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Preface to the Second Edition

As the new title indicates, this second edition of Log-Linear Models has
been modified to place greater emphasis on logistic regression. In addition
to new material, the book has been radically rearranged. The fundamental
material is contained in Chapters 1-4. Intermediate topics are presented in
Chapters 5 through 8. Generalized linear models are presented in Chap-
ter 9. The matrix approach to log-linear models and logistic regression is
presented in Chapters 10-12, with Chapters 10 and 11 at the applied Ph.D.
level and Chapter 12 doing theory at the Ph.D. level.
The largest single addition to the book is Chapter 13 on Bayesian bino-

mial regression. This chapter includes not only logistic regression but also
probit and complementary log-log regression. With the simplicity of the
Bayesian approach and the ability to do (almost) exact small sample sta-
tistical inference, I personally find it hard to justify doing traditional large
sample inferences. (Another possibility is to do exact conditional inference,
but that is another story.)
Naturally, I have cleaned up the minor flaws in the text that I have found.

All examples, theorems, proofs, lemmas, etc. are numbered consecutively
within each section with no distinctions between them, thus Example 2.3.1
will come before Proposition 2.3.2. Exercises that do not appear in a section
at the end have a separate numbering scheme. Within the section in which
it appears, an equation is numbered with a single value, e.g., equation (1).
When reference is made to an equation that appears in a different section,
the reference includes the appropriate chapter and section, e.g., equation
(2.1.1).
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The primary prerequisite for using this book is knowledge of analysis
of variance and regression at the masters degree level. It would also be
advantageous to have some prior familiarity with the analysis of two-way
tables of count data. Christensen (1996a) was written with the idea of
preparing people for this book and for Christensen (1996b). In addition,
familiarity with masters level probability and mathematical statistics would
be helpful, especially for the later chapters. Sections 9.3, 10.2, 11.6, and 12.3
use ideas of the convergence of random variables. Chapter 12 was originally
the last chapter in my linear models book, so I would recommend a good
course in linear models before attempting that. A good course in linear
models would also help for Chapters 10 and 11.
The analysis of logistic regression and log-linear models is not possible

without modern computing. While it certainly is not the goal of this book
to provide training in the use of various software packages, some examples
of software commands have been included. These focus primarily on SAS
and BMDP, but include some GLIM (of which I am still very fond).
I would particularly like to thank Ed Bedrick for his help in preparing

this edition and Ed and Wes Johnson for our collaboration in developing
the material in Chapter 13. I would also like to thank Turner Ostler for
providing the trauma data and his prior opinions about it.
Most of the data, and all of the larger data sets, are available from

STATLIB as well as by anonymous ftp. The web address for the datasets
option in STATLIB is http://www.stat.cmu.edu/datasets/. The data
are identified as “christensen-llm”. To use ftp, type ftp stat.unm.edu and
login as “anonymous”, enter cd /pub/fletcher and either get llm.tar.Z
for Unix machines or llm.zip for a DOS version. More information is avail-
able from the file “readme.llm” or at http://stat.unm.edu/∼fletcher,
my web homepage.

Ronald Christensen
Albuquerque, New Mexico

February, 1997

BMDP Statistical Software is distributed by SPSS Inc., 444 N. Michigan
Avenue, Chicago, IL, 60611, telephone: (800) 543-2185.

MINITAB is a registered trademark of Minitab, Inc., 3081 Enterprise Drive,
State College, PA 16801, telephone: (814) 238-3280, telex: 881612.

MSUSTAT is marketed by the Research and Development Institute Inc.,
Montana State University, Bozeman, MT 59717-0002, Attn: R.E. Lund.



Preface to the First Edition

This book examines log-linear models for contingency tables. Logistic re-
gression and logistic discrimination are treated as special cases and gener-
alized linear models (in the GLIM sense) are also discussed. The book is
designed to fill a niche between basic introductory books such as Fienberg
(1980) and Everitt (1977) and advanced books such as Bishop, Fienberg,
and Holland (1975), Haberman (1974a), and Santner and Duffy (1989). It
is primarily directed at advanced Masters degree students in Statistics but
it can be used at both higher and lower levels. The primary theme of the
book is using previous knowledge of analysis of variance and regression to
motivate and explicate the use of log-linear models. Of course, both the
analogies and the distinctions between the different methods must be kept
in mind.
[From the first edition, Chapters I, II, and III are about the same as the

new 1, 2, and 3. Chapter IV is now Chapters 5 and 6. Chapter V is now 7,
VI is 10, VII is 4 (and the sections are rearranged), VIII is 11, IX is 8, X
is 9, and XV is 12.]
The book is written at several levels. A basic introductory course would

take material from Chapters I, II (deemphasizing Section II.4), III, Sec-
tions IV.1 through IV.5 (eliminating the material on graphical models),
Section IV.10, Chapter VII, and Chapter IX. The advanced modeling ma-
terial at the end of Sections VII.1, VII.2, and possibly the material in
Section IX.2 should be deleted in a basic introductory course. For Mas-
ters degree students in Statistics, all the material in Chapters I through
V, VII, IX, and X should be accessible. For an applied Ph.D. course or for
advanced Masters students, the material in Chapters VI and VIII can be
incorporated. Chapter VI recapitulates material from the first five chapters
using matrix notation. Chapter VIII recapitulates Chapter VII. This ma-
terial is necessary (a) to get standard errors of estimates in anything other
than the saturated model, (b) to explain the Newton-Raphson (iteratively
reweighted least squares) algorithm, and (c) to discuss the weighted least
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squares approach of Grizzle, Starmer, and Koch (1969). I also think that
the more general approach used in these chapters provides a deeper un-
derstanding of the subject. Most of the material in Chapters VI and VIII
requires no more sophistication than matrix arithmetic and being able to
understand the definition of a column space. All of the material should be
accessible to people who have had a course in linear models. Throughout
the book, Chapter XV of Christensen (1987) is referenced for technical de-
tails. For completeness, and to allow the book to be used in nonapplied
Ph.D. courses, Chapter XV has been reprinted in this volume under the
same title, Chapter XV.
The prerequisites differ for the various courses described above. At a

minimum, readers should have had a traditional course in statistical meth-
ods. To understand the vast majority of the book, courses in regression,
analysis of variance, and basic statistical theory are recommended. To fully
appreciate the book, it would help to already know linear model theory.
It is difficult for me to understand but many of my acquaintance view

me as quite opinionated. While I admit that I have not tried to keep my
opinions to myself, I have tried to clearly acknowledge them as my opinions.
There are many people I would like to thank in connection with this

work. My family, Sharon and Fletch, were supportive throughout. Jackie
Damrau did an exceptional job of typing the first draft. The folks at BMDP
provided me with copies of 4F, LR, and 9R. MINITAB provided me with
Versions 6.1 and 6.2. Dick Lund gave me a copy of MSUSTAT. All of the
computations were performed with this software or GLIM. Several people
made valuable comments on the manuscript; these include Rahman Azari,
Larry Blackwood, Ron Schrader, and Elizabeth Slate. Joe Hill introduced
me to statistical applications of graph theory and convinced me of their
importance and elegance. He also commented on part of the book. My
editors, Steve Fienberg and Ingram Olkin, were, as always, very helpful.
Like many people, I originally learned about log-linear models from Steve’s
book. Two people deserve special mention for how much they contributed
to this effort. I would not be the author of this book were it not for the
amount of support provided in its development by Ed Bedrick and Wes
Johnson. Wes provided much of the data used in the examples. I suppose
that I should also thank the legislature of the state of Montana. It was
their penury, while I worked at Montana State University, that motivated
me to begin the project in the spring of 1987. If you don’t like the book,
blame them!

Ronald Christensen
Albuquerque, New Mexico

April 5, 1990
(Happy Birthday Dad)
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1
Introduction

This book is concerned with the analysis of cross-classified categorical data
using log-linear models and with logistic regression. Log-linear models have
two great advantages: they are flexible and they are interpretable. Log-
linear models have all the modeling flexibility that is associated with anal-
ysis of variance and regression. They also have natural interpretations in
terms of odds and frequently have interpretations in terms of indepen-
dence. This book also examines logistic regression and logistic discrimi-
nation, which typically involve the use of continuous predictor variables.
Actually, these are just special cases of log-linear models. There is a wide lit-
erature on log-linear models and logistic regression and a number of books
have been written on the subject. Some additional references on log-linear
models that I can recommend are: Agresti (1984, 1990), Andersen (1991),
Bishop, Fienberg, and Holland (1975), Everitt (1977), Fienberg (1980),
Haberman (1974a), Plackett (1981), Read and Cressie (1988), and Sant-
ner and Duffy (1989). Cox and Snell (1989) and Hosmer and Lemeshow
(1989) have written books on logistic regression. One reason I can recom-
mend these is that they are all quite different from each other and from
this book. There are differences in level, emphasis, and approach. This is
by no means an exhaustive list; other good books are available.
In this chapter we review basic information on conditional independence,

random variables, expected values, variances, standard deviations, covari-
ances, and correlations. We also review the distributions most commonly
used in the analysis of contingency tables: the binomial, the multinomial,
product multinomials, and the Poisson. Christensen (1996a, Chapter 1)
contains a more extensive review of most of this material.



2 1. Introduction

1.1 Conditional Probability and Independence

This section introduces two subjects that are fundamental to the analysis
of count data. Both subjects are quite elementary, but they are used so
extensively that a detailed review is in order. One subject is the definition
and use of odds. We include as part of this subject the definition and use
of odds ratios. The other is the use of independence and conditional in-
dependence in characterizing probabilities. We begin with a discussion of
odds.
Odds will be most familiar to many readers from their use in sporting

events. They are not infrequently confused with probabilities. (I once at-
tended an American Statistical Association chapter meeting at which a
government publication on the Montana state lottery was disbursed that
presented probabilities of winning but called them odds of winning.) In
log-linear model analysis and logistic regression, both odds and ratios of
odds are used extensively.
Suppose that an event, say, the sun rising tomorrow, has a probability

p. The odds of that event are

Odds =
p

1 − p
=

Pr (Event Occurs)
Pr (Event Does Not Occur)

.

Thus, supposing the probability that the sun will rise tomorrow is .8, the
odds that the sun will rise tomorrow are .8/.2 = 4. Writing 4 as 4/1, it
might be said that the odds of the sun rising tomorrow are 4 to 1. The fact
that the odds are greater than one indicates that the event has a probability
of occurring greater than one-half. Conversely, if the odds are less than one,
the event has probability of occurring less than one-half. For example, the
probability that the sun will not rise tomorrow is 1− .8 = .2 and the odds
that the sun will not rise tomorrow are .2/.8 = 1/4.
The larger the odds, the larger the probability. The closer the odds are to

zero, the closer the probability is to zero. In fact, for probabilities and odds
that are very close to zero, there is essentially no difference between the
numbers. As for all lotteries, the probability of winning big in the Montana
state lottery was very small. Thus, the mistake alluded to above is of no
practical importance. On the other hand, as probabilities get near one, the
corresponding odds approach infinity.
Given the odds that an event occurs, the probability of the event is easily

obtained. If the odds are O, then the probability p is easily seen to be

p =
O

O + 1
.

For example, if the odds of breaking your wrist in a severe bicycle accident
are .166, the probability of breaking your wrist is .166/1.166 = .142 or
about 1/7. Note that even at this level, the numerical values of the odds
and the probability are similar.
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Examining odds really amounts to a rescaling of the measure of uncer-
tainty. Probabilities between zero and one half correspond to odds between
zero and one. Probabilities between one half and one correspond to odds be-
tween one and infinity. Another convenient rescaling is the log of the odds.
Probabilities between zero and one half correspond to log odds between
minus infinity and zero. Probabilities between one half and one correspond
to odds between zero and infinity. The log odds scale is symmetric about
zero just as probabilities are symmetric about one half. One unit above zero
is comparable to one unit below zero. From above, the log odds that the
sun will rise tomorrow are log(4), while the log odds that it will not rise are
log(1/4) = − log(4). These numbers are equidistant from the center 0. This
symmetry of scale fails for the odds. The odds of 4 are three units above
the center 1, while the odds of 1/4 are three-fourths of a unit below the
center. For most mathematical purposes, the log odds are a more natural
transformation than the odds.

Example 1.1.1. N.F.L. Football
On January 5, 1990, I decided how much of my meager salary to bet on
the upcoming Superbowl. There were eight teams still in contention. The
Albuquerque Journal reported Harrah’s Odds for each team. The teams
and their odds are given below.

Team Odds
San Francisco Forty-Niners even
Denver Broncos 5 to 2
New York Giants 3 to 1
Cleveland Browns 9 to 2
Los Angeles Rams 5 to 1
Minnesota Vikings 6 to 1
Buffalo Bills 8 to 1
Pittsburgh Steelers 10 to 1

These odds were designed for the benefit of Harrah’s and were not really
anyone’s idea of the odds that the various teams would win. (This will
become all too clear later.) Nonetheless, we examine these odds as though
they determine probabilities for winning the Superbowl as of January 5,
1990, and their implications for my early retirement. The discussion of
betting is quite general. I have no particular knowledge of how Harrah’s
works these things.
The odds on the Vikings are 6 to 1. These are actually the odds that the

Vikings will not win the Superbowl. The odds are a ratio, 6/1 = 6. The
probabilities are

Pr (Vikings do not win) =
6

6 + 1
=

6
7
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and

Pr (Vikings win) =
1
6

1
6 + 1

=
1

1 + 6
=

1
7
.

Similarly, the odds on Denver are 5 to 2 or 5/2. The probabilities are

Pr (Broncos do not win) =
5
2

5
2 + 1

=
5

5 + 2
=

5
7

and

Pr (Broncos win) =
2
5

2
5 + 1

=
2

5 + 2
=

2
7
.

San Francisco is even money, so their odds are 1 to 1. The probabilities of
winning for all eight teams are given below.

Team Probability of Winning
San Francisco Forty-Niners .50
Denver Broncos .29
New York Giants .25
Cleveland Browns .18
Los Angeles Rams .17
Minnesota Vikings .14
Buffalo Bills .11
Pittsburgh Steelers .09

There is a peculiar thing about these probabilities: They should add up
to 1 but do not. One of these eight teams had to win the 1990 Superbowl,
so the probability of one of them winning must be 1. The eight events are
disjoint, e.g., if the Vikings win, the Broncos cannot, so the sum of the
probabilities should be the probability that any of the teams wins. This
leads to a contradiction. The probability that any of the teams wins is

.50 + .29 + .25 + .18 + .17 + .14 + .11 + .09 = 1.73 �= 1.

All of the odds have been deflated. The probability that the Vikings win
should not be .14 but .14/1.73 = .0809. The odds against the Vikings
should be (1 − .0809)/.0809 = 11.36. Rounding this to 11 gives the odds
against the Vikings as 11 to 1 instead of the reported 6 to 1. This has severe
implications for my early retirement.
The idea behind odds of 6 to 1 is that if I bet $100 on the Vikings and

they win, I should win $600 and also have my original $100 returned. Of
course, if they lose I am out my $100. According to the odds calculated
above, a fair bet would be for me to win $1100 on a bet of $100. (Actually,
I should get $1136 but what is $36 among friends.) Here, “fair” is used in a
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technical sense. In a fair bet, the expected winnings are zero. In this case,
my expected winnings for a fair bet are

1136(.0809) − 100(1 − .0809) = 0.

It is what I win times the probability that I win minus what I lose times
the probability that I lose. If the probability of winning is .0809 and I get
paid off at a rate of 6 to 1, my expected winnings are

600(.0809) − 100(1 − .0809) = −43.4.

I don’t think I can afford that. In fact, a similar phenomenon occurs for
a bet on any of the eight teams. If the probabilities of winning add up to
more than one, the true expected winnings on any bet will be negative.
Obviously, it pays to make the odds rather than the bets.
Not only odds but ratios of odds arise naturally in the analysis of logistic

regression and log-linear models. It is important to develop some familiarity
with odds ratios. The odds on San Francisco, Los Angeles, and Pittsburgh
are 1 to 1, 5 to 1, and 10 to 1, respectively. Equivalently, the odds that
each team will not win are 1, 5, and 10. Thus, L.A. has odds of not winning
that are 5 times larger than San Francisco’s and Pittsburgh’s are 10 times
larger than San Francisco’s. The ratio of the odds of L.A. not winning to
the odds of San Francisco not winning is 5/1 = 5. The ratio of the odds of
Pittsburgh not winning to San Francisco not winning is 10/1 = 10. Also,
Pittsburgh has odds of not winning that are twice as large as L.A.’s, i.e.,
10/5 = 2.
An interesting thing about odds ratios is that, say, the ratio of the odds

of Pittsburgh not winning to the odds of L.A. not winning is the same as
the ratio of the odds of L.A. winning to the odds of Pittsburgh winning. In
other words, if Pittsburgh has odds of not winning that are 2 times larger
than L.A.’s, L.A. must have odds of winning that are 2 times larger than
Pittsburgh’s. The odds of L.A. not winning are 5 to 1, so the odds of them
winning are 1 to 5 or 1/5. Similarly, the odds of Pittsburgh winning are
1/10. Clearly, L.A. has odds of winning that are 2 times those of Pittsburgh.
The odds ratio of L.A. winning to Pittsburgh winning is identical to the
odds ratio of Pittsburgh not winning to L.A. not winning. Similarly, San
Francisco has odds of winning that are 10 times larger than Pittsburgh’s
and 5 times as large as L.A.’s.
In logistic regression and log-linear model analysis, one of the most com-

mon uses for odds ratios is to observe that they equal one. If the odds
ratio is one, the two sets of odds are equal. It is certainly of interest in a
comparative study to be able to say that the odds of two things are the
same. In this example, none of the odds ratios that can be formed is one
because no odds are equal.
Another common use for odds ratios is to observe that two of them are

the same. For example, the ratio of the odds of Pittsburgh not winning
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relative to the odds of L.A. not winning is the same as the ratio of the
odds of L.A. not winning to the odds of the Denver not winning. We have
already seen that the first of these values is 2. The odds for L.A. not winning
relative to Denver not winning are also 2 because 5

1/
5
2 = 2. Even when the

corresponding odds are different, odds ratios can be the same.

Marginal and conditional probabilities play important roles in logistic
regression and log-linear model analysis. If Pr(B) > 0, the conditional
probability of A given B is

Pr(A|B) =
Pr(A ∩ B)
Pr(B)

.

It is the proportion of the probability of B in which A also occurs. To deal
with conditional probabilities when Pr(B) = 0 requires much more sophis-
tication. It is an important topic in dealing with continuous observations,
but it is not something we need to consider.
If knowing that B occurs does not change your information about A,

then A is independent of B. Specifically, A is independent of B if

Pr(A|B) = Pr(A) .

This definition gets tied up in details related to the requirement that
Pr(B) > 0. A simpler and essentially equivalent definition is that A and B
are independent if

Pr(A ∩ B) = Pr(A)Pr(B) .

Example 1.1.2. Table 1.1 contains probabilities for nine combinations
of hair and eye color. The nine outcomes are all combinations of three hair
colors, Blond (BlH), Brown (BrH), and Red (RH), and three eye colors,
Blue (BlE), Brown (BrE), and Green (GE).

Table 1.1
Hair-Eye Color Probabilities

Eye Color
Blue Brown Green

Blond .12 .15 .03
Hair Color Brown .22 .34 .04

Red .06 .01 .03

The (marginal) probabilities for the various hair colors are obtained by
summing over the rows:

Pr(BlH) = .12 + .15 + .03 = .3
Pr(BrH) = .6
Pr(RH) = .1 .
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Probabilities for eye colors come from summing the columns. Blue, Brown,
and Green eyes have probabilities .4, .5, and .1, respectively. The condi-
tional probability of Blond Hair given Blue Eyes is

Pr(BlH|BlE) = Pr((BlH,BlE))/Pr(BlE)
= .12/.4
= .3 .

Note that Pr(BlH|BlE) = Pr(BlH), so the events BlH and BlE are in-
dependent. In other words, knowing that someone has blue eyes gives no
additional information about whether that person has blond hair.
On the other hand,

Pr(BrH|BlE) = .22/.4
= .55 ,

while
Pr(BrH) = .6,

so knowing that someone has blue eyes tells us that they are relatively less
likely to have brown hair.
Now condition on blond hair,

Pr(BlE|BlH) = .12/.3 = .4 = Pr(BlE) .

We again see that BlE and BlH are independent. In fact, it is also true that

Pr(BrE|BlH) = Pr(BrE)

and
Pr(GE|BlH) = Pr(GE) .

Knowing that someone has blond hair gives no additional information about
any eye color.

Example 1.1.3. Consider the eight combinations of three factors: eco-
nomic status (High, Low), residence (Montana, Haiti), and beverage of
preference (Beer, Other). Probabilities are given below.

Beer Other Total
Montana Haiti Montana Haiti

High .021 .009 .049 .021 .1
Low .189 .081 .441 .189 .9
Total .210 .090 .490 .210 1.0

The factors in this table are completely independent. If we condition on
either beverage category, then economic status and residence are indepen-
dent. If we condition on either residence, then economic status and beverage
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are independent. If we condition on either economic status, residence and
beverage are independent. No matter what you condition on and no matter
what you look at, you get independence. For example,

Pr(High|Montana, Beer) = .021/.210
= .1
= Pr(High) .

Similarly, knowing that someone has low economic status gives no addi-
tional information relative to whether their residence is Montana or Haiti.
The phenomenon of complete independence is characterized by the fact

that every probability in the table is the product of the three corresponding
marginal probabilities. For example,

Pr(Low, Montana, Beer) = .189
= (.9)(.7)(.3)
= Pr(Low)Pr(Montana)Pr(Beer) .

Example 1.1.4. Consider the eight combinations of socioeconomic sta-
tus (High, Low), political philosophy (Liberal, Conservative), and political
affiliation (Democrat, Republican). Probabilities are given below.

Democrat Republican Total
Liberal Conservative Liberal Conservative

High .12 .12 .04 .12 .4
Low .18 .18 .06 .18 .6
Total .30 .30 .10 .30 1.0

For any combination in the table, one of the three factors, socioeconomic
status, is independent of the other two, political philosophy and political
affiliation. For example,

Pr(High,Liberal,Republican) = .04
= (.4)(.1)
= Pr(High)Pr(Liberal,Republican) .

However, the other divisions of the three factors into two groups do not
display this property. Political philosophy is not always independent of
socioeconomic status and political affiliation, e.g.,

Pr(High,Liberal,Republican) = .04
�= (.4)(.16)
= Pr(Liberal)Pr(High,Republican) .
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Also, political affiliation is not always independent of socioeconomic status
and political philosophy, e.g.,

Pr(High,Liberal,Republican) = .04
�= (.4)(.16)
= Pr(Republican)Pr(High,Liberal) .

Example 1.1.5. Consider the twelve outcomes that are all combinations
of three factors, one with three levels and two with two levels. The factors
and levels are given below. They are similar to those in a study by Reiss
et al. (1975) that was reported in Fienberg (1980).

Factor Levels
Attitude on Extramarital Coitus Always Wrong, Not Always Wrong
Virginity Virgin, Nonvirgin
Use of Contraceptives Regular, Intermittent, None

The probabilities are

Use of Contraceptives
Regular

Virgin Nonvirgin
Always Wrong 3/50 12/50
Not Always 3/50 12/50

Intermittent
Virgin Nonvirgin

Always Wrong 1/80 2/80
Not Always 3/80 2/80

None
Virgin Nonvirgin

Always Wrong 3/40 1/40
Not Always 6/40 2/40

Consider the relationship between attitude and virginity given regular
use of contraceptives. The probability of regular use is

Pr(Regular) =
3
50

+
3
50

+
12
50

+
12
50

= 30/50 .

The conditional probabilities given regular use are computed by dividing
the entries in the 2×2 subtable for regular use by the (marginal) probability
of regular use, 30/50, e.g., the probability for Always Wrong, Virgin given
Regular is (3/50)

/
(30/50) = .1.
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Conditional Probabilities Given
Regular Use of Contraceptives

Virgin Nonvirgin Total
Always Wrong .1 .4 .5
Not Always .1 .4 .5
Total .2 .8 1.0

Note that each entry is the product of the row total and the column total,
e.g.,

Pr(Always Wrong and Virgin|Regular)
= .1
= (.2)(.5)
= Pr(Always Wrong|Regular)Pr(Virgin|Regular) .

Because this is true for the entire 2 × 2 table, attitude and virginity are
independent given regular use of contraceptives.
Similarly, the conditional probabilities given no use of contraceptives are

Virgin Nonvirgin Total
Always Wrong 3/12 1/12 1/3
Not Always 6/12 2/12 2/3
Total 3/4 1/4 1

Again, it is easily seen that attitude and virginity are independent given
no use of contraceptives.
Although we have independence given either no use or regular use, the

probabilities of virginity and attitude change drastically. For regular use,
nonvirginity is four times more probable than virginity. For no use, virginity
is three times more probable. For regular use, attitudes are evenly split. For
no use, the attitude that extramarital coitus is not always wrong is twice
as probable as the attitude that it is always wrong.
If the conditional probabilities given intermittent use also display inde-

pendence, we can describe the entire table as having attitude and virginity
independent given use. Unfortunately, this does not occur. Conditional on
intermittent use, the probabilities are

Virgin Nonvirgin Total
Always Wrong 1/8 1/4 3/8
Not Always 3/8 1/4 5/8
Total 1/2 1/2 1

Virgins are three times as likely to think extramarital coitus is not always
wrong, but nonvirgins are evenly split.
Conditional odds are readily obtained from the unconditional probabili-

ties and other conditional probabilities. The odds that a virgin intermittent
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contraceptive user thinks that extramarital coitus is not always wrong are

Pr(Not Always|Virgin, intermittent use)
Pr(Always Wrong|Virgin, intermittent use)

=
Pr(Not Always, Virgin|intermittent use)

Pr(Always Wrong, Virgin|intermittent use)

=
Pr(Not Always, Virgin, intermittent use)

Pr(Always Wrong, Virgin, intermittent use)
= 3 .

The reader should verify that all of these probability ratios give 3/1. Simi-
larly, the odds that a nonvirgin intermittent contraceptive user thinks that
extramarital coitus is not always wrong is

Pr(Not Always|Nonvirgin, intermittent use)
Pr(Always Wrong|Nonvirgin, intermittent use)

= (1/4)
/
(1/4)

= (2/80)
/
(2/80)

= 1 .

The odds for virgin intermittent users are different than for nonvirgin in-
termittent users; thus, independence does not hold. For nonusers, the odds
for both virgins and nonvirgins are 2, so independence holds. For regular
users, the odds for both virgins and nonvirgins are 1, so again indepen-
dence holds. Rather than checking for equality of the odds for virgins and
nonvirgins, we could look at the ratio of the odds. If the odds ratio is one,
then the odds are equal and conditional independence given a particular
use holds.

1.2 Random Variables and Expectations

A random variable is simply a function from a set of outcomes to the
real numbers. A discrete random variable is one that takes on values in a
countable set. The distribution of a discrete random variable is a list of the
possible values for the random variable along with the probabilities that
the values will occur. The expected value of a random variable is a number
that characterizes the middle of the distribution. For a random variable y
with a discrete distribution, the expected value is

E(y) =
∑

all r
rPr(y = r) .

Distributions with the same expected value can be very different. For
example, the expected value indicates the middle of a distribution but
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does not indicate how spread out it is. The variance is a measure of how
spread out a distribution is from its expected value. Let E(y) = µ, then the
variance of y is

Var(y) =
∑

all r
(r − µ)2Pr(y = r) .

One problem with the variance is that it is measured on the wrong scale.
If y is measured in meters, Var(y) involves the terms (r − µ)2; hence, it is
measured in meters squared. To get things back on a comparable scale, we
consider the standard deviation of y

Std. dev.(y) =
√
Var(y) .

Standard deviations and variances are useful as measures of the relative
dispersions of different random variables. The actual numbers themselves
do not mean much. Moreover, there are other equally good measures of
dispersion that can give results that are inconsistent with these. One rea-
son standard deviations and variances are so widely used is because they
are convenient mathematically. Of particular importance in applied work
is the fact that the commonly used normal (Gaussian) distributions are
completely characterized by their expected values (means) and variances.
With these two numbers, one knows everything about a normal distribu-
tion. Normal distributions are widely used in statistics, so variances and
their cousins, standard deviations, are also widely used.
The covariance is a measure of the linear relationship between two ran-

dom variables. Suppose y1 and y2 are random variables. Let E(y1) = µ1
and E(y2) = µ2. The covariance between y1 and y2 is

Cov(y1, y2) =
∑

all (r,s)
(r − µ1)(s − µ2)Pr(y1 = r, y2 = s) .

It is immediate that

Var(y1) = Cov(y1, y1) .

In an attempt to get a handle on what the numerical value of the covari-
ance means, it is often rescaled into a correlation coefficient.

Corr(y1, y2) = Cov(y1, y2)
/√

Var(y1)Var(y2) .

A perfect increasing linear relationship is indicated by a 1. A perfect de-
creasing linear relationship gives a −1. The absence of any linear relation-
ship is indicated by a value of 0.
Exercise 1.6.5 contains important results on the expected values, vari-

ances, and covariances of linear combination of random variables.
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1.3 The Binomial Distribution

There are a few distributions that are used in the vast majority of statistical
applications. The reason for this is that they tend to occur naturally. The
normal distribution is one. It occurs in practice because the central limit
theorem dictates that other distributions will approach the normal. Two
other distributions, the binomial and the multinomial, occur in practice
because they are so simple. A fourth distribution, the Poisson, also occurs
in nature because it is the distribution arrived at in another limit theorem.
In this section, we discuss the binomial. Subsequent sections discuss the
multinomial and the Poisson.
If you have independent identical trials and are counting how often some-

thing (anything) occurs, the appropriate distribution is the binomial. What
could be simpler? Typically, the outcome of interest is referred to as a suc-
cess. If the probability of a success is p in each of N independent identical
trials, then the number of successes n has a binomial distribution with
parameters N and p. Write

n ∼ Bin(N, p) .

The distribution of n is

Pr(n = r) =
(
N

r

)
pr(1 − p)N−r

for r = 0, 1, . . . , N . Here,
(
N

r

)
=

N !
r!(N − r)!

and for any positive integer m, m! = m(m − 1)(m − 2) · · · (2)(1).
Given the distribution, we can find the mean (expected value) and vari-

ance. By definition, the mean is

E(n) =
N∑

r=0

r

(
N

r

)
pr(1 − p)N−r .

By writing n as the sum of N independent Bin(1, p) random variables and
using Exercise 1.6.5a, it is easily seen that

E(n) = Np .

The variance of n is

Var(n) =
N∑

r=0

(r − Np)2
(
N

r

)
pr(1 − p)N−r .
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Again, by writing n as the sum of N independent Bin (1, p) random vari-
ables and now using Exercise 1.6.5b, it is easily seen that

Var(n) = Np(1 − p) .

In this book, we will often need to look at both the number of successes
and the number of failures at the same time. If the number of successes is
n1 and the number of failures is n2, then

n2 = N − n1

n1 ∼ Bin(N, p)

and
n2 ∼ Bin(N, 1 − p) .

The last result holds because, with independent identical trials, the number
of outcomes that we call failures must also have a binomial distribution. If
p is the probability of success, the probability of failure is 1− p. Of course,

E(n2) = N(1 − p)
Var(n2) = N(1 − p)p .

Note that Var(n1) = Var(n2), regardless of the value of p. Finally,

Cov(n1, n2) = −Np(1 − p)

and
Corr(n1, n2) = −1 .

There is a perfect linear relationship between n1 and n2. If n1 goes up one
unit, n2 goes down one unit. When we look at both successes and failures,
write

(n1, n2) ∼ Bin
(
N, p, (1 − p)

)
.

1.4 The Multinomial Distribution

The multinomial distribution is a generalization of the binomial to more
than two categories. Suppose we have N independent identical trials. On
each trial, we check to see which of q events occurs. In such a situation,
we assume that on each trial, one of the q events must occur. Let ni,
i = 1, . . . , q, be the number of times that the ith event occurs. Let pi be
the probability that the ith event occurs on any trial. Note that the pi’s
must satisfy p1+p2+ · · ·+pq = 1. In this situation, we say that (n1, . . . , nq)
has a multinomial distribution with parameters N, p1, . . . , pq. Write

(n1, . . . , nq) ∼ Mult(N, p1, . . . , pq) .
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The distribution is

Pr(n1 = r1, . . . , nq = rq) =
N !

r1! · · · rq! p
r1
1 · · · prq

q

=
N !

∏q
i=1 ri!

q∏

i=1

pri
i

for ri ≥ 0 and r1 + · · ·+ rq = N . Note that if q = 2, this is just a binomial
distribution. In general, each individual component is

ni ∼ Bin(N, pi)

so
E(ni) = Npi

and
Var(ni) = Npi(1 − pi) .

Also, it can be shown that

Cov(ni, nj) = −Npipj for i �= j .

Example 1.4.1. In Example 1.1.4, probabilities were given for the eight
categories determined by combining high and low socioeconomic status,
liberal and conservative political philosophy, and Democratic and Republi-
can political affiliation. Suppose a sample of 50 individuals was taken from
a population that had the probabilities associated with Example 1.1.4,

Democrat Republican
Liberal Conservative Liberal Conservative Total

High .12 .12 .04 .12 .4
Low .18 .18 .06 .18 .6

The number of individuals falling into each of the eight categories has a
multinomial distribution with N = 50 and these pi’s. The expected num-
bers of observations for each category are given by Npi. It is easily seen
that the expected counts for the cells are

Democrat Republican
Liberal Conservative Liberal Conservative

High 6 6 2 6
Low 9 9 3 9

Note that the expected counts need not be integers.
The variance for, say, the number of high liberal Republicans is

50(.04)(1 − .04) = 1.92. The variance of the number of high liberal
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Democrats is 50(.12)(1 − .12) = 5.28. The covariance between the number
of high liberal Republicans and the number of high liberal Democrats is
−50(.04)(.12) = −.24. The correlation between the numbers of high liberal
Democrats and Republicans is −.24/

√
(1.92)(5.28) = −0.075.

Now, suppose that the 50 individuals fall into the categories as listed in
the table below.

Democrat Republican
Liberal Conservative Liberal Conservative

High 5 7 4 6
Low 8 7 3 10

The probability of getting this particular table is

50!
5!7!4!6!8!7!3!10!

(.12)5(.12)7(.04)4(.12)6(.18)8(.18)7(.06)3(.18)10 = .000007.

The fact that this is a very small number is not surprising. There are a lot
of possible tables, so the probability of getting any particular one is small.
In fact, the table that has the highest probability can be shown to have a
probability of only .000142. Although this probability is also very small, it
is more than 20 times larger than the probability of the table given above.

Product-Multinomial Distributions
For i = 1, . . . , t, take independent multinomials where the ith has si possi-
ble outcomes, i.e.,

(ni1, . . . , nisi) ∼ Mult(Ni, pi1, . . . , pisi) ;

then we say that the nij ’s have a product-multinomial distribution. By
independence, the probability of any set of outcomes, say Pr(nij = rij all
i, j), is the product of the multinomial probabilities for each i. In other
notation,

Pr(nij = rij all i, j) =
t∏

i=1

Pr(nij = rij all j)

and for rij ≥ 0, j = 1, . . . , si, with
si∑

j=1

rij = Ni, we have

Pr(nij = rij all j) =



Ni!
/ si∏

j=1

rij !




si∏

j=1

(pij)rij .

Thus,

Pr(nij = rij all i, j) =
t∏

i=1



Ni!
/ si∏

j=1

rij !




si∏

j=1

(pij)rij ,
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where rij ≥ 0 all i, j and ri1 + · · · + risi = Ni for all i. Expected values,
variances, and covariances within a particular multinomial are obtained by
ignoring the other multinomials. Covariances between counts in different
multinomials are zero because such observations are independent.

Example 1.4.2. In Example 1.4.1 we considered taking a sample of 50
people from a population with the probabilities given in Example 1.1.4.
Suppose we can identify and sample two subpopulations, the high socioe-
conomic group and the low socioeconomic group. If we take independent
random samples of 30 from the high group and 20 from the low group, the
numbers of individuals in the eight categories has a product-multinomial
distribution with t = 2, N1 = 30, s1 = 4, N2 = 20, and s2 = 4. The proba-
bilities of the four categories associated with high socioeconomic status are
the conditional probabilities given high status. For example, the probabil-
ity of a liberal Republican in the high group is .04/.4 = .1; the probability
of a liberal Democrat is .12/.4 = .3. Similarly, the probability of a liberal
Republican in the low socioeconomic group is .06/.6 = .1. The table of
probabilities appropriate for the product-multinomial sampling described
is the table of conditional probabilities given socioeconomic status:

Democrat Republican
Liberal Conservative Liberal Conservative Total

High .3 .3 .1 .3 1.0
Low .3 .3 .1 .3 1.0

Although the probabilities for each category are the same for both high and
low status, this is just an oddity of the particular example under considera-
tion. Typically, the probabilities will be different in the different groups. In
fact, the different groups do not even need to be divided into the same cate-
gories, although in most of our applications, the categories will be identical
for all groups.
The expected counts for cells are computed separately for each multino-

mial. The expected count for high liberal Republicans is 30(.1) = 3. With
samples of 30 from the high group and 20 from the low group, the expected
counts are

Democrat Republican
Liberal Conservative Liberal Conservative Total

High 9 9 3 9 30
Low 6 6 2 6 20

Similarly, variances and covariances are found for each multinomial sepa-
rately. The variance of the number of high liberal Republicans is 30(.1)(1−
.1) = 2.7. The covariance between the numbers of low liberal Democrats
and low liberal Republicans is −20(.3)(.1) = −0.6. The covariance between
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counts in different multinomials is zero because counts in different multi-
nomials are independent, e.g., the covariance between the numbers of high
liberal Democrats and low liberal Republicans is zero because all high sta-
tus counts are independent of all low status counts.
To find the probability of any particular table, find the probability as-

sociated with the high group and multiply it by the probability of the low
group. The probability of getting the table

Democrat Republican
Liberal Conservative Liberal Conservative Total

High 10 10 2 8 30
Low 5 8 1 6 20

is
[

30!
10!10!2!8!

(.3)10(.3)10(.1)2(.3)8
] [

20!
5!8!1!6!

(.3)5(.3)8(.1)1(.3)6
]

= (.045716)(.008117) = .000371 .

Exercise 1.1. Find the expected counts for a sample of size 20 from the
population with probabilities given in Example 1.1.3. Now, conditioning
on residence, find the expected counts for a sample of size 8 from Montana
and a sample of size 12 from Haiti.

1.5 The Poisson Distribution

The binomial and multinomial distributions are appropriate and useful
when the number of trials are not too large (whatever that means) and the
probabilities of occurrences are not too small. For phenomena that have a
very small probability of occurring on any particular trial, but for which
an extremely large number of trials are available, the Poisson distribution
is appropriate. For example, the number of suicides in a year might have a
Poisson distribution. The probability of anyone committing suicide is very
small, but in a large population, a substantial number of people will do it.
One of the most famous examples of a Poisson distribution is due to

Bortkiewicz (1898). He examines the yearly total of men in the Prussian
army corps who were kicked by horses and died of their injuries. Again,
the probability that any individual will be mortally hoofed on a given day
is very small, but for an entire army corps over an entire year, the number
is fairly substantial. In particular, Fisher (1925) cites the 200 observations
from 10 corps over a 20-year period as:

Deaths 0 1 2 3 4 5+
Frequencies 109 65 22 3 1 0
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The idea is to view these as the results of a random sample of size 200 from
a Poisson distribution. (Incidentally, the identity of the individual who
introduced this example is one of the compelling mysteries in the history of
statistics. It has been ascribed to at least four different people: Bortkiewicz,
Bortkewicz, Bortkewitsch, and Bortkewitch.)
A third example of Poisson sampling is the number of microorganisms in

a solution. One can imagine dividing the solution into a very large number
of hypothetical units with very small volume (i.e., just big enough for the
microorganism to be contained in the unit). If microorganisms are rare in
the solution, then the probability of getting an organism in any particu-
lar unit is very small. Now, if we extract say one cubic centimeter of the
solution, we have a very large number of trials. The number of organisms
in the extracted solution should follow a Poisson distribution. Note that
the Poisson distribution depends on having relatively few organisms in the
solution. If that assumption is not true, one can dilute the solution until it
is true.
Finally, and perhaps most importantly, the number of people who arrive

during a 5-minute period to buy tickets for a Bruce Springsteen concert
can be modeled with a Poisson distribution. Time can be divided into
arbitrarily small intervals. The probability that anyone in the population
will show up during any particular interval is very small. However, in 5
minutes there are a very large number of intervals.
The Poisson distribution can be arrived at as the limit of a Bin(N, p)

distribution where N → ∞ and p → 0. However, the two convergences
must occur in such a way that Np → λ. (To do this rigorously, we would
let p be a function of N , say pN .) The value λ is the parameter of the
Poisson distribution. If n is a random variable with a Poisson distribution
and parameter λ, write

n ∼ Pois(λ) .

The distribution is defined by giving the probabilities and outcomes, i.e.,

Pr(n = r) = λre−λ/r! (1)

for r = 0, 1, . . . .
It is not difficult to arrive at (1) by looking at binomial probabilities.

The corresponding binomial probability for n = r is
(
N

r

)
pr(1 − p)N−r = [(Np)r(1 − p)N/r!](1 − p)−r N !

(N − r)!Nr
. (2)

With N → ∞, p → 0, and Np → λ,

(Np)r → λr

(1 − p)N → e−λ

(1 − p)−r → 1
N !/(N − r)!Nr → 1
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Substituting these limits into the right-hand side of (2) gives the probability
displayed in (1).
Using (1), we can compute the expected value and the variance of n. It

is not difficult to show that
E(n) = λ

and
Var(n) = λ .

Lindgren (1993) gives a more detailed discussion of the assumptions behind
the Poisson model. Fisher (1925) gives a nice discussion of the uses of the
Poisson model and the analysis of Poisson data.
We close with two facts about independent Poisson random variables.

If n1, . . . , nq are independent with ni ∼ Pois(λi), then the total of all the
counts is

n1 + n2 + · · · + nq ∼ Pois(λ1 + · · · + λq)

and the counts given the total are

(n1, . . . , nq)|N ∼ Mult(N, p1, . . . , pq)

where
N = n1 + · · · + nq

and
pi = λi/(λ1 + · · · + λq), i = 1, . . . , q .

The conditional distribution is important for the analysis of log-linear mod-
els. If we have a table of counts that is comprised of independent Poisson
random variables, we can always compute the grand total for the table.
Looking at the conditional distribution given the total leads us to an anal-
ysis based on a multinomial distribution. The multinomial is the most com-
monly assumed distribution for tables of counts. Our discussion will focus
almost entirely on multinomial and product-multinomial sampling.

1.6 Exercises

Exercise 1.6.1. In a Newsweek article on “The Wisdom of Animals”
(May 23, 1988), one of the key issues considered was whether animals (other
than humans) understand relationships between symbols. Some animals
can associate symbols with objects; the question is whether they can tell
the difference between commands such as “take the red ball to the blue
ball” and “take the blue ball to the red ball.” In discussing sea lions, it was
indicated that out of a large pool of objects, they correctly identify symbols
95% of the time but are only correct 45% of the time on relationships.
Presumably, this referred to a simple relationship between two objects; for
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example, a sea lion could be shown symbols for “blue ball,” “take to,”
“red ball.” It was then concluded that, “considering the number of objects
present in the pool, the odds are exceedingly long of getting even that
proportion [45%] right by sheer chance.” Assume a simple model in which
sea lions know the nature of the relationship (it is repeated in a long series
of trials), e.g., take one object to another, but make independent choices
for identifying each object and the order in the relationship. Assume also
that they have no idea what the correct order should be in the relationship,
i.e., the two possible orders are equally probable. Compute the probability
a sea lion will perform the task correctly. Why is the conclusion given in
the article wrong? What does the number of objects present in the pool
have to do with all this?

Exercise 1.6.2. Consider a 2×2 table of multinomial probabilities that
models how subjects respond on two separate occasions.

First Trial
Second Trial A B

A p11 p12
B p21 p22

Show that

Pr(A Second Trial |B First Trial ) = Pr(B Second Trial |A First Trial )

if and only if the event that a change occurs between the first and second
trials is independent of the outcome on the first trial.

Exercise 1.6.3. Weisberg (1975) reports the following data on the num-
ber of boys among the first seven children born to a collection of 1,334
Swedish ministers.

Number of Boys 0 1 2 3 4 5 6 7
Frequency 6 57 206 362 365 256 69 13

Assume that the number of boys has a Bin(7, .5) distribution. Compute the
probabilities for each of the eight categories 0, 1, . . . , 7. From the sample
of 1,334 families, what is the expected frequency for each category? What
is the distribution of the number of families that fall into each category?
Summarize the fit of the assumed binomial model by computing

X2 =
7∑

i=0

(Observationi − Expectedi)
2

Expectedi
.

The statistic X2 is known as Pearson’s chi-square statistic. For large sam-
ples such as this, if the Expected values are correct, X2 should be one
observation from a χ2(7) distribution. (The 7 is one less than the number
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of categories.) Compute X2 and compare it to tabled values of the χ2(7)
distribution. Does X2 seem like it could reasonably come from a χ2(7)?
What does this imply about how well the binomial model fits the data?
Can you distinguish which assumptions made in the binomial model may
be violated?

Exercise 1.6.4. The data given in the previous problem may be 1,334
independent observations from a Bin(7, p) distribution. If so, use the defin-
ing assumptions of the binomial distribution to show that this is the same
as one observation from a Bin(1334 × 7, p) distribution. Estimate p with

p̂ =
Total number of boys
Total number of trials

.

Repeat the previous problem, replacing .5 with p̂. Compare X2 to a χ2(6)
distribution, reducing the degrees of freedom by one because the probability
p is being estimated from the data.

Exercise 1.6.5. Let y1, y2, y3, and y4 be random variables and let a1,
a2, a3, and a4 be real numbers. Show that the following relationships hold
for finite discrete distributions.

(a) E(a1y1 + a2y2 + a3) = a1E(y1) + a2E(y2) + a3.

(b) Var(a1y1 + a2y2 + a3) = a21Var(y1) + a22Var(y2) for y1 and y2 inde-
pendent.

(c) Cov(a1y1 + a2y2, a3y3 + a4y4) =
∑2

i=1
∑4

j=3 aiajCov(yi, yj).

Exercise 1.6.6. Assume that

(n1, . . . , nq) ∼ Mult(N, p1, . . . , pq)

and let t be an integer less than q. Define y = n1 + · · · + nt and p̃ =
p1 + · · · + pt. Show that

(y, nt+1, . . . , nq) ∼ Mult(N, p̃, pt+1, . . . , pq)

so that
E(y) = Np̃

and
Var(y) = Np̃(1 − p̃).

Exercise 1.6.7. Suppose y ∼ Bin(N, p). Let p̂ = y/N . Show that E(p̂) =
p and that Var(p̂) = p(1 − p)/N .



2
Two-Dimensional Tables and
Simple Logistic Regression

At this point, it is not our primary intention to provide a rigorous account
of logistic regression and log-linear model theory. Such a treatment de-
mands extensive use of advanced calculus and asymptotic theory. On the
other hand, some knowledge of the basic issues is necessary for a correct
understanding of applications of logistic regression and log-linear models.
In this chapter, we address these basic issues for the simple case of two-
dimensional tables and simple logistic regression. For a more elementary
discussion of two-dimensional tables and simple logistic regression includ-
ing substantial data analysis, see Christensen (1996a, Chapter 8). In fact,
we assume that the reader is familiar with such analyses and use the topics
in this chapter primarily to introduce key theoretical ideas.

2.1 Two Independent Binomials

Consider two binomials arranged in a 2× 2 table. Our interest is in exam-
ining possible differences between the two binomials.

Example 2.1.1. A survey was conducted to examine the relative atti-
tudes of males and females about abortion. Of 500 females, 309 supported
legalized abortion. Of 600 males, 319 supported legalized abortion. The
data can be summarized in tabular form:
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OBSERVED VALUES
Support Do Not Support Total

Female 309 191 500
Male 319 281 600
Total 628 472 1,100

Note that the totals on the right-hand side of the table (500 and 600)
are fixed by the design of the study. The totals along the bottom of the
table are observed random variables. It is assumed that for each sex, the
numbers of supporters and nonsupporters form a binomial random vector
(ordered pair). We are interested in whether these numbers indicate that
a person’s sex affects their attitude toward legalized abortion. Note that
the categories are Support and Do Not Support legalized abortion. Not
supporting legalized abortion is distinct from opposing it. Anyone who is
indifferent neither supports nor opposes legalized abortion.

We now introduce the notation that will be used for tables of counts in
this book. For a 2×2 table, the observed values are denoted by nij , i = 1, 2
and j = 1, 2. Marginal totals are written ni· ≡ ni1+ni2 and n·j ≡ n1j+n2j .
The total of all observations is n·· ≡ n11+n12+n21+n22. The probability
of having an observation fall in the ith row and jth column of the table is
denoted pij . The number of observations that one would expect to see in
the ith row and jth column (based on some statistical model) is denoted
mij . For independent binomial rows, mij = ni·pij . Marginal totals pi·, p·j ,
mi·, and m·j are defined like ni· and n·j .
All of this notation can be summarized in tabular form.

OBSERVED VALUES
Columns
1 2 Totals

Rows 1 n11 n12 n1·
2 n21 n22 n2·

Totals n·1 n·2 n··

PROBABILITIES
Columns
1 2 Totals

Rows 1 p11 p12 p1·
2 p21 p22 p2·

Totals p·1 p·2 p··
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EXPECTED VALUES
Columns
1 2 Totals

Rows 1 m11 m12 m1·
2 m21 m22 m2·

Totals m·1 m·2 m··

Our interest is in finding estimates of the pij ’s, developing models for
the pij ’s, and performing tests on the pij ’s. Equivalently, we can concern
ourselves with estimates, models, and tests for the mij ’s.
In Example 2.1.1, our interest is in whether sex is related to support for

legalized abortion. Note that p11+p12 = 1 and p21+p22 = 1. (Equivalently
m11 +m12 = 500 and m21 +m22 = 600.) If sex has no effect on opinion,
the distribution of support versus nonsupport should be the same for both
sexes. In particular, it is of interest to test the null hypothesis (model)

H0 : p11 = p21 and p12 = p22 .

With pi1 + pi2 = 1, the equality p11 = p21 holds if and only if p12 =
p22 holds. In other words, females and males have the same probability
of “support” if and only if they have the same probability for “do not
support.” It suffices to test that the probability of support is the same for
both sexes, i.e.,

H0 : p11 = p21

or, equivalently,
H0 : p11 − p21 = 0 .

To test this hypothesis, we need an estimate of p11 − p21 and the standard
error (SE) of the estimate. Each row is binomial with sample size ni·, so
a natural estimate of pij is the proportion of observations falling in cell ij
relative to the total number of observations in the ith row, i.e.,

p̂ij = nij/ni· .

For the abortion example, p̂11 = 309/500 and p̂21 = 319/600 . The estimate
of p11 − p21 is

p̂11 − p̂21 = (n11/n1·) − (n21/n2·) .

The two rows of the table were sampled independently so the variance of
p̂11 − p̂21 is

Var(p̂11 − p̂21) = Var(p̂11) + Var(p̂21)
= p11p12/n1· + p21p22/n2· ,

cf. Exercise 1.6.7. Finally,

SE(p̂11 − p̂21) =
√
p̂11p̂12/n1· + p̂21p̂22/n2· .
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For the abortion example,

SE(p̂1 − p̂2) =

√
(309/500)(191/500)

500
+

(319/600)(281/600)
600

= .0298 .

One other thing is required before we can perform a test. We need to
know the distribution of [(p̂11 − p̂21) − (p11 − p21)]/SE(p̂11 − p̂21). By ap-
pealing to the Central Limit Theorem and the Law of Large Numbers (cf.
Lindgren, 1993), if n1· and n2· are large, we can use the approximate dis-
tribution

(p̂11 − p̂21) − (p11 − p21)
SE(p̂11 − p̂21)

∼ N(0, 1) .

To perform a test of
H0 : p11 − p21 = 0

versus
HA : p11 − p21 �= 0,

assume that H0 is true and look for evidence against H0. If H0 is true, the
approximate distribution is

(p̂11 − p̂21) − 0
SE(p̂11 − p̂21)

∼ N(0, 1) .

If the alternative hypothesis is true, p̂11 − p̂21 still estimates p11 − p21 so
the test statistic

(p̂11 − p̂21) − 0
SE(p̂11 − p̂21)

tends to be either a large positive value if p11 − p21 > 0 or a large negative
value if p11 − p21 < 0. An α = .05 level test rejects H0 if

(p̂11 − p̂21) − 0
SE(p̂11 − p̂21)

> 1.96

or if
(p̂11 − p̂21) − 0
SE(p̂11 − p̂21)

< −1.96 .

The values −1.96 and 1.96 cut off the probability .025 from the bottom
and top of a N(0, 1) distribution, respectively. Thus, the total probability
of rejecting H0 when H0 is true is .025 + .025 = .05. Recall that this test
is based on a large sample approximation to the distribution of the test
statistic.
For the abortion example, the test statistic is

(309/500) − (319/600)
.0298

= 2.90 .
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Because 2.90 > 1.96, H0 is rejected at the α = .05 level. There is evidence
of a relationship between sex and attitudes about legalized abortion. These
data indicate that females are more likely to support legalized abortion.
Before leaving this test procedure, we mention an alternative method for

computing SE(p̂11 − p̂21). Recall that

Var(p̂11 − p̂21) = p11p12/n1· + p21p22/n2· .

If H0 is true, p11 = p21 and p12 = p22. These facts can be used in estimating
the variance of p̂11 − p̂21. A pooled estimate of p ≡ p11 = p21 is (n11 +
n21)/(n1· + n2·) = n·1/n·· = 628/1100. A pooled estimate of (1 − p) ≡
p12 = p22 is n·2/n·· = 472/1100. This yields

Var(p̂11 − p̂21) = p(1 − p)(1/n1· + 1/n2·)

and

SE(p̂11 − p̂21) =
√
(628/1100)(472/1100)[(1/500) + (1/600)]

= .0300 .

The test statistic computed with the new standard error is

(309/500) − (319/600)
.0300

= 2.87777 .

For these data, the results are essentially the same.
The test procedures discussed above work nicely for two independent

binomials, but, unfortunately, they do not generalize to more than two
binomials or to situations in which there are more than two possible out-
comes (e.g., support, oppose, no opinion). An alternative test procedure is
based on what is known as the Pearson chi-square test statistic. This test
is equivalent to the test given above using the pooled estimate of the stan-
dard error. Moreover, Pearson’s chi-square is applicable in more general
problems. The Pearson test statistic is based on comparing the observed
table values in the 2 × 2 table with estimates of the expected values that
are obtained assuming that H0 is true.
In the abortion example, if H0 is true, then p = p11 = p21 and p̂ =

628/1100. Similarly, (1−p) = p12 = p22 and (1− p̂) = 472/1100. As before,
the expected values are mij = ni·pij . The estimated expected values under
H0 are m̂

(0)
ij = ni·p̂ij , where p̂ij is p̂ if j = 1 and (1 − p̂) if j = 2. More

generally,
m̂

(0)
ij = ni·(n·j/n··) . (1)

The Pearson chi-square statistic is defined as

X2 =
2∑

i=1

2∑

j=1

(
nij − m̂

(0)
ij

)2

m̂
(0)
ij

.
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If H0 is true, then nij and m̂
(0)
ij should be near each other, and the terms

(nij −m̂
(0)
ij )2 should be reasonably small. If H0 is not true, then the m̂(0)

ij ’s,
which are estimates based on the assumption that H0 is true, should do a
poor job of predicting the nij ’s. The terms (nij − m̂

(0)
ij )2 should be larger

when H0 is not true.
Note that a prediction m̂

(0)
ij that is, say, three away from the observed

value nij , can be either a good prediction or a bad prediction depending
on how large the value in the cell should be. If nij = 4 and m̂

(0)
ij = 1, the

prediction is poor. If nij = 104 and m̂
(0)
ij = 101, the prediction is good. The

m̂
(0)
ij in the denominator of each term of X2 is a scale factor that corrects

for this problem.
The hypothesis H0 : p11 = p21 and p12 = p22 is rejected at the α = .05

level if
X2 ≥ χ2(.95, 1) .

The test is based on the fact that if H0 is true, then as n1· and n2· get large,
X2 has approximately a χ2(1) distribution. This is a consequence of the
Central Limit Theorem and the Law of Large Numbers, cf. Exercise 2.1.
For the abortion example

m̂
(0)
ij Support Do Not Support Totals

Female 285.5 214.5 500
Male 342.5 257.5 600

Totals 628 472 1100

X2 = 8.2816,

χ2(.95, 1) = 3.84 .

Because 8.2816 > 3.84, the α = .05 test rejects H0.
Note that 8.2816 = (2.8777)2 and that 3.84 = (1.96)2. For 2 × 2 tables,

the results of Pearson chi-square tests are exactly equivalent to the results
of normal theory tests using the pooled estimate in the standard error. By
definition, χ2(1 − α, 1) = [z(1 − α

2 )]
2 for α ∈ (0, .5]. Also,

X2 =
(p̂11 − p̂21)2

p̂(1 − p̂)
(

1
n1·

+ 1
n2·

) . (2)

Exercise 2.1. Prove equation (2).

By comparing the nij ’s to the m̂(0)
ij ’s, we can examine the nature of the

differences in the two binomials. One simple way to do this comparison is
to examine a table of residuals, i.e., the (nij − m̂

(0)
ij )’s. In order to make
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accurate evaluations of how well m̂(0)
ij is predicting nij , the residuals need

to be rescaled or standardized. Define the Pearson residuals as

r̃ij =
nij − m̂

(0)
ij√

m̂
(0)
ij

,

i = 1, 2, j = 1, 2. Note that X2 =
∑

ij r̃
2
ij . The Pearson residuals for the

abortion data are

r̃ij Support Do Not Support
Female 1.39 −1.60
Male −1.27 1.46

The positive residual 1.39 indicates that more females support legalized
abortion than would be expected under H0. The negative residual −1.27
indicates that fewer males support abortion than would be expected un-
der H0. Together, the values 1.39 and −1.27 indicate that proportionately
more females support legalized abortion than males. Equivalently, propor-
tionately more males do not support legalized abortion than females.

2.1.1 The Odds Ratio
A commonly used technique in the analysis of count data is the examina-
tion of odds ratios. In the abortion example, the odds of females supporting
legalized abortion is p11/p12. The odds of males supporting legalized abor-
tion is p21/p22. The odds ratio is

(p11/p12)
(p21/p22)

=
p11p22
p12p21

.

Note that if the two binomials are identical, then p11 = p21 and p12 = p22,
so

p11p22
p12p21

= 1 .

An alternative to using Pearson’s chi-square for examining whether two
binomials are the same is to examine the estimated odds ratio. Using p̂ij =
nij/ni· gives

p̂11p̂22
p̂12p̂21

=
n11n22
n12n21

.

For the abortion example, the estimate is

(309)(281)
(191)(319)

= 1.425 .

This is only an estimate of the population odds ratio, but it is fairly far
from the target value of 1. In particular, we have estimated that the odds
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of a female supporting legalized abortion are about one and a half times as
large as the odds of a male supporting legalized abortion.
We may wish to test the hypothesis that the odds ratio equals 1. Equiva-

lently, we can test whether the log of the odds ratio equals 0. The log odds
ratio is log(1.425) = .354. The asymptotic (large sample) standard error of
the log odds ratio is

√
1
n11

+
1
n12

+
1
n21

+
1
n22

=

√
1

309
+

1
191

+
1

319
+

1
281

= .123 .

The estimate minus the hypothesized value over the standard error is

.354 − 0
.123

= 2.88 .

Comparing this to a N(0, 1) distribution indicates that the log-odds ratio is
greater than zero, thus the odds ratio is greater than 1. Note that this test
is not equivalent to the other tests considered, even though the numerical
value of the test statistic is similar to the other normal theory tests.
A 95% confidence interval for the log odds ratio has the end points

.354 ± 1.96(.123). This gives an interval (.113, .595). The log odds ratio
is in the interval (.113, .595) if and only if the odds ratio is in the in-
terval (e.113, e.595). Thus, a 95% confidence interval for the odds ratio is
(e.113, e.595), which simplifies to (1.12, 1.81). We are 95% confident that the
true odds of women supporting legalized abortion is between 1.12 and 1.81
times greater than the odds of men supporting legalized abortion.

2.2 Testing Independence in a 2 × 2 Table

In Section 1, we obtained a 2× 2 table by looking at two populations, each
divided into two categories. In this section, we consider only one population
but divide it into two categories in each of two different ways. The two
different ways of dividing the population will be referred to as factors.
In Section 1, we examined differences between the two populations. In

this section, we examine the nature of the one population being sampled.
In particular, we examine whether the two factors affect the population
independently or whether they interact to determine the nature of the
population.

Example 2.2.1. As part of a longitudinal study, a sample of 3182 people
without cardiovascular disease were cross-classified by two factors: person-
ality type and exercise. Personality type was categorized as type A or type
B. Type A persons show signs of stress, uneasiness, and hyperactivity. Type
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B persons are relaxed, easygoing, and normally active. Exercise is catego-
rized as persons who exercise regularly and those who do not. The data are
given in the following table:

Personality
nij A B Totals

Exercise Regular 483 477 960
Other 1101 1121 2222
Totals 1584 1598 3182

Although notations for observations (nij ’s), probabilities (pij ’s), and ex-
pected values (mij ’s) are identical to those in Section 1, the meaning of
these quantities has changed. In Section 1, the rows were two independent
binomials, so p11+p12 = 1 = p21+p22. In this section, there is only one pop-
ulation, so the constraint on the probabilities is that p11+p12+p21+p22 = 1.
In this section, our primary interest is in determining whether the row

factor is independent of the column factor and if not, how the factors
deviate from independence. The probability of an observation falling in the
ith row and jth column of the table is pij . The probability of an observation
falling in the ith row is pi·. The probability of the jth column is p·j . Rows
and columns are independent if and only if for all i and j

pij = pi·p·j . (1)

The sample size is n··, so the expected counts in the table are

mij = n··pij .

If rows and columns are independent, this becomes

mij = n··pi·p·j . (2)

It is easily seen that condition (1) for independence is equivalent to

mij = mi·m·j/n·· . (3)

Pearson’s chi-square can be used to test independence. Pearson’s statistic
is again

X2 =
2∑

i=1

2∑

j=1

(
nij − m̂

(0)
ij

)2

m̂
(0)
ij

where m̂
(0)
ij is an estimate of mij based on the assumption that rows and

columns are independent. If we take m̂i· = ni· and m̂·j = n·j , then equation
(3) leads to

m̂
(0)
ij = ni·n·j/n·· . (4)
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Equation (4) can also be arrived at via equation (2). An obvious estimate
of pi· is

p̂i· = ni·/n·· .

Similarly,
p̂·j = n·j/n·· .

Substitution into equation (2) leads to equation (4). It is interesting to note
that equation (4) is numerically identical to formula (2.1.1), which gives
m̂ij for two independent binomials. Just as in Section 1, for the purposes
of testing, X2 is compared to a χ2(1) distribution. Pearson residuals are
again defined as

r̃ij =
nij − m̂

(0)
ij√

m̂
(0)
ij

.

For the personality-exercise data, we get

Personality
m̂

(0)
ij A B Totals

Exercise Regular 477.9 482.1 960
Other 1106.1 1115.9 2222
Totals 1584 1598 3182

X2 = .156

The test is not significant for any reasonable α level. (The P value is greater
than .5.) There is no significant evidence against independence of exercise
and personality type. In other words, the data are consistent with the
interpretation that knowledge of personality type gives no new information
about exercise habits or, equivalently, knowledge of exercise habits gives
no new information about personality type.

2.2.1 The Odds Ratio
Just as in examining the equality of two binomials, the odds ratio can be
used to examine the independence of two factors in a multinomial sample.
In the personality-exercise data, the odds that a person exercises regularly
are p1·/p2·. In addition, the odds of exercising regularly can be examined
separately for each personality type. For type A personalities, the odds are
p11/p21, and for type B personalities, the odds are p12/p22. Intuitively, if
exercise and personality types are independent, then the odds of regular
exercise should be the same for both personality types. In particular, the
ratio of the two sets of odds should be one.

Proposition 2.2.2. If rows and columns are independent, then the
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odds ratio
(p11/p21)
(p12/p22)

=
p11p22
p12p21

equals one.

Proof. By equation (1)

p11p22
p12p21

=
p1·p·1p2·p·2
p1·p·2p2·p·1

= 1.

�

If the odds ratio is estimated under the assumption of independence,
p̂ij = p̂i·p̂·j = ni·n·j/(n··)2; so the estimated odds ratio is always one. A
more interesting approach is to estimate the odds ratio without assuming
independence and then see how close the estimated odds ratio is to one.
With this approach, p̂ij = nij/n·· and

p̂11p̂22
p̂12p̂22

=
n11n22
n12n21

.

In the personality-exercise example, the estimated odds ratio is

(483)(1121)
(477)(1101)

= 1.03

which is very close to one. The log odds are .0305, the asymptotic standard
error is [1/483+1/477+1/1101+1/1121]1/2 = .0772, and the test statistic
for H0 that the log odds equal 0 is .0305/.0772 = .395. Again, there is no
evidence against independence.

Exercise 2.2. Give a 95% confidence interval for the odds ratio. Explain
what the confidence interval means.

2.3 I × J Tables

The situation examined in Section 1 can be generalized to consider samples
from I different populations, each of which is divided into J categories.
We assume that the samples from different populations are independent
and that each sample follows a multinomial distribution. This is product-
multinomial sampling.
Similarly, a sample from one population that is categorized by two fac-

tors can be generalized beyond the case considered in Section 2. We allow
one factor to have I categories and the other factor to have J categories.
Between the two factors, the population is divided into a total of IJ cat-
egories. The distribution of counts within the IJ categories is assumed
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to have a multinomial distribution. Consequently, this sampling scheme is
multinomial sampling.
An I × J table of the observations nij , i = 1, . . . , I, j = 1, . . . , J , can be

written

Factor 2
(Categories)

nij 1 2 . . . J Totals
1 n11 n12 . . . n1J n1·

Factor 1 2 n21 n22 . . . n2J n2·

(Populations)
...

...
...

...
...

I nI1 nI2 . . . nIJ nI·
Totals n·1 n·2 . . . n·J n··

with similar tables for the probabilities pij and the expected values mij .
The analysis of product-multinomial sampling begins by testing whether

all of the I multinomial populations are identical. In other words, we wish
to test the model

H0 : p1j = p2j = · · · = pIj for all j = 1, . . . , J . (1)

against the alternative

HA : model (1) is not true .

This is described as testing for homogeneity of proportions.
We continue to use Pearson’s chi-square test statistic to evaluate the

appropriateness of the null hypothesis model. Pearson’s chi-square requires
estimates of the expected values mij . Each sample i has a multinomial
distribution with ni· trials, so

mij = ni·pij .

If H0 is true, pij is the same for all values of i. A pooled estimate of the
common value of the pij ’s is

p̂
(0)
ij = n·j/n·· .

In other words, if all the populations have the same probability for category
j, an estimate of this common probability is the total number of observa-
tions in category j divided by the overall total number of observations.
From this probability estimate we obtain

m̂
(0)
ij = ni·(n·j/n··) .

In both p̂
(0)
ij and m̂

(0)
ij , the superscript (0) is used to indicate that the

estimate was obtained under the assumption that H0 was true. Pearson’s
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chi-square test statistic is

X2 =
I∑

i=1

J∑

j=1

(
nij − m̂

(0)
ij

)2

m̂
(0)
ij

.

For large samples, if H0 is true, the approximation

X2 ∼ χ2((I − 1)(J − 1))

is valid. H0 is rejected in an α level test if

X2 > χ2(1 − α, (I − 1)(J − 1)) .

Note that if I = J = 2, these are precisely the results discussed in Section 1.
The analysis of a multinomial sample begins by testing for independence

of the two factors. In particular, we wish to test the model

H0 : pij = pi·p·j , i = 1, . . . , I, j = 1, . . . , J . (2)

We again use Pearson’s chi-square. The marginal probabilities are esti-
mated as

p̂i· = ni·/n··

and
p̂·j = n·j/n·· .

Because mij = n··pij , if the model in (2) is true, we can estimate mij with

m̂
(0)
ij = n··p̂i·p̂·j

= n··(ni·/n··)(n·j/n··)
= ni·n·j/n··

where the (0) in m̂
(0)
ij indicates that the estimate is obtained assuming that

(2) holds. The Pearson chi-square test statistic is

X2 =
I∑

i=1

J∑

j=1

(
nij − m̂

(0)
ij

)2

m̂
(0)
ij

which, if (2) is true and the sample size is large, is approximately distributed
as a χ2 ((I − 1)(J − 1)). H0 is rejected at the α level if

X2 > χ2 (1 − α, (I − 1)(J − 1)) .

Once again, if I = J = 2, we obtain the previous results given for 2×2 ta-
bles. Moreover, the test procedures for product-multinomial sampling and
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for multinomial sampling are numerically identical. Only the interpreta-
tions of the tests differ.

Example 2.3.1. Fifty-two males between the ages of 11 and 30 were
operated on for knee injuries using arthroscopic surgery. The patients were
classified by type of injury: twisted knee, direct blow, or both. The results
of the surgery were classified as excellent (E), good (G), and fair or poor (F-
P). These data can reasonably be viewed as either multinomial or product-
multinomial. As a multinomial, we have 52 people cross-classified by type of
injury and result of surgery. However, we can also think of the three types
of injuries as defining different populations. Each person sampled from a
population is given arthroscopic surgery and then the result is classified.
Because our primary interest is in the result of surgery, we choose to think of
the sampling as product-multinomial. The form of the analysis is identical
for both sampling schemes. The data are

Result
nij E G F-P Totals

Twist 21 11 4 36
Injury Direct 3 2 2 7

Both 7 1 1 9
Totals 31 14 7 52

The estimated expected counts under H0 are

Result
m̂

(0)
ij E G F-P Totals

Twist 21.5 9.7 4.8 36
Injury Direct 4.2 1.9 .9 7

Both 5.4 2.4 1.2 9
Totals 31 14 7 52

with
X2 = 3.229

and
df = (3 − 1)(3 − 1) = 4 .

If the sample size is large, X2 can be compared to a χ2 distribution
with four degrees of freedom. If we do this, the P value for the test is .52.
Unfortunately, it is quite obvious that the sample size is not large. The
number of observations in many of the cells of the table is small. This is
a serious problem and aspects of the problem are discussed in Section 4,
the subsection of Section 3.5 on Other Sampling Models, and Chapter 8.
However, to the extent that this book focuses on distribution theory, it
focuses on asymptotic distributions. For now, we merely state that in this
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example, the nij ’s and m̂
(0)
ij ’s are such that, when taken together with the

very large P value, we feel safe in concluding that these data provide no
evidence of different surgical results for the three types of injuries. (This
conclusion is borne out by the fact that an exact small sample test yields
a similar P value, cf. Section 3.5.)

2.3.1 Response Factors
In Example 2.3.1, the result of surgery can be thought of as a response,
whereas the type of injury is used to explain the response. Similarly, in
Example 2.1.1, opinions on abortions can be considered as a response and
sex can be considered as an explanatory factor.
The existence of response factors is often closely tied to the sampling

scheme. Product-multinomial sampling is commonly used with an indepen-
dent multinomial sample taken for every combination of the explanatory
factors and the categories of the multinomials being the categories of the
response factors. This is illustrated in Example 2.1.1 where there are two
independent multinomials (binomials), one for males and one for females.
The categories for each multinomial are Support and Do Not Support legal-
ized abortion. Example 3.5.2 in the next chapter involves two explanatory
factors, Sex and Socioeconomic Status, and one response factor, Opinion
on Legalized Abortion. Each of the four combinations obtained from the
two sexes and the two statuses define an independent multinomial. In other
words, there is a separate multinomial sample for each combination of sex
and socioeconomic status. The categories of the response factor, Support
and Do Not Support legalized abortion, are the categories of the multino-
mials.
More generally, the categories of a response factor can be cross-classified

with other response factors or explanatory factors to yield the categories in
a series of independent multinomials. This situation is of most interest when
there are several factors involved. Some factors can be cross-classified to de-
fine the multinomial populations while other factors can be cross-classified
with the response factors to define the categories of the multinomials. Ex-
ample 2.3.1 illustrates the simplest case in which there is one explanatory
factor, Injury, crossed with one response factor, Result, to define the cate-
gories of the multinomial. Both Injury and Result have three levels so the
multinomial has a total of nine categories. With only two factors in the ta-
ble, there can be only one multinomial sample because there are no other
factors available to define various multinomial populations. Example 3.5.1
is more general in that it has two independent multinomials, one for each
sex. Each multinomial has six categories. The categories are obtained by
cross-classifying the explanatory factor, Political Party, having three levels,
with the response factor, Abortion Opinion, having two levels.
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In this more general sampling scheme, one often conditions on all factors
other than the response so that the analysis is reduced to that of the original
sampling scheme in which every combination of explanatory factors defines
an independent multinomial. Again, this is illustrated in Example 2.3.1.
While the sampling was multinomial, we treated the sampling as product-
multinomial with an independent multinomial for each level of the Injury.
The justification for treating the data as product-multinomial is that we
conditioned on the Injury.
While the sampling techniques described above are probably the most

commonly used, there are alternatives that are also commonly used. For
example, in medicine a response factor is often some disease with levels
that are various states of the disease. If the disease is at all rare, it may be
impractical to sample different populations and see how many people fall
into the various levels of the disease. In this case, one may need to take
the disease levels as populations, sample from these populations, and inves-
tigate various characteristics of the populations. Thus the “explanatory”
factors discussed above would be considered descriptive factors here. This
sampling scheme is often called retrospective for obvious reasons. The other
schemes discussed above are called prospective. These issues are discussed
in more detail in the introduction to Chapter 4 and in Sections 4.7 and
11.7.

2.3.2 Odds Ratios
The null hypotheses (1) and (2) can be rewritten in terms of odds ratios.

Proposition 2.3.2. Under product-multinomial sampling p1j = · · · =
pIj > 0 for all j = 1, . . . , J if and only if

pijpi′j′

pij′pi′j
= 1

for all i, i′ = 1, . . . , I and j, j′ = 1, . . . , J .

Proof. a) Equality of probabilities across rows implies that the odds
ratios equal one. By substitution,

pijpi′j′

pij′pi′j
=

pijpij′

pij′pij
= 1.

b) All odds ratios equal to one implies equality of probabilities across
rows. Recall that pi· = 1 for all i = 1, . . . , I, so that p·· = I. In addition,
pijpi′j′/pij′pi′j = 1 implies pijpi′j′ = pij′pi′j . Note that

pij = pijp··/I =
1
I

I∑

i′=1

J∑

j′=1

pijpi′j′
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=
1
I

I∑

i′=1

J∑

j′=1

pij′pi′j

=
1
I

J∑

j′=1

pij′

I∑

i′=1

pi′j

=
1
I

J∑

j′=1

pij′p·j

=
1
I
p·j

J∑

j′=1

pij′

=
1
I
p·jpi·

= p·j/I .

Because this holds for any i and j, p·j/I = p1j = p2j = · · · = pIj for
j = 1, . . . , J . �

Proposition 2.3.3. Under multinomial sampling, 0 < pij = pi·p·j for
all i = 1, . . . , I , j = 1, . . . , J if and only if

pijpi′j′

pij′pi′j
= 1

for all i, i′ = 1, . . . , I and j, j′ = 1, . . . , J .

Proof. a) Independence implies that the odds ratios equal one.
pijpi′j′

pij′pi′j
=

pi·p·jpi′·p·j′

pi·p·j′pi′·p·j
= 1.

b) All odds ratios equal to one implies independence. If pijpi′j′/pij′pi′j = 1
for all i, i′, j, and j′, then pijpi′j′ = pij′pi′j . Moreover, because p·· = 1,

pij = pijp·· =
I∑

i′=1

J∑

j′=1

pijpi′j′ =
I∑

i′=1

J∑

j′=1

pij′pi′j

=
I∑

i′=1

pi′j

J∑

j′=1

pij′

=
I∑

i′=1

pi′jpi·

= pi·
I∑

i′=1

pi′j
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= pi·p·j �

There is a great deal of redundancy in specifying that

pijpi′j′

pij′pi′j
= 1

for all i, i′, j, and j′. For example, if i = i′, then pijpi′j′/pij′pi′j =
pijpij′/pij′pij = 1 and no real restriction has been placed on the pij ’s.
A similar result occurs if j = j′. More significantly, if

p12p23/p13p22 = 1

and
p12p24/p14p22 = 1,

then

1 = (p12p23/p13p22)(p14p22/p12p24)
= p14p23/p13p24 .

In other words, the fact that two of the odds ratios equal one implies that
a third odds ratio equals one. It turns out that the condition

p11pij
p1jpi1

= 1

for i = 2, . . . , I and j = 2, . . . , J is equivalent to the condition that all odds
ratios equal one.

Proposition 2.3.4. pijpi′j′/pij′pi′j = 1 for all i, i′, j and j′ if and
only if p11pij/p1jpi1 = 1 for all i �= 1, j �= 1.

Proof. Clearly, if the odds ratios are one for all i, i′, j, and j′, then
p11pij/p1jpi1 = 1 for all i and j. Conversely,

1 =
(
p11pij
p1jpi1

)(
p11pi′j′

p1j′pi′1

)/(
p11pij′

p1j′pi1

)(
p11pi′j
p1jpi′1

)

=
pijpi′j′

pij′pi′j

�

Of course, in practice the pij ’s are never known. We can investigate
independence by examining the estimated odds ratios

p̂ij p̂i′j′/p̂ij′ p̂i′j = nijni′j′/nij′ni′j
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or, equivalently, we can look at the log of this. For large samples, the log
of the estimated odds ratio is normally distributed with standard error

SE =

√
1
nij

+
1

nij′
+

1
ni′j

+
1

ni′j′
.

This allows the construction of asymptotic tests and confidence intervals
for the log odds ratio. Of particular interest is the hypothesis

H0 : pijpi′j′/pij′pi′j = 1 .

After taking logs, this becomes

H0 : log(pijpi′j′/pij′pi′j) = 0 .

Example 2.3.5. We continue with the knee injury data of Example 2.3.1.
From Proposition 2.3.4, it is sufficient to examine

n11n22
n12n21

= 21(2)/11(3) = 1.27 ,

n11n23
n13n21

= 21(2)/4(3) = 3.5 ,

n11n32
n12n31

= 21(1)/11(7) = .27 ,

n11n33
n13n31

= 21(1)/4(7) = .75 .

Although the X2 test indicated no difference in the populations (popu-
lations = injury types), at least two of these estimated odds ratios seem
substantially different from 1. In particular, relative to having an F-P re-
sult, the odds of an excellent result are about 3.5 times larger with twist
injuries than with direct blows. Also, relative to having a good result, the
odds of an excellent result from a twisted knee are only .27 of the odds
of an excellent result with both types of injury. These numbers seem quite
substantial, but they are difficult to evaluate without some idea of the error
to which the estimates are subject. To this end, we use the large sample
standard errors for the log odds ratios. Testing whether the log odds ratios
are different from zero, we get

odds ratio log (odds ratio) SE z
1.27 0.2412 0.9858 0.24
3.5 1.2528 1.0635 1.18
.27 −1.2993 1.1320 −1.15
.75 −0.2877 1.2002 −0.24
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The large standard errors and small z values are consistent with the result
of the X2 test. None of the odds ratios appear to be substantially different
from 1. Of course, it should not be overlooked that the standard errors
are really only valid for large samples and we do not have large samples.
Thus, all of our conclusions about the individual odds ratios must remain
tentative.

2.4 Maximum Likelihood Theory for
Two-Dimensional Tables

In this section, we introduce the likelihood function, maximum likelihood
estimates, and (generalized) likelihood ratio tests. A valuable result for max-
imum likelihood estimation is given below without proof.

Lemma 2.4.1. Let f(p1, . . . , pr) =
∑r

i=1 ni log pi. If ni > 0 for
i = 1, . . . , r, then, subject to the conditions 0 < pi < 1 and p· = 1, the max-
imum of f(p1, . . . , pr) is achieved at the point (p1, . . . , pr) = (p̂1, . . . , p̂r)
where p̂i = ni/n· .
In this section, we consider product-multinomial sampling of I popu-

lations, with each population divided into the same J categories. The I
populations will form the rows of an I × J table. No results will be pre-
sented for multinomial sampling in an I × J table. The derivations of such
results are similar to those presented here and are left as an exercise.
The probability of obtaining the data ni1, . . . , niJ from the ith multino-

mial sample is
ni·!

∏J
j=1 nij !

J∏

j=1

p
nij

ij .

Because the I multinomials are independent, the probability of obtaining
all of the values nij , i = 1, . . . , I, j = 1, . . . , J , is

I∏

i=1



 ni·!
∏J

j=1 nij !

J∏

j=1

p
nij

ij



 . (1)

Thus, if we know the pij ’s, we can find the probability of obtaining any set
of nij ’s. In point of fact, we are in precisely the opposite position. We do
not know the pij ’s, but we do know the nij ’s. The nij ’s have been observed.
If we think of (1) as a function of the pij ’s, we can write

L(p) =
I∏

i=1

[
ni·!

∏J
j=1 nij !

J∏

J=1

p
nij

ij

]

(2)

where p = (p11, p12, . . . , pIJ). L(p) is called the likelihood function for p.
Some values of p give a very small probability of observing the nij ’s that
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were actually observed. Such values of p are unlikely to be the true value of
p. The true value of p is likely to be some value that gives a relatively large
probability of observing what was actually observed. If we wish to estimate
p, it makes sense to use the value of p that gives the largest probability
of seeing what was actually observed. In other words, it makes sense to
estimate p with a value p̂ that maximizes the likelihood function L(p).
Such a value is called a maximum likelihood estimate (MLE) of p.

Rather than maximizing the likelihood function (which involves many
products), it is often easier to maximize the log of the likelihood function
(in which products change to sums). Because the logarithm is a strictly
increasing function, the maximum of the likelihood and the maximum of
the log of the likelihood occur as the same point.
For product-multinomial sampling, the log-likelihood function is

logL(p) =
I∑

i=1



log(ni·!) −
J∑

j=1

log(nij !) +
J∑

j=1

nij log pij



 .

To maximize this as a function of p, we can ignore any terms that do not
depend on p. It suffices to maximize

�(p) =
I∑

i=1

J∑

j=1

nij log pij .

The maximum is achieved when we maximize each of the terms∑J
j=1 nij log pij . By Lemma 2.4.1, the maximum is achieved at p = p̂,

where
p̂ij ≡ nij/ni· .

We can also obtain maximum likelihood estimates for the expected counts
mij . Because mij = ni·pij , the MLE of mij is

m̂ij = ni·p̂ij = nij .

This follows from the invariance of maximum likelihood estimates: For any
parameter θ and MLE θ̂, the MLE of a function of θ, say f(θ), is the
corresponding function of the MLE, f(θ̂), cf. Cox and Hinkley (1974, p.
287).
If we change the model so that the null hypothesis

H0 : p1j = . . . = pIj , j = 1, . . . , J,

is true, we get different maximum likelihood estimates. Let πj = p1j =
· · · = pIj . The log-likelihood function becomes

logL(p) =
I∑

i=1



log(ni·!) −
J∑

j=1

nij ! +
J∑

j=1

nij log πj



 .
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Ignoring terms that do not involve the pij ’s, we are led to maximize
I∑

i=1

J∑

j=1

nij log πj

or, equivalently,
J∑

j=1

n·j log πj .

By Lemma 2.4.1, the maximum likelihood estimates become

p̂
(0)
ij = π̂j = n·j/n··

where the (0) in p̂
(0)
ij is used to indicate that the estimate was obtained

assuming that H0 was true.
Maximum likelihood estimates of the mij ’s are easily obtained under the

null model H0. Because mij = ni·pij ,

m̂
(0)
ij = ni·p̂

(0)
ij = ni·n·j/n·· .

