

Example 14.6.3 Consider the problem



The general solution is y = <. Depending on whether c is nonzero, the solution is either singular or zero at the origin

and cannot satisfy the initial condition.

The above problems in which there were either no solutions or an infinite number of solutions are said to be ill-posed.
If there is a unique solution that satisfies the initial condition, the problem is said to be well-posed. We should have
suspected that we would run into trouble in the above examples as the initial condition was given at a singularity of
the coefficient function, p(x) = 1/x.

Consider the problem,

Y +p@)y=f(x),  y(@o)= o

We assume that f(x) bounded in a neighborhood of x = z. The differential equation has the general solution,

y=e F@ /ep(‘”) f(x)dz + ce @)

If the homogeneous solution, e~ P is nonzero and finite at © = x(, then there is a unique value of ¢ for which the

initial condition is satisfied. If the homogeneous solution vanishes at x = x( then either the initial condition cannot be
satisfied or the initial condition is satisfied for all values of c. The homogeneous solution can vanish or be infinite only
if P(x) — +oo as ¢ — xo. This can occur only if the coefficient function, p(z), is unbounded at that point.

Result 14.6.1 If the initial condition is given where the homogeneous solution to a first
order, linear differential equation is zero or infinite then the problem may be ill-posed. This
may occur only if the coefficient function, p(x), is unbounded at that point.
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14.7 Equations in the Complex Plane

14.7.1 Ordinary Points

Consider the first order homogeneous equation

d
o p(z)w =0,
dz

where p(z), a function of a complex variable, is analytic in some domain D. The integrating factor,

I(z) = exp ( / p(z) dZ) 7

is an analytic function in that domain. As with the case of real variables, multiplying by the integrating factor and

integrating yields the solution,
w(z) = cexp (— /p(z) dz) .

Example 14.7.1 |t does not make sense to pose the equation

We see that the solution is analytic in D.

dw

- |z|w = 0.

For the solution to exist, w and hence w'(z) must be analytic. Since p(z) = |z| is not analytic anywhere in the complex
plane, the equation has no solution.

Any point at which p(z) is analytic is called an ordinary point of the differential equation. Since the solution is
analytic we can expand it in a Taylor series about an ordinary point. The radius of convergence of the series will be at
least the distance to the nearest singularity of p(z) in the complex plane.
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Example 14.7.2 Consider the equation
dw 1
dz 1—=z

The general solution is w = 1= . Expanding this solution about the origin,

PR

C oo
w = =c g Z".
1—2
n=0
The radius of convergence of the series is,

R= lim |-

n—oo

=1,

Qp+1

which is the distance from the origin to the nearest singularity of p(z) = —.

We do not need to solve the differential equation to find the Taylor series expansion of the homogeneous solution.
We could substitute a general Taylor series expansion into the differential equation and solve for the coefficients. Since
we can always solve first order equations, this method is of limited usefulness. However, when we consider higher order
equations in which we cannot solve the equations exactly, this will become an important method.

Example 14.7.3 Again consider the equation

dw 1
dz 1—2

Since we know that the solution has a Taylor series expansion about = = 0, we substitute w = Y~ a,z" into the
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differential equation.

oo o0

(1— z)% Zanz" — Zanz” =0
n=0

n=0

(o] o (0]
E na,z"" 1 — E na,z" — E a2 =0
n=1 n=1 n=0

o oo

Z(n + Day12" — inanz" — Z apz" =0

n=0 n=0 n=0
00

S (0 + Dapsr — (n+ Lay) 2" = 0.
n=0
Now we equate powers of z to zero. For 2", the equation is (n+ 1)a,4+1 — (n+1)a, =0, or a, 1 = a,. Thus we have
that a,, = aq for all n > 1. The solution is then

o0
w = ag g 2",
n=0

which is the result we obtained by expanding the solution in Example 14.7.2.

Result 14.7.1 Consider the equation

dw
e + p(2)w = 0.

If p(2) is analytic at z = zj then z; is called an ordinary point of the differential equation. The
Taylor series expansion of the solution can be found by substituting w = " j a,(z — 2)"
into the equation and equating powers of (z — z;). The radius of convergence of the series is
at least the distance to the nearest singularity of p(z) in the complex plane.
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Exercise 14.7
Find the Taylor series expansion about the origin of the solution to

dw 1
— +

=0
dz 1—zw

with the substitution w = 3"  a,z". What is the radius of convergence of the series? What is the distance to the
nearest singularity of 7
Hint, Solution

14.7.2 Regular Singular Points

If the coefficient function p(z) has a simple pole at z = 2 then zy is a regular singular point of the first order
differential equation.

Example 14.7.4 Consider the equation

d
W %=0, a#o0.
dz =z

This equation has a regular singular point at z = 0. The solution is w = cz~“. Depending on the value of «, the
solution can have three different kinds of behavior.

« is a negative integer. The solution is analytic in the finite complex plane.
« is a positive integer The solution has a pole at the origin. w is analytic in the annulus, 0 < |z|.

« is not an integer. w has a branch point at z = 0. The solution is analytic in the cut annulus 0 < |z| < oo,
Oy < argz < 0y + 2.
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Consider the differential equation

where p(z) has a simple pole at the origin and is analytic in the annulus, 0 < |z| < r, for some positive r. Recall that

the solution is
w = cexp (— /p(z) dz)

b b
= cexp (—/—O+p(z)——0dz)
z z
—b
= cexp (—bologz—/%dz)

— ¢cp o exp (_ / m dz)
z

The exponential factor has a removable singularity at z = 0 and is analytic in |z| < r. We consider the following
cases for the 2% factor:

by is a negative integer. Since 2~ is analytic at the origin, the solution to the differential equation is analytic in
the circle |z| <.

by is a positive integer. The solution has a pole of order —b; at the origin and is analytic in the annulus 0 < |z| < r.

bo is not an integer. The solution has a branch point at the origin and thus is not single-valued. The solution is
analytic in the cut annulus 0 < |z| <7, Oy < argz < Oy + 2.

Since the exponential factor has a convergent Taylor series in |z| < r, the solution can be expanded in a series of

the form
o

w =z Z a,z", where ay # 0 and by = lir% z2p(z).

n=0
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In the case of a regular singular point at z = z, the series is
oo

w = (z— 2p) bOZanz—zo ,  where ag # 0 and by = lim (z — zg) p(2).

z2—20
n=0

Series of this form are known as Frobenius series. Since we can write the solution as

w=c(z — z) P exp <—/ (p(z) - EOZO) dz> ,

we see that the Frobenius expansion of the solution will have a radius of convergence at least the distance to the nearest
singularity of p(z).

Result 14.7.2 Consider the equation,

dw

— + p(2)w =0,

- T r@)
where p(z) has a simple pole at z = zy, p(z) is analytic in some annulus, 0 < |z — 2| < 7,
and lim,_,, (2 — 20)p(2) = . The solution to the differential equation has a Frobenius series
expansion of the form

o

w=(z — 2)" Z an(z — 20)", ag # 0.

n=0

The radius of convergence of the expansion will be at least the distance to the nearest
singularity of p(z).
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Example 14.7.5 We will find the first two nonzero terms in the series solution about z = ( of the differential equation,
dw 1
_|_

— —w = 0.
dz  sinz

First we note that the coefficient function has a simple pole at z = 0 and

1
lim — = lim
z—08inz  2—0 oS 2

=1.

Thus we look for a series solution of the form

o0
w=z"" E an2", ag # 0.

n=0

The nearest singularities of 1/ sin z in the complex plane are at z = +m. Thus the radius of convergence of the series
will be at least .
Substituting the first three terms of the expansion into the differential equation,

d _1 1 1
— +a; + + — +a; + = 0(2).
Z(aoz ar + asz) 5 Z(aoz ar + asz) (2)

Recall that the Taylor expansion of sin z is sin z = z — ¢z + O(2).

3
(Z - % + 0(2’5)) (_a0272 +ag) + (aozfl +ay + axz) = 0(22)

a
—apz ' 4 (ag + —O> z 4 apz '+ ay + agz = O(2?)

6
a; + (2@2 + %) z=0(2%
aq is arbitrary. Equating powers of z,
20 a; = 0.
a
2t 2a9 + EO = 0.
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Thus the solution has the expansion,

z

12) +0(22).

wW = g (z_l —

In Figure 14.5 the exact solution is plotted in a solid line and the two term approximation is plotted in a dashed line.
The two term approximation is very good near the point x = 0.

Figure 14.5: Plot of the Exact Solution and the Two Term Approximation.

