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Preface

In a way, the world is made up of approximations, and surely there is no
exception in the world of statistics. In fact, approximations, especially large
sample approximations, are very important parts of both theoretical and ap-
plied statistics. The Gaussian distribution, also known as the normal distribu-
tion, is merely one such example, due to the well-known central limit theorem.
Large-sample techniques provide solutions to many practical problems; they
simplify our solutions to difficult, sometimes intractable problems; they jus-
tify our solutions; and they guide us to directions of improvements. On the
other hand, just because large-sample approximations are used everywhere,
and every day, it does not guarantee that they are used properly, and, when
the techniques are misused, there may be serious consequences.

Example 1 (Asymptotic χ2 distribution). Likelihood ratio test (LRT) is
one of the fundamental techniques in statistics. It is well known that, in the
“standard” situation, the asymptotic null distribution of the LRT is χ2, with
the degrees of freedom equal to the difference between the dimensions, defined
as the numbers of free parameters, of the two nested models being compared
(e.g., Rice 1995, pp. 310). This might lead to a wrong impression that the
asymptotic (null) distribution of the LRT is always χ2. A similar mistake
might take place when dealing with Pearson’s χ2-test—the asymptotic distri-
bution of Pearson’s χ2-test is not always χ2 (e.g., Moore 1978).

Example 2 (Approximation to a mean). It might be thought that, in a large
sample, one could always approximate the mean of a random quantity by the
quantity itself. In some cases this technique works. For example, suppose
X1, . . . , Xn are observations that are independent and identically distributed
(i.i.d.) such that μ = E(X1) �= 0. Then one can approximate E(

∑n
i=1Xi) = nμ

by simply removing the expectation sign, that is, by
∑n

i=1 Xi. This is because
the difference

∑n
i=1Xi − nμ =

∑n
i=1(Xi − μ) is of the order O(

√
n), which

is lower than the order of the mean of
∑n

i=1 Xi. However, this technique
completely fails if one considers (

∑n
i=1 Xi)

2 instead. To see this, let us assume
for simplicity that Xi ∼ N(0, 1). Then E(

∑n
i=1Xi)

2 = n. On the other hand,
since

∑n
i=1 Xi ∼ N(0, n), (

∑n
i=1 Xi)

2 = n{(1/√n)
∑n

i=1Xi}2 ∼ nχ2
1, where
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χ2
1 is a random variable with a χ2 distribution with one degree of freedom.

Therefore, (
∑n

i=1Xi)
2−E(

∑n
i=1 Xi)

2 = n(χ2
1−1), which is of the same order

of E(
∑n

i=1Xi)
2. Thus, (

∑n
i=1 Xi)

2 is not a good approximation to its mean.
Example 3 (Maximum likelihood estimation). Here is another example of

the so-called large-sample paradox. Because of the popularity of the maximum
likelihood and its well-known large-sample theory in the classical situation,
one might expect that the maximum likelihood estimator is always consistent.
However, this is not true in some fairly simple, and practical, situations. For
example, Neyman and Scott (1948) gave the following example. Suppose that
two measurements are taken from each of the n patients. Let yij denote the
jth measurement from the ith patient, i = 1, . . . , n, j = 1, 2. Suppose that the
measurements are independent and yij is normally distributed with unknown
mean μi and variance σ2. Then, as n → ∞, the maximum likelihood estimator
of σ2 is inconsistent.

The above are only a few examples out of many, but the message is just
as clear: It is time to unravel such confusions.

This book deals with large-sample techniques in statistics. More impor-
tantly, we show how to argue with large-sample techniques and how to use
these techniques the right way. It should be pointed out that there is an exten-
sive literature on large-sample theory, including books and published papers,
some of which are highly mathematical. Traditionally, there have been sev-
eral approaches to introducing these materials. The first is the theorem/proof
approach, which provides rigorous proofs for all or most of the theoretical
results (e.g., Petrov 1975). The second is the method/application approachi,
which focuses on using the results without paying attention to any of the
proofs (e.g., Barndorff-Nielsen and Cox 1989). Our approach is somewhere in
between. Instead of giving a formal, technical proof for every result, we focus
on the ideas of asymptotic arguments and how to use the methods developed
by these arguments in various less-than-textbook situations.

We begin by reviewing some of the very simple and fundamental concepts
that most of us have learned, say, from a calculus book. More specifically,
Chapters 1–5 are devoted to a comprehensive review of the basic tools for
large-sample approximations, such as the ε-δ arguments, Taylor expansion,
different types of convergence, and inequalities. Chapters 6–10 discuss limit
theorems in specific situations of observational data. These include the classi-
cal case of i.i.d. observations, independent but not identically distributed ob-
servations such as those encountered in linear regression, empirical processes,
martingales, time series, stochastic processes, and random fields. Each of the
first 10 chapters contains at least one section of case study as applications
of the methods or techniques covered in the chapter. Some more extensive
applications of the large-sample techniques are discussed in Chapters 11–15.
The areas of applications include nonparametric statistics, linear and general-
ized linear mixed models, small-area estimation, jackknife and bootstrap, and
Markov-chain Monte Carlo methods.



Preface IX

As mentioned, there have been several major texts on similar topics. These
include, in the order of year published: [1] Hall & Heyde (1980), Martingale
Limit Theory and Its Application, Academic Press; [2] Barndorff-Nielsen &
Cox (1989), Asymptotic Techniques for Use in Statistics, Chapman & Hall;
[3] Ferguson (1996), A Course in Large Sample Theory, Chapman & Hall; [4]
Lehmann (1999), Elements of Large-Sample Theory, Springer; and [5] Das-
Gupta (2008), Asymptotic Theory of Statistics and Probability, Springer. A
comparison with these existing texts would help to highlight some of the
features of the current book. Text [2] deals with the case of independent ob-
servations. In practice, however, the observations are often correlated. A main
purpose of the current book is to introduce large-sample theory and methods
for correlated observations, such as those in time series, mixed models, and
spatial statistics. Furthermore, the approach of [2] is more like “use this for-
mula,” rather than “why?” and “what’s the trick?.” In contrast, the current
text focuses more on the way of thinking. For example, the current text cov-
ers basic elements in asymptotic theory, such as ε-δ, OP, and oP, in addition
to the asymptotic results, such as a formula of asymptotic expansion. This
reflects the current author’s belief that methodology is more important and
applicable to a broader range of problems than formulas.

Text [3] provides an account of large-sample theory for independent ran-
dom variables (mostly in the i.i.d. case) with applications to efficient esti-
mation and testing problems. Several classical cases of dependent random
variables are also considered, such as m-dependent sequences, rank, and order
statistics, but the basic method was to convert these to the case of indepen-
dent observations plus some extra terms that are asymptotically negligible.
The chapters are written in a theorem–proof style which is what the author
intended to do.

Like [2] and [3], text [4] deals with independent observations, mostly the
i.i.d. case. However, the approach of [4] has motivated the current author. For
example, [4] begins with very simple and fundamental concepts and eventually
gets to a much advanced level. It might be worth mentioning that the current
author assisted Professor E. L. Lehmann in the mid-1990s during his writing
of book [4].

Text [5] provides a very comprehensive account of asymptotic theory in
statistics and probability. However, similar to books [2]–[4], the focus of [5]
is mainly on independent observations. Also, since a large number of topics
need to be covered, it is unavoidable that the coverage is a little sketchy.

Unlike books [2]–[5], text [1] deals with one special case of dependent
observations—the martingales. Whereas the martingale limit theory applies
to a broad ranges of problems, such as linear mixed models and some cases
of time series, it does not cover many other cases encountered in practice.
Furthermore, the book starts at a relatively high level, assuming that the
reader has taken an advanced course in probability theory. As mentioned, the
current book begins with very basic concepts in asymptotic arguments, such
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as ε-δ and Taylor expansion, which requires nothing more than a course in
calculus, and eventually covers much more than the martingale limit theory.

We realize that there have been other books covering similar or related
topics, for example, Serfling (1980), van der Vaart and Wellner (1996), and
van der Vaart (1998), to mention just a few; however, space does not allow us
to make comparisons here.

The current book is supplemented by a large number of exercises. The ex-
ercises are attached to each chapter and closely related to the materials cov-
ered, giving the readers plenty of opportunities to practice the large-sample
techniques that they have learned. The book is mostly self-contained with the
appendixes providing some backgrounds for matrix algebra and mathematical
statistics. A list of notation is also provided in the appendixes for the readers’
convenience. The book is intended for a wide audience, ranging from senior
undergraduate students to researchers with Ph.D. degrees. More specifically,
Chapters 1–5 and parts of Chapters 10–15 are intended for senior undergrad-
uate and M.S. students. For Ph.D. students and researchers, all chapters are
suitable. A first course in mathematical statistics and a course in calculus
are prerequisites. As it is unlikely that all 15 chapters will be covered in a
single-semester or quarter-course, the following combinations of chapters are
recommended for a single-semester course, depending on the focus of interest
(for a single-quarter course some adjustment is necessary):

For a senior undergraduate or M.S.-level course on large sample techniques,
Chapters 1–6.

For those interested in linear models, generalized linear models, mixed
effects models, and their applications, Chapters 1–6, 8, and 12.

For those interested in time series, stochastic processes, and their applica-
tions, Chapters 1–6 and 8–10.

For those interested in semiparametric, nonparametric statistics, and their
applications, Chapters 1–7 and 11.

For those interested in empirical Bayes methods, small-area estimation,
and related fields, Chapters 1-6, 12, and 13.

For those interested in resampling methods, Chapters 10–7, 11, and 14.
For those interested in Monte Carlo methods and their applications in

Bayesian inference, Chapters 1–6, 10, and 15.
For those interested in spatial statistics, Chapters 1–6, 9, and 10.

Thus, in particular, Chapters 1–6 are vital to any sequence recommended.
The book is motivated by the author’s research work, who has used large-

sample techniques throughout his career. The author wishes to give his sincere
thanks to Professor Peter J. Bickel for guiding the author in his Ph.D. disser-
tation that led to one of his best theoretical work on REML asymptotics (see
Section 12.2) and for the many helpful discussions afterwards including those
regarding the bootstrap method that is covered in Chapter 14; to Professor
David Aldous for communications regarding an example in Chapter 10; to
Professor Samuel Kou for helpful discussion on Markov-chain Monte Carlo
methods; to Professor Jun Liu for kindly providing a plot to be included in
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Chapter 15 of this book; and to the author’s long-time collaborator and friend,
Professor Partha Lahiri, for leading the author to some of the important ap-
plication areas of large-sample techniques, such as small-area estimation and
resampling methods. In addition, a number of anonymous reviewers have made
valuable comments regarding earlier versions of the book chapters. For exam-
ple, several reviewers have suggested inclusion of a chapter on nonparametric
methods; one reviewer suggested another case study regarding Chapter 8. The
author appreciates their valuable suggestions. The author also wishes to ex-
press his gratefulness to Dr. Thuan Nguyen for computational and graphic
assistance and to Mr. Peter Scully for reading and improving the English pre-
sentation of the Preface. Finally, the author has grown up reading Professor
Erich Lehmann’s classical texts in Statistics, from whom he learned to write
his first paper in America (Jiang 1997b) and his first book on mixed models
(Jiang 2007). While the author is heartfeltly grateful to Professor Lehmann’s
lifetime inspiration, he had wished to show his appreciation by sending him
the first copy of this book. (Professor Lehmann died on September 12, 2009.)

Jiming Jiang
Davis, California
December, 2009





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

1 The ε-δ Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Getting used to the ε-δ arguments . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 More examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Case study: Consistency of MLE in the i.i.d. case . . . . . . . . . . . . 8
1.5 Some useful results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Infinite sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.2 Infinite series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.3 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.4 Continuity, differentiation, and intergration . . . . . . . . . . . 14

1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Modes of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Convergence in probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Almost sure convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Convergence in distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Lp convergence and related topics . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Case study: χ2-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Summary and additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Big O, Small o, and the Unspecified c . . . . . . . . . . . . . . . . . . . . . 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Big O and small o for sequences and functions . . . . . . . . . . . . . . 52
3.3 Big O and small o for vectors and matrices . . . . . . . . . . . . . . . . . 55
3.4 Big O and small o for random quantities . . . . . . . . . . . . . . . . . . . 58
3.5 The unspecified c and other similar methods . . . . . . . . . . . . . . . . 62
3.6 Case study: The baseball problem . . . . . . . . . . . . . . . . . . . . . . . . . 67



XIV Contents

3.7 Case study: Likelihood ratio for a clustering problem . . . . . . . . . 70
3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Taylor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Edgeworth expansion; method of formal derivation . . . . . . . . . . 89
4.4 Other related expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Fourier series expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.2 Cornish–Fisher expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.3 Two time series expansions . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Some elementary expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6 Laplace approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Case study: Asymptotic distribution of the MLE . . . . . . . . . . . . 111
4.8 Case study: The Prasad–Rao method . . . . . . . . . . . . . . . . . . . . . . 115
4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Numerical inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.1 The convex function inequality . . . . . . . . . . . . . . . . . . . . . . 128
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1

The ε-δ Arguments

Let’s start at the very beginning
A very good place to start
When you read you begin with A-B-C
When you sing you begin with do-re-mi

Rodgers and Hammerstein (1959)
The Sound of Music

1.1 Introduction

Every subject has its A, B, and C. The A-B-C for large-sample techniques is ε,
δ, and a line of arguments. For the most part, this line of arguments tells how
large the sample size, n, has to be in order to achieve an arbitrary accuracy
that is characterized by ε and δ. It should be pointed out that, sometimes, the
arguments may involve no δ (ε), or more than one δ (ε), but the basic lines of
the arguments are all similar. Here is a simple example.

Example 1.1. Suppose that one needs to show log(n+ 1) − log(n) → 0 as
n → ∞. The arguments on one’s scratch paper (before it is printed nicely in
a book) might look something like the following. To show

log(n+ 1) − log(n) −→ 0

means to show

log

(
1 +

1

n

)
< ε. (1.1)

What is ε? ε is a (small) positive number. Okay. Go on. This means 1+1/n <
eε, or n > (eε − 1)−1. If we take N = [(eε − 1)−1]+ 1, where [x] represents the
integer part of x (i.e., the largest integer less than or equal to x), then when
n ≥ N , we have (1.1). Now grab a nice piece of paper, or a computer file, and
write the following proof:

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_1, © Springer Science+Business Media, LLC 2010
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For any ε > 0, let N = [(eε − 1)−1] + 1. Then, for all n ≥ N , we have
(1.1). This proves that log(n+ 1) − log(n) → 0 as n → ∞.

The above proof looks nice and short, but it is the arguments on the
scratch paper (which probably gets thrown out to the trash basket after the
proof is written) that is more useful in training the way that one thinks.

1.2 Getting used to the ε-δ arguments

In this argument, the order of choosing ε and N is critically important; ε has
to be chosen (or given) first before N is chosen. For example, in Example 1.1,
if one were allowed to choose N first and then ε, the same “argument” can be
used to show that log(n+ 1)− log(n) → 1 (or any other constant) as n→ ∞.
This is because for any n ≥ N , one can always find ε > 0 such that

| log(n+ 1) − log(n) − 1| =

∣∣∣∣log

(
1 +

1

n

)
− 1

∣∣∣∣
< ε.

Here is another example.

Example 1.2. Define f(x) = x2 if x < 1, and f(x) = 2 if x ≥ 1. A plot
of f(x) is shown in Figure 1.1. Show that f(x) is continuous at x = 0. Once
again, first work on the scratch paper. To show that f(x) is continuous at
x = 0 is to show that |f(x) − f(0)| < ε, if |x− 0| = |x| < δ. What is ε? ε is a
given (small) positive number. Okay. Go on. What is δ? δ is another (small)
positive number chosen after ε and therefore depending on ε. Okay and go on.
Since f(0) = 0, this means to choose δ such that |f(x)| < ε, if |x| < δ. Because
f(x) = x2 when x is close to 0, we need to show that x2 < ε, or |x| < √

ε.
Now, it is clear how δ should be chosen: δ =

√
ε.

Note that if the order in which ε and δ are chosen is reversed, the same
“argument” can be used to show that f(x) is continuous at x = 1, which is
obviously not true from Figure 1.1. To see this, note that for any 0 < δ < 1,
when 1 − δ < x < 1, we have |f(x) − f(1)| = |x2 − 2| < 2 − (1 − δ)2. Thus,
if one lets ε = 2 − (1 − δ)2, one has |f(x) − f(1)| < ε, but this is wrong! The
choice of ε should be arbitrary, and it cannot depend on the value of δ. In
fact, it is the other way around; δ typically depends on the value of ε, such as
in Example 1.2.

One of the important concepts in large-sample theory is called conver-
gence in probability. This is closely related to another important concept in
statistics—namely, the consistency of an estimator. To show that an estimator
is consistent is to show that it converges in probability to the quantity (e.g.,
parameter) that it intends to estimate. Convergence in probability is defined
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x

f(
x)

0 1 2

0
1

2

Fig. 1.1. A plot of the function in Example 1.2

through an ε-δ argument as follows. Let ξn, n = 1, 2, . . . , be a sequence of ran-
dom variables. The sequence converges in probability to a random variable ξ,

denoted by ξn
P−→ ξ, if for any ε > 0, the probability P(|ξn − ξ| > ε) → 0

as n → ∞. In other words, for any ε > 0 and (then) for any δ > 0, there is
N ≥ 1 such that P(|ξn − ξ| > ε) < δ if n ≥ N .

In particular, the random variable ξ can be a constant, which is often the
case in the context of consistent estimators. We consider some examples.

Example 1.3 (Consistency of the sample mean). Let X1, . . . , Xn be ob-
servations that are independent and identically distributed (i.i.d.). Then the
sample mean

X̄ =
X1 + · · · +Xn

n
(1.2)
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is a consistent estimator of the population mean μ = E(Xi) (note that the
latter does not depend on i due to the i.i.d. assumption), provided that it
is finite. This result is also known as the weak law of large numbers, WLLN
(WLLN) in probability theory. To prove this result, we will make a stronger
assumption, for now, that E(X2

i ) <∞. Then, for any ε > 0 and for any δ > 0,
by Chebyshev’s inequality, we have

P(|X̄ − μ| > ε) ≤ E(|X̄ − μ|2)
ε2

=
1

ε2n2
E

{
n∑

i=1

(Xi − μ)

}2

=
1

ε2n2

n∑
i=1

E(Xi − μ)2

≤ c

ε2n
(1.3)

for some constant c > 0. Therefore, for any δ > 0, as long as c/ε2n < δ or n >
c/ε2δ, we have, by (1.3), P(|X̄−μ| > ε) < δ. Thus, by letting N = [c/ε2δ]+1,
we have P(|X̄ − μ| > ε) < δ if n ≥ N .

Example 1.4 (Consistency of MLE in the Uniform distribution). Let X1,
. . ., Xn be i.i.d. observations from the Uniform[0, θ] distribution, where θ is an
unknown (positive) parameter. It can be shown that the maximum likelihood

estimator (MLE) of θ is θ̂ = X(n) = max1≤i≤n Xi. We show that θ̂ is a
consistent estimator of θ.

For any ε > 0, since, by the definition, θ̂ ≤ θ with probability 1, we have

P(|θ̂ − θ| > ε) = P(θ̂ < θ − ε)

= P(X1 < θ − ε, . . . , Xn < θ − ε)

= P(X1 < θ − ε) · · ·P(Xn < θ − ε)

=
(
1 − ε

θ

)n

. (1.4)

Here, we may assume, without loss of generality, that ε < θ. Now, for any θ >
0, if we want the left side of (1.4) to be less than δ, we need n > log(δ)/ log(1−
ε/θ). This gives the choice of N (e.g., N = [log(δ)/ log(1 − ε/θ)] + 1), so that

P(|θ̂ − θ| > ε) < δ, if n ≥ N .

It should be pointed out that the right end of the interval [0, θ] of the
Uniform distribution is closed, which is critically important here. For example,
if the Uniform[0, θ] distribution is replaced by the Uniform[0, θ) distribution,
then it can be shown that the MLE of θ does not even exist. Of course, in this
case, the MLE is inconsistent (Exercise 1.8).
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1.3 More examples

Sometimes, the ε-δ arguments may involve several steps that have to be put
together at the end. The arguments in the following examples are somehow
more complicated than the previous ones, but the way of thought is very
similar.

Example 1.5 (Consistency of the sample median). Let X be a random
variable. The median of X is defined as any number a such that P(X ≤ a) ≥
1/2 and P(X ≥ a) ≥ 1/2. In general, the median may be an interval instead
of a single number. Here, we assume, for simplicity, that X is a continuous
random variable with a unique median a. It follows that P(X ≤ x) < 1/2,
x < a, P(X ≤ a) = 1/2, and P(X ≤ x) > 1/2, x > a.

The sample median is defined in terms of the order statistics, X(1) < · · · <
X(n), which are the observations X1, . . . , Xn listed in the increasing order.
Here, we assume that X1, . . . , Xn are independent with the same distribution
as the random variable X above. If n is an odd number, say, n = 2m+ 1, the
sample median is defined as X(m+1); otherwise, if n is an even number, say,
n = 2m, the sample median is defined as {X(m) +X(m+1)}/2.

We consider the case n = 2m+1 here. The case n = 2m is left to the readers
as an exercise. For any ε > 0, we need to show that P{|X(m+1) − a| > ε} → 0
as n → ∞. Note that

P{|X(m+1) − a| > ε} = P{X(m+1) > a+ ε} + P{X(m+1) < a− ε}
≤ P{X(m+1) > a+ ε} + P{X(m+1) ≤ a− ε}. (1.5)

For any x, define the random variable Yn as the total number of Xi’s that are
less than or equal to x. Then X(m+1) ≤ x if and only if Yn ≥ m+1. Notice that
Yn has a Binomial(n, p) distribution, where p = F (x) = P(X ≤ x). Therefore,

P{X(m+1) ≤ x} = P(Yn ≥ m+ 1)

= P

{
Yn − np√
np(1 − p)

≥ m+ 1 − np√
np(1 − p)

}
. (1.6)

We now use the (classical) central limit theorem (CLT), which will be further
discussed in the sequel. It follows that (Yn − np)/

√
np(1 − p) converges in

distribution to N(0, 1). On the other hand, note that m + 1 = (n + 1)/2.
Thus, we have

m+ 1 − np√
np(1 − p)

=

{(
1

2
− p

)
n+

1

2

}
/
√
np(1 − p). (1.7)

It follows that (1.7) → ∞ if p < 1/2 and → −∞ if p > 1/2. If we combine
(1.5)–(1.7) with x = a−ε (and hence p < 1/2), we come up with the following
argument. For any δ > 0, choose B > 0 such that Φ(B) > 1 − δ, where Φ(·)



6 1 The ε-δ Arguments

denotes the cumulative distribution function (cdf) of N(0, 1). Then, according
to the CLT, there is N1 ≥ 1 such that when n ≥ N1, we have∣∣∣∣∣P

{
Yn − np√
np(1 − p)

≤ B

}
− Φ(B)

∣∣∣∣∣ < δ.

Furthermore, there is N2 ≥ 1 such that when n ≥ N2, the left side of (1.7) is
greater than B. Thus, when n ≥ N1 ∨N2, we have [by (1.6)]

P{X(m+1) ≤ a− ε} ≤ P

{
Yn − np√
np(1 − p)

> B

}

= 1 − P

{
Yn − np√
np(1 − p)

≤ B

}

≤ 1 − Φ(B) +

∣∣∣∣∣P
{

Yn − np√
np(1 − p)

≤ B

}
− Φ(B)

∣∣∣∣∣
< 2δ. (1.8)

By a similar argument, it can be shown that there are N3, N4 ≥ 1 such that
when n ≥ N3 ∨ N4, we have P{X(m+1) > a + ε} < 2δ. Therefore, by (1.5),
when n ≥ N1 ∨N2 ∨N3 ∨N4, we have P{|X(m+1) − a| > ε} < 4δ.

Note 1. The role of B in this argument is called a bridge. It helps to connect
the ε-δ arguments; once the connection is made, the role of B is finished (and
thus resembles the role of a bridge). For example, in (1.8), all one needs are
the left and right ends of these inequalities to hold when n ≥ N1 ∨N2, but B
helps to make the connections. Such usages of bridges are fairly common in
asymptotic arguments (see the Exercises at the end of the chapter).

Note 2. Unlike in Examples 1.1–1.4, here several N ’s were chosen in dif-
ferent pieces of the arguments. Typically, one needs to take the maximum of
those N ’s at the end.

Note 3. Also note that, at the end, we showed that the probability is less
than 4δ, not δ. However, this makes no difference in the asymptotic argu-
ments because δ is arbitrary. If one wishes, one could replace δ by δ/4 at the
intermediate steps where N1, . . . , N4 were chosen and repeat the argument so
that, at the end, one has the probability less than δ.

Convergence in distribution is another important concept in large-sample
theory. In particular, it is closely related to the CLT that was used in the
previous example. A sequence of distributions, represented by their cdf’s
F1, F2, . . ., converges weakly to a distribution with cdf F , denoted by Fn

w−→ F
if Fn(x) → F (x) as n → ∞ for every x at which F (x) is continuous. Note
that as a cdf, F can only have countably many discontinuity points (Exercise
1.12). A sequence of random variables ξ1, ξ2, . . . converges in distribution to a

random variable ξ, denoted by ξn
d−→ ξ, if Fn

w−→ F , where Fn is the cdf of ξn,
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n = 1, 2, . . ., and F is the cdf of ξ. One of the striking results of convergence
in distribution is the following.

Example 1.6 (Pólya’s theorem). Suppose that F is continuous. If Fn
w−→ F ,

then the convergence is uniform in that

sup
x

|Fn(x) − F (x)| −→ 0, (1.9)

as n → ∞. The result is striking because weak convergence is defined point-
wisely, and, in general, pointwise convergence does not necessarily imply uni-
form convergence. However, a cdf is monotone and has limits at −∞ and
∞. Such nice properties make it possible to derive uniform convergence from
pointwise convergence. Result (1.9) actually holds for multivariate cdf’s as
well, but here, for simplicity, we consider the univariate case only.

To show (1.9) we need to show that for any ε > 0, there is N ≥ 1 such that
the left side of (1.9) is less than ε if n ≥ N . First, choose A < 0 and B > 0 such
that F (A) < ε and F (B) > 1 − ε. Because F (x) is continuous over [A,B],
there are points A < x1 < · · · < xk < B such that F (xj+1) − F (xj) < ε,

0 ≤ j ≤ k, where x0 = A and xk+1 = B. Now, because Fn
w−→ F , for each

0 ≤ j ≤ k + 1, there is Nj ≥ 1 such that

|Fn(xj) − F (xj)| < ε if n ≥ Nj .

Let N = N0 ∨N1 ∨ · · · ∨Nk+1 and suppose n ≥ N . If x ≤ A, we have

Fn(x) − F (x) ≤ Fn(A)

= F (A) + Fn(A) − F (A)

≤ F (A) + |Fn(A) − F (A)|
= F (A) + |Fn(x0) − F (x0)|
< 2ε

and Fn(x) − F (x) ≥ −F (A) > −ε, so |Fn(x) − F (x)| < 2ε. If x ≥ B, then
Fn(x) − F (x) ≤ 1 − F (x) ≤ 1 − F (B) < ε, and

Fn(x) − F (x) ≥ Fn(B) − 1

= F (B) − 1 + Fn(B) − F (B)

≥ F (B) − 1 − |Fn(B) − F (B)|
= F (B) − 1 − |Fn(xk+1) − F (xk+1)|
> −2ε.

Thus, |Fn(x) − F (x)| < 2ε. Finally, if A < x < B, then there is 0 ≤ j ≤ k
such that x ∈ [xj , xj+1]. It follows that

Fn(x) − F (x) ≤ Fn(xj+1) − F (xj)

= Fn(xj+1) − F (xj+1) + F (xj+1) − F (xj)

≤ |Fn(xj+1) − F (xj+1)| + F (xj+1) − F (xj)

< 2ε,
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and

Fn(x) − F (x) ≥ Fn(xj) − F (xj+1)

= Fn(xj) − F (xj) + F (xj) − F (xj+1)

≥ −|Fn(xj) − F (xj)| + F (xj) − F (xj+1)

> −2ε.

Thus, once again, we have |Fn(x)−F (x)| < 2ε. In conclusion, we have |Fn(x)−
F (x)| < 2ε for all x, as long as n ≥ N . Thus, for n ≥ N , we have the left side
of (1.9) ≤ 2ε. This completes the proof.

This example has the same flavor as the previous one in that (i) A and B
were used as the bridge(s); (ii) a number of Nj ’s were chosen at intermediate
steps and the final N was the maximum of those; and (iii) at the end we
showed the left side of (1.9) is ≤ 2ε rather than < ε, but this did not matter
since ε was arbitrary.

1.4 Case study: Consistency of MLE in the i.i.d. case

One of the fundamental results regarding the MLE is its consistency under
regularity conditions. It should be pointed out that there are two types of
consistency so long as the MLE is concerned. The first type of consistency is
called the Cramér consistency (Cramér 1946), which states that there exists
a root to the likelihood equation that is consistent. Thus, the result does not
explicitly imply that the (global) maximum of the likelihood function (i.e.,
the MLE) is consistent. Furthermore, in case there are multiple roots to the
likelihood equation, the theorem does not tell which root is consistent. Never-
theless, the Cramér consistency is a fundamental result because typically the
MLE is typically a solution to the likelihood equation, and in some cases, the
solution is unique. Another type of consistency is called the Wald consistency
(Wald 1949). It states that the global maximum of the likelihood function
(i.e., the MLE) is consistent. From a theoretical point of view the Wald con-
sistency is a more desirable asymptotic property, although it is usually more
difficult to prove than the Cramér consistency.

In the following we present a proof of the Cramér consistency due to
Lehmann (1983) and a proof of the Wald consistency given by Wolfowitz
(1949) in a note following Wald’s paper. Both proofs involve the ε-δ argu-
ments, which is why they are presented here. The difference between Wald
(1949) and Wolfowitz (1949) is that Wald proved strong consistency defined
in terms of almost sure convergence, whereas Wolfowitz established consis-
tency, which is defined in terms of convergence in probability. See Chapter 2
for a detailed account of different types of convergence. It should be pointed
out that both proofs require some regularity conditions, which we will discuss
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later in Chapter 10, as our main goal here is to demonstrate the use of the
ε-δ argument.

We assume that X1, . . . , Xn are i.i.d. observations that have the common
probability density function (pdf) f(x|θ), where, for simplicity, we assume that
θ is a real-valued unknown parameter, with the parameter spaceΘ = (−∞,∞)
(see Exercise 1.13 for an extension of the proof to the more general case). Here,
the pdf is with respect to a σ-finite measure μ (see Appendix A.2).

Cramér consistency. Denote the likelihood function by

L(θ) =

n∏
i=1

f(Xi|θ).

We need to show that there is a sequence of roots to the likelihood equation

∂

∂θ
log{L(θ)} =

n∑
i=1

1

f(Xi|θ)
∂

∂θ
f(Xi|θ)

= 0, (1.10)

say, θ̃n, such that θ̃n
P−→ θ, where θ is the true parameter. For any ε > 0,

consider the sequence of random variables Yi = log{f(Xi|θ)/f(Xi|θ − ε)},
i = 1, 2, . . .. By Jensen’s inequality (see Chapter 5), we have

Eθ(Yi) = Eθ[− log{f(Xi|θ − ε)/f(Xi|θ)}]
> − log[Eθ{f(Xi|θ − ε)/f(Xi|θ)}]
= − log

{∫
f(x|θ − ε)

f(x|θ) f(x|θ) dμ
}

= − log

{∫
f(x|θ − ε) dμ

}
= 0.

Hereafter, Eθ denotes expectation under the pdf f(x|θ). Similarly, let Pθ

denote probability under the pdf f(x|θ). Then we have, by the WLLN,

n−1
∑n

i=1 Yi
P−→ Eθ(Y1) > 0; hence Pθ(

∑n
i=1 Yi > 0) → 1 (Exercise 1.14).

Therefore, for any δ > 0, there is N1 ≥ 1 such that when n ≥ N1,
Pθ(
∑n

i=1 Yi > 0) > 1 − δ. Similarly, consider the sequence of random vari-
ables Zi = log{f(Xi|θ)/f(Xi|θ + ε)}, i = 1, 2, . . .. It can be shown that
Pθ(
∑n

i=1 Zi > 0) → 1. Therefore, there is N2 ≥ 1 such that when n ≥ N2,
Pθ(
∑n

i=1 Zi > 0) > 1 − δ.

Define θ̃n as the root to the likelihood equation (1.10) that is closest to θ.
Note that θ̃n exist as long as a root to (1.10) exists. In particular, the limit
of a sequence of roots is also a root, provided that the left side of (1.10) is
continuous. Also note that

∑n
i=1 Yi > 0 and

∑n
i=1 Zi > 0 imply that the

value of the log-likelihood is higher at θ than at θ − ε and θ + ε and, hence,
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the existence of a root inside the interval (θ − ε, θ+ ε). Since the latter event
implies that |θ̃n − θ| < ε, we have

Pθ(|θ̃n − θ| < ε) ≥ Pθ

(
n∑

i=1

Yi > 0,

n∑
i=1

Zi > 0

)
> 1 − 2δ,

or Pθ(|θ̃n − θ| ≥ ε) < 2δ.
Wald consistency. The ingenious proof of Wald (1949) originated from

the following simple property of the pdf, which is proved above by Jensen’s
inequality. Let θ be the true parameter. Then for any θ1 �= θ, we have

Eθ[log{f(X1|θ)}] ≥ Eθ[log{f(X1|θ1)}].
In fact, Wald proved the following stronger result. For every θ1 �= θ, there is
ρ = ρ(θ1) > 0 such that

Eθ

[
log

{
sup

|θ2−θ1|≤ρ

f(X1|θ2)
}]

< Eθ[log{f(X1|θ)}].

Furthermore, there is a positive number a such that

Eθ

[
log

{
sup
|θ2|>a

f(X1|θ2)
}]

< Eθ[log{f(X1|θ)}].

For any ε > 0, the collection of open sets S(θ1, ρ) = {θ2 : |θ2 − θ1|
< ρ},θ1 ∈ Θ, form an open cover of the compact set (θ− ε, θ+ ε)c ∩ [−a, a]. By the

Heine–Borel theorem (see the next subsection), there exist a finite subcover,
say, S(θ1,1, ρ1), . . . , S(θ1,K , ρK), of (θ−ε, θ+ε)c∩[−a, a]. Define the sequences
of i.i.d. random variables as follows:

Yk,i = log

{
sup

|θ2−θ1,k|≤ρk

f(Xi|θ2)
}

− log{f(Xi|θ)}, i = 1, 2, . . . ,

1 ≤ k ≤ K, and

YK+1,i = log

{
sup
|θ2|>a

f(Xi|θ2)
}

− log{f(Xi|θ)}, i = 1, 2, . . . .

By the WLLN, we have n−1
∑n

i=1 Yk,i
P−→ Eθ(Yk,1) < 0; hence,

Pθ

{
n∑

i=1

Yk,i <
n

2
Eθ(Yk,1)

}
−→ 1,

as n → ∞, 1 ≤ k ≤ K + 1.
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Let Ak be the event that
∑n

i=1 Yk,i < (n/2)Eθ(Yk,1), 1 ≤ k ≤ K + 1.
Then for any δ > 0, there is Nk ≥ 1 such that when n ≥ Nk, we have
Pθ(Ak) > 1 − δ, 1 ≤ k ≤ K + 1. Let η = (1/2)max1≤k≤K+1 Eθ(Yk,1) and
N = max1≤k≤K+1Nk. Then when when n ≥ N , we have

Pθ

(
n∑

i=1

Yk,i < nη, 1 ≤ k ≤ K + 1

)
≥ Pθ

(∩K+1
k=1 Ak

)
= 1 − Pθ

(∪K+1
k=1 A

c
k

)
> 1 − (K + 1)δ. (1.11)

Let h = eη. Since η < 0, we have 0 < h < 1. Furthermore, it can be shown
(Exercise 1.15) that

∑n
i=1 Yk,i ≤ nη, 1 ≤ k ≤ K + 1, imply

sup
|θ2−θ|≥ε

{∏n
i=1 f(Xi|θ2)∏n
i=1 f(Xi|θ)

}
≤ hn. (1.12)

Thus, by (1.11), the probability of event (1.12) is greater than 1 − (K + 1)δ.

Note that (1.12), in turn, implies that |θ̂ − θ| < ε, where θ̂ is the MLE of θ.
In other words, the maximum of the likelihood function must lie within the
interval (θ − ε, θ + ε) (because the ratio is less than 1 for any θ outside the

interval). It follows that Pθ(|θ̂ − θ| < ε) > 1 − (K + 1)δ if n ≥ N . Since δ is

arbitrary, we must have Pθ(|θ̂−θ| ≥ ε) → 0, as n → ∞; hence, θ̂ is consistent.

1.5 Some useful results

In this section we present a list of useful results in mathematical analysis that
involve the ε-δ arguments or are often used in such arguments.

1.5.1 Infinite sequence

1. Limit of a sequence. A sequence an, n = 1, 2, . . ., converges to a limit a,
denoted by an → a or limn→∞ an = a, if for any ε > 0, there isN ≥ 1 such that
|an − a| < ε if n ≥ N . Note that this definition applies to both a real-valued
sequence and a vector-valued sequence, where for a vector v = (vk)1≤k≤d, |v|
is defined as its Euclidean norm; that is, |v| = (

∑d
k=1 v

2
k)1/2.

The above definition of convergence of a sequence involves the limit of
the sequence. Sometimes the limit is unknown, and it would be nice if one
could judge the convergence by the sequence itself [i.e., without relying on the
(unknown) limit]. A well-known criterion for convergence is the following.

2. Cauchy criterion. The sequence an, n = 1, 2, . . ., is a Cauchy sequence
if for any ε > 0, there is N ≥ 1 such that |an+k − an| < ε for any n ≥ N and
k ≥ 1. The sequence an, n = 1, 2, . . ., converges if and only if it is a Cauchy
sequence.
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The following results can be established using either the definition of con-
vergence or the Cauchy criterion (Exercises 1.16 and 1.17).

3. Monotone sequence. A sequence an, n = 1, 2, . . ., is increasing if
an ≤ an+1 for any n; it is decreasing if an ≥ an+1 for any n. Increasing
or decreasing sequences are called monotone sequences. Every monotone se-
quence is convergent, provided that it is bounded. More specifically, if the
sequence an is increasing, then limn→∞ an = supn≥1 an, provided that the
latter is finite; if an is decreasing, then limn→∞ an = infn≥1 an, provided that
the latter is finite.

4. Convergent subsquence. Every bounded sequence has a convergent sub-
sequence.

5. Upper and lower limits. Let an, n = 1, 2, . . ., be a sequence. The upper
limit of the sequence, denoted by lim sup an, is defined as the largest limit
point of an. Note that lim sup an is always well defined according to the above
result on convergent subsequence, provided that an is bounded. In such a case,
since the supremum of all the limit points of an is also a limit point, the largest
limit point always exists. Similarly, the lower limit of the sequence, denoted
by lim inf an, is defined as the smallest limit point of an. The following are
some properties of the upper and lower limits.

5.1. limn→∞ an = a if and only if lim supan = lim inf an = a.
5.2. Let the seqeuence an be bounded. Then we have

lim sup(−an) = − lim inf an,

lim inf(−an) = − lim supan.

5.3. Suppose that an and bn are two sequences that are bounded. Then
the following inequalities hold:

lim inf an + lim inf bn ≤ lim inf(an + bn)

≤ lim inf an + lim sup bn

≤ lim sup(an + bn)

≤ lim sup an + lim sup bn.

6 (The argument of subsequences). limn→∞ an = a if and only if for any
subsequence ank

, k = 1, 2, . . ., there is a further subsequence ankl
, l = 1, 2, . . .,

such that liml→∞ ankl
= a.

1.5.2 Infinite series

7. Convergence of a series. The notation
∑∞

i=1 xi represents an infinite
series if it converges. The latter is defined as the existence of the limit
limn→∞

∑n
i=1 xi. In other words, the infinite series

∑∞
i=1 xi converges to

s, denoted by
∑∞

i=1 xi = s, if for any ε > 0, there is N ≥ 1 such that
|∑n

i=1 xi − s| < ε if n ≥ N . Once again, this definition applies to both real-
valued and vector-valued infinite series.
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8. Cauchy criterion for convergence of infinite series. The infinite series∑∞
i=1 xi converges if and only if for any ε > 0, there is N ≥ 1 such that

|∑n+k
i=n+1 xi| < ε for any n ≥ N and k ≥ 1.
A test for convergence is a (sufficient) condition that ensures convergence

of the infinite series. There are various tests for convergence. The following are
some of them involving positive series. A series

∑∞
i=1 xi is positive if xi > 0,

i ≥ 1. These tests can be established, for example, using the Cauchy criterion
(Exercises 1.18–1.20).

9. Suppose
∑∞

i=1 xi and
∑∞

i=1 yi are positive series such that xi ≤ yi,
i ≥ 1. (i) if

∑∞
i=1 yi is convergent, so is

∑∞
i=1 xi; (ii) conversely, if

∑∞
i=1 xi is

divergent (i.e., it is not convergent), so is
∑∞

i=1 yi.
10. Suppose

∑∞
i=1 xi and

∑∞
i=1 yi are positive series. If limn→∞(xn/yn) =

r, where r ∈ (0,∞), the two series are both convergent or both divergent.
11. Let

∑∞
i=1 xi be a positive series. (i) If lim supn→∞(xn+1/xn) < 1, the

series is convergent; (ii) if lim infn→∞(xn+1/xn) > 1, the series is divergent.
Note that no conclusion can be made if lim infn→∞(xn+1/xn) ≤ 1 and

lim supn→∞(xn+1/xn) ≥ 1.

12. Let
∑∞

i=1 xi be a positive series and ρ = lim supn→∞(x
1/n
n ). (i) If

ρ < 1, the series is convergent; (ii) if ρ > 1, the series is divergent.
Note that no conclusion can be made if ρ = 1.
For infinite series with positive and negative terms, we have the following

result.
13. Absolute convergence. The infinite series

∑∞
i=1 xi is absolutely con-

vergent if
∑∞

i=1 |xi| is convergent. Absolute convergence of an infinite series
implies convergence of the infinite series.

1.5.3 Topology

14. Neighborbood. A neighborbood of x ∈ Rd is defined as a subset of Rd

of the form S(x, ε) = {y ∈ Rd : |y − x| < ε} for some ε > 0.
15. Open sets. A subset S ⊂ Rd is an open set if for every x ∈ S, there is

ε > 0 such that S(x, ε) ⊂ S.
16. Limit point of a set. A point x ∈ Rd is a limit point of a set S ⊂ Rd if

S(x, ε) ∩ S \ {x} �= ∅ for every ε > 0. In other words, every neighborhood of
x contains at least one point of S that is different from x (if x ∈ S).

17. Closed sets. A subset S ⊂ Rd is a closed set if it contains every limit
point of it.

The following fact can be used as an equivalent definition of a closed set.
18. A set S is closed if and only if its complement, Sc, is open.
The following theorems, which are equivalent, are fundamental results in

real analysis. An open cover of S ⊂ R is a collection of open sets S = {Sα, α ∈
A} such that S ⊂ ∪α∈ASα. If a subcollection of S, S1, is also an open cover of
S, S1 is called a subcover. In particular, if S1 is a finite collection, it is called
a finite subcover. Finally, a set S ⊂ R is compact if every open cover of S has
a finite subcover.
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19. Heine–Borel theorem. Every bounded closed subset of R is compact.
20. Bolzano–Weierstrass theorem. Every bounded infinite subset of R has

a limit point.
For a proof of the equivalence of the Heine–Borel and Bolzano–Weierstrass

theorems, see, for example, Khan and Thaheem (2000).

1.5.4 Continuity, differentiation, and intergration

For simplicity we consider real-valued functions defined on R.
21. A function f(x) is continuous at x = x0 if for every ε > 0, there is δ > 0

such that |f(x) − f(x0)| < ε if |x − x0| < δ. The function f(x) is continuous
on S ⊂ R if it is continuous at every x ∈ S.

Some important properties of continuous functions are the following.
22. If f(x) is continuous at x = x0 and f(x0) > 0, there is a neighborhood

S(x0, δ) for some δ > 0 such that f(x) > 0, x ∈ S(x0, δ).
23. The intermediate-value theorem. If f(x) is continuous on [a, b], then

for any λ ∈ (A,B), where A = f(a) ∧ f(b) and B = f(a) ∨ f(b), there is
c ∈ (a, b) such that f(c) = λ.

24. If f(x) is continuous on S and S is closed and bounded (or compact
according to the Heine–Borel theorem), then f(x) is bounded on S. Further-
more, let A = infx∈S f(x) and B = supx∈S f(x). There are x1, x2 ∈ S, such
that f(x1) = A and f(x2) = B. In other words, f(x) achieves its infimum and
supremum on S.

25. Uniform continuity. The function f(x) is uniformly continuous on S if
for any ε > 0, there is δ > 0 such that |f(x1) − f(x2)| < ε for any x1, x2 ∈ S,
such that |x1−x2| < δ. If f(x) is continuous on S and S is closed and bounded,
then f(x) is uniformly continuous on S.

26. Differentiability of a function. Let f(x) be defined in a neighborhood
of x0, S(x0, δ), for some δ > 0. If the limit of

f(x0 + h) − f(x0)

h

exists as h → 0, where h �= 0 and |h| < δ, f(x) is differentiable at x0 and its
derivative at x0 is denoted by

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)

h
.

If f(x) is differentiable at every x ∈ S, then f(x) is differentiable on S.
Some important properties of differentiable functions are the following.
27. If f(x) is differentiable at x0, f(x) is continuous at x0. In other words,

differentiability implies continuity.
28. Rolle’s theorem. Suppose that f(x) is continuous on [a, b] and differen-

tiable on (a, b), and f(a) = f(b); then there is c ∈ (a, b) such that f ′(c) = 0.
A consequence of Rolle’s theorem is the following theorem.
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29. The mean value theorem. If f(x) is continuous on [a, b] and differen-
tiable on (a, b), there is c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b− a
.

30. If f(x) is increasing (decreasing) and differentiable on (a, b), then
f ′(x) ≥ 0 (f ′(x) ≤ 0), x ∈ (a, b).

31. Maxima and minima of a differentiable function. The function f(x) has
a local maximum (minimum) at x0 ∈ S if there is δ > 0 such that f(x) ≤ f(x0)
(f(x) ≥ f(x0)) for every x ∈ S(x0, δ). If f(x) is differentiable on (a, b) and
has a local maximum or local minimum at x∗ ∈ (a, b), then f ′(x∗) = 0. In
particular, if f(x) is continuous on [a, b] and differentiable on (a, b) and there
is x0 ∈ (a, b) such that f(x0) > f(a)∨ f(b) or f(x0) < f(a)∧ f(b), then there
is x∗ ∈ (a, b) such that f ′(x∗) = 0 (Exercise 1.22).

For an extension of the above results to partial and higher order deriva-
tives, see Chapter 4.

32. Riemann integral. Let f(x) be a function defined on [a, b]. For any
sequence a < x1 < · · · < xn−1 < b, let mi and Mi denote the infimum and
maximum of f(x) on [xi−1, xi], 1 ≤ i ≤ n, where x0 = a and xn = b. Then
f(x) is Riemann integrable on [a, b] if for any ε > 0, there is δ > 0 such that

n∑
i=1

(Mi −mi)(xi − xi−1) < ε

whenever max1≤i≤n(xi − xi−1) < δ. In this case, the integral
∫ b

a
f(x) dx is

defined as the limit of

n∑
i=1

f(ti)(xi − xi−1)

as max1≤i≤n(xi − xi−1) → 0, where ti is any point in [xi−1, xi], 1 ≤ i ≤ n.
Some important properties of Riemann integrals are given below.
33. Any continuous function f(x) on [a, b] is Riemann integrable on [a, b].
34. The mean value theorem for integrals. If f(x) is continuous on [a, b],

then there is c ∈ [a, b] such that∫ b

a
f(x) dx

b− a
= f(c).

35. Let f(x) be Riemann integrable on [a, b]. The following hold for

F (x) =

∫ x

a

f(t) dt.

(i) F (x) is uniformly continuous on [a, b];
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(ii) if f(x) is continuous on [a, b], then F (x) is differentiable on (a, b) and
F ′(x) = f(x), x ∈ (a, b).

Result (ii) can actually be extended to [a, b], provided that the derivatives
of F (x) at a and b are understood as the right and left derivatives, respectively,
defined as follows:

F ′+(a) = lim
h>0,h→0

F (a+ h) − F (a)

h
,

F ′−(b) = lim
h<0,h→0

F (b) − F (b− h)

h
.

Two other types of integrals are also frequently used in mathematical
statistics. The first is the Riemann–Stieltjes integral, which may be regarded
as an extension of the Riemann integral. The second is the Lebesgue integral,
which is defined in terms of measure theory. The latter sets up the foundation
of probability and mathematical statistics.

36. Riemann–Stieltjes integral. An extension of the Riemann integral in-
volving another function, g(x), is the following. Let g(x) be an increasing func-
tion on [a, b]. If we replace xi−xi−1 in the Riemann integral by g(xi)−g(xi−1),
we have the definition of the Riemann–Stieltjes integral. Suppose that for any
ε > 0, there is δ > 0 such that

n∑
i=1

(Mi −mi){g(xi) − g(xi−1)} < ε

whenever max1≤i≤n(xi − xi−1) < δ. f(x) is said to be Riemann–Stieltjes
integrable with respect to g(x) on [a, b]. In this case, the Riemann-Stieltjes

integral, denoted by
∫ b

a
f(x) dg(x), is defined as the limit of

n∑
i=1

f(ti){g(xi) − g(xi−1)}

as max1≤i≤n(xi − xi−1) → 0, where ti is any point in [xi−1, xi], 1 ≤ i ≤ n.
The definition of the Lebesgue integral through measure theory is deferred

to Appendix A.2, so are those of Lebesgue measure and measurable functions
used below. We conclude this section by pointing out an important connection
between the Riemann integral and the Lebesgue integral.

37. A bounded measurable function f(x) on [a, b] is Riemann integrable
if and only if the set of points at which f(x) is discontinuous has Lebesgue
measure zero, and in that case, the Riemann integral of f(x) on [a, b] is equal
in value to its Lebesgue integral on [a, b].

1.6 Exercises

1.1. Use the ε-δ argument to show that for any a ∈ (−∞,∞),
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1 +

1

n

)a

−→ 1

as n → ∞.
1.2. Use the ε-δ argument to show that(

1 +
1

n

)n

−→ e

as n → ∞. (Hint: First prove the inequality x−x2/2 ≤ log(1+x) ≤ x, x > 0.)
1.3. Use the ε-δ argument to show the following:
(a) (1 + 1/n)

√
n → 1 as n → ∞.

(b) (1 + 1/
√
n)n → ∞ as n → ∞; in other words, (1 + 1/

√
n)−n → 0, as

n → ∞.
1.4. The Student’s t-distribution has extensive statistical applications. It

is defined as a continuous distribution with the following pdf:

φ(x|ν) =
Γ{(ν + 1)/2}√
νπΓ (ν/2)

(
1 +

x2

ν

)−(ν+1)/2

, −∞ < x < ∞,

where ν is the degrees of freedom (d.f.) of the t-distribution. Show that the
pdf of the t-distribution converges to that of the standard normal distribution
as the d.f. goes to infinity; that is,

φ(x|ν) −→ φ(x) =
1√
2π

e−x2/2, −∞ < x <∞

as ν → ∞.
1.5. A sequence an, n = 0, 1, . . ., is defined as follows. Starting with initial

values a0 and a1, let

an+1 =
3

2
an − 1

2
an−1, n = 1, 2, . . . .

(a) Use Cauchy’s criterion to show that the sequence converges.
(b) Find the limit of the sequence. Does the limit depend on the initial

values a0 and a1?
1.6. Determine the ranges of x for which each of the following infinite series

converges, absolutely converges, and uniformly converges.
(a)
∑∞

n=1{(−1)n/n4n}xn.
(b)
∑∞

n=0(log x)n/n!.
(c)
∑∞

n=1 sin(nπx)/n(n+ 1).
1.7. The Riemann’s ζ-function is defined as the infinite series

ζ(x) =

∞∑
n=1

1

nx
.

(a) Show that ζ(x) is uniformly convergent for x ∈ [a,∞), where a is any
number greater than 1.
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(b) Show that ζ(x) is continuous on [a,∞) for the same a.
(c) Is ζ(x) differentiable on [a,∞)? If so, find an expression of ζ′(x) in

terms of an infinite series.
1.8. Suppose that X1, . . . , Xn are i.i.d. observations from the Uniform[0, θ)

distribution, where θ > 0 is an unknown parameter.
(a) Show that the MLE of θ does not exist.
(b) Find an estimator of θ that is consistent.
1.9. Suppose that X is a continuous random variable with a unique median

a (see Example 1.5). Show that P(X ≤ x) < 1/2, x < a, P(X ≤ a) = 1/2,
and P(X ≤ x) > 1/2, x > a.

1.10. Using a similar argument as in Example 1.5 that led to (1.8), show
that there are N3 and N4 such that when n ≥ N3 ∨N4, we have P{X(m+1) >
a+ ε} < 2δ.

1.11. Complete the second half of Example 1.5; that is, prove the consis-
tency of the sample median for the case n = 2m.

1.12. Prove the following property of a cdf: A cdf F can only have count-
ably many discontinuity points.

1.13. Extend the proof of the Cramér consistency given in Section 1.4 to
the case of multivariate observations and parameters; that is, X1, . . . , Xn are
i.i.d. vector-valued observations that have the common joint pdf f(x|θ), where
θ is a vector-valued parameter with the parameter space Θ ∈ Rp (p ≥ 1).

1.14. In the proof of the Cramér consistency given in Section 1.4, show
that Pθ(

∑n
i=1 Yi > 0) → 1.

1.15. In the proof of the Wald consistency given in Section 1.4, show that∑n
i=1 Yk,i ≤ nη, 1 ≤ k ≤ K + 1, imply (1.12).
1.16. Use the ε-δ argument to prove the monotone convergence criterion

of §1.5.1.3.
1.17. Use the ε-δ argument to prove the result on convergent subsequence

of §1.5.1.4.
1.18. Establish the test for convergence §1.5.2.9.
1.19. Establish the test for convergence §1.5.2.10.
1.20. Establish the test for convergence §1.5.2.11.
1.21. Show that if f(x) is continuous on [a, b] and differentiable on (a, b)

and there is x0 ∈ (a, b) such that f(x0) > f(a)∨ f(b), or f(x0) < f(a)∧ f(b),
then there is x∗ ∈ (a, b) such that f ′(x∗) = 0.
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Modes of Convergence

2.1 Introduction

In this chapter we discuss different types of convergence in probability and
statistics. Types of convergence have already been introduced. They are con-
vergence in probability and convergence in distribution. In addition, we in-
troduce other types of convergence, such as almost sure convergence and Lp

convergence. We discuss properties of different types of convergence, the con-
nections between them, and how to establish these properties. The discussion
will mainly focus on the case of univariate random variables. However, most of
the results presented here can be easily extended to the multivariate situation.

The concept of different types of convergence is critically important in
mathematical statistics. In fact, misusage of such concepts often leads to con-
fusions, even errors. The following is a simple example.

Example 2.1 (Asymptotic variance). The well-known result of CLT states

that, under regularity conditions, we have
√
n(X̄−μ)

d−→ N(0, σ2), where σ2

is called the asymptotic variance. The definition seems to be clear enough: σ2

is the variance of the limiting normal distribution. Even so, some confusion
still arises, and the following are some of them.

(a) σ2 is the asymptotic variance of X̄.
(b) limn→∞ nvar(X̄) → σ2 as n → ∞.
(c) n(X̄ − μ)2 → σ2 as n→ ∞.
Statement (a) is clearly incorrect. It would be more appropriate to say

that σ2 is the asymptotic variance of
√
nX̄ ; however, this does not mean that

limn→∞ var(
√
nX̄) → σ2, as n → ∞, or Statement (b). In fact, convergence

in distribution and convergence of the variance (which is essentially the con-
vergence of moments) are two different concepts, and they do not imply each
other. In some cases, even if the variance does not exist, the CLT still holds
(e.g., Ibragimov and Linnik 1971, pp. 85, Theorem 2.6.3). As for Statement
(c), it is not clear in what sense the convergence is. Even if the latter is made

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_2, © Springer Science+Business Media, LLC 2010
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clear, say, in probability, it is still a wrong statement because, according to
the CLT, n(X̄−μ)2 = {√n(X̄−μ)}2 converges in distribution to σ2χ2

1, where
χ2

1 is the χ2-distribution with one degree of freedom. Since the latter is a ran-
dom variable, not a constant, Statement (c) is incorrect even in the sense of
convergence in probability.

In a way, the problem associated with Statement (c) is very similar to the
second example in the Preface regarding approximation to a mean.

2.2 Convergence in probability

For the sake of completeness, here is the definition once again. A sequence of
random variables ξ1, ξ2, . . . converges in probability to a random variable ξ,

denoted by ξn
P−→ ξ, if for any ε > 0, we have P(|ξn − ξ| > ε) → 0 as n→ ∞.

It should be pointed out that, more precisely, convergence in probability
is a property about the distributions of the random variables ξ1, ξ2, . . . , ξ
rather than the random variables themselves. In particular, convergence in
probability does not imply that the sequence ξ1, ξ2, . . . converges pointwisely
at all. For example, consider the following.

Example 2.2. Define the sequence of random variables ξn = ξn(x), x ∈
[0, 1], which is the probability space with the probability being the Lebesgue
measure (see Appendix A.2), as follows.

ξ1(x) =

{
1, x ∈ [0, 1/2)
0, x ∈ [1/2, 1];

ξ2(x) =

{
0, x ∈ [0, 1/2)
1, x ∈ [1/2, 1];

ξ3(x) =

{
1, x ∈ [0, 1/4)
0, x ∈ [0, 1] \ [0, 1/4);

ξ4(x) =

{
1, x ∈ [1/4, 1/2)
0, x ∈ [0, 1] \ [1/4, 1/2);

ξ5(x) =

{
1, x ∈ [1/2, 3/4)
0, x ∈ [0, 1] \ [1/2, 3/4);

ξ6(x) =

{
1, x ∈ [3/4, 1]
0, x ∈ [0, 1] \ [3/4, 1],

and so forth (see Figure 2.1). It can be shown that ξn
P−→ 0 as n → ∞;

however, ξn(x) does not converge pointwisely at any x ∈ [0, 1] (Exercise 2.1).

So, what does convergence in probability really mean after all? It means
that the overall probability that ξn is not close to ξ goes to zero as n increases,
and nothing more than that. We consider another example.
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Fig. 2.1. A plot of the random variables in Example 2.2

Example 2.3. Suppose that ξn is uniformly distributed over the intervals[
i− 1

2n2
, i+

1

2n2

]
, i = 1, . . . , n.

Then the sequence ξn, n ≥ 1, converges in probability to zero. To see this,
note that the pdf of ξn is given by

fn(x) =

{
n, x ∈ [i− 1/2n2, i+ 1/2n2], 1 ≤ i ≤ n
0, elsewhere.

It follows that for any ε > 0, P(|ξn| > ε) = 1/n → 0, as n → ∞; hence,

ξn
P−→ 0. The striking thing about this example is that, as n → ∞, the height

of the density function actually approaches infinity. Meanwhile, the total area
in which the density is nonzero approaches zero as n → ∞, which is what
counts in the convergence in probability of the sequence (see Figure 2.2).
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Fig. 2.2. A plot of the pdfs of the random variables in Example 2.3

The follow theorems provide useful sufficient conditions for convergence in
probability.

Theorem 2.1. Suppose that E(|ξn − ξ|p) → 0 as n → ∞ for some p > 0.

Then ξn
P−→ ξ as n → ∞.

The proof follows from the Chebyshev’s inequality (Exercise 2.2).

Theorem 2.2. Suppose that ξn = anηn + bn, where an and bn are non-
random sequences such that an → a, bn → b as n → ∞, and ηn is a sequence

of random variables such that ηn
P−→ η as n → ∞. Then ξn

P−→ ξ = aη+ b as
n → ∞.
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Theorem 2.3. Suppose that ξn
P−→ ξ and ηn

P−→ η as n → ∞. Then

ξn + ηn
P−→ ξ + η as n → ∞.

Theorem 2.4. Suppose that ξn
P−→ ξ and ξ is positive with probability

1. Then ξ−1
n

P−→ ξ−1 as n → ∞.

The proofs of Theorems 2.2–2.4 are left to the readers as exercises (Exer-
cises 2.3–2.5).

An important property of convergence in probability is the following. The
sequence ξn, n = 1, 2, . . ., is called bounded in probability if for any ε > 0,
there is M > 0 such that P(|ξn| ≤ M) > 1 − ε for any n ≥ 1.

Theorem 2.5. If ξn, n = 1, 2, . . ., converges in probability, then the se-
quence is bounded in probability.

Proof. Suppose that ξn
P−→ ξ for some random variable ξ. Then for any ε > 0,

there is B > 0 such that P(|ξ| ≤ B) > 1− ε (see Example A.5). On the other
hand, by convergence in probability, there is N ≥ 1 such that when n ≥ N ,
we have P(|ξn − ξ| ≤ 1) > 1 − ε. It follows that

P(|ξn| ≤ B + 1) ≥ P(|ξn − ξ| ≤ 1, |ξ| ≤ B)

> 1 − 2ε, n ≥ N.

Now, let η be the random variable max1≤n≤N−1 |ξn|. According to Example
A.5, there is a constant A > 0 such that P(η ≤ A) > 1 − 2ε. Let M =
A ∨ (B + 1). Then we have P(|ξn| ≤M) > 1 − 2ε, n ≥ 1. Since ε is arbitrary,
this completes the proof. Q.E.D.

With the help of Theorem 2.5 it is easy to establish the following result
(Exercise 2.6).

Theorem 2.6. Suppose that ξn
P−→ ξ and ηn

P−→ η as n → ∞. Then

ξnηn
P−→ ξη as n → ∞.

2.3 Almost sure convergence

A sequence of random variables ξn, n = 1, 2, . . ., converges almost surely to a
random variable ξ, denoted by ξn

a.s.−→ ξ if P(limn→∞ ξn = ξ) = 1.
Almost sure convergence is a stronger property than convergence in prob-

ability, as the following theorem shows.

Theorem 2.7. ξn
a.s.−→ ξ implies ξn

P−→ ξ.
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The proof follows from the following lemma whose proof is a good exercise
of the ε-δ argument discussed in Chapter 1 (Exercise 2.11).

Lemma 2.1. ξn
a.s.−→ ξ if and only if for every ε > 0,

lim
N→∞

P (∪∞n=N{|ξn − ξ| ≥ ε}) = 0. (2.1)

On the other hand, Example 2.2 shows that there are sequences of random
variables that converge in probability but not almost surely. We consider some
more examples.

Example 2.4. Consider the same probability space [0, 1] as in Example
2.2 but a different sequence of random variables ξn, n = 1, 2, . . ., defined as
follows: ξn(i/n) = i, 1 ≤ i ≤ n, and ξn(x) = 0, if x ∈ [0, 1] \ {i/n, 1 ≤ i ≤ n}.
Then ξn

a.s.−→ 0 as n → ∞. To see this, let A = {i/n, i = 1, . . . , n, n = 1, 2, . . .}.
Then P(A) = 0 (note that P is the Lebesgue measure on [0, 1]). Furthermore,
for any x ∈ [0, 1] \ A, we have ξn(x) = 0 for any n; hence, ξn(x) → 0 as
n → ∞. Therefore, P(limn→∞ ξn = 0) ≥ P([0, 1] \ A) = 1.

Example 2.5. Suppose that Xi is a random variable with a Binomial(i, p)
distribution, i = 1, 2, . . ., where p ∈ [0, 1]. Define

ξn =
n∑

i=1

Xi

i2+δ
, n = 1, 2, . . . ,

where δ > 0. Then

ξn
a.s.−→ ξ =

∞∑
i=1

Xi

i2+δ
as n → ∞. (2.2)

To see this, note that 0 ≤ Xi/i
2+δ ≤ i/i2+δ = 1/i1+δ, and the infinite series∑

i=1 1/i1+δ converges. Therefore, by the result of §1.5.2.9 (i), the infinite
series

∑∞
i=1 Xi/i

2+δ always converges, which implies (2.2).

The following result is often useful in proving almost sure convergence.

Theorem 2.8. If, for every ε > 0, we have
∑∞

n=1 P(|ξn − ξ| ≥ ε) < ∞,

then ξn
a.s.−→ ξ as n → ∞.

Proof. By Lemma 2.1 we need to show (2.1). Since

P(∪∞n=N{|ξn − ξ| ≥ ε}) ≤
∞∑

n=N

P(|ξn − ξ| ≥ ε),

and the latter converges to zero asN → ∞, because the sequence
∑∞

n=1 P(|ξn−
ξ| ≥ ε) is convergent, the result follows. Q.E.D.
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Example 2.6. In Example 1.4 we showed consistency of the MLE in the Uni-

form distribution, that is, θ̂
P−→ θ as n → ∞, where θ̂ = X(n) and X1, . . . , Xn

are i.i.d. observations from the Uniform[0, θ] distribution. We now show that,

in fact, θ̂
a.s.−→ θ as n → ∞. For any ε > 0, we have

P{|X(n) − θ| ≥ ε} = P{X(n) ≤ θ − ε}
= P(X1 ≤ θ − ε, . . . , Xn ≤ θ − ε)

= {P(X1 ≤ θ − ε}n

=
(
1 − ε

θ

)n

.

Thus, we have

∞∑
n=1

P{|X(n) − θ| ≥ ε} =

∞∑
n=1

(
1 − ε

θ

)n

=
θ − ε

ε
<∞.

Here, we assume, without loss of generality, that ε < θ. It follows by Theorem
2.8 that X(n)

a.s.−→ θ as n → ∞.
The following example is known as the bounded strong law of large num-

bers, which is a special case of the strong law of large numbers (SLLN; see
Chapter 6).

Example 2.7. Suppose that X1, . . . , Xn are i.i.d. and |Xi| ≤ b for some
constant b. Then

ξn =
1

n

n∑
i=1

Xi
a.s.−→ E(X1) (2.3)

as n → ∞. To show (2.3), note that, for any ε > 0,

P{|ξn − E(X1)| ≥ ε} = P

{
1

n

n∑
i=1

Xi − E(X1) ≥ ε

}

+P

{
1

n

n∑
i=1

Xi − E(X1) ≤ −ε
}

= I1 + I2. (2.4)

Furthermore, we have, by Chebyshev’s inequality (see Section 5.2),

I1 = P

[
n∑

i=1

{
Xi − E(X1)√

n

}
≥ ε

√
n

]

= P

(
exp

[
n∑

i=1

{
Xi − E(X1)√

n

}]
≥ eε

√
n

)
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≤ e−ε
√

nE

(
exp

[
n∑

i=1

{
Xi − E(X1)√

n

}])

= e−ε
√

nE

[
n∏

i=1

exp

{
Xi − E(X1)√

n

}]

= e−ε
√

n

(
E

[
exp

{
X1 − E(X1)√

n

}])n

. (2.5)

By Taylor’s expansion (see Section 4.1), we have, for any x ∈ R,

ex = 1 + x+
eλx

2
x2

for some 0 ≤ λ ≤ 1. It follows that ex ≤ 1 + x + (ec/2)x2 if |x| ≤ c. Since
|{X1 − E(X1)}/√n| ≤ 2b/

√
n ≤ 2b, by letting c = 2b we have

exp

{
X1 − E(X1)√

n

}
≤ 1 +

X1 − E(X1)√
n

+
e2b

2

{
X1 − E(X1)√

n

}2

≤ 1 +
X1 − E(X1)√

n
+

2b2e2b

n

(because |X1 − E(X1)| ≤ 2b); hence,

E

[
exp

{
X1 − E(X1)√

n

}]
≤ 1 +

2b2e2b

n

≤ exp

(
2b2e2b

n

)
(2.6)

using the inequality ex ≥ 1+x for all x ≥ 0. By (2.5) and (2.6), we have I1 ≤
ce−ε

√
n, where c = exp(2b2e2b). By similar arguments, it can be shown that

I2 ≤ ce−ε
√

n (Exercise 2.12). Therefore, by (2.4), we have P(|ξn − E(X1)| ≥
ε) ≤ 2ce−ε

√
n. The almost sure convergence of ξn to E(X1) then follows from

Theorem 1.8, because
∑∞

i=1 e
−ε
√

n < ∞ (Exercise 2.13).

2.4 Convergence in distribution

Convergence in distribution is another concept that was introduced earlier.
Again, for the sake of completeness we repeat the definition here. A sequence
of random variables ξ1, ξ2, . . . converges in distribution to a random variable

ξ, denoted by ξn
d−→ ξ, if Fn

w−→ F , where Fn is the cdf of ξn and F is the
cdf of ξ. The latter means that Fn(x) → F (x) as n → ∞ for every x at which
F (x) is continuous.

Note that convergence in distribution is a property of the distribution of
ξn rather than ξn itself. In particular, convergence in distribution does not
imply almost sure convergence or even convergence in probability.
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Example 2.8. Let ξ be a random variable that has the standard normal
distribution, N(0, 1). Let ξ1 = ξ, ξ2 = −ξ, ξ3 = ξ, ξ4 = −ξ, and so forth.

Then, clearly, ξn
d−→ ξ (because ξ and −ξ have the same distribution). On

the other hand, ξn does not converge in probability to ξ or any other random

variable η. To see this, suppose that ξn
P−→ η for some random variable η.

Then we must have P(|ξn − η| > 1) → 0 as n → ∞. Therefore, we have

P(|ξ − η| > 1) = P(|ξ2k−1 − η| > 1) → 0, (2.7)

P(|ξ + η| > 1) = P(|ξ2k − η| > 1) → 0 (2.8)

as k → ∞. Because the left sides of (2.7) and (2.8) do not depend on k,
we must have P(|ξ − η| > 1) = 0 and P(|ξ + η| > 1) = 0. Then because
|2ξ| ≤ |ξ − η| + |ξ + η|, |ξ| > 1 implies |2ξ| > 2, which, in turn, implies that
either |ξ − η| > 1 or |ξ + η| > 1. It follows that P(|ξ| > 1) ≤ P(|ξ − η| >
1) + P(|ξ + η| > 1) = 0, which is, of course, not true.

Since almost sure convergence implies convergence in probability (Theorem
2.7), the sequence ξn in Example 2.8 also does not converge almost surely.
Nevertheless, the fact that the distribution of ξn is the same for any n is
enough to imply convergence in distribution.

On the other hand, the following theorem shows that convergence in prob-
ability indeed implies convergence in distribution, so the former is a stronger
convergent property than the latter.

Theorem 2.9. ξn
P−→ ξ implies ξn

d−→ ξ.

Proof. Let x be a continuity point of F (x). We need to show that P(ξn ≤
x) = Fn(x) → F (x) = P(ξ ≤ x). For any ε > 0, we have

F (x− ε) = P(ξ ≤ x− ε)

= P(ξ ≤ x− ε, ξn ≤ x) + P(ξ ≤ x− ε, ξn > x)

≤ P(ξn ≤ x) + P(|ξn − ξ| > ε)

= Fn(x) + P(|ξn − ξ| > ε).

It follows by the results of §1.5.1.5 that

F (x− ε) ≤ lim inf Fn(x) + lim sup P(|ξn − ξ| > ε)

= lim inf Fn(x).

By a similar argument, it can be shown that (Exercise 2.18)

F (x+ ε) ≥ lim supFn(x).

Since ε is arbitrary and F (x) is continuous at x, we have

lim supFn(x) ≤ F (x) ≤ lim inf Fn(x).
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On the other hand, we always have lim inf Fn(x) ≤ lim supFn(x). Therefore,
we have lim inf Fn(x) = lim supFn(x) = F (x); hence, limn→∞ Fn(x) = F (x)
by the results of §1.5.1.2. This completes the proof. Q.E.D.

Although convergence in distribution can often be verified by the defini-
tion, the following theorems sometimes offer more convenient tools for estab-
lishing convergence in distribution.

Let ξ be a random variable. The moment generating function (mgf) of ξ
is defined as

mξ(t) = E(etξ), (2.9)

provided that the expectation exists; the characteristic function (cf) of ξ is
defined as

cξ(t) = E(eitξ), (2.10)

where i =
√−1. Note that the mgf is defined at t ∈ R for which the expec-

tation (2.9) exists (i.e., finite). It is possible, however, that the expectation
does not exist for any t except t = 0 (Exercise 2.19). The latter is the one
particular value of t at which the mgf is always well defined. On the other
hand, the cf is well defined for any t ∈ R. This is because |eitξ| ≤ 1 by the
properties of complex numbers (Exercise 2.20).

Theorem 2.10. Let mn(t) be the mgf of ξn, n = 1, 2, . . .. Suppose that
there is δ > 0 such that mn(t) → m(t) as n → ∞ for all t such that |t| < δ,

where m(t) is the mgf of a random variable ξ; then ξn
d−→ ξ as n→ ∞.

In other words, convergence of the mgf in a neighborhood of zero implies
convergence in distribution. The following example shows that the converse
of Theorem 2.10 is not true; that is, convergence in distribution does not
necessarily imply convergence of the mgf in a neighborhood of zero.

Example 2.9. Suppose that ξn has a t-distribution with n degrees of free-

dom(i.e., ξn ∼ tn). Then it can be shown that ξn
d−→ ξ ∼ N(0, 1) as n → ∞.

However, mn(t) = E(etξn) = ∞ for any t �= 0, whereas the mgf of ξ is given

by m(t) = et2/2, t ∈ R (Exercise 2.21). Therefore, mn(t) does not converge to
m(t) for any t �= 0.

On the other hand, convergence of the cf is indeed equivalent to conver-
gence in distribution, as the following theorem shows.

Theorem 2.11 (Lévy-Cramér continuity theorem). Let cn(t) be the cf of

ξn, n = 1, 2, . . ., and c(t) be the cf of ξ. Then ξn
d−→ ξ as n → ∞ if and only

if cn(t) → c(t) as n → ∞ for every t ∈ R.

The proof of Theorem 2.10 is based on the theory of Laplace transforma-
tion. Consider, for example, the case that ξ is a continuous random variable
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that has the pdf fξ(x) with respect to the Lebesgue measure (see Appendix
A.2). Then

mξ(t) =

∫ ∞
−∞

etxfξ(x) dx, (2.11)

which is the Laplace transformation of f(x). A nice property of the Laplace
transformation is its uniqueness. This means that if (2.11) holds for all t such
that |t| < δ, where δ > 0, then there is one and only one fξ(x) that satisfies
(2.11). Given this property, it is not surprising that Theorem 2.10 holds, and
this actually outlines the main idea of the proof. The idea behind the proof
of Theorem 2.11 is similar. We omit the details of both proofs, which are
technical in nature (e.g., Feller 1971).

The following properties of the mgf and cf are often useful. The proofs are
left as exercises (Exercises 2.22, 2.23).

Lemma 2.2. (i) Let ξ be a random variable. Then, for any constants a
and b, we have

maξ+b(t) = ebtmξ(at),

provided that the mξ(at) eixsts. (ii) Let ξ, η be independent random variables.
Then we have

mξ+η(t) = mξ(t)mη(t), |t| ≤ δ,

provided that both mξ(t) and mη(t) exist.

Lemma 2.3. (i) Let ξ be a random variable. Then, for any constants a
and b, we have

caξ+b(t) = eibtcξ(at), t ∈ R.

(ii) Let ξ and η be independent random variables. Then we have

cξ+η(t) = cξ(t)cη(t), t ∈ R.

We consider some examples.

Example 2.10 (Poisson approximation to Binomial). Suppose that ξn has
a Binomial(n, pn) distribution such that as n→ ∞, npn → λ. It can be shown
that the mgf of ξn is given by

mn(t) = (pne
t + 1 − pn)n,

which converges to exp{λ(et − 1)} as n → ∞ for any t ∈ R (Exercise 2.24).
On the other hand, exp{λ(et−1)} is the mgf of ξ ∼ Poisson(λ). Therefore, by
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Theorem 2.10, we have ξn
d−→ ξ as n → ∞. This justifies an approximation

that is often taught in elementary statistics courses; that is, the Binomial(n, p)
distribution can be approximated by the Poisson(λ) distribution, provided
that n is large, p is small, and np is approximately equal to λ.

Example 2.11. The classical CLT may be interpreted as, under regularity
conditions, the sample mean of i.i.d. observations, X1, . . . , Xn, is asymptot-
ically normal. This sometimes leads to the impression that as n → ∞ (and
with a suitable normalization), the limiting distribution of

X̄ =
X1 + · · · +Xn

n

is always normal. However, this is not true. To see a counterexample, suppose
that X1, . . . , Xn are i.i.d. with the pdf

f(x) =
1 − cos(x)

πx2
, −∞ < x < ∞.

Note that the mgf of Xi does not exist for any t �= 0. However, the cf of Xi is
given by max(1− |t|, 0), t ∈ R (Exercise 2.25). Furthermore, by Lemma 2.3 it
can be shown that the cf of X̄ is given by{

max

(
1 − |t|

n
, 0

)}n

,

which converges to e−|t| as n → ∞ (Exercise 2.25). However, the latter is the
cf of the Cauchy(0, 1) distribution. Therefore, in this case, the sample mean
is asymptotically Cauchy instead of asymptotically normal. The violation of
the CLT is due to the failure of the regularity conditions—namely, that Xi

has finite expectation (and variance; see Section 6.4 for details).

In many cases, convergence in distribution of a sequence can be derived
from the convergence in distribution of another sequence. We conclude this
section with some useful results of this type.

Theorem 2.12 (Continuous mapping theorem). Suppose that ξn
d−→ ξ as

n → ∞ and that g is a continuous function. Then g(ξn)
d−→ g(ξ) as n → ∞.

The proof is omitted (e.g., Billingsley 1995, §5). Alternatively, Theorem
2.12 can be derived from Theorem 2.18 given in Section 2.7 (Exercise 2.27).

Theorem 2.13 (Slutsky’s theorem). Suppose that ξn
d−→ ξ and ηn

P−→ c,

as n → ∞, where c is a constant. Then (i) ξn+ηn
d−→ ξ+c, and (ii) ξnηn

d−→ cξ
as n → ∞.

The proof is left as an exercises (Exercise 2.26).
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The next result involves an extension of convergence in distribution to the
multivariate case. Let ξ = (ξ1, . . . , ξk) be a random vector. The cdf of ξ is
defined as

F (x1, . . . , xk) = P(ξ1 ≤ x1, . . . , ξk ≤ xk), x1, . . . , xk ∈ R.

A sequence of random vectors ξn, n = 1, 2, . . ., converges in distribution to a

random vector ξ, denoted by ξn
d−→ ξ, if the cdf of ξn converges to the cdf of

ξ, denoted by F , at every continuity point of F .

Theorem 2.14. Let ξn, n = 1, 2, . . ., be a sequence of d-dimensional

random vectors. Then ξn
d−→ ξ as n → ∞ if and only if a′ξn

d−→ a′ξ as
n → ∞ for every a ∈ Rd.

2.5 Lp convergence and related topics

Let p be a positive number. A sequence of random variables ξn, n = 1, 2, . . .

converges in Lp, to a random variable ξ, denoted by ξn
Lp−→ ξ, if E(|ξn−ξ|p) →

0 as n→ ∞. Lp convergence (for any p > 0) implies convergence in probability,
as the following theorem states, which can be proved by applying Chebyshev’s
inequality (Exercise 2.30).

Theorem 2.15. ξn
Lp−→ ξ implies ξn

P−→ ξ.

The converse, however, is not true, as the following example shows.

Example 2.12. Let X be a random variable that has the following pdf with
respect to the Lebesgue measure

f(x) =
log a

x(log x)2
, x ≥ a,

where a is a constant such that a > 1. Let ξn = X/n, n = 1, 2, . . .. Then we

have ξn
P−→ 0, as n → ∞. In fact, for any ε > 0, we have

P(|ξn| > ε) = P(X > nε)

=

∫ ∞

nε

log a

x(log x)2
dx

=
log a

log(nε)

−→ 0

as n → ∞. On the other hand, for any p > 0, we have
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E(|ξ|p) = E

(
X

n

)p

=
log a

np

∫ ∞
a

dx

x1−p(log x)2

= ∞;

so it is not true that ξn
Lp

−→ 0 as n → ∞.

Note that in the above example the sequence ξn converges in probability;
yet it does not converge in Lp for any p > 0. However, the following theorem
states that, under an additional assumption, convergence in probability indeed
implies Lp convergence.

Theorem 2.16 (Dominated convergence theorem). Suppose that ξn
P−→ ξ

as n→ ∞, and there is a nonnegative random variable η such that E(ηp) <∞,

and |ξn| ≤ η for all n. Then ξn
Lp−→ ξ as n→ ∞.

The proof is based on the following lemma whose proof is omitted (e.g.,
Chow and Teicher 1988, §4.2).

Lemma 2.4 (Fatou’s lemma). Let ηn, n = 1, 2, . . ., be a sequence of
random variables such that ηn ≥ 0, a.s.. Then

E(lim inf ηn) ≤ lim inf E(ηn).

Proof of Theorem 2.16. First, we consider a special case so that ξn
a.s.−→ ξ.

Then, |ξ| = limn→∞ |ξn| ≤ η, a.s. Consider ηn = (2η)p − |ξn − ξ|p. Since
|ξn − ξ| ≤ |ξn| + |ξ| ≤ 2η, a.s., we have ηn ≥ 0, a.s. Thus, by Lemma 2.4 and
the results of §1.5.1.5, we have

(2η)p = E(lim inf ηn)

≤ lim inf E(ηn)

= lim inf{(2η)p − E(|ξn − ξ|p)}
≤ (2η)p − lim sup E(|ξn − ξ|p),

which implies lim sup E(|ξn − ξ|p) ≤ 0; hence, E(|ξn − ξ|p) → 0 as n → ∞.

Now, we drop the assumption that ξn
a.s.−→ ξ. We use the argument of

subsequences (see §1.5.1.6). It suffices to show that for any subsequence nk,
k = 1, 2, . . ., there is a further subsequence nkl

, l = 1, 2, . . ., such that

E
(∣∣∣ξnkl

− ξ
∣∣∣p) −→ 0 (2.12)

as l → ∞. Since ξn
P−→ ξ, so does the subsequence ξnk

. Then, according to
a result given later in Section 2.7 (see §2.7.2), there is a further subsequence
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nkl
such that ξnkl

a.s.−→ ξ as l → ∞. Result (2.12) then follows from the proof
given above assuming a.s. convergence. This completes the proof. Q.E.D.

The dominated convergence theorem is a useful result that is often used to
establish Lp convergence given convergence in probability or a.s. convergence.
We consider some examples.

Example 2.13. Let X1, . . . , Xn be i.i.d. Bernoulli(p) observations. The sam-
ple proportion (or binomial proportion)

p̂ =
X1 + · · · +Xn

n

converges in probability to p (it also converges a.s. according to the bounded
SLLN; see Example 2.7). Since |Xi| ≤ 1, by Theorem 2.16, p̂ converges to p
in Lp for any p > 0.

Example 2.14. In Example 1.4 we showed that if X1, . . . , Xn are i.i.d.
observations from the Uniform[0, θ] distribution, then the MLE of θ, θ̂ = X(n),

is consistent; that is θ̂
P−→ θ as n → ∞. Because 0 ≤ θ̂ ≤ θ, Theorem 2.16

implies that θ̂ converges in Lp to θ for any p > 0.

Another concept that is closely related to Lp convergence is called uniform
integrability. The sequence ξn, n = 1, 2, . . ., is uniformly integrable in Lp if

lim
a→∞

sup
n≥1

E{|ξn|p1(|ξn|>a)} = 0. (2.13)

Theorem 2.17. Suppose that E(|ξn|p) < ∞, n = 1, 2, . . ., and ξn
P−→ ξ

as n → ∞. Then the following are equivalent:
(i) ξn, n = 1, 2, . . ., is uniformly integrable in Lp;

(ii) ξn
Lp

−→ ξ as n → ∞ with E(|ξ|p) <∞;
(iii) E(|ξn|p) → E(|ξ|p) < ∞, as n → ∞.

Proof. (i) ⇒ (ii): First, assume that ξn
a.s.−→ ξ. Then, for any a > 0, the

following equality holds almost surely:

|ξ|p1(|ξ|>a) =
{

lim
n→∞

|ξn|p1(|ξn|>a)

}
1(|ξ|>a).

To see this, note that if |ξ| ≤ a, both sides of the equation are zero; and if

|
ξ| > a, then ξn → ξ implies that |ξn| > a for large n; hence, |ξn|p1(|ξn|>a) =

|
ξn|p → |ξ|p, which is the left side. Thus, by Fatou’s lemma, we have

E{|ξ|p1(|ξ|>a)} ≤ E
{

lim
n→∞

|ξn|p1(|ξn|>a)

}
≤ lim inf E{|ξn|p1(|ξn|>a)}
≤ sup

n≥1
{|ξn|p1(|ξn|>a)}. (2.14)
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For any ε > 0, choose a such that (2.13) holds; hence, E{|ξ|p1(|ξ|>a)} < ε by
(2.14). It follows that E(|ξ|p) = E{|ξ|p1(|ξ|≤a)}+E{|ξ|p1(|ξ|>a)} ≤ |a|p+ε <∞.
Furthermore, we have

|ξn − ξ|p = |ξn − ξ|p1(|ξn|≤a)

+|ξn − ξ|p1(|ξn|>a,|ξ|≤a)

+|ξn − ξ|p1(|ξn|>a,|ξ|>a). (2.15)

If |ξ| ≤ a < |ξn|, then |ξn − ξ| ≤ |ξn| + |ξ| < 2|ξn|; hence, the second term on
the right side of (2.15) is bounded by 2p|ξn|p1(|ξn|>a). On the other hand, by
the inequality

|u− v|p ≤ 2p(|u|p + |v|p), u, v ∈ R (2.16)

(Exercise 2.32), the third term on the right side of (2.15) is bounded by
2p{|ξn|p1(|ξn|>a) + |ξ|p1(|ξ|>a)}. Therefore, by (2.15), we have

E(|ξn − ξ|p) ≤ E{|ξn − ξ|p1(|ξn|≤a)}
+2p+1E{|ξn|p1(|ξn|>a)} + 2pE{|ξ|p1(|ξ|>a)}

≤ E{|ξn − ξ|p1(|ξn|≤a)} + 3 · 2pε. (2.17)

Finally, we |ξn − ξ|p1(|ξn|≤a)
a.s.−→ 0 and |ξn − ξ|p1(|ξn|≤a) ≤ 2p(ap + |ξ|p)

by (2.16), and E(|ξ|p) < ∞ as is proved above. Thus, by the dominated
convergence theorem, we have E{|ξn− ξ|p1(|ξn|≤a)} → 0 as n → ∞. It follows,
by (2.17) and the results of §1.5.1.5, that

lim sup E(|ξn − ξ|p) ≤ 3 · 2pε.

Since ε is arbitrary, we have E(|ξn − ξ|p) → 0 as n → ∞.

We now drop the assumption that ξn
a.s.−→ ξ. The result then follows by

the argument of subsequences (Exercise 2.33).
(ii) ⇒ (iii): For any a > 0, we have

|ξn|p − |ξ|p = (|ξn|p − |ξ|p)1(|ξn|≤a) + (|ξn|p − |ξ|p)1(|ξn|>a)

= ηn + ζn. (2.18)

By (2.16), we have

|ζn| ≤ |ξn|p1(|ξn|>a) + |ξ|p1(|ξn|>a)

≤ 2p(|ξ|p + |ξn − ξ|p)1(|ξn|>a) + |ξ|p1(|ξn|>a)

≤ (2p + 1)|ξ|p1(|ξ|>a) + 2p|ξn − ξ|p. (2.19)

Combining (2.18) and (2.19), we have

E (||ξn|p − |ξ|p|) ≤ E(|ηn) + (2p + 1)E{|ξ|p1(|ξ|>a)} + 2pE(|ξn − ξ|p)

= I1 + I2 + I3
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By Theorem 2.15, we have ηn
P−→ 0; hence, by Theorem 2.16, we have I1 → 0

as n → ∞. Also (ii) implies I3 → 0, as n → ∞. Thus, we have (see §1.5.1.5)

lim sup E (||ξn|p − |ξ|p|) ≤ (2p + 1)E{|ξ|p1(|ξ|>a)}.
Note that a is arbitrary and, by Theorem 2.16, it can be shown that

E{|ξ|p1(|ξ|>a)} → 0 as a→ ∞. (2.20)

This implies E(||ξn|p −|ξ|p|) → 0, which implies E(|ξn|p) → E(|ξ|p) as n→ ∞
(Exercise 2.34).

(iii) ⇒ (i): For any a > 0, we have

E{|ξn|p1(|ξn|>a)} = E(|ξn|p) − E{|ξn|p1(|ξn|≤a)}
≤ E(|ξn|p) − E{|ξn|p1(|ξn|≤a,|ξ|<a)} = I1 − I2.

(iii) implies I1 → E(|ξ|p). Furthermore, let ηn = |ξn|p1(|ξn|≤a,|ξ|<a). It can be

shown (Exercise 2.35) that ηn
P−→ η = |ξ|p1(|ξ|<a) as n → ∞. In addition, we

have 0 ≤ ηn ≤ ap. Thus, by Theorem 2.16, we have ηn
L1−→ η, which implies

I2 = E(ηn) → E(η). We now use the arguments of §1.5.1.5 to conclude that

lim sup E{|ξn|p1(|ξn|>a)} ≤ E(|ξ|p) − E{|ξ|p1(|ξ|<a)}
= E{|ξ|p1(|ξ|≥a)}. (2.21)

For any ε > 0, by (2.21) and the definition of lim sup, there is N ≥ 1 such
that E{|ξn|p1(|ξn|>a)} ≤ E{|ξ|p1(|ξ|≥a) + ε if n ≥ N . It follows that

sup
n≥1

E{|ξn|p1(|ξn|>a)} ≤
[

max
1≤n≤N−1

E{|ξn|p1(|ξn|>a)}
]

∨ [E{|ξ|p1(|ξ|≥a) + ε
]
.

Furthermore, by the dominated convergence theorem it can be shown that
E{|ξn|p1(|ξn|>a)} → 0, 1 ≤ n ≤ N − 1, and E{|ξ|p1(|ξ|≥a) → 0 as a → ∞ (see
Exercise 2.34). Therefore, we have

lim sup sup
n≥1

E{|ξn|p1(|ξn|>a)} ≤ ε,

where the lim sup is with respect to a. Since ε is arbitrary, we conclude that
supn≥1 E{|ξn|p1(|ξn|>a)} → 0 as a→ ∞. this completes the proof. Q.E.D.

Example 2.15. Suppose that ξn
P−→ ξ as n → ∞, and that E(|ξn|q), n ≥ 1,

is bounded for some q > 0. Then ξn
Lp

−→ ξ as n → ∞ for any 0 < p < q. To
see this, note that for any a > 0, |ξn| > a implies |ξn|p−q < ap−q . Thus,

E{|ξn|p1|ξn|>a)} ≤ ap−qE(|ξn|q)
≤ Bap−q,
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where B = supn≥1 E(|ξn|q) < ∞. Because p− q < 0, we have

sup
n≥1

E{|ξn|p1(|ξn>a)} → 0

as a→ ∞. In other words, ξn, n = 1, 2, . . ., is uniformly integrable. The result
then follows by Theorem 2.17.

Example 2.16. Let X be a random variable that has a pdf f(x) with respect
to a σ-finite measure μ (see Appendix A.2). Suppose that fn(x), n = 1, 2, . . .,
is a sequence of pdf’s with respect to μ such that fn(x) → f(x), x ∈ R, as
n → ∞. Consider the sequence of random variables

ξn =
fn(X)

f(X)
, (2.22)

n = 1, 2, . . .. Then we have ξn
L1−→ 1 as n → ∞. To see this, note that

fn(x) → f(x), x ∈ R implies ξn
a.s.−→ 1. This is because fn(x)/f(x) → 1 as

long as f(x) > 0; hence, P(ξn → 1) ≥ P{f(X) > 0} = 1 − P{f(X) = 0} and

P{f(X) = 0} =

∫
f(x)=0

f(x) dμ

= 0.

It follows by Theorem 2.7 that ξn
P−→ 1. On the other hand, we have

E(|ξn|) = E

{
fn(X)

f(X)

}
=

∫
fn(x)

f(x)
f(x) dμ

=

∫
fn(x) dμ

= 1.

Thus, by Theorem 2.17, we have ξn
L1

−→ 1 as n → ∞.

When X is a vector of observations, (2.22) corresponds to a likelihood ra-
tio, which may be thought as the probability of observing X under fn divided
by that under f . Thus, the above example indicates that if fn converges to
f pointwisely, then the likelihood ratio converges to 1 in L1, provided that
f(x) is the true pdf of X . To see a specific example, suppose that X has a
standard normal distribution; that is, X ∼ f(x), where

f(x) =
1√
2π

e−x2/2, −∞ < x <∞.

Let fn(x) be the pdf of the t-distribution with n degrees of freedom; that is,
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fn(x) =
Γ{(n+ 1)/2}√
nπΓ (n/2)

(
1 +

x2

n

)−(n+1)/2

, −∞ < x < ∞.

Then, by Exercise 1.4, we have fn(x) → f(x), x ∈ R, as n → ∞. It follows

that fn(X)/f(X)
L1−→ 1 as n → ∞. It should be pointed out that the L1

convergence may not hold if f(x) is not the true distribution of X , even
if fn(x) → f(x) for every x. For example, suppose that in the Example 2.16
involving the t-distribution, the distribution ofX is N(0, 2) instead of N(0, 1);
then, clearly, we still have fn(x) → f(x), x ∈ R [f(x) has not changed; only

that X ∼ f(x) no longer holds]. However, it is not true that fn(X)/f(X)
L1

−→
1. This is because, otherwise, by the inequality

fn(X)

f(X)
≤ 1 +

∣∣∣∣fn(X)

f(X)
− 1

∣∣∣∣ ,
we would have

E

{
fn(X)

f(X)

}
≤ 1 + E

(∣∣∣∣fn(X)

f(X)
− 1

∣∣∣∣)
≤ 2

for large n. However,

E

{
fn(X)

f(X)

}
=

∫
fn(x)

f(x)

1√
4π

e−x2/4 dx

=
1√
2

∫
Γ{(n+ 1)/2}√
nπΓ (n/2)

(
1 +

x2

n

)−(n+1)/2

ex2/4 dx

= ∞.

We conclude this section by revisiting the example that began the section.

Example 2.1 (continued). It is clear now that CLT means convergence in

distribution—that is, ξn =
√
n(X̄ − μ)

d−→ ξ ∼ N(0, σ2)—but this does not
necessarily imply var(

√
nX̄) = E(ξ2n) → E(ξ2) = σ2 (see an extension of parts

of Theorem 2.17 in Section 2.7, where the convergence in probability condition
is weakened to convergence in distribution). In fact, the CLT even holds in
some situations where the variance of the Xi’s do not exist (see Chapter 6).

2.6 Case study: χ2-test

One of the celebrated results in classical statistics is Pearson’s χ2 goodness-
of-fit test, or simply χ2-test (Pearson 1900). The test statistic is given by

χ2 =

M∑
k=1

(Ok − Ek)2

Ek
, (2.23)
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where M is the number of cells into which n observations are grouped, Ok

and Ek are the observed and expected frequencies of the kth cell, 1 ≤ k ≤ M ,
respectively. The expected frequency of the kth cell is given by Ek = npk,
where pk is the known cell probability of the kth cell evaluated under the
assumed model. The asymptotic theory associated with this test is simple:

Under the null hypothesis of the assumed model, χ2 d−→ χ2
M−1 as n → ∞.

One good feature of Pearson’s χ2-test is that it can be used to test an ar-
bitrary probability distribution, provided that the cell probabilities are com-
pletely known. However, the latter actually is a serious constraint, because in
practice the cell probabilities often depend on certain unknown parameters
of the probability distribution specified by the null hypothesis. For example,
under the normal null hypothesis, the cell probabilities depend on the mean
and variance of the normal distribution, which may be unknown. In such a
case, intuitively one would replace the unknown parameters by their estima-
tors and thus obtain the estimated Ek, say Êk, 1 ≤ k ≤ M . The test statistic
(2.23) then becomes

χ̂2 =
M∑

k=1

(Ok − Êk)2

Êk

. (2.24)

However, this test statistic may no longer have an asymptotic χ2-distribution.
In a simple problem of assessing the goodness-of-fit to a Poisson or Multi-

nomial distribution, it is known that the asymptotic null-distribution of (2.24)
is χ2

M−p−1, where p is the number of parameters estimated by the maximum
likelihood method. This is the famous “subtract one degree of freedom for
each parameter estimated” rule taught in many elementary statistics books
(e.g., Rice 1995, pp. 242). However, the rule may not be generalizable to other
probability distributions. For example, this rule does not even apply to testing
normality with unknown mean and variance, as mentioned above. Note that
here we are talking about MLE based on the original data, not the MLE based
on cell frequencies. It is known that the rule applies in general to MLE based
on cell frequencies. However, the latter are less efficient than the MLE based
on the original data except for special cases where the two are the same, such
as the above Poisson and Multinomial cases.

R. A. Fisher was the first to note that the asymptotic null-distribution of
(2.24) is not necessarily χ2 (Fisher 1922a). He showed that if the unknown
parameters are estimated by the so-called minimum chi-square method, the
asymptotic null-distribution of (2.24) is still χ2

M−p−1, but this conclusion may
be false if other methods of estimation (including the ML) are used. Note that
there is no contradiction of Fisher’s result with the above results related to
Poisson and Multinomial distributions, because the minimum chi-square es-
timators and the MLE are asymptotically equivalent when both are based
on cell frequencies. A more thorough result was obtained by Chernoff and
Lehmann (1954), who showed that when the MLE based on the original ob-
servations are used, the asymptotic null-distribution of (2.24) is not necessarily
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χ2, but instead a “weighted” χ2, where the weights are eigenvalues of certain
nonnegative definite matrix. Note that the problem is closely related to the
first example given in the Preface of this book. See Moore (1978) for a nice
historical review of the χ2-test.

There are two components in Pearson’s χ2-test: the (observed) cell fre-
quencies, Ok, 1 ≤ k ≤ M , and the cell probabilities, pk, 1 ≤ k ≤ M . Although
considerable attention has been given to address the issue associated with the
χ2-test with estimated cell probabilities, there are situations in practice where
the cell frequencies also need to be estimated. The following is an example.

Example 2.17 (Nested-error regression). Consider a situation of clustered
observations. Let Yij denote the jth observation in the ith cluster. Suppose
that Yij satisfies the following nested-error regression model:

Yij = x′ijβ + ui + eij ,

i = 1, . . . , n, j = 1, . . . , b, where xij is a known vector of covariates, β is an
unknown vector of regression coefficients, ui is a random effect, and eij is an
additional error term. It is assumed that the ui’s are i.i.d. with distribution
F that has mean 0, the eij ’s are i.i.d. with distribution G that has mean 0,
and the ui’s and eij ’s are independent. Here, both F and G are unknown.
Note that this is a special case of the (non-Gaussian) linear mixed models,
which we will further discuss in Chapter 12. The problem of interest here is to
test certain distributional assumptions about F and G; that is, H0: F = F0

and G = G0, where F0 and G0 are known up to some dispersion parameters.
Let Ȳi· = b−1

∑b
j=1 Yij , x̄i· = b−1

∑b
j=1 xij , and ēi· = b−1

∑b
j=1 eij . Consider

Xi = Ȳi· − x̄′i·β = ui + ēi·, 1 ≤ i ≤ n, where β is the vector of true regression
coefficients. It is easy to show (Exercise 2.36) that X1, . . . , Xn are i.i.d. with
a distribution whose cf is given by

c(t) = c1(t)

{
c2

(
t

b

)}b

, (2.25)

where c1 and c2 represent the cf of F and G, respectively. If β were known,
one would consider the Xi’s as i.i.d. observations, based on which one could
compute the cell frequencies and then apply Pearson’s χ2-test (with estimated
cell probabilities). However, because β is unknown, the cell frequencies are not

observable. In such a case, it is natural to consider X̂i = Ȳi· − x̄′i·β̂, where β̂

is an estimator of β, and compute the cell frequencies based on the X̂i’s. This
leads to a situation where the cell frequencies are estimated.

Jiang, Lahiri, and Wu (2001) extended Pearson’s χ2-test to situations
where both the cell frequencies and cell probabilities have to be estimated.
In the remaining part of this section we describe their approach without giv-
ing all of the details. The details are referred to the reference above. Let Y
be a vector of observations whose joint distribution depends on an unknown
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vector of parameters, θ. Suppose that Xi(θ) = Xi(y, θ) satisfy the following
conditions: (i) for any fixed θ, X1(θ), . . . , Xn(θ) are independent; and (ii) if θ
is the true parameter vector, X1(θ), . . . , Xn(θ) are i.i.d.

Example 2.17 (continued). If we let θ = β andXi(θ) = Ȳi·−x̄′i·β, 1 ≤ i ≤ n,
then conditions (i) and (ii) are satisfied (Exercise 2.36).

Let Ck, 1 ≤ k ≤ M be disjoint subsets of R such that ∪M
k=1Ck covers the

range of Xi(θ), 1 ≤ i ≤ n. Define pi,k(θ, θ̃) = Pθ{Xi(θ̃) ∈ Ck}, 1 ≤ k ≤ M ,

and pi(θ, θ̃) = [pi,k(θ, θ̃)]1≤k≤M . Here, Pθ denotes the probability given that
θ is the true parameter vector. Note that under assumption (ii), pi(θ, θ) does
not depend on i (why?). Therefore, it will be denoted by p(θ) = [pk(θ)]1≤k≤M .

If θ were known, one would have observed Xi(θ) and hence compute the
χ2 statistic (2.24); that is,

χ̂2
0 =

M∑
k=1

{Ok(θ) − npk(θ)}2

npk(θ)
, (2.26)

where Ok(θ) =
∑n

i=1 1{Xi(θ)∈Ck}. Here, pk(θ) is computed under the null
hypothesis. However, Ok(θ) is not observable, because θ is unknown. Instead,

we compute an estimated cell frequency, Ok(θ̂) =
∑n

i=1 1{Xi(θ̂)∈Ck}, where θ̂

is an estimator of θ. If we replace Ok(θ) by Ok(θ̂) and pk(θ) by pk(θ̂) in (2.26),
we come up with the following χ2 statistic:

χ̂2
e =

M∑
k=1

{Ok(θ̂) − npk(θ̂)}2

npk(θ̂)
. (2.27)

Here, the subscript e represents “estimated” (frequencies).
Our goal is to obtain the asymptotic distribution of χ2

e . In order to do

so, we need some regularity conditions, including assumptions about θ̂. We
assume that pi(θ, θ̃) is two times continuously differentiable with respect to θ
and θ̃. Let θ denotes the true parameter vector. We assume that pk(θ) > 0,
1 ≤ k ≤ M , and there is δ > 0 such that the following are bounded:

sup
|θ̃−θ|<δ

∥∥∥∥ ∂

∂θ̃′
pi(θ, θ̃)

∥∥∥∥ ,
sup

|θ̃−θ|<δ

∥∥∥∥ ∂2

∂θ∂θ̃′
pi,k(θ, θ̃)

∥∥∥∥ ,
sup

|θ1−θ|<δ,|θ2−θ|<δ

∥∥∥∥ ∂2

∂θ1∂θ′2
pi,k(θ1, θ2)

∥∥∥∥ ,
1 ≤ k ≤ M , 1 ≤ i ≤ n (see Appendix A.1 for notation of matrix norms and
differentiation). Furthermore, we assume that for fixed θ̃, Xi(θ̃), 1 ≤ i ≤ n,

are independent of θ̂, and θ̂ satisfies



2.6 Case study: χ2-test 41

√
n(θ̂ − θ)

d−→ N{0, A(θ)}, (2.28)

where the covariance matrix A(θ) may be singular. Then the asymptotic dis-
tribution of χ2

e is the same as the distribution of

r∑
j=1

(1 + λj)Z
2
j +

M−1∑
j=r+1

Z2
j , (2.29)

where r = rank{B(θ)} with

B(θ) = diag{p(θ)}−1/2Q(θ)A(θ)Q(θ)′ diag{p(θ)}−1/2, (2.30)

Q(θ) = lim
n→∞

1

n

n∑
i=1

∂

∂θ′
pi(θ, θ̃)

∣∣∣∣
θ̃=θ

(2.31)

(see Appendix A.4 for notation), λj , 1 ≤ j ≤ r are the positive eigenvalues of
B(θ), and Zj , 1 ≤ j ≤M − 1 are independent N(0, 1) random variables.

Note that in spite of the fact that pi(θ, θ) = p(θ), (∂/∂θ′)pi(θ, θ̃)|θ̃=θ is
not necessarily equal to (∂/∂θ′)p(θ) (Exercise 2.37). Therefore, the right side
of (2.31) is not necessarily equal to (∂/∂θ′)p(θ).

Comparing the above result with the well-known results about the χ2-test
(e.g., Chernoff and Lehmann 1954), we observe the following:

(i) If no parameter is estimated, the asymptotic distribution of χ̂2
0, defined

by (2.26), is the same as that of
∑M−1

j=1 Z2
j .

(ii) If the parameters are estimated by the MLE based on the cell fre-
quencies, the asymptotic distribution of the resulting χ2 statistic, say, χ̂2

2,

is the same as that of
∑M−s−1

j=1 Z2
j , where s is the number of (independent)

parameters estimated.
(iii) If the parameters are estimated by the MLE based on the original data,

the asymptotic distribution of the resulting χ2 statistic, say, χ̂2
1, is the same as

that of
∑M−s−1

j=1 Z2
j +
∑M−1

j=M−s μjZ
2
j , where 0 ≤ μj ≤ 1, M − s ≤ j ≤M − 1.

It is interesting to note that, stochastically, we have

M−s−1∑
j=1

Z2
j ≤

M−s−1∑
j=1

Z2
j +

M−1∑
j=M−s

μjZ
2
j

≤
M−1∑
j=1

Z2
j ≤

r∑
j=1

(1 + λj)Z
2
j +

M−1∑
j=r+1

Z2
j . (2.32)

The interpretation is the following. In χ̂2
1 and χ̂2

2, θ̂ is computed from the same

data, whereas in χ2
e, θ̂ is obtained from an independent source. When using the

same data to compute the cell frequencies and estimate θ, the overall variation
tends to reduce. To see this, consider a simple example in whichX1, . . . , Xn are
i.i.d. ∼ Bernoulli(p), where p is unknown. The observed frequency forXi = 1 is
O1 =

∑n
i=1Xi; the expected frequency is E1 = np, so (O1−E1)

2 = (O1−np)2.
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However, if one estimates p by its MLE, p̂ = O1/n, one has Ê1 = np̂ = O1;
therefore, (O1 − Ê1)

2 = 0 (i.e., there is no variation). On the other hand, if

θ̂ is obtained from an independent source, it introduces additional variation,
which is the implication of (2.32).

The assumption that θ̂ is independent with Xi(θ̃), 1 ≤ i ≤ n, for fixed
θ̃ may seem a bit restrictive. On the other hand, in some cases, information
obtained from previous studies can be used to obtain θ̂. In such a case, it
may be reasonable to assume that θ̂ is independent with Xi(θ̃), 1 ≤ i ≤ n, if
the latter are computed from the current data. Another situation that would
satisfy the independence requirement is when θ̂ is obtained by data-splitting.
See Jiang, Lahiri, and Wu (2001).

We give an outline of the derivation of the asymptotic distribution of χ̂2
e .

The detail can be found in Jiang, Lahiri, and Wu (2001). First, note that

χ̂2
e = |ξn|2, where ξn is the random vector diag{np(θ̂)}−1/2{O(θ̂) − np(θ̂)}

with O(θ) = [Qk(θ)]1≤k≤M . The first step is to show

ξn
d−→ N{0, Σ(θ) +B(θ)} (2.33)

as n → ∞, where

Σ(θ) = IM −
{
p(θ)1/2

}{
p(θ)1/2

}′
,

with p(θ)1/2 = [pk(θ)1/2]1≤k≤M . By Theorem 2.14, (2.33) is equivalent to

λ′ξn
d−→ N [0, λ′{Σ(θ) +B(θ)}λ] (2.34)

as n → ∞ for any λ ∈ RM . According to Theorem 2.11, (2.34) is, in turn,
equivalent to that the cf of λ′ξn converges to the cf of the right side of (2.34).
However, this is equivalent to

E{exp(iλ′ξn)} −→ exp

[
−1

2
λ′{Σ(θ) +B(θ)}λ

]
(2.35)

as n → ∞ for any λ ∈ RM (Exercise 2.38). To show (2.35), we express ξn as

ξn = ηn + ζn + γn, (2.36)

where

ηn = diag{np(θ̂)}−1/2

{
O(θ̂) −

n∑
i=1

pi(θ, θ̂)

}
,

ζn = −diag{p(θ̂)}−1/2

{
1

n

n∑
i=1

∂

∂θ′
pi(θ, θ̃)

∣∣∣∣
θ̃=θ

}
n1/2(θ̂ − θ),

and γn satisfies the following: There is a constant c such that for any ε > 0,
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|γn| ≤ c(n|θ̂ − θ|2)n−1/2 if |θ̂ − θ| ≤ ε.

The idea for the proof of (2.35) is therefore to show that, as n → ∞, ηn and ζn
are the leading terms in (2.36) and γn is negligible. In fact, the contribution
of Σ(θ) in the asymptotic covariance matrix, Σ(θ) + B(θ) in (2.33), comes
from ηn and the contribution of B(θ) from ζn (and γn has no contribution).
In other words, we have

λ′(ηn + ζn)λ
d−→ N [0, λ′{Σ(θ) +B(θ)}λ]

and λ′γn
P−→ 0 as n → ∞. Result (2.35) then follows from Slutsky’s theorem

(Theorem 2.13).
Given that (2.33) holds, we apply Theorem 2.12 (note that a multivariate

version of the result also stands—that is, when ξn, ξ are random vectors) to
conclude

χ̂2
e = |ξn|2 d−→ |ξ|2, (2.37)

where ξ ∼ N{0, Σ(θ) + B(θ)}. It remains to determine the distribution of
|ξ2| = ξ′ξ. Write Σ = Σ(θ) and B = B(θ) and let P = {p(θ)1/2}{p(θ)1/2}′. It
can be shown (Exercise 2.39) that PB = BP = 0. Thus (see Appendix A.1),
there is an orthogonal matrix T such that

B = T diag(λ1, . . . , λr, 0, . . . , 0)T ′,

P = T diag(ρ1, . . . , ρM)T ′,

where λj > 0, 1 ≤ j ≤ r = rank(B), and ρ1, . . . , ρM are the eigenvalues of P .
Note that the latter is a projection matrix with rank 1. Therefore, ρ1, . . . , ρM

are zero except for one of them, which is 1. It follows that the distribution of
ξ′ξ is the same as that of (2.29) (Exercise 2.39).

2.7 Summary and additional results

This section provides a summary of some of the main results in this chapter
as well as some additional results. The summary focuses on the connection
between different types of convergence.

1. Almost sure (a.s.) convergence implies convergence in probability, which,
in turn, implies convergence in distribution.

2. If ξn
P−→ ξ as n → ∞, then there is a subsequence nk, k = 1, 2, . . ., such

that ξnk

a.s.−→ ξ as k → ∞.

3. ξn
P−→ ξ as n → ∞ if and only if for every subsequence nk, k = 1, 2, . . .,

there is a further subsequence nkl
, l = 1, 2, . . ., such that

ξnkl

a.s.−→ ξ as l → ∞.
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4. If for every ε > 0 we have
∑∞

n=1 P(|ξn − ξ| ≥ ε) < ∞, then ξn
a.s.−→ ξ

as n → ∞. Intuitively, this result states that convergence in probability at a
certain rate implies a.s. convergence.

The proof of the above result follows from the following lemma, which is
often useful in establishing a.s. convergence (Exercise 2.40). Let A1, A2, . . . be
a sequence of events. Define lim supAn = ∩∞N=1 ∪∞n=N An.

Lemma 2.5. (Borel–Cantelli lemma)
(i) If

∑∞
n=1 P(An) < ∞, then P(lim supAn) = 0.

(ii) If A1, A2, . . . are pairwise independent and
∑∞

n=1 P(An) = ∞, then
P(lim supAn) = 1.

5. Lp convergence for any p > 0 implies convergence in probability.

6. (Dominated convergence theorem) If ξn
P−→ ξ as n → ∞ and there is a

random variable η such that E(ηp) < ∞ and |ξn| ≤ η, n ≥ 1, then ξn
Lp−→ ξ

as n → ∞ and E(|ξ|p) <∞.
Let an, n = 1, 2, . . ., be a sequence of constants. The sequence converges

increasingly to a, denoted by an ↑ a, if an ≤ an+1, n ≥ 1 and limn→∞ an = a.
Similarly, let ξn, n = 1, 2, . . ., be a sequence of random variables. The sequence
converges increasingly a.s. to ξ, denoted by ξn ↑ ξ a.s., if ξn ≤ ξn+1 a.s., n ≥ 1,
and limn→∞ ξn = ξ a.s.

7. (Monotone convergence theorem) If ξn ↑ ξ a.s. and ξn ≥ η a.s. with
E(|η|) < ∞, then E(ξn) ↑ E(ξ). The result does not imply, however, that E(ξ)
is finite. So, if E(ξ) = ∞, then E(ξn) ↑ ∞. On the other hand, we must have
E(ξ) > −∞ (why?).

8. If
∑∞

n=1 E(|ξn − ξ|p) < ∞ for some p > 0, then ξn
a.s.−→ ξ as n →

∞. Intuitively, this means that Lp convergence at a certain rate implies a.s.
convergence (Exercise 2.40).

The following theorem is useful in establishing the connection between
convergence in distribution and other types of convergence.

Theorem 2.18 (Skorokhod representation theorem). If ξn
d−→ ξ as n →

∞, then there are random variables ηn, n = 1, 2, . . ., and η defined on a
common probability space such that ηn has the same distribution as ξn, n =
1, 2, . . ., and η has the same distribution as ξ, and ηn

a.s.−→ η as n → ∞.

With Skorokhod’s theorem we can extend part of Theorem 2.17 as follows.

9. If ξn
d−→ ξ as n → ∞, then the following are equivalent:

(i) ξn, n = 1, 2, . . ., is uniformly integrable in Lp.
(ii) E(|ξn|p) → E(|ξ|p) < ∞ as n → ∞.

10. ξn
d−→ ξ as n → ∞ is equivalent to cn(t) → c(t) as n → ∞ for every

t ∈ R, where cn(t) is the cf of ξn, n = 1, 2, . . ., and c(t) the cf of ξ.
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11. If there is δ > 0 such that the mgf of ξn, mn(t), converges to m(t) as

n → ∞ for all t such that |t| < δ, where m(t) is the mgf of ξ, then ξn
d−→ ξ

as n → ∞.
12. ξn

d−→ ξ is equivalent to any of the following:
(i) limn→∞ E{h(ξn)} = E{h(ξ)} for every bounded continuous function h.
(ii) lim sup P(ξn ∈ C) ≤ P(ξ ∈ C) for any closed set C.
(iii) lim inf P(ξn ∈ O) ≥ P(ξ ∈ O) for any open set O.
13. Let fn(x) and f(x) be the pdfs of ξn and ξ, respectively, with respect

to a σ-finite measure μ (see Appendix A.2). If fn(x) → f(x) a.e. μ as n→ ∞,

then ξn
d−→ ξ as n → ∞.

14. Let g be a continuous function. Then we have the following:
(i) ξn

a.s.−→ ξ implies g(ξn)
a.s.−→ g(ξ) as n → ∞;

(ii) ξn
P−→ ξ implies g(ξn)

P−→ g(ξ) as n → ∞;

(iii) ξn
d−→ ξ implies g(ξn)

d−→ g(ξ) as n → ∞.

15. (Slutsky’s theorem) If ξn
d−→ ξ and ηn

P−→ c, where c is a constant,
then the following hold:

(i) ξn + ηn
d−→ ξ + c;

(ii) ηnξn
d−→ cξ;

(iii) ξn/ηn
d−→ ξ/c, if c �= 0.

2.8 Exercises

2.1. Complete the definition of the sequence of random variables ξn, n =
1, 2, . . ., in Example 2.1 (i.e., define ξn for a general index n). Show that

ξn
P−→ 0 as n → ∞; however, ξn(x) does not converge pointwisely at any

x ∈ [0, 1].
2.2. Use Chebyshev’s inequality (see Section 5.2) to prove Theorem 2.1.
2.3. Use the ε-δ argument to prove Theorem 2.2.
2.4. Use the ε-δ argument to prove Theorem 2.3.
2.5. Use the ε-δ argument to prove Theorem 2.4.
2.6. Use Theorem 2.5 and the ε-δ argument to prove Theorem 2.6.
2.7. Let X1, . . . , Xn be independent random variables with a common dis-

tribution F . Define

ξn =
max1≤i≤n |Xi|

an
, n ≥ 1,

where an, n = 1, 2, . . ., is a sequence of positive constants. Determine an for

the following cases such that ξn
P−→ 0 as n → ∞:

(i) F is the Uniform[0, 1] distribution.
(ii) F is the Exponential(1) distribution.
(iii) F is the N(0, 1) distribution.
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(iv) F is the Cauchy(0, 1) distribution.
2.8. Continue with Problem 2.7 with an = n. Show the following:

(i) If E(|X1|) < ∞, then ξn
L1−→ 0 as n → ∞.

(ii) If E(X2
1 ) <∞, then ξn

a.s.−→ 0 as n → ∞.
Hint: For (i), first show that for any a > 0,

max
1≤i≤n

|Xi| ≤ a+
n∑

i=1

|Xi|1(|Xi|>a).

For (ii), use Theorem 2.8 and also note that by exchanging the order of sum-
mation and expectation, one can show for any ε > 0,

∞∑
n=1

nP(|X1| > εn) < ∞.

2.9. Suppose that for each 1 ≤ j ≤ k, ξn,j , n = 1, 2, . . ., is a sequence of

random variables such that ξn,j
P−→ 0 as n → ∞. Define ξn = max1≤j≤k |ξn,j |.

(i) Show that if k is fixed, then ξn
P−→ 0 as n → ∞.

(ii) Give an example to show that if k increases with n (i.e., k = kn → ∞
as n → ∞), the conclusion of (i) may not be true.

2.10. Let ξ1, ξ2, . . . be a sequence of random variables. Show that ξn
P−→ 0

as n → ∞ if and only if

E

( |ξn|
1 + |ξn|

)
−→ 0 as n → ∞.

2.11. Prove Lemma 2.1 using the ε-δ argument. Then use Lemma 2.1 to
establish Theorem 2.7.

2.12. Show by similar arguments as in Example 2.7 that I2 ≤ ce−ε
√

n,
where the notations refer to Example 2.7.

2.13. Verify that the infinite series
∑∞

i=1 e
−ε
√

n converges. This result was
used at the end of Example 2.7.

2.14. Suppose that X1, . . . , Xn are i.i.d. observations with finite expecta-
tion. Show that in the following cases the sample mean X̄ = (X1+ · · ·+Xn)/n
is a strongly consistent estimator of the population mean, μ = E(X1)—that

is, X̄
a.s.−→ μ as n → ∞.

(i) X1 ∼ Binomial(m, p), wherem is fixed and p is an unknown proportion.
(ii) X1 ∼ Uniform[a, b], where a and b are unknown constants.
(iii) X1 ∼ N(μ, σ2), where μ and σ2 are unknown parameters.
2.15. Suppose that X1, X2, . . . are i.i.d. with a Cauchy(0, 1) distribution;

that is, the pdf of Xi is given by

f(x) =
1

π(1 + x2)
, −∞ < x <∞.
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Find a positive number δ such that n−δX(n) converges in distribution to a
nondegenerate distribution, where X(n) = max1≤i≤n Xi. What is the limiting
distribution?

2.16. Suppose that X1, . . . , Xn are i.i.d. Exponential(1) random variables.
Define X(n) as in Exercise 2.15. Show that

X(n) − log(n)
d−→ ξ

as n → ∞, where the cdf of ξ is given by

F (x) = exp{− exp(−x)}, −∞ < x < ∞.

2.17. Let X1, X2, . . . be i.i.d. Uniform(0, 1] random variables and ξn =
(
∏n

i=1Xi)
−1/n. Show that

√
n(ξn − e)

d−→ ξ

as n → ∞, where ξ ∼ N(0, e2). (Hint: The result can be established as an
application of the CLT; see Chapter 6.)

2.18. Complete the second half of the proof of Theorem 2.9; that is,
lim supFn(x) ≤ F (x+ ε) for any ε > 0.

2.19. Give examples of a random variable ξ such that the following hold:
(i) The mgf of ξ does not exist for any t except t = 0.
(ii) The mgf of ξ exists for |t| < 1 but does not exist for |t| ≥ 1.
(iii) The mgf of ξ exists for any t ∈ R.
2.20. Show that the integrand in (2.10) is bounded in absolute value, and

therefore the expectation exists for any t ∈ R.
2.21. Suppose that ξn ∼ tn, n = 1, 2, . . .. Show that the following hold:

(i) ξn
d−→ ξ ∼ N(0, 1).

(ii) mn(t) = E(etξn) = ∞, ∀t �= 0.

(iii) m(t) = E(etξ) = et2/2, t ∈ R.
2.22. Derive the results of Lemma 2.2.
2.23. Derive the results of Lemma 2.3.
2.24. (i) Suppose that ξ ∼ Binomial(n, p). Show thatmξ(t) = (pet+1−p)n.

(ii) Show that (pne
t + 1 − pn)n → exp{λ(et − 1)} as n → ∞, t ∈ R, provided

that npn → λ as n → ∞.
2.25. Suppose that X1, . . . , Xn are i.i.d. with the pdf

f(x) =
1 − cos(x)

πx2
, −∞ < x < ∞.

(i) Show that the mgf of Xi does not exist.
(ii) Show that the cf of Xi is given by max(1 − |t|, 0), t ∈ R.
(iii) Show that the cf of X̄ = n−1

∑n
i=1Xi is given by{

max

(
1 − |t|

n
, 0

)}n

,
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which converges to e−|t| as n → ∞.

(iv) Show that the cf of ξ ∼ Cauchy(0, 1) is e−|t|, t ∈ R. Therefore, X̄
d−→ ξ

as n → ∞.
2.26. Prove Theorem 2.13.
2.27. Let X1, . . . , Xn be i.i.d Bernoulli(p) observations. Show that{

n

p(1 − p)

}1/2

(p̂− p)
d−→ N(0, 1) as n → ∞,

where p̂ is the sample proportion which is equal to (X1 + · · · + Xn)/n. This
result is also known as normal approximation to binomial distribution. (Of
course, the result follows from the CLT, but here you are asked to show it
directly—without using the CLT.)

2.28. Suppose that ξn
P−→ ξ as n → ∞ and g is a bounded continuous

function. Show that g(ξn)
Lp

−→ g(ξ) as n → ∞ for every p > 0.
2.29. Let X ∼ Uniform(0, 1). Define ξn = 2n−11(0<X<1/n), n = 1, 2, . . ..

(i) Show that ξn
a.s.−→ 0 as n → ∞.

(ii) Show that ξn, n = 1, 2, . . ., does not converge to zero in Lp for any
p > 0.

2.30. Prove Theorem 2.15 using Chebyshev’s inequality (see Section 5.2).
2.31. Use Skorokhod’s theorem (Theorem 2.18) to prove the first half of

Theorem 2.11; that is, convergence in distribution implies convergence of the
characteristic function.

2.32. Prove that the inequality (2.16) holds for any p > 0. Note that for
p ≥ 1, this follows from the convex function inequality, but the inequality
holds for 0 < p < 1 as well.

2.33. Complete the proof of Theorem 2.17 (i) ⇒ (ii) using the argument
of subsequences (see §1.5.1.6).

2.34. Use the dominated convergence theorem (Theorem 2.16) to show
(2.20). Also show that E(||ξn|p − |ξ|p|) → 0 implies E(|ξn|p) → E(|ξ|p) as
n → 0.

2.35. Refer to the (iii) ⇒ (i) part of the proof of Theorem 2.17.

(i) Show that ηn
P−→ η as n → ∞.

(ii) Show that it is not necessarily true that |ξn|p1(|ξn|≤a)
P−→ |ξ|p1(|ξ|≤a)

as n → ∞.
2.36. This exercise refers to Example 2.17.
(i) Show that X1, . . . , Xn are i.i.d. with a distribution whose cf is given by

(2.25).
(ii) If we define Xi(θ) = Ȳi· − x̄′i·β for an arbitrary θ = β (not necessarily

the true parameter vector), then conditions (i) and (ii) are satisfied.
2.37. Consider the function f(x, y) = x2 + y2. Show that

∂

∂x
f(x, y)

∣∣∣∣
y=x

�= ∂

∂x
f(x, x).
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2.38. Show that (2.33) is equivalent to that (2.35) holds for every λ ∈ RM .
2.39. Regarding the distribution of |ξ|2 = ξ′ξ in (2.37), show the following

[see the notation below (2.37)]:
(i) PB = BP = 0.
(ii) P is a projection matrix with rank 1.
(iii) The distribution of ξ′ξ is the same as (2.29), where Z1, . . . , ZM−1 are

independent standard normal random variables.
2.40. Use the Borel–Cantelli lemma (Lemma 2.5) to prove the following:

(i) If for every ε > 0 we have
∑∞

n=1 P(|ξn − ξ| ≥ ε) <∞, then ξn
a.s.−→ ξ as

n → ∞.
(ii) If

∑∞
n=1 E(|ξn − ξ|p) < ∞ for some p > 0, then ξn

a.s.−→ ξ as n → ∞.
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Big O, Small o, and the Unspecified c

3.1 Introduction

One of the benefits of using large-sample techniques is that it allows us to
separate important factors from those that have minor impact and to replace
quantities by equivalents that are of simpler form. For example, recall Exam-
ple 2 in the Preface. Here, the problem is to estimate the mean of a random
variable. In the first case, the mean can be expressed as E(

∑n
i=1 Xi), where

X1, . . . , Xn are i.i.d. observations with E(Xi) = μ �= 0. In this case, as men-
tioned, one could estimate the mean by simply removing the expectation sign,
that is, by

∑n
i=1 Xi. The reason can be seen easily because, according to the

WLLN, X̄ = n−1
∑n

i=1Xi is a consistent estimator of μ; therefore, it makes
sense to estimate E(

∑n
i=1 Xi) = nμ by nX̄ =

∑n
i=1 Xi. Here is another look

at this method, which may be easier to generalize to cases where the Xi’s are
not i.i.d. Note that we can write

E

(
n∑

i=1

Xi

)
=

n∑
i=1

Xi −
{

n∑
i=1

Xi − E

(
n∑

i=1

Xi

)}
= I1 − I2. (3.1)

Now, compare the orders of I1 and I2. Suppose that the Xi’s have finite
variance, say, 0 < σ2 < ∞. Then the order of I1 is O(n), and that of I2

is O(
√
n). To see this, note that, by the WLLN, we have n−1

∑n
i=1 Xi

P−→
μ �= 0, which explains I1 = O(n). On the other hand, it is easy to show that
E(I2

2 ) = nσ2, or E(I2/
√
n)2 = σ2. This implies that I2/

√
n is bounded in L2;

hence, I2/
√
n = O(1), or I2 = O(

√
n). Here we are using the notation big

O and small o for random variables (note that both I1 and I2 are random
variables), which will be carefully defined in the sequel. Given the orders of
I1 and I2, it is easy to see why it is reasonable to approximate the left side of
(3.1) by I1—because it captures the main part of it.

Now, consider the second case of Example 2 in the Preface, where the inter-
est is to estimate E(

∑n
i=1 Xi)

2, assuming μ = 0. Does the previous technique

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_3, © Springer Science+Business Media, LLC 2010
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still work? Well, formally one can still write

E

(
n∑

i=1

Xi

)2

=

(
n∑

i=1

Xi

)2

−
⎧⎨⎩
(

n∑
i=1

Xi

)2

− E

(
n∑

i=1

Xi

)2
⎫⎬⎭

= I1 − I2. (3.2)

The question is whether it works the same way. To answer this question, we,
once again, compare the orders of I1 and I2. According to the CLT, we have

(
√
nσ)−1

∑n
i=1 Xi

d−→ N(0, 1); hence, by Theorem 2.12,

(
∑n

i=1 Xi)
2

nσ2

d−→ χ2
1, (3.3)

(
∑n

i=1 Xi)
2

nσ2
− 1

d−→ χ2
1 − 1 (3.4)

as n → ∞. Result (3.3) implies that I1 = O(n). Furthermore, since

(
∑n

i=1 Xi)
2 − E (

∑n
i=1Xi)

2

nσ2
=

(
∑n

i=1 Xi)
2

nσ2
− 1,

(3.4) implies that I2 = O(n). Thus, the two terms on the right side of (3.2)
are of the same order; hence, it is not a good idea to simply approximate the
left side by the first term (because then one ignores a major part of it). In
conclusion, the previous technique no longer works.

As mentioned, the techniques used here involve the notation big O and
small o, but please keep in mind that they are more than just notation. The
operation of big O and small o, and later an unspecified constant c, is an art
in large-sample techniques.

3.2 Big O and small o for sequences and functions

We begin with constant infinite sequences. An infinite sequence an, n =
1, 2, . . ., is O(1) if it is bounded; that is, there is a constant c such that |an| ≤ c,
n ≥ 1. The concept can be generalized. Let bn, n = 1, 2, . . ., be a positive in-
finite sequence. We say an = O(bn) if the sequence an/bn, n = 1, 2, . . ., is
bounded. The simple lemma below gives an alternative expression.

Lemma 3.1. an = O(bn) if and only if an = bnO(1).

The proof is straightforward from the definition.
Now, the definition of o. A sequence an, n = 1, 2, . . . is, o(1) if an → 0 as

n → ∞. More generally, let bn, n = 1, 2, . . ., be a positive infinite sequence.
We say an = o(bn) if an/bn → 0 as n → ∞. Similar to Lemma 3.1, we have
the following.
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Lemma 3.2. an = o(bn) if and only if an = bno(1).

Below are some simple facts and rules of operation for O and o (Exercises
3.1 and 3.2).

Lemma 3.3. If an = o(bn), then an = O(bn).

Lemma 3.4 (Properties of O and o).
(i) If an = O(bn) and bn = O(cn), then an = O(cn).
(ii) If an = O(bn) and bn = o(cn), then an = o(cn).
(iii) If an = o(bn) and bn = O(cn), then an = o(cn).
(iv) If an = o(bn) and bn = o(cn), then an = o(cn).

Lemma 3.5 (Properties of O and o).
(i) If an = O(bn), then for any p > 0, |an|p = O(bpn).
(ii) If an = o(bn), then for any p > 0, |an|p = o(bpn).
In particular, if an = O(bn) [o(bn)], then |an| = O(bn) [o(bn)].

However, the properties of Lemma 3.5 cannot be generalized without cau-
tion. This means that an = O(bn) does not imply g(an) = O{g(bn)} for any
(increasing) function g; likewise, an = o(bn) does not imply g(an) = o{g(bn)}
for any (increasing) function g.

Example 3.1. Consider an = n and bn = 2n. Then, clearly, we have an =
O(bn). However, ean/ebn = en/e2n = e−n → 0 as n → ∞. Therefore, ean =
o(ebn) instead of O(ebn ).

Example 3.2. This time consider an = n and bn = n2, then an = o(bn).
However, log(an) = log(n) and log(bn) = 2 log(n), so log(an) = O{log(bn)}
instead of o{log(bn)}.

Among the infinite sequences that are commonly in use, we have the fol-
lowing results, where 0 < p < 1 < q < ∞. For each of the sequences below we
have an = o(bn) if bn is a sequence to the right of an [e.g., np = o(nq)].

. . . , log log(n), . . . ,

. . . , {log(n)}p, . . . , log(n), . . . , {log(n)}q, . . . ,

. . . , np, . . . , n, . . . , nq, . . .

. . . , enp

, . . . , en, . . . , enq

, . . . ,

. . . , n!, . . . , nn, . . . . (3.5)

By the lemma below, if we take the reciprocals of the sequences in (3.5), we
get the small o relationships in the reversed order. For example, n−q = o(n−p).

Lemma 3.6. If an and bn are nonzero and an = o(bn), then b−1
n = o(a−1

n ).
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The concepts of O and o can be extended to functions of a real variable, x.
Let f(x) be a function of x. First, consider the case x → 0. We say f(x) = O(x)
if f(x)/x is bounded as x → 0 (but x �= 0) and f(x) = o(x) if f(x)/x → 0
as x → 0 (but x �= 0). Similarly, for the case x → ∞, we say f(x) = O(x)
if f(x)/x is bounded and f(x) = o(x) if f(x)/x → 0. More generally, for
any x0 and p ≥ 0, we say, as x → x0 (but x �= x0), f(x) = O(|x − x0|p)
if f(x)/|x − x0|p is bounded and f(x) = o(|x − x0|p) if f(x)/|x − x0|p → 0;
also, as |x| → ∞, f(x) = O(|x|p) if f(x)/|x|p is bounded and f(x) = o(|x|p)
if f(x)/|x|p → 0.

Example 3.3. Let p and q be positive integers. Consider

f(x) =
apx

p + ap−1x
p−1 + · · · + a1x+ a0

bqxq + bq−1xq−1 + · · · + b1x+ b0
.

First, assume that ap and bq are nonzero. Then, as |x| → ∞, f(x) = o(1) if
p < q; f(x) = O(1) if p = q and 1/f(x) = o(1) if p > q. Now, assume b0 �= 0.
Then as x→ 0, f(x) = O(1) regardless of p and q (Exercise 3.3).

In the above example, if a0 = 0 and b0 �= 0, then f(x) = o(1) as x → 0.
Nevertheless, there is no contradition with the last conclusion of Example
3.3, because f(x) = o(1) implies that f(x) = O(1) (see Lemma 3.3). On the
other hand, in order to characterize the orders of sequences or functions more
precisely, we need the following definitions. Two sequences, an and bn, are of
the same order, denoted by an ∝ bn, if both an/bn and bn/an are bounded; the
two sequences are asymptotically equivalent, denoted by an ∼ bn, if an/bn → 1
as n → ∞. It is clear from the definition that an ∝ bn if and only if bn ∝ an.
The definitions can be easily extended to functions. For example, f(x) ∼ xp

as x→ ∞ means that f(x)/xp → 1 as x → ∞.

Example 3.4 (Stirling’s formula). Stirling’s approximation, also known as
Stirling’s formula, states that

n!√
2πn(n/e)n

−→ 1 (3.6)

as n → ∞, or, using the notation just introduced,

n! ∼
√

2πn
(n
e

)n

.

Table 3.1 shows astonishing accuracy of this approximation even for small
n, where the ratio is the left side of (3.6). It is not that straightforward to
prove Stirling’s formula, especially the exact limit in (3.6) (see Exercise 3.5).
However, it is fairly easy to show that the limit of the left side of (3.6) exists.
In fact, Table 3.1 suggests that the left side of (3.6) is decreasing in n, which
is indeed true (Exercise 3.4). Since the sequence is bounded from below (by
0), by the result of §1.5.1.3 it must have a limit.
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Table 3.1. Stirling’s approximation

n Exact Approximation Ratio

1 1 0.922 1.084
2 2 1.919 1.042
3 6 5.836 1.028
4 24 23.506 1.021
5 120 118.019 1.017
6 720 710.078 1.014
7 5040 4980.396 1.012
8 40320 39902.40 1.010
9 362880 359536.9 1.009

10 3628800 3598696 1.008

3.3 Big O and small o for vectors and matrices

To extend the concepts of big O and small o to sequences of vectors and
matrices we first introduce some notation. Let v denote a k-dimensional vector
and A a k × l matrix. The Euclidean norm (or 2-norm) of v is defined as

|v| =
√∑k

j=1 v
2
j , where vj , 1 ≤ j ≤ k, are the components of v. The spectral

norm of A is defined as ‖A‖ = {λmax(A
′A)}1/2. The 2-norm of A is defined

as ‖A‖2 = {tr(A′A)}1/2. It is easy to establish the following relationships
between the two norms (Exercise 3.6).

Lemma 3.7. ‖A‖ ≤ ‖A‖2 ≤ √
k ∧ l‖A‖, where k ∧ l = min(k, l).

Due to this result, working on any of the matrix norms would be equivalent
as far as the order is concerned, provided that the dimension of the matrix
does not increase with n. For example, consider the following.

Example 3.5. Let An = n−1/2Il, where Il denotes the l-dimensional iden-
tity matrix. Then we have ‖An‖ = n−1/2 and ‖An‖2 = (l/n)1/2. If l is fixed,
then both ‖An‖ and ‖An‖2 → 0 as n → ∞. However, if l = n, we have
‖An‖ → 0 and ‖An‖2 = 1 as n → ∞.

Throughout this book we mainly use ‖ · ‖ as the norm for matrices, but
keep in mind that most of the results can be extended to ‖·‖2 if the dimension
of the matrix is fixed or bounded. Let an, n = 1, 2, . . . be a sequence of positive
numbers. Let vn, n = 1, 2, . . ., be a sequence of vectors. We say vn = O(an)
if |vn|/an is bounded and vn = o(an) if |vn|/an → 0 as n → ∞. Similarly, let
An, n = 1, 2, . . ., be a sequence of matrices. We say An = O(an) if ‖An‖/an

is bounded and An = o(an) if ‖An‖/an → 0 as n → ∞. Clearly, vn = O(an)
[o(an)] if and only if |vn| = O(an) [o(an)] and An = O(an) [o(an)] if and only
if ‖An‖ = O(an) [o(an)].
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To establish further properties we need to introduce a partial order among
matrices so that different matrices may be compared. Let A and B be k × k
matrices. The notation A ≥ B means that A − B is nonnegative definite.
Similarly, the notation A > B means that A − B is positive definite; A ≥ 0
means that A is nonnegative definite and A > 0 means that A is positive
definite. Likewise, the notation A ≤ B means that B ≥ A, and so forth.
If A ≥ 0, the square root of A, A1/2, is defined as follows. Let T be the
orthogonal matrix such that A = T diag(λ1, . . . , λk)T ′, where λj , 1 ≤ j ≤
k, are the eigenvalues of A which are nonnegative. Then A1/2 is defined as
T diag(

√
λ1, . . . ,

√
λk)T ′ .

The above definition of “≥” introduces a partial order among matrices.
This means that some, but not all, pairs of matrices are comparable. Never-
theless, in many ways such a partial order resembles the (complete) order of
real numbers. For example, the following results hold.

Lemma 3.8. Suppose that A ≥ B ≥ 0. Then we have the following:
(i) A1/2 ≥ B1/2;
(ii) A−1 ≤ B−1, if B is nonsingular.

See, for example, Chan and Kwong (1985) for the proofs of the above
results. However, an easy mistake can be made if one tries too aggresively to
extend the properties of real numbers to matrices. For example, it is not even
true that A ≥ B implies A2 ≥ B2.

Example 3.6. ConsiderA =

(
2 1
1 1

)
andB =

(
1 0
0 0

)
. Then we haveA ≥ B.

However, it is not true that A2 ≥ B2. To see this, note that

A2 −B2 =

(
5 3
3 2

)
−
(

1 0
0 0

)
=

(
4 3
3 2

)
,

which has determinant −1; hence, the difference is not nonnegative definite.
Therefore, it is important to know what are the correct results regarding

matrix comparisons and not to assume that every result in real numbers has
its matrix analogue. The following are some useful results in this regard.

Lemma 3.9. Let A and B be k × k matrices. The following statements
are equivalent:

(i) A ≥ B;
(ii) v′Av ≥ v′Bv for any k × 1 vector v;
(iii) C′AC ≥ C′BC for any k × l matrix C.

Lemma 3.10. Let A be a k × k symmetric matrix. Then, for any k × l
matrix C, we have C′AC ≤ λmax(A)C ′C.

Lemma 3.11. A ≥ B implies the following:
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(i) λmax(A) ≥ λmax(B);
(ii) λmin(A) ≥ λmin(B);
(iii) tr(A) ≥ tr(B);
(iv) tr(A2) ≥ tr(B2).

Result (iv) deserves some attention, especially in view of Example 3.6. A
proof can be given as follows:

tr(A2) = tr(A1/2AA1/2)

≥ tr(A1/2BA1/2) [Lemma 3.8 and Lemma 3.10(iii)]

= tr(B1/2AB1/2) (property of trace; see Appendix A.1)

≥ tr(B1/2BB1/2) [Lemma 3.8 and Lemma 3.10(iii)]

= tr(B2).

The proofs of (i), (ii) and (iii) are left as exercises (Exercise 3.7).

Corollary 3.1. For any j × k matrix A, k× l matrix B, and k× 1 vector
v, we have the following:

(i) |Av| ≤ ‖A‖ · |v|.
(ii) ‖AB‖ ≤ ‖A‖ · ‖B‖.
(iii) ‖A+B‖ ≤ ‖A‖ + ‖B‖.

The proof is left as an exercise (Exercise 3.8). Using the above results, it
is easy to establish the following properties of O and o, where an, bn, and cn
denote sequences of positive constants, An and Bn are sequences of matrices,
and vn is a sequence of vectors.

Lemma 3.12. If An = O(an), Bn = O(bn), and vn = O(cn), then we have
the following:

(i) Anvn = O(ancn);
(ii) AnBn = O(anbn);
(iii) An +Bn = O(an ∨ bn).

Proof. (i), (ii) and (iii) follow from (i), (ii) and (iii) of Corollary 3.11, respec-
tively. Note that an ∨ bn ≤ an + bn ≤ 2(an ∨ bn). Q.E.D.

Lemma 3.13. If An = O(an), Bn = o(bn) and vn = o(cn), then the
following hold:

(i) Anvn = o(ancn);
(ii) AnBn = o(anbn).

The proof is as straightforward as the previous one. The following defi-
nitions are often used in operation of sequences of matrices and vectors. A
sequence of square matrices An is bounded from above if An = O(1); it is
bounded from below if A−1

n = O(1). Here, by square matrix it means that An
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is k × k for some k, which may depend on n. From the definition it is clear
that An is bounded from above if and only if λmax(A

′
nAn) = O(1). As for

boundedness from below, we have the following.

Lemma 3.14. An is bounded from below if and only if there is a constant
c > 0 such that λmin(A′nAn) ≥ c, n ≥ 1.

Proof. (⇒) The definition implies that An is nonsingular and so are A′nAn

and AnA
′
n. It follows that

‖A−1
n ‖ = λmax{(A−1

n )′A−1
n }

= λmax{(A′n)−1A−1
n }

= λmax{(AnA
′
n)−1}

=
1

λmin(AnA′n)

=
1

λmin(A′nAn)
, (3.7)

and the result immediately follows. (⇐) Note that (3.7) holds as long as A′nAn

is nonsingular (note that An is required to be a square matrix). The result
thus follows. Q.E.D.

Finally, we have the following results that associate the orders of the vec-
tors and matrices to those of their components and elements.

Lemma 3.15. Let An be a kn × ln matrix and vn be a kn × 1 vector,
n = 1, 2, . . .. Furtheremore, let an and bn be sequences of positive numbers.
Suppose that both kn and ln are bounded. Then we have the following:

(i) An = O(an) [o(an)] if and only if an,ij = O(an) [o(an)] for any 1 ≤ i ≤
kn and 1 ≤ j ≤ ln, where an,ij is the (i, j) element of An;

(ii) vn = O(bn) [o(bn)] if and only if vn,i = O(bn) [o(bn)] for any 1 ≤ i ≤ kn,
where vn,i is the ith component of vn.

The proofs are left as an exercise (Exercise 3.9).

3.4 Big O and small o for random quantities

A sequence of random variables, ξn, n = 1, 2, . . ., is bounded in probability,
denoted by ξn = OP(1), if for any ε > 0, there is M > 0 and N ≥ 1 such that

P(|ξn| ≤M) > 1 − ε, n ≥ N. (3.8)

Lemma 3.16. ξn = OP(1) if and only if for any ε > 0, there is M > 0
such that

P(|ξn| ≤M) > 1 − ε, n ≥ 1. (3.9)
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Proof. (⇒) For any ε > 0, by the definition there is M > 0 and N ≥ 1 such
that (3.8) holds. On the other hand, for each 1 ≤ n ≤ N − 1, since ξn is a
random variable, there is an Mn > 0 such that P(|ξn| ≤ Mn) > 1 − ε (see
Example A.5). Let M ′ = M ∨M1 ∨ · · · ∨MN−1. Then we have

P(|ξn| ≤M ′) ≥ P(|ξn| ≤Mn) > 1 − ε

if 1 ≤ n ≤ N − 1 and

P(|ξn| ≤M ′) ≥ P(|ξn| ≤M) > 1 − ε

if n ≥ N ; hence (3.9), holds with M replaced by M ′. The proof of (⇐) is
trivial. Q.E.D.

More generally, let an be a sequence of positive numbers. We say ξn =
OP(an) if ξn/an = OP(1) or, equivalently, ξn = anOP(1). We say ξn = oP(an)

if ξn/an
P−→ 0 as n → ∞. Similarly, let ξn be a sequence of random vectors

(random matrices). Then ξn = OP(an) if |ξn| = OP(an) [‖ξn‖ = OP(an)] and
ξn = oP(an) if |ξn| = oP(an) [‖ξn‖ = oP(an)].

In the following we mainly consider sequences of random variables, but
keep in mind that, by the definition, all of the results can be easily extended
to sequences of random vectors or random matrices. The properties of oP are
essentially those about convergence in probability (to zero), which we dis-
cussed in Chapter 2. Thus, we mainly focus OP and, because of the definition,
it suffices to consider OP(1) (i.e., an = 1).

Theorem 3.1. ξn = OP(1) if one of the following holds:
(i) There is p > 0 such that E(|ξn|p), n ≥ 1 is bounded.

(ii) ξn
P−→ ξ as n → ∞ for some random variable ξ.

(iii) ξn
d−→ ξ as n → ∞ for some random variable ξ.

Proof. In view of Theorem 2.9, it suffices to show that either (i) or (iii) implies
ξn = OP(1). Suppose that (i) holds. For any ε > 0, we have, by Chebyshev’s
inequality,

P(|ξn| > M) = P(|ξn|p > Mp)

≤ E(|ξn|p)
Mp

≤ c

Mp
,

where c = supn≥1 E(|ξn|p) <∞. Thus, if we chooseM such thatM > (c/ε)1/p,
we have P(|ξn| > M) < ε; hence, P(|ξn| ≤ M) > 1− ε for any n ≥ 1. It follows
by Lemma 3.16 that ξn = OP(1).

Now suppose that (iii) holds. For any ε > 0, there is M > 0 such that
P(|ξ| < M) > 1 − ε/2. Note that O = (−M,M) is an open set. Thus, by (iii)
of §2.7.12, we have
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lim inf P(|ξn| ≤ M) ≥ lim inf P(|ξn| < M)

≥ P(|ξ| < M)

> 1 − ε

2
.

Therefore, there is N ≥ 1 such that P(|ξn| ≤ M) > 1 − ε, n ≥ N ; that is,
ξn = OP(1). Q.E.D.

We consider some examples.

Example 3.7 (Sample mean). Suppose that X1, . . . , Xn are i.i.d. observa-
tions from a distribution that has a finite expectation; that is, E(|X1|) < ∞.
Then the sample mean X̄ = n−1

∑n
i=1Xi = OP(1). This is because

E
(∣∣X̄∣∣) ≤ 1

n

n∑
i=1

E(|Xi|)

= E(|X1|) <∞.

Therefore, by (i) of Theorem 3.1 (with p = 1), we have X̄ = OP(1). It should
be pointed out that the condition that E(|X1|) < ∞ is sufficient for X̄ =
OP(1), but not necessary. For example, suppose that X1, . . . , Xn are i.i.d.
with the distribution defined in Example 2.11. Then we have E(|X1|) = ∞.

However, according to Exercise 2.25, we have X̄
d−→ Cauchy (0, 1); therefore,

by (iii) of Theorem 3.1, X̄ = OP(1).

It should be pointed out that although either (ii) or (iii) of Theorem 3.1
implies ξn = OP(1), it is often easier to show the latter directly than estab-
lishing (ii) or (iii).

Example 3.8. Suppose that X1, . . . , Xn are i.i.d. observations from the
Exponential(λ) distribution with pdf

f(x|λ) =
1

λ
e−x/λ, x ≥ 0

where λ > 0 is an unknown parameter. It can be shown that

X(n)

log(n)
P−→ λ, (3.10)

as n → ∞, where X(n) = max1≤i≤n Xi. In other words, X(n)/ log(n) is a
consistent estimator of λ (Exercise 3.11). However, it is easier to show directly
that X(n) = OP{log(n)}. To see this, note that

P

{
X(n)

log(n)
≤ 2λ

}
= P{X(n) ≤ 2λ log(n)}
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= P{X1 ≤ 2λ log(n), . . . , Xn ≤ 2λ log(n)}
= [P{X1 ≤ 2λ log(n)}]n
= (1 − n−2)n

−→ 1

as n → ∞. For any ε > 0, there is N ≥ 1 such that (1−n−2)n > 1− ε, n ≥ N .
It follows that (3.8) holds with ξn = X(n)/ log(n) and M = 2λ. Note that this
M does not depend on ε.

A concept that is often used in large-sample statistics is called
√
n-

consistent. Let θ be a population parameter. A sequence of estimators θ̂ (here

we suppress the subscript n in θ̂, as is often done in applied statistics) is called√
n-consistent if

√
n(θ̂ − θ) = OP(1).

Example 3.7 (continued). Now, suppose the variance of the Xi’s exists
or, equivalently, E(X2

1) < ∞. Then the sample mean X̄ is a
√
n-consistent

estimator of the population mean, μ = E(X1). To see this, note that

E
{√

n(X̄ − μ)
}2

= nE

{
1

n

n∑
i=1

(Xi − μ)

}2

=
1

n

n∑
i=1

var(Xi)

= var(X1) <∞.

Therefore, by (i) of Theorem 3.1 (with p = 2),
√
n(X̄ − μ) = OP(1).

The following are some useful results involving OP(1) and oP(1).

Theorem 3.2. The following hold:
(i) If ξn = OP(1) and ηn = OP(1) [oP(1)], then ξnηn = OP(1) [oP(1)].
(ii) If ξn, n = 1, 2, . . ., is a sequence of k × l random matrices, where k

and l are fixed, then ξn = OP(1) [oP(1)] if and only if ξn,ij = OP(1) [oP(1)],
1 ≤ i ≤ k, 1 ≤ j ≤ l.

(iii) If ξn, n = 1, 2, . . ., is a sequence of k × k random matrices such that

ξn
P−→ ξ, where ξ is nonsingular with probability 1. Then ξ−1

n = OP(1) and
ξ−1
n − ξ−1 = oP(1).

Proof. (i) The proof for the part that ξn = OP(1) and ηn = OP(1) imply
ξnηn = OP(1) is left to the reader (Exercise 3.12).

For any ε > 0 and for any δ > 0, since ξn = OP(1), there is M > 0 and
N1 ≥ 1 such that P(|ξn ≤ M) > 1 − δ, n ≥ N1. On the other hand, since
ηn = oP(1), there is N2 ≥ 1 such that P(|ηn| > ε/M) < δ if n ≥ N2. It follows
that when N ≥ N1 ∨N2, we have
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P(|ξnηn| > ε) = P(|ξnηn| > ε, |ξn| ≤M) + P(|ξnηn| > ε, |ξn| > M)

≤ P(|ηn| > ε/M) + P(|ξn| > M)

< 2δ;

hence, P(|ξnηn| > ε) → 0 as n → ∞, and therefore ξnηn = oP(1).
The proof of (ii) is left to the reader (Exercise 3.12).
(iii) First consider the special case of k = 1. According to the results in

Appendix A.2, we have 1 = P(|ξ| > 0) = limk→∞ P(|ξ| > 1/k). Therefore, for
any ε > 0, there is k such that P(|ξ| > 1/k) > 1− ε. On the other hand, there
is N ≥ 1 such that P(|ξn − ξ| > 1/2k) < ε, n ≥ N . Since |ξ| ≤ |ξn| + |ξn − ξ|,
|ξ| > 1/k implies that either |ξn| > 1/2k or |ξn − ξ| > 1/2k. Thus, we have

1 − ε < P(|ξ| > 1/k)

≤ P(|ξn| > 1/2k) + P(|ξn − ξ| > 1/2k)

< P(|ξn| > 1/2k) + ε

≤ P(|ξ−1
n | ≤ 2k) + ε

or P(|ξ−1
n | ≤ 2k) > 1 − 2ε if n ≥ N . Therefore, ξ−1

n = OP(1).
Now, consider the general case k ≥ 1. We have ξ−1

n = |ξn|−1ξ∗n, where |ξn|
is the determinant of ξn and ξ∗n, the adjoint matrix of ξn. Theorem 2.6 implies

that |ξn| P−→ |ξ|, which is nonzero with probability 1. It follows by part (ii)
of Theorem 3.1 and the above result for the k = 1 case that each element of
ξ−1
n is OP(1). Thus, once again by part (ii), we have ξ−1

n = OP(1).
Finally, by the identity ξ−1

n − ξ−1 = ξ−1(ξ − ξn)ξ−1
n and Corollary 3.1, we

have ‖ξ−1
n − ξ−1‖ ≤ ‖ξ−1‖ ·‖ξ−1

n ‖ ·‖ξn− ξ‖ = O(1)OP(1)oP(1) = oP(1), using,
once again, part (ii). Q.E.D.

3.5 The unspecified c and other similar methods

Near the end of the proof of Theorem 3.2, we simplified the arguments by
writing O(1)OP(1)oP(1) = oP(1). This is actually a useful technique in that
although the big O’s and small o’s are different in their values, there is no need
to distinguish them and hence use different notation every time they appear,
as far as asymptotics are concerned. A similar technique will be explored in
this section.

In many cases, the asymptotic arguments involve a series of inequalities
and bounds, but the actual values of the constants involved are not important.
For example, if the goal is to derive an = O(bn), then it does not matter
whether an ≤ bn or an ≤ 2bn. In other words, as long as one shows an ≤ cbn
for some constant c, it does not make a difference whether c = 1 or c = 2 as far
as the order is concerned. Therefore, in those arguments, we let c represent a
positive generic constant whose value may be different at different places (e.g.,
Shao and Wu 1987, pp. 1566). We illustrate the use of such an unspecified c
by some examples.
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Example 3.9. Suppose that X1, X2, . . . is a sequence of martingale differ-
ences with respect to the σ-fields Fi = σ(X1, . . . , Xi), i ≥ 1. This means that
E(X1) = 0 and E(Xi|X1, . . . , Xi−1) = 0 a.s. for any i ≥ 2. See Chapter 8 for
more detail. Furthermore, each Xi has a Uniform[−1/2, 1/2] distribution. For
example, if Y1, Y2, . . . are independent and distributed as Uniform[0, 1], then
Xi = Yi − 1/2, i ≥ 1, satisfy the above condition of martingale differences as
well as the distributional assumption.

Now suppose that one wishes is to obtain the order of E(X̄4), where X̄ =
n−1

∑n
i=1 Xi. A formal derivation with specific values of all the constants

involved may be given as follows. First, by Burkholder’s inequality (see Section
5.4), we have

E(X̄4) =
1

n4
E

(
n∑

i=1

Xi

)4

≤
(
18 × 4 ×√4/3

)4

n4
E

(
n∑

i=1

X2
i

)2

=
47775744

n4
E

(
n∑

i=1

X2
i

)2

.

Next, by the convex function inequality (see Section 5.1), we have(
1

n

n∑
i=1

X2
i

)2

≤ 1

n

n∑
i=1

X4
i ,

which implies (
n∑

i=1

X2
i

)2

≤ n
n∑

i=1

X4
i .

It follows that

E

(
n∑

i=1

X2
i

)2

≤ n
n∑

i=1

E(X4
i )

= n2E(X4
1 ).

Finally, a simple calculation gives

E(X4
1 ) =

∫ 1/2

−1/2

x4 dx =
1

80
.

Therefore, by combining the pieces we get
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E(X̄4) ≤ 47775744

n4
× n2

80

=
597196.8

n2
.

However, if we use the unspecified c, the derivation can be simplified as follows:

E(X̄4) =
1

n4
E

(
n∑

i=1

Xi

)4

≤ c

n4
E

(
n∑

i=1

X2
i

)2

≤ c

n3

n∑
i=1

E(X4
i )

≤ c

n2
.

In the series of inequalities above, c represents possibly a different constant
at each step. So, mathematically speaking, some of these inequalities might
not hold if c were to represent the same constant. However, there is no need to
work out the specific value of c at each step or to use different notation such
as c1, c2, . . . at different steps. In other words, c is a notation just like the big
O and small o. The end result is all that matters; for example, in Example
3.9, E(X̄4) ≤ cn−2 for some constant c.

Here is another reason why the specific value of c may not be important.
Consider Example 3.9. At the end, we obtained the value of the constant as
597196.8, but do you believe that the constant really has to be this large?
In fact, the constant in Burkholder’s inequality is for the general situations
of martingale differences. In any specific case (such as the i.i.d. Uniform case
mentioned in Exampe 3.9), the constant may be improved (i.e., reduced). This
is why the actual value of c is not so important (because it may not be so
accurate). Here is another example.

Example 3.10 (Finite sample correction). It is not unusual that a well-
known statistic is slightly modified for improved finite-sample performance.
For example, the sample proportion, defined as

p̂ =
Y

n
,

is a well-known estimator of the population proportion p. Here, Y = Y1 +
· · ·+Yn and Y1, . . . , Yn are i.i.d. Bernoulli(p) observations. In some cases, the
following alternative estimator of p is considered:

p̃ =
Y + a

n+ b
,
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where a and b are some constants. Among different choices of a and b are a = 2
and b = 4 for constructing a 95% confidence interval for p, or, more precisely
and generally, a = 0.5Z2

α/2 and b = Z2
α/2 for constructing a 100(1 − α)%

confidence interval for p (e.g., Samuels and Witmer 2003, pp. 209–210), where
Zα/2 is the α/2 critical value of the standard normal distributions [i.e., P(Z >
Zα/2) = α/2, where Z ∼ N(0, 1)]. Such a modification is often called a finite-
sample correction, with the implication that it would maintain the same large-
sample behavior of p̂ (and, meanwhile, improve the finite-sample performance
in some sence). But does it?

To verify this, we consider the difference dn =
√
n(p̃−p)−√

n(p̂−p). The

motivation is that, according to the CLT,
√
n(p̂ − p)

d−→ N{0, p(1 − p)} as

n → ∞. So, if one can show dn
P−→ 0 as n → ∞, then, by Theorem 2.13, we

have
√
n(p̃− p)

d−→ N{0, p(1− p)} as n → ∞. In other words, p̃ has the same
large-sample property in terms of asymptotic distribution as p̂. By using an
unspecified c, a simple argument can be given as follows. By Theorem 2.15,
it suffices to show that E(d2

n) → 0 as n → ∞. We have E(d2
n) = nE(p̃− p̂)2.

On the other hand, we have

p̃− p̂ =
an− by

n(n+ b)

=
a

n+ b
−
(

b

n+ b

)
p̂.

It follows that

E(p̃− p̂)2 =

(
a

n+ b

)2

− 2

(
a

n+ b

)(
b

n+ b

)
E(p̂) +

(
b

n+ b

)2

E(p̂2)

≤ c

n2
+

c

n2
× p+

c

n2
× 1

≤ c

n2
.

Thus, we have E(d2
n) ≤ cn−1 and, hence, → 0 as n → ∞. Note that not only

have we shown E(d2
n) → 0, we also obtained its convergence rate as O(n−1).

As mentioned, notationwise c is very similar to big O and small o. In
fact, the latter can be operated in very much the same way. For example, we
have O(1)O(1) = O(1), O(1)o(1) = o(1), O(1) + o(1) = O(1), and so forth,
even though the actual values of O(1)s and o(1)s may be different at different
places. We demonstrate this with a simple example.

Example 3.11 (Finite population proportion). In Example 3.10 we assumed
that Y1, . . . , Yn are i.i.d. Bernoulli observations. Such an assumption holds
only if the population from which the Yi’s are sampled is infinite. In real life,
however, the population is usually finite, no matter how large. What would
happen if one samples from a finite population?
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Consider a finite population with N items, of which D are defective and
N − D are not. Suppose that a sample of n items are drawn at random so
that all

(
N
n

)
possible samples of size n are equally likely. Let Yi = 1 if the ith

item drawn is defective and Yi = 0 otherwise. Then we have

P(Yi = 1) =
D

N
, 1 ≤ i ≤ N. (3.11)

Thus, the Yi’s are identically distributed, even though they are not indepen-
dent (Exercise 3.13). It follows that

E(Yi) =
D

N
, (3.12)

var(Yi) =
D

N

(
1 − D

N

)
, (3.13)

and it can be shown that (Exercise 3.13)

cov(Yi, Yj) = −D(N −D)

N2(N − 1)
, i �= j. (3.14)

Now, consider Y =
∑n

i=1 Yi, the total number of defective items in the sample.
It is known that Y has a hypergeometric distribution (e.g., Casella and Berger
2002, p. 622). The sample proportion of defective items is therefore p̂ = Y/n.
By (3.12)–(3.14), it can be shown that

E(p̂) =
D

N
, (3.15)

var(p̂) =
1

n

N − n

N − 1

D

N

(
1 − D

N

)
(3.16)

(Exercise 3.13).
Although in real life the population is usually finite, the population size can

be huge, so the infinite population model of Example 3.10 may be used as an
approximation. More precisely, consider the following asymptotic framework
in which the population size, N , is increasing such that

D

N
−→ p,

where p ∈ (0, 1). Furthermore, we assume that n = o(N); that is, the sample
size is negligible compared to the population size. It follows by (3.15) that

E(p̂) ∼ p. (3.17)

As for the variance, we can write, by (3.16),
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var(p̂) =
1

n

N − o(N)

N − 1
{p+ o(1)}{1 − p− o(1)}

=
1

n

1 − o(1)

1 − o(1)
{p+ o(1)}{1 − p+ o(1)}

=
p(1 − p)

n
{1 + o(1)}{1 + o(1)}{1 + o(1)}

=
p(1 − p)

n
{1 + o(1)}

∼ p(1 − p)

n
. (3.18)

Note that the right sides of (3.17) and (3.18) are exactly the mean and vari-
ance, respectively, of p̂ under the infinite population sampling (Example 3.10).

3.6 Case study: The baseball problem

Efron and Morris (1973) considered the problem of predicting batting aver-
ages of 18 major league baseball players during the 1970 season. The authors
used this problem as an example to demonstrate the performance of their em-
pirical Bayes method. The dataset has since been analyzed by several authors,
including Morris (1983), Gelman et al. (1995), Datta and Lahiri (2000), and
Jiang and Lahiri (2006). Efron and Morris first obtained the batting average
of Roberto Clemente, an extremely good hitter, from the New York Times
dated April 26, 1970 when he had already batted 45 times. The batting av-
erage of a player is the proportion of hits among the number at-bats. They
then selected 17 other major league baseball players who had also batted 45
times from the April 26 and May 2, 1970 issues of the New York Times. They
considered the problem of predicting the batting averages of all the 18 players
for the remainder of the 1970 season based on their batting averages for first
45 at-bats. The authors used the following simple model for the prediction
problem:

Yi = μ+ vi + ei, i = 1, . . . , n,

where μ is an unknown mean, vi is a player-specific random effect, and ei is the
sampling error. It is assumed that the vi’s are independent and distributed as
N(0, A), where A is an unknown variance; the ei’s are independent standard
normal random variables; and the vi’s and ei’s are independent. The true
batting average of a particular player i is θi = μ+ vi, whose prediction is of
main interest. Without loss of generality, let i = 1.

For the sake of simplicity we assume for the rest of this section that μ = 0.
In this case, the best predictor (BP) of θ1 = v1 is

θ̃1 =
A

A+ 1
Y1. (3.19)
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See Chapter 13 for more details about the prediction problem. Because A
is unknown, the BP is not computable. In such a case, it is customary to
replace A in (3.19) by an estimator, say the MLE, which is given by Â =
n−1

∑n
i=1 Y

2
i − 1. This leads to the so-called empirical best predictor (EBP),

θ̂1 =
Â

Â+ 1
Y1.

The question is how large the difference is between the EBP and BP in terms
of the prediction performance.

To answer this question, we first introduce a lemma, which was used in
the proofs of Jiang, Lahiri, and Wan (2002b) to establish the asymptotic un-
biasedness of their jackknife estimator of the mean squared error (MSE) of an
empirical predictor, such as the EBP. The jackknife method will be discussed
in detail in Chapter 14. We use this lemma (and its proof) to demonstrate
the use of the unspecified c discussed in the previous section. The c in the
following lemma and its proof therefore represents the unspecified constant.

Lemma 3.17. Let ξn, ηn, and ζn be sequences of random variables and
let An be a sequence of events. Suppose that ξn = ηn + ζn on An and the
following hold: E(ξ2n1Ac

n
) ≤ cn−a1 , E(η2

n1Ac
n
) ≤ cn−a2 , E(η2

n) ≤ c, and |ζn| ≤
n−a3νn with E(ν2

n) ≤ c, where the a’s are positive constants. Then, for any
0 < ε ≤ a1 ∧ a2 ∧ a3, we have∣∣E(ξ2n) − E(η2

n)
∣∣ ≤ cn−ε,

where c depends only on the a’s and the (unspecified) c’s.

Proof. We have

E(ξ2n) − E(η2
n) = E(ξ2n − η2

n)1An + E(ξ2n1Ac
n
) − E(η2

n1Ac
n
)

= E(2ηnζn + ζ2
n)1An + E(ξ2n1Ac

n
) − E(η2

n1Ac
n
).

Thus, we have

|E(ξ2n) − E(η2
n)| ≤ cn−a3E(|ηn|νn) + cn−2a3E(ν2

n) + cn−a1 + cn−a2

≤ cn−a1 + cn−a2 + cn−a3

≤ cn−ε.

Note that, by the Cauchy–Schwarz inequality (see Chapter 5), we have
E(|ηn|νn) ≤ (Eη2

n)1/2(Eν2
n)1/2 ≤ c. Q.E.D.

Now, return to the baseball prediction problem. Let ξn = θ̂1 − θ1, ηn =
θ̃1 − θ1, and B̂ = (Â+ 1) ∨ 0.5. Then it is easy to show that ξn = ηn + ζn on
An = {Â ≥ −0.5}, where

ζn =
Â−A

(A+ 1)B̂
Y1.
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Furthermore, we have, by the Cauchy–Schwarz inequality,

E
(
ξ2n1Ac

n

) ≤ {E(ξ4n)}1/2{P(Ac
n)}1/2

≤ c{P(Ac
n)}1/2.

Note that |ξn| ≤ |Y1| + |θ1| ≤ 2|v1| + |e1|, whose kth moment is finite for any
k > 0. On the other hand, let Xi = Y 2

i − A− 1. By Chebyshev, Burkholder,
and the convex function inequalities (see Chapter 5), we have, for any k ≥ 2,

P (Ac
n) = P

(
1

n

n∑
i=1

Xi < −A− 0.5

)

≤ P

(∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ > A+ 0.5

)

≤ c

nk
E

⎛⎝∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
k
⎞⎠

≤ c

nk
E

⎧⎨⎩
(

n∑
i=1

X2
i

)k/2
⎫⎬⎭

=
c

nk/2
E

⎧⎨⎩
(

1

n

n∑
i=1

X2
i

)k/2
⎫⎬⎭

≤ c

nk/2
E

(
1

n

n∑
i=1

|Xi|k
)

≤ c

nk/2
.

Thus, we have E(ξ2n1Ac
n
) ≤ cn−k/4. By the same argument, it can be shown

that E(η2
n1Ac

n
) ≤ cn−k/4. Furthermore, it is easy to show that E(η2

n) ≤ c.

Finally, we have |ζn| ≤ cn−1/2|√n(Â−A)| · |Y1| = n−1/2νn with

E(ν2
n) ≤ c · nE{(Â− A)2Y 2

1 }
≤ c · n{E(Â− A)4}1/2{E(Y 4

1 )}1/2

≤ c · n{E(Â− A)4}1/2

≤ c · n · n−1

≤ c,

using the same inequalities as above. Now, apply Lemma 3.17 with a1 = a2 =
k/4 and a3 = 1/2 to obtain∣∣∣MSE(θ̂1) − MSE(θ̃1)

∣∣∣ =
∣∣∣E(θ̂1 − θ1)

2 − E(θ̃1 − θ1)
2
∣∣∣

≤ cn−1/2;
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that is, the difference between the MSE of the EBP and that of the BP is
O(n−1/2). It will be shown later in Chapter 13 that the difference is, in fact,
O(n−1). By the way, it is easy to show that MSE(θ̃1) = A/(A+ 1) = O(1).

3.7 Case study: Likelihood ratio for a clustering problem

In community ecology, the term “clustering” is synonymous with what is
commonly known as “classification.” However, in statistics, there is a major
difference between the two. The difference lies in the existence of a training
dataset for classification, whereas no such data are available for clustering. For
example, suppose that a group of individuals are labeled as men and women,
and information about their heights and weights is available. This information
provides the training data. Now, suppose that a new individual comes in with
an unknown label (i.e., the gender of the individual is unknown) but known
height and weight, and we wish to classify this new individual into one of the
two classes, men or women, based on his/her height and weight. This is a
classification problem. If, instead, the group of individuals are unlabeled (i.e.,
their genders are unknown) and we wish to classify them into an unknown
number of classes based on their heights and weights, we have a clustering
problem. Due to such a difference, classification is often associated with the
so-called supervised learning (via the training data), whereas clustering is
associated with the unsupervised one.

An important problem in cluster analysis is to test the existence of clusters.
Consider perhaps the simplest case in which a standard normal distribution is
tested against a mixture of the standard normal with another normal distri-
bution with the same variance but a different mean. Let X1, . . . , Xn be i.i.d.
observations from a normal mixture distribution

(1 − p)N(0, 1) + pN(θ, 1), (3.20)

where θ is an unknown parameter and p is an unknown proportion. We are
interested in testingH0: θ = 0 againstHa: θ �= 0. Note that the null hypothesis
indicates that there is only one cluster in the population distribution (or
there is no clustering), whereas the alternative implies that there may be
two clusters (or there may be a clustering). The reason that the alternative
does not imply for sure that there is clustering is because, when p = 0, the
distribution of (3.20) becomesN(0, 1) regardless of θ. Therefore, the test result
is more decisive when the null hypothesis is accepted than it is rejected. This
seemingly unpleasant phenomenon is due to the fact that the distribution of
Xi is unidentifiable when p = 0.

An alternative testing problem is also often considered; that is, H0: p = 0
against Ha: p �= 0. Note that this is equivalent to the above testing problem in
the null hypothesis (i.e., N(0, 1)), which implies no clustering. However, there
is no escape from the identifiability problem—when θ = 0, the distribution of
Xi is N(0, 1) regardless of p.
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Now suppose that one wishes to test the null hypothesis (in either for-
mation) using likelihood ratio test (LRT). To be more specific, let us focus
on the first formation of the testing problem. Standard asymptotic theory
(see Chapter 6) asserts that, under regularity conditions, the asymptotic null
distribution of the LRT statistic, which is

L∗ = 2

[
log

{
sup
θ,p

L(θ, p|X)

}
− log

{
sup

p
L(0, p|X)

}]
= 2 sup

θ,p
l∗(θ, p|X), (3.21)

where L(θ, p|X) is the likelihood function and

l∗(θ, p|X) =
n∑

i=1

log

{
1 − p+ p exp

(
Xiθ − 1

2
θ2

)}
(3.22)

(Exercise 3.14), is χ2 with two degrees of freedom. Here, by asymptotic null
distribution we mean the asymptotic distribution under the null hypothesis
θ = 0, and the two degrees of freedom corresponds to the number of unknown
parameters (θ and p) that have to be estimated. However, one of the regularity
conditions requires that the distribution of Xi be identifiable. As mentioned,
this condition is not satisfied in this case. The question then is: Does the
LRT still have the asymptotic χ2-distribution under the null hypothesis? The
answer is no. In fact, Hartigan (1985) showed that, under the null hypothesis,
the LRT statistic (3.21) → ∞ in probability as n → ∞. Hereafter, a sequence
of random variable ξn → ∞ in probability if for any M > 0 the probability
P(ξn > M) → 1 as n → ∞. Note that this problem is closely related to
Example 1 in the Preface. In this case, the asymptotic null distribution of the
LRT does not even exist.

Hartigan’s proof showed that the divergence of the LRT statistic was an
example of OP and oP in action. The arguments given below are similar in
spirit. For any fixed θ �= 0, write l∗ = l∗(θ, p|X) for notation simplicity.
Also, write Yi = exp(Xiθ − 0.5θ2) and Zi = Yi − 1. Then Z1, . . . Zn are i.i.d.

with E(Zi) = 0 and var(Zi) = eθ2 − 1 (Exercise 3.14). Furthermore, we have
l∗ =

∑n
i=1 log(1 + pZi), and

∂2l∗

∂p2
= −

n∑
i=1

Z2
i

(1 + pZi)2
< 0

with probability 1. It follows that, with probability 1, l∗ is strictly concave
in p, and therefore there is a unique maximum for p ∈ [0, 1]. Denote this
maximum by p̂.

Next, we show that p̂ = oP(1). For any p > 0, we have

∂l∗

∂p
=

n∑
i=1

Zi

1 + pZi
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=
n∑

i=1

1 + pZi − 1

1 + pZi
p−1

= p−1
n∑

i=1

(
1 − 1

1 + pZi

)

= p−1
n∑

i=1

ψ(Zi),

where ψ(x) = 1−(1+px)−1. Since ψ′′(x) = −2p2(1+px)−3 < 0, ψ(x) is strictly
concave. It follows by Jensen’s inequality (see Chapter 5) that E{ψ(Zi)} <
ψ{E(Zi)} = 1 − {1 + pE(Zi)}−1 = 0. Thus, by the WLLN, we have

p

n
· ∂l

∗

∂p
=

1

n

n∑
i=1

ψ(Zi)

= E{ψ(Z1)} +
1

n

n∑
i=1

[ψ(Zi) − E{ψ(Z1)}]

= E{ψ(Z1)} + oP(1).