Note that p̂
(0)
ij and m̂

(0)
ij are precisely the estimates used in Section 3 to

test H0.
The likelihood function can also be used as the basis for a test of whether

H0 is true. The data have a certain likelihood of being observed, which can
be summarized as the maximum value that the likelihood function achieves.
If we place any restriction on the possible values of the pij ’s, we will reduce
the likelihood of observing the data. If placing a restriction on the pij ’s
reduces the likelihood too much, we can infer that the restriction on the
pij ’s is not likely to be valid. The relative reduction in the likelihood can
be measured by looking at the maximum of L(p) subject to the restriction
divided by the overall maximum of L(p). If this ratio gets too small, we will
reject the assumption that the restriction on the pij ’s is valid. In particular,
if the restriction on the pij ’s is that H0 is true, we reject H0 when the
likelihood ratio is too small.
Again, we can simplify the mathematics by examining the log of the

likelihood ratio and rejecting H0 when the log gets too small. Of course,
the log of the likelihood ratio is just the difference in the log-likelihoods.
The maximum value of the log-likelihood when the reduced model H0 is
true is

logL(p̂(0)) =
I∑

i=1



log(ni·!) −
J∑

j=1

log(nij !) +
J∑

j=1

nij log(n·j/n··)



 .

The overall maximum of the log-likelihood is

logL(p̂) =
I∑

i=1



log(ni·!) −
J∑

j=1

log(nij !) +
J∑

j=1

nij log(nij/ni·)



 .
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The difference is

I∑

i=1

J∑

j=1

nij log(n·j/n··) −
I∑

i=1

J∑

j=1

nij log(nij/ni·) .

If we multiply by −2 and simplify, we get a likelihood ratio test statistic

G2 = 2
I∑

i=1

J∑

j=1

m̂ij log

(
m̂ij

m̂
(0)
ij

)

where m̂ij = nij is the MLE of mij in the unrestricted model and m̂
(0)
ij =

ni·n·j/n·· is the MLE of mij under the restriction that H0 is true.
The reason for multiplying by −2 is that with this multiplication, the

approximation
G2 ∼ χ2 ((I − 1)(J − 1))

is valid when H0 is true and the samples are large. Note that because H0
was to be rejected for small values of the likelihood ratio, after taking logs
and multiplying by −2, H0 should be rejected for large values of G2. In
particular, for large samples, an α level test of H0 is rejected if

G2 > χ2 (1 − α, (I − 1)(J − 1)) .

Example 2.4.2. Computing the likelihood ratio test statistic using the
data and estimated expected cell counts on knee operations in Exam-
ple 2.3.1 gives

G2 = 3.173 .

This is similar to, but distinct from, the Pearson test statistic X2 = 3.229.
Both are based on 4 degrees of freedom. In this example, formal tests using
either statistic suffer from the fact that the sample is not large.
Larntz (1978) indicates that, for small samples, the actual size of the test

that rejects H0 if

X2 > χ2(1 − α, (I − 1)(J − 1))

tends to be nearer the nominal size α than the corresponding likelihood
ratio test. This is related to the fact that G2 becomes too large when
the observations are small but the estimated expected cell counts are not.
Kreiner (1987) comes to similar conclusions. From the results of Larntz
and others, Fienberg (1979) concludes that (a) if the minimum expected
cell count is about 1, χ2 tests often work well and (b) if the sample size is 4
to 5 times the number of cells in the table, χ2 tests give P values with the
correct order of magnitude. In practice, the first of these conclusions must
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compare the estimated expected cell counts to 1. In Example 2.4.2, the test
statistics are similar, so the choice of test is not important. The data also
pass both of the criteria mentioned by Fienberg. The rules of thumb given
in this paragraph can be applied to higher-dimensional tables. Although
X2 has the advantage alluded to above, G2 is more convenient to use in
analyzing higher-dimensional tables. The likelihood ratio test statistic will
be used almost exclusively after Chapter 3.

Discussion
There are philosophical grounds for preferring the use of G2. The likelihood
principle indicates that one’s conclusions should depend on the relative val-
ues of the likelihood function. The likelihood function depends only on the
data that actually occurred. Because G2 is computed from the likelihood,
its use can be consistent with the likelihood principle. Unfortunately, the
standard use of G2 is to compute a P value or to perform an α level test.
Both of these procedures depend on data that could have happened but
did not, so these uses for G2 violate the likelihood principle. An excellent
discussion of the likelihood principle is given by Berger and Wolpert (1984).
Although formal tests are conducted throughout this book, the real em-

phasis is on informal evaluation of models using G2 and other tools. The
emphasis is on modeling and data analysis, not formal inferential proce-
dures. Nevertheless, a relatively complete account is given of the standard
results in formal log-linear model methodology. Bayesian methods are the
primary inferential methods that satisfy the likelihood principle. Chap-
ter 13 discusses Bayesian logistic regression — but not log-linear models.
Santner and Duffy (1989) include discussion of Bayesian methods.

Exercise 2.3. For multinomial sampling,H0 is the restriction that pij =
pi·p·j for all i and j. Show that

(a) the unrestricted MLE of pij is p̂ij = nij/n··

(b) the unrestricted MLE of mij is m̂ij = nij

(c) the MLE of pij under H0 is p̂(0)ij = p̂i·p̂·j = (ni·/n··)(n·j/n··)

(d) the MLE of mij under H0 is m̂(0)
ij = ni·n·j/n··

(e) the likelihood ratio test rejects H0 when

G2 = 2
I∑

i=1

J∑

j=1

m̂ij log

(
m̂ij

m̂
(0)
ij

)

gets too large.
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2.5 Log-Linear Models for Two-Dimensional
Tables

It is our intention to exploit the similarities between analysis of variance
(ANOVA) and regression on the one hand and log-linear and logistic re-
gression models on the other. We begin by discussing two-factor analysis
of variance.
Consider a balanced ANOVA model yijk = µ+αi+βj+γij+eijk. We can

change the symbols used to denote the parameters and rewrite the model
as

yijk = u+ u1(i) + u2(j) + u12(ij) + eijk, (1)

i = 1, . . . , I , j = 1, . . . , J , and k = 1, . . . ,K. The eijk’s are assumed to
be independent N(0, σ2). We can estimate σ2 and test for interaction. If
interaction exists, we can look at contrasts in the interaction; if no interac-
tion exists, we can test for main effects and look at contrasts in the main
effects. If some factor levels correspond to quantitative values, then regres-
sion ideas can be incorporated into the ANOVA. The estimate of σ2 is the
mean squared error

MSE =
1

IJ(K − 1)

I∑

i=1

J∑

j=1

K∑

k=1

(yijk − ȳij·)
2
.

Everything in the analysis other than the estimate of σ2 is a function of
the ȳij·’s. In particular, we can form an I × J table of the ȳij·’s. The goal
of the analysis is to explore the structure of this table. The ANOVA model
(1) and the corresponding contrasts in interactions and main effects have
proved to be very useful tools in exploring this I × J table.
Let us reconsider what the ANOVA model is really saying. Basically, the

ANOVA model is saying that the yijk’s are independent and that

yijk ∼ N(mij , σ
2)

where
mij = u+ u1(i) + u2(j) + u12(ij) . (2)

Our goal is to examine the structure of the mij ’s. To do that, we use the
MLEs of the mij ’s, which are

m̂ij = ȳij· .

Our statistical inferences are based on the fact that the m̂ij ’s are indepen-
dent with

m̂ij ∼ N(mij , σ
2/K)

and that the MSE is an estimate of σ2, which is independent of the m̂ij ’s. It
is of interest to note that although the MSE is not the MLE of σ2, exactly
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the same tests and confidence intervals for the mij ’s would be obtained if
the MLE for σ2 was used in place of the MSE (and suitable adjustments
in distributions were made).
If we impose a restriction on the mij ’s – for example, the restriction of

no interaction
mij = u+ u1(i) + u2(j) (3)

– the MLEs of the mij ’s change. In particular,

m̂ij = ȳ··· + (ȳi·· − ȳ···) + (ȳ·j· − ȳ···) (4)

and the MLE of σ2 also changes. It can be shown that the usual F test for
no interaction is just the likelihood ratio test for no interaction.
To examine an I×J table of counts, we use similar techniques. The table

entries have the property that

E(nij) = mij .

Again, we are interested in the structure of the mij ’s; however, instead of
considering linear models like (2) and (3), we consider log-linear models
such as

log(mij) = u+ u1(i) + u2(j) + u12(ij)

and
log(mij) = u+ u1(i) + u2(j) .

Our analysis will again rely on the MLEs of the mij ’s and on likelihood
ratio tests; however, there are some differences. The nij ’s are typically
multinomial or product-multinomial. Small sample results similar to those
from standard analysis of variance are not available. Traditionally, tests
and confidence intervals have been based on large sample approximate dis-
tributions. On the other hand, multinomial distributions depend only on
the pij ’s or, equivalently, the mij ’s, so there is no need to deal with a term
analogous to σ2 in normal theory. Finally, the ANOVA model (1) is bal-
anced; it has K observations in each cell of the table. This balance leads to
simplifications in the analysis. If there are different numbers of observations
in the cells, the simplifications are lost. For example, the simple formula (4)
for MLEs under the no-interaction model does not apply. Log-linear models
are analogous to ANOVA models with unequal numbers of observations.
They almost never display all the simplifications associated with balanced
observations in ANOVA and they only occasionally have simple formulas
for MLEs. Although most work on log-linear models has used large sam-
ple (asymptotic) distributions, recently there has been considerable work
on exact conditional inference and Bayesian inference for small samples.
See the subsection on Other Sampling Methods in Section 3.5 for further
discussion of exact conditional inference and Chapter 13 for a discussion of
Bayesian methods.
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There are several reasons for writing ANOVA type models for the
log(mij)’s rather than themij ’s. One is that the large sample theory can be
worked out. In other words, one reason to do it is because it can be done.
Another reason is that log-linear models arise in a natural fashion from
the mathematics of Poisson sampling, cf. Chapter 9. Multinomial expected
cell counts are bounded between 0 and the sample size N , these bounds
place awkward limits on the parameters of ANOVA type models for the
mij ’s. Such problems do not arise in log-linear modeling. One of the best
reasons for considering log-linear models is that they often have very nice
interpretations. We now examine the interpretations of log-linear models
for two factors.
Consider a multinomial sample. We know that mij = n··pij . We can

write a log-linear model

log(mij) = u+ u1(i) + u2(j) + u12(ij) . (5)

This has accomplished absolutely nothing! The terms u12(ij) are sufficient
to explain the mij ’s. The u, u1(i), and u2(j) terms are totally redundant;
they can have any values at all, and yet, by choosing the u12(ij)’s appro-
priately, equation (5) can be made to hold. Because model (5) has enough
u terms to completely explain any set of mij ’s, model (5) is referred to as
a saturated model.
A more interesting example of a log-linear model occurs when the rows

and columns of the table are independent. If

mij = n··pi·p·j ,

then
logmij = logn·· + log pi· + log p·j .

In other words, if rows and columns are independent, a log-linear model of
the form

logmij = u+ u1(i) + u2(j) (6)

holds. However, if we are to base our analysis on log-linear models, it is even
more important to know that if model (6) holds, then rows and columns
are independent.

Theorem 2.5.1. For multinomial sampling in an I × J table,
log(mij) = u + u1(i) + u2(j) , i = 1, . . . , I , j = 1, . . . , J , if and only if
pij = pi·p·j , i = 1, . . . , I , j = 1, . . . , J .

Proof. We have already shown that independence implies the log-linear
model.
If the log-linear model holds, then

mij = eu+u1(i)+u2(j) .



50 2. Two-Dimensional Tables and Simple Logistic Regression

Let a = eu, a1(i) = eu1(i) , and a2(j) = eu2(j) . Let a1(·) =
∑I

i=1 a1(i) and
similarly for a2(·). Note that

pij = mij/n·· = a a1(i)a2(j)/n·· ,
pi· = aa1(i)a2(·)/n·· ,
p·j = aa1(·)a2(j)/n·· ,

and
1 = p·· = aa1(·)a2(·)/n·· .

Substitution gives

pi·p·j = aa1(i)a2(·)aa1(·)a2(j)/n2··
= (aa1(i)a2(j)/n··)(aa1(·)a2(·)/n··)
= aa1(i)a2(j)/n··
= pij .

Thus, the log-linear model implies independence. �

For product-multinomial sampling,

mij = ni·pij (7)

and the log-linear model

logmij = u+ u1(i) + u2(j) + u12(ij)

holds trivially. Now, consider the model under H0. If πj = p1j = · · · = pIj
for all j = 1, . . . , J , then

mij = ni·πj .

Theorem 2.5.2. For product-multinomial sampling in an I × J table
where rows are independent samples, logmij = u+u1(i)+u2(j), i = 1, . . . , I,
j = 1, . . . , J , if and only if p1j = · · · = pIj , j = 1, . . . , J .

Proof. If for each j the probabilities pij are equal, we have mij = ni·πj
and logmij = log ni· + log πj . Taking u = 0, u1(i) = log(ni·), and u2(j) =
log(πj) shows that the log-linear model holds.

Conversely, if logmij = u + u1(i) + u2(j), then mij = aa1(i)a2(j), where
a = eu, a1(i) = eu1(i) , and a2(j) = eu2(j) . Note that pi· = 1, so from (7),
mi· = ni· and

ni· = a a1(i)a2(·) .
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Because pij = mij/ni· ,

pij = aa1(i)a2(j)/ni·
= aa1(i)a2(j)/aa1(i)a2(·)
= a2(j)/a2(·) .

This is true for any i, so a2(j)/a2(·) = p1j = p2j = · · · = pIj , j = 1, . . . , J .
�

2.5.1 Odds Ratios
In applications with high-dimensional tables, it is rare that there are no
important interactions. In order to explore the nature of the interactions,
we need to look at contrasts in the interactions. To do this, we need a
method of defining contrasts in the interactions. We begin by reviewing
methods for examining interactions in analysis of variance.
Let qij , i = 1, . . . , I, j = 1, . . . , J , be any set of numbers with the property

that qi· = q·j = 0. In balanced analysis of variance,

I∑

i=1

J∑

j=1

qijmij (8)

is a contrast in the interactions. Using model (2) and the fact that qi· =
q·j = 0, the contrast (8) can also be written as

I∑

i=1

J∑

j=1

qiju12(ij)

which involves only the interactions. The most interpretable way of ob-
taining a contrast in the interactions is to define the interaction contrast
in terms of contrasts in the main effects. Let ai, i = 1, . . . , I, determine a
contrast in the rows (thus, a· = 0) and let bj , j = 1, . . . , J , determine a
contrast in the columns (so b· = 0). Then, if we take qij = aibj , we get a
contrast in the interactions. Recall that if there is no interaction, all inter-
action contrasts equal zero. Conversely, the interaction has (I − 1)(J − 1)
degrees of freedom, so specifying that any (I − 1)(J − 1) linearly indepen-
dent contrasts in the interaction are all zero is equivalent to specifying that
there is no interaction.
A valuable data analytic technique for examining interactions in two-

way analysis of variance is the interaction plot. It consists of plotting the
I curves determined by connecting the points (j, m̂ij), j = 1, . . . , J , with
line segments. In this plot, m̂ij = ȳij·, the estimate of mij in model (2). If
there is no interaction, mij = u+ u1(i) + u2(j) and the I theoretical curves
(j,mij) are parallel. If interaction exists, the theoretical curves are not
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parallel. The curves (j, m̂ij) estimate the theoretical curves. If the curves
(j, m̂ij) are approximately parallel, it suggests that there is no interaction.
If interaction exists, the estimated curves can suggest the nature of the
interaction. Whether the plots are approximately parallel depends on the
variability of the m̂ij ’s.
Rather than plotting the I curves based on (j, m̂ij), one can plot the J

curves based on (i, m̂ij), i = 1, . . . , I. Again, in the absence of interactions,
the curves should be approximately parallel. If the column treatments cor-
respond to quantitative levels, say, xj , j = 1, . . . , J , then plots of (xj , m̂ij)
are appropriate. Again, one looks for parallelism. Similar plots can be con-
structed for row treatments with quantitative levels.
In log-linear models, the same procedures can be applied to the

log(mij)’s. In particular, specifying that an odds ratio equals one is equiva-
lent to specifying that an interaction contrast is zero. First, note that odds
ratios can be written in terms of expected values. For product-multinomial
sampling,

mij = ni·pij

and for multinomial sampling,

mij = n··pij .

In either case,
pijpi′j′

pij′pi′j
=

mijmi′j′

mij′mi′j
.

If
mijmi′j′

mij′mi′j
= 1 ,

then taking logs gives

logmij − logmij′ − logmi′j + logmi′j′ = 0 .

This is precisely the statement that the interaction contrast

I∑

r=1

J∑

s=1

qrs log(mrs) (9)

equals zero, where qij = qi′j′ = 1, qij′ = qi′j = −1, and qrs = 0 for all other
pairs (r, s). In particular, the coefficients qrs can be obtained by combining
the contrast in the rows ai = 1, ai′ = −1, and ar = 0 for all other r with
the contrast in the columns bj = 1, bj′ = −1, and bs = 0 for all other s.
Observe that the contrast (9) can also be written

I∑

r=1

J∑

s=1

qrsu12(rs)
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where we have used model (5) and the fact that qr· = q·s = 0.
If we specify that

m11mij

m1jmi1
= 1

for all i = 2, . . . , I and j = 2, . . . , J , then we have specified that (I−1)(J−1)
linearly independent interaction contrasts in the log(mij)’s are all equal to
zero; hence, there is no interaction.
As with analysis of variance, an interaction plot can be a valuable tool

in the analysis of log-linear models. The I curves that connect the sets
of points (j, log(m̂ij)), j = 1, . . . , J , are the basis of the interaction plot.
The estimated expected counts m̂ij are estimated using model (5), which
contains interaction. Under model (5), m̂ij = nij . The I curves estimate
the theoretical curves based on (j, log(mij)). If there is no interaction, the
theoretical curves are parallel and estimated curves should indicate this. If
interaction exists, the nature of the interaction should be suggested by the
estimated curves.

Example 2.5.3. Consider the data given below on the relationship be-
tween college of enrollment and political affiliation for university students.

Political Affiliation
Rep. Dem. Ind. Total

Letters 34 61 16 111
Engineering 31 19 17 67

College Agriculture 19 23 16 58
Education 23 39 12 74
Totals 107 142 61 310

The Pearson and likelihood ratio test statistics for independence (no inter-
action) are

X2 = 16.16

and
G2 = 16.39 .

The test has (4 − 1)(3 − 1) = 6 degrees of freedom. The 99th percentile of
a χ2(6) is 16.81, so the P value for either statistic is a little above .01. An
interaction plot uses the values log(nij) given below.

Political Affiliation
Rep. Dem. Ind.

Letters 3.5 4.1 2.8
Engineering 3.4 2.9 2.8
Agriculture 2.9 3.1 2.8
Education 3.1 3.7 2.5

The interaction plot is given in Figure 2.1. The curves for Letters and
Education are almost parallel. The curve for Agriculture is similar but not





2.6 Simple Logistic Regression 55

is viewed as an independent trial. The result of a trial is 1 if any field
O-rings failed on the flight and 0 if all the O-rings functioned properly. A
simple logistic regression uses temperature to model the probability that
any O-ring failed. Such a model allows us to predict O-ring failure from
temperature.

TABLE 2.1. O-Ring Failure Data

Case Flight Failure Success Temperature
1 14 1 0 53
2 9 1 0 57
3 23 1 0 58
4 10 1 0 63
5 1 0 1 66
6 5 0 1 67
7 13 0 1 67
8 15 0 1 67
9 4 0 1 68

10 3 0 1 69
11 8 0 1 70
12 17 0 1 70
13 2 1 0 70
14 11 1 0 70
15 6 0 1 72
16 7 0 1 73
17 16 0 1 75
18 21 1 0 75
19 19 0 1 76
20 22 0 1 76
21 12 0 1 78
22 20 0 1 79
23 18 0 1 81

Let pi be the probability that any O-ring fails in case i. A simple linear
logistic regression model for these data is

logit(pi) ≡ log
(

pi
1 − pi

)
= β0 + β1τi,

where τi is the known temperature and β0 and β1 are unknown intercept
and slope parameters (coefficients). The logistic regression model presents
the log odds of O-ring failure as a linear function of temperature.
We again use maximum likelihood estimates. The likelihood function

for logistic regression is discussed later in this section. The procedure for
finding maximum likelihood estimates is discussed later in the book. For
now, we merely present results and use analogies to standard regression.
The coefficient estimates, standard errors, and z values are
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Variable Estimate Std. Error z

Intercept 15.04 7.316 2.06
Temperature −0.2321 0.1073 −2.16

The z values are simply the estimate divided by the standard error. They
are test statistics for testing whether a coefficient equals zero. In particular,
z = −2.16 yields a P value for H0 : β1 = 0 that is approximately .03. An
alternative and preferred test is presented later.
To predict the probability of any O-ring failures for a flight at a temper-

ature of τ ,

log
(

p

1 − p

)
= β0 + β1τ

which can be rearranged into

p =
exp(β0 + β1τ)

1 + exp(β0 + β1τ)
.

The estimated probability is

p̂ =
exp(β̂0 + β̂1τ)

1 + exp(β̂0 + β̂1τ)
.

Figure 2.2 gives a plot of the estimated probabilities as a function of tem-
perature. The Challenger was launched at τ = 31 degrees Fahrenheit, so
the predicted log odds are 15.04 − (.2321)31 = 7.8449 and the predicted
probability of an O-ring failure is e7.8449/(1 + e7.8449) = .9996. Actually,
there are problems with this prediction because we are predicting very far
from the observed data. The lowest temperature at which a shuttle had
previously been launched was 53 degrees, very far from 31 degrees. Ac-
cording to the fitted model, a launch at 53 degrees has probability .939 of
O- ring failure, so even with the caveat about predicting beyond the range
of the data, the model indicates an overwhelming probability of failure.

Before discussing logistic regression in general, we review standard one-
way ANOVA and simple linear regression with normal errors. Suppose we
have independent observations yij on I populations. The one-way ANOVA
model is

yij = mi + εij (1)

εij ’s independent N(0, σ2), i = 1, . . . , I, j = 1, . . . , Ni. Here, E(yij) ≡ mi.
Alternatively, when a predictor variable xi is available for each population,
a simple linear regression model for the yij ’s is

yij = β0 + β1xi + εij . (2)

Model (2) is specifying a linear structure for the mi’s defined in model (1),
i.e., for i = 1, . . . , I

mi = β0 + β1xi .
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i. Also, pi ≡ pi1 and 1 − pi ≡ pi2 with similar definitions for the expected
values. In particular, mi = Nipi = ni·pi1 = mi1 and mi2 = Ni(1 − pi), so
pi/(1 − pi) = mi1/mi2.

The log-linear version of model (3) is

log(mij) = u1(i) + u2(j) + ηjxi (4)

where the usual interaction term u12(ij) from (2.5.5) is being replaced in the
model by a more specific interaction term, ηjxi. Of course, xi is the known
predictor variable, but ηj is an unknown parameter. This is an interaction
term because it involves both the i and j subscripts, just like u12(ij). The
relationship between the logistic model (3) and the log-linear model (4) is
that

log
(

pi
1 − pi

)
= log

(
mi1

mi2

)

= log(mi1) − log(mi2)
=

[
u1(i) + u2(1) + η1xi

] − [
u1(i) + u2(2) + η2xi

]

=
[
u2(1) − u2(2)

]
+ [η1xi − η2xi]

≡ β0 + β1xi

where β0 ≡ [
u2(1) − u2(2)

]
and β1 ≡ [η1 − η2].

As in Section 4, we can use maximum likelihood to estimate the pa-
rameters and to generate tests. The likelihood function L(p) for a two-
dimensional table was given in (2.4.2). Equation (3) can be rearranged to
give

pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
,

1 − pi =
1

1 + exp(β0 + β1xi)
.

Recalling that pi ≡ pi1, (1 − pi) ≡ pi2, yi ≡ ni1, and Ni − yi ≡ ni2,
substitution into (2.4.2) gives the likelihood function

L(β0, β1) =
I∏

i=1

[
ni·!

∏2
j=1 nij !

{
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

}ni1
{

1
1 + exp(β0 + β1xi)

}ni2
]

.

It is by no means obvious what values of β0 and β1 will maximize this
function. In Chapters 10 and 11, we discuss the Newton–Raphson method
for obtaining such maxima. For now, we rely on a computer program to
give us the maximizing values. (See Subsections 2.6.1 and 4.4.2 for SAS,
BMDP, and GLIM computer commands.)
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As in the example, if p is the probability for a predictor x,

log
(

p

1 − p

)
= β0 + β1x and p =

exp(β0 + β1x)
1 + exp(β0 + β1x)

.

Given the MLEs β̂0 and β̂1, we get the estimated probability associated
with x:

p̂ =
exp(β̂0 + β̂1x)

1 + exp(β̂0 + β̂1x)
.

In particular, this formula provides the p̂i’s when doing predictions at the
xi’s. It also provides m̂ij ’s through m̂ij = ni·p̂ij . We can try to test model
(4) against the more general saturated model (2.5.5). Recall that the MLEs
for the expected cell counts under model (2.5.5) are just the nij ’s, so

G2 = 2
I∑

i=1

2∑

j=1

nij log
(
nij
m̂ij

)

= 2
I∑

i=1

[ni1 log(ni1/m̂i1) + ni2 log(ni2/m̂i2)]

= 2
I∑

i=1

[yi log(yi/Nip̂i) + (Ni − yi) log((Ni − yi)/Ni(1 − p̂i))] .

In this formula, if yi = 0, then yi log(yi) is taken as zero.
The Pearson test statistic is

X2 =
I∑

i=1

2∑

j=1

(nij − m̂ij)2

m̂ij

=
I∑

i=1

[
(yi − Nip̂i)2

Nip̂i
+

[(Ni − yi) − Ni(1 − p̂i)]2

Ni(1 − p̂i)

]

=
I∑

i=1

[
(yi − Nip̂i)2

Nip̂i
+

(yi − Nip̂i)2

Ni(1 − p̂i)

]

=
I∑

i=1

(yi − Nip̂i)2

Nip̂i(1 − p̂i)
.

The degrees of freedom for the tests are 23 − 2 = 21, i.e., the number of
cases minus one for the intercept and one for temperature. This computa-
tion is based on model (3). Alternatively, based on model (4), the degrees
of freedom are the number of cells in the two-way table, 23 × 2, minus
23 for fitting row effects and the grand mean, minus 1 for column effects,
and minus 1 for fitting the interaction term based on temperature, i.e.,
46 − 23 − 1 − 1 = 21.
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G2 and X2 are appropriate test statistics, but, unfortunately, for them
to have large sample χ2 distributions, we need the nij ’s to get large. In
this example, the nij ’s are 0 or 1, so a χ2 test is inappropriate for this
example. In general, a χ2 test of a logistic regression model against the
saturated model (2.5.5) is appropriate only when the sample sizes Ni for
the I populations are all large.
We can also use model (4) as a full model and test it against a reduced

model. Since models (4) and (3) are equivalent, we specify a reduced model
for model (3), say

log
(

pi
1 − pi

)
= β0. (5)

Testing model (5) against model (3) is equivalent to testing H0 : β1 = 0.
Given an estimate β̂0 for model (5), we get p̂i = eβ̂0/(1+eβ̂0), estimates p̂ij ,
and estimates, say, m̂(0)

ij = ni·p̂ij , where the (0) indicates that the expected
cell count is estimated under H0 : β1 = 0. The test statistic is

G2 = 2
I∑

i=1

2∑

j=1

m̂ij log

(
m̂ij

m̂
(0)
ij

)

.

Unlike standard regression analysis where the t test for H0 : β1 = 0 is
equivalent to the F test, in logistic regression the z test described earlier
can give different results than the G2 test described here. Both tests of H0
will generally be valid whenever I is large.

Exercise 2.4 Show that the independence model (2.5.6) implies model
(5). Hint: Use the same method as was used to show that model (4) implies
model (3).

Crude standardized residuals can be defined as

r̃i =
yi − Nip̂i√
Nip̂i(1 − p̂i)

, (6)

so that Pearson’s chi-squared is X2 =
∑s

i=1 r̃
2
i . Note that Var(yi) =

Nipi(1 − pi), making this definition of crude standardized residuals an es-
timate of yi −E(yi)/

√
Var(yi). (These are “crude” in that they ignore the

variability of p̂i.) When Ni = 1, the residuals will not have an asymptotic
normal distribution, which is a major reason why these residuals do not
behave like residuals in normal theory models.

Example 2.6.1 Continued. For the simple linear logistic regression
model, G2 = 20.315 with 21 degrees of freedom. For the intercept-only
model, G2 = 28.267 with 22 degrees of freedom. Since Ni = 1 for all i,
neither of these G2’s is compared directly to a chi-squared distribution.
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The model based test for H0 : β1 = 0 has G2 = 28.267 − 20.315 = 7.952
on df = 22−21 = 1. Comparing this to a χ2(1) distribution, the P value for
the test is approximately .005. It is considerably smaller than the P value
for the z test of H0. This test is generally preferred to the z test.

Since Ni = 1 for all i, we delay consideration of residuals until Chapter 4.

All of the methods presented in this section carry over to multiple logistic
regression in which there is more than one predictor variable. Such models
are discussed in Chapter 4.

2.6.1 Computer Commands
The data are in a file ‘oring.dat’ that looks like Table 2.1 except it has an
extra column at the right (which contains the actual number of O-rings that
failed on each flight). Perhaps the simplest way to fit the logistic regression
model in SAS is to use PROC GENMOD.

options ps=60 ls=72 nodate;
data oring;

infile ’oring.dat’;
input ID flt f s temp junk;
n = 1;

proc genmod data = oring;
model f/n = temp / link=logit

dist=binomial;
run;

The first line controls printing of the output. The next four lines define
the data. The variable “n” is used to specify that there is only one trial in
each of the 23 binomials. PROC GENMOD needs the data specified: “data
= oring”. GENMOD also needs information on the model. “link = logit”
and “dist = binomial” are both needed to specify that a logistic regression
is being fitted. “model f/n = temp” indicates that we are modeling the
number of failures in “f” out of “n” trials using the predictor “temp” (and
implicitly an intercept).
A more powerful SAS program for logistic regression is PROC LOGIS-

TIC. Commands for this, BMDP-LR, and GLIM are given in Subsec-
tion 4.4.2.

2.7 Exercises

Exercise 2.7.1. The data in Table 2.2 are on graduate admissions by
sex at the University of California, Berkeley, and are given by Bickel et
al. (1975) and Freedman et al. (1978). Test for independence, examine the
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Pearson residuals, and evaluate the odds ratio. What conclusions do you
reach? (Do not put too much credence in your analysis; the data will be
reanalyzed in Exercise 3.6.4.)

TABLE 2.2. Graduate Ad-
missions at Berkeley

Male Female
Admitted 1198 557
Rejected 1493 1278

Exercise 2.7.2. Cramér (1946) presents data on the distribution of
birth dates for males and females born in Sweden in 1935. The data given
in Table 2.3 presume a natural ordering for the months of the year that
Cramér does not specify. Analyze the data. Is it better to think of this as
one multinomial sample or as two independent multinomial samples?

TABLE 2.3. Swedish Birth
Dates

Month Female Male
January 3537 3743
February 3407 3550
March 3866 4017
April 3711 4173
May 3775 4117
June 3665 3944
July 3621 3964
August 3596 3797
September 3491 3712
October 3391 3512
November 3160 3392
December 3371 3761

Exercise 2.7.3. Gilby (1911) presents data on the relationships among
instructor’s evaluation of general intelligence, quality of clothing, and school
standard. General intelligence was classified using a system of Karl Pear-
son’s that was reported in Waite (1911). Briefly, the Intelligence classifica-
tions are A – Mentally Defective, B – Dull, C – Slow, E – Fairly Intelligent,
F – Capable, and G – Very Able. Clothing was classified as I – Very Well
Clad, II – Well Clad, III – Poor but Passable, IV – Insufficient, V – Worse
than Insufficient. Throughout, intelligence category A was combined with
B and clothing category V was combined with IV. This was done because
of small numbers of observations. The third variable, Standard, seems to
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be similar to the American idea of a school grade. For example, roughly
half of 10-year-olds were in Standard III with most of the others in II or IV.
For 10 12 -year-olds, about two-thirds were in standards III or IV with most
of the rest in II or V. Data were collected from 36 instructors spread over
eight different primary schools. Tables 2.4, 2.5, and 2.6 summarize some of
the data; use the methods of Chapter 2 to analyze these data.

TABLE 2.4. Intelligence versus Clothing

Intelligence
Clothing B C D E F G
I 33 48 113 209 194 39
II 41 100 202 255 138 15
III 39 58 70 61 33 4
IV,V 17 13 22 10 10 1

TABLE 2.5. Intelligence versus Standard

Intelligence
Standard B C D E F G
I 17 27 45 50 27 1
II 23 34 61 66 36 1
III 42 42 69 117 72 10
IV 16 25 41 75 53 11
V 18 38 66 77 45 6
VI 10 32 73 80 98 18
VII 4 19 39 52 35 11
VIII 0 2 13 18 9 1

TABLE 2.6. Clothing versus Stan-
dard

Clothing
Standard I II III IV,V
I 20 87 56 4
II 71 88 42 20
III 157 134 41 20
IV 82 77 45 17
V 101 117 29 3
VI 127 145 32 7
VII 59 81 18 2
VIII 19 22 2 0
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Exercise 2.7.4. Partitioning Tables.
The examination of odds ratios and residuals provide two ways to inves-
tigate lack of independence in a two-way table. The partitioning methods
of Irwin (1949) and Lancaster (1949) provide another. Christensen (1996a,
Section 8.6) gives extensive examples of the application of these methods.
Table 2.7 gives data on the occupation of family heads for families of various
religious groups. The occupations are A – Professions, B – Owners, Man-
agers, and Officials, C – Clerical and Sales, D – Skilled, E – Semiskilled, F –
Unskilled, G – Farmers, H – No Occupation. The data were extracted from
Lazerwitz (1961). Although the data were collected using a complex sam-
pling design (cf. Section 3.5), ignore this fact in your analysis. To establish
the effect of the Protestant groups on the lack of independence, we can iso-
late the Protestant groups in a separate reduced table. We can also pool the
Protestants together in a collapsed table that includes the non-Protestant
groups. These are both given in Table 2.8. Test each of the three tables for
independence. Note that G2 for the full table equals the sum of the G2’s for
the reduced table and the collapsed table. Continue the analysis of these
data by using the partitioning procedure on the reduced and collapsed ta-
bles and on subsequent generations of reduced and collapsed tables. Note
that tables can also be partitioned on their columns. At its logical extreme,
this leads to a collection of 2×2 tables, each with one degree of freedom for
testing independence. The Lancaster-Irwin partitioning provides a method
of breaking the interaction (lack of independence) G2 for the full table into
one degree of freedom components that add up to the original G2. This is
similar to using orthogonal contrasts to break up the interaction sum of
squares in a balanced analysis of variance. For a theoretical justification of
the Lancaster-Irwin procedure, see Exercise 8.4.3.

TABLE 2.7. Occupation and Religion

Religion A B C D E F G H
White Baptist 43 78 64 135 135 57 86 114
Black Baptist 9 2 9 23 47 77 18 41
Methodist 73 80 80 117 102 58 66 153
Lutheran 23 36 43 59 46 26 49 46
Presbyterian 35 54 38 46 19 22 11 46
Episcopalian 27 27 20 14 7 5 2 15
Roman Catholic 102 140 127 279 254 127 51 190
Jewish 36 60 30 17 17 2 0 26
No Religion 19 12 6 12 25 9 14 28

Exercise 2.7.5. Fisher’s Exact Test.
Consider the problem of testing whether the probability of success is the
same for two independent binomials. Let yi ∼ Bin(Ni, pi), i = 1, 2. Write
the 2 × 2 table as
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TABLE 2.8. Partitioned Tables

Reduced Table
Religion A B C D E F G H
White Baptist 43 78 64 135 135 57 86 114
Black Baptist 9 2 9 23 47 77 18 41
Methodist 73 80 80 117 102 58 66 153
Lutheran 23 36 43 59 46 26 49 46
Presbyterian 35 54 38 46 19 22 11 46
Episcopalian 27 27 20 14 7 5 2 15

Collapsed Table
Religion A B C D E F G H
Protestant 210 277 254 394 356 245 232 415
Roman Catholic 102 140 127 279 254 127 51 190
Jewish 36 60 30 17 17 2 0 26
No Religion 19 12 6 12 25 9 14 28

y1 N1 − y1 N1
y2 N2 − y2 N2

t N1 +N2 − t N1 +N2

(a) Find Pr(y1 = r1 and t = t0) for arbitrary r1 and t0.

(b) Assuming p1 = p2, find Pr(y1 = r1|t = t0).

(c) Consider the following subset of the knee injury data of Example 2.3.1

Result
Injury E G
Direct 3 2
Twist 7 1

Using the conditional distribution of (b), find the probability of getting the
observed value 3. The P value for Fisher’s exact test is the sum of the
Pr(y1 = r1|t = 10)’s for every r1 value that satisfies

Pr(y1 = r1|t = 10) ≤ Pr(y1 = 3|t = 10).

Find the P value for the data given above. Note that this test does not
depend on any large sample approximations, so it is exact even for small
samples. On the other hand, the computations become difficult with large
samples.

Exercise 2.7.6. Yule’s Q.
For 2×2 tables, a measure of association similar to a correlation coefficient
is Yule’s Q, which is defined as

Q =
p11p22 − p12p21
p11p22 + p12p21

.
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Find Q in terms of the odds ratio. Show that Q lies between −1 and 1.

Exercise 2.7.7. Freeman-Tukey Residuals.
Freeman and Tukey (1950) suggest a variance stabilizing transformation
for Poisson data that leads to using the quantities

√
nij +

√
nij + 1 −

√
4m̂(0)

ij + 1

as residuals, cf. Bishop, Fienberg, and Holland (1975, Section 4.4). Reex-
amine the data of Example 2.3.1 using the Freeman-Tukey residuals.

Exercise 2.7.8. Power Divergence Statistics.
Cressie and Read (1984) and Read and Cressie (1988) have introduced the
power divergence family of test statistics

2Iλ =
2

λ(λ+ 1)

∑

ij

nij





(
nij

m̂
(0)
ij

)λ

− 1



 ,

where for λ = −1, 0 the statistics are defined by taking limits. They estab-
lish that for any λ, the large sample distribution under H0 is χ2 with the
usual degrees of freedom. Show that X2 = 2I1 and G2 = 2I0. Find the
relationship between 2I−1/2 and the Freeman-Tukey residuals discussed in
Exercise 2.7.7.

Exercise 2.7.9. Compute the power divergence test statistics 2I−1/2

and 2I1/2 for the knee injury data of Example 2.3.1. Compare the results
to G2 and X2. What conclusions can be reached about knee injuries?

Exercise 2.7.10. Testing for Symmetry.
Consider a multinomial sample arranged in an I × I table. In square tables
with similar categories for the two factors, it is sometimes of interest to
test

H0 : pij = pji

for all i and j.
(a) Give a procedure for testing this hypothesis based on testing equality

of probabilities (homogeneity of proportions) in a 2 × I(I − 1)/2 table. If
you think of the I × I table as a matrix, the rows indicate whether a cell is
above or below the diagonal. The columns are corresponding off diagonal
pairs. Illustrate the test for a 4 × 4 table.
(b) Give a justification for the procedure in terms of a (conditional)

sampling model.
(c) The data in Table 2.9 were given by Fienberg (1980), Yule (1900), and

earlier by Galton. They report the relative heights of 205 married couples.
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TABLE 2.9. Heights of Married
Couples

Wife
Husband Tall Medium Short
Tall 18 28 14
Medium 20 51 28
Short 12 25 9

Test for symmetry and do any other appropriate analysis for these data.
Do the data display symmetry?

Exercise 2.7.11. Correlated Data.
There are actually 410 observations in Exercise 2.7.10 and Table 2.9. There
are 205 men and 205 women. Why was Table 2.9 set up as a 3 × 3 table
with only 205 observations rather than as Table 2.10, a 2 × 3, sex versus
height table with 410 observations?

TABLE 2.10. Heights of Married
Couples

Height
Sex Tall Medium Short
Wife 50 104 51
Husband 60 99 46

Exercise 2.7.12. McNemar’s Test.
McNemar (1947) proposes a method of testing for homogeneity of pro-
portions among two binary populations when the data are correlated. (A
binary population is one in which all members fall into one of two cate-
gories. Homogeneity means that the proportions in each category are the
same for both groups.) If we restrict attention in Exercise 2.7.10 and Ta-
ble 2.9 to the subpopulation of Tall and Medium people, we get an example
of such data. The data on a husband and wife pair cannot be considered as
independent, but this problem is avoided by treating each pair as a single
response. The data from the subpopulation are given below.

Wife
Husband Tall Medium
Tall 18 28
Medium 20 51

Conditionally, these data are a multinomial sample of 117. The probability
of a tall woman is p11 + p21 and the probability of a medium woman is
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one minus that. The probability of a tall man is p11 + p12 and again the
probability of a medium man can be found by subtraction. It follows that
the probability of a tall woman is the same as the probability of a tall man
if and only if p21 = p12. Thus, for 2 × 2 tables, the problem of homogene-
ity of proportions is equivalent to testing for symmetry. McNemar’s test
is just the test for symmetry in Exercise 2.7.10 applied to 2 × 2 tables.
Check for homogeneity of proportions in the subpopulation. For square
tables that are larger than 2×2, the problem of testing for marginal homo-
geneity is more difficult and cannot, as yet, be addressed using log-linear
models. Nonetheless, a test can be obtained from basic asymptotic results,
cf. Exercise 10.8.6.

Exercise 2.7.13. Suppose the random variables nij , i = 1, 2, j =
1, . . . , Ni, are independent Poisson(µi) random variables. Find the maxi-
mum likelihood estimates for µ1 and µ2 and find the generalized likelihood
ratio test statistic for H0 : µ1 = µ2.

Exercise 2.7.14. Yule’s Q (cf. Exercise 2.7.6.) is one of many measures
of association that have been proposed for 2 × 2 tables. Agresti (1984,
Chapter 9) has a substantial discussion of measures of association. It has
been suggested that measures of association for 2 × 2 multinomial tables
should depend solely on the conditional probabilities of being in the first
column given the row, i.e., p11/p1· and p21/p2·, or, alternatively, on the
conditional probabilities of being in the first row given the column, i.e.,
p11/p·1 and p12/p·2. Moreover, it has been suggested that the measure of
association should not depend on which set of conditional probabilities are
used. Show that any measure of association

f

(
p11
p1·

,
p21
p2·

)

can be written as some function of the odds

g

(
p11
p12

,
p21
p22

)
.

Show that if

f

(
p11
p1·

,
p21
p2·

)
= f

(
p11
p·1

,
p12
p·2

)

for any sets of probabilities, then g(x, y) = g(ax, ay) for any x, y, and a.
Use this to conclude that any such measure of association is a function of
the odds ratio.



3
Three-Dimensional Tables

Just as a multinomial sample can be classified by the levels of two factors,
a multinomial sample can also be classified by the levels of three factors.

Example 3.0.1. Everitt (1977) considers a sample of 97 ten-year-old
school children who were classified using three factors: classroom behavior,
risk of home conditions, and adversity of school conditions. Classroom be-
havior was judged by teachers to be either nondeviant or deviant. Risk of
home conditions either identify the child as not at risk (N) or at risk (R).
Adversity of school condition was judged as either low, medium, or high.
The observations are denoted as nijk, i = 1, 2, j = 1, 2, k = 1, 2, 3. The
three-dimensional table of nijk’s is

Adversity of School (k)
Low Medium High

Risk (j) N R N R N R Total
Classroom Nondeviant 16 7 15 34 5 3 80
Behavior (i) Deviant 1 1 3 8 1 3 17

Total 17 8 18 42 6 6 97

The totals at the right-hand margin are n1·· = 80 and n2·· = 17. The
totals along the bottom margin are n·11 = 17, n·21 = 8, n·12 = 18, n·22 =
42, n·13 = 6, n·23 = 6, and n··· = 97.
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In general, a three-dimensional table of counts is denoted nijk, i =
1, . . . , I, j = 1, . . . , J , k = 1, . . . ,K. Marginal totals are denoted

nij· =
K∑

k=1

nijk , ni·k =
J∑

j=1

nijk , n·jk =
I∑

i=1

nijk ,

ni·· =
J∑

j=1

K∑

k=1

nijk =
J∑

j=1

nij· =
K∑

k=1

ni·k ,

n·j· =
I∑

i=1

K∑

k=1

nijk , n··k =
I∑

i=1

J∑

j=1

nijk ,

and
n··· =

∑

ijk

nijk .

Similar notations are used for tables of probabilities pijk, tables of expected
values mijk, and tables of estimates of the pijk’s and mijk’s.

Note that the values nij· define a two-dimensional I × J marginal table.
The values ni·k and n·jk also define marginal tables.
Product-multinomial sampling is raised to a new level of complexity in

three-dimensional tables. For example, we could have samples from I pop-
ulations with each sample cross-classified into JK categories, or we could
have samples from IJ (cross-classified) populations where each sample is
classified into K categories.
Section 2 of this chapter discusses independence and odds ratio mod-

els for three-dimensional tables under multinomial sampling. Section 3 ex-
amines the iterative proportional fitting algorithm for finding estimates
of expected cell counts. Section 4 introduces log-linear models for three-
dimensional tables. Section 5 considers the modifications necessary for deal-
ing with product-multinomial sampling and comments on other sampling
schemes. Section 6 introduces model selection criteria and Section 7 intro-
duces tables with four of more dimensions. We begin with a discussion of
Simpson’s paradox and the need for tables with more than two factors.

3.1 Simpson’s Paradox and the Need for
Higher-Dimensional Tables

It really is necessary to deal with three-dimensional tables; accurate infor-
mation cannot generally be obtained by examining each of the three sim-
pler two-dimensional tables. In fact, the conclusions from two-dimensional
marginal tables can be contradicted by the accurate three-dimensional in-
formation. In this section, we demonstrate and examine the problem via
an example.
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Example 3.1.1. Consider the outcome (success or failure) of two medical
treatments classified by the sex of the patient. The data are given below.

Patient Sex
Male Female

Outcome Success Failure Success Failure
1 60 20 40 80

Treatment
2 100 50 10 30

Considering only the males, we have a two-way table of treatment versus
outcome. The estimated probability of success under treatment 1 is 60/80 =
.75. For treatment 2, the estimated probability of success is 100/150 = .667.
Thus, for males, treatment 1 appears to be more successful.
Now consider the table of treatment versus outcome for females only.

Under treatment 1, the estimated probability of success is 40/120 = .333.
Under treatment 2, the estimated probability of success is 10/40 = .25. For
women as for men, treatment 1 appears to be more successful.
Now examine the marginal table of treatment versus outcome. This is

obtained by collapsing (summing) over the sexes. The table is given below.

Outcome
Success Failure

Treatment 1 100 100
2 110 80

The estimated probability of success for treatment 1 is 100/200 = .50, while
the estimated probability of success for treatment 2 is 110/190 = .579.
The marginal table indicates that treatment 2 is better than treatment 1,
whereas we know that treatment 1 is better than treatment 2 for both
males and females! This contradiction is Simpson’s paradox.

Simpson’s paradox can occur because collapsing can lead to inappropri-
ate weighting of the different populations. Treatment 1 was given to 80
males and 120 females, so the marginal table is indicating a success rate
for treatment 1 that is a weighted average of the success rates for males
and females with slightly more weight given to the females. Treatment 2
was given to 150 males and only 40 females, so the marginal success rate is
a weighted average of the male and female success rates with most of the
weight given to the male success rate. It is only a slight oversimplification
to say that the marginal table is comparing a success rate for treatment 1
that is the mean of the male and female success rates, to a success rate for
treatment 2 that is essentially the male success rate. Since the success rate
for males is much higher than it is for females, the marginal table gives the
illusion that treatment 2 is better.
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The moral of all this is that one cannot necessarily trust conclusions
drawn from marginal tables. It is generally necessary to consider all the
dimensions of a table. Situations in which marginal (collapsed) tables yield
valid conclusions are discussed in Section 5.3.

3.2 Independence and Odds Ratio Models

For multinomial sampling and a two-dimensional table, there was only one
model of primary interest: independence of rows and columns. With three-
dimensional tables, there are at least eight interesting models. Half of these
are very easy to imagine. If we refer to the three dimensions of the table
as rows, columns, and layers, we can have (0) rows, columns, and layers
all independent, (1) rows independent of columns and layers (but columns
and layers not necessarily independent), (2) columns independent of rows
and layers, and (3) layers independent of rows and columns. Three of the
remaining four models involve conditional independence: (4) given any
particular layer, rows and columns are independent, (5) given any column,
rows and layers are independent, and (6) given any row, columns and
layers are independent. The last of the eight models is that certain odds
ratios are equal. Section 4 discusses these models in relation to log-linear
models.
We now examine the models in detail. The essential part of the log-

likelihood for multinomial sampling is �(p) ≡ ∑
i,j,k nijk log(pijk).

For all of the (conditional) independence models, the MLEs can be ob-
tained using Lemma 2.4.1. The trick is to break �(p) into a sum of terms,
each of which can be maximized separately. The discussion below empha-
sizes a more general approach to finding MLEs.

3.2.1 The Model of Complete Independence
To put it briefly, the model of complete independence is that everything
(rows, columns, and layers) is independent of everything else, cf. Exam-
ple 1.1.3. Technically, the model is

M (0) : pijk = pi··p·j·p··k

where the superscript (0) is used to distinguish this model from the other
models that will be considered.
The MLE of pijk under this model is

p̂
(0)
ijk = p̂i··p̂·j·p̂··k

= (ni··/n···)(n·j·/n···)(n··k/n···) .
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Since mijk = n···pijk, the MLE of mijk is

m̂
(0)
ijk = n···p̂

(0)
ijk

= ni··n·j·n··k/n2··· .

This is another application of the general result, discussed in Section 2.4,
that the MLE of a function of the parameters is just the function applied
to the MLEs. The Pearson chi-square statistic for testing lack of fit of M (0)

is

X2 =
I∑

i=1

J∑

j=1

K∑

k=1

(
nijk − m̂

(0)
ijk

)2

m̂
(0)
ijk

.

The likelihood ratio test statistic is

G2 = 2
I∑

i=1

J∑

j=1

K∑

k=1

nijk log
(
nijk/m̂

(0)
ijk

)
.

An α level test is rejected if the test statistic is greater than χ2(1−α, IJK−
I−J −K+2). As in Section 2.4, the maximum likelihood estimate of mijk

without any restrictions is m̂ijk = nijk; thus, nijk is used in the formula for
G2. Degrees of freedom for the tests given in this section will be discussed
in Section 4
Chapter 10 establishes that the MLEs for M (0) are characterized by

m̂ijk = n···p̂i··p̂·j·p̂··k

=
m̂i··m̂·j·m̂··k

n2···
and the marginal constraints m̂i·· = ni··, m̂·j· = n·j·, and m̂··k = n··k. In
other words, any set of values m̂ijk that satisfy the marginal constraints
and satisfy model M (0) must be the maximum likelihood estimates. The
estimates m̂(0)

ijk given above are, under weak restrictions on the nijk’s, the
unique values that satisfy both sets of conditions.

Example 3.2.1. In the longitudinal study mentioned in Example 2.2.1,
out of 3182 people without cardiovascular disease, 2121 neither exercised
regularly nor developed cardiovascular disease during the 412 -year study.
We restrict our attention to these 2121 individuals. The subjects were
cross-classified by three factors: Personality type (A,B), Cholesterol level
(normal, high), and Diastolic Blood Pressure (normal, high). The data are

nijk Diastolic Blood Pressure
Personality Cholesterol Normal High

A Normal 716 79
High 207 25

B Normal 819 67
High 186 22
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The fitted values assuming complete independence are

m̂
(0)
ijk Diastolic Blood Pressure

Personality Cholesterol Normal High
A Normal 739.9 74.07

High 193.7 19.39
B Normal 788.2 78.90

High 206.3 20.65

Note that the m̂ijk’s satisfy the property that ni·· = m̂i··, n·j· = m̂·j·,
and n··k = m̂··k for all i, j, and k. For example, the Type A totals are n1·· =
716+79+207+25 = 1027 and m̂1·· = 739.9+74.07+193.7+19.39 = 1027.06.
The difference is roundoff error. Pearson’s chi-square is

X2 =
(716 − 739.9)2

739.9
+ · · · + (22 − 20.65)2

20.65
= 8.730 .

The likelihood ratio chi-square is

G2 = 2 [716 log(716/739.9) + · · · + 22 log(22/20.65)] = 8.723 .

The degrees of freedom for either chi-square test are

df = (2)(2)(2) − 2 − 2 − 2 + 2 = 4 .

Since χ2(.95, 4) = 9.49, an α = .05 level test will not reject the hypothesis
of independence. In particular, the P value is .07. There is no clear evidence
of any relationships among personality type, cholesterol level, and diastolic
blood pressure level for these people who do not exercise regularly and do
not have cardiovascular disease.
Although the test statistics give no clear evidence that complete indepen-

dence does not hold, similarly they give no great confidence that complete
independence is a good model. Deviations from independence can be ex-
amined using the Pearson residuals

r̃ijk =
nijk − m̂ijk√

m̂ijk

.

The Pearson residuals for these data are

r̃ijk Diastolic Blood Pressure
Personality Cholesterol Normal High

A Normal −0.879 0.573
High 0.956 1.274

B Normal 1.097 −1.340
High −1.413 0.297
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In particular, the residual for Type A, Normal, Normal is −.879 = (716 −
739.9)/

√
739.9. Relative to complete independence, high blood pressure and

high cholesterol are overrepresented in Type A personalities (those showing
signs of stress) and normal blood pressure and cholesterol are overrepre-
sented in Type B personalities (relaxed individuals). These results agree
well with conventional wisdom. Note also that for Type B personalities,
individuals with only one high categorization are underrepresented.
The patterns in the residuals are interesting, but remember that there

is no clear evidence (at this point) for rejecting the hypothesis of complete
independence.

3.2.2 Models with One Factor Independent of the Other Two
With three factors, there are three ways in which one factor can be inde-
pendent of the other two. For example, we can have rows independent of
columns and layers, cf. Example 1.1.4. This model says nothing about the
relationship between columns and layers. Columns and layers can either be
independent or not independent. If they were not independent, typically
we would be interested in examining how they differ from independence.
Specifically, the three models are rows independent of columns and layers,

M (1) : pijk = pi··p·jk ,

columns independent of rows and layers,

M (2) : pijk = p·j·pi·k ,

and layers independent of rows and columns,

M (3) : pijk = p··kpij· .

All three of these models include the model of complete independence M (0)

as a special case. If M (0) is true, then all three of these are true. The
analyses for all three models are similar; we will consider only M (1) in
detail.
Under M (1), no distinction is drawn between columns and layers. In fact,

this model is equivalent to independence in an I × (JK) two-dimensional
table where the columns of the two-dimensional table consist of all combi-
nations of the columns and layers of the three-dimensional table.

Example 3.2.2. Consider again the classroom behavior data of Exam-
ple 3.0.1. The test of M (1) is simply a test of the independence of the two
rows: nondeviant, deviant, and the six columns: Low-N, Low-R, Medium-N,
Medium-R, High-N, High-R.

From our results in Chapter 2, the MLE of pijk under M (1) is

p̂
(1)
ijk = p̂i··p̂·jk

= (ni··/n···)(n·jk/n···) .
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The MLE of mijk is

m̂
(1)
ijk = n···p̂

(1)
ijk

= ni··n·jk/n··· .

The superscript (1) in p̂
(1)
ijk and m̂

(1)
ijk is used to indicate that these esti-

mates are obtained assuming that M (1) is true. The Pearson chi-square
test statistic for M (1) is

X2 =
I∑

i=1

J∑

j=1

K∑

k=1

(
nijk − m̂

(1)
ijk

)2

m̂
(1)
ijk

.

The likelihood ratio test statistic is

G2 = 2
I∑

i=1

J∑

j=1

K∑

k=1

nijk log
(
nijk

/
m̂

(1)
ijk

)
.

These are compared to percentage points of a chi-square distribution with
degrees of freedom

df = (I − 1)(JK − 1)
= IJK − I − JK + 1 .

Similar to M (0), the MLEs for model M (1) are any values m̂ijk that
satisfy M (1) and the marginal constraints

m̂i·· = ni·· and m̂·jk = n·jk .

Again, the values m̂
(1)
ijk given above are the unique MLEs under mild re-

strictions on the nijk’s. It is interesting to note that choosing m̂ijk = nijk
satisfies the marginal constraints but, except in the most bizarre cases,
does not satisfy model M (1). On the other hand, taking the estimated cell
counts from the complete independence model m̂ijk = ni··n·j·n··k/n2··· sat-
isfies M (1) but typically does not satisfy the marginal constraints.

Example 3.2.2, continued. The table of m̂(1)
ijk’s is

m̂
(1)
ijk Adversity (k)

Low Medium High
Risk (j) N R N R N R m̂i··

Classroom Non. 14.02 6.60 14.85 34.64 4.95 4.95 80
Behavior (i) Dev. 2.98 1.40 3.15 7.36 1.05 1.05 17

m̂·jk 17 8 18 42 6 6 97
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As displayed in the margins of the nijk and m̂
(1)
ijk tables, the MLEs satisfy

the conditions m̂(1)
i·· = ni·· and m̂

(1)
·jk = n·jk.

The Pearson chi-square test statistic is

X2 = 6.19 =
(16 − 14.02)2

14.02
+ · · · + (3 − 1.05)2

1.05
.

The likelihood ratio test statistic is

G2 = 5.56 = 2 [16 log(16/14.02) + · · · + 3 log(3/1.05)] .

The degrees of freedom for the chi-square test are

df = (2 − 1)[(2)(3) − 1]
= 5 .

The 95th percentile of a chi-square with 5 degrees of freedom is

χ2(.95, 5) = 11.07 .

Both X2 and G2 are less than χ2(.95, 5), so an α = .05 level test provides
no evidence against M (1). In other words, we have no reason to doubt that
classroom behavior is independent of risk and adversity.
It is quite possible in this study that our primary interest would be in

explaining classroom behavior in terms of risk and adversity. Unfortunately,
classroom behavior seems to be independent of both of the variables with
which we were trying to explain it. On the other hand, examining the
relationship between risk and adversity becomes very simple. If classroom
behavior is independent of risk and adversity, we can study the marginal
table of risk and adversity without worrying about Simpson’s paradox. The
marginal table of counts is

n·jk Adversity (k)
Low Medium High n·j·

Risk (j) N 17 18 6 41
R 8 42 6 56
n··k 25 60 12 97

The model of independence for this marginal table is

M : p·jk = p·j·p··k, j = 1, . . . , J , k = 1, . . . ,K .

The expected counts for the marginal table under M are

m̂·jk = n···p̂·j·p̂··k
= n·j·n··k/n··· .

The table of estimated expected counts is
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Adversity (k)
Low Medium High m̂·j·

Risk (j) N 10.57 25.36 5.07 41
R 14.43 34.64 6.93 56

m̂··k 25 60 12 97

yielding
X2 = 10.78 and G2 = 10.86

on
df = (2 − 1)(3 − 1) = 2 .

Both X2 and G2 are significant at the α = .01 level.
Either the residuals or the odds ratios can be used to explore the lack of

independence. The table of residuals is

Adversity (k)
Low Medium High

Risk (j) N 1.98 −1.46 0.35
R −1.69 1.25 −0.35

For highly adverse schools, the residuals are near zero, so independence
seems to hold. For schools with low adversity (i.e., good schools), the not-
at-risk students are overrepresented and at-risk students are underrepre-
sented. For schools with medium adversity, the at-risk students are over-
represented and the not-at-risk students are underrepresented. (I wonder
if the criteria for determining whether a student is at risk may have been
applied differently to students in high-adversity schools.)
Using odds ratios, we see that the odds of being not at risk for low-

adversity schools (17/8) are about five times greater than for medium-
adversity schools (18/42). In particular, the odds ratio is

(17)(42)
(8)(18)

= 4.96 .

The odds of being not at risk in a low-adversity school are only about
twice as large as the odds of being not at risk in a high-adversity school
[i.e., (17)(6)/(8)(6) = 2.125]. Finally, the odds of being not at risk in a
medium-adversity school are only about half as large [18(6)/42(6) = .429]
as the odds of being not at risk in a high-adversity school. Of course, the
sample is small, so there is quite a bit of variability associated with these
estimated odds ratios.
Before leaving this example, it is of interest to note a relationship between

the two likelihood ratio test statistics that were considered. The models and
statistics are

M (1) : pijk = pi··p·jk , G2 = 5.56 , df = 5
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M : p·jk = p·j·p··k, G2 = 10.86, df = 2.

Taken together, these models imply that

M (0) : pijk = pi··p·j·p··k

holds. The likelihood ratio test statistic for M (0) with these data is

G2 = 16.42

with 7 degrees of freedom. As will be seen later, it is no accident that the
test statistics G2 satisfy

5.56 + 10.86 = 16.42

and that the degrees of freedom satisfy 5 + 2 = 7.

Exercise 3.1. Examine the residuals from fitting M (1). Are any of them
large enough to call in question the further analysis that was based on
tentatively assuming that M (1) was true?

3.2.3 Models of Conditional Independence
Given that one is at a particular level of some factor, the other two factors
could be independent. For example, for any given category in the levels,
the rows and the columns may be independent, cf. Example 1.1.5. By the
definition of conditional probability, the probability of row i and column j
given that the layer is k is

Pr(row = i, col = j | layer = k)
= Pr(row = i, col = j, layer = k)/Pr(layer = k) (1)
= pijk/p··k .

Conditional independence of rows and columns for each layer means that
for all i, j, and k

Pr(row = i, col = j | layer = k)
= Pr(row = i|layer = k)Pr(col = j|layer = k) (2)
= (pi·k/p··k)(p·jk/p··k) .

Assuming that every layer has a possibility of occurring (i.e., p··k > 0 for all
k), then the model of conditional independence can be rewritten. Setting
(1) and (2) equal and multiplying both sides by p··k gives the requirement

pijk = pi·k p·jk/p··k

for independence of rows and columns given layers.
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The nature of the conditional independence between rows and columns
may or may not depend on the particular layer. For example, if rows,
columns, and layers are all independent, then M (0) holds and for any layer
k

Pr(row = i, col = j | layer = k) = pi··p·j· .

This does not depend on the layer. However, if rows are independent of
columns and layers so that M (1) holds, then

Pr(row = i, col = j | layer = k) = pi··(p·jk/p··k) .

The column probabilities depend on the layer, but the row probabilities do
not. Similarly, for M (2), the columns are independent of rows and layers;
thus,

Pr(row = i, col = j | layer = k) = (pi·k/p··k)p·j· .

The row structure depends on layers, but the column structure does not.
Of course, the most interesting case of rows and columns independent given
layers is when none of these simpler cases apply.
If two factors are to be independent given the third factor, there are

three ways in which the conditioning factor can be chosen. This leads to
three models: rows and columns independent given layers

M (4) : pijk = pi·kp·jk/p··k ,

rows and layers independent given columns

M (5) : pijk = pij·p·jk/p·j· ,

and columns and layers independent given rows

M (6) : pijk = pij·pi·k/pi·· .

As in the previous subsection, the analyses for all three models are similar.
We consider only M (4) in detail. The MLE for pijk is

p̂
(4)
ijk = p̂i·kp̂·jk/p̂··k

= (ni·k/n···)(n·jk
/
n···)

/
(n··k/n···)

= ni·kn·jk/n··kn··· .

The MLE for mijk = n···pijk is

m̂
(4)
ijk = n···p̂i·kp̂·jk/p̂··k

= ni·kn·jk/n··k .
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The MLEs are any numbers m̂ijk that satisfy model M (4) and the marginal
relations m̂i·k = ni·k, m̂·jk = n·jk, and (redundantly) m̂··k = n··k. The test
statistics are

X2 =
I∑

i=1

J∑

j=1

K∑

k=1

(
nijk − m̂

(4)
ijk

)2

m̂
(4)
ijk

and

G2 = 2
I∑

i=1

J∑

j=1

K∑

k=1

nijk log
(
nijk/m̂

(4)
ijk

)
.

The tests actually pool the K separate tests for independence of rows and
columns which are computed for each individual layer. There are (I−1)(J−
1) degrees of freedom for the test at each layer. The degrees of freedom for
the pooled test is

df = (I − 1)(J − 1)K .

Example 3.2.3. Consider again the data of Example 3.2.1. In that ex-
ample, we found that the P value for testing complete independence of
personality type, cholesterol level, and diastolic blood pressure level was
.067. Our residual analysis pointed out some interesting differences be-
tween personality types. We now examine the model M (6) that cholesterol
level and diastolic blood pressure level are independent given personality
type. The test is really a simultaneous test of whether independence holds
in each of the tables given below.

(Personality Type A)
n1jk Diastolic Blood Pressure
Cholesterol Normal High
Normal 716 79
High 207 25

(Personality Type B)
n2jk Diastolic Blood Pressure
Cholesterol Normal High
Normal 819 67
High 186 22

Each table has (2− 1)(2− 1) = 1 degree of freedom, so the overall test has
2 degrees of freedom. The table of estimated cell counts under conditional
independence is
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m̂
(6)
ijk Diastolic Blood Pressure

Cholesterol Normal High
A Normal 714.5 80.51

Personality High 208.5 23.49
B Normal 813.9 72.08

High 191.1 16.92

giving
X2 = 2.188 and G2 = 2.062

and
df = 2 .

This is a very good fit. Given the personality type, there seems to be no
relationship between cholesterol level and diastolic blood pressure level.
As in the previous examples, observe that the estimates m̂

(6)
ijk satisfy the

likelihood equations m̂(6)
i·k = ni·k and m̂

(6)
ij· = nij· . (The likelihood equations

are just the marginal constraints.)
Note that the odds of being normal in either cholesterol or blood pressure

is higher for Type B personalities than for Type A personalities. If for
each personality type, cholesterol and blood pressure are independent, we
can examine the relationship between either personality and cholesterol
or between personality and blood pressure from the appropriate marginal
table, cf. Section 5.3. For example, to examine personality and cholesterol,
the marginal table is

Cholesterol
Personality Normal High

A 795 232
B 886 208

The odds of having normal cholesterol for Type A personalities is 795/232 =
3.427. The odds of having normal cholesterol for Type B personalities is
886/208 = 4.260. The odds ratio is

p̂11·p̂22·
p̂12·p̂21·

=
795(208)
232(886)

= .804 .

The odds of having a normal cholesterol level with personality Type A are
only about 80% as large as the odds for personality Type B.
A similar analysis shows that the odds of having a normal diastolic blood

pressure level with personality Type A is 78.6% of the odds for personality
Type B. Although this odds ratio of .786 is further from one than the odds
ratio for cholesterol, it turns out to be less significant. The variabilities
of these point estimates depend on the sample sizes in all the cells. The
personality–blood pressure marginal table has some smaller cells than the
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cholesterol–blood pressure table; thus, the personality–blood pressure odds
ratio is subject to more variability. We will see in Example 3.4.1 that one
could reasonably take personality and blood pressure to be independent,
but personality and cholesterol are not independent.

3.2.4 A Final Model for Three-Way Tables
The last of the standard models for three-way tables is due to Bartlett
(1935) and must be stated in terms of odds ratios. To look at an odds ratio
in a three-way table, one fixes a factor and looks at the odds ratio relating
the other two factors. For example, we can fix layers and look at the odds
ratio p11kpijk/p1jkpi1k. The last of our models is that these odds ratios are
the same for every layer. In particular, the model is

M (7) :
p111pij1
pi11p1j1

=
p11kpijk
pi1kp1jk

for all i = 2, . . . , I, j = 2, . . . , J , and k = 2, . . . ,K. M (7) is stated as if
layers are fixed, but, in fact, it is easily shown that the model is unchanged
if stated for rows fixed or columns fixed.
There are no simple formulae for p̂(7)ijk or m̂(7)

ijk. Iterative computing meth-
ods (cf. Section 3) must be used to obtain the MLEs. It can be shown that
the MLEs must satisfy the marginal constraints m̂ij· = nij·, m̂i·k = ni·k,
m̂·jk = n·jk and also the model; i.e., we need m̂111m̂ij1/m̂i11m̂1j1 =
m̂11km̂ijk/m̂i1km̂1jk for i, j, k ≥ 2. Given the MLEs, the test statistics
are computed as usual.

X2 =
I∑

i=1

J∑

j=1

K∑

k=1

(
nijk − m̂

(7)
ijk

)2

m̂
(7)
ijk

and

G2 = 2
I∑

i=1

J∑

j=1

K∑

k=1

nijk log
(
nijk/m̂

(7)
ijk

)
.

Although there is, at this point, no obvious reason for this figure, the de-
grees of freedom for the chi-square test is

df = (I − 1)(J − 1)(K − 1) .

Example 3.2.4. Fienberg (1980) and Kihlberg, Narragon and Campbell
(1964) report data on severity of drivers’ injuries in auto accidents along
with the type of accident and whether or not the driver was ejected from
the vehicle during the accident. We consider the results only for small cars.
The data are listed below.
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nijk Accident Type (k)
Collision Rollover

Injury (j) Not Severe Severe Not Severe Severe
Driver Ejected (i) No 350 150 60 112

Yes 26 23 19 80

Since I = J = K = 2, the model becomes

M (7) :
p111p221
p121p211

=
p112p222
p122p212

.

Using the methods of Section 3, the MLEs of the mijk’s are found.

m̂
(7)
ijk Accident Type (k)

Collision Rollover
Injury (j) Not Severe Severe Not Severe Severe

Driver Ejected (i) No 350.5 149.5 59.51 112.5
Yes 25.51 23.49 19.49 79.51

The test statistics have (2− 1)(2− 1)(2− 1) = 1 degree of freedom and are

X2 = .04323 and G2 = .04334 .

The model of equality of odds ratios fits the data remarkably well. The
reader can verify that none of the models involving independence or con-
ditional independence fit the data.
Another way to examine M (7) is to look at the estimated odds ratios

and see if they are about equal. For this purpose, we use the unrestricted
estimates of the pijk’s, i.e., p̂ijk = nijk/n···. The estimated odds ratios are

p̂111p̂221/p̂121p̂211 = 350(23)/26(150)
= 2.064

and

p̂112p̂222/p̂122p̂212 = 60(80)/19(112)
= 2.256 .

These values are quite close.
In summary, for both collisions and rollovers, the odds of a severe injury

are about twice as large if the driver is ejected from the vehicle than if not.
Equivalently, the odds of having a nonsevere injury are about twice as great
if the driver is not ejected from the vehicle than if the driver is ejected. It
should be noted that the odds of being severely injured in a rollover are
consistently much higher than in a collision. What we have concluded in
our analysis of M (7) is that the relative effect of the driver being ejected
is the same for both types of accident and that being ejected substantially
increases one’s chances of being severely injured. So you see, it really does
pay to wear seat belts.
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3.2.5 Odds Ratios and Independence Models
For a two-dimensional table, Proposition 2.3.3 established that the model
of independence was equivalent to the model that all odds ratios equal one.
Similarly, all eight of the models discussed for three-dimensional tables can
be written in terms of odds ratios. So far, only our characterization of M (7)

is in terms of odds ratios. Since modelsM (1),M (2), andM (3) are similar, we
will examine only M (1). Similarly, we will consider M (4) as representative
of M (4), M (5), and M (6).
To begin, consider M (4). If M (4) is true, then pijk = pi·kp·jk/p··k; M (4)

is the model that has rows and columns independent given layers. Let us
consider an odds ratio with layers fixed. We can write a typical odds ratio
as pijkpi′j′k/pij′kpi′jk. Assuming M (4) with positive pijk’s, we get

pijkpi′j′k

pij′kpi′jk
=

(pi·kp·jk/p··k)(pi′·kp·j′k/p··k)
(pi·kp·j′k/p··k)(pi′·kp·jk/p··k)

=
pi·kp·jkpi′·kp·j′k

pi·kp·j′kpi′·kp·jk
= 1 .

Thus, for a fixed value of k, the odds ratio is one.
Conversely, if pijkpi′j′k/pij′kpi′jk = 1 for all i, i′, j, and j′, then

pijkp··k =
∑

i′,j′
pijkpi′j′k =

∑

i′j′
pij′kpi′jk =

∑

j′
pij′k

∑

i′
pi′jk

= pi·kp·jk,

so M (4) holds.
It is also of interest to note that, under M (4), odds ratios with the row

(column) fixed are equal for all rows (columns). In particular,

pijkpij′k′

pijk′pij′k
=

(pi·kp·jk/p··k)(pi·k′p·j′k′/p··k′)
(pi·k′p·jk′/p··k′)(pi·kp·j′k/p··k)

=
pi·kp·jkpi·k′p·j′k′

pi·k′p·jk′pi·kp·j′k
(3)

=
p·jkp·j′k′

p·jk′p·j′k
.

Thus, the odds ratio does not depend on i and must be the same for each
row. These facts imply that M (4) is a special case of M (7).
Perhaps the simplest way to examine odds ratios in relation to M (1) is

to use the results obtained for M (4). The following proposition allows this.

Proposition 3.2.5. M (1) is true if and only if both M (4) and M (5)

are true.

Proof. If M (1) is true, then pijk = pi··p·jk. Summing over j gives
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pi·k = pi··p··k; thus, pi·· = pi·k/p··k. Substitution yields

pijk = pi··p·jk = pi·kp·jk/p··k ;

thus, M (4) holds. A similar argument summing over k shows that M (5)

holds.
Conversely, if both M (4) and M (5) are true, then

pijk = pi·kp·jk/p··k

and
pijk = pij·p·jk/p·j· .

It follows that
pijk
p·jk

=
pi·k
p··k

=
pij·
p·j·

and from the last equality,

pi·kp·j· = p··kpij· .

Summing over j gives
pi·kp··· = p··kpi··;

recalling that p··· = 1 and rearranging terms gives

pi·· = pi·k/p··k .

Substituting this into M (4) gives

pijk = pi·kp·jk/p··k
= pi··p·jk

and M (1) holds. �

It follows from Proposition 3.2.5 and the discussion of M (4) that the
model M (1) is equivalent to

pijkpi′j′k/pij′kpi′jk = 1 (layers fixed)

for all i, i′, j, j′, and k, and

pijkpi′jk′/pijk′pi′jk = 1 (columns fixed)

for all i, i′, k, k′, and j. In addition, all odds ratios with rows fixed will
be equal (but not necessarily equal to one). M (1) is thus a special case of
M (7).
Similar arguments establish that if M (0) is true, then all odds ratios

equal one regardless of whether rows, columns, or layers have been fixed.
Finally, note that as in Chapter 2, odds ratios remain unchanged when

the pijk’s are all replaced with mijk’s.
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3.3 Iterative Computation of Estimates

To fit the model M (7) that all odds ratios are equal, we need to com-
pute the m̂

(7)
ijk’s. There are two standard algorithms for doing this: the

Newton-Raphson algorithm and the iterative proportional fitting algorithm.
Newton-Raphson amounts to doing a series of weighted regression analy-
ses. It is commonly referred to as iteratively reweighted least squares. The
Newton-Raphson algorithm is discussed in Section 10.5. Iterative propor-
tional fitting was introduced by Deming and Stephan (1940) for purposes
other than fitting models to discrete data, but the algorithm gives maxi-
mum likelihood estimates for the models discussed in the previous section
and for the balanced ANOVA type log-linear models that will be discussed
later. Meyer (1982) presents methods of transforming various other log-
linear models so that iterative proportional fitting can be applied.
In this section, we describe the method of iterative proportional fitting for

finding the m̂
(7)
ijk’s. The method can be easily extended to find estimates

for more complicated higher-dimensional tables. Under M (7), the m̂ijk’s
are characterized by the model itself and the fitted margins m̂ij· = nij·,
m̂i·k = ni·k, and m̂·jk = n·jk. The method is based on the fact that

1 = (nij·/m̂ij·) = (ni·k/m̂i·k) = (n·jk/m̂·jk)

and, thus,

m̂ijk =
nij·
m̂ij·

m̂ijk ,

m̂ijk =
ni·k
m̂i·k

m̂ijk ,

and
m̂ijk =

n·jk
m̂·jk

m̂ijk .

The iterative procedure begins with some initial guesses for the m̂ijk’s,
say m̂

[0]
ijk, and modifies the initial guess iteratively. Given estimates m̂[3t]

ijk ,
the modifications are

m̂
[3t+1]
ijk =

nij·
m̂

[3t]
ij·

m̂
[3t]
ijk ,

m̂
[3t+2]
ijk =

ni·k
m̂

[3t+1]
i·k

m̂
[3t+1]
ijk ,

and
m̂

[3(t+1)]
ijk =

n·jk
m̂

[3t+2]
·jk

m̂
[3t+2]
ijk .

The initial guesses can be any positive numbers that satisfyM (7). Typically,
one takes

m̂
[0]
ijk = 1 for all i, j, k .
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The iterations continue until the estimates stop changing; i.e., for all i, j, k,

m̂
[3t]
ijk

.= m̂
[3t+1]
ijk

.= m̂
[3t+2]
ijk

.= m̂
[3(t+1)]
ijk .

If convergence occurs to a set of values, say m̂ijk, then these must be the
maximum likelihood estimates. To see this, we need to show two things:
first, that m̂ij· = nij·, m̂i·k = ni·k, and m̂·jk = n·jk, and second, that the
m̂ijk’s satisfy M (7).

Because of the nature of the iterative proportional fitting algorithm, at
convergence we have

m̂ijk =
nij·
m̂ij·

m̂ijk ,

so
1 =

nij·
m̂ij·

and
m̂ij· = nij· .

Similarly, m̂i·k = ni·k and m̂·jk = n·jk.
To see that M (7) is satisfied, we must show that

m̂111m̂ij1/m̂i11m̂1j1 = m̂11km̂ijk/m̂i1km̂1jk

for any values of i, j, and k greater than one. The key point here is that if
m̂

[3t]
ijk satisfies M (7), then the modifications also satisfy M (7). Thus, if the

initial values satisfy M (7), the result of the iterative procedure also satisfies
M (7).
Specifically, assume that the m̂[3t]

ijk ’s satisfy M (7). We will show that the

m̂
[3t+1]
ijk ’s satisfy M (7). Since

m̂
[3t+1]
ijk =

nij·
m̂

[3t]
ij·

m̂
[3t]
ijk ,

we have

m̂
[3t+1]
111 m̂

[3t+1]
ij1

m̂
[3t+1]
i11 m̂

[3t+1]
1j1

=





(
n11·

/
m̂

[3t]
11·

)(
nij·

/
m̂

[3t]
ij·

)

(
ni1·

/
m̂

[3t]
i1·

)(
n1j·

/
m̂

[3t]
1j·

)



 m̂
[3t]
111m̂

[3t]
ij1

m̂
[3t]
i11m̂

[3t]
1j1

and

m̂
[3t+1]
11k m̂

[3t+1]
ijk

m̂
[3t+1]
i1k m̂

[3t+1]
1jk

=





(
n11·

/
m̂

[3t]
11·

)(
nij·

/
m̂

[3t]
ij·

)

(
ni1·

/
m̂

[3t]
i1·

)(
n1j·

/
m̂

[3t]
1j·

)




m̂

[3t]
11km̂

[3t]
ijk

m̂
[3t]
i1km̂

[3t]
1jk

.

Since M (7) is satisfied for the m̂[3t]
ijk ’s and the multipliers do not depend on

k, clearly M (7) is satisfied for the m̂
[3t+1]
ijk ’s. Similar arguments show that

the m̂[3t+2]
ijk ’s and m̂

[3(t+1)]
ijk ’s also satisfy M (7), cf. Exercise 3.8.11.
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In fact, iterative proportional fitting can be used to fit any of the stan-
dard models. To fit, say M (6), the iterative procedure chooses m̂[0]

ijk to sat-

isfy M (6) and then modifies estimates m̂[2t]
ijk using the marginal conditions

m̂ij· = nij· and m̂i·k = ni·k. Specifically,

m̂
[2t+1]
ijk =

nij·
m̂

[2t]
ij·

m̂
[2t]
ijk

and
m̂

[2(t+1)]
ijk =

ni·k
m̂

[2t+1]
i·k

m̂
[2t+1]
ijk .

The equations for modifying the m̂’s are determined by the marginal condi-
tions. It is easily checked that if the sequence converges, then the m̂’s satisfy
both the marginal conditions and M (6). In fact, since there are closed form
estimates for the m̂’s, it takes only one set of modifications to obtain the
MLEs.
It was mentioned earlier that the initial guesses are typically taken as

m̂
[0]
ijk = 1 for all ijk .

The reason is that this initial guess satisfies all of the standard models.
Thus, to use iterative proportional fitting for any model, one need only
specify the marginal conditions and the algorithm automatically provides
the estimates.
Finally, since the method is based on multiplication, any initial guess

of zero will always remain zero. In other words, if for any ijk, m̂[0]
ijk = 0,

then m̂
[t]
ijk = 0 for all t. Thus, if it is known ahead of time that mijk = 0,

iterative proportional fitting can handle the situation by taking m̂
[0]
ijk = 0.

On the other hand, if it is not known that mijk = 0, then we must choose
m̂

[0]
ijk > 0 (cf. Section 8.1).

3.4 Log-Linear Models for Three-Dimensional
Tables

In a three-dimensional table for continuous data, the basic model is a three-
way analysis of variance model with all interactions, i.e., yijk = u+ u1(i)+
u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk) + eijk. For tables of
counts, the same form model is used for the log(mijk)’s: A saturated model
is written

logmijk = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk).
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We will be primarily interested in eight reduced versions of this model.
Each of the eight reduced models corresponds to one of the eight indepen-
dence – odds ratio models for three-dimensional tables. In particular, for
tables of positive probabilities, an odds ratio model is true if and only if
the corresponding log-linear model is valid.
The eight submodels are

log(mijk) = u+ u1(i) + u2(j) + u3(k), (0)

log(mijk) = u+ u1(i) + u2(j) + u3(k) + u23(jk), (1)
log(mijk) = u+ u1(i) + u2(j) + u3(k) + u13(ik), (2)
log(mijk) = u+ u1(i) + u2(j) + u3(k) + u12(ij), (3)

log(mijk) = u+ u1(i) + u2(j) + u3(k) + u13(ik) + u23(jk), (4)
log(mijk) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u23(jk), (5)
log(mijk) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik), (6)

and

log(mijk) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) . (7)

For i = 0, . . . , 7, the log-linear model (i) holds if and only if M (i) holds.
One way to see this is to go through a series of arguments similar to those
used in Section 2.4; however, the equivalence can most easily be seen by
examining odds ratios. For example, model (7) holds if and only if the
u123(ijk) terms can be dropped from the full model. As in standard analysis
of variance, the three-factor interaction terms can be dropped if and only if
any set of (I−1)(J−1)(K−1) linearly independent three-factor interaction
contrasts are all zero. In general, a three-factor interaction contrast is

I∑

i=1

J∑

j=1

K∑

k=1

qijku123(ijk)

or, equivalently,
I∑

i=1

J∑

j=1

K∑

k=1

qijk log(mijk)

where qij· = qi·k = q·jk = 0 for all i, j, k. The condition in M (7) is that

m111mij1

mi11m1j1
=

m11kmijk

mi1km1jk

for all i, j, and k strictly greater than 1. Taking logs of both sides gives

log(m111) − log(mi11) − log(m1j1) + log(mij1)
= log(m11k) − log(mi1k) − log(m1jk) + log(mijk).
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Rearranging terms, we see that M (7) is equivalent to

log(m111) − log(mi11) − log(m1j1) + log(mij1)
− log(m11k) + log(mi1k) + log(m1jk) − log(mijk) = 0

for each of the (I − 1)(J − 1)(K − 1) possible choices of i, j, and k greater
than 1. All of these are three-factor interaction contrasts. Since these con-
trasts are linearly independent, M (7) holds if and only if the three-factor
interaction terms can be dropped from the model, hence, if and only if
model (7) holds.
Now consider M (4), that rows and columns are independent given lay-

ers. In terms of odds ratios, all odds ratios with any one factor fixed are
equal, and all odds ratios with layers fixed equal one. To show that M (4) is
equivalent to model (4), we need to show that M (4) is equivalent to having
no three-factor interaction and no row-column interaction. As above, the
fact that all odds ratios are equal is equivalent to having no three-factor
interaction. We need to establish that all odds ratios with layers fixed equal
one if and only if there is no row-column interaction. Under M (4), for all
k, mijkmi′j′k/mij′kmi′jk = 1 or, taking logs,

µijk − µij′k − µi′jk + µi′j′k = 0

where µijk ≡ logmijk. Recall that a contrast in the row-column interactions
is an interaction contrast in the µ̄ij·’s. Averaging the odds ratio contrasts
over k gives the row-column interaction contrast

µ̄ij· − µ̄ij′· − µ̄i′j· + µ̄i′j′· = 0 .

