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Preface

In a way, the world is made up of approximations, and surely there is no
exception in the world of statistics. In fact, approximations, especially large
sample approximations, are very important parts of both theoretical and ap-
plied statistics. The Gaussian distribution, also known as the normal distribu-
tion, is merely one such example, due to the well-known central limit theorem.
Large-sample techniques provide solutions to many practical problems; they
simplify our solutions to difficult, sometimes intractable problems; they jus-
tify our solutions; and they guide us to directions of improvements. On the
other hand, just because large-sample approximations are used everywhere,
and every day, it does not guarantee that they are used properly, and, when
the techniques are misused, there may be serious consequences.

Ezample 1 (Asymptotic x? distribution). Likelihood ratio test (LRT) is
one of the fundamental techniques in statistics. It is well known that, in the
“standard” situation, the asymptotic null distribution of the LRT is x?, with
the degrees of freedom equal to the difference between the dimensions, defined
as the numbers of free parameters, of the two nested models being compared
(e.g., Rice 1995, pp. 310). This might lead to a wrong impression that the
asymptotic (null) distribution of the LRT is always x2. A similar mistake
might take place when dealing with Pearson’s y2-test—the asymptotic distri-
bution of Pearson’s y2-test is not always x? (e.g., Moore 1978).

Ezample 2 (Approximation to a mean). It might be thought that, in a large
sample, one could always approximate the mean of a random quantity by the
quantity itself. In some cases this technique works. For example, suppose
X1,...,X, are observations that are independent and identically distributed
(i.i.d.) such that = E(X7) # 0. Then one can approximate E(}_"_; X;) = nu
by simply removing the expectation sign, that is, by > | X;. This is because
the difference Y i | X; — nu = > (X; — p) is of the order O(y/n), which
is lower than the order of the mean of Y | X;. However, this technique
completely fails if one considers (3., X;)? instead. To see this, let us assume
for simplicity that X; ~ N(0,1). Then E(3°"" | X;)? = n. On the other hand,
since Y7, X, ~ N(0,m), (X0, X)? = n{(1/v1) Y0y Xi}? ~ nx?, where
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X? is a random variable with a x? distribution with one degree of freedom.
Therefore, (3, X;)?—E(}_1_, Xi)? = n(xj — 1), which is of the same order
of E(3"1 , X;)% Thus, (Y, X;)? is not a good approximation to its mean.

Ezample 3 (Maximum likelihood estimation). Here is another example of
the so-called large-sample paradox. Because of the popularity of the maximum
likelihood and its well-known large-sample theory in the classical situation,
one might expect that the maximum likelihood estimator is always consistent.
However, this is not true in some fairly simple, and practical, situations. For
example, Neyman and Scott (1948) gave the following example. Suppose that
two measurements are taken from each of the n patients. Let y;; denote the
jth measurement from the ith patient, i =1,...,n, 7 = 1,2. Suppose that the
measurements are independent and y;; is normally distributed with unknown
mean p; and variance 2. Then, as n — oo, the maximum likelihood estimator
of o2 is inconsistent.

The above are only a few examples out of many, but the message is just
as clear: It is time to unravel such confusions.

This book deals with large-sample techniques in statistics. More impor-
tantly, we show how to argue with large-sample techniques and how to use
these techniques the right way. It should be pointed out that there is an exten-
sive literature on large-sample theory, including books and published papers,
some of which are highly mathematical. Traditionally, there have been sev-
eral approaches to introducing these materials. The first is the theorem/proof
approach, which provides rigorous proofs for all or most of the theoretical
results (e.g., Petrov 1975). The second is the method/application approachi,
which focuses on using the results without paying attention to any of the
proofs (e.g., Barndorfl-Nielsen and Cox 1989). Our approach is somewhere in
between. Instead of giving a formal, technical proof for every result, we focus
on the ideas of asymptotic arguments and how to use the methods developed
by these arguments in various less-than-textbook situations.

We begin by reviewing some of the very simple and fundamental concepts
that most of us have learned, say, from a calculus book. More specifically,
Chapters 1-5 are devoted to a comprehensive review of the basic tools for
large-sample approximations, such as the e-§ arguments, Taylor expansion,
different types of convergence, and inequalities. Chapters 6-10 discuss limit
theorems in specific situations of observational data. These include the classi-
cal case of i.i.d. observations, independent but not identically distributed ob-
servations such as those encountered in linear regression, empirical processes,
martingales, time series, stochastic processes, and random fields. Each of the
first 10 chapters contains at least one section of case study as applications
of the methods or techniques covered in the chapter. Some more extensive
applications of the large-sample techniques are discussed in Chapters 11-15.
The areas of applications include nonparametric statistics, linear and general-
ized linear mixed models, small-area estimation, jackknife and bootstrap, and
Markov-chain Monte Carlo methods.
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As mentioned, there have been several major texts on similar topics. These
include, in the order of year published: [1] Hall & Heyde (1980), Martingale
Limit Theory and Its Application, Academic Press; [2] Barndorff-Nielsen &
Cox (1989), Asymptotic Techniques for Use in Statistics, Chapman & Hall;
[3] Ferguson (1996), A Course in Large Sample Theory, Chapman & Hall; [4]
Lehmann (1999), Elements of Large-Sample Theory, Springer; and [5] Das-
Gupta (2008), Asymptotic Theory of Statistics and Probability, Springer. A
comparison with these existing texts would help to highlight some of the
features of the current book. Text [2] deals with the case of independent ob-
servations. In practice, however, the observations are often correlated. A main
purpose of the current book is to introduce large-sample theory and methods
for correlated observations, such as those in time series, mixed models, and
spatial statistics. Furthermore, the approach of [2] is more like “use this for-
mula,” rather than “why?” and “what’s the trick?.” In contrast, the current
text focuses more on the way of thinking. For example, the current text cov-
ers basic elements in asymptotic theory, such as e-6, Op, and op, in addition
to the asymptotic results, such as a formula of asymptotic expansion. This
reflects the current author’s belief that methodology is more important and
applicable to a broader range of problems than formulas.

Text [3] provides an account of large-sample theory for independent ran-
dom variables (mostly in the i.i.d. case) with applications to efficient esti-
mation and testing problems. Several classical cases of dependent random
variables are also considered, such as m-dependent sequences, rank, and order
statistics, but the basic method was to convert these to the case of indepen-
dent observations plus some extra terms that are asymptotically negligible.
The chapters are written in a theorem—proof style which is what the author
intended to do.

Like [2] and [3], text [4] deals with independent observations, mostly the
i.i.d. case. However, the approach of [4] has motivated the current author. For
example, [4] begins with very simple and fundamental concepts and eventually
gets to a much advanced level. It might be worth mentioning that the current
author assisted Professor E. L. Lehmann in the mid-1990s during his writing
of book [4].

Text [5] provides a very comprehensive account of asymptotic theory in
statistics and probability. However, similar to books [2]-[4], the focus of [5]
is mainly on independent observations. Also, since a large number of topics
need to be covered, it is unavoidable that the coverage is a little sketchy.

Unlike books [2]-[5], text [1] deals with one special case of dependent
observations—the martingales. Whereas the martingale limit theory applies
to a broad ranges of problems, such as linear mixed models and some cases
of time series, it does not cover many other cases encountered in practice.
Furthermore, the book starts at a relatively high level, assuming that the
reader has taken an advanced course in probability theory. As mentioned, the
current book begins with very basic concepts in asymptotic arguments, such
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as e-0 and Taylor expansion, which requires nothing more than a course in
calculus, and eventually covers much more than the martingale limit theory.

We realize that there have been other books covering similar or related
topics, for example, Serfling (1980), van der Vaart and Wellner (1996), and
van der Vaart (1998), to mention just a few; however, space does not allow us
to make comparisons here.

The current book is supplemented by a large number of exercises. The ex-
ercises are attached to each chapter and closely related to the materials cov-
ered, giving the readers plenty of opportunities to practice the large-sample
techniques that they have learned. The book is mostly self-contained with the
appendixes providing some backgrounds for matrix algebra and mathematical
statistics. A list of notation is also provided in the appendixes for the readers’
convenience. The book is intended for a wide audience, ranging from senior
undergraduate students to researchers with Ph.D. degrees. More specifically,
Chapters 1-5 and parts of Chapters 10-15 are intended for senior undergrad-
uate and M.S. students. For Ph.D. students and researchers, all chapters are
suitable. A first course in mathematical statistics and a course in calculus
are prerequisites. As it is unlikely that all 15 chapters will be covered in a
single-semester or quarter-course, the following combinations of chapters are
recommended for a single-semester course, depending on the focus of interest
(for a single-quarter course some adjustment is necessary):

For a senior undergraduate or M.S.-level course on large sample techniques,
Chapters 1-6.

For those interested in linear models, generalized linear models, mixed
effects models, and their applications, Chapters 1-6, 8, and 12.

For those interested in time series, stochastic processes, and their applica-
tions, Chapters 1-6 and 8-10.

For those interested in semiparametric, nonparametric statistics, and their
applications, Chapters 1-7 and 11.

For those interested in empirical Bayes methods, small-area estimation,
and related fields, Chapters 1-6, 12, and 13.

For those interested in resampling methods, Chapters 10-7, 11, and 14.

For those interested in Monte Carlo methods and their applications in
Bayesian inference, Chapters 1-6, 10, and 15.

For those interested in spatial statistics, Chapters 1-6, 9, and 10.

Thus, in particular, Chapters 1-6 are vital to any sequence recommended.

The book is motivated by the author’s research work, who has used large-
sample techniques throughout his career. The author wishes to give his sincere
thanks to Professor Peter J. Bickel for guiding the author in his Ph.D. disser-
tation that led to one of his best theoretical work on REML asymptotics (see
Section 12.2) and for the many helpful discussions afterwards including those
regarding the bootstrap method that is covered in Chapter 14; to Professor
David Aldous for communications regarding an example in Chapter 10; to
Professor Samuel Kou for helpful discussion on Markov-chain Monte Carlo
methods; to Professor Jun Liu for kindly providing a plot to be included in
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Chapter 15 of this book; and to the author’s long-time collaborator and friend,
Professor Partha Lahiri, for leading the author to some of the important ap-
plication areas of large-sample techniques, such as small-area estimation and
resampling methods. In addition, a number of anonymous reviewers have made
valuable comments regarding earlier versions of the book chapters. For exam-
ple, several reviewers have suggested inclusion of a chapter on nonparametric
methods; one reviewer suggested another case study regarding Chapter 8. The
author appreciates their valuable suggestions. The author also wishes to ex-
press his gratefulness to Dr. Thuan Nguyen for computational and graphic
assistance and to Mr. Peter Scully for reading and improving the English pre-
sentation of the Preface. Finally, the author has grown up reading Professor
Erich Lehmann’s classical texts in Statistics, from whom he learned to write
his first paper in America (Jiang 1997b) and his first book on mixed models
(Jiang 2007). While the author is heartfeltly grateful to Professor Lehmann’s
lifetime inspiration, he had wished to show his appreciation by sending him
the first copy of this book. (Professor Lehmann died on September 12, 2009.)

Jiming Jiang
Davis, California
December, 2009
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1

The e-6 Arguments

Let’s start at the very beginning

A very good place to start

When you read you begin with A-B-C
When you sing you begin with do-re-mi

Rodgers and Hammerstein (1959)
The Sound of Music

1.1 Introduction

Every subject has its A, B, and C. The A-B-C for large-sample techniques is e,
6, and a line of arguments. For the most part, this line of arguments tells how
large the sample size, n, has to be in order to achieve an arbitrary accuracy
that is characterized by € and §. It should be pointed out that, sometimes, the
arguments may involve no 0 (€), or more than one ¢ (¢), but the basic lines of
the arguments are all similar. Here is a simple example.

Ezample 1.1. Suppose that one needs to show log(n + 1) — log(n) — 0 as
n — oo. The arguments on one’s scratch paper (before it is printed nicely in
a book) might look something like the following. To show

log(n+ 1) —log(n) — 0

means to show
1
log (1 + —> <e. (1.1)
n

What is €? € is a (small) positive number. Okay. Go on. This means 1+1/n <
e, orn > (e — 1)L If we take N = [(e€ —1)71] + 1, where [z] represents the
integer part of x (i.e., the largest integer less than or equal to z), then when
n > N, we have (1.1). Now grab a nice piece of paper, or a computer file, and
write the following proof:

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2 1, © Springer Science+Business Media, LLC 2010
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For any € > 0, let N = [(e° —1)7!] + 1. Then, for all n > N, we have
(1.1). This proves that log(n + 1) —log(n) — 0 as n — oo.

The above proof looks nice and short, but it is the arguments on the
scratch paper (which probably gets thrown out to the trash basket after the
proof is written) that is more useful in training the way that one thinks.

1.2 Getting used to the e-0 arguments

In this argument, the order of choosing € and N is critically important; € has
to be chosen (or given) first before N is chosen. For example, in Example 1.1,
if one were allowed to choose N first and then ¢, the same “argument” can be
used to show that log(n + 1) —log(n) — 1 (or any other constant) as n — co.
This is because for any n > N, one can always find € > 0 such that

1
log <1+—> 1‘
n

< €.

[log(n + 1) —log(n) — 1] =

Here is another example.

Ezample 1.2. Define f(z) = 22 if x < 1, and f(z) = 2 if 2 > 1. A plot
of f(x) is shown in Figure 1.1. Show that f(x) is continuous at z = 0. Once
again, first work on the scratch paper. To show that f(z) is continuous at
x = 0 is to show that |f(z) — f(0)] <e, if |z — 0] = || < §. What is €? e is a
given (small) positive number. Okay. Go on. What is §7 J is another (small)
positive number chosen after ¢ and therefore depending on €. Okay and go on.
Since f(0) = 0, this means to choose ¢ such that | f(z)| < €, if |2| < §. Because
f(z) = 2% when z is close to 0, we need to show that z2 < ¢, or |z| < \/e.
Now, it is clear how ¢ should be chosen: § = /€.

Note that if the order in which € and § are chosen is reversed, the same
“argument” can be used to show that f(x) is continuous at = = 1, which is
obviously not true from Figure 1.1. To see this, note that for any 0 < 6 < 1,
when 1 — 4§ < o < 1, we have |f(z) — f(1)| = [#? — 2| < 2 — (1 — §)?. Thus,
if one lets € = 2 — (1 — §)2, one has |f(z) — f(1)| < ¢, but this is wrong! The
choice of € should be arbitrary, and it cannot depend on the value of 4. In
fact, it is the other way around; d typically depends on the value of ¢, such as
in Example 1.2.

One of the important concepts in large-sample theory is called conver-
gence in probability. This is closely related to another important concept in
statistics—mnamely, the consistency of an estimator. To show that an estimator
is consistent is to show that it converges in probability to the quantity (e.g.,
parameter) that it intends to estimate. Convergence in probability is defined
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o~ 4
3
o 4
| T T
0 1 2
X
Fig. 1.1. A plot of the function in Example 1.2

through an e-§ argument as follows. Let &,, n = 1,2, ..., be a sequence of ran-

dom variables. The sequence converges in probability to a random variable &,
denoted by &, N &, if for any € > 0, the probability P(|&, —&| > ¢) — 0
as n — oo. In other words, for any € > 0 and (then) for any ¢ > 0, there is
N > 1 such that P(|¢, — &| > ¢e) < dif n> N.

In particular, the random variable £ can be a constant, which is often the
case in the context of consistent estimators. We consider some examples.

Ezample 1.3 (Consistency of the sample mean). Let X1,...,X,, be ob-
servations that are independent and identically distributed (i.i.d.). Then the
sample mean

X4+ X,

X = (1.2)
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is a consistent estimator of the population mean p = E(X;) (note that the
latter does not depend on ¢ due to the i.i.d. assumption), provided that it
is finite. This result is also known as the weak law of large numbers, WLLN
(WLLN) in probability theory. To prove this result, we will make a stronger
assumption, for now, that E(X?) < oo. Then, for any € > 0 and for any § > 0,
by Chebyshev’s inequality, we have

B(IX —p?)

P(X — il > ) < 22

€

= #E {Z(Xi - M)}

=1
1 « 5
= a2 Z E(X; —p)
i=1
C

< < (1.3)

e2n

for some constant ¢ > 0. Therefore, for any ¢ > 0, as long as c/e’n <Jorn >
¢/€*d, we have, by (1.3), P(|X — | > €) < 4. Thus, by letting N = [¢/€%0] +1,
we have P(|X —u| >¢) <dif n> N.

Ezample 1.4 (Consistency of MLE in the Uniform distribution). Let X1,
..., Xy, be i.i.d. observations from the Uniform[0, §] distribution, where 6 is an
unknown (positive) parameter. It can be shown that the maximum likelihood
estimator (MLE) of 6 is 0 = X(n) = maxi<i<n X;. We show that 0 is a
consistent estimator of 6. .

For any € > 0, since, by the definition, # < 6 with probability 1, we have

P(|0—0] >¢) =P <0 —¢)
=PX1<0—¢...,X,<0—¢)
=P(X1<0—-¢)---P(X,<O—¢)

= (1- g) (1.4)

Here, we may assume, without loss of generality, that ¢ < 6. Now, for any 6 >
0, if we want the left side of (1.4) to be less than §, we need n > log(d)/ log(1—
€/6). This gives the choice of N (e.g., N = [log(d)/log(1 — €/0)] + 1), so that
P(|0— 0] >¢€) <6,ifn> N.

It should be pointed out that the right end of the interval [0, 6] of the
Uniform distribution is closed, which is critically important here. For example,
if the Uniform[0, 6] distribution is replaced by the Uniform|0, ) distribution,
then it can be shown that the MLE of 6 does not even exist. Of course, in this
case, the MLE is inconsistent (Exercise 1.8).
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1.3 More examples

Sometimes, the e-J arguments may involve several steps that have to be put
together at the end. The arguments in the following examples are somehow
more complicated than the previous ones, but the way of thought is very
similar.

Ezample 1.5 (Consistency of the sample median). Let X be a random
variable. The median of X is defined as any number a such that P(X < a) >
1/2 and P(X > a) > 1/2. In general, the median may be an interval instead
of a single number. Here, we assume, for simplicity, that X is a continuous
random variable with a unique median a. It follows that P(X < z) < 1/2,
r<a,P(X<a)=1/2,and P(X <z) >1/2, 2 > a.

The sample median is defined in terms of the order statistics, X () < --- <
X(n), which are the observations Xi,..., X, listed in the increasing order.
Here, we assume that X5, ..., X,, are independent with the same distribution
as the random variable X above. If n is an odd number, say, n = 2m + 1, the
sample median is defined as X(,,41); otherwise, if n is an even number, say,
n = 2m, the sample median is defined as { X () + X(m+1)}/2-

We consider the case n = 2m+1 here. The case n = 2m is left to the readers
as an exercise. For any € > 0, we need to show that P{| X, 1) —a| > €} — 0
as n — oo. Note that

P{|X(mq1) —al > e} = P{X(mmq1) > a+e} + P{X(pq1) <a—¢}
< P{X(m+1) >a+e€}+ P{X(erl) <a-—e€}. (1.5)
For any x, define the random variable Y;, as the total number of X;’s that are
less than or equal to z. Then X, 1) <z if and only if ¥;, > m+1. Notice that
Y., has a Binomial(n, p) distribution, where p = F(z) = P(X < x). Therefore,
P{X(erl) < aj} = P(Yn >m+ 1)

:P{ Y, —np S m—&-l—np}.
Vip(l—p) — /np(1 —p)

We now use the (classical) central limit theorem (CLT'), which will be further
discussed in the sequel. It follows that (Y, — np)/+/np(l — p) converges in
distribution to N(0,1). On the other hand, note that m +1 = (n + 1)/2.
Thus, we have

M:{<;_p>n+;}/m. (1.7)

np(l —p)

(1.6)

It follows that (1.7) — oo if p < 1/2 and — —oo if p > 1/2. If we combine
(1.5)—~(1.7) with x = a—e¢ (and hence p < 1/2), we come up with the following
argument. For any ¢ > 0, choose B > 0 such that #(B) > 1 — §, where &(+)
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denotes the cumulative distribution function (cdf) of N (0, 1). Then, according
to the CLT, there is N7 > 1 such that when n > Ny, we have

Y, —
pl—" - pl\ @B
np(l —p)
Furthermore, there is Na > 1 such that when n > Nj, the left side of (1.7) is
greater than B. Thus, when n > Ny V Na, we have [by (1.6)]

< 4.

Y, —
P{X(mi1)<a—e} <P{—-T2_~p
np(l —p)

Y, —
—1-pl—»" " _p
np(l —p)

<1-®B)+ P{Y"inp)<3}—§5(3)

np(l —p
< 26. (1.8)

By a similar argument, it can be shown that there are N3, Ny > 1 such that
when n > N3 V Ny, we have P{X(,, ;1) > a + €} < 26. Therefore, by (1.5),
when n > Ny V No V N3 V Ny, we have P{| X, 1) —al > €} < 40.

Note 1. The role of B in this argument is called a bridge. It helps to connect
the e-d arguments; once the connection is made, the role of B is finished (and
thus resembles the role of a bridge). For example, in (1.8), all one needs are
the left and right ends of these inequalities to hold when n > N; V Ny, but B
helps to make the connections. Such usages of bridges are fairly common in
asymptotic arguments (see the Exercises at the end of the chapter).

Note 2. Unlike in Examples 1.1-1.4, here several N’s were chosen in dif-
ferent pieces of the arguments. Typically, one needs to take the maximum of
those N’s at the end.

Note 3. Also note that, at the end, we showed that the probability is less
than 44, not 6. However, this makes no difference in the asymptotic argu-
ments because 0 is arbitrary. If one wishes, one could replace § by d/4 at the
intermediate steps where Ny, ..., Ny were chosen and repeat the argument so
that, at the end, one has the probability less than 4.

Convergence in distribution is another important concept in large-sample
theory. In particular, it is closely related to the CLT that was used in the
previous example. A sequence of distributions, represented by their cdf’s
Fi, F,, ..., converges weakly to a distribution with cdf F', denoted by F,, — F
if F,(x) — F(z) as n — oo for every z at which F(z) is continuous. Note
that as a cdf, F can only have countably many discontinuity points (Exercise
1.12). A sequence of random variables &7, s, . .. converges in distribution to a

random variable &, denoted by &, 4, ¢, if F,, = F, where F), is the cdf of &,,
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n=1,2,..., and F is the cdf of £&. One of the striking results of convergence
in distribution is the following.

Ezample 1.6 (Pélya’s theorem). Suppose that F'is continuous. If £, - F,
then the convergence is uniform in that

sgp | (z) — F(z)| — 0, (1.9)

as n — oo. The result is striking because weak convergence is defined point-
wisely, and, in general, pointwise convergence does not necessarily imply uni-
form convergence. However, a cdf is monotone and has limits at —oo and
00. Such nice properties make it possible to derive uniform convergence from
pointwise convergence. Result (1.9) actually holds for multivariate cdf’s as
well, but here, for simplicity, we consider the univariate case only.

To show (1.9) we need to show that for any € > 0, there is N > 1 such that
the left side of (1.9) is less than € if n > N. First, choose A < 0 and B > 0 such
that F(A) < e and F(B) > 1 — e. Because F(x) is continuous over [A, B],
there are points A < z1 < --- < zp < B such that F(zj11) — F(z;) < e,
0 < j <k, where z9p = A and zxy; = B. Now, because F), -, F, for each
0 <j <k+1, there is N; > 1 such that

|Fn($3) — F(CL’])| <e ifn> Nj.
Let N=NogV Ny V---V Niy1 and suppose n > N. If © < A, we have
F,(z) — F(z) < F,(A)
= F(A) + F,(4) - F(4)
< F(A) + [Fa(4) — F(A)]
= F(A) + [Fn(20) — F(z0)]
< 2e
and F,(x) — F(x) > —F(A) > —¢, so |Fy(z) — F(z)| < 2¢e. If > B, then
Fo(z) —F(z) <1-F(z)<1-F(B) <e¢ and
F,(x)— F(z) > F,(B) - 1
=F(B)—-1+F,(B) — F(B)

> F(B) — 1 —|F.(B) — F(B)|
= F(B) =1 — |Fu(zr+1) — F(2k41)]
> —2e.

Thus, |F,(z) — F(z)| < 2e. Finally, if A < < B, then there is 0 < j < k
such that « € [z}, ;11]. It follows that
Fu(@) ~ F(@) < Palwye1) — Flay)
= Fo(zj41) — F(zj11) + F(2j41) — F(z;)
< |En(@jer) = Fzjpn)| + Flejn) - Fz))
< 2,
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and

Fo(z) — F(z) =2 Fo(x;) — F(zj41)
= Fu(x)) — F(z;) + F(zj) — F(2j41)
> —|Fa(x;) — F(a;)| + F(z;) = F(xj41)
> —2e.

Thus, once again, we have |F,,(x)—F(z)| < 2e. In conclusion, we have | F},(x)—
F(z)] < 2¢ for all z, as long as n > N. Thus, for n > N, we have the left side
of (1.9) < 2e. This completes the proof.

This example has the same flavor as the previous one in that (i) A and B
were used as the bridge(s); (ii) a number of N;’s were chosen at intermediate
steps and the final N was the maximum of those; and (iii) at the end we
showed the left side of (1.9) is < 2¢ rather than < €, but this did not matter
since € was arbitrary.

1.4 Case study: Consistency of MLE in the i.i.d. case

One of the fundamental results regarding the MLE is its consistency under
regularity conditions. It should be pointed out that there are two types of
consistency so long as the MLE is concerned. The first type of consistency is
called the Cramér consistency (Cramér 1946), which states that there exists
a root to the likelihood equation that is consistent. Thus, the result does not
explicitly imply that the (global) maximum of the likelihood function (i.e.,
the MLE) is consistent. Furthermore, in case there are multiple roots to the
likelihood equation, the theorem does not tell which root is consistent. Never-
theless, the Cramér consistency is a fundamental result because typically the
MLE is typically a solution to the likelihood equation, and in some cases, the
solution is unique. Another type of consistency is called the Wald consistency
(Wald 1949). It states that the global maximum of the likelihood function
(i.e., the MLE) is consistent. From a theoretical point of view the Wald con-
sistency is a more desirable asymptotic property, although it is usually more
difficult to prove than the Cramér consistency.

In the following we present a proof of the Cramér consistency due to
Lehmann (1983) and a proof of the Wald consistency given by Wolfowitz
(1949) in a note following Wald’s paper. Both proofs involve the e-§ argu-
ments, which is why they are presented here. The difference between Wald
(1949) and Wolfowitz (1949) is that Wald proved strong consistency defined
in terms of almost sure convergence, whereas Wolfowitz established consis-
tency, which is defined in terms of convergence in probability. See Chapter 2
for a detailed account of different types of convergence. It should be pointed
out that both proofs require some regularity conditions, which we will discuss
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later in Chapter 10, as our main goal here is to demonstrate the use of the
€-0 argument.

We assume that X1,..., X, are i.i.d. observations that have the common
probability density function (pdf) f(x|6), where, for simplicity, we assume that
0 is a real-valued unknown parameter, with the parameter space © = (—o0, 00)
(see Exercise 1.13 for an extension of the proof to the more general case). Here,
the pdf is with respect to a o-finite measure p (see Appendix A.2).

Cramér consistency. Denote the likelihood function by

n

L) = [T r(xilo).

i=1

We need to show that there is a sequence of roots to the likelihood equation

% log{L(#)} = ; f(X;m %f(xiw)

=0, (1.10)

say, én, such that 6, F, 0, where 6 is the true parameter. For any ¢ > 0,
consider the sequence of random variables Y; = log{f(X;|0)/f(X;|0 — €)},
i=1,2,.... By Jensen’s inequality (see Chapter 5), we have
Eq[—log{f(X:|0 —€)/f(Xi|0)}]

— log[Be{f(Xil0 — €)/ f(X:i|0)}]

_ —log{/f(x|9—€) du}

=0.

Eq(Y3)

Vol

Hereafter, Eg denotes expectation under the pdf f(x|6). Similarly, let Py
denote probability under the pdf f(z|f). Then we have, by the WLLN,
nTY LY L, Ep(¥1) > 0; hence Po(X0,Y: > 0) — 1 (Exercise 1.14).
Therefore, for any § > 0, there is Ny > 1 such that when n > Ny,
Po(>°;,Y; > 0) > 1 — 4. Similarly, consider the sequence of random vari-
ables Z; = log{f(X;|0)/f(Xil0 + ¢)}, ¢ = 1,2,.... It can be shown that
Pg(zz;l Z; > 0) — 1. Therefore, there is N > 1 such that when n > No,
P@(Z?:l Z; > 0) >1-—4.

Define 6, as the root to the likelihood equation (1.10) that is closest to 6.
Note that 6, exist as long as a root to (1.10) exists. In particular, the limit
of a sequence of roots is also a root, provided that the left side of (1.10) is
continuous. Also note that .7 ;¥; > 0 and Y., Z; > 0 imply that the
value of the log-likelihood is higher at 6 than at & — e and 6 + € and, hence,
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the existence of a root inside the interval (6 — ¢, 6 + ¢). Since the latter event
implies that |0, — 6| < €, we have

Po(|0, — 0] <€) > Py (Zm >0, Z >0>

=1 1=1
>1-26,

or Py(|0, — 0] > €) < 26.

Wald consistency. The ingenious proof of Wald (1949) originated from
the following simple property of the pdf, which is proved above by Jensen’s
inequality. Let 6 be the true parameter. Then for any 6, # 0, we have

Egllog{f(X1/0)}] = Eg[log{f(X1]01)}].

In fact, Wald proved the following stronger result. For every 6; # 6, there is
p = p(01) > 0 such that

Eg

log{ sup f(X192)H<Ee[10g{f(X1|9)}]~

[602—01]<p

Furthermore, there is a positive number a such that

Eo < Eg[log{ f(X1]0)}].

10g{ sup f(X1|92)}

|62]|>a

For any € > 0, the collection of open sets S(61,p) = {02 : |02 — 61]
61 € O, form an open cover of the compact set (0 —e€,6 4 €)° N [—a, a]. By the
Heine-Borel theorem (see the next subsection), there exist a finite subcovf;
say, S(01,1,p1),-..,5(01 K, pK), of (0 —¢,0+¢)°N[—a, a]. Define the sequences
of i.i.d. random variables as follows:

Yii zlog{ sup f(Xi|92)} —log{f(X;|0)}, i=1,2,...,
[02—01 k| <pk
1<k<K,and
Y1, = log{ sup f(Xi|92)} —log{f(X;|0)}, i=1,2,....

|02]>a

By the WLLN, we have n=' > " | Y}, £, Eg(Yk,1) < 0; hence,

i n
Py {Z Ykﬂ‘ < §E9(Yk71)} — 1,

i=1

asn—o0, 1 <k<K-+1.
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Let Ay be the event that Y1 Vi < (n/2)Ee(Y1), 1 < k < K + 1.
Then for any § > 0, there is Ny > 1 such that when n > N, we have
Pg(Ak) >1-6,1< k< K+1 Let n = (1/2) maxi<i<K41 Eg(Yk’l) and
N = maxi<ig<k+1 Ni. Then when when n > N, we have

(ZYM <nn, 1<k<K+ 1) > Py (N Ar)
=1

— 1 - Py (UEA1AY)

>1— (K +1)d. (1.11)

Let h = €. Since n < 0, we have 0 < h < 1. Furthermore, it can be shown
(Exercise 1.15) that > | Vi, <nn, 1 <k < K + 1, imply

su M n
Iez—epze{ [T, 7 (X:]6) } s (1.12)

Thus, by (1.11), the probability of event (1.12) is greater than 1 — (K + 1)J.
Note that (1.12), in turn, implies that |é — 0] < €, where 0 is the MLE of 6.
In other words, the maximum of the likelihood function must lie within the
interval (0 — €,0 + €) (because the ratio is less than 1 for any 6 outside the
interval). It follows that P9(|9 0l <e)>1—(K+1)if n > N. Since J is
arbitrary, we must have Pg(|0 — 60| > €) — 0, as n — co; hence, 6 is consistent.

1.5 Some useful results

In this section we present a list of useful results in mathematical analysis that
involve the e-§ arguments or are often used in such arguments.

1.5.1 Infinite sequence

1. Limit of a sequence. A sequence a,, n =1,2,..., converges to a limit a,
denoted by a,, — a or lim,_,, a, = a, if for any € > 0, there is N > 1 such that
|an, —a| < € if n > N. Note that this definition applies to both a real-valued
sequence and a vector-valued sequence, where for a vector v = (vg)i1<k<d, |V]
is defined as its Euclidean norm; that is, |v] = (3¢, v2)!/2.

The above definition of convergence of a sequence involves the limit of
the sequence. Sometimes the limit is unknown, and it would be nice if one
could judge the convergence by the sequence itself [i.e., without relying on the
(unknown) limit]. A well-known criterion for convergence is the following.

2. Cauchy criterion. The sequence a,, n = 1,2,...,is a Cauchy sequence
if for any € > 0, there is N > 1 such that |a,+r — an| < € for any n > N and
k > 1. The sequence a,, n = 1,2,..., converges if and only if it is a Cauchy
sequence.



12 1 The e-6 Arguments

The following results can be established using either the definition of con-
vergence or the Cauchy criterion (Exercises 1.16 and 1.17).

3. Monotone sequence. A sequence an,, n = 1,2,... is increasing if
an < ap41 for any n; it is decreasing if a, > an41 for any n. Increasing
or decreasing sequences are called monotone sequences. Every monotone se-
quence is convergent, provided that it is bounded. More specifically, if the
sequence a, is increasing, then lim,_,o an = sup,,>; an, provided that the
latter is finite; if a,, is decreasing, then lim,_, a, z_infnzl an, provided that
the latter is finite.

4. Convergent subsquence. Every bounded sequence has a convergent sub-
sequence.

5. Upper and lower limits. Let a,, n =1,2,..., be a sequence. The upper
limit of the sequence, denoted by limsup a,, is defined as the largest limit
point of a,,. Note that lim sup a,, is always well defined according to the above
result on convergent subsequence, provided that a,, is bounded. In such a case,
since the supremum of all the limit points of a,, is also a limit point, the largest
limit point always exists. Similarly, the lower limit of the sequence, denoted
by liminf a,,, is defined as the smallest limit point of a,. The following are
some properties of the upper and lower limits.

5.1. limy,_,» a, = a if and only if lim sup a,, = lim inf a,, = a.

5.2. Let the seqeuence a,, be bounded. Then we have

lim sup(—a,) = — liminf a,,
liminf(—a,) = — limsup a,.

5.8. Suppose that a, and b, are two sequences that are bounded. Then
the following inequalities hold:

liminf a,, + liminf b,, < liminf(a, + b,)
< liminf a,, + limsup b,,
< limsup(a, + by,)

< limsup a,, + limsup b,,.

6 (The argument of subsequences). lim,, .« a, = a if and only if for any
subsequence a,,, k = 1,2, ..., there is a further subsequence Ay, s l=1,2,...,
such that lim;_ o Qny, = Q.

1.5.2 Infinite series

7. Convergence of a series. The notation Z;ﬁl x; represents an infinite
series if it converges. The latter is defined as the existence of the limit
lim,,— 00 2?21 z;. In other words, the infinite series Z;); x; converges to
s, denoted by Y72, x; = s, if for any € > 0, there is N > 1 such that
|>"  x; — s| < eif n > N. Once again, this definition applies to both real-
valued and vector-valued infinite series.
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8. Cauchy criterion for convergence of infinite series. The infinite series
Z;ﬁl x; converges if and only if for any € > 0, there is N > 1 such that

\Z?;fﬂxﬂ <eforanyn > N and k > 1.

A test for convergence is a (sufficient) condition that ensures convergence
of the infinite series. There are various tests for convergence. The following are
some of them involving positive series. A series Y .~ a; is positive if z; > 0,
1 > 1. These tests can be established, for example, using the Cauchy criterion
(Exercises 1.18-1.20).

9. Suppose Y .o, x; and Y .o, y; are positive series such that z; < y;,
i >1. (i) if Y;°, y; is convergent, so is >~ x;; (i) conversely, if > -° x; is
divergent (i.e., it is not convergent), so is Y .=, y;.

10. Suppose Y=, x; and Y.~ y; are positive series. If lim, o0 (Tn/yn) =
r, where r € (0, 00), the two series are both convergent or both divergent.

11. Let Y2, x; be a positive series. (i) If limsup,,_, o (¥n+1/2n) < 1, the
series is convergent; (ii) if liminf,— o (Tn+1/2n) > 1, the series is divergent.

Note that no conclusion can be made if liminf, o (zp+1/2,) < 1 and
limsup,,, oo (Tnt+1/xn) > 1.

12. Let Y2, x; be a positive series and p = limsupn_,oo(xi/n). (i) If
p < 1, the series is convergent; (ii) if p > 1, the series is divergent.

Note that no conclusion can be made if p = 1.

For infinite series with positive and negative terms, we have the following
result.

13. Absolute convergence. The infinite series Y .-, z; is absolutely con-
vergent if Y -, |z;| is convergent. Absolute convergence of an infinite series
implies convergence of the infinite series.

1.5.3 Topology

14. Neighborbood. A neighborbood of € R? is defined as a subset of R?
of the form S(z,¢) = {y € R?: |y — x| < €} for some € > 0.

15. Open sets. A subset S C R is an open set if for every = € S, there is
€ > 0 such that S(z,¢€) C S.

16. Limit point of a set. A point z € R? is a limit point of a set § C R? if
S(xz,e) NS\ {z} # 0 for every € > 0. In other words, every neighborhood of
x contains at least one point of S that is different from z (if x € .5).

17. Closed sets. A subset S C R? is a closed set if it contains every limit
point of it.

The following fact can be used as an equivalent definition of a closed set.

18. A set S is closed if and only if its complement, S¢, is open.

The following theorems, which are equivalent, are fundamental results in
real analysis. An open cover of S C R is a collection of open sets S = {S,, @ €
A} such that S C UneaSa. If a subcollection of S, 81, is also an open cover of
S, 81 is called a subcover. In particular, if S; is a finite collection, it is called
a finite subcover. Finally, a set S C R is compact if every open cover of S has
a finite subcover.
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19. Heine—Borel theorem. Every bounded closed subset of R is compact.

20. Bolzano—Weierstrass theorem. Every bounded infinite subset of R has
a limit point.

For a proof of the equivalence of the Heine-Borel and Bolzano—Weierstrass
theorems, see, for example, Khan and Thaheem (2000).

1.5.4 Continuity, differentiation, and intergration

For simplicity we consider real-valued functions defined on R.

21. A function f(z) is continuous at x = x¢ if for every € > 0, thereis § > 0
such that |f(z) — f(zo)| < € if |x — xo| < J. The function f(x) is continuous
on S C R if it is continuous at every x € S.

Some important properties of continuous functions are the following.

22. If f(x) is continuous at © = xo and f(zg) > 0, there is a neighborhood
S(zo, ) for some & > 0 such that f(z) > 0, z € S(xo, ).

23. The intermediate-value theorem. If f(z) is continuous on [a,b], then
for any A € (A, B), where A = f(a) A f(b) and B = f(a) V f(b), there is
¢ € (a,b) such that f(c) = A

24. If f(x) is continuous on S and S is closed and bounded (or compact
according to the Heine-Borel theorem), then f(x) is bounded on S. Further-
more, let A = inf g f(x) and B = sup,cg f(x). There are z1,22 € S, such
that f(z1) = A and f(x2) = B. In other words, f(z) achieves its infimum and
supremum on S.

25. Uniform continuity. The function f(x) is uniformly continuous on S if
for any € > 0, there is 6 > 0 such that |f(x1) — f(z2)| < € for any z1,x2 € 5,
such that |z1—xz2| < 6. If f(z) is continuous on S and S is closed and bounded,
then f(x) is uniformly continuous on S.

26. Differentiability of a function. Let f(x) be defined in a neighborhood
of zg, S(zo,9), for some § > 0. If the limit of

fxo +h) — fl2o)
h

exists as h — 0, where h # 0 and |h| < 0, f(z) is differentiable at o and its
derivative at xg is denoted by

If f(z) is differentiable at every x € S, then f(z) is differentiable on S.
Some important properties of differentiable functions are the following.
27.1f f(z) is differentiable at xq, f(z) is continuous at xg. In other words,

differentiability implies continuity.

28. Rolle’s theorem. Suppose that f(x) is continuous on [a, b] and differen-

tiable on (a,b), and f(a) = f(b); then there is ¢ € (a,b) such that f'(c) = 0.
A consequence of Rolle’s theorem is the following theorem.
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29. The mean value theorem. If f(x) is continuous on [a,b] and differen-
tiable on (a,b), there is ¢ € (a, b) such that

—a

30. If f(z) is increasing (decreasing) and differentiable on (a,b), then
F@) >0 (f/(z) <0), 2 € (a,D).

31. Mazima and minima of a differentiable function. The function f(z) has
a local maximum (minimum) at zg € S if there is § > 0 such that f(x) < f(zo)
(f(x) > f(xo)) for every © € S(xo,0). If f(z) is differentiable on (a,b) and
has a local maximum or local minimum at =, € (a,b), then f/(z,) = 0. In
particular, if f(x) is continuous on [a, b] and differentiable on (a,b) and there
is g € (a,b) such that f(xo) > f(a)V f(b) or f(zo) < f(a)A f(b), then there
is . € (a,b) such that f'(x.) =0 (Exercise 1.22).

For an extension of the above results to partial and higher order deriva-
tives, see Chapter 4.

32. Riemann mtegml Let f (x) be a function defined on [a,b]. For any
sequence a < 1 < -+ < Tnp_1 < b, let m; and M; denote the infimum and
maximum of f(z) on [x;—1,2;], 1 < i < n, where g = a and z,, = b. Then
f(z) is Riemann integrable on [a, b] if for any € > 0, there is 6 > 0 such that

n

Z(Ml — ml)(xz — -Ti—l) <€

i=1

whenever max;<;<n(z; — x;—1) < ¢. In this case, the integral ff f(z) dz is
defined as the limit of

Z f@ti)(wi — wi-1)

as maxj<i<n(z; — x;—1) — 0, where ¢; is any point in [z;_1, 2], 1 <i <mn.
Some important properties of Riemann integrals are given below.
33. Any continuous function f(x) on [a, b] is Riemann integrable on [a, b].
34. The mean value theorem for integrals. If f(z) is continuous on [a, b],
then there is ¢ € [a, b] such that

b
LI@dr_

35. Let f(x) be Riemann integrable on [a, b]. The following hold for

x):/:f(t)dt

(i) F(z) is uniformly continuous on [a, b];
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(ii) if f(x) is continuous on [a,b], then F(x) is differentiable on (a,b) and
F'(x) = f(x), @ € (a,b).

Result (ii) can actually be extended to [a, b], provided that the derivatives
of F(z) at a and b are understood as the right and left derivatives, respectively,
defined as follows:

F(a+h)— F(a)

Fia) = h>1gr};0 h ’
F' (b) = . 101%1 ow'
<0,h—

Two other types of integrals are also frequently used in mathematical
statistics. The first is the Riemann—Stieltjes integral, which may be regarded
as an extension of the Riemann integral. The second is the Lebesgue integral,
which is defined in terms of measure theory. The latter sets up the foundation
of probability and mathematical statistics.

36. Riemann—Stieltjes integral. An extension of the Riemann integral in-
volving another function, g(z), is the following. Let g(x) be an increasing func-
tion on [a, b]. If we replace z; —x;_1 in the Riemann integral by g(z;)—g(xi—1),
we have the definition of the Riemann—Stieltjes integral. Suppose that for any
€ > 0, there is § > 0 such that

n

> (M —mi){g(a:) — g(wi1)} < e

i=1

whenever maxj<i<n(z; — x;—1) < 4. f(z) is said to be Riemann-Stieltjes
integrable with respect to g(x) on [a,b]. In this case, the Riemann-Stieltjes
integral, denoted by f: f(z) dg(z), is defined as the limit of

Zf Ho(zi) — g(xiz1)}

as maxjy<i<n(x; — x;—1) — 0, where t; is any point in [z;_1,2;], 1 < i <n.

The definition of the Lebesgue integral through measure theory is deferred
to Appendix A.2, so are those of Lebesgue measure and measurable functions
used below. We conclude this section by pointing out an important connection
between the Riemann integral and the Lebesgue integral.

37. A bounded measurable function f(z) on [a,b] is Riemann integrable
if and only if the set of points at which f(z) is discontinuous has Lebesgue
measure zero, and in that case, the Riemann integral of f(z) on [a,b] is equal
in value to its Lebesgue integral on [a, b].

1.6 Exercises

1.1. Use the e-§ argument to show that for any a € (—o0, 00),
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1 a
(1—|—) — 1
n
as n — oo.

1.2. Use the e-§ argument to show that

1 n
<H> e
n

as n — oo. (Hint: First prove the inequality z —2%/2 < log(1+z) <z, z > 0.)

1.3. Use the e-0 argument to show the following:

(a) (1+1/n)V" =1 asn — .

(b) (1+1/y/n)™ — oo as n — oo; in other words, (1 +1//n)™" — 0, as
n — oo.

1.4. The Student’s t-distribution has extensive statistical applications. It
is defined as a continuous distribution with the following pdf:

—(v+1)/2
I'{(v+1)/2} x?
= —-— 1 JES— _
o(z|v) NZIROR) + ” , —oo <z <00,
where v is the degrees of freedom (d.f.) of the ¢-distribution. Show that the
pdf of the t-distribution converges to that of the standard normal distribution
as the d.f. goes to infinity; that is,

1 2
R - —z%/2
x|V x) = e , oo < T <O
p(zlv) — o(x) o
as v — 00.
1.5. A sequence a,, n =0,1,..., is defined as follows. Starting with initial

values ag and aq, let

nt1 = gan — %an,l, n=12,....
(a) Use Cauchy’s criterion to show that the sequence converges.
(b) Find the limit of the sequence. Does the limit depend on the initial
values ag and a1?
1.6. Determine the ranges of = for which each of the following infinite series
converges, absolutely converges, and uniformly converges.

(a) oo {(=1)"/namam.

(b) >0 (logx)™/nl.
(¢) Yooy sin(nmx)/n(n + 1).
1.7. The Riemann’s (-function is defined as the infinite series
|
((z) = "
n=1 n

(a) Show that ¢(z) is uniformly convergent for x € [a, 00), where a is any
number greater than 1.
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(b) Show that {(z) is continuous on [a, c0) for the same a.

(¢) Is ¢(z) differentiable on [a,00)? If so, find an expression of {'(x) in
terms of an infinite series.

1.8. Suppose that X1, ..., X, arei.i.d. observations from the Uniform|0, §)
distribution, where 6 > 0 is an unknown parameter.

(a) Show that the MLE of 6 does not exist.

(b) Find an estimator of 6 that is consistent.

1.9. Suppose that X is a continuous random variable with a unique median
a (see Example 1.5). Show that P(X < z) < 1/2, 2 < a, P(X < a) = 1/2,
and P(X <z)>1/2, 2 > a.

1.10. Using a similar argument as in Example 1.5 that led to (1.8), show
that there are N3 and N4 such that when n > N3V Ny, we have P{X(m_H) >
a+ e} <20.

1.11. Complete the second half of Example 1.5; that is, prove the consis-
tency of the sample median for the case n = 2m.

1.12. Prove the following property of a cdf: A cdf F' can only have count-
ably many discontinuity points.

1.13. Extend the proof of the Cramér consistency given in Section 1.4 to
the case of multivariate observations and parameters; that is, X;,..., X,, are
i.i.d. vector-valued observations that have the common joint pdf f(z|f), where
0 is a vector-valued parameter with the parameter space © € RP (p > 1).

1.14. In the proof of the Cramér consistency given in Section 1.4, show
that Po(} 1, Y; > 0) — 1.

1.15. In the proof of the Wald consistency given in Section 1.4, show that
Yor Vi <mn, 1 <k<K-+1, imply (1.12).

1.16. Use the e-§ argument to prove the monotone convergence criterion
of §1.5.1.3.

1.17. Use the e-6 argument to prove the result on convergent subsequence
of §1.5.1.4.

1.18. Establish the test for convergence §1.5.2.9.

1.19. Establish the test for convergence §1.5.2.10.

1.20. Establish the test for convergence §1.5.2.11.

1.21. Show that if f(x) is continuous on [a, b] and differentiable on (a,b)
and there is z¢ € (a,b) such that f(zo) > f(a)V f(b), or f(zo) < f(a) A f(b),
then there is z, € (a,b) such that f'(z,.) = 0.
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Modes of Convergence

2.1 Introduction

In this chapter we discuss different types of convergence in probability and
statistics. Types of convergence have already been introduced. They are con-
vergence in probability and convergence in distribution. In addition, we in-
troduce other types of convergence, such as almost sure convergence and LP
convergence. We discuss properties of different types of convergence, the con-
nections between them, and how to establish these properties. The discussion
will mainly focus on the case of univariate random variables. However, most of
the results presented here can be easily extended to the multivariate situation.

The concept of different types of convergence is critically important in
mathematical statistics. In fact, misusage of such concepts often leads to con-
fusions, even errors. The following is a simple example.

Ezample 2.1 (Asymptotic variance). The well-known result of CLT states

that, under regularity conditions, we have /n(X — ) 4, N(0,0?), where o2
is called the asymptotic variance. The definition seems to be clear enough: o2
is the variance of the limiting normal distribution. Even so, some confusion
still arises, and the following are some of them.

(a) 02 is the asymptotic variance of X.

(b) lim,, o nvar(X) — o2 as n — oo.

(c) n(X — p)? — 02 as n — oo.

Statement (a) is clearly incorrect. It would be more appropriate to say
that o2 is the asymptotic variance of v/n.X; however, this does not mean that
lim,, o var(y/nX) — 02, as n — oo, or Statement (b). In fact, convergence
in distribution and convergence of the variance (which is essentially the con-
vergence of moments) are two different concepts, and they do not imply each
other. In some cases, even if the variance does not exist, the CLT still holds
(e.g., Ibragimov and Linnik 1971, pp. 85, Theorem 2.6.3). As for Statement
(c), it is not clear in what sense the convergence is. Even if the latter is made

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2 2, © Springer Science+Business Media, LLC 2010
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clear, say, in plrobability7 it is still a wrong statement because, according to
the CLT, n(X —u)? = {/n(X — ) }? converges in distribution to o2x?, where
X3 is the x2-distribution with one degree of freedom. Since the latter is a ran-
dom variable, not a constant, Statement (c) is incorrect even in the sense of
convergence in probability.

In a way, the problem associated with Statement (c) is very similar to the
second example in the Preface regarding approximation to a mean.

2.2 Convergence in probability

For the sake of completeness, here is the definition once again. A sequence of
random variables &7, &2, ... converges in probability to a random variable &,

denoted by &, L, &, if for any € > 0, we have P(|§, —&| > ¢) — 0 as n — 0.

It should be pointed out that, more precisely, convergence in probability
is a property about the distributions of the random variables £1,&2,...,¢&
rather than the random variables themselves. In particular, convergence in
probability does not imply that the sequence &1, &o, ... converges pointwisely
at all. For example, consider the following.

Ezample 2.2. Define the sequence of random variables &, = &,(x), © €
[0, 1], which is the probability space with the probability being the Lebesgue
measure (see Appendix A.2), as follows.

1,z €[0,1/2)
Gl@) = {0 a:i {1/2/1],
0,z €(0,1/2)
B {1 x € [1/2,1];
1,z €0, 1/4)
{0 x € [0,1]\ [0,1/4);
B {1 RS [1/4 1/2)
-0,z [0, 1]\ [1/4,1/2);
B {1 RS [1/2 3/4)
- 0,z e [0, 1]\ [1/2,3/4);
B {1 T e [3/4 1]
0,z €[0,1]\ [3/4,1],

and so forth (see Figure 2.1). It can be shown that &, L. 0asn — oo
however, &, (z) does not converge pointwisely at any = € [0, 1] (Exercise 2.1).

So, what does convergence in probability really mean after all? It means
that the overall probability that &, is not close to £ goes to zero as n increases,
and nothing more than that. We consider another example.
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0.0 0.5 1.0 0.0 0.5 1.0

o : o 4 : :
T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Fig. 2.1. A plot of the random variables in Example 2.2

Ezample 2.3. Suppose that £, is uniformly distributed over the intervals

, 1 1 )
Z—ﬁ,Z*FW s Z:1,...,Tl.

Then the sequence &,, n > 1, converges in probability to zero. To see this,
note that the pdf of &, is given by

n,x€i—1/2n%i+1/2n%, 1<i<n
fn(x):{ i-1/ /2n?)

0, elsewhere.
It follows that for any € > 0, P(|{,| > €) = 1/n — 0, as n — oo; hence,

&n 0. The striking thing about this example is that, as n — oo, the height
of the density function actually approaches infinity. Meanwhile, the total area
in which the density is nonzero approaches zero as n — oo, which is what
counts in the convergence in probability of the sequence (see Figure 2.2).
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N - -
o 4
T T
1 2
< - - - Z Z
o 4
T T T T
1 2 3 4

Fig. 2.2. A plot of the pdfs of the random variables in Example 2.3

The follow theorems provide useful sufficient conditions for convergence in
probability.

Theorem 2.1. Suppose that E(|£, — £|P) — 0 as n — oo for some p > 0.

Then &, i>£ausnﬂoo.
The proof follows from the Chebyshev’s inequality (Exercise 2.2).

Theorem 2.2. Suppose that &, = a,n, + b,, where a,, and b,, are non-
random sequences such that a,, — a, b, — b as n — oo, and 7, is a sequence
of random variables such that 7, £, n as n — oo. Then &, RN E=an+bas
n — 0.
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Theorem 2.3. Suppose that &, N ¢ and n, N n as n — oo. Then

fn—}—nnig—}—nasn—»oo.

Theorem 2.4. Suppose that &, N & and £ is positive with probability

1. Then &1 £, & lasn — oo

The proofs of Theorems 2.2-2.4 are left to the readers as exercises (Exer-
cises 2.3-2.5).

An important property of convergence in probability is the following. The
sequence &,, n = 1,2,..., is called bounded in probability if for any € > 0,
there is M > 0 such that P(|¢,] < M) > 1 — € for any n > 1.

Theorem 2.5. If {,, n = 1,2,..., converges in probability, then the se-
quence is bounded in probability.

Proof. Suppose that &, £, ¢ for some random variable £. Then for any € > 0,
there is B > 0 such that P(|¢] < B) > 1 — € (see Example A.5). On the other
hand, by convergence in probability, there is NV > 1 such that when n > N,
we have P(|¢, — ¢ <1) > 1 —e. It follows that

P(l& < B+1) = P(|& — & < 1,[¢] < B)
>1—2¢ n>N.

Now, let 1 be the random variable maxi<n<n—1|&n|. According to Example
A5, there is a constant A > 0 such that P(n < A) > 1 — 2e. Let M =
AV (B +1). Then we have P(|¢,| < M) > 1—2¢, n > 1. Since € is arbitrary,
this completes the proof. Q.E.D.

With the help of Theorem 2.5 it is easy to establish the following result
(Exercise 2.6).

Theorem 2.6. Suppose that &, x, ¢ and ny, 2, n as n — oo. Then

Enn Lfn as n — oo.

2.3 Almost sure convergence

A sequence of random variables £,, n = 1,2, ..., converges almost surely to a
random variable &, denoted by &, &% € if P(lim,, o0 &, = &) = 1.

Almost sure convergence is a stronger property than convergence in prob-
ability, as the following theorem shows.

Theorem 2.7. &, % ¢ implies &, — €.
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The proof follows from the following lemma whose proof is a good exercise
of the e-d argument discussed in Chapter 1 (Exercise 2.11).

Lemma 2.1. &, &2 £ if and only if for every e > 0,

Jim P (U {16~ € > ) = 0. (2.1)

On the other hand, Example 2.2 shows that there are sequences of random
variables that converge in probability but not almost surely. We consider some
more examples.

Ezample 2.4. Consider the same probability space [0,1] as in Example
2.2 but a different sequence of random variables &,, n = 1,2, ..., defined as
follows: &, (i/n) =i, 1 <i<mn,and {,(x) =0, if x € [0,1]\ {i/n,1 <i<n}.
Then &, 2% 0asn — oo. Tosee this, let A = {i/n,i=1,...,n, n=1,2,...}.
Then P(A) = 0 (note that P is the Lebesgue measure on [0, 1]). Furthermore,
for any z € [0,1] \ A, we have &,(z) = 0 for any n; hence, &,(z) — 0 as
n — oo. Therefore, P(lim, . & = 0) > P([0,1]\ A) = 1.

Ezample 2.5. Suppose that X; is a random variable with a Binomial(i, p)
distribution, i = 1,2, ..., where p € [0, 1]. Define

n

X
é—nzzﬂw, n:1,2,...,

i=1

where 6 > 0. Then
a.s. = Xz
&n — €= E_l s AT 00 (2.2)

To see this, note that 0 < X;/i2t° < i/i**® = 1/i'*9 and the infinite series
>, 1/i1*° converges. Therefore, by the result of §1.5.2.9 (i), the infinite
series Y 2 X;/i**? always converges, which implies (2.2).

The following result is often useful in proving almost sure convergence.

Theorem 2.8. If, for every € > 0, we have Y~ P(|& — & > €) < oo,

then &, =2 € as n — .

Proof. By Lemma 2.1 we need to show (2.1). Since

oo

PURn{lén =€l 2 e)) < D Pl — €] > o),

n=N

and the latter converges to zero as N — oo, because the sequence Y - | P(|,—
&| > €) is convergent, the result follows. Q.E.D.
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Example 2.6. In Example 1.4 we showed consistency of the MLE in the Uni-

form distribution, that is, 0 0asn — 00, where 6= Xy and Xy,..., X,
are i.i.d. observations from the Uniform[0, 0] distribution. We now show that,
in fact, § 2> @ as n — oo. For any € > 0, we have

P{{ X — 0l > €} =P{X() <0 —¢}
=P(X1<0—¢...,X,<0—¢)
_(P(X < 0— )"

()

Thus, we have

ZP“X(”) —0|>¢€} = Z (1 — g)n

n=1
0—¢

= < 00.
€

Here, we assume, without loss of generality, that € < 6. It follows by Theorem
2.8 that Xy 2% 0 as n — oo.

The following example is known as the bounded strong law of large num-
bers, which is a special case of the strong law of large numbers (SLLN; see
Chapter 6).

Ezample 2.7. Suppose that Xi,...,X,, are i.i.d. and |X;| < b for some
constant b. Then

E:X—HEXﬂ (2.3)

as n — oo. To show (2.3), note that, for any € > 0,

P{[¢n —E(X1)| > ¢} =P {% iXZ —E(X;) > e}

P {% zn:Xi —-E(X;) < e}
i=1
=L + 1. (2.4)

Furthermore, we have, by Chebyshev’s inequality (see Section 5.2),

[ )

el
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el
- et [ { B}

i=1

—eeVm <E {exp{)ﬁ%ﬁfxl)ﬂ) (2.5)

By Taylor’s expansion (see Section 4.1), we have, for any « € R,
. ekm

for some 0 < X\ < 1. It follows that e® < 1+ z + (e¢/2)2? if |z| < c. Since
HX) — E(X1)}/v/n| < 2b/y/n < 2b, by letting ¢ = 2b we have

exp{w} §1+X17E(X1)+€_%{X17E(X1)}2

2

vn NG 2 NG
X1 — E(Xl) 2b2€2b
<1
S+ ==+
(because | X1 — E(X1)| < 2b); hence,

— 2 .,2b
E [GXP{MH <14 20
n

\/ﬁ
< exp (2b262b> (2.6)

n

using the inequality e* > 14z for all x > 0. By (2.5) and (2.6), we have I; <
ce~ V™ where ¢ = exp(Qer%). By similar arguments, it can be shown that
I, < ce=*V" (Exercise 2.12). Therefore, by (2.4), we have P(|¢, — E(X)| >
€) < 2ce~ V™. The almost sure convergence of &, to E(X;) then follows from
Theorem 1.8, because Y00 e~“V™ < 0o (Exercise 2.13).

2.4 Convergence in distribution

Convergence in distribution is another concept that was introduced earlier.
Again, for the sake of completeness we repeat the definition here. A sequence
of random variables &1, &s, ... converges in distribution to a random variable

&, denoted by &, 4, ¢, if F, =5 F, where F, is the cdf of &, and F is the
cdf of €. The latter means that F,(z) — F(z) as n — oo for every x at which
F(z) is continuous.

Note that convergence in distribution is a property of the distribution of
&, rather than &, itself. In particular, convergence in distribution does not
imply almost sure convergence or even convergence in probability.
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FErample 2.8. Let ¢ be a random variable that has the standard normal
distribution, N(0,1). Let & = ¢, & = —§, & = £, &4 = —¢, and so forth.

Then, clearly, &, < ¢ (because € and —¢ have the same distribution). On
the other hand, &, does not converge in probability to & or any other random

variable 7. To see this, suppose that &, P, 7 for some random variable 7.
Then we must have P(|¢, —n| > 1) — 0 as n — co. Therefore, we have

P(|¢—n| > 1) =P(|$2r—1 —n[ > 1) =0, (2.7)
P(€+n>1) =P(|&x —nl>1) =0 (2.8)

as k — oo. Because the left sides of (2.7) and (2.8) do not depend on k,
we must have P(J¢ —n| > 1) = 0 and P(|¢ + n| > 1) = 0. Then because
12¢| < € =]+ |€ +nl, |¢] > 1 implies |2¢| > 2, which, in turn, implies that
either |£ —n| > 1 or [€ +n| > 1. It follows that P(|¢| > 1) < P(|¢ — n| >
1)+ P(|¢ + 1| > 1) = 0, which is, of course, not true.

Since almost sure convergence implies convergence in probability (Theorem
2.7), the sequence &, in Example 2.8 also does not converge almost surely.
Nevertheless, the fact that the distribution of &, is the same for any n is
enough to imply convergence in distribution.

On the other hand, the following theorem shows that convergence in prob-
ability indeed implies convergence in distribution, so the former is a stronger
convergent property than the latter.

Theorem 2.9. &, — ¢ implies &, —2 €.

Proof. Let x be a continuity point of F'(z). We need to show that P(§, <
r) = Fy () — F(r) = P({ < x). For any € > 0, we have

Flx—e)=P(¢<z—¢)

:P(ngfevfnSI)+P(§§‘T7€;§71>I)
<P, <z)+ P&, — & >¢)

= Fp(z) + P(|& — & > e).
It follows by the results of §1.5.1.5 that

F(z —¢€) <liminf F,,(2) 4+ limsup P(|&, — &| > ¢€)
= liminf F, (z).

By a similar argument, it can be shown that (Exercise 2.18)
F(z 4 €) > limsup Fy, ().
Since ¢ is arbitrary and F(x) is continuous at x, we have

limsup Fj,(z) < F(z) < liminf F,,(z).
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On the other hand, we always have liminf F,(z) < limsup F,,(z). Therefore,
we have liminf F,(z) = limsup F,,(z) = F(z); hence, lim,_,o, F,,(z) = F(z)
by the results of §1.5.1.2. This completes the proof. Q.E.D.

Although convergence in distribution can often be verified by the defini-
tion, the following theorems sometimes offer more convenient tools for estab-
lishing convergence in distribution.

Let £ be a random variable. The moment generating function (mgf) of £
is defined as

me(t) = E(e"), (2.9)

provided that the expectation exists; the characteristic function (cf) of £ is
defined as

ce(t) = B(e™), (2.10)

where i = /—1. Note that the mgf is defined at ¢t € R for which the expec-
tation (2.9) exists (i.e., finite). It is possible, however, that the expectation
does not exist for any ¢ except ¢ = 0 (Exercise 2.19). The latter is the one
particular value of ¢ at which the mgf is always well defined. On the other
hand, the cf is well defined for any ¢+ € R. This is because |¢®*¢| < 1 by the
properties of complex numbers (Exercise 2.20).

Theorem 2.10. Let m,,(t) be the mgf of §,, n = 1,2,.... Suppose that
there is § > 0 such that m,(t) — m(t) as n — oo for all ¢ such that |t < 4,
where m(t) is the mgf of a random variable &; then &, 4, £asn — oo.

In other words, convergence of the mgf in a neighborhood of zero implies
convergence in distribution. The following example shows that the converse
of Theorem 2.10 is not true; that is, convergence in distribution does not
necessarily imply convergence of the mgf in a neighborhood of zero.

Ezxample 2.9. Suppose that &, has a t-distribution with n degrees of free-
dom(i.e., &, ~ t,,). Then it can be shown that &, 4, &~ N(0,1) as n — oo.
However, m,,(t) = E(e*é") = oo for any t # 0, whereas the mgf of ¢ is given
by m(t) = e’/2, t € R (Exercise 2.21). Therefore, m,, (t) does not converge to
m(t) for any t # 0.

On the other hand, convergence of the cf is indeed equivalent to conver-
gence in distribution, as the following theorem shows.

Theorem 2.11 (Lévy-Cramér continuity theorem). Let ¢, (¢) be the cf of

&n,m=1,2,..., and ¢(t) be the cf of £&. Then &, 4, & as m — oo if and only
if ¢, (t) — ¢(t) as n — oo for every t € R.

The proof of Theorem 2.10 is based on the theory of Laplace transforma-
tion. Consider, for example, the case that £ is a continuous random variable
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that has the pdf fe(x) with respect to the Lebesgue measure (see Appendix
A.2). Then

me(t) = /jo ' fe(x) dz, (2.11)

which is the Laplace transformation of f(z). A nice property of the Laplace
transformation is its uniqueness. This means that if (2.11) holds for all ¢ such
that |t| < d, where § > 0, then there is one and only one f¢(z) that satisfies
(2.11). Given this property, it is not surprising that Theorem 2.10 holds, and
this actually outlines the main idea of the proof. The idea behind the proof
of Theorem 2.11 is similar. We omit the details of both proofs, which are
technical in nature (e.g., Feller 1971).

The following properties of the mgf and cf are often useful. The proofs are
left as exercises (Exercises 2.22, 2.23).

Lemma 2.2. (i) Let £ be a random variable. Then, for any constants a
and b, we have

Mag4b(t) = e”'me(at),

provided that the mg(at) eixsts. (ii) Let &, n be independent random variables.
Then we have

Mgy (t) = me(t)my (1), [t <6,
provided that both m(t) and m,,(t) exist.

Lemma 2.3. (i) Let £ be a random variable. Then, for any constants a
and b, we have

Cacrb(t) = ePee(at), teR.
(ii) Let ¢ and n be independent random variables. Then we have

cernt) = ce(t)e,(t), teR.

We consider some examples.

Ezample 2.10 (Poisson approximation to Binomial). Suppose that &, has
a Binomial(n, p,,) distribution such that as n — oo, np, — . It can be shown
that the mgf of &, is given by

mn(t) = (pnet +1 _pn)na

which converges to exp{\(e! — 1)} as n — oo for any ¢t € R (Exercise 2.24).
On the other hand, exp{A(e! —1)} is the mgf of ¢ ~ Poisson(\). Therefore, by
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Theorem 2.10, we have &, 4, & as n — oo. This justifies an approximation
that is often taught in elementary statistics courses; that is, the Binomial(n, p)
distribution can be approximated by the Poisson(A) distribution, provided
that n is large, p is small, and np is approximately equal to A.

Ezxample 2.11. The classical CLT may be interpreted as, under regularity
conditions, the sample mean of i.i.d. observations, X, ..., X,, is asymptot-
ically normal. This sometimes leads to the impression that as n — oo (and
with a suitable normalization), the limiting distribution of

- X+ + X,
n
is always normal. However, this is not true. To see a counterexample, suppose
that Xq,..., X, are i.i.d. with the pdf

1 — cos(x)
=

/(=)

Note that the mgf of X; does not exist for any ¢ # 0. However, the cf of X; is
given by max(1 — [t[,0), t € R (Exercise 2.25). Furthermore, by Lemma 2.3 it
can be shown that the cf of X is given by

o (1-0)}

which converges to eIt as n — oo (Exercise 2.25). However, the latter is the
cf of the Cauchy(0,1) distribution. Therefore, in this case, the sample mean
is asymptotically Cauchy instead of asymptotically normal. The violation of
the CLT is due to the failure of the regularity conditions—namely, that X;
has finite expectation (and variance; see Section 6.4 for details).

—o0 < T <00
T

In many cases, convergence in distribution of a sequence can be derived
from the convergence in distribution of another sequence. We conclude this
section with some useful results of this type.

Theorem 2.12 (Continuous mapping theorem). Suppose that &, 4, £ as

n — oo and that g is a continuous function. Then g(&,) LN g(&) as n — oo.

The proof is omitted (e.g., Billingsley 1995, §5). Alternatively, Theorem
2.12 can be derived from Theorem 2.18 given in Section 2.7 (Exercise 2.27).

Theorem 2.13 (Slutsky’s theorem). Suppose that &, 4, ¢ and 7, £, c,

asn — o0, where ¢ is a constant. Then (i) &, +7, N &+c, and (i) &y 4, c&
as n — oo.

The proof is left as an exercises (Exercise 2.26).
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The next result involves an extension of convergence in distribution to the
multivariate case. Let £ = (£1,...,&) be a random vector. The cdf of ¢ is
defined as

F(Z‘l,---,l‘k):P(gl §x17~"a§k S’rk‘)v L1y, Tk €R.

A sequence of random vectors £,, n = 1,2, ..., converges in distribution to a

random vector &, denoted by &, 4, &, if the cdf of &, converges to the cdf of
¢, denoted by F', at every continuity point of F'.

Theorem 2.14. Let &,, n = 1,2,..., be a sequence of d-dimensional

random vectors. Then &, 4, £ as n — oo if and only if a’&, <, a’é as
n — oo for every a € R%.

2.5 LP convergence and related topics

Let p be a positive number. A sequence of random variables &,, n = 1,2,...
converges in LP, to a random variable &, denoted by &, 4N & E(&, —£|P) —
0 asn — oo. LP convergence (for any p > 0) implies convergence in probability,
as the following theorem states, which can be proved by applying Chebyshev’s
inequality (Exercise 2.30).

Theorem 2.15. ¢, - ¢ implies &, — €.
The converse, however, is not true, as the following example shows.

Example 2.12. Let X be a random variable that has the following pdf with
respect to the Lebesgue measure

I
oga x> a

e )

fz) =

~ z(logx)?’

where a is a constant such that a > 1. Let §, = X/n, n =1,2,.... Then we

have &, P, 0, as n — oo. In fact, for any € > 0, we have

P(|,] > €) = P(X > ne)

B /°° loga da
 Jue a(logz)?
loga

log(ne)

— 0

as n — 00. On the other hand, for any p > 0, we have
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(e - & (2 )’

_loga/oo dx
o J, xl-P(logx)?

p
so it is not true that &, L 0asn — oo.

Note that in the above example the sequence &, converges in probability;
yet it does not converge in L? for any p > 0. However, the following theorem
states that, under an additional assumption, convergence in probability indeed
implies LP convergence.

Theorem 2.16 (Dominated convergence theorem). Suppose that &, RN 13
as n — oo, and there is a nonnegative random variable 7 such that E(n?) < oo,

and |&,| < n for all n. Then &, L, &asn — oo.

The proof is based on the following lemma whose proof is omitted (e.g.,
Chow and Teicher 1988, §4.2).

Lemma 2.4 (Fatou’s lemma). Let n,, n = 1,2,..., be a sequence of
random variables such that 7, > 0, a.s.. Then

E(liminfn,) < liminf E(n,,).

Proof of Theorem 2.16. First, we consider a special case so that &, &= ¢.
Then, |{| = limy—o || < 7, a.s. Consider n, = (2n)? — [&, — £JP. Since
1€n — &] < |&n] + |€] < 27, a.s., we have i, > 0, a.s. Thus, by Lemma 2.4 and
the results of §1.5.1.5, we have

(2n)? = E(liminf n,)
< liminf E(n,)
= liminf{(2n)" — E(|§, —£[")}
< (2n)” — limsup E(|&n — £[7),
which implies limsup E(|€, — £|P) < 0; hence, E(|&, — £|P) — 0 as n — 0.
Now, we drop the assumption that &, =2 & We use the argument of

subsequences (see §1.5.1.6). It suffices to show that for any subsequence ny,
k=1,2,..., there is a further subsequence ny,, [ = 1,2, ..., such that

B(

as [ — oo. Since &, N &, so does the subsequence &,, . Then, according to
a result given later in Section 2.7 (see §2.7.2), there is a further subsequence

b, —¢) ) —0 (2.12)
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nk, such that &, 23, ¢ as | — oo. Result (2.12) then follows from the proof
given above assuming a.s. convergence. This completes the proof. Q.E.D.

The dominated convergence theorem is a useful result that is often used to
establish LP convergence given convergence in probability or a.s. convergence.
We consider some examples.

Ezxample 2.13. Let X1, ..., X, beii.d. Bernoulli(p) observations. The sam-
ple proportion (or binomial proportion)
. Xi e+ X,
p=———""

n

converges in probability to p (it also converges a.s. according to the bounded
SLLN; see Example 2.7). Since | X;| < 1, by Theorem 2.16, p converges to p
in LP for any p > 0.

Example 2.14. In Example 1.4 we showed that if Xi,..., X, are ii.d.
observations from the Uniform|[0, 0] distribution, then the MLE of 6, 0 = X ,,),

is consistent; that is 6 2. 9 as n — co. Because 0 <6< f, Theorem 2.16
implies that 6 converges in LP to 6 for any p > 0.

Another concept that is closely related to LP convergence is called uniform

integrability. The sequence &,, n = 1,2,..., is uniformly integrable in L? if
lim sup E{|§n|p1(|§n\>a)} = 0. (2.13)
a—00 >

Theorem 2.17. Suppose that E(]€,|P) < oo, n = 1,2,..., and &, N £
as n — oo. Then the following are equivalent:

(i) &n, n=1,2,..., is uniformly integrable in L?;

(ii) & =5 € as n — oo with E(|€?) < oo

(iif) E(|&n[P) — E([§IP) < 00, as n — oo.
Proof. (i) = (ii): First, assume that &, % ¢. Then, for any a > 0, the
following equality holds almost surely:

(€171 (g>a) = {nlg{,lo |§n|p1<|sn\>a>} Lig[>a)-

To see this, note that if |£] < a, both sides of the equation are zero; and if
¢| > a, then &, — £ implies that |,| > a for large n; hence, [£,[P1 (¢, |>a) =
&n|P — |€|P, which is the left side. Thus, by Fatou’s lemma, we have

|
| E{[{"1(¢/>a)} < E {nlLH;O |€n\p1<|sn\>a)}

S liminfE{|£n|p1(‘§n‘>a)}

< Slg;{lfn\p1<|£n|>a>}- (2.14)



34 2 Modes of Convergence

For any € > 0, choose a such that (2.13) holds; hence, E{[£[P1(j¢|>q)} < € by
(2.14). It follows that E(|£|p) = E{|§‘p1(‘5‘Sa)}+E{|§|pl(|€|>a)} < |a|p+e < 00.
Furthermore, we have

&n — &P = 1€ — €L (e, 1<0)
Flén — EP 11> a.le1<a)
Hén = EP L >a > a)- (2.15)
If |€] < a < &, then |, — & < [€n] + |€] < 2|&n|; hence, the second term on

the right side of (2.15) is bounded by 2P|, [P1(j¢,|>q)- On the other hand, by
the inequality

lu —o|P < 2P(Jul? + |v|P), wu,v€R (2.16)

(Exercise 2.32), the third term on the right side of (2.15) is bounded by
22160 "1 e, 1> a) T [€[P1(je|>a) }- Therefore, by (2.15), we have

E([6n —€7) < E{l&n — &P 1(e,1<a)}
+2PPE{60 P16 1500t + 2PE{IEP L (g5 a)}
< E{‘fn—f|p1(‘§n|§a)}+3~2p6. (2.17)

Finally, we &, — f|p1(‘§n|§a) 2% 0 and & — ﬂpl(‘gn‘g(z) < 2P(aP + |€]P)
by (2.16), and E(|{|P) < oo as is proved above. Thus, by the dominated
convergence theorem, we have E{|§, —&[P1(j¢,|<q)} — 0 as n — oo. It follows,
by (2.17) and the results of §1.5.1.5, that

limsup E(|&, — &|P) < 3 - 2Pe.

Since € is arbitrary, we have E(|¢,, — £|P) — 0 as n — oo.

We now drop the assumption that &, == ¢. The result then follows by
the argument of subsequences (Exercise 2.33).

(if) = (iii): For any a > 0, we have

‘fn'p - |£|p = (|€n|p - |€|p)1(|§n|§a) + (|€n|p - |€|p)1(\§n\>a)
=1 + Cn- (2.18)

By (2.16), we have

|<n| < |£n‘p1(|§n|>a) + |§|p1(\£n|>a)
S 2([E17 + 16n — S (en1>a) + €17 L(gn1>0)
< @7+ DEPL(g>a) + 2716 — EIP. (2.19)

Combining (2.18) and (2.19), we have

E (&7 = [€1°]) < E([nmn) + (27 + DE{I[P1(1g)5a)} + 2PE(1&n — £)
=h+L+1;
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By Theorem 2.15, we have 7, £, 0; hence, by Theorem 2.16, we have I; — 0
as n — o0o. Also (ii) implies I3 — 0, as n — oo. Thus, we have (see §1.5.1.5)

limsup E ([[&n " — [§17]) < (2 + DE{|¢["1(¢/>a) }-
Note that a is arbitrary and, by Theorem 2.16, it can be shown that
E{|§‘p1(|5|>a)} — 0 asa— oo. (2.20)

This implies E(|[€,]P —|£[?]) — 0, which implies E(|¢,|?) — E(|{P) as n — oo
(Exercise 2.34).
(i) = (i): For any a > 0, we have
E{[6n"1(¢.1>a)} = E(I6nl”) = B{I&n "1 (e, 1<a) }
S E(&]") = E{lénl" (¢, <a el <ar} = 11 = Lo

(iii) implies I — E(|§[P). Furthermore, let 7, = |£,[P1(j¢, |<a,|¢|<a)- It can be
shown (Exercise 2.35) that 7, £, n = 1€|P1(j¢|]<a) as n — oc. In addition, we

have 0 < 7, < aP. Thus, by Theorem 2.16, we have n, G 71, which implies
I = E(n,) — E(n). We now use the arguments of §1.5.1.5 to conclude that

lim sup E{[£,[P1j¢, 50y} < E(€P) — E{I[P1(¢)<a)}
= E{[¢/"1g1>0)}- (2.21)

For any ¢ > 0, by (2.21) and the definition of lim sup, there is N > 1 such
that E{‘fnlpl(\gnba)} < E{|§|p1(|5‘2a) +eif n > N. It follows that

P < p
e (S (CER g e S ST,

V [E{EP1(¢j5a) + €] -

Furthermore, by the dominated convergence theorem it can be shown that
E{|En‘p1(\§n|>a)} — 0, 1 S n S N — 1, and E{|§|p1(\£|2a) — O as a — X0 (see
Exercise 2.34). Therefore, we have

limsup sup E{[£, [P 1(je,.|>a)} < €,
n>1

where the lim sup is with respect to a. Since € is arbitrary, we conclude that
sup,,>1 E{[€x[P1(j¢,|>a)} — 0 as a — oc. this completes the proof. Q.E.D.

Ezample 2.15. Suppose that &, R & asn — oo, and that E(|¢,]7), n > 1,

P
is bounded for some ¢ > 0. Then &, R Easn — oo forany 0 < p < ¢q. To
see this, note that for any a > 0, || > a implies |,|P~? < a?~9. Thus,

E{[&n"Li¢, 1500} < a” 7 E([6a])
< Ba"™*,
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where B = sup,,»; E(|£,]?) < oo. Because p — ¢ < 0, we have

et E{l&"1(g,>a)} — 0

as a — 00. In other words, §,, n = 1,2,. .., is uniformly integrable. The result
then follows by Theorem 2.17.

Ezample 2.16. Let X be a random variable that has a pdf f(x) with respect
to a o-finite measure p (see Appendix A.2). Suppose that f,(z), n =1,2,..,
is a sequence of pdf’s with respect to u such that f,(z) — f(z), x € R, as
n — oo. Consider the sequence of random variables

_ flX)
Jx)”

&n (2.22)

n = 1,2,.... Then we have &, z 1 as n — oo. To see this, note that
fn(z) — f(x), € R implies &, =% 1. This is because f,(z)/f(xz) — 1 as
long as f(x) > 0; hence, P(§, — 1) > P{f(X) >0} =1—-P{f(X) =0} and

P =0y = [ s du
=0.

It follows by Theorem 2.7 that &, . 1. On the other hand, we have

B(e) = £ { 2

= 5w f(x) dp

1
Thus, by Theorem 2.17, we have &, L1l asn — oo

When X is a vector of observations, (2.22) corresponds to a likelihood ra-
tio, which may be thought as the probability of observing X under f, divided
by that under f. Thus, the above example indicates that if f,, converges to
f pointwisely, then the likelihood ratio converges to 1 in L', provided that
f(z) is the true pdf of X. To see a specific example, suppose that X has a
standard normal distribution; that is, X ~ f(z), where

1
fz) = e 2 o<z < o0

Ver

Let f,(z) be the pdf of the ¢-distribution with n degrees of freedom; that is,
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M+ y)/2y (2202
fnlz) = 7\/%1“(71/2) (1+ n) , 00 < T < 00.

Then, by Exercise 1.4, we have f,(z) — f(z), x € R, as n — oo. It follows

that f,(X)/f(X) L% 1 as n — oo. It should be pointed out that the L!
convergence may not hold if f(z) is not the true distribution of X, even
if fi(x) — f(x) for every z. For example, suppose that in the Example 2.16
involving the ¢-distribution, the distribution of X is N (0, 2) instead of N (0, 1);
then, clearly, we still have f,(z) — f(z), z € R [f(z) has not changed; only

1
that X ~ f(x) no longer holds]. However, it is not true that f,,(X)/f(X) L,
1. This is because, otherwise, by the inequality

(X) _ | a0

e S T

1+

)

we would have

)

for large n. However,
LY [ fal@) 1 e
eSS = [ e

—(n+1)/2
1 [ I{(n+1)/2} <1+x2> R e
n

f V2] Vaml(n/2)

We conclude this section by revisiting the example that began the section.

Ezxample 2.1 (continued). It is clear now that CLT means convergence in
distribution—that is, &, = (X — p) 5 € ~ N(0,02)—but this does not
necessarily imply var(y/nX) = E(£2) — E(£2) = o2 (see an extension of parts
of Theorem 2.17 in Section 2.7, where the convergence in probability condition
is weakened to convergence in distribution). In fact, the CLT even holds in
some situations where the variance of the X;’s do not exist (see Chapter 6).

2.6 Case study: x2-test

One of the celebrated results in classical statistics is Pearson’s x? goodness-
of-fit test, or simply x2-test (Pearson 1900). The test statistic is given by

M

_ 2
=3 %, (2.23)
k=1
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where M is the number of cells into which n observations are grouped, Oy
and FEj are the observed and expected frequencies of the kth cell, 1 < k < M,
respectively. The expected frequency of the kth cell is given by Er = npg,
where pj is the known cell probability of the kth cell evaluated under the
assumed model. The asymptotic theory associated with this test is simple:

Under the null hypothesis of the assumed model, y2 —% X374 as n — 00.

One good feature of Pearson’s y2-test is that it can be used to test an ar-
bitrary probability distribution, provided that the cell probabilities are com-
pletely known. However, the latter actually is a serious constraint, because in
practice the cell probabilities often depend on certain unknown parameters
of the probability distribution specified by the null hypothesis. For example,
under the normal null hypothesis, the cell probabilities depend on the mean
and variance of the normal distribution, which may be unknown. In such a
case, intuitively one would replace the unknown parameters by their estima-
tors and thus obtain the estimated Fj, say Ek, 1 < k < M. The test statistic
(2.23) then becomes

M

k=1 By

However, this test statistic may no longer have an asymptotic y2-distribution.

In a simple problem of assessing the goodness-of-fit to a Poisson or Multi-
nomial distribution, it is known that the asymptotic null-distribution of (2.24)
is X?prfl, where p is the number of parameters estimated by the maximum
likelihood method. This is the famous “subtract one degree of freedom for
each parameter estimated” rule taught in many elementary statistics books
(e.g., Rice 1995, pp. 242). However, the rule may not be generalizable to other
probability distributions. For example, this rule does not even apply to testing
normality with unknown mean and variance, as mentioned above. Note that
here we are talking about MLE based on the original data, not the MLE based
on cell frequencies. It is known that the rule applies in general to MLE based
on cell frequencies. However, the latter are less efficient than the MLE based
on the original data except for special cases where the two are the same, such
as the above Poisson and Multinomial cases.

R. A. Fisher was the first to note that the asymptotic null-distribution of
(2.24) is not necessarily x? (Fisher 1922a). He showed that if the unknown
parameters are estimated by the so-called minimum chi-square method, the
asymptotic null-distribution of (2.24) is still X?w_p_l, but this conclusion may
be false if other methods of estimation (including the ML) are used. Note that
there is no contradiction of Fisher’s result with the above results related to
Poisson and Multinomial distributions, because the minimum chi-square es-
timators and the MLE are asymptotically equivalent when both are based
on cell frequencies. A more thorough result was obtained by Chernoff and
Lehmann (1954), who showed that when the MLE based on the original ob-
servations are used, the asymptotic null-distribution of (2.24) is not necessarily
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X2, but instead a “weighted” x2, where the weights are eigenvalues of certain
nonnegative definite matrix. Note that the problem is closely related to the
first example given in the Preface of this book. See Moore (1978) for a nice
historical review of the x2-test.

There are two components in Pearson’s x2-test: the (observed) cell fre-
quencies, Oy, 1 < k < M, and the cell probabilities, px, 1 < k < M. Although
considerable attention has been given to address the issue associated with the
X>-test with estimated cell probabilities, there are situations in practice where
the cell frequencies also need to be estimated. The following is an example.

Ezample 2.17 (Nested-error regression). Consider a situation of clustered
observations. Let Y;; denote the jth observation in the ith cluster. Suppose
that Y;; satisfies the following nested-error regression model:

/
Yij = 238 + ui + eqy,

i=1,...,n,j=1,...,b, where x;; is a known vector of covariates, 3 is an
unknown vector of regression coefficients, u; is a random effect, and e;; is an
additional error term. It is assumed that the u;’s are i.i.d. with distribution
F that has mean 0, the e;;’s are i.i.d. with distribution G that has mean 0,
and the u;’s and e;;’s are independent. Here, both F' and G are unknown.
Note that this is a special case of the (non-Gaussian) linear mixed models,
which we will further discuss in Chapter 12. The problem of interest here is to
test certain distributional assumptions about F' and G; that is, Hy: F' = Fj
and G = Gy, Where Fo and G are known up to some dispersion parameters.
Let Y;. = b1 Z Yij, T = b1 Zszl z;j, and €. = b~! 22:1 e;j. Consider
X, =Y, — 7. 8=mu; +¢&.,1<i<n, where 3 is the vector of true regression
coefficients. It is easy to show (Exercise 2.36) that X1, ..., X, are i.i.d. with
a distribution whose cf is given by

o(t) = er(t) {CQ <Z> }b, (2.25)

where ¢; and ¢y represent the cf of F' and G, respectively. If § were known,
one would consider the X;’s as i.i.d. observations, based on which one could
compute the cell frequencies and then apply Pearson’s y2-test (with estimated
cell probabilities). However, because (3 is unknown, the cell frequen(nes are not
observable. In such a case, it is natural to consider X, =Y. — z B, where ﬂ
is an estimator of 3, and compute the cell frequencies based on the X;’s. This
leads to a situation where the cell frequencies are estimated.

Jiang, Lahiri, and Wu (2001) extended Pearson’s y?-test to situations
where both the cell frequencies and cell probabilities have to be estimated.
In the remaining part of this section we describe their approach without giv-
ing all of the details. The details are referred to the reference above. Let Y
be a vector of observations whose joint distribution depends on an unknown
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vector of parameters, 6. Suppose that X;(6) = X,(y,0) satisfy the following
conditions: (i) for any fixed 6, X1(0),...,X,(0) are independent; and (ii) if 0
is the true parameter vector, X1(0),..., X, (0) are i.i.d.

Ezample 2.17 (continued). If welet § = fand X;(0) =Y, —, 3,1 <i <mn,
then conditions (i) and (ii) are satisfied (Exercise 2.36).

Let Ck, 1 < k < M be disjoint subsets of R such that U,]C\/Ilek covers the
range of X;(0), 1 < i < n. Define p; x(0,0) = Po{Xi(0) € Cx}, 1 < k < M,
and p; (0, é) = [pi’k(ﬁ,é)]lngM. Here, Py denotes the probability given that
0 is the true parameter vector. Note that under assumption (ii), p;(6,6) does
not depend on i (why?). Therefore, it will be denoted by p(0) = [pr()]1<k<ars-

If 6 were known, one would have observed X;(#) and hence compute the
x? statistic (2.24); that is,

M 2
o2 {Ok(6) — npr(6)}
- , 2.26
where Ok (0) = 11 1{x,(0)ec,}- Here, pi(f) is computed under the null
hypothesis. However, Ox(f) is not observable, because 6 is unknown. Instead,
we compute an estimated cell frequency, Oy (0) = > | 1 (X:(0)ecy}> Where 0
is an estimator of 6. If we replace O (6) by O (0) and py.(0) by p(6) in (2.26),
we come up with the following x? statistic:

M A 412
22 = Z {0k (0) — npi(0)} _ (2.27)

‘ k=1 NPk (é)

Here, the subscript e represents “estimated” (frequencies).

Our goal is to obtain the asymptotic distribution of x2. In order to do
so, we need some regularity conditions, including assumptions about 6. We
assume that p;(6, 0) is two times continuously differentiable with respect to
and 0. Let 6 denotes the true parameter vector. We assume that pr(6) > 0,
1 <k < M, and there is § > 0 such that the following are bounded:

sup
|6—0]<s

)

—pi(0, é)’
82

000"

——pik(0, 5)’

sup
|6—0]<s

7

2

0
06,00,

sup
161 —6]<5,|05—0]<5

w774 ik (01,02)|]

1<k<M,1<i<n (see Appendix A.l for notation qf matrix norms and
differentiation). Furthermore, we assume that for fixed 0, X;(0), 1 < i < n,
are independent of 8, and 6 satisfies
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Vn(f —6) -% N{0, A(0)}, (2.28)

where the covariance matrix A(f) may be singular. Then the asymptotic dis-
tribution of x2 is the same as the distribution of

T M-1
SNa+xzi+ Yz, (2.29)
j=1 j=r+1

where r = rank{B(6)} with

B(0) = dias{p(0)}~*Q)AW)Q) ding{p(0)) 7, (2:30)
Q) = Jim -3 o 0.0)| (231)
— 6=0

(see Appendix A.4 for notation), A;, 1 < j < r are the positive eigenvalues of
B(9), and Z;, 1 < j < M — 1 are independent N(0,1) random variables.

Note that in spite of the fact that p;(6,60) = p(8), (0/060")pi(6,0)|5_, is
not necessarily equal to (9/060")p(0) (Exercise 2.37). Therefore, the right side
of (2.31) is not necessarily equal to (9/06")p(0).

Comparing the above result with the well-known results about the x2-test
(e.g., Chernoff and Lehmann 1954), we observe the following:

(i) If no parameter is estimated, the asymptotic distribution of Y2, defined
by (2.26), is the same as that of ZM ! VS

(ii) If the parameters are estlmated by the MLE based on the cell fre-
quencies, the asymptotic distribution of the resulting x? statistic, say, X3,
is the same as that of ZM sl Z; 2 where s is the number of (independent)
parameters estimated.

(iii) If the parameters are estimated by the MLE based on the original data,
the asymptotic distribution of the resulting x? statistic, say, X3, is the same as
thatonM 5= 1Z2+ZJ s Hj z,whereOSMj <1, M—-s<j<M-1.

It is mterestlng to note that, stochastically, we have

M—s—1 M—s—1
Z Zj < Z 2+ Y w2
j=M-—s
M—-1 r M-1
<Y Z<A+MZ+ D> Z; (2.32)
j=1 j=1 j=r+1

The interpretation is the following. In X2 and X3, 0 is computed from the same
data, whereas in x2, 6 is obtained from an independent source. When using the
same data to compute the cell frequencies and estimate 6, the overall variation
tends to reduce. To see this, consider a simple example in which X7, ..., X,, are
i.i.d. ~ Bernoulli(p), where p is unknown. The observed frequency for X; = 1 is
O1 = Y"1 | X;; the expected frequency is By = np, so (O1—FE1)? = (01 —np)?.
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However, if one estimates p by its MLE, p = O;/n, one has By = np = Oy;
therefore, (O — E1)? = 0 (i.c., there is no variation). On the other hand, if
0 is obtained from an independent source, it introduces additional variation,
which is the implication of (2.32).

The assumption that 0 is independent with Xi(é), 1 < i < n, for fixed
6 may seem a bit restrictive. On the other hand, in some cases, information
obtained from previous studies can be used to obtain 6. In such a case, it
may be reasonable to assume that 6 is independent with X;0),1<i<n,if
the latter are computed from the current data. Another situation that would
satisfy the independence requirement is when 6 is obtained by data-splitting.
See Jiang, Lahiri, and Wu (2001).

We give an outline of the derivation of the asymptotic distribution of 2.
The detail can be found in Jiang, Lahiri, and Wu (2001). First, note that

X2 = |€,]2, where &, is the random vector diag{np(6)}~1/2{O(0) — np(0)}
with O(8) = [Qx(0)]1<k<nm- The first step is to show
¢ -5 N{0, 2(0) + B(0)} (2.33)
as n — oo, where
20) = 1 — {p(0)2} {p0)2} .

with p(0)'/? = [pr(0)*/?]1<k<rr. By Theorem 2.14, (2.33) is equivalent to

N&, -5 N[0, N{(0) + B(6)} )] (2.34)
as n — oo for any A € RM. According to Theorem 2.11, (2.34) is, in turn,

equivalent to that the cf of N'¢, converges to the cf of the right side of (2.34).
However, this is equivalent to

E{exp(iN€n)} — exp {—%)\’{2(9) + B(e)}x} (2.35)

as n — oo for any A € RM (Exercise 2.38). To show (2.35), we express &, as

where

= diag{np(6)} /2 {0(9) - Z pi(0, é)} ,

Cn = dlag{p —1/2 { Z 69,101 }n1/2(é — 9)7

and 7y, satisfies the following: There is a constant ¢ such that for any € > 0,
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IVnl < c(n|0 —0)2)n=? if |0 — 0] <e.

The idea for the proof of (2.35) is therefore to show that, as n — oo, 1, and (,
are the leading terms in (2.36) and +, is negligible. In fact, the contribution
of X¥(0) in the asymptotic covariance matrix, X(6) + B(f) in (2.33), comes
from 7, and the contribution of B(6) from (, (and 7, has no contribution).
In other words, we have

N (0 + Ca) A~ N[0, N{Z(0) + B(6)}A]

and X, L, 0as n — oo. Result (2.35) then follows from Slutsky’s theorem
(Theorem 2.13).

Given that (2.33) holds, we apply Theorem 2.12 (note that a multivariate
version of the result also stands—that is, when &,,, £ are random vectors) to
conclude

X2 =162 -5 g2, (2.37)

where £ ~ N{0,X(0) + B(#)}. It remains to determine the distribution of
€2 = ¢'¢. Write ¥ = ¥(0) and B = B(f) and let P = {p(0)"/2}{p(0)'/?}'. Tt
can be shown (Exercise 2.39) that PB = BP = 0. Thus (see Appendix A.1),
there is an orthogonal matrix 7" such that

B =T diag(M\1,...,Ar,0,...,0)T",
P =T diag(p1,...,pm)T",

where A; >0, 1 < j <r =rank(B), and p1,..., pm are the eigenvalues of P.
Note that the latter is a projection matrix with rank 1. Therefore, p1,..., pp
are zero except for one of them, which is 1. It follows that the distribution of
¢’¢ is the same as that of (2.29) (Exercise 2.39).

2.7 Summary and additional results

This section provides a summary of some of the main results in this chapter
as well as some additional results. The summary focuses on the connection
between different types of convergence.

1. Almost sure (a.s.) convergence implies convergence in probability, which,
in turn, implies convergence in distribution.

2.1t &, L, & as n — o0, then there is a subsequence ng, k = 1,2, ..., such
that &, a5, ¢ as k — o0.

3. &n N & as n — oo if and only if for every subsequence ny, k =1,2,.. .,
there is a further subsequence ng,, { = 1,2, ..., such that

Enn, 2% ¢ asl— oo.
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4. If for every € > 0 we have Y_°°  P(|&, — €| > €) < oo, then &, = ¢
as n — oo. Intuitively, this result states that convergence in probability at a
certain rate implies a.s. convergence.

The proof of the above result follows from the following lemma, which is
often useful in establishing a.s. convergence (Exercise 2.40). Let A;, A, ... be
a sequence of events. Define limsup 4,, = NF_; U2 5 Ap.

Lemma 2.5. (Borel-Cantelli lemma)

(i) If >°0° , P(A,) < oo, then P(limsup 4,,) = 0.

(ii) If Ay, Ay, ... are pairwise independent and ). 7, P(A4,) = oo, then
P(limsup A,) = 1.

5. LP convergence for any p > 0 implies convergence in probability.
6. (Dominated convergence theorem) If £, N & asn — oo and there is a

random variable 1 such that E(n?) < co and |£,| < n, n > 1, then &, L, 13
as n — oo and E(|¢|P) < oo.

Let a,, n = 1,2,..., be a sequence of constants. The sequence converges
increasingly to a, denoted by a, T a, if a, < an41, n > 1 and lim, ., a, = a.
Similarly, let &,, n = 1,2, ..., be a sequence of random variables. The sequence
converges increasingly a.s. to &, denoted by &, T € a.s., if &, < &,41 a.8.,n > 1,
and lim, . &, = & a.s.

7. (Monotone convergence theorem) If &, 17 £ a.s. and &, > n a.s. with
E(|n]) < oo, then E(&,) 1 E(£). The result does not imply, however, that E(£)
is finite. So, if E(§) = oo, then E(§,) T co. On the other hand, we must have
E(§) > —oo (why?).

8 If 3°0° | E(lé, — €|P) < oo for some p > 0, then &, =% ¢ as n —
oo. Intuitively, this means that LP convergence at a certain rate implies a.s.
convergence (Exercise 2.40).

The following theorem is useful in establishing the connection between
convergence in distribution and other types of convergence.

Theorem 2.18 (Skorokhod representation theorem). If &, 4, Easn —
00, then there are random variables n,, n = 1,2,..., and 7 defined on a
common probability space such that 7, has the same distribution as &,, n =
1,2,..., and 7 has the same distribution as &, and 7, == 7 as n — co.

With Skorokhod’s theorem we can extend part of Theorem 2.17 as follows.

9. If &, N & as n — oo, then the following are equivalent:

(i) &n, n=1,2,..., is uniformly integrable in LP.

(i) E([n]?) — E([¢]?) < 00 as n — oo.

10. &, <, & as n — oo is equivalent to ¢, (t) — c(t) as n — oo for every
t € R, where ¢, (t) is the cf of ,, n =1,2,..., and c(¢) the cf of &.
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11. If there is 6 > 0 such that the mgf of &,,, my(t), converges to m(t) as

n — oo for all ¢ such that |t| < §, where m(t) is the mgf of £, then &, 4, i3
as n — oo.

12. &, 4, ¢ is equivalent to any of the following:

(i) limp— 00 E{N(&n)} = E{R(&)} for every bounded continuous function h.

(ii) limsup P(&, € C) < P(¢ € O) for any closed set C.

(iil) liminf P(&, € O) > P(€ € O) for any open set O.

13. Let f,(x) and f(z) be the pdfs of &, and &, respectively, with respect
to a o-finite measure p (see Appendix A.2). If f,, () — f(z) a.e. pasn — oo,

thengniﬁ“asnﬂoo.

14. Let g be a continuous function. Then we have the following:

(i) & == € implies g(&n) = g(€) as n — oo;

(i) & — ¢ implies g(&,) — g(&) as n — oo;

(iii) &, 4, ¢ implies g(&,) 4, g(&) as n — oo.

15. (Slutsky’s theorem) If &, 4, & and 7, L, ¢, where ¢ is a constant,
then the following hold:

(i) fn‘f'nn i>€+c;
(ii) nnfn i’ Cg;
(iil) & /1 — &/c, if ¢ # 0.

2.8 Exercises

2.1. Complete the definition of the sequence of random variables &, n =
1,2,..., in Example 2.1 (i.e., define &, for a general index n). Show that

&n L 0asn — oo; however, &, () does not converge pointwisely at any
x € [0,1].

2.2. Use Chebyshev’s inequality (see Section 5.2) to prove Theorem 2.1.

2.8. Use the e-§ argument to prove Theorem 2.2.

2.4. Use the e-§ argument to prove Theorem 2.3.

2.5. Use the e-§ argument to prove Theorem 2.4.

2.6. Use Theorem 2.5 and the e-6 argument to prove Theorem 2.6.

2.7. Let X4,..., X, be independent random variables with a common dis-
tribution F. Define

maxi<i<n | Xi|

gn = n > 1,
a7l

where a,, n = 1,2,..., is a sequence of positive constants. Determine a,, for
the following cases such that &, L 0asn — oo

(i) F is the Uniform]0, 1] distribution.

(ii) F is the Exponential(1) distribution.

(iii) F is the N(0,1) distribution.
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(iv) F is the Cauchy(0, 1) distribution.
2.8. Continue with Problem 2.7 with a,, = n. Show the following:
1
(i) If B(|X1]) < oo, then &, == 0 as n — oo.
(ii) If E(X?) < oo, then &, &% 0 as n — oo.
Hint: For (i), first show that for any a > 0,

n
1212.3?” |Xz| § a + z; ‘Xi|]-(\X,-|>a)-
i=

For (ii), use Theorem 2.8 and also note that by exchanging the order of sum-
mation and expectation, one can show for any € > 0,

o
ZnP(\Xﬂ > en) < oo.
n=1
2.9. Suppose that for each 1 < j <k, &, ;, n = 1,2,..., is a sequence of
random variables such that &, ; P, 0asn — oo. Define & = maxi<j<i [&n,jl-

(i) Show that if k is fixed, then &, L, 0asn — oo
(ii) Give an example to show that if k increases with n (i.e., k = k,, — o0
as n — 00), the conclusion of (i) may not be true.

2.10. Let £1,&9, . .. be a sequence of random variables. Show that &, 0
as n — oo if and only if

€0l )
E — 0 asn — oo.
<1+I€n|

2.11. Prove Lemma 2.1 using the e-§ argument. Then use Lemma 2.1 to
establish Theorem 2.7.

2.12. Show by similar arguments as in Example 2.7 that I, < ce” V",
where the notations refer to Example 2.7.

2.13. Verify that the infinite series Y .-, e~V™ converges. This result was
used at the end of Example 2.7.

2.14. Suppose that X1,..., X, are i.i.d. observations with finite expecta-
tion. Show that in the following cases the sample mean X = (X;+---+X,,)/n
is a strongly consistent estimator of the population mean, y = E(X;)—that
is7X'£>uasn—>oo.

(i) X1 ~ Binomial(m, p), where m is fixed and p is an unknown proportion.

(ii) X1 ~ Uniform[a, b], where a and b are unknown constants.

(iii) X1 ~ N(u,0?), where p and 02 are unknown parameters.

2.15. Suppose that X1, Xo, ... are i.i.d. with a Cauchy(0, 1) distribution;
that is, the pdf of X; is given by

1

f(x):m,

—o0 < T <00
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Find a positive number § such that n=%X (n) converges in distribution to a
nondegenerate distribution, where X(,) = maxj<;<, X;. What is the limiting
distribution?

2.16. Suppose that X7,..., X, are i.i.d. Exponential(1) random variables.
Define X(,,) as in Exercise 2.15. Show that

d
X(n) —log(n) — ¢
as n — oo, where the cdf of £ is given by
F(r) = exp{—exp(—z)}, —oo <z <o0.

2.17. Let X1, Xo,... be i.i.d. Uniform(0,1] random variables and ¢, =

(TT7-, X;)~ /™. Show that
\/ﬁ(gn —e) = §

as n — 00, where £ ~ N(0,e?). (Hint: The result can be established as an
application of the CLT; see Chapter 6.)

2.18. Complete the second half of the proof of Theorem 2.9; that is,
limsup F,,(z) < F(z + ¢) for any € > 0.

2.19. Give examples of a random variable ¢ such that the following hold:

(i) The mgf of & does not exist for any ¢ except ¢ = 0.

(ii) The mgf of £ exists for |[t| < 1 but does not exist for [¢| > 1.

(iii) The mgf of £ exists for any t € R.

2.20. Show that the integrand in (2.10) is bounded in absolute value, and
therefore the expectation exists for any ¢t € R.

2.21. Suppose that &, ~t,, n =1,2,.... Show that the following hold:

(i) & -5 €~ N(0,1).

(ii) mn(t) = E(e') = oo, Vt # 0.

(i) m(t) = B(e!$) = /2, t € R.

2.22. Derive the results of Lemma 2.2.

2.23. Derive the results of Lemma 2.3.

2.24. (i) Suppose that £ ~ Binomial(n, p). Show that m¢(t) = (pe'+1—p)™.
(ii) Show that (ppe' +1 —p,)™ — exp{\(e' — 1)} as n — oo, t € R, provided
that np, — A as n — oo.

2.25. Suppose that X, ..., X,, are i.i.d. with the pdf

_ 1= cos(x)

f(x)

(i) Show that the mgf of X; does not exist.
(ii) Show that the cf of X; is given by max(1 — [¢[,0), t € R.
(iii) Show that the cf of X =n~=!>"" | X; is given by

SIS

3 , —oo<zT <00
T
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which converges to et as n — oc.

(iv) Show that the cf of ¢ ~ Cauchy(0,1) is e~ ¥, t € R. Therefore, X 4, £
as n — oo.

2.26. Prove Theorem 2.13.

2.27. Let X1,...,X, be ii.d Bernoulli(p) observations. Show that

{p(ln—p)}lm (p—p) —% N(0,1) asn — oo,

where p is the sample proportion which is equal to (X1 + --- + X,,)/n. This
result is also known as normal approximation to binomial distribution. (Of
course, the result follows from the CLT, but here you are asked to show it
directly—without using the CLT.)

2.28. Suppose that &, £, £ asn — oo and ¢ is a bounded continuous

function. Show that g(&,) 2z, g(&) as n — oo for every p > 0.

2.29. Let X ~ Uniform(0,1). Define &, = 2" '1gcx<i/m), n=1,2,....

(i) Show that &, 2% 0 as n — oo.

(ii) Show that &,, n = 1,2,..., does not converge to zero in L for any
p>0.

2.530. Prove Theorem 2.15 using Chebyshev’s inequality (see Section 5.2).

2.31. Use Skorokhod’s theorem (Theorem 2.18) to prove the first half of
Theorem 2.11; that is, convergence in distribution implies convergence of the
characteristic function.

2.532. Prove that the inequality (2.16) holds for any p > 0. Note that for
p > 1, this follows from the convex function inequality, but the inequality
holds for 0 < p < 1 as well.