By the properties of a concave function, we have with probability 1 that
∂l∗/∂p < 0 implies p̂ < p (why?). It follows that

P(p̂ ≥ p) ≤ P

(
∂l∗

∂p
≥ 0

)
= P

(
p

n

∂l∗

∂p
≥ 0

)
= P[E{ψ(Z1)} + oP(1) ≥ 0]

= P[oP(1) ≥ −E{ψ(Z1)}]
→ 0

as n → ∞. Since p is arbitrary and p̂ ≥ 0, we have p̂ = oP(1) by the definition.
We now go one step further to obtain an asymptotic expansion for p̂. Let

An and Bn be two sequences of events. We say Bn holds with probability
tending to 1 on An or Bn w.p. → 1 on An if P(An \Bn) = P(An ∩ Bc

n) → 0
as n → ∞. In the special case of An = Ω, the entire sample space, this is
the same as that Bn holds with probability tending to 1 or Bn w.p. → 1.
First, note that if

∑n
i=1 Zi ≤ 0, then, by the properties of a concave function,

we have ∂l∗/∂p ≤ ∂l∗/∂p|p=0 =
∑n

i=1 Zi ≤ 0; hence, l∗ ≤ l∗(θ, 0|X) = 0
(i.e., p̂ = 0). Now, suppose that

∑n
i=1 Zi > 0. Then ∂l∗/∂p|p=0 > 0; hence,

p̂ > 0. On the other hand, the argument above shows that p̂ < 1 w.p. → 1
(Exercise 3.14). It follows that p̂ ∈ (0, 1) w.p. → 1 on

∑n
i=1 Zi > 0; hence,

∂l∗/∂p|p̂ = 0 w. p. → 1 on
∑n

i=1 Zi > 0. Write gi(p) = log(1 + pZi). Then we
have gi(0) = 0, g′i(0) = Zi, g

′′
i (0) = −Z2

i , and g′′′i (p) = 2Z3
i (1+pZi)

−3. By the
Taylor expansion (see the next chapter), we have, w.p. → 1 on

∑n
i=1 Zi > 0,
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0 =
∂l∗

∂p

∣∣∣∣
p̂

=
n∑

i=1

g′i(p̂)

=

n∑
i=1

{
g′i(0) + g′′i (0)p̂+

1

2
g′′′i (pi)p̂

2

}

=

n∑
i=1

Zi − p̂

n∑
i=1

Z2
i +

p̂2

2

n∑
i=1

g′′′i (pi), (3.23)

where 0 ≤ pi ≤ p̂. Since Zi = Yi − 1 ≥ −1, we have 1 + piZi ≥ 1 − pi ≥
1 − p̂ = 1 + oP(1); hence, |g′′′i (pi)| ≤ 2{1 + oP(1)}−3|Zi|3, where oP(1) does
not depend on i. It follows that

1

2

∣∣∣∣∣
n∑

i=1

g′′′i (pi)

∣∣∣∣∣ ≤ {1 + oP(1)}−3
n∑

i=1

|Zi|3

= {1 + oP(1)}−3OP(n)

= OP(n),

using the WLLN. Therefore, we have, by (3.23),

n∑
i=1

Zi = p̂

{
n∑

i=1

Z2
i − p̂

2

n∑
i=1

g′′′i (pi)

}

= p̂

{
n∑

i=1

Z2
i − p̂OP(n)

}

= np̂

{
1

n

n∑
i=1

Z2
i − p̂OP(1)

}
= np̂{E(Z2

1) + oP(1)},
again using the WLLN. Thus, we obtain the following asymptotic expansion:

p̂ =
1

E(Z2
1 ) + oP(1)

1

n

n∑
i=1

Zi

=

{
1

E(Z2
1 )

+ oP(1)

}
1

n

n∑
i=1

Zi

=

∑n
i=1 Zi

nE(Z2
1 )

+ oP(n−1/2), (3.24)

using the results of Theorem 3.2(iii) and Example 3.7. In conclusion, we have
p̂ = 0 if

∑n
i=1 Zi ≤ 0 and (3.24) w.p. → 1 on

∑n
i=1 Zi > 0.
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We now use (3.24) to obtain an asymptotic expansion of l̂∗ = l∗(θ, p̂|X). If∑n
i=1 Zi ≤ 0, we have l̂∗ = l∗(θ, 0|X) = 0. On the other hand, we have, again

by the Taylor expansion,

l̂∗ =
n∑

i=1

gi(p̂)

=

n∑
i=1

{
gi(0) + g′i(0)p̂+

1

2
g′′i (0)p̂2 +

1

6
g′′′i (p̃i)p̂

3

}

= p̂
n∑

i=1

Zi − p̂2

2

n∑
i=1

Z2
i +

p̂3

6

n∑
i=1

g′′′i (p̃i), (3.25)

where 0 ≤ p̃i ≤ p̂. Now, suppose that (3.24) holds. It follows that p̂ =
OP(n−1/2). Thus, by an argument similar to the above, it can be shown that
the last term on the right side of (3.25) is p̂3OP(n), which is oP(1). Now,
combine (3.24) and (3.25) to get

l̂∗ =

{∑n
i=1 Zi

nE(Z2
1 )

+ oP(n−1/2)

} n∑
i=1

Zi

−1

2

{∑n
i=1 Zi

nE(Z2
1 )

+ oP(n−1/2)

}2

n{E(Z2
1) + oP(1)} + oP(1)

=
(
∑n

i=1 Zi)
2

nE(Z2
1 )

+ oP(1)

−1

2

[
(
∑n

i=1 Zi)
2

n2{E(Z2
1)}2

+ oP(n−1)

]
n{E(Z2

1) + oP(1)} + oP(1)

=
(
∑n

i=1 Zi)
2

nE(Z2
1 )

− 1

2

{
(
∑n

i=1 Zi)
2

nE(Z2
1 )

+ oP(1)

}
+ oP(1)

=
(
∑n

i=1 Zi)
2

2nE(Z2
1)

+ oP(1), (3.26)

using the facts that
∑n

i=1 Zi = OP(n1/2) (Example 3.7) and
∑n

i=1 Z
2
i =

nn−1
∑n

i=1 Z
2
i = n{E(Z2

1) + oP(1)} by the WLLN. Thus, in conclusion, we

have l̂∗ = 0 if
∑n

i=1 Zi ≤ 0 and (3.26) w.p. → 1 on
∑n

i=1 Zi > 0. It follows
that the following holds w.p. → 1:

l̂∗ =

{
(
∑n

i=1 Zi)
2

2nE(Z2
1)

+ oP(1)

}
1(
∑

n

i=1
Zi>0)

=
(
∑n

i=1 Zi)
2

2nE(Z2
1)

1(
∑

n

i=1
Zi>0) + oP(1). (3.27)

The rest of the arguments is the same as those in Hartigan (1985). Write

Un(θ) =

∑n
i=1 Zi√
nE(Z2

1 )
.
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Note that the quantity depends on θ because the Zi’s do. By the CLT, we have

Un
d−→ N(0, 1) as n → ∞ for each fixed θ. Furthermore, for any collection

of (positive) θ’s, the corresponding Un(θ)’s are asymptotically jointly normal
with mean 0, variance 1, and correlation between Un(θj) and Un(θk) given by

eθjθk − 1{(
eθ2

j − 1
)(

eθ2
k − 1

)}1/2
. (3.28)

For any M > 0 and for any ε > 0, choose an integer m ≥ 1 such that
Φ(M)m < ε/2, where Φ(x) is the cdf of N(0, 1). Now, choose θ1, . . . , θm > 0
such that all pairwise correlations (3.28) are sufficiently small so that

lim
n→∞

P

{
max

1≤j≤m
Un(θj) ≤ M

}
< ε (3.29)

(Exercise 3.14). Note that when the correlations between random variables
U1, . . . , Um, which are jointly normal and each distributed as N(0, 1), are
very small, the Uj ’s are nearly independent; hence, P(max1≤j≤m Uj ≤ M) ≈
Φ(M)m < ε/2. Thus, (3.29) is possible.

Note that the l̂∗ in (3.27) depends on θ [i.e., l̂∗ = l̂∗(θ)]. For the θ1, . . . , θm

chosen above, we have, by (3.27), that w.p. → 1,

2L∗ ≥ max
1≤j≤m

2l̂∗(θj)

≥ max
1≤j≤m

{
U2

n(θj)1(Un(θj)>0)

}
+ oP(1). (3.30)

Thus, w.p. → 1, 2L∗ ≤ M2 − 1 implies max1≤j≤m Un(θj) ≤ M (Exercise
3.14). It follows by (3.29) that

lim sup P

(
L∗ ≤ M2 − 1

2

)
≤ ε.

Because ε is arbitrary, this proves that L∗ → ∞ in probability.
To add a little bit of drama (even further) to the story, Hartigan’s theo-

retical result was not supported by the results of a series of empirical stud-
ies. For example, Wolfe (1971) suggested that the asymptotic distribution of
2{(n− 3)/n}L∗ was χ2

2, although Wolfe’s study was based only on 100 repli-
cations of sample size n = 100. A much more extensive simulation study was
carried out later by Atwood et al. (1996). The authors generated 90,000 repli-
cations of each sample size from 50 to 500 in increments of 25 in order to
find an empirical distribution of 2L∗. Furthermore, to explore the asymptotic
distribution of 2L∗ the authors generated 10,000 replications for each of the
sample size 1000, 2000, 4000, 8000, 16,000, 32,000 and 64,000. In addition,
3211 replications were generated for the sample size 256,000. Yet, the authors
found no trace of 2L∗ going to infinity. For example, the simulated mean and
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variance of 2L∗ were found to be approximately 2.11 and 4.27, respectively,
for the sample size n = 500 and 2.02 and 4.21, respectively, for the sample
size n = 64, 000. These values are very close to the mean and variance of a
χ2-distribution with two degrees of freedom, which are 2 and 4, respectively.
Based on their simulation results, the authors concluded that the asymptotic
distribution of 2L∗ could well be χ2

2.
There is at least one explanation for the seeming contradiction between

theoretical and empirical results, which happens, but not surprisingly, to have
something to do with the order. At the end of Hartigan’s paper, the author has
a remark on how fast 2L∗ goes to infinity. He estimated the rate of divergence
as log log(n). To see what this means, suppose that n is one million (1,000,000),
which is much larger than any of the sample sizes considered above. Then
log log(n) is approximately 2.6, which is well within the range of χ2

2!

3.8 Exercises

3.1. Verify the properties of Lemma 3.4.
3.2. Verify the properties of Lemma 3.5.
3.3. Consider the function f(x) in Example 3.3.
(i) Suppose that ap, bq are nonzero. Show that as |x| → ∞, f(x) = o(1) if

p < q, f(x) = O(1) if p = q, and 1/f(x) = o(1) if p > q.
(ii) Suppose that b0 �= 0. Show that as x→ 0, f(x) = O(1) regardless of p

and q.
3.4. Recall Stirling’s formula (Example 3.4). Define

dn = log

{
n!√

n(n/e)n

}
= log(n!) −

(
n+

1

2

)
log(n) + n.

Show that the sequence dn is decreasing.
3.5. Complete the proof of Stirling’s formula. Note that there are various

proofs of this famous approximation. For example, a standard proof involves
the use of the Wallis formula:

∞∏
k=1

(2k)2

(2k − 1)(2k + 1)
=
π

2
;

an alternative proof can be given via the CLT (e.g., Casella and Berger 2002,
pp. 261). You are asked to find at least one complete proof of Stirling’s formula.

3.6. Prove Lemma 3.7.
3.7. Prove parts (i), (ii), and (iii) of Lemma 3.11. (Hint: Use Lemma 3.9.)
3.8. Prove Corollary 3.1. [Hint: Use Lemma 3.10 for parts (i) and (ii) and

Lemma 3.9 for part (iii).]
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3.9. Let A be a k×l matrix whose (i, j) element is aij , 1 ≤ i ≤ k, 1 ≤ j ≤ l.
Show that

max
i,j

|aij | ≤ ‖A‖ ≤
√
klmax

i,j
|aij |.

Use this result to prove (i) and (ii) of Lemma 3.15.

3.10. Show that if ξn
d−→ ξ, where ξ is a degenerate random variable [i.e.,

there is a constant c such that P(ξ = c) = 1], then ξn
P−→ ξ.

3.11. Consider the observations X1, . . . , Xn in Example 3.8.
(i) Show that

P

{
X(n)

log(n)
≤ x

}
−→

⎧⎨⎩
0, x < λ
e−1, x = λ
1, x > λ.

(ii) Use (i) and the result of the previous exercise to show (3.10).
3.12. (i) Complete the proof of the first part of part (i) of Theorem 3.2;

that is, ξn = OP(1) and ηn = OP(1) imply ξnηn = OP(1).
(ii) Prove part (ii) of Theorem 3.2.
3.13. Consider the Yi’s defined in Example 3.11.
(i) Show that the Yi’s are identically distributed [i.e., (3.11)].
(ii) Show that the Yi’s are not independent.
(iii) Verify (3.14).
(iv) Verify (3.15) and (3.16).
3.14. This problem is associated with Section 3.7.
(i) Verify that the LRT statistic is given by (3.21) and (3.22).
(ii) For fixed θ, consider the random variable Yi defined therein. Show that

for any real number k,

E(Y k
i ) = exp

{
k(k − 1)

2
θ2
}
.

It follows that E(Zi) = 0 and var(Zi) = eθ2 − 1, where Zi = Yi − 1.
(iii) Show that p̂ < 1 with probability tending to 1.
(iv) Show by the inequality (3.30) that w.p. → 1, and 2L∗ ≤ M2 − 1

implies that max1≤j≤m Un(θj) ≤ M .
(v) Show that for any δ > 0 and any l ≥ 1, one can choose θ1, . . . , θl > 0

such that all pairwise correlations (3.28) are less than δ.
(vi) Furthermore, let U1, . . . , Ul be jointly normal, each haveN(0, 1) distri-

bution, and the correlations between Uj and Uk be given by (3.28). Show that
as δ → 0, P(max1≤j≤l Uj ≤ x) → Φ(x)l for every x, where δ is the maximum
absolute value of the correlations between the Uj ’s.

3.15. Determine the order relation of the following sequences an and bn:
(i) an = c0 +c1n+ · · ·+ckn

k, bn = an for any positive integer k and a > 1,
where c1, . . . , ck are constants.
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(ii) an = {log(n)}1−ε, bn = log(nδ) for any 0 < ε < 1 and δ > 0.
(iii) an = exp[{log(n)}ε], bn = nδ for any 0 < ε < 1 and δ > 0.
(iv) an = (n/a)n, bn = n!, where a > 0. (Note: Depending on the value of

a, the conclusion may be different.)
3.16. Determine the order relation of the following sequences an and bn.
(i) an = (n+ c)n, bn = nn, where c is any constant.
(ii) an =

∑n
i=1 i

−1, bn = log(n).
(iii) an = c0 + c1n+ · · ·+ ckn

k, bn = d1 +d2n+ · · ·+dln
l, where c1, . . . , ck

and d1, . . . , dl are constants such that ckdl �= 0. (Note: The answer depends
on the values of k and l.)

(iv) an = c0 + c1n
−1 + · · ·+ ckn

−k, bn = d1 + d2n
−1 + · · ·+ dln

−1, where
c1, . . . , ck and d1, . . . , dl are constants such that c0d0 �= 0. Does the answer
depend on the values of k and l?

3.17. What sequence is this: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .? If you examine
the numbers carefully, you will realize that these are the famous Fibonacci
numbers, or Fibonacci sequence, defined by F1 = 1, F2 = 1, and Fn = Fn−1 +
Fn−2, n = 3, 4, . . .. Fibonacci (Leonardo Pisano) posed the following problem
in his treatise Liber Abaci published in 1202:

How many pairs of rabbits will be produced in a year, beginning with
a single pair, if in every month each pair bears a new pair which
becomes productive from the second month in?

Not surprisingly, the answer is the Fibonacci sequence. Note that the number
grows quickly (so did the population of rabbits—it once happened in Aus-
tralia!).

(i) Show that log(Fn) = O(n).
(ii) Find the limit limn→ Fn/n.
(iii) Show that Fn log(Fn) ∼ nFn+1 [the definition of an ∼ bn is in Section

3.2 above (3.6)].
3.18. The distribution of a continuous random variable X is symmetric if

the pdf of X , f(x), satisfies f(−x) = f(x) for all x; that is, f(x) is symmetric
about zero. Suppose that X1, . . . , Xn are i.i.d. random variables. In each of
the following cases show that the distribution of X1 is symmetric and also
obtain the order, in terms of OP, of (

∑n
i=1Xi)

4:
(i) X1 ∼ N(0, 1).
(ii) X1 ∼ t5, the t-distribution with five degrees of freedom.
(iii) X1 has the pdf f(x) given in Example 2.11. What do you think is the

reason for the order in this case to be different from the previous two cases?
3.19. Let X1, . . . , Xn be i.i.d. random variables such that E(Xi) = 0 and

var(Xi) = σ2, where σ2 ∈ (0,∞).
(i) Show that X· =

∑n
i=1 Xi = OP(

√
n).

(ii) If you think (i) is straightforward, show that eX· is not OP

(
ea
√

n
)

for

any constant a > 0 (no matter how how large). In other words, for any a > 0,
eX·/ea

√
n is not bounded in probability.
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(iii) Show that eX· = o
(
ebn0.5+δ

)
for any constants δ, b > 0 (no matter

how small).
3.20. Let X1, . . . , Xn be independent standard normal random variables.

Determine the orders of the following sequences of random variables ξn:

(i) ξn =

(
n∑

i=1

Xi

)(
n∑

i=1

X2
i

)(
n∑

i=1

X3
i

)
.

(ii) ξn =
(
∑n

i=1 Xi)
(∑n

i=1X
3
i

)
(1 +

∑n
i=1 X

2
i ) (1 +

∑n
i=1 X

4
i )
.

(iii) ξn =

(∑n
i=1 X

3
i

)2
1 +
∑n

i=1 X
6
i

.

(iv) ξn =

(∑n
i=1 X

2
i

)4
1 +
∑n

i=1 X
8
i

.

3.21. Let X1, . . . , Xn be independent Exponential(1) random variables.
(i) Prove the identity

1∑n
i=1Xi

=
1

n
−
∑n

i=1Xi − n

n2
+

(
∑n

i=1 Xi − n)2

n3
− (
∑n

i=1Xi − n)3

n3
∑n

i=1 Xi
.

(ii) Show that∑n
i=1 X

2
i∑n

i=1 Xi
=

1

n

n∑
i=1

X2
i − 1

n2

(
n∑

i=1

X2
i

)(
n∑

i=1

Xi − n

)

+
1

n3

(
n∑

i=1

X2
i

)(
n∑

i=1

Xi − n

)2

+OP(n−3/2).

(iii) What are the orders of the first three terms on the right side of the
equation in (ii)?

3.22. Suppose that X1, . . . , Xn are i.i.d. observations whose mgf [defined
by (2.9)] exists for some t > 0. Show that X(n) = OP{log(n)}, where X(n) is
the largest order-statistic (defined below Example 1.5).
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Asymptotic Expansions

4.1 Introduction

One of the techniques used in the latest case study (Section 3.7) is an asymp-
totic expansion of an estimator as well as that for a log-likelihood function.
The most well-known asymptotic expansion is the Taylor expansion, which is
a mathematical tool, rather than a statistical method. However, the method
is used so extensively in both theoretical and applied statistics that its role
in statistics can hardly be overstated. Several other expansions, including the
Edgeworth expansion and Laplace approximation, can be derived from the
Taylor expansion. It should be pointed out that some elementary expansions
can also be very useful (see Section 4.5).

Asymptotic expansions are extremely helpful in cases where the quanti-
ties of interest do not have closed-form expressions. Sometimes, even when
the quantity does have a closed form, an asymptotic expansion may still be
useful in simplifying the expression and revealing the dominant factor(s). For
example, consider the following.

Example 4.1 (Variance estimation in linear regression). A multiple linear
regression model may be expressed as

Yi = β0 + β1xi1 + · · · + βpxip + εi, (4.1)

i = 1, . . . , n, where xi1, . . . , xip are known covariate, β0, . . . , βp are un-
known regression coefficients, and εi is a random error. Here, we assume that
ε1, . . . , εn are independent and distributed as N(0, σ2), where σ2 is an un-
known variance.

The error variance is typically estimated by the unbiased estimator

σ̂2 =
RSS

n− p− 1
,

where RSS represents the residual sum of squares,
∑n

i=1 ε̂
2
i , where ε̂i = Yi−Ŷi,

Ŷi is the fitted value given by Ŷi = β̂0+β̂1xi1+· · ·+β̂pxip, and β̂ = (β̂0, . . . , β̂p)
′

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_4, © Springer Science+Business Media, LLC 2010
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is the least squares estimator of β = (β0, . . . , βp)
′ given by

β̂ = (X ′X)−1X ′Y. (4.2)

In (4.2), Y is the vector of observations, Y = (Yi)1≤i≤n, and X the matrix of
covariates, X = (xij)1≤i≤n,0≤j≤p with xi0 = 1, 1 ≤ i ≤ n, corresponding to
the intercept. Using this notation, (4.1) can be expressed as:

Y = Xβ + ε, (4.3)

where ε = (εi)1≤i≤n. Furthermore, the residuals and RSS can be expressed
in terms of a project matrix PX⊥ = In − PX , where PX = X(X ′X)−1X ′;
that is, ε̂ = (ε̂i)1≤i≤n = PX⊥y and RSS = |ε̂|2 = Y ′PX⊥Y . Here, we assume,
for simplicity, that X is of full (column) rank, but similar expressions can be
obtained even without this restriction. See Appendix A.1 for the definition
and properties of projection matrices. It follows that

σ̂2 =
Y ′PX⊥Y

n− p− 1
.

Alternatively, since normality is assumed, σ2 may be estimated by the MLE,
which can be expressed as

σ̃2 =
Y ′PX⊥Y

n
.

Both estimators have closed-form expressions, although the expression for σ̃2

is even simpler. On the other hand, an asymptotic expansion shows the close
relation between the two estimators in terms of decreasing orders. Note that

1

1 − x
= 1 + x+ x2 + · · · (4.4)

for any 0 ≤ x < 1. Then, for n > p+ 1, we have(
1 − p+ 1

n

)−1

= 1 +
p+ 1

n
+

(
p+ 1

n

)2

+ · · ·

= 1 +
p+ 1

n
+O

(
1

n2

)
, (4.5)

provided that n → ∞ and p is bounded.
Expansion (4.5) implies the following connection between σ̂2 and σ̃2:

σ̂2 =

(
1 − p+ 1

n

)−1

σ̃2

= σ̃2 +

(
p+ 1

n

)
σ̃2 +OP

(
1

n2

)
. (4.6)
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The reason that the remaining terms is OP(n−2) is because E(|ε̂|2) = σ2(n−
p− 1). This follows from the unbiasedness of σ̂2; alternatively, it can also be
derived using the following simple arguments:

E(|ε̂|2) = E(Y ′PX⊥Y )

= E{(Y −Xβ)′PX⊥(Y −Xβ)}
= E[tr{(Y −Xβ)′PX⊥(Y −Xβ)}]
= E[tr{PX⊥(Y −Xβ)(Y −Xβ)′}]
= tr[E{PX⊥(Y −Xβ)(Y −Xβ)′}]
= tr[PX⊥E{(Y −Xβ)(Y −Xβ)′}]
= σ2 tr(PX⊥)

= σ2(n− p− 1).

Here, we used the facts that one can exchange the order of trace and expec-
tation and that E{(Y − Xβ)(Y − Xβ)′} = Var(Y ) = σ2In. It follows from
Theorem 3.1 that |ε̂|2 = OP(n); hence, σ̃2 = OP(1). Equation (4.6) shows that
σ̃2 is the leading [OP(1)] term in an expansion of σ̂2. It also shows that the
next term in the expansion is {(p+ 1)/n}σ̃2, which is OP(n−1), and the next
term is OP(n−2), and so forth. Even though (4.6) is derived as a large-sample
approximation, assuming that n → ∞ while p remains fixed or bounded, it
can also be useful under a finite-sample consideration. For example, it shows
that if the number of covariates, p, is comparable to the sample size [i.e., if the
ratio (p+ 1)/n is not very small], the difference between the two methods of
variance estimation can be nontrivial. In fact, the latter is the reason for the
failure of consistency of the MLE in Example 3 of the Preface. See Chapter
12 for a further discussion.

4.2 Taylor expansion

It is the author’s view that the Taylor expansion is the single most useful
mathematical tool for a statistician. We begin by revisiting (4.4). There is
more than one way to derive this identity, one of which is to use the Taylor
expansion. First, compute the derivatives of f(x) = (1−x)−1. We have f ′(x) =
(1−x)−2, f ′′(x) = 2(1−x)−3, f ′′′(x) = 6(1−x)−4, and so on. Thus, we obtain
(4.4) as the Taylor series at a = 0

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)
6

(x− a)3 + · · ·

=

∞∑
k=0

f (k)(a)

k!
(x− a)k, (4.7)

where f (k)(x) represents the kth derivative with f (0)(x) = f(x).
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The formal statement of the Taylor expansion is the following.

Theorem 4.1 (Taylor’s theorem). Suppose that the lth derivative of f(x)
is continuous on [a, b] and the (l+1)st derivative of f(x) exists on (a, b). Then
for any x ∈ [a, b], we have

f(x) = f(a) + f ′(a)(x − a) + · · · + f (l)(a)

l!
(x− a)l +

f (l+1)(c)

(l + 1)!
(x− a)l+1

=
l∑

k=0

f (k)(a)

k!
(x− a)k +

f (l+1)(z)

(l + 1)!
(x− a)l+1, (4.8)

where z lies between a and x; that is, z = (1 − t)a+ tx for some t ∈ [0, 1].

If, in particular, f (k)(x) exists for all k and the last term on the right side
of (4.8) → 0 as n → ∞, then (4.7) holds, which is called the Taylor series. In
the special case of a = 0, the Taylor series is also known as the Maclaurin’s
series. For example, in addition to (4.4), we have

1

1 + x
= 1 − x+ x2 − x3 + x4 − · · · ,

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · ,

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · ,

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

cos(x) = 1 − x2

2!
+
x4

4!
− x6

6!
+ · · · .

English mathematician Brook Taylor (1685–1731) published a general
method for constructing the Taylor series (which are now named after him) in
1715, although various forms of special cases were known much earlier. Colin
Maclaurin, a Scottish mathematician who was once a professor in Edinburgh,
published the special case of the Taylor series in the 18th century.

It should be pointed out that the Taylor expansion is a local property
of a function. This means that the closer x is to a the more accurate is the
approximation. We illustrate this with an example.

Example 4.2. Consider the accuracy of the Maclaurin expansion for the
function f(x) = ex. The Taylor (Maclaurin) series for ex is given above. Table
4.1 shows the approximations using the first n terms in the series, where the
relative error is computed as the absolute value of the approximation error
divided by the true value. It is clear that the approximation is much more
accurate for x = 1 than for x = 5. This is because the expansion is at x = 0,
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Table 4.1. Maclaurin expansion for f(x) = ex

n e ≈ 2.718 Relative Error e5 ≈ 148.4 Relative Error

1 1.000 0.632 1.0 0.993
2 2.000 0.264 6.0 0.960
3 2.500 0.080 18.5 0.875
4 2.667 0.019 39.3 0.735
5 2.708 0.004 65.4 0.560
6 2.717 0.001 91.4 0.384

and x = 1 is much closer to zero than x = 5. However, as long as n is large
enough, the same accuracy will be achieved for any x (Exercise 4.1).

A multivariate extension of the Taylor expansion is perhaps even more use-
ful in practice. To illustrate the results, we define a linear differential operator
as follows. Let x = (x1, . . . , xs) ∈ Rs, and ∇ denote the gradient operator,
or vector differential operator, defined by ∇ = (∂/∂x1, . . . , ∂/∂xs)

′. Consider
the linear differential operator

x′∇ =
s∑

i=1

xi
∂

∂xi
.

Note that (x′∇)k can be operated in a similar way as the kth power of a sum.
For example, with s = 2, we have

(x′∇)2 =

(
x1

∂

∂x1
+ x2

∂

∂x2

)2

= x2
1

∂2

∂x2
1

+ 2x1x2
∂2

∂x1∂x2
+ x2

2

∂2

∂x2
2

;

(x′∇)3 =

(
x1

∂

∂x1
+ x2

∂

∂x2

)3

= x3
1

∂3

∂x3
1

+ 3x2
1x2

∂3

∂x2
1x2

+ 3x1x
2
2

∂3

∂x1x2
2

+ x3
2

∂3

∂x3
2

;

and so on. The multivariate Taylor expansion, or the Taylor expansion in
several variables, can be stated as follows.

Theorem 4.2 (Multivariate Taylor expansion). Let f : D → R, where
R ⊂ Rs. Suppose that there is a neighborhood of a, Sδ(a) ⊂ D such that f
and its up to (l + 1)st partial derivatives are continuous in Sδ(a). Then, for
any x ∈ Sδ(a), we have

f(x) = f(a) +

l∑
k=1

1

k!
{(x− a)′∇}kf(a)
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+
1

(l + 1)!
{(x− a)′∇}l+1f(z), (4.9)

where z = (1 − t)a+ tx for some t ∈ [0, 1].

In the author’s experience, the (multivariate) Taylor expansion of second
or third orders are most useful in practice. For such expansions, there is an
alternative expression that may be more interpretable and easier to use. Let

∂f(x)

∂x′
=

[
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xs

]
, (4.10)

∂2f(x)

∂x∂x′
=

[
∂2f(x)

∂xi∂xj

]
1≤i,j≤s

. (4.11)

Note that (4.10) is the transpose of the gradient vector, or {∇f(x)}′, and
(4.11) is the matrix of second derivatives, or Hessian matrix. Then the second-
order Taylor expansion can be expressed as

f(x) = f(a) +
∂f(a)

∂x′
(x− a) +

1

2
(x − a)′

∂2f(z)

∂x∂x′
(x− a), (4.12)

where z = (1 − t)a + tx for some t ∈ [0, 1]. Equation (4.12) shows that, lo-
cally (i.e., in a neighborhood of a), f(x) can be approximated by a quadratic
function. For example, suppose that a is a point such that ∂f(a)/∂x =
{∂f(a)/∂x′}′ = 0. Furthermore, suppose that, locally, the Hessian matrix
of f(x) is positive definite. It follows from (4.12) that f(x) > f(a) near a and,
hence, has a unique local minimum at x = a. Similarly, the third-order Taylor
expansion can be expressed as

f(x) = f(a) +
∂f(a)

∂x′
(x− a) +

1

2
(x− a)′

∂2f(a)

∂x∂x′
(x− a)

+
1

6

[
(x− a)′

∂3f(z)

∂xi∂x∂x′
(x− a)

]′
1≤i≤s

(x− a), (4.13)

where z = (1− t)a+ tx for some t ∈ [0, 1]. Note that in a small neighborhood
of a, the third-order term (i.e., the last term) in (4.13) is dominated by the
leading quadratic function.

The last term in the Taylor expansion (i.e., the term that involves z),
is called the remaining term. This term is sometimes expressed in terms of
a small o or big O. For example, suppose that all of the (l + 1)st partial
derivatives of f(x) are bounded in the neighborhood Sδ(a). Then (4.9) can be
written as

f(x) = f(a) +

l∑
k=1

1

k!
{(x− a)′∇}kf(a) + o(|x− a|l), (4.14)

where |x− a| = {∑s
i=1(xi − ai)

2}1/2, or
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f(x) = f(a) +
l∑

k=1

1

k!
{(x− a)′∇}kf(a) +O(|x − a|l+1). (4.15)

In particular, (4.13) can be expressed as

f(x) = f(a) +
∂f(a)

∂x′
(x− a) +

1

2
(x− a)′

∂2f(a)

∂x∂x′
(x− a)

+o(|x− a|2), (4.16)

and the o(|x − a|2) can be replaced by O(|x − a|3). However, caution should
be paid when using such an expression for a large-sample approximation, in
which the function f(x) may depend on the sample size n.

Example 4.3. Suppose that X1, . . . , Xn are i.i.d. observations from the
Logistic(θ) distribution whose pdf is given by

f(x|θ) =
eθ−x

(1 + eθ−x)2
, −∞ < x <∞.

Consider the second-order Taylor expansion of the log-likelihood function,

l(θ) =

n∑
i=1

log{f(Xi|θ)}

at the true θ, which we assume, for simplicity, to be zero. Then the Taylor
expansion can be expressed as

l(θ) = l(0) + l′(0)θ +
1

2
l′′(θ̃)θ2, (4.17)

where θ̃ lies between zero and θ. It can be shown (Exercise 4.2) that

l(0) = −
n∑

i=1

{Xi + 2 log(1 + e−Xi)},

l′(0) =
n∑

i=1

1 − e−Xi

1 + e−Xi
,

l′′(θ) = −2
n∑

i=1

eθ−Xi

(1 + eθ−Xi)2
.

Furthermore, it can be shown that l(0) = OP(n), l′(0) = OP(
√
n), and

supθ |l′′(θ)| = OP(n). Now, suppose that one wishes to study the behavior
of the log-likelihood near the true value θ = 0 by considering a sequence
θn = t/

√
n, where t is a constant known as the local deviation (e.g., Bickel

et al. 1993, p. 17). If one blindly uses (4.15) (with s = 1 and l = 1), one
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would have l(θ) = l(0)+ l′(0)θ+OP(θ2) [here we use OP(θ2) instead of O(θ2)
because l(θ) is random]; hence,

l(θn) = l(0) + l′(0)θn +OP(θ2n). (4.18)

The first term on the right side of (4.18) is OP(n), the second term is
OP(n1/2)(t/

√
n) = OP(1), and the third terms appears to be OP(n−1). This

suggests that the third term is negligible because it is of lower order than the
second term. However, this is not true because the more accurate expression
(4.17) (with θ = θn) shows that the third term is OP(n)(t2/n) = OP(1), which
is of the same order as the second term.

We conclude this section with an example of a well-known application of
the Taylor expansion. More examples will be discussed in the sequel.

Example 4.4 (The delta-method). Let ξn, n = 1, 2, . . . be a sequence of
s-dimensional random vectors such that

an(ξn − c)
d−→ η (4.19)

as n → ∞, where c is a constant vector, an is a sequence of positive constants
such that an → ∞ as n → ∞, and η is an s-dimensional random vector. Then
for any continuously differentiable function g(x): Rs → R, we have

an{g(ξn) − g(c)} d−→ ∂g(c)

∂x′
η (4.20)

as n → ∞. To establish (4.20), use the first-order Taylor expansion to get

g(ξn) = g(c) +
∂g(ζn)

∂x′
(ξn − c),

where ζn lies between c and ξn. It follows that |ζn − c| ≤ |ξn − c|. (4.19) and
the fact that an → ∞ implies that ξn − c = oP(1); hence, ζn − c = oP(1). It
follows that (Exercise 4.3)

∂g(ζn)

∂x′
− ∂g(c)

∂x′
= oP(1).

Therefore, we have, by Theorem 2.13,

an{g(ξn) − g(c)} =
∂g(c)

∂x′
an(ξn − c) +

{
∂g(ζn)

∂x′
− ∂g(c)

∂x′

}
an(ξn − c)

=
∂g(c)

∂x′
an(ξn − c) + oP(1)OP(1)

=
∂g(c)

∂x′
an(ξn − c) + oP(1)

d−→ ∂g(c)

∂x′
η.
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In particular, let θ be a s-dimensional parameter vector and θ̂ be an esti-
mator of θ based on i.i.d. observations X1, . . . , Xn. We say the estimator θ̂ is
asymptotically normal if

√
n(θ̂ − θ)

d−→ N(0, Σ), (4.21)

where Σ is called the asymptotic covariance matrix. It follows that for any
differentiable function g(x): Rs → R, we have

√
n{g(θ̂) − g(θ)} d−→ N(0, σ2), (4.22)

where

σ2 =
∂g(θ)

∂x′
Σ
∂g(θ)

∂x
,

where ∂g(θ)/∂x = (∂g(θ)/∂x′)′. For example, suppose that X1, . . . , Xn are
i.i.d. with E(Xi) = μ and var(Xi) = σ2 ∈ (0,∞). Then, according to the

CLT, we have
√
n(X̄ − μ)

d−→ N(0, σ2), where X̄ is the sample mean. It
follows that the following hold (Exercise 4.4):

√
n(eX̄ − eμ)

d−→ N(0, e2μσ2),

√
n{log(1 + X̄2) − log(1 + μ2)} d−→ N

{
0,

4μ2σ2

(1 + μ2)2

}
,

√
n

(
X̄

1 + X̄2
− μ

1 + μ2

)
d−→ N

{
0,

(1 − μ2)2σ2

(1 + μ2)4

}
.

Obviously, many more such results can be derived.

4.3 Edgeworth expansion; method of formal derivation

The central limit theorem (CLT) states that, subject to a mild condition
(that the second moment is finite), the sample mean X̄ of i.i.d. observations
X1, . . . , Xn is asymptotically normal in the sense that

√
n

σ
(X̄ − μ)

d−→ N(0, 1) (4.23)

as n → ∞, where μ = E(X1) and σ2 = var(X1). Over the years, this aston-
ishing result has amazed, surprised, or even confused its users. For example,
it says that no matter what the population distribution (of Xi) is, the lim-
iting distribution on the right side of (4.23) is alway the same: the standard
normal distribution. Imagine how different the population distribution can be
in terms of its shape: symmetric, skewed, bimodal, continuous, discrete, and
so forth. Yet, they do not make a difference as long as the CLT is concerned.
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Nevertheless, the CLT is correct from a theoretical point of view—and this
has been confirmed by countless empirical studies. Here, from a theoretical
point of view it means that n → ∞ or at least is very large. However, in a
finite-sample situation, it can well be a different story. For example, suppose
that n = 30. It can be shown that in this case the shape of the population
distribution makes a difference (Exercise 4.5). This raises an issue about the
convergence rate of the CLT. In particular, two characteristic measures of the
shape of the population distribution are the skewness and kurtosis, defined as

κ3 =
E(X1 − μ)3

σ3
, (4.24)

κ4 =
E(X1 − μ)4

σ4
− 3, (4.25)

respectively. One would expect these characteristics to have some impact on
the convergence rate of the CLT. For example, the celebrated Berry–Esseen
theorem, discoverd by Berry (1941) and Esseen (1942), states that if the third
moment of X1 is bounded, then

sup
x

|Fn(x) − Φ(x)| ≤ cE(|X1|3)√
n

, (4.26)

where Fn(x) is the cdf of ξn = (
√
n/σ)(X̄ − μ), Φ(x) is the cdf of N(0, 1),

and c is an absolute constant (i.e., a constant that does not depend on the
distribution of X1). The Edgeworth expansion, named in honor of the Irish
mathematician Francis Ysidro Edgeworth (1845–1926), carries the approxi-
mation in (4.26) to higher orders.

Like the Taylor expansion, the Edgeworth expansion can be expressed up
to k + 1 terms plus a remaining term. The difference is that, in the Taylor
expansion the terms are in decreasing orders of |x− a| [see (4.9)]; and in the
Edgeworth expansion, the terms are in decreasing orders of n−1/2. For the
sake of simplicity, we mainly focus on the case k = 2, which can be expressed
as

Fn(x) = Φ(x) +
κ3p1(x)

6
√
n

φ(x) +
κ4p2(x) − κ2

3p3(x)

24n
φ(x)

+O(n−3/2), (4.27)

where φ(x) is the pdf of N(0, 1); that is, φ(x) = (1/
√

2π)e−x2/2,

p1(x) = 1 − x2,

p2(x) = x(3 − x2),

p3(x) =
x

3
(15 − 10x2 + x4).

Expansion (4.27) is known as the two-term Edgeworth expansion (rather than
three-term Edgeworth expansion). Note that Φ(x) does not count as a “term”
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(or it may be counted as the zeroth term), so the first term of the expansion
is O(n−1/2), the second term is O(n−1), and so on. We see that the first and
second terms of the Edgeworth expansion involve the skewness, κ3, and kurto-
sis, κ4, confirming our earlier speculation that these quantities may influence
the convergence rate of the CLT.

To derive the Edgeworth expansion we introduce a method called formal
derivation, which will be used repeatedly in this book. Note that the valid-
ity of the Taylor expansion is not with conditions. For example, for (4.14)
to hold, it is necessary that the remaining term is really o(|x − a|l), which
requires certain conditions. Furthermore, according to the results of Chapter
2, convergence in probability does not necessarily imply convergence in ex-
pectation. So, for example, it is not necessarily true that E{oP(1)} = o(1).
However, such arguments as the above will be used in the derivation of the
Edgeworth expansion as well as many other asymptotic results in the sequel.
So what should we do? Should we verify the necessary conditions for every
single step of the derivation or should we go ahead with the derivation with-
out having to worry about the conditions? The answer depends on at what
stage you are in during the development of a method. Science will not advance
if we have to watch our steps for every tiny little move. In the development
of most statistical methods there is an important first step—that is, to pro-
pose the method. After the method is proposed, the next step is to study the
performance of the method, which includes theoretical justification, empirical
studies, and applications. At the first stage of the development (i.e., propose
the method), one may not need to worry about the conditions. In other words,
the first step does not have to wait for the second step to follow immediately.
This is what we called formal derivation.

More specifically, in the first step, one derives the formula (or procedure),
assuming that all of the necessary conditions are satisfied or that the formula
or procedure will hold under certain conditions. Quite often, the first step is
done by some researcher(s) and later justified by others. For example, Efron
(1979) proposed the bootstrap method without establishing its theoretical
properties. General accounts of theory for the bootstrap were latter given by
Bickel and Freedman (1981) and Beran (1984), among others. In conclusion,
the conditions are important, but they should not tie our hands. This is a
moral we learned, among other things, from the development of bootstrap (see
Chapter 14) and many other statistical methods.

Going back to the Edgeworth expansion, we use the method of formal
derivation. Recall ξn = (

√
n/σ)(X̄−μ) =

∑n
j=1 Zj , where Zj = (Xj−μ)/σ

√
n.

Then the cf of ξn can be expressed as

cn(t) = E{exp(itξn)}

=

n∏
j=1

E{exp(itZj)}

= [E{exp(itZ1}]n. (4.28)
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Furthermore, by the Taylor expansion, we have

exp(itZ1) =

4∑
k=0

(itZ1)k

k!
+OP(n−5/2).

Note that the Taylor expansion also holds for functions of complex variables
(i =

√−1 is a complex number). Also note that Z1 = OP(n−1/2). Thus,

E{exp(itZ1)} =
4∑

k=0

(it)k

k!
E(Zk

1 ) +O(n−5/2)

= 1 − t2

2n
+

4∑
k=3

(it)k

k!
E(Zk

1 ) +O(n−5/2)

because E(Z1) = 0 and E(Z2
1) = 1/n. Another Taylor expansion gives

log[E{exp(itZ1)}] = − t2

2n
+

4∑
k=3

(it)k

k!
E(Zk

1 ) +O(n−5/2)

−1

2

{
− t2

2n
+ · · ·

}2

+ O(n−3)

= − t2

2n
+

(it)3

3!

κ3

n3/2
+

(it)4

4!

κ4

n2
+O(n−5/2)

because E(Z3
1 ) = κ3/n

3/2 and E(Z4
1) = (κ4 + 3)/n2. Therefore, we have

n log E{exp(itZ1)} = − t2

2
+

(it)3

3!

κ3

n1/2
+

(it)4

4!

κ4

n
+O(n−3/2);

hence, by (4.28) and the Taylor expansion of f(x) = ex at x = −t2/2,

cn(t) = exp

{
− t2

2
+

(it)3

3!

κ3

n1/2
+

(it)4

4!

κ4

n
+O(n−3/2)

}
= e−t2/2 + e−t2/2

{
(it)3

3!

κ3

n1/2
+

(it)4

4!

κ4

n
+O(n−3/2)

}
+
e−t2/2

2!

{
(it)3

3!

κ3

n1/2
+ · · ·

}2

+O(n−3/2)

= e−t2/2

[
1 +

(it)3κ3

6
n−1/2 +

{
(it)4κ4

24
+

(it)6κ2
3

72

}
n−1 +O(n−3/2)

]
= e−t2/2 + n−1/2r1(it)e

−t2/2 + n−1r2(it)e
−t2/2 +O(n−3/2), (4.29)

where r1(z) = (κ3/6)z3 and r2(z) = (κ4/24)z4 + (κ2
3/72)z6. Note that

cn(t) =

∫
eitxd Fn(x)



4.3 Edgeworth expansion; method of formal derivation 93

is the Fourier–Stieltjes transform of Fn(x) = P(ξn ≤ x), which has the asymp-
totic expansion (4.29). An inversion of the transform transform then gives

Fn(x) = Φ(x) + n−1/2R1(x) + n−1R2(x) +O(n−3/2), (4.30)

where Rj(x) is a function that satisfies∫
eitx dRj(x) = rj(it)e

−t2/2, j = 1, 2, . . .

Note that
∫
eitx dΦ(x) = e−t2/2. It can be shown that (e.g., Hall 1992, p. 44)

R1(x) = −κ3

6
(x2 − 1)φ(x),

R2(x) = −
{
κ4

24
(x2 − 3) +

κ2
3

72
(x4 − 10x2 + 15)

}
xφ(x).

Thus, by (4.30) we obtain the expansion (4.27). We consider some examples.

Example 4.5. Let X1, . . . , Xn be independent with the Beta(α, β) distri-
bution. We consider two special cases: (i) α = β = 2 and (ii) α = 2, β = 6.
The skewness and kurtosis of the Beta(α, β) distribution are given by

κ3 =
2(β − α)

√
α+ β + 1

(α + β + 2)
√
αβ

,

κ4 = 6
α3 − α2(2β − 1) + β2(β + 1) − 2αβ(β + 2)

αβ(α + β + 2)(α+ β + 3)
,

respectively. Therefore, in case (i), we have κ3 = 0 and κ4 = −6/7. Thus, the
Edgeworth expansion (4.27) becomes

Fn(x) = Φ(x) − p2(x)φ(x)

28n
+O(n−3/2). (4.31)

Note that in case (i), the distribution of Xi is symmetric. As a result, the
Edgeworth expansion has a simpler form. On the other hand, in case (ii), we
have κ3 = 2

√
3/5 and κ4 = 6/55. Thus, (4.27) becomes

Fn(x) = Φ(x) +

√
3p1(x)φ(x)

15
√
n

+
{5p2(x) − 22p3(x)}φ(x)

11000n

+O(n−3/2). (4.32)

Comparing (4.31) and (4.32), one would expect the convergence in CLT to be
faster for case (i) than for case (ii) (Exercise 4.6).

Example 4.6. Suppose that X1, . . . , Xn are independent and distributed as
Exponential(1). Then it is easy to verify that κ3 = 2 and κ4 = 6. Thus, the
Edgeworth expansion (4.27) becomes



94 4 Asymptotic Expansions

Fn(x) = Φ(x) +
p1(x)φ(x)

3
√
n

+
3p2(x) − 2p3(x)

12n
φ(x)

+O(n−3/2).

Now comes the second step, the justification part. A rigorous treatment of
the Edgeworth expansion, including sufficient conditions, can be found in Hall
(1992, Section 2.4). One of the key conditions is known as Cramér’s condition,
which states the following:

lim sup
t→∞

|E(eitX1)| < 1. (4.33)

In other words, the cf of X1 is bounded strictly by 1. It holds, in particular,
if X1 has a pdf with respect to the Lebesgue measure (see Appendix A.2).

In fact, the Edgeworth expansion is not limited to the sample mean X̄ , as
has been discussed so far. Let θ̂ be an estimator of θ such that

√
n(θ̂ − θ) is

asymptotically normal with mean 0 and variance σ2 > 0. Then the cdf of ξn =
(
√
n/σ)(θ̂ − θ), Fn(x), may be expanded as (4.30), where Rj(x) = pj(x)φ(x)

and pj(x) is a polynomial of degree no more than 3j − 1. We consider an
example below and refer more details to Hall (1992, Section 2.3).

Example 4.7. The t-test and confidence interval are associated with the
random variable ξn =

√
n(X̄ − μ)/σ̂, where σ̂2 = n−1

∑n
i=1(Xi − X̄)2. Here,

X1, . . . , Xn are assumed to be i.i.d. with a finite fourth moment. The Edge-
worth expansion for Fn(x) = P(ξn ≤ x) is given by

Fn(x) = Φ(x) +
P1(x)φ(x)√

n
+
P2(x)φ(x)

n
+ o(n−1),

where P1(x) = (κ3/6)(2x2 + 1) and

P2(x) = x

{
κ4

12
(x2 − 3) − κ2

3

18
(x4 + 2x2 − 3) − x2 + 3

4

}
.

4.4 Other related expansions

4.4.1 Fourier series expansion

The Fourier–Stieltjes transform in the previous section is an extension of the
Fourier transform, which has had a profound impact in the mathematical
world. The Fourier series may be regarded as a discrete version of the inversion
of Fourier transform, which is defined as

f̂(k) =
1

2π

∫ π

−π

f(t)e−ikt dt, (4.34)
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for k = 0,±1,±2, . . ., where i =
√−1. Here, f denotes an integrable function.

Given the Fourier transform, one may recover f via the Fourier series

∞∑
k=−∞

f̂(k)eikt. (4.35)

Here, the series is understood as convergent in some sense (see below). Note
that one may express (4.35) as∫

Z

f̂(x)eitxμ(dx), (4.36)

where Z = {0,±1,±2, . . .} and μ represents the counting measure on Z [i.e.,
μ({k}) = 1 for any k ∈ Z]. Comparing (4.36) with (4.35), we see that the
Fourier series (4.35) actually corresponds to an inversion formula of the Fourier
transform. Note that we have not written (4.35) as

f(t) =
∞∑

k=−∞
f̂(k)eikt. (4.37)

The question is whether (4.37) actually holds, or holds in some sense. Before
we answer this question, let us point out the following facts.

First, if (4.37) does hold, say, at a certain point t, then by truncating the
series after a given number of terms, one obtains the Fourier expansion

f(t) =
N∑

k=−N

f̂(k)eikt + o(1), (4.38)

where N is a positive integer and the remaining term is o(1) as N → ∞.
Expansion (4.38) is more useful from a practical point of view because, re-
alistically, one can only evaluate a finite number of terms. Unlike the Taylor
expansion, there is no general result on the order of the remaining term, so
o(1) is all one can say at this point. This is because the Fourier series applies
to a much broader class of functions than the Taylor expansion. For a function
to have a Taylor series, it must be infinitely differentiable, or at least have
some order(s) of derivatives in an interval, if one uses Taylor expansion that
involves a finite number of terms. On the other hand, the Fourier series may
be used to approximate not only nondifferentiable functions; “they even do a
good job in the wilderness of the wildly discontinuous” (Bachman et al. 2000,
p. 139). Therefore, it is difficult to evaluate the order of the remaining term
because it depends on, among other things, the degree of “smoothness” of the
function. For example, for a noncontinuous function, the convergence of the
Fourier series may not be in the sense of (4.37) (see below).

Second, the Fourier series (4.35) is expressed in the form of an exponential
series or, more generally,
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∞∑
k=−∞

cke
ikt. (4.39)

Alternatively, it may be expressed in the form of a trigonometric series,

a0

2
+

∞∑
k=1

ak cos(kt) +

∞∑
k=1

bk sin(kt), (4.40)

through the simple transformation ak = ck + c−k and bk = i(ck − c−k).
The following theorem, known as Dirichlet’s pointwise convergence the-

orem, states sufficient conditions for the convergence of the Fourier series
as well as to what value the series converges. For any function f defined on
[−π, π], its 2π-periodic extension is defined by f(t+2kπ) = f(t), k ∈ Z, t ∈ R.
Furthermore, the left (right) limit of a function g at a point t is defined as
g(t−) = lims→t− g(s) [g(t+) = limu→t+ g(u)]. Here, s → t− (u → t+) means
that s (u) approaches t from the left (i.e., s < t) [right (i.e., u > t)].

Theorem 4.3. Let f be the 2π-periodic extension of an integrable function
on [−π, π]. If f ′(t−) and f ′(t+) exist for all t, then the Fourier series (4.39)

or (4.40), where ck = f̂(k), k ∈ Z, converges to

f(t−) + f(t+)

2

at every t. In particular, at any continuity point t, the series converges to f(t).

An alternative to pointwise convergence is L2-convergence. A function f ∈
L2[−π, π] if

∫ π

−π |f(t)|2 dt < ∞. For any f ∈ L2[−π, π], its nth-order Fourier
approximation is defined as

Snf(t) =

n∑
k=−n

f̂(k)eikt.

Here, we use the term “Fourier approximation” instead of “Fourier expan-
sion,” the difference between the two being that the latter is the former plus
a remaining term, which may be expressed in terms of big O or small o. In
fact, L2[−π, π] constitutes a Hilbert space if we define the inner product of
any f, g ∈ L2[−π, π] by < f, g >= (2π)−1

∫ π

−π
f(t)g(t) dt, where the bar

denotes complex conjugation. It follows that the nth-order Fourier approxi-
mation is simply the projection of f onto the subspace of L2[−π, π] spanned
by {ek, |k| ≤ n}, where ek(t) = eikt and the coefficients in the approximation

are the inner products, f̂(k) =< f, ek >, |k| ≤ n. A sequence fn in L2[−π, π]
converges in L2 to a limit f ∈ L2[−π, π] if∫ π

−π

|fn(t) − f(t)|2 dt −→ 0
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as n → ∞. We have the following result.

Theorem 4.4. For any f ∈ L2[−π, π], its Fourier approximation Snf
converges in L2 to f as n → ∞.

Modern harmonic analysis treats Fourier series as a special case of or-
thonormal series for the representation or approximation of functions or sig-
nals. Let S be a subset of R, the real line. An orthonormal system on S is
defined as a sequence of functions φk, k ∈ I, on S such that∫

S

φk(t)φl(t) dt = 0, k �= l, (4.41)∫
S

|φk(t)|2 dt = 1. (4.42)

Here, I represents an index set. Give an orthonormal system φk, k ∈ I, one
may consider the following series expansion of a function f :

f(t) =
∑
k∈I

ckφk(t), (4.43)

where ck =
∫ b

a
f(t)φk(t) dt. Again, the series expansion may be interpreted

in terms of projection in a Hilbert space, with the coefficients being the inner
products. Below are some examples.

Example 4.8. If we let φk(t) = eikt/
√

2π, then it is easy to verify that φk,
k ∈ Z, is an orthonormal system (Exercise 4.8). This orthonormal system on

[−π, π] corresponds to the Fourier series (4.39) with ck = f̂(k), k ∈ Z.

Example 4.9. Similarly, the sequence

1√
2π

,
sin(kt)√

2π
, k = 1, 2, . . . ,

cos(kt)√
2π

, k = 1, 2, . . . ,

defines an orthonormal system (Exercise 4.9). This orthonormal system on

[−π, π] corresponds to the Fourier series (4.40) with ck = f̂(k), k ∈ Z.

Example 4.10 (Orthonormal polynomials). Consider polynomial approxi-
mation to a function f on [0, 1]. A polynomial is a linear combination of the
powers 1, x, x2, . . .. Unfortunately, the power functions themselves are not
orthonormal. A general procedure for constructing an orthonormal system is
called the Gram–Schmidt orthonormalization. The procedure is described as
follows. Starting with φ0(x) = 1, let

φ1(x) =
x− ∫ 1

0
u du

{∫ 1

0
(v − ∫ 1

0
u du)2 dv}1/2

=
√

3(2x− 1).
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In general, the sequence φk(x) is defined recursively by

φk(x) =
xk −∑k−1

j=0{
∫ 1

0
ukφj(u) du}φj(x)

(
∫ 1

0 [vk −∑k−1
j=0{

∫ 1

0 u
kφj(u) du}φj(v)]2 dv)1/2

,

k = 1, 2, . . .. This defines an orthonormal system on [0, 1]. In particular, it is
fairly straightforward to compute the first few orthonormal polynomials and
verify that they are orthonormal (Exercise 4.10).

Example 4.11 (Haar functions). This system is a special case of wavelets.
It is a sequence of discontinuous functions defined through transformations of
the indicator function of [0, 1): I[0,1)(t) = 1 if 0 ≤ t < 1 and 0 otherwise. Let
φ0(t) = I[0,1)(2t) − I[0,1)(2t− 1). φ0 is called the Haar mother wavelet and it
can be expressed more explicitly as

φ0(t) =

⎧⎨⎩ 1, 0 ≤ t < 1/2
−1, 1/2 ≤ t < 1
0, otherwise

(see Figure 4.1). The subsequent Haar functions are defined as

φj,k(t) = 2j/2φ0(2
jt− k), j = 0, 1, 2, . . . , k = 0, 1, . . . , 2j − 1, (4.44)

where φ0,0 = φ0, the mother wavelet. It can be shown that the Haar functions
defined by (4.44) together with I[0,1) constitute an orthonormal system on
(−∞,∞) (Exercise 4.11).

4.4.2 Cornish–Fisher expansion

The Edgeworth expansion discussed in Section 4.3 can be inverted, leading to
a useful expansion for the quantiles of ξn. This is known as the Cornish–Fisher
expansion. For any α ∈ (0, 1), define qn(α) = inf{x : Fn(x) ≥ α}, which is
called the upper αth quantile of Fn. Here, as in Section 4.3, Fn denotes the
cdf of ξn = (

√
n/σ)(X̄ − μ) and X̄ is the sample mean of i.i.d. observations

X1, . . . , Xn. Let zα denote the upper αth quantile of N(0, 1) [i.e., Φ(zα) = α].
Then the two-term Cornish–Fisher expansion may be expressed as

qn(α) = zα +
(z2

α − 1)κ3

6
√
n

+
1

12n

{
(z3

α − 3zα)κ4

2
− (2z3

α − 5zα)κ2
3

3

}
+O(n−3/2), (4.45)

where κ3 and κ4 are defined by (4.24) and (4.25), respectively.
The Cornish–Fisher expansion is useful in obtaining more accurate confi-

dence intervals and critical values for tests. Note that the CLT approximation
to qn(α) would be zα, which is the leading term on the right side of (4.45)
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1
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Fig. 4.1. The Haar mother wavelet

(i.e., zα). The following example shows how much more accuracy the expan-
sion (4.45) may bring compared to the CLT approximation.

Example 4.12. Barndorff-Nielsen and Cox (1989, p. 119) reported the re-
sults of the Cornish–Fisher approximation in the situation where the Xi’s
are distributed as χ2

1. In this case, we have κ3 = 2
√

2 and κ4 = 12, so the
two-term expansion (4.45) becomes

qn(α) = zα +

√
2(z2

α − 1)

3
√
n

+
z3

α − 7zα

18n
+O(n−3/2).

Note that the mean and vaiance of χ2
n =

∑n
i=1 Xi are n and 2n, respectively.

Thus, the αth quantile of χ2
n is
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n+
√

2nqn(α) = n+ zα

√
2n+

2(z2
α − 1)

3
+
z3

α − 7zα

9
√

2n
+O(n−1).

Of course, the quantiles of χ2
n can be calculated exactly. Table 4.2, extracted

from Table 4.5 of Barndorff-Nielsen and Cox (1989), compares the approxima-
tions by the two-term Cornish–Fisher expansion as well as by the CLT with the
exact quantiles for α = 0.1, where C-F refers to the two-term Cornish–Fisher
expansion. The results showed astonishing accuracy of the C-F approximation
even with very small sample size (n = 5).

Table 4.2. Approximation of quantiles

n Exact CLT C-F

5 9.24 9.65 9.24
10 15.99 15.73 15.99
50 63.17 62.82 63.16

100 118.50 118.12 118.50

It should be pointed out that, like the Edgeworth expansion, the Cornish–
Fisher expansion requires certain regularity conditions in order to hold, and
one of the key conditions is (4.33). If the condition fails, the Cornish-Fisher
expansion may not improve over the CLT. The following is an example.

Example 4.13. Suppose that X1, . . . , Xn are i.i.d. from the Bernoulli(p)
distribution with p = 0.5. It is easy to show that the distribution does not
satisfy (4.33) (Exercise 4.12). If one blindly applies the Cornish–Fisher expan-
sion (4.45), then since in this case κ3 = 0 and κ4 = −2, one would get

qn(α) = zα +
3zα − z3

α

12n
+O(n−3/2). (4.46)

Despite the simple form, (4.46) may not give a better approximation than the
CLT. To see this, note that X· ∼ Binomial(n, p), so the exact αth quantile of
X· can be calculated. On the other hand, the αth quantile of X· is given by

n

{
p+ qn(α)

√
p(1 − p)

n

}
. (4.47)

Table 4.3 compares the approximations to the αth quantiles, where α =
P(X· ≤ k) for n = 15 and k = 3, 6, 9, 12, by C-F [i.e., (4.47) with qn(α)
given by (4.46)] as well as by the CLT [i.e., (4.47) with qn(α) = zα], with
the exact quantiles. It is seen that inappropriate use of C-F sometimes makes
things worse.
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Table 4.3. Approximation of quantiles

k 3 6 9 12

α 0.0176 0.3036 0.8491 0.9963
CLT 3.4207 6.5046 9.4998 12.6878
C-F 3.4533 6.4895 9.5212 12.5674

4.4.3 Two time series expansions

A time series is a set of observations, each recorded at a specified time t. In
this subsection we consider a stationary (complex-valued) time series, denoted
by {Xt, t = 0,±1,±2, . . .}, or simply Xt. This means that E(|Xt|2) < ∞ and
E(Xt) and E(Xt+kXt) do not depend on t. We can then define the autoco-
variance function of Xt as

γ(k) = cov(Xt+k, Xt)

= E{(Xt+k − μ)(Xt − μ)}, (4.48)

k = 0,±1,±2, . . ., where μ = E(Xt). One special stationary time series is
called a white noise, for which μ = 0 and γ(k) = σ21(k=0). In other words,
Wt is a white noise if E(Wt) = 0, E(W 2

t ) = σ2, and E(WsWt) = 0, s �= t. The
following conditions (i) and (ii) are both necessary and sufficient for γ to be
the autocovariance function of a stationary time series Xt.

(i) γ(k) =
∫ π

−π
eikλ dF (λ), where F is a right-continuous, nondecreasing

and bounded function on [−π, π] with F (−π) = 0.
(ii)
∑n

i,j=1 γ(i− j)aiaj ≥ 0 for any positive integer n and a1, . . . , an ∈ C.
Here, C denotes the set of complex numbers and F is right-continuous at

λ if F (ν) → F (λ) as ν approaches λ from the right (i.e., ν > λ). The functiom
F is called the spectral distribution function of γ or Xt. In particular, if F

is absolutely continuous such that F (λ) =
∫ λ

−π
f(ν) dν, −π ≤ λ ≤ π, f is

called the spetral density of γ or Xt. Note that the properties of F imply that
f(λ) ≥ 0, λ ∈ [−π, π]. If γ is the autocovariance function of a stationary time
series Xt that is absolutely summable, that is,

∞∑
k=−∞

|γ(k)| < ∞. (4.49)

then there exists a function f such that f(λ) ≥ 0, λ ∈ [−π, π] and

γ(k) =

∫ π

−π

eikλf(λ) dλ, k = 0,±1,±2, . . . . (4.50)

In other words, f is the spectral density of Xt. Furthermore, we have

f(λ) =
1

2π

∞∑
k=−∞

γ(k)e−ikλ, (4.51)
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λ ∈ [−π, π]. In other words, we have the asymptotic expansion

f(λ) =
1

2π

n∑
k=−n

γ(k)e−ikλ + o(1), (4.52)

λ ∈ [−π, π], where o(1) → 0 as n → ∞. Equation (4.51) or (4.52) can be
established using the results of Fourier expansion (see Section 4.4.1) or verified
directly using Fubini’s theorem (see Exercise 4.12).

Another well-known expansion in time series is called the Wold decom-
position. For simplicity, assume that Xt is real-valued. Consider the space H
of all random variables X satisfying E(X2) < ∞. Then H is a Hilbert space
with the inner product < X, Y >= E(XY ). Let Ht denote the subspace of H
spanned by {Xs, s ≤ t}. Let PHt−1Xt denote the projection of Xt onto Ht−1

(called the one-step predictor). See Chapter 9 for more details. Also, define
H−∞ = ∩∞t=−∞Ht. A time series Xt is said to be deterministic of Xt ∈ Ht−1

for all t. The Wold decomposition states that if σ2 = E(Xt − PHt−1Xt)
2 > 0,

then Xt can be expressed as

Xt =
∞∑

k=0

ψkZt−k + Vt, (4.53)

where ψ0 = 1 and
∑∞

k=0 ψ
2
k < ∞; Zt is a white noise with variance σ2 and Zt ∈

Ht; Vt and Zt are uncorrelated [i.e., E(ZtVu) = 0, ∀t, u] and Vt ∈ H−∞ and
is deterministic. In fact, (4.53) and the above properties uniquely determine
ψk, Zt, and Vt. We consider an example.

Example 4.14. Consider the real-valued function

γ(k) =

⎧⎨⎩1, k = 0
ρ, k = ±1
0, otherwise.

It is easy to show that γ is an autocovariance function if |ρ| ≤ 1/2 (Exercise
4.13). Since (4.49) is obviously satisfied, it follows by the spectral represen-
tation (4.51) that f(λ) = (2π)−1

∑∞
k=−∞ γ(k)e−ikλ = (2π)−1{1 + 2ρcos(λ)}.

Clearly, we have f(λ) ≥ 0, λ ∈ [−π, π] provided that |ρ| ≤ 1/2. In fact, this is
the spectral density of an MA(1) process defined by Xt = Zt + θZt−1, where
Zt is a white noice with variance σ2 > 0 and θ = ρ/σ2. See Chapter 9 for
more details. Clearly, the Wold decomposition holds for this Xt with ψ0 = 1,
φ1 = θ, ψk = 0, k > 1, and Vt = 0.

4.5 Some elementary expansions

The asymptotic expansions encountered so far are well known in the math-
ematical or statistical literature, and their derivations involve (much) more
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than just a few lines of algebra. However, these are not the only ways to come
up with an asymptotic expansion. In this section, we show that one can derive
some useful asymptotic expansions oneself using some elementary approaches
that involve nothing more than a few lines of simple algebra.

Let us begin with a simple problem. Suppose that one wishes to expand
the function f(x) = x−1 at x = a. Most people would immediately think that,
well, let’s try the Taylor expansion. Surely one can do so without a problem.
However, here is an alternative approach. Write

1

x
=

1

a
+

1

x
− 1

a

=
1

a
− x− a

a

1

x
. (4.54)

Equation (4.54) suggests an iterative procedure so that we have

1

x
=

1

a
− x− a

a

(
1

a
− x− a

a

1

x

)
=

1

a
− x− a

a2
+

(x − a)2

a2

1

x

=
1

a
− x− a

a2
+

(x − a)2

a2

(
1

a
− x− a

a

1

x

)
= · · · .

In general, one has the asymptotic expansion

1

x
=

l∑
k=1

(−1)k−1 (x− a)k−1

ak
+ (−1)l (x− a)l

alx
(4.55)

for l = 1, 2, . . .. If one instead uses the Taylor expansion, then since f (k)(x) =
(−1)kk!x−(k+1), we have, by (4.8),

1

x
=

l∑
k=1

(−1)k−1 (x− a)k−1

ak
+ (−1)l (x− a)l

ξl+1
, (4.56)

where ξ lies between a and x. Comparing the Taylor expansion with (4.55),
which we call elementary expansion, the only difference is that (4.55) is more
precise in terms of the remaining term than (4.56). In other words, in the
Taylor expansion, we only know that ξ is somewhere between a and x, whereas
in the elementary expansion there is no such uncertainty. Here is another look
at the difference. If we drop the remaining term in the Taylor expansion (4.8)
with l replaced by l + 1, we can write

1

x
≈

l∑
k=1

(−1)k−1 (x− a)k−1

ak
+ (−1)l (x− a)l

al+1
. (4.57)
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Comparing (4.55) with (4.57), the difference is that the elementary expansion
is exact (characterized by =), whereas the Taylor expansion is approximate
(characterized by ≈).

In fact, it is not just that the results are (slightly) different. The elemen-
tary expansion is derived using very simple algebras—no results of calculus
such as derivatives are involved. This is important because such an elemen-
tary expansion is easier to extend to situations beyond real numbers, such as
matrices. For example, suppose that one wishes to approximate the inverse of
matrix B by that of matrix A. Then, by a similar derivation, we have

B−1 = A−1 +B−1 −A−1

= A−1 +A−1(A−B)B−1

= A−1 +A−1(A−B){A−1 +A−1(A−B)B−1}
= A−1 +A−1(A−B)A−1 + {A−1(A−B)}2B−1

= A−1 +A−1(A−B)A−1

+{A−1(A−B)}2{A−1 +A−1(A−B)B−1}
= A−1 +A−1(A−B)A−1 + {A−1(A−B)}2A−1

+{A−1(A−B)}3B−1

= · · · .
In general, we have the matrix asymptotic expansion

B−1 =

[
l∑

k=0

{A−1(A−B)}k

]
A−1 + {A−1(A−B)}l+1B−1 (4.58)

for l = 0, 1, 2, . . . (e.g., Das et al. 2004, Lemma 5.4).
For example, expansions such as (4.55) and (4.58) are useful in situations

where x (B) is a random variable (matrix) and a (A) is its expectation. We
consider an example.

Example 4.15. Suppose that X1, . . . , Xn are i.i.d. p-dimensional standard
normal random vectors; that is, the Xi’s are independent ∼ N(0, Ip), where
Ip is the p-dimensional identity matrix. Let B = IP + X̄X̄ ′, where X̄ =
n−1

∑n
i=1 Xi, and suppose that one wishes to evaluate E(B−1). Note that

X̄ ∼ N(0, n−1Ip); hence, n−1/2X̄ ∼ N(0, Ip). It follows that X̄ = OP(n−1/2).
Let A = E(B) = {(n+1)/n}Ip. Then we have E{(A−B)2} = E(X̄X̄ ′X̄X̄ ′}−
n−2Ip. Write ξ = n1/2X̄ = (ξ1, . . . , ξp)

′ ∼ N(0, Ip). Then the (i, j) element of
ξξ′ξξ′ is ηij = ξiξj

∑p
k=1 ξ

2
k. It is easy to show (Exercise 4.15) that E(ηij) =

(p + 2)1(i=j). It follows that E(ξξ′ξξ′) = (p + 2)Ip; hence, E{(A − B)2} =
n−2E(ξξ′ξξ′) − n−2Ip = n−2(p+ 1)Ip. Now, by (4.58) with l = 2, we have

B−1 = [Ip +A−1(A−B) + {A−1(A−B)}2]A−1 +OP(n−3).

Here, we used Theorem 3.2 to argue that B−1 = OP(1), and note that A−1 =
{n/(n + 1)}Ip = O(1), and A − B = n−1Ip − X̄X̄ ′ = O(n−1) + OP(n−1) =
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OP(n−1). Thus, by the method of formal derivation (see Section 4.3), we have

E(B−1) = A−1 +A−1E{(A−B)A−1(A−B)}A−1 +O(n−3)

=
n

n+ 1
Ip +

(
n

n+ 1

)3

E{(A−B)2} +O(n−3)

=
n

n+ 1

{
1 +

p+ 1

(n+ 1)2

}
Ip +O(n−3)

=

{
1 − 1

n
+
p+ 2

n2

}
Ip +O(n−3). (4.59)

The last equality in (4.59) is because, by (4.55) with l = 3, we have (n+1)−1 =
n−1 − n−2 + n−3 +O(n−4); hence, n/(n+ 1) = 1 − n−1 + n−2 +O(n−3) and
(n+1)−2 = n−2+O(n−3). Therefore, {n/(n+1)}{1+(p+1)/(n+1)2} = {1−
n−1+n−2+O(n−3)}{1+(p+1)n−2+O(n−3)} = 1−n−1+(p+2)n−2+O(n−3).

We now derive (4.59) using a different method—this time by the Taylor
expansion. To do so, we first make use of the following matrix identity (e.g.,
Sen and Srivastava 1990, p. 275): For any p× p matrix P , p× q matrix U and
q × p matrix V , we have

(P + UV )−1 = P−1 − P−1U(Iq + V P−1U)−1V P−1, (4.60)

provided that the inverses involved exist. By letting P = Ip, U = X̄ , and
V = X̄ ′ in (4.60), we have

B−1 = (Ip + X̄X̄ ′)−1

= Ip − X̄X̄ ′

1 + X̄ ′X̄

= Ip − ξξ′

n+ ξ′ξ
,

where ξ is defined as above. Note that the (i, j) element of ζ = (n+ ξ′ξ)−1ξξ′

is (n + ξ′ξ)ξiξj . If i �= j, then E(ζij) = 0; if i = j, then E(ζii) = E{(n +∑p
k=1 ξ

2
k)−1ξ2i } does not depend on i (Exercise 4.16). Thus,

E(ζii) =
1

p

p∑
i=1

E

(
ξ2i

n+
∑p

k=1 ξ
2
k

)
=

1

p
E

( ∑p
k=1 ξ

2
k

n+
∑p

k=1 ξ
2
k

)
=

1

p
E

(
χ2

p

n+ χ2
p

)
, (4.61)

where χ2
p represents a random variable with a χ2

p-distribution. By the Taylor
expansion, we have
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χ2
p

n+ χ2
p

=
χ2

p

n

1

1 + n−1χ2
p

=
χ2

p

n

{
1 − χ2

p

n
+OP(n−2)

}

=
χ2

p

n
− χ4

p

n2
+OP(n−3).

Now, again, use the method of formal derivation (Section 4.3), the facts that
E(χ2

p) = p and E(χ4
p) = p(p+ 2), and (4.61) to get

E(ξii) =
1

p

{
p

n
− p(p+ 2)

n2
+O(n−3)

}
=

1

n
− p+ 2

n2
+O(n−3).

Therefore, in conclusion, we have

E(B−1) = Ip − E(ζ)

= Ip −
{

1

n
− p+ 2

n2
+O(n−3)

}
Ip

=

{
1 − 1

n
+
p+ 2

n2

}
Ip +O(n−3),

which is the same as (4.59).
Note that in the latest derivation using the Taylor expansion we actually

benefited from the identity (4.60) of matrix inversion and results on moments
of the χ2-distribution (otherwise, the derivation could be even more tedious).

4.6 Laplace approximation

Suppose that one wishes to approximate an integral of the form∫
e−q(x)dx, (4.62)

where q(·) is a “well-behaved” function in the sense that it achieves its min-
imum value at x = x̃ with q′(x̃) = 0 and q′′(x̃) > 0. Then we have, by the
Taylor expansion,

q(x) = q(x̃) +
1

2
q′′(x̃)(x− x̃)2 + · · · ,

which yields the following approximation (Exercise 4.18):∫
e−q(x)dx ≈

√
2π

q′′(x̃)
e−q(x̃). (4.63)
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Approximations such as (4.63) are known as the Laplace approximation,
named after the French mathematician and astronomer Pierre-Simon Laplace.
There is a multivariate extension of (4.63), which is often more useful in prac-
tice. Let q(x) be a well-behaved function that attains its minimum value at
x = x̃ with q′(x̃) = 0 and q′′(x̃) > 0 (positive definite), where q′ and q′′ denote
the gradient vector and Hessian matrix, respectively. Then we have∫

e−q(x)dx ≈ c|q′′(x̃)|−1/2e−q(x̃), (4.64)

where c is a constant depending only on the dimension of the integral (Exercise
4.19) and |A| denotes the determinant of matrix A.

Approximations (4.63) or (4.64) are derived using the second-order Taylor
expansion. This is called the first-order Laplace approximation. If one uses
the higher order Taylor expansions, the results are the higher order Laplace
approximations, which are more complicated in their forms (e.g., Barndorff-
Nielsen and Cox 1989, Section 3.3; Lin and Breslow 1996). For a fixed-order
(e.g., first order) Laplace approximation, its accuracy depends on the behavior
of the function q. Roughly speaking, the more “concentrate” the function is
near x̃ the more accurate; and the more normal-look-like the function is the
more accurate. For example, consider the following.

Example 4.16 (t-distribution). Consider the function

q(x) =
ν + 1

2
log

(
1 +

x2

ν

)
, −∞ < x <∞,

where ν is a positive integer. Note that, subject to a normalizing constant,
e−q(x) corresponds to the pdf of the t-distribution with ν degrees of freedom.
It is easy to verify (Exercise 4.20) that, in this case, the exact value of (4.62)
is given by

√
νπΓ (ν/2)/Γ{(ν + 1)/2}, where Γ is the gamma function; the

Laplace approximation (4.63) is
√

2νπ/(ν + 1). Table 4.4 shows the numerical
values (up to the fourth decimal) for a number of different ν’s, where Relative
Error is defined as Exact minus Approximate divided by Exact. It is seen that
the accuracy improves as ν increases. This is because as ν increases, the t-
distribution becomes more and more concentrate at x = 0. In the extreme case
where ν → ∞, the t-distribution becomes the standard normal distribution,
for which the Laplace approximation is exact (Exercise 4.20).

So, if q is a fixed function, there is a limit for how accurate one can approx-
imate (4.62) with a fixed-order Laplace approximation. Note that, in practice,
the first-order Laplace approximation is by far the most frequently used and
the higher than the second order Laplace approximation is rarely even consid-
ered. This is because as the order increases, the formula for the approximation
quickly becomes complicated, especially in the multivariate case. Therefore,
practically, increasing the order of Laplace approximation may not be an op-



108 4 Asymptotic Expansions

Table 4.4. Accuracy of Laplace approximation

ν Exact Approximate Relative Error

1 3.1416 1.7725 0.4358
2 2.8284 2.0467 0.2764
3 2.7207 2.1708 0.2021
4 2.6667 2.2420 0.1593
5 2.6343 2.2882 0.1314

10 2.5700 2.3900 0.0700
50 2.5192 2.4819 0.0148

100 2.5129 2.4942 0.0074
250 2.5091 2.5016 0.0030

tion on the table to improve the accuracy of approximation. What else (option)
does one have on the table?

In many applications, the function q in (4.62) is not a fixed function but
rather depends on n, the sample size. In other words, the sample size n may
play a role in the accuracy of Laplace approximation, which so far has not
been taken into account. To see why the sample size may help, let us consider
a simple example. Suppose that the function q in (4.62), or, more precisely,
e−q(x), corresponds to the pdf of a sample mean X̄ of i.i.d. random variables
X1, . . . , Xn. According to the law of large numbers (LLN), as n increases, X̄
becomes more and more concentrated near the population mean x̃ = E(X1).
Therefore, the Laplace approximation is expected to become more accurate
as n increases. To show this more precisely, let us first consider a simple case.

Suppose that in (4.62), q(x) = nx, and another function p(x) is added in
front of dx. More specifically, we consider

In =

∫ ∞
0

e−nxp(x) dx. (4.65)

Suppose that p(k)(x)e−nx → 0 as x→ ∞ for k = 0, 1, 2, . . .. Then, by integra-
tion by parts, we have

In =
p(0)

n
+

1

n

∫ ∞

0

e−nxp′(x) dx

=
p(0)

n
+
p′(0)

n2
+

1

n2

∫ ∞

0

e−nxp′′(x) dx

=
p(0)

n
+
p′(0)

n2
+
p′′(0)

n3
+ · · · .

In other words, we have an asymptotic expansion in terms of increasing powers
of n−1. Now, let us consider a more general case by replacing the function x in
(4.65) by g(x) and assuming that g′(0) �= 0. It is also assumed that as x→ ∞,
e−ng(x)p(x)/g′(x) → 0, e−ng(x){p′(x)g′(x)− p(x)g′′(x)}/{g′(x)}3 → 0, and so
forth, so that we get, by integration by parts,
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In =

∫ ∞

0

e−ng(x)p(x) dx

= e−ng(0) p(0)

g′(0)
n−1 +

1

n

∫ ∞

0

e−ng(x)

{
p(x)

g′(x)

}′
dx

= e−ng(0) p(0)

g′(0)
n−1 + e−ng(0) p

′(0)g′(0) − p(0)g′′(0)

{g′(0)}3
n−2 + · · · . (4.66)

So, again, the expansion is in increasing powers of n−1.
The assumption that g′(0) �= 0 makes a big difference in the approxima-

tion. To see this, consider the integral

In =

∫ ∞
−∞

e−ng(x)p(x) dx. (4.67)

Suppose that g(x) attains its minimum at x̃ such that g′(x̃) = 0, g′′(x̃) > 0
and p(x̃) �= 0. Then, under regularity conditions, we have, by the Taylor
expansion,

g(x) = g(x̃) + g′(x̃)(x − x̃) +
1

2
g′′(x̃)(x − x̃)2 + · · ·

= g(x̃) +
1

2
g′′(x̃)(x− x̃)2 + · · · .

So, if we make a change of variable y =
√
ng′′(x̃)(x− x̃), we have

ng(x) = ng(x̃) +
n

2
g′′(x̃)(x − x̃)2 + · · ·

= ng(x̃) +
y2

2
+ · · · .

On the other hand, again by the Taylor expansion, we have

p(x) = p

{
x̃+

y√
ng′′(x̃)

}

= p(x̃) + p′(x̃)
y√

ng′′(x̃)
+

1

2
p′′(x̃)

y2

ng′′(x̃)
+ · · · .

If we ignore the · · · in both expansions, we obtain the following Laplace ap-
proximation of In in (4.67):

In =

∫ ∞
−∞

exp

{
−ng(x̃) − y2

2
− · · ·

}
×
{
p(x̃) +

p′(x̃)√
ng′′(x̃)

y +
p′′(x̃)

2ng′′(x̃)
y2 + · · ·

}
dy√
ng′′(x̃)

≈ e−ng(x̃)√
ng′′(x̃)

∫ ∞
−∞

e−y2/2

{
p(x̃) +

p′(x̃)√
ng′′(x̃)

y +
p′′(x̃)

2ng′′(x̃)
y2

}
dy
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=

√
2π

ng′′(x̃)
e−ng(x̃)

{
p(x̃) +

p′′(x̃)

2ng′′(x̃)

}

=

√
2π

ng′′(x̃)
e−ng(x̃)p(x̃){1 +O(n−1)}. (4.68)

Note that, unlike (4.66), expansion (4.68) is in increasing powers of n−1/2. We
may compare (4.68) with p(x) = 1 with (4.63), where q(x) = ng(x). According
to (4.63), we have In ≈ √2π/ng′′(x̃)e−ng′′(x̃), whereas, according to (4.68),

we have In ≈√2π/ng′′(x̃)e−ng′′(x̃){1+O(n−1)}. The leading terms of the two
approximations are the same, but (4.68) also ascertains that the next term in
the approximation is O(n−3/2).

The seemingly nice results might lead an unwary mind to wrong conclu-
sions that expansions such as (4.66) and (4.68) always hold. This is because,
in many cases, the function g also depends on n, so that as n increases, the
remaining term in the Laplace expansion may not have the same order as
what we have seen so far. To add a further complication, in some cases the
dimension of the integral also depends on n. Below is an example.

Example 4.17. Suppose that, given the random variables u1, . . . , um1 and
v1, . . . , vm2 , binary responses Yij , i = 1, . . . ,m1, j = 1, . . . ,m2, are condition-
ally independent such that pij = P(Yij = 1|u, v) and

logit(pij) = μ+ ui + vj ,

where μ is an unknown parameter, u = (ui)1≤i≤m1 , and v = (vj)1≤j≤m2 .
Furthermore, assume the ui’s and vj ’s are independent such that ui ∼ N(0, σ2

1)
and vj ∼ N(0, σ2

2), where the variances σ2
1 and σ2

2 are unknown. Here, the ui’s
and vj ’s are called random effects and the above model is a special case of
the generalized linear mixed model (GLMM). See Chapter 12 for more details.
Suppose that one wishes to estimate the unknown parameters μ, σ2

1 , and σ2
2 by

the maximum likelihood method. It can be shown that the likelihood function
can be expressed as

c− m1

2
log(σ2

1) − m2

2
log(σ2

2) + μY··

+ log

∫
· · ·
∫ ⎡⎣m1∏

i=1

m2∏
j=1

{1 + exp(μ+ ui + vj)}−1

⎤⎦
× exp

⎛⎝m1∑
i=1

uiYi· +
m2∑
j=1

vjY·j − 1

2σ2
1

m1∑
i=1

u2
i −

1

2σ2
2

m2∑
j=1

v2
j

⎞⎠
du1 · · ·dum1dv1 · · · dvm2 , (4.69)

where c is a constant, Y·· =
∑m1

i=1

∑m2

j=1 Yij , Yi· =
∑m2

j=1 Yij , and Y·j =∑m1

i=1 Yij (Exercise 4.21). The multidimensional integral involved in (4.69)



4.7 Case study: Asymptotic distribution of the MLE 111

has no closed-form expression, and it cannot be further simplified. Further-
more, the dimension of the integral is m1 + m2, which increases with the
total sample size n = m1m2 (in fact, unlike the classical i.i.d. case, here the
total sample size n is no longer meaningful if the interest is to estimate the
variances σ2

1 and σ2
2).

Such a high-dimensional integral is difficult to evaluate even numerically.
In particular, a fixed-order Laplace approximation no longer provides a good
approximation unless σ2

1 and σ2
2 are very small. In fact, Jiang (1998a) showed

that if one approximates a likelihood function such as (4.69) using the Laplace
approximation and then estimates the parameters by maximizing the approx-
imate likelihood function, the resulting estimators are inconsistent.

As a final remark, so far the derivations of the Laplace approximation may
be viewed as a method of formal derivation (see Section 4.3). As it turns out,
this is one of the cases that the second step in the development of a method
(see the fourth paragraph in Section 4.3) may reject the first step. Our general
recommendation is that the Laplace approximation is useful in many cases,
but it should be used with caution.

4.7 Case study: Asymptotic distribution of the MLE

A classical application of Taylor series expansion is the derivation of the
asymptotic distribution of the MLE. Let us begin with the i.i.d. case with
the same set up as in Section 1.4; that is, X1, . . . , Xn are i.i.d. observations
with pdf f(x|θ), where θ is a real-valued unknown parameter with the param-

eter space Θ = (−∞,∞). Let θ̂ denote the MLE of θ. We assume that θ̂ is
consistent (see Section 1.4). Let l(θ|X) denote the log-likelihood function; that
is, l(θ|X) =

∑n
i=1 log{f(Xi|θ)}. Here, X = (X1, . . . , Xn)′ represents the vec-

tor of observations. Then under regularity conditions we have, by the Taylor
expansion,

0 =
∂

∂θ
l(θ̂|X)

=
∂

∂θ
l(θ|X) +

{
∂2

∂θ2
l(θ|X)

}
(θ̂ − θ)

+
1

2

{
∂3

∂θ3
l(θ̃|X)

}
(θ̂ − θ)2, (4.70)

where θ̃ lies between θ and θ̂. Before we continue, let us note the following
facts:

(i) We have

∂2

∂θ2
l(θ|X) = E

{
∂2

∂θ2
l(θ|X)

}
+

∂2

∂θ2
l(θ|X) − E

{
∂2

∂θ2
l(θ|X)

}
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= nE(Y1) +
n∑

i=1

{Yi − E(Yi)},

where Yi = (∂2/∂θ2) log{f(Xi|θ)}. It follows by the WLLN that under a
suitable moment condition (see Chapter 6),

∂2

∂θ2
l(θ|X) = nE(Y1) + oP(n). (4.71)

(ii) Under some regularity conditions, we have

∂3

∂θ3
l(θ̃|X) =

n∑
i=1

∂3

∂θ3
f(Xi|θ̃) = OP(n). (4.72)

(iii) Write Zi = (∂/∂θ) log{f(Xi|θ)}. Then under some regularity condi-
tions (see below), we have, by the CLT,

1√
n

∂

∂θ
l(θ|X) =

1√
n

n∑
i=1

Zi
d−→ N

{
0,E(Z2

1)
}
. (4.73)

One of the regularity conditions makes sure that is legal to interchange the
order of differentiation and integration in the following calculation:

0 =
∂

∂θ

∫
f(x|θ) dx

=

∫
∂

∂θ
f(x|θ) dx

=

∫
∂

∂θ
log{f(x|θ)}f(x|θ) dx

= E(Z1);

0 =
∂2

∂θ2

∫
f(x|θ) dx

=
∂

∂θ

∫
∂

∂θ
log{f(x|θ)}f(x|θ) dx

=

∫ [
∂2

∂θ2
log{f(x|θ)}f(x|θ) +

∂

∂θ
log{f(x|θ)} ∂

∂θ
f(x|θ)

]
dx

=

∫
∂2

∂θ2
log{f(x|θ)}f(x|θ) dx+

∫ [
∂

∂θ
log{f(x|θ)}

]2
f(x|θ) dx

= E(Y1) + E(Z2
1).

Thus, in particular, E(Y1) = −E(Z1). Combining (4.70)–(4.74), we have

0 =
∂

∂θ
l(θ|X) + {nE(Z2

1) + oP(n) +OP(n)(θ̂ − θ)}(θ̂ − θ)

=
∂

∂θ
l(θ|X) + n{E(Z2

1) + oP(1)}(θ̂ − θ)
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using the consistency of θ̂. Thus, we have

√
n(θ̂ − θ) = − 1

E(Z2
1) + oP(1)

1√
n

∂

∂θ
l(θ|X)

d−→ N

{
0,

1

E(Z2
1 )

}
(4.74)

using Slutsky’s theorem (Theorem 2.13).
The quantity E(Z2

1 ) is known as the Fisher information, denoted by

I(θ) = E

[
∂

∂θ
log{f(X1|θ)}

]2
. (4.75)

In a suitable sense, I(θ) represents the amount of information about θ con-
tained in X1. The concept can be extended to multiple observations; that is,
the amount of information contained in X1, . . . , Xn is

I(θ) = E

[
∂

∂θ
log{f(X1, . . . , Xn|θ)}

]2
. (4.76)

Here, with a little abuse of the notation, f(x1, . . . , xn|θ) represents the
joint pdf of X1, . . . , Xn. Since, in the i.i.d. case, we have f(x1, . . . , xn|θ) =∏n

i=1 f(xi|θ), it follows that, under regularity conditions, I(θ) = nI(θ) (Ex-
ercise 4.22); that is, the amount of information contained in X1, . . . , Xn is n
times that contained in X1.

The result (4.74) on asymptotic distribution of the MLE may be general-
ized in many ways. First, the parameter θ does not have to be univariate. Sec-
ond, the observations do not have to be i.i.d. Let θ be a multi-dimensional vec-
tor of parameters; that is, θ ∈ Θ ⊂ Rp (p ≥ 1). Let X1, . . . , Xn be observations
whose joint pdf with respect to a measure μ depends on θ, denoted by f(x|θ),
where x = (x1, . . . , xn)′. Then under some regularity conditions, the MLE of θ,

θ̂, satisfies the likelihood equation ∂l/∂θ = 0, where l = l(θ|X) = log{f(X |θ)}
is the log-likelihood function with X = (X1, . . . , Xn)′. By the multivariate
Taylor expansion (4.12), we have

0 =
∂l(θ̂|X)

∂θi

=
∂l(θ|X)

∂θi
+

{
∂2l(θ|X)

∂θ′∂θi

}
(θ̂ − θ)

+
1

2
(θ̂ − θ)′

{
∂3l(θ̃(i)|X)

∂θ∂θ′∂θi

}
(θ̂ − θ),

1 ≤ i ≤ p, where θi is the ith component of θ and θ̃(i) lies between θ and
θ̂. Note that θ̃(i) depends on i (which is something that one might overlook).
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Here, of course, we assume the existence of all partial derivatives involved. It
follows that, as a vector, we can write

0 =
∂l(θ̂|X)

∂θ

=
∂l(θ|X)

∂θ
+

{
∂2l(θ|X)

∂θ∂θ′

}
(θ̂ − θ)

+
1

2

[
(θ̂ − θ)′

∂3l(θ̃(i)|X)

∂θ∂θ′∂θi

]
1≤i≤p

(θ̂ − θ)

=
∂l(θ|X)

∂θ
+

{
∂2l(θ|X)

∂θ∂θ′

+
1

2

[
(θ̂ − θ)′

∂3l(θ̃(i)|X)

∂θ∂θ′∂θi

]
1≤i≤p

⎫⎬⎭ (θ̂ − θ). (4.77)

Note that ∂2l/∂θ′∂θi = ∂2l/∂θi∂θ
′. In order to derive the asymptotic distri-

bution of θ̂, we need to make more assumptions. Basically, these assumptions
replace the i.i.d assumption by some weaker conditions so that some kind of
WLLN and CLT hold (note that for these results to hold, some distributional
assumptions on X1, . . . , Xn are necessary). First define

In(θ) = −E

{
∂2l(θ|X)

∂θ∂θ′

}
, (4.78)

which is called the Fisher information matrix. This may be regarded as an
extension of nI(θ) in the i.i.d. case. We assume that In(θ) is positive definite.
Furthermore, we assume that

I−1/2
n (θ)

{
∂2l(θ|X)

∂θ∂θ′
− In(θ)

}
I−1/2

n (θ) = oP(1), (4.79)

I−1/2
n (θ)

[
(θ̂ − θ)′

∂3l(θ̃(i)|X)

∂θ∂θ′∂θi

]
1≤i≤p

I−1/2
n (θ) = oP(1) (4.80)

(see Appendix A.1 for the definition of A−1/2, where A > 0). Note that since

all we know (by Taylor expansion) is that θ̃(i) = (1−t)θ+tθ̂ for some t ∈ [0, 1],
for (4.79) to hold we need some kind of uniform convergence in probability
for t ∈ [0, 1]. Finally, we assume that

I−1/2
n (θ)

∂l(θ|X)

∂θ
d−→ N(0, Σ) (4.81)

as n → ∞. Under assumptions (4.78)–(4.81) we have, by (4.77),

−I−1/2
n (θ)

∂l(θ|X)

∂θ
= {Ip + oP(1)}I1/2

n (θ)(θ̂ − θ).
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Therefore, as n → ∞, we have

I1/2
n (θ)(θ̂ − θ) = −{Ip + oP(1)}−1I−1/2

n (θ)
∂l(θ|X)

∂θ
d−→ N(0, Σ). (4.82)

Note that in most cases where (4.81) holds, we actually have Σ = Ip. For
example, under some regularity conditions, we have, similar to the previous
i.i.d. and univariate θ case,

E

{
∂l(θ|X)

∂θ

}
= 0, (4.83)

Var

{
∂l(θ|X)

∂θ

}
= In(θ). (4.84)

Then, the left side of (4.81) is simply the standardization of (∂/∂θ)l(θ|X),
which in many cases converges in distribution to the standard p-variate normal
distribution. Therefore, the result of (4.82) may be interpreted as that as n →
∞, θ̂ is asymptotically (p-variate) normal with mean vector θ and covariance
matrix equal to I−1

n (θ), the inverse of the Fisher information matrix.

4.8 Case study: The Prasad–Rao method

Surveys are usually designed to produce reliable estimates of various charac-
teristics of interest for large geographic areas. However, for effective planning
of health, social, and other services and for apportioning government funds,
there is a growing demand to produce similar estimates for small geographic
areas and subpopulations. The usual design-based estimator, which uses only
the sample survey data for the particular small area of interest, is unreliable
due to relatively small samples available from the area. In the absence of a
reliable small-area design-based estimator, one may alternatively use a syn-
thetic estimator (Rao 2003, Section 4.2), which utilizes data from censuses
or administrative records to obtain estimates for small geographical areas or
subpopulations. Although the synthetic estimators are known to have smaller
variances compared to the direct survey estimators, they tend to be biased
as they do not make use of the information on the characteristic of interest
directly obtainable from sample surveys.

A compromise between the direct survey and the synthetic estimations is
the method of composite estimation which uses sample survey data in con-
junction with different census and administrative data. Implicit or explicit
models, which “borrow strength” from related sources, have been used in this
latter approach. Research in this and related areas are usually called small
area estimation. See Rao (2003) for a detailed account of different composite
estimation and other techniques in small area estimation.
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An explicit (linear) model for composite small area estimation may be
expressed as follows:

Yi = Xiβ + Zivi + ei, i = 1, . . . ,m, (4.85)

where m is the number of small areas; Yi represents the vector of observations
from the ith small area; Xi is a matrix of known covariates for the ith small
area, and β is a vector of unknown regression coefficients (the fixed effects);
Zi is a known matrix, and vi is a vector of small-area specific random effects;
and ei represents a vector of sampling errors. It is assumed that Yi is ni × 1,
Xi is ni × p, β is p× 1, Zi is ni × bi, vi is bi × 1 and ei is ni × 1. Also assumed
is that the vi’s and ei’s are independent such that E(vi) = 0, Var(vi) = Gi;
E(ei) = 0 and Var(ei) = Ri. Here the matrices Gi and Ri usually depend on a
vector ψ of unknown parameters known as variance components. Two special
cases of the above small area model are the following.

Example 4.18 (The Fay–Herriot model). Fay and Herriot (1979) proposed
the following model for the estimation of per-capita income of small places
with population sizes less than 1000:

Yi = x′iβ + vi + ei, (4.86)

i = 1, . . . ,m, where xi is a vector of known covariates, β is a vector of unknown
regression coefficients, vi’s are area-specific random effects, and ei’s represent
sampling errors. It is assumed that the vi’s and ei’s are independent with
vi ∼ N(0, A) and ei ∼ N(0, Di). The variance A is unknown, but the sampling
variances Di’s are assumed known. It is easy to show that the Fay–Herriot
model is a special case of the general small-area model (4.85) (Exercise 4.25).

Example 4.19 (The nested-error regression model). Battese, Harter, and
Fuller (1988) presented data from 12 Iowa counties obtained from the 1978
June Enumerative Survey of the U.S. Department of Agriculture as well as
data obtained from land observatory satellites on crop areas involving corn
and soybeans. The objective was to predict the mean hectares of corn and
soybeans per segment for the 12 counties using the satellite information. The
authors introduced the following model, known as the nested-error regression
model, for the prediction problem:

Yij = x′ijβ + vi + eij , (4.87)

i = 1, . . . ,m, j = 1, . . . , ni, where xij is a known vector of covariates, β is
an unknown vector of regression coefficients, vi is a random effect associated
with the ith small area, and eij is the sampling error. It is assumed that
the random effects are independent and distributed as N(0, σ2

v), the sampling
errors are independent and distributed as N(0, σ2

e), and the random effects
and sampling errors are uncorrelated. It can be shown that this is, again, a
special case of the general small-area model (4.85) (Exercise 4.26).
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The problem of main interest in the small-area estimation is usually the
estimation, or prediction, of small-area means. A small-area mean may be
expressed, at least approximately, as a mixed effect, η = b′β + a′v, where a
and b are known vectors and β and v = (vi)1≤i≤m are the vectors of fixed and
random effectsi, respectively, in (4.85) (it is called a mixed effect because it is
a combination of fixed and random effects). If β and ψ are both known, the
best predictor (BP) for η, is the conditional expectation E(η|Y ). Furthermore,
if the random effects vi and errors ei are normally distributed, this conditional
expectation is given by

η∗ = b′β + a′E(α|Y )

= b′β + a′GZ ′V −1(Y −Xβ),

where X = (Xi)1≤i≤m, Y = (Yi)1≤i≤m, G = diag(G1, . . . , Gm), Zi =
diag(Z1, . . . , Zm), and V = Var(Y ) = diag(V1, . . . , Vm) with Vi = ZiGiZ

′
i+Ri.

In the absence of the normality assumption, η∗ is the best linear predictor
(BLP) of η in the sense that it minimizes the mean squared prediction error
(MSPE) of a predictor that is linear in Y (e.g., Jiang 2007, Section 2.3). Of
course, β is unknown in practice. It is then customary to replace β by

β̃ = (X ′V −1X)−1X ′V −1Y, (4.88)

which is the MLE of β under the normality assumption, provided that ψ
is known. The result is called the best linear unbiased predictor, or BLUP,
denoted by η̃. In other words, η̃ is given by η∗ with β replaced by β̃.

The expression of BLUP involves ψ, the vector of variance components,
which is typically unknown in practice. It is then customary to replace ψ by
a consistent estimator, ψ̂. The resulting predictor is often called the empirical
BLUP, or EBLUP, denoted by η̂. To illustrate the EBLUP procedure, we
consider a previous example.

Example 4.18 (continued). Consider the Fay–Herriot model. Let η denote
the small-area mean for the ith area; that is, η = x′iβ + vi. Then the BP for
η is given by (Exercise 4.25)

η∗ = (1 −Bi)Yi +Bix
′
iβ,

where Bi = Di/(A+Di). The BLUP is given by η̃ = η∗ with β replaced by

β̃ =

(
m∑

i=1

xix
′
i

A+Di

)−1( m∑
i=1

xiyi

A+Di

)
.

Finally, the EBLUP is given by

η̂ = (1 − B̂i)Yi + B̂ix
′
iβ̂,
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where B̂i and β̂ are Bi and β̃, respectively, with A replaced by Â, a consistent
estimator of A. One example of a consistent estimator of A is the method of
moments (MoM) estimator proposed by Prasad and Rao (1990), given by

Â =
Y ′PX⊥Y − tr(PX⊥D)

m− p
,

where PX⊥ = I −PX , with PX = X(X ′X)−1X ′, and D = diag(D1, . . . , Dm).

Although the EBLUP is fairly easy to obtain, assessing its uncertainty is
quite a challenging problem. As mentioned, a measure of the uncertainty that
is commonly used is the MSPE. However, unlike the BLUP, the MSPE of the
EBLUP does not, in general, have a closed-form expression. This is because
once the variance components ψ are replaced by their (consistent) estimators,
the predictor is no longer linear in Y . A naive approach to estimation of the
MSPE of EBLUP would be to first obtain the MSPE of BLUP, which can
be expressed in closed-form as a function of ψ (see below), and then replace

ψ by ψ̂ in the expression of the MSPE of BLUP, where ψ̂ is the consistent
estimator of ψ. However, as will be seen, this approach underestimates the
MSPE of EBLUP, as it does not take into account the additional variation
associated with the estimation of ψ.

Prasad and Rao (1990) proposed a method based on the Taylor series
expansion to produce the second-order unbiased MSPE estimator for EBLUP.
Here, the term “second-order unbiased” is with respect to the above naive
MSPE estimator, which is first-order unbiased. The latter property is because,
roughly speaking, the difference between the BLUP and EBLUP is of the order
O(m−1/2). To see this, note that the BLUP can be expressed as

η̃ = η̃(ψ)

= b′β̃ + a′GZ ′V −1(Y −Xβ̃), (4.89)

where β̃ is given by (4.88). It follows that the EBLUP is simply η̂ = η̃(ψ̂). By

the Taylor expansion, we have η̃(ψ̂) − η̃(ψ) ≈ (∂η̃/∂ψ′)(ψ̂ − ψ) = OP(m−1/2)
under some regularity conditions. Therefore, E(η̂− η̃)2 is typically of the order
O(m−1). On the other hand, Kackar and Harville (1984) showed that under
the normality assumption,

MSPE(η̂) = E(η̂ − η)2

= E(η̃ − η)2 + E(η̂ − η̃)2

= MSPE(η̃) + E(η̂ − η̃)2. (4.90)

Equation (4.90) clearly suggests that the naive MSPE estimator underesti-
mates the true MSPE, because it only takes into account the first term on the
right side. Furthermore, if one replaces ψ by ψ̂ in the expression of MSPE(η̃),
it introduces a bias of the order O(m−1) [not O(m−1/2)]. Thus, the bias of
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the naive MSPE estimator is O(m−1). By second-order unbiasedness of the
Prasad–Rao method, it means that

E
(
M̂SPE − MSPE

)
= o(m−1), (4.91)

where MSPE = MSPE(η̂) and M̂SPE represents the Prasad–Rao estimator
of MSPE. Furthermore, the following closed-form expression can be obtained
(Exercise 4.27):

MSPE(η̃) = a′(G−GZ ′V −1ZG)a+ d′(X ′V −1X)−1d, (4.92)

where d = b − X ′V −1ZGa. Here, we assume that X is of full rank p. Note
that, typically, the first term on the right side of (4.92) is O(1) and the second-
term is O(m−1). An implication is that MSPE(η̃) = O(1). In view of (4.90)
and (4.92), a main part of the Prasad–Rao method is therefore to derive an
approximation to E(η̂ − η̃)2. Assume that suitable regularity conditions are
satisfied. Then we have, by the Taylor expansion and (4.89),

η̂ − η̃ = η̃(ψ̂) − η̃(ψ)

=
∂η̃

∂ψ′
(ψ̂ − ψ) +

1

2
(ψ̂ − ψ)′

∂2η̃(ψ̃)

∂ψ∂ψ′
(ψ̂ − ψ),

where ψ̃ lies between ψ and ψ̂. Suppose that ψ̂ is a
√
m-consistent estimator

in the sense that
√
m(ψ̂ − ψ) = OP(1) (see Section 3.4, above Example 3.7),

and the following hold:∣∣∣∣ ∂η̃∂ψ
∣∣∣∣ = OP(1), sup

|ψ̃−ψ|≤|ψ̂−ψ|

∥∥∥∥∥∂2η̃(ψ̃)

∂ψ∂ψ′

∥∥∥∥∥ = OP(1).

Then by the method of formal derivation (see Section 4.3), we have

E(η̂ − η̃)2 = E

{
∂η̃

∂ψ′
(ψ̂ − ψ)

}2

+ o(m−1). (4.93)

Now, suppose the first term on the right side of (4.93) can be expressed as

E

{
∂η̃

∂ψ′
(ψ̂ − ψ)

}2

=
a(ψ)

m
+ o(m−1), (4.94)

where a(·) is a known differentiable function. Also, let b(ψ) denote the right
side of (4.92). By (4.93) and (4.94), to obtain a second-order unbiased estima-

tor of E(η̂ − η̃)2, all one needs to do is to replace ψ in a(ψ) by ψ̂ because the
resulting bias is o(m−1) (why?). However, one cannot use the same strategy to
estimate MSPE(η̃) = b(ψ), because the resulting bias is O(m−1) rather than
o(m−1). In order to reduce the latter bias to o(m−1), we use the following
bias correction procedure. Note that, by the Taylor expansion, we have



120 4 Asymptotic Expansions

b(ψ̂) = b(ψ) +
∂b

∂ψ′
(ψ̂ − ψ) +

1

2
(ψ̂ − ψ)′

∂2b

∂ψ∂ψ′
(ψ̂ − ψ) + o(m−1);

hence, by the method of formal derivation (Section 4.3),

E{b(ψ̂)} = b(ψ) +
∂b

∂ψ′
E(ψ̂ − ψ) +

1

2
E

{
(ψ̂ − ψ)′

∂2b

∂ψ∂ψ′
(ψ̂ − ψ)

}
+o(m−1)

= b(ψ) +
c(ψ)

m
+ o(m−1).

Here, we make the assumption that E(ψ̂ − ψ) = O(m−1), which holds under
regularity conditions. Now, we can apply the same plug-in technique used
above for estimating a(ψ) to the estimation of c(ψ). In other words, we esti-

mate b(ψ) by b(ψ̂) − c(ψ̂)/m because the bias of this estimator is

E

{
b(ψ̂) − c(ψ̂)

m

}
− b(ψ) = b(ψ) +

c(ψ)

m
+ o(m−1) − E{c(ψ̂)}

m
− c(ψ)

=
E{c(ψ) − c(ψ̂)}

m
+ o(m−1)

= o(m−1),

provided that c(·) is a smooth (e.g., differentiable) function.
In conclusion, if we define the Prasad–Rao estimator as

M̂SPE = b(ψ̂) +
a(ψ̂) − c(ψ̂)

m
, (4.95)

then we have

E(M̂SPE) = E{b(ψ̂)} +
E{a(ψ̂)}

m
− E{c(ψ̂)}

m

= b(ψ) +
c(ψ)

m
+ o(m−1)

+
a(ψ)

m
+

E{a(ψ̂) − a(ψ)}
m

−c(ψ)

m
− E{c(ψ̂) − c(ψ)}

m

= b(ψ) +
a(ψ)

m
+ o(m−1)

= MSPE(η̃) + E(η̂ − η̃)2 + o(m−1)

= MSPE + o(m−1),

using (4.90), (4.92), and (4.93) near the end. Therefore, (4.91) holds.
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Prasad and Rao (1990) obtained a detailed expression of (4.94) and, hence,
(4.95) for the two special cases discussed earlier—that is, the Fay–Herriot
model (Example 4.18) and the nested-error regression model (Example 4.19),
assuming normality and using the MoM estimators of ψ. Extensions of the
Prasad–Rao method will be discussed in Chapters 12 and 13.

4.9 Exercises

4.1. Regarding Table 4.1, how large should n be in order to achieve the
same accuracy (in terms of the relative error) for x = 5?

4.2. This is regarding Example 4.3.
(a) Show that

l(0) = −
n∑

i=1

{Xi + 2 log(1 + e−Xi)},

l′(0) =
n∑

i=1

1 − e−Xi

1 + e−Xi
,

l′′(θ) = −2
n∑

i=1

eθ−Xi

(1 + eθ−Xi)2
.

(b) Show that n−1l(0)
P−→ a as n → ∞, where a is a positive constant.

(c) Show that n−1/2l′(0)
d−→ N(0, σ2) as n → ∞, and determine σ2.

(d) Show that there is a sequence of positive random variables ξn and a

constant c > 0 such that ξn
P−→ b, where b is a positive constant, and

ξnn ≤ sup
θ

|l′′(θ)| ≤ cn.

4.3. In Example 4.4, show that

∂g(ζn)

∂x
− ∂g(c)

∂x
= oP(1),

where ∂g/∂x = (∂g/∂x′)′.
4.4. Let X1, . . . , Xn be i.i.d. observations such that E(Xi) = μ and

var(Xi) = σ2, where 0 < σ2 < ∞. Derive the (three) results at the end
of Section 4.2.

4.5. Let X1, . . . , Xn be i.i.d. observations generated from the following dis-
tributions, where n = 30. Construct the histograms of the empirical distribu-
tion of X̄ based on 10,000 simulated values. Does the population distribution
of the Xi’s make a difference?

(i) N(0, 1);
(ii) Uniform[0, 1];
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(iii) Exponential(1);
(iv) Bernoulli(p), where p = 0.1.
4.6. In this exercise you are asked to study empirically the convergence of

CLT in regard to Example 4.5.
(i) Generate two sequences of random variables. The first sequence is gen-

erated independently from the Beta(α, β) distribution with α = β = 2 [case
(i)]; the second sequence is generated independently from the Beta(α, β) dis-
tribution with α = 2 and β = 6 [case (ii)]. Based on each sequence, compute
ξn = (

√
n/σ)(X̄ − μ), where n is the sample size (i.e., the number of random

variables in the sequence, which is the same for both sequences),

μ =
α

α+ β
,

σ2 =
αβ

(α + β)2(α + β + 1)
.

(ii) For each of sample sizes n = 15, 30, 60, 150, and 400, repeat (i) 1000
times. Make a histogram for case (i) and case (ii).

(iii) In addition to the histograms, obtain the 5th and 95th percentiles
based on the 1000 values of ξn for each case and sample size and compare the
percentiles with the corresponding standard normal percentiles.

(iv) Make a nice plot that compares the histograms and a nice table that
compares the percentiles for the increasing sample size. What do you con-
clude?

4.7. Obtain the two-term Edgeworth expansion [i.e., (4.27)] for the follow-
ing distributions of Xi:

(i) Xi ∼ the double exponential distribution DE(0, 1), where the pdf of
DE(μ, σ) is given by

f(x|μ, σ) =
1

2σ
exp

(
−|x− μ|

σ

)
, −∞ < x <∞.

(ii) Xi ∼ χ2
4.

4.8. Show that the sequence of functions φk, k ∈ Z, of Example 4.8 is an
orthonormal system.

4.9. Show that the sequence of functions defined in Example 4.9 is an
orthonormal system.

4.10. Compute φk(x) for k = 2, 3, 4 in Example 4.10. Also verify that φk,
k = 0, 1, 2, 3, 4, are orthonormal; that is, they satisfy (4.41) and (4.42) with
S = [0, 1].

4.11. Show that the Haar functions defined in Example 4.11 [i.e., (4.44)
plus I[0,1)] constitute an orthonormal system on (−∞,∞).

4.12. Use Fubini’s theorem (see Appendix A.2) to establish (4.51) given
the condition (4.49).

4.13. Show that the function γ defined in Example 4.14 is an autocovari-
ance function.
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4.14. Prove the (identity) expansions (4.55) and (4.58) by mathematical
induction.

4.15. Show that in Example 4.15 we have E(ηij) = (p+2)1(i=j), 1 ≤ i, j ≤
p.

4.16. Show that in Example 4.15 we have E(ζij) = 0 if i �= j and E(ζii)
does not depend on i.

4.17. Suppose that X has a χ2
ν-distribution, where ν > 2. Use the el-

ementary expansion (4.55) with l = 4 and without the remaining term
to approximate E(X−1). Note that closed-form expressions of moments of
X , including E(X−1), can be obtained, so that one can directly compare
the accuracy of the approximation. Does the approximation improve as
ν → ∞? (Hint: Consider the relative error of the approximation defined as
|approximate− exact|/exact.)

4.18. Derive the approximation (4.63) using the Taylor expansion

q(x) = q(x̃) +
1

2
q′′(x̃)(x− x̃)2 + · · · .

4.19. Derive the Laplace approximation (4.64). What is the constant c?
4.20. This exercise is related to Example 4.16.
(i) Show that in this case the exact value of (4.62) is given by

√
νπΓ (ν

2 )

Γ (ν+1
2 )

,

and the Laplace approximation (4.63) is√
2νπ

ν + 1
.

(ii) Show that if q(x) = (x − μ)2/2σ2 for some μ ∈ R and σ2 > 0, the
Laplace approximation (4.63) is exact.

4.21. Show that the likelihood function in Example 4.17 can be expressed
as (4.69).

4.22. Show that in the i.i.d. case, the amount of information contained in
X1, . . . , Xn is n times that contained in X1; that is, I(θ) = nI(θ) [see (4.75)
and (4.76)]. The result requires some regularity conditions to hold. What
regularity conditons?

4.23. Let X1, . . . , Xn be i.i.d. observations with the pdf or pmf f(x|θ),
where θ is a univariate parameter. Here, the pdf is with respect to the Lebesgue
measure, whereas the pmf may be regarded as a pdf with respect to the
counting measure [see below (4.36)]. Obtain the Fisher information (4.75) for
the following cases:

(i) X1 ∼ Bernoulli(θ), so that

f(x|θ) = θx(1 − θ)1−x, x = 0, 1,



124 4 Asymptotic Expansions

where θ ∈ (0, 1).
(ii) X1 ∼ Poisson(θ), so that

f(x|θ) = e−θ θ
x

x!
, x = 0, 1, . . . ,

where θ > 0.
(iii) X1 ∼ Exponential(θ), so that

f(x|θ) =
1

θ
e−x/θ, x ≥ 0,

where θ > 0.
(iv) X1 ∼ N(θ, θ2), so that

f(x|θ) =
1√

2πθ2
exp

{
− (x− θ)2

2θ2

}
, −∞ < x < ∞,

where θ ∈ (−∞,∞).
4.24. Let X1, . . . , Xn be i.i.d. with the following pdf or pmf depending on

θ = (θ1, θ2). Obtain the Fisher information matrix (4.78) in each case.
(i) X1 ∼ N(μ, σ2), where μ ∈ (−∞,∞) and σ2 > 0, so that θ1 = μ and

θ2 = σ2.
(ii) X1 ∼ Gamma(α, β), whose pdf is given by

f(x|α, β) =
1

Γ (α)βα
xα−1e−x/β, x > 0,

where α > 0 and β > 0 are known as the shape and scale parameters, respec-
tively, so that θ1 = α and θ2 = β.

(iii) X1 ∼ Beta(α, β), whose pdf is given by

f(x|α, β) =
Γ (α+ β)

Γ (α)Γ (β)
xα−1(1 − x)β−1, 0 < x < 1,

where α > 0 and β > 0, so that θ1 = α and θ2 = β.
4.25. Show that the Fay–Herriot model of Example 4.18 is a special case

of the small-area model (4.85). Specify the matrices Xi, Zi, Gi, and Ri in
this case. Furthermore, show that the BP for η = x′iβ + vi is given by η̃ =
(1 −Bi)Yi + Bix

′
iβ, where Bi = Di/(A+Di).

4.26. Show that the nested-error regression model of Example 4.19 is a
special case of the small-area model (4.85). Specify the matrices Xi, Zi, Gi

and Ri in this case.
4.27. Derive the expression (4.92) for MSPE(η̃).
4.28. Consider a special case of the Fay–Herriot model (Example 4.18) in

which Di = D, 1 ≤ i ≤ m. This is known as the balanced case. Without loss
of generality, let D = 1. Consider the prediction of ηi = x′iβ + vi. Let η̃i and
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η̂i denote the BLUP and EBLUP, respectively, where the MoM estimator of
A is used for the EBLUP [see Example 4.18 (continued) or Exercise 4.25].

(i) Show that

MSPE(η̃i) =
A

A+ 1
+
x′i(X

′X)−1xi

A+ 1
,

where X = (x′i)1≤i≤m.
(ii) Show that

MSPE(η̂i) =
A

A+ 1
+
x′i(X

′X)−1xi

A+ 1
+

2{1 − x′i(X
′X)−1xi}

(A+ 1)(m− p)

+
4{1 − x′i(X

′X)−1xi}
(A+ 1)(m− p)(m− p− 2)

.

[Hint: The moment of (χ2
k)−1 has a closed-form expression, where χ2

k denotes
a random variable with a χ2

k-distribution. Find the expression.]
(iii) Let η = (ηi)1≤i≤m denote the vector of small-area means and η̂ =

(η̂i)1≤i≤m denote the vector of EBLUPs. Define the overall MSPE of the
EBLUP as MSPE(η̂) = E(|η̂−η|2) = E{∑m

i=1(η̂i−ηi)
2} =

∑m
i=1 E((η̂i−ηi)

2 =∑m
i=1 MSPE(η̂i). Show that

MSPE(η̂) =
mA

A+ 1
+

p+ 2

A+ 1
+

4

(A+ 1)(m− p− 2)
.

4.29 [Delta method (continued)]. In Example 4.4 we introduced the delta
method for distributional approximations. The method can also be used for
moment approximations. Let T1, . . . , Tk be random variables whose means
and variances exist. Let g(t1, . . . , tk) be a differentiable function. Then, by
the Taylor expansion, we can write

g(T1, . . . , Tk) ≈ g(μ1, . . . , μk) +

k∑
i=1

∂g

∂ti
(Ti − μi),

where μi = E(Ti), 1 ≤ i ≤ k, and ∂g/∂ti is evaluated as (μ1, . . . , μk). This
leads to the following approximations:

E{g(T1, . . . , Tk)} ≈ g(μ1, . . . , μk),

var{g(T1, . . . , Tk)} ≈
k∑

i=1

(
∂g

∂ti

)2

var(Ti)

+2
∑
i<j

(
∂g

∂ti

)(
∂g

∂tj

)
cov(Ti, Tj).

(i) Suppose that T ∼ Gamma(α, β) with the pdf given in Exercise 4.24(ii).
Use the above delta method to approximate the mean and variance of T−1.
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(ii) Note that the exact mean and variance of T−1 can be obtained in
this case, given a suitable range of α. What is the range of α so that E(T−1)
exists? What is the range of α so that E(T−2) exists?

(iii) Obtain the exact mean and variance of T−1 given the suitable range
of α and compare the results with the above delta-method approximations.
How do the values of α and β affect the accuracy of the approximations?

4.30. Let X1, . . . , Xn be i.i.d. such that E(X1) = 0, E(X2
1 ) = 1, and

E(X4
1 ) <∞. Consider approximation to the mean and variance of

Y =
n

n+
∑n

i=1X
2
i

using the delta method of Exercise 4.29.
(i) Let g(x1, . . . , xn) = n/(n+

∑n
i=1 x

2
i ). What are the approximations to

the mean and variance of Y = g(X1, . . . , Xn)?
(ii) If we let g(t1, . . . , tn) = n/(n+

∑n
i=1 ti), and Ti = X2

i , 1 ≤ i ≤ n, what
are the approximations to the mean and variance of Y = g(T1, . . . , Tn)?

(iii) How does the sample size n affect the approximation to E(Y )? In
other words, does the accuracy of the approximation improve as n increases?
[Hint: First use the dominated convergence theorem (Theorem 2.16) to show
that E(Y ) converges to a limit as n → ∞.]

(iv) Which approximation [(i) or (ii)] do you think is better? Any general
comment(s) on the use of the delta method in moment approximations?
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Inequalities

We have almost always found, even with the most famous inequalities,
that we have a little new to add.

Hardy, Littlewood, & Pólya (1934)
Inequalities

5.1 Introduction

It is said that high school algebra is characterized by equalities, whereas col-
lege and more advanced mathematics, inequalities. One may argue that, in a
similar way, statistics is characterized by inequalities, too. For example, the
words “margin of errors,” which nowadays come along routinely with sur-
vey results that are published, may be viewed as bounds for typical range of
the sampling error. This may be expressed as (i) P(|ε| ≤ b) = 1 − α or (ii)
P(|ε| ≤ b) ≥ 1−α, where ε represents the sampling error, b is an upper bound,
and α is a small positive number, such as 0.05. In (i), the event inside the
probability is characterized by an inequality, whereas in (ii), both the event
and the probability itself are characterized by inequalities.

Perhaps the simplest of all is the following basic triangle inequality:

|x+ y| ≤ |x| + |y| (5.1)

for all x and y. Inequalities such as (5.1) are called numerical inequalities,
meaning that they hold for all real numbers. Many of the numerical inequal-
ities can be extended beyond real numbers. For example, extensions of nu-
merical inequalities to matrices have led to many of the matrix inequalities.
However, not every numerical inequality has its matrix analogue. For example,
if A and B are symmetric matrices such that A ≥ B, meaning that A− B is
nonnegative definite, it is not necessarily true that A2 ≥ B2. See Section 5.3.2
for more counterexamples. Numerical inequalities can be used to establish
more sophisticated inequalities, such as moment and probability inequalities,

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_5, © Springer Science+Business Media, LLC 2010
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but this is not always the case. For example, the covariance inequality states
that for any random variables X and Y , one has

cov(X,Y ) ≤
√

var(X)var(Y ), (5.2)

or E[{X − E(X)}{Y − E(Y )}] ≤ {var(X)}1/2{var(Y )}1/2, but this is not
derived from {X − E(X)}{Y − E(Y )} ≤ {var(X)}1/2{var(Y )}1/2, which, of
course, does not always hold.

Like the Taylor expansion, the value of inequalities to statistics cannot be
overstated. There exist a huge number of inequalities: numerical inequalities,
matrix inequalities, integral/moment inequalities, and probability inequalities.
Instead of trying to come up with a list of all useful inequalities, which is
impossible, we focus on developing the basic techniques for making use of
existing inequalities and for developing new inequalities. We believe that these
methods and techniques are even more important in solving the current and
future problems than the inequalities themselves. We should also point out
that although this chapter is entitled “Inequalities,” it by no means includes
all of the inequalities introduced in this book. However, this is the only place
that these materials are treated systematically as a single subject.

5.2 Numerical inequalities

5.2.1 The convex function inequality

The triangle inequality (5.1), of course, can be derived with an elementary
argument. Since x ≤ |x| and y ≤ |y|, we have x + y ≤ |x| + |y|; similarly,
−x− y ≤ |x|+ |y|, or x+ y ≥ −(|x|+ |y|), which leads to (5.1). Alternatively,
(5.1) is a special case of the convex function inequality. A real-valued function
f(x) is convex if for any x, y, and λ ∈ [0, 1], we have

f{(1 − λ)x + λy} ≤ (1 − λ)f(x) + λf(y). (5.3)

Here, we did not specify the range of x, y. Typically, it is assumed that x,
y ∈ D, where D is a convex subset of R in the sense that x, y ∈ D implies
(1 − λ)x + λy ∈ D for any λ ∈ [0, 1].

To show that f(x) is convex, one can, of course, verify (5.3) for any x,
y ∈ D and λ ∈ [0, 1], but sometimes there are easier ways. For example,
if f ′(x) exists, a necessary and sufficient condition for f(x) to be a convex
function is that f ′(x) is nondecreasing; if f ′′(x) exists, then a necessary and
sufficient condition for f(x) to be convex is that f ′′(x) ≥ 0.

A concave function may be thought of as a function that has the reversed
properties of a convex function; that is, f(x) is concave if and only if (5.3)
is satisfied with the reversed inequality. In fact, f(x) is convex if and only if
−f(x) is concave. More generally, let g(x) be a linear function of x; that is,
g(x) = ax + b for some constants a and b. Then f(x) is convex if and only if
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g(x)− f(x) is concave. Therefore, any convex function inequality (see below)
can be reversed for a concave function inequality.

The best know property of a convex function f(x) is the following:

f

(
x1 + · · · + xn

n

)
≤ f(x1) + · · · + f(xn)

n
(5.4)

for any x1, . . . , xn ∈ D. To see that (5.1) is a special case of (5.4), note that
f(x) = |x| is a convex function; hence, by (5.4), we have∣∣∣∣x+ y

2

∣∣∣∣ ≤ |x| + |y|
2

,

which is the same as (5.1). Note that, in this case, the convex function ap-
proach does not really make the derivation simpler if one takes into account
that the verification of (5.3) takes about the same as the arguments right
above it. However, in many other cases, the convex function approach is very
effective. We consider some examples.

Example 5.1 (Arithmetic, geometric and harmonic means). The harmonic
mean is bounded by the geometric mean, which, in turn, is bounded by the
arithmetic mean. This string of fundamental inequalities can be expressed as

n

x−1
1 + · · · + x−1

n

≤ n
√
x1 · · ·xn ≤ x1 + · · · + xn

n
(5.5)

for any positive numbers x1, . . . , xn. Both inequalities can be established by
the convex function inequality. Let f(x) = − log(x). Then since f ′′(x) =
x−2 > 0 for x > 0, the function is convex. Therefore, by (5.4), we have

− log

(
x−1

1 + · · · + x−1
n

n

)
≤ − log(x−1

1 ) + · · · + log(x−1
n )

n
,

− log

(
x1 + · · · + xn

n

)
≤ − log(x1) + · · · + log(xn)

n
.

Inequalities (5.5) then follows by taking the negative and then exponential.

Example 5.2 (The sample p-norm). For any sequence xi, 1 ≤ i ≤ n, and
p > 0, the sample p-norm of the sequence is defined as

‖{xi}‖p =

( |x1|p + · · · + |xn|p
n

)1/p

.

The word “sample” corresponds to the case where the x1, . . . , xn are real-
ized values of i.i.d. observations, say, X1, . . . , Xn, whose p-norm is defined as
‖X1‖p = {E(|X1|p)}1/p. Another look at the sample p-norm is to consider the
empirical distribution of x1, . . . , xn defined as
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Fn(x) =
1

n

n∑
i=1

1(xi≤x).

It follows that the sample p-norm is simply ‖X‖p, where X has the empirical
distribution Fn (verify this). A property of the sample p-norm is that it is
nondecreasing in p. In other words, p ≤ q implies ‖{xi}‖p ≤ ‖{xi}‖q. To show
this, we may assume, without loss of generality, that the xi’s are positive
(why?). Consider f(x) = xq/p. Then since f ′′(x) = {q(q − p)/p2}xq/p−2 ≥ 0
for x > 0, f(x) is convex. It follows by (5.4) that(

xp
1 + · · · + xp

n

n

)q/p

≤ (xp
1)

q/p + · · · + (xp
n)q/p

n

=
xq

1 + · · · + xq
n

n
.

The claimed property is then verified by taking the qth root. Given x1, . . . , xn,
since the sequence ‖{xi}‖k, k = 1, 2, . . ., is nondecreasing, according to
§1.5.1.3, the limit limk→∞ ‖{xi}‖k exists if the sequence has an upper bound.
In fact, it is easy to show directly that the limit is equal to ‖{xi}‖∞ ≡
max1≤i≤n |xi|, which is called the ∞-norm of the sequence (Exercise 5.1).

An extended property of (5.4) is the following. If f(x) is convex, then for
any x1, . . . , xn ∈ D and λ1, . . . , λn ≥ 0 such that λ1 + · · · + λn = 1, we have

f(λ1x1 + · · · + λnxn) ≤ λ1f(x1) + · · · + λnf(xn). (5.6)

Clearly, inequality (5.3), which defines a convex function, is a special case of
(5.6) with n = 2. We consider a well-known example as an application of (5.6).

Example 5.3 (Cauchy-Schwarz inequality). For any real numbers x1, . . . , xn

and y1, . . . , yn, we have

(x1y1 + · · · + xnyn)2 ≤ (x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n). (5.7)

To show (5.7), assume, without loss of generality, that
∑n

i=1 y
2
i > 0 [because,

otherwise, both sides of (5.7) are zero]. Define ui = xi/yi if yi �= 0 and ui = 0
if yi = 0. Then it is easy to verify that uiy

2
i = xiyi and u2

i y
2
i ≤ x2

i , 1 ≤ i ≤ n
(Exercise 5.2). Now, let λi = y2

i /
∑n

j=1 y
2
j , 1 ≤ i ≤ n. Note that the λi’s satisfy

the requirements of (5.6). Using the fact that f(x) = x2 is a convex function,
we have, by (5.6), (

∑n
i=1 y

2
i )
−2(
∑n

i=1 xiyi)
2 = (

∑n
i=1 λiui)

2 ≤ ∑n
i=1 λiu

2
i ≤

(
∑n

i=1 y
2
i )−1

∑n
i=1 x

2
i , which leads to (5.7).

Hardy, Littlewood, and Pölya (1934) outlined a beautiful argument show-
ing that if f(x) is continuous, the defining inequality (5.3) is actually equiva-
lent to the following seemingly weaker one:
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f

(
x+ y

2

)
≤ f(x) + f(y)

2
(5.8)

for any x and y. Another important result is regarding when the equality
holds in (5.6). The same authors showed that if f(x) is continuous, then (5.6)
holds with ≤ replaced by < unless either (i) all of the xi’s are equal or (ii)
f(x) is linear in an interval that contains x1, . . . , xn. Based on these results,
the authors called f(x) strictly convex if (5.8) holds with ≤ replaced by <
for any x and y unless x = y. In particular, if f(x) is twice differentiable and
f ′′(x) > 0, then (5.6) holds with ≤ replaced by < unless all of the xi’s are
equal.

Example 5.1 (continued). Recall in this case the convex function is f(x) =
− log(x) and f ′′(x) = x−2 > 0, x > 0. Thus, the strict inequalities in (5.5)
hold unless all of the xi’s are equal.

Example 5.2 (continued). Suppose that at least one of the xi’s is positive.
Then, as in Example 5.2, we may focus on the positive xi’s. Recall that, in
this case, f(x) = xl/k with f ′′(x) = {l(l−k)/k2}xl/k−2 > 0 for x > 0 if k < l.
It follows that ‖{xi}‖k < ‖{xi}‖l if k < l, unless all of the positive xi’s are
equal.

Although we may use a similar argument to find out when equality occurs
in the Cauchy–Schwarz inequality (Example 5.3), we would rather leave this
to the next subsection, in which a different method will be used to derive
conditions for the equality.

5.2.2 Hölder’s and related inequalities

The celebrated Hölder’s inequality states the following. Let α, β, . . . , γ be
positive numbers such that α + β + · · · + γ = 1. Then for any nonnegative
numbers ai, bi, . . . , gi, 1 ≤ i ≤ n, we have

n∑
i=1

aα
i b

β
i · · · gγ

i ≤
(

n∑
i=1

ai

)α( n∑
i=1

bi

)β

· · ·
(

n∑
i=1

gi

)γ

. (5.9)

Moreover, the strict inequality < holds in (5.9) unless either (i) one factor on
the right side is zero (e.g., all of the ai’s are zero); or (ii) ai, bi, . . . , gi are all
proportional (i.e., aibj = ajbi, . . . , aigj = ajgi, . . . for all i and j).

An alternative expression that is probably more familiar to statisticians is
the following. Let p, q, . . . , r be positive numbers such that

1

p
+

1

q
+ · · · + 1

r
= 1. (5.10)

[Note that (5.10) implies that p, q, . . . , r are all greater than one.] Then for
any nonnegative numbers xi, yi, . . . , zi, 1 ≤ i ≤ n, we have
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n∑
i=1

xiyi · · · zi ≤
(

n∑
i=1

xp
i

)1/p( n∑
i=1

yq
i

)1/q

· · ·
(

n∑
i=1

zr
i

)1/r

. (5.11)

Moreover, the strict inequality < holds in (5.11) unless either (i) one of the
factors on the right side is zero (e.g., all of the xi’s are zero) or (ii) xp

i , y
q
i , . . . , z

r
i

are all proportional.
A special case of (5.11) is, by far, the most popular (in fact, this is called

Hölder’s inequality in most books). If p, q > 0 and p−1 + q−1 = 1, then for
any xi, yi ≥ 0, 1 ≤ i ≤ n, we have

n∑
i=1

xiyi ≤
(

n∑
i=1

xp
i

)1/p( n∑
i=1

yq
i

)1/q

. (5.12)

The strict inequality holds in (5.12) unless either the xi’s are all zero, or the
yi’s are all zero, or xp

i y
q
j = xp

jy
q
i , 1 ≤ i, j ≤ n (in other words, xp

i and yq
i are

proportional).
See, for example, Hardy et al (1934, Section 2.7) for two of the various

proofs of (5.9). An alternative proof of the special case (5.12) is given in the
next subsection.

Example 5.3 (continued). The Cauchy–Schwarz inequality is a special case
of Hölder’s inequality (5.12) with p = q = 2. It follows that the equality holds
in (5.7) if and only if either the xi’s are all zero, or the yi’s are all zero, or
xiyj = xjyi, 1 ≤ i, j ≤ n (i.e., xi and yi are proportional). This suggests
another proof of the inequality. Consider the difference between the two sides
of (5.7). We know the difference is zero if all of the differences xiyj − xjyi,
1 ≤ i, j ≤ n, vanish. This means that, perhaps, the difference between the two
sides can be expressed as a function of the differences xiyj −xjyi, 1 ≤ i, j ≤ n.
This conjecture is, indeed, true because(

n∑
i=1

x2
i

)(
n∑

i=1

y2
i

)
−
(

n∑
i=1

xiyi

)2

=
1

2

∑
1≤i,j≤n

(xiyj − xjyi)
2 (5.13)

(Exercise 5.6). Thus far we have seen at least three proofs of the Cauchy–
Schwarz inequality: by convex function, by Hölder’s inequality, and by (5.13).

Example 5.4. Let x1, . . . , xn be positive numbers. If we replace xi and yi

in the Cauchy–Schwarz inequality by
√
xi and 1/

√
xi, respectively, we obtain

n ≤
(

n∑
i=1

xi

)1/2( n∑
i=1

x−1
i

)1/2

,

which is equivalent to n(
∑n

i=1 x
−1
i )−1 ≤ n−1

∑n
i=1 xi. This is just the two

ends of (5.5) implying that the harmonic mean is bounded by the arithmetic
mean. Of course, (5.5) is a stronger result.



5.2 Numerical inequalities 133

So far we have restricted ourselves to nonnegative numbers. If the xi’s,
yi’s, and zi’s are not assumed nonnegative, (5.11) and (5.12) continue to hold
with xi, yi, and zi replaced by their absolute values. Then since |∑n

i=1 xiyi| ≤∑n
i=1 |xi| · |yi|, (5.12) implies that∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

. (5.14)

There is an interpretation of (5.14) in terms of inner product and norms in
a Hilbert space. Consider the space Rn with the inner product < x, y >=∑n

i=1 xiyi for x = (xi)1≤i≤n and y = (yi)1≤i≤n ∈ Rn. If we define the p-norm
(p > 1) of x as ‖x‖p = (

∑n
i=1 |xi|p)1/p (note that this is slightly different from

the sample p-norm defined in Example 5.2). Then (5.14) simply means that

| < x, y > | ≤ ‖x‖p‖y‖q. (5.15)

Hölder’s inequality can be used to establish another famous inequality: the
Minkowski’s inequality. The result is better stated in terms of the p-norm (see
above) as follows. If p > 1, then for any x, y, . . . , z ∈ Rn, we have

‖x+ y + · · · + z‖p ≤ ‖x‖p + ‖y‖p + · · · + ‖z‖p. (5.16)

To prove (5.16), it suffices to show

‖x+ y‖p ≤ ‖x‖p + ‖y‖p (5.17)

for any x and y (why?). We have, by (5.12),∑
i

(xi + yi)
p =

∑
i

(xi + yi)
p−1xi +

∑
i

(xi + yi)
p−1yi

≤
(∑

i

xp
i

)1/p{∑
i

(xi + yi)
(p−1)q

}1/q

+

(∑
i

yp
i

)1/p{∑
i

(xi + yi)
(p−1)q

}1/q

= (‖x‖p + ‖y‖p)

{∑
i

(xi + yi)
p

}1/q

,

which implies (5.17). Note that p−1 + q−1 = 1 implies (p− 1)q = p.
Conditions for equality in Minkowski’s inequality can be derived from those

for equality in Hölder’s inequality (Exercise 5.8). Like (5.1), (5.17) is called
the triangle inequality, which is one of the basic requirements for ‖ · ‖p to
be (formally) called a norm. A function ‖ · ‖ defined on Rn is a norm if (i)
‖x+y‖ ≤ ‖x‖+‖y‖ for any x, y ∈ Rn, (ii) ‖cx‖ = |c| · ‖x‖ for any x ∈ Rn and
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c ∈ R, and (iii) ‖x‖ = 0 implies x = 0. The definition can be easily extended
beyond Rn. It is known that ‖ · ‖p no longer satisfies (5.16); therefore, it is
not a norm if p < 1. In fact, the reversed inequality holds in such a case. This
is called the reversed Minkowski inequality, which can be derived from the
reversed Hölder inequality in the same way as above. See Hardy et al. (1934,
Sections 2.8 and 2.11) for more details.

5.2.3 Monotone functions and related inequalities

Many useful inequalities can be established by monotone properties of func-
tions. For example, suppose that one wishes to approximate the function
f(x) = log(1 + x) for x ≥ 0 by something even simpler. An inspection of
the Taylor series, log(1 + x) = x− x2/2 + x3/3 − x4/4 + · · ·, suggests

x− x2

2
≤ log(1 + x) ≤ x, x ≥ 0. (5.18)

At this point, (5.18) is only an “educated” guess based on the observation
that the terms in the Taylor series have alternate signs when x ≥ 0. To prove
this conjecture, we first consider the function g(x) = log(1 + x) − x. Since
g′(x) = −x/(1 + x) ≤ 0 for x ≥ 0, g(x) is nonincreasing for x ≥ 0. Therefore,
we have g(x) ≤ g(0) = 0 for any x ≥ 0, which is the right-side inequality. The
left-side inequality can be proved in a similar way (Exercise 5.9).

In fact, the right-side inequality in (5.18) even holds for x > −1, which
is the range where the function is well defined. To show this, we once again
use g(x) = log(1 + x) − x and note that g′(x) > 0 for −1 < x < 0 and
g′(x) ≥ 0 for x ≥ 0. This means that g(x) is nondecreasing on (−1, 0) and
nonincreasing on [0,∞). Therefore, g(x) has its maximum at x = 0. It follows
that g(x) ≤ g(0) = 0, which is the right side of (5.18).

The simple technique illustrated above, which we call the monotone func-
tion technique (note that by monotone function it does not mean that the
function has to be monotone over the entire range), works quite generally,
as long as one can find the “right inequality” to prove. In many cases, such
an inequality is hinted at by the Taylor expansion, as in the above example.
Sometimes the inequality suggested by the Taylor expansion does hold for all
x; so, some restriction on the range and modification of the inequality itself
are necessary.

Example 5.5. Suppose that one is interested in approximating f(x) = ex

for small x. Once again, we are looking at the Taylor expansion

ex = 1 + x+
x2

2
+
x3

6
+ · · · .

By (5.18) we know ex ≥ 1 + x. The next guess is, perhaps, ex ≤ 1 + x+ x2/2,
which is false. In other words, the exponential function cannot be bounded
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by a quadratic function—that is to say, for all x. However, if x is small, it
is possible to find a constant a > 0 such that ex ≤ 1 + x + ax2. To see this,
suppose that |x| ≤ b < 2. Then we have

ex ≤ 1 + x+
x2

2
+

|x|3
3!

+
|x|4
4!

+ · · ·

≤ 1 + x+
x2

2
+

|x|3
22

+
|x|4
23

+ · · ·

= 1 + x+ 2
∞∑

k=2

( |x|
2

)k

= 1 + x+
x2

2 − |x|
≤ 1 + x+

x2

2 − b
;

that is, ex ≤ 1 + x+ ax2 with a = (2 − b)−1 for all |x| ≤ b < 2.
Alternatively, the last inequality can be proved by the monotone function

technique (Exercise 5.12).

We consider an application of the inequalities derived in Example 5.5.

Example 5.6 (An exponential inequality for bounded independent random
variables). Let X1, . . . , Xn be independent with E(Xi) = 0 and |Xi| ≤ B for
some constant B > 0. According to the WLLN, we have

1

n

n∑
i=1

Xi
P−→ 0.

In other words, for any ε > 0, the probability P(n−1|∑n
i=1 Xi| > ε) → 0, as

n → ∞. The question is how fast does the probability converge to zero. To
investigate the convergence rate, let λ be an arbitrary positive constant to be
determined later. Then we have

P

(
1

n

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > ε

)
= P

(
1

n

n∑
i=1

Xi > ε

)
+ P

(
1

n

n∑
i=1

Xi < −ε
)

= I1 + I2.

Furthermore, we have, by Chebyshev’s inequality (see Section 5.5),

I1 = P

(
n∑

i=1

λXi > λεn

)

= P

{
exp

(
n∑

i=1

λXi

)
> eλεn

}
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≤ e−λεnE

{
exp

(
n∑

i=1

λXi

)}

= e−λεn
n∏

i=1

E{exp(λXi)}.

Since |λXi| ≤ λB, according to Example 5.5, as long as λB < 2 we have

exp(λXi) ≤ 1 + λXi +
λ2X2

i

2 − λB

≤ 1 + λXi +
λ2B2

1 − λB
;

hence, again by Example 5.5, we have

E{exp(λXi)} ≤ 1 +
λ2B2

2 − λB

≤ exp

(
λ2B2

2 − λB

)
.

Thus, continuing, we have

I1 ≤ exp(−λεn) exp

(
λ2B2

2 − λB
n

)
= exp

{
−λ
(
ε− λB2

2 − λB

)
n

}
.

By similar arguments, one can show that I2 is bounded by the same thing
(Exercise 5.10). Thus, we have

P

(
1

n

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > ε

)
≤ 2 exp

{
−λ
(
ε− λB2

2 − λB

)
n

}
. (5.19)

Note that the λ in (5.19) is arbitrary as long as 0 < λ < 2B−1. Consider the
function

h(λ) = λ

(
ε− λB2

2 − λB

)
. (5.20)

It can be shown that h(λ) attains its maxima on (0, 2B−1) at

λ∗ =
2

B

(
1 −
√

B

B + ε

)
, (5.21)

and its maxima is given by
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h(λ∗) = 2

(√
1 +

ε

B
− 1

)2

(5.22)

(Exercise 5.10). Thus, by letting λ = λ∗ in (5.19) we obtain

P

(
1

n

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > ε

)
≤ 2 exp

{
−2

(√
1 +

ε

B
− 1

)2

n

}
. (5.23)

Such an inequality is often called an exponential inequality because it shows
that the convergence rate of the probability on the left side is exponential
in n. The above arguments are similar to those in Example 2.7 except for
the maximization of h(λ) [see part (iii) of Exercise 5.10]. Also note that the
distributional assumption here is weaker than in Example 2.7 in that the Xi’s
are not assumed to have the same distribution.

As another application of the monotone function technique, we give an-
other proof of Hölder’s inequaliy (5.12) by considering the function

g(a) =
ap

p
+
bq

q
− ab, a > 0,

where b > 0 and p and q are as in (5.12). (Note that here b is fixed.) Then we
have g′(a) = ap−1 − b < 0 if ap−1 < b and g′(a) ≥ 0 if ap−1 ≥ b. Thus, g(a)
has a unique minima at a∗ = b1/(p−1), which is zero [note that p/(p− 1) = q].
It follows that, for any a, b > 0, we have

ab ≤ ap

p
+
bq

q
. (5.24)

Now assume, without loss of generality, that xi and yi, i = 1, . . . , n, are pos-
itive. Let ai = xi/‖x‖p and bi = yi/‖y‖q, 1 ≤ i ≤ n. Then, by (5.24), we
have

aibi ≤ ap
i

p
+
bqi
q
, (5.25)

1 ≤ i ≤ n. Taking the sum of (5.25) from 1 to n, we get∑n
i=1 xiyi

‖x‖p‖y‖q
=

n∑
i=1

aibi

≤ 1

p

n∑
i=1

ap
i +

1

q

n∑
i=1

bqi

= 1,

which is (5.12). The argument also shows that the equality holds if and only
if ap−1

i = bi, 1 ≤ i ≤ n, which means that xp
i and yq

i are proportional.
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Our final application involves two monotone functions and a nonnegative
function. Suppose that f(x) and g(x) are both nondecreasing, or both nonin-
creasing, and h(x) ≥ 0. Then, for any x1, . . . , xn, we have{

n∑
i=1

f(xi)h(xi)

}{
n∑

i=1

g(xi)h(xi)

}

≤
{

n∑
i=1

f(xi)g(xi)h(xi)

}{
n∑

i=1

h(xi)

}
. (5.26)

If, instead, f(x) is nondecreasing and g(x) is nonincreasing, or f(x) is non-
increasing and g(x) is nondecreasing, the inequality in (5.26) is reversed. To
prove (5.26), we use a similar “trick” to (5.13)—namely,{

n∑
i=1

f(xi)g(xi)h(xi)

}{
n∑

i=1

h(xi)

}

−
{

n∑
i=1

f(xi)h(xi)

}{
n∑

i=1

g(xi)h(xi)

}

=
1

2

∑
1≤i
=j≤n

h(xi)h(xj){f(xi) − f(xj)}{g(xi) − g(xj)}. (5.27)

The rest of the proof is left as an exercise (Exercise 5.11).
A special case of (5.26) is when h(x) = 1; that is,{

n∑
i=1

f(xi)

}{
n∑

i=1

g(xi)

}
≤ n

n∑
i=1

f(xi)g(xi). (5.28)

There is an intuitive explanation of (5.28). If we define f̄ = n−1
∑n

i=1 f(xi)
and ḡ = n−1

∑n
i=1 g(xi), then (5.28) is equivalent to

1

n

n∑
i=1

{f(xi) − f̄}{g(xi) − ḡ} ≥ 0.

In other words, the sample covariance between the two sets of numbers, f(xi),
1 ≤ i ≤ n and g(xi), 1 ≤ i ≤ n, is nonnegative if f and g are both nonde-
creasing or both nonincreasing. A similar interpretation can be given for the
case of reversed inequality.

5.3 Matrix inequalities

5.3.1 Nonnegative definite matrices

In many ways, nonnegative matrices resemble nonnegative numbers. On the
other hand, not all results for nonnegative numbers can be extended to non-
negative definite matrices. Some of the basic inequalities involving nonnegative
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definite matrices and a cautionary tale have already been introduced and told
in Section 3.3. We repeat those results for the sake of completeness. We also
refer to the notation introduced therein.

(i) A ≥ B ≥ 0 implies A1/2 ≥ B1/2 and A−1 ≤ B−1 if B is nonsingular,
but not A2 ≥ B2.

(ii) A ≥ B if and only if C′AC ≥ C′BC for any matrix C of compatible
dimension.

(iii) A ≥ B implies λmax(A) ≥ λmax(B), λmin(A) ≥ λmin(B), tr(A) ≥
tr(B), and tr(A2) ≥ tr(B2).

Here are some more results:
(iv) (Another cautionary tale) A,B ≥ 0 does not imply that AB+BA ≥ 0

(of course, it does not imply AB ≥ 0 either, as AB may not be symmetric).

Example 5.7. Consider A =

(
2 0
0 1

)
and B =

(
1 1
1 1

)
. Then we have A ≥ 0

and B ≥ 0, but AB +BA =

(
4 3
3 2

)
, which is not ≥ 0.

The first inequality in (i) can be generalized in several ways. Let D =
diag(d1, . . . , dk) be a diagonal matrix and f a real-valued function; then f(D)
is defined as the diagonal matrix diag{f(d1), . . . , f(dk)} as long as f(dj),
1 ≤ j ≤ k, are well defined. For any symmetric matrix A there is an orthogonal
matrix T such that A = TDT ′, where D = diag(λ1, . . . , λk) and the λ’s are
the eigenvalues of A. We define f(A) = Tf(D)T ′ as long as f(λj), 1 ≤ j ≤ k,
are well defined. We have the following results (e.g., Zhan 2002, Chapter 1):

(v) (Löwner–Heinz) A ≥ B ≥ 0 implies Ar ≥ Br for any 0 ≤ r ≤ 1.
(vi) More generally, A ≥ B ≥ 0 implies

(BpArBp)1/q ≥ B(2p+r)/q ,

A(2p+r)/q ≥ (ApBrAp)1/q

for any p ≥ 0, q ≥ 1, and r ≥ 0 such that (1 + 2p)q ≥ 2p+ r.
Clearly, (v) is a special case of (vi) in which p = 0, q = 1, and 0 ≤ r ≤ 1.

Another special case is when p = 1, q = 2, and r = 2. Then A ≥ B implies
(BA2B)1/2 ≥ B2 and A2 ≥ (AB2A)1/2.

The next result is regarding a partitioned matrix.

(vii) If A > 0, then

(
A B
B′ C

)
≥ 0 if and only if C ≥ B′A−1B.

As an application of result (vii) we derive the following inequality, which
has had important applications in statistics.

Lemma 5.1. For any V,W > 0 and full rank matrix X , we have

(X ′WX)−1X ′WVWX(X ′WX)−1 ≥ (X ′V −1X)−1. (5.29)

In other words, the left side of (5.29) is minimized when W = V −1.
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Proof. For any vectors u and v of compatible dimensions, we have

(u′ v′)
(
X ′V −1X X ′WX
X ′WX X ′WVWX

)(
u
v

)
= u′X ′V −1Xu+ v′X ′WXu+ u′X ′WXv + v′X ′WVWXv

=
∣∣∣V −1/2Xu+ V 1/2WXv

∣∣∣2 ≥ 0.

Since X is full rank, the matrix X ′V −1X is nonsingular and ≥ 0 by (ii). It
follows that X ′V −1X > 0. Furthermore, the above argument shows that the
partitioned matrix is ≥ 0. Thus, by (vii), we have

X ′WVWX ≥ X ′WX(X ′V −1X)−1X ′WX,

which, again by (ii), is equivalent to (5.29). Q.E.D.

The following example shows a specific application of Lemma 5.1.

Example 5.8 (Weighted least squares). In linear regression it is assumed
that Y = Xβ+ε, where Y is a vector of responses, X is a matrix of covariates,
β is a vector of unknown regression coefficients, and ε is the vector errors. It
is assumed that E(ε) = 0 and Var(ε) = V , where Var represents covariance
matrix. In the classical situation, it is assumed that V = σ2I, where I is the
identity matrix and σ2 > 0 is an unknown variance. In this case, the best
linear unbiased estimator (BLUE) is the least squares (LS) estimator,

β̂ = (X ′X)−1X ′Y. (5.30)

Here, for simplicity, we assume that X is full rank. In general, there may be
correlations between the responses; therefore, the assumption V = σ2I may
not be reasonable. In such a case one may instead consider the weighted least
squares (WLS) estimator, defined as the vector β that minimizes

(Y −Xβ)′W (Y −Xβ),

where W is a known weighting matrix. In fact, the LS estimator is a special
case of the WLS estimator with W = I. If W is nonsingular, it can be shown
(Exercise 5.14) that the WLS estimator is given by

β̂ = (X ′WX)−1X ′WY. (5.31)

Furthermore, the covariance matrix of the WLS estimator is given by

Var(β̂) = (X ′WX)−1X ′WVWX(X ′WX)−1. (5.32)

By Lemma 5.1 we know the covariance matrix of the WLS estimator is mini-
mized when W = V −1. The corresponding estimator is, again, called BLUE,
given by (5.31), with W = V −1. In many cases, however, V involves unknown
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parameters so that the BLUE is not computable. In such cases, it is custom-
ary to replace the unknown parameters by their (consistent) estimators. The
result is called empirical BLUE or EBLUE. See Chapter 12 for more details.

Our final result of the subsection involves both nonnegative matrices and
positive numbers. Let a1, . . . , as be nonnegative numbers. There are constants
ci, 1 ≤ i ≤ s, depending only on a1, . . . , as such that for any positive numbers
x1, . . . , xs, we have

aix
2
i ≤ ci

⎛⎝1 +
s∑

j=1

ajxj

⎞⎠2

, 1 ≤ i ≤ s. (5.33)

In fact, one may let ci = 0 if ai = 0 and ci = a−1
i if ai > 0 (Exercise 5.19).

An extension of this result to nonnegative definite matrices is the following
(Jiang 2000a). We state the result as a lemma for future reference.

Lemma 5.2. Let Ai ≥ 0, 1 ≤ i ≤ s. For any 1 ≤ i ≤ s there is a constant
ci depending only on the matrices A1, . . . , As such that for any x1, . . . , xs > 0,

x2
iAi ≤ ci

⎛⎝I +

s∑
j=1

xjAj

⎞⎠2

, 1 ≤ i ≤ s, (5.34)

where I is the identity matrix.

Some applications of Lemma 5.2 are considered in Section 5.6.

5.3.2 Characteristics of matrices

The previous subsection is about inequalities regarding matrices themselves.
In this subsection we discuss inequalities regarding characteristics of matrices.
These include rank, trace, norm, determinant, and eigenvalues.

We begin with rank. Let A be an m× n matrix. Then

rank(A) ≤ m ∧ n, (5.35)

where a∧ b = min(a, b). The matrix rank satisfies the triangle inequality, that
is,

rank(A+B) ≤ rank(A) + rank(B). (5.36)

The next result is called Sylvester’s inequality. For any m × n matrix A and
n× s matrix B, we have

rank(A) + rank(B) − n ≤ rank(AB) ≤ rank(A) ∧ rank(B). (5.37)
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Another result regarding the ranks is known as Fröbenius rank inequality:

rank(AB) + rank(BC) ≤ rank(B) + rank(ABC), (5.38)

provided that ABC is well defined. We consider an example.

Example 5.9 (Error contrasts). A general linear model is characterized by
the equation E(Y ) = Xβ, where Y is a vector of observations (not necessarily
independent), X is a matrix of known covariates, and β is a vector of unknown
parameters. An error contrast of Y is defined as a linear function of Y , a =
l′Y , where l is a (nonrandom) vector of the same dimension as Y such that
l′X = 0. In other words, E(a) = 0 for any β. The vector l is called a contrast
vector. How many linearly independent error contrasts can one have? If we
let A denote a matrix whose columns are contrast vectors, then the question
is equivalent to what is the maximum rank of A? To answer this question,
note that A′X = 0. Thus, by the left-side inequality of (5.37), we have 0 =
rank(A′X) ≥ rank(A′) + rank(X) − n = rank(A) + rank(X) − n, which
implies rank(A) ≤ n− rank(X). Therefore, there are, at most, n− p linearly
independent error contrasts, where n is the dimension of Y and p = rank(X).

The matrix trace, norm, and eigenvalues are often connected in inequali-
ties. For example, for any matrices A and B, we have

|tr(AB)| ≤ ‖A‖2‖B‖2, (5.39)

provided that AB is well defined. Hereafter, the 2-norm of a matrix A is
defined as ‖A‖2 = {tr(A′A)}1/2. More generally, for any matrices A, B, and
C such that B ≥ 0 and ABC is well defined, we have

|tr(ABC)| ≤ λmax(B)‖A‖2‖C‖2, (5.40)

where λmax denotes the largest eigenvalue. Note that (5.39) is a special case
of (5.40) with B = I and C = B. Another matrix norm, the spectral norm, of
a matrix A is defined as ‖A‖ = {λmax(A

′A)}1/2. Note that ‖A‖ = λmax(A) if
A ≥ 0. Thus, the right side of (5.40) can be expressed as ‖B‖ · ‖A‖2‖C‖2. A
nice property of the spectral norm is the following. For any vector x, we have

|Ax| ≤ ‖A‖ · |x|, (5.41)

where |x| = (
∑

i x
2
i )

1/2 is the Euclidean norm of x = (xi) [the inequality
is satisfied with ‖A‖ replaced by ‖A‖2 as well due to the following product
inequality (5.45)]. The following triangle inequalities show, in particular, that
both ‖ · ‖ and ‖ · ‖2 qualify as norms:

‖A+B‖ ≤ ‖A‖ + ‖B‖, (5.42)

‖A+B‖2 ≤ ‖A‖2 + ‖B‖2. (5.43)
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It is easy to see that (5.43) is simply Minkowski’s inequality (5.17) with p = 2
(Exercise 5.20). Another property of matrix norm is the product inequality:

‖AB‖ ≤ ‖A‖ · ‖B‖, (5.44)

‖AB‖2 ≤ ‖A‖2‖B‖2. (5.45)

We now take a quick break by considering an example.

Example 5.8 (continued). Suppose that the observations Y satisfy a linear
mixed model; that is, Y = Xβ + Zα + ε, where Z is a known matrix, α is a
vector of random effects, and ε is a vector of (additional) errors. It is assumed
that E(α) = 0, Var(α) = G, E(ε) = 0, Var(ε) = R, and Cov(α, ε) = 0. It
follows that V = Var(Y ) = ZGZ ′ + R. Recall the BLUE is given by (5.31)
with W = V −1. Here, we assume that R > 0, which implies V > 0 (why?).

Typically, both G and R depend on some unknown dispersion parameters,
or variance components. Let θ denote the vector of unknown variance com-
ponents involved in G and R; then V depends on θ—that is, V = V (θ). If we

replace θ by θ̂, a consistent estimator, we obtain the EBLUE as

β̂ = (X ′V̂ −1X)−1X ′V̂ −1Y, (5.46)

where V̂ = V (θ̂). A well-known property of BLUE is its unbiasedness. It is

easy to show that any WLS estimator of (5.31) is unbiased [i.e., E(β̂) = β
(verify this)], so, as a special case, the BLUE is unbiased. The EBLUE, on the
other hand, is more complicated, as it is no longer linear in Y . Nevertheless,
Kackar and Harville (1981) showed that the EBLUE remains unbiased if θ̂
satisfies some mild conditions. In deriving their results, the authors avoided
an issue about the existence of the expectation of EBLUE (in other words,

the authors showed that E(β̂) = β, provided that the expectation exists),
which is not obvious. Below we consider a special case in which G = σ2Im
and R = τ2In, where σ2 > 0 and τ2 > 0 are unknown variances, and we show
the existence of the expectation.

Note that, in this case, the BLUE can be expressed as β̃ = B(γ)Y , where

B(γ) = {X ′(I + γZZ ′)−1X}−1X ′(I + γZZ ′)−1.

It can be shown that (Exercise 5.22)

B(γ) = (X ′X)−1X ′{I − Z(δI + Z ′PZ)−1Z ′P},

where P = PX⊥ = I −X(X ′X)−1X ′. By (5.44) and (5.42), we have

‖B(γ)‖ ≤ ‖(X ′X)−1X ′‖ · ‖I − Z(δI + Z ′PZ)−1Z′P‖
≤ ‖(X ′X)−1X ′‖{1 + ‖Z‖ · ‖(δI + Z ′PZ)−1Z′P‖},

where δ = γ−1. It can be shown that ‖(X ′X)−1X ′‖ = λ
−1/2
min (X ′X) and
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‖(δI + Z ′PZ)−1Z ′P‖ ≤ ‖Z‖
minλi > 0

√
λi

, δ > 0,

where λ1, . . . , λm are the eigenvalues of Z ′PZ (Exercise 5.22). It follows that

‖B(γ)‖ is uniformly bounded for γ ≥ 0. Therefore, by (5.41), E(β̂) exists for
any estimator of γ that is nonnegative (which is, of course, reasonable).

Unfortunately, the above arguments do not carry over beyond the special
case. In Section 5.6 we use a different method to establish the existence of
E(β̂) in more general situations.

We now continue with some inequalities on traces of nonnegative definite
matrices. For any A,B ≥ 0 and 0 ≤ p ≤ 1, we have

tr(ApB1−p) ≤ [tr{pA+ (1 − p)B}] ∧ [{tr(A)}p{tr(B)}1−p
]

(5.47)

(see Section 5.3.1 for the definition of Ap). The next result is known as Lieb–
Thirring’s inequality. For any A,B ≥ 0 and 1 ≤ p ≤ q, we have

tr [{ApBp}q] ≤ tr [{AqBq}p] . (5.48)

Also, for any matrices A,B > 0, we have (Exercise 5.23)

tr{(A−B)(A−1 −B−1)} ≤ 0. (5.49)

There are, of course, many matrix inequalities. We refer to Section 35.2
of DasGupta (2008) for a collection of matrix inequalities and additional ref-
erences. Some inequalities were developed purely because of mathematical
interest. On the other hand, many inequalities were motivated by practical
problems. Quite often one has a conjecture about a matrix inequality due to
certain evidences. The next thing is to try to prove the inequality. There are,
for the most part, two approaches to proving an inequality. The first is to
look for existing inequalities that may help to establish the new inequality (in
some rare occasions, one finds in the literature the exact inequality one is try-
ing to prove, so the problem is solved). However, in most cases, this strategy
does not work, unless the problem is relatively straightforward. The second
approach is to try to establish the inequality oneself using basic knowledge
in linear algebra. Sometimes the effort fails after some initial attempts. This
might raise doubts about the conjectured inequality, so one instead looks for
a counterexample. If, however, a counterexample cannot be found, one has a
stronger belief that the conjectured inequality must be true. Such a stronger
belief often leads to solving the conjecture. For example, the following inequal-
ity, which is Lemma 5.1 of Jiang (1996), was established in exactly the same
way as above, using the second approach. We state the result as a lemma for
future reference.

Lemma 5.3. Let B = [bij1(i>j)] be a lower triangular matrix. Then
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‖B′B‖2
2 ≤ 2‖B′ +B‖2‖B‖2

2. (5.50)

Lemma 5.3 plays a pivotal role in a case study later in Section 8.1
Another useful inequality in matrix analysis is Weyl’s eigenvalue pertur-

bation theorem. Let A and B be n × n symmetric matrices. Then we have

max
1≤i≤n

‖λ↓i (A) − λ↓i (B)| ≤ ‖A−B‖, (5.51)

where λ↓1(A) ≥ · · · ≥ λ↓n(A) are the eigenvalues of A arranged in decreasing
order. There are various applications of Weyl’s theorem in statistics. For ex-
ample, in many cases there is a need to estimate the eigenvalues of, say, a
covariance matrix Σ. Suppose that a consistent estimator of Σ is obtained,
say, Σ̂. Then by Weyl’s theorem we know that eigenvalues of Σ̂ are consistent
estimators of the eigenvalues of Σ. See Section 12.2 for a more details.

We conclude this subsection with a few inequalities involving determinants.
For any matrix A = (aij)1≤i,j≤n, let ar

i denote the ith row of A; that is,
ar

i = (aij)1≤j≤n. Similarly, let ac
j denote the jth column of A; that is, ac

j =
(aij)1≤i≤n. The well-known Hadamard’s inequality states that

|A| ≤
(

n∏
i=1

|ar
i |
)

∧
⎛⎝ n∏

j=1

∣∣ac
j

∣∣⎞⎠ . (5.52)

Also, for any square matrices A and B, we have

(|A+B|)2 ≤ |I +AA′| · |I +B′B|. (5.53)

Fisher’s inequality states that for any A > 0 partitioned as A =

(
B C
C ′ D

)
,

where B and D are square matrices, we have

|A| ≤ |B| · |D|. (5.54)

Finally, Ky Fan’s inequality states that for any A,B ≥ 0 and 0 ≤ p ≤ 1,

|pA+ (1 − p)B| ≥ |A|p|B|1−p. (5.55)

5.4 Integral/moment inequalities

Integrals and moments are closely related. In fact, a moment is a special
integral of a function with respect to a probability measure. Due to this con-
nection, many integral inequalities have their interpretations in terms of the
moments and vice versa. On the other hand, some moment inequalities in-
volve random variables with specific properties, such as independence. Such
inequalities are better expressed in terms of moments than integrals.
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Many numerical inequalities, especially those involving summations, have
their integral analogues. For example, we have the following.

Jensen’s inequality. Let ϕ be a convex function. Then for any random
variable X , we have

ϕ{E(X)} ≤ E{ϕ(X)}, (5.56)

provided that the expectations involved exist. There are several forms of (5.56)
in terms of integrals. For example, for any measurable functions f and g such
that g ≥ 0, we have

ϕ

{∫
f(x)g(x) dx∫
g(x) dx

}
≤
∫
ϕ{f(x)}g(x) dx∫

g(x) dx
, (5.57)

provided that the integrals involved exist and
∫
g(x) dx > 0. We consider an

application of Jensen’s inequality.

Example 5.10 (A property of the log-likelihood function). LetX be a vector
of observations whose pdf with respect to a measure μ is f , where f ∈ F ,
a subclass of pdf’s with respect to μ. The likelihood function is defined as
L(f) = f(X), considered as a function(al) of f , where X is the observed data.
In a particular case that f(·) = f(·|θ), where θ ∈ Θ, the parameter space
[so that F = {f(·|θ), θ ∈ Θ}], this is simply the classical likelihood function
L(θ) = f(X |θ). Let f0 denote the true pdf of X . Then we have

E{logL(f)} ≤ E{logL(f0)}, ∀f ∈ F . (5.58)

In other words, the expected log-likelihood function is maximized at the true
pdf of X . The result is viewed as one of the fundamental supports for the
likelihood principle. In particular, for the parametric likelihood function L(θ),
it shows that the expected log-likelihood is maximized at θ = θ0, the true
parameter vector. To show (5.58), note that the function ϕ(x) = − log(x) is
convex. Therefore, by (5.56), we have

E[log{L(f0)} − E[log{L(f)}]
=

∫
log{f0(x)}f0(x) dμ−

∫
log{f(x)}f0(x) dμ

=

∫ [
− log

{
f(x)

f0(x)

}]
f0(x)d μ

= E

[
ϕ

{
f(X)

f0(X)

}]
≥ ϕ

[
E

{
f(X)

f0(X)

}]
= − log

{∫
f(x)

f0(x)
f0(x) dμ

}
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= − log

{∫
f(x) dμ

}
= 0.

Hölder’s inequality. Let (S,F , μ) be a measure space and f and g be mea-
surable functions on S. Then we have∫

S

|f(x)g(x)| dμ ≤
{∫

S

|f(x)|p dμ
}1/p{∫

S

|g(x)|q dμ
}1/q

(5.59)

for any p, q ≥ 1 such that p−1+q−1 = 1. A special case is the Cauchy–Schwarz
inequality with p = q = 2,∫

S

|f(x)g(x)| dμ ≤
√∫

S

f2(x) dμ

√∫
S

g2(x) dμ. (5.60)

In terms of moments, we have, for any random variables X and Y ,

E(|XY |) ≤ {E(|X |p)}1/p{E(|Y |q)}1/q. (5.61)

We consider a simple application of Hölder’s inequality.

Example 5.11. If the sth absolute moment of a random variable X exists
[i.e., E(|X |s) < ∞], the rth absolute moment of X exists for any r < s. This
is because, by (5.61) with p = s/r and q = s/(s − r), we have E(|X |r) ≤
{E(|X |rp)}1/p{E(1q)}1/q = {E(|X |s)}r/s < ∞. Similar to Example 5.2, if we
define the p-norm of X as ‖X‖p = {E(|X |p)}1/p, then we have ‖X‖r ≤ ‖X‖s

if r ≤ s. In other words, ‖X‖p is nondecreasing in p.

Minkowski’s inequality. Using the same notation as in Hölder’s inequality
and letting p ≥ 1, we have(∫

|f(x) + g(x)|p dμ
)1/p

≤
(∫

|f(x)|p dμ
)1/p

+

(∫
|g(x)|p dμ

)1/p

; (5.62)

in other words, we have the triangle inequality ‖f+ g‖p ≤ ‖f‖p +‖g‖p, where
‖f‖p = (

∫ |f(x)|p dμ)1/p. In terms of the random variables, we have

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p. (5.63)

Monotone function inequalities. Suppose that f , g, and h are real-valued
functions on R such that f and g are both nondecreasing, or both nonincreas-
ing, and h ≥ 0; then we have
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f(x)g(x)h(x) dx

∫
h(x) dx ≥

∫
f(x)h(x) dx

∫
g(x)h(x) dx. (5.64)

If, instead, f is nondecreasing and g is nonincreasing, or f is nonincreasing and
g is nondecreasing, and h ≥ 0, the inequality is reversed. If f and g are both
strictly increasing, or both strictly decreasing, and h > 0, the inequality holds
with ≥ replaced by >. If f is strictly increasing and g is strictly decreasing, or
f is strictly decreasing and g is strictly increasing, and h > 0, the inequality
holds with ≥ replaced by <. We provide the proof of (5.64).

Proof. Since f and g are both nondecreasing and h ≥ 0, it is easy to see that
for any x, y ∈ R,

{f(x) − f(y)}{g(x) − g(y)}h(x)h(y) ≥ 0. (5.65)

By integrating both sides of (5.65) over x and y, we get

0 ≤
∫ ∫

{f(x) − f(y)}{g(x) − g(y)}h(x)h(y) dx dy

= 2

{∫
f(x)g(x)h(x) dx

∫
h(x) dx−

∫
f(x)h(x) dx

∫
g(x)h(x) dx

}
.

In case f and g are strictly increasing and h > 0, (5.65) holds with ≥ replaced
by > for any x �= y. Therefore, the same argument as above holds with ≤
replaced by <. This completes the proof for one of the cases. The proofs for
the other cases are similar (Exercise 5.29). Q.E.D.

Inequality (5.64) is also known as Chebyshev’s “other” inequality, in view
of the well-known Chebyshev’s inequality (see the next section). On the other
hand, (5.64) has many applications as well. We consider some examples.

Example 5.12. Let X be a random variable that has a pdf h(x) with resepct
to the Lebesgue measure. Then (5.64) is equivalent to

cov{f(X), g(X)} ≥ 0 (5.66)

(verify this), where for any random variables ξ and η,

cov(ξ, η) = E[{ξ − E(ξ)}{η − E(η)}].
This means that if f and g are both nondecreasing, or both nonincreasing,
the correlation between f(X) and g(X) is nonnegative, which is, of course,
very intuitive. Similarly, if f is nondecreasing and g is nonincreasing, or the
other way around, the correlation between f(X) and g(X) is nonpositive.

The next application involves the strict inequality in (5.64).

Example 5.13 (Jiang 1998a). Suppose that given the random effects αi, i =
1, . . . ,m, the binary responses Yij , i = 1, . . . ,m, j = 1, . . . , n are independent
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such that logit{P(Yij = 1|α)} = μ+αi, where μ is an unknown parameter, α =
(αi)1≤i≤m, and logit(p) = log{p/(1−p)}, p ∈ (0, 1). Furthermore, the random
effects are independent and distributed as N(0, σ2), where σ2 is an unknown
variance. Such a model is called a mixed logistic model, which is a special case
of the GLMM (see Chapter 12). In order to estimate the parameters μ and σ,
one may use the method of moments by solving the following equations:

m∑
i=1

n∑
j=1

Yij = mnE{ψ(μ+ σξ)}, (5.67)

m∑
i=1

(
Y 2

i· − Yi·
)

= mn(n− 1)E{ψ2(μ+ σξ)}, (5.68)

where Yi· =
∑n

j=1 Yij , ψ(x) = ex/(1 + ex) and ξ ∼ N(0, 1) (Exercise 5.30).
In practice, the expectations on the right sides are approximated by Monte
Carlo methods. This is called the method of simulated moments.

A nice property of (5.67) and (5.68) is that the system of equations has
a unique solution. To show this, write Mj(μ, σ) = E{ψj(μ + σξ)}, j = 1, 2.
Since ψ(·) is bounded, continuous, and strictly increasing, it follows that for
any given σ and 0 < c < 1, there is a unique solution to

M1(μ, σ) = c (5.69)

(Exercise 5.30). Denote this solution by μ = μc(σ). Then the function μc(·)
is continuously differentiable (Exercise 5.30). For notation simplicity, write
μc = μc(σ) and μ′c = μ′c(σ). Then by differentiating both sides of (5.69) (with
μ replaced by μc) with respect to σ, we get

E

[
exp(μc + σξ)

{1 + exp(μc + σξ)}2
(μ′c + ξ)

]
= 0. (5.70)

Now, considerM2(μ, σ) along the curve determined by (5.69); that is,Mc(σ) =
M2(μc, σ). We show that Mc(σ) is strictly increasing. It follows that there is
a unique solution to Mc(σ) = d for any d within the range of Mc(σ) (Exer-
cise 5.30). Therefore, there is a unique solution to the system of equations
M1(μ, σ) = c and M2(μ, σ) = d.

It remains to show that Mc is strictly increasing. Note that

M ′
c(σ) = 2E

[ {exp(μc + σξ)}2

{1 + exp(μc + σξ)}3
(μ′c + ξ)

]
= 2

∫
f(x)g(x)h(x) dx,

where f(x) = ψ(μc +σx), g(x) = μ′c +x, and h(x) = f(x){1− f(x)}φ(x) with

φ(x) = e−x2/2/
√

2π. Since f and g are strictly increasing and h > 0, by the
monotone function inequality, we have
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M ′
c(σ)

2

∫
h(x) dx >

∫
f(x)h(x) dx

∫
g(x)h(x) dx = 0,

because
∫
g(x)h(x) dx = 0 by (5.70). Thus, M ′

c(σ) > 0, implying that Mc is
strictly increasing.

Many of the moment inequalities involve sum of random variables. Histor-
ically, inequalities have played important roles in establishing limit theorems
for sum of random variables of a certain type. We begin with a classical result.

Marcinkiewicz–Zygmund inequality. Let X1, . . . , Xn be independent such
that E(Xi) = 0 and E(|Xi|p) < ∞, 1 ≤ i ≤ n, where p ≥ 1. Then there are
constants c1 and c2 depending only on p such that

c1E

(
n∑

i=1

X2
i

)p/2

≤ E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≤ c2E

(
n∑

i=1

X2
i

)p/2

. (5.71)

Inequalities (5.71) were first given by Khintchine (1924) for a special case:
the sum of independent Bernoulli random variables with equal probability
for 1 or 0. Marcinkiewicz and Zygmund (1937a) generalized the result to the
above. A further extension to martingale differences was given by Burkholder
(1966). Let Xi, 1 ≤ i ≤ n, be a sequence of random variables and let Fi,
1 ≤ i ≤ n, be an increasing sequence of σ-fields (see Appendix A.2); that is,
Fi−1 ⊂ Fi, i ≥ 1, where F0 = {∅, Ω}. The sequence Xi, Fi, 1 ≤ i ≤ n, is called
a sequence of martingale differences if Xi ∈ Fi (i.e., Xi is Fi measurable; see
Appendix A.2) and E(Xi|Fi=1) = 0 a.s., 1 ≤ i ≤ n. An extension of the
Marcinkiewicz–Zygmund inequality for the case p > 1 is the following.

Burkholder’s inequality. Let Xi,Fi, 1 ≤ i ≤ n be a sequence of martingale
differences and p > 1. Then (5.71) holds with c1 = (18p1/2q)−p and c2 =
(18pq1/2)p, where p−1 + q−1 = 1.

Rosenthal’s inequality. Another well-known result is Rosenthal’s inequality,
first given for independent random variables (Rosenthal 1970). Hall and Heyde
(1980, Section 2.4) gave an extension of the result to martingale differences
as follows. Let Xi,Fi, 1 ≤ i ≤ n, be a sequence of martingale differences and
p ≥ 2. Then there are constants c1 and c2 depending only on p such that

c1

⎡⎣E

{
n∑

i=1

E(X2
i |Fi−1)

}p/2

+
n∑

i=1

E|Xi|p
⎤⎦

≤ E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≤ c2

⎡⎣E

{
n∑

i=1

E(X2
i |Fi−1)

}p/2

+

n∑
i=1

E|Xi|p
⎤⎦ . (5.72)
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Example 5.14. Consider a special case of the Burkholder’s inequality with
p = 2. It can be shown that the martingale differences are orthogonal in the
sense that E(XiXj) = 0 if i �= j (Exercise 5.31). Thus, we have E(

∑n
i=1 Xi)

2 =∑n
i=1 E(X2

i ) = E(
∑n

i=1 X
2
i ). It follows that, in this case, (5.71) holds with

c1 = c2 = 1. On the other hand, the constants given above for Burkholder’s
inequality, in general, are c1 = (18 ×√

2 × 2)−2 = 1/2592 and c2 = (18 × 2 ×√
2)2 = 2592. It is seen that the constants are not very sharp in this case. Of

course, p = 2 is a very special case that one does not really need an inequality.
The constants given above are meant to apply to all cases, not just p = 2.

We conclude this section with several inequalities known as maximum
inequalities. First, consider a sequence of martingale differences, Xi,Fi, 1 ≤
i ≤ n. The partial sum Sm =

∑m
i=1 Xi is called a martingale with respect to

the same σ-fields. A martingale satisfies Sm ∈ Fm and E(Sm|Fm−1) = Sm−1

a.s., 1 ≤ m ≤ n (see Chapter 8). Recall for a random variable X , ‖X‖p =
{E(|X |p)}1/p. The following elegant result is due to Doob (1953).

Doob’s inequality. For any p > 1, we have

‖Sn‖p ≤
∥∥∥∥ max

1≤m≤n
|Sm|

∥∥∥∥
p

≤ q‖Sn‖p, (5.73)

where p−1 + q−1 = 1.
The next inequality is a stronger result than the right side of (5.72) (see

Hall and Heyde 1980, Section 2.4). For any p > 0, there is a constant c
depending only on p such that

E

(
max

1≤m≤n
|Si|p

)

≤ c

⎡⎣E

{
n∑

i=1

E(X2
i |Fi−1)

}p/2

+ E

(
max

1≤i≤n
|Xi|p

)⎤⎦ . (5.74)

Finally, a result due to Móricz (1976) regarding a general sequence of
random variables ξn (not necessarily a partial sum of independent random
variables or martingale differences) is useful in many cases for establishing
maximum moment inequalities (e.g., Lai and Wei 1984).

Móricz’s inequality. Let ξn, n = 1, 2, . . ., be a sequence of random variables,
and p > 0 and α > 1. If there are nonnegative constants di such that

E(|ξn − ξm|p) ≤
(

n∑
i=m+1

di

)α

, n > m ≥ m0, (5.75)

where m0 is a positive integer, then there is a constant c depending only on
p and α such that

E

(
max

m≤k≤n
|ξk − ξm|p

)
≤ c

(
n∑

i=m+1

di

)α

, n > m ≥ m0. (5.76)
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5.5 Probability inequalities

Chebyshev’s inequality, which has appeared in numerous places so far in the
book, is perhaps the simplest probability inequality. This inequality gives an
upper bound of a “tail probability” of a random variable in terms of the
moment of the random variable. The inequality may be stated as follows.

Chebyshev’s inequality. For any random variable ξ and a > 0, we have

P(ξ > a) ≤ E{ξ1(ξ>a)}
a

. (5.77)

Proof. The proof is as simple as the inequality itself. Note that 1(ξ>a) ≤
a−1ξ1(ξ>a). The result follows by taking expectation on both sides. Q.E.D.

There are many variations of Chebyshev’s inequality. For example, if ξ is
nonnegative, we get P(ξ > a) ≤ a−1E(ξ); thus, for any random variable ξ, we
have P(|ξ| > a) ≤ a−1E(|ξ|). The latter is also known as Markov’s inequality.
More generally, P(|ξ| > a) ≤ a−pE(|ξ|p) for any p > 0; one may also replace
the > in (5.77) by ≥, and so forth. In a way, Chebyshev’s inequality is the
weakest because it makes no assumption on specific properties of ξ except
perhaps the existence of the expectation. Under further assumptions, much
improved inequalities can be obtained. We state a few such results below.

Bernstein’s inequality. First, assume that X1, . . . , Xn are independent with
E(Xi) = 0 and |Xi| ≤ M a.s. Then for any t > 0, we have

P

(
n∑

i=1

Xi > t

)
≤ exp

{
− 3t2

2Mt+ 6
∑n

i=1 E(X2
i )

}
. (5.78)

The proof of (5.78) is an application of Chebyshev’s inequality to ξ =
exp(λ

∑n
i=1 Xi) for a suitable choice of λ (see below for a more general case).