If we take i = 1 and j = 1, we have (I − 1)(J − 1) linearly independent
contrasts in the row-column interaction equal to 0; the u12(ij) terms can
be dropped from the full model. Conversely, if there is no three-factor
interaction and no row-column interaction, then the contrasts µijk−µij′k−
µi′jk + µi′j′k are all equal and µ̄ij· − µ̄ij′· − µ̄i′j· + µ̄ij· = 0. Thus, all odds
ratios are equal and those with layer fixed equal one.
Similarly, M (1) is true if and only if all odds ratios are equal and those

with either columns or layers fixed equal one. All odds ratios equal is equiv-
alent to no three-factor interaction; all odds ratios with layers fixed equal
to one is equivalent to no row-column interaction (no u12(ij) terms); and all
odds ratios with columns fixed equal to one is equivalent to no row-layer
interaction (no u13(ik) terms).
Nearly all of models (0)-(7) are grossly overparametrized. For example,

in model (1), the terms u, u2(j), and u3(k) are all totally redundant. The
parameters u1(i) and u23(jk) are sufficient to explain everything. The u,
u2(j), and u3(k) terms can take any values, yet by choosing the u1(i)’s and
u23(jk)’s appropriately, model (1) holds. Rewriting the models in a less
overparametrized fashion leads to a very convenient shorthand notation
for the models
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MODEL SHORTHAND
(0) log(mijk) = u1(i) + u2(j) + u3(k) [1][2][3]
(1) log(mijk) = u1(i) + u23(jk) [1][23]
(2) log(mijk) = u2(j) + u13(ik) [2][13]
(3) log(mijk) = u3(k) + u12(ij) [3][12]
(4) log(mijk) = u13(ik) + u23(jk) [13][23]
(5) log(mijk) = u12(ij) + u23(jk) [12][23]
(6) log(mijk) = u12(ij) + u13(ik) [12]][13]
(7) log(mijk) = u12(ij) + u13(ik) + u23(jk) [12][13][23]

In addition, the unrestricted (saturated) model, log(mijk) = u + u1(i) +
u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk) can be rewritten
log(mijk) = u123(ijk) and abbreviated as [123].

The shorthand can also be used to remember the conditional indepen-
dence interpretations of the models. For example, [1][2][3] has everything
in different brackets so everything is independent. In [1][23], the rows ([1])
are in a different bracket from columns and layers ([23]); thus rows are
independent of columns and layers. In [13][23], rows 1 and columns 2 are
in different brackets but layers 3 is in both brackets. Thus, given layers,
rows and columns are independent. No such separation of factors works for
[12][13][23], and there is no interpretation in terms of independence for the
corresponding model.
The shorthand identifies both the model and the margins that must

be fitted to obtain MLEs. Thus, the shorthand provides all the informa-
tion necessary for fitting the models using iterative proportional fitting (or
Newton-Raphson). For example, [1][23] requires that the margins m̂i·· = ni··
and m̂·jk = n·jk be fitted and the model [12][23] requires that m̂ij· = nij·
and m̂·jk = n·jk be fitted. As discussed in Chapter 10, under mild restric-
tions, any values m̂ijk that satisfy the fitted margins and the log-linear
model are the MLEs. In particular, for model (1) the unique MLEs are
m̂

(1)
ijk = ni··n·jk/n···. These satisfy the marginal conditions and, because

log
(
m̂

(1)
ijk

)
= log(ni··) + log(n·jk/n···)

= û1(i) + û23(jk),

they satisfy the log-linear model (1).

3.4.1 Estimation
Estimation of the expected cell counts mijk has already been considered.
Given the m̂ijk’s, estimation of the model parameters can proceed in a
manner similar to analysis of variance.
Consider a standard ANOVA model, say

yijk = ξ + αi + βj + γk + (αβ)ij + (αγ)ik + eijk
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with i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . ,K, and the eijk’s independent
N(0, σ2). A contrast in, for example, the (αβ) interaction is determined
by numbers qij i = 1, . . . , I, j = 1, . . . , J , that satisfy qi· = q·j = 0. The
contrast is ∑

ij

qij(αβ)ij .

The maximum likelihood estimate is
∑

ij

qij ȳij·

and

Var




∑

ij

qij ȳij·



 =
σ2

K

∑

ij

q2ij .

The log-linear model

log(mijk) = ξ + αi + βj + γk + (αβ)ij + (αγ)ik

can be rewritten as

µijk = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) ,

where
µijk ≡ log(mijk) .

Consider an interaction contrast
∑

ij

qiju12(ij)

which is equivalent to ∑

ij

qijµ̄ij· .

The MLE of mijk is m̂ijk, so the MLE of µijk is µ̂ijk = log(m̂ijk). Write

wijk ≡ µ̂ijk = log(m̂ijk) .

Then the estimated contrast is
∑

ij

qijw̄ij· .

In general, the MLE of any function of the µijk’s is just the same function
applied to the µ̂ijk’s. In particular, techniques from analysis of variance,
when applied to the µ̂ijk’s, give the estimates for contrasts in the corre-
sponding log-linear models. In other words, whatever you would do to the
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yijk’s in ANOVA to estimate a parameter, apply the same method to the
µ̂ijk’s to estimate the corresponding parameter in a log-linear model.
Unfortunately, computation of asymptotic variances is not straightfor-

ward. It requires the use of matrices and, even for contrasts, is similar
in difficulty to finding the variance of a linear combination of regression
coefficient estimates. Estimation is considered in detail in Section 10.2.
In the author’s opinion, the most interesting aspects of estimation are

those directly related to themijk’s, odds, and odds ratios. Given the m̂ijk’s,
estimates of odds and odds ratios are easy to obtain. Many examples of this
have already been given. Again, the more difficult aspect of estimation is in
obtaining asymptotic standard errors so that formal inferential procedures
can be used.

3.4.2 Testing Models
In regression analysis it is well known that one can test a model against a
larger model to see whether the smaller model is an inadequate explanation
of the data. This technique is also used in analysis of variance but often
it is not discussed explicitly because in balanced ANOVA it is possible to
skirt the issue. For example, in a balanced ANOVA with two factors A and
B and no interaction, the test for main effects in A does not depend on
whether the main effects for B are included in the model. The technique
of testing models against larger models is fundamental in log-linear model
analysis. The sense in which one model is larger than another is illustrated
below.
All of the tests discussed in Section 2 can be viewed as testing models

against the saturated model. The test of M (r) was based on m̂
(r)
ijk and

the nijk’s. The nijk’s are used because nijk = m̂ijk, where m̂ijk is the
unrestricted MLE of mijk. The unrestricted MLE of mijk is obtained by
using a model that puts no restrictions on themijk’s, namely, the saturated
model

log(mijk) = u+u1(i)+u2(j)+u3(k)+u12(ij)+u13(ik)+u23(jk)+u123(ijk) . (8)

Again, this model is grossly overparametrized; an equivalent model is

log(mijk) = u123(ijk) .

A saturated model has at least one parameter for every cell in the table,
so the model always fits the data perfectly.
More generally, one can test any model against a strictly larger model.

For instance, model (1)

logmijk = u+ u1(i) + u2(j) + u3(k) + u23(jk)

can be tested against model (4)

logmijk = u+ u1(i) + u2(j) + u3(k) + u13(ik) + u23(jk) ,
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because model (4) contains all of the terms in model (1) plus additional
terms, the u13(ik)’s. In other words, model (1) is a special case of model (4).
The test is simply a test of whether the u13’s are needed in model (4) (or
equivalently a test of M (1) versus M (4)).

To test [1][23] (model (1)) against [13][23] (model (4)), we use the m̂(1)
ijk’s,

the m̂
(4)
ijk’s, and the Pearson or likelihood ratio chi-squares. The Pearson

chi-square is

X2 =
I∑

i=1

J∑

j=1

K∑

k=1

(
m̂

(4)
ijk − m̂

(1)
ijk

)2

m̂
(1)
ijk

.

The likelihood ratio chi-square is

G2 = 2
I∑

i=1

J∑

j=1

K∑

k=1

m̂
(4)
ijk log

(
m̂

(4)
ijk/m̂

(1)
ijk

)
.

Since this is a test of no row-layer interactions, the degrees of freedom are
the degrees of freedom for row-layer interactions, i.e., (I−1)(K−1), exactly
as in analysis of variance.
Similarly, model (1): [1][23] can be tested against model (5): [12][23]

because model (5) contains model (1). On the other hand, [1][23] cannot
be tested against [12][13] because [1][23] contains u23(jk) terms, but [12][13]
does not contain u23(jk) terms; thus, [12][13] is not strictly larger than
[1][23]. In this case, we say that [1][23] and [12][13] are not comparable.
To perform tests, we need to be able to identify the degrees of freedom

associated with each model. For standard analysis of variance type models,
the degrees of freedom for a model are just the sum of the degrees of
freedom for each term in the model. The degrees of freedom for terms are
the same as in standard analysis of variance.

Term Degrees of Freedom
u 1
u1 I − 1
u2 J − 1
u3 K − 1
u12 (I − 1)(J − 1)
u13 (I − 1)(K − 1)
u23 (J − 1)(K − 1)
u123 (I − 1)(J − 1)(K − 1)

The degrees of freedom for testing [1][23] versus [13][23] are the degrees of
freedom for [13][23] minus the degrees of freedom for [1][23]. Adding up the
degrees of freedom for individual u terms, the degrees of freedom for [13][23]
are 1+(I−1)+(J−1)+(K−1)+(I−1)(K−1)+(J−1)(K−1). The degrees



96 3. Three-Dimensional Tables

of freedom for [1][23] are I + (I − 1) + (J − 1) + (K − 1) + (J − 1)(K − 1).
The degrees of freedom for the test are the difference in the model degrees
of freedom, which is (I − 1)(K − 1). As mentioned before, this is just the
degrees of freedom for the terms that are in [13][23] but not in [1][23], i.e.,
the u13(ik)’s.
In general, to test model (r) against model (s), where model (s) is strictly

larger than model (r),

X2 =
I∑

i=1

J∑

j=1

K∑

k=1

(
m̂

(s)
ijk − m̂

(r)
ijk

)2

m̂
(r)
ijk

and

G2 = 2
I∑

i=1

J∑

j=1

K∑

k=1

m̂
(s)
ijk log

(
m̂

(s)
ijk/m̂

(r)
ijk

)
. (9)

These values can be compared to a chi-square distribution. The degrees of
freedom for the chi-square is the difference in the degrees of freedom for
models (s) and (r).
One of the advantages of using G2 instead of X2 is that it simplifies

the process of testing models against each other. Any of the usual tests of
models can be obtained easily from the eight tests in Section 2. In fact, this
is the standard way of performing tests on models. The tests in Section 2
are all tests of a reduced log-linear model against the saturated model (8).
(Note that the saturated model is strictly larger than any of the other eight
models.)

Example 3.4.1. In Example 3.2.2 on classroom behavior, it was re-
marked that there were relationships between various likelihood ratio test
statistics. Specifically, the following results were given:

Model G2 df

M (0): [1][2][3] 16.42 7
M (1): [1][23] 5.56 5
p·jk = p·j·p··k 10.86 2

The test statistics for all the models are for testing against the saturated
model. (In the third case, it is the saturated model for the two-dimensional
table.)
The model [1][23] includes u23 terms in addition to the terms in [1][2][3].

Because the model [1][23] is strictly larger than [1][2][3], a test for the ade-
quacy of the smaller model can be performed. Rather than using equation
(9) directly, the test of the adequacy of the smaller log-linear model can
be obtained by subtraction from the saturated model test statistics given
above. Specifically, for testing [1][2][3] versus [1][23],

G2 = 16.42 − 5.56 = 10.86
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with 7 − 5 = 2 degrees of freedom. Not only can this be viewed as a test
of the log-linear models but also as a test of the independence models, i.e.,
M (0) versus M (1). Moreover, it is precisely the test given in Example 3.2.2
for

M : p·jk = p·j·p··k .

Exercise 3.2. Using the data of Example 3.2.2, compute the m̂(0)
ijk’s and

use (9) to verify that G2 = 10.86 for testing [1][2][3] versus [1][23].

We now develop these results in general. Consider testing each of models
(r) and (s) against the saturated model. Recalling that for the saturated
model m̂ijk = nijk, we get likelihood ratio test statistics of

G2(r vs. 8) = 2
∑

ijk

nijk log
(
nijk/m̂

(r)
ijk

)

and
G2(s vs. 8) = 2

∑

ijk

nijk log
(
nijk/m̂

(s)
ijk

)
.

As shown at the end of Section 10.1, maximum likelihood estimates for
log-linear models satisfy

G2(r vs. s) = 2
∑

ijk

m̂
(s)
ijk log

(
m̂

(s)
ijk/m̂

(r)
ijk

)

= 2
∑

ijk

nijk log
(
m̂

(s)
ijk/m̂

(r)
ijk

)
.

Given this property, it is a simple matter to check that

G2(r vs. s) = G2(r vs. 8) − G2(s vs. 8) .

Moreover, the degrees of freedom for the tests satisfy

df(r vs. s) = df(r vs. 8) − df(s vs. 8) . (10)

To see (10), note that (a) the degrees of freedom for the saturated model (8)
are IJK, (b) df(r vs. s) = df(model (s)) − df(model (r)), (c) df(r vs. 8) =
IJK−df(model (r)), and (d) df(s vs. 8) = IJK−df(model (s)). Substitu-
tion into (10) gives the correct result. The methods of obtaining G2(r vs. s)
and df(r vs. s) from G2’s and df ’s for testing against saturated models are
basic to log-linear model practice. Typically, computer programs only pro-
vide G2’s and df ’s for testing against saturated models, so reduced model
tests must be constructed using this method.
In fact, this approach to testing (r) versus (s) using G2’s for the saturated

model is not restricted to G2’s for the saturated model. It can be used with
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any model (t) that is larger than both (r) and (s). The use of the saturated
model is a convenience because it is strictly larger than all other models.

Example 3.4.2. Once again, we consider the data on personality (1),
cholesterol (2), and diastolic blood pressure (3) of Example 3.2.3. In the
table below are given the degrees of freedom, values of X2 and G2, and
the P value associated with G2 for testing all eight of the standard models
against the saturated model.

Model df X2 G2 P

[12][13][23] 1 0.617 0.613 .434
[12][13] 2 2.188 2.062 .358
[12][23] 2 2.985 2.980 .224
[13][23] 2 4.566 4.563 .100
[1][23] 3 7.102 7.101 .067
[2][13] 3 6.189 6.184 .102
[3][12] 3 4.543 4.601 .207
[1][2][3] 4 8.730 8.723 .067

Using a criterion of α = .05, all of these models fit the data; however,
consider testing [1][2][3] against [12][13]. The test statistic is

G2 = 8.723 − 2.062 = 6.661

with
df = 4 − 2 = 2 .

Because
χ2(.95, 2) = 5.99 ,

the model [12][13] fits significantly better than [1][2][3]. In other words,
the model with cholesterol level and diastolic blood pressure level inde-
pendent given personality type fits significantly better than the model of
complete independence. The reader can also verify that the models [3][12]
and [12][13][23] also fit significantly better than [1][2][3]. (The model [12][23]
is almost significantly better than [1][2][3].) We are left with a sequence of
hierarchical models [3][12], [12][13], and [12][13][23] that all fit better than
complete independence. Testing [3][12] against [12][13] gives

G2 = 4.601 − 2.062 = 2.539 ,
df = 3 − 2 = 1 ,

χ2(.95, 1) = 3.84 ,

so there seems to be no reason to take the larger model. Similarly, testing
[3][12] against [12][13][23] gives

G2 = 4.601 − 0.613 = 3.988
df = 3 − 1 = 2

χ2(.95, 2) = 5.99 ,
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so again, the model [3][12] seems adequate. The model that posits blood
pressure being independent of personality type and cholesterol is the small-
est model that adequately fits the data. (It is interesting to note that based
on Akaike’s information criterion, cf. Section 6, model [12][13] is the best
model.)
To complete the analysis, we need to examine the nature of the relation-

ship between personality and cholesterol. This was done in Example 3.2.3.
That analysis remains valid.

3.5 Product-Multinomial and Other Sampling
Plans

In this section, we consider the implications of product-multinomial sam-
pling and give a brief discussion of the effect of complex sampling plans
involving stratified sampling and cluster sampling. In addition, the use of
conditional distributions as a basis for statistical inference is mentioned.
Recall the data from Example 2.1.1 on opinions about legalized abortion.

Support Do Not Support Total
Female 309 191 500
Male 319 281 600
Total 628 472 1100

This is product-multinomial sampling. A sample of 500 females was taken.
An independent sample of 600 males was also taken. The results were com-
bined into a 2× 2 table. We consider two extensions of these data to illus-
trate product-multinomial sampling in three-dimensional tables.

Example 3.5.1. Suppose that each population is further classified ac-
cording to political affiliation. We might then get the table

Opinion (k)
Sex (i) Party (j) Support Do Not Support Total

Republican 79 40 119
Female Democrat 132 71 203

Independent 98 80 178
Total 309 191 500

Republican 65 94 159
Male Democrat 141 95 236

Independent 113 92 205
Total 319 281 600
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The totals for females and males are fixed. We know the female total is
500, so we must expect the female total to be 500. This means that

m1·· = n1·· = 500 .

Similarly, for male totals,

m2·· = n2·· = 600 .

More briefly, we write simply

mi·· = ni·· ,

i = 1, 2. Any model that we fit must accommodate these facts. In other
words, our estimates must satisfy the constraints

m̂i·· = ni·· , (1)

i = 1, 2. Fortunately, the estimates for all of the ANOVA type models that
we have discussed satisfy this condition. Any model that includes the u1(i)
terms (or their equivalents) will satisfy (1).

We now consider a slightly more complex sampling scheme.

Example 3.5.2. Consider a three-factor table based on sex, socioeco-
nomic status, and opinion about legalized abortion. Socioeconomic status
has two categories: low and not low. The table of counts is

Opinion (k)
Sex (i) Status (j) Support Do Not Support Total

Low 171 79 250
Female Not Low 138 112 250

Total 309 191 500

Low 152 148 300
Male Not Low 167 133 300

Total 319 281 600

In this table, four independent samples have been incorporated into the
table. The samples are (1) a sample of 250 low-status females, (2) a
sample of 250 females not of low status, (3) a sample of 300 low status
males, and (4) a sample of 300 males not of low status. The sampling
design has fixed the sex-status marginal totals, so the expected sex-status
totals equal the observed totals, i.e., mij· = nij·. Any model that estimates
expected cell counts must also incorporate the condition that

m̂ij· = nij·
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for all i and j. In particular, any model that includes the u12(ij) terms will
have these margins fixed. If we restrict attention to models that include
the u12(ij) terms, we do not have to concern ourselves further with the
product-multinomial nature of the sampling design.
The restriction that u12(ij) terms must be in the model reduces the pos-

sible number of models. The possible models are listed below.

Possible Models with mij· Fixed by
the Sampling Design

[123]
[12][13][23]
[12][13]
[12][23]
[12][3]

Finally, these ideas extend easily to higher-dimensional tables. Suppose
we have a four-dimensional table with indices h, i, j, k. If the sampling
design fixes the margins

mh·jk = nh·jk ,

then we restrict attention to log-linear models that include the u134(hjk)
terms. If the sampling design fixes the margins

m·i·k = n·i·k ,

then we consider only models with u24(ik) terms. Note that if the model
includes, say, the u234(ijk) terms, then the u24(ik) terms are implicitly in
the model. With the u234(ijk) terms in the model, the u24(ik) terms are
redundant and it is irrelevant whether the u24(ik)’s are explicitly stated as
part of the model or not.
Examples 3.5.1 and 3.5.2 illustrate the two primary sampling schemes

for response factors that were discussed in Section 2.3. In both examples,
Opinion can be viewed as a response factor. In Example 3.5.2, both Sex
and Status are explanatory factors. For every combination of the levels
of the explanatory factors, there is an independent multinomial sample.
The categories for each multinomial are the levels of the response factor
Opinion. This is the first of the sampling schemes discussed in Section 2.3.
In Example 3.5.1, only the two levels of the explanatory factor Sex are used
to define the independent multinomial populations. The categories of the
multinomials are defined by all combinations of the levels of the response
factor Opinion and the levels of the explanatory factor Party. This is the
generalized sampling scheme discussed in Section 2.3. If Opinion is regarded
as a response, it is not unusual to condition on all of the explanatory factors,
i.e., Sex and Party, in the analysis. Thus, the data may be treated as if
they were product-multinomial with an independent multinomial for each
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combination of the explanatory factors. These issues are discussed again in
Chapter 4.

3.5.1 Other Sampling Models
As mentioned in Section 1.5, the other commonly used sampling scheme for
log-linear models is Poisson sampling. In Poisson sampling, an independent
Poisson random variable is observed for each cell in the table. It is easily
seen that Poisson sampling leads to the same methods of analysis that are
used for multinomial sampling, cf. Chapter 12.
Although Poisson, product-multinomial, and multinomial sampling are

the only sampling models considered in this book, it should not be con-
cluded that these are the only sampling schemes used to generate and
analyze categorical data. The hypergeometric distribution is often taken
as the appropriate sampling model. Also, most large sample surveys are
not conducted so as to generate multinomial or Poisson data. Of course,
these alternative sampling models may require substantial changes in the
statistical analysis.
Hypergeometric sampling arises quite naturally in discrete data prob-

lems. For example, 2×2 tables in which both the row totals and the column
totals are fixed can be generated by hypergeometric sampling. Hypergeo-
metric sampling is easily generalized to I × J tables. The hypergeometric
distribution is also appropriate if one conditions on the row and column
totals. The reason for conditioning on the row and column totals is that
they are sufficient statistics under the model of independence.
Tests for model adequacy based on the conditional distribution, given

the sufficient statistics of the model, play a major role in Statistics gener-
ally and have a particularly important history in the analysis of categorical
data. Fisher’s exact conditional test for 2 × 2 tables, cf. Exercise 2.7.5 or
Plackett (1981), may be the most famous single methodology in categorical
data analysis. A key reason for using conditional tests is that they are ap-
propriate even for small samples. The main problem with conditional tests
is that for log-linear models, they are generally difficult to compute. McCul-
lagh (1986) and Hirji, Mehta, and Patel (1987) use alternative approaches
to examine conditional tests. McCullagh concentrates on the use of asymp-
totic conditional distributions with the idea that conditional asymptotics
are more appropriate for small and moderate sample sizes than uncondi-
tional asymptotics. Hirji et al. enumerate all of the tables that have the
same values for the sufficient statistics. This work also applies to logistic
regression. While enumeration is a very demanding computational task,
with modern algorithms and computing equipment it has become a realis-
tic alternative to the methods discussed here. Haberman (1974a, p. 14-33)
details conditional inference for categorical data. Balmer (1988), Bedrick
and Hill (1990), Mehta and Patel (1980, 1983), Mehta, Patel, and Gray
(1985), Mehta, Patel, and Tsiatis (1984), and Pagano and Taylor-Halvorson
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(1981) all address issues of conditional inference and table enumeration.
Recent reviews of these methods have been given by Agresti (1992) and
Mehta (1994). The computer programs StatXact and/or LogXact perform
the necessary computations. Davison (1988) uses saddlepoint methods to
approximate conditional distributions. In some cases, random samples of
the tables can be used rather than enumerating all of the tables. Kreiner
(1987) discusses model selection using conditional tests and, specifically,
the use of random samples from the conditional distribution. The gener-
ation of such random samples is based on the work of Agresti, Wackerly
and Boyett (1979), Boyett (1979), and Patefield (1981). Berkson (1978)
and Kempthorne (1979) give alternative views of Fisher’s exact test. For a
general discussion of conditional tests see Lehmann (1986).
Large sample surveys typically involve the use of stratification and cluster

sampling, cf. Kish (1965). Multinomial sampling corresponds to simple ran-
dom sampling with replacement. Product-multinomial sampling involves
independent samples on a number of subpopulations. This is just stratified
sampling. As we have seen, if strata are included as a factor in the table,
then stratified sampling causes no problems in a log-linear model analysis
of the data. The difficulty with stratified sampling is that often the indi-
vidual strata are not of interest in the analysis. The desired conclusions are
for the population as a whole and must be arrived at by weighting results
from the separate strata. In sampling theory, the point of selecting strata is
to reduce the variability of the overall results. If this is accomplished and if
data from a stratified sample are analyzed as though they are multinomial,
the variability is overestimated and results appear to be less significant
than they actually are.
The incorporation of cluster sampling is fundamentally more difficult

to deal with. The whole point of cluster sampling is that the observations
within a cluster are not independent. Typically, they display a positive cor-
relation. All of our standard sampling plans assume independence between
individual observations, so the standard plans are clearly inappropriate
for cluster sampling. Inferences based on independence will underestimate
the variability of data with a positive correlation. Thus, analyzing clus-
ter sampling data as if they were multinomial will typically overstate the
significance of results.
In a complex survey involving both stratification and cluster sampling,

the tendencies to understate significance and to overstate significance will,
to some extent, offset each other. While this is a positive sign for the
standard multinomial analysis, it by no means ensures that any particular
set of survey data can be analyzed accurately when the complex sampling
structure is ignored. In all likelihood, one or the other tendency to misstate
the variability will dominate. Any serious analysis of complex survey data
must involve an evaluation of the effect of the survey design on the analysis.
Some of the key references on the analysis of complex survey data are Koch,
Freeman, and Freeman (1975), Fienberg (1979), Brier (1980), Holt, Scott,
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and Ewings (1980), Rao and Scott (1981, 1984, 1987), Bedrick (1983),
Binder et al. (1984), Gross (1984), Fay (1985), and Thomas and Rao (1987).
The collection of papers edited by Skinner, Holt, and Smith (1989) provides
a useful summary of methods for analyzing data from complex surveys,
including categorical data.

3.6 Model Selection Criteria

In analysis of variance and regression, the three measures most commonly
used to evaluate the fit of models are R2, Adjusted R2, and Mallows’ Cp.
Each of these measures has natural analogues in log-linear models. R2 mea-
sures how much of the total variation is being explained by the model. R2

has the property that models must explain as much or more of the variation
than their submodels (models in which some terms have been deleted). Ad-
justed R2 modifies the definition of R2 so that larger models are penalized
for being larger. Mallows’ Cp statistic is related to Akaike’s information cri-
terion. We will apply Akaike’s information criterion to model selection for
log-linear and logistic regression models and discuss the relation of Akaike’s
criterion to Mallows’ Cp.

Discussions of model selection criteria in general settings are given by
Akaike (1973) and Schwarz (1978). A good review and comparison is pre-
sented in Clayton, Geisser, and Jennings (1986).

3.6.1 R2

In standard regression analysis, R2 is defined as

R2 =
SSReg

SSTot − C

where SSReg is the sum of squares for regression and SSTot−C is the sum
of squares total corrected for the grand mean. In fact, SSTot−C is just the
error sum of squares for the model that includes only an intercept. If we
denote SSE(X) as the error sum of squares for an arbitrary model called
X (e.g., with design matrix X) and SSE(X0) as the error sum of squares
for a model with only an intercept, then

R2 =
SSE(X0) − SSE(X)

SSE(X0)
.

SSE(X0) is the total variation and SSE(X0) − SSE(X) is the variability
explained by the model X. The ratio of these two, R2, is the proportion of
the total variation explained by the model.
In general, there is no reason that SSE(X0) has to be the sum of squares

for a model with just an intercept. In general, SSE(X0) could be the error
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sum of squares for the smallest interesting model. In regression analysis,
the smallest interesting model is almost always the model with only an
intercept. In log-linear models, the smallest interesting model may well be
the model of complete independence. (Recall from Exercise 2.4 that the
independence model for a two-way table is also the intercept-only model
for logistic regression.)
In log-linear models, G2 plays a role similar to that of SSE in regression.

IfX0 indicates the smallest interesting model andX indicates the log-linear
model of interest, we define

R2 =
G2(X0) − G2(X)

G2(X0)

where G2(X) and G2(X0) are the likelihood ratio test statistics for testing
models X and X0 against the saturated model.
If the X0 model is the smallest interesting model, then G2(X0) is a

measure of the total variability in the data. (It tests X0 against a model
that fits the data perfectly.) It follows that G2(X0)−G2(X) measures the
variability explained by the X model. R2 is the proportion of the total
variability explained by the X model. Alternative definitions of R2 are
available.
As in standard regression analysis, R2 cannot be used to compare models

that have different numbers of degrees of freedom. In regression analysis,
this is caused by the fact that larger models have larger R2’s. Exactly
the same phenomenon occurs with log-linear models. In fact, R2 for the
saturated model will always equal one because G2 for the saturated model
is zero.

3.6.2 Adjusted R2

Having defined R2 for log-linear models, the same adjustment for model
size used in standard regression analysis can be used for log-linear models.
The adjusted R2 is

Adj. R2 = 1 − q − r0
q − r

[1 − R2]

where q is the number of cells in the table and r and r0 are the degrees
of freedom for the models X and X0. Note that there are q − r degrees of
freedom for testing X against the saturated model and q − r0 degrees of
freedom for testing X0.

A little algebra shows that

Adj. R2 = 1 − G2(X)/(q − r)
G2(X0)/(q − r0)

.

A large value of Adj. R2 indicates that the model X fits well. The largest
value of Adj. R2 will occur for the model X with the smallest value of
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G2(X)/(q−r). Just as in regression analysis, the Adj. R2 criterion suggests
the inclusion of many (probably too many) explanatory terms.

3.6.3 Akaike’s Information Criterion
We now consider Akaike’s information criterion as a method for selecting
log-linear models. After describing Akaike’s method, we demonstrate its
close relationship to standard regression model selection based on Mallow’s
Cp statistic.

Akaike (1973) proposed a criterion of the information contained in a
statistical model. He advocated choosing the model that maximizes this
information. For log-linear models, maximizing Akaike’s information cri-
terion (AIC) amounts to choosing the model X that minimizes

AX = G2(X) − [q − 2r] , (log-linear)

where G2(X) is the likelihood ratio test statistic for testing the X model
against the saturated model, r is the number of degrees of freedom for the
X model, and there are q degrees of freedom for the saturated model, i.e.,
q cells in the table.
Given a list of models to be compared along with their G2 statistics and

the degrees of freedom for the tests, a slight modification of AX is easier
to compute by hand.

AX − q = G2(X) − 2[q − r]
= G2(X) − 2 (test degrees of freedom) .

Because q does not depend on the modelX, minimizing AX−q is equivalent
to minimizing AX . Note that for the saturated model, A − q = 0.

Before continuing our discussion of the AIC, we give an example of the
use of A, R2, and Adj. R2.

Example 3.6.1. For the personality (1), cholesterol (2), blood pressure
(3) data of Examples 3.2.1 and 3.2.3, testing models against the saturated
model gives

Model df G2 A − q R2 Adj. R2

[12][13][23] 1 0.613 −1.387 .885 .719
[12][13] 2 2.062 −1.938 .764 .527
[12][23] 2 2.980 −1.020 .658 .318
[13][23] 2 4.563 0.563 .477 −.046
[1][23] 3 7.101 1.101 .186 −.085
[2][13] 3 6.184 0.184 .291 .055
[3][12] 3 4.602 −1.398 .472 .297
[1][2][3] 4 8.723 0.723 0 0
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In Example 3.4.2, we established that there were three eligible models:
[3][12], [12][13], and [12][13][23] and that model [12][23] was almost eligible.
The AIC criterion A − q easily picks out all four of these models, with
[12][13] the best of them. The adjusted R2 criterion also identifies these
four models, but the values seem rather strange. For example, [12][23],
which is not significantly better than [1][2][3], has a higher Adj. R2 than
[3][12], which is significantly better than [1][2][3]. The R2 values seem like
reasonable measures. The author’s inclination is to use the AIC, cf. Clayton,
Geisser, and Jennings (1986).

With only three factors, it is easy to look at all possible models. Model
selection criteria become more important when dealing with tables having
more factors.

Relation to Mallows’ Cp

The approach to using Akaike’s information criterion outlined above is
quite general. If we are considering a collection of models indexed by ξ, we
can denote individual models as Mξ. For any ξ, let pξ be the dimension of
the parameter space of the model. This is the number of independent pa-
rameters in the model. For models with linear structure, this is the degrees
of freedom for the model (rank of the design matrix) plus the number of
any independent nonlinear parameters. Log-linear models do not involve
any nonlinear parameters. Standard regression and ANOVA involve one
nonlinear parameter, the variance σ2.
Suppose that there exists a most general model M with s independent

parameters. In other words, any model Mξ is just a special case of M .
For log-linear models, M is the saturated model and s is the number of
cells in the table. For selecting variables in standard regression analysis,
M is the full model that includes an intercept plus all s − 1 available
variables. Finally, let Λ(ξ) be the likelihood ratio test statistic for testing
Mξ against the larger model M . Maximizing Akaike’s information criterion
is equivalent to choosing ξ to minimize

Aξ = Λ(ξ) − (s − 2pξ) .

Consider applying this to the problem of variable selection in regression
analysis. Let SSE(F ) be the sum of squares for error of the full model and
SSE(X) be the error sum of squares for a reduced model with design matrix
X and rank(X) = p. Let s be the degrees of freedom for the full model. If
we assume that the variance σ2 is known, then

AX =
SSE(X) − SSE(F )

σ2
− (s − 2p) . (regression)

Because σ2 will not really be known, an ad hoc procedure would be to
estimate σ2 with σ̂2 = SSE(F )/(n− s), the mean squared error for the full
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model where n is the regression sample size. An estimate of AX is

ÂX =
SSE(X)

σ̂2
− SSE(F )

σ̂2
− (s − 2p)

=
SSE(X)

σ̂2
− (n − s) − (s − 2p)

=
SSE(X)

σ̂2
− (n − 2p)

= Cp

where Cp is Mallows’ well-known criterion for selecting regression models,
cf. Christensen (1996b, Section 14.1).

3.7 Higher-Dimensional Tables

Log-linear models can easily be extended to tables with more than three
factors. All of the basic principles from three-dimensional tables continue
to apply. However the models, as well as independence and odds ratio
relationships, become more complex. Independence relationships for high-
dimensional tables are discussed in Chapter 5. With more factors, there are
many more models to consider. Systematic methods of model selection are
discussed in Chapter 6. In this section, we just illustrate some examples.

Example 3.7.1. A study was performed on mice to examine the rela-
tionship between two drugs and muscle tension. For each mouse, a muscle
was identified and its tension was measured. A randomly chosen drug was
given to the mouse and the muscle tension was measured again. The muscle
was then tested to identify which type of muscle it was. The weight of the
muscle was also measured. Factors and levels are tabulated below.

Factor Abbreviation Levels
Change in Muscle Tension T High, Low
Weight of Muscle W High, Low
Muscle M Type 1, Type 2
Drug D Drug 1, Drug 2

The sampling is product-multinomial with the total count for each muscle
type fixed. The data are
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Drug(k)
Tension(h) Weight(i) Muscle(j) Drug 1 Drug 2

High Type 1 3 21
Type 2 23 11

High
Low Type 1 22 32

Type 2 4 12

High Type 1 3 10
Type 2 41 21

Low
Low Type 1 45 23

Type 2 6 22

For illustration, we fit three log-linear models to this four-factor table:
the model of all main effects

log(mhijk) = γ + τh + ωi + µj + δk, (1)

the model of all two-factor interactions

log(mhijk) = γ + τh + ωi + µj + δk + (τω)hi + (τµ)hj + (τδ)hk
+ (ωµ)ij + (ωδ)ik + (µδ)jk, (2)

and the model of all three-factor interactions

log(mhijk) = γ + τh + ωi + µj + δk + (τω)hi + (τµ)hj + (τδ)hk
+ (ωµ)ij + (ωδ)ik + (µδ)jk (3)
+ (τωµ)hij + (τωδ)hik + (τµδ)hjk + (ωµδ)ijk.

Getting rid of some of the redundant parameters, these can be rewritten
as

log(mhijk) = τh + ωi + µj + δk, (1)

log(mhijk) = (τω)hi + (τµ)hj + (τδ)hk + (ωµ)ij + (ωδ)ik + (µδ)jk, (2)

and
log(mhijk) = (τωµ)hij + (τωδ)hik + (τµδ)hjk + (ωµδ)ijk (3)

respectively, leading to the shorthand notations

[T][W][M][D], (1)

[TW][TM][WM][TD][WD][MD], (2)

[TWM][TWD][TMD][WMD]. (3)

As discussed in Section 4, the shorthand provides all the information nec-
essary for fitting the model (other than the actual cell counts).
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The test statistics for testing these models against the saturated model
are given below. Clearly, the only model that fits the data is the model of
all three-factor interactions.

Model df G2 P

[TWM][TWD][TMD][WMD] 1 0.11 .74
[TW][TM][WM][TD][WD][MD] 5 47.67 .00
[T][W][M][D] 11 127.4 .00

As before, we can also test any model against reduced models. For ex-
ample the test of [TWM][TWD][TMD][WMD] versus the reduced model
[TW][TM][WM][TD][WD][MD] has G2 = 47.67 − 0.11 = 47.56 on df =
5 − 1 = 4.

The data of Example 3.7.1 and the following data will be used to illustrate
techniques in subsequent chapters.

Example 3.7.2. Consider a data set in which there are four factors
defining a 2 × 2 × 3 × 6 table. The factors are

Factor Abbreviation Levels
Race R White, Nonwhite
Sex S Male, Female
Opinion O Yes = Supports Legalized Abortion

No = Opposed to Legalized Abortion
Und = Undecided

Age A 18-25, 26-35, 36-45, 46-55, 56-65, 66+ years

The sex and opinion factors are reminiscent of Example 2.1.1, but the data
are distinct. The data are given in Table 3.1. See also Exercise 3.8.10.

3.7.1 Computer Commands
The muscle tension data are listed in file ‘tension.dat’ as counts for each
cell with indices for tension, weight, muscle type, and drug, respectively.
The file is as given below.

3 1 1 1 1
21 1 1 1 2
23 1 1 2 1
11 1 1 2 2
22 1 2 1 1
32 1 2 1 2
4 1 2 2 1
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TABLE 3.1. Abortion Opinion Data

Age
Race Sex Opinion 18-25 26-35 36-45 46-55 56-65 66+

Yes 96 138 117 75 72 83
Male No 44 64 56 48 49 60

Und 1 2 6 5 6 8
White

Yes 140 171 152 101 102 111
Female No 43 65 58 51 58 67

Und 1 4 9 9 10 16

Yes 24 18 16 12 6 4
Male No 5 7 7 6 8 10

Und 2 1 3 4 3 4
Nonwhite

Yes 21 25 20 17 14 13
Female No 4 6 5 5 5 5

Und 1 2 1 1 1 1

12 1 2 2 2
3 2 1 1 1
10 2 1 1 2
41 2 1 2 1
21 2 1 2 2
45 2 2 1 1
23 2 2 1 2
6 2 2 2 1
22 2 2 2 2

We can fit the log-linear model [WMD][TWM][TWD][TMD] using SAS
PROC GENMOD.

options ps=60 ls=72 nodate;
data tension;

infile ’tension.dat’;
input n T W M D;

proc genmod data=tension;
class T W M D;
model n = W*M*T T*W*M T*W*D T*M*D / link=log

dist=poisson;
run;

The main differences between these commands and those given in
Subsection 2.6.1 for logistic regression are that now “link=log” and
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“dist=poisson”. These change GENMOD from fitting logistic regres-
sion to fitting log-linear models. To fit other specific models such as
[TM][WM][MD] or [T][WM][D], the model statement uses T∗M W∗M M∗D
or T W∗M D, respectively. The “class” command used above specifies that
a variable is not acting like a predictor variable in regression but rather
that it gives indices for specifying the levels of an analysis of variance type
factor.
Similarly, we can use GENMOD to fit the abortion data. The data file

‘abort.dat’ has five columns, the first four are indices for race, sex, age, and
opinion. The last column has the counts for each cell. The SAS commands
for fitting the model [RSO][RSA][ROA][SOA] are

options ps=60 ls=72 nodate;
data abort;

infile ’abort.dat’;
input R S A O N;

proc genmod data=abort;
class R S A O;
model N = R*S*O R*S*A R*O*A S*O*A / link=log

dist=poisson;
run;

GLIM uses commands that are similar to GENMOD. Interactions are
specified with a period rather than an asterisk. GLIM begins by specifying
the number of cells in the table, i.e., the “units.”

$units 72$
$data r s a o n$
$factor r 2 s 2 a 6 o 3$
$dinput 6$
$yvar n$
$error poisson$
$fit r.s.o + r.s.a + r.o.a + s.o.a$
$display e$
$stop$

The “factor” command specifies that a variable is not acting like a predictor
variable in regression but rather that it gives indices for specifying the levels
of an analysis of variance type factor. For GLIM, the user needs to specify
the number of levels for each factor. After the ‘dinput 6’ command, the
DOS version of GLIM prompts the user for the name of the data file.
GENMOD and GLIM use the Newton-Raphson algorithm. BMDP-4F

uses iterative proportional fitting. For the model [RSO][RSA][ROA][SOA],
the BMDP-4F commands are as follows:

/ INPUT FILE = ’C:\LOGLIN\ABORT.DAT’.
FORMAT = FREE.
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VARIABLES = 5.
/ VARIABLE NAMES = R, S, A, O, N.
/ TABLE INDICES = R, S, A, O.

COUNT = N.
/ STAT ALL.
/ FIT MODEL = RSO, RSA, ROA, SOA.
/ PRINT LINE = 79.
/ END

BMDP-4F is the most powerful program I am aware of for fitting analysis
of variance type log-linear models. In addition to GENMOD, SAS has a
procedure called CATMOD. CATMOD will not be discussed. (I’ll leave the
reasons to your imagination.)

3.8 Exercises

Exercise 3.8.1. Complete an analysis similar to that of Example 3.4.2
for the classroom behavior data of Example 3.0.1.

Exercise 3.8.2. Complete an analysis similar to that of Example 3.4.2
for the auto accident data of Example 3.2.4.

Exercise 3.8.3. Radelet (1981) gives data on the relationship between
race and the imposition of the death penalty. The data are given in Ta-
ble 3.2. Analyze the data.

TABLE 3.2. Race and the Death Penalty

Defendant’s Victim’s Death Penalty
Race Race Yes No
Black Black 6 97

White 11 52
White Black 0 9

White 19 132

Exercise 3.8.4. The data on graduate admissions at Berkeley given in
Exercise 2.6.1 was actually collapsed over the six largest departments within
the university. The possibility exists that the data may display Simpson’s
paradox. The full data are given in Table 3.3. Analyze the three-dimensional
table and comment on Simpson’s paradox relative to these data.

Exercise 3.8.5. Discuss Simpson’s paradox in terms of the following
probability inequalities.

Pr(A|B and C) < Pr(A| not B and C),
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TABLE 3.3. Graduate Admissions at Berkeley

Male Female
Dept. Admitted Rejected Admitted Rejected
A 512 313 89 19
B 353 207 17 8
C 120 205 202 391
D 138 279 131 244
E 53 138 94 299
F 22 351 24 317

Pr(A|B and not C) < Pr(A| not B and not C),

and
Pr(A|B) > Pr(A| not B).

Exercise 3.8.6. Reevaluate your analysis of the data discussed in Exer-
cise 2.6.3 in light of Simpson’s paradox. Are there other factors that need
to be accounted for in a correct analysis of these data?

Exercise 3.8.7. For the data of Example 3.2.4, do the first step of the
iterative proportional fitting algorithm for m̂

(7)
ijk using a hand calculator.

Use starting values of m̂[0]
ijk = 1. Compare the results after one step to the

fully iterated estimates.

Exercise 3.8.8. Consider the model log(mijk) = u + u1(i) + u2(j) +
u3(k) + u12(ij).

(a) Show that the maximum likelihood estimate of u3(1) − u3(2) is
log(n··1) − log(n··2).

(b) Show that maximum likelihood estimation gives

log
[
û12(11)û12(22)

û12(12)û12(21)

]
= log(n11·) − log(n12·) − log(n21·) + log(n22·).

Exercise 3.8.9. The Mantel-Haenszel Statistic.
In biological and medical applications, it is not uncommon to be confronted
with a series of 2 × 2 tables that examine the same effect under different
conditions. If there are K such tables, the data can be combined to form
a 2 × 2×K table. Because each 2 × 2 table examines the same effect, it is
often assumed that the odds ratio for the effect is constant over tables. This
is equivalent to assuming the no three-factor interaction model. To test for
the existence of the effect, one tests whether the common log odds ratio is
zero while adjusting for the various circumstances under which data were
collected. In terms of log-linear models, this is a one degree of freedom test
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of conditional independence given the layer k. Prior to the development of
log-linear model theory, Mantel and Haenszel (1959) proposed a statistic
for testing this hypothesis. The statistic, apart from a continuity correction
factor, is

[
∑

k(n11k − m̂11k)]
2

∑
k [m̂11km̂22k]

/
[n··k − 1]

,

where the m̂’s are obtained from the conditional independence model. This
statistic has an asymptotic χ2(1) distribution under the conditional inde-
pendence model.
The Berkeley graduate admission data of Exercise 3.8.4 and Table 3.3

is a set of six 2 × 2 tables. In each table we are interested in the effect of
sex on admission; the six departments constitute various conditions under
which this effect is being investigated.
a) Give a justification for whether or not use of the Mantel-Haenszel

statistic is appropriate for these data.
b) If appropriate, use both G2 and the Mantel-Haenszel statistic to test

whether there is an effect of sex on admission.
c) Show that the denominator of the Mantel-Haenszel statistic can be

written as
∑

k [m̂12km̂21k]
/
[n··k − 1].

Exercise 3.8.10. Using the data of Table 3.1 fit the all main effects
model, the all two-factor effects model, and the all three-factor effects
model. Perform all of the tests possible among these three models. Dis-
cuss your results.

Exercise 3.8.11. With regard to Section 3, show that the m̂[3t+2]
ijk ’s and

m̂
[3(t+1)]
ijk ’s also satisfy M (7).

Exercise 3.8.12. As can be seen from the iterative proportional fitting
algorithm, the m̂’s for the model of no three-factor interaction depend only
on the 3 two-dimensional marginal tables. Discuss how this fact can be used
to develop a more complete analysis for the Gilby data of Exercise 2.7.3.
What assumptions must be made and what techniques should be used?
What problems will Standard VIII cause?

Project 3.8.13. Write a computer program to fit the model of no three-
factor interaction to the Gilby data of Exercise 2.6.3. This can be done
using iterative proportional fitting. Assuming that this model fits, do any
submodels fit adequately?



4
Logistic Regression, Logit Models,
and Logistic Discrimination

In logistic regression, there is a (binary) response of interest, and predictor
variables are used to model the probability of that response. More gener-
ally, in a table of counts, primary interest is frequently centered on one
factor that constitutes a response (dependent) variable. The other factors
in the table are only of interest for their ability to help explain the response
variable. Special kinds of models have been developed to handle these sit-
uations. In particular, rather than modeling log expected cell counts or log
probabilities (as in log-linear models), when there is a response variable,
various log odds related to the response variable are modeled.
The special case in which the response variable has only two categories is

of particular interest and lends itself to an especially nice treatment. This
is because, with only two categories, there is essentially only one way to
define the odds. If p1 is the probability in the first category and p2 is the
probability in the second category, then the odds of getting category one
are p1/p2. The odds of getting category two are p2/p1. The important point
is that either of these numbers, together with the fact that p1 + p2 = 1,
completely determine both p1 and p2. So with two categories, the two
choices for the odds lead to the same results. (In the last section of this
chapter, we look at ratios p1/p2 but without p1 + p2 = 1; this causes
complications.)
With a two-category response variable, we will examine models for

log(p1/p2). When these models are regression type models, they are called
logistic regression models. When these models are ANOVA type models,
they are often referred to as logit models. The two terms “logit” and “lo-
gistic regression,” as applied to models, are essentially two names for the
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same idea. Technically, the terms logit and logistic are names for transfor-
mations. The logit transformation takes a number p between 0 and 1 and
transforms it to log[p/(1− p)]. The logistic transformation takes a number
x on the real line and transforms it to ex/(1 + ex). Note that the logit
transformation and the logistic transformation are inverses of each other.
In other words, the logistic transformation applied to log[p/(1− p)] gives p
and the logit transformation applied to ex/(1+ ex) gives x. Doing an anal-
ysis of data requires both of these transformations. It is largely a matter
of personal preference as to which name is associated with the model.
The situation when there are more than two categories in the response

variable is considerably more complicated because it is not clear which
sets of odds to model. Several choices have been suggested; some of these
are discussed in Section 6. As will be discussed in this chapter and shown
in Chapter 11, the log odds models turn out to be equivalent to a log-
linear model. It is important to remember that log odds models are for use
when relationships between the nonresponse factors (explanatory variables)
are not of interest. It is implicit in the definition of a logit model that
no structure between the explanatory variables is taken into account. It
is possible to use models for log odds that incorporate explanatory factor
structure, but such models are not what are generally known as logistic
regression or logit models.
Goodman (1973) proposes a multistep modeling procedure for response

factors. His procedure involves collapsing on the response factor and fit-
ting a log-linear model to the marginal table of the explanatory factors.
This is followed by fitting a logit model for the response factor. Taken to-
gether, these give the probability of any cell in the table as the product of
the marginal probability of its explanatory categories and the conditional
probability of the cell given its explanatory categories. These recursive re-
sponse models may or may not be log-linear models. Asmussen and Ed-
wards (1983) give conditions for the equivalence of log-linear models and
these multistep response models. Fienberg (1980, Chapter 7) gives a good
brief discussion of response models and their limitations. More recently,
graphical response models have been discussed by Asmussen and Edwards
(1983), Edwards and Kreiner (1983), Kiiveri, Speed, and Carlin (1984),
Kiiveri and Speed (1982), and Wermuth and Lauritzen (1983). Graphical
models are discussed in the next chapter. Holland (1986) discusses statis-
tics and causal inference, as do Glymour et al. (1987). The latter authors
seem to have a substantially different perspective than that presented here.
Goodman’s basic procedure can be applied with more than one response
factor and with responses involving more than two categories. In this chap-
ter, attention is concentrated on models for one response factor that con-
dition on all the explanatory factors. If more than one response factor is
present, one simple approach just restricts the fitted models to log-linear
models that condition on the explanatory factors.
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Section 1 examines regression models for two category responses. Sec-
tions 2, 3, and 4 discuss measuring the fit of models, logistic regression
diagnostics, and variable selection, respectively. Analysis of variance type
models are examined in Section 5 for responses with two categories and in
Section 6 for responses with more than two categories. Section 7 examines
the analysis of retrospective studies via logistic discrimination; the distinc-
tion between retrospective and prospective studies is discussed in the next
subsection.

Retrospective Versus Prospective Studies
It is important to distinguish between prospective and retrospective studies.
It is important because aspects of the material in this chapter do not apply
to retrospective studies. For our purposes, the distinction is based on the
nature of the sampling scheme.
If the sampling is independent Poisson or if the categories of the response

factor are in the same multinomial for every combination of the explana-
tory factors, the study is prospective. This is probably the most common
way of thinking about data collection. For example, a prospective study
of heart attack victims might take 250 people and examine each to de-
termine whether they have had a heart attack and their levels of various
explanatory factors. The explanatory factors may be such things as age,
blood cholesterol, and blood pressure. In the prospective study, each com-
bination of explanatory factors can be used to determine a population and
an individual randomly falls into a response category. So, typically, there
are many populations, and often each individual in the study is sampled
from a different population. Prospective studies are (or can be thought
of) as product-multinomials in which the multinomial categories are the
categories of the response factor.
Obviously, in a random sample of 250 people from the general popu-

lation, very few would have had heart attacks. An alternative sampling
method is often used in the study of such rare events as heart attacks.
One might sample 100 people who are known to have had heart attacks
and 150 people who have not had heart attacks. Again, each individual
is characterized by their levels of the explanatory factors. There are only
two populations here: the heart attack victims and the subjects without
heart attacks. The categories of the multinomials for the two populations
are the different categories of explanatory factors. The analysis of such
data involves describing the characteristics of the two groups in terms of
the explanatory factors. The key fact in this second example is that the
response factor categories define different multinomial populations and the
multinomial categories are the different combinations of the explanatory
factors. Generally, if, for all combinations of the explanatory factors, the
various categories of the response factor occur in different multinomials,
then the study is retrospective. In medical research, retrospective data col-
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lection corresponds to a case-control study. Clearly, for rare events, this
procedure has advantages over selecting a simple random sample. In a
multinomial sample, so few of the rare events will occur as to give little
power for determining their likelihood.
In the hypothetical retrospective study of heart attacks, let the index i

denote a set of explanatory characteristics; let p1i be the probability of that
set for the heart attack population and p2i be the probability for the popula-
tion who have not had heart attacks. A parameter of interest is p1i/p2i, the
ratio of the probabilities. (Note that, in general, p1i + p2i �= 1, so these are
not odds.) The parameter addresses the question of whether the explana-
tory characteristics i are more or less likely among heart attack victims
than among subjects who have not had heart attacks. Unfortunately, this
does not address the issue of cause and effect. It simply describes character-
istics of the two populations. As will be seen in Section 7, inferences about
log(p̂1i/p̂2i) will be complicated by the fact that the probabilities apply
to different multinomials. The asymptotic covariance of log(p̂1i/p̂2i) does
not simplify like it would if the probabilities were from the same multino-
mial. Moreover, one does not typically have the simplification that p1i/p2i
is equal to m1i/m2i; thus, inferences about log(p1i/p2i) cannot be made
directly by examining log(m̂1i/m̂2i).

Prospective studies do not directly address the issue of cause and effect
either, but they come closer than retrospective studies. As discussed earlier,
both multinomial sampling and some forms of product-multinomial sam-
pling generate prospective studies. An example of a product-multinomial
prospective study is to independently sample people for each set of explana-
tory characteristics and see how many have had heart attacks. In medical
research, the data given by this sampling scheme are called cohort data, and
cross-sectional data are used to indicate the results of simple multinomial
sampling.
For cohort data, take p1i to be the probability of a heart attack in the

population defined by the ith set of explanatory variables. Obviously, p2i =
1 − p1i is the probability of no heart attack in that population. The ratio
p1i/p2i is the odds of having a heart attack for that population. (Recall
that describing p1i/p2i as an odds is not appropriate in a retrospective
study.) In a cohort study, one can argue that the ith population is a cause
and that the ratio p1i/p2i is an effect. Unfortunately, populations usually
involve more than the explanatory factors used to define them. Aspects of
the ith population other than the values of the explanatory factors may
be the true cause for p1i/p2i. We hope that random sampling within the
population of people minimizes these effects.
For cross-sectional data, one can use the mental device of conditioning

on the number of people who fall in each explanatory category to get an
independent multinomial sample for each set of explanatory characteris-
tics. Thus, we can treat cross-sectional prospective data as if they were
cohort prospective data. In fact, any prospective study can be thought of
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as product-multinomial sampling with an independent sample for each set
of explanatory characteristics. This results from the fact that a prospective
study is defined to be one in which all of the categories of the response
factor are contained in the same multinomial.
Except for the last section, we restrict attention in this chapter to

prospective studies. A convenience of dealing with prospective studies is
that log odds defined for the response factor are the same using either
probabilities or expected cell counts, i.e., log(p1i/p2i) = log(m1i/m2i).

4.1 Multiple Logistic Regression

This section is devoted to regression models for the log odds of a two-
category response variable. The difference between this section and Sec-
tion 2.6 is that here we consider the use of multiple predictor variables.
The discussion will be centered around an example.

Example 4.1.1. Chapman Data.
Dixon and Massey (1983) present data on 200 men taken from the Los An-
geles Heart Study conducted under the supervision of John M. Chapman,
UCLA. The data consist of seven variables:

Abbreviation Variable Units
Ag Age: in years
S Systolic Blood Pressure: millimeters of mercury
D Diastolic Blood Pressure: millimeters of mercury
Ch Cholesterol: milligrams per DL
H Height: inches
W Weight: pounds

CNT Coronary incident: 1 if an incident had
occurred in the previous
ten years; 0 otherwise

Of the 200 cases, 26 had coronary incidents. The data are available elec-
tronically from STATLIB as well as through my web homepage:

http://stat.unm.edu/˜fletcher

Additional information is given in the Preface.
As discussed in Section 2.6, such data can be viewed as a 200×2 contin-

gency table in which the columns indicate presence or absence of a coronary
incident and the rows indicate the 200 combinations of the explanatory vari-
ables Ag, S, D, Ch, H, and W associated with the men in the study. Each
row is considered an independent binomial involving one trial. (If more
than one person has the same combination of explanatory variables, it is
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irrelevant whether they are treated as binomials with one trial or grouped
together yielding a table with less than 200 rows.) The table has 200 counts
and 400 cells, so the data are very sparse. As discussed in Section 2.6, when
testing a logistic regression model against the saturated log-linear model
(i.e., testing the logistic model for lack of fit), the asymptotic χ2 approxi-
mation is notoriously bad. The test statistics are reasonable things to look
at, but formal χ2 tests are generally inappropriate because of the sparse
data. Somewhat surprisingly, asymptotic χ2 approximations do work for
testing one logistic regression model (a full model) against another logistic
regression (a reduced model).
Let pi be the probability of a coronary incident for the ith man. We

begin with the logistic regression model

log[pi/(1− pi)] = β0 + β1Agi + β2Si + β3Di + β4Chi + β5Hi + β6Wi, (1)

i = 1, . . . , 200. As discussed in Section 2.6 and Chapter 11, this is equivalent
to a log-linear model for a two-way table in which the predictor variables
are used to model the interaction, cf. Exercise 4.8.15. The model can be
fitted using methods for log-linear models or the methods can be specialized
for fitting logistic regression models, cf. Subsection 4.4.2 for SAS, BMDP,
and GLIM commands. The actual methods for fitting logistic models will
be examined in later chapters. The maximum likelihood fit of this model
is given below.

Variable Estimate Std. Error z
Intercept −4.5173 7.451 −0.61

Ag 0.04590 0.02344 1.96
S 0.00686 0.02013 0.34
D −0.00694 0.03821 −0.18
Ch 0.00631 0.00362 1.74
H −0.07400 0.1058 −0.70
W 0.02014 0.00984 2.05

G2 = 134.9, df = 193

The formula for G2 is as in Section 2.6. The df is the number of cases, 200,
minus the number of fitted parameters, 7. Based on the z values, none of
the variables really stand out. There are suggestions of age, cholesterol, and
weight effects. The G2 would look good except that, as discussed earlier,
there is no basis for comparing it to a standard.
Prediction follows much the same form as in Section 2.6,

log[p̂i/(1 − p̂i)] = β̂0 + β̂1Agi + β̂2Si + β̂3Di + β̂4Chi + β̂5Hi + β̂6Wi .

For a 60-year-old man with blood pressure of 140 over 90, a cholesterol
reading of 200, who is 69 inches tall and weighs 200 pounds, the estimated
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discussed in detail in Section 3.6. A∗ is a modification of A− q for logistic
regression. A− q ≡ G2 − 2(df) and is the Akaike information criterion less
the number of cells (200 × 2) in the table. A∗ is a version of the Akaike
information criterion defined for comparing submodels of model (1) to the
full model. It is defined by

A∗ = (G2 − 134.9) − (7 − 2p) .

Here, 134.9 is G2 for the full model (1), 7 comes from the degrees of
freedom for the full model (6 explanatory variables plus an intercept),
and p comes from the degrees of freedom for the submodel (p = 1 +
number of explanatory variables). The information in A − q and A∗ is
identical: A∗ = 258.1 + (A − q). (The value 258.1 = number of cells −
G2[full model] − p[full model] = 400 − 134.9 − 7.) A∗ is listed because it is
a little easier to look at and takes values similar to Cp.

Model
Variables df G2 A − q A∗

Ag,S,D,Ch,H,W 193 134.9 −251.1 7
Ag 198 142.7 −253.3 4.8
W 198 150.1 −245.9 12.2

H,W 197 146.8 −247.2 10.9
Ch 198 146.9 −249.1 9.0
S,D 197 147.9 −246.1 12.0

Intercept 199 154.6 −243.4 14.7

Of the models listed,

log[pi/(1 − pi)] = γ0 + γ1Agi (2)

is the only model that is better than the full model based on the information
criterion; i.e., A∗ is 4.8 for this model, less than the 7 for model (1).

Asymptotically valid tests of submodels against model (1) are available.
These are performed in the usual way; i.e., the differences in degrees of
freedom and G2’s give the appropriate values for the tests. For example,
the test of model (2) versus model (1) has G2 = 142.7 − 134.9 = 7.8 with
df = 198 − 193 = 5. Other tests are given below.

Tests against Model (1)
Model df G2

Ag 5 7.8
W 5 15.2**

H,W 4 11.9*
Ch 5 12.0*
S,D 4 13.0*

Intercept 6 19.7**
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All of the test statistics are significant at the .05 level, except for that
associated with model (2). This indicates that none of the models other
than (2) is an adequate substitute for the full model (1). In the table
above, one asterisk indicates significance at the .05 level and two asterisks
denotes significance at the .01 level.
Our next step is to investigate models that include Ag and some other

variables. If we can find one or two variables that account for most of the
value G2 = 7.8, we may have an improvement over model (2). If it takes
three or more variables to explain the 7.8, model (2) will continue to be
the best-looking model. [Note that χ2(.95, 3) = 7.81, so a model with three
more variables than model (2) and the same fit as model (1) would still not
demonstrate a significant lack of fit in model (2).]
Below are fits for all models that involve Ag and either one or two other

explanatory variables.

Model
Variables df G2 A∗

Ag,S,D,Ch,H,W 193 134.9 7.0
Ag,S,D 196 141.4 7.5
Ag,S,Ch 196 139.3 5.4
Ag,S,H 196 141.9 8.0
Ag,S,W 196 138.4 4.5
Ag,D,Ch 196 139.0 5.1
Ag,D,H 196 141.4 7.5
Ag,D,W 196 138.5 4.6
Ag,Ch,H 196 139.9 6.0
Ag,Ch,W 196 135.5 1.6
Ag,H,W 196 138.1 4.2
Ag,S 197 141.9 6.0
Ag,D 197 141.4 5.5
Ag,Ch 197 139.9 4.0
Ag,H 197 142.7 6.8
Ag,W 197 138.8 2.9
Ag 198 142.7 4.8

Based on the A∗ values, two models stand out:

log[pi/(1 − pi)] = γ0 + γ1Agi + γ2Wi (3)

with A∗ = 2.9 and

log[pi/(1 − pi)] = η0 + η1Agi + η2Wi + η3Chi (4)

with A∗ = 1.6.
The estimated parameters and standard errors for model (3) are
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Variable Parameter Estimate SE
Intercept γ0 −7.513 1.706

Ag γ1 0.06358 0.01963
W γ2 0.01600 0.00794

For model (4), these are

Variable Parameter Estimate SE
Intercept η0 −9.255 2.061

Ag η1 0.05300 0.02074
W η2 0.01754 0.003575
Ch η3 0.006517 0.008243

The coefficients for Ag and W are quite stable in the two models. The
coefficients of Ag, W, and Ch are all positive, so that a small increase in
age, weight, or cholesterol is associated with a small increase in the odds of
having a coronary incident. Note that we are establishing association, not
causation.
As in regular regression, interpreting regression coefficients can be very

tricky. The fact that the regression coefficients are all positive conforms
with the conventional wisdom that high values for any of these factors
increases one’s chance of heart trouble. However, as in standard regression
analysis, correlations between predictor variables can make interpretations
of individual regression coefficients almost impossible.
It is interesting to note that from fitting model (1), the estimated re-

gression coefficient for D, diastolic blood pressure, is negative. A naive
interpretation would be that as diastolic blood pressure goes up, the prob-
ability of a coronary incident goes down. (If the log odds go down, the
probability goes down.) This is contrary to common opinion about how
these things work. Actually, this is really just an example of the fallacy of
trying to interpret regression coefficients. The regression coefficients have
been determined so that the fitted model explains these particular data as
well as possible. As mentioned, correlations between the predictor variables
can have a huge effect on the estimated regression coefficients. The sample
correlation between S and D is .802, so estimated regression coefficients for
these variables are unreliable. Moreover, it is not even enough just to check
pairwise correlations between variables; any large partial correlations will
also adversely affect interpretations. Fortunately, such correlations should
not normally have an adverse affect on the predictive ability of the model;
they only adversely affect attempts to interpret regression coefficients. In
Chapter 13, we will see that the regression coefficients also depend on the
precise form of the logit model. Other methods for modeling the probabili-
ties that are both reasonable and very similar to logistic regression can have
very different regression coefficients while giving very similar probabilities.
Finally, in this particular example, another excuse for the D coefficient β̂3
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being negative is that from the z value, β3 is not significantly different from
zero.
The estimated blood pressure coefficients from model (1) also suggest an

interesting hypothesis. (The hypothesis would be much more interesting
if the individual coefficients were significant, but we wish to demonstrate
a modeling technique.) The coefficient for D is −.00694, which is approx-
imately the negative of the coefficient for S, .00686. This suggests that
perhaps the difference S − D would be just as valuable a predictor as the
individual predictors S and D. We can evaluate this by fitting

log[pi/(1 − pi)] = γ0 + γ1Agi + γ2(Si − Di) + γ3Chi + γ4Hi + γ5Wi,

which gives G2 = 134.9 on df = 194. This model is a special case of model
(1), so a test of it against model (1) has

G2 = 134.9 − 134.9 = 0

with df = 194− 193 = 1. The G2 is essentially zero, so the data are consis-
tent with the reduced model. Of course, this reduced model was suggested
by the fitted full model, so any formal test would be biased — but then one
does not accept null hypotheses anyway, and the whole point of choosing
this reduced model was that it seemed likely to give a G2 close to that of
model (1). We note that the new variable, S −D, is still not significant; it
only has a z value of .006834/.01877 = .36.

Another way to view the procedure of the previous paragraph would be
as a test of H0 : β3 = −β2 in model (1). If we incorporate this hypothesis
into model (1), we get

log[pi/(1 − pi)]
= β0 + β1Agi + β2Si + (−β2)Di + β4Chi + β5Hi + β6Wi

= β0 + β1Agi + β2(Si − Di) + β4Chi + β5Hi + β6Wi

as displayed above. (Whether we call the parameters β’s or γ’s is irrelevant.)
We learned earlier that, relative to model (1), either model (3) or (4)

does an adequate job of explaining the data. This conclusion was based
on looking at A∗ values, but would also be obtained by doing formal tests
of models. Thus, we know that age and weight are important variables in
explaining coronary incidents. Moreover, cholesterol may also be an impor-
tant variable. However, we have not explained most of the variability in
coronary incidents.
Consider a measure analogous to R2. The smallest interesting logistic

regression model is log[pi/(1−pi)] = γ0. As seen earlier, this has G2 = 154.6
on 199 degrees of freedom. The percent of variability explained by model (3)
is

R2(Ag,W ) =
154.6 − 138.8

154.6
= .10 ,
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which seems pretty pathetic. In fact, the R2 from the full model is not
much better

R2(Ag, S,D,Ch,H,W ) =
154.6 − 134.9

154.6
= .13 .

We are a very long way from fitting the data as well as the saturated
model fits. In fact, if we fit a 28-parameter model including all variables,
all squares of variables, and all two-factor cross-product terms, G2 is 108.8,
so R2 is still only .30.

Granted, we have not explained most of the variation in the data, but
it was probably not reasonable to think that we could. In standard regres-
sions, a perfect fitting model can have a low R2. This happens when there
is substantial pure error in the model. The same thing happens in logistic
regression. That fact will be illustrated in the next section.

4.2 Measuring Model Fit

In regression and ANOVA, R2 is large when the pure error Var(yi) = σ2 is
small. When σ2 is unknown, there is always the hope that it will be small (if
we can find the correct model). In logistic regression, Var(yi) = Nipi(1−pi).
There isn’t any hope of making this universally small. You can only make
it truly small by looking at uninteresting data — those with pi near 0 or 1.
Cases with a realistic chance of going either way make for large variability.
We begin our examination of how well models fit by looking at the like-

lihood ratio and Pearson test statistics as applied to logistic regression. As
before, we have I independent binomials, each consisting of one trial. Thus,
we have a logistic regression with I cases and the dependent variable y is
either 0 or 1. Equivalently, we have an I × 2 table with counts nij , where
ni1 + ni2 = 1. Let the variable y correspond to counts in the first column
of the table so that yi = ni1 and 1− yi = ni2. If a logistic regression model
for log[pi/(1− pi)] is fitted, we obtain estimates p̂i of the pi’s. For the cor-
responding log-linear model, p̂i = m̂i1 and (1 − p̂i) = m̂i2. The likelihood
ratio and Pearson test statistics against the saturated model were given in
Section 2.6.

Example 4.2.1. Suppose that in a true and very accurate model,
there are 30 observations (i values) each with pi

.= .1 .= p̂i and 30 with
pi

.= .9 .= p̂i. From the first 30, we could then expect to get about three
observations with yi = 1. From (2.6.6), each of these observations has a
crude standardized residual of about

(1 − .1)
√
.1(1 − .1)

= 3 .
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The other 27 observations will have residuals of

(0 − .1)
√
.1(1 − .1)

= −.333 .

Similarly, from the second 30 observations, three would be about (0 −
.9)/

√
.9(1 − .9) = −3 and 27 would be about (1 − .9)/

√
.9(1 − .9) = .333.

It is disturbing that this perfect model with a perfect fit has what usually
would be considered large residuals.
Using the formula for X2 from Section 2.6, the Pearson statistic will be

about
X2 .= 6(32) + 54(.3332) = 60 ,

which is the number of cases. No matter how accurate the model is, the
Pearson statistic for these observations will still be about 60. It will never
get small. A similar phenomenon holds for the likelihood ratio test statistic.
Under the same circumstances as discussed above,

G2 .= 2[6 log(1/.1) + 54 log(1/(1 − .1))] = 33.32 .

(Asymptotic theory does not hold for these tests, so there is no reason to
expect X2 and G2 to be about the same.) Note that a constant model for
these data would have p̂i

.= .5 and

G2 = 2(60) log(1/.5) = 83.18,

so for this essentially perfect model which is fit perfectly,

R2 =
83.18 − 33.32

83.18
= .599;

not very high under the circumstances. In fact, since the probabilities in this
example were chosen to be quite extreme (near 0 and 1), the observations
have unusually low variability, which should actually inflate R2. The moral
is simply that one should not expect to see the very high R2’s that one
sometimes gets in standard regression.

No matter how accurate the fitted model, the test statistics will not be-
come arbitrarily small nor will R2 approach 1. The likelihood ratio statistic
G2 will become small only as the intrinsic variability of the true model
decreases, i.e., as all probabilities approach 0 or 1. The Pearson statistic
evaluated at the true model will remain near I, the number of cases.
There are two morals to all of this. First, R2 type measures can be used

to measure relative goodness of fit but may be misleading if used to measure
absolute goodness of fit. Models with low R2’s can fit great. Models with
high R2’s can exhibit lack of fit. Second, residuals from logistic regression
cannot be used without special consideration given to the 0-1 nature of the
data (cf. Jennings, 1986).
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Example 4.2.2. Using model (4.1.4), one finds that of the 200 cases in
the Chapman data, 26 cases had a crude standardized residual in excess of
.97. The 26 cases were precisely the 26 cases that had coronary incidents.
A method for identifying unusual cases that indicates that every case with
a coronary event is unusual leaves something to be desired.

4.2.1 Checking Lack of Fit
Methods of checking for lack of fit in logistic regression have been dis-
cussed by Tsiatis (1980), Landwehr, Pregibon, and Shoemaker (1984), and
Fienberg and Gong (1984). Their approaches are based on clustering near
replicates of the regression variables so that something akin to pure error
can be identified. We present here a method of evaluation inspired by stan-
dard residual analysis. Rather than clustering near replicates, it clusters
cases with similar p̂i’s.
A standard method for identifying lack of fit in regression analysis is

to plot the residuals against the predicted values. This plot should form
a structureless horizontal band about zero (cf. Christensen, 1996b, Sec-
tion 13.4). An equivalent plot would be the observations versus the pre-
dicted values. This plot should form a structureless band about the line
with slope 1 and intercept 0. For logistic regression, a plot of observations
versus predicted values should show predicted values near 0 having most
observations equal to 0, and predicted values near 1 having most observa-
tions equal to 1; predicted values near .5 should have about equal numbers
of observations that are 0s and 1s, etc. Such a plot could be difficult to
interpret visually, so let’s get cruder.
Break the predicted values into, say, 10 intervals: [0,.1), [.1,.2), [.2,.3),

. . . , [.9,1]. For each interval, find the number of cases that have p̂ in the
interval and the number of those cases that have y = 1. The midpoint of the
interval multiplied by the number of cases should be close to the number
of cases with y = 1. The fit within each interval can be summarized by
looking at components of a Pearson-like statistic

[(cases with y = 1) − (total interval cases)(midpoint)]2

(total interval cases)(midpoint)
.

These case values can be added to obtain a summary measure of the good-
ness of fit.

Example 4.2.3. For the Chapman data using model (4.1.4), no p̂i val-
ues are greater than .6. Intervals, total cases, coronary incidents, expected
values (cases times midpoints), and components are listed below.
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Cases
Number of Coronary ×

p̂ Interval Cases Incidents Midpoint Components
[0,.1) 99 5 4.95 0.0005
[.1,.2) 60 10 9 0.1111
[.2,.3) 22 2 5.5 2.2273
[.3,.4) 10 5 3.5 0.6429
[.4,.5) 7 2 3.15 0.4198
[.5,.6) 2 2 1.1 0.7364

Total = 4.138

The component for the interval [.2,.3) is much larger than the others. If
there is a lack of fit in evidence, it is most likely that people with esti-
mated probabilities of a coronary incident between .2 and .3 actually have
a considerably lower chance of having a coronary. On the other hand, if
the components are at all analogous to χ2’s, even the interval [.2,.3) is not
clear evidence of lack of fit. Based on this rather questionable comparison,
neither the individual value 2.2273 nor the total 4.138 are unreasonable.
A possible improvement to this technique is, rather than taking the mid-

point of the interval, to average the p̂’s in the interval. For the interval
[.2,.3), the average of the 22 p̂’s is .24045 with a corresponding cell compo-
nent of 2.0461. This indicates even less lack of fit.

4.3 Logistic Regression Diagnostics

We assume that the reader is familiar with diagnostics for standard regres-
sion. The diagnostics for logistic regression to be discussed are analogues
of common methods used for standard regression. In standard regression,
some of the usual diagnostic statistics are the residuals, standardized (stu-
dentized) residuals, standardized predicted (deleted) residuals (t residuals),
Cook’s distances, and the leverages, i.e., the diagonal elements of the pro-
jection operator (“hat matrix”).
A primary use of residuals is in detecting outliers. However, as we have

seen, for data consisting of 0s and 1s, the detection of outliers presents
some unusual problems. When there are only two outcomes, it is difficult
to claim that seeing either of them constitutes an outlier. If we have too
many 0s or 1s in situations where we would not expect them (e.g., too
many 1s in situations that we think have a small probability of yielding
a 1), then we have a problem, but the problem is best thought of as a
lack of fit. Moreover, we have seen that with 0-1 data, perfectly reasonable
observations can have “unusually large” residuals.
Another use for residuals is in checking normality. For log-linear models,

this can be thought of as checking how well the asymptotic theory holds.
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Unlike ANOVA type log-linear models, for 0-1 data the residuals are not
asymptotically normal, so, again, the usual residual analysis is not appro-
priate.
All in all, the residuals (and modified residuals) do not seem very useful

in and of themselves. We will concern ourselves with examining leverages
and influential observations. In particular, we will examine the logistic re-
gression analogue of Cook’s distance that was discussed in Pregibon (1981)
and Johnson (1985).
There are two questions frequently asked about influential observations.

One is, “In what sense is this observation influential?” The question is
crucial. Observations are not “influential” in a vacuum. They may be in-
fluential to the estimated regression parameters; they may be influential
to the fitted probabilities. They may be influential to just about anything.
When examining influential observations, one first decides on the impor-
tant aspects of the model and then examines influence measures appropriate
to those aspects. The author agrees with Johnson (1985) that, typically,
the primary concern should be about influence on the fitted probabilities.
In logistic regression, Cook’s distance is a direct influence measure rela-
tive to the fitted regression coefficients, but, as Johnson has shown, it can
be viewed as an approximation to his Kullback-Leibler (K-L) divergence
measure and Cook and Weisberg’s (1982) likelihood distance measure. Al-
though the author’s inclination is toward the K-L divergence measure, the
absence of readily available computer software dictates that the discussion
be focused on Cook’s distance.
The second frequently asked question about influential observations is,

“Given some influential observations, what do you do about them?” My
answer is that you should worry about them. Primarily, you should worry
about whether it is more appropriate to ignore the fact that they are influ-
ential or eliminate their influence by deleting them from the data and then
refitting the model. Of course, all of this is complicated by the fact that
whether or not a case is influential depends on what model is being fitted.
In the end, the answer to this question must depend on the data and the
purpose of the analysis.
Many standard logistic regression programs provide diagnostics. For ex-

ample, SAS PROC LOGISTIC and BMDP-LR both provide them and
they can also be obtained from GLIM. Some sample commands are given
in Subsection 4.4.2. In addition, many standard regression programs rou-
tinely provide diagnostics and these can also be used to obtain logistic
regression diagnostics because the Newton-Raphson method of fitting lo-
gistic regression models amounts to doing a series of weighted regressions.
Standard diagnostic quantities for each case are the log odds

log[p̂i/(1 − p̂i)] = β̂0 + β̂1Agi + β̂2Chi + β̂3Wi,
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the predictive probability p̂i, the leverage âii, the large sample standard
error of p̂i, which is

√
p̂i(1 − p̂i)(1 − âii), the standardized residual

ri =
yi − p̂i√

p̂i(1 − p̂i)(1 − âii)
,

the Pearson residual
r̃i =

yi − p̂i√
p̂i(1 − p̂i)

,

the square of which is the ith component of Pearson’s chi-square, the de-
viance residual

±
√
2[yi log(yi/p̂i) + (1 − yi) log((1 − yi)/(1 − p̂i))]

where the sign is taken to be the same as the sign of yi − p̂i, and a version
of Cook’s distance for logistic regression. These formulae are for yi either
0 or 1 and, as discussed earlier, residuals are not very interesting in this
case. When yi is a binomial count between 0 and Ni, the residuals can be
useful for reasonably large Ni. The standardized residuals then become

ri =
yi − Nip̂i√

Nip̂i(1 − p̂i)(1 − âii)

with similar adjustments to other quantities, cf. Subsection 4.4.1.
It should be mentioned that, properly defined, the logistic regression

version of Cook’s distance for the ith case requires computation of both
the estimated logistic regression coefficients and the estimated coefficients
when the ith case is deleted from the data. Both sets of estimates require
iterative computations and it will be desired to investigate Cook’s distance
for every case in the data. This can be expensive. To reduce costs, it is
common practice to use estimates when the ith case is deleted that are the
result of one iteration of Newton-Raphson with starting values taken as the
estimates from the full data set. In other words, this involves doing only
one weighted regression. These one-step procedures will be the subject of
our discussion.
We now present the procedure for obtaining diagnostic values in the

context of fitting the model

log[pi/(1 − pi)] = β0 + β1Agi + β2Chi + β3Wi

to the Chapman data. Specifically, we discuss how to use the diagnostic
procedures in standard regression to obtain diagnostics for logistic regres-
sion.
Using a logistic regression program, we get the fit

Variable Parameter Estimate SE
Intercept β0 −9.255 2.061

Ag β1 0.05300 0.02074
Ch β2 0.006517 0.003575
W β3 0.01754 0.008243
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Having fit the model, create a data file that contains Ag, Ch, W, y, and p̂,
where y consists of the 0-1 counts yi and p̂ is a new variable that consists
of the 200 values for p̂i. This data file is used as input into a regression pro-
gram that allows (a) transformations of variables, (b) weighted regression,
(c) computation of leverages, and (d) computation of Cook’s distances.
Using the transformation capability, define weights for the regression, say
RWT, with RWTi = p̂i(1 − p̂i). Also, define two variables Y0 and Y with

Y0i = log[p̂i/(1 − p̂i)]

and
Yi = Y0i + (yi − p̂i)/RWTi .

See Subsection 4.4.1 for computing methods when the data are not binary.
The variable Y0i can be used to help verify that things are working as

they should. Use the regression program to fit

Y0i = β0 + β1Agi + β2Chi + β3Wi + ei

with the weights RWTi. The regression coefficients from this fit should be
identical to those obtained from the logistic regression program.
Now fit

Yi = β0 + β1Agi + β2Chi + β3Wi + ei

with weights RWTi. This gives estimated regression coefficients that are
one additional step of the Newton-Raphson algorithm beyond those ob-
tained by the logistic regression program. In this example, the regression
gives

Variable Parameter Estimate SE
Intercept β0 −9.256 2.066

Ag β1 0.05300 0.02077
Ch β2 0.006518 0.003578
W β3 0.017539 0.008248

MSE = .9942

The parameter estimates are very close to the original logistic regression
estimates, but need not be identical to them. (They are close enough that
the logistic regression program concluded that the results had converged.)
TheMSE is close to one, so the reported standard errors are also very close
in the regression and the logistic regression. In logistic regression, there is
no variance parameter to be estimated, as there is in standard regression,
so for logistic regression, anything from a standard regression that involves
the MSE must have that involvement eliminated. Appropriate standard
errors are the reported standard errors divided by

√
MSE.

From this standard regression fit, we can also obtain leverages, standard-
ized residuals, and Cook’s distances. The leverages are precisely those sug-
gested by Pregibon (1981). The standardized residuals and Cook’s distances
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reported by a standard regression program also involve adjustments for the
MSE. For logistic regression, those adjustments must be eliminated. The
reported Cook’s distances from the standard regression are essentially the
one-step logistic regression Cook’s distances. The difference in the Cook’s
distances is that the reported values are the true one-step estimates di-
vided by the MSE. In the discussion below, the reported Cook’s distances
have been multiplied by MSE to give the appropriate values. In any case,
because the values from the program are all being divided by the same
number, to make comparisons among cases the values could be used with-
out modification. Another difference is that in standard regression, Cook’s
distance involves dividing by the number of regression parameters. Often
in logistic regression programs, this division is not used. So in this example,
to get the Cook’s distances given by, say, BMDP-LR, the Cook’s distances
reported by the regression program have to be multiplied by 4MSE. For
what they are worth with 0-1 data, the standardized residuals reported by
the regression program times

√
MSE are the correct standardized residu-

als.
The nine cases with the highest leverages are

Case 19 38 41 84 108 111 116 153 157
Leverage .104 .081 .149 .079 .147 .062 .067 .090 .093

The two that really stand out are Cases 41 and 108. Case 41 has Ag = 40,
W = 169, and Ch = 520. This is an exceptionally high cholesterol value.
Of the 200 cases, only 9 have Ch values over 400 and only 3 have Ch values
over 428. These are Case 116 with Ch = 453, Case 38 with Ch = 474,
and Case 41. A similar phenomenon occurs with Case 108. It has Ag = 51,
W = 262, and Ch = 269. The weight of 262 pounds is extremely high
within the data set. Of the nine cases with high leverage, only Cases 19,
41, and 111 correspond to men that had coronary incidents.
Denote the Cook’s distances as Ci’s. There are 32 cases with Ci ≥ .01.