2.33. Complete the proof of Theorem 2.17 (i) = (ii) using the argument
of subsequences (see §1.5.1.6).

2.34. Use the dominated convergence theorem (Theorem 2.16) to show
(2.20). Also show that E(||£,]P — |€P]) — 0 implies E(|¢,]P) — E(|¢?) as
n — 0.

2.35. Refer to the (iii) = (i) part of the proof of Theorem 2.17.

(i) Show that 7, L, 7 as n — 00.

(ii) Show that it is not necessarily true that |£,[P1(¢, |<a) RN 1€1P1(1¢1<a)
as n — oo.

2.36. This exercise refers to Example 2.17.

(i) Show that X1,..., X,, are i.i.d. with a distribution whose cf is given by
(2.25).

(ii) If we define X;(0) = Y;. — z..3 for an arbitrary § = 3 (not necessarily
the true parameter vector), then conditions (i) and (ii) are satisfied.

2.87. Consider the function f(z,y) = 22 + y?. Show that

0
L@y # e f)

y=x
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2.38. Show that (2.33) is equivalent to that (2.35) holds for every A € RM.

2.89. Regarding the distribution of [£]? = &€ in (2.37), show the following
[see the notation below (2.37)]:

(i) PB = BP = 0.

(ii) P is a projection matrix with rank 1.

(iii) The distribution of £’¢ is the same as (2.29), where Zy, ..., Zp 1 are
independent standard normal random variables.

2.40. Use the Borel-Cantelli lemma (Lemma 2.5) to prove the following:

(i) If for every € > 0 we have 07 | P(|¢, — €| > €) < oo, then &, == € as
n — oo.

(ii) If >0 E(Jé, — €[P) < oo for some p > 0, then &, == € as n — oo.
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Big O, Small o, and the Unspecified c

3.1 Introduction

One of the benefits of using large-sample techniques is that it allows us to
separate important factors from those that have minor impact and to replace
quantities by equivalents that are of simpler form. For example, recall Exam-
ple 2 in the Preface. Here, the problem is to estimate the mean of a random
variable. In the first case, the mean can be expressed as E(Z?Zl X;), where
Xi,...,X, are i.i.d. observations with E(X;) = p # 0. In this case, as men-
tioned, one could estimate the mean by simply removing the expectation sign,
that is, by D" ; X;. The reason can be seen easily because, according to the
WLLN, X =n~'3>" | X; is a consistent estimator of x; therefore, it makes
sense to estimate E(Y.) | X;) = nu by nX = Y"1, X;. Here is another look
at this method, which may be easier to generalize to cases where the X;’s are
not i.i.d. Note that we can write

E (iX’> = iXi — {iXi —-E (in)}
- = Zl— Ir. - - (3.1)

Now, compare the orders of I; and Is. Suppose that the X;’s have finite
variance, say, 0 < 0% < oo. Then the order of I; is O(n), and that of I

is O(y/n). To see this, note that, by the WLLN, we have n=* " | X; £,
w # 0, which explains I1 = O(n). On the other hand, it is easy to show that
E(I2) = no?, or E(Iz/y/n)? = 0. This implies that I//n is bounded in L?;
hence, Iz/v/n = O(1), or Iy = O(y/n). Here we are using the notation big
O and small o for random variables (note that both I; and I are random
variables), which will be carefully defined in the sequel. Given the orders of
I; and I, it is easy to see why it is reasonable to approximate the left side of
(3.1) by I;—because it captures the main part of it.

Now, consider the second case of Example 2 in the Preface, where the inter-
est is to estimate E(} ., X;)?, assuming p = 0. Does the previous technique

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2 3, © Springer Science+Business Media, LLC 2010
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still work? Well, formally one can still write

(&) - (5] (&) (5

=1, — I (3.2)

The question is whether it works the same way. To answer this question, we,
once again, compare the orders of I; and I>. According to the CLT, we have

(Vo) 1Y X, <, N(0,1); hence, by Theorem 2.12,

> x)? a4,

s X1 (3.3)
n 2

(Zi: Xi) d

Ti?_1—>X%_1 (3.4)

as n — oo. Result (3.3) implies that I; = O(n). Furthermore, since

O X)' B, X)° (O, X)°

no? no?

17

(3.4) implies that I = O(n). Thus, the two terms on the right side of (3.2)
are of the same order; hence, it is not a good idea to simply approximate the
left side by the first term (because then one ignores a major part of it). In
conclusion, the previous technique no longer works.

As mentioned, the techniques used here involve the notation big O and
small o, but please keep in mind that they are more than just notation. The
operation of big O and small o, and later an unspecified constant ¢, is an art
in large-sample techniques.

3.2 Big O and small o for sequences and functions

We begin with constant infinite sequences. An infinite sequence a,, n =
1,2,...,i8 O(1) if it is bounded; that is, there is a constant ¢ such that |a,| < ¢,
n > 1. The concept can be generalized. Let b,, n = 1,2,..., be a positive in-
finite sequence. We say a, = O(by,) if the sequence a,/b,, n = 1,2,..., is
bounded. The simple lemma below gives an alternative expression.

Lemma 3.1. a,, = O(b,) if and only if a,, = b,0(1).

The proof is straightforward from the definition.

Now, the definition of 0. A sequence a,, n =1,2,...1s, o(1) if a,, — 0 as
n — o0o. More generally, let b,, n = 1,2,..., be a positive infinite sequence.
We say a, = o(by) if a, /b, — 0 as n — oo. Similar to Lemma 3.1, we have
the following.
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Lemma 3.2. a,, = o(b,,) if and only if a,, = b,0(1).

Below are some simple facts and rules of operation for O and o (Exercises
3.1 and 3.2).

Lemma 3.3. If a,, = o(b,,), then a,, = O(by,).

Lemma 3.4 (Properties of O and o).

(i) If a,, = O(by,) and by, = O(cy,), then a, = O(cy,).
(ii) If a,, = O(by,) and b, = o(cy,), then a, = o(cy,).
(iil) If an, = o(by) and b, = O(cy), then a, = o(cy).
(iv) If a,, = o(bn) and b, = o(cy), then a,, = o(cy).

Lemma 3.5 (Properties of O and o).

(i) If ap, = O(by,), then for any p > 0, |a,|? = O(bR).

(ii) If a,, = o(b,,), then for any p > 0, |a,|P = o(bP).

In particular, if a,, = O(by,) [0(by)], then |a,| = O(by) [o(bn)]-

However, the properties of Lemma 3.5 cannot be generalized without cau-
tion. This means that a,, = O(b,) does not imply g(a,) = O{g(b,)} for any
(increasing) function g; likewise, a,, = o(b,,) does not imply g(a,) = o{g(b,)}
for any (increasing) function g.

Ezxample 3.1. Consider a,, = n and b, = 2n. Then, clearly, we have a,, =
O(by,). However, e /ePn = e /e?™ = ¢~ — 0 as n — oo. Therefore, e =
o(e®) instead of O(e’).

Example 3.2. This time consider a,, = n and b, = n?, then a, = o(b,).
However, log(a,) = log(n) and log(b,) = 2log(n), so log(a,) = O{log(b,)}
instead of of{log(b,)}.

Among the infinite sequences that are commonly in use, we have the fol-
lowing results, where 0 < p < 1 < ¢ < oco. For each of the sequences below we
have a,, = o(b,,) if b, is a sequence to the right of a,, [e.g., n? = o(n9)].

..., loglog(n),...,
o {log(n)}?, ... log(n), ..., {log(n)}9, ...,
B R N 7 X
e et e
Lonlooon™ (3.5)

By the lemma below, if we take the reciprocals of the sequences in (3.5), we
get the small o relationships in the reversed order. For example, n=9 = o(n~P).

Lemma 3.6. If a,, and b,, are nonzero and a,, = o(b,), then b;;! = o(a,;!).
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The concepts of O and o can be extended to functions of a real variable, x.
Let f(z) be a function of z. First, consider the case x — 0. We say f(z) = O(z)
if f(x)/z is bounded as x — 0 (but = # 0) and f(z) = o(x) if f(zx)/x — 0
as x — 0 (but  # 0). Similarly, for the case x — oo, we say f(z) = O(x)
if f(z)/x is bounded and f(z) = o(z) if f(x)/x — 0. More generally, for
any zo and p > 0, we say, as ¢ — xo (but x # x0), f(x) = O(Jx — zo|?)
if f(x)/|x — xo|P is bounded and f(x) = o]z — zo|P) if f(x)/|x — zol? — 0;
also, as |z| — oo, f(z) = O(|z|P) if f(x)/|z|P is bounded and f(z) = o(|z|P)
if f(x)/]z|P — 0.

Ezample 3.3. Let p and q be positive integers. Consider

apx? + ap_ 12?7t + - 4 a1z +ap

J(@) = bgxd + bg_1x9 1 + -+ bz + by

First, assume that a, and b, are nonzero. Then, as |z| — oo, f(z) = o(1) if
p<gq f(x)=0(Q1)if p=gqgand 1/f(x) = o(1) if p > ¢q. Now, assume by # 0.
Then as x — 0, f(z) = O(1) regardless of p and ¢ (Exercise 3.3).

In the above example, if ag = 0 and by # 0, then f(x) = o(1) as z — 0.
Nevertheless, there is no contradition with the last conclusion of Example
3.3, because f(z) = o(1) implies that f(x) = O(1) (see Lemma 3.3). On the
other hand, in order to characterize the orders of sequences or functions more
precisely, we need the following definitions. Two sequences, a,, and b,,, are of
the same order, denoted by a,, « by, if both a,,/b,, and b, /a,, are bounded; the
two sequences are asymptotically equivalent, denoted by a,, ~ by, if a,, /b, — 1
as n — oo. It is clear from the definition that a, o b, if and only if b,  a,.
The definitions can be easily extended to functions. For example, f(z) ~ aP
as x — oo means that f(z)/2? — 1 as x — oo.

Ezample 3.4 (Stirling’s formula). Stirling’s approximation, also known as
Stirling’s formula, states that
n!

Jomnjen

as n — 00, or, using the notation just introduced,

n n
n! ~vV2mn (—) .
e

(3.6)

Table 3.1 shows astonishing accuracy of this approximation even for small
n, where the ratio is the left side of (3.6). It is not that straightforward to
prove Stirling’s formula, especially the exact limit in (3.6) (see Exercise 3.5).
However, it is fairly easy to show that the limit of the left side of (3.6) exists.
In fact, Table 3.1 suggests that the left side of (3.6) is decreasing in n, which
is indeed true (Exercise 3.4). Since the sequence is bounded from below (by
0), by the result of §1.5.1.3 it must have a limit.
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Table 3.1. Stirling’s approximation

n  Exact Approximation Ratio
1 1 0.922 1.084
2 2 1.919 1.042
3 6 5.836 1.028
4 24 23.506 1.021
5 120 118.019 1.017
6 720 710.078 1.014
7 5040 4980.396 1.012
8 40320 39902.40 1.010
9 362880 359536.9 1.009
10 3628800 3598696 1.008

3.3 Big O and small o for vectors and matrices

To extend the concepts of big O and small o to sequences of vectors and
matrices we first introduce some notation. Let v denote a k-dimensional vector
and A a k x | matrix. The Euclidean norm (or 2-norm) of v is defined as

lv| = \/25:1 vjz-, where v;, 1 < j <k, are the components of v. The spectral
norm of A is defined as ||A|| = {Amax(A’A)}/2. The 2-norm of A is defined
as ||Alla = {tr(A’A)}/2. It is easy to establish the following relationships
between the two norms (Exercise 3.6).

Lemma 3.7. ||A]| < ||A]l2 < VE Al A, where k Al = min(k, ).

Due to this result, working on any of the matrix norms would be equivalent
as far as the order is concerned, provided that the dimension of the matrix
does not increase with n. For example, consider the following.

Ezample 3.5. Let A,, = n~/2I}, where I; denotes the I-dimensional iden-
tity matrix. Then we have ||A,|| = n~/2 and ||A,||2 = (I/n)/2. If 1 is fixed,
then both ||A,|| and ||An]l2 — 0 as n — oco. However, if | = n, we have
|An]| — 0 and [|A,|l2 = 1 as n — oc.

Throughout this book we mainly use || - || as the norm for matrices, but
keep in mind that most of the results can be extended to ||-||2 if the dimension
of the matrix is fixed or bounded. Let a,,, n = 1,2, ... be a sequence of positive
numbers. Let v,, n = 1,2,..., be a sequence of vectors. We say v,, = O(ay,)
if |v,|/ay is bounded and v, = o(ay,) if |v,|/an — 0 as n — oco. Similarly, let
Ap,n=1,2,..., be a sequence of matrices. We say A,, = O(ay) if ||An]l/an
is bounded and A,, = o(ay) if ||Ayn|/an — 0 as n — oo. Clearly, v, = O(a,)
[o(ay)] if and only if |v,| = O(an) [0(arn)] and A,, = O(ay,) [o(ay,)] if and only
if [[Anll = O(an) [o(an)].
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To establish further properties we need to introduce a partial order among
matrices so that different matrices may be compared. Let A and B be k x k
matrices. The notation A > B means that A — B is nonnegative definite.
Similarly, the notation A > B means that A — B is positive definite; A > 0
means that A is nonnegative definite and A > 0 means that A is positive
definite. Likewise, the notation A < B means that B > A, and so forth.
If A > 0, the square root of A, A'/2 is defined as follows. Let T" be the
orthogonal matrix such that A = T diag(A1,...,Ax)T”, where \;, 1 < j <
k, are the eigenvalues of A which are nonnegative. Then A'/? is defined as
T diag(v/ A1, .., V)T .

The above definition of “>” introduces a partial order among matrices.
This means that some, but not all, pairs of matrices are comparable. Never-
theless, in many ways such a partial order resembles the (complete) order of
real numbers. For example, the following results hold.

Lemma 3.8. Suppose that A > B > 0. Then we have the following:
(i) Al/2 > Bl/2;
(ii) A=1 < B7! if B is nonsingular.

See, for example, Chan and Kwong (1985) for the proofs of the above
results. However, an easy mistake can be made if one tries too aggresively to
extend the properties of real numbers to matrices. For example, it is not even
true that A > B implies 42 > B2.

Ezxample 3.6. Consider A = (? 1) and B = ((1) 8) Then we have A > B.

However, it is not true that A2 > B2. To see this, note that

A?—BQ=<§§)—<38):(33>’

which has determinant —1; hence, the difference is not nonnegative definite.

Therefore, it is important to know what are the correct results regarding
matrix comparisons and not to assume that every result in real numbers has
its matrix analogue. The following are some useful results in this regard.

Lemma 3.9. Let A and B be k x k matrices. The following statements
are equivalent:

(i) A> B;

(ii) v"Av > v’ Bo for any k x 1 vector v;

(iii) C"AC > C'BC for any k x [ matrix C.

Lemma 3.10. Let A be a k x k& symmetric matrix. Then, for any k x [
matrix C, we have C'AC < A\pnax(A)C'C.

Lemma 3.11. A > B implies the following:
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Result (iv) deserves some attention, especially in view of Example 3.6. A
proof can be given as follows:

The proofs of (i), (ii) and (iii) are left as exercises (Exercise 3.7).

Corollary 3.1. For any j X k matrix A, k X [ matrix B, and k x 1 vector
v, we have the following:

() o] < 4] - Jol.

(i) [|AB]] < [[4]-||B].

(iii) [[A+ B[ < | Al + || BI|-

The proof is left as an exercise (Exercise 3.8). Using the above results, it
is easy to establish the following properties of O and o, where a,, b,, and ¢,
denote sequences of positive constants, A, and B,, are sequences of matrices,
and v, is a sequence of vectors.

Lemma 3.12. If A,, = O(a,), B, = O(b,), and v,, = O(c¢,,), then we have
the following:

(1) Apvn = O(ancy);

(ii) A, B, = O(anby);

(iii) A, + By, = O(an V by).

Proof. (i), (ii) and (iii) follow from (i), (ii) and (iii) of Corollary 3.11, respec-
tively. Note that a,, V b, < ayn + b, < 2(an V b,). Q.E.D.

Lemma 3.13. If 4, = O(a,), B, = o(b,) and v, = o(c,), then the
following hold:
(i) Apvn, = o(ancy);

(ii) A, B, = o(anby).

The proof is as straightforward as the previous one. The following defi-
nitions are often used in operation of sequences of matrices and vectors. A
sequence of square matrices A,, is bounded from above if A, = O(1); it is
bounded from below if A ! = O(1). Here, by square matrix it means that A,
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is k x k for some k, which may depend on n. From the definition it is clear
that A, is bounded from above if and only if Apax(A45,A,) = O(1). As for
boundedness from below, we have the following.

Lemma 3.14. A, is bounded from below if and only if there is a constant
¢ > 0 such that A\pin (A5, An) > ¢, n > 1.

Proof. (=) The definition implies that A,, is nonsingular and so are A/ A,
and A, A],. It follows that

AL = Amax{ (47 1) A5}
= )‘max{(A;l)_lAgl}
= )‘max{(AnA;L)il}

1

= - 3.7

)\min(A/nAn) ’ ( )

and the result immediately follows. (<) Note that (3.7) holds as long as A/, A,

is nonsingular (note that A,, is required to be a square matrix). The result
thus follows. Q.E.D.

Finally, we have the following results that associate the orders of the vec-
tors and matrices to those of their components and elements.

Lemma 3.15. Let A, be a k, x [, matrix and v, be a k, x 1 vector,
n = 1,2,.... Furtheremore, let a, and b, be sequences of positive numbers.
Suppose that both &, and [,, are bounded. Then we have the following:

(1) A, = O(an) [o(ayn)] if and only if a,;; = O(an) [o(ay)] for any 1 < i <
k, and 1 < j <I,, where ay ;; is the (7, ) element of A,;

(ii) v, = O(by) [0(by)] if and only if v, ; = O(by,) [0(by)] for any 1 < i < k,,
where vy, ; is the ith component of v,,.

The proofs are left as an exercise (Exercise 3.9).

3.4 Big O and small o for random quantities

A sequence of random variables, &,, n = 1,2, ..., is bounded in probability,
denoted by &, = Op(1), if for any € > 0, there is M > 0 and N > 1 such that
P&l <M)>1—¢, n>N. (3:8)

Lemma 3.16. &, = Op(1) if and only if for any € > 0, there is M > 0
such that

Pénl SM)>1—¢, n>1, (3.9)
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Proof. (=) For any € > 0, by the definition there is M > 0 and N > 1 such
that (3.8) holds. On the other hand, for each 1 < n < N — 1, since &, is a
random variable, there is an M,, > 0 such that P(|&,| < M,) > 1 — € (see
Example A.5). Let M' =MV MV ---V My_1. Then we have

P(|€n] S M') > P(|€n] < M) >1—€
if1<n<N-1and
P([&| < M) > P[] < M) > 1 —€

if n > N; hence (3.9), holds with M replaced by M’. The proof of (<) is
trivial. Q.E.D.

More generally, let a, be a sequence of positive numbers. We say &, =
Op(ay) if &, /a, = Op(1) or, equivalently, &, = a,Op(1). We say &, = op(ay)
if &,/an L 0asn — oo Similarly, let &, be a sequence of random vectors
(random matrices). Then &, = Op(an) if [£,] = Op(ayn) [||&n]| = Op(ayn)] and
£ = 0p(an) If [a] = 0p(an) [IEn]] = op(an)]-

In the following we mainly consider sequences of random variables, but
keep in mind that, by the definition, all of the results can be easily extended
to sequences of random vectors or random matrices. The properties of op are
essentially those about convergence in probability (to zero), which we dis-
cussed in Chapter 2. Thus, we mainly focus Op and, because of the definition,
it suffices to consider Op(1) (i.e., a, = 1).

Theorem 3.1. &, = Op(1) if one of the following holds:
(i) There is p > 0 such that E(|,[?), n > 1 is bounded.

. P .
(i) &, — & as n — oo for some random variable .

(i) &, N £ as n — oo for some random variable &.

Proof. In view of Theorem 2.9, it suffices to show that either (i) or (iii) implies
&, = Op(1). Suppose that (i) holds. For any € > 0, we have, by Chebyshev’s
inequality,

P(lgn] > M) = P(|§a|" > M?)

P
_Eer) _ o
- Mr T Mpr

where ¢ = sup,,», E(|€,|P) < oo. Thus, if we choose M such that M > (¢/e)'/P,
we have P(|€,| > M) < ¢; hence, P(|€,| < M) > 1 —e¢ for any n > 1. It follows
by Lemma 3.16 that &, = Op(1).

Now suppose that (iii) holds. For any ¢ > 0, there is M > 0 such that
P(|¢] < M) > 1 —¢/2. Note that O = (—M, M) is an open set. Thus, by (iii)
of §2.7.12, we have
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liminf P(|¢,] < M) > liminf P(|&,| < M)

> P([¢] < M)

€
>1-_.
2

Therefore, there is N > 1 such that P(|¢,| < M) > 1 —¢€, n > N; that is,
&, =0p(1). QE.D.

We consider some examples.

Ezample 3.7 (Sample mean). Suppose that X3, ..., X,, are i.i.d. observa-
tions from a distribution that has a finite expectation; that is, E(|X1]) < oo.
Then the sample mean X =n~! 3"  X; = Op(1). This is because

(X)) < ZE X))
~E(x) <

Therefore, by (i) of Theorem 3.1 (with p = 1), we have X = Op(1). It should
be pointed out that the condition that E(|X;]) < oo is sufficient for X =
Op (1), but not necessary. For example, suppose that Xi,...,X,, are ii.d.
with the distribution defined in Example 2.11. Then we have E(|X;]) = oc.

However, according to Exercise 2.25, we have X 4, Cauchy (0, 1); therefore,
by (iii) of Theorem 3.1, X = Op(1).

It should be pointed out that although either (ii) or (iii) of Theorem 3.1
implies &, = Op(1), it is often easier to show the latter directly than estab-
lishing (ii) or (iii).

Ezxample 3.8. Suppose that Xi,...,X, are ii.d. observations from the
Exponential(\) distribution with pdf

1
fal) = ye 7 w20

where A > 0 is an unknown parameter. It can be shown that

RO N

A 1
og(n , (3.10)

~

as n — 00, where X,y = maxj<;<n X;. In other words, X(,)/log(n) is a
consistent estimator of A (Exercise 3.11). However, it is easier to show directly
that X(,) = Op{log(n)}. To see this, note that

Xn)
< = <
P {log ) < QA} P{X(n) < 2X\log(n)}
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= P{X; <2Xlog(n),..., X, <2Xlog(n)}
[P{X1 < 2Xlog(n)}]"
Rk

—1

as n — oo. For any € > 0, there is N > 1 such that (1—-n"2)" >1—¢,n > N.
It follows that (3.8) holds with &, = X(,)/log(n) and M = 2. Note that this
M does not depend on e.

A concept that is often used in large-sample statistics is called /n-
consistent. Let 6 be a population parameter. A sequence of estimators 6 (here
we suppress the subscript n in 0, as is often done in applied statistics) is called
V/n-consistent, if \/n(6 — 0) = Op(1).

Ezample 3.7 (continued). Now, suppose the variance of the X;’s exists

or, equivalently, E(X?) < co. Then the sample mean X is a /n-consistent
estimator of the population mean, y = E(X7). To see this, note that

E{vn(X - )}

I
S
=
—
SRS
Ihgh
la
|
=
—_——
X

[
|
<
o
=
>

= var(X;) < o0.
Therefore, by (i) of Theorem 3.1 (with p = 2), \/n(X — p) = Op(1).
The following are some useful results involving Op (1) and op(1).

Theorem 3.2. The following hold:

(i) 1f &, = Op(1) and n, = Op(1) [op (1)), then €um, = Op(1) [op (1))

(i) If &,, n = 1,2,..., is a sequence of k x [ random matrices, where k
and [ are fixed, then &, = Op(1) [op(1)] if and only if &, ;; = Op(1) [op(1)],
1<i<k 1<j<1.

(iil) If &, n = 1,2,..., is a sequence of k x k random matrices such that
&n N &, where ¢ is nonsingular with probability 1. Then &, ! = Op(1) and
f;l — 5_1 = Op(l).

Proof. (i) The proof for the part that &, = Op(1) and 5, = Op(1) imply
&nnn = Op(1) is left to the reader (Exercise 3.12).

For any € > 0 and for any § > 0, since &, = Op(1), there is M > 0 and
N7 > 1 such that P(]¢, < M) > 1 -4, n > Nj. On the other hand, since
7n = op(1), there is No > 1 such that P(|n,| > ¢/M) < ¢ if n > No. It follows
that when N > N7 V Ny, we have
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P([&nnn| > €)

P(|£7L7In| > € ‘fn| <M)+ P(|§n77n| > €, |€n| > M)
P(|77n| > E/M) +P(|§n‘ > M)
29

VARVAN

hence, P(|&,nn| > €) — 0 as n — oo, and therefore &,m,, = op(1).

The proof of (ii) is left to the reader (Exercise 3.12).

(iii) First consider the special case of k = 1. According to the results in
Appendix A.2, we have 1 = P(|¢] > 0) = limg_o P(|¢| > 1/k). Therefore, for
any € > 0, there is k such that P(|¢] > 1/k) > 1 —e. On the other hand, there
is N > 1 such that P(|&, — &] > 1/2k) <€, n > N. Since [¢] < |&,| + |€n — €],
|€] > 1/k implies that either |&,| > 1/2k or |&, — &| > 1/2k. Thus, we have

1—e<P(¢l > 1/k)
< P(|€n| > 1/2k) + P(|€n — &| > 1/2K)
< P(|&a] > 1/2k) + ¢
< P& < 2k) + ¢

or P(|¢,1] < 2k) > 1 — 2¢if n > N. Therefore, £, = Op(1).
Now, consider the general case k > 1. We have &1 = |&,|71¢", where |&,]
is the determinant of &, and £, the adjoint matrix of &,,. Theorem 2.6 implies

that |&,| N |€], which is nonzero with probability 1. It follows by part (ii)
of Theorem 3.1 and the above result for the £ = 1 case that each element of
&1 is Op(1). Thus, once again by part (ii), we have £, 1 = Op(1).

Finally, by the identity £, 1 — ¢! = £71(¢ — &,)¢, ! and Corollary 3.1, we
have €1 — €| < €& 1] |én — € = O(1)Op (1)op(1) = op (1), using,
once again, part (ii). Q.E.D.

3.5 The unspecified ¢ and other similar methods

Near the end of the proof of Theorem 3.2, we simplified the arguments by
writing O(1)Op(1)op(1) = op(1). This is actually a useful technique in that
although the big O’s and small o’s are different in their values, there is no need
to distinguish them and hence use different notation every time they appear,
as far as asymptotics are concerned. A similar technique will be explored in
this section.

In many cases, the asymptotic arguments involve a series of inequalities
and bounds, but the actual values of the constants involved are not important.
For example, if the goal is to derive a,, = O(b,), then it does not matter
whether a,, < b,, or a,, < 2b,. In other words, as long as one shows a,, < cb,
for some constant ¢, it does not make a difference whether ¢ = 1 or ¢ = 2 as far
as the order is concerned. Therefore, in those arguments, we let ¢ represent a
positive generic constant whose value may be different at different places (e.g.,
Shao and Wu 1987, pp. 1566). We illustrate the use of such an unspecified ¢
by some examples.
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Example 3.9. Suppose that X7, Xs, ... is a sequence of martingale differ-
ences with respect to the o-fields 7; = o(X71,...,X;), ¢ > 1. This means that
E(X7) =0 and E(X;|X1,...,Xi—1) = 0 a.s. for any ¢ > 2. See Chapter 8 for
more detail. Furthermore, each X; has a Uniform[—1/2,1/2] distribution. For
example, if ¥7,Y5s, ... are independent and distributed as Uniform[0, 1], then
X;=Y;—1/2,i > 1, satisfy the above condition of martingale differences as
well as the distributional assumption.

Now suppose that one wishes is to obtain the order of E(X*), where X =
n~t>" | X;. A formal derivation with specific values of all the constants
involved may be given as follows. First, by Burkholder’s inequality (see Section
5.4), we have

B(X4) %E (Z Xi>4
(18 x4 \/_) (i)@)Q

n4

ATTT5T4
_ drrrstad (Z X2>

Next, by the convex function inequality (see Section 5.1), we have

2
1 <& 1 <&
() =iex

which implies

It follows that

Finally, a simple calculation gives

1/2 1
E(X}) = / zt doe = 30"
—1/2

Therefore, by combining the pieces we get
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2
Bt < ST
nt 80

| 597196.8

n2

However, if we use the unspecified ¢, the derivation can be simplified as follows:
1 - !
s
E(X") = —E (Z Xi>
i=1
n 2
‘B[S x2
B (X
i=1

< 3 B(X
=1

n3 <

IN

c
< rex

In the series of inequalities above, ¢ represents possibly a different constant
at each step. So, mathematically speaking, some of these inequalities might
not hold if ¢ were to represent the same constant. However, there is no need to
work out the specific value of ¢ at each step or to use different notation such
as c1, C2, . .. at different steps. In other words, ¢ is a notation just like the big
O and small o. The end result is all that matters; for example, in Example
3.9, E(X*) < en~2 for some constant c.

Here is another reason why the specific value of ¢ may not be important.
Consider Example 3.9. At the end, we obtained the value of the constant as
597196.8, but do you believe that the constant really has to be this large?
In fact, the constant in Burkholder’s inequality is for the general situations
of martingale differences. In any specific case (such as the i.i.d. Uniform case
mentioned in Exampe 3.9), the constant may be improved (i.e., reduced). This
is why the actual value of ¢ is not so important (because it may not be so
accurate). Here is another example.

Ezample 3.10 (Finite sample correction). It is not unusual that a well-
known statistic is slightly modified for improved finite-sample performance.
For example, the sample proportion, defined as

. Y
p=—
n
is a well-known estimator of the population proportion p. Here, Y = Y7 +
---+Y, and Y3,...,Y, are i.i.d. Bernoulli(p) observations. In some cases, the
following alternative estimator of p is considered:

Y +a

p:—n—f—b’
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where a and b are some constants. Among different choices of @ and b are a = 2
and b = 4 for constructing a 95% confidence interval for p, or, more precisely
and generally, a = 0.5Z2/2 and b = 22/2 for constructing a 100(1 — )%
confidence interval for p (e.g., Samuels and Witmer 2003, pp. 209-210), where
Zo 2 is the /2 critical value of the standard normal distributions [i.e., P(Z >
Zy/2) = /2, where Z ~ N(0,1)]. Such a modification is often called a finite-
sample correction, with the implication that it would maintain the same large-
sample behavior of p (and, meanwhile, improve the finite-sample performance
in some sence). But does it?

To verify this, we consider the difference d,, = v/n(p —p) — v/n(p —p). The

motivation is that, according to the CLT, /n(p — p) 4, N{0,p(1 —p)} as
n — 00. So, if one can show d,, L 0asn — 00, then, by Theorem 2.13, we

have \/n(p — p) 4, N{0,p(1 —p)} as n — oo. In other words, p has the same
large-sample property in terms of asymptotic distribution as p. By using an
unspecified ¢, a simple argument can be given as follows. By Theorem 2.15,
it suffices to show that E(d?) — 0 as n — co. We have E(d?) = nE(p — p)>.
On the other hand, we have

an — by
n(n+0b)
a b ~
n+b n+b P
It follows that

B( - 5)° = (njb)z -2(+55) () B0 + (nibe(ﬁ?)

c

p—p=

c c
) + ) X p+ ) x 1
< £

S 3
Thus, we have E(d2) < cn™! and, hence, — 0 as n — oo. Note that not only
have we shown E(d?) — 0, we also obtained its convergence rate as O(n™1).

As mentioned, notationwise ¢ is very similar to big O and small o. In
fact, the latter can be operated in very much the same way. For example, we
have O(1)O(1) = O(1), O(1)o(1) = o(1), O(1) + o(1) = O(1), and so forth,
even though the actual values of O(1)s and o(1)s may be different at different
places. We demonstrate this with a simple example.

Ezample 3.11 (Finite population proportion). In Example 3.10 we assumed
that Y7,...,Y,, are i.i.d. Bernoulli observations. Such an assumption holds
only if the population from which the Y;’s are sampled is infinite. In real life,
however, the population is usually finite, no matter how large. What would
happen if one samples from a finite population?
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Consider a finite population with N items, of which D are defective and
N — D are not. Suppose that a sample of n items are drawn at random so
that all (JZ ) possible samples of size n are equally likely. Let Y; = 1 if the ith
item drawn is defective and Y; = 0 otherwise. Then we have

D
=y 1isN (3.11)

Thus, the Y;’s are identically distributed, even though they are not indepen-
dent (Exercise 3.13). It follows that

D
E(Y;) = —, 12
() =+ (3.12)
D D
Yi)=—=(1-——=), 1
var(Y;) N ( N) (3.13)
and it can be shown that (Exercise 3.13)
D(N-D) .
COV(Y:L',Y}') = _Nz(N—l), 7’75‘7' (314)

Now, consider Y = ZZ‘L=1 Y;, the total number of defective items in the sample.
It is known that Y has a hypergeometric distribution (e.g., Casella and Berger
2002, p. 622). The sample proportion of defective items is therefore p = Y/n.
By (3.12)—(3.14), it can be shown that

B() = 1 (3.15)
var(p) = %]]\\;:T% (1 - %) (3.16)

(Exercise 3.13).

Although in real life the population is usually finite, the population size can
be huge, so the infinite population model of Example 3.10 may be used as an
approximation. More precisely, consider the following asymptotic framework
in which the population size, IV, is increasing such that

D

— —

N 'z
where p € (0,1). Furthermore, we assume that n = o(IV); that is, the sample
size is negligible compared to the population size. It follows by (3.15) that

E(p) ~ p. (3.17)

As for the variance, we can write, by (3.16),
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LAy 4 o)1~ p— o(1))
11— o)

T oL =+ o(1)

_ @{1 +o(1)HL + o(1)}{1 + o(1)}

- Ll; 214 o(1)}

L pl=p) (3.18)

n

var(p)

Note that the right sides of (3.17) and (3.18) are exactly the mean and vari-
ance, respectively, of p under the infinite population sampling (Example 3.10).

3.6 Case study: The baseball problem

Efron and Morris (1973) considered the problem of predicting batting aver-
ages of 18 major league baseball players during the 1970 season. The authors
used this problem as an example to demonstrate the performance of their em-
pirical Bayes method. The dataset has since been analyzed by several authors,
including Morris (1983), Gelman et al. (1995), Datta and Lahiri (2000), and
Jiang and Lahiri (2006). Efron and Morris first obtained the batting average
of Roberto Clemente, an extremely good hitter, from the New York Times
dated April 26, 1970 when he had already batted 45 times. The batting av-
erage of a player is the proportion of hits among the number at-bats. They
then selected 17 other major league baseball players who had also batted 45
times from the April 26 and May 2, 1970 issues of the New York Times. They
considered the problem of predicting the batting averages of all the 18 players
for the remainder of the 1970 season based on their batting averages for first
45 at-bats. The authors used the following simple model for the prediction
problem:

}/i:/l+vi+€i7 i=1,...,n,

where p is an unknown mean, v; is a player-specific random effect, and e; is the
sampling error. It is assumed that the v;’s are independent and distributed as
N(0,A), where A is an unknown variance; the e;’s are independent standard
normal random variables; and the v;’s and e;’s are independent. The true
batting average of a particular player ¢ is 6; = u + v;, whose prediction is of
main interest. Without loss of generality, let ¢ = 1.

For the sake of simplicity we assume for the rest of this section that p = 0.
In this case, the best predictor (BP) of 6; = vy is

0, = Yi. (3.19)
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See Chapter 13 for more details about the prediction problem. Because A
is unknown, the BP is not computable. In such a case, it is customary to
replace A in (3.19) by an estimator, say the MLE, which is given by A =
n~t 3" | Y? — 1. This leads to the so-called empirical best predictor (EBP),
A
A41
The question is how large the difference is between the EBP and BP in terms
of the prediction performance.

To answer this question, we first introduce a lemma, which was used in
the proofs of Jiang, Lahiri, and Wan (2002b) to establish the asymptotic un-
biasedness of their jackknife estimator of the mean squared error (MSE) of an
empirical predictor, such as the EBP. The jackknife method will be discussed
in detail in Chapter 14. We use this lemma (and its proof) to demonstrate

the use of the unspecified ¢ discussed in the previous section. The ¢ in the
following lemma and its proof therefore represents the unspecified constant.

0, = Y;.

Lemma 3.17. Let &,, n,, and (,, be sequences of random variables and
let A, be a sequence of events. Suppose that &, = n, + (, on A, and the
following hold: E(§214:) < en™ ', E(n214:) < cn™®, E(n2) < ¢, and [(,] <
n~%y, with E(v2) < ¢, where the a’s are positive constants. Then, for any
0 <e<ay Nas Aagz, we have

|E(&2) — E(m})| < en™,
where ¢ depends only on the a’s and the (unspecified) ¢’s.

Proof. We have

E(&) — E(nn) = B —m2)la, + E(G1ag) — E(nnlag)
= E(angn + C?L)l.An + E(filA%) - E(nilA;)'

Thus, we have

[E(&)) —E(m2)| < en” E(|nu|vn) + en*@E(v]) + ecn” " +cn”*
<en M 4+en®+en®

<cn”°.

Note that, by the Cauchy—Schwarz inequality (see Chapter 5), we have
E(|nnlvn) < (En2)Y2(Ev2)Y/? < c. QE.D.

_ Now, return to the baseball prediction problem. Let &, = 0, — 0y, Ny =
01 — 01, and B = (A +1) vV 0.5. Then it is easy to show that &, =1, + (, on
A, ={A > —0.5}, where

Y.

A—A
“ = AT 0B

(
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Furthermore, we have, by the Cauchy—Schwarz inequality,
E(G1ag) < {EE)Y/2{P(AL)H?
< c[P(AS) )2

Note that |&,] < |Y1| + |61] < 2|v1| + |e1]|, whose kth moment is finite for any
k > 0. On the other hand, let X; = Y> — A — 1. By Chebyshev, Burkholder,
and the convex function inequalities (see Chapter 5), we have, for any k > 2,

P(AS) =P (%ix < —A—0.5>

i=1
<

1 n
w2

> A+O.5>

=

IN

IN
3??‘
=
—

< —%E
= nk/2"

Thus, we have E(fglA;) < en~*/4. By the same argument, it can be shown
that E(n214:) < cn~"/4. Furthermore, it is easy to show that E(n?) < c.
Finally, we have |¢,| < en™Y2|/n(A — A)| - |Y1| = n='/2v,, with

E(12) < c-nE{(A — A)?Y?}
<c-n{E(A - A" }EM}H?
< c-n{E(A - A)*}1/2
<c-n- nt
<g

using the same inequalities as above. Now, apply Lemma 3.17 with a1 = a2 =
k/4 and az = 1/2 to obtain
MSE(6;) — MSE(él)‘ - ‘E(é1 —91)2 —E@f, — 0,)?

<en Y
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that is, the difference between the MSE of the EBP and that of the BP is
O(n=1/2). Tt will be shown later in Chapter 13 that the difference is, in fact,
O(n™1). By the way, it is easy to show that MSE(#;) = A/(A +1) = O(1).

3.7 Case study: Likelihood ratio for a clustering problem

In community ecology, the term “clustering” is synonymous with what is
commonly known as “classification.” However, in statistics, there is a major
difference between the two. The difference lies in the existence of a training
dataset for classification, whereas no such data are available for clustering. For
example, suppose that a group of individuals are labeled as men and women,
and information about their heights and weights is available. This information
provides the training data. Now, suppose that a new individual comes in with
an unknown label (i.e., the gender of the individual is unknown) but known
height and weight, and we wish to classify this new individual into one of the
two classes, men or women, based on his/her height and weight. This is a
classification problem. If, instead, the group of individuals are unlabeled (i.e.,
their genders are unknown) and we wish to classify them into an unknown
number of classes based on their heights and weights, we have a clustering
problem. Due to such a difference, classification is often associated with the
so-called supervised learning (via the training data), whereas clustering is
associated with the unsupervised one.

An important problem in cluster analysis is to test the existence of clusters.
Consider perhaps the simplest case in which a standard normal distribution is
tested against a mixture of the standard normal with another normal distri-
bution with the same variance but a different mean. Let X1,..., X,, be i.i.d.
observations from a normal mixture distribution

(1 —-p)N(0,1) 4+ pN(6,1), (3.20)

where 6 is an unknown parameter and p is an unknown proportion. We are
interested in testing Hy: 8 = 0 against H,: 8 # 0. Note that the null hypothesis
indicates that there is only one cluster in the population distribution (or
there is no clustering), whereas the alternative implies that there may be
two clusters (or there may be a clustering). The reason that the alternative
does not imply for sure that there is clustering is because, when p = 0, the
distribution of (3.20) becomes N (0, 1) regardless of §. Therefore, the test result
is more decisive when the null hypothesis is accepted than it is rejected. This
seemingly unpleasant phenomenon is due to the fact that the distribution of
X, is unidentifiable when p = 0.

An alternative testing problem is also often considered; that is, Hy: p =0
against H,: p # 0. Note that this is equivalent to the above testing problem in
the null hypothesis (i.e., N(0,1)), which implies no clustering. However, there
is no escape from the identifiability problem—when 6 = 0, the distribution of
X, is N(0,1) regardless of p.
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Now suppose that one wishes to test the null hypothesis (in either for-
mation) using likelihood ratio test (LRT). To be more specific, let us focus
on the first formation of the testing problem. Standard asymptotic theory
(see Chapter 6) asserts that, under regularity conditions, the asymptotic null
distribution of the LRT statistic, which is

Lr=2 llog {seup L(@,pX)} —log {sgp L(O,p|X)}]

= 2sup!*(0, p|X), (3.21)

0.,p

where L(6, p|X) is the likelihood function and

*(0,p|X) = Zlog {1 —p+p exp <Xi0 — %02> } (3.22)

i=1

(Exercise 3.14), is x? with two degrees of freedom. Here, by asymptotic null
distribution we mean the asymptotic distribution under the null hypothesis
f = 0, and the two degrees of freedom corresponds to the number of unknown
parameters (f and p) that have to be estimated. However, one of the regularity
conditions requires that the distribution of X; be identifiable. As mentioned,
this condition is not satisfied in this case. The question then is: Does the
LRT still have the asymptotic y2-distribution under the null hypothesis? The
answer is no. In fact, Hartigan (1985) showed that, under the null hypothesis,
the LRT statistic (3.21) — oo in probability as n — co. Hereafter, a sequence
of random variable £, — oo in probability if for any M > 0 the probability
P(&, > M) — 1 as n — oo. Note that this problem is closely related to
Example 1 in the Preface. In this case, the asymptotic null distribution of the
LRT does not even exist.

Hartigan’s proof showed that the divergence of the LRT statistic was an
example of Op and op in action. The arguments given below are similar in
spirit. For any fixed 8 # 0, write I* = [*(6,p|X) for notation simplicity.
Also, write Y; = exp(X;0 — 0.50%) and Z; = Y; — 1. Then Zi,...Z, are i.i.d.
with E(Z;) = 0 and var(Z;) = e —1 (Exercise 3.14). Furthermore, we have
I*=>"log(l+pZ;), and

921* - 72
— =) 2
op? ; (1+ pZ;)?

with probability 1. It follows that, with probability 1, [* is strictly concave
in p, and therefore there is a unique maximum for p € [0,1]. Denote this
maximum by p.

Next, we show that p = op(1). For any p > 0, we have

Al “ Z
p _Z 1+ pZ;

i=1
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1+pZ—1 _
_Z 1+pZ; 1
=p1;<1— pZi)
=p 'Y w(Z)

i=1

where 1(x) = 1—(14px) L. Since ¢" (z) = —2p*(1+px) =3 < 0,9 (z) is strictly
concave. It follows by Jensen’s inequality (see Chapter 5) that E{¢(Z;)} <
Y{E(Z)} =1 - {1+ pE(Z;)}~! = 0. Thus, by the WLLN, we have

p o 1
n op - Ezw(z)

n

= B0} + 1 Y [6(Z) — B{o(Z)

i=1

=E{(Z1)} +or(1).

By the properties of a concave function, we have with probability 1 that
Ol*/0p < 0 implies p < p (why?). It follows that

(%20
(2%
= PIE{¢(Z1)} +0p(1) = 0]

= Plop(1) > —E{¢(Z1)}]

— 0

P(p > p)

IN

as n — 00. Since p is arbitrary and p > 0, we have p = op(1) by the definition.

We now go one step further to obtain an asymptotic expansion for p. Let
A, and B, be two sequences of events. We say B, holds with probability
tending to 1 on A4,, or B, w.p. — 1 on A,, if P(4, \ B,) =P(4,NBE) — 0
as n — oo. In the special case of A, = {2, the entire sample space, this is
the same as that B, holds with probability tending to 1 or B,, w.p. — 1.
First, note that if > | Z; < 0, then, by the properties of a concave function,
we have 9l*/dp < OI* /Oplp=0 = Y1y Zi < 0; hence, I* < I*(0,0|X) = 0
(i.e., p = 0). Now, suppose that Y ., Z; > 0. Then 9l*/dp|,—o > 0; hence,
p > 0. On the other hand, the argument above shows that p < 1 w.p. — 1
(Exercise 3.14). Tt follows that p € (0,1) w.p. — 1 on Y., Z; > 0; hence,
ol*/Oplsp =0 w.p. — Lon Y. Z; > 0. Write g;(p) = log(1 + pZ;). Then we
have g;(0) = 0, g5(0) = Z;, g/ (0) = —Z2, and ¢/’ (p) = 2Z3(1+pZ;)~3. By the
Taylor expansion (see the next Chapter) we have, w.p. — Lon Y i | Z; >0,
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=>-{st0+ a0+ ;g;'%pi)ﬁ}

:iz Zzu;i (3.23)

=1

where 0 < p; < p. Since Z; = Y; —1 > —1, we have 1 + p; Z; > 1 —p; >
1 —p =1+ op(1); hence, |g!"(p;)| < 2{1 + op(1)}~3|Z;|3, where op(1) does
not depend on i. It follows that

I//

) < {1+o0p(1 3Z|Z\3

={l+op(1)}" 3Op(n)
= Op(n),

using the WLLN. Therefore, we have, by (3.23),

= np{E(Z}) + op(1)},

again using the WLLN. Thus, we obtain the following asymptotic expansion:

= -5z
P E(Z1 +op(1 Z

(et ) 5

_ Z?:l Zi -1/2
= ’I’LE(Z%) +OP(TL ), (3.24)

using the results of Theorem 3.2(iii) and Example 3.7. In conclusion, we have
p=0if > ", Z; <0and (3.24) wp. - lon ). Z > 0.
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We now use (3.24) to obtain an asymptotic expansion of I* = I* (8, p| X). If
i1 Z; <0, we have [* = [*(6,0/X) = 0. On the other hand, we have, again
by the Taylor expansion,

—pSz, -2y 2 Zg’” (3.25)

where 0 < p; < p. Now, suppose that (3.24) holds. It follows that p =
Op(n~'/2). Thus, by an argument similar to the above, it can be shown that
the last term on the right side of (3.25) is p*Op(n), which is op(1). Now,
combine (3.24) and (3.25) to get

= { S o) }ZZ

-l {%}S + 0p<n1/2)} n{E(Z?) + op (1)} + op(1)

_ i 22
nE(Z})
1 (Z?:1 Zi)® -1 2
B [WZ%)}Q +op(n™ )| n{E(Z7) + op(1)} + op(1)
_ (Z?:l Zi)2 _ 1 (22;1 Zi)2
nE(Z?) 2 nE(Z3)
_ (Z?:l Zi)2
2nE(Z%)
using the facts that Y0 | Z; = Op(n'/?) (Example 3.7) and Y1 | Z? =
nn~ 3" Z2 = n{E(Z}) + op(1)} by the WLLN. Thus, in conclusion, we
have [* = 0 if >i1Z; <0and (3.26) w.p. — Lon Y ., Z; > 0. It follows
that the following holds w.p. — 1:
T (Z;L:l Zi)2
r= {gnng) For) L5 7o)
(ims Z)?

= Bz (T, ze0) tor(): (3.27)

+op(1)

+ 0p(1)} +op(1)

+ op(1), (3.26)

The rest of the arguments is the same as those in Hartigan (1985). Write

Z?:l Zi

Un() = nE(Z2)
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Note that the quantity depends on 6 because the Z;’s do. By the CLT, we have

Un 4N (0,1) as n — oo for each fixed §. Furthermore, for any collection
of (positive) 6’s, the corresponding U, (#)’s are asymptotically jointly normal
with mean 0, variance 1, and correlation between Uy, (0;) and U, (6x) given by

69.7 Or _ 1

(I

For any M > 0 and for any € > 0, choose an integer m > 1 such that
P(M)™ < €/2, where P(x) is the cdf of N(0,1). Now, choose 01, ...,0, >0
such that all pairwise correlations (3.28) are sufficiently small so that

(3.28)

lim P{ max Up(0;) < M} <e€ (3.29)
n— 00 1<j<m
(Exercise 3.14). Note that when the correlations between random variables
Ui,...,Up, which are jointly normal and each distributed as N(0,1), are
very small, the U;’s are nearly independent; hence, P(maxi<;j<m U; < M) =
S(M)™ < €/2. Thus, (3.29) is possible.

Note that the [* in (3.27) depends on 6 [i.e., [* = [*(0)]. For the 61, .., 0,
chosen above, we have, by (3.27), that w.p. — 1,

2L* > 12;%)5”21 0;)
> max, {U20)1(w,(6,)>0)} + op(1). (3.30)
Thus, w.p. — 1, 2* < M? — 1 implies maxi<j<m, Un(6;) < M (Exercise
3.14). It follows by (3.29) that

21
limsup P (ﬁ*g M2 ) <e.

Because € is arbitrary, this proves that £* — oo in probability.

To add a little bit of drama (even further) to the story, Hartigan’s theo-
retical result was not supported by the results of a series of empirical stud-
ies. For example, Wolfe (1971) suggested that the asymptotic distribution of
2{(n — 3)/n}L* was x3, although Wolfe’s study was based only on 100 repli-
cations of sample size n = 100. A much more extensive simulation study was
carried out later by Atwood et al. (1996). The authors generated 90,000 repli-
cations of each sample size from 50 to 500 in increments of 25 in order to
find an empirical distribution of 2£*. Furthermore, to explore the asymptotic
distribution of 2£* the authors generated 10,000 replications for each of the
sample size 1000, 2000, 4000, 8000, 16,000, 32,000 and 64,000. In addition,
3211 replications were generated for the sample size 256,000. Yet, the authors
found no trace of 2£* going to infinity. For example, the simulated mean and
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variance of 2L£* were found to be approximately 2.11 and 4.27, respectively,
for the sample size n = 500 and 2.02 and 4.21, respectively, for the sample
size n = 64,000. These values are very close to the mean and variance of a
x2-distribution with two degrees of freedom, which are 2 and 4, respectively.
Based on their simulation results, the authors concluded that the asymptotic
distribution of 2£* could well be 3.

There is at least one explanation for the seeming contradiction between
theoretical and empirical results, which happens, but not surprisingly, to have
something to do with the order. At the end of Hartigan’s paper, the author has
a remark on how fast 2L£* goes to infinity. He estimated the rate of divergence
as loglog(n). To see what this means, suppose that n is one million (1,000,000),
which is much larger than any of the sample sizes considered above. Then
loglog(n) is approximately 2.6, which is well within the range of x3!

3.8 Exercises

8.1. Verify the properties of Lemma 3.4.

3.2. Verify the properties of Lemma 3.5.

3.3. Consider the function f(x) in Example 3.3.

(i) Suppose that a,, b, are nonzero. Show that as |z| — oo, f(z) = o(1) if
p<gq, f(z)=0(Q)if p=gq, and 1/f(z) = o(1) if p > ¢.

(ii) Suppose that by # 0. Show that as x — 0, f(z) = O(1) regardless of p
and q.

3.4. Recall Stirling’s formula (Example 3.4). Define

= log(n!) — <n + %) log(n) + n.

Show that the sequence d,, is decreasing.

3.5. Complete the proof of Stirling’s formula. Note that there are various
proofs of this famous approximation. For example, a standard proof involves
the use of the Wallis formula:

i (2k)2 T
kl;[l 2k —1)(2k+1) 2’

an alternative proof can be given via the CLT (e.g., Casella and Berger 2002,
pp- 261). You are asked to find at least one complete proof of Stirling’s formula.
3.6. Prove Lemma 3.7.
3.7. Prove parts (i), (ii), and (iii) of Lemma 3.11. (Hint: Use Lemma 3.9.)
3.8. Prove Corollary 3.1. [Hint: Use Lemma 3.10 for parts (i) and (ii) and
Lemma 3.9 for part (iii).]
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3.9. Let A be a k x[ matrix whose (¢, j) element is a;5, 1 <i <k,1 <j <l[.
Show that

max |az;| < [|A]| < Vklmax |ag;].
2, 2¥)

Use this result to prove (i) and (ii) of Lemma 3.15.
3.10. Show that if &, 4, &, where € is a degenerate random variable [i.e.,

there is a constant ¢ such that P(£ = ¢) = 1], then &, 2, £
8.11. Consider the observations X1, ..., X, in Example 3.8.
(i) Show that

0, x<A

X(n) IS
P <zp— e, x=A
log(n) 1, o>\

(ii) Use (i) and the result of the previous exercise to show (3.10).

3.12. (i) Complete the proof of the first part of part (i) of Theorem 3.2;
that is, £, = Op(1) and 1, = Op(1) imply &,n, = Op(1).

(ii) Prove part (ii) of Theorem 3.2.

8.13. Consider the Y;’s defined in Example 3.11.

(i) Show that the Y;’s are identically distributed [i.e., (3.11)].

(ii) Show that the Y;’s are not independent.

(ii) Verify (3.14).

(iv) Verify (3.15) and (3.16).

8.14. This problem is associated with Section 3.7.

(i) Verify that the LRT statistic is given by (3.21) and (3.22).

(ii) For fixed 6, consider the random variable Y; defined therein. Show that
for any real number k,

E(Y/") = exp {@92} :

It follows that E(Z;) = 0 and var(Z;) = e — 1, where Z; = Y; — 1.

(iii) Show that p < 1 with probability tending to 1.

(iv) Show by the inequality (3.30) that w.p. — 1, and 2£* < M? — 1
implies that maxi<j<m Un(0;) < M.

(v) Show that for any § > 0 and any [ > 1, one can choose 61,...,6; >0
such that all pairwise correlations (3.28) are less than 6.

(vi) Furthermore, let Uy, . .., U; be jointly normal, each have N (0, 1) distri-
bution, and the correlations between U; and Uy, be given by (3.28). Show that
as § — 0, P(maxj<j<; U; < ) — &(z)! for every z, where § is the maximum
absolute value of the correlations between the Uj’s.

8.15. Determine the order relation of the following sequences a,, and by:

(i) an = co+cin+---+cxnk, b, = a™ for any positive integer k and a > 1,
where c1, ..., c, are constants.
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(ii) @, = {log(n)}'~¢, b, = log(n’) for any 0 < e < 1 and & > 0.
(i) @, = exp[{log(n)}€], b, =n? for any 0 < e < 1 and § > 0.

(iv) an = (n/a)", by, = n!, where a > 0. (Note: Depending on the value of
a, the conclusion may be different.)

3.16. Determine the order relation of the following sequences a,, and b,,.

(i) an = (n+ )™, b, = n™, where ¢ is any constant.

(ii) an = >0 i1, by = log(n).

(iii) ap = co+cin+---+cpn®, by = dy +don+---+din', where ¢y, ..., c,
and dy,...,d; are constants such that cyd; # 0. (Note: The answer depends
on the values of k and [.)

(iv) ap =co+en 4+ epgnF, b, =dy +don™' + -+ din~!, where
c1,...,¢, and dy,...,d; are constants such that cody # 0. Does the answer
depend on the values of k£ and [?

8.17. What sequence is this: 1,1,2,3,5,8,13,21, 34,55, ...7 If you examine
the numbers carefully, you will realize that these are the famous Fibonacci
numbers, or Fibonacci sequence, defined by Fy =1, Fo =1,and F,, = F,_1+
Fn—2,n=3,4,.... Fibonacci (Leonardo Pisano) posed the following problem
in his treatise Liber Abaci published in 1202:

How many pairs of rabbits will be produced in a year, beginning with
a single pair, if in every month each pair bears a new pair which
becomes productive from the second month in?

Not surprisingly, the answer is the Fibonacci sequence. Note that the number
grows quickly (so did the population of rabbits—it once happened in Aus-
tralial).

(i) Show that log(F,,) = O(n).

(ii) Find the limit lim,,_, F,,/n.

(iii) Show that F, log(F,,) ~ nF, 1 [the definition of a,, ~ by, is in Section
3.2 above (3.6)].

3.18. The distribution of a continuous random variable X is symmetric if
the pdf of X, f(x), satisfies f(—z) = f(x) for all z; that is, f(x) is symmetric
about zero. Suppose that Xi,...,X,, are i.i.d. random variables. In each of
the following cases show that the distribution of X; is symmetric and also
obtain the order, in terms of Op, of (31—, X;)*:

(i) X1 ~ N(0,1).

(ii) X1 ~ ts, the t-distribution with five degrees of freedom.

(iii) X1 has the pdf f(x) given in Example 2.11. What do you think is the
reason for the order in this case to be different from the previous two cases?

3.19. Let X4,...,X,, be ii.d. random variables such that E(X;) = 0 and
var(X;) = o2, where o2 € (0, 00).

(i) Show that X. =>"" | X; = Op(v/n).

(ii) If you think (i) is straightforward, show that e*" is not Op (ea\/ﬁ) for
any constant a > 0 (no matter how how large). In other words, for any a > 0,
eX/ eV is not bounded in probability.
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(iii) Show that X = o (eb”O'SH) for any constants §,b > 0 (no matter

how small).
3.20. Let Xq,...,X, be independent standard normal random variables.

Determine the orders of the following sequences of random variables &,,:

e~(81) () ()

(i Xi) (1, X7)

—~
—-
~—

(i) €n = A+, XA+, X
_ Xy

(iii) En = m

| (o x

W G=iTsT X

3.21. Let X1,...,X, be independent Exponential(1) random variables.
(i) Prove the identity

1 _ 1 Z?:1 Xi—n + (Z:L:1 Xi —n)? (22;1 X; —n)®
S X o n?2 n3 ndy X,

(i) Show that

an 1 1 n ) n
B () (5 )

=1
2
1 n n
= (ZX3> (Z Xi— n) +Op(n/?),
=1 =1

(iii) What are the orders of the first three terms on the right side of the
equation in (ii)?

3.22. Suppose that Xi,...,X,, are i.i.d. observations whose mgf [defined
by (2.9)] exists for some ¢ > 0. Show that X,y = Op{log(n)}, where X, is
the largest order-statistic (defined below Example 1.5).
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Asymptotic Expansions

4.1 Introduction

One of the techniques used in the latest case study (Section 3.7) is an asymp-
totic expansion of an estimator as well as that for a log-likelihood function.
The most well-known asymptotic expansion is the Taylor expansion, which is
a mathematical tool, rather than a statistical method. However, the method
is used so extensively in both theoretical and applied statistics that its role
in statistics can hardly be overstated. Several other expansions, including the
Edgeworth expansion and Laplace approximation, can be derived from the
Taylor expansion. It should be pointed out that some elementary expansions
can also be very useful (see Section 4.5).

Asymptotic expansions are extremely helpful in cases where the quanti-
ties of interest do not have closed-form expressions. Sometimes, even when
the quantity does have a closed form, an asymptotic expansion may still be
useful in simplifying the expression and revealing the dominant factor(s). For
example, consider the following.

Ezample 4.1 (Variance estimation in linear regression). A multiple linear
regression model may be expressed as

Yi = Bo+ iz + - + Bprip + €, (4.1)
i = 1,...,n, where x;1,...,2;, are known covariate, f,...,03, are un-
known regression coefficients, and ¢; is a random error. Here, we assume that
€1,...,€, are independent and distributed as N(0,02), where o2 is an un-

known variance.
The error variance is typically estimated by the unbiased estimator
.9 RSS
0" = ———,
n—p—1

no 22

where RSS represents the residual sum of squares, > ., €, where ¢; = Y;-Y],
Y; is the fitted value given by Y, = B0+311'Z-1+~ . ~+szip, and 8 = (Bo, - - - ,/3’,,)’

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_4, © Springer Science+Business Media, LLC 2010
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is the least squares estimator of 3 = (8o, ..., 3,)" given by
f=(X'X)"'X"Y. (4.2)

In (4.2), Y is the vector of observations, Y = (Y;)1<i<n, and X the matrix of

St>N,USJ >

the intercept. Using this notation, (4.1) can be expressed as:
Y =X0B+e¢, (4.3)

where € = (€;)1<i<n. Furthermore, the residuals and RSS can be expressed
in terms of a project matrix Py. = I, — Px, where Py = X(X'X)"1X/;
that is, € = (€;)1<i<n = Px+y and RSS = |¢|> = Y'Px.Y. Here, we assume,
for simplicity, that X is of full (column) rank, but similar expressions can be
obtained even without this restriction. See Appendix A.1 for the definition
and properties of projection matrices. It follows that

. Y'PyY
52 = T AxY

n—p—1

Alternatively, since normality is assumed, 02 may be estimated by the MLE,
which can be expressed as

~2 Ylpxiy
o = ——".
n

Both estimators have closed-form expressions, although the expression for &2
is even simpler. On the other hand, an asymptotic expansion shows the close
relation between the two estimators in terms of decreasing orders. Note that

1

for any 0 < z < 1. Then, for n > p+ 1, we have

—1 2
+1 +1 +1
<1p_> :1+P_+<p_> .

n n n
p+1 1
=1+—+0| = 4.5
te = <n2> (4.5)

provided that n — oo and p is bounded.
Expansion (4.5) implies the following connection between 62 and &2

=52+ <7%1> 5%+ Op (%) . (4.6)
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The reason that the remaining terms is Op(n~2) is because E(|¢|?) = o%(n —
—1). This follows from the unbiasedness of 62; alternatively, it can also be
derived using the following simple arguments:

B(?) = BY'Py.Y)
— B{(Y — XB) Py. (Y — XA)}
_ Bl((Y - X8) Py, (Y - XB)
=E[tr{Px. (Y — X3)(Y — X3)
= tr[E{Px. (Y — X3)(Y — X3)
— [Py B{(Y — XB)(Y — Xp)
=02 tr(Px)

=o*(n—p—1).

1
H
H
H

Here, we used the facts that one can exchange the order of trace and expec-
tation and that E{(Y — X3)(Y — X3)'} = Var(Y) = o%I,. It follows from
Theorem 3.1 that |€]> = Op(n); hence, 52 = Op(1). Equation (4.6) shows that
72 is the leading [Op(1)] term in an expansion of 62. It also shows that the
next term in the expansion is {(p + 1)/n}52, which is Op(n~'), and the next
term is Op(n~2), and so forth. Even though (4.6) is derived as a large-sample
approximation, assuming that n — oo while p remains fixed or bounded, it
can also be useful under a finite-sample consideration. For example, it shows
that if the number of covariates, p, is comparable to the sample size [i.e., if the
ratio (p + 1)/n is not very small], the difference between the two methods of
variance estimation can be nontrivial. In fact, the latter is the reason for the
failure of consistency of the MLE in Example 3 of the Preface. See Chapter
12 for a further discussion.

4.2 Taylor expansion

It is the author’s view that the Taylor expansion is the single most useful
mathematical tool for a statistician. We begin by revisiting (4.4). There is
more than one way to derive this identity, one of which is to use the Taylor
expansion. First, compute the derivatives of f(z) = (1—z)~!. We have f'(z) =
(1—2)72, f"(x) = 2(1—2)73, f”"(2) = 6(1—2)~%, and so on. Thus, we obtain
(4.4) as the Taylor series at a = 0

f@) = fla) + f(a)(z — a) + (z—a)*+ (x—a)’+ -

(k) (g,
- @y, (4.7)

f"(a) f"(a)
2 6

where f*)(z) represents the kth derivative with f(O(z) = f().
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The formal statement of the Taylor expansion is the following.

Theorem 4.1 (Taylor’s theorem). Suppose that the ith derivative of f(x)
is continuous on [a, b] and the (I+ 1)st derivative of f(z) exists on (a,b). Then
for any x € [a, b], we have

(g (+1)
@) = 5@+ Fae =0+ 4 T O a e I - o
LR (g (+1)(,
=Y ! k!( N~ a)t + 7f(l - 1()!) (x—a)*t, (4.8)

where z lies between a and z; that is, z = (1 — t)a + tz for some t € [0, 1].

If, in particular, f(*)(z) exists for all k and the last term on the right side
of (4.8) — 0 as n — oo, then (4.7) holds, which is called the Taylor series. In
the special case of a = 0, the Taylor series is also known as the Maclaurin’s
series. For example, in addition to (4.4), we have

1

=l—-az+4+a>—ad+2*— -,
1+
.
ex=1+x+—+§+—+
2 3 4
A
log(1+x):m77+?*z+~”,
. B L
sm(z)fm—ngafﬁJr'u,
2?2 at 2l
cos(x)zl—a—i-z—a-f--“

English mathematician Brook Taylor (1685-1731) published a general
method for constructing the Taylor series (which are now named after him) in
1715, although various forms of special cases were known much earlier. Colin
Maclaurin, a Scottish mathematician who was once a professor in Edinburgh,
published the special case of the Taylor series in the 18th century.

It should be pointed out that the Taylor expansion is a local property
of a function. This means that the closer = is to a the more accurate is the
approximation. We illustrate this with an example.

Ezample 4.2. Consider the accuracy of the Maclaurin expansion for the
function f(x) = e*. The Taylor (Maclaurin) series for e® is given above. Table
4.1 shows the approximations using the first n terms in the series, where the
relative error is computed as the absolute value of the approximation error
divided by the true value. It is clear that the approximation is much more
accurate for = 1 than for z = 5. This is because the expansion is at x = 0,
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Table 4.1. Maclaurin expansion for f(z) =¢€”

e =~ 2.718|Relative Error|e® ~ 148.4|Relative Error

n
1| 1.000 0.632 1.0 0.993
2| 2.000 0.264 6.0 0.960
3| 2.500 0.080 18.5 0.875
4] 2.667 0.019 39.3 0.735
5 2.708 0.004 65.4 0.560
6| 2.717 0.001 91.4 0.384

and x = 1 is much closer to zero than x = 5. However, as long as n is large
enough, the same accuracy will be achieved for any = (Exercise 4.1).

A multivariate extension of the Taylor expansion is perhaps even more use-
ful in practice. To illustrate the results, we define a linear differential operator
as follows. Let ¢ = (z1,...,z5) € R®, and V denote the gradient operator,
or vector differential operator, defined by V = (9/0x1,...,0/dzs)". Consider
the linear differential operator

° g

Note that (2'V)* can be operated in a similar way as the kth power of a sum.
For example, with s = 2, we have

0 a1\
(l‘/V)Q = <$17 +$2—)

o0x 0xo
= m%aaj% +2x1128x?;x2 +m§aa;%;
(V) = (aima%)
= m:faa; +3x%mz8f;x2 JerlzL"%ax;% +x§’§;%;

and so on. The multivariate Taylor expansion, or the Taylor expansion in
several variables, can be stated as follows.

Theorem 4.2 (Multivariate Taylor expansion). Let f : D — R, where
R C R®. Suppose that there is a neighborhood of a, Ss(a) C D such that f
and its up to (I 4 1)st partial derivatives are continuous in Ss(a). Then, for
any x € Ss(a), we have

R (CERI0)
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e = T, (1.9

where z = (1 — t)a + tx for some ¢ € [0, 1].
In the author’s experience, the (multivariate) Taylor expansion of second

or third orders are most useful in practice. For such expansions, there is an
alternative expression that may be more interpretable and easier to use. Let

of(x x -
o0, 20

O%f(x)  [0%f(z)

xoxr’ [axiax]}l<m<s~ (4.11)

Note that (4.10) is the transpose of the gradient vector, or {Vf(z)}’, and
(4.11) is the matrix of second derivatives, or Hessian matrix. Then the second-
order Taylor expansion can be expressed as

9f(a) 1 02 (2)
oz (l’ - a’) + _(‘T - (l) zox! (fE - a)7

f(z) = fla) + 5
where z = (1 — t)a + tx for some ¢ € [0,1]. Equation (4.12) shows that, lo-
cally (i.e., in a neighborhood of a), f(x) can be approximated by a quadratic
function. For example, suppose that a is a point such that df(a)/0z =
{0f(a)/0x'}' = 0. Furthermore, suppose that, locally, the Hessian matrix
of f(z) is positive definite. It follows from (4.12) that f(x) > f(a) near a and,
hence, has a unique local minimum at x = a. Similarly, the third-order Taylor
expansion can be expressed as

(4.12)

_ 9f(a) 1 ,0°f(a)
f@) =ty + S P —a) + 5@ - a) S0 @ a)
1 , 0°f(2) ’
+6 (z—a) Ox;0x0x’ (z—a) 1<i<s (@ ~a) (4.13)

where z = (1 — t)a + ta for some t € [0, 1]. Note that in a small neighborhood
of a, the third-order term (i.e., the last term) in (4.13) is dominated by the
leading quadratic function.

The last term in the Taylor expansion (i.e., the term that involves z),
is called the remaining term. This term is sometimes expressed in terms of
a small o or big O. For example, suppose that all of the (I + 1)st partial
derivatives of f(x) are bounded in the neighborhood S;5(a). Then (4.9) can be
written as

fl@) = fla)+ ) i@ —a)'V}*f(a) +ofjx - a'), (4.14)

where |z —a| = {35, (z; — a;)?}'/2, or
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£(#) = f(@)+ 32 (e~ VI (@) + O — o). (415)

In particular, (4.13) can be expressed as

a 2 a
1) = f@)+ 2wy @ —ay O T )
+o(|lz — af?), (4.16)

and the o(|z — a|?) can be replaced by O(|x — a|?). However, caution should
be paid when using such an expression for a large-sample approximation, in
which the function f(z) may depend on the sample size n.

Example 4.3. Suppose that Xi,...,X, are i.i.d. observations from the
Logistic(#) distribution whose pdf is given by

697x

f(x|0) = m7

—o0 < T < 00.

Consider the second-order Taylor expansion of the log-likelihood function,
1(0) = Y _log{f(Xil0)}
i=1

at the true 0, which we assume, for simplicity, to be zero. Then the Taylor
expansion can be expressed as

1(6) = 1(0) + 1'(0)0 + %z"(é)oa (4.17)

where 0 lies between zero and 6. It can be shown (Exercise 4.2) that

1(0) = — i{xi + 2log(1 + e~ %)},

i=1

Furthermore, it can be shown that [(0) = Op(n), I'(0) = Op(y/n), and
supg |I”(8)] = Op(n). Now, suppose that one wishes to study the behavior
of the log-likelihood near the true value # = 0 by considering a sequence
0, = t/+/n, where t is a constant known as the local deviation (e.g., Bickel
et al. 1993, p. 17). If one blindly uses (4.15) (with s = 1 and I = 1), one
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would have [(6) = 1(0) +1'(0)0 + Op(6?) [here we use Op(6?) instead of O(6?)
because [(6) is random]; hence,

1(6,) = 1(0) +1'(0), + Op(62). (4.18)

The first term on the right side of (4.18) is Op(n), the second term is
Op(n'/?)(t/\/n) = Op(1), and the third terms appears to be Op(n~'). This
suggests that the third term is negligible because it is of lower order than the
second term. However, this is not true because the more accurate expression
(4.17) (with @ = 6,,) shows that the third term is Op(n)(t?/n) = Op(1), which
is of the same order as the second term.

We conclude this section with an example of a well-known application of
the Taylor expansion. More examples will be discussed in the sequel.

Ezxzample 4.4 (The delta-method). Let &,, n = 1,2,... be a sequence of
s-dimensional random vectors such that

an(gn - C) i’ n (419)

as n — 00, where c is a constant vector, a,, is a sequence of positive constants
such that a,, — co as n — oo, and 7 is an s-dimensional random vector. Then
for any continuously differentiable function g(x): R®* — R, we have

anole) — g0} - 2, (4.20)

as n — o0o. To establish (4.20), use the first-order Taylor expansion to get

39(Cn)
ox’

where ¢, lies between ¢ and &,. It follows that |¢, — ¢| < |, — ¢|. (4.19) and
the fact that a,, — oo implies that &, — ¢ = op(1); hence, ¢, — ¢ = op(1). It
follows that (Exercise 4.3)

9(&n) = g(c) + (€n — ),

ox' ox'
Therefore, we have, by Theorem 2.13,

nlalen) =90} = Fan(en — )+ {250 - B a6, -
_ agf;) tn(En — ¢) + 0p(1)0p (1)
= W0~ e+ or(1)
_a, 9g(c)
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In particular, let € be a s-dimensional parameter vector and 0 be an esti-
mator of 6 based on i.i.d. observations X1, ..., X,,. We say the estimator @ is
asymptotically normal if

Vi —0) - N(0, %), (4.21)

where Y is called the asymptotic covariance matrix. It follows that for any
differentiable function g(z): R® — R, we have

Vafg(d) — g(9)} - N(0,02), (4.22)
where
2 0g(0) 0g(0)
7 ox! = or '’

where 0g(0)/0x = (0g(0)/0x’)’. For example, suppose that Xi,...,X,, are
iid. with E(X;) = p and var(X;) = 02 € (0,00). Then, according to the

CLT, we have /n(X — u) 4, N(0,0%), where X is the sample mean. It
follows that the following hold (Exercise 4.4):

Vn(eX —et) 4, N(0,e?0?),

Vin{log(1+X?) ~log(1 + %)} —= N{O’ (1%}

A ) Oy

L+X2 14 (1+p2)*

Obviously, many more such results can be derived.

4.3 Edgeworth expansion; method of formal derivation

The central limit theorem (CLT) states that, subject to a mild condition
(that the second moment is finite), the sample mean X of i.i.d. observations

X1,..., X, is asymptotically normal in the sense that
Y% ) -5 N, 1) (4.23)
o

as n — 0o, where u = E(X1) and 0? = var(X7). Over the years, this aston-
ishing result has amazed, surprised, or even confused its users. For example,
it says that no matter what the population distribution (of X;) is, the lim-
iting distribution on the right side of (4.23) is alway the same: the standard
normal distribution. Imagine how different the population distribution can be
in terms of its shape: symmetric, skewed, bimodal, continuous, discrete, and
so forth. Yet, they do not make a difference as long as the CLT is concerned.
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Nevertheless, the CLT is correct from a theoretical point of view—and this
has been confirmed by countless empirical studies. Here, from a theoretical
point of view it means that n — oo or at least is very large. However, in a
finite-sample situation, it can well be a different story. For example, suppose
that n = 30. It can be shown that in this case the shape of the population
distribution makes a difference (Exercise 4.5). This raises an issue about the
convergence rate of the CLT. In particular, two characteristic measures of the
shape of the population distribution are the skewness and kurtosis, defined as

E(X; —p)?

R3 = T, (424)
E(X; — p)4
Ky = % -3, (4.25)

respectively. One would expect these characteristics to have some impact on
the convergence rate of the CLT. For example, the celebrated Berry—Esseen
theorem, discoverd by Berry (1941) and Esseen (1942), states that if the third
moment of X; is bounded, then

cE(| X, )
\/ﬁ 7

where F,(z) is the cdf of &, = (v/n/o)(X — u), &(x) is the cdf of N(0,1),
and ¢ is an absolute constant (i.e., a constant that does not depend on the
distribution of X;). The Edgeworth expansion, named in honor of the Irish
mathematician Francis Ysidro Edgeworth (1845-1926), carries the approxi-
mation in (4.26) to higher orders.

Like the Taylor expansion, the Edgeworth expansion can be expressed up
to k 4+ 1 terms plus a remaining term. The difference is that, in the Taylor
expansion the terms are in decreasing orders of |z — a| [see (4.9)]; and in the
Edgeworth expansion, the terms are in decreasing orders of n~'/2. For the
sake of simplicity, we mainly focus on the case k = 2, which can be expressed
as

sgp |F,(z) — &(x)] < (4.26)

Fa(e) = o) + " ota) 4 P g

+0(n=??), (4.27)

Expansion (4.27) is known as the two-term Edgeworth expansion (rather than
three-term Edgeworth expansion). Note that @¢(z) does not count as a “term”
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(or it may be counted as the zeroth term), so the first term of the expansion
is O(n='/2), the second term is O(n~1), and so on. We see that the first and
second terms of the Edgeworth expansion involve the skewness, x3, and kurto-
sis, k4, confirming our earlier speculation that these quantities may influence
the convergence rate of the CLT.

To derive the Edgeworth expansion we introduce a method called formal
derivation, which will be used repeatedly in this book. Note that the valid-
ity of the Taylor expansion is not with conditions. For example, for (4.14)
to hold, it is necessary that the remaining term is really o(|z — a|'), which
requires certain conditions. Furthermore, according to the results of Chapter
2, convergence in probability does not necessarily imply convergence in ex-
pectation. So, for example, it is not necessarily true that E{op(1)} = o(1).
However, such arguments as the above will be used in the derivation of the
Edgeworth expansion as well as many other asymptotic results in the sequel.
So what should we do? Should we verify the necessary conditions for every
single step of the derivation or should we go ahead with the derivation with-
out having to worry about the conditions? The answer depends on at what
stage you are in during the development of a method. Science will not advance
if we have to watch our steps for every tiny little move. In the development
of most statistical methods there is an important first step—that is, to pro-
pose the method. After the method is proposed, the next step is to study the
performance of the method, which includes theoretical justification, empirical
studies, and applications. At the first stage of the development (i.e., propose
the method), one may not need to worry about the conditions. In other words,
the first step does not have to wait for the second step to follow immediately.
This is what we called formal derivation.

More specifically, in the first step, one derives the formula (or procedure),
assuming that all of the necessary conditions are satisfied or that the formula
or procedure will hold under certain conditions. Quite often, the first step is
done by some researcher(s) and later justified by others. For example, Efron
(1979) proposed the bootstrap method without establishing its theoretical
properties. General accounts of theory for the bootstrap were latter given by
Bickel and Freedman (1981) and Beran (1984), among others. In conclusion,
the conditions are important, but they should not tie our hands. This is a
moral we learned, among other things, from the development of bootstrap (see
Chapter 14) and many other statistical methods.

Going back to the Edgeworth expansion, we use the method of formal
derivation. Recall &, = (v/n/o)(X —p) = 37, Zj, where Z; = (X;—p)/o\/n.
Then the cf of £, can be expressed as

cn(t) = E{exp(it&,)}
= H E{exp(itZ;)}

j=1

= [E{exp(itZ1}]". (4.28)
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Furthermore, by the Taylor expansion, we have

4
tZ1)k
exp(itZy) = Z (i k‘l) + Op(n=%/?).

k=0

Note that the Taylor expansion also holds for functions of complex variables
(i = v/—1 is a complex number). Also note that Z; = Op(n~"'/?). Thus,

. (i) _5/2
E{exp(itZi)} = > ~~E(Z}) + O(n~"/?)

k!

k=0
2 = (i),

=1-— E(Z O(n=5/?
2n+; T B(ZE) + 0(n™)

because E(Z1) = 0 and E(Z?) = 1/n. Another Taylor expansion gives

‘ P ~ (@) —5/2
log[E{exp(itZ1)}] = —o— + > ~4-E(Zf) + O(n /%)

2n k!
1 2 ? L
2{—2”4""} +O(TL )
2 (it)® k3 (it)* Ky iy
=t et e PO

because E(Z3}) = k3/n®? and E(Z}) = (k4 + 3)/n?. Therefore, we have

2 1\3 V4
= n (it)* ks n (1t)* Ka ~3/2)
2 3! nt/2 4!

nlogE{exp(itZ;)} = — o +0(n

hence, by (4.28) and the Taylor expansion of f(z) = e at x = —t2/2,
B 2 (it)® Ky (it) Ky _3/2
() = eXp{E t et gy, PO
)3 V4
_ 67t2/2 i 67t2/2 { (Zt) R3 (’Lt) Ry + O(n3/2)}

3! n1/2+ 4 n

e 12 ((it)® ks 2 3
e —-3/2
T { sl iz } +0(n™/%)

‘ )3 )4 )6 2
_ e—t2/2 {1 + (i )6/‘¢3n_1/2 + {(2 ;4/‘54 T (i ’;2"53}71—1 —|—O(n_3/2)}

= e 2 V2 (it)e 2 p 0T ey (it)e 2 4 O(nT?), (4.29)

where 71(2) = (k3/6)2% and r2(2) = (k4/24)2* + (k2/72)25. Note that

enlt) = / et?d F, (z)
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is the Fourier—Stieltjes transform of F,(z) = P(&, < ), which has the asymp-
totic expansion (4.29). An inversion of the transform transform then gives

Fo(z) = ®(x) + n 2Ry (z) + n ' Ry(x) + O(n~%/2), (4.30)

where R;(x) is a function that satisfies
/e”z dR;(z) = rj(it)e_tZ/z, i=1,2,...

Note that [ e® dd(x) = e~*"/2. Tt can be shown that (e.g., Hall 1992, p. 44)

Ri(2) = =5 ~ 1)o(x),
k4, 2 K3, 4 2
Rz(x){ﬂ(x 73)+5(a€ — 10z +15)}x¢(x).

Thus, by (4.30) we obtain the expansion (4.27). We consider some examples.

Ezxzample 4.5. Let X1,..., X, be independent with the Beta(c, 3) distri-
bution. We consider two special cases: (i) « = 8 =2 and (ii) o = 2, 8 = 6.
The skewness and kurtosis of the Beta(«, 3) distribution are given by

26— a)Va+p5+1

R3 = ’
K (a+ B+ 2)Vap
- _6a37042(2671)+52(ﬂ+1)72a/6’(/6’+2)
‘ afla++2)(a+B+3) ’
respectively. Therefore, in case (i), we have k3 = 0 and k4 = —6/7. Thus, the

Edgeworth expansion (4.27) becomes
F,(z) = &(z) — I% +0(n=3/?). (4.31)

Note that in case (i), the distribution of X; is symmetric. As a result, the
Edgeworth expansion has a simpler form. On the other hand, in case (ii), we
have r3 = 2v/3/5 and k4 = 6/55. Thus, (4.27) becomes

V3pL(@)é(z) | {5pa(w) — 22ps(w)} ()
15v/n 11000n

+0(n=%/%). (4.32)

F,(z)=o(z) +

Comparing (4.31) and (4.32), one would expect the convergence in CLT to be
faster for case (i) than for case (ii) (Exercise 4.6).

Ezample 4.6. Suppose that X5, ..., X,, are independent and distributed as
Exponential(1). Then it is easy to verify that k3 = 2 and k4 = 6. Thus, the
Edgeworth expansion (4.27) becomes
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pu(@)d(x) | 3pa(x) — 2ps(z)
3vn 12n
+0(n=%/?).

Fo(z) = &(x) + ¢(x)

Now comes the second step, the justification part. A rigorous treatment of
the Edgeworth expansion, including sufficient conditions, can be found in Hall
(1992, Section 2.4). One of the key conditions is known as Cramér’s condition,
which states the following:

limsup |[E(e™X1)| < 1. (4.33)

t—o0

In other words, the cf of X7 is bounded strictly by 1. It holds, in particular,
if X; has a pdf with respect to the Lebesgue measure (see Appendix A.2).

In fact, the Edgeworth expansion is not limited to the sample mean X, as
has been discussed so far. Let 6 be an estimator of 6 such that /n(f — 6) is
asymptotically normal with mean 0 and variance o2 > 0. Then the cdf of £, =
(v/n/a)(8 — ), Fn(z), may be expanded as (4.30), where R;(x) = p;(z)¢(x)
and p;(x) is a polynomial of degree no more than 35 — 1. We consider an
example below and refer more details to Hall (1992, Section 2.3).

Example 4.7. The t-test and confidence interval are associated with the
random variable &, = \/n(X — p)/&, where 62 = n=1 Y1  (X; — X)%. Here,
X1,..., X, are assumed to be i.i.d. with a finite fourth moment. The Edge-
worth expansion for F,(z) = P(§,, < x) is given by

Pi(2)é(x) | Pa()o(x)
v T om

where Pj(z) = (k3/6)(22% + 1) and

Fo(z) = ®(z) + +o(n™h),

2 2
_ K4, o v K3 4 2 oy L°43
Pg(az)x{lz( 3) 18(96 + 22" —3) 1 }

4.4 Other related expansions

4.4.1 Fourier series expansion

The Fourier—Stieltjes transform in the previous section is an extension of the
Fourier transform, which has had a profound impact in the mathematical
world. The Fourier series may be regarded as a discrete version of the inversion
of Fourier transform, which is defined as

fy =2 [ e ar, (4.34)

T o o
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for k=0,£1,42,..., where i = /—1. Here, f denotes an integrable function.
Given the Fourier transform, one may recover f via the Fourier series

> flk)e. (4.35)

k=—oc0

Here, the series is understood as convergent in some sense (see below). Note
that one may express (4.35) as

/ f(@)et u(da), (4.36)
7

where Z = {0,£1,£2,...} and p represents the counting measure on Z [i.e.,
w({k}) = 1 for any k € Z]. Comparing (4.36) with (4.35), we see that the
Fourier series (4.35) actually corresponds to an inversion formula of the Fourier
transform. Note that we have not written (4.35) as

Ft)y = fk)e™. (4.37)

k=—o0

The question is whether (4.37) actually holds, or holds in some sense. Before
we answer this question, let us point out the following facts.

First, if (4.37) does hold, say, at a certain point ¢, then by truncating the
series after a given number of terms, one obtains the Fourier expansion

N
F@&)y =" fk)e™ +o(1), (4.38)
k=—N

where N is a positive integer and the remaining term is o(1) as N — oc.
Expansion (4.38) is more useful from a practical point of view because, re-
alistically, one can only evaluate a finite number of terms. Unlike the Taylor
expansion, there is no general result on the order of the remaining term, so
o(1) is all one can say at this point. This is because the Fourier series applies
to a much broader class of functions than the Taylor expansion. For a function
to have a Taylor series, it must be infinitely differentiable, or at least have
some order(s) of derivatives in an interval, if one uses Taylor expansion that
involves a finite number of terms. On the other hand, the Fourier series may
be used to approximate not only nondifferentiable functions; “they even do a
good job in the wilderness of the wildly discontinuous” (Bachman et al. 2000,
p. 139). Therefore, it is difficult to evaluate the order of the remaining term
because it depends on, among other things, the degree of “smoothness” of the
function. For example, for a noncontinuous function, the convergence of the
Fourier series may not be in the sense of (4.37) (see below).

Second, the Fourier series (4.35) is expressed in the form of an exponential
series or, more generally,
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Z cpet™t. (4.39)

k=—o0

Alternatively, it may be expressed in the form of a trigonometric series,

=0y Z ay cos(kt) + Z by, sin(kt), (4.40)
— k=1

through the simple transformation ax = ¢ + c—x and by, = i(cp — c—g).

The following theorem, known as Dirichlet’s pointwise convergence the-
orem, states sufficient conditions for the convergence of the Fourier series
as well as to what value the series converges. For any function f defined on
[—, 7], its 2m-periodic extension is defined by f(t+2km) = f(t), k € Z,t € R.
Furthermore, the left (right) limit of a function g at a point ¢ is defined as
g(t™) = lims—— g(s) [g(tT) = limy—¢+ g(u)]. Here, s — t— (u — t+) means
that s (u) approaches ¢ from the left (i.e., s < t) [right (i.e., u > t)].

Theorem 4.3. Let f be the 27w-periodic extension of an integrable function
on [—m,7w]. If f/(t7) and f/(t1) exist for all ¢, then the Fourier series (4.39)
r (4.40), where ¢, = f(k), k € Z, converges to

f) + (5
2

at every t. In particular, at any continuity point ¢, the series converges to f(t).

An alternative to pointwise convergence is L2-convergence. A function f €
L?[—m,w]if [T |f(t)|* dt < co. For any f € L*[—, 7], its nth-order Fourier
approximation is deﬁned as

)= Y f(k)e™.

k=—n

Here, we use the term “Fourier approximation” instead of “Fourier expan-
sion,” the difference between the two being that the latter is the former plus
a remaining term, which may be expressed in terms of big O or small o. In
fact, L?[—m, 7] constitutes a Hilbert space if we deﬁne the inner product of
any f,g € L?[-m,m] by < f,g >= [T f(t)g(t) dt, where the bar
denotes complex conjugation. It follows that the nth—order Fourier approxi-
mation is simply the projection of f onto the subspace of L?[—m, 7] spanned
by {ek,|k| < n}, where ej(t) = e** and the coefficients in the approximation
are the inner products, f(k‘) =< f,exr >, |[k| < n. A sequence f, in L?[—7, 7]
converges in L? to a limit f € L?[—m, 7] if

| 150 - s de— o0
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as n — oo. We have the following result.

Theorem 4.4. For any f € L?[—n, 7], its Fourier approximation S, f
converges in L? to f as n — oo.

Modern harmonic analysis treats Fourier series as a special case of or-
thonormal series for the representation or approximation of functions or sig-
nals. Let S be a subset of R, the real line. An orthonormal system on S is
defined as a sequence of functions ¢y, k € I, on S such that

/S(ﬁk(t)@(t) at=0, k#I, (4.41)
/S|¢k:(t)|2 dt = 1. (4.42)

Here, I represents an index set. Give an orthonormal system ¢, k € I, one
may consider the following series expansion of a function f:

F8) =" exdn(), (4.43)

kel

where ¢, = fab f(t)pr(t) dt. Again, the series expansion may be interpreted
in terms of projection in a Hilbert space, with the coefficients being the inner
products. Below are some examples.

Ezample 4.8. If we let ¢y (t) = e*'//27, then it is easy to verify that ¢y,
k € Z, is an orthonormal system (Exercise 4.8). This orthonormal system on

[—7, 7] corresponds to the Fourier series (4.39) with ¢, = f(k), k € Z.

Ezxample 4.9. Similarly, the sequence
1 sin(kt) k=19 cos(kt)
Ver V2r VoY

defines an orthonormal system (Exercise 4.9). This orthonormal system on

[—7, 7] corresponds to the Fourier series (4.40) with ¢, = f(k), k € Z.

Ezample 4.10 (Orthonormal polynomials). Consider polynomial approxi-
mation to a function f on [0,1]. A polynomial is a linear combination of the
powers 1, z, 22, .... Unfortunately, the power functions themselves are not
orthonormal. A general procedure for constructing an orthonormal system is
called the Gram—Schmidt orthonormalization. The procedure is described as

follows. Starting with ¢o(z) = 1, let
x— fol u du

B {fol(v - fol u du)? dv}l/?
=V3(2z — 1).

¢1(x)
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In general, the sequence ¢ () is defined recursively by
{fo k% du}¢J( )
1 )
(fo[ {fo ubgi(u) dutd;(v)]? dv)l/?

k =1,2,.... This defines an orthonormal system on [0, 1]. In particular, it is
fairly straightforward to compute the first few orthonormal polynomials and
verify that they are orthonormal (Exercise 4.10).

or(z) =

Ezample 4.11 (Haar functions). This system is a special case of wavelets.
It is a sequence of discontinuous functions defined through transformations of
the indicator function of [0,1): Ijo1y(t) = 1if 0 < ¢ < 1 and 0 otherwise. Let
Po(t) = Ijo,1)(2t) — Ijp,1)(2t — 1). ¢y is called the Haar mother wavelet and it
can be expressed more explicitly as

1, 0<t<1/2
do(t)=<¢ —1,1/2<t<1
0, otherwise

(see Figure 4.1). The subsequent Haar functions are defined as
Gin(t) =27 2¢0 (27t — k), j=0,1,2,..., k=0,1,...,27 — 1, (4.44)

where ¢o,0 = ¢o, the mother wavelet. It can be shown that the Haar functions
defined by (4.44) together with Ifg ) constitute an orthonormal system on
(—o00,00) (Exercise 4.11).

4.4.2 Cornish—Fisher expansion

The Edgeworth expansion discussed in Section 4.3 can be inverted, leading to
a useful expansion for the quantiles of &,,. This is known as the Cornish-Fisher
expansion. For any a € (0,1), define ¢,(a) = inf{z : F,(x) > a}, which is
called the upper ath quantile of F},. Here, as in Section 4.3, F), denotes the
cdf of &, = (v/n/o)(X — u) and X is the sample mean of i.i.d. observations
X1,...,X,. Let z, denote the upper ath quantile of N(0,1) [i.e., &(zo) = a].
Then the two-term Cornish—Fisher expansion may be expressed as

B (22 — 1)k 1 [ (22 —32a)ka (223 —5za)K3
anl@) = 2o+ =+ o

2 3
+0(n=%7?), (4.45)

where k3 and k4 are defined by (4.24) and (4.25), respectively.

The Cornish-Fisher expansion is useful in obtaining more accurate confi-
dence intervals and critical values for tests. Note that the CLT approximation
to gn(a) would be z,, which is the leading term on the right side of (4.45)
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0.0 0.5 1.0

Fig. 4.1. The Haar mother wavelet

(i.e., za). The following example shows how much more accuracy the expan-
sion (4.45) may bring compared to the CLT approximation.

Ezample 4.12. Barndorff-Nielsen and Cox (1989, p. 119) reported the re-
sults of the Cornish—Fisher approximation in the situation where the X;’s
are distributed as x?. In this case, we have k3 = 2v/2 and k4 = 12, so the
two-term expansion (4.45) becomes

V2(22 1) . 23— Tzq

— —3/2
gn(Q) = zo + NG T8n +O0(n ).

Note that the mean and vaiance of y2 = i, X; are n and 2n, respectively.
Thus, the ath quantile of 2 is



100 4 Asymptotic Expansions

2(22 1) 23 -7z, _
+ V2ngn(a) =n+ zaV2n + —* + - -+ 0(n™).
n+ vV2ng,(a) =n+ zoV2n 3 W (n™")

Of course, the quantiles of x2 can be calculated exactly. Table 4.2, extracted
from Table 4.5 of Barndorfl-Nielsen and Cox (1989), compares the approxima-
tions by the two-term Cornish—Fisher expansion as well as by the CLT with the
exact quantiles for o = 0.1, where C-F refers to the two-term Cornish—Fisher
expansion. The results showed astonishing accuracy of the C-F approximation
even with very small sample size (n = 5).

Table 4.2. Approximation of quantiles

n Exact CLT C-F
5 924 965 9.24
10 15.99 15.73 15.99
50 63.17 62.82 63.16
100 118.50 118.12 118.50

It should be pointed out that, like the Edgeworth expansion, the Cornish—
Fisher expansion requires certain regularity conditions in order to hold, and
one of the key conditions is (4.33). If the condition fails, the Cornish-Fisher
expansion may not improve over the CLT. The following is an example.

Ezample 4.13. Suppose that Xi,..., X, are i.i.d. from the Bernoulli(p)
distribution with p = 0.5. It is easy to show that the distribution does not
satisfy (4.33) (Exercise 4.12). If one blindly applies the Cornish—Fisher expan-

sion (4.45), then since in this case k3 = 0 and k4 = —2, one would get
(@) = 20 + Z2 20 | o(512) (4.46)
n(Q) = 2 + ——= . .
4 12n "

Despite the simple form, (4.46) may not give a better approximation than the
CLT. To see this, note that X. ~ Binomial(n, p), so the exact ath quantile of
X. can be calculated. On the other hand, the ath quantile of X. is given by

n {p + qn(a) M} : (4.47)

n

Table 4.3 compares the approximations to the ath quantiles, where a =
P(X. < k) for n = 15 and k = 3,6,9,12, by C-F [i.e., (4.47) with ¢, ()
given by (4.46)] as well as by the CLT [i.e., (4.47) with ¢,(a) = z,], with
the exact quantiles. It is seen that inappropriate use of C-F sometimes makes
things worse.
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Table 4.3. Approximation of quantiles

k 3 6 9 12
o |0.0176 0.3036 0.8491 0.9963
CLT|3.4207 6.5046 9.4998 12.6878
C-F |3.4533 6.4895 9.5212 12.5674

4.4.3 Two time series expansions

A time series is a set of observations, each recorded at a specified time ¢. In
this subsection we consider a stationary (complex-valued) time series, denoted
by {X:,t =0,41,+2,...}, or simply X;. This means that E(|X;|?) < co and
E(X;) and E(X;1xX;) do not depend on t. We can then define the autoco-
variance function of X; as

’y(k) = COV(Xt+k, Xt)
= E{(Xtqr — ) (Xt — )}, (4.48)

k = 0,£1,£2,..., where u = E(X};). One special stationary time series is
called a white noise, for which x4 = 0 and (k) = 021(k=0). In other words,
W, is a white noise if E(W;) = 0, E(W?) = 02, and E(W;W;) =0, s # t. The
following conditions (i) and (ii) are both necessary and sufficient for v to be
the autocovariance function of a stationary time series X;.

(i) v(k) = [T €™ dF()), where F is a right-continuous, nondecreasing
and bounded function on [—, 7] with F(—=m) = 0.

(i) Z;’;jzl ~v(i — j)a;a; > 0 for any positive integer n and a4, ...,a, € C.

Here, C' denotes the set of complex numbers and F' is right-continuous at
Mif F(v) — F(X) as v approaches A from the right (i.e., v > A). The functiom
F' is called the spectral distribution function of v or X;. In particular, if F’
is absolutely continuous such that F'(\) = f_)\ﬂf(l/) dv, —m < A<, fis
called the spetral density of v or X;. Note that the properties of F' imply that
f(A) >0, A € [-7,x]. If v is the autocovariance function of a stationary time
series X; that is absolutely summable, that is,

o0

> (k)] < oo (4.49)

k=—o00

then there exists a function f such that f(\) >0, A € [-7, 7] and
(k) = / e FN) d\, k=0,+1,42,.... (4.50)

In other words, f is the spectral density of X;. Furthermore, we have

oo

P =5 S (ke ™, (451)
k=—o00
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A € [—m, 7. In other words, we have the asymptotic expansion

n

= % y(k)e ™ + o(1), (4.52)

k=—n

)

A € [—m,m], where o(1) — 0 as n — oo. Equation (4.51) or (4.52) can be
established using the results of Fourier expansion (see Section 4.4.1) or verified
directly using Fubini’s theorem (see Exercise 4.12).

Another well-known expansion in time series is called the Wold decom-
position. For simplicity, assume that X; is real-valued. Consider the space H
of all random variables X satisfying E(X?) < co. Then H is a Hilbert space
with the inner product < X,Y >= E(XY'). Let H; denote the subspace of H
spanned by {X;,s < t}. Let Py, , X: denote the projection of X; onto Hs—1
(called the one-step predictor). See Chapter 9 for more details. Also, define
Hooo = NE2_He. A time series X; is said to be deterministic of X; € H;—;
for all t. The Wold decomposition states that if 02 = E(X; — Py, ,X:)? > 0,
then X; can be expressed as

Xy =Y ik + Vi, (4.53)
k=0

where 19 = 1 and ZZO:() w,% < 00; Z4 is a white noise with variance o2 and Z; €
H.; Vi and Z; are uncorrelated [i.e., E(Z,V,) = 0, Vt,u] and V; € H_ and
is deterministic. In fact, (4.53) and the above properties uniquely determine
Y, Zt, and V;. We consider an example.

Example 4.14. Consider the real-valued function

1,k=0
v(k) =14 p, k=+1
0, otherwise.

It is easy to show that ~ is an autocovariance function if |p| < 1/2 (Exercise
4.13). Since (4.49) is obviously satisfied, it follows by the spectral represen-
tation (4.51) that f(\) = (2m) 71 Y00 v(k)e ™A = (2m)~1{1 + 2pcos(A) }.
Clearly, we have f(\) > 0, A € [—m, ] provided that |p| < 1/2. In fact, this is
the spectral density of an MA(1) process defined by X; = Z; + 0Z;_1, where
Z; is a white noice with variance 62 > 0 and 6 = p/o?. See Chapter 9 for
more details. Clearly, the Wold decomposition holds for this X; with ¥y =1,
01 =0,y =0,k>1 and V; =0.

4.5 Some elementary expansions

The asymptotic expansions encountered so far are well known in the math-
ematical or statistical literature, and their derivations involve (much) more
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than just a few lines of algebra. However, these are not the only ways to come
up with an asymptotic expansion. In this section, we show that one can derive
some useful asymptotic expansions oneself using some elementary approaches
that involve nothing more than a few lines of simple algebra.

Let us begin with a simple problem. Suppose that one wishes to expand
the function f(z) = 2! at & = a. Most people would immediately think that,
well, let’s try the Taylor expansion. Surely one can do so without a problem.
However, here is an alternative approach. Write

1 1 1 1
—_ = — + - — —
xr a x a
1 —al
- r=a (4.54)
a a
Equation (4.54) suggests an iterative procedure so that we have
1 z—a (1l z-0al
r  a a a a T
1 z-a (z—a)?1
a a? a? z
1 z-a (x — a)? 1 z-al
a a? a? a a w
In general, one has the asymptotic expansion
! k-1 l
L 1)k 1(x—a) _1z(x*a) 455
D (155)
k=1
for I = 1,2,.... If one instead uses the Taylor expansion, then since f*)(x) =
(=1)*Eklz= D we have, by (4.8),
l k—1 l
_ k-1 (@ —a) (@ —a)

>
Il
—

where ¢ lies between a and z. Comparing the Taylor expansion with (4.55),
which we call elementary expansion, the only difference is that (4.55) is more
precise in terms of the remaining term than (4.56). In other words, in the
Taylor expansion, we only know that £ is somewhere between a and x, whereas
in the elementary expansion there is no such uncertainty. Here is another look
at the difference. If we drop the remaining term in the Taylor expansion (4.8)
with [ replaced by [ + 1, we can write

! L(x—a)kt (x — a)
~ > (-1)F 7k + (- UZW' (4.57)

k=1

&BI>—‘
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Comparing (4.55) with (4.57), the difference is that the elementary expansion
is eract (characterized by =), whereas the Taylor expansion is approzimate
(characterized by =2).

In fact, it is not just that the results are (slightly) different. The elemen-
tary expansion is derived using very simple algebras—no results of calculus
such as derivatives are involved. This is important because such an elemen-
tary expansion is easier to extend to situations beyond real numbers, such as
matrices. For example, suppose that one wishes to approximate the inverse of
matrix B by that of matrix A. Then, by a similar derivation, we have

_Afl_‘_Bfl Afl
= A~ 1+A Y(A-B)B™!
A4 AMA-B){Aa A7 A B~}
=A '+ A A-BA {474 )}QB 1
A '+ A (A-B)A™!
+{A T A-B)}*{A '+ A (A-B)B™Y}
A 4 AN A-BA T+ {AH (4 - B)}2A!
+{A Y (A-B)}*B!

In general, we have the matrix asymptotic expansion

Z{A B)}*

for1=0,1,2,... (e.g., Das et al. 2004, Lemma 5.4).

For example, expansions such as (4.55) and (4.58) are useful in situations
where x (B) is a random variable (matrix) and a (A) is its expectation. We
consider an example.

AP {AT Y A- BB (4.58)

Ezample 4.15. Suppose that Xi,..., X, are i.i.d. p-dimensional standard
normal random vectors; that is, the X,’s are independent ~ N (0, I,), where
I, is the p-dimensional identity matrix. Let B = Ip + X X', where X =

nty XZ, and suppose that one wishes to evaluate E(B~ 1). Note that
X ~ N(0,n7'I,); hence, n=/2X ~ N(0,I,). Tt follows that X = Op(n~1/2).
Let A=E(B) = {(n—|—1)/n}] Then we have E{(4A—B)?} = E(XX'X X'} —
n=2I,. Write € = n'/2X = (¢,...,&,)" ~ N(0,1,). Then the (i, ) element of
e is iy = & Y 8 _ €2 Tt is easy to show (Exercise 4.15) that E(n;;) =
(p 4+ 2)1(;=j)- It follows that E(£€'€€") = (p + 2)1,; hence, E{(A — B)?*} =
n?E(¢€'¢’) —n 21, = n~?(p + 1)I,. Now, by (4.58) with [ = 2, we have

Bl =[I,+ A" YA - B) + {A"Y(A — B)}}JA~! + Op(n~?).

Here, we used Theorem 3.2 to argue that B~! = Op(1), and note that A~" =
{n/(n+ 1)}, =0(), and A— B=n"1, - XX'=0(n 1) +O0p(n?t) =
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Op(n™1). Thus, by the method of formal derivation (see Section 4.3), we have
EB ) =A"T"+A'E{(A-B)A Y (A- B)}A + O(n™?)

n 1+<71>%mAm%+om3)

n+17 n+1
n p+1 _3
1 IL,+0
n—l—l{ +(n—l—l)Q} p+ O™

1 p+2 _
{1 - E + T}Ip +O(TL 3). (459)

The last equality in (4.59) is because, by (4.55) with [ = 3, we have (n+1)~! =
nl—n"2+4+n"2+0(M *); hence, n/(n+1)=1-n"14+n"2+0(n"?) and
(n+1)"2 =n=2+0(n=3). Therefore, {n/(n+1) {1+ (p+1)/(n+1)?} = {1—
14 2+0(n ) H14+(p+1)n2+0(n"3)} = 1-n" '+ (p+2)n 24+ 0(n"3).

We now derive (4.59) using a different method—this time by the Taylor
expansion. To do so, we first make use of the following matrix identity (e.g.,
Sen and Srivastava 1990, p. 275): For any p X p matrix P, p x ¢ matrix U and
q X p matrix V| we have

(P+UV) =Pt —PlUU,+VP'U)'VPTE, (4.60)

provided that the inverses involved exist. By letting P = I, U = X, and
V = X' in (4.60), we have

B™!'=(I,+ XX")™!

XX/
=l - ———=
1+ X'X

A
Tonteg

where ¢ is defined as above. Note that the (i,5) element of ¢ = (n+£'¢)~1¢¢!
is (n + &'6)&¢&;. I i # j, then E(G;) = 0; if ¢ = j, then E(Gi) = E{(n +
b_1&2)71E2} does not depend on i (Exercise 4.16). Thus,

1E &
E(Gi) = ;ZE (W)

i=1

Jlp( S )
p ”+ZZ:151%
1 2

Do) gt (4.61)
P\ n+x3

where x3 represents a random variable with a x2-distribution. By the Taylor
expansion, we have
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Xo X2 1

n—i—xg Wl—f—n—lxg

2 2
:%&ﬁ+@m%}

n
2

Xp  Xp

n n?

Now, again, use the method of formal derivation (Section 4.3), the facts that
E(x2) = p and E(x}) = p(p +2), and (4.61) to get

E(&i) = % {% - w + O(n3)}
:%—p;2+omﬁy

Therefore, in conclusion, we have

E(B™Y) =1, -~ E(()

1 p+2 _
= p_{ﬁ_ > +0(n 3)}Ip
1 p+2 _3
_{1—5—5- 5 }Ip+0(n ),

which is the same as (4.59).

Note that in the latest derivation using the Taylor expansion we actually
benefited from the identity (4.60) of matrix inversion and results on moments
of the y2-distribution (otherwise, the derivation could be even more tedious).