A similar method has been used in the proof of (5.23) (Exercise 5.38).
Several generalizations of Bernstein’s inequality are available. For the

most part, the generalizations either relax the uniform boundedness of Xi

or weaken the assumption that the Xi’s are independent. As an example, we
derive the following martingale version of Bernstein’s inequality. Suppose that
Xi,Fi, 1 ≤ i ≤ n, is a sequence of martingale differences such that

E(Xk
i |Fi−1) ≤ k!

2
Bk−2ai, k ≥ 2, i ≥ 1, (5.79)

for some constants B > 0 and ai ≥ 0. Then for any t > 0, we have

P

(
n∑

i=1

Xi > t

)
≤ exp

⎧⎨⎩− A

2B2

(√
1 +

2Bt

A
− 1

)2
⎫⎬⎭ , (5.80)

where A =
∑n

i=1 ai.
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Proof. By Taylor’s expansion, we have for any 0 < λ < B−1,

eλXi = 1 + λXi +
∞∑

k=2

λkXk
i

k!
.

By taking conditional expectation with respect to Fi−1 on both sides and
noting that E(Xi|Fi−1) = 0, we have, by (5.79),

E(eλXi |Fi−1) = 1 +
∞∑

k=2

λk

k!
E(Xk

i |Fi−1)

≤ 1 +
λ2

2
ai

∞∑
k=2

(λB)k=2

= 1 +
λ2ai

2(1 − λB)

≤ exp

{
λ2ai

2(1 − λB)

}
, i ≥ 1,

using the inequality ex ≥ 1 + x [see (5.18)]. Note that (5.79) ensures the
appropriateness of exchanging the order of conditional expectation and infinite
summation (Exercise 5.39). Using the properties of conditional expectation
(see Appendix A.2) and the above result, we have

E

{
exp

(
λ

n∑
i=1

Xi

)}
= E

[
E

{
exp

(
λ

n∑
i=1

Xi

)∣∣∣∣∣Fi−1

}]

= E

{
exp

(
λ

n−1∑
i=1

Xi

)
E(eλXn |Fi−1)

}

≤ exp

{
λ2an

2(1 − λB)

}
E

{
exp

(
λ

n−1∑
i=1

Xi

)}
· · ·

≤ exp

{
λ2A

2(1 − λB)

}
,

where A =
∑n

i=1 ai. It follows that, by Chebyshev’s inequality,

P

(
n∑

i=1

Xi > t

)
= P

{
exp

(
λ

n∑
i=1

Xi

)
> eλt

}

≤ e−λtE

{
exp

(
λ

n∑
i=1

Xi

)}

≤ exp

{
λ2A

2(1 − λB)
− λt

}
. (5.81)
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Denote the function inside {· · ·} on the right side of (5.81) by g(λ). It can be
shown (Exercise 5.39) that g(λ) is minimized for λ ∈ (0, B−1) at

λ =
1

B

(
1 −
√

A

A+ 2Bt

)
, (5.82)

and the minimal value is the one inside {· · ·} on the right side of (5.80). This
completes the derivation. Q.E.D.

In a way, the right side of (5.80) is a bit complicated and not very easy
to interpret. The following inequalities are implied by (5.80), but the bounds
are much simplier. First, it can be shown that

A

2B2

(√
1 +

2Bt

A
− 1

)2

≥ t2

2(A+Bt)
(5.83)

(Exercise 5.40). Thus, we have, with A =
∑n

i=1 ai,

P

(
n∑

i=1

Xi > t

)
≤ exp

{
− t2

2(A+Bt)

}
. (5.84)

Next, if we replace t by 2
√
At in (5.84), then it follows that

P

(
n∑

i=1

Xi > 2
√
At

)
≤ e−t2 , 0 < t ≤

√
A

2B
(5.85)

(Exercise 5.40). In fact, this is the original form of an inequality proved by
Bernstein (1937).

Bernstein-type inequalities are useful in evaluating convergence rate in the
law of large numbers. We consider some examples.

Example 5.15. Suppose that Y1, . . . , Yn are independent and distributed
as Bernoulli(p), where p ∈ [0, 1]. Let Xi = Yi − p. Then, X1, . . . , Xn are
independent with E(Xi) = 0 and |Xi| ≤ 1. By (5.78), we have

P

(
1

n

n∑
i=1

Yi > p+ ε

)
= P

(
n∑

i=1

Xi > nε

)

≤ exp

{
− 3n2ε2

2nε+ 6np(1 − p)

}
.

Using the inequality p(1 − p) ≤ 1/4 (why?), it is then easy to show that
the right side is bounded by exp[−{6ε2/(4ε + 3)}n]. The same inequality is
obtained by considering Xi = p− Yi. Thus, in conclusion, we have



5.5 Probability inequalities 155

P

(∣∣∣∣∣ 1n
n∑

i=1

Yi − p

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− 6ε2

4ε+ 3
n

)
.

Example 5.16. Suppose that Y1, . . . , Yn are i.i.d. with the Exponential(λ)
distribution, where λ > 0 (see Example 3.8). Then we have E(Y k

i ) = k!λk,
k = 1, 2, . . .. Let Xi = Yi − λ. Then X1, . . . , Xn are i.i.d. with E(Xi) = 0.
Furthermore, using the inequality that for a, b ≥ 0, |a − b| ≤ a ∨ b, we have
E(Xk

i ) ≤ E(|Xi|k) ≤ E{(Yi ∨ λ)k} ≤ E(Y k
i + λk) = (k! + 1)λk. Thus, by

letting Fi = σ(X1, . . . , Xi) and noting that E(Xk
i |Fi−1) = E(Xk

i ), we have
E(Xk

i |Fi−1) ≤ (k!/2)(1+1/k!)λk−12λ2 = (k!/2)λk−14λ2—that is, (5.79) with
B = λ and ai = 4λ2. We now apply (5.84) with t = nελ to get

P

(
1

n

n∑
i=1

Xi > ελ

)
≤ exp

(
− ε2

2ε+ 8
n

)
.

The same inequality is obtained by considering Xi = λ− Yi. It follows that

P

(∣∣∣∣∣ 1n
n∑

i=1

Yi − λ

∣∣∣∣∣ > ελ

)
≤ 2

(
− ε2

2ε+ 8
n

)
.

See Exercise 5.41 for another application.

As for the moment inequalities, there is a class of probability inequalities
known as maximum inequalities. Let us begin with Kolmogorov’s well-known
inequality. Let X1, . . . , Xn be independent with E(Xi) = 0. Define Sm =∑m

i=1Xi. Then for any λ > 0, we have

P

(
max

1≤m≤n
|Sm| ≥ λ

)
≤ 1

λ2

n∑
i=1

E(X2
i ). (5.86)

A martingale extension of (5.86) is the following (see Hall and Heyde 1980,
Theorem 2.1). Similar to the definition of martigales above (5.73), the se-
quence Sm,Fm, 1 ≤ m ≤ n, is called a submartingale if Sm ∈ Fm and
E(Sm|Fm−1) ≥ Sm−1 a.s., 2 ≤ m ≤ n. Let Sm,Fm, 1 ≤ m ≤ n, be a sub-
martingale. Then for any λ > 0, we have

P

(
max

1≤m≤n
Sm ≥ λ

)
≤ 1

λ
E
{
Sn1(max1≤m≤n Sm≥λ)

}
. (5.87)

If Sm,Fm, 1 ≤ m ≤ n, is a martingale, then, by Jensen’s inequality (5.56),
|Sm|p,Fm, 1 ≤ m ≤ n, is a submartingale for any p ≥ 1 (verify this). It follows
by (5.87) that, for any λ > 0,

P

(
max

1≤m≤n
|Sm| ≥ λ

)
= P

(
max

1≤m≤n
|Sm|p ≥ λp

)
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≤ 1

λp
E
{|Sn|p1(max1≤m≤n |Sm|≥λp)

}
≤ 1

λp
E(|Sn|p). (5.88)

By letting p = 2 and the fact that E(S2
n) =

∑n
i=1 E(X2

i ), where Xi = Si−Si−1

if E(X2
i ) < ∞, 1 ≤ i ≤ n, we get (5.86) [note that this inequality is obviously

satisfied if any of the E(X2
i ) is ∞]. Another extension of the martingales is

called a supermartingale, for which the inequality E(Sm|Fm−1 ≥ Sm−1 is re-
versed. In other words, Sm,Fm, 1 ≤ m ≤ n, is a supermartingale if Sm ∈ Fm

and E(Sm|Fm−1) ≤ Sm−1 a.s., 2 ≤ m ≤ n. Martingale (submartingale, super-
martingale) techniques are very useful in establishing maximum inequalities.
As an example, we derive the following maximum exponential inequality due
to Jiang (1999a). Unlike the previous exponential inequalities such as (5.78)
and (5.80), this result does not require the uniform boundedness of |Xi| or
moment conditions such as (5.79).

Example 5.17. Let Sm,Fm,m ≥ 0, be a supermartingale, and Xi = Si −
Si−1, 1 ≤ i ≤ n. Then, for every n ≥ 1 and t > 0, we have

P

[
max

1≤m≤n

m∑
i=1

{
Xi − X2

i

6
− E(X2

i |Fi−1)

3

}
≥ t

]
≤ e−t. (5.89)

The derivation of (5.89) requires the following result.

Lemma 5.4. (Stout 1974, p. 299) Let Tm,Fm,m ≥ 0 be a nonnegative
supermartingale with T0 = 1. Then for any λ > 0, we have

P

(
sup
m≥0

Tm ≥ λ

)
≤ 1

λ
.

It is easy to verify the following inequality (Exercise 5.42):

exp

(
x− x2

6

)
≤ 1 + x+

x2

3
, −∞ < x < ∞. (5.90)

Now define T0 = 1 and Tm = exp[
∑m

i=1{Xi − (1/6)X2
i − (1/3)E(X2

i |Fi−1)}],
m ≥ 1. We show that Tm,Fm,m ≥ 0, satisfies the conditions of Lemma 5.4.
It suffices to show that E(Tm|Fm−1) ≤ Tm−1 a.s., m ≥ 1. By (5.90) and the
inequality 1 + x ≤ ex, x ∈ R, we have

E(Tm|Fm−1)

= Tm−1E

{
exp

(
Xm − X2

m

6

)∣∣∣∣Fm−1

}
exp

{
−E(X2

m|Fm−1)

3

}
≤ Tm−1E

(
1 +Xm +

X2
m

3

∣∣∣∣Fm−1

)
exp

{
−E(X2

m|Fm−1)

3

}
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≤ Tm−1

{
1 +

E(X2
m|Fm−1)

3

}
exp

{
−E(X2

m|Fm−1)

3

}
≤ Tm−1.

It follows by Lemma 5.4 that the left side of (5.89) equals P(max1≤m≤n Tm ≥
et) ≤ P(maxm≥0 Tm ≥ et) ≤ e−t.

Inequality (5.89) can be used to derive an “upper” law of the iterated
logarithm for martingales. See Chapter 8 for details.

Inequality (5.88) may be viewed as a strengthening of Chebyshev’s inequal-
ity by replacing |Sn| on the left side by max1≤m≤n |Sm|. The next maximum
inequality is another interesting result. It states that, in a way, the tail prob-
ability of the maximum of the partial sums is bounded by two times the tail
probability of the last partial sum. Let X1, . . . , Xn be independent random
variables. Then for any x ∈ R, we have

P

[
max

1≤k≤n
{Sk − m(Sk − Sn)} ≥ x

]
≤ 2P(Sn ≥ x), (5.91)

where m(X) denotes the median of X . (Here, we use Sk instead of Sm to
avoid confusion with the median.) A simple proof of this result can be found
in Petrov (1975, pp. 50). In particular, if X1, . . . , Xn are independent and
symmetrically distributed about zero, then for any x ∈ R,

P

(
max

1≤m≤n
Sm ≥ x

)
≤ 2P(Sn ≥ x). (5.92)

Note that (5.91) and (5.92) hold for all x ∈ R, not just x > 0.
We conclude this section by presenting an interesting property regard-

ing the multivariate normal distribution. Suppose that X = (X1, . . . , Xn)′

is multivariate normal with mean vector μ and covariance matrix Σ =
(σiσjρij)1≤i,j≤n, where σi is the standard deviation of Xi and ρij is the cor-
relation coefficient between Xi and Xj . If ρij ≥ 0 for all i �= j. Then

P

[
n⋂

i=1

{Xi ≤ ai}
]
≥

n∏
i=1

P(Xi ≤ ai), (5.93)

P

[
n⋂

i=1

{Xi > ai}
]
≥

n∏
i=1

P(Xi > ai) (5.94)

for any a = (a1, . . . , an) ∈ Rn. More generally, let Σd = (σiσjρdij)1≤i,j≤n,
d = 1, 2, be two covariance matrices and let Pd(X ∈ A) denote P(X ∈ A),
where X ∼ N(μ,Σd), d = 1, 2. If ρ1ij ≥ ρ2ij holds for all i, j, then

P1

[
n⋂

i=1

{Xi ≤ ai}
]
≥ P2

[
n⋂

i=1

{Xi ≤ ai}
]

(5.95)
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for any a = (a1, . . . , an) ∈ Rn. If, in addition, ρ1ij > ρ2ij holds for at least
one pair of i, j, then the strict inequality holds in (5.95). The latest results
are known as Slepian’s inequality (Slepian 1962). A convenient reference for
its proof can be found in Tong (1980, p. 11). The result may be interpreted as
follows: If X1, . . . , Xn are jointly multivariate normal, the more positively cor-
related these random variables are, the more likely they will lean on the same
direction. Note that, although intuitive, the same result may not hold for non-
Gaussian random variables. There are many implications of Slepian’s inequal-
ity, including (5.93) and (5.94) (Exercise 5.43). An application of Slepian’s
inequality can be found in the sequel (see Example 11.2).

5.6 Case study: Some problems on existence of moments

In this section we discuss some applications of Lemma 5.2 in inference about
linear mixed models. These models are widely used in practice (e.g., Jiang
2007). See Chapter 12 for more details.

We consider a linear mixed model that can be expressed as

Y = Xβ + Z1α1 + · · · + Zsαs + ε, (5.96)

where Y = (Yi)1≤i≤n is an n× 1 vector of observations, X is an n× p matrix
of known covariates, β is a p×1 vector of unknown regression coefficients (the
fixed effects), Zr, 1 ≤ r ≤ s, are known matrices, αr is a vector of i.i.d. ran-
dom variables (the random effects) with mean 0 and variance σ2

r , 1 ≤ r ≤ s,
and ε is a vector of errors with mean 0 and variance σ2

0. Without loss of gen-
erality, we assume that X is of full rank p < n, and none of the Zr’s is a zero
matrix. Two of the best known methods for estimating σ2

r , 0 ≤ r ≤ s—known
as variance components—are maximum likelihood (ML) and restricted maxi-
mum likelihood (REML). See, for example, Jiang (2007). The mean, variance,
MSE, and higher moments of REML and ML estimators (REMLE and MLE)
were often used in the literature without rigorous justification of the existence
of these moments. Note that REMLE and MLE are solutions to systems of
nonlinear equations (see below), which have no closed-form expression. Thus,
the existence of moments of REMLE and MLE are by no mean obvious.

In addition to variance components estimation, inference about the fixed
effects and prediction of the random effects are also of great interest. The
best known methods for such inference and prediction are best linear unbiased
estimation (BLUE) and best linear unbiased prediction (BLUP), given by

β̃ = (X ′V −1X)−1X ′V −1Y, (5.97)

α̃r = σrZ
′
rV
−1(Y −Xβ̃), 1 ≤ r ≤ s, (5.98)

where V = Var(Y ) =
∑s

r=0 σ
2
rZrZ

′
r, with Z0 = I, the n-dimensional identity

matrix. Note that the BLUE and BLUP involve the unknown variance compo-
nents σ2

r , 0 ≤ r ≤ s. Since the latter are unknown in practice, it is customary
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to replace them by their REMLE or MLE. The results are usually called em-
pirical BLUE (EBLUE) and BLUP (EBLUP). Note that EBLUE and EBLUP
are much more complicated than BLUE and BLUP; in particular, they are
no longer linear in Y . On the other hand, once again, the mean, variance,
and MSE of the EBLUE and EBLUP were frequently used without justifi-
cation of their existence. For example, Kackar and Harville (1981) showed
that the EBLUE and EBLUP remain unbiased if the variance components
are estimated by nonnegative, even, and translation-invariant estimators. An
estimator θ̂ = θ̂(Y ) is even if θ̂(−Y ) = θ̂(Y ) for all Y and translation-invariant

if θ̂(Y −Xβ) = θ̂(Y ). In particular, the REMLE and MLE are both even and
translation-invariant. In their arguments showing the unbiasedness property,
Kackar and Harville have avoided the issue about the existence of the ex-
pectation of EBLUE and EBLUP. Jiang (1998b) proved the existence of the
expectations for the special case s = 1. The following general results on the
existence of moments of REMLE, MLE, EBLUE and EBLUP were given by
Jiang (2000a).

Following Jiang (1996), we do not assume that the random effects and
errors are normally distributed. In such a case, the REMLE and MLE are
understood as the Gaussian REMLE and MLE; that is, they are solutions to
the (Gaussian) REML and ML equations, respectively, if such solutions exist
and belong to the parameter space Θ = {σ2 = (σ2

r)0≤r≤s : σ2
0 > 0, σ2

r ≥ 0, 1 ≤
r ≤ s}; otherwise, the REMLE and MLE are defined as σ2

∗ , a known point in
Θ. The ML equations are equivalent to

Y ′A(A′V A)−1A′ZrZ
′
rA(A′V A)−1A′Y

= tr(Z ′rV
−1Zr), 0 ≤ r ≤ s, (5.99)

where A is any n× (n− p) full rank matrix such that A′X = 0. Similarly, the
REML equations are equivalent to

Y ′A(A′V A)−1A′ZrZ
′
rA(A′V A)−1A′Y

= tr(Z ′rA((A′V A)−1A′Zr), 0 ≤ r ≤ s. (5.100)

Since these equations do not depend on the choice of A as far as the conditions
below (5.99) are satisfied, we assume that A′A = I, the (n − p)-dimensional
identity matrix. We first prove the following result.

Theorem 5.1. The pth moments (p > 0) of REMLE and MLE are finite,
provided that the 2pth moments of Yi, 1 ≤ i ≤ n are finite.

Proof. We provide the proof for MLE only, as the proof for REMLE is very
similar (Exercise 5.50). Suppose that σ2 satisfies (5.99) and is in Θ. Since

A′V A =

s∑
i=0

σ2
iA
′ZrZ

′
rA, (5.101)
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by taking the sum of the equations (5.99) over 0 ≤ r ≤ s, we get

Y ′A(A′V A)−1A′Y

=
s∑

r=0

σ2
rY

′A(A′V A)−1A′ZrZ
′
rA(A′V A)−1A′Y

=
s∑

r=0

σ2
rtr(V −1ZrZ

′
r)

= tr

(
V −1

s∑
r=0

σ2
rZrZ

′
r

)
= n. (5.102)

Define V (A, θ) = I +
∑s

r=1 θrA
′ZrZ

′
rA, where θr = σ2

r/σ
2
0 . Then, by (5.102),

σ2
0 =

Y ′AV (A, θ)−1A′Y
n

≤ Y ′AA′Y
n

≤ |Y |2
n

. (5.103)

Note that V (A, θ) ≥ I, which implies V (A, θ)−1 ≤ I, and Y ′AA′Y ≤
λmax(A

′A)|Y |2 = |Y |2, using properties (i) and (ii) of Section 5.3.1 and the
fact that x′Bx ≤ λmax(B)|x|2 for any vector x and matrix B (why?).

Suppose max1≤r≤s σ
2
r = σ2

q . If σ2
q < σ2

0 , then σ2
q ≤ |Y |2/n by (5.103). If

σ2
q ≥ σ2

0 , then θq = σ2
q/σ

2
0 ≥ 1. Note that (5.99) (with r = q) is equivalent to

Y ′AV (A, θ)−1AZqZ
′
qAV (A, θ)−1A′Y

= σ2
0tr(Z ′qV

−1
θ Zq), (5.104)

where Vθ = I +
∑s

r=1 θrZrZ
′
r ≤ θqI +

∑s
r=1 θqZrZ

′
r = θqV1, where 1 is the

(s+ 1)-dimensional vector with all components equal to one. It follows that

tr(Z ′qV
−1
θ Zq) ≥ θ−1

q tr(Z ′qV
−1
1 Zq). (5.105)

On the other hand, by Lemma 5.2 and property (ii) of Section 5.3.1,

V (A, θ)−1A′ZqZ
′
qAV (A, θ)−1

=

(
1 +

s∑
r=1

θrA
′ZrZ

′
rA

)−1

A′ZqZ
′
qA

(
1 +

s∑
r=1

θrA
′ZrZ

′
rA

)−1

≤ cqθ
−2
q I

for some constant cq > 0, which implies
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Y ′AV (A, θ)−1A′ZqZ
′
qAV (A, θ)−1A′Y

≤ cqθ
−2
q Y ′AA′Y ≤ cqθ

−2
q |Y |2, (5.106)

again using property (ii) of Section 5.3.1 and an earlier result [below (5.103)].
Combining (5.104)–(5.106), we have

σ2
q ≤ cq|Y |2

tr(Z ′qV
−1
1 Zq)

≤ cq
‖Zq‖2

2

(
1 +

s∑
r=1

‖Zr‖2

)
|Y |2 (5.107)

(Exercise 5.49). Note that since Zr �= 0, ‖Zr‖2 > 0 for any 1 ≤ r ≤ s.
In conclusion, let σ̂2 = (σ̂2

r )0≤r≤s be the MLE of σ2. If the solution to
(5.99) does not exist or belong to Θ, we have σ̂2 = σ2

∗; otherwise, max0≤r≤s σ̂
2
r

is bounded either by the right side of (5.103) (when max1≤r≤s σ̂
2
r < σ̂2

0) or by
the right side of (5.107) (when max1≤r≤s σ̂

2
r ≥ σ̂2

0). In any case, we have

max
0≤r≤s

σ̂2
r ≤ σ2

∗ +

{
1

n
+

cq
‖Zq‖2

2

(
1 +

s∑
r=1

‖Zr‖2

)}
|Y |2, (5.108)

whose qth moment is finite (Exercise 5.49). This completes the proof. Q.E.D.

Note 1. The moment condition in Theorem 5.1 is seen as minimum. This
is because, for example, in the case of balanced mixed ANOVA model (e.g.,
Jiang 2007, p. 41), the REMLE and MLE are both quadratic functions of
the data Yi’s. It follows that the existence of the 2pth moments of the Yi’s is
necessary for the existence of the pth moments of REMLE and MLE.

Note 2. In particular, if Y is normally distributed, as is often assumed,
then Theorem 5.1 implies that any moments of REMLE and MLE are finite.
Furthermore, the proof of Theorem 5.1 shows that REMLE and MLE are
bounded by quadratic functions of the data.

We now consider the moments of EBLUE and EBLUP. We first state a
lemma whose proof is similar to Exercise 5.22 (see Jiang 2000a, p. 141–142).
Let mr be the dimension of αr, 1 ≤ r ≤ s, and D = diag(θ1Im1 , · · · , θsIms).
Also, write Z = (Z1, · · · , Zs) and denote the projection matrix P = PX⊥ =
I − PX with PX = X(X ′X)−1X ′.

Lemma 5.5. For any σ2 ∈ Θ, we have

(X ′V −1X)−1X ′V −1 = (X ′X)−1X ′{I − ZDZ ′P (I + PZDZ ′P )−1}.

Theorem 5.2. The pth moments of the EBLUE and EBLUP are finite,
provided that the pth moments of Yi, 1 ≤ i ≤ n, are finite and the estimator
of σ2 belongs to Θ.

Proof. First, consider EBLUE. By Lemma 5.5 and properties of the matrix
norm (see Section 5.3.2), we have
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‖(X ′V −1X)−1X ′V −1‖

≤ ‖(X ′X)−1X ′‖
⎧⎨⎩1 +

∥∥∥∥∥∥
(

s∑
r=1

θrZrZ
′
rP

)(
I +

s∑
r=1

θrPZrZ
′
rP

)−1
∥∥∥∥∥∥
⎫⎬⎭

≤ λ
−1/2
min (X ′X)

⎧⎪⎨⎪⎩1 +
∑
θr>0

θr‖Zr‖

∥∥∥∥∥∥∥Z ′rP
⎛⎝I +

∑
θj>0

θjPZjZ
′
jP

⎞⎠−1
∥∥∥∥∥∥∥
⎫⎪⎬⎪⎭ .

Now, apply Lemma 5.2 to obtain⎛⎝I +
∑
θj>0

θjPZjZ
′
jP

⎞⎠−1

PZrZ
′
rP

⎛⎝I +
∑
θj>0

θjPZjZ
′
jP

⎞⎠−1

≤ crθ
−2
r I

for some constant cr > 0 if θr > 0. It follows, by using property (iii) of Section
5.3.1, that

‖(X ′V −1X)−1X ′V −1‖ ≤ λ
−1/2
min (X ′X)

(
1 +

∑
θr>0

√
cr‖Zr‖

)
. (5.109)

Note that (5.109) holds for any σ2 ∈ Θ, including the estimator, say σ̂2. That
the pth moment of EBLUE is finite follows from (5.97) (with V replaced by
V̂ =

∑s
r=0 σ̂

2
rZrZ

′
r), (5.41), and (5.109).

Next, we consider EBLUP. Note that the right side of (5.98) can be ex-
pressed as θrZ

′
rV
−1
θ {I−X(X ′V −1X)−1X ′V −1}Y . Suppose that θr > 0. Then,

by Lemma 5.2, we have⎛⎝I +
∑
θj>0

θjZjZ
′
j

⎞⎠−1

ZrZ
′
r

⎛⎝I +
∑
θj>0

θjZjZ
′
j

⎞⎠−1

≤ drθ
−2
r I

for some constant dr > 0, which implies ‖Z ′rV −1
θ ‖2 = λmax(V

−1
θ ZrZ

′
rV
−1
θ ) ≤

drθ
−2
r . Therefore, we have

‖θrZrV
−1
θ {I −X(X ′V −1X)−1X ′V −1}‖

≤ θr‖ZrV
−1
θ ‖{1 + ‖X‖ · ‖(X ′V −1X)−1X ′V −1‖}

≤
√
dr

⎧⎨⎩1 +

√
λmax(X ′X)

λmin(X ′X)

⎛⎝1 +
∑
θj>0

√
cj‖Zj‖

⎞⎠⎫⎬⎭ , (5.110)

using (5.109). Inequalities (5.110) hold as long as θr > 0; they certainly also
hold if θr = 0. That the pth moment of EBLUP is finite follows by (5.98)
(with the alternative expression noted above), (5.41), and (5.110). Q.E.D.
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Note 3. As in Theorem 5.1, the moment condition in Theorem 5.2 is mini-
mum. For example, in some special cases such as the linear regression model,
seen as a special case of the linear mixed model, and the balanced random
effects model (e.g., Jiang 2007, p. 15), the EBLUE is the same as the BLUE,
which is linear in the Yi’s. It follows that the existence of the pth moments of
the Yi’s is necessary for the existence of the pth moments of the EBLUE.

Note 4. An observation from the proof of Theorem 5.2 is that the matrix
operators B(σ2) = (X ′V −1X)−1X ′V −1 and Br(σ

2) = σ2
rZ

′
rV
−1{I −B(σ2)},

1 ≤ r ≤ s, are uniformly bounded for σ2 ∈ Θ. Since the second moments
of the data Yi’s exist by the definition of the linear mixed model (why?),
Theorem 5.2 implies, in particular, that the mean (expected value) and MSE
of the EBLUE and EBLUP exist as long as the estimator of σ2 belongs to Θ,
which is, of course, a reasonable assumption.

5.7 Exercises

5.1. Show that, in Example 5.2, ‖{xi}‖k → ‖{xi}‖∞ as k → ∞.
5.2. In Example 5.3, define

ui =

{
xi/yi, yi �= 0

0, yi = 0.

Show that uiy
2
i = xiyi and u2

i y
2
i ≤ x2

i , 1 ≤ i ≤ n.
5.3. Let x1, . . . , xn be positive. Define x̄ = n−1

∑n
i=1 xi. Show that

x̄x̄ ≤ n

√
xx1

1 · · ·xxn
n .

5.4. Show that for any ai > 0, bi > 0 and λi ≥ 0, 1 ≤ i ≤ n such that∑n
i=1 λi = 1, we have

n∏
i=1

aλi

i +
n∏

i=1

bλi

i ≤
n∏

i=1

(ai + bi)
λi .

When does the equality hold?
5.5. A pdf f(x) is called log-concave if log{f(x)} is concave. Show that

the following pdf’s are log-concave:
(i) the pdf of N(0, 1);
(ii) the pdf of χ2

ν , where the degrees of freedom ν ≥ 2;
(iii) the pdf of the Logistic(0, 1) distribution, which is given by f(x) =

e−x(1 + e−x)−2, −∞ < x < ∞;
(iv) the pdf of the Dounle Exponential(0, 1) distribution, which is given

by f(x) = (1/2)e−|x|, −∞ < x < ∞.
5.6. Verify the identity (5.13).
5.7. Let xi, . . . , xn be real numbers. Define a probability on the space

X = {x1, . . . , xn} by
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P(A) =
# of xi ∈ A

n

for any A ⊂ X . Show that

P(A ∩B) ≤
√

P(A)P(B).

[Hint: Note that # of xi ∈ A =
∑n

i=1 1(xi∈A).]
5.8. Derive the conditions for equality in Minkowski’s inequality (5.17).
5.9. Prove the left-side inequality in (5.18); that is

log(1 + x) ≥ x− x2

2
, x ≥ 0.

5.10. This exercise is regarding the latter part of Example 5.6.
(i) By using the same arguments, show that

I2 ≤ exp

{
−λ
(
ε− λB2

2 − λB

)
n

}
.

(ii) Show that the function h(λ) defined by (5.20) attains its maxima on
(0, 2B−1) at λ∗ given by (5.21), and the maxima is given by (5.22).

(iii) What is the reason for maximizing h(λ)?
5.11. This exercise is regarding the inequality (5.26).
(i) Verify the identity (5.27).
(ii) Complete the proof of (5.26).
(iii) Suppose that f(x) and g(x) are both strictly increasing, or both

strictly decreasing, and h(x) > 0. Find conditions for equality in (5.26).
5.12. This exercise is related to Example 5.5.
(i) Use the monotone function technique to prove the following inequality:

ex ≤ 1 + x+
x2

2 − b
, |x| ≤ b,

where b < 2. (Hint: Take the logarithm of both sides of the inequality.)
(ii) Suppose that X1, . . . , Xn are i.i.d. and distributed as Uniform[−1, 1].

Let X̄ = n−1
∑n

i=1 Xi. Show that

1 ≤ E(eX̄) ≤ 1 +
1

3n
.

(iii) Prove the following sharper inequality (see below):

1 ≤ E(eX̄) ≤ exp

{
1

3(2n− 1)

}
.

(iv) Show that the right-side inequality in (iii) is sharper in that

exp

{
1

3(2n− 1)

}
≤ 1 +

1

3n
, n = 1, 2, . . . .
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5.13. Prove the following inequality. For any x1, . . . , xn, we have∑
1≤i
=j≤n

x3
ix

5
j ≤

∑
1≤i
=j≤n

x6
ix

2
j .

Can you generalize the result?
5.14. Show that in Example 5.8 the WLS estimator is given by (5.31),

and its covariance matrix is given by (5.32). (Hint: You may use results in
Appendix A.1 on differentiation of matrix expressions.)

5.15. Show that for any matrix A of real elements, we have A′A ≥ 0.
5.16. For any matrix X of full rank, the projection matrix onto L(X), the

linear space spanned by the columns of X , is defined as PX = X(X ′X)−1X ′

(the definition can be generalized even if X is not of full rank). The orthogonal
projection to L(X) is defined as PX⊥ = I−PX , where I is the identity matrix.
Show that PX ≥ 0 and PX⊥ ≥ 0.

5.17. Many of the “cautionary tales” regarding extensions of results for
nonnegative numbers to nonnegative definite matrices are due to the fact that
matrices are not necessarily commutative. Two matrices A and B are com-
mutative if AB = BA. Suppose that A1, . . . , As are symmetric and pairwise
commutative. Then there is an orthogonal matrix T such that Ai = TDiT

′,
1 ≤ i ≤ s, where Di is the diagonal matrix whose diagonal elements are the
eigenvalues of Ai. This is called simultaneous diagonalization (see Appendix
A.1). Suppose that A and B are commutative. Prove the following:

(i) A ≥ B implies Ap ≥ Bp for any p > 0 [compare with results (i) and
(v) of Section 5.3.1].

(ii) If A and B are both ≥ 0 or both ≤ 0, then AB + BA ≥ 0 [compare
with result (iv) of Section 5.3.1].

5.18. (Estimating equations) A generalization of the WLS (see Example
5.8) is the following. Let Y denote the vector of observations and θ a vector of

parameters of interest. Consider an estimator of θ, say, θ̂, which is a solution
to the equation

W (θ)u(Y, θ) = 0,

where W (θ) is a matrix depending on θ and u(y, θ) is a vector-valued function
of Y and θ satisfying E{u(Y, θ)} = 0 if θ is the true parameter vector (in
other words, the estimating equation is unbiased). WriteM(θ) = W (θ)u(Y, θ).
Then, under some regularity conditions, we have by the Taylor expansion,

0 = M(θ̂)

≈ M(θ) +
∂M

∂θ′
(θ̂ − θ),

where θ represents the true parameter vector. Thus, we have

θ̂ − θ ≈ −
(
∂M

∂θ′

)−1

M(θ)
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≈ −
{

E

(
∂M

∂θ′

)}−1

M(θ).

Here, the approximation means that the neglected term is of lower order in a
suitable sense. This leads to the following approximation (whose justification,
of course, requires some regularity conditions):

Var(θ̂) ≈
{

E

(
∂M

∂θ′

)}−1

Var{M(θ)}
{

E

(
∂M ′

∂θ

)}−1

≡ V (θ).

Using a similar argument to that in the proof of Lemma 5.1, show that the
best estimator θ̂ corresponds to the estimating equation

W∗(θ)u(Y, θ) = 0,

where W∗(θ) = E(∂u′/∂θ){Var(u)}−1, in the sense that for any W (θ),

V (θ) ≥ V∗(θ)

=

{
E

(
∂M∗
∂θ′

)}−1

Var{M∗(θ)}
{

E

(
∂M ′

∗
∂θ

)}−1

= [Var{M∗(θ)}]−1,

where M∗(θ) = W∗(θ)u(Y, θ). Here, we assume that W∗(θ) does not depend
on parameters other than θ (why?). Otherwise, a procedure similar to the
EBLUE is necessary (see Example 5.8).

5.19. This exercise is regarding Lemma 5.2.
(i) Show that by letting ci = 0 if ai = 0 and ci = a−1

i if ai > 0, (5.33) is
satisfied for all xi > 0, 1 ≤ i ≤ s.

(ii) Prove a special case of Lemma 5.2; that is, (5.34) holds when A1, . . . , As

are pairwise commutative (see Exercise 5.17).
5.20. Derive (5.43) by Minkowski’s inequality (5.17).
5.21. Prove the product inequality (5.44). [Hint: For any A ≥ 0, we have

A ≤ λmax(A)I, where I is the identity matrix; use (iii) of Section 5.3.1]
5.22. This exercise is regarding Example 5.8 (continued) in Section 5.3.2.

For parts (i) and (ii) you may use the following matrix identity in Appendix
A.1.2: (D ±BA−1B′)−1 = D−1 ∓D−1B(A±B′D−1B)−1B′D−1.

(i) Define H = δI + Z ′Z. Show that

B(γ) = δ(X ′X −X ′ZH−1Z ′X)−1X ′(δI + ZZ ′)−1.

(ii) Furthermore, let Q = δI + Z ′PZ. Show by continuing with (i) that

B(γ) = (X ′X)−1X ′{I + ZQ−1Z′(I − P )}(I − ZH−1Z ′).

(iii) Continuing with (ii), show that B(γ) = (X ′X)−1X ′(I − ZQ−1Z ′P ).
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(iv) Show that ‖(X ′X)−1X ′‖ = λ
−1/2
min (X ′X).

(v) Write A = P ′Z. Show that the positive eigenvalues of S = A(δI +
AA′)−2A′ are λi(δ + λi)

−2, 1 ≤ i ≤ m, where λi, 1 ≤ i ≤ m, are the positive
eigenvalues of AA′. [Hint: The positive eigenvalues of S are the same as those
of U = (δI +AA′)−1A′A(δI +AA′)−1.] Use this result to show

‖(δI +A′A)−1A′‖ ≤ ‖Z‖
minλi > 0

√
λi

, δ > 0,

where λ1, . . . , λm are the eigenvalues of A′A.
5.23. Prove inequality (5.49). [Hint: Note that (5.49) is equivalent to

tr(AB−1 + BA−1 − 2I) ≥ 0, tr(AB−1) = tr(A1/2B−1A1/2) and tr(BA−1) =
tr(A−1/2BB−1/2).]

5.24. Prove Schur’s inequality: For any square matrices A and B, we have

tr{(A′B)2} ≤ ‖A‖2
2‖B‖2

2.

[Hint: Let A = (aij)1≤i,j≤n and B = (bij)1≤i,j≤n. Express the left side in
terms of the elements of A and B.]

5.25. (Jiang et al. 2001) let b > 0 and a, ci, 1 ≤ i ≤ n be real numbers.
Define the following matrix

A =

⎛⎜⎜⎜⎜⎜⎝
1 a 0 · · · 0
a d c1 · · · cn
0 c1 1 · · · 0
...

...
...

. . .
...

0 cn 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ ,

where d = a2 + b+
∑n

i=1 c
2
i . Show that λmin(A) ≥ b(1 + d)−1.

5.26. Show that A ≥ B implies |A| ≥ |B|. (Hint: Without loss of generality,
let B > 0. Then A ≥ B iff B−1/2AB−1/2 ≥ I.)

5.27. Use the facts that for any symmetric matrix A, we have λmin(A) =
inf|x|=1(x

′Ax/x′x) and λmax(A) = sup|x|=1(x
′Ax/x′x) to prove the following

string of inequalities. For any symmetric matrices A, B, we have

λmin(A) + λmin(B)

≤ λmin(A+B)

≤ λmin(A) + λmax(B)

≤ λmax(A+B)

≤ λmax(A) + λmax(B).

5.28. Recall that In and 1n denote respectively the n-dimension identity
matrix and vector of 1’s, and Jn = 1n1′n. You may use the following result
(see Appendix A.1) that |aIn + bJn| = an−1(a+ bn) for any a, b ∈ R.
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Suppose that observations Y1, . . . , Yn satisfy Yi = μ + α + εi, where μ is
an unknown mean, α and εi’s are independent random variables such that
E(α) = 0, var(α) = σ2, E(εi) = 0, var(εi) = τ2, cov(εi, εj) = 0, i �= j, and
cov(α, εi) = 0 for any i.

(i) Show that the covariance matrix of Y = (Y1, . . . , Yn)′ is V = A + B,
where A = τ2In and B = σ2Jn.

(ii) For the matrices A and B in (ii), verify inequality (5.53).
5.29. Prove another case of the monotone function inequality: If f is non-

decreasing and g is nonincreasing and h ≥ 0, then∫
f(x)g(x)h(x) dx

∫
h(x) dx ≤

∫
f(x)h(x) dx

∫
g(x)h(x) dx.

Furthermore, if f is strictly increasing and g is strictly decreasing and h > 0,
the above inequality holds with ≤ replaced by <.

5.30. This exercise is associated with Example 5.13.
(i) Show that (5.67) and (5.68) are unbiased in the sense that the expecta-

tions of the left sides equal the right sides if μ and σ are the true parameters.
(ii) Show that for any given σ and 0 < c < 1, there is a unique solution to

(5.69).
(iii) Show that the function μc(·) is continuously differentiable. (Hint: You

may use some well-known results in calculus on differentiability of implicit
functions.)

(iv) Given the proved result that Mc(·) is strictly increasing, show that
for any d within the range of Mc, there is a unique σ such that Mc(σ) = d.
(Hint: All you have to show is that Mc is continuous.)

5.31. Show that the martingale differences are orthogonal in the sense that
E(XiXj) = 0, i �= j (see Example 5.14).

5.32. Let X be a positive random variable. Show that

E

{
X

X + E(X)

}
≤ 1

2
.

5.33. Let A and B be any events of a probability space Ω. Show the
following:

(i) P(A ∩B) ≤√P(A)P(B). The result is an extension of Exercise 5.7.
(ii) P(A�B) ≤ [{P(A)}1/p + {P(B)}1/p]p for any p ≥ 1, where A�B =

(A ∩Bc) ∪ (B ∩Ac).
5.34. Prove Carlson’s inequality: If f ≥ 0 on [0,∞), then∫ ∞

0

f(x) dx ≤ √
π

{∫ ∞
0

f2(x) dx

}1/4{∫ ∞
0

x2f2(x) dx

}1/4

.

[Hint: For any a, b > 0, write∫ ∞
0

f(x) dx =

∫ ∞
0

1√
a+ bx2

√
a+ bx2f(x) dx.
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Also, note that
∫∞
0 (a+ bx2)−1 dx = π/2

√
ab. ]

5.35. Let ξ ∼ N(0, 1), and F (·) be any cdf that is strictly increasing on
(−∞,∞). Show that E{ξF (ξ)} > 0. Can you relax the normality assumption?

5.36. Suppose that X1, . . . , Xn are i.i.d. random variables such that
E(X1) = 0 and E(|X1|p) < ∞, where p ≥ 2. Show that

E

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p)

= O(np/2).

5.37. Let ξ1, ξ2, . . . be a sequence of random variables such that ξi − ξj ∼
N(0, σ2|i− j|) for any i �= j, where σ2 is an unknown variance. Show that

sup
n>m≥1

E

(
maxm≤k≤n |ξk − ξm|√

n−m

)2

< ∞.

5.38. Derive Bernstein’s inequality (5.78).
5.39. This exercise is related to the derivation of (5.80).
(i) Let ξn =

∑n
k=2(λ

k/k!)Xk
i , n = 2, 3, . . ., and η =

∑∞
k=2(λ

k/k!)|Xi|k.
Then we have ξn → ξ =

∑∞
k=2(λ

k/k!)Xk
i and |ξn| ≤ η. Show that (5.79)

implies that E(η|Fi−1) < ∞. (Hint: Use the inequality that for any odd k,
|Xi|k ≤ 1 +Xk+1

i .)
(ii) Based on the result of (i) and using the dominated convergence theorem

(Theorem 2.16), show that limn→∞ E(ξn|Fi−1) = E(ξ|Fi−1).
(iii) Show that the function g(λ) is minimized for λ ∈ (0, B−1) at (5.82),

and the minimal value is

g(λ) = − A

2B2

(√
1 +

2Bt

A
− 1

)2

.

5.40. Continue on with the martingale extension of Bernstein’s inequality.
(i) Prove (5.83).
(ii) Derive (5.85), the original inequality of Bernstein (1937), by (5.84).
5.41. Consider once again Example 5.16. Show that for any 0 ≤ t ≤ √

n,

P

{
1√
nλ

n∑
i=1

(Yi − λ) > 2t

}
≤ e−t2 ,

P

{
1√
nλ

n∑
i=1

(Yi − λ) < −2t

}
≤ e−t2 .

How would you interpret the results?
5.42. Prove inequality (5.90).
5.43. This exercise is related to Slepian’s inequality (5.95), including some

of its corollaries.
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(i) Show that Slepian’s inequality implies (5.93) and (5.94) (Hint: The
right sides of these inequalities are the probabilities on the left sides when all
of the correlations ρij are zero.)

(ii) Show that if Σd, d = 1, 2 are positive definite and so is (1−λ)Σ1 +λΣ2

for any λ ∈ [0, 1].
(iii) Show that for any fixed ρkl, (k, l) �= (i, j), the set Rij = {ρij : Σ =

(ρkl)1≤k,l≤n is positive definite} is an interval. (Hint: It suffices to show that
if Σ is positive definite when ρij = ρ′ij and ρ′′ij , it remains so for any ρ′ij ≤
ρij ≤ ρ′′ij .

(iv) Show that for any fixed ρkl, (k, l) �= (i, j) and a = (a1, . . . , an) ∈ Rn,
the probability P[∩n

i=1{Xi ≤ ai}] is strictly increasing in ρij ∈ Rij .
(v) Suppose that the correlations ρij depend on a single parameter θ; that

is, ρij = ρij(θ), θ ∈ Θ, where ρij(·) are nondecreasing functions. Show that
the probability in (iv) is also a nondecreasing function of θ.

5.44. Suppose that X1, . . . , Xn are independent and distributed asN(0, 1).
(i) Determine the constants B and ai in (5.79), where Fi = σ(X1, . . . , Xi).

You may use the fact that if X ∼ N(0, 1), then E(X2j−1) = 0 and E(X2j) =
(2j)!/2jj!, j = 1, 2, . . ..

(ii) Determine the right side of inequality (5.84) with t = εn for any ε > 0.
(iii) Can you improve the inequality obtained in (ii) by using the fact that∑n

i=1Xi ∼ N(0, n)?
5.45. Let Yi,Fi, 1 ≤ i ≤ n, be a sequence of martingale differences. For

any A > 0, define Xi = Yi1(∑
j<i

Y 2
j
≤A
).

(i) Show thatXi,Fi, 1 ≤ i ≤ n, is also a sequence of martingale differences.
Here, the summation

∑
j<1 Y

2
j is understood as zero.

(ii) Show that
∑n

i=1 X
2
i ≤ A+ max1≤i≤n Y

2
i . (Hint: Define i∗ = max{0 ≤

i ≤ n :
∑

j<i Y
2
j ≤ A} and show that

∑n
i=1 X

2
i ≤∑i∗

i=1 Y
2
i .)

(iii) Show that
∑m

i=1 Yi =
∑m

i=1 Xi, 1 ≤ m ≤ n, on {∑i<n Y
2
i ≤ A}.

(iv) Derive the following inequality. For any λ,A > 0 and p > 1, there is
a constant c depending only on p such that

P

(
max

1≤m≤n

∣∣∣∣∣
m∑

i=1

Yi

∣∣∣∣∣ ≥ λ,
∑
i<n

Y 2
i ≤ A

)
≤ c

λp

{
Ap/2 + E

(
max

1≤i≤n
|Yi|p

)}
.

[Hint: Use the results of (i)–(iii), (5.88) and Burkholder’s inequality.]
5.46. Prove the following extension of (5.80). Let Xi,Fi, 1 ≤ i ≤ n be a

sequence of martingale differences. Then, for any t > 0,

P

{
n∑

i=1

Xi > t,E(Xk
i |Fi−1) ≤ k!

2
Bk−2ai, k ≥ 2, 1 ≤ i ≤ n

}

≤ exp

⎧⎨⎩− A

2B2

(√
1 +

2Bt

A
− 1

)2
⎫⎬⎭ .
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[Hint: Define Yi = Xi1(E(Xk
i
|Fi−1)≤0.5k!Bk−2ai,k≥2). Show that Yi,Fi, 1 ≤ i ≤

n, is also a sequence of martingale differences and satisfies (5.79) (with Xi

replaced by Yi.]
5.47. (i) Show that for any random variable X and p > 0, we have

E{Xp1(X≥0)} =

∫ ∞
0

pxp−1P(X ≥ x) dx.

[Hint: Note that Xp1(X≥0) =
∫X

0
pxp−11(X≥0) dx =

∫∞
0
pxp−11(X≥x) dx. Use

the result in Appendix A.2 to justify the exchange of order of expectation and
integration.]

(ii) Show that if X1, . . . , Xn are independent and symmetrically dis-
tributed about zero, then for any p > 0,

E

{(
max

1≤m≤n
Sm

)p

1(max1≤m≤n Sm≥0)

}
≤ 2E{Sp

n1(Sn≥0)},

where Sm =
∑n

i=1 Xi.
5.48. Suppose that X1, X2, . . . are independent Exponential(1) random

variables. According to Example 5.16, we have E(Xk
i ) = k!, k = 1, 2, . . ..

(i) Given k ≥ 2, define Yi = (Xi, X
k
i )′. Show that

Var(Yi) =

(
1 ck
ck σ

2
k

)
= diag(1, σk)Σkdiag(1, σk),

where ck = (k+ 1)!− k!, σ2
k = (2k!)− (k!)2, Σk =

(
1 ρk

ρk 1

)
with ρk = ck/σk.

(ii) Show that

1√
n

[ ∑n
i=1(Xi − 1)∑n

i=1 σ
−1
k (Xk

i − k!)

]
d−→ N(0, Σk).

(Hint: Use Theorem 2.14 and the CLT.)
(iii) Show that for any 0 < α < 1,

lim
n→∞

P

{∑n
i=1(Xi − 1)√

n
≤ zα,

∑n
i=1(X

k
i − k!)√

nσk
≤ zα

}
≥ (1 − α)2,

where zα is the α-critical value of N(0, 1); that is, P(Z ≤ zα) = 1 − α for
Z ∼ N(0, 1).

(iv) Show that the inequality in (iii) is sharp in the sense that for any
η > (1 − α)2, there is k ≥ 1 such that the limit on the left side is less than η.

5.49. This exercise is related to the proof of Theorem 5.1.
(i) Verify the inequalities in (5.107).
(ii) Show that the qth moment of |Y |2 is finite.
5.50. The proof of Theorem 5.1 for REMLE is very similar to that for

MLE. Complete the proof.





6

Sums of Independent Random Variables

6.1 Introduction

The classical large-sample theory is about the sum of independent random
variables. Even though large-sample techniques have expanded well beyond
the classical theory, the foundation set up by the latter remains the best way to
understand and further explore elements of large-sample theory. Furthermore,
the classical results are often used as examples to illustrate more sophisticated
theory, as we have done repeatedly so far in this book, and the “gold standard”
for any extensions beyond the classical situation. Here, by gold standard it
means that a well-developed, nonclassical large-sample theory should include
the classical one as a special case.

The simplest case is the so-called i.i.d case (i.e., the case of independent
and identically distributed random variables). In fact, this was the place where
the large-sample theory was first developed. In this case, there are three main
classical results—namely, the law of large numbers, the central limit theorem,
and the law of the iterated logarithm. These results, especially the first two,
are well known well beyond the fields of statistics and probability (e.g., James
2006). Let X1, X2, . . . be a sequence of i.i.d. random variables. The weak law
of large numbers (WLLN) states that if E(Xi) = μ ∈ (−∞,∞) (i.e., the
expected value is finite), then

X̄ =
X1 + · · · +Xn

n
P−→ μ, (6.1)

whereas the strong law of large numbers (SLLN) states that, in fact,

X̄ =
X1 + · · · +Xn

n
a.s.−→ μ. (6.2)

If, in addition, var(Xi) = σ2 ∈ (0,∞) (i.e., the variance is finite and nonzero),
the central limit theorem (CLT) states that∑n

i=1(Xi − μ)

σ
√
n

d−→ N(0, 1), (6.3)

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_6, © Springer Science+Business Media, LLC 2010
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and the law of the iterated logarithm (LIL) states that

lim sup

∑n
i=1(Xi − μ)

σ
√

2n log{log(n)} = 1 a.s. (6.4)

The WLLN was first discovered by Jacob Bernoulli in 1689 for what is now
known as the Bernoulli sequence, and eventually published in 1713, 8 years
after his death, in his epic work Ars Conjectandi. Later, Siméon-Denis Poisson
in 1835 named Bernoulli’s theorem “the law of large numbers.” The SLLN
was first stated by Borel in 1909 for symmetric Bernoulli trials, although a
complete proof was not given until Faber (1910). The CLT was first postulated
by French mathematician Abraham de Moivre in 1733. The discovery of LIL
was much later: Khintchine’s 1924 paper was the first.

The WLLN, SLLN, CLT, and LIL for sum of independent, but not neces-
sarily identically distributed random variables are discussed in Sections 6.2–
6.5, respectively. Section 6.6 provides further results on invariance principle
and probabilities of large deviation. A case study is considered in Section 6.6
regarding the least squares estimator in linear regression. The proofs of most
of the theoretical results can be found in Petrov (1975).

6.2 The weak law of large numbers

We begin with the i.i.d. case. The following theorem gives necessary and suf-
ficient conditions for WLLN.

Theorem 6.1. Let X1, X2, . . . be i.i.d. Then X̄
P−→ 0 if and only if

nP(|X1| > n) → 0 and E{X11(|X1|≤n)} → 0, as n → ∞.

Although Theorem 6.1 deals with a special case where the limit of con-
vergence in probability is zero, the result can be easily generalized. For ex-

ample, X̄
P−→ μ for some μ ∈ R if and only if nP(|X1 − μ| > n) → 0 and

E{(X1 −μ)1(|X1−μ|≤n)} → 0 as n → ∞. In particular, if E(X1) is finite, The-
orem 6.1 implies the classical result (6.1). The following example, however,
shows a very different situation.

Example 6.1. Suppose that X1, X2, . . . are independent Cauchy(0, 1) ran-
dom variables. Then we have

nP(|X1| > n) = n

∫
|x|>n

dx

π(1 + x2)

>
n

π

∫
|x|>n

dx

2x2

=
n

π

∫ ∞
n

dx

x2
=

1

π
,
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which does not go to zero. Therefore, by Theorem 6.1, X̄ does not converge
to zero in probability.

The result of Example 6.1 is not surprising because, as is well known, the
Cauchy distribution does not have the mean or expected value. If the latter
exists, we have the classical result noted above (6.1).

We now relax the assumption that the random variables X1, X2, . . . have
the same distribution. Furthermore, we allow a general sequence of normal-
izing constants 0 < an ↑ ∞; that is, an > 0, an ≤ an+1, n ≥ 1 and
limn→∞ an = ∞. The following theorem gives necessary and sufficient condi-
tions for an extended WLLN defined by (6.5).

Theorem 6.2. Let X1, X2, . . . be independent. Then

1

an

n∑
i=1

Xi
P−→ 0 (6.5)

if and only if the following three conditions are satisfied:

n∑
i=1

P(|Xi| > an) −→ 0, (6.6)

1

an

n∑
i=1

E{Xi1(|Xi|≤an)} −→ 0, (6.7)

1

a2
n

n∑
i=1

var{Xi1(|Xi|≤an)} −→ 0. (6.8)

For a given sequence X1, X2, . . ., it is usually not difficult to find a nor-
malizing sequence an such that (6.5) holds. For example, one expects (6.5) to
hold if an is large enough. However, it is often desirable to choose an so that
it is “just enough,” although such a “cut off” may not exist.

Example 6.2. Suppose that Y1, Y2, . . . are independent such that Yi ∼
Poisson(λi), where a ≤ λi ≤ b for some a, b > 0. Consider Xi = Yi − λi,
i ≥ 1. Since E(Xi) = 0, one would expect (6.5) to hold for some suitable
choice of an. Furthermore, since E(

∑n
i=1 Xi)

2 =
∑n

i=1 λi, one may consider
an = (

∑n
i=1 λi)

γ for some positive γ. First, assume γ ≤ 1/2. We show that in
this case, (6.8) is not satisfied; therefore, (6.5) does not hold. Note that

var{Xi1(|Xi|≤an)} = E{X2
i 1(|Xi|≤an)} − [E{Xi1(|Xi|≤an)}]2

= λi − E{X2
i 1(|Xi|>an)} − [E{Xi1(|Xi|>an)}]2,

because E(Xi) = 0 and E(X2
i ) = λi. Furthermore, we have
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E{X2
i 1(|Xi|>an)} ≤ E

{
X4

i

a2
n

1(|Xi|>an)

}
≤ E(X4

i )

a2
n

=
λi + 3λ2

i

a2
n

|E{Xi1(|Xi|>an)}| ≤ E

{
X2

i

an
1(|Xi|>an)

}
≤ E(X2

i )

an
=

λi

an
.

Here, we used the fact that the fourth central moment of Poisson(λ) is λ+3λ2.
Therefore, we have, for any i ≥ 1,

var{Xi1(|Xi|≤an)} ≥ λi − λi + 4λ2
i

a2
n

≥
(

1 − 1 + 4b

a2
n

)
λi.

It follows that the left side of (6.8) is greater than or equal to

1

a2
n

(
1 − 1 + 4b

a2
n

) n∑
i=1

λi = a1/γ−2
n

(
1 − 1 + 4b

a2
n

)
.

Since 1/γ − 2 ≥ 0 and a2
n = (

∑n
i=1 λi)

2γ ≥ (an)2γ → ∞ as n → ∞, we see
the left side of (6.8) has a positive lower bound as n → ∞. Next, we assume
γ > 1/2. In this case it is easy to show that (6.6)–(6.8) are satisfied (Exercise
6.1); therefore, (6.5) holds. In conclusion, for an = (

∑n
i=1 λi)

γ , (6.5) holds if
and only if γ > 1/2. However, there is no smallest γ (the so-called cut off)
such that (6.5) holds.

A general form of WLLN may be expressed as follows. Let Xni, i =
1, . . . , in, n = 1, 2, . . ., be a triangular array of random variables such that
for each n, the Xni’s are independent. We say Xni obeys WLLN if there
exists a sequence of constants bn such that

in∑
i=1

Xni − bn
P−→ 0 (6.9)

as n → ∞. Let mni and Fni denote the median and cdf of Xni, respectively.
We have the following theorem.

Theorem 6.3. Xni obeys WLLN if and only if the following hold:

in∑
i=1

∫
|x|>1

dFni(x+mni) −→ 0, (6.10)

in∑
i=1

∫
|x|≤1

x2dFni(x+mni) −→ 0. (6.11)
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Furthermore, if (6.10) and (6.11) hold, then (6.9) holds, with bn having the
following expression for any ε > 0:

bn =

in∑
i=1

{
mni +

∫
|x|≤ε

x dFni(x+mni)

}
+ o(1). (6.12)

Note that (6.10) and (6.11) are equivalent to the following (Exercise 6.2):

in∑
i=1

∫
x2

1 + x2
dFni(x +mni) −→ 0. (6.13)

Thus, another necessary and sufficient condition for Xni to obey WLLN is
(6.13). The involvement of the medians can be made “disappear” under the
following condition. We say Xni obeys the condition of infinite smallness if

max
1≤i≤in

P(|Xni| > ε) −→ 0 (6.14)

for every ε > 0. Combining this with WLLN, we have the following result.

Theorem 6.4. Result (6.9) holds with bn = 0 and Xni obeys the condition
of infinite smallness if and only if

in∑
i=1

P(|Xni| > ε) −→ 0, (6.15)

in∑
i=1

E{Xni1(|Xni|≤τ)} −→ 0, (6.16)

in∑
i=1

var{Xni1(|Xni|≤τ)} −→ 0 (6.17)

for every ε > 0 and some τ > 0.

Example 6.3. Suppose that for each n, Yni, 1 ≤ i ≤ in, are independent.
Furthermore, there is B > 0 such that |Yni| ≤ B; in other words, the Yni’s are
uniformly bounded. Now, consider Xni = {Yni −E(Yni)}/an, where an is the
normalizing constant to be determined. Suppose that an → ∞. Then since
|Yni − E(Yni)| ≤ 2B, we have for every ε > 0,

P(|Xni| > ε) = P{|Yni − E(Yni)| > εan} = 0

for large n. For a similar reason, we have

E{Xni1(|Xni|≤1)} = E(Xni) = 0,

var{Xni1(|Xni|≤1)} = var(Xni) =
var(Yni)

a2
n

.
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Therefore, for (6.15)–(6.17) to be satisfied, all one needs is∑in

i=1 var(Yni)

a2
n

−→ 0. (6.18)

In conclusion, we have
∑in

i=1 Xni
P−→ 0 or, equivalently,∑in

i=1 Yni

an
−
∑in

i=1 E(Yni)

an

P−→ 0,

provided that an → ∞ and (6.18) holds as n→ ∞. In other words, (6.9) holds

with Xni = Yni/ani and bn = a−1
n

∑in

i=1 E(Yni).

There is extensive literature on laws of large numbers for independent
random variables. For example, earlier in Section 5.5 we discussed some re-
sults involving the convergence rate in WLLN. We conclude this section with
another result in this regard.

Theorem 6.5. Let X1, X2, . . . be i.i.d. with E(X1) = 0 and E(|X1|p) < ∞
for some p ≥ 1. Then for every ε > 0 we have P(|X̄| > ε) = o(n1−p).

6.3 The strong law of large numbers

Following the same strategy, we begin with the i.i.d. case. The theorem below
gives a necessary and sufficient condition for SLLN. In particular, it implies
the classical result (6.2).

Theorem 6.6. Let X1, X2, . . . be i.i.d. Then

X̄
a.s.−→ μ (6.19)

for some μ ∈ R if and only if

E(|X1|) < ∞. (6.20)

If (6.20) is satisfied, then (6.19) holds with μ = E(X1).

We now relax the assumption that the Xi’s are identically distributed. A
further extension is that the normalizing constant in SLLN does not have to
be n, as in the following theorem.

Theorem 6.7. Let X1, X2, . . ., be independent, and 0 < an ↑ ∞. Then

1

an

n∑
i=1

{Xi − E(Xi)} a.s.−→ 0 (6.21)
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provided that

∞∑
i=1

var(Xi)

a2
i

< ∞. (6.22)

The result of Theorem 6.7 can be generalized. If Xi, i ≥ 1, are independent
with mean 0 and 0 < an ↑ ∞. Then a−1

n

∑n
i=1 Xi

a.s.−→ 0 provided that

∞∑
i=1

E(|Xi|p)

ap
i

< ∞ (6.23)

for some 1 ≤ p ≤ 2. We consider an example.

Example 6.2 (continued). Since E(Yi) = var(Yi) = λi, by Theorem 6.7,

1

an

n∑
i=1

(Yi − λi)
a.s.−→ 0, (6.24)

provided that

∞∑
i=1

λi

a2
i

< ∞. (6.25)

Clearly, there are many choices of an that satisfy (6.25). For example, if an =
np, then (6.25) holds if and only if p > 1/2. Similarly, if an = (

∑n
i=1 λi)

γ as in
Example 6.1, then (6.25) holds if and only if γ > 1/2 (Exercise 6.4). Here, we
used the assumption that the λi’s are bounded from above and away from zero.
If one only assumes λi > 0 for all i, (6.25) still holds with an = (

∑n
i=1 λi)

γ

for any γ > 1/2. To show this, consider the function f(x) = x1−β , where

β = 2γ > 1. Write Λi =
∑i

j=1 λj . By Taylor’s expansion (see Section 4.2),
we have f(Λi) − f(Λi−1) = f ′(ξ)(Λi − Λi−1), where Λi−1 ≤ ξ ≤ Λi, and
f ′(x) = (1 − β)x−β . It follows that

λi

a2
i

=
Λi − Λi−1

Λβ
i

≤ Λi − Λi−1

ξβ

=
f(Λi−1) − f(Λi)

β − 1

=
1

β − 1

(
1

Λβ−1
i−1

− 1

Λβ−1
i

)
, i ≥ 2.

Therefore, we have
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∞∑
i=1

λi

a2
i

≤ 1

λβ−1
1

+
1

β − 1

∞∑
i=2

(
1

Λβ−1
i−1

− 1

Λβ−1
i

)

≤ 1

λβ−1
1

+
1

β − 1

1

λβ−1
1

=
β

(β − 1)λβ−1
1

<∞.

On the other hand, it is easy to give a counterexample that (6.25) is false
when γ ≤ 1/2 (e.g., consider λi = 1).

Furthermore, it would also be interesting to know if some version of SLLN
still holds when the mean of Xi does not exist. We have the following result.

Theorem 6.8. Let X1, X2, . . ., be independent, and 0 < an ↑ ∞. Then

1

an

n∑
i=1

[Xi − E{Xi1(|Xi|≤ai)}] a.s.−→ 0 (6.26)

provided that

∞∑
i=1

E

(
X2

i

a2
i +X2

i

)
< ∞. (6.27)

We visit another example that was considered earlier.

Example 6.1 (continued). We noted that the mean of the Cauchy(0, 1)
distribution does not exist and, as a result, the WLLN does not hold; that
is, X̄ does not converge to zero in probability. We now consider a different
normalizing constant an. Note that

E{Xi1(|Xi|≤ai)} =

∫ ai

−ai

x

π(1 + x2)
dx = 0;

in other words, the truncated mean of Cauchy(0, 1) exists and is equal to zero.
Thus, by Theorem 6.8, we have

1

an

n∑
i=1

Xi
a.s.−→ 0 (6.28)

provided that (6.27) holds. To evaluate the expected value in (6.27), let bi be
a constant to be determined such that bi ≥ √

ai (reason given below). Then

E

(
X2

i

a2
i +X2

i

)
=

∫
x2

a2
i + x2

dx

π(1 + x2)

=
2

π

∫ ∞
0

x2

(a2
i + x2)(1 + x2)

dx.
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Furthermore, we have∫ ∞
0

x2

(a2
i + x2)(1 + x2)

dx =

∫ bi

0

· · · dx+

∫ ∞
bi

· · · dx
= I1 + I2.

First, consider the integrand of I1. Write c = a2
i , d = b2i and consider the

function ψ(u) = u/(c + u)(1 + u) for 0 ≤ u ≤ d. It can be shown that ψ(u)
attains its maximum over the range at u =

√
c, and the maximum is (1+

√
c)−2

(Exercise 6.5). It follows that the integrand of I1 is bounded by (1 + ai)
−2;

hence, I1 ≤ bi(1 + ai)−2, provided that
√
c ≤ d (i.e., ai ≤ b2i ; this explains the

range of bi given above). On the other hand, the integrand of I2 is bounded
by x−2; hence, I2 ≤ ∫∞

bi
x−2 dx = b−1

i . In conclusion, we have

E

(
X2

i

a2
i +X2

i

)
≤ 2

π

{
bi

(1 + ai)2
+

1

bi

}
(6.29)

for any bi ≥ √
ai. The right side of (6.29) is minimized when bi = 1 + ai ≥

2
√
ai >

√
ai (Exercise 6.5), and the minimum is 4{π(1 + ai)}−1. Therefore,

(6.27), hence (6.28), holds if
∑∞

i=1(1 + ai)
−1 < ∞. The latter condition is

satisfied, for example, by ai = ip, i ≥ 1, where p > 1.

Historically, the proofs of SLLNs were based on an interesting connection
between convergence of an infinite series, say,

∑∞
i=1 xi, and the weighted av-

erage a−1
n

∑n
i=1 aixi to zero. The connection is built by the following lemma.

Lemma 6.1 (Kronecker’s lemma). If
∑∞

i=1 xi converges and an ↑ ∞, then
a−1

n

∑n
i=1 aixi → 0.

Here, we are talking about convergence of an infinite series of random
variables. The most famous result in this regard is the following.

Theorem 6.9 (Kolmogorov’s three series theorem). Let X1, X2, . . . be a
sequence of independent random variables. (i) If

∑∞
i=1Xi converges a.s., then

for every c > 0, the following three series converge:

∞∑
i=1

P(|Xi| > c), (6.30)

∞∑
i=1

E{Xi1(|Xi|≤c)}, (6.31)

∞∑
i=1

var{Xi1(|Xi|≤c)}. (6.32)

(ii) Conversely, if the series (6.30)–(6.32) converge for some c > 0, then∑∞
i=1Xi converges a.s.
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As an example, we give a proof of Theorem 6.7 (which was also due to
Kolmogorov) using Theorem 6.9.

Example 6.4 (Proof of Theorem 6.7). Suppose that the condition of The-
orem 6.7 are satisfied. Let Yi = {Xi − E(Xi)}/ai. Then by Chebyshev’s in-
equality, we have

∑∞
i=1 P(|Yi| > 1) ≤ ∑∞

i=1 E(Y 2
i ) =

∑∞
i=1 var(Xi)/a

2
i < ∞.

Next, since E(Yi) = 0, we have E{Yi1(|Yi|≤1)} = −E{Yi1(|Yi|>1)}. Thus,

∞∑
i=1

∣∣E{Yi1(|Yi|≤1)}
∣∣ = ∞∑

i=1

∣∣E{Yi1(|Yi|>1)}
∣∣

≤
∞∑

i=1

E{|Yi|1(|Yi|>1)}

≤
∞∑

i=1

E(Y 2
i ) < ∞.

Finally,
∑∞

i=1 var{Yi1(|Yi|≤1)} ≤ ∑∞
i=1 E{Y 2

i 1(|Yi|>1)} ≤ ∑∞
i=1 E(Y 2

i ) < ∞.
Therefore, by Theorem 6.9, the series

∑∞
i=1 Yi converges a.s. It then follows

by Lemma 6.1 that a−1
n

∑n
i=1{Xi − E(Xi)} = a−1

n

∑n
i=1 aiYi

a.s.−→ 0.

Finally, the following theorem uncovers an interesting connection between
WLLN and SLLN.

Theorem 6.10 (Katz 1968). Let X1, X2, . . ., be i.i.d. If X̄ converges
to zero in probability but not almost surely, then lim sup X̄ = ∞ a.s. and
lim inf X̄ = −∞ a.s.

6.4 The central limit theorem

We begin with the following landmark theorem due to Lindeberg and Feller.

Theorem 6.11 (Lindeberg–Feller theorem). Let X1, X2, . . . be a sequence
of independent random variables with E(Xi) = 0 E(X2

i ) = σ2
i < ∞. Define

Sn =
∑n

i=1 Xi and s2n =
∑n

i=1 σ
2
i . Then

s−1
n Sn

d−→ N(0, 1) (6.33)

provided that for any ε > 0,

1

s2n

n∑
i=1

E{X2
i 1(|Xi|>εsn)} −→ 0. (6.34)

Condition (6.34) is known as the Lindeberg condition. An easier to verify
sufficient condition for the Lindeberg condition is the Liapounov condition:



6.4 The central limit theorem 183

1

s2+δ
n

n∑
i=1

E(|Xi|2+δ) −→ 0 (6.35)

for some δ > 0 (Exercise 6.13).
In some cases it is more convenient to consider the triangular array intro-

duced in the previous section. Suppose that for each n, Xni, 1 ≤ i ≤ in, are
independent with E(Xni) = 0 and E(X2

ni) = σ2
ni < ∞. Write Sn =

∑in

i=1 Xni

and s2n =
∑in

i=1 σ
2
ni. Then s−1

n Sn
d−→ N(0, 1) provided that the following (also

known as the Lindeberg condition) holds: For any ε > 0,

1

s2n

in∑
i=1

E{X2
ni1(|Xni|>εsn)} −→ 0. (6.36)

Again, a sufficient condition for (6.36) is the following (also known as the
Liapounov condition): For some δ > 0,

1

s2+δ
n

in∑
i=1

E(|Xni|2+δ) −→ 0. (6.37)

We consider some examples.

Example 6.5. Let Y1, Y2, . . . be independent such that Yi ∼ Bernoulli(pi),

i ≥ 1. Let s2n =
∑n

i=1 var(Yi) =
∑n

i=1 pi(1 − pi). Then s−1
n

∑n
i=1(Yi − pi)

d−→
N(0, 1) provided that

∑∞
i=1 pi(1 − pi) = ∞. To see this, write Xi = Yi − pi.

Then E(|Xi|3) = p3
i (1 − pi) + (1 − pi)

3pi ≤ 2pi(1 − pi). Thus, we have

1

s3n

n∑
i=1

E(|Xi|3) ≤ 2

s3n

n∑
i=1

pi(1 − pi) =
2

sn
,

which goes to zero as n → ∞. In other words, Liapounov’s condition (6.35) is
satisfied with δ = 1. The result then follows by Theorem 6.11.

Example 6.6 (Hájek–Sidak theorem). Suppose that X1, X2, . . . are i.i.d.
with mean μ and variance σ2 ∈ (0,∞). Let cni, 1 ≤ i ≤ n, n = 1, 2, . . ., be a
triangular array of constants such that as n → ∞,

max
1≤i≤n

c2ni∑n
j=1 c

2
nj

−→ 0 (6.38)

(note that this also implies that
∑n

i=1 c
2
ni > 0 for large n). Then we have∑n

i=1 cni(Xi − μ)

σ
√∑n

i=1 c
2
ni

d−→ N(0, 1). (6.39)

To show this, let Xni = cni(Xi − μ). Then Sn =
∑n

i=1 cni(Xi − μ) and
s2n = σ2

∑n
i=1 c

2
ni. Thus, s−1

n Sn, which is the left side of (6.39), converges in
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distribution to N(0, 1) provided that the Lindeberg condition (6.36) holds.
Denote the left side of (6.38) by δ2n. Then we have

E{X2
ni1(|Xni|>εsn)} = c2niE{(X1 − μ)21(cni|X1−μ|>εsn)}

≤ c2niE{(X1 − μ)21(δn|X1−μ|>εσ)}.

Thus, the left side of (6.36) is bounded by

1

s2n

n∑
i=1

c2niE{(X1 − μ)21(δn|X1−μ|>εσ)}

=
E{(X1 − μ)21(δn|X1−μ|>εσ)}

σ2
−→ 0

as n → ∞ by the dominated convergence theorem (Theorem 2.16).
Intuitively, condition (6.38) means that as n → ∞, the contribution of any

single term in the summation

n∑
i=1

cni(Xi − μ)

σ
√∑n

j=1 c
2
ni

,

which is the left side of (6.39), is negligible. Such a condition is critical for
any CLT to hold. For example, consider the following.

Example 6.7 (A counterexample). Suppose that X1, X2, . . . are i.i.d. with
mean μ and variance σ2 ∈ (0,∞), but not normally distributed. Let cn1 = 1
and cni = 0, 2 ≤ i ≤ n. Then the left side of (6.38) is equal to 1 for any n. On
the other hand, the left side of (6.39) is equal to (X1 − μ)/σ for any n, which
is not distributed as N(0, 1).

Similar to the LLN, there exist necessary and sufficient conditions for the
CLT. We first consider sequences of independent random variables.

Theorem 6.12. Let X1, X2, . . . be a sequence of independent random
variables, at least one of which has a nondegenerate distribution. Let μi =
E(Xi), σ

2
i = var(Xi) < ∞, i ≥ 1, s2n =

∑n
i=1 σ

2
i ,

Fn(x) = P

{
1

sn

n∑
i=1

(Xi − μi) ≤ x

}
,

and Φ(x) be the cdf of N(0, 1). Then

max1≤i≤n σ2
i

s2n
−→ 0, (6.40)

sup
x

|Fn(x) − Φ(X)| −→ 0 (6.41)
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if and only if the following Lindeberg condition is satisfied: For every ε > 0,

1

s2n

n∑
i=1

E{(Xi − μi)
21(|Xi−μi|>εsn)} −→ 0. (6.42)

More generally, for triangular arrays of independent random variables, we
have the following result.

Theorem 6.13. Suppose that for each n, Xni, 1 ≤ i ≤ in, are inde-
pendent. Then Xni obeys the condition of infinite smallness [see (6.14)] and∑in

i=1Xni
d−→ N(μ, σ2) if and only if for every ε > 0 (6.15) holds and

in∑
i=1

E{Xni1(|Xni|≤ε)} −→ μ, (6.43)

in∑
i=1

var{Xni1(|Xni|≤ε)} −→ σ2. (6.44)

Notes. Theorem 6.13 does not require the existence of E(Xni) and var(Xni).
Similar to (6.41), the convergence to N(μ, σ2) is uniform, which follows from
Pólya’s theorem (see Example 1.6). The conditions (6.15), (6.43), and (6.44)
for every ε > 0 can be replaced by (6.15) for every ε > 0 and (6.43) and (6.44)
for some ε > 0. We consider some examples.

As an application of Theorem 6.13, we prove the following theorem which
gives a necessary and sufficient condition for CLT in the i.i.d. case.

Theorem 6.14. Let X1, X2, . . . be i.i.d. Then

1√
n

n∑
i=1

(Xi − μ)
d−→ N(0, σ2) (6.45)

for some μ ∈ R and σ2 ∈ [0,∞) if and only if

E(X2
1 ) < ∞. (6.46)

If (6.46) is satisfied, then (6.45) holds, with μ = E(X1) and σ2 = var(X1).

Proof. Suppose that (6.45) holds. Let Xni = (Xi − μ)/
√
n. Then we have∑n

i=1Xni
d−→ N(0, σ2). Furthermore, for any ε > 0, we have P(|Xni| > ε) =

P(|X1 − μ| > ε
√
n), which does not depend on i, and goes to zero as n → ∞

(Exercise 6.14). Therefore, the condition of infinite smallness (6.14) is satisfied.
It follows by Theorem 6.13 that (6.15), (6.43), and (6.44) hold for any ε > 0
and hence in particular for ε = 1. In particular, (6.43) implies that

√
nE{(X1−

μ)1(|X1−μ|≤√n)} → 0 (Exercise 6.14); hence, E{(X1 − μ)1(|X1−μ|≤√n)} → 0.
Furthermore, (6.44) implies that
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E{(X1 − μ)21(|X1−μ|≤√n)} − [E{(X1 − μ)1(|X1−μ|≤√n)}]2 −→ σ2;

hence, E{(X1 − μ)21(|X1−μ|≤√n)} −→ σ2 (Exercise 6.14). It follows by the

monotone covergence theorem (see §2.7.7) that E{(X1 − μ)2} = σ2 < ∞;
hence, (6.46) holds.

Conversely, suppose that (6.46) holds. Define

Xni =
1√
n

[Xi1(|Xi|≤
√

n) − E{X11(|X1|≤
√

n)}]. (6.47)

It is easy to show that

|Xni| ≤ 2 ∧
{ |Xi| + E(|X1|)√

n

}
.

Therefore, for any ε > 0, we have, for large n,

P(|Xni| > ε) ≤ P

{ |Xi| + E(|X1|)√
n

> ε

}
= P{|X1| > ε

√
n− E(|X1|)} = P(|X1| > λn),

where λn = {ε√n− E(|X1|)} ∨ 1. It follows that

n∑
i=1

P(|Xni| > ε) ≤ nP(|X1| > λn) → 0

as n → ∞ (Exercise 6.14). In other words, (6.15) holds for any ε > 0. Fur-
thermore, we have E{Xni1(|Xni|≤2)} = E(Xni) = 0; hence, (6.43) is satisfied
with ε = 2. Finally, we have

n∑
i=1

var{Xni1(|Xni|≤2)} =
n∑

i=1

var(Xni)

= E{X2
11(|X1|≤

√
n)} − [E{X11(|X1|≤

√
n)}]2

→ E(X2
1) − {E(X1)}2 = σ2

by the dominated convergence theorem (Theorem 2.16). In other words, (6.44)
holds with ε = 2. Thus, by Theorem 6.13 (and the note following the theorem),

1√
n

n∑
i=1

[Xi1(|Xi|≤
√

n) − E{X11(|X1|≤
√

n)}] =
n∑

i=1

Xni
d−→ N(0, σ2).

On the other hand, we have

E

∣∣∣∣∣ 1√
n

n∑
i=1

[Xi1(|Xi|>
√

n) − E{X11(|X1|>
√

n)}]
∣∣∣∣∣

≤ 1√
n

n∑
i=1

[E{|Xi|1(|Xi|>
√

n)} + E{|X1|1(|X1|>
√

n)}]

= 2
√
nE{|X1|1(|X1|>

√
n)}

≤ 2E{X2
11(|X1|>

√
n)} −→ 0
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as n → ∞ by the dominated convergence theorem. Result (6.45) then fol-
lows as a result of Theorem 2.15 and Slutsky’s theorem (Theorem 2.13). This
completes the proof. Q.E.D.

Theorems 6.12 and 6.13 do not apply to all the cases. We conclude this
section with an example that shows that in cases where these theorems do
not apply, a necessary and sufficient condition may still be found.

Example 6.5 (continued). Previously we showed that the condition

∞∑
i=1

pi(1 − pi) = ∞ (6.48)

is sufficient for

1

sn

n∑
i=1

(Yi − pi)
d−→ N(0, 1). (6.49)

In fact, (6.48) is also necessary. However, the result does not follow from The-
orem 6.12 or Theorem 6.13. To see this, note that if (6.48) does not hold,
then, for example, condition (6.40) fails (Exercise 6.22); therefore, the nec-
essary and sufficient condition of Theorem 6.12 does not apply to this case.
Nevertheless, it can be shown by Kolmogorov’s three series theorem and a
famous result due to Cramér (1936) that (6.49) implies (6.48). We prove this
by a contrapositive. Suppose that (6.49) holds but not (6.48). Then we have∑∞

i=1 pi(1−pi) <∞. Let Xi = Yi −pi. It is easy to show that the three series
(6.30)–(6.32) converge for c = 1 (Exercise 6.22); hence, by Theorem 6.9 the
series

∑∞
i=1 Xi converges a.s. to a random variable, say ξ. Also, (6.49) implies

that at least one of the pi’s is not zero or one. This is because, otherwise, we
have sn = 0 for all n and Xi = 0 a.s. for all i; therefore, the left side of (6.49)
is 0/0, which is not well defined (hence, cannot be convergent to a well-defined
distribution). Let a be the first index i (i ≥ 1) such that pi is not zero or one.
By the same argument, it can be shown that the series

∑∞
i=a+1Xi converges

a.s. to a random variable, say ξ1. Also, s2n → s2 =
∑∞

i=1 pi(1 − pi) ∈ (0,∞)
(Exercise 6.22). Therefore, by taking the limit on both sides of the identity

Xa

sn
+

∑n
i=a+1 Xi

sn
=

∑n
i=1 Xi

sn

for n > a (note that Xi = 0 a.s. for i < a), we have, with probability 1,

Xa

s
+
ξ1
s

=
ξ

s
∼ N(0, 1)

by Theorems 2.7 and 2.9 and (6.49). We now apply Cramér’s theorem: If X
and Y are independent such that X+Y is normally distributed, then both X
and Y must be normally distributed. Note that Xa and ξ1 are independent.
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It follows that Xa/s is normally distributed and, therefore, Xa is normally
distributed, which is, of course, false.

Note. Cramér’s theorem is a remarkable result. For example, suppose that
X1, X2, . . . are independent with mean 0, variance 1 and bounded third ab-
solute moments. Then, by Liapounov’s CLT [see (6.35)], the distribution of
n−1/2Sn is asymptotically normal as n goes to infinity, where Sn =

∑n
i=1Xi.

On the other hand, suppose that at least one of the Xi’s is not normally dis-
tributed. Then as long as n is large enough, the distribution n−1/2Sn is never
(exactly) normal no matter how large n is (why?).

6.5 The law of the iterated logarithm

In a way, the CLT states the convergence rate in LLN. Since the latter implies

that, for example, n−1
∑n

i=1(Xi−μ)
P−→ 0 in the i.i.d. case, where μ = E(X1),

one would like to know how far one could go by reducing the order of the
denominator, say from n to nγ , where γ < 1. The CLT states that, in this
regard, the best one can do is 1/2 < γ < 1, but not γ = 1/2 (so γ = 1/2 is the

cut off), because ξn = n−1/2
∑n

i=1(Xi − μ)
d−→ N(0, σ2) with σ2 = var(X1),

which implies that for any γ > 1/2,

1

nγ

n∑
i=1

(Xi − μ) =
ξn

nγ−1/2

P−→ 0

by (ii) of Theorem 2.13. On the other hand, even if ξn converges in distribution
to N(0, σ2), there is still a (small) chance that ξn can assume a large value,
because a N(0, σ2) random variable is not bounded.

Another way to describe the convergence rate in LLN is the law of the
iterated logarithm (LIL). Throughout this section, the value of log logx is
understood as 1 if x ≤ e. One of the best known results on LIL is the following
theorem due to Kolmogorov (1929).

Theorem 6.15. Let X1, X2, . . . be a sequence of independent random
variables with mean 0 and finite variance. Suppose that an =

∑n
i=1 σ

2
i → ∞,

where σ2
i = E(X2

i ). If |Xi| ≤ bi a.s., where bi is a constant such that

bn = o

(√
an

log log an

)
. (6.50)

Then, with Sn =
∑n

i=1 Xi, we have

lim sup
Sn√

2an log log an
= 1 a.s. (6.51)

By replacing Xi with −Xi we obtain “the other half” of the LIL:
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lim inf
Sn√

2an log log an

= −1 a.s. (6.52)

Combining (6.51) and (6.52), we get

lim sup
|Sn|√

2an log log an

= 1 a.s. (6.53)

It follows that the a.s. convergence rate of n−1Sn is

O

(√
an log log an

n

)
. (6.54)

We consider some examples.

Example 6.8. Suppose that the Xi’s are i.i.d. with E(X1) = 0 and E(X2
1 ) =

1 and bounded (although the latter assumption is unnecessary; see Theorem
6.17 in the sequel). Then we have an = n; hence, (6.54) becomes

O

(√
log logn

n

)
. (6.55)

Although (6.55) appears to be slower than the convergence rate implied by
the CLT, which is O(1/

√
n), the meanings of these orders are different. The

CLT convergence rate is in the sense of convergence in probability; that is,
n−1Sn = OP(1/

√
n) (see Section 3.4), whereas the LIL convergence rate is in

the sense of almost sure convergence, which means that

P

(
lim sup

√
n

log logn
|n−1Sn| =

√
2

)
= 1.

Example 6.5 (continued). Note that in this case we have |Xi| ≤ bi = 1;
hence, (6.50) is satisfied with an = s2n provided that

∑∞
i=1 pi(1 − pi) = ∞.

It follows that (6.51)–(6.53) hold with an =
∑n

i=1 pi(1 − pi). For example,
suppose that pi = i−1. Then an = logn+O(1), and (6.51) implies that∑n

i=1 Yi − logn√
2 logn log log logn

= 1 a.s.

(see Exercise 6.19), and (6.54) becomes

O

(√
logn log log logn

n

)
.

It should be pointed out that in this case, the convergence rate of n−1Sn

implied by CLT is O(
√

log n/n), which is much faster than O(1/
√
n), as in

the previous example (see Exercise 6.19).
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A key assumption in Theorem 6.15 is that the random variables are
bounded. Although this may seem restrictive, as most of the random vari-
ables that are commonly in use (such as Poisson or normal) are not bounded,
Kolmogorov’s theorem was an important step toward LIL for unbounded ran-
dom variables. The connection (between LIL for bounded random variables
and that for unbounded ones) is made by a technique called truncation. Sup-
pose that Xi, i ≥ 1, is a sequence of independent random variables with mean
0 and finite variance. Then one can write

Xi = [Xi1(|Xi|≤bi) − E{Xi1(|Xi|≤bi)}] + [Xi1(|Xi|>bi) − E{Xi1(|Xi|>bi)}]
= Yi + Zi

[because E(Xi) = 0], where bi is a constant satisfying (6.50). Now, Kol-
mogorov’s LIL can be applied to Yi, since the latter is bounded by the “right”
constant; hence, all one has to do is to show that∑n

i=1 Zi√
an log log an

a.s.−→ 0

as n → ∞, so that the LIL (6.51) will not be affected by the truncation. This
idea leads to the proof of the following result.

Theorem 6.16. Let X1, X2, . . . be independent with mean 0 and finite
variances. Under the notation of Theorem 6.15, the sequence Xi, i ≥ 1 obeys
the LIL; that is, (6.51) holds, provided that an → ∞,

1

an

n∑
i=i0

E{X2
i 1(|Xi|>εbi)} −→ 0, (6.56)

∞∑
i=i0

E{X2
i 1(|Xi|>εbi)}

ai log log ai
< ∞ (6.57)

for every ε > 0, where bi = (ai/ log log ai)
1/2 and i0 is any index i such that

log log ai > 0.

We consider an application of Theorem 6.16.

Example 6.9. Let Xi, i ≥ 1, be independent random variables such that
E(Xi) = 0, E(X2

i ) ≥ a and

E{X2
i log |Xi|(log log |Xi|)δ} ≤ b (6.58)

for some constants a, b, δ > 0. Then Xi, i ≥ 1 obeys the LIL. To show this,
first note that the assumptions here imply that there is a constant c > 0 such
that a ≤ σ2

i ≤ c, i ≥ 1 (Exercise 6.23); hence, an ∝ n [definition above (3.6)].
Next, it can be shown that for any ε > 0, there is iε ≥ i0 depending only on
ε such that for i ≥ iε, |Xi| > εbi implies
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log |Xi|(log log |Xi|)δ >
1

4
log ai(log log ai)

δ. (6.59)

It follows that for i ≥ iε, we have

E{X2
i 1(|Xi|>εbi)} ≤ E

{
X2

i

4 log |Xi|(log log |Xi|)δ

log ai(log log ai)δ

}
≤ 4b

log ai(log log ai)δ

by (6.58). Therefore, we have, for n ≥ iε,

1

an

n∑
i=i0

E{X2
i 1(|Xi|>εbi)} ≤ (iε − i0)c

an

+
4b

an

n∑
i=iε

1

log ai(log log ai)δ
, (6.60)

which goes to zero as n → ∞ (Exercise 6.23), and

∞∑
i=i0

E{X2
i 1(|Xi|>εbi)}

ai log log ai
≤ c

iε−1∑
i=i0

1

ai log log ai

+4b
∞∑

i=iε

1

ai log ai(log log ai)1+δ

< ∞ (6.61)

(Exercise 6.23). The result then follows by Theorem 6.16.

The moment condition (6.58) is not minimum, but close to the minimum
condition that would be required for LIL. This is because in the i.i.d. case,
a finite second moment is both necessary and sufficient for the LIL, as the
following theorem states.

Theorem 6.17. Let X1, X2, . . . be i.i.d. Then

lim sup

∑n
i=1(Xi − μ)√
2n log logn

= σ a.s. (6.62)

for some μ ∈ R and σ2 ∈ [0,∞) if and only if (6.46) holds. If the latter
condition holds, then (6.62) holds, with μ = E(X1) and σ2 = var(X1).

The sufficiency part of Theorem 6.17 was first proved by Hartman and
Wintner (1941). Therefore, the theorem is often called the Hartman–Wintner
LIL. The necessity part of the theorem was due to Strassen (1966).

With Theorem 6.17 we have completed a series of classical results regarding
the sum of i.i.d. random variables. We summarize the results as follows.
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Summary. Let X1, X2, . . . be i.i.d. Then, the following hold:

(i) (WLLN) There exists μ ∈ R such that X̄
P−→ μ if and only if nP(|X1| >

n) → 0 and E{X11(|X1|≤n)} → μ (Theorem 6.1 and Exercise 6.24).

(ii) (SLLN) There exists μ ∈ R such that X̄
a.s.−→ μ if and only if E(|X1|) <

∞; when the latter condition holds, we have μ = E(X1) (Theorem 6.6).
(iii) (CLT) There exist μ ∈ R and σ2 ∈ [0,∞) such that n−1

∑n
i=1(Xi −

μ)
d−→ N(0, σ2) if and only if E(X2

1 ) < ∞; when the latter condition holds,
we have μ = E(X1) and σ2 = var(X1) (Theorem 6.14).

(iv) (LIL) There exist μ ∈ R and σ2 ∈ [0,∞) such that lim sup
∑n

i=1(Xi −
μ)/

√
2n log logn = σ a.s. if and only if E(X2

1 ) < ∞; when the latter condition
holds, we have μ = E(X1) and σ2 = var(X1) (Theorem 6.17).

Note that the condition in (i) for WLLN is weaker than E(|X1|) < ∞
(Exercise 6.24).

6.6 Further results

6.6.1 Invariance principles in CLT and LIL

Donsker’s invariance principle in CLT (Donsker 1951, 1952) is a functional
central limit theorem. Roughly speaking, a functional is a function of a func-
tion. Here, we consider the space of all continuous functions on [0, 1], denoted
by C. We can define a distance between two points, x and y in C (note that
here x and y denote two continuous functions on [0, 1]) by

ρ(x, y) = sup
t∈[0,1]

|x(t) − y(t)|. (6.63)

The space C, equipped with the distance ρ is a metric space, which means
that ρ satisfies the following basic requirements, held for all x, y, z ∈ C (to
qualify as a distance, or metric):

1. (nonnegativity) ρ(x, y) ≥ 0;
2. (symmetry) ρ(x, y) = ρ(y, x);
3. (triangle inequality) ρ(x, z) ≤ ρ(x, y) + ρ(y, z);
4. (identity of points) ρ(x, y) = 0 if and only if x = y.

It is easy to show that the distance defined by (6.63) satisfies requirements
1–4 (Exercise 6.31).

As in Section 2.4, we can talk about weak convergence of probability mea-
sures on the measurable space (C,B), where B is the class of Borel sets in
C, which is a σ-field (see Appendix A.2). A sequence of probability measures

Pn converges weakly to a probability measure P , denoted by Pn
w−→ P , if

Pn(B) → P (B) as n → ∞ for any P -continuity set B. The latter means that
P (∂B) = 0, where ∂B denotes the boundary of B (i.e., the set of points that
are limits of sequences of points in B as well as limits of sequences of points
outside B). Equivalently, Pn

w−→ P if
∫

C f dPn → ∫
C f dP for all bounded,
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uniformly continous function f on C. The space C is, obviously, more com-
plicated than the real line R or any finite-dimensional Euclidean space Rk

(k > 1). However, there is a connection between the weak convergence in C
and that of all finite-dimensional distributions. Let t1, . . . , tk be any set of
distinct points in [0, 1]. Let P be a probability measure on (C,B). Then the
induced probability measure

Pπ−1
t1,...,tk

(A) = P{[x(t1), . . . , x(tk)] ∈ A}
for any Borel set A in Rk is called a finite-dimensional distribution. Here,
πt1,...,tk

denotes the projection that carries to the point x ∈ C to the point
[x(t1), . . . , x(tk)] ∈ Rk. It turns out that weak convergence in C is a little
more than weak convergence of all finite-dimensional distributions; that is,
Pn

w−→ P if and only if Pnπ
−1
t1,...,tk

w−→ Pπ−1
t1,...,tk

for any k ≥ 1 and any
distinct points t1, . . . , tk ∈ [0, 1] plus that the sequence Pn, n ≥ 1 is tight.
A family of P of probability measures on (C,B) is tight if for every ε > 0,
there is a compact subset of B of C such that P (B) > 1 − ε for all P ∈ P . A
well-known result associated with the latter concept is a probability version of
the Arzelá–Ascoli theorem. The sequence Pn, n ≥ 1, is tight in C if and only
if the following two conditions hold: (i) For any η > 0, there exists M > 0
such that Pn(|x(0)| > M) ≤ η, n ≥ 1; and (ii) for any ε, η > 0, there exist
0 < δ < 1 and N ≥ 1 such that for all n ≥ N ,

Pn

{
sup

|s−t|<δ

|x(s) − x(t)| ≥ ε

}
≤ η.

The concept of random variables can now be extended to C-valued random
variables (i.e., random variables whose values are continuous functions on
[0, 1]). Such a random variable is often called a stochastic process, denoted by
ξ = (ξt, 0 ≤ t ≤ 1), although continuity is not required for the definition. A
sequence of C-valued random variables ξn, n ≥ 1, converges in distribution to

a C-valued random variable ξ, denoted by ξn
d−→ ξ, if Pξ−1

n
w−→ Pξ−1, where

Pξ−1
n is the induced probability measures defined by Pξ−1

n (B) = P(ξn ∈ B)
for B ∈ B, and Pξ−1 is defined similarly.

One particular stochastic process is called Wiener process or Brownian
motion. A probability measure W on (C,B) is called a Wiener measure if (i)
for each t ∈ [0, 1], the random variable xt ∼ N(0, t) under W–that is,

W (xt ≤ λ) =
1√
2πt

∫ λ

−∞
e−u2/2t du

—and (ii) for any 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ 1, the random variables

xt1 − xt0 , xt2 − xt1 , . . . , xtk
− xtk−1

are independent under W . Here, the random variable x0 is understood as
equal to zero with probability 1 under W [i.e., W (x0 = 0) = 1]. A C-valued
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random variable, denoted by W = (Wt, 0 ≤ t ≤ 1), is called a Wiener process
if it has the Wiener measure as its distribution [i.e., P(W ∈ B) = W (B) for
any B ∈ B]. Let X1, X2, . . . be i. i.d. random variables with E(Xi) = 0 and
E(X2

i ) = 1. Let Sn =
∑n

i=1 Xi denote the partial sum with S0 = 0. Define a
sequence of C-valued random variables ξn = (ξn,t, 0 ≤ t ≤ 1) by

ξn,t =
1√
n
{S[nt] + (nt− [nt])X[nt]+1}, (6.64)

where [x] denotes the integer part of x (i.e., the largest integer less than or
equal to x). The invariance principle in CLT states the following.

Theorem 6.18. Suppose that the Xi’s are i.i.d. with mean 0 and variance

1. Then ξn
d−→W as n → ∞, where ξn is defined by (6.64).

By Theorem 6.18 and the continuous mapping theorem (see Theorem 2.12;
note that here we are dealing with C-valued random variables, but the same
continuous mapping theorem applies), it follows that for any continuous map-
ping g from C to Rk (k ≥ 1), we have

g(ξn)
d−→ g(W ). (6.65)

The name invariance principle came from the fact that the distribution of the
right side of (6.65) does not depend on the specification of the Xi’s other than
the first and second moments. On the other hand, it may take some effort to
obtain the distribution of g(W ). However, because of the invariance principle,
one may consider a special, simple sequence of i.i.d. random variables so that
one can calculate the limiting distribution of g(ξn) for the special sequence.
It then follows that the same limiting distribution applies to any sequence of
i.i.d. random variables having the same mean and variance. We illustrate this
technique with an example.

Example 6.10. Suppose that one wishes to obtain the limiting distribu-
tion of n−1/2 max1≤i≤n Si, where Si is defined above. It can be shown that
g(x) = sup0≤t≤1 x(t) is a continous mapping from C to R (Exercise 6.32).

Furthermore, we have g(ξn) = n−1/2 max1≤i≤n Si and g(W ) = sup0≤t≤1Wt.

Thus, by (6.65), the limiting distribution of n−1/2 max1≤i≤n Si is the same
as the distribution of sup0≤t≤1Wt. To calculate the latter, we consider one
special sequence of i.i.d. random variables Xi, known as random walk, such
that P(Xi = 1) = P(Xi = −1) = 1/2. For the random walk, it can be shown
(e.g., Billingsley 1968, pp. 71–72) that, for λ ≥ 0,

P

(
1√
n

max
1≤i≤n

Si ≤ λ

)
−→

√
2

π

∫ λ

0

e−u2/2du. (6.66)

Therefore, P(sup0≤t≤1Wt ≤ λ) = the right side of (6.66) for any λ ≥ 0 and
P(sup0≤t≤1Wt ≤ λ) = 0 for λ < 0 (Exercise 6.32).
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We now consider an invariance principle for LIL. Before we introduce the
principle, let us recall the Hartman–Wintner LIL introduced in the previ-
ous section (Theorem 6.17), which states that if X1, X2, . . . are i.i.d. random
variables with E(X1) = 0 and E(X2

1 ) = 1, then (6.51) and (6.52) hold, with
an = n. In fact, the Hartman–Wintner law implies a seemingly stronger result.
Let L denote the set of limit points of the sequence

ηn,1 =
Sn√

2n log logn
, (6.67)

where Sn =
∑n

i=1 Xi and log logn is understood as 1 if n < 3. Then, under
the conditions of the Hartman–Wintner LIL, we have with probability 1 that
L = [−1, 1]. To see this, note that if xn, n ≥ 1, is a sequence of real numbers
such that lim inf xn = −1, lim supxn = 1, and limn→(xn+1 − xn) = 0, then
the set of limit points of {xn} must coincide with [−1, 1] (Exercise 6.33).
Intuitively, since the sequence has to visit −1 and 1 infinitely many times with
a vanishing move each step, in between it has to visit every neighborhood of
every point between −1 and 1, infinitely many times. Therefore, it suffices to
show that Δn = ηn+1,1 − ηn,1

a.s.−→ 0. Write

Δn =
Xn+1√

2(n+ 1) log log(n+ 1)

+

{√
n log logn

(n+ 1) log log(n+ 1)
− 1

}
Sn√

2n log logn

= Δ1,n+1 +Δ2,n.

To show that Δ1,n
a.s.−→ 0, we use the Borel–Cantelli lemma (Lemma 2.5).

Note that there is an alternative statement of this lemma in that lim supAn

is the event that An happens for infinitely many n, denoted by An i.o. (here i.o.
stands for “infinitely often”). Thus, (i) if

∑∞
n=1 P(An) <∞, then P(An i.o.) =

0 and (ii) if A1, A2, . . . are pairwise independent and
∑∞

n=1 P(An) = ∞, then
P(An i.o.) = 1. Here, we only need part (i), and we have

∞∑
n=1

P

(
|Δ1,n| > 1√

2 log logn

)
=

∞∑
n=1

P(|Xn| >
√
n)

=

∞∑
n=1

P(X2
1 > n)

=

∞∑
n=1

E{1(X2
1>n)}

= E

{ ∞∑
n=1

1(n<X2
1 )

}
≤ E(X2

1 ) < ∞.
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It follows that, with probability 1, |Δ1,n| ≤ (2 log logn)−1/2 for large n; hence,

Δ1,n
a.s.−→ 0. That Δ2,n

a.s.−→ 0 follows from the Hartman–Wintner LIL and the
fact that

n log logn

(n+ 1) log log(n+ 1)
−→ 1 as n → ∞.

Strassen (1964) obtained a functional form of the Hartman–Wintner LIL,
also known as the invariance principle in LIL, or almost sure invariance prin-
ciple. Again, let X1, X2, . . . be a sequence of i.i.d. random variables with
E(X1) = 0 and E(X2

1 ) = 1. We extend the definition of ηn,1 in (6.67) to
a member ηn = (ηn,t, 0 ≤ t ≤ 1) in C by

ηn,t =
ξn,t√

2 log logn
(6.68)

for 0 ≤ t ≤ 1, where ξn,t is defined by (6.64) [thus, (6.67) is, indeed, ηn,t

with t = 1]. Consider a subset K of C consisting of all absolutely continuous
functions x on [0, 1] such that x(0) = 0 and∫ 1

0

{x′(t)}2 dt ≤ 1. (6.69)

Strassen’s theorem states the following.

Theorem 6.19. Under the assumptions of Theorem 6.18, we have with
probability 1 that the set of limit points of ηn, n ≥ 1 with respect to the
metric ρ defined by (6.63) coincides with K.

Here, again, the invariance principle refers to the fact that the set of limit
points K does not depend on the specification of the sequence Xi other than
the first two moments. As an application of Theorem 6.19, we derive the
“upper half” of Hartman and Wintner’s LIL.

Example 6.11. Let the Xi’s be i.i.d. with mean E(X1) = 0 and E(X2
1 ) = 1.

Consider the mapping (or functional) from C to R defined by g(x) = x(1),
x ∈ C. It is easy to show that g is continuous. It follows by Theorem 6.19
that, with probability 1, the set of limit points of

g(ηn) =
Sn√

2n log logn

is g(K) = {g(x) : x ∈ K} (Exercise 6.34). Therefore, with probability 1, we
have lim sup g(ηn) = sup g(K), the supremum of g(K). It remains to show
that sup g(K) = 1. For any x ∈ K, since x(0) = 0, by the Cauchy–Schwarz
inequality [see (5.60)], it can be shown that x(1) ≤ 1 (Exercise 6.34). It follows
that sup g(K) ≤ 1. On the other hand, the function x(t) = t belongs to K
and it satisfies g(x) = x(1) = 1. Thus, we have sup g(K) = 1.
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6.6.2 Large deviations

The words “large deviations” in the classical framework usually refer to prob-
abilities of the deviation of the sample mean of independent random variables
from its expected value. Let X1, X2, . . . be a sequence of independent random
variables and Sn be the partial sum

∑n
i=1Xi. There are two types of results.

The first type is associated with the WLLN, which states that, under suitable
conditions, the probability P{n−1|Sn − E(Sn)| > ε} goes to zero as n → ∞
for any ε > 0. A further question is how fast does the probability goes to zero.
In other words, we are concerned about the probabilistic convergence rate in
WLLN. Such a problem has been encountered (see, for example, Section 5.5),
but here we would like to find out a more precise description of the conver-
gence rate. The second type of results is associated with the CLT. Consider,
for example, the i.i.d. case so that E(X1) = 0 and E(X2

1 ) = σ2 ∈ (0,∞).
The CLT states that the probability Fn(x) = P(Sn/σ

√
n ≤ x) → Φ(x) for

every x ∈ R, where Φ(x) is the cdf of N(0, 1). Clearly, for any fixed x, Fn(x)
does not go to 1 or, equivalently, 1 − Fn(x) does not go to zero, but what
happens when x → ∞ as n → ∞? In other words, we are concerned with the
convergence rate (to 1) of the probability Fn(xn), where xn is a sequence of
nonnegative numbers such that xn → ∞ as n → ∞. In this subsection we will
focus mostly on the i.i.d. case.

1. Probability of large deviation in WLLN. This type of large deviation
results have been developed following the landmark paper of Varadhan (1966),
although the basic idea may be tracked back to Laplace and Cramér. Later,
in a series of papers beginning in 1975, Donsker and Varadhan identified
three levels of large deviations. Let X1, X2, . . . be a sequence of i.i.d. random
variables such that E(X1) = μ. The level-1 large deviation is regarding the
distribution of n−1Sn, which we describe below. The level-2 and level-3 large
deviations are regarding the empirical distribution and process generated by
the i.i.d. sequence, which we will discuss in the next chapter. Let F be the
distribution of X1. Let cF be the logarithm of the mgf of X1; that is,

cF (t) = log{E(etX1)} = log

{∫
etxF (dx)

}
, (6.70)

which is assumed to exist for all t ∈ R. The funtion cF is known as the
cumulant generating function, and it plays an important role in the following
theorem of large deviations.

Theorem 6.20. Suppose that cF (t) is finite for all t ∈ R. Then

lim sup
1

n
log

{
P

(
Sn

n
∈ C

)}
≤ − inf

x∈C
IF (x) (6.71)

for every closed set C ⊂ R, and

lim inf
1

n
log

{
P

(
Sn

n
∈ O

)}
≥ − inf

x∈O
IF (x) (6.72)
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for every open set O ⊂ R, where

IF (x) = sup
t∈R

{tx− cF (t)}. (6.73)

The function IF defined by (6.73) is called entropy. To obtain a condition
that guarantees equality of the right sides of (6.71) and (6.72), we introduce
the following definition. Let S be a subset of an Euclidean space. x is an
interior point of S if there is ε > 0 such that Sε(x) = {y : |y − x| < ε} ⊂ S;
x is a point of closure of S if the distance d(x, S) = infs∈S |x − s| = 0. The
interior of S, denoted by So, is the set of all interior points of S; the closure of
S, denoted by S̄, is the set of all points of closure of S. An important fact about
So is that it is the largest open set contained in S. Similarly, S̄ is the smallest
closed set containing S. We call a Borel set A ⊂ R an IF -continuity set if
infx∈Ā IF (x) = infx∈Ao IF (x). From Theorem 6.20, it immediately follows
that if A is an IF -continuity set, then

lim
n→∞

1

n
log

{
P

(
Sn

n
∈ A

)}
= − inf

x∈A
IF (x). (6.74)

We consider some examples.

Example 6.12. Suppose that X1, X2, . . . are independent Bernoulli(1/2). It
is easy to show (Exercise 6.35) that, in this case, cF (t) = log(1 + et) − log 2.
Furthermore, for any x ∈ R, the function dx(t) = xt−cF (t) is strictly concave.
For x ∈ (0, 1), dx(t) attains its unique maximum at t = log{x/(1 − x)} with
IF (x) = log 2+x logx+(1−x) log(1−x); for x = 0 or 1, the supremum of dx(t)
is not attainable, but IF (0) = IF (1) = log 2; for x /∈ [0, 1], we have IF (x) = ∞.
Now, consider the set A = (−∞, 1/2−ε)∪(1/2+ε,∞) ⊂ R, where ε > 0. Since
A is open, we have Ao = A. Furthermore, Ā = (−∞, 1/2 − ε] ∪ [1/2 + ε,∞].
If ε < 1/2, then 1/2 − ε > 0 and 1/2 + ε < 1; therefore, infx∈Ao IF (x) =
infx∈Ā IF (x) = IF (1/2 − ε) = IF (1/2 + ε) (Exercise 6.35). Hence A is an
IF -continuity set. Therefore, by (6.74), we have

lim
n→∞

1

n
log

{
P

(∣∣∣∣Sn

n
− 1

2

∣∣∣∣ > ε

)}
= − inf

x∈A
IF (x)

= −
{

log 2 +

(
1

2
− ε

)
log

(
1

2
− ε

)
+

(
1

2
+ ε

)
log

(
1

2
+ ε

)}
< 0.

On the other hand, if ε > 1/2, then 1/2 − ε < 0 and 1/2 + ε > 1; hence,
infx∈Ao IF (x) = infx∈Ā IF (x) = ∞. Hence A is, again, an IF -continuity set.
Therefore, by (6.74), we have
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lim
n→∞

1

n
log

{
P

(∣∣∣∣Sn

n
− 1

2

∣∣∣∣ > ε

)}
= − inf

x∈A
IF (x)

= −∞. (6.75)

Finally, if ε = 1/2, then infx∈Ao IF (x) = ∞, infx∈Ā IF (x) = log 2; hence, A is
not an IF -continuity set. However, since |Sn/n − 1/2| is always bounded by
1/2, we have P(|Sn/n− 1/2| > ε) = 0; hence, (6.75) continues to hold.

Example 6.13. Now, consider the case of normal distribution; that is,
X1, X2, . . . are independent and distributed as N(μ, σ2), where μ ∈ R and
σ2 > 0. In this case, we have cF (t) = μt + σ2t2/2, t ∈ R. Therefore, it is
straightforward to show that IF (x) = (x − μ)2/2σ2. Now, consider the set
A = (−∞, μ− ε) ∪ (μ+ ε,∞), where ε > 0. Since IF (x) is a continuous func-
tion for all x, it is easy to show that A is an IF -continuity set for any ε > 0.
It then follows by (6.74) that

lim
n→∞

1

n
log

{
P

(∣∣∣∣Sn

n
− 1

2

∣∣∣∣ > ε

)}
= − inf

x∈A
IF (x)

= − ε2

2σ2
.

An important application of the theory of large deviations is to obtain the
convergence rate in WLLN. For example, in Example 6.13 one can write

1

n
log

{
P

(∣∣∣∣Sn

n
− 1

2

∣∣∣∣ > ε

)}
= − ε2

2σ2
+ o(1).

It follows that

P

(∣∣∣∣Sn

n
− 1

2

∣∣∣∣ > ε

)
= exp

[{
− ε2

2σ2
+ o(1)

}
n

]
.

We will use such expressions in subsequent development.
2. Probability of large deviation in CLT. First assume that X1, X2, . . . is a

sequence of i.i.d. random variables such that the moment generating function
E(etX1) < ∞ for |t| < δ, where δ is a positive constant. Such a condition is
known as Cramér’s condition. Without loss of generality, we let μ = E(X1) = 0
and σ2 = var(X1) > 0. Again, write Sn =

∑n
i=1 Xi. We are concerned with

the convergence of the probability Fn(x) = P(Sn/σ
√
n ≤ x) for large x. Recall

that Φ(x) denotes the cdf of N(0, 1). The cumulants of X1 ∼ F are defined
as the derivatives of the cumulant generating function cF (t) at t = 0; that is,

the kth cumulant of X1 is c
(k)
F (0), k = 1, 2, . . ..

Theorem 6.21. Suppose that Cramér’s condition is satisfied. Then for
any x ≥ 0 such that x = o(

√
n), we have
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1 − Fn(x)

1 − Φ(x)
= exp

{
x3

√
n
λ

(
x√
n

)}{
1 +O

(
x+ 1√

n

)}
, (6.76)

Fn(−x)
Φ(−x) = exp

{
− x3

√
n
λ

(
− x√

n

)}{
1 +O

(
x+ 1√

n

)}
, (6.77)

where λ(t) =
∑∞

k=0 akt
k is a power series with coefficients depending on the

cumulants of X1, which converges for sufficiently small |t|.

Theorem 6.21 can be extended to sequence of independent random vari-
ables not necessarily having the same distribution. Let X1, X2, . . . be inde-
pendent with mean 0. Let mi(z) = log{E(ezXi)}, where z denotes a complex
number. In other words, mi(·) is the complex cumulant generating function of
Xi. Here, log denotes the principal value of the logarithm so that mi(0) = 0.
We assume that there exists a circle, centered at the point z = 0, within which
mi, i = 1, 2, . . ., are analytic. Then, within this circle, mi(z) can be expanded
as a convergent power series

mi(z) =
∞∑

k=1

cik
k!
zk,

where cik is the cumulant of order k of Xi. Note that ci1 = E(Xi) = 0 and
ci2 = E(X2

i ) = σ2
i . Again, let Sn =

∑n
i=1 Xi, and also s2n =

∑n
i=1 σ

2
i and

Fn(x) = P(Sn/sn ≤ x). A power series
∑∞

i=1 aiz
i is said to be majorized by

another power series
∑∞

i=1 biz
i if |ai| ≤ bi for all i. The following theorem is

an extension of Theorem 6.21.

Theorem 6.22. Suppose that there is δ > 0 and constants c1, c2, . . . such

that |mi(z)| ≤ ci, |z| < δ for i = 1, 2, . . ., lim supn−1
∑n

i=1 c
3/2
i < ∞, and

lim inf s2n/n > 0. Then for any x ≥ 0 such that x = o(
√
n), (6.76) and (6.77)

hold with the latest definition of Fn and λ(·) replaced by λn(·), where λn(t) =∑∞
k=1 ankt

k is a power series, which, for sufficiently large n, is majorized by a
power series whose coefficients do not depend on n and is convergent in some
circle, so that λn(t) converges uniformly in n for sufficiently small |t|.

The series λ(t) in Theorem 6.21 is called the Cramér series, and the series
λn(t) in Theorem 6.22 is called the generalized Cramér series. For example,
the coefficients ank is expressed in terms of the cumulants of X1, . . . , Xn of
orders up to k + 3 for every k. In particular, letting γnk = n−1

∑n
i=1 cik ,

an0 =
γn3

6γ
3/2
n2

,

an1 =
γn2γn4 − 3γ2

n3

24γ3
n2

,

an2 =
γ2

n2γn5 − 10γn2γn3γn4 + 15γ3
n3

120γ
9/2
n2

.
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Some uesful consequences of Theorem 6.22 are the following.

Corollary 6.1. Under the conditions of Theorem 6.22, if x ≥ 0 and x =
O(n1/6), then

1 − Fn(x) = {1 − Φ(x)} exp

(
nγn3

6s3n
x3

)
+O

(
e−x2/2

√
n

)
,

Fn(−x) = Φ(−x) exp

(
−nγn3

6s3n
x3

)
+O

(
e−x2/2

√
n

)
.

One can see some similarity of the above result with the Edgeworth ex-
pansion (4.27). However, here the focus is large deviation (i.e., when x is large
up to a certain order of n). The result implies the following.

Corollary 6.2. Under the conditions of Theorem 6.22, if ci3 = 0, i =
1, 2, . . . and |x| = O(n1/6), then

Fn(x) − Φ(x) = O

(
e−x2/2

√
n

)
.

If x is not restricted to O(n1/6), we have the following results.

Corollary 6.3. Suppose that the conditions of Theorem 6.22 are satisfied.
(i) If ci3 = 0, i = 1, 2, . . ., then for x ≥ 0 and x = o(n1/4), we have

1 − Fn(x)

1 − Φ(x)
−→ 1,

Fn(−x)
Φ(−x) −→ 1

as n → ∞.
(ii) If x→ ∞ such that x = o(

√
n), then

Fn(x+ a/x) − Fn(x)

1 − Fn(x)
−→ 1 − e−a (6.78)

as n → ∞ for every a > 0.

We conclude this section by revisiting two previous examples.

Example 6.13 (continued). Consider the case μ = 0 and σ = 1. Then we
have Fn(x) = Φ(x), the cdf of N(0, 1). It follows, by L’Hospital’s rule, that
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lim
x→∞

Fn(x+ a/x) − Fn(x)

1 − Fn(x)
= lim

x→∞
Φ(x + a/x) − Φ(x)

1 − Φ(x)

= lim
x→∞

φ(x) − (1 − a/x2)φ(x + a/x)

φ(x)

= 1 − lim
x→∞

(
1 − a

x2

) φ(x+ a/x)

φ(x)

= 1 − lim
x→∞

(
1 − a

x2

)
exp

(
−a− a2

2x2

)
= 1 − e−a,

where φ(x) = Φ′(x) = e−x2/2/
√

2π. Note that in this case the limit is derived
without using Corollary 6.3, and the result holds without any restriction on
how fast x → ∞. Of course, this is a very special in which Fn does not
depend n. In fact, if X1, X2, . . . are i.i.d. with mean 0 and variance 1, the only
possibility that Fn does not depend on n is that Fn = Φ (why?).

The next example shows somewhat the contrary.

Example 6.12 (continued). Let X̃i = Xi − 1/2. Then we have E(X̃i) = 0
and E(X̃i)

2 = 1/4; thus, s̃2n =
∑n

i=1 E(X̃2
i ) = n/4. Let S̃n =

∑n
i=1 X̃i. Then

Fn(x) = P(S̃n/s̃n ≤ x) = P{S̃n ≤ (
√
n/2)x} = P(

∑n
i=1 Xi ≤ n/2+(

√
n/2)x}.

Now, consider x = (n−1)/
√
n [which is O(

√
n) instead of o(

√
n)] and a = 1/2.

Then we have Fn(x) = P(
∑n

i=1Xi ≤ n−1/2) and Fn(x+a/x) = P{∑n
i=1 Xi ≤

n − (n − 2)/4(n − 1)}. If n > 2, then 0 < (n − 2)/4(n − 1) < 1/4; hence,
Fn(x) = Fn(x + a/x) = P(

∑n
i=1 Xi ≤ n − 1) < 1 (because

∑n
i=1 Xi is an

integer). It follows that the left side of (6.78) is identical to zero for any
n > 2, and therefore cannot converge to the right side, which is 1− e−0.5 > 0.
This example shows that the requirement x = o(

√
n) cannot be dropped.

6.7 Case study: The least squares estimators

The least squares (LS) method was first introduced by Carl Friedrich Gauss,
one of the greatest mathematicians of all time, in 1795, when he was just
18 years old. In 1801, Gauss used his LS method to accurately compute the
orbit of the then newly discovered asteroid Ceres. The latter was discovered
by Italian astronomer Giuseppe Piazzi, who was able to track its path for 40
days before it got lost in the glare of the sun. Gauss’s LS prediction, which
was quite different compared to all of the previous solutions that had been
proposed, successfully allowed Hungarian astronomer Franz Xaver von Zach
to relocate Ceres after it reemerged from behind the sun and therefore confirm
Piazzi’s assumption that his most famous discovery was, indeed, “better than
a comet” (e.g., Federà Serio et al. 2002, p. 19).
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The typical situation that the LS method applies is called regression analy-
sis, which has been encountered several times so far in this book (e.g., Example
5.8). Here, we assume that the observation Yi is associated with a vector of
known covariates xi through the following equation:

Yi = x′iβ + εi, i = 1, . . . , n, (6.79)

where β is a vector of unknown regression coefficients and εi represents an
error. It is assumed that the errors are i.i.d. with mean 0 and constant variance
σ2 > 0. Let Y = (Yi)1≤i≤n be the vector of observations,X = (x′i)1≤i≤n be the
matrix of covariates, and ε be the vector of errors. Then the linear regression
(6.79) can be expressed as

Y = Xβ + ε. (6.80)

The LS method finds the regression coefficients β that minimize |Y −Xβ|2 =∑n
i=1(Yi − x′iβ)2. For simplicity, assume that X is of full rank p. Then the

solution, which is called the LS estimator (LSE) of β, can be expressed as

β̂ = (X ′X)−1X ′Y. (6.81)

The LSE has several nice properties. For example, the Gauss–Markov theorem
states that β̂ is the best linear unbiased estimator (BLUE) of β; under the

normality assumption, β̂ is the same as the MLE of β; and β̂ is consistent
and asymptotically normal. The latter are the main subjects of the current
section, among other large sample properties of the LSE.

First, consider consistency of LSE. Let β = (βj)1≤j≤p. Then we have the
following expression (Exercise 6.36):

β̂j − βj =
n∑

i=1

δ′j(X
′X)−1xiεi, 1 ≤ j ≤ p, (6.82)

where δj is the p-dimensional vector whose jth component is one and other
components are zero. Fix 1 ≤ j ≤ p. Let Xni = δ′j(X

′X)−1xiεi. Then for
each n, Xni, 1 ≤ i ≤ n, are independent. According to Theorem 6.4, to show

β̂j
P−→ βj or, equivalently,

∑n
i=1Xni

P−→ 0, it suffices to verify conditions
(6.15)–(6.17). First look at (6.15). By Chebychev’s inequality, we have

n∑
i=1

P(|Xni| > ε) ≤ 1

ε2

n∑
i=1

E(X2
ni)

=
σ2

ε2

n∑
i=1

δ′j(X
′X)−1xix

′
i(X

′X)−1δj

=
σ2

ε2
δ′j(X

′X)−1

(
n∑

i=1

xix
′
i

)
(X ′X)−1δj

=
σ2

ε2
δ′j(X

′X)−1δj
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because
∑n

i=1 xix
′
i = X ′X . Thus, (6.15) holds provided that

δ′j(X
′X)−1δj −→ 0. (6.83)

In fact, the above arguments show that (6.83) implies
∑n

i=1 E(X2
ni) → 0,

which also implies (6.16) and (6.17) (Exercise 6.36). It is now clear that a
sufficient condition for consistency of the LSE is (6.83) for every 1 ≤ j ≤ p,
which is equivalent to

tr
{
(X ′X)−1

} −→ 0 (6.84)

(Exercise 6.36). We consider a simple example.

Example 6.14. The case p = 1 is called simple linear regression. In this
case, (6.79) can be expressed as Yi = β0 +β1xi + εi, where xi is the covariate;
β0 and β1 are called the intercept and slope (of the regression), respectively.
It follows that X = (1n x), where x = (xi)1≤i≤n. Straightforward calculation

shows that X ′X =

(
n x·
x· x2

·

)
, where x· =

∑n
i=1 xi and x2

· =
∑n

i=1 x
2
i ; hence,

tr
{
(X ′X)−1

}
=

1 + x2∑n
i=1(xi − x̄)2

,

where x̄ = n−1x· and x2 = n−1x2
· . Therefore, (6.84) holds if and only if∑n

i=1(xi − x̄)2 → ∞ and x2 = o[
∑n

i=1(xi − x̄)2] as n → ∞. For the most
part, these assumptions mean that there should be “enough” total variation
among the covariates xi (Exercise 6.36). To see why the assumptions make
sense, imagine the extreme opposite where there is no variations among the
xi’s (i.e., xi = c, 1 ≤ i ≤ n for some constant c). Then the model becomes
Yi = β0 + β1c + εi, 1 ≤ i ≤ n. Clearly, there is no way one can separate β0

and β1 from β0 + β1c if both parameters are unknown. In other words, the
parameters β0 and β1 are not identifiable. Therefore, the LSE (or any other
estimators) of these parameters cannot be consistent.

We now consider asymptotic normality of the LSE. By (6.81) we have

Var(β̂) = σ2(X ′X)−1. This suggests that(
X ′X
σ2

)1/2

(β̂ − β)
d−→ N(0, Ip), (6.85)

where Ip is the p-dimensional identity marix (see Appendix A.1 for the defi-
nition of A1/2 for A ≥ 0). To show (6.85), we apply Theorem 2.14, and thus
to show that for any λ ∈ Rp, we have

λ′
(
X ′X
σ2

)1/2

(β̂ − β)
d−→ N(0, λ′λ). (6.86)
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Without loss of generality, let λ �= 0. Then, again, without loss of generality,
we may assume that |λ|2 = λ′λ = 1 (why?). (Note how we simplify the
arguments step-by-step by using the words “without loss of generality,” but
make sure that at each step it is, indeed, without loss of generality). Then,
similar to (6.82), the left side of (6.86) can be expressed as∑n

i=1 cniεi

σ
√∑n

i=1 c
2
ni

(6.87)

with cni = λ′(X ′X)−1/2xi (note that
∑n

i=1 c
2
ni = 1) (Exercise 6.37). Accord-

ing to the Hájek–Sidak theorem (Example 6.6), (6.87) converges in distribu-
tion to N(0, 1) provided that (6.38) holds, which is equivalent to

max
1≤i≤n

λ′(X ′X)−1/2xixi(X
′X)−1/2λ −→ 0. (6.88)

A sufficient condition for (6.88) to hold for every λ ∈ Rp, and hence for the
asymptotic normality of the LSE in the sense of (6.85), is thus

max
1≤i≤n

{x′i(X ′X)−1xi} −→ 0 (6.89)

(Exercise 6.37). We revisit the previous example.

Example 6.14 (continued). In this case, it can be shown that the left side
of (6.89) is equal to

1

n
+

max1≤i≤n(xi − x̄)2∑n
i=1(xi − x̄)2

. (6.90)

Thus, the condition for asymptotic normality of the LSE is that

max1≤i≤n(xi − x̄)2∑n
i=1(xi − x̄)2

−→ 0

as n → ∞. Intuitively, this means that the contribution to the total variation
by any individual is relatively small compared to the total variation.

Other large-sample properties of the LSE have also been studied. For ex-
ample, Lai et al. (1979) studied strong consistency property of the LSE. In
fact, the authors derived (strong) convergence rate for each component of
the LSE. It is assumed that the errors ε1, ε2, . . . in (6.79) is a sequence of
random variables such that

∑∞
i=1 ciεi converges a.s. for any sequence of real

numbers c1, c2, . . . such that
∑∞

i=1 c
2
i < ∞. This assumption is weaker than

the assumptions we made earlier [below (6.79)]. For example, if εi, i ≥ 1,
are i.i.d. such that E(εi) = 0 and E(ε2i ) < ∞, then the above assumption is
satisfied (Exercise 6.38). Let vn,jj be the jth diagonal element of (X ′X)−1,
1 ≤ j ≤ p. [Note that the matrix X depends on n (i.e., X = Xn), but for



206 6 Sums of Independent Random Variables

notation simplicity the subscript n is suppressed; the same note also applies
to other notations such as β̂.] If for any 1 ≤ j ≤ p, we have limn→∞ vn,jj = 0,
then for any δ > 0, we have with probability 1 that

β̂j − βj = o

(√
vn,jj | log vn,jj |1+δ

)
(6.91)

as n → ∞. Thus, if limn→∞ vn,jj = 0, 1 ≤ j ≤ p, then the LSE is strongly con-

sistent in that β̂
a.s.−→ β, and the (strong) convergence rate for each component

of the LSE is given by (6.91).
A more accurate rate of convergence is given by Lai and Wei (1982), who

derived a LIL for LSE. Suppose that the εi’s are independent with E(εi) = 0,
E(ε2i ) = σ2, and supi≥1 E(|εi|r) <∞ for some r > 2. Also suppose that p ≥ 2.
Let Xj denote the jth column of X and let X−j denote the matrix of X
without the jth column, 1 ≤ j ≤ p. Let vn,j = PX⊥

−j
Xj = (vn,j,i)1≤i≤n, where

PX⊥
−j

= I − PX−j = I − X−j(X
′
−jX−j)

−1X ′−j , and an,j = |vn,j |2. Fix 1 ≤
j ≤ p. If limn→∞ an,j = ∞, lim sup an+1,j/an,j < ∞, and max1≤i≤n v

2
n,j,i =

o[an,j(log an,j)
−ρ] for all ρ > 0, then we have

lim sup

(
an,j

2 log log an,j

)1/2

|β̂j − βj | = σ a.s. (6.92)

The normalizing sequence an has an intuitive explanation. It is the squared
norm of the projection of the vector of covariates corresponding to βj to the
space orthogonal to that spanned by the rest of the (vectors of) covariates.
Roughly speaking, an is a measure of the amount of uncertainty associated
with the estimation of βj . The amount of uncertainty is closely related to the
“effective sample size.” To see this, consider an extreme case where there is no
uncertainty among the observations. Then all one needs is one sample; that
is, the effective sample size is one. On the other hand, the more uncertainty
in the sample, the larger the effective sample size has to be in order to achieve
the same level of accuracy in estimation.

6.8 Exercises

6.1. Show that in Example 6.2, (6.6)–(6.8) are satisfied with an =
(
∑n

i=1 λi)γ and γ > 1/2.
6.2. Show that (6.10) and (6.11) together are equivalent to (6.13).
6.3. Use Theorem 6.1 to derive the classical result (6.1).
6.4. This exercise is regarding Example 6.2 and its continuation in Section

6.3.
(i) If an = np, show that (6.25) holds if and only if p > 1/2.
(ii) If an = (

∑n
i=1 λi)

γ , show that (6.25) holds if and only if γ > 1/2.
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(iii) Suppose that the assumption that a ≤ λi ≤ b for a, b > 0 is not made.
Instead, the only assumption is that λi > 0 for all i. Does the result of (i)
necessarily hold?

6.5. This exercise is regarding Example 6.1 (continued) in Section 6.3.
(i) Show that the function ψ(u) is maximized at u =

√
c, and the maximum

is (1 +
√
c)−2.

(ii) Show that the right side of (6.29) is minimized when bi = 1+ai, which
is greater than

√
ai, and the minimum is 4{π(1 + ai)}−1.

6.6. Suppose that Y1, Y2, . . . are independent random variables. In the fol-
lowing cases, find the conditions for an such that

1

an

n∑
i=1

{Yi − E(Yi)} P−→ 0.

Give at least one specific example in each case.
(i) Yi ∼ DE(μi, σi), i ≥ 1, where DE(μ, σ) is the Double Exponential

distribution with pdf f(x|μ, σ) = (1/2σ)e−|x−μ|/σ, −∞ < x < ∞, and σi > 0.
(ii) Yi ∼ Uniform[μi − di, μi + di], i ≥ 1, where Uniform[a, b] represents

the Uniform distribution over [a, b], and di > 0.
6.7 (Binomial method of moments). The method of moments (MoM) is

widely used to obtained consistent estimators for population parameters. Con-
sider the following special case, in which the observations X1, . . . , Xn are i.i.d.
with the Binomial(m, p) distribution, where both m and p are unknown. The
MoM equates the sample first and second moments of the observations to
their expected values. This leads to the following equations:

E(X1) = X̄,

E(X2
1 ) =

1

n

n∑
i=1

X2
i .

Note that the left sides of these equations depend on m and p. By solving the
equations, one obtains the solutions, say, m̂ and p̂.

(i) Solve the MoM equations to find the solutions m̂ and p̂.

(ii) Show that m̂ and p̂ are consistent estimators; that is, m̂
P−→ m and

p̂
P−→ p as n → ∞.
(iii) Is m̂ necessarily an integer? Since m needs to be an integer, a modified

estimator of m is m̃, defined as the nearest integer to m̂. Show that m̃ is also
a consistent estimator of m in that P(m̃ = m) → 1 as n → ∞.

6.8. Suppose that for each n, Xni, 1 ≤ i ≤ n, are independent with the
common cdf Fn, and Fn

w−→ F , where F is a cdf and the weak convergence
(

w−→) is defined in Chapter 1 above Example 1.6. Define the empirical distri-
bution of Xni, 1 ≤ i ≤ n, as

F̂n(x) =
1

n

n∑
i=1

1(Xni≤x)
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=
#{1 ≤ i ≤ n : Xni ≤ x}

n
.

Show that F̂n(x)
P−→ F (x) for every x at which F is continuous.

6.9. Give an example of a sequence of independent random variables
X1, X2, . . . such that

∑∞
i=1 var(Xi)/i

2 = ∞ and the SLLN is not satisfied.
6.10. A sequence of real numbers xi ∈ [0, 1], i ≥ 1, is said to be uniformly

distributed in Weyl’s sense on [0, 1] if for any Riemann integrable function f
on [0, 1] we have

lim
n→∞

f(x1) + · · · + f(xn)

n
=

∫ 1

0

f(x) dx.

Let Xi, i ≥ 1, be independent and Uniform[0, 1] distributed. Show that the
sequence Xi, i ≥ 1, is uniformly distributed in Weyl’s sense on [0, 1] almost
surely. (Hint: Use §1.5.2.37. Note that, by definition, a Riemann integrable
function on [0, 1] is necessarily bounded.)

6.11. Suppose that X1, X2, . . . is a sequence of independent random vari-
ables with finite expectation. Show that if

∞∑
i=1

1

i
E{|Xi − E(Xi)|} < ∞,

then the SLLN holds; that is

1

n

n∑
i=1

{Xi − E(Xi)} a.s.−→ 0.

6.12. Let Y1, Y2, . . . be independent with Yi ∼ Bernoulli(pi), i ≥ 1. Show
that

∑∞
i=1(Yi − pi) converges a.s. if and only if

∑∞
i=1 pi(1 − pi) <∞.

6.13. Show that the Liapounov condition implies the Lindeberg condition;
that is, if (6.35) holds for some δ > 0, then (6.34) holds for every ε > 0.

6.14. This exercise is associated with the proof of Theorem 6.14. Parts
(i)–(iii) are regarding the necessity part, where Xni = (Xi − μ)/

√
n; whereas

part (iv) is regarding the sufficiency part, where Xni is defined by (6.47).
(i) Show that for any ε > 0,

max
1≤i≤n

P(|Xni| > ε) = P(|X1 − μ| > ε
√
n) → 0.

(Note: You may not use Chebyshev’s inequality to show this—why?)
(ii) Show that (6.43) with ε = 1 reduces to

√
nE{(X1 − μ)1(|X1−μ|≤√n)} → 0.

(iii) Show that

E{(X1 − μ)21(|X1−μ|≤√n)} − [E{(X1 − μ)1(|X1−μ|≤√n)}]2 −→ σ2;
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hence, E{(X1 − μ)2} = limn→∞ E{(X1 − μ)21(|X1−μ|≤√n)} = σ2.
(iv) Show that for any ε > 0,

n∑
i=1

P(|Xni| > ε) ≤ nP(|X1| > λn) → 0.

6.15. Show that if X1, . . . , Xn are independent Cauchy(0, 1), the sample
mean X̄ = n−1(X1 + · · ·+Xn) is also Cauchy(0, 1). Therefore, the CLT does
not hold; that is,

√
nX̄ does not converge to a normal distribution.

6.16 (Sample median). Let X1, . . . , Xn be i.i.d. observations with the dis-
tribution P(X1 ≤ x) = F (x − θ), where F is a cdf such that F (0) = 1/2;
hence, θ is the median of the distribution of X1. Suppose that n is an odd
number: n = 2m+ 1, say. If X(1) ≤ · · · ≤ X(n) denotes the ordered Xi’s, the
sample median is defined as X(m). We assume that F has a desity f with
respect to the Lebesgue measure such that f(0) > 0.

(i) For any x ∈ R, let Sn,x be the number of Xi’s exceeding x/
√
n. Show

that X(m) ≤ x/
√
n if and only if Sn,x ≤ m− 1.

(ii) Show that
√
n{X(m) − θ} d−→ N(0, σ2), where σ2 = {2f(0)}−2.

6.17. Suppose that Sn is distributed as Poisson(λn), where λn → ∞ as
n → ∞. Use two different methods to show that Sn obeys the CLT; that is,

ξn = λ
−1/2
n (Sn − λn)

d−→ N(0, 1).
(i) Show that the mgf of ξn converges to the mgf of N(0, 1).
(ii) Let Yni, 1 ≤ i ≤ n, be independent and distributed as Poisson(n−1λn),

n ≥ 1. Show that
∑n

i=1 Yni has the same distribution as Sn. Furthermore,

show that Xni = λ
−1/2
n (Yni − n−1λn) satisfy Liapounov’s condition (6.37)

with δ = 2. [Hint: You may use the fact that the fourth central moment of
Poisson(λ) is λ+ 3λ2.]

6.18. Let Y1, Y2, . . . be independent such that Yi ∼ Poisson(ai), i ≥ 1,
where a > 1. Let Xi = Yi − ai, i ≥ 1, and s2n =

∑n
i=1 var(Yi) =

∑n
i=1 a

i =
(a− 1)−1(an+1 − 1).

(i) Show that Liapounov’s condition (6.35) is not satisfied with δ = 2.
(ii) Show that as n → ∞,(

a− 1

an+1 − 1

)1/2 n∑
i=1

(Xi − ai)
d−→ N(0, 1).

(Hint: Use the result of the previous exercise.)
6.19. Let the random variables Y1, Y2, . . . be independent and distributed

as Bernoulli(i−1), i ≥ 1. Show that∑n
i=1 Yi − logn√

logn

d−→ N(0, 1).

(Hint: You may recall that
∑n

i=1 i
−1 − logn converges to a limit known as

Euler’s constant. The actual value of the constant does not matter.)
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6.20 (The delta method). The CLT is often used in conjunction with the
delta method introduced in Example 4.4. Here, we continue with Exercise 6.7.
Let m̂ and p̂ be the MoM estimator of m and p, respectively, therein.

(i) Show that as n → ∞,

√
n

[
X̄ −mp

n−1
∑n

i=1 X
2
i −mp{1 + (m− 1)p}

]
d−→ N(0, Σ),

where Σ is a covariance matrix. Find Σ. (Hint: Use Theorem 2.14.)
(ii) Show that the MoM estimators m̂ and p̂ are jointly asymptotically

normal in the sense that

√
n

(
m̂−m
p̂− p

)
d−→ N(0, V ),

where V is another covariance matrix. Find V .
(iii) An alternative estimator of m was found (i.e., m̃). Show that m̃ is not

asymptotically normal even though it is consistent; that is,
√
n(m̃−m) does

not converge in distribution to a normal distribution.
6.21. Suppose that for each n, Xni, 1 ≤ i ≤ in, are independent such

that P(Xni = 0) = 1 − pni, P(Xni = −ani) = P(Xni = ani) = pni/2, where
ani > 0 and 0 < pni < 1. Suppose that max1≤i≤in ani → 0 as n → ∞. Find
a necessary and sufficient condition for the triangular array Xni to obey the

CLT; that is,
∑in

i=1Xni
d−→ N(μ, σ2) as n → ∞ for some μ and σ2.

6.22. This exercise is related to Example 6.5 (continued) at the end of
Section 6.4.

(i) Show that for the sequence Yi, i ≥ 1, (6.40) fails provided that s2 =∑∞
i=1 pi(1 − pi) <∞. Also show that s2 > 0.
(ii) Show that for Xi = Yi − pi, the three series (6.30)–(6.32) converge for

c = 1.
6.23. This exercise is related to Example 6.9.
(i) Show that there is c > 0 such that σ2

i = E(X2
i ) ≤ c for all i; hence,

an ∝ n.
(ii) Show that the right side of (6.60) goes to zero as n → ∞.
(iii) Show (6.61) [Hint: You may use the result of part (i)].
6.24. Let X be a random variable. Show that for any μ ∈ R, the following

two conditions (i) and (ii) are equivalent:
(i) nP(|X − μ| > n) → 0 and E{(X − μ)1(|X−μ|≤n)} → 0;
(ii) nP(|X | > n) → 0 and E{X1(|X|≤n)} → μ.
(iii) Use the equivalence of (i) and (ii) to show the necessary and sufficient

condition for WLLN given at the end of Section 6.5.
(iv) Give an example of a random variable X such that nP(|X | > n) → 0

and E{X1(|X|≤n)} = 0 for any n ≥ 1 and E(|X |) = ∞.
6.25. Let X1, X2, . . . be a sequence of independent random variables with

mean 0. Let pi = P(|Xi| > bi), where bi satisfies (6.50), and
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an =

n∑
i=1

var{Xi1(|Xi|≤bi)}.

Suppose that
∑∞

i=1 var{Xi1(|Xi|≤bi)} = ∞,
∑∞

i=1 pi <∞, and∑n
i=1 E{Xi1(|Xi|>bi)}√

an log log an
−→ 0

as n → ∞. Show that Xi, i ≥ 1 obeys the LIL (6.51). [Hint: Use Theorem
6.15 and the Borel–Cantelli lemma (Lemma 2.5).]

6.26. Show that if X1, X2, . . . are independent such that Xi ∼ N(0, σ2
i ),

where a ≤ σ2
i ≤ b and a and b are positive constants, then Xi, i ≥ 1 obeys

the LIL (6.51).
6.27. Suppose that Xi, i ≥ 1, are independent random variables such that

P(Xi = −iα) = P(Xi = iα) = 0.5i−β and P(Xi = 0) = 1 − i−β , where
α, β > 0. According to Theorem 6.16, find the condition for α, β so that Xi,
i ≥ 1, obeys the LIL (6.51).

6.28. Let Y1, Y2, . . . be independent such that Yi ∼ χ2
i . Define Xi = Yi − i.

Does the sequence Xi, i ≥ 1, obey the LIL (6.51), where an =
∑n

i=1 var(Yi)?
[Hint: You may use the facts that if Y ∼ χ2

r , then E(Y ) = r, var(Y ) = 2r,
and E(Y − r)4 = 12r(r + 4).]

6.29. We see that, in the i.i.d. case, the same condition (i.e., a finite second
moment) is necessary and sufficient for both CLT and LIL. In other words, a
sequence of i.i.d. random variables obeys the CLT if and only if it obeys the
LIL. It is a different story, however, if the random variables are independent
but not identically distributed. For example, Wittmann (1985) constructed
the following example. Let nk be an infinite sequence of integers such that
nk+1 > 2nk, k ≥ 1. Let X1, X2, . . . be independent such that for nk + 1 ≤
i ≤ 2nk, we have P(Xi = 1) = P(Xi = −1) = 1/4, P(Xi =

√
2nk) = P(Xi =

−√
2nk) = 1/8nk, and P(Xi = 0) = 1 − 1/2 − 1/4nk; for all other i ≥ 1, we

have P(Xi = 1) = P(Xi = −1) = 1/2.
(i) Show that E(Xi) = 0 and σ2

i = E(X2
i ) = 1, therefore an = s2n =∑n

i=1 σ
2
i = n. It follows that (6.40) is satisfied.

(ii) Show that Lindeberg’s condition (6.42) does not hold for ε = 1.
(iii) Show by Theorem 6.12 that Xi, i ≥ 1, does not obey the CLT. (Hint:

You may use the result of Example 1.6.)
Wittmann (1985) further showed that the sequence obeys the LIL. On the

other hand, Marcinkiewicz and Zygmund (1937b) constructed a sequence of
independent random variables that obeys the CLT but not the LIL.

6.30. Show that if X1, X2, . . . are i.i.d. with mean 0 and variance 1, then

ξn = Sn/
√

2n log logn
P−→ 0 as n → ∞, where Sn =

∑n
i=1 Xi. However,

ξn does not converge to zero almost surely. This gives another example that
convergence in probability does not necessarily imply almost sure convergence.

6.31. Show that the distance ρ defined by (6.63) is, indeed, a distance or
metric by verifying requirements 1–4 below (6.63).
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6.32. This exercise is related to Example 6.10.
(i) Show that the mapping g(x) = sup0≤t≤1 x(t) is a continuous mapping

from C to R.
(ii) Show that g(Xn) = sup0≤t≤1Xn,t = n−1/2 max1≤i≤n Si and g(W ) =

sup0≤t≤1Wt.
(iii) Show that P(sup0≤t≤1Wt ≤ λ) = 0 for λ < 0.
6.33. Let xn, n ≥ 1, be a sequence of real numbers such that lim inf xn = a,

lim supxn = b, where a < b, and limn→∞(xn+1 − xn) = 0. Show that the set
of limit points of {xn} coincide with[a, b].

6.34. This exercise is related to Example 6.11.
(i) Show that the functional g(x) = x(1) defines a continuous mapping

from C to R.
(ii) Show that with probability 1, the set of limit points of g(ηn) is g(K).
(iii) Show that x(1) ≤ 1 for any x ∈ K.
6.35. Consider Example 6.12.
(i) Show that in this case we have cF (t) = log(1 + et) − log 2.
(ii) Show that for any x ∈ R, the function dx(t) = xt − cF (t) is strictly

concave.
(iii) Show that

IF (x) =

⎧⎨⎩
log 2 + x log x+ (1 − x) log(1 − x), x ∈ (0, 1)
log 2, x = 0 or 1
∞, otherwise.

(iv) Show that for A = (−∞, 1/2− ε) ∪ (1/2 + ε,∞) with 0 < ε < 1/2, we
have infx∈Ao IF (x) = infx∈Ā IF (x) = IF (1/2 − ε) = IF (1/2 + ε), which is

log 2 +

(
1

2
− ε

)
log

(
1

2
− ε

)
+

(
1

2
+ ε

)
log

(
1

2
+ ε

)
> 0.

6.36. This exercise is associated with the proof of consistency of the LSE
in Section 6.7, where Xni is defined below (6.82).

(i) Verify expression (6.82).
(ii) Show that (6.83) implies

∑n
i=1 E(X2

ni) → 0, which, in turn, implies
(6.16) and (6.17); that is, in fact,

n∑
i=1

E{Xni1(|Xni|≤τ)} −→ 0,

n∑
i=1

var{Xni1(|Xni|≤τ)} −→ 0

for any τ > 0.
(iii) Show that (6.83) for every 1 ≤ j ≤ p is equivalent to (6.84).
(iv) Interpret the quantity

∑n
i=1(xi − x̄)2 in Example 6.14.

6.37. This exercise is associated with the proof of asymptotic normality of
the LSE in Section 6.7.
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(i) Show that the left side of (6.86) is equal to (6.87) and that
∑n

i=1 c
2
ni = 1.

(ii) Show that (6.88) holds for every λ ∈ Rp provided that (6.89) holds.
(iii) Show that in Example 6.14, the left side of (6.89) reduces to (6.90).
6.38. Suppose that εi, i ≥ 1, are i.i.d. such that E(εi) = 0 and E(ε2i ) <∞.

Show that
∑∞

i=1 ciεi converges a.s. for any sequence of constants ci, i ≥ 1,
such that

∑∞
i=1 c

2
i <∞.





7

Empirical Processes

7.1 Introduction

In Section 6.6.1 we discussed a topic that was somehow different from the
rest of Chapter 6. There, the subject being dealt with was a random function,
instead of a random variable. A closer look reveals that the random function
was constructed based on sum of i.i.d. random variables and equal to the latter
at particular values of its variable. Since, in practice, random variables often
represent observations, we call a function constructed from observed random
variables a statistical function.

As it turns out, these statistical functions are of great practical interest and
therefore deserve some more extensive discussion. For the most part, we will
focus on one particular class of statistical functions, called empirical processes.
Let X1, X2, . . . be a sequence of i.i.d. random variables with the common
distribution function F . The empirical distribution function (empirical d.f.)
is defined as

Fn(x) =
1

n

n∑
i=1

1(Xi≤x), −∞ < x < ∞. (7.1)

Although it might look simple, (7.1) is not the easiest thing in the world
to understand. Here, the Xi’s are observations and x is the variable of the
function. For each realization of the Xi’s (i.e., realized values of X1, . . . , Xn),
(7.1) defines a function of x, which is a step function with jumps at the
realized values X1, . . . , Xn (Exercise 7.1). Note that the indicator 1(Xi≤x) = 1
if Xi ≤ x, and 0 otherwise; or, in terms of a function of x, 1(Xi≤x) = 1 if
x ≥ Xi, and 0 otherwise. After all, since the Xi’s are random, the function
(7.1) is also random. In other words, for different realized values X1, . . . , Xn,
(7.1) defines a different function.

According to the SLLN (see Section 6.3), for each x the empirical d.f.
converges a.s. to E{1(X1≤x)} = P(X1 ≤ x) = F (x) as n → ∞. In fact, a
stronger result holds: The a.s. convergence is uniform in that

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_7, © Springer Science+Business Media, LLC 2010
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sup
x

|Fn(x) − F (x)| a.s.−→ 0 (7.2)

as n → ∞ (see below). We then consider a centralized and normalized version
of the empirical d.f. defined by

√
n{Fn(x) − F (x)}, −∞ < x < ∞. (7.3)

The (random) function (7.3) is called an empirical process.
Dehling and Philipp (2002) noted that, to the surprise of many statisticians

and probabilists, the study of empirical processes can be traced back to a
paper by German mathematician Hermann Weyl in 1916. In this seminal
paper, Weyl streamlined the theory of uniform distribution mod 1, and here
is what it is. Let ni, i = 1, 2, . . ., be an increasing sequence of integers. For
any ω ∈ [0, 1), define Xi(ω) = {niω}, where {x} denotes the fractional part
of x. The sequence X1, X2, . . . can be viewed as random variables defined on
the probability space ([0, 1),B, P ), where B denotes the Borel sets on [0, 1)
and P denotes the Lebesgue measure. Each Xi has a uniform distribution in
that P (Xi ≤ x) = x for 0 ≤ x ≤ 1; however, the Xi’s are dependent (Exercise
7.2). Let Fn(x) denote the empirical d.f. of Xi, 1 ≤ i ≤ n, defined by (7.1).
Weyl proved that supx∈[0,1) |Fn(x) − x| → 0 for all ω ∈ [0, 1), except possibly
on a set of Lebesgue measure 0.

The restriction to uniform distribution as Weyl did is, actually, without
loss of generality. In fact, the Uniform distribution on (0, 1) plays a particular
and very important role in the study of empirical processes due to the following
theorem called inverse transformation.

Theorem 7.1 (The inverse transformation). Let ξ ∼ Uniform(0, 1) and F
be a cdf. Define

F−1(t) = inf{x : F (x) ≥ t}, 0 < t < 1. (7.4)

Then X = F−1(ξ) ∼ F . In fact, X ≤ x if and only if ξ ≤ F (x).

Proof. By the definition it can be shown that X ≤ x if and only if ξ ≤ F (x).
Therefore, P(X ≤ x) = P{ξ ≤ F (x)} = F (x) and this completes the proof.
Q.E.D.

The function F−1 corresponds to the quantiles of the distribution F .
Theorem 7.1 allows us to simplify the study of empirical processes to

that of one particular empirical process, the one of Uniform random vari-
ables. More precisely, let ξ1, ξ2, . . . be a sequence of independent Uniform(0, 1)
random variables. Denote the empirical d.f. and empirical process of the
ξ′i by Gn(t) and Un(t), respectively; that is, Gn(t) = n−1

∑n
i=1 1(ξi≤t) and

Un(t) =
√
n{Gn(t) − t} for t ∈ [0, 1]. Then the empirical d.f. Fn defined by

(7.1) and Gn(F ) have identical distribution in the sense that for any k ≥ 1
and x1 < · · · < xk, the random vectors
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[Fn(x1), . . . , Fn(xk)] and [Gn{F (x1)}, . . . , Gn{F (xk)}] (7.5)

have an identical joint distribution (Exercise 7.3). Similarly, the empirical
processes

√
n(Fn − F ) and Un(F ) have an identical distribution. Conversely,

if we begin with the sequence {ξi} and define Xi = F−1(ξi), i ≥ 1, then for
the sequence {Xi}, we have

Fn = Gn(F ) and
√
n(Fn − F ) = Un(F ). (7.6)

For these reasons we often focus on the empirical process Un in the sequel,
which we call the uniform empirical process, with the understanding that
similar results may be easily derived for Fn using the connection. It should be
noted that although the chapter is entitled “Empirical Processes” following
the tradition of the literature in this field, the discussions in the sequel involve
both the empirical d.f. and the empirical process. Most of the proofs of the
results can be found in Shorack and Wellner (1986); otherwise, references will
be given at the specific places.

A more convenient notation for the uniform empirical process is Un =√
n(Gn − I), where I represents the identical function, I(t) = t for t ∈ [0, 1].

Similarly, we call Gn the uniform empirical d.f. For any functions x and y on
[0, 1], define the uniform or supremum metric

‖x− y‖ = sup
0≤t≤1

|x(t) − y(t)|. (7.7)

Note that this is the same metric introduced earlier by (6.63) for functions
in the space C of continuous functions on [0, 1] (see Section 6.6.1). It is easy
to verify that (7.7) remains as a metric for all functions on [0, 1]. Another
subspace of functions on [0, 1] is all functions on [0, 1] that are right-continuous
and possess left-limit at each point. This subspace is denoted by D.

7.2 Glivenko–Cantelli theorem and statistical functionals

We begin with the following celebrated result due to Glivenko and Cantelli.

Theorem 7.2 (Glivenko-Cantelli theorem). ‖Gn − I‖ a.s.−→ 0 as n → ∞.

The Glivenko–Cantelli theorem may be regarded as a uniform SLLN for
the empirical d.f. It might appear that the result follows directly from Pólya’s
theorem (Example 1.6), because Gn(t)

a.s.−→ t for each t by SLLN (Section
6.3), and the function F (t) = t is continuous. However, the convergence here
is a.s., which means that for each t ∈ [0, 1], there is a set of probability 0
for which the convergence does not hold, and this set may be different for
different t. On the other hand, to derive the Glivenko–Cantelli theorem from
Pólya’s theorem one needs to verify that Gn

w−→ I a.s.; that is,
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P
{

lim
n→∞

Gn(t) = t, ∀t ∈ [0, 1]
}

= 1,

which may not be so obvious. However, a similar ε-δ argument to Example
1.6 leads to the proof of Theorem 7.2 (Exercise 7.4). We consider some appli-
cations of the Glivenko–Cantelli theorem.

Example 7.1. The previous result (7.2) is now seen as a consequence of,
and therefore equivalent to, the Glivenko–Cantelli theorem. This is because,
by Theorem 7.1 and independence, the sequence X̃i = F−1(ξi), i ≥ 1, has
the same (joint) distribution as Xi, i ≥ 1. Therefore, the empirical d.f. Fn of
the Xi’s has the same probabilistic behavior as the empirical d.f. of the X̃i’s,
denoted by F̃n. On the other hand, we have, by (7.6), supx |F̃n(x) − F (x)| =

supx |Gn{F (x)} − F (x)| ≤ supt |Gn(t) − t| = ‖Gn − I‖ a.s.−→ 0 as n → ∞,
which implies (7.2). Of course, (7.2) implies the Glivenko–Cantelli theorem as
a special case. This example shows, once again, how effective the strategy is
to simply focus on the uniform empirical d.f.

Example 7.2. The inverse uniform empirical d.f. G−1
n is, by (7.4), the func-

tion G−1
n (t) = inf{x : Gn(x) ≥ t}. There is a more explicit expression of G−1

n .
Let ξn,i denote the ith order statistic of ξ1, . . . , ξn; that is, ξn,1 ≤ · · · ≤ ξn,n

is ξ1, . . . , ξn arranged in an increasing order. Then we have

G−1
n (t) = ξn,i if

i− 1

n
< t ≤ i

n
for 1 ≤ i ≤ n (7.8)

(Exercise 7.5). Furthermore, it can be shown that ‖G−1
n − I‖ = ‖Gn − I‖

(Exercise 7.5). Thus, by Theorem 7.2, we have ‖G−1
n − I‖ a.s.−→ 0 as n → ∞.

By (7.8), this implies that

max
1≤i≤n

sup
(i−1)/n<t≤i/n

|ξn,i − t| a.s.−→ 0, as n → ∞.

In particular, the result implies that

max
1≤i≤n

∣∣∣∣ξn,i − i

n

∣∣∣∣ a.s.−→ 0

as n → ∞. The latter result may be interpreted as that, asymptotically, the
ith order statistic of ξ1, . . . , ξn converges to i/n uniformly in i.

Some more applications can be brought about by considering statistical
functionals. The concept of functionals was introduced in Section 6.6.1. Let
h be a functional defined on the space D of cdf’s. In other words, h(F ) is a
map from F ∈ D to h(F ) ∈ R. Below are some examples.

Example 7.3. Let a be a fixed point and consider h(F ) = F (a).
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Example 7.4 (The quantile). For any fixed 0 < t < 1, consider h(F ) =
F−1(t) defined by (7.4). In particular, if t = 0.95, then h(F ) is the 95th
quantile of the distribution F .

Example 7.5. The mean or expectation functional is defined as h(F ) =
μF =

∫
x dF (x). More generally, for any positive integer p, the pth moment

of F is the functional h(F ) = EF (Xp) =
∫
xp dF (x); the pth central moment

of F is the functional h(F ) =
∫

(x− μF )p dF (x).

A functional h is continuous at F if for any sequence Hn of cdf’s, ‖Hn −
F‖ → 0 implies h(Hn) → h(F ). As an immediate consequence of Theorem
7.2 (and Example 7.1), we have the following theorem.

Theorem 7.3. Let X1, X2, . . . be i.i.d. with distribution F and let Fn be
the empirical d.f. of (7.1). If h is continuous at F , the h(Fn)

a.s.−→ h(F ) as
n → ∞.

We consider some applications of Theorem 7.3.

Example 7.3 (continued). It is easy to verify that h is continuous (Exercise

7.6); hence, by Theorem 7.3, we have Fn(a) = h(Fn)
a.s.−→ h(F ) = F (a). On

the other hand, the latter follows directly from the SLLN.

Example 7.4 (continued). It can be shown that, for any fixed t, the quantile
functional h is continuous provided that F−1 is continuous in a neighborhood
of t (Exercise 7.7). It follows by Theorem 7.3 that F−1

n (t)
a.s.−→ F−1(t) as n →

∞. It should be pointed out that the continuity of F−1 (in a neighborhood of
t) cannot be dropped (Exercise 7.7).

Example 7.5 (continued). The expectation functional h is not continuous
at F even if F has a finite expectation. To see this, let εn be a sequence of
positive numbers such that εn → 0 as n → ∞. Let Δn be a distribution such
that h(Δn) =

∫
x dΔn(x) = ε−1

n . Consider Hn = (1 − εn)F + εnΔn. Then we
have ‖Hn − F‖ = εn‖Δn − F‖ → 0 as n → ∞ (why?). On the other hand,
we have h(Hn) = (1 − εn)h(F ) + εnh(Δn) = (1 − εn)h(F ) + 1 → h(F ) + 1 as
n → ∞; hence, h is not continuous at F . By a similar argument, it can be
shown that the functionals of higher moments are not continuous at F even
if the corresponding moments of F exist. On the other hand, the result

h(Fn) =
1

n

n∑
i=1

Xi
a.s.−→ EF (X1) = h(F )

as n → ∞ follows directly from the SLLN.

The above examples show that whereas being a useful result conceptu-
ally, Theorem 7.3 may not be an efficient way of establishing almost sure
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convergence. It is most useful, in practice, if the functional h is known to
be continuous (so that one does not need to verify its continuity); otherwise,
checking the continuity of h may take as much effort as directly showing the
a.s. convergence (see Exercises 7.6 and 7.7). Furthermore, there are situations
where h is not continuous, such as Example 7.5, so that Theorem 7.3 does
not apply; nevertheless, a.s. convergence of h(Fn) to h(F ) may still be eas-
ily established. The reason for this is that the sequence of empirical d.f. Fn

is not an arbitrary class of cdf’s. In the next section we further explore the
asymptotic behavior of this special class of distributions.

7.3 Weak convergence of empirical processes

Consider the uniform empirical process Un defined in Section 7.1. For any
fixed t ∈ [0, 1], by the CLT we have, as n → ∞,

Un(t) =
√
n{Gn(t) − t}

=
1√
n

n∑
i=1

{1(ξi≤t) − t}

d−→ N{0, t(1 − t)}.

However, this result is considered “the easier part” compared to a much
stronger result to follow. More generally, for any distinct t1, . . . , tk ∈ [0, 1],
the joint distribution of Un(t1), . . . , Un(tk) is asymptotically multivariate nor-
mal with mean 0 and covariance matrix Σ = (σuv)1≤u,v≤k, where σuv =
cov{Un(tu), Un(tv)} = tu ∧ tv − tutv. This follows from a multivariate ver-
sion of the CLT or can be derived from the (univariate) CLT and The-
orem 2.14 (Exercise 7.8). It also uses the fact that E{Un(t)} = 0 and
cov{Un(t), Un(s)} = s∧ t− st, s, t ∈ [0, 1]. Still, the latest result is considered
“the easier part.”

The “harder part” is to establish convergence in distribution of the em-
pirical process in a functional space. To state this much stronger result, we
need to first introduce an important process. Recall the definition of Wiener
process, or Brownian motion, in Section 6.6.1. Here, for notation convenience
we denote the Wiener process by W (t), 0 ≤ t ≤ 1. The stochastic process
U(t) = W (t)− tW (1) is called a Brownian bridge. A stochastic process {x(t)}
is called a Gaussian process if for any t1 < · · · < tk, the joint distribu-
tion of x(t1), . . . , x(tk) is (multivariate) normal. Note that the Wiener pro-
cess is a Gaussian process such that for any 0 ≤ t1 < · · · < tk ≤ 1, the
random variables W (t2) −W (t1), . . . ,W (tk) −W (tk−1) are independent and
distributed as N(0, t2 − t1), . . . , N(0, tk − tk−1), respectively. It follows that
a Brownian bridge is also a Gaussian process such that E{U(t)} = 0 and
cov{U(s), U(t)} = s ∧ t− st, s, t ∈ [0, 1] (Exercise 7.9). Earlier we introduced
the space D of right-continuous functions on [0, 1] that possess left-limit at
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each point. Let D denote the σ-field generated by the finite-dimensional sub-
sets of D (see Appendix A.2). Also, recall the uniform metric ‖ · ‖ defined by
(7.7). In Section 6.6.1 we extended the concept of weak convergence to a metric
space. Let ξn be a sequence of D-valued random variables on a common prob-
ability space (Ω,A, P ). We say ξn converges in distribution to ξ, a D-valued

random variable on (Ω,A, P ), and denote this by ξn
d−→ ξ on (D,D, ‖ · ‖) if

Pξ−1
n

w−→ Pξ−1 as n → ∞, where Pξ−1
n is the induced probability measure

by ξn; that is, Pξ−1
n (B) = P (ξn ∈ B) for B ∈ D, and Pξ−1 is the induced

probability measure by ξ in a similar way. An important and useful result is

that ξn
d−→ ξ if and only if E{g(ξn)} → E{g(ξ)} for any bounded continuous

function g on the metric space (D, ‖ · ‖). It then follows another very useful
result called continuous mapping theorem, which is an extension of Theorem

2.12 to a metric space: If ξn
d−→ ξ, then g(ξn)

d−→ g(ξ) for any continuous
function g on (D, ‖ · ‖). (Note that the boundedness of g is not required for
the continuous mapping theorem.) In 1949, Doob conjectured the following
result in a landmark paper, which was later proved by Donsker (1952).

Theorem 7.4 (Doob–Donsker). Un
d−→ U on (D,D, ‖ · ‖) as n → ∞,

where U is the Brownian bridge.

It should be noted that a stronger result such as Theorem 7.4 is not mo-
tivated by, or developed for, mathematical interest. There are situations of
applications where the weaker results given at the beginning of this section
are simply not enough. As an example, we consider some applications of The-
orem 7.4 to the well-known Kolmogorov–Smirnov statistics.

Let X1, . . . , Xn be independent observations with an unknown common
cdf F . The problem of interest is to test the hypothesis

H0 : F (x) = F0(x), −∞ < x <∞ (7.9)

against one of the following alternatives:

H1 : F (x) �= F0(x) for some x

H+
1 : F (x) ≥ F0(x) and > hold for some x

H−1 : F (x) ≤ F0(x) and < hold for some x,

where F0 is the hypothesized cdf. The Kolmogorov–Smirnov test statistics for
H0 against the three alternatives are respectively

Dn = sup
x

|Fn(x) − F0(x)|, (7.10)

D+
n = sup

x
{Fn(x) − F0(x)}, (7.11)

D−n = sup
x
{F0(x) − Fn(x)}, (7.12)

where Fn is the empirical d.f. defined by (7.1).
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These statistics are, of course, very intuitive, but their null distributions
which are used to determine the critical values of the tests are not easy to
obtain, especially for large n. Fortunately, Theorem 7.4 allows us to derive the
asymptotic null distributions of the Kolmogorov–Smirnov statistics, which can
be used as approximations when n is large. To see this, note that under (7.9)
and by (7.6) we have, for any λ,

P(
√
nD+

n ≤ λ) = P

[
sup

x

√
n{Fn(x) − F (x)} ≤ λ

]
= P

[
sup

x
Un{F (x)} ≤ λ

]
. (7.13)

Suppose that F0 is continuous. Then, under the null hypothesis, the range of
F , R(F ) = {F (x),−∞ < x <∞} = [0, 1] (why?). Therefore, we have

sup
x
Un{F (x)} = sup

t∈R(F )
Un(t) = sup

0≤t≤1
Un(t).

It can be shown (Exercise 7.10) that the function g(x) = sup0≤t≤1 x(t) is
continuous on (D, ‖ · ‖). Thus, by Theorem 7.4 and the continuous mapping

theorem (above Theorem 7.4), we have sup0≤t≤1 Un(t) = g(Un)
d−→ g(U) =

sup0≤t≤1 U(t); hence, the right side of (7.13) converges to P{sup0≤t≤1 U(t) ≤
λ} = 1−P(‖U+‖ > λ) as n → ∞, where u+ = u∨0. Note that sup0≤t≤1 U(t) =
sup0≤t≤1 U

+(t) = ‖U+‖ with probability 1. It can be shown (e.g., Shorack and
Wellner 1986, pp. 34–37) that for any λ > 0,

P(‖U+‖ > λ) = exp(−2λ2).

Therefore, we conclude that, under (7.9),

lim
n→∞P(

√
nD+

n ≤ λ) = 1 − exp(−2λ2) (7.14)

for λ > 0, and 0 otherwise. Similar arguments show that

lim
n→∞

P(
√
nD−n ≤ λ) = 1 − exp(−2λ2), (7.15)

lim
n→∞

P(
√
nDn ≤ λ) = 1 − 2

∞∑
j=1

(−1)j−1 exp(−2j2λ2) (7.16)

for λ > 0, and 0 otherwise under the null hypothesis (7.9).
The limits (7.14)–(7.16) are derived under the assumption that F0 is con-

tinuous and may not hold if the latter assumption fails. In fact, Wood and
Altavela (1978) considered Kolmogorov–Smirnov tests for discrete hypothe-
sized distribution. By virtually the same arguments as above, the authors
showed that when F0 is discrete with set J of discontinuity points, the right
sides of (7.14) and (7.15) should be replaced by
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P

[
max
x∈J

U{F0(x)} ≤ λ

]
(7.17)

and the right side of (7.16) should be replaced by

P

[
max
x∈J

|U{F0(x)}| ≤ λ

]
. (7.18)

Unlike (7.14)–(7.16), there are no closed-form expressions for (7.17) and (7.18),
in general. Nevertheless, these expressions may be evaluated by Monte–Carlo
methods (Exercise 7.11).

7.4 LIL and strong approximation

Let us begin with the following theorem due to Smirnov (1944).

Theorem 7.5. lim sup ‖Un‖/
√

2 log logn = 1/2 a.s. The same result holds
with Un replaced by U+

n or U−n .

Chung (1949) strengthened Smirnov’s result by showing that for any non-
decreasing sequence of positive numbers λn, the probability P(‖Un‖ ≥ λn i.o.)
is 0 or 1 depending on whether or not the infinite series

∞∑
n=1

λ2
n

n
exp(−2λ2

n)

converges [recall the definition of i.o. in Section 6.6.1, halfway between (6.67)
and (6.68)]. That Chung’s result implies Smirnov’s is left to the reader as an
exercise (Exercise 7.12).

Another interesting result called the “other LIL” is the following.

Theorem 7.6 (Mogulskii). lim inf
√

2 log logn‖Un‖ = π/2 a.s.

Note that there is no “contradiction” between Theorem 7.5 and The-
orem 7.6. Theorem 7.5 is regarding the upper limit of ‖Un‖ divided by√

2 log logn, whereas Theorem 7.6 is about the lower limit of ‖Un‖ multi-
plied by

√
2 log logn, and ‖Un‖/

√
2 log logn ≤ √

2 log log n‖Un‖ for large n.
In fact, Theorem 7.6 is similar to another classical result due to Chung (1948):
If X1, X2, . . . are i.i.d. with mean 0 and variance 1, then

lim inf

√
2 log logn

n
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ =
π

2
a.s.

Since the sample path of Un belongs to D, it it natural to consider a
functional LIL similar to what we considered in Section 6.6.1. Let (M,ρ)
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be a metric space and S ⊂ M . Let ξn, n ≥ 1, be a sequence of M -valued
random variables on a probability space (Ω,A, P ). We say the sequence is
a.s. relatively compact with respect to ρ on M with limit set S, denoted by
ξn r.c. S w.r.t. ρ on M a.s., if there exists A ∈ A with P (A) = 1 such that
the following conditions (i)–(iii) hold for each ω ∈ A:

(i) Every subsequence n′ has a further subsequence n′′ for which ξn′′(ω)
converges with respect to ρ [in other words, ξn(ω), n ≥ 1 is a Cauchy sequence
with respect to ρ].

(ii) All of the ρ-limit points of ξn(ω) belong to S.
(iii) For any s ∈ S, there is a subsequence n′ (which may depend on s and

ω) such that ρ{ξn′(ω), s} → 0.
Recall the subset K of C defined in Section 6.6.1 [see (6.69)]. Since C ⊂ D,
K is also a subset of D. Finkelstein (1971) proved the following result.

Theorem 7.7. Un/
√

2 log logn r.c. K w.r.t. ‖ · ‖ on D a.s.

We consider an example as an application of Theorem 7.7.

Example 7.6. Finkelstein (1971) showed that

sup

{∫ 1

0

x2(t) dt : x ∈ K

}
=

1

π2
.

Also, it can be shown that the functional g(x) =
∫ 1

0
x2(t) dt is continuous

with respect to ‖ · ‖ on D (Exercise 7.13). It follows from Theorem 7.7 that

lim sup

∫ 1

0
U2

n(t) dt

2 log logn
=

1

π2
a.s. (7.19)

A few words about LIL for a general empirical process (7.3). An extension
of Theorem 7.5 states that

lim sup
‖√n(Fn − F )‖√

2 log log n
≤ 1

2
a.s. (7.20)

with equality if 1/2 is in the range of F . For example, if F is continuous, then
the latter certainly holds; hence, the equality holds in (7.20). On the other
hand, Theorem 7.6 extends without any modification; that is,

lim inf
√

2 log logn‖√n(Fn − F )‖ =
π

2
a.s. (7.21)

In a way, the LIL describes the precise a.s. (or strong) convergence rate of
the empirical process. There are similar results on the a.s. convergence rate
of the empirical process, which may not be as precise as the LIL in terms
of the rate but more useful in some other regard. For example, sometimes
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a “second-order” approximation is needed in applications. To illustrate this,
note that Theorem 7.4 states that the weak convergence limit of Un is U , the
Brownian bridge. Although, in general, weak convergence does not necessarily
imply a.s. convergence (see Chapter 2), the Skorokhod representation theorem
(Theorem 2.18) states that there is a version of Un and U defined on a common

probability space such that Un
a.s.−→ U . Here, a version of Un and U means

a sequence of random variables having the same distributions as Un and U ,
respectively. See Theorem 2.18 for the precise definitions. So, in a certain
sense, the Brownian bridge is also the a.s. limit of Un. The question then is
what is the a.s. convergence rate of Un−U in the same sense? Such a problem
is often referred to as the strong approximation of empirical process.

The Skorokhod representation is useful in establishing results of weak con-
vergence, or convergence in probability; however, it does not help in deriving
results of a.s. convergence. The reason is that Skorokhod representation tells
nothing about the joint distribution of U1, U2, . . ., which is something involved
in the a.s. convergence. An improvement of the Skorokhod representation is
called the Hungarian construction, which began with the pioneering work of
Csörgő and Révész (1975). The following is one of the fundamental results.

Theorem 7.8 (The Hungarian construction). There exists a sequence
of independent Uniform(0, 1) random variables ξ1, ξ2, . . . and a sequence of
Brownian bridges U (n), n ≥ 1, such that

lim sup

√
n

(logn)2

∥∥∥Un − U (n)
∥∥∥ < c a.s.,

where Un is the empirical process of ξ1, . . . , ξn and c is a finite constant.

See Chapter 12 of Shorack and Wellner (1986) for further results on the
Hungarian construction. An application is considered later in Section 7.8.

7.5 Bounds and large deviations

There is a rich class of probability inequalities for empirical processes (e.g.,
Shorack and Wellner 1986). These inequalities play important roles not only
in establishing the limit laws, such as SLLN and LIL, but also for obtaining
bounds for deviations of the empirical processes. Many of these inequalities
are maximum inequalities. For example, those regarding ‖Un‖ are maximum
inequalities because, by definition, ‖Un‖ is the supremum, or maximum, of
Un(t) for t ∈ [0, 1]. We begin with the following well-known James inequality.

Theorem 7.9. For any 0 < p ≤ 1/2 and λ > 0, we have

P

(∥∥∥∥ U+
n

1 − I

∥∥∥∥p

0

≥ λ

q

)
≤ exp

{
− λ2

2pq
ψ

(
λ

p
√
n

)}
,
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where ‖x‖b
a = supa≤t≤b |x(t)|, U+

n /(1−I) denotes the process U+
n (t)/(1−t), t ∈

[0, 1) (recall a+ = a ∨ 0), q = 1 − p, and

ψ(u) =
2

u2
[(1 + u){log(1 + u) − 1} + 1]. (7.22)

Some properties of ψ are left as an exercise (Exercise 7.14). Regarding U−n ,
we have the following result.

Theorem 7.10 (Shorack). For any 0 < p ≤ 1/2 and 0 < λ ≤ √
np, we

have

P

(∥∥∥∥ U−n
1 − I

∥∥∥∥p

0

≥ λ

q

)
≤ exp

{
−λ2

2p
ψ

(
− λ

p
√
n

)}
∧ exp

(
− λ2

2pq

)
,

where U−n /(1 − I) denotes the process U−n (t)/(1 − t), t ∈ [0, 1) (recall a− =
−a ∧ 0), and ψ is the same function defined by (7.22).

Example 7.7. Consider the special case of p = q = 1/2. Let λ = εp
√
n,

where 0 < ε < 1. Then Theorem 7.9 implies

P

(∥∥∥∥ U+
n

1 − I

∥∥∥∥1/2

0

≥ ε
√
n

)
≤ exp

{
− ε2

2
ψ(ε)n

}
, (7.23)

whereas Theorem 7.10 implies

P

(∥∥∥∥ U−n
1 − I

∥∥∥∥1/2

0

≥ ε
√
n

)
≤ exp

{
− ε2

4
ψ(−ε)n

}
∧ exp

(
− ε2

2
n

)
. (7.24)

Note that 1 ≤ ψ(−ε) < 2 [part (e) of Exercise 7.14]. Thus, the first term on
the right side of (7.24) is greater than the second term. It follows that

P

(∥∥∥∥ U−n
1 − I

∥∥∥∥1/2

0

≥ ε
√
n

)
≤ exp

(
− ε2

2
n

)
. (7.25)

Also note that ψ(ε) ≤ 1 and ψ(ε) → 1 as ε→ 0 [parts (d) and (a) of Exercise
7.14]. It follows that the bound on the right side of (7.23) is greater than that
on the right side of (7.25), but, as ε → 0, the bounds are approximately equal.

Another interesting result is a maximum inequality regarding a uniform
empirical process indexed by subintervals of [0, 1]. For any C = (s, t], where
0 ≤ s ≤ t ≤ 1, define Un(C) = Un(t)−Un(s) and |C| = t− s. Mason, Shorack
and Wellner (1983) proved the following.

Theorem 7.11. For any 0 < a ≤ b ≤ 1/2 and λ > 0, we have
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P

{
sup
|C|≤a

|Un(C)| ≥ λ
√
a

}
≤ 20

ab3
exp

{
−(1 − b)4

λ2

2
ψ

(
λ√
an

)}
,

where ψ is the function defined by (7.22).

A celebrated inequality for empirical processes is known as DKW inequal-
ity, named after Dvoretzky, Kiefer, and Wolfowitz.

Theorem 7.12 (DKW inequality). There exists a constant c such that

1

2
P(‖Un‖ ≥ λ) ≤ P(‖U−n ‖ ≥ λ) ≤ ce−2λ2

, λ ≥ 0. (7.26)

In the original paper of Dvoretzky et al. (1956), the authors did not specify
the value of the constant c. Birnbaum and McCarty (1958) conjectured that
c can be chosen as 1. By tracking down the original proof of Dvoretzky et al.
(1956), Shorack and Wellner (1986) showed that c = 29 is good enough while
acknowledging that this is not the minimum possible value. Hu (1985) showed
that the constant can be improved to c = 2

√
2. Massart (1990) finally proved

Birnbaum and McCarty’s conjecture by showing that c can be chosen as 1 as
long as e−2λ2 ≤ 1/2 [of course, it has to be because the left side of (7.26) is
bounded by 1/2], and the value cannot be further improved.

As a demonstration of the DKW inequality (with the best constant c),
consider the following example.