These include all 26 of the individuals who had coronary incidents. Of the
other six cases, four were also among the highest leverage cases and the
remaining two also had reasonably high leverages.
Only four cases had Ci ≥ .05. These are

Case Ci Leverage
41 .112 .149
86 .078 .008
126 .079 .042
192 .064 .022

All of these correspond to individuals with coronary incidents. If we com-
pare the values 4Ci to a χ2(4) distribution as suggested by Johnson (1985),
we can get some global idea of the amount of influence each case is having.
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The conclusion is that none of the cases has much effect on the fitted model.
The multiplier and df of 4 for calibrating Ci were the number of regression
coefficients in the logistic regression. Of course, to compare these values to
a chi-squared distribution, it is vital that the Ci’s be computed properly;
i.e., values from a standard regression program have to be multiplied by
MSE.
Case 41 is easily the most influential, so it is of interest to examine what

happens if this case is deleted from the data. For the most part, the fitted
pi’s are similar. The estimated coefficients with Case 41, without Case 41,
and standard errors without Case 41 are given below.

Estimate Estimate SE
Variable with Case 41 without Case 41 without Case 41
Intercept −9.255 −8.813 2.058

Ag 0.05300 0.05924 0.02138
Ch 0.006517 0.004208 0.003881
W 0.01754 0.01714 0.008216

The estimates have changed but not dramatically. Perhaps the most
striking aspect is the change in the evidence for the effect of choles-
terol. With Case 41 deleted, the estimate divided by the standard er-
ror is .004208/.003881 = 1.08. With Case 41 included, this value is
.006517/.003575 = 1.82. The inclusion of cholesterol in the model was
questionable before; without Case 41, there seems little need for it.
With Case 41 deleted, G2(Ag,Ch,W ) = 132.8 on 195 degrees of freedom.

G2(Ag,W ) = 134.0 on 196 degrees of freedom. The difference in G2’s is
134.0−132.8 = 1.2 with 1 degree of freedom. There is virtually no evidence
for including cholesterol in the model. The estimated coefficients without
Case 41 using only Ag and W are

Variable Estimate SE
GM −7.756 1.745
Ag 0.06675 0.02013
W 0.01625 0.008042

Thus, we have found that almost all of the evidence for a cholesterol effect
is based on the fact that one individual with a very high cholesterol level
had a coronary incident. We can just drop that individual and state that for
more moderate levels of cholesterol, the numerical level of cholesterol does
not enhance our predictive ability. But this conclusion is already indicating
that qualitatively different things happen at different cholesterol levels.
Why not try to incorporate that idea into the models being considered?
One could group cases based on cholesterol levels and fit different models
to different groups. Rather than forming groups, perhaps cholesterol levels
should be transformed before being used in the model. Whatever course
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the eventual analysis takes, Case 41 has directed our attention to the role
of cholesterol. We now must question whether the current forms of our
models are adequate for approximating the effect of cholesterol or whether
the effect of cholesterol may be an oddity caused by one individual who
just happened to have a coronary incident and very high cholesterol.

4.4 Model Selection Methods

Formal model selection methods can be based either on stepwise methods
or finding best subsets of variables based on some criterion (e.g., Akaike’s
information). Fitting lots of models can be very expensive because each
fit requires an iterative procedure. Stepwise methods are sequential, hence
cheaper than best subset methods.
Standard computer programs are available for doing stepwise logistic

regression, e.g., BMDP-LR and SAS PROC LOGISTIC. These operate in
a fashion similar to standard regression (cf. Christensen, 1996a, 1996b;
Draper and Smith, 1981; Weisberg, 1985). They are also very similar to
the methods discussed in Sections 6.1 and 6.3. We will not give a detailed
discussion.
To the best of the author’s knowledge, the only standard computer pro-

gram available for doing best subset logistic regression is SAS PROC LO-
GISTIC. This procedure is based on doing score tests, a subject that will
be discussed below. In addition, programs for doing standard best subset
selection can be used with one-step estimates of logistic regression parame-
ters to identify good candidate models. To do this, the best subset program
must allow weighted regression.

Example 4.4.1. Model (4.1.1) was fitted to the Chapman data to obtain
p̂i’s. We then defined two variables: a weight variable

RWTi = p̂i(1 − p̂i)

and a dependent variable

Yi = log[p̂i/(1 − p̂i)] + (yi − p̂i)/RWTi .

The best subset regression program BMDP-9R was used employing the
weights RWT to get best subsets of

Yi = β0 + β1Agi + β2Si + β3Di + β4Chi + β5Hi + β6Wi + ei .

(Note the similarities to the procedure for getting diagnostic statistics.)
The fits used in comparing various models are not fully iterated maximum
likelihood fits. They involve one-step of the Newton-Raphson algorithm
starting at the maximum likelihood fit for model (4.1.1). Determinations
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of best-fitting models are based on residual sums of squares rather than
G2’s.
Based on the Cp statistic, the five best-fitting models are

Variables Cp

Ag, Ch, W 1.66
Ag, W 2.88

Ag, Ch, H, W 3.13
Ag, S, Ch, W 3.49
Ag, D, Ch, W 3.59

The last three models are among the best because adding a worthless vari-
able to the good model based on Ag, Ch, and W cannot do too much harm.
The two most interesting models are precisely those identified earlier by less
systematic means. In fact, in this example, the Cp statistics are very similar
to the corresponding A∗ values.
Of course, the Cp statistics are based on one-step fits. Below, we compare

the MLEs for the model with Ag, Ch, and W to the one-step fit.

Variable MLE One-Step
Intercept −9.2559 −9.21822

Ag 0.053004 0.0529624
Ch 0.0065179 0.00647380
W 0.017539 0.0174699

(Note that the MLEs differ slightly from the values given previously. The
earlier values were obtained from the program GLIM. These values were
obtained from BMDP-LR. It is normal for different [correct] programs to
give slightly different answers.) The Cp’s are not based on fully iterated
fits, so it is probably a good idea to consider a larger number of models
than one ordinarily would in standard regression. One hopes that the best
fitting fully iterated models will be among the best fitting one-step models,
but the relationship need not be exact.

This method of obtaining best subsets using one-step approximations
is very natural, so it is not surprising that it has been discovered inde-
pendently several times. The earliest references of which I am aware are
Nordberg (1981, 1982).
As mentioned earlier, to the best of my knowledge, the only method for

best subset regression that appears in a standard computer package is a
method in SAS PROC LOGISTIC that gives the models with the best
score tests. Score tests are arrived at in a similar fashion to the procedures
discussed above. With regard to Example 4.4.1, to get the score test for
dropping all of Ag, S, D, Ch, H, and W , fit the full regression model as
indicated in the example but with one exception. The exception is that
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RWT and Y are defined as indicated using the p̂i’s, but in Example 4.4.1,
the p̂i’s were obtained from a maximum likelihood fit of the full model,
whereas for a score test, the p̂i’s are obtained from a maximum likelihood
fit of the model that contains only an intercept. The score test statistic
for whether the six variables can be dropped is just the sum of squares
for regression in the six-variable weighted regression model. The statistic
is compared to a χ2(6) distribution.
One nice thing about score tests is that the p̂i’s depend just on the

intercept-only model, so getting the score statistics for testing any model
against the intercept-only model is merely a matter of fitting a regression
on that model. In other words, with the same definitions for RWTi and Yi,
one can test the full model as well as models such as

Yi = β0 + β1Agi + β4Chi + ei

and
Yi = β0 + β1Agi + β4Chi + β6Wi + ei

simply by fitting the regressions and evaluating the sums of squares for
regression.
Of course, the method presented in Example 4.4.1 is essentially the same

except that the p̂i’s are taken from the (presumably more accurate) full
model rather than the no-intercept model (which nobody takes seriously
as a model). Also, some account of model size is being taken by looking at
Cp statistics. If one specified best subset selection using the R2 criterion
in the regression program, the only difference in the Nordbert and score
procedures for choosing the best models would be in the choice of p̂i’s.

4.4.1 Computations for Nonbinary Data
In this section and Section 3, we have considered only the case where the
counts are either 0s or 1s. In Section 2.6 and in later chapters, we consider
logistic models and/or theory for data involving counts that may be greater
than 1. The computing methods discussed here are easily adapted to those
situations. If the ith case has Ni trials (i.e., the possible values for yi are
0, 1, . . . , Ni), then the appropriate weights are

RWTi = Nip̂i(1 − p̂i)

and the dependent variable in the regressions is

Yi = log[p̂i/(1 − p̂i)] + (yi − Nip̂i)/RWTi .

Note that
p̂i/(1 − p̂i) = Nip̂i/(Ni − Nip̂i) .

Often logistic regression computer programs will provide the values Nip̂i
rather than p̂i as diagnostics. Finally, if all of theNi’s are large, then looking
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at the standardized residuals becomes reasonable. Also, when all the Ni’s
are large, tests against the saturated model can be validly compared to a
chi-squared distribution.

4.4.2 Computer Commands
Below are SAS, BMDP, and GLIM commands for obtaining a logistic re-
gression. The data are in a file ’chapman.dat’ with eight columns: the case
index, Ag, S, D, Ch, H, W , and Cnt. The file looks like this.

1 44 124 80 254 70 190 0
2 35 110 70 240 73 216 0
3 41 114 80 279 68 178 0
4 31 100 80 284 68 149 0

data continue
199 50 128 92 264 70 176 0
200 31 105 68 193 67 141 0

We begin with SAS commands.
Perhaps the simplest way to fit the logistic regression model (4.1.4) in

SAS is to use PROC GENMOD. The first line controls printing. The next
four lines involve defining and reading the data and creating a variable
“n” that gives the total number of possible successes for each case. The
remaining lines specify the model and that a logistic regression is to be
performed.

options ps=60 ls=72 nodate;
data chapman;

infile ’chapman.dat’;
input ID Ag S D Ch H W Cnt;
n = 1;

proc genmod data=chapman ;
model Cnt/n = Ag Ch W / link=logit

dist=binomial;
run;

A more powerful program for logistic regression is PROC LOGISTIC.

options ps=60 ls=72 nodate;
data chapman;

infile ’chapman.dat’;
input ID Ag S D Ch H W Cnt;

proc logistic data=chapman descending;
model Cnt=Ag Ch W / waldcl waldrl plcl

influence iplots lackfit rsq;
output out=chdiag predicted=phat;

run;
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proc print data=chdiag;
run;
proc logistic data=chapman descending;

model Cnt=Ag S D Ch H W / selection = score
best = 3 details;

run;

This program includes two calls of PROC LOGISTIC. The first is a stan-
dard procedure for obtaining a logistic regression. The second involves
model selection. On the line with “proc logistic”, one specifies the data
being used and the command “descending”. The command “descending”
is used so that the program models the probabilities of events coded as 1
rather than events coded as 0. In other words, it makes the program model
the probability of a coronary incident rather than the probability of no
coronary incident. Standard output includes the estimated regression coef-
ficients, standard errors, values of z2, P values, and eβ̂k ’s. The model state-
ment is straightforward, specifying the dependent variable and the predic-
tor variables. After the / on the model line, options are specified. “waldcl”
causes the program to give the confidence intervals β̂k ± 1.96 SE(β̂k); call
the interval (a, b). “waldrl” causes the program to give the values eβ̂k and
intervals (ea, eb). “plcl” gives alternative confidence intervals for the βk’s
based on profile likelihoods. The command “influence” causes diagnostics
to be presented, basically everything discussed by Pregibon (1981). This in-
cludes leverages, Cook’s distance Ci (the same version as BMDP presents),
and something called Cbar, which is (1 − âii)Ci. Index plots are given by
specifying “iplots”. For binary data, G2 does not give a valid lack of fit
test, “lackfit” gives a test similar in spirit to that discussed in Section 2.
“rsq” gives values for R2 and Adj. R2, but R2 is defined differently than
it is here. The “output” command creates a SAS data set containing the
diagnostics, so they can then be printed or manipulated in other ways.
The second proc logistic line was set up to do model selection. It uses the

“selection” option. This can be set to “forward”, “backwards”, “stepwise”,
or “score”. With the score option and “best = 3”, the three one-variable
models with the best score statistics, the three best two-variable models,
the three best three-variable models, and so on, are all presented.
For BMDP, the commands are similar. You actually run the program

BMDP-LR, so no statement of this being a logistic regression procedure is
needed. Again the data are specified. The variables to be used are specified
along with the dependent variable and the model. Interval and categorical
variables must be specified prior to specifying the model.

/ INPUT FILE = ’CHAPMAN.DAT’.
FORMAT = FREE.
VARIABLES = 8.

/ VARIABLE NAMES = Index, Ag, S, D, Ch, H, W, Cnt.
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USE = Ag TO Cnt.
/ REGRESS DEPENDENT = Cnt.

INTERVAL = Ag, S, D, Ch, H, W.
MODEL = Ag, Ch, W.
MOVE = 0, 0, 0.
METHOD = MLR.

/ PRINT CELLS = MODEL.
/ END

The program is actually set up to do forward, backward, or stepwise re-
gression. The “move” command was used to make the program fit only the
model desired. Diagnostics are obtained by the “cells = model” specifica-
tion.
Finally, for anyone who might want to use GLIM (still one of my fa-

vorites):

$units 200$
$data I Ag S D Ch H W Cnt $
$dinput 6$
$calc n = 1$
$yvar Cnt$
$error binomial n$
$fit Ag+Ch+W$
$display e$
$extract %vl$
$calc ahat=%vl*%wt/%sc$ (leverages)
$calc r=(Cnt-%fv)/%sqrt(%sc*(1-ahat))$ (std. resids)
$calc C=(ahat/(1-ahat))*(r**2)$ (Cook’s distances)
$look ahat r C$

“units” specifies the number of cases in the regression. After “dinput 6”,
DOS versions of GLIM prompt you for a file name, i.e., “chapman.dat”.
The Cook’s distances are the same as those used in SAS and BMDP and
4 times those defined here. GLIM is similar in spirit to PROC GENMOD.

4.5 ANOVA Type Logit Models

In this section, analysis of variance type models for the log odds of a two-
category response variable are discussed. We begin with a standard exam-
ple.

Example 4.5.1. Consider the muscle tension data of Example 3.7.1.
Recall that the factors and levels are
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Factor Abbreviation Levels
Change in muscle tension T High, Low

Weight of muscle W High, Low
Muscle type M Type 1, Type 2

Drug D Drug 1, Drug 2

and the data are

Drug (k)
Tension (h) Weight (i) Muscle (j) Drug 1 Drug 2

High Type 1 3 21
Type 2 23 11

High
Low Type 1 22 32

Type 2 4 12
High Type 1 3 10

Type 2 41 21
Low

Low Type 1 45 23
Type 2 6 22

Change in tension can be viewed as a response factor. Weight, muscle
type, and drug are all explanatory variables. Thus, it is appropriate to
model the log odds of having a high change in muscle tension. The three
explanatory factors affect the log odds for high tension change. The most
general model available is to use a model that includes all main effects and
all interactions between the explanatory factors, i.e.,

log(p1ijk/p2ijk) = G+Wi +Mj +Dk

+ (WM)ij + (WD)ik + (MD)jk (1)
+ (WMD)ijk .

As usual, this is equivalent to a model with just the highest-order interac-
tions; in this case,

log(p1ijk/p2ijk) = (WMD)ijk .

Model (1) can be fit by maximum likelihood. Reduced models can be
tested. Estimates and asymptotic standard errors can be obtained. In other
words, the analysis of model (1) is similar to that of an (unbalanced) stan-
dard ANOVA model or a log-linear model.
Of course, the analysis of model (1) should be similar to that of a log-

linear model analysis because in a profound sense (alluded to in Section 2.6
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and discussed in detail in Chapter 11), model (1) is precisely the same
model as the saturated log-linear model, i.e.,

log(mhijk) = (τωµδ)hijk , (2)

where we have used Greek equivalents of T, W, M, and D to emphasize that
the parameters in (1) and (2) are different. Note that in both models (1)
and (2), there is at least one parameter on the right-hand side for every
term on the left-hand side. In both models, the data are fitted perfectly. In
examining the correspondence between logit models and log-linear models,
it is crucial to keep in mind the fact that this is a prospective study, so

p1ijk/p2ijk = m1ijk/m2ijk .

Now consider a more interesting logit model than the saturated logit
model (1). Consider, say,

log(p1ijk/p2ijk) = Wi + (MD)jk (3)

where we have eliminated the redundant terms G, Mj , and Dk and as-
sumed that the terms (WM)ij , (WD)ik, and (WMD)ijk add nothing to
model (1). We wish to find the corresponding log-linear model. Model (3)
is a model that explains tension change odds, so an effect, say Wi, alters
the odds of high tension change. The odds cannot be altered without alter-
ing both the probability of high tension change and the probability of low
tension change; thus, Wi affects both of these probabilities. In other words,
the probabilities (and the expected cell counts) depend on both the tension
change level T and the weight W. It follows that the logit effect Wi cor-
responds to a log-linear model interaction, say (τω)hi. Similarly, the logit
effect (MD)jk corresponds to the interaction (τµδ)hjk. As shown in Sec-
tion 11.1, the log-linear model must contain (ωµδ)ijk terms, so model (3)
is equivalent to

log(mhijk) = (τω)hi + (τµδ)hjk + (ωµδ)ijk . (4)

Inclusion of the terms (ωµδ)ijk is required to deal with the sampling scheme
when thinking of the sampling as product-multinomial (i.e., independent
binomials) for every combination of the explanatory factors. This mental
device was discussed in the subsection of the introduction on retrospective
versus prospective studies.
In fact, these ideas extend to all logit and logistic regression models.

Note that the shorthand notation used for ANOVA type log-linear models
is easily adapted to ANOVA type logit models. Using this shorthand, the
correspondence between logit models and log-linear models is illustrated in
Table 4.1.
In each case, the effects in the logit model correspond to log-linear model

effects that are the interaction between T and the logit model terms. In
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addition, the log-linear models always include the three-way interaction
between the explanatory factors. Note that models (3) and (4) correspond
to line 7 of Table 4.1. As another example, line 3 of the table indicates that
the model

log(p1ijk/p2ijk) = G+Wi +Mj +Dk + (WM)ij + (MD)jk

is equivalent to the model

log(mhijk) = γ + ωi + µj + δk + (ωµ)ij + (ωδ)ik + (µδ)jk + (ωµδ)ijk
+ τh + (τω)hi + (τµ)hj + (τδ)hk
+ (τωµ)hij + (τωδ)hik.

Of course, the log-linear model can be written much more simply as

log(mhijk) = (ωµδ)ijk + (τωµ)hij + (τωδ)hik .

TABLE 4.1. Correspondence Between Some Logit and
Log-Linear Models

Logit Model Log-Linear Model
1) {WM}{WD}{MD} [WMD][TWM][TWD][TMD]
2) {WM}{WD} [WMD][TWM][TWD]
3) {WM}{MD} [WMD][TWM][TMD]
4) {WD}{MD} [WMD][TWD][TMD]
5) {WM}{D} [WMD][TWM][TD]
6) {WD}{M} [WMD][TWD][TM]
7) {MD}{W} [WMD][TMD][TW]
8) {W}{M}{D} [WMD][TW][TM][TD]
9) {W}{M} [WMD][TW][TM]

10) {W}{D} [WMD][TW][TD]
11) {M}{D} [WMD][TM][TD]

Given the log-linear models, the logit models can be obtained by sub-
traction. Using model (4), observe that

log(p1ijk/p2ijk) = log(m1ijk/m2ijk)
= log(m1ijk) − log(m2ijk)
= (τω)1i + (τµδ)1jk + (ωµδ)ijk

− (τω)2i − (τµδ)2jk − (ωµδ)ijk
= [(τω)1i − (τω)2i] + [(τµδ)1jk − (τµδ)2jk]
= Wi + (MD)jk

where Wi ≡ [(τω)1i − (τω)2i] and (MD)jk ≡ [(τµδ)1jk − (τµδ)2jk]. Thus,
model (4) implies model (3). Conversely, as will be seen in Chapter 11, the
logit model (3) implies the log-linear model (4).
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It is interesting to note that models other than (4) will also im-
ply a logit structure of log(p1ijk/p2ijk) = Wi + (MD)jk. Any reduced
model relative to (4) where the reduction involves only the (ωµδ)ijk
terms also implies that log(p1ijk/p2ijk) = Wi + (MD)jk. For example,
if log(mhijk) = (τω)hi + (τωδ)hjk + (ωµ)ij + (δ)k, then log(p1ijk/p2ijk) =
log(m1ijk)− log(m2ijk) = Wi + (MD)jk. Such models imply that the logit
structure holds plus some additional conditions on the explanatory factors.
The logit structure of model (3) without any other conditions is equivalent
to model (4), so if one is fitting logit models, the corresponding log-linear
model must contain the three-factor effects (ωµδ)ijk. It will be recalled
that our original argument for including the (ωµδ)ijk effects was based on
the existence of product-binomial sampling. This condition is not neces-
sary; a logit model implies the existence of the (ωµδ)ijk terms regardless
of the sampling structure, cf. Section 11.1. Of course, in the absence of
product-binomial sampling, it would seem to be difficult to interpret the
terms log(p1ijk/p2ijk) because we no longer have p1ijk + p2ijk = 1. For-
tunately, if we condition on explanatory variables (i.e., if we condition on
the marginal totals n·ijk), then for any of the standard prospective sam-
pling schemes, the conditional sampling scheme is product-binomial and
the standard interpretations can be used for the conditional distribution.
Before examining the actual analysis of the muscle tension data, we make

one final comment about the logit model—log-linear model relationship. A
logit model can be thought of as a model fitted to a two-factor table, where
one factor is tension and the other factor consists of all combinations of
weight, muscle type, and drug. The smallest interesting log-linear model is
the model of independence:

log(mhijk) = τh + (ωµδ)ijk .

Looking at log(p1ijk/p2ijk) = log(m1ijk) − log(m2ijk), we see that this
model corresponds to a model log(p1ijk/p2ijk) = τ1 − τ2 ≡ G, i.e., just
fitting a grand mean. Intuitively, this would be the smallest interesting
logit model. The saturated model for the two-factor table is the interaction
model

log(mhijk) = τh + (ωµδ)ijk + (τωµδ)hijk ,

which is the logit model log(p1ijk/p2ijk) = G + (WMD)ijk. The more
interesting logit models correspond to modeling the interaction in this two-
way table. They posit more interaction than complete independence, but
less interaction than the saturated model. Note that thinking of this as a
two-way table is also consistent with the idea of product-binomial sampling.
The muscle tension data corresponds to a 8×2 table. Each row is a distinct
set of explanatory variables, indexed by ijk. The columns are the two
categories of the response, indexed by h. Each row is thought of as an
independent binomial, so the row totals should be fixed by inclusion of a
main effect for rows, i.e., the W, M, D three-way interaction.
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We now return to the data analysis. Table 4.2 gives a list of logit models,
df , G2, P values, and A−q values. The df ’s, G2’s, P ’s, and A−q’s were ac-
tually obtained by fitting the corresponding log-linear models. Clearly, the
best fitting logit models are the models {MD}{W} and {WM}{MD}. Both
involve the muscle type—drug interaction and a main effect for weight. One
of the models includes the muscle type—weight interaction.

TABLE 4.2. Statistics for Logit Models

Logit Model df G2 P A − q

{WM}{WD}{MD} 1 0.111 .7389 −1.889
{WM}{WD} 2 2.810 .2440 −1.190
{WM}{MD} 2 0.1195 .9417 −3.8805
{WD}{MD} 2 1.059 .5948 −2.941
{WM}{D} 3 4.669 .1966 −1.331
{WD}{M} 3 3.726 .2919 −2.274
{MD}{W} 3 1.060 .7898 −4.940
{W}{M}{D} 4 5.311 .2559 −2.689
{W}{M} 5 11.35 .0443 1.35
{W}{D} 5 12.29 .0307 2.29
{M}{D} 5 7.698 .1727 −2.302

We now take a closer look at the logit model {MD}{W}. As mentioned
earlier, Table 4.2 was obtained by fitting the log-linear models correspond-
ing to the logit model. The log-linear model corresponding to {MD}{W}
is [WMD][TMD][TW]. Each logit model term becomes an interaction with
the response factor T and there is an interaction between all of the explana-
tory factors. The estimated expected cell counts for [WMD][TMD][TW] are
given in Table 4.3.

TABLE 4.3. Estimated Expected Cell Counts for the
Log-Linear Model [WMD][TMD][TW]

Drug (k)
Tension (h) Weight (i) Muscle (j) Drug 1 Drug 2

High Type 1 2.31 20.04
Type 2 23.75 11.90

High
Low Type 1 22.68 32.96

Type 2 3.26 11.10
High Type 1 3.69 10.97

Type 2 40.24 20.10
Low

Low Type 1 44.32 22.03
Type 2 6.74 22.90
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By taking the ratio of the high tension change estimates to the low ten-
sion change estimates, we obtain the estimated odds from the logit model.
For example, as in Table 4.3, the high-tension, high-weight, type 1, drug 1
estimate is 2.308; the low-tension, high-weight, type 1, drug 1 estimate is
3.693. The ratio is 2.308/3.693 = .625. This is the logit model estimate
of the odds of a high-tension change for high-weight, type 1, drug 1. The
estimated odds for all cells are given in Table 4.4.

TABLE 4.4. Estimated Odds of High
Tension Change for the Logit Model
{MD}{W}

Drug
Weight Muscle Drug 1 Drug 2
High Type 1 .625 1.827

Type 2 .590 .592
Low Type 1 .512 1.496

Type 2 .483 .485

The estimated odds of having a high tension change are 1.22 times greater
for high-weight muscles than for low-weight muscles. For example, in Ta-
ble 4.4, .625/.512 = 1.22 but also 1.22 = .590/.483 = 1.827/1.495 =
.592/.485. To put it another way, m̂11jkm̂22jk/m̂12jkm̂21jk = 1.22. This
corresponds to the main effect for weight in the logit model. The odds also
involve a muscle type—drug interaction. The nature of this interaction
is easily established. Consider the four estimated odds for high weights,
m̂11jk/m̂21jk. These are the four values at the top of Table 4.4; e.g., for
muscle type 1, drug 1, this is .625. In every muscle type—drug combina-
tion other than type 1, drug 2, the estimated odds of having a high tension
change are about .6. The estimated probability of having a high tension
change is about .6/(1 + .6) = .375. However, for type 1, drug 2, the es-
timated odds are 1.827 and the estimated probability of a high tension
change is 1.827/(1 + 1.827) = .646. The chance of having a high tension
change is much greater for the combination muscle type 1, drug 2 than for
any other muscle type—drug combination. A similar analysis holds for the
low-weight odds m̂12jk/m̂22jk but the actual values of the odds are smaller
by a factor of 1.22 because of the main effect for weight.
The other logit model that fits quite well is {WM}{MD}. Tables 4.5

and 4.6 contain the estimated odds of high tension change for this model.
The difference between Tables 4.5 and 4.6 is that the rows of Table 4.5
have been rearranged in Table 4.6. This sounds like a trivial change, but
examination of the tables shows that Table 4.6 is easier to interpret.

Looking at the type 2 muscles, the high-weight odds are .919 times the
low-weight odds. Also, the drug 1 odds are 1.111 times the drug 2 odds.
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TABLE 4.5. Estimated Odds for the
Logit Model {WM}{MD}

Drug
Weight Muscle Drug 1 Drug 2
High Type 1 .809 2.202

Type 2 .569 .512
Low Type 1 .499 1.358

Type 2 .619 .557

TABLE 4.6. Estimated Odds for the
Logit Model {WM}{MD}

Drug
Muscle Weight Drug 1 Drug 2
Type 1 High .809 2.202

Low .499 1.358
Type 2 High .569 .512

Low .619 .557

Neither of these are really very striking differences. For muscle type 2, the
odds of a high tension change are about the same regardless of weight and
drug. Contrary to our previous model, they do not seem to depend much
on weight, and to the extent that they do depend on weight, the odds go
down rather than up for higher weights.
Looking at the type 1 muscles, we see the dominant features of the pre-

vious model reproduced. The odds of high tension change are 1.622 times
greater for high weights than for low weights. The odds of high tension
change are 2.722 times greater for drug 2 than for drug 1.
Both models indicate that for type 1 muscles, high weight increases

the odds and drug 2 increases the odds. Both models indicate that for
type 2 muscles, drug 2 does not substantially change the odds. The differ-
ence between the models {MD}{W} and {WM}{MD} is that {MD}{W}
indicates that for type 2 muscles, high weight should increase the odds,
but {WM}{MD} indicates little change for high weight and, in fact, what
change there is indicates a decrease in the odds.
Incidentally, the reason for changing from Table 4.5 to Table 4.6 was the

nature of the logit model. The model {WM}{MD} has M in both terms,
so it is easiest to interpret when fixing the level of M. For a fixed level of
M, the effects of W and D are additive, although the size of those effects
change with the level of M.

This analysis of the data on change in muscle tension was intentionally
performed at the lowest level of technical sophistication. The estimated
expected cell counts were obtained by iterative proportional fitting. The
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entire analysis was based on these fitted values and the associated likeli-
hood ratio test statistics. For example, conclusions about the importance
of estimates were drawn without the benefit of standard errors for those
estimates. Obtaining standard errors requires more computational sophisti-
cation. In particular, it requires fitting an auxiliary regression as discussed
in Sections 6.7 and 10.2. However, it is interesting to see how much can be
obtained from such a small computational investment.
There are two ways to fit an analysis of variance type logit (logistic)

model. One way is to fit the corresponding log-linear model. The second
way is to fit the logit model directly. This section has dealt exclusively
with fitting the corresponding log-linear models. Section 1 deals exclusively
with fitting the logistic (logit) model directly. Although Section 1 deals
specifically with regression models, the procedures for a direct fit of an
ANOVA model are similar.
To reiterate, there are two principles that define the correspondence be-

tween logit models and log-linear models. Recall that effects in the logit
model only involve the explanatory factors; e.g., logit effects for the tension
change data never involve T, the response factor, only the explanatory fac-
tors. The first principle is that any effect in the logit model corresponds in
the log-linear model to an interaction between the response factor and the
logit effect. For example, a logit effect {MD} corresponds to a log-linear
effect [TMD]. The second principle is that the log-linear model always in-
cludes the full interaction between the explanatory factors; e.g., all log-
linear models include the [WMD] interaction. These principles also hold
for logistic regression models. If g is an index or group of indexes that
identify all levels of the predictor variables (i.e., explanatory factors), the
log-linear model will have a term u(g) which is essentially the full interac-
tion between the explanatory factors. Also, any linear logistic effect βxg
becomes a log-linear interaction ηhxg where h indexes the two levels of the
response factor.

4.5.1 Computer Commands
The muscle tension data are listed in the file ‘tenslr.dat’ with one column
for the number of high tension scores, one column for the low tension scores,
and three columns of indices that specify the level of weight (high is 1),
muscle type, and drug, respectively.

3 3 1 1 1
21 10 1 1 2
23 41 1 2 1
11 21 1 2 2
22 45 2 1 1
32 23 2 1 2
4 6 2 2 1
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12 22 2 2 2

The following commands fit the model {WM}{WD}{MD} using SAS
PROC GENMOD. This procedure works very much like GLIM. Note that
the variable “n” is the total number of individuals with each level of weight,
muscle type, and drug. As in Subsection 3.7.1, the “class” command is used
to distinguish ANOVA type factors from regression predictors.

options ps=60 ls=72 nodate;
data tension;

infile ’tenslr.dat’;
input H L W M D;
n = H+L;

proc genmod data=tension;
class W M D;
model H/n = W*M W*D M*D / link=logit

dist=binomial;
run;
proc print data=chdiag;
run;

Alternatively, the log-linear model for [WMD][TWM][TWD][TMD] can be
fitted as in Subsection 3.7.1. To fit other models such as {WM}{MD} or
{WM}{D} using GENMOD, the model statement uses W∗MM∗D or W∗M
D, respectively.

4.6 Logit Models for a Multinomial Response

The basic method for dealing with a response variable (factor) with more
than two levels is to arrange things so that only two things are compared at
a time. One way of doing this is to identify pairs of levels to be compared.
For example, if the response factor has R levels, comparing each level to
the next level leads to modeling

log(mi/mi+1), i = 1, . . . , R − 1 , (1)

or, equivalently,

log(pi/pi+1), i = 1, . . . , R − 1 .

These are the odds of getting level i relative to getting level i+1. They can
be viewed as conditional odds given that either level i or i + 1 occurs. To
illustrate multinomial response models, consider the data of Example 3.7.2
presented in Table 3.1. The data involve factors of which we will treat
abortion opinion as a response. The levels of abortion opinion are Yes, No,
and Undecided. These indicate levels of support for legalized abortion. The
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model scheme indicated by equation (1) dictates looking at a series of odds:
the odds of Yes to No and the odds of No to Undecided. In this case, the
nominal levels of the response can be rearranged to suit us. For example,
we could choose to look at the odds of No to Yes and of Yes to Undecided.
These latter odds can be viewed as the conditional odds of No to Yes for
people who have a clear opinion, and the odds of Yes to Undecided for
people who are not opposed.
An alternative modeling scheme is for each level to be compared to a

particular level; e.g., models can be formed for

log(mi/mR), i = 1, . . . , R − 1 . (2)

With abortion opinions given in the order Yes, No, Undecided, these models
involve the odds of Yes to Undecided and of No to Undecided. Again, one
could (and in this case probably would) rearrange the order of the levels
so that the level everything is compared to is a particularly interesting
category.
If the same form model is used for each value of i, these methods are

equivalent and both are equivalent to fitting a log-linear model. For exam-
ple, the models

log(mijk/mi+1 jk) = w2(j) + w3(k), i = 1, . . . , R − 1,

and
log(mijk/mRjk) = v2(j) + v3(k), i = 1, . . . , R − 1,

are equivalent. (Note that the w and v parameters will also depend on i.)
Both of these models are equivalent to

log(mijk) = u23(jk) + u12(ij) + u13(ik) .

Just as in two-category logit models, the interaction between all explana-
tory factors, u23(jk), is included in the model. The logit effects correspond
in the log-linear model to interactions with the response factor. Given the
log-linear model, the various logit models can be obtained by looking at
differences. For example,

log(mijk/mi+1 jk) = log(mijk) − log(mi+1 jk)

and
log(mijk/mRik) = log(mijk) − log(mRjk)

lead to parametrizations such as

w2(j) = u12(ij) − u12(i+1 j)

and
v3(k) = u13(ik) − u13(Rk) .
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(Note that, as mentioned above, w2 and v3 depend on the category i that
is being examined.) Fits for all of the models in (1) and (2) can be obtained
by fitting one log-linear model.
Another way of reducing several response levels to binary comparisons

is to pool response levels. One way to do this is to compare each level to
the total of all other levels, e.g., model

log

(
mi∑
h�=imh

)

, i = 1, . . . , R . (3)

These are the odds of getting category i relative to not getting level i.
Fitting these models requires fitting at least R − 1 logit models. One log-
linear model will not do. With the abortion opinion data, these are models
for the odds of Yes to not Yes, the odds of No to not No, and the odds
of Undecided to not Undecided. These models focus on one category of
response and ignore the structure of all other categories.
If the response levels have a natural ordering, say from smallest to largest,

then it may be appropriate to look at continuation ratios

log

(
mi

∑R
h=i+1mh

)

, i = 1, . . . , R − 1 . (4)

These are the odds of getting level i relative to getting a category higher
than level i. As always, we can rearrange the ordering of the response
categories if it suits us. This method works very nicely for the abortion
data, even though the response levels have no natural ordering. Think of
the categories as being ordered as Undecided, Yes, No. Then the first model
here has the odds of undecided to everything else, i.e., the odds of undecided
to being decided. The second model has the odds of Yes to No, i.e., the
odds of supporting legalized abortion relative to opposing it.
The odds in (4) are actually conditional odds. The probability of level

i divided by the probability of a higher level is the odds of getting level i
given that level i or higher is obtained. For example, the odds of Support
to Oppose are actually conditional on being decided. As is seen in Exer-
cise 4.8.14, fitting continuation ratio models for all i is equivalent to fitting
a series of log-linear models.
Yet another possibility is to fit cumulative logits,

log

( ∑i
h=1mh

∑R
h=i+1mh

)

, i = 1, . . . , R − 1 .

For abortion opinions ordered as Undecided, Yes, No, these models describe
the odds of undecided to decided and the odds of not opposed to opposed.

Example 4.6.1. We now examine fitting models to the data on race,
sex, opinions on abortion, and age from Section 3.7. In a log-linear model,
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the variables are treated symmetrically. The analysis looks for relation-
ships among any of the variables. Here, we consider opinions as a response
variable. This changes the analysis in that [RSA] must be included in all
models. Table 4.7 presents fits for all the models that include [RSA] and
correspond to ANOVA type logit models.

TABLE 4.7. Log-Linear Models for the Abor-
tion Opinion Data

Model df G2 A − q

[RSA][RSO][ROA][SOA] 10 6.12 −13.88
[RSA][RSO][ROA] 20 7.55 −32.45
[RSA][RSO][SOA] 20 13.29 −26.71
[RSA][ROA][SOA] 12 16.62 −7.38
[RSA][RSO][OA] 30 14.43 −45.57
[RSA][ROA][SO] 22 17.79 −26.21
[RSA][SOA][RO] 22 23.09 −20.91
[RSA][RO][SO][OA] 32 24.39 −39.61
[RSA][RO][SO] 42 87.54 3.54
[RSA][RO][OA] 34 34.41 −33.59
[RSA][SO][OA] 34 39.63 −28.37
[RSA][RO] 44 97.06 9.06
[RSA][SO] 44 101.9 13.9
[RSA][OA] 36 49.37 −22.63
[RSA][O] 46 111.1 19.1

The best fitting model is clearly [RSA][RSO][OA]. This model can be
used directly to fit either the models in (1)

log(mhi1k/mhi2k) = w1
RS(hi) + w1

A(R) ,

log(mhi2k/mhi3k) = w2
RS(hi) + w2

A(k) ,

the models in (2)

log(mhi1k/mhi3k) = v1RS(hi) + v1A(k)

log(mhi2k/mhi3k) = v2RS(hi) + v2A(k) ,

or some variation of these. As discussed earlier, the first pair of models
looks at the odds of supporting legalized abortion to opposing legalized
abortion and the odds of opposing legalized abortion to being undecided.
The second pair of models examines the odds of supporting legalized abor-
tion to undecided and the odds of opposing to undecided. Of these, the
only odds that seem particularly interesting to the author are the odds of
supporting to opposing. In the second pair of models, choosing the cate-
gory “undecided” as the standard level to which other levels are compared
is particularly unintuitive. The fact that undecided is the last category is
no reason for it to be chosen as the standard of comparison. Either of the
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other categories would be a better standard, so one of these should be used.
Neither is obviously better than the other.
Neither of these pairs of models are particularly appealing, so we will

only continue the analysis long enough to illustrate salient points and to
allow comparisons with other models to be discussed later. The fitted values
for [RSA][RSO][OA] are given in Table 4.8.

TABLE 4.8. Fitted Values for [RSA][RSO][OA]

Age
Race Sex Opinion 18-25 26-35 36-45 46-55 56-65 65+

Support 100.1 137.2 117.5 75.62 70.58 80.10
Male Oppose 39.73 64.23 56.17 47.33 50.99 62.55

Undec. 1.21 2.59 5.36 5.05 5.43 8.35
White

Support 138.4 172.0 152.4 101.8 101.7 110.7
Female Oppose 43.49 63.77 57.68 50.44 58.19 68.43

Undec. 2.16 4.18 8.96 8.76 10.08 14.86

Support 21.19 16.57 15.20 11.20 8.04 7.80
Male Oppose 8.54 7.88 7.38 7.11 5.90 6.18

Undec. 1.27 1.54 3.42 3.69 3.06 4.02
Nonwhite

Support 21.40 26.20 19.98 16.38 13.64 12.40
Female Oppose 4.24 6.12 4.77 5.12 4.92 4.83

Undec. 0.36 0.68 1.25 1.50 1.44 1.77

We consider only the odds of support relative to opposed. The odds can
be obtained from the fitted values. For example, the odds for young white
males are 100.1/39.73 = 2.52. The full table of odds is given in Table 4.9.

TABLE 4.9. Estimated Odds of Support versus Oppose

Legalized Abortion
(Based on the log-linear model [RSA][RSO][OA])

Age
Race Sex 18-25 26-35 36-45 46-55 56-65 65+
White Male 2.52 2.14 2.09 1.60 1.38 1.28

Female 3.18 2.70 2.64 2.02 1.75 1.62
Nonwhite Male 2.48 2.10 2.06 1.57 1.36 1.26

Female 5.05 4.28 4.19 3.20 2.77 2.57

Note that the values from age to age vary by a constant multiple depend-
ing on the ages involved. The odds of support decrease steadily with age.
The model has no inherent structure among the four race-sex categories;



4.6 Logit Models for a Multinomial Response 155

however, the odds for white males and nonwhite males are surprisingly sim-
ilar. Nonwhite females are most likely to support legalized abortion, white
females are next, and males are least likely to support legalized abortion.
Confidence intervals for log odds or log odds ratios can be found using the
methods of Section 10.2 or, alternatively, the methods of Section 11.1.
If we pool categories, we can look at the set of three models generated

by (3) or the set of two models generated by (4). The set of three models
consists of the odds of supporting, the odds of opposing, and the odds
of undecided (in each case, the odds are defined relative to the union of
the other categories). The two models from (4) are essentially continuation
ratio models. The most interesting definition of these models is obtained
by taking the odds of supporting to opposing and the odds of undecided
to having an opinion. Fitting the models involves fitting log-linear models
to two sets of data.
Eliminating all undecideds from the data, we fit [RSA][RSO][OA] to the

2×2×2×6 table with only the opinion categories “support” and “oppose.”
The estimated expected cell counts are given in Table 4.10. Note that the
estimated cell counts are very similar to those obtained when undecideds
were included in the data. The odds of supporting relative to opposing are
given below.

Odds of Support versus Opposed
Age

Race Sex 18-25 26-35 36-45 46-55 56-65 65+
White Male 2.52 2.14 2.09 1.60 1.38 1.28

Female 3.18 2.70 2.64 2.01 1.75 1.62
Nonwhite Male 2.48 2.11 2.06 1.57 1.36 1.26

Female 5.08 4.31 4.22 3.22 2.79 2.58

Except for nonwhite females, the odds of support are essentially identi-
cal to those obtained with undecideds included. The G2 for the fit with-
out undecideds is 9.104 with 15 df . The G2 for fitting [RSA][RO][SO][OA]
is 11.77 on 16 df . The difference in G2’s is not large, so a logit model
log(mhi1k/mhi2k) = R(h) + S(i) +A(k) may fit adequately.
We now pool the support and oppose categories to get a 2×2×2×6 table

in which the opinions are “support or oppose” and “undecided.” Again, the
model [RSA][RSO][OA] is fitted to the data. For this model, we report only
the estimated odds.

Odds of Being Decided on Abortion
Age

Race Sex 18-25 26-35 36-45 46-55 56-65 65+
White Male 116.79 78.52 32.67 24.34 22.26 16.95

Female 83.43 56.08 23.34 17.38 15.90 12.11
Nonwhite Male 23.76 15.97 6.65 4.95 4.53 3.45

Female 68.82 46.26 19.25 14.34 13.12 9.99
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TABLE 4.10. Estimated Expected Cell Counts with Undecideds Eliminated

Age
Race Sex Opinion 18-25 26-35 36-45 46-55 56-65 65+

Male Support 100.2 137.7 117.0 75.62 70.22 80.27
Oppose 39.78 64.35 55.98 47.38 50.78 62.73

White
Female Support 139.2 172.2 152.3 101.6 101.7 109.9

Oppose 43.78 63.77 57.71 50.41 58.28 68.05

Male Support 20.67 16.96 15.48 11.00 8.07 7.81
Oppose 8.33 8.04 7.52 7.00 5.93 6.19

Nonwhite
Female Support 20.84 25.17 20.21 16.78 13.98 12.97

Oppose 4.11 5.84 4.79 5.22 5.02 5.03

Again, the estimated odds vary from age to age by a constant multiple.
The odds decrease with age, so older people are less likely to take a position.
White males are most likely to state a position. Nonwhite males are least
likely to state a position. White and nonwhite females have odds of being
decided that are somewhat similar.
The G2 for [RSA][RSO][OA] is 5.176 on 15 df . The G2 for the smaller

model [RSA][RO][SO][OA] is 12.71 on 16 df . The difference is very large.
Although a main-effects-only logit model fits the support-opposition table
quite well, to deal with the undecided category requires a race-sex interac-
tion.
We have pretty much exhausted what can be done easily by fitting

ANOVA type log-linear models using iterative proportional fitting. How-
ever, computer programs are readily available for direct fitting of logit mod-
els. We illustrate some results for modeling the odds of support relative to
opposition with undecideds eliminated from the data.
The model that we considered in detail was [RSA][RSO][OA]. This is

equivalent to
log(mhi1k/mhi2k) = (RS)hi +Ak (5)

which models the odds of supporting legalized abortion. To fit this model
directly, we need to provide a computer program with the counts for all
cells indicating support, i.e.,

nhi1k, h = 1, 2, i = 1, 2, k = 1, . . . , 6 ,

and the total of support and opposition for all cells

Nhik = nhi·k = nhi1k + nhi2k .

For example, n1111 = 96, n1211 = 140, n2111 = 24, n11·1 = 96 + 44 = 140,
n12·1 = 140+43 = 183, and n21·1 = 24+5 = 29. In addition, for each count
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and total, we need to provide the program with the corresponding indices
h, i, and k. Fitting model (5) directly gives G2 = 9.104 on 15 df , exactly
the results from fitting the equivalent model [RSA][RSO][OA].
The table of odds has suggested two things: (1) odds decrease as age

increases and (2) the odds for males are about the same. We want to fit
models that incorporate these suggestions. Of course, because the data
are suggesting the models, formal tests of significance will be even less
appropriate than usual, but G2’s still give a reasonable measure of the
quality of model fit.
We model the fact that odds are decreasing with age by incorporating

a linear trend in ages. We do not have specific ages to associate with the
age categories, so we simply use the codes k = 1, 2, . . . , 6 to indicate ages.
These scores lead to fitting the model

log(mhi1k/mhi2k) = (RS)hi + γk . (6)

The G2 is 10.18 on 19 df , so the linear trend in coded ages fits very well.
[Recall that model (5) has G2 = 9.104 on 15 df , so a test of model (6)
versus model (5) has G2 = 10.18 − 9.104 = 1.08 on 19 − 15 = 4 df .]

To incorporate the idea that males have the same odds of support, we
recode the indices of the data. Recall that to fit model (5), we had to specify
three index variables along with the numbers supporting and the totals. The
indices for the (RS)hi terms are (h, i) = (1, 1), (1, 2), (2, 1), (2, 2). We could
recode the problem with an index, say g = 1, 2, 3, 4, and fit the model

log(mg1k/mg2k) = (RS)g +Ak

and get exactly the same fit. We can choose the recoding as

(h, i) (1,1) (1,2) (2,1) (2,2)
g 1 2 3 4

Note that, together, the subscripts g and k still distinguish all of the cases
for which data are provided.
This recoding can now be modified, so models that treat males the same

can be specified. If we want to treat males the same, then the codes for white
males g = 1 and nonwhite males g = 3 must be made the same. On the
other hand, we still have distinct data for white males and nonwhite males,
so the fact that there are two replications on males must be accounted for.
To treat males the same, recode g as (f, e) with

wm wf nm nf
g 1 2 3 4
f 1 2 1 3
e 1 1 2 1

where e is an index for replications and the codes wm, wf, nm, nf indi-
cate white males, white females, nonwhite males, and nonwhite females,
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respectively. Now fit the model

log(mfe1k/mfe2k) = (RS)f +Ak . (7)

The two male groups are only distinguished by the subscript e, and e does
not appear on the right-hand side of the model, so the two male groups will
be modeled identically. In fact, to use a logistic regression program, you
typically do not even need to define the index e. But whether you define it
or not, it exists implicitly in the model.
Model (7) is, of course, a reduced model relative to model (5). Model (7)

has G2 = 9.110 on 16 df , so the comparison between models has G2 =
9.110 − 9.104 = .006 on 16 − 15 = 1 df . We have lost almost nothing by
going from model (5) to model (7).
Finally, we can write a model that incorporates both the trend in ages

and the equality for males

log(mfe1k/mfe2k) = (RS)f + γk . (8)

This has G2 = 10.19 on 20 df . Thus, relative to model (5), we have dropped
5 df from the model, yet only increased the G2 by 10.19 − 9.10 = 1.09.
For the alternative parametrization,

log(mfe1k/mfe2k) = µ+ (RS)f + γk ,

the estimates and standard errors using the side condition (RS)1 = 0 are

Parameter Estimate SE Est./SE
µ 1.071 .1126 9.51

(RS)1 0 — —
(RS)2 .2344 .09265 2.53
(RS)3 .6998 .2166 3.23
γ −.1410 .02674 −5.27

All of the terms seem important. With this side condition, (R̂S)2 is actually
an estimate of (RS)2−(RS)1, so the z score 2.53 is an indication that white
females have an effect on the odds of support that is different from males.
Similarly, (R̂S)3 is an estimate of the difference in effect of nonwhite females
and males. The estimated odds of support are

Age
Race-Sex 18-25 26-35 36-45 46-55 56-65 65+
Male 2.535 2.201 1.912 1.661 1.442 1.253
White female 3.204 2.783 2.417 2.099 1.823 1.583
Nonwhite female 5.103 4.432 3.850 3.343 2.904 2.522

These show the general characteristics discussed earlier. Also, they can
be transformed into (conditional) probabilities of support. Probabilities are
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generally easier to interpret than odds. The estimated probability that a
white female between 46 and 55 years of age supports legalized abortion is
2.099/(1+2.099) = .677. The odds are about 2, so the probability is about
twice as great that such a person will support legalized abortion rather
than oppose it.
Similar ideas of modeling can be applied to the odds of having made a

decision on legalized abortion.
Finally, a word about computing. The computations for models (6), (7),

and (8) were executed using a computer program specifically designed for
logit models. This was done because computer programs based on iterative
proportional fitting cannot handle the corresponding log-linear models. It-
erative proportional fitting only works for ANOVA type models. However,
programs for fitting general log-linear models (e.g., GLIM) can handle the
log-linear models that correspond to (6), (7), and (8). The models are found
in the usual way. Model (6) corresponds to

log(mhijk) = (RSA)hik + (RSO)hij + γjk

where we have added the highest-order interaction term not involving O
and made the (RS) and γ terms depend on the opinion level j. Similarly,
models (7) and (8) correspond to

log(mfejk) = (RSA)fek + (RSO)fj + (OA)jk

and
log(mfejk) = (RSA)fek + (RSO)fj + γjk ,

respectively.

In a somewhat different approach to treating response factors, Asmussen
and Edwards (1983) allow the fitting of models that do not always include a
term for the interactions among the explanatory factors. Instead, they argue
that log-linear models are appropriate for response factors as long as the
model allows for collapsing over the response factors onto the explanatory
factors, cf. Section 5.3. These issues will also be discussed at the end of
Section 6.8.

4.7 Logistic Discrimination and Allocation

How can you tell Swedes and Italians apart? How can you tell different
species of irises apart? How can you identify people who are likely to have
a heart attack or commit a crime? One approach is to collect data on
individuals who are known to be in each of the populations of interest.
The data can then be used to discriminate between the populations. To
identify Swedes and Italians, one might collect data on height, hair color,
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eye color, and skin complexion. To identify irises, one might measure petal
length and width and sepal length and width. Typically, data collected
on several different variables are combined to identify the likelihood that
someone belongs to a particular population. In a standard discrimination–
allocation problem, independent samples are taken from each population.
The use of these samples to characterize the populations is referred to as
discrimination. Allocation involves identifying the population of an indi-
vidual for whom only the variable values are known. The factor of interest
in these problems is the population, but it is not a response factor in the
sense used elsewhere in this chapter. In particular, discrimination data
arises from conducting a retrospective study. The reader may want to re-
view the subsection of the chapter introduction that discusses retrospective
and prospective studies.
There has been extensive work done on the problems of discrimination

and allocation. Introductions to the subject are contained in Anderson
(1984), Christensen (1990), Hand (1981), Lachenbruch (1975), McLachlan
(1992), Press (1984), and Rao (1973). The review article by Cheng and
Titterington (1994) relates discriminant analysis to neural networks. Re-
cent work on logistic discrimination includes Cox and Ferry (1991) and
O’Neill (1994). Probably, the two most commonly used methods of dis-
crimination are Fisher’s linear discriminant function and logistic regres-
sion. Fisher’s method is based on the idea that each case corresponds to
a fixed population and that the variables for each case are observations
from a multivariate normal distribution. The normal distributions for the
populations are assumed to have different means but the same variances
and covariances. The logistic regression approach (or as presented here,
the log-linear model approach) treats the distribution for each population
as a multinomial. Much of the theoretical work on discriminant analysis
is done in a Bayesian setting and both methods lend themselves to the
easy computation of posterior probabilities for a case to be in a particular
population.
The weakness of Fisher’s method is that the assumption of normality

with equal covariances is often patently false. The case variables are often
percentages, rates, or categorical variables. Even when the case variables
are continuous on the entire real line, they are often obviously skewed.
Frequently the variance-covariance matrices in the various populations
are not even similar, much less identical. Fortunately, Fisher’s method is
somewhat insensitive (robust) to many of these difficulties, cf. Lachen-
bruch, Sneeringeer, and Revo (1973) and Press and Wilson (1978). Fisher’s
method is also easily generalized to handle unequal covariance matrices.
The strength of Fisher’s method is that for normal data it is more efficient
than logistic discrimination, cf. Efron (1975).

Example 4.7.1. Aitchison and Dunsmore (1975, p. 212) consider 21
individuals with 1 of 3 types of Cushing’s syndrome. Cushing’s syndrome
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is a medical problem associated with overproduction of cortisol by the
adrenal cortex. The three types considered are related to specific problems
with the adrenal gland, namely

A−adenoma
B−bilateral hyperplasia
C−carcinoma

The case variables considered are the rates at which two steroid metabolites
are excreted in the urine. (These are measured in milligrams per day.) The
two steroids are

TETRA – Tetrahydrocortisone

and
PREG – Pregnanetriol.

The data are listed in Table 4.11.

TABLE 4.11. Cushing’s Syndrome Data

Case Type TETRA PREG Case Type TETRA PREG
1 A 3.1 11.70 12 B 15.4 3.60
2 A 3.0 1.30 13 B 7.7 1.60
3 A 1.9 0.10 14 B 6.5 0.40
4 A 3.8 0.04 15 B 5.7 0.40
5 A 4.1 1.10 16 B 13.6 1.60
6 A 1.9 0.40 17 C 10.2 6.40
7 B 8.3 1.00 18 C 9.2 7.90
8 B 3.8 0.20 19 C 9.6 3.10
9 B 3.9 0.60 20 C 53.8 2.50
10 B 7.8 1.20 21 C 15.8 7.60
11 B 9.1 0.60

The data determine the 3 × 21 table

Case
Type 1 2 3 4 5 6 7 8 · · · 16 17 18 19 20 21
A 1 1 1 1 1 1 0 0 · · · 0 0 0 0 0 0
B 0 0 0 0 0 0 1 1 · · · 1 0 0 0 0 0
C 0 0 0 0 0 0 0 0 · · · 0 1 1 1 1 1

The case variables TETRA and PREG are used to model the interaction
in this table. The case variables are highly skewed, so, following Aitchison
and Dunsmore, we analyze the transformed variables TL ≡ log(TETRA)
and PL ≡ log(PREG). The transformed data are plotted in Figure 4.2.
Now consider the sampling scheme. For studies of this type, it is best

modeled as involving independent samples from the three populations: A,
B, and C. The sampling can be viewed as product-multinomial because
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Thus, each column total must be at least one. If the sampling scheme
were truly product-multinomial, there would be a positive probability of
getting column totals equal to zero. Section 11.4 contains a more detailed
discussion of these issues and a justification for treating the 3× 21 table as
product-multinomial. In the current section, we simply present the standard
methodology.
One of the tricky things about this is that it looks like logistic regres-

sion, except that we have more than two possibilities for the response.
But treating this as a logistic regression is wrong. In a logistic regression,
there are cases with predictor variables associated with them, and each
case randomly and independently falls into a response category; e.g., have
a coronary incident or don’t. In a logistic regression, when the responses
are 0s and 1s, every case is a sample from a different population. But in
this logistic discrimination, there are only three populations being sampled.
The sample sizes are larger, and the values of the predictor variables are
actually the results of the sampling.
Because of the sampling scheme, when the samples from the various

populations are of different sizes, the values mij are not directly useful
in evaluating the relationship between populations and the predictor vari-
ables. For example, if we choose to sample 20,000 people from population A
and only 10 from population B, the m1j ’s are not comparable to the m2j ’s.
We must adjust for sample size before relating syndrome type to TL and
PL. The evaluation of the relationship is based on the relative likelihoods
of the three syndrome types. Thus, for any case j, our interest is in the
relative sizes of p1j , p2j , and p3j . Estimates of these quantities are easily
obtained from the m̂ij ’s. Simply take

p̂ij = m̂ij/ni· . (1)

For a new patient of unknown syndrome type but whose values of TL and
PL place him in category j, the most likely type of Cushing’s syndrome
is that which has the largest value among p1j , p2j , and p3j . Clearly, we
can estimate the most likely syndrome type. In practice, new patients are
unlikely to fall into one of the 21 previously observed categories but the
modeling procedure is flexible enough to allow allocation of individuals
having any values of TL and PL. This will be discussed in detail in the
subsection on allocation.

Discrimination
For each individual j, the variables (TL)j and (PL)j have been observed.
We seek a model that can be used to classify observations into syndrome
type. The main effects model is

log(mij) = αi + βj , i = 1, 2, 3 , j = 1, . . . , 21 .
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We want to use TL and PL to help model the interaction, so fit

log(mij) = αi + βj + γ1i(TL)j + γ2i(PL)j , (2)

i = 1, 2, 3, j = 1, . . . , 21.
This model is very similar to a log-linear version of the logit and logistic

models discussed earlier. In particular, it has a separate term βj for ev-
ery combination of the explanatory variables. Taking differences gives, for
example,

log(m1j/m2j) = (α1 − α2) + (γ11 − γ12)(TL)j + (γ21 − γ22)(PL)j

which can be written as

log(m1j/m2j) = α+ δ1(TL)j + δ2(PL)j .

Although this looks like a logistic regression model, it has a fundamentally
different interpretation. Unlike logistic regression models, it is typically the
case that

log
(
m1j

m2j

)
�= log

(
p1j
p2j

)
.

Moreover, the ratio p1j/p2j is not even an odds of type A relative to type
B. Both numbers are probabilities, but they are probabilities from different
populations. The correct interpretation of p1j/p2j is as a likelihood ratio,
specifically the likelihood of type A relative to type B. A value pij is the
likelihood within population i of observing category j. Having fitted model
(2), the estimate of the log of the likelihood ratio is

log
(
p̂1j
p̂2j

)
= log

(
m̂1j/n1·
m̂2j/n2·

)
= log

(
m̂1j

m̂2j

)
− log

(
n1·
n2·

)
.

It will be seen in Chapter 11 that, because interest is directed at comparing
probabilities in different multinomials, asymptotic variances of estimates
will be more complicated than for logistic regression.
Finally, it should be noted that although odds depend on the sampling

scheme, odds ratios do not. Odds ratios are handled in exactly the same way
regardless of whether the sampling scheme is prospective or retrospective.
The G2 for model (2) is 12.30 on 36 degrees of freedom. As in Section 2.6,

although G2 is a valid measure of goodness of fit, G2 cannot legitimately
be compared to a χ2 distribution. However, we can test reduced models.
The model

log(mij) = αi + βj + γ1i(TL)j

has G2 = 21.34 on 38 degrees of freedom and

log(mij) = αi + βj + γ2i(PL)j
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has G2 = 37.23 on 38 degrees of freedom. Neither of the reduced models
provides an adequate fit. (Recall that χ2 tests of model comparisons like
these were valid.)
Table 4.12 contains estimated probabilities for the three populations.

The probabilities are computed using equation (1) and model (2).

TABLE 4.12. Estimated Probabilities

Group Group
Case A B C Case A B C

1 .1485 .0012 .0195 12 .0000 .0295 .1411
2 .1644 .0014 .0000 13 .0000 .0966 .0068
3 .1667 .0000 .0000 14 .0001 .0999 .0000
4 .0842 .0495 .0000 15 .0009 .0995 .0000
5 .0722 .0565 .0003 16 .0000 .0907 .0185
6 .1667 .0000 .0000 17 .0000 .0102 .1797
7 .0000 .0993 .0015 18 .0000 .0060 .1879
8 .1003 .0398 .0000 19 .0000 .0634 .0733
9 .0960 .0424 .0000 20 .0000 .0131 .1738
10 .0000 .0987 .0025 21 .0000 .0026 .1948
11 .0000 .0999 .0003

Table 4.13 illustrates a Bayesian analysis. For each case j, it gives the
estimated posterior probability that the case belongs to each of the three
syndrome types. The data consist of the observed TL and PL values in
category j. Given that the syndrome type is i, the estimated probability of
observing data in category j is p̂ij . Let π(i) be the prior probability that
the case is of syndrome type i. Bayes theorem gives

π̂(i|Data) =
p̂ijπ(i)

∑3
i=1 p̂ijπ(i)

.

Two choices of prior probabilities are used in Table 4.13: probabilities
proportional to sample sizes, i.e., π(i) = ni·/n·· and equal probabilities
π(i) = 1

3 . Prior probabilities proportional to sample sizes are rarely appro-
priate, but they relate in simple ways to standard output, so we give them
more prominence than they probably deserve. Both of the sets of posterior
probabilities are easily obtained. The table of proportional probabilities is
just the table of m̂ij values. This follows from two facts: first, m̂ij = ni·p̂ij
and second, the model fixes the column totals, so m̂·j = 1 = n·j . To obtain
the equal probabilities values, simply divide the entries in Table 4.12 by
the sum of the three probabilities for each case. Cases that are misclassified
by either procedure are indicated with a double asterisk in Table 4.13.
Table 4.14 summarizes the classifications. With proportional prior proba-

bilities, 16 of 21 cases are correctly allocated. With equal prior probabilities,
18 of 21 cases are correctly allocated. While Table 4.14 is useful, it ignores
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TABLE 4.13. Probabilities of Classification

Proportional Equal Prior
Prior Probabilities Probabilities

Case Group A B C A B C

1 A .89 .01 .10 .88 .01 .12
2 A .99 .01 .00 .99 .01 .00
3 A 1.00 .00 .00 1.00 .00 .00
4 A .50 .50 .00 .63 .37 .00
5 ** A .43 .57 .00 .56 .44 .00
6 A 1.00 .00 .00 1.00 .00 .00
7 B .00 .99 .01 .00 .99 .01
8 ** B .60 .40 .00 .72 .28 .00
9 ** B .58 .42 .00 .69 .31 .00
10 B .00 .99 .01 .00 .97 .03
11 B .00 1.00 .00 .00 1.00 .00
12 ** B .00 .29 .71 .00 .17 .83
13 B .00 .97 .03 .00 .93 .07
14 B .00 1.00 .00 .00 1.00 .00
15 B .01 .99 .00 .01 .99 .00
16 B .00 .91 .09 .00 .83 .17
17 C .00 .10 .90 .00 .05 .95
18 C .00 .06 .94 .00 .03 .97
19 ** C .00 .63 .37 .00 .46 .54
20 C .00 .13 .87 .00 .07 .93
21 C .00 .03 .97 .00 .01 .99
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the clarity of the allocations. For example, case 4 with proportional prob-
abilities is essentially a toss-up between types A and B. That information
is lost in Table 4.14. (The probability of type A is slightly greater than
one-half.) Another problem with Table 4.14 is that it tends to overestimate
how well the discrimination would work on other data. The data were used
to form a discrimination procedure and Table 4.14 evaluates how well it
works by allocating the same data. This double dipping tends to make the
discrimination procedure look better than it really is. Cross-validation can
be used to reduce the bias introduced; for related work, see Geisser (1977)
and Gong (1986). Finally, it is of interest to note that the difference in Ta-
ble 4.14 between proportional probabilities and equal probabilities is that
under proportional probabilities, one additional case in each of A and C
is misclassified into B. That occurs because the prior probability for B is
about twice as great as the values for A and C.

TABLE 4.14. Summary of Classifications

Proportional Equal Prior
Prior Probabilities Probabilities

Allocated True Group True Group
to Group A B C A B C

A 5 2 0 6 2 0
B 1 7 1 0 7 0
C 0 1 4 0 1 5

Readers who are familiar with normal theory discrimination may be in-
terested in the analysis of these data contained in Christensen (1990). Tak-
ing the logs of tetrahydrocortisone and pregnanetriol is important in using
Fisher’s linear discrimination because the original data are clearly non-
normal. Logistic discrimination imposes no such normality requirement.
Without the log transform, Fisher’s method misclassifies seven observa-
tions including five of the six in type A. Logistic discrimination on the
untransformed data with proportional priors only misclassifies four obser-
vations and gets five of six correct in type A.

Allocation
If you stop and think about it, discrimination seems like a remarkably silly
thing to do. Why take cases from known populations and reclassify them
when the process of reclassification introduces errors? The reason discrim-
ination is interesting is because one can use a model that discriminates
between cases from known populations to predict the population of an un-
known case. In our example, a new patient can be measured for TL and
PL, and then diagnosed as to type of Cushing’s syndrome without direct
examination of the adrenal cortex. (I have no idea if this is an accurate
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description of medical practice, but it illustrates the kind of thing that
can be done.) We now consider the problem of allocating new cases to the
populations.
Model (2) includes a separate term βj for each case, so it is not clear

how model (2) can be used to allocate future cases. We will begin with
logit models and then work back to an allocation model. Model (2) has
30 parameters, only 9 of which are really of interest. Of these nine, only
six are estimable. From (2), we can model the probability ratio of type A
relative to type B

log(p1j/p2j)
= log(m1j/m2j) − log(n1·/n2·) (3)
= (α1 − α2) + (γ11 − γ12)(TL)j + (γ21 − γ22)(PL)j − log(n1·/n2·) .

The log-likelihoods of A relative to C are

log(p1j/p3j)
= log(m1j/m3j) − log(n1·/n3·) (4)
= (α1 − α3) + (γ11 − γ13)(TL)j + (γ21 − γ23)(PL)j − log(n1·/n3·) .

Fitting model (2) gives the estimated parameters.

Par. Est. Par. Est. Par. Est.
α1 0.0 γ11 −16.29 γ21 −3.359
α2 −20.06 γ12 −1.865 γ22 −3.604
α3 −28.91 γ13 0.0 γ23 0.0

where the estimates with values of 0 are really side conditions imposed on
the collection of estimates to make it unique.
For a new case with values TL and PL, we plug estimates into equa-

tions (3) and (4) to get

log(p̂1/p̂2) = 20.06+(−16.29+1.865)TL+(−3.359+3.604)PL− log(6/10)

and
log(p̂1/p̂3) = 28.91 − 16.29(TL) − 3.359(PL) − log(6/5) .

For example, if the new case has a tetrahydrocortisone reading of 4.1 and
a pregnanetriol reading of 1.10, then log(p̂1/p̂2) = .24069 and log(p̂1/p̂3) =
5.4226. The likelihood ratios are

p̂1/p̂2 = 1.2721
p̂1/p̂3 = 226.45

and by division,
p̂2/p̂3 = 226.45/1.2721 = 178.01 .
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It follows that type A is a little more likely than type B and that both are
much more likely than type C
One can also obtain estimated posterior probabilities for a new case. The

posterior odds are
π̂(1|Data)
π̂(2|Data)

=
p̂1
p̂2

π(1)
π(2)

≡ Ô2

and
π̂(1|Data)
π̂(3|Data)

=
p̂1
p̂3

π(1)
π(3)

≡ Ô3 .

Using the fact that π̂(1|Data) + π̂(2|Data) + π̂(3|Data) = 1, we can solve
for π̂(i|Data), i = 1, 2, 3. In particular,

π̂(1|Data) =
[
1 +

1
Ô2

+
1
Ô3

]−1

=
Ô2Ô3

Ô2Ô3 + Ô3 + Ô2
,

π̂(2|Data) =
1
Ô2

[
1 +

1
Ô2

+
1
Ô3

]−1

=
Ô3

Ô2Ô3 + Ô3 + Ô2
,

π̂(3|Data) =
1
Ô3

[
1 +

1
Ô2

+
1
Ô3

]−1

=
Ô2

Ô2Ô3 + Ô3 + Ô2
.

Using TETRA = 4.10 and PREG = 1.10, the assumption π(i) = ni·/n··
and more numerical accuracy in the parameter estimates than was reported
earlier,

π̂(1|Data) = .433
π̂(2|Data) = .565
π̂(3|Data) = .002 .

Assuming π(i) = 1/3 gives

π̂(1|Data) = .560
π̂(2|Data) = .438
π̂(3|Data) = .002 .

Note that the values of tetrahydrocortisone and pregnanetriol used are
identical to those for case 5; thus, the π̂(i|Data)’s are identical to those
listed in Table 4.13 for case 5.
To use the log-linear model approach illustrated here, one needs to fit a

3×21 table. Typically, a data file of 63 entries is needed. Three rows of the
data file are associated with each of the 21 cases. Each data entry has to
be identified by case and by type. In addition, the case variables should be
included in the file in such a way that all three rows for a case include the
corresponding case variables, TL and PL. Model (2) is easily fitted using
GLIM.
It is easy to just fit log-linear or logistic models to data such as that in

Table 4.11 and get m̂ij’s or p̂ij’s. If you treat these values as estimated
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probabilities for being in the various populations, you are doing a Bayesian
analysis with prior probabilities proportional to sample sizes. This is rarely
an appropriate methodology.

4.8 Exercises

Exercise 4.8.1. The auto accident data of Example 3.2.4 was actually
a subset of a four-dimensional table. The complete data are given in Ta-
ble 4.15. Analyze the data treating severity of injury as a response variable.
What conclusions can you reach from examining the m̂hijk’s, the odds, and
odds ratios?

TABLE 4.15. Automobile Accident Data

Small Cars (h = 1)
Accident Type (k)

Collision Rollover
Injury (j) Not Severe Severe Not Severe Severe
Driver No 350 150 60 112
Ejected (i) Yes 26 23 19 80

Standard Cars (h = 2)
Accident Type (k)

Collision Rollover
Injury (j) Not Severe Severe Not Severe Severe
Driver No 1878 1022 148 404
Ejected (i) Yes 111 161 22 265

Exercise 4.8.2. Breslow and Day (1980) present data on the occurrence
of esophageal cancer in Frenchmen. Explanatory factors are age and alcohol
consumption. High consumption was taken to be anything over the equiva-
lent of one liter of wine per day. The data are given in Table 4.16. Analyze
the data as a logit model. In your analysis, consider the information on
ordered age categories.

Exercise 4.8.3. The data in the previous experiment is a series of 2×2
tables collected under five different age conditions. This is the same situa-
tion as the Mantel-Haenszel setup of Exercise 3.8.9. The Mantel-Haenszel
test is one of conditional independence given age. It assumes that the model
of no three-factor interaction holds. Respecify the test in terms of logit
models.

Exercise 4.8.4. Haberman (1978) reports data from the National Opin-
ion Research Center on attitudes toward abortion (cf. Table 4.17). The data
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TABLE 4.16. Occurrence of
Esophageal Cancer

Alcohol Cancer
Age Consumption Yes No
25-34 High 1 9

Low 0 106
35-44 High 4 26

Low 5 164
45-54 High 25 29

Low 21 138
55-64 High 42 27

Low 34 139
65-74 High 19 18

Low 36 88
75+ High 5 0

Low 8 31

were collected over 3 years. Analyze the abortion attitude data treating at-
titude as a response variable.
Respondents were identified by their years of education and their reli-

gious group. The groups used were Catholics, Southern Protestants, and
other Protestants. Southern Protestants were taken as Protestants who
live in or south of Texas, Oklahoma, Arkansas, Kentucky, West Virginia,
Maryland, and Delaware. Attitudes toward abortion were determined by
whether the respondent thought that legal abortions should be available
under three sets of circumstances. The three circumstances are (a) a strong
chance exists of a serious birth defect, (b) the woman’s health is threat-
ened, and (c) the pregnancy was the result of rape. A negative response
in the table consists of negative responses to all circumstances. A positive
response is three positives. A mixed response is any other pattern. Find an
appropriate model for the data. Interpret the model and draw conclusions
from the estimates. (Haberman also presents similar data based on three
different circumstances: the child is not wanted, the family is poor, and the
mother unmarried.)

Exercise 4.8.5. Feigl and Zelen (1965), Cook and Weisberg (1982), and
Johnson (1985) give data on survival of 33 leukemia patients as a function
of their white blood cell count and the existence of a certain morphological
characteristic in the cells. The characteristic is referred to as either AG
positive or AG negative. The binary response is survival of at least 52 weeks
beyond the time of diagnosis. The data are given in Table 4.18. Fit a logistic
regression model with separate slopes and intercepts for AG positives and
negatives. Examine the data for influential observations. Consider whether
a log transformation of the white blood cell count is useful. Evaluate models
with (a) the same slope for both AG groups, (b) the same intercept for both
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TABLE 4.17. Abortion Attitudes among Caucasian Chris-
tians

Years of Attitude
Year Religion Education Negative Mixed Positive
1974 Prot. 0-8 7 16 49

Prot. 9-12 10 26 219
Prot. 12+ 4 10 131

1974 Prot. S. 0-8 1 19 30
Prot. S. 9-12 5 21 106
Prot. S. 12+ 2 11 87

1974 Cath. 0-8 3 9 29
Cath. 9-12 15 30 149
Cath. 12+ 11 18 69

1973 Prot. 0-8 4 16 59
Prot. 9-12 6 24 197
Prot. 12+ 4 11 124

1973 Prot. S. 0-8 4 16 34
Prot. S. 9-12 6 29 118
Prot. S. 12+ 1 4 82

1973 Cath. 0-8 2 14 32
Cath. 9-12 16 45 141
Cath. 12+ 7 20 72

1972 Prot. 0-8 9 12 48
Prot. 9-12 13 43 197
Prot. 12+ 4 9 139

1972 Prot. S. 0-8 9 17 30
Prot. S. 9-12 6 10 97
Prot. S. 12+ 1 8 68

1972 Cath. 0-8 14 12 32
Cath. 9-12 18 50 131
Cath. 12+ 8 13 64
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AG groups, and (c) the same slope and intercept. Examine each model for
influential observations.

TABLE 4.18. Data on Leukemia Survival

Cell Cell
Survival Count AG Survival Count AG

1 2,300 + 1 4,400 −
1 750 + 1 3,000 −
1 4,300 + 0 4,000 −
1 2,600 + 0 1,500 −
0 6,000 + 0 9,000 −
1 10,500 + 0 5,300 −
1 10,000 + 0 10,000 −
0 17,000 + 0 19,000 −
0 5,400 + 0 27,000 −
1 7,000 + 0 28,000 −
1 9,400 + 0 31,000 −
0 32,000 + 0 26,000 −
0 35,000 + 0 21,000 −
0 52,000 + 0 79,000 −
0 100,000 + 0 100,000 −
0 100,000 + 0 100,000 −
1 100,000 +

Exercise 4.8.6. Finney (1941) and Pregibon (1981) present data on the
occurrence of vasoconstriction in the skin of the fingers as a function of the
rate and volume of air breathed. The data are reproduced in Table 4.19.
A constriction value of 1 indicates that constriction occurred. Analyze the
data.

Exercise 4.8.7. Mosteller and Tukey (1977) reported data on verbal
test scores for sixth graders. They used a sample of 20 Mid-Atlantic and
New England schools taken from The Coleman Report. The dependent
variable y was the mean verbal test score for each school. The predictor
variables were x1 — staff salaries per pupil, x2 — percent of sixth grade
fathers employed in white collar jobs, x3 — a composite score measuring
socioeconomic status, x4 — the mean score on a verbal test administered
to teachers, and x5 — one-half of the sixth grade mothers’ mean number
of years of schooling. Schools meet a performance standard set for them
(by me) if their average verbal test score is above 37. The data are given
in Table 4.20.
(a) Using logistic regression on the 0-1 scores, find a good model for

predicting whether schools meet the standard.
(b) Using standard regression on y, find several of the best predictive

models. Compare these to your logistic regression model.
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TABLE 4.19. Data on Vasoconstriction

Constriction Volume Rate Constriction Volume Rate
1 0.825 3.7 0 2.0 0.4
1 1.09 3.5 0 1.36 0.95
1 2.5 1.25 0 1.35 1.35
1 1.5 0.75 0 1.36 1.5
1 3.2 0.8 1 1.78 1.6
1 3.5 0.7 0 1.5 0.6
0 0.75 0.6 1 1.5 1.8
0 1.7 1.1 0 1.9 0.95
0 0.75 0.9 1 0.95 1.9
0 0.45 0.9 0 0.4 1.6
0 0.57 0.8 1 0.75 2.7
0 2.75 0.55 0 0.03 2.35
0 3.0 0.6 0 1.83 1.1
1 2.33 1.4 1 2.2 1.1
1 3.75 0.75 1 2.0 1.2
1 1.64 2.3 1 3.33 0.8
1 1.6 3.2 0 1.9 0.95
1 1.415 0.85 0 1.9 0.75
0 1.06 1.7 1 1.625 1.3
1 1.8 1.8

TABLE 4.20. Verbal Test Scores

Obs. x1 x2 x3 x4 x5 Score y

1 3.83 28.87 7.20 26.60 6.19 1 37.01
2 2.89 20.10 −11.71 24.40 5.17 0 26.51
3 2.86 69.05 12.32 25.70 7.04 0 36.51
4 2.92 65.40 14.28 25.70 7.10 1 40.70
5 3.06 29.59 6.31 25.40 6.15 1 37.10
6 2.07 44.82 6.16 21.60 6.41 0 33.90
7 2.52 77.37 12.70 24.90 6.86 1 41.80
8 2.45 24.67 −0.17 25.01 5.78 0 33.40
9 3.13 65.01 9.85 26.60 6.51 1 41.01

10 2.44 9.99 −0.05 28.01 5.57 1 37.20
11 2.09 12.20 −12.86 23.51 5.62 0 23.30
12 2.52 22.55 0.92 23.60 5.34 0 35.20
13 2.22 14.30 4.77 24.51 5.80 0 34.90
14 2.67 31.79 −0.96 25.80 6.19 0 33.10
15 2.71 11.60 −16.04 25.20 5.62 0 22.70
16 3.14 68.47 10.62 25.01 6.94 1 39.70
17 3.54 42.64 2.66 25.01 6.33 0 31.80
18 2.52 16.70 −10.99 24.80 6.01 0 31.70
19 2.68 86.27 15.03 25.51 7.51 1 43.10
20 2.37 76.73 12.77 24.51 6.96 1 41.01
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Exercise 4.8.8. The Logistic Distribution.
Show that F (x) = ex/(1 + ex) satisfies the properties of a cumulative
distribution function (cdf). Any random variable with this cdf is said to
have a logistic distribution.

Exercise 4.8.9. Stimulus–Response Studies.
The effects of a drug or other stimulus are often studied by choosing r
doses of the drug (levels of the stimulus), say x1, . . . , xr, and giving the
dose xj to each of Nj subjects. The data consist of the number yj who
exhibit some predetermined response. Often this response is the death of
the subject, but it can be any measure of the effectiveness of the stimulus.
Typically in dose-response studies, interest centers on the median effective
dose, the ED(50), or if the response is death, the median lethal dose, the
LD(50). The LD(50) is that dose for which the probability is 0.5 that a
subject will die. Frequently, a model of the form

log
[
pj

/
(1 − pj)

]
= α+ β log(xj)

is fitted to such data. Assume this model holds for any and all doses.
(a) Is the sampling scheme appropriate for a logistic regression?
(b) How could you estimate the LD(50)?

Exercises 11.8.2 and 11.8.3 give additional results on inference for the
LD(50).
Suppose that for each individual in the population there is a minimum

dose x to which the individual will respond. (The individual is assumed
to respond to all doses larger than x.) Let the random variable X be this
minimum susceptibility for an individual chosen at random.
(c) Give an estimate of the median of X.
(d) Give an estimate of the 90th percentile of the distribution of X.
(e) What is the distribution of X?

Exercise 4.8.10. Probit Analysis.
An alternative to the logistic analysis of dose-response data is probit anal-
ysis. In probit analysis, the model is

Φ−1(pj) = α+ β log(xj)

where Φ(·) is the cumulative distribution function of a standard normal dis-
tribution. Graph Φ(·) and the logistic cdf and compare the general shapes
of the distributions. In light of the two previous exercises, give a brief sum-
mary of the similarities and differences of logit and probit analysis. For
more information on probit analysis, the interested reader should consult
Finney (1971).

Exercise 4.8.11. Woodward et al. (1941) report several data sets, one
of which examines the relationship between exposure to chloracetic acid
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and the death of mice. Ten mice were exposed at each dose level. The data
are given in Table 4.21. Doses are measured in grams per kilogram of body
weight. Fit the logistic regression model of Exercise 4.8.9 and estimate the
LD(50). Try to determine how well the model fits the data.

TABLE 4.21. Lethality of Chloracetic Acid

Dose Fatalities Dose Fatalities
.0794 1 .1778 4
.1000 2 .1995 6
.1259 1 .2239 4
.1413 0 .2512 5
.1500 1 .2818 5
.1588 2 .3162 8

Exercise 4.8.12. Consider a sample of j = 1, . . . , r independent bino-
mials yj ∼ Bin(Nj , pj), each with a covariate xj . Suppose that for some
cumulative distribution function F (·),

pj = F (xj).

Show that for some transformation zj = g(xj) and parameters α and β,
this logistic regression model holds:

log
(

pj
1 − pj

)
= α+ βzj .

Exercise 4.8.13. The data of Exercise 4.8.2 are actually a retrospective
study. A sample of cancer patients was compared to a sample of men drawn
from the electoral lists of the department of Ille-et-Vilaine in Brittany.
Reanalyze the data in light of this knowledge.

Exercise 4.8.14. Any multinomial response model can be viewed as the
model for an I × J table. Assume product-multinomial sampling from J
independent multinomials each with I categories. Define

πij = pij

/ I∑

h=i

phj

so that the continuation ratios introduced in Section 4.2 are

πij
1 − πij

=
pij

∑I
h=i+1 phj

.
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Let rij = n·j − ∑i−1
h=1 nhj ; show that the product-multinomial likelihood

J∏

j=1

{
n·j !

∏I
i=1 nij !

I∏

i=1

p
nij

ij

}

can be written as the product of binomial likelihoods, i.e.,

J∏

j=1

I−1∏

i=1

(
rij
nij

)
π
nij

ij (1 − πij)rij−nij .

Using this result and maximum likelihood estimation, show that a set of
continuation ratio models can be fitted simultaneously to the entire table by
fitting each continuation ratio model separately. Note that the chi-square
statistics for fitting each continuation ratio model can be added to get a
chi-square statistic for the entire table.

Exercise 4.8.15. Give the log-linear model corresponding to (4.1.1).

Exercise 4.8.16. Analyze the trauma data that are described in Exam-
ple 13.2.2.



5
Independence Relationships and
Graphical Models

As mentioned in Section 3.7, all of the general principles of testing and
estimation presented for three-factor tables also apply when there are ad-
ditional classification factors. The main difference in working with higher-
dimensional tables is that things become more complicated. First, there are
many more ANOVA type models to consider. For example, in a four-factor
table, there are 113 ANOVA models that include all of the main effects. In
five-factor tables, there are several thousand models to consider. Second, a
great many of the models require iterative methods for obtaining maximum
likelihood estimates. Finally, interpretation of higher-dimensional models
is more difficult.
In this chapter, we examine interpretations of models for four and higher-

dimensional tables, graphical models, conditions that allow tables to be
collapsed, and a variety of graphical models known as recursive causal
models.

5.1 Model Interpretations

This section provides tools for interpreting log-linear models for higher-
dimensional tables. The interpretations are based on independence and con-
ditional independence. The tools are based on viewing higher-dimensional
tables as three-dimensional tables. In Section 2, we present alternative
methods based on exploiting the relationships between graph theory and
conditional independence.
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An example of a model with four factors is

log(mhijk) = u+ u1(h) + u2(i) + u3(j) + u4(k)

+ u12(hi) + u13(hj) + u23(ij) + u123(hij)

+ u14(hk) + u24(ik) .

Eliminating redundant parameters gives

log(mhijk) = u123(hij) + u14(hk) + u24(ik) .