Example 14.7.6 Find the first two nonzero terms in the series expansion about z = 0 of the solution to

, .COSZ
w — 1

w = 0.
z
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Since “== has a simple pole at z = 0 and lim,_., —i cos 2 = —i we see that the Frobenius series will have the form

o0
=2z g a,2", ag # 0.

n=0
Recall that cos z has the Taylor expansion -, % Substituting the Frobenius expansion into the differential
equation yields

z (izi_l i an2" + 2 inanz"_1> —1 <i %) (z’ i anz”) =0
n=0 = ’ n=0

n=0
s o n 2n
Z(” +1 - Z Z a,z" | =0.
n=0 n=0
Equating powers of z,

22 dag —iag =0 — aq Is arbitrary

2 (1+i)a; —iap =0 —a; =0

22 : (2+i)a2—ia2+%a0:() — ag = —%ao_

Thus the solution is

14.7.3 Irregular Singular Points

If a point is not an ordinary point or a regular singular point then it is called an irregular singular point. The following
equations have irregular singular points at the origin.
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o W+ /zw=0
o W — 2z 2w=0

o w +exp(l/z)w =0

Example 14.7.7 Consider the differential equation

dw
— +azf

w=0, a#0, B+#-1,01,2,...
dz

This equation has an irregular singular point at the origin. Solving this equation,

(o (o)) o

_ o g oD e N e
w CeXp( 5—{_12 CZ n' /6+1 zZ .

n=0

If 3 is not an integer, then the solution has a branch point at the origin. If 3 is an integer, < —1, then the solution
has an essential singularity at the origin. The solution cannot be expanded in a Frobenius series, w = 2* Yo g anz™.

Although we will not show it, this result holds for any irregular singular point of the differential equation. We cannot
approximate the solution near an irregular singular point using a Frobenius expansion.
Now would be a good time to summarize what we have discovered about solutions of first order differential equations
in the complex plane.
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Result 14.7.3 Consider the first order differential equation

dw
— +p(2)w = 0.
SR AC)
Ordinary Points If p(z) is analytic at z = 2, then z is an ordinary point of the differential
equation. The solution can be expanded in the Taylor series w = > a,(z — 2))".
The radius of convergence of the series is at least the distance to the nearest singularity

of p(z) in the complex plane.

Regular Singular Points If p(z) has a simple pole at z = z, and is analytic in some annulus
0 < |z — 29| < r then zy is a regular singular point of the differential equation. The
solution at zy will either be analytic, have a pole, or have a branch point. The solution
can be expanded in the Frobenius series w = (2 — 29) ™ Y™ a,,(z — 29)" where ag # 0
and 0 = lim,_,.,(z — 29)p(z). The radius of convergence of the Frobenius series will be
at least the distance to the nearest singularity of p(z).

Irregular Singular Points If the point z = z; is not an ordinary point or a regular singular
point, then it is an irregular singular point of the differential equation. The solution
cannot be expanded in a Frobenius series about that point.

14.7.4 The Point at Infinity

Now we consider the behavior of first order linear differential equations at the point at infinity. Recall from complex
variables that the complex plane together with the point at infinity is called the extended complex plane. To study the
behavior of a function f(z) at infinity, we make the transformation z = % and study the behavior of f(1/¢) at ( = 0.
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Example 14.7.8 Let's examine the behavior of sin z at infinity. We make the substitution z = 1/( and find the
Laurent expansion about ( = 0.

: = (—1)"
sm(l/C) = HZ:; (2n + 1)' C(2n+1)

Since sin(1/¢) has an essential singularity at ¢ = 0, sin z has an essential singularity at infinity.

We use the same approach if we want to examine the behavior at infinity of a differential equation. Starting with
the first order differential equation,

Lt plew =0,
we make the substitution ) d q
_ 2= —

to obtain
~¢SE pl1/Cu=0
du  p(1/Q)

el

Result 14.7.4 The behavior at infinity of

d
d—tZU +p(z)w =0

is the same as the behavior at ( = 0 of




Example 14.7.9 We classify the singular points of the equation

dw L 1 0
— 4+ ——w=0.
dz 2249
We factor the denominator of the fraction to see that z =13 and z = —3 are regular singular points.
dw 1

w=20

& =B+ d)
We make the transformation z = 1/( to examine the point at infinity.
du 1 1
d¢ (/02 +9
du 1
_—— U =
d¢  9¢?+1

u=20

Since the equation for u has a ordinary point at ( =0, z = oo is a ordinary point of the equation for w.
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14.8 Additional Exercises

Exact Equations

Exercise 14.8 (mathematica/ode/first_order/exact.nb)
Find the general solution y = y(x) of the equations

dy  2*+ay+y?
Cdx x2 '

2. (4y — 3z)dz + (y — 22)dy = 0.
Hint, Solution

Exercise 14.9 (mathematica/ode/first_order/exact.nb)
Determine whether or not the following equations can be made exact. If so find the corresponding general solution.

1. (32% =22y +2)dz + (6y° —2° +3)dy =0

%__ax+by
“dx br+ey

Hint, Solution

Exercise 14.10 (mathematica/ode/first_order/exact.nb)
Find the solutions of the following differential equations which satisfy the given initial condition. In each case determine
the interval in which the solution is defined.

dy 2
1. 2 —(1-2 ——1/6.
e ( z)y?,  y(0) /6

2. xde+ye“dy=0, y(0)=1.

Hint, Solution
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Exercise 14.11
Are the following equations exact? If so, solve them.

L (dy—2)y —(92°+y—1)=0
2. 2z —2y)y + (2z +4y) = 0.
Hint, Solution

Exercise 14.12 (mathematica/ode/first_order/exact.nb)
Find all functions f(¢) such that the differential equation

dy
Zsint -2
Yy sin +yf()dt

is exact. Solve the differential equation for these f(t).
Hint, Solution

The First Order, Linear Differential Equation

Exercise 14.13 (mathematica/ode/first_order/linear.nb)
Solve the differential equation

- =0.
SInx

Hint, Solution
Initial Conditions
Well-Posed Problems
Exercise 14.14
Find the solutions of

td—y +Ay=1+1¢

dt ’

which are bounded at ¢t = 0. Consider all (real) values of A.
Hint, Solution
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Equations in the Complex Plane

Exercise 14.15
Classify the singular points of the following first order differential equations, (include the point at infinity).

1w + 2w =0

2. w' + ﬁw =0

3. w4 22w =0
Hint, Solution

Exercise 14.16
Consider the equation
w4 272w = 0.

The point z = 0 is an irregular singular point of the differential equation. Thus we know that we cannot expand the
solution about z = 0 in a Frobenius series. Try substituting the series solution

(o]
w:z)‘g an 2", ag # 0
n=0

into the differential equation anyway. What happens?
Hint, Solution
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14.9 Hints
Hint 14.1

d _1
L onjul =

d,c_ =1,/
2. Fout=u""u

Hint 14.2

Hint 14.3
The equation is homogeneous. Make the change of variables u = y/t.

Hint 14.4
Make sure you consider the case oo = 0.

Hint 14.5
Hint 14.6
Hint 14.7

The radius of convergence of the series and the distance to the nearest singularity of flz are not the same.

Exact Equations

Hint 14.8
1.

2.
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Hint 14.9
1. The equation is exact. Determine the primitive u by solving the equations u, = P, u, = Q.

2. The equation can be made exact.

Hint 14.10
1. This equation is separable. Integrate to get the general solution. Apply the initial condition to determine the
constant of integration.

2. Ditto. You will have to numerically solve an equation to determine where the solution is defined.

Hint 14.11
Hint 14.12

The First Order, Linear Differential Equation

Hint 14.13
Look in the appendix for the integral of csc .

Initial Conditions
Well-Posed Problems

Hint 14.14

Equations in the Complex Plane

Hint 14.15
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Hint 14.16
Try to find the value of A\ by substituting the series into the differential equation and equating powers of z.
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14.10 Solutions

Solution 14.1

% In|y(z)| = f(x)

1n|y(x)|:/f(x)dx+c
y(x) = 1 o fl@)date

y<17) = Ceff(m) dx




Y N tan x

Yy = COS T
cos T cos T

. ( : )
— = CoSZ
dx \coszx

Y

COS ™

=sinx +c¢

y(x) =sinzcosx + ccosx

Solution 14.2
We consider the homogeneous equation,

P(ry) + Q) 12 =0,

That is, both P and () are homogeneous of degree n. We hypothesize that multiplying by

1
vP(z,y) +yQ(z,y)

plz,y) =
will make the equation exact. To prove this we use the result that

M(m,y)+N(x,y)d =0

&
dw
is exact if and only if M, = N,.
0 P
My=—|——
by LPWQ}

_ PP +yQ) — P(xP, + Q +yQy)
n (xP + yQ)?
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M= | res]

" Oz |zP + yQ
_ Qu(aP +yQ) — Q(P + 2P, + Q)
(xP +yQ)?
M, =N,

Py(xP +yQ) — P(xP, + Q +yQ,) = Qu(zP + yQ) — Q(P + 2P, + yQ,)
yP,Q — yPQy = 1PQy — xP,Q
tP,Q +yP,Q = 2PQ, + yPQ,
(zP, + yP,)Q = P(2Q, + yQy)

With Euler's theorem, this reduces to an identity.
nPQ = PnQ

Thus the equation is exact. u(x,y) is an integrating factor for the homogeneous equation.

Solution 14.3
We note that this is a homogeneous differential equation. The coefficient of dy/dt and the inhomogeneity are homo-

geneous of degree zero.
dy y A%
a=2)+(G)
dt t + t

We make the change of variables u = y/t to obtain a separable equation.

tu +u = 2u + u?
u 1

w2+u  t
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Now we integrate to solve for w.

Solution 14.4
We consider

First we find the integrating factor.

u’ 1
wlu+1)  t
u’ u' 1
w u+1l ¢

Inju| —Inju+ 1=t +c

In

u
=In|ct
1’ |ct|

= 4t
u+1 ¢

u




We multiply by the integrating factor and integrate.

zlnx + cx for a = 0.