Example 7.8. Let X1, . . . , Xn be i.i.d. observations with an unknown con-
tinuous distribution F . Suppose that one wishes to determine the sample size
n so that the probability is at least 95% that the maximum difference between
the empirical d.f. Fn and F is less than 0.1. This means that one needs to
determine n such that

P

{
sup

x
|Fn(x) − F (x)| < 0.1

}
≥ 0.95. (7.27)

By (7.6) and continuity of F , we see the left side of (7.27) is equal to

P

[
sup

x
|Gn{F (x)} − F (x)| < 0.1

]
= P

{
sup

0≤t≤1
|Gn(t) − t| < 0.1

}
= P(‖Un‖ < 0.1

√
n)

= 1 − P(‖Un‖ ≥ 0.1
√
n),

which is ≥ 1 − 2e−0.02n by the DKW inequality with c = 1. Thus, it suffices
to let 1 − 2e−0.02n ≥ 0.95, or n ≥ 185.
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We conclude this section with some results on large deviations of the em-
pirical d.f. The results are similar to those discussed in Section 6.6.2. For
simplicity, we will focus on the uniform empirical d.f. Gn. First, note that the
latter can be expressed as n−1Sn, where Sn =

∑n
i=1 Yi with Yi = 1(Xi≤x) and

Y1, Y2, . . . is a sequence of i.i.d. random variables. Using the general result of
Section 6.6.2, it can be shown that for each t ∈ [0, 1] and δ ≥ 0, we have

lim
n→∞

1

n
log[P{Gn(t) ≥ t+ δ}] = −f(δ, t), (7.28)

where f(δ, t) = (t + δ) log{(t + δ)/t} + (1 − t − δ) log{(1 − t − δ)/(1 − t)} if
0 ≤ δ ≤ 1 − t and f(δ, t) = ∞ if δ > 1 − t (Exercise 7.16).

To derive a result of large maximum deviation regarding Gn, we consider
Dn,h = ‖(Gn − I)h‖, D+

n,h = ‖(Gn − I)+h‖, and D−n,h = ‖(Gn − I)−h‖, where
h is any function on (0, 1) satisfying the following conditions:

(i) h is positive and continuous on (0, 1);
(ii) h is symmetric about 1/2 and limt→0 h(t) exists or is ∞.

An obvious example of h is h = 1 (or any positive constant). Another example
is h(t) = − log{t(1 − t)}. For any such function h, we define

Ih(λ) = inf
t∈(0,1)

f{λ/h(t), t}. (7.29)

Some properties of Ih are explored in an exercise (Exercise 7.17). Shorack and
Wellner (1986) proved the following result.

Theorem 7.13. For any h satisfying conditions (i) and (ii) above, we
have, for each λ ≥ 0,

lim
n→∞

1

n
log{P(Dn,h ≥ λ)} = −Ih(λ),

where Ih(λ) is defined by (7.29). The same result holds with Dn,h replaced
by D+

n,h or D−n,h.

7.6 Non-i.i.d. observations

There have been a number of extensions of the Glivenko–Cantelli theorem.
One extension considers the so-called triangular arrays Xn1, . . . , Xnn so that
for each n, the Xni’s are independent with Xni ∼ Fni. We then define

F̄n(x) =
1

n

n∑
i=1

Fni(x), −∞ < x <∞. (7.30)

The empirical d.f. of the Xni’s is defined as

Fn(x) =
1

n

n∑
i=1

1(Xni≤x), −∞ < x <∞. (7.31)
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The following theorem extends the Glivenko–Cantelli theorem to triangular
arrays, where the supremum norm ‖ · ‖ is defined similarly as (7.7); that is,

‖F −G‖ = sup
−∞<x<∞

|F (x) −G(x)|. (7.32)

Theorem 7.14. For the Fn and F̄n defined by (7.31) and (7.30), respec-

tively, we have ‖Fn − F̄n‖ a.s.−→ 0, as n → ∞.

Another extension of the Glivenko–Cantelli theorem is to stationary er-
godic sequences. A sequence of random variables Xi, i ≥ 0, is said to be
(strictly) stationary if for any k ≥ 0, the joint distribution of (Xk+1, Xk+2, . . .)
is the same as that of (X0, X1, . . .). If (Ω,A, P ) is a probability space, a mea-
surable map T : Ω → Ω is said to be measure-preserving if P (T−1A) = P (A)
for all A ∈ A, where T−1A = {ω ∈ Ω, T (ω) ∈ A}. Any stationary se-
quence {Xi} may be thought of as being generated by a measure-preserving
transformation T in the sense that there exists a random variable X de-
fined on a probability space (Ω,A, P ) and a map T : Ω → Ω such that the
sequence XT i, i ≥ 0, has the same joint distribution as Xi, i ≥ 0, where
XT i(ω) = X{T i(ω)}, ω ∈ Ω, and XT 0 = X . The sequence Xi, i ≥ 0 is said
to be ergodic if the transformation T satisfies the following: For any A ∈ A,
T−1A = A implies P (A) = 0 or 1. An extension of the SLLN is the following.

Ergodic Theorem. If T is measure-preserving and E(|X |) < ∞, then

1

n

n−1∑
i=0

XT i a.s.−→ E(X |I),

where I = {A ∈ A : T−1A = A}, which is a σ-field called the invariant σ-field
(with respect to T ).

The ergodic theorem can be used to establish the following extension of
the Glivenko–Cantelli theorem [see Dehling and Philipp (2002) for the proof].

Theorem 7.15. Let Xi, i ≥ 0 be a stationary ergodic sequence with com-
mon cdf F , and Fn(x) = n−1

∑n−1
i=0 1(Xi≤x). Then ‖Fn −F‖ a.s.−→ 0 as n→ ∞.

The behavior of the empirical d.f. (7.31) is closely related to that of
the so-called generalized binomial distribution. Let ξ1, . . . , ξn be independent
Bernoulli random variables with probabilities of success p1, . . . , pn, respec-
tively. The distribution of ξ = ξ1 + · · · + ξn is called generalized binomial.
It is clear that the summation in (7.31) has a generalized binomial distri-
bution, in which ξi = 1(Xni≤x) and pi = Fni(x), 1 ≤ i ≤ n. On the other
hand, let p̄ = (p1 + · · ·+pn)/n, and let η denote a random variable that has a
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Binomial(n, p̄) distribution. Hoeffding’s (1956) inequalities show that the gen-
eralized binomial random variable ξ is more dispersed than its counterpart η
in the sense described by the following lemma.

Lemma 7.1. (i) For any a and b such that 0 ≤ a ≤ np̄ ≤ b ≤ n we have
P(a ≤ ξ ≤ b) ≤ P(a ≤ η ≤ b) with equality holds if and only if p1 = · · · = pn,
unless a = 0 and b = n. (ii) For any function g satisfying

g(k) + g(k + 2) ≥ 2g(k + 1), 0 ≤ k ≤ n− 2, (7.33)

we have E{g(ξ)} ≥ E{g(η)}.

Note that condition (7.33) is satisfied by all convex functions. Hoeffding
originally required g(k)+ g(k+2) > 2g(k+1), 0 ≤ k ≤ n−2 instead of (7.33)
(also see Shorack and Wellner 1986, p. 805). With a simple argument, it can
be shown that this requirement can be relaxed to (7.33) (Exercise 7.18).

The result of weak convergence of empirical processes discussed in Section
7.3 also has extensions to non-i.i.d. cases. Let Fni, 1 ≤ i ≤ n, n ≥ 1, be an
array of arbitrary distributions on [0, 1] and let Xni, 1 ≤ i ≤ n, n ≥ 1, be an
array of random variables such that for each n ≥ 1, Xni, . . . , Xnn are indepen-
dent with distributions Fn1, . . . , Fnn, respectively. Let wn = (wni)1≤i≤n, n ≥
1, be a sequence of nonzero constant vectors. Consider the following weighted
empirical process:

Zn(t) =
1

|wn|
n∑

i=1

wni{1(Xni≤t) − Fni(t)}, 0 ≤ t ≤ 1. (7.34)

It is easy to show (Exercise 7.19) that

cov{Zn(s), Zn(t)} =
1

|wn|2
n∑

i=1

w2
ni{Fni(s ∧ t) − Fni(s)Fni(t)}. (7.35)

Consider a function closely related to (7.35): vn(t) = |wn|−2
∑n

i=1 w
2
niFni(t).

The following theorem, which is a special case of Theorem 3.3.1 of Shorack
and Wellner (1986), extends the Doob–Donsker theorem (Theorem 7.4).

Theorem 7.16. If |wn|−2 max1≤i≤n w2
ni → 0 and max1≤i≤n ‖Fni−I‖ → 0

as n → ∞, then Zn
d−→ U , the Brownian bridge, on (D,D, ‖ · ‖) as n → ∞.

As for sequence of dependent random variables, Billingsley (1968, Section
22) proved weak convergence of empirical process of stationary ϕ-mixing se-
quence. Let . . . , X−1, X0, X1, . . . be a stationary sequence of random variables.
For any −∞ < k < ∞, let Fk

−∞ = σ(Xi, i ≤ k), where σ(Xi, i ∈ I) represents
the σ-field generated by Xi, i ∈ I, and F∞k = σ(Xi, i ≥ k). The sequence is
said to be ϕ-mixing if for any −∞ < k < ∞ and n ≥ 1, we have
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|P(E1 ∩E2) − P(E1)P(E2)| ≤ ϕ(n)P(E1) (7.36)

for any E1 ∈ Fk
−∞ and E2 ∈ F∞k+n. Note that if P(E1) > 0, (7.36) is equivalent

to |P(E2|E1)−P(E2)| ≤ ϕ(n). Roughly speaking, the mixing condition states
that there is a decay in dependence as the random variables in the sequence
are further apart and the rate of decay is controlled by ϕ. It is required that

lim
n→∞

ϕ(n) = 0. (7.37)

For example, in the following theorem due to Billingsley, the rate of decay
ϕ(n) is further specified.

Theorem 7.17. Let {Xi} be stationary ϕ-mixing and Xi ∈ [0, 1]. Let
F be the cdf of Xi and let Fn be the empirical cdf defined by (7.1). If F is

continuous and
∑∞

n=1 n
2
√
ϕ(n) < ∞, then

√
n(Fn −F )

d−→ Z on (D,D, ‖ · ‖)
as n → ∞, where Z is a Gaussian process satisfying E{Z(t)} = 0 and

cov{Z(s), Z(t)} = E{gs(X0)gt(X0)}

+

∞∑
i=1

[E{gs(X0)gt(Xi)} + E{gs(Xi)gt(X0)}],

with gt(x) = 1(0≤x≤t) − F (x) and P(Z ∈ C) = 1 (i.e., with probability 1 the
sample path of Z is continuous).

There is vast literature on extensions of the results of empirical processes
to various non-i.i.d. cases. See, for example, Dehling et al. (2002).

7.7 Empirical processes indexed by functions

Another way of extending the results is to think of the empirical processes as
a statistical functional (see Section 7.2). Note that (7.1) can be written as

Pn(f) =
1

n

n∑
i=1

f(Xi), (7.38)

where f(y) = 1(y≤x). Alternatively, one may define the empirical measure as
Pn = n−1

∑n
i=1 δXi , where δy represents a point mass at y. Then the functional

(7.38) can be expressed as Pn(f) =
∫
fdPn. The empirical process, with the

original definition of (7.1), may be viewed as the image of a special class of
functions under Pn; that is, {Pn(1(−∞,x]), x ∈ R}, where 1A(y) = 1 if y ∈ A
and 0 otherwise. More generally, one may consider the process {Pn(f), f ∈ F}
for an arbitrary class of functions F and call it an empirical process (indexed
by functions). Note that for each f ∈ F , (7.38) is a random variable [which is
why {Pn(f), f ∈ F} is a process].
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Suppose that X1, . . . , Xn are i.i.d. with cdf F . Note that F (x), too, can be
expressed as a functional; that is, F (x) = P (f) =

∫
fdP , where f = 1(−∞,x]

and P (A) = P(X1 ∈ A). The Glivenko–Cantelli theorem (Theorem 7.2) can
be expressed as

sup
f∈F

|Pn(f) − P (f)| a.s.−→ 0 as n → ∞ (7.39)

for the special class F = F1 = {1(−∞,x], x ∈ R}. More generally, one may
question whether or not (7.39) holds for a given class F ; if it does, F is
said to be a P -Glivenko–Cantelli class. Here, P refers to the fact that the
supremum in (7.31) depends on the underlying distribution F or P .

To extend the Glivenko–Cantelli theorem in this direction, some regular-
ity conditions need to be imposed on F . For the most part, these conditions
attempt to control the complexity of F , which is necessary. Note that the
classical Glivenko–Cantelli theorem states that (7.39) holds for F = F1 with-
out any restriction on F . However, the following example shows that without
restrictions on F , (7.39) may not hold for some F .

Example 7.9 (A counterexample). Let F be a continuous distribution;
therefore, P is nonatomic in the sense that P ({x}) = 0 for every x. Let
A be the class of all finite subsets of R and F = {1A, A ∈ A}. Now, let

Â = {X1, . . . , Xn}. Clearly, we have Â ∈ A; hence, f̂ = 1Â ∈ F (for any

realization of the random variables). However, we have Pn(f̂) = Pn(Â) = 1

and P (f̂) = P (Â) = 0. Thus, the left side of (7.39) is equal to 1 for every n;
hence, cannot converge to zero almost surely.

The complexity of F is measured by a quantity called entropy. For 1 ≤
r <∞, let Lr(P ) be the collection of functions f such that

‖f‖r,P =

(∫
|f |rdP

)1/2

< ∞.

An ε-bracket in Lr(P ) is a pair of functions g, h ∈ Lr(P ) such that

P{g(X) ≤ h(X)} = 1 and ‖h− g‖r,P ≤ ε.

A function f lies in the ε-bracket g, h if P{g(X) ≤ f(X) ≤ h(X)} = 1. The
bracketing number, denoted by, N{ε,F ,Lr(P )}, is the minimum number of
ε-brackets in Lr(P ) needed to cover F so that every f ∈ F lies in at least
one ε-bracket. In most cases, one does not need to know the exact bracketing
number—only an estimate of its order is sufficient. We consider an example.

Example 7.10. Let X1, . . . , Xn be i.i.d. random variables with distribution
F (which corresponds to P ) on R. Let F = F1 [defined below (7.39)]. It can
be shown that N{ε,F ,Lr(P )} < ∞ for every ε > 0 (Exercise 7.22).
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With the definition of the bracketing number, we can state an extension
of the Glivenko–Cantelli theorem.

Theorem 7.18. If N{ε,F ,Lr(P )} < ∞ for every ε > 0, then (7.39) holds;
that is, F is a P -Glivenko–Cantelli class.

In a similar way, we can extend the result in Section 7.3 on weak
convergence of the empirical process. Define the entropy with bracketing
as the logarithm of the bracketing number, denoted by E{ε,F ,Lr(P )} =
log[N{ε,F ,Lr(P )}]. Let l∞(F) denote the collection of all bounded function-

als P : F �→ R. We say F is P -Donsker if
√
n(Pn − P )

d−→ G in l∞(F) as
n → ∞, where G is a Gaussian process indexed by f ∈ F with mean 0 and
covariance cov{G(f1), G(f2)} = cov{f1(X), f2(X)}, f1, f2 ∈ F , and X ∼ F

(or P ). Here,
d−→ is defined the same way as in Section 7.3 (above Theorem

7.4) with D replaced by l∞(F), D replaced by the Borel σ-field generated by
the open balls in l∞(F) [i.e., sets of the form {Q ∈ l∞(F) : ρ(Q,P ) < ε} for
some P ∈ l∞(F) and ε > 0; see below] and ‖ · ‖ is replaced by the metric
ρ(P,Q) = supf∈F |P (f)−Q(f)|. The following theorem extends Theorem 7.4.

Theorem 7.19. If
∫∞
0

√
E{ε,F ,L2(P )} dε < ∞, then F is P -Donsker.

The proofs of Theorems 7.18 and 7.19 and much more on empirical pro-
cesses indexed by functions can be found in Kosorok (2008).

7.8 Case study: Estimation of ROC curve and ODC

The receiver operating characteristic (ROC) curve is a measure of the accu-
racy of a continuous diagnostic test. Typically, the patients are classified as
“healthy” or “diseased” according to a cutoff point, c, so that the patients
whose test scores are higher than c are classified as “diseased”; otherwise they
are classified as“healthy” or “normal.” Let X denote the test score of a ran-
domly selected healthy patient and let Y denote that of a randomly selected
diseased patient. We assume that both X and Y are continuous random vari-
ables with cdf (pdf) F (f) and G (g), respectively, and that X and Y are inde-
pendent. The sensitivity of the test is defined as SE(c) = P(Y > c) = 1−G(c).
In other words, the sensitivity is the probability that a diseased individual is
(correctly) classified as diseased when the cutoff c is used. On the other hand,
the specificity of the test is SP(c) = P(X ≤ c) = F (c), which is the probabil-
ity of correctly classifying a healthy individual. These concepts are similar to
the complements of type II and type I errors in statistical hypothesis testing
(e.g., Lehmann 1986). The ROC curve is then defined as a plot of the fraction
of “true positive,” SE(c) (on the vertical axis), versus that of “false positive,”
1 − SP(c) (on the horizontal axis), for −∞ < c < ∞. Equivalently, the ROC
curve can be viewed as a plot of



234 7 Empirical Processes

ROC(t) = 1 −G{F−1(1 − t)} versus t for t ∈ [0, 1], (7.40)

where F−1 is defined by (7.4). Another closely related plot is the ordinal
dominance curve (ODC; Bamber 1975), which is obtained by reversing the
axes; that is,

ODC(t) = F{G−1(t)} versus t for t ∈ [0, 1]. (7.41)

It is easy to verify that both the ROC curve and ODC have the following
properties (Exercise 7.23):

(i) Invariance under monotonically increasing transformations of the mea-
surement scale.

(ii) If X is stochastically smaller than Y—that is, F (x) ≥ G(x) for all
x—then the curve lies above the diagonal of the unit square.

(iii) The curve is concave if f and g have a monotone likelihood ratio in
the sense that f(x)/g(x) is nondecreasing in x.

(iv) The area under the curve is the probability P(X < Y ).
Swets and Pickett (1982) listed a variety of areas where ROC curves are

used. The areas range from signal detection, psychology, to nutrition and
medicine. A more recent example was given in Peng and Zhou (2004), in
which the authors considered estimation of the ROC curve of a carbohydrate
antigenic determinant (CA 19-9) in distinguishing between case and control
patients. The data were originally used by Wieand et al. (1989) to demonstrate
the superiority of CA 19-9 in detecting pancreatic cancer. The control and case
groups consisted respectively of 51 patients with pancreatitis and 90 patients
with pancreatic cancer. Concentrations of CA 19-9 in sera from all the patients
were studied at the Mayo Clinic in Rochester, Minnesota, USA.

Typically, two datasets are collected: X1, . . . , Xm from the healthy pop-
ulation and Y1, . . . , Yn from the diseased population. We assume that these
observations are independent. An empirical ROC curve is then obtained by
replacing F and G in (7.40) by Fm and Gn, the empirical d.f.’s defined by
(7.1) (with, of course, some changes in notation), respectively. Similarly, an
empirical ODC is obtained by replacing F and G in (7.41) by Fm and Gn,
respectively. Hsieh and Turnbull (1996) described asymptotic properties of
the empirical ODC. Similar results can also be derived for the empirical ROC
curve. The authors assumed that m = m(n) such that n/m → λ ∈ (0,∞) as
n → ∞. It is also assumed that the slope of the ODC—that is,

ODC′(t) =
f{G−1(t)}
g{G−1(t)}

—is bounded on any subinterval (a, b) of (0, 1), where 0 < a < b < 1. Then
by applying the Glivenko–Cantelli theorem (see Theorem 7.2) and the DKW
inequality (see Theorem 7.12), the authors showed that

‖FmG
−1
n − FG−1‖ = sup

0≤t≤1
|Fm{G−1

n (t)} − ODC(t)| a.s.−→ 0
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as n → ∞. Furthermore, by using results of strong approximation of the
empirical process (see Section 7.4), the authors showed that there exists a
probability space on which one can define the empirical processes Fm and Gn

and two independent Brownian bridges U
(n)
1 and U

(n)
2 such that

√
n[Fm{G−1

n (t)} − ODC(t)]

=
√
λU

(n)
1 {ODC(t)} +

f{G−1(t)}
g{G−1(t)}U

(n)
2 (t) + o

{
(log n)2√

n

}
a.s. uniformly on [a, b] (7.42)

for any 0 < a < b < 1.
Another quantity of interest is the area under either the ROC curve or

ODC, which is the probability P(X < Y ) according to property (iv) above.
This area is known as a measure of accuracy on how well the test separates
the subjects being tested into those with and without the disease in question.
The traditional academic point system assigns letter grades to a diagnostic
test according to its area under the ROC curve or ODC as follows: above 0.9,
excellent (A); 0.8–0.9, good (B); 0.7–0.8, fair (C); 0.6–0.7, poor (D); below
0.5, fail (F). A natural estimate of the area under the ODC is the area under
the empirical ODC; that is,

P̂(X < Y ) =

∫ 1

0

Fm{G−1
n (t)} dt =

1

mn

∑
1≤i≤m,1≤j≤n

1(Xi<Yj) (7.43)

(Exercise 7.24). Using the result of (7.42), Hsieh and Turnbull showed that

√
n{P̂(X < Y ) − P(X < Y )} d−→ N(0, σ2)

as n → ∞, where

σ2 = var

[√
λ

∫ 1

0

U1{ODC(t)} dt+

∫ 1

0

f{G−1(t)}
g{G−1(t)}U2(t) dt

]
= λ var

(∫ 1

0

U1[F{G−1(t)}] dt
)

+ var

(∫ 1

0

U2[G{F−1(t)}] dt
)

= λ‖FG−1‖2
∗ + ‖GF−1‖2

∗,

where U1 and U2 are two independent Brownian bridges and

‖h‖2
∗ =

∫ 1

0

h2(t)dt −
{∫ 1

0

h(t)dt

}2

.

7.9 Exercises

7.1. Use a computer to draw two realizations of X1, . . . , X10 from the
standard normal distribution and then plot the empirical d.f. (7.1) based on
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each realization of X1, . . . , X10. Compare the two plots by making them (i)
side-by-side and (ii) one on top of the other (same axes).

7.2. Show that Weyl’s sequence Xi, i = 1, 2, . . ., defined in Section 7.1
[below (7.3)] has identical uniform distribution in that P (Xi ≤ x) = x, 0 ≤
x ≤ 1 for all i, where P denotes Lebesgue measure; however, the Xi’s are not
independent.

7.3. Show that for any k ≥ 1 and x1 < · · · < xk, the two random vectors
in (7.5) have identical joint distribution.

7.4. Prove the Glivenko–Cantelli theorem (Theorem 7.2) by an ε-δ ar-
gument. (Hint: See Example 1.6; consider the points j/k, 0 ≤ j ≤ k,
k = 1, 2, . . ..)

7.5. This exercise is regarding Example 7.2.
(i) Verify expression (7.8).
(ii) Show that ‖G−1

n − I‖ = ‖Gn − I‖.
7.6. Show that the statistical functional in Example 7.3 is continuous.
7.7. Show that the quantile functional of Example 7.4 is continuous pro-

vided that F−1 is continuous in a neighborhood of t. Give a counterexample
to show that if F−1 is not continuous in a neighborhood of t, the result may
not be true.

7.8. Use Theorem 2.14 and the CLT to show that for any distinct
t1, . . . , tk ∈ [0, 1], the joint distribution of Un(t1), . . . , Un(tk) is asymptotically
multivariate normal with mean 0 and covariance matrix Σ = (σuv)1≤u,v≤k,
where σuv = cov{Un(tu), Un(tv)} = tu ∧ tv − tutv.

7.9. Show that the Brownian bridge U(t) defined in Section 7.3 satisfies
E{U(t)} = 0 and that cov{U(s), U(t)} = s ∧ t− st for all 0 ≤ s, t ≤ 1.

7.10. Show that the following functions g are continuous on (D, ‖ · ‖):
(i) g(x) = sup0≤t≤1 x(t);
(ii) g(x) = sup0≤t≤1 |x(t)|.
7.11. Consider a one-sided Kolmogorov–Smirnov test for the null hypoth-

esis (7.9), where F0 is a discrete distribution with the following jumps:

x 1 2 3 4 5 6
F0(x) 0.033 0.600 0.833 0.933 0.961 1.000

[the exercise is based on an example given in Wood and Altavela (1978)]. The
alternative is H−1 given below (7.9), so the statistic D−n of (7.12) is considered.

(i) Show that for any λ > 0,

lim
n→∞

P(
√
nD−n > λ) = 1 − P(Z1 ≤ λ, . . . , Z5 ≤ λ), (7.44)

where (Z1, . . . , Z5) has a multivariate normal distribution with means 0 and
covariances given by

cov(Zi, Zj) = F0(i) ∧ F0(j) − F0(i)F0(j), 1 ≤ i, j ≤ 5.

(ii) The observed value of
√
nD−n in Wood and Alravela (1978) was 1.095.

For each sample size n, where n = 30, 100, and 200, generate 10,000 random
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vectors (Z1, . . . , Z5)
′ as above and evaluate the right side of (7.44) with λ =

1.095 by Monte-Carlo method.
7.12. Show that Chung’s result (given at the beginning of Section 7.4)

implies Smirnov’s LIL (Theorem 7.5).
7.13. This exercise is regarding Example 7.6 in Section 7.4.

(i) Show that the functional g(x) =
∫ 1

0
x2(t) dt, x ∈ D, is continuous with

respect to ‖ · ‖.
(ii) Derive (7.19).
7.14. Verify the following properties for the function ψ defined by (7.22):
(a) ψ(u) is nonincreasing for u ≥ −1 with ψ(0) = 1;
(b) uψ(u) is nondecreasing for u ≥ −1;
(c) ψ(u) ∼ (2 logu)/u as u→ ∞;
(d) 0 ≤ 1 − ψ(u) ≤ u/3 for 0 ≤ u ≤ 3;
(e) 0 ≤ ψ(u) − 1 ≤ |u| for −1 ≤ u ≤ 0;
(f) ψ′(0) = −1/3, ψ(−1) = 2 and ψ′(−1) = −∞;
(g) uψ(u) equals 0 and −2 respectively for u = 0 and −1 and has derivative

1 for u = 0;
(h) for |u| < 1, we have the Taylor expansion

ψ(u) = 1 − u

3
+
u2

6
− u3

10
+ · · · + (−1)k2uk

(k + 1)(k + 2)
+ · · · .

7.15. Show that for any 0 < a ≤ 1/2 and λ > 0, we have

P

{
sup

0≤h≤a
sup

0≤t≤1−h
|Un(t+ h) − Un(t)| ≥ λ

√
a

}
≤ 160

a
exp

{
−λ2

32
ψ

(
λ√
an

)}
,

where π is the function defined by (7.22).
7.16. Derive (7.28) using the general result of Section 6.6.2.
7.17. This exercise explores some properties of the function Ih defined by

(7.29).
(i) Take h = 1. Show that I1 is nondecreasing on (0, 1), I1(λ) = 2λ2+O(λ3)

as λ→ 0, and I1(λ) → ∞ as λ→ 1.
(ii) Take h(t) = − log{t(1 − t)}. Show that Ih(λ) ∼ (eλ)2/8 as λ→ 0 and

Ih(λ) → ∞ as λ → 1.
(iii) Continue part (ii). Let tλ be the value of t at which the infimum in

(7.29) is attained. Find the limit of tλ as λ → 0.
7.18. This exercise is regarding (7.33), which is a key condition in Lemma

7.1. Hoeffding (1956) originally required

g(k) + g(k + 2) > 2g(k + 1), 0 ≤ k ≤ n− 2, (7.45)

instead of (7.33) (also see Shorack and Wellner 1986, p. 805). Show by a simple
argument that this requirement can be relaxed to (7.33). [Hint: Suppose that
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g satisfies (7.33). Let h(x) = g(x) + εx2, where ε is an arbitrary positive
constant. Show that h satisfies (7.45) (with g replaced by h, of course).]

7.19. For the weighted empirical process defined by (7.34), verify the co-
variance function (7.35).

7.20. Show that Billingsley’s theorem on weak convergence of the empirical
process of the stationary ϕ-mixing sequence (Theorem 7.17) implies the Doob–
Donsker theorem (Theorem 7.4); so the former is an extension of the latter.

7.21. Give a specific example of a stantionary ϕ-mixing (but not i.i.d.)
sequence that satisfies the conditions of Theorem 7.17.

7.22. Show that in Example 7.10 we have N{ε,F ,Lr(P )} <∞, ∀ε > 0.
7.23. Verify properties (i)–(iv) for the ROC curve and ODC defined in

Section 7.8.
7.24. Verify the second identity in (7.43).
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Martingales

The mathematical modeling of physical reality and the inherent non-
determinism of many systems provide an expanding domain of rich
pickings in which martingale limit results are demonstrably of great
usefulness.

Hall and Heyde (1980)
Martingale Limit Theory and Its Application

8.1 Introduction

The term martingale originally referred to a betting strategy. Imagine a gam-
bler playing a blackjack game (also known as twenty-one) in a casino (if you
have not been in a casino or have never heard about the blackjack, there is
nothing to worry, as far as this book is concerned). He begins with an initial
bet of $5, which is the minimal according to the rule of the casino table. Every
time he loses, he doubles the bet; otherwise he returns to the minimal bet.
For example, a sequence of bettings may be $5 (lose), $10 (lose), $20 (lose),
$40 (lose), $80 (win), $5 (lose), $10 (lose), .... It is easy to see that with this
strategy, as long as the gambler does not keep losing, whenever he wins he
recovers all his previous losses, plus an additional $5, which is equal to his
initial bet (Exercise 8.1). However, $5 is as much as he can win at the end of
any losing sequence, and he is risking more and more in order to win the $5
as the sequence extends longer and longer. On the fourth bet of the sequence,
the gambler is risking $40 to win $5; on the eighth bet, he is risking $640; on
the 17th bet, he would be risking $327,680, still for a chance to win $5. So,
why would anyone (ever) want to play this game? Well, there are at least two
reasons. First, when someone loses, there is a tendency or desire to “get it
back” (in other words, once the gambler starts lossing, it is difficult for him to
stop). Second and perhaps more importantly, the gambler figures that sooner
or later he has to win; however, is he right?

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_8, © Springer Science+Business Media, LLC 2010



240 8 Martingales

There are a few places in real life where the theory and practice do not seem
to work together. Unfortunately for the gambler, this is one of those places.
The problem is that the condition of the theory is never met in practice. To
keep playing with this betting strategy, it takes not only a lot of courage (to
keep playing despite heavy losses) but also unlimited resources (i.e., money),
which no gambler has in real life. There is another “untold secret,” so far, of
the casino, which turns out to be a “killer.” Just like the gambler, the casino
knows well about this betting strategy, so it has a way to stop the gambler
from playing with it. On each gambling table there is a maximum bet, say,
$500. This makes it impossible for the gambler to keep playing the martingale
strategy, because the maximum number of consecutive bets he can make with
this strategy is seven (Exercise 8.1). There are other tiny little “tricks” that
give the casinos small edges (which is why they stay in business).

The probabilistic definition of a (discrete-time) martingale is the following.
Let S1, S2, . . . be a sequence of random variables satisfying

E(Sn+1|S1, . . . , Sn) = Sn a.s.; (8.1)

that is, the conditional expectation (see Appendix A.2) of the next obser-
vation, given all the past observations, is (almost surely) equal to the last
observation. Then the sequence is called a martingale. More generally, let
(Ω,F , P ) be a probability space. Let I represent an index set of integers. For
example, I = {1, 2, . . .} or I = {. . . ,−1, 0, 1, . . .}. Let Fn, n ∈ I, be a non-
decreasing sequence of σ-fields of F sets. This means that Fn ⊂ Fm ⊂ F for
any m,n ∈ I such that n < m, and we will keep this notation/assumption
throughout this chapter. A sequence of random variables Sn, n ∈ I, is called
a (discrete-time) martingale with respect to Fn, n ∈ I, or Sn, Fn, n ∈ I, is a
martingale if it satisifies the following condition (or two conditions):

Sn ∈ Fn, E(Sm|Fn) = Sn a.s. ∀m,n ∈ I,m > n. (8.2)

Here, ξ ∈ G means that the random variable ξ is measurable with respect
to the σ-field G. Note that the condition also implies the existence of the
expectation of Sn (although the expectation is not necessarily finite) for all
n ∈ I. If Sn, Fn, n ≥ 1 is a martingale according to the (8.2), then Sn, n ≥ 1,
is also a martingale according to (8.1); but the converse is not necessarily true
(Exercise 8.2). In this chapter we only consider the discrete-time situations.
Extension to continuous time will be considered in the next chapter.

Similarly, a sequence Sn, Fn, n ∈ I, is a submartingale (supermartingale)
if the equality in (8.2) is replaced by ≥ (≤). In terms of (8.1), a submartingale
(supermartingale) means E(Sn+1|S1, . . . , Sn) ≥ Sn a.s. [E(Sn+1|S1, . . . , Sn) ≤
Sn a.s.]. Returning to the gambling problem, if the gambler’s fortune over
time is a supermartingale, his expected future given the current decreases;
if it is a submartingale, his expected future given the current increases; if
it is a martingale, then his expected future fortune will be the same as his
current fortune. So, as a gamble, he wishes that his fortune over time is a
submartingale, or at least a martingale. We consider a more specific example.
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Example 8.1. Suppose that the gambler has probability p of winning each
blackjack game. After the initial bet, the gamble starts a sequence of plays
(here we assume that there is no maximum bet set on the table and that the
gambler has unlimited resources, so that he can continuously play the game)
such that his win/loss total after the nth game is Sn, n ≥ 1. Furthermore, let
Xn be the result of his nth play [so the value of Xn is either −a (loss) or a
(win) for some positive integer a].

First, suppose that p ≤ 1/2. If Xn is a loss, say, Xn = −a for some a > 0,
his next bet is 2a; thus, his expectation for the (n+ 1)st play is

(2a) × p+ (−2a) × (1 − p) = 2a(2p− 1) ≤ 0.

If Xn is a win, his next bet is 5; thus, similarly, the expectation is

5 × p+ (−5) × (1 − p) = 5(2p− 1) ≤ 0.

In conclusion, no matter what the value of Xn, the gambler’s conditional
expectation for his (n + 1)st play given the results of his previous plays is
less than or equal to zero; that is, E(Xn+1|X1, . . . , Xn) ≤ 0. [In fact, it
can be seen that Xn+1 depends on Xn but not on X1, . . . , Xn−1, so that
E(Xn+1|X1, . . . , Xn) = E(Xn+1|Xn).] Note that Sn = X1 + · · ·+Xn, so that
Sn+1 = Sn +Xn+1. If we define Fn = σ(X1, . . . , Xn), then we have Sn ∈ Fn

and E(Sn+1|Fn) = Sn + E(Xn+1|Fn) ≤ Sn, n ≥ 1. Thus, by Lemma 8.1 in
the sequel, Sn, Fn, n ≥ 1, is a supermartingale.

By similar arguments, it can be shown that if p ≥ 1/2, Sn, Fn, n ≥ 1, is
a submartingale; if p = 1/2, Sn, Fn, n ≥ 1, is a martingale.

The name martingale was first introduced to the modern probabilistic
literature by French mathematician Jean Ville in 1939. Early developments of
martingale theory were influenced by S. Bernstein and P. Lévy, who considered
the martingale as a generalization of sums of independent random variables
(see Example 8.2 below). It was J. L. Doob in his landmark book, Stochastic
Processes (1953), that brought a complete new look to the subject. Among
Doob’s most celebrated work was his discovery of the martingale convergence
theorem, which we introduce in Section 8.3.

8.2 Examples and simple properties

First, let us derive a simpler, equivalent definition of martingale (submartin-
gale, supermartingale).

Lemma 8.1. Let I be a set of all integers between a and b, where a can
be −∞ and b can be ∞. Then Sn, Fn, n ∈ I, is a martingale (submartingale,
supermartingale) if and only if Sn ∈ Fn and E(Sn+1|Fn) = (≥,≤)Sn a.s. for
all n such that n, n+ 1 ∈ I.
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The proof is left as an exercise (Exercise 8.3). We consider some exam-
ples below, and in between the examples we introduce more concepts and
properties of martingales, submartingales, and supermartingales.

Example 8.2. A classical example of a martingale is sums of indepen-
dent random variables. Let X1, X2, . . . be a sequence of independent ran-
dom variables such that E(Xi) = 0 for all i. Let Sn =

∑n
i=1 Xi and

Fn = σ(X1, . . . , Xn), n ≥ 1. Then, Sn, Fn, n ≥ 1 is a martingale (Exer-
cise 8.4). See Exercise 8.11 for an extension of this example.

In the above example, Sn is the sum of X1, . . . , Xn and, conversely, Xn is
the difference of Sn and Sn−1. We can extend this notion to the martingales,
which in many cases is more convenient. Let Xn, n ∈ I, be a sequence of
random variables, where I is as in Lemma 8.1. We say Xn, Fn, n ∈ I, is a
sequence of martingale differences if

Xn ∈ Fn, E(Xn+1|Fn) = 0 a.s. (8.3)

for all n such that n, n + 1 ∈ I. The connection between martingale and
martingale differences is illustrated by the following lemma.

Lemma 8.2. If Xn, Fn, n ≥ 1, is a sequence of martingale differences,
then Sn =

∑n
i=1 Xi, Fn, n ≥ 1, is a martingale. Conversely, if Sn, Fn, n ≥ 1,

is a martingale, define X1 = S1 and Xn = Sn − Sn−1, n ≥ 2, then Xn, Fn,
n ≥ 1, is a sequence of martingale differences.

The martingale differences provide a convenient way of contructing a mar-
tingale: One may first construct a sequence of martingale differences and then
take the sums. In particular, the techniques used in the next lemma are some-
times very useful. A sequence of random variables ξn, n ∈ I, is said to be
adapted to Fn, n ∈ I, if ξn ∈ Fn, n ∈ I. A sequence ηn, n ∈ I, is said to be
predictable with respect to Fn, n ∈ I, if ηn ∈ Fn−1, n− 1, n ∈ I.

Lemma 8.3. (i) If ξn, n ≥ 1 is adapted to Fn, n ≥ 1, let X1 = ξ1,
Xn = ξn−E(ξn|Fn−1), n ≥ 2. Then Xn, Fn, n ≥ 1, is a sequence of martingale
differences; hence, Sn =

∑n
i=1 Xi, Fn, n ≥ 1, is a martingale.

(ii) If Xn, Fn, n ∈ I, is a sequence of martingale differences, where I is as
in Lemma 8.1, and ηn, n ∈ I, is predictable with respect to Fn, n ∈ I, then
ηnXn, Fn, n ∈ I, is a sequence of martingale differences.

The proof is left as an exercise (Exercise 8.5). We consider an example.

Example 8.3 (Quadratic form). Let X1, . . . , Xn be independent random
variables such that E(Xi) = 0 and E(X2

i ) < ∞, 1 ≤ i ≤ n, and A =
(aij)1≤i,j≤n is a symmetric, constant matrix. The random variable Q =
X ′AX =

∑n
i,j=1 aijXiXj , where X = (X1, . . . , Xn)′, is called a quadratic
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form in X1, . . . , Xn. There is an interesting, and useful, decomposition of the
quadratic form as a sum of martingale differences after subtracting its mean.
To see this, note that E(Q) =

∑n
i=1 aiiE(X2

i ). Thus,

Q− E(Q) =

n∑
i,j=1

aijXiXj −
n∑

i=1

aiiE(X2
i )

=

n∑
i=1

aii{X2
i − E(X2

i )} +
∑
i
=j

aijXiXj

=
n∑

i=1

aii{X2
i − E(X2

i )} + 2
∑
i>j

aijXiXj

=

n∑
i=1

aii{X2
i − E(X2

i )} + 2

n∑
i=1

⎛⎝∑
j<i

aijXj

⎞⎠Xi

=

n∑
i=1

Yi,

where Yi = aii{X2
i − E(X2

i )} + 2
(∑

j<i aijXj

)
Xi, 1 ≤ i ≤ n [here the

summation
∑

j<1(· · ·) is understood as zero]. Let Fi = σ(X1, . . . , Xi), 1 ≤
i ≤ n. By Lemma 8.3(ii) and Lemma 8.4 below, it is easy to show that Yi, Fi,
1 ≤ i ≤ n, is a sequence of martingale differences (Exercise 8.6).

The above decomposition was used by Jiang (1996) to derive a CLT for
quadratic forms (see Section 8.8).

Some simple properties of martingale differences, martingales, submartin-
gales, and supermartingales are summarized in the next three lemmas. The
proofs are left as exercises (Exercises 8.7–8.9).

Lemma 8.4. (i) If X
(j)
n , Fn, n ∈ I, j = 1, 2, are two sequences of martin-

gale differences, where I is as in Lemma 8.1, then X
(1)
n +X

(2)
n , Fn, n ∈ I, is

a sequence of martingale differences.

(ii) If S
(j)
n , Fn, n ∈ I, j = 1, 2, are two martingales (submartingales,

supermartingales), then S
(1)
n +S

(2)
n , Fn, n ∈ I, is a martingale (submartingale,

supermartingale).

(iii) If S
(j)
n , Fn, n ∈ I, j = 1, 2, are two submartingales, then S

(1)
n ∨ S

(2)
n ,

Fn, n ∈ I, is a submartingale.

(iv) If S
(j)
n , Fn, n ∈ I, j = 1, 2, are two supermartingales, then S

(1)
n ∧S(2)

n ,
Fn, n ∈ I, is a supermartingale.

Note that it is important that the σ-fields Fn for the two martingales
differences (martingales, submartingales, supermartingales) are the same.
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Lemma 8.5. (i) If Sn, Fn, n ∈ I is a martingale, then for any convex
(concave) function ψ, ψ(Sn), Fn, n ∈ I, is a submartingale (supermartingale).

(ii) If Sn, Fn, n ∈ I, is a submartingale (supermartingale), then for any
nondecreasing convex (concave) function ψ, ψ(Sn), Fn, n ∈ I, is a submartin-
gale (supermartingale).

(iii) If Sn, Fn, n ∈ I, is a supermartingale (submartingale), then for any
nonincreasing convex (concave) function ψ, ψ(Sn), Fn, n ∈ I, is a submartin-
gale (supermartingale).

Lemma 8.6. Suppose that Xi, Fi, 1 ≤ i ≤ n, is a sequence of martingale
differences. Then the following hold.

(i) E(Xi) = 0, 2 ≤ i ≤ n.
(ii) If E(X2

i ) < ∞, 1 ≤ i ≤ n, then the sequence Xi, 1 ≤ i ≤ n, is
orthogonal; that is, E(XiXj) = 0, if i �= j. It follows that

E

(
n∑

i=1

Xi

)2

=
n∑

i=1

E(X2
i ).

Time for some more examples.

Example 8.4. For any real number x, x+ = x if x > 0 and 0 if x ≤ 0;
similarly, x− = −x if x < 0 and 0 if x ≥ 0. If Sn, Fn, n ∈ I, is a submartingale,
then S+

n , Fn, n ∈ I, is also a submartingale. There are two ways to show this.
First note that x+ is a nondecreasing convex function of x. The conclusion
then follows by (ii) of Lemma 8.5. Second, note that x+ = x ∨ 0. Since Sn,
Fn, n ∈ I, is a submartingale and, obviously, 0, Fn, n ∈ I, is a submartingale.
Thus, the conclusion follows from (iii) of Lemma 8.4.

Similarly, if Sn, Fn, n ∈ I, is a superbmartingale, there are two ways to
show that −S−n , Fn, n ∈ I, is also a supermartingale (try it!).

Since a martingale is both a submartingale and a supermartingale, and
x = x+ − x−, it follows that any martingale can be decomposed as a sum of
a submartingale and a supermartingale, Sn = S+

n − S−n , both of which are
not (necessarily) martingales (this rules out a trivial decomposition such as
Sn = Sn + 0).

Example 8.5 (Likelihood ratio). Let P and Q be two probability measures
on (Ω,F) and let Xi, i ≥ 1, be a sequence of random variables (not necessarily
independent). Suppose that the joint pdf of X1, . . . , Xn under P and Q are
fn and gn, respectively. Define

Sn =
gn(X1, . . . , Xn)

fn(X1, . . . , Xn)

if fn(X1, . . . , Xn) > 0 and Sn = 0 if fn(X1, . . . , Xn) = 0. When X1, . . . , Xn

are observations, Sn is called the likelihood ratio (of Q with respect to P ). For
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example, in a classical hypothesis testing problem, P represents the distribu-
tion under the null hypothesis andQ represents that under a given alternative.
In this case, the likelihood ratio measures how likely the data are from the
alternative compared to from the null hypothesis. An important, and inter-
esting, property of the likelihood ratio is that Sn, n ≥ 1, is a supermartingale
with respect to Fn = σ(X1, . . . , Xn), n ≥ 1, under the probability distribution
P . To show this, note that, obviously, Sn ∈ Fn. Furthermore, let B be the
Borel sets in R; we have, for any B ∈ Bn,∫

(X1,...,Xn)∈B

Sn+1 dP

=

∫
(X1,...,Xn)∈B,fn+1(X1,...,Xn+1)>0

gn+1(X1, . . . , Xn+1)

fn+1(X1, . . . , Xn+1)
dP

=

∫
· · ·
∫

(B×R)∩{fn+1(x1,...,xn+1)>0}
gn+1(x1, . . . , xn+1) dx1 · · · dxn+1

=

∫
· · ·
∫

(B×R)∩{fn(x1,...,xn)>0,fn+1(x1,...,xn+1)>0}
· · ·

+

∫
· · ·
∫

(B×R)∩{fn(x1,...,xn)=0,fn+1(x1,...,xn+1)>0}
· · ·

≤
∫

· · ·
∫

B∩{fn(x1,...,xn)>0}

{∫
gn+1(x1, . . . , xn+1)dxn+1

}
dx1 · · · dxn

+

∫
· · ·
∫

fn(x1,...,xn)=0

{∫
fn+1(x1,...,xn+1)>0

gn+1(x1, . . . , xn+1) dxn+1

}
dx1 · · · dxn

=

∫
· · ·
∫

B∩{fn(x1,...,xn)>0}
gn(x1, . . . , xn) dx1 · · · dxn

=

∫
(X1,...,Xn)∈B

Sn dP.

The second to last equation used the facts that∫
gn+1(x1, . . . , xn+1) dxn+1 = gn(x1, . . . , xn),

and that because∫
fn+1(x1, . . . , xn+1) dxn+1 = fn(x1, . . . , xn),

fn(x1, . . . , xn) = 0 implies that the set {xn+1 : fn+1(x1, . . . , xn+1) > 0} has
Lebesgue measure 0; hence, the integral of gn+(x1, . . . , xn+1) over this set is
zero. In conclusion, we have shown that for any B ∈ Bn,∫

(X1,...,Xn)∈B

Sn+1 dP ≤
∫

(X1,...,Xn)∈B

Sn dP ;
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thus, EP (Sn+1|Fn) ≤ Sn a.s. P (see Appendix A.2).

The implication of this example to hypothesis testing is that suppose that
the data actually come from the null hypothesis. Then the more data one
collects, the less likely the data would look like they were coming from the
alternative.

Example 8.6 (Branching process). Let Xn,i, i ≥ 1, n ≥ 1, be an array of
i.i.d. random variables taking values in nonnegative integers. We assume that
E(Xn,i) = μ > 0. Let T0 = 1 and

Tn =

Tn−1∑
i=1

Xn,i, n ≥ 1. (8.4)

The sequence Tn, n ≥ 1, is called a branching process. The name comes from
a process in which bacterials reproduce themselves. Starting with one bacte-
rial, suppose that from time n − 1 to time n, the ith bacterial becomes Xn,i

bacterials. Let the total number of bacterials at time n be Tn. It is easy to see
that Tn can be expressed as (8.4). Consider the normalized branching process
Sn = Tn/μ

n. We show that Sn, n ≥ 1, is a martingale with respect to the
σ-fields Fn = σ(T1, . . . , Tn), n ≥ 1. It is obvious that Sn ∈ Fn. Also, we have

E(Tn+1|Fn) = E

(
Tn∑
i=1

Xn+1,i

∣∣∣∣∣Fn

)

= E

{ ∞∑
k=1

1(Tn=k)

k∑
i=1

Xn+1,i

∣∣∣∣∣Fn

}

=

∞∑
k=1

1(Tn=k)E

(
k∑

i=1

Xn+1,i

∣∣∣∣∣Fn

)

=

∞∑
k=1

1(Tn=k)kμ

= μTn a.s.;

hence, E(Sn+1|Fn) = Sn a.s.

We conclude this section with the intruduction of an important concept
in martingale theory. A measurable function τ taking values in {1, 2, . . . ,∞}
is called a stopping time with respect to Fn, n ≥ 1, if {τ = n} ∈ Fn, n ≥ 1.
For each stopping time τ we can define a corresponding σ-field

Fτ = {A ∈ F∞ : A ∩ {τ = n} ∈ Fn, n ≥ 1}, (8.5)

where F∞ = σ(∪∞n=1Fn). We consider an example.
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Example 8.7. Let Sn, n ≥ 1, be a sequence of random variables and let
Fn = σ(S1, . . . , Sn), n ≥ 1. For any Borel set B, define τ = inf{n ≥ 1, Sn ∈
B}, where inf{∅} ≡ ∞. Intuitively, τ is the first time that the sequence Sn

enters B. For any n ≥ 1, we have {τ = n} = {Sk /∈ B, 1 ≤ k < n and Sn ∈
B} ∈ Fn. Therefore, τ is a stopping time with respect to Fn, n ≥ 1.

Some basic properties of stopping times are summarized below. The proof
is left as an exercise (Exercise 8.10).

Lemma 8.7. Suppose that τ is a stopping time with respect to Fn, n ≥ 1.
(i) Fτ is a σ-field and τ ∈ Fτ .
(ii) If Sn, n ≥ 1, is adapted to Fn, n ≥ 1, and S∞ is defined as lim supSn,

then Sτ ∈ Fτ .
Now suppose that τ1 and τ2 are stopping times with respect to Fn, n ≥ 1.
(iii) τ1 ∨ τ2 and τ1 ∧ τ2 are both stopping times with respect to Fn, n ≥ 1.
(iv) If τ1 ≤ τ2, then Fτ1 ⊂ Fτ2 .

8.3 Two important theorems of martingales

8.3.1 The optional stopping theorem

Property (ii) of Lemma 8.7 suggests that the first part of the defining property
of a martingale (submartingale, supermartingale) (i.e., Sn ∈ Fn) is preserved,
if the fixed time n is replaced by a stopping time τ . Now, suppose that we
have a nondecreasing sequence of stopping times, τ1 ≤ τ2 ≤ · · ·. Property (iv)
of Lemma 8.7 then implies that Fτk

, k ≥ 1, is a nondecreasing sequence of
σ-fields. One may thus conjecture that Sτk

, Fτk
, k ≥ 1, remains a martingale

(submartingale, supermartingale). The following theorem, known as Doob’s
optional stopping theorem (or optional sampling theorem; Doob 1953), implies
that the conjecture is true under certain regularity conditions.

Theorem 8.1. Let Sn, Fn, n ≥ 1, be a submartingale and let τ2 be a
stopping time with respect to Fn, n ≥ 1, such that P(τ2 < ∞) = 1 and
E(Sτ2) exists. If

lim inf E{S+
n 1(τ2>n)} = 0, (8.6)

then for any stopping time τ1 with respect to Fn, n ≥ 1, as long as
E{Sτ11(τ1≤τ2)} exists, we have

E(Sτ2 |Fτ1) ≥ Sτ1 a.s. {τ1 ≤ τ2}. (8.7)

Because the negative of a supermartingale is a submartingale, and a mar-
tingale is both a submartingale and a supermartingale (and also note that
(−x)+ = x−, |x| = x+ +x−), Theorem 8.1 immediately implies the following.
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Corollary 8.1. (i) If the word submartingale in Theorem 8.1 is replaced
by supermartingale and (8.6) is replaced by

lim inf E{S−n 1(τ2>n)} = 0, (8.8)

then (8.7) is replaced by

E(Sτ2 |Fτ1) ≤ Sτ1 a.s. {τ1 ≤ τ2}. (8.9)

(ii) If the word submartingale in Theorem 8.1 is replaced by martingale, and
(8.6) is replaced by

lim inf E{|Sn|1(τ2>n)} = 0, (8.10)

then (8.7) is replaced by

E(Sτ2 |Fτ1) = Sτ1 a.s. {τ1 ≤ τ2}. (8.11)

We consider some applications of the optional stopping theorem.

Example 8.8. If Sn, Fn, n ≥ 1, is a martingale (submartingale, super-
martingale) and τ is a stopping time with respect to Fn, n ≥ 1, then Sτ∧k,
Fτ∧k, k ≥ 1, is a martingale (submartingale, supermartingale). To see this,
note that by (iii) of Lemma 8.7 it is easy to see that τ ∧ k is a stopping time
for any k ≥ 1. Furthermore, since

Sτ∧k =
k∑

l=1

Sl1(τ=l) + Sk1(τ>k),

E(Sτ∧k) exists for all k ≥ 1. Also, note that |Sn|1(τ∧k>n) = 0 when n ≥ k;
therefore, (8.10) is satisfied (with τ2 replaced by τ∧k). Finally, for any k1 ≤ k2,
we have τ∧k1 ≤ τ2∧k2; hence, Sτ∧k11(τ∧k1≤τ∧k2) = Sτ∧k1 , whose expectation
exists as shown. It follows by (8.11) that E(Sτ∧k2 |Fτ∧k1) = Sτ∧k1 a.s. The
arguments for submartingale and supermartingale are similar (Exercise 8.17).

In particular, if Sn, Fn, n ≥ 1, is a nonnegative supermartingale, then
since τ ∧ k ≥ τ ∧ 1 = 1 for any k ≥ 1, we have E(Sτ∧k|F1) ≤ S1 a.s., which
implies E(Sτ∧k) ≤ E(S1). Also, since limk→∞ Sτ∧k1(τ<∞) = Sτ1(τ<∞), we
have, by Fatou’s lemma (Lemma 2.4),

E{Sτ1(τ<∞)} = E

{
lim

k→∞
Sτ∧k1(τ<∞)

}
≤ lim inf E{Sτ∧k1(τ<∞)}
≤ lim inf E(Sτ∧k)

≤ E(S1). (8.12)
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Example 8.9. Earlier in Lemma 5.4 we introduced an inequality due to
Stout (1974) without giving the proof. Now, with the result of (8.12) we can
give a simple proof as follows. For any 0 < α < λ, let τ be the smallest
integer m ≥ 0 such that Tm > α, if such an m exist; otherwise, let τ = ∞.
By Example 8.7 we know that τ is a stopping time. It follows, by (8.12), that
αP(τ < ∞) ≤ E{Tτ1(τ<∞)} ≤ E(T0) = 1; thus, by Chebyshev’s inequality,

P

(
sup
m≥0

Tm > α

)
= P(τ < ∞) ≤ 1

α
. (8.13)

Now, forget about the middle step of (8.13). The bottom line is that this
inequality holds for any α < λ; therefore, we must have P(supm≥0 Tm ≥ λ) ≤
λ−1 (why?).

Example 8.10. A submartingale analogue of (8.12) is the following. Suppose
that Sn, Fn, n ≥ 1, is a submartingale and τ is a stopping time with respect
to Fn, n ≥ 1, such that E(τ) <∞ and there is a constant c > 0 such that

E(|Xi||Fi−1) ≤ c a.s. {τ ≥ i}, i ≥ 1,

where X1 = S1 and Xi = Si − Si−1, i ≥ 2. Then we have E(|Sτ |) < ∞
and E(Sτ ) ≥ E(S1). To show this, note that, similar to Example 8.8, we
have E(Sτ∧k|F1) ≥ S1 a.s., which implies E(Sτ∧k) ≥ E(S1). The question is
whether one can exchange the order of limit (as n → ∞) and expectation
(because here we cannot use Fatou’s lemma). Note that

|Sτ∧k| =

∣∣∣∣∣
∞∑

i=1

Xi1(i≤τ∧k)

∣∣∣∣∣
≤

∞∑
i=1

|Xi|1(i≤τ) ≡ η.

If we can show

E(η) < ∞, (8.14)

then by the dominated convergence theorem (Theorem 2.16), we have

E(Sτ ) = E

(
lim

k→∞
Sτ∧k

)
= lim

n→∞
E(Sτ∧k)

≥ E(S1). (8.15)

The first equation in (8.15) is because E(τ) < ∞ implies that τ < ∞ a.s. It
remains to show (8.14). This follows because
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E(η) =
∞∑

i=1

E{|Xi|1(τ≥i)}

=
∞∑

i=1

E{1(τ≥i)E(|Xi||Fi−1)}

[because {τ ≥ i} = Ω \ {τ ≤ i− 1} ∈ Fi−1]

≤ c

∞∑
i=1

E{1(i≤τ)}

= c E

( ∞∑
i=1

1(i≤τ)

)
= c E(τ) < ∞.

Similarly, if the word submartingale is changed to martingale (and all other
conditions remain), the conclusion is that E(Sτ ) = E(S1).

8.3.2 The martingale convergence theorem

The martingale convergence theorem may be motivated from convergence of
monotonic sequences of real numbers. Recall that (see §1.5.1.3) an increasing
sequence of real numbers an, n = 1, 2, . . ., converges if it has an upper bound.
According to the definition, a submartingale satisfies

E(Sn+1|Fn) ≥ Sn a.s., (8.16)

which looks almost like an increasing sequence (except that there is a condi-
tional expectation on the left side). Here is another way to look at it. What
(8.16) means is that for any A ∈ Fn, we have∫

A

Sn+1 dP ≥
∫

A

Sn dP ;

in other words, Sn+1 is greater than or equal to Sn on any set of nonzero
probability that belongs to Fn. These observations lead one to conjecture
that a submartingale would converge in some sense if it has an upper bound.
The question is: What kind of upper bound? Since Sn is a random variable,
it may not be realistic to assume that it is uniformly bounded, so the bound
would be better in some other sense. Doob (1953) found that L1 boundedness
is sufficient for the almost sure convergence of a submartingale. This result
is known as the martingale convergence theorem. Note that in the following
theorem we extend the definition of a submartingale by allowing −∞ and ∞
to be its possible values.

Theorem 8.2. Suppose that Sn, Fn, n ≥ 1, is a submartingale such that
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sup
n≥1

E(S+
n ) < ∞. (8.17)

Then S∞ = limn→∞ Sn exists almost surely, and it has the following proper-
ties: (i) E(S+

∞) < ∞; (ii) |S∞| <∞ a.s. {S1 > −∞}; and (iii) if

E(|Sn|) < ∞, n ≥ 1, (8.18)

then E(|S∞|) <∞.

Note that although (8.17) is sufficient for the a.s. existence of S∞, it does
not imply that the latter is a.s. finite. (For a trivial example, consider Sn =
−∞, n ≥ 1, which satisfies the condition, but S∞ = −∞.) However, if (8.17)
is strengthened to

sup
n≥1

E(|Sn|) < ∞, (8.19)

then according to (iii) of Theorem 8.1, S∞ ∈ L1 and therefore is a.s. finite.
Also note that, under (8.17), (8.19) is equivalent to (8.18) (Exercise 8.18).
In other words, the L1 boundedness of a submartingale is all that is needed
for the a.s. convergence of the submartingale in the usual sense of, say, §1.5.1
(i.e., the limit is a.s. a finite number).

The martingale convergence theorem is a milestone in martingale theory
not only because of its applications in various fields, some of which are dis-
cussed in the sequel, but also because of a proof of the theorem using Doob’s
upcrossing inequality (e.g., Hall and Heyde 1980, p. 17) that inspired a gener-
ation of methodology based on stopping times. The version presented below
is in a slightly stronger form than the original one given in Doob (1953, p.
314). For any a < b, let Un(a, b) denote the number of times that S1, . . . , Sn

crosses from a value ≤ a to one ≥ b (known as upcrossing).

Lemma 8.8 (Doob 1960). Suppose that Sk, Fk, 1 ≤ k ≤ n, is a sub-
martingale. Then for any a < b, we have

E{Un(a, b)} ≤ E{(Sn − a)+}
b− a

.

See, for example, Hall and Heyde (1980, p. 15–16) for a proof of Lemma
8.8. The proof makes use of a sequence of stopping times that are the times
that the sequence S1, . . . , Sn upcrosses the interval (a, b) and the optional
stopping theorem (Theorem 8.1).

Of course, Theorem 8.2 also holds if the word submartingale is replaced
by martingale. We consider an example.

Example 8.11. For any random variable ξ ∈ L1, the sequence E(ξ|Fn),
n ≥ 1, converges almost surely. To see this let Sn = E(ξ|Fn), n ≥ 1. Then Sn,
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Fn, n ≥ 1, is a martingale. Furthermore, by Jensen’s inequality [see (5.56);
note that here we consider the conditional expectation], we have E(|Sn|) =
E{|E(ξ|Fn)|} ≤ E{E(|ξ||Fn)} = E(|ξ|) < ∞; hence, (8.19) is satisfied. It

follows that Sn
a.s.−→ S for some random variable S. In fact, it can be shown

that Sn also converges in L1 and S = E(ξ|F∞) a.s., where F∞ is defined
below (8.5) (e.g., Chow and Teicher 1988, Section 11.1).

As for a supermartingale, we have the following result.

Corollary 8.2. Let Sn, Fn, n ≥ 1 be a nonnegative supermartingale.
Then Sn converges almost surely to a limit S∞. Furthermore, if E(S1) < ∞,
then E(|S∞|) <∞.

This is because −Sn, Fn, n ≥ 1, is a submartingale and (−Sn)+ = S−n =
0. Thus, by Theorem 8.2, Sn converges a.s. to a limit S∞. If E(S1) < ∞,
then E(|Sn|) = E(Sn) ≤ E(S1) < ∞. Thus, by (iii) of Theorem 8.2 we have
E(|S∞|) <∞. Again, we consider an example.

Example 8.5 (continued). Earlier we showed that the likelihood ratio Sn

is a supermartingale with respect to the σ-fields Fn = σ(X1, . . . , Xn) and
the probability measure P . This supermartingale is certainly nonnegative.
Furthermore, we have

EP (S1) = EP

{
g1(X1)

f1(X1)

}
=

∫
g1(x1)

f1(x1)
f1(x1) dx1

=

∫
g1(x1) dx1 = 1.

Thus, by Corollary 8.2, the likelihood ratio Sn converges a.s. P to S∞ ∈ L1(P ).

8.4 Martingale laws of large numbers

8.4.1 A weak law of large numbers

In the following we often use the convenient notation Sn =
∑n

i=1 Xi for a
martingale Sn, meaning that Xi is the corresponding martingale difference
defined in Lemma 8.2. Hall and Heyde (1980) gave the following extension
of Theorem 6.2, where the sequence of normalizing constants, an, satisfy the
condition above (6.5). The proof is left as an exercise (Exercise 8.20).

Theorem 8.3. Let Sn =
∑n

i=1Xi, Fn, n ≥ 1, be a martingale. Then

a−1
n Sn

P−→ 0 as n → ∞ if the following conditions hold:
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(i)
∑n

i=1 P(|Xi| > an) −→ 0;

(ii) a−1
n

∑n
i=1 E{Xi1(|Xi|≤an)|Fi−1} P−→ 0;

(iii) a−2
n

∑n
i=1 E[var{Xi1(|Xi|≤an)|Fi−1}] −→ 0.

Note that in the case of independent variables, conditions (i)–(iii) of The-
orem 8.3 are also necessary. See Theorem 6.2. The following example given
by Hall and Heyde (1980, pp. 29–30) shows that these conditions are not
necessary in the martingale case.

Example 8.12. Let Yi, i ≥ 1, be a sequence of independent random variables
such that Y1 = 1 and, for i > 1, P(Yi = 0) = i−1, P(Yi = −2) = P{Yi =
2(2i− 1)/(i− 1)} = (i− 1)/2i. Note that E(Yi) = 1 for all i. Now, let

Sn =

(
n∏

i=1

Yi

)
− 1, n ≥ 1,

and Fn = σ(Y1, . . . , Yn). It is easy to show that Sn, Fn, n ≥ 1, is a martingale
with E(Sn) = 0 (Exercise 8.21). Furthermore, we have

P(Sn �= −1) = P

(
n∏

i=1

Yi �= 0

)
= P(Y2 �= 0, . . . , Yn �= 0)

=
n∏

i=2

(
i− 1

i

)
=

1

n
−→ 0

as n → ∞. Thus, Sn
P−→ −1. It follows that a−1

n Sn
P−→ 0 for any sequence

an satisfying the conditions above (6.5). Now, consider one special such se-
quences, an = n, n ≥ 1. Note that we haveXi = Si−Si−1 = Y1 · · ·Yi−1(Yi−1),
i ≥ 2. For any n ≥ 1, consider any i ≥ 1 such that 3 × 2i−2 > n. Then if
Y2, . . . , Yi are nonzero, we have |Xi| ≥ 3 × 2i−2 > n (why?). Thus,

P(|Xi| > n) ≥ P(Y2 �= 0, . . . , Yi �= 0)

=

i∏
j=2

(
j − 1

j

)
=

1

i
;

hence,
∑n

i=1 P(|Xi| > n) ≥∑ln<i≤n i
−1 → ∞ as n → ∞, where

ln = 2 +
logn− log 3

log 2

(Exercise 8.21). Therefore, condition (i) of Theorem 8.3 is not satisfied despite
the convergence to zero of a−1

n Sn.
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8.4.2 Some strong laws of large numbers

As in Section 6.3, Kronecker’s lemma (Lemma 6.1) is a useful tool for estab-
lishing the SLLN for martingales. Recall the idea is that the convergence of
an infinite series, say,

∑∞
i=1 xi, implies a−1

n

∑n
i=1 aixi → 0 for any nondecreas-

ing sequence of positive numbers an such that an → ∞. Now, suppose that
Sn =

∑n
i=1 Xi, Fn, n ≥ 1, is a martingale. According to Kronecker’s lemma,

whenever the series

∞∑
i=1

Xi

ai
(8.20)

converges, we have

Sn

an
=

1

an

n∑
i=1

Xi

=
1

an

n∑
i=1

ai

(
Xi

ai

)
→ 0. (8.21)

The problem then is to find out when the series (8.20) converges. The following
theorem can be derived from a result due to Chow (1965).

Theorem 8.4. For any 1 ≤ p ≤ 2, the series (8.20) converges and (8.21)
holds a.s. on the set {∑∞

i=1 a
−p
i E(|Xi|p|Fi−1) < ∞}, where F0 = {∅, Ω}.

Example 8.13. As another example of the stopping time techniques, we
give a proof of a special case of Theorem 8.4: the case p = 2. The proof is
essentially the same as the proof of Theorem 2.15 of Hall and Heyde (1980).
For any B > 0, let τ be the smallest integer n ≥ 1 such that

n+1∑
i=1

a−2
i E(X2

i |Fi−1) > B

if such an n exists; otherwise, let τ = ∞. It can be shown by Example 8.7
that τ is a stopping time with respect to Fn, n ≥ 1 (Exercise 8.22). Note that
1(τ≥i), i ≥ 1, is predictable with respect to Fi, i ≥ 1 (why?). It follows, by (ii)
of Lemma 8.3, that 1(τ≥i)Xi, Fi, i ≥ 1, is a sequence of martingale differences;
therefore, Sτ∧n =

∑n
i=1 1(τ≥i)Xi, Fn, n ≥ 1, is a martingale. We now show

that Sτ∧n is L2 bounded. This is because, by property (ii) of Lemma 8.6,

E(S2
τ∧n) =

n∑
i=1

E{1(τ≥i)X
2
i }

=

n∑
i=1

E{1(τ≥i)E(X2
i |Fi−1)} [because 1(τ≥i) ∈ Fi−1]
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= E

{
n∑

i=1

1(τ≥i)E(X2
i |Fi−1)

}

= E

{
τ∧n∑
i=1

E(X2
i |Fi−1)

}
≤ B,

using the definition of τ for the last inequality. It follows from the martingale
convergence theorem (Theorem 8.2) (note that L2 boundedness implies L1

boundedness) that Sτ∧n converges a.s. as n → ∞. Therefore, Sn converges a.s.
on {τ = ∞}. In other words, Sn converges a.s. on {∑∞

i=1 E(X2
i |Fi−1) ≤ B}.

The result then follows by the arbitrariness of B [Exercise 8.23, part (iv)].

When the range of p is not [1, 2], we have the following result. Note that
in part (i), the sequence is not required to be martingale differences. Again,
part (ii) is due to Chow (1965).

Theorem 8.5. (i) Let Xi, i ≥ 1, be any sequence of random variables.
Then, the conclusion of Theorem 8.4 holds for any p ∈ (0, 1).

(ii) Let Xi, Fi, i ≥ 1, be a sequence of martingale differences. For any p > 2
and any sequence bi > 0, i ≥ 1, such that

∑∞
i=1 bi <∞, (8.20) converges and

(8.21) holds a.s. on {∑∞
i=1 a

−p
i b

1−p/2
i E(|Xi|p|Fi−1) <∞}.

The proof is left as exercises (Exercises 8.23 and 8.24).
Note. Although we have assumed that an is a sequence of normalizing

constants, Theorem 8.4 and Theorem 8.5 continue to hold if an is a sequence
of predictable random variables with respect to Fn, n ≥ 1 (i.e., an ∈ Fn−1,
n ≥ 1), provided that an > 0 and an ↑ ∞ a.s.

A special case of interest is an = n, n ≥ 1. In this case we obtain the
following SLLN for martingales.

Corollary 8.3. n−1Sn
a.s.−→ 0 as n→ ∞ provided either

∞∑
i=1

E(|Xi|p)
ip

< ∞ (8.22)

for some 1 ≤ p ≤ 2 or

∞∑
i=1

E(|Xi|p)
ipb

p/2−1
i

< ∞ (8.23)

for some p > 2 and bi > 0, i ≥ 1, such that
∑∞

i=1 bi <∞.

To see this, note that, for example, (8.22) implies that

E

{ ∞∑
i=1

E(|Xi|p|Fi−1)

ip

}
=

∞∑
i=1

E(|Xi|p)

ip
< ∞,
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which implies that
∑∞

i=1 i
−pE(|Xi|p|Fi−1) < ∞ a.s. The desired result then

follows from Theorem 8.4.
It should be noted that although the martingale convergence theorem and

Kronecker’s lemma are often used together to establish the SLLN for martin-
gales, other methods have also been used for similar purposes. For example,
the following result, which is not a consequence of Theorem 8.4 or 8.5, can
be derived by using Doob’s maximum inequality [see (5.87)] and Burkholder’s
inequality for martingales [see (5.71) and the subsequent discussion]. In a way,
this approach is more similar to the traditional methods for establishing SLLN
for sums of independent random variables (see Chapter 6).

Theorem 8.6. Let Sn =
∑n

i=1 Xi, Fn, n ≥ 1 be a martingale. If for some
p ≥ 1, we have

∞∑
i=1

E(|Xi|2p)

ip+1
< ∞, (8.24)

then n−1Sn
a.s.−→ 0 as n → ∞.

The theorem can be derived from Theorem 2 of Chow (1960). Note that,
for example, (8.22) and (8.24) do not imply each other (Exercise 8.25). As an
application of Theorem 8.6 (or Corollary 8.3), consider the following.

Example 8.14. Let Xi, Fi, i ≥ 1, be adapted and there are a constant
c > 0 and a random variable X with E(|X |) < ∞ such that

P(|Xi| > x) ≤ cP(|X | > x), x ≥ 0, i ≥ 1. (8.25)

Then we have

1

n

n∑
i=1

{Xi − E(Xi|Fi−1)} P−→ 0. (8.26)

If the moment condition for X is strengthened to E(|X | log+ |X |) < ∞, then
(8.26) can be strengthened to a.s. convergence. To show (8.26), we write

Xi − E(Xi|Fi−1) = [Xi1(|Xi|≤i) − E{Xi1(|Xi|≤i)|Fi−1}]
+Xi1(|Xi|>i) − E{Xi1(|Xi|>i)|Fi−1)}

= Yi + Zi +Wi.

It can be shown that (8.25) implies

E{|Xi|1(|Xi|>i)} ≤ cE{|X |1(|X|>i)}, (8.27)

E{X2
i 1(|Xi|≤i)} ≤ 2c

∫ i

0

xP(|X | > x) dx (8.28)
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for any i ≥ 1, and that E(|X |) < ∞ implies

∞∑
i=1

1

i2

∫ i

0

xP(|X | > x) dx < ∞ (8.29)

(Exercise 8.26). It follows that

1

n
E

∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ ≤ 1

n

n∑
i=1

E{|Xi|1(|Xi|>i)}

≤ c

n

n∑
i=1

E(|X |1(|X|>i)}

→ 0

as n → ∞ (why?). Thus, we have n−1
∑n

i=1 Zi → 0 in L1, hence in
probability (Theorem 2.15). By similar arguments, it can be shown that

n−1
∑n

i=1 Wi
P−→ 0. Furthermore, using the fact that the variance of a random

variable is bounded by its second moment, we have

E(Y 2
i ) = E[var{Xi1(|Xi|≤i)|Fi−1}]

≤ E[E{X2
i 1(|Xi|≤i)|Fi−1}]

= E{X2
i 1(|Xi|≤i)}.

Thus, we have, by (8.28) and (8.29),
∑∞

i=1 i
−2E(Y 2

i ) < ∞. It follows by The-
orem 8.6 (or Corollary 8.3) that n−1

∑n
i=1 Yi → 0 a.s., hence in probability

(Theorem 2.7). This shows (8.26). The a.s. convergence under the stronger
moment condition is left as an exercise (Exercise 8.26).

8.5 A martingale central limit theorem and related topic

It is often more convenient to consider an array, instead of a single sequence, of
martingales, as far as the CLT is concerned (see below for further explanation),
and the results may be presented more explicitly if we consider an array of
martingale differences. This means that Sni =

∑i
j=1 Xnj, Fni, 1 ≤ i ≤ kn,

n ≥ 1, is an array such that for each n, Sni, Fni, 1 ≤ i ≤ kn, is a martingale,
where kn is a nondecreasing sequence of positive integers such that kn → ∞
as n → ∞ (e.g., kn = n). Throughout this section, we assume that Sni has
mean 0 and a finite second moment for all n and i. It follows that Xn1 = Sn1

and Xni = Sni − Sni−1, 2 ≤ i ≤ kn. Here, for convenience we define Sn0 = 0
and Fn0 = {∅, Ω}. Then for each n, Xni, Fni, 1 ≤ i ≤ kn, is a sequence of
martingale differences with E(Xni) = 0 and E(X2

ni) < ∞, 1 ≤ i ≤ kn.
We begin with the following well-known martingale CLT (Hall and Heyde

1980, p. 58). Let Yn, n ≥ 1, be a sequence of random variables on the probabil-
ity space (Ω,F , P ) converging in distribution to a random variable Y . We say
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the convergence is stable, denoted by Yn
P−→ Y (stably), if for all continuity

points y of Y and all A ∈ F , the limit limn→∞ P({Yn ≤ y} ∩ A) = Py(A)
exists and Py(A) → P(A) as y → ∞.

Theorem 8.7. Let Xni, Fni, 1 ≤ i ≤ kn, n ≥ 1, be an array of martingale
differences as above. Suppose that

max
1≤i≤kn

|Xni| P−→ 0, (8.30)

kn∑
i=1

X2
ni

P−→ η2, (8.31)

where η2 is a random variable, and

E

(
max

1≤i≤kn

X2
ni

)
is bounded in n. (8.32)

In addition, assume that the σ-fields satisfy

Fni ⊂ Fn+1i, 1 ≤ i ≤ kn, n ≥ 1. (8.33)

Then we have, as n → ∞,

Snkn =

kn∑
i=1

Xni
d−→ Z (stably), (8.34)

where the random variable Z has characteristic function

cZ(t) = E{exp(−η2t2/2)}. (8.35)

Note that the η2 in (8.31) is allowed to be a random variable. In particular,
if η2 is a constant, say, η2 = 1, then, by (8.35), we have Z ∼ N(0, 1), which
is the form of the classical CLT (see Section 6.4). Hall and Heyde (1980, pp.
59) noted that the restriction (8.33) on the σ-fields can be dropped if η2 is
a constant, provided that the word stably is removed from (8.34). This note
turns out to be useful in many applications (see, for example, Section 8.8).
On the other hand, Hall and Heyde (1980, p. 59–60) gave an example of an
array of martingale differences for which all the conditions of Theorem 8.7 are
satisfied, and yet η2 is not a constant. We consider another example.

Example 8.15 (Conditional logistic model). Suppose that given a random
variable, α, X1, X2, . . . are independent Bernoulli observations such that

logit{P(Xi = 1|α)} = μ+ α, (8.36)

where μ is an unknown parameter, and logit(p) = log{p/(1 − p)} for p ∈
(0, 1). Furthermore, suppose that α is distributed as N(0, σ2), where σ2 is an
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unknown variance. Equation (8.36) suggests that the sum Sn =
∑n

i=1Xi is
an important statistic in estimating the parameter μ (why?). Therefore, the
asymptotic behavior of Sn is of interest. Let h(x) = ex/(1+ex), −∞ < x <∞,
which is the inverse function of logit. Define Xni = {Xi − h(μ+ α)}/√n and
Fni = Fi = σ(α,X1, . . . , Xi), 1 ≤ i ≤ n. We show that Xni, Fni, 1 ≤ i ≤ n,
is an array of martingale differences.

Clearly, we have Xni ∈ Fni, 1 ≤ i ≤ n. Next, we show that E(Xi|Fni−1) =
h(μ + α) a.s. It suffices to show (see Appendix A.2) that for any Borel mea-
surable function f(x) and g(x1, . . . , xi−1), we have

E{f(α)g(X1, . . . , Xi−1)Xi}
= E{f(α)g(X1, . . . , Xi−1)h(μ+ α)}. (8.37)

The proof of (8.37) is left as an exercise (Exercise 8.29). It follows that
E(Xni|Fni−1) = 0 a.s., 1 ≤ i ≤ n.

Condition (8.30) is clearly satisfied because |Xni| ≤ 1/
√
n and so is (8.32).

It is also clear that (8.33) is satisfied. It remains to verify condition (8.31)
(which is usually the more challenging part compared to the other conditions).
For this, we write

n∑
i=1

X2
ni =

1

n

n∑
i=1

{Xi − h(μ+ α)}2

=
1

n

n∑
i=1

X2
i − 2h(μ+ α)

(
1

n

n∑
i=1

Xi

)
+ h2(μ+ α)

= {1 − 2h(μ+ α)}
(

1

n

n∑
i=1

Xi

)
+ h2(μ+ α),

because Xi is 0 or 1; hence, X2
i = Xi, 1 ≤ i ≤ n. Furthermore, it can be shown

by the result derived above and Example 8.14 that n−1
∑n

i=1Xi
P−→ h(μ+α)

(Exercise 8.29). Therefore, we have
∑n

i=1 X
2
ni

P−→ h(μ+α){1−h(μ+α)} = η2.

It follows by Theorem 8.7 that
√
n{n−1Sn −h(μ+α)} =

∑n
i=1 Xni

d−→ Z
(stably) as n → ∞, where Z is a random variable having the cf (8.35).

A situation of this kind of observations may occur in practice when the
population has clusters or subpopulations. Suppose that the probability of
an individual having a certain disease within a certain cluster depends on
a “latent” variable, α, that depends on the cluster. In other words, there is
a conditional probability of disease given α, which is modeled by (8.36) in
this example. This result shows that if one only samples from a given clus-
ter, the asymptotic distribution of the sample proportion of disease, n−1Sn,
depends on the cluster-specific random variable α, which, of course, makes
sense. However, quite often in practice, people would collect samples from
different clusters. In such a case, the asymptotic distribution of estimators
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of population parameters, such as μ and σ2, will be unconditional [i.e., not
dependent on α (see Chapter 12)].

Another application of Theorem 8.7 is considered later in Section 8.8.
A related topic to the martingale CLT is its convergence rate. Here, we

consider two types of results. The first is the uniform convergence rate over
all x ∈ R; the second is the nonuniform convergence rate, in which the bounds
depends on x. The following theorem on the uniform convergence rate is the
same as Theorem 3.7 of Hall and Heyde (1980), but presented in the form
of a martingale array. We believe the latter form is more convenient to use
in practice. One reason is that in many applications the observations are
not “nested” as the same size n increases; in other words, the observations
under a smaller sample size are not necessarily a subset of those under a
larger one. For example, a larger-scale survey run by one organization may not
include samples from a smaller-scale survey run by a different organization.
See Chapters 12 and 13 for many applications involving this type of data.
Another reason is that normalization (or standardization) of the sequence is
made more explicit under martingale array than under a single sequence of
martingale. See Example 8.15 and another example in the sequel.

Theorem 8.8. Let Sni =
∑i

j=1 Xnj , Fni, 1 ≤ i ≤ n, be an ar-

ray of martingales, where Fni = σ(Xn1, . . . , Xni), 1 ≤ i ≤ n. Let V 2
ni =∑i

j=1 E(X2
nj|Fnj−1), 1 ≤ i ≤ n. Write Sn = Snn and V 2

n = V 2
nn. If

max
1≤i≤n

|Xni| ≤ M√
n
, (8.38)

P

{
|V 2

n − 1| > 9M 2D
(logn)2√

n

}
≤ B

logn

n1/4
(8.39)

for some constants M , B, and D with D ≥ e, then for n ≥ 2, we have

sup
−∞<x<∞

|P(Sn ≤ x) − Φ(x)| ≤ c
logn

n1/4
, (8.40)

where Φ is the cdf of N(0, 1) and c = 2 +B + 7M
√
D.

Comparing (8.38) with the well-known Berry–Esseen bound (4.26), it is
seen that the convergence rate is considerably slower for martingales than
for sums of independent random variables. In fact, it can be shown that
n−1/4 logn is the best possible rate for martingales (e.g., Hall and Heyde
1980, p. 84). The reason for the slower convergence rate is that the martin-
gale differences are not independent. What the dependence does is reduce the
effective sample size. [Think about an extreme case: If the same story is re-
peated twice, the effective same size is 1 (story), not 2 (stories).] On the other
hand, the n in the Berry–Essen bound represents the effective sample size,
which equals the sample size in the independence case. If, however, there were
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a dependence among the sequence, by replacing n with the effective sample
size one would have ended up with a slower rate.

Also, note that conditions (8.38) and (8.39) imply that η2 = 1 in (8.31)

(with kn = n). To see this, note that (8.39) implies that V 2
n

P−→ 1 as n→ ∞.
Furthermore, write U2

n =
∑n

i=1 X
2
ni and Yni = X2

ni−E(X2
ni|Fni−1), 1 ≤ i ≤ n.

Note that (8.38) implies |Yni| ≤ M2/n a.s. Thus, by (ii) of Lemma 8.6,

E(U2
n − V 2

n )2 = E

(
n∑

i=1

Yni

)2

=

n∑
i=1

E(Y 2
ni) ≤

M4

n
.

It follows that U2
n − V 2

n → 0 in L2, and hence in probability as n → ∞. We
consider a specific example.

Example 8.16. Suppose that ξ1, ξ2, . . . are independent such that P(ξi =
−1) = P(ξi = 1) = 1/2, i ≥ 1. Define Xi = ξ1 · · · ξi, i ≥ 1, and we would
like to obtain the convergence rate of (8.40) for

∑n
i=1 Xi after a suitable nor-

malization. Let Xni = Xi/
√
n and Fni = σ(Xn1, . . . , Xni) = σ(X1, . . . , Xi) =

σ(ξ1, . . . , ξi) (why?), 1 ≤ i ≤ n. Then we have Xni ∈ Fni and

E(Xni|Fni−1) =
ξ1 · · · ξi−1√

n
E(ξi|ξ1, . . . , ξi−1)

=
ξ1 · · · ξi−1√

n
E(ξi) = 0.

Thus, Xni, Fni, 1 ≤ i ≤ n, is an array of martingale differences or, equiva-
lently, Sni =

∑i
j=1 Xnj, Fni, 1 ≤ i ≤ n, is an array of martingales. Also note

that X2
i = 1 for all i. It follows that X2

ni = 1/n, 1 ≤ i ≤ n, and V 2
n = 1.

Thus, (8.38) and (8.39) are satisfied with M = 1 and B = 0. Therefore,
if we let D = e (the smallest value for D), we have (8.40) for n ≥ 2 with
Sn =

∑n
i=1 Xni = n−1/2

∑n
i=1Xi and c = 2 + 7

√
e ≈ 13.6.

Now, consider the nonuniform convergence rate in CLT. The following
theorem, again in the form of martingale array, can be derived Theorem 3.9
of Hall and Heyde (1980).

Theorem 8.9. With the same notation of Theorem 8.8 and U2
n =∑n

i=1X
2
ni, define, for any 0 < δ ≤ 1,

pn =
n∑

i=1

E
{
|Xni|2(1+δ)

}
+ E

(|U2
n − 1|1+δ

)
,

qn =

n∑
i=1

E
{
|Xni|2(1+δ)

}
+ E

(|V 2
n − 1|1+δ

)
.
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There is a constant cδ depending only on δ such that for all x,

|P(Sn ≤ x) − Φ(x)| ≤ cδ
(pn ∧ qn)1/(3+2δ)

1 + |x|4(1+δ)2/(3+2δ)
. (8.41)

Again, we consider a simple example.

Example 8.16 (continued). Since X2
ni = 1 for all i, if we let δ = 1, we have

pn = qn = n. Thus, the left side of (8.41) is bounded by c1n
1/5(1+ |x|16/5)−1.

It might seem that by letting δ → 0, one might be able to obtain a nonuniform
convergence rate of n1/3(1 + |x|4/3)−1. However, this is not going to happen,
as far as Theorem 8.9 is concerned, because the constant cδ → ∞ as δ → 0.

8.6 Convergence rate in SLLN and LIL

After a discussion on the convergence rate in the martingale CLT, we now turn
our attention to convergence rate in the martingale SLLN. Let Sn =

∑n
i=1 Xi,

Fn, n ≥ 0, be a martingale with S0 = 0. We assume that E(X2
i ) < ∞ for

all i, and let σ2
n =

∑n
i=1 E(X2

i ). �Lagodowski and Rychlik (1986) proved the
following result, where limε→0+ means that ε → 0 while ε > 0.

Theorem 8.10. Suppose that there are constants bi > 0 such that

E(X2
i |Fi−1) ≤ bi a.s. (8.42)

and constants 0 < c1 < c2 such that

c1σ
2
n ≤

n∑
i=1

bi ≤ c2σ
2
n. (8.43)

Furthermore, suppose that

sup
−∞<x<∞

|P(Sn < xσn) − Φ(x)| −→ 0 (8.44)

as n → ∞. For any q ≥ 2 and q/2 < p ≤ q, if

lim
A→∞

lim
ε→0+

εr(p−1)
∑

n>A/εr

np−2
n∑

i=1

P(|Xi| ≥ εσnn
1/r) = 0, (8.45)

where r = 2q/(2p− q), then we have

lim
ε→0+

εr(p−1)
∞∑

n=1

np−2P(|Sn| ≥ εσnn
1/r)

=
2r(p−1)/2Γ [{1 + r(p − 1)}/2]

(p− 1)Γ (1/2)
, (8.46)
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where Γ is the gamma function.

Note that condition (8.44) requires uniform convergence in the CLT. Also
note that if ξn, n ≥ 1, is a sequence of random variables and F is a cdf that
is continuous on (−∞,∞), then sup−∞<x<∞ |P(ξn < x) − F (x)| → 0 if and
only if sup−∞<x<∞ |P(ξn ≤ x) − F (x)| → 0 (Exercise 8.32). Therefore, one
can replace the < in (8.44) by ≤. We consider an example.

Example 8.16 (continued). It is obvious that (8.42) and (8.43) are satisfied
in this case and σ2

n = n. Furthermore, by Theorem 8.8 (with Xni = Xi/
√
n)

and the above note, (8.44) is satisfied. Now, let p = q = 2; hence, r = 2. Since
P(|Xi| ≥ εn) = 0 if n > ε−1 and 1 if n ≤ ε−1, we have, for any A > 0,

∑
n>A/ε2

n∑
i=1

P(|Xi| ≥ εn) =
∑

Aε−2<n≤ε−1

n = 0

if ε ≤ A; hence, the inside limit of (8.45) is zero for every A > 0. Therefore
(8.45) is satisfied. It follows by (8.46) that

lim
ε→0+

ε2
∞∑

n=1

P(|Sn| ≥ εn) = 1

using the equation Γ (x+ 1) = xΓ (x), x > 0.

Theorem 8.10 describes the convergence rate in the SLLN in terms of the
decay of the probability P(|σ−1

n Sn| ≥ εn1/r) as n → ∞. Note that r ≥ 2;
hence, 0 < 1/r ≤ 1/2. Another way to describe the convergence rate in the
SLLN is the LIL (see Section 6.5). For example, Hall and Heyde (1980) gave
the following result. Let Wn, n ≥ 1, be a nondecreasing sequence of positive
random variables (i.e., 0 < W1 ≤ W2 ≤ · · ·) and Zn, n ≥ 1, be a sequence of
nonnegative random variables. Suppose that both sequences are predictable
with respect to Fn, n ≥ 1. Define φ(t) =

√
2t log log t if t > e and φ(t) = 1

otherwise.

Theorem 8.11. Suppose that Wn
a.s.−→ ∞ and Wn/Wn+1

a.s.−→ 1 as n→ ∞
and that the following conditions are satisfied:

1

φ(W 2
n)

n∑
i=1

[Xi1(|Xi|>Zi) − E{Xi1(|Xi|>Zi)|Fi−1}] a.s.−→ 0, (8.47)

1

W 2
n

n∑
i=1

var{Xi1(|Xi|≤Zi)|Fi−1} a.s.−→ 1, (8.48)

∞∑
i=1

1

W 4
i

E{X4
i 1(|Xi|≤Zi)|Fi−1} <∞ a.s. (8.49)
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Then we have lim supSn/φ(W 2
n) = 1 a.s. and lim inf Sn/φ(W 2

n) = −1 a.s.

We consider some examples.

Example 8.16 (continued). Let Wn =
√
n and Zi = 1. Then the left side

of (8.47) is identical to zero. Also, we have

var{Xi1(|Xi|≤Zi)|Fi−1} = var(Xi|Fi−1)

= E(X2
i |Fi−1) = 1,

and similarly E(X4
i |Fi−1) = 1. Therefore, the left side of (8.48) is equal to 1,

and the left side of (8.49) is equal to
∑∞

i=1 i
−2 < ∞. Therefore, all of the condi-

tions of Theorem 8.11 are satisfied. It follows that lim supSn/
√

2n log log n = 1
a.s. and lim inf Sn/

√
2n log logn = −1 a.s.

On the other hand, the conditions of Theorem 8.11 are not necessary in
the sense that for given sequences Wi and Zi satisfying the conditions of the
theorem, there exists a martingale Sn =

∑n
i=1 Xi, Fn, n ≥ 1, that does not

satisfy conditions (8.47)–(8.49), and yet the conclusion of the theorem still
holds for the martingale. To see an example, consider the following.

Example 8.17. Let Wn =
√
n and Zi = i. Let X1, Xi, . . . be a se-

quence of i.i.d. random variables such that E(Xi) = 0, E(X2
i ) = 1, and

E(|Xi|3) = ∞ (e.g., let Xi = ξi/
√

3, where ξi ∼ t3). Then Sn =
∑n

i=1Xi,
Fn = σ(X1, . . . , Xn), n ≥ 1, is a martingale, and the conclusion of Theo-
rem 8.11 holds by Hartman and Wintner’s LIL (Theorem 6.17). On the other
hand, we show that the sequence Xi, i ≥ 1, does not satisfy (8.49). To see
this, note that for any a ≥ 1, we have

∑
i≥a

1

i2
≥

∞∑
i=[a]

∫ i+1

i

dx

x2
=

∫ ∞
[a]

dx

x2
=

1

[a]
,

where [a] represents the largest integer ≤ a. It follows that

∞∑
i=1

1

W 4
i

E{X4
i 1(|Xi|≤Zi)}|Fi−1}

=
∞∑

i=1

1

i2
E{X4

11(|X1|≤i)}

= E

{
X4

1

∞∑
i=1

1

i2
1(|X1|≤i)

}

= E

⎛⎝X4
1

∑
i≥|X1|∨1

1

i2

⎞⎠
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≥ E

(
X4

1

[|X1| ∨ 1]

)
≥ E

{
X4

1

[|X1| ∨ 1]
1(|X1|≥1)

}
= E{|X1|31(|X1|≥1)}
= ∞.

8.7 Invariance principles for martingales

This section deals with a similar topic as Section 6.6.1. The first invariance
principle for martingales was derived by Billingsley (1968), who considered
stationary and ergodic (see the definition following Theorem 7.14) martin-
gale differences. In the following we assume that Sn =

∑n
i=1 Xi, Fn, n ≥ 1,

is a martingale with mean 0 and a finite second moment. Let S0 = 0 and
F0 = {∅, Ω} for convenience. In the case of stationary martingale differences,
a straightforward extension of the results of Section 6.6.1 for sums of i.i.d. ran-
dom variables would be to consider (6.64) with

√
n replaced by σ

√
n, where

σ2 = E(X2
i ) for t ∈ [0, 1]. However, without the stationarity assumption, such

an extension may not be meaningful. Hall and Heyde (1980) considered the
following variation of (6.64):

ξn(t) =
1

Un

(
Si +

tU2
n − U2

i

Xi+1

)
for

U2
i

U2
n

≤ t <
U2

i+1

U2
n

, (8.50)

0 ≤ i ≤ n− 1, and ξn(1) = U−1
n Sn, where U2

0 = 0 and U2
i =

∑i
j=1 X

2
j , i ≥ 1.

Intuitively, ξn is a function on [0, 1] obtained by linear interpolating between
the (two-dimensional) points (U2

i /U
2
n, Si/Un), i = 0, . . . , n (Exercise 8.33).

Since ξn is continuous, it is a member of the space C of continous functions
on [0, 1] equipped with the uniform distance ρ of (6.63). Then we have the
following result.

Theorem 8.12. Suppose that the following Lindeberg condition holds:

1

s2n

n∑
i=1

E{X2
i 1(|Xi|>εsn)} −→ 0 (8.51)

as n → ∞ for every ε > 0, where s2n = E(S2
n), and that

U2
n

s2n

P−→ η2, (8.52)

where the random variable η2 is a.s. positive. Then ξn
d−→ W , where W is

the Brownian motion on [0, 1].
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Note that here the convergence in distribution is in (C, ρ), the same as in
Theorem 6.18. We consider some examples.

Example 8.18. Note that (8.50) does not reduce to (6.64), even in the
special case of i.i.d. observations. However, in the latter case, it is trivial to
verify the conditions (of Theorem 8.12). To see this, note that if X1, X2, . . .
are i.i.d. with E(Xi) = 0, E(X2

i ) = σ2 ∈ (0,∞), then we have s2n = σ2n. It
follows that

1

s2n

n∑
i=1

E{X2
i 1(|Xi|>εsn)} =

1

σ2
E{X2

11(|X1|>εσ
√

n)},

which goes to zero as n → ∞ for every ε > 0 (why?). Furthermore, we have

U2
n

s2n
=

1

σ2n

n∑
i=1

X2
i

P−→ 1

by the WLLN. Therefore the conditions of Theorem 8.12 are satisfied.

Example 8.16 (continued). Note that in this case we have X2
i = 1, i ≥ 1;

hence, s2n = n. It follows that E{X2
i 1(|Xi|>εsn)} = P(1 > ε

√
n) = 0 if ε

√
n ≥ 1,

and s−2
n U2

n = 1. Thus, once again, the conditions of Theorem 8.12 are obvious.

Example 8.19. As in Sections 6.6.1 (also see Section 7.3), a result like

Theorem 8.12 may have many applications. This is because ξn
d−→W implies

that h(ξn)
d−→ h(W ) for any continuous function h on C. In particular, if one

considers h(x) = x(1) for x ∈ C, then the result implies U−1
n Sn

d−→ W (1) ∼
N(0, 1). In other words, we have a CLT for a martingale Sn normalized by
Un. If one considers h(x) = supt∈[0,1] x(t) and notes that supt∈[0,1] ξn(t) =

U−1
n max0≤i≤n Si, then we have U−1

n max0≤i≤n Si
d−→ supt∈[0,1]W (t).

Hall and Heyde proved their result by using the following Skorokhod repre-
sentation and limit theorem for Brownian motion. If Sn =

∑n
i=1 Xi,Fn, n ≥ 1,

is a zero-mean, square-integrable martingale, then there exists a standard
Brownian motion W defined on a probability space and a sequence of non-
negative random variables τn, n ≥ 1, with the following properties, where
Tn =

∑n
i=1 τi, S̃n = W (Tn), X̃1 = S̃1, X̃n = S̃n − S̃n−1, n ≥ 2, and Gn

is the σ-field generated by S̃i, 1 ≤ i ≤ n, and W (t), 0 ≤ t ≤ Tn: (i) Sn,
n ≥ 1, has the same joint distribution as S̃n, n ≥ 1; (ii) Tn ∈ Gn, n ≥ 1; and
(iii) E(τn|Gn−1) = E(X̃2

n|Gn−1) a.s. The limit theorem for Brownian motion
states that if W (t), t ≥ 0, is the standard Brownian motion and Tn, n ≥ 1,

is a sequence of positive random variables, then ξ̃n
d−→ W1 in (C, ρ), where

ξ̃n(t) = W (tTn)/
√
Tn, t ∈ [0, 1], and W1 is the restriction of W to [0, 1], pro-

vided that there is a sequence of constants cn such that Tn/cn
P−→ η2, where

η2 is a.s. positive. See Section 10.5 for more details.
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We now consider the invariance principle in the LIL. Heyde and Scott
(1973) extended Strassen’s (1964) invariance principle in the LIL to mar-
tingales. Recall the space K of absolutely continuous functions x on [0, 1]
with x(0) = 0 and satisfying (6.69), and the function φ(t) defined above
Theorem 8.11. Hall and Heyde (1980) considered normalizing the martingale
Sn based on a general sequence of random variables Wi, i ≥ 1, satisfying
0 < W1 ≤ W2 ≤ · · ·, and

ζn(t) =
1

φ(W 2
n)

(
Si +

tW 2
n −W 2

i

W 2
i+1 −W 2

i

Xi+1

)
for

W 2
i

W 2
n

≤ t <
W 2

i+1

W 2
n

, (8.53)

0 ≤ i ≤ n−1, and ζn(1) = φ−1(W 2
n)Sn. It is clear that, except for the different

denominators, (8.50) is a special case of (8.53) with Wi = Ui, provided that
X2

1 > 0 a.s. Theorem 8.11 in the previous section can now be extended to an
invariance principle for ζn. Recall the definition of an a.s. relative compact
sequence in Section 7.4 (above Theorem 7.7).

Theorem 8.13. Under the conditions of Theorem 8.11 we have ζn r.c. K
w.r.t. ρ of (6.63) on C a.s.

In words, we have with probability 1 that the sequence ζn is relative com-
pact in C and its set of ρ limit points coincides with K, where ρ is the uniform
distance of (6.63). Note that the assumption that Wn is predictable does not
exclude Un from application. This is because one may replace Un by Un−1,

which is predictable. On the other hand, the assumption that Un/Un+1
a.s.−→ 1

ensures that normalizing by Un is asymptotically equivalent to normalizing
by Un−1. We consider a simple example.

Example 8.16 (continued). Earlier in Section 8.6 we showed that the se-
quence Xi in this example satisfies all the conditions of Theorem 8.11 with
Wn =

√
n and Zn = 1. It follows that ζn r.c. K w.r.t. ρ on C a.s., where

ζn(t) =
Si + (tn− i)Xi+1√

2n log logn
,

i

n
≤ t <

i+ 1

n
,

0 ≤ i ≤ n− 1, and ζn(1) = Sn/
√

2n log logn.

8.8 Case study: CLTs for quadratic forms

There is a great deal of statistical inference based on quadratic functions of
random variables. For example, the log-likelihood function under a Gaussian
model depends quadratically on the data; many of the goodness-of-fit (or lack-
of-fit) measures involve the data in squared Euclidean distance; of course,
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estimators of variances and covariances are usually quadratic functions of the
data. Let ξni, 1 ≤ i ≤ kn, n ≥ 1, be an array of random variables such
that for each n, ξni, 1 ≤ i ≤ kn, are independent with mean 0, and let
An = (anij)1≤i,j≤kn be a sequence of (nonrandom) real symmetric matrices.
Write ξn = (ξni)1≤i≤kn . We are interested in the limiting behavior of

Qn = ξ′nAnξn. (8.54)

Such a problem is of direct interest in statistical inference, even if the
observations themselves are not independent. For example, in Chapter 12 we
discuss application of large-sample techniques in linear mixed models. The
latter is defined as observations y1, . . . , yn satisfying

y = Xβ + Z1α1 + · · · + Zsαs + ε, (8.55)

where y = (yi)1≤i≤n,X is matrix of known covariates, β is a vector of unknown
fixed effects, Zr, 1 ≤ r ≤ s, are known matrices, αr, 1 ≤ r ≤ s, are vectors
of (unobservable) random effects, and ε is a vector of errors. (As will be
seen in later chapters, it is more customary in statistical literature to use
lowercase letters, such as y, to represent observed data and uppercase letters,
such as X , for known covariate or design matrices, and we will gradually
adopt such changes in notation.) It is further assumed that the components
of αr are independent with mean 0 and unknown variance σ2

r , 1 ≤ r ≤ s;
the components of ε are independent with mean 0 and unknown variance σ2

0 ;
and α1, . . . , αs, ε are independent. It is easy to see that, even if the random
effects and errors are independent, the observations y1, . . . , yn are typically
correlated. This is because the same random effects may be “shared” by many
observations. For example, consider the following.

Example 8.20. Suppose that the observations yij , 1 ≤ i ≤ m1, 1 ≤ j ≤
m2, satisfy yij = μ + ui + vj + eij , where μ is an unknown mean, the ui’s
and vj ’s are independent random effects such that ui ∼ N(0, σ2

1) and vj ∼
N(0, σ2

2), the εij ’s are independent errors such that εij ∼ N(0, σ2
0), and the

random effects and errors are independent. It can be shown that the model
is a special case of (8.55) (Exercise 8.34). Under the assumed model, there
are multiple observations sharing the same random effects. For example, the
random effect ui is shared by all of the observations yij , 1 ≤ j ≤ m2; similarly,
the random effect vj is shared by all of the observations yij , 1 ≤ i ≤ m1. As
a result, there are correlations among the observations. Such a model is often
called a variance components model. For example, in animal and dairy science,
variance components models are used to model different sources of variations,
such as the sire (i.e., male animals) and environmental effects.

According to our earlier discussion in Section 5.6—in particular, (5.99)
and (5.100)—the ML or REML estimators of the variance components σ2

r ,
0 ≤ r ≤ s, depend on y through the quadratic forms



8.8 Case study: CLTs for quadratic forms 269

Q = y′PZrZ
′
rPy, 0 ≤ r ≤ s, (8.56)

where Z0 = I, the identity matrix, and P = A(A′V A)−1A′. (Again, it is
customary in statistical literature to suppress the subscript n representing the
sample size, so, for example, we write Q instead of Qn; but keep in mind that
the objects we are dealing with depend on the sample size if asymptotics are
under consideration.) Recall that A is a full rank matrix such that A′X = 0.
Thus, if we let ξ represent the combined vector of random effects and errors
[i.e., ξ = (ε′, α′1, . . . , α

′
s)
′], then (8.56) is equal to

Q = (y −Xβ)′PZrZ
′
rP (y −Xβ)

= ξ′Z ′PZrZ
′
rPZξ, 0 ≤ r ≤ s,

where Z = (I Z1 · · · Zs). It follows that the ML and REML estimators
depend on quadratic forms in independent random variables.

In fact, such problems as asymptotic behavior of REML estimators have
led Jiang (1996) to consider CLTs for quadratic forms in independent random
variables expressed in the general form of (8.54). There had been results on
similar topics prior to Jiang’s study. Some of these applied only to a special
kind of random variables (e.g., Guttorp and Lockhart 1988) or to An with a
special structure (e.g., Fox and Taqqu 1985). Rao and Kleffe (1988) derived
a more general form of CLT for quadratic forms in independent random vari-
ables, extending an earlier result of Schmidt and Thrum (1981). However,
as noted by Rao and Kleffe (1988, p. 51), “the applications (of the theo-
rem) might be limited as it is essentially based on the assumption that the
off diagonal blocks of An tend to zero.” Such restrictions were removed by
Jiang (1996), whose approach is a classical application of the martingale CLT

introduced in Section 8.5. Note that E(Qn) =
∑kn

i=1 aniiE(ξ2
ni). Thus, we have

Qn − E(Qn) =
∑

1≤i,j≤kn

anijξniξnj −
kn∑
i=1

aniiE(ξ2ni)

=

kn∑
i=1

anii{ξ2ni − E(ξ2ni)} +
∑
i
=j

anijξniξnj

=

kn∑
i=1

anii{ξ2ni − E(ξ2ni)} + 2

kn∑
i=1

⎛⎝∑
j<i

anijξnj

⎞⎠ ξni

=

kn∑
i=1

Xni, (8.57)

where Xni = anii{ξ2ni − E(ξ2ni)} + 2(
∑

j<i anijξnj)ξni. Let Fni = σ(ξnj , 1 ≤
j ≤ i), 1 ≤ i ≤ kn. It is easy to verify that Xni, Fni, 1 ≤ i ≤ kn, is an array of
martingale differences (see Example 8.3). Due to this important observation,
the martingale CLT (Theorem 8.7) becomes a natural tool to derive the CLT
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for Qn. Before we explore Jiang’s results in further detail, let us first consider
some examples to see what to expect.

Example 8.21. If ξni, 1 ≤ i ≤ kn, are distributed as N(0, 1), then

Qn − E(Qn)

{var(Qn)}1/2

d−→ N(0, 1) (8.58)

if and only if

‖An‖
‖An‖2

−→ 0, (8.59)

where ‖A‖ and ‖A‖2 are the spectral norm and 2-norm of a matrix A defined
above (5.40) and (5.41), respectively. The proof of this result is left as an
exercise (Exercise 8.35).

However, such a nice result may not hold for a general array of independent
random variables, as the following example shows.

Example 8.22. Let An be the n-dimensional identity matrix and ξni, 1 ≤
i ≤ n, be independent such that P(ξni = −1) = P(ξni = 1) = (n − 2)/2n,
P(ξni = −√

2) = P(ξni =
√

2) = 1/2n, and P(ξni = 0) = 1/n, 1 ≤ i ≤ n,
n ≥ 2. By Theorem 6.13, it can be shown that (8.58) fails, despite the fact
that (8.59) holds (Exercise 8.36).

The situation in Example 8.22 is somehow extreme because the (squares
of the) random variables are asymptotically degenerated. Such cases must be
excluded if one attempts to generalize the result of Example 8.21. Jiang (1996)
proved the following theorems. Let Ao

n = An − diag(anii, 1 ≤ i ≤ kn) (here
the superscript o refers to “off-diagonal”) and An = {1 ≤ i ≤ kn, anii �= 0}.

Theorem 8.14. If

inf
n≥1

{
min

1≤i≤kn

var(ξni)

}
∧
{

min
i∈An

var(ξ2ni)

}
> 0,

sup
n≥1

[
max

1≤i≤kn

E{ξ2ni1(|ξni|>x)}
]
∨
[
max
i∈An

E{ξ4ni1(|ξni|>x)}
]
−→ 0

as x→ ∞, then (8.59) implies (8.58).

To state the next result we first introduce some notation. Let bni, 1 ≤
i ≤ kn, n ≥ 1, be an array of nonnegative constants. Define γ

(1)
ni =

E{ξ4ni1(|ξni|≤bni)}, γ(2)
ni = E{(ξ2ni − 1)41(|ξni|≤bni)}, δ(1)ni = E{X2

ni1(|ξni|>bni)},
and δ

(2)
ni = E{(ξ2ni − 1)21(|ξni|>bni)}. Then define
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γnij =

{
γ

(1)
ni γ

(1)
nj if i �= j

γ
(2)
ni if i = j;

δnij =

⎧⎪⎨⎪⎩
{δ(1)ni + δ

(1)
nj }/2 if i �= j,

δ
(2)
ni if i = j ∈ An,

0 otherwise.

Theorem 8.15. Suppose that E(ξ2ni) = 1 for all i and n and there are bni

as above such that

1

σ2
n

kn∑
i,j=1

a2
nijδnij −→ 0,

1

σ4
n

⎧⎪⎨⎪⎩
kn∑

i,j=1

a4
nijγnij +

kn∑
i=1

⎛⎝∑
j 
=i

a2
nij

⎞⎠2

γ
(1)
ni

⎫⎪⎬⎪⎭ −→ 0,

where σ2
n = var(Qn). Then (8.58) holds provided that ‖Ao

n‖/σn → 0.

It might seem that Theorem 8.15 is more restrictive than Theorem 8.14
because of the assumption E(ξ2ni) = 1. It is, in fact, the opposite. Jiang (1996)
showed that Theorem 8.14 can be derived from Theorem 8.15 with a special
choice of bni and a simple transformation.

As for the proof of Theorem 8.15, the key steps are to verify the condi-
tions of Theorem 8.7—namely, (8.30)–(8.32). [As noted following Theorem
8.7, (8.33) is not needed if η2 is a constant and the word stably is removed
from (8.34).] However, sometimes these conditions are not easy to verify di-
rectly, such as in this case. A technique that is often used in such situa-
tions is called truncation. Let uni = ξni1(|ξni|≤bni) − E{ξni1(|ξni|≤bni)}, and
Uni = (ξ2ni − 1)1(|ξni|≤bni) − E{(ξ2ni − 1)1(|ξni|≤bni)}, and

Yni =
1

σn

⎧⎨⎩aniiUni + 2

⎛⎝∑
j<i

anijunj

⎞⎠uni

⎫⎬⎭ .

It is easy to verify that Yni, Fni, 1 ≤ i ≤ kn, is an array of martingale
differences. Furthermore, it can be shown that

Qn − E(Qn)

σn
=

kn∑
i=1

Yni +Δn,

where Δn → 0 in L2, and hence in probability (Theorem 2.15). Conditions
(8.30) and (8.32) are then verified for Yni, 1 ≤ i ≤ kn, n ≥ 1. As for condition
(8.31), it can be shown that
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kn∑
i=1

Y 2
ni =

3∑
t=1

Vt + oP(1),

where V1 = σ−2
n

∑
i∈An

a2
niivar(ξ2ni),

V2 =
4

σ2
n

kn∑
i=1

aniiE(Uniuni)

⎛⎝∑
j<i

anijunj

⎞⎠ ,

and V3 = u′nCnun, with un = (uni)1≤i≤kn , Cn = (4/σ2
n)B′nBn, and Bn being

the lower triangular matrix of An—that is, Bn = [anij1(i>j)]1≤i,j≤kn .
The next thing is to show that V2 → 0 in L2. Let ln be the kn-dimensional

vector whose ith component is aniiE(Uniuni). Also, write cn = 16/σ4
n. By

exchanging the order of summations, we have

E(V 2
2 ) = cnE

⎡⎣ kn∑
j=1

⎧⎨⎩∑
i>j

anijaniiE(Uniuni)

⎫⎬⎭unj

⎤⎦2

= cn

kn∑
j=1

⎧⎨⎩∑
i>j

anijaniiE(Uniuni)

⎫⎬⎭
2

E(u2
nj). (8.60)

Since E(u2
nj) ≤ E(ξ2nj) = 1, the summation of the right side of (8.60) is

bounded by |B′nln|2 ≤ λmax(B
′
nBn)|ln|2 ≤ ‖B′nBn‖2|ln|2, using the fact that

the spectral norm of a matrix is bounded by its 2-norm. We now apply Lemma
5.3 to get E(V 2

2 ) ≤ cn
√

2‖Ao
n‖ · ‖Bn‖2|ln|2. Finally, note that

σ2
n =

∑
i∈An

a2
niivar(ξ2ni) + 2

∑
i
=j

a2
nij , (8.61)

which implies ‖Bn‖2 ≤ σn/2 and |ln|2 ≤ σ2
n (why?). It follows that E(V 2

2 ) ≤
(16/

√
2)(‖Ao

n‖/σn) → 0 according to the assumption.
The last thing is to show that V3 − E(V3) → 0 in L2. Here, we use the

following result, whose proof is left as an exercise (Exercise 8.37).

Lemma 8.9. Let uni, 1 ≤ i ≤ kn, be independent such that E(uni) = 0,
E(u2

ni) = σ2
ni, and E(u4

ni) < ∞, and let Cn = (cnij)1≤i,j≤kn be symmetric.

Then u′nCnun − E(u′nCnun) → 0 in L2 provided that
∑kn

i=1 c
2
niivar(u2

ni) → 0
and

∑
i>j c

2
nijσ

2
niσ

2
nj → 0.

We verify the conditions of Lemma 8.9 for the current un and Cn. The
assumption of Theorem 8.15 implies that

kn∑
i=1

c2nii var(u2
ni) =

16

σ4
n

kn∑
i=1

⎛⎝∑
j<i

a2
nij

⎞⎠2

var(u2
ni) −→ 0.
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Once again, we apply Lemma 5.3 to argue that∑
i>j

c2nijE(u2
ni)E(u2

nj) ≤
1

2

∑
i
=j

c2nij

≤ 8

σ4
n

‖B′nBn‖2
2

≤ 4‖Ao
n‖2

σ2
n

−→ 0

by the assumption of the theorem.
In conclusion, we have shown that

kn∑
i=1

Y 2
ni = σ−2

n

∑
i∈An

a2
nii var(ξ2ni) + E(u′nCnun) + oP(1).

However, E(u′nCnun) = 2σ−2
n

∑
i
=j a

2
nij + o(1) (Exercise 8.37). Thus, in view

of (8.61), we have
∑kn

i=1 Y
2
ni = 1 + oP(1), which implies (8.31) with η2 = 1.

8.9 Case study: Martingale approximation

Martingale limit theory is useful in deriving limit theorems for random pro-
cesses that may not be martingales themselves. A technique that often makes
these derivations possible is called martingale approximation. The idea is to
obtain an (a.s.) error bound for the difference between the random process
and the approximating martingale that is good enough so that the desired
limit theorem for the random process follows as a result of the corresponding
limit theorem for the approximating martingale. As an example, we consider a
recent work by Wu (2007), who used the martingale approximation to derive
strong limit theorems for sums of dependent random variables associated with
a Markov chain (see Section 10.2).

Suppose that ξi, i ∈ Z, is a stationary and ergodic Markov chain, where Z
is the set of all integers and the stationary Markovian property implies that

P(ξn+1 = y|ξn = x, ξn−1 = xn−1, . . .) = P(ξ1 = y|ξ0 = x) (8.62)

for all n ∈ Z and y, x, xn−1, . . .. Let Xi = g(ξi), where g is a measurable
function, and Sn =

∑n
i=1 Xi. The interest is to obtain strong (i.e., a.s.) limit

theorems for Sn, n ≥ 1. Note that such topics were discussed in Chapter 6,
where the Xi’s are assumed to be independent random variables.

Wu (2007) considered the following approximating martingale. Let Fk =
σ(ξj , j ≤ k). For any random variable Z with finite first moment, define the
projection PkZ = E(Z|Fk) − E(Z|Fk−1). Let Dk =

∑∞
i=k Pkg(ξi), provided

that the infinite series converges almost surely. Then Dk,Fk, k ∈ Z, is a
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sequence of martingale differences that is stationary and ergodic. It follows
that Mn =

∑n
k=1 Dk,Fn, n ≥ 1, is a martingale. Furthermore, the following

error bound for Sn −Mn is obtained. Let δi,q = ‖P0g(ξi)‖q, where for any
random variables Z and q > 0, ‖Z‖q = {E(|Z|q)}1/q , and Δj,q =

∑∞
i=j δi,q.

Theorem 8.16. Let E{g(ξ0)} = 0 and g(ξ0) ∈ Lq for some q > 1. Then

‖Sn −Mn‖r
q ≤ 3Br

q

n∑
j=1

Δr
j,q,

where r = q ∧ 2 and Bq = 18q3/2(q − 1)−1/2 if q ∈ (1, 2) ∪ (2,∞) and 1 if
q = 2.

By Theorem 8.16 and Borel-Cantelli lemma (Lemma 2.5), an a.s. bound
for Sn −Mn can be obtained, as follows.

Corollary 8.4. Under the assumptions of Theorem 8.16, we have Sn −
Mn = o(n1/q) a.s., provided that Δ0,q <∞ and

∞∑
j=1

j−aΔb
j,q < ∞, (8.63)

where a = {(q + 4)/2(q + 1)} ∧ 1 and b = q/(q + 1).

Here, Sn−Mn = o(n1/q) a.s. means that (Sn−Mn)/n1/q a.s.−→ 0 as n→ ∞.
Based on the martingale approximation, a number of strong limit results were
obtained for Sn. The first theorem below gives some SLLNs. We say a function
h is slowly varying if for any λ > 0, limx→∞ h(λx)/h(x) = 1.

Theorem 8.17. Under the assumption of Theorem 8.16, let h be a posi-
tive, nondecreasing slowly varying function.

(i) If q > 2, Δn,q = O[(log n)−α] for some 0 ≤ α ≤ 1/q, and

∞∑
j=1

{jαh(2j)}−q < ∞,

then Sn/
√
nh(n)

a.s.−→ 0, as n → ∞.
(ii) If 1 < q ≤ 2, Δ0,q < ∞, and

∞∑
j=1

{h(2j)}−q < ∞,

then Sn/n
1/qh(n)

a.s.−→ 0 as n→ ∞.

(iii) If 1 < q < 2 and (8.63) holds, then Sn/n
1/q a.s.−→ 0 as n → ∞.
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The next result is a LIL. Define σ = ‖∑∞
i=0 P0g(ξi)‖2.

Theorem 8.18. (i) Suppose that σ < ∞ and that, for some q > 2, we
have E{g(ξ0)} = 0, g(ξ0) ∈ Lq and

∞∑
k=1

{(log k)−1/2Δ2k,q}q < ∞.

Then we have, for either choice of sign,

lim sup
n→∞

± Sn√
2n log logn

= σ a.s.

The final result is a strong invariance principle. We have considered a.s.
invariance principles for sums of independent random variables in Section
6.6.1 and for martingales in Section 8.7, but here it is in the sense of an
a.s. approximation of Sn by a Brownian motion (see Section 10.5). For such a
result to hold, it is often necessary to enlarge the underlying probability space
and redefine the stationary process without changing its distribution. This is
what we mean below by a richer probability space. Define

χq(n) =

{
n1/q(logn)1/2, 2 < q < 4

n1/4(log n)1/2(log logn)1/4, q ≥ 4,

and τq(n) = n1/q(logn)1/2+1/q(log logn)2/q. Recall for a sequence of nonneg-
ative random variables ηn and a sequence of normalizing constants an > 0,
ηn = O(an) a.s. means that lim supn→∞ ηn/an <∞ a.s.

Theorem 8.19. Under the assumption of Theorem 8.18, let s = q ∧ 4.
(i) If Δn,s = O[n1/s−1/2(log n)−1] and

∞∑
k=1

∥∥E (D2
k|F0

)− σ2
∥∥

s/2
< ∞, (8.64)

where σ is the same as in Theorem 8.18, then, on a richer probability space,
there exists a standard Brownian motion B such that∣∣Sn −B(σ2n)

∣∣ = O[χq(n)] a.s.

(ii) If Δn,s = O(n1/s−1/2) and

∞∑
k=1

∥∥P0

(
D2

k

)∥∥
s/2

< ∞, (8.65)

then, on a richer probability space, there exists a standard Brownian motion
B such that
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∣∣ = O[τs(n)] a.s.

As an application of the strong limit theorems, Wu (2007) considered the
prediction problem in an input/output system. The system may be expressed
as Xn = g(ξn), where ξn = (. . . , εn−1, εn) and εi, i ∈ Z, are i.i.d. random
variables. Here, the inputs are εi, i ≤ n, Xn is the output of the system,
and g is a filter. It is easy to show that the sequence ξn, n ∈ Z, satisfies
the Markovian property (8.62) (Exercise 8.38). The author showed that, in
this case, simple and easy-to-use bounds for the norms involved in (8.64) and
(8.65) can be obtained.

8.10 Exercises

8.1. This exercise is in connection with the opening problem on casino
gambling (Section 8.1).

(i) Show that whenever the gambler wins, he recovers all his previous losses
plus an additional $5.

(ii) Suppose that the maximum bet on the casino table is $500 and your
initial bet is $5. How many consecutive times can you bet with the martingale
strategy?

(iii) Use a computer to simulate 100 sequences of plays. Each play consists
of a betting and flipping a fair coin. You win if the coin lands head, and
you lose otherwise. Start with $5, then follow the martingale betting strategy
until winning (but don’t forget the $500 limit). How many times do you hit
the limit?

(iv) Now, suppose the coin is biased so that the probability of landing
head is 0.4 instead of 0.5. What happends this time when you play the games
in (iii)?

8.2. Show that if Sn, Fn, n ≥ 1, is a martingale according to the extended
definition (8.2), then Sn, n ≥ 1, is a martingale according to (8.1). Give an
example to show that the converse is not necessarily true.

8.3. Prove Lemma 8.1 (note that the “only if” part is obvious).
8.4. Show that Sn, Fn, n ≥ 1, in Example 8.2 is a martingale.
8.5. Prove Lemma 8.3.
8.6. Show that Yi, Fi, 1 ≤ i ≤ n, in Example 8.3 is a sequence of martingale

differences.
8.7. Verify properties (i)–(iv) of Lemma 8.4.
8.8. Verify properties (i)–(iii) of Lemma 8.5.
8.9. Prove properties (i) and (ii) of Lemma 8.6.
8.10. Prove properties (i)–(iv) of Lemma 8.7.
8.11. A sequence of random variablesXn, n ≥ 1, is said to be m-dependent

if for any n ≥ 1, σ(X1, . . . , Xn) and σ(Xn+m+1, . . .) are independent. Suppose,
in addition, that E(Xn) = 0, n ≥ 1. Define Fn = σ(X1, . . . , Xn) and



8.10 Exercises 277

Sn = E

(
n+m∑
i=1

Xi

∣∣∣∣∣Fn

)
,

n ≥ 1. Show that Sn, Fn, n ≥ 1, is a martingale. Note that Example 8.2 is a
special case of this exercise with m = 0.

8.12. Suppose that X1, . . . , Xn are i.i.d. with finite expectation. Define
Sk =

∑k
i=1Xi, Mk = (n − k + 1)−1Sn−k+1, and Fk = σ(Sn, . . . , Sn−k+1),

1 ≤ k ≤ n. Show that Mk, Fk, 1 ≤ k ≤ n is a martingale. [Hint: Note that
Mk = E(X1|Fk), 1 ≤ k ≤ n.]

8.13 (U -statistics). A sequence of random variables Xn, n ≥ 1, is said to
be exchangeable if for any n > 1 and any permutation i1, . . . , in of 1, . . . , n,
(Xi1 , . . . , Xin) has the same distribution as (X1, . . . , Xn). For a fixed m ≥ 1,
a Borel-measurable function ψ on Rm is called symmetric if for any permu-
tation j1, . . . , jm of 1, . . . ,m, we have ψ(xj1 , . . . , xjm) = ψ(x1, . . . , xm) for all
(x1, . . . , xm) ∈ Rm. Let ψ be symmetric and E{|ψ(X1, . . . , Xm)|} <∞. Define

Um,n =

(
n

m

)−1 ∑
1≤j1<···<jm≤n

ψ(Xj1 , . . . , Xjm), n ≥ m,

and Gn = σ(Um,k, k ≥ n). Let N > m be a fixed integer. Then define U∗n =
Um,N−n and Fn = GN−n. Show that U∗n, Fn, n ≤ N − m is a martingale.
[Hint: First show that E(Um,n|Gn+1) = Um,n+1 a.s.]

8.14 (Record-breaking time). Let Xn, n ≥ 1 be a sequence of random
variables. Define τ1 = 1 and

τk+1 =

{
inf{n > τk : Xn > Xτk

} if τk < ∞ and {n ≥ 1 : Xn > Xτk
} �= ∅

∞ otherwise,

k ≥ 1. The sequence τk, k = 1, 2, . . ., may be interpreted as record-breaking
times. Show by induction that τk, k ≥ 1, is a sequence of stopping times with
respect to Fn = σ(X1, . . . , Xn), n ≥ 1.

8.15. Let Xi, i ≥ 1, be i.i.d. with cdf F . Define τk as in Exercise 8.14.
Also, let ωF = sup{x : F (x) < 1}. Show that (i)–(iii) are equivalent:

(i) τk < ∞ a.s. for every k ≥ 1.
(ii) τk < ∞ a.s. for some k > 1.
(iii) ωF = ∞ or ωF < ∞ and F is continuous at ωF .
8.16. Show that if τ1 and τ2 are both stopping times with respect to Fn,

n ≥ 1, then {τ1 ≤ τ2} ∈ Fτ2 .
8.17. Complete the arguments for submartingale and supermartingale in

Example 8.8.
8.18. Suppose that Sn, Fn, n ≥ 1, is a submartingale. Show that conditions

(i) and (ii) are equivalent:
(i) condition (8.17) and E(|S1|) < ∞;
(ii) condition (8.19).
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8.19. Suppose that Xn, n ≥ 1, are m-dependent as in Exercise 8.11 and
E(Xn) = μ ∈ (−∞,∞), n ≥ 1. Let τ be a stopping time with respect to
Fn = σ(X1, . . . , Xn) such that E(τ) < ∞. Show that E(Sτ+m) = {E(τ)+m}μ.

8.20. The proof of Theorem 8.3 is fairly straightforward. Try it.
8.21. This exercise is associated with Example 8.12.
(i) Show that the sequence Sn, Fn, n ≥ 1, is a martingale with E(Sn) = 0,

n ≥ 1.
(ii) Show that 3 × 2i−2 > n if and only if i > ln.
(iii) Show that

∑
ln<i≤n i

−1 → ∞ as n → ∞.
8.22. Show, by Example 8.7, that the τ defined in Example 8.13 is a

stopping time with respect to the σ-fields Fn, n ≥ 1.
8.23. In this exercise you have an opportunity to practice the stopping

time technique that we used in Example 8.13 by giving a proof for part (i) of
Theorem 8.5.

(i) Show that for any p ∈ (0, 1) and ci ≥ 0, 1 ≤ i ≤ n, we have(
n∑

i=1

ci

)p

≤
n∑

i=1

cpi .

(Hint: For any 0 ≤ αi ≤ 1, we have αp
i ≥ αi; consider αi = ci/

∑n
j=1 cj ,

1 ≤ i ≤ n.)
(ii) Use a similar stopping time technique as in Example 8.13 to show that

E

(
τ∧n∑
i=1

|Xi|
ai

)
≤ B.

(iii) Use Fatou’s lemma to show that

lim
n→∞

τ∧n∑
i=1

|Xi|
ai

< ∞ a.s.

and hence
∑∞

i=1 |Xi|/ai < ∞ a.s. on {τ = ∞} = {∑∞
i=1 E(|Xi|p|Fi−1)/a

p
i ≤

B} for any B > 0.
(iv) Conclude that

∑∞
i=1Xi/ai converges a.s. on{ ∞∑
i=1

E(|Xi|p|Fi−1)/a
p
i < ∞

}
.

Note that here it is not required that the Xi’s are martingale differences.
8.24. In this exercise you are asked to provide a proof for part (ii) of

Theorem 8.5.
(i) Let Yi = Xi/ai, i ≥ 1. Show that

E(Y 2
i |Fi−1) ≤

{
bi if E(|Xi|p|Fi−1) ≤ ap

i b
p/2
i

a−p
i b

1−p/2
i E(|Xi|p|Fi−1) otherwise.
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[Hint: First show that E(Y 2
i |Fi−1) ≤ a−2

i {E(|Xi|p|Fi−1)}2/p. In the case that

E(|Xi|p|Fi−1) > ap
i b

p/2
i , write {E(|Xi|p|Fi−1)}2/p as

E(|Xi|p|Fi−1){E(|Xi|p|Fi−1)}2/p−1

and note that 2/p− 1 < 0.]
(ii) Use a special case of Theorem 8.4 with p = 2 to complete the proof of

part (ii) of Theorem 8.5.
8.25. Give two examples to show that (8.22) and (8.24) do not imply each

other. In other words, construct two sequences of martingale differences so
that the first sequence satisfies (8.22) but not (8.24) and the second sequence
satisfies (8.24) but not (8.22).

8.26. This exercise is related to Example 8.14.
(i) Show that condition (8.25) implies (8.27) and (8.28) for every i ≥ 1.
(ii) Show that E(|X |) < ∞ implies (8.29).
(iii) Show that (8.27) and E(|X | log+ |X |) < ∞ implies

∞∑
i=1

i−1E{|Xi|1(|Xi|>i)} < ∞.

(iv) Use the result of (iii) and Kronecker’s lemma to show that

n−1
n∑

i=1

Zi
a.s.−→ 0,

n−1
n∑

i=1

Wi
a.s.−→ 0;

hence, (8.26) can be strengthened to a.s. convergence under the stronger mo-
ment condition.

8.27. Suppose that ξ1, ξ2, . . . are independent such that ξi ∼ Bernoulli(pi),
where pi ∈ (0, 1), i ≥ 1. Show that as n → ∞,

1

n

n∑
i=1

ξ1 · · · ξi−1(ξi − pi)
a.s.−→ 0.

8.28. Derive the classical CLT from the martingale CLT; that is, show by
Theorem 8.7 that if X1, X2, . . . are i.i.d. with E(Xi) = 0 and E(X2

i ) = σ2 ∈
(0,∞), then n−1/2

∑n
i=1 Xi

d−→ N(0, σ2).
8.29. This exercise is related to Example 8.15.
(i) Verify (8.37).

(ii) Show that n−1
∑n

i=1 Xi
P−→ h(μ + α). [Hint: Use a result derived in

the example on E(Xi|Fi−1) and Example 8.14.]
8.30. Let Z0, Z1, . . . be independent N(0, 1) random variables. Find a suit-

able sequence of normalizing constants, an, such that
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1

an

n∑
i=1

Zi−1Zi
d−→ N(0, 1)

and justify your answer. For the justification part, note that Example 8.14 is
often useful in establishing (8.31). Also, note the following facts (and you do
need to verify them):

(i) For any M > 0, we have

max
1≤i≤n

|Zi−1Zi| ≤ 2

{
M2 +

n∑
i=0

Z2
i 1(|Zi|>M)

}
.

(ii) max1≤i≤n(Zi−1Zi)
2 ≤∑n

i=0 Z
4
i .

8.31 [MA(1) process]. A time series Xt, t ∈ T = {. . . ,−1, 0, 1, . . .}, is said
to be a moving-average process of order 1, denoted by MA(1), if it satisfies

Xt = εt + θεt−1

for all t, where θ is a parameter and εt, t ∈ T , is a sequence of i.i.d. random
variables with mean 0 and variance σ2 ∈ (0,∞) (the i.i.d. assumption can
be relaxed; see the next chapter). Given t0 ∈ T , find a suitable sequence of
normalizing constants an such that

1

an

t0+n∑
t=t0+1

Xt
d−→ N(0, 1)

and justify your answer using similar methods as outlined in the previous
exercise. Does the sequence an depend on t0?

8.32. Show that if ξn, n ≥ 1 is a sequence of random variables and F is a
continuous cdf, then

sup
−∞<x<∞

|P(ξn ≤ x) − F (x)| −→ 0

if and only if

sup
−∞<x<∞

|P(ξn < x) − F (x)| −→ 0.

8.33. Show that the function ξn defined by (8.50) is simply linear interpo-
lations between the points

(0, 0),

(
U2

1

U2
n

,
S1

Un

)
, . . . ,

(
1,
Sn

Un

)
.

8.34. Show that the model in Example 8.20 can be expressed as (8.55) (this
includes determination of the number s and matrices X , Z1, . . . , Zs) with all
the subsequent assumptions satisfied.
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8.35. Show that if ξni, 1 ≤ i ≤ kn, are independent N(0, 1) random vari-
ables, then (8.58) holds if and only if (8.59) holds.

8.36. Show that the array of random variables defined in Example 8.22
satisfies (8.59) but not (8.58).

8.37. This exercise is related to the proof of Theorem 8.15.
(i) Prove Lemma 8.9.
(ii) Verify (8.61).
8.38. Verify that the sequence ξn, n ∈ Z, in the input/output system

considered at the end of Section 8.9 satisfies the Markovian property (8.62).





9

Time and Spatial Series

9.1 Introduction

Time series occur naturally in a wide range of practices. For example, the
opening price of a certain stock at the New York Stock Exchange, the monthly
rainfall total of a certain region, and the CD4+ cell count over time of an
individual infected with the HIV virus may all be viewed as time series. A
time series is usually denoted by Xt, t ∈ T , where T is a set of times, or X(t),
t ∈ T , although in this book the latter notation is reserved for (continuous-
time) stochastic processes (see the next chapter). An observed time series is a
sequence of numbers, one at each observational time. For example, Table 9.1
shows the seasonal energy consumption (coal in the unit of ton) of a certain
city from 1991 to 1996. The numbers may be viewed as an observed time
series Xt, t = 1, . . . , 24, where the times t = 1, 2, . . . correspond to the first
season of 1991, the second season of 1991, and so on. Figure 9.1 shows a plot
of Xt against t.

Table 9.1. Seasonal energy consumption

Year Jan.–March April–June July–Sept. Oct.–Dec.

1991 6878.4 5343.7 4847.9 6421.9
1992 6815.4 5532.6 4745.6 6406.2
1993 6634.4 5658.5 4674.8 6645.5
1994 7130.2 5532.6 4989.6 6642.3
1995 7413.5 5863.1 4997.4 6776.1
1996 7476.5 5965.5 5202.1 6894.1

A statistical model is often used to describe a time series. In fact, there
are many such models. The following are some examples.

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_9, © Springer Science+Business Media, LLC 2010
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Fig. 9.1. Energy consumption against time

Example 9.1 (White noise). A white noise process, denoted by WN(0, σ2),
is defined as Xt, t ∈ T , such that E(Xt) = 0, var(Xt) = σ2, and cov(Xs, Xt) =
0 for s �= t.

Throughout this chapter, Z denotes the set of integers; that is, Z =
{. . . ,−1, 0, 1, . . .}.

Example 9.2 (AR, MA and ARMA processes). A time series Xt, t ∈ Z, is
called an autoregressive process of order p, or AR(p) process, if it satisfies

Xt = b1Xt−1 + · · · + bpXt−p + εt, (9.1)

where εt, t ∈ Z, is a WN(0, σ2) process and the b’s are unknown parameters.
Xt is a moving-average process of order q, or MA(q) process, if it satisfies
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Xt = εt + a1εt−1 + · · · + aqεt−q, (9.2)

where εt is the same as in (9.1) and the a’s are unknown parameters. A special
case of the MA(q) process was considered in Example 8.31. Finally, the time
series is called an autoregressive moving-average process of order (p, q), or
ARMA(p, q) process, if it satisfies

Xt = b1Xt−1 + · · · + bpXt−p + εt + a1εt−1 + · · · + aqεt−q, (9.3)

where εt is the same as in (9.1) and the a’s and b’s are unknown parameters.

A time series Xt, t ∈ Z, is said to be strictly stationary if for any
t1, . . . , tN , h ∈ Z, the joint distribution of Xt1+h, . . . , XtN +h is the same as
that of Xt1 , . . . , XtN . The time series is said to be second-order stationary if
it satisfies E(Xt) = μ, a constant, E(X2

t ) < ∞, and cov(Xt, Xt+h) does not
depend on t. For a second-order stationary time series Xt, its autocovariance
function is defined by (4.48)—namely,

γ(h) = cov(Xt, Xt+h), t, h ∈ Z. (9.4)

It follows that for any s, t ∈ Z, cov(Xs, Xt) = γ(t − s). It is easy to see that
an autocovariance function has the following basic properties:

(i) (symmetry) γ(−h) = γ(h), h ∈ Z.
(ii) (nonnegative definitness) For any n ≥ 1, the matrix of autocovariances

Γn = [γ(t− s)]1≤t,s≤n is nonnegative definite.
(iii) (boundedness) |γ(h)| ≤ γ(0), h ∈ Z.

The autocorrelation function of the time series is then defined as

ρ(h) = γ(h)/γ(0), h ∈ Z. (9.5)

By property (iii) above (or the Cauchy–Schwarz inequality), the value of ρ(h)
is always between −1 and 1.

A well-known result in time series analysis is the spectral representation
theorem, as follows (e.g., Hannan 1970, p. 46).

Theorem 9.1. For any autocovariance function γ of a second-order sta-
tionary time series we have the representation

γ(h) =

∫ π

−π

eihλF (dλ) (9.6)

for all h ∈ Z, where F is a nondecreasing function, which is uniquely defined
if we require in addition that (i) F (−π) = 0 and (ii) F is right-continuous.

The function F is called the spectral distribution function. In the case
that F is absolutely continuous, there exists a function f , called the spectral
density function, such that
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γ(h) =

∫ π

−π

eihλf(λ) dλ (9.7)

for all h ∈ Z. A sufficient condition for the existence of the spectral density is
that the autocovariance function is absolutely summable; that is, (4.49) holds.
In addition, we have the following result regarding a linear time series that
can be expressed as

Xt =
∞∑

j=−∞
ajεt−j , t ∈ Z, (9.8)

where εt is as in (9.1).

Theorem 9.2 (Herglotz theorem). If
∑∞

j=−∞ a2
j < ∞, then Xt has the

spectral density f(λ) = (σ2/2π)|∑∞
j=−∞ aje

ijλ|2.

Another celebrated result in time series analysis is the Wold decomposition
(Wold 1938), discussed earlier in Section 4.4.3. It states that any second-order
stationary time series Xt can be expressed as

Xt = vt +

∞∑
j=0

ajεt−j , (9.9)

where εt is as in (9.1), vt is purely deterministic in the sense that it belongs
to the linear space spanned by vt−1, vt−2, . . . in the L2 sense, εt and vt are
orthogonal in that E(εsvt) = 0 for all s, t ∈ Z, and the coefficients aj satisfy∑∞

j=0 a
2
j < ∞. Note that the infinite series in (9.9) is different from that in

(9.8) in that the summation is restricted to nonnegative integers. This dif-
ference is important in time series prediction theory, in which εt represents
innovations, or forecast errors. Wold decomposition ensures the ability to lin-
early forecast any second-order stationary time series by means of a process
purely determined by its past values plus a moving average of current and
past innovations. [Note that such an implication does not prevail from (9.8)
because the summation also involve future innovations.]

An extension of time series is a spatial series. A spatial series is also denoted
by Xt except that t ∈ Zk, where k > 1; in other words, t = (t1, . . . , tk), where
tj ∈ Z, 1 ≤ j ≤ k. For example, k = 2 gives rise to a collection of random
variables in the plane. The analysis of spatial series is of interest in a number
of fields such as geography, econometrics, geology, and ecology. As it turns out,
the development for spatial series analysis is essentially the same for k = 2
and for k > 2, but there are major differences between k = 1 (i.e., time series)
and k = 2. For such a reason, we mainly focus on k = 2 for spatial series.

Some of the time series models can be extended to spatial series. For
example, a spatial WN spatial series is defined the same way as Example 9.1,
with the understanding that s, t ∈ Z2. Similarly, a spatial ARMA model is
defined as Xt, t ∈ Z2, satisfying
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Xt =
∑

s∈〈0,p]

bsXt−s +
∑

s∈[0,q]

asWt−s, t ∈ Z2, (9.10)

where p = (p1, p2), q = (q1, q2), 〈0, p] = {s = (s1, s2) ∈ Z2 : 0 ≤ sj ≤
pj , j = 1, 2, s �= (0, 0)}, [0, q] = 〈0, q] ∪ {(0, 0)}, Wt is a spatial WN(0, σ2)
series; and the a’s and b’s are unknown parameters. A spatial series Xt,
t ∈ Z2, is said to be second-order stationary if E(Xt) is a constant and
E(Xs+hXt+h) = E(XsXt) for all s, t, h ∈ Z2. It is easy to show that this
condition is equivalent to that E(Xt) and E(XtXt+h) does not depend on t
for any t, h ∈ Z2 (Exercise 9.2). For a second-order stationary spatial series,
we can define its autocovariance function in the same way as (9.4), except that
t, h ∈ Z2. A spectral representation theorem similar to (9.6) for second-order
stationary spatial series was given by Yaglom (1957). Furthermore, Tjøstheim
(1978) extended the Wold decomposition to a second-order stationary purely
nondeterministic spatial series. The decomposition has

Xt =
∑
s≥0

asWt−s, (9.11)

where Wt is as in (9.10), and, for s = (s1, s2) ∈ Z2, s ≥ 0 means that s1 ≥ 0
and s2 ≥ 0. This corresponds to (9.9) with vt = 0, which is what the term
“purely nondeterministic” means intuitively.

9.2 Autocovariances and autocorrelations

Suppose that a second-order stationary time series Xt with E(Xt) = 0 is
observed for t = 1, . . . , n. Its sample autocovariance function is defined as

γ̂(h) =

{
n−1

∑n
s=h+1 XsXs−h, 0 ≤ h ≤ n− 1

0, h ≥ n.
(9.12)

The definition naturally extends to negative integers by γ̂(−h) = γ̂(h). The
sample autocorrelation function is defined as ρ̂(h) = γ̂(h)/γ̂(0). We will focus
on a second-order stationary, purely nondeterministic time series, which, by
Wold decomposition, can be expressed as (9.9) without vt; that is,

Xt =
∞∑

j=0

ajεt−j (9.13)

with
∑∞

j=0 a
2
j < ∞ [in some cases, a constant μ is added to the right side

of (9.13); here, for simplicity, we let μ = 0]. We also assume, without loss of
generality, that a0 = 1. There have been strong interests in the asymptotic
properties of the sample autocaviance and autocorrelation functions. For ex-
ample, the identification of ARMA models (see Example 9.2 and subsequent
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sections of this chapter) relies on the a.s. convergence rate of the sample au-
tocaviances and autocorrelations. The classical theory of inference about the
time series (9.13) assumes that the εt’s are i.i.d. However, as several authors
have noted (e.g., Hall and Heyde 1980, p. 194), this assumption is somewhat
unrealistic. A more natural assumption is

E(εt|Ft−1) = 0 a.s. (9.14)

for all t, where Ft = σ(εs, s ≤ t). In other words, εt, Ft, t ∈ Z, is a sequence
of martingale differences. As observed in Hannan and Heyde (1972, p. 2059),
in the case where Xt is strictly stationary and εt are prediction errors [i.e.,
εt = Xt − E(Xt|Gt−1), where Gt = σ(Xs, s ≤ t)], (9.14) is equivalent to the
assertion that the best linear predictor is the best predictor, both in the least
squares sense. By using the martingale laws of large numbers (see Section
8.4.1), these latter authors further obtained weak and strongs law as well as
a CLT for the sample autocovariances. We state the strong law result below
and leave the CLT for later discussion. Note that the first part of the theorem
does not require that εt be strictly stationary. Instead, a weaker distributional
assumption is imposed for this part.

Theorem 9.3. Suppose that (9.14) holds and there is a constant c and a
nonnegative random variable ξ with E(ξ2) < ∞ such that

P(|εt| > x) ≤ cP(ξ > x) (9.15)

for all x > 0 and t ∈ Z. Furthermore, suppose that

∞∑
j=0

|aj | < ∞. (9.16)

(i) If, in addition, we have

1

n

n∑
t=1

E(ε2t |Ft−1)
a.s.−→ σ2 > 0, (9.17)

then γ̂(h)
P−→ γ(h) as n → ∞ for all h ∈ Z. (ii) If (9.15) is strengthened so

that εt is strictly stationary and (9.17) is strengthened so that

E(ε2t |Ft−1) = σ2 > 0 a.s. (9.18)

for all t ∈ Z, then γ̂(h)
a.s.−→ γ(h) as n → ∞, for all h ∈ Z.

We now consider deeper asymptotic results for Xt. For the rest of this
section we assume that Xt is strictly stationary and ergodic (see the defini-
tion following Theorem 7.14). As discussed, (9.14) is a reasonable assumption
for the innovations εt, but not (9.18). In fact, the only reasonable conditions
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that would make (9.18) hold is, perhaps, that the innovations are Gaussian
(Exercise 9.8). Furthermore, some inference of time series requires a.s. conver-
gence rates of the sample autocovariances and autocorrelations (see the next
section). For example, An et al. (1982) proved the following results. Here, a
sequence of random variables ξn is a.s. o(an) (O(an)) for some sequence of
positive constants an if lim supn→∞ |ξn|/an = 0 (< ∞) a.s.

Theorem 9.4. Suppose that
∑∞

j=0 |aj | < ∞ and (9.14) and (9.18) hold.
Furthermore, there is r ≥ 4 such that E(|εr|r) < ∞. Then for any δ > 0 and
Pn ≤ na, where a = r/{2(r − 2)}, we have

max
0≤h≤Pn

|γ̂(h) − γ(h)|

= o
{
n−1/2(Pn logn)2/r(log logn)2(1+δ)/r

}
a.s. (9.19)

In particular, if r = 4 and Xt is an ARMA process and, furthermore, Pn =
O{(log n)b} for some b < ∞, then we have

sup
0≤h≤Pn

|γ̂(h) − γ(h)| = O

(√
log logn

n

)
a.s. (9.20)

Note that the convergence rate on the right side of (9.20) is the best
possible. The proof of (9.19) is an application of two well-known inequalities:
Doob’s maximum inequality [see (5.73)] and Burkholder’s inequality [below
(5.71)]. Note that the two inequalities are often used together in an argument
involving martingales. The proof also used an argument due to Móricz (1976,
p. 309) dealing with maximum moment inequalities that was briefly discussed
at the end of Section 5.4. The proof of (9.20) is more tedious.

Once again, condition (9.18) is assumed in the Theorem 9.4. In An et al.
(1982), the authors discussed possibilities of weakening this condition. Here,
the authors focused on the sample autocovariances, with the understanding
that similar results for the sample autocorrelations can be obtained as a conse-
quence of those for the sample autocovariances. However, in some applications,
it is the sample autocorrelations that are of direct interest. Huang (1988a)
showed that for the convergence rate of sample autocorrelations, condition
(9.18) can be completely removed. We state Huang’s results as follows.

Theorem 9.5. Let Xt be an ARMA process, (9.14) holds, and E(ε4t ) <∞.
Then (9.20) holds with γ replaced by ρ.

Theorem 9.6. Suppose that Xt satisfies (9.13) and (9.14).
(i) (CLT) If

∑∞
j=1

√
ja2

j < ∞, then for any given positive integer K, the

joint distribution of
√
n{ρ̂(h) − ρ(h)}, h = 1, . . . ,K, converges to N(0, VK),

where the (s, t) element of VK is E(ηsηt), 1 ≤ s, t ≤ K, with
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ηt =
ε0
σ2

∞∑
u=1

{ρ(u+ t) + ρ(u− t) − 2ρ(u)ρ(t)}ε−u

and σ2 = E(ε20).
(ii) (LIL) If

∑∞
j=1 ja

2
j < ∞, then for any given positive integer K and

constants c1, . . . , cK , we have with probability 1 that the set of limit points
of the sequence(

n

log logn

)1/2 K∑
h=1

ch{ρ̂(h) − ρ(h)}, n ≥ 3,

coincides with [−√
2τ,

√
2τ ], where τ2 =

∑K
s,t=1 csctE(ηsηt) and ηt is given

above.
(iii) (Uniform convergence rate) If

∑∞
j=3 j(log log j)1+δa2

j < ∞ for some

δ > 0, and
∑∞

j=1 |aj | < ∞, then we have

sup
h≥0

|ρ̂(h) − ρ(h)| = O

(√
logn

n

)
a.s.

We omit the proofs of Theorem 9.5 and Theorem 9.6, which are highly
technical, but remark that martingale techniques play important roles in these
proofs. Huang (1988a) also obtained results of CLT, LIL and the uniform
convergence rate for the sample autocovariances under conditions weaker that
(9.18) (but without having it completely removed).

9.3 The information criteria

On the morning of March 16, 1971, Hirotugu Akaike, as he was taking a seat
on a commuter train, came up with the idea of a connection between the
relative Kullback–Leibler discrepancy and the empirical log-likelihood func-
tion, a procedure that was later named Akaike’s information criterion, or AIC
(Akaike 1973, 1974; see Bozdogan 1994 for the historical note). The idea has
allowed major advances in model selection and related fields (e.g., de Leeuw
1992), including model identifications in time series (see the next section) .

The problem of model selection arises naturally in time series analysis.
For example, in an ARMA model (see Example 9.2), the orders p and q are
unknown and therefore need to be identified from the information provided
by the data. Practically speaking, there may not be an ARMA model for
the true data-generating process—and this is true not only for time series
models but for all models that are practically used. George Box, one of the
most influential statisticians of the 20th century, once said, and has since been
quoted, that “all models are wrong; some are useful.” What it means is that,
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even though there may not exist, say, a “true” ARMA model, a suitable choice
of one may still provide a good (or perhaps the best) approximation from a
practical point of view.

The idea of AIC may be described as follows. Suppose that one wishes
to approximate an unknown pdf, g, by a given pdf, f . The Kullback–Leibler
discrepancy, or information, defined as

I(g; f) =

∫
g(x) log g(x) dx−

∫
g(x) log f(x) dx, (9.21)

provides a measure of lack of approximation. It can be shown, by Jensen’s
inequality, that the Kullback–Leibler information is always nonnegative and
it equals zero if and only if f = g a.e. [i.e., f(x) = g(x) for all x except on
a set of Lebesgue measure zero]. However, it is not a distance (Exercise 9.9).
Note that the first term on the right side of (9.21) does not depend on f .
Therefore, to best approximate g, one needs to find an f that minimizes

−
∫
g(x) log f(x) dx = −Eg{log f(X)},

where Eg means that the expectation is taken with X ∼ g. Since we do
not know g, the expectation is not computable. However, suppose that we
have independent observations X1, . . . , Xn from g. Then we may replace the
expectation by the sample mean, n−1

∑n
i=1 log f(Xi), which is an unbiased

estimator for the expectation. In particular, under a parametric model, de-
noted by M , the pdf f depends on a vector θM of parameters, denoted by
f = fM (·|θM ). For example, under an ARMA(p, q) model, we have M = (p, q)
and θM = (b1, . . . , bp, a1, . . . , aq)

′. Then the AIC is a two-step procedure. The
first step is to find the θM that minimizes

− 1

n

n∑
i=1

log fM(Xi|θM ) (9.22)

for any givenM . Note that (9.22) is simply the negative log-likelihood function
under M . Therefore, the θM that minimizes (9.22) is the MLE, denoted by

θ̂M . Then, the second step of AIC is to find the model M that minimizes

− 1

n

n∑
i=1

log fM (Xi|θ̂M ). (9.23)

However, there is a serious drawback in this approach: Expression (9.23) is no
longer an unbiased estimator for −Eg{log fM (X |θM)} due to overfitting. The
latter is caused by double-use of the same data—for estimating the expected
log-likelihood and for estimating the parameter vector θM . Akaike (1973) pro-
posed to retify this problem by correcting the bias, which is

1

n

n∑
i=1

Eg{log fM (Xi|θ̂M )} − Eg{log fM(X |θM )}.
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He showed that, asymptotically, the bias can be approximated by |M |/n,
where |M | denotes the dimension of M defined as the number of estimated
parameters under M . For example, if M is an ARMA(p, q) model, then |M | =
p + q + 1 (the 1 corresponds to the unknown variance of the WN). Thus, a
term |M |/n is added to (9.23), leading to

− 1

n

n∑
i=1

log fM(Xi|θ̂M ) +
|M |
n

.

The expression is then multiplied by the factor 2n, which does not depend on
M and therefore does not affect the choice of M , to come up with the AIC:

AIC(M) = −2

n∑
i=1

log fM (Xi|θ̂M ) + 2|M |. (9.24)

In words, the AIC is minus two times the maximized log-likelihood plus two
times the number of estimated parameters.

A number of similar criteria have proposed since the AIC. These criteria
may be expressed in a general form as

D̂M + λn|M |, (9.25)

where D̂M is a measure of lack-of-fit by the model M and λn is a penalty
for complexity of the model. The measure of lack-of-fit is such that a model
of greater complexity fits better, therefore it has a smaller D̂M ; on the other
hand, such a model receives more penalty for having a larger |M |. Therefore,
criterion (9.25), known as the generalized information criterion, or GIC (Nishii
1984; Shibata 1984), is a trade-off between model fit and model complexity.
Note that AIC corresponds to (9.25) with D̂M being −2 times the maximized
log-likelihood and λn = 2. We consider some other special cases below. In all
of these cases, the measure of lack-of-fit is the same as in AIC.

Example 9.3. Hurvich and Tsai (1989) argued that in the case of the
ARMA(p, q) model, a better bias correction could be obtained if one replaces
p+ q + 1 by an asymptotically equivalent quantity,

n(p+ q + 1)

n− p− q − 2
.

This leads to a modified criterion known as AICC. The AICC corresponds to
(9.25) with λn = 2n/(n− p− q − 2). So, if n → ∞ while the ranges of p and
q are bounded, AICC is asymptotically equivalent to AIC.

One concern about AIC is that it does not lead to consistent model selec-
tion if the dimension of the optimal model is finite. Here, an optimal model
means a true model with minimum dimension. For example, suppose that the
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true underlying model is AR(2); then AR(3) is also a true model (by letting
the additional coefficient, b3, equal to zero [see (9.1)], but not an optimal
model. On the other hand, AR(1) is an incorrect model (or wrong model). So,
if one consider all AR models as candidates, the only optimal model is AR(2).
Furthermore, consistency of model selection is defined as that the probability
of selecting an optimal model goes to 1 as n → ∞.

Example 9.4 (BIC). The Bayesian information criterion, or BIC (Schwarz
1978), corresponds to (9.25) with λn = logn. Unlike the AIC, the BIC is a
consistent model selection procedure (e.g., Hannan 1980).

Example 9.5 (The HQ criterion). Hannan and Quinn (1979) proposed a cri-
terion for determine the order p of an AR model based on a LIL for the partial
autocorrelations (e.g., Hanna 1970, pp. 21–23). Their criterion corresponds to
(9.25) with λn = c log{log(n)}, where c > 2 is a constant.

The idea of choosing λn so that (9.25) leads to a consistent model se-
lection strategy is, actually, quite simple. The AIC is not consistent because
it does not put enough penalty for complex models. For example, suppose
that the true underlying model is AR(p). Then AIC tends to choose an or-
der higher than p in selecting the order for the AR model. This problem is
called overfitting. It can be shown that AIC does not have the other kind of
problem—underfitting, meaning that the procedure tends to select an order
less than p, in this case. This means that, asymptotically, AIC is expected to
select, at least, a true model; but the selected model may not be optimal in
that it can be further simplified. For a procedure to be consistent, one needs
to control both overfitting and underfitting. On the one hand, one needs to
increase the penalty λn in order to reduce overfitting; on the other hand,
one cannot overdo this because otherwise, the underfitting will again make
the procedure inconsistent. The question is: What it the “right” amount of
penalty?

The way to find out the answer is to evaluate the asymptotic order (see
Chapter 3) of the first term in (9.25) (i.e., the measure of lack-of-fit). As
it turns out, in typical situations there is a difference in the order of D̂M

depending on whether M is a true (but not necessarily optimal) model or
wrong model. Roughly speaking, let D̂M = O(an) when M is true and D̂M =
O(bn) when M is wrong, where an = o(bn). Then if we choose λn such that
an = o(λn) and λn = o(bn), we have a consistent model selection criterion.
To see this, let M0 be an optimal model and denote (9.25) by c(M). If M is a
wrong model, then, asymptotically, we have c(M) = O(bn)+o(bn)|M | = O(bn)
while c(M0) = O(an) + o(bn)|M | = o(bn). So, asymptotically, one expects
c(M) > c(M0). On the other hand, if M is a true but nonoptimal model,
meaning |M | > |M0|, we have c(M) = O(an) +λn|M | = o(λn) +λn|M | while
c(M0) = O(an) + λn|M0| = o(λn) + λn|M0|. Therefore,
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c(M) − c(M0) = λn(|M | − |M0|) + o(λn),

which is expected to be positive if λn → ∞. It follows that, asymptotically,
neither a wrong model nor a true but nonoptimal model cannot possibly be
the minimizer of (9.25), so the minimizer has to be M0. Of course, to make
a rigorous argument, one needs to clearly define what is meant by o(an), and
so on., because D̂M is a random quantity. Usually, this is in the probability
sense (see Section 3.4).

Also, it is clear that the choice of λn for consistent model selection, if it
exists, is not unique. In fact, there may be many choices of λn that all lead
to consistent model selection criteria, but their finite sample performance can
be quite different. This issue was recently addressed by Jiang et al. (2008),
where the authors proposed a new strategy for model selection, called a fence.

9.4 ARMA model identification

We first write the ARMA model (9.3) in a more convenient form:

p∑
j=0

αjXt−j =

q∑
j=0

βjεt−j, (9.26)

where α0 = β0 = 1. It is assumed that

A(z) =

p∑
j=0

αjz
j �= 0,

B(z) =

q∑
j=0

βjz
j �= 0 (9.27)

for |z| ≤ 1. Here, z denotes a complex number. It is also assumed that the
polynomials A(z) and B(z) are coprime, meaning that they do not have a
common (polynomial) factor. Let L denote the (backward) lagoperator; that
is, Lξt = ξt−1 for any time series ξt, t ∈ Z. Then (9.26) can be expressed as

A(L)Xt = B(L)εt, t ∈ Z. (9.28)

Condition (9.27) implies that there is ρ > 1 such that the function Φ(z) =
A−1(z)B(z) is analytic on {z : |z| ≤ ρ}, and therefore has the Taylor expansion

Φ(z) =
∞∑

j=0

φjz
j, |z| ≤ ρ. (9.29)

It follows that
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Xt = Φ(L)εt =

∞∑
j=0

φjεt−j , t ∈ Z. (9.30)

The φj ’s are called the Wold coefficients of Xt. It can be shown that φ0 = 1
and φjρ

j → 0 as j → ∞ (Exercise 9.10). Furthermore, the autocovariance
function of Xt can be expressed in terms of its Wold coefficients; that is,

γ(h) = σ2
∞∑

j=0

φjφj+h, h ≥ 0, (9.31)

and γ(−h) = γ(h). It can be shown that there is a constant c > 0 such that
|γ(h)| ≤ cρ−h, h ≥ 0, where ρ > 1 is the number in (9.29) (Exercise 9.11). In
other words, the autocorrelations of an ARMA process decay at an exponential
rate. If the coefficients αj , 1 ≤ j ≤ p, and βj , 1 ≤ j ≤ q, are known, the Wold
coefficients can be computed by the following recursive method:

βj =

p∑
k=0

αkφj−k, j = 0, 1, . . . , (9.32)

where we define βj = 0 if j > q and φj = 0 if j < 0. Thus, in view of (9.31), the
autocovariance function is uniquely determined by the ARMA coefficients αj ’s
and βj ’s. In practice, however, the reverse problem is of interest: Given the
autocovariances, how do we estimate the ARMA coefficients? This problem
is of interest because the autocovariances can be estimated from the observed
data (see Section 9.2).

A traditional method of estimation for ARMA models is called the Yule–
Walker (Y-W) estimation. For simplicity, let us consider a special case, the
AR(p) model defined by (9.1). It can be shown that the autocovariances and
AR coefficients jointly satisfy the following the Yule–Walker equation:⎡⎢⎢⎢⎣

γ(1)
γ(2)

...
γ(p)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
γ(0) γ(1) · · · γ(p− 1)
γ(1) γ(0) · · · γ(p− 2)

...
...

...
γ(p− 1) γ(p− 2) · · · γ(0)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
b1
b2
...
bp

⎤⎥⎥⎥⎦ (9.33)

(Exercise 9.12). Furthermore, we have

σ2 = γ(0) −
p∑

j=1

bjγ(j) (9.34)

(Exercise 9.12). Thus, one may estimate the AR coefficients by solving (9.33)
with γ(j) replaced by γ̂(j), the sample autocovariance, 0 ≤ j ≤ p. Let the

estimate of bj be b̂j , 1 ≤ j ≤ p. Then σ2 is estimated by the right side of (9.34)

with γ(j) replaced by γ̂(j), 0 ≤ j ≤ p, and bj by b̂j , 1 ≤ j ≤ p. Two alternative
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methods of estimation are the least squares (LS) estimation and maximum
likelihood (ML) estimation, the latter under the normality assumption.

When the orders p and q are known, large-sample properties of the Y-W,
LS, and ML estimators in ARMA models, including consistency, asymptotic
normality, and strong convergence rate, are well known (e.g., Brockwell and
Davis 1991). Note that all of these estimators are functions of the sample auto-
covariances (autocorrelations); hence, asymptotic properties of the estimators
can be derived from the corresponding asymptotic theory of the sample auto-
covariances and autocorrelations discussed in Section 2. In practice, however,
not only the parameters of the ARMA model are unknown, but the orders
p and q also need to be determined. Naturally, the orders would need to be
determined before the parameters are estimated. Hannan (1980) showed that
if the orders p and q are determined either by the BIC (Example 9.4) or by the
HQ criterion, the latter being an extension of Example 9.5 to ARMA models,
the resulting estimators of the orders, p̂ and q̂, are strongly consistent. Here,
strong consistency means that, with probability 1, one has p̂ = p and q̂ = q for
large n, where p and q are the true orders of the ARMA model. The author
also showed that AIC is not consistent (even in the weak sense, as defined
earlier) for determining the orders and obtained the asymptotic distribution
for the limits of p̂ and q̂. Note that if p̂ and q̂ are consistent, we must have
limn→∞ P(p̂ = p, q̂ = q) = 1, where p and q are the true orders. Instead, for
AIC the limit is not 1, but has a distribution over the range of overfitted p and
q (i.e., orders higher than the true orders). The result thus confirms an earlier
statement that AIC does not have the underfitting problem asymptotically. It
should be pointed out that AIC is designed for a situation quite different from
this, in which the underlying time series Xt is not generated from an ARMA
model. In other words, an ARMA model is only used as an approximation.
Therefore, it would be unfair to judge AIC solely based on the consistency
property. Also, consistency is a large-sample property, which is not always
an indication of finite sample performance. Hannan (1980) also studied the
(weak) consistency property of the criterion (9.25) in general. The main result
(i.e., Theorem 3 of Hannan 1980) states that the criterion is consistent as long
as λn → ∞, but this result is clearly in error. To see this, suppose that the true
orders, p and q, are greater than zero (i.e., we have a nondegenerate ARMA
model). If λn approaches infinity at such a fast rate that the second term in
(9.25) almost surely dominates the first term whenever |M | = p+ q > 0, the
procedure almost surely will not select any orders other than zeros.

Nevertheless, the main interest here is strong consistency of the order esti-
mation. The key assumptions of Hannan (1980) are that the innovations εt are
stationary satisfying (9.14) and (9.18) plus finiteness of the fourth moment.
As discussed earlier (see Section 9.2), all of the assumptions are reasonable
except (9.18). The author did offer some discussion on the possibility of weak-
ening this assumption. Huang (1988b, 1989) was able to completely remove
this assumption for ARMA model identification. As noted near the end of
Section 9.3, to derive a (strongly) consistent criterion for the order determi-
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nation, one needs to evaluate the asymptotic order of the first term in (9.25).
As it turns out, for ARMA models this term is asymptotically equivalent to
a function of the sample autocorrelations. Therefore, it is not surprising that
the a.s. convergence rate of the sample autocorrelations plays an important
role in deriving a strongly consistent model selection criterion. Since Huang
was able to remove (9.18) in obtaining the a.s. convergence rate for the sam-
ple autocorrelations (see Section 9.2), as a consequence he was able to remove
(9.18) as a requirement for ARMA model identification.

We briefly describe Huang’s first method of ARMA model identification
(Huang 1988b). The idea was motivated by the Wold decomposition (9.30).
It is seen that under the basic assumptions for ARMA models made at the
beginning of this section, the roles of Xt and εt are exchangeable. Therefore,
there is a reversed Wold decomposition,

εt =

∞∑
j=0

ψjXt−j , t ∈ Z, (9.35)

with ψ0 = 1. From this, a method was suggested by Durbin (1960) to fit the
ARMA model. The motivation is that it would be much easier to identify the
ARMA parameters if the innovations εt were observable. Of course, the εt
are not observed, but we have expression (9.35). Therefore, Durbin suggested
to first fit a long autoregression to the data to get the estimated εt’s and
then to solve a LS problem to find the estimates of the αj ’s and βj ’s. This
approach has been used by several authors. See, for example, Hannan and
Rissanen (1982). Huang (1988b) combined this approach with a new idea. If
one defines a stationary times series by (9.30) with φj = ψj—that is,

Yt =
∞∑

j=0

ψjεt−j, (9.36)

—then Yt satisfies the following reversed ARMA model:

q∑
j=0

βjYt−j =

p∑
j=0

αjεt−j . (9.37)

Similar to (9.32), we have the following connection between the coefficients
ψj and the ARMA parameters:

αj =

q∑
k=0

βkψj−k, j = 0, 1, . . . , (9.38)

where αj = 0 if j > p and ψj = 0 if j < 0 (Exercise 9.13).
Here is another way to look at (9.36)—it is simply (9.35) with Xt re-

placed by εt. From a theoretical point of view, there is an advantage dealing
with (9.36). The reason is that, in expansion (9.36), the innovations εt are
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independent, whereas in expansion (9.35), the Xt’s are correlated. In fact, the
innovations correspond to the orthogonal elements in the Hilbert space defined
below. Let L(ξt, t ∈ T } denote the Hilbert space spanned by the random vari-
ables ξt, t ∈ T , with the inner product and norm defined by 〈ξ, η〉 = E(ξη)
and ‖ξ‖ = {E(ξ2)}1/2 for ξ and η in the Hilbert space. It follows that εt,
t ∈ Z, is an orthogonal sequence of the Hilbert space. More specifically, let
H(s) = L(εu, u ≤ s) and PH denote the projective operator to the subspace
H of the Hilbert space. Define the random variables vs(t) = PH(s)Yt for all s
and t. For any p, q, Let μ2

p,q denote the normalized squared prediction error
(SPE) of v−p−1(0) by v−p−1(−k), k = 1, . . . , q, and let σ2

p,q denote the SPE
of Y0 by Y−k, k = 1, . . . , q, and ε−j , j = 1, . . . , p; that is,

μ2
p,q =

∥∥v−p−q(0) − PL{v−p−1(−k),k=1,...,q}v−p−1(0)
∥∥2 /σ2,

σ2
p,q =

∥∥Y0 − PL{Y−k,k=1,...,q;ε−j,j=1,...,p}Y0

∥∥2
.

Huang (1988b) showed that μ2
p,q = σ2

p,q/σ
2−1. From this he realized that μ2

p,q

can be used as a tool to determine the orders. Because σ2 is the minimum
variance of a linear predictor of Y0 using all the past, Ys, s < 0, and σ2

p,q is
the minimum variance of a linear predictor of Y0 using Y−k, k = 1, . . . , q, and
ε−j , j = 1, . . . , p, μ2

p,q may be viewed as a measure of deficiency of using the
information provided by Ys, s < 0, when we linearly predict Y0 from Y−k,
1 ≤ k ≤ q, and ε−j , 1 ≤ j ≤ p. The higher the μ2

p,q, the higher the deficiency
in using the information; and the information in the past has been completely
used if and only if μ2

p,q = 0. Based on this idea, Huang proposed a method of
ARMA model identification.

First, he obtained an estimated μ2
p,q, μ̂

2
p,q. To do so, he first found an

expression of μ2
p,q as a function of the ψj ’s in (9.36). He then obtained

estimators of the ψj ’s using the LS method and thus the estimator μ̂2
p,q

using the plug-in method (i.e., by replacing the ψj ’s by their estimators
in the function). He then determined the orders p and q as follows: Let
Kn = [logn)α] for some α > 1 (here, [x] represents the largest integer

≤ x). Define Tn = max{0 ≤ k ≤ Kn : ψ̂2
k > (logn/n)

∑k−1
j=0 ψ̂

2
j }, where

ψ̂j is the estimator of ψj mentioned above and Pn = [(1 + δ)Tn], where δ
is a small number (e.g., δ = 0.1). Let G be the set of all (p, q) such that
0 ≤ p, q ≤ Pn and μ̂2

p,q ≤ Pn logn/n. Define (p̂, q̂) as the element in G such
that p̂+ q̂ = min{p+ q : (p, q) ∈ G}. Huang showed that p̂ and q̂ are strongly
consistent estimators of the true orders p and q, respectively.

On the other hand, giving the orders, the parameters βj ’s and αj ’s can be

expressed as functions of the ψj ’s. Thus, by plugging in the estimators ψ̂j ’s,
we obtain estimators of the βj ’s and αj ’s. Huang then applied this method
of estimation with the estimated orders as above to obtain estimators of the
βj ’s and αj ’s without assuming that the orders are known. He showed that
the estimators are asymptotically normal in the sense that for any sequence
of constants λj , j ≥ 1, the distribution of

√
n
∑q̂

j=1 λj{β̂j(p̂, q̂) − βj} con-
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verges to N(0, τ2), where β̂j(p, q) is the estimator of βj with the given p and
q as mentioned above, τ2 = λ′Wλ with λ = (λ1, . . . , λq)

′, q being the true
order, and W being a covariance matrix depending on the parameters; a sim-
ilar result holds for the estimators of the αj ’s. Furthermore, the estimators
obey the LIL in the sense that, with probability 1, the set of limit points of√
n/2 log logn

∑q̂
j=1 λj{β̂j(p̂, q̂)− βj} is [−τ, τ ]; a similar result holds for the

estimators of the αj ’s.
Note that because of the strong consistency of p̂ and q̂, we have with

probability 1 that p̂ = p and q̂ = q for large n, where p and q are the true orders
(why?). Therefore, to establish the CLT and LIL for β̂j(p̂, q̂)’, 1 ≤ j ≤ q, and

so forth. all one has to do is to prove the same results for β̂j(p, q), 1 ≤ j ≤ q,
and so forth, where p and q are the true orders (again, why?). Also note that
although Huang’s procedure for the order determination is different from the
information criterion (9.25), it is not the reason why he was able to remove
(9.18) as a critical condition for ARMA model identification, as noted earlier.
The reason is, once again, that he dropped such a condition in obtaining the
uniform convergence rate for the sample autocorrelations (Section 9.2).

9.5 Strong limit theorems for i.i.d. spatial series

Let us now switch our attention to spatial series. The classical limit theo-
rems, as discussed in Chapter 6, are regarding sums of i.i.d. random variables.
Similarly, there are “classical” limit theorems for sums of i.i.d. spatial series.
To the surprise of some people (including the author himself when he first
discovered these results), some of these are not-so-straightforward generaliza-
tions of the classical results. For example, suppose that Xt, t ∈ N , is an i.i.d.
time series, where N = {1, 2, . . .}. Then, according to the SLLN, we have

n−1
∑n

t=1 Xt
a.s.−→ E(X1) as n → ∞, provided that E(|X1|) < ∞. Now, sup-

pose that Xt, t ∈ N2, is an i.i.d. spatial series. One would expect a similar
result to hold—that is,

1

n1n2

n1∑
t1=1

n2∑
t2=1

X(t1,t2)
a.s.−→ E{X(1,1)} (9.39)

as n1, n2 → ∞, provided that E{|X(1,1)|} < ∞—but this result is false! At
first, the surprise might seem a bit counterintuitive, as one can, perhaps,
rearrange the spatial series as a time series and then apply the classical SLLN,
so why would not (9.39) hold?

The problem is that there are so many ways by which n1 and n2 can
(independently) go to infinity. In fact, if n1 and n2 are restricted to increase
in a certain manner—for example, n1 = n2 → ∞, —then (9.39) holds as long
as E{|X(1,1)|} < ∞ (Exercise 9.14). As for the rearrangement, note that the
order of the terms in the rearranged time series that appear in the summation
in (9.39) depends on how n1, n2 → ∞—and this is true no matter how one
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rearranges the spatial series. For example, one method of rearrangement is
called the diagonal method, namely, Y1 = X(1,1), Y2 = X(1,2), Y3 = X(2,1), . . .,
and so on. Consider n1 = n2 = k. When k = 1, the summation in (9.39)
only involves Y1; when k = 2, it involves Y1, Y2, Y3, and Y5 in that order.
Now, consider n1 = 2k and n2 = k. When k = 1, the summation involves
Y1 and Y3; when k = 2, it involves Y1, Y2, Y3, Y5, Y6, Y9, Y10, and Y14, in that
order (Exercise 9.15). All of the strong (a.s.) classical limit theorems, including
the SLLN and LIL, may not hold if the order of terms in the summation is
allowed to change during the limiting process. On the other hand, all of the
weak classical limit theorems, including the WLLN and CLT, are not affected
by the change of order in the summation (why?). For example, we have

1√
n1n2

n1∑
t1=1

n2∑
t2=1

X(t1,t2)
d−→ N(0, σ2) (9.40)

as n1, n2 → ∞, provided that Xt, t ∈ N2, are i.i.d. with E{X(1,1)} = 0 and
σ2 = E{X2

(1,1)} ∈ (0,∞). Therefore, the focus of the current section is strong
limit theorems for i.i.d. spatial series.

Smythe (1973) showed that for (9.39) to hold, all one has to do is
to strengthen the moment condition, by a little. More specifically, define
log+(x) = log(x) if x > 1 and log+(x) = 0 otherwise. The moment condi-
tion for the classical SLLN is that E(|X1|) < ∞. For (9.39) to hold for an
i.i.d. spatial series Xt, t ∈ N2, one needs

E
[|X(1,1)| log+{|X(1,1)|}

]
< ∞, (9.41)

and this condition is also necessary. More generally, consider an i.i.d. spatial
series Xt, t ∈ Nd, where d is a positive integer. We use the notation |n| =
n1 · · ·nd for n = (n1, . . . , nd), 1 ≤ t ≤ n, for 1 ≤ tj ≤ nj , 1 ≤ j ≤ d,
1 = (1, . . . , 1) (d-dimensional), and n → ∞ for nj → ∞, 1 ≤ j ≤ d. Then

1

|n|
∑

1≤t≤n

Xt
a.s.−→ E(X1) (9.42)

as n → ∞ if and only if

E
{|X1|{log+(|X1|)}d−1

]
< ∞. (9.43)

So, in particular, when d = 1, (9.43) is equivalent to E(|X1|) < ∞, which is
the classical condition; for d = 2, (9.43) reduces to (9.41).

Wichura (1973) considered the LIL for the independent spatial series Xt,
t ∈ Nd. A special case of his results is the i.i.d. case, as follows. Define log(x) =
1 if x < e, and log log(x) = log{log(x)} = 1 if x < ee; maintain other notation
as above. If Xt, t ∈ Nd, are i.i.d. with E(X1) = 0 and E(X2

1 ) = 1, where d > 1,
then with probability 1 as n → ∞, the set of limit points of
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ζn =

∑
1≤t≤nXt√

2d|n| log log(|n|) , n ∈ Nd, (9.44)

is [−1, 1] if and only if

E

[
X2

1{log(|X1|)}d−1

log log(|X1|)
]
< ∞. (9.45)

Recall in the classical situation (see a summary of the classical results at
the end of Section 6.5), the necessary and sufficient condition for the LIL is
E(X2

1 ) < ∞. Comparing this condition with (9.45), it seems that there is
a discontinuity between d = 1 and d > 1. Wichura (1973, p. 280) gave the
following interpretation for this difference: It “is in precisely the latter case
that one can deduce the finiteness of” E(X2

1 ) from (9.45) (Exercise 9.16). Note
that there is no such discontinuity in d in Smythe’s SLLN result, as above. In
particular, when d = 2, we have with probability 1 that the set of limit points
of ζn, n ∈ N2, is [−1, 1] if and only if

E

{
X2

1 log(|X1|)
log log(|X1|)

}
< ∞. (9.46)

9.6 Two-parameter martingale differences

Given the roles that martingale differences haveplayed in time series analysis,
it is not surprising that similar tools have been used in the analysis of spatial
series. The major difference, as noted by Tjøstheim (1978, p. 131), is that “a
time series is unidirectional following the natural distinction made between
past and present. A similar obvious ordering does not seem to exist for a
general spatial series, and this fact reflects itself in the available methods
of analysis.” To define a two-parameter martingale, which is termed for the
lattice analogy of martingales (see Chapter 8), one needs first to be clear
what is the past, as the present is usually quite easy to define. Suppose that
t = (t1, t2) is the present. Tjøstheim (1983) defined the past as P(t) = {s =
(s1, s2) : s1 < t1 or s2 < t2} ≡ P1(t). Also see Jiang (1989). Jiang (1991a)
considered a different definition, in which the past is defined according to
a single direction, P(t) = {s = (s1, s2) : s1 < t1} ≡ P3(t). Jiang (1999a)
considered P(t) = {s = (s1, s2) : s1 < t1 or s1 = t1, s2 < t2} ≡ P2(t). Another
possible definition of the past is P(t) = {s = (s1, s2) : s1 < t1 and s2 < t2} ≡
P4(t). It is easy to see P1(t) ⊃ P2(t) ⊃ P3(t) ⊃ P4(t) (Exercise 9.17). Some
other types of past will be considered later. A spatial series εt, t ∈ Z2, is called
a two-parameter martingale differences (TMD) if it satisfies for all t ∈ Z2,

E{εt|εs, s ∈ P(t)} = 0 a.s. (9.47)

Here, the conditional expectation is with respect to the σ-field generated by
εs, s ∈ P(t), and P(t) is a defined past of t. We consider some examples.