The shorthand notation for this model is [123][14][24]. Our discussion of
model interpretations will be based exclusively on the shorthand notation
for models.
Consider the model [123][124]. If we think of all combinations of factors 1

and 2 as a single factor, then we get a three-factor table with factors (12),
3, and 4. The model [(12)3][(12)4] becomes a three-dimensional model of
conditional independence. Given the levels of factors 1 and 2, factor 3 is
independent of factor 4.
This trick of combining factors to reduce a four-factor model into a three-

factor model is very useful. The model [123][14] can be considered as a
three-factor model in which all combinations of factors 2 and 3 are a single
factor. The model [123][14] can then be interpreted as saying that given
factor 1, factor 4 is independent of factors 2 and 3. Note that the model
puts no constraints on the relationship between factors 2 and 3, and that
conditional probabilities involving factors 2, 3, and 4 can change with the
level of factor 1, cf. Example 1.1.5.
Using the principle of combining factors, it is easy to see that [123][4]

indicates that factor 4 is independent of factors 1, 2, and 3, but that the
relationship between factors 1, 2, and 3 is unspecified. Also, [12][34] indi-
cates that factors 1 and 2 may be related, factors 3 and 4 may be related,
but 1 and 2 are independent of 3 and 4.
A second useful trick in interpreting models is looking at larger models. If

a particular model is true, then any larger model is also true. If the larger
model has an interpretation in terms of independence, then the smaller
model admits the same interpretation.
For example, consider the three-factor models [12][3] and [12][23]. The

smaller model [12][3] indicates that factors 1 and 2 are independent of
factor 3. In particular, factors 1 and 3 are independent given the level
of factor 2. This is the interpretation of the larger model [12][23]. The
interpretation of the larger model is also valid for the smaller model. Note,
however, that if two models are both valid and both are interpretable, then
the smaller model gives the more powerful interpretation. Often, we want
to identify the smallest interpretable model that fits.
Now consider the four-factor model [12][13][14]. One larger model is

[123][14], so factors 2 and 3 are independent of factor 4 given factor 1.
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Similarly, [12][134] and [13][124] are also larger models, so we find that
given factor 1, the other three factors are all independent. Note that the
structure of the model [12][13][14] makes this interpretation almost self-
evident. Factor 1 is included in all three terms, so it is the variable that
is fixed in the conditional probabilities. Factors 2, 3, and 4 are in separate
terms, so they are independent given factor 1.

Exercise 5.1. By examining the probabilities phijk, show that the three
larger models imply conditional independence for factors 2, 3, and 4 in
[12][13][14].

A more complicated example is [12][13][24]. One larger model is [13][124].
Thus, given factor 1, factor 3 is independent of factors 2 and 4. Another
larger model is [24][123]; thus, given factor 2, factor 4 is independent of
factors 1 and 3.
Finally, consider the model [12][13][14][23]. The larger model [123][14]

implies that 2 and 3 are independent of 4 given 1. In fact, this is the only
simple interpretation associated with [12][13][14][23]. To see this, ignore
factor 4. The three-factor model has the terms [12][13][23], which has no
simple interpretation as a three-dimensional model. The next largest model
is to replace [12][13][23] with [123]. If we do this in the four-factor model, we
replace [12][13][14][23] with [123][14]. Any other model with a simple inter-
pretation would have to be larger than [123][14]. However, because [123][14]
already has a simple interpretation, we have the best explanation available.
(Recall that the smaller the model, the more powerful the interpretation
in terms of independence.)
Table 5.1 summarizes the discussion above and also includes some ad-

ditional models. Note that it is the pattern of the models that determines
interpretability. Just as [12][13][14] indicates that 2, 3, and 4 are indepen-
dent given 1, the model [12][23][24] indicates that factors 1, 3, and 4 are
independent given factor 2. Any relabeling of the factors in Table 5.1 gives
another interpretable model. It is important to remember that while models
imply certain interpretations, more than one model generates the same in-
terpretation. For example, the model [123][14] gives the interpretation that
given 1, factors 2 and 3 are independent of factor 4. Conversely, the condi-
tion that given 1, factors 2 and 3 are independent of factor 4 implies that
[123][14] must hold. However, the independence condition is also consistent
with the smaller model [12][13][23][14]. This smaller model is equivalent to
the independence condition along with the additional condition that there
is no u123 interaction.

Goodman (1970, 1971) and Haberman (1974a) introduced the concept of
decomposable log-linear models. These models are also called multiplicative.
The class of decomposable models consists of all models that have closed
form maximum likelihood estimates. They also have simple interpretations
in terms of independence or conditional independence. For example, all
models for three factors other than [12][13][23] are decomposable. In Table
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TABLE 5.1. Some Models and Their Conditional Independence
Interpretations

Model Interpretation
[123][124] Given 1 and 2, factors 3 and 4 are independent.

[123][14][24]* Given 1 and 2, factors 3 and 4 are independent.

[123][14] Given 1, factor 4 is independent of factors 2 and 3.

[12][13][14][23]* Given 1, factor 4 is independent of factors 2 and 3.

[123][4] Factor 4 is independent of factors 1, 2, and 3.

[12][23][34][41] Given 2 and 4, factors 1 and 3 are independent.
Given 1 and 3, factors 2 and 4 are independent.

[12][13][14] Given 1, factors 2, 3, and 4 are all independent.

[12][13][24] Given 1, factor 3 is independent of factors 2 and 4.
Given 2, factor 4 is independent of factors 1 and
3.

[12][34] Factors 1 and 2 are independent of factors 3 and 4.

[12][13][4] Factor 4 is independent of factors 1, 2, and 3. Given
1, factor 2 is independent of factor 3.

[12][3][4] Factor 3 is independent of factors 1, 2, and 4. Fac-
tor 4 is independent of factors 1, 2, and 3.

[1][2][3][4] All factors are independent of all other factors.

∗These models imply their interpretations; however, the interpretations do
not imply the models.
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5.1, all models except the two with asterisks and [12][23][34][41] are decom-
posable. Note that [12][23][34][41] is not decomposable but is still charac-
terized by its conditional independence relations. It is particularly easy to
work with decomposable models because they have very simple structure.
Often, results that are difficult or impossible to prove for arbitrary log-
linear models can be shown for decomposable models, e.g., Bedrick (1983)
and Koehler (1986). An exact characterization of decomposable models is
given in the next section.

5.2 Graphical and Decomposable Models

Models that have interpretations in terms of conditional independence are
known as graphical models. The terminology stems from the relationship of
these models to graph theory. Berge (1973) gives a discussion of graph the-
ory that is particularly germane but does not give statistical applications.
Edwards and Kreiner (1983) give an overview of the use of graphical log-
linear models. More recently, Edwards (1995) provides an introduction to
the uses of graphical models in statistics, including applications other than
log-linear models. More advanced recent books include Whittaker (1990)
and Lauritzen (1996).
Graphical models are determined by their two-factor interactions. The

basic idea is that any graphical model containing all of the terms u12, u13,
and u23 must also include u123. To extend this, consider a graphical model
that includes u12, u13, u23, u24, and u34. The terms u12, u13, and u23
imply that u123 must be in the graphical model and u23, u24, and u34
imply that u234 must be in the model. A graphical model must contain
u1234 if it includes all six of the two-factor terms that can be formed from
the four factors, i.e., if it includes u12, u13, u14, u23, u24, and u34.

Definition 5.2.1. A model is graphical if, whenever the model contains
all two-factor terms generated by a higher-order interaction, the model also
contains the higher-order interaction. In graph theory, the corresponding
idea is that of a conformal graph.

Obviously, we need to discuss both models and the two-factor effects
generated by higher-order terms. The model [1234][345] is determined by
the four-factor term u1234 and the three-factor term u345. The four-factor
term u1234 generates the two-factor terms u12, u13, u14, u23, u24, and u34.
The three-factor u345 term subsumes the two-factor terms u34, u35, and
u45. We will refer to the four-factor term [1234] as generating [12], [13],
[14], [23], [24], and [34]. Similarly, the three-factor term [345] generates the
two-factor terms [34], [35], and [45]. Conversely, any graphical model that
contains the two-factor effects [12], [13], [14], [23], [24], and [34] must include
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[1234] (or a larger term that subsumes [1234]) and a graphical model that
includes [34], [35], and [45] also includes either [345] or a larger term.

Example 5.2.2. Three-Factor Models.
The two-factor terms that are possible with three-factors are [12], [13], and
[23]. The two-factor effects generate only one higher-order interaction, [123].
The only three-factor models that contain all of the two-factor terms are
[123] and [12][13][23]. The model [123] contains all the two-factor effects
and the higher-order term, so [123] is graphical. The model [12][13][23]
contains all the two-factor effects generated by [123] but does not contain
the higher-order term, so it is not graphical. None of the other three-factor
models contain all of the two-factor interactions, so, by default, they are
all graphical models.

Example 5.2.3. Four-Factor Models
The model [123][24] is graphical because it includes the three-factor term
[123] and it does not contain all of the two-factor terms generated by any
other higher-order terms. This follows because all higher-order terms other
than [123] involve factor 4, so each generates at least 2 two-factor terms
that involve factor 4. The model [123][24] includes only one such term, [24],
so, by default, the model does not include all the two-factor terms for any
higher-order interaction other than [123]. Similarly, the model [123][124] is
graphical because the two-factor terms that are present only generate the
three-factor interactions in the model.

A model that is not graphical is [12][13][14][23]. It includes all of [12],
[13], and [23], but it does not include [123]. The model [123][124][234] is
not graphical because it contains all six of the possible two-factor effects
but does not contain [1234]. Except for the models indicated by asterisks,
all of the models in Table 5.1 are graphical models.

Any log-linear model can be embedded in a graphical model. This fol-
lows immediately from the fact that the saturated model is the graphical
model having all possible two-factor effects. To interpret a specific log-linear
model, one seeks the smallest graphical models that contain the specific
model.

Example 5.2.4. The nongraphical model [12][13][14][23] is a submodel
of the graphical model [123][14]. The nongraphical model retains the condi-
tional independence interpretation, 2 and 3 independent of 4 given 1 which
is appropriate for the larger graphical model; however, the nongraphical
model involves additional constraints.

Amazingly, graphical models can be displayed graphically. (Wonders
never cease!) In this context, graphs are not directly related to Cartesian
coordinates but rather to graph theory. A graph consists of vertices (nodes)
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and edges. Vertices correspond to factors in log-linear models. Edges cor-
respond to two-factor effects. Note that graphs based on two-factor effects
would be useless without a convention that dictates how two-factor ef-
fects determine a log-linear model. Thus, pictures of graphical models are
worthless until after graphical models have been defined. A key feature of
this subject is the one-to-one correspondence between graphical log-linear
models and graphs. Every model determines a graph and every graph de-
termines a model.

Example 5.2.5. Consider the model [12][23][34][41]. Factors are points
on a graph (vertices) and two-factor interactions are allowable paths (edges)
between points. The graph is given below.
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Now consider the model [123][134]. The two-factor terms generated by
[123] are [12], [23], [13] and the terms [13], [34], [14] are generated by [134].
Note that [13] is common to both sets of two-factor terms. The correspond-
ing graph is given below.
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We can also read log-linear models directly from the corresponding graph.
For example, the graph
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has the two-factor effects [12], [24], [14]; these generate the three-factor
term [124]. The graph also contains the edges [23], [34], [24] that generate
[234]. We have accounted for all of the edges in the graph, so the model is
[124][234].
As another example, consider the following graph.
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Again the edges [12], [24], [14] generate the three-factor term [124]. How-
ever, this graph does not have all of the edges that generate [234] because
the graph does not contain [23]. The term [34] is not included in any larger
term, so it must be included separately. The model is [124][34].
Finally, consider a seven-factor graph.
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The graph contains all possible edges between the vertices 1, 2, 3, and 5;
thus, the graphical log-linear model includes the term [1235]. Similarly, the
graph contains all possible edges between the vertices 5, 6, and 7; therefore
the log-linear model includes the term [567]. Finally, the graph contains the
isolated edge [34], so this term must be in the model. These three terms
account for all of the edges in the graph, so the graphical log-linear model
is [1235][34][567].
Note that the graph also contains all possible edges between other sets

of vertices; for example, all of the edges between 1, 2, and 5 are in the
graph so the model includes [125]. However, [125] has already been forced
into the model by the inclusion of [1235]. The graphical log-linear model
is determined by the largest sets of vertices that include all possible edges
between them. The set {1, 2, 5} is unimportant because it is contained in
the set {1, 2, 3, 5}. A set of vertices for which all the vertices are connected
by edges is complete. Both the sets {1, 2, 5} and {1, 2, 3, 5} are complete.
A maximal complete set (i.e., a complete set that is not contained in any
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other complete set), is called a clique. The cliques of a graph determine
the graphical log-linear model. The set {1, 2, 3, 5} is a clique, but the set
{1, 2, 5} is not maximal, so it is not a clique. In the graph of the model
[1235][34][567], the cliques are {1, 2, 3, 5}, {3, 4}, and {5, 6, 7}. There is an
obvious correspondence between the cliques and the [·] notation defining the
model. In the future, we will simply indicate the cliques as [1235], [134], and
[567]. Because the cliques determine the model, the concept of a clique is of
fundamental importance. Surprisingly, that importance need not be made
explicit in the remainder of this discussion. However, in Wermuth’s method
of model selection, the role of cliques cannot be ignored, cf. Section 6.5.

Perhaps the most important reason for graphing log-linear models is that
independence relations can be read directly from the graph. To do this, we
need to introduce the concept of a chain. A chain is simply a sequence of
edges that lead from one factor (vertex) to another factor. In the graph
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there are a huge number of chains. For example, there is a chain from 1
to 2 to 5, a chain from 1 to 2 to 5 to 6, a chain from 1 to 2 to 5 to 7 to
6, a chain from 1 to 2 to 5 to 3 to 4, and many others. Note that a chain
involves not only the end points but also all the intermediate points. In
other words, there is a chain from 1 to 3 to 5 to 7, but the graph contains
no chain from 1 to 3 to 7 because the graph does not include the edge [37].
We allow chains to begin and end at the same point, e.g., 3 to 1 to 5 to
3; in other words, round-trips are allowed. However, we do not allow the
path to include a factor more than once. For example, we do not allow 3
to 5 to 6 to 7 to 5 to 1. Even though this path never uses the same edge
twice, it does go through factor 5 twice. In a sense, there is no real loss
in excluding such paths because we can still get from factor 3 to factor 1
by taking the path 3 to 5 to 1. We are just not allowing ourselves to drive
around in circles. A formal definition of chains is given below.

Definition 5.2.6. Let h and j be factors and let {i1, . . . , ik} be a
sequence of factors that are distinct from each other and from h and j.
The sequence of edges Chj = {[hi1], [i1i2], . . . , [ikj]} is a chain between h
and j. A graph contains the chain Chj if the graph contains all of the edges
included in the chain.
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We get a degenerate chain if we start at h, go to another vertex i, and
back to h. This is the only situation in which an edge could appear twice
within the sequence of edges defining a chain. Nonetheless, this chain only
contains one edge.
The key result on independence follows.

Theorem 5.2.7. Let the sets A, B, and C denote disjoint subsets of
the factors in a graphical model. The factors in A are independent of the
factors in B given C if and only if every chain between a factor in A and
a factor in B involves at least one factor in C.

Proof. See Darroch, Lauritzen, and Speed (1980). �

Example 5.2.8. The four-factor model [12][13][24] is illustrated below.
It is graphical, so Theorem 5.2.7 applies. Rewrite the model as [31][12][24].
By the theorem, factor 3 is independent of 2 and 4 given 1, factors 3 and 1
are independent of 4 given 2, and factors 3 and 4 are independent given 1
and 2. There are three independence conditions here and all are necessary.
For example, the model that only specifies 3 independent of 2 and 4 given
1 is [31][124], not [12][13][24].

� � � �

3 1 2 4

Theorem 5.2.7 also implies certain marginal independence relations. For
example, factor 3 is independent of factor 2 given 1. This is a statement
about the marginal distribution of factors 1, 2, and 3.
Consider the model [12][3]. There are no chains connecting factors 1 and

2 with 3, so every chain that connects them involves at least one member
of the empty set. Thus, 1 and 2 are independent of 3 given the factors in
the empty set; i.e., 1 and 2 are independent of 3.

� � �

1 2 3

Marginally, we can conclude that 3 is independent of 2 and that 3 is inde-
pendent of 1.
In the model [123][24][456], 1 and 3 are independent of 5 and 6 given 2

and 4. Similarly, 1 and 3 are independent of 4, 5, and 6 given 2. Also, 5
and 6 are independent of 1, 2, and 3 given 4.
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Many marginal independence relationships hold for this model. For exam-
ple, 1 and 3 are independent of 4 and 5 given 2.

Exercise 5.2. (a) Graph the 10 graphical models in Table 5.1.
(b) List 10 of the independence relationships in [12][23][34][41][25][567].
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The decomposable models discussed at the end of the previous section
form a subset of the graphical models. They are the graphical models that
have the additional condition of being chordal. The terms given in paren-
theses in the example below are graph theory terms.

Example 5.2.9. Suppose that a model contains the interactions [12],
[23], [34], [41]. We can start at any of the points and travel in a cycle
(closed chain) back to that point. For example, we can travel from 1 to 2,
from 2 to 3, from 3 to 4, and from 4 back to 1.
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The model (graph) is chordal if every such cycle among four or more vertices
has a shortcut. A shortcut is called a chord. The cycle given above has two
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possible shortcuts: [31] and [24]; adding either or both of these would make
the model chordal. For example, if the model also includes [31], a cycle
from 1 back to 1 can be shortened by traveling [12], [23], [31].
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Similarly, a trip from 2 back to 2 can be shortened by traveling [23], [31],
[12]. The graphical model generated by the terms [12], [23], [34], [41], and
[31] is [123][134]. This decomposable model has the interpretation that
given factors 1 and 3, factors 2 and 4 are independent. The maximum
likelihood estimates are m̂hijk = nhij·nh·jk/nh·j· .
The length of a chain is the number of edges in it. The closed chain [12],

[23], [34], [41] has length four. The closed chain [12], [23], [31] has length
three. A closed chain among four or more vertices is a closed chain of length
four or more.
Consider the model [12][25][53][34][41][567] given below in graphical

form.
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This is not decomposable because the closed chain [12], [25], [53], [34], [41]
involves five vertices and has no chords. The model requires the addition of
at least two additional two-factor effects to convert it into a decomposable
model. Adding one edge to the offending chain still leaves a cycle of length
four without a chord. For example, adding [15] leaves the cycle [15], [53],
[34], [41] without a chord. The following graph adds both [15] and [13].
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This is now the graph of a decomposable log-linear model. All cycles of
length four or more have a chord. The corresponding log-linear model is
[143][135][125][567].

These ideas are formalized in the following definition.

Definition 5.2.10. Consider the chain Chj = {[hi1], [i1i2], . . . , [ikj]}.
The length of the chain is the number of edges (distinct elements) in Chj .
A chain C0 is a reduced chain relative to Chj if C0 is a chain between h and
j with length less than that of Chj and if every factor involved in C0 is also
involved in Chj . Note that it is the factors (vertices) that define reduced,
not the effects (edges). A closed chain is a chain between a factor h and
itself with length greater than 1. In particular, the chain from h to h, Chj =
{[hi], [ih]}, contains only one (distinct) edge, so it has length 1 and does
not form a closed chain. Any two-factor term [iris] is a chord of the closed
chain Chh = {[hi1], . . . , [ir−1ir], [irir+1], . . . , [is−1is], [isis+1], . . . , [ikh]} if
the sequence {[hi1], . . . , [ir−1ir], [iris], [isis+1], . . . , [ikh]} is a closed reduced
chain relative to Chh. It is allowable for either factor in [iris] to be h. A
model is chordal if every closed chain of length k ≥ 4 generated by the
model has a chord that is in the model. A model is decomposable if it is
both graphical and chordal.

By definition, a closed chain must have a length of at least 2; it follows
immediately that a closed chain must have a length of at least 3. Clearly,
a closed chain of length three cannot have a chord, so it is natural that the
definition of chordal models involves closed chains of length 4 or more. It is
possible for a model to be chordal without being graphical. Chordal models
have restrictions on the two-factor terms; they place no requirements on
higher-order terms. In graph theory, decomposable models correspond to
acyclic hypergraphs.

Example 5.2.11. The effects [12], [23], [34] define a chain from 1 to 4.
The effects [12], [24] define a reduced chain from 1 to 4. The effects in the
model [12][23][34][41] define a closed chain from 1 back to 1 but also from 2
back to 2, from 3 back to 3, and from 4 back to 4. To see the last of these,
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observe that the model contains the closed chain [41], [12], [23], [34]. The
possible chords for these closed chains are [31] and [24]. To see that [24] is
a chord, observe that [12], [24], [41] defines a closed reduced chain of [12],
[23], [34], [41].
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The nongraphical model [12][23][34][41][24] is chordal because any closed
chain of length four has a chord that is in the model. This model has no
closed chains of length greater than four because it involves only four fac-
tors. The model [12][23][34][41][24] is not decomposable because it is not
graphical. It contains all of [12], [41], and [24] but not [124]. The corre-
sponding decomposable model is [124][234]. This model generates precisely
the two-factor terms [12], [23], [34], [41], and [24], so it is both graphical
and chordal.
With four factors, the only graphical model that is not decomposable is

[12][23][34][41].

Decomposable models have closed form estimates. We illustrate one sim-
ple case.

Example 5.2.12. Consider the graph

� � � �
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The corresponding model is [12][13][24]. The probability structure can
be read from the model,

phijk =
phi··ph·j·p·i·k

ph···p·i··
,

where the terms in the numerator are determined by the terms in the model
(the marginal probabilities in the numerator correspond to the margins fit-
ted by the model) and the terms in the denominator correspond to the
factors that appear in more than one term in the model. Marginal prob-
abilities are estimated from marginal tables, e.g., p̂hi·· = nhi··/n····. The
estimated expected counts are

m̂hijk = n····p̂hijk =
nhi··nh·j·n·i·k

nh···n·i··
.
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Decomposable models are closely related to recursive causal models. Re-
cursive causal models use ideas from directed graphs to indicate causation.
As mentioned in the introduction to Chapter 4, causation is not something
that can be inferred from data. Any causation must be inferred from other
sources. Recursive causal models are introduced in Section 4. The interested
reader can also consult the relevant literature, e.g., Wermuth and Lauritzen
(1983), Kiiveri, Speed, and Carlin (1984), and the fine expository paper by
Kiiveri and Speed (1982).
The interplay between graph theory and statistics is a fascinating subject

with implications for log-linear models, covariance selection, factor anal-
ysis, structural equation models, artificial intelligence, and database man-
agement. Reviews are given by Kiiveri and Speed (1982), Edwards (1995),
Whittaker (1990), and Lauritzen (1996). For applications to log-linear mod-
els, see the references listed in the previous paragraph along with Darroch,
Lauritzen, and Speed (1980). These articles cite a wealth of related work
including the important contributions of Leo Goodman and Shelby Haber-
man.

5.3 Collapsing Tables

One important function of statistics is to summarize large batches of num-
bers. This is such a fundamental aspect of statistics that it is easily over-
looked. For example, formal theories of statistics are generally based on
the use of sufficient statistics, cf. Cox and Hinkley (1974). Intuitively, a
sufficient statistic is simply a summary of the data that is sufficient for
drawing valid conclusions about the data. The use of sufficient statistics is
an enormous advantage both theoretically and practically.
An early step in analyzing many sets of data is the construction of a table.

Tables organize data in a way that makes the data more understandable.
Clearly, small tables are easier to understand than large tables. For exam-
ple, a 3× 5 table is typically easier to understand than a 3× 5× 4 table. In
this section, we establish conditions that, if satisfied, allow us to collapse a
3× 5× 4 table of counts into a 3× 5 table and still draw valid conclusions.
Recall that collapsing is not always possible. Simpson’s paradox is precisely
the result of collapsing a table that cannot be validly collapsed. First, we
discuss collapsing in three-factor tables and then extend the discussion to
higher-order tables.
Collapsed tables are also used in analysis of variance. The three-factor

ANOVA model

yijk� = µ+ αi + βj + γk

+ (αβ)ij + (αγ)ik + (βγ)jk + eijk� ,
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i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . ,K, � = 1, . . . , N , is a model for
analyzing the I × J × K table of means ȳijk·. It is well known that with
no three-factor (αβγ) interaction, each of the two-factor interactions can
be examined by looking at the corresponding two-factor marginal table.
For example, the two-factor interaction (αβ) can be investigated using the
I × J table of ȳij··’s.
The situation with tables of counts is more complex. In general, if a log-

linear model has no three-factor interaction and if all two-factor interac-
tions exist, it is not valid to draw conclusions about two-factor interactions
from the two-factor marginal tables.
As discussed earlier, two-factor interactions are closely related to odds

ratios. A three-factor table is said to be collapsible over factor 1 if the odds
ratios in the marginal table p·jk are identical to the odds ratios for each row
of the three-way table. In other words, we can collapse on rows (factor 1)
if for all i, j, j′, k, and k′,

p·jkp·j′k′

p·j′kp·jk′
=

pijkpij′k′

pij′kpijk′
. (1)

If this is true, we can draw valid inferences about the relationship between
factors 2 and 3 by looking only at the marginal table. (This is clearly
an easier task than examining a separate two-way table for each level of
factor 1.)
As shown in equation (3.2.3) in the subsection Odds Ratios and Inde-

pendence Models, equation (1) holds if rows and columns are independent
given layers. So, under this model, the relationship between columns and
layers does not depend on rows. Similarly, the row-layer relationship can
be investigated in the row-layer marginal table if rows and columns are
independent given layers.
Note that in order to have equation (1) hold, it is not necessary that

rows and columns be independent given layers. It is easily seen that if rows
and layers are independent given columns, then (1) still holds. Moreover,
if both models [13][23] and [12][23] hold, then we must have [1][23], so
rows are independent of both columns and layers. Obviously, in this case,
collapsing over rows is allowable.
The validity of collapsing over a factor is a property of the parameters

pijk. Data analysis is based on the observed values nijk. It is important
to realize that the MLE of the odds ratio p·jkp·j′k′/p·j′kp·jk′ under either
model [13][23] or [12][23] is n·jkn·j′k′/n·j′kn·jk′ and that this is also the
MLE from the marginal table of n·jk’s. Thus, data analysis is identical
whether working with the three-dimensional table or with the collapsed
table. Collapsed tables are such a useful and intuitive tool that we have
already used them in data analysis. The reader should note that collapsed
tables were an integral part of both Examples 3.2.2 and 3.2.3.
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Our results on collapsing three-factor tables are summarized in the next
theorem.

Theorem 5.3.1.

(a) If the model [13][23] holds, then the relationship between factors 2
and 3 can be examined in the marginal table n·jk and the relationship
between factors 1 and 3 can be examined in the marginal table ni·k.

(b) If either model [13][23] or [12][23] holds, then the relationship between
factors 2 and 3 can be examined in the marginal table n·jk.

(c) If model [1][23] holds, then the relationship between factors 2 and 3
can be examined in the marginal table n·jk.

To extend collapsibility conditions to higher-order tables, use the same
tricks as were used in Section 1 for interpreting higher-order models: rein-
dexing and using larger models. Consider a table with five factors: 1, 2,
3, 4, and 5. Suppose our model is [1234][45][35]. This is contained in the
model [1234][345]. By considering this as a three-factor table with factors 1-
2, 3-4, and 5, we have that factor 1-2 and factor 5 are independent given
factor 3-4. Thus, collapsing over factor 5 to examine the marginal table of
factors 1, 2, 3, and 4 is valid. Also, collapsing over factors 1 and 2 gives a
valid marginal table for examining factors 3, 4, and 5.
It is particularly easy to read off collapsibility from a graphical model.

Corollary 5.3.2. Let the sets A, B, and C denote a partition of the
factors in a graphical model such that every chain between a factor in A and
a factor in B involves at least one factor in C; then the relationships among
the factors in A and C can be examined in the marginal table obtained by
summing over the factors in B.

Example 5.3.3. The model [123][24][456] can be graphed as below.
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It follows that accurate conclusions can be drawn from the marginal tables
n123···, n1234··, n···456, and n·2·456.
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5.4 Recursive Causal Models

This section examines a class of graphical models that are useful for analyz-
ing causal relationships. Causation is not something that can be established
by data analysis. Establishing causation requires logical arguments that go
beyond the realm of numerical manipulation. For example, a well-designed
randomized experiment can be the basis for conclusions of causality, but
the analysis of an observational study yields information only on correla-
tions. When observational studies are used as a basis for causal inference,
the jump from correlation to causation must be made on nonstatistical
grounds. In this section, we consider a class of graphical models that have
causation built into them. The discussion focuses on appropriate graphs
and their interpretations. Not all of the graphical models in this class cor-
respond to log-linear models; thus, the new class is distinct from the graph-
ical models considered in Section 2. For the models considered here, the
numerical process of estimation is exceedingly simple.
The graphical models considered in this section are recursive causal mod-

els. Unlike most of the methods considered in Chapter 4, recursive causal
models allow for multiple response factors. With multiple response factors,
a given factor can serve as both a response, relative to some causal factors,
and as a cause for other response factors. The term “recursive” indicates
that response factors are not allowed to serve, even indirectly, as causes of
themselves.
We begin with a discussion of models that involve only one response

factor. In particular, we consider the abortion opinion data discussed in
Sections 3.7 and 4.6.

Example 5.4.1. Abortion Opinion Data.
The factors involved in the abortion opinion data are race R, sex S, opinion
O, and age A. In Chapter 6, one of the better models found for these data
is [RSO][OA]. This is a graphical model.
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The model [RSO][OA] indicates that Race and Sex are independent of
Age given Opinion. While this may explain the data well, it is difficult to
imagine a social process that could cause independence between such tangi-
ble characteristics as Race, Sex, and Age given something as ephemeral as
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Opinion. In particular, it violates Asmussen and Edwards’ (1983) criteria
for response models (see the ends of Sections 4.6 and 6.8).
In Chapter 4, we have argued that when analyzing a response, one should

condition on all explanatory factors. With Opinion taken as a response,
any log-linear model should include the interaction term [RSA] for the
explanatory factors. In Section 4.6, we found that [RSA][RSO][OA] was
a reasonable model. This model is not graphical. For example, the three-
factor terms in the model, [RSA] and [RSO], imply the existence of [SA] and
[SO] interactions. Taken together with the [OA] term, the model includes
all of the two-factor terms included in [SAO]. By definition, if all these
two-factor effects are included, a graphical model must also include [SAO].
Thus, [RSA][RSO][OA] is not graphical.
Note that based on the model [RSA][RSO][OA], any logit model for Opin-

ion has an effect (RS) for Race-Sex interaction and a main effect A for age.
In the discussion below, we present a recursive causal model that incorpo-
rates the same effects. The difference is that the recursive causal model is
not a log-linear model but a conjunction of log-linear models.

While [RSO][OA] is a graphical model, it is not a recursive causal model
for Opinion. Given below is the graph of a recursive causal model in which
Opinion is the response, Race, Sex, and Age are direct causes of Opinion,
and there is a joint effect for Race and Sex.
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This is very similar to the graph for [RSO][OA]; however, some of the
edges have been replaced by arrows. Arrows are called directed edges. Edges
without arrowheads are undirected edges. Directed edges point to response
factors; O is the only response factor. In this graph, the directed edges
originate at the explanatory factors. The factors R, S, and A are each
called a direct cause of O because there is a directed edge from each of R,
S, and A to O. The undirected edge between R and S is unchanged from
the graph of [RSO][OA]; the edge represents an interaction between R and
S. Age involves no undirected edges.
With no loss of generality, the probability model corresponding to these

four factors can be written as

Pr(R = h, S = i, O = j, A = k)
= Pr(O = j|R = h, S = i, A = k)Pr(R = h, S = i, A = k).
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Here, the probability is written as the product of a conditional probability
of the response factor given its direct causes, Pr(O = j|R = h, S = i, A =
k) and another term, Pr(R = h, S = i, A = k), that involves only the
explanatory factors. Each of these terms is to be modeled with a log-linear
model.
The term Pr(O = j|R = h, S = i, A = k) is a conditional probability; so,

as discussed earlier, the corresponding log-linear model should include an
[RSA] term. The log-linear model used is the graphical model that incor-
porates the explanatory factor edges for [RSA] and changes directed edges
involving the four factors to undirected edges. In the following graph, the
directed edges are retained to emphasize that there are two steps involved.
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Changing directed edges to undirected edges, the graphical log-linear model
is clearly the saturated model, cf. Section 2. The maximum likelihood es-
timate of Pr(R = h, S = i, O = j, A = k) is nhijk/n···· and, thus, the max-
imum likelihood estimate of Pr(O = j|R = h, S = i, A = k) ≡ phijk/phi·k
is

p̂hijk
p̂hi·k

=
nhijk
nhi·k

.

The probability model for the explanatory factor term Pr(R = h, S =
i, A = k) is also a log-linear model determined by the graph of the recursive
causal model. The log-linear model is the graphical model obtained by
dropping the response factor and the directed edges. It is given below.
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The log-linear model for this graph is [RS][A]. It determines a marginal
distribution for the explanatory factors. The model is that

Pr(R = h, S = i, A = k) = Pr(R = h, S = i)Pr(A = k).
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or, equivalently,
phi·k = phi··p···k.

The maximum likelihood estimates are

p̂hi·k =
nhi··
n····

n···k
n····

.

Combining the two sets of results gives

Pr(R = h, S = i, O = j, A = k)
= Pr(O = j|R = h, S = i, A = k)Pr(R = h, S = i)Pr(A = k)

or, equivalently,

phijk =
phijk
phi·k

(phi··) p···k .

This probability model appears to be a saturated log-linear model but is
not. Taking logs gives log(phijk) as the sum of four additive terms, one
of which involves all four indices. This would seem to be a saturated log-
linear model. However, a two-stage modeling procedure was used, so the
simple-minded approach is not appropriate. Using the maximum likelihood
estimates from each stage gives

p̂hijk =
nhijk
nhi·k

nhi··
n····

n···k
n····

and estimated expected cell counts

m̂hijk = n····
nhijk
nhi·k

nhi··
n····

n···k
n····

.

It is interesting to note that there is no data reduction involved in the
estimation. An important, if often underemphasized, element of statisti-
cal modeling is that large amounts of data are reduced to manageable
form by the use of sufficient statistics. This is certainly true for ANOVA
type log-linear models where maximum likelihood estimates are completely
determined by various marginal tables. The m̂hijk’s given above require
knowledge of the nhijk’s, so no data reduction has occurred. This is not
always true; data reduction does occur for some recursive causal models.

We now consider recursive causal graphs with four factors, of which two
are responses.

Example 5.4.2. Two Response Factors.
Assume multinomial sampling for a table with four factors. Consider the
recursive causal graph given below.
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Factors 1 and 2 are purely explanatory and interact. Factor 3 has one direct
cause, which is factor 2. Factor 4 has one direct cause, factor 3. In general,
the probability model for four factors can be written in three terms:

Pr(F1 = h, F2 = i, F3 = j, F4 = k) = Pr(F1 = h, F2 = i)
× Pr(F3 = j|F1 = h, F2 = i)Pr(F4 = k|F1 = h, F2 = i, F3 = j).

Based on the graph, we write the recursive causal probability model as

Pr(F1 = h, F2 = i, F3 = j, F4 = k)
= Pr(F1 = h, F2 = i)Pr(F3 = j|F2 = i)Pr(F4 = k|F3 = j).

The first term, Pr(F1 = h, F2 = i), involves only the purely explanatory
factors. The second term, Pr(F3 = j|F2 = i), involves the distribution for
factor 3 given its direct cause, the purely explanatory factor 2. Note that
factor 1 is an indirect cause of 3 because of its relationship with factor 2;
however, only the direct cause F2 is involved in the probability model. The
third term, Pr(F4 = k|F3 = j), involves the distribution of F4 given its
direct cause F3.

Again, estimation of probabilities is simple. The probability Pr(F1 =
h, F2 = i) is estimated using the graphical log-linear model obtained by
dropping the response factors 3 and 4 and all directed edges. In other
words, it is estimated from the saturated model [12] for the marginal ta-
ble involving only the first two factors. The term Pr(F3 = j|F2 = i) is
estimated using the saturated model for the 2, 3 marginal table. The last
term, Pr(F4 = k|F3 = j), is estimated from the saturated model for the 3,
4 marginal table. Thus,

p̂hijk = p̂hi··
p̂·ij·
p̂·i··

p̂··jk
p̂··j·

=
nhi··
n····

n·ij·
n·i··

n··jk
n··j·

.

Of course, the estimated expected cell counts are simply

m̂hijk = n····p̂hijk .
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The graphical model can be made more interesting by inserting a direct
cause between 1 and 4.
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The recursive causal probability model is now

Pr(F1 = h, F2 = i, F3 = j, F4 = k)
= Pr(F1 = h, F2 = i)Pr(F3 = j|F2 = i)Pr(F4 = k|F1 = h, F3 = j).

Again, the first term Pr(F1 = h, F2 = i), involves only the purely explana-
tory factors. The second term, Pr(F3 = j|F2 = i), involves the distribution
for factor 3 given its direct cause. The difference between this model and
the previous one is that the third term, Pr(F4 = k|F1 = h, F3 = j), now
involves the distribution of F4 given both of its direct causes F1 and F3.
Estimation is based on saturated models for appropriate marginal tables
and yields

p̂hijk = p̂hi··
p̂·ij·
p̂·i··

p̂h·jk
p̂h·j·

=
nhi··
n····

n·ij·
n·i··

nh·jk
nh·j·

.

Note that a saturated model is used for the explanatory factors only because
the graph indicates use of a saturated model. Unlike response factors, the
model for explanatory factors is not required to be a saturated model for
the appropriate marginal table.
Consider one final graph.
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The probability model is

Pr(F1 = h, F2 = i, F3 = j, F4 = k) = Pr(F1 = h, F2 = i)
× Pr(F3 = j|F1 = h, F2 = i)Pr(F4 = k|F1 = h, F3 = j).
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Again, the first term, Pr(F1 = h, F2 = i), involves only the purely explana-
tory factors. The second term, Pr(F3 = j|F1 = h, F2 = i), involves the
distribution for factor 3 given both of its direct causes. The third term,
Pr(F4 = k|F1 = h, F3 = j) also conditions only on direct causes. Estima-
tion is based on appropriate marginal tables,

p̂hijk =
nhi··
n····

nhij·
nhi··

nh·jk
nh·j·

with estimated expected cell counts m̂hijk = n····p̂hijk.

In general, a causal graph for a set of factors C includes a set M of
purely explanatory factors, also called external or exogenous factors and a
set C − M of response factors, also called internal or endogenous factors.
The exogenous factors have an undirected graph associated with them.
Each endogenous factor is the end point for one or more directed edges.
The directed edges can originate at either exogenous or endogenous factors.
A causal graph is recursive if no endogenous factor is a cause of itself; in
other words, if there are no directed pathways that lead from an endogenous
factor back to itself. For example, the causal graph
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is not recursive. Factor 2 is exogenous. The other three factors are endoge-
nous. There is a directed path from 3 to 4 to 1 and back to 3, so 3 is a
cause of itself and the graph is not recursive. In this example, all of the
endogenous factors are causes of themselves.
Generally, for a factor Fi ∈ C −M , its direct causes are the factors from

which a directed edge goes to Fi. Let the set of all such factors be Di. The
probability for a recursive causal model is

Pr (Fi = fi : Fi ∈ C) = Pr (Fi = fi : Fi ∈ M)
∏

Fi∈C−M

Pr (Fi = fi|Di) .

The term Pr (Fi = fi : Fi ∈ M) depends on the marginal graph for M ,
i.e., the graph that drops all endogenous factors and directed edges. Es-
timates of Pr (Fi = fi : Fi ∈ M) are maximum likelihood estimates from
the corresponding graphical log-linear model. Estimation of a term of the
form Pr (Fi = fi|Di) is based on the saturated model for the marginal table
with factors in {Fi} ∪ Di.
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Putting arrowheads on edges and defining a new method for stating
probability models has nothing fundamental to do with causation. These
probability models can be used even when the causation suggested by the
graph exists only in the head of the data analyst. Moreover, if enough
models with nonsensical causations are fit, one that fits well may be found.
Obviously, a well-fitting model does not establish that the causal patterns
in the model are true. However, if the graph is a reasonable statement
of a causal process, a well-fitting probability model adds credence to the
hypothesized causal process. Evaluating how well recursive causal models
fit is discussed later in this section.
A useful and interesting concept in recursive causal models is that of

configuration >. It allows one to relate recursive causal models to decom-
posable log-linear models, cf. Section 2. Three factors A, B, and C are
in configuration > if C is caused by both A and B, but there is neither a
directed nor an undirected edge between A and B. This is illustrated below.
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Recursive causal models are typically not log-linear, but there is a sub-
stantial intersection between the classes of models. The key result is that a
recursive causal graph contains no factors that are in configuration > and
the graph restricted to the exogenous variables is decomposable if and only
if the recursive causal probability model is identical to the probability model
determined by a decomposable log-linear model, cf. Wermuth and Lauritzen
(1983).

Example 5.4.3. Consider the recursive causal graph given below. This
is similar to one used in Example 5.4.1; however, the factor R has been
eliminated as a direct cause for O.
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The factors S, A, O are in configuration >; thus, the recursive causal graph
is not equivalent to a decomposable log-linear model.
By connecting the nodes for S and A, the configuration > can be elimi-

nated.
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The probabilities for this recursive causal graph are the probabilities for
the model [RS][SA] in the exogenous marginal table, obtained by collapsing
over the response factor O, times the conditional probabilities for Pr(O =
j|S = i, A = k) from the saturated model collapsing over R. This gives

phijk =
(
phi··p·i·k
p·i··

)(
p·ijk
p·i·k

)
=

(
phi··p·ijk

p·i··

)
.

Note that these are exactly the same probabilities as determined by the
decomposable log-linear model [RS][SOA] defined by the underlying undi-
rected graph
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In the underlying undirected graph, directed edges are changed to undi-
rected edges. The probability models are the same, so independence re-
lationships are the same. For the decomposable model, the independence
relationship is that R is independent of O and A given S. This holds for
both the log-linear model and the recursive causal model.

The probability models associated with decomposable log-linear mod-
els are identical to probability models for recursive causal models that (1)
have no configurations > and (2) have a decomposable exogenous factor
graph. The exogenous factor graph is the graph with all response factors
and directed edges eliminated. It follows that decomposable models can be
thought of as a subset both of graphical log-linear models and of recursive
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causal models. A recursive causal model graph with a decomposable ex-
ogenous factor graph and no configurations > can be transformed into a
decomposable log-linear model graph simply by changing directed edges to
undirected edges. See Wermuth and Lauritzen (1983) and Kiiveri, Speed,
and Carlin (1984) for the validity of these statements.

Exercise 5.3. In Example 5.4.1, it was stated that the model [RSO][OA]
is not a recursive causal model for Opinion. However, [RSO][OA] is decom-
posable, so it corresponds to some recursive causal model. Explain why
[RSO][OA] is not a recursive causal model for Opinion, and by changing
the endogenous factor, give a recursive causal model that does correspond
to [RSO][OA].

We now present a conditional independence result that holds for general
recursive causal models. Any endogenous (response) factor Fi is indepen-
dent of the factors Fj for which it is not a direct or indirect cause given
Di, the direct causes of Fi. Independence among exogenous factors is de-
termined by the exogenous factor graph.

Example 5.4.4. In the model associated with the following graph, factor
4 is independent of the factors for which it is not a cause, i.e., factors 2 and
3, given factor 1 which is the direct cause of 4.
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Another independence relation that can be read from the graph is that
3 is independent of 4 given 1 and 2, the direct causes of 3. Note that the
graph contains no configurations >, so the independence relations are the
same as in the underlying undirected graph. The decomposable model is
[41][123] which has 4 independent of 2 and 3 given 1. The decomposable
model also implies that 3 is independent of 4 given 1 and 2.

Wermuth and Lauritzen (1983) and Kiiveri, Speed, and Carlin (1984)
examine the validity of conditional independence statements for recursive
causal models. Another natural application of recursive causal graphs is in
the analysis of structural equation models. Interpretations and conditional
independence results hold as for the analysis of discrete data; see Kiiveri
and Speed (1982).
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Birch (1963), Goodman (1973), and Fienberg (1980) have examined
methods of model selection that apply to recursive causal models. The
methods are illustrated through an example.

Example 5.4.5. Suppose muscle tension data similar to that of Exam-
ples 3.7.1 and 4.5.1 has been collected. The factors involved are T, the
change in muscle tension, W, the weight of the muscle, M, the muscle type
and D, the drug administered. Each factor is at two levels. For ease of
exposition, we will treat the sampling as multinomial. The graph below
indicates a possible recursive causal scheme.
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Change in muscle tension T is hypothesized to have all of W, M, and D as
direct causes. Muscle weight W has muscle type M as a direct cause. The
purely explanatory factors are M and D; they are allowed to interact with
each other. Write Pr(T = h,W = i,M = j,D = k) = phijk. Note that
the indexing has changed from previous examples. The first factor is now
at the upper right of the graph rather than the lower left and the order is
counterclockwise rather than clockwise. These changes are important for
verifying the maximum likelihood estimates presented. The expected cell
counts for the recursive causal model are

m̂hijk = n····

(
n··jk
n····

)(
n·ij·
n··j·

)(
nhijk
n·ijk

)
.

The graph given above has one configuration > involving W, D, and T, so
the probability model is not a decomposable log-linear model.
The lack of fit of the model can be tested in the usual way. Some algebra

shows that

G2 = 2
∑

hijk

nhijk log
(
nhijk
m̂hijk

)

= 2
∑

ijk

n·ijk log
(

n·ijk
n··jkn·ij·/n··j·

)
.

This is precisely the lack of fit statistic for testing the log-linear model
[WM][MD] against the saturated model in the marginal table for W, M,
and D. With each factor at two levels, it follows that the statistic has 2
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degrees of freedom. In fact, the log-linear model [WM][MD] is consistent
with the only conditional independence result available from the graph; the
response factor W is independent of D given M, the direct cause of W.
The relationship of the lack of fit test with the log-linear model

[WM][MD] can be seen through the probability modeling procedure. Recall
that the basis of the modeling procedure is that one can always write

Pr(T = h,W = i,M = j,D = k) = Pr(M = j,D = k)
× Pr(W = i|M = j,D = k)Pr(T = h|W = i,M = j,D = k).

and, based on the graph, the recursive causal probability model is

Pr(T = h,W = i,M = j,D = k) = Pr(M = j,D = k)
× Pr(W = i|M = j)Pr(T = h|W = i,M = j,D = k).

The only real modeling being done is replacing Pr(W = i|M = j,D = k)
with Pr(W = i|M = j). The factor T is extraneous. The perfectly general
statement

Pr(W = i,M = j,D = k) = Pr(M = j,D = k)Pr(W = i|M = j,D = k)

has been replaced with

Pr(W = i,M = j,D = k)
= Pr(M = j,D = k)Pr(W = i|M = j)
= Pr(M = j)Pr(D = k|M = j)Pr(W = i|M = j).

This is just the model for conditional independence of W and D given M.
It is not surprising that the test statistic involves only the aspect of the
model that is not always true.
There is no particular reason to believe in a relationship between the

type of drug used and the muscle type. It is also questionable whether
muscle type really has an effect on weight. The graph that incorporates
these ideas involves dropping one directed edge and the undirected edge.
It is given below.
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Note that by dropping M as a direct cause of W, W has been transformed
into an exogenous factor. The estimated expected cell counts are

m̂hijk = n····

(
n·i··
n····

n··j·
n····

n···k
n····

)(
nhijk
n·ijk

)
.

This model can be checked for general lack of fit as above. It is not difficult
to see that the test is identical to that for complete independence [W][M][D]
in the marginal table collapsing over T. The likelihood ratio chi-squared
has 4 degrees of freedom.
This new model was obtained from the previous one by dropping edges

in the previous graph; thus, this model is a reduced model relative to the
previous one.
It follows that a likelihood ratio test can be performed for comparing

the two models. Not surprisingly, the test simplifies to that of [W][M][D]
versus [WM][MD].
Another possible model eliminates the effect of muscle weight W on ten-

sion.
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The maximum likelihood estimates are

m̂hijk = n····

(
n··jk
n····

)(
n·ij·
n··j·

)(
nh·jk
n··jk

)
.

The graph contains no configurations >, so the probability model and
thus the maximum likelihood estimates are the same as for the decompos-
able log-linear model [WM][MTD] determined by the underlying undirected
graph.
Consider one final model.
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This incorporates independence of M and D from the exogenous factor
graph and it has one conditional independence relation involving responses:
W independent of T and D given M. These two relationships imply that the
pair W and M are independent of D. The maximum likelihood estimates
are

m̂hijk = n····

(
n··j·
n····

)(
n···k
n····

)(
n·ij·
n··j·

)(
nh·jk
n··jk

)
.

The likelihood ratio test statistic for this model can be separated into
the sum of three terms. The first term is the statistic for testing [M][D]
versus [MD]. The second term is the statistic for testing [WM][MD] versus
[WMD]. The last term is for testing [TMD][WMD] versus [TWMD]. The
following series of equalities establishes the result.

G2 = 2
∑

hijk

nhijk log
(
nhijk
m̂hijk

)

= 2
∑

hijk

nhijk [log(nhijk) − log(m̂hijk)]

= 2
∑

hijk

nhijk log(nhijk) − 2
∑

hijk

nhijk log
(
n··j·n···k
n····

)

− 2
∑

hijk

nhijk log
(
n·ij·
n··j·

)
− 2

∑

hijk

nhijk log
(
nh·jk
n··jk

)

= 2
∑

hijk

nhijk log
(
nhijk n·ijk
n·ijk n··jk

n··jk

)

− 2
∑

hijk

nhijk log
(
n··j·n···k
n····

)

− 2
∑

hijk

nhijk log
(
n·ij·
n··j·

)
− 2

∑

hijk

nhijk log
(
nh·jk
n··jk

)

= 2
∑

hijk

[
nhijk log(n··jk) − nhijk log

(
n··j·n···k
n····

)]

+ 2
∑

hijk

[
nhijk log

(
n·ijk
n··jk

)
− nhijk log

(
n·ij·
n··j·

)]

+ 2
∑

hijk

[
nhijk log

(
nhijk
n·ijk

)
− nhijk log

(
nh·jk
n··jk

)]

= 2
∑

hijk

nhijk

[
log(n··jk) − log

(
n··j·n···k
n····

)]

+ 2
∑

hijk

nhijk

[
log (n·ijk) − log

(
n·ij·n··jk
n··j·

)]
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+ 2
∑

hijk

nhijk

[
log(nhijk) − log

(
nh·jkn·ijk

n··jk

)]

= 2
∑

jk

n··jk

[
log (n··jk) − log

(
n··j·n···k
n····

)]

+ 2
∑

ijk

n·ijk

[
log (n·ijk) − log

(
n··jkn·ij·
n··j·

)]

+ 2
∑

hijk

nhijk

[
log(nhijk) − log

(
n·ijknh·jk

n··jk

)]
.

The three terms in the last equality are precisely the three test statistics
that were claimed. The existence of such breakdowns forG2 is quite general.

5.5 Exercises

Exercise 5.5.1. Using the methods of Section 5.1, discuss the indepen-
dence relationships for all of the models given below.

(a) [123][24][456]

(b) [12][13][23][24][456]

(c) [123][124][456]

(d) [123][24][456][15]

(e) [123][24][456][15][36]

Exercise 5.5.2. In the saturated log-linear model for a four-dimensional
table, let u34 = 0 and let all of the corresponding higher-order terms also
be zero, e.g., u134 = 0.

(a) Based on this model, find a formula for m̂hijk without using graphical
methods.
(b) Use graphical methods to find m̂hijk.

Exercise 5.5.3. The vertices for a five-factor model are given be-
low. Connect the dots to give a graphical representation of the model
[123][135][34][24]. Use the illustration to show that [123][135][34][24][25] is
not a graphical model.
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Exercise 5.5.4. Which of the models given below are graphical? Graph
them. Which of these are decomposable? Discuss the independence rela-
tionships for all of the models. For each model, what marginal tables will
provide valid inferences?

(a) [123][24][456]

(b) [12][13][23][24][456]

(c) [123][124][456]

(d) [123][24][456][15]

(e) [123][24][456][15][36]

Exercise 5.5.5. Consider all of the graphs in Example 5.4.2. Classify
each as equivalent or not equivalent to a decomposable log-linear model. For
those that are equivalent, prove the equivalence of the probability models.



6
Model Selection Methods and
Model Evaluation

This chapter examines methods of selecting models for high-dimensional
tables. The model selection methods considered are the stepwise methods,
e.g., forward selection and backward elimination, a modified backward elim-
ination method from Aitkin (1978, 1979) that controls the experimentwise
error rate, and a backward elimination method from Wermuth (1976) that
is restricted to decomposable models. In addition, we discuss the use of
the model selection criteria presented in Section 3.6. Of course, it would be
foolish to choose a model simply because some model selection procedure
presents it to you as a good model. Other considerations such as model in-
terpretability and the consistency of the data with model assumptions may
dictate choosing some other model. It is always wise to use model selection
methods to produce several apparently good models that can be investigated
further. In line with this approach, the analysis of residuals and influential
observations is also discussed in this chapter.
Modeling is a useful process both for prediction of future observables

and for describing the relationships between factors. Large models always
reproduce the data on which they were fitted better than smaller models.
The saturated model always provides a perfect fit of the data. However,
smaller models have more powerful interpretations and are often better
predictive tools than large models. Often, our goal is to find the smallest
model that fits the data.

In model fitting, there are two approaches to specifying models: the de-
scriptive approach and the causative approach. The descriptive approach
simply describes the relationships that are observed. For example, in a
three-way table, one might find that given a young child’s educational sta-
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tus, her father’s educational status and her mother’s educational status are
independent. This can be used to describe the data, but it would be fool-
ish to suggest that the child’s status in any way determines her parents’
status. In analyzing these factors, it makes sense to consider the parents’
status as fixed and to determine its effect on the child’s status. However,
a statistical relationship between parents’ status and child’s status does
not imply causation. Causation cannot be inferred on statistical grounds;
it must be inferred from the subject matter. For these reasons, we will
concentrate on descriptive modeling. Nonetheless, causation has important
implications for statistical modeling. Causation is closely related to the
existence of response factors; the analysis of response factors is treated in
Chapter 4, Section 5.4, and is also discussed in Chapter 11.

6.1 Stepwise Procedures for Model Selection

Stepwise procedures assume an initial model and then use rules for adding
or deleting terms to arrive at a final model. Stepwise procedures are cat-
egorized in three ways: forward selection, in which terms are added to an
initial small model; backward elimination, in which terms are removed from
an initial large model; and composite methods, in which terms can either be
added to or removed from the initial model. Methods for choosing initial
models and examples will be considered in the subsequent two sections.
Because of the huge number of terms available in high-dimensional mod-

els, more effort is expended in selecting an initial model than is commonly
used in regression analysis. Moreover, because ANOVA type models use
parameters that are not uniquely defined, stepwise procedures must be
adjusted so that nonsensical models are not considered.
Often, at any given point, stepwise procedures are applied only to ex-

amine terms that involve the same number of factors. For example, some-
times in examining three-factor interactions, two-factor interactions are
ignored and any three-factor interactions that are implied by the existence
of higher-order interactions are forced into the model. (In this case, higher-
order interactions are those that involve four or more factors.) We begin
by considering this particular procedure. Later, an improved method (im-
plemented in BMDP) will be discussed.
Stepwise procedures are sequential in that they assume a current model

and look to add or delete terms one at a time to that model. When con-
sidering s-factor terms, the basic forward selection rule is

FS: (a) Add the s-factor term not already in the model
that has the most significant test statistic.

(b) Continue adding terms until no term achieves a
predetermined minimum level of significance.
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The basic backward elimination rule is

BE: (a) Delete the s-factor term with the least significant
test statistic among s-factor terms that are not
forced into the model.

(b) Continue until all terms maintain a predetermined
minimum level of significance.

The backward elimination procedure is based on comparing models and
does not consider whether the reduced models fit relative to the saturated
model. It is possible that a model may fit globally and that dropping an
s-factor term may be acceptable but that the new smaller model may not
fit globally. One might want to modify the procedure so that it stops be-
fore eliminating any effect that will cause the saturated model test to be
rejected.
Note that a term can be forced into the model either by the sampling

scheme or by the presence in the model of a higher-order term that implies
the existence of the term in question. For example, in the model [1235][234],
when considering three-factor terms for elimination, all of [123], [125], [135],
and [235] are forced into the model by having [1235] in the model. The only
three-factor term eligible for elimination is [234].
The composite method alternates between applying the forward selec-

tion rule and the backward elimination rule. For forward selection, the test
statistics are the statistics for testing the current model against the larger
models in which one additional term has been added. For backward elim-
ination, the test statistics are the statistics for testing the current model
against the reduced models in which one term has been eliminated. “Sig-
nificance” of test statistics is measured by their P values. A test statistic
fails to achieve a predetermined minimum level of significance, say α, if
P > α and maintains that level of significance if P < α. The level α is
often taken as .10, .05, or .01.
As an alternative to considering only s-factor terms, one can consider

adding or deleting either simple or multiple effects. Adding a simple effect
consists of adding an effect that does not imply the simultaneous addition
of any other effects. For example, if we have four factors, say R, S, O, and
A, and the model is [RSO][SA], the only simple effects that could be added
are [RA] and [OA]. To see this, note two things. First, all other two-factor
terms are already in the model, so these are the only two-factor terms
that can be added. Second, to add any three-factor terms, e.g., [RSA], also
implies the addition of a new two-factor term. Therefore, adding any three-
factor term implies the addition of more than one effect and thus is not the
addition of a simple effect.
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If we consider the deletion of simple effects from [RSO][SA], the only
possible deletions are the [RSO] and [SA] terms. Deleting the [RSO] term
leaves the model [RS][RO][SO][SA]. Deleting the SA effect leaves [RSO][A].
Addition of a multiple effect involves incorporating a new factor into

some effect that already exists in the model. For the model [RSO][SA],
possible multiple effects are constructed by adding A to [RSO] (giving
[RSOA][SA]), by adding R to [SA] (giving [RSO][RSA]), and by adding O
to [SA] (giving [RSO][OSA]). In addition, the term [A] is implicitly in the
model, so the terms [RA] and [OA] can be added, giving [RSO][SA][RA] and
[RSO][SA][OA], respectively. Also, the term [RO] is implicitly in the model,
so the term [ROA] can be added, yielding the model [RSO][SA][ROA].
In forward selection, considering either addition of simple effects or addi-

tion of multiple effects is appropriate. Because addition of multiple effects
involves consideration of a wider variety of additional effects, addition of
multiple effects is generally preferred. In backward elimination, deletion of
simple effects is the appropriate procedure.
As defined here, deleting multiple effects is the same procedure as delet-

ing simple effects. For the model [RSO][SA], deletion of any factor from
[RSO] leaves all of the implicit terms [RS], [SO], and [RO] unaffected.
Thus, deletion of multiple effects allows consideration of only the mod-
els [RS][SO][RO][OA] and [RSO][A]. These are the same models considered
in the deletion of simple effects. There is a key difference between adding
and deleting multiple effects. Adding multiple effects to [RSO][SA] allows
addition of interesting nonsimple effects like [ROA] because [RO] is implic-
itly in the model. Deleting a factor from an implicit term such as [RO] has
absolutely no effect on the model [RSO][SA]. Other definitions of what it
means to delete a multiple effect are possible, but the ones I am acquainted
with can give stupid results. To be safe, when using computer software, one
should always specify deletion of simple effects.
One reasonable approach to backward elimination in, say, a five-factor

model is to eliminate first the five-factor effect if possible, then any un-
necessary four-factor effects. When eliminating three-factor effects, restrict
attention only to those three-factor effects not forced into the model by the
included four-factor effects. Similarly, only consider for elimination two-
factor effects that are not forced in by the included three- and four-factor
effects. Also, any effects forced into the model by the sampling scheme should
never be considered for elimination.
As is well known from regression analysis, the main virtue of stepwise

methods is that they are fast and cheap. Their virtue is directly related
to their fault. They are fast and cheap because the procedures put severe
limits on the number of models that are considered. Because only a limited
number of models are examined, the procedures can easily miss the best
models. Stepwise methods do not give the best model based on any over-
all criteria of model fit (cf. Section 6); in fact, they can give models that
contain none of the terms that are in the best models. Forward selection
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is a notoriously bad method of variable selection because it starts from
an inadequate model and there is no guarantee that it will ever arrive at
an adequate model. Backward elimination should give an adequate model
if the initial model is adequate, but the only way to ensure an adequate
initial model is to use the saturated model. Combined methods improve
on forward selection simply because they allow consideration of more mod-
els. However, combined methods do not ensure finding the best models
either. A nontechnical problem with stepwise procedures is that they give
a unique “best” answer. Typically, no uniquely correct model exists. If
stepwise methods are to be used, it is wise to use several variations and
therefore arrive at several candidate models. These models should be evalu-
ated on their interpretability and their consistency with model assumptions
to arrive at one or more final models.

6.2 Initial Models for Selection Methods

In this section, we discuss a variety of methods for arriving at an appropri-
ate initial model from which to begin the search for a well-fitting model.
The examples in this section deal only with initial model selection. An ex-
ample incorporating various stepwise procedures is given in Section 3. This
section examines three approaches to picking an initial model: all s-factor
effects models, models based on tests of marginal and partial association,
and models based on testing each term in the saturated model last.

6.2.1 All s-Factor Effects
The simplest way to choose an initial model is to take one that consists of
all effects of a particular level s. For example, the initial model can be the
model of all main effects, or all two-factor effects, or all three-factor effects,
and so on. The initial model can be chosen as either the smallest of these
models that fits the data or the largest of these models that does not fit
the data. In particular, for a four-factor table, one can test the models

(a) [1][2][3][4]

(b) [12][13][14][23][24][34]

(c) [123][124][234][134]

(d) [1234]

against each other to determine the smallest model that fits the data.
Suppose it is model (b). We can then consider eliminating terms from
model (b). Another approach is to look at the largest model that does not
fit the data. That would be model (a). We can then consider selecting terms
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to add to model (a). Elimination and selection can be performed either by
ad hoc methods or by using the formal rules for backward elimination and
forward selection.
Note that if we begin with model (b) [model (a)], it is very tempting to

restrict attention to deleting (adding) only two-factor terms. Considering
only two-factor terms is a substantial reduction in work as compared to
investigating all levels of terms, but this simplification runs the risk of both
missing some important terms and leaving in some unimportant terms.
Finally, it should be noted that if a combined stepwise procedure is to be

used, either of the initial models is appropriate. However, different initial
models may give different results.

Example 6.2.1. Reconsider the data of Examples 3.7.1 and 4.5.1 on
the relationship between two drugs and muscle tension. For each mouse,
a muscle was identified and its tension was measured. A randomly chosen
drug was given to the mouse and the muscle tension was measured again.
The muscle was then tested to identify which type of muscle it was. The
weight of the muscle was also measured. Factors and levels are tabulated
below.

Factor Abbreviation Levels
Change in Muscle Tension T High, Low
Weight of Muscle W High, Low
Muscle M Type 1, Type 2
Drug D Drug 1, Drug 2

The sampling is product multinomial with the total count for each muscle
type fixed. The data are

Drug
Tension Weight Muscle Drug 1 Drug 2

High Type 1 3 21
Type 2 23 11

High
Low Type 1 22 32

Type 2 4 12

High Type 1 3 10
Type 2 41 21

Low
Low Type 1 45 23

Type 2 6 22

The test statistics are given below. Clearly, the only model that fits the
data is the model of all three-factor interactions.
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Model df G2 P

[TWM][TWD][TMD][WMD] 1 0.11 .74
[TW][TM][WM][TD][WD][MD] 5 47.67 .00
[T][W][M][D] 11 127.4 .00

6.2.2 Examining Each Term Individually
An intuitively appealing method of selecting an initial model is to examine
each term in the saturated model and include only those terms that are
important. The question arises as to how one decides which terms are im-
portant. One reasonable approach is testing whether the terms are nonzero.
One can then include the terms that are significantly different from zero and
drop the rest. Unfortunately, the saturated model is overparametrized to
the point that any terms except the u1234’s can be dropped without affect-
ing the model. The problem is in determining how to test whether the terms
are zero. There are many possibilities. For example, to test whether u123(hij)
is important in a four-dimensional table, we can test [12][13][234][134] ver-
sus [123][234][134] or we can test [234] versus [123][234] or any of a very
large number of other model comparisons. The problem is to decide on
which tests to examine.
Two methods have been proposed: testing each term last and the method

suggested by Brown (1976) in which tests of marginal and partial associa-
tion are performed for each term. These methods are examined in the next
two subsections.

6.2.3 Tests of Marginal and Partial Association
Brown (1976) proposed looking at two tests for each term in the saturated
model: a test of marginal association and a test of partial association. These
tests can be used in a variety of ways to choose an initial model.
To test a particular term for marginal association, collapse over any

factors not included in the term. The test of marginal association is based
on the marginal table and consists of testing the model that involves only
the term in question against the largest submodel that does not include
the term. (Main effects are not tested for marginal association.)

Example 6.2.2. The test of marginal association for the u1234(hijk)’s is
the test of [123][124][134][234] versus [1234]. The test of marginal associ-
ation for the u123(hij)’s is the test of [12][23][13] versus [123]. The test of
marginal association for the u24(ik)’s is the test of [2][4] versus [24].

The test for partial association depends on the number of factors involved
in the term. If the term involves s factors, the test of partial association is
a test of the model with all s-factor (interaction) terms against the reduced
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model in which the term in question is dropped out. Thus, in a test of partial
association, all other effects are fixed at a certain level of interaction.

Example 6.2.3. In a four-dimensional table, the test of partial associa-
tion for the u123(hij)’s is the test of [124][134][234] versus [123][124][134][234].
The test of partial association for the u24(ik)’s is the test of [12][13][14][23][34]
versus [12][13][14][23][24][34]. In a four-dimensional table, the test of partial
association for u1234 is identical to the test of marginal association.

Note that the degrees of freedom for the tests are the degrees of freedom
for dropping the term in question; they are typically the same in the two
tests.
There are a number of ways of choosing an initial model using Brown’s

tests: (a) include all terms with significant marginal tests, (b) include all
terms with significant partial tests, (c) include all terms for which either
the marginal or partial test is significant, (d) include all terms for which
both the marginal and partial tests are significant.
Method (d) always gives the smallest model. Method (c) always gives the

largest model. Method (d) can be used to determine an initial model for
forward selection. Method (c) determines a model that might be used with
backward elimination. Any of the four methods would give an appropriate
initial model for combined stepwise selection.
An obvious ad hoc model selection approach is to restrict attention to

models that are between the small model of method (d) and the large model
of method (c). Perhaps the main fault with this method is that important
terms could have been missed in model (c).

Example 6.2.4. Brown’s tests for the muscle tension data are presented
in Table 6.1. The WMD term is clearly significant as is the WM term. In
addition, several terms involving the change in muscle tension appear to
be important, e.g., T, TM, TD, and possibly TMD.
Using significance levels of α = .01 and α = .10, the four initial models

suggested by Brown’s tests are

α = .01 α = .10
Method (a): [WMD][TMD] [WMD][TMD][TWM]
Method (b): [WMD][TD][TM] [WMD][TMD]
Method (c): [WMD][TMD] [WMD][TMD][TWM]
Method (d): [WMD][TD] [WMD][TMD].

6.2.4 Testing Each Term Last
The basis of this method is testing whether each term can be dropped
from the saturated model without a significant loss of explanatory power.
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TABLE 6.1. Brown’s Tests for the Muscle Tension Data

Partial Marginal
Effect Association G2 P Association G2 P

T 6.04 .01 — —
W 3.55 .06 — —
M 1.18 .28 — —
D 0.08 .78 — —
TW 2.35 .13 0.06 .80
TM 6.81 .01 5.27 .02
WM 63.66 .00 62.25 .00
TD 6.02 .01 6.37 .01
WD 0.65 .42 1.12 .29
MD 0.17 .68 1.40 .24
TWM 1.00 .32 2.63 .10
TWD 0.01 .93 0.04 .85
TMD 2.86 .09 6.01 .01
WMD 35.65 .00 40.49 .00
TWMD 0.14 .70 0.14 .70

The problem with this method is that it requires a reparametrization of
the model. For example, the model log(mhijk) = u24(ik) + u1234(hijk) is a
saturated model, but if we drop the u24(ik)’s, we get log(mhijk) = u1234(hijk)
which is still a saturated model. Dropping the u24(ik)’s does not change the
model. To test every term against the saturated model requires a regression
parametrization in which dropping any term really reduces the model.
We begin with a simple example that assumes familiarity with estima-

tion for analysis of variance under the “usual” constraints. After the ex-
ample, we deal with the question of reparametrization. The discussion of
reparametrization involves a more sophisticated use of linear model ideas
than has been used thus far in the book.

Example 6.2.5. Consider again the muscle-tension data of Example
6.2.1. This involves four factors each at two levels. We begin by examining
a similar normal theory ANOVA model

yhijk = µ+ αh + βi + γj + ηk

+ (αβ)hi + (αγ)hj + (αη)hk
+ (βγ)ij + (βη)ik + (γη)jk
+ (αβγ)hij + (αβη)hik + (αγη)hjk
+ (βγη)ijk + (αβγη)hijk + ehijk .

With two levels in each factor, every interaction has one degree of free-
dom and corresponds to a contrast. For example, under the “usual” side
conditions, the (αβ) interaction contrast is

(αβ)11 − (αβ)12 − (αβ)21 + (αβ)22 .
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The estimate of the contrast is

ȳ11·· − ȳ12·· − ȳ21·· + ȳ22·· .

Log-linear model estimation is analogous to the ANOVA procedure.
We are dealing with a saturated model

log(mhijk) = u+ u1(h) + · · · + u234(ijk) + u1234(hijk),

so m̂hijk = nhijk for all h, i, j, and k. Define new parameters λ corre-
sponding to each interaction contrast. For example, the u12 interaction
corresponds to a contrast

4λ12 = u12(11) − u12(12) − u12(21) + u12(22)

or, equivalently,

16λ12 = 4[u12(11) − u12(12) − u12(21) + u12(22)].

This particular definition of the λ’s relates to two things that will be ex-
amined later. One is ease of computation of the estimates; the other is a
useful reparametrization of the saturated model. Let whijk = log(nhijk).
The estimated contrast is

16λ̂12 = 4[w̄11·· − w̄12·· − w̄21·· + w̄22··]
= [w11·· − w12·· − w21·· + w22··] .

Applying the usual side conditions, u12(h·) = u12(·i) = 0, leads to the
parameter estimates

λ̂12
4

= û12(11) = −û12(12) = −û12(21) = û12(22).

Obviously, if you know one of the û12(hi)’s, you know them all. It is simpler
to focus on λ̂12.
The estimates of all the λ̂’s are 1/16th of the sums of 8 whijk’s minus

the sum of the remaining 8 whijk’s, so all λ̂’s have the same asymptotic
standard error

SE(λ̂) =



 1
16

∑

hijk

1
nhijk





1/2

.

The standard error depends on having a saturated model and is a gener-
alization of the result for log odds ratios given earlier. Details are given in
Section 10.2.
If we do an analysis of variance on the whijk’s, the sums of squares for

various terms equal 16λ̂2. Table 6.2 shows an analysis of variance. Table 6.3
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TABLE 6.2. Analysis of
Variance on log(nhijk) for
the Muscle Tension Data

Source df SS
T 1 .2208
W 1 .3652
M 1 .0000
D 1 .9238
TW 1 .0522
TM 1 .4202
WM 1 5.631
TD 1 .1441
WD 1 .0080
MD 1 .2167
TWM 1 .1123
TWD 1 .0018
TMD 1 .2645
WMD 1 3.286
TWMD 1 .01188

gives values of |16λ̂| and |z| = |λ̂/SE(λ̂)| = |16λ̂/SE(16λ̂)|. The z values
can be used to test λ = 0. The estimates in Table 6.3 were obtained from
Table 6.2. For example, the source T has a sum of squares of .2208, so
|16λ̂T | = √

(16).2208. The standard error is SE(16λ̂T ) =
√∑

(1/nhijk).
The main reason for using estimates of 16λ rather than λ is that the 16λ
estimates are more comparable to another reparametrization of the satu-
rated model that will be used later.
The important terms in Table 6.3 are λWMD, λWM , and perhaps λD.

In other words, the main effect for D, the WM interaction, and the WMD
interaction are the important terms in the model. By our rule for including
lower-order terms, the inclusion of λWMD implies the model [WMD] which
automatically includes both [WM] and [D]. It is interesting to note that
the factor T does not appear in any important terms.

As mentioned at the beginning of the subsection, testing each term
last requires that the saturated model be reparametrized into a regression
model. A method is needed for relating the reparametrized results back to
the original parametrization. This is most easily done when each factor is
at only two levels. If each factor is at only two levels, there is one degree
of freedom for each u term. Still, there are an infinite number of possible
parametrizations. It is necessary to (arbitrarily) choose one.

Example 6.2.6. Consider a 2 × 2 × 2 × 2 table. The model

log(mhijk) = u+ u1(h) + u2(i) + u3(j) + u4(k) (1)
+ u12(hi) + u13(hj) + u14(hk) + u23(ij) + u24(ik) + u34(jk)
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TABLE 6.3. Muscle Ten-
sion Data: Estimates and
Test Statistics for
Model (2)

λ |16λ̂| |z|
T 1.880 1.44
W 2.417 1.85
M 0.002 0.00
D 3.846 2.94
TW 0.914 0.70
TM 2.593 1.98
WM 9.492 7.26
TD 1.518 1.16
WD 0.358 0.27
MD 1.862 1.42
TWM 1.340 1.03
TWD 0.172 0.13
TMD 2.057 1.57
WMD 7.251 5.55
TWMD 0.436 0.33

SE(16λ̂) = 1.307.

+ u123(hij) + u124(hik) + u134(hjk) + u234(ijk)

+ u1234(hijk)

can be reparametrized as

log(mhijk) = λ+ (−1)h−1λ1 + (−1)i−1λ2 + (−1)j−1λ3 + (−1)k−1λ4

+ (−1)h+i−2λ12 + (−1)h+j−2λ13 + (−1)h+k−2λ14

+ (−1)i+j−2λ23 + (−1)i+k−2λ24 + (−1)j+k−2λ34 (2)
+ (−1)h+i+j−3λ123 + (−1)h+i+k−3λ124

+ (−1)h+j+k−3λ134 + (−1)i+j+k−3λ234

+ (−1)h+i+j+k−4λ1234 .

This parametrization gives the same estimates as using the “usual” side
conditions, i.e., 0 = u1(·) = u2(·) = u3(·) = u4(·) = u12(·i) = u12(h·) = · · · =
u1234(·ijk) = u1234(h·jk) = u1234(hi·k) = u1234(hij·). Model (2) is given in
matrix form in Example 10.4.1.
Other sets of side conditions correspond to other reparametrizations.

For example, another frequently used set of side conditions are 0 = u1(1) =
u2(1) = u3(1) = u4(1) = u12(1i) = u12(h1) = · · · = u1234(1ijk) = u1234(h1jk) =
u1234(hi1k) = u1234(hij1). Here, all u terms are set equal to zero for which
any of h, i, j, or k is 1. If we let δab = 1 when a = b and 0 otherwise
where a and b are any symbols, these side conditions correspond to the
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reparametrized model

log(mhijk) = γ + δh2γ1 + δi2γ2 + δj2γ3 + δk2γ4

+ δ(h,i)(2,2)γ12 + δ(h,j)(2,2)γ13 + δ(h,k)(2,2)γ14

+ δ(i,j)(2,2)γ23 + δ(i,k)(2,2)γ24 + δ(j,k)(2,2)γ34 (3)
+ δ(h,i,j)(2,2,2)γ123 + δ(h,i,k)(2,2,2)γ124

+ δ(h,j,k)(2,2,2)γ134 + δ(i,j,k)(2,2,2)γ234

+ δ(h,i,j,k)(2,2,2,2)γ1234 .

Except for λ1234 and γ1234, these parametrizations are not equivalent and
can lead to different conclusions about which terms should be in a model.
As mentioned earlier, a primary difficulty in testing each term last is in

relating the tests for the reparametrized model to tests for ANOVA type
models. In the special case where each factor has two levels (categories),
the relationship is simple, because each term in the ANOVA type models
has one degree of freedom, just as each test in the reparametrized model
has one degree of freedom. If a particular term has a large test statistic,
the corresponding main effect or interaction is included in the model. For
example, if we reject H0 : λ12 = 0 (or H0 : γ12 = 0), then our ANOVA
model includes u12(hi). This implies that the ANOVA model will include
(at least implicitly) u1(h) and u2(i) regardless of whether λ1 (γ1) and λ2 (γ2)
are significantly different from zero. Note that because λ12 and γ12 are not
equivalent, the results of this procedure depend on the parametrization
chosen.
In fact, identifying important effects by testing all effects last does not

provide a good end model. It provides an initial model from which some
method of exploration (e.g., forward selection or combined stepwise) can
be used to determine a final model.

Example 6.2.7. Consider again the muscle tension data of Example
6.2.1. The λ values defined in Example 6.2.5 using the usual side conditions
are exactly the same as the λ values defined in model (2). For example,

4λ12 = u12(11) − u12(12) − u12(21) + u12(22).

We have already obtained estimates of the λ’s, standard errors, and |z|
scores.
Similarly, if we use the parametrization of model (3) and the related side

conditions, we find, for example, that

γ12 = u12(11) − u12(12) − u12(21) + u12(22);

however, 4λ12 �= γ12. Some computer programs, e.g., GLIM, routinely pro-
vide estimates and standard errors for the parametrization of model (3).
The results along with |z| values are reported in Table 6.4. There are now
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at least six interesting terms: γWMD, γMD, γWM , γD, γM , and γW . The |z|
value for γWD is also quite large. Again using the rule of including lower-
order terms, the inclusion of γWMD implies the model [WMD], which, in
turn, implies the inclusion of all of the other interesting terms. Once again,
factor T does not appear.
The results from these two parametrizations are reasonably consistent

for this data set, but it is not difficult to see how the analysis could go
awry. Consider the terms for TWM and TMD. Using model (2), we get
|z(λ̂TWM )| = 1.03 and |z(λ̂TMD)| = 1.57, so, although neither is signifi-
cant, the TMD term seems considerably more important than the TWM
term. However, in model (3), |z(γ̂TWM )| = 0.80 and |z(γ̂TMD)| = 0.80.
In model (3), the TMD and TWM terms seem to be of equal impor-
tance. The problem is that the parameters are model dependent. Because
they are from different models, 8λTWM �= γTWM . As a result, the test
statistics are testing different things. The only exception to this is that
16λTWMD = γTWMD.

The relationships between parameters in models (1), (2), and (3) are
complex and, in the our view, often not worth pursuing. The simplest way
to avoid the complexities of alternative parametrizations is to deal directly
with model (1) and its submodels. In our view, the method of testing each
term last can give some rough ideas about the analysis, but usually should
not be considered to give anything more than rough ideas.

Again, we note a rather curious phenomenon in this example. The ex-
periment was conducted to investigate changes in muscle tension. Neither
parametrization shows the significance of any effect involving T, the change
in tension. It is theoretically possible that none of the other factors relate
to change in muscle tension, but in most studies of this type, the inves-
tigator conducts the experiment because he or she knows that there are
relationships between the other factors and change in tension. As we saw
from the tests of partial and marginal association, such relationships exist.
The method employed has simply failed to find them.

Two final comments on the choice of an initial model. Any effects that are
forced into the model to deal with the sampling scheme should be included in
any initial model and never deleted in any model selection method. Also, one
is rarely interested in models that are smaller than the model of complete
independence. It is common practice to include at least the main effect for
every factor in an initial model.

6.3 Example of Stepwise Methods

We now give detailed examples of forward selection and backward elimina-
tion. Reconsider the data of Example 3.7.2 in which there are four factors
defining a 2 × 2 × 3 × 6 table. Recall that the factors are
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TABLE 6.4. Muscle Tension Data —
Model (3): Estimates, Standard Errors,
and Test Statistics

γ γ̂ SE |z|
T −0.000 .8165 0.00
W 1.992 .6154 3.24
M 2.037 .6138 3.32
D 1.946 .6172 3.15
TW 0.716 .8569 0.84
TM 0.578 .8570 0.67
WM −3.742 .8199 4.56
TD −0.742 .9024 0.82
WD −1.571 .6765 2.32
MD −2.684 .7179 3.74
TWM −0.888 1.104 0.80
TWD −0.304 .9781 0.31
TMD 0.810 1.010 0.80
WMD 3.407 .9620 3.54
TWMD 0.436 1.307 0.33

Factor Abbreviation Levels
Race R White, Nonwhite
Sex S Male, Female
Opinion O Yes = Supports Legalized Abortion

No = Opposed to Legalized Abortion
Und = Undecided

Age A 18-25, 26-35, 36-45, 46-55, 56-65, 66+ years

The data are repeated in Table 6.5.

We begin by fitting the all three-factor model, the all two-factor model,
and the complete independence (all one-factor) model.

Model df G2

[RSO][RSA][ROA][SOA] 10 6.12
[RS][RO][RA][SO][SA][OA] 37 26.09
[R][S][O][A] 62 121.47

Clearly, both the all three-factor and the all two-factor models fit the data
relative to the saturated model. Comparing the all three-factor and all
two-factor models gives

G2 = 26.09 − 6.12 = 19.97,
df = 37 − 10 = 27,

so there is no reason to reject the all two-factor model. The model of com-
plete independence does not fit.
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TABLE 6.5. Abortion Opinion Data

Age
Race Sex Opinion 18-25 26-35 36-45 46-55 56-65 66+

Yes 96 138 117 75 72 83
Male No 44 64 56 48 49 60

Und 1 2 6 5 6 8
White

Yes 140 171 152 101 102 111
Female No 43 65 58 51 58 67

Und 1 4 9 9 10 16

Yes 24 18 16 12 6 4
Male No 5 7 7 6 8 10

Und 2 1 3 4 3 4
Nonwhite

Yes 21 25 20 17 14 13
Female No 4 6 5 5 5 5

Und 1 2 1 1 1 1

6.3.1 Forward Selection
First, we consider forward selection using the model of complete indepen-
dence as our initial model. As a criterion for adding terms, we add the most
significant term as long as the significance level is below .10. For those of
us who are not wild about significance tests, some comments based di-
rectly on the likelihood ratio test statistics are also included. It should be
remembered that the formal method of forward selection is based on the
significance levels.
Three methods of forward selection have been discussed. These involve

adding two-factor terms, adding simple effects, and adding multiple effects.
Starting with the model of complete independence, the first step in all three
methods is the same. We require the following fits:

Model Added Term df G2

[RS][O][A] RS 61 119.45
[RO][S][A] RO 60 107.48
[RA][S][O] RA 57 115.46
[SO][R][A] SO 60 112.28
[SA][R][O] SA 57 120.75
[OA][R][S] OA 52 59.78
[R][S][O][A] 62 121.47
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All of the models with two-factor terms are compared to the model of
complete independence; e.g., to test the RS term, G2 = G2([R][S][O][A])−
G2([RS][O][A]) = 121.47 − 119.45 = 2.02. The degrees of freedom are
62 − 61 = 1. The results of the tests are summarized below.

Term df G2 P

RS 1 2.02 .1557
RO 2 13.99 .0009
RA 5 6.01 .3055
SO 2 9.19 .0101
SA 5 0.72 .9820
OA 10 61.69 .0000

The term OA has the smallest P value, so [OA] is added to the model of
complete independence.
With the new model [R][S][OA], the second step of adding either two-

factor effects or simple effects again remains the same. At this point, adding
any three-factor term would imply adding more than one effect, so simple
effects are only two-factor effects. Consideration of the addition of multiple
effects leads to a different second step.
To add either a two-factor effect or a simple effect requires the following

fits:

Model Added Term df G2

[RS][OA] RS 51 57.76
[RO][OA][S] RO 50 45.79
[RA][OA][S] RA 47 53.77
[SO][OA][R] SO 50 50.59
[SA][OA][R] SA 47 59.06
[R][S][OA] 52 59.78

Again, all the models with an additional two-factor term are compared
to the model [R][S][OA].