B {‘”ZH +cx for a #£ 0,

Solution 14.5
1.
y +ay=2""" y(l)=1, nez

We find the integrating factor.
I(z) = of 2z = 2°12

We multiply by the integrating factor and integrate. Since the initial condition is given at z = 1, we will take the

lower bound of integration to be that point.
i (ex2/2 y> _ $2n+1 er2/2
dx

y = e—:L’Q/Q /33 §2n+1 e§2/2 dg + Ce—x2/2
1

We choose the constant of integration to satisfy the initial condition.

y = e~ 7%/2 /g; §2n+1 e82/2 de¢ + e(1—2%)/2
1
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If n > 0 then we can use integration by parts to write the integral as a sum of terms. If n < 0 we can write the
integral in terms of the exponential integral function. However, the integral form above is as nice as any other
and we leave the answer in that form.

e 2ey(z) =1, y(0)=1.

We determine the integrating factor and then integrate the equation.

I(I’) _ ef —2zdr _ e—.Z’Q

d (e‘xz ) = e
dx v) =

y = e” / e & de + ce”
0

We choose the constant of integration to satisfy the initial condition.

y=e* (1 +/ e ¢ d§>
0

We can write the answer in terms of the Error function,

2 T e
erf(x)zﬁ i et d¢.

y=c" (1 i erf(x))

2
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Solution 14.6
We determine the integrating factor and then integrate the equation.

I(l‘) _ efadr — e
d

a (eam y) _ 56(&—)\)3:

y = ﬁeax/e(a)\)x dx_i_cefozx

First consider the case o # .

e(af)\)x

— e—a:E—_i_Ce—ax
y=_p Y

e—/\x +e e oz

Clearly the solution vanishes as © — oc.
Next consider o = .

y :ﬁe—aacl,_f_ce—ax

y=(c+ px)e

We use L'Hospital’s rule to show that the solution vanishes as = — oo.

im 9% o B

r—o00 AT T—00 (y €XT

For 3 = A =1, the solution is

)= e T 4ce ™ fora £ 1,
(c+x)e™® fora =1.
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The solution which satisfies the initial condition is

(1+z)e ™™ for a = 1.

)= {ﬁ (e +(a—2)e %) for a # 1,

In Figure 14.6 the solution is plotted for « = 1/16,1/8, ..., 16.

N W w

Figure 14.6: The Solution for a Range of «

Consider the solution in the limit as a — 0.

. . 1 —T —Qx
ili%y(x):gg%a_l(e +(a—2) e %)
=2—e"
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In the limit as &« — oo we have,

1
lim y(z) = lim . (7" +(a —2)e7*")
a—00 a—o0 (Y —
. a—2 —ax
= lim e
a—oo o — 1

_J1 forx=0,
10 forz>0.

This behavior is shown in Figure 14.7. The first graph plots the solutions for & = 1/128,1/64,...,1. The second
graph plots the solutions for a = 1,2,...,128.

Figure 14.7: The Solution as & — 0 and @ — o0
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Solution 14.7
We substitute w = 7 a, 2" into the equation ¢ + 1w = 0.

d . n & n
&;anz + 1_2;:0%2 =0
(1 —z)inanz” 1+§:anz” =0
n=1 n=0
i(n—i— Dap12" Znanz + Zan =
n=0

Z (n+ Daps1 — (n—1)a,) 2" =0
n=0

Equating powers of z to zero, we obtain the relation,

n—1
n+1

Ap+1 = Ay, .

ag is arbitrary. We can compute the rest of the coefficients from the recurrence relation.

—1
a1 — —ag = —Qog
1

0
a2:§a1:0

We see that the coefficients are zero for n > 2. Thus the Taylor series expansion, (and the exact solution), is

w = ap(l — 2).

The radius of convergence of the series in infinite. The nearest singularity of i is at z = 1. Thus we see the radius
of convergence can be greater than the distance to the nearest singularity of the coefficient function, p(z).
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Exact Equations

Solution 14.8
1.

dy 2*+ay+y?
de 2

Since the right side is a homogeneous function of order zero, this is a homogeneous differential equation. We
make the change of variables u = y/x and then solve the differential equation for w.

v +u=14u+u?
du dx
T+u? o
arctan(u) = In|z| 4+ ¢
u = tan(In(|cx|))

y = xtan(In(|cx|))

(4y —3z)dr + (y —22)dy =0

Since the coefficients are homogeneous functions of order one, this is a homogeneous differential equation. We
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make the change of variables u = y/x and then solve the differential equation for u.

Solution 14.9
1.

(4%—3) dx+(g—2) dy =0

(4u—3)dx—|—(u—2)x(ud$—|—a:du):O
(u? 4+ 2u — 3)dw + z(u —2)du =0
dx u—2

T )=
d_x+( 5/4 — 1/4 > du=0

T u+3 u-—1

du=20

d 1
In(x) + Zln(u—{— 3) — Zln(u —1)=c¢
' (u+3)°

u—1
ot (y/x + 3)°
_— L —=C
y/x—1
(y + 3z)°

y—xv

(3% — 2zy +2)dx + (6y° —2* +3)dy =0

We check if this form of the equation, Pdx + ) dy = 0, is exact.

P, = -2z, Q. = —2x

Since P, = ()., the equation is exact. Now we find the primitive u(z,y) which satisfies

du = (32 — 22y + 2) dz + (6y* — 2 + 3) dy.
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The primitive satisfies the partial differential equations
uy, =P, u, = Q. (14.8)
We integrate the first equation of 14.8 to determine u up to a function of integration.

Uy = 3% — 2zy + 2
uw=2"— 2’y + 22+ f(y)

We substitute this into the second equation of 14.8 to determine the function of integration up to an additive
constant.

—2* 4+ f'(y) = 6y* — 2* + 3
f'y) =6y>+3
fy) =2y + 3y

The solution of the differential equation is determined by the implicit equation u = c.

PPy 42+ 20 + 3y =c

%__aa:—l—by
de br+ecy
(ax +by)dz + (bx +cy)dy =0

We check if this form of the equation, Pdz + Q dy = 0, is exact.
P, =0, Q:.=Db
Since P, = ()., the equation is exact. Now we find the primitive u(z,y) which satisfies

du = (ax + by) dz + (bx + cy) dy

822



The primitive satisfies the partial differential equations
uy, =P, u, =Q. (14.9)
We integrate the first equation of 14.9 to determine u up to a function of integration.

Uy = ax + by

1
U= §ax2 +bxy + f(y)

We substitute this into the second equation of 14.9 to determine the function of integration up to an additive
constant.
be+ f'(y) = ba +cy

f'y) =cy
f) = 5o

The solution of the differential equation is determined by the implicit equation u = d.

azx® + 2bxy + cy® = d

Solution 14.10
Note that since these equations are nonlinear, we cannot predict where the solutions will be defined from the equation

alone.

1. This equation is separable. We integrate to get the general solution.
dy

—= = (1—22)y°
1y = (1= 22)y
d
—g:(l—Zx)dx
Y

1
—~=z—-z*+c
)

B 1
L —



Now we apply the initial condition.

1 1
y0)=—=-5
B 1
y_aj2—x—6
B 1
YT @r2)@—3)

The solution is defined on the interval (—2...3).

. This equation is separable. We integrate to get the general solution.

xdr+ye ™ dy=0
re' de+ydy=0

(x—l)e”c—l—%y2 =c
y=+2(c+ (1 —x)er)

We apply the initial condition to determine the constant of integration.

y(0) =/2(c+1)=1
1

c=—=

2
y=+/2(1—z)er—1

The function 2(1 — x)e” —1 is plotted in Figure 14.8. We see that the argument of the square root in the
solution is non-negative only on an interval about the origin. Because 2(1 — x)e® —1 == 0 is a mixed algebraic
/ transcendental equation, we cannot solve it analytically. The solution of the differential equation is defined on
the interval (—1.67835...0.768039).
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54 1

Figure 14.8: The function 2(1 — z)e” —1.

Solution 14.11
1. We consider the differential equation,

(4y —2)y — (92> +y —1) = 0.



This equation is exact. It is simplest to solve the equation by rearranging terms to form exact derivatives.

dyy —axy —y+1—-922=0
d

£[2y2—:py]+1—9x220
2 —axy+x -3 +c=0

yzi(mi\/xQ—S(c—i—x—&x?’))

2. We consider the differential equation,

(22 —2y)y' + (2x + 4y) = 0.

0
Pyza—y(2x+4y):4

0

Since P, # (), this is not an exact equation.

Solution 14.12
Recall that the differential equation

Pz, y) + Qlz,y)y =0
is exact if and only if P, = (),. For Equation 14.7, this criterion is
2ysint = yf'(¢)
f'(t) = 2sint
f(t) =2(a — cost).
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In this case, the differential equation is
y*sint + 2yy'(a — cost) = 0.

We can integrate this exact equation by inspection.

% (y*(a — cost)) =0

y*(a — cost) = c

c
-4+ -
Y va—cost
The First Order, Linear Differential Equation
Solution 14.13
Consider the differential equation
LYy
sin x '
We use Equation 14.5 to determine the solution.
y = Ceffl/sinmdx
y = Ce—ln|tan(a¢/2)|
(3)
=c|cot | =
Y 2
1(3)
= ccot | =
Y 2

Initial Conditions
Well-Posed Problems

Solution 14.14
First we write the differential equation in the standard form.

dy A 1
4+ y==—4t, t>0
dt+ty t+’

827



We determine the integrating factor.