302 9 Time and Spatial Series

Example 9.6. Let Wt, t ∈ Z2, be an independent spatial series with
E(Wt) = 0 and E(W 2

t ) < ∞. Consider

εt = W(t1,t2−1)W(t1,t2)

for t = (t1, t2). Then, εt, t ∈ Z2, is a TMD with respect to P (t) = Pj(t),
j = 1, 2, 3, 4. To see this, note that

σ{εs, s ∈ P1(t)} ⊂ σ{Ws, s ∈ P1(t)}

[every εs, where s ∈ P1(t), is a function of Ws, s ∈ P1(t)]. It follows that

E{εt|εs, s ∈ P1(t)}
= E

[
E{W(t1,t2−1)Wt|Ws, s ∈ P1(t)}|εs, s ∈ P1(t)

]
= E

[
W(t1,t2−1)E{Wt|Ws, s ∈ P1(t)}|εs, s ∈ P1(t)

]
= 0

because E{Wt|Ws, s ∈ P1(t)} = E(Wt) = 0. This verifies that εt is a TMD
with P (t) = P1(t). The rest are left as an exercise (Exercise 9.18).

Example 9.7. Let Wt, t ∈ Z2, be any spatial series. Define

εt = Wt − E{Wt|Ws, s ∈ P2(t)}. (9.48)

Then εt, t ∈ Z2, is a TMD with respect to P (t) = P2(t). This is because for
any s ∈ P2(t), σ{Wr, r ∈ P2(s)} ⊂ σ{Wr, r ∈ P2(t)}; hence,

εs = Ws − E{Ws|Wr, r ∈ P2(s)} ∈ σ{Wr , r ∈ P2(t)}.

Therefore, we have σ{εs, s ∈ P2(t)} ⊂ σ{Ws, s ∈ P2(t)}. It follows that

E{εt|εs, s ∈ P2(t)}
= E{Wt|εs, s ∈ P2(t)} − E [E{Wt|Ws, s ∈ P2(t)}| εs, s ∈ P2(t)]

= E{Wt|εs, s ∈ P2(t)} − E{Wt|εs, s ∈ P2(t)}
= 0.

On the other hand, εt, t ∈ Z2, is not necessarily a TMD with respect to
P (t) = P1(t). To see this, note that εs, s ∈ P1(t), involve all of the Ws, s ∈ Z2

(why?). Therefore, we can write

E{εt|εs, s ∈ P1(t)}
= E{Wt|εs, s ∈ P1(t)} − E [E{Wt|Ws, s ∈ P2(t)}| εs, s ∈ P1(t)] ,

but this is as far as we can go (Exercise 9.20).
Tjøstheim (1983) considered an extension of the martingale CLT (Theorem

8.7) to TMD satisfying (9.47) with P (t) = P1(t), but the proof appears to



9.6 Two-parameter martingale differences 303

involve some flaws. Jiang (1991b) proved a CLT for triangular arrays of spatial
series satisfying a weaker TMD condition than that assumed by Tjøstheim
(1983). A similar result was also obtained by Huang (1992). We state Jiang’s
result below, where the following notation will be used through the rest of
the chapter: s = (s1, s2), t = (t1, t2), n = (n1, n2), |n| = n1n2, 0 = (0, 0),
1 = (1, 1), and s ≤ t if and only if sj ≤ tj , j = 1, 2.

Theorem 9.7. Let εn,t, n ≥ 1, 1 ≤ t ≤ n, be a triangular array of spatial
series. Suppose that there exists a family of σ-fields Ft, t ≥ 0, satisfying
Fs ⊂ Ft if s ≤ t. Let Fj(t−) denote the smallest σ-field containing Fs,
sj < tj or sj = tj , s3−j < t3−j , j = 1, 2. If

εn,t ∈ Ft, E{εn,t|Fj(t−)} = 0 a.s., j = 1, 2, (9.49)

and furthermore, as |n| → ∞,

max
1≤t≤n

|εn,t| P−→ 0, (9.50)∑
1≤t≤n

ε2n,t
P−→ η2, (9.51)

where η is a bounded random variable, and

E

(
max

1≤t≤n
ε2n,t

)
is bounded in n, (9.52)

then as |n| → ∞, we have ∑
1≤t≤n

εn,t
d−→ Z (stably), (9.53)

where the random variable Z has characteristic function

cZ(λ) = E{exp(−η2λ2/2)}. (9.54)

Note 1. The limiting process here is |n| → ∞, which is weaker than n→ ∞
(i.e., n1, n2 → ∞).

Note 2. An analogue to condition (8.33) of Theorem 8.7 is not needed
because here the σ-fields do not depend on n (in other words, such a condition
is automatically satisfied).

Note 3. In the special case where εn,t = εt/an, an being a normalizing
constant depending on n, one may let Ft = σ(εs, s ≤ t). Then the first con-
dition of (9.49) (i.e., εn,t ∈ Ft) is obviously satisfied; the second condition is
equivalent to

E(εt|εs, s1 < t1 or s1 = t1, s2 < t2) = 0 a.s., (9.55)

E(εt|εs, s2 < t2 or s2 = t2, s1 < t1) = 0 a.s. (9.56)
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Condition (9.55) is the same as (9.47) with P (t) = P2(t), whereas (9.56) is the
condition with the coordinates switched. Note that (9.47) with P (t) = P1(t)
implies (9.55) and (9.56) (Exercise 9.21).

Note 4. Later Jiang (1993) was able to weaken (9.49) to that with j = 1
only and (9.52) to that with ε2n,t replaced by |εn,t|p for some p > 1.

Furthermore, Jiang (1999a) obtained a LIL for a strictly stationary spatial
series εt, t ∈ Z2, satisfying

E{ε0|εs, s1 < 0 or s2 < 0} = 0 a.s. (9.57)

The definition of a strictly stationary spatial series is similar to that for a
strictly stationary time series; that is, for any k ≥ 1 and t1, . . . , tk, s ∈ Z2,
the joint distribution of εtj+s, j = 1, . . . , k, does not depend on s. Note
that because of the strict stationarity, (9.57) is equivalent to (9.47) for all
t (Exercise 9.22). Let (Ω,F ,P) be the probability space Define the measure-
preserving transformations, U and V , on the induced probability space(
RZ2

,BZ2

,Pε−1
)
, where B represents the Borel σ-field and ε = (εt)t∈Z2 ,

by (Ux)t = xt+u, (V x)t = vt+v, t ∈ Z2, for x = (xt)t∈Z2 ∈ RZ2

, where
u = (1, 0) and v = (0, 1). In other words, U is the shift by 1 in the first coordi-
nate and V is that in the second coordinate. Denote the a.s. invariant σ-field
(see Appendix A.2) corresponding to U and V by τ̄U and τ̄V , respectively. Let
τ̄ = τ̄U ∩ τ̄V . The spatial series εt is said to be ergodic if ε−1(τ̄ ) = {∅, Ω}, the
σ-field whose elements have probabilities either 0 or 1, and strongly ergodic
if ε−1(τ̄U ) = ε−1(τ̄V ) = {∅, Ω}.

Theorem 9.8. Let εt, t ∈ Z2, be strictly stationary with E(X2
1 ) = 1 and

E(|X1|q) < ∞ for some q > 2 and (9.57) holds. Define ζn as (9.44) with d = 2.
(i) If εt is ergodic, then with probability 1 as n → ∞, the set of limit

points of ζn is [−1, 1].
(ii) If εt is strongly ergodic, then with probability 1 as |n| → ∞, the set of

limit points of ζn is [−1, 1].

In fact, Jiang proved the theorem under a TMD condition slightly weaker
than (9.57); that is, for every m ≥ 0,

E{ε0|εs, s1 < t1 or t1 ≤ s1 ≤ t1 +m, s2 < t2} = 0 a.s. (9.58)

(Exercise 9.21). The author also discussed a situation where the moment con-
dition, E(|X1|q) < ∞ for some q > 2, can be reduced to (9.46), which is the
minimum moment condition for the i.i.d. case (Section 9.5).

9.7 Sample ACV and ACR for spatial series

The subjects of this section are similar to Section 9.2 but for spatial series.
Let Xt, t ∈ Z2, be a spatial series (not necessarily stationary). The sample
autocovariance (ACV) function for Xt is defined as
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γ̂(u, v) =
1

|n|
∑

1≤t≤n

Xt−uXt−v, u, v ∈ Z2. (9.59)

Practically speaking, the range of the summation needs to be adjusted ac-
cording to u and v (and the range of the observed Xt’s), as in Section 9.2, but
we ignore such an adjustment for the sake of simplicity. The sample autocor-
relation (ACR) function is ρ̂(u, v) = γ̂(u, v)/γ̂(0, 0). Note that here we do not
assume that Xt is (second-order) stationary; otherwise the notation would be
simpler. Nevertheless, for the rest of the section we focus on a linear spatial
series that can be expressed as

Xt =
∑
s∈Z2

asWt−s, (9.60)

t ∈ Z2, where Wt, t ∈ Z2, is a spatial WN(0, σ2) series with σ2 > 0. Further-
more, we assume that the (constant) coefficients as satisfy

|as| ≤ cφ|s1|+|s2| (9.61)

for some constants c > 0 and 0 < φ < 1 and all s = (s1, s2) ∈ Z2. It follows
that E(Xt) = 0 [and this is why there is no need to subtract the sample mean
from Xt in the definition of sample ACV; i.e., (9.59)] A special case for which
(9.60) and (9.61) are satisfied is considered in the next section.

Jiang (1989) obtained the uniform convergence rate of the iterated loga-
rithm for ACV and ACR under (9.60), (9.61), and the following TMD condi-
tion:

Wt ∈ Ft, E{Wt|Fj(t−)} = 0 a.s., j = 1, 2, (9.62)

for all t, where Ft, t ∈ Z2, is a family of σ-fields satisfying Fs ⊂ Ft if s ≤ t
and Fj(t−) is the smallest σ-field containing all the Fs, sj < tj or sj = tj ,
s3−j < t3−j , j = 1, 2. Jiang (1991a) obtained the same results under a weaker
TMD condition:

Wt ∈ F1(t), E{Wt|F1(t−)} = 0 a.s., (9.63)

where F1(t) is the smallest σ-field containing all the Fs, s1 < t1 or s1 =
t1, s2 ≤ t2 (Exercise 9.23). Let Dn = D([(log n1)

a], [(logn2)
a]), where a is

a positive constant and D is a positive (constant) integer. For the uniform
convergence rate of the sample ACV, it is also assumed that

E{W 2
t |F1(t−)} = 1 a.s. (9.64)

for all t and that

lim sup
|n|→∞

1

|n|
∑
t̄≤n

(|Wt|4p + [E{W 4
t |F1(t−)}]p) < ∞ a.s. (9.65)
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for some p > 1, where the notation t̄ denotes (|t1|, |t2|). Then we have

max
ū,v̄≤Dn

|γ̂(u, v) − γ(u, v)| = O

(√
log log |n|

|n|

)
a.s. (9.66)

If, in addition, we have
∑

s∈Z2 a2
s > 0, then (9.66) holds for the (sample) ACR

(i.e., with γ replaced by ρ). The condition (9.64) can be weakened to some
extent, depending on whether ACV or ACR is considered.

Note that if Wt is strictly stationary and strongly ergodic (see Section 9.6)
and E(|Wt|q) < ∞ for some q > 4, then (9.65) is a consequence of the ergodic
theorem (e.g., Zygmund 1951; Jiang 1991b). In fact, the strong ergodicity
condition can be weakened for (9.65) to hold (Exercise 9.24).

An exponential inequality, which may be regarded as a two-parameter
analogue (and extension) of (5.89), plays an important role in establishing

(9.66). For u = (u1, u2), v = (v1, v2) ∈ Z2, the notation u
1
< v means that

u1 < v1 or u1 = v1 and u2 < v2. Let ξt be a TMD satisfying (9.63) with W
replaced by ξ, and let ηt be another spatial series satisfying ηt ∈ F1(t). Then

for any u
1
< v, 1 ≤ m = (m1,m2) ≤ n = (n1, n2), and λ > 0, we have

P

(
max

m1≤k1≤n1

k1∑
t1=m1

n2∑
t1=m2

[
ξt−uηt−v − 1

6
ξ2
t−uη

2
t−v

−1

3
E{ξ2t−u|F1(t− u−)}η2

t−v

]
≥ λ

)
≤ e−λ. (9.67)

To see how (9.67) works, suppose that one wishes to show that

1√|n| log log |n|
∑

1≤t≤n

Wt−uWt−v (9.68)

is bounded a.s. [see Exercise 9.25 for a connection between (9.66) and (9.68)].
In view of the ergodic theorem, this is equivalent to that

1√|n| log log |n|
∑

1≤t≤n

Wt−uWt−v

− 1

6|n|
∑

1≤t≤n

[W 2
t−uW

2
t−v + 2E{W 2

t−u|F1(t− u−)}W 2
t−v] (9.69)

is bounded a.s. (because of the subtracted average converges a.s.). Now, con-
sider the probability that (9.69) is ≥ a for some a > 0. If we multiply both
sides of the inequality by log log |n|, we come up with an inequality like (9.67)
with ξt = (log log |n|/|n|)1/2Wt and λ = a log log |n|, and the right side of the
inequality is e−λ = (log |n|)−a (verify this). This upper bound of the prob-
ability goes to zero as |n| → ∞, but apparently not fast enough to directly
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imply that (9.69) is a.s. bounded. However, the upper bound is “good enough”
to allow the following subsequence method, which is often used in obtaining
strong limit results. Consider ni = ([ei1 ], [ei2 ]) ([x] is the largest integer ≤ x),
which is a subsequence of n indexed by i = (i1, i1) ≥ 1 = (1, 1). It can be
shown (Exercise 9.26) that

∑
i≥1(log |ni|)−a < ∞ for sufficiently large a. It

then follows by a lattice version of the Borel–Cantelli lemma (Lemma 2.5)
that (9.69) is bounded a.s., at least for the subsequence ni. The question then
is how to extend the a.s. convergence to the entire sequence n, and this is
where one needs a maximum inequality, such as (9.67). Note that inside the
probability sign is the maximum of sums rather than a single sum. This cov-
ers the “gaps” between the subsequence ni and therefore the entire sequence.
There are, of course, technical details, but this is the main idea.

It is worthy to mention another inequality, which may be regarded as a
two-parameter extension of Burkholder’s inequality (see Section 5.4). This
inequality was used in obtaining the uniform convergence rate of sample ACR
for, say, strictly stationary spatial series. We omit the details of the latter
result (see Jiang 1991a), but the inequality is nevertheless useful in perhaps
other problems as well (See Exercise 9.27). Let ξt be as in (9.67). Define
Sk,n =

∑
k+1≤t≤k+n ξt. For every p > 1, there is a constant Bp depending

only on p such that for any k ∈ Z2 and N ≥ 1, we have

E

(
max

1≤n≤N
|Sk,n|p

)
≤ Bp(1 + log2N2)

p

⎧⎨⎩ ∑
k+1≤t≤k+N

E(|ξt|p)
⎫⎬⎭ (9.70)

if 1 < p ≤ 2, where log2(·) is the logarithmic function with base 2, and

E

(
max

1≤n≤N
|Sk,n|p

)
≤ Bp

⎛⎝ ∑
k+1≤t≤k+N

‖ξt‖2
p

⎞⎠p/2

(9.71)

if p > 2, where ‖ξt‖p = {E(|ξt|p)}1/p.

9.8 Case study: Spatial AR models

There is extensive literature on spatial AR models, introduced in Section 9.1,
as well as their applications in fields such as ecology and economics. For ex-
ample, Lichstein et al. (2002) used Gaussian spatial AR models to examine
breeding habitat relationships for three common neotropical migrant song-
birds in the southern Appalachian Mountains of North Carolina and Ten-
nessee (USA). Langyintuo and Mekuria (2008) discussed an application of
spatial AR models in assessing the influence of neighborhood effects on the
adoption of improved agricultural technologies in developing countries.

A spatial AR model is defined by (9.10) with q = 0 or, equivalently,
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Xt −
∑

s∈〈0,p]

bsXt−s = Wt, t ∈ Z2, (9.72)

where p = (p1, p2) is the order of the spatial AR model and Wt, t ∈ Z2, is a
spatial WN(0, σ2) series. It is required that the corresponding polynomial of
two complex variables, z1 and z2, satisfy

1 −
∑

s∈〈0,p]

bsz
s1

1 zs2

2 �= 0, |z1| ≤ 1, |z2| ≤ 1. (9.73)

In engineering literature, (9.73) is known as the minimum phase property.
Chiang (1987) noted that (9.73) corresponds a special kind of Markov prop-
erty in random fields, called the quadrant Markov property. Also see Chiang
(1991). The term “random fields” is often used interchangeably with “spatial
series,” although the former also includes continuous multiparameter pro-
cesses (in other words, the term “random fields” to spatial series is like the
term “stochastic processes” to time series). The Markovian property is de-
fined by dependence of the present on the past through the immediate past
(see the next chapter). As noted earlier, in the lattice case the past is not
uniquely defined, and, depending on the definition of the past (and immedi-
ate past), there are several different types of Markovian properties of random
fields (e.g., Chiang 1991). The minimum phase property also implies the Wold
decomposition (9.11), where the coefficients as satisfy (9.61) for s ≥ 0.

Tjøstheim (1978) considered a similar Y-W equation to that in the time
series [see (9.33)] for estimating the AR coefficients in (9.72), namely,∑

v∈〈0,p]

bvγ(u, v) = γ(u, 0), u ∈ 〈0, p]. (9.74)

The Y-W estimator of b = (bv)v∈〈0,p] is defined as the solution to (9.74) with
γ replaced by γ̂, the sample ACV. The Y-W equation can be expressed in a
compact form as Gb = g, where G = [γ(u, v)]u,v∈〈0,p] and g = [γ(u, 0)]u∈〈0,p].

The estimator b̂ = (b̂)v∈〈0,p] satisfies Ĝb̂ = ĝ, where Ĝ and ĝ are G and g,
respectively, with γ replaced by γ̂. Under the assumption that the innovations

Wt are i.i.d., the author showed that b̂ is consistent; that is, b̂
P−→ b as |n| → ∞.

Furthermore, the estimator is asymptotically normal in that, as n → ∞,√|n|(b̂−b) converges in distribution to a multivariate normal distribution with
mean vector 0 and a certain covariance matrix. Note that here the limiting
process for the consistency is n1n2 → ∞, whereas that for the asymptotic
normality is n1, n2 → ∞.

Tjøstheim (1983) considered the strong consistency of the Y-W estimator
as well as the LS estimator of b. Let L(n, p) = {t : 1 ≤ t, t−s ≤ n, ∀s ∈ 〈0, p]}.
The LS estimator is defined by the vector b that minimizes

∑
t∈L(n,p)

∣∣∣∣∣∣Xt −
∑

s∈〈0,p]

bsXt−s

∣∣∣∣∣∣
2

. (9.75)
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Under the assumption that the innovations are i.i.d. and that n1 and n2

go to infinity at the same rate; that is, nj = hjk, where hj is a fixed integer,
j = 1, 2, and k → ∞. The author showed that both the Y-W and LS estimators
converge a.s. to b. The author also obtained asymptotic normality of these
estimators under the same limiting process. So far, the asymptotic results are
based on the assumption that p is known. Tjøstheim (1983) also considered
the situation where p is unknown and therefore has to be determined from
the data. He considered a GIC-type criterion (see Section 9.3) in the form of

C(p) = log σ̂2(p) +
l(|n|)
|n| d(p), (9.76)

where d(p) is the number of AR coefficients involved in (9.72) [i.e., d(p) =
(p1 + 1)(p2 + 1) − 1] and σ̂2(p) is the residual sum of squares (RSS) after
fitting the LS problem; that is,

σ̂2(p) =
1

|n|
∑

t∈L(n,p)

∣∣∣∣∣∣Xt −
∑

x∈〈0,p]

b̂(p)
s Xt−s

∣∣∣∣∣∣
2

,

where b̂(p) is the minimizer of (9.75) for the given p. The function l(·) depends
on the criterion. For the AIC, BIC, and HQ (see Section 9.3), the correspond-
ing l(|n|) are 2, log(|n|), and 2 log log(|n|), respectively. Tjøstheim defined the
estimator of p, p̂, as the minimizer of (9.76) over 0 ≤ p ≤ P , where P is
known. He showed that p̂ is consistent in the sense that P(p̂ �= p) → 0 un-
der the limiting process n1 = n2 = k → ∞, provided that l(|n|) → ∞ and
l(|n|)/|n| → 0 as k → ∞. Thus, in particular, the BIC and HQ are consistent,
whereas the AIC is not. These results are similar to those of Section 9.3. Fur-
thermore, the author considered the extension of his results by replacing the
i.i.d. assumption on the innovations Wt by the following TMD assumption:

Wt ∈ Ft, E{Wt|F(t−)} = 0 a.s., (9.77)

where F(t−) is the smallest σ-field containing all Fs, s1 < t1 or s2 < t2, but
the proofs appear to be flawed. Another limitation of Tjøstheim’s results is
that P , the upper bound of the range of p over which (9.76) is minimized, is
assumed known, whereas in practice, such an upper bound may not be known.

Jiang (1991b) proved that if Xt is a spatial AR(p) series satisfying the min-
imum phase property (9.73), where the WN innovation seriesWt is strictly sta-
tionary and strongly ergodic (see Section 9.6) with E{W 2

0 log+(|W0|)} < ∞,

then the Y-W estimator, b̂, is strongly consistent as |n| = n1n2 → ∞; that is,

b̂
a.s.−→ b as |n| → ∞. The author argued that the same result holds under the

following alternative to the strong ergodicity condition: Wt is a TMD satisfy-
ing (9.62) with Ft = σ(Ws, s ≤ t) [note that in such a case, the first condition
in (9.62) automatically holds], and the series

∑∞
i=0 E|E{W 2

(i,0)|F(−1,0)} − 1|
and

∑∞
i=0 E|E{W 2

(0,i)|F(0,−1)} − 1| are both finite. Furthermore, the author
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obtained asymptotic normality of the Y-W estimator. For example, suppose
that Wt is strictly stationary, strongly ergodic, E{W 4

0 log+(|W0|)} < ∞, and
the TMD condition (9.62) is satisfied for some family of σ-fields Ft [it is not
necessarily to have Ft = σ(Ws, s ≤ t)]. Then we have, as |n| → ∞,√

|n|(b̂− b)
d−→ N(0, Γ−1ΣΓ−1), (9.78)

where Γ = [γ(u, v)]u,v∈〈0,p] and Σ = [σ(u, v)]u,v∈〈0,p], with

σ(u, v) = E(W 2
0X−uX−v).

Note that the limiting process here is, again, |n| = n1n2 → ∞, which is
more general than n1, n2 → ∞ at the same rate (Tjøstheim 1983), or even
n1 and n2 independently go to infinity. Once again, the author proposed an
alternative to the strong ergodicity condition. The alternative is that for any
x, y ∈ 〈0,∞) = {s = (s1, s2), s1, s2 ≥ 0, (s1, s2) �= (0, 0)}, j = 1, 2, and
t3−j ∈ Z, both

1

nj

nj∑
tj=1

{E(W 2
t |Ft−) − 1},

where Ft− is the smallest σ-field containing all Fs, s ≤ t and s �= t, and

1

nj

nj∑
tj=1

Wt−xWt−y{E(W 2
t |Ft−) − 1}

converges to zero in probability as nj → ∞.
An underlying assumption of Jiang (1991b) is that p, the order of the spa-

tial AR model, is known. Jiang (1993) considered the more practical situation
where p is unknown and therefore has to be determined from the observed
data. He considered a criterion of the form (9.76) except with l(|n|) replaced by
l(n) [the difference is that the former depends only on |n| = n1n2, whereas the
latter depends on n = (n1, n2)]. He showed that if l(n) → ∞ and l(n)/|n| → 0
as |n| → ∞, then the minimizer of the criterion function over 0 ≤ p ≤ P ,
p̂, is a consistent estimator of p; that is, P(p̂ �= p) → 0, as |n| → ∞. Note
that a similar result was obtained by Tjøstheim (1983) under the restricted
limiting process n1 = n2 → ∞. Once again, the result assumed a known upper
bound P , which may not be practical. One idea of relaxing this assumption
is to let P increase with the sample size; that is, P = Pn → ∞, as n → ∞.
Another challenging task is to obtain strong consistency of p̂. The following
result was proven in Jiang (1993). Suppose that Xt is a spatial AR(p) series
satisfying the minimum phase property, where Wt is a TMD satisfying (9.63).
Furthermore, suppose that

lim inf
n→∞

1

|n|
∑

1≤t≤n

E{W 2
t |F1(t−)} > 0 a.s.,
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supt E{W 2
t |F1(t−)} < ∞ a.s., and E(|Wt|q) < ∞ for some q > 4. Let p̂ be

the minimizer of (9.76), with l(|n|) replaced by l(n), over 0 ≤ p ≤ Pn, where
Pn = ([(log n1)

α], [(logn2)
α]) for some α > 0. If l(n) satisfies

l(n)

log log(|n|) → ∞,
l(n)

|n| {log(|n|)}2α → 0

as n → ∞, then p̂
a.s.−→ p as n → ∞. Note that the latter result implies

that, with probability 1, we have p̂ = p for large n. This property ensures
that if the Y-W estimator of b is obtained using p̂ instead of p, the resulting
estimator of b has the same asymptotic properties, such as strong consistency
and asymptotic normality, as that obtained using the true p (Exercise 6.30).
Also, note that the limiting process for the strong consistency of p̂ is n → ∞
instead of |n| → ∞. This makes sense because as the sample size increases,
Pn needs to increase in both directions corresponding to n1 and n2 to make
sure that the range of minimization eventually covers the true p. Therefore,
n1 and n2 both have to increase.

The strong consistency of b̂ is a consequence of the ergodic theorem (Jiang

1991b). A main tool for establishing the asymptotic normality of b̂ is the CLT
for triangular arrays of the TMD (Theorem 9.7). In fact, the TMD condition
assumed in Jiang (1993) is weaker than that of Jiang (1991b), namely, (9.63)
instead of (9.62), and an extension of Theorem 9.7 under the weaker condition
was given in Jiang (1993). The uniform convergence rate of the sample ACV
(ACR) discussed in Section 9.7 played a key role in obtaining the strongly
consistent order determination for the spatial AR model.

9.9 Exercises

9.1. Verify the basic properties (i)–(iii) of an autocovariance function [be-
low (9.4) in Section 9.1].

9.2. Let Xt, t ∈ Z2, be a spatial series such that E(X2
t ) < ∞ for any t.

Show that the following two statements are equivalent:
(i) E(Xt) is a constant and E(Xs+hXt+h) = E(XsXt) for all s, t, h ∈ Z2;
(ii) E(Xt) and E(XtXt+h) does not depend on t for any t, h ∈ Z2.
9.3 (Poisson process and WN). A stochastic process P (t), t ≥ 0 is called a

Poisson process if it satisfies the following: (i) P (0) = 0; (ii) for any 0 ≤ s < t
and nonnegative integer k,

P{P (t) − P (s) = k} =
{λ(t− s)}k

k!
e−λ(t−s),

where λ is a positive constant; and (iii) the process has independent incre-
ments; that is, for any n > 1 and 0 ≤ t0 < t1 < · · · < tn, the random variables
P (tj) − P (tj−1), j = 1, . . . , n, are independent. The constant λ is called the
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strength of the Poisson process. Derive the mean and variance of P (t) and
show that εn = P (n+ 1) − P (n) − λ, n = 1, 2, . . ., is a WN(0, λ) process.

9.4 (Brownian motion and WN). Recall a stochastic process B(t), t ≥
0, a Brownian motion if it satisfies (i) B(0) = 0, (ii) for any 0 ≤ s < t,
B(t) − B(s) ∼ N(0, t− s), and (iii) the process has independent increments.
Show that εn = B(n + 1) − B(n), n = 1, 2, . . ., is a standard normal WN
process.

9.5. The time series Xt, t ∈ Z, satisfies (i) E(X2
t ) < ∞, (ii) E(Xt) = μ,

a constant, and (iii) E(XsXt) = ψ(t − s) for some function ψ, for s, t ∈ Z.
Show that Xt, t ∈ Z, is second-order stationary and find its autocovariance
function.

9.6. Suppose that Xt, t ∈ Z, is second-order stationary. Show that if the
nth-order covariance matrix of Xt, Γn = [γ(i − j)]1≤i,j≤n, is singular, then
there are constants aj , 0 ≤ j ≤ n− 1, such that for any t > s we have

Xt = a0 +
n−1∑
j=1

ajXs−j a.s.

9.7. Suppose that Xt and Y (t) are both second-order stationary and the
two time series are independent with the same mean and autocovariance func-
tion. Define a “coded” time series as

Zt =

{
Xt if t is odd
Yt if t is even.

Is Zt a second-order stationary time series? Justify your answer.
9.8. Show that if the innovations εt is a Gaussian WN(0, σ2) process with

σ2 > 0, then (9.18) holds.
9.9. Show that the Kullback–Leibler information defined by (9.21) is ≥ 0

with equality holding if and only if f = g a.e.; that is, f(x) = g(x) for all
x /∈ A, where A has Lebesgue measure zero. However, it is not a distance [as
defined below (6.63)].

9.10. Show that the Wold coefficients of an ARMA process Xt in (9.30)
satisfy the following:

(i) φ0 = 1.
(ii) φjρ

j → 0 as j → ∞, where ρ > 1 is the number in (9.29).
9.11. Show that the autocovariance function of an ARMA(p, q) process

can be expressed as (9.31). Furthermore, there is a constant c > 0 such that
|γ(h)| ≤ cρ−h, h ≥ 0, where ρ > 1 is the number in (9.29).

9.12. Verify the Yule–Walker equation (9.33) as well as (9.34).
9.13. Verify the reversed ARMA model (9.37) as well as (9.38).
9.14. Suppose that Xt, t ∈ N2, is an i.i.d. spatial series. Show that (9.39)

holds when n1 = n2 → ∞, provided that E{|X(1,1)|} <∞.
9.15. Regarding the diagonal method of rearranging a spatial series as a

time series (see the second paragraph of Section 9.6), write the order of terms
in the summation in (9.39) for the following cases:
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(i) n1 = n2 = k, k = 3;
(ii) n2 = n2 = k, k = 4;
(iii) n1 = 2k, n2 = k, k = 3;
(iv) n2 = 2k, n2 = k, k = 4.
9.16. (i) Show that for any random variable X ,

E

[
X2{log(|X |)}d−1

log log(|X |)
]
< ∞,

where d > 1, implies E(X2) <∞.
(ii) Give an example of a random variable X such that

E

{
X2

log log(|X |)
}
< ∞

but E(X2) = ∞.
9.17. Draw diagrams of the different pasts, Pj(t), j = 1, 2, 3, 4, defined in

Section 9.6 and show P1(t) ⊃ P2(t) ⊃ P3(t) ⊃ P4(t).
9.18. Verify that the spatial series εt defined in Example 9.6 is a TMD

with respect to P (t) = Pj(t), j = 2, 3, 4 (the case j = 1 was already verified).
9.19. Let Wt be as in Example 9.6. Define εt = W(t1+1,t2−1). Show that

εt, t ∈ Z2, is a TMD with respect to P (t) = Pj(t), j = 1, 2, 3, 4.
9.20. This exercise is related to Example 9.7.
(i) It was shown that εt, t ∈ Z2, is a TMD with respect to P (t) = P2(t),

but not necessarily a TMD with respect to P (t) = P1(t). Is εt, t ∈ Z2, a TMD
with respect to P (t) = P3(t), or P (t) = P4(t)?

(ii) If we switch the roles of P1(t) and P2(t) [i.e., define, instead of (9.48),
εt = Wt − E{Ws, s ∈ P1(t)}], is εt, t ∈ Z2, a TMD with respect to P (t) =
P2(t)?

(iii) Is there a general rule that you can draw from Example 9.7 and this
exercise?

9.21. (i) Show that (9.47) with P (t) = P1(t) implies (9.55) and (9.56).
(ii) Give an example of a spatial series εt satisfying (9.55) but not (9.56).
(iii) Show that (9.57) implies (9.58) for all m ≥ 0.
9.22. Show that if εt, t ∈ Z2, is strictly stationary, then (9.57) holds if and

only if (9.47) holds for all t.
9.23. Show that (9.63) is a weaker TMD condition than (9.62).
9.24. Let Xt, t ∈ Z2 be a strictly stationary spatial series. Define the

invariant σ-fields X−1(τ̄U ), X−1(τ̄V ), and X−1(τ̄ ) as in Section 9.6 (above
Theorem 9.8) with ε replaced by X . For this exercise, however, all you need
to know is that these are some σ-fields depending on the stationary spatial
series. Then, according to the ergodic theorem (see Jiang 1991b), we have

1

|n|
∑

1≤t≤n

Xt
a.s.−→ E{X1|X−1(τ̄ )}
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as |n| → ∞, provided that (9.41) holds and X−1(τ̄U ) = X−1(τ̄V ). You may
assume that this latter condition is satisfied for whatever spatial series we are
dealing with in this exercise. Suppose that Wt, t ∈ Z2, is strictly stationary.

(i) Consider Xt = W(t1,−t2). Show that Xt, t ∈ Z2, is strictly stationary.
Similar results hold for Xt = W(−t1,t2), and Xt = W−t.

(ii) Suppose that E(|W0|q) < ∞ for some q > 4. Use the above ergodic
theorem and the facts in (i) to argue that

lim sup
|n|→∞

1

|n|
∑
t̄≤n

|Wt|4p < ∞ a.s.

for some p > 1.
(iii) Show that Xt = E{W 4

t |F1(t−)}, t ∈ Z2, is strictly stationary. Hint:
Suppose that

E{W 4
0 |F1(0−)} = g

(
Ws, s

1
< 0

)
a.s.

for some function g, where s
1
< 0 if and only if s1 < 0 or s1 = 0 and s2 < 0.

Then

E{W 4
t |F1(t−)} = g

(
Ws, s

1
< t

)
a.s.

(iv) Using similar arguments, show that

lim sup
|n|→∞

1

|n|
∑
t̄≤n

[E{W 4
t |F1(t−)}]p < ∞ a.s.

for some p > 1, provided that E(|W0|q) <∞ for some q > 4.
9.25. Let Wt, t ∈ Z2, be a WN(0, σ2) spatial series and u �= v. Show that

(9.68) is bounded a.s. if and only if

γ̂(u, v) − γ(u, v) = O

(√
log log |n|

|n|

)
a.s.,

where γ(u, v) and γ̂(u, v) are the ACV and sample ACV of Wt at u and v,
respectively.

9.26. Let ni = ([ei1 ], [ei2 ]) for i = (i1, i2), where [x] represents the largest
integer ≤ x. Show that

∑
i≥1(log |ni|)−a < ∞ for sufficiently large a, where

|n| = n1n2 for any n = (n1, n2).
9.27. Suppose that Wt, t ∈ Z2, satisfy (9.63) and E(|Wt|p) < ∞ for some

p > 1. Use the TMD extension of Burkholder’s inequality [i.e., (9.70) and

(9.71)] to establish the following SLLN: |n|−1
∑

1≤t≤n Wt
a.s.−→ 0, as |n| → ∞.

[Hint: You may use a similar subsequence method as described in the second
to last paragraph of Section 9.7, with ni = (2i1 , 2i2) for i = (i1, i2).]
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9.28. Suppose that Xt is a spatial AR series satisfying

X(t1,t2) − 0.5X(t1−1,t2) − 0.5X(t1,t2−1) + 0.25X(t1−1,t2−1) = W(t1,t2),

t ∈ Z2, where Wt is a spatial WN(0, σ2) series.
(i) What is the order p of the spatial AR model? What are the coefficients?
(ii) Verify that the minimum phase property (9.73) is satisfied.
(iii) Write out the Y-W equation (9.72) for the current model.
(iv) Suppose thatXt, 1 ≤ t ≤ n, are observed, where n = (n1, n2). Without

using the consistency results discussed in Section 9.8, show that the Y-W
estimators of the AR coefficients converge in probability to the true values of

those coefficients as n1n2 → ∞. You may assume that γ̂(u, v)
P−→ γ(u, v) as

n1n2 → ∞ for any u, v.
9.29. Continue with the previous exercise.
(i) Find an expression for the LS estimator of b, the vector of the AR

coefficients, that minimizes (9.75). Is the LS estimator different from the Y-
W estimator in the previous exercise?

(ii) Show that the LS estimator of b converges in probability to b as n1n2 →
∞. Again, you may assume that the sample ACV converges to the ACV in
probability as n1n2 → ∞.

9.30. Show that p̂
a.s.−→ p as n → ∞ if and only if P(p̂ = p for large n) = 1.

Here, n = (n1, n2) is large if and only if both n1 and n2 are large. Let b̃ and b̂
denote the Y-W estimator of b, the vector of spatial AR coefficients, obtained
using p and p̂, respectively. Show the following:

(i) If b̃
a.s.−→ b as n → ∞, then b̂

a.s.−→ b as n → ∞.

(ii) If
√|n|(b̃− b)

d−→ N(0, R) as n → ∞, where R is a covariance matrix,

then
√|n|(b̂− b)

d−→ N(0, R) as n → ∞ for the same R.
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Stochastic Processes

10.1 Introduction

A stochastic process may be understood as a continuous-time series or as an
extension of the time series that includes both discrete-time and continuous-
time series. In this chapter we discuss a few well-known stochastic processes,
which in a certain sense define the term stochastic processes. These include
both discrete-time and continuous-time processes that have not been previ-
ously discussed in details. Again, our focus is the limiting behaviors of these
processes.

During the author’s time as a graduate student, one of the classroom
examples that struck him the most was given by Professor David Aldous
in his lectures on Probability Theory. The example was taken from Durrett
(1991, p. 275). A modified (and expanded) version is given below.

Example 10.1. Professor E. B. Dynkin used to entertain the students in his
probability class with the following counting trick. A professor asks a student
to write 100 random digits from 0 to 9 on the blackboard. Table 10.1 shows
100 such digits generated by a computer. The professor then asks another

Table 10.1. Random digits and the student’s sequence

9 6 3 2 2 8 7 1 1 0 1 7 8 7 0 9 4 6 7 6 3 9 7 9 6
7 9 5 4 4 9 7 8 6 7 9 9 4 3 5 1 9 1 1 6 7 5 4 0 5
8 7 9 4 0 5 5 2 8 4 0 9 9 3 7 6 3 1 3 0 7 7 7 9 0
5 1 0 7 7 4 0 4 2 2 3 3 7 9 5 6 5 3 0 9 3 4 2 8 7

student to choose one of the first 10 digits without telling him. Here, we use
the computer to generate a random number from 1 to 10. The generated
number is 7, and the 7th number of the first 10 digits in the table is also
7. Suppose that this is the number that the second student picks. She then

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_10, © Springer Science+Business Media, LLC 2010
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counts 7 places along the list, starting from the number next to 7. The count
stops at (another) 7. She then counts 7 places along the list, again. This time
the count stops at 3. She then counts 3 places along the list, and so on. In the
case that the count stops at 0, the student then counts 10 places on the list.
The student’s counts are underlined in Table 10.1. The trick is that these are
all secretly done behind the professor, who then turns around and points out
where the student’s counts finally ends, which is the last 9 in the table.

Table 10.2 shows how the professor does the trick. Regardless of what the
student is doing, he simply picks a first digit of his own, say, the very first
digit, which is 9. He then forms his own sequence according to the same rules
as the student. The professor’s sequence are overlined in Table 10.2. It is seen

Table 10.2. The professor’s trick

9 6 3 2 2 8 7 1 1 0 1 7 8 7 0 9 4 6 7 6 3 9 7 9 6
7 9 5 4 4 9 7 8 6 7 9 9 4 3 5 1 9 1 1 6 7 5 4 0 5
8 7 9 4 0 5 5 2 8 4 0 9 9 3 7 6 3 1 3 0 7 7 7 9 0
5 1 0 7 7 4 0 4 2 2 3 3 7 9 5 6 5 3 0 9 3 4 2 8 7

that, at some point (first 8 in the second row), the two sequences hit and then
move together. Therefore, the professor’s sequence will end exactly where the
student’s does.

Now we know the professor’s trick, but what is the “trick”? The random
digits written on the blackboard may be thought of as realizations of the first
100 of a sequence of independent random variables ξ1, ξ2, . . . having the same
distribution P(ξi = j) = 1/10, j = 1, . . . , 10 (here 0 is treated the same as
10). Starting with an initial location X1 = I (1 ≤ I ≤ 10), the locations of
the sequence of digits formed either by the professor or by the student satisfy

Xn+1 = Xn + ξXn , n = 1, 2, . . . (10.1)

(Exercise 10.1). An important property of the sequence Xn is the following:

P(Xn+1 = j|X1 = i1, . . . , Xn−1 = in−1, Xn = i)

= P(Xn+1 = j|Xn = i), (10.2)

n = 1, 2, . . ., for any i1, . . . , in−1, i, j such that i1 = i, is−1+1 ≤ is ≤ is−1+10,
2 ≤ s ≤ n − 1, in−1 + 1 ≤ i ≤ in−1 + 10, and i + 1 ≤ j ≤ i + 10. To see
this, note that Xn is strictly increasing and is a function of ξ1, . . . , ξk, where
k = Xn−1 (Exercise 10.1). Therefore, the left side of (10.2) is equal to

P(i+ ξi = j|X1 = i1, . . . , Xn−1 = in−1, Xn = i)

= P(ξi = j − i|something about ξ1, . . . , ξk, where k = in−1 < i)

= P(ξi = j − i) = 0.1,
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and the same result is obtained for the right side of (10.2) (Exercise 10.1). A
process that satisfies (10.2) is call a Markov chain. Furthermore, the chains of
the professor and student may be considered as being independent. Using the
Markovian property and independence of the two chains, it can be shown (see
the next section) that, sooner or later, the chains will hit. More precisely, let
Xn and Yn denote the chains of the professor and student, respectively. Then
for some m and n we have Xm = Yn. On the other hand, by the way that these
chains are constructed [i.e., (10.1)], once Xm = Yn, we have Xm+1 = Yn+1,
Xm+2 = Yn+2, and so on. In other words, once the chains hit, they will never
be apart. The most striking part of this story is, perhaps, that the chains will
hit wherever they start. For example, in Table 10.1, one may start at any of
the first 10 digits and then follow the rules. The chains will hit each other at
some point and then follow the same path.

“Sooner or later” or “at some point” turn out to be the key words as our
story unfolds. The implication is that the chains do not have to hit within
the first 100 digits. In fact, numerical computations done by one of Profes-
sor Dynkin’s graduate students suggested that there is an approximate .026
chance that the two chains will not hit within the first 100 digits. Table 10.3
gives an example of such an “accident.” Once again, the chains of professor
and student are overlined and underlined, respectively. (Ironically, this was the
very first example that the author tried, and it did not work! The example in
Table 10.1 and Table 10.2 was the author’s second attempt.)

Table 10.3. An example of “accident”

5 3 8 7 8 3 8 5 4 4 2 4 5 0 3 6 0 2 7 5 2 7 9 5 7
8 4 3 2 4 9 7 2 1 9 2 2 3 9 2 8 8 0 1 5 3 5 7 1 7
8 2 4 8 9 2 4 9 4 3 0 0 4 4 3 8 2 0 1 5 4 1 9 7 9
6 8 8 0 7 6 1 9 9 8 5 4 6 5 2 0 0 7 1 9 5 5 5 1 9

The example has led to a natural topic for the next section.

10.2 Markov chains

The defining feature of a Markov chain is (10.2). We now express it under
a more general framework. Consider a stochastic process Xn, n = 0, 1, 2, . . .,
that takes on a finite or countable number of possible states, where each state
is a possible value of the process. The notation X0 usually represents the
initial state of the process. Without loss of generality, we assume that the set
of states is a subset of {0, 1, 2, . . .}, denoted by S. The process is said to be a
homogeneous Markov chain, or simply Markov chain, if it satisfies

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = p(i, j) (10.3)
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for all i0, . . . , in−1, i, j ∈ S and some function 0 ≤ p(i, j) ≤ 1 such that∑
j∈S p(i, j) = 1. From (10.3) it immediately implies that

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P(Xn+1 = j|Xn = i) = p(i, j) (10.4)

(Exercise 10.2). Equation (10.4) is known as the Markov property. Intuitively,
it may be interpreted as that the future depends on the present but not on
the past or the present depends on the past only through the immediate past.
The function p(i, j) is known as the transition probability of the Markov chain.
Note that the distribution of the Markov chain is determined by its transition
probability and the distribution of the initial state; that is, p0(j) = P(X0 = j)
(Exercise 10.3). Another implication of (10.3) is that the conditional proba-
bility on the left side does not depend on n. More generally, we have

P(Xn+m = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P(Xn+m = j|Xn = i) (10.5)

and it does not depend on n. To see this, note that the left side of (10.5) can
be written as∑

k∈S

P(Xn+m = j,Xn+m−1 = k|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

=
∑
k∈S

P(Xn+m = j|Xn+m−1 = k,Xn = i,Xn−1 = in−1, . . . , X0 = i0)

×P(Xn+m−1 = k|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

=
∑
k∈S

P(Xn+m−1 = k|Xn = i,Xn−1 = in−1, . . . , X0 = i0)p(k, j), (10.6)

and a similar argument also carries for the right side of (10.5). The claimed
results thus follow by induction. Equation (10.5) is known as the m-step tran-
sition probability, denoted by p(m)(i, j). Clearly, we have p(1)(i, j) = p(i, j).
The transition probabilities satisfies the Chapman–Kolmogorov identity:

p(m+l)(i, j) =
∑
k∈S

p(m)(i, k)p(l)(k, j), (10.7)

which can be established using a similar argument as (10.6) (Exercise 10.4).
Equation (10.7) resembles the rule for matrix products. In fact, if we denote
by P the (possibly infinite-dimensional) matrix of transition probabilities,
P = [p(i, j)]i,j∈S , and, similarly, by P (m) the matrix of m-step transition
probabilities, then (10.7) simply states that

P (m+l) = P (m)P (l), (10.8)

where the right side is the matrix product. In particular, we have P (m) =
P (m−1)P = P (m−2)P 2 = · · · = Pm. We consider some examples.



10.2 Markov chains 321

Example 10.2 (Random walk). Let ξi, i ≥ 1, be i.i.d. with P(ξi = j) = aj ,
j = 0,±1, . . .. Define X0 = 0 and Xn =

∑n
i=1 ξi, n ≥ 1. It is easy to see

that Xn, n ≥ 1 is a Markov chain with states S = {0,±1, . . .} and transition
probability p(i, j) = aj−i (Exercise 10.5). A special case is called a simple
random walk, for which aj = p if j = 1, 1 − p if j = −1, and 0 otherwise. It
follows that for the simple random walk, we have p(i, i+ 1) = p, p(i, i− 1) =
1−p, and p(i, j) = 0 otherwise. In this case, the process may be thought of as
the wanderings of a drunken man. Each time he takes a random step either
to the left (−1) with probability 1− p or to the right (+1) with probability p.

Example 10.3 (Branching process). Consider the branching process of Ex-
ample 8.6 (with the notation Tn replaced by Xn). We show that the process
is a Markov chain with S = {0, 1, . . .} and derive its transition probability. To

see this, write i0 = 1 and define
∑0

k=1 Xn,k = 0. Then we have

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P

(
i∑

k=1

Xn+1,k = j

∣∣∣∣∣ something about Xm,k,

1 ≤ m ≤ n, 1 ≤ k ≤ max
0≤u≤n−1

iu

)
= P

(
i∑

k=1

Xn+1,k = j

)
= p(i, j).

Example 10.1 (continued). Here, the Markov chain has the states S =
{1, 2, . . .}, and the transition probability is given by

p(i, j) =
1

10
1(i+1≤j≤i+10), i, j ∈ S. (10.9)

Furthermore, the two-step transition probability is given by

p(2)(i, j) =
10 − |j − i− 11|

100
, i, j ∈ S. (10.10)

It is easy to verify that the transition probabilities satisfy
∑

j∈S p(i, j) = 1

and
∑

j∈S p
(2)(i, j) = 1 for any i ∈ S (Exercise 10.6). Earlier it was claimed

that the chain of the professor and that of the student will eventually hit. We
now outline a proof of this claim, referring the details to Exercise 10.6.

For notation convenience, let X = {X(n), n ≥ 0} and Y = {Y (n), n ≥ 0}
denote the chains of the professor and student, respectively. Suppose that the
X chain starts at X(0) = a and the Y chain starts at Y (0) = b. Without loss
of generality, let a < b. First, note that by (10.9), it can be shown that
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P{X(n+ 1) �= j|X(n), . . . , X(1)}
=

9

10
if j − 10 ≤ X(n) ≤ j − 1 (10.11)

(Exercise 10.6). Let i0 = b, i1, . . . , is, be any sequence of positive integers such
that ir − ir−1 ≥ 10, 1 ≤ r ≤ s. Define the stopping time Tr as the first time
that the X chain is within “striking distance” of ir—that is, the smallest n
such that X(n) ≥ ir −10, 1 ≤ r ≤ s. The key idea of the proof is to show that
at the time immediately after Tr, the X chain will eventually hit ir for some r;
that is, X(Tr + 1) = ir for some r ≥ 1. This makes sense because at the time
Tr, the chain is within the striking distance of ir; in other words, ir is among
the next 10 integers after X(Tr), so why does X(Tr + 1) always have to miss
ir if it has an equal chance of hitting any of the 10 integers? To make this
idea a rigorous argument, note that Tr = n if and only if X(n− 1) < ir − 10
and X(n) ≥ ir − 10. Also, it is easy to see that T1 < · · · < Ts. Furthermore,
let j1, . . . , js be any possible values for T1, . . . , Ts. It can be shown that

A = {X(j1 + 1) �= i1, . . . , X(js−1 + 1) �= is−1, T1 = j1, . . . , Ts = js}
∈ σ{X(1), . . . , X(js)} (10.12)

(Exercise 10.6). By (10.11) and (10.12), it follows that

P{X(T1 + 1) �= i1, . . . , X(Ts + 1) �= is, T1 = j1, . . . , Ts = js}
= P[A∩ {X(js + 1) �= is}]
= E[1AP{X(js + 1) �= is|X(js), . . . , X(1)}]
=

9

10
P{X(T1 + 1) �= i1, . . . , X(Ts−1 + 1) �= is−1, T1 = j1, . . . , Ts = js}

because is − 10 ≤ X(js) ≤ is − 1 on A (Exercise 10.6). It follows that

P{X(T1 + 1) �= i1, . . . , X(Ts + 1) �= is}
=

9

10
P{X(T1 + 1) �= i1, . . . , X(Ts−1 + 1) �= is−1}.

Continue with this argument; we arrive at the conclusion that

P{X(T1 + 1) �= i1, . . . , X(Ts + 1) �= is} =

(
9

10

)s

. (10.13)

Now, let U0 = 0 and Ur be the first n ≥ Ur−1 such that Y (n) ≥ Y (Ur−1)+10,
r = 1, 2, . . .. By (10.13) and independence of X and Y , it can be shown that

P(X,Y do not hit)

≤ P{X(T1 + 1) �= Y (U1), . . . , X(Ts + 1) �= Y (Us)}
=

(
9

10

)s

(10.14)
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(Exercise 10.6). Since s is arbitrary, the left side of (10.14) must be zero.

We now introduce three important concepts of Markov chain. They are
irreducibility, aperiodicity, and recurrency.

A state j is said to be accessible from a state i if p(m)(i, j) > 0 for some
m ≥ 0. Two states that are accessible to each other are called communicate,
denoted by i ↔ j. Communication is an equivalence relation in that (i) i ↔ i,
(ii) i ↔ j implies j ↔ i, and (iii) i ↔ j and j ↔ k imply i ↔ k. Two
states that communicate are said to be in the same class. It is clear that any
two classes are either disjoint or identical (Exercise 10.7). We say the Markov
chain is irreducible if there is only one class; that is, all states communicate
with each other .

The period of a state i is defined as d(i) = sup{k : p(m)(i, i) = 0 whenever
m/k is not an integer}. It is clear that the latter set is not empty (as it includes
at least k = 1), so d(i) is well defined if we let d(i) = ∞ if p(m)(i, i) = 0 for all
m ≥ 1. A state i with d(i) = 1 is said to be aperiodic. It can be shown that if
i ↔ j, then d(i) = d(j). In other words, the states in the same class have the
same period (Exercise 10.8).

For any states i and j, define q(i, j) as the probability that, starting in i,
the chain ever makes a transition into j; that is,

q(i, j) = P(Xn = j for some n ≥ 1|X0 = i)

=
∞∑

n=1

q(n)(i, j),

where q(n)(i, j) = P(Xn = j,Xk �= j, 1 ≤ k ≤ n − 1|X0 = i). It is clear that
q(i, j) > 0 if and only if i ↔ j. A state i is said to be recurrent if q(i, i) = 1;
that is, starting in i, the chain will return with probability 1. A state that is
not recurrent is called transient. The following result is useful in checking the
recurrency of a given state: State i is recurrent if and only if.

∞∑
n=1

p(n)(i, i) = ∞. (10.15)

Furthermore, if state i is recurrent and i ↔ j, then state j is also recurrent
(Exercise 10.9). Thus, the states in the same class are either all recurrent or
all transient. We consider an example.

Example 10.2 (continued). First, we show that i ↔ j for any i, j ∈ S,
provided that aj > 0 for j = −1, 1. Without loss of generality, let i < j. Let
m = j − i. Then

p(m)(i, j) = P(Xn+m = j|Xn = i)

≥ P(Xn+m = j,Xn+m−1 = j − 1, . . . , Xn+1 = i+ 1|Xn = i)

= P(ξn+1 = 1, . . . , ξn+m = 1)

= am
1 > 0.



324 10 Stochastic Processes

Thus, the Markov chain is irreducible if a−1 > 0 and a1 > 0. In the special
case of a simple random walk, this means 0 < p < 1. Furthermore, the Markov
chain is aperiodic if and only if a0 �= 0. In particular, for the special case of a
simple random walk with 0 < p < 1, we have d(i) = 2 for all i ∈ S (Exercise
10.11). Finally, we consider recurrency for the case of a simple random walk
with 0 < p < 1. Since in this case the chain is irreducible, we only need to
check one of its states, say, i = 0 (why?). Clearly, we have p(n)(0, 0) = 0 if n
is odd (it takes an even number of steps to return). Now, suppose that n is
even, say, n = 2k. Then, starting at i = 0, the chain will return in n steps
if and only if it takes k steps to the right and k steps to the left. In other
words, there are exactly k ones and k minus ones among ξ1, . . . , ξn. It follows
from the binomial distribution that p(n)(0, 0) = Cn

k p
k(1 − p)k, n = 1, 2, . . ..

By using Stirling’s approximation (see Example 3.4), it can be shown that

p(n)(0, 0) ∼ {4p(1 − p)}k

√
πk

(10.16)

(Exercise 10.12), where an ∼ bn if limn→∞(an/bn) = 1. Therefore, (10.15)
holds (with i = 0) if and only if p = 1/2. In other words, the chain is recurrent
if p = 1/2, and transient if p �= 1/2.

Some important properties of Markov chains are associated with their
asymptotic behavior. To describe these properties, we first introduce the con-
cept of a stationary distribution. A probability measure π(·) on S is called
a stationary distribution with respect to a Markov chain with states S and
transition probability p(·, ·) if it satisfies∑

i∈S

π(i)p(i, j) = π(j), j ∈ S. (10.17)

Consider the limiting behavior of p(n)(i, j). If j is transient, then we have

∞∑
n=1

p(n)(i, j) < ∞ (10.18)

for all i ∈ S (Exercise 10.13). To see what this means, define Nj =∑∞
n=1 1(Xn=j), which is the total number of visits to j by the chain Xn. Then

we have E(Nj |X0 = i) =
∑∞

n=1 P(Xn = j|X0 = i) =
∑∞

n=1 p
(n)(i, j). Thus,

the left side of (10.18) is the expected number of visits to j when the chain
starts in i. This means that if j is transient, then starting in i, the expected
number of transitions into j is finite, and this is true for all i. It follows that
p(n)(i, j) → 0 as n → ∞ for all i if j is transient.

To further explore the asymptotic behavior of p(n)(i, j) we define, for a
given Markov chain Xn, Tj as the first time that the chain visits j after the
initial state—that is, Tj = inf{n ≥ 1 : Xn = j} if such a time exists (i.e.,
finite); otherwise, define Tj = ∞. Let μj = E(Tj |X0 = j) (i.e., the expected
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number of transitions needed to return to state j). A state j is called positive
recurrent if μj < ∞ and null recurrent if μj = ∞. It is clear that a state that
is positive recurrent must be recurrent; hence, a transient state j must have
μj = ∞ (Exercise 10.14). Like recurrency, positive (null) recurrency is a class
property; that is, the states in the same class are either all positive recurrent
or all null recurrent (Exercise 10.14). Next, define Nn(j) =

∑n
m=1 1(Xm=j),

which is the total number of visit to j by time n.

Theorem 10.1. If i and j communicate, then the following hold:
(i) P{limn→∞ n−1Nn(j) = μ−1

j |X0 = i} = 1;

(ii) limn→∞ n−1
∑n

k=1 p
(k)(i, j) = μ−1

j ;

(iii) limn→∞ p(n)(i, j) = μ−1
j if j is aperiodic.

Theorem 10.1(i) should help explain the terms “positive” and “null recur-
rent.” Starting from any state i that communicates with j, the asymptotic
fraction of times that the chain spends at j is equal to a positive constant if j
is positive recurrent; otherwise, the asymptotic fraction of times spent at j is
zero. If we go one step further by considering irreducibility, we come up with
the following theorem.

Theorem 10.2 (Markov-chain convergence theorem). An irreducible, ape-
riodic Markov chain belongs to one of the following two classes:

(i) All states are null recurrent (which include those that are transient),
in which case we have limn→∞ p(n)(i, j) = 0 for all i, j, and there exists no
stationary distribution.

(ii) All states are positive recurrent, in which case we have

π(j) = lim
n→∞

p(n)(i, j) =
1

μj
(10.19)

for all j, and π(·) is the unique stationary distribution for the Markov chain.

We illustrate Theorem 10.2 with an example.

Example 10.4 (Birth and death process). A birth and death process is a
Markov chain with states S = {0, 1, 2, . . .} and transition probabilities given
by p(i, i + 1) = pi, p(i, i − 1) = qi and p(i, i) = ri, i ∈ S, where q0 = 0
and pi, qi, and ri are nonnegative numbers such that pi + qi + ri = 1. Such
a process is also called a birth and death chain with reflecting barrier 0, or
simply birth and death chain. Intuitively, if the chain Xn represents the total
number of a biological population (e.g., bacteria), then +1 (−1) correspond
to a birth (death) in the population, or no birth or death occurs, at a given
time n. A birth and death chain is irreducible if pi > 0 and qi+1 > 0, i ∈ S,
and aperiodic if ri > 0 for some i (Exercise 10.16).

Now, focusing on the irreducible and aperiodic case, assume pi > 0, i ∈ S,
qi > 0, i ≥ 1, and ri > 0 for some i. By Theorem 10.2, there is a limiting
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distribution of p(n)(i, j) that is independent of the initial state i. To determine

the limiting distribution, we consider π(i) =
∏i

k=1(pk−1/qk). It can be shown
(Exercise 10.16) that π(·) satisfies

π(i)p(i, j) = π(j)p(j, i), i, j ∈ S. (10.20)

A Markov chain that satisfies (10.20) is called (time) reversible. Intuitively,
this means that the rate at which the chain goes from i to j is the same as that
from j to i. Any distribution π that satisfies the reversal condition (10.20) is
necessarily stationary. To see this, simple sum over i on both sides of (10.20)
and we get (10.17). It follows by Theorem 10.2 that limn→∞ p(n)(i, j) = π(j).

It is seen that the “trick” is to find the unique stationary distribution π
using whatever method. One method that is often used is to solve (10.17),
or its matrix form P ′π = π, where P ′ is the transpose of the matrix P of
transition probabilities and π = [π(i)]i∈S . In some cases, a solution can be
guessed that satisfies the stronger condition (10.20).

A variation of the birth and death chain that has a finite state space is
considered in Exercise 10.17. Some important applications of the Markov-
chain convergence theorem are discussed in Chapter 15.

10.3 Poisson processes

The Poisson process is a special case of what is called a counting process. The
latter means a process N(t), t ≥ 0, that represents the number of events that
have occurred up to time t. Obviously, a counting process must satisfy the
following: (a) the values of N(t) are nonnegative integers; (b) N(s) ≤ N(t) if
s < t; and (c) for s < t, N(t) − N(s) equals the number of events that have
occurred in the interval (s, t]. There are, at least, three equivalent definitions
of a Poisson process. The first is the most straightforward and anticipated.
Suppose that (i) the counting process satisfies N(0) = 0; (ii) the process has
independent increments—that is, the numbers of events that occur in disjoint
time intervals are independent; and (iii) the number of events in any interval
of length t follows a Poisson distribution with mean λt—that is,

P{N(s+ t) −N(s) = x} = e−λt (λt)x

x!
, x = 0, 1, . . . , (10.21)

where λ > 0 is called the rate of the Poisson process. From a practical point
of view, (10.21) is not something that may be easily checked. This makes
the second definition somewhat more appealing. A counting process N(t) is
said to have stationary increments if for any t1 < t2, the distribution of
N(s + t2) − N(s + t1) does not depend on s. A counting process N(t) is a
Poisson process if (i)N(0) = 0, (ii) the process has independent and stationary
increments, (iii) P{N(u) = 1} = λu+o(u) as u→ 0, and (iv) P{N(u) ≥ 2} =
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o(u) as u→ 0. The third definition of a Poisson process is built on a connection
between a Poisson process and the sum of independent exponential random
variables. Let T1, T2, . . . be a sequence of independent exponential random
variables with mean 1/λ. Then we can define a Poisson process as

N(t) = sup{n : Sn ≤ t}, (10.22)

where S0 = 0 and Sn =
∑n

i=1 Ti, n ≥ 1. The Poisson process (10.22) has an
intuitive explanation. Imagine Ti as the interarrival time of the ith event; that
is, T1 is the time of the first event and Ti is the time between the (i − 1)st
and ith event, i ≥ 2. Then Sn is the arrival time, or “waiting time,” for
the nth event. A counting process is Poisson if its interarrival times are i.i.d.
exponential or, equivalently, its arrival times can be expressed as Sn (Exercise
10.18). It can be shown that the three definitions of a Poisson process are
equivalent (e.g., Ross 1983, Section 2.1).

As mentioned, the second equivalent definition is especially useful in jus-
tifying the assumptions of a Poisson process. It is related to a fundamental
asymptotic theory of Poisson distribution, known as Poisson approximation to
binomial. To see this, suppose that someone is unaware of the mathematical
equivalence of these definitions but, nevertheless, wants to justify a Poisson
process based on properties (i)–(iv) of the second definition. Divide the in-
terval [0, t] into n subintervals so that each has length t/n, where n is large.
Then (iv) implies that

P(2 or more events in some subinterval)

≤
n∑

j=1

P(2 or more events in subinterval j)

= n

(
t

n

)
o(1) = to(1) → 0

as n → ∞. Thus, with probability tending to 1, N(t) is the sum of n inde-
pendent random variables (which are the numbers of events in those subin-
tervals) taking the values of 0 or 1 (i.e., Bernoulli random variables). It fol-
lows that the distribution of N(t) is asymptotically Binomial(n, p), where
p = P{N(t/n) = 1} = λ(t/n) + o(t/n), according to (iii); that is,

P{N(t) = x}
≈
(
n

x

)
px(1 − p)n−x

=
n!

x!(n− x)!

{
λt

n
+ o

(
t

n

)}x{
1 − λt

n
− o

(
t

n

)}n−x

. (10.23)

It is now a simple exercise of calculus to show that the right side of (10.23)
converges to e−λt(λt)x/x! for every x (Exercise 10.19). In general, if X ∼
Binomial(n, p), where n is large and p is small, such that np ≈ λ, then the
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distribution of X is approximately Poisson(λ), and this is called Poisson ap-
proximation to binomial. We consider some applications of this approximation.

Example 10.5 (The Prussian horse-kick data). This famous example was
given by von Bortkiewicz in his book entitled The Law of Small Numbers
published in 1898. The number of fatalities resulting from being kicked by
horses was recorded for 10 corps of Prussian cavalry over a period of 20 years,
giving a total of 200 observations. The numbers in Table 10.4 are the observed
relative frequencies as well the corresponding probabilities computed under a
Poisson distribution with mean λ = .61 (see below). The approximations are

Table 10.4. Prussian horse-kick data and Poisson approximation

# of Deaths # of Cases Relative Poisson
per Year Recorded Frequency Probability

0 109 .545 .543
1 65 .325 .331
2 22 .110 .101
3 3 .015 .021
4 1 .005 .003

amazingly close, especially for lower numbers of deaths. This can be justified
by the Poisson approximation to binomial. Consider the event that a given
soldier is kicked to death by a horse in a given corps-year. Obviously, this
event can only happen once during the 20 years if we trace down the same
corp over the 20 years. However, the point is to consider the total number of
deaths for each of the 200 corps-years as a realization of a random variable
X . If we assume that these events are independent over the soliders, then X
is the sum of n independent Bernoulli random variables that are the event
indicators (1 for death and 0 otherwise), where n is the total number of
soldiers in a corps. Notice that a corps is a very large army unit (in the
United States Army, a corps consists of two to five divisions, each with 10,000
to 15,000 soldiers; depending on the country at the different times of history,
the actual number of soldiers in a corps varied), so n is expected to be very
large. On the other hand, the probability p that a cavalry soldier is kicked to
death is expected to be very small (if the soldier is careful about his horse).
So, we are in a situation of a Binomial(n, p) distribution, where n is large
and p is small. It follows that the distribution of X can be approximated
by Poisson(λ), where λ is approximately equal to np. The value of λ can be
estimated by the maximum likelihood method. Let X1, . . . , X200 denote the
total numbers of deaths for the 200 corps-years. Then the MLE for λ is given
by λ̂ = 200−1

∑200
i=1 Xi = (0× 109+1× 65+2× 22+3× 3+4× 1)/200 = .61.
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Example 10.6 (Fisher’s dilution assay). Another well-known example in
the statistics literature is Fisher’s dilution assay problem (Fisher 1922b). A
solution containing an infective organism is progressively diluted. At each
dilution, a number of agar plates are streaked. From the number of sterile
plates observed at each dilution, an estimate of the concentration of infective
organisms in the original solution is obtained. For simplicity, suppose that the
dilution is doubled each time so that after k dilutions, the expected number
of infective organisms per unit volume is given by ρk = ρ0/2

k, k = 0, 1, . . .,
where ρ0, which is the density of infective organisms in the original solution,
is what we wish to estimate. The idea is that if k is sufficiently large, one can
actually count the number of organisms on each plate and therefore obtain an
estimate of ρ0. A critical assumption made here is that at the kth dilution,
the actual number of organisms, Nk, follows a Poisson distribution with mean
ρkv, where v is the volumn of solution for each agar plate. Under this assump-
tion, the unknown density ρ0 can be estimated using the maximum likelihood.
Again, we can justify this assumption using Poisson approximation to bino-
mial. Imagine that the plate is divided into many small parts of equal volume,
say, v0, so that within each small part there is at most one organism. Then the
number of organism in each small part is a Bernoulli random variable with
probability pk of having an organism. If we further assume that the number
of organisms in different small parts are independent, then Nk is the sum of n
independent Bernoulli random variables, where n = v/v0 is the total number
of small parts, and therefore has a Binomial(n, pk) distribution. If n is suffi-
ciently large, pk must be sufficiently small so that npk is approximately equal
to a constant, which is ρkv. It follows that Nk has an approximate Poisson
distribution with mean ρkv.

Durret (1991, p. 125) gives the following extension of Poisson approxima-
tion to binomial to “nearly binomial.” The similarity to the second definition
of Poisson process is evident.

Theorem 10.3. Suppose that for each n, Xn,i, 1 ≤ i ≤ n, are independent
nonnegative integer-valued random variables such that

(i) P(Xn,i = 1) = pn,i, P(Xn,i ≥ 2) = εn,i;
(ii) limn→∞

∑n
i=1 pn,i = λ ∈ (0,∞);

(iii) limn→∞max1≤i≤n pn,i = 0;
(iv) limn→∞

∑n
i=1 εn,i = 0.

Then we have Sn =
∑n

i=1 Xn,i
d−→ ξ ∼ Poisson(λ).

It should be pointed out that Poisson approximation to binomial works
in a different way than the well-known normal approximation to binomial.
The latter assumes that p is fixed and lies strictly between 0 and 1 and then
n → ∞ in the Binomial(n, p) distribution; whereas the former is under the
limiting process that n → ∞, p → 0, and np → λ ∈ (0,∞). Nevertheless,
the Poisson and normal distributions are asymptotically connected in that
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a Poisson distribution with large mean can be approximated by a normal
distribution. More precisely, we have the following result regarding the Poisson
process.

Theorem 10.4 (CLT for Poisson process). Let N(t), t ≥ 0, be a Poisson
process with rate λ. Then

lim
λ→∞

P

{
N(t) − λt√

λt
≤ x

}
= Φ(x)

for all x, where Φ(·) is the cdf of N(0, 1).

An extension of Theorem 10.4 is given in the next section.
Finally, we consider limiting behavior of the arrival times of a Poisson

process. The following theorem points out an interesting connection between
the conditional arrival times and order statistics of independent uniformly
distributed random variables. The proof is left as an exercise (Exercise 10.20).

Theorem 10.5. Let N(t), t ≥ 0 be a Poisson process. Given that N(t) =
n, the consecutive arrival times S1, . . . , Sn have the same joint distribution as
the order statistics of n independent Uniform(0, t) random variables.

Theorem 10.5 allows us to study, after a suitable normalization, asymptotic
behavior of S1, . . . , Sn through U(1), . . . , U(n), where U(1), . . . , U(n) are the
order statistics of U1, . . . , Un which are independent Uniform(0, 1) random
variables. For example, we have (Weiss 1955)

1

n

n∑
i=1

1{U(i)−U(i−1)>x/n}
P−→ e−x, (10.24)

x > 0, as n → ∞. Also, we have (Exercise 10.21)

n

logn
max

1≤i≤n+1
{U(i) − U(i−1)} P−→ 1, (10.25)

P

{
n2 min

1≤i≤n+1
{U(i) − U(i−1)} > x

}
−→ e−x. (10.26)

The corresponding results regarding the arrival times of a Poisson process are
therefore obtained via Theorem 10.5 (Exercise 10.21).

Some further asymptotic theory will be introduced under a more general
framework in the next section.

10.4 Renewal theory

The interarrival times of a Poisson process can be generalized in a way called
renewal process. Suppose that X1, X2, . . . is a sequence of independent non-
negative random variables with a common distribution F such that F (0) < 1.
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The Xi’s may be interpreted the same way as the Poisson interarrival times
Ti’s following (10.22). Similarly, we define the arrival times Sn as S0 = 0 and
Sn =

∑n
i=1 Xi, n ≥ 1, and a counting process N(t) by (10.22). The process is

then called a renewal process. The term “renewal” refers to the fact that the
process “starts afresh” after each arrival; that is, Sn+k−Sn, k = 1, 2, . . ., have
the same (joint) distribution regardless of n. In some books, N(t) is defined
as inf{n : Sn > t} instead of (10.22) (so the difference is 1), but the basic
asymptotic theory, which we outline below, is the same.

Let μ = E(Xi). For simplicity we assume that μ is finite, although many
of the asymptotic results extend to the case μ = ∞. The first result states
that N(t) → ∞ as t→ ∞.

Theorem 10.6. N(t)
a.s.−→ ∞ as t→ ∞.

This is because N(t) is nondecreasing with t; so N(∞) ≡ limt→∞N(t)
exists (see §1.5.1.3). Furthermore, we have P{N(∞) < ∞} = P(Xi = ∞ for
some i) = 0, because Xi is a.s. finite for every i. Theorem 10.6 is used to
derive the next asymptotic result.

Theorem 10.7 (SLLN for renewal processes). N(t)/t
a.s.−→ 1/μ as t→ ∞.

The proof is left as an exercise (Exercise 10.24). Theorem 10.7 states that,
asymptotically, the rate at which renewals occur is equal to the reciprocal of
the mean of the interarrival time, which, of course, makes sense. A related
result says that not only does the convergence hold almost surely, it also
holds in expectation. This is known as the elementary renewal theorem. Note
that, in general, a.s. convergence does not necessarily imply convergence in
expectation (see Chapter 2; also Exercise 10.25). Define m(t) = E{N(t)},
known as the renewal function (Exercise 10.26).

Theorem 10.8. m(t)/t→ 1/μ as t→ ∞.

The proof is not as “elementary” as the name might suggest. For example,
one might attempt to prove the theorem by Theorem 10.7 and the dominated
convergence theorem (Theorem 2.16). This would not work, however. The
standard proof involves the well-known Wald equation, as follows.

Theorem 10.9. Let τ be a stopping time such that E(τ) < ∞. Then

E

(
τ∑

i=1

Xi

)
= E(τ)μ. (10.27)

Equation (10.27) can be derived as a simple consequence of Doob’s optional
stopping theorem—namely, Corollary 8.1. To see this, define ξi = Xi − μ
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and Mn =
∑n

i=1 ξi. Then Mn,Fn = σ(X1, . . . , Xn), n ≥ 1, is a martingale.
Therefore, by (8.11), we have

E(Mτ |Fτ ) = M1 a.s.,

which implies E(Mτ ) = E(M1) = E(ξ1) = 0. On the other hand, we have
Sn = nμ + Mn; hence E(Sτ ) = E(τμ + Mτ ) = E(τ)μ, which is (10.27). To
apply the Wald equation to the renewal process, note that N(t) + 1 is a
stopping time (Exercise 10.27). Therefore, by (10.27), we obtain

E
{
SN(t)+1

}
= μ{m(t) + 1}. (10.28)

Identity (10.28) plays important roles not only in the proof of the elementary
renewal theorem but also in other aspects of the renewal theory.

The next result may be viewed as an extension of Theorem 10.4.

Theorem 10.10. Suppose that the variance of the interarrival time σ2 is
finite and positive. Then

lim
t→∞P

{
N(t) − t/μ

σ
√
t/μ3

≤ x

}
= Φ(x)

for all x, where Φ(·) is the cdf of N(0, 1).

We outline a proof below and let the reader complete the details (Exercise
10.28). First, note the following fact:

N(t) < n if and only if Sn > t (10.29)

for any positive integer n. For any given x, we have

P

{
N(t) − t/μ

σ
√
t/μ3

≤ x

}
= P{N(t) ≤ xt}

≤ P{N(t) < [xt] + 1}
= P(S[xt]+1 > t) [by (10.29)]

= P

{
S[xt]+1 − ([xt] + 1)μ

σ
√

[xt] + 1
> ut

}
,

where xt = t/μ+ σx
√
t/μ3, [xt] is the largest integer ≤ xt, and

ut =
t− ([xt] + 1)μ

σ
√

[xt] + 1
.

It is easy to show that as t→ ∞, xt → ∞ while ut → −x. Therefore, for any
ε > 0, we have ut > −x− ε for large t; hence,
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P

{
N(t) − t/μ

σ
√
t/μ3

≤ x

}
≤ P

{
S[xt]+1 − ([xt] + 1)μ

σ
√

[xt] + 1
> −x− ε

}

for large t. It follows by the CLT that

lim sup
t→∞

P

{
N(t) − t/μ

σ
√
t/μ3

≤ x

}
≤ 1 − Φ(−x− ε)

= Φ(x+ ε). (10.30)

By a similar argument, it can be shown that

lim inf
t→∞

P

{
N(t) − t/μ

σ
√
t/μ3

≤ x

}
≥ Φ(x− ε). (10.31)

The conclusion then follows from (10.30), (10.31), and the arbitrariness of ε.

Example 10.7. In the case of Poisson process discussed in the previous
section, we have Xi ∼ Exponential(1/λ), so μ = σ = 1/λ. Thus, in this
case, Theorem 10.10 reduces to Theorem 10.4. More generally, if Xi has a
Gamma(α, β) distribution (note that the Exponential distribution is a special
case with α = 1), then we have μ = αβ and σ =

√
αβ. It follows by Theorem

10.10 that {N(t) − t/αβ}/√t/α2β
d−→ N(0, 1) as t→ ∞.

Example 10.8. Now, suppose that Xi has a Bernoulli(p) distribution, where
0 < p < 1. This is a case of a discrete interarrival time, where Xi = 0 means
that the arrival of the ith event takes no time (i.e., arriving at the same time
as the previous event). In this case, we have μ = p and σ =

√
p(1 − p); so by

Theorem 10.10 we have {N(t) − t/p}/√t(1 − p)/p2 d−→ N(0, 1), as t→ ∞.

We are now ready to introduce some deeper asymptotic theory. The follow-
ing famous theorem is due to David Blackwell. A nonnegative random variable
X is said to be lattice if there exists d ≥ 0 such that

∑∞
k=0 P(X = kd) = 1. The

largest d that has this property is called the period of X . If X is lattice and
X ∼ F , then F is said to be lattice, and the period of X is also called the pe-
riod of F . For example, in Example 10.8, we have P(X1 = 0)+P(X1 = 1) = 1
while P(X1 = 0) < 1; so F is lattice and has period 1. On the other hand, the
F in Example 10.7 is clearly not lattice.

Theorem 10.11. If F is not lattice, then m(t+a)−m(t) → a/μ as t→ ∞,
for all a ≥ 0.

Example 10.7 (continued). In the case of the Poisson process, we have
μ = 1/λ; hence, by Blackwell’s theorem, m(t+ a)−m(t) → λa. In particular,
if a = 1, we have E{N(t + 1)} − E{N(t)} → λ as t → ∞. This means that,
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in the longrun, the mean number of arrivals between time t and time t+ 1 is
approximately equal to the reciprocal of μ, the mean of the interarrival time.
This, of course, makes sense. For example, if μ = 0.2, meaning that it takes,
on average, 0.2 second for a new event to arrive, then there are, on average,
approximately five arrivals within a second, in the longrun.

Our last asymptotic result is known as the key renewal theorem. Let h be
a function that satisfies (i) h(t) ≥ 0 for all t ≥ 0; (ii) h(t) is nonincreasing,
and (iii)

∫∞
0
h(t) dt < ∞.

Theorem 10.12. If F is not lattice and h is as above, then

lim
t→∞

∫ t

0

h(t− x) dm(x) =
1

μ

∫ ∞
0

h(t) dt. (10.32)

Note the following alternative expression of μ = E(Xi):

μ =

∫ ∞
0

x dF (x) =

∫ ∞
0

F̄ (t) dt, (10.33)

where F̄ (t) = 1 − F (t), which can be derived by Fubini’s theorem (Exercise
10.29). Therefore, the key renewal theorem may be written as∫ t

0

h(t− x) dm(x) −→
∫∞
0
h(t) dt∫∞

0
F̄ (t) dt

as t→ ∞.

In particular, if h(t) = 1[0,a](t), then
∫ t

0
h(t − x) dm(x) =

∫ t

t−a
dm(x) =

m(t)−m(t− a) and
∫∞
0
h(t) dt =

∫ a

0
dt = a; thus, (10.32) reduces to m(t)−

m(t− a) → a/μ as t→ ∞, which is simply Blackwell’s theorem.

10.5 Brownian motion

The term Brownian motion has appeared in various places so far in this book.
It originated as a physics phenomenon, discovered by English botanist Robert
Brown in 1827. While studying pollen particles floating in water, Brown ob-
served minute particles in the pollen grains executing the jittery motion. After
repeating the experiment with particles of dust, he concluded that the motion
was due to pollen being “alive,” but the origin of the motion remained un-
clear. Later in 1900, French mathematician Louis Bachelier wrote a historical
Ph.D. thesis, The Theory of Speculation, in which he developed the first the-
ory about Brownian motion. His work, however, was somewhat overshadowed
by Albert Einstein, who in 1905 used a probabilistic model to explain Brow-
nian motion. According to Einstein’s theory, if the kinetic energy of fluids is
“right,” the molecules of water move at random. Thus, a small particle would
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receive a random number of impacts of random strength and from random
directions in any short period of time. This random bombardment by the
molecules of the fluid would cause a sufficiently small particle, such as that in
a pollen grain, to move in the way that Brown described.

In a series of papers originating in 1918, Norbert Wiener, who received
his Ph.D. at the age of 18, defined Brownian motion as a stochastic process
B(t), t ≥ 0 satisfying the following conditions:

(i) B(t) has independent and stationary increments.
(ii) B(t) ∼ N(0, σ2t) for every t > 0, where σ2 is a constant.
(iii) With probability 1, B(t) is a continuous function of t.

Thinking of Brown’s experiment of pollen grains, (iii) is certainly reasonable,
assuming that the particles could not “jump” from one location to another;
the assumption of independent increments of (i) can be justified by Einstein’s
theory of “random bombardments.” As for (ii), it may be argued that this is
implied by (i) and the central limit theorem (Exercise 10.30). In particular,
Wiener (1923) proved the existence of a Brownian motion according to the
above definition. For these reasons, Brownian motion is also called a Wiener
process in honor of Wiener’s significant contributions [and the notation W (t)
is also often used for Brownian motion].

Note. By condition (iii), the sample paths of Brownian motion are almost
surely continuous. On the other hand, these paths are never smooth, as one
would expect, in that, with probability 1, B(t) is nowhere differentiable as a
function of t. This remarkable feature of Brownian motion was first discovered
by Paley, Wiener, and Zygmund (1933). See Dvoretzky, Erdös, and Kakutani
(1961) for a “short” proof of this result.

A simple consequence of the definition is that B(0) = 0 with probability 1.
To see this, note that by (ii), (iii), and Fatou’s lemma (Lemma 2.4), we have
E{B2(0)} = E{limt→0B

2(t)} ≤ lim inft→0 E{B2(t)} = lim inft→0 σ
2t = 0;

hence, B(0) = 0 a.s. Therefore, without loss of generality, we assume that
B(0) = 0. Also, as any Brownian motion can be converted to one with σ = 1,
known as standard Brownian motion [by considering B(t)/σ], we will focus
on the latter case only.

Brownian motion is a Gaussian process defined in Section 7.3. It is also a
special case of what is called a continuous-time Markov process, which is an
extension of the Markov chains discussed in Section 10.2, in that the condi-
tional distribution of B(s+ t) given B(u), 0 < u ≤ s, depends only on B(s).
To see this, note that by independent increments, we have

P{B(s+ t) ≤ y|B(s) = x,B(u), 0 < u < s}
= P{B(s+ t) −B(s) ≤ y − x|B(s) = x,B(u), 0 < u < s}
= P{B(s+ t) −B(s) ≤ y − x}.

On the other hand, by a similar argument, we have P{B(s + t) ≤ y|B(s) =
x} = P{B(s + t) − B(s) ≤ y − x}, verifying the Markovian property.
In fact, a strong Markov property holds, as follows. For each t ≥ 0, let
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F0(t) = σ{B(u), u ≤ t} and F+(t) = ∩s>tF0(s). The latter is known as the
right-continuous filtration. It is known that F0(t) and F+(t) have the same
completion (e.g., Durrett 1991, p. 345). We call F(t), t ≥ 0, a Brownian filtra-
tion if (i) F(t) ⊃ F0(t), and (ii) for all t ≥ 0 the process B(t+s)−B(t), s ≥ 0,
is independent of F(t). A random variable τ is a stopping time for a Brownian
filtration F(t), t ≥ 0, if {τ ≤ a} ∈ F(t) for all t. The strong Markov property
states that if τ is a stopping time for the Brownian filtration F(t), t ≥ 0, then
the process B(τ + t)−B(τ), t ≥ 0, is a Brownian motion that is independent
of F(τ), where F(τ) = {A : A ∩ {τ ≤ t} ∈ F(t), ∀t}. This result was proved
independently by Hunt (1956) and Dynkin (1957) (the latter author being the
same professor who gave the counting-trick example discussed in our openning
section; see Example 10.1).

The strong Markov property is used to establish the following theorem
called the reflection principle of Brownian motion.

Theorem 10.13. Suppose that τ is a stopping time for the Brownian
filtration F(t), t ≥ 0. Define

B∗(t) =

{
B(t), t ≤ τ
2B(τ) −B(t), t > τ

(known as Brownian motion reflected at time τ). Then B∗(t), t ≥ 0, is a
standard Brownian motion.

The proof is left as an exercise (with a hint; see Exercise 10.31). The
reflection is one of many Brownian motions “constructed” from Brownian
motion. To mention a couple more, let B(t), t ≥ 0, be a standard Brownian
motion, then (1) (scaling relation) for any a �= 0, a−1B(a2t), t ≥ 0, is a
standard Brownian motion and (2) (time inversion) W (t) = 0, t = 0, and
tB(1/t), t > 0, is a Brownian motion (Exercise 10.32).

Furthermore, Brownian motion is a continuous martingale, which extends
the martingales discussed in Chapter 8 to continuous-time processes. This
means that for any s < t, we have E{B(t)|F(s)} = B(s), where F(t), t ≥ 0,
is the Brownian filtration. To see the property more clearly, note that

E{B(t)|B(u), u ≤ s} = E{B(s) +B(t) −B(s)|B(u), u ≤ s}
= B(s) + E{B(t) −B(s)|B(u), u ≤ s}
= B(s) + E{B(t) −B(s)}
= B(s).

By a similar argument, it can be shown that B2(t) − t, t ≥ 0 is a continuous
martingale (Exercise 10.33).

Another well-known result for Brownian motion is regarding its hitting
time, or maximum over an interval. For any a > 0, let Ta be the first time the
Brownian motion hits a. It follows that Ta ≤ t if and only if max0≤s≤t B(s) ≥
a. On the other hand, we have



10.5 Brownian motion 337

P{B(t) ≥ a} = P{B(t) ≥ a|Ta ≤ t}P(Ta ≤ t)

because P{B(t) ≥ a|Ta > t} = 0. Furthermore, if Ta ≤ t, the process hits
a somewhere on [0, t]; so, by symmetry, at the point t, the process could go
either way, either above or below a, with equal probability. Therefore, we must
have P{B(t) ≥ a|Ta ≤ t} = 1/2. This implies

P

{
max
0≤s≤t

B(s) ≥ a

}
= P(Ta ≤ t)

= 2P{B(t) ≥ a}

=

√
2

π

∫ ∞
a/
√

t

e−x2/2 dx. (10.34)

We consider an example.

Example 10.9. Suppose that one has the option of purchasing one unit of a
stock at a fixed priceK at time t ≥ 0. The value of the stock at time 0 is $1 and
its price varies over time according to the geometric Brownian motion; that
is, P (t) = eB(t), where B(t), t ≥ 0, is Brownian motion. What is the expected
maximum worth of owning the option up to a future time T ? As the option
will be exercised at time t if the stock price at the time is K or higher, the
expected value is E[max0≤t≤T {P (t)−K}+], where x+ = max(x, 0). To obtain
a further expression, note that for any u > 0, max0≤t≤T {P (t)−K}+ ≥ u if and
only if max0≤t≤T {P (t) −K} ≥ u (why?). Also, for any nonnegative random
variable, X we have

E(X) = E

{∫ ∞
0

1(u≤X) du

}
=

∫ ∞
0

P(X ≥ u) du.

Thus, we have, by (10.34),

E

[
max

0≤t≤T
{P (t) −K}+

]
=

∫ ∞
0

P

[
max

0≤t≤T
{P (t) −K}+ ≥ u

]
du

=

∫ ∞
0

P

[
max

0≤t≤T
{P (t) −K} ≥ u

]
du

=

∫ ∞
0

P

{
max

0≤t≤T
P (t) ≥ K + u

}
du

=

∫ ∞
0

P

{
max

0≤t≤T
B(t) ≥ log(K + u)

}
du

=

√
2

π

∫ ∞

0

∫ ∞
log(K+u)/

√
T

e−x2/2dx du

= 2

∫ ∞
0

[
1 − Φ

{
log(K + u)√

T

}]
du,

where Φ(·) is the cdf of N(0, 1).
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Brownian motion obeys the following strong law of large numbers, whose
proof is left as an exercise (Exercise 10.34).

Theorem 10.14 (SLLN for Brownian motion). B(t)/t
a.s.−→ 0 as t→ ∞.

A deeper result is the law of the iterated logarithm. Let ψ(t) =
√

2t log log t.

Theorem 10.15 (LIL for Brownian motion). Lim supt→∞B(t)/ψ(t) = 1
a.s. and, by symmetry, lim inft→∞B(t)/ψ(t) = −1 a.s.

Furthermore, Brownian motion is often associated with the limiting pro-
cess of a sequence of stochastic processes, just like Gaussian (or normal) distri-
bution, which often emerges as the limiting distribution of a sequence of ran-
dom variables. One of the fundamental results in this regard is the convergence
of empirical process (see Section 7.3). Let B(t), t ≥ 0, be a Brownian motion.
The conditional stochastic process B(t), 0 ≤ t ≤ 1, givenB(1) = 0 is called the
Brownian bridge (or tied-down Brownian motion). Another way of defining
the Brownian bridge is by the process U(t) = B(t)−tB(1), 0 ≤ t ≤ 1. It is easy
to show that the Brownian bridge is a Gaussian process with mean 0 and co-
variances cov{U(s), U(t)} = s(1−t), s ≤ t (Exercise 10.35). Let X1, X2, . . . be
a sequence of independent random variables with the common distribution F .
The empirical process is defined by (7.3); that is,

√
n{Fn(x)−F (x)}, where Fn

is the empirical d.f. defined by (7.1). As noted in Section 7.1, we may assume,
without loss of generality, that F is the Uniform(0, 1) distribution and hence
consider Un(t) =

√
n{Gn(t) − t}, 0 ≤ t ≤ 1, where Gn(t) = n−1

∑n
i=1 1(ξi≤t)

and ξ1, ξ2, . . . are independent Uniform(0, 1) random variables. It follows by
Theorem 7.4 that

sup
0≤t≤1

|Un(t)| d−→ sup
0≤t≤1

|U(t)| (10.35)

as n → ∞, where U(t) is the Brownian bridge. We consider a well-known
application of (10.35).

Example 10.10. One of the Kolmogorov–Smirnov statistics for testing
goodness-of-fit is defined as Dn = supx |Fn(x) − F0(x)|, where F0 is the hy-
pothesized distribution under (7.9). Suppose that F0 is continuous. Then we
have [see (7.13) and the subsequent arguments]

P(
√
nDn ≤ λ) = P{ sup

0≤t≤1
|Un(t)| ≤ λ}

−→ P{ sup
0≤t≤1

|U(t)| ≤ λ}

= 1 − 2

∞∑
j=1

(−1)j−1 exp(−2j2λ2).
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The derivation of the last equation [i.e., (7.16)] can be found, for example, in
Durrett (1991, pp. 388–391).

Another well-known asymptotic theory in connection with the Brownian
motion is Donsker’s invariance principle (see Section 6.6.1). It states that
if X1, X2, . . . are i.i.d. random variables with mean 0 and variance 1, Sn =∑n

i=1Xi with S0 = 0, and

ξn(t) =
1√
n
{S[nt] + (nt− [nt])X[nt]+1}

([x] is the integer part of x), then ξn
d−→ W as n → ∞, where W (t) =

B(t), 0 ≤ t ≤ 1, and B(t), t ≥ 0, is Brownian motion. An application of the
invariance principle was considered in Example 6.10. Below is another one.

Example 10.11. Let the Xi’s be as above. Consider the functional ψ(x) =∫ 1

0
x(t) dt, which is continuous on C, the space of continuous functions on [0, 1]

equipped with the uniform distance ρ of (6.63). It follows that ψ(ξn)
d−→ ψ(W )

as n → ∞. Furthermore, it can be shown that

ψ(ξn) = n−3/2
n∑

k=1

Sk = n−3/2
n∑

i=1

(n+ 1 − i)Xi, (10.36)

ψ(W ) =

∫ 1

0

B(t)dt ∼ N(0, 1/3) (10.37)

(see the next section). Thus, the left side of (10.36) converges in distribution
to N(0, 1/3). This result can also be established directly using the Lindeberg–
Feller theorem (the extended version following Theorem 6.11; Exercise 10.36).

Many applications of Brownian motion are made possible by the following
result known as Skorokhod’s representation theorem. Suppose that X is a
random variable with mean 0. We wish to find a stopping time τ at which the

Brownian motion has the same distribution as X ; that is, B(τ)
d
= X . Let us

first consider a simple case.

Example 10.12. If X has a two-point distribution on a and b, where a <
0 < b, B(τ) can be constructed by using a continuous-time version of Wald’s
equation (see Theorem 10.9). The latter states that if τ is a bounded stopping
time for the Brownian filtration, then E{B(τ)} = 0 and E{B2(τ)} = E(τ)
(e.g., Durrett 1991, p. 357). Define τ = inf{t : B(t) = a or b}. It can be
shown that τ is a stopping time for the Brownian filtration and τ < ∞ a.s.
(Exercise 10.37). By Wald’s equation, we have E{B(τ ∧ n)} = 0 for any fixed
n ≥ 1. On the other hand, we have B(τ ∧ n) = B(τ) = a or b if τ ≤ n and
B(τ ∧n) = B(n) ∈ (a, b) if τ > n; so in any case, we have |B(τ ∧n)| ≤ |a|∨ |b|
and B(τ ∧ n) → B(τ) as n → ∞. It follows by the dominated convergence
theorem (Theorem 2.16) that
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0 = E{B(τ)} = aP{B(τ) = a} + bP{B(τ) = b}
(here we use the fact that τ < ∞ a.s.). Also, we have

1 = P{B(τ) = a} + P{B(τ) = b}.
On the other hand, the same equations are satisfied with B(τ) replaced by
X ; therefore, we must have P{B(τ) = a} = P(X = a) and P{B(τ) = b} =
P(X = b). It also follows that E(τ) = E{B2(τ)} = |a|b (verify this).

In general, we have the following.

Theorem 10.16 (Skorokhod’s representation). Let B(t), t ≥ 0, be the
standard Brownian motion. (i) For any random variable X , there exists a
stopping time τ for the Brownian filtration, which is a.s. finite, such that

B(τ)
d
= X . (ii) If E(X) = 0 and E(X2) < ∞, then τ can be chosen such that

E(τ) <∞.

Consider a sequence of independent random variables X1, X2, . . . with
mean 0 and finite variance. Let τ1 be a stopping time with E(τ1) = E(X2

1 )

such that B(τ1)
d
= X1. By the strong Markov property (above Theorem 10.13),

B(τ1 + t) − B(τ1), t ≥ 0, is again a Brownian motion that is independent of
F(τ1). We then find another stopping time τ2, independent of F(τ1), such

that E(τ2) = E(X2
2 ) and B(τ1 + τ2) −B(τ1)

d
= X2, and so on. In this way we

construct a sequence of stopping times τi, i ≥ 1, and let Tn =
∑n

i=1 τi so that

B(Tn + τn+1)−B(Tn)
d
= Xn+1 and is independent of F(Tn), n ≥ 1. It follows

that B(Tn)
d
= Sn =

∑n
i=1 Xi and E(Tn) =

∑n
i=1 E(τi) =

∑n
i=1 E(X2

i ). This
is a very useful representation. For example, suppose that Xi, i ≥ 1, are i.i.d.
with E(X1) = 0 and E(X2

1 ) = 1. Then we have Sn =
∑n

i=1 Xi = B(Tn). By
the LIL for Brownian motion (Theorem 10.15), we have

lim sup
n→∞

Sn√
2n log logn

= 1 a.s.

This result was first proved by Strassen (1964; see Theorem 6.17).

10.6 Stochastic integrals and diffusions

The diffusion process is closely related to stochastic integral and differential
equations. In fact, we already have encountered one such integral in Example
10.11 of the previous section, where we considered the integral of Brownian
motion over the interval [0, 1] [see (10.37)]. This is understood as the integral
of the sample path of Brownian motion, which is continuous and therefore
integrable over any finite interval almost surely. Furthermore, the integral can
be computed as the limit
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0

B(t) dt = lim
n→∞

1

n

n∑
k=1

B

(
k − 1

n

)
. (10.38)

Equation (10.38) is an example of what we call stochastic integrals. Here, the
integration is with respect to t (i.e., the Lebesgue measure). There is another
kind of stochastic integrals, with respect to Brownian motion. To see this,
note that by integration by parts we can write the left side of (10.38) as∫ 1

0

B(t) dt = B(1) −
∫ 1

0

t dB(t). (10.39)

The integral on the right side, which is with respect to B(t), has to be well
defined because the one on the left side is. This is defined similarly as the
Riemann–Stieltjes integral (see §1.5.4.36), namely,∫ 1

0

t dB(t) = lim
n→∞

n∑
k=1

k − 1

n

{
B

(
k

n

)
−B

(
k − 1

n

)}
.

More generally, consider a stochastic process X(t) = X(t, ω), where t ∈
[0,∞) and ω ∈ Ω, (Ω,F , P ) being the probability space. This means that
X(t) is measurable in the sense that {(ω, t) : X(t, ω) ∈ B} ∈ F × B[0,∞) for
every B ∈ BR, where BI represents all of the Borel subsects of I, a finite
or infinite interval of the real line R. As in the previous section, we define
F(t), t ≥ 0 as a nondecreasing family of σ-fields, called filtration, in the sense
that F(s) ⊂ F(t) ⊂ F for any 0 ≤ s ≤ t. We say the process X(t) is
F(t)-adapted if X(t) ∈ F(t) [i.e., X(t) is F(t) measurable] for every t ≥ 0.
Furthermore, an F(t)-adapted process X(t) is progressively measurable if

{(ω, s) : s < t,X(s, ω) ∈ B} ∈ F(t) × B[0,∞)

for any t ≥ 0 and B ∈ BR (see Appendix A.2). In the following we will
assume that F(t) is the Brownian filtration (see the previous section) and say
X(t), or simply X , is adapted, or progressively measurable, without having to
mention the filtration. The stochastic Itô integral, named after the Japanese
mathematician Kiyoshi Itô, with respect to Brownian motion over an interval
[0, T ] is defined as follows. If X is an elementary process in the sense that
there is a partition of [0, T ], 0 = tn,0 < tn,1 < · · · < tn,Kn = T , such that X(t)
does not change with t over each subinterval [tn,k−1, tn,k), 1 ≤ k ≤ Kn, then∫ T

0

X(t) dB(t) =

Kn∑
k=1

X(tn,k−1){B(tn,k) −B(tn,k−1)}. (10.40)

In general, let MT be the class of progressively measurable processes X such

that P
{∫ T

0 X2(t) dt < ∞
}

= 1. Then any X ∈ MT can be approximated by

a sequence of elementary processes Xn, n ≥ 1, such that
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0

{X(t) −Xn(t)}2 dt
P−→ 0

as n → ∞. We therefore define the Itô intergral

IT (X) =

∫ T

0

X(t) dB(t) (10.41)

as the limit of convergence in probability of IT (Xn), defined by (10.40), as
n → ∞. The Itô integral has the following nice properties. Let M2

T be the class

of progressively measurable processes X such that E
{∫ T

0 X2(t) dt
}
< ∞. It

is clear that M2
T is a subset of MT .

Lemma 10.1. (i) For X ∈ M2
T , we have E{IT (X)} = 0,

E{I2
T (X)} = E

{∫ T

0

X2(t) dt

}
,

and E{IT (X)|F(t)} = It(X), 0 ≤ t ≤ T . (ii) For X,Y ∈ M2
T , we have

E{IT (X)IT (Y )} = E

{∫ T

0

X(t)Y (t) dt

}
.

Lemma 10.1 provides us a convenient way of computing the variances and
covariances of Itô integrals. As a simple example, we verify that the variance
of the integral in (10.37) is, indeed, equal to 1/3 [by the way, the value was
mistakenly stated as 1/2 in Durrett (1991, p. 367)].

Example 10.13. Note that a Borel measurable function, h(t), t ≥ 0, is a
special case of a stochastic process that is deterministic at each t. Therefore,
we can write (10.39) as∫ 1

0

B(t) dt =

∫ 1

0

dB(t) −
∫ 1

0

t dB(t)

= I1(1) − I1(t).

It follows that E{∫ 1

0 B(t) dt} = E{I1(1)} − E{I1(t)} = 0 and

E

{∫ 1

0

B(t) dt

}2

= E{I2
1(1)} − 2E{I1(1)I1(t)} + E{I2

1(t)}

=

∫ 1

0

dt− 2

∫ 1

0

t dt+

∫ 1

0

t2 dt =
1

3
.
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In fact, the exact distribution of the stochastic integral (10.41) can be
obtained, not only for a fixed T but also for a stopping time τ in the sense
that {τ < t} ∈ F(t) for every t, as follows.

Lemma 10.2. Let X ∈ MT . If for some a > 0 we have

P

{∫ T

0

X2(t) dt ≥ a

}
= 1,

then the stopping time

τa = inf

{
t :

∫ t

0

X2(s) ds ≥ a

}
(10.42)

is well defined (Exercise 10.38) and

Iτa(X) =

∫ τa

0

X(t) dB(t) ∼ N(0, a).

In particular, if X(t) ∈ MT and X(t) �= 0 a.e. t ∈ [0, T ], then, with

a =
∫ T

0 X2(t) dt, we have τa = T a.s. (why?). It follows by Lemma 10.2 that∫ T

0

X(t) dB(t) ∼ N(0, a). (10.43)

This is a very useful result, for example, in determining the limiting distribu-
tion of the result of Donsker’s invariance principle. We consider an example.

Example 10.13 (continued). We now verify that the limiting distribution
in (10.37) is, indeed, N(0, 1/3). This follows by writting∫ 1

0

B(t) dt =

∫ 1

0

(1 − t) dB(t)

and (10.43) with X(t) = 1 − t and T = 1. Here, a =
∫ 1

0
(1 − t)2 dt = 1/3.

A stochastic process X(t), 0 ≤ t ≤ T , that is defined as the solution to the
stochastic integral equation

X(t) = X(0) +

∫ t

0

μ{X(s)} ds

+

∫ t

0

σ{X(s)} dB(s), 0 ≤ t ≤ T, (10.44)

is called a (homogeneous) diffusion process, or diffusion, where μ(x), σ2(x), x ∈
R, are nonrandom functions called the trend and diffusion coefficients, respec-
tively. Equivalently, a diffusion X(t) is defined as the solution to the following
stochastic differential equation (SDE):
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dX(t) = μ{X(t)} dt+ σ{X(t)} dB(t), X(0), 0 ≤ t ≤ T. (10.45)

Here, X(0) specifies the initial state of the process. The diffusion is a special
case of the Itô process, defined as

dX(t) = μ(t) dt+ σ(t) dB(t), (10.46)

where μ(t) and σ(t) are adapted processes to the Brownian filtration F(t).
The following theorem is a special case of what is known as Itô’s formula.

Theorem 10.17. Let X be an Itô process satisfying (10.46). For any twice
continuously differentiable function f , the process f(X) satisfies

df{X(t)} = f ′{X(t)} dX(t) +
1

2
f ′′{X(t)}σ2(t) dt

=

[
f ′{X(t)}μ(t) +

1

2
f ′′{X(t)}σ2(t)

]
dt

+f ′{X(t)}σ(t) dB(t). (10.47)

Itô’s formula may be regarded as the chain rule for change of variables
in stochastic calculus. It differs from the standard chain rule due to the ad-
ditional term involving the second derivative. For a derivation of Itô’s for-
mula (in a more general form), see, for example, Arnold (1974, Section 5.5).
In particular, for the diffusion (10.45), which is a special case of (10.46)
with μ(t) = μ{X(t)} and σ(t) = σ{X(t)}, it follows that f{X(t)} is also
a diffusion satisfying (10.45) with trend and diffusion coefficients given by
f ′(x)μ(x)+(1/2)f ′′(x)σ2(x) and {f ′(x)σ(x)}2, respectively. We consider some
examples.

Example 10.14 (Brownian motion). The standard Brownian motion re-
stricted to [0, T ] is a diffusion with μ(x) = 0 and σ2(x) = 1.

The next example gives an explanation why the process is called diffusion.

Example 10.15 (The heat equation). Let u(t, x) denote the temperature in
a rod at position x and time t. Then u(t, x) satisfies the heat equation

∂u

∂t
=

1

2

∂2u

∂x2
, t > 0. (10.48)

It can be verified that for any continuous function f , the function

u(t, x) = E[f{x+B(t)}]
=

1√
2πt

∫ ∞
−∞

f(y) exp

{
− (y − x)2

2t

}
dy (10.49)
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solves the heat equation (Exercise 10.39). Note that x+B(t) has the N(x, t)
distribution, whose pdf actually satisfies the heat equation (see Exercise
10.39). Furthermore, x + B(t), t ≥ 0, is the Brownian motion with initial
state x; so, intuitively speaking, the expected functional value of the Brown-
nian motion initiated at x satisfies the heat equation. Now, according to the
previous example, the standard Brownian motion is a diffusion with μ(x) = 0
and σ2(x) = 1. If we assume that f is twice continuously differentiable, then
by Itô’s formula with X(t) = x+B(t), we have

df{x+B(t)} = f ′{x+B(t)}dB(t) +
1

2
f ′′{x+B(t)} dt

or, in its integral form,

f{x+B(t)} = f(x) +

∫ t

0

f ′{x+B(t)} dB(t)

+
1

2

∫ t

0

f ′′{x+B(t)} dt. (10.50)

By taking expectations on both sides of (10.50) and applying Lemma 10.1(i),
we get (Exercise 10.39)

u(t, x) = E[f{x+B(t)}]

= f(x) +
1

2

∫ t

0

E[f ′′{x+B(t)}] dt

= f(x) +
1

2

∫ t

0

∂2u

∂x2
dt. (10.51)

Differentiating both sides of (10.51) with respect to t leads to the heat equation
(10.48). Of course, (10.48) can be verified directly (see Exercise 10.39), but
the point is to show a connection between diffusion processes and the heat
equation, which holds not only for this special case but in more general forms.

Going back to the diffusion SDE (10.45). We must show the existence and
uniqueness of a solution to the SDE. For this we need the following definition.
We say the SDE (10.45) has a weak solution if there exists a probability space
(Ω,F , P ), a family of nondecreasing σ-fields F(t) ⊂ F , 0 ≤ t ≤ T , a Brownian
motion B(t), 0 ≤ t ≤ T , and a continuous-path process X(t), 0 ≤ t ≤ T , both
adapted to F(t), 0 ≤ t ≤ T , such that

P

(∫ T

0

[|μ{X(t)}|+ σ2{X(t)}]dt < ∞
)

= 1

and (10.44) holds. The following result is proven in Durrett (1996, p. 210).

Theorem 10.18. Suppose that the function μ is locally bounded, the
function σ2 is continuous and positive, and there is A > 0 such that
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xμ(x) + σ2(x) ≤ A(1 + x2), x ∈ R. (10.52)

Then the SDE (10.45) has a unique weak solution.

We now consider some limit theorems for stochastic integrals. For simplic-
ity, we consider the Itô integral

Y (t) = It(X) =

∫ t

0

X(s) dB(s), t ≥ 0, (10.53)

where the process X(t) has continuous and nonvanishing path. It follows that

τ(t) =

∫ t

0

X2(s) ds (10.54)

is finite and positive for every t > 0, which is called the intrinsic time of Y (t).
Let τa = inf{t : τ(t) ≥ a} [see (10.42)]. It can be shown that W (a) = 0 if
a = 0 and W (a) = Y (τa), a ≥ 0, is a standard Brownian motion (Exercise
10.40). Therefore, by the SLLN of Brownian motion (Theorem 10.14), we have

W (a)/a
a.s.−→ 0 as a→ ∞, which implies

lim
t→∞

Y (t)

τ(t)
= 0 a.s. (10.55)

Furthermore, by the LIL of Brownian motion (Theorem 10.15), we have

lim sup
t→∞

Y (t)√
2τ(t) log log τ(t)

= 1 a.s. (10.56)

Finally, we consider some limit theorems for diffusion processes. Let τ(a) =
inf{t ≥ 0 : X(t) = a} and τ(a, b) = inf{t ≥ τ(a) : X(t) = b}. The process
X(t), t ≥ 0, is said to be recurrent if P{τ(a, b) < ∞} = 1 for all a, b ∈ R; it
is called positive recurrent if E{τ(a, b)} < ∞ for all a, b ∈ R. The following
results are proven in Kutoyants (2004, Section 1.2.1). We say the process
X has ergodic properties if there exists a distribution F such that for any
measurable function h with finite first moment with respect to F , we have

P

{
1

T

∫ T

0

h{X(t)} dt →
∫
h(x) dF (x)

}
= 1.

Theorem 10.19 (SLLN and CLT for diffusion process). Let X be a pro-
cess satisfying dX(t) = μ{X(t)} dt + σ{X(t)} dB(t), X(0) = x0, t ≥ 0, and
suppose that it is positive recurrent. Then X has ergodic properties with the
density function of F given by

f(x) =
σ−2(x) exp[2

∫ x

0 {μ(u)/σ2(u)} du]∫∞
−∞ σ−2(y) exp[2

∫ y

0 {μ(u)/σ2(u)} du] dy
. (10.57)
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Furthermore, for any measurable function g such that ρ2 =
∫
g2(x) dF (x) <

∞, we have as T → ∞

1√
T

∫ T

0

g{X(t)} dB(t)
d−→ N(0, ρ2).

We conclude this section with a simple example.

Example 10.16. Consider the diffusion process dX(t) = −sign{X(t) −
μ} dt + σ dB(t), X0, t ≥ 0, where sign(x) = −1 if x < 0 and 1 if x ≥ 0
and μ, σ > 0 are unknown parameters. Then the process has ergodic proper-
ties with f(x|μ) = e−2|x−μ|, which does not depend on σ (Exercise 10.41).

10.7 Case study: GARCH models and financial SDE

Historically, Brownian motion and diffusion were used to model physical pro-
cesses, such as the random motion of molecules from a region of higher concen-
tration to one of lower concentration (see Example 10.15), but later they had
found applications in many other areas. One such areas that was developed
relatively recently is theoretical finance. In 1973, Black and Scholes derived
the price of a call option under the assumption that the underlying stock
obeys a geometric Brownian motion (i.e., the logarithm of the price follows a
Brownian motion; Black and Scholes 1973). Since then, continuous-time mod-
els characterized by diffusion and SDE have taken the center stage of modern
financial theory. A continuous-time financial model typically assmes that a
security price X(t) obeys the following SDE:

dX(t) = μtX(t) dt+ σtX(t) dB(t), 0 ≤ t ≤ T, (10.58)

where B(t) is a standard Brownian motion; μt and σ2
t are called the mean

return and conditional volatility in finance. In particular, the Black–Scholes
model corresponds to (10.58) with μt = μ and σt = σ, which are unknown
parameters. It is clear that the latter is a special case of the diffusion pro-
cess defined in the previous section; that is, (10.45), where the trend and
diffusion coefficients are given by μ(x) = μx and σ2(x) = σ2x2. In general,
(10.58) may be regarded as a more general form of diffusion, where μt and σ2

t

are also called the drift in probability and diffusion variance in probability,
respectively. Considering (10.58), we can write this as

X−1(t) dX(t) = μt dt+ σt dB(t), 0 ≤ t ≤ T.

What this means is that the relative change of the price over time is due to
two factors and is expressed as the sum of them. The first is a mean chance
over time; the second is a random change over time that follows the rule of
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Brownian motion. It is important to note that we must talk about relative
change, not actual change, because the latter is likely to depend on how high,
or low, the price is at time t.

On the other hand, in reality, virtually all economic time series data are
recorded only at discrete intervals. For such a reason, empiricists have favored
discrete-time models. The most widely used discrete-time models are of au-
toregressive conditionally heteroscedastic (ARCH) type, first introduced by
Engle (1982). These models may be expressed, in general, as

xk = μk + yk, yk = σkεk, (10.59)

σ2
k = σ2(yk−1, yk−2, . . . , k, ak, α), (10.60)

k = 1, 2, . . ., where εk is a sequence of independent N(0, 1) random variables,
σ2

k is the conditional variance of xk given the information at time k, μk cor-
responds to a drift which may depend on k, σ2

k, and xk−1, xk−2, . . ., ak is a
vector of exogenous and lagged endogenous variables, and α is a vector of
parameters. In reality, xk represents the observation at the frequency (k/n)T ,
where [0, T ] is the observed time interval, n is the total number of obser-
vations, and h = T/n is the length of the basic (or unit) time interval. In
particular, Engle’s (1982) model corresponds to (10.59) and (10.60) with

σ2
k = α0 +

p∑
j=1

αjy
2
k−j , (10.61)

where the α’s are nonnegative parameters. This is known as the ARCH(p)
model; the generalized ARCH, or GARCH model, of Bollerslev (1986) can be
expressed as (10.59) and (10.60) with

σ2
k = α0 +

p∑
i=1

αiσ
2
k−i +

q∑
j=1

αp+jy
2
k−j . (10.62)

The latter model is denoted by GARCH(p, q). It is clear that the ARCH model
is similar to the MA model, and the GARCH model similar to the ARMA
model in time series (see Section 9.1). However, unlike in MA or ARMA
models, here the random quantities involved are nonnegative. The motivation
for GARCH is that the documented econometric studies show that financial
time series tend to be highly heteroskedastic. Such a heteroskedasticity is
characterized by the conditional variance, modeled as a function of conditional
variances and residuals in the past.

Until the early 1990s these two types of models—the contiuous-time mod-
els defined by the SDE and discrete-time GARCH models—had developed
very much independently with little attempt to reconcile each other. How-
ever, these models are used to describe and analyze the same financial data;
therefore, it would be reasonable to expect some kind of connection between
the two. More specifically, consider two processes, the first being the GARCH
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process and the second being the continuous-time process observed at the
same discrete-time points. Suppose that the time points are equally spaced.
What happens when the length of the time interval goes to zero or, equiv-
alently, the total number of observations, n, goes to infinity? Nelson (1990)
bridged a partial connection between the two processes by giving conditions
under which the GARCH process converges weakly to the diffusion process
that govern the discrete-time observations of the continuous-time process as
the length of the discrete time intervals goes to zero. Nelson derived the re-
sult by utilizing a general theory developed by Stroock and Varadhan (1979).
Suppose that for each h > 0, Xh,k, k ≥ 0, are d-dimensional random variables
with the probability distribution Ph and the Markovian property

Ph(Xh,k+1 ∈ B|Xh,0, . . . , Xh,k) = πh,k(Xh,k, B) a.s. Ph

for all Borel sets B of Rd and k ≥ 0. Define a continuous-time process
Xh(t), 0 ≤ t ≤ T , as a step-function such that

Xh(t) = Xh,k, kh ≤ t < (k + 1)h, 0 ≤ k ≤ T/h.

Then, under suitable regularity conditions, the processXh(t) converges weakly
as h → 0 to the process X(t) defined by the stochastic integral equation

X(t) = X(0) +

∫ t

0

μ{X(s), s} ds

+

∫ t

0

σ{X(s), s} dB(d)(s), 0 ≤ t ≤ T, (10.63)

where B(d)(t), 0 ≤ t ≤ T , is a standard d-dimensional Brownian motion that
is independent of X(0). Here, a d-dimensional Brownian motion is defined by
modifying assumption (iii) of the one-dimension Brownian motion (see Section
10.5) by B(d)(t) ∼ N(0, σ2tId), where Id is the d-dimensional identity matrix,
and the standard d-dimensional Brownian motion has σ = 1. The equivalent
SDE to (10.63) is

dX(t) = μ{X(t), t}dt+ σ{X(t), t}dB(d)(t), X(0), 0 ≤ t ≤ T, (10.64)

which defines a more general form of diffusion process than (10.44) (why?).
The functions μ(x, t) and σ(x, t) and initial state X(0) are determined by the
following limits, whose existence is part of the regularity conditions:

lim
h→0

sup
|x|≤R,0≤t≤T

‖μh(x, t) − μ(x, t)‖ = 0,

lim
h→0

sup
|x|≤R,0≤t≤T

‖ah(x, t) − a(x, t)‖ = 0,

and a(x, t) = σ(x, t)σ(x, t)′ , where ‖A‖ = {tr(A′A)}1/2,
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μh(x, t) =
1

h

∫
‖y−x‖≤1

(y − x)πh,[t/h](x, dy),

ah(x, t) =
1

h

∫
‖y−x‖≤1

(y − x)(y − x)′πh,[t/h](x, dy)

([t/h] denotes the largest integer ≤ t/h), and Xh,0
d−→ X(0) as h → 0. It

should be noted that here the weak convergence is not merely in the sense of
convergence in distribution of Xh(t) for each given t: The distribution of the
entire sample path of Xh(t), 0 ≤ t ≤ T converges to the distribution of the
sample path of X(t), 0 ≤ t ≤ T , as h → 0. This is very similar to the weak
convergence in Donsker’s invariance principle (see Section 6.6.1).

Consider, for example, the MGARCH(1, 1) model, defined by

xk = σkεk,

log σ2
k = α0 + α1 log σ2

k−1 + α2 log ε2k−1. (10.65)

Suppressing in the notation the dependence on n, we can rewrite (10.65) as

zk =
σkεk√
n
,

log σ2
k =

β0

n
+

(
1 +

β1

n

)
log σ2

k−1 +
β2√
n
ξk,

where ξk = (log ε2k − c0)/c1, c0 = E(log ε2k), c1 =
√

var(log ε2k), and the β’s are
new parameters. Define the bivariate process [Zn(t), σ2

n(t)], t ∈ [0, 1], as

Zn(t) = zk, σ2
n(t) = σ2

k+1, t ∈
[
k

n
,
k + 1

n

)
.

Then, as n → ∞ (which is equivalent to h → 0), the bivariate process con-
verges in distribution to the bivariate diffusion process [X(t), σ2(t)] satisfying

dX(t) = σ(t) dB1(t),

d log σ2(t) = {β0 + β1 log σ2(t)} dt+ β2 dB2(t),

t ∈ [0, 1], for the same parameters βj , j = 0, 1, 2, where B1(t) and B2(t) are
two independent standard Brownian motions.

Weak convergence is one way to study the connection between the discrete
and continuous-time models. On the other hand, Wang (2002) showed that
GARCH models and its diffusion limit are not asymptotically equivalent in
the sense of La Cam deficiency, unless the volatility σ2

t is deterministic, which
is considered a trivial case. Le Cam’s deficiency measure is for comparison of
two statistical experiments (Le Cam 1986; Le Cam and Yang 2000). Here, a
statistical experiment consists of a sample space Ω, a σ-field F , and a family
of distributions indexed by θ, a vector of parameters, say {Pθ, θ ∈ Θ}, where
Θ is the parameter space. Consider two statistical experiments
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Ei = (Ωi,Fi, {Pi,θ, θ ∈ Θ}), i = 1, 2.

Let A denote an action space and L : Θ × A → [0,∞) be a loss function.
Define ‖L‖ = sup{L(θ, a) : θ ∈ Θ, a ∈ A}. Let di be a decision procedure for
the ith experiment and Ri(di, L, θ) be the risk from using di when L is the
loss function and θ is the true parameter vector, i = 1, 2. Le Cam’s deficiency
measure is defined as Δ(E1, E2) = δ(E1, E2) ∨ δ(E2, E1), where

δ(E1, E2) = inf
d1

sup
d2

sup
θ∈Θ

sup
‖L‖=1

|R1(d1, L, θ) −R2(d2, L, θ)|

and δ(E2, E1) is defined likewise. Two sequences of experiments, En,1 and En,2,
where n denotes the sample size, are said to be asymptotically equivalent if
Δ(En,1, En,2) → 0 as n → ∞. Wang (2002) considered the GARCH(1, 1) model
(which is found to be adequate in most applications) for the sake of simplicity.
He showed that the GARCH and diffusion experiments are not asymptotically
equivalent according to the above definition.

The problem was further investigated by Brown et al. (2003), who consid-
ered the MGARCH(1, 1) process observed at “lower frequencies” (although
the authors believe their results can be extended to GARCH models in
general). Suppose that the diffusion process is observed at the time points
tk = (k/n)T, k = 1, . . . , n. Thus, T/n is the length of the basic time interval
and φ1 = n/T is the corresponding basic frequency. Let uk be the observed
diffusion process at time tk, k = 1, . . . , n. Consider the MGARCH process
observed at time tls, l = 1, . . . , [n/s], where s is some positive integer. Then
φs = n/(sT ) is called a lower frequency if s > 1. Let xls be the MGARCH
process observed at time tls, l = 1, . . . , [n/s]. Brown et al. (2003) considered
the MGARCH experiment with observations xls, 1 ≤ l ≤ [n/s], and the dif-
fusion experiment with observations uls, 1 ≤ l ≤ [n/s]. They showed that the
two experiments are asymptotically equivalent if n1/2/s → 0 as n → ∞. For
example, s = n2/3 works; on the other hand, the result of Wang (2002) shows
that this is not the case for s = 1.

10.8 Exercises

10.1. This exercise is related to Example 10.1.
(i) Verify that the locations of the sequence of digits formed either by the

professor or by the student, as shown in Table 10.2, satisfy (10.1).
(ii) Show by induction that Xn is a function of ξ1, . . . , ξk, where k = Xn−1.
(iii) Show that the right side of (10.2) is (also) equal to 0.1.
(iv) In Table 10.3, if, instead, the student starts at a digit (among the first

10 digits) other than the 10th (which is a 4), will her chain end at the same
spot as the professor’s (which is the second to last 0)?

10.2. Show that (10.3) implies the Markov property (10.4).
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10.3. Show that the finite-dimensional distributions of a Markov chain Xn,
n = 0, 1, 2, . . ., are determined by its transition probability p(·, ·) and initial
distribution p0(·).

10.4. Derive the Chapman–Kolmogorov identity (10.7).
10.5. Show that the process Xn, n ≥ 1, in Example 10.2 is a Markov chain

with transition probability p(i, j) = aj−i, i, j ∈ S = {0,±1, . . .}.
10.6. This exercise is related to Example 10.1 (continued in Section 10.2).
(i) Show that the one- and two-step transition probabilities of the Markov

chain are given by (10.9) and (10.10), respectively. Also verify
∑

j∈S p(i, j) = 1

and
∑

j∈S p
(2)(i, j) = 1 for all i ∈ S

(ii) Derive (10.11).
(iii) Show that (10.12) holds for any possible values j1, . . . , js of T1, . . . , Ts,

respectively.
(iv) Show that is−10 ≤ X(js) ≤ is−1 on A, where A is defined in (10.12).
(v) Derive (10.14) using (10.13) and independence of X and Y . [Note that

the first inequality in (10.14) is obvious.]
10.7. Show that any two classes of states (see Section 10.2.1) are either

disjoint or identical.
10.8. Show that i ↔ j implies d(i) = d(j).
10.9. Show that if i is recurrent and i ↔ j, then j is recurrent.
10.10. In Example 10.2, if a−1 = a1 = 0 but a−2 and a2 are nonzero, what

states communicate? What if a1 = 0 but a−1 �= 0?
10.11. Show that in Example 10.2, the Markov chain is aperiodic if and

only if a0 �= 0. Also show that in the special case of simple random walk with
0 < p < 1, we have d(i) = 2 for all i ∈ S.

10.12. Derive the approximation (10.16) using Stirling’s approximation
(see Example 3.4).

10.13. Show that if state j is transient, then (10.18) holds for all i. [Hint:
By the note following (10.18), the left side of (10.18) is equal to the expected
number of visits to j when the chain starts in i. If j is not accessible from
i, then the expected number of visits to j is zero when the chain starts in i;
otherwise, the chains makes k visits to j (k ≥ 1) if and only if it makes its
first visit to j and then returns k − 1 times to j.]

10.14. Show that positive recurrency implies recurrency. Also show that
positive (null) recurrency is a class property.

10.15. Consider a Markov chain with states 0, 1, 2, . . . such that p(i, i+1) =
pi and p(i, i − 1) = 1 − pi, where p0 = 1. Find the necessary and sufficient
condition on the pi’s for the chain to be positive recurrent and determine its
limiting probabilities in the latter case.

10.16. This exercise is related to the birth and death chain of Example
10.4.

(i) Show that the chain is irreducible if pi > 0, i ≥ 0, and qi > 0, i ≥ 1.
(ii) Show that the chain is aperiodic if ri > 0 for some i.
(iii) Show that the chain has period 2 if ri = 0 for all i.
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(iv) Show that the simple random walk (see Example 10.2) with 0 < p < 1
is a special case of the birth and death chain that is irreducible but periodic
with period 2.

(v) Verify (10.20).
10.17. Consider a birth and death chain with two reflecting barriers (i.e.,

the state space is {0, 1, . . . , l}); the transition probabilities are given as in
Example 10.4 for 1 ≤ i ≤ l − 1; q0 = r0 = 0, p0 = 1; rl = pl = 0, ql = 1; and
p(i, j) = 0 otherwise.

(i) Show that the chain is irreducible if pi > 0 and qi > 0 for all 1 ≤ i ≤
l − 1.

(ii) Show that the chain is aperiodic if ri > 0 for some 1 ≤ i ≤ l − 1.
(iii) Determine the stationary distribution for the chain.
10.18. For the third definition of a Poisson process, derive the pdf of Sn,

the waiting time until the nth event. To what family of distribution does the
pdf belong?

10.19. Show that the right side of (10.23) converges to e−λt(λt)x/x! for
x = 0, 1, . . ..

10.20. Prove Theorem 10.5. [Hint: First derive an expression for P{ti ≤
Si ≤ ti + hi, 1 ≤ i ≤ n|N(t) = n}; then let hi → 0, 1 ≤ i ≤ n.]

10.21. Derive (10.25) and (10.26). Also obtain the corresponding results
for a Poisson process using Theorem 10.5.

10.22. Two balanced dice are rolled 36 times. Each time the probabil-
ity of “double six” (i.e., six on each die) is 1/36. Consider this as a situa-
tion of the Poisson approximation to binomial. The binomial distribution is
Binomial(36, 1/36); so the mean of the approximating Poisson distribution is
36 ∗ (1/36) = 1. Compare the two probability distributions for k = 0, 1, 2, 3,
where k is the total number of double sixes out of the 36 times.

10.23. Compare the distribution of a Poisson process N(t) with rate λ = 1
with the approximating normal distribution. According to Theorem 10.4, we

have {N(t) − t}/√t d−→ N(0, 1) as t → ∞. Compare (the histogram of)
the distribution of {N(t) − t}/√t with the standard normal distribution for
t = 1, 10, 50. What do you conclude?

10.24. Give a proof of Theorem 10.7. [Hint: Note that SN(t) ≤ t < SN(t)+1;
then use the result of Theorem 10.6.]

10.25. Let U be a random variable that has the Uniform(0, 1) distribution.
Define ξn = n1(U≤n−1), n ≥ 1.

(i) Show that ξn
a.s.−→ 0 as n → ∞.

(ii) Show that E(ξn) = 1 for every n, and therefore does not converge to
E(0) = 0 as n → ∞.

10.26. Show that the renewal function has the following expression:

m(t) =

∞∑
n=1

Fn(t),

where Fn(·) is the cdf of Sn.
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10.27. Let N(t) be a renewal process. Show that N(t) + 1 is a stopping
time with respect to the σ-fields Fn = σ(X1, . . . , Xn), n ≥ 1 [see Section 8.2,
above (8.5), for the definition of a stopping time].

10.28. This exercise is related to the proof of Theorem 10.10.
(i) Verify (10.29).
(ii) Show that ut → −x as t→ ∞.
(iii) Derive (10.31).
10.29. Derive (10.33) by Fubini’s theorem (see Appendix A.2).
10.30. This exercise shows how to justify assumption (ii) given assumption

(i) of Brownian motion (see Section 10.5). Suppose that assumption (i) holds
such that E{B(t) −B(s)} = 0, E{B(t) −B(s)}2 < ∞, and

nP{|B(t+ 1/n)−B(t)| > ε} −→ 0

as n → ∞. Use an appropriate CLT in Section 6.4 to argue that B(t) −B(s)
has a normal distribution with mean 0 and variance σ2(t− s).

10.31. In this exercise you are encouraged to give a proof of the reflection
principle of Brownian motion (Theorem 10.13).

(i) Show that if X , Y , and Z are random vectors such that (a) X and Y
are independent, (b) X and Z are independent, and (c) Y and Z have the
same distribution, then (X,Y ) and (X,Z) have the same distribution.

(ii) Let X = {B(t)}0≤t≤τ , Y = {B(t + τ) − B(τ)}t≥0, and Z = {B(τ) −
B(t+τ)}t≥0. Use the strong Markov property of Brownian motion (see Section
10.5) and the result of (i) to show that (X,Y ) and (X,Z) have the same
distribution. The reflection principle then follows.

10.32. Let B(t), t ≥ 0, be a standard Brownian motion. Show that each of
the following is a standard Brownian motion:

(1) (Scaling relation) a−1B(a2t), t ≥ 0, where a �= 0 is fixed.
(2) (Time inversion) W (t) = 0, t = 0 and tB(1/t), t > 0.
10.33. Let B(t), t ≥ 0, be a Brownian motion. Show that B2(t) − t, t ≥ 0,

is a continuous martingale in that for any s < t,

E{B2(t) − t|B(u), u ≤ s} = B2(s) − s.

10.34. Prove the SLLN for Brownian motion (Theorem 10.14). [Hint: First,
show the sequence B(n)/n, n = 1, 2, . . ., converges to zero almost surely as
n → ∞; then show that B(t) does not oscillate too much between n and
n+ 1.]

10.35. Show that the Brownian bridge U(t), 0 ≤ t ≤ 1 (defined be-
low Theorem 10.15), is a Gaussian process with mean 0 and covariances
cov{U(s), U(t)} = s(1 − t), s ≤ t.

10.36. This exercise is associated with Example 10.11.
(i) Verify (10.36) and (10.37).
(ii) Show, by using Lindeberg–Feller’s theorem (Theorem 6.11; use the ex-

tended version following that theorem), that the right side of (10.36) converges
in distribution to N(0, 1/3).
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10.37. Let B(t), t ≥ 0, be Brownian motion and a < 0 < b. Define τ =
inf{t : B(t) = a or b}.

(i) Show that τ = inf{t : B(t) /∈ (a, b)}.
(ii) Show that τ is a stopping time for the Brownian filtration.
(iii) Show that τ <∞ a.s. [Hint: Use (10.34).]
10.38. Verify that τa defined by (10.42) is a stopping time (whose definition

is given above Lemma 10.2).
10.39. This exercise is related to the heat equation (Example 10.15).
(i) Verify that the pdf of N(x, t),

f(y, t, x) =
1√
2πt

exp

{
− (y − x)2

2t

}
, −∞ < y <∞,

satisfies the heat equation (10.48).
(ii) Verify that the function u(t, x) defined by (10.49) satisfies the heat

equation.
(iii) Show, by taking expectations under the integral signs, that (10.50)

implies (10.51); then obtain the heat equation by taking the partial derivatives
with respect to t on both sides of (10.51).

10.40. Show that the process W (a), a ≥ 0, defined below (10.54) is a
Brownian motion (Hint: Use Lemmas 10.1 and 10.2).

10.41. Verify that for the diffusion process in Example 10.16, the density
function (10.57) reduces to e−2|x−μ|.
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Nonparametric Statistics

11.1 Introduction

This is the first of a series of five chapters on applications of large-sample tech-
niques in specific areas of statistics. Nonparametric statistics are becoming
increasingly popular in research and applications. Some of the earlier topics
include statistics based on ranks and orders, as discussed in Lehmann’s clas-
sical text Nonparametrics (Lehmann 1975). The area is expanding quickly to
include some modern topics such nonparametric curve estimation and func-
tional data analysis. A classical parametric model assumes that the obser-
vations X1, . . . , Xn are realizations of i.i.d. samples from a population dis-
tribution Fθ, where θ is a vector of unknown parameters. For example, the
normal distribution N(μ, σ2) has θ = (μ, σ2)′ and the binomial distribution
Binomial(n, p) has θ = p. In contrast, a nonparametric model would not spec-
ify the form of the distribution, up to a number of unknown parameters such
as the above. Thus, the population distribution will be denoted by F instead
of Fθ.

It can be said that a nonparametric model is not making much of a model
assumption, if at all. For this reason, many nonparametric methods are based
on “common sense” instead of model assumptions (of course, it may be argued
that common sense is an assumption). For example, consider the following.

Example 11.1 (Permutation test). Suppose that m + n subjects are ran-
domly assigned to control and treatment groups so that there are m subjects
in the control group and n subjects in the treatment group. The treatment
group receives a treatment (e.g., a drag); the control group receives a placebo
(a placebo is a dummy or pretend treatment that is often used in controlled
experiments). Because the subjects are randomly assigned to the groups, it
may be assumed that the only population difference between the two groups
is the treatment. Let X1, . . . , Xm and Y1, . . . , Yn represent the observations
from the control and treatment groups, respectively. A parametric model for
assessing the treatment effect may be that the observations are independent

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_11, © Springer Science+Business Media, LLC 2010
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such that Xi ∼ N(μ1, σ
2), 1 ≤ i ≤ m, and Yj ∼ N(μ2, σ

2), 1 ≤ j ≤ n. Under
this model, evidence of the treatment effect may be obtained by testing

H0 : μ1 = μ2. (11.1)

A standard test statistic for the hypothesis (11.1) is the two-sample t-statistic
with pooled sample variance,

t =
Ȳ − X̄

sp
√
m−1 + n−1

, (11.2)

where X̄ and Ȳ are the sample means defined by X̄ = m−1
∑m

i=1 Xi and
Ȳ = n−1

∑n
j=1 Yj , respectively, s2p is the pooled sample variance defined by

sp =
m− 1

m+ n− 2
s2X +

n− 1

m+ n− 2
s2Y ,

and s2X and s2Y are the sample variances defined by s2X = (m−1)−2
∑m

i=1(Xi−
X̄)2 and s2Y = (n− 1)−1

∑n
j=1(Yj − Ȳ )2, respectively. The idea is that under

(11.1), the t-statistic (11.2) has a t-distribution with m + n − 2 degrees of
freedom; therefore, the p-value for testing (11.1) agaist the alternative

H1 : μ1 < μ2 (11.3)

is the probability P(tm+n−2 ≥ t), where tν represents a random variable with
the t-distribution with ν degrees of freedom, and t is the observed t of (11.2).
Clearly, this procedure makes (heavy) use of the parametric model assumption
(i.e., normality with equal population variance).

Now, consider a different strategy based on common sense: If the treatment
really makes no difference, then the same thing is expected to happen with
any assignment of n out the m + n subjects to the treatment group (and
the rest to the control group). Therefore, the observed difference Ȳ − X̄ is
equally likely to be equaled or exceeded for any such assigment. Suppose that
there are a total of k different assignments of n subjects to the treatment
that result in the difference in sample means (i.e., Ȳ − X̄ recomputed for
each reassignment of the observations to the control and treatment groups)
greater than or equal to the observed Ȳ − X̄. Then the p-value for testing
the null hypothesis that there is no treatment effect against the alternative
that there is a positive treatment effect is k/

(
m+n

n

)
. If m+ n is is small, the

exact p-value can be obtained; otherwise, the following Monte Carlo method
is often used in practice. Combine the observations as Zi, i = 1, . . . ,m + n,
where Zi = Xi, 1 ≤ i ≤ m, and Zi = Yi−m,m+ 1 ≤ i ≤ m+ n. Draw a large
number, say N , of random permutations of the labels 1, . . . ,m+ n. For each
permutation, assign the firstm labels as control and last n labels as treatment,
and compute the difference between the sample means of the treatment and
control groups. More specifically, let the permutation be π(1), . . . , π(m+ n),
which is a rearrangement of 1, . . . ,m+ n. Then we compute
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Δπ =
1

n

m+n∑
i=m+1

Zπ(i) −
1

m

m∑
i=1

Zπ(i).

Suppose that out of the N permutations, l have the value of Δπ greater
than or equal to Δ = Ȳ − X̄. Then the p-value of the permutation test is
approximately equal to l/N .

The idea behind the Monte Carlo method is the law of large numbers.
Consider the space Π of all different permutations of 1, . . . ,m + n. On the
one hand, we have

p−value =
k(

m+n
n

)
=

k ×m!n!(
m+n

n

)×m!n!

=
# of permutations with Δπ ≥ Δ

total # of permutations

= P(Δπ ≥ Δ),

where the probability is with respect to the random permutation π ∈ Π . On
the other hand, let π(1), . . . , π(N) denote the random sample of permutations
drawn; we have, by the SLLN (see Section 6.3),

l

N
=

1

N

N∑
i=1

1(Δ
π(i)≥Δ)

a.s.−→ P(Δπ ≥ Δ)

as N → ∞. Thus, the Monte Carlo method gives an approximate p-value.
The Monte Carlo method, or the law of large numbers, is one way to

obtain the approximate p-value. Another method that is often used is the
CLT—or more generally, the invariance principle—to obtain the asymptotic
distribution of the test statistics. This will be discussed in the sequel.

An apparent advantage of nonparametric methods is robustness. Intu-
itively, the more specific assumptions are made regarding a (parametric)
model, the more likely some of these assumptions are not going to hold in
practice. Therefore, by making less assumptions, one potentially makes the
method more robust against violations of (the parametric) model assump-
tions. However, there is a price that one is expected to pay. This happens
when the parametric assumptions actually hold. For example, in Example
11.1, what if the normality assumption is indeed valid? (Statisticians refer to
such a situation as that “sometimes, life is good.”) If the parametric assump-
tion is valid, but nevertheless not used, one has not fully utilized the available
information (which may come from both the data and the knowledge about
the distribution of the data). This may result in a loss of efficiency, which
is the price we pay. In Section 11.3 we study this problem in the case of
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Wilcoxon and other nonparametric testing procedures compared to the t-test
based on the normality assumption. Although it was believed at first that a
heavy price in loss of efficiency would have to be paid for the robustness, it
turns out, rather surprisingly, that the efficiencies of Wilcoxon tests, as well as
some other nonparametric tests, hold up quite well, even under the normality
assumption. On the other hand, these nonparametric tests have considerable
advantages in situations when the normality assumption fails.

11.2 Some classical nonparametric tests

Let us begin with (still) another proposal for the testing problem of Example
1.1. This time we rank the combined observations X1, . . . , Xm, Y1, . . . , Yn in
increasing order (so the smallet observation receives the rank of 1, the second
smallest the rank of 2, and so on). For simplicity, assume that there are no
ties (if the underlying distributions are continuous, the probability of having
ties is zero). If S1 < · · · < Sn denote the ranks of the Y ’s (among all the m+n
observations), define

Ws = S1 + · · · + Sn, (11.4)

called the rank-sum. The idea is that if the null hypothesis of no treatment
effect holds, the distribution of the rank-sum is something we can expect (i.e.,
determine); otherwise, if the rank-sum is much larger than what we expect, the
null hypothesis should be rejected. This procedure is called the two-sample
Wilcoxon test. The question then is: What do we expect? If m and n are
relatively small, the exact distribution of the rank-sum can be determined.
An alternative method, which is attractive when m and n are large, is based
on the following CLT. To make a formal statement, let X1, . . . , Xm be i.i.d.
with distribution F , Y1, . . . , Yn be i.i.d. with distribution G, and the X ’s and
Y ’s be independent. Suppose that both F and G are continuous but otherwise
unknown. We are concerned with the hypothesis

H0 : F = G (11.5)

against a suitable alternative H1. It can be shown (Exercise 11.1) that under
the null hypothesis, we have

E(Ws) =
1

2
n(m+ n+ 1), (11.6)

var(Ws) =
1

12
nm(m+ n+ 1). (11.7)

Furthermore, as m,n→ ∞,

Ws − n(m+ n+ 1)/2√
mn(m+ n+ 1)/12

d−→ N(0, 1). (11.8)
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Therefore, in a large sample, we have the following approximation:

P(Ws ≤ x) ≈ Φ

{
x− n(m+ n+ 1)/2√
mn(m+ n+ 1)/12

}
, (11.9)

where Φ(·) is the cdf of N(0, 1). It is found that for a moderate sample size,
the following finite-sample correction improves the approximation. The idea
is based on the fact that Ws is an integer. It follows that for any integer x,
Ws ≤ x if and only if Ws ≤ x+ δ for any δ ∈ (0, 1). Therefore, to be fair, δ is
chosen as 1/2. This leads to

P(Ws ≤ x) ≈ Φ

{
x+ 1/2 − n(m+ n+ 1)/2√

mn(m+ n+ 1)/12

}
. (11.10)

Table 11.1, taken from part of Table 1.1 of Lehmann (1975), shows the accu-
racy of the normal approximation for m = 3 and n = 6.

Table 11.1. Normal approximation to P(Ws ≤ x)

x 6 7 8 9 10

Exact .012 .024 .048 .083 .131
(11.9) .010 .019 .035 .061 .098
(11.10) .014 .026 .047 .078 .123

In connection with the two-sample Wilcoxon test, there is a Wilcoxon one-
sample test. Suppose that X1, . . . , Xn are i.i.d. observations from a continuous
distribution that is symmetric about ζ. We are interested in testing H0: ζ = 0
against H1: ζ > 0. The standard parametric test is the t-test, assuming that
F is normal. The test statistic is given by

t =
X̄

s/
√
n
, (11.11)

where s2 = (n − 1)−1
∑n

i=1(Xi − X̄)2 is the sample variance. Alterna-
tively, we may consider the ranks of the absolute values of the observations,
|X1|, . . . , |Xn|. Let R1 < · · · < Ra and S1 < · · · < Sb denote the ranks of
the absolute values of the negative and positive observations, respectively.
For example, if X1 = −5, X2 = 1, and X3 = 4, we have a = 1, b = 2,
R1 = 3, S1 = 1, and S2 = 2. The one-sample Wilcoxon test, also known as
the Wilcoxon signed-rank test, rejects H0 if

Vs = S1 + · · · + Sb > c, (11.12)

where c is a critical value depending on the level of significance. Similar to
(11.6)–(11.8), it can be shown that
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E(Vs) =
1

4
n(n+ 1), (11.13)

var(Vs) =
1

24
n(n+ 1)(2n+ 1), (11.14)

Vs − n(n+ 1)/4√
n(n+ 1)(2n+ 1)/24

d−→ N(0, 1) as n → ∞ (11.15)

(Exercise 11.2). Still another alternative is the sign test. Let N+ denote the to-
tal number of positive observations. Then the null hypothesis is rejected if N+

exceeds some critical value. Note that under H0, N+ has a Binomial(n, 1/2)
distribution (why?), so the critical value can be determined exactly. Alterna-
tively, a large-sample critical value may be obtained via the CLT—namely,

2√
n

(
N+ − n

2

)
d−→ N(0, 1) as n → ∞ (11.16)

(Exercise 11.3). The following example addresses an issue regarding some
(undesirable) practices of using these tests.

Example 11.2. It is unfortunately not uncommon for researchers to apply
two or more tests to their data, each at level α, but to report only the outcome
of the most significant one, thus claiming more significance for their results
than is justified. A statistician following this practice could be accused of a
lack of honesty but could rejoin the community of trustworth statisticians by
stating the true significance level of this procedure. Consider, for example, the
following small dataset extracted from Table I of Forrester and Ury (1969):
−16,−87,−5, 0, 8,−90, 0, 0,−31,−12. The numbers are differences in tensile
strength between tape-closed and sutured wounds (tape minus suture) on 10
experimental rats measured after 10 days of healing. If one applies the t-test
to the data, it gives a t-statistic of −2.04, which corresponds to a (two-sided)
p-value of .072. If one uses the Wilcoxon signed-rank test, it leads to a sum
of ranks for the negative differences, 44, plus half of the sum of ranks for the
zero differences, 3 [this is an extended version of (11.12) to deal with the cases
with ties]. This gives a total of 47 and a p-value of .048. Finally, if the sign-test
is used, one has 6 negative signs out of a total of 7 after eliminating the ties
(again, this is an extended procedure of the sign-test when there are ties) and
thus a p-value of .125. Suppose that all three tests have been performed. An
investigator eager to get the result published might simply report the result of
the signed-rank test, which is (barely) significant at 5% level, while ignoring
those of the other tests. However, this may be misleading.

Jiang (1997b) derived sharp upper and lower bounds for the asymptotic
significance level of a testing procedure that rejects when the largest of several
standardized test statistics exceeds zα, the α-critical value of N(0, 1). To state
Jiang’s results, first note that when considering asymptotic significance levels,
one may replace s in the denominator of (11.1) by σ, the population standard
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deviation (why?). Thus, we consider, without loss of generality,

S∗j =
Sj − E(Sj)√

var(Sj)
, j = 1, 2, 3, (11.17)

which are (11.11) with s replaced by σ, the left side of (11.15), and the left side
of (11.16), respectively, where the expectations and variances are computed
under the null hypothesis. The Sj ’s are special cases of the U -statistics—to
be discussed in Section 11.5—and therefore have a joint asymptotic normal
distribution; that is,⎛⎝S1

S2

S3

⎞⎠ d−→ N

⎧⎨⎩
⎛⎝0

0
0

⎞⎠ ,

⎛⎝ 1 ρw ρs

ρw 1
√

3/2

ρs

√
3/2 1

⎞⎠⎫⎬⎭ (11.18)

as n → ∞ (Exercise 11.4). It follows that the asymptotic significance level
of rejecting H0 when max(S1, S2, S3) > zα is pα = P{max(ξ1, ξ2, ξ3) > zα},
where (ξ1, ξ2, ξ3)

′ has the distribution on the right side of (11.18). According
to Slepian’s inequality (see the end of Section 5.5), for fixed α, the probability
pα is a decreasing function of ρw and ρs, respectively. Thus, pα is bounded by
the probability when both ρw and ρs are zero, which is

P{max(ξ1, ξ2, ξ3) > zα, ξ1 > zα} + P{max(ξ1, ξ2, ξ3) > zα, ξ1 ≤ zα}
= P(ξ1 > zα) + P(ξ1 ≤ zα)P{max(ξ2, ξ3) > zα}
= α+ (1 − α)p∗α

with p∗α = P{max(ξ2, ξ3) > zα}, where ξ2 and ξ3 are jointly bivariate normal
with means 0, variances 1, and correlation coefficient

√
3/2. On the other

hand, obviously, we have pα ≥ p∗α. Therefore, we have

p∗α ≤ pα ≤ p∗α + (1 − p∗α)α. (11.19)

It can be shown that both sides of the inequalities (11.19) are sharp in the
sense that there are distributions F that are continuous and symmetric about
zero for which the left- or right-side equalities are either attained or ap-
proached with arbitrary closeness (Exercise 11.5).

Note that the probabilities pα and p∗α depend on the underlying distri-
bution F (hence, the bounds are for all the distributions F that are contin-
uous and asymmetric about 0), but the dependence is only through ρw and
ρs. Jiang (2001) computed the analytic or numerical values of these corre-
lation coefficients for a number of distributions that are symmetric about
0, as shown in Table 11.2, where DE represents the Double Exponential
distribution, NM(ε, τ) denotes a normal mixture distribution with the cdf
F (x) = (1 − ε)Φ(x) + εΦ(x/τ), and Φ is the cdf of N(0, 1). Given the values
of ρw and ρs, the corresponding actual asymptotic significance levels pα can
be calculated approximately. Again, see Table 11.2, which combines Table II
and Table IV of Jiang (2001).
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Table 11.2. Exact or approximate values of ρw and ρs and corresponding

approximate asymptotic significance levels

F ρw ρs α = 0.05 α = 0.025 α = 0.01

Normal
√

3/π
√

2/π 0.079 0.041 0.017

DE (3
√

3)/(4
√

2) 1/
√

2 0.086 0.045 0.019

Rectangular 1
√

3/2 0.071 0.037 0.015
t3 0.825 0.637 0.093 0.049 0.021
t10 0.961 0.774 0.081 0.043 0.018
NM(0.5, 2) 0.953 0.757 0.082 0.043 0.018
NM(0.1, 4) 0.850 0.656 0.091 0.048 0.021
NM(0.1, 10) 0.648 0.459 0.102 0.054 0.023

11.3 Asymptotic relative efficiency

This section is concerned with asymptotic comparisons of tests that include,
in particular, the comparison between a nonparametric and a parametric test.
We begin with a heuristic derivation of the asymptotic power of a test. Suppose
that we are interested in testing the hypothesis

H0 : θ = θ0, (11.20)

where θ is a (vector-valued) parameter associated with F , the underlying
distribution of X1, . . . , Xn. Consider a statistic, Tn, that has the asymptotic
property

√
n{Tn − μ(θ)}

τ(θ)
d−→ N(0, 1) (11.21)

as n → ∞ if θ is the true parameter, where μ(·) and τ(·) are some functions
and the latter is assumed to be positive and may depend on some additional
parameters. For example, in the problem of testing for the center of symmetry
discussed in the previous section, let the cdf under θ be F (x − θ), where F
is continuous and symmetric about 0, and Eθ and Pθ denote the expectation
and probability under θ. The t-test is associated with Tn = X̄ and we have

Eθ(Tn) = θ. Furthermore, we have
√
n(X̄ − θ)

d−→ N(0, σ2), where σ2 =
var(Xi). Thus, (11.21) holds with μ(θ) = θ and τ(θ) = σ. The latter depends
on an additional unknown parameter σ but not on θ. For the sign test, let
Tn = n−1N+. Then we have Eθ(Tn) = Pθ(X1 > 0) = P(X1 − θ > −θ) =
1 − F (−θ) = F (θ). Similar to (11.16), we have, by the CLT,

√
n{Tn − F (θ)} d−→ N [0, F (θ){1 − F (θ)}] (11.22)

if θ is the true parameter (Exercise 11.6). Thus, (11.21) holds with μ(θ) = F (θ)
and τ(θ) =

√
F (θ){1 − F (θ)}. Finally, for the Wilcoxon signed-rank test, we

consider Tn = Vs/
(
N
2

)
. It is shown in Section 11.5 that (11.21) holds with
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μ(θ) = E{F (Z1 + 2θ)}, (11.23)

τ2(θ) = 4
(
E{F 2(Z1 + 2θ)} − [E{F (Z1 + 2θ)}]2

)
, (11.24)

where the expectations are taken with respect to Z1 ∼ F . In particular, when
θ = 0, (11.23) and (11.24) reduce to 1/2 and 1/3, respectively. In this case, it
is easy to show that (11.21) is equivalent to (11.15) (Exercise 11.7).

Now, consider a class of large-sample tests that reject H0 when
√
n{Tn − μ(θ0)}

τ(θ0)
≥ zα, (11.25)

where zα is the α-critical value of N(0, 1). Note that, in (11.25), Tn, μ, and τ
depend on the test. If we restrict the class to those satisfying (11.21), then all
of the tests have asymptotic significance level α and therefore are considered
equally good as far as the level of significance is concerned. The comparison of
these tests is then focused on the power of the tests, defined as the probability
of rejecting the null hypothesis when it is false. Suppose that we wish this
probability to be β when θ �= θ0 is the true parameter. Then we have

β = P

[√
n{Tn − μ(θ0)}

τ(θ0)
≥ zα

]
= P

(√
n{Tn − μ(θ)}

τ(θ)
≥ τ(θ0)

τ(θ)

[
zα +

√
n{μ(θ0) − μ(θ)}

τ(θ0)

])
.

Thus, in view of (11.21), we would expect

τ(θ0)

τ(θ)

[
zα +

√
n{μ(θ0) − μ(θ)}

τ(θ0)

]
≈ zβ . (11.26)

The point is, for any θ �= θ0 such that μ(θ) > μ(θ0), as long as n is large
enough, one is expected to have the power of at least β of rejecting the null
hypothesis. This can be seen from (11.26): As n → ∞, the left side of (11.26)
goes to −∞ and therefore is ≤ zβ for large n, implying that the probability of
rejection is ≥β. On the other hand, a test is more efficient than another test
if it can achieve the same power with a smaller sample size. From (11.26), we
can solve for the required sample size, n, for achieving power of β; that is,

n ≈
{

τ(θ)

μ(θ) − μ(θ0)

}2{
zβ − τ(θ0)

τ(θ)
zα

}2

. (11.27)

Suppose that test 1 and test 2 are being compared with corresponding sample
sizes n1 and n2; we thus have

nj ≈
{

τj(θ)

μj(θ) − μj(θ0)

}2{
zβ − τj(θ0)

τj(θ)
zα

}2

, j = 1, 2.

By taking the ratio, we have
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n1

n2
≈
{
μ2(θ) − μ2(θ0)

μ1(θ) − μ1(θ0)

}2{
τ1(θ)

τ2(θ)

}2

×
{
zβ − τ1(θ0)

τ1(θ)
zα

}2{
zβ − τ2(θ0)

τ2(θ)
zα

}−2

. (11.28)

The expression depends on θ, the alternative. To come up with something
independent of the alternative, we let θ → θ0. This means that we are focusing
on the ability of a test in detecting a small difference from θ0. It follows, by
L’Hôspital’s rule, that the right side of (11.28) converges to

e2,1 =

(
c2
c1

)2

, (11.29)

where cj = μ′j(θ0)/τj(θ0), j = 1, 2. The quantity |c| = |μ′(θ0)/τ(θ0)| is called
the efficacy of the test Tn and e2,1 is the asymptotic relative efficiency (ARE)
of test 2 with respect to test 1 for the reason given above.

Now, consider, once again, the problem of testing the center of symmetry
discussed in the previous section. Suppose that F has a pdf, f . Then for the
t-test we have c = 1/σ; for the sign test, we have c = 2f(0); and for the
Wilcoxon test, we have c = 2

√
3
∫
f2(z) dz (Exercise 11.8). It follows that the

AREs for the comparison of each pair of these tests are given by

eS,t = 4σ2f2(0), (11.30)

eW,t = 12σ2

{∫
f 2(z) dz

}2

, (11.31)

eS,W =
f2(0)

3{∫ f2(z) dz}2
. (11.32)

The values of the AREs depend on the underlying distribution F . For ex-
ample, when F is the N(0, σ2) distribution, we have eS,t = 2/π ≈ 0.637
and eW,t = 3/π ≈ 0.955. It is remarkable that even in this case, where the
t-test is supposed to be the standard and preferred strategy, the Wilcoxon
test is a serious competitor. On the other hand, when F is (very) different
from the normal distribution, the nonparametric tests may have substantial
advantages. We consider some examples.

Example 11.3. Suppose that F has the pdf

f(x) =
1

2
φ(x) +

1

4
{φ(x− μ) + φ(x+ μ)}, −∞ < x < ∞,

where φ(·) is the pdf of N(0, 1). This is a mixture of N(0, 1) N(μ, 1) and
N(−μ, 1) with probabilities 1/2, 1/4, and 1/4, respectively, where μ > 0. It
can be shown that, in this case, we have

eS,t =
1

2π

(
1 +

μ2

2

)(
1 + e−μ2/2

)2

, (11.33)
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which goes to ∞ as μ→ ∞ (Exercise 11.10).

Example 11.4. Let F be the NM(ε, τ) distribution considered near the end
of the previous section. It can be shown that, in this case,

eW,t =
3

π
(1 − ε+ ετ2)

×
{

(1 − ε)2 + 2
√

2
ε(1 − ε)τ√

1 + τ2
+
ε2

τ

}2

(11.34)

(Exercise 11.11). Thus, eW,t → ∞ as τ → ∞ for any fixed ε > 0.

A more rigorous treatment of ARE can be given by considering a sequence
of alternatives θn that can be expressed as

θn = θ0 +
Δ√
n

+ o

(
1√
n

)
, (11.35)

where Δ is a constant. Suppose that we have

√
n{Tn − μ(θn)}

τ(θ0)

d−→ N(0, 1), (11.36)

where the underlying distribution for Tn has the parameter θn. More precisely,
what (11.36) means is the following. Consider a sequence of tests Tn, n ≥ 1,
where Tn is based on independent samples Xn,1, . . . , Xn,n from the distribu-
tion that has θn as the true parameter. Then (11.36) holds as n → ∞. Note
that there is no need to change the denominator to τ(θn) if we assume that
τ(·) is continuous (why?). By the Taylor expansion, we have

P

[√
n{Tn − μ(θ0)}

τ(θ0)
≥ zα

]
= P

[√
n{Tn − μ(θn)}

τ(θ0)
≥ zα − cΔ+ o(1)

]
where c = μ′(θ0)/τ(θ0) (verify this). Thus, in view of (11.36), we have

lim
n→∞

P

[√
n{Tn − μ(θ0)}

τ(θ0)
≥ zα

]
= 1 − Φ(zα − cΔ).

It follows that the asymptotic power is an increasing linear function of Δ if
μ′(θ0) > 0. The slope of the linear function depends on the test through c,
but the intercept does not depend on the test. This naturally leads to the
comparison of c and hence the ARE. A remaining question is how to verify
(11.36). In some cases, this can be shown by applying the CLT for triangular
arrays of independent random variables (see Section 6.4). For example, in the
case of testing for the center of symmetry, let Xni, 1 ≤ i ≤ n, be independent
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observations with the cdf F (x− θn). Then for the t-test, we have Tn = X̄n =
n−1

∑n
i=1 Xni and

√
n(Tn − θn)

σ
=

n∑
i=1

Yni,

where Yni = (Xni − θn)/σ
√
n. It is easy to verify that the Yni, 1 ≤ i ≤ n,

n ≥ 1, satisfy the conditions given below (6.35)—namely, that for each n,
Yni, 1 ≤ i ≤ n, are independent, with E(Yni) = 0, σ2

ni = E(Y 2
ni) = 1/n, and

s2n =
∑n

i=1 σ
2
ni = 1, and that the Lindeberg condition (6.36) holds for every

ε > 0. It follows that (11.36) holds (Exercise 11.12). In fact, in this case,
expression (11.35) is not needed and the result holds for any sequence θn. For
the sign test, we have Tn = n−1

∑n
i=1 1(Xni>0) and

2
√
n{Tn − F (θn)} =

n∑
i=1

Yni,

where Yni = (2/
√
n){1(Xni>0) − F (θn)}. Once again, the conditions below

(6.35) can be verified (Exercise 11.13); hence, s−1
n

∑n
i=1 Yni

d−→ N(0, 1). This
time, we do need (11.35) (or a weaker condition that θn → θ0 as n → ∞) in
order to derive (11.36) because then sn = 2

√
F (θn){1 − F (θn)} → 1. For the

Wilcoxon signed-rank test, the verification of (11.36) is postponed to Section
11.5. We conclude this section with another example.

Example 11.5 (Two-sample Wilcoxon vs. t). Consider the two-sample tests
discussed at the beginning of Section 11.2. More specifically, we assume that
G(y) = F (y − θ), where F has a pdf, f . The null hypothesis (11.5) is then
equivalent to (11.20) with θ0 = 0. Consider the two-sample t-test based on

t =

{(
1

m
+

1

n

)
S2

p

}−1/2

(Ȳ − X̄),

where S2
p = (m+n− 2)−1{∑m

i=1(Xi − X̄)2 +
∑n

j=1(Yj − Ȳ )2}. For simplicity,
we assume that both m,n → ∞ such that m/N → ρ and n/N → 1 − ρ,
where N = m+ n is the total sample size and ρ ∈ (0, 1). This restriction can
be eliminated by using an argument of subsequences (see §1.5.1.6; also see

Exercise 11.14). It is easy to show that S2
p

P−→ σ2, where σ2 is the variance
of F (Exercise 11.14). Thus, without loss of generality, we consider a large-
sample version of t by replacing S2

p by σ2. Let TN = Ȳ − X̄ and consider

θN = Δ/
√
N + o(1/

√
N). Then we have

√
N(TN − θN )

=
√
N

⎧⎨⎩ 1

n

n∑
j=1

(Yj − θN − μ) − 1

m

m∑
i=1

(Xi − μ)

⎫⎬⎭
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=

(
N

n

)1/2
1√
n

n∑
j=1

(Yj − θN − μ) −
(
N

m

)1/2
1√
m

m∑
i=1

(Xi − μ)

= ξN − ηN ,

where μ =
∫
xf(x) dx, the mean of F . Now, ξN and ηN are two sequences of

random variables such that ξN
d−→ N(0, σ2/ρ), ηN

d−→ N{0, σ2/(1−ρ)}, and
ξN is independent of ηN . It follows that

√
N(TN − θN )

d−→ N

{
0,

σ2

ρ(1 − ρ)

}
(11.37)

as N → ∞, provided that θN is the true θ for TN (Exercise 11.15). It follows
that (11.36) holds with n replaced by N , μ(θ) = θ, and τ(0) = σ/

√
ρ(1 − ρ).

Following the same arguments, it can be shown that the asymptotic power of
the two-sample t-test is 1 − Φ(zα − ctΔ), where ct =

√
ρ(1 − ρ)/σ.

Next, we consider the two-sample Wilcoxon test. There is an alternative
expression that associate the statistic Ws of (11.4) to a U -statistic, to be
discussed in Section 11.5; that is,

Ws = WXY +
1

2
n(n+ 1), (11.38)

where WXY = the number of pairs (i, j) for which Xi < Yj . In other words,
WXY =

∑
i,j 1(Xi<Yj) (Exercise 11.16). By applying the asymptotic theory of

U -statistics, it can be shown that (11.36) holds with TN = WXY /mn, μ(θ) =
Pθ(X < Y ) =

∫ {1−F (x−θ)}f(x) dx, and τ(0) = lim{N(N+1)/12mn}1/2 =

1/
√

12ρ(1 − ρ). It follows that the asymptotic power of the two-sample

Wilcoxon test is 1 − Φ(zα − cWΔ), where cW =
√

12ρ(1 − ρ)
∫
f2(z) dz (Ex-

ercise 11.16). It turns out that the ARE for Wilcoxon versus t is, once again,

eW,t = 12σ2

{∫
f2(z) dz

}2

[see (11.31)]. As shown, the ARE is approximately 0.955 when F is the stan-
dard normal distribution, which is supposed to be the ideal case for the t-test;
on the other hand, the ARE may be much in favor of the Wilcoxon test
when the underlying distribution is different from normal. A remaining ques-
tion then is: How do we know if F is normal or not? This problem will be
discussed in the next section.

11.4 Goodness-of-fit tests

There are at least two reasons why the topic of this section should be part of
a chapter called Nonparametric Statistics. First, as discussed in the previous
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section, a parametric procedure such as the t-test is more powerful than a
nonparametric procedure if the parametric distributional assumption, such as
normality, holds. On the other hand, a nonparametric procedure is more ro-
bust in that it performs well under a wide range of distributions. Therefore, if
one is using a parametric procedure, it is important to confirm that the distri-
butional assumption holds; if it does, the more powerful parametric procedure
can be used; otherwise, a nonparametric or robust procedure may be required.
Such a confirmation may be carried out by a goodness-of-fit test. Second, the
tests considered in this section are based on the empirical distribution of the
data, which are closely related to the order statistics, one of the traditional
topics of nonparametric statistics [see, e.g., Chapter 7 of David and Nagaraja
(2003)]. Furthermore, it is seen below that, under suitable conditions, not only
the asymptotic but the exact null distributions of these test statistics do not
depend on the underlying distribution. In other words, the null distributions
are “distribution free.”

The null hypothesis that we wish to test is

H0 : F = F0, (11.39)

where F is the (unknown) underlying distribution and F0 is a distribution that
is either completely specified or specified up to some unknown parameters. We
will assume that both F and F0 are continuous distributions and F0 has pdf f0.
Earlier in Section 2.6 we considered one class of goodness-of-fit tests—namely,
the χ2-test that was initially proposed by Pearson (1900). Here, we consider
a different class of goodness-of-fit tests. Recall from Chapter 7 that one can
estimate the distribution F by its empirical d.f., Fn(x) = n−1

∑n
i=1 1(Xi≤x).

Therefore, it is natural to consider the difference between Fn and F0 and to
use it as a springboard for goodness-of-fit tests. The first of such tests is the
Kolmogorov–Smirnov test that has been discussed earlier (e.g., Section 7.3).
The test is based on the Kolmogorov–Smirnov statistic

Dn = sup
x

|Fn(x) − F0(x)|,

where Fn is based on independent observations X1, . . . , Xn from F . Another
test is the Cramér–von Mises test, based on the statistic

Wn =

∫
{Fn(x) − F0(x)}2f0(x) dx.

A third test is the Anderson–Darling test based on the statistic

An =

∫ {Fn(x) − F0(x)}2

F0(x){1 − F0(x)} f0(x) dx.

First, note that by a similar argument to the one below (7.13), it is seen
that the (exact) null distribution of the Kolmogorov–Smirnov test does not
depend on F0. This distribution-free property makes the testing procedure
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convenient because all one needs is a single table that applies to any F0 (e.g.,
Owen 1962). The Cramér–von Mises and Anderson–Darling tests share the
same distributional-free property as the Kolmogorov–Smirnov test (see be-
low). Furthermore, asymptotic null distributions of these tests can be derived,
which are more convenient to use in large-sample situations. Earlier in Section
7.3, it was shown that the asymptotic null distribution of

√
nDn is given by

the right side of (7.16). A similar technique can be used to derive the asymp-
totic null distributions of the other two tests. Note that both Wn and An are
special cases of a statistical functional of the form

Ψ(Fn) =

∫
ψ{F0(x)}{Fn(x) − F0(x)}2 dF0(x) (11.40)

for some function ψ on [0, 1]. By Theorem 7.1, Ψ(Fn) has the same distribution
as that with Xi = F−1

0 (ξi), 1 ≤ i ≤ n, where ξ1, . . . , ξn are independent
Uniform(0, 1) random variables. Since F−1

0 (ξi) ≤ x if and only if ξi ≤ F0(x)
(see Theorem 7.1), we have, with Xi = F−1

0 (ξi), 1 ≤ i ≤ n, that Fn(x) =
Gn{F0(x)}, where Gn(t) = n−1

∑n
i=1 1(ξi≤t). Thus, by making a change of

variables, t = F0(x), we obtain another expression for Ψ(Fn):

Ψ(Fn) =

∫
ψ{F0(x)}[Gn{F0(x)} − F0(x)]

2 dF0(x)

=

∫ 1

0

ψ(t){Gn(t) − t}2 dt. (11.41)

The latter expression shows, in particular, that both Cramér–von Mises and
Anderson–Darling test statistics are distributional free in that their null dis-
tributions do not depend on F0. Further expressions can be obtained under
the null hypothesis. Let ξ(1) < · · · < ξ(n) be the order statistics of ξ1, . . . , ξn.
It can be shown (Exercise 11.17) that, under H0, we have

Ψ(Fn) =
2

n

n∑
i=1

[
φ1{ξ(i)} − 2i− 1

2n
φ0{ξ(i)}

]
+

∫ 1

0

(1 − t)2ψ(t) dt, (11.42)

where φ0(t) =
∫ t

0
ψ(s) ds and φ1(t) =

∫ t

0
sψ(s) ds. In particular, we have

Wn =
1

n

n∑
i=1

{
ξ(i) − 2i− 1

2n

}2

+
1

12n2
, (11.43)

An = −1 − 1

n2

n∑
i=1

(2i− 1)[log{ξ(i)} + log{1 − ξ(n−i+1)}]. (11.44)

Equations (11.43) and (11.44) suggest a way to evaluate the critical val-
ues of the Cramér–von Mises and Anderson–Darling tests by a Monte Carlo
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method. Simply generate independent random variables ξ1, . . . , ξn from the
Uniform(0, 1) distribution and compute (11.43) and (11.44) for each Monte
Carlo sample. Over a large number of Monte Carlo samples, the 100(1−α)th
percentile of the computed values for (11.43) and (11.44) then approximate
the critical values of the corresponding tests at the significance level α for any
α ∈ (0, 1) according to the law of large numbers.

The Monte Carlo method can provide approximations to the critical values
at any accuracy, but it can be computationally intensive if n is large. On the
other hand, when n is large, asymptotic distributions can be used to obtain the
critical values. By using large-sample techniques of the empirical distribution
discussed in Section 7.3, we can derive the asymptotic null distribution of
nΨ(Fn) from the Doob–Donsker theorem (Theorem 7.4). By (11.41), we have

nΨ(Fn) =

∫ 1

0

ψ(t)U2
n(t) dt = h(Un), (11.45)

where Un(t) =
√
n{Gn(t) − t} and h is the functional defined by h(G) =∫ t

0
ψ(t)G2(t) dt for any G ∈ D, the space of all functions on [0, 1] that are

right-continuous and possess left-limit at each point. Recall thatD is equipped

with the uniform metric ‖ · ‖ [see (7.7)]. By Theorem 7.4, we have Un
d−→ U

as n → ∞, where U is the Brownian bridge. Thus, we have, as n → ∞,

nΨ(Fn)
d−→ h(U) =

∫ 1

0

ψ(t)U2(t) dt, (11.46)

provided that one can show the continuity of the functional h on (D, ‖·‖). For
the Cramér–von Mises test, the verification of continuity is left as an exercise
(Exercise 11.18). However, this approach encounters some difficulties for the
Anderson–Darling test due to the fact that the function 1/t(1 − t) is not
continuous at t = 0 or 1. Nevertheless, it can be shown that (11.46) remains
valid (e.g., Rosenblatt 1952). For the Cramér–von Mises test, the right side

of (11.46) is ω2 =
∫ 1

0
U2(t)dt. Smirnov (1936) showed that

P(ω2 ≤ x)

= 1 − 1

π

∞∑
j=1

(−1)j−1

∫ (2j)2π2

(2j−1)2π2

u−1

( −√
u

sin
√
u

)1/2

e−xu/2 du (11.47)

for x > 0. Smirnov obtained (11.47) by inverting the characteristic function
(cf) of ω2, which is given by

cW (t) =

( √
2it

sin
√

2it

)1/2

, (11.48)

where i =
√−1. For the Anderson–Darling test, the corresponding cf is
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cA(t) =

∞∏
j=1

{
1 − 2it

j(j + 1)

}−1/2

, (11.49)

where i =
√−1. The expression for the cdf is more complicated and therefore

omitted (see Anderson and Darling 1954).

11.5 U -statistics

We mentioned a few times that the asymptotic null distributions of the
Wilcoxon one- and two-sample tests are normal. These results are not directly
implied by the CLT for sum of independent random variables as discussed in
Chapter 6. To see this, note that, for example, the statistic Vs for the Wilcoxon
signed-rank test has the following alternative expression:

Vs = S +W

=
∑
i=1

1(Xi>0) +
∑

1≤i<j≤n

1(Xi+Xj>0) (11.50)

(Exercise 11.19). The first summation, S, is a sum of i.i.d. random variables.
However, the second double summation, W , which is actually the dominant
factor for Vs in terms of the order, is not a sum of independent random
variables. Such a statistic can be characterized more generally as follows.

Let X1, . . . , Xn be independent observations from the same distribution
with cdf F . A statistic of the following type is called a U -statistic:

U =

(
n

m

)−1 ∑
1≤i1<...<im≤n

φ(Xi1 , · · · , Xim), (11.51)

where φ: Rm → R is a symmetric function of m variables, known as the kernel
of the U -statistic, and the summation is over all possible indexes i1, . . . , im
such that 1 ≤ i1 < · · · < im ≤ n. Note that the U -statistic depends on the
sample size n and therefore may be denoted by Un. However, in the statistics
literatute, such a dependence on the sample size is often suppressed in the
notation. This signifies a difference between probability theory and statistics,
a transition that we have already been making since the beginning of this
chapter. We hope the reader will get used to this kind of changes. A complete
notation can make the concept clear, such as in probability theory where the
subscript n is always used, but could also limit understanding of the concept,
in that a good reader should be able to see beyond the notation. It is easy
to see that the U -statistic (11.51) is an unbiased estimator of the following
parameter, viewed as a statistical functional (see Section 7.2):

θ(F ) =

∫
· · ·
∫
φ(x1, . . . , xm) dF (x1) · · · dF (xm), (11.52)
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provided that the (multidimensional) integral is finite. Many of the well-known
statistics are U -statistics. Below are some examples.

Example 11.6 (Sample mean). U = n−1
∑n

i=1Xi, m = 1, φ(x) = x, and
θ(F ) = μ = E(X1) =

∫
x dF (x).

Example 11.7 (Sample variance). It can be shown that

1

n− 1

n∑
i=1

(Xi − X̄)2 =

(
n

2

)−1 ∑
1≤i<j≤n

(Xi −Xj)
2

2
; (11.53)

so it is a U -statistic with m = 2, φ(x1, x2) = (x1 − x2)
2/2, and θ(F ) =

var(X1) =
∫
(x− μ)2 dF (x), where μ is given above (Exercise 11.20).

Example 11.8 (One-sample Wilcoxon statistic). Consider

U =

(
n

2

)−1 ∑
1≤i<j≤n

1(Xi+Xj>0),

which corresponds to the second term on the right side of (11.50). Then we
have m = 2, φ(x1, x2) = 1(x1+x2>0), and θ(F ) = P(X1 +X2 > 0).

Example 11.9 (Gini’s mean difference). This is defined by

U =

(
n

2

)−1 ∑
1≤i<j≤n

|Xi −Xj |;

so m = 2, φ(x1, x2) = |x1 − x2|, and θ(F ) = E(|X1 −X2|).

Example 11.10. Consider the estimation of μ2, where μ is as in Example
11.6. An obvious estimator is X̄2, although this is not an unbiased estimator
(why and what is the bias?). An unbiased estimator is given by the U -statistic

U =

(
n

2

)−1 ∑
1≤i<j≤n

XiXj

with m = 2, φ(x1, x2) = x1x2, and θ(F ) = E(X1X2) = μ2.

Our main focus is the asymototic distribution of U -statistics. In this re-
gard, a nice representation, discovered by Hoeffding (1961), is very useful. To
introduce the representation, let us first define the following, known as the
canonical functions of U -statistics. Let

φc(x1, . . . , xc) = E{φ(x1, . . . , xc, Xc+1, . . . , Xm)}
= E{φ(X1, . . . , Xm)|X1 = x1, . . . , Xc = xc}, (11.54)
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c = 0, 1, . . . ,m, where the expectation is taken with respect to Xc+1, . . . , Xm

and when c = 0, this means E{φ(X1, . . . , Xm)} = θ(F ). Write θ = θ(F ) for
notation simplicity. Note that E{φc(X1, . . . , Xc)} = θ for every 0 ≤ c ≤ m.
We then centralize the φ’s by letting φ̃ = φ− θ and φ̃c = φc − θ, 1 ≤ c ≤ m.
The canonical functions are defined recursively by

g1(x1) = φ̃1(x1),

g2(x1, x2) = φ̃2(x1, x2) − {g1(x1) + g1(x2)},

g3(x1, x2, x3) = φ̃3(x1, x2, x3) −
3∑

i=1

g1(xi) −
∑

1≤i<j≤3

g2(xi, xj),

· · ·
gm(x1, . . . , xm) = φ̃m(x1, . . . , xm) −

m∑
i1=1

g1(xi1) − · · ·

−
∑

1≤i1<···<im−1≤m

gm−1(xi1 , . . . , xim−1). (11.55)

The canonical functions are clearly symmetric in their arguments and satisfy
the following property known as complete degeneracy (Exercise 11.21):

E{gc(x1, . . . , xc−1, Xc)} = 0, 1 ≤ c ≤ m. (11.56)

We now express the U -statistics in terms of their canonical functions.

Theorem 11.1 (Hoeffding representation). The U -statistic (11.51) can be
expressed as

U = θ +
m∑

c=1

(
m

c

)(
n

c

)−1

Snc, (11.57)

where Snc =
∑

1≤i1<···<ic≤n gc(Xi1 , . . . , Xic).

The first integer r such that gr �= 0 is called the rank of the U -statistic.
Thus, a U -statistic can be expressed as

U = θ +

m∑
c=r

(
m

c

)
Unc, (11.58)

where r is the rank of the U -statistic and

Unc =

(
n

c

)−1 ∑
1≤i1<···<ic≤n

gc(Xi1 , . . . , Xic)

is the U-statistic with kernal gc, r ≤ c ≤ m. Note that Snc, 1 ≤ c ≤ m, satisfy
E(Snc) = 0 and the following nice orthogonality property:
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E(SncSnd) =

(
n

c

)
δc1(c=d), (11.59)

where δc = E{g2
c(X1, . . . , Xc)}, provided that

E{φ2(X1, . . . , Xm)} < ∞ (11.60)

(Exercise 11.22). Furthermore, (11.57) leads to a martingale representation of
U -statistics. Let Fk = σ(X1, . . . , Xk). Then we have Snc ∈ Fn and

E(Snc|Fk) = Skc, c ≤ k ≤ n (11.61)

(Exercise 11.23). Equation (11.61) shows that Snc,Fn, n ≥ c, is a martingale
for every 1 ≤ c ≤ m. Therefore, U = Un, Fn, n ≥ m is a martingale. An
alternative expression is in terms of martingale differences; that is,

U = θ +
n∑

k=1

ξnk, (11.62)

where ξnk =
∑m

c=1

(
m
c

)(
n
c

)−1
(Skc − Sk−1c), Fk, k ≥ 1, is a sequence of mar-

tingale differences (Exercise 11.23). With expression (11.62), it is certainly
feasible to establish a full array of limit theorems for U -statistics using the
martingale limit theory (see Chapter 8). However, here we are concerned with
asymptotic distribution of U -statistics for which (11.60) holds and

σ2
1 = var{φ1(X1)} > 0. (11.63)

Under these conditions, the asymptotic distribution can be derived using a
much simpler argument of CLT for sums of independent random variables (see
Chapter 6). To see this, note that by (11.57), we can write

U − θ =
m

n

n∑
i=1

g1(Xi) +Rn, (11.64)

where Rn is the remaining term. By (11.59), we have

E(R2
n) =

m∑
c=2

(
m

c

)2(
n

c

)−1

δc,

where δc < ∞, 2 ≤ c ≤ m. It follows that nE(R2
n) → 0; hence,

√
nRn

P−→ 0
as n → ∞. We now apply the CLT for sum of i.i.d. random variables and
Slutsky’s theorem (Theorem 2.13) to (11.64) to conclude that

√
n(U − θ) =

m√
n

n∑
i=1

g1(Xi) + oP(1)

d−→ N(0,m2σ2
1). (11.65)



11.5 U -statistics 377

The same argument can be used to derive the asymptotic joint distribution
of several U -statistics. Consider two U -statistics:

U (1) =

(
n

a

)−1 ∑
1≤i1<···<ia≤n

φ(1)(Xi1 , . . . , Xia),

U (2) =

(
n

b

)−1 ∑
1≤i1<···<ib≤n

φ(2)(Xi1 , . . . , Xib
).