Term df G2 P
RS 1 2.02 .1557
RO 2 13.99 .0009
RA 5 6.01 .3055
SO 2 9.19 .0101
SA 5 0.72 .9820

The term RO is added to the model, giving a base model of [RO][OA][S].
If addition of multiple effects to [R][S][OA] is considered, two more mod-

els must be evaluated. Adding an additional factor to the OA term leads
to the models [R][SOA] and [S][ROA]. These models have the fits
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Model Added Term df G2

[R][SOA] SOA 35 47.91
[S][ROA] ROA 35 32.31
[R][S][OA] 52 59.78

They are tested against [R][S][OA].

Term df G2 P

SOA 17 11.87 .8082
ROA 17 27.47 .0516

These P values are larger than the P value for RO, so the term RO is still
added to [R][S][OA], giving the new model [RO][OA][S].
In this example, addition of two-factor effects and addition of simple

effects turn out to be identical procedures. We now follow this procedure
to its conclusion. After establishing the end model, we will indicate how
these procedures would have differed if our model selection procedure had
been modified slightly. Finally, we will follow the method of addition of
multiple effects to its conclusion.
After the second step of forward selection, the simple effects and two-

factor effects procedures had arrived at a base model of [RO][OA][S]. The
only simple effects that can be added are two-factor effects. There are four
possible effects that can be added. The necessary model fits are

Model Added Term df G2

[RS][RO][OA] RS 49 43.77
[RA][RO][OA][S] RA 45 38.82
[SO][RO][OA] SO 48 36.60
[SA][RO][OA] SA 45 45.07
[RO][OA][S] 50 45.79

This leads to the following differences:

Term df G2 P
RS 1 2.02 .1557
RA 5 6.97 .2228
SO 2 9.19 .0101
SA 5 0.72 .9820

Thus, [SO] is added to the model. This turns out to be the last step at
which anything is added to the model. The next step examines



6.3 Example of Stepwise Methods 229

Model Added Term df G2

[RS][SO][RO][OA] RS 47 34.25
[RA][SO][RO][OA] RA 43 29.63
[SA][SO][RO][OA] SA 43 35.33
[SO][RO][OA] 48 36.60

and

Term df G2 P

RS 1 2.35 .1252
RA 5 6.97 .2228
SA 5 1.27 .9382

At this stage, all of the P values are in excess of .10, so no new term is
added and the final model is [SO][RO][OA].
To see how adding two-factor effects can differ from adding simple ef-

fects, suppose that our criterion for stepping is having P values less than
.15. With this criterion, the term RS would be added to the model, giv-
ing a new model of [RS][SO][RO][OA]. If we restrict ourselves to adding
two-factor effects, the next step involves adding RA or SA. If we allow
addition of simple effects, the three-factor term RSO could also be added.
This is the first time that a simple effect is a three-factor effect because
[RS][SO][RO][OA] is the first model that contains all three of the two-
factor effects that correspond to a three-factor effect. In particular, with
[RS], [SO], and [RO] in the model, adding [RSO] is adding a simple effect.
Recall that the rationale for starting our search with the model of com-

plete independence was based in part on the fact that the all two-factor
model gave an adequate fit. This provides a rationale for considering only
the addition of two-factor terms. Unfortunately, the test of the all two-
factor model against the all three-factor model can have very little power
for identifying individual three-factor terms that are important. It is not
safe to ignore all three-factor terms based on this one test. Thus, it is dan-
gerous to consider adding only two-factor effects. By considering addition
of simple effects, we at least admit the possibility of examining important
three-factor effects.
We now return to examining forward selection with the addition of multi-

ple effects. Recall that after the second step, we had arrived at a base model
of [RO][OA][S]. The multiple effects that can be added involve adding one
new factor to a term already in the model, so these are the remaining two-
factor effects (which are also simple effects) plus RSO, ROA, and SOA.
Given below are statistics for fitting each model plus the differences in df ’s
and G2’s between the various models and [RO][OA][S]. Tests are based on
these differences. We use a cutoff of α = .05. (For this example, the first
two steps do not change when α = .05 is used instead of α = .10.)
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Differences
Model Added Term df G2 df G2 P

[OR][OA][SA] SA 45 45.07 5 0.72 .9820
[RA][OR][OA][S] RA 45 38.82 5 6.97 .2228
[RO][OA][OS] SO 48 36.60 2 9.19 .0101
[RO][OA][SR] RS 49 43.77 1 2.02 .1557
[RO][SOA] SOA 33 33.92 17 11.87 .8082
[ROA][S] ROA 35 32.31 15 13.48 .5654
[RSO][OA] RSO 45 24.77 5 21.02 .0008
[RO][OA][S] — 50 45.79 — — —

For testing against [RO][OA][S], the model with the smallest P value is
[RSO][OA], with P = .0008. The P value is less than .05, so we take
[RSO][OA] as our working model. Multiple effects that can be added to
this are SA, RA, SOA, ROA, RSA, and RSOA. The statistics are given
below.

Differences
Model Added Term df G2 df G2 P

[RSOA] RSOA 0 0.00 45 24.77 .9938
[RSO][OA][SA] SA 40 23.50 5 1.27 .9382
[RSO][OA][RA] RA 40 17.79 5 6.97 .2228
[RSO][SOA] SOA 30 22.09 15 2.68 .9998
[RSO][ROA] ROA 30 11.29 15 13.48 .5655
[RSO][OA][RSA] RSA 30 14.43 15 10.34 .7980
[RSO][OA] — 45 24.77 — — —

For testing against the model [RSO][OA], every model has a P value
greater than .05, so no new terms are added. The final model is [RSO][OA].
Because the addition of multiple effects leads to considering more models

than the addition of simple effects, the author prefers the multiple effect
option if you insist on doing forward selection.

6.3.2 Backward Elimination
We now consider applying backward elimination to the initial model con-
taining all two-factor terms. We will use a cutoff value of α = .05. Given
below are statistics for the model of all two-factor terms and the six mod-
els in which one of the two-factor terms has been dropped. (At this stage,
the simple effects are precisely the two-factor effects.) The df and G2 for
testing each model against the saturated model are given. With this infor-
mation, each reduced model can be tested against the all two-factor model
by taking differences in the df ’s and G2’s. For each of the reduced models,
the differences are listed along with the P value for the test.
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Deleted Differences
Model Term df G2 df G2 P

[AS][AR][AO][OS][OR][SR] — 37 26.09 — — —
[AS][AR][OS][OR][SR] AO 47 89.24 10 63.15 .0000
[AR][AO][OS][OR][SR] AS 42 27.28 5 1.19 .9461
[AS][AO][OS][OR][SR] AR 42 32.98 5 6.89 .2289
[AS][AR][AO][OR][SR] OS 39 36.12 2 10.03 .0067
[AS][AR][AO][OS][SR] OR 39 41.33 2 15.24 .0005
[AS][AR][AO][OS][OR] SR 38 28.36 1 2.27 .1319

Deleting the AS term gives the largest P value, so we choose the reduced
model [AR][AO][OS][OR][SR].
Once again, the simple effects are the two-factor effects. The necessary

statistics are

Differences
Model Deleted Term df G2 df G2 P

[AR][AO][OS][OR][SR] — 42 27.28 — — —
[AR][OS][OR][SR] AO 52 89.93 10 62.65 .0000
[AO][OS][OR][SR] AR 47 34.25 5 6.97 .2228
[AR][AO][OR][SR] OS 44 36.80 2 9.52 .0086
[AR][AO][OS][SR] OR 44 42.53 2 15.26 .0005
[AR][AO][OS][OR] SR 43 29.63 1 2.35 .1252

Deleting the AR term gives the largest P value, so the new model is
[AO][OS][OR][SR].
Simple effects are still two-factor effects, so the necessary statistics are

Differences
Model Deleted Term df G2 df G2 P

[AO][OS][OR][SR] — 47 34.25 — — —
[A][OS][OR][SR] AO 57 95.94 10 61.69 .0000
[AO][OR][SR] OS 49 43.77 2 9.52 .0085
[AO][OS][SR] OR 49 48.57 2 14.32 .0008
[AO][OS][OR] SR 48 36.60 1 2.35 .1252

We now delete SR and use the base model [AO][OS][OR]. The statistics are

Differences
Model Deleted Term df G2 df G2 P

[AO][OS][OR] — 48 36.60 — — —
[A][OS][OR] AO 58 98.29 10 61.69 .0000
[AO][OR][S] OS 50 45.79 2 9.19 .0101
[AO][OS][R] OR 50 50.59 2 13.99 .0009

None of the P values is greater than .05, so we stop deleting terms and go
with the model [AO][OS][OR]. Note that this model has the nice interpre-
tation that given people’s opinions; race, sex, and age are independent.
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In this example, simple effects were always two-factor effects. If our cutoff
level had been α = .01, this would not have happened. With a cutoff of
.01, the term OS can be dropped from [AO][OS][OR], yielding the model
[AO][OR][S]. Deleting two-factor terms leads us to consider the reduced
models [A][OR][S] (eliminating AO) and [AO][R][S] (eliminating OR). If we
consider dropping simple effects, we would also consider the reduced model
[AO][OR] (eliminating S). However, as mentioned earlier, it is typically not
a good idea to drop main effects. If the initial model was the model of
all three-factor effects, the difference between dropping three-factor effects
and dropping simple effects could be substantial. Dropping simple effects
is a more general procedure and seems more reasonable to the author.

6.3.3 Comparison of Stepwise Methods
Forward selection with α = .10 and addition of simple effects lead to the
model [RO][SO][OA]. It is easily seen that α = .05 would lead to the
same model. Forward selection with multiple effects and α = .05 leads to
[RSO][OA]. Backward elimination of simple effects from the all two-factor
model with α = .05 leads to [RO][SO][OA]. Frankly, we are lucky to have
two methods give the same model. There is no reason that this needs to
happen. Which is a better model? One is a special case of the other, so the
test statistic is 36.60− 24.77 = 11.83 with 48− 45 = 3 degrees of freedom.
This suggests quite strongly that [RSO][OA] is the better model. Note that
it will not always be possible to test the results of different procedures
because the models may not be comparable.
Stepwise methods are very sensitive to the cutoff values used. They are

also very sensitive to the initial model. For backward elimination, we started
with the model of all two-factor effects. The importance of the single three-
factor effect RSO was washed out in testing the all two-factor model against
the all three-factor model. Hence, it was decided to go with the two-factor
model. If we had considered Brown’s measures of partial and marginal
association, we would have been better off (at least for these data). Brown’s
measures are given in Table 6.6. The term [RSO] stands out as a clearly
important effect. In fact, even without using a stepwise procedure, Brown’s
tests clearly suggest the model [RSO][OA], but that is a function of these
particular data.
In this section, we have used several variations on stepwise regression.

This is not just a pedagogical device. If stepwise methods are to be used
in spite of their well-known weaknesses, it is important to use several vari-
ations. This allows the data to indicate several candidate models. These
models should be compared to see how well they fit the model assumptions.
They should also be compared for interpretability.
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TABLE 6.6. Brown’s Measures of Association

Effect df Partial G2 P Marginal G2 P

R 1 1552.90 .00 — —
S 1 25.21 .00 — —
O 2 1532.82 .00 — —
A 5 55.14 .00 — —
RS 1 2.27 .13 2.02 .16
RO 2 15.24 .00 13.99 .00
SO 2 10.03 .01 9.19 .01
RA 5 6.89 .23 6.01 .31
SA 5 1.19 .95 0.72 .98
OA 10 63.15 .00 61.69 .00
RSO 2 10.51 .01 9.48 .01
RSA 5 2.55 .77 1.70 .89
ROA 10 7.17 .71 6.51 .77
SOA 10 1.43 1.00 1.41 1.00
RSOA 10 6.12 .81 6.12 .81

6.3.4 Computer Commands
BMDP-4F performs these stepwise procedures and gives initial models, in-
cluding measures of partial and marginal association. Commands for back-
ward elimination of simple effects are

/ INPUT FILE = ’C:\LOGLIN\ABORT.DAT’.
FORMAT = FREE.
VARIABLES = 5.

/ VARIABLE NAMES = R, S, A, O, N.
/ TABLE INDEX = R, S, A, O.

COUNT = N.
/ STAT ALL.
/ FIT MODEL = AS, AR, AO, OS, OR, SR.

ASSOCIATION = 4.
DELETE = SIMPLE.
STEP = 10.
PROB = .05.

/ PRINT LINE = 79.
/ END

The “step” command specifies how many steps are allowed in the pro-
cedure. The “prob” command specifies the probability for stopping the
procedure. With this program, both the P value for the individual term
and the P value for testing the model against the saturated model must
be less than the specified probability for the procedure to stop.
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6.4 Aitkin’s Method of Backward Selection

Aitkin (1978, 1979) suggests a model selection method that is closely re-
lated to the all s-factor effects method described in Section 2. After using
backward selection to pick an all s-factor model, Aitkin’s method provides
for testing every model intermediate between the all s-factor model and
the all s− 1-factor model. The procedure also incorporates ideas on simul-
taneous testing that control the overall error rate for all tests performed.

Aitkin begins by testing the all s−1-factor model against the all s-factor
model at a level, say, γs. (The choice of γs will be discussed later.) This
is actually a test of whether the s-factor effects are needed in the model.
Except for the choice of γs, this is exactly what was done in the subsection
of Section 2 on All s-Factor Effects.

To describe the procedure precisely, we need some additional notation.
Let G2

s be the likelihood ratio test statistic and let ds be the degrees of
freedom for testing the all s-factor model against the saturated model. To
test the need for s-factor effects, we reject the null hypothesis of no s-factor
effects if

G2
s−1 − G2

s > χ2(1 − γs, ds−1 − ds) .

This is a test for the adequacy of the all s − 1-factor model. Aitkin then
identifies the smallest value of s for which the all s-factor effects model
adequately fits the data. This model has s as the largest value such that
G2

s−1 − G2
s > χ2(1 − γs, ds−1 − ds).

Example 6.4.1. Consider the muscle tension data of Example 6.2.1. This
is a four-factor table. As given in Example 6.2.1, the all s-factor models are

s Model ds G2
s

4 [TWMD] 0 0
3 [TWM][TWD][TMD][WMD] 1 0.11
2 [TW][TM][WM][TD][WD][MD] 5 47.67
1 [T][W][M][D] 11 127.4

For reasons to be considered later, suppose γ4 = .05, γ3 = .185, and γ2 =
.265, then Aitkin’s tests are

s − 1 versus s G2
s−1 − G2

s χ2(1 − γs, ds−1 − ds)
3 versus 4 0.11 − 0 = .11 χ2(.95, 1) = 3.841
2 versus 3 47.67 − 0.11 = 47.56 χ2(.815, 4) = 6.178
1 versus 2 127.4 − 47.67 = 79.7 χ2(.735, 6) = 7.638

The largest value of s for which G2
s−1 − G2

s > χ2(1 − γs, ds−1 − ds) is
s = 3. The model [TWM][TWD][TMD][WMD] fits the data according to
Aitkin’s criteria.
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Before discussing Aitkin’s method in general, we examine of its applica-
tion to the race, sex, opinion, age data.

Example 6.4.2. For the race, sex, opinion, age data of Section 3, take
γs = .10 for all s. Recall from the previous section that the model of
all two-factor effects fits well. Because of this, the procedure will never
consider three-factor effects. In particular, it will never consider the model
[RSO][OA] which fits very well.
The model of all two-factor effects has 37 degrees of freedom and

G2 = 26.09 for testing against the saturated model. The model of complete
independence has 62 degrees of freedom for testing against the saturated
model. In Aitkin’s method, a model, say X, with all main effects and some
two-factor effects is deemed inadequate if

G2
X − 26.09 > χ2(.90, 62 − 37) = 34.39

or, equivalently, if

G2
X > 34.38 + 26.09 = 60.47 .

Any model that is not inadequate is adequate. A minimal adequate model
is an adequate model that has no submodel that is deemed adequate. Our
primary interest is in identifying minimal adequate models.
Among models with two-factor effects, the most informative models will

be small models that fit and large models that do not fit. If a small model
fits, any larger model also fits. If a large model does not fit, then any smaller
model does not fit.
We begin by looking for small models that fit adequately. In particular,

consider the first step of forward selection from the complete independence
model.

Model Added Effect G2

[R][S][OA] AO 59.78
[R][SA][O] SA 120.75
[RA][S][O] RA 115.46
[R][SO][A] SO 112.28
[RO][S][A] RO 107.47
[RS][O][A] RS 109.45

We are in luck! One of these models, [R][S][OA], has G2 < 60.47, so it is
deemed adequate. Thus, we have an extremely small model that is adequate
and any larger model must also be adequate. The model [R][S][OA] is clearly
a minimal adequate model. We have also established that any other minimal
adequate models must have at least 2 two-factor effects (we have already
checked all models with only 1 two-factor effect) and none of the two-factor
effects can be OA (otherwise it will have [R][S][OA] as a submodel).
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We now look for relatively large models that do not fit. Typically, a good
approach is to look at the first step of backward elimination from the all
two-factor effects model and hope to find some that do not fit adequately.
For these data, however, we just established that any model larger than
[R][S][OA] fits. In the first step of backward elimination, one two-factor
effect is dropped out. Unless the two-factor effect dropped out is OA, we
already know that the model will fit. The only model we need consider
is [RS][RO][RA][SO][SA]; this model has a G2 of 89.24. Once again, we
are in luck. The value 89.24 is greater than the critical value 60.47, so
[RS][RO][RA][SO][SA] is deemed inadequate. Thus, any model that does
not include OA must be inadequate. Combining our two results, we have
established that the only minimal adequate model is [R][S][OA].
We now consider what would occur if γ2 was somewhat larger. Aitkin

has suggested a method of choosing the γs’s that will be discussed later.
It begins with a level, say α = .05, and for t = 4 factors with s = 2,
Aitkin’s choice is γ2 = 1 − (1 − α)(

4
2) = .265, where

(4
2

)
= 6 is the number

of combinations of four things taken two at a time. Upon establishing that
χ2(.735, 25) = 28.97 where 25 = 62−37, a model X consisting of two-factor
effects is deemed inadequate if

G2
X > 28.97 + 26.09 = 55.06 .

The model [R][S][OA] hasG2 = 59.78, so it is no longer deemed adequate.
However, it is very close to meeting the adequacy criterion. It makes sense
to consider models that include [OA] and another two-factor effect. In par-
ticular, this is precisely the second step in forward selection starting with
complete independence and adding simple effects. The models considered
and their G2’s are

Model G2

[R][SA][OA] 59.06
[RA][S][OA] 53.77
[R][SO][OA] 50.59
[RO][S][OA] 45.79
[RS][OA] 57.76

The models [R][SA][OA] and [RS][OA] have G2 > 55.06, so they
are deemed inadequate. The models [RA][S][OA], [R][SO][OA], and
[RO][S][OA] are adequate and no smaller models are adequate, so the
models [RA][S][OA], [R][SO][OA], and [RO][S][OA] are minimally adequate
models. Working from the all two-factor model down, the model of all
two-factor effects except [OA] is inadequate (G2 = 89.24), so all adequate
models contain [OA].
The inadequate models, [R][SA][OA] and [RS][OA] need to be considered

as to the additional terms needed to make them adequate. If we add RA,
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SO, or RO, then we have made them larger than one of our minimally
adequate models. The only two-factor effects that can generate additional
minimally adequate models are SA and RS. If we add the appropriate effect
to each model, we get [RS][SA][OA] in both cases. The G2 for this model
is 57.04. Because G2 is greater than the critical value 55.06, [RS][SA][OA]
is considered inadequate. Therefore, the only minimally adequate models
are [RA][S][OA], [R][SO][OA], and [RO][S][OA]. All of these have simple
interpretations in terms of conditional independence.
Aitkin’s method applied to these data gives smaller models than any of

the stepwise methods considered. Unfortunately, it missed the important
[RSO] interaction.

General Discussion
We now present a general discussion of Aitkin’s method. The method begins
with a model of all s-factor effects that adequately fits the data, while the
model with only the s − 1-factor effects does not fit the data. The crux of
the method is in identifying intermediate models that also give an adequate
fit. If X is a model that contains all s−1-factor effects and some but not all
of the s-factor effects, Aitkin tests the adequacy of X by rejecting adequacy
of fit if

G2
X − G2

s > χ2(1 − γs, ds−1 − ds)

Here, G2
X is the likelihood ratio test statistic for testing model X against

the saturated model. Note that the same criterion for rejection χ2(1 −
γs, ds−1 − ds) is used for any such model X. Also, if the all s − 1-factor
model is indeed an adequate fit, then because G2

X − G2
s < G2

s−1 − G2
s, the

probability of a false rejection for any and all such models X is less than
the probability of a false rejection of the all s − 1-factor model.
The fact that the criterion of rejection does not depend on the particular

model X leads to two important observations. If X is an adequate model,
then any larger model, say W , must also be deemed adequate because
G2

X −G2
s ≥ G2

W −G2
s. Similarly, if X is inadequate, then any smaller model

W must also be deemed inadequate because G2
X − G2

s ≤ G2
W − G2

s. These
facts together with Aitkin’s restriction to only considering s-factor terms
make it practical to examine all models that involve s-factor terms.

For the data of Example 6.2.1, Aitkin’s method seeks to examine
every model that is intermediate between the all three-factor model
[TWM][TWD][TMD]
[WMD] and the all two-factor model [TW][TM][WM][TD][WD][MD]. For
example, in testing the intermediate, model [TWM][TWD][TMD], the value
of G2

[TWM ][TWD][TMD] − G2
3 = 35.65 is larger than χ2(.815, 4) = 6.178,

so the model [TWM][TWD][TMD] is not considered adequate. (The test
statistic was obtained from Table 6.1 and .815 = 1 − γ3 from earlier in
the section.) Note that the χ2 value uses the 4 degrees of freedom as-
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sociated with testing the all two-factor model against the all three-factor
model. Similarly, any other model intermediate between the all two-factor
and all three-factor models is tested against the all three-factor model using
χ2(.815, 4).
If the all two-factor model is adequate, the probability of a false rejection

when testing the all two- and all three-factor models is γ3 = .185. If the
all two-factor model is adequate, then any intermediate model is adequate.
Similarly, if an intermediate model is inadequate, then the all two-factor
model must be inadequate. Because tests for intermediate models use the
same χ2 value but have smaller G2 values than the all 2 versus all 3 test,
a false rejection occurs for an intermediate model if and only if a false
rejection occurs for the all two-factor model. (This is similar in spirit to
Scheffé’s method of multiple comparisons.)
Aitkin defines a subset of s-factor effects as a minimal adequate subset if

no proper subset defines an adequate model. (The model is the model of all
s−1-factor effects plus the subset of s-factor effects.) Typically, there will be
several such models. Each of these models may be reduced further by testing
any smaller-order (e.g., s − 1) terms that are not forced into the model.
These tests use the criterion of rejection appropriate for that order. [For an
s − 1-factor term, compare the test statistic to χ2(1 − γs−1, ds−2 − ds−1).]
The fact that relatively few lower-order terms will not be forced into the
model makes it practical to carry out this procedure.
The end result of Aitkin’s model selection method is a collection of mini-

mal adequate models. These models should be compared for interpretability.
The should also be compared to see how well they fit the model assumptions.
In fact, they can even be compared using the Adjusted R2 or the Akaike
information criteria discussed in Section 3.6.
Probably the main fault of Aitkin’s method is the backward elimination

in its first step. The first step is to decide on an adequate all s-factor
model. For example, in a five-factor table, there are 10 three-factor terms.
If 1 of the three-factor terms is substantial and the other 9 are not, then
a test for all 10 terms will have little power to establish the need for this
single three-factor term. We saw an example of this phenomenon earlier
with the abortion opinion data. If it is important to pick up individual
high-order interactions, Aitkin’s method will be problematic. On the other
hand, Aitkin’s method may provide a good starting point to which an
examination of higher-order interactions can be added.
Finally, we discuss the choice of γs’s. Aitkin suggests choosing the γs’s

so that there is a probability no greater than, say, γ of rejecting the main-
effects-only model (i.e., complete independence) when main-effects-only is
adequate. Suppose there are t factors in the table. When complete indepen-
dence is true, the various tests for s-order interactions are asymptotically
independent. Thus, asymptotically, the probabilities of not rejecting any
test is the product of the probabilities for the individual tests and the γi’s
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should be chosen to satisfy

1 − γ =
t∏

s=2

(1 − γs) .

(Note that we do not consider testing main effects, i.e., first-order “inter-
actions.”)
Particular values of the γs’s can be chosen by analogy with a balanced

t-factor analysis of variance. In a t-factor ANOVA, the number of s-factor
effects is

(
t
s

)
. In a balanced ANOVA (with known variance), each of these

tests might be conducted at some common level α.
Applying this idea to log-linear models, the probability of not rejecting

any of the s-factor tests (assuming complete independence holds and tests
are independent) is

1 − γs = (1 − α)
(
t
s

)
.

This determines a specific value for γs. The corresponding value of γ can
be found using the binomial theorem. Because 2t =

∑t
2=0

(
t
s

)
, we find that

γ = 1 −
t∏

s=2

(1 − γs)

= 1 −
t∏

s=2

(1 − α)
(
t
s

)

= 1 − (1 − α)2
t−t−1 .

Aitkin (1979) suggests that it is reasonable to pick an α level that yields a
γ between .25 and .5.

In Example 6.4.1, t = 4 and the γs values were chosen to satisfy

1 − γs = (1 − .05)
(4
s

)
,

so γ4 = .05, γ3 = .185 and γ2 = .265. These yield

γ = 1 − {(1 − .05)(1 − .185)(1 − .265)},
= .431

which is in Aitkin’s suggested range.
In the discussion of Aitkin’s (1978) paper, D.R. Cox suggests that the

emphasis on simultaneous testing in Aitkin’s method is excessive. A com-
promise approach that seems intuitively appealing to the current author
is, for some value α, to choose α = γ2 = · · · = γt.
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6.5 Model Selection Among Decomposable and
Graphical Models

Wermuth (1976) has proposed a backward elimination technique that is re-
stricted to the decomposable models discussed in Section 5.2. She focuses
on identifying pairs of factors that can be viewed as conditionally inde-
pendent. Wermuth’s method is most easily understood in terms of graph
theory and our general discussion of the method will center on that. How-
ever, we begin our discussion with an example that does not use graphical
terms or motivations.

Example 6.5.1. Consider again the race, sex, opinion, age data with a
backward elimination cutoff of α = .05. The initial model is the saturated
model and we consider all factor pairs for possible conditional indepen-
dence. This leads to the following lack of fit tests:

Factor Pair Model df G2 P

RS [ROA][SOA] 18 20.45 .3080
RO [RSA][SOA] 24 38.22 .0329
RA [RSO][SOA] 30 22.09 .8506
SO [RSA][ROA] 24 27.91 .2639
SA [RSO][ROA] 30 11.29 .9989
OA [RSO][RSA] 28 78.06 .0000

Note that for factor pair RS, the corresponding model [ROA][SOA] has R
and S independent given O and A. Similar interpretations hold for the other
pairs and models. The largest P value among the tests is for [RSO][ROA].
The P value is greater than .05, so we take as the model [RSO][ROA]. The
conditional independence relation is that S and A are independent given R
and O.
We have incorporated into the model the conditional independence of

factors S and A. At the next step, we consider models that incorporate
conditional independence between another pair of factors. In particular,
we consider models that are reduced relative to [RSO][ROA] and incor-
porate an additional conditional independence. The one exception is that
the factor pair RO is in both terms of the model [RSO][ROA], so it cannot
be considered. As will be seen later in this section, incorporating a con-
ditional independence between the pair RO would lead to a model that
is not decomposable. For the pair OA, conditional independence is intro-
duced by reducing the term [ROA] into [RO][RA]. The resulting model
is [RSO][RO][RA]. The term [RO] is redundant because it is implied by
[RSO]; thus, the reduced model is [RSO][RA]. A similar analysis holds for
all other factor pairs except RO. The second step of the model selection
method requires the following models and statistics:
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Differences
Factor Pair Model df G2 df G2 P

— [RSO][ROA] 30 11.29 — — —
OA [RA][RSO] 38 80.45 8 69.16 .0000
RA [OA][RSO] 45 24.77 15 13.48 .5657
OS [RS][ROA] 34 30.29 4 19.00 .0011
RS [SO][ROA] 33 23.12 3 11.81 .0083

The tests presented as differences are tests of the given models against the
model [RSO][ROA]. The largest P value is again greater .05 and belongs to
[OA][RSO], so this model is used for the next step. The model [OA][RSO]
incorporates the conditional independence of R and A in addition to the
conditional independence of S and A obtained from the first step of the
selection procedure. The model [OA][RSO] has R and S independent of A
given O.
In the next step, we begin with the model [OA][RSO]. The pairs SA and

RA have already been identified for conditional independence. There are
no pairs that are contained in both terms of the model, so there are no pairs
that cannot be considered for possible conditional independence. All pairs
other than SA and RA are considered for the possibility that they are con-
ditionally independent. To incorporate conditional independence between
O and A into the model [OA][RSO], break the term [OA] into [O][A] and
use the model [O][A][RSO], which is equivalent to [A][RSO]. To incorporate
conditional independence between O and S into [OA][RSO], break the term
[RSO] into [RO][RS] and use the model [OA][RO][RS]. Similar models are
used for the factor pairs RS and RO. The necessary tests are given below.

Differences
Factor Pair Model df G2 df G2 P

— [OA][RSO] 45 24.77 — — —
OA [A][RSO] 55 86.45 10 61.68 .0000
OS [OA][RS][RO] 47 43.77 2 19.00 .0000
RS [OA][SO][RO] 48 36.60 3 11.83 .0082
RO [OA][SO][RS] 49 48.57 4 23.80 .0001

None of the P values is greater than .05, so we stop with the model
[OA][RSO].
It is interesting to note that this happens to be the same model as

achieved by forward selection of multiple effects. Note also that if α ≤ .0082,
we would be led to consider R and S as conditionally independent and thus
use the model [RO][SO][OA]. This is the other model achieved by stepwise
regression.
In turn, [RO][SO][OA] would lead to taking S and O as conditionally

independent and thus using the model [RO][S][OA]. These results can be
seen from the following displays.
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Differences
Factor Pair Model df G2 df G2 P

— [OA][SO][RO] 48 36.60 — — —
SO [RO][OA][S] 50 45.79 2 9.19 .0101
OA [RO][SO][A] 58 98.29 10 61.69 .0000
RO [OA][SO][R] 50 50.59 2 13.99 .0009

Differences
Factor Pair Model df G2 df G2 P

— [RO][OA][S] 50 45.79 — — —
OA [RO][S][A] 60 107.5 10 61.7 .0000
RO [OA][R][S] 52 59.78 2 13.99 .0009

The model [RO][S][OA] is one of the minimally adequate models arrived at
in our second application of Aitkin’s method.
A key feature of Wermuth’s method is that a pair of factors contained in

more than one term in the model cannot be considered for conditional in-
dependence. Edwards and Havranek (1985) suggest dropping this require-
ment. Doing so changes the method from a search among decomposable
models to a search among graphical models.

General Discussion
We now present a general discussion of Wermuth’s method using graph-
theoretic ideas. Recall that graphical models are completely determined
by their two-factor effects. The procedure begins with the graphical model
that includes all two-factor effects, i.e., the saturated model. Every two-
factor effect is considered for deletion. The two-factor effect that generates
the largest P value is deleted if the P value exceeds some cutoff point α.
Whichever effect is dropped, it determines two subsets of factors in which

there are effects between every pair of factors. Recall that a subset with all
possible two-factor effects is called complete and that if a complete subset
is not strictly contained in any other complete subset, it is maximal. A
maximal complete subset is a clique. Wermuth’s method starts out with
the clique based on all factors. Dropping one two-factor effect generates
two cliques that each contain all but one factor.
Proceeding inductively, at any stage in Wermuth’s method there are two

or more cliques available. Two-factor effects that are part of more than one
clique are not considered for elimination. It will be seen that the graphical
model obtained by eliminating such effects is not decomposable. Among
all other two-factor effects, the one with the largest P value is eliminated
provided that the P value exceeds α.
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Example 6.5.2. With five factors the initial model is [12345]. This can
also be thought of as the initial clique.
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All two-factor terms are considered for elimination. There are
(5
2

)
= 10 of

these. If, for example, [12] is dropped, it is easily seen from the graph that
there are two new cliques, [1345] and [2345]. Thus, the graphical model is
[1345][2345]. Another way of establishing the graphical model is to examine
the nine remaining two-factor terms: [13], [14], [15], [34], [35], [45], [23], [24],
[25]. Of these nine, the first six terms generate [1345] and the last six terms
generate [2345]; thus, the model is [1345][2345]. The P value for dropping
[12] is the P value for testing the model [1345][2345] versus [12345].

Having deleted [12], the second stage begins by considering the cliques
of the model [1345][2345]. The cliques are [1345] and [2345]. The two-factor
effects [34], [35], and [45] are contained in both cliques, so these are not
considered for elimination. Among the other two-factor terms, the one with
the largest P value is eliminated provided the P value exceeds α.
In considering whether to drop, say, [13], the test compares the graphical

model with both [12] and [13] eliminated to the graphical model in which
only [12] is eliminated. As discussed above, when [12] is eliminated, the
model is [1345][2345]. If [13] is also eliminated, the clique [1345] breaks up
into two complete subsets [145] and [345].
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To see this, observe that [1345] is generated by [13], [14], [15], [34], [35], [45].
If [13] is dropped, the complete subsets are based on [14], [15], [45], and
[34], [35], [45]. These generate [145] and [345], respectively. Note that [345]
is not a clique because it is not maximal; it is contained in the complete
subset [2345]. With both [12] and [13] eliminated, the cliques are [145] and
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[2345], so the model is [145][2345]. The test for eliminating [13] is the test
of [145][2345] versus [1234][2345].
If [12] and [13] have been eliminated in the first two stages, the model

is [145][2345]. The only two-factor effect contained in more than one clique
is [45]. All other effects are considered for elimination. Suppose [35] is
dropped. The resulting model is [145][234][245]. Now both [45] and [24]
are in more than one clique, so neither can be eliminated. The process of
testing and dropping two-factor terms continues until there are no tests
with a P value greater than α.

To see that dropping an effect that is in more than one clique destroys
decomposability, consider dropping [24] from the model [145][234][245].
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From the two cliques involving [24], form the closed chain [34][45][52][23].
This chain of length 4 has one chord, [24]. If [24] is dropped, the model
is no longer chordal, hence no longer decomposable. Whenever an effect
contained in more than one clique is dropped, this construction of a closed
chain of length four with no chords will work. Simply construct a closed
chain out of the two vertices in the common effect and two other distinct
vertices, one from each clique.
Conversely, if a model is decomposable and dropping a two-factor term

makes it nondecomposable, then that two-factor term must be in more than
one clique. For a model to become nondecomposable, the term eliminated
must be the only chord in a closed chain of length four or more. If a closed
chain of length four has only one chord, the chord must be in two complete
subsets and thus in two cliques. In particular, if a decomposable model
contains the closed chain [12][23][34][41] and contains only the one chord
[24], then the model includes the complete sets [124] and [234], so [24] is
contained in two different complete sets.
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Each of the two complete sets must be contained in some clique and these
cliques must be distinct. If the sets were in the same clique, then that
clique would also have to include the chord [13]. By assumption, this cannot
occur. In fact, this argument for closed chains of length four is sufficient
for all cases because when a model becomes nondecomposable, the term
eliminated must be the only chord in a closed chain of length four. In a
decomposable model, any closed chain of length greater than four must
have more than one chord because if the length is five or more and there
is only one chord, there is a reduced closed chain of length at least four
without a chord.

Clearly, Wermuth’s method can be generalized to graphical models by
removing the restriction that two-factor effects in more than one term are
not considered for elimination. At each stage, all two-factor effects that
have not been previously deleted can be considered for elimination. The
corresponding models are the graphical models determined by the two-
factor effects that have not been eliminated. This procedure was apparently
first suggested by Edwards and Kreiner (1983). Model selection among
graphical models is also discussed by Havranek (1984) and Edwards and
Havranek (1985).
With four factors, the difference between Edwards and Kreiner’s method

and Wermuth’s method occurs only at the second stage. This is due to
the fact that there is only one graphical but nondecomposable model. As
applied to the abortion opinion data, the term [SA] is dropped at the first
stage, so at the second stage, Wermuth’s method does not allow [RO] to
be dropped. The method of Edwards and Kreiner has no such restriction.
For models with more than four factors, the difference between the graph-

ical method and the decomposable method can be substantial. Restricting
model search to graphical models seems like a very promising compromise
between searching in the very large class of all ANOVA type models and
searching in the very restrictive class of decomposable models. However,
the difficulty of searching among graphical models should not be underes-
timated. Good (1975) has shown that for a 10-factor table there are almost
3.5 million graphical models.
With these methods as with all others, it is important to obtain several

candidate models and to evaluate the models on grounds other than the
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values of their test statistics. Also, effects included because of the sampling
design cannot be eliminated.

6.6 Use of Model Selection Criteria

The best approach to model selection for log-linear models would be to
search through all models and choose, for closer examination, those with
high values of Adj. R2, low values of AIC, or extreme values of some other
model selection criterion, cf. Section 3.6. Such a procedure would require
enormous amounts of computation. One possible way to reduce computa-
tions would be to base an initial search on models fitted by weighted least
squares (cf. Sections 4.4 and 10.6) rather than models fitted by maximum
likelihood.
At the moment, the author’s best suggestion is to use a variety of model-

fitting methods with a variety of critical (cutoff) values, and for stepwise
methods, use a variety of initial models. By using several methods, we hope
to find a wide range of possible models. These models can then be evaluated
relative to each other with the help of the model selection criteria. Often,
there is no need to decide on one particular model; a small number of
alternative models may be more informative. If it is necessary to decide
on only one model, the model with the lowest AIC (or highest Adj. R2)
may not be the best choice. Other considerations such as interpretability
and consistency with assumptions may dictate choosing a model with a low
AIC but not necessarily the lowest.

Example 6.6.2. The evidence presented so far in the series of examples
on the race, sex, opinion, age data strongly suggests to the author that the
best model is [RSO][OA]. A formal comparison of all of the models arrived
at by the various methods suggests the same conclusion.

Model df G2 A − q R2 Adj. R2

[RSO][OA] 45 24.77 −65.23 .80 .72
[RO][SO][OA] 48 36.60 −59.40 .70 .61
[R][S][OA] 52 59.78 −44.22 .51 .41
[RA][S][OA] 47 53.77 −40.23 .56 .42
[R][SO][OA] 50 50.59 −49.41 .58 .48
[RO][S][OA] 50 45.79 −54.21 .62 .53

In a less clear-cut situation, it would be wise to consider many more step-
wise procedures than have been illustrated.
One worrisome aspect is that very little consideration has been given to

three-factor effects other than RSO. The reader can check that none of the
other three-factor effects substantially improves the model.
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We have decided on one particularly good candidate model: [RSO][OA].
However, the analysis of the data does not end with finding an appropri-
ate ANOVA type model; that is just an important first step. The model
indicates that combinations of race and sex are independent of age given
opinions about legalized abortions. Thus, we can collapse over some factors
to study interrelationships in marginal tables. We can collapse over ages
to study the relationships among race, sex, and opinion. We can collapse
over race and sex to study the relationship between age and opinion. Cell
counts for the collapsed tables need to be examined to study the nature
of the relationships. These aspects of the analysis are discussed further in
Section 8. It is also necessary to evaluate whether the model really fits the
data. To this end, Section 7 contains information on residual analysis and
influential observations. Finally, the interpretability of the model should
be examined. This model has a very nice interpretation with race and sex
independent of age given opinion. Does the interpretation make any sense?
As we will see in Section 8, interpretability is probably this model’s weakest
point. It can be argued that the appropriate analysis of these data involves
explaining opinions on the basis of race, sex, and age. In that case, the
methods of Chapter 4 should be used on these data.

6.7 Residuals and Influential Observations

In standard regression analysis, it is common practice to use residuals to
check whether assumptions made in the model are valid and to detect the
presence of observations that are unusually influential on the fit of the
model. Three statistics that are commonly used for these purposes are
the leverages, the standardized residuals, and Cook’s distances. As seen in
Chapter 4, residuals are not of much use when dealing with binary (0-1)
data. However, in tables with reasonably large counts, residuals can be
useful.
In a regression model Y = Xβ+e, the leverages are the diagonal elements

of the projection matrix X(X ′X)−1X ′. The matrix X is determined by the
design of the data, i.e., the values of the predictor variables in the regression.
The leverage measures how far the variables of a particular case are from the
average of all of the cases. (The projection matrix is often called the “hat”
matrix because it changes Y into Ŷ , i.e., Ŷ = X(X ′X)−1X ′Y . Personally,
I find this name distasteful. However, given the liberties I am about to take
in naming residuals, I am probably not in a position to make a fuss.)
For log-linear models, there is an analogue of the leverage that depends

both on the design and the probability of getting observations in a partic-
ular cell. Because the probabilities are unknown, they must be estimated;
hence, we use estimated leverages. The estimated leverage of the ith case
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is denoted
âii .

Leverages are discussed in detail in Chapter 10.
The log-linear analogue of a standardized residual is

ri =
ni − m̂i√
m̂i(1 − âii)

.

For a correct model, a large sample approximation for the distribution of
ri is ri ∼ N(0, 1). Note that these are very similar to the Pearson residuals
discussed earlier:

r̃i =
ni − m̂i√

m̂i

;

they differ only in that the standardized residuals involve the leverages.
Actually, the residuals are the values ni − m̂i, the difference between

the observed and predicted values. As discussed in Section 2.1, these need
to be standardized in some way. The Pearson residuals use a crude stan-
dardization, dividing by

√
m̂i. In Section 10.7, the Pearson residuals are

referred to as the crude standardized residuals to distinguish them from
the standardized residuals that involve a more sophisticated (and proper)
standardization. This terminology was chosen by analogy with regression
analysis. Unfortunately, it differs from the terminology used by many au-
thors on log-linear models. Often, the Pearson (crude standardized) resid-
uals are referred to as simply the standardized residuals, and the values
defined here as the standardized residuals are referred to as the adjusted
residuals.
Finally, Cook’s distance for the ith case is a measure of the influence

the ith case has on the fit of the model. In the context of fitting log-linear
models, we drop each cell from the table, fit the remaining cells, and then
estimate an expected cell count for the dropped cell. This is done without
reference to any marginal totals that may be fixed by design; hence, it
is most appropriate for Poisson sampling. If the model has p degrees of
freedom, the analogue of Cook’s distance can be written

Ci =
∑

all cells r
m̂r

[
log(m̂r/m̂r(i))

]2
/
p

where m̂r(i) is the estimate of the rth cell when the ith cell has been deleted
(cf. Section 10.7). For Poisson sampling, these values can be calibrated by
comparing them to a 1

pχ
2(p) distribution. If Ci > χ2(.5, p)/p, cell i has

a substantial influence. For multinomial or product-multinomial sampling,
the degrees of freedom should be reduced by the number of independent
multinomials. Because computation of all the m̂r(i)’s would require separate
iterative procedures and be very expensive, it is suggested that a one-step
estimate be used. Starting with the values m̂r, drop a cell and, rather than
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fully iterating, use just one step of the Newton-Raphson algorithm to obtain
the m̂r(i)’s, cf. Section 10.7.

This definition of the Cook’s distances has weaknesses; however, the sit-
uation is analogous to that of the Pearson residuals. The definition of the
Pearson residuals as standardized residuals is weak, but the Pearson resid-
uals are easy to compute and they contain valuable information. As will
be seen below, using standard computer software, the standardized resid-
uals are now easy to compute, so there is little reason to use the Pearson
residuals. Similarly, using standard computer software, Cook’s distances,
as defined here, are easy to compute. Moreover, the author feels that
they contain valuable information. Until something better becomes readily
available, the author suggests examining these Cook’s distances. Anderson
(1992) discusses diagnostics for categorical data analysis and Thomas and
Cook (1989, 1990) discuss influence for generalized linear models (which
include log-linear models, cf. Chapter 9).

6.7.1 Computations
We assume that the reader is capable of fitting an ANOVA model using a
regression program. Our log-linear models are ANOVA type models. Good
computer programs for doing regression generally provide leverages, stan-
dardized residuals, and Cook’s distances. Also, they allow for computing
weighted regressions.
After fitting the log-linear model, retain the counts for each cell, ni, and

the fitted values for each cell, m̂i. Now use the regression program to refit
the ANOVA model, but use weighted regression with

weighti = m̂i

and a dependent variable

Yi = log(m̂i) + (ni − m̂i)/m̂i .

The leverages given by the program will be the âii’s. The standardized
residuals reported will be

ri
/√

MSE

where
√
MSE is the estimate of the standard deviation from the regression.

Simply multiply the reported standardized residuals by
√
MSE to obtain

the correct values. The reported values of Cook’s distances are

Ci

/
MSE

where Ci is computed using a one-step fit. The reported values Ci need
to be multiplied by MSE. For the purpose of comparing the relative mag-
nitudes of the ri’s or Ci’s, the multiplication is irrelevant. For comparing
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FIGURE 6.1. Leverage–Index Plot

standardized residuals to a N(0, 1) distribution or Cook’s distances to a χ2

distribution, the multipliers are important. It should also be noted that for
large samples and a correct model, the MSE approaches a χ2 distribution
divided by its degrees of freedom. The large sample expected value for the
MSE is 1.

Example 6.7.1. We now examine the leverages, standardized residuals,
and Cook’s distances for the abortion opinion data. In particular, we con-
sider the fit of the model [RSO][OA]. The fitted values are given in Section 8
as Table 6.7.
The leverages are plotted against index values in Figure 6.1. The index

values are just values 1, 2, . . . , 72 assigned to the cells. The G2 for the
model [RSO][OA] has 45 degrees of freedom. There are 72 cells, so there are
72−45 = 27 degrees of freedom for the model. The sum of the 72 leverages
must add up to 27. The average leverage is 27

72 = .375. The largest leverage is
about .64, which is less than twice the average. None of the leverages seems
excessively large. Leverages are rarely very large in balanced ANOVA type
models.
Figures 6.2 and 6.3 contain a box plot and an index plot of the standard-

ized residuals, respectively. The box plot identifies one very large residual
and four other large residuals. In the index plot, only two residuals really
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FIGURE 6.2. Standardized Residual–Box Plot
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FIGURE 6.3. Standardized Residual–Index Plot

stand out. There were 24 nonwhite males between 18 and 25 years of age
who support legalized abortion; the estimated value from the model is only
14.52. This cell has a leverage of .222, a standardized residual of 2.82, and
a Cook’s distance of .085. The other large standardized residual is from
the cell for nonwhite males above 65, who support legalized abortion. The
observed value in this cell is 4, the fitted value is 10.90, the leverage is .181,
the standardized residual is −2.31, and Cook’s distance is .044. Consider-
ing that there are 72 cells, these values are not remarkably large. In fact,
what is remarkable is that most of the standardized residuals are so tightly
packed around zero.
Figure 6.4 contains a normal probability plot of the standardized resid-

uals. If the asymptotic theory is valid, the plot should be approximately
linear. It is not. Again, the problem seems to be that there are too many
cells fitted too well by the model.
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FIGURE 6.4. Standardized Residual–Rankit Plot

The MSE for the regression from which the residuals were obtained was
.571. Under the sampling schemes considered, the MSE is a lack of fit test
statistic. For large samples and a correct model, the MSE should be near
1. For incorrect models, it should be greater than 1. Again, the model fits
better than we have any right to expect.
When examining leverages directly, we look for large individual leverages

because they indicate that a cell is unlike the other cells. Large leverages
are leverages near 1. Leverages also play a role in standardized residuals.
Even if none of the leverages is large, they can be important. In particular,
the range of leverages in this example is from .115367 to .632986. The
factors 1/

√
1 − aii are used to change Pearson residuals into standardized

residuals. These factors range from 1.063 to 1.651, so a Pearson residual
with the largest leverage would have a standardized residual more than 1.5
times larger than the same Pearson residual would have with the smallest
leverage. This is not an inconsequential difference. Pearson residuals and
standardized residuals can lead to very different conclusions.
Figure 6.5 contains a box plot of the Cook distances. Figure 6.6 contains

an index plot of the Cook distances. Most cells have very little influence
on the fit. The plots identify a number of relatively influential cases, but
as compared to the calibrating values of 1

27χ
2(27), none of the distances

are substantial. For example, 1
27χ

2(.5, 27) = 26.3/27 = .974; none of the
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FIGURE 6.5. Cook’s Distance–Box plot
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FIGURE 6.6. Cook’s Distance–Index Plot

distances are anywhere near .974. The largest Cook’s distance is the .085
for young nonwhite males who support legalized abortion.

6.7.2 Computing Commands
Below are commands that give the diagnostics provided by BMDP-4F.

/ INPUT FILE = ’C:\LOGLIN\ABORT.DAT’.
FORMAT = FREE.
VARIABLES = 5.

/ VARIABLE NAMES = R, S, A, O, N.
/ TABLE INDEX = R, S, A, O.

COUNT = N.
/ STAT ALL.
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/ PRINT LINE = 79.
LAMBDA.
BETA.
VAR.
STAN.
CHISQ.
LRCHI.

/ FIT MODEL = RSO, OA.
/ END

Diagnostics are also available from GLIM. The procedure for fitting log-
linear models was illustrated in Subsection 3.7.1. The commands for diag-
nostics are exactly as in Subsection 4.4.2.

6.8 Drawing Conclusions

We have discussed model interpretation, model selection, and model vali-
dation. We have selected a model [RSO][OA] that is reasonably small, fits
well, and has a simple interpretation. No cells seem to be unduly influ-
ential and no cells have outrageously bad fits. The model indicates that,
given Opinion, Age is independent of Race and Sex. As discussed in the
introduction to this chapter, the model is a description of the data and
can be used to predict behavior in a similarly conducted study. It is not
a statement about causation. In fact, it makes little sense to imagine that
opinions about abortion cause the relative frequencies of Race and Sex to
be independent of the frequencies of Age.
By itself, the model tells us nothing about the relationships among Race,

Sex, and Opinion or about the relationship between Age and Opinion.
Table 6.7 contains the estimated expected cell counts under the model
[RSO][OA]. It is a complicated table, but much could be learned from
studying it. Fortunately, there are easier ways to get at this information;
we can collapse factors and study marginal tables.
As discussed in Section 5.3, the Race-Sex-Opinion relationships can be

examined by collapsing over Age and looking at the Race-Sex-Opinion
marginal table. This is given in Table 6.8. We see that whites are more
likely to be in the survey than nonwhites. White females are a bit more
likely to appear than white males. Among nonwhites, males and females
are about equally likely. Ignoring the undecideds, the rate of support for
legalized abortion is about the same for white and nonwhite males. It is
higher for nonwhite females than white females. It is higher for white fe-
males than for white males. All of these things can be examined using odds
ratios similar to Section 4.6. Formal inference requires standard errors as
discussed in Section 10.2.
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TABLE 6.7. Estimated Cell Counts under [RSO][OA]

Age
Race Sex Opinion 18-25 26-35 36-45 46-55 56-65 65+

Support 105.5 132.1 114.5 76.94 72.81 79.19
Male Oppose 41.87 61.93 54.95 47.98 52.34 61.93

Undec. 1.39 2.50 5.27 5.27 5.54 8.04
White

Support 141.0 176.7 153.1 102.9 97.38 105.9
Female Oppose 44.61 65.98 58.55 51.11 55.76 65.98

Undec. 2.43 4.37 9.22 9.22 9.70 14.07

Support 14.52 18.19 15.76 10.59 10.03 10.90
Male Oppose 5.61 8.30 7.36 6.43 7.01 8.30

Undec. 0.84 1.52 3.20 3.20 3.37 4.88
NonWhite

Support 19.97 25.01 21.67 14.57 13.79 14.99
Female Oppose 3.91 5.79 5.14 4.48 4.89 5.79

Undec. 0.35 0.62 1.32 1.32 1.39 2.01

TABLE 6.8. Race, Sex, Opinion Marginal Table

Opinion
Race Sex Support Oppose Undec. Totals

White Male 581 321 28 930
Female 777 342 49 1168

Nonwhite Male 80 43 17 140
Female 110 30 7 147
Totals 1548 736 101 2385

TABLE 6.9. Opinion, Age Marginal Table

Age
Opinion 18-25 26-35 36-45 46-55 56-65 65+ Totals
Support 281 352 305 205 194 211 1548
Oppose 96 142 126 110 120 142 736
Undec. 5 9 19 19 20 29 101
Totals 382 503 450 334 334 382 2385
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To examine the relationship between Opinion and Age, we can collapse
over Race and Sex. The marginal totals are given in Table 6.9. We see
that some age groups are more likely to respond. There is more support
than opposition in each age group. Undecideds increase with age. Also, the
amount of support seems to decrease with age.
I find myself not really caring about the relative incidences of Race and

Sex, but rather am interested in the relative support for legalized abortion
among the different groups. This amounts to treating Opinion as a re-
sponse variable and Race and Sex as explanatory variables; i.e., Race and
Sex can be imagined to determine Opinion. In my experience, most con-
tingency tables have one or more factors of particular interest that can be
considered as response factors. (Of course, that is only in my experience.)
Specific methods for analyzing tables with response factors were examined
in Chapter 4.
If O were to be treated as a response and R, S, A as factors explaining

that response, Asmussen and Edwards (1983) argue that, of the models
listed in Example 6.6.2, only [RA][S][OA] is appropriate. Recall from Sec-
tion 4.6 their contention that log-linear models are appropriate for response
factors only if the model allows for collapsing over the response factors onto
the explanatory factors, cf. Section 5.3. For example, the model [RSO][OA]
can be collapsed over Race and Sex or collapsed over Age but not over
the response factor opinion. Therefore, [RSO][OA] is not a reasonable log-
linear model for the response factor O. It is illogical for Race and Sex to be
independent of Age given the factor Opinion which is supposed to be a re-
sponse. The response cannot generate independence between explanatory
factors! On the other hand, models such as [RA][S][OA] are reasonable.
Recall that [RA][S][OA] is one of the minimally adequate models found
by Aitkin’s method. However, you should also recall that Aitkin’s method
totally missed the important [RSO] interaction.

6.9 Exercises

Exercise 6.9.1. Reanalyze the auto accident data of Example 4.8.1
without treating any of the factors as a response factor.

Exercise 6.9.2. Reanalyze the abortion attitude data of Exercise 4.8.4
without treating any of the factors as a response.

Exercise 6.9.3. Using our discussion of graphical models and collapsi-
bility in Chapter 5, argue that when the true model is [123][24][456],
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the test of marginal association for the u123(ijk)’s does not ignore any
vital information. Is the same conclusion appropriate when the true
model is [12][13][23][24][456]? What if the true model is [123][124][456],
[123][24][456][15], or [123][24][456][15][36]?



7
Models for Factors with
Quantitative Levels

Just as in analysis of variance, if the levels of some factors are associated
with quantitative values, these values can be used in the analysis. For ex-
ample, in a two-factor ANOVA where factors are two kinds of fertilizer and
levels are different quantitative amounts of fertilizers, an ANOVA would
often examine linear and higher-order contrasts in the main effects and
polynomial contrasts in the interaction (e.g., the linear-by-linear contrast).
In the analysis of categorical data, it is relatively rare that a factor has

truly quantitative values associated with its levels. Often categories are
ordered, but are not intrinsically quantitative. This is referred to as having
ordinal factor levels or simply as having ordinal data. For example, socio-
economic status is often categorized as low, medium, and high. Surely,
it would be advantageous to incorporate information about ordering into
the analysis. The problem is in finding an appropriate method. The most
commonly used method is to assign scores to the three levels of the factor.
These scores can be any known numbers, say, x1, x2, and x3. In fact, the
most common method is to take x1 = 1, x2 = 2, and x3 = 3. The analysis
then proceeds as if the scores are true quantitative levels.
Alternatively, a factor might be income and the levels of the factor could

be income intervals, say, less than $20,000, $20,000-$40,000, and more than
$40,000. To have quantitative levels, we need one number associated with
each level. Such numbers simply do not exist. As a practical matter, we
could use the midpoints of the intervals as quantitative levels (scores). We
can then develop models based on these approximate scores. Of course, if
actual incomes are available for each individual, it would be more suitable
to use the incomes in an appropriate regression analysis, cf. Section 4.1.
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However, in practice it is not uncommon to encounter factors that have
been created by categorizing continuous variables.
Continuous variables that have been categorized present some unique dif-

ficulties when assigning scores. With categories that are intervals, using the
midpoints of the intervals is simple and appealing. In the income example
above, the midpoint scores $10,000 and $30,000 may work reasonably well
as quantitative levels for the first two income intervals. However there is
no natural quantitative level to use for the category “more than $40,000.”
Any analysis is dependent on the score that is chosen to represent the third
category. Moreover, using midpoints may not be very efficient. Suppose it
was known that most people in the less than $20,000 interval had incomes
near $20,000. It would be better to use a score that was near $20,000 rather
than using the midpoint $10,000. In practice, the method of determining
a score will often depend on additional sources of information. If $10,000
is not an appropriate score, there must be additional information leading
to that conclusion. Use the same additional information to arrive at an
alternative score.
In this chapter, we examine models that incorporate the quantitative

nature of factor levels. When factor levels are not truly quantitative, the
appropriateness of such models will be directly related to the appropriate-
ness of the scores being used. We assume that the quantitative levels (i.e.,
scores) are known and consider linear models for the log of the expected
cell counts (i.e., log-linear models). An alternative approach is to consider
the scores as parameters and to estimate the scores. If the scores are pa-
rameters, then the models considered are no longer linear models for the
log of the expected cell counts. Such models are discussed in Section 3.

7.1 Models for Two-Factor Tables

Consider a 3×4 table with quantitative levels x1, x2, x3 and w1, w2, w3, w4.
If the observations in the table were 12 normally distributed values yij , an
analysis of variance would be appropriate. The model with no interaction
is

yij = u+ u1(i) + u2(j) + eij . (1)

In this model, the 2 degrees of freedom for the main effect of Factor 1 can
be broken into a linear contrast and a quadratic contrast. The three degrees
of freedom for Factor 2 can be broken into a linear contrast, a quadratic
contrast, and a cubic contrast. Equivalently, we can rewrite model (1) as a
regression model

yij = u+ β1xi + β2x
2
i + η1wj + η2w

2
j + η3w

3
j + eij . (2)

Now consider the full interaction model

yij = u+ u1(i) + u2(j) + u12(ij) + eij . (3)
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Note that with only one observation per cell, the terms u12(ij) are hopelessly
confounded with the errors eij . Since our goal is only to draw analogies
between analysis of variance and log-linear models, we need not concern
ourselves with this confounding. To explore the interaction in model (3),
we can consider contrasts in the interactions. Using the quantitative fac-
tor levels leads to considering things like the linear-by-linear, linear-by-
quadratic, and quadratic-by-cubic interaction contrasts. In total, there are
(3 − 1)(4 − 1) = 6 of these linearly independent interaction contrasts. Al-
ternatively, we can rewrite model (3) using regression terms in place of the
interactions,

yij = u+ u1(i) + u2(j) + γ11xiwj + γ12xiw
2
j + γ13xiw

3
j

+ γ21x
2
iwj + γ22x

2
iw

2
j + γ23x

2
iw

3
j + eij .

This suggests a variety of partial interaction models that can be considered.
The simplest of these models is

yij = u+ u1(i) + u2(j) + γ11xiwj + eij .

This is the model that provides for main effects in each factor, but models
the interaction as consisting entirely of linear-by-linear interaction.

7.1.1 Log-Linear Models with Two Quantitative Factors
Exactly the same procedures are used when the data consist of counts.
Consider an I ×J table with quantitative levels x1, . . . , xI and w1, . . . , wJ .
The model of independence is

logmij = u+ u1(i) + u2(j) .

The model of full interaction (the saturated model) is

logmij = u+ u1(i) + u2(j) + u12(ij) .

We can structure the interaction by considering a linear-by-linear associa-
tion model

logmij = u+ u1(i) + u2(j) + γxiwj . (4)

The maximum likelihood estimates m̂ij must satisfy

m̂i· = ni· , i = 1, . . . , I,
m̂·j = n·j , j = 1, . . . , J,

and ∑

ij

m̂ijxiwj =
∑

ij

nijxiwj .
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(This is easily seen from the results of Chapter 10.) Model (4) can be
tested against the saturated model using either G2 or X2. The reduced
model of independence can be tested against model (4) using either G2,
X2, or γ̂/SE(γ̂).

Often, model (4) is written in an equivalent form. If observations in all
IJ cells are possible, model (4) is equivalent to

log(mij) = u+ u1(i) + u2(j) + γ(xi − x̄·)(wj − w̄·) (5)

where x̄· = 1
I

∑I
i=1 xi and w̄· = 1

J

∑J
j=1 wj . Frequently, the factor levels are

equally spaced. This means that for some constants c and d, xi+1 −xi = c,
i = 1, . . . , I−1, and wj+1−wj = d, j = 1, . . . , J−1. This special case turns
out to be equivalent to taking xi = i, i = 1, . . . , I and wj = j, j = 1, . . . , J .
Model (4) can be rewritten as

logmij = u+ u1(i) + u2(j) + γ(i)(j) . (6)

For equally spaced levels, model (6) is a reparametrization of model (4).
The parameter γ in (6) is only identical to the parameter γ in (4) when
the original scores are xi = i and wj = j. In particular, γ in model (6)
is equivalent to γdc in model (4). The scores xi = i and wj = j are used
frequently when the factor levels are ordinal.
Model (4), when applied with scores that are equally spaced, is called

the uniform association model. The name is apt because under this model,
the odds ratios for consecutive table entries are identical. In particular,

mijmi+1 j+1

mij+1mi+1 j
= eγdc ,

i = 1, . . . , I − 1, j = 1, . . . , J − 1. To see this, note that

log
(
mijmi+1 j+1

mij+1mi+1 j

)

= logmij − logmij+1 − logmi+1 j + logmi+1 j+1

= u+ u1(i) + u2(j) + γxiwj

− u − u1(i) − u2(j+1) − γxiwj+1

− u − u1(i+1) − u2(j) − γxi+1wj

+ u+ u1(i+1) + u2(j+1) + γxi+1wj+1

= γ[xiwj − xiwj+1 − xi+1wj + xi+1wj+1]
= γ[xi(wj − wj+1) − xi+1(wj − wj+1)]
= γ[xi(−d) − xi+1(−d)]
= γd[xi+1 − xi]
= γdc .

If xi = i and wj = j, then d = 1 and c = 1,, so consecutive log odds ratios
equal γ.
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The case of equal spacings arises very often, so we will always refer to
model (4) and its equivalent, model (5), as the model of uniform association.
If factor levels are not equally spaced, this terminology is meaningful in
the sense that γ is a measure of association that applies uniformly, but any
particular odds ratio must also be adjusted for differences in factor levels.
Finally, note that there is much more flexibility available than merely

considering the independence model, the uniform association model, and
the saturated model. The saturated model is equivalent to

logmij = u+ u1(i) + u2(j)

+ γ1,1xiwj + γ1,2xiw
2
j + · · · + γ1,J−1xiw

J−1
j

+ γ2,1x
2
iwj + γ2,2x

2
iw

2
j + · · · + γ2,J−1x

2
iw

J−1
j

...
+ γI−1,1x

I−1
i wj + γI−1,2x

I−1
i w2

j + · · · + γI−1,J−1x
I−1
i wJ−1

j .

A wide variety of submodels can be fitted. For example, we could consider
a second-order interaction model, say

logmij = u+ u1(i) + u2(j) + γ1,1xiwj + γ1,2xiw
2
j + γ2,1x

2
iwj + γ2,2x

2
iw

2
j .

This model is larger than the uniform association model (5), but smaller
than the saturated model. The maximum likelihood estimates for this
model satisfy the equations

m̂i· = ni· , i = 1, . . . , I,
m̂·j = n·j , j = 1, . . . J,

∑

ij

xiwjm̂ij =
∑

ij

xiwjnij ,

∑

ij

xiw
2
j m̂ij =

∑

ij

xiw
2
jnij ,

∑

ij

x2iwjm̂ij =
∑

ij

x2iwjnij ,

∑

ij

x2iw
2
j m̂ij =

∑

ij

x2iw
2
jnij .

7.1.2 Models with One Quantitative Factor
Suppose that only the first factor in an I × J table has quantitative levels.
Denote these levels as x1, . . . , xI . We still want to consider models that are
more general (larger) than the model of independence, but smaller than the
saturated model. A frequently used model in this situation is the column
effects model

logmij = u+ u1(i) + u2(j) + τjxi . (7)
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This model implies that there is a linear effect on logmij from the rows of
the table, but that the slope (τ) of this linear effect changes from column
to column. In the case of I populations and J = 2 responses, model (7) is
also a simple linear logistic regression model, cf. Section 2.6.
Although model (7) is appropriate when only one factor is quantitative,

it can also be used when both factors are quantitative. Note that model (4)
is a reduced model relative to model (7) in which the additional structure
τj = γwj is imposed. Thus, the uniform association model assumes that
the slopes change linearly with the columns. Model (7) is more general in
that it allows arbitrary changes in the slopes. In particular, model (7) is
equivalent to the model

log(mij) = u+ u1(i) + u2(j) + γ11xiwj + γ12xiw
2
j + · · · + γ1,J−1xiw

J−1
j .

Maximum likelihood estimates for model (7) must satisfy

m̂i· = ni· , i = 1, . . . , I,
m̂·j = n·j , j = 1, . . . , J,

I∑

i=1

m̂ijxi =
I∑

i=1

nijxi , j = 1, . . . , J .

Testing is performed in the usual way.
More generally, we can consider any submodel of the saturated model.

The saturated model can be reparametrized as

logmij = u+ u1(i) + u2(j) + τ1,jxi + τ2,jx
2
i + · · · + τI−1,jx

I−1
i .

For J = 2, this is the I − 1-degree polynomial logistic regression model

log
(
mi1

/
mi2

)
= β0 + β1xi + β2x

2
i + · · · + βI−1x

I−1
i .

Of course, if the second factor in the table is quantitative rather than
the first factor, we can write the saturated model as

logmij = u+ u1(i) + u2(j) + ηi,1wj + · · · + ηi,J−1w
J−1
j

and consider reduced models. The row effects model

logmij = u+ u1(i) + u2(j) + ηiwj

is probably the most frequently used of these.
Although it seems to be done infrequently, there is no mathematical rea-

son not to fit models using regression in place of main effects. For example,
a reduced model relative to the uniform association model is

logmij = u+ βxi + ηwj + γxiwj .
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This model also implies uniform association (in terms of the odds ratios
when levels are equally spaced), but imposes additional constraints.

Example 7.1.1. A sample of men between the ages of 40 and 59 was
taken from the city of Framingham, Massachusetts. The men were cross-
classified by their serum cholesterol and systolic blood pressure. We restrict
attention to a subsample that did not develop coronary heart disease during
a 6-year follow-up period. The data are given below.

Cholesterol Blood Pressure (in mm Hg)
(in mg/100 cc) <127 127-146 147-166 167+ Totals

<200 117 121 47 22 307
200-219 85 98 43 20 246
220-259 119 209 68 43 439
≥260 67 99 46 33 245
Totals 388 527 204 118 1237

Consider four models:

Abbreviation Model
[C][P][C1] log(mij) = u+ uC(i) + uP (j) + C1i(j)
[C][P][P1] log(mij) = u+ uC(i) + uP (j) + P1j(i)
[C][P][γ] log(mij) = u+ uC(i) + uP (j) + γ(i)(j)
[C][P] log(mij) = u+ uC(i) + uP (j).

These are the row effects, column effects, uniform association, and indepen-
dence models, respectively. The fits for the models relative to the saturated
model are

Model df G2 A − q

[C][P][C1] 6 7.404 −4.596
[C][P][P1] 6 5.534 −6.466
[C][P][γ] 8 7.429 −8.571
[C][P] 9 20.38 2.38

The best fitting model is

log(mij) = u+ uC(i) + uP (j) + γ(i)(j) .

Using the side conditions uC(1) = uP (1) = 0, the parameter estimates and
standard errors are



7.1 Models for Two-Factor Tables 265

Parameter Estimate Standard Error
u 4.614 .0699

uC(1) 0 —
uC(2) −0.4253 .1015
uC(3) −0.0589 .1363
uC(4) −0.8645 .1985
uP (1) 0 —
uP (2) 0.0516 .0965
uP (3) −1.164 .1698
uP (4) −1.991 .2522
γ 0.1044 .0293

The estimated cell counts are

Estimated Cell Counts: Uniform Association
Blood Pressure

Cholesterol <127 127-146 147-166 167+
<200 112.0 131.0 43.1 20.9

200-219 81.3 105.4 38.5 20.8
220-259 130.1 187.4 76.0 45.5
≥260 64.5 103.2 46.4 30.8

These are obtained from the uniform association model, so the odds ratios
for consecutive table entries are identical. For example, the odds of blood
pressure < 127 relative to blood pressure 127-146 for men with cholesterol
< 200 are 1.11 times the similar odds for men with cholesterol of 200-219;
up to roundoff error

112.0/131.0
81.3/105.4

=
112.0(105.4)
81.3(131.0)

= e.1044 = 1.11

where .1044 = γ̂. Similarly, the odds of blood pressure 127-146 relative to
blood pressure 147-166 for men with cholesterol < 200 are 1.11 times the
odds for men with cholesterol of 200-219:

131.0(38.5)
105.4(43.1)

= e.1044 = 1.11 .

Also, the odds of blood pressure < 127 relative to blood pressure 127-146
for men with cholesterol 200-219 are 1.11 times the odds for men with
cholesterol of 220-259:

81.3(187.4)
130.1(105.4)

= e.1044 = 1.11 .

For consecutive categories, the odds of lower blood pressure are 1.11 times
greater with lower blood cholesterol than with higher blood cholesterol.
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The asymptotic 95% confidence interval for γ has end points .1044 ±
1.96(.0293). The interval is (.047, .162). The corresponding interval for the
odds ratio is (e.047, e.162) or (1.05, 1.18). Thus, for consecutive categories,
we are 95% confident that the odds of lower blood pressure are between 1.05
and 1.18 times greater with lower cholesterol than with higher cholesterol.
Of course, we can also compare nonconsecutive categories. For categories

that are one step away from consecutive, the odds of lower blood pressure
are 1.23 = e2(.1044) times greater with lower cholesterol than with higher
cholesterol. For example, the odds of having blood pressure< 127 compared
to having blood pressure of 147 − 166 with cholesterol < 200 are 1.23 =
e2(.1044) times those for cholesterol 200 − 219. To check this, observe that

112.0(38.5)
81.3(43.1)

= 1.23.

Similarly, the odds of having blood pressure < 127 compared to having
blood pressure of 127-146 with cholesterol < 200 are 1.23 times those for
cholesterol 220-259. Extending this leads to observing that the odds of
having blood pressure < 127 compared to having blood pressure of 167+
with cholesterol < 200 are 2.559 = e9(.1044) times those for cholesterol
≥ 260.
It is of interest to compare the estimated cell counts obtained under

uniform association with the estimated cell counts under independence.
The estimated cell counts under independence are

Estimated Cell Counts: Independence
Blood Pressure

Cholesterol <127 127-146 147-166 167+
<200 96.3 130.8 50.6 29.3

200-219 77.2 104.8 40.6 23.7
220-259 137.7 187.0 72.4 41.9
≥260 76.85 104.4 40.4 23.4

With γ > 0, the uniform association model increases the estimated cell
counts (relative to independence) for cells with (a) high cholesterol and
high blood pressure and (b) low cholesterol and low blood pressure. Also,
the uniform association model decreases the estimated cell counts for cells
with (a) high cholesterol and low blood pressure and (b) low cholesterol
and high blood pressure.

7.2 Higher-Dimensional Tables

The same basic methods used to incorporate quantitative levels into two-
factor models can also be used in higher dimensions. For example, consider
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an I × J × K table with quantitative levels x1, . . . , xI , w1, . . . , wJ , and
v1, . . . , vK . Assuming no three-factor interaction, there are three types of
models that are particularly useful.
The homogeneous uniform association model is a model in which given a

level for any factor, the remaining two factors display a uniform association.
This model is

log(mijk) = u+ u1(i) + u2(j) + u3(k) + β1xiwj + β2xivk + β3wjvk .

Note that if xi = i, wj = j

log
(
mijkmi+1 j+1 k

mi+1 jkmi j+1 k

)

= u+ u1(i) + u2(j) + u3(k) + β1xiwj + β2xivk + β3wjvk

+ u+ u1(i+1) + u2(j+1) + u3(k) + β1xi+1wj+1

+ β2xi+1vk + β3wj+1vk

− u − u1(i+1) − u2(j) − u3(k) − β1xi+1wj − β2xi+1vk − β3wjvk

− u − u1(i) − u2(j+1) − u3(k) − β1xiwj+1 − β2xivk − β3wj+1vk

= β1(xiwj − xi+1wj − xiwj+1 + xi+1wj+1)
= β1 .

Thus, for any level of k, the log odds ratio for consecutive table entries
equals β1. Similarly, for j fixed, consecutive log odds ratios equals β2; and
for i fixed, consecutive log odds ratios equal β3.

If Factor 3 does not have quantitative levels or if we merely wish to ignore
the quantitative nature of the levels of Factor 3, we can write

log(mijk) = u+ u1(i) + u2(j) + u3(k) + τ1kxi + τ2kwj + βxiwj .

For each level of k, this model gives uniform associations. For a fixed level
of i or a fixed level of j, odds ratios need not display uniform association.

If neither Factors 2 or 3 has quantitative levels or if we wish to ignore
their quantitative nature, we can use the model

logmijk = u+ u1(i) + u2(j) + u3(k) + u23(jk) + τ2jxi + τ3kxi .

As before, models can be generalized by including powers of the xi, wj ,
and vk scores. We can also model the three-factor interaction. The models

logmijk = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + βxiwjvk

and

logmijk = u+ u1(i) + u2(j) + u3(k) + β1wjvk + β2xivk + β3xiwj + γxiwjvk

deal with the three-factor interaction while modeling two-factor interac-
tions in alternative ways. Both of these models could be described as het-
erogeneous uniform association models.



268 7. Models for Factors with Quantitative Levels

Example 7.2.1. In Chapter 6, we found that for the race, sex, opinion,
age data, the model [RSO][OA] fits well. The ages are quantitative levels.
We consider whether using the quantitative nature of this factor leads to
a more succinct model. The age categories are 18-25, 26-35, 36-45, 46-55,
56-65, and 66+. For lack of a better idea, the category scores were taken as
1, 2, 3, 4, 5, and 6. Since the first and last categories are different from the
other four, the use of the scores 1 and 6 are particularly open to question.
Two models were considered:

Abbreviation Model
[RSO][OA] log(mhijk) = uRSO(hij) + uOA(jk)
[RSO][A][O1] log(mhijk) = uRSO(hij) + uA(k) +O1jk
[RSO][A][O1][O2] log(mhijk) = uRSO(hij) + uA(k) +O1jk +O2jk

2

Both of these are reduced models relative to [RSO][OA]. ([RSO][OA] is
equivalent to log(mhijk) = uRSO(hij) + uA(k) + O1jk + O2jk

2 + O3jk
3 +

O4jk
4 +O5jk

5.) To compare models, we need the following statistics

Model df G2

[RSO][OA] 45 24.77
[RSO][A][O1][O2] 51 26.99
[RSO][A][O1] 53 29.33

Comparing [RSO][A][O1] versus [RSO][OA] gives G2 = 29.33−24.77 = 4.56
with degrees of freedom 53 − 45 = 8. The G2 value is not significant.
Similarly, [RSO][A][O1][O2] is an adequate model relative to [RSO][OA].
The test for [O2] has G2 = 29.33 − 27.99 = 1.34 on 2 df , which is not
significant. The model with only [O1] fits the data well.
A primary difficulty with using quantitative factors is the necessity of

assigning the factor scores. One way to avoid this problem is to estimate
the factor scores. Methods for doing this are discussed in Section 3.

7.2.1 Computing Commands
Models with quantitative factors can be fit easily using several computer
packages, e.g., SPLUS, GLIM, GENSTAT, and SAS PROC GENMOD. For
example, the model log(mhijk) = uRSO(hij) + uA(k) +O1jk+O2jk

2 can be
fitted using SAS PROC GENMOD as given below.

options ps=60 ls=72 nodate;
data abort;

infile ’abort.dat’;
input R S A O N;
A1 = A; A2 = A * A;

proc genmod data=abort;
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class R S O A;
model N = R*S*O A O*A1 O*A2 / link=log

dist=poisson;
run;

The key difference here from analysis of variance type models is that in the
“class” command, age was not specified as a grouping (class) variable. The
terms O1jk and O2jk

2 are really interactions between the factor O and the
predictors variables age and age squared. In the model statement, they are
simply specified as interactions.

7.3 Unknown Factor Scores

The next step in generalizing the models of Sections 1 and 2 is to allow
the factor scores to be unknown. In place of model (7.1.4), we assume the
model

log(mij) = µ+ αi + βj + γνiωj (1)

where νi, i = 1, . . . , I, and ωj , j = 1, . . . , J , are unknown parameters with

I∑

i=1

ν2i = 1 =
J∑

j=1

ω2
j (2)

and
α· = β· = ν· = ω· = 0.

The side conditions are imposed because the model is no longer log-linear.
In general, for nonlinear models, the exact parametrization can be impor-
tant in determining the properties of the model. The side conditions are
necessary to have a well-defined parametrization. In particular, without
condition (2), the parameter γ would not be well defined.
Model (1) is not log-linear, so the theoretical results used to justify fit-

ting log-linear models do not apply. A separate theoretical development
is required. Moreover, computer programs specifically developed for fit-
ting log-linear models by maximum likelihood cannot be used to obtain
the maximum likelihood fit of the model. Chuang (1983) used iteratively
reweighted nonlinear least squares to obtain maximum likelihood estimates
for models with unknown factor scores.
In addition to model (1), it is of interest to examine reduced models. In

particular, the submodel of (1) with column main effects that are linear in
the unknown factor scores is

log(mij) = µ+ αi + λωj + γνiωj (3)
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where

α· = ν· = ω· = 0. and
I∑

i=1

ν2i =
J∑

j=1

ω2
j = 1 .

Model (3) can also be written as

log(mij) = µ+ αi + νiωj (4)

with

α· = ω· = 0 and
J∑

j=1

ω2
j = 1 .

Here, νi is equivalent to λ+ γνi in model (3), which is why the conditions
ν· = 0 and

∑I
i=1 ν

2
i = 1 are dropped. We can take model (4) one step

further and write it as

log(mij) = α0i + α1iωj

where

ω· = 0 and
J∑

j=1

ω2
j = 1 .

The new parametrization is related to model (4) by α0i ≡ µ + αi and
α1i = νi. This version of the linear column effects model has the nice
interpretation of fitting separate lines in the unknown factor scores for each
level of i.
Similarly, if row effects are linear in the factor scores, the appropriate

model is
log(mij) = µ+ λνi + βj + γνiωj

with

β· = ν· = ω· = 0 and
I∑

i=1

ν2i = 1 =
J∑

j=1

ω2
j .

This is equivalent to

log(mij) = µ+ βj + νiωj (5)

and also to the separate lines model

log(mij) = β0j + β1jνi

where

ν· = 0 and
I∑

i=1

ν2i = 1

in both models and β· = 0 in model (5).
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If both main effects are linear, the model is

log(mij) = µ+ λ1νi + λ2ωj + γνiωj

with

ν· = ω· = 0 and
I∑

i=1

ν2i =
J∑

j=1

ω2
j = 1 .

An equivalent model is

log(mij) = µ+ νi + ωj + γνiωj (6)

where
ν· = ω· = 0 .

The relationship between the models is based on νi being equivalent to
λ1νi, ωj being equivalent to λ2ωj , and γ being equivalent to γ/λ1λ2.

When the factor categories are known to be ordered, a correspond-
ing order can be imposed on the estimated factor scores. For example,
models (1), (4), (5), and (6) can be fitted subject to the condition that
ν1 ≤ ν2 ≤ · · · ≤ νI . Similar orderings can be imposed on the column scores.
Unfortunately, such constraints cause complications in the numerical pro-
cedures required to fit the models. In practice, it seems to be more common
to fit the models without imposing order conditions on the scores. One can
then verify whether the data are consistent with the a priori ordering.
Model (1) was first proposed by Fienberg (1968). Later, Goodman (1979,

1981), Anderson (1980), and Chuang (1983) extended the use of estimated
factor scores. Johnson and Graybill (1972) proposed a model similar to (1)
for standard analysis of variance. They built on earlier results in analysis
of variance that are also of interest for log-linear models.
Tukey (1949) proposed a 1 degree of freedom test for nonadditivity in a

two-way analysis of variance. Mandel (1961, 1971) extended Tukey’s results
by considering tests for more general models and presented a justification
of the models based on unknown factor scores. Mandel’s models differ from
those considered by Johnson and Graybill in that they use the row and
column effects in place of the unknown factor scores. These models and
their justification apply equally well to log-linear models.
Mandel’s models are

log(mij) = µ+ αi + βj + δiβj , α· = β· = 0 , (7)

and
log(mij) = µ+ αi + βj + φjαi, α· = β· = 0 . (8)

The Tukey model is

log(mij) = µ+ αi + βj + γαiβj , α· = β· = 0 . (9)
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It is easily seen that model (7) is equivalent to the linear row effects
model (4). By equating

βj = ωj

and
δi = νi − 1

and substituting into (4), we see that model (4) can be written as model
(7). Conversely, if model (7) holds, write

ωj = βj

/√∑
β2j

and
νi = (1 + δi)

√∑
β2j

to see that model (4) holds. Similarly, models (5) and (8) are equivalent
and models (6) and (9) are identical. This establishes the justification for
examining models (7), (8), and (9). They are equivalent to models with
interesting interpretations in terms of underlying unknown factor scores.
If these models are appropriate and necessary, the maximum likelihood

fits should be obtained. Maximum likelihood estimation and (generalized)
likelihood ratio tests involving any of the models for unknown factor scores
require specialized methods for fitting the log-nonlinear models. Standard
programs for fitting log-linear models are not appropriate. However, by
analogy with the two-stage fitting procedure commonly used in analysis
of variance, a simple method can be derived for evaluating whether these
models are necessary. All of the models considered contain the model of
complete independence

log(mij) = µ+ αi + βj (10)

as a submodel. This may not be obvious in models (4), (5), and (6), but it
is in their equivalent versions (7), (8), and (9).
Models (7), (8), and (9) can be tested against model (10) in a very simple

way. First, write
τij = µ+ αi + βj

and note that if model (10) is true, (7) is equivalent to

log(mij) = µ+ αi + βj + δiτij , (11)

(8) is equivalent to

log(mij) = µ+ αi + βj + φjτij , (12)

and (9) is equivalent to

log(mij) = µ+ αi + βj + γ(τij)2 . (13)
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Models (11), (12), and (13) would be log-linear if the τij ’s were known.
Fit model (10) by maximum likelihood to obtain τ̂ij . Substitute τ̂ij for
τij in models (11), (12), and (13) so that they are log-linear in the other
parameters. Fit the models based on τ̂ij using standard log-linear methods
and test them against model (10) in the usual way. If model (10) is true,
these tests have asymptotic chi-squared distributions. For linear models, the
validity of tests based on this two-stage fitting procedure was established
by Milliken and Graybill (1970) and Rao (1965). For log-linear models, a
corresponding result is given by Christensen and Utts (1992).
These models and methods can also be applied to higher-dimensional

tables and to logit models. Example 7.4.1 gives the details for fitting a
logit model.

Example 7.3.1. Wing (1962), Haberman (1974b), and Fienberg (1980)
have considered data on the relationship between length of hospitalization
and frequency of visits for 132 long-term schizophrenic patients. Length
of hospitalization was categorized as over 2 years but under 10, (2, 10),
over 10 years but under 20, (10, 20), and over 20 years, 20+. Frequency of
visits were regular, irregular (no home visits, hospital visits less than once
a month), and never. The data are given in Table 7.1.

TABLE 7.1. Schizophrenic Data

Length of Hospitalization (j)
Visitation in years
Frequency (i) (2, 10) (10, 20) 20+
Regular 43 16 3
Irregular 6 11 10
Never 9 18 16

Fitting model (10) in the usual way and using the two-stage fitting pro-
cedure described above for the other models yields the lack of fit statistics
given below.