I(t) _ efA/tdt _ eAlnt — tA

We multiply the differential equation by the integrating factor and integrate.

d
= (tAy) _ ALy AT
tA+2

A

Ttamto AF#0,-2
y=<Int+ 12 +¢ A=0

—3t 2+ Int+¢, A=-2

1 % —A
Z_‘_A—-&-Q—i_Ct s A?é—2

y=<Int+it> +¢, A=0
—14Pmt4ct?, A=-2

For positive A, the solution is bounded at the origin only for ¢ = 0. For A = 0, there are no bounded solutions. For

negative A, the solution is bounded there for any value of ¢ and thus we have a one-parameter family of solutions.
In summary, the solutions which are bounded at the origin are:

1 t2
Z+A_—£-2’ A>0
y=qi+izt+ct A<0, A#-2
—s+ It +ct?, A=-2

Equations in the Complex Plane

Solution 14.15
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1. Consider the equation w’ + Si%w = (. The point z = 0 is the only point we need to examine in the finite plane.
Since 2% has a removable singularity at z = 0, there are no singular points in the finite plane. The substitution
z = % yields the equation

in(1
osm1/g
¢
Since S2U/9) has an essential singularity at ( = 0, the point at infinity is an irregular singular point of the original

differential equation.

2. Consider the equation w’ + ﬁw = 0. Since :13 has a simple pole at z = 3, the differential equation has a
regular singular point there. Making the substitution z = 1/¢, w(z) = u(()

B
¢3(1/¢—3)
, 1

U — —  u = 0.

¢(1=3¢)

Since this equation has a simple pole at {( = 0, the original equation has a regular singular point at infinity.

/

u u=20

3. Consider the equation w’ + z'/2w = 0. There is an irregular singular point at z = 0. With the substitution

z=1/¢ w(z) = u((),

“1/2
u — CCZ u=20
u — = 0.

We see that the point at infinity is also an irregular singular point of the original differential equation.

Solution 14.16
We start with the equation
w + 27w = 0.
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Substituting w = 2* Y >7 a,2", ag # 0 yields
d oo oo
A n -2\ n __
P z Zanz +z %2 Zanz =0
n=0 n=0

o0 [o¢] [o.¢]
At E anz" + 2 E napz""t+ 2 E 2" 2 =0
n=1 n=0

n=0

The lowest power of z in the expansion is 2*~2. The coefficient of this term is ag. Equating powers of z demands that
ag = 0 which contradicts our initial assumption that it was nonzero. Thus we cannot find a \ such that the solution
can be expanded in the form,

oo
w= 2" E an,z", ag # 0.
n=0
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Chapter 15

First Order Linear Systems of Differential
Equations

We all agree that your theory is crazy, but is it crazy enough?

- Niels Bohr

15.1 Introduction

In this chapter we consider first order linear systems of differential equations. That is, we consider equations of the
form,

x'(t) = Ax(¢t) + £(t),

T (t) a;pr a2 ... QAip
! Q21 Q22 ... Q2qp
x(t) = : , A=| . o .

ap1 Gp2 ... Gpp
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Initially we will consider the homogeneous problem, x'(t) = Ax(t). (Later we will find particular solutions with variation
of parameters.) The best way to solve these equations is through the use of the matrix exponential. Unfortunately,
using the matrix exponential requires knowledge of the Jordan canonical form and matrix functions. Fortunately, we
can solve a certain class of problems using only the concepts of eigenvalues and eigenvectors of a matrix. We present
this simple method in the next section. In the following section we will take a detour into matrix theory to cover Jordan
canonical form and its applications. Then we will be able to solve the general case.

15.2 Using Eigenvalues and Eigenvectors to find Homogeneous So-
lutions

If you have forgotten what eigenvalues and eigenvectors are and how to compute them, go find a book on linear
algebra and spend a few minutes re-aquainting yourself with the rudimentary material.

Recall that the single differential equation 2/(t) = Az has the general solution # = ce”t,

differential equations

Maybe the system of

x/(t) = Ax(t) (15.1)

has similiar solutions. Perhaps it has a solution of the form x(t) = £ e for some constant vector £ and some value \.
Let's substitute this into the differential equation and see what happens.

x'(t) = Ax(t)
5)\ e/\t — A€ e/\t
AE =X

We see that if )\ is an eigenvalue of A with eigenvector & then x(t) = £ e satisfies the differential equation. Since
the differential equation is linear, c£€ e* is a solution.

Suppose that the n x n matrix A has the eigenvalues {\;} with a complete set of linearly independent eigenvectors
{&,.}. Then each of &, e*! is a homogeneous solution of Equation 15.1. We note that each of these solutions is linearly
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independent. Without any kind of justification | will tell you that the general solution of the differential equation is a
linear combination of these n linearly independent solutions.

Result 15.2.1 Suppose that the n X n matrix A has the eigenvalues {\;} with a complete
set of linearly independent eigenvectors {£;,}. The system of differential equations,

X/(t) = Ax(t).

has the general solution,
n

x(t) =) cx€je™

k=1

Example 15.2.1 (mathematica/ode/systems/systems.nb) Find the solution of the following initial value problem.
Describe the behavior of the solution ast — oo.

;o (-2 1 (1
X =Azxr= (_5 1) % x(0) =x¢ = 5
The matrix has the distinct eigenvalues A\ = —1, Ao = 3. The corresponding eigenvectors are

a-() =)

The general solution of the system of differential equations is

X = G) et 4ey (é) et
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We apply the initial condition to determine the constants.

(15)(@)=0)

N =

The solution subject to the initial condition is

For large t, the solution looks like

Both coordinates tend to infinity.
Figure 15.1 shows some homogeneous solutions in the phase plane.

Example 15.2.2 (mathematica/ode/systems/systems.nb) Find the solution of the following initial value problem.
Describe the behavior of the solution as t — oc.

1 1
xX=Az=1| 0 2
1

The matrix has the distinct eigenvalues \y = 1, Ay = 2, A3 = 3. The corresponding eigenvectors are

0 1 2
X1 = —2 s X9 = 1 s X3 = 2
1 0 1
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L),

Figure 15.1: Homogeneous solutions in the phase plane.

ol

ol

The general solution of the system of differential equations is

0 1 2
x=c | =2 el4e [ 1| e 4es | 2] .
1 0 1
We apply the initial condition to determine the constants.

0 1 2 c1 2

-2 1 2 co|l=10
1 01 3 1

cg=1, =2 c¢=0
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The solution subject to the initial condition is

As t — oo, all coordinates tend to infinity.

Exercise 15.1 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t — oo.

onen( e wwne ()

Exercise 15.2 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t — oo.

Hint, Solution

-3 0 2 1
xX=Az=|1 -1 0]x, x(0)=x0=|0
-2 =10 0

Hint, Solution

Exercise 15.3
Use the matrix form of the method of variation of parameters to find the general solution of

dx 4 -2 t3
E: 8 4 X+ _t_z 5 t > 0.

Hint, Solution
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15.3 Matrices and Jordan Canonical Form

Functions of Square Matrices. Consider a function f(x) with a Taylor series.

We can define the function to take square matrices as arguments. The function of the square matrix A is defined in
terms of the Taylor series.

(Note that this definition is usually not the most convenient method for computing a function of a matrix. Use the
Jordan canonical form for that.)

Eigenvalues and Eigenvectors. Consider a square matrix A. A nonzero vector X is an eigenvector of the matrix
with eigenvalue X if
Ax = \x.

Note that we can write this equation as
(A - M)x=0.

This equation has solutions for nonzero x if and only if A — Al is singular, (det(A — AI) = 0). We define the
characteristic polynomial of the matrix x(\) as this determinant.

X(A) = det(A — \I)

The roots of the characteristic polynomial are the eigenvalues of the matrix. The eigenvectors of distinct eigenvalues
are linearly independent. Thus if a matrix has distinct eigenvalues, the eigenvectors form a basis.

If X is a root of x(A) of multiplicity m then there are up to m linearly independent eigenvectors corresponding to
that eigenvalue. That is, it has from 1 to m eigenvectors.
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Diagonalizing Matrices. Consider an nxn matrix A that has a complete set of n linearly independent eigenvectors.
A may or may not have distinct eigenvalues. Consider the matrix S with eigenvectors as columns.

S = (x1 Xy - xn)
A is diagonalized by the similarity transformation:
A =S !AS.

A is a diagonal matrix with the eigenvalues of A as the diagonal elements. Furthermore, the k™" diagonal element is
Ak, the eigenvalue corresponding to the the eigenvector, x;.

Generalized Eigenvectors. A vector x; is a generalized eigenvector of rank k if
(A - MD)fx, =0 but (A —AD)*'x, #0.

Eigenvectors are generalized eigenvectors of rank 1. An n xn matrix has n linearly independent generalized eigenvectors.
A chain of generalized eigenvectors generated by the rank m generalized eigenvector x,, is the set: {x1,Xs,..., X},
where

X = (A — A\D)xpyq, for k=m—1,... 1.