Recall notation (11.54), so that we have

φ(1)
c (x1, . . . , xc) = E{φ(1)(x1, . . . , xc, Xc+1, . . . , Xa)},

φ
(2)
d (x1, . . . , xd) = E{φ(2)(x1, . . . , xd, Xd+1, . . . , Xb)}.

Define σcd = cov{φ(1)
c (X1, . . . , Xc), φ

(2)
d (X1, . . . , Xd)}. Then we have the fol-

lowing formula for the covariance between U (1) and U (2).

Theorem 11.2. For any a ≤ b we have

cov{U (1), U (2)} =

(
n

a

)−1 a∑
c=1

(
b

c

)(
n− b

a− c

)
σcc. (11.66)

See, for example, Lee (1990) for a derivation of (11.66). Two immediate
consequences of Theorem 11.2 are

var(U) =

(
n

m

)−1 m∑
c=1

(
m

c

)(
n−m

m− c

)
σ2

c , (11.67)

where σ2
c = σcc = var{φc(X1, . . . , Xc)}, and

ncov{U (1), U (2)} −→ abσ11 (11.68)

as n → ∞ (Exercise 11.24).
In the derivations below we allow the distribution of X1, . . . , Xn to be

dependent on n (i.e., F = Fn). Consider the U -statistics

U (j) =

(
n

m[j]

)−1 ∑
1≤i1<···<im[j]≤n

φ(j)(Xi1 , . . . , Xim[j]
), (11.69)

1 ≤ j ≤ s. We assume that (i) max1≤j≤s var{φ(j)(X1, . . . , Xm[j])} are bounded
(note that the variances now depend on n; so merely finiteness of the variances
is not sufficient); (ii) as n → ∞,

cov{φ(j)
1 (X1), φ

(k)
1 (X1)} −→ σ(j, k), 1 ≤ j, k ≤ s, (11.70)
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and Σ = [m[j]m[k]σ(j, k)]1≤j,k≤s is positive definite; and (iii)

E[{g(j)
1 (X1)}21

(|g(j)
1 (X1)|>ε

√
n)

] −→ 0, 1 ≤ j ≤ s, (11.71)

as n → ∞ for every ε > 0, where g
(j)
1 is g1 with m = m[j] and φ = φ(j).

Theorem 11.3. Under assumptions (i)–(iii), we have that as n → ∞,

√
n

⎡⎢⎣U
(1) − θ1

...
U (s) − θs

⎤⎥⎦ d−→ N(0, Σ), (11.72)

where θj = E{φ(j)(X1, . . . , Xm[j])}, 1 ≤ j ≤ s.

To show (11.72), note that by Theorem 2.14, this is equivalent to that, for
every λ = (λj)1≤j≤s ∈ Rs, we have

λ′
√
n

⎡⎢⎣U
(1) − θ1

...

U (s) − θs

⎤⎥⎦ d−→ N(0, λ′Σλ). (11.73)

To show (11.73), note that by (11.64), we can write the left side as

√
n

s∑
j=1

λj{U (j) − θj} =
√
n

s∑
j=1

{
λj
m[j]

n

n∑
i=1

g
(j)
1 (Xi) + λjRn,j

}

=
n∑

i=1

1√
n

s∑
j=1

λjm[j]g
(j)
1 (Xi) +

s∑
j=1

λj

√
nRn,j

= I1 + I2.

By assumption (i) and the argument following (11.64), it can be shown that
E(I2

2 ) → 0 [make sure that assumption (i) is sufficient for this argument].
Thus, it remains to show that I1 converges in distribution to the right side of
(11.73) (and then apply Slutsky’s theorem). To this end, we write

ξni =
1√
n

s∑
j=1

λjm[j]g
(j)
1 (Xi).

Then for each n ≥ 1, ξni, 1 ≤ i ≤ n, are independent with E(ξni) = 0, and by
(11.70), E(ξ2ni) = n−1{λ′Σλ+ o(1)} (verify this); hence, s2n =

∑n
i=1 E(ξ2ni) =

λ′Σλ+o(1). By the CLT for triangular arrays of independent random variables

(see Section 6.4), to show that s−1
n

∑n
i=1 ξni

d−→ N(0, 1) or, equivalently,

(λ′Σλ)−1/2I1
d−→ N(0, 1), we need to verify the Lindeberg condition (6.36)

(with in = n and X replaced by ξ) or, equivalently,
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1

n

n∑
i=1

E

⎡⎢⎣
⎧⎨⎩

s∑
j=1

λjm[j]g
(j)
1 (Xi)

⎫⎬⎭
2

1(|ξni|>ε)

⎤⎥⎦ −→ 0 (11.74)

for every ε > 0. The left side of (11.74) is equal to

E

⎡⎢⎣
⎧⎨⎩

s∑
j=1

λjm[j]g
(j)
1 (X1)

⎫⎬⎭
2

1(|ξn1|>ε)

⎤⎥⎦ ≤ s

s∑
j=1

E{η2
j 1(|ξn1|>ε)},

where ηj = λjm[j]g
(j)
1 (X1), using, for example, the Cauchy–Schwarz inequal-

ity. Furthermore, it is easy to see that |ξn1| > ε implies |ηk| > ε
√
n/s for some

1 ≤ k ≤ s; hence, 1(|ξn1|>ε) ≤
∑s

k=1 1(|ηk|>ε
√

n/s). It follows that

the left side of (11.74) ≤ s

s∑
j,k=1

E{η2
j 1(|ηk|>ε

√
n/s)}.

Now, use the inequality

x21(y>a) ≤ x21(x>a) + y21(y>a), (11.75)

which holds for any (nonnegative) numbers x, y, and a (Exercise 11.25), to
conclude that the left side of (11.74) is bounded by

s

s∑
j,k=1

[
E{η2

j 1(|ηj|>ε
√

n/s)} + E{η2
k1(|ηk|>ε

√
n/s)}

]
= 2s2

s∑
j=1

E{η2
j 1(|ηj |>ε

√
n/s)}

= 2s2
∑
λj 
=0

λ2
jm

2[j]E
[
{g(j)

1 (X1)}21
(|g(j)

1 (X1)|>ε
√

n/s|λj |m[j])

]
,

which converges to zero by assumption (iii).
Now, let us revisit the problem of testing for the center of symmetry dis-

cussed in Sections 11.2 and 11.3. For simplicity, suppose that the underlying
distribution of X1, . . . , Xn is F (x − θn), where F is a continuous cdf with
a finite first moment, and θn has the expression (11.35) with θ0 = 0. Let
φ(1)(x) = x, φ(2)(x, y) = 1(x+y>0), and φ(3)(x) = 1(x>0). Then we have

U (1) = n−1
n∑

i=1

φ(1)(Xi) = X̄,

U (2) =

(
n

2

)−1 ∑
1≤i<j≤n

φ(2)(Xi, Xj)
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=

(
n

2

)−1 ∑
1≤i<j≤n

1(Xi+Xj>0),

U (3) = n−1
n∑

i=1

φ(3)(Xi) = n−1
n∑

i=1

1(Xi>0).

Furthermore, we have θ1 = E{φ(1)(X1)} = θn (excuse us for a light abuse
of the notation), θ2 = E{φ(2)(X1, X2)} = E{F (Z1 + 2θn)}, where Z1 has
the cdf F , and θ3 = F (θn). Let us verify (11.70) for j = 1 and k = 2 and
leave the rest of the verifications to an exercise (Exercise 11.26). We have
cov{φ(1)(X1), φ

(2)(X1)} = cov{X1, F (X1 + θn)} = E{Z1F (Z1 + 2θn)}. Since
F is continuous, we see by dominated convergence theorem (Theorem 2.16)
that the covariance converges to E(Z1F (Z1)} as n → ∞. Thus, assumption
(ii) holds with Σ being the covariance matrix with θn = 0. Next, we verify
(11.71) for j = 2 and leave the rest to an exercise (Exercise 11.26). Note

that g
(2)
1 (X1) = F (X1 + θn)−E{F (Z1 + 2θn)}, which is bounded in absolute

value by 1. Thus, the left side of (11.71) (with j = 2) is zero for sufficiently
large n. It follows that assumption (iii) holds. Therefore, our earlier claims
(in Sections 11.2 and 11.3) regarding the (joint) asymptotic distributions of
these statistics are justified.

We conclude this section with a brief discussion on two-sample U -statistics.
Let X1, . . . , Xm and Y1, . . . , Yn be independent samples from F and G, respec-
tively. A two-sample U-statistic with kernel φ is defined as

U =

(
m

a

)−1(
n

b

)−1∑
φ(Xi1 , . . . , Xia , Yj1 , . . . , Yjb

), (11.76)

where the summation is over all indexes 1 ≤ i1 < · · · < ia ≤ m and 1 ≤ j1 <
· · · < jb ≤ n. Similar to (11.67) and (11.68), we have

var(U) =

(
m

a

)−1(
n

b

)−1 a∑
c=1

b∑
d=1

(
a

c

)(
m− a

a− c

)(
b

d

)(
n− b

b− d

)
σcd, (11.77)

where σcd is the covariance between φ(X1, . . . , Xa, Y1, . . . , Yb) and

φ(X1, . . . , Xc, X
′
c+1, . . . , X

′
a, Y1, . . . , Yd, Y

′
d+1, . . . , Y

′
b ),

in which the X ’s, X ′s and Y ’s, Y ′s are independently distributed as F and G,
respectively. Here, we assume that all of the σcd are finite, which is equivalent
to σab < ∞ (why?). In particular, if m,n → ∞ such that m/N → ρ and
n/N → 1 − ρ for some ρ ∈ [0, 1], where N = m+ n, then

N var(U) −→ a2

ρ
σ10 +

b2

1 − ρ
σ01. (11.78)

For simplicity, we now focus on the special case a = b = 1. For a general
treatment of the subject, see, for example, Koroljuk and Borovskich (1994).
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The following theorem states the asymptotic distribution of the two-sample
U -statistic when σ10 and σ01 are positive. Again, for simplicity, we assume
that F and G do not depend on m and n; extension to the case where the
distributions depend on the sample sizes can be made along the same lines as
for the one-sample case (see Theorem 11.3).

Theorem 11.4. If σ11 <∞ and σ01, σ10 > 0, then

U − θ√
var(U)

d−→ N(0, 1), (11.79)

where θ = E{φ(X1, Y1)}.

We give an outline of the proof and leave the details to an exercise (Exercise
11.27; also see Lehmann 1999, pp. 378–380). The basic idea is similar to the
one-sample case. First, consider a special case in which the limits above (11.78)
hold for some ρ ∈ [0, 1]. We find a first-order approximation as follows. Write
ζN =

√
N(U − θ) and

ζ∗N =

√
N

m

1√
m

m∑
i=1

{φ10(Xi) − θ} +

√
N

n

1√
n

n∑
j=1

{φ01(Yj) − θ}

=

√
N

m
ηN,1 +

√
N

n
ηN,2,

where φ10(x) = E{φ(x, Y )} and φ01(y) = E{φ(X, y)}. It can be shown that
both var(ζ∗N ) and cov(ζN , ζ

∗
N ) converge to the right side of (11.78) (with a =

b = 1), so that E(ζN − ζ∗N )2 = var(ζN )− 2cov(ζN , ζ
∗
N ) + var(ζ∗N ) → 0. On the

other hand, by CLT for the sum of independent random variables, we have

ηN,1
d−→ N(0, σ10), ηN,2

d−→ N(0, σ01), and ζN,1 and ζN,2 are independent. It
then follows, by (11.78) (with a = b = 1), that (11.79) holds under the limiting
process m/N → ρ ∈ [0, 1]. However, note that the limiting distribution does
not depend on ρ. That (11.79) holds without this restriction follows by the
argument of subsequences (see §1.5.1.6).

As a special case, consider the two-sample Wilcoxon test, which is closely
related to the statistic WXY in (11.38). Here, we have

U =
1

mn

m∑
i=1

n∑
j=1

φ(Xi, Yj),

where φ(x, y) = 1(x<y). It is easy to verify that

σ10 = E{G2(X1)} − [E{G(X1)}]2,
σ01 = E{F 2(Y1)} − [E{F (Y1)}]2, (11.80)

where X1 and Y1 are independent and distributed as F and G, respectively.
Since both F and G are continuous, σ10 and σ01 are positive. Furthermore, it
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is obvious that σ11 <∞. Thus, the assumptions of Theorem 11.4 are satisfied.
In particular, under the null hypothesis F = G, we have σ10 = σ01 = 1/12
(Exercise 11.28).

11.6 Density estimation

In a way, nonparametric estimation problems are extensions of parametric es-
timation problems, but the nature of the former is quite different from the lat-
ter. Consider, for example, the situation of i.i.d. observations, say,X1, . . . , Xn.
In a parametric problem we assume that the distribution of Xi is Fθ, which
is fully specified up to the parameter (vector) θ; so the problem is essentially
the estimation of θ. In a nonparametric problem, the distribution is entirely
unknown (with, perhaps, some restrictions on general properties; see below)
and therefore is denoted by F . In Chapter 7 we considered estimation of F in
terms of its cdf. In this section, we consider the estimation of F in terms of
its pdf, f . The pdf has the advantage of providing a visually more informative
representation of the underlying distribution. For example, the histogram of-
ten gives a rough idea about the shape of the distribution. In fact, according
to Scott (1992, p. 125), the latter “stood as the only nonparametric density
estimator until the 1950s.” For such a reason, our discussion will begin with
the histograms.

Although the histograms are extensively used, it is not that often that a
mathematical definition is needed. One way to define it is via the empirical
d.f. Note that f is the derivative of F ; so it can be expressed as f(x) =
limh→0 h

−1{F (x+ h) − F (x)} or

f(x) = lim
h→0

F (x+ h) − F (x− h)

2h
. (11.81)

The latter expression has the advantage of faster convergence. In fact, if F is
twice continuously differentiable at x, then we have

F (x+ h) − F (x)

h
− f(x) = O(h),

F (x+ h) − F (x− h)

2h
− f(x) = o(h) (11.82)

(Exercise 11.29). Expression (11.81) also appears to be more “fair,” or “bal-
anced” than the previous expression. Because the empirical d.f., F̂ , is an
estimator of F , it is natural to consider (11.81) with F replaced by F̂ . How-
ever, one cannot do so because then this limit is either zero or ∞ (Exercise
11.29). So at some point one has to stop; in other words, h cannot get too
close to zero. If the latter is fixed, it is called the bin width, or bandwidth. We
can then write the estimator of f as
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f̂(x) =
F̂ (x+ h) − F̂ (x− h)

2h

=
1

2nh

n∑
i=1

1(x−h<Xi<x+h) (with probability 1) (11.83)

(Exercise 11.29). Note that the summation in (11.83) has a Binomial(n, p)
distribution with p = F (x+ h) − F (x− h). Thus, the (asymptotic) behavior
of the histogram can be derived from that of the Binomial distribution. For
example, we have

E{f̂(x)} =
F (x+ h) − F (x− h)

2h
,

var{f̂(x)} =
p(1 − p)

4nh2
.

It follows that f̂(x) is a pointwise consistent estimator of f(x) if

h → 0 and nh → ∞ (11.84)

(not nh2 → ∞; see Exercise 11.29). Hereafter the limiting process is under-
stood as h = hn such that hn → 0 and nhn → ∞, but for notation simplicity,
the subscript of hn is often suppressed. The condition may be interpreted as
that h needs to go to zero, but not too fast. This is exactly what we have spec-
ulated [below (11.82)] except that now we have the exact rate of convergence,
which can be written as h−1 = o(n).

Although the histogram is consistent under (11.84), it turns out that one
can do better. The improvement is also motivated by a practical concern that
the histogram is not smooth, a property that one may expect the true density
function to have. This leads to the kernel estimator, defined by

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (11.85)

where K(·) is a function known as the kernel. It is typically assumed that K
is nonnegative, symmetric about zero, and satisfies

∫
K(u) du = 1. It is clear

that the histogram is a special case of the kernel estimator if K is chosen as
the pdf of Uniform(−1, 1). The latter is not a smooth function, and this is
why the histogram is not smooth; but by choosing K as a smooth function,
one has an estimator of f(x) that is smooth. For example, the pdf of N(0, 1)
is often used (known as the Gaussian kernel) and so is the symmetric Beta
pdf,

K(u) =
Γ (ν + 3/2)

Γ (1/2)Γ (ν + 1)
(1 − u2)ν , −1 < u < 1,

and K(u) = 0 elsewhere. The special cases ν = 0, 1, 2, 3 correspond to the
uniform, Epanechnikov, biweight, and triweight kernels, respectively. An im-
portant practical problem in kernel density estimation is how to choose the
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bandwidth h. Note that given conditions such as (11.84), there are still plenty
of choices for h; so, in a way, the order of convergence (or divergence) does
not solve the problem. A solution to this problem is known as the bias–
variance trade-off. Before we go into the details let us first state a result
regarding the asymptotic bias of the kernel estimator. Here, the bias is de-
fined as bias{f̂(x)} = E{f̂(x)} − f(x) for a given x.

Theorem 11.5. Suppose that f is continuous and bounded. Then the
bias of the kernel estimator goes to zero as h → 0 for every x.

The argument that leads to the conclusion of Theorem 11.5 is simple. First,
write (verify this)

E{f̂(x)} =
1

n

n∑
i=1

1

h

∫
K

(
x− y

h

)
f(y) dy

=

∫
K(u)f(x− hu) du

= f(x) +

∫
K(u){f(x− hu) − f(x)} du.

Then use the dominated convergence theorem (Theorem 2.16) to complete the
argument. A further investigation into the bias as well as the variance leads
to the following theorem, drawn from Lehmann (1999, p. 410).

Theorem 11.6. Suppose that f is three times differentiable with a
bounded third derivative in a neighborhood of x and that K satisfies∫

K2(u) du < ∞ and

∫
|u|3K(u) du <∞.

(i) If h → 0 as n → ∞, then we have

bias{f̂(x)} =
h2

2
f ′′(x)

∫
u2K(u) du+ o(h2). (11.86)

(ii) If, in addition, nh → ∞ as n → ∞, then we have

var{f̂(x)} =
f(x)

nh

∫
K2(u) du+ o{(nh)−1}. (11.87)

The proof is based on the Taylor expansion—namely,

f(x− hu) = f(x) − huf ′(x) +
h2u2

2
f ′′(x) − h3u3

6
f ′′′(ξ),

where ξ lies between x−hu and x. The details are left as an exercise (Exercise
11.30). A measure of accuracy in estimation is the mean squared error (MSE):
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MSE{f̂(x)} = E{f̂(x) − f(x)}2.

It is easy to show (Exercise 11.31) that the MSE combines the bias and vari-
ance in such a way that

MSE{f̂(x)} = [bias{f̂(x)}]2 + var{f̂(x)}. (11.88)

By (11.88), (11.86), and (11.87), we see that, under the condition (11.84) and
if we ignore the lower-order terms, we have

MSE{f̂(x)} ≈ h4

4
{f ′′(x)}2τ4 +

f(x)

nh
γ2, (11.89)

where τ2 =
∫
u2K(u) du and γ2 =

∫
K2(u) du. The right side of (11.89) is

minimized when

h =

[
γ2f(x)

τ4{f ′′(x)}2

]1/5

n−1/5 (11.90)

(Exercise 11.31). Note that (11.90) is not yet the optimal solution because
f is unknown in practice. However, it gives us at least some idea about the
optimal rate at which h → 0. The optimal rate is O(n−1/5), which is much
more specific than (11.84).

When f is unknown, a natural approach would be to replace it by an esti-
mator and hence obtain an estimated optimal bandwidth. One complication
is that the optimal bandwidth depends on x, but, ideally, one would like to
use a bandwidth that works for different x’s within a certain interval, if not
all of the x’s. To obtain an optimal bandwidth that does not depend on x, we
integrate both sides of (1.89) with respect to x. This leads to∫

MSE{f̂(x)} dx ≈ τ4h4

4

∫
{f ′′(x)}2 dx+

γ2

nh

∫
f(x) dx

=
τ4θ2h4

4
+
γ2

nh
(11.91)

with θ2 =
∫ {f ′′(x)}2 dx. By the same argument, the right side of (11.91) is

minimized when

h =

(
γ2

τ4θ2

)1/5

n−1/5. (11.92)

This time, the optimal h does not depend on x. Furthermore, the minimum
integrated MSE (IMSE) is given by (verify this)

IMSE =
5

4

(
τγ2
)4/5

θ2/5n−4/5. (11.93)

An implication of (11.92) and (11.93) is the following. Note that the IMSE
depends on the kernel K through cK = (τγ2)4/5. It has been shown (e.g., Fan
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and Yao 2003, Table 5.1) that for the commonly used kernels such as those
listed below (11.85), the performance of the corresponding kernel estimators
are nearly the same in terms of the values of cK . On the other hand, the
optimal bandwidths, h1 and h2, corresponding to two different kernels, K1

and K2, satisfy h1/h2 = κ1/κ2, where κ = (γ2/τ4)1/5 and the subscript j
corresponds to Kj, j = 1, 2. This means that one can adjust the (optimal)
bandwidth h2 such that h2 = (κ2/κ1)h1 so that the kernel K2 using the
bandwidth h2 performs nearly the same as the kernel K1 using the bandwidth
h1. This is the idea behind the canonical kernel (Marron and Nolan 1988).

Going back to the problem on the estimation of the optimal bandwidth,
from (11.92), we see that all we need is to find an (consistent) estimator of
θ2. If f is the pdf of a normal distribution with standard deviation σ, then it
can be shown that θ2 = 3/8

√
πσ5 (Exercise 11.32). Of course, if one knows

f is normal, then nonparametric density estimation would not be necessary
(because a parametric method would probably do better). In general, one
may expand f around the Gaussian density using the Edgeworth expansion
(see Section 4.3). Using this approach, Hjort and Jones (1996) obtained the
following estimator of the optimal bandwidth:

ĥ = ĥ0

(
1 +

35

48
γ̂4 +

35

32
γ̂2
3 +

385

1024
γ̂2
4

)−1/5

, (11.94)

where ĥ0 is the estimated optimal bandwidth assuming that f is normal—that
is, (11.92) with θ2 replaced by 3/8

√
πσ̂5, or, more explicitly,

ĥ0 = 1.06

(
σ̂

n1/5

)
(11.95)

(we call ĥ0 the baseline bandwidth), and σ̂2 is the sample variance given by

σ̂2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

Furthermore, γ̂3 and γ̂4 are the sample skewness and kurtosis given by

γ̂3 =
1

(n− 1)σ̂3

n∑
i=1

(Xi − X̄)3,

γ̂4 =
1

(n− 1)σ̂4

n∑
i=1

(Xi − X̄)4 − 3,

respectively. There have been other approaches for bandwidth selection, in-
cluding the cross-validation method and plug-in method. The latter estimates
θ2 as a functional. See, for example, Jones et al. (1996) for an overview. We
conclude this section with a numerical example.
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Example 11.11 (A numerical example). We generate X1, . . . , Xn, where
n = 30, from a double exponential distribution with mean 0 and standard
deviation 1 [i.e., DE(0, 1)]. The generated data are given by Table 11.3 (up
to the third digit). Now, suppose that the true density function is unknown

Table 11.3. Data generated by a computer

1.814 5.056 2.434 0.113 −0.822 0.531
−0.784 0.098 −3.063 1.558 0.665 2.235

1.612 −0.426 0.092 −1.661 −0.925 0.744
0.714 −2.864 −0.829 −1.309 −0.408 0.558

−1.228 0.381 0.241 1.030 0.417 1.366

and one has to estimate it nonparametrically using the kernel method. We
use the Gaussian kernel with k(u) = e−u2/2/

√
2π. The sample variance is

σ̂2 = 2.59; the baseline bandwidth is computed by (11.95) as ĥ0 = 0.86; and
the sample skewness and kurtosis are computed as γ̂3 = 0.45 and γ̂4 = 1.27,
respectively. These lead to the estimated optimal bandwidth, computed by
(11.94), as ĥ = 0.71. A plot of the kernel estimate of the density is shown in
Figure 11.1. The true density is also plotted in dash line for comparison. It
appears that the kernel estimate is missing some of the height in the middle.
However, the sample size is n = 30, which is not very large. What happens
when n increases? The reader is encouraged to explore this in an exercise
(Exercise 11.33).

11.7 Exercises

11.1. Verify (11.6)–(11.8).
11.2. Verify (11.13)–(11.15).
11.3. Verify (11.6).
11.4. Show that the asymptotic correlation coefficient between S2 and S3

in (11.18), which correspond to the test statistics of the signed-rank and sign
tests, is equal to

√
3/2.

11.5. This exercise is to show that both sides of inequality (11.19) are
sharp in that there are distributions F that are continuous and symmetric
about zero for which the left- or right-side equalities are either attained or
approached with arbitrary closeness.

(i) Let F has a rectangular distribution that is symmetric about zero.
Show that ρw = 1; hence, the left side equalilty holds.

(ii) Let F have the pdf

fp(x) =

{
0, |x| ≤ 1
{(p− 1)/2}|x|−p, |x| > 1,
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Fig. 11.1. Numerical example: solid line: kernel estimate; dash line: true density

where p > 3. Verify that fp is a pdf. Then show that ρw, ρs → 0 as p → 3.
Therefore, the right side of (11.19) can be approached with arbitrary closeness
by choosing p sufficiently close to 3.

11.6. Show that (11.22) holds as n → ∞ if θ is the true center of symmetry.
11.7. This exercise has several parts.
(i) Suppose that X has a continuous distribution F . Show that F (X) has

the Uniform[0, 1] distribution [Hint: Use (7.4) and the facts that F (x) ≥ u if
and only if x ≥ F−1(u) and that F{F−1(u)} = u.]

(ii) Show that when θ = 0, (11.23) and (11.24) reduce to 1/2 and 1/3,
respectively.

(iii) Show that when θ = 0, (11.15) is equivalent to (11.21) with μ(θ) and
τ(θ) given by (11.23) and (11.24).

11.8. Show that for the problem of testing for the center of symmetry
discussed in Sections 11.2 and 11.3, the efficacies of the t, sign, and Wilcoxon
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signed-rank tests are given by 1/σ, 2f(0), and 2
√

3
∫
f2(z) dz, respectively,

where σ and f are the standard deviation and pdf of F , respectively.
11.9. Evaluate the AREs (11.30)–(11.32) when F is the following distri-

bution:
(i) Double Exponential with pdf f(z) = (1/2σ)e−|x|/σ, −∞ < x < ∞,

where σ > 0.
(ii) Logistic with pdf f(z) = (1/β)e−z/β/(1 + e−z/β)2, −∞ < x < ∞,

where β > 0.
(iii) Uniform[−a, a], where a > 0.
11.10. Verify that the ARE eS,t of (11.30) is given by (11.33) in the case

of Example 11.3.
11.11. Verify that the ARE eW,t of (11.31) is given by (11.34) in the case

of Example 11.4.
11.12. In the case of testing for the center of symmetry, suppose that

Xni, 1 ≤ i ≤ n, are independent observations with the cdf F (x − θn). Then
for the t-test, we have Tn = X̄n = n−1

∑n
i=1Xni and

√
n(Tn − θn)

σ
=

n∑
i=1

Yni,

where Yni = (Xni − θn)/σ
√
n. Show that Yni, 1 ≤ i ≤ n, n ≥ 1, satisfy the

Lindeberg condition (6.36) with Xni replaced by Yni, in = n and s2n = 1.
11.13. Continuing with the previous exercise. For the sign test, we have

Tn = n−1
∑n

i=1 1(Xni>0) and

2
√
n{Tn − F (θn)} =

n∑
i=1

Yni,

where Yni = (2/
√
n){1(Xni>0) − F (θn)}. Once again, verify the conditions

below (6.35) with Xni replaced by Yni.
11.14. Consider the pooled sample variance, S2

p, of Example 11.5.

(i) Show that S2
p

P−→ σ2 as m,n → ∞ such that m/N → ρ ∈ (0, 1), where
N = m+ n and σ2 is the variance of F .

(ii) Show that the assumption of (i) remains valid even if ρ = 0 or 1.
(iii) Show that the conclusion of (i) remains valid as m,n → without any

restriction [Hint: Suppose otherwise. Then there is an ε > 0 and a sequence
(mk, nk), k = 1, 2, . . ., such that |S−1

p − σ2| ≥ ε for (m,n) = (mk, nk), k =
1, 2, . . .. Without loss of generality, one may assume that mk/Nk → ρ ∈ [0, 1]
(otherwise choose a subsequence that has this property (using §1.5.1.4).]

11.15. (i) Show that (11.37) holds under the limiting process of (i) of the
previous exercise, provided that θN is the true θ for TN . You may use a similar
argument as in Example 11.4 and the following fact: If ξN and ζN are two

sequences of random variables such that ξN
d−→ ξ, ηN

d−→ η, and ξN and ηN

are independent for each N , then ξN ± ηN
d−→ ξ ± η.
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(ii) Based on (11.37), derive the asymptotic power of the two-sample t-test
and show that it is equal to 1 − Φ(zα − ctΔ), where ct =

√
ρ(1 − ρ)/σ and Φ

is the cdf of N(0, 1).
11.16. Continue with the previous exercise.
(i) Verify the identity (11.38).
(ii) Given that (11.36) holds with TN = WXY /mn, μ(θ) = Pθ(X < Y ) =∫ {1 − F (x − θ)}f(x) dx, and τ(0) = 1/

√
12ρ(1 − ρ), derive the asymptotic

power of the two-sample Wilcoxon test and show that it is equal to 1−Φ(zα−
cWΔ), where cW =

√
12ρ(1 − ρ)

∫
f2(z) dz.

11.17. Verify (11.42) and thus, in particular, (11.43) and (11.44) under the
null hypothesis (11.39).

11.18. Show that the functional h defined below (11.45) is continuous on
(D, ‖ · ‖).

11.19. Verify the identity (11.50).
11.20. Verify (11.53) and also show that θ(F ) = var(X1) for the sample

variance.
11.21. Verify the property of complete degeneracy (11.56).
11.22. This exercise is concerned with moment properties of Snc, 1 ≤ c ≤

m, that are involved in the Hoeffding representation (11.57).
(i) Show that E(Snc) = 0, 1 ≤ c ≤ m.
(ii) Show that

E{gc(Xi1 , . . . , Xic)gd(Xj1 , . . . , Xjd)} = 0

except that c = d and {i1, . . . , ic} = {j1, . . . , jd}.
(iii) Verify the orthogonality property (11.59).
11.23. Verify the following.
(i) The martingale property (11.61).
(ii) The expression (11.57), considered as a sequence of random variables,

Un, Fn = σ(X1, . . . , Xn), n ≥ m, is a martingale.
(iii) The expression (11.62) and that ξnk,Fk, k ≥ 1, is a sequence of mar-

tingale differences.
(iv) An alternative expression for ξnk,

ξnk = E(U |X1, . . . , Xk) − E(U |X1, . . . , Xk−1).

11.24. Show that (11.68) holds as n → ∞.
11.25. Verify the numerical inequality (11.75) for any x, y, a ≥ 0.
11.26. Consider once again the problem of testing for the center of sym-

metry. More specifically, refer to the continuing discussion near the end of
Section 11.5.

(i) Verify (11.70) for 1 ≤ j ≤ k ≤ 3 except for j = 1 and k = 2, which has
been verified.

(ii) Verify (11.71) for j = 1 and j = 3.
11.27. This exercise involves some details regarding the proof of Theorem

11.4 at the end of Section 11.5.
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(i) Show that both var(ζ∗N ) and cov(ζN , ζ
∗
N ) converge to the right side of

(11.78) with a = b = 1, provided that m/N → ρ ∈ [0, 1].

(ii) Show that ηN,1
d−→ N(0, σ10), ηN,2

d−→ N(0, σ01).
(iii) Combine the results of (i) and (ii) to show that (11.79) holds under

the limiting process in (i).
(iv) Using the argument of subsequences (see §1.5.1.6), show that (11.79)

holds without the restriction on the limiting process.
11.28. Consider the U -statistic associated with Wilcoxon two-sample test

(see the discussion at the end of Section 11.5).
(i) Verify (11.80).
(ii) Show that under the null hypothesis F = G, we have σ10 = σ01 = 1/12.
11.29. This exercise is related to the expression of the histogram (see

Section 11.6).
(i) Show that (11.82) holds provided that F is twice continuously differ-

entiable.
(ii) Show that the limit (11.81) is either zero or ∞ if F is replaced by F̂ ,

the empirical d.f.
(iii) Show that the histogram is equal to the right side of (11.83) with

probability 1.
(iv) Show that the histogram is pointwise consistent under the limiting

process (11.84).
11.30. Give a proof of Theorem 11.6. As mentioned, the proof is based on

the Taylor expansion. The details can be found in Lehmann’s book but you
are encouraged to explore without looking at the book (or check with it after
you have done it independently).

11.31. (i) Verify (11.88).
(ii) Show that the right side of (11.89) is minimized when h is given by

(11.90).
11.32. Regarding the parameter θ2 defined below (11.91), show that θ2 =

3/8
√
πσ5 if f is the pdf of N(μ, σ2).

11.33. This exercise is related to Example 11.11 at the end of the chapter.
(i) Verify the calculations of σ̂2, ĥ0, γ̂3, γ̂4, and ĥ in the example.
(ii) Simulate a larger data set, say, with n = 100, and repeat the calcula-

tions and plots in the example. Does the estimated density better approximate
the true density? Note that a DE(0, 1) random variable, X , can be generated
by first generating X1 and X2 independently from the Exponential(1) distri-
bution and then letting X = X1 −X2.
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Mixed Effects Models

12.1 Introduction

Mixed effects models, or simply mixed models, are widely used in practice.
These models are characterized by the involvement of the so-called random
effects. To understand the basic elements of a mixed model, let us first recall
a linear regression model, which can be expressed as y = Xβ + ε, where y is
a vector of observations, X is a matrix of known covariates, β is a vector of
unknown regression coefficients, and ε is a vector of (unobservable random)
errors. In this model, the regression coefficients are considered fixed. However,
there are cases in which it makes sense to assume that some of these coefficients
are random. These cases typically occur when the observations are correlated.
For example, in medical studies, observations are often collected from the
same individuals over time. It may be reasonable to assume that correlations
exist among the observations from the same individual, especially if the times
at which the observations are collected are relatively close. In animal breeding,
lactation yields of dairy cows associated with the same sire may be correlated.
In educational research, test scores of the same student may be related. Now,
let us see how a linear mixed model may be useful for modeling the correlations
among the observations.

Example 12.1. Consider, for example, the above example of medical stud-
ies. Assume that each individual is associated with a random effect whose
value is unobservable. Let yij denote the observation from the i individual
collected at time tj and let αi be the random effect associated with the ith
individual. Assume that there are m individuals. For simplicity, let us as-
sume that the observations from all individuals are collected at a common
set of times, say, t1, . . . , tk. Then, a linear mixed model may be expressed
as yij = x′ijβ + αi + εij , i = 1, . . . ,m, j = 1, . . . , k, where xij is a vec-
tor of known covariates; β is a vector of unknown regression coefficients; the
random effects α1, . . . , αm are assumed to be i.i.d. with mean 0 and variance
σ2; the εij ’s are errors which are i.i.d. with mean 0 and variance τ2; and the

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_12, © Springer Science+Business Media, LLC 2010
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random effects and errors are independent. It is easy to show (Exercise 12.1)
that the correlation between any two observations from the same individual
is σ2/(σ2 + τ2), whereas observations from different individuals are uncorre-
lated. This model is a special case of the linear mixed models for analysis of
longitudinal data (e.g., Diggle et al. 1996). There are different types of linear
or nonlinear mixed models that can be used to model the correlations among
the observations.

There is no general consensus among mixed model users on the roles that
the random effects play. For many users, the main purpose of introducing
the random effects is to model the correlations among observations, such as
in the analysis of longitudinal data. On the other hand, in many cases the
random effects represent unobserved variables of practical interest, which for
good reasons should be considered random. This is the case, for example, in
small-area estimation (e.g., Rao 2003). Robinson (1991) gave a wide-ranging
account of the estimation (or prediction) of random effects in linear mixed
models with examples and applications. Jiang and Lahiri (2006) provided an
overview of the prediction theory for random effects and its applications in
small-area estimation.

A general linear mixed model may be expressed as

y = Xβ + Zα+ ε, (12.1)

where y is a vector of observations, X is a matrix of known covariates, β is
a vector of unknown regression coefficients, which are often called the fixed
effects, Z is known matrix, α is a vector of random effects, and ε is a vector of
errors. Both α and ε are unobservable. Compared with the linear regression
model, it is clear that the difference is Zα, which may take many different
forms, and thus creates a rich class of models, as we will see. The basic assump-
tions for (12.1) are that the random effects and errors have mean 0 and finite
variances. Typically, the covariance matrices G = Var(α) and R = Var(ε)
involve some unknown dispersion parameters, or variance components. It is
also assumed that α and ε are uncorrelated.

If the normality assumption is made, as is often the case, the linear mixed
model is called a Gaussian linear mixed model, or Gaussian mixed model. This
means that both α and ε are normal, in addtion to the basic assumptions
above. Otherwise, if normality is not assumed, the model is called a non-
Gaussian linear mixed model (Jiang 2007). Another way of classifying the
linear mixed models is in terms of the Z matrix, or the expression of Zα. The
model is called a (Gaussian) mixed ANOVA model if

Zα = Z1α1 + · · · + Zsαs, (12.2)

where Z1, . . . , Zs are known matrices and α1, . . . , αs are vectors of random
effects such that for each 1 ≤ i ≤ s, the components of αi are independent
and distributed as N(0, σ2

i ). It is also assumed that the components of ε are
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independent and distributed as N(0, τ2), and α1, . . . , αs, and ε are indepen-
dent. If the normality assumption is not made, but instead the components of
αi, 1 ≤ i ≤ s, and ε are assumed i.i.d., we have a non-Gaussian mixed ANOVA
model. It is clear that a mixed ANOVA model is a special case of (12.1) with
Z = (Z1 · · · Zs) and α = (α′1 · · · α′s)′. For mixed ANOVA models (Gaussian
or non-Gaussian), a natural set of variance components are τ2, σ2

1 , . . . , σ
2
s . Al-

ternatively, the Hartley–Rao form of variance components (Hartley and Rao
1967) are λ = τ2, γ1 = σ2

1/τ
2, . . . , γs = σ2

s/τ
2. We consider an example.

Example 12.2 (One-way random effects model). A model is called a random
effects model if the only fixed effect is an unknown mean. Suppose that the
observations yij , i = 1, . . . ,m, j = 1, . . . , ni, satisfy yij = μ+ αi + εij for all i
and j, where μ is an unknown mean, αi, i = 1, . . . ,m, are random effects which
are distributed independently as N(0, σ2), εij ’s are errors that are distributed
independently as N(0, τ2), and the random effects are independent of the
errors. It is easy to see that the one-way randon effects model is a special case
of the mixed ANOVA model with X = 1n, where n =

∑m
i=1 ni is the total

number of observations, and Z = diag(1ni , 1 ≤ i ≤ m) (recall that 1k denotes
the k-dimensional vector of 1’s).

A different type of linear mixed model is called the longitudinal model.
Following Datta and Lahiri (2000), a longitudinal model can be expressed as

yi = Xiβ + Ziαi + εi, i = 1, . . . ,m, (12.3)

where yi represents the vector of observations from the ith individual, Xi and
Zi are known matrices, β is an unknown vector of regression coefficients, αi

is a vector of random effects, and εi is a vector of errors. It is assumed that
αi, εi, i = 1, . . . ,m, are independent with αi ∼ N(0, Gi) and εi ∼ N(0, Ri),
where the covariance matricesGi andRi are known up to a vector θ of variance
components. Example 12.1 is a special case of the longitudinal model, in which
Xi = (x′ij)1≤j≤k , Zi = 1k, Gi = σ2, and Ri = τ2Ik (Ik denotes the k-

dimensional identity matrix), and so θ = (σ2, τ2)′. Note that the one-way
random effects model of Example 12.2 is a special case of both the mixed
ANOVA model and longitudinal model. However, in general, these two types
of linear mixed models are different (Exercises 12.2 and 12.3).

For the most part, linear mixed models have been used in situations where
the observations are continuous. However, discrete, or categorical, observa-
tions are often encountered in practice. For example, the number of heart
attacks of a patient during the past year takes the values 0, 1, 2, . . .; the blood
pressure is often measured in the categories low, median, and high; and many
survey results are binary such as yes (1) and no (0). McCullagh and Nelder
(1989) introduced an extension of linear models, known as generalized linear
models, or GLM, that applies to discrete of categorical observations. They
noted that the key elements of a classical linear model (i.e., a linear regression
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model) are (i) the observations are independent, (ii) the mean of the observa-
tion is a linear function of covariates, and (iii) the variance of the observation
is a constant. The extension to GLM consists of modification of (ii) and (iii)
above by (ii)′ the mean of the observation is associated with a linear function
of covariates through a link function; and (iii)

′
the variance of the observation

is a function of the mean. It is clear that independence of the observations is
still a basic requirement for GLM. To come up with a broader class of models
that apply to correlated discrete or categorical observations, we take a simi-
lar approach as above in extending the classical linear model to linear mixed
models by introducing random effects to the GLM.

To motivate the extension, let us first consider an alternative expression
of the Gaussian mixed model. Suppose that, given a vector of random ef-
fects, α, the observations y1, . . . , yn are (conditionally) independent such that
yi ∼ N(x′iβ + z′iα, τ

2), where xi and zi are known vectors, β is an unknown
vector of regression coefficients, and τ2 is an unknown variance. Furthermore,
suppose that α ∼ N(0, G), where G depends on a vector θ of unknown vari-
ance components. Let X and Z be the matrices whose ith rows are x′i and z′i,
respectively. It is easy to see that this leads to the (Gaussian) linear mixed
model (12.1) with R = τ2I (Exercise 12.4).

The two key elements in the above that define a Gaussian mixed model
are (i) conditional independence (given the random effects) and a conditional
distribution and (ii) the distribution of the random effects. We now use these
basic elements to define a generalized linear mixed model, or GLMM. Sup-
pose that, given a vector of random effects, α, the responses y1, . . . , yn are
(conditionally) independent such that the conditional distribution of yi given
α is a member of the exponential family with pdf

fi(yi|α) = exp

{
yiξi − b(ξi)

ai(φ)
+ ci(yi, φ)

}
, (12.4)

where b(·), ai(·), and ci(·, ·) are known functions and φ is a dispersion pa-
rameter that may or may not be known. The quantity ξi is associated with
μi = E(yi|α), which, in turn, is associated with a linear predictor

ηi = x′iβ + z′iα, (12.5)

where xi and zi are known vectors and β is a vector of unknown parameters
(the fixed effects), through a known link function g(·) such that

g(μi) = ηi. (12.6)

Furthermore, it is assumed that α ∼ N(0, G), where the covariance matrix G
may depend on a vector θ of unknown variance components.

Note that according to the properties of the exponential family (see Ap-
pendix A.3), one has b′(ξi) = μi. In particular, under the so-called canonical
link function, one has



12.2 REML: Restricted maximum likelihood 397

ξi = ηi;

that is, g = h−1, where h(·) = b′(·). Here, h−1 represents the inverse function
(not reciprocal) of h. A table of canonical links is given in McCullagh and
Nelder (1989, p. 32). We consider some special cases.

Example 12.3 (Mixed logistic model). Suppose that, given the random
effects α, binary responses y1, . . . , yn are conditionally independent Bernoulli.
Furthermore, with pi = P(yi = 1|α), one has

logit(pi) = x′iβ + z′iα,

where logit(p) = log{p/(1−p)} and xi and zi are as in the definition of GLMM.
This is a special case of the GLMM, in which the (conditional) exponential
family is Bernoulli and the link function is g(μ) = logit(μ). Note that in this
case the dispersion parameter φ = 1.

Example 12.4 (Poisson log-linear mixed model). The Poisson distribution
is often used to model responses that are counts. Supposed that, given the
random effects α, the counts y1, . . . , yn are conditionally independent such
that yi|α ∼ Poisson(λi), where

log(λi) = x′iβ + z′iα

and xi and zi are as in the definition of GLMM. Again, this is a special case of
GLMM, in which the (conditional) exponential family is Poisson and the link
function is g(μ) = log(μ). The dispersion parameter φ in this case is again
equal to 1.

The fact that the observations, or responses, are correlated makes it con-
siderably more difficult to develop large-sample techniques for mixed model
analysis. We first consider linear mixed models, for which the asymptotic the-
ory is much more complete than for GLMMs. We focus on selected topics of
interest. For a more complete coverage, see Jiang (2007).

12.2 REML: Restricted maximum likelihood

A main problem in mixed model analysis is estimation of the variance com-
ponents. In many cases (e.g., quantitative genetics), the variance components
are of main interest. In some other cases (e.g., longitudinal data analysis), the
variance components themselves are not of main interest, but they need to be
estimated in order to assess the variability of estimators of other quantities of
interest, such as the fixed effects. Some of the earlier methods in mixed model
analysis did not require the normality assumption. These include the analy-
sis of variance (ANOVA) method, or Henderson’s methods (Henderson 1953),
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and minimum norm quadratic unbiased estimation (MINQUE) method, pro-
posed by C. R. Rao (e.g., Rao 1972). However, the ANOVA method is known
to produce inefficient estimators of the variance components when the data
are unbalanced. The MINQUE method, on the other hand, depends on some
initial values of the variance components. Also, both ANOVA and MINQUE
can result in estimators that fall outside the parameter space.

If normality is assumed, the efficient estimators of the variance components
are the maximum likelihood estimators (MLEs). However, the latter had not
been in serious use in linear mixed models, until Hartley and Rao (1967). The
main reason was that, unlike the ANOVA estimator, the MLE under a lin-
ear mixed model was not easy to handle computationally in the earlier days.
There was also an issue regarding the asymptotic behavior of the MLE, be-
cause, unlike the traditional i.i.d. case, the observations are correlated under
a linear mixed model. Both issues were addressed by the Hartley–Rao paper.
Asymptotic properties of the MLE were further studied by Miller (1977) for
a wider class of models. On the other hand, the MLEs of the variance compo-
nents are, in general, biased. Here, we are not talking about the finite-sample
bias, which may vanish as the sample size increases. In fact, the following
example due to Neyman and Scott (1948) shows that the bias can lead to
inconsistent estimators of the variance components in a certain situation.

Example 12.5 (The Neyman-Scott problem). Recall Example 3 in the Pref-
ace, where two measurements, yij , j = 1, 2, are taken from the ith patient.
Write yij = μi + εij , i = 1, . . . ,m, j = 1, 2, where μi is the unknown mean of
the ith patient and εij is the measurement error, whose variance is of main
interest. Suppose that the εij ’s are independent and distributed as N(0, σ2).
It can be shown (Exercise 12.5) that the MLE of σ2 is given by

σ2
ML =

1

4m

m∑
i=1

(yi1 − yi2)
2

=
1

4m

m∑
i=1

(εi1 − εi2)
2. (12.7)

Applying the law of large numbers to the right side of (12.7), we see that σ̂ML

converges in probability to σ2/2, not σ2, as the number of patients, m, goes
to infinity. Therefore, the MLE is inconsistent in this case.

The inconsistency of the MLE in Example 12.5 is due to the presence
of many nuisance parameters—namely, the (unknown) means μi, 1 ≤ i ≤
m. Note that to do the maximum likelihood, one has to estimate all of the
parameters, including the nuisance ones. There are a total of m+ 1 unknown
parameters (why?), whereas the total sample size is 2m. Intuitively, this does
not look like a very profitable enterprise. However, there is an easy way to
get around, or get rid of, the nuisance parameters: by taking the differences
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zi = yi1 − yi2, ≤ i ≤ m. Now, considering the zi’s as the observations, there
are m observations and only one unknown parameter, σ2 [note that the zi’s
are independent and distributed as N(0, 2σ2)], so the situation has gotten
much better. In fact, the MLE of σ2 based on the zi’s is given by

σ̂2
REML =

1

2m

m∑
i=1

z2
i

=
1

2m

m∑
i=1

(εi1 − εi2)
2. (12.8)

It follows, again, by the law of large numbers, that σ̂2
REML converges in prob-

ability to σ2 as m→ ∞, and therefore is consistent.
The “trick” used above is a special case of a method called restricted,

or residual, maximum likelihood, or REML (and this is why the notation
σ̂2

REML is used). The method was proposed by Thompson (1962) and later put
together on a broader basis by Patterson and Thompson (1971). It applies not
only to the Neyman–Scott problem, where only the fixed effects are involved,
but also to linear mixed models in general. Let the dimensions of y and β be
n and p, respectively. Without loss of generality, assume that rank(X) = p.
Let A be a n × (n − p) matrix of full rank such that A′X = 0. The REML
estimators of the variance components are simply the MLEs based on z = A′y.
It is seen from (12.1) that the distribution of z does not depend on β. So by
making the transformation z = A′y, the fixed effects have been removed. It
can be shown that the REML estimators do not depend on the choice of A
(Exercise 12.6). Furthermore, several authors have argued that there is no
loss of information in REML for estimating the variance components (e.g.,
Patterson and Thompson 1971; Harville 1977; Jiang 1996). For alternative
derivations of REML, see Harville (1974), Barndorff-Nielson (1983), Verbyla
(1990), Heyde (1994), and Jiang (1996).

The REML estimators are typically derived under the normality assump-
tion. However, the latter is likely to be violated in real-life problems. Due
to such concerns, a quasilikelihood approach has been used in deriving the
REML estimators without the normality assumption. The idea is to use the
Gaussian REML estimators, even if the normality assumption does not hold
(e.g., Richardson and Welsh 1994, Heyde 1994, 1997, Jiang 1996, 1997a). More
specifically, the REML estimators are defined as the solution to the Gaussian
REML equation. For example, for the mixed ANOVA model with the Hartley–
Rao form of variance components, the REML equations are given by

y′Qy = λ(n− p),

y′QZiZ
′
iQy = λtr(Z ′iQZi), 1 ≤ i ≤ s, (12.9)

where Q = Γ−1−Γ−1X(X ′Γ−1X)−1X ′Γ−1 with Γ = In +
∑s

i=1 γiZiZ
′
i (n is

the dimension of y). See Jiang (2007, Section 1.4). In the sequel, such Gaussian
REML estimators are simply called REML estimators, , even if normality is
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not assumed. An important question then is: How does the REML estimators
behave (asymptotically) when normality does not hold? A related question
is regarding the asymptotic superiority of REML over (straight) maximum
likelihood (ML). It is seen in the Neyman–Scott problem (Example 12.5) that
the REML estimator remains consistent as the number of nuisance parameters
increases with the sample size, whereas the MLE fails to do so. Do we have
such a difference in asymptotic behavior in general? Like REML, the MLEs
are understood as the Gaussian MLEs when normality is not assumed.

To answer such questions, let us focus on the mixed ANOVA models de-
fined by (12.1) and (12.2). Instead of normality, we assume that the compo-
nents of αi are i.i.d. with mean 0 and variance σ2

i , 1 ≤ i ≤ s; the components
of ε are i.i.d. with mean 0 and variance τ2; and α1, . . . , αs, ε are independent.
We consider the Hartley–Rao form of variance components defined above Ex-
ample 12.2. Based on these assumptions, Jiang (1996, 1997a) developed an
asymptotic theory about REML estimation. Typically, a theorem requires
some technical conditions. It is important that (i) the technical conditions
make sense and (ii) ideally, only necessary assumptions are made. Regarding
(i), Jiang (1996) set up the conditions so that they can be interpreted in-
tuitively. For the most part, there are two conditions for the consistency of
REML estimators. The first condition states that the variance components
are asymptotically identifiable. To see what this means, let us forget about
the asymptotic part, for now, and consider a simple example.

Example 12.6. Consider the following random effects model: yi = μ+αi+εi,
i = 1, . . . ,m, where μ is an unknown mean, the random effects α1, . . . , αn are
independent and distributed as N(0, σ2), the errors ε1, . . . , εn are independent
and distributed as N(0, τ2), and the random effects and errors are indepen-
dent. It is clear that in this case, there is no way to “separate” the variance
of the random effects from that of the errors. In other words, the αi’s and εi’s
could have the distributions N(0, σ2 + a) and N(0, τ2 − a), respectively, for
any a such that |a| ≤ σ2 ∧ τ2, and the joint distribution of the yi’s remains
the same. Thus, in this case, the variance components are not (individually)
identifiable (in fact, only σ2 + τ2 is identifiable). If the variance components
are not identifiable, they cannot be estimated consistently (why?). Note that
the above model corresponds to the one-way random effects model of Example
12.2 with ni = 1, 1 ≤ i ≤ m. On the other hand, if ni = 2, 1 ≤ i ≤ m (or, more
generally, ni = k for some k > 1), then it is easy to see that the variance com-
ponents σ2 and τ2 are identifiable (intuitively, in this case, one can separate
the two variances). Now, let us consider some cases in between. Suppose that
all but a few ni’s are equal to 1 and the rest of the ni’ are equal to 2; then,
as one would expect, asymptotically, we will have an identifiability problem
with the variance components (this is because, asymptotically, the roles of a
few observations in model inference will be “washed out”; so the inference
is essentially based on the observations corresponding to the unidentifiable
variance components). On the other hand, if all but a few ni’s are equal to
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2 and the rest of the ni’ are equal to 1, then, asymptotically, we will be fine
(for the same reason) in identifying of the variance components. This is what
asymptotic identifiability means.

The second condition for the REML asymptotic theory states that the ob-
servations are infinitely informative. This is an extension of the simple concept
that the sample size goes to infinity in the case of independent observations.
However, there is a complication in extending this concept to linear mixed
models, which we explain with an example.

Example 12.7 (Two-way random effects model). Consider the random ef-
fects model yij = μ + ui + vj + eij , i = 1, . . . ,m1, j = 1, . . . ,m2, where ui’s
and vj ’s are random effects and eij ’s are errors, which are independent such
that ui ∼ N(0, σ2

1), vj ∼ N(0, σ2
2), and eij ∼ N(0, τ2). The question is: What

is the effective sample size? It turns out that the answer depends on which
variance component one is interested in estimating. It can be shown that,
asymptotically, the effective sample sizes for estimating σ2

1 , σ2
2 , and τ2 are

m1, m2, and m1m2, respectively. This can be seen from Theorem 12.1 below
but, intuitively, it makes sense. For example, the random effect u has m1 (un-
observed) realizations. Therefore, the effective sample size for estimating the
variance of u should be m1 (not the total sample size m1m2). In this special
case, the infinitely informative assumption simply means that both m1 and
m2 go to infinity, which is clearly necessary for consistently estimating all of
the variance components.

In conclusion, under the assumptions that (a) the variance components are
asymptotically identifiable and (b) the observations are infinitely informative,
Jiang (1996) proved that the REML estimators are consistent, and this is
true regardless of the normality assumption. Furthermore, the author estab-
lished asymptotic normality of the REML estimators under the additional
assumption that (c) the distributions of the random effects and errors are
nondegenerate (i.e., they are not two-point distributions). Once again, nor-
mality is not needed for the asymptotic normality. To illustrate these results
in further detail, we consider a special case of linear mixed models.

A linear mixed model is called a balanced mixed ANOVA model (or linear
mixed model with balanced data; e.g., Searle et al. 1992, Section 4.6) if it can
be expressed as (12.1) and (12.2), where

X = ⊗r+1
q=11

dq
nq
, Zi = ⊗r+1

q=11
iq
nq
, i ∈ S,

with d = (d1, . . . , dr+1) ∈ Sr+1 = {0, 1}r+1 [i.e., d is a (r + 1)-dimensionnal
vector whose components are 0 or 1], i = (i1, . . . , ir+1) ∈ S ⊂ Sr+1, i ∈ S,
11

k = 1k and 10
k = Ik (recall 1k and Ik are the k-dimensional vector of 1’s and

identity matrix, respectively). Here, r is the number of factors and nq is the
number of levels for the qth factor, 1 ≤ q ≤ r + 1, with r + 1 corresponding
to number of replications for each cell (a cell is a combination of levels of
different factors). Note that we now use the multiple index i instead of the
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single index i. Similarly, the variance components are τ2 and σ2
i , i ∈ S, or λ

and γi, i ∈ S in the Hartley–Rao form. Example 12.2, with ni = k, 1 ≤ i ≤ m,
and Example 12.7 are special cases of the balanced mixed ANOVA model. In
fact, in the former case, (12.1) and (12.2) reduce to

y = 1m ⊗ 1kμ+ Im ⊗ 1kα+ ε

with y = (y′1, . . . , y
′
m)′, yi = (yij)1≤j≤k, 1 ≤ i ≤ m, ε defined similarly, and

α = (αi)1≤i≤m. Similarly, in the latter case, (12.1) and (12.2) reduce to

y = 1m1 ⊗ 1m2 + Im1 ⊗ 1m2u+ 1m1 ⊗ Im2v + e

with y = (y′1, . . . , y
′
m1

)′, yi = (yij)1≤j≤m2 , 1 ≤ i ≤ m1, e defined similarly, u =
(ui)1≤i≤m1 , and v = (vj)1≤j≤m2 . For another example, see Exercise 12.7. The
balanced mixed ANOVA model is called unconfounded if (i) the fixed effects
are not confounded with the random effects and errors [i.e., rank(X,Zi) > p,
i ∈ S and X �= In] and (ii) the random effects and errors are not confounded

[i.e., the matrices In, ZiZ
′
i, i ∈ S are linearly independent]. Here, n =

∏r+1
q=1 nq

is the total sample size. Also, the dimension of αi is mi =
∏

iq=0 nq, i ∈ S.

For a general mixed ANOVA model (not necessarily balanced), the random
effects and errors are said to be nondegenerate if the squares of them are
not a.s. constants. We say the sequences of estimators λ̂, γ̂i, 1 ≤ i ≤ s, are
asymptotically normal if there are sequences of positive numbers pi(n) →
∞, 0 ≤ i ≤ s, and a sequence of matrices Bn satisfying

lim sup(‖B−1
n ‖ ∨ ‖Bn‖) < ∞,

Mn

⎡⎢⎢⎢⎣
p0(n)(λ̂− λ)
p1(n)(γ̂1 − γ1)

...
ps(n)(γ̂s − γs)

⎤⎥⎥⎥⎦ d−→ N(0, Is+1),

where ‖B‖ = λ
1/2
max(B′B). Define the symmetric (s + 1) × (s + 1) matrix

In whose (i, j) element is tr(ZiZ
′
iQZjZ

′
jQ)/pi(n)pj(n), 1 ≤ i, j ≤ s, the

(i, 0) element is tr(ZiZ
′
iQ)/λp0(n)pi(n), 1 ≤ i ≤ s, and the (0, 0) element is

(n − p)/λ2p2
0(n), where Q is defined below (12.9). Furthermore, define W =

[In
√
γ1Z1 · · · √γsZs] (block matrix),Q0 = W ′QW , andQi = W ′QZiZ

′
iQW ,

1 ≤ i ≤ s. Let Kn be the (s+ 1) × (s+ 1) matrix whose (i, j) element is

1

pi(n)pj(n)

n+m∑
l=1

{E(ξ4l ) − 3}Qi,llQj,ll

λ1(i=0)+1(j=0)
,

0 ≤ i, j ≤ s, where m =
∑s

i=1 mi, Qi,kl is the (k, l) element of Qi, ξl = εl/
√
λ,

1 ≤ l ≤ n, and ξl = αi,l−n−
∑

k<i
mk
/
√
λγi, n +

∑
k<i mk + 1 ≤ l ≤ n +∑

k≤i mk, 1 ≤ i ≤ s. Let Jn = 2In + Kn. Jiang (1996) proved the following.
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Theorem 12.1. Let the balanced mixed ANOVA model be unconfounded
and the variance components τ2 and σ2

i , i ∈ S, be positive. Then the following
hold as mi → ∞, i ∈ S:

(i) There exist with probability tending to 1 REML estimators λ̂ and γ̂i, i ∈
S, that are consistent, and the sequences

√
n− p(λ̂− λ),

√
mi(γ̂i − γi), i ∈ S,

are bounded in probability.
(ii) If, in addition, the random effects and errors are nondegenerate, the

REML estimators in (i) are asymptotically normal with p0(n) =
√
n− p,

pi(n) =
√
mi, i ∈ S, and Mn = J−1/2

n In.

Note that Kn vanishes under the normality assumption, so that Jn = 2In

and Mn = I1/2
n /

√
2. The result of (i) is in the form of Cramér consistency

(see Section 1.4). Later, Jiang (1997a) proved the Wald consistency of the
REML estimators, in the sense that the maximizer of the restricted Gaussian
likelihood (i.e., the likelihood of z = A′y under normality) is consistent, under
the same assumptions but without positiveness of the variance components.
Note that if the variance components are indeed positive, then, asymptoti-
cally, the maximizer of the restricted Gaussian likelihood constitutes a root
to the REML equations (why?), which, by definition, is the (vector of) REML
estimators without the normality assumption.

The proof of (i) is based on the following basic argument. Suppose that
ln(y, θ) is a function that depends on both the observations y and a d-
dimensional vector θ of parameters. Suppose that there are sequences of
positive numbers pi(n) and qi(n), 1 ≤ i ≤ d, such that pi(n) → ∞,
pi(n)qi(n) → ∞, and the following hold:

1

pi(n)

∂ln
∂θi

= OP(1), 1 ≤ i ≤ d, (12.10)[
1

pi(n)pj(n)

∂2ln
∂θi∂θj

]
1≤i,j≤d

= Gn + oP(1), (12.11)

where Gn is a sequence of matrices satisfying lim inf λmin(Gn) > 0, and

1

pi(n)pj(n)pk(n)
sup

θ∈Θn

∣∣∣∣∣ ∂3ln(θ̃)

∂θi∂θj∂θk

∣∣∣∣∣ = oP(1), 1 ≤ i, j, k ≤ d, (12.12)

where Θn = {θ̃ : |θ̃i − θi| < qi(n), 1 ≤ i ≤ d}. Let an denote the vector whose
ith component is given by the left side of (12.10), and let Pn = diag{pi(n), 1 ≤
i ≤ d}. The next thing we do is to choose a point θn that is “close enough”
to θ. This is defined by

Pn(θn − θ) = −G̃−1
n an, (12.13)

where G̃n is the left side of (12.11). It can be shown (Exercise 12.8) that
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ln(θ̃) − ln(θn) =
1

2
{Pn(θ̃ − θn)}′G̃n{Pn(θ̃ − θn)} + rn, (12.14)

where rn is uniformly ignorable compared with the first term as θ̃ varies on
the boundary of the ellipsoid En = {θ̃ : |Pn(θ̃ − θ)| ≤ 1}; that is, Ēn =
{θ̃ : |Pn(θ̃ − θ)| = 1}. It follows that, asymptotically, we have l(θ̃) > l(θn)
for all θ̃ ∈ Ēn; hence, there is a solution to ∂ln/∂θ = 0 in the interior of En

(why?). The above argument is due to Weiss (1971). The argument leads to the
existence of the REML estimator by letting ln be the negative of the restricted
Gaussian log-likelihood. The consistency and boundedness in probability of
Pn(θ̂ − θ), where Pn = daig(

√
n− p,

√
mi, i ∈ S) and θ = (λ, γi, i ∈ S)′,

follows from the closeness of θn to θ [i.e., (12.10) and (12.13)]. It turns out
that the simple assumptions of Theorem 12.1 [above (i)] are all that is needed
to carry out the above arguments, rigorously.

To prove (ii), note that, by (i) and the Taylor expansion, one can show

−an = GnPn(θ̂ − θ) + oP(1), (12.15)

where θ̂ is the REML estimator that satisfies (i) (Exercise 12.8). The key

step in proving the asymptotic normality of θ̂ is thus to argue that an is
asymptotically normal. With ln being the negative of the restricted Gaussian
log-likelihood, the components of an are quadratic forms of the random effects
and errors (Exercise 12.9). Thus, the asymptotic normality follows from the
CLT for quadratic forms that was established in Section 8.8 (as an application
of the martingale central limit theorem). Note that the additional assumption
that the random effects and errors are nondegenerate is necessary for the
asymptotic normality of the REML estimators (Exercise 12.10).

The second part of the asymptotic theory on REML is regarding its com-
parison with ML. Again, we consider the special case of balanced mixed
ANOVA models. For any u, v ∈ Sr+1 = {0, 1}r+1, define u ∨ v = (u1 ∨
v1, . . . , ur+1 ∨ vr+1) and Su = {v ∈ S : v ≤ u}, where v ≤ u if and only if
uq ≤ vq, 1 ≤ q ≤ r + 1. Recall the expression mu =

∏
uq=0 nq. Furthermore,

let mu,S = minv∈Su mv if Su �= ∅ and mu,S = 1 otherwise. For two sequences
of constants bn and cn, bn ∼ cn means that bn/cn = O(1) and cn/bn = O(1).
Jiang (1996) proved the following.

Theorem 12.2. Let the balanced mixed ANOVA model be unconfounded
and the variance components τ2 and σ2

i , i ∈ S be positive. Then the following
hold as mi → ∞, i ∈ S:

(i) There exist with probability tending to 1 the MLEs of λ and γi, i ∈ S,
that are consistent if and only if

p

n
→ 0,

mi∨dmi∨d,S

m2
i

→ 0, i ∈ S. (12.16)

(ii) If, in addition, the random effects and errors are nondegenerate, then
there exist with probability tending to 1 the MLEs of λ and γi, i ∈ S, that
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are asymptotically normal if and only if

p0(n) ∼ √
n− p, pi(n) ∼ √

mi, i ∈ S (12.17)

and

p√
n
→ 0,

mi∨dmi∨d,S

m
3/2
i

→ 0, i ∈ S. (12.18)

(iii) When (12.18) is satisfied, the MLEs are asymptotically normal with
the same pi(n), i ∈ {0} ∪ S, and Mn as for the REML estimators.

A comparison between Theorem 12.1 and Theorem 12.2 shows clearly the
asymptotic superiority of REML over ML. Note that the overall assumptions
of the two theorems are exactly the same, under which the REML estimators
are consistent without any further assumption; whereas the MLE are consis-
tent if and only if (12.16) holds. For the most part, this means that the rate at
which the number of fixed effects increases must be slower than that at which
the sample size increases. For example, in the Neyman–Scott problem (Exam-
ple 12.5) we have p/n = 1/2; so (12.16) is violated. Similarly, under the same
additional assumption that the random effects and errors are nondegenerate,
the REML estimators are asymptotically normal without any further assump-
tion; whereas the MLE are asymptotically normal if and only if (12.17) and
(12.18) hold. Again, (12.18) fails, of course, in the Neyman–Scott problem.

Finally, when (12.18) holds, the REML estimators and MLEs are asymp-
totically equivalent, so neither has (asymptotic) superiority of over the other.

12.3 Linear mixed model diagnostics

Diagnostics or model checking has been a standard procedure for regression
analysis (e.g., Sen and Srivastava 1990). There is a need for developing similar
techniques for mixed models. For the most part, diagnostics include informal
and formal model checking (McCullagh and Nelder 1989, p. 392). Informal
model checking uses diagnostic plots for inspection of potential violations of
model assumptions, whereas a standard technique for formal model checking
is goodness-of-fit tests. To date, the diagnostic tools for linear mixed models
are much more developed than for GLMMs. Therefore, we will only consider
linear mixed model diagnostics.

A basic tool for regression diagnostics is the residual plots. Note that a
linear regression model corresponds to (12.1) with Z = 0; so, in a way, the
residuals may be viewed as the estimated errors (i.e., ε). A Similar idea has
been used for linear mixed model diagnostics, in which standard estimates of
the random effects are the empirical best linear unbiased predictors (EBLUP).
See, for example, Lange and Ryan (1989) and Calvin and Sedransk (1991).
The BLUP for the random effects, α, in (12.1) can be expressed as (e.g., Jiang
2007, Section 2.3)
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α̃ = GZ ′V −1(y −Xβ̃), (12.19)

where V = Var(y) = ZGZ ′ +R and

β̃ = (X ′V −1X)−1X ′V −1y (12.20)

is the best linear unbiased estimator (BLUE) of β. Here, it is assumed that V
is known; otherwise, the expressions are not computable. In practice, however,
V is unknown and typically depends on a vector, θ, of variance components.
If one replaces θ by θ̂, a consistent estimator, one obtains the EBLUP

α̂ = GZ ′V̂ −1(y −Xβ̂), (12.21)

where V̂ is V with θ replaced by θ̂ and β̂ is β̃ with V replaced by V̂ . Thus, a
natural idea is to use the plot of α̂ for checking for distributional assumptions
regarding the random effects. Consider, for example, the one-way random
effects model of Example 12.2. The EBLUPs for the random effects, αi, 1 ≤
i ≤ m, are given by

α̂i =
niσ̂

2

τ̂2 + niσ̂2
(ȳi· − μ̂), i = 1, . . . ,m,

where σ̂2 and τ̂2 are, say, the REML estimators of σ2 and τ2, ȳi· =
n−1

i

∑ni

j=1 yij , and

μ̂ =

{
m∑

i=1

ni

τ̂2 + niσ̂2

}−1 m∑
i=1

niȳi·
τ̂2 + niσ̂2

.

One may use the EBLUPs for checking the normality of the random effects
by making a Q-Q plot of the α̂i’s. The Q-Q plot has the quantiles of the α̂i’s
plotted against those of the standard normal distribution. If the plot is close
to a straight line, the normality assumption is reasonable.

However, empirical studies have suggested that the EBLUP is not accurate
in checking the distributional assumptions about the random effects (e.g.,
Verbeke and Lesaffre 1996). Jiang (1998c) provided a theoretical explanation
for the inaccuracy of EBLUP diagnostics. Consider, once again, the one-way
random effects model of Example 12.2 and assume, for simplicity, that ni = k,
1 ≤ i ≤ m. Define the empirical distribution of the EBLUPs as

F̂ (x) =
1

m

m∑
i=1

1(α̂i≤x).

If the latter converges, in a certain sense, to the true underlying distribution of
the random effects, say, F (x), then the EBLUP is asymptotically accurate for

the diagnostic checking. It can be shown that F̂ (x)
P−→ F (x) for every x that

is a continuity point of F provided that m → ∞ and k → ∞. However, the
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latter assumption is impractical in most applications of linear mixed models.
For example, in small area estimation (see the next chapter), ni represents the
sample size for the ith small-area (e.g., a county), which is typically small. So
it is not reasonable to assume that ni → ∞, or k → ∞ (but it is reasonable
to assume m → ∞). In fact, one of the main motivations of introducing
the random effects is that there is insufficient information for estimating the
random effects individually (as for estimating a fixed parameter), but the
information is sufficient for estimating the variance of the random effects (see
the previous section). In other words, m is large while the ni’s are small.

For the goodness-of-fit tests, we first consider the mixed ANOVA model
of (12.1) and (12.2). The hypothesis can be expressed as

H0 : Fi(·|σi) = F0i(·|σi), 1 ≤ i ≤ s, G(·|τ) = G0(·|τ), (12.22)

where Fi(·|σi) is the distribution of the components of αi, which depends on
σi, 1 ≤ i ≤ s, and G(·|τ) is the distribution of the components of ε, which
depends on τ . Here, F0i, 1 ≤ i ≤ s, and G0 are known distributions (such as
the normal distribution with mean 0).

A special case of (12.22), in which s = 2, was considered in Section 2.6,
where a χ2-test based on estimated cell frequencies was proposed (Jiang,
Lahiri, and Wu 2001). The approach requires that the estimator of the model

parameters, θ̂, be independent of the data used to compute the cell frequencies.
Typically, such an independent estimator is obtained either from a different
dataset or by spliting the data into two parts, with one part used in computing
θ̂ and the other part used in computing the cell frequencies. The drawbacks
of this approach are the following: (i) In practice there may not be another
dataset available and (ii) spliting the data may result in loss of efficiency
and therefore reduced power of the test. Jiang (2001) proposed a simplified
χ2 goodness-of-fit test for the general hypothesis (12.22) that does not suffer
from the above drawbacks. He noted that the denominator in Pearson’s χ2-
statistic [e.g., (2.23)] was chosen such that the limiting null distribution is χ2.
However, except for a few special cases (such as binomial and Poisson distri-
butions), the asymptotic null distribution of Pearson’s χ2-test is not χ2 if the
expected cell frequencies are estimated by the maximum likelihood method,
no matter what denominators are used in place of the Êk’s in (2.24) (see our
earlier discussion in Section 2.6). Therefore, Jiang proposed to simply drop
the Êk’s in the denominator. This leads to the simplified test statistic

χ̂2 =
1

an

M∑
k=1

{
Nk − Eθ̂(Nk)

}2
, (12.23)

where an is a suitable normalizing constant, Nk =
∑n

i=1 1(yi∈Ik) (i.e., the
observed frequency for the interval Ik), and M is the number of intervals, or
cells. Here, Eθ denotes the expectation given that θ is the parameter vector.

A key step in developing the latest goodness-of-fit test is to derive the
asymptotic distribution of (12.23). This also involves the determination of
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an, or the order of an which is all we need. The main tool for deriving the
asymptotic distribution is, again, the martingale central limit theorem. We
illustrate the idea through an example.

Example 12.8. Consider the following extension of Example 12.7:

yij = x′ijβ + ui + vj + eij ,

where xij is a p-dimensional vector of known covariates, β is an unknown
vector of fixed effects, and everything else is as in Example 12.7 except that
the random effects and errors are not assumed normal. Instead, it is assumed
that ui ∼ F1(·|σ1), vj ∼ F2(·|σ2), and eij ∼ G(·|τ). The null hypothesis is
thus (12.22) with s = 2. Write ξn = (ξn,k)1≤k≤M , where ξn,k = Nk −Eθ̂(Nk).
Then the test statistic (12.23) can be expressed as

χ̂2 = a−1
n |ξn|2 =

∣∣∣a−1/2
n T ′nξn

∣∣∣2
for any orthogonal matrix Tn. If we can find Tn such that

a−1/2
n T ′nξn

d−→ N(0, D), (12.24)

where D = diag(λ1, . . . , λM ), then by the continuous mapping theorem (The-
orem 2.12), we have

χ̂2 d−→
M∑

k=1

λkZ
2
k , (12.25)

where Z1, . . . , ZM are independent N(0, 1) random variables. The distribution
of the right side of (12.25) is known as a weighted χ2. To show (12.24), we
need to show that for any b ∈ RM , we have

b′a−1/2
n T ′nξn

d−→ N(0, b′Db) (12.26)

(Theorem 2.14). To show (2.26), we decompose the left side as

b′a−1/2
n T ′nξn = a−1/2

n

M∑
k=1

bn,k{Nk − Eθ(Nk)}

+ a−1/2
n

M∑
k=1

bn,k{Eθ̂(Nk) − Eθ(Nk)}, (12.27)

where bn,k is the kth component of bn = Tnb and θ denotes the true parameter
vector. Suppress, for notation simplicity, the subscript θ in the first term of
the right side of (12.27) (and also note that the expectation and probability
are under the null hypothesis); we can write
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Nk − E(Nk) =

m1∑
i=1

m2∑
j=1

{1(yij∈Ik) − P(yij ∈ Ik)}.

Note that the summand has mean 0, but we need more than this. Here, we
use a technique called projection. Write (verify this)

1(yij∈Ik) − P(yij ∈ Ik)

= P(yij ∈ Ik|u) − P(yij ∈ Ik)

+ P(yij ∈ Ik|v) − P(yij ∈ Ik)

+ 1(yij∈Ik) − P(yij ∈ Ik|u, v)
+ P(yij ∈ Ik|u, v) − P(yij ∈ Ik|u) − P(yij ∈ Ik|v) + P(yij ∈ Ik)

= ζ1,ijk + ζ2,ijk + δ1,ijk + δ2,ijk. (12.28)

In an exercise (Exercise 12.11), the reader is asked to show the following: (i)∑m1

i=1

∑m2

j=1 δl,ijk = OP(
√
m1m2), l = 1, 2; (ii)

m1∑
i=1

m2∑
j=1

ζ1,ijk =

m1∑
i=1

ζ1,ik(ui),

where ζ1,ik(ui) =
∑m2

j=1 ζ1,ijk is a function of ui; and, similarly, (iii)

m1∑
i=1

m2∑
j=1

ζ2,ijk =

m2∑
j=1

ζ2,jk(vj),

where ζ2,jk(vj) =
∑m1

i=1 ζ2,ijk is a fundtion of vj . It follows that

Nk − E(Nk) =

m1∑
i=1

ζ1,ik(ui) +

m2∑
j=1

ζ2,jk(vj)

+ OP(
√
m1m2). (12.29)

Note that the first two terms on the right side of (12.29) are OP(m
1/2
1 m2) and

OP(m1m
1/2
2 ), respectively (Exercise 12.11).

Now, consider the difference Eθ̂(Nk)−Eθ(Nk). Consider Eθ(Nk) as a func-
tion of θ, say, ψk(θ). We have, by the Taylor expansion,

ψk(θ̂) − ψk(θ) ≈
(
∂ψk

∂θ′

)
(θ̂ − θ).

We now use an asymptotic expansion (see Jiang 1998c) that for any sequence
of constant vectors cn, we have

c′n(θ̂ − θ) ≈ λ′nw + w′Λnw − E(w′Λnw) + a remaining term,
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where λn is a sequence of constant vectors, Λn is a sequence of constant
symmetric matrices, and w = (e′, u′, v′)′. Here, ≈ means that the remaining
term is of lower order. Note that both λ′nw and w′Λnw − E(w′Λnw) can be
expressed as sums of martingale differences. Note that the components of
w may be denoted by wl, 1 ≤ l ≤ N = n + m1 + m2, where n = m1m2,
wl, 1 ≤ l ≤ n, correspond to the eij ’s, wl, n + 1 ≤ l ≤ n + m1, to the ui’s,
and wl, n + m1 + 1 ≤ l ≤ N , to the vj ’s. For example, let λn,kl be the (k, l)
element of Λn. Then we have (also see Example 8.3)

w′Λnw − E(w′Λnw) =

N∑
k,l=1

λn,klwkwl −
N∑

l=1

λn,llE(w2
l )

=

N∑
l=1

λn,ll{w2
l − E(w2

l )} + 2

N∑
l=1

∑
k<l

λn,klwkwl

=

N∑
l=1

[
λn,ll{w2

l − E(w2
l )} + 2

(∑
k<l

λn,klwk

)
wl

]
.

The summands are a sequence of martingale differences with respect to the
σ-fields Fl = σ(wk, k ≤ l), 1 ≤ l ≤ N . Also, note that the sum of the first

two terms on the right side of (12.29) can be expressed as
∑N

l=n+1 ζl(wl) for
some functions ζl(·) (that depend on k) such that ζl(wl),Fl, n+1 ≤ l ≤ N , is
a sequence of martingale differences. It follows that (12.27) can be expressed
as a sum of martingale differences plus a term of lower order. The martingale
central limit theorem (Theorem 8.7) is then applied.

Like Pearson’s χ2-test, the above goodness-of-fit test depends on the num-
ber of intervals M and how to choose the intervals Ik, 1 ≤ k ≤ M . It turns
out that optimal choice of these intervals or cells is a difficult problem and
there is no simple solution (e.g., Lehmann 1999, Section 5.7). Furthermore, the
class of linear mixed models considered by Jiang (2001)—namely, the mixed
ANOVA model—is a bit restrictive. In particular, the test does not apply to
the problem of testing for multivariate normality of the random effects αi in
the longitudinal linear mixed model (12.3). For simplicity, suppose that the
error εi is normal and we are interested in testing the hypothesis

H0 : αi ∼ Nd(μ,Σ), (12.30)

a d-dimensional multivariate normal distribution with (unknown) mean vector
μ and covariance matrix Σ, where d > 1. Claeskens and Hart (2009) proposed
an alternative approach to the resting of (12.30). For simplicity, consider the
case d = 2. Write αi = μ + Γui, where ΓΓ ′ = Σ. Then the problem is
equivalent to testing the hypothesis that ui ∼ Nd(0, I), where I is the d-
dimensional identity matrix. Consider an Edgeworth expansion (see Section
4.3) of the density of ui, f , around the standard bivariate normal density, φ:

f(u) = φ(u){1 + κ3H3(u) + κ4H4(u) + · · ·},
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where κ3, κ4, . . . are associated with the cumulants of ui, and H3, H4, . . . are
Hermite polynomials. The latter is defined by

Hj(u) = (−1)jφ−1(u)
djφ(u)

duj
, j = 1, 2, . . . .

In particular, we have H3(u) = u3 − 3u and H4(u) = u4 − 6u2 + 3. By a
reordering of the terms in the expansion, we may approximate the infinite se-
ries by a finite-degree polynomial. This leads to the consideration of a density
function of the form

fM (u) = P 2
M (u)φ(u), (12.31)

where PM is a bivariate polynomial that can be expressed as

PM (u) =
∑

s+t≤M

astu
s
1u

t
2 (12.32)

and the coefficients ast satisfy the constraint∫
fM (u) du = 1. (12.33)

For example, with M = 2, we have

P2(u) = a00 + a10u1 + a01u2 + a20u
2
1 + a11u1u2 + a02u

2
2.

The idea is that the distribution under the null hypothesis is a special case
of (12.31) with M = 0. If there is evidence, provided by the data, suggesting
that M > 0, then the null hypothesis should be rejected.

The question then is how to obtain the statistical evidence for M > 0.
Claeskens and Hart proposed using Akaike’s AIC (see Section 9.3). Let l̂M
denote the maximized log-likelihood function under fM , and let l̂0 denote
that under the null density. The AIC can be expressed as

AIC(M) = −2l̂M + 2(NM − 1), (12.34)

where NM is the number of coefficients ast involved in PM and the subtraction
of 1 is due to the integral constraint (12.33) (so NM − 1 is the number of free
coefficients). It can be shown that NM = 1 + M(M + 3)/2 (Exercise 12.12).
Thus, the null hypothesis is rejected if

min
1≤M≤L

{AIC(M) − AIC(0)} < 0,

where L is an upper bound for the M under consideration, or, equivalently,

Tn = max
1≤M≤L

2(l̂M − l̂0)

M(M + 3)
> 1.
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This is the test statistic proposed by Claeskens and Hart (2009). The authors
stated that the asymptotic null distribution of Tn is that of

max
r≥1

1

r(r + 3)

r∑
j=1

χ2
j+1,

where χ2
2, χ

2
3, . . . are independent random variables such that χ2

j has a χ2-
distribution with j degrees of freedom (j ≥ 2). In practice, a Monte Carlo
method may be used to obtain the large-sample critical values for the test.

12.4 Inference about GLMM

Unlike linear mixed models, the likelihood function under a GLMM typically
does not have an analytic expression. In fact, the likelihood function may
involve high-dimensional intergrals that are difficult to evaluate even numer-
ically. The following is an example.

Example 12.9. Suppose that, given the random effects ui, 1 ≤ i ≤ m1,
and vj , 1 ≤ j ≤ m2, binary responses yij , i = 1, . . . ,m1, j = 1, . . . ,m2, are
conditionally independent such that, with pij = P(yij = 1|u, v),

logit(pij) = μ+ ui + vj ,

where μ is an unknown parameter, u = (ui)1≤i≤m1 , and v = (vj)1≤j≤m2 .
Furthermore, the random effects ui’s and vj ’s are independent such that ui ∼
N(0, σ2

1) and vj ∼ N(0, σ2
2), where the variances σ2

1 and σ2
2 are unknown.

Thus, the unknown parameters involved in this model are ψ = (μ, σ2
1 , σ

2
2)′. It

can be shown (Exercise 12.13) that the likelihood function under this model
for estimating ψ can be expressed as

c− m1

2
log(σ2

1) − m2

2
log(σ2

2) + μy··

+ log

∫
· · ·
∫ ⎡⎣m1∏

i=1

m2∏
j=1

{1 + exp(μ+ ui + vj)}−1

⎤⎦
× exp

⎛⎝m1∑
i=1

uiyi· +
m2∑
j=1

vjy·j − 1

2σ2
1

m1∑
i=1

u2
i −

1

2σ2
2

m2∑
j=1

v2
j

⎞⎠
du1 · · ·dum1dv1 · · · dvm2 , (12.35)

where c is a constant, y·· =
∑m1

i=1

∑m2

j=1 yij , yi· =
∑m2

j=1 yij , and y·j =∑m1

i=1 yij . The multidimensional integral involved has dimension m1 + m2

(which increases with the sample size), and it cannot be further simplified.
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Due to the numerical difficulties of computing the maximum likelihood
estimators, some alternative methods of inference have been proposed. One
approach is based on Laplace approximation to integrals (see Section 4.6).
First, note that the likelihood function under the GLMM defined in Section
12.1 can be expressed as

Lq ∝ |G|−1/2

∫
exp

{
−1

2

n∑
i=1

di − 1

2
α′G−1α

}
dα,

where the subscript q indicates quasilikelihood and

di = −2

∫ μi

yi

yi − u

ai(φ)v(u)
du,

known as the (quasi-) deviance. What it means is that the method to be de-
veloped does not require the full specification of the conditional distribution
(12.4)—only the first two conditional moments are needed. Here, v()̇ corre-
sponds to the variance function; that is,

var(yi|α) = ai(φ)v(μi) (12.36)

and μi = E(yi|α). In particular, if the underlying conditional distribution
satisfies (12.4), then Lq is the true likelihood. Using Laplace approximation
(4.64), one obtains an approximation to the logarithm of Lq:

lq ≈ c− 1

2
log |G| − 1

2
log |q′′(α̃)| − q(α̃), (12.37)

where c does not depend on the parameters,

q(α) =
1

2

(
n∑

i=1

di + α′G−1α

)
,

and α̃ minimizes q(α). Typically, α̃ is the solution to the equation

q′(α) = G−1α−
n∑

i=1

yi − μi

ai(φ)v(μi)g′(μi)
zi = 0,

where μi = x′iβ + z′iα. It can be shown that

q′′(α) = G−1 +
n∑

i=1

ziz
′
i

ai(φ)v(μi){g′(μi)}2
+ r, (12.38)

where the remainder term r has expectation 0 (Exercise 12.14). If we denote
the term in the denominator of (12.38) by w−1

i and ignore the term r, assuming
that it is in probability of lower order than the leading terms, then we have a
further approximation
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q′′(α) ≈ Z ′WZ +G−1,

where Z is the matrix whose ith row is z′i, and W = diag(w1, . . . , wn). Note
that the quantity wi is known as the GLM iterated weights (e.g., McCul-
lagh and Nelder 1989, Section 2.5). By combining approximations (12.37) and
(12.38), one obtains

lq ≈ c− 1

2

(
log |I + Z ′WZG| +

n∑
i=1

d̃i + α̃′G−1α̃

)
, (12.39)

where d̃i is di with α replaced by α̃. A further approximation may be obtained
by assuming that the GLM iterated weights vary slowly as a function of the
mean. Then because the first term inside the (· · ·) in (12.39) depends on β
only through W , one may ignore this term and thus approximate lq by

lpq ≈ c− 1

2

(
n∑

i=1

d̃i + α̃′G−1α̃

)
. (12.40)

Approximation (12.40) was first derived by Breslow and Clayton (1993), who
called the procedure penalized quasilikelihood (PQL) by making a connection
to the PQL of Green (1987).

It is clear that a number of approximations are involved in PQL. If the
approximated log-likelihood, lpq, is used in place of the true log-likelihood,
we need to know how much the approximations affect inference about the
GLMM, which include, in particular, estimation and testing problems. Let
us first consider a testing problem. There is considerable interest, in prac-
tice, in testing for overdispersion, heteroscedasticity, and correlation among
responses. In some cases, the problem is equivalent to testing for zero variance
components. Lin (1997) considered a GLMM that has an ANOVA structure
for the random effects so that g(μ) = [g(μi)]1≤i≤n can be expressed as (12.2),
where α1, . . . , αs are independent vectors of random effects such that the
components of αi are independent with distribution Fi whose mean is 0 and
variance is σ2

i , 1 ≤ i ≤ s. The null hypothesis is

H0 : σ2
1 = · · · = σ2

s = 0. (12.41)

Note that under the null hypothesis, there are no random effects involved; so
the GLMM become a GLM. In fact, let θ = (σ2

1 , . . . , σ
2
s)′ and l(β, θ) denote the

second-order Laplace approximate quasi-log-likelihood. The latter is obtained
in the similar way as PQL except using the second-order Taylor expansion
in the Laplace approximation (see Section 4.6). A global score statistic for
testing (12.41) is defined as

χ2
G = Uθ(β̂)′Ĩ(β̂)−1Uθ(β̂),

where β̂ is the MLE under the null hypothesis—that is, the MLE under the
GLM, assuming independence of the responses—Uθ(β) is the gradient vector
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with respect to θ (i.e., ∂l/∂θ), and Ĩ is the information matrix of θ evaluated
under H0, which takes the form

Ĩ = Iθθ − I ′βθI
−1
ββ Iβθ

with Iθθ = E{(∂l/∂θ)(∂l/∂θ′)}, Iβθ = E{(∂l/∂β)(∂l/∂θ′)}, and Iββ is Iθθ with

θ replaced by β. Note that given the estimator β̂, under the null hypothesis,
the information matrix can be estimated, using the properties of the exponen-
tial family (McCullagh and Nelder 1989, p. 350). In fact, Lin (1997) showed
that the information matrix may be estimated when the exponential-family
assumption is replaced by some weaker assumptions on the cumulants of the
responses. Furthermore, the author showed that under some regularity con-
ditions, the global score statistic χ2

G follows a χ2
s-distribution asymptotically

under (12.41). Some optimality of the test was also established. So, for the
above testing problem, the PQL works fine. In fact, the second-order Laplace
approximation is not essential for the asymptotic results to hold. What is
essential is that the Laplace approximation (first or second order) becomes
exactly accurate under the null hypothesis. Also, note that under the null
hypothesis, the observations become independent. Therefore, the asymptotic
distribution can be derived from the CLT for sums of independent random
variables (see Section 6.4).

On the other hand, it is quite a different story for the estimation problems.
First, let us complete the PQL for estimating the variance component param-
eters. Let θ denote the vector of variance components. So far in the derivation
of PQL we have held θ fixed. Therefore, the maximizer of lpq depends on θ.
Breslow and Clayton (1993) proposed substituting these “estimators” back
to (12.39) and thus obtaining a profile quasi-log-likelihood function. Further-
more, the authors suggested further approximations that led to a similar form
of REML in linear mixed models. See Breslow and Clayton (1993, pp. 11–12)
for details. However, the procedure is known to lead to inconsistent estimators
of the model parameters. Jiang (1999b) gave an example to demonstrate the
inconsistency of PQL estimators, as follows.

Example 12.10. Consider a special case of the mixed logistic model of
Example 12.3 that can be expressed as

logit{P(yij = 1|α)} = x′ijβ + αi,

where yij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are binary responses that are conditionally
independent given the random effects α = (αi)1≤i≤m, xij = (xijk)1≤k≤p is a
vector of covariates, and β = (βk)1≤k≤p, a vector of unknown fixed effects.
It is assumed that α1, . . . , αm are independent and distributed as N(0, σ2).
For simplicity, let us assume that σ2 is known and that ni, 1 ≤ i ≤ m, are
bounded. The xijk’s are assumed to be bounded as well. Let φi(t, β) denote
the unique solution u to the following equation:
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u

σ2
+

ni∑
j=1

h(x′ijβ + u) = t, (12.42)

where h(x) = ex/(1 + ex) (Exercise 12.15). Then the PQL estimator of β is
the solution to the following equation:

m∑
i=1

ni∑
j=1

{yij − h(x′ijβ + α̃i)}xijk = 0, 1 ≤ k ≤ p, (12.43)

where α̃i = φi(yi·, β) with yi· =
∑ni

j=1 yij. Denote this solution by β̂.

Suppose that β̂ is consistent; that is, β̂
P−→ β. Hereafter in this example

β denotes the true parameter vector. Let ξi,k denote the inside summation in
(12.43); that is, ξi,k =

∑ni

j=1{yij − h(x′ijβ + α̃i)}xijk . Then, by (12.42),

1

m

m∑
i=1

ξi,k =
1

m

m∑
i=1

ni∑
j=1

{ψij(β̂) − ψij(β)},

where ψij(β) = h(x′ijβ + α̃). Now, by the Taylor expansion, we have

ψij(β̂) − ψij(β) =

p∑
k=1

ψij

∂βk

∣∣∣∣
β̃

(β̃k − βk),

where β̃ lies between β and β̂. It can be derived from (12.42) that

∂α̃i

∂βk
= −

∑ni

j=1 h
′(x′ijβ + α̃i)xijk

σ−2 +
∑ni

j=1 h
′(x′ijβ + α̃i)

(12.44)

(Exercise 12.15). Thus, it can be shown that (verify)∣∣∣ψij(β̂) − ψij(β)
∣∣∣ ≤ p

4

(
1 +

σ2

4
ni

)(
max
i,j,k

|xijk|
)

max
1≤k≤p

|β̂k − βk|. (12.45)

It follows that m−1
∑m

i=1 ξi,k
P−→ 0, as m→ ∞.

On the other hand, ξ1,k, . . . , ξm,k are independent random variables; so it

follows by the LLN that m−1
∑m

i=1{ξi,k − E(ξi,k)} P−→ 0 as m → ∞. If we
combine the results, the conclusion is that

1

m

m∑
i=1

E(ξi,k) −→ 0, 1 ≤ k ≤ p. (12.46)

However, (12.46) is not true, in general (see Exercise 12.15). The contradiction

shows that β̂ cannot be consistent in general.



12.4 Inference about GLMM 417

We have seen various applications of the Taylor expansion in statistical in-
ference. In some cases, such as the delta method (Example 4.4), the expansion
preserves good asymptotic properties of the estimators, such as consistency
and asymptotic normality; in some other cases, such as PQL, the expansion
leads to inconsistent estimators (Laplace expansion is derived from the Tay-
lor expansion). The question is: Why is there such a difference? In the first

case, the expansion is in the form f(θ̂) ≈ f(θ) + f ′(θ)(θ̂ − θ) + · · ·, where θ̂ is
a consistent estimator of θ. It follows that, as the sample size increases, the
error of the expansion (truncated after a finite number of terms) vanishes. In
the second case, the expansion is in the form f(y) ≈ f(x)+ f ′(x)(y−x)+ · · ·,
where y is the variable being integrated over. For any fixed y �= x, the error of
the expansion (again, truncated after a finite number of terms) will not vanish
as the sample size increases, no matter how close y is to x. In fact, as far as
consistency is concerned, it does not matter whether one uses the first-order,
second-order, or any fixed-order Laplace approximation in PQL, the resulting
estimators would still be inconsistent.

Another alternative to maximum likelihood is based on the method of
moments, one of the oldest methods of finding point estimators, dating back
at least to Karl Pearson in the 1800s. It has the virtue of being conceptu-
ally simple to use. In the i.i.d. case, the method may be described as fol-
lows. Let X1, . . . , Xn be i.i.d. observations whose distribution depends on a
p-dimensional vector θ of parameters. To estimate θ, we consider the first p
sample moments of the observations and let them equal their expectations
(assumed exist), which are the moments of the distribution. This means that
we solve the system of equations

1

n

n∑
i=1

Xk
i = μk, k = 1, . . . , p, (12.47)

where μk = E(Xk
1 ). Note that the μk’s are functions of θ. The method can

be extended in several ways. First, the observations do not have to be i.i.d.
Second, the left side of (12.47) does not have to be the sample moments and
may depend on the parameters as well. A nice property of the method of
moments is that it almost always produces consistent estimators. To see this,
write μk = μk(θ). Then the method of moments estimator of θ, say θ̂, satisfies

μk(θ̂) = μ̂k, 1 ≤ k ≤ p, where μ̂k denotes the kth sample moment. According
to the law of large numbers, the left side of (12.47) converges, say a.s., to
E(Xk

1 ) = μk(θ), 1 ≤ k ≤ p, where θ is the true parameter vector. Thus, if the

equations μk(θ̂) = μk(θ), 1 ≤ k ≤ p, have a unique solution, one would have θ̂

equal to θ exactly. Now, because the SLLN does not have μ̂k = μk exactly, θ̂
would not equal to θ exactly, but still be consistent.

Jiang (1998a) extended the method of moments to GLMM. Note that
the observations are not i.i.d. under a GLMM; therefore, it may not make
sense to use the sample moments. Instead, we consider sufficient statistics
for the parameters of interest. Roughly speaking, these are statistics that
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contain all of the information about the unknown parameters that we intend
to estimate (e.g., Lehmann 1983). Consider the GLMM with the ANOVA
structure [defined above (12.41)] and let ai(φ) = φ/wi, where wi is a (known)
weight. For example, wi = ni for grouped data if the response is a group
average, where ni is the group size, and wi = 1/ni if the response is a group
sum. Then a set of sufficient statistics for θ = (β′, σ′1, . . . , σ

′
s)
′ is

Sj =
∑n

i=1 wixijyi, 1 ≤ j ≤ p,
Sp+l =

∑n
i=1 wizi1lyi, 1 ≤ l ≤ m1,

...
Sp+m1+···+mq−1+l =

∑n
i=1wiziqlyi, 1 ≤ l ≤ ms,

(12.48)

where Zr = (zirl)1≤i≤n,1≤l≤mr , 1 ≤ r ≤ s. Thus, a natural set of estimating
equations can be formulated as

n∑
i=1

wixijyi =
n∑

i=1

wixijEθ(yi), 1 ≤ j ≤ p, (12.49)

mr∑
l=1

(
n∑

i=1

wizirlyi

)2

=
mr∑
l=1

Eθ

(
n∑

i=1

wizirlyi

)2

, 1 ≤ r ≤ s. (12.50)

Equations (12.50) are then modified to remove the squared terms. The reason
is that the expectation of the squared terms involve the additional dispersion
parameter φ (Exercise 12.16), which is not of main interest here. Suppose that
Zr, 1 ≤ r ≤ s, are standard design matrices in the sense that each Zr consists
only of 0’s and 1’s, and there is exactly one 1 in each row and at least one 1
in each column. Then the modified equations are∑

(s,t)∈Ir

wswtysyt =
∑

(s,t)∈Ir

wswtEθ(ysyt), 1 ≤ r ≤ s, (12.51)

where Ir = {(s, t) : 1 ≤ s �= t ≤ n, z′srztr = 1} = {(s, t) : 1 ≤ s �= t ≤
n, zsr = ztr} and z′ir is the ith row of Zr. In other words, the combined esti-
mating equations are (12.49) and (12.51). The expectations involved in these
equations are typically integrals of much lower dimension that those involved
in the likelihood function. Jiang (1998a) proposed to evaluate these expecta-
tions by a simple Monte Carlo method and therefore called the procedure the
method of simulated moments (MSM; e.g., McFadden 1989). Furthermore,
Jiang showed that under some regularity conditions, the solution to these
estimating equations is a consistent estimator of θ, as expected.

A drawback of the method of moments is that the estimator may be inef-
ficient. An estimator θ̂ is (asymptotically) efficient if its asymptotic variance,
or covariance matrix, is the smallest among a class of estimators. In the i.i.d.

case, this means that
√
n(θ̂ − θ)

d−→ N(0, Σ), where Σ is a covariance ma-
trix such that Σ̃ − Σ is nonnegative definite for any estimator θ̃ satisfying
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√
n(θ̃− θ)

d−→ N(0, Σ̃). For example, the MLEs are efficient under regularity
conditions. On the other hand, the MSM estimators are inefficient, in general.
The lack of efficiency is due to the fact that the estimating equations (12.49)
and (12.51) are not optimal. To find the optimal estimating equation, let us
consider a class of estimators of θ that are solutions to estimating equations
of the following type:

B{S − u(θ)} = 0, (12.52)

where S = (Sj)1≤j≤p+m, with m = m1 + · · · + ms, is the vector of sufficient
statistics given by (12.48), B is a (p+ s)× (p+m) matrix, and u(θ) = Eθ(S).
Here, Eθ denotes the expectation given that θ is the true parameter vector.
It can be shown that, theoretically, the optimal B is given by

B∗ = U ′V −1, (12.53)

where U = ∂u/∂θ′ and V = Var(S). To see this, let Q(θ) denote the left side
of (12.52) and let θ̃ be the solution to (12.52). By the Taylor expansion around
the true θ, we have θ̃ − θ ≈ (BU)−1Q(θ). Thus, we have the approximation

Var(θ̃) ≈ {(BU)−1}BVB′{(BU)−1}′, (12.54)

assuming that BU is nonsingular. The right side of (12.54) is equal to
(U ′V U)−1 when B = B∗. Now, it is an exercise of matrix algebra (Exer-
cise 12.17) to show that the right side of (12.54) is greater than or equal to
(U ′V U)−1, meaning that the difference is a nonnegative definite matrix.

Unfortunately, with the exception of some special cases, the optimal B
given by (12.53) is not computable because it involves the exact parameter
vector θ that we intend to estimate. To solve this problem, Jiang and Zhang
(2001) proposed the following two-step procedure. First, note that for any
fixed B, the solution to (12.52) is consistent, even though it may be ineffi-
cient. The method of moments estimator of Jiang (1998a) is a special case
corresponding to B = diag(Ip, 1

′
m1
, . . . , 1′ms

). By using this particular B, we
obtain a first-step estimator of θ. We then plug in the first-step estimator into
(12.53) to obtain the estimated B∗. The next thing we do is solve (12.52) with
B replaced by the estimated B∗. The result is what we call the second-step
estimator. Jiang and Zhang showed that, subject to some regularity condi-
tions, the second-step estimator not only is consistent but has the following
oracle property: Its asymptotic covariance matrix is the same as that of the
solution to (12.52) with the optimal B—that is, B∗ of (12.53) with the true
parameter vector θ. The following simulated example, taken from Jiang and
Zhang (2001), illustrate the two-step procedure of estimation.

Example 12.11. Consider a special case of Example 12.10 with x′ijβ = μ.
Then the unknown parameters are μ and σ.

First, note that when ni = k, 1 ≤ i ≤ m, where k ≥ 2 (i.e., when the data
are balanced), the first-step estimators are the same as the second-step ones.



420 12 Mixed Effects Models

In fact, in this case, the estimating equations of Jiang (1998a), which is (12.52)
with B = diag(1, 1′m), is equivalent to the optimal estimating equation—that
is, (12.52) with B = B∗ (Exercise 12.18) given by (12.53). So, in the balanced
case, the second-step estimators do not improve the first-step estimators.

Next, we consider the unbalanced case. A simulation study is carried out
to compare the performance of the first- and second-step estimators. Here,
we have m = 100, ni = 2, 1 ≤ i ≤ 50, and ni = 6, 51 ≤ i ≤ 100. The true
parameters were chosen as μ = 0.2 and σ = 1.0. The results based on 1000
simulations are summarized in Table 12.1, where SD represents the simulated
standard deviation and the overall MSE is the MSE of the estimator of μ
plus that of the estimator of σ. It is seen that the second-step estimators have
about 43% reduction of the overall MSE over the first-step estimators.

Table 12.1. Simulation results: mixed logistic model

Method of Estimator of μ Estimator of σ Overall
Estimation Mean Bias SD Mean Bias SD MSE

1st step .21 .01 .16 .98 −.02 .34 .15
2nd step .19 −.01 .16 .98 −.02 .24 .08

12.5 Mixed model selection

Model selection and model diagnostics, discussed previously in Section 12.3,
are connected in that both are associated with the validity of the assumed
model or models. However, unlike model diagnostics, in which a given model
is checked for its appropriateness, model selection usually deals with a class
of (more than one) potential, or candidate, models, in an effort to choose
an “optimal” one among this class. For example, it is possible that a given
model is found inappropriate by model diagnostics but is the optimal model
by model selection among the class of candidate models. This simply means
that no other candidate model is “more appropriate” than the current one,
but it does not imply that the current one is “appropriate.” Model selection
is needed when a choice has to be made. On the other hand, there is much to
say about how to make a good choice.

Earlier in Section 9.3, we introduced the information criteria for model
selection in the case of a time series. As noted, the information criteria may
be expressed in the general form of (9.25), where D̂M is a measure of lack-of-
fit by the candidate model M with dimension |M | and λn is a penalty. Here,
n is supposed to be the “effective sample size.” For example, in the case of
i.i.d. observations, the effective sample size is equal to the (total) sample size.
However, in the case of mixed effects models, it is less clear what the effective
sample size is (although, in many cases, it is clear that the effective sample
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size is not equal to the sample size). Consider, for example, Example 12.8. As
discussed in Example 12.7, the effective sample sizes for estimating σ2

1 , σ2
2 ,

and τ2 are m1, m2, and m1m2, respectively, whereas the total sample size is
n = m1m2. Now, suppose that one wishes to select the fixed covariates, which
are the components of xij , using the BIC. It is not clear what should be in
place of n in the λn = log(n) penalty. It does not seem to make sense to use
the total sample size n = m1m2.

Furthermore, in many cases, the (joint) distribution of the observations
is not fully specified (up to some unknown parameters) under the assumed
model. Thus, an information criteria that is dependent on the likelihood func-
tion may encounter difficulties. Once again, let us consider Example 12.8.
Suppose that normality is not assumed. Instead, a non-Gaussian linear mixed
model is considered (see Section 12.1). Now, suppose that one, again, wishes
to select the fixed covariates using the AIC, BIC, or HQ (see Section 9.3).
It is not clear how to do this because all three criteria require the likelihood
function in order to evaluate D̂M .

Even in the i.i.d. case, there are still some practical difficulties in using the
information criteria. For example, the BIC is known to have tendency of over-
penalizing. In other words, the penalty λn = log(n) may be a little too much
in some cases. On the other hand, the HQ criterion with λn = c log{log(n)},
where c is a constant greater than 2, is supposed to have a lighter penalty than
the BIC, but this is the case only if n is sufficiently large. In a finite-sample
situation, the story can be quite different. For example, for n = 100 we have
log(n) = 4.6 and log{log(n)} = 1.5; hence, if the constant c in the HQ is chosen
as 3, the BIC and HQ are almost the same. This raises another practical issue;
that is, how to choose the constant c? In a large sample (i.e., when n → ∞),
the choice of c does not make a difference in terms of consistency of model
selection (see Section 9.3). However, in the case of a moderate sample size,
the performance of the HQ may be sensitive to the choice of c.

Now, let us consider a different strategy for model selection. The basic idea
of the information criteria may be viewed as trading off model fit with model
complexity. Perhaps, we can do this in a different way. More specifically, the
first term in (9.25), D̂M , is a measure of how good a model fits the data. If this
is the only thing we have in mind, then “bigger” model always wins (why?).
However, this is not going to happen so easily because the bigger model also
gets penalized more due to the presence of the second term in (9.25), λn|M |.
For simplicity, let us assume that there is a full model among the candidate
models, say, Mf . Then this is the model that fits the best (why?). A model is
called optimal if it is a true model with minimum dimension. For example, in
the linear mixed model (12.1), a true model for Xβ satisfies (12.1), but some
of the components of β may be zero. An optimal model for Xβ is one that
satisfies (12.1) with all the components of β nonzero. LetQ(M) = Q(M, y, θM )
denote a measure of lack-of-fit, where y is the vector of observations, θM is the
vector of parameters under M , and by measure of lack-of-fit it, means that
Q(M) satisfies the minimal requirement that E{Q(M)} is minimized when M
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is a true model (but not necessarily optimal), and θM is the true parameter
vector. We consider some examples.

Example 12.12 (Negative log-likelihood). Suppose that the joint distri-
bution of y belongs to a family of parametric distributions {PM,θM ,M ∈
M, θM ∈ ΘM}. Let PM,θM have a (joint) pdf fM (·|θM ) with respect to a
σ-finite measure μ. Consider

Q(M, y, θM) = − log{fM(y|θM )},

the negative log-likelihood. This is a measure of lack-of-fit (Exercise 12.19).

Example 12.13 (Residual sum of squares). Consider the problem of select-
ing the covariates for a linear model so that E(y) = Xβ, where X is a matrix
of covariates whose columns are to be selected from a number of candidates
X1, . . . , XK and β is a vector of regression coefficients. A candidate model M
corresponds to XMβM , where the columns of XM are a subset of X1, . . . , XK

and βM is a vector of regression coefficients of suitable dimension. Consider

Q(M, y, βM ) = |y −XMβM |2,

which corresponds to the residual sum of squares (RSS). Here, again, we have
a measure of lack-of-fit (Exercise 12.20).

Let Q̂(M) = infθM∈ΘM Q(M). Because Mf is a full model, we must have
Q̂(Mf) = minM∈M Q̂(M), where M denotes the set of candidate models. The
value Q̂(Mf ) is considered as a baseline. Intuitively, if M is a true model, the
difference Q̂(M) − Q̂(Mf) should be (nonnegative but) sufficiently close to
zero. This means that

Q̂(M) − Q̂(Mf) ≤ c (12.55)

for some threshold value c. The right side of (12.55) serves as a “fence” to
confine the true models and exclude the incorrect ones. Once the fence is con-
structed, the optimal model is selected from those within the fence—that is,
models that satisfy (12.55), according to the minimum dimension criterion.
The procedure is therefore called fence method (Jiang et al. 2008). The min-
imum dimension criterion used in selecting models within the fence may be
replaced by other criteria of optimality and thus gives flexibility to the fence
to take scientific or economic considerations into account.

It is clear that the threshold value c plays an important role here: It divides
the true models and incorrect ones. Note that, in practice, we do not know
which model is a true model and which one is incorrect (otherwise, model
selection would not be necessary). Therefore, we need to know how much the
difference on the left side of (12.55) is likely to be when M is a true model
and how much this is different when M is incorrect. The hope is that the
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difference is of lower order for a true model than for an incorrect model; then,
asymptotically, we would be able to separate these two groups. To be more
specific, suppose that we wish to select the fixed covariates in the linear mixed
model (12.1) using the RSS measure of Example 12.13. In this case, a model
M corresponds to a matrix X of covariates. Therefore, we use M and X
interchangeably. In particular, Mf corresponds to Xf . Similarly, let β and βf

correspond to X and Xf , respectively, for notation simplicity. Furthermore, we
assume that there exists a true model among the candidate models. It follows
that Mf is a true model (why?). The minimizer of Q(M) over all β is the least

squares estimator (see Section 6.7), β̂ = (X ′X)−1X ′y. Here, for simplicity
(and without loss of generality), we assume that all of the X ’s are full rank.

It follows that Q̂(M) = |y − Xβ̂|2 = y′PX⊥y, where PX⊥ = I − PX and
PX = X(X ′X)−1X ′ is the projection matrix onto the linear space spanned
by the columns of X (and PX⊥ the orthogonal projection). It follows that

Q̂(M) − Q̂(Mf) = y′(PX⊥ − PX⊥
f

)y

= y′(PXf
− PX)y. (12.56)

First, assume that M is a true model. This means that (12.1) holds; hence,
y−Xβ = Zα+ ε ≡ ξ, where β is the true parameter vector corresponding to
X . Thus, we have

(PXf
− PX)y = (PXf

− PX)(y −Xβ)

= (PXf
− PX)ξ (12.57)

because (PXf
−PX)X = 0 (why?). Also, note that PXf

−PX is idempotent—
that is, (PXf

− PX)2 = PXf
− PX (Exercise 12.21). Therefore, by (12.56), we

have (make sure that you follow every step of this derivation)

E{Q̂(M) − Q̂(Mf)} = E{y′(PXf
− PX)y}

= E{y′(PXf
− PX)2y}

= E{ξ′(PXf
− PX)2ξ}

= E{ξ′(PXf
− PX)ξ}

= E[tr{ξ′(PXf
− PX)ξ}]

= E[tr{(PXf
− PX)ξξ′}]

= tr[E{(PXf − PX)ξξ′}]
= tr{(PXf

− PX)E(ξξ′)}
= tr{(PXf

− PX)(ZGZ ′ +R)}. (12.58)

Now, suppose that M is incorrect. Then y−Xβ = ξ no longer holds. However,
because Mf is a true model according to our assumption, we have y−Xfβf = ξ,
where βf is the true parameter vector corresponding to Xf . Thus, we can write
y = Xfβf + y − Xfβf = Xfβf + ξ, and, similar to (12.57), (PXf

− PX)y =
(PXf

− PX)ξ + (PXf
− PX)Xfβf ,
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y′(PXf
− PX)y = y′(PXf

− PX)2y

= ξ′(PXf
− PX)ξ

+ 2β′fX
′
f(PXf

− PX)ξ

+ |(Xf − PXXf)βf |2. (12.59)

Note that (PXf
− PX)Xf = Xf − PXXf . The second term on the right side of

(12.59) has mean 0, and the expectation of the first term is already computed
as the right side of (12.58). It follows that

E{Q̂(M) − Q̂(Mf)} = tr{(PXf
− PX)(ZGZ ′ +R)}

+ |(Xf − PXXf)βf |2. (12.60)

Comparing (12.58) and (12.60), we see that when M is incorrect, the expec-
tation of the left side of (12.55) (which is nonnegative) has an extra term
compared to the expectation when M is a true model. We now show, by an
example, that this extra term makes a greater difference.

Example 12.14. Consider the following linear mixed model:

yij = x′ijβ + αi + εij, i = 1, . . . ,m, j = 1, 2,

where αi and εij are the same as in Example 12.2, xij is a vector of known
covariates whose components are to be selected, and β is the corresponding
vector of fixed effects. More specifically, there are three candidates for xij : 1,
1(j=2), and [1, 1(j=2)]

′, which correspond to
(I) yij = β0 + αi + εij , i = 1, . . . ,m, j = 1, 2;
(II) yi1 = αi + εi1, yi2 = β1 + αi + εi2, i = 1, . . . ,m;
(III) yi1 = β0 + αi + εi1, yi2 = β0 + β1 + αi + εi2, i = 1, . . . ,m,
respectively (the values of the β coefficients may be different even if the same
notation is used). Suppose that model I is a true model; then it is the optimal
model. Furthermore, model III is the full model, which is also a true model,
but not optimal; and model II is an incorrect model, unless β0 = 0 (why?).
It is more convenient to use the notation and properties of the Kronecker
products (see Appendix A.1). Recall that 12, I2, and J2 represent the 2-
dimensional vector of 1’s, identity matrix and matrix of 1’s, respectively. Also,
let δ2 = (0, 1)′. We refer some of the details to an exercise (Exercise 12.22).
We have PXf

= m−1Jm ⊗ I2, Z = Im ⊗ 12, G = σ2Im, and R = τ2Im ⊗ I2.
Furthermore, if X corresponds to model I, we have PX = (2m)−1Jm ⊗ J2.
It follows that the right side of (12.58) is equal to τ2. On the other hand, if
X corresponds to model II, we have PX = m−1Jm ⊗ (δ2δ

′
2). Thus, the first

term on the right side of (12.60) is σ2 + τ2, and the second term is β2
0m. In

conclusion, we have

E{Q̂(M) − Q̂(Mf)} =

{
τ2 if M = model I
σ2 + τ2 + β2

0m if M = model II,
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where β0 is the true fixed effect under model I and σ2 and τ2 are the true
variance components. Thus, if m is large, there is a big difference in the
expected value of the left side of (12.55) between a true model and an incorrect
one, provided that β0 �= 0. On the other hand, if β0 = 0, the difference between
model I and model II is much less significant (intuitively, does it make sense?).

What Example 12.14 shows is something that holds quite generally. Let
dM denote the left side of (12.55). We can expect that the order of E(dM )
is lower when M is a true model, and the order is (much) higher when M is
incorrect. For example, in Example 12.14, we have E(dM ) = O(1) when M is
true and E(dM ) = O(m) when M is incorrect. This suggests that, perhaps,
there is a cutoff in the middle. This is the main idea of the fence. Of course,
there are some technical details and rigorous arguments, but let us first be
clear about the main idea, as details can be filled in later. For example, part
of the “details” is the following. We know that E(dM )’s are of different orders,
but what about dM ’s themselves? Note that we can write

dM = E(dM ) + dM − E(dM )

= E(dM ) +
√

var(dM ) × dM − E(dM )√
var(dM )

,

and there is a reason to write it this way. Under regularity conditions, we have

dM − E(dM )√
var(dM )

d−→ N(0, 1). (12.61)

Again, details later, but let us say that (12.61) holds. The consequence is that

dM = E(dM ) +OP{s.d.(dM )}, (12.62)

where s.d.(dM ) =
√

var(dM ) (s.d. refers to standard deviation). We know that
there is a difference in the order of the first term on the right side of (12.62).
If the order of s.d.(dM ) “stays in the middle,” then we would have a cutoff
not only in terms of E(dM ) but also in terms of dM between the true and
incorrect models. To see that this is something we can expect, let us return
to Example 12.14.

Example 12.14 (continued). We outline an argument that justifies the
asymptotic normality (12.61). In the process, we also obtain the order of
s.d.(dM ). Let μ denote the (true) mean vector of y. Then we can write
y = μ + η, where η = Zα + ε = Wξ with W = (Z I) and ξ = (α′ ε′)′.
Note that ξ is a 3m-dimensional vector of independent random variables with
mean 0. Thus, we can write, by (12.56),

dM = μ′(PXf
− PX)μ+ 2μ′(PXf

− PX)η + η′(PXf
− PX)η

= μ′(PXf
− PX)μ+ a′ξ + ξ′Aξ

= μ′(PXf
− PX)μ+ E(ξ′Aξ)

+ a′ξ + ξ′Aξ − E(ξ′Aξ),
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where a = 2W ′(PXf
−PX)μ andA = W ′(PXf

−PX)W . It follows that E(dM ) =
μ′(PXf

− PX)μ + E(ξ′Aξ). Therefore, with ξ = (ξi)1≤i≤3m, a = (ai)1≤i≤3m,
and A = (aij)1≤i,j≤3m, we have (see Example 8.3)

dM − E(dM )

=

3m∑
i=1

aiξi +

3m∑
i=1

aii{ξ2i − E(ξ2i )}

+ 2

3m∑
i=1

∑
j<i

aijξiξj

=
3m∑
i=1

⎡⎣aiξi + aii{ξ2i − E(ξ2i )} + 2

⎛⎝∑
j<i

aijξj

⎞⎠ ξi

⎤⎦ . (12.63)

The summand in the last expression is a sequence of martingale differences
with respect to the σ-fields Fi = σ(ξ1, . . . , ξi). Thus, the martingale central
limit (Theorem 8.7) can be applied to establish (12.61). A suitable normal-
izing constant needs to be chosen in order to apply Theorem 8.7, which is
asymptotically equivalent to, by (12.63),

var(dM ) =

m∑
i=1

var

⎡⎣aiξi + aii{ξ2i − E(ξ2i )} + 2

⎛⎝∑
j<i

aijξj

⎞⎠ ξi

⎤⎦ . (12.64)

It can be shown that the right side of (12.64) is O(m) (Exercise 12.23). It
follows that s.d.(dM ) = O(

√
m). Therefore, by (12.62), dM = OP(

√
m) if M

is true and dM = OP(m) is M is incorrect. In fact, in this case, it can be
shown that dM = OP(1) if M is true (Exercise 12.23).

Suppose that when M is a true model, the second term on the right side
of (12.62) dominates the first term. This means that the order of E(dM ) is the
same as or lower than that of s.d.(dM ) if M is true. Then the threshold value c
on the right side of (12.55) should be of the same order as s.d.(dM ). For such a

reason, Jiang et al. (2008) suggested that c = c1 ŝ.d.(dM ), where ŝ.d.(dM ) is an
estimator of s.d.(dM ) and c1 is a tuning constant. Note that now the threshold
c may depend on M , but c1 is independent of the candidate models. It can
be shown that if c1 increases “slowly” as the overall sample size, n, increases,
then the fence method is consistent in the sense that with probability tending
to 1 the procedure will select the optimal model if it is among the candidates.
The detailed condition on how slowly c1 increases can be found in Jiang et
al. (2008). Although in a large sample, the choice of c1 does not make a
difference in terms of the consistency, finite-sample performance of the fence
may be influenced by the value of the tuning constant. To solve this problem,
Jiang et al. (2008) developed the following strategy called the adaptive fence.

The idea is to let data determine the best tuning constant. First note that,
ideally, one wishes to select c1 that maximizes the probability of choosing the
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optimal model. Here, to be specific, the optimal model is understood as a true
model that has the minimum dimension among all of the true models. This
means that one wishes to choose c1 that maximizes

P = P(M0 = Mopt), (12.65)

where Mopt represents the optimal model and M0 = M0(c1) is the model
selected by the fence procedure with the given c1. However, two things are
unknown in (12.65): (i) Under what distribution should the probability P be
computed? (ii) What is Mopt? (If we knew the answer to the latter question,
model selection would not be necessary.)

To solve problem (i), let us assume that there is a true model among the
candidate models. It follows that the full model, Mf , is a true model. There-
fore, it is possible to bootstrap (see Chapter 14) under Mf . For example, one
may estimate the parameters under Mf and then use a model-based bootstrap
to draw samples under Mf . This allows us to approximate the probability dis-
tribution P on the right side of (12.65).

To solve problem (ii), we use the idea of maximum likelihood; namely, let
p∗(M) = P∗(M0 = M), where P∗ denotes the empirical probability obtained
by the bootstrapping. In other words, p∗(M) is the sample proportion of times
out of the total number of bootstrap samples that model M is selected by the
fence method with the given c1. Let p∗ = maxM∈M p∗(M), where M denotes
the set of candidate models. Note that p∗ depends on c1. The idea is to choose
c1 that maximizes p∗. It should be kept in mind that the maximization is not
without restriction. To see this, note that if c1 = 0, then p∗ = 1 (because when
c1 = 0, the procedure always chooses Mf). Similarly, p∗ = 1 for very large c1
if there is a unique model, M∗, with the minimum dimension (because when
c1 is large enough, the procedure always chooses M∗). Therefore, what one
looks for is “the peak in the middle” of the plot of p∗ against c1.

Here is another look at the adaptive fence. Typically, the optimal model
is the one from which the data are generated; then this model should be the
most likely given the data. Thus, given c1, one is looking for the model (using
the fence procedure) that is most supported by the data or, in other words,
one that has the highest (posterior) probability (see Chapter 15). The latter
is estimated by bootstrapping. Note that although the bootstrap samples
are generated under Mf , they are almost the same as those generated under
the optimal model. This is because, for example, the estimates corresponding
to the zero parameters are expected to be close to zero, provided that the
parameter estimation under Mf is consistent. One then pulls off the c1 that
maximizes the (posterior) probability and this is the optimal choice, say, c∗1.

It can be shown that, like the fence method (with the nonadaptive c1), the
adaptive fence is consistent under suitable regularity conditions. This means

that, with probability tending to 1, the fence procedure with c = c∗1ŝ.d.(dM )
in (12.55) will select Mopt. One of the key conditions is that the bootstrap
provides an aymptotically accurate approximation to the probability P in
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(12.65). Some related topics will be discussed in Chapter 14. Furthermore,
simulation results reported by Jiang et al. (2008) (also see Jiang, Nguyen,
and Rao 2009) suggest that the adaptive fence significantly outperforms the
information criteria as well as the nonadaptive fence in mixed model selection.

Another attractive feature of the fence method is its computational ad-
vantage, as compared to the information criteria; that is, one may not need
to search for the entire model space (i.e., all of the candidate models) in order
to find the optimal model. Once again, suppose that the minimum-dimension
criterion is used in selecting models within the fence. Then one can always be-
gin by checking the model that has the minimum dimension (for membership
within the fence) and let the dimension gratually increase. Let M1 be the first
model that falls in the fence with |M1| = d1. At this point, one needs to check
all of the models with dimension d1 to see if there is any other model(s) that
fall in the fence and then select the model with dimension d1 that has the
minimum Q̂(M), which is the optimal model (why?). A numerical procedure
based on this idea, known as the fence algorithm, has been developed.

12.6 Exercises

12.1. Show that, in Example 12.1, the correlation between any two obser-
vations from the same individual is σ2/(σ2 + τ2), whereas observations from
different individuals are uncorrelated.

12.2 (Two-way random effects model). For simplicity, let us consider the
case of one observation per cell. In this case, the observations yij , i = 1, . . . ,m,
j = 1, . . . , k, satisfy yij = μ + ui + vj + eij for all i and j, where μ is as in
Example 1.1; ui, i = 1, . . . ,m and vj , j = 1, . . . , k, are independent random
effects such that ui ∼ N(0, σ2

1), vj ∼ N(0, σ2
2); and eij ’s are independent

errors distributed as N(0, τ2). Again, assume that the random effects and
errors are independent. Show that this model is a special case of the mixed
ANOVA model but not a special case of the longitudinal model.

12.3. Give an example of a special case of the longitudinal model that is
not a special case of the mixed ANOVA model.

12.4. Suppose that, given a vector of random effects, α, observations
y1, . . . , yn are (conditionally) independent such that yi ∼ N(x′iβ + z′iα, τ

2),
where xi and zi are known vectors, β is an unknown vector of regression
coefficients, and τ2 is an unknown variance. Furthermore, suppose that α is
multivariate normal with mean 0 and covariance matrix G, which depends on
a vector θ of unknown variance components. Let X and Z be the matrices
whose ith rows are x′i and z′i, respectively. Show that the vector of observa-
tions, y = (y1, . . . , yn)′, has the same distribution as the Gaussian linear mixed
model (1.1), where α ∼ N(0, G), ε ∼ N(0, τ2I), and α and ε are independent.

12.5. Show that, in Example 12.5, the MLE of σ2 is given by (12.7), and
the REML estimator of σ2 is given by (12.8).
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12.6. Show that the REML estimators of the variance components (see
Section 12.2) do not depend on the choice of A. This means that if B is
another n × (n − p) matrix of full rank such that B′X = 0, the MLEs of
the variance components based on A′y (assuming normality) are the same as
those based on B′y.

12.7. Consider the following linear mixed models: yijk = βi+αj +γij +εijk,
i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c, where βi’s are fixed effects, the αj ’s are
random effects, the γij ’s are the interactions between the fixed and random
effects, which are also considered as random effects, and the εijk’s are errors.
Show that in this case, (12.1) and (12.2) can be expressed as

y = Ia ⊗ 1b ⊗ 1cβ + 1a ⊗ Ib ⊗ 1cα+ Ia ⊗ Ib ⊗ 1cγ + ε.

12.8. This exercise is concerned with some of the arguments used in the
proof of Theorem 12.1.

(i) Show that (12.14) holds under (12.10)–(12.12), where θn is defined by
(12.13) and rn is uniformly ignorable compared with the first term as θ̃ varies
on Ēn = {θ̃ : |Pn(θ̃ − θ)| = 1}.

(ii) Derive (12.15) using the Taylor expansion and the result of part (i) of
the theorem.

12.9. Show that the components of an in (12.15) [defined below (12.12)]
are quadratic forms of the random effects and errors.

12.10. The additional assumption in part (ii) of Theorem 12.1 that the
random effects and errors are nondegenerate is necessary for the asymptotic
normality of the REML estimators. To see a simple example, suppose that
yi = μ + εi, i = 1, . . . ,m, where the εi’s are independent such that P(εi =
−1) = P(εi = 1) = 1/2. Note that in this case there are no random effects
and the εi’s are the errors.

(i) Show that the REML estimator of the variance of the errors, σ2 = 1, is
the sample variance, σ̂2 = (m− 1)−1

∑m
i=1(yi − ȳ)2, where ȳ = m−1

∑m
i=1 yi.

(ii) Show that
√
m(σ̂2 − 1) does not converge in distribution to a (nonde-

generate) normal distribution.
12.11. This exercise is regarding the projection method that begins with

the identity (12.28).
(i) Show that E(

∑m1

i=1

∑m2

j=1 δ1,ijk)2 = O(m1m2). [Hint: Note that, given
u and v, the δ1,ijk’s are conditionally independent with E(δ1,ijk|u, v) = 0.]

(ii) Show that (a) if i1 �= i2, j1 �= j2, then δ2,i1j1k and δ2,i2j2k are inde-
pendent; (b) if j1 �= j2, then E(δ2,ij1kδ2,ij2k|u) = 0; and (c) if i1 �= i2, then
E(δ2,i1jkδ2,i2jk|v) = 0. It follows that E(

∑m1

i=1

∑m2

j=1 δ2,ijk)2 = O(m1m2).

(iii) Show that
∑m1

i=1

∑m2

j=1 ζ1,ijk =
∑m1

i=1 ζ1,ik(ui), where ζ1,ik(ui) =∑m2

j=1 ζ1,ijk is a function of ui. Therefore, we have
∑m1

i=1

∑m2

j=1 ζ1,ijk =

OP(m
1/2
1 m2).

(iv) Show that
∑m1

i=1

∑m2

j=1 ζ2,ijk =
∑m2

j=1 ζ2,jk(vj), where ζ2,jk(vj) =∑m1

i=1 ζ2,ijk is a function of vj . Therefore, we have
∑m1

i=1

∑m2

j=1 ζ2,ijk =

OP(m1m
1/2
2 ).
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12.12. Show that the number of coefficents ast in the bivariate polynomial
(12.32) is NM = 1 +M(M + 3)/2.

12.13. Show that the likelihood function in Example 12.9 for estimating ψ
can be expressed as (12.35).

12.14. Verify (12.38) and obtain an expression for r. Show that r has
expectation 0.

12.15. This exercise is related to Example 12.10.
(i) Show that (12.42) has a unique solution for u when everything else is

fixed.
(ii) Show that the PQL estimator of β satisfies (12.43).
(iii) Derive (12.44).
(iv) Consider the following special case: x′ijβ = μ, where μ is an unknown

parameter, and ni = l, 1 ≤ i ≤ m. Show that in this case, the left side of
(12.46) is equal to g(μ) = σ−2

∑l
k=0 φ(k, μ)P(y1· = k), where φ(t, μ) is the

unique solution u to the equation σ−2u+ lh(μ+ u) = t and

P(y1· = k) =

(
l

k

)
E

[ {exp(μ+ η)}k

{1 + exp(μ+ η)}l

]
with the expectation taken with respect to η ∼ N(0, σ2).

(v) Take σ2 = 1. Make a plot of g(μ) against μ and show that g(μ) is not
identical to zero (function). [Hint: You make use numerical integration or the
Monte Carlo method to evaluate the expectations involved in (iv).]

12.16. Show that under a GLMM, E(y2
i ) depends on φ, the disperson

parameter in (12.4), but E(yiyi′) does not depend on φ if i �= i′.
12.17. Show that for any matrices B, U , and V such that V > 0 (positive

definite), U is full rank, and BU is square and nonsingular, we have

{(BU)−1}BV B′{(BU)−1}′ ≥ (U ′V −1U)−1

(i.e., the difference of the two sides is nonnegative definite). (Hint: The proof
is very similar to that of Lemma 5.1.)

12.18. Consider a special case of Example 12.11 with ni = k, 1 ≤ i ≤ m,
where k ≥ 2. Show that in this case, the estimating equation of Jiang (1998a),
which is (12.52) with B = diag(1, 1′m), is equivalent to the optimal estimating
equation—that is, (12.52) with B = B∗ given by (12.53).

12.19. Show that the negative log-likelihood measure defined in Example
12.12 is a measure of lack-of-fit according to the definition above Example
12.12.

12.20. Show that the RSS measure defined in Example 12.13 is a measure
of lack-of-fit according to the definition above Example 12.12.

12.21. This exercise involves some of the details in the derivations following
(12.56).

(i) Show that (PXf
− PX)X = 0.

(ii) Show that PXf
−PX is idempotent; that is, (PXf

−PX)2 = PXf
−PX .

12.22. This exercise involves some details regarding Example 12.14.
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(i) Show that PXf
= m−1Jm ⊗ I2.

(ii) Show that PX = (2m)−1Jm ⊗ J2 for X corresponding to model I and
PX = m−1Jm ⊗ (δ2δ

′
2) for X corresponding to model II.

(iii) Show that for model I, the right side of (12.58) is equal to τ2, where
τ2 is the true variance of the errors.

(iv) Show that for model II, the right side of (12.60) is equal to σ2 + τ2 +
β2

0m, where β0 is the true fixed effect under model I and σ2 and τ2 are the
true variance components.

12.23. Show that the right side of (12.64) is O(m). In fact, in this case,
it can be shown that the order is O(1) when M is true [Hint: The most
challenging part is to evaluate

∑
i,j a

2
ij = tr(A2). Note that

tr(A2) = tr{(PXf
− PX)(ZZ ′ + I)(PXf

− PX)(ZZ ′ + I)}.

Consider the two cases, model I and model II, separately, and use the results
of the previous exercise.]
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Small-Area Estimation

It is seldom possible to have a large enough overall sample size to sup-
port reliable direct estimates for all the domains of interest. Therefore,
it is often necessary to use indirect estimates that “borrow strength”
by using values of the variables of interest from related areas, thus
increasing the “effective” sample size.

Rao (2003)
Small Area Estimation

13.1 Introduction

The term “small area” typically refers to a population for which reliable statis-
tics of interest cannot be produced due to certain limitations of the available
data. Examples of domains include a geographical region (e.g., a state, county
or municipality), a demographic group (e.g., a specific age × sex × race group),
a demographic group within a geographic region, and so forth. Some of the
groundwork in small-area estimation related to the population counts and dis-
ease mapping research has been done by the epidemiologists and the demogra-
phers. The history of small-area statistics goes back to 11th- century England
and 17th- century Canada. See Brackstone (1987) and Marshall (1991).

There are various reasons for the scarcity of direct reliable data on the vari-
ables of interest for small areas. In a sample survey, a small-area estimation
problem could arise simply due to the sampling design that aims to provide
reliable data for larger areas and pays little or no attention to the small areas
of interest. For example, in a statewide telephone survey of sample size 4300
in the state of Nebraska (USA), only 14 observations are available to estimate
the prevalence of alcohol abuse in Boone county, a small county in Nebraska.
The problem is even more severe for a direct survey estimation of the preva-
lence for white females in the age group 25–44 in this county since only one
observation is available from the survey. See Meza et al. (2003) for details.

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_13, © Springer Science+Business Media, LLC 2010
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Oversampling is often employed in surveys in order to increase sample sizes
for some domains, but that leaves other domains with very few samples or
even no sample since the total sample size is usually fixed due to the limita-
tion of the survey budget. Various design strategies that incorporate factors
influencing small-area data quality have been suggested in the literature (see
Rao 2003, pp. 21–24 and the references therein). While these changes in a
sampling design generally improve on the small-area estimation, the prob-
lem still remains due to the budget and other practical constraints. In some
situations, administrative data can be used to produce small-area statistics.
Such a statistic does not suffer from the sampling errors but is often subject
to measurement errors, resulting in poor quality of small-area statistics. For
example, law enforcement records are likely to underreport small-area crime
statistics since many crimes are not reported to the law enforcement authori-
ties. Even the count for certain subgroups (e.g., illegal immigrants and certain
minority groups) of the population compiled from the census could be of poor
quality because of nonresponse and issues related to hard-to-find populations.
In a disease mapping problem, the small-area problem arises simply because
of the small population size associated with the disease.

On the other hand, small-area statistics are needed in regional planning,
apportioning congressional seats, and fund allocation in many government
programs. Thus, the importance of producing reliable small-area statistics
cannot be overemphasized. For example, in both developed and developing
countries, governmental policies increasingly demand income and poverty es-
timates for small areas. In fact, in the United States more than $130 billion
of federal funds are allocated annually based on these estimates. In addition,
states utilize these small-area estimates to divide federal funds and their own
funds to areas within the state. These funds cover a wide range of community
necessities and services, such as education and public health. As another ex-
ample, mapping a disease incidence over different small areas are useful in the
allocation of government resources to various geographical areas and also to
identify factors (such as existence of a nuclear reactor near a site) causing a
disease. For such reasons, there have been a growing need to refine the manner
in which these estimates are produced in order to provide an increased level
of precision.

The problem of small-area estimation was previously visited in Section
4.8, where the idea of borrowing strength was introduced. For the most part,
“strength” is borrowed by utilizing a statistical model. For example, consider
the Fay–Herriot model of Example 4.18. It is assumed that (4.86) holds for all
of the small areas i = 1, . . . ,m. Therefore, the unknown parameters β and A
can be estimated using the data from all of the small areas. Also, under the
normality model assumption, one is able to derive the best estimator (BP), or
predictor, of the small-area means in terms of minimizing the mean squared
prediction error (MSPE). The MSPE is an important measure of uncertainty
in small-area estimation. Earlier in Section 4.8, a method of obtaining second-
order unbiased estimator of the MSPE, known as the Prasad–Rao method, was
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discussed. The method is suitable, however, only to linear mixed models that
are used for small-area estimation. On the other hand, survey data available
for small-area estimation are often in the form of binary responses and counts,
for which generalized linear mixed models (GLMM) are more appropriate. For
example, Malec et al. (1997) discussed a small area estimation problem in the
National Health Interview Survey (NHIS), in which the binary responses are
indicators of whether the sampled individuals had made at least one visit to
a physician within the past year. Therefore, as our first specific topic of the
chapter, we discussed an extension of the Prasad–Rao method to small-area
estimation with binary observations.

13.2 Empirical best prediction with binary data

As discussed in Section 4.8, the Prasad–Rao method is based on the Taylor
series expansion. It is appealing to a practitioner for its simplicity of imple-
mentation. Following their approach, we consider the following mixed logistic
model for binary data yij , the jth observation from the ith small area. Let αi

be a random effect associated with the ith small area, 1 ≤ i ≤ m. It is assumed
that given α = (αi)1≤i≤m, yij , i = 1, . . . ,m, j = 1, . . . , ni, are conditionally
independent binary such that

logit{P(yij = 1|α)} = x′ijβ + αi, (13.1)

where xij = (xijk)1≤k≤p is a vector of auxiliary variables that are available
and β = (βk)1≤k≤p is a vector of unknown parameters. Furthermore, the
random effects α1, . . . , αm are independent and distributed as N(0, σ2) with
σ2 being an unknown variance. It is clear that the mixed logistic model is a
special case of GLMM discussed in the previous chapter (see Example 12.3).

Our main interest is to estimate the small-area means. Let Ni be the
population size for the ith small area. Then the small-area mean is equal to the
proportion pi = N−1

i

∑Ni

k=1 Yik. The difference between Yik and yij is that Yik

is the kth value of interest in the population, whereas yij is the jth sampled
value (so yij = Yik for some k). Now, consider (13.1) as a superpopulation
model, with j replaced by k and y by Y , in the sense that the finite population
Yik, k = 1, . . . , Ni, are realizations of random variables satisfying the model.
Then we have

1

Ni

Ni∑
k=1

{Yik − P(Yik = 1|αi)} = OP(N
−1/2
i ) (13.2)

(why?). By (13.1) (with j replaced by k and y by Y ), the left side of (13.2)

is equal to pi − ζi(β, αi), where ζi(β, αi) = N−1
i

∑Ni

k=1 h(x′i,kβ + αi) with

h(x) = ex/(1 + ex). It follows that, to the order of OP(N
−1/2
i ), the small-

area mean pi can be approximated by the mixed effectζi(β, αi). Here, a mixed
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effect is a (possibly nonlinear) function of the fixed effects β and random
effect αi. The population size Ni is usually quite large. Note that the small
areas are not really “small” in terms of their population sizes. For example,
a (U.S.) county is often considered a small area, even though there are tens
of thousands of people living in the county; so Ni is large. However, Ni is
much smaller compared to the population of the United States, and this is
why ni is small (because the sample size is proportional to the population
size). Therefore, the approximation error on the right side of (13.2) is often
ignored, and we therefore consider ξi(β, αi) as the small-area mean.

The estimation problem now becomes a prediction problem, and we can
treat the problem more generally without restricting to a specific function
ζi(·, ·). It turns out that the functional form of ζi does not create much com-
plication as long as it is smooth. Therefore, for the sake of simplicity, we focus
on a special case—that is, the prediction of the area specific random effect

ζi = αi. (13.3)

If β and σ are known, the best predictor (BP) of αi, in the sense of min-
imum MSPE, is the conditional expectation α̃i = E(αi|y) = E(αi|yi), where
yi = (yij)1≤j≤ni . It can be shown that this can be expressed as

α̃i = σ
E[ξ exp{φi(yi·, σξ, β)}]
E[exp{φi(yi·, σξ, β)}]

= ψi(yi·, θ), (13.4)

where yi· =
∑ni

j=1 yij , θ = (β′, σ)′, φi(k, u, v) = ku−∑ni

j=1 log{1+exp(x′ijv+
u)}, and the expectation is taken with respect to ξ ∼ N(0, 1) (Exercise 13.1).
Unlike the linear mixed models (see Section 4.8), here the BP does not have
a closed-form expression. Nevertheless, only one-dimensional integrals are in-
volved in the expression, which can be evaluated numerically, either by numer-
ical integration or by the Monte Carlo method. On the other hand, the lack
of analytic expression does not keep us from studing the asymptotic behavior
of the BP. For example, the following hold:

(i) α̃i/σ → E(ξ) = 0 as σ → 0. In other words, α̃i = o(σ) as σ → 0.
(ii) For any 1 ≤ k ≤ ni − 1, as σ → ∞,

ψi(k, θ) −→
∫
u exp{φi(k, u, β)} du∫
exp{φi(k, u, β)} du .

(iii) ψi(0, θ) → −∞ and ψi(ni, θ) → ∞ as σ → ∞.
(iv) Suppose that xij = xi (i.e., the auxiliary variables are area level).

Then, as σ → ∞,

ψi(k, θ) −→
k−1∑
l=1

l−1 −
ni−k−1∑

l=1

l−1 − x′iβ, 1 ≤ k ≤ ni − 1, ni ≥ 2,
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where
∑0

1(·) is understood as zero. Note that
∑k−1

l=1 l
−1 ∼ log(k) + C, where

C is Euler’s constant. Therefore, as σ → ∞, we have

α̃i ≈ logit(ȳi·) − x′iβ, (13.5)

where ȳi· = n−1
i yi·, provided that 1 ≤ yi· ≤ ni − 1 and ni ≥ 2. Note that

(13.5) holds even if yi· = 0 or ni.
In practice, the parameters θ are usually unknown. It is then customary

to replace θ by θ̂, a consistent estimator. The result is called empirical best
predictor (EBP), given by

α̂i = ψi(yi·, θ̂). (13.6)

We first study the asymptotic behavior of the EBP whenm→ ∞ and ni → ∞.
The first limiting process is reasonable because the total number of small
areas, m, is usually quite large. For example, in the NHIS problem discussed
in the previous section, the number of small areas of interest is about 600.
The second limiting process, however, is unreasonable because the sample size
ni is typically small. On the other hand, it is important to know what would
happen in the “ideal” situation, so that one can be sure that the approach is
fundamentally sound, at least in large sample. Write

α̂i − αi = |ψi(yi·, θ̂) − ψi(yi·, θ)| + |ψi(yi·, θ) − α∗i | + |α∗i − αi|, (13.7)

where α∗i is the maximizer of φi(yi·, u, β) over u. The idea is to show that the

three terms on the right side of (13.7) have the ordersOP(|θ̂−θ|),OP(n−1
i ), and

OP(n
−1/2
i ), respectively. The order of the last term is derived using virtually

the same technique as for the MLE (see Section 4.7; Exercise 13.4). The
order of the second term is the result of Laplace approximation to integrals
(see Section 4.6). More details about the approximation error in the Laplace
approximation can be found in Chapter 4 of De Bruijn (1961). As for the
first term, let us point out how the idea of the Laplace approximation is,
again, useful here. By the Taylor expansion, it suffices to show that ∂ψi/∂θ
is bounded in probability. Write gi(v) = −n−1

i φi(yi·, σv, β). For any function
f = f(yi·, v, θ), define

Ti(f) =

∫
f exp(−nigi)φ dv∫
exp(−nigi)φ dv

,

where φ is the pdf of N(0, 1). Let ϕi(yi·, θ) = Ti(v), where v represents the
identity function; that is, f(v) = v. Then we have ψi(yi·, θ) = σTi(v). It is
easy to show (Exercise 13.5) that

∂ϕi

∂θk
= ni

{
Ti(v)Ti

(
∂gi

∂θk

)
− Ti

(
v
∂gi

∂θk

)}
, (13.8)

1 ≤ k ≤ p + 1, where θp+1 = σ. The expression on the right side might
suggest that our goal is hopeless: As ni → ∞, how can the right side of (13.8)
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be bounded? However, the difference inside the curly brackets has a special
form. By the Laplace approximation (e.g., De Bruijn 1961, §4), we have

Ti(f) = f(ṽi) +O(n−1
i ), (13.9)

where ṽi is the minimizer of gi with respect to v. Using (13.9), we have a
cancellation of the leading term inside the curly brackets, or square brackets
in the following expression, for the right side of (13.8) (verify this):

n−1
i

[
{ṽi +O(n−1

i )}
{
∂gi

∂θk

∣∣∣∣
ṽi

+O(n−1
i )

}
−
{
ṽi
∂gi

∂θk

∣∣∣∣
ṽi

+O(n−1
i )

}]

=
∂gi

∂θk

∣∣∣∣
ṽi

O(1) + ṽiO(1) − O(1) +O(n−1
i ).

The expression can now be expected to be bounded.
A consequence of (13.7) plus the orders of the terms is that the EBP is

consistent in the sense that α̂i − αi
P−→ 0 as ni → ∞ (recall that θ̂ is a con-

sistent estimator). However, as noted, the assumption ni → ∞ is impractical
for small-area estimation. So from now on we will forget about the consis-
tency and focus on the estimation of the MSPE of the EBP given that ni is
bounded. It is easy to verify the following decomposition of the MSPE:

MSPE(α̂i) = E(α̂i − αi)
2

= E(α̂i − α̃i)
2 + E(α̃i − αi)

2, (13.10)

where α̃i = E(αi|y). Using expression (13.4) for α̃i, the second term has a
closed-form expression—namely,

E(α̃i − αi)
2 = σ2 − bi(θ), (13.11)

where bi(θ) = E{E(αi|yi)}2 =
∑ni

k=0 ψ
2
i (k, θ)pi(k, θ) and

pi(k, θ) = P(yi· = k)

=
∑

z∈S(ni,k)

exp

⎛⎝ ni∑
j=1

zjx
′
ijβ

⎞⎠E[exp{φi(z·, σξ, β)}]

with S(n, k) = {z = (z1, . . . , zn) ∈ {0, 1}n : z1 + · · · + zn = k}, z· =
∑ni

j=1 zj ,
and the expectation is taken with respect to ξ ∼ N(0, 1) (Exercise 13.6). As
for the first term, we use a technique introduced in Section 4.3, called the
formal derivation. By the Taylor expansion, we have

α̂i − α̃i = ψi(yi·, θ̂) − ψi(yi·, θ)

=
∂ψi

∂θ′
(θ̂ − θ) +

1

2
(θ̂ − θ)′

(
∂2ψi

∂θ∂θ′

)
(θ̂ − θ) + oP(|θ̂ − θ|2).
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Suppose that

θ̂ − θ = OP(m−1/2). (13.12)

It follows that

E(α̂i − α̃i)
2 = m−1E

{
∂ψi

∂θ′
√
m(θ̂ − θ)

}2

+ o(m−1). (13.13)

To obtain a further approximation, let us first make it simpler by assuming
that θ̂ = θ̂−i, an estimator that does not depend on yi·. We know that by
making such an assumption, we may draw criticisms right the way: How prac-
tical is this assumption? Well, before we worry about it, let us first see how it
works, if the assumption holds. The bottom line is that, as we will argue later,
the special form θ̂ = θ̂−i does not really matter. Note that if θ̂ = θ̂−i, then
the estimator is independent of yi·. If we write Vi(θ) = mE(θ̂−i − θ)(θ̂−i − θ)′,
then we have (make sure that you follow the steps)

E

{
∂ψi

∂θ′
√
m(θ̂−i − θ)

}2

= E[E{(· · ·)2|yi· = k}|k=yi· ]

= E

[{
∂

∂θ′
ψi(k, θ)

}
Vi(θ)

{
∂

∂θ
ψi(k, θ)

}∣∣∣∣
k=yi·

]

= E

{
∂ψi

∂θ′
Vi(θ)

∂ψi

∂θ

}
=

ni∑
k=0

{
∂

∂θ′
ψi(k, θ)

}
Vi(θ)

{
∂

∂θ
ψi(k, θ)

}
pi(k, θ)

≡ ai(θ). (13.14)

If we combined (13.10), (13.11), (13.13), and (13.14), we get

MSPE(α̂i,−i) = σ2 − bi(θ) + ai(θ)m
−1 + o(m−1). (13.15)

Here, α̂i,−i indicates that θ is estimated by θ̂−i in the EBP.

To show that we can replace α̂i,−i by α̂i, an EBP with θ estimated by θ̂,
we need to show that the difference made by such a replacement is o(m−1).
Suppose that (13.12) holds and, in addition,

θ̂−i − θ̂ = oP(m−1/2). (13.16)

The motivation for (13.16) is the following. Consider, for simplicity, the sample
mean μ̂ = m−1

∑m
j=1 Xj based on i.i.d. observations X1, . . . , Xm. Then μ̂−i =

(m− 1)−1
∑

j 
=i Xj ; so we have
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μ̂−i − μ̂ =
1

m(m− 1)

∑
j 
=i

Xj − 1

m
Xi = OP(m−1),

provided that E(|Xi|) <∞. Hence (13.16) holds. Later we consider a class of
estimators of θ that satisfy (13.16). Suppose that (13.12) and (13.16) hold;

then we have θ̂−i−θ = θ̂−θ+ θ̂−i− θ̂ = OP(m−1/2). Therefore, by the Taylor
expansion, we have

α̂i,−i − α̃i =
∂ψi

∂θ′
(θ̂−i − θ) + oP(|θ̂−i − θ|)

= OP(m−1/2),

α̂i − α̂i,−i = (α̂i − α̃i) − (α̂i,−i − α̃i)

=

{
∂ψi

∂θ′
(θ̂ − θ) + oP(|θ̂ − θ|)

}
−
{
∂ψi

∂θ′
(θ̂−i − θ) + oP(|θ̂−i − θ|)

}
=
∂ψi

∂θ′
(θ̂ − θ̂−i) + oP(m−1/2)

= oP(m−1/2).

It follows that

MSPE(α̂i) = MSPE(α̂i,−i) + 2E(α̂i − α̂i,−i)(α̂i,−i − αi) + E(α̂i − α̂i,−i)
2

= MSPE(α̂i,−i) + o(m−1). (13.17)

Note that E(α̂i − α̂i,−i)(α̂i,−i − αi) = E(α̂i − α̂i,−i)(α̂i,−i − α̃i) (why?). To
obtain the final approximation, note that, again by (13.12) and (13.16), the
Vi(θ) involved in ai(θ) [see (13.15)] can be approximated by

Vi(θ) = m{E(θ̂ − θ)(θ̂ − θ)′ + E(θ̂−i − θ̂)(θ̂ − θ)′

+ E(θ̂ − θ)(θ̂−i − θ̂)′ + E(θ̂−i − θ̂)(θ̂−i − θ̂)′}
= m{E(θ̂ − θ)(θ̂ − θ)′ + o(m−1)}
= V (θ) + o(1),

where V (θ) = mE(θ̂ − θ)(θ̂ − θ)′. It follows that

ai(θ) =

ni∑
k=0

{
∂

∂θ′
ψi(k, θ)

}
V (θ)

{
∂

∂θ
ψi(k, θ)

}
pi(k, θ)

+ o(1). (13.18)

Denoting the summation on the right side of (13.18) by ci(θ), we have, by
(13.17), (13.15), and (13.18),

MSPE(α̂i) = σ2 − bi(θ) + ci(θ)m
−1 + o(m−1). (13.19)

In other words, we have obtained a similar approximation as (13.15) without

assuming that θ̂ = θ̂−i. Once again, the method of formal derivation (see
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Section 4.3) is used here without justifying each step rigorously. For example,
it is not necessarily true that E{oP(m−1)} = o(m−1). However, these steps
can be justified, with rigor, under suitable regularity conditions (see Jiang
and Lahiri 2001).

It remains to find estimators that satisfy (13.12) and (13.16). Recall the
method of moments estimators for GLMM discussed in the previous section.
It can be shown that, subject to some regularity conditions, these estima-
tors satisfy (13.12) and (13.16). In the current case, the estimating equations
(12.49) and (12.51) take the following form:

m∑
i=1

ni∑
j=1

xijkyij =

m∑
i=1

xijkEθ(yij), 1 ≤ k ≤ p, (13.20)

m∑
i=1

∑
j1 
=j2

yij1yij2 =
m∑

i=1

∑
j1 
=j2

Eθ(yij1yij2) (13.21)

with Eθ(yij) = E{h(x′ijβ+ σξ)} and Eθ(yij1yij2) = E{h(x′ij1β+ σξ)h(x′ij2β+
σξ)}, j1 �= j2 [recall h(x) = ex/(1 + ex)], where the expectations are taken
with respect to ξ ∼ N(0, 1).

Based on the MSPE approximation (13.19), we can derive a second-order

unbiased estimator of the MSPE. This means finding M̂SPE(α̂i) such that

E{M̂SPE(α̂i) − MSPE(α̂i)} = o(m−1). (13.22)

Write di(θ) = σ2 − bi(θ). For the ci(θ) in (13.19), we can simply replace θ

by θ̂, a consistent estimator (e.g., the method of moment estimator). This is

because the difference is m−1{ci(θ̂) − ci(θ)} = oP(m−1), provided that ci(·)
is continuous. However, we cannot simply replace di(θ) by di(θ̂), because the

difference is di(θ̂) − di(θ) = OP(m−1/2), in the typical situations, provided

that θ̂ satisfies (13.12). Therefore, we have to do a bias correction in order
to reduce the bias to o(m−1). Let M(θ) denote the vector of the difference

between the two sides of (13.20) and (13.21) and let θ̂ be the solution to

(13.20) and (13.21) [i.e., M(θ̂) = 0]. We have, by the Taylor expansion,

0 = M(θ̂)

= M(θ) +
∂M

∂θ′
(θ̂ − θ) +

1

2

[
(θ̂ − θ)′

∂2Mk

∂θ∂θ′
(θ̂ − θ)

]
1≤k≤p+1

+
1

6

⎡⎣∑
a,b,c

∂3M̃k

∂θa∂θb∂θc
(θ̂a − θa)(θ̂b − θb)(θ̂c − θc)

⎤⎦
1≤k≤p+1

,

where Mk represents the kth component of M and M̃k denotes Mk evaluated
at θ̃k, which lies between θ and θ̂ (but depends on k), 1 ≤ k ≤ p + 1. In
typical situations, we have (∂M/∂θ′)−1 = OP(m−1), and the second and
third derivatives of Mk are OP(m). These, plus (13.12), imply
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0 = M(θ) +
∂M

∂θ′
(θ̂ − θ) +

1

2

[
(θ̂ − θ)′

∂2Mk

∂θ∂θ′
(θ̂ − θ)

]
1≤k≤p+1

+ OP(m−1/2) (13.23)

= M(θ) +
∂M

∂θ′
(θ̂ − θ) +OP(1). (13.24)

Equation (13.24) implies that

θ̂ − θ = −
(
∂M

∂θ′

)−1

M(θ) + OP(m−1). (13.25)

We now bring (13.25) back to (13.23) to replace θ̂ − θ in the quadratic form.
This leads to (verify this, especially the order of the remina term)

0 = M(θ) +
∂M

∂θ′
(θ̂ − θ) +

1

2
Q̂+OP(m−1/2), (13.26)

where Q̂ = [M ′(θ)(∂M ′/∂θ)−1(∂2Mk/∂θ∂θ
′)(∂M/∂θ′)−1M(θ)]1≤k≤p+1. This

leads to the following expansion:

θ̂ − θ = −
(
∂M

∂θ′

)−1{
M(θ) +

1

2
Q̂

}
+OP(m−3/2) (13.27)

= −
(
∂M

∂θ′

)−1

M(θ) +OP(m−1). (13.28)

The second equation is due to the fact that Q̂ = OP(1) (why?).

Now, use another Taylor expansion, this time for di(θ̂):

di(θ̂) = di(θ) +
∂di

∂θ′
(θ̂ − θ) +

1

2
(θ̂ − θ)′

∂2di

∂θ∂θ′
(θ̂ − θ) +OP(m−3/2).

By plugging (13.27) into the first-order term and (13.28) into the second-order
term (why using different expressions?), we get

di(θ̂) = di(θ) − ∂di

∂θ′

(
∂M

∂θ′

)−1{
M(θ) +

1

2
Q̂

}
+

1

2
R̂+OP(m−3/2)

= di(θ) +m−1B̂i(θ) +OP(m−3/2),

where R̂ is the same as the components of Q̂ except replacing ∂2Mk/∂θ∂θ
′

by ∂2di(θ)/∂θ∂θ
′ and

B̂i(θ) = −m
[
∂di

∂θ′

(
∂M

∂θ′

)−1{
M(θ) +

1

2
Q̂

}
− 1

2
R̂

]

= −m∂di

∂θ′

(
∂M

∂θ′

)−1

M(θ) +OP(1)

= −m∂di

∂θ′

{
E

(
∂M

∂θ′

)}−1

M(θ) +OP(1).
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The second equation holds because R̂ = OP(m−1) (why?), (∂M/∂θ′)−1 =
OP(m−1), and Q̂ = OP(1); the third equation is due to the facts that(

∂M

∂θ′

)−1

−
{

E

(
∂M

∂θ′

)}−1

= −
{

E

(
∂M

∂θ′

)}−1{
∂M

∂θ′
− E

(
∂M

∂θ′

)}(
∂M

∂θ′

)−1

= O(m−1)OP(m1/2)OP(m−1)

= OP(m−3/2),

and M(θ) = OP(m1/2). Now, use the fact that E{M(θ)} = 0 to get

Bi(θ) ≡ E{B̂i(θ)} = O(1) (13.29)

[note that M(θ) = OP(m1/2) is not enough to get (13.29)]. The left side of

(13.29), multiplied by m−1, is the leading term for the bias of di(θ̂). To bias-

correct the latter, we subtract an estimator of the bias, Bi(θ̂) [note that Bi(θ̂)

is different from B̂i(θ)]. This time, the plugging in of θ̂ results in an overall
difference of o(m−1). The bias-corrected MSPE estimator is therefore

M̂SPE(α̂i) = di(θ̂) +m−1{ci(θ̂) −Bi(θ̂)}. (13.30)

In practice, Bi(θ̂) may be evaluated using a parametric bootstrap method;
namely, the bootstrap samples are generated under the mixed logistic model
with θ̂ treated as the true parameters. For each bootstrap sample, the ex-
pression B̂i(θ̂) is evaluated. The sample mean of these evaluations over the

different bootstrap samples is then an approximation to Bi(θ̂). See the next
chapter for more details.

It can be shown that the estimator given by (13.30) satisfies (13.22) (Ex-
ercise 13.7). Note that (13.30) has a form similar to the Prasad–Rao MSPE
estimator (4.95). Therefore, the result obtained in this section may be viewed
as an extension of the Prasad–Rao method to mixed logistic models for small-
area estimation. Once again, the method of formal derivation (see Section
4.3) is used in deriving the second-order unbiased MSPE estimator. However,
the end result [i.e., (13.22) holds for the MSPE estimator (13.30)], can be
rigorously justified (see Jiang and Lahiri 2001).

13.3 The Fay–Herriot model

The Fay–Herriot model was first introduced in Example 4.18. It is one of
the most popular models for small-area estimation that have been practically
used. Yet, the model is surprisingly simple and therefore very useful in in-
troducing the basic as well as advanced asymptotic techniques for small-area
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estimation. Recall that a Fay–Herriot model can be expressed as (4.86) with
the assumptions following the expression. The small-area mean under the Fay–
Herriot model can be expressed as θi = x′iβ + vi. Earlier, the EBLUP of θi

was derived in Example 4.18 (continued). A slightly different expression is

θ̂i = yi −Bi(Â){yi − x′iβ̃(Â)}, (13.31)

where Bi(A) = Di/(A+Di) and

β̃(A) =

(
m∑

i=1

xix
′
i

A+Di

)−1 m∑
i=1

xiyi

A+Di

is the BLUE of β given that A is the true variance of the random effects vi.
Note that hereafter we make a switch of notation from Yi to yi.

The Â in (13.31) is supposed to be a consistent, or more precisely,√
m-consistent estimator of A. Here, by

√
m-consistent it means Â − A =

OP(m−1/2). There are several choices choices for Â. Prasad and Rao (1990)
used the method of moments (P-R) estimator

ÂPR =
y′PX⊥y − tr(PX⊥D)

m− p
, (13.32)

where PX⊥ is defined above (12.56) with X = (x′i)1≤i≤m. Without loss of
generality, we assume that X has full rank p. Datta and Lahiri (2000) consid-
ered ML and REML estimators of A, denoted by ÂML and ÂRE, respectively,
which do not have closed-form expressions. Another estimator of A, proposed
by Fay and Herriot (1979) in their original paper (in which they introduced
the Fay–Herriot model), is given below. Let Q = Q(A) be as defined below
(12.9) with Γ = Var(y) = diag(A+Di, 1 ≤ i ≤ m). The Fay–Herriot (F-H) es-
timator of A, denoted by ÂFH, is obtained by solving iteratively the equation

y′Q(A)y

m− p
= 1 (13.33)

for A. It can be shown that (13.33) is unbiased in the sense that the expecta-
tion of the left side is equal to the right side if A is the true variance (Exercise
13.8). Note that

y′Q(A)y =

m∑
i=1

{yi − x′iβ̃(A)}2

A+Di
. (13.34)

All of the estimators, ÂPR, ÂML, ÂRE, and ÂFH, are
√
m-consistent. The

√
m-

consistency of ÂML and ÂRE follows from the results of Jiang (1996), which
do not require normality (see Section 12.2). The

√
m-consistency of ÂPR is

left as an exercise (Exercise 13.9). The corresponding property of ÂFH may
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be implied by the general theory of estimating equations (e.g., Heyde 1997,
§12) or shown directly (Exercise 13.10).

Furthermore, all of the estimators possess the following properties: (i) They
are even functions of the data; that is, the estimators are unchanged when y
is replaced by −y; (ii) they are translation invariant; that is, the estimators
are unchanged when y is replaced by y+Xb for any b ∈ Rp (Exercise 13.11).
Harville (1985) showed that for any estimator Â that satisfies (i) and (ii), the
MSPE of the corresponding EBLUP has the following decomposition:

MSPE(θ̂i) = E(θ̃B,i − θi)
2 + E(θ̃i − θ̃B,i)

2 + E(θ̂i − θ̃i)
2

= g1i(A) + g2i(A) + E(θ̂i − θ̃i)
2, (13.35)

where θ̃B,i is the BP of θi (in terms of minimizing the MSPE), given by (13.31)

with Â and β̃(A) replaced by A and β, which are the true parameters, and
θ̃i is the BLUP of θi, given by (13.31) with Â replaced by A, the true A. To
compute the BP, both A and β have to be known; to compute the BLUP, A
has to be known. Both BP and BLUP are not available in typical situations;
so the EBLUP is the only one among the three that is computable. However,
decomposition (13.35) is very useful in deriving a second-order unbiased esti-
mator of the MSPE of EBLUP. Further analytic expressions can be obtained
for the first two terms—namely,

g1i(A) =
ADi

A+Di
, (13.36)

g2i(A) =

(
Di

A+Di

)2

x′i

⎛⎝ m∑
j=1

xjx
′
j

A+Dj

⎞⎠−1

xi. (13.37)

Since these terms have nothing to do with the estimator, they remain the
same regardless of what estimator of A is used as long as (i) and (ii) are sat-
isfied. Also, note that g1i(A) = O(1) and g2i(A) = O(m−1), under regularity
conditions.

On the other hand, the third term on the right side of (13.35) depends
on the estimator of A. Under suitable regularity conditions, it can be shown
(e.g., Datta and Lahiri 2000) that

E(θ̂i − θ̃i)
2 =

D2
i

(A+Di)3
var(Â) + o(m−1)

= g3i(A) + o(m−1), (13.38)

where var(Â) is the asymptotic variance of Â. It remains to evaluate var(Â),
and thus g3i(A), for the different estimators of A. Prasad and Rao (1990)
showed that for ÂPR,

g3i(A) =
2D2

i

(A+Di)3m2

m∑
j=1

(A+Dj)
2. (13.39)
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Datta and Lahiri (2000) showed that for both ÂML and ÂRE,

g3i(A) =
2D2

i

(A+Di)3

⎧⎨⎩
m∑

j=1

(A+Dj)
−2

⎫⎬⎭
−1

(13.40)

(here it is assumed that p, the rank of X , is bounded; otherwise, the asymp-
totic variance of ÂML and ÂRE may be different; see Section 12.2). Finally,
Datta et al. (2005) showed that for ÂFH,

g3i(A) =
2D2

im

(A+Di)3

⎧⎨⎩
m∑

j=1

(A+Dj)
−1

⎫⎬⎭
−2

. (13.41)

Despite the different expressions, it is seen from (13.39)–(13.41) that g3i(A) =
O(m−1), which makes sense in view of (13.38). In conclusion, the leading term
in the MSPE decomposition is g1i(A), which is O(1), followed by two O(m−1)
terms, g2i(A) and g3i(A), so that

MSPE(θ̂i) = g1i(A) + g2i(A) + g3i(A) + o(m−1) (13.42)

with g3i(A) depending on the method of estimation of A.
It can be shown that (Exercise 13.12)

right side of (13.40) ≤ right side of (13.41)

≤ right side of (13.39).

This means that in terms of the asymptotic (predictive) efficiency, ML and
REML estimators are the best, followed by the F-H estimator, and then by
the P-R estimator. These theoretical results are confirmed by the results of
simulation studies carried out by Datta et al. (2005), who showed that the
EBLUPs based on ML, REML, and F-H estimators of A perform similarly in
terms of the MSPE (ML and REML perform slightly better under normality),
and all three perform significantly better than the EBLUP with the P-R
estimator of A when there is a large variability in the Di’s among the small
areas. Note that in the balanced case (i.e., Di = D, 1 ≤ i ≤ m), the P-
R, REML, and F-H estimators are identical (provided that the estimator is
nonnegative), whereas the ML estimator is different, although the difference
is expected to be small when m is large (Exercise 13.13).

Based on the MSPE approximation (13.42) and using a similar bias-
correction technique as in the previous section, second-order unbiased esti-
mators of the MSPE can be obtained. Datta and Lahiri (2000) showed that if
b(A) is the asymptotic bias of Â up to the order o(m−1), then the estimator

M̂SPE(θ̂i) = g1i(Â) + g2i(Â) + 2g3i(Â)

−
(

Di

Â+Di

)2

b(Â) (13.43)
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is second-order unbiased; that is,

E{M̂SPE(θ̂i) − MSPE(θ̂i)} = o(m−1). (13.44)

The authors further showed that for ÂPR and ÂRE, b(A) = 0, so that for
EBLUP with P-R estimator of A, we have

M̂SPE(θ̂i) = g1i(ÂPR) + g2i(ÂPR) + 2g3i,PR(ÂPR), (13.45)

where g3i,PR(A) denotes the g3i(A) given by (13.39); similarly, for EBLUP

with the REML estimator ofA, M̂SPE(θ̂i) is given by (13.45) with PR replaced
by RE, where g3i,RE(A) denotes the g3i(A) given by (13.40). As for EBLUP
with ML estimator of A, Datta and Lahiri (2000) showed that

M̂SPE(θ̂i)

= (13.45) with PR replaced by ML

−
(

Di

ÂML +Di

)2
⎧⎨⎩

m∑
j=1

(ÂML +Dj)
−2

⎫⎬⎭
−1

×tr

⎧⎪⎨⎪⎩
⎛⎝ m∑

j=1

xjx
′
j

ÂML +Dj

⎞⎠−1
m∑

j=1

xjx
′
j

(ÂML +Dj)2

⎫⎪⎬⎪⎭ , (13.46)

where g3i,ML is the same as g3i,RE. Finally, for EBLUP with the F-H estimator
of A, Datta et al. (2005) showed that

M̂SPE(θ̂i)

= (13.45) with PR replaced by FH

−2

(
Di

ÂFH +Di

)2
⎧⎨⎩

m∑
j=1

(ÂFH +Dj)
−1

⎫⎬⎭
−3

×

⎡⎢⎣m m∑
j=1

(ÂFH +Dj)
−2 −

⎧⎨⎩
m∑

j=1

(ÂFH +Dj)
−1

⎫⎬⎭
2
⎤⎥⎦ , (13.47)

where g3i,FH(A) denotes g3i(A) given by (13.41).
The (unconditional) MSPE is one way to measure the uncertainty of the

EBLUP. There are other measures of uncertainties associated with conditional
expectations. First, note that one can write

MSPE(θ̂i) = E[E{(θ̂i − θi)
2|θ}], (13.48)

where the outside conditional expectation is with respect to the distribution
of θ = (θi)1≤i≤m and the inside conditional expectation is with respect to the
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sampling distribution of y, known as the design-based (conditional) MSPE. If
one considers the inside conditional expectation in (13.48), it leads to

MSPE1(θ̂i|θ) = E{(θ̂i − θi)
2|θ} (13.49)

as a measure of uncertainty conditional on the small-area means. A good thing
about MSPE1 is that it has an exactly unbiased estimator. More generally,
consider a predictor of the form θ̂i = yi + hi(y), where hi(·) is a differentiable
function. Rivest and Belmonte (2000) showed that

MSPE1(θ̂i|θ) = Di + 2E{(yi − θi)hi(y)|θ} + E{h2
i (y)|θ}. (13.50)

Furthermore, applying the well-known Stein’s identity (e.g., Casella and
Berger 2002, p. 124), we have

E{(yi − θi)hi(y)|θ} = DiE

(
∂hi

∂yi

∣∣∣∣ θ) . (13.51)

Equations (13.50) and (13.51) lead to the expression

MSPE1(θ̂i|θ) = Di + 2DiE

(
∂hi

∂yi

∣∣∣∣ θ)+ E{h2
i (y)|θ}

= E

{
Di

(
1 + 2

∂hi

∂yi

)
+ h2

i (y)

∣∣∣∣ θ} . (13.52)

Thus, an exactly (design-)unbiased estimator of MSPE1 is

M̂SPE1(θ̂i) = Di

(
1 + 2

∂hi

∂yi

)
+ h2

i (y). (13.53)

In particular, for the EBLUP, we have

hi(y) = − Di

Â+Di

{yi − x′iβ̃(Â)}, (13.54)

where Â is a specified estimator of A and β̃(A) is given below (13.31). Thus,
for the EBLUP, we have (Exercise 13.14)

∂hi

∂yi
=

Di

(Â+Di)2
{yi − x′iβ̃(Â)} ∂Â

∂yi

− Di

Â+Di

(
1 − x′i

∂β̃

∂yi

)
, (13.55)

∂β̃

∂yi
=

⎛⎝ m∑
j=1

xjx
′
j

Â+Dj

⎞⎠−1

×
⎧⎨⎩ xi

Â+Di

−
m∑

j=1

yj − x′j β̃(Â)

(Â+Dj)2
xj
∂Â

∂yi

⎫⎬⎭ (13.56)
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(note that the latter expression is a vector). It remains to obtain expressions
for ∂Â/∂yi for the different estimators of A. For the P-R estimator, the expres-
sion is simple, because ÂPR has the closed-form expression (13.32)—namely,

∂ÂPR

∂yi
=

2

m− p
{yi − x′i(X

′X)−1X ′y} (13.57)

(Exercise 13.14). For the other estimators of A, the expressions for ∂Â/∂yi are
more complicated and the well-known implicit function theorem in calculus
needs to be used (Exercise 13.14; also see Datta et al. 2009). Despite the
exact unbiasedness, the estimator (13.53) may be unstable. The reason is

that, unlike M̂SPE(θ̂i), the estimator (13.53) involves the term yi, the direct
estimator from the ith small area. This term is subject to a large sampling
variation compared to an estimator, such as Â, that is based on observations
from all the small areas (why?).

Alternatively, we can express the MSPE as

MSPE(θ̂i) = E[E{(θ̂i − θi)
2|yi}]. (13.58)

This leads to another measure of uncertainty:

MSPE2(θ̂i|yi) = E{(θ̂i − θi)
2|yi}. (13.59)

Note that, unlike (13.49), here the conditioning is on yi, the direct estimator
from the ith small area (Fuller 1989). Also, note that if the direct estimator,

yi, is used instead of θ̂i, then we have (Exercise 13.15)

MSPE2(yi|yi) = {yi − E(θi|yi)}2 + var(θi|yi)

= g1i(A) +

(
Di

A+Di

)2

(yi − x′iβ)2, (13.60)

where g1i(A) is given by (13.36). The question then is whether one can do

better than yi with the EBLUP θ̂i. Datta et al. (2009) obtained the following
approximation:

MSPE2(θ̂i|yi) = g1i(A) + g2i(A) +
(yi − x′iβ)2

A+Di
g3i(A)

+ oP(m−1), (13.61)

where gri(A), r = 1, 2, 3, are the same as before. Comparing (13.60) and
(13.61) and noting that both g2i(A) and g3i(A) are O(m−1), we see that a
term of order O(1) is replaced by something of the order OP(m−1), when yi

is replaced by θ̂i. Thus, the EBLUP is doing better, as expected.
Using a similar bias-correction technique as in Section 13.2, Datta et al.

(2009) obtained a second-order unbiased estimator of MSPE2. The estimator
has the general form
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M̂SPE2(θ̂i|yi) = g1i(Â) + g2i(Â) + g3i(Â)

[
1 +

{yi − x′iβ̃(Â)}2

Â+Di

]

−
(

Di

Â+Di

)2

bi(Â), (13.62)

where, like g3i(A), bi(A) depends on which estimator ofA is used. For example,

bi(A) =

⎧⎨⎩(A+Di)
m∑

j=1

(A+Di)
−2

⎫⎬⎭
−1

×
[
{yi − x′iβ̃(A)}2

A+Di
− 1

]
(13.63)

for the REML estimator of A, and

bi(A) = 2

⎧⎨⎩
m∑

j=1

(A+Dj)
−1

⎫⎬⎭
−3

×

⎡⎢⎣m m∑
j=1

(A+Dj)
−2 −

⎧⎨⎩
m∑

j=1

(A+Dj)
−1

⎫⎬⎭
2
⎤⎥⎦

+

⎧⎨⎩
m∑

j=1

(A+Dj)
−1

⎫⎬⎭
−1 [

{yi − x′iβ̃(A)}2

A+Di
− 1

]
(13.64)

for the F-H estimator of A.
Finally, we consider hierarchical Bayes estimation of the small-area means.

Note that the Fay–Herriot model can be formulated as a hierarchical model,
once a prior distribution, p(β,A), is specified on β and A. In this regard, we
assume the following:

(i) Given the θi’s, yi, i = 1, . . . ,m, are independent such that yi ∼
N(θi, Di).

(ii) Given β and A, θi, i = 1, . . . ,m, are independent such that θi ∼
N(x′iβ,A).

(iii) The prior p(β,A) ∝ π(A), where π(A) is a distribution for A (∝ means
“proportional to”).

Note that without (iii), this is the same as the Fay–Herriot model that we
have been considering. The hierarchical Bayes estimator of θi is the posterior
mean, E(θi|y); a measure of uncertainty for the Bayes estimator is the poste-
rior variance, var(θi|y). It can be shown (Exercise 13.16) that the conditional
distribution of θi given A and y is normal with mean equal to the right side of
(13.31) with Â replaced by A and variance equal to g1i(A)+ g2i(A). It follows
that (see Appendix A.2)
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E(θi|y) = E{E(θi|A, y)|y}
= yi − E

[(
Di

A+Di

)
{yi − x′iβ̃(A)}

∣∣∣∣ y] , (13.65)

var(θi|y) = E{var(θi|A, y)|y} + var{E(θi|A, y)}
= E{g1i(A)|y} + E{g2i(A)|y}

+ var

[(
Di

A+Di

)
{yi − x′iβ̃(A)}

∣∣∣∣ y] . (13.66)

The conditional expectations involved in (13.65) and (13.66) do not have
closed-form expressions. To obtain second-order approximations to (13.65)
and (13.66), Datta et al. (2005) used the Laplace approximation (see Section
4.6). Let c(A) denote a function for which E{c(A)|y} exists. Define h(A) by

exp{−mh(A)} = |Γ (A)|−1/2|X ′Γ−1(A)X |−1/2 exp

{
−1

2
y′Q(A)y

}
,

where Γ (A) and Q(A) are the same as in (13.33) [where we used the notation
Γ instead of Γ (A)]. Note that mh(A) is the same as the negative of the re-
strictive log-likelihood for estimating A (see Section 12.2). The minimizer of
h(A) is therefore the REML estimator of A, ÂRE. To express the Laplace ap-
proximation to E{c(A)|y} in a neat way, we need to introduce some notation.

Write ĉ = c(ÂRE), ĉr = ∂rc(A)/∂Ar|ÂRE
, r = 1, 2, ĥr = ∂rh(A)/∂Ar|ÂRE

,
r = 2, 3, and ρ̂1 = ∂ log π(A)/∂A|ÂRE

. Then we have

E{c(A)|y} = ĉ+
1

2mĥ2

(
ĉ2 − ĥ3

ĥ2

ĉ1

)
+

ĉ1

mĥ2

ρ̂1

+ OP(m−2). (13.67)

Similarly, provided that var{c(A)|y} exists, we have

var{c(A)|y} =
ĉ21

mĥ2

+OP(m−2). (13.68)

By applying (13.67) and (13.68) to (13.65) and (13.66), second-order approx-
imations of E(θi|y) and var(θi|y) can be obtained. See Datta et al. (2005) for
the results and D. D. Smith’s Ph. D. dissertation (2001; University of Georgia)
for the details of the proofs.