Two-Stage
Model df G2

(10) 4 38.35
(11) 2 1.21
(12) 2 11.18
(13) 3 14.76

Except for model (10), theseG2’s are not likelihood ratio lack of fit statistics
for the models. However, the G2 for model (10) can be subtracted from the
other G2’s to obtain valid asymptotic χ2 tests for model (10) versus the
other models. The test statistics are as follows:
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Two-Stage
Model df G2

(11) 2 37.14
(12) 2 27.17
(13) 1 23.59

All of the models fit better than (10), especially model (11).
One set of parameter estimates are given below for the two-stage fit of

model (11). Recall that parameter estimates are not uniquely defined.

Parameter Estimate
µ −12.91
α1 0.000
α2 14.65
α3 15.23
β1 0.000
β2 0.4727
β3 0.4977
δ1 5.034
δ2 0.05197
δ3 0.000

Observe that δ̂1 > δ̂2 > δ̂3 = 0 with δ̂1 much larger than the others. To
draw conclusions about the meaning of the δ̂’s, we need to examine their
multipliers in model (11), the τ̂ij ’s. The τ̂ij ’s are

i
j 1 2 3
1 3.305 3.051 2.612
2 2.473 2.220 1.780
3 2.939 2.685 2.246

In each row, the τ̂ij ’s are decreasing. With non-negative δ̂’s, as we move
to the right in each row, the fitted counts decrease. For patients who are
visited irregularly or never, the model indicates little decrease over time
due to the interaction because the δ̂ values are near zero. However, δ̂ is
large for row 1, so, according to the fitted model, the number of patients
who have regular visits decreases dramatically over time.

Exercise 7.1. Show that models (7) and (11) are equivalent. Show that
models (9) and (13) are equivalent.
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7.4 Logit Models

Results analogous to Section 3 apply to models for the log odds. The ex-
ample in this section involves a logit model with factors that are assumed
to have unknown quantitative category scores.

Example 7.4.1. Rosenberg (1962) presents data on the relationships
among Religion, Father’s Educational Level, and Self-Esteem. The data
are given in Table 7.2. Self-Esteem is considered the response.

TABLE 7.2. Data of Rosenberg (1962).

Father’s Educational Level
Self- 8th or Some HS Some Coll Post

Religion Esteem less HS Grad Coll Grad Coll
High 245 330 388 100 77 51

Catholic
Low 115 152 153 40 37 19
High 28 89 102 67 87 62

Jewish
Low 11 37 35 18 12 13
High 125 234 233 109 197 90

Protestant
Low 68 91 173 47 82 32

Chuang (1983) presents a maximum likelihood analysis of Rosenberg’s data
that includes logit versions of Mandel’s models (7.3.7) and (7.3.8) and the
Tukey model (7.3.9). The expected cell counts are mijk, where i denotes
religion, j denotes educational level, and k denotes self-esteem. A logit
model imposes structure on

τij ≡ log(mij1/mij2) .

The logit versions of Mandel’s models are

τij = µ+ αi + βj + δiβj (1)

and
τij = µ+ αi + βj + φjαi . (2)

The logit version of the Tukey model is

τij = µ+ αi + βj + γαiβj . (3)

The additive model is
τXij = µ+ αi + βj . (4)
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In Section 3, the models (7.3.11), (7.3.12), and (7.3.13) were used to simplify
the two-stage fitting process. Their logit model analogues are

τij = µ+ αi + βj + δiτXij , (5)
τij = µ+ αi + βj + φjτXij , (6)

and
τij = µ+ αi + βj + γ(τXij)2 . (7)

As in Section 3, these models are equivalent to models (1), (2), and (3),
respectively.
To fit (5), (6), and (7) using maximum likelihood requires the use of some-

thing other than a standard log-linear model or logistic model computer
program. Chuang (1983) suggests modifying a nonlinear least squares pro-
gram. The alternative two-stage procedure discussed in Section 3 is easily
implemented with standard software. Begin by fitting model (4) to obtain
the τ̂Xij ’s. The only nonlinear aspect to models (5), (6), and (7) is the
presence of the τXij parameters, so if these parameters were known, there
would be no difficulty in obtaining fits for the models. In the two-stage pro-
cedure, the estimates τ̂Xij are substituted for the parameters. The resulting
linearized models are fitted in the usual way with standard software. Test
statistics for comparing the models to model (4) are also computed in the
usual way.
Table 7.3 presents the results of fitting models (5), (6), and (7) by both

maximum likelihood and the two-stage procedure. The G2 values reported
in Table 7.3 for the two-stage fits are not directly applicable because they
are statistics for testing the models against the saturated model. The the-
oretical justification given in Christensen and Utts (1992) applies only to
testing models (5), (6), and (7) against the additive model (4). Although
the G2’s reported in Table 7.3 do not have a sound theoretical basis as
test statistics, they are sometimes a valuable data analytic tool. This is not
unreasonable because they are one-to-one functions of test statistics that
have a sound basis.

TABLE 7.3. Model Fits

MLE Two-Stage
Model df G2 G2

(5) 8 12.76 16.34
(6) 5 12.07 13.25
(7) 9 25.58 26.34
(4) 10 26.39 —

The results of testing the models with nonadditivity against the additive
model are given in Table 7.4. In this example, the two-stage tests appear
to be a little less powerful than the generalized likelihood ratio tests, but
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the qualitative conclusions about the best-fitting model are identical for
the two methods. Model (5), i.e., model (1), appears to be the best-fitting
model. Recall from Section 3 that this is the model that, for each religion,
fits a line in the unknown factor scores associated with Father’s Educational
Level.

TABLE 7.4. Tests of Nonadditivity

MLE Two-Stage
Model df G2 G2

(5) 2 13.63 10.05
(6) 5 14.32 13.14
(7) 1 0.81 0.05

If one of the log-nonlinear models is to be used in further work, an
exact maximum likelihood fit of the model should be used. Nonetheless,
the two-stage fitting procedure provides a simple yet valid diagnostic tool
for checking whether Mandel’s models and the Tukey model require more
investigation.

7.5 Exercises

Exercise 7.5.1. Reanalyze the Intelligence versus Clothing table of Ex-
ercise 2.6.3 using the methods of Section 1. Note that this ignores the po-
tentially complicating factor Standard and the complex sampling scheme.

Exercise 7.5.2. For the model

log(mij) = u+ u1(i) + u2(j) + γ1 i j + γ2 i
2j ,

find the log odds ratio

log[mijmi+1 j+1
/
mi+1 jmi j+1]

in terms of the model parameters.

Exercise 7.5.3. Duncan, Schuman, and Duncan (1973) and Duncan
and McRae (1979) present data on evaluations made in 1959 and 1971 of
the performance of radio and TV networks. The data are given in Table 7.5.
Use the methods of Section 2 to analyze these data.

Exercise 7.5.4. Assuming the use of consecutive integer scores, find the
log odds ratios

log[mijkmi+1 j+1 k

/
mi+1 jkmi j+1 k]
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TABLE 7.5. Radio and Television Network Per-
formance.

Respondent’s Performance of Networks
Year Race Poor Fair Good
1971 White 158 636 600

Black 24 144 224
1959 White 54 253 325

Black 4 23 81

and
log[mijkmi+1 j k+1

/
mi+1 jkmi j k+1]

in terms of the model parameters for the two heterogeneous uniform asso-
ciation models of Section 2.

Exercise 7.5.5. Use the methods of Section 3 to analyze the Intelligence
– Clothing table of Exercise 2.6.3.
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Fixed and Random Zeros

Not infrequently, one encounters a table in which a number of the cell counts
are 0s. These cells sometimes cause problems when fitting log-linear models.
Recall that in our discussion of multiple logistic regression in Section 4.1,
we had a 200×2 table that was riddled with zero counts. Except for the fact
that some asymptotic results did not hold, the zeros caused no problems.
Cells with zero counts merely have the potential to cause problems.
Cells with zero counts are classified in two ways: fixed and random. Fixed

zeros are cells in which it is impossible to observe counts. Such cells must
always be zero. Random zeros are cells that happen to have zero counts,
but where it is possible to have positive counts. Tables with fixed zeros are
called incomplete tables.

8.1 Fixed Zeros

Example 8.1.1. Brunswick (1971) reports data on the health concerns
of teenagers. These data have also been examined by Grizzle and Williams
(1972) and Fienberg (1980). The data are given in Table 8.1. The two
zeros in the table are fixed. It is physiologically impossible for males (of
whatever age) to have menstrual difficulties. (Technically, I suppose the real
issue here is whether males worry about menstrual difficulties. I suppose
somewhere, sometime, some teenage male has worried about them, but one
must admit that these are very nearly fixed zeros. We will treat them as
such.)
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TABLE 8.1. Health Concerns of Teenagers

Health Concerns (k)
Sex, Menstrual How Healthy

Sex (i) Age (j) Reproduction Problems I Am Nothing
Male 12-15 4 0 42 57

16-17 2 0 7 20

Female 12-15 9 4 19 71
16-17 7 8 10 31

The solution to dealing with fixed zeros is to throw them away. They
are cells that do not really exist. One simply ignores those cells and fits a
model to the cells that do exist. Thus, the model is fitted to an incomplete
table.
In fact, it is impossible to include fixed zeros in a log-linear model. A log-

linear model specifies a value of log(mi) for every cell i. It is implicit that
log(mi) is defined. If a cell is a fixed zero, the probability of an observation
occurring in that cell is zero, so the expectation, mi, must also be zero. In
such cases, log(mi) is undefined. To fit log-linear models, one has to throw
fixed zeros away.
If the Newton-Raphson algorithm of Chapter 10 is used to fit log-linear

models, throwing out fixed zeros is no problem. The algorithm can eas-
ily handle the fact that not all combinations of the factor categories are
considered in the model.
When using iterative proportional fitting, the situation is slightly more

complex. The algorithm is based on having all combinations of the factor
categories defined. Fortunately, there is a simple way around this problem.
Recall that it is standard to start iterative proportional fitting with all
initial cell estimates equal to 1 and that if the initial values satisfy the con-
straints of the model, the subsequent iterations also satisfy the constraints
of the model. With all initial values of 1, the initial values satisfy the con-
straints of any interesting ANOVA model. To deal with fixed zeros, take
the initial values of the corresponding cells to be 0. It is easily seen that
if the initial value is 0, then all subsequent values will also be 0. (We use
the definition that 0/0 = 0.) Moreover, the constraints on the model with
fixed zero cells eliminated are identical to the constraints on the complete
model when the fixed zero cells are required to have fitted values of 0.
Although one can get the correct fitted values using iterative proportional

fitting, the user often must provide the correct degrees of freedom. These
are determined by the model with the fixed zero cells eliminated.

Example 8.1.2. We illustrate the computation of degrees of freedom
using the data of Example 8.1.1. Consider the model

log(mijk) = M + Si +Aj +Hk + (SA)ij + (SH)ik + (AH)jk . (1)
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Clearly, the grand mean M can exist and we have data available for each
sex, age, and health concern. Computing these degrees of freedom as usual,
we have

Term df
M 1
S 1
A 1
H 3

We also have data available for every combination of sex and age, and
every combination of age and health concern. Again, computing degrees of
freedom in the usual way, we get

Term df
SA 1
AH 3

We do not have data available for every combination of sex and health
concern. We have no data for males with menstrual difficulties. In the 2×4
table of sex and health concerns, we have only 7 cells instead of 8. The
degrees of freedom for this table must be 7. To fit this table perfectly,
we would use the parameters M , Si, Hk, and (SH)ik. The total number of
degrees of freedom for these parameters must be 7. Because M has 1 degree
of freedom, S has 1, and H has 3, that leaves only 2 degrees of freedom
available for SH. Thus, model (1) has

1 + 1 + 1 + 3 + 1 + 2 + 3 = 12

degrees of freedom. The saturated model has 1 degree of freedom for each
cell. There are nominally 16 cells, but 2 are fixed zeros, so the table has only
14 cells. For testing model (1) against the saturated model, the degrees of
freedom are 14 − 12 = 2.
These techniques are easily applied to all models for the health concern

data. In testing [SA][H] against the saturated model, we have dropped the
SH and AH terms. The degrees of freedom for these terms are put into the
test degrees of freedom. Model (1) has 2 degrees of freedom for the test,
SH has 2 degrees of freedom, and AH has 3 degrees of freedom, so the test
of [SA][H] has 2 + 2 + 3 = 7 degrees of freedom. Alternatively, we can do
the calculation by noting that the saturated model has 14 df , while the
[SA][H] model has terms and degrees of freedom M(1), S(1), A(1), SA(1),
H(3) for a total of 7 degrees of freedom. The test has 14 − 7 = 7 degrees
of freedom.
The fits for these data are summarized below.
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Model df G2

[SA][SH][AH] 2 2.03
[SH][AH] 3 4.86
[SA][AH] 4 13.45
[SA][SH] 5 9.43
[SA][H] 7 22.03
[SH][A] 6 15.64
[AH][S] 5 17.46
[S][A][H] 8 28.24

The best fitting model is either [SA][SH][AH] or [SH][AH], depending on
whether health concerns are treated as a response variable or not.
One final note on fixed zeros. Because fixed zeros are really cells that do

not exist, the existence of fixed zeros has no effect on the validity of large
sample results. If the counts in the other cells are large, asymptotic results
hold.

8.2 Partitioning Polytomous Variables

We now investigate a method that uses incomplete tables to examine cat-
egory effects.

Example 8.2.1. Duncan (1975) presents data on the earth-shattering
question, “Who should shovel the snow from sidewalks?” The data are
given in Table 8.2. Mothers were asked whether boys, girls, or both should
do the shoveling. Mothers never responded that girls alone should do the
shoveling, so the data are presented with only two categories. In addition,
there are two explanatory factors, the mother’s religion (R), Protestant,
Catholic, Jewish, or other, and the year (Y) in which the question was
asked. (Having lived 36 years in Minnesota and Montana, I am aware that a
key factor has been left out. Father does the vast majority of the shoveling.)
We will treat mothers’ opinions on shoveling (S) as a response variable

and consider only log-linear models that correspond to logit models. The
point of this example is to illustrate how to use tables with fixed zeros to
answer questions about parameters in log-linear models.
Fitting the standard models gives

Model df G2

[RY][RS][YS] 3 0.4
[RY][RS] 4 21.5
[RY][YS] 6 11.2
[RY][S] 7 31.7
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TABLE 8.2. Mothers’ Opinions on
Who Should Shovel Snow

Shoveling (k)
Religion (i) Year (j) Boy Both
Protestant 1953 104 42

1971 165 142

Catholic 1953 65 44
1971 100 130

Jewish 1953 4 3
1971 5 6

Other 1953 13 6
1971 32 23

Clearly, the best fitting model is [RY][RS][YS]. We can write the model as

log(mijk) = (RY )ij + Sk + (RS)ik + (Y S)jk , (1)

i = 1, 2, 3, 4 , j = 1, 2 , k = 1, 2. Because S is a response variable, the
(RY )ij ’s must be in the model. The important terms are Sk, (RS)ik, and
(Y S)jk. In a logit model, Sk corresponds to the grand mean; not very
interesting. The terms (Y S)jk correspond to main effects in years with 1
degree of freedom. The terms (RS)ik correspond to main effects in religion
with 3 degrees of freedom. Further analysis must examine the nature of the
three degrees of freedom in (RS). We are really asking about relationships
among the religion categories.
One way to proceed was illustrated in Section 4.6. We could incorporate

constraints on the religions. For instance, we could treat all Protestants and
Jews alike, while allowing Catholics and Others to have separate effects on
the shoveling response. Such a procedure would involve recoding the indices.
We could recode the index i into a new pair of indices g and h as follows:

i 1 2 3 4
(g, h) (1,1) (2,1) (1,2) (3,1)

where g indicates religion with no difference between Protestants and Jews,
while h is simply used to tell Protestants and Jews apart. We can rewrite
model (1) as

log(mghjk) = (RY )ghj + Sk + (RS)ghk + (Y S)jk . (2)

To eliminate differences between Protestants and Jews in (RS), we drop
the h, giving

log(mghjk) = (RY )ghj + Sk + (RS)gk + (Y S)jk . (3)
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Both models (2) and (3) are actually models for incomplete tables. The
possible values for g are 1, 2, 3. For h, they are 1, 2. For j and k, they are
also 1 and 2. This suggests the existence of a 3× 2× 2× 2 table. However,
not all combinations of the indices are possible. Only when g is 1 can h be
2. Any cell (g, 2, j, k) in the 3 × 2 × 2 × 2 table with g = 2 or 3 is a fixed
zero.
It is obvious that quite a few questions can be addressed by creative

reindexing. Duncan (1975) presented a particular pattern that is very flex-
ible. Transform the index i into (r, s, t, u) where the correspondence is as
follows:

i 1 2 3 4
(r, s, t, u) (1,2,2,2) (2,1,2,2) (2,2,1,2) (2,2,2,1)

Each 4-tuple has three 2s and one 1. If the 1 is in the third place, then
the 4-tuple corresponds to i = 3, etc. The index r is 1 for Protestant
and 2 otherwise. The index s is 1 for Catholic and 2 otherwise. Similarly,
t = 1 indicates Jewish and u = 1 indicates Other. Including the year
and shoveling factors, we now have a 2 × 2 × 2 × 2 × 2 × 2 table with
many fixed zeros because mothers have only one religion. Using a natural
identification, denote the factors corresponding to r, s, t, and u as P, C, J,
and O. Model (1) can now be rewritten as

log(mrstujk) = (PCJOY )rstuj + Sk + (PCJOS)rstuk + (Y S)jk .

Moreover, we can denote this as [PCJOY][PCJOS][YS]. Note that the four
factors P, C, J, O taken together are equivalent to the old factor R.
Now consider the model [PCJOY][YS][CS]. Recall that [PCJOY] is in-

cluded because S is a response factor. The term [YS] seemed important in
our original analysis, so it is retained. The new model replaces the terms
(RS)ik = (PCJOS)rstuk in model (1) with the terms (CS)sk. In particular,
the model is

log(mrstujk) = (PCJOY )rstuj + Sk + (CS)sk + (Y S)jk .

The logit model effect of the four different religions is being replaced with
one effect that distinguishes Catholics from all other religions.
Earlier, we considered a model that treated Protestants and Jews the

same, but allowed separate effects for Catholics and Others. In Duncan’s
setup, this is the model [PCJOY][YS][COS]. In the model

log(mrstujk) = (PCJOY )rstuj + Sk + (COS)tuk + (Y S)jk ,

the effect of religion on mothers’ shoveling opinions is taken up by the
(COS)tuk terms. Only three such terms exist: (COS)12k, an effect for
Catholics; (COS)21k, an effect for others; and (COS)22k. The (COS)22k
term does not distinguish between Protestants and Jews.
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Moreover, because the 2 × 2 × 2 × 2 × 2 × 2 table is so very incom-
plete, there is another way to do exactly the same thing. The model
[PCJOY][YS][CS][OS] is equivalent to [PCJOY][YS][COS]. The model for
[PCJOY][YS][CS][OS] is

log(mrstujk) = (PCJOY )rstuj + Sk + (CS)sk + (OS)uk + (Y S)jk .

Catholics get the effects (CS)1k + (OS)2k. Others get the distinct effects
(CS)2k + (OS)1k. Protestants and Jews both get (CS)2k + (OS)2k.
In a complete table, the 15 interactions between S and the religion factors

P, C, J, and O would each have 1 degree of freedom. In fact, there are only 3
degrees of freedom for (RS) = (PCJOS). Thus, there are a lot of redundant
models. In fact, any term that includes three of P, C, J, and O is equivalent
to any other term that includes three, and these are all equivalent to the
four-factor term. This follows from the fact that any three of the indices
r, s, t, and u completely determine the cell; e.g., if r = 2, s = 2, t = 2,
then we must have u = 1. Because all terms with three of the factors are
the same, models such as [PCJOY][YS][PCJS] and [PCJOY][YS][CJOS] are
equivalent to each other and to [PCJOY][YS][PCJOS].
Although Duncan’s method of reindexing is flexible, it is not a panacea.

There are interesting questions that cannot be addressed using Duncan’s
method. For example, if we wanted a model that treated Protestant and
Jews the same and also treated Catholics and Others the same, we could
not arrive at such a model using Duncan’s method.
Now let’s see where Duncan’s method gets us with the shoveling data.

Some models and fits are given below:

Model df G2

[PCJOY][PCJOS][YS] = [RY][RS][YS] 3 0.4
[PCJOY][PS][YS] 5 4.8
[PCJOY][CS][YS] 5 1.4
[PCJOY][JS][YS] 5 10.9
[PCJOY][OS][YS] 5 9.8
[PCJOY][YS] = [RY][YS] 6 11.2

The models that involve [JS] and [OS] do not fit very well. The model
with [JS] only distinguishes between Jews and non-Jews. The relatively
poor fit indicates that Protestants, Catholics, and Others do not act the
same. Similarly, the relatively poor fit of the model with [OS] indicates that
Protestants, Catholics, and Jews do not act the same.
Both the models with [PS] and [CS] fit reasonably well. The model with

[CS] fits especially well. This model suggests that Protestants, Jews, and
Others act the same, but Catholic mothers have different opinions about
who should shovel snow. The model with [PS] indicates that Catholics,
Jews, and Others act the same, but Protestant mothers have different opin-
ions. There are so few Jews and Others that it is not surprising that lumping
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them with either large category does not substantially hurt the fit. What
we really know is that Protestants mothers have different attitudes than
Catholic mothers and that if we want to lump Jewish and Other mothers
with one of those categories, they seem to fit better with the Protestants
than the Catholics. However, we know almost nothing about Jewish moth-
ers and little about Other mothers. From looking at Table 8.2, it is clear
that the Catholic mothers are much more egalitarian about shoveling than
the Protestants or the Others.
We could go further with this analysis by considering models [RY][YS]

[CS][PS], [RY][YS][CS][JS], and [RY][YS][CS][OS], but considering what lit-
tle difference there is between [RY][YS][CS] and [RY][YS][RS], there seems
little point in pursuing the analysis further. Note that I have gotten lazy
and started writing [RY] for [PCJOY].

8.3 Random Zeros

Random zeros are cells that have positive probability of occurring, but do
not occur in the sample at hand. If a large enough sample was taken, these
cells should eventually contain positive counts.
Random zeros present three problems. First, they suggest that asymp-

totic results are invalid. If the sample was large enough for asymptotic
approximations, these cells ought not be zero. The discussions of small
samples in Section 2.4 and conditional inference in Section 3.5 are relevant
to this problem. Second, when a table includes random zeros, maximum
likelihood estimates of the parameters may not exist. Finally, there is a
practical problem in that some computer programs will give “MLEs” even
when they do not exist. In this section, we concern ourselves primarily with
problems related to the nonexistence of MLEs.

Example 8.3.1. Consider a 4× 2× 3× 3 table on the results of arthro-
scopic knee surgery. The four factors and their categories are listed as
follows:

Factor Label Factor Description Categories
Type Type of injury Twist, Direct, Both, No injury
Sex Sex of patient Male, Female
Age Age of patient 11-30, 31-50, 51-91
Result Outcome of surgery Excellent, Good, Fair-Poor

The data are given in Table 8.3. First, note that one cannot fit a saturated
log-linear model. For a saturated model, nhijk = m̂hijk. Because the model
is log-linear, log(m̂hijk) must be defined. However, for some cells, nhijk = 0,
so either nhijk �= m̂hijk or log(m̂hijk) is not defined.
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TABLE 8.3. Data on Arthroscopic Knee Surgery

Result (k)
Type (h) Sex (i) Age (j) Ex Good F-P

11-30 21 11 4
Male 31-50 32 20 5

51-91 20 12 5
Twist

11-30 3 1 0
Female 31-50 6 5 2

51-91 6 3 1
11-30 3 2 2

Male 31-50 2 4 4
51-91 0 0 0

Direct
11-30 0 1 1

Female 31-50 0 0 0
51-91 1 2 3
11-30 7 1 1

Male 31-50 11 6 2
51-91 0 4 6

Both
11-30 1 0 0

Female 31-50 1 1 1
51-91 2 4 1
11-30 0 0 0

Male 31-50 1 2 1
51-91 3 3 0

No Injury
11-30 1 0 0

Female 31-50 1 2 0
51-91 1 6 8



288 8. Fixed and Random Zeros

We can extend this argument to other models. If we consider models
that include the uTSA(hij) terms (i.e., models that include [TSA]), the
MLEs must satisfy the condition nhij· = m̂hij· for all h, i, and j. However,
n213· = n222· = n411· = 0. If MLEs exist, then m̂213· = 0, etc.
But, because we have a log-linear model, each term m̂213k must be strictly

positive. Summing over k, m̂213· must also be strictly positive. Because
m̂213· = 0, we have a contradiction. The MLEs must not exist. Therefore,
we cannot fit any log-linear models that include [TSA]. Similarly, n4·13 =
n4·12 = 0, so MLEs do not exist for models that include [TAR]. All other
marginal totals are positive, so models with [TSA] or [TAR] are our primary
source of concern.
To some extent, these problems can be evaded. Suppose we wish to fit

a model with [TSA]. If we think of TSA as one composite factor, we can
think of the problem as being one of fitting a (4 × 2 × 3) × 3 table, i.e., a
24 × 3 table. In this table, three of the “rows” have zero totals. If we drop
these three rows from the table, we can fit the remaining 21×3 table. Now,
suppose we fit the model [TSA][TR][AR]. We have 21 degrees of freedom in
the model for fitting [TSA]. Normally, this would be 24 degrees of freedom
for fitting a grand mean, main effects T , S, A; two-factor effects (TS),
(TA), (SA); and the three-factor effect (TSA). However, because 3 rows
are being dropped, we have only 21 degrees of freedom. For fitting [TR], we
have an additional 8 degrees of freedom. Adding [TR] involves adding the
main effect R with 2 degrees of freedom and the two-factor effect (TR) with
6 degrees of freedom. Finally, adding [AR] is equivalent to adding the two-
factor effect (AR) with 4 degrees of freedom. The model has 21+8+4 = 33
degrees of freedom. The table has 21 × 3 = 63 degrees of freedom, so the
test of [TSA][TR][AR] has 63 − 33 = 30 degrees of freedom. (Incidentally,
G2 = 34.72, so this is a very good model.)
We now consider the problem of determining the degrees of freedom

for testing the more complex model, [TSA][TAR]. Recall that there are
marginal totals of 0 associated with both of these terms. Of the 24 marginal
totals associated with [TSA] (obtained by summing over R), three are 0.
This leads us to fitting the (24− 3)× 3, TSA by R table considered above.
Of the 36 marginal totals associated with [TAR] (obtained by summing
over S), two are 0. This would normally lead us to fitting the (36 − 2) × 2
TAR by S table. In fact, what we need to do is fit the intersection of
these tables. The 21 × 3 table involves dropping the cells (h, i, j, k) with
values (2,1,3,1), (2,1,3,2), (2,1,3,3), (2,2,2,1), (2,2,2,2), (2,2,2,3), (4,1,1,1),
(4,1,1,2), and (4,1,1,3). The 34× 2 table drops the cells (4,1,1,3), (4,2,1,3),
(4,1,1,2), and (4,2,1,2). Note that both tables drop the cells (4,1,1,2) and
(4,1,1,3), so a total of 11 cells are being dropped from the 4 × 2 × 3 × 3
table. We are left with a table that has 72 − 11 = 61 cells.

We now compute the degrees of freedom for the model [TSA][TAR]. As
before, fitting [TSA] alone accounts for 21 degrees of freedom. Determining
the degrees of freedom for adding [TAR] is somewhat more complex. Nor-
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mally, [TAR] alone would involve 36 degrees of freedom broken down as
follows: (grand mean) : (1), T : (3), A : (2), R : (2), (TA) : (6), (TR) : (6),
(AR) : (4), and (TAR) : (12). With the marginal zeros, there are only 34
degrees of freedom. The 2 degrees of freedom come out of the (TAR) inter-
action, so the correct degrees of freedom are (TAR) : (10). Adding [TAR] to
a model with [TSA] involves adding the effects R, (TR), (AR), and (TAR).
The degrees of freedom for [TSA][TAR] are 21 + 2 + 6 + 4 + 10 = 43. The
lack of fit test for [TSA][TAR] has 61 − 43 = 18 degrees of freedom; G2 is
21.90.
The basic approach to dealing with models that have random zeros is

to identify all cells that imply that MLEs do not exist. In other words,
identify all cells for which the maximum likelihood constraints would imply
that m̂ = 0. Such cells are dropped from the model and MLEs are found
for the remaining cells. We are simply treating cells with “m̂ = 0” as fixed
zeros. The degrees of freedom for the table are the number of cells in the
full table minus the number of “fixed” zeros. The degrees of freedom for the
model are the usual degrees of freedom for the model minus the number
of degrees of freedom lost because there is “no information” available on
some parameters. From Example 8.3.1, [TSA] usually involves 24 degrees
of freedom related to the 4 × 3 × 3 TSA marginal table. The table has
n213· = n222· = n411· = 0. The nine cells involved in these three marginal
totals are being treated like fixed zeros, so those nine cells “do not exist.”
There is no information available on 3 of the 24 cells of the TSA marginal
table. Thus, 3 degrees of freedom are lost to the model because there is no
information available.
We now consider one more example to set the ideas and illustrate some

additional details.

Example 8.3.2. The data in Table 8.4 were adapted from Lee (1980).
The table involves four factors related to the survival of patients with
stages 3 and 4 melanoma: Gender, Remission, Immunity, and Survival.
Remission has three categories: still in remission, relapsed, never in remis-
sion. Immunity has three categories that were derived from results on six
skin tests. One test score of at least 10 indicates good immunity. No test
scores of at least 10 indicates no immunity. If more than half of the test
scores are unknown and those that are known are less than 10, the immu-
nity is taken as unknown. Finally, to get more interesting marginal zeros,
Lee’s count in cell (2,1,3,2) has been changed from 1 to 0.
Denote the factors Gender, Remission, Immunity, and Survival as G, R,

I, and S, respectively. Consider fitting the model [GRI][GRS][GIS][RIS].
The likelihood equations are, for all h, i, j, and k,

nhij· = m̂hij· ,
nhi·k = m̂hi·k ,
nh·jk = m̂h·jk ,
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TABLE 8.4. Melanoma Data

Survival (k)
Gender (h) Remission (i) Immunity (j) Dead Alive

No Immunity 2 0
Relapsed Immunity 4 1

Unknown 0 0

No Immunity 0 1
Male Remission Immunity 1 10

Unknown 3 3

No Immunity 3 1
None Immunity 10 5

Unknown 8 2
No Immunity 2 0

Relapsed Immunity 3 4
Unknown 0 0

No Immunity 0 0
Female Remission Immunity 0 10

Unknown 0 4

No Immunity 2 0
None Immunity 6 3

Unknown 3 8
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n·ijk = m̂·ijk .

Many of these marginal tables have zero totals. The RIS marginal ta-
ble has four zeros: 0 = n·131 = n·132 = n·112 = n·211. These involve
the eight cells with counts of 0: (1,1,3,1), (2,1,3,1), (1,1,3,2), (2,1,3,2),
(1,1,1,2), (2,1,1,2), (1,2,1,1), and (2,2,1,1). The GRI table has three ze-
ros: 0 = n113· = n213· = n221·. These involve six cases: (1,1,3,1), (1,1,3,2),
(2,1,3,1), (2,1,3,2), (2,2,1,1), and (2,2,1,2). The GRS table has n22·1 = 0.
This total involves the cases (2,2,1,1), (2,2,2,1), and (2,2,3,1). Finally, the
GIS table has n2·12 = 0, so the cells (2,1,1,2), (2,2,1,2), and (2,3,1,2) are
all 0.
Having listed all of the cells that would have to have m̂ = 0, we see that

there are only 12 distinct cells. (These 12 happen to be all of the cells in
the entire table with counts of 0, but that fact is irrelevant.) The full table
is a 2× 3× 3× 2 table having 36 cells. If we drop the 12 cells with m̂ = 0,
we have 24 cells remaining in the table. Thus, the table has 24 degrees of
freedom.
We now consider the degrees of freedom for the model. The RIS table

has four zero totals. The corresponding cells are dropped from the table,
so rather than being a 2 × 18 table, the G by RSI table is a 2 × 14 table.
Thus, fitting [RIS] gives the model 14 degrees of freedom.
We can also compute the degrees of freedom for fitting [RIS] term by

term. To compute the degrees of freedom term by term, we need to note
that the RI marginal table has n·13· = 0. Thus, this 3 × 3 table has one
dropped cell and only 8 degrees of freedom. The degrees of freedom are
allocated: (grand mean) : (1), R : (2), I : (2), and (RI) : (3) rather than
the standard value 4. Moving up to the RIS 3×3×2 table, we have 14 non-
empty cells. Because the (RI) interaction has only 3 degrees of freedom,
the 14 degrees of freedom correspond to: (grand mean) : (1), R : (2),
I : (2), S : (1), (RI) : (3), (RS) : (2), (IS) : (2), which leaves (RIS) : (1)
rather than the standard value of 4. Thus, with this pattern of random
zeros, the four empty cells cause a reduction of 1 degree of freedom in the
(RI) interaction and 3 degrees of freedom in the (RIS) interaction. Note
that the only two-factor marginal table that contains a zero is the RI table.
Thus, any other reductions in degrees of freedom must occur in three-factor
interaction terms.
A similar analysis holds for the GRI marginal table. This 2× 3× 3 table

has three zeros, so three cells are dropped. There are 18−3 = 15 degrees of
freedom. The degrees of freedom are allocated: (grand mean) : (1), G : (1),
R : (2), I : (2), (GR) : (2), (GI) : (2); once again (RI) : (3) (rather than
4) which leaves us with (GRI) : (2) (rather than 4).
The model [RIS][GRI] has 14 degrees of freedom for [RIS]. We then add

the terms G, (GR), (GI), and (GRI) with 1 + 2 + 2 + 2 = 7 degrees of
freedom. Thus, [RIS][GRI] has 14 + 7 = 21 degrees of freedom.
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The 2 × 3 × 2 GRS table has one zero, hence 11 degrees of freedom.
They are allocated: (grand mean) : (1), G : (1), R : (2), S : (1), (GR) :
(2), (GS) : (1), (RS) : (2), which leaves (GRS) : (1). Adding [GRS] to
[RIS][GRI] involves adding the terms (GS) and (GRS) with 1 + 1 = 2
degrees of freedom, so [RIS][GRI][GRS] has 21+2 = 23 degrees of freedom.
Finally, the 2×3×2 GIS table has one cell dropped for 11 degrees of free-

dom. The 1 degree of freedom lost is taken from the (GIS) interaction, so
(GIS) has 1 degree of freedom. The model [RIS][GRI][GRS][GIS] involves
adding (GIS) to the model [RIS][GRI][GRS]. The degrees of freedom are
23 + 1 = 24.
Recall that the degrees of freedom for the table are 24. With 24 degrees

of freedom for the model, we get a perfect fit. Having dropped out the cells
that require m̂ = 0, the model [RIS][GRI][GRS][GIS] is a saturated model.
In order to implement this approach to dealing with random zeros, we

must be able to identify all cells for which the likelihood equations imply
that m̂ = 0. As in Examples 8.3.1 and 8.3.2, it is frequently easy to identify
some cells that have m̂ = 0. Often, all of the cells with m̂ = 0 are easily
identified. Cells are easy to identify if they correspond to marginal totals
that are zero. Unfortunately, sometimes all of the marginal totals can be
positive, but cells with m̂ = 0 still exist.

Example 8.3.3. Consider a 2 × 2 × 2 table with n111 = n222 = 0 and
nijk > 0 for all other cells. If we fit the model [12][13][23], the likelihood
equations are

nij· = m̂ij· ,
ni·k = m̂i·k ,

and
n·jk = m̂·jk .

Because n111 and n222 are the only 0s, all of the marginal totals listed
above are positive. Looking at the marginal totals indicates no cause for
concern. Nonetheless, these equations imply that m̂111 = m̂222 = 0.
To see this, first note that we must have n··· = m̂···. Writing out all of

the likelihood equations involving n111 and n222 gives

n111 + n112 = m̂111 + m̂112 ,

n221 + n222 = m̂221 + m̂222 ,

n111 + n121 = m̂111 + m̂121 ,

n212 + n222 = m̂212 + m̂222 ,

n111 + n211 = m̂111 + m̂211 ,

n122 + n222 = m̂122 + m̂222 .

Adding these six equations together, we get

2(n111 + n222) + n··· = 2(m̂111 + m̂222) + m̂··· .
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Because n··· = m̂···, we have

n111 + n222 = m̂111 + m̂222 .

With n111 = n222 = 0, we need both m̂111 = 0 and m̂222 = 0. These two
cells would be dropped from the 2 × 2 × 2 table.
Although the author is unaware of any general method of identifying

situations like that in Example 8.3.3, the process of fitting models can
give hints as to whether such cells have been overlooked. In particular, if
some estimated cell counts seem to be converging to zero or if the iterative
estimated cell counts fail to converge, it would be wise to consider the
possibility that this is due to cells that need to be dropped because of the
pattern of random zeros.
Finally, it is interesting to look at the test of [TSA][TR][AR] ver-

sus [TSA][TAR] that can be obtained from Example 8.3.1. The test has
G2 = 34.72 − 21.90 = 12.82 with df = 30 − 18 = 12. In this example, the
degrees of freedom for the test happen to correspond to the usual degrees
of freedom for the (TAR) interaction with T at four levels, A at three lev-
els, and R at three levels. However, the 12 degrees of freedom are actually
arrived at quite differently. As established earlier, (TAR) has 10 degrees
of freedom. The other 2 degrees of freedom in the test come from the fact
that [TSA][TR][AR] is fit to a 63-cell table rather than the 61-cell table of
[TSA][TAR]. So the 12 degrees of freedom come from 10 degrees of freedom
for (TAR) and 2 degrees of freedom for new cells.
This discussion also points out that there are some technical difficulties

involved in testing [TSA][TR][AR] versus [TSA][TAR]. We are testing a 63-
cell table against a 61-cell table. We have not discussed this sort of thing
previously. Obviously, this requires a mathematical theory that embeds
both of these within the 72-cell 4 × 2 × 3 × 3 table allowing for fixed zero
cells, log-linear models on the nonzero cells, and reduced models in which
fixed zeros are allowed to become unfixed. Moreover, asymptotic theory
will be of limited value because all of these problems are being caused by
small sample sizes.

8.4 Exercises

Exercise 8.4.1. Brown (1980) presents data that are reproduced in Ta-
ble 8.5, on a cross-classification of 53 prostate cancer patients. The factors
are acid phosphatase level in the blood serum, age, stage, grade, x-ray, and
nodal involvement. Acid level and age are categorized as high or low. Stage
is an indication of size and location of the tumor; a positive value is more
serious. The grade and x-ray indicate whether biopsy and x-ray tests are
positive for cancer. The final factor is the whether the lymph nodes are in-
volved. Analyze the data using iterative proportional fitting and ANOVA
type models.
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TABLE 8.5. Nodal Involvement in Prostate Cancer

Low Acid
Grade − +
X−ray − + − +

Involvement No Yes No Yes No Yes No Yes
Low − 4 0 1 0 1 1 0 0
Low + 0 0 0 1 1 0 0 1
High − 3 0 2 0 1 0 0 0
High + 2 1 0 0 4 0 0 0
Age Stage

High Acid
Grade − +
X−ray − + − +

Involvement No Yes No Yes No Yes No Yes
Low − 5 1 1 0 0 1 0 0
Low + 1 1 0 0 1 2 1 5
High − 3 0 0 1 0 0 0 1
High + 2 2 0 1 0 0 0 1
Age Stage

Exercise 8.4.2. Extend your analysis of the Berkeley graduate admis-
sions data (cf. Exercise 3.8.4) by incorporating the method of partitioning
polytomous factors from Example 8.1.2.

Exercise 8.4.3. Partitioning Two-Way Tables.
Lancaster (1949) and Irwin (1949) present a method of partitioning ta-
bles that was used in Exercise 2.7.4. We now establish the validity of this
method. Consider a two-dimensional I × (J + K − 1) table. The parti-
tioning method tests for independence in two subtables. One table is a
reduced I × K table consisting of the last K columns or the full table.
The other table is an I × J table that uses the first J − 1 columns of the
full table and also includes a column into which the last K columns of
the full table have been collapsed. Write the data with three subscripts as
nijk, i = 1, . . . , I, j = 1, . . . , J, and k = 1, . . . , Lj , where

Lj =
{
1 if j �= J
K if j = J .

Consider the models
log(mijk) = αi + βjk, (1)

log(mijk) = βij + βjk, (2)

and
log(mijk) = γijk. (3)
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Model (3) is the saturated model so

m̂
(3)
ijk = nijk.

Model (1) is the model of independence in the I × J +K − 1 table, so

m̂
(1)
ijk = ni··n·jk

/
n···.

(a) Show that the maximum likelihood estimates for model (2) are

m̂
(2)
ijk =

{
nijk if j �= J
niJ·n·Jk

/
n·J· if j = J .

(b) Show that both G2 and X2 are the same for testing model (2) against
model (3) as for testing the reduced table for independence.
(c) Show that both G2 and X2 are the same for testing model (1) against

model (2) as for testing the collapsed table for independence.
(d) Extend (b) and (c) by showing that all power divergence statistics

are the same, cf. Exercise 2.7.8.

Exercise 8.4.4. The Bradley-Terry Model.
“Let’s suppose, for a moment, that you have just been married and that
you are given a choice of having, during your entire lifetime, either x or
y children. Which would you choose?” Imrey, Johnson, and Koch (1976)
report results from asking this question of 44 Caucasian women from North
Carolina who were under 30 and married to their first husband. Women
were asked to respond for pairs of numbers x and y between 0 and 6 with
x < y. The data are summarized in Table 8.6. The most basic form for
such experiments is to ask each woman to respond for all possible pairs of
numbers. If this was done, there is a considerable amount of missing data.
For example, in comparing 0 children with 1 child there are only 17+2 = 19
responses rather than 44.

TABLE 8.6. Family Size Preference

Alternative Preferred Number of Children
Choice 0 1 2 3 4 5 6

0 — 17 22 22 15 26 25
1 2 — 19 13 10 9 11
2 1 0 — 11 11 6 6
3 3 1 7 — 6 2 6
4 1 10 12 13 — 4 0
5 1 11 18 15 17 — 11
6 2 13 20 22 14 12 —

This data collection technique is called the method of paired comparisons.
It is often used for such things as taste tests. Subjects find it easier to
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distinguish a preference between two brands of cola than to rank their
preferences among half a dozen. David (1988) provides a good survey of the
literature on the analysis of preference data along with notes on the history
of the subject. One particular model for preference data assumes that each
item has a probability πi of being preferred. Thus, in a paired comparison,
the conditional probability that i is preferred to j is πi/(πi + πj). There
are many ways to arrive at this model; the one given above is simple but
restrictive. In other developments, the parameters πi need not add up to
one, but it is no loss of generality to impose that condition. Bradley and
Terry (1952) rediscovered the model and popularized it. The Bradley-Terry
model was put into a log-linear model framework by Fienberg and Larntz
(1976). For I items being compared, their framework consists of fitting the
incomplete I(I − 1)/2 × I table in which the rows consist of all pairs of
items and the columns consist of the preferred item. A test of the model
log(mij) = u + u1(i) + u2(j) is a test of whether the Bradley-Terry model
holds.
(a) Rewrite Table 8.6 in the Fienberg-Larntz form.
(b) Test whether the Bradley-Terry model fits.
(c) Show that under the log-linear main effects model the odds of prefer-

ring item j to item j′ is the ratio of a non-negative number depending on
j and a non-negative number depending on j′. Show that this is equivalent
to the Bradley-Terry model.
(d) Estimate the probabilities πi.
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Generalized Linear Models

Generalized linear models are a class of models that generalize the linear
models used for regression and analysis of variance. They allow for more
general mean structures and more general distributions than regression
and analysis of variance. Generalized linear models were first suggested by
Nelder and Wedderburn (1972). An extensive treatment is given by McCul-
lagh and Nelder (1989). Generalized linear models include logistic regres-
sion as a special case. Another special case, Poisson regression, provides
the same analysis for count data as log-linear models. The discussion here
involves more distribution theory than has been required elsewhere in this
book; in particular, it makes extensive use of the exponential family of dis-
tributions and the gamma distribution. Information on these distributions
can be obtained from many sources, e.g., Cox and Hinkley (1974). Section 1
presents the family of distributions used in generalized linear model theory.
Estimation of the linear parameters is dealt with in Section 2. Model fitting
and estimation of dispersion are examined in Section 3; both of these topics
involve a version of the likelihood ratio test statistic called the deviance.
Section 4 contains a summary and discussion. We begin with a brief review
of some ideas from regression and analysis of variance and three examples
of generalized linear models.
Regression and analysis of variance are fundamental tools in statistics.

A multiple regression model is

yi = β1xi1 + · · · + βpxip + ei,

i = 1, . . . , n, where E(ei) = 0 and, typically, xi1 = 1, i = 1, . . . , n, so
that β1 is an intercept. The xij ’s are all assumed to be known predictor
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variables; the βj ’s are fixed unknown parameters. A one-way analysis of
variance can be written as

yij = µ+ αi + eij

= µ · (1) + α1δ1i + · · · + αtδti + eij

where i = 1, . . . , t, j = 1, . . . , ni, E(eij) = 0, and δhi is 1 if h = i and 0
otherwise. In the analysis of variance, µ and the αi’s are fixed unknown
parameters, while the multiplier 1 for µ and the δhi’s play roles analogous
to the xij ’s in regression.
The key aspect of both regression and ANOVA is that they involve ob-

servations whose expected value is a linear combination of known predictor
variables. In regression,

E(yi) = β1xi1 + · · · + βpxip

and in analysis of variance

E(yij) = µ · (1) + α1δ1i + · · · + αtδti .

If the observations y in regression and ANOVA have the same variance
and are uncorrelated, regression and ANOVA provide the best estimates
of (estimable) parameters among all estimators that are unbiased linear
functions of the observations. If we go a step further and assume that the
observations have independent normal distributions with the same vari-
ance, then the usual estimates are the best among all unbiased functions
of the observations. In both of these statements, “best” means that the
estimates have minimum variance. Under the assumption of independent
normal distributions with the same variance, the usual estimates are also
maximum likelihood estimates. The current chapter is concerned with find-
ing maximum likelihood estimates for a more general set of models. The
models are less restrictive in that they allow more general forms of linearity
and distributions other than the normal.
We now set some matrix notation. Both regression and analysis of vari-

ance are linear models, cf. Christensen (1996b). Let yi be an observation.
It is of no significance how we subscript the observations. Any convenient
method of subscripting is acceptable whether it be one subscript as in
regression, two subscripts as in one-way analysis of variance, or three sub-
scripts as in two-way ANOVA with replications. Let x′

i = (xi1, . . . , xip) be
a 1×p row vector of predictor variables. Let β = (β1, . . . , βp)′ be a p×1 col-
umn vector of unknown parameters. A typical normal theory linear model
assumes

yi ∼ N(x′
iβ, σ

2)

where i = 1, . . . , n and the yi’s are independent. For pedagogical reasons,
it is advantageous to write

yi ∼ N(mi, σ
2), mi = x′

iβ.
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We begin our discussion of generalized linear models by considering three
examples. In each case, we take y1, . . . , yn independent. The models are
specified by their distributions and mean structure.
For normal data,

yi ∼ N(mi, σ
2), E(yi) = mi, mi = x′

iβ.

This is the model for analysis of variance and regression.
For Poisson data,

yi ∼ Pois(mi), E(yi) = mi, log(mi) = x′
iβ.

This is just a log-linear model for a table containing n cells where the count
in each cell has a Poisson distribution with parameter mi. It is important
to note that n is the number of cells and not the observation vector as it
is elsewhere in this book. As we have mentioned before and as is shown
in Chapter 12, under very weak conditions the analysis of a contingency
table under Poisson sampling is the same as the analysis under multinomial
sampling. It is interesting to note that the framework for generalized linear
models assumes independent observations, so it does not apply directly to
multinomial sampling or to general product-multinomial sampling. It is the
equivalence of the maximum likelihood analyses under the Poisson, multi-
nomial, and product-multinomial sampling schemes that makes generalized
linear models a useful tool for contingency tables.
For binomial sampling, we take yi to be the proportion of successes, so

Niyi ∼ Bin(Ni, pi), E(yi) = pi ≡ mi,

log
(

mi

1 − mi

)
= log

(
pi

1 − pi

)
= x′

iβ.

Note that Ni is a known quantity and not a parameter. The model is simply
a logistic regression or logit model. The data consist of proportions obtained
from independent binomial random variables and the mean structure is a
linear model in the log odds. Alternative models for binomial regression
will be mentioned later. Except in this chapter, yi for binomial regression
is always taken to mean the number of successes, rather than the proportion
of successes. The change is made to fit the binomial distribution into the
family of generalized linear models.

9.1 Distributions for Generalized Linear Models

The normal, Poisson, and binomial distributions considered above are mem-
bers of the exponential family of distributions. A random variable y has



300 9. Generalized Linear Models

a distribution in the exponential family if it has a probability density or
mass function that can be written as

f(y|θ) = R(θ) exp




v∑

j=1

qj(θ) tj(y)



h(y)

where θ = (θ1, . . . , θs)′ is a vector of parameters. If v = 1, the family is
referred to as a one-parameter exponential family; the one parameter can
be taken as q1(θ).

The theory of generalized linear models requires the distribution of y to
be in a subclass of the one-parameter exponential family. The density or
mass function must have the form

f(y|θ, φ;w) = exp
{
w

φ
[θy − r(θ)]

}
h(φ, y, w) (1)

where θ, φ, and w are scalars. By assumption, w is a fixed known number.
The role of φ in this function is curious; it is treated as an unknown constant
but not as a parameter. With φ constant, the distribution (1) is in the one-
parameter exponential family; just take R(θ) = exp [−wr(θ)/φ], q(θ) =
wθ/φ, t(y) = y, and h(y) = h(φ, y, w). In practice, φ is often an unknown
parameter. As such, the distribution need not be in the exponential family
relative to the two parameters θ and φ because the function h(φ, y, w)
need not satisfy the conditions of a two-parameter exponential family. The
value φ is simply a positive number that is convenient for defining various
special cases. The particular form of f(y|θ, φ;w) in (1) is chosen so that
the maximum likelihood estimate of θ does not depend on φ. This will be
discussed in more detail in Section 2.
For the family of distributions (1), the expected value of y depends on θ

but not on φ. For any distribution,

1 =
∫

f(y|θ, φ;w) dy

where it is understood that integration is always replaced by summation
when y has a discrete distribution. Taking the derivative with respect to θ
on both sides gives

0 =
∫

ḟ(y|θ, φ;w) dy (2)

where ḟ is the derivative of f with respect to θ and f satisfies conditions
so that the derivative can be taken under the integral sign. From the exact
form of f(y|θ, φ;w) in (1), it is easily seen that (2) is

0 =
w

φ

∫
(y − ṙ(θ)) f(y|θ, φ;w) dy
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where ṙ(θ) is the derivative dr(θ)/dθ. It follows that

E(y) ≡ m = ṙ(θ).

Typically, ṙ is an invertible function, so θ is also a function of the mean,
say

θ = ṙ−1(m).

Linear structure for distributions of the form (1) is most naturally spec-
ified by

θ = x′β (3)

where, as usual, β is a vector of unknown parameters and x is fixed and
known. Note that with θ = ṙ−1(m), the linear structure x′β in equation
(3) is also a function of the mean. In fact, the analysis of generalized linear
models can be carried through when the linear structure is a more general
function of the mean,

g(m) = x′β,

as long as it is possible to write θ = g∗(x′β) for some function g∗(·).
A generalized linear model consists of independent observations yi, i =

1, . . . , n, with

yi ∼ f(yi|θi, φ, wi), E(yi) ≡ mi, g(mi) = x′
iβ.

If g(mi) = θi, the model is a canonical generalized linear model. In other
words, a canonical model has g(·) ≡ ṙ−1(·).

Names have been given to the various components of generalized linear
models. The linear structure x′β is called the linear predictor. The function
g(·) that specifies the relationship g(m) = x′β between the mean and the
linear predictor is called the link function. If g(m) = θ, the function g(·) is
called the canonical link function. The density f(y|θ, φ;w) is often called the
error function and the parameter φ is often called the dispersion parameter.

In Section 3, we will need to know the variance of y when y has a density
of the form (1). Taking the second derivative with respect to θ on both
sides of

1 =
∫

f(y|θ, φ;w) dy
and assuming that derivatives can be taken under the integral gives

0 =
∫

f̈(y|θ, φ;w) dy

=
w

φ

∫
d
[
(y − ṙ(θ)) f(y|θ, φ;w)]

dθ
dy

=
w2

φ2

∫
(y − ṙ(θ))2 f(y|θ, φ;w) dy

+
w

φ

∫
−r̈(θ)f(y|θ, φ;w) dy



302 9. Generalized Linear Models

where two dots indicate a second derivative. It follows immediately that
0 =

[
Var(y)w2/φ2

] − [r̈(θ)w/φ] and, thus,

Var(y) = r̈(θ)φ/w.

The function r̈(θ) is often written as a function of m,

V (m) ≡ r̈
(
ṙ−1(m)

)
= r̈(θ).

V (m) is generally referred to as the variance function.
We now review how the general distribution theory applies to the three

examples given earlier: normal, Poisson, and binomial sampling.
If y ∼ N(m,σ2), the density for y real is

f(y|m;σ2) =
1√
2π σ

exp
[
− (y − m)2

2σ2

]

= exp
(−m2

2σ2

)
exp

(my

σ2

)(
1√
2π σ

e−y2/2σ2
)
.

To see that the density has the form of equation (1), identify θ = m, w = 1,
φ = σ2, r(θ) = m2/2, and h(φ, y, w) =

(
1/

√
2πσ

)
e−y2/2σ2

. The expected
value of y is m, so the canonical linear structure is θ = m = x′β. The
canonical link leads to a standard linear model.
For y ∼ Pois(m), the probability mass function on y = 0, 1, 2, . . . is

f(y|m) =
mye−m

y!
= exp(−m) exp(y log(m)) (1/y!) .

Identify θ = log(m), w = 1, φ ≡ 1, r(θ) = m, and h(φ, y, w) = (1/y!). It is
well known that for a Pois(m) distribution, the expected value and variance
are both m. To see this from the general distribution theory, observe that
the mean is ṙ(θ) and with w = 1 and φ ≡ 1, the variance is r̈(θ). From
θ = log(m) and r(θ) = m, it follows that r(θ) = eθ and thus ṙ(θ) = eθ and
r̈(θ) = eθ. Again, using θ = log(m) gives m = ṙ(θ) = r̈(θ). The expected
value of y is m, so the canonical linear structure is θ = log(m) = x′β. The
canonical link leads to a standard log-linear model for Poisson data.
For Ny ∼ Bin(N, p) with N known, the mass function on Ny = 0, . . . , N

is

f(y|p) =
(
N

Ny

)
pNy(1 − p)N−Ny

=
(
N

Ny

)
(1 − p)N

(
p

1 − p

)Ny

= (1 − p)N exp
[
Ny log

(
p

1 − p

)](
N

Ny

)
.
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Identify θ = log
(

p
1−p

)
, w = N , φ ≡ 1, r(θ) = − log(1− p), and h(φ, y, w) =

(
N
Ny

)
. The expected value of y is m ≡ p, so the canonical linear structure

is θ = log
(

p
1−p

)
= log

(
m

1−m

)
= x′β. The canonical link leads to a standard

logistic (logit) model. (See Exercise 9.5.1.)
In general, the inverse of any cumulative distribution function (cdf) F (·)

makes a reasonable link function for binomial data, i.e., g(p) = F−1(p).
F (u) = eu/(1+eu) is the cdf of the logistic distribution and defines logistic
regression. Probit regression is the procedure based on taking F (u) = Φ(u)
where Φ(u) is the cdf of a standard normal distribution. A third example is
complementary log-log regression which uses F (u) = 1− exp [1 − exp(eu)].
As a last example, consider the gamma distribution. The gamma distri-

bution is defined by the probability density function

f(y|α, λ) = λα

Γ(α)
e−λyyα−1

for y > 0. The density depends on two parameters, α and λ. The expected
value of a gamma distribution is

E(y) ≡ m =
α

λ

and the variance is
Var(y) =

α

λ2
.

To indicate that y has a gamma distribution, write

y ∼ Gamma(α, λ).

Special cases of the gamma distribution include exponential distributions
with mean 1/λ, i.e., Gamma(1, λ) and χ2(n) distributions, Gamma(n2 ,

1
2 )’s.

The gamma density can be rewritten as

f(y|α, λ) =
(
λ

α

)α

exp
[
α

(−λ

α

)
y

](
αα

Γ(α)
yα−1

)
.

To see the gamma density in the form of equation (1), identify θ = −λ/α,
w = 1, φ = 1/α, r(θ) = − log(λ/α), and h(φ, y, w) = ααyα−1/Γ(α). The
expected value of y is m = α/λ = −1/θ, so the canonical linear structure
is θ = −1/m = x′β. Note that the distribution is only defined for y > 0;
thus, for any gamma distribution, m > 0. It follows that when using the
canonical link, restrictions must be placed on the parameter vector β to
ensure that the expected value is positive. (See Exercise 9.5.2.)
The canonical generalized linear model for n independent observations

with gamma distributions is

yi ∼ Gamma(α, λi), E(yi) = mi =
α

λi
,

−1
mi

= x′
iβ
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where β is restricted so that −x′
iβ > 0 for all i. Gamma distribution regres-

sion is useful for modeling situations in which the coefficient of variation is
constant. The coefficient of variation is

√
Var(yi)
E(yi)

=

√
α/λ2i
α/λi

=
1√
α
.

When the data appear to have a constant coefficient of variation, using
the gamma distribution is an alternative to doing a standard linear model
analysis on the logs of the data, cf. Christensen (1996b, Section 13.7). Note
that the constant coefficient of variation does not depend on the choice of
link function. Often, noncanonical links such as the identity, m = x′β, and
the log, log(m) = x′β, are used with gamma distributed data, cf. McCullagh
and Nelder (1989). The identity link requires restrictions on β; the log link
does not. When the coefficient of variation is small, the log link analysis is
very similar to the linear model analysis on the logs of the data. The log
link is probably the most commonly used for gamma regression. Exponential
regression is the special case with φ = 1 and (usually) a log link.

9.2 Estimation of Linear Parameters

In their most natural form, generalized linear models assume n independent
observations with

yi ∼ f(yi|θi, φ;wi)

and
θi = x′

iβ

for some vector of parameters β = (β1, . . . , βp)′. The density f(yi|θi, φ;wi)
is defined by equation (9.1.1). The linear structure given above uses the
canonical link function. More generally, the linear structure can be defined
by

g(mi) = x′
iβ.

For this extension, assume θi = ṙ−1(mi) and

θi = ṙ−1(g−1(x′
iβ)

) ≡ g∗(x′
iβ).

The likelihood function for the generalized linear model with canonical
link function is

L(β;φ) =
n∏

i=1

f(yi|θi, φ;wi)

=
n∏

i=1

f(yi|x′
iβ, φ;wi).
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Using equation (9.1.1), the log-likelihood is

�(β;φ) ≡ log[L(β;φ)]

=
n∑

i=1

log[f(yi|x′
iβ, φ;wi)] (1)

=
n∑

i=1

wi

φ
[x′

iβ yi − r(x′
iβ)] +

n∑

i=1

log[h(φ, yi, wi)] .

With φ fixed, the maximum likelihood estimate of β is obtained by solving
for β in the likelihood equations

∂�(β;φ)
∂βj

= 0, (2)

j = 1, . . . , p. It is a simple matter to see that taking the partial derivatives
∂�(β;φ)/∂βj leads to likelihood equations of the form

Qj(β)
φ

= 0

for some functions Qj(·), j = 1, . . . , p. Obviously, the solution β̂ to such
likelihood equations does not depend on the value of φ. Thus, β̂ is the
maximum likelihood estimate for any value of φ; i.e., it is the maximum
likelihood estimate regardless of the true value of φ.

Essentially, the same analysis holds when a linear structure g(mi) =
x′
iβ is assumed. With θi = g∗(x′

iβ), simply use g∗(x′
iβ) in place of x′

iβ
in equation (1). The only problem is that the partial derivatives become
slightly more difficult to find.
Maximum likelihood estimates are invariant under transformations of

the parameters. In other words, given a maximum likelihood estimate for
a parameter, any function of the maximum likelihood estimate is the max-
imum likelihood estimate for the corresponding function of the parameter.
For a discussion of this property see Cox and Hinkley (1974, p. 287). Given
a maximum likelihood estimate for β, say β̂, we immediately obtain an
estimate of the expected value mi, namely

m̂i = g−1(x′
iβ̂),

an estimate of the linear predictor g(mi), namely

g(m̂i) = x′
iβ̂,

and an estimate of θi, namely

θ̂i = g∗(x′
iβ̂).
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Solving the likelihood equations (2) is typically accomplished by using
the Newton-Raphson algorithm. For generalized linear models, this reduces
to performing a series of weighted least squares regressions and is known
as iteratively reweighted least squares. Sections 10.5 and 11.3 give details
for the special cases of log-linear modeling and logistic regression.
Under suitable conditions, the estimate β̂ and smooth functions of β̂,

e.g., m̂i = g−1(x′
iβ̂), have asymptotic multivariate normal distributions.

Moreover, an estimate of the asymptotic covariance matrix of β̂ is easily
obtained from the iteratively reweighted least squares algorithm. Under
suitable conditions, this estimate is consistent and also yields estimated
asymptotic covariance matrices for smooth functions of β̂. Given the esti-
mates and the estimated asymptotic covariance matrices, standard normal
theory methods for tests and confidence regions can be applied to yield
asymptotic statistical inferences.
This brief discussion of estimation has not addressed several important

points. To perform the differentiations, the x′
iβ’s need to define a regression

so that the βj ’s are well defined. The partial derivatives need to be derived
and shown to be of the form Qj(β)/φ, cf. Exercise 9.5.3. A solution to
the likelihood equations must be shown to give the maximum of the log-
likelihood. Exact conditions for the asymptotic results need to be stated;
the necessary conditions may differ for different generalized linear models.
For example, in regression analysis, one typically thinks about having the
number of observations n go to infinity; however, for contingency table
data, the number of cells in the table is n and is typically considered fixed,
while the number of counts within the cells is assumed to get large. For
more information on many of these issues see McCullagh and Nelder (1989).

9.3 Estimation of Dispersion and Model Fitting

Generalized linear model theory focuses on the estimation of linear param-
eters. The general theory seems to be less well developed for the purposes
of model fitting and dispersion estimation. The basic statistics used in
model fitting and estimating functions of the dispersion parameter φ are
the deviance and a generalization of the Pearson test statistic. There are
patterns common to the use of these statistics, but specifics vary from case
to case. Our discussion focuses on two general asymptotic approaches. In
one approach, the number of observations n is allowed to go to infinity.
This approach is appropriate for many linear model and logistic regression
problems. The second approach fixes n and uses asymptotics based on other
aspects of the model. This approach is appropriate for many contingency
table problems. We begin by defining the statistics.
The standardized deviance is simply the asymptotic form of the likeli-

hood ratio statistic for testing a generalized linear model against the cor-
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responding saturated model. Remember that in the likelihood analysis of
a generalized linear model, the dispersion parameter φ is treated as fixed.
A saturated model is simply one in which the number of parameters is so
large that the data are fit perfectly. In particular, the model

yi ∼ f(yi|θi, φ;wi),

with no restrictions on the θi’s, is saturated because there are as many
parameters θi as there are observations. The maximum likelihood estimates
have m̂i = yi. This is easily established from the likelihood equations for
the θi’s. Substituting θi for x′

iβ in (9.2.1) and taking partial derivatives with
respect to the θi’s gives yi = ṙ(θ̂i) = m̂i as a solution to the equations.
The estimates of the θi’s for the saturated model are determined by the
estimates of the mi’s.

The parameters β andm = (m1, . . . ,mn)′ are assumed to be interchange-
able, so write

�(m;φ) ≡ �(β;φ).

Also, write y = (y1, . . . , yn)′. The standardized deviance is two times the
difference between the maximum of the log-likelihood under the saturated
model and the maximum of the log-likelihood under the specified general-
ized linear model, i.e.,

D∗(m̂;φ) = 2 [�(y;φ) − �(m̂;φ)] .

Here, y is used in �(y;φ) because y is the maximum likelihood estimate of
m for the saturated model. From inspection of (9.2.1), it is easily seen that
the standardized deviance can be written as

D∗(m̂;φ) =
D(m̂)
φ

for a function D(m̂) that does not depend on φ. Define the function D(m̂)
to be the deviance of the generalized linear model. Recall that in many
important special cases, φ = 1. For normal theory linear models, D(m̂) is
the sum of squares error.
As mentioned before, the likelihood analysis treats φ as fixed and ignores

the fact that the dispersion φ is a parameter. The standardized deviance
D∗(m̂;φ) is only the likelihood ratio test statistic when φ is known. When
φ is unknown, D∗(m̂;φ) is not even a statistic because it depends on an
unknown parameter. D(m̂), on the other hand, does not depend on φ, so
it is a statistic.
Another statistic used to evaluate models and estimate dispersion is the

generalized Pearson statistic. The Pearson statistic is defined as

X2 =
n∑

i=1

wi (yi − m̂i)
2

V (m̂i)
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where V (·) is the variance function defined in Section 1. See Exercise 9.5.6.
The Pearson statistic can be used for consistent estimation of φ for large

n. The variance of yi is V (mi)φ/wi so, clearly,

E

(
wi (yi − mi)

2

V (mi)

)

= φ.

By Chebyshev’s Weak Law of Large Numbers (cf. Rao, 1973, p. 112), if

1
n2

n∑

i=1

w2
iE(yi − mi)

4

V (mi)2
→ 0

as n → ∞, then
1
n

n∑

i=1

wi (yi − mi)
2

V (mi)
P→ φ.

It follows that if V (·) is a continuous function and m̂i
P→ mi for all i,

X2

n − p

P→ φ

where p is the number of parameters in β and we are assuming that the
n × p model matrix

X =






x′
1
...
x′
n






has rank(X) = p not depending on n. Typically, we take

φ̂ =
X2

n − p
.

Continuous functions of the dispersion, say d(φ), are estimated with d(φ̂).
If the Pearson estimate is consistent, continuous functions of it are also
consistent estimates.
Under some large sample conditions with fixed n, for all values of φ the

standardized Pearson statistic has the asymptotic distribution

X2

φ
∼ χ2(n − p).

In these cases, standard methods of variance estimation for normal data
can be applied to give asymptotic confidence intervals and tests for φ, cf.
Christensen (1996a, Sec. 2.6). Using properties of the χ2 distribution, the
asymptotic distribution also leads to the approximation

E
(
X2) .= φ · (n − p).
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Once again, an obvious estimate of φ is

φ̂P =
X2

n − p
.

Similarly, under certain conditions with n fixed, the standardized de-
viance D∗(m̂;φ) has the asymptotic distribution

D∗(m̂;φ) ∼ χ2(n − p)

for all values of φ. By definition,

D(m̂) = φD∗(m̂;φ),

so, asymptotically,
D(m̂) ∼ φχ2(n − p).

Again, when the asymptotic distribution is valid, standard methods of vari-
ance estimation for normal data can be applied to give asymptotic confi-
dence intervals and tests for φ. An obvious point estimate of φ is

φ̂D =
D(m̂)
n − p

.

Unfortunately, the deviance-based estimate is frequently inconsistent
when n → ∞. Even in the simplest binomial case, yi ∼ Bin(1, p), this
estimate is not consistent. For this case, φ ≡ 1, but for large samples, it is
easily seen that

D

n − 1
P→ −2 [p log(p) + (1 − p) log(1 − p)]

which is not typically equal to 1.
Deviances and Pearson statistics can also be used to evaluate the ade-

quacy of generalized linear models. If null distributions are available for the
statistics, tests of the adequacy of models can be performed. These can be
unconditional, exact conditional, approximate conditional, or asymptotic
distributions. If null distributions are not available, the statistics can be
used in an exploratory fashion to give rough ideas of model adequacy.
If the data follow a true one-parameter exponential family distribution,

the dispersion parameter φ is identically constant and, without loss of gen-
erality, we can take φ ≡ 1. If the model is correct and the Pearson statistic
gives a consistent estimate of φ,

X2

n − p

P→ 1.

IfX2/(n−p) is substantially larger than 1, it is an indication that the model
is incorrect. With φ ≡ 1, the standardized deviance equals the deviance.
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If the deviance estimate of φ is consistent, the deviance can also be used
to evaluate lack of fit. When n is fixed, if the deviance has an asymptotic
χ2 distribution, the deviance is a lack of fit test statistic that can be used
in a formal asymptotic test of the generalized linear model against the
saturated model. Similarly, if X2 has an asymptotic χ2 distribution, the
Pearson statistic can be used in a lack of fit test.
To test a model g(mi) = x′

iβ against a reduced model, say g(mi) = x′
0iγ

in a one-parameter family, simply compare the difference in the deviances
to an appropriate χ2 distribution. In particular, the asymptotic generalized
likelihood ratio test rejects the adequacy of the reduced model at the α level
if

D(m̂0) − D(m̂) > χ2(1 − α, p − p0).

Here, m̂0 and D(m̂0) are the maximum likelihood estimate of m and the
deviance under the reduced model. The model is a reduced model in the
sense that X0 = XB for some matrix B where

X0 =






x′
01
...

x′
0n






and
rank(X0) = p0.

Such reduced model tests tend to be asymptotically valid under weaker
conditions than general lack of fit tests. In particular, the tests are often
valid under both asymptotic approaches discussed here. Less formally, if
(D(m̂0)−D(m̂))/(p−p0) is a credible estimate of φ ≡ 1 under the reduced
model, it makes sense to reject the reduced model whenever the estimate
is much larger than 1.
Both Poisson regression and logistic regression fit into this one-parameter

framework. For Poisson regression, the deviance is G2 and often can be used
for lack of fit tests. In both Poisson and logistic regression, the asymptotic
χ2 approximation for the test of a model against a reduced model is often
valid. However, we have seen that the lack of fit statistic for logistic re-
gression is typically not asymptotically χ2. Care must be used in applying
the asymptotic results given above. The specifics of each situation must be
considered.
For generalized linear models with a nontrivial dispersion parameter, we

can only test reduced models against larger models. An appealing asymp-
totic test is to reject the adequacy of the reduced model at the α level
if (

D(m̂0) − D(m̂)
)/

(p − p0)
D(m̂)

/
(n − p)

> F (1 − α, p − p0, n − p).

This relies not only on
(
D(m̂0)−D(m̂)

)/
φ and D(m̂)/φ being asymptoti-

cally χ2 but also on them being asymptotically independent. As discussed
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earlier, the χ2 approximation to the distribution of D(m̂)/φ frequently re-
quires asymptotics based on fixed n. For normal theory models, this is the
usual F test.
If (a) n is large, (b) D(m̂)

/
(n − p) is a consistent estimate of φ, and

(c)
(
D(m̂0) − D(m̂)

)/
φ is asymptotically χ2, we get the asymptotic null

distribution (
D(m̂0) − D(m̂)

)/
(p − p0)

D(m̂)
/
(n − p)

∼ χ2(p − p0)
p − p0

with a corresponding test. If X2
/
(n − p) is a consistent estimate of φ, the

Pearson estimate can be used in the denominator of the asymptotic test.
This is of particular importance when D(m̂)

/
(n − p) is not consistent but

X2
/
(n − p) is. Again, a less formal evaluation can be made if

(
D(m̂0) −

D(m̂)
)/

(p− p0) is a plausible estimate of φ under the reduced model. The
reduced model is called in question when the test statistic is much larger
than 1.
Note that as n − p approaches infinity, the F (p − p0, n − p) distribution

approaches a χ2(p− p0)/(p− p0). Even though the appropriate asymptotic
distribution for large n is a rescaled χ2, for data analytic purposes it may
not be unreasonable to use F tables instead.

Normal linear models and gamma distribution regression both fit into the
nontrivial dispersion parameter framework. As always, appropriate condi-
tions must be met for the asymptotic results to be valid. For normal theory
linear models, the deviance and Pearson statistic both equal the error sum
of squares and the F distribution is exact. It does not rely on any asymp-
totic arguments.

9.4 Summary and Discussion

Without a doubt, iteratively reweighted least squares for generalized linear
models is a remarkably useful computing device. A review of the use of
iterative generalized least squares in statistical estimation is given by del
Pino (1989). Iteratively reweighted least squares is a special case of iterative
generalized least squares.
Generalized linear models are designed to treat independent observations

that have a distribution in the one-parameter exponential family. They also
provide maximum likelihood estimates of appropriate functions of the β
parameters when each observation has a distribution in a particular family
of two-parameter distributions. This two-parameter family is chosen so that
a trick commonly used in estimation for normal theory linear models works
for the entire family. The trick is that maximum likelihood estimates of β
can be found easily for any value of φ. These estimates do not depend
on φ; therefore, the estimates must be maximum likelihood even when φ
is an unknown parameter. Given the maximum likelihood estimates of β,
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finding the maximum likelihood estimate of φ requires solving one equation:
d�(β̂;φ)/dφ = 0. This method is used by Christensen (1996b, Section 2.4)
to find maximum likelihood estimates for normal theory linear models.
Maximum likelihood estimation of φ seems preferable to the essentially ad
hoc methods that are illustrated above.
Of the examples that we have considered, Poisson regression and logis-

tic regression are generalized linear models for one-parameter exponential
families. Poisson sampling seems to be relatively uncommon for contin-
gency tables; the standard sampling schemes are multinomial and product-
multinomial. However, under very mild conditions, maximum likelihood
estimates for Poisson sampling are also maximum likelihood estimates for
the other sampling schemes. Of course, logistic regression can also be viewed
as a special case of product-multinomial log-linear modeling. In regard to
Poisson sampling, Santner and Duffy (1989, Problem 3.3) present an inter-
esting data set. The data, originally given in Quine (1975), are on the num-
ber of absences of 113 Australian school children. The data are categorized
using four factors: age at three levels, sex, cultural background (aborigi-
nal, white), and learning ability (slow, average). The number of absences
for different children might be considered as observations on independent
Poisson random variables. Note that the number of cross-classifications
from the four factors is 3 × 2 × 2 × 2 = 24, but there are 113 Poisson ob-
servations. The analysis of such data would be analogous to a four-factor
analysis of variance with unequal numbers of replications on the various
treatments. Moreover, Santner and Duffy (1989, p. 135) suggest that the
data suffer from overdispersion, i.e., φ > 1. It is interesting to note that an
observed value of X2/(n−p) much larger than 1 can indicate either lack of
fit or overdispersion. See McCullagh and Nelder (1989, Sections 4.5, 5.5)
for discussion of overdispersion.
The other two examples considered in this chapter, normal theory lin-

ear models and gamma distribution regression, involve the two-parameter
family of distributions that was used in the basic theory. Generalized linear
model methods can be used to analyze other useful models; see McCullagh
and Nelder (1989) for a broad range of applications.
While generalized linear models are a useful idea and provide an excellent

computing device, care must be taken in their application. For log-linear
models, Poisson sampling does not always lead to the same analysis as
multinomial and product-multinomial sampling. The distinctions as well
as the similarities must be kept in mind. The validity of asymptotic distri-
butions must also be examined carefully. As seen in Section 11.2, a careful
analysis of asymptotic issues can be quite complicated. Some extensions
of the basic theory such as overdispersion, e.g., allowing φ to be a nonde-
generate parameter in binomial and Poisson sampling, and quasi-likelihood
methods have been proposed. Such extensions are widely accepted as pro-
viding valuable data analytic tools; however, many people have difficulty
in understanding the theoretical basis for them.
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9.5 Exercises

Exercise 9.5.1. Show that for the binomial model of Section 1, r(θ) =
log(1 + eθ) and that ṙ(θ) = p and r̈(θ) = p(1 − p).

Exercise 9.5.2. For the gamma model of Section 1, use the definition
of θ and r(θ) to show that the mean and variance are as given.

Exercise 9.5.3. Show that the likelihood equations (9.2.2) have the
form Qj(β)/φ = 0, j = 1, . . . , p.

Exercise 9.5.4. Show that if f(yi|θ, φ;w) from (9.1.1) is the common
density of independent observations yi, i = 1, . . . , n, then

∑n
i=1 yi has a

density f(yi|θ∗, φ∗, w∗) for some θ∗, φ∗, and w∗.

Exercise 9.5.5. Let Y = (y1, . . . yn)′. Show that a generalized linear
model with canonical link has X ′Y as a sufficient statistic.

Exercise 9.5.6. Using the definitions of this chapter, find the Pearson
statistic (defined in Section 3) for Poisson and binomial regression in terms
of the yi’s and mi’s. Show that these are identical to the Pearson statistics
defined in Chapter 2.



10
The Matrix Approach to
Log-Linear Models

Analysis of variance and regression analysis are both branches of linear
model theory. Regression analysis and linear model theory are usually
taught using matrices. It is less common to teach analysis of variance with
matrices. Although standard log-linear model theory is analogous to anal-
ysis of variance, the basic results are more easily stated in matrix notation.
It is assumed that the reader is familiar with the basics of using matrices.
We begin with some simple examples of writing log-linear models with

matrices.

Example 10.0.1. Consider a 3 × 4 table. The log-linear model

log(mij) = u+ u1(i) + u2(j) , i = 1, . . . 3 , j = 1, . . . , 4 , (1)

can be written in matrix form as





















log(m11)
log(m12)
log(m13)
log(m14)
log(m21)
log(m22)
log(m23)
log(m24)
log(m31)
log(m32)
log(m33)
log(m34)






















=






















1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 1 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
1 0 0 1 0 0 0 1



































u
u1(1)
u1(2)
u1(3)
u2(1)
u2(2)
u2(3)
u2(4)














.
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The log-linear model

log(mijk) = u+ u1(i) + u2(j) + u12(ij) (2)

can be written in matrix form as


















log(m11)
log(m12)
log(m13)
log(m14)
log(m21)
log(m22)
log(m23)
log(m24)
log(m31)
log(m32)
log(m33)
log(m34)


















= X
































u
u1(1)
u1(2)
u1(3)
u2(1)
u2(2)
u2(3)
u2(4)
u12(11)
u12(12)
u12(13)
u12(14)
u12(21)
u12(22)
u12(23)
u12(24)
u12(31)
u12(32)
u12(33)
u12(34)
































where

X =


















1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1


















.

The uniform association model

logmij = u+ u1(i) + u2(j) + γxiwj
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can be written






















log(m11)
log(m12)
log(m13)
log(m14)
log(m21)
log(m22)
log(m23)
log(m24)
log(m31)
log(m32)
log(m33)
log(m34)






















=






















1 1 0 0 1 0 0 0 x1w1
1 1 0 0 0 1 0 0 x1w2
1 1 0 0 0 0 1 0 x1w3
1 1 0 0 0 0 0 1 x1w4
1 0 1 0 1 0 0 0 x2w1
1 0 1 0 0 1 0 0 x2w2
1 0 1 0 0 0 1 0 x2w3
1 0 1 0 0 0 0 1 x2w4
1 0 0 1 1 0 0 0 x3w1
1 0 0 1 0 1 0 0 x3w2
1 0 0 1 0 0 1 0 x3w3
1 0 0 1 0 0 0 1 x3w4





































u
u1(1)
u1(2)
u1(3)
u2(1)
u2(2)
u2(3)
u2(4)
γ
















.

A matrix with only one column will be referred to as a vector. Let x =
(x1, . . . , xq)′ be a vector. Define

log(x) = (log(x1), log(x2), . . . , log(xq))′ .

Consider a table with any number of dimensions that has q cells in it. For
a 3× 4 table, q = 12. For an I × J ×K table, q = IJK. The expected cell
counts are denoted by the vector m = (m1, . . . ,mq)′. A log-linear model is
a model

log(m) = Xβ

where log(m) is a q × 1 vector of unknown parameters, X is a q × p
matrix with known values (often X consists entirely of 0s and 1s), and
β is a p × 1 vector of unknown parameters. In Example 10.0.1, the
log-linear model (1) has an X matrix with 12 rows and 8 columns
that consists entirely of 0s and 1s. The β vector was the 8 × 1 matrix
(u, u1(1), u1(2), u1(3), u2(1), u2(2), u2(3), u2(4))′. For model (2), the X matrix
has 12 rows and 20 columns. The β vector is a 20× 1 matrix that contains
u, the u1(i)’s, the u2(j)’s, and the u12(ij)’s.

Example 10.0.2. Consider a 2 × 3 × 2 table. The model

log(mijk) = u+ u1(i) + u2(j) + u3(k)
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can be written





















log(m111)
log(m112)
log(m121)
log(m122)
log(m131)
log(m132)
log(m211)
log(m212)
log(m221)
log(m222)
log(m231)
log(m232)






















=






















1 1 0 1 0 0 1 0
1 1 0 1 0 0 0 1
1 1 0 0 1 0 1 0
1 1 0 0 1 0 0 1
1 1 0 0 0 1 1 0
1 1 0 0 0 1 0 1
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 1
1 0 1 0 1 0 1 0
1 0 1 0 1 0 0 1
1 0 1 0 0 1 1 0
1 0 1 0 0 1 0 1



































u
u1(1)
u1(2)
u2(1)
u2(2)
u2(3)
u3(1)
u3(2)














log(m) = X β .

The model

log(mijk) = u+ u1(i) + u2(j) + u3(k) + u23(jk)

can be written


















log(m111)
log(m112)
log(m121)
log(m122)
log(m131)
log(m132)
log(m211)
log(m212)
log(m221)
log(m222)
log(m231)
log(m232)


















=


















1 1 0 1 0 0 1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 1 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 0 0 0 1 0
1 1 0 0 0 1 0 1 0 0 0 0 0 1
1 0 1 1 0 0 1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 1 0 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 1 0 0 0 0 0 1 0
1 0 1 0 0 1 0 1 0 0 0 0 0 1







































u
u1(1)
u1(2)
u2(1)
u2(2)
u2(3)
u3(1)
u3(2)
u23(11)
u23(12)
u23(21)
u23(22)
u23(31)
u23(32)






















log(m) = X β .

Exercise 10.1. For a 3 × 4 table, write model (7.1.7) in the form
log(m) = Xβ.

Exercise 10.2. For a 2 × 3 × 2 table, write the models [2][13], [13][23],
[12][23][13], and [123] in the form log(m) = Xβ.
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One advantage of establishing results for a general log-linear model
log(m) = Xβ is the flexibility of the model. Results apply to ANOVA type
models for any number of dimensions. The X matrix can be any known
matrix, so models that incorporate known scores for ordered categories or
use predictor variables to model interactions are also special cases of the
general log-linear model.
In this chapter, we present a summary of some basic results in maximum

likelihood theory for log-linear models. Most of the results are presented
more rigorously in Chapter 12. In Sections 1 and 2, results are presented for
multinomial sampling. In Section 3, the extension to product-multinomial
sampling is discussed. Section 4 discusses drawing inferences about model
parameters. Section 5 examines the Newton-Raphson alternative to iter-
ative proportional fitting for finding MLEs. Section 6 discusses the GSK
method of fitting log-linear models. Section 7 considers residual analysis.

10.1 Maximum Likelihood Theory for
Multinomial Sampling

Suppose we have a table with q cells, observations n = (n1, . . . , nq)′, and
the log-linear model log(m) = Xβ holds. Under multinomial sampling, the
likelihood function is

L(p) =
n·!∏q
i=1 ni!

q∏

i=1

pni
i

where p = (p1, . . . , pq)′. Equivalently, we can write this as a function of m
because mi = n·pi and n· is the known sample size. In terms of the mi’s,
the likelihood becomes

L(m) =
n·!∏q
i=1 ni!

q∏

i=1

(mi/n·)ni .

Estimation
Maximum likelihood estimates (MLEs) are values m̂i that maximize L(m)
subject to the constraints of our model. There are two constraints on the
model: One is the log-linear structure

log(m) = Xβ for some β (1)

and the other relates to the fact that with multinomial sampling, 1 =∑q
i=1 pi. This second condition is equivalent to n· = m·. Let J be a q × 1

vector consisting entirely of 1s. The condition n· = m· can be written as

n′J = m′J . (2)
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Rather than maximizing L(m), it is simpler to maximize the log of L(m),

logL(m) = log(n·!) −
q∑

i=1

log(ni!) +
q∑

i=1

ni log(mi) −
q∑

i=1

ni log(n·) .