Computing Generalized Eigenvectors. Let )\ be an eigenvalue of multiplicity m. Let n be the smallest integer
such that

rank (nullspace ((A — A\I)")) = m.

Let Nj denote the number of eigenvalues of rank k. These have the value:
Ny, = rank (nullspace ((4 — AI)*)) — rank (nullspace ((A — AI)* 1)) .

One can compute the generalized eigenvectors of a matrix by looping through the following three steps until all the
the N, are zero:
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1. Select the largest k for which Ny is positive. Find a generalized eigenvector x;, of rank k& which is linearly
independent of all the generalized eigenvectors found thus far.

2. From x; generate the chain of eigenvectors {xi,Xs,...,X;}. Add this chain to the known generalized eigenvec-
tors.

3. Decrement each positive Ny by one.

Example 15.3.1 Consider the matrix

1 1 1
A= 1 -1
-3 2 4

The characteristic polynomial of the matrix is

I-Xx 1 1
xA) =] 2 1-Xx -1
-3 24—
=(1=A?@A =N +3+4+31—-A) =24 -\ +2(1—X)
=—(A—2)°.

Thus we see that A = 2 is an eigenvalue of multiplicity 3. A — 21 is

-1 1 1
A-2I=2 -1 -1
-3 2 2
The rank of the nullspace space of A — 21 is less than 3.
0o 0 O
(A-21*=|-1 1 1
1 -1 -1



The rank of nullspace((A — 2I)?) is less than 3 as well, so we have to take one more step.
000

(A-21*=1(0 0 0

000

The rank of nullspace((A — 2I)3) is 3. Thus there are generalized eigenvectors of ranks 1, 2 and 3. The generalized
eigenvector of rank 3 satisfies:

(A —2I)*x3 =0
0 00
0 0 0]lx3=0
0 0 0
We choose the solution
1
X3 = 0].
0
Now to compute the chain generated by x3.
-1
X9 = (A — 21)X3 = 2
-3
0
X1 = (A — 21)X2 = —1
1

Thus a set of generalized eigenvectors corresponding to the eigenvalue A = 2 are

0 —1 1
xi=|-1], x=1|2], x3=1]0
1 -3 0
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Jordan Block. A Jordan block is a square matrix which has the constant, A, on the diagonal and ones on the first
super-diagonal:

A1 0 0 O
0 X 1 0 O
00 A 0 O
0 0 0 Al
00 O 0 A

Jordan Canonical Form. A matrix J is in Jordan canonical form if all the elements are zero except for Jordan
blocks J; along the diagonal.

J o0 - 0
o J, . 0
o o - J,.1 O
o o .- o J,

The Jordan canonical form of a matrix is obtained with the similarity transformation:
J=S7'AS,
where S is the matrix of the generalized eigenvectors of A and the generalized eigenvectors are grouped in chains.

Example 15.3.2 Again consider the matrix

1 1 1
A= 1 -1
-3 2 4



Since A = 2 is an eigenvalue of multiplicity 3, the Jordan canonical form of the matrix is

210
J=10 21
0 0 2

In Example 15.3.1 we found the generalized eigenvectors of A. We define the matrix with generalized eigenvectors as
columns:

0 -1 1
S=[-1 2 0
1 -3 0
We can verify that J = ST*AS.
J=S"1AS
0 -3 -2 1 1 1 0 -1 1
=0 -1 -1 2 1 -1 -1 2 0
1 -1 -1 -3 2 4 1 =3 0
2 10
=10 2 1
0 0 2

Functions of Matrices in Jordan Canonical Form. The function of an n x n Jordan block is the upper-
triangular matrix:

(A (N (n—=2) () (n=1)(\
f(/\) f1(! L L 2(1 ) ’ f((ng)(! ) f<n2%§! :
') DA CY I ANt O
0 f()‘) 1! T (n—3)! (n—2)!
.. Al CON Sl O
f(Jk) = 0 0 f(/\) ’ (n—4)! (n—3)!
0 0 0 F(N) £)
0 0 0 0 f(/\)
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The function of a matrix in Jordan canonical form is

fJ) 0 - 0
0 fJy) - O 0
0o 0 0 f(Jn)

The Jordan canonical form of a matrix satisfies:

f(3) =87 f(A)S,

where S is the matrix of the generalized eigenvectors of A. This gives us a convenient method for computing functions
of matrices.

Example 15.3.3 Consider the matrix exponential function e® for our old friend:

1 1 1
A=|2 1 -1
-3 2 4

Since all the derivatives of €* are just e*, it is especially easy to compute ¢’

e? e? e2)/2
=0 e e?
0 0 e

843



We find e® with a similarity transformation of ¢*. We use the matrix of generalized eigenvectors found in Example 15.3.2.

eA=8elS!

0 —-1 1 e? e? ¢e2/2 0 -3 =2
eA=-1 2 0 0 e? 2 0 —1 —1
1 -3 0/ \0o 0 e 1 -1 -1

0 2 2\ .,

A-|3 1 1|S

53 5) 2

15.4 Using the Matrix Exponential

The homogeneous differential equation
x'(t) = Ax(t)

has the solution
x(t) =efc

where c is a vector of constants. The solution subject to the initial condition, x(¢y) = x¢ is
x(t) = eAl7t0) x.
The homogeneous differential equation

X(#) = %Ax(t)

has the solution
x(t) = thc = eAloslc,

where c is a vector of constants. The solution subject to the initial condition, x(to) = xq is

P\A
x(t) = (t_) xo = eAloet/to) 5
0
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The inhomogeneous problem

x'(t) = Ax(t) + £(t), x(to) =xo
has the solution
t
x(t) = eAl10) x4 eAt/ e AT f(7)dr.
to
Example 15.4.1 Consider the system
dx

dt \_3 9 4

The general solution of the system of differential equations is
x(t) = e?ec.
In Example 15.3.3 we found e®. At is just a constant times A. The eigenvalues of At are {\yt} where {\;} are the

eigenvalues of A. The generalized eigenvectors of At are the same as those of A.
Consider €¥'. The derivatives of f(\) = e are f'(\) = teM and f"()\) = t?eM. Thus we have

e?t tth t2 e2t /2
e?t t e?t

et =10
0 O e?t
1t t2/2
=101 ¢t |e*
00 1



We find et with a similarity transformation.

eAt -9 eJt S—l

0 -1 1 1t t2/2 0 -3 -2
eAM=-1 2 0 01 t |elo —1 -1
1 =30 00 1 1 —1 -1

1—t t t
A= 20122 1—t+t2/2 —t+t2/2 |e*

=3t +t2/2 2 —12/2 142t —t2/2

The solution of the system of differential equations is

1—t t t
xt)= || 2t—t3/2 |+ | 1=t +t*/2| 43| —t+12/2 o2t
—3t + /2 2t —t2/2 1+2t —t%/2

Example 15.4.2 Consider the Euler equation system

dx 1 1/1 0

The solution is x(t) = tAc. Note that A is almost in Jordan canonical form. It has a one on the sub-diagonal instead

of the super-diagonal. It is clear that a function of A is defined

1= (1) i)

The function f(\) = t* has the derivative f'(\) = t*logt. Thus the solution of the system is

x() = (t 1§gt g) (2) — (t 1§g t> T @)
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Example 15.4.3 Consider an inhomogeneous system of differential equations.

dx (4 =2 3
The general solution is
x(t) = e ¢ + A / e A f(t) dt.

First we find homogeneous solutions. The characteristic equation for the matrix is

4— )\ -2
N R B

A = 0 is an eigenvalue of multiplicity 2. Thus the Jordan canonical form of the matrix is

01
()
Since rank(nullspace(A — 0I)) = 1 there is only one eigenvector. A generalized eigenvector of rank 2 satisfies

(A - OI>2X2 =0

(0 )nmo
~= (o)

X1 = (A — 0T)xs = (;l)

We choose

Now we generate the chain from x,.
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We define the matrix of generalized eigenvectors S.
4 1
(s o
The derivative of f()\) = e is f/(\) = teM. Thus

w1t
e(01

The homogeneous solution of the differential equation system is x; = e®

t ¢ where

eAt =S eJt S—l
At _ 4 1 1 ¢\ /0 1/8
8 0/°\0 1)\1 —1/2
8 1—4t

The general solution of the inhomogeneous system of equations is

x(t) = eAlc 4 A /eAt f(t)de

(144t =2t 1+4t -2t 1—4t 2t t3
x(8) = ( 8t 1—4t)c+( 8t 1—4t)/( 8t 1+4t) (—t—2) a
(144 —2t 2—2Logt+9% — 55
x() = e ( 8t > e (1—4t) * ( 4—4Togt+ 1

We can tidy up the answer a little bit. First we take linear combinations of the homogeneous solutions to obtain a

simpler form.
1 2t 2—2Logt+ ¢ —
x() = e (2) e (475 - 1) + ( 1= ATogt s Em)
t
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Then we subtract 2 times the first homogeneous solution from the particular solution.

! 2t —2Logt+ 9 — 35
x() = e (2) e <4t— 1) * ( —4Logt + 1
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15.5 Exercises

Exercise 15.4 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem.

-2 1

x =Az = <_5 4) X, x(0) =x = (Zl’)>

Exercise 15.5 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem.