4.6 Laplace approximation

Suppose that one wishes to approximate an integral of the form

/e*qmdx, (4.62)

where ¢(-) is a “well-behaved” function in the sense that it achieves its min-
imum value at * = Z with ¢/(Z) = 0 and ¢”(Z) > 0. Then we have, by the
Taylor expansion,

@) = @) + 54" (@)~ 7+

which yields the following approximation (Exercise 4.18):

2 -
—4(®) Jp —q(2) 4.
/e dx q//(j)e (4.63)
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Approximations such as (4.63) are known as the Laplace approximation,
named after the French mathematician and astronomer Pierre-Simon Laplace.
There is a multivariate extension of (4.63), which is often more useful in prac-
tice. Let g(z) be a well-behaved function that attains its minimum value at
x = & with ¢/(Z) = 0 and ¢”(Z) > 0 (positive definite), where ¢’ and ¢’ denote
the gradient vector and Hessian matrix, respectively. Then we have

/ e 1@ dy ~ clg" (3)| 7Y 2e1@), (4.64)

where ¢ is a constant depending only on the dimension of the integral (Exercise
4.19) and | A| denotes the determinant of matrix A.

Approximations (4.63) or (4.64) are derived using the second-order Taylor
expansion. This is called the first-order Laplace approximation. If one uses
the higher order Taylor expansions, the results are the higher order Laplace
approximations, which are more complicated in their forms (e.g., Barndorff-
Nielsen and Cox 1989, Section 3.3; Lin and Breslow 1996). For a fixed-order
(e.g., first order) Laplace approximation, its accuracy depends on the behavior
of the function ¢. Roughly speaking, the more “concentrate” the function is
near I the more accurate; and the more normal-look-like the function is the
more accurate. For example, consider the following.

Ezample 4.16 (t-distribution). Consider the function

v+1 x?
q(x) = ) log 1+7 , —00< <00,

where v is a positive integer. Note that, subject to a normalizing constant,
e~1(*) corresponds to the pdf of the ¢-distribution with v degrees of freedom.
It is easy to verify (Exercise 4.20) that, in this case, the exact value of (4.62)
is given by /vnI'(v/2)/I'{(v 4+ 1)/2}, where I" is the gamma function; the
Laplace approximation (4.63) is y/2vn/(v 4 1). Table 4.4 shows the numerical
values (up to the fourth decimal) for a number of different v’s, where Relative
Error is defined as Exact minus Approximate divided by Exact. It is seen that
the accuracy improves as v increases. This is because as v increases, the -
distribution becomes more and more concentrate at £ = 0. In the extreme case
where v — 00, the t-distribution becomes the standard normal distribution,
for which the Laplace approximation is exact (Exercise 4.20).

So, if ¢ is a fixed function, there is a limit for how accurate one can approx-
imate (4.62) with a fixed-order Laplace approximation. Note that, in practice,
the first-order Laplace approximation is by far the most frequently used and
the higher than the second order Laplace approximation is rarely even consid-
ered. This is because as the order increases, the formula for the approximation
quickly becomes complicated, especially in the multivariate case. Therefore,
practically, increasing the order of Laplace approximation may not be an op-
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Table 4.4. Accuracy of Laplace approximation

v| Exact Approximate Relative Error
1/3.1416 1.7725 0.4358
2|2.8284 2.0467 0.2764
3|2.7207 2.1708 0.2021
4]2.6667 2.2420 0.1593
52.6343 2.2882 0.1314
10{2.5700 2.3900 0.0700
50(2.5192 2.4819 0.0148
100|2.5129 2.4942 0.0074
250(2.5091 2.5016 0.0030

tion on the table to improve the accuracy of approximation. What else (option)
does one have on the table?

In many applications, the function ¢ in (4.62) is not a fixed function but
rather depends on n, the sample size. In other words, the sample size n may
play a role in the accuracy of Laplace approximation, which so far has not
been taken into account. To see why the sample size may help, let us consider
a simple example. Suppose that the function ¢ in (4.62), or, more precisely,
e~ 1) corresponds to the pdf of a sample mean X of i.i.d. random variables
X1,...,Xp. According to the law of large numbers (LLN), as n increases, X
becomes more and more concentrated near the population mean & = E(X7).
Therefore, the Laplace approximation is expected to become more accurate
as n increases. To show this more precisely, let us first consider a simple case.

Suppose that in (4.62), ¢(x) = nx, and another function p(x) is added in
front of dzx. More specifically, we consider

I, = /000 e " p(x) dx. (4.65)

Suppose that p¥) (z)e="* — 0 as  — oo for k = 0,1,2,.... Then, by integra-
tion by parts, we have

In other words, we have an asymptotic expansion in terms of increasing powers
of n™1. Now, let us consider a more general case by replacing the function z in
(4.65) by g(z) and assuming that ¢’(0) # 0. It is also assumed that as x — oo,
e @ p(z) /g (x) — 0, e " {p! (2)g' (x) — p(x)g” (2)}/{g'(2)}* — 0, and so
forth, so that we get, by integration by parts,
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I, :/ e 9@ p(x) da
0

o—na(@ PO) / ) [P
s Tl g@ )
@20 1 g ©F0) = p0)g )
ST WO o 00)
So, again, the expansion is in increasing powers of n =

The assumption that ¢’(0) # 0 makes a big difference in the approxima-
tion. To see this, consider the integral

I, = / - e M@ p(x) da. (4.67)

— 00

Suppose that g(z) attains its minimum at Z such that ¢’(z) = 0, ¢"(Z) > 0
and p(Z) # 0. Then, under regularity conditions, we have, by the Taylor
expansion,

9() = 9@) + ¢/ (@) — ) + 16" (@)a — P+
1

= 9(@) + 59" (@) (@ - 2)° + -

So, if we make a change of variable y = \/ng”(z)(z — &), we have

ng(x) = ng(&) + gg”(i:)(:zr LI

Y2
:ng(i?)—F?—F"'

On the other hand, again by the Taylor expansion, we have

B P
Pl )p{ + ng,,(j)}

— ol (5 Y 1//57 Y
—p( )+p( ) ng”(i) +2p ( )ng”(:f?) +

If we ignore the --- in both expansions, we obtain the following Laplace ap-
proximation of I, in (4.67):

@:/Zw%ﬂm@—g_m}

X{p(i)+ Z;@ y+ P'(%) y2+~--}7dy =

2

ng” ()
—ng(T) e8] /(5 /(5
T {p(;z)Jr A (xz)yQ}dy

ng" (z) ng"(z)"  2ng"(z
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= [T nat@) {mw%}

ng" () 2ng"(
2T ne@ s -
I+ O ) (468)

Note that, unlike (4.66), expansion (4.68) is in increasing powers of n=1/2. We
may compare (4.68) with p(z) = 1 with (4.63), where g(z) = ng(z). According
to (4.63), we have I,, ~ \/27/ng” (£)e~™"(*) whereas, according to (4.68),
we have I,, ~ /21 /ng"(Z)e~"9" @ {14+0(n=")}. The leading terms of the two
approximations are the same, but (4.68) also ascertains that the next term in
the approximation is O(n~=3/2).

The seemingly nice results might lead an unwary mind to wrong conclu-
sions that expansions such as (4.66) and (4.68) always hold. This is because,
in many cases, the function g also depends on n, so that as n increases, the
remaining term in the Laplace expansion may not have the same order as
what we have seen so far. To add a further complication, in some cases the
dimension of the integral also depends on n. Below is an example.

Ezample 4.17. Suppose that, given the random variables w1, ..., U, and
V1,...,Um,, binary responses Y;;, i = 1,...,m1, j = 1,...,mg, are condition-
ally independent such that p;; = P(Y;; = 1|u,v) and

logit(pi;) = o+ u; + vj,
where p is an unknown parameter, u = (U;)i<i<ms, and v = (Vj)1<j<m,-
Furthermore, assume the u;’s and v;’s are independent such that u; ~ N(0,0%)
and v; ~ N(0,03), where the variances 0% and o3 are unknown. Here, the u;’s
and v;’s are called random effects and the above model is a special case of
the generalized linear mixed model (GLMM). See Chapter 12 for more details.
Suppose that one wishes to estimate the unknown parameters y, 02, and o2 by

the maximum likelihood method. It can be shown that the likelihood function
can be expressed as

c— % log(o?) — % log(03) + pY..

mi ma2

+10g/.../ HH{1+exp(,u+ui+vj)}_1

i=1j=1
my mo 1 mi 1 m2
2 2
X exp E uiYi.—i—E ij.j——QE ui——gg vj
; ; 207 ¢ 203 4
=1 7j=1 =1 =1

duy - dtgy, dvy - - - dvp,,, (4.69)
where ¢ is a constant, Y. = Y "% 22"21 Yij, Yi. = Z;n:zl Yij, and Y,; =

S Yi; (Exercise 4.21). The multidimensional integral involved in (4.69)
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has no closed-form expression, and it cannot be further simplified. Further-
more, the dimension of the integral is m; + mo, which increases with the
total sample size n = myma (in fact, unlike the classical i.i.d. case, here the
total sample size n is no longer meaningful if the interest is to estimate the
variances o7 and 03).

Such a high-dimensional integral is difficult to evaluate even numerically.
In particular, a fixed-order Laplace approximation no longer provides a good
approximation unless o7 and o3 are very small. In fact, Jiang (1998a) showed
that if one approximates a likelihood function such as (4.69) using the Laplace
approximation and then estimates the parameters by maximizing the approx-
imate likelihood function, the resulting estimators are inconsistent.

As a final remark, so far the derivations of the Laplace approximation may
be viewed as a method of formal derivation (see Section 4.3). As it turns out,
this is one of the cases that the second step in the development of a method
(see the fourth paragraph in Section 4.3) may reject the first step. Our general
recommendation is that the Laplace approximation is useful in many cases,
but it should be used with caution.

4.7 Case study: Asymptotic distribution of the MLE

A classical application of Taylor series expansion is the derivation of the
asymptotic distribution of the MLE. Let us begin with the i.i.d. case with
the same set up as in Section 1.4; that is, X1,..., X, are i.i.d. observations
with pdf f(z]@), where 6 is a real-valued unknown parameter with the param-
eter space © = (—00,00). Let 6 denote the MLE of #. We assume that 6 is
consistent (see Section 1.4). Let [(6|X) denote the log-likelihood function; that
is, 1(0|X) = > log{f(X;|0)}. Here, X = (X1,...,X,) represents the vec-
tor of observations. Then under regularity conditions we have, by the Taylor
expansion,

0
0= 55l(01X)
0 ? .
= gt + { i)} 0 -0)
3 ~
+ {88031(9| )} (6 —6) (4.70)

where 6 lies between 6 and 6. Before we continue, let us note the following
facts:
(i) We have

1000 {000} + Zi0p0 - 5 { i) |
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E(v1) + ) {¥: - E(¥)},
i=1

where Y; = (02/00%)log{f(X;|0)}. It follows by the WLLN that under a
suitable moment condition (see Chapter 6),

82
SSUO1X) = nE(Y:) + op(n). (4.71)
(ii) Under some regularity conditions, we have
8 83

=1

(iii) Write Z; = (9/00) log{ f(X;|0)}. Then under some regularity condi-
tions (see below), we have, by the CLT,

10,
J/n 06

One of the regularity conditions makes sure that is legal to interchange the
order of differentiation and integration in the following calculation:

0
0

= [ oL@} (al0) d
=E Zl

392 /f («16) d

-2 / 55 los{/f(216)}f (x]6) da

16|X) = \/_ ZZ L N{0,E(Z2)}. (4.73)

_ / [;9210g{f(x|0)}f(x|0)+ log{/(216)} = f@w)}

P 2
= [ o ost w01 alo) di+ [ | Srostse10)] r(010) da
—B(Y)) + E(Z2).

Thus, in particular, E(Y;) = —E(Z1). Combining (4.70)—(4.74), we have

0

~ 0
0

~ 90

L(61X) + {nE(Z}) + op(n) + Op(n)(6 — 6)} (6 — 6)

L(61X) +n{E(Z}) + op(1)}(6 — )
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using the consistency of 6. Thus, we have

A 1 10
Vvl —0) = _—E(Z%)+0p(1)ﬁ%l(9|‘x)
4N {0, ﬁzf)} (4.74)

using Slutsky’s theorem (Theorem 2.13).
The quantity E(Z?) is known as the Fisher information, denoted by

160) = F [% gl /(X:[6)}) (4.75)

In a suitable sense, I(f) represents the amount of information about 6 con-
tained in X;. The concept can be extended to multiple observations; that is,

the amount of information contained in Xy,..., X, is
P 2
Z(0) =E [% log{f(Xl,...,XnG)}] . (4.76)
Here, with a little abuse of the notation, f(z1,...,2,|0) represents the

joint pdf of Xi,...,X,. Since, in the i.i.d. case, we have f(x1,...,2,|0) =
[T, f(xi|6), it follows that, under regularity conditions, Z(0) = nI(0) (Ex-
ercise 4.22); that is, the amount of information contained in Xi,..., X, is n
times that contained in X;.

The result (4.74) on asymptotic distribution of the MLE may be general-
ized in many ways. First, the parameter § does not have to be univariate. Sec-
ond, the observations do not have to be i.i.d. Let 8 be a multi-dimensional vec-
tor of parameters; that is,# € © C RP (p > 1). Let X1, ..., X,, be observations
whose joint pdf with respect to a measure p depends on 0, denoted by f(z|6),
where x = (21, ...,2,)". Then under some regularity conditions, the MLE of 6,
0, satisfies the likelihood equation d1/90 = 0, where | = (8| X) = log{f(X|0)}
is the log-likelihood function with X = (Xi,...,X,)". By the multivariate
Taylor expansion (4.12), we have

0 A0 X)
00

LOIX) (D20 X)) 4
T +{ 9000, }(9_9)

1., 83109)x) | 4
+5(0-9) { aeaeos, (0

1A <i<p, W~here 0; is the ith component of # and 0 lies between 6 and
6. Note that () depends on i (which is something that one might overlook).
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Here, of course, we assume the existence of all partial derivatives involved. It
follows that, as a vector, we can write

_aIx)
T
L oueX) | [801X))
Y +{ A
1), ,,0%09X) .
2109 00000, | @9
1<i<p

_aex) | {321(9)()

00 006"
1], ,,000X) X
1<i<p

Note that §%1/90'00; = 0%1/06;00'. In order to derive the asymptotic distri-
bution of é, we need to make more assumptions. Basically, these assumptions
replace the i.i.d assumption by some weaker conditions so that some kind of
WLLN and CLT hold (note that for these results to hold, some distributional

assumptions on X1, ..., X, are necessary). First define
%101 X)
I,0) = —E<{ —————= )| 4.
0 =-£{% (4.78)

which is called the Fisher information matrix. This may be regarded as an
extension of nZ(¢) in the i.i.d. case. We assume that Z,(6) is positive definite.
Furthermore, we assume that

7-1/2(p) {3(;;25’() _ Zn(H)} Z,;12(0) = op(1), (4.79)

-, R00X)

e [(9 -0 gegon | IO =o)  (@80)

n
1<i<p

(see Appendix A.1 for the definition of A='/2, where A > 0). Note that since
all we know (by Taylor expansion) is that 6 = (1—)0+t8 for some ¢ € [0, 1],
for (4.79) to hold we need some kind of uniform convergence in probability
for t € [0,1]. Finally, we assume that

1771/2(9)M 4, N(0, ) (4.81)
a0
as n — oo. Under assumptions (4.78)—(4.81) we have, by (4.77),
1220205 4 op(1)y22(0)0 - 0).

06
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Therefore, as n — oo, we have

L0 6 —0) = —{I,+ 0p<1)}*1l?”2<9)%

4, N(0, D). (4.82)
Note that in most cases where (4.81) holds, we actually have X = I,,. For

example, under some regularity conditions, we have, similar to the previous
i.i.d. and univariate 6 case,

E {‘%(QQX)} =0, (4.83)
Var {al(géX)} =T7,(0). (4.84)

Then, the left side of (4.81) is simply the standardization of (0/90)1(0|X),
which in many cases converges in distribution to the standard p-variate normal
distribution. Therefore, the result of (4.82) may be interpreted as that as n —
0, 6 is asymptotically (p-variate) normal with mean vector § and covariance
matrix equal to Z,, }(), the inverse of the Fisher information matrix.

4.8 Case study: The Prasad—Rao method

Surveys are usually designed to produce reliable estimates of various charac-
teristics of interest for large geographic areas. However, for effective planning
of health, social, and other services and for apportioning government funds,
there is a growing demand to produce similar estimates for small geographic
areas and subpopulations. The usual design-based estimator, which uses only
the sample survey data for the particular small area of interest, is unreliable
due to relatively small samples available from the area. In the absence of a
reliable small-area design-based estimator, one may alternatively use a syn-
thetic estimator (Rao 2003, Section 4.2), which utilizes data from censuses
or administrative records to obtain estimates for small geographical areas or
subpopulations. Although the synthetic estimators are known to have smaller
variances compared to the direct survey estimators, they tend to be biased
as they do not make use of the information on the characteristic of interest
directly obtainable from sample surveys.

A compromise between the direct survey and the synthetic estimations is
the method of composite estimation which uses sample survey data in con-
junction with different census and administrative data. Implicit or explicit
models, which “borrow strength” from related sources, have been used in this
latter approach. Research in this and related areas are usually called small
area estimation. See Rao (2003) for a detailed account of different composite
estimation and other techniques in small area estimation.
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An explicit (linear) model for composite small area estimation may be
expressed as follows:

Y, = X6+ Ziv;+e;, i=1,...,m, (485)

where m is the number of small areas; Y; represents the vector of observations
from the ith small area; X; is a matrix of known covariates for the ith small
area, and 3 is a vector of unknown regression coefficients (the fixed effects);
Z; is a known matrix, and v; is a vector of small-area specific random effects;
and e; represents a vector of sampling errors. It is assumed that Y; is n; x 1,
X;isn; xXp,Bispx 1, Z;isn; X b;, v; is b; X 1 and e; is n; x 1. Also assumed
is that the v;’s and e;’s are independent such that E(v;) = 0, Var(v;) = Gjy;
E(e;) = 0 and Var(e;) = R;. Here the matrices G; and R; usually depend on a
vector 1 of unknown parameters known as variance components. Two special
cases of the above small area model are the following.

Ezample 4.18 (The Fay—Herriot model). Fay and Herriot (1979) proposed
the following model for the estimation of per-capita income of small places
with population sizes less than 1000:

Y, = 2i8 +v; + e, (4.86)

i=1,...,m, where z; is a vector of known covariates, 3 is a vector of unknown
regression coefficients, v;’s are area-specific random effects, and e;’s represent
sampling errors. It is assumed that the v;’s and e;’s are independent with
v; ~ N(0,A) and e; ~ N(0, D;). The variance A is unknown, but the sampling
variances D;’s are assumed known. It is easy to show that the Fay—Herriot
model is a special case of the general small-area model (4.85) (Exercise 4.25).

Ezxample 4.19 (The nested-error regression model). Battese, Harter, and
Fuller (1988) presented data from 12 Iowa counties obtained from the 1978
June Enumerative Survey of the U.S. Department of Agriculture as well as
data obtained from land observatory satellites on crop areas involving corn
and soybeans. The objective was to predict the mean hectares of corn and
soybeans per segment for the 12 counties using the satellite information. The
authors introduced the following model, known as the nested-error regression
model, for the prediction problem:

Y, = x;Jﬂ + v; + €44, (487)

i=1,...,m, j = 1,...,n;, where z;; is a known vector of covariates, 3 is
an unknown vector of regression coefficients, v; is a random effect associated
with the ¢th small area, and e;; is the sampling error. It is assumed that
the random effects are independent and distributed as N (0, 02), the sampling
errors are independent and distributed as N(0,02), and the random effects
and sampling errors are uncorrelated. It can be shown that this is, again, a
special case of the general small-area model (4.85) (Exercise 4.26).
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The problem of main interest in the small-area estimation is usually the
estimation, or prediction, of small-area means. A small-area mean may be
expressed, at least approximately, as a mixed effect, n = b3 + a’v, where a
and b are known vectors and 5 and v = (v;)1<i<m are the vectors of fixed and
random effectsi, respectively, in (4.85) (it is called a mixed effect because it is
a combination of fixed and random effects). If 5 and ¢ are both known, the
best predictor (BP) for 7, is the conditional expectation E(n|Y"). Furthermore,
if the random effects v; and errors e; are normally distributed, this conditional
expectation is given by

n* =6+ dE(a]Y)
=VB+dGZV (Y - XP),

where X = (Xi)lgignu Y = (Y;)lgigm, G = diag(Gl, .. .,Gm), Zi =
diag(Z1,...,Zm), and V = Var(Y) = diag(V4, ..., Vi) with V; = Z,G; Z!+R;.
In the absence of the normality assumption, n* is the best linear predictor
(BLP) of 7 in the sense that it minimizes the mean squared prediction error
(MSPE) of a predictor that is linear in Y (e.g., Jiang 2007, Section 2.3). Of
course, § is unknown in practice. It is then customary to replace 3 by

f=((X'VIX)“lx'v-ly, (4.88)

which is the MLE of 8 under the normality assumption, provided that
is known. The result is called the best linear unbiased predictor, or BLUP,
denoted by 7. In other words, 7 is given by n* with 3 replaced by 8.

The expression of BLUP involves v, the vector of variance components,
which is typically unknown in practice. It is then customary to replace i by
a consistent estimator, 1[) The resulting predictor is often called the empirical
BLUP, or EBLUP, denoted by 7. To illustrate the EBLUP procedure, we
consider a previous example.

Ezample 4.18 (continued). Consider the Fay—Herriot model. Let 7 denote
the small-area mean for the ith area; that is, n = x}8 + v;. Then the BP for
7 is given by (Exercise 4.25)

n* = (1 - B;)Y; + Bix;f3,

where B; = D; /(A + D;). The BLUP is given by 77 = n* with ( replaced by

-1
> = sz; i TiYq
5_<§A+Di) <i=1A+Di>.

Finally, the EBLUP is given by

= (1—-B;)Y; + Bz, 3,

2
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where B; and B are B; and 3, respectively, with A replaced by A, a consistent
estimator of A. One example of a consistent estimator of A is the method of
moments (MoM) estimator proposed by Prasad and Rao (1990), given by

Ylpr_Y — tr(ij_ D)
m-—p

A:

where Px. = I — Py, with Px = X(X'X)™'X’, and D = diag(D;, ..., Dy,).

Although the EBLUP is fairly easy to obtain, assessing its uncertainty is
quite a challenging problem. As mentioned, a measure of the uncertainty that
is commonly used is the MSPE. However, unlike the BLUP, the MSPE of the
EBLUP does not, in general, have a closed-form expression. This is because
once the variance components ¢ are replaced by their (consistent) estimators,
the predictor is no longer linear in Y. A naive approach to estimation of the
MSPE of EBLUP would be to first obtain the MSPE of BLUP, which can
be expressed in closed-form as a function of ¥ (see below), and then replace
1 by 1[) in the expression of the MSPE of BLUP, where 1[) is the consistent
estimator of 1. However, as will be seen, this approach underestimates the
MSPE of EBLUP, as it does not take into account the additional variation
associated with the estimation of ).

Prasad and Rao (1990) proposed a method based on the Taylor series
expansion to produce the second-order unbiased MSPE estimator for EBLUP.
Here, the term “second-order unbiased” is with respect to the above naive
MSPE estimator, which is first-order unbiased. The latter property is because,
roughly speaking, the difference between the BLUP and EBLUP is of the order
O(m~'?). To see this, note that the BLUP can be expressed as

i = 7()
=B +dGZ'VHY - XP), (4.89)

where [ is given by (4.88). It follows that the EBLUP is simply 7 = ﬁ(z[)) By
the Taylor expansion, we have 77(1/}) —n(yY) = (817/81//)(1/} — 1)) = Op(m~1/?)
under some regularity conditions. Therefore, E(5—1})? is typically of the order
O(m™1). On the other hand, Kackar and Harville (1984) showed that under
the normality assumption,

MSPE(i)) = E(7) —n)*

GRS (4.90)

Equation (4.90) clearly suggests that the naive MSPE estimator underesti-
mates the true MSPE, because it only takes into account the first term on the
right side. Furthermore, if one replaces ¥ by 1 in the expression of MSPE(7),
it introduces a bias of the order O(m~') [not O(m~'/2)]. Thus, the bias of
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the naive MSPE estimator is O(m~!). By second-order unbiasedness of the
Prasad—Rao method, it means that

E (M/sﬁE - MSPE) = o(m™Y), (4.91)

where MSPE = MSPE()) and MSPE represents the Prasad-Rao estimator
of MSPE. Furthermore, the following closed-form expression can be obtained
(Exercise 4.27):

MSPE(7) = /(G — GZ'V'ZG)a + d (X'V1X)"1d, (4.92)

where d = b — X'V ~1ZGa. Here, we assume that X is of full rank p. Note
that, typically, the first term on the right side of (4.92) is O(1) and the second-
term is O(m~!). An implication is that MSPE(7) = O(1). In view of (4.90)
and (4.92), a main part of the Prasad-Rao method is therefore to derive an
approximation to E(7) — 77)?. Assume that suitable regularity conditions are
satisfied. Then we have, by the Taylor expansion and (4.89),

=1 =) —0)

on - 1,
= gy @ =9+ 500 =)
where 12) lies between 1 and 1/} Suppose that 1[) is a \/m-consistent estimator

in the sense that \/m(¢ — 1) = Op(1) (see Section 3.4, above Example 3.7),
and the following hold:

0i(¥)
ooy’

= Op(1).

oy [p—p| <[P—]

Then by the method of formal derivation (see Section 4.3), we have

o 9 - ? .
B - i) =B { g0 - )} +o(m™) (1.93)
Now, suppose the first term on the right side of (4.93) can be expressed as
o o\ _aw)
B{ o -0} =Dt om, (1.99)

where a(-) is a known differentiable function. Also, let b(1)) denote the right
side of (4.92). By (4.93) and (4.94), to obtain a second-order unbiased estima-
tor of E(/) — 77)2, all one needs to do is to replace ¥ in a(3)) by 1 because the
resulting bias is o(m ™) (why?). However, one cannot use the same strategy to
estimate MSPE(7) = b(1)), because the resulting bias is O(m™1!) rather than
o(m™1). In order to reduce the latter bias to o(m~!), we use the following
bias correction procedure. Note that, by the Taylor expansion, we have
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R . 9%b -
bE) = 80) + (= 0) + 50 = 0 5 o6 = )+ ofm ™)
hence, by the method of formal derivation (Section 4.3),
- 0b - % -
B} =30 + gy B - )+ yu {0y y 00 () - )]
+o(m™")
=b(y) + % +o(m™1h).

Here, we make the assumption that E(zﬁ — 1) = O(m~1), which holds under
regularity conditions. Now, we can apply the same plug-in technique used
above for estimating a(¢) to the estimation of ¢(¢). In other words, we esti-
mate b()) by b(¢)) — ¢(1p) /m because the bias of this estimator is

. Bl o(d
B {bw) - %)} b = b(w) + Ly opmry - HA
_ E{C(w — C(¢)} +O(m_1)
m
=o(m™),
provided that ¢(-) is a smooth (e.g., differentiable) function.
In conclusion, if we define the Prasad—Rao estimator as
MSPE = b(t)) + W (4.95)

then we have

E(MSPE) = B{b(:))} +

= o) + )

E{a(y) — a(y)}

m

) E{e(d) —e(v)}

=b(y) + % +o(m™)

= MSPE(#) + E® — /)% + o(m™)
= MSPE + o(m™}),

E{a($)}  E{c(4)}

m

+o(m™h)

+an) +

using (4.90), (4.92), and (4.93) near the end. Therefore, (4.91) holds.
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Prasad and Rao (1990) obtained a detailed expression of (4.94) and, hence,
(4.95) for the two special cases discussed earlier—that is, the Fay—Herriot
model (Example 4.18) and the nested-error regression model (Example 4.19),
assuming normality and using the MoM estimators of . Extensions of the
Prasad—Rao method will be discussed in Chapters 12 and 13.

4.9 Exercises

4.1. Regarding Table 4.1, how large should n be in order to achieve the
same accuracy (in terms of the relative error) for z = 57

4.2. This is regarding Example 4.3.

(a) Show that

1(0) = — i{Xl + 2log(1 +e %)},

i=1
ml—e X
1(0) = —_
O=> e

n ef—Xi
1"(0) = _22 (1+ef0=Xi)2"
i=1

(b) Show that n=11(0) 2, 4 as n — oo, where a is a positive constant.
(¢) Show that n=1/2'(0) - N(0,02) as n — oo, and determine 2.
(d) Show that there is a sequence of positive random variables &, and a

constant ¢ > 0 such that &, £, b, where b is a positive constant, and

&nn <sup|l”(0)| < cn.
0

4.3. In Example 4.4, show that

99(¢n)  9g(c) _
Ox ox

where dg/0x = (0g/0z')’.

4.4. Let Xi,...,X, be iid. observations such that E(X;) = p and
var(X;) = o2, where 0 < 0?2 < oco. Derive the (three) results at the end
of Section 4.2.

4.5. Let Xq,..., X, beii.d. observations generated from the following dis-
tributions, where n = 30. Construct the histograms of the empirical distribu-
tion of X based on 10,000 simulated values. Does the population distribution
of the X;’s make a difference?

(i) N(0,1);

(ii) Uniform]0, 1];
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(iii) Exponential(1);

(iv) Bernoulli(p), where p = 0.1.

4.6. In this exercise you are asked to study empirically the convergence of
CLT in regard to Example 4.5.

(i) Generate two sequences of random variables. The first sequence is gen-
erated independently from the Beta(a, 3) distribution with o = 8 = 2 [case
(1)]; the second sequence is generated independently from the Beta(«, ) dis-
tribution with @ = 2 and 8 = 6 [case (ii)]. Based on each sequence, compute
én = (Vn/o)(X — p), where n is the sample size (i.e., the number of random
variables in the sequence, which is the same for both sequences),

02 Oéﬁ
(a+B)*a+p+1)

(ii) For each of sample sizes n = 15, 30, 60, 150, and 400, repeat (i) 1000
times. Make a histogram for case (i) and case (ii).

(iii) In addition to the histograms, obtain the 5th and 95th percentiles
based on the 1000 values of &,, for each case and sample size and compare the
percentiles with the corresponding standard normal percentiles.

(iv) Make a nice plot that compares the histograms and a nice table that
compares the percentiles for the increasing sample size. What do you con-
clude?

4.7. Obtain the two-term Edgeworth expansion [i.e., (4.27)] for the follow-
ing distributions of Xj:

(i) X; ~ the double exponential distribution DE(0, 1), where the pdf of
DE(u, o) is given by

fzlp,0) = iexp (—u) , —oo <z < oo
20 o

(i) Xi ~ x3-

4.8. Show that the sequence of functions ¢y, k € Z, of Example 4.8 is an
orthonormal system.

4.9. Show that the sequence of functions defined in Example 4.9 is an
orthonormal system.

4.10. Compute ¢ (x) for k = 2,3,4 in Example 4.10. Also verify that ¢y,
k =0,1,2,3,4, are orthonormal; that is, they satisfy (4.41) and (4.42) with
S =10,1].

4.11. Show that the Haar functions defined in Example 4.11 [i.e., (4.44)
plus I[O,l)] constitute an orthonormal system on (—o00, 00).

4.12. Use Fubini’s theorem (see Appendix A.2) to establish (4.51) given
the condition (4.49).

4.13. Show that the function ~ defined in Example 4.14 is an autocovari-
ance function.
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4.14. Prove the (identity) expansions (4.55) and (4.58) by mathematical
induction.

4.15. Show that in Example 4.15 we have E(n;;) = (p+2)1=j), 1 <4, <
.

4.16. Show that in Example 4.15 we have E((;;) = 0 if ¢ # j and E((;)
does not depend on 1.

4.17. Suppose that X has a x2-distribution, where v > 2. Use the el-
ementary expansion (4.55) with [ = 4 and without the remaining term
to approximate E(X1). Note that closed-form expressions of moments of
X, including E(X~1!), can be obtained, so that one can directly compare
the accuracy of the approximation. Does the approximation improve as
v — oo? (Hint: Consider the relative error of the approximation defined as
|approximate — exact|/exact.)

4.18. Derive the approximation (4.63) using the Taylor expansion

N -
q(z) = q(@) + 50" (@)(x = 2)° + -+
4.19. Derive the Laplace approximation (4.64). What is the constant ¢?
4.20. This exercise is related to Example 4.16.
(1) Show that in this case the exact value of (4.62) is given by

and the Laplace approximation (4.63) is

2um
Vev+1

(ii) Show that if ¢(z) = (z — p)?/20? for some p € R and % > 0, the
Laplace approximation (4.63) is exact.

4.21. Show that the likelihood function in Example 4.17 can be expressed
as (4.69).

4.22. Show that in the i.i.d. case, the amount of information contained in
X1,...,X, is n times that contained in X;; that is, Z(0) = nI(0) [see (4.75)
and (4.76)]. The result requires some regularity conditions to hold. What
regularity conditons?

4.23. Let Xq,...,X, be iid. observations with the pdf or pmf f(z|0),
where 6 is a univariate parameter. Here, the pdf is with respect to the Lebesgue
measure, whereas the pmf may be regarded as a pdf with respect to the
counting measure [see below (4.36)]. Obtain the Fisher information (4.75) for
the following cases:

(i) X1 ~ Bernoulli(f), so that

f(xl) =6"(1—6)""", x=0,1,
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where 6 € (0,1).
(ii) X1 ~ Poisson(f), so that

L

f(z|0) =e L z=0,1,...,
where 6 > 0.

(iii) Xy ~ Exponential(f), so that
1 —x/0
f(x|9):56 ’ 1:207

where 6 > 0.
(iv) X1 ~ N(0,6?%), so that

(-5}
eXpy ————5 ¢, —X<zr<oo,

(alo) = —

1
V202

where 6 € (—00,00).

4.24. Let X1,...,X, beii.d. with the following pdf or pmf depending on
0 = (61, 02). Obtain the Fisher information matrix (4.78) in each case.

(i) X1 ~ N(p,0?%), where u € (—00,00) and 02 > 0, so that §; = p and
92 = 0‘2.

(ii) X7 ~ Gamma(c, 3), whose pdf is given by

_ 1
I'(a)pe

where o > 0 and 3 > 0 are known as the shape and scale parameters, respec-
tively, so that 81 = a and 65 = .
(iii) X3 ~ Beta(a, 3), whose pdf is given by

F(a + ﬁ) xafl
I(a)I'(B)

where o > 0 and § > 0, so that 6; = a and 05 = .

4.25. Show that the Fay-Herriot model of Example 4.18 is a special case
of the small-area model (4.85). Specify the matrices X;, Z;, G;, and R; in
this case. Furthermore, show that the BP for nn = /3 + v; is given by 7 =

4.26. Show that the nested-error regression model of Example 4.19 is a
special case of the small-area model (4.85). Specify the matrices X;, Z;, G;
and R; in this case.

4.27. Derive the expression (4.92) for MSPE(7).

4.28. Consider a special case of the Fay-Herriot model (Example 4.18) in
which D; = D, 1 < i < m. This is known as the balanced case. Without loss
of generality, let D = 1. Consider the prediction of n; = z}8 + v;. Let 7; and

e B >0,

f(zla, B) =

f(zle, B) = 1-2)" o0<az<l,
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7; denote the BLUP and EBLUP, respectively, where the MoM estimator of
A is used for the EBLUP [see Example 4.18 (continued) or Exercise 4.25].
(i) Show that

A (XX)

MSPE(R) = 3 = ax1

where X = (2})1<i<m.
(i) Show that

A n o X'X) ey 2{1 — 2l(X' X)Ly}
A+1 A+1 (A+1)(m—p)

{1 —2y(X'X) L}
(A+1)(m—p)(m—p—2)

MSPE(7;) =

+

[Hint: The moment of (x7)~! has a closed-form expression, where x3 denotes
a random variable with a y?-distribution. Find the expression.]

(iii) Let n = (m;)1<i<m denote the vector of small-area means and 7 =
(Mi)1<i<m denote the vector of EBLUPs. Define the overall MSPE of the
EBLUP as MSPE(7) — E(i—n2) = B0 (i —m0)2 = S0y B —mi)? =
> MSPE(#;). Show that

mA p+2 4
A+1 A+1 (A+D)(m-p-2)

MSPE() =

4.29 [Delta method (continued)]. In Example 4.4 we introduced the delta
method for distributional approximations. The method can also be used for
moment approximations. Let Ti,...,T; be random variables whose means
and variances exist. Let g(f1,...,tx) be a differentiable function. Then, by
the Taylor expansion, we can write

k
g(Tl,...,Tk)%g(ul,...,,uk Z T ,U,Z

Q‘>|LQ

where pu; = E(T;), 1 < i < k, and 9g/0t; is evaluated as (u1,...,ug). This
leads to the following approximations:

E{g(Tla"'7 )}

var{g(Ty, ..., T i (am)zv"“ )

=1

+2Z< ) ( )cov(n,T)

1<

Q

9(M1>-~-7Mk)

22

(i) Suppose that T' ~ Gamma(c, ) with the pdf given in Exercise 4.24(ii).
Use the above delta method to approximate the mean and variance of T 1.
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(ii) Note that the exact mean and variance of T~! can be obtained in
this case, given a suitable range of o. What is the range of « so that E(T~1)
exists? What is the range of o so that E(T~2) exists?

(iii) Obtain the exact mean and variance of ! given the suitable range
of a and compare the results with the above delta-method approximations.
How do the values of « and 3 affect the accuracy of the approximations?

4.80. Let Xi,...,X, be iid. such that E(X;) = 0, E(X?) = 1, and
E(X{) < oco. Consider approximation to the mean and variance of

n

N n+Z?:1 Xi2

using the delta method of Exercise 4.29.
(i) Let g(z1,...,2n) =n/(n+ >, 2?). What are the approximations to

the mean and variance of Y = g(X1,...,X,,)?
(ii) If we let g(t1,...,tn) =n/(n+> 1 t;), and T; = X2, 1 < i < n, what
are the approximations to the mean and variance of Y = g(T4,...,T,)?

(iii) How does the sample size n affect the approximation to E(Y)? In
other words, does the accuracy of the approximation improve as n increases?
[Hint: First use the dominated convergence theorem (Theorem 2.16) to show
that E(Y") converges to a limit as n — 00.]

(iv) Which approximation [(i) or (ii)] do you think is better? Any general
comment(s) on the use of the delta method in moment approximations?
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Inequalities

We have almost always found, even with the most famous inequalities,
that we have a little new to add.

Hardy, Littlewood, & Pdlya (1934)
Inequalities

5.1 Introduction

It is said that high school algebra is characterized by equalities, whereas col-
lege and more advanced mathematics, inequalities. One may argue that, in a
similar way, statistics is characterized by inequalities, too. For example, the
words “margin of errors,” which nowadays come along routinely with sur-
vey results that are published, may be viewed as bounds for typical range of
the sampling error. This may be expressed as (i) P(le] < b) = 1 — « or (ii)
P(Je|] < b) > 1—q, where € represents the sampling error, b is an upper bound,
and « is a small positive number, such as 0.05. In (i), the event inside the
probability is characterized by an inequality, whereas in (ii), both the event
and the probability itself are characterized by inequalities.
Perhaps the simplest of all is the following basic triangle inequality:

|z +y| < |z| + |yl (5.1)

for all  and y. Inequalities such as (5.1) are called numerical inequalities,
meaning that they hold for all real numbers. Many of the numerical inequal-
ities can be extended beyond real numbers. For example, extensions of nu-
merical inequalities to matrices have led to many of the matrix inequalities.
However, not every numerical inequality has its matrix analogue. For example,
if A and B are symmetric matrices such that A > B, meaning that A — B is
nonnegative definite, it is not necessarily true that A? > B2. See Section 5.3.2
for more counterexamples. Numerical inequalities can be used to establish
more sophisticated inequalities, such as moment and probability inequalities,

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_5, © Springer Science+Business Media, LLC 2010
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but this is not always the case. For example, the covariance inequality states
that for any random variables X and Y, one has

cov(X,Y) < y/var(X)var(Y), (5.2)

or E{X — E(X)HY — E(Y)}] < {var(X)}"/?{var(Y)}'/2, but this is not
derived from {X — E(X)H{Y — E(Y)} < {var(X)}'/?{var(Y)}'/2, which, of
course, does not always hold.

Like the Taylor expansion, the value of inequalities to statistics cannot be
overstated. There exist a huge number of inequalities: numerical inequalities,
matrix inequalities, integral /moment inequalities, and probability inequalities.
Instead of trying to come up with a list of all useful inequalities, which is
impossible, we focus on developing the basic techniques for making use of
existing inequalities and for developing new inequalities. We believe that these
methods and techniques are even more important in solving the current and
future problems than the inequalities themselves. We should also point out
that although this chapter is entitled “Inequalities,” it by no means includes
all of the inequalities introduced in this book. However, this is the only place
that these materials are treated systematically as a single subject.

5.2 Numerical inequalities

5.2.1 The convex function inequality

The triangle inequality (5.1), of course, can be derived with an elementary
argument. Since z < |z| and y < |y|, we have x +y < |z| + |y|; similarly,
—x—y < |z|+]y|, or z+y > —(|z| + |y|), which leads to (5.1). Alternatively,
(5.1) is a special case of the convex function inequality. A real-valued function
f(x) is convex if for any z, y, and X € [0, 1], we have

HA =Nz + Ay} < (1= f(@) + Af(y)- (5.3)

Here, we did not specify the range of x, y. Typically, it is assumed that z,
y € D, where D is a convex subset of R in the sense that x, y € D implies
(1—Xx+ Ay € D for any A € [0,1].

To show that f(z) is convex, one can, of course, verify (5.3) for any =z,
y € D and A € [0,1], but sometimes there are easier ways. For example,
if f'(x) exists, a necessary and sufficient condition for f(x) to be a convex
function is that f’(x) is nondecreasing; if f”(x) exists, then a necessary and
sufficient condition for f(z) to be convex is that f”(x) > 0.

A concave function may be thought of as a function that has the reversed
properties of a convex function; that is, f(x) is concave if and only if (5.3)
is satisfied with the reversed inequality. In fact, f(x) is convex if and only if
—f(z) is concave. More generally, let g(z) be a linear function of x; that is,
g(z) = ax + b for some constants a and b. Then f(z) is convex if and only if
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g(x) — f(z) is concave. Therefore, any convex function inequality (see below)
can be reversed for a concave function inequality.
The best know property of a convex function f(z) is the following:

f<x1+"'+$n> < f(x1)++f($n)

n n

(5.4)

for any x1,...,z, € D. To see that (5.1) is a special case of (5.4), note that
f(x) = |z| is a convex function; hence, by (5.4), we have

EER)

2 | 2

ery‘

which is the same as (5.1). Note that, in this case, the convex function ap-
proach does not really make the derivation simpler if one takes into account
that the verification of (5.3) takes about the same as the arguments right
above it. However, in many other cases, the convex function approach is very
effective. We consider some examples.

Ezample 5.1 (Arithmetic, geometric and harmonic means). The harmonic
mean is bounded by the geometric mean, which, in turn, is bounded by the
arithmetic mean. This string of fundamental inequalities can be expressed as

n x1+ -+ xp
——— < Y-y, < ——MmM8— 5.5
o b T 9
for any positive numbers x1,...,x,. Both inequalities can be established by
the convex function inequality. Let f(x) = —log(z). Then since f”(z) =

272 > 0 for > 0, the function is convex. Therefore, by (5.4), we have

)

_10g<_$fl+---+xn1) log(ay ) + -+ log(a )
n n

IN

—log (;Il +"'+xn) _log(xl) +'7'1'+10g(xn)

Inequalities (5.5) then follows by taking the negative and then exponential.

Ezample 5.2 (The sample p-norm). For any sequence z;, 1 < i < n, and
p > 0, the sample p-norm of the sequence is defined as

|z P+ - + xn|p>1/p

n

o =

The word “sample” corresponds to the case where the z1,...,x, are real-
ized values of i.i.d. observations, say, X1, ..., X,, whose p-norm is defined as
[ X1]l, = {E(|X1/?)}/P. Another look at the sample p-norm is to consider the
empirical distribution of x1,...,x, defined as
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F,(z) =

S|

Z L(gi<a)-
i=1

It follows that the sample p-norm is simply || X||,, where X has the empirical
distribution F,, (verify this). A property of the sample p-norm is that it is
nondecreasing in p. In other words, p < ¢ implies ||{z;}||, < |[{z:}|4- To show
this, we may assume, without loss of generality, that the x;’s are positive
(why?). Consider f(z) = 29/P. Then since f”(x) = {q(q — p)/p*}29/P=2 > 0
for z > 0, f(x) is convex. It follows by (5.4) that

(xf+--~+xﬁ>q/p (l’ﬁj)q/p-i-"'-i-(l'ﬁ)q/p

n n

:1;‘11+...+33;1L

n

The claimed property is then verified by taking the gth root. Given z1, ..., z,,
since the sequence |{z;}||x, & = 1,2,..., is nondecreasing, according to
§1.5.1.3, the limit limy_, o ||[{z:}||x exists if the sequence has an upper bound.
In fact, it is easy to show directly that the limit is equal to [[{z;}||cc =
maxi<i<p |2;|, which is called the co-norm of the sequence (Exercise 5.1).

An extended property of (5.4) is the following. If f(x) is convex, then for
any xi,...,T, € D and A1,..., A\, > 0 such that A\; +---+ A, = 1, we have

fazr + -+ Anzn) <A f(z1) +- -+ A f(zn)- (5.6)

Clearly, inequality (5.3), which defines a convex function, is a special case of
(5.6) with n = 2. We consider a well-known example as an application of (5.6).

Ezample 5.3 (Cauchy-Schwarz inequality). For any real numbers x1, ..., z,
and y1,...,Yn, we have
(@11 + o+ anyn)” < (@] 4 an) (0] + o ) (5.7)

To show (5.7), assume, without loss of generality, that > .-, y? > 0 [because,
otherwise, both sides of (5.7) are zero]. Define u; = x;/y; if y; # 0 and u; =0
if y; = 0. Then it is easy to verify that w;y? = x;y; and ufy? <z, 1<i<n
(Exercise 5.2). Now, let \; = y2/ Z?Zl y?,1 <i < n. Note that the \;’s satisfy
the requirements of (5.6). Using the fact that f(z) = 22 is a convex function,
we have, by (5.6), (307, y7) 2(0in, ziyi)? = (001 Awi)? < 200 Avud <
(M y?) "t S0 @2, which leads to (5.7).

Hardy, Littlewood, and Pdélya (1934) outlined a beautiful argument show-
ing that if f(x) is continuous, the defining inequality (5.3) is actually equiva-
lent to the following seemingly weaker one:
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f<x+y> < J@+ (5.8)

2 2

for any z and y. Another important result is regarding when the equality
holds in (5.6). The same authors showed that if f(z) is continuous, then (5.6)
holds with < replaced by < unless either (i) all of the z;’s are equal or (ii)
f(z) is linear in an interval that contains z1,...,x,. Based on these results,
the authors called f(z) strictly convex if (5.8) holds with < replaced by <
for any 2z and y unless x = y. In particular, if f(z) is twice differentiable and
f"(z) > 0, then (5.6) holds with < replaced by < unless all of the x;’s are
equal.

Ezxample 5.1 (continued). Recall in this case the convex function is f(x) =
—log(z) and f”(z) = 272 > 0, x > 0. Thus, the strict inequalities in (5.5)
hold unless all of the z;’s are equal.

Ezample 5.2 (continued). Suppose that at least one of the x;’s is positive.
Then, as in Example 5.2, we may focus on the positive z;’s. Recall that, in
this case, f(z) = 2/F with f(x) = {1l —k)/k*}2/*=2 > 0 for 2 > 0 if k < L.
Tt follows that |[{z;}||lx < [[{z;}|l; if & < [, unless all of the positive x;’s are
equal.

Although we may use a similar argument to find out when equality occurs
in the Cauchy-Schwarz inequality (Example 5.3), we would rather leave this
to the next subsection, in which a different method will be used to derive
conditions for the equality.

5.2.2 Holder’s and related inequalities

The celebrated Holder’s inequality states the following. Let «,f3,...,~ be
positive numbers such that a + 6 + --- 4+ v = 1. Then for any nonnegative
numbers a;,b;,...,g9;, 1 <1 <n, we have

n n o n 8 n v
Za?bf“- ) < <Zai> (sz) (Z{h) . (5.9)

Moreover, the strict inequality < holds in (5.9) unless either (i) one factor on
the right side is zero (e.g., all of the a;’s are zero); or (ii) a;,b;, ..., g; are all
proportional (i.e., a;b; = a;b;,...,aig; = a;g;,... for all ¢ and j).
An alternative expression that is probably more familiar to statisticians is
the following. Let p,q,...,r be positive numbers such that
1 1 1
T N (5.10)
p q r
[Note that (5.10) implies that p,q,...,r are all greater than one.] Then for
any nonnegative numbers x;, y;, ..., z;, 1 <i <n, we have
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n n 1/p n 1/q n 1/r
in o2y < (fo) (ny) (Zz{) . (5.11)
=1 =1 i=1

i=1

Moreover, the strict inequality < holds in (5.11) unless either (i) one of the
factors on the right side is zero (e.g., all of the x;’s are zero) or (i) 2%, yf, ..., 27
are all proportional.

A special case of (5.11) is, by far, the most popular (in fact, this is called
Hélder’s inequality in most books). If p,q > 0 and p~! + ¢~! = 1, then for
any x;,y; > 0, 1 <i <n, we have

n n 1/p n 1/q
inyi < (Z xf) (Z yf) ~ (5.12)
i=1 =1 =1

The strict inequality holds in (5.12) unless either the z;’s are all zero, or the
yi’s are all zero, or zjy} = xfyf, 1 <4,j < n (in other words, 7 and y] are
proportional).

See, for example, Hardy et al (1934, Section 2.7) for two of the various
proofs of (5.9). An alternative proof of the special case (5.12) is given in the
next subsection.

Ezxample 5.3 (continued). The Cauchy—Schwarz inequality is a special case
of Holder’s inequality (5.12) with p = ¢ = 2. It follows that the equality holds
in (5.7) if and only if either the z;’s are all zero, or the y;’s are all zero, or
zy; = x;y;, 1 < 4,5 < n (ie., z; and y; are proportional). This suggests
another proof of the inequality. Consider the difference between the two sides
of (5.7). We know the difference is zero if all of the differences z;y; — z;y;,
1 <4, j < n, vanish. This means that, perhaps, the difference between the two
sides can be expressed as a function of the differences x;y; —z;y;, 1 < 4,5 < n.
This conjecture is, indeed, true because

(Exercise 5.6). Thus far we have seen at least three proofs of the Cauchy—
Schwarz inequality: by convex function, by Hélder’s inequality, and by (5.13).

Example 5.4. Let x1,...,x, be positive numbers. If we replace x; and y;
in the Cauchy—Schwarz inequality by /x; and 1/,/x;, respectively, we obtain

n /2 ;. 1/2
(5 5"
i=1 i=1

which is equivalent to n(> 1, z; 1)~ < n~' 31" | x;. This is just the two

ends of (5.5) implying that the harmonic mean is bounded by the arithmetic
mean. Of course, (5.5) is a stronger result.
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So far we have restricted ourselves to nonnegative numbers. If the z;’s,
y;’s, and z;’s are not assumed nonnegative, (5.11) and (5.12) continue to hold
with z;, y;, and z; replaced by their absolute values. Then since | Y ;| z;y;| <
S lza] - |yl (5.12) implies that

n 1/p s 1/q
s(Zw) (Zw) | n
=1

i=1

n
E TilYi
i=1

There is an interpretation of (5.14) in terms of inner product and norms in
a Hilbert space. Consider the space R™ with the inner product < z,y >=
Sor o wiy; for @ = (3)1<i<n and y = (yi)1<i<n € R™. If we define the p-norm
(p>1)ofwas ||z, = (O, |z:[?)'/P (note that this is slightly different from
the sample p-norm defined in Example 5.2). Then (5.14) simply means that

| <,y >[ <|zllpllyllg- (5.15)

Holder’s inequality can be used to establish another famous inequality: the
Minkowski’s inequality. The result is better stated in terms of the p-norm (see
above) as follows. If p > 1, then for any z,y,...,2 € R, we have

e +y 4+ 2lp < llzllp + [1Yllp + - + [I2llp- (5.16)
To prove (5.16), it suffices to show

[z +yllp < llzllp + llyllp (5.17)

for any = and y (why?). We have, by (5.12),

Y@ty =Y (@i y) s+ Z(ﬂﬂi +yi)P "y

? ?

1/p 1/q
< <fo> {Z(xi_;_yi)(pl)q}

?

1/p 1/q
() )

q

1/q
= (llzllp + llyllp) {Z(l‘z + yi)”} :

%

which implies (5.17). Note that p~! + ¢~ = 1 implies (p — 1)q = p.
Conditions for equality in Minkowski’s inequality can be derived from those
for equality in Hoélder’s inequality (Exercise 5.8). Like (5.1), (5.17) is called
the triangle inequality, which is one of the basic requirements for || - ||, to
be (formally) called a norm. A function || - || defined on R™ is a norm if (i)
lz+yll < |zl + llyll for any z,y € R™, (ii) [lcz|| = |¢|- ||z[| for any z € R" and
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¢ € R, and (iii) ||z|| = 0 implies z = 0. The definition can be easily extended
beyond R™. It is known that || - ||, no longer satisfies (5.16); therefore, it is
not a norm if p < 1. In fact, the reversed inequality holds in such a case. This
is called the reversed Minkowski inequality, which can be derived from the
reversed Holder inequality in the same way as above. See Hardy et al. (1934,
Sections 2.8 and 2.11) for more details.

5.2.3 Monotone functions and related inequalities

Many useful inequalities can be established by monotone properties of func-
tions. For example, suppose that one wishes to approximate the function
f(z) = log(1 + z) for x > 0 by something even simpler. An inspection of
the Taylor series, log(1+ z) =z — 22/2 4+ 2%/3 — 2% /4 + - - -, suggests

2
x — % <log(l4+z) <z, z>0. (5.18)

At this point, (5.18) is only an “educated” guess based on the observation
that the terms in the Taylor series have alternate signs when = > 0. To prove
this conjecture, we first consider the function g(z) = log(1 + =) — z. Since
¢ () =—x/(14+x) <0 for x > 0, g(z) is nonincreasing for > 0. Therefore,
we have g(z) < g(0) = 0 for any x > 0, which is the right-side inequality. The
left-side inequality can be proved in a similar way (Exercise 5.9).

In fact, the right-side inequality in (5.18) even holds for > —1, which
is the range where the function is well defined. To show this, we once again
use g(x) = log(1 + x) — = and note that ¢’(z) > 0 for =1 < = < 0 and
g'(x) > 0 for x > 0. This means that g(x) is nondecreasing on (—1,0) and
nonincreasing on [0, co). Therefore, g(z) has its maximum at z = 0. It follows
that g(z) < g(0) = 0, which is the right side of (5.18).

The simple technique illustrated above, which we call the monotone func-
tion technique (note that by monotone function it does not mean that the
function has to be monotone over the entire range), works quite generally,
as long as one can find the “right inequality” to prove. In many cases, such
an inequality is hinted at by the Taylor expansion, as in the above example.
Sometimes the inequality suggested by the Taylor expansion does hold for all
x; S0, some restriction on the range and modification of the inequality itself
are necessary.

Ezample 5.5. Suppose that one is interested in approximating f(z) = e*
for small . Once again, we are looking at the Taylor expansion

- z?

=14zt oot
By (5.18) we know € > 1+ x. The next guess is, perhaps, e* < 1+ —1-332/27
which is false. In other words, the exponential function cannot be bounded



5.2 Numerical inequalities 135

by a quadratic function—that is to say, for all x. However, if x is small, it
is possible to find a constant a > 0 such that e* < 1 + z + ax?. To see this,
suppose that |z] < b < 2. Then we have

ex<1+x+m—2+@+m+'~
- 2 3! 4!
- 2 22 23

o] k
2
=1 2 Ll
. ;%(2

2

2 — ||
2

<l4ot——
. .
— 2_b7

=l+z+

that is, €* < 1+ 2 + az? with a = (2 —b)~! for all |z| < b < 2.
Alternatively, the last inequality can be proved by the monotone function
technique (Exercise 5.12).
We consider an application of the inequalities derived in Example 5.5.
Ezample 5.6 (An exponential inequality for bounded independent random

variables). Let X, ..., X,, be independent with E(X;) = 0 and |X;| < B for
some constant B > 0. According to the WLLN, we have

1 & P

In other words, for any € > 0, the probability P(n™*|> " | X;| > €) — 0, as
n — oo. The question is how fast does the probability converge to zero. To
investigate the convergence rate, let A be an arbitrary positive constant to be
determined later. Then we have

1 n 1 n 1 n
P (ﬁ ;X,» >e> =P (EZ;X” >e) +P <E;Xi < e>
Furthermore, we have, by Chebyshev’s inequality (see Section 5.5),

= Il —|—[2
I, =P (Z AX; > Aen)

i=1

=P {exp (Z )\Xi> > e)‘m}
i=1
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< e ME {exp <Z /\Xi> }
i=1

= e " [ E{exp(AXi)}-

i=1
Since |AX;| < AB, according to Example 5.5, as long as AB < 2 we have
A2X?
2B
\2B?
1—-\B’

<1+ MX;+
hence, again by Example 5.5, we have

A2B2
Nl <1
E{exp(AX;)} <14 5B

A2B2
<em)<2—AB>'

Thus, continuing, we have

232
I; < exp(—Xen)exp <2)\)\Bn>

\B?
=expq—A =3B no.

By similar arguments, one can show that I3 is bounded by the same thing
(Exercise 5.10). Thus, we have

I’C&ﬁéXi>e>§2@m{—k<e—2¥TB)n}. (5.19)

i=1
Note that the X in (5.19) is arbitrary as long as 0 < A < 2B~!. Consider the

function
\B?

It can be shown that h()) attains its maxima on (0,2B71) at

2 B
=1 - 21
A B( B—i—e)’ (5.21)

and its maxima is given by
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h(A*) =2 (\/E— 1)2 (5.22)

(Exercise 5.10). Thus, by letting A = A* in (5.19) we obtain

P (% > e) < 2exp {—2 (@— 1>2n} . (5.23)

Such an inequality is often called an exponential inequality because it shows
that the convergence rate of the probability on the left side is exponential
in n. The above arguments are similar to those in Example 2.7 except for
the maximization of h(\) [see part (iii) of Exercise 5.10]. Also note that the
distributional assumption here is weaker than in Example 2.7 in that the X;’s
are not assumed to have the same distribution.

n

Sox

i=1

As another application of the monotone function technique, we give an-
other proof of Holder’s inequaliy (5.12) by considering the function

g(a)z——&-;—ab, a>0,

where b > 0 and p and ¢ are as in (5.12). (Note that here b is fixed.) Then we
have ¢'(a) = a?~1 —b < 0 if a?~! < b and ¢'(a) > 0 if a?~* > b. Thus, g(a)
has a unique minima at a, = b/~ which is zero [note that p/(p — 1) = .
It follows that, for any a,b > 0, we have

P pa
ab< T+ = (5.24)
p q
Now assume, without loss of generality, that x; and y;,7 = 1,...,n, are pos-

itive. Let a; = z;/||z||, and b; = v;/||yllg; 1 < i < n. Then, by (5.24), we
have

Y
R (5.25)
P q

1 <4 < n. Taking the sum of (5.25) from 1 to n, we get

n
Z 22i=1%iYi Zaz .

Izllpllylle
1« 1o
<= al 4=
pi:l qi:l
:1,

which is (5.12). The argument also shows that the equality holds if and only
if a?~' = b;, 1 <i < n, which means that 2¥ and y? are proportional.
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Our final application involves two monotone functions and a nonnegative
function. Suppose that f(x) and g(z) are both nondecreasing, or both nonin-
creasing, and h(z) > 0. Then, for any x1,...,%,, we have

{Zf(l’i)h(l‘i)} {Zg(xi)h(xi)}
< {Zf(xi)g(xi)h(xi)} {Z h(xi)}. (5.26)

If, instead, f(z) is nondecreasing and g(z) is nonincreasing, or f(z) is non-
increasing and g(x) is nondecreasing, the inequality in (5.26) is reversed. To
prove (5.26), we use a similar “trick” to (5.13)—namely,

{Zf(xi)gm)h(wi)} {Zh(:pi)}

- {Z f(xi)h(xi)} {Z g(wi)h(xi)}
= % Y hle)h(a){f (@) = fa) Hole:) — g(a))}. (5.27)

1<i#j<n

The rest of the proof is left as an exercise (Exercise 5.11).
A special case of (5.26) is when h(z) = 1; that is,

{Z f(wi)} {ZQ(%‘)} < an(xi)g(xi)~ (5.28)

There is an intuitive explanation of (5.28). If we define f = n=1>"" | f(;)
and g =n"'>"" | g(z;), then (5.28) is equivalent to

> {fwi) - FHg(w) - g} 2 0,

In other words, the sample covariance between the two sets of numbers, f(z;),
1 <i<mnand g(x;), 1 <i < n,is nonnegative if f and g are both nonde-
creasing or both nonincreasing. A similar interpretation can be given for the
case of reversed inequality.

5.3 Matrix inequalities

5.3.1 Nonnegative definite matrices

In many ways, nonnegative matrices resemble nonnegative numbers. On the
other hand, not all results for nonnegative numbers can be extended to non-
negative definite matrices. Some of the basic inequalities involving nonnegative
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definite matrices and a cautionary tale have already been introduced and told
in Section 3.3. We repeat those results for the sake of completeness. We also
refer to the notation introduced therein.

(i) A > B > 0 implies A'/2 > BY/? and A~! < B~ if B is nonsingular,
but not A2 > B2.

(i) A > B if and only if C’AC > C'BC for any matrix C' of compatible
dimension.

(iii) A > B implies Amax(4) > Amax(B), Amin(4) > Amin(B), tr(4) >
tr(B), and tr(A2%) > tr(B?).

Here are some more results:

(iv) (Another cautionary tale) A, B > 0 does not imply that AB+BA >0
(of course, it does not imply AB > 0 either, as AB may not be symmetric).

Ezxample 5.7. Consider A = ((2) (1)> and B = (1 }) Then we have A >0

43

and B >0, but AB+ BA = <32

>, which is not > 0.

The first inequality in (i) can be generalized in several ways. Let D =
diag(di, ..., dx) be a diagonal matrix and f a real-valued function; then f(D)
is defined as the diagonal matrix diag{f(di),..., f(dx)} as long as f(d;),
1 < j <k, are well defined. For any symmetric matrix A there is an orthogonal
matrix T such that A = TDT’, where D = diag(A1, ..., \x) and the X's are
the eigenvalues of A. We define f(A) =T f(D)T" as long as f();), 1 < j <k,
are well defined. We have the following results (e.g., Zhan 2002, Chapter 1):

(v) (Lowner-Heinz) A > B > 0 implies A” > B" for any 0 <r < 1.

(vi) More generally, A > B > 0 implies

(BPA"BP)Y1 > Bptm)/a,
ARPEn/a > (gp BT AP/

for any p > 0, ¢ > 1, and r > 0 such that (1 + 2p)g > 2p + 7.

Clearly, (v) is a special case of (vi) in whichp=0,¢=1,and 0 <r < 1.
Another special case is when p = 1, ¢ = 2, and r = 2. Then A > B implies
(BA2B)Y/? > B% and A% > (AB?A)'/2.

The next result is regarding a partitioned matrix.

(vii) If A > 0, then <g, g) >0 if and only if C > B’A™1B.
As an application of result (vii) we derive the following inequality, which
has had important applications in statistics.

Lemma 5.1. For any V, W > 0 and full rank matrix X, we have
(X'WX) ' X'WVWX(X'WX)™' > (X'V X)L (5.29)

In other words, the left side of (5.29) is minimized when W = V1,
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Proof. For any vectors v and v of compatible dimensions, we have

(' ) X'ViX XWX U
COIN xwx xwvwx ) v
=/ X'V ' Xu+ 0 X'WXu+ /X' WXv+ o' X'WVWXv
2
= [V Xu 4 VR X 2 0.
Since X is full rank, the matrix X’V !X is nonsingular and > 0 by (ii). It

follows that X’V !X > 0. Furthermore, the above argument shows that the
partitioned matrix is > 0. Thus, by (vii), we have

X'WVWX > X'WX(X'VIX)"'X'WX,
which, again by (ii), is equivalent to (5.29). Q.E.D.

The following example shows a specific application of Lemma 5.1.

Ezample 5.8 (Weighted least squares). In linear regression it is assumed
that Y = X3+¢, where Y is a vector of responses, X is a matrix of covariates,
[ is a vector of unknown regression coefficients, and € is the vector errors. It
is assumed that E(e) = 0 and Var(e) = V, where Var represents covariance
matrix. In the classical situation, it is assumed that V = 21, where I is the
identity matrix and ¢? > 0 is an unknown variance. In this case, the best
linear unbiased estimator (BLUE) is the least squares (LS) estimator,

B=(X'X)"'X"Y. (5.30)

Here, for simplicity, we assume that X is full rank. In general, there may be
correlations between the responses; therefore, the assumption V = o021 may
not be reasonable. In such a case one may instead consider the weighted least
squares (WLS) estimator, defined as the vector § that minimizes

Y = XB)W(Y - Xp),

where W is a known weighting matrix. In fact, the LS estimator is a special
case of the WLS estimator with W = I. If W is nonsingular, it can be shown
(Exercise 5.14) that the WLS estimator is given by

f=(X'WX) ' X'WY. (5.31)
Furthermore, the covariance matrix of the WLS estimator is given by
Var(8) = (X'WX) ' X'WVWX(X'WX)~1. (5.32)

By Lemma 5.1 we know the covariance matrix of the WLS estimator is mini-
mized when W = V1. The corresponding estimator is, again, called BLUE,
given by (5.31), with W = V1. In many cases, however, V involves unknown
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parameters so that the BLUE is not computable. In such cases, it is custom-
ary to replace the unknown parameters by their (consistent) estimators. The
result is called empirical BLUE or EBLUE. See Chapter 12 for more details.

Our final result of the subsection involves both nonnegative matrices and
positive numbers. Let a1, ..., as be nonnegative numbers. There are constants
¢, 1 <1i < s, depending only on aq, ..., as such that for any positive numbers
r1,...,%s, We have

2

aixf <c¢ |1+ Zajxj , 1<i<s. (5.33)

In fact, one may let ¢; = 0 if a; = 0 and ¢; = ai_l if a; > 0 (Exercise 5.19).
An extension of this result to nonnegative definite matrices is the following
(Jiang 2000a). We state the result as a lemma for future reference.

Lemma 5.2. Let A; > 0,1 < ¢ <s. For any 1 <i < s there is a constant

¢; depending only on the matrices Ay, ..., A, such that for any x1,..., x5 > 0,
2
S
2} A < (IT+) xA; |, 1<i<s, (5.34)
j=1

where I is the identity matrix.

Some applications of Lemma 5.2 are considered in Section 5.6.

5.3.2 Characteristics of matrices

The previous subsection is about inequalities regarding matrices themselves.
In this subsection we discuss inequalities regarding characteristics of matrices.
These include rank, trace, norm, determinant, and eigenvalues.

We begin with rank. Let A be an m x n matrix. Then

rank(A) < m An, (5.35)

where a Ab = min(a, b). The matrix rank satisfies the triangle inequality, that
is,

rank(A + B) < rank(A) + rank(B). (5.36)

The next result is called Sylvester’s inequality. For any m X n matrix A and
n X s matrix B, we have

rank(A) + rank(B) —n < rank(AB) < rank(A) Arank(B).  (5.37)
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Another result regarding the ranks is known as Frobenius rank inequality:
rank(AB) + rank(BC') < rank(B) + rank(ABC), (5.38)

provided that ABC' is well defined. We consider an example.

Ezample 5.9 (Error contrasts). A general linear model is characterized by
the equation E(Y) = X3, where Y is a vector of observations (not necessarily
independent), X is a matrix of known covariates, and § is a vector of unknown
parameters. An error contrast of Y is defined as a linear function of Y, a =
'Y, where [ is a (nonrandom) vector of the same dimension as Y such that
I’X = 0. In other words, E(a) = 0 for any 8. The vector [ is called a contrast
vector. How many linearly independent error contrasts can one have? If we
let A denote a matrix whose columns are contrast vectors, then the question
is equivalent to what is the maximum rank of A? To answer this question,
note that A’X = 0. Thus, by the left-side inequality of (5.37), we have 0 =
rank(A’X) > rank(A’) + rank(X) — n =rank(A) + rank(X) — n, which
implies rank(A) < n — rank(X). Therefore, there are, at most, n — p linearly
independent error contrasts, where n is the dimension of ¥ and p = rank(X).

The matrix trace, norm, and eigenvalues are often connected in inequali-
ties. For example, for any matrices A and B, we have

|tr(AB)| < [[All2]| Bl|2, (5.39)

provided that AB is well defined. Hereafter, the 2-norm of a matrix A is
defined as ||Al|z = {tr(A’A)}'/2. More generally, for any matrices A, B, and
C such that B > 0 and ABC' is well defined, we have

tr(ABC)| < Amax(B)[|All2[|Cll2, (5.40)

where A\pax denotes the largest eigenvalue. Note that (5.39) is a special case
of (5.40) with B = I and C = B. Another matrix norm, the spectral norm, of
a matrix A is defined as [|A|| = {Amax(A’A4)}1/2. Note that || A = Amax(A) if
A > 0. Thus, the right side of (5.40) can be expressed as || B|| - [|A]|2[|C]l2- A
nice property of the spectral norm is the following. For any vector x, we have

|Az| < [|A]] - ||, (5.41)

where |z| = (32;2?)%2 is the Euclidean norm of x = (z;) [the inequality
is satisfied with || A|| replaced by ||Al|2 as well due to the following product
inequality (5.45)]. The following triangle inequalities show, in particular, that
both || - || and | - ||2 qualify as norms:

A+ Bl < [[All + (1B, (5.42)
[A+ Blla < [|All2 + [|B]l2- (5.43)
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It is easy to see that (5.43) is simply Minkowski’s inequality (5.17) with p = 2
(Exercise 5.20). Another property of matrix norm is the product inequality:

|AB] < |4 - |1 B (5.44)
|ABllz < || All2|[Bll2 (5.45)

We now take a quick break by considering an example.

Ezample 5.8 (continued). Suppose that the observations Y satisfy a linear
mixed model; that is, Y = X8+ Za + ¢, where Z is a known matrix, « is a
vector of random effects, and € is a vector of (additional) errors. It is assumed
that E(a) = 0, Var(a) = G, E(e) = 0, Var(e) = R, and Cov(a,e) = 0. It
follows that V = Var(Y) = ZGZ’ + R. Recall the BLUE is given by (5.31)
with W = V1. Here, we assume that R > 0, which implies V > 0 (why?).

Typically, both G and R depend on some unknown dispersion parameters,
or variance components. Let € denote the vector of unknown variance com-
ponents involved in G and R; then V depends on 6—that is, V = V(). If we
replace 6 by é, a consistent estimator, we obtain the EBLUE as

f=(XVIx)“Ix'Vly, (5.46)

where V = V(é) A well-known property of BLUE is its unbiasedness. It is
casy to show that any WLS estimator of (5.31) is unbiased [i.e., E(3) = 38
(verify this)], so, as a special case, the BLUE is unbiased. The EBLUE, on the
other hand, is more complicated, as it is no longer linear in Y. Nevertheless,
Kackar and Harville (1981) showed that the EBLUE remains unbiased if 0
satisfies some mild conditions. In deriving their results, the authors avoided
an issue about the existence of the expectation of EBLUE (in other words,
the authors showed that E(B) = [, provided that the expectation exists),
which is not obvious. Below we consider a special case in which G = 021,
and R = 721, where 02 > 0 and 72 > 0 are unknown variances, and we show
the existence of the expectation.

Note that, in this case, the BLUE can be expressed as B = B(v)Y, where
B(y) =A{X'(I +~22") ' X} ' X' (I +~y22") 7"
It can be shown that (Exercise 5.22)
B(y) = (X'X)"'X'"{I - Z(5I + Z'PZ)"*Z' P},
where P = Px. =1 — X(X'X)7'X’. By (5.44) and (5.42), we have

1B < (X' X) " X' - |1 — Z(5T + 2'P2)~* 2'P|
H

< I(X'X
<X X)X+ 12| - 161 + 2'PZ) =1 Z' P},

—1/2

where § =1, It can be shown that ||(X'X) "' X' = A_;/"(X'X) and
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121l

S+ 72'Pz)y 7P| < — 10 |
I ) I'= min \; > 0v/\;

0 >0,

where A1,..., Ay, are the eigenvalues of Z'PZ (Exercise 5.22). It follows that
|B(v)]| is uniformly bounded for o > 0. Therefore, by (5.41), E(3) exists for
any estimator of v that is nonnegative (which is, of course, reasonable).
Unfortunately, the above arguments do not carry over beyond the special
case. In Section 5.6 we use a different method to establish the existence of

E(f) in more general situations.

We now continue with some inequalities on traces of nonnegative definite
matrices. For any A, B > 0 and 0 < p < 1, we have

tr(APB'P) < [tr{pA+ (1 — p) B} A [{tr(A)}*{tx(B)}'"?]  (5.47)

(see Section 5.3.1 for the definition of AP). The next result is known as Lieb—
Thirring’s inequality. For any A, B > 0 and 1 < p < ¢, we have

tr [{APBP}9) < tr [{A1B}P]. (5.48)
Also, for any matrices A, B > 0, we have (Exercise 5.23)
tr{(A-B)(A™' =B "} <o0. (5.49)

There are, of course, many matrix inequalities. We refer to Section 35.2
of DasGupta (2008) for a collection of matrix inequalities and additional ref-
erences. Some inequalities were developed purely because of mathematical
interest. On the other hand, many inequalities were motivated by practical
problems. Quite often one has a conjecture about a matrix inequality due to
certain evidences. The next thing is to try to prove the inequality. There are,
for the most part, two approaches to proving an inequality. The first is to
look for existing inequalities that may help to establish the new inequality (in
some rare occasions, one finds in the literature the exact inequality one is try-
ing to prove, so the problem is solved). However, in most cases, this strategy
does not work, unless the problem is relatively straightforward. The second
approach is to try to establish the inequality oneself using basic knowledge
in linear algebra. Sometimes the effort fails after some initial attempts. This
might raise doubts about the conjectured inequality, so one instead looks for
a counterexample. If, however, a counterexample cannot be found, one has a
stronger belief that the conjectured inequality must be true. Such a stronger
belief often leads to solving the conjecture. For example, the following inequal-
ity, which is Lemma 5.1 of Jiang (1996), was established in exactly the same
way as above, using the second approach. We state the result as a lemma for
future reference.

Lemma 5.3. Let B = [b;;1(;>;)] be a lower triangular matrix. Then
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|B'B||3 < 2||B'+ B|*||B|)3. (5.50)

Lemma 5.3 plays a pivotal role in a case study later in Section 8.1
Another useful inequality in matrix analysis is Weyl’s eigenvalue pertur-
bation theorem. Let A and B be n x n symmetric matrices. Then we have

max [[\H(A) = \(B)| < |A- B, (5.51)

1<i<n

where A(A) > --- > AL (A) are the eigenvalues of A arranged in decreasing
order. There are various applications of Weyl’s theorem in statistics. For ex-
ample, in many cases there is a need to estimate the eigenvalues of, say, a
covariance matrix Y. Suppose that a consistent estimator of X is obtained,
say, 5. Then by Weyl’s theorem we know that eigenvalues of Y are consistent
estimators of the eigenvalues of Y. See Section 12.2 for a more details.

We conclude this subsection with a few inequalities involving determinants.
For any matrix A = (asj)1<i,j<n, let a] denote the ith row of A; that is,
al = (aij)1<j<n. Similarly, let a$ denote the jth column of A; that is, a$ =

7 J J
(@ij)1<i<n. The well-known Hadamard’s inequality states that

|A|3<H|a;|>A IT a5 |- (5.52)
i=1 j=1

Also, for any square matrices A and B, we have

(JA+B|)> < |I+AA'|-|I + B'B. (5.53)

Fisher’s inequality states that for any A > 0 partitioned as A = <CB,, g),

where B and D are square matrices, we have
Al < [B] - |D]. (5.54)
Finally, Ky Fan’s inequality states that for any A, B >0and 0 <p <1,

pA+ (1-p)B| = [A]"|B|'™™. (5.55)

5.4 Integral/moment inequalities

Integrals and moments are closely related. In fact, a moment is a special
integral of a function with respect to a probability measure. Due to this con-
nection, many integral inequalities have their interpretations in terms of the
moments and vice versa. On the other hand, some moment inequalities in-
volve random variables with specific properties, such as independence. Such
inequalities are better expressed in terms of moments than integrals.



146 5 Inequalities

Many numerical inequalities, especially those involving summations, have
their integral analogues. For example, we have the following.

Jensen’s inequality. Let ¢ be a convex function. Then for any random
variable X, we have

P{E(X)} < E{p(X)}, (5.56)

provided that the expectations involved exist. There are several forms of (5.56)
in terms of integrals. For example, for any measurable functions f and g such
that g > 0, we have

[ F@)g() de\ [ olf(@)}o(e) da
“”{ T o(x) dx }< Tole)ds

provided that the integrals involved exist and [ g(z) dz > 0. We consider an
application of Jensen’s inequality.

(5.57)

Ezample 5.10 (A property of the log-likelihood function). Let X be a vector
of observations whose pdf with respect to a measure p is f, where f € F,
a subclass of pdf’s with respect to p. The likelihood function is defined as
L(f) = f(X), considered as a function(al) of f, where X is the observed data.
In a particular case that f(-) = f(-|0), where § € O, the parameter space
[so that F = {f(:|0),0 € ©O}], this is simply the classical likelihood function
L(0) = f(X|0). Let fo denote the true pdf of X. Then we have

E{log L(f)} < E{log L(fo)}, Vf € . (5.58)

In other words, the expected log-likelihood function is maximized at the true
pdf of X. The result is viewed as one of the fundamental supports for the
likelihood principle. In particular, for the parametric likelihood function L(8),
it shows that the expected log-likelihood is maximized at 8 = 6, the true
parameter vector. To show (5.58), note that the function ¢(x) = —log(z) is
convex. Therefore, by (5.56), we have

Ellog{L(fo)} — Ellog{Z(f)}]
- / log{ fo(2)} fol) dy — / log{f(2)} folx) du
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——tou{ [ 7o) au}
—0.

Holder’s inequality. Let (S, F, u) be a measure space and f and g be mea-
surable functions on S. Then we have

[ 1@ dus{ [ 1561 du}l/p{ [lat@ du}l/q (559)

1

for any p, g > 1 such that p~'+¢~' = 1. A special case is the Cauchy—Schwarz

inequality with p = q = 2,

/S F(@)g(x)] dy < \/ /S () du\/ /S ¢() du. (5.60)

In terms of moments, we have, for any random variables X and Y,

E(IXY]) < {E(X[")}/P{E(Y 1)} (5.61)
We consider a simple application of Holder’s inequality.

Ezxample 5.11. If the sth absolute moment of a random variable X exists
[i.e., E(|X|®) < o0, the rth absolute moment of X exists for any r < s. This
is because, by (5.61) with p = s/r and ¢ = s/(s — r), we have E(]X|") <
{E(|X|"P)}/P{E(19)}9 = {E(|X|*)}"/* < co. Similar to Example 5.2, if we
define the p-norm of X as || X||, = {E(]X|?)}'/?, then we have || X, < || X||s
if r < s. In other words, || X||, is nondecreasing in p.

Minkowski’s inequality. Using the same notation as in Holder’s inequality
and letting p > 1, we have

([1s6)+star du)l/p
< ([ an) " (f1s0r dﬂ)l/p§ (5.62)

in other words, we have the triangle inequality || f+ g|l, < || fll, + |lg]lp, where
I £ll, = (/| f(z)|P du)*/P. In terms of the random variables, we have

X+ Yl < [ X1lp + 1Y llp- (5.63)

Monotone function inequalities. Suppose that f, g, and h are real-valued
functions on R such that f and g are both nondecreasing, or both nonincreas-
ing, and h > 0; then we have
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/f(x)g(a:)h(x) dm/h(x) dx > /f(x)h(x) dx/g(x)h(x) dz. (5.64)

If, instead, f is nondecreasing and g is nonincreasing, or f is nonincreasing and
g is nondecreasing, and h > 0, the inequality is reversed. If f and g are both
strictly increasing, or both strictly decreasing, and h > 0, the inequality holds
with > replaced by >. If f is strictly increasing and g is strictly decreasing, or
f is strictly decreasing and g is strictly increasing, and i > 0, the inequality
holds with > replaced by <. We provide the proof of (5.64).

Proof. Since f and g are both nondecreasing and h > 0, it is easy to see that
for any z, y € R,

{f(z) = F(y)Hg(x) = g(y)}h(z)h(y) = 0. (5.65)
By integrating both sides of (5.65) over z and y, we get

0< / / (@) - @) (@) — 9(0)}h(@)h(y) dr dy

- 2{/f(x)g(x)h(x) dm/h(z) dxf/f(x)h(:c) dm/g(x)h(x) dx}.

In case f and g are strictly increasing and h > 0, (5.65) holds with > replaced
by > for any = # y. Therefore, the same argument as above holds with <
replaced by <. This completes the proof for one of the cases. The proofs for
the other cases are similar (Exercise 5.29). Q.E.D.

Inequality (5.64) is also known as Chebyshev’s “other” inequality, in view
of the well-known Chebyshev’s inequality (see the next section). On the other
hand, (5.64) has many applications as well. We consider some examples.

Ezample 5.12. Let X be a random variable that has a pdf h(z) with resepct
to the Lebesgue measure. Then (5.64) is equivalent to

cov{f(X),9(X)} =0 (5.66)

(verify this), where for any random variables & and 7,

cov(§,n) = E[{§ — E(§)Hn —EMm)}].

This means that if f and g are both nondecreasing, or both nonincreasing,
the correlation between f(X) and ¢g(X) is nonnegative, which is, of course,
very intuitive. Similarly, if f is nondecreasing and g is nonincreasing, or the
other way around, the correlation between f(X) and ¢g(X) is nonpositive.

The next application involves the strict inequality in (5.64).

Ezample 5.13 (Jiang 1998a). Suppose that given the random effects a;, ¢ =
1,...,m, the binary responses Y;;,i =1,...,m, j = 1,...,n are independent
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such that logit{P(Y;; = 1|a)} = p+a;, where p is an unknown parameter, o =
(i) 1<i<m, and logit(p) = log{p/(1—p)}, p € (0,1). Furthermore, the random
effects are independent and distributed as N (0, 02), where 02 is an unknown
variance. Such a model is called a mixed logistic model, which is a special case
of the GLMM (see Chapter 12). In order to estimate the parameters u and o,
one may use the method of moments by solving the following equations:

SOV = mnB{g(n + 06)}, (5.67)

i=1 j=1

> (V7 = Yi) = mn(n — DE{*(n+ 0€)}, (5.68)

i=1

where Y. = >0 Vij, ¢(z) = €”/(1 4 ) and & ~ N(0,1) (Exercise 5.30).
In practice, the expectations on the right sides are approximated by Monte
Carlo methods. This is called the method of simulated moments.

A nice property of (5.67) and (5.68) is that the system of equations has
a unique solution. To show this, write M;(u, o) = E{¢(u + 0€)}, j = 1,2.
Since () is bounded, continuous, and strictly increasing, it follows that for
any given o and 0 < ¢ < 1, there is a unique solution to

Mi(p,0) =c (5.69)

(Exercise 5.30). Denote this solution by p = p(o). Then the function p.(-)
is continuously differentiable (Exercise 5.30). For notation simplicity, write
te = pe(o) and pl, = pl(o). Then by differentiating both sides of (5.69) (with
u replaced by p.) with respect to o, we get

eXp(Nc + 05)
{1+ exp(pe + 0€)}?

Now, consider Ms(u, o) along the curve determined by (5.69); that is, M, (o) =
Ms(pe, o). We show that M. (o) is strictly increasing. It follows that there is
a unique solution to M.(c) = d for any d within the range of M.(c) (Exer-
cise 5.30). Therefore, there is a unique solution to the system of equations
Mi(u,0) = c and My(p,0) =d.

It remains to show that M, is strictly increasing. Note that

(1, +€)| = 0. (5.70)

{exp(pe + 0€)}?
{1+ exp(pe + 0f)

. / f(@)g(x)h(z) dz,

M!(0) = 28 [ S0+ ©

where f(z) = ¢(pe +02), g(x) = e+, and h(z) = f(2){1 - f(z)}¢(z) with
o(x) = 6_12/2/\/ 2m. Since f and g are strictly increasing and h > 0, by the
monotone function inequality, we have
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% / h(z) dz > / F@)h(z) da / g(x)h(x) dz =0,

because [ g(z)h(z) dz = 0 by (5.70). Thus, M/(c) > 0, implying that M, is
strictly increasing.

Many of the moment inequalities involve sum of random variables. Histor-
ically, inequalities have played important roles in establishing limit theorems
for sum of random variables of a certain type. We begin with a classical result.

Marcinkiewicz—Zygmund inequality. Let X1,..., X, be independent such
that E(X;) = 0 and E(|X;[?) < 00, 1 <4 < n, where p > 1. Then there are
constants ¢; and co depending only on p such that

n p/2 n P n p/2
aE <Z Xf) <E]) Xi| <aE <Z Xf) . (5.71)
i=1 i=1 i=1

Inequalities (5.71) were first given by Khintchine (1924) for a special case:
the sum of independent Bernoulli random variables with equal probability
for 1 or 0. Marcinkiewicz and Zygmund (1937a) generalized the result to the
above. A further extension to martingale differences was given by Burkholder
(1966). Let X;, 1 < i < n, be a sequence of random variables and let F;,
1 < i < n, be an increasing sequence of o-fields (see Appendix A.2); that is,
Fi—1 C Fi, i > 1, where Fy = {0, 2}. The sequence X;, F;, 1 < i < n,is called
a sequence of martingale differences if X; € F; (i.e., X; is F; measurable; see
Appendix A.2) and E(X;|Fi=1) = 0 as., 1 < i < n. An extension of the
Marcinkiewicz—Zygmund inequality for the case p > 1 is the following.

Burkholder’s inequality. Let X;, F;,1 <1i <n be a sequence of martingale
differences and p > 1. Then (5.71) holds with ¢; = (18p'/2¢)™P and ¢y =
(18pg*/?)P, where p~* + ¢~ = 1.

Rosenthal’s inequality. Another well-known result is Rosenthal’s inequality,
first given for independent random variables (Rosenthal 1970). Hall and Heyde
(1980, Section 2.4) gave an extension of the result to martingale differences
as follows. Let X;, F;,1 < i < n, be a sequence of martingale differences and
p > 2. Then there are constants ¢; and ce depending only on p such that

n p/2 g
o E{ZE(Xffi_1)} + > EIX
1=1 =1
n p
>

i=1

<E

n p/2 n
<c|E {Z E(Xz?]:il)} + ZE|X1-|1’ : (5.72)
i=1

i=1
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Ezample 5.14. Consider a special case of the Burkholder’s inequality with
p = 2. It can be shown that the martingale differences are orthogonal in the
sense that E(X;X;) = 0if i # j (Exercise 5.31). Thus, we have (3" | X;)? =
S E(X?) = E(XL, X?). Tt follows that, in this case, (5.71) holds with
c¢1 = cg = 1. On the other hand, the constants given above for Burkholder’s
inequality, in general, are ¢; = (18 x v/2 x 2)72 = 1/2592 and ¢; = (18 x 2 x
V/2)? = 2592. It is seen that the constants are not very sharp in this case. Of
course, p = 2 is a very special case that one does not really need an inequality.
The constants given above are meant to apply to all cases, not just p = 2.

We conclude this section with several inequalities known as maximum
inequalities. First, consider a sequence of martingale differences, X;, F;,1 <
i < n. The partial sum Sy, = >/, X; is called a martingale with respect to
the same o-fields. A martingale satisfies S, € F, and E(Sp|Fm-1) = Sm-1
a.s.,, 1 < m < n (see Chapter 8). Recall for a random variable X, || X||, =
{E(]X|)}/?. The following elegant result is due to Doob (1953).

Doob’s inequality. For any p > 1, we have

[Snllp < < q||Snllp, (5.73)

p

 max [ Sm]

where p~ 1+ ¢ ! =1.

The next inequality is a stronger result than the right side of (5.72) (see
Hall and Heyde 1980, Section 2.4). For any p > 0, there is a constant ¢
depending only on p such that

E( max |Si|p>
1<m<n

n p/2
<c¢|E {Z E(Xfm_l)} +E (m_a<x Xi|p> . (5.74)

X 1<i
=1

Finally, a result due to Méricz (1976) regarding a general sequence of
random variables &, (not necessarily a partial sum of independent random
variables or martingale differences) is useful in many cases for establishing
maximum moment inequalities (e.g., Lai and Wei 1984).

Moricz’s inequality. Let &,,n = 1,2, ..., be a sequence of random variables,
and p > 0 and « > 1. If there are nonnegative constants d; such that

E(|€n — &ml?) < ( Xn: di) , M >m 2= myg, (5.75)

i=m-+1

where myq is a positive integer, then there is a constant ¢ depending only on
p and « such that

E <m122)<(n |§k _ §m|p) <c ( Z dl> , n>m > mg. (5.76)

- 1=m-+1
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5.5 Probability inequalities

Chebyshev’s inequality, which has appeared in numerous places so far in the
book, is perhaps the simplest probability inequality. This inequality gives an
upper bound of a “tail probability” of a random variable in terms of the
moment of the random variable. The inequality may be stated as follows.
Chebyshev’s inequality. For any random variable £ and a > 0, we have

E{¢1
< {E (§>a)} )
a

P& >a) (5.77)
Proof. The proof is as simple as the inequality itself. Note that 1(¢sq) <

a_1§1(5>a). The result follows by taking expectation on both sides. Q.E.D.

There are many variations of Chebyshev’s inequality. For example, if £ is
nonnegative, we get P(¢ > a) < a'E(€); thus, for any random variable &, we
have P(|¢] > a) < a7 *E(|¢]). The latter is also known as Markov’s inequality.
More generally, P(|¢] > a) < a PE(|{[P) for any p > 0; one may also replace
the > in (5.77) by >, and so forth. In a way, Chebyshev’s inequality is the
weakest because it makes no assumption on specific properties of £ except
perhaps the existence of the expectation. Under further assumptions, much
improved inequalities can be obtained. We state a few such results below.

Bernstein’s inequality. First, assume that X, ..., X, are independent with
E(X;) =0 and |X;| < M a.s. Then for any ¢t > 0, we have

" 3t2
P (Z X; > t) < exp {—QMH SR } . (5.78)

i=1

The proof of (5.78) is an application of Chebyshev’s inequality to £ =
exp(A Y1, X;) for a suitable choice of A (see below for a more general case).
A similar method has been used in the proof of (5.23) (Exercise 5.38).

Several generalizations of Bernstein’s inequality are available. For the
most part, the generalizations either relax the uniform boundedness of X;
or weaken the assumption that the X;’s are independent. As an example, we
derive the following martingale version of Bernstein’s inequality. Suppose that
X, Fi, 1 <i<mn,is asequence of martingale differences such that

|
B(X[|Fi1) < %B’Hai, k>2i>1, (5.79)

for some constants B > 0 and a; > 0. Then for any ¢ > 0, we have
- A ([ 2Bt ’
P Xi>t)] < - 14— -1 , 5.80

where A =37 a;.
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Proof. By Taylor’s expansion, we have for any 0 < A < B~!,

2 NEXE

AXi )

k=2

By taking conditional expectation with respect to F,_; on both sides and
noting that E(X;|F;_1) = 0, we have, by (5.79),

E(e/\X"

Fii) =1+ EE(Xﬂfiq)
k=2

2 oo

A k=2
<1+ T > (AB)
k=2
)\Qai

using the inequality e* > 1 + z [see (5.18)]. Note that (5.79) ensures the
appropriateness of exchanging the order of conditional expectation and infinite

summation (Exercise 5.39). Using the properties of conditional expectation
(see Appendix A.2) and the above result, we have

. {exp <AZX>} 5 [E {exp <Azx> ‘f}]
—E {exp (AEX) E(eMn }'i_l)}
< exp{%}]ﬂ{exp (An;lx)}

B A2A
=“P2a-xB) [

where A =3""_, a;. It follows that, by Chebyshev’s inequality,
P (in > t> =P {exp <)\ZXi> > e*f}
i=1 =1
< e ME {exp ()\ Z Xi> }
i=1

< exp {% - )\t} . (5.81)
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Denote the function inside {---} on the right side of (5.81) by g(\). It can be
shown (Exercise 5.39) that g()\) is minimized for A € (0, B~!) at

1 A
A:§(1—,/m>, (5.82)

and the minimal value is the one inside {---} on the right side of (5.80). This
completes the derivation. Q.E.D.

In a way, the right side of (5.80) is a bit complicated and not very easy
to interpret. The following inequalities are implied by (5.80), but the bounds
are much simplier. First, it can be shown that

2
A 2Bt 12
- /- _ > 7 .
252 <\/ =3 1) = 3(A 1 BY) (5:83)

(Exercise 5.40). Thus, we have, with A =", a;,

P(ZXi>t> Sexp{—ﬁ}. (5.84)

i=1

Next, if we replace t by 2v/At in (5.84), then it follows that

- 2 VA
P X, >2VAt | <e ¥, 0<t< — 5.85
(Erad)ectossfy om
(Exercise 5.40). In fact, this is the original form of an inequality proved by
Bernstein (1937).
Bernstein-type inequalities are useful in evaluating convergence rate in the
law of large numbers. We consider some examples.

Example 5.15. Suppose that Y7,...,Y, are independent and distributed

as Bernoulli(p), where p € [0,1]. Let X; = Y; — p. Then, Xi,...,X,, are
independent with E(X;) = 0 and | X;| < 1. By (5.78), we have

P (%iYi>p+e> =P (Zn:Xi>ne>
i=1 i=1

<e 3n2e?

Xp < — .

=P\ 2ne + 6np(1 —p)

Using the inequality p(1 — p) < 1/4 (why?), it is then easy to show that

the right side is bounded by exp|[—{6¢2/(4e + 3)}n]. The same inequality is
obtained by considering X; = p — Y;. Thus, in conclusion, we have
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1 62
Pl|- >e| <2exp|— nl.
( n ) = p( le+3 )

Ezample 5.16. Suppose that Yi,...,Y,, are i.i.d. with the Exponential(\)
distribution, where A > 0 (see Example 3.8). Then we have E(Y}) = kI\F,
k=1,2,...Let X; = Y; — \. Then X1,..., X, are iid. with E(X;) = 0.
Furthermore, using the inequality that for a,b > 0, |a — b| < a V b, we have
E(X}) < E(IX,|F) < B{(Y; VA)F} < E(YF + AF) = (k! + 1)\F. Thus, by
letting F; = o(X1,...,X;) and noting that E(XF|F;_1) = E(XF), we have

E(XEIF_1) < (k1/2)(1+1/EDA12)2 = (k!/2)AF~14\2—that is, (5.79) with
B = ) and a; = 4\%. We now apply (5.84) with ¢ = ne) to get

1< €2
I Xi>ed| < - .
<n; >e>_exp< 26+8n>

The same inequality is obtained by considering X; = A — Y;. It follows that

1< €
Pl|= Al <21 - .
(n >€>_ ( 2e+8n>

SV
See Exercise 5.41 for another application.

d Yi—p

i=1

i=1

As for the moment inequalities, there is a class of probability inequalities
known as maximum inequalities. Let us begin with Kolmogorov’s well-known
inequality. Let Xi,...,X,, be independent with E(X;) = 0. Define S,, =
>, X;. Then for any A > 0, we have

1 & )
P(lglax |Spm |>>\> QZ;E(Xi). (5.86)

A martingale extension of (5.86) is the following (see Hall and Heyde 1980,
Theorem 2.1). Similar to the definition of martigales above (5.73), the se-
quence Sp,, Fm,1 < m < n, is called a submartingale if S,, € F,, and
E(Sm|Fm-1) > Sm-1 a.s., 2 < m < n. Let Sy, Frn, 1 < m < n, be a sub-
martingale. Then for any A > 0, we have

P(lgln%XnS >)\> < E{S Hmaxi<men Sim >,\)} (5.87)

If Sy, Fm,1 < m < n, is a martingale, then, by Jensen’s inequality (5.56),
|Sm [P, Fm, 1 < m < n,is a submartingale for any p > 1 (verify this). It follows
by (5.87) that, for any A > 0,

P(max [Sm |>)\>:P<max | S |p>)\p>

1<m<n 1<
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1
< VE {|Sn|p]-(max1§m§n \Sm\z)\?’)}
1
_ r
< L B8, (5.59)

By letting p = 2 and the fact that E(S2) = " | E(X?2), where X; = S;— 5,1
if E(X?) < 00, 1 <4< n, we get (5.86) [note that this inequality is obviously
satisfied if any of the E(X?) is oo]. Another extension of the martingales is
called a supermartingale, for which the inequality E(S,,|Fm—1 > Spm_1 is re-
versed. In other words, S,,, Fn, 1 < m < n, is a supermartingale if S,, € F,,
and E(Sp|Fr—1) < Sm—1 a.8., 2 < m < n. Martingale (submartingale, super-
martingale) techniques are very useful in establishing maximum inequalities.
As an example, we derive the following maximum exponential inequality due
to Jiang (1999a). Unlike the previous exponential inequalities such as (5.78)
and (5.80), this result does not require the uniform boundedness of | X;| or
moment conditions such as (5.79).

Example 5.17. Let Sy, Fm,m > 0, be a supermartingale, and X; = .5; —
Si—1, 1 <4 < n. Then, for every n > 1 and t > 0, we have

P | max
1<m<n 4
=1

m 2 2| .
{Xi_ % B E(Xiéle)} Zt} et (580

The derivation of (5.89) requires the following result.

Lemma 5.4. (Stout 1974, p. 299) Let T}, Fn,m > 0 be a nonnegative
supermartingale with Ty = 1. Then for any A > 0, we have

1
P <sume >)\) < %

m>0

It is easy to verify the following inequality (Exercise 5.42):

2 72

exp(m—g>§1+x+?, —00 < x < 00. (5.90)
Now define Ty = 1 and T}, = exp[Y e {Xi — (1/6) X2 — (1/3)E(XZ|Fi—1)},
m > 1. We show that T;,, F,,, m > 0, satisfies the conditions of Lemma 5.4.
It suffices to show that E(T,,|Fm—1) < Trn—1 a.s., m > 1. By (5.90) and the
inequality 1 + z < €, x € R, we have

E(Tr|Fm-1)

2 2
= m—lE{eXP (Xm - %)‘fmq}exp{%}

fm_l) exp {_%}

2

STm_1E<1+Xm+%
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2 2
ng_l{Hw}exp{_w}

< Tmfl-

It follows by Lemma 5.4 that the left side of (5.89) equals P(maxi<m<n Tm >
e') < P(maxy,>o0 T > €') <e '

Inequality (5.89) can be used to derive an “upper” law of the iterated
logarithm for martingales. See Chapter 8 for details.

Inequality (5.88) may be viewed as a strengthening of Chebyshev’s inequal-
ity by replacing |.S,| on the left side by maxj<m<n |[Sm|. The next maximum
inequality is another interesting result. It states that, in a way, the tail prob-
ability of the maximum of the partial sums is bounded by two times the tail
probability of the last partial sum. Let Xi,..., X, be independent random
variables. Then for any = € R, we have

P [1r<nkax {Sr —m(Sx — S,)} > x} < 2P(S, > x), (5.91)

where m(X) denotes the median of X. (Here, we use Si instead of S, to
avoid confusion with the median.) A simple proof of this result can be found
in Petrov (1975, pp. 50). In particular, if Xy,...,X,, are independent and
symmetrically distributed about zero, then for any = € R,

1<m<n

P ( max S, > a:) < 2P(S, > z). (5.92)

Note that (5.91) and (5.92) hold for all € R, not just « > 0.

We conclude this section by presenting an interesting property regard-
ing the multivariate normal distribution. Suppose that X = (Xy,...,X,,)
is multivariate normal with mean vector p and covariance matrix Y =
(0i0;pij)i<i,j<n, Where o; is the standard deviation of X; and p;; is the cor-
relation coefficient between X; and Xj. If p;; > 0 for all i # j. Then

[ﬁ{X <al}1 Zf[ P(X; < a;), (5.93)

=1
P [ﬂ{xi >a¢}1 H (Xi > a;) (5.94)
i=1 i=1
for any a = (ai,...,an) € R™. More generally, let Xy = (0,0;p4ij)1<i,j<n,

d = 1,2, be two covariance matrices and let P4(X € A) denote P(X € A),
where X ~ N(u, Xyq), d=1,2. If p1;; > pos; holds for all 4, j, then

1 [ﬁ{Xz < ai}] > Py [ﬁ{Xz < ai}‘| (5.95)

i=1 i=1
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for any a = (a1,...,a,) € R"™. If, in addition, p1;; > p2i; holds for at least
one pair of 4,7, then the strict inequality holds in (5.95). The latest results
are known as Slepian’s inequality (Slepian 1962). A convenient reference for
its proof can be found in Tong (1980, p. 11). The result may be interpreted as
follows: If X7, ..., X, are jointly multivariate normal, the more positively cor-
related these random variables are, the more likely they will lean on the same
direction. Note that, although intuitive, the same result may not hold for non-
Gaussian random variables. There are many implications of Slepian’s inequal-
ity, including (5.93) and (5.94) (Exercise 5.43). An application of Slepian’s
inequality can be found in the sequel (see Example 11.2).

5.6 Case study: Some problems on existence of moments

In this section we discuss some applications of Lemma 5.2 in inference about
linear mixed models. These models are widely used in practice (e.g., Jiang
2007). See Chapter 12 for more details.

We consider a linear mixed model that can be expressed as

Y =X0+Zia1+ -+ Zsas +e, (5.96)

where Y = (Y;)1<i<n is an n x 1 vector of observations, X is an n x p matrix
of known covariates, 3 is a p x 1 vector of unknown regression coefficients (the
fixed effects), Z,, 1 < r < s, are known matrices, «, is a vector of i.i.d. ran-
dom variables (the random effects) with mean 0 and variance 02, 1 < r < s,
and € is a vector of errors with mean 0 and variance o2. Without loss of gen-
erality, we assume that X is of full rank p < n, and none of the Z,’s is a zero
matrix. Two of the best known methods for estimating 02, 0 <r < s—known
as variance components—are maximum likelihood (ML) and restricted maxi-
mum likelihood (REML). See, for example, Jiang (2007). The mean, variance,
MSE, and higher moments of REML and ML estimators (REMLE and MLE)
were often used in the literature without rigorous justification of the existence
of these moments. Note that REMLE and MLE are solutions to systems of
nonlinear equations (see below), which have no closed-form expression. Thus,
the existence of moments of REMLE and MLE are by no mean obvious.

In addition to variance components estimation, inference about the fixed
effects and prediction of the random effects are also of great interest. The
best known methods for such inference and prediction are best linear unbiased
estimation (BLUE) and best linear unbiased prediction (BLUP), given by

B=(X'VIx)“lx'vly, (5.97)
a, =0, ZVHY = X[(), 1<r<s, (5.98)
where V = Var(Y) = >°_,02Z,Z], with Zy, = I, the n-dimensional identity

matrix. Note that the BLUE and BLUP involve the unknown variance compo-
nents 03, 0 <r < s. Since the latter are unknown in practice, it is customary
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to replace them by their REMLE or MLE. The results are usually called em-
pirical BLUE (EBLUE) and BLUP (EBLUP). Note that EBLUE and EBLUP
are much more complicated than BLUE and BLUP; in particular, they are
no longer linear in Y. On the other hand, once again, the mean, variance,
and MSE of the EBLUE and EBLUP were frequently used without justifi-
cation of their existence. For example, Kackar and Harville (1981) showed
that the EBLUE and EBLUP remain unbiased if the variance components
are estimated by nonnegative, even, and translation-invariant estimators. An
estimator § = (Y is even if 6(—Y) = A(Y) for all Y and translation-invariant
if (Y — X3) = 6(Y). In particular, the REMLE and MLE are both even and
translation-invariant. In their arguments showing the unbiasedness property,
Kackar and Harville have avoided the issue about the existence of the ex-
pectation of EBLUE and EBLUP. Jiang (1998b) proved the existence of the
expectations for the special case s = 1. The following general results on the
existence of moments of REMLE, MLE, EBLUE and EBLUP were given by
Jiang (2000a).

Following Jiang (1996), we do not assume that the random effects and
errors are normally distributed. In such a case, the REMLE and MLE are
understood as the Gaussian REMLE and MLE; that is, they are solutions to
the (Gaussian) REML and ML equations, respectively, if such solutions exist
and belong to the parameter space © = {0? = (02)p<,<s : 05 > 0,02 > 0,1 <
r < s}; otherwise, the REMLE and MLE are defined as 02, a known point in
©. The ML equations are equivalent to

Y'AA'VA) A Z, 2! A(A'VA) LAY
=tr(Z.V'Z,), 0<r<s, (5.99)

where A is any n X (n — p) full rank matrix such that A’X = 0. Similarly, the
REML equations are equivalent to

Y'AAVA) A 2,2 A(AVA) LAY
=tr(Z A(A'VA)TAZ,), 0<r<s. (5.100)
Since these equations do not depend on the choice of A as far as the conditions

below (5.99) are satisfied, we assume that A’A = I, the (n — p)-dimensional
identity matrix. We first prove the following result.

Theorem 5.1. The pth moments (p > 0) of REMLE and MLE are finite,
provided that the 2pth moments of Y;, 1 < i < n are finite.

Proof. We provide the proof for MLE only, as the proof for REMLE is very
similar (Exercise 5.50). Suppose that ¢ satisfies (5.99) and is in ©. Since

AVA=Y 0lA'Z,7]A, (5.101)
1=0
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by taking the sum of the equations (5.99) over 0 < r < s, we get
Y'A(AVA)TAY

=> oY AAVA)TAZ,ZLA(AVA)TTAY
r=0

=Y olte(V7'2,.2))
r=0

= tr (V‘l Zafzrz;>
r=0
=n. (5.102)
Define V(A,0) =1+ >"_,0,A'Z,Z| A, where 0, = 02 /o3. Then, by (5.102),

,  Y'AV(A,0)"lAY
O-o _—

n

Y'AA'Y
n

Y2

—

< (5.103)

Note that V(A,0) > I, which implies V(4,0)! < I, and Y'AA'Y <
Amax (A’ A)|Y|? = |Y|?, using properties (i) and (ii) of Section 5.3.1 and the
fact that 2/ Bx < Apax(B)|z|? for any vector x and matrix B (why?).
Suppose maxi<,<s0; = oa. If 02 < 03, then o7 < |Y|*/n by (5.103). If
02 > o3, then 0, = 07 /oj > 1. Note that (5.99) (with r = ¢) is equivalent to
Y'AV(A,0)" AZ,Z AV (A,0) " A'Y
= ogte(Z)Vy ' Z,), (5.104)

where Vo = 1+ 50_,0,2,Z. < 0,1+ 0_,0,Z,Z. = 6,V1, where 1 is the
(s 4+ 1)-dimensional vector with all components equal to one. It follows that

tr(Z)Vy ' Zy) > 0, te(Z,V ' Z,). (5.105)
On the other hand, by Lemma 5.2 and property (ii) of Section 5.3.1,

V(A 0) A Z,Z] AV (A, 6)

s -1 s -1
- (1 +y GTA’ZTZT’,A> A'Z,Z) A (1 +y° HTA’ZTZ;A)
r=1 r=1

< ¢’

for some constant ¢, > 0, which implies
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Y'AV(A,0)" A Z,Z) AV (A, 0) ' A'Y
< e PYAAY < 0%V P, (5.106)

again using property (ii) of Section 5.3.1 and an earlier result [below (5.103)].
Combining (5.104)—(5.106), we have

e Gl w (LiSvizi\ e o
WV Zy) S TR\ T

(Exercise 5.49). Note that since Z, # 0, || Z;||2 > 0 for any 1 <r < s.