Note that, unlike the Laplace approximations we have previously seen [e.g.,
(12.37)], here we have the orders of the approximation errors. For example,
the approximation error in (13.67) is OP(m−2) and E(c(A)|y} is OP(1). We
call such an approximation asymptotically accurate. In contrast, the Laplace
approximation in (12.37) is not asymptotically accurate in that the approx-
imation error does not go to zero (e.g., in probability) as the sample size
increases. One may wonder why there is such a difference. For the most part,
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the Laplace approximation becomes accurate if, as the sample size increases,
the underlying distribution becomes concentrated near the mode of the distri-
bution. The posterior distribution of A becomes concentrated near its mode as
m→ ∞, as more information becomes available about A. On the other hand,
in typical situations of GLMM discussed in Section 12.4, the distribution of
the random effects does not become concentrated near its mode, even as the
sample size increases, as the information about individual random effects re-
mains limited. For example, in the mixed logistic model of Section 13.2, the
ni’s (which correspond to the information about the individual αi’s) remain
bounded even as m→ ∞.

13.4 Nonparametric small-area estimation

Nonparametric models for small-area estimation have received much attention
in recent literature. In particular, Opsomer et al. (2008) proposed a spline-
based nonparametric model. For simplicity, let us first consider a nonpara-
metric regression model, which can be expressed as

yi = f(xi) + εi, i = 1, . . . , n, (13.69)

where f(·) is an unknown function and the errors εi are independent with
mean 0 and constant variance. The linear regression model (see Section 6.7)
is a special case of (13.69) with f(x) = x′β, a vector of unknown regression
coefficients. In the latter case, f is unknown only up to a vector of parameters,
β. In other words, the form of f is known. It is clear that a nonparametric
regression model offers more flexibility than the linear regression model in
modeling the mean function of the observations. On the other hand, it is
difficult to make an inference about the model if f is completely unknown. A
common strategy in practice is to approximate f by a function that can be
chosen from a rich family of parametric functions. One such family is called
P-splines. For simplicity, consider the case of univariate x. Then a P-spline
can be expressed as

f̃(x) = β0 + β1x+ · · · + βpx
p

+ γ1(x− κ1)
p
+ + · · · + γq(x− κq)

p
+, (13.70)

where p is the degree of the spline, q is the number of knots, κj , 1 ≤ j ≤ q are
the knots, and x+ = x1(x>0). Graphically, a P-spline is pieces of (pth degree)
polynomials smoothly connected at the knots. The P-spline model, which is
(13.69) with f replaced by f̃ , is fitted by penalized least squares—that is, by
minimizing

|y −Xβ − Zγ|2 + λ|γ|2, (13.71)

with respect to β and γ, where y = (yi)1≤i≤n, the ith row ofX is (1, xi, . . . , x
p
i ),

the ith row of Z is [(xi − κ1)
p
+, . . . , (xi − κq)

p
+], 1 ≤ i ≤ n, and λ is a penalty,
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or smoothing, parameter. To determine λ, Wand (2003) used the following
interesting connection to a linear mixed model (see the previous chapter).
Suppose that the εi’s are distributed as N(0, τ2). Then if the γ’s are treated
as independent random effects with the distribution N(0, σ2), the minimizer
of (13.71) is the same as the best linear unbiased estimator (BLUE) for β and
the best linear unbiased predictor (BLUP) for γ, provided that λ is identical
to the ratio τ2/σ2 (Exercise 13.17). Thus, the P-spline model is fitted the
same way as the linear mixed model

y = Xβ + Zγ + ε (13.72)

(e.g., Jiang 2007, §2.3.1). It should be pointed out that the connection is
asymptotically valid only if the true underlying function f is not a P-spline.
To see this, consider the following example.

Example 13.1. Suppose that the true underlying function is a quadratic
spline with two knots, given by

f(x) = 1 − x+ x2 − 2(x− 1)2+ + 2(x− 2)2+, 0 ≤ x ≤ 3

(the shape is a half-circle between 0 and 1 facing up, a half-circle between
1 and 2 facing down, and a half-circle between 2 and 3 facing up). Note
that this function is smooth in that it has a continuous derivative (Exercise
13.18). Obviously, the best approximating spline is f itself, for which q =
2. However, if one uses the above linear mixed model connection, the ML
(or REML) estimator of σ2 is consistent only if q → ∞ (i.e., the number
of appearances of the spline random effects goes to infinity). This can be
seen from the asymptotic theory of the previous chapter (see Section 12.2),
but, intuitively, it make sense even without the theory (why?). The seeming
inconsistency has two worrisome consequences: (i) The meaning of λ may be
conceptually difficult to interpret and (ii) the behavior of the estimator of λ
may be unpredictable.

Nevertheless, in most applications of P-splines, the unknown function f is
unlikely to be a P-spline, so, in a way, (13.70) is only used as an approximation,
with the approximation error vanishing as q → ∞. So, from now on this is the
case on which we focus. Opsomer et al. (2008) incorporated the spline model
with the small-area random effects. By making use of the spline–mixed-model
connection, their approximating model simply has the term Wα added to the
right side of (13.72); that is,

y = Xβ + Zγ +Wα+ ε, (13.73)

where α is the vector of small-area random effects and W is a known matrix.
It is assumed that γ, α, and ε are uncorrelated with means 0 and covariance
matrices Σγ , Σα, and Σε, respectively. The BLUE and BLUP are given by
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β̃ = (X ′V −1X)−1X ′V −1y,

γ̃ = ΣγZ
′V −1(y −Xβ̃),

α̃ = ΣαW
′V −1(y −Xβ̃),

where V = Var(y) = ZΣγZ
′ + WΣαW

′ + Σε (e.g., Jiang 2007, §2.3.1). The

EBLUE and EBLUP, denoted by β̂, γ̂, and α̂, are obtained by replacing V by
V̂ in the corresponding expressions. Here, we assume that V = V (θ), where θ

is a vector of variance components, so that V̂ = V (θ̂). The REML estimator

is used for θ̂, as suggested by Opsomer et al. (2008).
Once again, the problem of main interest is the estimation of small-area

means. As in Section 13.2, we may treat (13.37), approximately, as a super-
population model, which can be expressed as

Yij = x′ijβ + z′ijγ + w′ijα+ εij, (13.74)

j = 1, . . . , Ni, where Ni is the population size for the ith small area or sub-
population. Then, as argued in Section 13.2, the population mean for the ith
small area is approximately equal to the mixed effect

θi = x̄′i,Pβ + z̄′i,Pγ + w̄′i,Pα, (13.75)

where x̄i,P, z̄i,P, and w̄i,P are the population means of xij , zij , and wij , re-

spectively, over j = 1, . . . , Ni, and the approximation error is OP(N
−1/2
i ).

Thus, by ignoring the approximation error, we may treat θi as the small-area
mean. Also, note that, in most applications, we have w′ijα = αi, the random
effect associated with the ith small area, so that w̄′i,Pα = αi. We will focus on
this case in the sequel. The EBLUP of θi is then given by

θ̂i = x̄′i,Pβ̂ + z̄′i,Pγ̂ + α̂i, (13.76)

where α̂i is the ith component of α̂.
The MSPE of the EBLUP is, again, of interest. Here, however, we cannot

apply the results of Prasad–Rao (see Section 4.8). The reason is that the latter
results apply only to the case where the covariance matrix of y, V , is block-
diagonal. It is easy to see that V is not block-diagonal in this case (why?). Das
et al. (2004) extended the Prasad–Rao method to general linear mixed mod-
els, which may not have a block-diagonal covariance structure. Their results
are applicable to the current situation. First, note that the Kackar–Harville
identity (4.90) holds for normal linear mixed models in general, with or with-
out block-diagonal covariance structure, where η is any mixed effects that can
be expressed as η = φ′β + ψ′ν, where ν is the vector of all of the random
effects involved. It is clear that (13.75) is a special case of η, with φ = x̄i,P,
ψ = (z̄′i,P, w̄

′
i,P)′, and ν = (γ′, α′)′. Second, expression (4.92) also holds for

normal linear mixed models in general; so this term has a closed-form expres-
sion. It remains to approximate the second term on the right side of (4.90) to
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the second order. Opsomer et al. (2008) used the following results due to Das
et al. (2004) to obtain the second-order approximation to this term. Note that
the results do not require normality (but the Kackar–Harville identity does).
Let l(θ) = l(θ, y) be a function, where θ = (θi)1≤i≤s is a parameter with the
parameter space Θ and y is the vector of observations. For example, l may be
the restricted log-likelihood function that leads to the REML estimator of θ,
the vector of variance components (see Section 12.2).

Theorem 13.1. Suppose that the following hold:
(i) l(θ, y) is three-times continuously differentiable with respect to θ;
(ii) the true θ ∈ Θo, the interior of Θ;
(iii) −∞ < lim supn→∞ λmax(D

−1AD−1) < 0, where A = E{∂2l/∂θ2} with
the second derivative evaluated at the true θ and D = diag(d1, . . . , ds), with
di’s being positive constants satisfying d∗ = min1≤i≤s di → ∞, as n→ ∞;
(iv) the gth moments of the following are bounded for some g > 0:

1

di

∣∣∣∣ ∂l∂θi

∣∣∣∣ , 1√
didj

∣∣∣∣ ∂2l

∂θi∂θj
− E

(
∂2l

∂θi∂θj

)∣∣∣∣ , d∗
didjdk

Mijk, 1 ≤ i, j, k ≤ s,

where the first and second derivatives are evaluated at the true θ and

Mijk = sup
θ̃∈Sδ(θ)

∣∣∣∣ ∂3l

∂θi∂θj∂θk

∣∣∣∣
θ=θ̃

∣∣∣∣
with Sδ(θ) = {θ̃ : |θ̃i − θi| ≤ δd∗/di, 1 ≤ i ≤ s} for some δ > 0. Then the
following results hold:
(I) There exists θ̂ such that for any 0 < ρ < 1, there is an event set B satisfying

for large n and on B, θ̂ ∈ Θ, ∂l/∂θ|θ=θ̂ = 0, |D(θ̂ − θ)| < d1−ρ
∗ , and

θ̂ = θ −A−1a+ r,

where θ is the true θ, a = ∂l/∂θ, evaluated at the true θ, and |r| ≤ d−2ρ
∗ u

with E(ug) = O(1).
(II) P(Bc) ≤ cdτg

∗ with τ = (1/4) ∧ (1 − ρ) and c being a constant.

Theorem 13.1 plays a key role in the proof of the following theorem. Write
the BLUP of η as η̃ = η̃(θ, y) = φ′β̃ + ψ′ν̃, where β̃ is the BLUE of β and ν̃
the BLUP of ν, both depending on the unknown true θ. Define a truncated
estimator θ̂t of θ as follows: θ̂t = θ̂ if |θ̂| ≤ Ln, and θ̂t = θ∗ otherwise, where θ̂ is
the estimator in Theorem 13.1, θ∗ is a known vector in Θ, and Ln is a sequence
of positive numbers such that Ln → ∞ as n → ∞. Consider the EBLUP
η̂ = η̃(θ̂t, y). Define s0 = sup|θ|≤Ln

|η̃(θ, y)| and s2 = sup|θ|≤Ln
‖∂2η̃/∂θ∂θ′‖,

where ‖M‖ = λ
1/2
max(M ′M) is the spectral norm of matrix M and b = ∂η̃/∂θ,

evaluated at the true θ.

Theorem 13.2. Suppose that the conditions of Theorem 13.1 are sat-
isfied. Furthermore, supppose that there is h > 0, g > 8, and nonnegative
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constants gj, j = 0, 1, 2, such that E(s2h
0 ) = O(dg0∗ ), E{|b|2g/(g−2)} = O(dg1∗ ),

and E(s22) = O(dg2∗ ). If the inequalities

g0 <
g

4
(h− 1) − 2h, g1 <

(
g

g − 2

){
1

2
∧
(g

4
− 2
)}

, g2 <
1

2

hold, then we have

E(η̂ − η̃)2 = E(b′A−1a)2 + o(d−2
∗ ), (13.77)

where A and a are the same as in Theorem 2.1.

For a mixed ANOVA satisfying (12.1) and (12.2), the first term on the right
side of (13.77) can be specified up to the order o(d−2

∗ ). Note that in this case,
θ = (τ2, σ2

1 , . . . , σ
2
s ). Define S(θ) = V −1ZGψ, where V = Var(y) = τ2In +∑s

i=1 σ
2
i ZiZ

′
i, Z = (Z1 . . . Zs) and G = Var(α) = diag(σ2

1Im1 , . . . , σ
2
sIms).

Then [note that a minus sign is missing in front of the trace on the right side
of (3.4) of Das et al. (2004)] we have

E{b′A−1a}2 = −tr

(
∂S′

∂θ
V
∂S

∂θ
A−1

)
+ o(d−2

∗ ). (13.78)

Combining (13.77) and (13.78) with the Kackar-Harville identity, we obtain a
second-order approximation to the MSPE of EBLUP as

MSPE(η̂) = g1(θ) + g2(θ) + g3(θ) + o(d−2
∗ ), (13.79)

where g1(θ) = ψ′(G−GZ ′V −1ZG)ψ, g2(θ) = {φ−X ′S(θ)}′(X ′V −1X)−1{φ−
X ′S(θ)}, and g3(θ) is the first term on the right side of (13.78). By (13.79)
and using a similar bias-correction technique as in Section 13.2, a second-order
unbiased estimator of the MSPE can be obtained. See Das et al. (2004).

Unlike (13.42), the remaining term on the right side of (13.79) is expressed
as o(d−2

∗ ). For mixed ANOVA models, Das et al. (2004) showed that d2
i may

be chosen as tr{(Z ′iQZi)
2}, 0 ≤ i ≤ s, where Q is defined below (12.9) with

Γ = V . Thus, for (13.73), assuming Σγ = σ2
γIq, Σα = σ2

αIm, and Σε = σ2
ε In,

where σ2
γ and σ2

ε are positive, we have d2
0 = tr(Q2), d2

1 = tr(QZZ ′QZZ ′) and
d2
2 = tr(QWW ′QWW ′). For (13.79) to be meaningful, we need to show that

d2
∗ = d2

0 ∧ d2
1 ∧ d2

2 → ∞ (13.80)

as m → ∞, at the very least. We assume W = diag(1ni , 1 ≤ i ≤ m), as is
often the case, where ni is the sample size for the ith small area, which are
assumed to be bounded. Then we have λmax(WΣαW

′) = σ2
αλmax(WW ′) =

σ2
αλmax(W

′W ) = σ2
α max1≤i≤m ni. It follows that

V = Σε + ZΣγZ
′ +WΣαW

′

≤ σ2
ε In + λmax(WΣαW

′)In + σγZZ
′

= bIn + σ2
γZZ

′, (13.81)
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where b = σ2
ε +σ2

α max1≤i≤m ni is positive and bounded. Let λ1, . . . , λq be the
eigenvalues of Z ′Z. Then the eigenvalues of ZZ ′ are λ1, . . . , λq, 0, . . . , 0 (there
are n− q zeros after λq). Therefore, the eigenvalues of V −2 are (b+ σ2

γλj)
−2,

1 ≤ j ≤ q, and b−2, . . . , b−2 (n− q b−2’s). It follows that

tr(V −2) =
n− q

b2
+

q∑
j=1

(b+ σ2
γλj)

−2. (13.82)

Also, we have V ≥ σ2
ε In; hence, by (i) of §5.3.1, V −1 ≤ σ−2

ε In. It fol-
lows, by (iii) of Section 5.3.1, ‖V −1‖2 = λmax(V

−2) = {λmax(V
−1)}2 ≤

{λmax(σ
−2
ε In)}2 = σ−4

ε . By (5.43), we have

‖V −1‖2 = ‖Q+ V −1X(X ′V −1X)−1X ′V −1‖2

≤ ‖Q‖2 + ‖V −1X(X ′V −1X)−1X ′V −1‖2

≤ ‖Q‖2 + ‖V −1‖
√
p+ 1

≤ ‖Q‖2 + σ−2
ε

√
p+ 1

(Exercise 13.19). Therefore, by (13.82), we have d0 = ‖Q‖2 ≥ ‖V −1‖2 −
σ2

ε

√
p+ 1 → ∞, provided, for example, that n− q → ∞.

Next, we consider d1. Note that d2
1 = ‖Z ′QZ‖2

2, and Z ′QZ = Z ′V −1Z −
Z ′V −1X(X ′V −1X)−1X ′V −1Z. Thus, by a similar argument, we have

‖Z ′V −1Z‖2 = ‖Z ′QZ + Z ′V −1X(X ′V −1X)−1X ′V −1Z‖2

≤ ‖Z ′QZ‖2 + ‖Z ′V −1X(X ′V −1X)−1X ′V −1Z‖2.

Again, by (i) and (ii) of Section 5.3.1 and that V ≥ σ2
ε In + σ2

γZZ
′, we have

Z ′V −1Z ≤ Z ′(σ2
ε In + σ2

γZZ
′)−1Z.

Note that the nonzero eigenvalues of Z ′(σ2
ε In + σ2

γZZ
′)−1Z are the same as

the nonzero eigenvalues of (σ2
ε In +σ2

γZZ
′)−1/2ZZ ′(σ2

ε In +σ2
γZZ

′)−1/2, which
are (σ2

ε + σ2
γλj)

−1λj , 1 ≤ j ≤ q, followed by n − q zeros. It follows by (iii)
of Section 5.3.1, that ‖Z ′V −1Z‖ ≤ σ−2

γ . On the other hand, it can be shown
(Exercise 13.19) that ‖Z ′V −1X(X ′V −1X)−1X ′V −1Z‖2 ≤ ‖Z ′V −1Z‖√p+ 1.
Therefore, we have ‖Z ′QZ‖2 ≥ ‖Z ′V −1Z‖2−σ−2

γ

√
p+ 1. Now use, again, the

inequality (13.81) and similar arguments as above to show that

‖Z ′V −1Z‖2
2 ≥

q∑
j=1

(
λj

b+ σ2
γλj

)2

(13.83)

(Exercise 13.20). Thus, d1 → ∞, provided, for example, that the right side of
(13.83) goes to infinity.

Finally, we consider d2. By a similar argument, it can be shown that

‖W ′QW‖2 ≥ ‖W ′V −1W‖2 − c
√
p+ 1 (13.84)
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for some constant c (Exercise 13.21). Now, again, using (13.81) and an inverse
matrix identity (see Appendix A.1), we have

V −1 ≥ (bIn + σ2
γZZ

′)−1

= b−1{In − δZ(Iq + δZ ′Z)−1Z ′},
where δ = σ2

γ/b. Thus, we have

W ′V −1W ≥ b−1{W ′W − δW ′Z(Iq + δZ ′Z)−1Z ′W}.
Write B = δZ(Iq + δZ ′Z)−1Z ′. Then we have λmax(B) = λmax{δ(Iq +
δZ ′Z)−1/2Z ′Z(Iq + δZ ′Z)−1/2} = max1≤j≤q δλj(1 + δλj)

−1 ≤ 1. It follows
that ‖W ′BW‖2 ≤ (max1≤i≤m ni)q (Exercise 13.21). Now, by (iii) of Sec-
tion 5.3.1, we have ‖W ′W‖2 ≤ ‖bW ′V −1W + W ′BW‖2 ≤ b‖W ′V −1W‖2 +
(max1≤i≤m ni)q. Thus, by (13.84) and the fact that ‖W ′W‖2 = (

∑m
i=1 n

2
i )

1/2,
we have

d2 = ‖W ′QW‖2

≥ b−1

⎧⎨⎩
(

m∑
i=1

n2
i

)1/2

−
(

max
1≤i≤m

ni

)
q

⎫⎬⎭− c
√
p+ 1

−→ ∞,

provided that, for example, ni ≥ 1, 1 ≤ i ≤ m, and q/
√
m → 0.

In the above arguments that lead to (13.80), there is a single assumption
that is not very clear what it means. This is the assumption that the right side
of (13.83) goes to ∞. Note that the assumption does not have to hold, even if
q → ∞. For the remaining part of this section, we consider a specific example
and show that the assumption holds in this case, provided that q → ∞ at a
certain slower rate than n.

Example 13.2. Consider the following special case: ni = 1, 1 ≤ i ≤ m
(hence n = m), xi = i/n, 1 ≤ i ≤ n = qr, where r is a positive integer, and
κu = (u − 1)/q, 1 ≤ u ≤ q. We first show that for any fixed q, there is a
positive integer n(q) such that

λmin(Z ′Z) ≥ 1, n ≥ n(q). (13.85)

Note that Z ′Z = [
∑n

i=1(xi − κu)p
+(xi − κv)

p
+]1≤u,v≤q. We have

1

n

n∑
i=1

(xi − κu)p
+(xi − κv)

p
+ −→

∫ 1

0

(x− κu)p
+(x− κv)p

+ dx

≡ buv, 1 ≤ u, v ≤ q,

as n → ∞. The matrix B = (buv)1≤u,v≤q is positive definite. To see this, let
ξ = (ξu)1≤u≤q ∈ Rq. Then
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ξ′Bξ =

∫ 1

0

{
q∑

u=1

ξu(x− κu)p
+

}2

dx ≥ 0

and the equality holds if and only if

q∑
u=1

ξu(x − κu)p
+ = 0, x ∈ [0, 1]. (13.86)

Let x ∈ (0, κ2]; then by (13.86), we have ξ1x
p = 0 and hence ξ1 = 0. Let

x ∈ (κ2, κ3]; then by (13.86) and the fact that ξ1 = 0, we have ξ2(x−κ2)
p = 0,

hence ξ2 = 0; and so on. This implies ξu = 0, 1 ≤ u ≤ q. It follows, by Weyl’s
eigenvalue perturbation theorem [see (5.51)], that

1

n
λmin(Z

′Z) = λmin(B) > 0;

hence, there is n(q) ≥ 1 such that (13.85) holds.
Without loss of generality, let n(q), q = 1, 2, . . ., be strictly increasing.

Define the sequence q(n) as q(n) = 1, 1 ≤ n < n(1), and q(n) = j, n(j) ≤ n <
n(j + 1), j ≥ 1. By the definition, it is seen that, with q = q(n), (13.85) holds
as long as n ≥ n(1). It follows that λj ≥ 1, 1 ≤ j ≤ q; hence, the right side
of (13.83) is bounded from below by q/(b+ σ2

γ)2, for q = q(n) with n ≥ n(1),
which goes to infinity as n→ ∞.

13.5 Model selection for small-area estimation

As discussed in Section 13.1, the “strength” for the small-area estimation is
borrowed by utilizing a statistical model. It is therefore not surprising that
the choice of the model makes a difference. Although there is extensive litera-
ture on inference about small areas using statistical models, especially mixed
effects models (see Rao 2003), model selection in small-area estimation has
received much less attention. However, the importance of model selection in
the small-area estimation has been noted by prominent researchers (e.g., Bat-
tese et al. 1988, Ghosh and Rao 1994). Datta and Lahiri (2001) discussed
a model selection method based on computation of the frequentist’s Bayes
factor in choosing between a fixed effects model and a random effects model.
They focused on a one-way balanced random effects model, which is Example
12.2 with ni = k, 1 ≤ i ≤ m, for the sake of simplicity and observed that the
choice between a fixed effects model and a random effects one in this case is
equivalent to testing the following one-sided hypothesis H0: σ

2 = 0 vs. H1:
σ2 > 0. Note that, however, not all model selection problems can be formu-
lated as hypothesis testing problems. Meza and Lahiri (2005) demonstrated
the limitations of Mallows’ Cp statistic in selecting the fixed covariates in a
nested error regression model (see below). They showed by results of simula-
tion studies that the Cp method without modification does not work well in



460 13 Small-Area Estimation

the current mixed model setting when the variance of the small-area random
effects is large.

As noted in Section 12.5, the selection of a mixed effects model for the
small-area estimation is one of the unconventional problems in that it is not
easy to determine the effective sample size, which is used by traditional infor-
mation criteria, such as the BIC and HQ, to calculate the penalty for model
complexity. We use an example to illustrate.

Example 13.3 (Nested-error regression). A well-known model for the small-
area estimation was proposed by Battese et al. (1988), known as the nested
error regression model. This may be regarded as an extension of the one-way
random effects model of Example 12.2, expressed as

yij = x′ijβ + vi + eij , i = 1, . . . ,m, j = 1, . . . , ni,

where xij is a vector of known auxiliary variables, β is an unknown vector
of regression coefficients, vi is a small-area specific random effect, eij is a
sampling error, and ni is the sample size for the ith small areas. It is assumed
that the random effects and sampling errors are independent such that vi ∼
N(0, σ2

v) and eij ∼ N(0, σ2
e), where σ2

v and σ2
e are unknown. Once again, the

problem is what is the effective sample size n that could be used to determine
the penalty λn in (9.25) (considered as a general criterion for model selection)
for, say, the BIC. However, it is not clear at all what n should be: The total
sample size which is

∑m
i=1 ni, the number of small areas,m, or something else?

If of all the ni are equal, then it may be reasonable to assume that the effective
sample size is proportional to m, but even this is very impractical. In typical
situations of the small-area estimation, the ni are very different from small
area to small area. For example, Jiang et al. (2007) gave a practical example,
in which the ni’s range from 4 to 2301. It is clearly difficult to determine the
effective sample size in such a case.

There is a further issue that was not addressed in a general mixed model
selection problem, discussed in Section 12.5. In the small-area estimation, the
main interest is the estimation of small-area means, which may be formulated
as a (mixed effects) prediction problem (see the previous sections). In other
words, one needs to select the best model for predition, not for estimation.
The information criteria, on the other hand, rely on the likelihood function
that is for the estimation of parameters. To make our points, consider the
Fay–Herriot model (Example 4.18; also see Section 13.3), expressed as

yi = x′iβ + vi + ei, i = 1, . . . ,m, (13.87)

where xi is a known vector of known auxiliary variable, β is a vector of un-
known regression coefficients, vi is a small-area specific random effect, and ei

is a sampling error. It is assumed that the vi’s and ei’s are independent such
that vi ∼ N(0, A) and ei ∼ N(0, Di). For simplicity, let A > 0 be known,
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for now. Let M denote the collection of candidate models. An important dif-
ference from Section 12.5 is that here we consider a situation where the true
model is not a member of M. Note that this is a scenario that is quite possible
to occur in practice. The goal is to find an approximating model within M
that best serves our main interest of prediction of mixed effects. The latter
can be expressed as ζ = (ζi)1≤i≤m = E(y|v) = μ + v, where y = (yi)1≤i≤m,
μ = (μi)1≤i≤m, and v = (vi)1≤i≤m. Note the following useful expression:

μi = E(yi), 1 ≤ i ≤ m. (13.88)

Consider the problem of selecting the auxiliary variables. Then each M ∈
M corresponds to a matrix X = (x′i)1≤i≤m. We assume that X is full rank.
The information criteria are based on the log-likelihood function for estimating
β, which, under M , can be expressed as (Exercise 13.22)

l(M) = −m

2
log(2π)

−1

2

m∑
i=1

{
log(A+Di) +

(yi − x′iβ)2

A+Di

}
. (13.89)

The MLE for β given by

β̂ = (X ′V −1X)−1X ′V −1y

=

(
m∑

i=1

xix
′
i

A+Di

)−1 m∑
i=1

xiyi

A+Di
, (13.90)

where V = diag(A + Di, 1 ≤ i ≤ m). Note that the MLE is the same as the
BLUE for β. Thus, the maximized log-likelihood is given by

l̂(M) = c− 1

2
y′P (M)y, (13.91)

where c = −(1/2){m log(2π) +
∑m

i=1 log(A+Di)} and

P (M) = V −1 − V −1X(X ′V −1X)−1X ′V −1.

Now, consider a generalized information criterion (GIC) that has the form

GIC(M) = −2l̂(M) + λmp, (13.92)

where p = rank(X) and λm is a penalty. The AIC corresponds to (12.92) with
λm = 2; whereas for the BIC, λm = log(m). We have (Exercise 13.22)

E{GIC(M)} = m− 2c+ μ′P (M)μ+ (λm − 1)p. (13.93)

Since m − 2c does not depend on M , the best model according to the GIC
corresponds to the one that minimizes C2(M) = μ′P (M)μ+ (λm − 1)p.
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On the other hand, the best predictor (BP) of ζ under M in the sense of
minimizing the MSPE is ζ̃M = (ζ̃M,i)1≤i≤m, where

ζ̃M,i = EM (ζi|y) =
A

A+Di
yi +

Di

A+Di
x′iβ (13.94)

(Exercise 13.22). Here, EM represents expectation under M . By (13.88), the
MSPE can be expressed as (verify)

E

(∣∣∣ζ̃M − ζ
∣∣∣2)

=

m∑
i=1

E
(
ζ̃M,i − ζi

)2

=
m∑

i=1

E

(
A

A+Di
yi − ζi

)2

+ 2
m∑

i=1

Di

A+Di
x′iβE

(
A

A+Di
yi − ζi

)

+

m∑
i=1

(
Di

A+Di

)2

(x′iβ)2

=

m∑
i=1

E

(
A

A+Di
yi − ζi

)2

− 2

m∑
i=1

(
Di

A+Di

)2

x′iβμi

+

m∑
i=1

(
Di

A+Di

)2

(x′iβ)2. (13.95)

The first term on the right side of (13.95) is unknown but does not de-
pend on M or β. Let S(M,β) denote the sum of the last two terms,
or, in matrix expression, S(M,β) = β′X ′R2Xβ − 2μ′R2Xβ, where R =
diag{Di/(A + Di), 1 ≤ i ≤ m}. It is easy to see that the β that mini-
mizes S(M,β) is β∗ = (X ′R2X)−1X ′R2μ. It follows that infβ S(M,β) =
−μ′R2X(X ′R2X)−1X ′R2μ. Thus, the best model in terms of minimizing the
MSPE is the one that maximizes C1(M) = μ′R2X(X ′R2X)−1X ′R2μ.

It is easy to see that if M is a true model (i.e., if μ = Xβ for some β), then
β∗ = β. In fact, if there is a true model, say M ∈ M, then a true model with
minimal p is the best model under both the GIC and BP (Exercise 13.23).
However, here we are concerned with the situation where there is no true
model among the candidate models. We now show, by a specific example,
that in such a case these two criteria, the GIC and BP, can lead to completely
different choices of optimal models.

Example 13.4. Let A = 1. Suppose that

Di =

{
1, 1 ≤ i ≤ m/4 or m/2 + 1 ≤ i ≤ 3m/4
3, m/4 + 1 ≤ i ≤ m/2 or 3m/4 + 1 ≤ i ≤ m.

Also, suppose that
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μi =

{
a, 1 ≤ i ≤ m/4 or m/2 + 1 ≤ i ≤ 3m/4
−a, m/4 + 1 ≤ i ≤ m/2 or 3m/4 + 1 ≤ i ≤ m, .

where a is a positive constant. There are three candidate models under con-
sideration. They are M1: x

′
iβ = β1xi,1, where

xi,1 =

⎧⎨⎩
1, 1 ≤ i ≤ m/4
2, m/4 + 1 ≤ i ≤ m/2
0, m/2 + 1 ≤ i ≤ m;

M2: x
′
iβ = β2xi,2, where

xi,2 =

⎧⎨⎩
0, 1 ≤ i ≤ m/2
9, m/2 + 1 ≤ i ≤ 3m/4
4, 3m/4 + 1 ≤ i ≤ m;

and M3: x
′
iβ = β1xi,1 + β2xi,2, where the β’s are unknown parameters whose

values may be different under different models. Note that none of the candi-
dates is a true model. It can be shown (Exercise 13.24) that the best model
according to the GIC is M2, as long as λm > 1. On the other hand, the best
model in terms of the BP is M1.

In Section 12.5 we introduced a new strategy, called the fence, for model
selection. The idea is to build a statistical fence to isolate a subgroup of
candidate models, known as correct models, from which an optimal model is
chosen according to a criterion of optimality that can be flexible. Note that
here we do not assume that there is a true model among the candidates; so
the term “correct model” should be understood as a model that provides an
approximation that is “good enough” (in fact, it should be always understood
this way, as the “correct models” may not be the actual true models, even if
the latter exist among the candidates). An apparent advantage of the fence
is its flexibility in choosing a measure of lack-of-fit, Q(M), used to build the
statistical fence according to (12.55), and a criterion of optimality for selecting
a model within the fence. Here, we consider model simplicity, in terms of
minimal dimension of the parameter space, as the criterion of optimality, as
usual. Furthermore, we explore the other flexibility of fence in choosing the
measure of lack-of-fit by deriving a predictive measure of lack-of-fit. To do so,
let us return to (13.95). Note that by (13.88), we can express the MSPE as

E

(∣∣∣ζ̃M − ζ
∣∣∣2) = E

{
I1 +

m∑
i=1

(
Di

A+Di

)2

(x′iβ)2

−2
m∑

i=1

(
Di

A+Di

)2

x′iβyi

}
, (13.96)

where I1 =
∑m

i=1 E{A(A +Di)
−1yi − ζi}2 does not depend on M . This nat-

urally leads to the idea of minimizing the expression inside the expectation.
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The rationale behind this idea is the same as indicated in our second Preface
example (Example 2). Note that the expression inside the expectation can
be expressed as a sum of independent random variables, say,

∑m
i=1 ψi(β, yi).

Then, according to the CLT (Section 6.4), we have, under regularity condi-
tions,

m∑
i=1

ψi(β, yi) = E

{
m∑

i=1

ψi(β, yi)

}
+

m∑
i=1

[ψi(β, yi) − E{ψi(β, yi)}]

= E

{
m∑

i=1

ψi(β, yi)

}
+OP(m1/2).

Thus, provided
∑m

i=1 E{ψi(β, yi)} = O(m), which can be reasonably assumed
if E{ψi(β, yi)} �= 0, E{∑m

i=1 ψi(β, yi)} is the leading term for
∑m

i=1 ψi(β, yi)
and vice versa. Therefore, to the first-order approximation, we can simply
drop the expectation sign if the expression inside the expectation is a sum of
independent random variables. In fact, the idea can be generalized to some
cases where inside the expectation is not necessarily a sum of independent
random variables (but with caution; see Example 2, Example 2.1, and Section
3.1). By (13.96) and the fact that I1 does not depend on M , we arrive at the
following measure of lack-of-fit:

Q1(M) =

m∑
i=1

(
Di

A+Di

)2

(x′iβ)2 − 2

m∑
i=1

(
Di

A+Di

)2

x′iβyi

= β′X ′R2Xβ − 2y′R2Xβ. (13.97)

The β that minimizes (13.97) is given by

β̃ = (X ′R2X)−1X ′R2y

=

{
m∑

i=1

(
Di

A+Di

)2

xix
′
i

}−1 m∑
i=1

(
Di

A+Di

)2

xiyi. (13.98)

Note that (13.98) is different from the MLE (13.90). We call (13.98) the best
predictive estimator, or BPE, in the sense that E(β̃) = β∗, the (theoretically)
best β given below (13.95) that minimizes the MSPE. We call Q1 a predictive
measure of lack-of-fit. By plugging in the BPE, we obtain

Q̂1(M) = inf
β
Q1(M)

= −y′R2X(X ′R2X)−1X ′R2y, (13.99)

which will be used in place of Q̂(M) in the fence inequality (12.55).

Example 13.4 (continued). A simulation study was carried out by Dr.
Thuan Nguyen of Oregon Health and Science University (personal commu-
nication), in which the predictive fence method was compared with two of
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the information criteria, the AIC and BIC, as well as a nonpredictive (ML)

fence. The latter is based on (12.55) with Q̂(M) = −l̂(M), where l̂(M) is
the maximized log-likelihood given by (13.91). Two different sample sizes are
considered: m = 50 and m = 100. The value of a (that is involved in the
definition of μi) is either 1 or 2. For both predictive and ML fence methods,
the constant c in (12.55) is chosen adaptively (see Section 12.5), with the
bootstrap sample size B = 100. A total of N = 100 simulations were run.
Table 13.1 shows the empirical (or simulated) MSPE, obtained by averaging

the difference |ζ̂−ζ|2 over all N simulations. Here, ζ̂ is the empirical best pre-
dictor (EBP). For the three likelihood-based methods, the AIC, BIC, and ML

fence, the EBP is obtained by replacing β by β̂, the MLE, in the expression
of the BP (13.94); for the predictive fence, the EBP is obtained by replacing
β by β̃, the BPE, in (13.94). The numbers in Table 13.1 show two apparent

Table 13.1. Simulated MSPE

a m AIC BIC ML Fence Predictive Fence

1 50 53.5 53.6 53.6 49.3
2 50 117.7 117.2 117.0 95.6
1 100 110.0 109.5 109.3 97.9
2 100 246.5 246.3 245.0 197.2

“clusters,” with the AIC, BIC, and ML fence in one cluster and the predictive
fence in the other. One may wonder why there is such a difference. Table 13.2
shows another set of summaries. Here are reported the empirical (or simu-
lated) probabilities, in terms of percentages, that each model is selected. It
is seen that the three likelihood-based methods have the highest probabilities
of selecting M2, whereas the predictive fence has the highest probabilities of
selecting M1. Recall that, theoretically, M2 is the model most favored by the
GIC (of which the AIC and BIC are special cases), whereas M1 is the best
model in terms of the BP. Given the way that the predictive fence is devel-
oped (and also the quite different focus of the ML method), one would not be
surprised to see such a difference.

The method of deriving a predictive measure of lack-of-fit can be extended
to more general situations. In the case of the Fay–Herriot model with unknown
A, the variance of vi, the MSPE can be expressed as (Exercise 13.25)

E(|ζ̃M − ζ|2)
= E

{
(y −Xβ)′R2(y −Xβ) + 2Atr(R) − tr(D)

}
, (13.100)

where D = diag(Di, 1 ≤ i ≤ m). Equation (13.100) suggests the measure

Q1(M) = (y −Xβ)′Γ 2(y −Xβ) + 2Atr(Γ ). (13.101)

Given A, (13.101) is minimized by β̃ given by (13.98). Thus, we have (ver-
ify) Q̂(M) = infA≥0 Q̃1(M), where Q̃1(M) = y′RP(RX)⊥Ry + 2A tr(R) with
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Table 13.2. Percentage of selected model

a m Model AIC BIC Fence ML Predictive Fence

1 50 1 18 21 16 63
2 74 78 72 17
3 8 1 12 20

2 50 1 0 0 2 93
2 85 95 97 0
3 15 5 1 7

1 100 1 6 8 6 82
2 84 90 85 7
3 10 2 9 11

2 100 1 0 0 0 100
2 85 94 100 0
3 15 6 0 0

P(RX)⊥ = Im − PRX and PRX = RX(X ′R2X)−1X ′R. Another simulation
study shows similar performance of the predictive fence compared to the other
three methods (details omitted).

Finally, we derive a predictive measure under the nested error regression
model (see Example 13.3). More specifically, we assume that a nested error
regression model holds for a superpopulation of finite populations in a way
similar to Section 13.2. Let Yk, k = 1, . . . , Ni, i = 1, . . . ,m, represent the
finite populations (small areas). We assume that auxiliary data Xilk, k =
1, . . . , Ni, l = 1, . . . , p, are available for the finite populations and so are the
population sizes Ni’s. The superpopulation model can be expressed as

Yik = X ′ikβ + vi + eik, i = 1, . . . ,m, k = 1, . . . , Ni, (13.102)

where Xik = (Xilk)1≤l≤p and other assumptions are the same as in Example

13.3. We are interested in the small-area means μi = N−1
i

∑Ni

k=1 Yi,k, i =
1, . . . ,m. We consider a model-assisted method using the BP method. On the
other hand, the performance of the model-assisted method will be evaluated
using a design-based MSPE—that is, MSPE with respect to the sampling
distribution within the finite populations. This is practical because, in surveys,
one always samples from a finite population (although the model-based MSPE
is often used as an approximation in the sense described in Section 13.2).

As in Example 13.2, let yij , i = 1, . . . ,m, j = 1, . . . , ni, represent the
sampled Y ’s. We use the notation yi = (yij)1≤j≤ni , y = (yi)1≤i≤m, ȳi· =

n−1
i

∑ni

j=1 yij , and X̄i,P = N−1
i

∑Ni

k=1 Xi,k. Also, let Ii denote the set of sam-
pled indexes, so that Yik is sampled if and only if k ∈ Ii, i = 1, . . . ,m. Under
the nested error regression model (13.102), the BP for μi is

μ̃M,i = EM (μi|y)
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=
1

Ni

Ni∑
k=1

EM (Yi,k|yi)

=
1

Ni

⎧⎨⎩
ni∑

j=1

yij +
∑
k/∈Ii

EM (Yi,k|yi)

⎫⎬⎭
= X̄ ′i,Pβ +

{
ni

Ni
+

(
1 − ni

Ni

)
niσ

2
v

σe + niσ2
v

}
(ȳi· − x̄′i·β),

where EM denotes the model-based (conditional) expectation. The design-
based MSPE has the following expression:

MSPE = Ed(|μ̃M − μ|2) =

m∑
i=1

Ed(μ̃M,i − μi)
2,

where Ed represents the design-based expectation. Furthermore, we have

Ed(μ̃M,i − μi)
2 = Ed(μ̃2

M,i) − 2μiEd(μ̃M,i) + μ2
i . (13.103)

We now use Ii to write ȳi· = n−1
i

∑Ni

k=1 Yi,k1(k∈Ii). Thus, we have

Ed(ȳi·) =
1

ni

Ni∑
k=1

Yi,kPd(k ∈ Ii)

=
1

Ni

Ni∑
k=1

Yi,k = μi.

Note that the Yi,k’s are nonrandom under the sampling distribution and that
the design-based probability Pd(k ∈ Ii) = ni/Ni, assuming equal probability
sampling. It follows that

Ed(μ̃M,i)

= X̄ ′i,Pβ +

{
ni

Ni
+

(
1 − ni

Ni

)
niσ

2
v

σ2
e + niσ2

v

}
(μi − X̄ ′i,Pβ)

=

(
1 − ni

Ni

)
σ2

eX̄
′
i,Pβ

σ2
e + niσ2

v

+

{
ni

Ni
+

(
1 − ni

Ni

)
niσ

2
v

σ2
e + niσ2

v

}
μi.

If we bring the latest expression of Ed(μ̃M,i) to (13.103), a term μ2
i will show

up, which is unknown. The idea is to find a design-unbiased estimator of
μ2

i , because then we can write (13.103), and therefore the MSPE, as the
expectation of something, which is the “trick” we are using here. It can be
shown (Exercise 13.26) that

μ̂2
i =

1

ni

ni∑
j=1

y2
ij −

Ni − 1

Ni(ni − 1)

ni∑
j=1

(yij − ȳi·)2 (13.104)
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is a design-unbiased estimator for μ2
i ; that is, Ed(μ̂

2
i ) = μ2

i . Write

ai(σ
2
v , σ

2
e) =

(
1 − ni

Ni

)
σ2

e

σ2
e + niσ2

v

,

bi(σ
2
v , σ

2
e) = 1 − 2

{
ni

Ni
+

(
1 − ni

Ni

)
niσ

2
v

σ2
e + niσ2

v

}
.

Then we can express the MSPE as

MSPE = Ed

[
m∑

i=1

{
μ̃2

M,i − 2ai(σ
2
v , σ

2
e)X̄ ′i,Pβȳi· + bi(σ

2
v , σ

2
e)μ̂2

i

}]
.

Thus, a predictive measure of lack-of-fit is obtained by removing the expec-
tation sign. This leads to

Q(M) =

m∑
i=1

{
μ̃2

M,i − 2ai(σ
2
v , σ

2
e)X̄ ′i,Pβȳi· + bi(σ

2
v , σ

2
e )μ̂2

i

}
.

13.6 Exercises

13.1. This exercise is associated with the mixed logistic model of (13.1).
(i) Show that E(αi|y) = E(αi|yi), where yi = (yij)1≤j≤ni .
(ii) Verify (13.3) for α̃i = E(αi|yi).
13.2. Verify the limiting behaviors (i)–(iii) below (13.4).
13.3. Verify the limiting behavior (iv) below (13.4) and also (13.5). [Hint:

The following formulas might be useful. For 1 ≤ k ≤ n− 1, we have∫ ∞

0

xk−1

(1 + x)n
dx =

(k − 1)!(n− k − 1)!

(n− 1)!
,∫ ∞

0

log(x)
xk−1

(1 + x)n
dx =

(k − 1)!(n− k − 1)!

(n− 1)!

(
k−1∑
l=1

l−1 −
n−k−1∑

l=1

l−1

)
.

]

13.4. Show that the last term on the right side of (13.7) has the order

OP(n
−1/2
i ). You may recall the argument of showing a similar property of the

MLE (see Section 4.7).
13.5. Verify (13.8).
13.6. Verify expression (13.11), where α̃i = E(αi|y) has expression (13.4).
13.7. Show, by formal derivation, that the estimator (13.30) satisfies

(13.22). [Hint: You may use the fact that E{ci(θ̂) − ci(θ)} = o(1) and

E{Bi(θ̂) −Bi(θ)} = o(1).]
13.8. Show that (13.33) is unbiased in the sense that the expectation of

the left side is equal to the right side if A is the true variance of the random
effects. Also verify (13.34).
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13.9. Show that the estimator ÂPR defined by (13.32) is
√
m-consistent.

13.10. Here is a more challenging exercise that the previous one: Show
that the Fay–Herriot estimator ÂFH, defined as the solution to (13.33), is√
m-consistent.
13.11. Show that the estimators ÂPR, ÂML, ÂRE, and ÂFH in Section 13.3

possess the following properties: (i) They are even functions of the data—
that is, the estimators are unchanged when y is replaced by −y and (ii) they
are translation invariant—that is, the estimators are unchanged when y is
replaced by y +Xb for any b ∈ Rp.

13.12. Show that the right side of (13.40) ≤ the right side of (13.41) ≤ the
right side (13.39) for any A ≥ 0.

13.13. Show that, in the balanced case (i.e., Di = D, 1 ≤ i ≤ m), the
P-R, REML, and F-H estimators of A in the Fay–Herriot model are identical
(provided that the estimator is nonnegative), whereas the ML estimator is
different, although the difference is expected to be small when m is large.

13.14. This exercise involves some calculus derivations.
(i) Verify expressions (13.55) and (13.56).
(ii) Verify expression (13.57).
(iii) Obtain an expression for ∂ÂFH/∂yi. You man use the well-known

result in calculus on differentiation of implicit functions.
13.15. Verify (13.60); that is, the expression of (13.59) when θ̂i is replaced

by yi.
13.16. Show that, under the hierarchical Bayes model near the end of

Section 13.3, the conditional distribution of θi given A and y is normal with
mean equal to the right side of (13.31) with Â replaced by A and variance
equal to g1i(A) + g2i(A), where g1i(A) and g2i(A) are given by (13.36) and
(13.37), respectively.

13.17. Show that the minimizer of (13.71) is the same as the best linear un-
biased estimator (BLUE) for β and the best linear unbiased predictor (BLUP)
for γ in the linear mixed model y = Xβ + Zγ + ε, where γ ∼ N(0, σ2Iq),
ε ∼ N(0, τ2In), and γ and ε are indepedent, provided that λ is identical to
the ratio τ2/σ2. For the definition of BLUE and BLUP, see Section 5.6.

13.18. This exercise is related to the quadratic spline with two knots in
Example 13.1.

(i) Plot the quadratic spline.
(ii) Show that the function is smooth in that it has a continuous derivative

on [0, 3], including at the knots.
13.19. Establish the following inequalities.
(i) ‖V −1X(X ′V −1X)−1X ′V −1‖2

2 ≤ ‖V −1‖2(p+ 1).
(ii) ‖Z ′V −1X(X ′V −1X)−1X ′V −1Z‖2

2 ≤ ‖Z ′V −1Z‖2(p+ 1).
13.20. Establish ineqaulity (13.83).
13.21. This exercise is related to the arguments in Section 13.4 that show

d2 → ∞.
(i) Show that (13.84) holds for some constant c > 0 and determine this

constant.
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(ii) Show that ‖W ′BW‖2 ≤ (max1≤i≤m ni)q.
13.22. This exercise involves some details in Section 13.5.
(i) Verify that the likelihood function under M is given by (13.89).
(ii) Verify (13.93).
(iii) Show that the BP of ζ under M , in the sense of minimizing the MSPE,

is ζ̃M = (ζ̃M,i)1≤i≤m, where ζ̃M,i is given by (13.94).
13.23. Continue with the previous exercise. Show that if there is a true

model M ∈ M, then a true model with minimal p is the optimal model under
both the GIC and BP.

13.24. Consider Example 13.4.
(i) Recall that the best model in terms of BP is the one that maximizes

C1(M), defined below (13.95). Show that

C1(M) =

⎧⎨⎩
(49/640)a2m, M = M1

0, M = M2

(49/640)a2m, M = M3.

Thus, the best model under BP is M1, because it has the same (maximum)
C1(M) as M3 but is simpler.

(ii) Recall the best model under GIC is the one that minimizes C2(M),
defined below (13.93). Show that

C2(M) =

⎧⎨⎩ s+ λm − 1, M = M1,
s+ λm − 1 − (49/712)a2m, M = M2,
s+ 2(λm − 1)1 − (49/712)a2m, M = M3,

where s =
∑m

i=1(A+Di)
−1μ2

i . Thus, M2 is the best model under the GIC.
13.25. Derive the expression of MSPE (13.100) in the case that A is

unknown. [Hint: First, note that ζ̃M = y − R(y − Xβ). Also note that
E(e′Ry) = E{e′R(μ+ v + e)} = E(e′Re) = tr(RD).]

13.26. Show that the estimator given by (13.104) is design-unbiased for
μ2

i ; that is, Ed(μ̂2
i ) = μ2

i . [Hint: Use the index set Ii; see a derivation below
(13.103).]
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Jackknife and Bootstrap

. . . the bootstrap, and the jackknife, provide approximate frequency
statements, not approximate likelihood statements. Fundamental in-
ference problems remain, no matter how well the bootstrap works.

Efron (1979)
Bootstrap methods: Another look at the jackknife

14.1 Introduction

This chapter deals with statistical methods that, in some way, avoid math-
ematical difficulties that one would be facing using traditional approaches.
The traditional approach of mathematical statistics is based on analytic ex-
pressions, or formulas, so avoiding these might seem itself a formidable task,
especially in view of the chapters that so far have been covered. It should be
pointed out that we have no objection of using mathematical formulas—in
fact, some of these are pleasant to use. However, in many cases, such formulas
are simply not available or too complicated to use. In a landmark paper, Efron
(1979) showed why the bootstrap, to which the jackknife may be thought of
as a linear approximation, is useful in solving a variety of inference problems
that are otherwise intractable analytically. For simplicity, let us first consider
the case where X1, . . . , Xn are i.i.d. observations from an unknown distribu-
tion F . Let X = (X1, . . . , Xn) and let R = R(X,F ) be a random variable,
possibly depending on both X and F . The goal is to estimate the distribu-
tion of R, called the sampling distribution. In many cases, one is interested in
quantities or characteristics associated with the sampling distribution, such
as the mean, variance, and percentiles, rather than the sampling distribution
itself. For example, suppose that θ̂ = θ̂(X) is an estimator of a population

parameter θ and that R = θ̂− θ. Then the mean of R is what we call the bias
of θ̂, and the variance of R is the squared standard deviation of θ̂ (an estimate
of the standard deviation is what we call the standard error). Furthermore,

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_14, © Springer Science+Business Media, LLC 2010
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the percentiles of R are often used to construct confidence intervals for θ.
In some cases, these quantities, even the sampling distribution, have simple
analytic expressions. Below is a classic example.

Example 14.1 (The sample mean). Suppose that θ =
∫
x dF (x), the mean

of F , and θ̂ = X̄, the sample mean. Let R = θ̂ − θ. Then we have E(R) = 0;
in other words, X̄ is an unbiased estimator of θ, which is a well-known fact.
Furthermore, we have var(R) = var(X̄) = σ2/n, where σ2 =

∫
(x−θ)2 dF (x) is

the variance of F . Finally, if Xi is normal, then R ∼ N(0, σ2/n). In fact, even

if the Xi’s are not normal, according to the CLT, we have
√
nR

d−→ N(0, σ2);
therefore the distribution of R can be approximated by N(0, σ2/n).

If a simple analytic expression is available, it is often straightforward to
make statistical inference. For example, in Example 14.1, the standard error
of θ̂ is σ̂/

√
n, where σ̂ is an estimate of the standard deviation of F . Typically,

the latter is estimated by the sqaure root of s2 = (n − 1)−1
∑n

i=1(Xi − X̄)2,
known as the sample variance, or σ̂2 = n−1

∑n
i=1(Xi−X̄)2, which is the MLE

of σ2 under normality. Note that the only difference between s2 and σ̂2 is the
divisor—n − 1 for s2 and n for σ̂2. Furthermore, suppose that the Xi’s are
normal. Then the 100(1 − α)th percentile of R is zασ/

√
n, where 0 < α < 1

and zα is the 100(1 − α)th percentile of N(0, 1); that is, Φ(zα) = 1 − α,
whereΦ(·) is the cdf of N(0, 1). Thus, a 100(1− α)% confidence interval for θ
is [X̄−zα/2σ/

√
n, X̄+zα/2σ/

√
n] if σ is known. A “little” complication occurs

when σ is unknown (which is practically the case), but the problem is solved
due to a celebrated result of William Sealy Gosset, who showed in 1908 that
the distribution of R/(s/

√
n) is tn−1, the Student’s t-distribution with n− 1

degrees of freedom. Thus, in this case, a 100(1 − α)% confidence interval for
θ is [X̄ − tn−1,α/2s/

√
n, X̄ + tn−1,α/2s/

√
n], where tn−1,α is the 100(1− α)th

percentile of tn−1. A further complication is encountered when the Xi’s are
not normal, because the result of t-distribution only applies to the normal
case. Fortunately, there is the CLT that comes to our aid when the sample
size is large. The CLT states that regardless of the distribution of the Xi’s,
as n goes to infinity, the distribution of

√
nR/σ converges to N(0, 1). Then

with a simple argument using Slutsky’s theorem [see Theorem 2.13(ii)], we

have
√
nR/s

d−→ N(0, 1) as n → ∞ (note that s is a consistent estimator of
σ). It follows that in a large sample, an approximate 100(1− α)% confidence
interval for θ is [X̄ − zα/2s/

√
n, X̄ + zα/2s/

√
n], and the same is true with s

replaced by σ̂.
The situation in the above example is the simplest that one can possibly

imagine. Still, when there is a “minor” departure from the ideal we have to
look for help, either from some clever mathematical derivation, or from the
large-sample theory, and we are lucky to have such help around. However,
in many cases, we are not so lucky in getting the help, as in the following
examples.
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Example 14.2 (The sample median). The sample median is often used as a
robust alternative to the sample mean. If n is an odd number, say, n = 2m−1,
then the sample median is X(m), where X(1) < · · · < X(n) are the order
statistics. If n is an even number, say n = 2m, then the sample median is
defined as [X(m) +X(m+1)]/2. See Example 1.5. Unlike the sample mean, the
sample median is not very sensitive to a few outliers. For example, suppose
that a random sample of annual incomes from a company’s employees are, in
U.S. dollars, 26,000, 31,000, 42,000, 28,000, and 2 million (the last one happens
to be that of a high-ranking manager). If we use the sample mean as an
estimate of the mean annual income of the company, the number is $425,400,
which suggests that people are making big money in this company. However,
the sample median is $31,000, which seems a more reasonable estimate of the
mean annual income. The sample median is also more tolerable to missing
values than the sample mean. For example, the following are life spans of
five insects (in days), born at the same time: 17.4, 24.1, 13.9, *, 20.2 (the
* corresponds to an insect that is still alive by the end of the experiment).
Obviously, there is no way to compute the sample mean, but the sample
median is 20.2, because the * is going to be the largest number anyway.

Suppose, for simplicity, that n = 2m− 1. Consider R = X(m) − θ, where θ
is the population median, defined as F−1(0.5), where F−1 is defined by (7.4).
Being a special case of the order statistics, the distribution of R can be de-
rived (Exercise 14.1). However, with the exception of some special cases (see
Exercise 14.2), there is no analytic expressions for the mean and variance of
R. Bickel (1967) showed that both E(R) and var(R) are O(n−1). Furthermore,
if the underlying distribution, F , has a pdf f that is continuous and positive

at θ, then, similar to Exercise 6.16, it can be shown that
√
nR

d−→ N(0, σ2)
with σ2 = {2f(θ)}−2. In fact, Bickel (1967) showed that the limit of n var(R)
actually agrees with the asymptotic variance σ2 (recall that convergence in
distribution does not necessarily imply convergence of the variance; see Exam-
ple 2.1). However, the asymptotic distribution offers little help for evaluating
E(R) (why?). Also, the asymptotic normality requires that F has a continuous
density that is positive at θ. In many cases, one is dealing with an underlying
distribution that does not have a density, such as a discrete distribution. In
such a case, even the result of asymptotic variance may not apply.

Example 14.3. Recall that, in Section 13.2, we derived a second-order un-
biased MSPE estimator for the EBP of a random effect associated with the
small area—namely, (13.30). Although the expression might appear simple,
it actually involves some tedious mathematical derivations if one intends to
“spell it out.” In fact, Jiang et al. (2002a, p. 1808) showed that the detailed
expression is not simple even for the simplest case with x′ijβ = μ. The problem
with complicated analytic expressions is twofold. First, the derivation of such
an expression requires mathematical skills, patience (to carry on the deriva-
tion rather than being intimidated), and carefulness (not to make mistakes!).
Second, the programming of such a sophisticated formula into computer codes,
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as part of the modern-time scientific computing, is not trivial, and mistakes
are often made in the process. These together may prove to be a daunting
task for someone hoping for a routine operation of applied statistics.

In summary, some of the major difficulties of the traditional approaches are
the following: (i) They rely on analytical expressions that may be difficult to
derive. The derivation of such formulas or expressions is often tedious, requir-
ing advanced mathematical skills, patience, and carefulness, the combination
of which may be beyond the capability of an ordinary practitioner. (ii) The
programming of a sophisticated analytical expression, even if it is available,
is not trivial, and errors often occur at this stage. It may take a significant
amount of time to find the errors, only if one is lucky enough—sometimes, the
errors are found many years after the software package is commercialized. (iii)
The analytic formulas are often case-by-case. A theoretician may help to de-
rive a formula for one case, as William Gosset did with the t-distribution, but
he/she cannot be there all the time whenever there is a new problem. (iv) The
theoretical formulas derived under certain distributional assumptions may not
be robust against violation of these assumptions. (v) Sometimes it requires
a very large sample in order for the asymptotic results (e.g., the asymptotic
variance) to be accurate as an approximation (e.g., to the true normalized
variance). As will be seen, the methods discussed in the present chapter do
not suffer, or at least suffer much less, from these difficulties.

We begin with an introduction to the jackknife, followed by an extension
of the method to a nonconventional situation. We then discuss the classical
bootstrap method and its extensions to two major areas: time series analysis
and mixed models.

14.2 The jackknife

The jackknife, also known as the Quenouille–Tukey jackknife, was proposed
by Quenouille (1949) as a way of estimating the bias of an estimator. Later,
Tukey (1958) discovered that the jackknife can also be used to estimate the
variance of an estimator. He coined the name “jackknife” for the method to
imply that the method is an all-purpose tool for statistical analysis.

Consider, once again, the case of i.i.d. observations, say, X1, . . . , Xn. Let
θ̂ = θ̂(X1, . . . , Xn) be an estimator of a parameter θ. The interest is to estimate

the bias of θ̂; that is,

bias(θ̂) = E(θ̂) − θ. (14.1)

Quenouille’s proposal was the following. Define the ith jackknife replication
of θ̂, θ̂−i, as the estimator of θ that is computed the same way as θ̂ except
using the data X1, . . . , Xi−1, Xi+1, . . . , Xn (i.e., the original data with the

ith observation removed). For example, suppose that θ̂ = X̄ = n−1
∑n

j=1 Xj ,
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the sample mean, and θ is the population mean. Then θ̂−i is the sample
mean based on the data without the ith observation; that is, θ̂−i = (n −
1)−1

∑
j 
=i Xj. We then take the average of the jackknife replications, θ̄J =

n−1
∑n

i=1 θ̂−i. The jackknife estimator of the bias (14.1) is defined as

b̂iasJ(θ̂) = (n− 1)(θ̄J − θ̂). (14.2)

The bias estimator leads to a bias-corrected estimator of θ,

θ̂J = θ̂ − b̂iasJ(θ̂) = nθ̂ − (n− 1)θ̄J. (14.3)

From the definition, it is not easy to see the motivation of (14.2) and (14.3).
How did Quenouille come up with the idea? Although this might never be
known, it is a very useful strategy, in general, to start with a simple case.
Experience tells us that the bias of a consistent estimator is often in the order
of O(n−1) if it is not unbiased. For example, suppose that Xi ∼ N(μ, σ2).
The MLE of σ2 is σ̂2 = n−1

∑n
i=1(Xi − X̄)2, which is not unbiased. However,

the bias of σ̂2 is −σ2/n (why?). Let us assume that the bias (14.1) can be
expressed as

bias(θ̂) =
a1

n
+
a2

n2
+O(n−3), (14.4)

where a1 and a2 are some constants. Then the bias of the ith jackknife repli-
cation can be expressed as

bias(θ̂−i) =
a1

n− 1
+

a2

(n− 1)2
+O(n−3), (14.5)

1 ≤ i ≤ n. It follows that bias(θ̄J) has the same expression. Thus, we have

E(θ̄J − θ̂) = bias(θ̄J) − bias(θ̂)

=
a1

n(n− 1)
+O(n−3).

This leads to the expression

E{(n− 1)(θ̄J − θ̂)} =
a1

n
+O(n−2). (14.6)

This suggests that the estimator (14.2) has the expectation whose leading

term is the same as that of bias(θ̂). Thus, we can use (14.2) to “correct” the

bias of θ̂ in that

E{θ̂ − (n− 1)(θ̄J − θ̂)} = E(θ̂) − E{(n− 1)(θ̄J − θ̂)}
= θ + bias(θ̂) − E{(n− 1)(θ̄J − θ̂)}
= θ +O(n−2).

Thus, if we define (14.3) as the bias-corrected estimator, we have



476 14 Jackknife and Bootstrap

bias(θ̂J) = O(n−2). (14.7)

Comparing (14.4) with (14.7), we see that the jackknife does the job of reduc-
ing the order of bias, from O(n−1) to O(n−2).

In general, one may not have a simple expression like (14.4), but the bias-
reduction property of jackknife can often be (rigorously) justified in a way
that is motivated by the simple case (see below).

The jackknife can also be used to estimate the variance of θ̂. This was first
noted by Tukey (1958), whose variance estimator has the expression

v̂arJ(θ̂) =
n− 1

n

n∑
i=1

(θ̂−i − θ̄J)
2. (14.8)

Expression (14.8) looks a lot like the sample variance s2 (see Example 14.1)
except that the factor in front is (n−1)/n instead of (n−1)−1. The reason for

this is twofold. On the one hand, the estimator θ̂−i, which is based on n− 1
observations, tends to be less variable than a single observation Xi (why?).

Thus, the sum
∑

i(θ̂−i − θ̄J)
2 is expected to be (much) smaller than

∑
i(Xi −

X̄)2. On the other hand, the target of our estimation is also smaller—the
variance of an estimator tends to be smaller than that of a single observation.
Therefore, the factor (n−1)−1 for the sample variance is adjusted (in this case,
“amplified”) to make (14.8) a suitable estimator for the target. For example,
in the case of the sample mean, the right side of (14.8) is equal to s2/n, which

is an unbiased estimator of var(θ̂) = σ2/n (Exercise 14.3). Thus, in this case,
the adjusted factor, (n−1)/n is “just right.” This simple explanation actually
motivated at least some of the rigorous justifications. See below.

So far, we have restricted ourself to the i.i.d. situation. There have been
extensive studies on extending the jackknife to non-i.i.d. cases. In particular, in
a series papers, Wu (1986) and Shao and Wu (1987), among others, proposed
the delete-d and weighted jackknife for regression analysis with heteroscedastic
errors. In a classical linear regression model (see Section 6.7), the errors are
assumed to have the same variance, known as homoscedastic errors. However,
such an assumption may not hold in many situations. A heteroscedastic linear
regression model is the same as (6.79) except that the variance of the error
may depend on i. To be consistent with Wu’s notation, we write this as

yi = x′iβ + ei, (14.9)

where yi, xi, and β are the same as Yi, xi, and β in (6.79), but the ei’s are
assume to be independent with mean 0 and var(ei) = σ2

i , 1 ≤ i ≤ n. A problem
of interest is to estimate the covariance matrix of the ordinary least squares
(OLS) stimator, denoted by β̂. Although it might seem more reasonable to use
a weighted least squares (WLS) estimator in case of heteroscedastic errors,
the optimal weights are known to depend on the σ2

i ’s, which are unknown
(see Lemma 5.1). Thus, the OLS is often more convenient to use, especially
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when the degree of heteroscedasticity is unknown. When σ2
i = σ2, 1 ≤ i ≤ n,

a straightforward extension of the jackknife variance estimator for Var(β̂) is

V̂ar(β̂)J =
n− 1

n

n∑
i=1

(β̂−i − β̄J)(β̂−i − β̄J)
′, (14.10)

where β̂−i is the OLS estimator without using yi and xi, 1 ≤ i ≤ n, and
β̄J = n−1

∑n
i=1 β̂−i (Miller 1974). Hinkley (1977) pointed out a number of

shortcomings of (14.10). He suggested a weighted jackknife estimator,

V̂ar(β̂)H =
n

n− p

n∑
i=1

(1 − hi)
2(β̂−i − β̂)(β̂−i − β̂)′, (14.11)

where hi = x′i(X
′X)−1xi, with X = (x′i)1≤i≤n, and p is the rank of X . Here,

we assume, for simplicity, that X ′X is nonsingular. Wu (1986) argued that
Hinkley’s estimator may be improved by using a different weighting scheme
and/or allowing more than one observations to be removed in each jackknife
replication. More precisely, Wu’s proposal is the following. Let d be an integer
such that 1 ≤ d ≤ n − 1 and r = n − d. Let Sr denote the collection of
all subsets of {1, . . . , n} with size r. For s = {i1, . . . , ir} ∈ Sr, let Xs be the
submatrix consisting of the i1th, ..., irth rows of X and let ys = (yi1 , . . . , yir )

′.
Let β̂s = (X ′sXs)

−1X ′sys be the OLS estimator of β based on yi, xi, i ∈ s.
Again, for simplicity, we assume that X ′sXs is nonsingular for all s ∈ Sr. The

weighted delete-d jackknife estimator of Var(β̂) is defined as

V̂ar(β̂)J,d =

(
n− p

d− 1

)−1 ∑
s∈Sr

ws(β̂s − β̂)(β̂s − β̂)′, (14.12)

where ws = |X ′sXs|/|X ′X |. One may wonder why the weights ws are chosen
this way. Wu interpreted this by noting the following representation of the
OLS estimator. First, consider a simple case, yi = α + βxi + ei, i = 1, . . . , n,
where xi is a scalar. In this case, it can be shown (Exercise 13.4) that

β̂ =
∑
i<j

wij β̂ij , (14.13)

where β̂ij = (yi − yj)/(xi − xj) is the OLS estimator of β based on the pair
of observations (yi, xi) and (yj , xj) and wij = (xi − xj)

2/
∑

i′<j′(xi′ − xj′)
2.

Note that here the weight wij is proportional to

(xi − xj)
2 =

∣∣∣∣ 1 xi

1 xj

∣∣∣∣ .
In general, Wu (1986, Theorem 1) showed that the OLS estimator of β has
the following representation: For any r ≥ p,
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β̂ =

∑
s∈Sr

|X ′sXs|β̂s∑
s∈Sr

|X ′sXs| . (14.14)

We may interpret (14.14) as that the OLS estimator based on the full data is a
weighted average of the OLS estimators based on all subsets of the data with
size r, where the weights are proportional to |X ′sXs|. Alternatively, (14.14)
can be written as ∑

s∈Sr

|X ′sXs|(β̂s − β̂) = 0. (14.15)

The implication is that the weighted mean of β̂s − β̂ is equal to zero, where
the weights are proportional to |X ′sXs|. Thus, as a second-order analogue, Wu
proposed the weighted delete-d jackknife estimator (14.12), where the weights
ws are proportional to |X ′sXs|. As in the i.i.d. case [see the discussion following
(14.8)], a constant factor is adjusted to make it “just right.” One consideration
is to make sure that the estimator is (exactly) unbiased under homoscedastic
errors (Wu 1986, Theorem 3). See below for a further consideration in terms
of asymptotic unbiasedness. In particular, note that the sum of the weights

in (14.12) [i.e.,
(
n−p
d−1

)−1∑
s∈Sr

ws] is equal to (n − p − d + 1)/d, not 1 [see
Wu (1986), Lemma 1(ii)]. An important special case is the weighted delete-1

jackknife estimator of Var(β̂). This can be expressed as (Exercise 14.5)

V̂ar(β̂)J,1 =
n∑

i=1

(1 − hi)(β̂−i − β̂)(β̂−i − β̂)′. (14.16)

As noted, the weighted delete-d jackknife estimator of Var(β̂) is exactly
unbiased under homoscedastic errors. What happens under heteroscedastic
errors? To answer this question, let us define h = max1≤i≤n hi, where hi is
defined below (14.11). The value of h is used as an imbalanced measure (e.g.,

Shao and Wu 1987). An estimator of Var(β̂), say v̂, is called asymptotically

unbiased (AU) if n{E(v̂)−Var(β̂)} → 0 as n → ∞. The reason for multiplying

the difference by n is that, typically, Var(β̂) is O(n−1). So, the concept of

AU only makes sense if the bias E(v̂) − Var(β̂) is o(n−1); that is, n{E(v̂) −
Var(β̂)} → 0. Shao and Wu (1987) proved the following theorem. Note that
here both d and h are considered dependent on n.

Theorem 14.1. Suppose that the σ2
i ’s are bounded and (X ′X)−1 =

O(n−1). If supn(dh) < 1, then E{V̂ar(β̂)J,d} = Var(β̂) + O(dh/n). There-

fore, V̂ar(β̂)J,d is AU provided that dh → 0.

The proof of Theorem 14.1, which we outline below, has pieces of the
major techniques that have been used in developing jackknife estimators and
justifying its properties. It is clear that, somehow, we have to evaluate E{(β̂s−
β̂)(β̂s − β̂)′} = Var(β̂s − β̂) (why?). We can write β̂s − β̂ as
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(X ′sXs)
−1X ′sys − (X ′X)−1X ′y

= {(X ′sXs)
−1 − (X ′X)−1}X ′sys − (X ′X)−1(X ′y −X ′sys). (14.17)

Why do this? Well, what happens is that the two terms on the right side
of (14.17) are uncorrelated. Note that X ′y − X ′sys = X ′s̄ys̄, where s̄ is the
complement of s with respect to {1, . . . , n}. From this observation, we get

Var(β̂s − β̂) = {(X ′sXs)
−1 − (X ′X)−1}X ′sVsXs{(X ′sXs)

−1 − (X ′X)−1}
+(X ′X)−1X ′s̄Vs̄Xs̄(X

′X)−1, (14.18)

where Vs = Var(es) and Vs̄ is defined similarly. It follows that E{V̂ar(β̂J,d}
can be expressed as S1 + S2, with S1 and S2 corresponding to the two terms
on the right side of (14.18). The arguments to follow show that S1 is a term
of O(dh/n). Therefore, the main player is S2.

Next, we look at S2 more carefully and separate a main player within S2.
The determination of this main player also tells us what appropriate constant
factor (see above) should be used. Note that

S2 =

(
n− p

d− 1

)−1 ∑
s∈Sr

ws(X
′X)−1X ′s̄Vs̄Xs̄(X

′X)−1.

To see what would be a main player in S2, let us first consider a special case.
Suppose that ws = 1; that is, all of the weights are equal to 1. Then the
summation is equal to (X ′X)−1(

∑
s∈Sr

X ′s̄Vs̄Xs̄)(X ′X)−1. Note that∑
s∈Sr

X ′s̄Vs̄Xs̄ =
∑
s∈Sr

∑
i∈s

σ2
i xix

′
i

=
n∑

i=1

∑
s�i

σ2
i xix

′
i

=
n∑

i=1

σ2
i xix

′
i|{s ∈ Sr, s " i}|

=

(
n− 1

d− 1

) n∑
i=1

σ2
i xix

′
i

(why?). Thus, in this special case, we have

S2 =

(
n− p

d− 1

)−1(
n− 1

d− 1

)
(X ′X)−1

(
n∑

i=1

σ2
i xix

′
i

)
(X ′X)−1

=

(
n− p

d− 1

)−1(
n− 1

d− 1

)
Var(β̂). (14.19)

It can be shown (Exercise 14.6) that the factor in the front is 1 + O(d/n).

Thus, in this special case, S2 = {1 +O(d/n)}Var(β̂) = Var(β̂) +O(d/n2), by
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the assumptions of the theorem. Of course, the weights are not necessarily
equal to 1, but we can write S2 as S21−S22, where S21 is S2 when the weights
are equal [i.e., the right side of (14.19)] and S22 is the difference between the
special and general cases; that is,

S22 =

(
n− p

d− 1

)−1 ∑
s∈Sr

(1 − ws)(X
′X)−1X ′s̄Vs̄Xs̄(X

′X)−1. (14.20)

It can be shown (see below) that S22 = O(dh/n). Therefore, in view of the
argument for the special case of ws = 1, it is clear that S21 is the main player,
and S21 = Var(β̂) + O(d/n2). It follows that E{V̂ar(β̂)J,d} = S1 + S2 =

S1 + S21 − S22 = Var(β̂) +O(dh/n).
It remains to show that both S1 and S22 are O(dh/n). We show the latter

as an example and leave the former as an exercise (Exercise 14.7). We use a
technique introduced in Section 3.5, known as the unspecified c; namely, let c
denote a positive constant that may have different values in different places
(e.g., Shao and Wu 1987, p. 1566). Also, note that ws ≤ 1 for all s (Exercise
14.7). Therefore, we have, by (14.20) and the assumptions of the theorem,

tr(S22) =

(
n− p

d− 1

)−1 ∑
s∈Sr

(1 − ws)tr{(X ′X)−1X ′s̄Vs̄Xs̄(X
′X)−1}

≤ c

n

(
n− p

d− 1

)−1 ∑
s∈Sr

(1 − ws)tr{(X ′X)−1/2X ′s̄Xs̄(X
′X)−1/2}

=
c

n

(
n− p

d− 1

)−1 ∑
s∈Sr

(1 − ws)
∑
i∈s̄

tr{(X ′X)−1/2xix
′
i(X

′X)−1/2}

=
c

n

(
n− p

d− 1

)−1 ∑
s∈Sr

(1 − ws)
∑
i∈s̄

hi [hi is defined below (14.11)]

≤ c
dh

n

(
n− p

d− 1

)−1 ∑
s∈Sr

(1 − ws).

Now, use an identity [Wu 1986, Lemma 1(ii)]
∑

s∈Sr
ws =

(
n−p

d

)
to get

tr(S22) ≤ c
dh

n

(
n− p

d− 1

)−1{(
n

d

)
−
(
n− p

d

)}
= O(dh/n)

(Exercise 14.6), which implies ‖S22‖ = λmax(S22) = O(dh/n).
Another extension of the jackknife is considered in the next section.

14.3 Jackknifing the MSPE of EBP

The jackknife was proposed in the context of estimating the bias and variance
of an estimator. So far, the development and extension have been around the
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same or similar objectives. However, there are other areas of interest where
traditional methods encounter similar difficulties as those discussed in Section
14.1. One of the latter areas is the small-area estimation. Recall the problem of
estimating the MSPE of EBLUP, discussed in Section 4.8, and further related
problems discussed in Chapter 13. The problem may be formulated more
generally as estimating the MSPE of an empirical predictor. Suppose that
we are interested in predicting an unobservable random vector ζ = (ζl)1≤l≤t.
For example, ζ may be a vector of random effects, or mixed effects, that
are associated with a linear or generalized linear mixed model (see Chapter
12). The prediction will be based on independent, vector-valued observations,
y1, . . . , ym, whose joint distribution depends on a vector ψ = (ψk)1≤k≤s of
unknown parameters. We consider an example.

Example 14.4. Consider the nested error regression model of Example 13.3.
For a given small area i, let ζ = X̄ ′i,Pβ+vi, where X̄i,P is the population mean
for the xij ’s. By a similar argument as in Section 13.2, it can be shown that
ζi is approximately equal to the population mean for the ith small area under

the assumed model, and the approximation error is OP(N
−1/2
i ), where Ni is

the population size for the small area. Furthermore, let yi′ = (yi′j)1≤j≤ni′
,

the vector of observations from the i′th small area, 1 ≤ i′ ≤ m. The predic-
tion of ζ will be based on y1, . . . , ym, which are independent, with their joint
distribution depending on ψ = (β′, σ2

v, σ
2
e)′.

The best predictor (BP), in the sense of the minimum MSPE, is given by

ζ̃ = E(ζ|y1, . . . , ym)

= π(yS , ψ), (14.21)

a vector-valued function of yS = (yi)i∈S , where S is a subset of {1, . . . ,m},
and ψ. Since ψ is typically unknown, the BP is not computable. It is then
customary to replace ψ by ψ̂, a consistent estimator. The result is what we
call empirical best predictor, or EBP, given by

ζ̂ = π(yS , ψ̂). (14.22)

Typically, the MSPE of the EBP is much more difficult to evaluate than the
MSPE of BP. We use an example to illustrate.

Example 14.4 (continued). Under the normality assumption, the condi-
tional distribution of ζ given y1, . . . , ym is the same as the conditional distri-
bution of ζ given yi (why?). The latter is normal with mean

E(ζ|yi) = X̄ ′i,Pβ + E(vi|yi)

= X̄ ′i,Pβ +
niσ

2
v

σ2
e + niσ2

v

(ȳi· − x̄′i·β) (14.23)



482 14 Jackknife and Bootstrap

and variance σ2
vσ

2
e/(σ

2
e +niσ

2
v). Thus, ζ̃ is given by the right side of (14.23). It

can be shown (Exercise 14.8) that MSPE(ζ̃) = E(ζ̃−ζ)2 = σ2
vσ

2
e/(σ

2
e +niσ

2
v) =

var(ζ|yi). On the other hand, the MSPE of ζ̂ does not have a closed-form
expression, in general, and may depend on what estimator of ψ is used.

To overcome the difficulties of estimating the MSPE of the EBP, the Taylor
series method has been used (see, e.g., Sections 4.8 and 13.2). A disadvantage
of the Taylor series method is that it often involves tedious derivations and
complicated expressions. As a result, errors are often made in the processes
of derivation and computer programming. Furthermore, the expressions often
need to change when a different estimator of ψ is used. For example, Datta
and Lahiri (2000) showed that the Prasad–Rao estimator of the MSPE of the
EBLUP needs to be adjusted in order to maintain second-order unbiasedness,
depending on whether the ML or REML estimators of ψ is used. Also see
Section 13.3.

The jackknife method provides an attractive alternative for the MSPE
estimation. Note that, unlike in the previous section, here the main interest
is prediction, rather than estimation. Note that the MSPE has the following
decomposition. Consider, for now, the case of univariate ζ. Then we have

MSPE(ζ̂) = E(ζ̂ − ζ)2

= E(ζ̂ − ζ̃)2 + E(ζ̃ − ζ)2

= MSAE(ζ̂) + MSPE(ζ̃). (14.24)

The first term on the right side of (14.24) corresponds to the mean squared

approximation error (MSAE) of ζ̂ to ζ̃, whereas the second term is the MSPE
of ζ̃ (considered as a predictor). Using a similat idea of the jackknife (see the
previous section), we may estimate the MSAE by

M̂SAE(ζ̂)J =
m− 1

m

m∑
i=1

(ζ̂−i − ζ̂)2, (14.25)

where ζ̂−i is some kind of jackknife replication of ζ̂ (the exact definition will
be given after some discussion). Furthermore, suppose that MSPE(ζ̃) = b(ψ),
where b(·) is a known function. Then, again similar to Section 14.2, we consider
a bias-corrected jackknife estimator of the second term:

M̂SPE(ζ̃)J = b(ψ̂) − m− 1

m

m∑
i=1

{b(ψ̂−i) − b(ψ̂)}, (14.26)

where ψ̂ is a suitable estimator of ψ and ψ̂−i is the jackknife replication of ψ̂.
We then combine the two to obtain a jackknife estimator of the MSPE of ζ̂:

M̂SPE(ζ̂)J = M̂SAE(ζ̂)J + M̂SPE(ζ̃)J. (14.27)

The subject that is new here is ζ̂, which is a predictor, not estimator. The
question is: What is an appropriate definition of ζ̂−i? The following example
shows that a naive definition may not work.
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Example 14.5 (James–Stein estimator and naive jackknife). Let the obser-
vations y1, . . . , ym be independent such that yi ∼ N(θi, 1), 1 ≤ i ≤ m. In the
context ofsimultaneous estimation of θ = (θ1, . . . , θm)′, it is well known that,
for m ≥ 3, the James–Stein estimator dominates the maximum likelihood esti-
mator, which is simply y = (y1, . . . , ym)′, in terms of the frequentist risk under
a sum of squares error loss function (e.g., Lehmann 1983, p. 302). Efron and
Morris (1973) provided an empirical Bayes justification of the James–Stein
estimator. Their Bayesian model may be equivalently written as a simple ran-
dom effects model, yi = vi + ei, i = 1, . . . ,m, where the random effects vi

and sampling errors ei are independent with vi ∼ N(0, A) and ei ∼ N(0, 1),
where A is unknown. Write B = (1 +A)−1. Then the James–Stein estimator
can be interpreted as an EBP under the random effects model. For example,
the BP of ζ = v1 is ζ̃ = (1 − B)y1. The estimator of B proposed by Efron
and Morris (1973) is B̂ = (m − 2)/

∑m
i=1 y

2
i . Alternatively, the MLE of B is

B̂ = m/
∑m

i=1 y
2
i . By plugging in B̂, we get the EBP, ζ̂ = (1 − B̂)y1.

A straightforward extension of the jackknife for estimating the MSPE of
ζ̂ would define the ith jackknife replication of ζ̂ as one derived the same way
except without the observation yi. Denote this naive jackknife replication by
ζ̂∗−i. The question is: What is ζ̂∗−1? To be more specific, suppose that the MLE
of B is used. If we follow the derivation of of the EBP, then we must have
ζ̃−1 = 0 (why?); hence, ζ̂∗−1 = 0. On the other hand, for i ≥ 2, we have ζ̃−i =

(1−B)y1 (same as ζ̃) and B̂−i = (m−1)/
∑

j 
=i y
2
j ; hence, ζ̂∗−i = (1− B̂−i)y1.

It can be shown (Exercise 14.9) that MSPE(ζ̂) = 1 − B + 2B/m + o(m−1).

On the other hand, we have E(ζ̂∗−1 − ζ̂)2 = E(ζ̂2) = A(1 − B) + o(1) and

E(ζ̂∗−i − ζ̂)2 = 2B/m2 + o(m−2), i ≥ 2. With these, it can be shown that the

expectation of the right side of (14.27), with ζ̂−i replaced by ζ∗−i, 1 ≤ i ≤ m, is

equal to MSPE(ζ̂) +A(1−B) + o(1) (Exercise 14.9). In other words, the bias
of the naive jackknife MSPE estimator does not even go to zero as m→ ∞.

The problem with the naive jackknife can be seen clearly from the above
example. The observation y1 plays a critical role in the prediction of ζ = v1.
This observation cannot be removed no matter what. Any jackknife replica-
tions should only be with respect to ψ̂, not yS [see (14.22)]. Therefore, we

define the ith jackknife replication of ζ̂ as

ζ̂−i = π(yS , ψ̂−i), (14.28)

where yS is the same as in (14.22) and ψ̂−i is the ith jackknife replication of

ψ̂, described below.
So far, the presence of ψ̂ is, more or less, just a notation—we have not

given the specific form of ψ̂. In many applications, the estimator ψ̂ belongs to
a class of M-estimators. Here, an M-estimator is associated with a solution,
ψ̇, to the following equation:
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F (ψ) =

m∑
j=1

fj(ψ, yj) + a(ψ) = 0, (14.29)

where fj(·, ·) are vector-valued functions satisfying E{fj(ψ, yj)} = 0, 1 ≤ j ≤
m, if ψ is the true parameter vector, and a(·) is a vector-valued function which
may depend on the joint distribution of y1, . . . , ym. When a(ψ) �= 0, it plays
the role of a modifier, or penalizer. We consider some examples.

Example 14.6 (ML estimation). Consider the longitudinal linear mixed
model (12.3). Let ψ = (β′, θ′)′. Under regularity conditions, the MLE of ψ
satisfies (14.29) with a(ψ) = 0, fj(ψ, yj) = [fj,k(ψ, yj)]1≤k≤p+q, where p is the
dimension of β and q the dimension of θ;

[fj,k(ψ, yj)]1≤k≤p = X ′jV
−1
j (θ)(yj −Xjβ);

fj,p+l(ψ, yj) = (yj −Xjβ)′V −1
j (θ)

∂Vj

∂θl
V −1

j (θ)(yj −Xjβ)

−tr

{
V −1

j (θ)
∂Vj

∂θl

}
, 1 ≤ l ≤ q,

where Vj(θ) = Rj + ZjGjZ
′
j (Exercise 14.10).

Example 14.7 (REML estimation). Continue with the previous exam-
ple. Similarly, the REML estimator of θ is defined as a solution to the
REML equation (see Section 12.2). The REML estimator of β is defined

as β̂ = {∑m
j=1X

′
jV
−1
j (θ̂)Xj}−1

∑m
j=1 X

′
jV
−1
j (θ̂)yj , where θ̂ is the REML

estimator of θ. It can be shown (Exercise 14.11) that the REML estima-
tor of ψ satisfies (14.29), where the fj ’s are the same as in Example 14.6;
a(ψ) = [ak(ψ)]1≤k≤p+q with ak(ψ) = 0, 1 ≤ k ≤ p, and

ap+l(ψ) =
m∑

j=1

tr

[
V −1

j (θ)Xj{X ′V −1(θ)X}−1X ′jV
−1
j (θ)

∂Vj

∂θl

]
,

1 ≤ l ≤ q. Here, X = (Xj)1≤j≤m and V (θ) = diag{Vj(θ), 1 ≤ j ≤ m}.

Consider a jackknife replication of (14.29); that is,

F−i(ψ) =
∑
j 
=i

fj(ψ, yj) + a−i(ψ) = 0, (14.30)

1 ≤ i ≤ m. The ith jackknife replication of ψ̇, ψ̇−i, is defined as a solution
to (14.30). Sometimes, a solution to (14.29) may not exist, or exist but not
within the parameter space (e.g., negative values for variances). Therefore, we

define an M-estimator of ψ as ψ̂ = ψ̇ if the solution to (14.29) exists within the

parameter space, and ψ̂ = ψ∗ otherwise, where ψ∗ is a known vector within
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the parameter space. Similarly, we define ψ̂−i = ψ̇−i if the solution to (14.30)

exists within the parameter space, and ψ̂−i = ψ∗ otherwise.
Jiang et al. (2002a,b) showed that the jackknife MSPE estimator, defined

by (14.27) with ψ̂, ψ̂−i, 1 ≤ i ≤ m, being the M-estimator and its jackknife
replications, has a similar bias reduction property, known as asymptotic un-
biasedness, as the jackknife variance estimator considered in Section 14.2. For
simplicity, below we consider a very special case. Let ψ be a scalar parameter
and S = {1} in (14.22). Also, assume that fj = f (i.e., not dependent on j)
and a(ψ) = a−i(ψ) = 0 in (14.29) and (14.30). Let y1, . . . , ym be independent
with the same distribution as Y . Before we study the asymptotic unbiasedness
of the jackknife MSPE estimator, let us first consider an important property
of the M-estimator. For notation convenience, write ψ̂−0 = ψ̂ and F−0 = F .
The M-estimators ψ̂−i, 0 ≤ i ≤ m, are said to be consistent uniformly (c.u.)
at rate m−d if for any b > 0, there is a constant B (possibly depend on b) such

that P(Ac
i,b) ≤ Bm−d, 0 ≤ i ≤ m, where Ai,b = {F−i(ψ̂−i) = 0, |ψ̂−i −ψ| ≤ b}

and ψ is the true parameter. The M-estimating equations are said to be stan-
dard if f(ψ, Y ) = (∂/∂ψ)l(ψ, Y ) for some function l(ψ, u) that is three times
continuously differentiable with respect to ψ and satisfies

E

{
∂2

∂ψ2
l(ψ, Y )

}
> 0.

The ML and REML equations (see Examples 14.6 and 14.7) are multivariate
extensions of the standard M-estimating equations. The following theorem is
given in Jiang et al. (2002a) as a proposition.

Theorem 14.2. Suppose that the M-estimating equations are standard
and the 2dth moments of∣∣∣∣ ∂r

∂ψr
l(ψ, Y )

∣∣∣∣ , r = 1, 2, sup
|ψ′−ψ|≤b0

∣∣∣∣ ∂3

∂ψ3
l(ψ′, Y )

∣∣∣∣
are finite for some d ≥ 1 and b0 > 0, where ψ is the true parameter. Then
there exist M-estimators ψ̂−i, 0 ≤ i ≤ m, that are c.u. at rate m−d.

The proof is left as an exercise (Exercise 14.12). The next thing we do is to
establish the asymptotic unbiasedness properties for the jackknife estimators
of MSAE(ζ̂) and MSPE(θ̃) separately and then combine them [see (14.24) and
(14.27)]. To do so we also need some regularity conditions on the EBP (14.22)
(note that now S = {1}). We assume that

|π(Y1, ψ)| ≤ ω(Y1)(1 ∨ |ψ|λ) (14.31)

for some constant λ > 0 and measurable function ω(·) such that ω(·) ≥
1 [a ∨ b = max(a, b)]. The c.u. property can now be generalized. Let A =
σ(y1, . . . , ym), the σ-field generated by the yi’s. Define a measure μω on A as
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μω(A) = E{ω2(Y )1A}, A ∈ A. (14.32)

The M-estimators ψ̂−i, 0 ≤ i ≤ m, are said to be c.u. with respect to μω (c.u.
μω) at rate m−d if for any b > 0, there is a constant B (possibly dependent on
b) such that μω(Ac

i,b) ≤ Bm−d, 0 ≤ i ≤ m, where Ai,b is the same as above.
Below are some remarks regarding c.u. μω and its connection to c.u.

Remark 1. Because ω(·) ≥ 1, that the M-estimators are c.u. μω at ratem−d

implies that they are c.u. at rate m−d. Conversely, if there is τ > 2 such that
E(|ω(Y )|τ ) < ∞, then that the M-estimators are c.u. at rate m−d implies
that they are c.u. μω at rate m−d(1−2/τ) (Exercise 14.13). In particular, if
E{ω4(Y )} <∞, then if the M-estimators are c.u. at rate m−2d, they are c.u.
μω at rate m−d. This is useful in checking the c.u. μω property because, under
a suitable moment condition, it reduces to checking the c.u. property.

Remark 2. In practice, the function ω may be chosen in the following way:
Find a positive number λ such that ω(y) = supψ{|π(y, ψ)|/(1 ∨ |ψ|λ)} < ∞
for every y and use this ω.

The following theorem states the asymptotic unbiasedness of the jackknife
MSAE estimator.

Theorem 14.3. Suppose that (i) E{(∂/∂ψ)f(ψ, Y )} �= 0; (ii) for some
constants d > 2 and b0 > 0, the expectations of the following are finite, where
ψ is the true parameter:

|f(ψ, Y )|2d,

∣∣∣∣ ∂∂ψf(ψ, Y )

∣∣∣∣2d

, sup
|ψ′−ψ|≤b0

∣∣∣∣ ∂2

∂ψ2
f(ψ′, Y )

∣∣∣∣2d

,

sup
|ψ′−ψ|≤b0

{
∂3

∂ψ3
f(ψ′, Y )

}4

;

ω4(Y ),

{
∂2

∂ψ2
π(Y, ψ)

}4

, sup
|ψ′−ψ|≤b0

{
∂3

∂ψ3
π(Y, ψ′)

}2

,

sup
|ψ′−ψ|≤b0

∣∣∣∣ ∂∂ψπ(Y, ψ′)
∣∣∣∣2d

;

and (iii) ψ̂−i, 0 ≤ i ≤ m are c.u. μω at rate m−d. Then we have

E{M̂SAE(ζ̂)J} − MSAE(ζ̂) = o(m−1−ε)

for any 0 < ε < (d− 2)/(2d− 1).

The next theorem states the asymptotic unbiasedness of the jackknife bias-
corrected estimator for the MSPE of ζ̃.

Theorem 14.4. Suppose that (i) E{(∂/∂ψ)f(ψ, Y )} �= 0; (ii) for some
d > 2 and b0 > 0, the 2dth moments of the following are finite:
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|f(ψ, Y )|,
∣∣∣∣ ∂r

∂ψr
f(ψ, Y )

∣∣∣∣ , r = 1, 2, sup
|ψ′−ψ|≤b0

∣∣∣∣ ∂3

∂ψ3
f(ψ, Y )

∣∣∣∣ ,
and sup|ψ′−ψ|≤b0 |b(4)(ψ′)| is bounded, where ψ is the true parameter and b(4)

represents the fourth derivative; and (iii) ψ̂−i, 0 ≤ i ≤ m are c.u. at rate m−d.
Then we have

E{M̂SPE(ζ̃)J} − MSPE(ζ̃) = o(m−1−ε)

for any 0 < ε < (d− 2)/(2d+ 1).

By combining Theorems 14.3 and 14.4 and in view of (14.24) and (14.27),
we obtain the asymptotic unbiasedness of the jackknife MSPE estimator.

Theorem 14.5. Suppose that (i)–(iii) of Theorem 14.3 and (ii) of Theorem
14.4 hold; then we have

E{M̂SPE(ζ̂)J} − MSPE(ζ̂) = o(m−1−ε)

for any 0 < ε < (d− 2)/(2d+ 1).

At this point, we would like to discuss some of the ideas used in the proofs.
A basic technique is Taylor series expansions (see below). This allows us to
approximate the EBP by something simpler. Typically, the approximation
error in the Taylor expansion is expressed in terms of OP or oP. We need
to “convert” such a result to convergence in expectation. In this regard, an
earlier result, Lemma 3.17, is found very useful. We now give an outline of
the Taylor expansions. The details can be found in Jiang et al. (2002b). First,
consider expansions of the M-estimators. It is fairly straightforward to do it
for ψ̂ − ψ. On the other hand, it is more challenging to obtain an expansion
for ψ̂−i − ψ̂, the main reason being that we need to carry out the expansion
for ψ̂−i− ψ̂ to a higher order (than for ψ̂−ψ) [because we need to consider the

sum of (ψ̂−i − ψ̂)2 over i]. The idea is to do the Taylor expansion twice, or do
it in two steps, first obtaining a rough approximation and then using it for a
more accurate result. Write fj = fj(ψ, yj), gj = (∂/∂ψ)fj(ψ, yj), f· =

∑
j fj ,

f·−i =
∑

j 
=i fj , f̄ == m−1f·, and so forth. Define Di = {ψ̂−i satisfies F−i =

0 and |ψ̂−i − ψ| ≤ mδ−1/2}, 0 ≤ i ≤ m, and G = {|ḡ − E(ḡ)| ≤ m−Δ|E(ḡ)|}
for some δ,Δ > 0. Let Ci = D0 ∩Di, i ≥ 1. For expanding ψ̂ − ψ, we have

fj(ψ̂, yj) = fj + gj(ψ̂ − ψ) +
1

2
hj(ψ̂ − ψ)2 + rj ,

where hj = (∂2/∂ψ2)fj(ψ
∗
j , yj) and ψ∗j lies between ψ and ψ̂ [note that ψ∗j

depends on j (why?)], and |rj | ≤ m3δ−3/2u and E(ud) is bounded. Hereafter,
you do not need to verify the bounds for the r’s, as the goal here is to illustrate
the main idea, but you may want to think about why, as always. Also, the r’s
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are not necessarily the same, even if the same notation is used (this is similar
to the unspecified c; see, for example, the end of Section 14.2). If we sum over
j, then we have, on C0 (why does the first equation hold?),

0 =
∑

j

fj(ψ̂, yj)

= f· + g·(ψ̂ − ψ) +
1

2
h·(ψ̂ − ψ)2 + r· (14.33)

= f· + E(g·)(ψ̂ − ψ) + r1 + r, (14.34)

where r1 = {g· − E(g·)}(ψ̂ − ψ), |r| ≤ m2δu, and E(ud) is bounded. This
implies that

ψ̂ − ψ = −{E(g·)}−1f· + r (14.35)

with |r| ≤ m2δ−1u and E(ud) bounded.
The two equation numbers in (14.33) and (14.34) are not left by mistake

(normally one would need just one equation number for such a series of equa-

tions), as it will soon become clear. For expanding ψ̂−i − ψ̂, we have, on Ci,

fj(ψ̂−i, yj) = fj + gj(ψ̂−i − ψ) +
1

2
h−i,j(ψ̂−i − ψ)2 + r−i,j ,

where h−i,j = (∂2/∂ψ2)fj(ψ
∗
−i,j , yj), ψ

∗
−i,j is between ψ and ψ̂−i, and |r−i,j | ≤

m3δ−3/2uj with E(ud
j ) bounded. We then sum over i to have, on Ci,

0 =
∑
j 
=i

fj(ψ̂−i, yj)

= f·−i + g·−i(ψ̂−i − ψ) +
1

2
h−i,·−i(ψ̂−i − ψ)2 + r−i,·−i (14.36)

= f· + E(g·)(ψ̂−i − ψ) + ri (14.37)

with |ri| ≤ m2δui and E(ud
i ) bounded. Again, the two equations numbers,

(14.36) and (14.37) are not left without a purpose. We now subtract (14.37)

from (14.34) to get 0 = E(g·)(ψ̂ − ψ̂−i) + ri, where |ri| ≤ m2δui and E(ud
i ) is

bounded. This impies a (rough) bound

|ψ̂−i − ψ̂| ≤ m2δ−1ui (14.38)

with E(ud
i ) bounded. Using (14.38), it can be shown that

h−i,·−i(ψ̂−i − ψ)2 = E(h−i,·−i)(ψ̂ − ψ)2 + ri (14.39)

with |ri| ≤ m3δ−1/2ui and E(ud
i bounded. We now subtract (14.36) from

(14.33) and observe that h·(ψ̂−ψ)2 = E(h·)(ψ̂−ψ)2 + r with |r| ≤ m2δ−1/2u
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and E(ud) bounded, to get 0 = fi + g·(ψ̂ − ψ̂−i) + ri with |ri| ≤ m3δ−1/2ui

and E(ud
i ) bounded. This gives us a more accurate expansion:

ψ̂−i − ψ̂ = g−1
· (fi + ri)

= {E(g·)}−1fi + ri (14.40)

with |ri| ≤ m−1−εui for ε = (1/2 − 3δ) ∧Δ and E(ud
i ) bounded.

The expansions for ψ̂−i − ψ̂ lead to those for b(ψ̂−i) − b(ψ̂), 1 ≤ i ≤ m
[see (14.26)], and similar techniques are used in obtaining expansions for the

EBPs, ζ̂−i − ζ̂, 1 ≤ i ≤ m, which are the keys to the proofs.
To conclude this section, we would like to make a note on the extension

of Theorem 14.5 beyond the simple case that we have considered. This has
much to do with the role of the a’s in (14.29) and (14.30). In the simple case
we assumed that the a’s are zero (functions), so there is no such a problem. In
general, Jiang et al. (2002a) had the following restriction on the a’s in order
to obtain the asymptotic unbiasedness of the jackknife MSPE estimator,

m∑
i=1

{a(ψ) − a−i(ψ)} = O(m−ν) (14.41)

for some constant ν > 0, where ψ is the true parameter vector. To see that
(14.41) is not a serious restriction, we illustrate it with an example.

Example 14.7 (continued). Write Δi = a(ψ) − a−i(ψ), Vj = Vj(θ), and
V = V (θ). From the definition of a we have a−i,k(ψ) = 0, 1 ≤ k ≤ p, and
a−i,p+l(ψ) is defined the same way as ap+l(ψ) except with

∑m
j=1 replaced by∑

j 
=i, 1 ≤ l ≤ q. Note that X ′V −1X =
∑m

j=1 Aj , with Aj = X ′jV
−1
j Xj , also

needs to be adjusted. Thus, Δi,k = 0, 1 ≤ k ≤ p, and, for 1 ≤ l ≤ q,

Δi,p+l = tr(A−1
· Bi,l) +

∑
j 
=i

tr{(A−1
· −A−1

·−i)Bj,l},

where Bj,l = XjV
−1
j (∂Vj/∂θl)V

−1
j Xj, A· = A·−0 =

∑m
j=1 Aj , and A·−i =∑

j 
=i Aj (verify the expression for Δi,p+l). Under regularity conditions, we

have A−1
· −A−1

·−i = −A−1
· AiA

−1
· +O(m−3). Thus, we have

m∑
i=1

Δi,p+l =
m∑

i=1

tr(A−1
· Bi,l) −

m∑
i=1

∑
j 
=i

{tr(A−1
· AiA

−1
· Bj,l) +O(m−3)}

=

m∑
i=1

tr(A−1
· Bi,l) −

m∑
i=1

m∑
j=1

tr(A−1
· AiA

−1
· Bj,l)

+

m∑
i=1

tr(A−1
· AiA

−1
· Bi,l) +O(m−1)
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=

m∑
i=1

tr(A−1
· Bi,l) −

m∑
j=1

tr

{
A−1
·

(
m∑

i=1

Ai

)
A−1
· Bj,l

}
+O(m−1)

= O(m−1).

Thus, (14.41) is satisfied with ν = 1.

14.4 The bootstrap

When Efron (1979) introduced the bootstrap, he did not spend much time
developing theory, as he wrote that he would proceed (the bootstrap) “by a
series of examples, with little offered in the way of general theory.” Not by
coincidence, the book, An Introduction to the Bootstrap, that he coauthored
with Tibshirani begins with a quote from Faust (von Goethe 1808):

Dear friend, theory is all gray,
and the golden tree of life is green.

Nevertheless, these by no mean intend to undermine the importance of
theory. The bootstrap method has a sound theoretical basis, and this was
certainly in the mind of Efron when he proposed the method. As indi-
cated in Section 14.1, the problem of interest is the sampling distribution
of R = R(X1, . . . , Xn, F ), where X1, . . . , Xn are independent observations
with the common distribution F . Efron proposed to approximate the distri-
bution of R by that of R∗ = R(X∗1 , . . . , X

∗
n, Fn), where Fn is the empirical

distribution of X1, . . . , Xn defined by (7.1) and X∗1 , . . . , X
∗
n are i.i.d. sam-

ples from Fn. Practically—and this is perhaps the best known features of
the bootstrap—the distribution of R∗ can be approximated using the Monte
Carlo method, by drawing X∗1 , . . . , X

∗
n with replacement from the box that

consists of X1, . . . , Xn. One apparent advantage of the bootstrap is that it is
conceptually simple and intuitive, especially if one has a good sense of the
concepts of estimation. For example, if one expects that Fn is a good estima-
tor of F (which it is; see Chapter 7), then it makes sense to approximate the
distribution of R by R∗. Of course, this is not (yet) a rigorous justification.
It took some years for the theory of bootstrap to develop, as in many other
cases of methodology developments. One of the early theoretical studies of
the bootstrap, in terms of its asymptotic properties, was carried out by Bickel
and Freedman (1981). As indicated by these authors, the bootstrap “would
probably be used in practice only when the distributions could not be esti-
mated analytically. However, it is of some interest to check that the bootstrap
approximation is valid in situations which are simple enough to handle ana-
lytically.” Some of the situations are considered below, where the results are
mainly based on Bickel and Freedman’s studies.

The first simple case to look at is bootstrapping the mean. Suppose that
F has finite mean μ and variance σ2. A standard pivotal quantity is the t-
statistic, defined by tn =

√
n(μn − μ)/σn, where μn = X̄ = n−1

∑n
i=1 Xi and
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σ2
n = σ̂2 = n−1

∑n
i=1(Xi −μn)2. Here, a pivotal quantity is a random variable

whose distribution is free of parameters. The change of notation (from X̄
to μn, etc.) is for technical convenience, because we are going to allow the
bootstrap sample size, m, to be different from n. Let X∗1 , . . . , X

∗
m be i.i.d.

samples from Fn; define μ∗m and σ∗m similarly, and let t∗m,n =
√
m(μ∗m−μn)/σ∗m

and t∗n = t∗n,n. To make the case even simpler, let us first consider the t’s
without the denominators. In the case m = n, the bootstrap distribution of√
n(μ∗n −μn) is used to approximate the sampling distribution of

√
n(μn −μ).

We may think of this approximation as making two changes at the same time:
(i) μn to μ∗n and (ii) μ to μn. If one only looks at change (ii), one would
expect an error in the order of O(n−1/2) (why?), which likely may affect the

asymptotic distribution, right? [Recall
√
n(μn−μ)

d−→ N(0, σ2); so any change
of O(n−1/2) may result in a shift of the mean of the asymptotic distribution.]
However, there is also an error due to change (i). These two errors somehow
cancel each other, to a large extent. In fact, the same thing happens even if
m and n go to ∞ independently, as the following theorem states.

Theorem 14.6. Let X1, X2, . . . be i.i.d. with positive variance σ2. For
almost all sample sequences X1, X2, . . . we have, as m,n→ ∞, the following:
(i) The conditional distribution of

√
m(μ∗m − μn) given X1, . . . , Xn converges

weakly to N(0, σ2).
(ii) s∗m → σ in the conditional probability; that is, for every ε > 0,

P(|s∗m − σ| > ε|X1, . . . , Xn) −→ 0.

Recall that, by the CLT, the distribution of
√
n(μn−μ) converges weakly to

N(0, σ2) as n → ∞. Thus, (i) of Theorem 14.6 states that the asymptotic dis-
tribution is unchanged when we consider the bootstrap version of

√
n(μn−μ),

even if the bootstrap sample size may be different from the sample size. This,
combined with (ii) of Theorem 14.6, implies that the asymptotic distribution
of the bootstrap pivot t∗m,n, and hence t∗n, coincides with the classical one,
which is N(0, 1) (why?). The proof of Theorem 14.6 is based on the following
argument that can be easily extended to more general situations (therefore,
the result of Theorem 14.6 is certainly extendable). Let Γ2 be the set of all
distributions G satisfying

∫
x2 dG(x) < ∞. Define convergence of a sequence,

Gα ∈ Γ2, where α represents a certain index, as (see Section 2.4)

Gα ⇒ G iff Gα
w−→ G and

∫
x2 dGα(x) −→

∫
x2 dG(x). (14.42)

It can be shown that convergence in the sense of (14.42) is equivalent to
convergence in a metric, d2, on Γ2 defined as d2(G,H) =

√
E{(X − Y )2},

G,H ∈ Γ2, where the infimum is over all joint distribution of (X,Y ) such
that X and Y have marginal distributions G and H , respectively. (One may
compare this result with Theorem 2.17 or §2.7.9.) The metric d2 satisfies the
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following nice inequality, due to Mallows (1972). Let Z1(G), . . . , Zm(G) denote
a sequence of independent random variables with common distribution G, and
let G(m) be the distribution of m−1/2

∑m
j=1[Zj(G)−E{Zj(G)}]. Then we have

d2[G
(m), H(m)] ≤ d2(G,H), G,H ∈ Γ2. (14.43)

With this notation, the distribution of
√
m(μ∗m −μn) is simply F

(m)
n , and the

distribution of
√
m(μm − μ) is F (m). By (14.43), F

(m)
n is at least as close to

F (m) as Fn is to F , and d2(Fn, F ) goes to zero by the CLT.
As noted, Theorem 14.6 implies that the asymptotic distribution of t∗n

is the same as that of tn. As far as this result is concerned, the bootstrap
approximation is correct but does not seem to have any advantage over the
classical approximation. On the other hand, intuitively, one would expect
the bootstrap distribution, which is based on the empirical distribution of
the data, to better approximate the true distribution of the pivot than the
(classical) asymptotic distribution, because the latter requires that n goes to
infinity. This intuition is correct, at least for some simple cases. For example,
consider the case that σ is known. In such a case, it is customary to consider
zn =

√
n(μn − μ)/σ instead of tn. Singh (1981) showed that, in this case, the

bootstrap distribution of μ∗n better approximates the distribution of zn than
the classical asymptotic distribution, N(0, 1). More specifically, we have

√
n sup

x
|P(zn ≤ x) − P(t∗n ≤ x|X1, . . . , Xn)| a.s.−→ 0. (14.44)

Compare (14.44) with the Edgeworth expansion (4.27), which implies that

√
n|P(zn ≤ x) − Φ(x)| =

κ3

6
(1 − x2)φ(x) +O(n−1/2),

where κ3 = E(X1 − μ)3/σ3 and Φ(·), φ(·) are the cdf and pdf of N(0, 1),
respectively. It is clear that as long as κ3 is not equal to zero, the bootstrap
distribution is asymptotically closer to P(zn ≤ x) than Φ(x), which is the
classical approximation.

Next, we consider the problem of bootstrapping von Mises functionals. Let
X1, . . . , Xn be i.i.d. p-dimensional observations. Many pivots of interest can
be expressed in the form

√
n{h(Sn/n) − h(μ)}

v(Un/n)
(14.45)

and have asymptotic normal distributions, where Sn =
∑n

i=1 s(Xi), Un =∑n
i=1 u(Xi), h, s, and u are vector-valued functions, and v is a real-valued

function. The traditional method of deriving the asymptotic distribution is
the delta method (see Example 4.4); namely, write

√
n

{
h

(
Sn

n

)
− h(μ)

}
=

∂h

∂μ′
√
n

(
Sn

n
− μ

)
+ oP(1)
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and go from there. Here, we assume that all of the functions involved are
differentiable. In the bootstrap, we replace Sn, Un, and μ in (14.45) by S∗n,
U∗n, and Sn/n, respectively, where S∗n and U∗n are Sn and Un, respectively,
with the Xi’s replaced by X∗i ’s, and X∗1 , . . . , X

∗
n are i.i.d. samples from Fn,

the empirical distribution of X1, . . . , Xn that puts mass 1/n on each Xi. To
study the asymptotic behavior of the current bootstrap procedure, we use the
idea of the delta method, also known as linearization, in a functional space.
Recall that the delta method is based on the Taylor expansion. Let h : F → R
be a functional, where F is a convex set of probability measures on Rp that
includes all point masses and F , the true distribution of the Xi’s. Suppose
that there is an expansion of h at F such that for G close to F , we have

h(G) − h(F ) =

∫
ψ(x, F ) d(G− F )(x) +R,

where R → 0 at a faster rate than the distance between G and F , as the latter
goes to zero. The function ψ can be treated as a derivative. If we impose the
regularity condition

∫
ψ(x, F ) dF (x) = 0, then the expansion can be simply

expressed as

h(G) − h(F ) =

∫
ψ(x, F ) dG(x) +R. (14.46)

A functional that satisfies (14.46) is often called a von Mises functional. A
more rigorous treatment of this subject, known as Gâteaux derivative, can be
given (e.g., Serfling 1980). However, it is often more convenient to use (14.46)
in another way, without having to go through the rigorous justification. First,
we use (14.46) to motivate an asymptotic expansion and, in particular, obtain
the leading term of the expansion; then we use the expansion to obtain the
asymptotic distribution and directly justify our arguments. An intuitive way
of obtaining the first term on the right side of (14.46) is the following:∫

ψ(x, F ) dG(x) =
∂

∂ε
h[F + ε(G− F )]

∣∣∣∣
ε=0

. (14.47)

To illustrate the method, we consider the special case

h(G) =

∫ ∫
ω(x, y) dG(x) dG(y), (14.48)

where ω(x, y) = ω(y, x), assuming that the functional is well defined. It can
be shown (Exercise 14.14) that

ψ(x, F ) = 2

{∫
ω(x, y) dF (y) − h(F )

}
. (14.49)

Now, let G = F ∗n , the empirical distribution of X∗1 , . . . , X
∗
n, and F = Fn.

Then, we can (always) write, in view of (14.46),
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h(F ∗n ) − h(Fn) =

∫
ψ(x, Fn) dF ∗n(x) +Rn

with
∫
ψ(x, Fn) dF ∗n(x) = n−1

∑n
i=1 ψ(X∗i , Fn). It can be shown (rigorously)

that for almost all X1, X2, . . ., we have
√
nRn → 0 in conditional probability,

and the conditional distribution of n−1/2
∑n

i=1 ψ(X∗i , Fn) converges weakly to
the normal distribution with mean 0 and variance

τ2 =

∫
ψ2(x, F ) dF (x)

= 4

[∫ {∫
ω(x, y) dF (x)

}2

dF (x) − h2(F )

]
. (14.50)

This leads to the following theorem.

Theorem 14.7. Let h be given by (14.48). If
∫
ω2(x, y) dF (x) dF (y) < ∞

and
∫
ω2(x, x) dF (x) < ∞, then, for almost all X1, X2, . . ., as n → ∞, the

conditional distribution of
√
n{h(F ∗n) − h(Fn)} converges weakly to N(0, τ2)

with τ2 given by (14.50).

The idea of the proof is pretty much explained in the discussion leading
to the theorem. On the other hand, according to a classical result (von Mises
1947), under the same conditions, the distribution of

√
n{h(Fn)− h(F )} con-

verges weakly to N(0, τ2) as n → ∞. Thus, again, the asymptotic distribution
of the bootstrap matches the classical one. We use an example to illustrate
an application.

Example 14.8. Recall the one-sample Wilcoxon statistic (see Example

11.8), Un =
(

n
2

)−1∑
1≤i<j≤n 1(Xi+Xj>0). Consider the functional θ = θ(F ) =

P(X1 + X2 > 0). Note that this is a special case of (14.48) with ω(x, y) =
1(x+y>0). Then we have θ(Fn) = n−2

∑n
i=1

∑n
j=1 1(Xi+Xj>0), which is a spe-

cial case of the V -statistics (see Exercise 14.15, which also involves some of
the results below). It can be shown that

|√n(Un − θ) −√
n{θ(Fn) − θ(F )}| ≤ 2√

n
(14.51)

and, similarly,

|√n(U∗n − Un) −√
n{θ(F ∗n) − θ(Fn)}| ≤ 2√

n
, (14.52)

where U∗n is Un with the Xi’s replaced by X∗i ’s, the latter being i.i.d. samples
from Fn, and F ∗n is the empirical d.f. of X∗1 , . . . , X

∗
n. According to Theorem

14.7,
√
n{θ(F ∗n) − θ(Fn)} has the same asymptotic (conditional) distribution

as
√
n{θ(Fn) − θ(F )}. Thus, by (14.51) and (14.52),

√
n(U∗n − Un) has the

same asymptotic (conditional) distribution as
√
n(Un − θ). Therefore, it is
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valid to bootstrap
√
n(U∗n −Un) in order, for instance, to obtain the power of

the one-sample Wilcoxon test, also known as Wilcoxon signed-rank test, that
is related to the distribution of

√
n(Un − θ) (see Sections 11.2 and 11.3).

One of the examples that Efron (1979) used in his seminal paper to demon-
strate the bootstrap method is estimating the median. In fact, this is one of
the many statistics that are associated with the quantile process, defined as

Qn(t) =
√
n{F−1

n (t) − F−1(t)}, 0 < t < 1, (14.53)

where F−1 is defined by (7.4). The quantile process is a stochastic process. It
is known (e.g., Bickel 1966) that if F has continuous and positive density f ,
then Qn converges weakly to B/(f ◦F−1) in the space of probability measures
on D[a, b], where B is the Brownian bridge on [0, 1] (see Section 10.5), and
f ◦ F−1(t) = f{F−1(t)}, t ∈ (0, 1). Here, 0 < a ≤ b < 1, D[a, b] denotes the
space of functions on [a, b] that are right-continuous and possess left-limit at
each point, and the weak convergence is defined the same way as in Section
7.3. To bootstrap the quantile process, we consider

Q∗n(t) =
√
n{(F ∗n)−1(t) − F−1

n (t)}, 0 < t < 1.

Given this result, the validity of bootstrapping the quantile process is justified
by the following theorem.

Theorem 14.8. If F has continuous and positive density f , then for al-
most all sample sequences X1, X2, . . ., Q

∗
n converges weakly, given X1, . . . , Xn,

to B/(f ◦ F−1) in the space of probability measures on D[a, b].

The proof amounts to writing Q∗n =
√
n{F ◦(F ∗n)−1−F ◦F−1

n }/Rn, where

Rn =
{F ◦ (F ∗n)−1 − F ◦ F−1

n }
(F ∗n)−1 − F−1

n

,

and then arguing that
√
n{F ◦ (F ∗n)−1 −F ◦F−1

n } converges weakly to B and
‖Rn − f ◦ F−1‖ → 0 (make sense?) in probability, where ‖ · ‖ denotes the
supremum norm in D[a, b] [similar to (7.7)]. See Bickel and Freedman (1981,
pp. 1206–1207) for details. A consequence of Theorem 14.8 is the following
result on bootstrapping the median. Note that the median is ν = F−1(1/2).
Let νn = F−1

n (1/2), the sample median (the definition is slightly different from
that, e.g., in Example 14.2, when n is even, but is asymptotically equivalent).
It is well known that

√
n(νn − ν) converges weakly to N(0, σ2), where σ2 =

{4f2(ν)}−1, provided that f(ν) > 0 (see Exercise 6.16 for a special case, but
it can be proved more generally; see Exercise 14.16). Let ν∗n = (F ∗n)−1(1/2)
denote the median of F ∗n .

Corollary 14.1. Suppose that F has a unique median. Then, under
the condition of Theorem 14.8, we have for almost all sample sequences
X1, X2, . . ., that

√
n(ν∗n − νn) converges weakly to N(0, σ2) for the same σ2.
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In fact, for the conclusion of Corollary 14.1 to hold, all one needs is that
ν is unique and F has a positive derivative at ν.

So far, some special cases have been looked at and the bootstrap method
is valid in those cases. In general, one needs to know when the bootstrap
works and also if there are situations where it does not work. Regarding the
first question, Bickel and Freedman (1981) provided the following general
guidelines. Roughly speaking, the bootstrap works if the following hold:

(i) For all G in a “neighborhood” of F , into which Fn falls eventually
with probability 1, the distribution of R(X1, . . . , Xn, G) converges weakly to
a distribution LG.

(ii) The map G �→ LG is continuous.
Regarding the second question, it is known that there are situations where
the bootstrap fails. A well-known counterexample, also given by Bickel and
Freedman (1981), is the following.

Example 14.9. Let F be the Uniform(0, θ] distribution, where θ > 0 is
unknown. The usual pivot for θ is ξn = n{θ −X(n)}/θ, which has a limiting
Exponential(1) distribution (Exercise 14.17). It is natural to bootstrap ξn by
ξ∗n = n{X(n)−X∗(n)}/X(n), where X∗(1) ≤ · · · ≤ X∗(n) are the order statistics of

X∗1 , . . . , X
∗
n. Note that θ is the upper end of the support of F [i.e., F (θ) = 1

and F (x) < 1, ∀x < θ] and X(n) is the upper end of the support of Fn

[Fn{X(n)} = 1 and Fn(x) < 1, ∀x < X(n)]. Therefore, the distribution of
ξ∗n is the bootstrap distribution of ξn according to the principle of bootstrap
described at the beginning of this section. However, the bootstrap distribution
does not converge weakly. In fact, it can be shown (see below) that

lim supn{X(n) −X(n−1)} = ∞ a.s. (14.54)

[note that this implies lim supn{X(n) − X(n−k+1)} = ∞ for every k ≥ 2;
compare (14.55) below] and, for any fixed k ≥ 1,

lim inf n{X(n) −X(n−k+1)} = 0 a.s. (14.55)

Now, suppose that, with probability 1, the conditional distribution of ξ∗n given
X1, . . . , Xn converges weakly to a distribution, say G. Then for any continuity
point x > 0 of G (see Section 2.4), we have

lim
n→∞

P(ξ∗n > x|X1, . . . , Xn) = 1 −G(x).

Now, see what happens. On the one hand, by (14.54), we have with probability
1 that there is a subsequence of n so that Δn = n{X(n) −X(n−1)}/X(n) > x
holds for the subsequence (Exercise 14.17). It follows that, with probability 1
along the subsequence,

1 −G(x) = limP(ξ∗n > x|X1, . . . , Xn)

≥ limP(ξ∗n > Δn|X1, . . . , Xn)
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= limP{X∗(n) < X(n−1)|X1, . . . , Xn}

= lim

(
1 − 2

n

)n

= e−2 > 0 (14.56)

(Exercise 14.17). On the other hand, by (14.55), for any fixed k ≥ 1 we have,
with probability 1, that there is a subsequence of n so that δn = n{X(n) −
X(n−k+1)}/X(n) < x holds for the subsequence (Exercise 14.17). It follows
that, with probability 1 along the subsequence,

1 −G(x) = lim P(ξ∗n > x|X1, . . . , Xn)

≤ lim P(ξ∗n > δn|X1, . . . , Xn)

= lim P{X∗(n) < X(n−k+1)|X1, . . . , Xn}

= lim

(
1 − k

n

)n

= e−k (14.57)

(Exercise 14.17). Because (14.57) holds for every k ≥ 1, it contradicts (14.56)
(when k > 2). Thus, the conditional distribution of ξ∗n must not converge.

It remains to show (14.54) and (14.55). We give an outline of the proof
below and leave the details to another exercise (Exercise 14.18). The idea is
to use the Borel–Cantelli lemma—namely, part (ii) of Lemma 2.5. However,
this requires pairwise independent of the events, whereas the sequence ηn =
n{X(n) −X(n−k+1)}, n ≥ 1, are not pairwise independent. Therefore, the first
thing we do is to construct a sequence of independent random variables that
is asymptotically identical to a subsequence of ηn (this kind of technique is
sometimes called coupling). Let an, n ≥ 0, be a sequence of positive integers
that is strictly increasing and satisfies

∞∑
n=nk

an−1

an − k
< ∞ (14.58)

for every k ≥ 0, where nk is the first integer n such that an > k. Why chose an

this way? Well, see below. Let ζn,k be the kth largest value of Xi, an−1 < i ≤
an (so ζn,1 = maxan−1<i≤an Xi). Let An,k be the event that X(an−k+1) = Xi

for some 1 ≤ i ≤ an−1. Then we have for any k ≥ 1,

P(An,k) ≤
an−1∑
i=1

P{X(an−k+1) = Xi}

=
an−1

an − k + 1
.

For fixed k ≥ 2, write An = An,1 ∪An,k, n ≥ nk. Then we have, by (14.58),
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∞∑
n=nk

P(An) ≤
∞∑

n=nk

(
an−1

an
+

an−1

an − k + 1

)
<∞.

Therefore, by the Borel–Cantelli lemma [part (i) of Lemma 2.5; note that
this part does not require pairwise independence], we have P(An i.o.) = 0.
It follows that, with probability 1, we have Ac

n for large n, which implies
ηan = an{ζn,1 − ζn,k} ≡ ζn, for large n.

Note that ζn, n ≥ 1, are independent. Thus, to use part (ii) of the Borel–
Cantelli lemma, we need to show that for any b > 0,

∞∑
n=1

P(ζn > b) = ∞ and
∞∑

n=1

P(ζn < b) = ∞, (14.59)

and this should complete the proof. The divergences of the two series in (14.59)
follow from an evaluation of the summands; namely, the distribution of ζn is
the same as that of an(Xn,an−an−1 −Xn−k+1,an−an−1), where Xr,n is the rth-
order statistic of X1, . . . , Xn. It can be shown that, for any r < s, the distri-
bution of n(Xs,n−Xr,n) weakly converges to the Gamma(s−r, 1) distribution
as n → ∞ and (14.58) implies an − an−1 ∼ an [i.e., (an − an−1)/an → 1].
Therefore, the summand probabilites in (14.59) are bounded away from zero
for large n; hence, the corresponding series must diverge.

The failure of the bootstrap in this particular example is due to the lack
of uniformity in the convergence of Fn to F . In other words, the conditions (i)
and (ii) below Corollary 14.1 do not hold in this case. Efron and Tibshirani
(1993, Section 7.4) discussed the same example, where the authors used a
simulation to illustrate what happens. In the simulation, the authors generated
50 Uniform[0, 1] random variables,X1, . . . , X50. Then 2000 bootstrap samples,
each of size 50 and drawn with replacement from X1, . . . , X50, were generated.
For each bootstrap sample, the estimator θ̂∗ = X∗(n) was computed, and the

histogram based on the 2000 θ̂∗’s was made. It was evident that the histogram
was a poor approximation to the true distribution of θ̂ (Exercise 14.19). For

example, the (conditional) probability that θ̂∗ = θ̂ is 1−(1−1/n)n → 1−e−1 ≈
0.632 (why?). However, we know for sure that the probability that θ̂ equals
any given value is zero.

So far, the discussions on the bootstrap have been limited to the classical
situation (i.e., the case of i.i.d. observations). Although this is the case in which
the bootstrap was originally proposed, extensive studies have been carried out
in efforts to extend the method beyond the i.i.d. case. In the next two sections
we consider some of these extensions.

14.5 Bootstrapping time series

As we have seen, the i.i.d. assumption can be relaxed in many ways. A case
that is slightly different from i.i.d. is independent but not identically dis-
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tributed observations. This includes the important special case of regression
(see Section 6.7). Efron (1979) proposed to bootstrap the residuals under a
regression model. Note that although the observations Yi in (6.79) are not
i.i.d., the errors εi are. On the other hand, the residuals may be viewed as
estimates of the errors. Thus, by analogy with the i.i.d. case, it seems rational
to bootstrap the residuals. In other words, one approximates the distribu-
tion of the errors by the empirical distribution of the residuals, and this was
Efron’s proposal. His idea was extended by Freedman (1984) to stationary
linear models. Consider a dynamic model that can be expressed as

Yt = YtA+ Yt−1B +XtC + εt, (14.60)

t = 0,±1,±2 . . ., where Xt and Yt are 1× a and 1× b vectors of observations,
respectively, A, B, and C are coefficient matrices, and εt is a 1 × b vector
of errors satisfying E(εt) = 0. It is assumed that (Xt, εt) are i.i.d. for t =
0,±1,±2, . . .with finite fourth moments. Note that we can write, from (14.60),
Yt(I −A) = Yt−1B +XtC + εt. Thus, if I −A is invertible, we have

Yt = Yt−1B(I − A)−1 + (XtC + εt)(I −A)−1

= Yt−2{B(I −A)−1}2 + (Xt−1C + εt−1)(I −A)−1{B(I −A)−1}
+ (XtC + εt)(I −A)−1

· · ·

= Yt−k{B(I −A)−1}k +

k−1∑
s=0

ξt,s, (14.61)

where ξt,s = (Xt−sC+εt−s)(I−A)−1{B(I−A)−1}s. If we let k go to infinity on
the right side of (14.61), assuming that ‖B(I−A)−1‖ < 1, where ‖·‖ represents
the spectral norm defined above (5.11), we have the series expansion

Yt =

∞∑
s=0

ξt,s, (14.62)

which holds, say, almost surely. This implies that Yt, t = 0,±1,±2, . . ., is
strictly stationary (see Section 9.1). The matrices A, B, and C can be esti-
mated by the LS method (see Section 6.7). For example, let yt be the first
component of Yt and et the first component of εt. Then the first-component
equation of (14.60) can be written as yt = Utβ + et, where Ut is a vector that
involves Yt, Yt−1, and Xt and β is the vector that combines the first columns
of A,B, and C. Let β̂ be the LS estimator of β. Then the residuals for fitting
the first-component equation are êt = yt − Utβ̂. We then combine the resid-
uals for fitting the equations of different components of (14.60) and denote
the combined residual vector by ε̂t. Now, suppose that (Yt, Xt) is observed
for t = 0, . . . , n. Let F̂ be the empirical distribution of (Xt, ε̂t), t = 1, . . . , n—
that is, a multivariate probability distribution that puts mass 1/n on each
point (Xt, ε̂t). Let (X∗s , ε

∗
s) be independent with the common distribution F̂
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for s = 0,±1,±2, . . . The bootstrap samples Y ∗t are then generated in the
same way as (14.62); that is,

Y ∗t =
∞∑

s=0

ξ∗t,s, (14.63)

where ξ∗t,s is ξt,s with X and ε replaced by X∗ and ε∗, respectively (and
everything else is unchanged).

A nice feature of the bootstrap is that the extension of the method to
various non-i.i.d. situations is often intuitively simple (although this is not
always the case) as long as one sticks with a few basic principles. The most
important of those is the plug-in principle that was introduced in the previous
section, although not given the name; namely, the distribution of R(X,F ) is
approximated by that of R(X∗, F̂ ), where X is a sample from F , F̂ is an
estimator of F , and X∗ is a sample from F̂ . Here, X is a vector of observations
that do not have to be i.i.d. and F is the joint distribution (Exercise 14.20).
As we will see, one can propose and develop variations of the plug-in principle
according to the problem of interest.

After all, the extensions do need to be justified. Freedman (1984) listed
two kinds evidence that are needed to show that the (extension of) bootstrap
“works”: (i) A showing that the bootstrap gives the right answers with large
samples, so it is at least as sound as the conventional asymptotics; and (ii) a
showing that in finite samples, the bootstrap actually outperforms the con-
ventional asymptotics. For example, Freedman (1984) provided evidence for
(i). Also, see the previous section, where the bootstrap was justified asymptot-
ically in several cases. On the other hand, in many cases, a bootstrap method
is used when there is no alternative method that could be used, not even by
the asymptotics. As a result, one does not know the answer provided by the
asymptotic theory, conventional or otherwise. However, a combination of (i)
and (ii) may allow us to study large-sample behavior of the bootstrap through
finite samples. We add this later approach as (iii) A showing of improved finite
sample performance of the bootstrap as the sample size increases via simu-
lation studies. This latest evidence that bootstrap works is relatively easy to
get for practitioners and researchers, especially those who are not sophisticat-
edly equipped with the large-sample theory. We demonstrate this in various
occasions in the sequel.

In a way, Freedman’s method may be viewed as model-based or parametric
bootstrap. The idea is to first estimate the unknown parameters under the
assumed model, which leads to an estimate of the underlying distribution,
from which the bootstrap samples will be drawn. Extension of this idea to
other parametric time series models, such as ARMA models (see Section 9.4),
is fairly straightforward. However, the scope of such parametric models is
rather limited—a time series in real life may not satisfy, for example, an
ARMA model. In such a case, a nonparametric bootstrap method—that is,
one that does not rely on a specific parametric model assumption—is needed.
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There have been two major approaches to bootstrapping time series non-
parametrically. The first is based on an idea of approximating a (nonparamet-
ric) time series by a sequence of parametric time series. This kind of meth-
ods have been proposed in the statistical literature. In particular, Grenander
(1981) called it the method of sieves. Bühlmann (1997) used the latter method
in bootstrapping a time series. It is known that many stationary time series
can be represented, or approximated, by the so-called AR(∞) process (e.g.,
Bickel and Bühlmann 1997). Here, an AR(∞) process is defined as a station-
ary process Xt, t ∈ Z = {0,±1,±2, . . .}, satisfying

∞∑
j=0

φj(Xt−j − μX) = εt, t ∈ Z, (14.64)

where μX = E(Xt), the εt’s are uncorrelated with mean 0, and the φj ’s satisfy

φ0 = 1 and
∑∞

j=0 φ
2
j < ∞. If we write X̃t = Xt − μX , then the left side of

(14.64) may be viewed as the left side of (9.1), with Xt replaced by X̃t and
bj = −φj , 1 ≤ j ≤ p, as p → ∞. Thus, for example, even if the time series is
not ARMA (or we do not know if it is ARMA), we may still approximate it
with an AR(p) with perhaps a large p. This naturally leads to the following
strategy, called sieve bootstrap. Given a sample X1, . . . , Xn of the time series,
first fit an AR(p) model, where p is supposed to increase with n (at a suitable
rate; see below). For example, the AR model may be fitted by solving the
Yule–Walker equation (9.33). This leads to estimates of the AR coefficients,

say, φ̂1, . . . , φ̂p. We then compute the residuals of the fit,

ε̂t =

p∑
j=0

φ̂j(Xt−j − X̄), t = p+ 1, . . . , n,

where φ̂0 = 1 and X̄ is the sample mean. We then centralize the residuals by

ε̃t = ε̂t − 1

n− p

n∑
t=p+1

ε̂t.

Denote the empirical cdf of the centralized residuals by

F̂ (x) =
1

n− p

n∑
t=p+1

1(ε̃t≤x).

Then we resample ε∗t , t ∈ Z, independently from F̂ and define the boot-
strapped time series, X∗t , t ∈ Z, by the AR model

p∑
j=0

φ̂j(X
∗
t−j − X̄) = ε∗t , t ∈ Z.
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Here, again, the plug-in principle is in play, although it might be (much)
easier to view it as a variation of Efron’s plug-in principle (Exercise 14.22).
According to (14.64), the process Xt, t ∈ Z is a function of ε = (εt)t∈Z ,
and the parameters μX and φj , j = 0, 1, . . .. For example, if the function
Φ(x) =

∑∞
j=0 φjz

j of a complex variable z is nonzero for |z| ≤ 1, then Xt

can be expressed as Xt = μX +
∑∞

j=0 ψjεt−j, where the ψj ’s depend on the
φj ’s with ψ0 = 1 (e.g., Anderson 1971; also see Section 4.4.3). Let θ denote
the vector of all of the parameters and let G be the (joint) distribution of ε.
Then we have (Xt, t ∈ Z) = R(ε, θ), where ε ∼ G and R is the functional
corresponding to (14.64). The plug-in principle here is to approximate the

distribution of R(ε, θ) by that of R(ε∗, θ̂), where ε∗ ∼ Ĝ, an estimator of

G, and θ̂ is an estimator of θ (R is the same). Here, Ĝ and θ̂ are chosen,
respectively, as the empirical distribution of the residuals and the vector of
μ̂X = X̄ and, say, the Yule–Walker estimators of the φ’s. Another difference
between the sieve bootstrap and Efron’s bootstrap is that the sieve bootstrap
samples X∗t , t ∈ Z, are not a subset of the original data X1, . . . , Xn (this is
also true for Freedman’s model-based bootstrap).

Now, the sieve bootstrap has been introduced, so far as a proposal. It has
the lead-off for being intuitive—and this is important. Although there are
seemingly exceptions, good statistical methods are almost always intuitive.
The next step is to justify the method rigorously. This brings in the second
stage of the development. The justification was given by Bühlmann (1997)
from two aspects that provided the evidences of (i) and (iii) following Freed-
man’s remark (see above). For evidence of (i), we consider the simple case of
bootstrapping the mean. First, note that in order to approximate the time
series by an AR(p) process, the order p needs to increase with n. This makes
sense if the time series is an AR(∞) process or can be approximated by an
AR(∞) process. The question is how fast should p increase with n? Bühlmann
(1997) required that

p = o

({
n

logn

}1/4
)
. (14.65)

Under (14.65) and some regularity conditions, he showed that the sieve boot-
strap has the following asymptotic properties. Let P∗ denote the conditional
probability given X1, . . . , Xn, and var∗ denote the variance under P∗. Then,
as n → ∞, we have

var∗
(

1√
n

n∑
t=1

X∗t

)
− var

(
1√
n

n∑
t=1

Xt

)
= oP(1). (14.66)

Note that (14.66) can be written as n var∗(X̄∗) − n var(X̄) = oP(1). Recall
that n var(X̄) corresponds to the asymptotic variance of X̄ . Thus, (14.66)
may be interpreted as that the asymptotic bootstrap variance is the same as
the asymptotic variance. Furthermore, suppose that
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1√
n

n∑
t=1

(Xt − μX)
d−→ N(0, τ2), (14.67)

where τ2 =
∑∞

k=−∞ r(k) with r(k) = cov(X0, Xk); then we have

sup
x∈R

∣∣∣∣∣P∗
{

1√
n

n∑
t=1

(X∗t − X̄) ≤ x

}
− P

{
1√
n

n∑
t=1

(Xt − μX) ≤ x

}∣∣∣∣∣
= oP(1) (14.68)

as n → ∞ (Exercise 14.23).
For evidence of (iii), Bühlmann (1997) carried out a simulation study.

The goal is to study finite sample performance of the bootstrap. Note that
although, in theory, (14.65) is what we need, there are still (infinitely) many
choices of p that satisfy this assumption. In order to choose a p for practical
use, Bühlmann proposed to use the AIC (see Section 9.3). An interesting
question is: Does the p chosen by the AIC satisfy (14.65) in some sense?
Suppose that the coefficients φj in (14.64) satisfy φj ∼ c1j

−a as j → ∞, where
c1 and a are constants with a > 1. Shibata (1980) showed that the p chosen by

the AIC satisfies p ∼ c2n
1/2a with probability tending to 1 (i.e., p/c2n

1/2a P−→
1 as n → ∞) for some constant c2. Comparing this result with (14.65), we
see that the latter holds as long as a > 2. However, it should be noted that
the p selected by the AIC is a random variable depending on the observed
data, whereas in (14.65), p is supposed to be nonrandom. In Section 9.3 we
discussed the consistency of the AIC, BIC, and other information criteria for
selecting the order p for AR. The story was that the BIC is consistent in the
sense that the probability of selecting the true order of the AR process goes
to 1 as n → ∞, whereas the AIC is inconsistent in this regard. However, this
result does not apply to the current case. The reason is that the underlying
process here is not a finite-order AR (or at least we do not know if it is). In
other words, the true AR order p is ∞. In this case, it may be argued that the
AIC is consistent and the BIC is not. This is why the AIC is prefered here.
So, given the data, we first use the AIC to select an appropriate order p and
then use the sieve bootstrap with the selected p as the order of the AR to
generate bootstrap samples.

The following models were considered in the simulation study. The first is
an AR(48) process, Xt =

∑48
j=1 φjXt−j + εt, where φj = (−1)j+17.5/(j + 1)3

and the εt’s are i.i.d. ∼ N(0, 1). The second is an ARMA(1, 1) process, Xt =
0.8Xt−1 + εt − 0.5εt−1, where the εt’s are i.i.d. ∼ 0.95N(0, 1)+ 0.05N(0, 100).
The third is the same as the second except that the coefficient 0.8 is replaced
by −0.8. The last one is a self-exciting threshold autoregressive (SETAR;
Moeanaddin and Tong 1990), SETAR(2; 1, 1), with Xt = 1.5− 0.9Xt−1 + εt if
Xt−1 ≤ 0, and Xt = −0.4− 0.6Xt−1 + εt if Xt−1 > 0, where the εt’s are i.i.d.
∼ N(0.4). These four models are denoted by M1, M2, M3, and M4, respec-
tively. The statistic Tn = sample median of X1, . . . , Xn is considered, and the
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normalized variance of Tn, σ2
n = n var(Tn) is of interest. The performance of

the bootstrap variance was studied under two different sample sizes, n = 64
and n = 512. The results are presented in Table 14.1. Reported are the true
values of σ2

n, computed based on 1000 simulations, the mean (E), and stan-
dard derivation (sd) of (σ2

n)∗ = n var∗(T ∗n) over 100 simulation runs, where
T ∗n is the sample median of X∗1 , . . . , X

∗
n, the number of bootstrap replicates

(that were used to compute var∗) is 300, and the relative mean squared error
(RMSE), defined as the MSE of (σ2

n)∗ over the simulations [i.e., the average
of {(σ2

n)∗ − σ2
n}2 over the 100 simulation runs] divided by σ4

n. An estimated
standard error of the RMSE is given in parentheses. It can be seen that the
performance of (σ2

n)∗, the bootstrap estimator of σ2
n, improves in virtually all

cases and aspects as n increases. The only exception might be E{(σ2
n)∗} under

M4, which does not seem to get closer to σ2
n as n increases. However, since the

true value of σ2
n also changes with n, a more reliable measure of performance

is the RESE (and the corresponding standard error), which improves in all of
the cases as the sample size increases.

Table 14.1. Sieve bootstrap variance estimation

σ2

n E{(σ2

n)∗} sd{(σ2

n)∗} RMSE

n = 64
M1 16.4 13.1 8.6 0.31 (0.061)
M2 14.1 8.1 8.2 0.52 (0.063)
M3 3.1 5.0 5.2 3.09 (0.891)
M4 8.9 7.8 2.0 0.07 (0.008)

n = 512
M1 16.7 16.1 4.3 0.07 (0.009)
M2 14.2 12.5 6.5 0.22 (0.046)
M3 2.6 2.9 0.7 0.08 (0.020)
M4 9.8 8.0 1.1 0.05 (0.004)

Prior to Bühlmann’s proposal of sieve bootstrap, Künsch (1989) intro-
duced another strategy of bootstraping a stationary time series nonparamet-
rically, called the block bootstrap. The idea is to resample “blocks” of successive
observations rather than individual observations. Why blocks? First, the in-
tention was to mimic Efron’s bootstrap, in which the resampled observations
are a subset of the original ones. The question is how to do this. Note that the
successive observations in a time series contain important information about
the dynamics of the series. Such information would be lost if one resamples
the individual observations independently. Thus, the idea of block-sampling
arises naturally. On the other hand, if the blocks are resampled independently,
which is the case here (see below), it raises a concern on whether the blocks
in the real-life series are actually independent, because, otherwise, the re-
sampled blocks cannot mimic the real-life blocks. However, as we have seen
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(throughout this book), the independence assumption may not be as critical
as one might have thought, depending what one wishes to do. For example,
the ergodic theorem (see Section 7.6) assumes no independence, but the result
is very similar to the classical SLLN, which assumes i.i.d. After all, the tar-
get of Künsch’s proposal is stationary processes with short-range dependence.
Roughly speaking, if the process has short-range dependence, then the obser-
vations are approximately independent if they are far apart. Künsch showed
that the idea of blocks works for such processes, at least asymptotically, pro-
vided that the block size increases with the sample size.

Suppose that we observe X1, . . . , XN from a stationary process. For a
given positive integer m, define Yt = (Xt, . . . , Xt−m+1). The empirical m-
dimensional marginal distribution is defined as pN = n−1

∑n
t=1 δ(Yt), where

n = N −m + 1, and δ(y) denotes the point mass at y ∈ Rm. Note that ρN

depends on m, although the latter is suppressed for notation simplicity. Our
interest is the distribution of a statistic that can be expressed as TN = T (pN ),
where T is a real-valued functional on the set of all probability measures
on Rm. In order to bootstrap TN , we select blocks of length l at random.
For simplicity, let n = kl, where k is a positive integer. The bootstrap m-
dimensional marginal distribution is

p∗N =
1

n

k∑
j=1

Ij+l∑
t=Ij+1

δ(Yt), (14.69)

where I1, . . . , Ik are i.i.d. and uniformly distributed over 0, 1, . . . , n− l. Note
that (14.69) is a random (conditional) probability measure on Rm, and it has
the following equivalent expressions (Exercise 14.24):

p∗N =
1

n

n∑
t=1

ftδ(Yt), (14.70)

where ft is the number of j’s such that t− l ≤ Ij ≤ t− 1, and

p∗N =
1

n

n∑
t=1

δ(Y ∗t ), (14.71)

where the k blocks (Y ∗1 , . . . , Y
∗
l ), (Y ∗l+1, . . . , Y

∗
2l), . . . , (Y

∗
n−l+1, . . . , Y

∗
n ) are i.i.d.

with the distribution

pl
Y,n =

1

n− l+ 1

n−l∑
t=0

δ{(Yt+1, . . . , Yt+l)}.

We then form a bootstrap statistic T ∗N = T (p∗N ). Some regularity conditions
are imposed, as follows.

(A1) TN
a.s.−→ T (Fm) as N → ∞, where Fm is the distribution of

(Xm, . . . , X1).
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(A2) The influence function, defined as

IF(y, Fm) = lim
ε↓0

ε−1[T {(1 − ε)Fm + εδ(y)} − T (Fm)]

(ε ↓ 0 means that ε approaches zero from the positive side), exists for all

y ∈ Rm, so that n−1/2
∑n

t=1 IF(Yt, F
m)

d−→ N(0, σ2) as N → ∞, where

σ2 =

∞∑
k=−∞

E{IF(Y0, F
m)IF(Yk, F

m)} (14.72)

(Exercise 14.25).
(A3) The remaining term RN in the linearization

T (pN) = T (Fm) +
1

n

n∑
t=1

IF(Yt, F
m) +RN ,

is of the order oP(n−1/2).
As indicated by (A3), the influence function allows one to linearize the

statistical functional T (pN). The technique is useful, for example, in deriving
the asymptotic distribution of the statistical functional.

To further illustrate the method, we focus below on the special case
of bootstrapping—again, the sample mean. In this case, we have m = 1,
T (F ) =

∫
xF (dx) (with F = F 1) (Exercise 14.26) and IF(x, F ) = x−μ, where

μ = E(Xt). The statistic TN = N−1
∑N

t=1Xt and the bootstrap statistic can

be expressed as T ∗N = k−1
∑k

j=1 Un,j , where the Un,j ’s are i.i.d. uniformly

distributed among the points ui = l−1(Xi+1 + · · · + Xi+l), i = 0, . . . , n − l.
Thus, in particular, we have

E(T ∗N |X1, . . . , XN ) = E(Un,1)

=
1

l(n− l + 1)

n−l∑
i=0

l∑
t=1

Xi+t. (14.73)

Furthermore, the bootstrap variance estimator, σ̂2
B, is defined as the condi-

tional variance of T ∗N ,

var(T ∗N |X1, . . . , XN ) =
var(Un,1)

k

=
1

kl2(n− l + 1)

n−l∑
i=0

[
l∑

t=1

{Xi+t − E(Un,1)}
]2

(14.74)

(Exercise 14.26). Künsch (1989) gave a theoretical justification of the block
bootstrap in this case, under some additional conditions. The first two condi-
tions may be intuitively interpreted as that the conditional first and second
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moments of
√
n(T ∗N − TN ) agree asymptotically with those (unconditional

moments) of
√
n(TN − μ):

(B1)
√
n{E(T ∗N |X1, . . . , XN ) − TN} a.s.−→ 0;

(B2) nσ̂2
B

a.s.−→ σ2, as N → ∞, where σ2 is given in (A2) above.
The third condition is similar to the Lindeberg condition for the CLT for

triangular arrays of independent random variables [see (6.36)]:

(B3) With probability 1, max0≤i≤n−l |
∑l

t=1(Xi+t − μ)| = o(
√
n).

Suppose that (A1), (A2), and (B1)–(B3) hold, then we have

sup
x

|P(T ∗N − TN ≤ x|X1, . . . , XN ) − P(TN − μ ≤ x)| a.s.−→ 0

as N → ∞. Thus, at least in this case, the validity of the block bootstrap is
justified in terms of Freedman’s evidence (i) (see above). A remaining question
is how to verify condition (B3). Künsch (1989) suggests an approach via strong
approximation—namely, by showing that there is a Brownian motion (see
Section 10.5) B(t) such that, with probability 1,∑

s≤t

(Xs − μ) −B(t) = o
(√

t
)
.

With such an approximation, (B3) can be established by using the properties
of Brownian motion, provided that l = O(nα) for some α < 1. More specif-
ically, Künsch showed that the following conditions are sufficient for (B3):
E(|Xt|p) <∞ and l = o(n1/2−1/p) some p > 2.

In addition, Künsch (1989) provided simulation results as Freedman’s type
(ii) evidence that supports the block bootstrap.

Bühlmann (2002) discussed on advantages and disadvantages of the block
bootstrap and sieve bootstrap as they compare to each other. The advantages
of the block bootstrap include that it is the most general method, so far,
in bootstrapping a time series; its implementation of resampling is no more
difficult than Efron’s i.i.d. bootstrap. Note that, unlike the sieve bootstrap,
the resampled data in the block bootstrap is a subset of the original data. In
this regard, the procedure is more similar to Efron’s than the sieve bootstrap.
The disadvantages of the block bootstrap include that the resampled data are
not viewed as a reasonable sample mimicking the data-generating process; it
is not stationary and it exhibits artifacts where resampled blocks are linked
together. The latter implies that the plug-in principle for bootstrapping an
estimator is not appropriate. The advantages of the sieve bootstrap include
that it resamples from a reasonable time series model; the plug-in rule is
employed for defining and computing the bootstrapped estimator; and the
method is easy to implement due to the simplicity of fitting an AR model. In
fact, the sieve bootstrap discussed above is considered the best if the data-
generating process is a linear time series representable as an AR(∞).
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14.6 Bootstrapping mixed models

Mixed effects models (see Chapter 12) is another case of correlated data.
Unlike the time series, it is usually inappropriate to make the assumption
of stationarity for mixed models. Therefore, some of the approaches of the
previous section no longer work. Nevertheless, the model-based or parametric
bootstrap is still a useful strategy, in many cases effectively, for mixed models.

We begin with the problem of the linear mixed model prediction, discussed
in most parts of Chapter 13. More specifically, we are interested in construct-
ing highly accurate prediction intervals for mixed effects of interest. Consider
the linear mixed model

y = Xβ + Zu+ e, (14.75)

where y is an n×1 vector of observations, β is a p×1 vector of unknown param-
eters (the fixed effects), u is an m×1 vector of random effects, and e is an n×1
vector of errors. The matrices X and Z are observed or known; the random
effects u and errors e are assumed to have means 0 and covariance matrices G
and R, respectively; and u and e are uncorrelated. Our problem of interest is
the prediction of a linear mixed effect, expressed as ζ = c′(Xβ+Zu) for some
known constant vector c. Such mixed effects include the small-area means, say,
under a Fay–Herriot model (see Section 13.3) and genetic merits of breeding
animals (e.g., Jiang 2007, Section 2.6). Under the normality assumption—that
is, u ∼ N(0, G), e ∼ N(0, R), and u and e are uncorrelated—the conditional
distribution of ζ given the data y is N(μ̃, σ̃2), where

μ̃ = c′{Xβ + ZGZ′V −1(y −Xβ)}, (14.76)

σ̃2 = c′Z(G−GZ ′V −1ZG)Z ′c, (14.77)

and V = Var(y) = R+ ZGZ ′. Therefore, for any α ∈ (0, 1), we have

P

(∣∣∣∣ζ − μ̃

σ̃

∣∣∣∣ ≤ zα/2

∣∣∣∣ y) = 1 − α,

where zα is the α-critical value of N(0, 1) [i.e., Φ(α) = 1 − α, where Φ is
the cdf of N(0, 1)]. It follows that the probability is 1 − α that the interval
I = [μ̃ − zα/2σ̃, μ̃ + zα/2σ̃] covers ζ (why?). Of course, the latter is not a
practical solution for the prediction interval, because there are unknown pa-
rameters involved. In addition to β, the covariance matrices G and R typically
also depend on some unknown disperson parameters, or variance components.
Suppose that G = G(ψ) and R = R(ψ), where ψ is a q-dimensional vector
of variance components, and θ = (β′, ψ′)′. It is customary to replace θ by an

estimator, θ̂ = (β̂′, ψ̂′)′. However, with the replacement of θ by θ̂, the resulting
(prediction) interval no longer has the coverage probability 1− α.

To illustrate the problem more explicitly, let us consider prediction under
the Fay–Herriot model (see Section 13.3). The model may be thought of equiv-
alently as having two levels. In Level 1, we have, conditional on ζ1, . . . , ζn, that
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y1, . . . , yn are independent such that yi ∼ N(ζi, Di), where Di > 0 are known.
In Level 2, we have ζi = x′iβ + ui, 1 ≤ i ≤ n, where the xi’s are observed vec-
tors of covariates, β is a p×1 vector of unknown regression coefficients, the ui’s
are small-area-specific random effects that are independent and distributed as
N(0, A), and A > 0 is an unknown variance. A prediction interval for ζi based
on the Level 1 model only is given by I1,i = [yi−zα/2

√
Di, yi +zα/2

√
Di]. This

interval has the right coverage probability 1−α but is hardly useful, because
its length is too large due to the high variability of the predictor based on a
single observation yi. Alternatively, one may construct a prediction interval
based on the Level 2 model only. We consider a special case.

Example 14.10. Consider the special case of the Fay–Herriot model with
Di = 1 and x′iβ = β. At Level 2, the ζi’s are i.i.d. with the distribution
N(β,A). If β and A were known, a Level 2 prediction interval that has the
coverage probability 1−α would be I2 = [β−zα/2

√
A, β+zα/2

√
A]. Note that

the interval is not area-specific (i.e., not dependent on i). Bacause β and A are

unknown, we replace them by estimators. The standard estimators are β̂ =
ȳ = n−1

∑n
i=1 yi and Â = max(0, s2−1), where s2 = (n−1)−1

∑n
i=1(yi − ȳ)2.

This leads to the interval Ĩ2 = [β̂−zα/2

√
Â, β̂+zα/2

√
Â], but, again, the cov-

erage probability is no longer 1−α. However, because β̂ and Â are consistent
estimators, the coverage probability is 1 − α + o(1) (Exercise 14.27). We can
do better than this with a simple Level 2 bootstrap: First, draw independent
samples ζ∗1 , . . . , ζ

∗
n from N(β̂, Â); then draw y∗i , i = 1, . . . , n, independently

such that y∗i ∼ N(ζ∗i , 1). Compute β̂∗ and Â∗ the same way as β̂ and Â
except using the y∗i ’s; then determine the cutoff points t1 and t2 such that

P∗
(
β̂∗ − t1

√
Â∗ ≤ ζ∗i ≤ β̂∗ + t2

√
Â∗
)

= 1 − α,

where P∗ denotes the bootstrap probability, evaluated using a large number
of bootstrap replications. Note that, at least approximately, t1 and t2 do not
depend on i (why?). We then define a (Level 2) bootstrap prediction interval as

Î2 = [β̂−t1
√
Â, β̂+t2

√
Â]. It can be shown that Î2 has a coverage probability

of 1 − α+ o(n−1/2). It is an improvement but still not accurate enough.
Intuitively, one should do better by combining both levels of the model. In

fact, Cox (1975) proposed the following empirical Bayes interval for ζi using
information of both levels:

IC
i : (1 − B̂i)yi + B̂ix

′
iβ̂ ± zα/2

√
Di(1 − B̂i), (14.78)

where B̂i and β̂ are (consistent) estimators of Bi = Di/(A + Di) and β,
respectively. It can be seen that the center of the interval (14.78) is a weighted
average of the centers of the Level 1 and Level 2 intervals. If Di is much larger
than A, then 1 − B̂i is expected to be close to zero. In this case, the center
of IC

i is close to the Level 2 center, but the length will be close to zero and,
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in particular, much smaller than that of the Level 1 interval (which is
√
Di).

On the other hand, if A is much larger than Di, then the center of IC
i is

expected to be close to the Level 1 center, and the length is close to
√
Di,

much smaller than that of the Level 2 interval (which would be
√
A if A were

known). Thus, the empirical Bayes interval does seem to have the combined
strength of both levels. It can be shown that, under regularity conditions, the
coverage probability of IC

i is 1 − α+O(n−1). Can one do better than IC
i ? In

the following, we consider a parametric bootstrap procedure, proposed and
studied by Chatterjee et al. (2008), that leads to a prediction interval with
coverage probability 1−α+O(n−3/2), provided that the number of parameters
under model (14.75) is bounded.

Let d = p+q, the total number of fixed parameters under model (14.75). It
is not assumed that d is fixed or bounded; so it may increase with the sample
size n. This is practical in many applications, where the number of fixed
parameters may be comparable to the sample size. See, for example, Section
12.2. According to the discussion below (14.77), the key is to approximate
the distribution of T = (ζ − μ̂)/σ̂, where μ̂ and σ̂ are estimators of μ̃ and σ̃,
respectively, defined by (14.76) and (14.77). For simplicity, assume that X is

of full rank and the estimator β̂ = (X ′X)−1X ′y, which is the ordinary least
squares estimator of β. Consider a bootstrap version of (14.75),

y∗ = Xβ̂ + Zu∗ + e∗, (14.79)

where u∗ ∼ N(0, Ĝ), e∗ ∼ N(0, R̂) with Ĝ = G(ψ̂) and R̂ = R(ψ̂), and u∗

and e∗ are independent. Here, ψ̂ may be chosen as the REML estimator (see

Section 12.2). From (14.79) we generate y∗ and then obtain β̂∗ and ψ̂∗ the

same way as β̂ and ψ̂, except using y∗. Next, obtain μ̂∗ and σ̂∗ using β̂∗

and ψ̂∗, (14.76) and (14.77). Define ζ∗ = c′(Xβ̂ + Zu∗). The distribution of
T ∗ = (ζ∗−μ̂∗)/σ̂∗ conditional on y is the parametric bootstrap approximation
to the distribution of T . Under some regularity conditions, Chatterjee et al.
(2008) showed that

sup
x

|P∗(T ∗ ≤ x) − P(T ≤ x)| = OP(d3n−3/2), (14.80)

where P∗(T ∗ ≤ x) = P(T ∗ ≤ x|y) ≡ F ∗(x). As a consequence, if d2/n → 0
and for any α ∈ (0, 1), let q1 and q2 be the real numbers such that

F ∗(q2) − F ∗(q1) = 1 − α,

then we have (Exercise 14.28)

P(μ̂+ q1σ̂ ≤ ζ ≤ μ̂+ q2σ̂) = 1 − α+O(d3n−3/2). (14.81)

Going back to the special case of the Fay–Herriot model, consider the
problem of constructing prediction intervals for the small-area means ζi. Sup-
pose that the maximum of the diagonal elements of PX = X(X ′X)−1X ′ is
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O(p/n) (make sense?) and the Di’s are bounded from above as well as away
from zero. Then, under some regularity conditions on Â, we have

P

{
ζi ∈

[
ζ̂i + qi1

√
Di(1 − B̂i), ζ̂i + qi2

√
Di(1 − B̂i)

]}
= 1 − α+O(p3n−3/2), (14.82)

where ζ̂i = (1 − B̂i)yi + B̂ix
′
iβ̂, B̂i = Di/(Â+Di), and qi1 and qi2 satisfy

P∗
{
ζ∗i ∈

[
ζ̂∗i + qi1

√
Di(1 − B̂∗i ), ζ̂∗i + qi2

√
Di(1 − B̂∗i )

]}
= 1 − α+OP(p3n−3/2) (14.83)

with ζ̂∗i = (1 − B̂∗i )y∗i + B̂∗i x
′
iβ̂
∗ and B̂∗i = Di/(Â

∗ + Di). For example, the
term OP(p3n−3/2) in (14.83) may be taken as 0 in order to determine qi1

and qi2. Thus, in particular, if p3/
√
n → 0, the prediction interval in (14.82)

is asymptotically more accurate than IC
i of (14.78). Regarding finite-sample

performance, Chatterjee et al. (2008) carried out a simulation study under the
special case with m = 15 and x′iβ = 0. The 15 small areas are divided into 5
groups with 3 areas in each group. The Di’s are the same within each group,
but vary between groups according to the one of the following patterns: (a)
0.2, 0.4, 0.5, 0.6, 4.0 or (b) 0.4, 0.8, 1.0, 1.2, 8.0. Pattern (a) was considered
by Datta et al. (2005; see Section 13.3). Pattern (b) is simply pattern (a)
multiplied by 2. The true value of A is 1 for pattern (a), and A = 2 for pattern
(b). Note that the choice of qi1 and qi2 that satisfy (14.83) is not unique. Two
most commonly used choices are (1) equal-tail, in which qi1 and qi2 are chosen
such that the tail probabilities on both sides are α/2 and (2) shortest-length,
in which qi1 and qi2 are chosen to minimize the length of the prediction interval
(while maintaining the coverage probability 1−α). The parametric bootstrap
(PB) prediction intervals corresponding to (1) and (2) are denoted by PB-1
and PB-2, respectively. The number of bootstrap replications used to evaluate
(14.83) is 1000. In the PB procedure, the unknown variance A is estimated
by the Fay–Herriot method [F-H; see Section 13.3, in particular, (13.33)], and
β is estimated by the EBLUE, given below (13.31) with A replaced by its
F-H estimator. The PB intervals are compared with three other competitors.
The first is the Cox empirical Bayes interval (Cox) (14.78), with the Prasad–
Rao (P-R) estimator of A (13.32). The second (PR) and third (FH) are both

in the form of EBLUP ± 1.96
√

M̂SPE. In the second case, M̂SPE is the
Prasad–Rao MSPE estimator (13.45) with the P-R estimator of A; in the

third case, M̂SPE is the MSPE estimator proposed by Datta et al. (2005) [i.e.,
(13.47)] with the F-H estimator of A. The results, based on 10, 000 simulation
runs and reported by Chatterjee et al. (2008) in their Table 1 and Table
2, are summarized in Table 14.2, where A1–A5 correspond to the five cases
of pattern (a) and B1–B5 correspond to those of pattern (b). The numbers
in the main body of the table are empirical coverage probabilities, in terms
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of percentages, and lengths of the prediction intervals (in parentheses). The
nominal coverage probability is 0.95. It is seen that, with the exception of one
case, the PB methods outperform their competitors (the way to look at the
table is to first consider coverage probabilities; if the latter are similar, then
compare the corresponding lengths). The differences are more significant for
pattern (b), where all of the competing methods have relatively poor coverage
probabilities, whereas the PB intervals appear to be very accurate. These
results are consistent with the theoretical findings discussed above.

Table 14.2. Coverage probabilities and lengths of prediction intervals

Pattern Cox PR FH PB-1 PB-2

A1 83.1 (3.12) 92.4 (3.82) 90.4 (3.57) 96.1 (4.50) 95.7 (4.42)
A2 85.4 (2.14) 98.0 (3.19) 93.7 (2.50) 96.2 (2.83) 95.9 (2.79)
A3 85.8 (2.02) 98.0 (3.08) 93.9 (2.36) 96.0 (2.65) 95.6 (2.61)
A4 86.1 (1.89) 98.2 (2.93) 94.3 (2.19) 96.1 (2.43) 95.7 (2.39)
A5 89.7 (1.12) 97.3 (1.87) 95.2 (1.23) 95.7 (1.28) 95.3 (1.26)

B1 85.5 (4.87) 89.3 (5.35) 89.5 (5.18) 95.7 (6.55) 95.4 (6.47)
B2 83.6 (2.68) 87.3 (2.93) 86.0 (2.82) 95.2 (3.90) 94.9 (3.75)
B3 83.4 (2.49) 86.8 (2.71) 85.7 (2.60) 95.2 (3.53) 94.9 (3.49)
B4 82.9 (2.27) 86.2 (2.46) 85.0 (2.36) 95.0 (3.22) 94.5 (3.18)
B5 83.0 (1.21) 84.8 (1.29) 84.0 (1.23) 94.9 (1.72) 94.6 (1.70)

Our next example of bootstrapping mixed models involves the fence
method for mixed model selection, discussed earlier in Section 12.5. Recall
that the fence is built via the inequality

dM ≤ c1ŝ.d.(dM ), (14.84)

where dM = Q̂(M)−Q̂(Mf) and Mf denotes the full model. An adaptive fence
procedure is described near the end of Section 12.5, which involves bootstrap
(in order to evaluate p∗). The bootstrap is typically done parametrically in a
similar way as Chatterjee et al. (2008). Jiang et al. (2009) proposed a simpli-
fied version of the adaptive fence. The motivation is that, in most cases, the

calculation of Q̂(M) is fairly straightforward, but the evaluation of ŝ.d.(dM )
can be quite challenging. Sometimes, even if an expression can be obtained

for ŝ.d.(dM ), its accuracy as an estimate of the standard deviation cannot be
guaranteed in a finite-sample situation. In the simplified version, the estimator

ŝ.d.(dM ) is absorbed into c1, which is then chosen adaptively. In other words,
one considers the fence inequality (12.55), where c is chosen adaptively in the
same way as described near the end of Section 12.5. Under suitable regularity
conditions, the authors showed consistency of the simplified adaptive fence,
as in Jiang et al. (2008) for the adaptive fence. For the most part, the result
states the following: (i) There is a c∗ that is at least a local maximum of p∗

and an approximate global maximum in the sense that the p∗ at c∗ goes to



14.6 Bootstrapping mixed models 513

1 in probability and (ii) the probability that M∗
0 = Mopt, where M∗

0 is the
model selected by the fence (12.55) with c = c∗ and Mopt is the optimal model
[see (12.65)], goes to 1 as both the sample size and the number of bootstrap
replications increase.

We demonstrate the consistency empirically through a simulation study.
Jiang et al. (2009) used a simulation design that mimic the well-known Iowa
crops data (Battese et al. 1988). The original data were obtained from 12 Iowa,
USA, counties in the 1978 June Enumerative Survey of the U.S. Department
of Agriculture as well as from land observatory satellites on crop areas involv-
ing corn and soybeans. The objective was to predict mean hectares of corn
and soybeans per segment for the 12 counties using the satellite information.
Battese et al. (1988) proposed the following nested error regression model:

yij = x′ijβ + vi + eij , i = 1, . . . ,m, j = 1, . . . , ni, (14.85)

where i represents county and j represents the segment within the county;
yij is the number of hectares of corn (or soybeans), vi is a small-area-specific
random effect, and eij is the sampling error. It is assumed that the random
effects are independent and distributed as N(0, σ2

v), the sampling errors are
independent and distributed asN(0, σ2

e), and the random effects and sampling
errors are uncorrelated. For the Iowa crops data, m = 12 and the ni’s ranged
from 1 to 6. Battese et al. (1988) used x′ijβ = β0 + β1xij1 + β2xij2, where
where xij1 and xij2 are the number of pixels classified as corn and soybeans,
respectively, according to the satellite data. The authors did discuss, however,
various model selection problems associated with the nested error regression,
such as whether or not to include quadratic terms in the model. The latter
had motivated a model selection problem described below.

In the simulation study, the number of clusters,m, is either 10 or 15, setting
up a situation of increasing sample size. Note that the ni’s are typically small
and therefore not expected to increase. Here, the ni’s are generated from a
Poisson(3) distribution and fixed throughout the simulations. The random
effects, vi, and errors eij , are both generated independently from the N(0, 1)
distribution. The components of the covariates, xij , are to be selected from
xijk , k = 0, 1, . . . , 5, where xij0 = 1; xij1 and xij2 are generated independently
from N(0, 1) and then fixed throughout; xij3 = x2

ij1, xij4 = x2
ij2, and xij5 =

xij1xij2. The simulated data are generated under two models:
Model I. The model that involves the linear terms only; that is, xkij ,

k = 0, 1, 2, with all of the regression coefficients equal to 1;
Model II. The model that involves both the linear and the quadratic terms;

that is, xkij , k = 0, . . . , 5, with all of the regression coefficients equal to 1.
The measure Q(M) is chosen as the negative log-likelihood function. The
number of bootstrap replications is 100. Results based on 100 simulation runs
are reported in Table 14.3, which shows empirical probabilities (%) of selection
of the optimal model (i.e., the model from which the data is generated) for the
simplified adaptive fence. The results show that even in these cases of fairly
small sample size, the performance of the simplified adaptive fence is quite
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satisfactory. Note the improvement of the results when m increases, which is
in line with the consistency result.

Table 14.3. Simplified adaptive fence: simulation results

Optimal Model # of Clusters, m Empirical Probability (in %)

Model I 10 82
Model I 15 99
Model II 10 98
Model II 15 100

So far, we have been talking about the parametric bootstrap. A question
of interest is how to bootstrap nonparametrically in mixed model situations.
It seems obvious that Efron’s i.i.d. bootstrap cannot be applied directly to the
data, neither do the strategies such as sieve or block bootstraps, discussed in
the previous section, which require stationarity. In fact, under a mixed model,
linear or generalized linear, the vector y of all of the observations is viewed as a
single n-dimensional observation and there is no other replication or stationary
copy of this observation (in other words, one has an i.i.d. sample of size 1).
On the other hand, there are some i.i.d. random variables “inside” the model,
at least for most mixed models that are practically used. For example, in
most cases, the random effects are assumed to be i.i.d. However, one cannot
bootstrap the random effects directly, because they are not observed—and
this is a major difference from the i.i.d. situation. Hall and Maiti (2006) had
a clever idea on how to bootstrap the random effects nonparametrically, at
least in some cases.

Consider, once again, the nested error regression model (14.85). Suppose
that the random effects are i.i.d. but not normal, or at least we do not know
if they are normal. Then, what can we do in order to generate the random
effects? The parametric bootstrap discussed above usually requires normality,
or at least a parametric distribution of the random effects, so this strategy
encounters a problem. On the other hand, one cannot use Efron’s (nonpara-
metric) bootstrap because the random effects are not observed, as mentioned.
The answer by Hall and Maiti: Depending on what you want. In many cases,
the quantity of interest does not involve every piece of information about the
distribution of the random effects. For example, Hall and Maiti observed that
the MSPE of EBLUP (e.g., Section 4.8; Chapter 13) involves only the sec-
ond and fourth moments of the random effects and errors, up to the order
of o(m−1). This means that for random effects and errors from any distri-
butions with the same second and fourth moments, the MSPE of EBLUP,
with some suitable estimators of the variance components, are different only
by a term of o(m−1) (Exercise 14.29). This observation leads to a seemingly
simple strategy: First, estimate the second and fourth moments of the ran-
dom effects and errors; then draw bootstrap samples of the random effects
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and errors from distributions that match the first (which is 0) and estimated
second and fourth moments; given the bootstrap random effects and errors,
use (14.85) to generate bootstrap data, and so on. The hope is that this leads
to an MSPE estimator whose bias is o(m−1) (i.e., second-order unbiased).

To be more precise, for any μ2, μ4 ≥ 0 such that μ2
2 ≤ μ4, let D(μ2, μ4)

denote the distribution of a random variable ξ such that E(ξ) = 0 and E(ξj) =
μj , j = 2, 4. Hall and Maiti (2006) suggested using moment estimators, σ̂2

v ,
σ̂2

e , γ̂v, and γ̂e, of σ2
v , σ2

e , γv, and γe, where γv, γe are the fourth moments of
vi and eij , respectively, so that they satisfy the constraints σ̂4

v ≤ γ̂v, σ̂
4
e ≤ γ̂e

(why do we need these constraints?). Suppose that we are interested in the
prediction of the mixed effects

ζi = X ′iβ + ui, (14.86)

where Xi is a known vector of covariates, such as the population mean of the
xij ’s. Denote the EBLUP of ζi by ζ̂i. To obtain a bootstrap estimator of the

MSPE of ζ̂i, MSPEi = E(ζ̂i − ζi)
2, we draw samples v∗i , i = 1, . . . ,m, inde-

pendently from D(σ̂2
v , γ̂v), and e∗ij , i = 1, . . . ,m, j = 1, . . . , ni, independently,

from D(σ̂2
e , γ̂e). Then, mimicking (14.85), define

y∗ij = x′ij β̂ + v∗i + e∗ij, i = 1, . . . ,m, j = 1, . . . , ni,

where β̂ is the EBLUE of β [i.e., (4.88) with σ2
v and σ2

e (in V ) replaced by

their estimators]. Let ζ̂∗i be the bootstrap version of ζ̂i, obtained the same way
except using y∗ instead of y. We then define a bootstrap MSPE estimator

M̂SPEi = E{(ζ̂∗i − ζ∗i )2|y}, (14.87)

where ζ∗i = X ′iβ̂+v∗i [see (14.86)], and the conditional expectation is evaluated,
as usual, by replications of y∗. Euation (14.87) produces an MSPE estimator
whose bias is O(m−1), not o(m−1) (see Hall and Maiti 2006, Section 4).

To obtain an MSPE estimator whose bias is o(m−1), we bias-correct

M̂SPEi using a double bootstrap as follows. The first bootstrap is done above.
Conditional on v∗ and e∗, draw samples v∗∗i , i = 1, . . . ,m and e∗∗ij , i =

1, . . . ,m, j = 1, . . . , ni independently from D(σ̂∗2v , γ̂∗v ) and D(σ̂∗2e , γ̂∗e ), respec-
tively, where σ̂∗2v , and so on are computed the same way as σ̂2

v , and so on.
except using y∗ instead of y. Then, similarly, define

y∗∗ij = x′ij β̂
∗ + v∗∗i + e∗∗ij , i = 1, . . . ,m, j = 1, . . . , ni,

and compute the double-bootstrap version of ζ̂i and ζ̂∗∗i . After that, compute

M̂SPE
∗
i = E{(ζ̂∗∗i − ζ∗∗i )2|y∗}, (14.88)

where ζ∗∗i = X ′iβ̂
∗ + v∗∗i and the conditional expectation is evaluated by

replications of y∗∗. Equation (14.88) is the bootstrap analogue of (14.87) [the
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way to understand this is to forget that (14.87) is computed via bootstrap;
then (14.88) is just a bootstrap analogue of (14.87)]. According to one of the

classical usages of the bootstrap, we estimate the bias of M̂SPEi by

b̂iasi = E(M̂SPE
∗
i |y) − M̂SPEi,

where the conditional expectation is evaluated by replications of y∗ [note that,

after taking the conditional expectation in (14.88), M̂SPE
∗
i is a function of

y∗]. This leads to a bias-corrected MSPE estimator

M̂SPE
bc

i = M̂SPEi − b̂iasi = 2M̂SPEi − E(M̂SPE
∗
i |y). (14.89)

Hall and Miati (2006) showed that, under regularity conditions, we have

E(M̂SPE
bc

i ) = MSPEi + o(m−1), (14.90)

so the bootstrap bias-corrected MSPE estimator is second-order unbiased.
Regarding the distribution D(μ2, μ4), clearly, the choice is not unique.

It remains a question of what is the optimal choice of such a distribution.
The simplest example is, perhaps, constructed from a three-point distribution
depending on a single parameter p ∈ (0, 1), defined as P(ξ = 0) = 1 − p and

P

(
ξ =

1√
p

)
= P

(
ξ = − 1√

p

)
=
p

2
.

It is easy to verify that E(ξ) = 0,E(ξ2) = 1, and E(ξ4) = 1/p. Thus, if we
let p = μ2

2/μ4, the distribution of
√
μ2ξ is D(μ2, μ4). Note that the inequality

μ2
2 ≤ μ4 always hold with the equality if and only if ξ2 is degenerate (i.e., a.s.

a constant). Another possibility is the rescaled Student t-distribution whose
degrees of freedom ν > 4 and is not necessarily an integer. The distribution
has first and third moments 0, μ2 = 1, and μ4 = 3(ν − 2)/(ν − 4), which is
always greater than 3, meaning that the tails are heavier than those of the
normal distribution.

The moment-matching, double-bootstrap procedure may be computation-
lly intensive, and so far there have not been published comparisons of the
method with other exsiting methods that also produce second-order unbiased
MSPE estimators, such as the Prasad–Rao (see Section 4.8) and jackknife
(see Section 14.3). The latter is also considered a resampling method. On the
other hand, the idea of Hall and Maiti is potentially applicable to mixed mod-
els with more complicated covariance structure, such as mixed models with
crossed random effects. We conclude this section with an illustrative example.

Example 14.11. Consider a two-way random effects model

yij = μ+ ui + vj + eij,



14.7 Exercises 517

i = 1, . . . ,m1, j = 1, . . . ,m2, where μ is an unknown mean; the ui’s are
i.i.d. with mean 0, variance σ2

1 , and an unknown distribution F1; the vj ’s are
i.i.d. with mean 0, variance σ2

2 , and an unknown distribution F2; the eij ’s
are i.i.d. with mean 0, variance σ2

0 , and an unknown distribution F0; and
u, v, and e are independent. Note that the observations are not clustered
under this model. As a result, the jackknife method of Jiang et al. (2002; see
Section 14.3) may not apply. Consider a mixed effect that can be expressed as
ζ = a0μ+a′1u+a′2v. The BLUP of ζ can be expressed as ζ̃ = a0ȳ··+a′1ũ+a′2ṽ,
where y·· = (m1m2)

−1
∑m1

i=1

∑m2

j=1 yij and ũ and ṽ are tbe BLUPs of u and
v, respectively (e.g., Section 4.8). According to the general result of Das et
al. (2004; see Theorem 3.1 therein), the MSPE of the EBLUP of ζ can be
expressed as

MSPE = g1(θ) + g2(θ) + g3 + o(m−1
∗ ),

where θ = (σ2
0 , σ

2
1 , σ

2
2)′; g1(θ) = a′(G − GZ ′V −1ZG)a with a = (a′1, a

′
2)
′,

G = diag(σ2
1Im1 , σ

2
2Im2), Z = (Im1 ⊗ 1m2 1m1 ⊗ Im2), and V = σ2

0Im1m2 +
ZGZ′; g2(θ) = {a0 − 1′m1m2

V −1ZGa}2/(1′m1m2
V −11m1m2) (you may sim-

plify these expressions considerably in this simple case; see Exercise 14.30);
g3 = E(h′A−1b)2 with h = ∂ζ̃/∂θ, A = E(∂2l/∂θ∂θ′), l being the Gaussian
restricted log-likelihood function, b = ∂l/∂θ; and m∗ = m1 ∧ m2, provided
that the Gaussian REML estimator of θ is used for the EBLUP (see Section
12.2). Note that g3 is not necessarily a function of θ unless the data are normal
[and this is why the notation g3, not g3(θ), is used]. However, it is anticipated
that g3 can be expressed as s+ o(m−1

∗ ), where s is a term that depends only
on the fourth moments of u, v, and e, in addition to θ. If this conjecture turns
out to be true (Exercise 14.30), then it is understandable that a similar idea
of the moment-matching bootstrap should apply to this case as well.