Hint, Solution

1 1
xX=Az=1| 0 2
-1 1

W DN N

2
x, x(0)=xo=1{0
1

Hint, Solution

Exercise 15.6 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as ¢t — co.

N T

Exercise 15.7 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t — oo.

Hint, Solution

-3 0
X =Az=1|1
-2

o O =

2
-1 0|x, x(0)=x¢=
-1 0

Hint, Solution
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Exercise 15.8 (mathematica/ode/systems/systems.nb)

Find the solution of the following initial value problem. Describe the behavior of the solution as t — oo.

L R

Exercise 15.9 (mathematica/ode/systems/systems.nb)

Hint, Solution

Find the solution of the following initial value problem. Describe the behavior of the solution as t — oo.

-100 —1
X=Az=[|-410]x%x, x(0)=xg=| 2
3 6 2 —30
Hint, Solution
Exercise 15.10
1. Consider the system
1 1 1
xX=Ax=|2 1 —-1]|x
-3 2 4

(15.2)

(a) Show that A = 2 is an eigenvalue of multiplicity 3 of the coefficient matrix A, and that there is only one

corresponding eigenvector, namely

(b) Using the information in part (i), write down one solution x(!)(#) of the system (15.2). There is no other

solution of a purely exponential form x = £ e,

(c) To find a second solution use the form x = £t e? +ne?, and find appropriate vectors & and n. This gives

a solution of the system (15.2) which is independent of the one obtained in part (ii).
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(d) To find a third linearly independent solution use the form x = £(t%/2) e* +nt e* +¢ e?. Show that &, i
and ¢ satisfy the equations

(A-2Dg=0, (A-2Dp=¢ (A-20)C=n.

The first two equations can be taken to coincide with those obtained in part (iii). Solve the third equation,
and write down a third independent solution of the system (15.2).

2. Consider the system

5 =3 =2
xX=Ax=|8 -5 —4]x (15.3)
-4 3 3

(a) Show that A = 1 is an eigenvalue of multiplicity 3 of the coefficient matrix A, and that there are only two
linearly independent eigenvectors, which we may take as

Find two independent solutions of equation (15.3).

(b) To find a third solution use the form x = &t e’ +ne’; then show that & and n must satisfy
(A-T)§=0, (A-In=¢

Show that the most general solution of the first of these equations is §& = ¢1&; + 2&,, where ¢; and ¢,
are arbitrary constants. Show that, in order to solve the second of these equations it is necessary to take
¢1 = co. Obtain such a vector 1, and use it to obtain a third independent solution of the system (15.3).

Hint, Solution
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Exercise 15.11 (mathematica/ode/systems/systems.nb)
Consider the system of ODE's

((11_)25( = Ax, x(0)=x
where A is the constant 3 x 3 matrix
1 1 1
A=|2 1 -1
-8 -5 -3
1. Find the eigenvalues and associated eigenvectors of A. [HINT: notice that A = —1 is a root of the characteristic

polynomial of A.]

2. Use the results from part (a) to construct eA? and therefore the solution to the initial value problem above.

3. Use the results of part (a) to find the general solution to

dx 1
— = —Ax.

a o
Hint, Solution

Exercise 15.12 (mathematica/ode/systems/systems.nb)
1. Find the general solution to

dx
7 Ax
where
2 01
A=10 20
01 3
2. Solve

dx
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using A from part (a).
Hint, Solution

Exercise 15.13
Let A be an n x n matrix of constants. The system

dx 1
— =-A 15.4
a (154)
is analogous to the Euler equation.

1. Verify that when A is a 2 x 2 constant matrix, elimination of (15.4) yields a second order Euler differential
equation.

2. Now assume that A is an n X n matrix of constants. Show that this system, in analogy with the Euler equation
has solutions of the form x = at* where a is a constant vector provided a and \ satisfy certain conditions.

3. Based on your experience with the treatment of multiple roots in the solution of constant coefficient systems,

what form will the general solution of (15.4) take if \ is a multiple eigenvalue in the eigenvalue problem derived
in part (b)?

4. Verify your prediction by deriving the general solution for the system

dx 1/10
a t\1 1T

Hint, Solution
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15.6 Hints
Hint 15.1

Hint 15.2

Hint 15.3

Hint 15.4

Hint 15.5

Hint 15.6

Hint 15.7

Hint 15.8

Hint 15.9

Hint 15.10
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Hint 15.11

Hint 15.12

Hint 15.13
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15.7 Solutions

Solution 15.1
We consider an initial value problem.

R

The matrix has the distinct eigenvalues A\ = —1 — 1, Ay = —1 4 1. The corresponding eigenvectors are

2—1 2+
X1 = 1 s Xo = 1 .

The general solution of the system of differential equations is

X =0 (2 I Z) e LN (2 —f Z) elm1H0t

We can take the real and imaginary parts of either of these solution to obtain real-valued solutions.

(2 + z) o(—1H _ <2 cos(t) — sin(t)) ot (cos(t) + QSin(t)> ot

1 'cos(t) s.in(t)
K=o (2 cos(t) — sm(t)) e ey (cos(t) + 2sm(t)> ot

cos(t) sin(t)
We apply the initial condition to determine the constants.
(0 (2)-0)
1 0 Co 1
ca=1, c=-1

The solution subject to the initial condition is
= cos(t) — 3 §1n(t) ot
cos(t) — sin(t)

Plotted in the phase plane, the solution spirals in to the origin as ¢ increases. Both coordinates tend to zero as t — o0.
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Solution 15.2
We consider an initial value problem.

-3 0 2 1
xX=Az=|1 -1 0]x, x(0)=x0=1{0
-2 -1 0 0

The matrix has the distinct eigenvalues Ay = =2, Ay = —1 — W2, A3 = —1 +14/2. The corresponding eigenvectors
are

2 2 412 2 — /2
X1 = -2 y X2 = _1+Z\/§ , X3 = _1_7/\/5
1 3 3

The general solution of the system of differential equations is

2 2412 2 —1/2
x=c | =2|e4e 1402 e(-1-V2)t tey [ —1—02 e(—1+v2)t

We can take the real and imaginary parts of the second or third solution to obtain two real-valued solutions.

2 +11/2 2 cos(v/2t) + v/2sin(v/2t) V2 cos(v/2t) — 2sin(v/2t)
14 ay/2 | e = [ = cos(v/2t) + v2sin(v/2t) | e +1 | V2cos(v/2t) +sin(v/2t) | e”!
3 3 cos(v/2t) —3sin(v/2t)
2 2 cos(v/2t) + v/2sin(v/2t) V2 cos(v/2t) — 2sin(v/2t)
x=c | 2| e 4cy | —cos(v2t) +v2sin(v2t) | et +e3 | V2cos(v2t) +sin(v/2t) | e
1 3 cos(v/2t) —3sin(v/2t)
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We apply the initial condition to determine the constants.

2 2 V2\ /g 1
—2 —1 V2| |e]=|{0
1 3 0 C3 0
1 1 5
o=z, Cg=——, (3=—=
1 3a 2 9, 3 9\/5
The solution subject to the initial condition is
12 12 cos(v/2t) — 4+/2sin(v/2t)
x=z| -2 e +e 4cos(v/2t) ++/2sin(v/2t) | e .
1 -2 cos(ﬂt) — 52 sin(\/it)

As t — o0, all coordinates tend to infinity. Plotted in the phase plane, the solution would spiral in to the origin.

Solution 15.3
Homogeneous Solution, Method 1. We designate the inhomogeneous system of differential equations

x = Ax+ g(t).
First we find homogeneous solutions. The characteristic equation for the matrix is
X(A) = ‘4? _;EA‘ =N=0
A = 0 is an eigenvalue of multiplicity 2. The eigenvectors satisfy
(¢ ()~ ()
8 —4) \& 0)°

Thus we see that there is only one linearly independent eigenvector. We choose



One homogeneous solution is then

() ()

We look for a second homogeneous solution of the form
X9 = Et + n.
We substitute this into the homogeneous equation.

Xy = Axy
£=At+n)

We see that & and 7 satisfy
Ag =0, An=¢.

We choose £ to be the eigenvector that we found previously. The equation for 7 is then

IR 6]

7 is determined up to an additive multiple of £&. We choose

7= (1)
o (- (5)

The general homogeneous solution of the system is

Xn=a G) o (Qt —t1/2>
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We can write this in matrix notation using the fundamental matrix W (t).

x;, = ¥(t)e = (; 2t —tl/Q) (ED

Homogeneous Solution, Method 2. The similarity transform C~'AC with

c=(y ip)
a=(s 75)

to Jordan canonical form. We make the change of variables,

Y= (é —?/2) *

TG DG )y
(-0 ) ()

/

will convert the matrix

The homogeneous system becomes

The equation for ys is

Y2 =
Y2 = C2
The equation for y; becomes
3/1 = Ca.
y1 =1+ cot

861



The solution for y is then

v (1) (D).

We multiply this by C to obtain the homogeneous solution for x.

1 t
Xn=elg) T g1y
Inhomogeneous Solution. By the method of variation of parameters, a particular solution is
— / o (g (t) dt.
1 t 1—4t 2t
o= (o) [(15" 5) (4)
o — (1 t =27t — A4t 43 dt
P2 2t—1/2 2t2+4t3
. 1 t —2logt +4t71 — 1172
P2 2t—1/2 —2t71 215‘

~[(—2—2logt+ 2t — 4172
*p = —4—4logt + 5t !