In conclusion, let 6% = (62)p<,<s be the MLE of o2. If the solution to
(5.99) does not exist or belong to ©, we have 62 = 02; otherwise, maxo<,<s 6>
is bounded either by the right side of (5.103) (when max;<,<s 2 < 62) or by
the right side of (5.107) (when maxj<,<s; 62 > 62). In any case, we have

L,
max 62 < o2 + T+) IZAP ) v V)2, (5.108)
{ ||Z T < >

r=1

whose gth moment is finite (Exercise 5.49). This completes the proof. Q.E.D.

Note 1. The moment condition in Theorem 5.1 is seen as minimum. This
is because, for example, in the case of balanced mixed ANOVA model (e.g.,
Jiang 2007, p. 41), the REMLE and MLE are both quadratic functions of
the data Y;’s. It follows that the existence of the 2pth moments of the Y;’s is
necessary for the existence of the pth moments of REMLE and MLE.

Note 2. In particular, if Y is normally distributed, as is often assumed,
then Theorem 5.1 implies that any moments of REMLE and MLE are finite.
Furthermore, the proof of Theorem 5.1 shows that REMLE and MLE are
bounded by quadratic functions of the data.

We now consider the moments of EBLUE and EBLUP. We first state a
lemma whose proof is similar to Exercise 5.22 (see Jiang 2000a, p. 141-142).
Let m, be the dimension of a,, 1 <r < s, and D = diag(61Ln,, -, 0sIm.)-
Also, write Z = (Z1,---,Zs) and denote the projection matrix P = Px. =
I — Px with Py = X(X'X)"1X".

Lemma 5.5. For any 02 € O, we have
(X'VIIX)I X'V = (X'X)'X'{I - ZDZ'P(I + PZDZ'P)'}.
Theorem 5.2. The pth moments of the EBLUE and EBLUP are finite,

provided that the pth moments of Y;, 1 < i < n, are finite and the estimator
of o2 belongs to O.

Proof. First, consider EBLUE. By Lemma 5.5 and properties of the matrix
norm (see Section 5.3.2), we have
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IX'VX) XV

s s -1
<X'X)TIX[ 1+ <ZGTZTZ,’.P> (I—i—ZGTPZTZ,’.P)
r=1 r=1

-1

Ml X'X) 1+ > 02 2P [ 1+ > 0,PZ; 2P

min
6,>0 9]'>0

Now, apply Lemma 5.2 to obtain
-1 —1

I+ 0,PZ;Z;P| PZZP|I+ Y 0;PZ;ZP| <c0;°1
0;>0 0;>0

for some constant ¢, > 0if 6, > 0. It follows, by using property (iii) of Section
5.3.1, that

IV XV < A (XOX) (1 +3 \/aHZTH) - (5.109)

0,.>0

Note that (5.109) holds for any 02 € O, including the estimator, say 2. That
the pth moment of EBLUE is finite follows from (5.97) (with V' replaced by
V=>"_,622.7), (5.41), and (5.109).

r=0"r

Next, we consider EBLUP. Note that the right side of (5.98) can be ex-
pressed as 0, Z.V, H{I- X (X'V~1X)"*X'V~1}Y. Suppose that 6, > 0. Then,
by Lemma 5.2, we have

—1 —1
I+Y0;2;2; | 2,2 |1+ 0;2;Z; |  <d0;°1

Oj >0 9j>0

for some constant d, > 0, which implies || Z.V, || = Anax(V, ' Z,ZLV, 1) <
d,072. Therefore, we have

16,2, V, I - X(X'VIX) I X'V
< 0| Z: Vg L+ X (VRO 7LV

Amax (X' X)
< 4/ = 7 E /- . .
- dr 1+ )\min(X/X) 1+9.>0 CJHZ]” ’ (5 110)

using (5.109). Inequalities (5.110) hold as long as 6, > 0; they certainly also
hold if 6, = 0. That the pth moment of EBLUP is finite follows by (5.98)
(with the alternative expression noted above), (5.41), and (5.110). Q.E.D.
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Note 8. As in Theorem 5.1, the moment condition in Theorem 5.2 is mini-
mum. For example, in some special cases such as the linear regression model,
seen as a special case of the linear mixed model, and the balanced random
effects model (e.g., Jiang 2007, p. 15), the EBLUE is the same as the BLUE,
which is linear in the Y;’s. It follows that the existence of the pth moments of
the Y;’s is necessary for the existence of the pth moments of the EBLUE.

Note 4. An observation from the proof of Theorem 5.2 is that the matrix
operators B(0?) = (X'V1X)"1X'V~! and B,(0?) = 02Z/ VI — B(c?)},
1 < r < s, are uniformly bounded for 02 € O. Since the second moments
of the data Y;’s exist by the definition of the linear mixed model (why?),
Theorem 5.2 implies, in particular, that the mean (expected value) and MSE
of the EBLUE and EBLUP exist as long as the estimator of o2 belongs to O,
which is, of course, a reasonable assumption.

5.7 Exercises

5.1. Show that, in Example 5.2, |[{z:}||x — [[{zi}|lcc as k — 0.
5.2. In Example 5.3, define

. = @i/ 4i # 0
' 0, Yi =0.

Show that u;y? = z;y; and u2y? < 2,1 <i < n.
5.8. Let x1,...,x, be positive. Deﬁne z=n"! Z?:l ;. Show that

ii S n xflfl _..x;{in.
5.4. Show that for any a; > 0,b; > 0 and A\; > 0, 1 < ¢ < n such that
> Ai =1, we have

[Ter + 16 < I]tai+ 062
i=1 i=1 i=1
When does the equality hold?

5.5. A pdf f(x) is called log-concave if log{f(z)} is concave. Show that
the following pdf’s are log-concave:

(i) the pdf of N(O, 1);

(i) the pdf of x2, where the degrees of freedom v > 2;

(iii) the pdf of the Logistic(0, 1) distribution, which is given by f(z) =

e P (1+e*)"2 —c0 <z < o0;

(iv) the pdf of the Dounle Exponential(0, 1) distribution, which is given
by f(z) = (1/2)e 1*l, —00 < 2 < .

5.6. Verify the 1dent1ty (5.13).

5.7. Let z;,...,z, be real numbers. Define a probability on the space
X ={z1,...,2n} by
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P(A):#ofxieA

n
for any A C X. Show that

P(ANB) < /P(A)P(B).
[Hint: Note that # of @, € A =371 1(5,ea)]

5.8. Derive the conditions for equality in Minkowski’s inequality (5.17).
5.9. Prove the left-side inequality in (5.18); that is

22
10g(1+x)2x73, x> 0.

5.10. This exercise is regarding the latter part of Example 5.6.
(i) By using the same arguments, show that

\B?
< — — .
P exp{ )\<e 2_)\3)71}
(ii) Show that the function h(\) defined by (5.20) attains its maxima on

(0,2B71) at A* given by (5.21), and the maxima is given by (5.22).
(iii) What is the reason for maximizing h(\)?

5.11. This exercise is regarding the inequality (5.26).
(i) Verify the identity (5.27).

(ii) Complete the proof of (5.26).

(iii) Suppose that f(z) and g(x) are both strictly increasing, or both
strictly decreasing, and h(z) > 0. Find conditions for equality in (5.26).
5.12. This exercise is related to Example 5.5.

(i) Use the monotone function technique to prove the following inequality:
2

x

" <1+x+

<
Sy lal <o,

where b < 2. (Hint: Take the logarithm of both sides of the inequality.)
(ii) Suppose that X1,

., Xp, are i.i.d. and distributed as Uniform[—1,1].
Let X =n~'Y"" | X;. Show that

1
1<E(E) <1+ —.
- (e)_ +3n

(iii) Prove the following sharper inequality (see below):

1 <E(e¥) Sexp{é}.

3(2n—1)
(iv) Show that the right-side inequality in (iii) is sharper in that

1 1
s < = =
exp{3(2n1>}_1+3n, n=1,2,
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5.13. Prove the following inequality. For any z1,...,z,, we have

3.5 6.2
E rjx; < E ;25

1<i#j<n 1<i#j<n

Can you generalize the result?

5.14. Show that in Example 5.8 the WLS estimator is given by (5.31),
and its covariance matrix is given by (5.32). (Hint: You may use results in
Appendix A.1 on differentiation of matrix expressions.)

5.15. Show that for any matrix A of real elements, we have A’A > 0.

5.16. For any matrix X of full rank, the projection matrix onto £(X), the
linear space spanned by the columns of X, is defined as Py = X(X'X)"1X’
(the definition can be generalized even if X is not of full rank). The orthogonal
projection to £(X) is defined as Px1 = I — Px, where I is the identity matrix.
Show that Px > 0 and Px. > 0.

5.17. Many of the “cautionary tales” regarding extensions of results for
nonnegative numbers to nonnegative definite matrices are due to the fact that
matrices are not necessarily commutative. Two matrices A and B are com-
mutative if AB = BA. Suppose that Ay, ..., As; are symmetric and pairwise
commutative. Then there is an orthogonal matrix T such that A; = TD;T’,
1 <4 <'s, where D; is the diagonal matrix whose diagonal elements are the
eigenvalues of A;. This is called simultaneous diagonalization (see Appendix
A.1). Suppose that A and B are commutative. Prove the following;:

(i) A > B implies AP > BP for any p > 0 [compare with results (i) and
(v) of Section 5.3.1].

(ii) If A and B are both > 0 or both < 0, then AB + BA > 0 [compare
with result (iv) of Section 5.3.1].

5.18. (Estimating equations) A generalization of the WLS (see Example
5.8) is the following. Let Y denote the vector of observations and ¢ a vector of
parameters of interest. Consider an estimator of 6, say, 6, which is a solution
to the equation

W (0)u(Y,0) =0,

where W (6) is a matrix depending on 6 and u(y, 0) is a vector-valued function
of Y and 6 satisfying E{u(Y,0)} = 0 if 6 is the true parameter vector (in
other words, the estimating equation is unbiased). Write M () = W (0)u(Y, 0).
Then, under some regularity conditions, we have by the Taylor expansion,

where 60 represents the true parameter vector. Thus, we have

-0~ — <8M>_1M(9)

04’
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< {s(2)) )

Here, the approximation means that the neglected term is of lower order in a
suitable sense. This leads to the following approximation (whose justification,
of course, requires some regularity conditions):

= (e ()} s 135
= V().

Using a similar argument to that in the proof of Lemma 5.1, show that the
best estimator 6 corresponds to the estimating equation

W.(0)u(Y, 0) = 0,
where W, (0) = E(9u’/06){Var(u)}~!, in the sense that for any W (6),
V() > V()

- {E (%_f‘j) } Var({1L (0)} {E @g)}

= [Var{M.(0)}]7",

where M. (0) = W.(0)u(Y,0). Here, we assume that W, (#) does not depend
on parameters other than 6 (why?). Otherwise, a procedure similar to the
EBLUE is necessary (see Example 5.8).

5.19. This exercise is regarding Lemma 5.2.

(i) Show that by letting ¢; = 0 if a; = 0 and ¢; = a; " if a; > 0, (5.33) is
satisfied for all z; > 0,1 <7 <s.

(ii) Prove a special case of Lemma 5.2; that is, (5.34) holds when Ay, ..., A,
are pairwise commutative (see Exercise 5.17).

5.20. Derive (5.43) by Minkowski’s inequality (5.17).

5.21. Prove the product inequality (5.44). [Hint: For any A > 0, we have
A < Amax(A)I, where I is the identity matrix; use (iii) of Section 5.3.1]

5.22. This exercise is regarding Example 5.8 (continued) in Section 5.3.2.
For parts (i) and (ii) you may use the following matrix identity in Appendix
A12: (D+BA'B)'=D'$D'B(A+B'D-'B)~'B'D".

(i) Define H = 61 + Z'Z. Show that

B(y) =8(X'X = X'ZH ' 2'X)"'X'(51 + Z2') .
(i) Furthermore, let Q = §I + Z'PZ. Show by continuing with (i) that
B(y) = (X'X)'X'{I+2Q'Z'(I - PYI — ZH'Z").

(iii) Continuing with (ii), show that B(y) = (X'X)"'X'(I — ZQ~'Z'P).
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(iv) Show that [|(X'X)~1X"|| = A_/2(X'X).

(v) Write A = P’Z. Show that the positive eigenvalues of S = A(6I +
AANTZA are \i(6 + N\i) 72, 1 < i < m, where )\;, 1 <i < m, are the positive
eigenvalues of AA’. [Hint: The positive eigenvalues of S are the same as those

of U= (61 + AA") LA’ A(ST + AA")~1.] Use this result to show

12l

ST+ AA) A < —
1(6 + A" A) ™ A"|| < S 0V

0 >0,

where A1,..., A\, are the eigenvalues of A’A.

5.23. Prove inequality (5.49). [Hint: Note that (5.49) is equivalent to
tr(AB~' + BA™' —2I) > 0, tr(AB~ ') = tr(AY/2B~1A'/2) and tr(BA™ ') =
tr(A=Y/2BB1/?))

5.24. Prove Schur’s inequality: For any square matrices A and B, we have

tr{(A'B)*} < [ Al]IB]5-

[Hint: Let A = (aij)i<ij<n and B = (bij)1<i j<n. Express the left side in
terms of the elements of A and B.]

5.25. (Jiang et al. 2001) let b > 0 and a, ¢;, 1 < i < n be real numbers.
Define the following matrix

l1a0---0
adc-cy
A—|O0a 10|
0c, 0 ---1
where d = a®> + b+ Yo ¢2. Show that Apin(A) > b(1 +d)~L.
5.26. Show that A > B implies |A| > |B|. (Hint: Without loss of generality,
let B >0. Then A > B iff B-'/2AB~1/2 > 1)
5.27. Use the facts that for any symmetric matrix A, we have Apin(A) =
inf| ;=1 (2’ Az /2'x) and Amax(A) = supj, =1 (v"Az/2'z) to prove the following
string of inequalities. For any symmetric matrices A, B, we have

)\min(A) + /\min(B)
S )\min(A + B)

5.28. Recall that I, and 1,, denote respectively the n-dimension identity
matrix and vector of 1’s, and J,, = 1,1/,. You may use the following result
(see Appendix A.1) that |al, + bJ,| = a" 1(a + bn) for any a, b € R.
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Suppose that observations Y7,...,Y, satisfy Y; = u+ a + ¢;, where pu is
an unknown mean, a and ¢;’s are independent random variables such that
E(a) = 0, var(a) = 02, E(¢;) = 0, var(e;) = 72, cov(e;,€5) = 0, ¢ # j, and
cov(a, €;) = 0 for any 1.

(i) Show that the covariance matrix of Y = (Y3,...,Y,) is V = A + B,
where A = 721, and B = ¢2.J,.

(ii) For the matrices A and B in (ii), verify inequality (5.53).

5.29. Prove another case of the monotone function inequality: If f is non-
decreasing and g is nonincreasing and h > 0, then

/ f(@)g(x)h(z) dv / h(zx) dr < / f(x)h(z) dx / g(x)h(z) da.

Furthermore, if f is strictly increasing and g is strictly decreasing and h > 0,
the above inequality holds with < replaced by <.

5.30. This exercise is associated with Example 5.13.

(i) Show that (5.67) and (5.68) are unbiased in the sense that the expecta-
tions of the left sides equal the right sides if y and o are the true parameters.

(i) Show that for any given o and 0 < ¢ < 1, there is a unique solution to
(5.69).

(iii) Show that the function p.(+) is continuously differentiable. (Hint: You
may use some well-known results in calculus on differentiability of implicit
functions.)

(iv) Given the proved result that M.(-) is strictly increasing, show that
for any d within the range of M., there is a unique o such that M.(c) = d.
(Hint: All you have to show is that M, is continuous.)

5.31. Show that the martingale differences are orthogonal in the sense that
E(X;X,) =0, 1 # j (see Example 5.14).

5.82. Let X be a positive random variable. Show that

X 1
ES ———;<-.
{X + E(X) } 2
5.33. Let A and B be any events of a probability space 2. Show the
following;:
(i) P(AN B) < +/P(A)P(B). The result is an extension of Exercise 5.7.
(ii) P(AAB) < [{P(A)}Y/P 4+ {P(B)}/?]P for any p > 1, where AAB =
(AN B U (BN A°.
5.34. Prove Carlson’s inequality: If f > 0 on [0, c0), then

[t < vl [7 rw) dx}1/4 {[[ e af

[Hint: For any a,b > 0, write

1/4

/jf(x) / SV b (o) d
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Also, note that [;°(a + bz?)~! dz = 7/2vab. ]
5.35. Let £ ~ N(0,1), and F(-) be any cdf that is strictly increasing on
(—00,00). Show that E{¢F(§)} > 0. Can you relax the normality assumption?
5.36. Suppose that Xi,...,X, are ii.d. random variables such that
E(X;) =0 and E(|X;1]?) < oo, where p > 2. Show that

(nP/?
(&%ZX ) ™).

=1
5.37. Let £1,&2,. .. be a sequence of random variables such that & — & ~
N(0,02]i — j|) for any i # j, where 02 is an unknown variance. Show that

2
maxXm<i<n Sk — §m|>
sup E ( == < 0.
S Vir—m

5.38. Derive Bernstein’s inequality (5.78).

5.89. This exercise is related to the derivation of (5.80).

(i) Let & = > oA /ENXE n =23, and n = >0, (A\*/k)|X;|*.
Then we have &, — & = Zk:2(>\k/k!)Xf and |€n] < 1. Show that (5.79)
implies that E(n|F;—1) < oco. (Hint: Use the inequality that for any odd k,
X |F <14 XL

(ii) Based on the result of (i) and using the dominated convergence theorem
(Theorem 2.16), show that lim,, . E(&,|Fi—1) = E(&|Fi—1)-

(iii) Show that the function g()) is minimized for A € (0, B~1) at (5.82),
and the minimal value is

2
A 2Bt
9”“@( 1+7‘1)

5.40. Continue on with the martingale extension of Bernstein’s inequality.
(i) Prove (5.83).

(ii) Derive (5.85), the original inequality of Bernstein (1937), by (5.84).
5.41. Consider once again Example 5.16. Show that for any 0 < ¢ < /n,

1 < 2
Po—) (V- <et
{\/ﬁxi_l(yz A)>2t}e 7
1 n 5
—§ Y; — —2ty <e b,
P{\/ﬁml(z £ t}‘e

How would you interpret the results?

5.42. Prove inequality (5.90).

5.43. This exercise is related to Slepian’s inequality (5.95), including some
of its corollaries.
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(i) Show that Slepian’s inequality implies (5.93) and (5.94) (Hint: The
right sides of these inequalities are the probabilities on the left sides when all
of the correlations p;; are zero.)

(ii) Show that if X4, d = 1,2 are positive definite and so is (1 — ) X1 + A2
for any A € [0, 1].

(iii) Show that for any fixed pg, (k,1) # (4,7), the set R;; = {p;;: X =
(pri)1<k,i<n is positive definite} is an interval. (Hint: It suffices to show that
if X is posmve definite when p;; = p” and pu, it remains so for any p;j <
pij < /01

(iv) Show that for any fixed pgi, (k,1) # (i,5) and a = (a1,...,a,) € R",
the probability P[N,{X; < a;}] is strictly increasing in p;; € R;;.

(v) Suppose that the correlations p;; depend on a single parameter 6; that
is, pi; = pij(0), 0 € O, where p;;(-) are nondecreasing functions. Show that
the probability in (iv) is also a nondecreasing function of 6.

5.44. Suppose that X1, ..., X, are independent and distributed as N (0, 1).

(i) Determine the constants B and a; in (5.79), where F; = o(X1, ..., X;).
You may use the fact that if X ~ N(0,1), then E(X%~1) =0 and E(X?%) =
(25)!1/2751, 5 =1,2,....

(ii) Determine the right side of inequality (5.84) with ¢t = en for any € > 0.

(iii) Can you improve the inequality obtained in (ii) by using the fact that
ST, X, ~ N(0,n)?

5.45. Let Y;, F;,1 < i < n, be a sequence of martingale differences. For
any A > 0, define X; = Yil(E

(i) Show that X;, F;, 1 < i < n, is also a sequence of martingale differences.
Here, the summation »_,_, Y] 2 is understood as zero.

(ii) Show that > , X? g A+ maxi<;<, Y;?. (Hint: Define i* = max{0 <
i<n:). Y} <A} and show that Y " | X? < 22:1 Y2)

(iii) Show that Y- ¥; =", X;, 1 <m <n,on {},_, V7 < A}.

(iv) Derive the following inequality. For any A, A > 0 and p > 1, there is
a constant ¢ depending only on p such that

ZY >>\ZY2<A> {AP/2+E<maX |Y|”)}.

=1 <n

max
1<m<n

[Hint: Use the results of (i)—(iii), (5.88) and Burkholder’s inequality.]
5.46. Prove the following extension of (5.80). Let X;, 7,1 < ¢ < n be a
sequence of martingale differences. Then, for any ¢ > 0,

- . K, .
P{ZXZ- >t E(XFFi) < §B’f 2a,-,k22,1§zgn}

i=1

2
< B Y
=P Tope A
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[Hint: Define Y; = Xi1(E(X!“|fi,1)<0.5k!Bk—2ai k>2)" Show that Y;, F;,1 < i <
n, is also a sequence of martingale differences and satisfies (5.79) (with X;
replaced by Y;.]

5.47. (1) Show that for any random variable X and p > 0, we have

0

[Hint: Note that X?1(x>q) = fOX paP™ M x>0y dr = fooo paP (x>, do. Use
the result in Appendix A.2 to justify the exchange of order of expectation and
integration.]

(ii) Show that if Xi,...,X, are independent and symmetrically dis-
tributed about zero, then for any p > 0,

p
E { (1I<Iln23§n Sm) 1(max1§m§n SmZO) } < QE{Szl(SnZO)}’

where Sy, = >0 X;.

5.48. Suppose that X7, Xo,... are independent Exponential(1) random
variables. According to Example 5.16, we have E(XF) =k, k =1,2,....

(i) Given k > 2, define Y; = (X;, XF)'. Show that

1 C’Z) = diag(1, oy ) Xy diag(1, ok ),

Ck O

var(r;) = (

where ¢, = (]i)-f— 1)' — k!, O’i = (Qk') — (k')27 XL = (pl plk) with Pr = Ck/Jk.
k
(ii) Show that

1 a(Xi—1
Vi [Z%lzgk_(l(Xf —)k!)] = N (0, Z).

(Hint: Use Theorem 2.14 and the CLT.)
(iii) Show that for any 0 < a < 1,

. Y (Xi = 1) ; S (XF -k ; Y
lim P{i\/ﬁ < N < a} > (1—-a),

where z, is the a-critical value of N(0,1); that is, P(Z < z,) = 1 — « for
Z ~ N(0,1).

(iv) Show that the inequality in (iii) is sharp in the sense that for any
n > (1 — «)?, there is k > 1 such that the limit on the left side is less than 7.

5.49. This exercise is related to the proof of Theorem 5.1.

(i) Verify the inequalities in (5.107).

(ii) Show that the gth moment of |Y'|? is finite.

5.50. The proof of Theorem 5.1 for REMLE is very similar to that for
MLE. Complete the proof.

n—oo
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Sums of Independent Random Variables

6.1 Introduction

The classical large-sample theory is about the sum of independent random
variables. Even though large-sample techniques have expanded well beyond
the classical theory, the foundation set up by the latter remains the best way to
understand and further explore elements of large-sample theory. Furthermore,
the classical results are often used as examples to illustrate more sophisticated
theory, as we have done repeatedly so far in this book, and the “gold standard”
for any extensions beyond the classical situation. Here, by gold standard it
means that a well-developed, nonclassical large-sample theory should include
the classical one as a special case.

The simplest case is the so-called i.i.d case (i.e., the case of independent
and identically distributed random variables). In fact, this was the place where
the large-sample theory was first developed. In this case, there are three main
classical results—namely, the law of large numbers, the central limit theorem,
and the law of the iterated logarithm. These results, especially the first two,
are well known well beyond the fields of statistics and probability (e.g., James
2006). Let X1, Xo,... be a sequence of i.i.d. random variables. The weak law
of large numbers (WLLN) states that if E(X;) = p € (—o0,00) (ie., the
expected value is finite), then

X = Xt 4+ X P, 1, (6.1)

n

whereas the strong law of large numbers (SLLN) states that, in fact,

v X e Xn a.s.
Pt B L N (6.2)
n
If, in addition, var(X;) = 02 € (0,00) (i.e., the variance is finite and nonzero),

the central limit theorem (CLT) states that

Z;;;(\)/(% W2 N, 1), (6.3)

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_6, © Springer Science+Business Media, LLC 2010
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and the law of the iterated logarithm (LIL) states that

Z?:1 (Xs —p)

lim sup =1 as. (6.4)

o+/2nlog{log(n)}

The WLLN was first discovered by Jacob Bernoulli in 1689 for what is now
known as the Bernoulli sequence, and eventually published in 1713, 8 years
after his death, in his epic work Ars Conjectandi. Later, Siméon-Denis Poisson
in 1835 named Bernoulli’s theorem “the law of large numbers.” The SLLN
was first stated by Borel in 1909 for symmetric Bernoulli trials, although a
complete proof was not given until Faber (1910). The CLT was first postulated
by French mathematician Abraham de Moivre in 1733. The discovery of LIL
was much later: Khintchine’s 1924 paper was the first.

The WLLN, SLLN, CLT, and LIL for sum of independent, but not neces-
sarily identically distributed random variables are discussed in Sections 6.2—
6.5, respectively. Section 6.6 provides further results on invariance principle
and probabilities of large deviation. A case study is considered in Section 6.6
regarding the least squares estimator in linear regression. The proofs of most
of the theoretical results can be found in Petrov (1975).

6.2 The weak law of large numbers

We begin with the i.i.d. case. The following theorem gives necessary and suf-
ficient conditions for WLLN.

Theorem 6.1. Let X, X5,... be i.i.d. Then X F, 0 if and only if
nP(|X1| > TL) — 0 and E{X11(|X1\§n)} — 0, as n — oo.

Although Theorem 6.1 deals with a special case where the limit of con-
vergence in probability is zero, the result can be easily generalized. For ex-
ample, X x, w for some p € R if and only if nP(|X; — p| > n) — 0 and
E{(X1—m)1(x,—p<n)} — 0 as n — oo. In particular, if E(X,) is finite, The-
orem 6.1 implies the classical result (6.1). The following example, however,
shows a very different situation.

Ezample 6.1. Suppose that X1, X, ... are independent Cauchy(0,1) ran-
dom variables. Then we have

dx
P(IX - L
nP(|X1]| > n) n/|x>n P

[
|z|>n 222

n
>7

T
n [Fdr 1
Con ), 22 7
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which does not go to zero. Therefore, by Theorem 6.1, X does not converge
to zero in probability.

The result of Example 6.1 is not surprising because, as is well known, the
Cauchy distribution does not have the mean or expected value. If the latter
exists, we have the classical result noted above (6.1).

We now relax the assumption that the random variables X7, X5, ... have
the same distribution. Furthermore, we allow a general sequence of normal-
izing constants 0 < a, T oo; that is, a, > 0, a, < apy1, n > 1 and
lim,,_ o @, = 00. The following theorem gives necessary and sufficient condi-
tions for an extended WLLN defined by (6.5).

Theorem 6.2. Let X1, Xo,... be independent. Then

1 n
— S X0 (6.5)

i=1

if and only if the following three conditions are satisfied:

> P(Xi| > an) — 0, (6.6)
i=1
1 n
— > EB{Xil(x,1<am} — O, (6.7)
=1
1 n
an Zvar{Xil(lxi\San)} — 0. (68)
n =1
For a given sequence X7, X, ..., it is usually not difficult to find a nor-

malizing sequence a,, such that (6.5) holds. For example, one expects (6.5) to
hold if a,, is large enough. However, it is often desirable to choose a,, so that
it is “just enough,” although such a “cut off” may not exist.

Ezxample 6.2. Suppose that Y7,Ys5,... are independent such that Y; ~
Poisson(;), where a < X\; < b for some a,b > 0. Consider X; = Y; — A;,
i > 1. Since E(X;) = 0, one would expect (6.5) to hold for some suitable
choice of a,. Furthermore, since E(Z?:l X;)? = Z?:l i, one may consider
an = (3211 A;)? for some positive 7. First, assume v < 1/2. We show that in
this case, (6.8) is not satisfied; therefore, (6.5) does not hold. Note that

var{ X;1(x;1<am) } = E{X71(1x,1<am)} — [E{Xil(x:|<am
= Xi — E{X71(x,15am } — [E{Xil (x50 17,

because E(X;) = 0 and E(X?) = \;. Furthermore, we have
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2 X}
E{X;1(x;5an)} < E —2 Luxi>an)

2
< E(X}) i+ 3)
- a2 a
X7
[E{Xil(x;/5an)}| < E {Zl(xiban)}
2 ,
< E(XT) _ M
an, an

Here, we used the fact that the fourth central moment of Poisson(\) is A+ 32
Therefore, we have, for any i > 1,

i +4>\12
Var{Xi1(|X1-|§an)} >N — T2
§ (1_ 1+24b> N
an

It follows that the left side of (6.8) is greater than or equal to

1 14+4b\ <& Lm— 1+ 4b
%(1‘ a2 )ZA’:“”M (1‘ a )

n i=1

Since 1/y —2 > 0 and a2 = (31, M)* > (an)*? — oo as n — oo, we see
the left side of (6.8) has a positive lower bound as n — co. Next, we assume
v > 1/2. In this case it is easy to show that (6.6)—(6.8) are satisfied (Exercise
6.1); therefore, (6.5) holds. In conclusion, for a, = (3", A\i)?, (6.5) holds if
and only if v > 1/2. However, there is no smallest - (the so-called cut off)
such that (6.5) holds.

A general form of WLLN may be expressed as follows. Let X,;,i =
1,...,ip,mn = 1,2,..., be a triangular array of random variables such that
for each n, the X,;’s are independent. We say X,,; obeys WLLN if there
exists a sequence of constants b,, such that

S Xni— by =0 (6.9)
=1

as n — oo. Let my; and F,,; denote the median and cdf of X,,;, respectively.
We have the following theorem.

Theorem 6.3. X,,; obeys WLLN if and only if the following hold:

/ dFpi(T + myi) — 0, (6.10)

i—1 7 lz[>1

/ 22dFi (2 4+ mp;) — 0. (6.11)
|2|<1

i=1
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Furthermore, if (6.10) and (6.11) hold, then (6.9) holds, with b,, having the
following expression for any € > 0:

in

b, = Z {mm + /|x|<€m dF,;(x + mm-)} +o(1). (6.12)

i=1

Note that (6.10) and (6.11) are equivalent to the following (Exercise 6.2):

1+ 22

in 2
Z/ L dFui(x + M) — 0. (6.13)
i=1

Thus, another necessary and sufficient condition for X,,; to obey WLLN is
(6.13). The involvement of the medians can be made “disappear” under the
following condition. We say X,; obeys the condition of infinite smallness if

max P(|Xpi| >¢) — 0 (6.14)

1<i<i,

for every € > 0. Combining this with WLLN, we have the following result.

Theorem 6.4. Result (6.9) holds with b, = 0 and X,,; obeys the condition
of infinite smallness if and only if

> P(|Xni| > €) — 0, (6.15)
i=1
ZE{Xni1(|XM|§T)} i 0, (616)
i=1
ZV&F{Xml(|Xm|§T)} —0 (617)
i=1

for every € > 0 and some 7 > 0.

Ezxample 6.3. Suppose that for each n, Y,;, 1 <i < i,, are independent.
Furthermore, there is B > 0 such that |Y,,;| < B; in other words, the Y;,;’s are
uniformly bounded. Now, consider X,,; = {Y,,; — E(Y.;)}/an, where a,, is the
normalizing constant to be determined. Suppose that a,, — oco. Then since
|V — E(Ya:)| < 2B, we have for every € > 0,

P(| X > €) = P{|Yi —E(Yyi)| > ean}t =0
for large n. For a similar reason, we have

E{Xnil(x,.1<)} = E(Xni) =0,
var(Y,;)

2
an

Var{Xni1(|Xm\§1)} = V&I‘(Xm) =
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Therefore, for (6.15)—(6.17) to be satisfied, all one needs is

221 var(Yn)

2
an

— 0. (6.18)

. ; P .
In conclusion, we have > " | X,; — 0 or, equivalently,

2211 Yo _ 2121 E(Yni) N

an an

0,
provided that a,, — oo and (6.18) holds as n — oo. In other words, (6.9) holds

with Xpi = Yi/ani and b, = a; ' 3207 B(Yos).

There is extensive literature on laws of large numbers for independent
random variables. For example, earlier in Section 5.5 we discussed some re-
sults involving the convergence rate in WLLN. We conclude this section with
another result in this regard.

Theorem 6.5. Let X1, Xo,... beiid. with E(X;) =0 and E(]X;[?) < oo
for some p > 1. Then for every € > 0 we have P(|X| > €) = o(n'~P).

6.3 The strong law of large numbers

Following the same strategy, we begin with the i.i.d. case. The theorem below
gives a necessary and sufficient condition for SLLN. In particular, it implies
the classical result (6.2).

Theorem 6.6. Let X1, X5,... be ii.d. Then
X 2, (6.19)
for some p € R if and only if
E(]X1]) < oc. (6.20)
If (6.20) is satisfied, then (6.19) holds with p = E(X1).

We now relax the assumption that the X;’s are identically distributed. A
further extension is that the normalizing constant in SLLN does not have to
be n, as in the following theorem.

Theorem 6.7. Let X1, Xo, ..., be independent, and 0 < a,, T co. Then

1 Xn:{x,» CE(X)} 250 (6.21)

an “
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provided that

i varlXs) _ o (6.22)

The result of Theorem 6.7 can be generalized. If X;, ¢ > 1, are independent
with mean 0 and 0 < a,, T 00. Then a; ' 37" | X; &% 0 provided that

oo

Yy —— E( |X ") . (6.23)

=1

for some 1 < p < 2. We consider an example.

Ezxample 6.2 (continued). Since E(Y;) = var(Y;) = \;, by Theorem 6.7,

a— Z (Yi — \i) (6.24)

i=1

provided that

f: A_Q . (6.25)

Clearly, there are many choices of a,, that satisfy (6.25). For example, if a,, =
nP, then (6.25) holds if and only if p > 1/2. Similarly, if a,, = (3°\—, \;)” asin
Example 6.1, then (6.25) holds if and only if v > 1/2 (Exercise 6.4). Here, we
used the assumption that the \;’s are bounded from above and away from zero.
If one only assumes \; > 0 for all 4, (6.25) still holds with a, = (3 ;- Ai)?
for any v > 1/2. To show this, consider the function f(z) = z!=# where
6 =2y > 1. Write A; = 23:1 Aj. By Taylor’s expansion (see Section 4.2),
we have f(/ll) — f(Ai—l) = f/(f)(/ll — Ai—1)7 where Ai—l < f < Ai, and
f'(x) = (1 — B)z=P. It follows that

)\z _ A’L - Azfl
a? Al
< Ay — Ay
_ (i) = (A
531

1 ( 1 1 ) .y
= 17 g1 tZ4
-1 Az‘B—1 A?

Therefore, we have
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N\ 1 1 = 1 1
Sre s )
_ 1 N 11
= —1 —1
A B—1)\7

5.
(ﬁ - 1))\1
On the other hand, it is easy to give a counterexample that (6.25) is false

when v < 1/2 (e.g., consider \; = 1).

Furthermore, it would also be interesting to know if some version of SLLN
still holds when the mean of X; does not exist. We have the following result.

Theorem 6.8. Let X7, Xo,..., be independent, and 0 < a,, T co. Then

E Z (X; — B{Xi1(x, <an }] = (6.26)

provided that

; ( . +X2) < 0. (6.27)

We visit another example that was considered earlier.

Ezxample 6.1 (continued). We noted that the mean of the Cauchy(0,1)
distribution does not exist and, as a result, the WLLN does not hold; that
is, X does not converge to zero in probability. We now consider a different

normalizing constant Ay . Note that
E{X;1x }——/iim dr =0
[ il<a; 5
(1 Xil<a:) a; 7T(1+JJ2)

in other words, the truncated mean of Cauchy(0, 1) exists and is equal to zero.
Thus, by Theorem 6.8, we have

cT ZX (6.28)
=1

provided that (6.27) holds. To evaluate the expected value in (6.27), let b; be
a constant to be determined such that b; > |/a; (reason given below). Then

B XZ? _/ x? dx
a? + X? o a? + 22 (1 + 2?)

2 [ x?
== 2, 2 5y 4
mJo (af +22)(1+2?)
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Furthermore, we have

[eS) 33‘2 b; )
d — ...d _|_/ ...d
/o @+ (1 +a22) / S :
=11 + Is.

First, consider the integrand of I;. Write ¢ = a?, d = b7 and consider the
function ¥ (u) = u/(c + u)(1 +u) for 0 < u < d. It can be shown that ¥ (u)
attains its maximum over the range at u = /¢, and the maximum is (1++/c) ™2
(Exercise 6.5). It follows that the integrand of I; is bounded by (1 + a;)~?;
hence, I1 < b;(1+a;)~2, provided that /c < d (i.e., a; < b?; this explains the

range of b; given above). On the other hand, the integrand of I5 is bounded
by 72; hence, I < f;o 2 dx = b;l. In conclusion, we have

X? 2 b; 1
El—— | <= —M— + — 6.29
(af+X?>_W{(1+@i)2+bi} (6.29)

for any b; > /a;. The right side of (6.29) is minimized when b; = 1+ a; >
2\/a; > \/a; (Exercise 6.5), and the minimum is 4{7(1 + a;)}~*. Therefore,
(6.27), hence (6.28), holds if > ;2 (1 + a;)~! < oco. The latter condition is
satisfied, for example, by a; =P, ¢ > 1, where p > 1.

Historically, the proofs of SLLNs were based on an interesting connection
between convergence of an infinite series, say, ..~ ;, and the weighted av-
erage a, ' > | a;x; to zero. The connection is built by the following lemma.

Lemma 6.1 (Kronecker’s lemma). If >, 2; converges and a,, | oo, then
a0 aiz; — 0.

Here, we are talking about convergence of an infinite series of random
variables. The most famous result in this regard is the following.

Theorem 6.9 (Kolmogorov’s three series theorem). Let X1, Xs,... be a
sequence of independent random variables. (i) If >, X; converges a.s., then
for every ¢ > 0, the following three series converge:

> _P(Xi|>o0), (6.30)
i=1
> E{Xil(x, <0} (6.31)
i=1
ZV&I‘{Xi].(‘Xi|§C)}. (632)
i=1

(ii) Conversely, if the series (6.30)—(6.32) converge for some ¢ > 0, then
Yoo, X converges a.s.
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As an example, we give a proof of Theorem 6.7 (which was also due to
Kolmogorov) using Theorem 6.9.

Ezample 6.4 (Proof of Theorem 6.7). Suppose that the condition of The-
orem 6.7 are satisfied. Let Y; = {X; — E(X;)}/a;. Then by Chebyshev’s in-
equality, we have Y ;o P(|Y;| > 1) < Y72 E(Y;?) = Yoo, var(X;)/a? < .
Next, since E(Y;) = 0, we have E{Y;1(jy;|<1)} = —E{Yil(y;|>1)}. Thus,

Yo IEMilgvi<n} = D [EMilgys)}]
i=1 =1
<> E{Yillgy, s}

i=1

< ZE(YZQ) < oo0.
i=1

Finally, Efil VaI‘{Yvil(‘yi‘Sl)} S Zf; E{Y?l(\Yibl)} S Zfil E(Y;z) < Q.
Therefore, by Theorem 6.9, the series > >~ Y; converges a.s. It then follows

by Lemma 6.1 that a; 1 Y1 {X; —E(X;)} = a;' S0 a;Y; =5 0.

Finally, the following theorem uncovers an interesting connection between
WLLN and SLLN.

Theorem 6.10 (Katz 1968). Let X, Xs,..., be i.i.d.ilf X converges
to zero in probability but not almost surely, then limsup X = oo a.s. and
liminf X = —c0 a.s.

6.4 The central limit theorem
We begin with the following landmark theorem due to Lindeberg and Feller.

Theorem 6.11 (Lindeberg—Feller theorem). Let X1, X5, ... be a sequence
of independent random variables with E(X;) = 0 E(X?) = 0? < co. Define
Sp=31",X;and s2 =" 07 Then

so1S, -4 N(0,1) (6.33)
provided that for any € > 0,
1 n
S B e} — 0 (6:34)
=1

Condition (6.34) is known as the Lindeberg condition. An easier to verify
sufficient condition for the Lindeberg condition is the Liapounov condition:
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2+5 ZE |X32+%) — 0 (6.35)

Sn i=1

for some § > 0 (Exercise 6.13).
In some cases it is more convenient to consider the triangular array intro-

duced in the previous section. Suppose that for each n, Xpi, 1 <7 < iy, are
independent with E(X,,;) = 0 and E(X2 ) =02, < oo. Write S,, = 31", X

and s2 = Zz L02,. Then s, 'S, < N(0, 1) provided that the following (also
known as the Lmdeberg condltlon) holds: For any € > 0,

1 &

n =1

Again, a sufficient condition for (6.36) is the following (also known as the
Liapounov condition): For some § > 0,

1
82+6ZE | X0 ?H%) — 0. (6.37)

i=1

We consider some examples.

Ezample 6.5. Let Y7,Ya,... be independent such that Y; ~ Bernoulli(p;),
i>1. Let s2 =" var(Y;) = > p;(1 —p;). Then s, ' >0 (Y, —pi) —
N(0,1) provided that Y .=, pi(1 — p;) = oc. To see this, write X; =Y; — p;.
Then E(|X;[3) = p3(1 — pi) + (1 — p:)®pi < 2p;(1 — p;). Thus, we have

S%ZEGXJ S%Z 1—1%—527
n i1 R

n

which goes to zero as n — oco. In other words, Liapounov’s condition (6.35) is
satisfied with § = 1. The result then follows by Theorem 6.11.

Ezample 6.6 (Hajek—Sidak theorem). Suppose that Xi, X, ... are i.i.d.
with mean p and variance o2 € (0,00). Let ¢pi, 1 <i<n,n=1,2,..., bea
triangular array of constants such that as n — oo,

62

(note that this also implies that Zl L €2, > 0 for large n). Then we have
D Cni (X — )
CAVODEYES

To show this, let X,; = ¢i(X; — p). Then S, = 30" cni(X; — p) and
s2 =023 " 2, Thus, s;'S,, which is the left side of (6.39), converges in

4, N(0,1). (6.39)
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distribution to N(0,1) provided that the Lindeberg condition (6.36) holds.
Denote the left side of (6.38) by 2. Then we have

E{szLil(\Xm\>esn,)} = CEME{(Xl - M)Zl(cm|X1*/»L|>esn)}
< C?M.E{(Xl - u)21(5n|X17,u|>eo)}-

Thus, the left side of (6.36) is bounded by

1 n
2 > E{(X1 = )15, 1, —pi>eo }
n =1

_ E{(X1 - M)Ql(dn\X17u|>eo)}

— 0
0-2

as n — oo by the dominated convergence theorem (Theorem 2.16).
Intuitively, condition (6.38) means that as n — oo, the contribution of any
single term in the summation

n

Z Cni (Xz - /1/)

i1 0\

which is the left side of (6.39), is negligible. Such a condition is critical for
any CLT to hold. For example, consider the following.

Ezample 6.7 (A counterexample). Suppose that X7, Xo, ... are i.i.d. with
mean p and variance o € (0, 00), but not normally distributed. Let ¢, = 1
and ¢,; = 0, 2 <4 < n. Then the left side of (6.38) is equal to 1 for any n. On
the other hand, the left side of (6.39) is equal to (X; — p)/o for any n, which
is not distributed as N (0, 1).

Similar to the LLN, there exist necessary and sufficient conditions for the
CLT. We first consider sequences of independent random variables.

Theorem 6.12. Let Xi, Xo,... be a sequence of independent random
variables, at least one of which has a nondegenerate distribution. Let p; =
E(X;), 07 = var(X;) < oc,i>1,s2 =" o7,

F,(z) =P {}Z(Xi — ) < x} ,

i=1
and @(x) be the cdf of N(0,1). Then

g
mAsi=n %, (6.40)
Sn

sgp |Fp(z) —@(X)| — 0 (6.41)
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if and only if the following Lindeberg condition is satisfied: For every € > 0,

ZE{ Uz 1(\X u1\>esn)}%0 (642)

More generally, for triangular arrays of independent random variables, we
have the following result.

Theorem 6.13. Suppose that for each n, X,;,1 < i < i,, are inde-
pendent. Then X,,; obeys the condition of infinite smallness [see (6.14)] and

S X —4, N(,0?) if and only if for every e > 0 (6.15) holds and

ZE{Xm].(‘Xn”Se)} — W, (643)
=1
Zvar{Xml(‘Xmge)} — o (6.44)
i=1

Notes. Theorem 6.13 does not require the existence of E(X,,;) and var(X,;).
Similar to (6.41), the convergence to N (u,0?) is uniform, which follows from
Pélya’s theorem (see Example 1.6). The conditions (6.15), (6.43), and (6.44)
for every € > 0 can be replaced by (6.15) for every e > 0 and (6.43) and (6.44)
for some € > 0. We consider some examples.

As an application of Theorem 6.13, we prove the following theorem which
gives a necessary and sufficient condition for CLT in the i.i.d. case.

Theorem 6.14. Let X, Xo,... be i.i.d. Then
1 < d 9
7n ;(Xi —p) — N(0,07) (6.45)

for some p € R and o2 € [0,00) if and only if
E(X?) < 0. (6.46)
If (6.46) is satisfied, then (6.45) holds, with u = E(X1) and ¢ = var(X;).

Proof. Suppose that (6.45) holds. Let X,; = (X; — p)/+/n. Then we have
S Xni N N(0,0?). Furthermore, for any ¢ > 0, we have P(|X,,;| > ¢) =
P(|X1 — u| > ey/n), which does not depend on i, and goes to zero as n — co
(Exercise 6.14). Therefore, the condition of infinite smallness (6.14) is satisfied.
It follows by Theorem 6.13 that (6.15), (6.43), and (6.44) hold for any € > 0
and hence in particular for e = 1. In particular, (6.43) implies that /nE{(X; —
WX, —pl<ymyt — 0 (Exercise 6.14); hence, E{(X1 — p)1(x,—pj<ym)} — 0.
Furthermore, (6.44) implies that
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E{(X0 = 1L gx i<y} =~ [BID = WL i<y} — 0%

hence, E{(X1 — 1)*1(|x,_pj<ym} — 0° (Exercise 6.14). It follows by the

monotone covergence theorem (see §2.7.7) that E{(X; — u)?} = 02 < oc;
hence, (6.46) holds.
Conversely, suppose that (6.46) holds. Define

1
Xni = =Xl xg<vm — BT vm H (6.47)
It is easy to show that
nt| = \/ﬁ .

Therefore, for any € > 0, we have, for large n,
X+ B
vn
=P{|X1| > evn — E(IXa])} = P(Xa1] > An),
where A, = {ey/n — E(|X1|)} V 1. Tt follows that

P(|Xnil >¢€) < P{

> P(|Xpi| > €) < nP(IX1] > M) — 0

i=1
as n — oo (Exercise 6.14). In other words, (6.15) holds for any € > 0. Fur-
thermore, we have E{X;1(|x,,/<2)} = E(Xni) = 0; hence, (6.43) is satisfied
with € = 2. Finally, we have

Z Var{Xml(|Xm|S2)} = Z var(Xp,;)
i=1

7=1
= B{X71(x,1<ym} — E{X11(x, 1< ym 1
— E(X7?) — {E(X1)}? =0°

by the dominated convergence theorem (Theorem 2.16). In other words, (6.44)
holds with € = 2. Thus, by Theorem 6.13 (and the note following the theorem),

1 n n d
No D Xl x<vm — E{XL(x, <vmd] = D Xni = N(0,07).
=1

i=1
On the other hand, we have

1 n
E|l— Xl x. — E{X;1
\/ﬁ;[ (x5 v — E{X1 x> v }

1
< 7n Z[E{|Xi|1(|xi|>ﬁ)} + E{X1[1(x,5ym }]

=1
= 2VnE{|X1|1(1x,|> vy }
< 2E{X71(x,5ym} — 0
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as n — oo by the dominated convergence theorem. Result (6.45) then fol-
lows as a result of Theorem 2.15 and Slutsky’s theorem (Theorem 2.13). This
completes the proof. Q.E.D.

Theorems 6.12 and 6.13 do not apply to all the cases. We conclude this
section with an example that shows that in cases where these theorems do
not apply, a necessary and sufficient condition may still be found.

Ezxample 6.5 (continued). Previously we showed that the condition
Zpi(l —pi) =00 (6.48)
i=1

is sufficient for

n

LS - ) -5 N0, 1), (6.49)

moi=1

In fact, (6.48) is also necessary. However, the result does not follow from The-
orem 6.12 or Theorem 6.13. To see this, note that if (6.48) does not hold,
then, for example, condition (6.40) fails (Exercise 6.22); therefore, the nec-
essary and sufficient condition of Theorem 6.12 does not apply to this case.
Nevertheless, it can be shown by Kolmogorov’s three series theorem and a
famous result due to Cramér (1936) that (6.49) implies (6.48). We prove this
by a contrapositive. Suppose that (6.49) holds but not (6.48). Then we have
Z;’ilpi(l —p;) < 0. Let X; =Y; —p;. It is easy to show that the three series
(6.30)—(6.32) converge for ¢ = 1 (Exercise 6.22); hence, by Theorem 6.9 the
series >, X; converges a.s. to a random variable, say £. Also, (6.49) implies
that at least one of the p;’s is not zero or one. This is because, otherwise, we
have s, = 0 for all n and X; = 0 a.s. for all 4; therefore, the left side of (6.49)
is 0/0, which is not well defined (hence, cannot be convergent to a well-defined
distribution). Let a be the first index ¢ (¢ > 1) such that p; is not zero or one.
By the same argument, it can be shown that the series > o~ 41 Xi converges
a.s. to a random variable, say &;. Also, s2 — s? = > p;(1 — p;) € (0,00)
(Exercise 6.22). Therefore, by taking the limit on both sides of the identity

Xa + Z?:a+1 Xi _ 2:1:1 Xz

Sn Sn Sn

for n > a (note that X; = 0 a.s. for i < a), we have, with probability 1,

&+§—1:§~N(0,1)
S S S

by Theorems 2.7 and 2.9 and (6.49). We now apply Cramér’s theorem: If X
and Y are independent such that X + Y is normally distributed, then both X
and Y must be normally distributed. Note that X, and &; are independent.
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It follows that X,/s is normally distributed and, therefore, X, is normally
distributed, which is, of course, false.

Note. Cramér’s theorem is a remarkable result. For example, suppose that
X1,Xo,... are independent with mean 0, variance 1 and bounded third ab-
solute moments. Then, by Liapounov’s CLT [see (6.35)], the distribution of
n~1/28, is asymptotically normal as n goes to infinity, where S, = > | X;.
On the other hand, suppose that at least one of the X;’s is not normally dis-
tributed. Then as long as n is large enough, the distribution n~/28,, is never
(exactly) normal no matter how large n is (why?).

6.5 The law of the iterated logarithm

In a way, the CLT states the convergence rate in LLN. Since the latter implies
that, for example, = 327 (X; — ) — 0 in the i.i.d. case, where y = E(X)),
one would like to know how far one could go by reducing the order of the
denominator, say from n to n?, where v < 1. The CLT states that, in this
regard, the best one can do is 1/2 <y < 1, but not v = 1/2 (so v = 1/2 is the
cut off), because &, = n"1/23°" (X; — p) 4, N(0,0?%) with 02 = var(X3),
which implies that for any v > 1/2,

1 gn P
D (Xi—w) =2 —0

by (ii) of Theorem 2.13. On the other hand, even if &, converges in distribution
to N(0,02), there is still a (small) chance that &, can assume a large value,
because a N(0,0?) random variable is not bounded.

Another way to describe the convergence rate in LLN is the law of the
iterated logarithm (LIL). Throughout this section, the value of loglogx is
understood as 1 if x < e. One of the best known results on LIL is the following
theorem due to Kolmogorov (1929).

Theorem 6.15. Let X7, Xo,... be a sequence of independent random

variables with mean 0 and finite variance. Suppose that a, = Z?:l 0? — oo,

where 0? = E(X?). If | X;| < b; a.s., where b; is a constant such that

[ an
b, = — . 6.50
¢ ( loglog a, ) ( )

Then, with S, = > | X;, we have

lim sup S 1 as. (6.51)

v2an logloga,

By replacing X; with —X; we obtain “the other half” of the LIL:
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lim inf _ S =—-1 as. (6.52)
v 2ay loglogan,

Combining (6.51) and (6.52), we get

Sn
lim sup __ ISl =1 as. (6.53)

v 2ay logloga,,

It follows that the a.s. convergence rate of n=1S,, is

0 (\/an loglog an) .

n

(6.54)

We consider some examples.

Ezample 6.8. Suppose that the X;’s are i.i.d. with E(X;) = 0 and E(X?) =
1 and bounded (although the latter assumption is unnecessary; see Theorem
6.17 in the sequel). Then we have a,, = n; hence, (6.54) becomes

19 (,/@) . (6.55)

Although (6.55) appears to be slower than the convergence rate implied by
the CLT, which is O(1/4/n), the meanings of these orders are different. The
CLT convergence rate is in the sense of convergence in probability; that is,
n~1S, = Op(1/y/n) (see Section 3.4), whereas the LIL convergence rate is in
the sense of almost sure convergence, which means that

P (limsup L\n_léﬂ = \/§> =1

loglogn

Ezxample 6.5 (continued). Note that in this case we have | X;| < b; = 1;
hence, (6.50) is satisfied with a,, = s2 provided that Y~ p;(1 — p;) = oo.
It follows that (6.51)—(6.53) hold with a,, = >_1 ; pi(1 — p;). For example,
suppose that p; = i~1. Then a,, = logn + O(1), and (6.51) implies that

2?21 Y; —logn

=1 as.
V2lognlogloglogn

(see Exercise 6.19), and (6.54) becomes
0 (wbgnlogloglogn) .

n

It should be pointed out that in this case, the convergence rate of n=1S5,
implied by CLT is O(y/logn/n), which is much faster than O(1/4/n), as in
the previous example (see Exercise 6.19).
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A key assumption in Theorem 6.15 is that the random variables are
bounded. Although this may seem restrictive, as most of the random vari-
ables that are commonly in use (such as Poisson or normal) are not bounded,
Kolmogorov’s theorem was an important step toward LIL for unbounded ran-
dom variables. The connection (between LIL for bounded random variables
and that for unbounded ones) is made by a technique called truncation. Sup-
pose that X;,i > 1, is a sequence of independent random variables with mean
0 and finite variance. Then one can write

Xi = [Xilgxi<o) = B{XL <o 3] 4 (Xl x50 = BAXGL (x5 00 ]
=Y+ Z
[because E(X;) = 0], where b; is a constant satisfying (6.50). Now, Kol-

mogorov’s LIL can be applied to Y;, since the latter is bounded by the “right”
constant; hence, all one has to do is to show that

E?:l Zi 28
vayloglogan,

as n — 00, so that the LIL (6.51) will not be affected by the truncation. This
idea leads to the proof of the following result.

0

Theorem 6.16. Let X, Xo,... be independent with mean 0 and finite
variances. Under the notation of Theorem 6.15, the sequence X;,¢ > 1 obeys
the LIL; that is, (6.51) holds, provided that a,, — oo,

1 n
P Z E{X?1(x,/>eb)} — 0, (6.56)
1=10
i E{X?1(x,|>eb)}
a; logloga;

< 0 (6.57)

i=io
for every € > 0, where b; = (a;/logloga;)'/? and i is any index i such that
logloga; > 0.

We consider an application of Theorem 6.16.
Ezample 6.9. Let X;,© > 1, be independent random variables such that
E(X;) =0, E(X?) > a and
E{X?log|X;|(loglog|X;|)°} < b (6.58)
for some constants a,b,d > 0. Then X;,i > 1 obeys the LIL. To show this,
first note that the assumptions here imply that there is a constant ¢ > 0 such
that a < 02 < ¢, i > 1 (Exercise 6.23); hence, a,, « n [definition above (3.6)].

Next, it can be shown that for any € > 0, there is i > iy depending only on
e such that for i > i., | X;| > eb; implies
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1
log | X;|(loglog | X;|)° > 1 log a;(loglog a;)°. (6.59)

It follows that for i > i., we have

41og | X;|(loglog | X;|)?
E{XiQ]'(‘Xil>Ebi)} < E{XzQ Og| |(Og Og| D }

log a;(loglog a;)?
4b
<
~ log a;(loglog a;)?

by (6.58). Therefore, we have, for n > i,

LS Bixn y < (e —foe
a, 4 i (| Xi[>ebi) S = an
i=ig

4b & 1
+E ; log a;(loglog a;)®’ (6.60)

which goes to zero as n — oo (Exercise 6.23), and
i E{XE L x>} _ Cii:l 1
— a; logloga; — 4 q;logloga;
=10 1=10

> 1
4b
+ ZZZZ a;log a;(loglog a;)1+9

< 00 (6.61)

(Exercise 6.23). The result then follows by Theorem 6.16.

The moment condition (6.58) is not minimum, but close to the minimum
condition that would be required for LIL. This is because in the i.i.d. case,
a finite second moment is both necessary and sufficient for the LIL, as the
following theorem states.

Theorem 6.17. Let X7, X5,... be ii.d. Then
Z?:l(Xi — )

limsup ==——=—= = 8. 6.62

im sup Jonloaloan o as (6.62)
for some g € R and o? € [0,00) if and only if (6.46) holds. If the latter
condition holds, then (6.62) holds, with u = E(X;) and 02 = var(X).

The sufficiency part of Theorem 6.17 was first proved by Hartman and
Wintner (1941). Therefore, the theorem is often called the Hartman—Wintner
LIL. The necessity part of the theorem was due to Strassen (1966).

With Theorem 6.17 we have completed a series of classical results regarding
the sum of i.i.d. random variables. We summarize the results as follows.
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Summary. Let X1, Xo,... be ii.d. Then, the following hold:

(i) (WLLN) There exists u € R such that X L, wif and only if nP(|X1| >
n) — 0 and E{X11(x,|<n)} — p (Theorem 6.1 and Exercise 6.24).

(ii) (SLLN) There exists € R such that X 2% 1 if and only if E(|X;]) <
oo; when the latter condition holds, we have pn = E(X) (Theorem 6.6).
(iii) (CLT) There exist 1 € R and o2 € [0,00) such that n=* Y"1 (X; —

1) —5 N(0,02) if and only if E(X2) < co; when the latter condition holds,
we have u = E(X;) and 02 = var(X1) (Theorem 6.14).

(iv) (LIL) There exist 4 € R and o2 € [0, 00) such that limsup > 1, (X; —
w)/v/2nloglogn = o a.s. if and only if E(X?) < oo; when the latter condition
holds, we have u = E(X1) and 0% = var(X;) (Theorem 6.17).

Note that the condition in (i) for WLLN is weaker than E(|X;]) < oo
(Exercise 6.24).

6.6 Further results

6.6.1 Invariance principles in CLT and LIL

Donsker’s invariance principle in CLT (Donsker 1951, 1952) is a functional
central limit theorem. Roughly speaking, a functional is a function of a func-
tion. Here, we consider the space of all continuous functions on [0, 1], denoted
by C. We can define a distance between two points, z and y in C' (note that
here 2 and y denote two continuous functions on [0, 1]) by

plx,y) = Sup |2(t) — y(t)]. (6.63)

The space C, equipped with the distance p is a metric space, which means
that p satisfies the following basic requirements, held for all z,y,z € C (to
qualify as a distance, or metric):

1. (nonnegativity) p(z,y) > 0;

2. (symmetry) p(z,y) = p(y,z);

3. (triangle inequality) p(z, z) < p(x,y) + p(y, 2);

4. (identity of points) p(z,y) = 0 if and only if z = y.

It is easy to show that the distance defined by (6.63) satisfies requirements
1-4 (Exercise 6.31).

As in Section 2.4, we can talk about weak convergence of probability mea-
sures on the measurable space (C,B), where B is the class of Borel sets in
C, which is a o-field (see Appendix A.2). A sequence of probability measures
P, converges weakly to a probability measure P, denoted by P, — P, if
P,(B) — P(B) as n — oo for any P-continuity set B. The latter means that
P(0B) = 0, where 0B denotes the boundary of B (i.e., the set of points that
are limits of sequences of points in B as well as limits of sequences of points
outside B). Equivalently, P, = P if [, f dP, — [, f dP for all bounded,



6.6 Further results 193

uniformly continous function f on C. The space C' is, obviously, more com-
plicated than the real line R or any finite-dimensional Euclidean space RF
(k > 1). However, there is a connection between the weak convergence in C
and that of all finite-dimensional distributions. Let t¢1,...,t; be any set of
distinct points in [0,1]. Let P be a probability measure on (C,B). Then the
induced probability measure

1, (A) = P{[z(t1),...,z(tx)] € A}

for any Borel set A in R* is called a finite-dimensional distribution. Here,
T4, ,...t, denotes the projection that carries to the point € C' to the point
[z(t1),...,z(tx)] € R*. It turns out that weak convergence in C' is a little
more than weak convergence of all finite-dimensional distributions; that is,
P, % P if and only if Pnﬂ't_l.l...,tk - Pﬂt:,l__.,tk for any £ > 1 and any
distinct points t1,...,t; € [0, 1] plus that the sequence P,,, n > 1 is tight.
A family of P of probability measures on (C,B) is tight if for every € > 0,
there is a compact subset of B of C' such that P(B) > 1 —eforall P € P. A
well-known result associated with the latter concept is a probability version of
the Arzeld—Ascoli theorem. The sequence P,, n > 1, is tight in C' if and only
if the following two conditions hold: (i) For any n > 0, there exists M > 0
such that P,(Jz(0)] > M) <1, n > 1; and (ii) for any €, > 0, there exist
0<d<1and N > 1 such that for alln > N,

|s—t|<d

P, { sup |z(s) — x(t)] = e} <.

The concept of random variables can now be extended to C-valued random
variables (i.e., random variables whose values are continuous functions on
[0,1]). Such a random variable is often called a stochastic process, denoted by
& = (&,0 <t < 1), although continuity is not required for the definition. A

sequence of C-valued random variables &,, n > 1, converges in distribution to
w

a C-valued random variable £, denoted by &, —% ¢, if P¢t — PEY where
P&t is the induced probability measures defined by P&, (B) = P(&, € B)
for B € B, and P¢! is defined similarly.

One particular stochastic process is called Wiener process or Brownian
motion. A probability measure W on (C, B) is called a Wiener measure if (i)
for each t € [0, 1], the random variable z; ~ N(0,¢) under W-that is,

1 e
W(xtg)\):\/ﬁ/ e~ /2t g,

—and (ii) for any 0 <ty < t; < --- <t <1, the random variables
Tty = Lo, Tty — Ttyy vy Tty — Tty

are independent under W. Here, the random variable x( is understood as
equal to zero with probability 1 under W [i.e., W(zg = 0) = 1]. A C-valued
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random variable, denoted by W = (W;,0 < t < 1), is called a Wiener process
if it has the Wiener measure as its distribution [i.e., P(W € B) = W(B) for
any B € B]. Let X1, Xo,... be i. i.d. random variables with E(X;) = 0 and
E(Xf) =1.Let S, = 27:1 X; denote the partial sum with Sy = 0. Define a
sequence of C-valued random variables &, = (§,,,0 <t < 1) by

1
fn,t = %{S[m‘] + (nt - [nt])X[7Lt]+1}7 (664)

where [z] denotes the integer part of = (i.e., the largest integer less than or
equal to x). The invariance principle in CLT states the following.

Theorem 6.18. Suppose that the X;’s are i.i.d. with mean 0 and variance
1. Then &, LW asn — 00, where &, is defined by (6.64).

By Theorem 6.18 and the continuous mapping theorem (see Theorem 2.12;
note that here we are dealing with C-valued random variables, but the same
continuous mapping theorem applies), it follows that for any continuous map-
ping g from C to R* (k > 1), we have

9(&a) ~5 g(W). (6.65)

The name invariance principle came from the fact that the distribution of the
right side of (6.65) does not depend on the specification of the X;’s other than
the first and second moments. On the other hand, it may take some effort to
obtain the distribution of g(WW). However, because of the invariance principle,
one may consider a special, simple sequence of i.i.d. random variables so that
one can calculate the limiting distribution of g(§,,) for the special sequence.
It then follows that the same limiting distribution applies to any sequence of
ii.d. random variables having the same mean and variance. We illustrate this
technique with an example.

Ezxample 6.10. Suppose that one wishes to obtain the limiting distribu-
tion of n~1/2 max;<;<, Si, where S; is defined above. It can be shown that
g(z) = supg<,<; z(t) is a continous mapping from C to R (Exercise 6.32).

Furthermore, we have g(&,) = n~1/2

maxj<i<n S; and g(W) = Supg<i<1 Wi
Thus, by (6.65), the limiting distribution of n~/2 max;<;<, S; is the same
as the distribution of supy<,«; Wi. To calculate the latter, we consider one
special sequence of i.i.d. random variables X;, known as random walk, such
that P(X; = 1) = P(X; = —1) = 1/2. For the random walk, it can be shown

(e.g., Billingsley 1968, pp. 71-72) that, for A > 0,

1 2 [
Pl— max S; <\| — \/j/ e 24y, (6.66)
\/ﬁ 1<i<n ™ Jo

Therefore, P(supg<;<; Wi < A) = the right side of (6.66) for any A > 0 and
P(supg<i<g Wi < A) =0 for A < 0 (Exercise 6.32).
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We now consider an invariance principle for LIL. Before we introduce the
principle, let us recall the Hartman—Wintner LIL introduced in the previ-
ous section (Theorem 6.17), which states that if X7, Xs,... are i.i.d. random
variables with E(X;) = 0 and E(X?) = 1, then (6.51) and (6.52) hold, with
a, = n. In fact, the Hartman—Wintner law implies a seemingly stronger result.
Let L denote the set of limit points of the sequence

S
hn,1 = V2nloglogn’

where S, = Y | X; and loglogn is understood as 1 if n < 3. Then, under
the conditions of the Hartman—Wintner LIL, we have with probability 1 that
L = [-1,1]. To see this, note that if z,,n > 1, is a sequence of real numbers
such that liminfx, = —1, limsupz, = 1, and lim,,_, (zp+1 — @) = 0, then
the set of limit points of {z,} must coincide with [—1,1] (Exercise 6.33).
Intuitively, since the sequence has to visit —1 and 1 infinitely many times with
a vanishing move each step, in between it has to visit every neighborhood of
every point between —1 and 1, infinitely many times. Therefore, it suffices to
show that A, = Mp41,1 — 01 25, 0. Write

(6.67)

_ Xn+1
V2(n + 1) loglog(n + 1)

n

n nloglogn 1 Sn
(n+1)loglog(n + 1) Vv2nloglogn
= A1,71,+1 + AQ,'rr

To show that Ay, RN 0, we use the Borel-Cantelli lemma (Lemma 2.5).
Note that there is an alternative statement of this lemma in that limsup 4,
is the event that A,, happens for infinitely many n, denoted by A,, i.0. (here i.o.
stands for “infinitely often”). Thus, (i) if Y.~ ; P(A,) < oo, then P(4, i.0.) =
0 and (ii) if Ay, Ao, ... are pairwise independent and Y > | P(A4,) = oo, then
P(A,, i.0.) = 1. Here, we only need part (i), and we have

o0 1 -
plia>—1 ) —Spx,
712::1 <| el > 210glogn> 231 (|1 X% > v/n)

P(X? >n)

Pllﬂgf

1

3
Il

M

E{l(x25n)}

=E {Z 1(n<X%)}
n=1

< E(X?) < 0.

3
Il
-
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It follows that, with probability 1, |A; | < (2loglogn)~!/2 for large n; hence,
Ay, 220, That Ay, 2% 0 follows from the Hartman-Wintner LIL and the
fact that
nloglogn
(n+ 1)loglog(n+1)

— 1 asn — oo.

Strassen (1964) obtained a functional form of the Hartman-Wintner LIL,
also known as the invariance principle in LIL, or almost sure invariance prin-
ciple. Again, let X7, X5,... be a sequence of i.i.d. random variables with
E(X;) = 0 and E(X?) = 1. We extend the definition of 7, ; in (6.67) to
a member 7, = (Np,0 <t < 1)in C by

_ gn,t
init = v2loglogn
for 0 < ¢t < 1, where &, is defined by (6.64) [thus, (6.67) is, indeed, 7+

with ¢ = 1]. Consider a subset K of C consisting of all absolutely continuous
functions « on [0, 1] such that z(0) = 0 and

(6.68)

1
/ {2/ ()} dt < 1. (6.69)
0
Strassen’s theorem states the following.

Theorem 6.19. Under the assumptions of Theorem 6.18, we have with
probability 1 that the set of limit points of 7,,n > 1 with respect to the
metric p defined by (6.63) coincides with K.

Here, again, the invariance principle refers to the fact that the set of limit
points K does not depend on the specification of the sequence X; other than
the first two moments. As an application of Theorem 6.19, we derive the
“upper half” of Hartman and Wintner’s LIL.

Ezample 6.11. Let the X;’s be i.i.d. with mean E(X;) = 0 and E(X?) = 1.
Consider the mapping (or functional) from C to R defined by g(z) = x(1),
xz € C. It is easy to show that g is continuous. It follows by Theorem 6.1
that, with probability 1, the set of limit points of

Sn
901n) = v2nloglogn

is g(K) = {g(z) : € K} (Exercise 6.34). Therefore, with probability 1, we
have limsup g(7,) = sup g(K), the supremum of g(K). It remains to show
that sup g(K) = 1. For any z € K, since z(0) = 0, by the Cauchy—Schwarz
inequality [see (5.60)], it can be shown that (1) < 1 (Exercise 6.34). It follows
that supg(K) < 1. On the other hand, the function z(t) = ¢ belongs to K
and it satisfies g(z) = (1) = 1. Thus, we have sup g(K) = 1.
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6.6.2 Large deviations

The words “large deviations” in the classical framework usually refer to prob-
abilities of the deviation of the sample mean of independent random variables
from its expected value. Let X7, Xo, ... be a sequence of independent random
variables and S, be the partial sum Y ., X;. There are two types of results.
The first type is associated with the WLLN, which states that, under suitable
conditions, the probability P{n~![S,, — E(S,)| > €} goes to zero as n — oo
for any € > 0. A further question is how fast does the probability goes to zero.
In other words, we are concerned about the probabilistic convergence rate in
WLLN. Such a problem has been encountered (see, for example, Section 5.5),
but here we would like to find out a more precise description of the conver-
gence rate. The second type of results is associated with the CLT. Consider,
for example, the i.i.d. case so that E(X;) = 0 and E(X?) = 0% € (0,00).
The CLT states that the probability F,(z) = P(S,/ovn < z) — &(x) for
every x € R, where &(z) is the cdf of N(0,1). Clearly, for any fixed z, F, ()
does not go to 1 or, equivalently, 1 — F,,(z) does not go to zero, but what
happens when £ — oo as n — o0? In other words, we are concerned with the
convergence rate (to 1) of the probability F,(x, ), where z,, is a sequence of
nonnegative numbers such that z,, — oo as n — oco. In this subsection we will
focus mostly on the i.i.d. case.

1. Probability of large deviation in WLLN. This type of large deviation
results have been developed following the landmark paper of Varadhan (1966),
although the basic idea may be tracked back to Laplace and Cramér. Later,
in a series of papers beginning in 1975, Donsker and Varadhan identified
three levels of large deviations. Let X1, X5, ... be a sequence of i.i.d. random
variables such that E(X;) = u. The level-1 large deviation is regarding the
distribution of n~15,,, which we describe below. The level-2 and level-3 large
deviations are regarding the empirical distribution and process generated by
the i.i.d. sequence, which we will discuss in the next chapter. Let F' be the
distribution of X;. Let c¢p be the logarithm of the mgf of X7; that is,

cr(t) = log{E(e!*1)} = log {/emF(dm)} , (6.70)
which is assumed to exist for all ¢ € R. The funtion cr is known as the
cumulant generating function, and it plays an important role in the following
theorem of large deviations.

Theorem 6.20. Suppose that cp(t) is finite for all ¢ € R. Then
: 1 Sn :
limsup —log<P | — € C ) ¢ < — inf Ip(x) (6.71)
n n zeC

for every closed set C' C R, and

1 Sh .
oo 1 On > _ .
lim inf - log{P ( - € O)} ;gf Ip(x) (6.72)



198 6 Sums of Independent Random Variables

for every open set O C R, where

Ip(z) = fg}g{t:ﬂ —cp(t)}. (6.73)

The function Ir defined by (6.73) is called entropy. To obtain a condition
that guarantees equality of the right sides of (6.71) and (6.72), we introduce
the following definition. Let S be a subset of an Euclidean space. x is an
interior point of S if there is € > 0 such that Sc(z) = {y : |y — 2| < €} C S;
x is a point of closure of S if the distance d(z,S) = infseg |x — s| = 0. The
interior of S, denoted by S°, is the set of all interior points of S; the closure of
S, denoted by S, is the set of all points of closure of S. An important fact about
S° is that it is the largest open set contained in S. Similarly, S is the smallest
closed set containing S. We call a Borel set A C R an Ip-continuity set if
inf . 1 Ir(2) = infrcao Ir(z). From Theorem 6.20, it immediately follows
that if A is an Ip-continuity set, then

lim > log {P <% c A)} = — inf In(a). (6.74)

n—oo N, €A

We consider some examples.

Ezample 6.12. Suppose that X1, Xa, ... are independent Bernoulli(1/2). It
is easy to show (Exercise 6.35) that, in this case, cp(t) = log(1 + €') — log 2.
Furthermore, for any = € R, the function d,(t) = xt—cp(t) is strictly concave.
For x € (0,1), d,(t) attains its unique maximum at ¢t = log{z/(1 — )} with
Ir(z) =log2+xlogz+(1—x)log(1—2); for x = 0 or 1, the supremum of d, ()
is not attainable, but Ir(0) = Ir(1) = log 2; for = ¢ [0, 1], we have I'r () = oo.
Now, consider the set A = (—00,1/2—€)U(1/2+¢,00) C R, where € > 0. Since
A is open, we have A° = A. Furthermore, A = (—00,1/2 — €] U [1/2 + ¢, ).
If € < 1/2, then 1/2 — ¢ > 0 and 1/2 + ¢ < 1; therefore, inf e 40 Ip(z) =
inf,c1Ir(z) = Ir(1/2 —€) = Ir(1/2 + €) (Exercise 6.35). Hence A is an
Ip-continuity set. Therefore, by (6.74), we have

nlgn;oﬁl"g{ (“’ >}

=@

= —{log2+ (l —e)log <l—6) + (l—i—e) log(l—f—e)}
2 2 2 2
< 0.
On the other hand, if € > 1/2, then 1/2 — € < 0 and 1/2 + € > 1; hence,
infyeao Ir(z) = inf,c 1 Ir(r) = oo. Hence A is, again, an Ip-continuity set.
Therefore, by (6.74), we have
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1 Su 1 .
i, 7 log {P <‘7 - 5‘ > )} =~ Il Ir(@)
= —00. (6.75)

Finally, if € = 1/2, then inf e 40 Ir () = o0, inf, ¢ 1 Ir(z) = log2; hence, A is
not an Ip-continuity set. However, since |S,,/n — 1/2| is always bounded by
1/2, we have P(]S,/n — 1/2| > ¢) = 0; hence, (6.75) continues to hold.

Example 6.13. Now, consider the case of normal distribution; that is,
X1, Xa,... are independent and distributed as N(u,0?), where p € R and
02 > 0. In this case, we have cp(t) = ut + 0?t?/2, t € R. Therefore, it is
straightforward to show that Ir(z) = (z — u)?/20% Now, consider the set
A= (—oo,pu—€)U(pt+€,00), where € > 0. Since Ir(z) is a continuous func-
tion for all z, it is easy to show that A is an [p-continuity set for any € > 0.
It then follows by (6.74) that

1 Sn 1 .
o e (2] )= o
62

202"

An important application of the theory of large deviations is to obtain the
convergence rate in WLLN. For example, in Example 6.13 one can write

1 S, 1 €2

(% 3o ) e [{- o]

We will use such expressions in subsequent development.

2. Probability of large deviation in CLT. First assume that X, Xo,...is a
sequence of i.i.d. random variables such that the moment generating function
E(e!*1) < oo for |t| < 6, where 6 is a positive constant. Such a condition is
known as Cramér’s condition. Without loss of generality, we let ;1 = E(X1) =0
and 02 = var(X1) > 0. Again, write S, = >, Xi. We are concerned with
the convergence of the probability F,(z) = P(S,/o/n < x) for large z. Recall
that @(x) denotes the cdf of N(0,1). The cumulants of X1 ~ F are defined
as the derivatives of the cumulant generating function cp(t) at ¢ = 0; that is,

the kth cumulant of X is cgf) (0), k=1,2,....

It follows that

Theorem 6.21. Suppose that Cramér’s condition is satisfied. Then for
any x > 0 such that = o(y/n), we have
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1— F,(z) 23 x r+1
_— = — A\ — 1+0 6.76
o R e (SR o

1;2(_‘5)) - exp{—\gj;)\ (-\%)} {1 +0 (””\7;) } . (6.77)

where A(t) = > 7, axt”® is a power series with coefficients depending on the
cumulants of X7, which converges for sufficiently small |¢|.

Theorem 6.21 can be extended to sequence of independent random vari-
ables not necessarily having the same distribution. Let X;, X5,... be inde-
pendent with mean 0. Let m;(z) = log{E(e*X?)}, where z denotes a complex
number. In other words, m;(+) is the complex cumulant generating function of
X;. Here, log denotes the principal value of the logarithm so that m;(0) = 0.
We assume that there exists a circle, centered at the point z = 0, within which
m;,i = 1,2, ..., are analytic. Then, within this circle, m;(z) can be expanded
as a convergent power series

sog
> %l
where ¢;1; is the cumulant of order k of X;. Note that ¢;; = E(X;) = 0 and
cio = BE(X?) = 02, Again, let S, = > | X;, and also s2 = > | 07 and
F,(x) = P(S,/s, < x). A power series Y .~ a;z" is said to be majorized by

another power series  :° b;z* if |a;| < b; for all i. The following theorem is
an extension of Theorem 6.21.

Theorem 6.22. Suppose that there is § > 0 and constants ¢y, ca, ... such
that |m;(2)| < ¢, |2| < 6 for i = 1,2,..., limsupn=2 37, /% < oo, and
liminf s2 /n > 0. Then for any x > 0 such that z = o(,/n), (6.76) and (6.77)
hold with the latest definition of F}, and A(+) replaced by A, (-), where A, (t) =
>orey ankt® is a power series, which, for sufficiently large n, is majorized by a
power series whose coefficients do not depend on n and is convergent in some
circle, so that A, () converges uniformly in n for sufficiently small |¢|.

The series A(t) in Theorem 6.21 is called the Cramér series, and the series
An(t) in Theorem 6.22 is called the generalized Cramér series. For example,
the coefficients a,; is expressed in terms of the cumulants of X;,..., X,, of
orders up to k + 3 for every k. In particular, letting v, = n~" iy Ciks

Tn3
ano = 375>
n2
Tn2Ynd — 377%3
2473,
Y29n5 — 107n2Vn3Vna + 15%3
12079/ 2

an1 = )

an2 =
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Some uesful consequences of Theorem 6.22 are the following.

Corollary 6.1. Under the conditions of Theorem 6.22, if x > 0 and =z =
O(n'/%), then

7 e /2
1= Fole) = {1 = (o)} ‘g’ +o< — )

Fo(—2) = &(—1) exp (-%’;;ﬁ) +0 (e—;;m) .

One can see some similarity of the above result with the Edgeworth ex-
pansion (4.27). However, here the focus is large deviation (i.e., when z is large
up to a certain order of n). The result implies the following.

Corollary 6.2. Under the conditions of Theorem 6.22, if ¢;3 = 0, i =
1,2,... and |z| = O(n'/®), then

67w2/2
Fu(z) — ®(z) = O <7> .

If  is not restricted to O(n'/%), we have the following results.

Corollary 6.3. Suppose that the conditions of Theorem 6.22 are satisfied.

(i) If ¢;3 =0,i=1,2,..., then for > 0 and x = o(n'/*), we have
1-F,(x) Y
1—&(x)

as n — Q.

(ii) If z — oo such that x = o(y/n), then

F,(z+a/x)— F,(x)
1-F,(x)

—1—e" (6.78)

as n — oo for every a > 0.
We conclude this section by revisiting two previous examples.

Ezample 6.13 (continued). Consider the case p = 0 and o = 1. Then we
have F,(x) = &(x), the cdf of N(0,1). It follows, by L’Hospital’s rule, that
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Fo(x+a/z)— F,(x) &(x +a/z) — D(x)

zlligo 1— F,(z) = xlinéo o)
(1 — )2
_ JLH;O o(x) — (1 Z{;ﬁ))gﬁ)(m +a/x)
=1 i (1 ) S
St (1 e (o 5)
—1—e1,

where ¢(z) = &' (z) = e*x2/2/\/ﬂ. Note that in this case the limit is derived
without using Corollary 6.3, and the result holds without any restriction on
how fast z — oo. Of course, this is a very special in which F,, does not
depend n. In fact, if X1, Xo,... are i.i.d. with mean 0 and variance 1, the only
possibility that F,, does not depend on n is that F,, = & (why?).

The next example shows somewhat the contrary.

Ezample 6.12 (continued). Let X; = X; — 1/2. Then we have E(X;) = 0

and BE(X;)? = 1/4; thus, 82 = 31" | E(X?) = n/4. Let S, = 3. | X;. Then
Fu() = P(8u/3n < 2) = P{Sa < (V/2)} = P(T, Xi < n/2+(yi/2)z}.
Now, consider z = (n—1)/4/n [which is O(y/n) instead of o(y/n)] and a = 1/2.
Then we have F,(z) =P (3" ; X; <n—1/2) and F,,(z+a/z) = P{> " ; X; <
n—(n—2)/4n -1} If n > 2, then 0 < (n — 2)/4(n — 1) < 1/4; hence,
F,(x) = Fo(x + a/z) = P(X_, X; <n—1) <1 (because > ., X; is an
integer). It follows that the left side of (6.78) is identical to zero for any
n > 2, and therefore cannot converge to the right side, which is 1 —e=%% > 0.

This example shows that the requirement = = o(y/n) cannot be dropped.

6.7 Case study: The least squares estimators

The least squares (LS) method was first introduced by Carl Friedrich Gauss,
one of the greatest mathematicians of all time, in 1795, when he was just
18 years old. In 1801, Gauss used his LS method to accurately compute the
orbit of the then newly discovered asteroid Ceres. The latter was discovered
by Italian astronomer Giuseppe Piazzi, who was able to track its path for 40
days before it got lost in the glare of the sun. Gauss’s LS prediction, which
was quite different compared to all of the previous solutions that had been
proposed, successfully allowed Hungarian astronomer Franz Xaver von Zach
to relocate Ceres after it reemerged from behind the sun and therefore confirm
Piazzi’s assumption that his most famous discovery was, indeed, “better than
a comet” (e.g., Federa Serio et al. 2002, p. 19).
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The typical situation that the LS method applies is called regression analy-
sis, which has been encountered several times so far in this book (e.g., Example
5.8). Here, we assume that the observation Y; is associated with a vector of
known covariates x; through the following equation:

Yi=zif+e, i=1,...,n, (6.79)

where ( is a vector of unknown regression coefficients and ¢; represents an
error. It is assumed that the errors are i.i.d. with mean 0 and constant variance
02 > 0.Let Y = (Y;)1<i<n be the vector of observations, X = (z)1<;<y be the
matrix of covariates, and € be the vector of errors. Then the linear regression
(6.79) can be expressed as

Y =XfB+e (6.80)

The LS method finds the regression coefficients 3 that minimize |Y — X |? =
S (Vi — 2}B)%. For simplicity, assume that X is of full rank p. Then the
solution, which is called the LS estimator (LSE) of 3, can be expressed as

f=(X'X)"'X"Y. (6.81)

The LSE has several nice properties. For example, the Gauss—Markov theorem
states that B is the best linear unbiased estimator (BLUE) of 3; under the
normality assumption, B is the same as the MLE of 3; and B is consistent
and asymptotically normal. The latter are the main subjects of the current
section, among other large sample properties of the LSE.

First, consider consistency of LSE. Let 8 = (8;)1<j<p- Then we have the
following expression (Exercise 6.36):

n
Bi =B =Y (X' X) mies, 1<j<p, (6.82)
i=1
where §; is the p-dimensional vector whose jth component is one and other

components are zero. Fix 1 < j < p. Let X,;; = 05(X'X)"'x;¢;. Then for
each n, X,;, 1 <1i < mn, are independent. According to Theorem 6.4, to show

ﬁj P, B; or, equivalently, > " | X, L, 0, it suffices to verify conditions
(6.15)—(6.17). First look at (6.15). By Chebychev’s inequality, we have

n 1 n
S P(Xuil > ) < 5 D B(XE)
=1 =1

2 n
g _ _
= % XX al(X1X) 7
=1

o? 1t o — - —
= 5 0(X'X) ! (Zm;) (X'X)71s;
1=1

2
a ! / —
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because Y ., x;x; = X'X. Thus, (6.15) holds provided that
§(X'X)716; — 0. (6.83)

In fact, the above arguments show that (6.83) implies > | E(X2,) — 0,
which also implies (6.16) and (6.17) (Exercise 6.36). It is now clear that a
sufficient condition for consistency of the LSE is (6.83) for every 1 < j < p,
which is equivalent to

tr {(X'X)"'} —0 (6.84)
(Exercise 6.36). We consider a simple example.

Example 6.14. The case p = 1 is called simple linear regression. In this
case, (6.79) can be expressed as Y; = By + B1x; + €;, where z; is the covariate;
Bo and (31 are called the intercept and slope (of the regression), respectively.
It follows that X = (1, ), where © = (z;)1<i<n. Straightforward calculation

n .
shows that X'X = (a: 2 | Where 2. = S xiand 2% = Y1 | 2%; hence,

1+22
Sy (i — 2)%

where # = n~'z. and 22 = n~'22. Therefore, (6.84) holds if and only if
S (= 7)? — oo and 22 = o[>, (z; — %)?] as n — oo. For the most
part, these assumptions mean that there should be “enough” total variation
among the covariates z; (Exercise 6.36). To see why the assumptions make
sense, imagine the extreme opposite where there is no variations among the
x;’s (e, z; = ¢, 1 < i < n for some constant ¢). Then the model becomes
Y, = Bo + Bic+ €, 1 < i < n. Clearly, there is no way one can separate [y
and (p from By + Bic if both parameters are unknown. In other words, the
parameters Jy and (1 are not identifiable. Therefore, the LSE (or any other
estimators) of these parameters cannot be consistent.

tr {(X'X)7'} =

We now consider asymptotic normality of the LSE. By (6.81) we have
Var(3) = 0?(X'X)~!. This suggests that

X'X 2 d
< = > (B—pB) — N(0,1), (6.85)
where I, is the p-dimensional identity marix (see Appendix A.1 for the defi-
nition of A2 for A > 0). To show (6.85), we apply Theorem 2.14, and thus
to show that for any A € RP, we have

s 1/2
N (X X) (B—B) % N(0, X)), (6.86)

o2
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Without loss of generality, let A # 0. Then, again, without loss of generality,
we may assume that |A\|> = XX = 1 (why?). (Note how we simplify the
arguments step-by-step by using the words “without loss of generality,” but
make sure that at each step it is, indeed, without loss of generality). Then,
similar to (6.82), the left side of (6.86) can be expressed as

D i1 Cnifi
O\ D i1 Ci
with ¢, = N (X'X) "2z, (note that Y"1, ¢, = 1) (Exercise 6.37). Accord-
ing to the Hijek—Sidak theorem (Example 6.6), (6.87) converges in distribu-
tion to N (0, 1) provided that (6.38) holds, which is equivalent to

(6.87)

max N (X'X) ™Y 200,(X'X) 7Y\ — 0. (6.88)

1<i<n

A sufficient condition for (6.88) to hold for every A € RP, and hence for the
asymptotic normality of the LSE in the sense of (6.85), is thus

/ l -1,
112%Xn{xi(X X) "'z —0 (6.89)

(Exercise 6.37). We revisit the previous example.

Ezxample 6.14 (continued). In this case, it can be shown that the left side
of (6.89) is equal to

1 i<n(zi — )?
L maxigien(ei —2)7 (6.90)
n > iz (i — T)

Thus, the condition for asymptotic normality of the LSE is that

maxlgign(a:i — i‘)2

Y (@i — 2)?

as n — oo. Intuitively, this means that the contribution to the total variation
by any individual is relatively small compared to the total variation.

— 0

Other large-sample properties of the LSE have also been studied. For ex-
ample, Lai et al. (1979) studied strong consistency property of the LSE. In
fact, the authors derived (strong) convergence rate for each component of
the LSE. It is assumed that the errors €q,€z,... in (6.79) is a sequence of
random variables such that Zf; c;€; converges a.s. for any sequence of real
numbers cq, ¢a, ... such that Zfil C? < o00. This assumption is weaker than
the assumptions we made earlier [below (6.79)]. For example, if €, i > 1,
are i.i.d. such that E(e;) = 0 and E(e?) < oo, then the above assumption is
satisfied (Exercise 6.38). Let v, j; be the jth diagonal element of (X'X)™1,
1 < j < p. [Note that the matrix X depends on n (i.e., X = X,,), but for
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notation simplicity the subscript n is suppressed; the same note also applies
to other notations such as §.] If for any 1 < j < p, we have lim,,_o vy, j; = 0,
then for any § > 0, we have with probability 1 that

BB =o (\/Umjﬂ log Un,jj|1+5> (6.91)

asn — oo. Thus, if limy, .o v ;; = 0, 1 < j < p, then the LSE is strongly con-
sistent in that ﬁ 2% 3, and the (strong) convergence rate for each component
of the LSE is given by (6.91).

A more accurate rate of convergence is given by Lai and Wei (1982), who
derived a LIL for LSE. Suppose that the ¢;’s are independent with E(¢;) = 0,
E(€?) = 02, and sup,~; E(|&;|") < oo for some r > 2. Also suppose that p > 2.
Let X; denote the jth column of X and let X_; denote the matrix of X
without the jth column, 1 < j <p. Let v, ; = Pxijj = (Un,j,i)1<i<n, Where

Pij =1 PX,]- =1- X,j(XLjX,j)ilXLj, and An,j = |’Un7j|2. Fix 1 <
J < p I limy oo anj = 00, imsup any1,;/an,; < 00, and maxi<i<n v ;; =
olan, j(logay, ;j)~?)] for all p > 0, then we have

1/2
. [ A .
lim sup (Qk)gh),;am> |B; — Bj] = o as. (6.92)

The normalizing sequence a., has an intuitive explanation. It is the squared
norm of the projection of the vector of covariates corresponding to 3; to the
space orthogonal to that spanned by the rest of the (vectors of) covariates.
Roughly speaking, a,, is a measure of the amount of uncertainty associated
with the estimation of 3;. The amount of uncertainty is closely related to the
“effective sample size.” To see this, consider an extreme case where there is no
uncertainty among the observations. Then all one needs is one sample; that
is, the effective sample size is one. On the other hand, the more uncertainty
in the sample, the larger the effective sample size has to be in order to achieve
the same level of accuracy in estimation.

6.8 Exercises

6.1. Show that in Example 6.2, (6.6)—(6.8) are satisfied with a, =
(> X)) and v > 1/2.

6.2. Show that (6.10) and (6.11) together are equivalent to (6.13).

6.3. Use Theorem 6.1 to derive the classical result (6.1).

6.4. This exercise is regarding Example 6.2 and its continuation in Section
6.3.

(i) If a,, = nP, show that (6.25) holds if and only if p > 1/2.

(ii) If an, = (321 Ai)7, show that (6.25) holds if and only if v > 1/2.
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(iii) Suppose that the assumption that a < A; < b for a,b > 0 is not made.
Instead, the only assumption is that A; > 0 for all 4. Does the result of (i)
necessarily hold?

6.5. This exercise is regarding Example 6.1 (continued) in Section 6.3.

(i) Show that the function ¢ (u) is maximized at u = /¢, and the maximum
is (1+ )2

(ii) Show that the right side of (6.29) is minimized when b; = 14 a;, which
is greater than \/a;, and the minimum is 4{m(1 + a;)} 1.

6.6. Suppose that Y7, Y5, ... are independent random variables. In the fol-
lowing cases, find the conditions for a,, such that

ai an{Yi ~EB(Y)} =0,

Give at least one specific example in each case.

(i) Y; ~ DE(u;,0:), ¢ > 1, where DE(p,0) is the Double Exponential
distribution with pdf f(z|u, o) = (1/20)e~1*=#l/7 —00 < x < 00, and 7; > 0.

(ii) Y; ~ Uniform[u; — d;, p; + d;], ¢ > 1, where Uniform]a, b] represents
the Uniform distribution over [a,b], and d; > 0.

6.7 (Binomial method of moments). The method of moments (MoM) is
widely used to obtained consistent estimators for population parameters. Con-
sider the following special case, in which the observations X1, ..., X, arei.i.d.
with the Binomial(m, p) distribution, where both m and p are unknown. The
MoM equates the sample first and second moments of the observations to
their expected values. This leads to the following equations:

E(X)) = X,

1 n
EX3) ==Y X2
( 1) nlzzl 7

Note that the left sides of these equations depend on m and p. By solving the
equations, one obtains the solutions, say, m and p.

(i) Solve the MoM equations to find the solutions 7 and p.

(ii) Show that 7v and p are consistent estimators; that is, L m and
p x, pasn — oo.

(iii) Is m necessarily an integer? Since m needs to be an integer, a modified
estimator of m is m, defined as the nearest integer to /m. Show that m is also
a consistent estimator of m in that P(m =m) — 1 as n — oc.

6.8. Suppose that for each n, X,;, 1 < i < n, are independent with the
common cdf F,, and F,, — F, where F is a cdf and the weak convergence
(—%) is defined in Chapter 1 above Example 1.6. Define the empirical distri-
bution of X,;, 1 <i <mn, as

. 1 <<
Fn(x) = n Z l(XmSw)
=1
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O #H{I<i<n: Xy <a}
., .

Show that F, (z) £, F(z) for every z at which F is continuous.

6.9. Give an example of a sequence of independent random variables
X1, Xo,...such that Y2, var(X;)/i* = oo and the SLLN is not satisfied.

6.10. A sequence of real numbers x; € [0,1],7 > 1, is said to be uniformly
distributed in Weyl’s sense on [0, 1] if for any Riemann integrable function f
on [0, 1] we have

g J@) @)
! - | f@a

n—oo

Let X;,7 > 1, be independent and Uniform|0, 1] distributed. Show that the
sequence X;,i > 1, is uniformly distributed in Weyl’s sense on [0, 1] almost
surely. (Hint: Use §1.5.2.37. Note that, by definition, a Riemann integrable
function on [0, 1] is necessarily bounded.)

6.11. Suppose that X, Xo,... is a sequence of independent random vari-
ables with finite expectation. Show that if

o0

3 BN — ECX)l} < o,

=1

then the SLLN holds; that is
- Z{X —E(X,)} 2% 0.

6.12. Let Y1,Y5s, ... be independent with Y; ~ Bernoulli(p;), i > 1. Show
that .2 (Y; — p;) converges a.s. if and only if Y .2 p;(1 — p;) < 00

6.13. Show that the Liapounov condition implies the Lindeberg condition;
that is, if (6.35) holds for some ¢ > 0, then (6.34) holds for every € > 0.

6.14. This exercise is associated with the proof of Theorem 6.14. Parts
(i)—(iii) are regarding the necessity part, where X,,; = (X; — p)/+/n; whereas
part (iv) is regarding the sufficiency part, where X,,; is defined by (6.47).

(i) Show that for any € > 0,

1121?<XnP(|Xm| >¢€) = P(| X1 — p| > ev/n) — 0.

(Note: You may not use Chebyshev’s inequality to show this—why?)
(i) Show that (6.43) with e = 1 reduces to

VRE{(X1 = )L, < ym} — 0.
(iii) Show that

E{(X1 = )", - <y} = B = )1 x 2 vm 1P — 0%
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hence, E{(X; — u)?} = lim,, . B{(X1 — M)21(\X1—u\§\/ﬁ)} =02,
(iv) Show that for any € > 0,

D P(IXni| > €) < nP(IX1] > An) — 0.

i=1

6.15. Show that if Xq,..., X, are independent Cauchy(0, 1), the sample
mean X =n~"Y(X; + -+ X,,) is also Cauchy(0, 1). Therefore, the CLT does
not hold; that is, \/nX does not converge to a normal distribution.

6.16 (Sample median). Let X1, ..., X, be i.i.d. observations with the dis-
tribution P(X; < z) = F(x — 0), where F' is a cdf such that F(0) = 1/2;
hence, 6 is the median of the distribution of X;. Suppose that n is an odd
number: n = 2m + 1, say. If X(;) <--- < X,y denotes the ordered X;’s, the
sample median is defined as X(,,). We assume that I’ has a desity f with
respect to the Lebesgue measure such that f(0) > 0.

(i) For any = € R, let S, , be the number of X;’s exceeding z//n. Show
that X,y </y/n if and only if S, , <m — 1.

(ii) Show that /7{X(m) — 6} — N(0,02), where 02 = {2f(0)} 2.

6.17. Suppose that S, is distributed as Poisson(\,), where A\, — oo as
n — o0o. Use two different methods to show that S,, obeys the CLT; that is,
En =M 2(S0 — ) =5 N(0,1).

(i) Show that the mgf of &, converges to the mgf of N(0,1).

(ii) Let Y,,;, 1 < i < n, be independent and distributed as Poisson(n=1\,,),
n > 1. Show that Z?:l Y,; has the same distribution as S,,. Furthermore,
show that X,,; = EI/Q(YM — n~1)\,) satisfy Liapounov’s condition (6.37)
with § = 2. [Hint: You may use the fact that the fourth central moment of
Poisson()) is A + 3)2]

6.18. Let Y1,Ya,... be independent such that Y; ~ Poisson(a?), i > 1,
where a > 1. Let X; =Y; —a’, i > 1,and s2 = 1" var(V;) = > a' =
(a—1)"a™ —1).

(i) Show that Liapounov’s condition (6.35) is not satisfied with ¢ = 2.

(ii) Show that as n — oo,

a—1 1/2 n ) B
<m> Z(XZ — a’) — N(O, 1)

i=1

(Hint: Use the result of the previous exercise.)
6.19. Let the random variables Y7, Y5, ... be independent and distributed
as Bernoulli(i 1), i > 1. Show that

Y Yi—logn a,

Vlogn

(Hint: You may recall that > ;" i~' — logn converges to a limit known as
Euler’s constant. The actual value of the constant does not matter.)

N(0,1).
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6.20 (The delta method). The CLT is often used in conjunction with the
delta method introduced in Example 4.4. Here, we continue with Exercise 6.7.
Let m and p be the MoM estimator of m and p, respectively, therein.

(i) Show that as n — oo,

X —mp d
v [”1 Doy X7 —mp{l+ (m — 1)p}:| — N(0, Z),

where X' is a covariance matrix. Find X. (Hint: Use Theorem 2.14.)
(ii) Show that the MoM estimators /m and p are jointly asymptotically
normal in the sense that
m—m)\ d
\/ﬁ< . > L N0, V),
where V is another covariance matrix. Find V.

(iii) An alternative estimator of m was found (i.e., m). Show that m is not
asymptotically normal even though it is consistent; that is, v/n(m — m) does
not converge in distribution to a normal distribution.

6.21. Suppose that for each n, X,;, 1 < i < i,, are independent such
that P(X,; = 0) = 1 — ppsy, P(Xpi = —ani) = P(Xni = ani) = pni/2, where
an; > 0 and 0 < pn; < 1. Suppose that maxj<i<;, an; — 0 as n — oo. Find
a necessary and sufficient condition for the triangular array X,; to obey the
CLT; that is, Z;“:'l X 4, N(p,0?) as n — oo for some p and o2.

6.22. This exercise is related to Example 6.5 (continued) at the end of
Section 6.4.

(i) Show that for the sequence Y;,i > 1, (6.40) fails provided that s? =
Yoo pi(1 — p;) < oo. Also show that s* > 0.

(ii) Show that for X; =Y; — p;, the three series (6.30)—(6.32) converge for
c=1.

6.23. This exercise is related to Example 6.9.

(i) Show that there is ¢ > 0 such that o7 = E(X?) < ¢ for all i; hence,
G X M.

(ii) Show that the right side of (6.60) goes to zero as n — oo.

(iii) Show (6.61) [Hint: You may use the result of part (i)].

6.24. Let X be a random variable. Show that for any pu € R, the following
two conditions (i) and (ii) are equivalent:

(i) nP(|X — p| >n) — 0 and E{(X — )1 x—pj<n)} — 0;

(ii) nP(|X| > n) — 0 and E{X1(x|<n)} — 4

(iii) Use the equivalence of (i) and (ii) to show the necessary and sufficient
condition for WLLN given at the end of Section 6.5.

(iv) Give an example of a random variable X such that nP(|X| > n) — 0
and E{X1(|x|<n)} = 0 for any n > 1 and E(|X|) = oc.

6.25. Let X1, X5, ... be a sequence of independent random variables with
mean 0. Let p; = P(|X;| > b;), where b; satisfies (6.50), and
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n
Ap = Z Var{Xi1(|Xi|§b7¢)}-
=1

Suppose that > % var{X;1(|x,|<p;)} = 00, Doy Pi < 00, and

—
Vaploglogany,

as n — oo. Show that X;, ¢« > 1 obeys the LIL (6.51). [Hint: Use Theorem
6.15 and the Borel-Cantelli lemma (Lemma 2.5).]

6.26. Show that if X1, Xs,... are independent such that X; ~ N(0,02),
where a < 02-2 < b and a and b are positive constants, then X;, ¢ > 1 obeys
the LIL (6.51).

6.27. Suppose that X;, ¢ > 1, are independent random variables such that
P(X; = —i%) = P(X; = i%) = 0.5i" and P(X; = 0) = 1 —i~?, where
«, 3 > 0. According to Theorem 6.16, find the condition for «, 8 so that X,
i > 1, obeys the LIL (6.51).

6.28. Let Y1, Y5, ... be independent such that Y; ~ x?7. Define X; = Y; —i.
Does the sequence X;, i > 1, obey the LIL (6.51), where a, = >, var(Y;)?
[Hint: You may use the facts that if Y ~ x2, then E(Y) = r, var(Y) = 2r,
and E(Y —r)* =12r(r +4)]

6.29. We see that, in the i.i.d. case, the same condition (i.e., a finite second
moment) is necessary and sufficient for both CLT and LIL. In other words, a
sequence of i.i.d. random variables obeys the CLT if and only if it obeys the
LIL. It is a different story, however, if the random variables are independent
but not identically distributed. For example, Wittmann (1985) constructed
the following example. Let n, be an infinite sequence of integers such that
Ng+1 > 2ng, k> 1. Let X1, X5, ... be independent such that for ng +1 <
7 < 27’%7 we have P()(z = 1) = P(Xl = —1) = 1/47 P(Xl = \/M) = P(Xz =
—v2ny) = 1/8ny, and P(X; =0) =1 — 1/2 — 1/4ny; for all other i > 1, we
have P(X; =1) =P(X;, = -1) =1/2.

(i) Show that E(X;) = 0 and 02 = E(X?) = 1, therefore a, = s2 =
St 02 = n. It follows that (6.40) is satisfied.

(i) Show that Lindeberg’s condition (6.42) does not hold for € = 1.

(iii) Show by Theorem 6.12 that X;, ¢ > 1, does not obey the CLT. (Hint:
You may use the result of Example 1.6.)

Wittmann (1985) further showed that the sequence obeys the LIL. On the
other hand, Marcinkiewicz and Zygmund (1937b) constructed a sequence of
independent random variables that obeys the CLT but not the LIL.

6.30. Show that if Xy, Xo,... are i.i.d. with mean 0 and variance 1, then
&n = Sn/v2nloglogn Lo 0asn — oo, where S, = >, X;. However,
&, does not converge to zero almost surely. This gives another example that
convergence in probability does not necessarily imply almost sure convergence.

6.31. Show that the distance p defined by (6.63) is, indeed, a distance or
metric by verifying requirements 1-4 below (6.63).

0
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6.32. This exercise is related to Example 6.10.

(i) Show that the mapping g(x) = supy<;<; «(t) is a continuous mapping
from C to R. -

(ii) Show that g(X,) = supycscq Xnt = n~ /2 max;<i<, S; and g(W) =
Supg<¢<1 Wt

(iii) Show that P(supg<;<; Wi < A) =0 for A < 0.

6.33. Let x,,,n > 1, be a sequence of real numbers such that lim inf z,, = a,
lim sup z,, = b, where a < b, and lim,,_, oo (€;,41 — ) = 0. Show that the set
of limit points of {z,} coincide with[a, b].

6.34. This exercise is related to Example 6.11.

(i) Show that the functional g(x) = x(1) defines a continuous mapping
from C to R.

(ii) Show that with probability 1, the set of limit points of g(n,) is g(K).

(iii) Show that z(1) <1 for any = € K.

6.35. Consider Example 6.12.

(i) Show that in this case we have cp(t) = log(1 + e') — log 2.

(ii) Show that for any = € R, the function d,(t) = xt — cp(t) is strictly
concave.

(iii) Show that

log2+ zlogx + (1 —xz)log(l — z), z € (0,1)
Ir(xz) = < log2, r=0orl
00, otherwise.

(iv) Show that for A = (—00,1/2—€)U(1/2+€,00) with 0 < e < 1/2, we
have infyec a0 Ip(z) = inf 5 Ip(z) = Ir(1/2 — €) = Ir(1/2 + ¢€), which is

1 1 1 1
log2+<§e>log(§e>+<§+e>log(§+e) > 0.

6.36. This exercise is associated with the proof of consistency of the LSE
in Section 6.7, where X,,; is defined below (6.82).