14.7 Exercises

14.1. Let X1, . . . , Xn be an i.i.d. sample from a distribution with cdf F
and pdf f , and X(1) < · · · < X(n) be the order statistics. Then the cdf of X(i)

is given by

G(i)(x) =
n∑

k=i

(
n

k

)
{F (x)}k{1 − F (x)}n−k ,

and the pdf of Xi is given by

g(i)(x) =
n!

(i− 1)!(n− i)!
{F (x)}i−1{1 − F (x)}n−if(x).

Using these results, derive the cdf and pdf of R in Example 14.2, assuming
n = 2m− 1 for simplicity.
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14.2. Continue with the previous exercise. Suppose that Xi has the
Uniform[0, 1] distribution. Show that X(i) ∼ Beta(i, n − i + 1), 1 ≤ i ≤ n,
and therefore obtain the mean and variance of R for n = 2m− 1.

14.3. Consider the example of sample mean discussed below (14.1). Showed
that, in this case, the right side of (14.8) is equal to s2/n, where s2 = (n −
1)−1

∑n
i=1(Xi − X̄)2 is the sample variance. Therefore, we have E{v̂arJ(θ̂)} =

var(θ̂); in other words, the jackknife variance estimator is unbiased.

14.4. Verify the representation (14.13) and show that β̂ij is the OLS esti-
mator of β based on the following regression model:

yi = α+ βxi + ei,

yj = α+ βxj + ej.

14.5. Show that when d = 1, (14.12) reduces to (14.16), which is the

weighted delete-1 jackknife estimator of Var(β̂).
14.6. Regarding the outline of the proof of Theorem 14.1 (near the end of

Section 14.2), show the following:(
n− p

d− 1

)−1(
n− 1

d− 1

)
= O

(
d

n

)
;(

n− p

d− 1

)−1{(
n

d

)
−
(
n− p

d

)}
= O(1).

14.7. This exercise involves some further details regarding the outline of
the proof of Theorem 14.1.

(i) Show that ws ≤ 1, s ∈ Sr.
(ii) Use the technique of unspecified c (see Section 3.5) to show that

tr(S1) = O(dh/n), hence ‖S1‖ = O(dh/n).
14.8. Show that, in Example 14.4 [continued following (14.22)], the MSPE

of ζ̃ is equal to σ2
vσ

2
e/(σ

2
e + niσ

2
v), which is the same as var(ζ|yi).

14.9. This exercise involves some details in Example 14.5.
(i) Show that MSPE(ζ̃) = 1 −B.

(ii) Show that MSPE(ζ̂) = 1 −B + 2B/m+ o(m−1).

(iii) Show that E(ζ̂∗−1 − ζ̂)2 = A(1 −B) + o(1).

(iv) Show that E(ζ̂∗−i − ζ̂)2 = 2B/m2 + o(m−2), i ≥ 2.

(v) Show that, with ζ̂−i replaced by ζ̂∗−i, 1 ≤ i ≤ m, the expectation of

the right side of (14.27) is equal to MSPE(ζ̂) +A(1 −B) + o(1).
14.10. Regarding Example 14.6, show that the MLE of ψ satisfies (14.29)

(under regularity conditions that you may need to specify) with a(ψ) = 0 and
fj(ψ, yj), 1 ≤ j ≤ p+ q, specified in the example.

14.11. Regarding Example 14.7, show that the REML estimator of ψ sat-
isfies (14.29) (according to the definition under non-Gaussian linear mixed
models; see Section 12.2), where the fj ’s are the same as in Example 14.6 and
a(ψ) is given in Example 14.7. [Hint: You may use the identity
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V −1 = V −1X(X ′V −1X)−1X ′V −1 +A(A′V A)−1A′,

where V = V (θ) and A is any n×(n−p) matrix of full rank (n is the dimention
of y = (yj)1≤j≤m) such that A′X = 0 (e.g., Searle et al. 1992, p. 451).]

14.12. Prove Theorem 14.2. [Hint: Consider a neighborhood of ψ and show
that the values of the function l at the boundary of the neighborhood are
greater than that at the center with high probability.]

14.13. Regarding Remark 1 below (14.32), show the following:

(i) That the M-estimators ψ̂−i, 0 ≤ i ≤ m, are c.u. μω at rate m−d implies
that they are c.u. at rate m−d.

(ii) Conversely, if there is τ > 2 such that E(|ω(Y )|τ ) < ∞, then the M-

estimators ψ̂−i, 0 ≤ i ≤ m, are c.u. at rate m−d implies that they are c.u. μω

at rate m−d(1−2/τ).
14.14. Show that, with the functional h defined by (14.48), the derivative ψ

is given by (14.49). [Hint: Use (14.47). You do not need to justify it rigorously.]
14.15. This exercise involves some of the details in Example 14.8.
(i) Show that the functional θ is a special case of (14.48).
(ii) Verify that θ(Fn) = n−2

∑n
i=1

∑n
j=1 1(Xi+Xj>0), which is a V -statistic.

(iii) Verify (14.51) and (14.52) and thus conclude that the asymptotic
conditional distribution of

√
n(U∗n − Un) given X1, . . . , Xn is the same as the

asymptotic distribution of
√
n(Un − θ).

(iv) What is the asymptotic distribution of
√
n(Un − θ)?

14.16. Let X1, . . . , Xn be i.i.d. with cdf F and pdf f . For any 0 < p < 1,
let νp be such that F (νp) = p. Suppose that f(νp) > 0. Show that for any

sequence m = mn such that m/n = p+o(n−1/2), we have
√
n{X(m)−νp} d−→

N(0, σ2
p), where X(i) is the ith order statistic, and σ2

p = p(1 − p)/f2(νp).
14.17. This exercise is related to some of the details in Example 14.9.
(i) Show that ξn = n{θ −X(n)}/θ converges weakly to Exponential(1).
(ii) Show that for any k ≥ 1,

P{X∗(n) < X(n−k+1)|X1, . . . , Xn} =

(
1 − k

n

)n

.

(iii) Show that (14.45) and (14.55) imply lim supΔn = ∞ a.s. and
lim inf δn = 0 a.s.

14.18. Continue with the previous exercise.
(i) Give an example of a sequence an, n ≥ 0, of positive integers that is

strictly increasing and satisfies (14.58) for every k ≥ 0.
(ii) Show that for every k ≥ 1 and 1 ≤ i ≤ n,

P{X(an−k+1) = Xi} =
1

an − k + 1
.

(iii) Argue that P(An i . o.) = 0 implies that, with probability 1, ηan = ζn
for large n.
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(iv) Using the above result, argue that (14.54) and (14.55) follow if (14.59)
holds for any b > 0.

(v) Show that the distribution of ζn is the same as that of an(Xn,an−an−1−
Xn−k+1,an−an−1), where Xr,n is rth order statistic of X1, . . . , Xn. Further-
more, show that for any r < s, the distribution of n(Xs,n − Xr,n) weakly
converges to the Gamma(s− r, 1) distribution as n → ∞.

14.19. In this exercise you are encouraged to study the large-sample be-
havior of the bootstrap through some simulation studies. Two cases will be
considered, as follows. In each case, consider n = 50, 100, and 200. In both
cases, a sample X1, . . . , Xn are drawn independently from a distribution, F .
Then 2000 bootstrap samples are drawn, given the values of X1, . . . , Xn. A
parameter, θ, is of interest. Let θ̂ be the estimator of θ based on X1, . . . , Xn

and θ̂∗ be the bootstrap version of θ̂.
(i) F = Uniform[0, 1], θ = the median of F (which is 1/2), θ̂ = the sam-

ple median of X1, . . . , Xn, and θ̂∗ = the sample median of X∗1 , . . . , X
∗
n, the

bootstrap sample. Make a histogram based on the 2000 θ̂∗’s.
(ii) F = Uniform[0, θ], θ̂ = X(n) = max1≤i≤n Xi, and θ̂∗ = X∗(n) =

max1≤i≤n X
∗
i . Make a histogram based on the 2000 θ̂∗’s.

(iii) Make a histogram of the true distribution of θ̂ for case (i). This can be

done by drawing 2000 sample of X1, . . . , Xn and computing θ̂ for each sample.
Compare this histogram with that of (i). What do you conclude?

(iv) Make a histogram of the true distribution of θ̂ for case (ii). This can be

done by drawing 2000 sample of X1, . . . , Xn, and compute θ̂ for each sample.
Compare this histogram with that of (ii). What do you conclude?

14.20. Regarding the plug-in principle of bootstrap summarized below
(14.63), what are X,F,R(X,F ) for bootstrapping under the dynamic model
(14.60)? What are X∗, F̂ , and R(X∗, F̂ ) in this case?

14.21. Show that the coefficients φj , j = 0, 1, . . ., in (14.64) are functions of
F , the joint distribution of the X ’s and ε’s. (You may impose some regularity
conditions, if necessary.)

14.22. Is the plug-in principle used in the sieve bootstrap [see Section 14.5,
below (14.64)] the same as Efron’s plug-in principle [see Section 14.5, below
(14.63)]? Why?

14.23. This exercise has three parts.
(i) Interpret the expression of the asymptotic variance τ2 in (14.66) given

below the equation.
(ii) Show that (14.67) is equivalent to

P∗
{

1√
n

n∑
t=1

(X∗t − X̄) ≤ x

}
− P

{
1√
n

n∑
t=1

(Xt − μX) ≤ x

}
= oP(1)

for every x.
(iii) Interpret (14.67) by the plug-in principle.
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14.24. Verify the two equivalent expressions of (14.69)—that is, (14.70)
and (14.71).

14.25. Interpret expression (14.72) of the asymptotic variance σ2.
14.26. This exercise is regarding the special case of block-bootstrapping

the sample mean, discussed in Section 14.5.
(i) Show that the influence function IF defined in (A2) [above (14.72)] is

given by IF(x, F ) = x− μ, where μ = E(Xt).
(ii) Show that the bootstrap statistic can be expressed as

T ∗N =
1

k

k∑
j=1

Un,j,

where the Un,j ’s are i.i.d. uniformly distributed among the points ui =
l−1(Xi+1 + · · · + Xi+l), i = 0, . . . , n − l. Thus, in particular, the conditional
mean and variance of T ∗N given X1, . . . , XN are given by (14.73) and (14.74),
respectively.

14.27. Show that, in Example 14.10, the coverage probability of Ĩ2,i is
1 − α+ o(1); that is, as n → ∞,

P
(
μ̂− zα/2

√
Â ≤ ζi ≤ μ̂+ zα/2

√
Â
)

= 1 − α+ o(1).

14.28. Show that (14.80) and d2/n → 0 imply (14.81).
14.29. Consider a special case of the nested error regression model (14.85)

with x′ijβ = μ and ni = k, 1 ≤ i ≤ m, where μ is an unknown mean and k ≥ 2.
Suppose that the random effects vi are i.i.d. with an unknown distribution F
that has mean 0 and finite moment of any order; the errors eij are also i.i.d.
with mean 0 and finite moment of any order. The REML estimators of the
variances σ2

v, σ
2
e , which do not require normality (see Section 12.2), are given

by σ̂2
v = (MSA − MSE)/k and σ̂2

e = MSE, where MSA = SSA/(m − 1) with

SSA = k
∑m

i=1(ȳi· − ȳ··)2, ȳi· = k−1
∑k

j=1 yij , ȳ·· = (mk)−1
∑m

i=1

∑k
j=1 yij ,

and MSE = SSE/m(k − 1) with SSE =
∑m

i=1

∑k
j=1(yij − ȳi·)2, if one ignores

the nonnegativity constraint on σ̂2
v , which you may throughout this exercise

for simplicity. The EBLUP for the random effect vi is given by

v̂i = kσ̂2
v(σ̂2

e + kσ̂2
v)−1(ȳi· − ȳ··).

Suppose that m→ ∞ while k is fixed. Show that MSPE(v̂i) = E(v̂i −vi)
2 can

be expressed as a+ o(m−1), where a depends only on the second and fourth
moments of F and G.

14.30. This exercise is related to Example 14.11.
(i) Simplify the expressions for g1(θ) and g2(θ).
(ii) It is conjectured that g3 can be expressed as s + o(m−1

∗ ), where s
depends only on the second and fourth moments of u, v, and e. Is it true?
(This may involve some tedious derivations but is doable).





15

Markov-Chain Monte Carlo

15.1 Introduction

There are various things named after Monte Carlo, almost all of which orig-
inated from the Monte Carlo Casino in Monaco. In the mid-1940s, mathe-
maticians John von Neumann and Stanislaw Ulam were working on a secret
(nuclear) project at the Los Alamos National Laboratory in New Mexico. The
project involved such calculations as the amount of energy that a neutron is
likely to give off following a collision with an atomic nucleus. It turned out
that the calculations could not be carried out analytically, so the two scien-
tists suggested to solve the problem by using a random number-generating
computer. Due to the secrecy of their project, they code-named their method
Monte Carlo, referring to the Monaco casino, where Ulam’s uncle would bor-
row money to gamble (Ulam was born in Europe). The one thing that Monte
Carlo, as a method of scienctific computating, and casino gambling have in
common is that both play with chances, either large (in terms of convergence
probability) or small (in terms of winning a big prize at the Casino) chances.

The idea of the simplest Monte Carlo method came from the law of large
numbers. Suppose that one wishes to evaluate the integral

∫
f(x) dx. Suppose

that the integrand f can be expressed as f(x) = g(x)p(x), where f is a pdf.
Then we have ∫

f(x) dx =

∫
g(x)p(x) dx = E{g(X)}, (15.1)

where X is a random variable whose pdf is p. Now, suppose that p is known,
so that we can draw i.i.d. samples X1, . . . , Xn from p. Then by the SLLN and
(15.1), we have

1

n

n∑
i=1

g(Xi) −→
∫
f(x) dx (15.2)

almost surely, as n → ∞. Here, we assume, of course, that the integral or
expectation in (15.1) is finite, so that the SLLN applies (see Section 6.3). This

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_15, © Springer Science+Business Media, LLC 2010
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means that we can approximate the integral (15.1) by the left side of (15.2)
with a large n. The procedure practically requires drawing a large number
of random samples using a computer. One small problem, at this point, with
the SLLN is that the convergence in (15.2) can be very slow. For example, in
Table 11.2 we presented some numerical values for ρw, ρs, and the asymptotic
significance levels. Try to evaluate some of them using the SLLN (Exercise
15.1). A bigger problem occurs when the dimension of the integral is high.
Here, the integral in (15.1) is understood as one-dimensional. What if it is
two-dimensional? Well, the SLLN still applies—all we have to do is to draw
X1, . . . , Xn independently from the bivariate pdf, p, and then take the average.
Of course, this should still work out. What if the integral is 80-dimensional?
Theoretically, the SLLN still works the same way, but, practically, there may
be a problem. Here is an example.

Example 15.1. An example of a high-dimensional integral is given in Ex-
ample 12.9. Note that, subject to the multiplicative factor

c = (2πσ2
1)m1/2(2πσ2

2)m2/2 exp(−μy··),
the integral in (12.35) can be written as (15.1) with x = (u′, v′)′,

∫
=
∫ · · · ∫ ,

whose dimension is m1 +m2, dx =
∏m1

i=1 dui

∏m2

j=1 dvj , and

g(x) =

m1∏
i=1

m2∏
j=1

{h(μ+ ui + vj)}yij{1 − h(μ+ ui + vj)}1−yij ,

p(x) =
1

(2πσ2
1)m1/2(2πσ2

2)m2/2
exp

⎛⎝− 1

2σ2
1

m1∑
i=1

u2
i −

1

2σ2
2

m2∑
j=1

v2
j

⎞⎠ ,

where h(x) = ex/(1 + ex) (verify). So, if m1 = m2 = 40, we have an 80-
dimensional integral, as mentioned above. By the way, this example is related
to the infamous salamander mating data, first reported in McCullagh and
Nelder (1989, Section 14.5), where the ui and vj represent random effects cor-
responding to female and male animals (i.e., salamanders), respectively, and
yij is the indicator of a successful mating (1 = Yes, 0 = No). As noted in Exam-
ple 12.9, there is no analytic expression for the integral involved here. However,
noticing that p(x) is the multivariate pdf of X = (u1, . . . , um1 , v1, . . . , vm2)

′,
it looks like one could use the same strategy [i.e., (15.2)] to approximate the
integral, right? Not quite. To see this, let us assume that m1 = m2 = 40. The
problem is that g(x) is a product of 1600 terms with each term less than 1.
It is very possible that such a term is numerically zero. For example, suppose
that each term in the product is 0.5; then g(x) = 0.51600, which is mathemat-
ically positive, of course. However, when the value is entered in a computer
using the statistical programming language R, the returned value is 0. If one
takes the summation, or average, of such terms on the left side of (15.2), one
is not going to get anything but 0 without a huge n!
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There is another difficulty that often occurs with the Monte Carlo method:
Sometimes, the pdf p is not completely known—so how can we sample from
it? This happens, for example, with Bayesian analysis. The idea of Bayesian
inference may be interpreted as updating ones knowledge about the unknowns
using the data information. The knowledge is expressed in terms of the distri-
bution of the unknown (multidimensional) parameter, say, θ. The knowledge
prior to seeing the data is the prior density, π0(θ). The conditional pdf of
the data x given θ is f(x|θ). The knowledge is updated by computing the
posterior—that is, the conditional density of θ given the observed data x—

p(θ|x) =
f(x|θ)π0(θ)∫
f(x|θ)π0(θ) dθ

. (15.3)

Although (15.3) is expressed in terms of integration with respect to Lebesgue
measure, the posterior is easily extended to discrete distributions, with the
integration replaced by summation (or integration with respect to the counting
measure). In many cases, the integral in the denominator of (15.3) may be
unknown. In fact, because (15.3) is a ratio, one only needs to know the product
f(x|θ)π0(θ) up to a constant, known or otherwise. In particular, the prior π0

only needs to be specified proportionally (see Exercise 15.3). However, this
may not help much with regard to the integral in the denominator. So, in this
case, the posterior is known only up to a multiplicative constant. Note that,
given the data x, the denominator of (15.3) is a constant. However, unless this
constant is known, one cannot sample directly from the posterior, as is often
desired in Bayesian analysis. Sometimes, a strategy called rejection sampling
may help to solve the problem. Suppose that one wishes to sample from a pdf
p(θ) but cannot do so directly. Instead, there is a function q(θ) in hand with
the following properties:

(i) q(θ) ≥ 0 and q(θ) > 0 for all θ such that p(θ) > 0;
(ii)
∫
q(θ) dθ < ∞, and one is able to draw random samples from a pdf

proportional to q;
(iii) the importance ratio p(θ)/q(θ) ≤ b for all θ and some constant b > 0,

which is known.
Given a q with properties (i)–(iii), we proceed as follows:

1. sample θ at random from the pdf in (ii) that is proportional to q;
2. sample u from Uniform[0, 1] independent of θ;
3. accept θ as a draw from p(·) if u ≤ p(θ)/bq(θ); otherwise, reject the

drawn and return to step 1.
It can be shown (Exercise 15.4) that the accepted θ has the pdf p(θ); that
is, the pdf of the drawn θ, conditional on u ≤ p(θ)/bq(θ), is p(θ). The upper
bound b for the importance ratio plays an important role, practically, in rejec-
tion sampling. It is preferable that the pdf in (ii) is a close approximation to
p(θ); so that one can choose b as small as possible. If this is not the case that
one has to choose a very large b in order to bound the importance ratio, the
sample from step 1 will almost always be rejected. As a result, the sampling
will proceed very slowly, if at all.
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Geman and Geman (1984) discussed an alternative approach, called Gibbs
sampler, for sampling iteratively from approximate distributions. The samples
drawn is a Markov chain (see Section 10.2) whose unique stationary distri-
bution is identical to the posterior p(θ|x), which is our target distribution
(i.e., the distribution from which we wish to sample). Thus, according to the
Markov-chain convergence theorem (Theorem 10.2), the distribution of the
drawn converges to its limiting distribution which is the target distribution as
the number of iterations increases. The term “Gibbs” originated from image
processing, in which context the posterior of interest is a Gibbs distribution,
expressed as

p(θ|x) ∝ exp

{
−E(θ1, . . . , θd)

λT

}
,

where λ is a positive constant, T is the temperature of the system, E is the
energy (function) of the system, and θj is the characteristic of interest for
the jth component of the system. The Gibbs sampler belongs to a class of
iterative sampling strategies called Markov-chain Monte Carlo, or MCMC.
The class shares the same property that the samples iteratively drawn from
a Markov chain, which explains the name, and they are useful when it is not
possible, or computationally inefficient, to sample directly from p(θ|x). The
convergence property of Markov chains plays an important role and, in fact,
is “at the core of the motivation” for various MCMC algorithms (Robert and
Casella 2004, p. 231). Thus, the focus of the current chapter is MCMC. We
begin naturally with the Gibbs sampler.

15.2 The Gibbs sampler

For some reason, the Gibbs sampler was largely unknown to the statistical
community, after its proposal, until Gelfand and Smith (1990) pointed out
that Geman and Geman’s sampling scheme could in fact be useful for other
posterior sampling problems. In fact, the method is not restricted to posterior
sampling and Bayesian inference. Let f(x) denote a target density function
with respect to a σ-finite measure ν, where x = (xi)1≤i≤k ∈ Rs with xi

being a si-dimensional subvector, 1 ≤ i ≤ k, such that s1 + · · · + sk = s. Let
x−i denote the vector (x′1, . . . , x

′
i−1, x

′
i+1, . . . , x

′
k)′ and f(xi|x−i) denote the

conditional density induced by f . The problem of interest is to draw samples
from f(x), but the situation is such that this cannot be done directly due to
some computational difficulties. For example, the dimension s may be too high
or f(x) is intractable. However, it is fairly easy to sample from the conditional
distributions f(xi|x−i), 1 ≤ i ≤ k. Thus, we proceed with successive drawings
from the conditionals, as follows. Starting with x0 = (x0

i )1≤i≤k, draw

x1
1 from f(x1|x0

2, . . . , x
0
k),

then x1
2 from f(x2|x1

1, x
0
3, . . . , x

0
k),
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then x1
3 from f(x3|x1

1, x
1
2, x

0
4, . . . , x

0
k),

...

then x1
k from f(xk|x1

1, . . . , x
1
k−1).

This completes the first cycle of the drawings. We then update the initial
value x0 by x1, and repeat the process. This procedure is called the Gibbs
sampler.

A question that one first wants answered is why the Gibbs sampler works.
Before going into the mathematical details, we would like to make a cou-
ple of notes. The first is that it is completely possible to recover the joint
distribution, f , from the conditional distributions, which is what the Gibbs
sampler is trying to do. To see this, consider the special case of k = 2 and
s1 = s2 = 1. Denote the joint, marginal, and conditional pdf’s of X and Y
by f(x, y), fX(x), fY (y), fX|Y (x|y), and fY |X(y|x), respectively. Then since
f(x, y) = fY |X(y|x)fX(x) = fX|Y (x|y)fY (y), we have

f(x, y) = fY |X(y|x)fX(x)

=
fY |X(y|x)fX(x)∫

fY (y) dy

= fY |X(y|x)
{∫

fY (y)

fX(x)
dy

}−1

= fY |X(y|x)
{∫

fY |X(y|x)
fX|Y (x|y) dy

}−1

.

So, at least from a theoretical point of view, the joint is fully recoverable
from the conditionals. Note that with the exception of special cases such as
independence, it is not possible to recover the joint from the marginals.

The second note is that the idea of having something done component-
wisely and iteratively is not new. For example, the Gauss–Seidel algorithm
was well known to numerical analysis more than 100 years before Gibbs sam-
pler. See, for example, Young (1971). Suppose that one wishes to solve a large
system of equations expressed as

L(x1, . . . , xm) = 0, (15.4)

where L is a Rm-valued function. Such a problem can be numerically chal-
lenging even if L is a linear function if the dimension m is high (see Jiang
2000b for a nonlinear version). The Gauss–Seidel method solves a system of
univariate equations iteratively. Note that it is often trivial to solve a univari-
ate equation, either analytically or numerically. Let Li be the ith component
of L, 1 ≤ i ≤ m. Given the current value x0 = (x0

1, . . . , x
0
m), solve

x1
1 from L1(x1, x

0
2, . . . , x

0
m) = 0,

then x1
2 from L2(x

1
1, x2, x

0
3, . . . , x

0
m) = 0,



528 15 Markov-Chain Monte Carlo

then x1
3 from L3(x

1
1, x

1
2, x3, x

0
4, . . . , x

0
m) = 0,

...

then x1
m from Lm(x1

1, . . . , x
1
m−1, xm) = 0.

This completes one cycle of the iteration. We then update the current value
x0 by x1, and repeat the process. A nice feature of the algorithm is that
it is totally intuitive, and there is much more. Under mild conditions, the
algorithm has the property of global convergence, which means that starting
with any initial value x0, the sequence xl, l = 0, 1, 2, . . ., generated by the
iterative procedure converges to the (unique) solution to (15.4).

The Gibbs sampler shares a similar intuitiveness to the Gauss–Seidel al-
gorithm; so the next thing we want to make sure is that it converges. Because
our goal is to draw samples from the target distribution, it is desirable that the
distribution of the drawn converge to the target distribution. As noted, the
latter is indeed true as a result of the Markov-chain convergence theorem. We
show this, again, for the special case k = 2 and s1 = s2 = 1, with a note given
at the end on obvious extensions of the results. More general treatments of the
topic can be found in Tierney (1994) and Robert and Casella (2004, Chapter
10). To be more specific, we also assume that ν is the Lebesgue measure on
R. Let x and y denote the two components (instead of x1 and x2). Let the
initial values be X0 = x0 and Y0 = y0. Then, at iteration t, the Gibbs sampler
draws Xt fromfX|Y (x|Yt−1) and then Yt from fY |X(y|Xt), t = 1, 2, . . .. First,
we show that Xt is a Markov chain. Note that here we are dealing with a
chain whose state-space may be an arbitrary subset of an Euclidean space.
Therefore, we need to extend the definition in Section 10.2 a little bit, but
very much along the same line. A function K(u, v), where u, v ∈ Ra for some
positive integer a is called a transition kernel if (i) for any u ∈ Ra, K(u, ·)
is an a-variate pdf and (ii) for any B ∈ B, K(·, B) is measurable, where B
denotes the Borel σ-field on Ra. The process Xt, t = 0, 1, 2, . . ., is a Markov
chain with transition kernel K if

P(Xt ∈ B|X0, . . . , Xt−1) =

∫
B

K(Xt−1, v) dv

= P(Xt ∈ B|Xt−1). (15.5)

Note that the second equality in (15.5) is implied by the first one. For the Xt

induced by the Gibbs sampler, we have

P(Xt ∈ B|X0, . . . , Xt−1) =

∫
B

fXt|X0,...,Xt−1
(x|X0, . . . , Xt−1) dx

=

∫
B

∫
fXt|X0,...,Xt−1,Yt−1

(x|X0, . . . , Xt−1, y)

×fYt−1|X0,...,Xt−1
(y|X0, . . . , Xt−1) dy dx.

According to the definition of the Gibbs sampler, we have
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fXt|X0,...,Xt−1,Yt−1
(x|X0, . . . , Xt−1, y) = fX|Y (x|y),

fYt−1|X0,...,Xt−1
(y|X0, . . . , Xt−1) = fY |X(y|Xt−1).

Thus, if we let

K(u, v) =

∫
fY |X(y|u)fX|Y (v|y) dy, (15.6)

we have, continuing with the derivation, that

P(Xt ∈ B|X0, . . . , Xt−1) =

∫
B

∫
fX|Y (x|y)fY |X(y|Xt−1) dy dx

=

∫
B

K(Xt−1, v) dv.

The argument shows that Xt is a Markov chain with transition kernel given
by (15.6). Similarly, it can be shown that Yt is a Markov chain (Exercise 15.5).
The chain that we are most interested in is Zt = (Xt, Yt)

′. This, too, can be
shown to be a Markov chain with transition kernel

K(w, z) = fX|Y (x|v)fY |X(y|x) (15.7)

for w = (u, v)′ and z = (x, y)′ (Exercise 15.5).
As seen in Section 10.2, there are four regularity conditions associated

with the convergence properties of Markov chains. These are irreducibility,
aperiodicity, recurrency, and the existence of a stationary distribution. Once
again, we need to extend the definitions in Section 10.2 to general state-space
Markov chains. A stationary distribution for the Markov chain is a probability
distribution π that satisfies

π(B) =

∫
P(X1 ∈ B|X0 = x)π(x) dx

=

∫
K(x,B)π(x) dx (15.8)

for every B ∈ B, where K(x,B) =
∫

B
K(x, v) dv and K is the transition

kernel of the Markov chain. The Markov chain, or K, is π-irreducible if for all
x ∈ D = {x : π(x) > 0}, π(B) > 0 implies that P(Xt ∈ B|X0 = x) > 0 for
some t ≥ 1. A π-irreducible K is periodic if there is an integer d ≥ 2 and a
collection of nonempty disjoint sets E0, . . . , Ed−1 such that for i = 0, . . . , d−1
and all x ∈ Ei, K(x,Et) = 1, t = i+1 mod d; otherwise, K is aperiodic. Here,
a = b mod d if a − b can be divided by d. The definition of recurrency can
also be extended, but for the reason below we do not need it at this point.
The reason is that these conditions are connected so that there is no need to
assume all of them. See Theorem 10.2, for example, in the discrete state-space
case. For the Markov chains we are dealing with in this section, it is fairly
straightforward to find the stationary distributions. In fact, this is exactly
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how these chains are constructed so that they have the desired stationary
distribtions as potential limiting distributions. We consider some examples.

Example 15.2. For the Gibbs Markov chain Xt above, it is easy to verify
that fX(x), or πX(B) =

∫
B
fX(x) dx, is a stationary distribution. Similarly,

fY (y), or πY (B) =
∫

B fY (y) dy, is a stationary distribution for the Gibbs
Markov chain Yt (Exercise 15.6).

Example 15.3. For the Gibbs Markov chain Zt = (Xt, Yt)
′, it is easy to

verify that f(x, y), or π(B) =
∫

B f(x, y) dx dy, is a stationary distribution
(Exercise 15.6), which is the target distribution from which we wish to sample.

Given the existence of the stationary distribution, convergence of the
Markov chain is implied by irreducibility and aperiodicity, as the following
theorem states (see Roberts and Smith 1994). Let Kt(x, ·) denote the kernel
for Xt given X0 = x; that is,

P(Xt ∈ B|X0 = x) =

∫
B

Kt(x, v) dv (15.9)

for any B ∈ B. Note that when t = 1, (15.9) reduces to (15.5).

Theorem 15.1. Suppose that the Markov chain has transition kernel K
and stationary distribution π so that K is π-irreducible and aperiodic. Then,
for all x ∈ D = {x : π(x) > 0}, the following hold:

(i)
∫ |Kt(x, v) − π(v)| dv → 0 as t→ ∞;

(ii) for any real-valued, π-integrable function g,

1

n

n∑
t=1

g(Xt)
a.s.−→
∫
g(x)π(x) dx as n → ∞.

The result of (i) implies that P(Xt ∈ B|X0 = x) → π(B) as t → ∞, for
every B ∈ B regardless of the starting point x [as long as π(x) > 0]. So, in a
way, this is similar to the global convergence of the Gauss–Seidel algorithm
(see our earlier discussion). To see this, note that, by (15.9), we have

|P(Xt ∈ B|X0 = x) − π(B)| =

∣∣∣∣∫
B

Kt(x, v) dv −
∫

B

π(v) dv

∣∣∣∣
≤
∫

B

|Kt(x, v) − π(v)| dv

≤
∫

|Kt(x, v) − π(v)| dv.

The conclusion of (i) also implies that the stationary distribution is unique
up to a set of Lebesgue measure 0 (why?). The result of (ii) may be regarded
as a SLLN for the Markov chain.
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Theorem 15.1 provides us with a tool to find sufficient conditions for the
convergence of Gibbs sampler. We already know the existence of the stationary
distribution (see Example 15.3); so all we have to do is to verify that the
kernel (15.7) is F -irreducible and aperiodic, where F is the cdf of the target
distribution, f . Roberts and Smith (1994) found that the following conditions
are sufficient for the Gibbs sampler to have these two properties. A function
h: R2 → [0,∞) is said to be lower semicontinuous at zero if for any z = (x, y)′

with h(z) > 0, there exists an open neighborhood S(z) of z and ε > 0 such
that h(w) ≥ ε for all w ∈ S(z). A function h: R → [0,∞) is said to be locally
bounded if for any x, there are constants δ, c > 0 (which may depend on x)
such that h(u) ≤ c for all u such that |u− x| < δ. The subset D is said to be
connected if for any w, z ∈ D, there is a continuous map h: [0, 1] → D such
that h(0) = w and h(1) = z.

Theorem 15.2. The conditions of Theorem 15.1 hold for the Gibbs sam-
pler provided that F is lower semicontinuous at zero, D is connnected, and
both fX(·) and fY (·) are locally bounded.

Note that although Theorems 15.1 and 15.2 are stated for the case s = 2,
or two-stage Gibbs sampler, they actually apply to general s ≥ 2 or the
multistage Gibbs sampler as well, with obvious modifications. We consider
some applications of Theorem 15.2.

Example 15.4 (Bivariate-normal Gibbs). Consider sampling from the bi-
variate normal distribution with means 0, variances 1 and correlation coef-
ficient ρ. Although it is straightforward to sample directly in this case (so
that the Gibbs sampler is not needed), it makes a trivial special case to
illustrate the conditions of Theorem 15.2. The Gibbs sampler draws Xt+1

from N(ρyt, 1 − ρ2), where yt is the realized value of Yt, and then Yt+1 from
N(ρxt+1, 1 − ρ2), where xt+1 is the realized value of Xt+1. The cdf F is

F (x, y) =

∫ x

−∞

∫ y

−∞

1

2π
√

1 − ρ2
exp

{
−u2 − 2ρuv + v2

2(1 − ρ2)

}
du dv.

The function is continuous onR2, which implies that it is lower semicontinuous
at zero. Furthermore, D = R2, which is obviously connected. Finally, fX and
fY are both the pdf of N(0, 1), which is (locally) bounded by 1/

√
2π.

Example 15.5 (Autoexponential Gibbs). A 3-dimensional auto-exponential
model (Besag 1974) is defined as the distribution of X = (X1, X2, X3)

′ such
that Xi > 0, i = 1, 2, 3, and the pdf of X is

f(x1, x2, x3) ∝ exp{−(x1 + x2 + x3 + ax1x2 + bx2x3 + cx3x1)},

where a, b, and c are known positive constants. It is easy to show that
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X1|x2, x3 ∼ Exponential(1 + ax2 + cx3),

X2|x3, x1 ∼ Exponential(1 + bx3 + ax1),

X3|x1, x2 ∼ Exponential(1 + cx1 + bx2)

(Exercise 15.8). The cdf of f , F (x1, x2, x3), is the integral of f(y1, y2, y3) over
(0, x1]× (0, x2]× (0, x3], which is continuous on D = (0,∞)3. It follows that F
is lower semicontinuous at zero. The set D is obviously connnected. Finally,
it can be shown (Exercise 15.8) that

fX1,X2(x1, x2) ∝ exp{−(2x1 + x2 + ax1x2)}
1 + bx2 + cx1

×
∫ ∞

0

exp{−(x2 + ax1x2)}
1 + bx2 + cx1

dx2

≤ c

∫ ∞

0

e−x2 dx2 = c,

where c is a normalizing constant. Thus, fX1,X2 is (locally) bounded. Similarly,
it can be shown that fX2,X3 and fX3,X1 are locally bounded.

It should be pointed out that for Markov chains with a discrete state-
space, the result of Theorem 10.2 applies, whose key conditions can be verified
according to the definitions and results of Section 10.2 (see Exercise 15.9).

15.3 The Metropolis–Hastings algorithm

Prior to Gibbs sampler, a MCMC algorithm was given by Metropolis et al.
(1953) in a statistical physics context. The algorithm was later extended by
Hastings (1970) to what is now called the Metropolis–Hastings algorithm. In
fact, the Gibbs sampler may be viewed as a special case of the Metropolis–
Hastings algorithm (e.g., Robert and Casella 2004, Section 10.2.2). However,
the former is simpler and more intuitive for a beginner and is therefore seen
as a better introductary subject. This is why we choose to present the Gibbs
sampler first, and not as an implication of the Metropolis–Hastings algorithm.
The original algorithm proposed by Metropolis et al. (1953), known as the
Metropolis algorithm, involves a jumping distribution q(x, y) such that q(x, ·)
is a pdf, with respect to ν, for every x and q(x, y) = q(y, x). Given the current
value Xt = x, a candidate value for Xt+1, say y, is sampled from q(x, ·).
A decision is then made on whether or not to “jump” (to the candidate),
based on a chance process. To do so, first compute the ratio r = f(y)/f(x),
where, as in Section 15.2, f is the target distribution and, for now, we assume
that f(x) > 0. Then we set Xt+1 = y (jumping to the candidate value) with
probability α = r ∧ 1 and Xt+1 = Xt (staying at the current place) with
probability 1 − α, where a ∧ b = min(a, b).

Although the Metropolis algorithm may not seem as intuitive as the Gibbs
sampler, it, indeed, generates a Markov chain. To see this, let Yt denote the
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value sampled from the jumping distribution given Xt. For simplicity, let the
target density f be with respect to the Lebesgue measure and assume that it
is positive everywhere. Write, as in the previous section [following (15.5)],

P(Xt+1 ∈ B|X0, . . . , Xt) =

∫
B

fXt+1|X0,...,Xt
(x|X0, . . . , Xt) dx

=

∫
B

∫
fXt+1|X0,...,Xt,Yt

(x|X0, . . . , Xt, y)fYt|X0,...,Xt
(y|X0, . . . , Xt) dy dx

and note that fYt|X0,...,Xt
(y|X0, . . . , Xt) = q(Xt, y). Thus, we have

P(Xt+1 ∈ B|X0, . . . , Xt)

=

∫
B

∫
fXt+1|X0,...,Xt,Yt

(x|X0, . . . , Xt, y)q(Xt, y) dy dx

=

∫ ∫
B

fXt+1|X0,...,Xt,Yt
(x|X0, . . . , Xt, y) dx q(Xt, y) dy

=

∫
P(Xt+1 ∈ B|X0, . . . , Xt, Yt = y)q(Xt, y) dy.

It is easy to verify that

P(Xt+1 ∈ B|X0, . . . , Xt, Yt = y) = α1(y∈B) + (1 − α)1(Xt∈B),

where r = f(y)/f(Xt). Thus, continuing with the derivation, we have

P(Xt+1 ∈ B|X0, . . . , Xt)

=

∫
{α1(y∈B) + (1 − α)1(Xt∈B)}q(Xt, y) dy

=

∫
B

αq(Xt, y) dy + 1(Xt∈B)

{
1 −
∫
αq(Xt, y) dy

}
=

∫
B

K(Xt, y) dy,

where, with r = f(y)/f(x), p(x) =
∫
αq(x, y) dy and δx being the Dirac (or

point) mass at x, the transition kernel can be expressed as

K(x, y) = αq(x, y) + {1 − p(x)}δx(y). (15.10)

The main motivation is that not only does the Metropolis algorithm generate
a Markov chain, but also that the chain has f as its stationary distribution.
To see this, note that it is straightforward to verify that{

f(y)

f(x)
∧ 1

}
q(x, y)f(x) =

{
f(x)

f(y)
∧ 1

}
q(y, x)f(y).

Here, we have used the fact that q(x, y) is symmetric in x and y. On the other
hand, it is obvious that
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{1 − p(x)}δx(y)f(x) = {1 − p(y)}δy(x)f(y)

[note that δx(y) = 0 and δy(x) = 0 unless x = y]. With these, it is easy to see
that the transition kernel K is reversible with respect to f in the sense that

K(x, y)f(x) = K(y, x)f(y), (15.11)

which implies that f is the stationary distribution (Exercise 15.10).
Equation (15.11) has, in fact, motivated a series of MCMC algorithms:

Construct a Markov chain so that its transition kernel is reversible with re-
spect to the target distribution! Hastings (1970) proposed his construction of
such Markov chains in a way that extends the Metropolis algorithm. A key
restriction that Hastings was able to remove is that q(x, y) be symmetric.
Now, q(x, y) = q(y, x) is no longer needed. To ensure that (15.11) still holds,
we modify the acceptance probability α in the Metropolis algorithm by

α =

{
f(y)q(y, x)

f(x)q(x, y)

}
∧ 1. (15.12)

Here, we assume that the denominator f(x)q(x, y) is positive; otherwise, α is
defined to be 1. Note that, as before, α is a function of x and y; therefore, the
complete notation is α = α(x, y). Also note that when q(x, y) is symmetric,
(15.12) reduces to the α in the Metropolis algorithm. With the new defini-
tion of α and everything else the same as in the Metropolis algorithm, the
procedure is called the Metropolis–Hastings algorithm, or M-H algorithm. It
can be shown that the sequence Xt generated by the M-H algorithm remains
a Markov chain with the transition kernel K still given by (15.10) (with the
new definition of α, of course), and (15.11) continues to hold (Exercise 15.11).
It follows, by the same argument, that f is the stationary distribution of the
Markov chain generated by the M-H algorithm, known as the M-H chain.
By choosing different jumping distributions q, one obtains different MCMC
algorithms as special cases of the M-H algorithm. Below are some examples.

Example 15.6 (Random walk chain). Suppose that given Xt = x, Xt+1 =
x + ξ, where ξ is sampled independently from a density g, so that q(x, y) =
g(y − x). This is known as the random walk chain (see Example 10.2 for a
case of a discrete state-space Markov chain). Natural choices for g include the
uniform and normal distributions.

Example 15.7 (Autoregressive chain). An extension of the random walk
chain is the autoregressive chain, or AR chain. This can be expressed as that,
given Xt = x, Xt+1 = a + b(x − a) + ξ, where ξ is the same as in Example
15.6. Thus, in this case, q(x, y) = g{y − a− b(x− a)}.

Example 15.8 (Rejection sampling chain). The sampling of Xt+1 given
Xt = x can be done via rejection sampling (see Section 15.1). This strategy



15.3 The Metropolis–Hastings algorithm 535

may be useful if direct sampling from a certain distribution is not possi-
ble or inconvenient. Recall that earlier we had assumed the existence of a
(known) constant b such that f(x) ≤ bg(x), where g(x) is the density from
which we actually sample. Sometimes, this restriction leads to choosing an
excessively large b, and hence an inefficient algorithm with many rejections,
not to mention that, in some cases, one simply does not know what b is.
The M-H algorithm provides a simple remedy to this difficulty. Let b be a
given positive constant. Given Xt = x, the rejection sampling of Xt+1 is
done equivalently as follows. Pairs (Y, U) are generated such that Y ∼ g and
U |Y ∼ Uniform[0, bg(Y )] until a pair satisfying U < f(Y ) is obtained, whose
value of Y , say, y, is then the candidate value. It can be shown that the
jumping distribution corresponding to this sampling scheme satisfies

q(x, y) ∝ f(y) ∧ {bg(y)} (15.13)

(Exercise 15.12). Furthermore, let B = {x : f(x) ≤ bg(x)}. Then, the accep-
tance probability (15.12) of the M-H algorithm reduces to

α =

⎧⎨⎩
1, x ∈ B
bg(x)/f(x), x /∈ B, y ∈ B
{f(y)g(x)/f(x)g(y)} ∧ 1, x /∈ B, y /∈ B.

(15.14)

Note that the jumping distribution q, by definition, is a (Markov chain)
transition kernel, which we call the jumping kernel. On the other hand, it
is easy to see that δx(y) in (15.10) is also a transition kernel, which we call
the Dirac kernel. Thus, (15.10) suggests that the transition kernel of the M-
H chain may be viewed as a weighted average of the jumping kernel and
Dirac kernel [note that 1 − p(x) =

∫
(1 − α)μx(dy), where μx(dy) = q(x, y)

dy]. Therefore, with regard to the regularity conditions of Theorem 15.1, it
is not surprising that irreducibility (aperiodicity) of the jumping kernel has
an impact on that of the M-H kernel. On the other hand, such properties of
the jumping kernel alone cannot guarantee the corresponding properties of
the M-H kernel. This is because the rejection of the candidate (in the M-H
algorithm) also plays a role and therefore affects the behavior of the M-H
chain. More precisely, the following theorem, given by Roberts and Smith
(1994), states the connections.

Theorem 15.3. (i) If the jumping kernel is aperiodic, or P(Xt = Xt−1) >
0 for some t ≥ 1, then the M-H kernel is aperiodic.

(ii) If the jumping kernel is f -irreducible, and q(x, y) = 0 if and only if
q(y, x) = 0, then the M-H kernel is f -irreducible.

Note that the condition P(Xt = Xt−1) > 0 for some t simply means
that there is a positive probability that the M-H chain does not move, either
due to the rejection of the candidate or that the candidate coincides with the
current state. Because we already know that the stationary distribution of the
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M-H chain is f , by Theorem 15.1, the conditions of (i) and (ii) of Theorem
15.3 are sufficient for the conclusions (i) and (ii) of Theorem 15.1 for the
M-H chain. More explicit conditions are given, for example, by Roberts and
Tweedie (1996), as follows.

Theorem 15.4. Let f be bounded and positive on every compact set of
its support E and there be constants ε, δ > 0 such that x, y ∈ E , |x − y| ≤ δ
implies q(x, y) ≥ ε. Then the M-H chain is f -irreducible and aperiodic.

Here, the support E means that f(x) > 0 if and only if x ∈ E . In fact, the
conditions imply that the M-H chain is ν-irreducible, where ν is the Lebesgue
measure, which implies f -irreducibility (why?). We consider some examples.

Example 15.7 (continued). Suppose that f is continuous and has sup-
port (a − 1, a + 1) for some a ∈ R. Let g(x) = 1(−1<x<1)/2 [i.e., the pdf
of Uniform(−1, 1)]. Also, let 0 < b < 1. Clearly, f is bounded and positive
on every compact subset of (a− 1, a+ 1). Furthermore, let δ = b/2. For any
x, y ∈ (a− 1, a+ 1) such that |x− y| ≤ δ, we have

|y − a− b(x− a)| = |y − x+ (1 − b)(x− a)|
≤ |y − x| + (1 − b)|x− a|
< δ + 1 − b = 1 − b/2 < 1;

hence, q(x, y) = g{y − a − b(x − a)} = 1/2. Therefore, the conditions of
Theorem 15.4 are satisfied. It follows that the conclusions of Theorem 15.1
hold for the AR chain and, hence, the random walk chain (Example 15.6) as
a special case.

Example 15.8 (continued). Suppose that f is the pdf of a truncated dis-
tribution whose pdf is continuous and positive everywhere. In other words,
f(x) = h(x), x ∈ [A,B], and f(x) = 0 elsewhere for some A < B, where
h(x) is continuous pdf such that h(x) > 0 for all x. Let g be a pdf that
is also continuous and positive everywhere. Clearly, f is bounded and pos-
itive on every compact subset of its support E = [A,B]. Furthermore, let
a1 = infx∈[A,B] f(x) and a2 = infx∈[A,B] g(x), which are both positive. By
(15.13), there is a constant c > 0 such that q(x, y) = c[f(y) ∧ {bg(y)}]. Thus,
for any x, y ∈ [A,B], we have q(x, y) ≥ c{a1 ∧ (ba2)} = ε > 0; so the condi-
tions of Theorem 15.4 are satisfied for the ε and any δ > 0. It follows that the
convergence results of Theorem 15.1 hold for the rejection sampling chain in
this special case.

15.4 Monte Carlo EM algorithm

The EM (Expectation–Maximization) algorithm was originally proposed by
Dempster et al. (1977) to overcome computational difficulties associated with
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the maximum likelihood method. A key element of the EM algorithm is the so-
called incomplete data. Usually, these consist of the observed data, y, and some
unobserved random variables, v. For example, v may be a vector of missing
observations, or random effects in a linear mixed model, or a GLMM. The
idea is to choose v appropriately so that maximum likelihood becomes easy
for the complete data. Let w = (y′, v′)′ denote the complete data. Suppose
that w has a pdf f(w|θ) that depends on a vector θ of unknown parameters.
In the E-step of the algorithm, one computes the conditional expectation

Q{θ|θ(k)} = E{log f(w|θ)|y, θ(k)},
where θ(k) is the estimated θ at the current iteration k. Then, in the M-step,
one maximizes Q{θ|θ(k)} with respect to θ to obtain an updated estimator
θ(k+1). The procedure is iterated until convergence (e.g., Wu 1983). Here, we
are particularly interest in using the EM algorithm for mixed model analysis.
Laird and Ware (1982) applied the EM algorithm to the estimation of the
variance components in a Gaussian mixed model (see Section 12.2). They
focused on a special class of Gaussian mixed models for longitudinal data
analysis (e.g., Diggle et al. 1996), but the same idea applies to Gaussian
mixed models with multiple random effect factors that can be expressed as

y = Xβ + Z1v1 + · · · + Zsvs + e, (15.15)

where β is the vector of fixed effects; each vr is a vector of random effects
that are independent and distributed as N(0, σ2

r), 1 ≤ r ≤ s; e is a vector
of errors that are independent and distributed as N(0, τ2); X,Z1, . . . , Zs are
known matrices; and v1, . . . , vs, and e are independent. For simplicity, let
X be of full rank. If we treat the random effects as missing data, we have
v = (v′1, . . . , v

′
s)
′. The unknown parameters are θ = (β′, τ2, σ2

1 , . . . , σ
2
s)′. The

log-likelihood based on the complete data has the expression

l = c− 1

2

(
n log τ2 +

s∑
r=1

mr log σ2
r +

s∑
r=1

|vr |2
σ2

r

+
1

τ2

∣∣∣∣∣y −Xβ −
s∑

r=1

Zrvr

∣∣∣∣∣
2
⎞⎠ , (15.16)

where c does not depend on the data or parameters, n is the dimension of y,
and mr is the dimension of vr (Exercise 15.13). To complete the E-step, we
need expressions for E(vr|y) and E(|vr|2|y), 1 ≤ r ≤ s. It can be shown that

E(vr|y) = σ2
rZ

′
rV
−1(y −Xβ),

E(|vr|2|y) = σ4
r (y −Xβ)′V −1ZrZ

′
rV
−1(y −Xβ)

+ σ2
rmr − σ4

rtr(Z ′rV
−1Zr), 1 ≤ r ≤ s, (15.17)

where V = τ2In +
∑s

r=1 σ
2
rZrZ

′
r (Exercise 15.13). Once the E-step is done,

the M-step is easier, because the maximizer of E{l|y, θ(k)} is given by θ(k+1) =
[{β(k+1)}′, {τ2}(k+1), {σ2

1}(k+1), . . . , {σ2
s}(k+1)]′, where, in particular,
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β(k+1) = (X ′X)−1X ′
{
y −

s∑
q=1

ZqE(vq|y)|θ=θ(k)

}
,

{σ2
r}(k+1) =

1

mr
E(|vr|2|y)|θ=θ(k) , 1 ≤ r ≤ s, (15.18)

and there is also a closed-form expression for {τ2}(k+1) in terms of y and θ(k).
However, the strategy encounters some difficulties when dealing with

GLMMs. The problem is the E-step. There are no closed-form expressions
for the conditional expectations such as (15.17). In some relatively simple
cases, the conditional expectations may be evaluated using numerical integra-
tion, but for more complicated cases, such as GLMMs with crossed random
effects (see Example 15.1), numerical integration may be intractable. McCul-
loch (1994) proposed using the Gibbs sampler to approximate the conditional
expectations in the E-step. He considered a special case of the GLMM that can
be expressed as a threshold model. Let ui, i = 1, . . . , n, be some continuous
random variables that are unobservable. Instead, one observes yi = 1(ui>0);
that is, whether or not ui exceeds a threshold which, without loss of gener-
ality, is set to zero. Such models have been used in economics to describe,
for example, the mechanisms that drive particular choices of consumers (e.g.,
Manski and McFadden 1981). To incorporate with the covariate information
and random effects, a linear mixed model is assumed for u = (ui)1≤i≤n so
that it satisfies (15.15) with y replaced by u, and everything else being the
same. McCulloch showed that, in this case, the Gibbs sampler for the E-step
is equivalent to the following:

1. Compute μi = E(ui|uj, j �= i) = x′iβ + c′i(u−i −X−iβ), where x′i is the
ith row of X , ci = Cov(ui, u−i), u−i = (uj)j 
=i, and X−i is X without its ith
row; also compute σ2

i = var(ui|uj, j �= i).
2. Simulate ui from a truncated normal distribution with mean μi and

standard deviation σi so that ui is simulated from the distribution truncated
above zero if yi = 1 and from the distribution truncated below zero if yi = 0.

Using the Gibbs sampler, McCulloch (1994) analyzed the salamander mat-
ing data (see Example 15.1) via the EM algorithm and obtained the MLEs of
the parameters under the GLMM with crossed random effects.

In general, an EM algorithm that involves Monte Carlo approximations
in the E-step is called a Monte Carlo EM (MCEM) algorithm. The MCEM
by the Gibbs sampler described above has certain limitations. For example,
it only applies to the probit link (e.g., McCullagh and Nelder 1989) with nor-
mally distributed random effects; otherwise, the sampling from the conditional
distribution of ui given u−i may encounter a problem. To extend the MCEM
to more general GLMMs, McCulloch (1997) used the M-H algorithm instead
of the Gibbs sampler for the E-step. Consider a GLMM with a canonical link
(McCullagh and Nelder 1989) such that the conditional density of yi given
the random effects v can be expressed as
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f(yi|v, β, φ) = exp

{
yiηi − b(ηi)

a(φ)
+ c(yi, φ)

}
, (15.19)

where ηi = x′iβ + ziv, xi and zi are known vectors, a(·), b(·), and c(·, ·) are
known functions, β is a vector of fixed effects, and φ is an additional dispersion
parameter. Furthermore, it is assumed that v ∼ g(·|θ), where θ is a vector of
variance components. Such GLMMs were considered in Section 12.4, where it
was indicated that maximum likelihood estimation of the model parameters
may be computationally challenging. McCullogh (1997) suggested evaluating
the MLEs using the MCEM. Note that the log-likelihood function based on
the complete data can be expressed as

l = log f(y|v, β, φ) + log g(v|θ).

Thus, the E-step involves evaluations of the conditional expectations

E{log f(y|v, β, φ)|y} and E{log g(v|θ)|y}. (15.20)

To obtain Monte Carlo approximations to (15.20), we need to draw samples
from the conditional distribution fv|y, which is the target distribution f by
the notation of Section 15.3. Let v = (vi)1≤i≤m. McCullogh (1997) suggested
using the M-H algorithm in anm-step cycle at each iteration, with one compo-
nent being sampled in each step. A variation is the following, which is simpler
for illustration purpose. Let v be be previous draw. We need a jumping distri-
bution to sample a candidate from for the current draw. A natural choice is
the (marginal) distribution of v—that is, q = g(·|θ) (note that, in the E-step,
all of the parameters, β, φ, and θ, are evaluated at the current value). There
is another advantage for this choice of q: The acceptance probability for the
M-H algorithm has the neat form

α =

{∏n
i=1 f(yi|v∗, β, φ)∏n
i=1 f(yi|v, β, φ)

}
∧ 1, (15.21)

where v∗ is the candidate sampled from g(·|θ) (Exercise 15.14). Note that the
expression only involves the conditional density of y given v, which is given
by (15.19) in closed form. We consider an example.

Example 15.9. Consider the mixed logistic model (13.1). Denote the ran-
dom effects by v instead. Then we have

f(yij |v, β, σ) =
exp{yij(x

′
ijβ + vi)}

1 + exp(x′ijβ + vi)
.

Furthermore, we have g(v|σ) = (2πσ)−m/2 exp(−|v|2/2σ2), where |v|2 =∑m
i=1 v

2
i . Thus, the sampling from q is done by drawing v∗1 , . . . , v

∗
m indepen-

dently from N(0, σ2). Furthermore, we have (verify)
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α =

⎧⎨⎩
m∏

i=1

ni∏
j=1

1 + exp(x′ijβ + vi)

1 + exp(x′ijβ + v∗i )

⎫⎬⎭ exp

{
m∑

i=1

yi·(v∗i − vi)

}
.

It should be pointed out that MCEM does not have to involve MCMC,
as above. Other Monte Carlo methods, such as i.i.d. sampling, may also be
used, depending on the situation. For example, Booth and Hobert (1999) used
a strategy called importance sampling for the E-step, which allowed them to
draw i.i.d. samples for the Monte Carlo approximation. They noted that the E-
step is all about computing Q{ψ|ψ(k)} = E{log f(y, v|ψ)|y, ψ(k)}, where ψ =
(β′, φ, θ′)′ and k represents the current step. The expected value is computed
under the conditional distribution of v given y, which has density

f{v|y, ψ(k)} ∝ f{y|v, β(k), φ(k)}f{v|θ(k)}, (15.22)

where f(v|θ) represents the (marginal) density of v when θ is the parameter
vector, and so on. There is a normalizing constant involved in (15.22), which
is the (marginal) density f{y|ψ(k)}. This constant is difficult to evaluate;
however, as noted by Booth and Hobert, the constant does not play a role in
the next M-step, because it only depends on ψ(k), which is held fixed during
the maximization. The idea of importance sampling is the following. Suppose
that one wishes to evaluate an integral of the form I(f) =

∫
f(x) dx for some

function f ≥ 0. We can write the integral in an alternative expression:

I(f) =

∫
f(x)

h(x)
h(x) dx = E

{
f(ξ)

h(ξ)

}
,

where ξ has pdf h. Here, h is chosen such that f(x) > 0 implies h(x) > 0; in
other words, the support of f is a subset of the support of h. Let ξ1, . . . , ξL
be i.i.d. samples drawn from h; then the integral I(f) can be approximated

by L−1
∑L

l=1 f(ξl)/h(ξl) according to the SLLN, if E{f(ξ)/h(ξ)} < ∞. For
the evaluation of the conditional expectation in the E-step, Booth and Hobert
suggested to use a multivariate t-distribution as h. The latter depends on the
dimension d, mean vector μ, covariance matrix Σ, and degrees of freedom ν,
so that it has the joint pdf

h(x) =
Γ{(d+ ν)/2}
(πν)d/2Γ (ν/2)

|Σ|−1/2

{
1 +

1

ν
(x− μ)′Σ−1(x− μ)

}−(d+ν)/2

,

x ∈ Rd, where Γ is the gamma function. Let v∗1 , . . . , v
∗
L be i.i.d. samples

generated from h; then we have the approximation

Q{ψ|ψ(k)} ≈ 1

L

L∑
l=1

wkl log f(y, v∗l |ψ), (15.23)

where wkl = f{v∗l |y, ψ(k)}/h(v∗l ), known as the importance weights. The right
side of (15.23) is then maximized with respect to ψ to get ψ(k+1). As noted,
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the right side of (15.23) is not a completely known function of ψ due to the
unknown constant f{y|ψ(k)}, but the latter makes no difference in the M-
step and therefore can simply be ignored (i.e., replaced by 1). Note that the
importance weights do not depend on ψ and therefore are treated as constants
during the M-step (see Exercise 15.15).

There have been some good advances in computing the MLEs in the
GLMM using MCEM algorithms. Although the procedures are still compu-
tationally intensive, with the fast developments of computer hardware and
technology, it is very probable that computation of the exact MLEs in the
GLMM will eventually become a routine operation. On the other hand, one
important theoretical problem regarding the MLEs in the GLMM remains
unsolved. To make a long story short, recall the salamander mating data that
have had a significant impact to the development of GLMMs as well as other
fields even since its original publication by McCullagh and Nelder (1989, Sec-
tion 14.5). See, for example, Karim and Zeger (1992), Lin and Breslow (1996),
Jiang (1998a), McCulloch (1994), and Booth and Hobert (1999). In partic-
ular, the authors of the last two papers were able to compute the MLEs of
a GLMM that fits the data. However, one fundamental question has yet to
be answered: Are the MLEs consistent as the number of female and male
salamanders involved in the experiments grow? To make this an even sim-
pler question, consider Example 15.1 (or earlier Example 12.9). Suppose that
σ2

1 = σ2
2 = 1; so μ is the only unknown parameter. Suppose that m1,m2 → ∞.

Is the MLE of μ consistent? Even for this seemingly trivial case, the answer
is not known but is expected to be anything but trivial (see Exercise 15.16)!

15.5 Convergence rates of Gibbs samplers

The key to the success of a MCMC strategy is the convergence of the Markov
chain to its stationary, or equilibrium, distribution. A important practical
issue, however, is not just whether or not the chain converges, but how fast
it converges, for it certainly would not help if the Markov chain takes years
to converge. In fact, the convergence rate has been a main factor in designing
more efficient MCMC algorithms, although it is not the only factor.

Consider, for example, a random variable X = (X1, X2, X3) with three
components. Suppose that it is desired to draw samples from the distribution
of X , f(·). For notation simplicity, let f(ξ|η) denote a conditional density,
with respect to a certain measure ν, of ξ given η, and so on. Several Gibbs
sampler strategies are in consideration. The direct Gibbs sampler draws sam-
ples from f(xi|x−i), i = 1, 2, 3, in turn, where x−i is the vector (xj)j 
=i. Now,
suppose that we are able to draw x2 and x3 together from f(x2, x3|x1). This
will be the case if we are able to draw x2 from f(x2|x1) and then x3 from
f(x3|x1, x2). This leads to an alternative strategy, called grouping, by draw-
ing from f(x1|x2, x3) and f(x2, x3|x1) in turn. In other words, we are running
a two-stage Gibbs sampler that involves x1 and (x2, x3). Furthermore, sup-
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pose that we can draw x1 from f(x1|x2) and x2 from f(x2|x1) (i.e., with
x3 integrated out). Then the Gibbs sampler can be restricted to x1 and x2.
This strategy is called collapsing. It makes sense, in particular, if the problem
of interest only involves the joint distribution of X1 and X2. In conclusion,
we have, at least, three different strategies: direct, grouping, and collapsing.
Which one should we use?

As noted, one way to investigate the problem is to study the convergence
rates of the corresponding (Gibbs) Markov chains. Traditionally, such studies
were done by making use of the (advanced) theory of Markov chains (e.g., Ge-
man and Geman 1984; Nummelin 1984; Tierney 1991). In a series of papers,
Liu (1994) and Liu et al. (1994, 1995) provided an “elementary” approach to
the problem using simple functional analysis and inequalities. Let X0, X1, . . .
be consecutive samples of a stationary Markov chain with stationary distri-
bution f and transition kernel K. For the rest of the section, E( ) and var( )
denote the expectation and variance under f , whereas Ep( ) is the expectation
under a probability measure p, if it is different from f . The Hilbert space of
all mean 0, square-integrable, complex-valued functions of X is denoted by

L2
0(f) = {g(X) : E{g(X)} = 0 and E{|g(X)|2} < ∞}.

The inner product in the Hilber space is defined by

〈g(X), h(X)〉 = E{g(X)h(X)}, g(X), h(X) ∈ L2
0(f),

where c̄ denotes the complex conjugate of c (and also |c| denotes the modulus
of the complex number c). The variance of an element g(X) in L2

0(f) is then
defined as ‖g(X)‖2 = 〈g(X), g(X)〉 = E{|g(X)|2}. Define a operator F on
L2

0(f), called the forward operator, by

Fg(X) = E{g(X1)|X0 = X} =

∫
g(y)K(X, y) dy. (15.24)

It is clear that F is an operator from L2
0(f) to itself. Define the norm of F as

‖F‖ = sup
g∈L2

0(f),‖g‖=1

‖Fg‖,

where g is a short form of g(X). Let p be a probability measure. The Pearson
χ2-discrepancy between p and f , denoted by df (p, f), is defined as

d2
f (p, f) =

∫ {
p2(x)

f(x)

}
dx− 1. (15.25)

It is easy to see that d2
f (p, f) = var{p(X)/f(X)} and, therefore, nonnegative

(which explains the use of square). However, df is not a distance (Exercise
15.17). Nevertheless, it can be shown that df is a stronger measure of discrep-
ancy than the L1-distance, and d2

f is a stronger measure than a certain kind
of Kullback–Leibler information distance (Exercise 15.17).
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Let ft denote the pdf of Xt. Note that, by the Markovian property, we
have the following expressions (Exercise 15.18):

Eft{g(X)} =

∫ ∫
g(y)K(x, y)ft−1(x) dx dy, (15.26)

E{g(X)} =

∫ ∫
g(y)K(x, y)f(x) dx dy (15.27)

for every g ∈ L2
0(f). It follows that

Eft{g(X)} − E{g(X)} =

∫ ∫
g(y)K(x, y)

{
ft−1(x)

f(x)
− 1

}
f(x) dx dy

=

∫
Fg(x)

{
ft−1(x)

f(x)
− 1

}
f(x) dx

according to the definition of F, (5.24) (verify the last expression). It follows,
by the Cauchy–Schwarz inequality [see (5.60)], that

|Eft{g(X)} − E{g(X)}| ≤ ‖Fg(X)‖df (ft−1, f)

≤ ‖F‖ · ‖g(X)‖df (ft−1, f). (15.28)

Note that (Exercise 15.18)∫ {
ft−1(x)

f(x)
− 1

}2

f(x) dx = d2
f (ft−1, f). (15.29)

Note that (15.28) holds for every g(X) ∈ L2
0(f). Now, consider g(X) =

ft(X)/f(X)− 1. We have E{g(X)} = 0 and

E{g(X)2} =

∫ {
ft(x)

f(x)
− 1

}2

f(x) dx = d2
f (ft, f) (15.30)

[see (15.29)], which we assume to be finite. Thus, g(X) ∈ L2
0(f) and therefore

satisfies (15.28). However, for this particular g(X), the left side of (15.28) is
equal to d2

f (ft, f), whereas the right side is equal to ‖F‖df (ft, f)df (ft−1, f).
Thus, again, assuming that (15.30) is finite, we obtain the inequality

df (ft, f) ≤ ‖F‖df (ft−1, f). (15.31)

The inequality applies to any t so long as (15.30) is finite. So, if we assume
that the χ2-discrepancy is finite for some t = t0, then we have, for any t ≥ t0,

df (ft, f) ≤ ‖F‖df (ft−1, f)

≤ ‖F‖2df (ft−2, f)

· · ·
≤ ‖F‖t−t0df (ft0 , f)

= c0‖F‖t, (15.32)
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where c0 = df (ft0 , f)/‖F‖t0 <∞.
Inequalities (15.32) suggest that the convergence rate of the Markov chain

is closely related to ‖F‖, the norm of the forward operator. Furthermore, Liu
et al. (1995) showed that, under mild conditions, we have ‖F‖ < 1 (it is
easy to show ‖F‖ ≤ 1; see Exercise 15.19). Thus, the Pearson χ2-discrepancy
between ft and f decreases at a geometric rate, and the rate is determined
by ‖F‖. Let X ∼ f ; then for any B ∈ B, the Borel σ-field, we have

|P(Xt ∈ B) − P(X ∈ B)| =

∣∣∣∣∫
B

ft(x) dx−
∫

B

f(x) dx

∣∣∣∣
≤
∫

|ft(x) − f(x)| dx
= ‖ft − f‖L1

≤ df (ft, f)

[see Exercise 15.17, part (ii)]. Thus, supB∈B |P(Xt ∈ B) − P(X ∈ B)| also
converges to zero at the above geometric rate.

Returning to the three Gibbs sampler schemes discussed earlier. Let Fd,
Fg, and Fc denote the forward operators of the direct, grouped, and collapsed
Gibbs samplers. Liu et al. (1994) proved the following elegant inequalities

‖Fc‖ ≤ ‖Fg‖ ≤ ‖Fd‖. (15.33)

The results are intuitive, in view of the above result on the convergence rate.
For example, with grouping, one is running a two-stage cycle rather than three-
stage one; so would expect a faster convergence rate; that is, ‖Fg‖ ≤ ‖Fd‖.
Similarly, since one additional variable, x3, has to be sampled and updated
jointly with x2, one would expect the collapsed chain to converge faster than
the grouped chain; that is, ‖Fc‖ ≤ ‖Fg‖. To establish these inequalities, we
introduce another concept, called maximum correlation, and relate it to the
norm of the forward operator. Given two vector-valued random variables ξ
and η, their maximum correlation is defined as

ρ(ξ, η) = sup
g,h:var{g(ξ)}<∞,var{h(η)}<∞

cor{g(ξ), h(η)}, (15.34)

where cor(U, V ) = cov(U, V )/
√

var(U)var(V ). A useful alternative expression
is given by (Exercise 15.20)

{ρ(ξ, η)}2 = sup
g:var{g(ξ)}=1

var[E{g(ξ)|η}]. (15.35)

A connection between the forward operator and the maximum correlation is
the following, which can be derived directly from the definitions of F [see
(15.24)] as well as its norm, and (15.35) (Exercise 15.20):

‖F‖ = ρ(X0, X1). (15.36)
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Consider a stationary Markov chain Mt = (Xt, Ut), t = 0, 1, . . ., generated
by a two-stage Gibbs sampler that cycles between X and U , where Ut may
be multidimensional. Liu et al. (1994, Theorem 3.2) showed the following
connection regarding the maximum correlation between consecutive samples
of the chain and that between X and U within the same cycle,

ρ(Mt−1,Mt) = ρ(Xt, Ut), t = 1, 2, . . . . (15.37)

Now, use the notation X , Y , and Z for X1, X2, and X3, respectively. To
establish the left-side inequality in (15.33), first consider Ut = Yt. By (15.36)
and (15.37), we have ‖Fc‖ = ρ(Mt−1,Mt) = ρ(Xt, Yt), which is

sup
g:var{g(Xt)}=1

var[E{g(Xt)|Yt}]. (15.38)

Now, consider Ut = (Yt, Zt). Again, by (15.36) and (15.37), we have ‖Fg‖ =
ρ(Mt−1,Mt) = ρ{Xt, (Yt, Zt)}, which is

sup
g:var{g(Xt)}=1

var[E{g(Xt)|Yt, Zt)}]. (15.39)

That (15.38) is bounded by (15.39) follows from the facts that, with ξ =
E{g(Xt)|Yt, Zt}, η = Yt, and ζ = E{g(Xt)|Yt}, we have var(ξ) = var{E(ξ|η)}+
E{var(ξ|η)} ≥ var{E(ξ|η)} = var(ζ).

The proof of the right-side inequality is more technical and involves the
properties of the backward operator, defined as

Bg(X) = E{g(X0)|X1 = X} =

∫
g(x)

f(x)K(x,X)

f(X)
dx. (15.40)

The backward operator also satisfies (15.36) (with F replaced by B). See Liu
et al. (1994) for more details.

Inequalities (15.32) and (15.33) suggest that, in terms of convergence rate,
collapsing is better than grouping, which, in turn, is better than the direct
Gibbs sampler. However, one cannot simply conclude that collapsing is always
the best strategy, followed by grouping, and so on, based on these facts alone.
The reason is that, for example, sometimes it is much easier to sampleX1 given
X2 and X3 than to sample X1 given X2, and this would give an advantage to
grouping in terms of sampling. As noted by Liu (1994), a good Gibbs sampler
must meet two conflicting criteria: (i) drawing one component conditioned
on the others must be computationally simple and (ii) the Markov chain
induced by the Gibbs sampler must converge reasonably fast to its stationary
distribution. Given the variables X1, . . . , Xs, there are many ways to group
them. How to do so is a decision that the users have to make, “providing
an opportunity to their ingenuity” (Liu 1994, p. 963). The results about the
convergence rates should be helpful to the users in making a compromise
decision. For example, it seems to be a reasonable strategy to “group” or
“collapse” whenever it is computationally feasible. We consider an example.
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Example 15.10. Liu (1994) considered the following Bayesian missing value
problem. Recall that the posterior distribution is calculated by (15.3), where
x represents the vector of observations. In many applications, however, the
data contain missing values. Let xi = (yi, zi), i = 1, . . . , n denote the data,
where yi is the observed part and zi is the missing part, for the ith subject.
Write X = (Y, Z), where Y = (y1, . . . , yn) and Z = (z1, . . . , zn). The posterior
based on the observed data can be expressed as

p(θ|Y ) =

∫
p(θ|Y, Z)f(Z|Y ) dZ, (15.41)

where p(θ|Y, Z) is the posterior based on the complete data and f(Z|Y ) is the
conditional density of Z given Y , known as the predictive distribution. If we
are able to draw samples Z(1), . . . , Z(K) from the latter, then, by the ergodic
theorem (see Section 7.6) and (15.41), we have

p(θ|Y ) ≈ 1

K

K∑
k=1

p{θ|Y, Z(k)},

if K is large. The problem is that it is often impossible to draw Z directly
from the predictive distribution. Tanner and Wong (1987) proposed a strat-
egy, called data augmentation (DA), to handle the problem. The DA may be
regarded as a two-stage Gibbs sampler, in which one draws θ from p(θ|Y, Z)
and then Z from f(Z|θ, Y ), and iterates. As we have seen, this generates a
Markov chain whose stationary distribution is f(θ, Z|Y ), the joint conditional
distribution of θ and Z given Y , which is, of course, more than we are asking
for because f(Z|Y ) can be evaluated from f(θ, Z|Y ).

If our main interest is the predictive distribution, this can be done by
collapsing down θ—namely, from a Gibbs sampler with n + 1 components,
θ, z1, . . . , zn (which is what DA does), to that with n components, z1, . . . , zn

(note that everything is conditional on Y , of course). To see that this is some-
thing often convenient to do, consider a special case. Suppose that X1, X2,
and X3 are random variables such that X1 and X3 are independent given X2,

P(X2 = 1|X1 = 0) = P(X2 = 0|X1 = 1) = α,

P(X3 = 1|X2 = 0) = P(X3 = 0|X2 = 1) = β,

where α, β ∈ (0, 1) are parameters. This is a simple case of the so-called graph-
ical model. Suppose that the incomplete data for (X1, X2, X3) are (1, 1, 0),
(1, z2, 1), and (1, z3, 1), where z2 and z3 are missing values (note that there
is no z1). Here, Y = (x11, x12, x13, x21, x23, x31, x33) = (1, 1, 0, 1, 1, 1, 1). Write
u = (x11, x12, x13) and v = (x21, x23, x31, x33). Below, let f(ξ|η) denote the
conditional pmf of ξ given β and refer the derivations to an exercise (Exercise
15.21). It is can be shown that

f(v, z2, z3|u, α, β) = α2−z2−z3(1 − α)1+z2+z3β3−z2−z3(1 − β)z2+z3 . (15.42)
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By integrating out α and β over [0, 1] × [0, 1] from (15.42), an expression for
f(v, z2, z3|u) is obtained. Then since

f(z3|z2, Y ) =
f(z2, z3|Y )

f(z2|Y )
=

f(v, z2, z3|u)

f(z2|Y )f(v|u)
,

it can be shown that

P(z3 = 0|z2, Y )

P(z3 = 1|z2, Y )
=

(2 − z2)(3 − z2)

(1 + z2)(2 + z2)
. (15.43)

From (15.43), the conditional distribution of z3 given z2 and Y can be easily
derived, and similarly for the conditional distribution of z2 given z3 and Y .

Another implication of (15.32) and (15.36) is that convergence rate of the
Gibbs sampler is closely related to the autocorrelation, or autocovariance, of
the chain generated by the Gibbs sampler—the closer the autocovariance to
zero, the faster the chain is converging. This important observation suggests
a way of monitoring the convergence by plotting the autocovariance (or au-
tocorrelation) function. For example, Figure 15.1, which is kindly provided
by Professor J. S. Liu, shows an autocovariance plot comparing the conver-
gence rates of the direct and collapsed Gibbs samplers for analyzing Murray’s
data (Murry 1977). The data consist of 12 bivariate observations with some
of the components missing. The observations are assumed drawn from a bi-
variate normal distribution with means zero and unknown covariance matrix.
Liu (1994) compared the direct and collapsed Gibbs sampling schemes in DA
(see Example 15.10). In this case, the collapsed Gibbs sampler involves draw-
ing from the noncentral t-distribution, which is easy to implement. The plot
shows two groups of autocovariance curves, each with eight curves for eight
missing values. The curves are estimated from simulations of 100 independent
chains with 100 iterations for each chain. The estimated autocovariance for
the direct scheme is about 2.5 times larger than that for the collapsed scheme,
indicating a (much) faster convergence rate for the collapsed Gibbs sampler.

15.6 Exercises

15.1. Using the simple Monte Carlo method based on the SLLN [i.e.,
(15.2)] numerically evaluate ρw, ρs, and the asymptotic significance level in
Table 11.2 for α = 0.05 for the case F = t3. Try n = 1000 and n = 10, 000.
Do the numerical values seem to stabilize (you can find out by repeating the
calculation with the same n and comparing the results to see how much they
vary)? What about n = 100, 000.

15.2. This exercise is in every book, chapter, or section about Bayesian
inference. Suppose that the distribution of y depends on a single parameter,
θ. The conditional distribution of the observation y given θ is N(θ, σ2), where
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Fig. 15.1. A plot from Liu (1994): The upper group of curves correspond to the
direct, while the lower group to the collapsed, Gibbs samplers.

σ2 is assumed known. Let the prior for θ also be normal, say, θ ∼ N(μ, τ2).
Derive the posterior of θ.

15.3. Now, let us consider a discrete situation. Suppose that the observa-
tion y follows a Poisson distribution with mean θ. Furthermore, the prior for
θ is proportional to exp(ν log θ − ηθ); that is,

π(θ) ∝ exp{ν log(θ) − ηθ},

where η, ν are some hyperparameters. What is the posterior of θ?
15.4. Regarding rejection sampling, introduced in Section 15.1, show that

the pdf of the drawn θ conditional on u ≤ p(θ)/bq(θ) is p(θ). (Hint: Use Bayes’
theorem; see Appendix A.3).

15.5. This exercise is regarding the Markovian properties of the Gibbs
sampler for the special case described above (15.5).

(i) Show that Yt is a Markov chain and derive its transition kernel.
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(ii) Show that Zt = (Xt, Yt)
′ is a Markov chain with the transition kernel

(15.7).
15.6. Regarding Examples 15.2 and 15.3, show the following:
(i) fX(x), or πX(B) =

∫
B
fX(x) dx, is a stationary distribution for the

Markov chain Xt.
(ii) fY (y), or πY (B) =

∫
B
fY (y) dy, is a stationary distribution for the

Markov chain Yt.
(iii) f(x, y), or π(B) =

∫
B
f(x, y) dx dy, is a stationary distribution for

the Markov chain Zt.
15.7. Consider the bivariate-normal Gibbs sampler of Example 15.4.
(i) Show that the marginal chain Xt has transition kernel

K(u, v) =
1

2π(1 − ρ2)

∫
exp

{
− (v − ρy)2

2(1 − ρ2)
− (y − ρu)2

2(1 − ρ2)

}
dy.

(ii) Show that the stationary distribution of the chain Xt is N(0, 1).
(iii) Show that Xt+1 = ρ2Xt + εt, t = 1, 2, . . ., where εt are i.i.d. with

distributionN(0, 1−ρ4). Using this relation, show thatXt is a (scalar) Markov
chain with stationary distribution N(0, 1) (here you are not supposed to use
the results of the previous parts, but rather to derive it directly).

15.8. Verify the expressions for the conditional density ofX1 givenX2 = x2

and X3 = x3, as well as the joint density of X1, X2 in Example 15.5.
15.9. This exercise provides a very simple special case of the Gibbs sampler

that was considered by Casella and George (1992). Let the state-space be
S = {0, 1}2. A probability distribution π defined over S has π({(i, j)}) = πij ,
i, j = 0, 1. The Gibbs sampler draws θ = (θ1, θ2) according to the following:

1. Given θ2 = j, draw θ1 such that

π1(0|j) = P(θ1 = 0|θ2 = j) =
π0j

π·j
, π1(1|j) = P(θ1 = 1|θ2 = j) =

π1j

π·j
,

where π·j = π1j + π2j, j = 0, 1.
2. Given θ1 = i, draw θ2 such that

π2(0|i)) = P(θ2 = 0|θ1 = i) =
πi0

πi·
, π2(1|i) = P(θ2 = 1|θ1 = i) =

πi1

πi·
,

where πi· = πi0 + πi1, i = 0, 1.
Given the initial value θ0 = (θ01, θ02), let θt = (θt1, θt2)

′ be the drawn of
iteration t, t = 1, 2, . . ..

(i) Show that θt is a (discrete state-space) Markov chain with transition
probability

p{(i, j), (k, l)} =
πkjπkl

π·jπk·
.

(ii) Show that π is the stationary distribution of the chain.
(iii) Using the result of Section 10.2 (in particular, Theorem 10.2), find

simple sufficient conditions (or condition) for the convergence of the Markov
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chain. Are the sufficient conditions (or condition) that you find also necessary,
and why? [Hint: The results of Section 10.2 apply to vector-valued discrete
space Markov chains in obvious ways. Or, if you wish, you may consider a
scalar chain that assumes values in correspondence with θt (e.g., ψt = 10θt1 +
θt2). This is always possible for a discrete state-space chain.]

15.10. Show that (15.11) implies that f is the stationary distribution with
respect to K.

15.11. Show that the M-H algorithm, described below (15.12), generates a
Markov chain Xt whose transition kernel is given by (15.10) with α defined by
(15.12) if f(x)q(x, y) > 0, and α = 1 otherwise. Furthermore, the transition
kernel is reversible with respect to f , the target density, in the sense of (15.11).
[For simplicity, you may assume that f(x)q(x, y) > 0 for all x, y.]

15.12. This exercise is related to some of the details of the rejection sam-
pling chain of Example 15.8 as a special case of the M-H algorithm.

(i) Show that the rejection sampling scheme described above (15.13) is
equivalent to that described in Section 15.1 that involves sampling of a u
from Uniform[0, 1].

(ii) Show that the jumping distribution q(x, y) satisfies (15.13).
(ii) Show that the acceptance probability of (15.12) reduces to (15.14).
15.13. Verify that under the Gaussian mixed model (15.15), the log-

likelihood function can be expressed as (15.16), where c does not depend
on the data or parameters. Also verify the expressions of the conditional ex-
pectations (15.17).

15.14. Regarding the M-H algorithm described below (15.20), show that
the acceptance probability of the M-H algorithm [i.e., (15.12)] can be ex-
pressed as (15.21).

15.15. Specify the right side of (15.23) for the mixed logistic model of
Example 15.9. Also specify the importance weights wkl by replacing f{y|ψ(k)}
by 1, which does not affect the result of the M-step.

15.16. Recall the open question given at the end of Section 15.4 regarding
the consistency of MLE in a very simple case of the GLMM. The conjectured
answer to the question is yes. Here is evidence (and you can surely find more).
Let m = m1∧m2. Consider a subset of the data Xk = ykk, k = 1, . . . ,m. Note
that X1, . . . , Xm are i.i.d. Let μ̃ denote the MLE of μ based on X1, . . . , Xm.

Show that μ̃ is a consistent estimator of μ; that is, μ̃
P−→ μ as m → ∞. The

point is that even the MLE based on a subset of the data is consistent. If one
uses the MLE based on the full data (and therefore more information), one
should do better, right? The challenge (not necessarily for this exercise) is to
provide a rigorous justification.

15.17. This exercise is regarding the measure df defined by the square root
of (15.25).

(i) Show that df is not a distance [the definition of a distance is given by
the requirements 1–4 below (6.63)].
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(ii) Show that df is a stronger measure of descrepancy than the L1-distance
in the sense that ‖p− f‖L1 ≤ df (p, f), where

‖p− f‖L1 =

∫
|p(x) − f(x)| dx

is the L1-distance between p and f .
(iii) Show that d2

f is a stronger measure of descrepancy than the Kullback–
Leibler information distance defined as

dKL(p, f) = Ep

[
log

{
p(X)

f(X)

}]
;

that is, we have dKL(p, f) ≤ d2
f (p, f).

15.18. Continue with the previous exercise.
(i) Verify expressions (15.26) and (15.27).
(ii) Verify the identity (15.29).
15.19. Recall the definition of ‖F‖ below (15.24). Show that ‖F‖ ≤ 1.
15.20. This exercise is related to the maximum correlation introduced in

Section 15.5 [see (15.34)].
(i) Verify the alternative expression (15.35).
(ii) Derive the identity (15.36).
15.21. This exercise is related to Example 15.10.
(i) Verify expression (15.42).
(ii) Derive an expression for f(v, z2, z3|u) by integrating out α and β over

[0, 1] × [0, 1] from (15.42).
(iii) Verify (15.43); then derive f(z3|z2, Y ).
(iv) Similarly, derive f(z2|z3, Y ).
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Appendix

A.1 Matrix algebra

A.1.1 Numbers associated with a matrix

Let A = (aij)1≤i≤m,1≤j≤n be an m× n matrix of real numbers. The spectral
norm of A is defined as ‖A‖ = {λmax(A

′A)}1/2, and the 2-norm of A is
defined as ‖A‖2 = {tr(A′A)}1/2, where λmax denotes the largest eigenvalue
(see below). The following inequalities hold (see Lemma 3.7):

‖A‖ ≤ ‖A‖2 ≤ √
m ∧ n‖A‖.

If m = n, A is called a square matrix. The trace of a square matrix A is
defined as the sum of the diagonal elements of A; that is, tr(A) =

∑n
i=1 aii.

The trace has the following properties:
(i) tr(A) = tr(A′), where A′ denotes the transpose of A.
(ii) tr(A + B) = tr(A) + tr(B) for any square matrices A and B of the

same dimension.
(iii) tr(cA) = c tr(A) for any square matrix A and real number c.
(iv) tr(AB) = tr(BA) for any matrices A and B, provided that AB and

BA are well-defined square matrices.
Let π = (π1, . . . , πn) denote an arbitrary permutation of (1, . . . , n). The

number #(π) of inversions of π is the number of exchanges of pairs of integers
π to bring them to the natural order 1, . . . , n. Let A = (aij)1≤i,j≤n be a square
matrix. The determinant of A is defined as

|A| =
∑
all π

(−1)#(π)
n∏

i=1

aπi,i.

The determinant has the following properties:
(i) |A| = |A′|.
(ii) If the row (or column) ofA is multiplied by a number c, |A| is multiplies

by c. It follows that |cA| = cn|A| for n× n matrix A.

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2, © Springer Science+Business Media, LLC 2010
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(iii) If two rows (or columns) of A are interchanged, the sign of |A| changes.
It follows that if two rows (or columns) of A are identical, then |A| = 0.

(iv) The value of |A| is unchanged if to its ith row (column) is added c
times the jth row (column), where c is a real number. Thus, in particular, if
the rows (or columns) of A are not linearly independent, then |A| = 0.

(v) If A = diag(a1, . . . , an), then |A| = a1 · · · an.
(vi) |AB| = |A| · |B| if the determinants are well defined.
(vii) |AA′| ≥ 0 and |A′A| ≥ 0 for any matrix m× n matrix A.

(viii)

∣∣∣∣(A C
0 B

)∣∣∣∣ = |A| · |B|.
(ix) |Im +AB| = |In +BA| for any m× n matrix A and n×m matrix B.

A.1.2 Inverse of a matrix

The inverse of a matrix A is defined as a matrix B such that AB = BA = I,
the identity matrix. The inverse of A, if it exists, is unique and denoted by
A−1. The following are some basic properties of the inverse:

(i) A−1 exists if and only if |A| �= 0.
(ii) (A′)−1 = (A−1)′.
(iii) (cA)−1 = c−1A−1, where c is a nonzero real number.
(iv) (AB)−1 = B−1A−1, if A−1 and B−1 both exist.
(v) diag(a1, . . . , an)−1 = diag(a−1

1 , . . . , a−1
n ). More generally, if A is a

block-diagonal matrix, A = diag(A1, . . . , Ak), where the diagonal blocks
are nonsingular, which is equivalent to |Aj | �= 0, 1 ≤ j ≤ k, then A−1 =
diag(A−1

1 , . . . , A−1
k ).

An inverse-matrix identity that is very useful is the following. For any
n× n nonsingular matrix A, n× q matrix U , and q × n matrix V , we have

(P + UV )−1 = P−1 − P−1U(Iq + V P−1U)−1V P−1. (A.1)

One of the applications of identity (A.1) is the following. Denote the n × 1
vector of 1’s by 1n (and recall that In is the n × n identity matrix). Let
Jn = 1n1′n. Then, by (A.1) it is easy to show that for any real numbers a and
b such that a �= 0 and a+ nb �= 0, we have

(aIn + bJn)−1 =
1

a

(
In − b

a+ nb
Jn

)
;

we also have |aIn + bJn| = an−1(a+ nb).
For any matrix A, whether it is nonsingular or not, there always exists a

matrix A− satisfying AA−A = A. Such an A− is called a generalized inverse
of A. Note that here we use the term “a generalized inverse” instead of “the
generalized inverse” because such an A− may not be unique. Two special
kinds of generalized inverse are often of interest.

Any matrix A− satisfying
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AA−A = A and A−AA− = A−

is called a reflexible generalized inverse of A. Given a generalized inverse A− of
A, one can produce a generalized inverse that is reflexible by A−r = A−AA−.

If the generalized inverse is required to satisfy the conditions, known as
the Penrose conditions, (i) AA−A = A, (ii) A−AA− = A−, (iii) AA− is
symmetric, and (iv) A−A is symmetric, it is called the Moore–Penrose inverse.
In other words, a reflexible generalized inverse that satisfies the symmetry
conditions (iii) and (iv) is the Moore–Penrose inverse. It can be shown that
for any matrix A, its Moore–Penrose inverse exists and is unique.

A.1.3 Kronecker products

Let A = (aij)1≤i≤m,1≤j≤n be a matrix. Then for any matrix B, the Kronecker
product A ⊗ B is defined as the partitioned matrix (aijB)1≤i≤m,1≤j≤n. For
example, if A = Im and B = 1n, then A ⊗ B = diag(1n, . . . , 1n). Below are
some well-known and useful properties of the Kronecker products:

(i) (A1 +A2) ⊗B = A1 ⊗B +A2 ⊗B.
(ii) A⊗ (B1 +B2) = A⊗B1 +A⊗B2.
(iii) c⊗A = A⊗ c = cA, where c is a real number.
(iv) A⊗ (B ⊗ C) = (A⊗B) ⊗ C.
(v) (A⊗B)′ = A′ ⊗B′.
(vi) If A is partitioned as A = [A1 A2], then [A1 A2]⊗B = [A1⊗B A2⊗B].

However, if B is partitioned as [B1 B2], then A⊗ [B1 B2] �= [A⊗B1 A⊗B2].
(vii) (A1 ⊗B1)(A2 ⊗B2) = (A1A2) ⊗ (B2B2).
(viii) If A and B are nonsingular, so is A⊗B, and (A⊗B)−1 = A−1⊗B−1.
(ix) rank(A⊗B) = rank(A)rank(B).
(x) tr(A⊗B) = tr(A)tr(B).
(xi) If A is m×m and B is k × k, then |A⊗B| = |A|m|B|k.
(xii) The eigenvalues of A ⊗ B are all possible products of an eigenvalue

of A and an eigenvalue of B.

A.1.4 Matrix differentiation

If A is a matrix whose elements are functions of θ, a real-valued variable,
then ∂A/∂θ represents the matrix whose elements are the derivatives of the
corresponding elements of A with respect to θ. For example, if

A =

(
a11 a12

a21 a22

)
, then

∂A

∂θ
=

(
∂a11/∂θ ∂a12/∂θ
∂a21/∂θ ∂a22/∂θ

)
.

If a = (ai)1≤i≤k is a vector whose components are functions of θ =
(θj)1≤j≤l, a vector-valued variable, then ∂a/∂θ′ is defined as the matrix
(∂ai/∂θj)1≤i≤k,1≤j≤l. Similarly, ∂a′/∂θ is defined as the matrix (∂a/∂θ′)′.

The following are some useful results.
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(i) (Innerproduct) If a, b, and θ are vectors, then

∂(a′b)
∂θ

=

(
∂a′

∂θ

)
b+

(
∂b′

∂θ

)
a.

(ii) (Quadratic form) If x is a vector and A is a symmetric matrix, then

∂

∂x
x′Ax = 2Ax.

(iii) (Inverse) If the matrix A depends on a vector θ and is nonsingular,
then, for any component θi of θ,

∂A−1

∂θi
= −A−1

(
∂A

∂θi

)
A−1.

(iv) (Log-determinant) If the matrix A above is also positive definite, then,
for any component θi of θ,

∂

∂θi
log(|A|) = tr

(
A−1 ∂A

∂θi

)
.

A.1.5 Projection

For any matrix X , the matrix PX = X(X ′X)−1X ′ is called the projection
matrix to L(X), the linear space spanned by the columns of X . Here, it is
assumed that X ′X is nonsingular; otherwise, (X ′X)−1 should be replaced by
(X ′X)−, the generalized inverse (see Section A.1.2).

To see why PX is given such a name, note that any vector in L(X) can be
expressed as v = Xb, where b is a vector of the same dimension as the number
of columns of X . Then we have PXv = X(X ′X)−1X ′Xb = Xb = v; that is,
PX keeps v unchanged.

The orthogonal projection to L(X) is defined as PX⊥ = I − PX , where I
is the identity matrix. Then, for any v ∈ L(X), we have PX⊥v = v − PXv =
v− v = 0. In fact, PX⊥ is the projection matrix to the orthogonal space of X ,
denoted by L(X)⊥.

If we define the projection of any vector v to L(X) as PXv, then if v ∈ L,
the projection of v is itself; if v ∈ L(X)⊥, the projection of v is zero (vector).
In general, we have the orthogonal decomposition v = v1 + v2, where v1 =
PXv ∈ L(X) and v2 = PX⊥v ∈ L(X)⊥ such that v′1v2 = v′PXPX⊥v = 0,
because PXPX⊥ = PX(1 − PX) = PX − P 2

X = 0.
The last equation recalls an important property of a projection matrix;

that is, any projection matrix is idempotent (i.e., P 2
X = PX). For example, if

X = 1n (see Section A.1.2), then PX = 1n(1′n1n)−11′n = n−1Jn = J̄n. The
orthogonal projection is thus In − J̄n. It is easy to verify that J̄2

n = J̄n and
(In − J̄n)2 = In − J̄n.
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Another useful result involving projections is the following. Suppose that
X is n× p such that rank(X) = p and that V is n× n and positive definite.
For any n × (n − p) matrix A such that rank(A) = n − p and A′X = 0, we
have

A(A′V A)−1A′ = V −1 − V −1X(X ′V −1X)−1X ′V −1. (A.2)

Equation (A.2) may be expressed in a different way:

PV 1/2A = I − PV −1/2X ,

where V 1/2 and V −1/2 are the square root matrix of V and V −1, respectively
(see the next section). In particular, if V = I, we have PA = I − PX =
PX⊥ . If X is not of full rank, (A.2) still holds with (X ′V −1X)−1 replaced by
(X ′V −1X)− (see Section A.1.2).

A.1.6 Decompositions of matrices and eigenvalues

There are various decompositions of a matrix satisfying certain conditions.
Two of them are most relevant to this book.

The first is Choleski’s decomposition. Let A be a nonnegative definite
matrix. Then there exists an upper-triangular matrix U such that A = U ′U .
An application of the Choleski decomposition is the following. For any k × 1
vector μ and k× k covariance matrix V , one can generate a k-variate normal
random vector with mean μ and covariance matrix V . Simply let ξ = μ+U ′η,
where η is a k× 1 vector whose components are independent N(0, 1) random
variables and U is the upper-triangular matrix in the Choleski decomposition
of V .

Another decomposition is the eigenvalue decomposition. For any n × n
symmetric matrix A, there exists an orthogonal matrix T such that A =
TDT ′, where D = diag(λ1, . . . , λn), and λ1, . . . , λn are the eigenvalues of A.
In particular, if A ≥ 0 (i.e., nonnegative definite, in which case the eigenvalues
are nonnegative), we define D1/2 = diag(

√
λ1, . . . ,

√
λn) and A1/2 = TD1/2T ′,

called the square root matrix of A. It follows that (A1/2)2 = A. If A is positive
definite, then we writeA−1/2 = (A1/2)−1, which is identical to (A−1)1/2. Thus,
for example, an alternative way of generating the k-variate normal random
vector (see above) is to let ξ = μ + V 1/2η. The definition of A1/2 can be
extended Ar for any A ≥ 0 and r ∈ [0, 1]; that is, Ar = Tdiag(λr

1, . . . , λ
r
n).

For example, the Löwner–Heinz inequality states that for any matrices A and
B such that A ≥ B ≥ 0 and r ∈ [0, 1], we have Ar ≥ Br.

The eigenvalue decomposition is one way of diagonalizing a matrix A such
that T ′AT = D, where T is orthogonal and D is diagonal. It follows that
any symmetric matrix A can be diagonalized by an orthogonal matrix such
that the diagonal elements are the eigenvalues of A. Furthermore, if symmetric
matrices A1, . . . , Ak are commuting—that is, if AjAj = AjAi, 1 ≤ i �= j ≤ k—
then they are simultanenously diagonalizable in the sense that there is an
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orthogonal matrix T that T ′AjT = Dj, 1 ≤ j ≤ k, where Dj is a diagonal
matrix whose diagonal elements are the eigenvalues of Aj , 1 ≤ j ≤ k.

The largest and smallest eigenvalues of a symmetric matrix, A, are de-
noted by λmax(A) and λmin(A), respectively. The following properties hold.
Let λ1, . . . , λn be the eigenvalues of A.

(i) For any positive integer p, the eigenvalues of Ap are λp
1, . . . , λ

p
n. Thus,

if A ≥ 0, then λmax(Ap) = {λmax(A)}p, λmin(Ap) = {λmin(A)}p.
(ii) tr(A) = λ1 + · · · + λn.
(iii) |A| = λ1 · · ·λn.
(iv) For any matrices A and B (not necessarily symmetric), the nonzero

eigenvalues of AB are the same as the nonzero eigenvalues of BA. This im-
plies, in particular, that λmax(AB) = λmax(BA) and λmin(AB) = λmin(BA),
if the eigenvalues of AB,BA are all positive. Another consequence is that
λmax(A′A) = λmax(AA′) for any matrix A.

Finally, if A and B are symmetric matrices, whose eigenvalues, arranged
in decreasing orders, are λ1 ≥ · · · ≥ λk and μ1 ≥ · · · ≥ μk, respectively, then
Weyl’s perturbation theorem states that

max
1≤i≤k

|λi − μi| ≤ ‖A−B‖.

An application of Weyl’s theorem is the following. If An is a sequence of sym-
metric matrices such that ‖An −A‖ → 0 as n → ∞, where A is a symmetric
matrix, then the eigenvalues of An converge to those of A as n → ∞.

A.2 Measure and probability

Let Ω denote the space of all elements of interest. In our case, Ω is typically
the space of all possible outcomes so that the probability of Ω is equal to one.
This said, the mathematical definition of probability has yet to be given, even
although the concept might seem straightforward as a common sense.

A.2.1 Measures

First, we need to define what is a collection of “reasonable outcomes”. Let F
be a collection of subsets of Ω satisfying the following three properties:

(i) The empty set ∅ ∈ F .
(ii) A ∈ F implies the complement Ac ∈ F .
(iii) Ai ∈ F , i ∈ I, where I is a discrete set of indexes, implies ∪i∈JAi ∈ F .

Then F is called a σ-field. The pair (Ω,F) is then called a measurable space.
The elements of F are called measurable sets with respect to F , or simply
measurable sets, when the context is clear. Let S be a collection of subsets
of Ω. The smallest σ-field that contains S, denoted by σ(S), is called the σ-
field generated by S. The smallest σ-field does exist. To see this, let F be the
collection of all sets obtained by taking complements, union, or intersection
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of elements of S in any order and possibly multiple times, plus the empty set
(which may be understood as taking the union of no elements). It is easy to
see that F is a σ-field and, in fact, F = σ(S). We consider some examples.

Example A.1. Let A be a nonempty proper subset of Ω (i.e., A �= Ω). Then
σ({A}) = {∅, A,Ac, Ω}.

Example A.2 (Borel σ-field). Let O be the collection of all open sets on R,
the real line. The σ-field B = σ(O) is called the Borel σ-field on R. It can be
shown that B = σ(I), where I is the collection of all finite open intervals.

Let (Ω,F) be a measurable space. A function ν: F �→ [0,∞] is called a
measure if the following conditions are satisfied:

(i) ν(∅) = 0;
(ii) if Ai ∈ F , i = 1, 2, . . . are disjoint (i.e., Ai ∩ Aj = ∅, i �= j), then

ν (
⋃∞

i=1Ai) =
∑∞

i=1 ν(Ai).
In the special case, in which ν(Ω) = 1, ν is called a probability measure.

The triple (Ω,F , ν) is then called a measure space; when ν(Ω) = 1, this
is called a probability space. Although probability measures are what we are
dealing with most of the time, the following nonprobability measures are often
used in order to define a probability mass function, or a probability density
fuction (see the next subsection).

Example A.3 (Counting measure). Let F be the collection of all subsets
of Ω. It is easy to verify that F is a σ-field. Now, define, for any A ∈ F ,
ν(A) = the number of elements in A [so ν(A) = ∞ if A contains infinitely
many elements]. It is easy to verify that ν is a measure on (Ω,F), known as
the counting measure. In particular, if Ω is countable in the sense that there
is a one-to-one correspondence between Ω and the set positive integers, we
may let F be the collection of all subsets of Ω. This is a σ-field, known as the
trivial σ-field. A counting measure is then defined on (Ω,F).

Example A.4 (Lebesgue measure). There is a unique measure ν on (R,B)
that satisfies ν([a, b]) = b − a for any finite interval [a, b]. This is called the
Lebesgue measure. In particular, if Ω = [0, 1], the Lebesgue measure is a
probability measure.

Some basic properties of a measure are the following. Let (Ω,F , ν) be a
measure space and assume that all the sets considered are in F .

(i) (Monotonicity) A ⊂ B implies ν(A) ≤ ν(B).
(ii) (Subadditivity) For any collection of sets Ai, i ∈ I, in F , we have

ν
(⋃

i∈I Ai

) ≤∑i∈I ν(Ai).
(iii) (Continuity) If A1 ⊂ A2 ⊂ · · ·, then

ν( lim
n→∞

An) = lim
n→∞

ν(An), (A.3)
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where limn→∞An = ∪∞i=1Ai. Similarly, if A1 ⊃ Ac ⊃ · · · and ν(A1) < ∞,
then (A.3) holds with limn→∞An = ∩∞i=1Ai.

A measure ν on (Ω,F) is called σ-finite if there is a countable collection
of measurable sets Ai, i ∈ I, such that ν(Ai) <∞, i ∈ I, and Ω = ∪i∈IAi.

Let P denote a probability measure on (R,B). The cumulative distribution
function (cdf) of P is defined as

F (x) = P ((−∞, x]), x ∈ R. (A.4)

The cdf has the following properties:
(i) F (−∞) ≡ limx→−∞ F (x) = 0, F (∞) ≡ limx→∞ F (x) = 1;
(ii) F is nondecreasing; that is, F (x) ≤ F (y) if x < y;
(iii) F is right-continuous; that is, limy→x,y>x F (y) = F (x).

It can be shown that for any real-valued function F that satisfies the above
properties (i)–(iii), there is a unique probability measure P such that F can
be expressed as (A.4).

The concept of cdf can be extended to multivariate case. Let (Ωi,Fi), i =
1, . . . , k, be measurable spaces. The product σ-field on the product space∏k

i=1 Ωi is defined as σ(
∏k

i=1 Fi), where
∏k

i=1 Ωi = {(x1, . . . , xk) : xi ∈
Ωi, 1 ≤ i ≤ k} and

∏k
i=1 Fi = {A1 × · · · × Ak : Ai ∈ Fi, 1 ≤ i ≤ k}

with A1 × · · · × Ak = {(a1, . . . , ak) : ai ∈ Ai, 1 ≤ i ≤ k}. Note that
∏k

i=1 Fi

is not necessarily a σ-field. If (Ωi,Fi, νi), 1 ≤ i ≤ k, are measure spaces,
where νi, 1 ≤ i ≤ k, are σ-finite, there is a unique σ-finite measure ν on
{∏k

i=1Ωi, σ(
∏k

i=1 Fi)} such that for all Ai ∈ Fi, 1 ≤ i ≤ k,

ν(A1 × · · · ×Ak) = ν1(A1) · · · νk(Ak).

This is called the product measure, denoted by ν = ν1×· · ·×νk. In particular,
if Ωi = R,Fi = B, 1 ≤ i ≤ k, the corresponding product space and σ-field
are denoted by Rk and Bk, respectively. Let P be a probability measure on
(Rk,Bk). The joint cdf of P is defined as

F (x1, . . . , xk) = P{(−∞, x1] × · · · × (−∞, xk]}, (A.5)

x1, . . . , xk ∈ R. In the special case where P = P1×Pk, where Pi is a probability
measure on (Ωi,Fi), 1 ≤ i ≤ k, (A.5) becomes

F (x1, . . . , xk) = F1(x1) · · ·Fk(xk), (A.6)

x1, . . . , xk ∈ R, where Fi is the cdf of Pi, 1 ≤ i ≤ k.

A.2.2 Measurable functions

Let f be a map from Ω to Λ, an image space. Suppose that there is a σ-field
G on Λ such that

f−1(B) ≡ {ω ∈ Ω : f(ω) ∈ B} ∈ F , ∀B ∈ G; (A.7)
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then f is said to be a measurable map from (Ω,F) to (Λ,G). In particular, if
Λ = Rk for some k, f is called a measurable function. If, in addition, G = Bk,
f is called Borel measurable.

Now, suppose that (Ω,F , P ) is a probability space. Any measurable func-
tion from (Ω,F) to (R,B) is called a random variable. Similarly, any measur-
able function from (Ω,F) to (Rk,Bk) (k > 1) is called a random vector, or
vector-valued random variable. Let X be a random variable. Define a proba-
bility measure on (R,B) by

PX−1(B) = P{X−1(B)}, B ∈ B, (A.8)

where X−1(B) is defined by (A.7) with f replaced by X . PX−1 is called the
distribution of X . The cdf of X is defined as

F (x) = PX−1{(−∞, x]} = P (X ≤ x), x ∈ R. (A.9)

Note that (A.9) is the same as (A.4) with P replaced by PX−1; in other words,
the cdf of X is the same as the cdf of PX−1. Note that a random variable,
by definition, must be finite, whereas a measurable function may take infinite
values, depending on the definition of Λ. We consider an example.

Example A.5. If X is a random variable, then for any ε > 0, there is b > 0
such that P(|X | ≤ b) > 1 − ε. This is because, by continuity [see (A.3)],

1 = PX−1{(−∞,∞)}
= PX−1

(
lim

n→∞
[−n, n]

)
= lim

n→∞
PX−1([−n, n])

= lim
n→∞

P (|X | ≤ n).

Therefore, there must be some b = n such that P(|X | ≤ b) > 1 − ε.

The following are some basic facts related to Borel-measurable functions.
(i) f is Borel measurable if and only if f−1{(−∞, b)} ∈ F for any b ∈ R.
(ii) If f and g are Borel measurable, so are fg and af + bg for any real

numbers a and b; and f/g is Botel measurable if g(ω) �= 0 for any ω ∈ Ω.
(iii) If f1, f2, . . . are Borel measurable, so are supn fn, infn fn, lim supn fn,

and lim infn fn.
(iv) If f is measurable from (Ω,F) to (Λ,G) and g is measurable from

(Λ,G) to (Γ,H), then the composite function, g ◦ f(ω) = g{f(ω)}, ω ∈ Ω, is
measurable from (Ω,F) to (Γ,H). In particular, if Γ = R and H = B, then
g ◦ f is Borel measurable.

(iv) If Ω is a Borel subset of Rk, where k ≥ 1, then any continuous function
from Ω to R is Borel measurable.

A class of noncontinuous measurable functions plays an important role
in the definition of integrals (see below). These are called simple measurable
functions, or simply simple functions, defined as
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f(ω) =
s∑

i=1

aiIAi(ω), (A.10)

where a1, . . . , as are real numbers, A1, . . . , As are measurable sets, and IA is
the indicator function defined as

IA(ω) =

{
1, ω ∈ A
0, otherwise

A.2.3 Integration

Let (Ω,F , ν) be a measure space. If f is a simple function defined by (A.10),
its integral with respect to ν is defined as∫

f dν =

s∑
i=1

aiν(Ai).

From the definition, it follows that
∫
IA dν = ν(A). Thus, the integral may

be regarded as an extension of the measure.
Next, if f is a nonnegative Borel-measurable function, let Sf denote the

collection of all nonnegative simple functions g such that g(ω) ≤ f(ω) for all
ω ∈ Ω. The integral of f with respect to ν is defined as∫

f dν = sup
g∈Sf

∫
g dν.

Finally, any Borel-measurable function f can be expressed as f = f+−f−,
where f+(ω) = f(ω)∨0 and f−(ω) = −f(ω)∧0. Because both f+ and f− are
nonnegative Borel measurable (why?), the above definition of integral applies
to both f+ and f−. If at least one of the integrals

∫
f+ dν and

∫
f− dν is

finite, the integral of f with respect to ν is defined as∫
f dν =

∫
f+ dν −

∫
f− dν.

Example A.3 (continued). Let Ω be a countable set and ν be the counting
measure. Then, for any Borel-measurable function f , we have∫

f dν =
∑
ω∈Ω

f(ω).

So, in this case, the integral is the summation.

Example A.4 (continued). If Ω = R and ν is the Lebesgue measure, the
integral is called the Lebesgue integral, which is usually denoted by
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f dν =

∫ ∞
−∞

f(x) dx.

The definition extends to the multidimensional case in an obvious way. The
connection between the Lebesgue integral and the Riemann integral (see
§1.5.4.32) is that the two are equal when the latter is well defined. Below
are some basic properties of the integrals and well-known results. Although
some were already given in Section 1.5, they are listed again for completeness.

(i) For any Borel-measurable functions f and g, as long as the integrals
involved exist, we have∫

(af + bg) dν = a

∫
f dν + b

∫
g dν

for any real numbers a, b.
(ii) For any Borel-measurable functions f and g such that f ≤ g a.e. ν

[which means that ν({ω : f(ω) > g(ω)}) = 0], we have
∫
f dν ≤ ∫

g dν,
provided that the integrals exist.

(iii) If f is Borel measurable and f ≥ 0 a.e. ν, then
∫
fdν = 0 implies

f = 0 a.e. ν.
(iv) (Fatou’s lemma) Let f1, f2, . . . be a sequence of Borel-measurable func-

tions such that fn ≥ 0 a.e. ν, n ≥ 1; then∫ (
lim inf
n→∞ fn

)
dν ≤ lim inf

n→∞

(∫
fn dν

)
.

(v) (Monotone convergence theorem) If f1, f2, . . . are Borel measurable
such that 0 ≤ f1 ≤ f2 ≤ · · · and limn→∞ fn = f a.e. ν, then∫ (

lim
n→∞

fn

)
dν = lim

n→∞

(∫
fn dν

)
. (A.11)

(vi) (Dominated convergence theorem) If f1, f2, . . . are Borel measurable
such that limn→∞ fn = f a.e. ν and there is an integrable function g (i.e.,∫ |g| dν <∞) such that fn ≤ g a.e. ν, n ≥ 1, then (A.11) holds.

(vii) (Differentiation under the integral sign) Suppose that for each θ ∈
(a, b) ⊂ R, f(·, θ) is Borel measurable, ∂f/∂θ exists, and supθ∈(a,b) |∂f/∂θ| is
integrable. Then, for each θ ∈ (a, b), ∂f/∂θ is integrable and

∂

∂θ

∫
f(ω, θ) dν =

∫
∂

∂θ
f(ω, θ) dν.

(viii) (Change of variable) Let f be measurable from (Ω,F , ν) to (Λ,G)
and g be Borel measurable on (Λ,G). Then we have∫

Ω

(g ◦ f) dν =

∫
Λ

g d(ν ◦ f−1), (A.12)
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provided that either integral exists. Here, the measure ν ◦ f−1 is defined sim-
ilarly as (A.8); that is,

ν ◦ f−1(B) = ν{f−1(B)}, B ∈ G,

where f−1(B) is defined by (A.7).
(ix) (Fubini’s theorem) Let νi be a σ-finite measure on (Ωi,Fi), i = 1, 2,

and f be Borel measurable on {Ω1 ×Ω2, σ(F1 ×F2)} whose integral with re-
spect to ν1×ν2 exists. Then

∫
Ω1

f(ω1, ω2) dν1 is Borel measurable on (Ω2,F2)
whose integral with respect to ν2 exists, and∫

Ω1×Ω2

f(ω1, ω2) dν1 × ν2 =

∫
Ω2

{∫
Ω1

f(ω1, ω2) dν1

}
dν2.

(x) (Radon-Nikodym derivative) Let μ and ν be two measures on (Ω,F)
and μ be σ-finite. ν is said to be absolutely continuous with respect to μ,
denoted by ν % μ, if for any A ∈ F , μ(A) = 0 implies ν(A) = 0. The
Radon–Nikodym theorem states that if ν % μ, there exists a nonnegative
Borel-measurable function f such that

ν(A) =

∫
A

f dμ, ∀A ∈ F . (A.13)

The f is unique a.e. μ in the sense that if g is another Borel-measurable
function that satisfies (A.13), then f = g a.e. μ. The function f in (A.13)
is called the Radon–Nikodym derivative, or density, of ν with respect to μ,
denoted by f = dν/dμ. The following result holds, which is, again, similar to
the change-of-variables rule in calculus: If ν % μ, then for any nonnegative
Borel-measurable function f , we have∫

f dν =

∫
f

(
dν

dμ

)
dμ. (A.14)

A.2.4 Distributions and random variables

The pdf of a random variable X on (Ω,F , P ) is defined as F (x) = P (X ≤
x), x ∈ R. Similarly, the joint pdf of random variablesX1, . . . , Xk on (Ω,F , P )
is defined as F (x1, . . . , xk) = P (X1 ≤ x1, . . . , Xk ≤ xk), x1, . . . , xk ∈ R. This
definition is consistent with (A.9), whose multivariate version is

F (x1, . . . , xk) = PX−1{(−∞, x]}, x = (x1, . . . , xk) ∈ Rk,

where (−∞, x] = (−∞, x1] × · · · × (−∞, xk].
The random variable X is said to be discrete if its possible values are a

finite or countable subset of R. Let μ be the counting measure (see Example
A.3) and ν = PX−1. It is clear that ν % μ (why?). The Radon–Nikodym
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derivative f = dν/dμ is called the probability mass function, or pmf, of X .
The definition of pmf can be easily extended to the multivariate case.

A random variable X on on (Ω,F , P ) is said to be continuous if ν =
PX−1 % μ, the Lebesgue measure. In such a case, the Radon–Nikodym
derivative f = dν/dμ is called the probability density function, or pdf, of
X . Again, the definition can be easily extended to the multivariate case.

A list of commonly used random variables and their pmf’s or pdf’s can be
found, for example, in Casella and Berger (2002, pp. 621–626).

The mean, or expected value, of a random variable X on (Ω,F , P ) is
defined as E(X) =

∫
Ω
X dP . Usually, the expected value is calculated via a

pmf or pdf. Let μ be a σ-finite measure on (R,B) and assume that PX−1 % μ.
Let f = dPX−1/dμ. Then, by (A.12) and (A.14), we have

E(X) =

∫
Ω

x ◦X dP

=

∫
R

x dPX−1

=

∫
R

x

(
dPX−1

dμ

)
dμ

=

∫
xf dμ.

In particular, if μ is the counting measure, we have

E(X) =
∑
x∈S

xf(x) =
∑
x∈S

xP (X = x),

where S is the set of possible values for X (note that in this case, X must be
discrete—why?); if μ is the Lebesgue measure on (a, b), where a and b can be
finite or infinite, we have

E(X) =

∫ b

a

xf(x) dx.

The variance of X is defined as var(X) = E(X−μX)2, where μX = E(X). An-
other expression of the variance is var(X) = E(X2)−{E(X)}2. The covariance
and correlation between two random variables X and Y on the same proba-
bility space are defined as cov(X,Y ) = E(X − μX)(Y −μY ) and cor(X,Y ) =
cov(X,Y )/

√
var(X)var(Y ), respectively. Similar to the variance, an alter-

native expression for the covariance is cov(X,Y ) = E(XY ) − E(X)E(Y ).
If X = (X1, . . . , Xk)′ is a random vector, its expected value is defined
as E(X) = [E(X1), . . . ,E(Xk)]′ and its covariance matrix is defined as
Var(X) = [cov(Xi, Xj)]1≤i,j≤k . If Y = (Y1, . . . , Yl)

′ is another random vector,
where l need not be the same as k, the covariance matrix between X and Y
is defined as Cov(X,Y ) = [cov(Xi, Yj)]1≤i≤k,1≤j≤l. Some basic properties of
the expected values and variances are the following, assuming their existence.
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(i) E(aX + bY ) = aE(X) + bE(Y ) for any constants a and b.
(ii) var(X + Y ) = var(X) + 2 cov(X,Y ) + var(Y ). In particular, if X and

Y are uncorrelated in that cov(X,Y ) = 0, then var(X,Y ) = var(X)+ var(Y ).
(iii) Cov(X,Y ) = E{X−E(X)}{Y −E(Y )}′, where the expected value of a

random matrix, ξ = (ξij)1≤i≤k,1≤j≤l, is defined as E(ξ) = [E(ξij)]1≤i≤k,1≤j≤l.
This gives an equivalent definition of the covariance matrix between X and
Y , which is often more convenient in derivations. In particular, Cov(X,X) =
Var(X) = E{X−E(X)}{X−E(X)}′. Thus, we have Cov(Y,X) = Cov(X,Y )′,
and, similar to (ii), Var(X+Y ) = Var(X)+Cov(X,Y )+Cov(X,Y )′+Var(Y ).

(iv) var(aX) = a2var(X) for any constant a; Var(AX) = A Var(X)A′ for
any constant matrix A; and Cov(AX,BY ) = A Cov(X,Y )B′ for any constant
matrices A and B.

(v) var(X) ≥ 0 and var(X) = 0 if and only if X is a.s. a constant; that
is, P (X = c) = 1 for some constant c. Similarly, Var(X) ≥ 0 (i.e., positive
definite); and |Var(X)| = 0 if and only if there is a constant vector a and a
constant c such that a′X = c a.s.

(vi) (The covariance inequality) |cov(X,Y )| ≤ √var(X)var(Y ). This im-
plies, in particular, that the correlation between X and Y is always between
−1 and 1; when cor(X,Y ) = −1 or 1, there are constants a, b, and c such that
aX + bY = c a.s.; in other words, one is (a.s.) a linear function of the other.

Other quantities associated with the expected values include the moments
and central moments. The pth moment of a random variable X is defined as
E(Xp); the pth absolute moment is E(|X |p); and the pth central moment is
γp = E{(X−μX)p}, assuming existence, of course, in each case. The skewness
and kurtosis ofX are defined as κ3 = γ3/σ

3 and κ4 = (γ4/σ
4)−3, respectively,

where σ =
√

var(X), known as the standard deviation of X .
The random variables X1, . . . , Xk are said to be independent if

P (X1 ∈ B1, . . . , Xk ∈ Bk) = P (X1 ∈ B1) · · ·P (Xk ∈ Bk)

for anyB1, . . . , Bk ∈ B. Equivalently,X1, . . . , Xk are independent if their joint
pdf is the product of their individual pdf’s; that is,

F (x1, . . . , xk) = F1(x1) · · ·Fk(xk)

for all x1, . . . , xk ∈ R, where F (x1, . . . , xk) = P (X1 ≤ x1, . . . , Xk ≤ xk) and
Fj(xj) = P (Xj ≤ xj), 1 ≤ j ≤ k. If the joint pdf f of X1, . . . , Xk with respect
to a product measure, μ = μ1 × · · · × μk, exists, where the μj ’s are σ-finite,
independence of X1, . . . , Xk is also equivalent to

f(x1, . . . , xk) = f1(x1) · · · fk(xk)

for all x1, . . . , xk, where fj is the pdf of Xj with respect to μj , which can be
derived by integrating the joint pdf; that is,

fj(xj) =

∫
f(x1, . . . , xk)dμ1 · · · dμj−1dμj+1 · · · dμk.
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The random variables X1, . . . , Xk are said to be independent and identically
distributed, or i.i.d., if they are independent and have the same distribution,
that is, F1 = · · · = Fk.

A.2.5 Conditional expectations

An extension of the expected values is conditional expectations. Let X be an
integrable random variable on (Ω,F , P ). Let A be a sub-σ-field of F . The
conditional expectation of X given A, denoted by E(X |A), is the a.s. unique
random variable that satisfies the following conditions:

(i) E(X |A) is measurable from (Ω,A) to (R,B).
(ii)
∫

A
E(X |A) dP =

∫
A
X dP for every A ∈ A.

The conditional probability is a special case of the conditional expectation,
with X = 1B, the indicator function of B ∈ F , denoted by P(B|A) =
E(1B|A).

The definition leads to the following result, which is useful in checking if
a random variable is the conditional expectation of another random variable:
Suppose that ξ is integrable and η is A-measurable. Then η = E(ξ|A) if and
only if E(ξζ) = E(ηζ) for every ζ that is bounded and A-measurable.

The conditional expectation has the same properties as the expected
value—all one has to do is to keep the notation |A during the operations;
however, there are also some important differences. A main difference is that,
unlike the expected value which is a constant, the conditional expectation is
a random variable, unless in some special cases, such as when A = {∅, Ω}.

If Y is another random variable on (Ω,F , P ), the conditional expectation
of X given Y is defined as E(X |Y ) = E{X |σ(Y )}, where σ(Y ) is the σ-field
generated by Y , defined as σ(Y ) = Y −1(B) = {Y −1(B) : B ∈ B}, where
Y −1(B) is defined by (A.7) with f = Y . Note that E(X |Y ) is a function of
Y so let E(X |Y ) = h(Y ), where h is a Borel-measurable function. Then the
conditional expectation of X given Y = y is defined as

E(X |Y = y) = h(y).

Given the definitions of the conditional expectations, the conditional vari-
ances of X given A, or X given Y , are defined as

var(X |A) = E[{X − E(X |A)}2|A],

var(X |Y ) = E[{X − E(X |Y )}2|Y ],

respectively. Similar to the variance, the identities

var(X |A) = E(X2|A) − {E(X |A)}2,

var(X |Y ) = E(X2|Y ) − {E(X |Y )}2

hold. The latter gives an easier way to define var(X |Y = y) as
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E(X2|Y = y) − {E(X |Y = y)}2.

Two of the most useful properties of the conditional expectations (variances)
are the following, assuming the existence of those throughout.

(i) If A1 ⊂ A2, then

E(X |A1) = E{E(X |A2)|A1} a.s. (A.15)

In particular, because the trivial σ-field, {∅, Ω}, is a sub-σ-field of any σ-field,
we have, by letting A1 = {∅, Ω} and A2 = A in (A.15),

E(X) = E{E(X |A)}.
Similarly, if X , Y , and Z are random variables, we have

E(X |Y ) = E{E(X |Y, Z)|Y } a.s.,

E(X) = E{E(X |Y )}.
Here, E(X |Y, Z) = E{X |σ(Y, Z)} and σ(Y, Z) is defined the same way as
σ(Y ), treating (Y, Z) as a vector-valued random variable.

(ii) The following identity holds for the conditional variance (see above):

var(X) = E{var(X |Y )} + var{E(X |Y )}.
In addition, the conditional expectation E(X |Y ) is the minimizer of

E{X − g(Y )}2

over all Borel-measurable functions g such that E{g2(Y )} < ∞. Here is an-
other useful result: Let X be a random variable such that E(|X |) < ∞, and
let Y and Z be random vectors. If (X,Y ) and Z are independent, then

E(X |Y, Z) = E(X |Y ) a.s. (A.16)

We say that, given Y , X and Z are conditionally independent if

P(A|Y, Z) = P(A|Y ) a.s. ∀A ∈ σ(X), (A.17)

where the conditional probability P(A|ξ) is defined as E{1A|σ(ξ)} for any ran-
dom vector ξ. Given the definition, a similar result to (A.16) is the following.
If (X,Y ) and Z are independent, then given Y , X and Z are conditionally
independent. The conclusion may not be true if Z is independent of X but
not of (X,Y ).

A.2.6 Conditional distributions

Let X be a random vector on a probability space (Ω,F , P ) and let A be a
sub-σ-field of F . There exists a function P (·, ·) defined on Bk ×Ω, where k is
the dimension of X , such that the following hold:
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(i) P (B,ω) = P{X−1(B)|A} a.s. for any fixed B ∈ Bk [see (A.7) for the
definition of X−1(B)].

(ii) P (·, ω) is a probability measure on (Rk,Bk) for any fixed ω ∈ Ω.
If Y is measurable from (Ω,F) to (Λ,G). Then there exists a function

defined on Bk × Λ, denoted by PX|Y (·|·), such that the following hold:
(i) PX|Y (B|y) = P{X−1(B)|Y = y} ≡ E{1X−1(B)|Y = y} (see above) a.s.

PY −1 [see (A.8)] for any fixed B ∈ Bk.
(ii) PX|Y (·|y) is a probability measure on (Rk,Bk) for any fixed y ∈ Λ.

The following holds. If g(·, ·) is a Borel function such that E|g(X,Y )| < ∞,
then

E{g(X,Y )|Y = y} = E{g(X, y)|Y = y}
=

∫
Rk

g(x, y) dPX|Y (x|y) a.s. PY −1.

Let (Λ,G, P1) be a probability space. Suppose that P2 is a function from
Bk × Λ to R such that

(i) P2(B, ·) is Borel measurable for any B ∈ Bk; and
(ii) P2(·|y) is a probability measure on (Rk,Bk) for any y ∈ Λ.

Then there is a unique probability measure on {Rk × Λ.
σ(Bk × G)} such that

P (B × C) =

∫
C

P2(B, y) dP1(y) (A.18)

for any B ∈ Bk and C ∈ G. In particular, if (Λ,G) = (Rl,Bl) and define
X(x, y) = x and Y (x, y) = y for (x, y) ∈ Rk × Rl, then P1 = PY −1 and
P2(·, y) = PX|Y (·|y) (see above), and the probability measure (A.18) is the
joint distribution of (X,Y ) that has the joint cdf

F (x, y) =

∫
(−∞,y]

PX|Y {(−∞, x]|v} dPY −1(v), x ∈ Rk, y ∈ Rl,

where (−∞, a] is defined above (see the beginning of Section A.2.4). PX|Y (·|y),
denoted by PX|Y =y, is called the conditional distribution of X given Y = y.

If PX|Y =y has a pdf with respect to ν, a σ-finite measure on (Rk,Bk), the pdf
is denoted by fX|Y (·|y), known as the conditional pdf of X given Y = y.

A.3 Some results in statistics

A.3.1 The multivariate normal distribution

A random vector ξ is said to have a k-dimensional multivariate normal distri-
bution with mean vector μ and covariance matrix Σ, or ξ ∼ N(μ,Σ), if the
joint pdf of ξ is given by
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f(x) =
1

(2π)k/2|Σ|1/2
exp

{
−1

2
(x− μ)′Σ−1(x− μ)

}
, x ∈ Rk.

When k = 1, the pdf reduces to that of N(μ, σ2) with σ2 = Σ. Below are some
useful results associated with the multivariate normal distribution. Here, we
assume that all of the matrix products are well defined.

1. If ξ ∼ N(μ,Σ), then for any constant matrix A, Aξ ∼ N(Aμ,AΣA′).
2. If ξ ∼ N(μ,Σ), then for any constant matrices A and B, Aξ and Bξ

are independent if and only if AΣB′ = 0. If ξ is multivariate normal, the
components of ξ are independent if and only if they are uncorrelated; that is,
cov(ξi, ξj) = 0, i �= j, where ξi is the ith component of ξ.

3. If ξ ∼ N(μ,Σ) and ξ, μ and Σ are partitioned accordingly as

ξ =

(
ξ1
ξ2

)
, μ =

(
μ1

μ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

then the conditional distribution of ξ1 given ξ2 is multivariate normal with
mean vector μ1 +Σ12Σ

−1
22 (ξ2 −μ2) and covariance matrix Σ11 −Σ12Σ

−1
22 Σ21.

Note that Σ21 = Σ′12.
4. Let ξ be a random vector such that E(ξ) = μ and Var(ξ) = Σ. Then,

for any constant symmetric matrix A, we have

E(ξ′Aξ) = μ′Aμ+ tr(AΣ).

In particular, if ξ ∼ N(0, Σ), then ξ′Aξ is distributed as χ2
r if and only

if AΣ is idempotent (see Section A.1.5) and r = rank(A). In particular, if
ξ = (ξi)1≤i≤k ∼ N(0, Ik), then |ξ|2 = ξ21 + · · · + ξ2k ∼ χ2

k.
5. If ξ ∼ N(μ,Σ), a is a constant vector, and A and B are constant

symmetric matrices, then a′ξ and ξ′Aξ are independent if and only if b′ΣA =
0; ξ′Aξ and ξ′Bξ are independent if and only if AΣB = 0. Also, we have

cov(ξ′Aξ, b′ξ) = 2b′ΣAμ,

cov(ξ′Aξ, ξ′Bξ) = 4μ′AΣBμ+ 2 tr(AΣBΣ).

6. If ξ ∼ N(0, 1), η ∼ χ2
d, and ξ and η are independent, then

t =
ξ√
η/d

∼ td,

the t-distribution with d degrees of freedom, which has the pdf

f(x) =
Γ{(d+ 1)/2}√
dπΓ (d/2)

(
1 +

x2

d

)−(d+1)/2

, −∞ < x <∞.

An extension of the t-distribution is the multivariate t-distribution. A k-
dimensional multivariate t-distribution with mean vector μ, covariance matrix
Σ, and degrees of freedom d has the joint pdf
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Γ{(d+ k)/2}
(dπ)k/2Γ (d/2)

|Σ|−1/2

{
1 +

1

d
(x− μ)′Σ−1(x− μ)

}−(d+k)/2

, x ∈ Rd.

7. If ξj ∼ χ2
dj

, j = 1, 2, and ξ1 and ξ2 are independent, then

F =
ξ1/d1

ξ2/d2
∼ Fd1,d2 ,

the F -distribution with d1 and d2 degrees of freedom, which has the pdf

f(x) =
Γ{(d1 + d2)/2}
Γ (d1/2)Γ (d2/2)

(
d1

d2

)d1/2

xd1/2−1

{
1 +

(
d1

d2

)
x

}−(d1+d2)/2

,

−∞ < x <∞.

A.3.2 Maximum likelihood

Let X be a vector of observations and let f(·|θ) the pdf of X , with respect
to a σ-finite measure μ—that is dependent on a vector of parameters, θ. Let
x denote the observed value of X . The notation f(x|θ) can be viewed in two
ways. For a fixed θ, it is the pdf of X when considered as a function of x;
for the fixed x (as the observed X), it is viewed as a function of θ, known as
the likelihood function. In the latter case, a different notation is often used,
L(θ|x) = f(x|θ). The log-likelihood is the logarithm of the likelihood function,
denoted by l(θ|x) = log{L(θ|x)}.

A widely used method of estimation is the maximum likelihood; namely, the
parameter vector θ is estimated by the maximizer of the likelihood function.
More precisely, let Θ be the parameter space—that is, the space of possible
values of θ. Suppose that there is θ̂ ∈ Θ such that

L(θ̂|x) = sup
θ∈Θ

L(θ|x);

then θ̂ is called the maximum likelihood estimator, or MLE, of θ.
Under widely existing regularity conditions, the maximum likelihood is

carried out by differentiating the log-likelihood with respect to θ and solving
the equations that equate the derivatives to zero; that is,

∂

∂θ
l(θ|x) = 0. (A.19)

Equation (A.19) is known as the ML equation. It should be noted that a
solution to the ML equation is not necessarily the MLE. However, under
some more restrictive conditions, the solution indeed coincides with the MLE.
For example, if (A.19) has a unique solution and it can be made sure that the
maximum of L(θ|x) does not occur on the boundary of Θ, then the MLE is
identical to the solution of the ML equation.
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Associated with the log-likelihood function is the information matrix, or
Fisher information matrix, defined as

I(θ) = Eθ

(
∂l

∂θ

∂l

∂θ′

)
, (A.20)

where ∂l/∂θ = (∂/∂θ)l(θ|X) and Eθ stands for expectation with θ being the
true parameter vector. It should be noted—and this is important—that the θ
in Eθ must be the same as the θ in ∂l/∂θ on the right side of (A.20).

Under some regularity conditions, the following nice properties hold for
the log-likelihood function.

(i) [An integrated version of (A.19)]

Eθ

{
∂

∂θ
l(θ|X)

}
= 0.

(ii) [Another expression of (A.20)]

I(θ) = −Eθ

{
∂2l

∂θ∂θ′

}
,

where ∂2l/∂θ∂θ′ = (∂2/∂θ∂θ′)l(θ|X). Properties (i) and (ii) lead to a third
expression for I(θ):

I(θ) = Varθ

(
∂l

∂θ

)
,

where ∂l/∂θ = (∂/∂θ)l(θ|X) and Varθ stands for covariance matrix with θ
being the true parameter vector.

A well-known result involving the Fisher information matrix is the Cramér–
Rao lower bound. For simplicity, let θ be a scalar parameter. Let δ̂ be an
unbiased estimator of δ = g(θ); that is, Eθ(δ̂) = g(θ) for all θ, where g is a
differentiable function. Under regularity conditions, we have

varθ(δ̂) ≥ {g′(θ)}2

I(θ)
.

For a multivariate version, see, for example, Shao (2003, p. 169).
An important and well-known property of the MLE is its asymptotic ef-

ficiency in the sense that, under regularity conditions, the asymptotic co-
variance matrix of the MLE is equal to the Cramér–Rao lower bound. For
example, in the i.i.d. case, we have, as n → ∞,

√
n(θ̂ − θ)

d−→ N{0, I−1(θ)},

where the right side is the multivariate normal distribution with mean vector
0 and covariance matrix I−1(θ) = I(θ)−1 (see Section A.3.1).

Many testing problems involve the likelihood ratio. This is defined as
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supθ∈Θ0
L(θ|x)

supθ∈Θ L(θ|x) , (A.21)

where Θ0 is the parameter space under the null hypothesis, H0, and Θ is the
parameter space without assuming H0.

A.3.3 Exponential family and generalized linear models

The concept of generalized linear models, or GLMs, is closely related to that of
the exponential family. The distribution of a random variable Y is a member
of the exponential family if its pdf or pmf can be expressed as

f(y; θ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
, (A.22)

where a(·), b(·), and c(·, ·) are known functions, θ is an unknown parameter,
and φ is an additional dispersion parameter, which may or may not be known.
Many of the well-known distributions are members of the exponential family.
These include normal, Gamma, binomial, and Poisson distributions.

An important fact regarding the exponential family is the following rela-
tionship between the mean of Y and θ:

μ = E(Y ) = b′(θ).

In many cases, this establishes an 1–1 correspondence between μ and θ. An-
other relationship among θ, φ, and the variance of Y is

var(Y ) = b′′(θ)a(φ).

The following is an example.

Example A.6. Suppose that Y ∼ Binomial(n, p). Then the pmf of Y can
be expressed as (A.22) with

θ = log

(
p

1 − p

)
, b(θ) = n log(1 + eθ), and a(φ) = log

(
n
y

)
.

Note that in this case, φ = 1. It follows that b′(θ) = neθ/(1+eθ) = np = E(Y )
and b′′(θ) = neθ/(1 + eθ)2 = np(1 − p) = var(Y ).

McCullagh and Nelder (1989) introduced the GLM as an extension of the
classical linear models. Suppose the following:

(i) The observations y1, . . . , yn are independent.
(ii) The distribution of yi is a member of the exponential family, which

can be expressed as

fi(y) = exp

{
yθi − b(θi)

ai(φ)
+ ci(y, φ)

}
.
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(iii) The mean of yi, μi, is associated with a linear predictor ηi = x′iβ
through a link function; that is,

ηi = g(μi),

where xi is a vector of known covariates, β is a vector of unknown regression
coefficients, and g(·) is a link function.

Assumptions (i)–(iii) define a GLM. By the properties of the exponential
family mentioned above, θi is associated with ηi. In particular, if

θi = ηi,

the link function g(·) is called canonical.
The function ai(φ) typically takes the form ai(φ) = φ/wi, where wi is a

weight. For example, if the observation yi is the average of ki observations
(e.g., a binomial proportion, where ki is the number of Bernoulli trials), then
wi = ki; if the observation is the sum of ki observations (e.g., a binomial or
sum of Bernoulli observations), then wi = 1/ki.

A.3.4 Bayesian inference

Suppose that Y is a vector of observations and θ is a vector of parameters
that are not observable. Let f(y|θ) represent the probability density function
(pdf) of Y given θ and let π(θ) represent a prior pdf for θ. Then the posterior
pdf of θ is given by

p(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ) dθ

. (A.23)

Obtaining the posterior is often the goal of Bayesian inference. In particular,
some numerical summaries may be obtained from the posterior. For example,
a Bayesian point estimator of θ is often obtained as the posterior mean:

E(θ|y) =

∫
θp(θ|y) dθ

=

∫
θf(y|θ)π(θ) dθ∫
f(y|θ)π(θ) dθ

;

the posterior variance, var(θ|y), on the other hand, is often used as a Bayesian
measure of uncertainty. The notation dθ in the above, which corresponds to
the Lebesgue measure, can be replaced by dμ, where μ is a σ-finite measure
with respect to which π(·) is defined.

A discrete probabilistic version of (A.23) is called the Bayes rule, which is
often useful in computing the conditional. Suppose that there are a number
of events, A1, . . . , Ak, such that Ai ∩ Aj = ∅, i �= j, and A1 ∪ · · · ∪ Ak = Ω,
the sample space. Then, for any event B, we have
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P(Ai|B) =
P(B|Ai)P(Ai)∑k

j=1 P(B|Aj)P(Aj)
, (A.24)

1 ≤ i ≤ k. To see the connection between (A.23) and (A.24), suppose that
π is a discrete distribution over θ1, . . . , θk, and the distribution of Y is also
discrete. Then, for any possible value y of Y , we have, by (A.24) with Ai =
{θ = θi}, 1 ≤ i ≤ k, and B = {Y = y},

P(θ = θi|Y = y) =
P(Y = y|θ = θi)P(θ = θi)∑k

j=1 P(Y = y|θ = θj)P(θ = θj)
,

which is the discrete version of (A.23).
The posterior can be used to obtain a posterior predictive distribution of

a future observation, Ỹ . Suppose that Y and Ỹ are conditionally indepen-
dent given θ (see Section A.2.5); then, by (A.17), we have f(ỹ|θ, y) = f(ỹ|θ).
Therefore, the posterior predictive pdf is given by

p(ỹ|y) =

∫
p(ỹ, θ|y) dθ

=

∫
f(ỹ|θ, y)p(θ|y) dθ

=

∫
f(ỹ|θ)p(θ|y) dθ

(here, as usual, f and p denote the pdf’s, and the rule of notation is that p is
used whenever the conditioning involves y only; otherwise, f is used).

Similar to Section A.3.2, the pdf f(y|θ), considered as a function of θ, is
called the marginal likelihood, or simply likelihood. The ratio of the posterior
p(θ|y) evaluated at the points θ1 and θ2 under a given model is called the
posterior odds for θ1 compared to θ2—namely,

p(θ1|y)
p(θ2|y) =

π(θ1)f(y|θ1)/f(y)

π(θ2)f(y|θ2)/f(y)

=
π(θ1)

π(θ2)
· f(y|θ1)
f(y|θ2) ,

according to the Bayes rule (A.23). In other words, the posterior odds is simply
the prior odds multiplied by the likelihood ratio, f(y|θ1)/f(y|θ2) [see (A.21)].
The concept of (posterior) odds is most familiar when θ takes two possible
values, with θ2 being the complement of θ1.

A similar concept is the Bayesian factor. This is used, for example, when a
discrete set of competing models is proposed for model selection. The Bayesian
factor is the ratio of the marginal likelihood under one model to that under
another model. If we label the two competing models by M1 and M2, respec-
tively, then the ratio of their posterior probabilities is
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p(M1|y)
p(M2|y) =

π(M1)

π(M2)
× Bayesian factor(M1,M2),

which defines the Bayesian factor—namely,

Bayesian factor(M1,M2) =
f(y|M1)

f(y|M2)

=

∫
π(θ1|M1)f(y|θ1,M1) dθ1∫
π(θ2|M2)f(y|θ2,M2) dθ2

.

A.3.5 Stationary processes

Many important processes have the stationarity properties, in one way or the
other. For simplicity, consider a process X(t), t ≥ 0, taking values in R.

The process is said to be strongly stationary if [X(t1), . . . , X(tn)] and
[X(t1 + h), . . . , X(tn + h)] have the same joint distribution for all t1, . . . , tn
and h > 0. Note that if X(t), t ≥ 0, is strongly stationary, then, in par-
ticular, the X(t)’s are identically distributed. However, strong stationar-
ity is a much stronger property than identical distribution. The process is
said to be weakly (or second-order) stationary if E{X(t1)} = E{X(t2)} and
cov{X(t1), X(t2)} = cov{X(t1 + h), X(t2 + h)} for all t1, t2 and h > 0.

The terms used here might suggest that a strongly stationary process must
be weakly stationary. However, this is not implied by the definition, unless the
second moment of X(t) is finite for all t (in which case, the claim is true). On
the other hand, a weakly stationary process may not be strongly stationary,
of course, unless the process is Gaussian, as in the first example below.

Example A.7 (Gaussian process). A real-valued process X(t), t ≥ 0, is
said to be Gaussian if each finite-dimensional vector [X(t1), . . . , X(tn)]′ has a
multivariate normal distribution. Now, suppose that the Gaussian process is
weakly stationary. Then the vectors U = [X(t1), . . . , X(tn)]′ and V = [X(t1 +
h), . . . , X(tn +h)]′ have the same mean vector [which is (μ, . . . , μ), where μ =
E{X(0)}]. Furthermore, the weak stationarity property implies that Var(U) =
Var(V ) (see Section A.2.4). Thus, by the properties of multivariate normal
distribution (see Section A.3.1), U and V have the same joint distribution. In
other words, the Gaussian process is strongly stationary.

Example A.8 (Markov chains). Let X(t), t ≥ 0, be an irreducible Markov
chain taking values in a countable subset S of R and with a unique stationary
distribution π (see Section 10.2). The finite-dimensional distributions of the
process depend on the initial distribution p0 of X(0), and it is not generally
true that X(t), t ≥ 0, is stationary in either sense. However, if p0 = π—that
is, the initial distribution is the same as the stationary distribution—then the
distribution pt of X(t) satisfies
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pt(j) = P{X(t) = j)

=
∑
i∈S

P{X(0) = i}P{X(t) = j|X(0) = i}

=
∑
i∈S

p0(i)p
(t)(i, j)

=
∑
i∈S

π(i)p(t)(i, j) = π(j), j ∈ S,

the last identity implied by (10.7) and (10.17). In other words, the distribution
of X(t) does not depend on t. By a similar argument, it can be shown that
the joint distribution of X(t1 + h), . . . , X(tn + h) does not depend on h for
every n > 1. Thus, the process X(t), t ≥ 0, is strongly stationary.

A fundamental theory associated with weak stationary processes is called
the spectral theorem, or spectral representation. Define the autocovariance
function of a weakly stationary process X(t),−∞ < t < ∞, by

c(t) = cov{X(s), X(s+ t)}

for any s, t ∈ R. Thus, in particular, c(0) = var{X(t)}. The autocorrelation
function is defined as ρ(t) = c(t)/c(0), t ∈ R. The spectral theorem for auto-
correlation functions states that if c(0) > 0 and ρ(t) is continuous at t = 0,
then ρ(t) is the cf (see Section 2.4) of some distribution F ; that is,

ρ(t) =

∫ ∞
−∞

eitλ dF (λ), t ∈ R.

The distribution F is called the spectral distribution function of the process. If
X(n), n = 0,±1, . . ., is a discrete-time process such that

∑∞
n=−∞ |ρ(n)| <∞,

then F has a density f , called the spectral density function, given by

f(λ) =
1

2π

∞∑
n=−∞

e−inλρ(n), λ ∈ [−π, π].

Not only does the autocorrelation function of a weakly stationary process
have the spectral representation, but the process itself also enjoys a nice spec-
tral representation. Suppose that X(t),−∞ < t < ∞, is weakly stationary
with E{X(t)} = 0 and that ρ(t) is continuous. Then there exists a complex-
valued process S(λ),−∞ < λ < ∞, such that

X(t) =

∫ ∞
−∞

eitλ dS(λ), −∞ < t < ∞

(see Section 10.6 for the definition of a stochastic integral). The process S is
called the spectral process of X .
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As for strongly stationary processes, a well-known result is the ergodic
theorem. This may be regarded as an extension of the SLLN. The theorem
is usually stated for a discrete-time process, Xn, n = 1, 2, . . .. If the latter is
strongly stationary such that E(|X1|) < ∞, then there is a random variable,
Y , with the same mean as the X ’s such that

1

n

n∑
i=1

Xi
a.s.−→ Y

and E(Xn) → E(Y ) as n → ∞. The random variable Y can be expressed as
a conditional expectation. Let (Ω,F , P ) be a probability space. A measur-
able map T : Ω → Ω is said to be measure-preserving if P (T−1A) = P (A)
for A ∈ F , where T−1A = {ω ∈ Ω, T (ω) ∈ A}. Any stationary process
Xn, n = 0, 1, . . ., can be thought of as being generated by a measure-preserving
transformation T in the sense that there exists a random variable X de-
fined on a probability space (Ω,F , P ) and a map T : Ω → Ω such that the
process XT n, n ≥ 0, has the same joint distribution as Xn, n ≥ 0, where
XT n(ω) = X{T n(ω)}, ω ∈ Ω, and XT 0 = X . The process Xn, n ≥ 0, is said
to be ergodic if the transformation T satisfies the following: For any A ∈ F ,
T−1(A) = A implies P (A) = 0 or 1. The ergodic theorem can now be restated
as that if T is measure-preserving and E(|X |) <∞, then

1

n

n−1∑
i=0

XT i a.s.−→ E(X |I),

where I is the invariant σ-field defined as I = {A ∈ F : T−1A = A}. In
particular, if the process Xn, n ≥ 0, is ergodic, then Y = E(X |I) = E(X).

A.4 List of notation and abbreviations

The list is in alphabetical order, although the actual letters that appear in
different places in the text may be different:

a ∧ b: = min(a, b).
a ∨ b: = max(a, b).
a.s.: almost surely.
a′: the transpose of vector a.
dim(a): the dimension of vector a.
A ≤ B, where A and B are symmetric matrices: This means B − A is

nonnegative definite.
A < B, where A and B are symmetric matrices: This means B − A is

positive definite.
Ac: the complement of set A.
|A|: the determinant of matrix A.
A′: the transpose of matrix A.
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λmin(A): the smallest eigenvalue of matrix A.
λmax(A): the largest eigenvalue of matrix A.
tr(A): the trace of matrix A.
‖A‖: the spectral norm of matrix A defined as ‖A‖ = {λmax(A′A)}1/2.
‖A‖2: the 2-norm of matrix A defined as ‖A‖2 = {tr(A′A)}1/2.
rank(A): the (column) rank of matrix A.
A1/2: the square root of a nonnegative definite matrix A (see Section

A.1.6).
If A is a set, |A| represents the cardinality of A.
ACR: autocorrelation.
ACV: autocovariance.
AIC: Akaike’s information criterion.
ANOVA: analysis of variance.
AR: autoregressive process.
ARMA: autoregressive moving average process.
ARE: asymptotic relative efficiency.
an = O(bn): This means that the sequence an/bn, n = 1, 2, . . ., is bounded.
an = o(bn): This means that the sequence an/bn → 0 as n → ∞.
an ∼ bn, where both an and bn are sequences of real numbers: This means

an/bn → 1 as n → ∞.
AU: asymptotically unbiased.
B: the Borel σ-field.
BIC: Bayesian information criterion.
BLUE: best linear unbiased estimator.
BLUP: best linear unbiased predictor.
BP: best predictor.
C: the space of continuous functions with the uniform metric.
cdf: cumulative distribution function.
cf: characteristic function.
CLT: central limit theorem.
Cm

k : the binomial coefficient equal to the number of ways of choosing k
items from m items without considering the order; this is also denoted by

(
m
k

)
.

Cov(ξ, η): the covariance matrix between random vectors ξ and η (see
Section A.2.4).

a.s.−→: almost sure convergence.
d−→: convergence in distribution.
P−→: convergence in probability.
Lp

−→: convergence in Lp.
c.u.: continuous uniformly.
D: the space of functions that are right continuous and possess left-limit

at each point, with the uniform metric.
diag(A): for A being a square matrix, this is the vector of diagonal elements

of A.
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diag(A1, . . . , Ak): the block-diagonal matrix with A1, . . . , Ak on its diag-
onal; the definition also includes the diagonal matrix, when A1, . . . , Ak are
numbers.

Distributions: Binomial(n, p) — binomial distribution with n independent
trials and probability p of success for each trial; Cauchy(μ, σ) — Cauchy distri-
bution with pdf f(x|μ, σ) = (πσ[1+{(x−μ)/σ}2])−1, −∞ < x < ∞; DE(μ, σ)
— double exponential distribution with pdf f(x|μ, σ) = (2σ)−1 exp(−|x −
μ|/σ), −∞ < x < ∞; χ2

ν — χ2-distribution with ν degrees of freedom;
Exponential(λ) — exponential distribution with mean λ; N(μ, σ2) — nor-
mal distribution with mean μ and variance σ2, or N(μ,Σ) — multivariate
normal distribution with mean vector μ and covariance matrix Σ; NM(p, τ)
— normal mixture distribution with cdf (1 − p)φ(x) + pΦ(x/τ), where Φ is
the cdf of N(0, 1); Poisson(λ) — Poisson distribution with mean λ; tν — t-
distribution with ν degrees of freedom; Uniform[a, b] — uniform distribution
over [a, b].

∇: the gradient operator.
δx(y): the Dirac (or point) mass at x, which = 1 if y = x and 0 otherwise.
Eθ: This notation is often used for expectation under the distribution with

θ being the true parameter (vector).
EM : This notation is sometimes used for model-based expectation; or ex-

pectation under model M .
Ed: This notation is sometimes used for design-based expectation.
E(ξ|η): conditional expectation of ξ given η.
EBLUE: empirical best linear unbiased estimator.
EBLUP: empirical best linear unbiased predictor.
EBP: empirical best predictor.
EM: Expectation–Maximization (algorithm).
∅: empty set.
Eθ: expectation when θ is the true parameter (vector).
f ◦ g: f ◦ g(x) = f(g(x)) for functions f, g.
F−1(t): If F is a cdf, this is defined as inf{x : F (x) ≥ t}.
f(x) = O{g(x)}: This means f(x)/g(x) is bounded for all x.
f(x) = o{g(x)}: This means f(x)/g(x) → 0 as x → ∞ (or x → 0).
f(x) ∼ g(x): This means f(x)/g(x) → 1 as x→ ∞ (or x → 0).
f(x|y): the conditional density function.
F : This notation is usually used for a σ-field.
Fn: a sequence of σ-fields such that Fn ⊂ Fn+1, n = 1, 2, . . ..
Fn: This notation is often (but not always) used for the empirical distri-

bution of observations X1, . . . , Xn.
F ′−(x) (F ′+(x)): the left (right) derivative of F at x.
Γ (·): the gamma function.
GLM: generalized linear model.
GLMM: generalized linear mixed model.
HQ: Hannan–Quinn criterion.
i: in the definition of cf (see above), for example, this represents

√−1.
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iff: if and only if.
i.i.d.: independent and identically distributed.
inf: infimum.
In: the n-dimensional identity matrix.
I(θ) (or I(θ)): the Fisher information (matrix).
Jn: the n× n matrix of 1’s, or Jn = 1n1′n (see below).
J̄n: = n−1Jn.
κ3: the skewness (parameter).
κ4: the kurtosis (parameter).
L(A): the linear space spanned by the columns of matrix A.
LIL: law of the iterated logarithm.
log: logarithm of base e, or natural logarithm.
logit: the logit function defined as logit(p) = log{p/(1 − p)}, 0 < p < 1.
Lp: the Lp space of functions or random variables.
lim inf xn: the smallest limit point of the sequence xn.
lim supxn: the largest limit point of the sequence xn.
lim supAn, where A1, A2, . . . is a sequence of events: This is defined as

∩∞N=1 ∪∞n=N An.
LLN: law of large numbers.
LSE: least squares estimator.
MA: moving average process.
MC: Markov chain.
MCEM: Monte Carlo EM (algorithm).
MCMC: Markov-chain Monte Carlo.
Mf : This notation is often used to denote a full model.
mgf: moment generating function.
MINQUE: minimum norm quadratic unbiased estimation.
ML: maximum likelihood.
MLE: maximum likelihood estimator.
MM: method of moments.
Mopt: This notation is often used to denote an optimal model.
MSA: for balanced data yij , 1 ≤ i ≤ m, 1 ≤ j ≤ k, MSA = SSA/(k − 1).
MSE: mean squared error (or, see below).
MSE: for balanced data yij , 1 ≤ i ≤ m, 1 ≤ j ≤ k, MSE = SSE/m(k− 1).
MSM: method of simulated moments.
MSPE: mean squared prediction error.
#A, where A is a set: This represents the cardinality of set A.
N(μ,Σ): The multivariate normal distribution with mean vector μ and

covariance matrix Σ.
OLS: ordinary least squares.
1A, where A is an event: This represents the indicator of event A.
1n, where n is a positive integer: the n-dimensional vector of 1s.
10

n: = In.
11

n: = 1n.
Ω: This usually represents a probability space.
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OP, oP: big O and small o in probability (see Section 3.4).
⊗: Kronecker product.
P(A|B): conditional probability of A given B.
PA: the projection matrix to L(A) defined as PA = A(A′A)−A′, where A−

is the generalized inverse of A (see §A.1.2).
PA⊥ : the projection matrix with respect to the linear space orthogonal to

L(A), defined as PA = I − PA, where I is the identity matrix.
∂A, the boundary of set A.
∂ξ/∂η′: When ξ = (ξi)1≤i≤a, η = (ηj)1≤j≤b, this notation means the

matrix (∂ξi/∂ηj)1≤i≤a,1≤j≤b.
∂2ξ/∂η∂η′: When ξ is a scalar, η = (ηj)1≤j≤b, this notation means the

matrix (∂2ξ/∂ηj∂ηk)1≤j,k≤b.
pdf: probability density function.
pmf: probability mass function.
PQL: penalized quasi-likelihood.
∝: proportional to.
r.c.: relatively compact.
Rd: the d-dimensional Euclidean space; in particular, R1 = R represents

the real line.
REML: restricted maximum likelihood.
RSS: residual sum of squares.
s.d.: standard deviation.
SDE: stochastic differential equation.
Sδ(a): the δ-neighborhood of a; that is, {x : |x− a| < δ}.
SLLN: strong law of large numbers.
SSA: for balanced data yij , 1 ≤ i ≤ m, 1 ≤ j ≤ k, SSA = k

∑m
i=1(ȳi·−ȳ··)2.

SSE: for balanced data yij , 1 ≤ i ≤ m, 1 ≤ j ≤ k, SSE =
∑m

i=1

∑k
j=1(yij−

yi·)2.
sup: supremum.
TMD: two-parameter martingale differences.
Var(ξ): covariance matrix of the random vector ξ.
varθ: variance when θ is the true parameter (vector).
WLLN: weak law of large numbers.
WLS: weighted least squares.
WN: white noise process.
w.r.t.: with respect to.
[x] for real number x: This is the largest integer less than or equal to x.

|x| for x ∈ Rd: This is defined as (
∑d

i=1 x
2
i )

1/2, where xi is the ith compo-
nent of x, 1 ≤ i ≤ d.

x+: defined as x is x > 0 and 0 otherwise.
x−: defined as −x if x < 0 and 0 otherwise.
X̄: the sample mean of X1, . . . , Xn.
X(i): the ith order statistic of X1, . . . , Xn such that X(1) ≤ · · · ≤ X(n).
Var(ξ): the covariance matrix of random vector ξ (see §A.2.4).
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(Xi)1≤i≤m: When X1, . . . , Xm are matrices with the same number of
columns, this is the matrix that combines the rows of X1, . . . , Xm, one af-
ter the other.

(yi)1≤i≤m: When y1, . . . , ym are column vectors, this notation means the
column vector (y′1, . . . , y

′
m)′.

(yij)1≤i≤m,1≤j≤ni : In the case of clustered data, where yij , j = 1, . . . , ni,
denote the observations from the ith cluster, this notation represents the vec-
tor (y11, . . . , y1n1 , y21, . . . , y2n2 , . . . , ym1, . . . , ymnm)′.

yi·, ȳi·, y·j , ȳ·j , y·· and ȳ··: In the case of clustered data yij , i = 1, . . . ,m,
j = 1, . . . , ni, yi· =

∑ni

j=1 yij , ȳi· = n−1
i yi·, y·· =

∑m
i=1

∑ni

j=1 yij , ȳ·· =

(
∑m

i=1 ni)
−1y··; in the case of balanced data yij , 1 ≤ i ≤ a, j = 1, . . . , b, yi· =∑b

j=1 yij , ȳi· = b−1yi·, y·j =
∑a

i=1 yij , ȳ·j = a−1y·j, y·· =
∑a

i=1

∑b
j=1 yij ,

ȳ·· = (ab)−1y··.
y|η ∼: the distribution of y given η is ...; note that here η may represent

a vector of parameters or random variables, or a combination of both.
Y-W: Yule–Walker.
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Dehling, H., and Philipp, W. (2002), Empirical process techniques for depen-
dent data, in Empirical Process Techniques for Dependent Data (H. Dehling, T.
Mikosch and M. Sørensen eds.), Birkhäuser, Boston.
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itéré, Fundam. Math. 29, 215–222.

Marron, J. S., and Nolan, D. (1988), Canonical kernels for density estimation,
Statist. Probab. Lett. 7, 195–199.

Marshall, R. J. (1991), A review of methods for the statistical analysis of spatial
patterns of disease, J. Roy. Statist. Soc. A 154, 421–441.

Mason, D. M., Shorack, G. R., and Wellner, J. A. (1983), Strong limit theorems
for oscillation moduli of the uniform empirical process, Z. Wahrsch. verw. Geb.
65, 83–97.

Massart, P. (1990), The tight constant in the Dvoretzky-Kiefer-Wolfowitz in-
equality, Ann. Probab. 18, 1269–1283.

McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed.,
Chapman & Hall, London.

McCulloch, C. E. (1994), Maximum likelihood variance components estimation
for binary data, J. Amer. Statist. Assoc. 89, 330–335.

McCulloch, C. E. (1997), Maximum likelihood algorithms for generalized linear
mixed models, J. Amer. Statist. Assoc. 92, 162–170.

McFadden, D. (1989), A method of simulated moments for estimation of discrete
response models without numerical integration, Econometrika 57, 995–1026.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953),
Equations of state calculations by fast computing machines, J. Chem. Phys. 21,
1087–1092.

Meza, J., and Lahiri, P. (2005), A note on the Cp statistic under the nested
error regression model, Survey Methodology 31, 105–109.

Meza, J., Chen, S., and Lahiri, P. (2003), Estimation of lifetime alcohol abuse
for Nebraska counties, unpublished manuscript.

Miller, J. J. (1977), Asymptotic properties of maximum likelihood estimates in
the mixed model of analysis of variance, Ann. Statist. 5, 746–762.

Miller, R. G. (1974), An unbalanced jackknife, Ann. Statist. 2, 880–891.

Mises, R. von (1947), On the asymptotic distribution of differentiable statistical



References 597

functions, Ann. Math. Statist. 18, 309–348.

Moeanaddin, R., and Tong, H. (1990), Numerical evaluation of distributions in
nonlinear autoregression, J. Time Series Anal. 11, 33–48.

Moore, D. S. (1978), Chi-square tests, in Studies in Statistics (R. V. Hogg, ed.),
Mathematical Society of America, Providence, RI.
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Lp convergence, 31
U -statistics, 277, 373
χ2 distribution, 71
χ2-test, 37√

n-consistency, 61
m-dependent, 277
p-norm, 133
t-distribution, 107

absolute convergence, 13
acceptance probability, 534
adapted process, 341
adapted sequence of random variables,

242
adaptive fence, 426, 513
Akaike’s information criterion, AIC,

290, 503
almost sure convergence, 23
Anderson–Darling test, 370
aperiodicity, 323, 530
aperiodicity of the M-H kernel, 535
arithmetic mean, 129
ARMA model identification, 294
arrival times of Poisson process, 330
Arzelá–Ascoli theorem, 193
asymptotic bootstrap variance, 502
asymptotic distribution, 71
asymptotic distribution of U -statistics,

363, 376
asymptotic distribution of MLE, 113
asymptotic efficiency, 419
asymptotic equivalence, 351
asymptotic expansion, 73, 81
asymptotic identifiability, 401

asymptotic normality, 89, 402
asymptotic normality of LSE, 204
asymptotic normality of spatial Y-W

estimator, 310
asymptotic null distribution, 222, 412
asymptotic power, 367
asymptotic relative efficiency, ARE, 366
asymptotic significance level, 363
asymptotic unbiasedness, AU, 478, 485
asymptotic variance, 19, 473
auto-exponential Gibbs, 531
autocorrelation function, 285
autocovariance function, 101, 285
autoregressive chain, 534
autoregressive moving average process,

ARMA, 284
autoregressive process, AR, 284

backward operator, 545
balanced mixed ANOVA model, 401
bandwidth, 382
Bayesian information criterion, BIC,

293
Bayesian missing value problem, 546
Bernoulli distribution, 333
Bernstein’s inequality, 152
Berry–Esseen theorem, 90
best linear unbiased estimator, BLUE,

140
best linear unbiased predictor, BLUP,

117, 405
best predictive estimator, BPE, 464
best predictor, BP, 117, 436
Beta distribution, 93
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bias correction, 443, 446, 475, 486
bias-variance trade-off, 384
binomial distribution, 5, 24, 383
birth and death process, 325
bivariate-normal Gibbs, 531
Blackwell theorem, 333
block bootstrap, 505
Bolzano–Weierstrass theorem, 14
bootstrap, 427, 443, 471, 490
bootstrap MSPE estimator, 515
bootstrap vs normal approximation, 492
bootstrap, a counter-example, 496
bootstrapping mixed models, 508
bootstrapping the mean, 491, 506
bootstrapping the median, 495
bootstrapping the MSPE of EBLUP,

515
bootstrapping the quantile process, 495
bootstrapping the random effects, 514
bootstrapping the residuals, 499
bootstrapping time series, 498
bootstrapping von Mises functionals,

492
Borel–Cantelli lemma, 44, 195
borrowing strength, 434
boundedness in probability, 23, 58
bracketing number, 232
branching process, 246, 321
Brownian bridge, 220, 338
Brownian motion, 193, 335
Burkholder’s inequality, 63, 150
Burkholder’s inequality for TMD, 307

canonical functions of U -statistics, 374
Carlson’s inequality, 168
Cauchy criterion, 11
Cauchy distribution, 30, 175
Cauchy sequence, 11
Cauchy–Schwarz inequality, 68, 130,

543
central limit theorem, CLT, 5, 173, 182
Chapman–Kolmogorov identity, 320
characteristic function, cf, 28
Chebyshev’s inequality, 4, 59, 152
Chow’s theorem, 255
Chung’s theorem, 223
closed set, 13
CLT for diffusion process, 346
CLT for Poisson process, 330

CLT for quadratic forms, 268, 404
CLT for sample autocovariances, 288
CLT for triangular arrays of TMD, 303
cluster analysis, 70
collapsed sampler, 544
communicate states, 323
complete degeneracy, 375
concave function, 72, 129
conditional distribution, 527
conditional expectation, 240
conditional logistic model, 258
consistency, 2, 33
consistency of LSE, 203
consistency of MLE in GLMM, 541
consistent model selection, 293
consistent uniformly, c.u., 485
continuous function, 14
continuous functional, 219
continuous mapping theorem, 30
continuous martingale, 336
continuous-time Markov process, 335
convergence in distribution, 7, 26
convergence in probability, 2, 20, 174
convergence of Gibbs sampler, 531
convergence of infinite series, 13
convergence rate in martingale CLT,

260
Convergence rate in martingale LIL,

262
Convergence rate in martingale SLLN,

262
convergence rate in WLLN, 199
convergence rate of Gibbs sampler, 541
convergence rate of sample autocorrela-

tions, 289
convergence rate of sample autocovari-

ances, 289
convex function, 129
convex function inequality, 63, 128
Cornish–Fisher expansion, 98
correlation, 148
covariance between U -statistics, 377
Cramér consistency, 8, 403
Cramér series, 200
Cramér’s condition, 199
Cramér’s theorem, 188
Cramér–von Mises test, 370
cumulants, 199
cumulative distribution function, cdf, 6
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data augmentation, DA, 546
decreasing sequence, 12
delta method, 492
design-based MSPE, 448, 466
design-unbiased estimator, 467
design-unbiased MSPE estimator, 448
deviance, 413
differentiability, 14
diffusion process, 343
direct Gibbs sampler, 544
Dirichlet’s theorem, 96
distance, 192
distributional free, 371
DKW inequality, 227
dominated convergence theorem, 32,

184, 187
Doob’s inequality, 151
Doob–Donsker theorem, 221, 372
double bootstrap, 515

Edgeworth expansion, 89, 410
efficacy, 366
elementary expansion, 103
elementary renewal theorem, 331
EM algorithm, 537
empirical Bayes, 483, 509
empirical best predictor, EBP, 437
empirical BLUE, EBLUE, 143
empirical BLUP, EBLUP, 117, 405
empirical d.f., 215
empirical ODC, 234
empirical process, 216
empirical processes indexed by

functions, 231
empirical ROC, 234
entropy, 198, 232
equal probability sampling, 467
ergodic theorem, 229, 306, 546
exponential distribution, 60, 93
exponential family, 396
exponential inequality, 135, 306

Fatou’s lemma, 32, 248
Fay–Herriot estimator, 444
Fay–Herriot model, 116, 444, 509
fence method, 294, 422, 512
Fibonacci numbers, 78
filtration, 341
finite population, 65

finite sample correction, 64
Finkelstein’s theorem, 224
Fisher information, 113
Fisher information matrix, 114
Fisher’s dilution assay, 328
Fisher’s inequality, 145
forward operator, 542
Fourier approximation, 96
Fourier expansion, 95
Fourier series, 95
Fourier–Stieltjes transformation, 93
Fubini’s theorem, 102

GARCH model, 347
Gauss–Markov theorem, 203
Gauss–Seidel algorithm, 527
Gaussian mixed model, 394
generalized binomial distribution, 230
generalized information criterion, GIC,

292, 461
generalized linear mixed model, GLMM,

110, 396
geometric mean, 129
geometric rate, 544
Gibbs distribution, 526
Gibbs Markov chain, 530
Gibbs sampler, 526, 538
Glivenko–Cantelli theorem, 217
GLM iterated weights, 414
global convergence, 528
global score statistic, 414
goodness-of-fit test, 370, 407
Gram–Schmidt orthonormalization, 97
grouped Gibbs sampler, 544

Hölder’s inequality, 131, 147
Hájek–Sidak theorem, 183
Haar functions, 98
Hadamard’s inequality, 145
Hannan–Quinn criterion, HQ, 293
harmonic mean, 129
Hartley–Rao form, 395
Hartman–Wintner LIL, 191, 196
Heine–Borel theorem, 14
Herglotz theorem, 286
Hermite polynomials, 411
heteroscedastic linear regression, 476
hierarchical Bayes, 450
Hilbert space, 542
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hitting time, 336
Hoeffding representation, 375
Huang’s first method of ARMA model

identification, 297
Huang’s theorems, 289
Hungarian construction, 225
hypothesis testing, 70

i.i.d., 3, 173
i.i.d. spatial series, LIL, 300
i.i.d. spatial series, SLLN, 299
importance ratio, 525
importance sampling, 540
importance weights, 541
inconsistency of PQL, 415
increasing sequence, 12
induced probability measure, 193
infinite informativity, 401
infinite series, 12
inner product, 133, 542
innovations, 286, 298
integrated MSE, IMSE, 385
intrinsic time, 346
invariance principle, 192, 339
invariance principle for LIL, 195
invariance principle in CLT, 194
invariance principle in CLT for

martingales, 265
invariance principle in LIL for

martingales, 267
Iowa crops data, 513
irreducibility of the M-H kernel, 535
irreducible Markov chain, 323, 530
Itô integral, 341
Itô’s formula, 344

jackknife, 474
jackknife bias estimator, 475
jackknife MSPE estimator, 482
jackknife variance estimator, 476
jackknifing MSPE of EBP, 482
James inequality, 225
James–Stein estimator, 483
Jensen’s inequality, 9, 146
jumping distribution, 532
jumping kernel, 535

kernel estimator, 383
key renewal theorem, 334

Kolmogorov’s inequality, 155
Kolmogorov’s three series theorem, 181
Kolmogorov–Smirnov statistics, 221,

338
Kolmogorov–Smirnov test, 370
Kronecker’s lemma, 181, 254
Kullback–Leibler discrepancy, 290
kurtosis, 90
Ky Fan’s inequality, 145

Lévy–Cramér continuity theorem, 28
Laplace approximation, 106, 413, 451
Laplace transformation, 29
large deviation, 197
large deviations of empirical d.f., 228
law of the iterated logarithm, LIL, 174,

188
least squares, LS, 202
Lebesgue measure, 24
Liapounov condition, 182
Lieb–Thirring’s inequality, 144
likelihood ratio, 244
likelihood ratio test, LRT, 71
LIL for Brownian motion, 338
LIL for empirical processes, 223
LIL for LSE, 206
LIL for TMD, 304
Lindeberg condition, 182
Lindeberg–Feller theorem, 182
linear mixed models, 158, 394
linear spatial series, 305
linearization, 506
link function, 396
log-concave, 163
longitudinal data, 394
longitudinal model, 395
lower limit, 12
LS estimator, LSE, 203

M-estimators, 483
M-H algorithm, 539
M-H chain, 534
Móricz’s inequality, 151
Maclaurin’s series, 84
Marcinkiewicz–Zygmund inequality, 150
marginal distribution, 505, 527
Markov chain, 318, 319
Markov-chain convergence theorem,

325, 528, 530
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Markov-chain Monte Carlo, MCMC,
523

Markovian properties of random fields,
308

martingale, 239

martingale approximation, 273

martingale central limit theorem, 257,
410

martingale convergence theorem, 250

martingale differences, 242, 288

martingale representation of U -
statistics, 376

martingale strong laws of large numbers,
254

martingale weak law of large numbers,
253

maximum correlation, 544

maximum exponential inequality, 156

maximum likelihood estimator, MLE, 4

mean squared approximation error,
MSAE, 482

mean squared prediction error, MSPE,
117, 435

measure of lack-of-fit, 292, 422

median, 5

method of formal derivation, 89, 438

method of moments, 417, 441, 444

method of simulated moments, MSM,
418

metric space, 192

Metropolis algorithm, 532

Metropolis–Hastings algorithm, M-H
algorithm, 534

minimum phase property, 308

Minkowski’s inequality, 133, 143, 147

mixed ANOVA model, 394

mixed effect, 117, 435

mixed effects model, 393

mixed logistic model, 397, 435, 539

mixed model prediction, 508

mixed model selection, 420, 512

mixing condition, 231

ML estimator, 444, 484

model diagnostics, 405

moment generating function, mgf, 28

moment-matching, 515

moments, 158

monotone convergence theorem, 44

monotone function inequality, 134, 147,
168

Monotone sequence, 12
Monte Carlo EM, MCEM, 538
Monte Carlo method, 372, 436
moving average process, MA, 280, 284
MSPE of EBLUP, 445
multivariate normal distribution, 157
Murray’s data, 547

negative log-likelihood, 422
neighborbood, 13
nested-error regression, 39, 116, 460,

513
Neyman–Scott problem, 398
non-Gaussian linear mixed model, 394
nondecreasing sequence of σ-fields, 240
nondegenerate, 402
nonparametric models, 452
nonparametrics, 357
norm of forward operator, 544
normal approximation, 361
normal distribution, 199
normal mixture distribution, 70
null hypothesis, 222
number of knots, 453

one-sample Wilcoxon statistic, 494
one-way random effects model, 395
open set, 13
optimal bandwidth, 386
optional stopping theorem, 247
order determination, 296
ordinal dominance curve, ODC, 234
orthogonal sequence, 244

P-spline, connection to linear mixed
model, 453

P-splines, 452
parametric bootstrap, 500, 510
partial order among matrices, 56
Pearson χ2-discrepancy, 542
penalized least squares, 452
penalized quasi-likelihood, PQL, 414
period of a state, 323
permutation test, 358
Poisson approximation, 29
Poisson approximation to binomial, 327
Poisson distribution, 176
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Poisson log-linear mixed mode, 397
Poisson process, 326
pooled sample variance, 358
positive recurrency, 325
posterior, 525, 546
posterior mean, 450
posterior variance, 450
Prasad–Rao method, 115, 435
predictable sequence of random

variables, 242
prediction interval, 508
prediction of random effect, 436
predictive distribution, 546
predictive fence, 465
predictive measure of lack-of-fit, 464,

468
probability density function, pdf, 9
probability of large deviation in CLT,

199
probability of large deviation in WLLN,

197
Prussian horse-kick data, 328
purely non-deterministic, 287

quadratic form, 243
quantile, 219
quantile process, 495

random effects, 394
random walk, 320
random walk chain, 534
rank-sum, 360
receiver operating characteristic, ROC,

233
recurrent state, 323
reflection principle, 336
regression analysis, 203
regression coefficients, 203
rejection sampling, 525
rejection sampling chain, 535
REML equations, 399
REML estimator, 399, 444, 484
residual sum of squares, RSS, 422
restricted maximum likelihood, REML,

158, 268, 399
reversible transition kernel, 534
Riemann integral, 15
Riemann–Stieltjes integral, 16
robustness, 359

Rolle’s theorem, 14
Rosenthal’s inequality, 150

sample covariance, 138
sample mean, 3, 60, 472
sample median, 5, 209, 473
sample proportion, 33
sample variance, 472
Schur’s inequality, 167
second-order MSPE approximation, 456
second-order stationary, 285
second-order unbiased MSPE estimator,

441, 445, 516
sieve bootstrap, 501
sieve bootstrap vs block bootstrap, 507
sign test, 362
simplified adaptive fence, 514
skewness, 90
Skorokhod representation, 225, 266, 340
Skorokhod representation theorem, 44
Slepian’s inequality, 157, 363
SLLN for Brownian motion, 338
SLLN for diffusion process, 346
SLLN for renewal process, 331
Slutsky’s theorem, 30, 187
small area estimation, 115, 433
small area means, 435, 454
spatial ACV and ACR, 304
spatial AR model, 307
spatial AR order determination, strong

consistency, 310
spatial AR with TMD innovations, 310
spatial ARMA model, 286
spatial series, 286
spectral density function, 285
spectral distribution function, 285
spectral representation theorem, 285
stable convergence, 258
standard error, 472
standard M-estimating equations, 485
stationary distribution, 324, 529, 534
stationary increments, 327
stationary time series, 101
statistical functionals, 218
Stirling’s formula, 54, 324
stochastic differential equation, SDE,

343
stochastic integrals, 341
stochastic process, 193, 317
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stopping time, 246
Stout’s inequality, 249
Strassen’s theorem, 196
strictly stationary, 285
strictly stationary spatial series, 304
strong approximation, 507
strong consistency of LSE, 206
strong consistency of spatial Y-W

estimator, 308
strong law for sample autocovariances,

288
strong law of large numbers, SLLN, 25,

173, 178, 523
strong Markov property, 336
Student’s t-distribution, 472
submartingale, 240
subsequence, 12
super-population model, 454
superiority of REML over ML, 405
supermartingale, 240
supremum metric, 217
Sylvester’s inequality, 141

target distribution, 534
Taylor expansion, 74, 83, 417, 440, 487
Taylor expansion (multivariate), 85
Taylor series, 84
the ε-δ argument, 1, 24
the argument of subsequences, 12, 32
the baseball problem, 67
the delta method, 88, 210
the heat equation, 344
the intermediate-value theorem, 14
the inverse transformation, 216
the mean value theorem, 15
the method of moments, MoM, 118
the plug-in principle, 500
time series, 283
transient state, 323
transition kernel, 528
transition probability, 320
triangle inequality, 127
triangular arrays, 228
two-parameter martingale differences,

TMD, 301

two-sample t-statistic, 358
two-sample U -statistics, 380
two-step procedure, 419
two-way random effects model, 428, 516

unconfounded, 402
uniform convergence, 7
uniform convergence rate for spatial

ACV and ACR, 305
uniform distribution, 4, 216, 330, 525
uniform empirical process, 217
uniform integrability, 33
uniform SLLN for empirical d.f., 217
unspecified c, 64, 480
upcrossing inequality, 251
upper limit, 12

variance components, 395

Wald consistency, 8, 403
Wald’s equation, 331
Wallis formula, 76
weak convergence of empirical processes,

220
weak law for sample autocovariances,

288
weak law of large numbers, WLLN, 4,

173, 174
weighted delete-d jackknife, 477
weighted empirical process, 230
weighted jackknife estimator, 477
weighted least squares, WLS, 140, 477
Weyl’s eigenvalue perturbation theorem,

145, 459
white noise, WN, 284
Wiener process, 193, 220, 335
Wilcoxon signed-rank test, 361
Wilcoxon test, one-sample, 361
Wilcoxon test, two-sample, 360
Wold coefficients, 295
Wold decomposition, 102, 286

Y-W estimation for spatial AR model,
308

Yule–Walker equation, 295
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