By adding 2 times our first homogeneous solution, we obtain

—2logt+2t71 — 1¢72
Xp = —1
—4logt + 5t

The general solution of the system of differential equations is

wee (1) 4 t N —2logt + 2t~ — 4t72
“a\2) T2\t —1/2 —4logt + 5t 1
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Solution 15.4
We consider an initial value problem.

x = Ax

_ (j)

The Jordan canonical form of the matrix is

The solution of the initial value problem is x = e x.
At
X =€ X
=S¢’ S %,

:G
&t

1 et

5 0
ot 1Bt
et 45e3t

x —
Solution 15.5

We consider an initial value problem.

1 1

xX=Azxz=| 0 2

-1 1

The Jordan canonical form of the matrix is
J =



A

The solution of the initial value problem is x = e®! x,.

X:eAtXO
:SeJtS_1X0
0 1 2 et 0 0 1 1 -1 0 2
=1-2 1 2 0 e* 0 5 4 -2 —4 0
1 0 1 0 0 e -1 1 2 1
Qth
= | —2et +2e%
et
0 2
x=|-2]e+]2]¢e*
1 0

Solution 15.6
We consider an initial value problem.

—1 -2 0
J_< 0 —1+Z)'
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The solution of the initial value problem is x = eA* x,.

X = eAt Xo

= Se‘” S~1x,
B —7 2 —l— 1 1 1 —12 1
- 1“)’5 2\—1 1422/ \1

- (%ssé&:i?;? D )

x = G) e cos(t) — G) o sin(t)

Solution 15.7
We consider an initial value problem.

-3 0 2 1
xX=Azr=|1 -1 0]x, x(0)=x=1{0
-2 -1 0 0
The Jordan canonical form of the matrix is
-2 0 0
J=|0 —-1-w2 0
0 0 —14+12/2
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The solution of the initial value problem is x = eA* x,.
X = eAt Xo
=Selt Sk,
6 2+w/2 2-1/2)\ [e* 0 0
= 3 —6 —14+1W/2 —1—1/2 0 el-1-2y 0
3 3 3 0 0 e(—1+2\/§)t

. 2 —2 —2 1
5 —1—15v2/2 1—-12v2 4+/2 ] |0
—1+5v2/2 1+12v2 4—1/2) \O

1 (2 1 (2 cos(v/2t) — 4v/2sin(v/2t)
X =3 —2 e —1—6 4cos(v/2t) +/2sin(v/2t) |e".
1 -2 cos(\/ﬁt) — 52 sin(\/ﬁt)

Solution 15.8
We consider an initial value problem.

Method 1. Find Homogeneous Solutions. The matrix has the double eigenvalue \; = Ay = —3. There is only
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one corresponding eigenvector. We compute a chain of generalized eigenvectors.

(A+3D)*x, =0
0X2 =0

o (1)

The general solution of the system of differential equations is

en () ()

We apply the initial condition to determine the constants.

e

The solution subject to the initial condition is

«— 3+ 4t ot
C\2+4t ‘
Both coordinates tend to zero as t — oo.
Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

J- (‘03 _13).
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The solution of the initial value problem is x = eA* x,.
At
X=€""Xp
= Selt Sk,

e

o (BTN
o\ 2+44t ‘

Solution 15.9
We consider an initial value problem.

-1 0 0 —1
X=Ar=|-410]|x, x(0)=x=| 2
3 6 2 —30
Method 1. Find Homogeneous Solutions. The matrix has the distinct eigenvalues \; = —1, Ay = 1, A\3 = 2.

The corresponding eigenvectors are

—1 0 0
X1 = —2 , X9 = —1 , X3 = 0
5 6 1

The general solution of the system of differential equations is

-1 0 0
x=c | =2|e 4 [ =1 ] el +e3 | 0] e*.
5 6 1
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We apply the initial condition to determine the constants.

-1 0 0 C1 —1
-2 -1 0 c | = 2
5 6 1 C3 —30

C1 = 1, Co = —4, C3 = —11

The solution subject to the initial condition is

-1 0 0
x=|-2|et—4|—-1]e—=11[0]¢*.
5 6 1

As t — 00, the first coordinate vanishes, the second coordinate tends to oo and the third coordinate tends to —oco
Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

-1 0 0
J=10 10
0 0 2
The solution of the initial value problem is x = eA x.
X:eAtXD
:SeJtS_1X0
-1 0 0 eft()Ol—lOO—l
=1-2 -1 0 0 e 0 3 2 -1 0 2
5) 6 1 0 0 e* -7 6 1 —30
—1 0 0
x=|-2|et—4|-1|e—11[0]e*.
) 6 1
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Solution 15.10
1. (a) We compute the eigenvalues of the matrix.

1—X 1 1
YA =] 2 1-X —1[==-NM+6\2-122+8=—-(A—-2)3
-3 2 4=
A = 2 is an eigenvalue of multiplicity 3. The rank of the null space of A — 2T is 1. (The first two rows are

linearly independent, but the third is a linear combination of the first two.)

-1 1 1
A-2I=12 -1 -1
-3 2 2

Thus there is only one eigenvector.

0
5(1) _ 1
—1
(b) One solution of the system of differential equations is
0
X(l) — 1 th
—1

(c) We substitute the form x = £t e* +ne? into the differential equation.
x' = Ax
e 1otte® 12ne® = Afte* +Ane®
(A-2§=0, (A-2Dn=¢

870



We already have a solution of the first equation, we need the generalized eigenvector 17. Note that n is only

determined up to a constant times &. Thus we look for the solution whose second component vanishes to
simplify the algebra.

-1 1 1 i 0
2 -1 -1 0]l=11
-3 2 2 73 —1
—m+n3=0, 2m—ns=1 —3pm+2n=-1
1
n=10
1
A second linearly independent solution is
0 1
xP =11 |te?+]0]e"
-1 1

(d) To find a third solution we substutite the form x = £(t?/2) ** +nt ¢* +( ¢** into the differential equation.

x' = Ax
2£(12/2) e +-(& + 2n)te* +(n +2¢) e = AE(1?/2) e* +Ante* + AL e
(A-2§=0, (A-2n=¢ (A-20)C(=n

We have already solved the first two equations, we need the generalized eigenvector . Note that ¢ is only
determined up to a constant times &. Thus we look for the solution whose second component vanishes to
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simplify the algebra.

¢=n
1 1 1 G 1
2 -1 =1]lo]l=1o0
—3 2 2 (s 1

—G+@G=1 2¢G—-G=0, -3G+2G=1

1
¢=10
2
A third linearly independent solution is
0 1 1
xB =1 1 | (#2/2)e* + 0] te* +[0]e*
—1 1 2
2. (a) We compute the eigenvalues of the matrix.
e —2
XN =] 8 —5-X —4|=-N+3N-3A+1=-A-1)>

—4 3 3—A

A = 1 is an eigenvalue of multiplicity 3. The rank of the null space of A — T is 2. (The second and third
rows are multiples of the first.)

4 -3 =2
A-I=|8 -6 —4
-4 3 2
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Thus there are two eigenvectors.
4 -3 =2 &
8 —6 —4 &1 =0
-4 3 2 &3

1 0
5(1) =(o], 5(2) — 92
2 -3
Two linearly independent solutions of the differential equation are
1 0
x() 0] e, x® =12 |eé
2 -3

(b) We substitute the form x = £t e’ +ne’ into the differential equation.
x' = Ax
e +&tel tmet = Aéte +Anet
(A-T)g=0, (A-Iin=¢

The general solution of the first equation is a linear combination of the two solutions we found in the previous
part.

£=0c& + @b,

Now we find the generalized eigenvector, 7. Note that 7 is only determined up to a linear combination of
&, and &,. Thus we can take the first two components of 1 to be zero.

4 -3 =2 0 1 0
8 —6 —4 0 =C 0]+ Co 2
—4 3 2 3 2 -3
—2n3 =c1, —4n3 =2cy, 203 =2c; — 3¢

1

€1 = Cy, 7732—5
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We see that we must take ¢; = ¢, in order to obtain a solution. We choose ¢; = ¢o = 2 A third linearly
independent solution of the differential equation is

Solution 15.11
1. The characteristic polynomial of the matrix is

1—Xx 1 1
AN =] 2 1-x -1
-8 -5 —=3-2)
=(1-=XN*(-3-XN)+8—-10—-5(1—-X) —2(=3—X) —8(1—)\)
=N N +4\+4
= —(A+2)A+1)(A=2)

Thus we see that the eigenvalues are A = —2, —1,2. The eigenvectors & satisfy
(A —M)¢=0.
For A = —2, we have
(A+2I)E=0
3 1 1 & 0
2 3 -1 &1 =10
-8 =5 —1 &3 0

If we take &3 = 1 then the first two rows give us the system,
3 1\ (&) (-1
2 3)\&/) \ 1
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which has the solution & = —4/7, £& = 5/7. For the first eigenvector we choose:

—4
E=| 5
7
For A = —1, we have
(A+T)=0.
2 1 1 & 0
2 2 -1 &1 =10
-8 —5 =2 &3 0

If we take &3 = 1 then the first two rows give us the system,

£)E-()

which has the solution &, = —3/2, & = 2. For the second eigenvector we choose:
-3
E=| 4
2

For A = 2, we have

(A+1)¢ =0.
~1 1 1\ /& 0
2 -1 -1] & =10
—8 -5 —-5) \& 0
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If we take &3 = 1 then the first two rows give us the system,

)=

which has the solution & = 0, & = —1. For the third eigenvector we choose:
0
e= -1
1

In summary, the eigenvalues and eigenvectors are

—4 -3 0
A={-2-1,2}, ¢£= 5 1,1 4], [-1
7 2 1

. The matrix is diagonalized with the similarity transformation
J=S7'AS,

where S is the matrix with eigenvectors as columns:

-4 =3 0
S=|(5 4 -1
T 2 1

At is given by

The matrix exponential, e
e* =Sel S

-4 -3 0 e 0 0 1 6 3 3

=5 4 -1 0 et 0 |12 4 4

T2 1 0 0 e* -18 —-13 -1
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At _ | 5e 2t _8et43et 15 2t —16e t +13et  15e2t —16e "t +et

2 12
Te 2t _4et_3et 21e 2t _8et_13et 21e 2t _Be—t et
2 12 12

The solution of the initial value problem is eAf x.