(i) Verify expression (6.82).

(ii) Show that (6.83) implies Y., E(X2,) — 0, which, in turn, implies
(6.16) and (6.17); that is, in fact,

D E{Xnil(x,.<n} — 0,

i=1

Z V&I‘{Xnil(|xm|§7-)} — 0

i=1

for any 7 > 0.

(iii) Show that (6.83) for every 1 < j < p is equivalent to (6.84).

(iv) Interpret the quantity > i, (z; — Z)? in Example 6.14.

6.37. This exercise is associated with the proof of asymptotic normality of
the LSE in Section 6.7.
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(i) Show that the left side of (6.86) is equal to (6.87) and that Y, ¢, = 1.

(ii) Show that (6.88) holds for every A € R?P provided that (6.89) holds.

(iii) Show that in Example 6.14, the left side of (6.89) reduces to (6.90).

6.38. Suppose that €;, i > 1, are i.i.d. such that E(¢;) = 0 and E(¢?) < oc.
Show that 221 c;€; converges a.s. for any sequence of constants ¢;, 1 > 1,
such that >°°°. ¢? < oo.

i=1 "%
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Empirical Processes

7.1 Introduction

In Section 6.6.1 we discussed a topic that was somehow different from the
rest of Chapter 6. There, the subject being dealt with was a random function,
instead of a random variable. A closer look reveals that the random function
was constructed based on sum of i.i.d. random variables and equal to the latter
at particular values of its variable. Since, in practice, random variables often
represent observations, we call a function constructed from observed random
variables a statistical function.

As it turns out, these statistical functions are of great practical interest and
therefore deserve some more extensive discussion. For the most part, we will
focus on one particular class of statistical functions, called empirical processes.
Let X1, Xs5,... be a sequence of i.i.d. random variables with the common
distribution function F. The empirical distribution function (empirical d.f.)
is defined as

1 n
Fo(w) = — > lLixi<a), —00 <z <00, (7.1)
i=1

Although it might look simple, (7.1) is not the easiest thing in the world
to understand. Here, the X;’s are observations and x is the variable of the
function. For each realization of the X;’s (i.e., realized values of X;,...,X,,),
(7.1) defines a function of z, which is a step function with jumps at the
realized values X1, ..., X, (Exercise 7.1). Note that the indicator 1(x,<;) =1
if X; < x, and 0 otherwise; or, in terms of a function of z, 1(x,<z) = 1 if
x > X;, and 0 otherwise. After all, since the X;’s are random, the function
(7.1) is also random. In other words, for different realized values Xy, ..., X,,
(7.1) defines a different function.

According to the SLLN (see Section 6.3), for each z the empirical d.f.
converges a.s. to E{l(x, <} = P(X1 < 2) = F(z) as n — oo. In fact, a
stronger result holds: The a.s. convergence is uniform in that

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2 7, © Springer Science+Business Media, LLC 2010
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sup |F(z) — F(z)] 220 (7.2)

as n — oo (see below). We then consider a centralized and normalized version
of the empirical d.f. defined by

V{F,(z) — F(z)}, —oo <z < oo0. (7.3)

The (random) function (7.3) is called an empirical process.

Dehling and Philipp (2002) noted that, to the surprise of many statisticians
and probabilists, the study of empirical processes can be traced back to a
paper by German mathematician Hermann Weyl in 1916. In this seminal
paper, Weyl streamlined the theory of uniform distribution mod 1, and here

is what it is. Let n;, ¢ = 1,2,..., be an increasing sequence of integers. For
any w € [0,1), define X;(w) = {n;w}, where {z} denotes the fractional part
of x. The sequence X1, X5, ... can be viewed as random variables defined on

the probability space ([0,1), B, P), where B denotes the Borel sets on [0, 1)
and P denotes the Lebesgue measure. Each X; has a uniform distribution in
that P(X; <z) =z for 0 <z < 1; however, the X;’s are dependent (Exercise
7.2). Let F,,(x) denote the empirical d.f. of X;, 1 < ¢ < n, defined by (7.1).
Weyl proved that sup,¢jo 1) [Fn(z) — 2| — 0 for all w € [0, 1), except possibly
on a set of Lebesgue measure 0.

The restriction to uniform distribution as Weyl did is, actually, without
loss of generality. In fact, the Uniform distribution on (0, 1) plays a particular
and very important role in the study of empirical processes due to the following
theorem called inverse transformation.

Theorem 7.1 (The inverse transformation). Let £ ~ Uniform(0,1) and F
be a cdf. Define

F7l(t) =inf{x: F(z) > t}, 0<t<1. (7.4)
Then X = F~1(¢) ~ F. In fact, X < x if and only if ¢ < F(z).

Proof. By the definition it can be shown that X < z if and only if £ < F(x).
Therefore, P(X < 2) = P{¢ < F(x)} = F(z) and this completes the proof.
QE.D.

The function F~! corresponds to the quantiles of the distribution F.

Theorem 7.1 allows us to simplify the study of empirical processes to
that of one particular empirical process, the one of Uniform random vari-
ables. More precisely, let &1, s, . .. be a sequence of independent Uniform(0, 1)
random variables. Denote the empirical d.f. and empirical process of the
& by G,(t) and U,(t), respectively; that is, G,(t) = n=' Y ", L(¢, <ty and
Un(t) = vVn{Gn(t) — t} for t € [0,1]. Then the empirical d.f. F,, defined by
(7.1) and G, (F) have identical distribution in the sense that for any k > 1
and x1 < --- < g, the random vectors
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[Fn(z1), ..., Fo(zr)] and [Gu{F(z1)},...,Gpn{F(zk)}] (7.5)

have an identical joint distribution (Exercise 7.3). Similarly, the empirical
processes y/n(F, — F) and U, (F) have an identical distribution. Conversely,
if we begin with the sequence {&;} and define X; = F~1(&;), i > 1, then for
the sequence {X,}, we have

Fp = Gu(F) and n(F, — F) = U,(F). (7.6)

For these reasons we often focus on the empirical process U, in the sequel,
which we call the uniform empirical process, with the understanding that
similar results may be easily derived for F;, using the connection. It should be
noted that although the chapter is entitled “Empirical Processes” following
the tradition of the literature in this field, the discussions in the sequel involve
both the empirical d.f. and the empirical process. Most of the proofs of the
results can be found in Shorack and Wellner (1986); otherwise, references will
be given at the specific places.

A more convenient notation for the uniform empirical process is U, =
Vn(G,, — I), where I represents the identical function, I(t) = ¢ for ¢ € [0, 1].
Similarly, we call G, the uniform empirical d.f. For any functions z and y on
[0,1], define the uniform or supremum metric

o=yl = sup [a(t) ~ (o). (1)

Note that this is the same metric introduced earlier by (6.63) for functions
in the space C of continuous functions on [0, 1] (see Section 6.6.1). It is easy
to verify that (7.7) remains as a metric for all functions on [0, 1]. Another
subspace of functions on [0, 1] is all functions on [0, 1] that are right-continuous
and possess left-limit at each point. This subspace is denoted by D.

7.2 Glivenko—Cantelli theorem and statistical functionals
We begin with the following celebrated result due to Glivenko and Cantelli.
Theorem 7.2 (Glivenko-Cantelli theorem). |G, — I|| 2% 0 as n — oo.

The Glivenko—Cantelli theorem may be regarded as a uniform SLLN for
the empirical d.f. It might appear that the result follows directly from Pdélya’s
theorem (Example 1.6), because G, (t) = t for each ¢ by SLLN (Section
6.3), and the function F'(t) =t is continuous. However, the convergence here
is a.s., which means that for each t € [0, 1], there is a set of probability 0
for which the convergence does not hold, and this set may be different for
different ¢. On the other hand, to derive the Glivenko—Cantelli theorem from
Pélya’s theorem one needs to verify that G, T a.s.; that is,
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P{ lim Gn(t) =t,Vt € [0,1]} =1,
which may not be so obvious. However, a similar e-§ argument to Example
1.6 leads to the proof of Theorem 7.2 (Exercise 7.4). We consider some appli-
cations of the Glivenko—Cantelli theorem.

Ezample 7.1. The previous result (7.2) is now seen as a consequence of,
and therefore equivalent to, the Glivenko—Cantelli theorem. This is because,
by Theorem 7.1 and independence, the sequence X, =F &), i > 1, has
the same (joint) distribution as X;, i > 1. Therefore, the empirical d.f. F,, of
the X;’s has the same probabilistic behavior as the empirical d.f. of the X;’s,
denoted by F},. On the other hand, we have, by (7.6), sup, |F,(z) — F(z)| =
sup, |G {F(x)} — F(z)| < sup, |Gn(t) —t| = ||Gn — I|| 2% 0 as n — oo,
which implies (7.2). Of course, (7.2) implies the Glivenko—Cantelli theorem as
a special case. This example shows, once again, how effective the strategy is
to simply focus on the uniform empirical d.f.

Example 7.2. The inverse uniform empirical d.f. G, ! is, by (7.4), the func-
tion G, (t) = inf{x : G, (x) > t}. There is a more explicit expression of G}, .
Let &,,; denote the ith order statistic of &;,...,&,; that is, £, 1 < -+ < &pm

is &1,...,&, arranged in an increasing order. Then we have
. i1 i ,
G, (t)=¢&,,; if <t<— for1<i<n (7.8)
n
(Exercise 7.5). Furthermore, it can be shown that |G — I|| = |G, — ||

(Exercise 7.5). Thus, by Theorem 7.2, we have ||G;;* — I|| 2% 0 as n — oc.
By (7.8), this implies that

a.s.
max sup |€n,i —t] — 0, asn — oo.
1Sisn (i—1) /n<t<i/n

In particular, the result implies that
i

gn,i -

n

a.s.
max —0

1<i<n

as n — oo. The latter result may be interpreted as that, asymptotically, the
ith order statistic of &3, ..., &, converges to ¢/n uniformly in 1.

Some more applications can be brought about by considering statistical
functionals. The concept of functionals was introduced in Section 6.6.1. Let
h be a functional defined on the space D of cdf’s. In other words, hA(F) is a
map from F' € D to h(F') € R. Below are some examples.

Ezxample 7.3. Let a be a fixed point and consider h(F) = F(a).
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Ezample 7.4 (The quantile). For any fixed 0 < t < 1, consider h(F) =
F~1(t) defined by (7.4). In particular, if ¢ = 0.95, then h(F) is the 95th
quantile of the distribution F'.

Ezample 7.5. The mean or expectation functional is defined as h(F) =
pr = [ @ dF(z). More generally, for any positive integer p, the pth moment
of F is the functional h(F) = Ep(X?) = [P dF(z); the pth central moment
of F is the functional h(F) = f(m - up)p dF(z).

A functional h is continuous at F' if for any sequence H,, of cdf’s, ||H, —
F|| — 0 implies h(H,) — h(F). As an immediate consequence of Theorem
7.2 (and Example 7.1), we have the following theorem.

Theorem 7.3. Let X1, X5, ... be i.i.d. with distribution F' and let F,, be
the empirical d.f. of (7.1). If h is continuous at F, the h(F,) *% h(F) as
n — 00.

We consider some applications of Theorem 7.3.

Ezxample 7.8 (continued). It is easy to verify that h is continuous (Exercise
7.6); hence, by Theorem 7.3, we have Fy,(a) = h(F,) 2% h(F) = F(a). On
the other hand, the latter follows directly from the SLLN.

Ezample 7.4 (continued). It can be shown that, for any fixed ¢, the quantile
functional A is continuous provided that F~! is continuous in a neighborhood
of t (Exercise 7.7). It follows by Theorem 7.3 that F,'(t) &% F~1(t) as n —
0. It should be pointed out that the continuity of F~! (in a neighborhood of
t) cannot be dropped (Exercise 7.7).

Example 7.5 (continued). The expectation functional h is not continuous
at F' even if F' has a finite expectation. To see this, let ¢, be a sequence of
positive numbers such that €, — 0 as n — oco. Let A,, be a distribution such
that h(A,) = [x dA,(z) = €, . Consider H, = (1 — €,)F + €, 4,,.. Then we
have ||H - F|| = €p||An — F|| = 0 as n — oo (why?). On the other hand,
we have h(H,) = (1 — €,)h(F) + ex,h(An) = (1 —ex)h(F) +1 — h(F)+ 1 as
n — o0; hence, h is not continuous at F. By a similar argument, it can be
shown that the functionals of higher moments are not continuous at F' even
if the corresponding moments of F' exist. On the other hand, the result

ZX 22 Ep(Xy) = h(F)

as n — oo follows directly from the SLLN.

The above examples show that whereas being a useful result conceptu-
ally, Theorem 7.3 may not be an efficient way of establishing almost sure
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convergence. It is most useful, in practice, if the functional h is known to
be continuous (so that one does not need to verify its continuity); otherwise,
checking the continuity of h may take as much effort as directly showing the
a.s. convergence (see Exercises 7.6 and 7.7). Furthermore, there are situations
where h is not continuous, such as Example 7.5, so that Theorem 7.3 does
not apply; nevertheless, a.s. convergence of h(F),) to h(F) may still be eas-
ily established. The reason for this is that the sequence of empirical d.f. F,
is not an arbitrary class of cdf’s. In the next section we further explore the
asymptotic behavior of this special class of distributions.

7.3 Weak convergence of empirical processes

Consider the uniform empirical process U, defined in Section 7.1. For any
fixed t € [0, 1], by the CLT we have, as n — oo,

Unt) = Vi{Galt) — 1}
%Z{l@isw —1)

4 N{0,¢(1 — )}

However, this result is considered “the easier part” compared to a much
stronger result to follow. More generally, for any distinct ¢1,...,t; € [0, 1],
the joint distribution of Uy, (¢1),. .., Un(tx) is asymptotically multivariate nor-
mal with mean 0 and covariance matrix X = (0yuy)1<u,v<k, Where o, =
cov{Upn(ty), Un(ty)} = tu Aty — tyty. This follows from a multivariate ver-
sion of the CLT or can be derived from the (univariate) CLT and The-
orem 2.14 (Exercise 7.8). It also uses the fact that E{U,(t)} = 0 and
cov{Uy,(t),U,(s)} = sAt—st, s,t € [0,1]. Still, the latest result is considered
“the easier part.”

The “harder part” is to establish convergence in distribution of the em-
pirical process in a functional space. To state this much stronger result, we
need to first introduce an important process. Recall the definition of Wiener
process, or Brownian motion, in Section 6.6.1. Here, for notation convenience
we denote the Wiener process by W (t), 0 < t < 1. The stochastic process
U(t) = W(t) —tW (1) is called a Brownian bridge. A stochastic process {x(¢)}
is called a Gaussian process if for any t; < --- < tg, the joint distribu-
tion of z(t1),...,z(tx) is (multivariate) normal. Note that the Wiener pro-
cess is a Gaussian process such that for any 0 < t; < -+ < tx < 1, the
random variables W (te) — W (t1),..., W (tx) — W(tx—1) are independent and
distributed as N(0,to — t1),...,N(0,tx — trx—1), respectively. It follows that
a Brownian bridge is also a Gaussian process such that E{U(¢)} = 0 and
cov{U(s),U(t)} = s At —st, s,t €[0,1] (Exercise 7.9). Earlier we introduced
the space D of right-continuous functions on [0, 1] that possess left-limit at
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each point. Let D denote the o-field generated by the finite-dimensional sub-
sets of D (see Appendix A.2). Also, recall the uniform metric || - || defined by
(7.7). In Section 6.6.1 we extended the concept of weak convergence to a metric
space. Let &, be a sequence of D-valued random variables on a common prob-
ability space (§2, A, P). We say &, converges in distribution to &, a D-valued

random variable on (£2, A, P), and denote this by &, 4 ¢on (D,D, | -) if
P&t s PETas n— oo, where P! is the induced probability measure
by &,; that is, P&, Y(B) = P(&, € B) for B € D, and P¢~! is the induced
probability measure by £ in a similar way. An important and useful result is
that &, —& ¢ if and only if E{g(&.)} — E{g(&)} for any bounded continuous
function g on the metric space (D, || - ||). It then follows another very useful
result called continuous mapping theorem, which is an extension of Theorem
2.12 to a metric space: If &, 4, &, then ¢(&,) 4, g(&) for any continuous
function g on (D, || - ||). (Note that the boundedness of g is not required for
the continuous mapping theorem.) In 1949, Doob conjectured the following
result in a landmark paper, which was later proved by Donsker (1952).

Theorem 7.4 (Doob-Donsker). U, 4 Uon (D, D] - ||) as n — oo,
where U is the Brownian bridge.

It should be noted that a stronger result such as Theorem 7.4 is not mo-
tivated by, or developed for, mathematical interest. There are situations of
applications where the weaker results given at the beginning of this section
are simply not enough. As an example, we consider some applications of The-
orem 7.4 to the well-known Kolmogorov—Smirnov statistics.

Let X4,...,X, be independent observations with an unknown common
cdf F'. The problem of interest is to test the hypothesis

Hy: F(x) = Fy(z), —oco<z <00 (7.9)
against one of the following alternatives:

H, : F(x) # Fo(z) for some x
H{" : F(z) > Fy(z) and > hold for some z
H| : F(z) < Fo(x) and < hold for some z,

where Fj is the hypothesized cdf. The Kolmogorov—Smirnov test statistics for
Hj against the three alternatives are respectively

D, = sgp |Fy(z) — Fo(z)], (7.10)
Dy = sup{Fu(@) = Fo()}, (7.11)
D, = sgp{Fo(x) — Fo(2)}, (7.12)

where F), is the empirical d.f. defined by (7.1).
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These statistics are, of course, very intuitive, but their null distributions
which are used to determine the critical values of the tests are not easy to
obtain, especially for large n. Fortunately, Theorem 7.4 allows us to derive the
asymptotic null distributions of the Kolmogorov—-Smirnov statistics, which can
be used as approximations when 7 is large. To see this, note that under (7.9)
and by (7.6) we have, for any A,

PWVD] £ 3) =P [sup Vi (F (o) ~ F(@) <
_p [sgp Un{F(2)} < A] . (7.13)

Suppose that Fy is continuous. Then, under the null hypothesis, the range of
F, R(F)={F(x),—00 <z < oo} = [0,1] (why?). Therefore, we have

supU,{F(2)} = sup U,(t) = sup Up,(t).
x teR(F) 0<t<1

It can be shown (Exercise 7.10) that the function g(x) = supg<,<; #(t) is
continuous on (D, || - ||). Thus, by Theorem 7.4 and the continuous mapping

theorem (above Theorem 7.4), we have supy<,<; Un(t) = g(Un) 4 g(U) =
supp<;<1 U(t); hence, the right side of (7.13) converges to P{supy<;<; U(t) <
Ap=1- P(||U+|| > \) asn — oo, where ut = uV0. Note that supy<,<; U(t) =
SUpg<i<; UT(t) = ||U™T|| with probability 1. It can be shown (e.g., Shorack and
Wellner 1986, pp. 34-37) that for any A > 0,

P(IU > A) = exp(~2)2).
Therefore, we conclude that, under (7.9),

lim P(v/nD;” <\) =1 —exp(—2A?) (7.14)

n—oo

for A > 0, and 0 otherwise. Similar arguments show that

lim P(v/nD, <)) =1—exp(—2)\?), (7.15)
lim P(v/nD, <\) =1 —22 I~ exp(—25%22) (7.16)

for A > 0, and 0 otherwise under the null hypothesis (7.9).

The limits (7.14)—(7.16) are derived under the assumption that Fj is con-
tinuous and may not hold if the latter assumption fails. In fact, Wood and
Altavela (1978) considered Kolmogorov—Smirnov tests for discrete hypothe-
sized distribution. By virtually the same arguments as above, the authors
showed that when Fjy is discrete with set J of discontinuity points, the right
sides of (7.14) and (7.15) should be replaced by
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P |:I£1€a}( U{Fy(z)} < )\] (7.17)
and the right side of (7.16) should be replaced by
P {r;lg§|U{F0(a:)}| < )\} . (7.18)
Unlike (7.14)—(7.16), there are no closed-form expressions for (7.17) and (7.18),

in general. Nevertheless, these expressions may be evaluated by Monte—Carlo
methods (Exercise 7.11).

7.4 LIL and strong approximation
Let us begin with the following theorem due to Smirnov (1944).

Theorem 7.5. limsup ||U,||/v/2loglogn = 1/2 a.s. The same result holds
with U,, replaced by U, or U, .

Chung (1949) strengthened Smirnov’s result by showing that for any non-
decreasing sequence of positive numbers \,,, the probability P(||U,| > A, i.0.)
is 0 or 1 depending on whether or not the infinite series

0o )\2
> M exp(-22)
n=1

converges [recall the definition of i.o. in Section 6.6.1, halfway between (6.67)
and (6.68)]. That Chung’s result implies Smirnov’s is left to the reader as an
exercise (Exercise 7.12).

Another interesting result called the “other LIL” is the following.

Theorem 7.6 (Mogulskii). liminf \/2loglogn|U,| = 7/2 a.s.

Note that there is no “contradiction” between Theorem 7.5 and The-
orem 7.6. Theorem 7.5 is regarding the upper limit of ||U,| divided by
v2loglogn, whereas Theorem 7.6 is about the lower limit of ||U,| multi-
plied by v/2loglogn, and ||U,||/v2loglogn < v/2loglogn||U,| for large n.
In fact, Theorem 7.6 is similar to another classical result due to Chung (1948):
If X1, X5,... are i.i.d. with mean 0 and variance 1, then

L 2loglogn
liminf 4/ ———— max
n 1<k<n | &

k
>
1

Since the sample path of U, belongs to D, it it natural to consider a
functional LIL similar to what we considered in Section 6.6.1. Let (M, p)

s
= — a.s.

2
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be a metric space and S C M. Let &,,n > 1, be a sequence of M-valued
random variables on a probability space (£2,.4, P). We say the sequence is
a.s. relatively compact with respect to p on M with limit set S, denoted by
&, r.c. S wrt. pon M as., if there exists A € A with P(A) = 1 such that
the following conditions (i)— (111) hold for each w € A:

(i) Every subsequence n’ has a further subsequence n” for which &, (w)
converges with respect to p [in other words, &, (w),n > 1 is a Cauchy sequence
with respect to p].

(ii) All of the p-limit points of &, (w) belong to S.

(iii) For any s € S, there is a subsequence n’ (which may depend on s and
w) such that p{& (w), s} — 0.

Recall the subset K of C defined in Section 6.6.1 [see (6.69)]. Since C' C D,
K is also a subset of D. Finkelstein (1971) proved the following result.

Theorem 7.7. U, /v/2loglogn r.c. K w.r.t. || -] on D a.s.
We consider an example as an application of Theorem 7.7.

Ezample 7.6. Finkelstein (1971) showed that

1

1
~ t)dt:zeKp = —.
bup{/ox() x € } -

Also, it can be shown that the functional g(z) = f ) dt is continuous
with respect to || - || on D (Exercise 7.13). It follows from Theorern 7.7 that

1
. U2(t)ydt 1
hmsup JS]()ngn = F a.s. (719)

A few words about LIL for a general empirical process (7.3). An extension
of Theorem 7.5 states that

Vn(F, —F)| _ 1

limsup —————== < = as. 7.20
P v2loglogn 2 ( )
with equality if 1/2 is in the range of F'. For example, if F' is continuous, then
the latter certainly holds; hence, the equality holds in (7.20). On the other
hand, Theorem 7.6 extends without any modification; that is,

lim inf y/2loglog n||v/n(F, — F)| = g a.s. (7.21)

In a way, the LIL describes the precise a.s. (or strong) convergence rate of
the empirical process. There are similar results on the a.s. convergence rate
of the empirical process, which may not be as precise as the LIL in terms
of the rate but more useful in some other regard. For example, sometimes
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a “second-order” approximation is needed in applications. To illustrate this,
note that Theorem 7.4 states that the weak convergence limit of Uy, is U, the
Brownian bridge. Although, in general, weak convergence does not necessarily
imply a.s. convergence (see Chapter 2), the Skorokhod representation theorem
(Theorem 2.18) states that there is a version of U,, and U defined on a common
probability space such that U,, 22 U. Here, a version of U, and U means
a sequence of random variables having the same distributions as U,, and U,
respectively. See Theorem 2.18 for the precise definitions. So, in a certain
sense, the Brownian bridge is also the a.s. limit of U,. The question then is
what is the a.s. convergence rate of U,, — U in the same sense? Such a problem
is often referred to as the strong approximation of empirical process.

The Skorokhod representation is useful in establishing results of weak con-
vergence, or convergence in probability; however, it does not help in deriving
results of a.s. convergence. The reason is that Skorokhod representation tells
nothing about the joint distribution of Uy, Us, .. ., which is something involved
in the a.s. convergence. An improvement of the Skorokhod representation is
called the Hungarian construction, which began with the pioneering work of
Csorgd and Révész (1975). The following is one of the fundamental results.

Theorem 7.8 (The Hungarian construction). There exists a sequence
of independent Uniform(0, 1) random variables &1,&s,... and a sequence of
Brownian bridges U™, n > 1, such that

n
lim sup L HU" —UM| <¢ as.,
(logn)?
where U, is the empirical process of &1, ...,&, and c is a finite constant.

See Chapter 12 of Shorack and Wellner (1986) for further results on the
Hungarian construction. An application is considered later in Section 7.8.

7.5 Bounds and large deviations

There is a rich class of probability inequalities for empirical processes (e.g.,
Shorack and Wellner 1986). These inequalities play important roles not only
in establishing the limit laws, such as SLLN and LIL, but also for obtaining
bounds for deviations of the empirical processes. Many of these inequalities
are maximum inequalities. For example, those regarding ||U,,| are maximum
inequalities because, by definition, ||Uy,|| is the supremum, or maximum, of
U, (t) for t € [0,1]. We begin with the following well-known James inequality.

Theorem 7.9. For any 0 < p < 1/2 and A > 0, we have

P(|27],23) <o {5 Gor )}
A xpi——g (2 L
1-TIl, " q)~ 2pq " \py/n
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where |25 = sup, << [2()], U,S /(1—1I) denotes the process U, (t)/(1—t),t €
[0,1) (recall at =aV0),g=1—p, and

Y() = [0+ w){log(1 +u) — 1} +1]. (7.22)

Some properties of 1 are left as an exercise (Exercise 7.14). Regarding U, ,
we have the following result.

Theorem 7.10 (Shorack). For any 0 < p < 1/2 and 0 < A < /np, we

have
(o] 22) s o (20} o ()

where U,; /(1 — I) denotes the process U,; (¢t)/(1 —t),t € [0,1) (recall a= =
—a A 0), and ® is the same function defined by (7.22).

1-1

Ezample 7.7. Consider the special case of p = ¢ = 1/2. Let A = ep\/n,
where 0 < € < 1. Then Theorem 7.9 implies

+
P(\ U
1—

whereas Theorem 7.10 implies

P ( 1z N 6\/5> < exp {%p(e)n} A exp <§n) . (7.24)

0
Note that 1 < ¢(—e€) < 2 [part (e) of Exercise 7.14]. Thus, the first term on
the right side of (7.24) is greater than the second term. It follows that

3=

Also note that 9(e) <1 and ¢(¢) — 1 as e — 0 [parts (d) and (a) of Exercise
7.14]. Tt follows that the bound on the right side of (7.23) is greater than that
on the right side of (7.25), but, as ¢ — 0, the bounds are approximately equal.

s w) < exp {§w<e>n}, (7.23)

1-1

> e\/ﬁ) < exp <—§n> . (7.25)

Another interesting result is a maximum inequality regarding a uniform
empirical process indexed by subintervals of [0, 1]. For any C' = (s,t], where
0 <s<t<1,define U,(C) = U,(t) — Uy(s) and |C| = t — s. Mason, Shorack
and Wellner (1983) proved the following.

Theorem 7.11. For any 0 < a < b <1/2 and A > 0, we have
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p {lgtllga Un(C)| = Aﬁ} < % exp {—(1 - b)“A; (\/%) } :

where 9 is the function defined by (7.22).

A celebrated inequality for empirical processes is known as DKW inequal-
ity, named after Dvoretzky, Kiefer, and Wolfowitz.

Theorem 7.12 (DKW inequality). There exists a constant ¢ such that

1 2
SPUU =) < P(UZ [ = 4) < ee™, A >0. (7.26)

In the original paper of Dvoretzky et al. (1956), the authors did not specify
the value of the constant ¢. Birnbaum and McCarty (1958) conjectured that
¢ can be chosen as 1. By tracking down the original proof of Dvoretzky et al.
(1956), Shorack and Wellner (1986) showed that ¢ = 29 is good enough while
acknowledging that this is not the minimum possible value. Hu (1985) showed
that the constant can be improved to ¢ = 2v/2. Massart (1990) finally proved
Birnbaum and McCarty’s conjecture by showing that ¢ can be chosen as 1 as
long as e~2Y" < 1/2 [of course, it has to be because the left side of (7.26) is
bounded by 1/2], and the value cannot be further improved.

As a demonstration of the DKW inequality (with the best constant c),
consider the following example.

Example 7.8. Let X;,..., X, be ii.d. observations with an unknown con-
tinuous distribution F'. Suppose that one wishes to determine the sample size
n so that the probability is at least 95% that the maximum difference between
the empirical d.f. F,, and F' is less than 0.1. This means that one needs to
determine n such that

P {sup |F(z) — F(2)| < 0.1} > 0.95. (7.27)
By (7.6) and continuity of F', we see the left side of (7.27) is equal to
P [sup |G {F(z)} — F(z)| < O.l]

- P{ sup |Ga(t) —t] < 0.1}

0<t<1
= P(|[U.] < 0.1v7)
= 1= P(|U.] > 0.1V),

which is > 1 — 2e7992" by the DKW inequality with ¢ = 1. Thus, it suffices
to let 1 — 279927 > (.95, or n > 185.
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We conclude this section with some results on large deviations of the em-
pirical d.f. The results are similar to those discussed in Section 6.6.2. For
simplicity, we will focus on the uniform empirical d.f. G,,. First, note that the
latter can be expressed as n='S,, where S, = 7" | Y; with ¥; = 1(x,<,) and
Y1,Ys, ... is a sequence of i.i.d. random variables. Using the general result of
Section 6.6.2, it can be shown that for each ¢ € [0, 1] and § > 0, we have

lim_ %log[P{Gn(t) > 46 = —(5,1), (7.28)
where f(d,t) = (t + &) log{(t +0)/t} + (1 —t — ) log{(1 =t —9)/(1 —¢t)} if
0<d6<1-—tand f(d,t) =00 if 6 > 1 —t (Exercise 7.16).

To derive a result of large maximum deviation regarding G,,, we consider
Dy = |[(Gn— DA, DY, = (G, —I)"h|, and D, = ||(G, — I)~h||, where
h is any function on (0, 1) satisfying the following conditions:

(i) h is positive and continuous on (0, 1);

(ii) h is symmetric about 1/2 and lim;_, h(t) exists or is co.

An obvious example of h is h = 1 (or any positive constant). Another example
is h(t) = —log{t(1 — t)}. For any such function h, we define
Ii\) = inf f{N/A(D),t). (7.29)
te(0,1)
Some properties of Ij, are explored in an exercise (Exercise 7.17). Shorack and
Wellner (1986) proved the following result.

Theorem 7.13. For any h satisfying conditions (i) and (ii) above, we
have, for each A\ > 0,

1
lim —log{P(Dyn > A} = —In(N),

n—oo n,

where I, (A) is defined by (7.29). The same result holds with D, ;, replaced
by D:’h or D, .

7.6 Non-i.i.d. observations

There have been a number of extensions of the Glivenko—Cantelli theorem.
One extension considers the so-called triangular arrays X,1,..., Xn, so that
for each n, the X,,;’s are independent with X,; ~ F},;. We then define

n

ZFm(x), —00 < T < 00. (7.30)

1
n
i=1

The empirical d.f. of the X,,;’s is defined as

1 n
Fo(x) = - Z L(x,;<a), —00 <z < 00. (7.31)
i=1
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The following theorem extends the Glivenko—Cantelli theorem to triangular
arrays, where the supremum norm || - || is defined similarly as (7.7); that is,

|IF—G||= sup |F(z)—G(z)| (7.32)

—oo<xr <o

Theorem 7.14. For the F,, and F}, defined by (7.31) and (7.30), respec-
tively, we have ||F,, — F,|| 22 0, as n — oo.

Another extension of the Glivenko—Cantelli theorem is to stationary er-
godic sequences. A sequence of random variables X;, i > 0, is said to be
(strictly) stationary if for any & > 0, the joint distribution of (Xy41, X2, --)
is the same as that of (X, X1,...). If (£2, A, P) is a probability space, a mea-
surable map T: 2 — §2 is said to be measure-preserving if P(T~1A) = P(A)
for all A € A, where T7'A = {w € 2,T(w) € A}. Any stationary se-
quence {X;} may be thought of as being generated by a measure-preserving
transformation 7' in the sense that there exists a random variable X de-
fined on a probability space (£2,.4, P) and a map T: 2 — {2 such that the
sequence XT% i > 0, has the same joint distribution as X;,i > 0, where
XTHw) = X{T (w)}, w € 2, and XT? = X. The sequence X;,i > 0 is said
to be ergodic if the transformation T satisfies the following: For any A € A,
T—'A = Aimplies P(A) = 0 or 1. An extension of the SLLN is the following.

Ergodic Theorem. If T' is measure-preserving and E(]X|) < oo, then
1 n—1 )
=3 XT'ES B(X|T),
n
i=0

where Z = {A € A: T7'A = A}, which is a o-field called the invariant o-field
(with respect to T').

The ergodic theorem can be used to establish the following extension of
the Glivenko—Cantelli theorem [see Dehling and Philipp (2002) for the proof].

Theorem 7.15. Let X;,7 > 0 be a stationary ergodic sequence with com-
mon cdf F, and F,(z) = n~1 Z?;Ol L(x;<z)- Then ||F, — F|| 22 0 as n — oo.

The behavior of the empirical d.f. (7.31) is closely related to that of
the so-called generalized binomial distribution. Let &1, ..., &, be independent
Bernoulli random variables with probabilities of success pi,...,pn, respec-
tively. The distribution of £ = & + --- 4 &, is called generalized binomial.
It is clear that the summation in (7.31) has a generalized binomial distri-
bution, in which &§ = 1(x,,<q) and p; = Fyi(z), 1 < i < n. On the other
hand, let p = (p1+- - - +pn)/n, and let i denote a random variable that has a
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Binomial(n, p) distribution. Hoeffding’s (1956) inequalities show that the gen-
eralized binomial random variable ¢ is more dispersed than its counterpart n
in the sense described by the following lemma.

Lemma 7.1. (i) For any a and b such that 0 < a < np < b < n we have
P(a < £ <b) <P(a <n<b) with equality holds if and only if p; = --- = p,,
unless a = 0 and b = n. (ii) For any function g satisfying

gk) +g(k+2)>29(k+1), 0<k<n-—2, (7.33)
we have E{g({)} > E{g(n)}.

Note that condition (7.33) is satisfied by all convex functions. Hoeffding
originally required g(k)+g(k+2) > 2¢g(k+1), 0 < k < n—2 instead of (7.33)
(also see Shorack and Wellner 1986, p. 805). With a simple argument, it can
be shown that this requirement can be relaxed to (7.33) (Exercise 7.18).

The result of weak convergence of empirical processes discussed in Section
7.3 also has extensions to non-i.i.d. cases. Let Fy;, 1 < i < n,n > 1, be an
array of arbitrary distributions on [0,1] and let X,,;, 1 <i <mn,n > 1, be an
array of random variables such that for each n > 1, X,,;, ..., X,,,, are indepen-
dent with distributions F1, ..., F,, respectively. Let w, = (wpi)1<i<n,n >
1, be a sequence of nonzero constant vectors. Consider the following weighted
empirical process:

Zn(t Zwm{1(xm<t) — Fu(t)}, 0<t<1. (7.34)

|wn‘

It is easy to show (Exercise 7.19) that
cov{Zn(s), Zn(t)} |w |2 Zwm{Fm SAt) — Fpi(s)Fpni(t)}. (7.35)

Consider a function closely related to (7.35): v, (t) = |w,| 2 Y i, w2, Fpi(t).
The following theorem, which is a special case of Theorem 3.3.1 of Shorack
and Wellner (1986), extends the Doob—Donsker theorem (Theorem 7.4).

Theorem 7.16. If |w,| =2 maxi<;<, w2, — 0 and maxi <<y, || Fni —I]| — 0

as n — oo, then Z, <, U, the Brownian bridge, on (D, D, || - ||) as n — oo.

As for sequence of dependent random variables, Billingsley (1968, Section
22) proved weak convergence of empirical process of stationary y-mixing se-
quence. Let ..., X_1, X, X1, ... be a stationary sequence of random variables.
For any —oo < k < o0, let F*__ = o(X;,i < k), where o(X;,i € I) represents
the o-field generated by X;, i € I, and F° = o(X;,7 > k). The sequence is
said to be p-mixing if for any —oco < k < 0o and n > 1, we have
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[P(Ey N Ez) — P(E)P(Ey)| < o(n)P(E) (7.36)

for any By € F*__ and E, € Fg3,,. Note that if P(E1) > 0, (7.36) is equivalent
to |P(Ez|E1) — P(E2)| < ¢(n). Roughly speaking, the mixing condition states
that there is a decay in dependence as the random variables in the sequence
are further apart and the rate of decay is controlled by ¢. It is required that

lim ¢(n) = 0. (7.37)
For example, in the following theorem due to Billingsley, the rate of decay
©(n) is further specified.

Theorem 7.17. Let {X;} be stationary p-mixing and X; € [0,1]. Let
F be the cdf of X; and let F), be the empirical cdf defined by (7.1). If F' is
continuous and 3>, n2,/ip(n) < oo, then y/n(F, — F) - Z on (D, D, | -||)
as n — oo, where Z is a Gaussian process satistying E{Z(¢)} = 0 and

cov{Z(s), Z(t)} = E{gs(Xo0)g:(X0)}

+ Z[E{gs(Xo)gt(Xi)} + E{gs(X4)g:(Xo) },

i=1

with g¢(z) = 1o<z<t) — F(z) and P(Z € C) = 1 (i.e., with probability 1 the
sample path of Z is continuous).

There is vast literature on extensions of the results of empirical processes
to various non-i.i.d. cases. See, for example, Dehling et al. (2002).

7.7 Empirical processes indexed by functions

Another way of extending the results is to think of the empirical processes as
a statistical functional (see Section 7.2). Note that (7.1) can be written as

Pu() = 2 D0 S(X0), (7.39)

where f(y) = 1(y<z). Alternatively, one may define the empirical measure as
P,=n""1 Yo 0x,, where &, represents a point mass at y. Then the functional
(7.38) can be expressed as P,(f) = [ fdP,. The empirical process, with the
original definition of (7.1), may be viewed as the image of a special class of
functions under Py; that is, {P,(1(—sc,4]),* € R}, where 14(y) = 1 ify € A
and 0 otherwise. More generally, one may consider the process {P,(f), f € F}
for an arbitrary class of functions F and call it an empirical process (indexed
by functions). Note that for each f € F, (7.38) is a random variable [which is
why {P,(f), f € F} is a process].
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Suppose that X1, ..., X, are i.i.d. with cdf F. Note that F(z), too, can be
expressed as a functional; that is, F'(z) = P(f) = [ fdP, where f = 1(_q 4
and P(A) = P(X; € A). The Glivenko—Cantelli theorem (Theorem 7.2) can
be expressed as

sup [P (f) — P(f)] 220 asn — oo (7.39)
f

for the special class 7 = F; = {l(_x,o, € R}. More generally, one may
question whether or not (7.39) holds for a given class F; if it does, F is
said to be a P-Glivenko—Cantelli class. Here, P refers to the fact that the
supremum in (7.31) depends on the underlying distribution F or P.

To extend the Glivenko—Cantelli theorem in this direction, some regular-
ity conditions need to be imposed on F. For the most part, these conditions
attempt to control the complexity of F, which is necessary. Note that the
classical Glivenko—Cantelli theorem states that (7.39) holds for F = F; with-
out any restriction on F. However, the following example shows that without
restrictions on F, (7.39) may not hold for some F'.

Example 7.9 (A counterexample). Let F' be a continuous distribution;
therefore, P is nonatomic in the sense that P({x}) = 0 for every x. Let
A be the class of all finite subsets of R and F = {14,A4 € A}. Now, let
A = {X1,...,X,}. Clearly, we have A € A; hence, f = 1; € F (for any

realization of the random variables). However, we have P, (f) = P,(4) = 1

and P(f) = P(A) = 0. Thus, the left side of (7.39) is equal to 1 for every n;
hence, cannot converge to zero almost surely.

The complexity of F is measured by a quantity called entropy. For 1 <
r < o0, let L,-(P) be the collection of functions f such that

1/2
1 llep = ( / |f’“dP> ‘.

An e-bracket in £, (P) is a pair of functions g, h € L£,(P) such that
PL(X) <h(X)} =1 and [h—gl.p<e.

A function f lies in the e-bracket g, h if P{g(X) < f(X) < h(X)} = 1. The
bracketing number, denoted by, N{e, F, L.(P)}, is the minimum number of
e-brackets in L,.(P) needed to cover F so that every f € F lies in at least
one e-bracket. In most cases, one does not need to know the exact bracketing
number—only an estimate of its order is sufficient. We consider an example.

Ezxample 7.10. Let X1, ..., X, be i.i.d. random variables with distribution
F (which corresponds to P) on R. Let F = F; [defined below (7.39)]. It can
be shown that N{e, F, L,(P)} < oo for every € > 0 (Exercise 7.22).
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With the definition of the bracketing number, we can state an extension
of the Glivenko—Cantelli theorem.

Theorem 7.18.If N{¢, F, L, (P)} < oo for every € > 0, then (7.39) holds;
that is, F is a P-Glivenko—Cantelli class.

In a similar way, we can extend the result in Section 7.3 on weak
convergence of the empirical process. Define the entropy with bracketing
as the logarithm of the bracketing number, denoted by FE{e¢, F,L,.(P)} =
log[N{e, F, L;(P)}]. Let I°°(F) denote the collection of all bounded function-

als P: F — R. We say F is P-Dounsker if v/n(P, — P) 4 Gin [°(F) as
n — oo, where G is a Gaussian process indexed by f € F with mean 0 and
covariance cov{G(f1),G(f2)} = cov{f1(X), f2(X)}, f1,f2 € F,and X ~ F

(or P). Here, —4, is defined the same way as in Section 7.3 (above Theorem
7.4) with D replaced by [°°(F), D replaced by the Borel o-field generated by
the open balls in [*°(F) [i.e., sets of the form {Q € I*°(F) : p(Q, P) < ¢} for
some P € [*(F) and € > 0; see below] and || - || is replaced by the metric
p(P, Q) =sup e x| P(f)—Q(f)|- The following theorem extends Theorem 7.4.

Theorem 7.19. If [[* \/E{e, F,L2(P)} de < oo, then F is P-Donsker.

The proofs of Theorems 7.18 and 7.19 and much more on empirical pro-
cesses indexed by functions can be found in Kosorok (2008).

7.8 Case study: Estimation of ROC curve and ODC

The receiver operating characteristic (ROC) curve is a measure of the accu-
racy of a continuous diagnostic test. Typically, the patients are classified as
“healthy” or “diseased” according to a cutoff point, ¢, so that the patients
whose test scores are higher than c are classified as “diseased”; otherwise they
are classified as“healthy” or “normal.” Let X denote the test score of a ran-
domly selected healthy patient and let Y denote that of a randomly selected
diseased patient. We assume that both X and Y are continuous random vari-
ables with cdf (pdf) F' (f) and G (g), respectively, and that X and Y are inde-
pendent. The sensitivity of the test is defined as SE(¢) = P(Y > ¢) = 1-G(c).
In other words, the sensitivity is the probability that a diseased individual is
(correctly) classified as diseased when the cutoff ¢ is used. On the other hand,
the specificity of the test is SP(c¢) = P(X < ¢) = F(c), which is the probabil-
ity of correctly classifying a healthy individual. These concepts are similar to
the complements of type II and type I errors in statistical hypothesis testing
(e.g., Lehmann 1986). The ROC curve is then defined as a plot of the fraction
of “true positive,” SE(c) (on the vertical axis), versus that of “false positive,”
1 —SP(c) (on the horizontal axis), for —oco < ¢ < co. Equivalently, the ROC
curve can be viewed as a plot of
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ROC(t) =1 - G{F (1 —t)} versustfort € [0,1], (7.40)

where F~! is defined by (7.4). Another closely related plot is the ordinal
dominance curve (ODC; Bamber 1975), which is obtained by reversing the
axes; that is,

ODC(t) = F{G™*(t)} versust fort € [0,1]. (7.41)

It is easy to verify that both the ROC curve and ODC have the following
properties (Exercise 7.23):

(i) Invariance under monotonically increasing transformations of the mea-
surement scale.

(ii) If X is stochastically smaller than Y—that is, F'(z) > G(x) for all
z—then the curve lies above the diagonal of the unit square.

(iii) The curve is concave if f and g have a monotone likelihood ratio in
the sense that f(x)/g(x) is nondecreasing in x.

(iv) The area under the curve is the probability P(X <Y).

Swets and Pickett (1982) listed a variety of areas where ROC curves are
used. The areas range from signal detection, psychology, to nutrition and
medicine. A more recent example was given in Peng and Zhou (2004), in
which the authors considered estimation of the ROC curve of a carbohydrate
antigenic determinant (CA 19-9) in distinguishing between case and control
patients. The data were originally used by Wieand et al. (1989) to demonstrate
the superiority of CA 19-9 in detecting pancreatic cancer. The control and case
groups consisted respectively of 51 patients with pancreatitis and 90 patients
with pancreatic cancer. Concentrations of CA 19-9 in sera from all the patients
were studied at the Mayo Clinic in Rochester, Minnesota, USA.

Typically, two datasets are collected: X1,...,X,, from the healthy pop-
ulation and Yi,...,Y, from the diseased population. We assume that these
observations are independent. An empirical ROC curve is then obtained by
replacing F' and G in (7.40) by F,,, and G,, the empirical d.f.’s defined by
(7.1) (with, of course, some changes in notation), respectively. Similarly, an
empirical ODC is obtained by replacing F' and G in (7.41) by F,, and G,,
respectively. Hsieh and Turnbull (1996) described asymptotic properties of
the empirical ODC. Similar results can also be derived for the empirical ROC
curve. The authors assumed that m = m(n) such that n/m — X € (0,00) as
n — oo. It is also assumed that the slope of the ODC—that is,

opc - HE~0)

G}

—is bounded on any subinterval (a,b) of (0,1), where 0 < @ < b < 1. Then
by applying the Glivenko—Cantelli theorem (see Theorem 7.2) and the DKW
inequality (see Theorem 7.12), the authors showed that

|FmGt — FG7Y| = sup |F{G, ' (t)} — ODC(t)] %0
0<t<1



7.9 Exercises 235

as n — oo. Furthermore, by using results of strong approximation of the
empirical process (see Section 7.4), the authors showed that there exists a
probability space on which one can define the empirical processes F,,, and G,

and two independent Brownian bridges U l(n) and Uz(n) such that
Vi[Fn{GH (1)} — ODC(1)]

_ (n) RGO} oy, J (ogn)?
= VAU, {013<3(t)}+g{G_l(t)}U2 (t) + { o }

a.s. uniformly on [a, b] (7.42)

forany 0 <a <b< 1.

Another quantity of interest is the area under either the ROC curve or
ODC, which is the probability P(X < Y) according to property (iv) above.
This area is known as a measure of accuracy on how well the test separates
the subjects being tested into those with and without the disease in question.
The traditional academic point system assigns letter grades to a diagnostic
test according to its area under the ROC curve or ODC as follows: above 0.9,
excellent (A); 0.8-0.9, good (B); 0.7-0.8, fair (C); 0.6-0.7, poor (D); below
0.5, fail (F). A natural estimate of the area under the ODC is the area under
the empirical ODC; that is,

1<i<m,1<j<n
(Exercise 7.24). Using the result of (7.42), Hsieh and Turnbull showed that
VR{P(X <Y) = P(X < Y)} -5 N(0,0?)

as n — 0o, where

AGNO)
o 9{G7H(1)}

A var (/01 UL[F{G7*(t)}] dt) + var (/01 Us[G{F~(t)}] dt)
= AFGHZ+ GFHZ,

0% = var [ﬁ /0 1 U, {ODC(t)} dt + Us(t) dt}

where U; and U, are two independent Brownian bridges and

2

B2 = / B ()t — {/Olh(t)dt} .

7.9 Exercises

7.1. Use a computer to draw two realizations of Xi,..., X19 from the
standard normal distribution and then plot the empirical d.f. (7.1) based on
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each realization of Xi,..., X79. Compare the two plots by making them (i)
side-by-side and (ii) one on top of the other (same axes).

7.2. Show that Weyl’s sequence X;, i = 1,2,..., defined in Section 7.1
[below (7.3)] has identical uniform distribution in that P(X; < z) =z, 0 <
x <1 for all 4, where P denotes Lebesgue measure; however, the X;’s are not
independent.

7.3. Show that for any kK > 1 and 7 < -+ < z, the two random vectors
in (7.5) have identical joint distribution.

7.4. Prove the Glivenko—Cantelli theorem (Theorem 7.2) by an e-0 ar-
gument. (Hint: See Example 1.6; consider the points j/k, 0 < j < k,
k=1,2,...)

7.5. This exercise is regarding Example 7.2.

(i) Verify expression (7.8).

(ii) Show that ||G,;1 — I|| = |G\ — 1|

7.6. Show that the statistical functional in Example 7.3 is continuous.

7.7. Show that the quantile functional of Example 7.4 is continuous pro-
vided that F~! is continuous in a neighborhood of . Give a counterexample
to show that if F~! is not continuous in a neighborhood of ¢, the result may
not be true.

7.8. Use Theorem 2.14 and the CLT to show that for any distinct
t1,...,tr € [0,1], the joint distribution of Uy (¢1), ..., Un(tk) is asymptotically
multivariate normal with mean 0 and covariance matrix X = (0yy)1<uv<k;
where oy, = cov{U,(ty), Upn(ty)} = tu Aty — tuts.

7.9. Show that the Brownian bridge U(t) defined in Section 7.3 satisfies
E{U(t)} = 0 and that cov{U(s),U(t)} = s At — st for all 0 < s,¢ < 1.

7.10. Show that the following functions g are continuous on (D, || - ||):

(i) g(x) = supy<;<q 2(t);

(i) g(x) = supoeres [2(1)].

7.11. Consider a one-sided Kolmogorov—Smirnov test for the null hypoth-
esis (7.9), where Fp is a discrete distribution with the following jumps:

x 1 2 3 4 5 6
Fo(x)]0.033 0.600 0.833 0.933 0.961 1.000

[the exercise is based on an example given in Wood and Altavela (1978)]. The
alternative is H; given below (7.9), so the statistic D, of (7.12) is considered.
(i) Show that for any A > 0,

lim P(vnD, >\ =1-P(Z1 < \,...,Z5 <)), (7.44)
where (Z1,...,Z5) has a multivariate normal distribution with means 0 and

covariances given by
cov(Zi, Zj) = Fo(i) A Fo(j) — Fo(i)Fo(j), 1<4,j<5.

(i) The observed value of v/nD; in Wood and Alravela (1978) was 1.095.
For each sample size n, where n = 30, 100, and 200, generate 10,000 random
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vectors (Z1,...,75) as above and evaluate the right side of (7.44) with \ =
1.095 by Monte-Carlo method.
7.12. Show that Chung’s result (given at the beginning of Section 7.4)
implies Smirnov’s LIL (Theorem 7.5).
7.13. This exercise is regarding Example 7.6 in Section 7.4.
(i) Show that the functional g(z) = fol 22(t) dt, z € D, is continuous with
respect to || - ||
(ii) Derive (7.19).
7.14. Verify the following properties for the function v defined by (7.22):
a) ¢ (u) is nonincreasing for u > —1 with ¢(0) = 1;
b) utp(u) is nondecreasing for u > —1;
c) ¥(u) ~ (2logu)/u as u — oo;
d)0<1—v(u) <u/3for0<u<3;
0<4¢(u)—1<|u| for =1 <u < 0;
(0) = ~1/3, Y(—1) = 2 and /(1) = —o0;

1 for u = 0;
(h) for |u| < 1, we have the Taylor expansion
u  u? o u? (—1)k2u”
— 1y AR
V() st "0 T ek T

7.15. Show that for any 0 < a < 1/2 and A > 0, we have

P{ sup  sup |Up(t+h)—Un(t)| > )\\/5}

0<h<a 0<t<1—h

L1060 oL (A
=T PR\ Van) [0

where 7 is the function defined by (7.22).

7.16. Derive (7.28) using the general result of Section 6.6.2.

7.17. This exercise explores some properties of the function I, defined by
(7.29).

(i) Take h = 1. Show that I is nondecreasing on (0, 1), I; (X) = 2A24+0(A3)
as A — 0, and I1(\) — ocoas A — 1.

(ii) Take h(t) = —log{t(1 —t)}. Show that Ij,(A) ~ (eX)?/8 as A — 0 and
In(\) —ooas A — 1.

(iii) Continue part (ii). Let t be the value of ¢ at which the infimum in
(7.29) is attained. Find the limit of ¢y as A — 0.

7.18. This exercise is regarding (7.33), which is a key condition in Lemma
7.1. Hoeffding (1956) originally required

g(k) +gk+2) >2g(k+1), 0<k<n-—2, (7.45)

instead of (7.33) (also see Shorack and Wellner 1986, p. 805). Show by a simple
argument that this requirement can be relaxed to (7.33). [Hint: Suppose that
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g satisfies (7.33). Let h(z) = g(z) + ex?, where € is an arbitrary positive
constant. Show that h satisfies (7.45) (with g replaced by h, of course).]

7.19. For the weighted empirical process defined by (7.34), verify the co-
variance function (7.35).

7.20. Show that Billingsley’s theorem on weak convergence of the empirical
process of the stationary p-mixing sequence (Theorem 7.17) implies the Doob—
Donsker theorem (Theorem 7.4); so the former is an extension of the latter.

7.21. Give a specific example of a stantionary e-mixing (but not i.i.d.)
sequence that satisfies the conditions of Theorem 7.17.

7.22. Show that in Example 7.10 we have N{e, F, L,.(P)} < oo, Ve > 0.

7.23. Verity properties (i)—(iv) for the ROC curve and ODC defined in
Section 7.8.

7.24. Verify the second identity in (7.43).
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Martingales

The mathematical modeling of physical reality and the inherent non-
determinism of many systems provide an expanding domain of rich
pickings in which martingale limit results are demonstrably of great
usefulness.

Hall and Heyde (1980)
Martingale Limit Theory and Its Application

8.1 Introduction

The term martingale originally referred to a betting strategy. Imagine a gam-
bler playing a blackjack game (also known as twenty-one) in a casino (if you
have not been in a casino or have never heard about the blackjack, there is
nothing to worry, as far as this book is concerned). He begins with an initial
bet of $5, which is the minimal according to the rule of the casino table. Every
time he loses, he doubles the bet; otherwise he returns to the minimal bet.
For example, a sequence of bettings may be $5 (lose), $10 (lose), $20 (lose),
$40 (lose), $80 (win), $5 (lose), $10 (lose), .... It is easy to see that with this
strategy, as long as the gambler does not keep losing, whenever he wins he
recovers all his previous losses, plus an additional $5, which is equal to his
initial bet (Exercise 8.1). However, $5 is as much as he can win at the end of
any losing sequence, and he is risking more and more in order to win the $5
as the sequence extends longer and longer. On the fourth bet of the sequence,
the gambler is risking $40 to win $5; on the eighth bet, he is risking $640; on
the 17th bet, he would be risking $327,680, still for a chance to win $5. So,
why would anyone (ever) want to play this game? Well, there are at least two
reasons. First, when someone loses, there is a tendency or desire to “get it
back” (in other words, once the gambler starts lossing, it is difficult for him to
stop). Second and perhaps more importantly, the gambler figures that sooner
or later he has to win; however, is he right?

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_8, © Springer Science+Business Media, LLC 2010
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There are a few places in real life where the theory and practice do not seem
to work together. Unfortunately for the gambler, this is one of those places.
The problem is that the condition of the theory is never met in practice. To
keep playing with this betting strategy, it takes not only a lot of courage (to
keep playing despite heavy losses) but also unlimited resources (i.e., money),
which no gambler has in real life. There is another “untold secret,” so far, of
the casino, which turns out to be a “killer.” Just like the gambler, the casino
knows well about this betting strategy, so it has a way to stop the gambler
from playing with it. On each gambling table there is a maximum bet, say,
$500. This makes it impossible for the gambler to keep playing the martingale
strategy, because the maximum number of consecutive bets he can make with
this strategy is seven (Exercise 8.1). There are other tiny little “tricks” that
give the casinos small edges (which is why they stay in business).

The probabilistic definition of a (discrete-time) martingale is the following.
Let 51,55, ... be a sequence of random variables satisfying

E(Sn+1]S1,-.-,5) = Sn a.s; (8.1)

that is, the conditional expectation (see Appendix A.2) of the next obser-
vation, given all the past observations, is (almost surely) equal to the last
observation. Then the sequence is called a martingale. More generally, let
(2, F, P) be a probability space. Let I represent an index set of integers. For
example, I = {1,2,...} or I = {...,—1,0,1,...}. Let F,, n € I, be a non-
decreasing sequence of o-fields of F sets. This means that F,, C F,, C F for
any m,n € I such that n < m, and we will keep this notation/assumption
throughout this chapter. A sequence of random variables S,,, n € I, is called
a (discrete-time) martingale with respect to Fp,, n € I, or S,,, F,, n € I, is a
martingale if it satisifies the following condition (or two conditions):

Sp € Fny, E(Sm|Fn) =S, as. Ym,nel,m>n. (8.2)

Here, £ € G means that the random variable £ is measurable with respect
to the o-field G. Note that the condition also implies the existence of the
expectation of S, (although the expectation is not necessarily finite) for all
n e l.If S,, Fn, n > 1is a martingale according to the (8.2), then S,,, n > 1,
is also a martingale according to (8.1); but the converse is not necessarily true
(Exercise 8.2). In this chapter we only consider the discrete-time situations.
Extension to continuous time will be considered in the next chapter.
Similarly, a sequence Sy, Fp, n € I, is a submartingale (supermartingale)
if the equality in (8.2) is replaced by > (<). In terms of (8.1), a submartingale
(supermartingale) means E(S,4+1[S1,...,5n) > Sp a.s. [E(Sp+1]S1,...,5) <
Sp a.s.]. Returning to the gambling problem, if the gambler’s fortune over
time is a supermartingale, his expected future given the current decreases;
if it is a submartingale, his expected future given the current increases; if
it is a martingale, then his expected future fortune will be the same as his
current fortune. So, as a gamble, he wishes that his fortune over time is a
submartingale, or at least a martingale. We consider a more specific example.
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Ezxample 8.1. Suppose that the gambler has probability p of winning each
blackjack game. After the initial bet, the gamble starts a sequence of plays
(here we assume that there is no maximum bet set on the table and that the
gambler has unlimited resources, so that he can continuously play the game)
such that his win/loss total after the nth game is S,,, n > 1. Furthermore, let
X,, be the result of his nth play [so the value of X, is either —a (loss) or a
(win) for some positive integer a.

First, suppose that p < 1/2. If X,, is a loss, say, X,, = —a for some a > 0,
his next bet is 2a; thus, his expectation for the (n + 1)st play is

(2a) x p+(—2a) x (1 —p) =2a(2p—1) <0.
If X, is a win, his next bet is 5; thus, similarly, the expectation is
5xp+(—=5)x(1—p)=512p—1)<0.

In conclusion, no matter what the value of X,,, the gambler’s conditional
expectation for his (n 4 1)st play given the results of his previous plays is
less than or equal to zero; that is, E(X,4+1|X1,...,X,) < 0. [In fact, it
can be seen that X,,;; depends on X, but not on Xj,...,X,_1, so that
E(Xn+1]X1,...,Xn) = E(X541]|X5).] Note that S, = X1 + -+ + X,,, so that
Sn+1 = Sn + Xpq1. If we define F,, = o(X1,...,X,), then we have S,, € F,
and E(Sp+1|Fn) = Sn + E(Xp+1|Fn) < Sp, n > 1. Thus, by Lemma 8.1 in
the sequel, S,, Fn, n > 1, is a supermartingale.

By similar arguments, it can be shown that if p > 1/2, S,,, F,,, n > 1, is
a submartingale; if p = 1/2, S,,, F,, n > 1, is a martingale.

The name martingale was first introduced to the modern probabilistic
literature by French mathematician Jean Ville in 1939. Early developments of
martingale theory were influenced by S. Bernstein and P. Lévy, who considered
the martingale as a generalization of sums of independent random variables
(see Example 8.2 below). It was J. L. Doob in his landmark book, Stochastic
Processes (1953), that brought a complete new look to the subject. Among
Doob’s most celebrated work was his discovery of the martingale convergence
theorem, which we introduce in Section 8.3.

8.2 Examples and simple properties

First, let us derive a simpler, equivalent definition of martingale (submartin-
gale, supermartingale).

Lemma 8.1. Let I be a set of all integers between a and b, where a can
be —oco and b can be co. Then S,,, F,,, n € I, is a martingale (submartingale,
supermartingale) if and only if S, € F,, and E(Sp+1|Fn) = (>,<)S, a.s. for
all n such that n,n+1 € I.
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The proof is left as an exercise (Exercise 8.3). We consider some exam-
ples below, and in between the examples we introduce more concepts and
properties of martingales, submartingales, and supermartingales.

Ezxample 8.2. A classical example of a martingale is sums of indepen-
dent random variables. Let X7, Xo,... be a sequence of independent ran-
dom variables such that E(X;) = 0 for all 4. Let S, = Y .=, X; and
Fn = o(X1,...,X,), n > 1. Then, S,, F,, n > 1 is a martingale (Exer-
cise 8.4). See Exercise 8.11 for an extension of this example.

In the above example, S, is the sum of X, ..., X,, and, conversely, X,, is
the difference of S,, and S,,_1. We can extend this notion to the martingales,
which in many cases is more convenient. Let X,, n € I, be a sequence of
random variables, where I is as in Lemma 8.1. We say X,,, F,, n € I, is a
sequence of martingale differences if

Xn € Fry E(Xp41|Fn) =0 as. (8.3)

for all n such that n,n +1 € I. The connection between martingale and
martingale differences is illustrated by the following lemma.

Lemma 8.2. If X,,, F,, n > 1, is a sequence of martingale differences,
then S,, = Z?:l X, Fn, n > 1, is a martingale. Conversely, if S, F,, n > 1,
is a martingale, define X; = S; and X,, = S, — S,—1, n > 2, then X,,, Fp,
n > 1, is a sequence of martingale differences.

The martingale differences provide a convenient way of contructing a mar-
tingale: One may first construct a sequence of martingale differences and then
take the sums. In particular, the techniques used in the next lemma are some-
times very useful. A sequence of random variables &,, n € I, is said to be
adapted to F,, n € 1,if &, € F,, n € I. A sequence n,, n € I, is said to be
predictable with respect to Fp,, n € I, if n, € Fo_1, n—1,n e I.

Lemma 8.3. (i) If &,, n > 1 is adapted to F,, n > 1, let X; = &,
Xn =& —E(u|Fn-1),n > 2. Then X,,, F,,, n > 1, is a sequence of martingale
differences; hence, S,, = Z?:l X, Fn, n > 1, is a martingale.

(i) If X,,, Fo, n € I, is a sequence of martingale differences, where I is as
in Lemma 8.1, and n,, n € I, is predictable with respect to F,,, n € I, then
MnXn, Fn, n € I, is a sequence of martingale differences.

The proof is left as an exercise (Exercise 8.5). We consider an example.

Ezample 8.3 (Quadratic form). Let X1,...,X, be independent random
variables such that E(X;) = 0 and E(X?) < 00, 1 < i < n, and A =
(@ij)1<ij<n is a symmetric, constant matrix. The random variable Q =

X'AX = szzl a;; X;X;, where X = (X1,...,X,), is called a quadratic
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form in X3,..., X,. There is an interesting, and useful, decomposition of the
quadratic form as a sum of martingale differences after subtracting its mean.
To see this, note that E(Q) = >, a;E(X2). Thus,

Za”XX Za” E(X?)

3,j=1
= Za”{XQ B(XD)}+ > ai XiX;
i#£]
= Za“{XQ E(XD)}+2) ai; X;X;
i>]

:ia”{Xzz X2 }+2Z Zaz] i
=1 i=1 7<t

= iY;7
i=1

where V; = a;{X? — E(X?)} + 2 (Zj<i ainj) Xi, 1 < i < n [here the
summation >, ,(---) is understood as zero]. Let 7; = o(X1,...,X;), 1 <
i < n. By Lemma 8.3(ii) and Lemma 8.4 below, it is easy to show that Y;, F;,
1 <i <, is a sequence of martingale differences (Exercise 8.6).

The above decomposition was used by Jiang (1996) to derive a CLT for
quadratic forms (see Section 8.8).

Some simple properties of martingale differences, martingales, submartin-
gales, and supermartingales are summarized in the next three lemmas. The
proofs are left as exercises (Exercises 8.7-8.9).

Lemma 8.4. (i) If XT(Lj), Fn,n €1, j=1,2, are two sequences of martin-
gale differences, where I is as in Lemma 8.1, then XT(LU + XT(LQ)7 Fn,m €l is
a sequence of martingale differences.

(ii) If S,(Lj), Fn, n € I, j = 1,2, are two martingales (submartingales,
supermartingales), then ST(LD —&—ST(LQ), Fn, n € I,is a martingale (submartingale,
supermartingale).

(iii) If S,gj), Fu,n €I, j=1,2, are two submartingales, then 57(11) V 57(12),
Fn, n € 1, is a submartingale.

(iv) If ST(Lj), Fn,n € 1,5 =1,2, are two supermartingales, then s /\ST(LQ),
Fn, n € 1, is a supermartingale.

Note that it is important that the o-fields F,, for the two martingales
differences (martingales, submartingales, supermartingales) are the same.
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Lemma 8.5. (i) If S,,, F,, n € I is a martingale, then for any convex
(concave) function v, ¥(S,,), Fn, n € I, is a submartingale (supermartingale).

(ii) If Sy, Fn, n € I, is a submartingale (supermartingale), then for any
nondecreasing convex (concave) function ¢, ¥(Sy,), Fn, n € I, is a submartin-
gale (supermartingale).

(iii) If S,,, Fn, n € I, is a supermartingale (submartingale), then for any
nonincreasing convex (concave) function 1, ¥(Sy), Fn, n € I, is a submartin-
gale (supermartingale).

Lemma 8.6. Suppose that X;, F;, 1 < i < n, is a sequence of martingale
differences. Then the following hold.

(i) E(X;)=0,2<i<n.

(ii) If E(X?) < oo, 1 < i < n, then the sequence X;, 1 < i < n, is
orthogonal; that is, E(X;X;) = 0, if ¢ # j. It follows that

E <i X) = i E(X?).

Time for some more examples.

Ezxample 8.4. For any real number z, 27 = z if z > 0 and 0 if z < 0;
similarly, 7 = —z ifx < 0and Oifx > 0. If S,,, F,,, n € I, is a submartingale,
then S}, F,, n € I, is also a submartingale. There are two ways to show this.
First note that 1 is a nondecreasing convex function of x. The conclusion
then follows by (ii) of Lemma 8.5. Second, note that z* = x Vv 0. Since Sp,
Fn,n € I, is a submartingale and, obviously, 0, F,,, n € I, is a submartingale.
Thus, the conclusion follows from (iii) of Lemma 8.4.

Similarly, if S,, F,, n € I, is a superbmartingale, there are two ways to
show that —S,;, F,, n € I, is also a supermartingale (try it!).

Since a martingale is both a submartingale and a supermartingale, and
z = at — 27, it follows that any martingale can be decomposed as a sum of
a submartingale and a supermartingale, S, = S — S, both of which are
not (necessarily) martingales (this rules out a trivial decomposition such as

Sy, = S, +0).

Ezample 8.5 (Likelihood ratio). Let P and @ be two probability measures
on (£2, F) and let X;, ¢ > 1, be a sequence of random variables (not necessarily
independent). Suppose that the joint pdf of Xj,..., X, under P and Q are
fn and g, respectively. Define

— gn(Xla s aXn)
fn(Xla-"aXn)

if f(X1,...,X,)>0and S, =0if f,(X1,...,X,) =0. When Xq,..., X,
are observations, Sy, is called the likelihood ratio (of Q) with respect to P). For

Sn



8.2 Examples and simple properties 245

example, in a classical hypothesis testing problem, P represents the distribu-
tion under the null hypothesis and @ represents that under a given alternative.
In this case, the likelihood ratio measures how likely the data are from the
alternative compared to from the null hypothesis. An important, and inter-
esting, property of the likelihood ratio is that S,, n > 1, is a supermartingale
with respect to F,, = 0(X1,...,Xn), n > 1, under the probability distribution
P. To show this, note that, obviously, S,, € F,. Furthermore, let B be the
Borel sets in R; we have, for any B € B",

/ Sn+1 apP
(X1, X0n)EB
In+1(X1, ... 7Xn+1)

/(X1,...,Xn)eB,fnJrl(Xl,...,Xn+1)>O o1 (X1, oo, Xng)

:// gn+1($17...,l‘n+1) dl‘l"'d$n+1
(BXR)N{ frt1(x1,...,Tny1)>0}

dP

/ /(BxR)ﬂ{fn('m,...,wn)>0,fn+1(1'17--~,$n+1)>0}

o
(BxR)N{ fn(21,-2n)=0, frnt1(z1,....2041)>0}

S// {/gn+1(x17...,xn+1)dxn+1}dx1---da:n
BN{fn(z1,...,25)>0}
+// / gn+1($1,...,$n+1) dﬂ?n+1
n(Z1,..,2n)=0 fr+1(@1yee s @py1)>0
d -d

T - - Tn
:/./ gn(x17.__7xn)dx1...dxn
BN{fn(z1,...,2n)>0}

= / Sy, dP.
(X1,...,Xn)EB

The second to last equation used the facts that

/gnﬂ(xl, ey Tpt1) dTpt1 = Gn(T1, ., Ty),
and that because
/fn+1(ac1, oy Tpt1) dTpy1 = fo(T1,. .., Zn),
fo(x1,...,2,) = 0 implies that the set {11 : fnt1(21,...,2pe1) > 0} has

Lebesgue measure 0; hence, the integral of g,,1(x1,...,Z,41) over this set is
zero. In conclusion, we have shown that for any B € B",

/ Sny1 dP < / Sy dP;
(X1, Xn)EB (X1, Xn)EB
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thus, Ep(Sy41|Fn) < Sy a.s. P (see Appendix A.2).

The implication of this example to hypothesis testing is that suppose that
the data actually come from the null hypothesis. Then the more data one
collects, the less likely the data would look like they were coming from the
alternative.

Ezample 8.6 (Branching process). Let X, ;,4 > 1,n > 1, be an array of
i.i.d. random variables taking values in nonnegative integers. We assume that
E(X,)=pn>0.Let Top =1 and

Tp=> Xpi n>1 (8.4)

The sequence T,,, n > 1, is called a branching process. The name comes from
a process in which bacterials reproduce themselves. Starting with one bacte-
rial, suppose that from time n — 1 to time n, the ith bacterial becomes X, ;
bacterials. Let the total number of bacterials at time n be T),. It is easy to see
that T, can be expressed as (8.4). Consider the normalized branching process
Sp = T,/p"™. We show that S,,, n > 1, is a martingale with respect to the
o-fields F,, = o(Th,...,Tn), n > 1. It is obvious that S,, € F,,. Also, we have

]:n)
) k
=E { Z 1(Tn:k) ZXTL+1J fn}
k=1 =1
00 k
= la,-nE (Z Xn1,i fn>
k=1 i=1

= Z L, =k kp
k=1

= uT, as,;

T
E(Tn+l|fn) =E <2Xn+l,i
=1

hence, E(Sy,4+1]F,) = S, a.s.

We conclude this section with the intruduction of an important concept
in martingale theory. A measurable function 7 taking values in {1,2,..., 00}
is called a stopping time with respect to F,,, n > 1, if {r =n} € F,, n > 1.
For each stopping time 7 we can define a corresponding o-field

Fr={A€Fu:AN{r=n} € Fo,n>1}, (8.5)

where Foo = o (U2, F,,). We consider an example.
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Ezxample 8.7. Let S,, n > 1, be a sequence of random variables and let
Fn =0(51,...,8,), n > 1. For any Borel set B, define 7 = inf{n > 1,5, €
B}, where inf{0} = oo. Intuitively, 7 is the first time that the sequence S,
enters B. For any n > 1, we have {r =n} = {Sx ¢ B,1 <k <nand S, €
B} € F,,. Therefore, T is a stopping time with respect to F,, n > 1.

Some basic properties of stopping times are summarized below. The proof
is left as an exercise (Exercise 8.10).

Lemma 8.7. Suppose that 7 is a stopping time with respect to F,,, n > 1.

(i) F; is a o-field and 7 € F-.

(ii) If Sp,, n > 1, is adapted to Fy,, n > 1, and S« is defined as lim sup S,
then S, € F,.

Now suppose that 7 and 75 are stopping times with respect to F,,, n > 1.

(iii) 7y V 72 and 71 A 72 are both stopping times with respect to F,, n > 1.

(iv) If 71 < 7o, then Fr, C Fopp.

8.3 Two important theorems of martingales

8.3.1 The optional stopping theorem

Property (ii) of Lemma 8.7 suggests that the first part of the defining property
of a martingale (submartingale, supermartingale) (i.e., S, € F,,) is preserved,
if the fixed time n is replaced by a stopping time 7. Now, suppose that we
have a nondecreasing sequence of stopping times, 71 < 75 < - --. Property (iv)
of Lemma 8.7 then implies that 7, , k¥ > 1, is a nondecreasing sequence of
o-fields. One may thus conjecture that S, , Fr,, k > 1, remains a martingale
(submartingale, supermartingale). The following theorem, known as Doob’s
optional stopping theorem (or optional sampling theorem; Doob 1953), implies
that the conjecture is true under certain regularity conditions.

Theorem 8.1. Let S,,, F,,, n > 1, be a submartingale and let 7 be a
stopping time with respect to F,, n > 1, such that P(m» < o0) = 1 and
E(S;,) exists. If

liminf E{S;' 17,5} =0, (8.6)

then for any stopping time 71 with respect to F,, n > 1, as long as
E{S7,1(r,<r,)} exists, we have

E(Sy,|Fry) > Sry as. {m1 < ). (8.7)

Because the negative of a supermartingale is a submartingale, and a mar-
tingale is both a submartingale and a supermartingale (and also note that
(—z)T =27, || =27 +27), Theorem 8.1 immediately implies the following.
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Corollary 8.1. (i) If the word submartingale in Theorem 8.1 is replaced
by supermartingale and (8.6) is replaced by

lim inf E{S;1(72>n)} =0, (88)
then (8.7) is replaced by
E(S:,|Fr) < Sr as. {r <7} (8.9)

(ii) If the word submartingale in Theorem 8.1 is replaced by martingale, and
(8.6) is replaced by

lim inf E{|Sn‘1(72>n)} = O7 (810)
then (8.7) is replaced by

E(S,|Fr) = S as. {n < n}. (8.11)

We consider some applications of the optional stopping theorem.

Ezample 8.8. If S,, F,, n > 1, is a martingale (submartingale, super-
martingale) and 7 is a stopping time with respect to F,,, n > 1, then S;ag,
Frnk, k > 1, is a martingale (submartingale, supermartingale). To see this,
note that by (iii) of Lemma 8.7 it is easy to see that 7 A k is a stopping time
for any k > 1. Furthermore, since

k

Srak = Silir=p) + Skl(r>p),
=1

E(Srak) exists for all & > 1. Also, note that [Sy|l(zax>n) = 0 when n > k;
therefore, (8.10) is satisfied (with 7o replaced by 7Ak). Finally, for any k1 < ks,
we have 7 Ak1 < 7o Aka; hence, Srak, 1z ak <raks) = Srak,, Whose expectation
exists as shown. It follows by (8.11) that E(S;ak,|Frak,) = Srak, a.s. The
arguments for submartingale and supermartingale are similar (Exercise 8.17).

In particular, if S,,, Fn, n > 1, is a nonnegative supermartingale, then
since T Ak >7AL1=1for any k > 1, we have E(S;ar|F1) < S1 a.s., which
implies E(Srax) < E(S1). Also, since limg oo Srakl(r<o) = Srlir<oo), We
have, by Fatou’s lemma (Lemma 2.4),

E{Srl(‘r<oo)} =E {kli{lc;lo ST/\kl(T<OO)}

< liminf E{Srarl(r<o0)}
< liminf E(S; )
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Example 8.9. Earlier in Lemma 5.4 we introduced an inequality due to
Stout (1974) without giving the proof. Now, with the result of (8.12) we can
give a simple proof as follows. For any 0 < a < A, let 7 be the smallest
integer m > 0 such that T,, > «, if such an m exist; otherwise, let 7 = cc.
By Example 8.7 we know that 7 is a stopping time. It follows, by (8.12), that
aP (1 < 00) <E{T:1(r<x0)} < E(Tp) = 1; thus, by Chebyshev’s inequality,

. (8.13)

Qr

P<sume>a) =P(r < 0) <

m>0
Now, forget about the middle step of (8.13). The bottom line is that this

inequality holds for any o < A; therefore, we must have P(sup,,,>0 Tm > A) <
A1 (why?).

Ezample 8.10. A submartingale analogue of (8.12) is the following. Suppose
that S, F,, n > 1, is a submartingale and 7 is a stopping time with respect
to Fn, n > 1, such that E(7) < oo and there is a constant ¢ > 0 such that

E(|Xi|‘]:i_1) S Cc a.sS. {7‘ Z i}, 7 Z 17

where X7 = S; and X; = S; — S;—1, ¢ > 2. Then we have E(|S;]) < oo
and E(S;) > E(S1). To show this, note that, similar to Example 8.8, we
have E(S;ak|F1) > S1 a.s., which implies E(S;ar) > E(S7). The question is
whether one can exchange the order of limit (as n — o0) and expectation
(because here we cannot use Fatou’s lemma). Note that

|S'r/\k| =

Z Xil(i<rak)
1=1

< Xl =0

i=1
If we can show

E(n) < oo, (8.14)

then by the dominated convergence theorem (Theorem 2.16), we have

E(S,) =E (klim STM)
= lim (S’r/\k‘)

> B(S)). (8.15)

The first equation in (8.15) is because E(7) < oo implies that 7 < oo a.s. It
remains to show (8.14). This follows because
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E(n) = ZE{|X1‘|1(721')}
i=1

=Y E{lps)E(IXi||Fio1)}
=1

[because {7 > i} = 2\ {r <i—1} € F;_4]

<c Z E{li<n}
i=1

=ckE (Z 1(i<r))
1=1
=cE(1) < o0.

Similarly, if the word submartingale is changed to martingale (and all other
conditions remain), the conclusion is that E(S;) = E(S7).

8.3.2 The martingale convergence theorem

The martingale convergence theorem may be motivated from convergence of
monotonic sequences of real numbers. Recall that (see §1.5.1.3) an increasing
sequence of real numbers a,, n = 1,2,.. ., converges if it has an upper bound.
According to the definition, a submartingale satisfies

E(Sn+1|]:n) > S, as., (816)

which looks almost like an increasing sequence (except that there is a condi-
tional expectation on the left side). Here is another way to look at it. What
(8.16) means is that for any A € F,,, we have

/ Spi1 dP > / S, dP;
A A

in other words, S,41 is greater than or equal to S,, on any set of nonzero
probability that belongs to F,. These observations lead one to conjecture
that a submartingale would converge in some sense if it has an upper bound.
The question is: What kind of upper bound? Since S,, is a random variable,
it may not be realistic to assume that it is uniformly bounded, so the bound
would be better in some other sense. Doob (1953) found that L! boundedness
is sufficient for the almost sure convergence of a submartingale. This result
is known as the martingale convergence theorem. Note that in the following
theorem we extend the definition of a submartingale by allowing —oo and oo
to be its possible values.

Theorem 8.2. Suppose that S,,, F,, n > 1, is a submartingale such that
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sup E(S;) < oo. (8.17)

n>1

Then S = lim, o Sy, exists almost surely, and it has the following proper-
ties: (i) E(SL) < o0o; (ii) [Seo| < 00 a.s. {S1 > —oo}; and (iii) if

E(|Sn]) < o0, n>1, (8.18)
then E(|S«]) < 0.

Note that although (8.17) is sufficient for the a.s. existence of S, it does
not imply that the latter is a.s. finite. (For a trivial example, consider S,, =
—o00, n > 1, which satisfies the condition, but S, = —0c0.) However, if (8.17)
is strengthened to

sup E(|Sy|) < oo, (8.19)
n>1

then according to (iii) of Theorem 8.1, So, € L! and therefore is a.s. finite.
Also note that, under (8.17), (8.19) is equivalent to (8.18) (Exercise 8.18).
In other words, the L' boundedness of a submartingale is all that is needed
for the a.s. convergence of the submartingale in the usual sense of, say, §1.5.1
(i.e., the limit is a.s. a finite number).

The martingale convergence theorem is a milestone in martingale theory
not only because of its applications in various fields, some of which are dis-
cussed in the sequel, but also because of a proof of the theorem using Doob’s
upcrossing inequality (e.g., Hall and Heyde 1980, p. 17) that inspired a gener-
ation of methodology based on stopping times. The version presented below
is in a slightly stronger form than the original one given in Doob (1953, p.
314). For any a < b, let U, (a,b) denote the number of times that Si,...,S,
crosses from a value < a to one > b (known as upcrossing).

Lemma 8.8 (Doob 1960). Suppose that Sk, Fr, 1 < k < n, is a sub-
martingale. Then for any a < b, we have

E{(Sh— )"}

E{Un(a,b)} < —2"—

See, for example, Hall and Heyde (1980, p. 15-16) for a proof of Lemma
8.8. The proof makes use of a sequence of stopping times that are the times
that the sequence Si,...,S, upcrosses the interval (a,b) and the optional
stopping theorem (Theorem 8.1).

Of course, Theorem 8.2 also holds if the word submartingale is replaced
by martingale. We consider an example.

Example 8.11. For any random variable ¢ € L', the sequence E(¢|F,),
n > 1, converges almost surely. To see this let S,, = E(¢|F,), n > 1. Then S,,
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Fn, n > 1, is a martingale. Furthermore, by Jensen’s inequality [see (5.56);
note that here we consider the conditional expectation], we have E(|S,|) =
E{|E(|Fn)|} < E{E(|¢]|Fn)} = E(|€]) < oo; hence, (8.19) is satisfied. Tt
follows that S, 2= S for some random variable S. In fact, it can be shown
that S, also converges in L! and S = E(¢|F) a.s., where Fo, is defined
below (8.5) (e.g., Chow and Teicher 1988, Section 11.1).

As for a supermartingale, we have the following result.

Corollary 8.2. Let S,, F,, n > 1 be a nonnegative supermartingale.
Then S,, converges almost surely to a limit Ss. Furthermore, if E(S7) < oo,
then E(|S«|) < 0.

This is because —S,,, Fp,, n > 1, is a submartingale and (—=S,)* = S,, =
0. Thus, by Theorem 8.2, S,, converges a.s. to a limit So. If E(S1) < oo,
then E(|S,]) = E(S,) < E(S1) < oo. Thus, by (iii) of Theorem 8.2 we have
E(]Sao]) < 00. Again, we consider an example.

Ezample 8.5 (continued). Earlier we showed that the likelihood ratio S,
is a supermartingale with respect to the o-fields F,, = o(Xy,...,X,) and
the probability measure P. This supermartingale is certainly nonnegative.

Furthermore, we have
_ 91(X1)
Bp(51) =Ep { fi1(Xq) }
[ q(x1)
) fi@) Al

= /gl(:ztl) dry = 1.

1'1) d:L'l

Thus, by Corollary 8.2, the likelihood ratio S,, converges a.s. P to S, € L(P).

8.4 Martingale laws of large numbers

8.4.1 A weak law of large numbers

In the following we often use the convenient notation S, = Z?:l X; for a
martingale S,,, meaning that X; is the corresponding martingale difference
defined in Lemma 8.2. Hall and Heyde (1980) gave the following extension
of Theorem 6.2, where the sequence of normalizing constants, a,,, satisfy the
condition above (6.5). The proof is left as an exercise (Exercise 8.20).

Theorem 8.3. Let S, = Y_." | X;, F,, n > 1, be a martingale. Then

a, 'S, L. 0asn— oo if the following conditions hold:
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(1) 25 POXG| > an) — 0;

.o — n p
(i) ap " 5 B{XiL(x  <an | Fima } — 05
(111) (1;2 Zi:l E[V&I’{Xil(‘xi‘gan)|.7:i_1}] — 0.

Note that in the case of independent variables, conditions (i)—(iii) of The-
orem 8.3 are also necessary. See Theorem 6.2. The following example given
by Hall and Heyde (1980, pp. 29-30) shows that these conditions are not
necessary in the martingale case.

Example 8.12. Let Y;, @ > 1, be a sequence of independent random variables
such that Y7 = 1 and, for i > 1, P(Y; = 0) = i"!, P(Y; = —=2) = P{Y; =
2(2¢—1)/(i—1)} = (¢ — 1)/2i. Note that E(Y;) =1 for all i. Now, let

S, = <ﬁYZ> -1, n>1,
i=1

and F,, = o(Y1,...,Y,). It is easy to show that S,,, F,,, n > 1, is a martingale
with E(S,,) = 0 (Exercise 8.21). Furthermore, we have

P@g#-U:P(fﬁQ#Q

=P(Ys #£0,...,Y, #0)

g(il>

1
n

as n — oo. Thus, S, 2, 1. Tt follows that a, S, 250 for any sequence
ap, satisfying the conditions above (6.5). Now, consider one special such se-
quences, a, = n,n > 1. Note that we have X; = S;—S;_1 =Y --- Y1 (Y;-1),
i > 2. For any n > 1, consider any ¢ > 1 such that 3 x 2°=2 > n. Then if
Ya,...,Y; are nonzero, we have |X;| > 3 x 272 > n (why?). Thus,

CTr(ic1) L
15 =+

hence, Y31 P(IXy[ >n) > 37, o, i7" — 00 as n — oo, where

L =24 logn — log 3

log 2
(Exercise 8.21). Therefore, condition (i) of Theorem 8.3 is not satisfied despite
the convergence to zero of a,,1S,,.
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8.4.2 Some strong laws of large numbers

As in Section 6.3, Kronecker’s lemma (Lemma 6.1) is a useful tool for estab-
lishing the SLLN for martingales. Recall the idea is that the convergence of
an infinite series, say, > .o, x;, implies a,* Y7 | a;z; — 0 for any nondecreas-
ing sequence of positive numbers a,, such that a, — oo. Now, suppose that
Sn = ZZ‘L=1 X, Fn, n > 1, is a martingale. According to Kronecker’s lemma,
whenever the series

o0

> f— (8.20)

2

converges, we have

SRS
I
| —
ke

n =1
1 n (X1>
-y (2
Ay, a;
=1
— 0. (8.21)

The problem then is to find out when the series (8.20) converges. The following
theorem can be derived from a result due to Chow (1965).

Theorem 8.4. For any 1 < p < 2, the series (8.20) converges and (8.21)
holds a.s. on the set {>":2; a; PE(|X;[P|Fi—1) < oo}, where Fy = {0, £2}.

Ezample 8.13. As another example of the stopping time techniques, we
give a proof of a special case of Theorem 8.4: the case p = 2. The proof is
essentially the same as the proof of Theorem 2.15 of Hall and Heyde (1980).
For any B > 0, let 7 be the smallest integer n > 1 such that

n+1

> a*E(X}?|Fi1) > B

i=1
if such an n exists; otherwise, let 7 = oco. It can be shown by Example 8.7
that 7 is a stopping time with respect to F,,, n > 1 (Exercise 8.22). Note that
L(r>4), © > 1, is predictable with respect to F;, i > 1 (why?). It follows, by (ii)
of Lemma 8.3, that 1. X;, Fi, i > 1, is a sequence of martingale differences;
therefore, Srp, = Y iy L(r>0 X, Fn, n > 1, is a martingale. We now show
that Sy, is L? bounded. This is because, by property (ii) of Lemma 8.6,

=1

= ZE{l(TEz)E(XE‘]:l—l)} [because 1(7—21') S .7:1'_1]

i=1
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=E {Z 1(rzi)E(X¢2|fi1)}

=1
TAN
=E {ZE(XZU-"- )} <B
- i i—1 ~
i=1

using the definition of 7 for the last inequality. It follows from the martingale
convergence theorem (Theorem 8.2) (note that L? boundedness implies L!
boundedness) that S, converges a.s. as n — co. Therefore, S,, converges a.s.
on {7 = co}. In other words, S,, converges a.s. on {> .o, E(X?Fi_1) < B}.
The result then follows by the arbitrariness of B [Exercise 8.23, part (iv)].

When the range of p is not [1,2], we have the following result. Note that
in part (i), the sequence is not required to be martingale differences. Again,
part (ii) is due to Chow (1965).

Theorem 8.5. (i) Let X;, ¢ > 1, be any sequence of random variables.
Then, the conclusion of Theorem 8.4 holds for any p € (0, 1).

(ii) Let X;, F;, i > 1, be a sequence of martingale differences. For any p > 2
and any sequence b; > 0, ¢ > 1, such that >_.°, b; < 0o, (8.20) converges and

(8.21) holds a.s. on {322, ;pbl PRE(|X;[P|Fi—1) < oo}

The proof is left as exercises (Exercises 8.23 and 8.24).

Note. Although we have assumed that a, is a sequence of normalizing
constants, Theorem 8.4 and Theorem 8.5 continue to hold if a,, is a sequence
of predictable random variables with respect to F,, n > 1 (i.e., a, € Fp—1,
n > 1), provided that a,, > 0 and a,, | c© a.s.

A special case of interest is a, = n, n > 1. In this case we obtain the
following SLLN for martingales.

Corollary 8.3. n=1S, % 0 as n — oo provided either

Z ‘X ") (8.22)

for some 1 < p < 2or

> E(|X;|P
Z _(b|p/2|_1) < oo (8.23)
—1 1P i

for some p > 2 and b; > 0, i > 1, such that > >, b; < oo.

To see this, note that, for example, (8.22) implies that

E{i E<|Xi|;|fi_1>} _SEE

i=1 i=1
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which implies that > =, i PE(]X;|P|Fi—1) < oo a.s. The desired result then
follows from Theorem 8.4.

It should be noted that although the martingale convergence theorem and
Kronecker’s lemma are often used together to establish the SLLN for martin-
gales, other methods have also been used for similar purposes. For example,
the following result, which is not a consequence of Theorem 8.4 or 8.5, can
be derived by using Doob’s maximum inequality [see (5.87)] and Burkholder’s
inequality for martingales [see (5.71) and the subsequent discussion]. In a way,
this approach is more similar to the traditional methods for establishing SLLN
for sums of independent random variables (see Chapter 6).

Theorem 8.6. Let S, = > | X;, F,,, n > 1 be a martingale. If for some
p > 1, we have

B o

— a.s.
then n~1S,, =2 0 as n — oo.

The theorem can be derived from Theorem 2 of Chow (1960). Note that,
for example, (8.22) and (8.24) do not imply each other (Exercise 8.25). As an
application of Theorem 8.6 (or Corollary 8.3), consider the following.

FEzxample 8.14. Let X;, F;, i > 1, be adapted and there are a constant
¢ > 0 and a random variable X with E(]X|) < oo such that

P(|X;| >z) < cP(X|>z), >0,i>1. (8.25)
Then we have
1 & P
~ > {Xi - B(Xi|Fio1)} — 0. (8.26)
i=1

If the moment condition for X is strengthened to E(|X|log® |X|) < oo, then
(8.26) can be strengthened to a.s. convergence. To show (8.26), we write

X = B(X3|Fi1) = [Xal(x; <) — E{Xil(x,<i)|Fi-1}]
+Xil(x, >0 — B{Xil (x50 Fi1)}
=Y+ Z;+ W,

It can be shown that (8.25) implies
E{[Xi[1(x, >0} < cE{|X[1(x50}, (8:27)

E{X@?l(\X”Si)} < 20/ J?P(|X| > x) dx (828)
0
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for any ¢ > 1, and that E(]X|) < oo implies
> 3/ 2P(|X| > z) dz < oo (8.29)
= v Jo
(Exercise 8.26). It follows that

>z
i=1

1
B
n

1 n
s ZE{|X1'\1(\X7;\>¢)}
i=1

c n
< - Y E(X x50}
=1
— 0

as n — oo (why?). Thus, we have n='Y " | Z;, — 0 in L', hence in
probability (Theorem 2.15). By similar arguments, it can be shown that

n~t S Wi .o Furthermore, using the fact that the variance of a random
variable is bounded by its second moment, we have

E(Y?) = E[var{X;1(x, <i)| Fi-1}]
< E[E{X71(x, <) Fi-1}]
= E{X71(x,1<0}-

Thus, we have, by (8.28) and (8.29), > .2, i ?E(Y;?) < oc. It follows by The-
orem 8.6 (or Corollary 8.3) that n=1 )" | ¥; — 0 a.s., hence in probability
(Theorem 2.7). This shows (8.26). The a.s. convergence under the stronger
moment condition is left as an exercise (Exercise 8.26).

8.5 A martingale central limit theorem and related topic

It is often more convenient to consider an array, instead of a single sequence, of
martingales, as far as the CLT is concerned (see below for further explanation),
and the results may be presented more explicitly if we consider an array of
martingale differences. This means that S,; = 22:1 Xnjs Fri, 1 <0 < Ky,
n > 1, is an array such that for each n, Sy;, Fni, 1 < i < k,, is a martingale,
where k,, is a nondecreasing sequence of positive integers such that k, — oo
as n — oo (e.g., k, = n). Throughout this section, we assume that S,; has
mean 0 and a finite second moment for all n and 4. It follows that X,,; = Sp,1
and X,; = Sni — Spi—1, 2 <1 < k,. Here, for convenience we define S,,g = 0
and F,o = {0, 2}. Then for each n, X,i, Fni, 1 < i < ky, is a sequence of
martingale differences with E(X,,;) = 0 and E(X2,;) < 00, 1 <i < k,.

We begin with the following well-known martingale CLT (Hall and Heyde
1980, p. 58). Let Y;,, n > 1, be a sequence of random variables on the probabil-
ity space ({2, F, P) converging in distribution to a random variable Y. We say
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the convergence is stable, denoted by Y, Ty (stably), if for all continuity
points y of Y and all A € F, the limit lim,, .. P({Y,, < y} N A) = P,(A)
exists and Py(A) — P(A) as y — oo.

Theorem 8.7. Let X,,;, Frni, 1 <i < ky,, n > 1, be an array of martingale
differences as above. Suppose that

max | X, — 0, (8.30)
1<i<kn

kn
SxZ (8.31)
i=1

where n? is a random variable, and

E( max an) is bounded in n. (8.32)
1<i<kn,

In addition, assume that the o-fields satisfy
Fni C .7'—”_4_12, 1<i<k,, n>1. (833)

Then we have, as n — oo,

kn,
Suky = Y Xui — Z (stably), (8.34)

i=1

where the random variable Z has characteristic function

ez(t) = E{exp(—n’#?/2)}. (8.35)

Note that the n? in (8.31) is allowed to be a random variable. In particular,
if n? is a constant, say, n*> = 1, then, by (8.35), we have Z ~ N(0,1), which
is the form of the classical CLT (see Section 6.4). Hall and Heyde (1980, pp.
59) noted that the restriction (8.33) on the o-fields can be dropped if n? is
a constant, provided that the word stably is removed from (8.34). This note
turns out to be useful in many applications (see, for example, Section 8.8).
On the other hand, Hall and Heyde (1980, p. 59-60) gave an example of an
array of martingale differences for which all the conditions of Theorem 8.7 are
satisfied, and yet 2 is not a constant. We consider another example.

Ezample 8.15 (Conditional logistic model). Suppose that given a random
variable, a, X1, Xo, ... are independent Bernoulli observations such that

logit{P(X; = 1|a)} = p + «, (8.36)

where p is an unknown parameter, and logit(p) = log{p/(1 — p)} for p €
(0,1). Furthermore, suppose that « is distributed as N (0, 0?), where o2 is an
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unknown variance. Equation (8.36) suggests that the sum S, = Y1 | X, is
an important statistic in estimating the parameter p (why?). Therefore, the
asymptotic behavior of S, is of interest. Let h(z) = e”/(1+€%), —00 < x < 00,
which is the inverse function of logit. Define X,,; = {X; — h(n+ «)}/+/n and
Fri=Fi =o0(a,Xq,...,X;), 1 <i<n.We show that X,,;, Fni, 1 <i <mn,
is an array of martingale differences.

Clearly, we have X,,; € Fp;, 1 <i < n. Next, we show that E(X;|Fpi—1) =
h(p + ) a.s. It suffices to show (see Appendix A.2) that for any Borel mea-

surable function f(z) and g(z1,...,2;—1), we have
E{f(a)g(X1,..., Xi-1)X:}
— B{f(a)g(X1, ... Xi 1)h(u+ )}, (.37)

The proof of (8.37) is left as an exercise (Exercise 8.29). It follows that
E(Xni|]:7”',1) =0 a.s., 1 S ) S n.

Condition (8.30) is clearly satisfied because |X,;| < 1/y/n and so is (8.32).
It is also clear that (8.33) is satisfied. It remains to verify condition (8.31)
(which is usually the more challenging part compared to the other conditions).
For this, we write

SOXZ = 1K e+ )
i=1 =1

= %inth(qua) (ii-&) +h(p+a)

i=1 i=1

={1-2h(p+a)} (% ZX2> +h*(p+ ),

i=1

because X; is 0 or 1; hence, Xf = X;, 1 < i < n. Furthermore, it can be shown
by the result derived above and Example 8.14 that n~! Yo X; N h(p+«)
(Exercise 8.29). Therefore, we have > " | X2 RN h(p+a){1—h(u+a)} = n2.

ni

It follows by Theorem 8.7 that /n{n™*S, —h(p+a)} =31 | Xpi 4.z
(stably) as n — oo, where Z is a random variable having the cf (8.35).

A situation of this kind of observations may occur in practice when the
population has clusters or subpopulations. Suppose that the probability of
an individual having a certain disease within a certain cluster depends on
a “latent” variable, a, that depends on the cluster. In other words, there is
a conditional probability of disease given «, which is modeled by (8.36) in
this example. This result shows that if one only samples from a given clus-
ter, the asymptotic distribution of the sample proportion of disease, n=15,,
depends on the cluster-specific random variable «, which, of course, makes
sense. However, quite often in practice, people would collect samples from
different clusters. In such a case, the asymptotic distribution of estimators
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of population parameters, such as p and o2, will be unconditional [i.e., not
dependent on « (see Chapter 12)].

Another application of Theorem 8.7 is considered later in Section 8.8.

A related topic to the martingale CLT is its convergence rate. Here, we
consider two types of results. The first is the uniform convergence rate over
all x € R; the second is the nonuniform convergence rate, in which the bounds
depends on z. The following theorem on the uniform convergence rate is the
same as Theorem 3.7 of Hall and Heyde (1980), but presented in the form
of a martingale array. We believe the latter form is more convenient to use
in practice. One reason is that in many applications the observations are
not “nested” as the same size n increases; in other words, the observations
under a smaller sample size are not necessarily a subset of those under a
larger one. For example, a larger-scale survey run by one organization may not
include samples from a smaller-scale survey run by a different organization.
See Chapters 12 and 13 for many applications involving this type of data.
Another reason is that normalization (or standardization) of the sequence is
made more explicit under martingale array than under a single sequence of
martingale. See Example 8.15 and another example in the sequel.

Theorem 8.8. Let S,; = 23‘:1 Xnj, Fni, 1 < @ < n, be an ar-
ray of martingales, where F,,; = o(Xn1y. oy Xni), 1 < i < n. Let V2 =
> i B(X7 | Fnjo1), 1 < i <n. Write S, = Spp and V2 = V2, If

j=1

M

1I21ia<Xn |Xn1“ S ﬁ’ (838)
9 5 (logn)? logn

PV2 1] >9M?D <B (8.39)
n \/ﬁ nl/4

for some constants M, B, and D with D > e, then for n > 2, we have

logn

sup  |P(S, <z)—P(x)] < T

—oco<xr <00

(8.40)

where @ is the cdf of N(0,1) and ¢ = 2 + B +7M+/D.

Comparing (8.38) with the well-known Berry—Esseen bound (4.26), it is
seen that the convergence rate is considerably slower for martingales than
for sums of independent random variables. In fact, it can be shown that
n~1/*logn is the best possible rate for martingales (e.g., Hall and Heyde
1980, p. 84). The reason for the slower convergence rate is that the martin-
gale differences are not independent. What the dependence does is reduce the
effective sample size. [Think about an extreme case: If the same story is re-
peated twice, the effective same size is 1 (story), not 2 (stories).] On the other
hand, the n in the Berry—Essen bound represents the effective sample size,
which equals the sample size in the independence case. If, however, there were
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a dependence among the sequence, by replacing n with the effective sample
size one would have ended up with a slower rate.
Also, note that conditions (8.38) and (8.39) imply that n? = 1 in (8.31)

(with k,, = n). To see this, note that (8.39) implies that V,? L lasn— oo
Furthermore, write U2 = Zl L X2, and Yy, = X,QM-—E(XTQLJ}",LE), 1<i<n.
Note that (8.38) implies |Y;,;| < M?/n a.s. Thus, by (ii) of Lemma 8.6,

o]
_ZE 2) <

It follows that U2 — V,2 — 0 in L2, and hence in probability as n — co. We
consider a specific example.

Ezample 8.16. Suppose that &1,&s, ... are independent such that P(§ =
-1) =P =1)=1/2,7 > 1. Define X; = & ---§;, i > 1, and we would
like to obtain the convergence rate of (8.40) for > | X; after a suitable nor-
malization. Let X,,; = X;/y/n and Fpi = 0(Xp1,..., Xni) = 0(X1,..., X;) =
o(&,...,&) (why?), 1 <i <n. Then we have X,,; € F,,; and

E(Xni| Friz1) = o \/EZ “E(&le, . Eimn)
_ gl"'fiflE(gi) —0

n
Thus, Xpni, Fni, 1 <4 < n, is an array of martingale differences or, equiva-
lently, S,; = 22:1 Xnjs Fni, 1 <14 < n,is an array of martingales. Also note
that X2 = 1 for all 4. It follows that X2, = 1/n, 1 < i < n, and V2 =
Thus, (8.38) and (8.39) are satisfied with M = 1 and B = 0. Therefore,
if we let D = e (the smallest value for D), we have (8.40) for n > 2 with
Sp=30  Xni =023 X and ¢ =2+ 7\/e ~ 13.6.

Now, consider the nonuniform convergence rate in CLT. The following
theorem, again in the form of martingale array, can be derived Theorem 3.9

of Hall and Heyde (1980).

Theorem 8.9. With the same notation of Theorem 8.8 and U2 =
S, X2, define, for any 0 < § <1,

=S R { X PO} B (U2 - 1)
i=1

= iE {|Xm|2<1+5>} +E (V2 -1/,
i=1
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There is a constant ¢s depending only on § such that for all x,

1/(3426)

(pn A Qn)
[P(Sp < z) —&(x)| < C51 T [2[A0+8)2/(3+25)

(8.41)

Again, we consider a simple example.

Ezample 8.16 (continued). Since X2, = 1 for all 4, if we let § = 1, we have
Pn = @ = n. Thus, the left side of (8.41) is bounded by ¢;n/(1 + |]'6/5)~1.
It might seem that by letting 6 — 0, one might be able to obtain a nonuniform
convergence rate of n'/3(1 + |z|*/3)~!. However, this is not going to happen,
as far as Theorem 8.9 is concerned, because the constant c¢s — oo as § — 0.

8.6 Convergence rate in SLLN and LIL

After a discussion on the convergence rate in the martingale CLT, we now turn
our attention to convergence rate in the martingale SLLN. Let S,, = > | X;,
Fn, n > 0, be a martingale with Sy = 0. We assume that E(X?) < oo for
all 4, and let 02 = Y7 | E(X2). Lagodowski and Rychlik (1986) proved the
following result, where lim,_,o+ means that ¢ — 0 while € > 0.

Theorem 8.10. Suppose that there are constants b; > 0 such that
E(XZ|Fi—1) < b; as. (8.42)
and constants 0 < ¢; < ¢ such that
cloi S sz S CQO’?L. (843)
i=1
Furthermore, suppose that
sup |P(Sp < zop) —P(x)| — 0 (8.44)

—oo<xr <o

as n — oo. For any ¢ > 2 and ¢/2 < p < g, if

lim lim P~ " nP2N"P(IX| > eoan'/T) =0, (8.45)

A—o00 e—0t ,
n>A/e" i=1

where r = 2¢/(2p — q), then we have

; r(p—1) p—2 1/r
Jim e Zln P(|Sy| > eont/™)

_ 2RI+ r(p —1)}/2)
B (p—1I(1/2)

, (8.46)
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where " is the gamma function.

Note that condition (8.44) requires uniform convergence in the CLT. Also
note that if £,, n > 1, is a sequence of random variables and F' is a cdf that
is continuous on (—00,00), then sup_ . yco0 IP(n < ) — F(z)] — 0 if and
only if sUp_ o cpeoo |P(§n < @) — F(x)| — 0 (Exercise 8.32). Therefore, one
can replace the < in (8.44) by <. We consider an example.

Ezxample 8.16 (continued). It is obvious that (8.42) and (8.43) are satisfied
in this case and 02 = n. Furthermore, by Theorem 8.8 (with X,,; = X;/\/n)
and the above note, (8.44) is satisfied. Now, let p = ¢ = 2; hence, r = 2. Since
P(|X;| > en) =0if n > e ! and 1 if n < e !, we have, for any A > 0,

Y P(Xizen)= Y. n=0

n>A/e? i=1 Ae—2<n<e~1

if € < A; hence, the inside limit of (8.45) is zero for every A > 0. Therefore
(8.45) is satisfied. It follows by (8.46) that

lim €2 ZP(|Sn| >en)=1
n=1

e—0t
using the equation I'(z 4+ 1) = aI'(x), > 0.

Theorem 8.10 describes the convergence rate in the SLLN in terms of the
decay of the probability P(|o;,1S,| > en'/") as n — oo. Note that r > 2;
hence, 0 < 1/r < 1/2. Another way to describe the convergence rate in the
SLLN is the LIL (see Section 6.5). For example, Hall and Heyde (1980) gave
the following result. Let W,,,n > 1, be a nondecreasing sequence of positive
random variables (i.e., 0 < W7 < Wy < --+) and Z,, n > 1, be a sequence of
nonnegative random variables. Suppose that both sequences are predictable
with respect to F,, n > 1. Define ¢(t) = /2tloglogt if t > e and ¢(t) = 1
otherwise.