3. The general solution of the Euler equation is

—4 -3 0
al 5 1t 2+ 4 |t +es| =1t
7 2 1
We could also write the solution as
x = thc = etloglc,

Solution 15.12
1. The characteristic polynomial of the matrix is

2—X 0 1
xA)=| 0 2—-X 0
0 1 3—A

=(2-2)*3-)\)

Thus we see that the eigenvalues are A = 2,2, 3. Consider

01
A-2I= 0 0
1 3

o O O

Since rank(nullspace(A — 2I)) = 1 there is one eigenvector and one generalized eigenvector of rank two for
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A = 2. The generalized eigenvector of rank two satisfies

We choose the solution

The eigenvector for A = 2 is

The eigenvector for A = 3 satisfies

We choose the solution

(A_21)2€2:0
011
000|&=0
011

0
=11
1

The eigenvalues and generalized eigenvectors are

A ={2,2,3}, 3

(A -3I)’6=0
-1 0 1
0 -1 0]&=0
0 1 0
1
E=10].
1
1 0 1
= ol,[-1].(0
0 1 1
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The matrix of eigenvectors and its inverse is

1 0 1 1 -1 —1
S=[0 -1 0}, S'=(0 -1 0
0 1 1 0 1 1

Recall that the function of a Jordan block is:

FMCYI SO SO

A1 00 f) = 2! 3

P S I U O o X
00 X1 0 0 f(\) w ’
00 0 A 0 0 0 f(\

and that the function of a matrix in Jordan canonical form is

J, 0 0 0 fJ) o 0 0

0J, 0 0f] [ o s3) o 0
1o o 3, o || o 0 f(J;) O

0 0 0 J, 0 0 0 f(Jy)

We want to compute e’? so we consider the function f(\) = e, which has the derivative f’(\) = te*. Thus
we see that
e? te? 0
=10 e* 0
0 0 e

879



The exponential matrix is

eAt —S eJt Sfl7

th _(1 + t) e2t + egt _ th _'_ e3t
eA=10 e?t 0
0 o2y o3t o3t

The general solution of the homogeneous differential equation is

x =eAC.
2. The solution of the inhomogeneous differential equation subject to the initial condition is

¢
x = eAt(Q 4 et / e AT g(r)dr
0

t
X = eAt/ e AT g(r)dr
0

Solution 15.13
1.

1
— = -Ax
t
y 21\ fa b\ [z
o) \c d) \xs

tr] = axy + bxs.

The first component of this equation is
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We differentiate and multiply by ¢ to obtain a second order coupled equation for z;. We use (15.4) to eliminate
the dependence on x,.

2z + ta), = atz) + bt

22! 4+ (1 — a)tz) = b(cxy + dwy)
22" 4 (1 — a)tz) — bex, = d(tz) — axy)
22 + (1 —a — d)tz| + (ad — bc)z; =0

Thus we see that x; satisfies a second order, Euler equation. By symmetry we see that x5 satisfies,
22y + (1 — b — c)tahy + (be — ad)xy = 0.

. We substitute x = at* into (15.4).

1
Aatr ! = zAatA
Aa = )a
Thus we see that x = at” is a solution if \ is an eigenvalue of A with eigenvector a.

. Suppose that A = « is an eigenvalue of multiplicity 2. If A = « has two linearly independent eigenvectors, a and
b then at® and bt“ are linearly independent solutions. If A = « has only one linearly independent eigenvector,
a, then at® is a solution. We look for a second solution of the form

x = &t%logt + nt”.
Substituting this into the differential equation yields
akt® tlogt + &t +amt®t = Agt* Hogt + Ant*!
We equate coefficients of t*~!logt and t*~! to determine & and 7).

(A—-al)§ =0, (A—al)n=¢
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These equations have solutions because A = « has generalized eigenvectors of first and second order.

Note that the change of independent variable 7 = logt, y(7) = x(¢), will transform (15.4) into a constant
coefficient system.
dy
dr
Thus all the methods for solving constant coefficient systems carry over directly to solving (15.4). In the case of
eigenvalues with multiplicity greater than one, we will have solutions of the form,

Ay

£t Et%logt 4+ nt®, &% (logt)” + nt*logt + ¢t ...,
analogous to the form of the solutions for a constant coefficient system,

ea‘r’ Tea7+ eon'7 7_2 eaT+ Te‘”—i— ea7'7
n n

dx 1/1 0

The characteristic polynomial of the matrix is

. Method 1. Now we consider

I-X 0 ’:(1_”2.

X(A):‘ 1 1-2A

A = 1 is an eigenvalue of multiplicity 2. The equation for the associated eigenvectors is

(10 ()-0)

There is only one linearly independent eigenvector, which we choose to be

o (%)
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One solution of the differential equation is

We look for a second solution of the form
Xy = atlogt + nt.

a2 o= 3)

The solution is determined only up to an additive multiple of a. We choose

(1
Thus a second linearly independent solution is

Xo = (?) tlogt + (é) t.

The general solution of the differential equation is

Qe (e ()

Method 2. Note that the matrix is lower triangular.

(i;) N % G (1)) (2) (15.5)

7 satisfies the equation

We have an uncoupled equation for .
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By substituting the solution for z; into (15.5), we obtain an uncoupled equation for x.

1
Th = p (c1t + x2)

, 1
Ty — ;(L’g = C1

1 ! C1
—T —
£ t

;l’g =C lOgt + C

To = Clt lOgt + Cgt

Thus the solution of the system is

- Clt
-~ \cegtlogt +cot )’

IR YNC
xX=a tlogt “2\t)

which is equivalent to the solution we obtained previously.
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Chapter 16

Theory of Linear Ordinary Differential
Equations

A little partyin’ is good for the soul.

16.1 Exact Equations

Exercise 16.1
Determine a necessary condition for a second order linear differential equation to be exact.

Determine an equation for the integrating factor for a second order linear differential equation.

Hint, Solution

Exercise 16.2
Show that
y' +ay +y=0

is exact. Find the solution.
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Hint, Solution

16.2 Nature of Solutions

Result 16.2.1 Consider the n'" order ordinary differential equation of the form
dny dn—ly dy
Lly] = gy +pn,1(x)dxn_l + - +p1(a:)a + po(x)y = f(x). (16.1)

If the coefficient functions p,,_1(x), ..., po(z) and the inhomogeneity f(x) are continuous on
some interval a < x < b then the differential equation subject to the conditions,

y(zo) = vy, y’(xo) =V, ... y(n_l)(xo) = Un—1, a < zg<b,

has a unique solution on the interval.

Exercise 16.3
On what intervals do the following problems have unique solutions?

1. zy" +3y==x
2. z(x — 1)y + 3zy +4y =2
3. "y + 2%y +y=tanz

Hint, Solution
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Linearity of the Operator. The differential operator L is linear. To verify this,

Lley) = S (e) + pucr(2) -y len) 4+ prla) - (ey) + pol)ey)
= C%y + cpn-1(x )(f;—;y + -+ cm(&*)%y + cpo(x)y
= cLly]
Ly + 2] = dd —(y1 +y2) + Pua(x )W(yl +y2) + - +p1(x)%(y1 +y2) + po(x) (Y1 + Y2)
= )+ P (@) )+ () (1) + ol (o)
S 0) + pua () g () 1) (o) o) ()
= Lly1] + Llya].

Homogeneous Solutions. The general homogeneous equation has the form

Ll = T2 4 pua(w)

dn—ly
d$n—1

+ - +p1($)j—i —i—po(x)y = 0.
From the linearity of L, we see that if ; and ys are solutions to the homogeneous equation then c¢yy; + coys is also a
solution, (L[ci1y1 + caya] = 0).

On any interval where the coefficient functions are continuous, the n!* order linear homogeneous equation has n
linearly independent solutions, vy, ¥, . . ., . (We will study linear independence in Section 16.4.) The general solution
to the homogeneous problem is then

Yn = C1Y1 + C2Y2 + -+ + Cp¥n-

Particular Solutions. Any function, y,, that satisfies the inhomogeneous equation, L[y,] = f(x), is called a
particular solution 