Theorem 8.11. Suppose that W, 22, 00 and Wi /W1 2% lasn — o
and that the following conditions are satisfied:

IR
p(W2) [Xil(\Xi\>Z7;) - E{Xil(\xi|>zi) Fi—1}] — 0, (8.47)
ni=1
1 - a.s.
W Zvar{Xil(‘X”SZi) ‘7:1',1} — 1, (848)
=1
> AP X <z | Fima} <00 as. (8.49)

i=1 g
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Then we have limsup S,,/¢(W?2) = 1 a.s. and liminf S,,/¢p(W?2) = —1 a.s.
We consider some examples.

Ezample 8.16 (continued). Let W,, = y/n and Z; = 1. Then the left side
of (8.47) is identical to zero. Also, we have

Var{Xi1(|Xi\§Z1)|]:i—1} = V&I"(X”]'-i_l)
=E(X?|Fim1) =1,

and similarly E(X}|F;_1) = 1. Therefore, the left side of (8.48) is equal to 1,
and the left side of (8.49) is equal to >~ | i~ 2 < oc. Therefore, all of the condi-
tions of Theorem 8.11 are satisfied. It follows that limsup S,,/v/2nloglogn = 1
a.s. and liminf S, //2nloglogn = —1 a.s.

On the other hand, the conditions of Theorem 8.11 are not necessary in
the sense that for given sequences W, and Z; satisfying the conditions of the
theorem, there exists a martingale S, = Z;;l X;, Fn, n > 1, that does not
satisfy conditions (8.47)—(8.49), and yet the conclusion of the theorem still
holds for the martingale. To see an example, consider the following.

Ezxample 8.17. Let W,, = /n and Z; = i. Let X1,X;,... be a se-
quence of ii.d. random variables such that E(X;) = 0, E(X?) = 1, and
E(IXi]?) = o (e.g., let X; = &/V/3, where & ~ t3). Then S, = 31" | X,
Fn = o(X1,...,X,), n > 1, is a martingale, and the conclusion of Theo-
rem 8.11 holds by Hartman and Wintner’s LIL (Theorem 6.17). On the other
hand, we show that the sequence X;, i > 1, does not satisfy (8.49). To see
this, note that for any a > 1, we have

1 e > dx 1
E — > g — = - -
i>a i 1'_[,1]/1' z? /[a] 2 )’

where [a] represents the largest integer < a. It follows that

oo

1
> WE{Xfqui\gzi)}\fi—l}

=1 t
=y EX L x<0))
i=1

=1
4
=E {Xl > Z-zl(lxllsn}

i=1

EX{*ZZ_%

i>|X1|v1
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>+ (i)

X4
>E{—1 1
= {[|X1|\/1} (|X1>1)}
= E{|X1]*1(x, >0}

= Q.

8.7 Invariance principles for martingales

This section deals with a similar topic as Section 6.6.1. The first invariance
principle for martingales was derived by Billingsley (1968), who considered
stationary and ergodic (see the definition following Theorem 7.14) martin-
gale differences. In the following we assume that S, = > | X;, F,, n > 1,
is a martingale with mean 0 and a finite second moment. Let Sy = 0 and
Fo = {0, 2} for convenience. In the case of stationary martingale differences,
a straightforward extension of the results of Section 6.6.1 for sums of i.i.d. ran-
dom variables would be to consider (6.64) with \/n replaced by o+/n, where
0? = E(X?) for t € [0,1]. However, without the stationarity assumption, such
an extension may not be meaningful. Hall and Heyde (1980) considered the
following variation of (6.64):

1 tUu2 — U? U? U?
0<i<n—1,and & (1) = U; 'Sy, where Uf =0 and U2 =3\ X2, i > 1.
Intuitively, &, is a function on [0, 1] obtained by linear interpolating between
the (two-dimensional) points (U?/UZ,S;/U,), i = 0,...,n (Exercise 8.33).
Since &, is continuous, it is a member of the space C of continous functions
on [0, 1] equipped with the uniform distance p of (6.63). Then we have the
following result.

Theorem 8.12. Suppose that the following Lindeberg condition holds:
1 n
= D BE{X1(x, e} — 0 (8.51)
noi=1
as n — oo for every € > 0, where s2 = E(S2), and that

U2
n B2 (8.52)

2
Sn

where the random variable n? is a.s. positive. Then &, 4, W, where W is
the Brownian motion on [0, 1].
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Note that here the convergence in distribution is in (C, p), the same as in
Theorem 6.18. We consider some examples.

Ezample 8.18. Note that (8.50) does not reduce to (6.64), even in the
special case of i.i.d. observations. However, in the latter case, it is trivial to
verify the conditions (of Theorem 8.12). To see this, note that if X, Xo, ...
are i.i.d. with E(X;) = 0, E(X?) = 02 € (0,0), then we have s2 = o?n. It
follows that

IS 2 1 2
o) E E{X71(x > e} = ;E{X11(|X1\>w\/ﬁ)}»
=1
which goes to zero as n — oo for every € > 0 (why?). Furthermore, we have

U? 1 — P
o=y XP—1
52 o2p <

=1

by the WLLN. Therefore the conditions of Theorem 8.12 are satisfied.

Example 8.16 (continued). Note that in this case we have X? =1, i > 1;
hence, s2 = n. It follows that E{X?1(|x,|>es,)} = P(1 > ey/n) = 0if ey/n > 1,
and s, 2U2 = 1. Thus, once again, the conditions of Theorem 8.12 are obvious.

Example 8.19. As in Sections 6.6.1 (also see Section 7.3), a result like
Theorem 8.12 may have many applications. This is because &, Lw implies
that h(&,) 4, h(W) for any continuous function i on C. In particular, if one
considers h(x) = z(1) for € C, then the result implies U, 1S, N W(1) ~
N(0,1). In other words, we have a CLT for a martingale S,, normalized by
Un. If one considers h(z) = sup,cpo,1) z(t) and notes that sup,co 1) §n(t) =

U, ! maxo<i<n Si, then we have U, ! maxo<;<n S; 4, supefo,1) W (t)-

Hall and Heyde proved their result by using the following Skorokhod repre-
sentation and limit theorem for Brownian motion. If S,, = Z?Zl X Fnyn>1,
is a zero-mean, square-integrable martingale, then there exists a standard
Brownian motion W defined on a probability space and a sequence of non-
negative random variables 7,, n > 1, with the following properties, where
To = 0 7o Sn = W(Tn), X1 = Si, Xy = Sy = Sty > 2, and G,
is the o-field generated by Si,1 < i < n, and W(t),0 <t < T,: (i) Sn,
n > 1, has the same joint distribution as Sy, n > 1; (ii) T, € Gn, n > 1; and
(iit) E(7|Gn_1) = E(X2|Gn_1) a.s. The limit theorem for Brownian motion
states that if W (t), ¢ > 0, is the standard Brownian motion and T}, n > 1,
is a sequence of positive random variables, then &, N Wi in (C, p), where
En(t) = W(ET,) /Ty, t € [0,1], and W7 is the restriction of W to [0, 1], pro-

vided that there is a sequence of constants ¢,, such that T, /¢, F, 12, where

n? is a.s. positive. See Section 10.5 for more details.
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We now consider the invariance principle in the LIL. Heyde and Scott
(1973) extended Strassen’s (1964) invariance principle in the LIL to mar-
tingales. Recall the space K of absolutely continuous functions z on [0, 1]
with 2(0) = 0 and satisfying (6.69), and the function ¢(¢) defined above
Theorem 8.11. Hall and Heyde (1980) considered normalizing the martingale
S, based on a general sequence of random variables W;, i > 1, satisfying
0< W, SWQS, and

1 tW2 — W2
Cn(t) = 1o\ <Sz + #Xi-&-l)

(W3 Wi - W
W2 W2
for o5 << 5 (8.53)

0<i<n—1,and (,(1) = ¢~ 1(W?2)S,. It is clear that, except for the different
denominators, (8.50) is a special case of (8.53) with W; = U;, provided that
X2 >0 a.s. Theorem 8.11 in the previous section can now be extended to an
invariance principle for (,. Recall the definition of an a.s. relative compact
sequence in Section 7.4 (above Theorem 7.7).

Theorem 8.13. Under the conditions of Theorem 8.11 we have (, r.c. K
w.r.t. p of (6.63) on C a.s.

In words, we have with probability 1 that the sequence (, is relative com-
pact in C and its set of p limit points coincides with K, where p is the uniform
distance of (6.63). Note that the assumption that W, is predictable does not
exclude U, from application. This is because one may replace U, by U,_1,
which is predictable. On the other hand, the assumption that U,, /Uy, 41 2%
ensures that normalizing by U, is asymptotically equivalent to normalizing
by U,,—1. We consider a simple example.

Ezample 8.16 (continued). Earlier in Section 8.6 we showed that the se-
quence X; in this example satisfies all the conditions of Theorem 8.11 with
W, =+/n and Z,, = 1. It follows that (, r.c. K w.r.t. p on C a.s., where

:Si+(tn—z)Xi+1 §t<l+1

7
V2nloglogn = n n '
0<i<n-—1,and (,(1) = S,/v2nloglogn.

Cn(t)

8.8 Case study: CLTs for quadratic forms

There is a great deal of statistical inference based on quadratic functions of
random variables. For example, the log-likelihood function under a Gaussian
model depends quadratically on the data; many of the goodness-of-fit (or lack-
of-fit) measures involve the data in squared Euclidean distance; of course,



268 8 Martingales

estimators of variances and covariances are usually quadratic functions of the
data. Let &5, 1 < i@ < k,, n > 1, be an array of random variables such
that for each n, &,;, 1 < ¢ < k,, are independent with mean 0, and let
Ay, = (anij)i<i,j<k, be a sequence of (nonrandom) real symmetric matrices.
Write &, = (§ni)1<i<k,- We are interested in the limiting behavior of

Such a problem is of direct interest in statistical inference, even if the
observations themselves are not independent. For example, in Chapter 12 we
discuss application of large-sample techniques in linear mixed models. The
latter is defined as observations y1, ..., y, satisfying

y=XB+Zia1 + -+ Zsas + €, (8.55)

where y = (yi)1<i<n, X is matrix of known covariates, (3 is a vector of unknown
fixed effects, Z,, 1 < r < s, are known matrices, «,, 1 < r < s, are vectors
of (unobservable) random effects, and e is a vector of errors. (As will be
seen in later chapters, it is more customary in statistical literature to use
lowercase letters, such as y, to represent observed data and uppercase letters,
such as X, for known covariate or design matrices, and we will gradually
adopt such changes in notation.) It is further assumed that the components
of a, are independent with mean 0 and unknown variance o2, 1 < r < s;
the components of € are independent with mean 0 and unknown variance o3;
and aq,...,qa, € are independent. It is easy to see that, even if the random
effects and errors are independent, the observations yi,...,y, are typically
correlated. This is because the same random effects may be “shared” by many
observations. For example, consider the following.

Ezample 8.20. Suppose that the observations y;;, 1 < i <my, 1 < j <
ma, satisfy v;; = p + u; + v; + e;5, where i is an unknown mean, the u;’s
and v;’s are independent random effects such that u; ~ N(0,0%) and v; ~
N(0,03), the €;;’s are independent errors such that €; ~ N(0,02), and the
random effects and errors are independent. It can be shown that the model
is a special case of (8.55) (Exercise 8.34). Under the assumed model, there
are multiple observations sharing the same random effects. For example, the
random effect u; is shared by all of the observations y;;, 1 < j < mg; similarly,
the random effect v; is shared by all of the observations y;;, 1 <i < my. As
a result, there are correlations among the observations. Such a model is often
called a variance components model. For example, in animal and dairy science,
variance components models are used to model different sources of variations,
such as the sire (i.e., male animals) and environmental effects.

According to our earlier discussion in Section 5.6—in particular, (5.99)
and (5.100)—the ML or REML estimators of the variance components o2,
0 <r < s, depend on y through the quadratic forms
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Q=y'PZ.Z.Py, 0<r<s, (8.56)

where Zy = I, the identity matrix, and P = A(A'VA)~1A’. (Again, it is
customary in statistical literature to suppress the subscript n representing the
sample size, so, for example, we write @) instead of @,,; but keep in mind that
the objects we are dealing with depend on the sample size if asymptotics are
under consideration.) Recall that A is a full rank matrix such that A’X = 0.
Thus, if we let £ represent the combined vector of random effects and errors
[i.e., &= (¢,a),...,a.)], then (8.56) is equal to

Q= y—XB)PZ.Z.Ply— Xp)
=¢7'PZ,7.PZ¢, 0<r<s,

where Z = (I Zy --- Z,). It follows that the ML and REML estimators
depend on quadratic forms in independent random variables.

In fact, such problems as asymptotic behavior of REML estimators have
led Jiang (1996) to consider CLT's for quadratic forms in independent random
variables expressed in the general form of (8.54). There had been results on
similar topics prior to Jiang’s study. Some of these applied only to a special
kind of random variables (e.g., Guttorp and Lockhart 1988) or to A,, with a
special structure (e.g., Fox and Taqqu 1985). Rao and Kleffe (1988) derived
a more general form of CLT for quadratic forms in independent random vari-
ables, extending an earlier result of Schmidt and Thrum (1981). However,
as noted by Rao and Kleffe (1988, p. 51), “the applications (of the theo-
rem) might be limited as it is essentially based on the assumption that the
off diagonal blocks of A, tend to zero.” Such restrictions were removed by
Jiang (1996), whose approach is a classical application of the martingale CLT

introduced in Section 8.5. Note that E(Q,,) = Ef;l ani;B(€2,). Thus, we have

krn
Qn — E(Q»,,) = Z anijgnignj - Z a"nZlE(grzm)
=1

1<ij<kn
kn

=Y ani{&h —EE)} + D anijbnibn
i=1 ]
o o

=Y il B} +2) [ D aniibas | i
i=1 i=1 \ j<i

kn
= Xni, (8.57)
=1

where Xy; = anii{éh; — E(67)} + 230,25 @nigénj)éni- Let Fri = 0(&nj, 1 <
J<1),1<i<k,. Itis easy to verify that X,;, Fpni, 1 <i < k,, is an array of
martingale differences (see Example 8.3). Due to this important observation,
the martingale CLT (Theorem 8.7) becomes a natural tool to derive the CLT
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for @,,. Before we explore Jiang’s results in further detail, let us first consider
some examples to see what to expect.

Ezample 8.21. 1f £,;, 1 < i < k,,, are distributed as N (0, 1), then

n E n
W 4 N(0,1) (8.58)
if and only if
[Anll
1l " (539

where ||A]| and ||Al|2 are the spectral norm and 2-norm of a matrix A defined
above (5.40) and (5.41), respectively. The proof of this result is left as an
exercise (Exercise 8.35).

However, such a nice result may not hold for a general array of independent
random variables, as the following example shows.

Example 8.22. Let A,, be the n-dimensional identity matrix and &,;, 1 <
i < n, be independent such that P({,; = —1) = P(& = 1) = (n — 2)/2n,
P& = —V2) = P(éi = vV2) = 1/2n, and P(&,; = 0) = 1/n, 1 < i < n,
n > 2. By Theorem 6.13, it can be shown that (8.58) fails, despite the fact
that (8.59) holds (Exercise 8.36).

The situation in Example 8.22 is somehow extreme because the (squares
of the) random variables are asymptotically degenerated. Such cases must be
excluded if one attempts to generalize the result of Example 8.21. Jiang (1996)
proved the following theorems. Let A% = A,, — diag(ani;, 1 < i < ky,) (here
the superscript o refers to “off-diagonal”) and A,, = {1 < i < ky, ani; # 0}.

Theorem 8.14. If

inf { min var(fm)} A {min Var(ﬁii)} >0,

n>1 | 1<i<ky, i€A,

2 4
sup Lgfggn E{ﬁml<sm|>x>}] v [rggx E{fnil(lini>x)}:| —0

as ¥ — oo, then (8.59) implies (8.58).

To state the next result we first introduce some notation. Let b,;, 1 <

i < kn, n > 1, be an array of nonnegative constants. Define 77(112-) =
2 1

E{g:lm’lﬂém\ﬁbm)}’ ’Yr(m) = E{( 7211 - 1)41(|fn¢\§bm)}’ 6r(n) = E{Xr%il(\fnil>bm)}7

and 67(122-) =E{(&2; — 1)?1(j¢,.|>bn:) }- Then define
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{%(i)%(” ifi#j

TG =gy
{6(1 +4 1)}/2 if 4 # 7,
Onij = 57(5 ifi=j7¢€eA,,
otherwise.

Theorem 8.15. Suppose that E(¢2,) = 1 for all 4 and n and there are b,,;
as above such that

kn
1
_2 E :anz] nij 0,
In i,j=1
2
1 kn kn @
Z 4 Z Z 2 1
0,_4 A Vnij + Apij Vni 0’
n

ij=1 i=1 \ j£i
where 02 = var(Q,,). Then (8.58) holds provided that || A% ||/, — O.

It might seem that Theorem 8.15 is more restrictive than Theorem 8.14
because of the assumption E(£2,) = 1. It is, in fact, the opposite. Jiang (1996)
showed that Theorem 8.14 can be derived from Theorem 8.15 with a special
choice of b,; and a simple transformation.

As for the proof of Theorem 8.15, the key steps are to verify the condi-
tions of Theorem 8.7—mnamely, (8.30)—(8.32). [As noted following Theorem
8.7, (8.33) is not needed if 72 is a constant and the word stably is removed
from (8.34).] However, sometimes these conditions are not easy to verify di-
rectly, such as in this case. A technique that is often used in such situa-
tions is called truncation. Let wni = &nil(e,,1<bn) — E{&nil(e,,|<bn,) )}, and

Uni = (62 = D1(jensi<bnn) — BLER: — D1ge,i<bnn ), and

1
Yni= — 1< aniiUpi + 2 g OnijUng | Ung

o
n j<i

It is easy to verify that Y,;, Fni, 1 < i < k,, is an array of martingale
differences. Furthermore, it can be shown that

8n ~ E(@n) ZYm+An,

where A,, — 0 in L2, and hence in probability (Theorem 2.15). Conditions
(8.30) and (8.32) are then verified for Yy,;, 1 <i < k,, n > 1. As for condition
(8.31), it can be shown that
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kn 3
ZYnQi = ZVt + op(1)
=1 t=1

where Vi = 0,237, 4 aZvar(E2,),

kn
= _2 E nn nzuni) § AnijUng | »
Tn i=1 j<i

and V3 = u),Cputy,, With u,, = (Uni)1<i<k,, Cn = (4/02) B!, B,,, and B,, being
the lower triangular matrix of A,—that is, B,, = [amjl(bj)hgi,jgkn.

The next thing is to show that Vo — 0 in L?. Let [,, be the k,-dimensional
vector whose ith component is a,i; E(Upniun;). Also, write ¢, = 16/0. By
exchanging the order of summations, we have

2
kn
(‘/2 ) - CnE Z Z anijaniiE(Uniuni) unj
j=1 | i>j
ko 2
j=1 | i>j

Since E(uZ;) < E(¢2;) = 1, the summation of the right side of (8.60) is
bounded by |B/1,|* < Amax(B.,Bn)|ln|? < || B, By||2|ln|?, using the fact that
the spectral norm of a matrix is bounded by its 2-norm. We now apply Lemma
5.3 to get B(VZ) < ¢, v/2||A%|| - | Bnll2|ln|?. Finally, note that

= Z aiiivar(gr%i) + 2Za$n'jv (8.61)

i€A, i#£]j

which implies |B,||2 < 0,/2 and |I,]? < 02 (why?). It follows that E(V2) <
(16/+/2)(|| A2 || /) — 0 according to the assumption.

The last thing is to show that V3 — E(V3) — 0 in L2 Here, we use the
following result, whose proof is left as an exercise (Exercise 8.37).

Lemma 8.9. Let um, 1 <i < k,, be independent such that E(u,;) = 0,

E(u2,) = 02, and E(u?;) < oo, and let C,, = (cmj)1<”<k be symmetric.

Then u,C), tn E(u Chttn) — 0 in L2 provided that 4" var(u?;) — 0
and Y. 02,02, — 0.

i>] nzg ni- ng

11nu

We verify the conditions of Lemma 8.9 for the current w, and C,. The
assumption of Theorem 8.15 implies that

2

kn
§ : 2 § : § : 2 2
Cnii Va‘r nz - a’nij V&I’(Uni) 0.

Jj<i

:%I
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Once again, we apply Lemma 5.3 to argue that

1
Zcing(Uiz)E(uig) < B Zciij

i>j i#£]

8
BB
g

2
On

IN

IN

0

by the assumption of the theorem.
In conclusion, we have shown that

kn

ZYnQi =0,” Z ag; var(€2;) + E(uy, Cruy) + op(1).
i=1 €A,

However, E(u,,Cpu,) = 20,2 Dk ap;; +o(1) (Exercise 8.37). Thus, in view

of (8.61), we have 221 Y2 =1+ op(1), which implies (8.31) with n? = 1.

8.9 Case study: Martingale approximation

Martingale limit theory is useful in deriving limit theorems for random pro-
cesses that may not be martingales themselves. A technique that often makes
these derivations possible is called martingale approximation. The idea is to
obtain an (a.s.) error bound for the difference between the random process
and the approximating martingale that is good enough so that the desired
limit theorem for the random process follows as a result of the corresponding
limit theorem for the approximating martingale. As an example, we consider a
recent work by Wu (2007), who used the martingale approximation to derive
strong limit theorems for sums of dependent random variables associated with
a Markov chain (see Section 10.2).

Suppose that &;,i € Z, is a stationary and ergodic Markov chain, where Z
is the set of all integers and the stationary Markovian property implies that

P(§n+1 = yIEn =2, 1= Tn_1,.. ) = P(& = y|50 = 5'5) (8-62)

for all n € Z and y,x,xn_1,.... Let X; = ¢(&), where g is a measurable
function, and S, = > | X;. The interest is to obtain strong (i.e., a.s.) limit
theorems for S,,n > 1. Note that such topics were discussed in Chapter 6,
where the X;’s are assumed to be independent random variables.

Wu (2007) considered the following approximating martingale. Let Fy, =
o(&,7 < k). For any random variable Z with finite first moment, define the
projection PrZ = E(Z|Fi) — E(Z|Fi-1). Let Dy = Y:2, Prg(&), provided
that the infinite series converges almost surely. Then Dy, Fi, k € Z, is a
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sequence of martingale differences that is stationary and ergodic. It follows
that M,, = >"7_, Dy, Fn,n > 1, is a martingale. Furthermore, the following
error bound for S, — M, is obtained. Let §; ;, = ||Pog(&)|lq, where for any
random variables Z and ¢ > 0, || Z||, = {E(|Z|9)}'/4, and A, , = > is i Oig-

Theorem 8.16. Let E{g(&;)} = 0 and g(&) € L? for some ¢ > 1. Then

1S — M|y < 3By > A

2,97
j=1

where r = ¢ A2 and B, = 18¢%/%(¢ — 1)"Y/2 if ¢ € (1,2) U (2,00) and 1 if
q=2.

By Theorem 8.16 and Borel-Cantelli lemma (Lemma 2.5), an a.s. bound
for S,, — M, can be obtained, as follows.

Corollary 8.4. Under the assumptions of Theorem 8.16, we have S,, —
M,, = o(n'/?) a.s., provided that Ag, < co and

o0

> jeal, < oo, (8.63)
j=1

where a = {(¢+4)/2(¢g+ 1)} Aland b=q/(q+ 1).

Here, S,, — M,, = o(n'/9) a.s. means that (S, — M,)/n'/? 2% 0 as n — oco.
Based on the martingale approximation, a number of strong limit results were
obtained for S,,. The first theorem below gives some SLLNs. We say a function
h is slowly varying if for any A > 0, limg_,o h(Az)/h(z) = 1.

Theorem 8.17. Under the assumption of Theorem 8.16, let h be a posi-
tive, nondecreasing slowly varying function.
(i) If g > 2, A, g = Ol(logn)~¢] for some 0 < a < 1/q, and

(R} < o,

then S,,/v/nh(n) 2% 0, as n — oo.
(i) f 1 < ¢ <2, Apq < 00, and

Z{h@j)}’q < 0,

then S, /n'/%h(n) 2% 0 as n — oo.
(iii) If 1 < ¢ < 2 and (8.63) holds, then S,,/n'/? 2% 0 as n — oc.
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The next result is a LIL. Define o = || Y72 Pog(&)|]2-
Theorem 8.18. (i) Suppose that ¢ < oo and that, for some ¢ > 2, we
have E{g(£0)} =0, g(&) € L? and

> {(logk) ™2 Age ,}9 < 0.
k=1

Then we have, for either choice of sign,

S,
limsupt————— =0 a.s.

n—oo  V2nloglogn

The final result is a strong invariance principle. We have considered a.s.
invariance principles for sums of independent random variables in Section
6.6.1 and for martingales in Section 8.7, but here it is in the sense of an
a.s. approximation of S,, by a Brownian motion (see Section 10.5). For such a
result to hold, it is often necessary to enlarge the underlying probability space
and redefine the stationary process without changing its distribution. This is
what we mean below by a richer probability space. Define

(n) = n*/?(logn)'/?, 2<a<d
XA = 4 log n) /2 (loglog m) V4, ¢ > 4,

and 7,(n) = n/9(logn)/**/4(loglog n)? 7. Recall for a sequence of nonneg-
ative random variables 7,, and a sequence of normalizing constants a,, > 0,
M = O(ay) a.s. means that limsup,,_, . nn/an < 00 a.s.

Theorem 8.19. Under the assumption of Theorem 8.18, let s = g A 4.
(i) If A, s = O[n'/*=1/2(logn)~!] and

YIE (DRIF) = o?], < o0, (8.64)
k=1

where o is the same as in Theorem 8.18, then, on a richer probability space,
there exists a standard Brownian motion B such that

S, — B(J2n)| = Olxq(n)] a.s.

(ii) If A, = O(n'/*71/2) and

> NIPo (DR, 5 < 0, (8.65)
k=1

then, on a richer probability space, there exists a standard Brownian motion
B such that
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|Sn — B(JQn)| = Olrs(n)] a.s.

As an application of the strong limit theorems, Wu (2007) considered the
prediction problem in an input/output system. The system may be expressed
as X, = g(&,), where &, = (...,én—1,€6,) and €;,7 € Z, are i.i.d. random
variables. Here, the inputs are ¢;,i < n, X,, is the output of the system,
and ¢ is a filter. It is easy to show that the sequence ,,n € Z, satisfies
the Markovian property (8.62) (Exercise 8.38). The author showed that, in
this case, simple and easy-to-use bounds for the norms involved in (8.64) and
(8.65) can be obtained.

8.10 Exercises

8.1. This exercise is in connection with the opening problem on casino
gambling (Section 8.1).

(i) Show that whenever the gambler wins, he recovers all his previous losses
plus an additional $5.

(ii) Suppose that the maximum bet on the casino table is $500 and your
initial bet is $5. How many consecutive times can you bet with the martingale
strategy?

(iii) Use a computer to simulate 100 sequences of plays. Each play consists
of a betting and flipping a fair coin. You win if the coin lands head, and
you lose otherwise. Start with $5, then follow the martingale betting strategy
until winning (but don’t forget the $500 limit). How many times do you hit
the limit?

(iv) Now, suppose the coin is biased so that the probability of landing
head is 0.4 instead of 0.5. What happends this time when you play the games
in (iii)?

8.2. Show that if S,,, F,, n > 1, is a martingale according to the extended
definition (8.2), then S, n > 1, is a martingale according to (8.1). Give an
example to show that the converse is not necessarily true.

8.3. Prove Lemma 8.1 (note that the “only if” part is obvious).

8.4. Show that S, F,, n > 1, in Example 8.2 is a martingale.

8.5. Prove Lemma 8.3.

8.6. Show that Y;, F;, 1 < i < n, in Example 8.3 is a sequence of martingale

differences.

8.7. Verify properties (i)—(

8.8. Verify properties (i)—(iii) of Lemma 8.5.

8.9. Prove properties (i) and (ii) of Lemma 8.6.

8.10. Prove properties (i)—(iv) of Lemma 8.7.

8.11. A sequence of random variables X,,, n > 1, is said to be m-dependent
ifforanyn > 1,0(Xy,...,X,) and 0(Xpn4m+1, - . -) are independent. Suppose,
in addition, that E(X,,) =0, n > 1. Define F,, = o(X1,...,X,,) and

iv) of Lemma 8.4.

),
),
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n+m
Sn=E<ZXZ- fn>,
i=1

n > 1. Show that S,, F,, n > 1, is a martingale. Note that Example 8.2 is a
special case of this exercise with m = 0.

8.12. Suppose that Xi,..., X, are i.i.d. with finite expectation. Define
Sk =% Xi, My = (n =k +1)""8,_py1, and Fy = 0(Sn, ..., Sn_ki1),
1 < k < n. Show that My, F, 1 < k < n is a martingale. [Hint: Note that
Mk = E(Xllfk), 1 S k S n]

8.13 (U-statistics). A sequence of random variables X,,, n > 1, is said to
be exchangeable if for any n > 1 and any permutation i1,...,4, of 1,...,n,
(Xiy, ..., X;,) has the same distribution as (X1,...,X,). For a fixed m > 1,
a Borel-measurable function ¥ on R™ is called symmetric if for any permu-
tation ji,...,jm of 1,...,m, we have ¥(z;,,...,z;,) = ¥(x1,...,Tn) for all
(Z1,-..,%m) € R™. Let ¢ be symmetric and E{|¢(X1, ..., X;)|} < co. Define

—1
Upon = (”) S (X X)), nzm,

1<j1 < <jm<n

and G, = 0(Upm ik, k > n). Let N > m be a fixed integer. Then define U} =
Un,n—n and F,, = Gy_p. Show that U}, F,, n < N —m is a martingale.
[Hint: First show that E(Up n|Gn+1) = Um.nt1 a.8.]

8.14 (Record-breaking time). Let X,,, n > 1 be a sequence of random
variables. Define 71 = 1 and

CJif{n>7 X, > X i <ocand {(n>1:X,> X, }#0
T 7 otherwise,

k > 1. The sequence 7%, k = 1,2,..., may be interpreted as record-breaking
times. Show by induction that 7%, k > 1, is a sequence of stopping times with
respect to Fp, = o(X1,...,X,), n > 1.

8.15. Let X;, @ > 1, be i.i.d. with cdf F. Define 74 as in Exercise 8.14.
Also, let wp = sup{z : F(z) < 1}. Show that (i)—(iii) are equivalent:

(i) 7 < oo a.s. for every k > 1.

(ii) 7 < oo a.s. for some k > 1.

(ili) wp = 0o or wp < oo and F is continuous at wp.

8.16. Show that if 7 and 7o are both stopping times with respect to F,,
n > 1, then {r < 1} € F,.

8.17. Complete the arguments for submartingale and supermartingale in
Example 8.8.

8.18. Suppose that S,,, F,,, n > 1, is a submartingale. Show that conditions
(i) and (ii) are equivalent:

(i) condition (8.17) and E(]S1]) < oo;

(ii) condition (8.19).
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8.19. Suppose that X,,, n > 1, are m-dependent as in Exercise 8.11 and
E(X,) = p € (—00,00), n > 1. Let 7 be a stopping time with respect to
Fn=0(Xq,...,X,)such that E(7) < co. Show that E(S; 1) = {E(7)+m} .

8.20. The proof of Theorem 8.3 is fairly straightforward. Try it.

8.21. This exercise is associated with Example 8.12.

(i) Show that the sequence S,,, F,,, n > 1, is a martingale with E(S,,) = 0,
n > 1.

(ii) Show that 3 x 2072 > n if and only if i > [,,.

(iii) Show that Y, _,, i™" — 00 as n — oco.

8.22. Show, by Example 8.7, that the 7 defined in Example 8.13 is a
stopping time with respect to the o-fields F,,, n > 1.

8.23. In this exercise you have an opportunity to practice the stopping
time technique that we used in Example 8.13 by giving a proof for part (i) of
Theorem 8.5.

(i) Show that for any p € (0,1) and ¢; > 0, 1 < i < n, we have

n p n
(Ze) <xe
=1 =1

(Hint: For any 0 < «o; < 1, we have of > «;; consider a; = ¢;/ Z?:1 Cjs
1<i<n)
(ii) Use a similar stopping time technique as in Example 8.13 to show that

TAN
E (Z f—|> < B.

i=1
(iii) Use Fatou’s lemma to show that

TAT

I | X
im Z = <> as.

and hence Y .2, |X;|/a; < 0o as. on {7 = oo} = {> .2, E(|X;[P|Fi—1)/al <
B} for any B > 0.
(iv) Conclude that Y_.°; X;/a; converges a.s. on

{Z E(|X,[P|Fim1)/a? < oo} ,

i=1

Note that here it is not required that the X;’s are martingale differences.
8.24. In this exercise you are asked to provide a proof for part (ii) of
Theorem 8.5.
(i) Let Y; = X;/a;, i > 1. Show that

b, if B(|X,[P|Fi_1) < aPbP/?
7P} PPPE(| X, || Fi_1) otherwise.

?

E(Y?|Fi1) < {
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[Hint: First show that B(Y2|F;_1) < a; *{E(|X;[P|Fi—1)}*/P. In the case that
E(|X;[P|Fim1) > a?b?"?, write {E(|X,[P|Fi_1)}2/? as

E (| X" Fim ) {E( Xl Fima) 2P

and note that 2/p —1 < 0.]

(i) Use a special case of Theorem 8.4 with p = 2 to complete the proof of
part (ii) of Theorem 8.5.

8.25. Give two examples to show that (8.22) and (8.24) do not imply each
other. In other words, construct two sequences of martingale differences so
that the first sequence satisfies (8.22) but not (8.24) and the second sequence
satisfies (8.24) but not (8.22).

8.26. This exercise is related to Example 8.14.

(i) Show that condition (8.25) implies (8.27) and (8.28) for every ¢ > 1.

(if) Show that E(]X|) < co implies (8.29).

(iii) Show that (8.27) and E(|X|log™ |X|) < oo implies

oo

Zi_lE{‘Xiu(lXiDi)} < oo.
i=1

(iv) Use the result of (iii) and Kronecker’s lemma to show that
'y Z 250
i=1
w2 g
i=1

hence, (8.26) can be strengthened to a.s. convergence under the stronger mo-
ment condition.

8.27. Suppose that &1, s, . .. are independent such that &; ~ Bernoulli(p;),
where p; € (0,1), ¢ > 1. Show that as n — oo,

*251 &1 ( pi) == 0.

8.28. Derive the classical CLT from the martingale CLT; that is, show by
Theorem 8.7 that if X, Xo,... are i.i.d. with E(X;) = 0 and E(X?) = 02 €
(0,00), then n=1/23"" | X; 4, N(0,02).

8.29. This exercise is related to Example 8.15.

(i) Verify (8.37).

(ii) Show that n=*>"" | X, 2 h(p + «). [Hint: Use a result derived in
the example on E(X;|F;—1) and Example 8.14.]

8.30. Let Zy, Z1, . .. be independent N (0, 1) random variables. Find a suit-
able sequence of normalizing constants, a,,, such that
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1 — y
—> "z, 12 4, N(0,1)
(025

i=1

and justify your answer. For the justification part, note that Example 8.14 is
often useful in establishing (8.31). Also, note the following facts (and you do
need to verify them):

(i) For any M > 0, we have

2 2
lléliagxn |Z7;_1ZZ‘| <2 {M + ZO Z; 1(|Z¢>M)} .
(11) maxlgign(Zi,lZi)z S E?:O Zz4
8.31 [MA(1) process]. A time series X, t € T ={...,—1,0,1,...}, is said
to be a moving-average process of order 1, denoted by MA(1), if it satisfies

Xi =€+ 0y

for all ¢, where 6 is a parameter and ¢;,t € T, is a sequence of i.i.d. random
variables with mean 0 and variance 0 € (0,00) (the i.i.d. assumption can
be relaxed; see the next chapter). Given ¢y € T, find a suitable sequence of
normalizing constants a,, such that

1 to+n
. 4, N(0,1)

a
" oi=to+1

and justify your answer using similar methods as outlined in the previous
exercise. Does the sequence a,, depend on ty?

8.32. Show that if &,, n > 1 is a sequence of random variables and F' is a
continuous cdf, then

sup  [P(&n <) — F(x)] — 0

—oo<xr<oo

if and only if

sup |P(&, <) — F(z)] — 0.

—oo<xr <00

8.33. Show that the function &, defined by (8.50) is simply linear interpo-
lations between the points

U S Sn,
—, = |,.., L, =.
(070)7 <U37 Un b ) ) Un
8.34. Show that the model in Example 8.20 can be expressed as (8.55) (this

includes determination of the number s and matrices X, Z1, ..., Z;) with all
the subsequent assumptions satisfied.
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8.35. Show that if &,;, 1 < i < k,, are independent N(0,1) random vari-
ables, then (8.58) holds if and only if (8.59) holds.

8.36. Show that the array of random variables defined in Example 8.22
satisfies (8.59) but not (8.58).

8.37. This exercise is related to the proof of Theorem 8.15.

(i) Prove Lemma 8.9.

(ii) Verify (8.61).

8.38. Verify that the sequence &,,n € Z, in the input/output system
considered at the end of Section 8.9 satisfies the Markovian property (8.62).






9

Time and Spatial Series

9.1 Introduction

Time series occur naturally in a wide range of practices. For example, the
opening price of a certain stock at the New York Stock Exchange, the monthly
rainfall total of a certain region, and the CD4+ cell count over time of an
individual infected with the HIV virus may all be viewed as time series. A
time series is usually denoted by X;, ¢ € T, where T is a set of times, or X (),
t € T, although in this book the latter notation is reserved for (continuous-
time) stochastic processes (see the next chapter). An observed time series is a
sequence of numbers, one at each observational time. For example, Table 9.1
shows the seasonal energy consumption (coal in the unit of ton) of a certain
city from 1991 to 1996. The numbers may be viewed as an observed time
series X;, t = 1,...,24, where the times ¢ = 1,2,... correspond to the first
season of 1991, the second season of 1991, and so on. Figure 9.1 shows a plot
of X; against t.

Table 9.1. Seasonal energy consumption

Year|Jan.—-March|April-June|July—Sept.| Oct.—Dec.
1991| 6878.4 5343.7 4847.9 6421.9
1992| 6815.4 5532.6 4745.6 6406.2
1993| 6634.4 5658.5 4674.8 6645.5
1994| 7130.2 5532.6 4989.6 6642.3
1995| 7413.5 5863.1 49974 6776.1
1996| 7476.5 5965.5 5202.1 6894.1

A statistical model is often used to describe a time series. In fact, there
are many such models. The following are some examples.

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2_9, © Springer Science+Business Media, LLC 2010
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Fig. 9.1. Energy consumption against time

Example 9.1 (White noise). A white noise process, denoted by WN(0, o),
is defined as Xy, t € T, such that E(X;) = 0, var(X;) = 02, and cov(Xs, X;) =
0 for s # t.

Throughout this chapter, Z denotes the set of integers; that is, Z =
{...,-1,0,1,...}.

Ezample 9.2 (AR, MA and ARMA processes). A time series X, t € Z, is
called an autoregressive process of order p, or AR(p) process, if it satisfies

Xt = b]_thl +"'+prt7p+€tv (91)

where ¢, t € Z, is a WN(0, o) process and the b’s are unknown parameters.
X} is a moving-average process of order ¢, or MA(q) process, if it satisfies
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Xt =€+ A1€4—1 + -+ Aq€t—q, (92)

where ¢; is the same as in (9.1) and the a’s are unknown parameters. A special
case of the MA(q) process was considered in Example 8.31. Finally, the time
series is called an autoregressive moving-average process of order (p,q), or
ARMA (p, q) process, if it satisfies

Xt = let71 +---+ prt,p +ée +are—1+ -+ Aq€t—q, (93)
where €; is the same as in (9.1) and the a’s and b’s are unknown parameters.

A time series X;, t € Z, is said to be strictly stationary if for any
t1,...,tn,h € Z, the joint distribution of Xy, 4p,..., X¢y+n is the same as
that of Xy, ,..., X¢y. The time series is said to be second-order stationary if
it satisfies E(X;) = p, a constant, E(X?) < oo, and cov(X¢, X¢+p) does not
depend on t. For a second-order stationary time series X4, its autocovariance
function is defined by (4.48)—namely,

’Y(h) = COV(Xt>Xt+h)7 t7 heZ. (94)

It follows that for any s,t € Z, cov(Xs, Xi) = v(t — s). It is easy to see that
an autocovariance function has the following basic properties:

(i) (symmetry) v(—h) =~(h), h € Z.

(ii) (nonnegative definitness) For any n > 1, the matrix of autocovariances
I, = [v(t — $)]1<t,s<n is nonnegative definite.

(iii) (boundedness) |y(h)| < ~(0), h € Z.
The autocorrelation function of the time series is then defined as

p(h) = v(h)/7(0), heZ. (9.5)

By property (iii) above (or the Cauchy—Schwarz inequality), the value of p(h)
is always between —1 and 1.

A well-known result in time series analysis is the spectral representation
theorem, as follows (e.g., Hannan 1970, p. 46).

Theorem 9.1. For any autocovariance function 7 of a second-order sta-
tionary time series we have the representation

~(h) = 1 " e P (9.6)

for all h € Z, where F' is a nondecreasing function, which is uniquely defined
if we require in addition that (i) F(—7) = 0 and (ii) F' is right-continuous.

The function F' is called the spectral distribution function. In the case
that F' is absolutely continuous, there exists a function f, called the spectral
density function, such that
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A = [ ax 0.7)
for all h € Z. A sufficient condition for the existence of the spectral density is
that the autocovariance function is absolutely summable; that is, (4.49) holds.
In addition, we have the following result regarding a linear time series that
can be expressed as

X, = Z:%qﬁ,tez, (9.8)

j=—o0

where € is as in (9.1).

Theorem 9.2 (Herglotz theorem). If 3772 a? < oo, then X, has the
spectral density f()\) = (02/27)| PR a;e 2.

Another celebrated result in time series analysis is the Wold decomposition
(Wold 1938), discussed earlier in Section 4.4.3. It states that any second-order
stationary time series X; can be expressed as

Xy =v + Zajet_j7 (99)

=0

where ¢, is as in (9.1), v is purely deterministic in the sense that it belongs
to the linear space spanned by v;_1,v;_a,... in the L? sense, ¢; and v; are
orthogonal in that E(esv,) = 0 for all s,¢ € Z, and the coeflicients a; satisfy
Z;io a? < 00. Note that the infinite series in (9.9) is different from that in
(9.8) in that the summation is restricted to nonnegative integers. This dif-
ference is important in time series prediction theory, in which €; represents
innovations, or forecast errors. Wold decomposition ensures the ability to lin-
early forecast any second-order stationary time series by means of a process
purely determined by its past values plus a moving average of current and
past innovations. [Note that such an implication does not prevail from (9.8)
because the summation also involve future innovations.]

An extension of time series is a spatial series. A spatial series is also denoted
by X; except that t € Z*, where k > 1; in other words, t = (¢4, ..., 1), where
t; € Z,1 < j < k. For example, k = 2 gives rise to a collection of random
variables in the plane. The analysis of spatial series is of interest in a number
of fields such as geography, econometrics, geology, and ecology. As it turns out,
the development for spatial series analysis is essentially the same for k = 2
and for k > 2, but there are major differences between k = 1 (i.e., time series)
and k = 2. For such a reason, we mainly focus on k = 2 for spatial series.

Some of the time series models can be extended to spatial series. For
example, a spatial WN spatial series is defined the same way as Example 9.1,
with the understanding that s,¢ € Z2. Similarly, a spatial ARMA model is
defined as Xy, t € Z2, satisfying
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Xe= Y bXeot Y aWis, teZ? (9.10)

s€(0,p] s€[0,q]

where p = (p1,p2), ¢ = (q1,42), (0,p] = {s = (s1,82) € Z°> : 0 < 55 <
pi,i = 1,2,s # (0,0)}, [0,q] = (0,¢] U{(0,0)}, W; is a spatial WN(0,0?)
series; and the a’s and b’s are unknown parameters. A spatial series X,
t € Z2, is said to be second-order stationary if E(X;) is a constant and
E(XoinXiin) = B(X,X;) for all s,t,h € Z2. It is easy to show that this
condition is equivalent to that E(X;) and E(X;X;15) does not depend on ¢
for any t,h € Z? (Exercise 9.2). For a second-order stationary spatial series,
we can define its autocovariance function in the same way as (9.4), except that
t,h € Z2. A spectral representation theorem similar to (9.6) for second-order
stationary spatial series was given by Yaglom (1957). Furthermore, Tjgstheim
(1978) extended the Wold decomposition to a second-order stationary purely
nondeterministic spatial series. The decomposition has

Xe =Y aWi, (9.11)

s>0
where W; is as in (9.10), and, for s = (s, s2) € Z2, s > 0 means that s; > 0

and s > 0. This corresponds to (9.9) with vy = 0, which is what the term
“purely nondeterministic” means intuitively.

9.2 Autocovariances and autocorrelations

Suppose that a second-order stationary time series X; with E(X;) = 0 is

observed for t = 1,...,n. Its sample autocovariance function is defined as
nt X Xep, 0<h<n—1
2 — s=h+4+1 “*s“ts ) = ~
A(h) {Q h>n. (9.12)

The definition naturally extends to negative integers by 9(—h) = 4(h). The
sample autocorrelation function is defined as p(h) = 4(h)/4(0). We will focus
on a second-order stationary, purely nondeterministic time series, which, by
Wold decomposition, can be expressed as (9.9) without v; that is,

Xt = Zajét_j (913)
7=0

with 372 a? < oo [in some cases, a constant p is added to the right side
of (9.13;; here, for simplicity, we let u = 0]. We also assume, without loss of
generality, that ag = 1. There have been strong interests in the asymptotic
properties of the sample autocaviance and autocorrelation functions. For ex-

ample, the identification of ARMA models (see Example 9.2 and subsequent
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sections of this chapter) relies on the a.s. convergence rate of the sample au-
tocaviances and autocorrelations. The classical theory of inference about the
time series (9.13) assumes that the €’s are i.i.d. However, as several authors
have noted (e.g., Hall and Heyde 1980, p. 194), this assumption is somewhat
unrealistic. A more natural assumption is

E(e|Fi-1) =0 as. (9.14)

for all ¢, where F; = o(es,s < t). In other words, ¢, Fi, t € Z, is a sequence
of martingale differences. As observed in Hannan and Heyde (1972, p. 2059),
in the case where X; is strictly stationary and ¢, are prediction errors [i.e.,
e = Xy — E(Xt|Gi—1), where G, = 0(X,,s < t)], (9.14) is equivalent to the
assertion that the best linear predictor is the best predictor, both in the least
squares sense. By using the martingale laws of large numbers (see Section
8.4.1), these latter authors further obtained weak and strongs law as well as
a CLT for the sample autocovariances. We state the strong law result below
and leave the CLT for later discussion. Note that the first part of the theorem
does not require that €; be strictly stationary. Instead, a weaker distributional
assumption is imposed for this part.

Theorem 9.3. Suppose that (9.14) holds and there is a constant ¢ and a
nonnegative random variable ¢ with E(£2) < oo such that

P(le:] > z) < cP(€ > ) (9.15)

for all x > 0 and t € Z. Furthermore, suppose that

o0

> aj| < oo (9.16)
j=0
(i) If, in addition, we have
1 n ) s, )
- > B(eFio1) 2 0% > 0, (9.17)

t=1

then 4(h) £, ~v(h) as n — oo for all h € Z. (ii) If (9.15) is strengthened so
that €; is strictly stationary and (9.17) is strengthened so that

E(}|Fi—1) = 0®> >0 as. (9.18)
for all t € Z, then 4(h) == ~(h) as n — oo, for all h € Z.

We now consider deeper asymptotic results for X;. For the rest of this
section we assume that X; is strictly stationary and ergodic (see the defini-
tion following Theorem 7.14). As discussed, (9.14) is a reasonable assumption
for the innovations €, but not (9.18). In fact, the only reasonable conditions
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that would make (9.18) hold is, perhaps, that the innovations are Gaussian
(Exercise 9.8). Furthermore, some inference of time series requires a.s. conver-
gence rates of the sample autocovariances and autocorrelations (see the next
section). For example, An et al. (1982) proved the following results. Here, a
sequence of random variables &, is a.s. o(ay) (O(ay)) for some sequence of
positive constants a,, if limsup,,_, . [&.]/an =0 (< 00) a.s.

Theorem 9.4. Suppose that >-°2 [a;| < oo and (9.14) and (9.18) hold.
Furthermore, there is r > 4 such that E(|e.|") < oo. Then for any § > 0 and
P, <n% where a = r/{2(r — 2)}, we have

oLax [5(h) —y(h)|

=0 {n_l/Q(Pn logn)?/" (log log n)2(1+5)/"} a.s. (9.19)

In particular, if » = 4 and X; is an ARMA process and, furthermore, P, =
O{(logn)"} for some b < oo, then we have

~ loglogn
sup [3(h) —y(h)] = O <1/ﬁ> as. (9.20)
0<h<P, n

Note that the convergence rate on the right side of (9.20) is the best
possible. The proof of (9.19) is an application of two well-known inequalities:
Doob’s maximum inequality [see (5.73)] and Burkholder’s inequality [below
(5.71)]. Note that the two inequalities are often used together in an argument
involving martingales. The proof also used an argument due to Méricz (1976,
p- 309) dealing with maximum moment inequalities that was briefly discussed
at the end of Section 5.4. The proof of (9.20) is more tedious.

Once again, condition (9.18) is assumed in the Theorem 9.4. In An et al.
(1982), the authors discussed possibilities of weakening this condition. Here,
the authors focused on the sample autocovariances, with the understanding
that similar results for the sample autocorrelations can be obtained as a conse-
quence of those for the sample autocovariances. However, in some applications,
it is the sample autocorrelations that are of direct interest. Huang (1988a)
showed that for the convergence rate of sample autocorrelations, condition
(9.18) can be completely removed. We state Huang’s results as follows.

Theorem 9.5. Let X; be an ARMA process, (9.14) holds, and E(e}) < oco.
Then (9.20) holds with v replaced by p.

Theorem 9.6. Suppose that X; satisfies (9.13) and (9.14).

(i) (CLT) If 372, Vja} < oo, then for any given positive integer K, the
joint distribution of \/n{p(h) — p(h)}, h = 1,..., K, converges to N (0, V),
where the (s,t) element of Vi is E(nsn;), 1 < s,t < K, with
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e = % Z{p(u +t) 4+ plu—1t) — 2p(u)p(t) te—u

u=1

and 02 = E(ed).

(ii) (LIL) If Zji1 ja? < 00, then for any given positive integer K and
constants cq,...,cx, we have with probability 1 that the set of limit points
of the sequence

<L>U ém{ﬁ(m oW}, n23,

loglogn

coincides with [—+v/27,/27], where 72 = Eﬁft:l cseeE(nsmy) and 7, is given
above.

(iii) (Uniform convergence rate) If Y°2, j(loglog j)'%a? < oo for some
6 >0, and 3277, |a;| < oo, then we have

suplﬁ(h)—p(h)l=0< 1"“)

h>0 n

We omit the proofs of Theorem 9.5 and Theorem 9.6, which are highly
technical, but remark that martingale techniques play important roles in these
proofs. Huang (1988a) also obtained results of CLT, LIL and the uniform
convergence rate for the sample autocovariances under conditions weaker that
(9.18) (but without having it completely removed).

9.3 The information criteria

On the morning of March 16, 1971, Hirotugu Akaike, as he was taking a seat
on a commuter train, came up with the idea of a connection between the
relative Kullback—Leibler discrepancy and the empirical log-likelihood func-
tion, a procedure that was later named Akaike’s information criterion, or AIC
(Akaike 1973, 1974; see Bozdogan 1994 for the historical note). The idea has
allowed major advances in model selection and related fields (e.g., de Leeuw
1992), including model identifications in time series (see the next section) .
The problem of model selection arises naturally in time series analysis.
For example, in an ARMA model (see Example 9.2), the orders p and q are
unknown and therefore need to be identified from the information provided
by the data. Practically speaking, there may not be an ARMA model for
the true data-generating process—and this is true not only for time series
models but for all models that are practically used. George Box, one of the
most influential statisticians of the 20th century, once said, and has since been
quoted, that “all models are wrong; some are useful.” What it means is that,
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even though there may not exist, say, a “true” ARMA model, a suitable choice
of one may still provide a good (or perhaps the best) approximation from a
practical point of view.

The idea of AIC may be described as follows. Suppose that one wishes
to approximate an unknown pdf, g, by a given pdf, f. The Kullback—Leibler
discrepancy, or information, defined as

I(g: f) = / o(z)log () dz — / 9(2)log f(z) da, (9.21)

provides a measure of lack of approximation. It can be shown, by Jensen’s
inequality, that the Kullback—Leibler information is always nonnegative and
it equals zero if and only if f = g a.e. [i.e.,, f(z) = g(z) for all = except on
a set of Lebesgue measure zero]. However, it is not a distance (Exercise 9.9).
Note that the first term on the right side of (9.21) does not depend on f.
Therefore, to best approximate g, one needs to find an f that minimizes

- / g(x) log f(x) dz = —E,{log f(X)},

where E, means that the expectation is taken with X ~ g. Since we do
not know g, the expectation is not computable. However, suppose that we
have independent observations X, ..., X, from g. Then we may replace the
expectation by the sample mean, n=* Y7 | log f(X;), which is an unbiased
estimator for the expectation. In particular, under a parametric model, de-
noted by M, the pdf f depends on a vector 6y, of parameters, denoted by
f = fm(-|0arr). For example, under an ARMA(p, ¢) model, we have M = (p, q)
and Oy = (b1,...,bp,a1,...,aq)". Then the AIC is a two-step procedure. The
first step is to find the #j; that minimizes

—% > log far(Xil0ar) (9.22)

i=1

for any given M. Note that (9.22) is simply the negative log-likelihood function
under M. Therefore, the 5, that minimizes (9.22) is the MLE, denoted by
0ps. Then, the second step of AIC is to find the model M that minimizes

—%Zlong(XiwA]w). (923)
i=1

However, there is a serious drawback in this approach: Expression (9.23) is no
longer an unbiased estimator for —E {log far(X|0as)} due to overfitting. The
latter is caused by double-use of the same data—for estimating the expected
log-likelihood and for estimating the parameter vector ;. Akaike (1973) pro-
posed to retify this problem by correcting the bias, which is

% > Eg{log far(Xil0m)} — Eg{log far(X[0n)}-

i=1
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He showed that, asymptotically, the bias can be approximated by |M]|/n,
where |M| denotes the dimension of M defined as the number of estimated
parameters under M. For example, if M is an ARMA(p, ¢) model, then |M| =
p+ q+ 1 (the 1 corresponds to the unknown variance of the WN). Thus, a
term |M|/n is added to (9.23), leading to

1 & A M
——Zlong<Xi|eM)+u-
n P n

The expression is then multiplied by the factor 2n, which does not depend on
M and therefore does not affect the choice of M, to come up with the AIC:

AIC(M) = —QZlog Far(Xil6ar) + 2| M. (9.24)

i=1

In words, the AIC is minus two times the maximized log-likelihood plus two
times the number of estimated parameters.

A number of similar criteria have proposed since the AIC. These criteria
may be expressed in a general form as

Dar + M| M, (9.25)

where Dy is a measure of lack-of-fit by the model M and A, is a penalty
for complexity of the model. The measure of lack-of-fit is such that a model
of greater complexity fits better, therefore it has a smaller Dj;; on the other
hand, such a model receives more penalty for having a larger |M|. Therefore,
criterion (9.25), known as the generalized information criterion, or GIC (Nishii
1984; Shibata 1984), is a trade-off between model fit and model complexity.
Note that AIC corresponds to (9.25) with Dy being —2 times the maximized
log-likelihood and A,, = 2. We consider some other special cases below. In all
of these cases, the measure of lack-of-fit is the same as in AIC.

Ezample 9.3. Hurvich and Tsai (1989) argued that in the case of the
ARMA (p, q) model, a better bias correction could be obtained if one replaces
p+ q+ 1 by an asymptotically equivalent quantity,

n(p+q+1)

n—p—q—2
This leads to a modified criterion known as AICC. The AICC corresponds to
(9.25) with A\, = 2n/(n — p — ¢ — 2). So, if n — oo while the ranges of p and
q are bounded, AICC is asymptotically equivalent to AIC.

One concern about AIC is that it does not lead to consistent model selec-
tion if the dimension of the optimal model is finite. Here, an optimal model
means a true model with minimum dimension. For example, suppose that the
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true underlying model is AR(2); then AR(3) is also a true model (by letting
the additional coefficient, b3, equal to zero [see (9.1)], but not an optimal
model. On the other hand, AR(1) is an incorrect model (or wrong model). So,
if one consider all AR models as candidates, the only optimal model is AR(2).
Furthermore, consistency of model selection is defined as that the probability
of selecting an optimal model goes to 1 as n — oo.

Ezample 9.4 (BIC). The Bayesian information criterion, or BIC (Schwarz
1978), corresponds to (9.25) with A\, = logn. Unlike the AIC, the BIC is a
consistent model selection procedure (e.g., Hannan 1980).

Ezample 9.5 (The HQ criterion). Hannan and Quinn (1979) proposed a cri-
terion for determine the order p of an AR model based on a LIL for the partial
autocorrelations (e.g., Hanna 1970, pp. 21-23). Their criterion corresponds to
(9.25) with A, = clog{log(n)}, where ¢ > 2 is a constant.

The idea of choosing A, so that (9.25) leads to a consistent model se-
lection strategy is, actually, quite simple. The AIC is not consistent because
it does not put enough penalty for complex models. For example, suppose
that the true underlying model is AR(p). Then AIC tends to choose an or-
der higher than p in selecting the order for the AR model. This problem is
called overfitting. It can be shown that AIC does not have the other kind of
problem—underfitting, meaning that the procedure tends to select an order
less than p, in this case. This means that, asymptotically, AIC is expected to
select, at least, a true model; but the selected model may not be optimal in
that it can be further simplified. For a procedure to be consistent, one needs
to control both overfitting and underfitting. On the one hand, one needs to
increase the penalty A, in order to reduce overfitting; on the other hand,
one cannot overdo this because otherwise, the underfitting will again make
the procedure inconsistent. The question is: What it the “right” amount of
penalty?

The way to find out the answer is to evaluate the asymptotic order (see
Chapter 3) of the first term in (9.25) (i.e., the measure of lack-of-fit). As
it turns out, in typical situations there is a difference in the order of D
depending on whether M is a true (but not necessarily optimal) model or
wrong model. Roughly speaking, let Dy, = O(a,) when M is true and Dy =
O(by,) when M is wrong, where a,, = 0(b,). Then if we choose A, such that
an, = o(A,) and A\, = o(b,,), we have a consistent model selection criterion.
To see this, let My be an optimal model and denote (9.25) by ¢(M). If M is a
wrong model, then, asymptotically, we have ¢(M) = O(b,,)+o0(b,,)|M| = O(by,)
while ¢(My) = O(ay) + o(b,)|M| = o(b,). So, asymptotically, one expects
c¢(M) > ¢(Mp). On the other hand, if M is a true but nonoptimal model,
meaning |M| > |Myl, we have ¢(M) = O(an) + A | M| = 0(A) + An| M| while
c(Mp) = O(an) + An|Mo| = o(An) + An|Mp|. Therefore,
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(M) = c(Mo) = An(IM] — [Mo]) + o(An),

which is expected to be positive if \,, — oco. It follows that, asymptotically,
neither a wrong model nor a true but nonoptimal model cannot possibly be
the minimizer of (9.25), so the minimizer has to be My. Of course, to make
a rigorous argument, one needs to clearly define what is meant by o(a,,), and
so on., because Dy is a random quantity. Usually, this is in the probability
sense (see Section 3.4).

Also, it is clear that the choice of A, for consistent model selection, if it
exists, is not unique. In fact, there may be many choices of A,, that all lead
to consistent model selection criteria, but their finite sample performance can
be quite different. This issue was recently addressed by Jiang et al. (2008),
where the authors proposed a new strategy for model selection, called a fence.

9.4 ARMA model identification

We first write the ARMA model (9.3) in a more convenient form:

b q
Z%‘Xt—j = Zﬁjet_j, (9.26)
j=0 =0

where ag = B9 = 1. It is assumed that
p .
A(z) = Zajzj # 0,
Jj=0

B(z) =Y _ Bz #0 (9.27)
§=0

for |z| < 1. Here, 2z denotes a complex number. It is also assumed that the
polynomials A(z) and B(z) are coprime, meaning that they do not have a
common (polynomial) factor. Let £ denote the (backward) lagoperator; that
is, L& = &1 for any time series &, t € Z. Then (9.26) can be expressed as

Condition (9.27) implies that there is p > 1 such that the function @(z) =
A71(2)B(z) is analyticon {z : |z| < p}, and therefore has the Taylor expansion

o0

B(z) =D ;2 |2 <p. (9.29)

J=0

It follows that
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oo

Xe=®(L)er =Y ¢jerj, t€Z. (9.30)
=0

The ¢;’s are called the Wold coefficients of X;. It can be shown that ¢g =1
and ¢;p’ — 0 as j — oo (Exercise 9.10). Furthermore, the autocovariance
function of X; can be expressed in terms of its Wold coeflicients; that is,

v(h) = 0> didjtn, h >0, (9.31)
7=0

and y(—h) = y(h). It can be shown that there is a constant ¢ > 0 such that
Iv(h)| < ep™", h >0, where p > 1 is the number in (9.29) (Exercise 9.11). In
other words, the autocorrelations of an ARMA process decay at an exponential
rate. If the coefficients aj, 1 < j < p, and 3;, 1 < j < ¢, are known, the Wold
coefficients can be computed by the following recursive method:

P
Bi=> ardjk, j=0,1,..., (9.32)
k=0

where we define 3; = 0if j > g and ¢; = 0if j < 0. Thus, in view of (9.31), the
autocovariance function is uniquely determined by the ARMA coefficients o;’s
and 3;’s. In practice, however, the reverse problem is of interest: Given the
autocovariances, how do we estimate the ARMA coefficients? This problem
is of interest because the autocovariances can be estimated from the observed
data (see Section 9.2).

A traditional method of estimation for ARMA models is called the Yule—
Walker (Y-W) estimation. For simplicity, let us consider a special case, the
AR(p) model defined by (9.1). It can be shown that the autocovariances and
AR coefficients jointly satisfy the following the Yule-Walker equation:

(1) ¥0) A1) ve-1] [0
7(2) ¥(1)  0) - Ap—=2)| b2

= : : : : (9.33)
1) - -2 ) | b

(Exercise 9.12). Furthermore, we have
P
o =5(0) = 3_bv() (9:34)
j=1

(Exercise 9.12). Thus, one may estimate the AR coefficients by solving (9.33)
with ~(j) replaced by 4(j), the sample autocovariance, 0 < j < p. Let the
estimate of b; be lA)j, 1 < j < p. Then o is estimated by the right side of (9.34)
with y(j) replaced by 4(j), 0 < j < p, and b; by Bj, 1 < j < p. Two alternative
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methods of estimation are the least squares (LS) estimation and maximum
likelihood (ML) estimation, the latter under the normality assumption.
When the orders p and ¢ are known, large-sample properties of the Y-W,
LS, and ML estimators in ARMA models, including consistency, asymptotic
normality, and strong convergence rate, are well known (e.g., Brockwell and
Davis 1991). Note that all of these estimators are functions of the sample auto-
covariances (autocorrelations); hence, asymptotic properties of the estimators
can be derived from the corresponding asymptotic theory of the sample auto-
covariances and autocorrelations discussed in Section 2. In practice, however,
not only the parameters of the ARMA model are unknown, but the orders
p and ¢ also need to be determined. Naturally, the orders would need to be
determined before the parameters are estimated. Hannan (1980) showed that
if the orders p and ¢ are determined either by the BIC (Example 9.4) or by the
HQ criterion, the latter being an extension of Example 9.5 to ARMA models,
the resulting estimators of the orders, p and ¢, are strongly consistent. Here,
strong consistency means that, with probability 1, one has p = p and ¢ = ¢ for
large n, where p and ¢ are the true orders of the ARMA model. The author
also showed that AIC is not consistent (even in the weak sense, as defined
earlier) for determining the orders and obtained the asymptotic distribution
for the limits of p and ¢. Note that if p and ¢ are consistent, we must have
lim, 0o P(p = p,§ = q) = 1, where p and ¢ are the true orders. Instead, for
AIC the limit is not 1, but has a distribution over the range of overfitted p and
g (i-e., orders higher than the true orders). The result thus confirms an earlier
statement that AIC does not have the underfitting problem asymptotically. It
should be pointed out that AIC is designed for a situation quite different from
this, in which the underlying time series X; is not generated from an ARMA
model. In other words, an ARMA model is only used as an approximation.
Therefore, it would be unfair to judge AIC solely based on the consistency
property. Also, consistency is a large-sample property, which is not always
an indication of finite sample performance. Hannan (1980) also studied the
(weak) consistency property of the criterion (9.25) in general. The main result
(i.e., Theorem 3 of Hannan 1980) states that the criterion is consistent as long
as A\, — 00, but this result is clearly in error. To see this, suppose that the true
orders, p and ¢, are greater than zero (i.e., we have a nondegenerate ARMA
model). If A, approaches infinity at such a fast rate that the second term in
(9.25) almost surely dominates the first term whenever |M| = p + ¢ > 0, the
procedure almost surely will not select any orders other than zeros.
Nevertheless, the main interest here is strong consistency of the order esti-
mation. The key assumptions of Hannan (1980) are that the innovations ¢, are
stationary satisfying (9.14) and (9.18) plus finiteness of the fourth moment.
As discussed earlier (see Section 9.2), all of the assumptions are reasonable
except (9.18). The author did offer some discussion on the possibility of weak-
ening this assumption. Huang (1988b, 1989) was able to completely remove
this assumption for ARMA model identification. As noted near the end of
Section 9.3, to derive a (strongly) consistent criterion for the order determi-
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nation, one needs to evaluate the asymptotic order of the first term in (9.25).
As it turns out, for ARMA models this term is asymptotically equivalent to
a function of the sample autocorrelations. Therefore, it is not surprising that
the a.s. convergence rate of the sample autocorrelations plays an important
role in deriving a strongly consistent model selection criterion. Since Huang
was able to remove (9.18) in obtaining the a.s. convergence rate for the sam-
ple autocorrelations (see Section 9.2), as a consequence he was able to remove
(9.18) as a requirement for ARMA model identification.

We briefly describe Huang’s first method of ARMA model identification
(Huang 1988b). The idea was motivated by the Wold decomposition (9.30).
It is seen that under the basic assumptions for ARMA models made at the
beginning of this section, the roles of X; and ¢; are exchangeable. Therefore,
there is a reversed Wold decomposition,

a=Y ;X;j, tez (9.35)
j=0

with 19 = 1. From this, a method was suggested by Durbin (1960) to fit the
ARMA model. The motivation is that it would be much easier to identify the
ARMA parameters if the innovations €; were observable. Of course, the €
are not observed, but we have expression (9.35). Therefore, Durbin suggested
to first fit a long autoregression to the data to get the estimated e;’s and
then to solve a LS problem to find the estimates of the «;’s and (;’s. This
approach has been used by several authors. See, for example, Hannan and
Rissanen (1982). Huang (1988b) combined this approach with a new idea. If
one defines a stationary times series by (9.30) with ¢; = );—that is,

Y= e, (9.36)
=0

—then Y; satisfies the following reversed ARMA model:

q p
D BiYej =) ey (9.37)
=0 =0

Similar to (9.32), we have the following connection between the coefficients
y; and the ARMA parameters:

q
a; =Y Btk J=01,..., (9.38)

k=0

where a; = 0 if j > p and ¢; =0 if j < 0 (Exercise 9.13).

Here is another way to look at (9.36)—it is simply (9.35) with X; re-
placed by €;. From a theoretical point of view, there is an advantage dealing
with (9.36). The reason is that, in expansion (9.36), the innovations ¢, are
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independent, whereas in expansion (9.35), the X;’s are correlated. In fact, the
innovations correspond to the orthogonal elements in the Hilbert space defined
below. Let L(&,t € T} denote the Hilbert space spanned by the random vari-
ables &, t € T, with the inner product and norm defined by (£,n) = E(¢&n)
and ||£]| = {E(£?)}Y/? for ¢ and 7 in the Hilbert space. It follows that e,
t € Z, is an orthogonal sequence of the Hilbert space. More specifically, let
H(s) = L(ey,u < s) and Py denote the projective operator to the subspace
H of the Hilbert space. Deﬁne the random variables v,(t) = Py s)Y; for all s
and t. For any p, q, Let u »,q denote the normalized squared prediction error
(SPE) of v_p,—1(0) by v_p_1(=k), k = 1,...,¢, and let o2 , denote the SPE
of Yoby Y_i, k=1,...,q,and e_;, j =1,...,p; that is,

p g = |lv—p—q(0) — Pc{v_,,_l(—k),k:L.“,q}vqu(0)H2 /o,
g q = H}/U - PL{Y,k,k:L...,q;e_j,jzl ..... p}YOH

Huang (1988b) showed that p2 , = o5 /o —1. From this he realized that 2 ,
can be used as a tool to determine the orders. Because o2 is the m1n1mum
variance of a linear predictor of Y; using all the past, Y, s < 0, and o2 is

p.q
the minimum variance of a linear predictor of Yy using Y_, k=1,...,¢q, and
e, i=1,...,p, uiq may be viewed as a measure of deficiency of using the

information provided by Ys, s < 0, when we linearly predict Yy from Y_j,
1<k<g, and e_;j, 1 <j < p. The higher the u;q, the higher the deficiency
in using the information; and the information in the past has been completely
used if and only if '“1277q = 0. Based on this idea, Huang proposed a method of
ARMA model identification.

First, he obtalned an estimated up - u . To do so, he first found an
expression of upq as a function of the 1/)] s in (9.36). He then obtained
estimators of the 1;’s using the LS method and thus the estimator ﬂ;q
using the plug-in method (i.e., by replacing the %,’s by their estimators
in the function). He then determined the orders p and ¢ as follows: Let
K, = [logn)®] for some a > 1 (here, [x] represents the largest integer

z). Define T, = max{0 < k < K,, : 97 > (logn/n) Zf;é ¥?}, where
¢; is the estimator of 1; mentioned above and P, = [(1 4 §)T5,], where &
is a small number (e g., 6 = 0.1). Let G be the set of all (p,q) such that
0<p,q<P,and M ¢ < Pulogn/n. Define (p, q) as the element in G such
that p+ ¢ = min{p + q (p,q) € G}. Huang showed that p and § are strongly
consistent estimators of the true orders p and ¢, respectively.

On the other hand, giving the orders, the parameters 8;’s and «;’s can be
expressed as functions of the 1;’s. Thus, by plugging in the estimators Qﬂj’s
we obtain estimators of the 3;’s and «;’s. Huang then applied this method
of estimation with the estimated orders as above to obtain estimators of the
B;’s and a;’s without assuming that the orders are known. He showed that
the estimators are asymptotically normal in the sense that for any sequence
of constants A;, 7 > 1, the distribution of \/ﬁzgzl Xi{B; (P, §) — B;} con-
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verges to N (0,72), where Bj (p, q) is the estimator of §; with the given p and
q as mentioned above, 72 = XWX with A = (A1,...,),)’, ¢ being the true
order, and W being a covariance matrix depending on the parameters; a sim-
ilar result holds for the estimators of the «;’s. Furthermore, the estimators
obey the LIL in the sense that, with probability 1, the set of limit points of
v/n/2loglogn ?:1 )\j{ﬁAj(ﬁ, 4) — B;} is [—7, 7]; a similar result holds for the
estimators of the «;’s.

Note that because of the strong consistency of p and ¢, we have with
probability 1 that p = p and ¢ = ¢ for large n, where p and g are the true orders
(why?). Therefore, to establish the CLT and LIL for 5;(p,4)’, 1 < j < ¢, and
so forth. all one has to do is to prove the same results for Bj (p,q), 1 <j<gq,
and so forth, where p and ¢ are the true orders (again, why?). Also note that
although Huang’s procedure for the order determination is different from the
information criterion (9.25), it is not the reason why he was able to remove
(9.18) as a critical condition for ARMA model identification, as noted earlier.
The reason is, once again, that he dropped such a condition in obtaining the
uniform convergence rate for the sample autocorrelations (Section 9.2).

9.5 Strong limit theorems for i.i.d. spatial series

Let us now switch our attention to spatial series. The classical limit theo-
rems, as discussed in Chapter 6, are regarding sums of i.i.d. random variables.
Similarly, there are “classical” limit theorems for sums of i.i.d. spatial series.
To the surprise of some people (including the author himself when he first
discovered these results), some of these are not-so-straightforward generaliza-
tions of the classical results. For example, suppose that Xy, t € N, is an i.i.d.
time series, where N = {1,2,...}. Then, according to the SLLN, we have
n~I3 Xy &5 E(Xy) as n — oo, provided that E(]X1|) < oo. Now, sup-
pose that X,, ¢t € N2, is an i.i.d. spatial series. One would expect a similar
result to hold—that is,

ni N2
1

Z Z Xt ) — B{Xan} (9.39)

t1=1t=1

nin2

as n1,ng — 00, provided that E{|X(; 1)|} < oo—but this result is false! At
first, the surprise might seem a bit counterintuitive, as one can, perhaps,
rearrange the spatial series as a time series and then apply the classical SLLN,
so why would not (9.39) hold?

The problem is that there are so many ways by which n; and ne can
(independently) go to infinity. In fact, if n; and ng are restricted to increase
in a certain manner—for example, ny = ny — 0o, —then (9.39) holds as long
as E{|X(1,1)|} < oo (Exercise 9.14). As for the rearrangement, note that the
order of the terms in the rearranged time series that appear in the summation
in (9.39) depends on how ny,n2 — oo—and this is true no matter how one
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rearranges the spatial series. For example, one method of rearrangement is
called the diagonal method, namely, Y1 = X(1,1), Yo = X(1,2), Y3 = X(2,1),- - s
and so on. Consider ny = ng = k. When k£ = 1, the summation in (9.39)
only involves Y71; when k& = 2, it involves Y7, Y5,Ys, and Y5 in that order.
Now, consider ny = 2k and no = k. When k£ = 1, the summation involves
Y1 and Y3; when k = 2, it involves Y7, Y5, Y3, Y5, Y, Yo, Y10, and Yi4, in that
order (Exercise 9.15). All of the strong (a.s.) classical limit theorems, including
the SLLN and LIL, may not hold if the order of terms in the summation is
allowed to change during the limiting process. On the other hand, all of the
weak classical limit theorems, including the WLLN and CLT, are not affected
by the change of order in the summation (why?). For example, we have

Xt R? *) N(O g ) (940)
s 2 2 e

as ni,ng — 0o, provided that Xy, t € N2, are i.i.d. with E{X (1 1} = 0 and
0% = E{X(1 1)} € (0,00). Therefore, the focus of the current section is strong
limit theorems for i.i.d. spatial series.

Smythe (1973) showed that for (9.39) to hold, all one has to do is
to strengthen the moment condition, by a little. More specifically, define
log™ (2) = log(x) if * > 1 and log™ () = 0 otherwise. The moment condi-
tion for the classical SLLN is that E(]X:|) < oo. For (9.39) to hold for an
i.i.d. spatial series Xy, t € N2, one needs

E [|X(1,1)| log+{|X(1,1)|}] < 00, (9.41)

and this condition is also necessary. More generally, consider an i.i.d. spatial
series Xy, t € N9, where d is a positive integer. We use the notation |n| =

ni---ng forn = (nq,...,ng), 1 <t < m, forl <t; <njl1l<j<d,
1=(1,...,1) (d-dimensional), and n — oo for n; — 0o, 1 < j < d. Then
> X B BX) (9.42)
‘7’Z| 1<t<n

as n — oo if and only if
E {|X1|{log" (| X1])}*7!] < cc. (9.43)

So, in particular, when d = 1, (9.43) is equivalent to E(]X1|) < oo, which is
the classical condition; for d = 2, (9.43) reduces to (9.41).

Wichura (1973) considered the LIL for the independent spatial series X,
t € N, A special case of his results is the i.i.d. case, as follows. Define log(z) =
lif x < e, and loglog(z) = log{log(z)} = 1 if < e®; maintain other notation
as above. If X;,t € N% arei.i.d. with E(X;) = 0 and E(X?) = 1, where d > 1,
then with probability 1 as n — oo, the set of limit points of



9.6 Two-parameter martingale differences 301

ZlStSn Xt

Cn = , neN? (9.44)
V/2d|n|loglog(|n|)
is [-1,1] if and only if
X2 {log(|X|)}¢ !
Bl )] _ 0.5

log log(| X1])

Recall in the classical situation (see a summary of the classical results at
the end of Section 6.5), the necessary and sufficient condition for the LIL is
E(X?) < co. Comparing this condition with (9.45), it seems that there is
a discontinuity between d = 1 and d > 1. Wichura (1973, p. 280) gave the
following interpretation for this difference: It “is in precisely the latter case
that one can deduce the finiteness of” E(X?) from (9.45) (Exercise 9.16). Note
that there is no such discontinuity in d in Smythe’s SLLN result, as above. In
particular, when d = 2, we have with probability 1 that the set of limit points
of ¢,, n € N2, is [~1,1] if and only if

Xlog(Xi) | _
E{logloguxln} < oo (9.46)

9.6 Two-parameter martingale differences

Given the roles that martingale differences haveplayed in time series analysis,
it is not surprising that similar tools have been used in the analysis of spatial
series. The major difference, as noted by Tjgstheim (1978, p. 131), is that “a
time series is unidirectional following the natural distinction made between
past and present. A similar obvious ordering does not seem to exist for a
general spatial series, and this fact reflects itself in the available methods
of analysis.” To define a two-parameter martingale, which is termed for the
lattice analogy of martingales (see Chapter 8), one needs first to be clear
what is the past, as the present is usually quite easy to define. Suppose that
t = (t1,t2) is the present. Tjgstheim (1983) defined the past as P(t) = {s =
(s1,82) : 81 < t1 or s < to} = P1(t). Also see Jiang (1989). Jiang (1991a)
considered a different definition, in which the past is defined according to
a single direction, P(t) = {s = (s1,82) : 81 < t1} = P3(t). Jiang (1999a)
considered P(t) = {s = (s1,82) : 1 < t1 or 51 = t1, 82 < ta} = Pa(t). Another
possible definition of the past is P(t) = {s = (s1,$2) : 51 < t; and s3 < t2} =
P4(t). It is easy to see P1(t) D Pa(t) D P3(t) D Pu(t) (Exercise 9.17). Some
other types of past will be considered later. A spatial series €;, t € Z2, is called
a two-parameter martingale differences (TMD) if it satisfies for all t € Z2,

E{etles, s € P(t)} =0 a.s. (9.47)

Here, the conditional expectation is with respect to the o-field generated by
€s, s € P(t), and P(¢) is a defined past of ¢. We consider some examples.
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Ezample 9.6. Let W;,t € Z2, be an independent spatial series with
E(W;) =0 and E(W?) < oo. Consider

€ = W(t1 ,tzfl)W(tl it2)

for t = (t1,t2). Then, e,t € Z2, is a TMD with respect to P(t) = P;(t),
j =1,2,3,4. To see this, note that

o{es,s € Pi(t)} C o{Ws,s € Pi(t)}
[every es, where s € Pj(t), is a function of W, s € Pi(t)]. It follows that
E{eles,s € Pi(t)}
=E [E{W, 1,-1yWi|Ws,s € Pi(t)}|es, s € Pi(1)]

=E I:W(tl,tg—l)E{Wt|W57 seP (t)}|657 S € Pl(t)}
=0

because E{W|Ws,s € Pi(t)} = E(W;) = 0. This verifies that ¢; is a TMD
with P(t) = Py(t). The rest are left as an exercise (Exercise 9.18).

Example 9.7. Let W;, t € Z2, be any spatial series. Define
€& =W — E{Wt|Wg7s € Pz(t)} (948)

Then ¢, t € Z?2, is a TMD with respect to P(t) = Px(t). This is because for
any s € Py(t), o{W,,r € Pa(s)} C o{W,.,r € Py(t)}; hence,

€s = Wy —E{W|W,,r € Py(s)} € o{W,,r € P5(t)}.
Therefore, we have o{es, s € Pa(t)} C o{Ws,s € Po(t)}. It follows that

E{etles, s € Pa(t)}
= E{Wi|es, s € Po(t)} — E[E{W};|W;,s € Pa(t)}| €5, 5 € Pa(t)]
= E{Wies,s € Pa(t)} — E{Wi|es, s € Py(t)}
=0.
On the other hand, ¢, t € Z2, is not necessarily a TMD with respect to

P(t) = Pi(t). To see this, note that €, s € Py (t), involve all of the W, s € Z?2
(why?). Therefore, we can write

E{etles, s € Pi(t)}
=E{Wles,s € Pi(t)} — E[E{W:|Ws,s € Py(t)}| s, 5 € Pi(t)],
but this is as far as we can go (Exercise 9.20).

Tjgstheim (1983) considered an extension of the martingale CLT (Theorem
8.7) to TMD satisfying (9.47) with P(t) = P;(t), but the proof appears to
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involve some flaws. Jiang (1991b) proved a CLT for triangular arrays of spatial
series satisfying a weaker TMD condition than that assumed by Tjgstheim
(1983). A similar result was also obtained by Huang (1992). We state Jiang’s
result below, where the following notation will be used through the rest of
the chapter: s = (s1,82), t = (t1,t2), n = (n1,n2), |n| = ning, 0 = (0,0),
1=(1,1),and s < tif and only if s; <t¢;, j =1,2.

Theorem 9.7. Let €, +, n > 1,1 <t < n, be a triangular array of spatial
series. Suppose that there exists a family of o-fields F;, ¢ > 0, satisfying
Fs C Fp it s < t. Let F;(t—) denote the smallest o-field containing Fi,
s; <tjors; =ty s3_5 <tz_j, j=12.1f

ent € Fr, E{endF;(t—)}=0 as, j=1,2 (9.49)

and furthermore, as |n| — oo,

P
max l€n,t] — 0, (9.50)
P
Yo e — (9.51)
1<t<n

where 7 is a bounded random variable, and

E ( max €i7t> is bounded in n, (9.52)

1<t<n

then as |n| — oo, we have

3" w5 Z (stably), (9.53)

1<t<n
where the random variable Z has characteristic function

cz(\) = E{exp(—=1°A?/2)}. (9.54)

Note 1. The limiting process here is |n| — oo, which is weaker than n — oo
(i.e., n1,ng — 00).

Note 2. An analogue to condition (8.33) of Theorem 8.7 is not needed
because here the o-fields do not depend on n (in other words, such a condition
is automatically satisfied).

Note 3. In the special case where €, = €;/an, an being a normalizing
constant depending on n, one may let F; = o(es, s < t). Then the first con-
dition of (9.49) (i.e., €,+ € Fy) is obviously satisfied; the second condition is
equivalent to

E(€t|65, s1 <tpors; =tg,s< t2) =0 a.s., (955)
E(etles, s2 < toor sg =1ta,51 <t1) =0 a.s. (9.56)
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Condition (9.55) is the same as (9.47) with P(t) = P»(t), whereas (9.56) is the
condition with the coordinates switched. Note that (9.47) with P(t) = P;(t)
implies (9.55) and (9.56) (Exercise 9.21).
Note 4. Later Jiang (1993) was able to weaken (9.49) to that with j =1
only and (9.52) to that with €} ; replaced by |ey ¢|? for some p > 1.
Furthermore, Jiang (1999a) obtained a LIL for a strictly stationary spatial
series €, t € Z2, satisfying

E{eoles, 51 <Oorsy <0} =0 as. (9.57)

The definition of a strictly stationary spatial series is similar to that for a
strictly stationary time series; that is, for any & > 1 and ty,...,t,s € Z2,
the joint distribution of €45, 5 = 1,...,k, does not depend on s. Note
that because of the strict stationarity, (9.57) is equivalent to (9.47) for all
t (Exercise 9.22). Let (2, F,P) be the probability space Define the measure-
preserving transformations, U and V, on the induced probability space

(RZ2,BZ2,P6_1), where B represents the Borel o-field and ¢ = (€)icz2,

by (Ux): = Tpyu, (VX)y = Vipo, t € Z2, for @ = (24)1ez2 € RZ2, where
u=(1,0) and v = (0, 1). In other words, U is the shift by 1 in the first coordi-
nate and V' is that in the second coordinate. Denote the a.s. invariant o-field
(see Appendix A.2) corresponding to U and V' by 7y and 7y, respectively. Let
7 = 7y N 7. The spatial series ¢; is said to be ergodic if €71 (7) = {0, 2}, the
o-field whose elements have probabilities either 0 or 1, and strongly ergodic
if e71(7y) = e H(7v) = {0, 2}.

Theorem 9.8. Let ¢, t € Z?2, be strictly stationary with E(X?) = 1 and
E(]X1]9) < oo for some ¢ > 2 and (9.57) holds. Define (,, as (9.44) with d = 2.

(i) If ¢ is ergodic, then with probability 1 as n — oo, the set of limit
points of ¢, is [—1, 1].

(ii) If € is strongly ergodic, then with probability 1 as |n| — oo, the set of
limit points of ¢, is [—1, 1].

In fact, Jiang proved the theorem under a TMD condition slightly weaker
than (9.57); that is, for every m > 0,
E{eoles, s1 <tiorty <s3 <t;+m,s0<ta} =0 as. (9.58)

(Exercise 9.21). The author also discussed a situation where the moment con-
dition, E(|X1]?) < oo for some g > 2, can be reduced to (9.46), which is the
minimum moment condition for the i.i.d. case (Section 9.5).

9.7 Sample ACV and ACR for spatial series

The subjects of this section are similar to Section 9.2 but for spatial series.
Let X;, t € Z2, be a spatial series (not necessarily stationary). The sample
autocovariance (ACV) function for X; is defined as
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1
In|

> XiuXiy, uwveZ (9.59)

1<t<n

H(u, )

Practically speaking, the range of the summation needs to be adjusted ac-
cording to u and v (and the range of the observed X;’s), as in Section 9.2, but
we ignore such an adjustment for the sake of simplicity. The sample autocor-
relation (ACR) function is p(u,v) = 4(u,v)/4(0,0). Note that here we do not
assume that X; is (second-order) stationary; otherwise the notation would be
simpler. Nevertheless, for the rest of the section we focus on a linear spatial
series that can be expressed as

Xi= > a.Wis, (9.60)

t € Z%, where Wy, t € Z2, is a spatial WN(0, 02) series with ¢ > 0. Further-
more, we assume that the (constant) coefficients as satisfy

jas| < eglorl e (9.61)

for some constants ¢ > 0 and 0 < ¢ < 1 and all s = (s1, s2) € Z2. It follows
that E(X;) = 0 [and this is why there is no need to subtract the sample mean
from X; in the definition of sample ACV; i.e., (9.59)] A special case for which
(9.60) and (9.61) are satisfied is considered in the next section.

Jiang (1989) obtained the uniform convergence rate of the iterated loga-
rithm for ACV and ACR under (9.60), (9.61), and the following TMD condi-
tion:

Wy e Fy, E{W{F;(t-)}=0 as., j=1,2, (9.62)

for all ¢, where Fy, t € Z2, is a family of o-fields satisfying F, C F, if s <t
and F;(t—) is the smallest o-field containing all the F;, s; < t; or s; = t;,

s3—j < ts—j, j = 1,2. Jiang (1991a) obtained the same results under a weaker
TMD condition:

W; € fl(t), E{Wt|]:1(t—)} =0 a.s., (963)
where Fi(t) is the smallest o-field containing all the Fs, s1 < t1 or s1 =
t1, s < to (Exercise 9.23). Let D,, = D([(logn1)?],[(logn2)?]), where a is

a positive constant and D is a positive (constant) integer. For the uniform
convergence rate of the sample ACV, it is also assumed that

E{W2Fi(t—)} =1 as. (9.64)
for all ¢ and that

limsup — 3" (Wel* + [E{WAF(t))]P) <00 as.  (9.65)

|n|—o0 | |f<n
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for some p > 1, where the notation ¢ denotes (|t1], |t2|). Then we have

B log log |n|
Jmax |9(u, v) —y(u,v)| = O (ﬁ / BT a.s. (9.66)

If, in addition, we have ) __ > a? > 0, then (9.66) holds for the (sample) ACR
(i.e., with v replaced by p). The condition (9.64) can be weakened to some
extent, depending on whether ACV or ACR is considered.

Note that if W} is strictly stationary and strongly ergodic (see Section 9.6)
and E(|W]?) < oo for some g > 4, then (9.65) is a consequence of the ergodic
theorem (e.g., Zygmund 1951; Jiang 1991b). In fact, the strong ergodicity
condition can be weakened for (9.65) to hold (Exercise 9.24).

An exponential inequality, which may be regarded as a two-parameter
analogue (and extension) of (5.89), plays an important role in establishing
(9.66). For u = (u1,ua), v = (v1,v2) € Z2, the notation u é v means that
up < w1 or ug = v1 and ug < va. Let & be a TMD satisfying (9.63) with W
replaced by &, and let 7; be another spatial series satisfying n; € F1(¢). Then

1
for any u < v, 1 <m = (mi,ma) <n = (n1,n2), and A > 0, we have

= 1o o
<mlglk3?im Z Z |:§t uli— v_gftfuntfv

t1=m1 t1=m2
_gE{ff—uL}—l (t - u_)}ntz—v:| > )\) < e_k' (967)

To see how (9.67) works, suppose that one wishes to show that
1

v/ |n|loglog|n 1§tZ§n

is bounded a.s. [see Exercise 9.25 for a connection between (9.66) and (9.68)].
In view of the ergodic theorem, this is equivalent to that

Wt—th—u (968)

1
—— Wi uWis
v/ In|loglog |n lgzt;n
1

_m Z [Wt27th27v + QE{WtzfuLFl (t - u_)}WEfv} (969)

1<t<n

is bounded a.s. (because of the subtracted average converges a.s.). Now, con-
sider the probability that (9.69) is > a for some a > 0. If we multiply both
sides of the inequality by loglog |n|, we come up with an inequality like (9.67)
with & = (loglog|n|/|n|)*/?W; and A = aloglog |n|, and the right side of the
inequality is e™* = (log|n|)~® (verify this). This upper bound of the prob-
ability goes to zero as |n| — oo, but apparently not fast enough to directly
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imply that (9.69) is a.s. bounded. However, the upper bound is “good enough”
to allow the following subsequence method, which is often used in obtaining
strong limit results. Consider n; = ([e"], [e®2]) ([z] is the largest integer < x),
which is a subsequence of n indexed by i = (i1,41) > 1 = (1,1). It can be
shown (Exercise 9.26) that ) .., (log|n;|)~* < oo for sufficiently large a. It
then follows by a lattice version of the Borel-Cantelli lemma (Lemma 2.5)
that (9.69) is bounded a.s., at least for the subsequence n;. The question then
is how to extend the a.s. convergence to the entire sequence n, and this is
where one needs a maximum inequality, such as (9.67). Note that inside the
probability sign is the maximum of sums rather than a single sum. This cov-
ers the “gaps” between the subsequence n; and therefore the entire sequence.
There are, of course, technical details, but this is the main idea.

It is worthy to mention another inequality, which may be regarded as a
two-parameter extension of Burkholder’s inequality (see Section 5.4). This
inequality was used in obtaining the uniform convergence rate of sample ACR,
for, say, strictly stationary spatial series. We omit the details of the latter
result (see Jiang 1991a), but the inequality is nevertheless useful in perhaps
other problems as well (See Exercise 9.27). Let & be as in (9.67). Define
Sk = D ps1<t<ign &t~ For every p > 1, there is a constant B, depending
only on p such that for any k € Z? and N > 1, we have

B (s [S0,P) < B0+ los o) Y By (070)
=n= k+1<t<k+N

if 1 < p <2, where log,(+) is the logarithmic function with base 2, and

p/2

E<1§,%|Skvnlp>éBp oo lel? 9.71)

k4+1<t<k+N

if p > 2, where [|& |, = {E(|&P)}/7.

9.8 Case study: Spatial AR models

There is extensive literature on spatial AR models, introduced in Section 9.1,
as well as their applications in fields such as ecology and economics. For ex-
ample, Lichstein et al. (2002) used Gaussian spatial AR models to examine
breeding habitat relationships for three common neotropical migrant song-
birds in the southern Appalachian Mountains of North Carolina and Ten-
nessee (USA). Langyintuo and Mekuria (2008) discussed an application of
spatial AR models in assessing the influence of neighborhood effects on the
adoption of improved agricultural technologies in developing countries.

A spatial AR model is defined by (9.10) with ¢ = 0 or, equivalently,
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X, — Z bs Xy =Wy, teZz? (9.72)
s€(0,p]

where p = (p1,p2) is the order of the spatial AR model and Wy, t € Z2, is a
spatial WN(0, 02) series. It is required that the corresponding polynomial of
two complex variables, z; and zo, satisfy

L= )7 be2'2? #0, [z] < 1,02 < 1. (9.73)
s€(0,p]

In engineering literature, (9.73) is known as the minimum phase property.
Chiang (1987) noted that (9.73) corresponds a special kind of Markov prop-
erty in random fields, called the quadrant Markov property. Also see Chiang
(1991). The term “random fields” is often used interchangeably with “spatial
series,” although the former also includes continuous multiparameter pro-
cesses (in other words, the term “random fields” to spatial series is like the
term “stochastic processes” to time series). The Markovian property is de-
fined by dependence of the present on the past through the immediate past
(see the next chapter). As noted earlier, in the lattice case the past is not
uniquely defined, and, depending on the definition of the past (and immedi-
ate past), there are several different types of Markovian properties of random
fields (e.g., Chiang 1991). The minimum phase property also implies the Wold
decomposition (9.11), where the coefficients a, satisfy (9.61) for s > 0.

Tjgstheim (1978) considered a similar Y-W equation to that in the time
series [see (9.33)] for estimating the AR coefficients in (9.72), namely,

Z byy(u,v) = y(u,0), u € (0,p]. (9.74)
veE(0,p]

The Y-W estimator of b = (by)ve(o,p) is defined as the solution to (9.74) with
~ replaced by 4, the sample ACV. The Y-W equation can be expressed in a
compact form as Gb = g, where G' = [y(u, v)]yve(0,p) and g = [v(u, 0)]ue(0,p)-
The estimator b = (lA))U,E(o’p] satisfies Gb = §, where G and § are G and g,
respectively, with ~y replaced by 4. Under the assumption that the innovations
W, arei.i.d., the author showed that b is consistent; that is, b Pobas [n| — oo.
Furthermore, the estimator is asymptotically normal in that, as n — oo,
\/W (lA)fb) converges in distribution to a multivariate normal distribution with
mean vector 0 and a certain covariance matrix. Note that here the limiting
process for the consistency is nine — oo, whereas that for the asymptotic
normality is ni,ne — oo.

Tjostheim (1983) considered the strong consistency of the Y-W estimator
as well as the LS estimator of b. Let L(n,p) ={t: 1 <t,t—s <n,Vs € (0,pl|}.
The LS estimator is defined by the vector b that minimizes

2

Soolxi— D bXe | (9.75)

teL(n,p) s€(0,p]
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Under the assumption that the innovations are i.i.d. and that n; and ne
go to infinity at the same rate; that is, n; = h;k, where h; is a fixed integer,
j=1,2,and k — oo. The author showed that both the Y-W and LS estimators
converge a.s. to b. The author also obtained asymptotic normality of these
estimators under the same limiting process. So far, the asymptotic results are
based on the assumption that p is known. Tjgstheim (1983) also considered
the situation where p is unknown and therefore has to be determined from
the data. He considered a GIC-type criterion (see Section 9.3) in the form of

C(p) = log6°(p) + Md(p), (9.76)

n
where d(p) is the number of AR coefficients involved in (9.72) [i.e., d(p) =
(p1 + 1)(p2 + 1) — 1] and 62(p) is the residual sum of squares (RSS) after
fitting the LS problem; that is,

&%m:ﬁ Soox - > WX,

teL(n,p) z€(0,p]

where b(®) is the minimizer of (9.75) for the given p. The function I(-) depends
on the criterion. For the AIC, BIC, and HQ (see Section 9.3), the correspond-
ing I(|n|) are 2, log(|n|), and 2loglog(|n|), respectively. Tjgstheim defined the
estimator of p, p, as the minimizer of (9.76) over 0 < p < P, where P is
known. He showed that p is consistent in the sense that P(p # p) — 0 un-
der the limiting process ny = ny = k — o0, provided that {(|n|) — oo and
I(Jn])/|n] — 0 as k — oo. Thus, in particular, the BIC and HQ are consistent,
whereas the AIC is not. These results are similar to those of Section 9.3. Fur-
thermore, the author considered the extension of his results by replacing the
i.i.d. assumption on the innovations W; by the following TMD assumption:

W, € Fro B{WiF(t-)}=0 as., (9.77)

where F(t—) is the smallest o-field containing all Fs, s1 < t1 or s2 < to, but
the proofs appear to be flawed. Another limitation of Tjgstheim’s results is
that P, the upper bound of the range of p over which (9.76) is minimized, is
assumed known, whereas in practice, such an upper bound may not be known.

Jiang (1991b) proved that if X; is a spatial AR(p) series satisfying the min-
imum phase property (9.73), where the WN innovation series W} is strictly sta-
tionary and strongly ergodic (see Section 9.6) with E{W¢ log™ (|Ws])} < oo,
then the Y-W estimator, 3, is strongly consistent as |n| = ning — oo; that is,
b 2% b as |n| — co. The author argued that the same result holds under the
following alternative to the strong ergodicity condition: W, is a TMD satisfy-
ing (9.62) with F; = o(Wy, s < t) [note that in such a case, the first condition
in (9.62) automatically holds|, and the series Y .=, E\E{W(%’O)U"(_LO)} — 1]
and 30,%, E[E{W{ ;| Fo,-1)} — 1] are both finite. Furthermore, the author
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obtained asymptotic normality of the Y-W estimator. For example, suppose
that W, is strictly stationary, strongly ergodic, E{Wlog™ (|[Wo|)} < oo, and
the TMD condition (9.62) is satisfied for some family of o-fields F; [it is not
necessarily to have F; = o(Ws, s < t)]. Then we have, as |n| — oo,

VInl(b—b) - N0, 5y, (9.78)
where I' = [’7(“7’0)]11,116(0,1)] and ¥ = [U(uvv)]u,vem,p]v with
o(u,v) = BOWZX_,X_,).

Note that the limiting process here is, again, |[n| = nins — oo, which is
more general than ni,ne — oo at the same rate (Tjgstheim 1983), or even
n1 and ny independently go to infinity. Once again, the author proposed an
alternative to the strong ergodicity condition. The alternative is that for any
z,y € (0,00) = {s = (s1,52),51,82 > 0,(s1,82) # (0,0)}, j = 1,2, and
t3_; € Z, both

S B - 1),

J tj=1
where F;_ is the smallest o-field containing all Fs, s <t and s # ¢, and

1 &
— > W e Wi {EWE|Fio) — 1}

N
J tj=1

converges to zero in probability as n; — oo.

An underlying assumption of Jiang (1991b) is that p, the order of the spa-
tial AR model, is known. Jiang (1993) considered the more practical situation
where p is unknown and therefore has to be determined from the observed
data. He considered a criterion of the form (9.76) except with I(|n|) replaced by
I(n) [the difference is that the former depends only on |n| = ning, whereas the
latter depends on n = (n1,n2)]. He showed that if [(n) — oo and I(n)/|n| — 0
as |n| — oo, then the minimizer of the criterion function over 0 < p < P,
P, is a consistent estimator of p; that is, P(p # p) — 0, as |n| — oo. Note
that a similar result was obtained by Tjgstheim (1983) under the restricted
limiting process n1 = ny — oo. Once again, the result assumed a known upper
bound P, which may not be practical. One idea of relaxing this assumption
is to let P increase with the sample size; that is, P = P, — o0, as n — oo.
Another challenging task is to obtain strong consistency of p. The following
result was proven in Jiang (1993). Suppose that X; is a spatial AR(p) series
satisfying the minimum phase property, where W; is a TMD satisfying (9.63).
Furthermore, suppose that

liminf — 3 B{WZF(-)} >0 as,

e Il 52,
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sup, E{W2|F1(t—)} < oo a.s., and E(|W;|?) < oo for some ¢ > 4. Let p be
the minimizer of (9.76), with I(|n|) replaced by I(n), over 0 < p < P,,, where
P, = ([(logn1)?], [(log nz)®]) for some a > 0. If I(n) satisfies

l(n) =00 M oe(ln 2044)
toglog(nl) > Ty o8I 20

as n — oo, then p == p as n — oco. Note that the latter result implies
that, with probability 1, we have p = p for large n. This property ensures
that if the Y-W estimator of b is obtained using p instead of p, the resulting
estimator of b has the same asymptotic properties, such as strong consistency
and asymptotic normality, as that obtained using the true p (Exercise 6.30).
Also, note that the limiting process for the strong consistency of p is n — oo
instead of |n| — oco. This makes sense because as the sample size increases,
P,, needs to increase in both directions corresponding to n; and ns to make
sure that the range of minimization eventually covers the true p. Therefore,
n1 and ny both have to increase.

The strong consistency of bis a consequence of the ergodic theorem (Jiang
1991b). A main tool for establishing the asymptotic normality of b is the CLT
for triangular arrays of the TMD (Theorem 9.7). In fact, the TMD condition
assumed in Jiang (1993) is weaker than that of Jiang (1991b), namely, (9.63)
instead of (9.62), and an extension of Theorem 9.7 under the weaker condition
was given in Jiang (1993). The uniform convergence rate of the sample ACV
(ACR) discussed in Section 9.7 played a key role in obtaining the strongly
consistent order determination for the spatial AR model.

9.9 Exercises

9.1. Verify the basic properties (i)—(iii) of an autocovariance function [be-
low (9.4) in Section 9.1].

9.2. Let Xy, t € Z?, be a spatial series such that E(X?) < oo for any t.
Show that the following two statements are equivalent:

(i) E(X;) is a constant and E(Xs 1, X¢1n) = E(XX}) for all s,t,h € Z2;

(ii) E(X;) and E(X;X;,5) does not depend on ¢ for any ¢, h € Z2.

9.3 (Poisson process and WN). A stochastic process P(t), t > 0 is called a
Poisson process if it satisfies the following: (i) P(0) = 0; (ii) for any 0 < s < ¢
and nonnegative integer k,

At —s)}F
P{P(t) - P(s) = k} = A= 9} o W o),
where A is a positive constant; and (iii) the process has independent incre-
ments; that is, for any n > 1 and 0 < tp < t; < --- < t,, the random variables
P(t;) — P(tj—1), j = 1,...,n, are independent. The constant \ is called the
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strength of the Poisson process. Derive the mean and variance of P(t) and
show that €, = P(n+1) — P(n) — A\, n=1,2,..., is a WN(0, A) process.

9.4 (Brownian motion and WN). Recall a stochastic process B(t), t >
0, a Brownian motion if it satisfies (i) B(0) = 0, (ii) for any 0 < s < ¢,
B(t) — B(s) ~ N(0,t — s), and (iii) the process has independent increments.
Show that ¢, = B(n+ 1) — B(n), n = 1,2,..., is a standard normal WN
process.

9.5. The time series Xy, t € Z, satisfies (i) E(X?) < oo, (ii) E(Xt) = p,
a constant, and (iii) E(X:X:) = ¢(t — s) for some function ¢, for s,t € Z.
Show that X;, t € Z, is second-order stationary and find its autocovariance
function.

9.6. Suppose that X;, t € Z, is second-order stationary. Show that if the
nth-order covariance matrix of X, I, = [y(i — J)]i<i j<n, is singular, then
there are constants a;, 0 < j < n — 1, such that for any ¢ > s we have

n—1
Xt = ag + E ansfj a.s.
Jj=1

9.7. Suppose that X; and Y (¢) are both second-order stationary and the
two time series are independent with the same mean and autocovariance func-
tion. Define a “coded” time series as

7 _ X, if tis odd
t 7Y, if ¢ is even.

Is Z; a second-order stationary time series? Justify your answer.

9.8. Show that if the innovations ¢; is a Gaussian WN(0, 02) process with
02 > 0, then (9.18) holds.

9.9. Show that the Kullback-Leibler information defined by (9.21) is > 0
with equality holding if and only if f = ¢ a.e.; that is, f(z) = g(z) for all
x ¢ A, where A has Lebesgue measure zero. However, it is not a distance [as
defined below (6.63)].

9.10. Show that the Wold coefficients of an ARMA process X; in (9.30)
satisfy the following:

(i) ¢o =1.

(i) ¢jp? — 0 as j — oo, where p > 1 is the number in (9.29).

9.11. Show that the autocovariance function of an ARMA(p,q) process
can be expressed as (9.31). Furthermore, there is a constant ¢ > 0 such that
Iy(h)| < ep™", h >0, where p > 1 is the number in (9.29).

9.12. Verify the Yule-Walker equation (9.33) as well as (9.34).

9.13. Verify the reversed ARMA model (9.37) as well as (9.38).

9.14. Suppose that X;,¢ € N2, is an i.i.d. spatial series. Show that (9.39)
holds when n; = ng — oo, provided that E{| X 1)} < co.

9.15. Regarding the diagonal method of rearranging a spatial series as a
time series (see the second paragraph of Section 9.6), write the order of terms
in the summation in (9.39) for the following cases:



9.9 Exercises 313

(i) ni =no =k, k=3;
(ii) no = no =k, k = 4;
(iil) n1 = 2k, no =k, k = 3;

9.16. (i) Show that for any random variable X,

X2{log(|X )}
[ loglog(1X|) ]<°°’

where d > 1, implies E(X?) < cc.
(ii) Give an example of a random variable X such that

X2
E{d————=/ <>
{loglog(le)}
but E(X?) = o0

9.17. Draw diagrams of the different pasts, P;(t), j = 1,2, 3,4, defined in
Section 9.6 and show Pi(t) D Pa(t) D P3(t) D Py(t).

9.18. Verify that the spatial series ¢; defined in Example 9.6 is a TMD
with respect to P(t) = P;(t), j = 2,3, 4 (the case j = 1 was already verified).

9.19. Let W; be as in Example 9.6. Define ¢, = W, 414,-1). Show that
€, t € Z?%, is a TMD with respect to P(t) = P;(t), j = 1,2,3, 4.

9.20. This exercise is related to Example 9.7.

(i) It was shown that ¢, t € Z2, is a TMD with respect to P(t) = Pa(t),
but not necessarily a TMD with respect to P(t) = Py(t). Is e, t € Z2, a TMD
with respect to P(t) = Ps(t), or P(t) = Py(t)?

(ii) If we switch the roles of P;(t) and P»(t) [i.e., define, instead of (9.48),
€& = Wiy — E{Ws,s € Pi(t)}], is &, t € Z%, a TMD with respect to P(t) =
Py(t)?

(iil) Is there a general rule that you can draw from Example 9.7 and this
exercise?

9.21. (i) Show that (9.47) with P(t) = P;(t) implies (9.55) and (9.56).

(ii) Give an example of a spatial series €; satisfying (9.55) but not (9.56).

(iii) Show that (9.57) implies (9.58) for all m > 0.

9.22. Show that if ¢;, t € Z2, is strictly stationary, then (9.57) holds if and
only if (9.47) holds for all ¢.

9.23. Show that (9.63) is a weaker TMD condition than (9.62).

9.24. Let Xy, t € Z? be a strictly stationary spatial series. Define the
invariant o-fields X (7)), X~ }(v), and X ~1(7) as in Section 9.6 (above
Theorem 9.8) with € replaced by X. For this exercise, however, all you need
to know is that these are some o-fields depending on the stationary spatial
series. Then, according to the ergodic theorem (see Jiang 1991b), we have

S X S5 E{XX(7)

|n| 1<t<n
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as |n| — oo, provided that (9.41) holds and X ~!(7y) = X ' (7y). You may
assume that this latter condition is satisfied for whatever spatial series we are
dealing with in this exercise. Suppose that W, t € Z2, is strictly stationary.
(i) Consider Xy = W, _,). Show that X, t € Z2, is strictly stationary.
Similar results hold for X; = W(_, 4,), and Xy = W_,.
(ii) Suppose that E(|]Wy|?) < oo for some g > 4. Use the above ergodic
theorem and the facts in (i) to argue that

Z Wi < 00 as.

t<n

lim sup
|n|—o0

1
7l
for some p > 1.

(iii) Show that X, = E{W2|Fi(t—)}, t € Z2, is strictly stationary. Hint:
Suppose that

E{WiF(0-)} = ¢ (WM < o) a.s.

1
for some function g, where s < 0 if and only if s < 0 or s; = 0 and s5 < 0.
Then

1
E(W/|Fi(t—-)} =g <Ws,8 < t) a.s.
(iv) Using similar arguments, show that

lim sup |—711| SEWHA ()} < 0o as.

[n|—o0 i<n

for some p > 1, provided that E(]IWy|?) < oo for some g > 4.
9.25. Let Wy, t € Z%, be a WN(0, 0?) spatial series and u # v. Show that
(9.68) is bounded a.s. if and only if

A(u,v) = y(u,v) = O (1 / 10%}27%“”) a.s.,

where 7(u,v) and (u,v) are the ACV and sample ACV of W; at u and v,
respectively.

9.26. Let n; = ([e"], [¢%2]) for i = (i1,1i2), where [z] represents the largest
integer < z. Show that ) .., (log|n;|)~* < oo for sufficiently large a, where
[n| = ning for any n = (n1,ns).

9.27. Suppose that W;, t € Z2, satisfy (9.63) and E(|W;|P) < oo for some
p > 1. Use the TMD extension of Burkholder’s inequality [i.e., (9.70) and
(9.71)] to establish the following SLLN: |n|~1Y", ., Wi =55 0, as |n| — oc.
[Hint: You may use a similar subsequence method as described in the second
to last paragraph of Section 9.7, with n; = (2%,2%2) for i = (i1, i2).]
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9.28. Suppose that X; is a spatial AR series satisfying
X(t1,t2) - O'5X(t1*1,t2) - O'5X(t1,t2*1) + 0'25X(t1*1’t2*1) = W(tl’tz)’

t € Z2, where W; is a spatial WN(0, 02) series.

(i) What is the order p of the spatial AR model? What are the coefficients?

(i) Verify that the minimum phase property (9.73) is satisfied.

(iii) Write out the Y-W equation (9.72) for the current model.

(iv) Suppose that X, 1 < ¢ < n, are observed, where n = (n1, na). Without
using the consistency results discussed in Section 9.8, show that the Y-W
estimators of the AR coefficients converge in probability to the true values of

those coefficients as ning — oco. You may assume that 4(u,v) RN v(u,v) as
ning — oo for any wu, v.

9.29. Continue with the previous exercise.

(i) Find an expression for the LS estimator of b, the vector of the AR
coefficients, that minimizes (9.75). Is the LS estimator different from the Y-
W estimator in the previous exercise?

(i) Show that the LS estimator of b converges in probability to b as niny —
00. Again, you may assume that the sample ACV converges to the ACV in
probability as ning — oo.

9.30. Show that p = p as n — oo if and only if P(p = p for large n) = 1.
Here, n = (n1,n2) is large if and only if both ny and ny are large. Let band b
denote the Y-W estimator of b, the vector of spatial AR coefficients, obtained
using p and p, respectively. Show the following:

(1) If b 2% b as n — oo, then b 2% b as n — oo.

(ii) If \/|n[(b—b) N N(0, R) as n — oo, where R is a covariance matrix,
then \/[n[(b— b) <, N(0,R) as n — oo for the same R.
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Stochastic Processes

10.1 Introduction

A stochastic process may be understood as a continuous-time series or as an
extension of the time series that includes both discrete-time and continuous-
time series. In this chapter we discuss a few well-known stochastic processes,
which in a certain sense define the term stochastic processes. These include
both discrete-time and continuous-time processes that have not been previ-
ously discussed in details. Again, our focus is the limiting behaviors of these
processes.

During the author’s time as a graduate student, one of the classroom
examples that struck him the most was given by Professor David Aldous
in his lectures on Probability Theory. The example was taken from Durrett
(1991, p. 275). A modified (and expanded) version is given below.

Example 10.1. Professor E. B. Dynkin used to entertain the students in his
probability class with the following counting trick. A professor asks a student
to write 100 random digits from 0 to 9 on the blackboard. Table 10.1 shows
100 such digits generated by a computer. The professor then asks another

Table 10.1. Random digits and the student’s sequence

9632287110178709467639796
7954497867994351911675405
8794055284099376313077790
5107740422337956530934287

student to choose one of the first 10 digits without telling him. Here, we use
the computer to generate a random number from 1 to 10. The generated
number is 7, and the 7th number of the first 10 digits in the table is also
7. Suppose that this is the number that the second student picks. She then

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2 10, © Springer Science+Business Media, LLC 2010
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counts 7 places along the list, starting from the number next to 7. The count
stops at (another) 7. She then counts 7 places along the list, again. This time
the count stops at 3. She then counts 3 places along the list, and so on. In the
case that the count stops at 0, the student then counts 10 places on the list.
The student’s counts are underlined in Table 10.1. The trick is that these are
all secretly done behind the professor, who then turns around and points out
where the student’s counts finally ends, which is the last 9 in the table.
Table 10.2 shows how the professor does the trick. Regardless of what the
student is doing, he simply picks a first digit of his own, say, the very first
digit, which is 9. He then forms his own sequence according to the same rules
as the student. The professor’s sequence are overlined in Table 10.2. It is seen

Table 10.2. The professor’s trick

0632287110178709467639796
7954497867994351911675405
8794055284099376313077790
5107740422337956530934287

that, at some point (first 8 in the second row), the two sequences hit and then
move together. Therefore, the professor’s sequence will end exactly where the
student’s does.

Now we know the professor’s trick, but what is the “trick”? The random
digits written on the blackboard may be thought of as realizations of the first
100 of a sequence of independent random variables &1, £o, . . . having the same
distribution P(§; = j) = 1/10, j = 1,...,10 (here 0 is treated the same as
10). Starting with an initial location X7 = I (1 < I < 10), the locations of
the sequence of digits formed either by the professor or by the student satisfy

Xn+1=Xn+an, n=12,... (101)
(Exercise 10.1). An important property of the sequence X, is the following:
P(Xpp1=J1X1=11,...,. X1 = i1, X, = 1)
= P(Xn—i-l = ]|Xn = i)v (10'2)

n=1,2,... foranyiy,...,i,-1,%,j such that i1 =, i,_1+1 < iz <ig_1+10,
2<s<n—1,i-14+1<i<i4,14+10,and i +1 < 5 < i+ 10. To see
this, note that X, is strictly increasing and is a function of &1, ..., &, where
k = X,—1 (Exercise 10.1). Therefore, the left side of (10.2) is equal to

P(i+&=3j1X1=d1,..., Xn 1 =in_1,Xn =1)
(& = j — i|something about &1, ..., &, where k = i,_1 < 1)
= P& =j—i)=0.1,
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and the same result is obtained for the right side of (10.2) (Exercise 10.1). A
process that satisfies (10.2) is call a Markov chain. Furthermore, the chains of
the professor and student may be considered as being independent. Using the
Markovian property and independence of the two chains, it can be shown (see
the next section) that, sooner or later, the chains will hit. More precisely, let
X, and Y,, denote the chains of the professor and student, respectively. Then
for some m and n we have X,,, = Y},. On the other hand, by the way that these
chains are constructed [i.e., (10.1)], once X,,, = Y,,, we have X,,11 = Y11,
Xm+2 = Y19, and so on. In other words, once the chains hit, they will never
be apart. The most striking part of this story is, perhaps, that the chains will
hit wherever they start. For example, in Table 10.1, one may start at any of
the first 10 digits and then follow the rules. The chains will hit each other at
some point and then follow the same path.

“Sooner or later” or “at some point” turn out to be the key words as our
story unfolds. The implication is that the chains do not have to hit within
the first 100 digits. In fact, numerical computations done by one of Profes-
sor Dynkin’s graduate students suggested that there is an approximate .026
chance that the two chains will not hit within the first 100 digits. Table 10.3
gives an example of such an “accident.” Once again, the chains of professor
and student are overlined and underlined, respectively. (Ironically, this was the
very first example that the author tried, and it did not work! The example in
Table 10.1 and Table 10.2 was the author’s second attempt.)

Table 10.3. An example of “accident”

5387838544245036027527957
8432497219223928801535717
8248024943004438201541979
6880761998546520071955519

The example has led to a natural topic for the next section.

10.2 Markov chains

The defining feature of a Markov chain is (10.2). We now express it under
a more general framework. Consider a stochastic process X,,, n =0,1,2,...,
that takes on a finite or countable number of possible states, where each state
is a possible value of the process. The notation Xy usually represents the
initial state of the process. Without loss of generality, we assume that the set
of states is a subset of {0,1,2,...}, denoted by S. The process is said to be a
homogeneous Markov chain, or simply Markov chain, if it satisfies

P(Xn+1 = J|Xn = iaXn—l = in—la . .,XO = ZQ) = p(l,]) (103)
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for all ig,...,in—1,4,5 € S and some function 0 < p(i,j) < 1 such that
> jesp(i,j) = 1. From (10.3) it immediately implies that

P(Xn+1 = ]|Xn = Z.a)(n—l = in—lv ce 7X0 = ZO)
=P(X,nt1 =71Xn =1 = p(i,7) (10.4)

(Exercise 10.2). Equation (10.4) is known as the Markov property. Intuitively,
it may be interpreted as that the future depends on the present but not on
the past or the present depends on the past only through the immediate past.
The function p(i, j) is known as the transition probability of the Markov chain.
Note that the distribution of the Markov chain is determined by its transition
probability and the distribution of the initial state; that is, po(j) = P(Xo = j)
(Exercise 10.3). Another implication of (10.3) is that the conditional proba-
bility on the left side does not depend on n. More generally, we have

P(Xpim = 1 Xn =4, X1 = in_1, ..., X0 =ig)
= P(Xpym = j| X = 1) (10.5)

and it does not depend on n. To see this, note that the left side of (10.5) can
be written as

Z P(Xotm = Js Xngm—1 = k[ X =4, Xpi1 = ip1,..., Xo = o)
keS

= ZP(Xn—i-m = j|Xn+m—1 =kX, =0, Xn1=Ip_1,..., X0 = Z0)
keS
XP(antmfl = k|Xn = Z‘anfl =lp_1,-- ~7X0 = 'LO)

= Z P(Xnerfl = k‘Xn = i7Xn71 = infh o aXO = 10>p(k7])a (106)
kesS

and a similar argument also carries for the right side of (10.5). The claimed
results thus follow by induction. Equation (10.5) is known as the m-step tran-
sition probability, denoted by p(™) (i, 7). Clearly, we have p™) (i, 5) = p(i, ).
The transition probabilities satisfies the Chapman—Kolmogorov identity:

PG, g) =D pt) )(k, 5), (10.7)

keS

which can be established using a similar argument as (10.6) (Exercise 10.4).
Equation (10.7) resembles the rule for matrix products. In fact, if we denote
by P the (possibly infinite-dimensional) matrix of transition probabilities,
P = [p(i,5)]ijes, and, similarly, by P™ the matrix of m-step transition
probabilities, then (10.7) simply states that

pm+l) — pm) pO), (10.8)

where the right side is the matrix product. In particular, we have P(™) =
pm=1p = pm=2)p2 — ... — pm_We consider some examples.
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Ezample 10.2 (Random walk). Let &, ¢ > 1, be i.i.d. with P(§; = j) = a;,
j = 0,£1,.... Define Xg = 0 and X,, = >, &, n > 1. It is easy to see
that X,,, n > 1 is a Markov chain with states S = {0, £1,...} and transition
probability p(i,j) = aj—; (Exercise 10.5). A special case is called a simple
random walk, for which a; =pif j =1,1—pif j = —1, and 0 otherwise. It
follows that for the simple random walk, we have p(i,i+ 1) =p, p(i,i — 1) =
1—p, and p(¢, j) = 0 otherwise. In this case, the process may be thought of as
the wanderings of a drunken man. Each time he takes a random step either
to the left (—1) with probability 1 — p or to the right (41) with probability p.

Ezample 10.3 (Branching process). Consider the branching process of Ex-
ample 8.6 (with the notation T;, replaced by X,,). We show that the process
is a Markov chain with S = {0, 1,...} and derive its transition probability. To
see this, write ig = 1 and define 22:1 X, = 0. Then we have

P(Xn+1 = ]|Xn =4, Xp 1=1tn_1,...,X0= ZO)

=P (ZXn+1,k =J

k=1

something about X, i,

1<m<n,1<k< max zu>

0<u<n—1
%
=P <Z Xpsrh = j)
k=1

:p(iaj)'

Ezample 10.1 (continued). Here, the Markov chain has the states S =
{1,2,...}, and the transition probability is given by

. 1 .
p(i,j) = 1_01(i+1§j§i+10)7 i,j€85. (10.9)
Furthermore, the two-step transition probability is given by

10— [j —i — 11|

@i, 5) = /\j 10.1
P (i, ) 100 , L,jES. (10.10)

It is easy to verify that the transition probabilities satisfy ZjES p(i,j) =1
and Zjesp(z)(i,j) =1 for any i € S (Exercise 10.6). Earlier it was claimed
that the chain of the professor and that of the student will eventually hit. We
now outline a proof of this claim, referring the details to Exercise 10.6.

For notation convenience, let X = {X(n),n >0} and Y = {Y'(n),n > 0}
denote the chains of the professor and student, respectively. Suppose that the
X chain starts at X (0) = a and the Y chain starts at Y(0) = b. Without loss
of generality, let a < b. First, note that by (10.9), it can be shown that
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P{X(n+1) # jIX(n),..., X (1)}

:% ifj—10<X(n)<j-—1 (10.11)
(Exercise 10.6). Let ig = b, 41, . . ., s, be any sequence of positive integers such

that 4, —i,_1 > 10, 1 < r < s. Define the stopping time 7T;. as the first time
that the X chain is within “striking distance” of i,—that is, the smallest n
such that X (n) > i, — 10, 1 < r < s. The key idea of the proof is to show that
at the time immediately after T;., the X chain will eventually hit 4, for some 7;
that is, X (T, + 1) = 4, for some r > 1. This makes sense because at the time
T, the chain is within the striking distance of i,; in other words, i, is among
the next 10 integers after X (7)), so why does X (T} + 1) always have to miss
i, if it has an equal chance of hitting any of the 10 integers? To make this
idea a rigorous argument, note that 7,, = n if and only if X(n — 1) < ¢, — 10
and X (n) > i, — 10. Also, it is easy to see that 71 < --- < Ts. Furthermore,
let j1,...,js be any possible values for T1,...,Ts. It can be shown that

A={XG1+1)#i1,..., X[Us—1 + 1) #is—1,Th = j1,...,Ts = js}
€ o{X(1),....X(js)} (10.12)

(Exercise 10.6). By (10.11) and (10.12), it follows that

P{X(Tl +1) #ila--wX(Tstl) 7é is, T1 = J1,...,T5s :js}
=PAN{X(js +1) #is}]
= EDAP{X(js + 1) # is‘X(.jS)a-' : 7X(1)H

= I%P{X(Tl F1) Fiy, . X(Taoy +1) #ig 1, Ty = g1, ..., T = jo}
because is — 10 < X (js) <is — 1 on A (Exercise 10.6). It follows that
P{X(Th+1)#41,....,.X(Ts+1) #1is}
- 1%P{X(T1 1) iy X(To 1 +1) £is 1),
Continue with this argument; we arrive at the conclusion that

P{X(Ty+1)#i1,.... X(Ty+1) # i} = <19—0) (10.13)

Now, let Up = 0 and U, be the first n > U,_; such that Y (n) > Y (U,-1)+ 10,
r=1,2,.... By (10.13) and independence of X and Y, it can be shown that

P(X,Y do not hit)
< P{X(T1+1) Y (U),..., X(T, +1) # Y(U,)}

_ <1_90>S (10.14)
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(Exercise 10.6). Since s is arbitrary, the left side of (10.14) must be zero.

We now introduce three important concepts of Markov chain. They are
irreducibility, aperiodicity, and recurrency.

A state j is said to be accessible from a state i if p(™) (i, j) > 0 for some
m > 0. Two states that are accessible to each other are called communicate,
denoted by ¢ «<» j. Communication is an equivalence relation in that (i) i < 4,
(ii) ¢ < j implies j < 4, and (iii) ¢ < j and j < k imply ¢ < k. Two
states that communicate are said to be in the same class. It is clear that any
two classes are either disjoint or identical (Exercise 10.7). We say the Markov
chain is rreducible if there is only one class; that is, all states communicate
with each other .

The period of a state i is defined as d(i) = sup{k : p("™)(i, i) = 0 whenever
m/k is not an integer}. It is clear that the latter set is not empty (as it includes
at least k = 1), so d(i) is well defined if we let d(i) = oo if p(™)(i,4) = 0 for all
m > 1. A state ¢ with d(i) = 1 is said to be aperiodic. It can be shown that if
1 <> j, then d(i) = d(j). In other words, the states in the same class have the
same period (Exercise 10.8).

For any states ¢ and j, define ¢(7, j) as the probability that, starting in 4,
the chain ever makes a transition into j; that is,

q(i,j) = P(X,, = j for some n > 1| X = i)
=>_d" ),
n=1

where ¢ (i,j) = P(X, = j, X}, # j,1 <k <n —1|X, = i). It is clear that
q(i,7) > 0 if and only if i <> j. A state ¢ is said to be recurrent if q(i,i) = 1;
that is, starting in ¢, the chain will return with probability 1. A state that is
not recurrent is called transient. The following result is useful in checking the
recurrency of a given state: State ¢ is recurrent if and only if.

Zp(n) (i,) = oo. (10.15)
n=1

Furthermore, if state i is recurrent and i < j, then state j is also recurrent
(Exercise 10.9). Thus, the states in the same class are either all recurrent or
all transient. We consider an example.

Ezample 10.2 (continued). First, we show that ¢ < j for any 4,5 € S5,
provided that a; > 0 for j = —1,1. Without loss of generality, let ¢ < j. Let
m = j —i. Then

p(m)(ivj) = P(Xpim = j|Xn =1)

> P(Xn+m = j7Xn+m71 =j—1,.. -aXn+1 =i+ 1‘Xn = Z)
= P(€n+1 = ]-7 . '7£n+m = 1)
=al" > 0.
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Thus, the Markov chain is irreducible if a_; > 0 and a; > 0. In the special
case of a simple random walk, this means 0 < p < 1. Furthermore, the Markov
chain is aperiodic if and only if ag # 0. In particular, for the special case of a
simple random walk with 0 < p < 1, we have d(i) = 2 for all ¢ € S (Exercise
10.11). Finally, we consider recurrency for the case of a simple random walk
with 0 < p < 1. Since in this case the chain is irreducible, we only need to
check one of its states, say, i = 0 (why?). Clearly, we have p(™(0,0) = 0 if n
is odd (it takes an even number of steps to return). Now, suppose that n is
even, say, n = 2k. Then, starting at ¢ = 0, the chain will return in n steps
if and only if it takes k steps to the right and k steps to the left. In other
words, there are exactly k ones and k minus ones among &1, ..., &,. It follows
from the binomial distribution that p(™(0,0) = Crpk(1 —p)k, n=1,2,...
By using Stirling’s approximation (see Example 3.4), it can be shown that

{4p(1 — p)}*
Vrk

(Exercise 10.12), where a,, ~ by, if lim,_(an/b,) = 1. Therefore, (10.15)
holds (with ¢ = 0) if and only if p = 1/2. In other words, the chain is recurrent
if p=1/2, and transient if p # 1/2.

p™(0,0) ~ (10.16)

Some important properties of Markov chains are associated with their
asymptotic behavior. To describe these properties, we first introduce the con-
cept of a stationary distribution. A probability measure 7(-) on S is called
a stationary distribution with respect to a Markov chain with states S and
transition probability p(-,-) if it satisfies

S w(i)pi,g) = (i), €S (10.17)

i€S

Consider the limiting behavior of p(™ (i, j). If j is transient, then we have
> ptM(i,§) < 0 (10.18)
n=1

for all i € S (Exercise 10.13). To see what this means, define N; =
Yo 1(x, =), which is the total number of visits to j by the chain X,,. Then
we have E(N;|Xo = 4) = 300 | P(X,, = j|Xo =) = 307, p(™(i, ). Thus,
the left side of (10.18) is the expected number of visits to j when the chain
starts in ¢. This means that if j is transient, then starting in 4, the expected
number of transitions into j is finite, and this is true for all . It follows that
p(™ (i, 5) — 0 as n — oo for all i if j is transient.

To further explore the asymptotic behavior of p(™ (i, ) we define, for a
given Markov chain X,,, T} as the first time that the chain visits j after the
initial state—that is, T; = inf{n > 1 : X,, = j} if such a time exists (i.e.,
finite); otherwise, define T; = oco. Let p; = E(T}|Xo = j) (i.e., the expected
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number of transitions needed to return to state j). A state j is called positive
recurrent if p; < oo and null recurrent if ;1; = co. It is clear that a state that
is positive recurrent must be recurrent; hence, a transient state j must have
w; = oo (Exercise 10.14). Like recurrency, positive (null) recurrency is a class
property; that is, the states in the same class are either all positive recurrent
or all null recurrent (Exercise 10.14). Next, define N, (j) = >0 1 1(x,.=j);
which is the total number of visit to j by time n.

Theorem 10.1. If ¢ and j communicate, then the following hold:
(i) P{limy—co n™ ' Ni(j) = :U’j_1|X0 =it =1;

(i) limp— 0o n ™" D52y p(k)(i7j) = Mj_1§

(iii) limp, o0 p™ (i, 5) = pj ' if j is aperiodic.

Theorem 10.1(i) should help explain the terms “positive” and “null recur-
rent.” Starting from any state ¢ that communicates with j, the asymptotic
fraction of times that the chain spends at j is equal to a positive constant if j
is positive recurrent; otherwise, the asymptotic fraction of times spent at j is
zero. If we go one step further by considering irreducibility, we come up with
the following theorem.

Theorem 10.2 (Markov-chain convergence theorem). An irreducible, ape-
riodic Markov chain belongs to one of the following two classes:

(i) All states are null recurrent (which include those that are transient),
in which case we have lim,, p(")(i,j) = 0 for all 4, j, and there exists no
stationary distribution.

(if) All states are positive recurrent, in which case we have

m(j) = lim p™(i,j) = L (10.19)

for all j, and = (+) is the unique stationary distribution for the Markov chain.
We illustrate Theorem 10.2 with an example.

Ezample 10.4 (Birth and death process). A birth and death process is a
Markov chain with states S = {0,1,2,...} and transition probabilities given
by p(i,i + 1) = p;, p(i,i — 1) = ¢; and p(i,4) = r;, ¢ € S, where g9 = 0
and p;,q;, and r; are nonnegative numbers such that p; + ¢; + 7, = 1. Such
a process is also called a birth and death chain with reflecting barrier 0, or
simply birth and death chain. Intuitively, if the chain X, represents the total
number of a biological population (e.g., bacteria), then +1 (—1) correspond
to a birth (death) in the population, or no birth or death occurs, at a given
time n. A birth and death chain is irreducible if p; > 0 and g;41 > 0,4 € 5,
and aperiodic if 7; > 0 for some i (Exercise 10.16).

Now, focusing on the irreducible and aperiodic case, assume p; > 0,7 € S,
¢ > 0,i > 1, and r; > 0 for some i. By Theorem 10.2, there is a limiting
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distribution of p(™ (i,7) that is independent of the initial state . To determine
the limiting distribution, we consider (i) = [],_, (pk—1/qx). It can be shown
(Exercise 10.16) that «(-) satisfies

m(0)p(i, j) = 7(i)p(4,4), i,5€S. (10.20)

A Markov chain that satisfies (10.20) is called (time) reversible. Intuitively,
this means that the rate at which the chain goes from i to j is the same as that
from j to i. Any distribution 7 that satisfies the reversal condition (10.20) is
necessarily stationary. To see this, simple sum over ¢ on both sides of (10.20)
and we get (10.17). Tt follows by Theorem 10.2 that lim,, . p™ (i, ) = 7(5).

It is seen that the “trick” is to find the unique stationary distribution 7
using whatever method. One method that is often used is to solve (10.17),
or its matrix form P'm = 7, where P’ is the transpose of the matrix P of
transition probabilities and 7 = [7(7)];cs. In some cases, a solution can be
guessed that satisfies the stronger condition (10.20).

A variation of the birth and death chain that has a finite state space is
considered in Exercise 10.17. Some important applications of the Markov-
chain convergence theorem are discussed in Chapter 15.

10.3 Poisson processes

The Poisson process is a special case of what is called a counting process. The
latter means a process N (¢),¢ > 0, that represents the number of events that
have occurred up to time ¢t. Obviously, a counting process must satisfy the
following: (a) the values of N(t) are nonnegative integers; (b) N(s) < N(t) if
s < t; and (c) for s < t, N(t) — N(s) equals the number of events that have
occurred in the interval (s,t]. There are, at least, three equivalent definitions
of a Poisson process. The first is the most straightforward and anticipated.
Suppose that (i) the counting process satisfies N(0) = 0; (ii) the process has
independent increments—that is, the numbers of events that occur in disjoint
time intervals are independent; and (iii) the number of events in any interval
of length ¢ follows a Poisson distribution with mean At—that is,

P{N(s+t)—N(s) =z} =e (At)z, r=0,1,..., (10.21)

where A > 0 is called the rate of the Poisson process. From a practical point
of view, (10.21) is not something that may be easily checked. This makes
the second definition somewhat more appealing. A counting process N(t) is
said to have stationary increments if for any t; < to, the distribution of
N(s+t2) — N(s + t1) does not depend on s. A counting process N(t) is a
Poisson process if (i) N(0) = 0, (ii) the process has independent and stationary
increments, (iii) P{N(u) = 1} = Au+o(u) as u — 0, and (iv) P{N(u) > 2} =
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o(u) as u — 0. The third definition of a Poisson process is built on a connection
between a Poisson process and the sum of independent exponential random
variables. Let T7,75,... be a sequence of independent exponential random
variables with mean 1/A. Then we can define a Poisson process as

N(t) = sup{n: S, <t}, (10.22)

where Sy = 0 and S, = >, T;, n > 1. The Poisson process (10.22) has an
intuitive explanation. Imagine T; as the interarrival time of the ith event; that
is, T7 is the time of the first event and T; is the time between the (i — 1)st
and ith event, ¢ > 2. Then 5, is the arrival time, or “waiting time,” for
the nth event. A counting process is Poisson if its interarrival times are i.i.d.
exponential or, equivalently, its arrival times can be expressed as S,, (Exercise
10.18). It can be shown that the three definitions of a Poisson process are
equivalent (e.g., Ross 1983, Section 2.1).

As mentioned, the second equivalent definition is especially useful in jus-
tifying the assumptions of a Poisson process. It is related to a fundamental
asymptotic theory of Poisson distribution, known as Poisson approximation to
binomial. To see this, suppose that someone is unaware of the mathematical
equivalence of these definitions but, nevertheless, wants to justify a Poisson
process based on properties (i)—(iv) of the second definition. Divide the in-
terval [0,¢] into n subintervals so that each has length ¢/n, where n is large.
Then (iv) implies that

P(2 or more events in some subinterval)

n

< Z P(2 or more events in subinterval j)
=1

—n <3> o(1) = to(1) — 0

n

<

as n — 00. Thus, with probability tending to 1, N(¢) is the sum of n inde-
pendent random variables (which are the numbers of events in those subin-
tervals) taking the values of 0 or 1 (i.e., Bernoulli random variables). It fol-
lows that the distribution of N(t) is asymptotically Binomial(n,p), where
p=P{N(t/n) =1} = A(t/n) + o(t/n), according to (iii); that is,

P{N(t) = «}

(Z)px(l -p)""
B @) e

It is now a simple exercise of calculus to show that the right side of (10.23)
converges to e (\t)?/z! for every z (Exercise 10.19). In general, if X ~
Binomial(n, p), where n is large and p is small, such that np ~ A, then the

Q
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distribution of X is approximately Poisson(\), and this is called Poisson ap-
proximation to binomial. We consider some applications of this approximation.

Ezample 10.5 (The Prussian horse-kick data). This famous example was
given by von Bortkiewicz in his book entitled The Law of Small Numbers
published in 1898. The number of fatalities resulting from being kicked by
horses was recorded for 10 corps of Prussian cavalry over a period of 20 years,
giving a total of 200 observations. The numbers in Table 10.4 are the observed
relative frequencies as well the corresponding probabilities computed under a
Poisson distribution with mean A = .61 (see below). The approximations are

Table 10.4. Prussian horse-kick data and Poisson approximation

# of Deaths|# of Cases| Relative | Poisson
per Year | Recorded |Frequency|Probability
0 109 .545 .543
1 65 .325 .331
2 22 .110 .101
3 3 .015 .021
4 1 .005 .003

amazingly close, especially for lower numbers of deaths. This can be justified
by the Poisson approximation to binomial. Consider the event that a given
soldier is kicked to death by a horse in a given corps-year. Obviously, this
event can only happen once during the 20 years if we trace down the same
corp over the 20 years. However, the point is to consider the total number of
deaths for each of the 200 corps-years as a realization of a random variable
X. If we assume that these events are independent over the soliders, then X
is the sum of n independent Bernoulli random variables that are the event
indicators (1 for death and O otherwise), where n is the total number of
soldiers in a corps. Notice that a corps is a very large army unit (in the
United States Army, a corps consists of two to five divisions, each with 10,000
to 15,000 soldiers; depending on the country at the different times of history,
the actual number of soldiers in a corps varied), so n is expected to be very
large. On the other hand, the probability p that a cavalry soldier is kicked to
death is expected to be very small (if the soldier is careful about his horse).
So, we are in a situation of a Binomial(n,p) distribution, where n is large
and p is small. It follows that the distribution of X can be approximated
by Poisson()), where X is approximately equal to np. The value of A can be
estimated by the maximum likelihood method. Let X7, ..., X299 denote the
total numbers of deaths for the 200 corps-years. Then the MLE for A is given
by A=200"13"7% X; = (0x 10941 x 65 +2 x 22+ 3 x 344 x 1)/200 = .61.
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Ezample 10.6 (Fisher’s dilution assay). Another well-known example in
the statistics literature is Fisher’s dilution assay problem (Fisher 1922b). A
solution containing an infective organism is progressively diluted. At each
dilution, a number of agar plates are streaked. From the number of sterile
plates observed at each dilution, an estimate of the concentration of infective
organisms in the original solution is obtained. For simplicity, suppose that the
dilution is doubled each time so that after k dilutions, the expected number
of infective organisms per unit volume is given by px = po/2%, k = 0,1,...,
where pg, which is the density of infective organisms in the original solution,
is what we wish to estimate. The idea is that if k is sufficiently large, one can
actually count the number of organisms on each plate and therefore obtain an
estimate of pg. A critical assumption made here is that at the kth dilution,
the actual number of organisms, Ny, follows a Poisson distribution with mean
prv, where v is the volumn of solution for each agar plate. Under this assump-
tion, the unknown density po can be estimated using the maximum likelihood.
Again, we can justify this assumption using Poisson approximation to bino-
mial. Imagine that the plate is divided into many small parts of equal volume,
say, vg, so that within each small part there is at most one organism. Then the
number of organism in each small part is a Bernoulli random variable with
probability pj of having an organism. If we further assume that the number
of organisms in different small parts are independent, then Ny, is the sum of n
independent Bernoulli random variables, where n = v/vg is the total number
of small parts, and therefore has a Binomial(n, py) distribution. If n is suffi-
ciently large, pr must be sufficiently small so that npy is approximately equal
to a constant, which is pgv. It follows that Nj has an approximate Poisson
distribution with mean pgv.

Durret (1991, p. 125) gives the following extension of Poisson approxima-
tion to binomial to “nearly binomial.” The similarity to the second definition
of Poisson process is evident.

Theorem 10.3. Suppose that for each n, X,, ;,1 < i < n, are independent
nonnegative integer-valued random variables such that

(1) P(Xn,z - 1) = Pn,i, P(an Z 2) = €n,i

(ii) limy—oo Doiy Pnyi = A € (0,00);

(111) hmnﬂoo mMaxi<i<n Pn,i = 0;

(iv) limy,— 00 E:‘L:1 €n,i = 0.

Then we have S, = > 1" | X, 4, & ~ Poisson(\).

It should be pointed out that Poisson approximation to binomial works
in a different way than the well-known normal approximation to binomial.
The latter assumes that p is fixed and lies strictly between 0 and 1 and then
n — oo in the Binomial(n, p) distribution; whereas the former is under the
limiting process that n — oo, p — 0, and np — X € (0,00). Nevertheless,
the Poisson and normal distributions are asymptotically connected in that
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a Poisson distribution with large mean can be approximated by a normal
distribution. More precisely, we have the following result regarding the Poisson
process.

Theorem 10.4 (CLT for Poisson process). Let N(¢),t > 0, be a Poisson
process with rate A\. Then

lim P {% < x} = &(x)

for all z, where @(-) is the cdf of N(0,1).

An extension of Theorem 10.4 is given in the next section.

Finally, we consider limiting behavior of the arrival times of a Poisson
process. The following theorem points out an interesting connection between
the conditional arrival times and order statistics of independent uniformly
distributed random variables. The proof is left as an exercise (Exercise 10.20).

Theorem 10.5. Let N(¢),t > 0 be a Poisson process. Given that N(t) =
n, the consecutive arrival times Sy, ..., .S, have the same joint distribution as
the order statistics of n independent Uniform(0, ¢) random variables.

Theorem 10.5 allows us to study, after a suitable normalization, asymptotic
behavior of S1,...,S5, through Ugy,...,Upyy, where Ugyy,..., Uy, are the
order statistics of Uy, ...,U, which are independent Uniform(0,1) random
variables. For example, we have (Weiss 1955)

1 « P
n Z Lo —~vu—y>amy — € (10.24)
i=1

x >0, as n — oo. Also, we have (Exercise 10.21)

P
logn 1g?gaf+1{U(i) —Ui-pt — 1, (10.25)
2 . o .
P {”  uin {Ug) = U-n} > x} — e (10.26)

The corresponding results regarding the arrival times of a Poisson process are
therefore obtained via Theorem 10.5 (Exercise 10.21).

Some further asymptotic theory will be introduced under a more general
framework in the next section.

10.4 Renewal theory

The interarrival times of a Poisson process can be generalized in a way called
renewal process. Suppose that X, X5, ... is a sequence of independent non-
negative random variables with a common distribution F' such that F'(0) < 1.
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The X;’s may be interpreted the same way as the Poisson interarrival times
T;’s following (10.22). Similarly, we define the arrival times S,, as Sop = 0 and
Sp =1, Xi;,n>1, and a counting process N (t) by (10.22). The process is
then called a renewal process. The term “renewal” refers to the fact that the
process “starts afresh” after each arrival; that is, S+ —Sn, K =1,2,..., have
the same (joint) distribution regardless of n. In some books, N(t) is defined
as inf{n : S, > t} instead of (10.22) (so the difference is 1), but the basic
asymptotic theory, which we outline below, is the same.

Let u = E(X;). For simplicity we assume that p is finite, although many
of the asymptotic results extend to the case p = oo. The first result states
that N(t) — oo as t — oo.

Theorem 10.6. N (t) &% 0o as t — oc.

This is because N(t) is nondecreasing with t; so N(o0) = lim;_,o0 N ()
exists (see §1.5.1.3). Furthermore, we have P{N(c0) < oo} = P(X; = oo for
some i) = 0, because X; is a.s. finite for every i. Theorem 10.6 is used to
derive the next asymptotic result.

Theorem 10.7 (SLLN for renewal processes). N(t)/t &% 1/ as t — oo.

The proof is left as an exercise (Exercise 10.24). Theorem 10.7 states that,
asymptotically, the rate at which renewals occur is equal to the reciprocal of
the mean of the interarrival time, which, of course, makes sense. A related
result says that not only does the convergence hold almost surely, it also
holds in expectation. This is known as the elementary renewal theorem. Note
that, in general, a.s. convergence does not necessarily imply convergence in
expectation (see Chapter 2; also Exercise 10.25). Define m(t) = E{N(¢)},
known as the renewal function (Exercise 10.26).

Theorem 10.8. m(t)/t — 1/u as t — oo.

The proof is not as “elementary” as the name might suggest. For example,
one might attempt to prove the theorem by Theorem 10.7 and the dominated
convergence theorem (Theorem 2.16). This would not work, however. The

standard proof involves the well-known Wald equation, as follows.

Theorem 10.9. Let 7 be a stopping time such that E(7) < co. Then
E (Z X) = E(7)p. (10.27)
i=1

Equation (10.27) can be derived as a simple consequence of Doob’s optional
stopping theorem—namely, Corollary 8.1. To see this, define & = X; — pu
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and M,, = Y1 | &. Then M,,F, = o(X1,...,X,), n > 1, is a martingale.
Therefore, by (8.11), we have

E(M.|F;) =M, as.,

which implies E(M,) = E(M1) = E(&) = 0. On the other hand, we have
Sp = np + My; hence E(S;) = E(tpu + M;) = E(7)u, which is (10.27). To
apply the Wald equation to the renewal process, note that N(t) + 1 is a
stopping time (Exercise 10.27). Therefore, by (10.27), we obtain

E {Sn@)+1} = p{m(t) +1}. (10.28)

Identity (10.28) plays important roles not only in the proof of the elementary
renewal theorem but also in other aspects of the renewal theory.
The next result may be viewed as an extension of Theorem 10.4.

Theorem 10.10. Suppose that the variance of the interarrival time o2 is

finite and positive. Then

N -t |

for all z, where @(-) is the cdf of N(0,1).

We outline a proof below and let the reader complete the details (Exercise
10.28). First, note the following fact:

N(t) <n if and onlyif S, >t (10.29)

for any positive integer n. For any given x, we have

N -t/ _ | i
< P{N(t) <[z +1}
= P(S[z,)+1 > t) [by (10.29)]
:P{&mﬂ—qm+nu>m},

o/[z] +1

where x; = t/pu+ ox\/t/p3, (4] is the largest integer < z;, and

t= (e + D

Uy =
o/[xe] +1

It is easy to show that as ¢ — oo, ©y — oo while u; — —z. Therefore, for any
€ > 0, we have uy > —x — € for large t; hence,
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(Aot ) cp (St ]

o\t NS

for large ¢. It follows by the CLT that

. N() -t/
hirlsolij {T\//T?’H < :1:} <1—P(—x—¢)

= d(z +e). (10.30)

By a similar argument, it can be shown that

o N —t/u e
htrgg)lfP{ oS < }Z@( ). (10.31)

The conclusion then follows from (10.30), (10.31), and the arbitrariness of e.

Example 10.7. In the case of Poisson process discussed in the previous
section, we have X; ~ Exponential(1/A), so ¢ = o = 1/A. Thus, in this
case, Theorem 10.10 reduces to Theorem 10.4. More generally, if X; has a
Gamma(cq, ) distribution (note that the Exponential distribution is a special
case with @ = 1), then we have y = a3 and o = /af. It follows by Theorem

10.10 that {N(t) — t/aB}/\/t/a2B - N(0,1) as t — cc.

Ezample 10.8. Now, suppose that X; has a Bernoulli(p) distribution, where
0 < p < 1. This is a case of a discrete interarrival time, where X; = 0 means
that the arrival of the ith event takes no time (i.e., arriving at the same time
as the previous event). In this case, we have y = p and o = y/p(1 — p); so by

Theorem 10.10 we have {N(t) — t/p}//t(1 — p)/p? 4, N(0,1), as t — oo.

We are now ready to introduce some deeper asymptotic theory. The follow-
ing famous theorem is due to David Blackwell. A nonnegative random variable
X is said to be lattice if there exists d > 0 such that >~ P(X = kd) = 1. The
largest d that has this property is called the period of X. If X is lattice and
X ~ F, then F is said to be lattice, and the period of X is also called the pe-
riod of F'. For example, in Example 10.8, we have P(X; = 0)+P(X; =1) =1
while P(X; = 0) < 1; so F' is lattice and has period 1. On the other hand, the
F' in Example 10.7 is clearly not lattice.

Theorem 10.11. If F is not lattice, then m(t+a)—m(t) — a/p ast — oo,
for all a > 0.

Ezample 10.7 (continued). In the case of the Poisson process, we have
= 1/X; hence, by Blackwell’s theorem, m(t + a) — m(t) — Aa. In particular,
ifa =1, we have E{N(t + 1)} — E{N(¢)} — X as t — oo. This means that,
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in the longrun, the mean number of arrivals between time ¢ and time ¢ + 1 is
approximately equal to the reciprocal of u, the mean of the interarrival time.
This, of course, makes sense. For example, if 4 = 0.2, meaning that it takes,
on average, 0.2 second for a new event to arrive, then there are, on average,
approximately five arrivals within a second, in the longrun.

Our last asymptotic result is known as the key renewal theorem. Let h be
a function that satisfies (i) h(t) > 0 for all ¢ > 0; (ii) A(¢) is nonincreasing,
and (iii fo ) dt < oo.

Theorem 10.12. If F' is not lattice and h is as above, then

) t B 1 o)
tlingo ; h(t —z) dm(z) = ;/0 h(t) dt. (10.32)

Note the following alternative expression of u = E(X;):

u:/o z dF(z / F(t (10.33)

where F(t) = 1 — F(t), which can be derived by Fubini’s theorem (Exercise
10.29). Therefore, the key renewal theorem may be written as

t fo t
/h(t—x)dm as t — oo.
0 o (t) dt
In particular, if h(t) = 1pq(t), then fg h(t — x) dm(x ft . dm(z) =

m(t) —m(t —a) and [;° h(t) dt = [ dt = a; thus, (10.32) reduces to m(t) —
m(t —a) — a/p as t — oo, which is simply Blackwell’s theorem.

10.5 Brownian motion

The term Brownian motion has appeared in various places so far in this book.
It originated as a physics phenomenon, discovered by English botanist Robert
Brown in 1827. While studying pollen particles floating in water, Brown ob-
served minute particles in the pollen grains executing the jittery motion. After
repeating the experiment with particles of dust, he concluded that the motion
was due to pollen being “alive,” but the origin of the motion remained un-
clear. Later in 1900, French mathematician Louis Bachelier wrote a historical
Ph.D. thesis, The Theory of Speculation, in which he developed the first the-
ory about Brownian motion. His work, however, was somewhat overshadowed
by Albert Einstein, who in 1905 used a probabilistic model to explain Brow-
nian motion. According to Einstein’s theory, if the kinetic energy of fluids is
“right,” the molecules of water move at random. Thus, a small particle would



10.5 Brownian motion 335

receive a random number of impacts of random strength and from random
directions in any short period of time. This random bombardment by the
molecules of the fluid would cause a sufficiently small particle, such as that in
a pollen grain, to move in the way that Brown described.

In a series of papers originating in 1918, Norbert Wiener, who received
his Ph.D. at the age of 18, defined Brownian motion as a stochastic process
B(t),t > 0 satisfying the following conditions:

(i) B(t) has independent and stationary increments.

(ii) B(t) ~ N(0,0%t) for every t > 0, where o2 is a constant.

(iii) With probability 1, B(t) is a continuous function of .

Thinking of Brown’s experiment of pollen grains, (iii) is certainly reasonable,
assuming that the particles could not “jump” from one location to another;
the assumption of independent increments of (i) can be justified by Einstein’s
theory of “random bombardments.” As for (ii), it may be argued that this is
implied by (i) and the central limit theorem (Exercise 10.30). In particular,
Wiener (1923) proved the existence of a Brownian motion according to the
above definition. For these reasons, Brownian motion is also called a Wiener
process in honor of Wiener’s significant contributions [and the notation W (t)
is also often used for Brownian motion].

Note. By condition (iii), the sample paths of Brownian motion are almost
surely continuous. On the other hand, these paths are never smooth, as one
would expect, in that, with probability 1, B(t) is nowhere differentiable as a
function of ¢. This remarkable feature of Brownian motion was first discovered
by Paley, Wiener, and Zygmund (1933). See Dvoretzky, Erdés, and Kakutani
(1961) for a “short” proof of this result.

A simple consequence of the definition is that B(0) = 0 with probability 1.
To see this, note that by (ii), (iii), and Fatou’s lemma (Lemma 2.4), we have
E{B?%(0)} = E{lim;_¢ B%(t)} < liminf; o E{B%(#)} = liminf; .o 0%t = 0;
hence, B(0) = 0 a.s. Therefore, without loss of generality, we assume that
B(0) = 0. Also, as any Brownian motion can be converted to one with o = 1,
known as standard Brownian motion [by considering B(t)/o], we will focus
on the latter case only.

Brownian motion is a Gaussian process defined in Section 7.3. It is also a
special case of what is called a continuous-time Markov process, which is an
extension of the Markov chains discussed in Section 10.2, in that the condi-
tional distribution of B(s + t) given B(u), 0 < u < s, depends only on B(s).
To see this, note that by independent increments, we have

P{B(s+1t) <y|B(s) =z, B(u),0 <u < s}
=P{B(s+t)— B(s) <y—x|B(s) =x,B(u),0 < u < s}
=P{B(s+t)— B(s) <y—x}.
On the other hand, by a similar argument, we have P{B(s +t) < y|B(s) =

x} = P{B(s +t) — B(s) < y — x}, verifying the Markovian property.
In fact, a strong Markov property holds, as follows. For each ¢t > 0, let
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Fo(t) = of{ B(u),u < t} and Fi(t) = Ns>1Fo(s). The latter is known as the
right-continuous filtration. It is known that Fo(t) and Fy(¢) have the same
completion (e.g., Durrett 1991, p. 345). We call F(t),t > 0, a Brownian filtra-
tion if (i) F(t) D Fo(t), and (ii) for all t > 0 the process B(t+s)— B(t), s > 0,
is independent of F(t). A random variable 7 is a stopping time for a Brownian
filtration F(t),¢t > 0, if {7 < a} € F(t) for all t. The strong Markov property
states that if 7 is a stopping time for the Brownian filtration F(t),¢ > 0, then
the process B(T +t) — B(7),t > 0, is a Brownian motion that is independent
of F(7), where F(1) = {A: An{r <t} € F(t), Vt}. This result was proved
independently by Hunt (1956) and Dynkin (1957) (the latter author being the
same professor who gave the counting-trick example discussed in our openning
section; see Example 10.1).

The strong Markov property is used to establish the following theorem
called the reflection principle of Brownian motion.

Theorem 10.13. Suppose that 7 is a stopping time for the Brownian
filtration F(t),t > 0. Define

. B(1), t<r
B = {23(7) ~B(#t),t> T

(known as Brownian motion reflected at time 7). Then B*(¢),t > 0, is a
standard Brownian motion.

The proof is left as an exercise (with a hint; see Exercise 10.31). The
reflection is one of many Brownian motions “constructed” from Brownian
motion. To mention a couple more, let B(t),t > 0, be a standard Brownian
motion, then (1) (scaling relation) for any a # 0, a~*B(a*t),t > 0, is a
standard Brownian motion and (2) (time inversion) W(t) = 0, t = 0, and
tB(1/t), t > 0, is a Brownian motion (Exercise 10.32).

Furthermore, Brownian motion is a continuous martingale, which extends
the martingales discussed in Chapter 8 to continuous-time processes. This
means that for any s < ¢, we have E{B(t)|F(s)} = B(s), where F(t),t > 0,
is the Brownian filtration. To see the property more clearly, note that

E{B(t)|B(u),u < s} = E{B(s) + B(t) — B(s)|B(u),u < s}
= B(s) + E{B(t) — B(s)|B(u),u < s}
= B(s) + E{B(t) — B(s)}
= B(s).
By a similar argument, it can be shown that B2?(t) —t,t > 0 is a continuous
martingale (Exercise 10.33).
Another well-known result for Brownian motion is regarding its hitting
time, or maximum over an interval. For any a > 0, let T,, be the first time the

Brownian motion hits a. It follows that T, < ¢ if and only if maxo<s<: B(s) >
a. On the other hand, we have
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P{B(t) = a} = P{B(t) > a|T, < t}P(Ta < t)

because P{B(t) > a|T, > t} = 0. Furthermore, if T, < ¢, the process hits
a somewhere on [0, t]; so, by symmetry, at the point ¢, the process could go
either way, either above or below a, with equal probability. Therefore, we must
have P{B(t) > a|T, <t} = 1/2. This implies

p {OIE%B(S) > a} —P(T, < 1)
o — 9P{B(t) > a}

\/7/M —=*/2 g (10.34)

Ezxample 10.9. Suppose that one has the option of purchasing one unit of a
stock at a fixed price K at time ¢ > 0. The value of the stock at time 0 is $1 and
its price varies over time according to the geometric Brownian motion; that
is, P(t) = eB®) where B(t),t > 0, is Brownian motion. What is the expected
maximum worth of owning the option up to a future time 7?7 As the option
will be exercised at time ¢ if the stock price at the time is K or higher, the
expected value is E[maxo<;<7{P(t)— K} ], where 7 = max(z,0). To obtain
a further expression, note that for any u > 0, maxo<;<r{P(t)—K}* > wif and
only if maxo<;<r{P(t) — K} > u (why?). Also, for any nonnegative random
variable, X we have

E(X)=E {/OOO 1(u<x) du} = /OOO P(X > u) du.

Thus, we have, by (10.34),

We consider an example.

E L@i"T{P( ) — K}+] - /O Tp [O@%{P(t) K}t > u} du

:/ P[maX{P(t)K}>u]du
0
:/ P{maxP(t)>K+u}du
0 0<t<T
{ max B(t) > log(K + u)} du
= \/? / e " 2dy du
™ Jo log(K+u)/vVT

[ o

where &(-) is the cdf of N(0,1).
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Brownian motion obeys the following strong law of large numbers, whose
proof is left as an exercise (Exercise 10.34).

Theorem 10.14 (SLLN for Brownian motion). B(t)/t 2% 0 as t — co.
A deeper result is the law of the iterated logarithm. Let ¢(t) = /2t loglog .

Theorem 10.15 (LIL for Brownian motion). Lim sup,_, . B(t)/¢(t) =
a.s. and, by symmetry, liminf; . B(t)/¥(t) = —1 a.s.

Furthermore, Brownian motion is often associated with the limiting pro-
cess of a sequence of stochastic processes, just like Gaussian (or normal) distri-
bution, which often emerges as the limiting distribution of a sequence of ran-
dom variables. One of the fundamental results in this regard is the convergence
of empirical process (see Section 7.3). Let B(t),¢ > 0, be a Brownian motion.
The conditional stochastic process B(t),0 < ¢t < 1, given B(1) = 0 is called the
Brownian bridge (or tied-down Brownian motion). Another way of defining
the Brownian bridge is by the process U(t) = B(t)—tB(1),0 <t < 1. It is easy
to show that the Brownian bridge is a Gaussian process with mean 0 and co-
variances cov{U(s),U(t)} = s(1—t), s < t (Exercise 10.35). Let X1, Xa,... be
a sequence of independent random variables with the common distribution F'.
The empirical process is defined by (7.3); that is, v/n{F,(z)— F(z)}, where F,,
is the empirical d.f. defined by (7.1). As noted in Section 7.1, we may assume,
without loss of generality, that F' is the Uniform(0, 1) distribution and hence
consider U, (t) = /n{Gn(t) —t},0 <t <1, where G, (t) =n~ ' 31" | 1ei<p)
and &1, &, ... are independent Uniform(0, 1) random variables. It follows by
Theorem 7.4 that

sup |Un(t)] -% sup |U®)| (10.35)

0<t<1 0<t<1

as n — oo, where U(t) is the Brownian bridge. We consider a well-known
application of (10.35).

Example 10.10. One of the Kolmogorov—Smirnov statistics for testing
goodness-of-fit is defined as D,, = sup, |F,,(x) — Fy(z)|, where Fy is the hy-
pothesized distribution under (7.9). Suppose that Fy is continuous. Then we
have [see (7.13) and the subsequent arguments]

P(VAD, 3) = P{ sup |Un(t)] < A}

— P{ sup |U(¥)| <A}

0<t<1

= 1—22 I=1 exp(—252A2).
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The derivation of the last equation [i.e., (7.16)] can be found, for example, in
Durrett (1991, pp. 388-391).

Another well-known asymptotic theory in connection with the Brownian
motion is Donsker’s invariance principle (see Section 6.6.1). It states that
if X1, Xs,... are i.i.d. random variables with mean 0 and variance 1, S,, =
Z?:l Xl with So = 0, and

1

&n(t) Tn

{Stng + (0t — [nt]) Xjniia

([x] is the integer part of x), then &, 4, W as n — oo, where W(t) =
B(t),0 <t <1, and B(t),t > 0, is Brownian motion. An application of the
invariance principle was considered in Example 6.10. Below is another one.

Example 10.11. Let the X;’s be as above. Consider the functional ¢(z) =

fol x(t) dt, which is continuous on C, the space of continuous functions on [0, 1]

equipped with the uniform distance p of (6.63). It follows that ¢ (&) 4, (W)
as n — oo. Furthermore, it can be shown that

PY(&n) =n"3/? zn: Sy =n"%/?2 zn:(n +1—14)X;, (10.36)
k=1 =1
PW) = / " B(t)dt ~ N(0.1/3) (10.37)
0

(see the next section). Thus, the left side of (10.36) converges in distribution
to N(0,1/3). This result can also be established directly using the Lindeberg—
Feller theorem (the extended version following Theorem 6.11; Exercise 10.36).

Many applications of Brownian motion are made possible by the following
result known as Skorokhod’s representation theorem. Suppose that X is a
random variable with mean 0. We wish to find a stopping time 7 at which the

Brownian motion has the same distribution as X; that is, B(7) 4 X. Let us
first consider a simple case.

Example 10.12. If X has a two-point distribution on a and b, where a <
0 < b, B(7) can be constructed by using a continuous-time version of Wald’s
equation (see Theorem 10.9). The latter states that if 7 is a bounded stopping
time for the Brownian filtration, then E{B(7)} = 0 and E{B?*(1)} = E(r)
(e.g., Durrett 1991, p. 357). Define 7 = inf{t : B(t) = a or b}. It can be
shown that 7 is a stopping time for the Brownian filtration and 7 < co a.s.
(Exercise 10.37). By Wald’s equation, we have E{B(7 An)} = 0 for any fixed
n > 1. On the other hand, we have B(t An) = B(t) =a or b if 7 < n and
B(r An) = B(n) € (a,b) if 7 > n; so in any case, we have |B(T An)| < |a|V |b]
and B(t An) — B(1) as n — oo. It follows by the dominated convergence
theorem (Theorem 2.16) that
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0=E{B(r)} = aP{B(7) = a} + bP{B(7) = b}
(here we use the fact that 7 < co a.s.). Also, we have
1 =P{B(r) = a} + P{B(1) = b}.

On the other hand, the same equations are satisfied with B(7) replaced by
X; therefore, we must have P{B(7) = a} = P(X = a) and P{B(7) = b} =
P(X =b). It also follows that E(7) = E{B?(1)} = |a|b (verify this).

In general, we have the following.

Theorem 10.16 (Skorokhod’s representation). Let B(t),t > 0, be the
standard Brownian motion. (i) For any random variable X, there exists a
stopping time 7 for the Brownian filtration, which is a.s. finite, such that

B(7) 4x. (ii) If E(X) = 0 and E(X?) < oo, then 7 can be chosen such that
E(7) < 0.

Consider a sequence of independent random variables Xi, Xo,... with
mean 0 and finite variance. Let 71 be a stopping time with E(r) = E(X?)

such that B(ry) 4 X1. By the strong Markov property (above Theorem 10.13),
B(m +t) — B(m1),t > 0, is again a Brownian motion that is independent of
F(11). We then find another stopping time 72, independent of F(71), such

that E(r2) = E(X3) and B(m1 + 72) — B(71) 4 X2, and so on. In this way we
construct a sequence of stopping times 7;,i > 1, and let 7, = """ | 7; so that

B(T,, + Tnt1) — B(T)) 4 Xp+1 and is independent of F(T},), n > 1. It follows

that B(T,) £ S, = Y7, X, and E(T},) = 327, B(r;) = 7, E(X2). This

is a very useful representation. For example, suppose that X;,7 > 1, are i.i.d.
with E(X;) = 0 and E(X?) = 1. Then we have S, = > | X; = B(T,,). By
the LIL for Brownian motion (Theorem 10.15), we have

S?L
limsup ———==1 a.s.

n—oo /2nloglogn

This result was first proved by Strassen (1964; see Theorem 6.17).

10.6 Stochastic integrals and diffusions

The diffusion process is closely related to stochastic integral and differential
equations. In fact, we already have encountered one such integral in Example
10.11 of the previous section, where we considered the integral of Brownian
motion over the interval [0, 1] [see (10.37)]. This is understood as the integral
of the sample path of Brownian motion, which is continuous and therefore
integrable over any finite interval almost surely. Furthermore, the integral can
be computed as the limit
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1 n
.1 k—1
/O B(t) dt = nILH;OE;B< - > . (10.38)

Equation (10.38) is an example of what we call stochastic integrals. Here, the
integration is with respect to ¢ (i.e., the Lebesgue measure). There is another
kind of stochastic integrals, with respect to Brownian motion. To see this,
note that by integration by parts we can write the left side of (10.38) as

/lB(t) dt = B(1) - /ltdB(t). (10.39)
0 0

The integral on the right side, which is with respect to B(t), has to be well
defined because the one on the left side is. This is defined similarly as the
Riemann-Stieltjes integral (see §1.5.4.36), namely,

o= m 540 ) - (5}

=1

More generally, consider a stochastic process X (t) = X (t,w), where ¢ €
[0,00) and w € 2, (2, F, P) being the probability space. This means that
X (t) is measurable in the sense that {(w,t) : X (t,w) € B} € F x By ) for
every B € Bgr, where B; represents all of the Borel subsects of I, a finite
or infinite interval of the real line R. As in the previous section, we define
F(t),t > 0 as a nondecreasing family of o-fields, called filtration, in the sense
that F(s) € F(t) C F for any 0 < s < t. We say the process X(t) is
F(t)-adapted if X (¢) € F(t) [i.e., X(t) is F(t) measurable] for every ¢t > 0.
Furthermore, an F(t)-adapted process X (t) is progressively measurable if

{(w,s):5 <t,X(s,w) € B} € F(t) x Bp,0)

for any t > 0 and B € Bpr (see Appendix A.2). In the following we will
assume that F(t) is the Brownian filtration (see the previous section) and say
X (t), or simply X, is adapted, or progressively measurable, without having to
mention the filtration. The stochastic It6 integral, named after the Japanese
mathematician Kiyoshi Ito, with respect to Brownian motion over an interval
[0,7T] is defined as follows. If X is an elementary process in the sense that
there is a partition of [0,T],0 =tp0 < tn1 < - - < tn K, = T, such that X (¢)
does not change with ¢ over each subinterval [, x—1,tn %), 1 <k < K, then

T Ky
| X 4B = > X (i) (Blts) = Blbasn)). (1040
k=1

In general, let My be the class of progressively measurable processes X such
that P {fOT X2(t) dt < oo} = 1. Then any X € M7 can be approximated by
a sequence of elementary processes X,,,n > 1, such that
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/ {(X() — Xn(®)}2 dt =0

as n — oo. We therefore define the Ito intergral
T
= / X (t) dB(t) (10.41)
0

as the limit of convergence in probability of Zr(X,,), defined by (10.40), a;
n — oo. The It6 integral has the following nice properties. Let M2 be the class

of progressively measurable processes X such that E { fo X2( dt} < oo. It
is clear that ./\/12T is a subset of M.

Lemma 10.1. (i) For X € M2, we have E{Z(X)} = 0,

E{Z3(X)} =E {/OT X2(t) dt} ,

and E{Zr(X)|F(t)} = T,(X), 0 <t < T. (ii) For X,Y € M%, we have

B{Zr(X)Ir(Y)} = E {/ X(t dt}

Lemma 10.1 provides us a convenient way of computing the variances and
covariances of It6 integrals. As a simple example, we verify that the variance
of the integral in (10.37) is, indeed, equal to 1/3 [by the way, the value was
mistakenly stated as 1/2 in Durrett (1991, p. 367)].

Ezxample 10.13. Note that a Borel measurable function, h(t),t > 0, is a
special case of a stochastic process that is deterministic at each t. Therefore,
we can write (10.39) as

/OIB(t) dt = /OldB(t) - /OltdB(t)

= Ty(1) — Tu(1).

It follows that E{f0 t) dt} = E{Z1(1)} — E{Z1(¢)} = 0 and

2

E {/1 B(t) dt} =E{Z:(1)} = 2E{Z:()T1 (t)} + E{Z3(t)}
0

1 1 1 1
:/dt—2/tdt+/t2dt:—
0 0 0
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In fact, the exact distribution of the stochastic integral (10.41) can be
obtained, not only for a fixed T" but also for a stopping time 7 in the sense

that {7 <t} € F(t) for every ¢, as follows.

Lemma 10.2. Let X € M. If for some a > 0 we have

T
P / X2(t)ydt >ap =1,
0
then the stopping time

Tq = inf {t : /t X?(s) ds > a} (10.42)

is well defined (Exercise 10.38) and

/ X(t) dB(t) ~ N(0,a).

In particular it X(t) € Mg and X(¢t) # 0 ae. t € [0,T], then, with
a= fo X2(t) dt, we have 7, = T a.s. (why?). It follows by Lemma 10.2 that

/ " X () dB(#) ~ N(0,a) (10.43)

This is a very useful result, for example, in determining the limiting distribu-
tion of the result of Donsker’s invariance principle. We consider an example.

Ezxample 10.13 (continued). We now verify that the limiting distribution
in (10.37) is, indeed, N(0,1/3). This follows by writting

1 1
/O B(t) dt:/o (1—t) dB(t)

and (10.43) with X(t) =1 —t and T = 1. Here, a = [, (1 —)> dt = 1/3.

A stochastic process X (t),0 < ¢ < T, that is defined as the solution to the
stochastic integral equation

t
X(@0) =X+ [ plX(s)} ds
0

t
+/ o{X(s)} dB(s), 0<t<T, (10.44)

0
is called a (homogeneous) diffusion process, or diffusion, where pu(z), 02 (z),z €
R, are nonrandom functions called the trend and diffusion coefficients, respec-

tively. Equivalently, a diffusion X (t) is defined as the solution to the following
stochastic differential equation (SDE):
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AX(t) = p{X ()} dt + o{X ()} dB(t), X(0), 0<t<T. (10.45)

Here, X (0) specifies the initial state of the process. The diffusion is a special
case of the Itd process, defined as

dX(t) = p(t) dt + o(t) dB(t), (10.46)

where p(t) and o(t) are adapted processes to the Brownian filtration F(¢).
The following theorem is a special case of what is known as It6’s formula.

Theorem 10.17. Let X be an It6 process satisfying (10.46). For any twice
continuously differentiable function f, the process f(X) satisfies

LX) = FAXW) X () + 3 X W)}o%(0) di

= [FIX@0) + 37" (X ()0 (1)| dr
FFUX (D))o (t) dB(t). (10.47)

1t6’s formula may be regarded as the chain rule for change of variables
in stochastic calculus. 1t differs from the standard chain rule due to the ad-
ditional term involving the second derivative. For a derivation of It&’s for-
mula (in a more general form), see, for example, Arnold (1974, Section 5.5).
In particular, for the diffusion (10.45), which is a special case of (10.46)
with p(t) = p{X(#)} and o(t) = o{X ()}, it follows that f{X(¢)} is also
a diffusion satisfying (10.45) with trend and diffusion coefficients given by
F(@)pu(x)+(1/2) f"(z)o?(z) and { f'(x)o(z)}?, respectively. We consider some
examples.

Ezample 10.14 (Brownian motion). The standard Brownian motion re-
stricted to [0, 7] is a diffusion with p(z) = 0 and o?(z) = 1.

The next example gives an explanation why the process is called diffusion.

Ezample 10.15 (The heat equation). Let u(t, x) denote the temperature in
a rod at position x and time t. Then u(t, z) satisfies the heat equation

ou 10%u

It can be verified that for any continuous function f, the function

u(t,) = Blf{a + B))
L T e w2
- = [ twen{-E5 e o)



10.6 Stochastic integrals and diffusions 345

solves the heat equation (Exercise 10.39). Note that « + B(t) has the N(x,t)
distribution, whose pdf actually satisfies the heat equation (see Exercise
10.39). Furthermore, © + B(t),t > 0, is the Brownian motion with initial
state x; so, intuitively speaking, the expected functional value of the Brown-
nian motion initiated at x satisfies the heat equation. Now, according to the
previous example, the standard Brownian motion is a diffusion with u(xz) =0
and 02(x) = 1. If we assume that f is twice continuously differentiable, then
by Itd’s formula with X (¢) =  + B(t), we have

df{z + B(t)} = f'{x+ B(t)}dB(t) + %f”{x + B(t)} dt

or, in its integral form,
t
Ha+ B} = f(x) + / f'{z + B@®)} dB(1)

+% /Ot f"{x+ B(t)} dt. (10.50)

By taking expectations on both sides of (10.50) and applying Lemma 10.1(i),
we get (Exercise 10.39)

u(t,x) = E[f{z + B(t)}]
1

= 1@+ [ B+ BN @

1 [" 0%
= f(z)+ 3 ), 922 dt. (10.51)
Differentiating both sides of (10.51) with respect to t leads to the heat equation
(10.48). Of course, (10.48) can be verified directly (see Exercise 10.39), but
the point is to show a connection between diffusion processes and the heat
equation, which holds not only for this special case but in more general forms.
Going back to the diffusion SDE (10.45). We must show the existence and
uniqueness of a solution to the SDE. For this we need the following definition.
We say the SDE (10.45) has a weak solution if there exists a probability space
(£2, F, P), a family of nondecreasing o-fields F(t) C F,0 < ¢ < T, a Brownian
motion B(t),0 <t < T, and a continuous-path process X (t),0 <t < T, both
adapted to F(t),0 <t < T, such that

T
P ( / (LX)} + o> (X ()] dt < oo) =1
0

and (10.44) holds. The following result is proven in Durrett (1996, p. 210).

Theorem 10.18. Suppose that the function g is locally bounded, the
function o2 is continuous and positive, and there is A > 0 such that
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zp(z) +o?(x) < A1 +2?), z€R. (10.52)

Then the SDE (10.45) has a unique weak solution.

We now consider some limit theorems for stochastic integrals. For simplic-
ity, we consider the It6 integral

Y(t) = T,(X) = /OtX(s) dB(s), t>0, (10.53)

where the process X (t) has continuous and nonvanishing path. It follows that

7(t) = /Ot X?(s) ds (10.54)

is finite and positive for every t > 0, which is called the intrinsic time of Y (t).
Let 7o = inf{t : 7(¢t) > a} [see (10.42)]. It can be shown that W(a) = 0 if
a =0 and W(a) = Y(7,),a > 0, is a standard Brownian motion (Exercise
10.40). Therefore, by the SLLN of Brownian motion (Theorem 10.14), we have
Wi(a)/a =% 0 as a — oo, which implies

lim L0 =0 as. (10.55)

o (1)

Furthermore, by the LIL of Brownian motion (Theorem 10.15), we have

. Y (¢)
lim sup
t—oo  4/27(t) loglogT(t)

=1 as. (10.56)

Finally, we consider some limit theorems for diffusion processes. Let 7(a) =
inf{t > 0: X(¢t) = a} and 7(a,b) = inf{t > 7(a) : X(¢) = b}. The process
X(t),t > 0, is said to be recurrent if P{r(a,b) < oo} =1 for all a,b € R; it
is called positive recurrent if E{r(a,b)} < oo for all a,b € R. The following
results are proven in Kutoyants (2004, Section 1.2.1). We say the process
X has ergodic properties if there exists a distribution F' such that for any
measurable function A with finite first moment with respect to F', we have

P{;/O h{X(t)}dtﬂ/h(x) dF(x)} —1.

Theorem 10.19 (SLLN and CLT for diffusion process). Let X be a pro-
cess satisfying dX (t) = p{X(¢)} dt + o{X(¢)} dB(t), X(0) = xo, t > 0, and
suppose that it is positive recurrent. Then X has ergodic properties with the
density function of F' given by

o2 (@) exp[2 [y {p(w)/o*(w)} du]
Jooe 072 (W) expl2 [ {n(u)/o? ()} du] dy’

flz) = (10.57)
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Furthermore, for any measurable function g such that p? = [ ¢*(z) dF(z) <
oo, we have as T' — 00

% / G X (1)} dB(t) -5 N(0, ).

We conclude this section with a simple example.

Ezample 10.16. Consider the diffusion process dX(t) = —sign{X(t) —
pu} dt + o dB(t), Xo, t > 0, where sign(z) = —1if z < 0Oand 1 if 2z > 0
and p, o > 0 are unknown parameters. Then the process has ergodic proper-
ties with f(z|u) = e=2*=#I which does not depend on o (Exercise 10.41).

10.7 Case study: GARCH models and financial SDE

Historically, Brownian motion and diffusion were used to model physical pro-
cesses, such as the random motion of molecules from a region of higher concen-
tration to one of lower concentration (see Example 10.15), but later they had
found applications in many other areas. One such areas that was developed
relatively recently is theoretical finance. In 1973, Black and Scholes derived
the price of a call option under the assumption that the underlying stock
obeys a geometric Brownian motion (i.e., the logarithm of the price follows a
Brownian motion; Black and Scholes 1973). Since then, continuous-time mod-
els characterized by diffusion and SDE have taken the center stage of modern
financial theory. A continuous-time financial model typically assmes that a
security price X (¢t) obeys the following SDE:

AX(t) = X (t) dt + o: X (t) dB(t), 0<t<T, (10.58)

where B(t) is a standard Brownian motion; p; and o are called the mean
return and conditional volatility in finance. In particular, the Black—Scholes
model corresponds to (10.58) with u; = p and o, = o, which are unknown
parameters. It is clear that the latter is a special case of the diffusion pro-
cess defined in the previous section; that is, (10.45), where the trend and
diffusion coefficients are given by u(z) = pz and o?(z) = o222, In general,
(10.58) may be regarded as a more general form of diffusion, where y; and o7
are also called the drift in probability and diffusion variance in probability,
respectively. Considering (10.58), we can write this as

XYt) dX (t) = py dt + o0y dB(t), 0<t<T.

What this means is that the relative change of the price over time is due to
two factors and is expressed as the sum of them. The first is a mean chance
over time; the second is a random change over time that follows the rule of
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Brownian motion. It is important to note that we must talk about relative
change, not actual change, because the latter is likely to depend on how high,
or low, the price is at time t.

On the other hand, in reality, virtually all economic time series data are
recorded only at discrete intervals. For such a reason, empiricists have favored
discrete-time models. The most widely used discrete-time models are of au-
toregressive conditionally heteroscedastic (ARCH) type, first introduced by
Engle (1982). These models may be expressed, in general, as

Tk = Pk T Yk, Yk = Ok€k, (10.59)
02 = 02 (Y1, Yr—2 - - -, Ky ag, @), (10.60)

k=1,2,..., where ¢ is a sequence of independent N(0,1) random variables,
o? is the conditional variance of z, given the information at time k, py, cor-
responds to a drift which may depend on k, 0,3, and Tg_1,Tk_2,..., G iS &
vector of exogenous and lagged endogenous variables, and « is a vector of
parameters. In reality, z) represents the observation at the frequency (k/n)T,
where [0,T] is the observed time interval, n is the total number of obser-
vations, and h = T'/n is the length of the basic (or unit) time interval. In
particular, Engle’s (1982) model corresponds to (10.59) and (10.60) with

P
oF = g + Zajyi,j, (10.61)
j=1

where the a’s are nonnegative parameters. This is known as the ARCH(p)
model; the generalized ARCH, or GARCH model, of Bollerslev (1986) can be
expressed as (10.59) and (10.60) with

P a
or =ag+ Z Qo+ Z Ot Yr_j- (10.62)
i=1 =1

The latter model is denoted by GARCH(p, ¢). It is clear that the ARCH model
is similar to the MA model, and the GARCH model similar to the ARMA
model in time series (see Section 9.1). However, unlike in MA or ARMA
models, here the random quantities involved are nonnegative. The motivation
for GARCH is that the documented econometric studies show that financial
time series tend to be highly heteroskedastic. Such a heteroskedasticity is
characterized by the conditional variance, modeled as a function of conditional
variances and residuals in the past.

Until the early 1990s these two types of models—the contiuous-time mod-
els defined by the SDE and discrete-time GARCH models—had developed
very much independently with little attempt to reconcile each other. How-
ever, these models are used to describe and analyze the same financial data;
therefore, it would be reasonable to expect some kind of connection between
the two. More specifically, consider two processes, the first being the GARCH
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process and the second being the continuous-time process observed at the
same discrete-time points. Suppose that the time points are equally spaced.
What happens when the length of the time interval goes to zero or, equiv-
alently, the total number of observations, n, goes to infinity? Nelson (1990)
bridged a partial connection between the two processes by giving conditions
under which the GARCH process converges weakly to the diffusion process
that govern the discrete-time observations of the continuous-time process as
the length of the discrete time intervals goes to zero. Nelson derived the re-
sult by utilizing a general theory developed by Stroock and Varadhan (1979).
Suppose that for each h > 0, X}, 1, k > 0, are d-dimensional random variables
with the probability distribution P, and the Markovian property

Pr(Xh k1 € Bl Xno,-. o, Xnk) = Tk (Xnk, B) as. Py

for all Borel sets B of R? and k > 0. Define a continuous-time process
X5 (t),0 <t <T, as a step-function such that

X}L(t) = X},,7k;, kh<t< (k) + 1)h, 0<k< T/h

Then, under suitable regularity conditions, the process X}, (¢) converges weakly
as h — 0 to the process X (t) defined by the stochastic integral equation

X(t) = X(0) —|—/O p{X(s),s} ds
+/t o{X(s),s} dBD(s), 0<t<T, (10.63)
0

where B(@) (t),0 <t <T,is a standard d-dimensional Brownian motion that
is independent of X (0). Here, a d-dimensional Brownian motion is defined by
modifying assumption (iii) of the one-dimension Brownian motion (see Section
10.5) by B(D(t) ~ N(0,0%t1,;), where I, is the d-dimensional identity matrix,
and the standard d-dimensional Brownian motion has ¢ = 1. The equivalent
SDE to (10.63) is

dX (t) = p{X (t),t}dt + o{X (t),t}dBD(t), X(0), 0<t < T, (10.64)

which defines a more general form of diffusion process than (10.44) (why?).
The functions p(z,t) and o(z,t) and initial state X (0) are determined by the
following limits, whose existence is part of the regularity conditions:

lim sup ln (2, t) — p(z, t)]| =0,
h—0z1<R0<t<T

lim sup llan(z,t) — a(z,t)|| =0,
h=0|z|<R,0<t<T

and a(z,t) = o(z,t)o(x,t), where ||A|| = {tr(A’A)}'/2,
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1
pn(z,t) = - (Y — @) [/n) (2, dy),
h Jy-ali<1
1
ap(z,t) = = / (y—x)(y — x)’wh_y[t/h] (z,dy)
h Jy-a)<1

([t/h] denotes the largest integer < t/h), and X} o N X(0) ash — 0. It
should be noted that here the weak convergence is not merely in the sense of
convergence in distribution of X}, (¢) for each given ¢: The distribution of the
entire sample path of X,(t),0 < ¢ < T converges to the distribution of the
sample path of X (¢),0 <t < T, as h — 0. This is very similar to the weak
convergence in Donsker’s invariance principle (see Section 6.6.1).

Consider, for example, the MGARCH(1, 1) model, defined by

Tk = Ok€k,
logoi = ag +aylogor_| +asloger . (10.65)
Suppressing in the notation the dependence on n, we can rewrite (10.65) as
OL€EL
vn'

logak_ﬂ()+< ﬂl)logok 1—&—52_&,

ZE =

where &, = (log ez —cg)/c1, co = E(loge3), c1 = /var(loge?), and the 3’s are
new parameters. Define the bivariate process [Z,(t), 02 (t)],t € [0,1], as
kE k+1
Zn(t) = 2, 02(t) =02, t€ |~ .
()= 030 = Fprs te |20

Then, as n — oo (which is equivalent to h — 0), the bivariate process con-
verges in distribution to the bivariate diffusion process [X (t), o2(t)] satisfying

dX () = o(t) dBi (1),
dlogo?(t) = {Bo + Prloga®(t)} dt + B2 dBa(t),

€ [0,1], for the same parameters ;, j = 0, 1,2, where B;(t) and Bs(t) are
two independent standard Brownian motions.

Weak convergence is one way to study the connection between the discrete
and continuous-time models. On the other hand, Wang (2002) showed that
GARCH models and its diffusion limit are not asymptotically equivalent in
the sense of La Cam deficiency, unless the volatility o7 is deterministic, which
is considered a trivial case. Le Cam’s deficiency measure is for comparison of
two statistical experiments (Le Cam 1986; Le Cam and Yang 2000). Here, a
statistical experiment consists of a sample space {2, a o-field F, and a family
of distributions indexed by 6, a vector of parameters, say { Py, 6 € O}, where
O is the parameter space. Consider two statistical experiments
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&= (02, Fi,{P;p,0 € O}), i=1,2.

Let A denote an action space and L : © x A — [0,00) be a loss function.
Define [|L|| = sup{L(6,a) : € ©,a € A}. Let d; be a decision procedure for
the ith experiment and R;(d;, L, ) be the risk from using d; when L is the
loss function and @ is the true parameter vector, ¢ = 1,2. Le Cam’s deficiency
measure is defined as A(&1, &) = 6(E1,E2) V (€2, E1), where

0(&1,&2) = infsupsup sup |Ri(di1,L,0) — Ra(de, L, 0)|
di dy 9€O|L|=1

and §(&z, &) is defined likewise. Two sequences of experiments, &, 1 and &, 2,
where n denotes the sample size, are said to be asymptotically equivalent if
A(En1yEn2) — 0asn — oo. Wang (2002) considered the GARCH(1, 1) model
(which is found to be adequate in most applications) for the sake of simplicity.
He showed that the GARCH and diffusion experiments are not asymptotically
equivalent according to the above definition.

The problem was further investigated by Brown et al. (2003), who consid-
ered the MGARCH(1,1) process observed at “lower frequencies” (although
the authors believe their results can be extended to GARCH models in
general). Suppose that the diffusion process is observed at the time points
ty = (k/n)T,k =1,...,n. Thus, T/n is the length of the basic time interval
and ¢1 = n/T is the corresponding basic frequency. Let uj be the observed
diffusion process at time i, k = 1,...,n. Consider the MGARCH process

observed at time t;5,0 = 1,...,[n/s], where s is some positive integer. Then
¢s = n/(sT) is called a lower frequency if s > 1. Let 275 be the MGARCH
process observed at time ¢;5, [ = 1,...,[n/s]. Brown et al. (2003) considered

the MGARCH experiment with observations 5,1 < I < [n/s], and the dif-
fusion experiment with observations u;s,1 <1 < [n/s]. They showed that the
two experiments are asymptotically equivalent if n'/2/s — 0 as n — oc. For
example, s = n?/3 works; on the other hand, the result of Wang (2002) shows
that this is not the case for s = 1.

10.8 Exercises

10.1. This exercise is related to Example 10.1.

(i) Verify that the locations of the sequence of digits formed either by the
professor or by the student, as shown in Table 10.2, satisfy (10.1).

(ii) Show by induction that X, is a function of &1, . .., &, where k = X,,_1.

(iii) Show that the right side of (10.2) is (also) equal to 0.1.

(iv) In Table 10.3, if, instead, the student starts at a digit (among the first
10 digits) other than the 10th (which is a 4), will her chain end at the same
spot as the professor’s (which is the second to last 0)?

10.2. Show that (10.3) implies the Markov property (10.4).
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10.3. Show that the finite-dimensional distributions of a Markov chain X,
n =0,1,2,..., are determined by its transition probability p(-,-) and initial
distribution po(-).

10.4. Derive the Chapman—Kolmogorov identity (10.7).

10.5. Show that the process X,,, n > 1, in Example 10.2 is a Markov chain
with transition probability p(i,j) = a;—s, i,5 € S = {0, %1, ...}

10.6. This exercise is related to Example 10.1 (continued in Section 10.2).

(i) Show that the one- and two-step transition probabilities of the Markov
chain are given by (10.9) and (10.10), respectively. Also verify 3,5 p(é,j) = 1
and ;o p®)(i,j) = 1 foralli € S

(ii) Derive (10.11).

(iii) Show that (10.12) holds for any possible values j1, ..., js of T1,..., Ts,
respectively.

(iv) Show that is—10 < X (js) < is—1 on A, where A is defined in (10.12).

(v) Derive (10.14) using (10.13) and independence of X and Y. [Note that
the first inequality in (10.14) is obvious.]

10.7. Show that any two classes of states (see Section 10.2.1) are either
disjoint or identical.

10.8. Show that i < j implies d(i) = d(j).

10.9. Show that if ¢ is recurrent and ¢ < j, then j is recurrent.

10.10. In Example 10.2, if a_; = a1 = 0 but a_5 and ay are nonzero, what
states communicate? What if a; = 0 but a_; # 0?7

10.11. Show that in Example 10.2, the Markov chain is aperiodic if and
only if ag # 0. Also show that in the special case of simple random walk with
0<p<1,wehaved(i)=2foralliesS.

10.12. Derive the approximation (10.16) using Stirling’s approximation
(see Example 3.4).

10.13. Show that if state j is transient, then (10.18) holds for all 4. [Hint:
By the note following (10.18), the left side of (10.18) is equal to the expected
number of visits to j when the chain starts in i. If j is not accessible from
i, then the expected number of visits to j is zero when the chain starts in i;
otherwise, the chains makes k visits to 7 (k > 1) if and only if it makes its
first visit to j and then returns k — 1 times to j.]

10.14. Show that positive recurrency implies recurrency. Also show that
positive (null) recurrency is a class property.

10.15. Consider a Markov chain with states 0, 1,2, ... such that p(i,i+1) =
p; and p(i,i — 1) = 1 — p;, where py = 1. Find the necessary and sufficient
condition on the p;’s for the chain to be positive recurrent and determine its
limiting probabilities in the latter case.

10.16. This exercise is related to the birth and death chain of Example
10.4.

(i) Show that the chain is irreducible if p; > 0,4 >0, and ¢; > 0,7 > 1.

(ii) Show that the chain is aperiodic if r; > 0 for some 3.

(iii) Show that the chain has period 2 if r; = 0 for all i.
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(iv) Show that the simple random walk (see Example 10.2) with 0 < p < 1
is a special case of the birth and death chain that is irreducible but periodic
with period 2.

(v) Verify (10.20).

10.17. Consider a birth and death chain with two reflecting barriers (i.e.,
the state space is {0,1,...,1}); the transition probabilities are given as in
Example 104 for 1 <i <l —-1;g0=1r90=0,po=1; 7 =p; =0, ¢g = 1; and
p(i,7) = 0 otherwise.

(i) Show that the chain is irreducible if p; > 0 and ¢; > 0 for all 1 < ¢ <
[—1.

(ii) Show that the chain is aperiodic if r; > 0 for some 1 <7 <[ —1.

(iii) Determine the stationary distribution for the chain.

10.18. For the third definition of a Poisson process, derive the pdf of S,
the waiting time until the nth event. To what family of distribution does the
pdf belong?

10.19. Show that the right side of (10.23) converges to e~ (\t)*/x! for
z=0,1,....

10.20. Prove Theorem 10.5. [Hint: First derive an expression for P{t; <
Si <ti+hi,1 <i<n|N(t)=n}; thenlet h; — 0,1 <i<nl]

10.21. Derive (10.25) and (10.26). Also obtain the corresponding results
for a Poisson process using Theorem 10.5.

10.22. Two balanced dice are rolled 36 times. Each time the probabil-
ity of “double six” (i.e., six on each die) is 1/36. Consider this as a situa-
tion of the Poisson approximation to binomial. The binomial distribution is
Binomial(36,1/36); so the mean of the approximating Poisson distribution is
36 % (1/36) = 1. Compare the two probability distributions for k = 0, 1,2, 3,
where k is the total number of double sixes out of the 36 times.

10.23. Compare the distribution of a Poisson process N (t) with rate A = 1
with the approximating normal distribution. According to Theorem 10.4, we
have {N(t) — t}/Vt N N(0,1) as t — oo. Compare (the histogram of)
the distribution of {N(t) — t}/+/t with the standard normal distribution for
t =1,10,50. What do you conclude?

10.24. Give a proof of Theorem 10.7. [Hint: Note that Sy ) <t < Sy 415
then use the result of Theorem 10.6.]

10.25. Let U be a random variable that has the Uniform(0, 1) distribution.
Define &, = nly<p-1y, n > 1.

(i) Show that &, 2% 0 as n — oc.

(ii) Show that E(&,) = 1 for every n, and therefore does not converge to
E(0)=0asn — .

10.26. Show that the renewal function has the following expression:

m(t) = 3 Fu(t),

where F,(-) is the cdf of S,.
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10.27. Let N(t) be a renewal process. Show that N(t) 4+ 1 is a stopping
time with respect to the o-fields F,, = 0(X1,...,Xy,), n > 1 [see Section 8.2,
above (8.5), for the definition of a stopping time].

10.28. This exercise is related to the proof of Theorem 10.10.

(i) Verify (10.29).

(ii) Show that u; — —x as t — occ.

(iii) Derive (10.31).

10.29. Derive (10.33) by Fubini’s theorem (see Appendix A.2).

10.80. This exercise shows how to justify assumption (ii) given assumption
(i) of Brownian motion (see Section 10.5). Suppose that assumption (i) holds
such that E{B(t) — B(s)} = 0, E{B(t) — B(s)}?* < oo, and

nP{|B(t+1/n) — B(t)| > e} — 0

as n — oo. Use an appropriate CLT in Section 6.4 to argue that B(t) — B(s)
has a normal distribution with mean 0 and variance o2 (t — s).

10.31. In this exercise you are encouraged to give a proof of the reflection
principle of Brownian motion (Theorem 10.13).

(i) Show that if X, Y, and Z are random vectors such that (a) X and YV
are independent, (b) X and Z are independent, and (¢) Y and Z have the
same distribution, then (X,Y") and (X, Z) have the same distribution.

(ii) Let X = {B(t)}ogtg-,—, Y = {B(t +T) — B(T)}tzo, and Z = {B(T) —
B(t+7)}t>0. Use the strong Markov property of Brownian motion (see Section
10.5) and the result of (i) to show that (X,Y) and (X, Z) have the same
distribution. The reflection principle then follows.

10.82. Let B(t),t > 0, be a standard Brownian motion. Show that each of
the following is a standard Brownian motion:

(1) (Scaling relation) a=!B(a?t),t > 0, where a # 0 is fixed.

(2) (Time inversion) W (t) =0, t = 0 and tB(1/t), t > 0.

10.35. Let B(t),t > 0, be a Brownian motion. Show that B2(t) —t,t > 0,
is a continuous martingale in that for any s < ¢,

E{B*(t) — t|B(u),u < s} = B*(s) — s.

10.34. Prove the SLLN for Brownian motion (Theorem 10.14). [Hint: First,
show the sequence B(n)/n,n = 1,2,..., converges to zero almost surely as
n — oo; then show that B(t) does not oscillate too much between n and
n+1]

10.85. Show that the Brownian bridge U(¢),0 < ¢ < 1 (defined be-
low Theorem 10.15), is a Gaussian process with mean 0 and covariances
cov{U(s),U(t)} =s(1—1t), s <t

10.36. This exercise is associated with Example 10.11.

(i) Verify (10.36) and (10.37).

(ii) Show, by using Lindeberg—Feller’s theorem (Theorem 6.11; use the ex-
tended version following that theorem), that the right side of (10.36) converges
in distribution to N(0,1/3).
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10.37. Let B(t),t > 0, be Brownian motion and a < 0 < b. Define 7 =
inf{t : B(t) = a or b}.

(i) Show that 7 = inf{t : B(t) ¢ (a,b)}.

(ii) Show that 7 is a stopping time for the Brownian filtration.

(iii) Show that 7 < co a.s. [Hint: Use (10.34).]

10.38. Verify that 7, defined by (10.42) is a stopping time (whose definition
is given above Lemma 10.2).

10.39. This exercise is related to the heat equation (Example 10.15).

(i) Verify that the pdf of N(x,t),

)2
exp{—(yztx)}, —o0 <y < 00,

1
f(y’ t? m) \/2_7T't
satisfies the heat equation (10.48).

(ii) Verify that the function wu(t,x) defined by (10.49) satisfies the heat
equation.

(iii) Show, by taking expectations under the integral signs, that (10.50)
implies (10.51); then obtain the heat equation by taking the partial derivatives
with respect to ¢ on both sides of (10.51).

10.40. Show that the process W(a),a > 0, defined below (10.54) is a
Brownian motion (Hint: Use Lemmas 10.1 and 10.2).

10.41. Verify that for the diffusion process in Example 10.16, the density
function (10.57) reduces to e~ 21#=#l,
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Nonparametric Statistics

11.1 Introduction

This is the first of a series of five chapters on applications of large-sample tech-
niques in specific areas of statistics. Nonparametric statistics are becoming
increasingly popular in research and applications. Some of the earlier topics
include statistics based on ranks and orders, as discussed in Lehmann’s clas-
sical text Nonparametrics (Lehmann 1975). The area is expanding quickly to
include some modern topics such nonparametric curve estimation and func-
tional data analysis. A classical parametric model assumes that the obser-
vations Xi,..., X, are realizations of i.i.d. samples from a population dis-
tribution Fp, where 6 is a vector of unknown parameters. For example, the
normal distribution N(u,0?) has 6 = (u,02) and the binomial distribution
Binomial(n, p) has # = p. In contrast, a nonparametric model would not spec-
ify the form of the distribution, up to a number of unknown parameters such
as the above. Thus, the population distribution will be denoted by F' instead
of Fg.

It can be said that a nonparametric model is not making much of a model
assumption, if at all. For this reason, many nonparametric methods are based
on “common sense” instead of model assumptions (of course, it may be argued
that common sense is an assumption). For example, consider the following.

Ezample 11.1 (Permutation test). Suppose that m + n subjects are ran-
domly assigned to control and treatment groups so that there are m subjects
in the control group and n subjects in the treatment group. The treatment
group receives a treatment (e.g., a drag); the control group receives a placebo
(a placebo is a dummy or pretend treatment that is often used in controlled
experiments). Because the subjects are randomly assigned to the groups, it
may be assumed that the only population difference between the two groups
is the treatment. Let Xi,...,X,, and Y7,...,Y,, represent the observations
from the control and treatment groups, respectively. A parametric model for
assessing the treatment effect may be that the observations are independent

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2 11, © Springer Science+Business Media, LLC 2010
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such that X; ~ N(u1,02), 1 <i<m, and Y; ~ N(pz,0?), 1 <j <n. Under
this model, evidence of the treatment effect may be obtained by testing

H() LM = 2. (111)

A standard test statistic for the hypothesis (11.1) is the two-sample t-statistic
with pooled sample variance,
Y - X
. S (11.2)
spvm~t +n-1

where X and Y are the sample means defined by X = m~'> " X; and
Y =n~! Z;L:l Y, respectively, sf, is the pooled sample variance defined by

m—1 n—1 4
25Y7

p = m+n—2SX m+n—

and s% and s} are the sample variances defined by s% = (m—1)"2 31", (X;—
X)?and s3 = (n—1)"' 37" (Y; — Y)?, respectively. The idea is that under
(11.1), the t-statistic (11.2; has a t-distribution with m + n — 2 degrees of

freedom; therefore, the p-value for testing (11.1) agaist the alternative
Hi: o <po (11.3)

is the probability P(t,,4n—2 > t), where ¢, represents a random variable with
the t-distribution with v degrees of freedom, and ¢ is the observed ¢ of (11.2).
Clearly, this procedure makes (heavy) use of the parametric model assumption
(i-e., normality with equal population variance).

Now, consider a different strategy based on common sense: If the treatment
really makes no difference, then the same thing is expected to happen with
any assignment of n out the m + n subjects to the treatment group (and
the rest to the control group). Therefore, the observed difference Y — X is
equally likely to be equaled or exceeded for any such assigment. Suppose that
there are a total of k different assignments of n subjects to the treatment
that result in the difference in sample means (i.e., Y — X recomputed for
each reassignment of the observations to the control and treatment groups)
greater than or equal to the observed Y — X. Then the p-value for testing
the null hypothesis that there is no treatment effect against the alternative
that there is a positive treatment effect is k/ (m:") If m + n is is small, the
exact p-value can be obtained; otherwise, the following Monte Carlo method
is often used in practice. Combine the observations as Z;,i = 1,...,m + n,
where Z; = X;,1 <t <m,and Z; =Y;_,, m+ 1 <i <m+ n. Draw a large
number, say N, of random permutations of the labels 1,...,m + n. For each
permutation, assign the first m labels as control and last n labels as treatment,
and compute the difference between the sample means of the treatment and
control groups. More specifically, let the permutation be 7(1),...,m(m + n),
which is a rearrangement of 1,...,m + n. Then we compute
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m—+n m

1 1
Av== 3 Znty— — D Zn(i:

i=m+1 i=1

Suppose that out of the N permutations, [ have the value of A, greater
than or equal to A = Y — X. Then the p-value of the permutation test is
approximately equal to [/N.

The idea behind the Monte Carlo method is the law of large numbers.
Consider the space II of all different permutations of 1,...,m + n. On the
one hand, we have

p—Value = W

n
_ kxm!n!
B (m+") x m!n!

n

_ # of permutations with A, > A
N total # of permutations
=P(A, > A),

where the probability is with respect to the random permutation 7 € II. On
the other hand, let 7V, ... 7#(™) denote the random sample of permutations
drawn; we have, by the SLLN (see Section 6.3),

I 1 o
¥ - vl lawza
=1
2% P(A, > A)

as N — oo. Thus, the Monte Carlo method gives an approximate p-value.

The Monte Carlo method, or the law of large numbers, is one way to
obtain the approximate p-value. Another method that is often used is the
CLT—or more generally, the invariance principle—to obtain the asymptotic
distribution of the test statistics. This will be discussed in the sequel.

An apparent advantage of nonparametric methods is robustness. Intu-
itively, the more specific assumptions are made regarding a (parametric)
model, the more likely some of these assumptions are not going to hold in
practice. Therefore, by making less assumptions, one potentially makes the
method more robust against violations of (the parametric) model assump-
tions. However, there is a price that one is expected to pay. This happens
when the parametric assumptions actually hold. For example, in Example
11.1, what if the normality assumption is indeed valid? (Statisticians refer to
such a situation as that “sometimes, life is good.”) If the parametric assump-
tion is valid, but nevertheless not used, one has not fully utilized the available
information (which may come from both the data and the knowledge about
the distribution of the data). This may result in a loss of efficiency, which
is the price we pay. In Section 11.3 we study this problem in the case of
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Wilcoxon and other nonparametric testing procedures compared to the t-test
based on the normality assumption. Although it was believed at first that a
heavy price in loss of efficiency would have to be paid for the robustness, it
turns out, rather surprisingly, that the efficiencies of Wilcoxon tests, as well as
some other nonparametric tests, hold up quite well, even under the normality
assumption. On the other hand, these nonparametric tests have considerable
advantages in situations when the normality assumption fails.

11.2 Some classical nonparametric tests

Let us begin with (still) another proposal for the testing problem of Example
1.1. This time we rank the combined observations Xi,..., X,,,Y7,...,Y, in
increasing order (so the smallet observation receives the rank of 1, the second
smallest the rank of 2, and so on). For simplicity, assume that there are no
ties (if the underlying distributions are continuous, the probability of having
ties is zero). If S; < --- < S,, denote the ranks of the Y’s (among all the m+n
observations), define

Ws=51+-+ 5, (11.4)

called the rank-sum. The idea is that if the null hypothesis of no treatment
effect holds, the distribution of the rank-sum is something we can expect (i.e.,
determine); otherwise, if the rank-sum is much larger than what we expect, the
null hypothesis should be rejected. This procedure is called the two-sample
Wilcoxon test. The question then is: What do we expect? If m and n are
relatively small, the exact distribution of the rank-sum can be determined.
An alternative method, which is attractive when m and n are large, is based
on the following CLT. To make a formal statement, let X1, ..., X,, be ii.d.
with distribution F, Y7,...,Y, be i.i.d. with distribution G, and the X’s and
Y’s be independent. Suppose that both F' and G are continuous but otherwise
unknown. We are concerned with the hypothesis

Hy: F=G (11.5)

against a suitable alternative H;. It can be shown (Exercise 11.1) that under
the null hypothesis, we have

EW;) = %n(m—kn—kl), (11.6)
var(Ws) = %nm(qunJr 1). (11.7)

Furthermore, as m,n — oo,

Ws—n(m+n+1)/2 a
Vmn(m+n+1)/12 N@©,1). (11.8)




11.2 Some classical nonparametric tests 361

Therefore, in a large sample, we have the following approximation:

(11.9)

P(Ws<x)m@{ r—n(m+n+1)/2 }7

Vmn(m+n+1)/12

where @(+) is the cdf of N(0,1). It is found that for a moderate sample size,
the following finite-sample correction improves the approximation. The idea
is based on the fact that Wy is an integer. It follows that for any integer =,
W5 < z if and only if Wy < x + § for any ¢ € (0,1). Therefore, to be fair, 4 is
chosen as 1/2. This leads to

(11.10)

P(Ws<$)%¢{x+1/2_n(m+’n+1)/2}.

Vmn(m+n+1)/12

Table 11.1, taken from part of Table 1.1 of Lehmann (1975), shows the accu-
racy of the normal approximation for m = 3 and n = 6.

Table 11.1. Normal approximation to P(W;s < z)

z |6 7 8 9 10
Exact |.012 .024 .048 .083 .131
(11.9) |.010 .019 .035 .061 .098
(11.10)|.014 .026 .047 .078 .123

In connection with the two-sample Wilcoxon test, there is a Wilcoxon one-
sample test. Suppose that X1,..., X, arei.i.d. observations from a continuous
distribution that is symmetric about (. We are interested in testing Ho: ( =0
against Hy: ¢ > 0. The standard parametric test is the ¢-test, assuming that
F' is normal. The test statistic is given by

t X 11.11

v N

where s = (n — 1)7!'>" [ (X; — X)? is the sample variance. Alterna-
tively, we may consider the ranks of the absolute values of the observations,
| X1],. .., |Xn]- Let Ry < -+ < R, and S7 < --- < S, denote the ranks of
the absolute values of the negative and positive observations, respectively.
For example, if X7 = —5, Xo = 1, and X3 = 4, we have a = 1, b = 2,

R; = 3,51 =1, and S = 2. The one-sample Wilcoxon test, also known as
the Wilcoxon signed-rank test, rejects Hy if

Vi=S14+--+85,>c¢ (11.12)

where c is a critical value depending on the level of significance. Similar to
(11.6)—(11.8), it can be shown that
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E(V)) = in(nJrl), (11.13)
var(Vy) = in(n—&—l)(?n—ﬁ—l), (11.14)

Ve—n(n+1)/4 a4
Vn(n+1)(2n +1)/24 N(0,1) asn — o0 (11.15)

(Exercise 11.2). Still another alternative is the sign test. Let Nt denote the to-
tal number of positive observations. Then the null hypothesis is rejected if N,
exceeds some critical value. Note that under Hy, N1 has a Binomial(n,1/2)
distribution (why?), so the critical value can be determined exactly. Alterna-
tively, a large-sample critical value may be obtained via the CLT—mnamely,

2
= (N+ - g) 4 N(0,1) asn — oo (11.16)
(Exercise 11.3). The following example addresses an issue regarding some
(undesirable) practices of using these tests.

Ezxample 11.2. Tt is unfortunately not uncommon for researchers to apply
two or more tests to their data, each at level «, but to report only the outcome
of the most significant one, thus claiming more significance for their results
than is justified. A statistician following this practice could be accused of a
lack of honesty but could rejoin the community of trustworth statisticians by
stating the true significance level of this procedure. Consider, for example, the
following small dataset extracted from Table I of Forrester and Ury (1969):
—16,—-87,-5,0,8,—-90,0,0, —31, —12. The numbers are differences in tensile
strength between tape-closed and sutured wounds (tape minus suture) on 10
experimental rats measured after 10 days of healing. If one applies the ¢-test
to the data, it gives a t-statistic of —2.04, which corresponds to a (two-sided)
p-value of .072. If one uses the Wilcoxon signed-rank test, it leads to a sum
of ranks for the negative differences, 44, plus half of the sum of ranks for the
zero differences, 3 [this is an extended version of (11.12) to deal with the cases
with ties]. This gives a total of 47 and a p-value of .048. Finally, if the sign-test
is used, one has 6 negative signs out of a total of 7 after eliminating the ties
(again, this is an extended procedure of the sign-test when there are ties) and
thus a p-value of .125. Suppose that all three tests have been performed. An
investigator eager to get the result published might simply report the result of
the signed-rank test, which is (barely) significant at 5% level, while ignoring
those of the other tests. However, this may be misleading.

Jiang (1997b) derived sharp upper and lower bounds for the asymptotic
significance level of a testing procedure that rejects when the largest of several
standardized test statistics exceeds z,, the a-critical value of N (0, 1). To state
Jiang’s results, first note that when considering asymptotic significance levels,
one may replace s in the denominator of (11.1) by o, the population standard
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deviation (why?). Thus, we consider, without loss of generality,

_ 8- E(S)

. j=1,2,3, 11.17
var(S;) J ( )

5j
which are (11.11) with s replaced by o, the left side of (11.15), and the left side
of (11.16), respectively, where the expectations and variances are computed
under the null hypothesis. The S;’s are special cases of the U-statistics—to

be discussed in Section 11.5—and therefore have a joint asymptotic normal
distribution; that is,

Sy 0 I pw s
So | LN Lo], [pw 1 V32 (11.18)
Sy 0 ps V3/2 1

as n — oo (Exercise 11.4). It follows that the asymptotic significance level
of rejecting Hy when max(S1, S2,53) > 24 18 po = P{max(&1,£2,&3) > za},
where (£1,&2,&3)" has the distribution on the right side of (11.18). According
to Slepian’s inequality (see the end of Section 5.5), for fixed «, the probability
Do is a decreasing function of py, and pg, respectively. Thus, p, is bounded by
the probability when both py and ps are zero, which is

P{max(&1,&2,£3) > 2a,&1 > 2o} + P{max(&1,£2,83) > 2a, &1 < 2o}
=P(& > 2z4) + P(&1 < 20)P{max(&s,&3) > 24}
=a+ (1-a)p}

with p¥ = P{max(&2,&3) > 24}, where & and &3 are jointly bivariate normal
with means 0, variances 1, and correlation coefficient \/5/2 On the other
hand, obviously, we have p, > p}. Therefore, we have

Pa < Pa <po+ (1= pd)o (11.19)

It can be shown that both sides of the inequalities (11.19) are sharp in the
sense that there are distributions F' that are continuous and symmetric about
zero for which the left- or right-side equalities are either attained or ap-
proached with arbitrary closeness (Exercise 11.5).

Note that the probabilities p, and p}, depend on the underlying distri-
bution F' (hence, the bounds are for all the distributions F' that are contin-
uous and asymmetric about 0), but the dependence is only through py, and
ps. Jiang (2001) computed the analytic or numerical values of these corre-
lation coefficients for a number of distributions that are symmetric about
0, as shown in Table 11.2, where DE represents the Double Exponential
distribution, NM(e, 7) denotes a normal mixture distribution with the cdf
F(z) = (1 —€)®(x) + eP(z/7), and @ is the cdf of N(0,1). Given the values
of pw and ps, the corresponding actual asymptotic significance levels p, can
be calculated approximately. Again, see Table 11.2, which combines Table IT
and Table IV of Jiang (2001).
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Table 11.2. Exact or approximate values of py, and ps and corresponding
approximate asymptotic significance levels

F Pw ps a=0.05a=0.025a=001
Normal 3/m  \/2/m 0.079  0.041  0.017
DE (3v3)/(4v/2) 1/v/2 0.086  0.045  0.019
Rectangular 1 \/3/2 0071 0.037  0.015
ts 0.825 0.637 0.093  0.049  0.021
t1o 0.961 0.774 0.081  0.043  0.018
NM(0.5,2) 0.953 0.757 0.082  0.043  0.018
NM(0.1, 4) 0.850 0.656 0.091  0.048  0.021

NM(0.1, 10) 0.648 0.459  0.102 0.054 0.023

11.3 Asymptotic relative efficiency

This section is concerned with asymptotic comparisons of tests that include,
in particular, the comparison between a nonparametric and a parametric test.
We begin with a heuristic derivation of the asymptotic power of a test. Suppose
that we are interested in testing the hypothesis

HO 0= 90, (1120)

where 6 is a (vector-valued) parameter associated with F', the underlying
distribution of X, ..., X,. Consider a statistic, T, that has the asymptotic

property

VdTo — p0)} o N(0,1) (11.21)

as n — oo if 6 is the true parameter, where u(-) and 7(-) are some functions
and the latter is assumed to be positive and may depend on some additional
parameters. For example, in the problem of testing for the center of symmetry
discussed in the previous section, let the cdf under § be F(x — 0), where F
is continuous and symmetric about 0, and Ey and Py denote the expectation
and probability under §. The t-test is associated with 7,, = X and we have
E¢(T,) = 0. Furthermore, we have \/n(X — 6) - N(0,02), where 02 =
var(X;). Thus, (11.21) holds with () = 6 and 7(0) = 0. The latter depends
on an additional unknown parameter o but not on . For the sign test, let
T, = n~'N4. Then we have Ey(T},) = Py(X; > 0) = P(X; — 0 > —0) =
1— F(—0) = F(0). Similar to (11.16), we have, by the CLT,

V{T, — F(0)} = N[0, F(0){1 - F(6)}] (11.22)
iffis the true parameter Exermse 11.6). Thus, (11.21) holds with p(0) = F'(6)
and 7(0) = +/F(0){1 — }. Finally, for the Wilcoxon signed-rank test, we

con51der T, = K/(Q) It is shown in Section 11.5 that (11.21) holds with
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1(0) = E{F(Z, + 20)}, (11.23)
72(0) = 4 (E{F2(Z1 +20)} — [E{F(Z1 + 29)}]2) , (11.24)

where the expectations are taken with respect to Z; ~ F'. In particular, when
0 =0, (11.23) and (11.24) reduce to 1/2 and 1/3, respectively. In this case, it
is easy to show that (11.21) is equivalent to (11.15) (Exercise 11.7).

Now, consider a class of large-sample tests that reject Hy when

\/ﬁ{Tn —,u(@o)} > 5
7_(90) = Aoy

where z, is the a-critical value of N (0, 1). Note that, in (11.25), T}, , and 7
depend on the test. If we restrict the class to those satisfying (11.21), then all
of the tests have asymptotic significance level o and therefore are considered
equally good as far as the level of significance is concerned. The comparison of
these tests is then focused on the power of the tests, defined as the probability
of rejecting the null hypothesis when it is false. Suppose that we wish this
probability to be 8 when 6 # 6, is the true parameter. Then we have

(11.25)

p (x/ﬁ{T:(;O)u(H)} S 0T, () 0],

Thus, in view of (11.21), we would expect

7(0o) Vi{u(o) — (@)}
) [za + (00) ] R 2. (11.26)

The point is, for any 0 # 6y such that ©(0) > u(6p), as long as n is large
enough, one is expected to have the power of at least 3 of rejecting the null
hypothesis. This can be seen from (11.26): As n — oo, the left side of (11.26)
goes to —oo and therefore is < zg for large n, implying that the probability of
rejection is >4. On the other hand, a test is more efficient than another test
if it can achieve the same power with a smaller sample size. From (11.26), we
can solve for the required sample size, n, for achieving power of 3; that is,

n~ {ﬁr {zﬁ - TT(fHO)) za}Q. (11.27)

Suppose that test 1 and test 2 are being compared with corresponding sample
sizes n1 and ns; we thus have

“{ﬁ}{ﬂ%} JohE

By taking the ratio, we have
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no {M2(9) —Mz(eo)}Q {71(9) }2
ny L pa(0) —pa(6o) ) L 72(0)
2 -2
T1 (00) } { T2 (90) }
X <z — Za 28 — Zao . 11.28
-2} 2 (2
The expression depends on 6, the alternative. To come up with something
independent of the alternative, we let 8§ — 6. This means that we are focusing

on the ability of a test in detecting a small difference from 6. It follows, by
L’Héspital’s rule, that the right side of (11.28) converges to

2
€21 = <Z—2> , (11.29)

1

where ¢; = p(00)/7j(60), j = 1,2. The quantity [c| = [1(60)/7(00)| is called
the efficacy of the test T}, and ez is the asymptotic relative efficiency (ARE)
of test 2 with respect to test 1 for the reason given above.

Now, consider, once again, the problem of testing the center of symmetry
discussed in the previous section. Suppose that F' has a pdf, f. Then for the
t-test we have ¢ = 1/0; for the sign test, we have ¢ = 2f(0); and for the
Wilcoxon test, we have ¢ = 2v/3 [ f2(z) dz (Exercise 11.8). It follows that the
AREs for the comparison of each pair of these tests are given by

esr = 40 f2(0), (11.30)
2

ew,s = 120—2{/f2(z) dz} ; (11.31)

es,w = __IO (11.32)

3{) f2(2) d=}*

The values of the AREs depend on the underlying distribution F. For ex-
ample, when F is the N(0,02) distribution, we have esy = 2/ ~ 0.637
and ews = 3/m ~ 0.955. It is remarkable that even in this case, where the
t-test is supposed to be the standard and preferred strategy, the Wilcoxon
test is a serious competitor. On the other hand, when F is (very) different
from the normal distribution, the nonparametric tests may have substantial
advantages. We consider some examples.

FEzxample 11.5. Suppose that F' has the pdf

f(&) = 36(a) + 110l — u) + 6z + p)}, —00 <z <ox,

where ¢(-) is the pdf of N(0,1). This is a mixture of N(0,1) N(u,1) and
N(—p, 1) with probabilities 1/2, 1/4, and 1/4, respectively, where p > 0. It
can be shown that, in this case, we have

1 ,UJ2 2 2
-1+ &£ (1 —n /2) , 11.
€St o < + 9 > +e ( 33)
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which goes to 0o as 4 — oo (Exercise 11.10).

Ezample 11.4. Let F be the NM(e, 7) distribution considered near the end
of the previous section. It can be shown that, in this case,

ew s = §(1 —e+er?)
i
1- 212
x {(1 _ o2 yoyatloor E—} (11.34)
1+72 7

(Exercise 11.11). Thus, ew — 0o as T — oo for any fixed € > 0.

A more rigorous treatment of ARE can be given by considering a sequence
of alternatives 6,, that can be expressed as

Qn:90+%+0<%>, (11.35)

where A is a constant. Suppose that we have

\/H{Tn - U(en)}
7(6o)

where the underlying distribution for 7, has the parameter 6,,. More precisely,
what (11.36) means is the following. Consider a sequence of tests T,,,n > 1,
where T, is based on independent samples X, 1, ..., X, , from the distribu-
tion that has 6,, as the true parameter. Then (11.36) holds as n — oo. Note
that there is no need to change the denominator to 7(6,,) if we assume that
7(+) is continuous (why?). By the Taylor expansion, we have

 p ALt}

where ¢ = p/(60)/7(6) (verify this). Thus, in view of (11.36), we have

I ) T
nan;OP{ ~(60) > a}l D(zq — cA).

It follows that the asymptotic power is an increasing linear function of A if
1 (6p) > 0. The slope of the linear function depends on the test through c,
but the intercept does not depend on the test. This naturally leads to the
comparison of ¢ and hence the ARE. A remaining question is how to verify
(11.36). In some cases, this can be shown by applying the CLT for triangular
arrays of independent random variables (see Section 6.4). For example, in the
case of testing for the center of symmetry, let X,,;,1 <17 < n, be independent

—4, N(0,1), (11.36)

> 2o —cA+ 0(1)}
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observations with the cdf F(z — 6,,). Then for the t-test, we have T}, = X,, =
n~t3" | Xy and

g

where Y,; = (Xni — 0n)/ov/n. Tt is easy to verify that the Y,;,1 < i < n,
n > 1, satisfy the conditions given below (6.35)—namely7 that for each n,
Yoi,1 <i < n are independent, with E(Y,;) = 0, 02, = E(Y,2) = 1/n, and
s2 =31 02, =1, and that the Lindeberg condltlon (6.36) holds for every
e > 0. It follows that (11.36) holds (Exercise 11.12). In fact, in this case,
expression (11.35) is not needed and the result holds for any sequence 6,,. For

the sign test, we have T, =n~' Y | 1(x,,>0) and
2V/n{T, — F(0n)} = > _ Yo,

where Y, = (2/v/n){1(x,.>0) — F(fn)}. Once again, the conditions below

(6.35) can be verified (Exercise 11.13); hence, s; ! 3" | Y, —4, N(0,1). This
time, we do need (11.35) (or a weaker condition that ,, — 6y as n — o0) in
order to derive (11.36) because then s, = 2/F(0,){1 — F(6,)} — 1. For the
Wilcoxon signed-rank test, the verification of (11.36) is postponed to Section
11.5. We conclude this section with another example.

Ezample 11.5 (Two-sample Wilcoxon vs. t). Consider the two-sample tests
discussed at the beginning of Section 11.2. More specifically, we assume that
G(y) = F(y — 0), where F has a pdf, f. The null hypothesis (11.5) is then
equivalent to (11.20) with 8y = 0. Consider the two-sample ¢-test based on

t= {(% + %) S}f}_m Y - X),

where S2 = (m+n—2)""{37", (X; = X)*+ 37, (Y; = Y)?}. For simplicity,
we assume that both m,n — oo such that m/N — p and n/N — 1 — p,
where N = m + n is the total sample size and p € (0,1). This restriction can
be eliminated by using an argument of subsequences (see §1.5.1.6; also see

Exercise 11.14). Tt is easy to show that S? L, 42, where o2 is the variance
of F' (Exercise 11.14). Thus, without loss of generality, we consider a large-

sample version of ¢ by replacing S2 by o?. Let Ty = Y — X and consider
On = A/V'N +0(1/V/N). Then we have

VN(Tx — 0y)

3|'—‘
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-(3) s -ee- (3) -

7 =1
= fN — N,

where p = [z f(z) dz, the mean of F. Now, {5 and ny are two sequences of

random variables such that £ 4, N(0,02/p), NN 4, N{0,0%/(1—p)}, and
&n is independent of ny. It follows that

o) { L} ,
VN(Ty —0x) = N0, ) (11.37)
as N — oo, provided that 0y is the true 6 for Tx (Exercme 11.15). It follovvb
that (11.36) holds with n replaced by N, p(0) =6, and 7(0) = 0/\/ (1-
Following the same arguments, it can be shown that the asymptotlc power of
the two-sample t-test is 1 — @(z4 — ¢t A), where ¢, = \/p(1 — p)/o.
Next, we consider the two-sample Wilcoxon test. There is an alternative
expression that associate the statistic Wy of (11.4) to a U-statistic, to be
discussed in Section 11.5; that is,

1
Wy = Wxy + §n(n + 1), (11.38)

where Wxy = the number of pairs (4, j) for which X; < Y;. In other words,
Wxy = Z” 1(x,<v,) (Exercise 11.16). By applying the asymptotic theory of
U-statistics, it can be shown that (11.36) holds with T = Wxy /mn, u(0) =
Po(X <Y) = [{1-F(z—0)}f(z) dz, and 7(0) = im{N (N +1)/12mn}/? =
1/4/12p(1 — p). Tt follows that the asymptotic power of the two- 5ample

Wilcoxon test is 1 — $(zo — ewA), where ew = /12p(1 — p) [ f2(z) dz (Ex-
ercise 11.16). It turns out that the ARE for Wilcoxon versus ¢ is, once again,

wi = 1202 {/fZ(z) dz}2

[see (11.31)]. As shown, the ARE is approximately 0.955 when F is the stan-
dard normal distribution, which is supposed to be the ideal case for the t-test;
on the other hand, the ARE may be much in favor of the Wilcoxon test
when the underlying distribution is different from normal. A remaining ques-
tion then is: How do we know if F' is normal or not? This problem will be
discussed in the next section.

11.4 Goodness-of-fit tests

There are at least two reasons why the topic of this section should be part of
a chapter called Nonparametric Statistics. First, as discussed in the previous



370 11 Nonparametric Statistics

section, a parametric procedure such as the t-test is more powerful than a
nonparametric procedure if the parametric distributional assumption, such as
normality, holds. On the other hand, a nonparametric procedure is more ro-
bust in that it performs well under a wide range of distributions. Therefore, if
one is using a parametric procedure, it is important to confirm that the distri-
butional assumption holds; if it does, the more powerful parametric procedure
can be used; otherwise, a nonparametric or robust procedure may be required.
Such a confirmation may be carried out by a goodness-of-fit test. Second, the
tests considered in this section are based on the empirical distribution of the
data, which are closely related to the order statistics, one of the traditional
topics of nonparametric statistics [see, e.g., Chapter 7 of David and Nagaraja
(2003)]. Furthermore, it is seen below that, under suitable conditions, not only
the asymptotic but the exact null distributions of these test statistics do not
depend on the underlying distribution. In other words, the null distributions
are “distribution free.”
The null hypothesis that we wish to test is

H() . F= F(), (1139)

where F is the (unknown) underlying distribution and Fj is a distribution that
is either completely specified or specified up to some unknown parameters. We
will assume that both F' and Fj are continuous distributions and Fg has pdf fj.
Earlier in Section 2.6 we considered one class of goodness-of-fit tests—mnamely,
the x2-test that was initially proposed by Pearson (1900). Here, we consider
a different class of goodness-of-fit tests. Recall from Chapter 7 that one can
estimate the distribution F' by its empirical d.f., F,(z) = n~ >0 1(x,<a)-
Therefore, it is natural to consider the difference between F,, and Fy and to
use it as a springboard for goodness-of-fit tests. The first of such tests is the
Kolmogorov—Smirnov test that has been discussed earlier (e.g., Section 7.3).
The test is based on the Kolmogorov—Smirnov statistic

Dy, = sup |Fy(v) — Fo(x)],

where F,, is based on independent observations Xi, ..., X, from F. Another
test is the Cramér—von Mises test, based on the statistic

W, = [{Fula) - Fa@) fo(w) da
A third test is the Anderson—Darling test based on the statistic

{Fio) — Fo)?
= | B R@)

First, note that by a similar argument to the one below (7.13), it is seen
that the (exact) null distribution of the Kolmogorov—Smirnov test does not
depend on Fy. This distribution-free property makes the testing procedure

fo(z) dz
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convenient because all one needs is a single table that applies to any Fy (e.g.,
Owen 1962). The Cramér—von Mises and Anderson—Darling tests share the
same distributional-free property as the Kolmogorov—Smirnov test (see be-
low). Furthermore, asymptotic null distributions of these tests can be derived,
which are more convenient to use in large-sample situations. Earlier in Section
7.3, it was shown that the asymptotic null distribution of /nD,, is given by
the right side of (7.16). A similar technique can be used to derive the asymp-
totic null distributions of the other two tests. Note that both W,, and A,, are
special cases of a statistical functional of the form

W (F,) = /w{Fo(x)}{Fn(:z;) — Fy(z)}? dFy(x) (11.40)

for some function ¢ on [0, 1]. By Theorem 7.1, ¥(F,,) has the same distribution
as that with X; = F; (&), 1 < i < n, where &,...,&, are independent
Uniform(0, 1) random variables. Since F;'(¢&;) < z if and only if & < Fy(x)
(see Theorem 7.1), we have, with X; = F; (&), 1 < i < n, that F,(z) =
Gn{Fo(z)}, where G, (t) = n™' 31" | 1(¢,<t). Thus, by making a change of
variables, t = Fy(z), we obtain another expression for ¥ (F,):

W(F,) = /w{Fo(w)}[Gn{Fo(w)} — Fo(a)]* dFo(x)

-/ pO(Galt) — 1) at. (11.41)
0

The latter expression shows, in particular, that both Cramér—von Mises and
Anderson—Darling test statistics are distributional free in that their null dis-
tributions do not depend on Fpy. Further expressions can be obtained under
the null hypothesis. Let {1y < -+ < &) be the order statistics of £1,...,&,.
It can be shown (Exercise 11.17) that, under Hy, we have

n

W(F,) = %Z |:¢1{§(i)} - 22; 1¢0{§(i)}
=1

+/1(1 —t)24)(t) dt, (11.42)

where ¢ (t) = fot P(s) ds and ¢ (t) = fot s1(s) ds. In particular, we have
1 & 2i—11% 1
W, = & - S 11.4
n ; {5( ) 2n } + 12n? (11.43)

An

o % > _(2i = Dllog{€} +1og{l = Essn )] (11.44)
i=1

Equations (11.43) and (11.44) suggest a way to evaluate the critical val-
ues of the Cramér—von Mises and Anderson—Darling tests by a Monte Carlo
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method. Simply generate independent random variables &1, ...,&, from the
Uniform(0, 1) distribution and compute (11.43) and (11.44) for each Monte
Carlo sample. Over a large number of Monte Carlo samples, the 100(1 — «)th
percentile of the computed values for (11.43) and (11.44) then approximate
the critical values of the corresponding tests at the significance level « for any
a € (0,1) according to the law of large numbers.

The Monte Carlo method can provide approximations to the critical values
at any accuracy, but it can be computationally intensive if n is large. On the
other hand, when n is large, asymptotic distributions can be used to obtain the
critical values. By using large-sample techniques of the empirical distribution
discussed in Section 7.3, we can derive the asymptotic null distribution of
n¥(F,) from the Doob-Donsker theorem (Theorem 7.4). By (11.41), we have

n@(Fn):/Olqp(t)Ug(t) dt = h(U,), (11.45)

where Uy, (t) = /n{G,(t) — t} and h is the functional defined by h(G) =
fot Y(t)G?(t) dt for any G € D, the space of all functions on [0, 1] that are
right-continuous and possess left-limit at each point. Recall that D is equipped

with the uniform metric | - || [see (7.7)]. By Theorem 7.4, we have U, LU
as n — oo, where U is the Brownian bridge. Thus, we have, as n — oo,

nW(F,) -5 hU) = / 11/;(t)U2(t) dt, (11.46)
0

provided that one can show the continuity of the functional h on (D, ||-||). For
the Cramér—von Mises test, the verification of continuity is left as an exercise
(Exercise 11.18). However, this approach encounters some difficulties for the
Anderson—Darling test due to the fact that the function 1/¢(1 — ¢) is not
continuous at t = 0 or 1. Nevertheless, it can be shown that (11.46) remains
valid (e.g., Rosenblatt 1952). For the Cramér—von Mises test, the right side

of (11.46) is w? = fol U2(t)dt. Smirnov (1936) showed that

P(w? < )
1 & _ (25)%n? . 1/2
=1-=> (—1)“1/ u! ( VU > e "% du (11.47)
i = (2§—1)272 smﬂ

for > 0. Smirnov obtained (11.47) by inverting the characteristic function
(cf) of w?, which is given by

i 1/2
cw(t):< V2it ) , (11.48)

sin v/2it

where ¢ = y/—1. For the Anderson—Darling test, the corresponding cf is
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I]:{ j4f1)}_4/2, (11.49)

where i = yv/—1. The expression for the cdf is more complicated and therefore
omitted (see Anderson and Darling 1954).

11.5 U-statistics

We mentioned a few times that the asymptotic null distributions of the
Wilcoxon one- and two-sample tests are normal. These results are not directly
implied by the CLT for sum of independent random variables as discussed in
Chapter 6. To see this, note that, for example, the statistic V5 for the Wilcoxon
signed-rank test has the following alternative expression:

Vi=S+W
= Zl(x >0) + Z Lix,+x;>0) (11.50)

1<i<j<n

(Exercise 11.19). The first summation, S, is a sum of i.i.d. random variables.
However, the second double summation, W, which is actually the dominant
factor for Vi in terms of the order, is not a sum of independent random
variables. Such a statistic can be characterized more generally as follows.

Let X1,...,X, be independent observations from the same distribution
with cdf F. A statistic of the following type is called a U-statistic:

U::(")l Yoo e, X)), (11.51)

m . .
1<i1 <. <im <n

where ¢: R™ — R is a symmetric function of m variables, known as the kernel
of the U-statistic, and the summation is over all possible indexes i1, ..., im
such that 1 <i; < --+ < i, < n. Note that the U-statistic depends on the
sample size n and therefore may be denoted by U,,. However, in the statistics
literatute, such a dependence on the sample size is often suppressed in the
notation. This signifies a difference between probability theory and statistics,
a transition that we have already been making since the beginning of this
chapter. We hope the reader will get used to this kind of changes. A complete
notation can make the concept clear, such as in probability theory where the
subscript n is always used, but could also limit understanding of the concept,
in that a good reader should be able to see beyond the notation. It is easy
to see that the U-statistic (11.51) is an unbiased estimator of the following
parameter, viewed as a statistical functional (see Section 7.2):

_ /.../¢(x1,...,mm) dF(z1) -+ dF(zp), (11.52)
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provided that the (multidimensional) integral is finite. Many of the well-known
statistics are U-statistics. Below are some examples.

Ezample 11.6 (Sample mean). U = n~'>"" | X;, m = 1, ¢(z) = z, and
O(F) =p=E(X1) = [z dF(z).

Ezample 11.7 (Sample variance). It can be shown that

n n —1 o N2
- i - ;(Xi —X)? = (2> > w (11.53)

1<i<j<n

so it is a U-statistic with m = 2, ¢(z1,22) = (21 — 22)?/2, and O(F) =
var(X1) = [(z — p)? dF(z), where p is given above (Exercise 11.20).

Ezample 11.8 (One-sample Wilcoxon statistic). Consider

-1
n
U= <2> E 1(X1;+Xj>0)a
1<i<j<n

which corresponds to the second term on the right side of (11.50). Then we
have m = 2, ¢(z1,22) = 1(z, 42,50y, and 0(F) = P(X; + X3 > 0).

Example 11.9 (Gini’s mean difference). This is defined by

-1
n
U: <2> Z |Xi—Xj|;

1<i<j<n
som =2, §(z1,22) = |z1 — 22|, and (F) = E(|X1 — Xz]).
Example 11.10. Consider the estimation of p2, where p is as in Example

11.6. An obvious estimator is X2, although this is not an unbiased estimator
(why and what is the bias?). An unbiased estimator is given by the U-statistic

U:(Z)l Y XX,

1<i<j<n
with m = 2, ¢(z1, 22) = 2172, and O(F) = E(X; X2) = p2.

Our main focus is the asymototic distribution of U-statistics. In this re-
gard, a nice representation, discovered by Hoeffding (1961), is very useful. To
introduce the representation, let us first define the following, known as the
canonical functions of U-statistics. Let

Qsc(wla"',IC) = E{gb(mla"'aI67XC+17~~~aXm)}
= B{o(X1,..., Xm)| X1 = 21,..., Xe = 2.}, (11.54)
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c=0,1,...,m, where the expectation is taken with respect to X¢.4+1,..., Xm
and when ¢ = 0, this means E{¢(X1,..., X))} = 0(F). Write § = 6(F) for
notation simplicity. Note that E{¢.(X1,...,X.)} = 0 for every 0 < ¢ < m.
We then centralize the ¢’s by letting ¢ = ¢ — 0 and ¢, = ¢ — 0, 1 < ¢ < m.
The canonical functions are defined recursively by

gi(z1) = ¢1(x1),

92(x1,72) = ¢a(w1,72) — {g1(21) + g1(z2)},

3
g3(w1, w2, m3) = ba(wr, wa,w3) = gr(wi) — Y galwi,a;),
i=1

1<i<j<3

(1 ) = flar, o) = Y ga(a) —

i1=1

- > Gm1(Tiy, T, ). (11.55)

1<i1 <+ <im—-1<mMm

The canonical functions are clearly symmetric in their arguments and satisfy
the following property known as complete degeneracy (Exercise 11.21):

E{gc(z1,...,2c-1,Xc)} =0, 1 <c<m. (11.56)
We now express the U-statistics in terms of their canonical functions.

Theorem 11.1 (Hoeffding representation). The U-statistic (11.51) can be
expressed as

U=0+ i (?) (2)15 (11.57)

where Spe =21 o cian 9e(Xiys -5 Xi).

The first integer r such that g, # 0 is called the rank of the U-statistic.
Thus, a U-statistic can be expressed as

U=6+% (T) Une. (11.58)

where r is the rank of the U-statistic and
!
Upe = (C> | Y ge(Xiy, . X))
1<ip < <i.<n

is the U-statistic with kernal g., r < ¢ < m. Note that S,., 1 < ¢ < m, satisfy
E(Sn.) = 0 and the following nice orthogonality property:
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n
E(SnCSnd) = ( >5cl(c_d), (11.59)
c

where §. = E{¢g?(X1,...,X.)}, provided that
E{¢*(X1,..., Xm)} < o0 (11.60)

(Exercise 11.22). Furthermore, (11.57) leads to a martingale representation of
U-statistics. Let F, = 0(X71,...,Xk). Then we have S,,. € F,, and

E(Sne|Fx) = Ske, ¢<k<m (11.61)

(Exercise 11.23). Equation (11.61) shows that Sy, F,,,n > ¢, is a martingale
for every 1 < ¢ < m. Therefore, U = U,, F,,, n > m is a martingale. An
alternative expression is in terms of martingale differences; that is,

U=0+> &, (11.62)
k=1

where & = >0t () (Z)fl(Skc — Sk—1c), Fr, k > 1, is a sequence of mar-
tingale differences (Exercise 11.23). With expression (11.62), it is certainly
feasible to establish a full array of limit theorems for U-statistics using the
martingale limit theory (see Chapter 8). However, here we are concerned with

asymptotic distribution of U-statistics for which (11.60) holds and
o? = var{¢1(X1)} > 0. (11.63)

Under these conditions, the asymptotic distribution can be derived using a
much simpler argument of CLT for sums of independent random variables (see
Chapter 6). To see this, note that by (11.57), we can write

m n
U—60= gz;gl(xi)Jar, (11.64)

where R, is the remaining term. By (11.59), we have

R(R2) =Y (’”)(”)6

c=2

where 6, < 00, 2 < ¢ < m. It follows that nE(R2) — 0; hence, v/nR, — 0
as n — o0o. We now apply the CLT for sum of i.i.d. random variables and
Slutsky’s theorem (Theorem 2.13) to (11.64) to conclude that

m

Vn(U —0) = 7291(Xi)+0p(1)

n

4, N(0,m202). (11.65)
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The same argument can be used to derive the asymptotic joint distribution
of several U-statistics. Consider two U-statistics:

-1
n
uWw = <a> > WXy, X,

1<i; < <ig <0

-1
n
U® = (b> > (X, Xy

1< < <ip<n
Recall notation (11.54), so that we have
oM (21, ... xe) = B{oW (21, ..., 20, Xev1, ..., Xa)},
qﬁ&z)(ml, ceyXg) = E{¢3(2)(9017 cos Xy X1y, Xp) }

Define o.q = cov{gi)gl)(Xl, X)), gb((f) (X1,...,X4)}. Then we have the fol-
lowing formula for the covariance between U") and U®).

Theorem 11.2. For any a < b we have

cor{UD, U@ = (Z) - 2&: (i’) (Z B i) Oee. (11.66)

c=1

See, for example, Lee (1990) for a derivation of (11.66). Two immediate
consequences of Theorem 11.2 are

var(U) = (:) - i (Z‘) (’T‘n_”z) o2, (11.67)

c=1
where 02 = 0. = var{¢.(X1,...,X.)}, and
neov{UW, UP} — aboy, (11.68)

as n — oo (Exercise 11.24).
In the derivations below we allow the distribution of Xi,...,X, to be
dependent on n (i.e., F = F,). Consider the U-statistics

-1
) = < ”) 3 oD (Xiys. oy Xiny)s  (11.69)
Ml i< e

1 < j < s. We assume that (i) max; <;<s var{¢)(Xy,. .., X)) are bounded
(note that the variances now depend on n; so merely finiteness of the variances
is not sufficient); (ii) as n — oo,

cov{e?(X1), o (X1)} — o(j, k), 1<jk<s, (11.70)
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and X' = [m[jlm[k]o(j, k)]1<jk<s is positive definite; and (iii)
(4) 2 .
[{g (Xl)} 1(|g§j)(xl)‘>€\/ﬁ)} — 0, 1<j5<s, (11'71)

as n — oo for every € > 0, where ggj) is g1 with m = m[j] and ¢ = ¢U).

Theorem 11.3. Under assumptions (i)—(iii), we have that as n — oo,

U — g,
NG : 4 N0, 3), (11.72)
U — g,
where 9j :E{(ﬁ(ﬁ()(l7 ’m,]])} 1<] <s.

To show (11.72), note that by Theorem 2.14, this is equivalent to that, for
every A = (\j)1<j<s € R®, we have
Ut — 6,
Nvn : L N0, X ZN). (11.73)
U — 6,

To show (11.73), note that by (11.64), we can write the left side as

\/ﬁi/\j{U(j)—Hj}Z\/ﬁi{ T[LJ Zgﬂ) +>\Rna}
= >0 S Al () + Y AR

j=1
=1+ I

By assumption (i) and the argument following (11.64), it can be shown that
E(I2) — 0 [make sure that assumption (i) is sufficient for this argument].
Thus, it remains to show that I3 converges in distribution to the right side of
(11.73) (and then apply Slutsky’s theorem). To this end, we write

Z)\ m (J) z)~

Then for each n>1, &y, 1 <1 <mn, are independent with E(fm) =0, and by
(11.70), E(&2 )—n‘l{)\’Z)\+ o(1 )} (verify this); hence, s2 = Y7 | E(£2,) =
N EXA+o(1). By the CLT for triangular arrays of mdependent random Varlables
(see Section 6.4), to show that s,'> " | & 4, N(0,1) or, equivalently,
(NXN) 2L N N(0,1), we need to verify the Lindeberg condition (6.36)
(with 7,, = n and X replaced by ) or, equivalently,
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_ZE Z)\jm[j]ggj)(xi) Lienil>e)| — 0O (11.74)
, =

for every € > 0. The left side of (11.74) is equal to

2

E ka NX1) ¢ Yemrso | <59 B0

j=1

where n; = A\jm[j]g; (@ )(X 1), using, for example, the Cauchy—Schwarz inequal-
ity. Furthermore, it is easy to see that |£,1]| > € implies |ng| > €/n/s for some
1 < k < S3 hence, 1(‘6n1|>5) < 22:1 1(|77k\>€\/5/8)' It follows that

S

the left side of (11.74) <'s Z E{n?l(mkbe\/ﬁ/s)}.
k=1

Now, use the inequality
?1ysa) < 2 1asa) + ¥ 1 (y>a); (11.75)

which holds for any (nonnegative) numbers z, y, and a (Exercise 11.25), to
conclude that the left side of (11.74) is bounded by

2 2
s [E{’?ﬂ(mbeﬁ/s)}+E{nk1<\nk\>eﬁ/s>}]

j,k=1
=25 ZE{”J1(|m|>ff/e)}
2 2 (9)
o )20)\ [ ()} (lg if’(xl>\>eﬁ/s|xj|m[j1>}’

which converges to zero by assumption (iii).

Now, let us revisit the problem of testing for the center of symmetry dis-
cussed in Sections 11.2 and 11.3. For simplicity, suppose that the underlying
distribution of Xy,...,X,, is F(x — 6,), where F' is a continuous cdf with
a finite first moment, and 6, has the expression (11.35) with 6 = 0. Let
oW (z) =z, 8@ (2,y) = Lzty>0), and ¢ (z) = 1(,~0). Then we have

g — -1 Z¢(1) _ X,

=1

—1
ve=(3) X otx

1<i<j<n
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-1
n
= <2) Z Lxitx;>0)5
1<i<j<n
U®d = p-1 Z¢(3) (X)) =n"" Z 1(x,>0)-
i=1 i=1

Furthermore, we have §; = E{¢(1)(X;)} = 6, (excuse us for a light abuse
of the notation), 6 = E{¢® (X1, X2)} = E{F(Z + 20,)}, where Z; has
the cdf F, and 03 = F(6,,). Let us verify (11.70) for j = 1 and k¥ = 2 and
leave the rest of the verifications to an exercise (Exercise 11.26). We have
cov{pM(X1), 6 (X1)} = cov{ X1, F(X1 + 0,)} = E{Z,F(Z1 + 20,,)}. Since
F is continuous, we see by dominated convergence theorem (Theorem 2.16)
that the covariance converges to E(Z1F(Z1)} as n — oco. Thus, assumption
(ii) holds with X being the covariance matrix with 6,, = 0. Next, we verify
(11.71) for j = 2 and leave the rest to an exercise (Exercise 11.26). Note
that g@(Xl) = F(X1+80,) —E{F(Z1+26,)}, which is bounded in absolute
value by 1. Thus, the left side of (11.71) (with j = 2) is zero for sufficiently
large n. It follows that assumption (iii) holds. Therefore, our earlier claims
(in Sections 11.2 and 11.3) regarding the (joint) asymptotic distributions of
these statistics are justified.

We conclude this section with a brief discussion on two-sample U-statistics.
Let Xq,...,X,, and Y7,...,Y,, be independent samples from F' and G, respec-
tively. A two-sample U-statistic with kernel ¢ is defined as

1 1
U(i;) <Z> Z¢(Xi1»---,Xia,le,...,ij), (11.76)

where the summation is over all indexes 1 < i1 < --- <i, <mand 1< j; <
-+« < jp < n. Similar to (11.67) and (11.68), we have

=0-() 6 ZR OGO o

where 0.4 is the covariance between ¢(X1,...,X,, Y1,...,Y;) and
¢(X1,...,XC,Xé+1,...,X(;,Yl,...,Yd,Yé_i_l,...,Yg),

in which the X’s, X's and Y’s, Y's are independently distributed as F' and G,
respectively. Here, we assume that all of the o.4 are finite, which is equivalent
to og < oo (why?). In particular, if m,n — oo such that m/N — p and
n/N — 1 — p for some p € [0, 1], where N = m + n, then
2 2
N var(U) — a—alo + b
p I—p

g01- (1178)

For simplicity, we now focus on the special case a = b = 1. For a general
treatment of the subject, see, for example, Koroljuk and Borovskich (1994).
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The following theorem states the asymptotic distribution of the two-sample
U-statistic when 019 and oy are positive. Again, for simplicity, we assume
that F' and G do not depend on m and n; extension to the case where the
distributions depend on the sample sizes can be made along the same lines as
for the one-sample case (see Theorem 11.3).

Theorem 11.4. If 091 < oo and o¢1, 019 > 0, then
U-06 d
_—

N(0,1), 11.79
var(U) ©0.1) ( )

where 0 = E{¢(X1,Y1)}.

We give an outline of the proof and leave the details to an exercise (Exercise
11.27; also see Lehmann 1999, pp. 378-380). The basic idea is similar to the
one-sample case. First, consider a special case in which the limits above (11.78)
hold for some p € [0, 1]. We find a first-order approximation as follows. Write

(n = VN(U —6) and

W i{¢10<Xi> 0+ @% é{%@) —0)
= \/?UNJ + \/gnN,z,

where ¢10(x) = E{¢(z,Y)} and ¢01(y) = E{é(X,y)}. It can be shown that
both var(¢y) and cov(¢n, (i) converge to the right side of (11.78) (with a =
b=1), so that E({x — (x)? = var((w) — 2cov(Cn, Cx) + var(¢y) — 0. On the
other hand, by CLT for the sum of independent random variables, we have
1IN, < N(0,010), N2 4, N(0,001), and (n,1 and (n,2 are independent. It
then follows, by (11.78) (with @ = b = 1), that (11.79) holds under the limiting
process m/N — p € [0, 1]. However, note that the limiting distribution does
not depend on p. That (11.79) holds without this restriction follows by the
argument of subsequences (see §1.5.1.6).

As a special case, consider the two-sample Wilcoxon test, which is closely
related to the statistic Wy in (11.38). Here, we have

i=1 j=1
where ¢(x,y) = 1(z<y). It is easy to verify that
a0 = B{G*(X1)} — [E{G(X1)}]%,
oo1 = B{F?(Y1)} — [E{F(1)}]%, (11.80)

where X7 and Y; are independent and distributed as F' and G, respectively.
Since both F' and G are continuous, 019 and gy are positive. Furthermore, it
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is obvious that 017 < co. Thus, the assumptions of Theorem 11.4 are satisfied.
In particular, under the null hypothesis F' = G, we have 019 = 0g1 = 1/12
(Exercise 11.28).

11.6 Density estimation

In a way, nonparametric estimation problems are extensions of parametric es-
timation problems, but the nature of the former is quite different from the lat-
ter. Consider, for example, the situation of i.i.d. observations, say, X1, ..., X,.
In a parametric problem we assume that the distribution of X; is Fy, which
is fully specified up to the parameter (vector) 6; so the problem is essentially
the estimation of #. In a nonparametric problem, the distribution is entirely
unknown (with, perhaps, some restrictions on general properties; see below)
and therefore is denoted by F. In Chapter 7 we considered estimation of F' in
terms of its cdf. In this section, we consider the estimation of F' in terms of
its pdf, f. The pdf has the advantage of providing a visually more informative
representation of the underlying distribution. For example, the histogram of-
ten gives a rough idea about the shape of the distribution. In fact, according
to Scott (1992, p. 125), the latter “stood as the only nonparametric density
estimator until the 1950s.” For such a reason, our discussion will begin with
the histograms.

Although the histograms are extensively used, it is not that often that a
mathematical definition is needed. One way to define it is via the empirical
d.f. Note that f is the derivative of F'; so it can be expressed as f(z) =
limy, .o h"Y{F(z+h) — F(z)} or

() :hhi% F(x+h)2—hF(x—h)

(11.81)

The latter expression has the advantage of faster convergence. In fact, if F' is
twice continuously differentiable at z, then we have

F(z+h) — F(x)
h
F(z+h)— F(z — h)
2h

— f(z) = O(h),

— f(z) = o(h) (11.82)

(Exercise 11.29). Expression (11.81) also appears to be more “fair,” or “bal-
anced” than the previous expression. Because the empirical d.f., 13‘, is an
estimator of F, it is natural to consider (11.81) with F' replaced by F'. How-
ever, one cannot do so because then this limit is either zero or co (Exercise
11.29). So at some point one has to stop; in other words, h cannot get too
close to zero. If the latter is fixed, it is called the bin width, or bandwidth. We
can then write the estimator of f as
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s« Fla+h)—F(x—h)
1 n
=57 > La—hex,<a+n) (with probability 1) (11.83)
=1

(Exercise 11.29). Note that the summation in (11.83) has a Binomial(n, p)
distribution with p = F(z + h) — F(x — h). Thus, the (asymptotic) behavior
of the histogram can be derived from that of the Binomial distribution. For

example, we have
P F h)—F(x—h
b)) = TR,

o p(1—p)
var{f(z)} = = 5~

It follows that f(x) is a pointwise consistent estimator of f(z) if
h—0 and nh— oo (11.84)

(not nh? — oo; see Exercise 11.29). Hereafter the limiting process is under-
stood as h = h,, such that h,, — 0 and nh,, — oo, but for notation simplicity,
the subscript of h,, is often suppressed. The condition may be interpreted as
that h needs to go to zero, but not too fast. This is exactly what we have spec-
ulated [below (11.82)] except that now we have the exact rate of convergence,
which can be written as h= = o(n).

Although the histogram is consistent under (11.84), it turns out that one
can do better. The improvement is also motivated by a practical concern that
the histogram is not smooth, a property that one may expect the true density
function to have. This leads to the kernel estimator, defined by

fla) = %EK (Ih&), (11.85)

where K (-) is a function known as the kernel. It is typically assumed that K
is nonnegative, symmetric about zero, and satisfies [ K (u) du = 1. It is clear
that the histogram is a special case of the kernel estimator if K is chosen as
the pdf of Uniform(—1,1). The latter is not a smooth function, and this is
why the histogram is not smooth; but by choosing K as a smooth function,
one has an estimator of f(z) that is smooth. For example, the pdf of N (0, 1)
is often used (known as the Gaussian kernel) and so is the symmetric Beta
pdf,

I'(v+3/2) 9
Ku)= —————1-u9)", —-1l<u<l,
W=raarernt ") “
and K (u) = 0 elsewhere. The special cases v = 0, 1,2,3 correspond to the
uniform, Epanechnikov, biweight, and triweight kernels, respectively. An im-
portant practical problem in kernel density estimation is how to choose the
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bandwidth h. Note that given conditions such as (11.84), there are still plenty
of choices for h; so, in a way, the order of convergence (or divergence) does
not solve the problem. A solution to this problem is known as the bias—
variance trade-off. Before we go into the details let us first state a result
regarding the asymptotic bias of the kernel estimator. Here, the bias is de-

fined as bias{f(z)} = E{f(z)} — f(x) for a given x.

Theorem 11.5. Suppose that f is continuous and bounded. Then the
bias of the kernel estimator goes to zero as h — 0 for every z.

The argument that leads to the conclusion of Theorem 11.5 is simple. First,
write (verify this)

E{f(z)}

2 [ ()
_ /K(u)f(x—hu) du
— f(e)+ [ K){fo—hu) - f(@) du.

Then use the dominated convergence theorem (Theorem 2.16) to complete the
argument. A further investigation into the bias as well as the variance leads
to the following theorem, drawn from Lehmann (1999, p. 410).

Theorem 11.6. Suppose that f is three times differentiable with a
bounded third derivative in a neighborhood of x and that K satisfies

/KQ(u) du < oo and /|u|3K(u) du < 0.

(i) If h — 0 as n — oo, then we have

bias{ f(z)} = % 1 (x) / u? K (u) du + o(h?). (11.86)

(ii) If, in addition, nh — oo as n — oo, then we have

Var{f(ac)} = % /KQ(U) du + o{(nh)~'}. (11.87)

The proof is based on the Taylor expansion—namely,

2,2 3,3
(o= ) = @) = huf (@) + 5@ - L),

where ¢ lies between x — hu and x. The details are left as an exercise (Exercise
11.30). A measure of accuracy in estimation is the mean squared error (MSE):
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MSE{f(2)} = E{f(z) — f(x)}*.

It is easy to show (Exercise 11.31) that the MSE combines the bias and vari-
ance in such a way that

MSE{f(z)} = [bias{f(x)}]? + var{f(z)}. (11.88)
By (11.88), (11.86), and (11.87), we see that, under the condition (11.84) and

if we ignore the lower-order terms, we have

. ht
MSE(/ ()} ~ @)yt + L, (11.50)
where 72 = [w?K(u) du and v* = [ K?(u) du. The right side of (11.89) is
minimized when

N “YQf(f) e n-1/5
h= [T‘*{f”(x)}Q} (11.90)

(Exercise 11.31). Note that (11.90) is not yet the optimal solution because
f is unknown in practice. However, it gives us at least some idea about the
optimal rate at which h — 0. The optimal rate is O(n~'/%), which is much
more specific than (11.84).

When f is unknown, a natural approach would be to replace it by an esti-
mator and hence obtain an estimated optimal bandwidth. One complication
is that the optimal bandwidth depends on x, but, ideally, one would like to
use a bandwidth that works for different x’s within a certain interval, if not
all of the z’s. To obtain an optimal bandwidth that does not depend on z, we
integrate both sides of (1.89) with respect to . This leads to

. A A2
/MSE{f(x)} dw ~ — /{f”(x)}2 dx + —h/f(x) dx
n
02t 42
1 T
with 62 = [{f”(x)}? dz. By the same argument, the right side of (11.91) is
minimized when

(11.91)

2 \ 1/5
h:(TZeﬂ) n1/s, (11.92)

This time, the optimal h does not depend on z. Furthermore, the minimum
integrated MSE (IMSE) is given by (verify this)

IMSE = Z (2) " 62/5n 415, (11.93)

An implication of (11.92) and (11.93) is the following. Note that the IMSE
depends on the kernel K through cx = (792)*/®. Tt has been shown (e.g., Fan
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and Yao 2003, Table 5.1) that for the commonly used kernels such as those
listed below (11.85), the performance of the corresponding kernel estimators
are nearly the same in terms of the values of cx. On the other hand, the
optimal bandwidths, h; and hs, corresponding to two different kernels, K
and Ky, satisfy hi/ho = k1/ko, where k = (42/7%)/5 and the subscript j
corresponds to Kj, j = 1,2. This means that one can adjust the (optimal)
bandwidth he such that ha = (k2/k1)h1 so that the kernel Ky using the
bandwidth ho performs nearly the same as the kernel K7 using the bandwidth
hi. This is the idea behind the canonical kernel (Marron and Nolan 1988).

Going back to the problem on the estimation of the optimal bandwidth,
from (11.92), we see that all we need is to find an (consistent) estimator of
62. If f is the pdf of a normal distribution with standard deviation o, then it
can be shown that §2 = 3/8y/m0° (Exercise 11.32). Of course, if one knows
f is normal, then nonparametric density estimation would not be necessary
(because a parametric method would probably do better). In general, one
may expand f around the Gaussian density using the Edgeworth expansion
(see Section 4.3). Using this approach, Hjort and Jones (1996) obtained the
following estimator of the optimal bandwidth:

(11.94)

3, 3.0, 3 —1/s
4814 T 3273 T 024 ’

ﬁ:ﬁo<1+ 4+ A2 A2

where hyg is the estimated optimal bandwidth assuming that f is normal—that
is, (11.92) with 62 replaced by 3/8y/76°, or, more explicitly,

. G
ho = 1.06 (W) (11.95)

(we call ho the baseline bandwidth), and 62 is the sample variance given by

Furthermore, 43 and 44 are the sample skewness and kurtosis given by

1 . _
S S X _
BT m—1)6 Z(
i=1
. 1 = 4
74:mZ(Xi*X) -3,
i=1

respectively. There have been other approaches for bandwidth selection, in-
cluding the cross-validation method and plug-in method. The latter estimates
62 as a functional. See, for example, Jones et al. (1996) for an overview. We
conclude this section with a numerical example.
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Ezample 11.11 (A numerical example). We generate X7, ..., X,, where
n = 30, from a double exponential distribution with mean 0 and standard
deviation 1 [i.e., DE(0,1)]. The generated data are given by Table 11.3 (up
to the third digit). Now, suppose that the true density function is unknown

Table 11.3. Data generated by a computer

1.814 5.056 2.434 0.113 —0.822 0.531
—0.784 0.098 —3.063 1.558 0.665 2.235
1.612 —0.426 0.092 —1.661 —0.925 0.744
0.714 —2.864 —0.829 —1.309 —0.408 0.558
—1.228 0.381 0.241 1.030 0.417 1.366

and one has to estimate it nonparametrically using the kernel method. We
use the Gaussian kernel with k(u) = e=**/2/\/27. The sample variance is
62 = 2.59; the baseline bandwidth is computed by (11.95) as ho = 0.86; and
the sample skewness and kurtosis are computed as 43 = 0.45 and 44 = 1.27,
respectively. These lead to the estimated optimal bandwidth, computed by
(11.94), as h = 0.71. A plot of the kernel estimate of the density is shown in
Figure 11.1. The true density is also plotted in dash line for comparison. It
appears that the kernel estimate is missing some of the height in the middle.
However, the sample size is n = 30, which is not very large. What happens
when n increases? The reader is encouraged to explore this in an exercise
(Exercise 11.33).

11.7 Exercises

11.1. Verify (11.6)—(11.8).

11.2. Verify (11.13)—(11.15).

11.3. Verity (11.6).

11.4. Show that the asymptotic correlation coefficient between Ss and S5
in (11.18), which correspond to the test statistics of the signed-rank and sign
tests, is equal to \/3/2

11.5. This exercise is to show that both sides of inequality (11.19) are
sharp in that there are distributions F' that are continuous and symmetric
about zero for which the left- or right-side equalities are either attained or
approached with arbitrary closeness.

(i) Let F has a rectangular distribution that is symmetric about zero.
Show that py = 1; hence, the left side equalilty holds.

(ii) Let F have the pdf

0, lz] <1

J(@) = {{<p— 1)/2} 2] 7, |2 > 1,
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Fig. 11.1. Numerical example: solid line: kernel estimate; dash line: true density

where p > 3. Verify that f, is a pdf. Then show that py,ps — 0 as p — 3.
Therefore, the right side of (11.19) can be approached with arbitrary closeness
by choosing p sufficiently close to 3.

11.6. Show that (11.22) holds as n — oo if 0 is the true center of symmetry.

11.7. This exercise has several parts.

(i) Suppose that X has a continuous distribution F. Show that F'(X) has
the Uniform[0, 1] distribution [Hint: Use (7.4) and the facts that F'(z) > w if
and only if x > F~1(u) and that F{F~1(u)} = u.]

(ii) Show that when 6 = 0, (11.23) and (11.24) reduce to 1/2 and 1/3,
respectively.

(iii) Show that when 6 = 0, (11.15) is equivalent to (11.21) with p(6) and
7(0) given by (11.23) and (11.24).

11.8. Show that for the problem of testing for the center of symmetry
discussed in Sections 11.2 and 11.3, the efficacies of the ¢, sign, and Wilcoxon
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signed-rank tests are given by 1/0, 2f(0), and 2\/§ff2(z) dz, respectively,
where o and f are the standard deviation and pdf of F, respectively.

11.9. Evaluate the AREs (11.30)—(11.32) when F is the following distri-
bution:

(i) Double Exponential with pdf f(z) = (1/20)e~1?l/7 —c0 < 2 < o0,
where o > 0.

(ii) Logistic with pdf f(z) = (1/8)e */#/(1 + e */8)?, —00 < < o0,
where 5 > 0.

(iii) Uniform[—a, a], where a > 0.

11.10. Verify that the ARE eg of (11.30) is given by (11.33) in the case
of Example 11.3.

11.11. Verify that the ARE ew ¢ of (11.31) is given by (11.34) in the case
of Example 11.4.

11.12. In the case of testing for the center of symmetry, suppose that
Xni,1 < i < n, are independent observations with the cdf F(z — 6,,). Then

for the t-test, we have T, = X, =n~ 'Y | X,,; and
V(T = 0,) ¢
—_— = Yo,
Y
i=1
where Y,; = (X, — 0,)/0y/n. Show that Y,,;,1 < i < n,n > 1, satisfy the
Lindeberg condition (6.36) with X,,; replaced by Y, i, = n and s2 = 1.
11.13. Continuing with the previous exercise. For the sign test, we have
To=n"" 30, Lix,.>0) and

2v/n{T, — F(6,)} = Z Yoi

where Y, = (2/v/n){1(x,,>0) — F(6,)}. Once again, verify the conditions
below (6.35) with X,,; replaced by Y,,;.
11.14. Consider the pooled sample variance, Sg, of Example 11.5.

(i) Show that S2 L, 62 as m, n — oo such that m/N — p € (0,1), where
N =m +n and o2 is the variance of F.

(ii) Show that the assumption of (i) remains valid even if p =0 or 1.

(iii) Show that the conclusion of (i) remains valid as m,n — without any
restriction [Hint: Suppose otherwise. Then there is an € > 0 and a sequence
(mg,nk), k = 1,2,..., such that |S;' — 0®| > € for (m,n) = (mp,nx), k =
1,2,.... Without loss of generality, one may assume that my /N — p € [0, 1]
(otherwise choose a subsequence that has this property (using §1.5.1.4).]

11.15. (i) Show that (11.37) holds under the limiting process of (i) of the
previous exercise, provided that 6y is the true 6 for Ty. You may use a similar
argument as in Example 11.4 and the following fact: If £ and (n are two

sequences of random variables such that &y 4, & NN 4, n, and &x and ny
are independent for each IV, then &y + 1y N E+m.
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(ii) Based on (11.37), derive the asymptotic power of the two-sample ¢-test
and show that it is equal to 1 — @(z, — ¢t A), where ¢, = /p(1 — p)/o and &
is the cdf of N(0,1).

11.16. Continue with the previous exercise.

(i) Verify the identity (11.38).

(i) Given that (11.36) holds with Ty = Wxy /mn, u(f) = Po(X <Y) =
J{1 = F(z — 0)}f(z) dz, and 7(0) = 1/4/12p(1 — p), derive the asymptotic
power of the two-sample Wilcoxon test and show that it is equal to 1 —®(z, —
ewA), where ew = /12p(1 — p) [ f2(2) dz

11.17. Verify (11.42) and thus, in particular, (11.43) and (11.44) under the
null hypothesis (11.39).

11.18. Show that the functional h defined below (11.45) is continuous on
(D, 1)

11.19. Verify the identity (11.50).

11.20. Verify (11.53) and also show that 6(F) = var(X;) for the sample
variance.

11.21. Verify the property of complete degeneracy (11.56).

11.22. This exercise is concerned with moment properties of S,,.,1 < ¢ <
m, that are involved in the Hoeffding representation (11.57).

(i) Show that E(S,.) =0, 1 <c <m.

(ii) Show that

E{gC(X’ila SR Xic)gd(Xju oo >de)} =0

except that c =d and {iy1,...,i.} = {j1,...,Jd}-

(iii) Verify the orthogonality property (11.59).

11.23. Verify the following.

(i) The martingale property (11.61).

(ii) The expression (11.57), considered as a sequence of random variables,
Un, Fn=0(X1,...,X,), n > m, is a martingale.

(iii) The expression (11.62) and that &,x, Fi, k > 1, is a sequence of mar-
tingale differences.

(iv) An alternative expression for &,

fnk = ]'__‘1(U|)(17 - ,Xk) — E(U‘Xl, - 7Xk_1).

11.24. Show that (11.68) holds as n — .

11.25. Verify the numerical inequality (11.75) for any z,y,a > 0.

11.26. Consider once again the problem of testing for the center of sym-
metry. More specifically, refer to the continuing discussion near the end of
Section 11.5.

(i) Verify (11.70) for 1 < j < k < 3 except for j =1 and k = 2, which has
been verified.

(ii) Verify (11.71) for j =1 and j = 3.

11.27. This exercise involves some details regarding the proof of Theorem
11.4 at the end of Section 11.5.
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(i) Show that both var(¢x) and cov({x, (%) converge to the right side of
(11.78) with a = b = 1, provided that m/N — p € [0, 1].

(ii) Show that TIN,1 i> ]\[(070'10)7 TIN,2 L N(0,0‘Ol).

(iii) Combine the results of (i) and (ii) to show that (11.79) holds under
the limiting process in (i).

(iv) Using the argument of subsequences (see §1.5.1.6), show that (11.79)
holds without the restriction on the limiting process.

11.28. Consider the U-statistic associated with Wilcoxon two-sample test
(see the discussion at the end of Section 11.5).

(i) Verify (11.80).

(ii) Show that under the null hypothesis F' = G, we have 019 = 0¢1 = 1/12.

11.29. This exercise is related to the expression of the histogram (see
Section 11.6).

(i) Show that (11.82) holds provided that F' is twice continuously differ-
entiable.

(ii) Show that the limit (11.81) is either zero or oo if F' is replaced by F',
the empirical d.f.

(iii) Show that the histogram is equal to the right side of (11.83) with
probability 1.

(iv) Show that the histogram is pointwise consistent under the limiting
process (11.84).

11.80. Give a proof of Theorem 11.6. As mentioned, the proof is based on
the Taylor expansion. The details can be found in Lehmann’s book but you
are encouraged to explore without looking at the book (or check with it after
you have done it independently).

11.81. (i) Verify (11.88).

(ii) Show that the right side of (11.89) is minimized when h is given by
(11.90).

11.32. Regarding the parameter 62 defined below (11.91), show that 62 =
3/8y/ma® if f is the pdf of N(u,0?).

11.33. This exercise is related to Example 11.11 at the end of the chapter.

(i) Verify the calculations of 62, hg, 43, 94, and h in the example.

(ii) Simulate a larger data set, say, with n = 100, and repeat the calcula-
tions and plots in the example. Does the estimated density better approximate
the true density? Note that a DE(0, 1) random variable, X, can be generated
by first generating X; and X, independently from the Exponential(1) distri-
bution and then letting X = X7 — Xo.
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Mixed Effects Models

12.1 Introduction

Mixed effects models, or simply mixed models, are widely used in practice.
These models are characterized by the involvement of the so-called random
effects. To understand the basic elements of a mixed model, let us first recall
a linear regression model, which can be expressed as y = X0 + ¢, where y is
a vector of observations, X is a matrix of known covariates, § is a vector of
unknown regression coefficients, and € is a vector of (unobservable random)
errors. In this model, the regression coefficients are considered fixed. However,
there are cases in which it makes sense to assume that some of these coefficients
are random. These cases typically occur when the observations are correlated.
For example, in medical studies, observations are often collected from the
same individuals over time. It may be reasonable to assume that correlations
exist among the observations from the same individual, especially if the times
at which the observations are collected are relatively close. In animal breeding,
lactation yields of dairy cows associated with the same sire may be correlated.
In educational research, test scores of the same student may be related. Now,
let us see how a linear mixed model may be useful for modeling the correlations
among the observations.

Example 12.1. Consider, for example, the above example of medical stud-
ies. Assume that each individual is associated with a random effect whose
value is unobservable. Let y;; denote the observation from the 7 individual
collected at time ¢; and let o; be the random effect associated with the ith
individual. Assume that there are m individuals. For simplicity, let us as-
sume that the observations from all individuals are collected at a common
set of times, say, t1,...,tx. Then, a linear mixed model may be expressed
as yij = 2B + o + €5, i =1,...,m, j =1,... k where z;; is a vec-
tor of known covariates; (§ is a vector of unknown regression coefficients; the
random effects a1, ..., a,, are assumed to be i.i.d. with mean 0 and variance
o?; the €;;’s are errors which are i.i.d. with mean 0 and variance 72; and the

J. Jiang, Large Sample Techniques for Statistics,
DOI 10.1007/978-1-4419-6827-2 12, © Springer Science+Business Media, LLC 2010
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random effects and errors are independent. It is easy to show (Exercise 12.1)
that the correlation between any two observations from the same individual
is 02/(0? + 12), whereas observations from different individuals are uncorre-
lated. This model is a special case of the linear mixed models for analysis of
longitudinal data (e.g., Diggle et al. 1996). There are different types of linear
or nonlinear mixed models that can be used to model the correlations among
the observations.

There is no general consensus among mixed model users on the roles that
the random effects play. For many users, the main purpose of introducing
the random effects is to model the correlations among observations, such as
in the analysis of longitudinal data. On the other hand, in many cases the
random effects represent unobserved variables of practical interest, which for
good reasons should be considered random. This is the case, for example, in
small-area estimation (e.g., Rao 2003). Robinson (1991) gave a wide-ranging
account of the estimation (or prediction) of random effects in linear mixed
models with examples and applications. Jiang and Lahiri (2006) provided an
overview of the prediction theory for random effects and its applications in
small-area estimation.

A general linear mixed model may be expressed as

y=XB+ Za+e, (12.1)

where y is a vector of observations, X is a matrix of known covariates, 3 is
a vector of unknown regression coefficients, which are often called the fixed
effects, Z is known matrix, « is a vector of random effects, and ¢ is a vector of
errors. Both a and e are unobservable. Compared with the linear regression
model, it is clear that the difference is Za, which may take many different
forms, and thus creates a rich class of models, as we will see. The basic assump-
tions for (12.1) are that the random effects and errors have mean 0 and finite
variances. Typically, the covariance matrices G = Var(a) and R = Var(e)
involve some unknown dispersion parameters, or variance components. It is
also assumed that a and e are uncorrelated.

If the normality assumption is made, as is often the case, the linear mixed
model is called a Gaussian linear mixed model, or Gaussian mized model. This
means that both a and e are normal, in addtion to the basic assumptions
above. Otherwise, if normality is not assumed, the model is called a non-
Gaussian linear mized model (Jiang 2007). Another way of classifying the
linear mixed models is in terms of the Z matrix, or the expression of Za. The
model is called a (Gaussian) mized ANOVA model if

Zo=Ziog + -+ Zgay, (12.2)

where Z1,...,Zs are known matrices and aq,...,as are vectors of random
effects such that for each 1 < i < s, the components of «; are independent
and distributed as N(0,02). It is also assumed that the components of € are
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independent and distributed as N(0,72), and aq, ..., s, and € are indepen-
dent. If the normality assumption is not made, but instead the components of
a;,1 <1 < s, and € are assumed i.i.d., we have a non-Gaussian mixed ANOVA
model. It is clear that a mixed ANOVA model is a special case of (12.1) with
Z=(Z1 - Zs)and a = (&) --- o). For mixed ANOVA models (Gaussian
or non-Gaussian), a natural set of variance components are 72,0%,...,02. Al-

ternatively, the Hartley—Rao form of variance components (Hartley and Rao
1967) are A = 72,y = 01/72,...,7s = 02/7%. We consider an example.

Ezample 12.2 (One-way random effects model). A model is called a random
effects model if the only fixed effect is an unknown mean. Suppose that the
observations y;;, i = 1,...,m, j = 1,...,n,, satisfy y;; = 4+ a; + €;; for all 4
and j, where p is an unknown mean, «;,7 = 1, ..., m, are random effects which
are distributed independently as N (0,0?), €;;’s are errors that are distributed
independently as N(0,72), and the random effects are independent of the
errors. It is easy to see that the one-way randon effects model is a special case
of the mixed ANOVA model with X = 1,, where n = Y " n; is the total
number of observations, and Z = diag(1l,,,1 < i < m) (recall that 1) denotes
the k-dimensional vector of 1’s).

A different type of linear mixed model is called the longitudinal model.
Following Datta and Lahiri (2000), a longitudinal model can be expressed as

where y; represents the vector of observations from the ith individual, X; and
Z; are known matrices, 3 is an unknown vector of regression coefficients, «;
is a vector of random effects, and ¢; is a vector of errors. It is assumed that
a;, €, 1 =1,...,m, are independent with o; ~ N(0,G;) and ¢; ~ N(0, R;),
where the covariance matrices G; and R; are known up to a vector 0 of variance
components. Example 12.1 is a special case of the longitudinal model, in which
X, = (fgj)lgjgk, Z; = 1y, G; = 02, and R; = 7%I; (I} denotes the k-
dimensional identity matrix), and so § = (02,72)". Note that the one-way
random effects model of Example 12.2 is a special case of both the mixed
ANOVA model and longitudinal model. However, in general, these two types
of linear mixed models are different (Exercises 12.2 and 12.3).

For the most part, linear mixed models have been used in situations where
the observations are continuous. However, discrete, or categorical, observa-
tions are often encountered in practice. For example, the number of heart
attacks of a patient during the past year takes the values 0,1, 2, .. .; the blood
pressure is often measured in the categories low, median, and high; and many
survey results are binary such as yes (1) and no (0). McCullagh and Nelder
(1989) introduced an extension of linear models, known as generalized linear
models, or GLM, that applies to discrete of categorical observations. They
noted that the key elements of a classical linear model (i.e., a linear regression
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model) are (i) the observations are independent, (ii) the mean of the observa-
tion is a linear function of covariates, and (iii) the variance of the observation
is a constant. The extension to GLM consists of modification of (ii) and (iii)
above by (i)’ the mean of the observation is associated with a linear function
of covariates through a link function; and (iii)’ the variance of the observation
is a function of the mean. It is clear that independence of the observations is
still a basic requirement for GLM. To come up with a broader class of models
that apply to correlated discrete or categorical observations, we take a simi-
lar approach as above in extending the classical linear model to linear mixed
models by introducing random effects to the GLM.

To motivate the extension, let us first consider an alternative expression
of the Gaussian mixed model. Suppose that, given a vector of random ef-
fects, , the observations y1, ..., y, are (conditionally) independent such that
yi ~ N(2}3 + zla, 7?), where z; and z; are known vectors, 3 is an unknown
vector of regression coefficients, and 72 is an unknown variance. Furthermore,
suppose that o ~ N(0,G), where G depends on a vector 6 of unknown vari-
ance components. Let X and Z be the matrices whose ith rows are «} and 2},
respectively. It is easy to see that this leads to the (Gaussian) linear mixed
model (12.1) with R = 721 (Exercise 12.4).

The two key elements in the above that define a Gaussian mixed model
are (i) conditional independence (given the random effects) and a conditional
distribution and (ii) the distribution of the random effects. We now use these
basic elements to define a generalized linear mixed model, or GLMM. Sup-
pose that, given a vector of random effects, «, the responses yi,...,y, are
(conditionally) independent such that the conditional distribution of y; given
« is a member of the exponential family with pdf

yiki — b(&)
ai(9)
where b(-), a;(+), and ¢(+,-) are known functions and ¢ is a dispersion pa-

rameter that may or may not be known. The quantity &; is associated with
wi = E(y;|a), which, in turn, is associated with a linear predictor

o) = exp { +alno) | (129

n; = 1,8+ zla, (12.5)

where z; and z; are known vectors and 3 is a vector of unknown parameters
(the fixed effects), through a known link function g(-) such that

g(pi) = ;. (12.6)

Furthermore, it is assumed that o ~ N (0, G), where the covariance matrix G
may depend on a vector # of unknown variance components.

Note that according to the properties of the exponential family (see Ap-
pendix A.3), one has b'(§;) = p;. In particular, under the so-called canonical
link function, one has
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& =ni;

that is, g = h™!, where h(-) = V/(-). Here, h™! represents the inverse function
(not reciprocal) of h. A table of canonical links is given in McCullagh and
Nelder (1989, p. 32). We consider some special cases.

Ezample 12.3 (Mixed logistic model). Suppose that, given the random
effects «, binary responses y1, . . ., ¥ are conditionally independent Bernoulli.
Furthermore, with p; = P(y; = 1|«), one has

logit(p;) = 283 + zia,

where logit(p) = log{p/(1—p)} and x; and z; are as in the definition of GLMM.
This is a special case of the GLMM, in which the (conditional) exponential
family is Bernoulli and the link function is g(u) = logit(u). Note that in this
case the dispersion parameter ¢ = 1.

Ezample 12.4 (Poisson log-linear mixed model). The Poisson distribution
is often used to model responses that are counts. Supposed that, given the
random effects «, the counts yi,...,y, are conditionally independent such
that y;|a ~ Poisson()\;), where

log(Ai) = @38 + Zja

and x; and z; are as in the definition of GLMM. Again, this is a special case of
GLMM, in which the (conditional) exponential family is Poisson and the link
function is g(n) = log(u). The dispersion parameter ¢ in this case is again
equal to 1.

The fact that the observations, or responses, are correlated makes it con-
siderably more difficult to develop large-sample techniques for mixed model
analysis. We first consider linear mixed models, for which the asymptotic the-
ory is much more complete than for GLMMs. We focus on selected topics of
interest. For a more complete coverage, see Jiang (2007).

12.2 REML: Restricted maximum likelihood

A main problem in mixed model analysis is estimation of the variance com-
ponents. In many cases (e.g., quantitative genetics), the variance components
are of main interest. In some other cases (e.g., longitudinal data analysis), the
variance components themselves are not of main interest, but they need to be
estimated in order to assess the variability of estimators of other quantities of
interest, such as the fixed effects. Some of the earlier methods in mixed model
analysis did not require the normality assumption. These include the analy-
sis of variance (ANOVA) method, or Henderson’s methods (Henderson 1953),
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and minimum norm quadratic unbiased estimation (MINQUE) method, pro-
posed by C. R. Rao (e.g., Rao 1972). However, the ANOVA method is known
to produce inefficient estimators of the variance components when the data
are unbalanced. The MINQUE method, on the other hand, depends on some
initial values of the variance components. Also, both ANOVA and MINQUE
can result in estimators that fall outside the parameter space.

If normality is assumed, the efficient estimators of the variance components
are the maximum likelihood estimators (MLEs). However, the latter had not
been in serious use in linear mixed models, until Hartley and Rao (1967). The
main reason was that, unlike the ANOVA estimator, the MLE under a lin-
ear mixed model was not easy to handle computationally in the earlier days.
There was also an issue regarding the asymptotic behavior of the MLE, be-
cause, unlike the traditional i.i.d. case, the observations are correlated under
a linear mixed model. Both issues were addressed by the Hartley—Rao paper.
Asymptotic properties of the MLE were further studied by Miller (1977) for
a wider class of models. On the other hand, the MLEs of the variance compo-
nents are, in general, biased. Here, we are not talking about the finite-sample
bias, which may vanish as the sample size increases. In fact, the following
example due to Neyman and Scott (1948) shows that the bias can lead to
inconsistent estimators of the variance components in a certain situation.

Ezxample 12.5 (The Neyman-Scott problem). Recall Example 3 in the Pref-
ace, where two measurements, y;;, j = 1,2, are taken from the ith patient.
Write y;; = s + €5, ¢ =1,...,m, j = 1,2, where p; is the unknown mean of
the ith patient and ¢;; is the measurement error, whose variance is of main
interest. Suppose that the €;;’s are independent and distributed as N (0, ?).
It can be shown (Exercise 12.5) that the MLE of o2 is given by

m

9 1

OML = Im (ya1 — yi2)2
=1
1 & )
= im ;(Eil —€i2)”. (12.7)

Applying the law of large numbers to the right side of (12.7), we see that dyy,
converges in probability to 02/2, not o2, as the number of patients, m, goes
to infinity. Therefore, the MLE is inconsistent in this case.

The inconsistency of the MLE in Example 12.5 is due to the presence
of many nuisance parameters—namely, the (unknown) means p;, 1 < i <
m. Note that to do the maximum likelihood, one has to estimate all of the
parameters, including the nuisance ones. There are a total of m + 1 unknown
parameters (why?), whereas the total sample size is 2m. Intuitively, this does
not look like a very profitable enterprise. However, there is an easy way to
get around, or get rid of, the nuisance parameters: by taking the differences
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Zi = Yi1 — Yiz, < © < m. Now, considering the z;’s as the observations, there
are m observations and only one unknown parameter, 0 [note that the z;’s
are independent and distributed as N(0,20?)], so the situation has gotten
much better. In fact, the MLE of o2 based on the z;’s is given by

m

1

~2 _ 2

OREML — m E Z
i=1

1 m
= % Z(Eil — 67;2)2. (128)
=1

It follows, again, by the law of large numbers, that 63, converges in prob-
ability to o2 as m — oo, and therefore is consistent.

The “trick” used above is a special case of a method called restricted,
or residual, maximum likelihood, or REML (and this is why the notation
62wy is used). The method was proposed by Thompson (1962) and later put
together on a broader basis by Patterson and Thompson (1971). It applies not
only to the Neyman—Scott problem, where only the fixed effects are involved,
but also to linear mixed models in general. Let the dimensions of y and 3 be
n and p, respectively. Without loss of generality, assume that rank(X) = p.
Let A be a n x (n — p) matrix of full rank such that A’X = 0. The REML
estimators of the variance components are simply the MLEs based on z = A'y.
It is seen from (12.1) that the distribution of z does not depend on 8. So by
making the transformation z = A’y, the fixed effects have been removed. It
can be shown that the REML estimators do not depend on the choice of A
(Exercise 12.6). Furthermore, several authors have argued that there is no
loss of information in REML for estimating the variance components (e.g.,
Patterson and Thompson 1971; Harville 1977; Jiang 1996). For alternative
derivations of REML, see Harville (1974), Barndorff-Nielson (1983), Verbyla
(1990), Heyde (1994), and Jiang (1996).

The REML estimators are typically derived under the normality assump-
tion. However, the latter is likely to be violated in real-life problems. Due
to such concerns, a quasilikelihood approach has been used in deriving the
REML estimators without the normality assumption. The idea is to use the
Gaussian REML estimators, even if the normality assumption does not hold
(e.g., Richardson and Welsh 1994, Heyde 1994, 1997, Jiang 1996, 1997a). More
specifically, the REML estimators are defined as the solution to the Gaussian
REML equation. For example, for the mixed ANOVA model with the Hartley—
Rao form of variance components, the REML equations are given by

¥'Qy = A(n —p),
VQZ:ZQy = Mr(Z]QZ;), 1<i<s, (12.9)
where @ = '™ — P X(X'T='X) " X' TV with I = I, + Y25 viZi Z! (n s

the dimension of y). See Jiang (2007, Section 1.4). In the sequel, such Gaussian
REML estimators are simply called REML estimators, , even if normality is
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not assumed. An important question then is: How does the REML estimators
behave (asymptotically) when normality does not hold? A related question
is regarding the asymptotic superiority of REML over (straight) maximum
likelihood (ML). It is seen in the Neyman—Scott problem (Example 12.5) that
the REML estimator remains consistent as the number of nuisance parameters
increases with the sample size, whereas the MLE fails to do so. Do we have
such a difference in asymptotic behavior in general? Like REML, the MLEs
are understood as the Gaussian MLEs when normality is not assumed.

To answer such questions, let us focus on the mixed ANOVA models de-
fined by (12.1) and (12.2). Instead of normality, we assume that the compo-
nents of ; are i.i.d. with mean 0 and variance 02, 1 <1 < s; the components
of € are i.i.d. with mean 0 and variance 72; and oy, . .., as, € are independent.
We consider the Hartley—Rao form of variance components defined above Ex-
ample 12.2. Based on these assumptions, Jiang (1996, 1997a) developed an
asymptotic theory about REML estimation. Typically, a theorem requires
some technical conditions. It is important that (i) the technical conditions
make sense and (ii) ideally, only necessary assumptions are made. Regarding
(i), Jiang (1996) set up the conditions so that they can be interpreted in-
tuitively. For the most part, there are two conditions for the consistency of
REML estimators. The first condition states that the variance components
are asymptotically identifiable. To see what this means, let us forget about
the asymptotic part, for now, and consider a simple example.

Example 12.6. Consider the following random effects model: y; = pu+a;+e€;,
i=1,...,m, where p is an unknown mean, the random effects o, ..., a, are
independent and distributed as N (0, 02), the errors €1, . . . , €, are independent
and distributed as N(0,72), and the random effects and errors are indepen-
dent. It is clear that in this case, there is no way to “separate” the variance
of the random effects from that of the errors. In other words, the a;’s and €;’s
could have the distributions N(0,0% + a) and N (0,72 — a), respectively, for
any a such that |a| < 0% A 72, and the joint distribution of the y;’s remains
the same. Thus, in this case, the variance components are not (individually)
identifiable (in fact, only 0 + 72 is identifiable). If the variance components
are not identifiable, they cannot be estimated consistently (why?). Note that
the above model corresponds to the one-way random effects model of Example
12.2 with n; = 1,1 < ¢ < m. On the other hand, if n; = 2,1 < i < m (or, more
generally, n; = k for some k > 1), then it is easy to see that the variance com-
ponents o2 and 72 are identifiable (intuitively, in this case, one can separate
the two variances). Now, let us consider some cases in between. Suppose that
all but a few n;’s are equal to 1 and the rest of the n;’ are equal to 2; then,
as one would expect, asymptotically, we will have an identifiability problem
with the variance components (this is because, asymptotically, the roles of a
few observations in model inference will be “washed out”; so the inference
is essentially based on the observations corresponding to the unidentifiable
variance components). On the other hand, if all but a few n;’s are equal to



12.2 REML: Restricted maximum likelihood 401

2 and the rest of the n;” are equal to 1, then, asymptotically, we will be fine
(for the same reason) in identifying of the variance components. This is what
asymptotic identifiability means.

The second condition for the REML asymptotic theory states that the ob-
servations are infinitely informative. This is an extension of the simple concept
that the sample size goes to infinity in the case of independent observations.
However, there is a complication in extending this concept to linear mixed
models, which we explain with an example.

Ezxample 12.7 (Two-way random effects model). Consider the random ef-
fects model y;; = p+u; +v; +ei5, 1 =1,...,mq1, j =1,...,my, where u;’s
and v;’s are random effects and e;;’s are errors, which are independent such
that u; ~ N(0,0%), v; ~ N(0,03), and e;; ~ N(0,7%). The question is: What
is the effective sample size? It turns out that the answer depends on which
variance component one is interested in estimating. It can be shown that,
asymptotically, the effective sample sizes for estimating o7, o3, and 72 are
mz1, ma, and mime, respectively. This can be seen from Theorem 12.1 below
but, intuitively, it makes sense. For example, the random effect u has m; (un-
observed) realizations. Therefore, the effective sample size for estimating the
variance of u should be m; (not the total sample size myms). In this special
case, the infinitely informative assumption simply means that both m; and
ms go to infinity, which is clearly necessary for consistently estimating all of
the variance components.

In conclusion, under the assumptions that (a) the variance components are
asymptotically identifiable and (b) the observations are infinitely informative,
Jiang (1996) proved that the REML estimators are consistent, and this is
true regardless of the normality assumption. Furthermore, the author estab-
lished asymptotic normality of the REML estimators under the additional
assumption that (c¢) the distributions of the random effects and errors are
nondegenerate (i.e., they are not two-point distributions). Once again, nor-
mality is not needed for the asymptotic normality. To illustrate these results
in further detail, we consider a special case of linear mixed models.

A linear mixed model is called a balanced mixed ANOVA model (or linear
mixed model with balanced data; e.g., Searle et al. 1992, Section 4.6) if it can
be expressed as (12.1) and (12.2), where

X =@ td 7z, —@rtlis e,

q:l Ng? q:l ng?

with d = (d1,...,dy41) € Spr1 = {0,1}7 " [i.e., d is a (r + 1)-dimensionnal
vector whose components are 0 or 1], i = (i1,...,%41) € S C Spy1, 1 € S,
11 = 1 and 19 = I}, (recall 15 and Iy are the k-dimensional vector of 1’s and
identity matrix, respectively). Here, r is the number of factors and nq is the
number of levels for the gth factor, 1 < ¢ < r + 1, with r 4+ 1 corresponding
to number of replications for each cell (a cell is a combination of levels of
different factors). Note that we now use the multiple index ¢ instead of the
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single index 4. Similarly, the variance components are 72 and 02,7 € S, or
and v;,7 € S in the Hartley—Rao form. Example 12.2, with n; = k, 1 <1i < m,
and Example 12.7 are special cases of the balanced mixed ANOVA model. In
fact, in the former case, (12.1) and (12.2) reduce to

y:1m®1kﬂ+jm®1ka+€

with y = (W1, .., ¥n)s Yi = Wij)i<j<k, 1 < i < m, € defined similarly, and
o = (o;)1<i<m. Similarly, in the latter case, (12.1) and (12.2) reduce to

Y=1m @Llp, + I, @ lp,u+ 1y, @ In,v+e

withy = (1, -, ¥m,)s ¥i = Wij)1<j<ms, 1 < i < mq, e defined similarly, u =
(ui)1<i<mi, and v = (vj)1<j<m,. For another example, see Exercise 12.7. The
balanced mixed ANOVA model is called unconfounded if (i) the fixed effects
are not confounded with the random effects and errors [i.e., rank(X, Z;) > p,
1€ S and X # I,,] and (ii) the random effects and errors are not confounded
[i.e., the matrices I,,, Z; Z],i € S are linearly independent]. Here, n = H;Jri Ng
is the total sample size. Also, the dimension of oy is m; = Hiqzo Ng, 1 € 5.

For a general mixed ANOVA model (not necessarily balanced), the random
effects and errors are said to be nondegenerate if the squares of them are
not a.s. constants. We say the sequences of estimators \,4;,1 < i < s, are
asymptotically normal if there are sequences of positive numbers p;(n) —
00,0 <7 < s, and a sequence of matrices B,, satisfying

limsup(|| B, || V [|Ball) < oo,

po(n)(A = X)

p1(n)(y1 —m
ag, [P0 ) 5 N(0, Iy),

ps(n)(§s — 7s)
where ||B|| = A,lyl/fx(B’B). Define the symmetric (s + 1) X (s + 1) matrix
Z,, whose (i,7) element is tr(Z;Z]QZ;Z;Q)/pi(n)p;(n), 1 < i,j < s, the
(i,0) element is tr(Z; Z/Q)/Apo(n)pi(n), 1 < i < s, and the (0,0) element is
(n — p)/A*pE(n), where Q is defined below (12.9). Furthermore, define W =
[In /7121 -+ \/VsZs) (block matrix), Qo = W'QW,and Q; = W'QZ; Z;QW
1 <i<s. Let K, be the (s+ 1) x (s + 1) matrix whose (¢, j) element is

n+m
{E(&}) — 3}Q:iuQju
n)p;(n) Z

M=o t1G=0) ’

0<i,j <s,wherem =Y ;_, m;, Qi is the (k,1) element of Q;, & = q/\/X,

1<l <mn,and & = NI o mk/‘//\%’ n+ Y me+1 <1< n+
’ k<i

dok<i ks 1 < i <s. Let J,, = 2Z,, + Ky, Jiang (1996) proved the following.
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Theorem 12.1. Let the balanced mixed ANOVA model be unconfounded
and the variance components 72 and 02,4 € S, be positive. Then the following
hold as m; — 0,7 € S:

(i) There exist with probability tending to 1 REML estimators A and i, 1 €
S, that are consistent, and the sequences \/M(;\ —A), vmi(Yi — i), 1 € S,
are bounded in probability.

(ii) If, in addition, the random effects and errors are nondegenerate, the
REML estimators in (i) are asymptotically normal with po(n) = /n —p,

pi(n) = /m;,i € S, and M,, = j{lﬁfn.

Note that IC,, vanishes under the normality assumption, so that J,, = 27,
and M, = ITIL/Q/\/Q The result of (i) is in the form of Cramér consistency
(see Section 1.4). Later, Jiang (1997a) proved the Wald consistency of the
REML estimators, in the sense that the maximizer of the restricted Gaussian
likelihood (i.e., the likelihood of z = A’y under normality) is consistent, under
the same assumptions but without positiveness of the variance components.
Note that if the variance components are indeed positive, then, asymptoti-
cally, the maximizer of the restricted Gaussian likelihood constitutes a root
to the REML equations (why?), which, by definition, is the (vector of) REML
estimators without the normality assumption.

The proof of (i) is based on the following basic argument. Suppose that
ln(y,0) is a function that depends on both the observations y and a d-
dimensional vector 6 of parameters. Suppose that there are sequences of
positive numbers p;(n) and ¢(n), 1 < i < d, such that p;(n) — oo,
pi(n)gi(n) — oo, and the following hold:

1 9,
pi(n) 06;
[ 1 021, }

pi(n)p;(n) 90;00, 1<i,j<d

=0p(1), 1<i<d, (12.10)

=G +op(1), (12.11)

where G, is a sequence of matrices satisfying lim inf A\pin (G,) > 0, and

31,(0)

| = 1), 1<4,5,k<d 12.12
aﬁzaﬂjﬁﬁk OP( )7 D 2 PRI ( )

1
pi(n)p; (M)pi(n) ocor,

where ©,, = {0 : |6; — ;] < ¢;i(n),1 <i < d}. Let a,, denote the vector whose
ith component is given by the left side of (12.10), and let P,, = diag{p;(n),1 <
i < d}. The next thing we do is to choose a point 8,, that is “close enough”
to 6. This is defined by

Pn(a'n, - 0) = _G:Llan, (1213)

where G,, is the left side of (12.11). It can be shown (Exercise 12.8) that
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1,(0) — 1,(0,) = %{Pn(é —0,)YGo{Pa(0 —0,)} + 10, (12.14)

where 7, is uniformly ignorable compared with the first term as 6 varies on
the boundary of the ellipsoid E, = {0 : |P,(0 — )| < 1}; that is, E, =
{6 : |P,~L(9~ — )| = 1}. Tt follows that, asymptotically, we have 1(§) > 1(6,,)
for all @ € E,; hence, there is a solution to dl,,/90 = 0 in the interior of E,,
(why?). The above argument is due to Weiss (1971). The argument leads to the
existence of the REML estimator by letting [,, be the negative of the restricted
Gaussian log-likelihood. The consistency and boundedness in probability of
P,(0 — 0), where P, = daig(y/n —p,/mi,i € S) and 0 = (\,,i € S,
follows from the closeness of 6,, to 6 [i.e., (12.10) and (12.13)]. It turns out
that the simple assumptions of Theorem 12.1 [above (i)] are all that is needed
to carry out the above arguments, rigorously.
To prove (ii), note that, by (i) and the Taylor expansion, one can show

—an = GnPo(0 —0) + op(1), (12.15)

where 0 is the REML estimator that satisfies (i) (Exercise 12.8). The key
step in proving the asymptotic normality of 6 is thus to argue that a, is
asymptotically normal. With [,, being the negative of the restricted Gaussian
log-likelihood, the components of a,, are quadratic forms of the random effects
and errors (Exercise 12.9). Thus, the asymptotic normality follows from the
CLT for quadratic forms that was established in Section 8.8 (as an application
of the martingale central limit theorem). Note that the additional assumption
that the random effects and errors are nondegenerate is necessary for the
asymptotic normality of the REML estimators (Exercise 12.10).

The second part of the asymptotic theory on REML is regarding its com-
parison with ML. Again, we consider the special case of balanced mixed
ANOVA models. For any u,v € S..1 = {0,1}7F1 define u Vv = (u; V
ViyeooyUppr VUpgq) and S, = {v € S : v < u}, where v < u if and only if
Uug < vg,1 < g < r+ 1. Recall the expression m,, = Huq:O ng. Furthermore,
let my,s = minyes, my if Sy, # 0 and m,, s = 1 otherwise. For two sequences
of constants b,, and ¢y, b, ~ ¢, means that b, /c, = O(1) and ¢, /b, = O(1).
Jiang (1996) proved the following.

Theorem 12.2. Let the balanced mixed ANOVA model be unconfounded
and the variance components 72 and ¢2,i € S be positive. Then the following
hold as m; — 00,7 € S:

(i) There exist with probability tending to 1 the MLEs of A\ and ~;,i € S,
that are consistent if and only if

P, DivdBivds o jesg, (12.16)

n m;

(ii) If, in addition, the random effects and errors are nondegenerate, then
there exist with probability tending to 1 the MLEs of A and ~;,7 € S, that
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are asymptotically normal if and only if

po(n) ~+/n—p, pi(n)~/m;, i€S (12.17)

and
p mMivdMivd,s
-0, ————

7 i

7

(iii) When (12.18) is satisfied, the MLEs are asymptotically normal with
the same p;(n),i € {0} U S, and M, as for the REML estimators.

-0, ies. (12.18)

A comparison between Theorem 12.1 and Theorem 12.2 shows clearly the
asymptotic superiority of REML over ML. Note that the overall assumptions
of the two theorems are exactly the same, under which the REML estimators
are consistent without any further assumption; whereas the MLE are consis-
tent if and only if (12.16) holds. For the most part, this means that the rate at
which the number of fixed effects increases must be slower than that at which
the sample size increases. For example, in the Neyman—Scott problem (Exam-
ple 12.5) we have p/n = 1/2; so (12.16) is violated. Similarly, under the same
additional assumption that the random effects and errors are nondegenerate,
the REML estimators are asymptotically normal without any further assump-
tion; whereas the MLE are asymptotically normal if and only if (12.17) and
(12.18) hold. Again, (12.18) fails, of course, in the Neyman—Scott problem.

Finally, when (12.18) holds, the REML estimators and MLEs are asymp-
totically equivalent, so neither has (asymptotic) superiority of over the other.

12.3 Linear mixed model diagnostics

Diagnostics or model checking has been a standard procedure for regression
analysis (e.g., Sen and Srivastava 1990). There is a need for developing similar
techniques for mixed models. For the most part, diagnostics include informal
and formal model checking (McCullagh and Nelder 1989, p. 392). Informal
model checking uses diagnostic plots for inspection of potential violations of
model assumptions, whereas a standard technique for formal model checking
is goodness-of-fit tests. To date, the diagnostic tools for linear mixed models
are much more developed than for GLMMs. Therefore, we will only consider
linear mixed model diagnostics.

A Dbasic tool for regression diagnostics is the residual plots. Note that a
linear regression model corresponds to (12.1) with Z = 0; so, in a way, the
residuals may be viewed as the estimated errors (i.e., €). A Similar idea has
been used for linear mixed model diagnostics, in which standard estimates of
the random effects are the empirical best linear unbiased predictors (EBLUP).
See, for example, Lange and Ryan (1989) and Calvin and Sedransk (1991).
The BLUP for the random effects, «, in (12.1) can be expressed as (e.g., Jiang
2007, Section 2.3)
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a=GZ'Viy—-Xp), (12.19)
where V = Var(y) = ZGZ' + R and
B=(X'VIX)IX'Vly (12.20)

is the best linear unbiased estimator (BLUE) of . Here, it is assumed that V'
is known; otherwise, the expressions are not computable. In practice, however,
V' is unknown and typically depends on a vector, ¢, of variance components.
If one replaces 8 by 6, a consistent estimator, one obtains the EBLUP

a=GZ'V iy —Xp), (12.21)

where V is V with 6 replaced by 6 and B is B with V replaced by V. Thus, a
natural idea is to use the plot of & for checking for distributional assumptions
regarding the random effects. Consider, for example, the one-way random
effects model of Example 12.2. The EBLUPs for the random effects, a;,1 <
i < m, are given by

G =" G p), i=1,.m
7T — X ~ 7. = .«
7_2 + n7/0_2 ) ) ) )

where 62 and 7% are, say, the REML estimators of o2 and 72, §;. =

-1 ng
n; - >ily Yij, and

. m n; s niY;.
r= ;%2 + 62 ;%2 o2
One may use the EBLUPs for checking the normality of the random effects
by making a Q-Q plot of the &;’s. The Q-Q plot has the quantiles of the &;’s
plotted against those of the standard normal distribution. If the plot is close
to a straight line, the normality assumption is reasonable.

However, empirical studies have suggested that the EBLUP is not accurate
in checking the distributional assumptions about the random effects (e.g.,
Verbeke and Lesaffre 1996). Jiang (1998¢) provided a theoretical explanation
for the inaccuracy of EBLUP diagnostics. Consider, once again, the one-way
random effects model of Example 12.2 and assume, for simplicity, that n; = k,
1 <4 < m. Define the empirical distribution of the EBLUPs as

. 1 &
F(z) = o > <o)
i=1

If the latter converges, in a certain sense, to the true underlying distribution of
the random effects, say, F'(x), then the EBLUP is asymptotically accurate for

the diagnostic checking. It can be shown that F(x) 2 F (x) for every x that
is a continuity point of F' provided that m — oo and k — oco. However, the
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latter assumption is impractical in most applications of linear mixed models.
For example, in small area estimation (see the next chapter), n; represents the
sample size for the ith small-area (e.g., a county), which is typically small. So
it is not reasonable to assume that n; — oo, or kK — oo (but it is reasonable
to assume m — oo). In fact, one of the main motivations of introducing
the random effects is that there is insufficient information for estimating the
random effects individually (as for estimating a fixed parameter), but the
information is sufficient for estimating the variance of the random effects (see
the previous section). In other words, m is large while the n;’s are small.

For the goodness-of-fit tests, we first consider the mixed ANOVA model
of (12.1) and (12.2). The hypothesis can be expressed as

HO : F1(|0'z) = FOi('|0'i), 1 S 1 S S, G(|T> = Go(-‘T), (12.22)

where F;(-|o;) is the distribution of the components of «;, which depends on
oi, 1 < i <s, and G(-|7) is the distribution of the components of €, which
depends on 7. Here, Fp;,1 < i < s, and Gy are known distributions (such as
the normal distribution with mean 0).

A special case of (12.22), in which s = 2, was considered in Section 2.6,
where a y?-test based on estimated cell frequencies was proposed (Jiang,
Lahiri, and Wu 2001). The approach requires that the estimator of the model
parameters, é, be independent of the data used to compute the cell frequencies.
Typically, such an independent estimator is obtained either from a different
dataset or by spliting the data into two parts, with one part used in computing
0 and the other part used in computing the cell frequencies. The drawbacks
of this approach are the following: (i) In practice there may not be another
dataset available and (ii) spliting the data may result in loss of efficiency
and therefore reduced power of the test. Jiang (2001) proposed a simplified
x? goodness-of-fit test for the general hypothesis (12.22) that does not suffer
from the above drawbacks. He noted that the denominator in Pearson’s x?-
statistic [e.g., (2.23)] was chosen such that the limiting null distribution is x?.
However, except for a few special cases (such as binomial and Poisson distri-
butions), the asymptotic null distribution of Pearson’s y2-test is not x? if the
expected cell frequencies are estimated by the maximum likelihood method,
no matter what denominators are used in place of the Ey’s in (2.24) (see our
earlier discussion in Section 2.6). Therefore, Jiang proposed to simply drop
the E}’s in the denominator. This leads to the simplified test statistic

X = L Z {Ni — Eg(Nk)}Q ) (12.23)

where a, is a suitable normalizing constant, Ny = > | 1¢y,er,) (i-e., the
observed frequency for the interval Ij), and M is the number of intervals, or
cells. Here, Ey denotes the expectation given that 6 is the parameter vector.

A key step in developing the latest goodness-of-fit test is to derive the
asymptotic distribution of (12.23). This also involves the determination of



408 12 Mixed Effects Models

an, or the order of a, which is all we need. The main tool for deriving the
asymptotic distribution is, again, the martingale central limit theorem. We
illustrate the idea through an example.

Ezample 12.8. Consider the following extension of Example 12.7:
Yij = 230+ wi +v; + eij,

where 2;; is a p-dimensional vector of known covariates, 8 is an unknown
vector of fixed effects, and everything else is as in Example 12.7 except that
the random effects and errors are not assumed normal. Instead, it is assumed
that u; ~ Fi(-|o1), vj ~ Fy(-|o2), and e;; ~ G(-|7). The null hypothesis is
thus (12.22) with s = 2. Write &, = (é‘n,k)lﬁkS]\[7 where fn,k = N — Eé(Nk)
Then the test statistic (12.23) can be expressed as

2
a, \*T)E,

)ACZ = a;1|£n‘2 =
for any orthogonal matrix T;,. If we can find T,, such that
a;?The, % N(0, D), (12.24)

where D = diag(\1, ..., Ax), then by the continuous mapping theorem (The-
orem 2.12), we have

M
2SNz, (12.25)

k=1
where Z1, ..., Zy are independent N (0, 1) random variables. The distribution

of the right side of (12.25) is known as a weighted x2. To show (12.24), we
need to show that for any b € RM, we have

Va, 2T)E, — N(0,b'Db) (12.26)

(Theorem 2.14). To show (2.26), we decompose the left side as

M
Va, ' PT)6n = az'/? > by i{ Nk — Eo(Ni)}
k=1
M
+a, "2 b k{Eg(Ni) — Eo(Ni)}, (12.27)
k=1

where b, 1, is the kth component of b,, = T;,b and 6 denotes the true parameter
vector. Suppress, for notation simplicity, the subscript 6 in the first term of
the right side of (12.27) (and also note that the expectation and probability
are under the null hypothesis); we can write
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mi1 Mz

Ny —E(Ng) = D> > {ly,en) — Py € In)}-

i=1 j=1

Note that the summand has mean 0, but we need more than this. Here, we
use a technique called projection. Write (verify this)

Ly eny — Plyij € I)
= P(yi; € Ix|u) — P(ysj € I)
+ P(yij € Ixlv) — P(yij € Ii)
+ 1y, en) — Pyij € Ixlu,v)
+ P(yij € Ielu, v) = Pyi; € Tx|u) = P(yi; € Ilv) + P(yi; € i)
= Ciijk + Coijk + 0145k + 02.ijk- (12.28)

In an exercise (Exercise 12.11), the reader is asked to show the following: (i)

S Y Bigk = Op (ymama), 1= 1,2; (i)

m1 ma
ZZQ ijk = ZCl,ik(ui)y
=1 j=1 =1

where (1, (u;) = Zmzl C1.ijk is a function of w;; and, similarly, (iii)

m1 ma

Z Z <2 ijk = Z C2,]k U]

=1 j=1

where (2 ;1 (v;) = Z;le C2,ijk is a fundtion of v;. It follows that

Ni —E(Ng) = > Cuan(us) + Y G ji(v))
i=1 j=1
+ Op(y/niina). (12.29)

Note that the first two terms on the right side of (12.29) are Op(m}/ng) and

Op(mlm;ﬂ), respectively (Exercise 12.11).
Now, consider the difference E;(Ny) —Eg(Ny). Consider Eg(Ny) as a func-
tion of 0, say, ¥ (0). We have, by the Taylor expansion,

0u(0) = w(0) ~ (G ) 6 -0)

We now use an asymptotic expansion (see Jiang 1998c) that for any sequence
of constant vectors c,, we have

(0 —0) ~ N w+wA,w— E(w' A,w) + a remaining term,
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where )\, is a sequence of constant vectors, A, is a sequence of constant
symmetric matrices, and w = (¢/,u’,v")’. Here, = means that the remaining
term is of lower order. Note that both A/, w and w'A,w — E(w’A,w) can be
expressed as sums of martingale differences. Note that the components of
w may be denoted by w;,1 <1 < N = n+ mj + meo, where n = mimeo,
wy, 1 <1 < n, correspond to the e;;’s, w;,n +1 < 1 < n+mq, to the u;’s,
and w;,n +m1 +1 <1 < N, to the v;’s. For example, let A, x; be the (k,1)
element of A,. Then we have (also see Example 8.3)

N
w' Apw — E(w' Ayw) = Z A, Rl WEW] — Z /\nqu(wlz)
k= =

N N
= Z wa{wf =B} +2) 3 Ay wrwy
=1 =1 k<l
N
=3 [t Bl +2 (z An,klwk> w] |
=1 k<l

The summands are a sequence of martingale differences with respect to the
o-fields F; = o(wg, k < 1),1 <1 < N. Also, note that the sum of the first
two terms on the right side of (12.29) can be expressed as Zl]\;nﬂ G (wy) for
some functions () (that depend on k) such that {;(w;), Fi,n+1 <1< N,is
a sequence of martingale differences. It follows that (12.27) can be expressed
as a sum of martingale differences plus a term of lower order. The martingale
central limit theorem (Theorem 8.7) is then applied.

Like Pearson’s x2-test, the above goodness-of-fit test depends on the num-
ber of intervals M and how to choose the intervals Ix,1 < k < M. It turns
out that optimal choice of these intervals or cells is a difficult problem and
there is no simple solution (e.g., Lehmann 1999, Section 5.7). Furthermore, the
class of linear mixed models considered by Jiang (2001)—namely, the mixed
ANOVA model—is a bit restrictive. In particular, the test does not apply to
the problem of testing for multivariate normality of the random effects «; in
the longitudinal linear mixed model (12.3). For simplicity, suppose that the
error ¢; is normal and we are interested in testing the hypothesis

Ho: o« ~ Ng(p,X), (12.30)

a d-dimensional multivariate normal distribution with (unknown) mean vector
u and covariance matrix X, where d > 1. Claeskens and Hart (2009) proposed
an alternative approach to the resting of (12.30). For simplicity, consider the
case d = 2. Write o; = pu + I'u;, where I'T" = Y. Then the problem is
equivalent to testing the hypothesis that w; ~ Ng(0,I), where I is the d-
dimensional identity matrix. Consider an Edgeworth expansion (see Section
4.3) of the density of u;, f, around the standard bivariate normal density, ¢:

f(u) = d(u){1 + k3Hz(u) + kaHa(u) + -},
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where K3, K4, ... are associated with the cumulants of u;, and Hs, Hy, ... are
Hermite polynomials. The latter is defined by
& ¢(u)

j=1,2

5 g Ly ee

Hj(u) = (=1)7¢™" (u)

duJ

In particular, we have Hz(u) = u® — 3u and Hy(u) = u* — 6u? + 3. By a
reordering of the terms in the expansion, we may approximate the infinite se-
ries by a finite-degree polynomial. This leads to the consideration of a density
function of the form

Frr(u) = Py (u)e(w), (12.31)

where Py is a bivariate polynomial that can be expressed as

Py(u)= Y asujub (12.32)
s+t<M

and the coefficients ag; satisfy the constraint

/fM(u) du = 1. (12.33)
For example, with M = 2, we have
P>(u) = ago + a1ou1 + agius + azou% + arjjuiug + a02U§-

The idea is that the distribution under the null hypothesis is a special case
of (12.31) with M = 0. If there is evidence, provided by the data, suggesting
that M > 0, then the null hypothesis should be rejected.

The question then is how to obtain the statistical evidence for M > 0.
Claeskens and Hart proposed using Akaike’s AIC (see Section 9.3). Let [,

denote the maximized log-likelihood function under fj;, and let ly denote
that under the null density. The AIC can be expressed as

AIC(M) = =25 + 2(Nay — 1), (12.34)

where N, is the number of coefficients ag; involved in Pys and the subtraction
of 1 is due to the integral constraint (12.33) (so Nps — 1 is the number of free
coefficients). It can be shown that Ny = 1+ M (M + 3)/2 (Exercise 12.12).
Thus, the null hypothesis is rejected if

1Sn;\14H%L{AIC(M) — AIC(0)} < 0,

where L is an upper bound for the M under consideration, or, equivalently,

_ 2(ij\/[ — Zg)
Tn = B2 MM +3)
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This is the test statistic proposed by Claeskens and Hart (2009). The authors
stated that the asymptotic null distribution of T}, is that of

1 2
o r(r+3) jzzlxjﬂ’

where x3,X3,... are independent random variables such that X? has a x2-
distribution with j degrees of freedom (j > 2). In practice, a Monte Carlo
method may be used to obtain the large-sample critical values for the test.

12.4 Inference about GLMM

Unlike linear mixed models, the likelihood function under a GLMM typically
does not have an analytic expression. In fact, the likelihood function may
involve high-dimensional intergrals that are difficult to evaluate even numer-
ically. The following is an example.

Ezample 12.9. Suppose that, given the random effects u;,1 < ¢ < my,
and vj,1 < j < mg, binary responses y;5, ¢ = 1,...,m1, j = 1,...,mo, are
conditionally independent such that, with p;; = P(y;; = 1|u,v),

logit(pij) = p + u; + vy,

where p is an unknown parameter, u = (u;)i<i<ms, and v = (Vj)1<j<m,-
Furthermore, the random effects u;’s and v;’s are independent such that u; ~
N(0,0%) and v; ~ N(0,03), where the variances o} and o3 are unknown
Thus, the unknown parameters involved in this model are ¢ = (u, 0%, 03)". It
can be shown (Exercise 12.13) that the likelihood function under this model
for estimating ¥ can be expressed as

ma mo
o~ 5t log(o?) — 32 log(of) + .

mi1 ma
+10g/ / TTTTE + explu+wi +v;)}
i=1j5=1
mi mao 1 mi 1 ma
X exp Zwyi-+2vjy-j—@2 uj - TZ v
i=1 j=1 L=t =
duy - - dgy, dvy - - - dvp,, (12.35)
where ¢ is a constant, y. = Y i i " Y, Y = ZJ 1 Yij, and y.; =

Z;ml ¥ij. The multidimensional integral involved has dimension m; + may
(which increases with the sample size), and it cannot be further simplified.
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Due to the numerical difficulties of computing the maximum likelihood
estimators, some alternative methods of inference have been proposed. One
approach is based on Laplace approximation to integrals (see Section 4.6).
First, note that the likelihood function under the GLMM defined in Section
12.1 can be expressed as

1 & 1
Ly o |G|7Y/? /exp {5 > di— §a'Gla} da,
=1

where the subscript ¢ indicates quasilikelihood and
Hi
Yi —u
d; = =2 / ———du,
i @i(P)v(u)

known as the (quasi-) deviance. What it means is that the method to be de-
veloped does not require the full specification of the conditional distribution
(12.4)—only the first two conditional moments are needed. Here, v() corre-
sponds to the variance function; that is,

var(yi|a) = ai(¢)v(p:) (12.36)

and p; = E(y;|a). In particular, if the underlying conditional distribution
satisfies (12.4), then Ly is the true likelihood. Using Laplace approximation
(4.64), one obtains an approximation to the logarithm of Ly:

1 1 - -
lg~c— 3 log |G| — 3 log |¢" (&)| — q(a), (12.37)

where ¢ does not depend on the parameters,

1 n
q(a) = 3 (Z d; +a'Gloc> ,
=1

and & minimizes g(«). Typically, & is the solution to the equation

/a _ 7104— - lez
¢(a)=G ;ai(¢)’v(ﬂi)gl(ﬂi) >

i

where p; = x}0 + zia. It can be shown that

@) =G P " (12.38)

i=1

where the remainder term r has expectation 0 (Exercise 12.14). If we denote
the term in the denominator of (12.38) by w;” ! and ignore the term r, assuming
that it is in probability of lower order than the leading terms, then we have a
further approximation
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")~ ZWZ+G1,

where Z is the matrix whose ith row is z, and W = diag(ws, ..., w,). Note
that the quantity w; is known as the GLM iterated weights (e.g., McCul-
lagh and Nelder 1989, Section 2.5). By combining approximations (12.37) and
(12.38), one obtains

1 o
lg~e—g <1og I+ Z'WZG|+ > di+ a’G—ld) : (12.39)

i=1

where d; is d; with « replaced by &. A further approximation may be obtained
by assuming that the GLM iterated weights vary slowly as a function of the
mean. Then because the first term inside the (---) in (12.39) depends on 3
only through W, one may ignore this term and thus approximate /4 by

~ L& -
zpq~c§<2di+ac a>. (12.40)

i=1

Approximation (12.40) was first derived by Breslow and Clayton (1993), who
called the procedure penalized quasilikelihood (PQL) by making a connection
to the PQL of Green (1987).

It is clear that a number of approximations are involved in PQL. If the
approximated log-likelihood, [;,q, is used in place of the true log-likelihood,
we need to know how much the approximations affect inference about the
GLMM, which include, in particular, estimation and testing problems. Let
us first consider a testing problem. There is considerable interest, in prac-
tice, in testing for overdispersion, heteroscedasticity, and correlation among
responses. In some cases, the problem is equivalent to testing for zero variance
components. Lin (1997) considered a GLMM that has an ANOVA structure
for the random effects so that g(u) = [g(1:)]1<i<n can be expressed as (12.2),
where a1,...,as are independent vectors of random effects such that the
components of a; are independent with distribution F; whose mean is 0 and
variance is af, 1 < i < s. The null hypothesis is

Hy:0 =---=02=0. (12.41)

Note that under the null hypothesis, there are no random effects involved; so
the GLMM become a GLM. In fact, let § = (07, ...,02) and I(3,6) denote the
second-order Laplace approximate quasi-log-likelihood. The latter is obtained
in the similar way as PQL except using the second-order Taylor expansion
in the Laplace approximation (see Section 4.6). A global score statistic for
testing (12.41) is defined as

X& = Us(B)'1(53) ™" Us(3),

where B is the MLE under the null hypothesis—that is, the MLE under the
GLM, assuming independence of the responses—Upy(f3) is the gradient vector
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with respect to 8 (i.e., dI/06), and I is the information matrix of § evaluated
under Hy, which takes the form

I'=1Ipo — I3pI5;I50

with Igg = E{(al/aa)(al/ael)}, Igg = E{(al/aﬁ)(al/ael)}, and Igg is Ipg with
0 replaced by 3. Note that given the estimator 37 under the null hypothesis,
the information matrix can be estimated, using the properties of the exponen-
tial family (McCullagh and Nelder 1989, p. 350). In fact, Lin (1997) showed
that the information matrix may be estimated when the exponential-family
assumption is replaced by some weaker assumptions on the cumulants of the
responses. Furthermore, the author showed that under some regularity con-
ditions, the global score statistic x% follows a x2-distribution asymptotically
under (12.41). Some optimality of the test was also established. So, for the
above testing problem, the PQL works fine. In fact, the second-order Laplace
approximation is not essential for the asymptotic results to hold. What is
essential is that the Laplace approximation (first or second order) becomes
exactly accurate under the null hypothesis. Also, note that under the null
hypothesis, the observations become independent. Therefore, the asymptotic
distribution can be derived from the CLT for sums of independent random
variables (see Section 6.4).

On the other hand, it is quite a different story for the estimation problems.
First, let us complete the PQL for estimating the variance component param-
eters. Let 6 denote the vector of variance components. So far in the derivation
of PQL we have held 0 fixed. Therefore, the maximizer of /4 depends on 6.
Breslow and Clayton (1993) proposed substituting these “estimators” back
to (12.39) and thus obtaining a profile quasi-log-likelihood function. Further-
more, the authors suggested further approximations that led to a similar form
of REML in linear mixed models. See Breslow and Clayton (1993, pp. 11-12)
for details. However, the procedure is known to lead to inconsistent estimators
of the model parameters. Jiang (1999b) gave an example to demonstrate the
inconsistency of PQL estimators, as follows.

Example 12.10. Consider a special case of the mixed logistic model of
Example 12.3 that can be expressed as

logit{P(yi; = 1)} = 2;0 + i,

where y;;,1 <4 <m,1 < j < ny, are binary responses that are conditionally
independent given the random effects o = () 1<i<m, Tij = (Tijr)1<k<p IS a
vector of covariates, and 3 = (Bk)1<k<p, & vector of unknown fixed effects.
It is assumed that aq,...,q,, are independent and distributed as N(0,c?).
For simplicity, let us assume that o2 is known and that n;,1 < i < m, are
bounded. The z;j;’s are assumed to be bounded as well. Let ¢;(t, 5) denote
the unique solution u to the following equation:
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U
— > h(aB+u) =t, (12.42)
j=1

where h(z) = e*/(1 4 €*) (Exercise 12.15). Then the PQL estimator of 3 is
the solution to the following equation:

Z Z{yw (x}; 8+ a&)}age =0, 1<k<p, (12.43)
=1 j=1
where &; = ¢;(y;., 3) with y;. = Z;;l y;j- Denote this solution by 8.

Suppose that ﬁ is consistent; that is, ﬁ N (. 