The only term that involves the mi’s is
∑q

i=1 ni log(mi) = n′ log(m), so it
is enough to maximize

�(m) ≡ n′ log(m) .

The MLE, m̂, is the value that maximizes �(m) subject to conditions (1)
and (2). In other words, m̂ must have the properties that

log(m̂) = Xβ̂ for some β̂ , (3)

n′J = m̂′J (4)

and if m̃ is any other vector with log(m̃) = Xβ̃ and n′J = m̃′J , then

�(m̃) ≤ �(m̂) .

It turns out that for a broad class of possible X matrices, the maximiza-
tion can be performed without imposing condition (2). As will be discussed
below, this occurs because the maximum of �(m) subject only to condition
(1) automatically satisfies condition (2). A standard method for finding the
maximum of �(m) subject to condition (1) is by setting appropriate partial
derivatives equal to zero. It can be shown that the partial derivatives are
zero at the point m̂ that satisfies

n′X = m̂′X, (5)

cf. Chapter 12. Moreover, by considering the matrix of second partial
derivatives, it can be shown that if �(m) achieves its maximum, subject
to the constraint log(m) = Xβ, then it will be at the unique value m̂ that
satisfies conditions (3) and (5). In other words, any value m̂ that satisfies
the (marginal) constraints (5) and the model (3) is the maximum likelihood
estimate of m provided a maximum exists. This point was made repeatedly
in Section 3.2.
If X is chosen appropriately, then any m̂ that satisfies conditions (3) and

(5) automatically satisfies condition (2), i.e., satisfies (4). Before examining
this claim, we introduce a very useful concept in log-linear model theory,
the column space of X. The column space of X is defined to be the set

C(X) = {µ|µ = Xβ for some β} .
Thus, C(X) consists of all of the possible values for log(m) that satisfy the
log-linear model. Earlier, we discussed the fact that the models

log(mij) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) (6)
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and
log(mij) = u12(ij) + u13(ik) (7)

are equivalent. If we write the model in equation (6) as

log(m) = X1β1

and the model in equation (7) as

log(m) = X2β2 ,

it is not difficult to show that C(X1) = C(X2). In other words, the possible
values for log(m) are identical in models (6) and (7). That is why the models
are equivalent.
We now return to the claim that if m̂ satisfies conditions (3) and (5),

then for an appropriate X matrix, condition (4) is also satisfied. Suppose
that J ∈ C(X). In other words, for some vector b, J = Xb. If m̂ satisfies
condition (5), then it follows that

n′J = n′Xb = m̂′Xb = m̂′J ;

hence, condition (4) is satisfied. Thus, if J ∈ C(X) and if the MLE of m
exists, then we can find the MLE by finding m̂ that satisfies conditions (3)
and (5).
We will not give a detailed discussion concerning when MLEs exist; for

such a discussion, see Haberman (1974a). However, we will mention one
result. It is an immediate consequence of Theorem 12.2.1 that if ni > 0 for
all i = 1, . . . , q, then the MLEs exist.
The condition imposed above on X, i.e., J ∈ C(X), is not an onerous

condition. It simply means that the model has a parameter u (with no
subscripts) or that the model is equivalent to a model that contains a u
term. The condition J ∈ C(X) is also necessary for the asymptotic results
discussed in Section 2 and Chapter 12. We will henceforth always assume
that J ∈ C(X).

One final point: The MLE of m does not really depend on X, it depends
on C(X). Any two parametrizations log(m) = X1β1 and log(m) = X2β2
with C(X1) = C(X2) have exactly the same MLE of m.

Example 10.1.1. One version of the three-dimensional saturated model
is log(mijk) = u123(ijk). If this is written in matrix form, X = Iq where Iq
is the q×q identity matrix and q = IJK. The conditions for MLEs become

log(m̂) = Iqβ̂ = β̂ for some β̂

and
n′Iq = m̂′Iq .
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Clearly, m̂ = n satisfies the second of these equations and β̂ = log(n)
satisfies the first equation. Thus, the MLE of m is m̂ = n in a three-
dimensional saturated model. In fact, this argument is valid for any sat-
urated model. The idea of a saturated model is that there are enough
parameters to explain the data perfectly. This translates to the idea that
C(X) = C(Iq) = Rq.

Example 10.1.2. Consider a three-dimensional table and the model

logmijk = u+ u1(i) + u2(j) + u3(k) + u23(jk) .

If one writes out the matrix X (cf. Example 10.0.2), it is easily seen that
the condition n′X = m′X is precisely n··· = m̂···, ni·· = m̂i··, n·j· = m̂·j·,
n··k = m̂··k, n·jk = m̂·jk. Several of these conditions are redundant. It is
sufficient to have ni·· = m̂i·· and n·jk = m̂·jk. The other relationships follow
from these two. If the model is reparametrized as

log(mijk) = u1(i) + u23(jk) ,

then the condition n′X = m′X for the new X matrix gives only the condi-
tions ni·· = m̂i·· and n·jk = m̂·jk. The MLEs of the mijk’s are precisely the
values m̂ijk that satisfy ni·· = m̂i·· and n·jk = m̂·jk and can be written as

log(m̂ijk) = û1(i) + û23(jk)

for some values û1(i) and û23(jk). It is easily seen that if m̂ijk = ni··n·jk/n···,
these conditions are satisfied.

Exercise 10.3.
(a) For a 3 × 4 table, find the conditions that the MLEs must satisfy in

model (7.1.4).
(b) Repeat (a) for model (7.1.7).

Testing Hypotheses
One of the tests that is allowed for three-way tables is the test of [1][2][3]
versus [1][23]. If these models are written as log(m) = X0β0 and log(m) =
Xβ, respectively, the fact that [1][23] is a larger model is reflected in the
fact that C(X0) ⊂ C(X). Recall that for a 2×3×2 table, X0 and X where
presented in Example 10.0.2.
In general, if we assume that log(m) = Xβ holds and that C(X0) ⊂

C(X), we can test the hypothesis

H0 : log(m) = X0β0

against the hypothesis

HA : (H0 is not true) .



322 10. The Matrix Approach to Log-Linear Models

The likelihood ratio test statistic is

G2 = −2[logL(m̂0) − logL(m̂)]

where m̂0 is the MLE of m under the assumption that H0 is true and
m̂ is the MLE under the “unrestricted” model. However, in this case, the
“unrestricted” model is that log(m) = Xβ. It is easily seen that

G2 = −2[�(m̂0) − �(m̂)]
= −2[n′ log(m̂0) − n′ log(m̂)]
= 2n′[log(m̂) − log(m̂0)]

= 2
q∑

i=1

ni log(m̂i/m̂0i)

where again m̂ = (m̂1, . . . , m̂q)′ is the MLE of m for log(m) = Xβ and
m̂0 = (m̂01, . . . , m̂0q)′ is the MLE of m under the restriction that log(m) =
X0β0.
In fact, G2 can be written as

G2 = 2
q∑

i=1

m̂i log(m̂i/m̂0i),

which is our usual form. To see this equivalence, note that log(m̂) = Xβ̂ for
some β̂, and because C(X0) ⊂ C(X), we can write log(m̂0) = X0β̂0 = Xγ̂

for some β̂0 and γ̂. Recall that m̂′X = n′X. By substitution,

G2 = 2n′[log(m̂) − log(m̂0)] = 2n′[Xβ̂ − Xγ̂]

= 2n′X[β̂ − γ̂]

= 2m̂′X[β̂ − γ̂]
= 2m̂′[log(m̂) − log(m̂0)]

= 2
q∑

i=1

m̂i log(m̂i/m̂0i) .

10.2 Asymptotic Results

This section presents a few of the primary asymptotic results for log-linear
models under multinomial sampling and mentions some applications of
those results. More precise versions of these results are available in Chap-
ter 12.
We begin by setting some notation. Let x be a q×1 vector. D(x) is used

to denote the q × q diagonal matrix

D(x) = [dij ] where dii = xi , dij = 0, i �= j .



10.2 Asymptotic Results 323

One diagonal matrix is used often and has a special notation:

D ≡ D(p) .

Recall that J is a q × 1 vector of 1s. Define

A = X(X ′DX)−1X ′D

and
Az = J(J ′DJ)−1J ′D

where it is assumed (but not really necessary) that a parametrization
log(m) = Xβ has been chosen so that the inverse of X ′DX exists. Note
that because D(m) = n·D, D can be replaced by D(m) in A and Az with-
out changing the resulting matrices. Note that A and Az depend on the
unknown parameters p. We can estimate A and Az simply by estimating
p.

Rather than frequently writing log(m), let

µ ≡ log(m) .

If m̂ is the MLE of m, µ̂ = log(m̂) is the MLE of the µ. This follows from
the invariance of maximum likelihood estimates; for any parameter θ and
MLE θ̂, the MLE of a function of θ, say f(θ), is the corresponding function
of the MLE, f(θ̂), cf. Cox and Hinkley (1974, p. 287).
The key asymptotic results about MLEs are given in the following sub-

sections. Throughout, let N ≡ n· .

Estimation
We begin with results about the large sample distribution of the maximum
likelihood estimates.

Theorem 10.2.1. Let µ = Xβ be a log-linear model for a table with
q cells. Let n be the result of a multinomial sample of N observations:

(a) For N sufficiently large, µ̂ − µ has the approximate distribution
N(0, [A − Az]D−1(m)).

(b) As N gets large, µ̂−µ converges (in probability) to zero; i.e., µ̂−µ
P→

0.

(c) For N sufficiently large, m̂ − m has the approximate distribution
N(0, D(m)[A − Az]).

(d) AsN gets large, m̂/N converges (in probability) to p, i.e.,N−1m̂
P→ p.
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Technically, (a) and (c) deal with convergence in distribution and are sim-
ilar in spirit to the Central Limit Theorem. In Chapter 11, we will have
occasion to write such results as (a) N

1
2 (µ̂− µ) L→ N(0, [A−Az]D−1) and

(c) N−1/2(m̂−m) L→ N(0, D[A−Az]). The symbol L→ indicates convergence
in distribution. The L comes from the fact that a distribution is sometimes
referred to as a distributional law or simply as a law.
One interesting aspect of Theorem 10.2.1 is that, although µ̂−µ converges

to zero, µ̂ by itself does not converge to anything. As N gets large, µ =
log(m) = log(Np) also gets large. Although the difference µ̂−µ gets small,
we cannot say that µ̂ converges to µ because µ changes with N .

Corollary 10.2.2. If the inverse of (X ′DX) exists and β̂ satisfies
µ̂ = Xβ̂, then β̂ − β converges (in probability) to zero.

Consider the problem of drawing asymptotic inferences about a particu-
lar cell. The parameters of interest are pi, mi, and µi. We will start from
the premise that estimates of the mi’s are available. These can be obtained
from iterative proportional fitting as discussed in Section 3.3 or from use of
the Newton-Raphson algorithm as discussed later in Section 5. Recall that

m̂ = (m̂1, . . . , m̂q)′ ,

µ̂ = log(m̂) = (log(m̂1), . . . , log(m̂q))
′
,

and

p̂ =
1
N
m̂ = (m̂1/N, . . . , m̂q/N)′ .

To use Theorem 10.2.1, we need one key result. If Y is a q × 1 vector
with a multivariate normal distribution, i.e.,

Y ∼ N(ξ,Σ) ,

and if ρ is a q × 1 vector, then the scalar random variable ρ′Y has a
(univariate) normal distribution. In particular,

ρ′Y ∼ N(ρ′ξ, ρ′Σρ) .

Let e′
i = (0, · · · , 0, 1, 0, · · · , 0) where the 1 is in the ith place. It follows

that

µ̂i − µi = e′
i(µ̂ − µ) ,

m̂i − mi = e′
i(m̂ − m) ,

and
p̂i − pi = e′

i(p̂ − p) .
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Applying Theorem 10.2.1, for N large we get the approximations

µ̂i − µi ∼ N
(
0, e′

i[A − Az]D−1(m)ei
)
,

m̂i − mi ∼ N (0, e′
iD(m)[A − Az]ei) ,

and

p̂i − pi ∼ N

(
0, e′

i

1
N2D(m)[A − Az]ei

)
.

In order to use these results, we need to be able to find or at least
estimate the variances. We begin with e′

i[A − Az]D−1(m)ei. This value is
the ith diagonal element of AD−1(m) minus the ith diagonal element of
AzD

−1(m). To find e′
iAD

−1(m)ei, note that

D−1(m)ei =
(

1
mi

)
ei,

so
e′
iAD

−1(m)ei =
1
mi

e′
iAei .

The value e′
iAei is just aii, the ith diagonal element of A. This is precisely

the leverage of the ith case. Leverages were introduced in Section 6.7 and
methods for estimating them were given. The maximum likelihood estimate
of

e′
iAD

−1(m)ei = aii/mi

is
âii/m̂i .

The computation of e′
iAzD

−1(m)ei is even simpler. For multinomial sam-
pling,

Az ≡ J(J ′DJ)−1J ′D = JJ ′D .

This follows because J ′DJ = p· = 1. Moreover,

AzD
−1(m) = JJ ′DD−1(m)

= JJ ′
(

1
N

)
D(m)D−1(m)

=
(

1
N

)
JJ ′,

so
e′
iAzD

−1(m)ei =
1
N

.

Combining results, we see that

e′
i[A − Az]D−1(m)ei =

aii
mi

− 1
N

;
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thus,

µ̂i − µi ∼ N

(
0,

aii
mi

− 1
N

)
.

Estimating the variance leads to the approximation

(µ̂i − µi)
/√

âii
m̂i

− 1
N

∼ N(0, 1) .

Large sample confidence intervals for µi follow immediately, e.g., a 95%
confidence interval has the end points

µ̂i ± 1.96
√

âii
m̂i

− 1
N

.

The α = .10 large sample test of H0 : µi = µi0 versus HA : µi �= µi0 rejects
when

|µ̂i − µi0|
/√

aii
mi

− 1
N

> 1.645 .

Similar arguments lead to the asymptotic results

Var(m̂i) = miaii − m2
i /N

and
Var(p̂i) = piaii/N − p2i /N .

Estimating the variances yields to the large sample distributions

m̂i − mi√
m̂iâii − m̂2

i /N
∼ N(0, 1)

and
p̂i − pi√

p̂i(âii − p̂i)/N
∼ N(0, 1) .

Given the distributions, inferential procedures follow in the usual way.
Just as in regression analysis, leverages fall between zero and one and

the sum of all of the leverages is precisely the degrees of freedom for the
model, i.e., the rank of X. The first of these facts implies that an upper
bound on the variance can always be obtained by taking aii = 1. This
is convenient because when iterative proportional fitting has been used,
finding âii requires the computation of an auxiliary regression analysis.
Assuming aii = 1 can be highly conservative because the true aii value
may be much less than one. The second fact gives some idea of the extent
of overestimation using aii = 1. If the table has q = 24 cells and the model
has 12 degrees of freedom, the average size of the aii’s is 12/24 = 1

2 . Thus,
the variance terms based on aii = 1 tend to be about twice as large as they
are using the estimates âii.
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It is interesting to note that using the upper bound aii = 1 is equivalent
to computing the variance under the saturated model. In the saturated
model, we can take X = I. This implies that

A = I(IDI)−1ID = I .

Thus, for all i under the saturated model, aii = 1. Clearly, the use of
reduced models serves to reduce the variance of estimated cell parameters.

Example 10.2.3. In the abortion opinion data of Chapter 3 with the
model [RSO][OA] (cf. Table 6.7), the cell for nonwhite males between 18
and 25 years of age who support abortion has m̂i = 14.52 and âii = .222.
The asymptotic standard error for m̂i is

√
14.52(.222) − (14.52)2/2385 =√

3.2234 − .0884 = 1.77. An asymptotic 95% confidence interval for mi has
end points

14.52 ± 1.96(1.77) .

The interval is (11.05, 17.99). Similar computations lead to a 95% confi-
dence interval for µi with end points

2.68 ± 1.96(.123)

and a 90% confidence interval for pi with end points

.0061 ± 1.645(.000742) .

Besides the parameters for individual cells, the parameters of primary
interest are contrasts in the µi’s. Contrasts in the µi’s correspond to vectors
ρ in which the elements of ρ add up to zero, i.e., ρ′J = 0. The simplest
such contrasts are log odds, but log odds ratios, the log of ratios of odds
ratios, and so on, are also contrasts in the µi’s. All of these correspond to
functions ρ′µ in which ρ has a very simple structure. Given the m̂i’s, there
is no problem in computing ρ′µ̂ = ρ′ log(m̂). The problem is in computing
the variance. Finding variances for estimated contrasts is more complicated
than finding them for estimates of cell parameters because contrasts involve
the covariances between the estimated cell parameters. However, the fact
that we are dealing with contrasts leads to one simplification based on
ρ′J = 0.

Var(ρ′µ̂) = ρ′(A − Az)D−1(m)ρ
= ρ′AD−1(m)ρ − ρ′AzD

−1(m)ρ

= ρ′X(X ′D(m)X)−1X ′ρ − 1
N
ρ′JJ ′ρ

= ρ′X(X ′D(m)X)−1X ′ρ .
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Computation of the variance requires fitting the model using the Newton-
Raphson algorithm, cf. Section 5. Newton-Raphson can either be used ex-
clusively or, if the initial fit was performed using iterative proportional fit-
ting, the auxiliary regression model of Section 6.7 can be used. Recall that
the auxiliary model requires that an ANOVA type model be reparametrized
as a regression model. This is so that appropriate matrix inverses can be
taken. If traditional ANOVA type models are used, a simple way to gen-
erate a regression model is to drop all u terms involving index values of
1.

Example 10.2.4. In Example 3.2.4, we examined data on automobile
injuries. We found that the model of no three-factor interaction,

µijk = log(mijk) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) ,

fit the data very well. Below are given the data and the estimated expected
cell counts based on the model.

nijk(m̂ijk) Accident Type (k)
Collision Rollover

Injury (j) Not Severe Severe Not Severe Severe
Driver No 350 (350.49) 150 (149.51) 60 (59.51) 112 (112.49)
Ejected (i) Yes 26 ( 25.51) 23 ( 23.49) 19 (19.49) 80 ( 79.51)

The regression parametrization based on dropping u terms in which any
of i, j, or k equal 1 is














µ̂111
µ̂121
µ̂112
µ̂122
µ̂211
µ̂221
µ̂212
µ̂222














=














log(350.49)
log(149.51)
log( 59.51)
log(112.49)
log( 25.51)
log( 23.49)
log( 19.49)
log( 79.51)














=














1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 0 1
1 1 0 0 0 0 0
1 1 0 1 0 1 0
1 1 1 0 1 0 0
1 1 1 1 1 1 1

























γ̂
γ̂1(2)
γ̂3(2)
γ̂2(2)
γ̂13(22)
γ̂12(22)
γ̂23(22)












.

Because there are 8 cells and 8 − 1 terms in the model, there is a very
simple form to the matrix necessary for obtaining asymptotic variances:

X
(
X ′D(m̂)X

)−1
X ′ =

D−1(m̂) − (5.52816)D−1(m̂)












1
−1
−1
1

−1
1
1

−1












[1,−1,−1, 1,−1, 1, 1,−1]D−1(m̂). (1)
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The equality can be verified by direct computation of both sides. This
approach requires a good matrix manipulation computer package for com-
puting the left-hand side. The equality can also be verified by hand using
orthogonality, projection operators, and the fact that rank(X) = 7 = q−1.
This approach requires facility with vector space concepts, cf. Christensen
(1996b, p. 276).
In Example 3.2.4, for both collisions and rollovers, we were interested in

the ratio of the odds of a nonsevere injury when the driver was not ejected
relative to the odds of a nonsevere injury when the driver was ejected. We
proceed to find a 95% confidence interval for

log(m11km22k/m12km21k) .

Recall that, based on the model of no three-factor interaction, this log odds
ratio does not depend on k. The estimate of the log odds ratio is

.77 = log(2.16) .

This can be arrived at in either of two ways. For k = 1, define the vector
ρ′
1 = (1,−1, 0, 0,−1, 1, 0, 0) so that

ρ′
1µ̂ = ρ′

1 log(m̂)
= log(m̂111m̂221/m̂121m̂211)
= log [(350.49)(23.49)/(149.51)(25.51)]
= log(2.16) .

Otherwise, for k = 2, let ρ′
2 = (0, 0, 1,−1, 0, 0,−1, 1) so that

ρ′
2µ̂ = log(m̂112m̂222/m̂122m̂212)

= log [(59.51)(79.51)/(112.49)(19.49)]
= log(2.16) .

The estimated variance is

ρ′
jX (X ′D(m̂)X)−1

X ′ρj = .045.

This can be computed directly using matrix manipulations, or it can be
computed by hand using equation (1), or it can be computed from the
reported standard error of γ̂12(22) using the auxiliary regression (which will
be reviewed in the next example). The 95% confidence interval for the log
odds ratio with k fixed has the end points

.77 ± 1.96
√
.045

and is the interval (.35, 1.19). If we exponentiate the end points, we get a
95% confidence interval for the odds ratio of

(1.4, 3.3) .
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Thus, the evidence indicates that the odds of a nonsevere injury when the
driver is not ejected are between, roughly, one and a half to three times the
odds of a nonsevere injury when the driver is ejected.

Example 10.2.5. Consider a 2 × 3 × 2 table and the model

µijk = u+ u1(i) + u2(j) + u3(k) + u23(jk) .

The design matrix X for this model is given in Example 10.0.2. Suppose
we are interested in the log odds

log(m1jk/m2jk) = µ1jk − µ2jk = u1(1) − u1(2) .

Note that in this model, the odds are the same for any values of j and k. Us-
ing the notation in Example 10.0.2, write ρ′ = (1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0)
so that

ρ′µ = µ111 − µ211 = u1(1) − u1(2) .

The estimate is

ρ′µ̂ = log(m̂111) − log(m̂211) = log(m̂111/m̂211),

but this estimate does not depend on the last two subscripts. For any j
and k,

ρ′µ̂ = log(m̂1jk/m̂2jk) .

The difficult part of the analysis is in finding the variance. The variance
is most easily computed by setting the problem up as a regression analysis.
Write






















µ111
µ112
µ121
µ122
µ131
µ132
µ211
µ212
µ221
µ222
µ231
µ232






















=






















1 0 0 0 0 0 0
1 0 0 0 1 0 0
1 0 1 0 0 0 0
1 0 1 0 1 1 0
1 0 0 1 0 0 0
1 0 0 1 1 0 1
1 1 0 0 0 0 0
1 1 0 0 1 0 0
1 1 1 0 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 0 0
1 1 0 1 1 0 1

































γ0
γ1(2)
γ2(2)
γ2(3)
γ3(2)
γ23(22)
γ23(32)












µ = W γ .

The new design matrix was arrived at by eliminating every column of the
old design matrix that corresponded to a u term involving i = 1, j = 1, or
k = 1. The estimates of the γ’s are the estimates of the u’s subject to the
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side conditions 0 = u1(1) = u2(1) = u3(1) = u23(1k) = u23(j1) for all j and k,
and

ρ′µ = µ111 − µ211 =
{
ρ′Wγ = −γ1(2)
ρ′Xβ = u1(1) − u1(2) .

Let

K = ρ′[Â − Az]D−1(m̂)ρ
= ρ′X(X ′D(m̂)X)−1X ′ρ
= ρ′W (W ′D(m̂)W )−1W ′ρ

so that, asymptotically,
Var(ρ′µ̂) = K .

The value K is easily obtained by performing an auxiliary regression, as
discussed in Section 6.7. In particular, fitting

Y = Wγ + e

with weights m̂i and dependent variable

yi = log(m̂i) + (ni − m̂i)/m̂i,

the regression program will report

SE(γ̂1(2)) =
√
MSEK .

Dividing by
√
MSE gives the correct asymptotic standard error.

Almost any good regression program allows the user to print out the
matrix

Cov(γ̂)/MSE = (W ′D(m̂)W )−1
.

This is the key to obtaining asymptotic variances for log-linear models.
Consider the log odds ratio

log(mi21mi32/mi22mi31) = µi21 − µi22 − µi31 + µi32

= u23(21) − u23(22) − u23(31) + u23(32) .

This log odds ratio does not depend on the value of i. Picking i = 1 for
convenience, let

ρ′ = (0, 0, 1,−1,−1, 1, 0, 0, 0, 0, 0, 0),

so
ρ′µ = ρ′Xβ = u23(21) − u23(22) − u23(31) + u23(32) .

In the µ = Wγ parametrization, this becomes

ρ′µ = ρ′Wγ = γ23(32) − γ23(22) .
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There are two ways to arrive at this result. First, one can substitute the
appropriate functions of the γ’s in place of the µijk’s. This leads to

ρ′µ = µ121 − µ122 − µ131 + µ132

= [γ0 + γ2(2)] − [γ0 + γ2(2) + γ3(2) + γ23(22)]
− [γ0 + γ2(3)] + [γ0 + γ2(3) + γ3(2) + γ23(32)]

= γ23(32) − γ23(22) .

Second, one can notice that

ρ′W = (0, 0, 0, 0, 0,−1, 1),

so that
ρ′µ = ρ′Wγ = γ23(32) − γ23(22) .

If we write
λ′ = ρ′W,

then the estimated large sample variance is

ρ′X(X ′D(m̂)X)−1X ′ρ = ρ′W (W ′D(m̂)W )−1W ′ρ
= λ′(W ′D(m̂)W )−1λ

which is easily computed if the regression program provides (W ′D(m̂)W )−1.

Variances for other estimated log odds ratios are computed in a similar
manner. Because of the model, any log odds ratio with either j or k fixed,
e.g., log(m1j1m2j2/m1j2m2j1), is zero by assumption. Estimates of log odds
in the j or k indices, e.g., log(mij1/mij2), can also be estimated and large
sample variances computed. However, because of the existence of the u23
interaction, the log odds will depend on the value of j. These issues are
considered in more detail in the next example.

Example 10.2.6. Consider again the data on classroom behavior used
in Examples 3.0.1 and 3.2.2. The data and estimated expected cell counts
for the model in which behavior is independent of risk and adversity are
given below.

nijk Adversity (k)
(m̂ijk) Low Medium High

Risk (j) N R N R N R
Non. 16 7 15 34 5 3

Classroom (14.02) (6.60) (14.85) (34.64) (4.95) (4.95)
Behavior (i) Dev. 1 1 3 8 1 3

(2.98) (1.40) (3.15) (7.36) (1.05) (1.05)
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The ANOVA type model is

µijk = u+ u1(i) + u2(j) + u3(k) + u23(jk) .

Except for the fact that this is a 2× 2× 3 table instead of a 2× 3× 2 table,
the model is exactly as in the previous example.
Dropping all u terms with i, j, or k equal to 1 leads to






















µ̂111
µ̂121
µ̂112
µ̂122
µ̂113
µ̂123
µ̂211
µ̂221
µ̂212
µ̂222
µ̂213
µ̂223






















=






















log(14.02)
log(6.60)
log(14.85)
log(34.64)
log(4.95)
log(4.95)
log(2.98)
log(1.40)
log(3.15)
log(7.36)
log(1.05)
log(1.05)






















=






















1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 1 1 0 1 0
1 0 0 0 1 0 0
1 0 1 0 1 0 1
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 1 1 1 0 1 0
1 1 0 0 1 0 0
1 1 1 0 1 0 1

































γ̂
γ̂1(2)
γ̂2(2)
γ̂3(2)
γ̂3(3)
γ̂23(22)
γ̂23(23)












or, alternatively,
µ̂ = Wγ̂ .

In particular, any weighted or unweighted regression analysis provides

γ̂ = 2.640 ,
γ̂1(2) = −1.548 ,
γ̂2(2) = −0.754 ,
γ̂3(2) = 0.057 ,
γ̂3(3) = −1.041 ,

γ̂23(22) = 1.601 ,
γ̂23(23) = 0.754 .

(Actually, these are based on more significant digits for the m̂ijk’s than
were reported above.) The matrix of asymptotic variances and covariances
for the γ̂’s is obtained from doing the appropriate auxiliary regression. It
is

γ̂ γ̂1(2) γ̂2(2) γ̂3(2) γ̂3(3) γ̂23(22) γ̂23(23)
γ̂ .0610 −.0125 −.0588 −.0588 −.0588 −.0588 −.0588

γ̂1(2) −.0125 .0713 .0000 .0000 .0000 .0000 .0000
γ̂2(2) −.0588 .0000 .1838 .0588 .0588 −.1838 −.1838
γ̂3(2) −.0588 .0000 .0588 .1144 .0588 −.1144 −.0588
γ̂3(3) −.0588 .0000 .0588 .0588 .2255 −.0588 −.2255
γ̂23(22) −.0588 .0000 −.1838 −.1144 −.0588 .2632 .1838
γ̂23(23) −.0588 .0000 −.1838 −.0588 −.2255 .1838 .5172

.
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This matrix is the basis for all subsequent variance estimates.
The estimate of the log odds of nondeviant behavior is

log(m̂1jk/m̂2jk) = µ̂1jk − µ̂2jk

= û1(1) − û2(1)

= −γ̂1(2)

= 1.548 .

The equivalence between the u parametrization and the γ parametrization
is easily obtained by inspection of Wγ. The asymptotic standard error is√
.0713, so a 90% confidence interval has end points

1.548 ± 1.645
√
.0713 .

The odds of having a home situation that is not at risk depend on the
adversity level. The log odds satisfy

log(m̂i1k/m̂i2k) = û2(1) + û23(1k) − û2(2) − û23(2k)

=






−γ̂2(2) , k = 1
−γ̂2(2) − γ̂23(22) , k = 2
−γ̂2(2) − γ̂23(23) , k = 3.

The estimated value when k = 2 is

.754 − 1.601 = −.847 .

With

Var(−γ̂2(2) − γ̂23(22)) = Var(γ̂2(2)) + 2Cov(γ̂2(2), γ̂23(22)) + Var(γ̂23(22)),

the asymptotic estimated variance is

.1838 − 2(.1838) + .2632 = .0794 .

The interesting odds ratios involve the changes in the odds as k changes.

log(mi11mi22/mi21mi12) = u23(11) − u23(21) − u23(12) + u23(22)

= γ23(22) ,

log(mi11mi23/mi21mi13) = γ23(23) ,

log(mi12mi23/mi22mi13) = γ23(23) − γ23(22) .

The last of these has an estimate of

.754 − 1.601 = −.847
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and an estimated asymptotic variance of

.5172 − 2(.1838) + .2632 = .4128 .

A 95% confidence interval for the log odds ratio is

(−.2.106, .412).

Transforming to the original scale gives an interval for the odds ratio of

(.12, 1.5).

The odds of being not at risk for medium-adversity schools is between .12
and 1.5 times those for high-adversity schools. The large interval is related
to the very small numbers available at high risk. The result does not depend
on the classroom behavior.
As a matter of fact, the need for including the u23 terms in the model is

driven by the fact that
γ̂23(22) = 1.601

with an asymptotic standard error of
√
.2632 = .513 .

Thus, there is clear evidence that the odds of being not at risk are higher
for low-adversity schools than for high-adversity schools. In fact, the odds
are roughly between 2 and 13 times larger with 95% confidence.

As we have seen, there is a problem with the output from standard
regression software. Using a regression parametrization

µ = Wγ,

the key matrix to be obtained is

ÂD−1(m̂) = W (W ′D(m̂)W )−1W ′

which does not depend on the choice of W . Unfortunately, most regression
software does not report ÂD−1(m̂); it only reports

(W ′D(m̂)W )−1 .

(The fact that there are good reasons for doing this makes it no less unfor-
tunate for our purposes.) If the software allows computation of ÂD−1(m̂),
then the simple structure of the ρ vectors allows simple computation of the
estimated variance ρ′W (W ′D(m̂)W )−1W ′ρ. If the software does not allow
direct computation of ÂD−1(m̂), then it is necessary to compute the vector
λ′ = ρ′W . In other words, the simple function ρ′µ must be reparametrized
into λ′γ.
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Given λ′ and (W ′D(m̂)W )−1, the variance λ′(W ′D(m̂)W )−1λ is easily
computed. The problem is in identifying λ, i.e., identifying the function of γ
that is equivalent to ρ′µ. Even though the interesting functions ρ′µ are sim-
ple, the functions of γ get progressively more complex as the model, (i.e.,
the matrix W ) gets more complex. For example, the asymptotic variance
of a log odds in terms of model parameters gets progressively more com-
plicated as the model involves more higher-order interactions, even though
the log odds is an extremely simple function of µ. With a good matrix ma-
nipulation package, keeping track of the parameters can be accomplished
numerically.

Asymptotic Variances for Saturated Models
In Chapter 2, an asymptotic standard error was presented for estimated
log odds ratios. The standard error is a consequence of applying Theo-
rem 10.2.1a to a saturated model. Generally, standard errors for contrasts
in the µi’s are easily obtained for saturated models. Recall that for a satu-
rated model, µ̂ = log(n). Applying Theorem 10.2.1a, log(n) − µ is approx-
imately N(0, [A−Az]D−1(m)). We wish to characterize [A−Az]D−1(m).
The model is saturated, i.e.,

A = I(IDI)−1ID = I,

so AD−1(m) = D−1(m). For multinomial sampling (regardless of the log-
linear model),

AzD
−1(m) =

1
N
JJ ′ .

Thus, for a saturated model with a large multinomial sample, we have the
approximation

log(n) − µ ∼ N

(
0, D−1(m) − 1

N
JJ ′

)
.

Let ρ = (ρ1, . . . , ρq)′ be a vector with ρ′J = 0, i.e., ρ· = 0, so ρ′µ is a
contrast in the µi’s. The large sample distribution of ρ′ log(n) is

ρ′ log(n) − ρ′µ ∼ N(0, ρ′[D−1(m) − (1/n·)JJ ′]ρ) .

With ρ′J = 0, we have

ρ′ log(n) − ρ′µ ∼ N(0, ρ′D−1(m)ρ)

or, equivalently,
ρ′ log(n) − ρ′µ
√
ρ′D−1(m)ρ

∼ N(0, 1) .
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For this distribution to be useful in drawing inferences about ρ′µ, an es-
timate of the unknown standard deviation

√
ρ′D−1(m)ρ must be incor-

porated. By Theorem 10.2.1d, the vector n/N converges to the vector p,
so ρ′D−1(m)ρ/ρ′D−1(n)ρ = ρ′D−1(p)p

/
ρ′D−1(n/N)ρ converges to 1 and√

ρ′D−1(m)ρ
/√

ρ′D−1(n)ρ converges to 1. Hence, for large samples,

ρ′ log(n) − ρ′µ
√
ρ′D−1(n)ρ

=
ρ′ log(n) − ρ′µ
√
ρ′D−1(m)ρ

√
ρ′D−1(m)ρ

√
ρ′D−1(n)ρ

∼ N(0, 1) .

This result can be very useful, especially for examining odds ratios.

Example 10.2.7. For the 2×2×2 table of Example 3.2.4 concerning auto
injuries, we were interested in whether the odds ratios p111p221/p121p211
and p112p222/p122p212 were equal. Because

p11kp22k
p12kp21k

=
m11km22k

m12km21k
,

the log odds ratios are

log
(
m11km22k

m12km21k

)
= µ11k − µ12k − µ21k + µ22k .

The odds ratios are equal if and only if the contrast in the µijk’s

(µ111 − µ121 − µ211 + µ221) − (µ112 − µ122 − µ212 + µ222)

equals zero. [Note that if µ = (µ111, µ112, µ121, µ122, µ211, µ212, µ221, µ222)′,
then ρ′ = (1,−1,−1, 1,−1, 1, 1,−1).] The estimated odds ratios were

p̂111p̂221/p̂121p̂211 = 350(23)/26(150)
= 2.064

and

p̂112p̂222/p̂122p̂212 = 60(80)/19(112)
= 2.256 .

The estimate of the contrast is

log(2.064) − log(2.256) = −0.089 .

The standard error for the estimate is

√
ρ′D−1(n)ρ =

√
1

350
+

1
23

+
1
26

+
1
150

+
1
60

+
1
80

+
1
19

+
1

112
= .4268 .
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We can now test the hypothesis that the contrast is zero. The test statistic
is −.089/.4268 = −.21. For an α level two-sided test, | − .21| is compared
to z(1 − α/2). The hypothesis that the contrasts are equal is not rejected
for any reasonable size of α. A 95% confidence interval for the contrast has
limits

−.089 ± (1.96)(.4268) .

The test based on the asymptotic standard error is an alternative to the
likelihood ratio and Pearson chi-squared tests for no three-factor interac-
tion.

To examine an individual cell, the term AzD
−1(m) must be accounted

for in the covariance matrix. It is easily seen that for large samples, the
appropriate distribution for p̂ijk is

p̂ijk − pijk√
p̂ijk(1 − p̂ijk)/N

∼ N(0, 1) .

Similar results hold for m̂ijk and µ̂ijk.

Testing Models
Consider the problem of testing a model µ = X0β0 against a larger model
µ = Xβ. In particular, assume that µ = Xβ is valid and examine the test
of

H0 : µ = X0β0 for some β0

versus
HA : µ �= X0β0 for any β0 ,

where C(X0) ⊂ C(X), i.e., X0 = XB for some matrix B. Let m̂ be the
MLE of m under the assumption that µ = Xβ and let m̂0 be the MLE of
m under the assumption that µ = X0β0. The likelihood ratio test statistic
is

G2 = 2
q∑

i=1

m̂i log(m̂i/m̂0i) .

The Pearson test statistic is

X2 =
q∑

i=1

(m̂i − m̂0i)2/m̂0i .

The main asymptotic results for testing hypotheses are given in the follow-
ing theorem.

Theorem 10.2.8. Let r = rank(X) and r0 = rank(X0).
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(a) If H0 is true and N ≡ n· is large, the following distributions are
approximately valid:

G2 ∼ χ2(r − r0)

and
X2 ∼ χ2(r − r0) .

Moreover,
G2 − X2 P→ 0 .

(b) If H0 is not true, then both G2 and X2 get arbitrarily large as the
sample size increases.

It is interesting to note that the degrees of freedom for the test are
rank(X) − rank(X0). This is the reason that degrees of freedom are com-
puted exactly as in analysis of variance. In both cases, it is simply the linear
structure of the model that determines the degrees of freedom.

10.3 Product-Multinomial Sampling

With a few minor changes, all of the results of Sections 1 and 2 hold for
product-multinomial sampling. Suppose that we have t multinomial popu-
lations instead of just one. We can write the observations as nij , i = 1, . . . , t,
j = 1, . . . , si, where si is the number of categories in the ith multinomial.
(Note that q =

∑t
i=1 si.) The probabilities and expected cell counts can be

written similarly as pij and mij , respectively.
In place of the condition from multinomial sampling that all the proba-

bilities in the table add to 1, cf. equation (10.1.2), we now have

pi· = 1, i = 1, . . . , t,

and because mij = ni·pij , we have

mi· = ni· , i = 1, . . . , t .

Write the vectors n = (n11, n12, . . . , ntst
)′ and m = (m11,m12, . . . ,mtst

)′.
Let Z be a q × t matrix of indicator variables for the t samples. Specifi-
cally, each column of Z corresponds to a different multinomial. A particular
column of Z, say the ith column, has ones in the rows corresponding to
ni1, . . . , nisi and zeros in all other rows. (Note that if nij = µi + eij was
a one-way ANOVA, Z would be the design matrix for the linear model.)
With this definition of Z, the condition mi· = ni·, i = 1, . . . , t, becomes

n′Z = m′Z .

Suppose now that we have the log-linear model log(m) = µ = Xβ. It can
be shown that maximizing the log-likelihood under product multinomial
sampling is equivalent to maximizing �(m) = n′ log(m), cf. Chapter 12.
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The MLE of m must maximize �(m) subject to the conditions

log(m) = Xβ (1)

and
n′Z = m′Z . (2)

Just as in Section 1, if m̂ maximizes �(m) subject only to condition (1),
then m̂ must satisfy

n′X = m̂′X . (3)

In order to get condition (2) satisfied, we restrict our attention to models
log(m) = Xβ in which C(Z) ⊂ C(X). For such models, Z = XB for some
matrix B; hence, (3) implies that

n′Z = n′XB = m̂′XB = m̂′Z .

The assumption that C(Z) ⊂ C(X) is not difficult to deal with. For
an I × J table in which rows are independent multinomial samples, the
condition C(Z) ⊂ C(X) is the requirement that every log-linear model
include (the equivalent of) u1(i) terms for rows. In an I × J × K table in
which there is an independent multinomial sample for each combination of
row and layer, the condition C(Z) ⊂ C(X) is the requirement that every
log-linear model include u13(ik) terms or their equivalent. Note that, for
example, the models

log(mijk) = u13(ik) + u123(ijk)

and
log(mijk) = u123(ijk)

are equivalent models, so in spite of the fact that log(mijk) = u123(ijk) does
not contain u13(ik) terms, it does contain the equivalent of u13(ik) terms.
Under product-multinomial sampling, the asymptotic results of Section 2

change very little. The matrix D(p) is no longer of interest. Instead, define
m∗ = (m∗

11, . . . ,m
∗
tst

) where m∗
ij = ni·pij/n··. Redefine

D = D(m∗) .

The matrix A is defined as before except that the new version of D is used.
Also, redefine Az as

Az = Z(Z ′DZ)−1Z ′D .

For asymptotic results, let N = n·· get large and let ni·/n·· remain fixed
for each i. Write Ni = ni· = mi·.

Before restating the asymptotic results, note that multinomial sampling
is just a special case of product-multinomial sampling. In particular, it has
t = 1, Z = J (J is a q × 1 vector of 1s), N = n· = n1· = n··, and m∗ = p.

Theorem 10.3.1. For multinomial or product-multinomial sampling,
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the following distributions are approximately valid when N1, . . . , Nt are
large:

(a) µ̂ − µ ∼ N(0, (A − Az)D−1(m)),

(b) m̂ − m ∼ N(0, D(m)(A − Az)).

In addition,

(c) µ̂ − µ
P→ 0,

(d) N−1m̂
P→ m∗.

Estimation for product-multinomial sampling is similar to that for multi-
nomial sampling. Theorem 10.3.1 looks identical to Theorem 10.2.1. The
difference is that Az stands for something different. Again, the only prob-
lem is in computing asymptotic variances. Under product-multinomial sam-
pling, the variance of ρ′µ̂ is ρ′[A − Az]D−1(m)ρ. Note that

Z ′D(m)Z = D(N1, · · · , Nt) ,

(Z ′D(m)Z)−1 = D

(
1
N1

, · · · , 1
Nt

)
,

and

AzD
−1(m) = ZD

(
1
N1

, · · · , 1
Nt

)
Z ′ .

The variance of ρ′µ̂ is

ρ′AD−1(m)ρ − ρ′ZD
(

1
N1

, · · · , 1
Nt

)
Z ′ρ .

The second term can be computed exactly. The first term must be estimated
and, even then, requires a computer to evaluate. For example, taking ρ′ =
e′
ij = (0, · · · , 0, 1, 0, · · · , 0) with the 1 in the column corresponding to the
ij cell, Theorem 10.3.1 yields

µ̂ij − µij = e′
ij(µ̂ − µ) ∼ N

(
0,

aij,ij
mij

− 1
Ni

)

where aij,ij is the diagonal element of A corresponding to the ij cell.
Similarly,

Var(m̂ij − mij) = mijaij,ij − m2
ij/Ni

and with pij = mij/Ni,

Var(p̂ij − pij) = pijaij,ij/Ni − p2ij/Ni

= pij(aij,ij − pij)/Ni .
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If ρ′µ is a log odds or a log odds ratio that happens to be computed
entirely within a particular multinomial, then ρ′Z = 0 and

ρ′[A − Az]D−1(m)ρ = ρ′AD−1(m)ρ .

This is computed exactly as in Section 2. Unfortunately, it again requires
a computer to evaluate.
For testing hypotheses, the large sample results appropriate for product-

multinomial sampling are given in the following theorem.

Theorem 10.3.2. Assume µ = Xβ and let X0 be a matrix with
C(Z) ⊂ C(X0) ⊂ C(X). Let rank(X) = r and rank(X0) = r0. For testing
H0 : µ = X0β0 for some β0 versus HA : µ �= X0β0 for any β0, under multi-
nomial or product-multinomial sampling, if N is large, then the following
approximate distributions hold:

(a) if H0 is true, G2 ∼ χ2(r − r0),

(b) if H0 is true, X2 ∼ χ2(r − r0),

also,

(c) if H0 is true, G2 − X2 P→ 0,

(d) if H0 is false, G2 and X2 tend to infinity as N gets large.

Note that by (c), if H0 is true, the difference between G2 and X2 can
be used as an indication of how good the large sample approximation is. If
H0 is not true, then G2 and X2 need not be equivalent in large samples.

10.4 Inference for Model Parameters

Thus far, we have been primarily concerned with estimation of m and µ.
It may be of interest to estimate the parameter vector β in the log-linear
model µ = Xβ. Estimates of β are obtained as in analysis of variance and
regression, except that instead of performing operations on the data (y
values), the operations are performed on µ̂.

Suppose that rank(X) = p so that µ = Xβ is a regression model. β̂
satisfies

µ̂ = Xβ̂,

so
(X ′X)−1X ′µ̂ = (X ′X)−1X ′Xβ̂ = β̂ .

The MLE of β̂ is obtained by performing a regression on µ̂. (In fact, any
weighted regression will give the same β̂.)
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Essentially the same argument holds for ANOVA type models. If one
imposes side conditions on the parameters (something the author is loathe
to do), then estimates of the parameters in ANOVA models are available.
For example, in the model log(mij) = u+ u1(i) + u2(j) + u12(ij) if the side
conditions u1(·) = u2(·) = u12(i·) = u12(·j) = 0 are imposed and if we denote
wij = µ̂ij , then

û = w̄·· ,
û1(i) = w̄i· − w̄·· ,
û2(j) = w̄·j − w̄·· ,

û12(ij) = wij − w̄i· + w̄·j + w̄·· .

Again, these are precisely the estimates obtained by doing an ANOVA on
µ̂.
Tests and confidence intervals for functions ρ′Xβ can be obtained from

the asymptotic distribution

ρ′µ̂ − ρ′Xβ
√
ρ′(A − Az)D−1(n)ρ

∼ N(0, 1) .

For example, an asymptotic 95% confidence interval for ρ′Xβ has limits
ρ′µ̂ ± 1.96

√
ρ′(A − Az)D−1(n)ρ and an α = .05 test of H0 : ρ′Xβ = 0

versus HA : ρ′Xβ �= 0 rejects if

ρ′µ̂
√
ρ′(A − Az)D−1(n)ρ

> 1.96

or if

ρ′µ̂
√
ρ′(A − Az)D−1(n)ρ

< −1.96 .

Example 10.4.1. In this and the previous three sections, a lot of machin-
ery has been developed for analyzing log-linear models. In this example, we
apply the matrix approach to the analysis of model (6.2.2) in Example 6.2.6.
Our analysis also employs the data from Example 6.2.1 as summarized in
Example 6.2.5.
In matrix form, model (6.2.2) can be written as
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log(m1111)
log(m1112)
log(m1121)
log(m1122)
log(m1211)
log(m1212)
log(m1221)
log(m1222)
log(m2111)
log(m2112)
log(m2121)
log(m2122)
log(m2221)
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λ
λ1
λ2
λ3
λ4
λ12
λ13
λ14
λ23
λ24
λ34
λ123
λ124
λ134
λ234
λ1234

























where

X = 


















1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 −1 −1
1 1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1
1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1
1 1 −1 1 1 −1 1 1 −1 −1 1 −1 −1 1 −1 −1
1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1
1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1
1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 −1
1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −1
1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1
1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1
1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 1 1 −1
1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1




















.

The columns of the design matrix X can be identified as X0, . . . , X1234
with the subscript of X identical to the subscript of the corresponding
λ term. (X0 corresponds to λ.) Note that, say, X12 can be obtained by
multiplying together the elements of X1 and X2. Similarly, the elements of
X134 can be obtained by multiplying together the elements of X1, X3, and
X4. In fact, any column with more than one subscript can be obtained by
multiplying together the appropriate columns with one subscript.
Another important fact is that any two columns, for example X12

and X134, have the property that X ′
12X134 = 0. Any column, say X12,

has X ′
12X12 = 16 = q, so we have 1

16X
′
12Xβ = λ12. The estimate of

λ12 is 1
16X

′
12Xβ̂ = (1/16)X ′

12µ̂ = (1/16)(µ̂11·· − µ̂12·· − µ̂21·· + µ̂22··) =
4(w̄11·· − w̄12·· − w̄21·· + w̄22··) where whijk = log(nhijk) because the model
is saturated.
The variance of 1

16X
′
12µ̂ is

( 1
16

)2
X ′

12[D
−1(m)−AzD

−1(m)]X12 for large
samples. If the parameter λ12 is not forced into the model to deal with
product-multinomial sampling, then X ′

12AzD
−1(m)X12 = 0, so the asymp-
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totic variance is
(
1
q

)2

X ′
12D

−1(m)X12 =
(
1
q

)2 ∑

hijk

(
1

mhijk

)

where q = 16. The estimated asymptotic variance of λ̂12 is

V̂ar(λ̂12) =
(
1
q

)2 ∑

hijk

(
1

nhijk

)
.

In fact, the same asymptotic variance applies to all of the λ terms that are
not forced into the model.
Using the asymptotic distribution

λ̂12 − λ12√(
1
q2

)∑
hijk

(
1

nhijk

) ∼ N(0, 1),

a test of H0 : λ̂12 = 0 is based on comparing the test statistic

λ̂12 − 0
√(

1
q2

)∑
hijk

(
1

nhijk

)

to a N(0, 1) distribution. Using the numbers in Example 6.2.5, we see that

|λ̂TW | = 0.914/16 = .0571 ,

the standard error is
1.307/16 = .0817 ,

and the test statistic is
.0571 − 0
.0817

= 0.70 ,

just as reported in Example 6.2.5. There is very little evidence that λTW �=
0.
Similarly, an asymptotic 95% confidence interval for λTW has end points

.0571 ± 1.96(.0817) .

10.5 Methods for Finding Maximum Likelihood
Estimates

In general, some sort of iterative technique is necessary to find MLEs for log-
linear models. The two commonly used methods are iteratively reweighted
least squares and iterative proportional fitting. Iterative proportional fit-
ting was discussed in Section 3.3. It works only for ANOVA type models.
Fitting of general log-linear models is usually performed using iteratively
reweighted least squares.
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Iteratively Reweighted Least Squares
Maximum likelihood estimates for log-linear models can be found by per-
forming a sequence of weighted linear regressions. This method is an ap-
plication of the Newton-Raphson algorithm.

Given a vector function f(β), Newton-Raphson is a method for finding
a solution to f(β) = 0. It begins with an initial guess of β, say β0. Newton-
Raphson then defines a sequence of β’s, say β1, β2, . . ., that converge to
a value β̂ that satisfies f(β̂) = 0. The sequence is defined recursively;
we begin with an initial value β0 and define βt+1 given the value of βt.
Specifically, let df(β) be the matrix of partial derivatives of the vector-
valued function f(β). By Taylor’s theorem, if βt and βt+1 are close to each
other and δt = βt+1 − βt, then the approximate equality

f(βt+1)
.= f(βt) + [df(βt)]δt

holds. We are seeking a zero of f(β) so Newton-Raphson sets

0 = f(βt) + [df(βt)]δt

so that
δt = −[df(βt)]−1f(βt) .

With δt = βt+1 − βt, we have

βt+1 = βt + δt .

Consider a log-linear model µ = Xβ where X is a q × p matrix with
rank(X) = p. Note that any log-linear model can be reparametrized so
that rank(X) = p. The MLE of m will be the same regardless of the
parametrization. We wish to find the maximum of the function �(m). In
particular, this can be done by setting appropriate partial derivatives of
�(m) equal to zero. The Newton-Raphson method can be used to find the
zero of the partial derivative vector.
Before applying the Newton-Raphson method, we set some notation. If

x = (x1, . . . , xq)′, write ex = (ex1 , . . . , exq )′. With log(m) = Xβ, m is
a function of β. Write log(m(β)) = Xβ and m(β) = eXβ . In applying
Newton-Raphson, we find β̂ with f(β̂) = 0 where

f(β) = d�(eXβ)

and d�(eXβ) is the matrix of partial derivatives of �(eXβ) with respect to
the vector β. It follows that m̂ = eXβ̂ will maximize �(m) subject to the
constraint that log(m̂) = Xβ̂ for some β̂.

It is shown in Chapter 12 that f(βt) = X ′(n−m(βt)) and that df(βt) =
−X ′D(m(βt))X; thus,

δt = [X ′D(m(βt))X]−1X ′(n − m(βt))
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and
βt+1 = βt + [X ′D(m(βt))X]−1X ′(n − m(βt)) .

The value βt+1 can be obtained from βt simply by doing a weighted
regression analysis. Let

Y ≡ Xβt + [D(m(βt))]−1(n − m(βt)) . (1)

If we fit the regression model

Y = Xβ + e , E(e) = 0 , Cov(e) = [D(m(βt))]−1 ,

the estimate of β is

βt+1 = [X ′D(m(βt))X]−1X ′D(m(βt))Y
= βt + δt .

The matrix D(m(βt)) is diagonal, so this is the simplest form of weighted
regression and can be performed on most standard regression programs.
The weights are simply the individual values of the vector m(βt).
This method of finding MLEs, because it consists of a series of weighted

regressions in which the weights continually change, is called iteratively
reweighted least squares. The method does not depend on any particular
choice ofX except for the condition that rank(X) = p. Any log-linear model
can be reparametrized so that X has full column rank, i.e., rank(X) = p,
so the method is perfectly general.

10.6 Regression Analysis of Categorical Data

In this section, we present an alternative to maximum likelihood, namely
the weighted least squares method of fitting log-linear models. This method
was introduced by Grizzle, Starmer, and Koch (1969). It consists of fitting
a linear model (regression model) to the logs of the counts while also using
the counts as weights. We begin by explaining and illustrating the method.
Mathematical justifications are given at the end of the section.
Recall that for a saturated model, m̂ = n is the MLE. For large samples,

Theorem 10.3.1 applies and, because A = I, we have the approximation

log(n) ∼ N(µ,D−1(m) − AzD
−1(m)) .

If we assume a log-linear model

µ = Xβ ,

then
log(n) ∼ N(Xβ,D−1(m) − AzD

−1(m)) ,
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which can be rewritten as

log(n) = Xβ + e, e ∼ N(0, D−1(m) − AzD
−1(m)) . (1)

This is just a linear model, but it has an unusual covariance matrix for the
errors. Most commonly in regression analysis, it is assumed that Cov(e) =
σ2I. Courses on applied regression analysis often deal with weighted least
squares, where Cov(e) = σ2D(w) and w is some q×1 vector of known con-
stants. This covariance structure can be handled very easily. In particular,
most computer programs for doing regression analysis can handle this form
of weighted regression. Unfortunately, the covariance matrix for model (1)
is more complicated.
As will be discussed later in the subsection on Mathematical Justifica-

tions, estimates in model (1) are precisely the same as estimates in

log(n) = Xβ + e , e ∼ N(0, D−1(m)) . (2)

This is much closer to the standard form of σ2D(w). There are two differ-
ences. One is that in model (2) there is no variance σ2 to be estimated;
we know that σ2 = 1. The second difference is that w is supposed to be
known but m is not known. This problem is evaded by estimating m from
the saturated model. Thus, the regression method is to fit the model

log(n) = Xβ + e , e ∼ N(0, D−1(n)) . (3)

This procedure has essentially the same asymptotic properties as maximum
likelihood estimation.
Although we are using model (3) as a device for fitting the log-linear

model, our real model is model (1). Model (3) gives a valid estimate for
β, but it cannot be used for the entire analysis. Fortunately, when con-
sidering the most interesting parameters in β, model (3) can be used to
construct asymptotically valid tests and confidence intervals. In particular,
this works for parameters that are not forced into the model to account
for the sampling scheme. Remember, we assume that C(Z) ⊂ C(X) where
Z is the matrix of indicators for the product-multinomial samples, cf. Sec-
tion 3. Any log-linear model can be reparametrized so that X = [Z,X1]
and β′ = [α′, β′

1]. The parameter vector α consists of parameters that are
forced into the model to account for the sampling scheme. For drawing
inferences about β1, model (3) gives valid tests and confidence intervals.

Because σ2 = 1, when drawing inferences about model (3) one uses tests
based on the normal distribution and the chi-square distribution rather
than the t distribution and the F distribution. When performing chi-square
tests, the test statistic is the numerator sum of squares from the usual F
statistic with the appropriate number of degrees of freedom. Again, infer-
ences must be restricted to parameters that are not forced into the model.

Example 10.6.1. Drug Comparisons.
The hypothetical data presented below has been analyzed in Koch, Imrey,
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Freeman, and Tolley (1976). They also mention other references. Three
drugs A, B, and C were given to each of 46 subjects. The response of each
subject to each drug was noted as favorable (F) or unfavorable (U). Assume
a multinomial sampling scheme. The data are

Drug B F U
Drug C F U F U

Drug A F 6 16 2 4
U 2 4 6 6

First, consider fitting the log-linear model [AB][C] by fitting the corre-
sponding linear model
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using the weights (6,16,2,4,2,4,6,6). The parameters α, β, αβ, and γ can
be described as main effects for drugs A and B, the A×B interaction, and
the drug C main effect. A regression program gave the following results for
fitting this model:

Regression Output
Coefficient Std Error t

µ 1.5662 .1335 11.73
α .1436 .1300 1.11
β .1436 .1300 1.11
αβ .5128 .1294 3.96
γ −.3055 .1201 −2.54
Sum of squared errors (SSE) = 1.7348
Degrees of freedom error (dfE) = 3
Mean squared error (MSE) = .5783

As discussed above, the regression program acts as if there is a scale
parameter σ that needs to be estimated. For log-linear models, the scale
parameter is one, so the regression output must be modified to remove
the adjustments for scale. This consists of dividing the regression standard
errors and multiplying the t values by (MSE)1/2. Doing this gives
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GSK Estimates
Coefficient Estimate Std Error z

µ 1.5662 — —
α .1436 .1710 .844
β .1436 .1710 .844
αβ .5128 .1702 3.011
γ −.3055 .1579 −1.932

The z values can be compared to the standard normal distribution for
an asymptotic test of whether the coefficients are zero. The fact that no
standard error is reported for µ is due to the fact that µ is forced into the
model by the multinomial sampling.
SSE is not used in the standard errors of coefficients, but it is used for

testing different models. For example, fitting the model [A][B], i.e.,
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+ e (5)

with the counts as weights, gives

SSE[model (5)] = 14.017

with 5 degrees of freedom. To test model (5) against model (4) [i.e., to test
H0 : αβ = γ = 0], compare the difference in the error sums of squares,
14.0173 − 1.7348 = 12.2825, to a chi-square distribution with 5 − 3 = 2
degrees of freedom. Of course, to test the significance of one parameter,
either the chi square or the normal test can be used. The tests are identical.
Saturated models present some different features. Saturated models must

fit perfectly; so for such a model, the SSE is zero. The fact that the sat-
urated model has SSE = 0 causes a problem in finding standard errors
and z values for regression coefficients. The regression output will try to
use a scale parameter of zero, so the regression standard errors will all be
reported as zero and the t values will be reported as infinite. It also follows
that for any model other than the saturated model, the SSE reported in
the regression output provides a direct test of lack of fit, i.e., a test of the
model against the saturated model, when compared to a chi-square distri-
bution with dfE degrees of freedom. For example, in the model [AB][C],
comparing 1.7348 to a χ2(2) provides a test for lack of fit.

Finally, many regression programs give additional output on the sums of
squares for the different coefficients such as Sum of Squares explained by
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each variable in the order they are entered into the model. For model (4),
this is

Due to df SS
Regression 4 18.3901
α 1 4.4353
β 1 1.6723
αβ 1 8.5381
γ 1 3.7444

The test of H0 : γ = 0 can be performed by comparing 3.7444 to a chi-
squared distribution with 1 degree of freedom. The test of H0 : γ = αβ = 0
can be performed by comparing 8.5381 + 3.7444 = 12.2825 to a chi square
with 2 degrees of freedom. Both of these tests are equivalent to previously
discussed versions of the tests.
Three things should be noted about the estimation technique of Grizzle,

Starmer, and Koch (GSK). First, the method consists of performing one
step of the Newton-Raphson algorithm. If the initial guess in the Newton-
Raphson equation (10.5.1) is taken as Xβ0 = log(n), then one iteration
gives the GSK estimate. Second, the GSK method of estimation depends
on an asymptotic result. It is only asymptotically that model (1) is valid.
Maximum likelihood, on the other hand, is a valid method of estimation for
any sample size. Similarly, likelihood ratio statistics are reasonable statis-
tics on which to base tests for any sample size. With maximum likelihood,
all procedures will be based on sufficient statistics. Only the distributions
depend on large samples. Finally, the GSK method has trouble with obser-
vations that are zero. Taking the log of zero is usually a problem.
Koch et al. (1976) propose a compromise between maximum likelihood

and weighted least squares. Suppose we wish to fit some model that cannot
be conveniently fitted by iterative proportional fitting, say

log(mijk) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + γik . (6)

If software is available for iterative proportional fitting but not for itera-
tively reweighted least squares, perform the maximum likelihood fit of a
slightly larger ANOVA type model, say

log(mijk) = u12(ij) + u13(ik) .

The estimated vector m̂ obtained from this can be used in place of n in
the GSK procedure. The analysis follows the standard GSK methods. The
compromise essentially provides GSK with better starting values.
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Mathematical Justifications
There are two things that require justification. First, that estimates are the
same in models (1) and (2) and, second, that estimates of functions of β1
have the same variance in models (1) and (2).
Why do models (1) and (2) have the same estimates? Note that

AzD
−1(m) = Z(Z ′D(m)Z)−1Z ′D(m)D−1(m)

= Z(Z ′D(m)Z)−1Z ′ .

Thus, the covariance matrix in model (1) is

D−1(m) − Z(Z ′D(m)Z)−1Z ′ .

The covariance matrix in model (2) can be written

D−1(m) = [D−1(m) − Z(Z ′D(m)Z)−1Z ′] + Z(Z ′D(m)Z)−1Z ′ .

Because C(Z) ⊂ C(X), this is precisely the condition needed to apply
Theorem 10.1.3 in Christensen (1996b). The theorem implies that best
linear unbiased estimates in models (1) and (2) are identical.
The idea behind Christensen’s theorem is that because C(Z) ⊂ C(X),

for some (non-negative definite) matrix B, the covariance matrix of (1) can
be written

D−1(m) − XBX ′ .

Model (2) is equivalent to model (1) but with an additional independent
error term added in. In particular, model (2) is equivalent to

log(n) = Xβ + (e+ e0) ,
e ∼ N(0, D−1(m) − Z(Z ′D(m)Z)−1Z ′) , (7)
e0 ∼ N(0, Z(Z ′D(m)Z)−1Z ′) ,

where e and e0 are independent. The covariance matrix for the entire error
is

Cov(e+ e0) = D−1(m) − Z(Z ′D(m)Z)−1Z ′ + Z(Z ′D(m)Z)−1Z ′

= D−1(m) .

The trick involves the covariance matrix associated with e0. With prob-
ability one, e0 ∈ C(Z(Z ′D(m)Z)−1Z ′) ⊂ C(Z) ⊂ C(X), cf. Christensen
(1996b, Lemma 1.3.5). Because e0 ∈ C(X), we are adding error that we
cannot distinguish from the mean Xβ. The only thing an unbiased estimate
can do to such error is ignore it. Thus, the estimates with the additional
error e0 and the estimates without the additional error are identical.
We now examine the fact that estimates of estimable functions of β1 have

the same variance in models (1) and (2).
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Estimates are the same in models (1) and (2), so using model (2) and
standard linear model results, we have

µ̂ = Xβ̂ = A log(n)

where A = X(X ′D(m)X)−1X ′D(m). A is a projection operator onto
C(X); this means that AX = X, so, in particular, AA = A and, because
C(Z) ⊂ C(X), AZ = Z and AAz = Az.
Again, write µ = Xβ = Zα +X1β1. Consider an estimable function of

β1, say λ′β1. For this to be estimable, by definition we must have λ′β1 =
ρ′µ = ρ′Zα+ ρ′X1β1 for some q × 1 vector ρ. In particular, we must have
ρ′Z = 0 and ρ′X1 = λ′. Now consider the asymptotic variance of λ′β̂1
under model (1),

Var(λ′β̂1) = Var(ρ′µ̂)
= Var(ρ′A log(n))
= ρ′A[D−1(m) − AzD

−1(m)]A′ρ
= ρ′AD−1(m)A′ρ − ρ′AAzD

−1(m)A′ρ
= ρ′AD−1(m)A′ρ .

The last equality follows from the fact that

ρ′AAz = ρ′Az = ρ′Z(Z ′D(m)Z)−1Z ′D(m) = 0

because ρ′Z = 0.
The variance of λ′β̂1 under model (2) is

Var(λ′β̂1) = Var(ρ′A log(n))
= ρ′A[D−1(m)]A′ρ,

so the variances are the same under models (1) and (2). Thus, for estimable
functions of β1, the standard error reported from fitting model (2) is iden-
tical to the true standard error which is computed using model (1). For
estimating functions that involve α, model (2) cannot be used to obtain
standard errors.
In practice, neither model (1) nor (2) can be used because the covariance

matrices involve the unknown parameter vector m. Model (3) substitutes
the estimate n for m in the covariance matrix of (2). The same substitution
in model (1) gives the most proper usable form for the GSK analysis. As
above, the two models give the same estimate and the same standard errors
for estimates of β1. For drawing inferences about λ′β1, use the approximate
distribution

λ′β̂1 − λ′β1√
ρ′D−1(n)ρ

∼ N(0, 1) .
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In particular, a large sample 95% confidence interval for λ′β1 has end points

λ′β̂1 ± 1.96
√
ρ′D−1(n)ρ .

An α level test of H0 : λ′β̂1 = 0 rejects H0 when

|λ′β̂1|√
ρ′D−1(n)ρ

> z(1 − α/2) .

In summary, model (3) can be fitted very simply because it has a diagonal
covariance matrix. Model (3) gives valid estimates of β. Model (3) yields
valid estimates of the variance for parameters that are not forced into the
model to deal with the sampling scheme. However, there are constraints
on the forced parameters due to the sampling scheme that do not appear
in model (3). These constraints reduce the variability to which the forced
parameters are subject. Thus, instead of a covariance matrix D−1(n), the
appropriate covariance matrix has a term subtracted fromD−1(n) to reduce
certain aspects of the variability.

10.7 Residual Analysis and Outliers

Residuals are used in regression analysis to check normality, look for serial
correlation, examine possible lack of fit, look for heteroscedasticity of vari-
ances, identify outliers, and generally to examine whether the assumptions
of the regression model appear to be appropriate. Addressing many of these
issues is somewhat less appropriate in analysis of variance. For example,
appropriate tests for lack of fit are readily available and the question of
serial correlation comes up less frequently.
For log-linear models, we will be interested in residuals primarily for iden-

tifying outliers and checking approximate normality. We define residuals by
analogy with regression analysis.
In a regression model

Y = Xβ + e, (1)

the residuals ê = (ê1, . . . , ên) are defined as the difference between the
observations and their estimated expected values. Symbolically,

ê = Y − Xβ̂ = (I − H)Y,

where β̂ = (X ′X)−1X ′Y is the least squares estimate of β and H =
X(X ′X)−1X ′. If

e ∼ N(0, σ2I) ,

then
ê ∼ N(0, σ2(I − H)) . (2)
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In most applications of residual analysis, the residuals are standardized
before they are used. For example, in checking for outliers, we are checking
for residuals that have unusually large absolute values. How large does
a residual have to be before it is large enough to cause concern? If we
standardize residuals so that they have a variance of about one, then we
have a handle on what it means to have a large residual.
There are two methods of standardizing residuals that have been com-

monly used. One method is a crude standardization

r̃i = êi/σ̂,

where σ̂2 is the mean squared error from fitting model (1). Recall that the
object of standardization is to make the variance of the residual about 1.
Clearly, we should be dividing the residual by an estimate of its standard
deviation. The standard deviation of êi is σ

√
1 − hii, where hii is the ith

diagonal element of H. The problem with the crude standardized residuals
is that they ignore H. Instead of using the correct distribution (2), crude
standardized residuals behave as if ê ∼ N(0, σ2I). This is the correct dis-
tribution for e = Y − Xβ, but it ignores the fact that β̂ is estimated in
ê = Y − Xβ̂. In other words, the crude standardized residuals give just
that: a very crude standardization. The only advantage to the crude stan-
dardized residuals is that they do not require the computation of the hii
values.
The second method of standardizing residuals consists simply of doing it

right. The standard deviation of êi is σ
√
1 − hii, so define the standardized

residual as
ri = êi

/
σ̂
√
1 − hii .

We now argue similarly for log-linear models. Again define the residuals
as the difference between the observations and their estimated expected
values. Symbolically, the residuals are

êi = ni − m̂i . (3)

The need for standardizing these residuals is so glaring that it is almost
unheard of to define residuals as in (3). To repeat an intuitive argument
given earlier, suppose we have a cell in which ni = 7 and m̂i = 2, then
êi = 7 − 2 = 5, which is not a very good fit. Now, suppose ni = 107
and m̂i = 102. Again, êi = 5, but m̂i seems to fit ni quite well. With our
standard sampling schemes, variability tends to be large when the numbers
ni and m̂i are large. For example, under multinomial sampling, for each i,
Var(ni) = Npi(1 − pi) = mi(N −mi)/N . Unless pi is very close to zero or
one, the variance is large when ni, and implicitly N , are large.

In order to standardize the residuals, we need a relationship similar to (2)
for log-linear models. This relationship is essentially that, for large samples,
the approximate distribution is

n − m̂ ∼ N(0, D(m)(I − A)) .
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A more formal statement is given in the following theorem in which we
make explicit the dependence of n and m on the sample size N .

Theorem 10.7.1. For multinomial, or product-multinomial sampling,
if the log-linear model µ = Xβ holds, then as N → ∞,

N−1/2(nN − m̂N ) L→ N(0, D(I − A))

where D = D(m∗), m∗ is defined as in Section 3, A = X(X ′DX)−1X ′D,
and N is n· for multinomial sampling and n·· for product-multinomial sam-
pling.

Proof. An argument similar to that in the proof of Lemma 12.3.3 gives

N1/2[N−1m̂N − N−1mN − DAD−1N−1(nN − mN )] P→ 0 .

[This is obtained by doing a Taylor expansion of the function m̂(·) rather
than µ̂(·).] Adding and subtracting N−1/2nN and multiplying by −1 gives

N1/2[N−1(nN − m̂N ) − N−1(nN − mN ) +DAD−1N−1(nN − mN )]

= [N−1/2(nN − m̂N ) − (I − DAD−1)N−1/2(nN − mN )] P→ 0 .

It follows that N−1/2(nN − m̂N ) and (I −DAD−1)N−1/2(nN −mN ) have
the same asymptotic distribution. By Theorem 12.3.1,

N−1/2(nN − mN ) L→ N(0, D − DAz).

Some algebra shows that

(I − DAD−1)N−1/2(nN − mN ) L→ N(0, D(I − A)).

�

For large samples, Theorem 10.7.1 gives the approximation

n − m̂ ∼ N(0, D(m̂)(I − A(m̂)))

where A(m̂) = X(X ′D(m̂)X)−1X ′D(m̂). We are now in a position to de-
fine both standardized residuals and crude standardized residuals. Crude
standardized residuals are defined by ignoring the fact that m is estimated
or, in other words, by ignoring the matrix A(m̂). Thus,

r̃i =
ni − m̂i√

m̂i

.

In discussions of residuals for contingency tables, these values are often
called the residuals or the standardized residuals. In previous chapters,
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these were referred to as the Pearson residuals. As in linear models, the
primary advantage of the crude standardized residuals is that they do not
require the computation of the diagonal elements of a complicated matrix
depending on X. Note also that the sum of the squared crude residuals is
precisely the Pearson test statistic for lack of fit.
The standardized residuals are defined as

ri =
ni − m̂i√
m̂i(1 − âii)

where âii is the ith diagonal element of the square matrix A(m̂). In some
discussions of residuals, âii is defined to be the ith diagonal element of
D(

√
m̂)X(X ′D(m̂)X)−1X ′D(

√
m̂). It is easily seen that the diagonal el-

ements of these matrices are the same. These standardized residuals are
also known as adjusted residuals. The term “adjusted” was introduced to
distinguish these from the crude standardized residuals because the crude
standardized residuals are often referred to as standardized residuals.
Given the standardized residuals, we can check for normality. Although

maximum likelihood estimates and tests based on the likelihood ratio test
statistics make sense with any sample size, we have discussed particular
confidence intervals and tests that assume the validity of asymptotic dis-
tribution theory. We would like to know if this assumption is reasonable.
One way to check is to see whether the standardized residuals really seem
to be normally distributed. As in regression analysis, we can check this
assumption by doing a normal (rankit) plot or a Shapiro-Francia test, cf.
Christensen (1996a, Section 2.4). Note that the validity of these procedures
depends on having a valid log-linear model.
Another way to check the validity of the asymptotic distributions is by

comparing G2 and X2. If the asymptotic approximations are good and the
model is true, then G2 and X2 should be about equal.
If the asymptotic distributions do not seem to be valid, we have a prob-

lem. One possible solution is simply to accept the fact that significance
levels and confidence coefficients given by asymptotics are very crude. If
our assumed sampling schemes are appropriate, the point estimates and test
statistics are reasonable, but without valid distributions only crude conclu-
sions can be made. The conditional approaches discussed in Section 3.5 or
Bayesian methods similar to Chapter 13 can also be used here. Finally, an-
other possibility is to try to incorporate a more realistic sampling scheme
than the simple multinomial and product-multinomial schemes considered
here.
The other primary use of standardized residuals is in identifying outliers.

Standardized residuals are asymptotically distributed as N(0, 1), so we can
test whether residuals really have mean zero. Typically, we would be in-
terested in the standardized residuals with largest absolute values. This is
equivalent to testing all residuals, so a multiple comparison method would
be appropriate. The Bonferroni method is easy to apply (cf. Christensen,
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1996a, Sections 6.2, 7.9 or Christensen, 1996b, Section 5.3). We declare
that a case is an outlier if

|ri| > z(1 − α/2q)

where z(η) is the ηth percentile of a standard normal distribution, α is the
size of the test, and q is the number of cells in the table.
An alternative method for identifying outliers is based on exploratory

data analysis. This method does not rely on asymptotic distributions.
Treating the standardized residuals as a sample, compute the quartiles
and the interquartile range (IQR). Any case with a residual more than
(1.5)IQR from the nearest quartile is considered an outlier.
Rather than using an ad hoc test for outliers based on standardized

residuals, we can construct a likelihood ratio test. Suppose our model is

µ = Xβ . (4)

Without loss of generality, consider testing whether the observation in the
qth cell, nq, is an outlier. An outlier in the qth cell can be modeled by
fitting a separate parameter to the cell. Let vq = (0, . . . , 0, 1)′ and consider
the model

µ = Xβ + vqγ . (5)

The likelihood ratio test of this model against the reduced model (4) is a
test of whether the qth cell is an outlier.
Typically, we would want to examine each cell for being an outlier; thus,

we need q likelihood ratio test statistics. Again, applying the Bonferroni
method for multiple comparisons would be appropriate.
Computing each of the q likelihood ratio test statistics requires an iter-

ative procedure for obtaining estimates in models like model (5). In com-
puting estimates of m, µ, and β in model (5), we can use estimates from
model (4) as starting values. To reduce costs, we might stop after just one
step of the iterative procedure. For these one-step procedures, closed forms
for the likelihood ratio test can be obtained. Unfortunately, there are sev-
eral possible approaches to deriving one-step approximations and it is not
clear which, if any of them, work well. The remainder of this section is
devoted to deriving a one-step approximation to Cook’s distance.

Derivation of Cook’s Distance
Rewrite model (5) as

µ[q] = log(m[q]) = Xβ + vqγ ,

where µ[q] and m[q] are used to distinguish the parameters in model (5),
where cell q may be an outlier, from the parameters in model (4). The MLE
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of m[q] must satisfy (
X ′

v′
q

)
n =

(
X ′

v′
q

)
m̂[q]

where log(m̂[q]) ∈ C(X, vq). In the discussion below, a subscript (q) indi-
cates that the row corresponding to case q has been deleted from a matrix

or vector, so X =
[
X(q)
x′
q

]
. Notice that C(X, vq) = C

([
X(q) 0
0 1

])
. Thus,

m̂[q] satisfies [
X ′

(q) 0
0 1

]
n =

[
X ′

(q) 0
0 1

]
m̂[q]

or, equivalently, writing m̂′
[q] = (m̂′

[q](q), m̂[q]q),

X ′
(q)n(q) = X ′

(q)m̂[q](q)

and
nq = m̂[q]q .

Thus, m̂[q](q) can be obtained by fitting the model, say µ(q) = X(q)β(q), in
which cell q has been deleted and β(q) denotes the new parameter vector
that applies to this model. In particular, µ̂[q](q) = µ̂(q).
A natural version of Cook’s distance that is appropriate for log-linear

models is

Cq(X ′D(m̂)X, p) =
(β̂ − β̂(q))′X ′D(m̂)X(β̂ − β̂(q))

p
.

This is the same measure as used in Section 6.7, but is written in a differ-
ent form. Note that X ′D(m̂)X is the inverse of the estimated asymptotic
covariance matrix for β̂ under model (4) with Poisson sampling. A one-step
version of Cook’s distance is

C1
q (X

′D(m̂)X, p) =
(β̂ − β̂1(q))

′X ′D(m̂)X(β̂ − β̂1(q))

p

where β̂1(q) is a one-step approximation to β̂(q).

Using the Newton-Raphson method with a starting value of β̂ and a
result similar to Proposition 13.5.1 in Christensen (1996b) on the inverse
of a sum of matrices, the one-step estimate is

β̂1
(q) = β̂ + [X(q)D(m̂(q))X(q)]

−1X ′
(q)[n(q) − m̂(q)]

= β̂ + [X ′D(m̂)X − m̂qxqx
′
q]

−1[X ′(n − m̂) − xq(nq − m̂q)]

= β̂ + [X ′D(m̂)X − m̂qxqx
′
q]

−1[−xq(nq − m̂q)]

= β̂ −
[
(X ′D(m̂)X)−1 +

m̂q

1 − âqq
(X ′D(m̂)X)−1xqx

′
q(X

′D(m̂)X)−1

]
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× [xq(nq − mq)]

= β̂ − 1
1 − âqq

(X ′D(m̂)X)−1xq(nq − m̂q) .

The equation

β̂1(q) = β̂ − nq − m̂q

1 − âqq
(X ′D(m̂)X)−1xq

leads to a computational formula for the one-step version of Cook’s dis-
tance. The one-step version can be written as

C1
q (X

′D(m̂)X, p) =
(β̂ − β̂1(q))

′X ′D(m̂)X(β̂ − β̂1(q))

p

=
1
p

âqq
(1 − âqq)2

(nq − m̂q)2

m̂q
=

1
p
r2q

âqq
1 − âqq

.

As mentioned just prior to Subsection 6.7.1, this definition of Cook’s dis-
tance has weaknesses. Primarily, it does not take into account the marginal
constraints imposed by multinomial or product-multinomial sampling, so
it is most appropriate for Poisson sampling. In general, the implications of
deleting a cell in a multinomial distribution are hard to grasp. Anderson
(1992) has a valuable idea. For multinomial sampling, rather than merely
deleting cell i, he proposes looking at the probabilities than an observation
occurs in the other cells conditional on the observation not appearing in
cell i. He then develops a version of Cook’s distance that can be written in
terms of the standardized residuals. Unfortunately, Anderson (1992) uses
standardized residuals that seem to conflict with Theorem 10.7.1; i.e., he
seems to have a different asymptotic variance for N−1/2(ni−m̂i). The prob-
lem appears to be that he does not use the term Az in Theorem 10.3.1b.
[Of course, the really fun thing about this is that the reader gets to wonder
who is making the mistake. Anderson’s standardized residuals are based
on Rao (1973, p. 394). Theorem 10.7.1 is, I believe, identical to a result in
Haberman (1974a).] In any case, the reported results should be used with
care. In other work, Thomas and Cook (1989, 1990) discuss influence for
generalized linear models (which include log-linear models, cf. Chapter 9).

10.8 Exercises

Exercise 10.8.1. Show that for a 3×3 table with n11 = n13, n31 = n33,
and n·1 = n·3 that the m̂’s for the independence model are also the m̂’s for
the uniform association model.

Exercise 10.8.2. Waite (1911) reports data on classifications of general
intelligence made for students from a secondary school in London. Clas-
sifications were made after two different school terms and each student
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was classified by two instructors. Classifications were based on Pearson’s
criteria as explained in Exercise 2.6.3. The data are given in Table 10.1.
The entry for Term 1, row C, column D of 55 indicates that there were
55 people who were classified as C by one instructor and D by the other.
We want to develop interesting log-linear models for such data. For the
moment, consider only Term 1. A model of interest is that the two teachers
have the same marginal distribution of assigning various classifications and
that they assign them independently. Write the marginal probabilities for
the categories C, D, E, F, and G as p1, p2, p3, p4, and p5, respectively.
What are the table probabilities pij in terms of the marginal probabilities?
Take logs of the pij ’s to identify a log-linear model. Write the log-linear
model log(mij) = αi + βj for these data in matrix form. Incorporate the
restrictions αi = βi to get a model log(m) = Xγ and fit the model to the
data of Table 10.1. What conclusions can you reach about the data?

TABLE 10.1. Intelligence Classifica-
tions

Term 1
C D E F G

C 13 55 29 1 0
D 123 326 24 0
E 421 253 17
F 107 31
G 5

Term 2
C D E F G

C 17 51 17 1 0
D 129 479 46 5
E 700 343 28
F 109 72
G 21

Exercise 10.8.3. Use the saturated model and Theorem 10.2.1 to find
the large sample distribution of a multinomial sample in terms of its cate-
gory probabilities.

Exercise 10.8.4. The Delta Method.
Let vN be a sequence of q × 1 random vectors and suppose that

√
N(vN − θ) L→ N

(
0,Σ(θ)

)
.

Suppose that F (·) is a differentiable function taking q vectors into r vectors.
Let dF be the r × q matrix of partial derivatives of F . Then

√
N

(
F (vN ) − F (θ)

) L→ N
(
0, dF Σ(θ) dF ′).
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For technical reasons, it is advantageous to assume that dF and Σ(θ) are
also continuous. For mathematical details, see Bishop, Fienberg, and Hol-
land (1975, Section 14.6.3).
Assuming the saturated model for a 2×2 table, use Theorem 10.2.1c and

the delta method to find an asymptotic standard error and asymptotic con-
fidence intervals for the odds ratio. Show that the intervals do not change if
based on Theorem 10.3.1b. Apply this method to the data of Example 2.1.1
to get a 95% interval. How does this interval compare to the interval given
at the end of the subsection on The Odds Ratio in Section 2.1?

Exercise 10.8.5. Use the delta method of the previous exercise to show
that if √

N(vN − θ) L→ N
(
0,Σ(θ)

)
,

then for any r × q matrix A,

√
N(AvN − Aθ) L→ N

(
0, AΣ(θ)A′).

Show that if Cov(
√
NvN ) = Σ(θ), then Cov(

√
NAvN ) = AΣ(θ)A′.

Exercise 10.8.6. Testing Marginal Homogeneity in a Square Table.
For an I × I table, the hypothesis of marginal homogeneity is

H0 : pi· = p·i ,

i = 1, . . . , I. A natural statistic for testing this hypothesis is the vector
d = (n1· − n·1, . . . , nI· − n·I)′ Clearly,

E(di) = pi· − p·i .

Use the results of Exercise 1.6.5 to show that

Var(di) = N
[
(pi· + p·i − 2pii) − (pi· − p·i)2

]

and
Cov(dh, di) = N [(phi + pih) + (ph· − p·h)(pi· − p·i)] .

Use the previous exercise to find the large sample distribution of d. Show
that Pr(J ′d = 0) = 1. Show that the asymptotic covariance matrix of d has
rank I − 1 and thus is not invertible. It is well known that if Y ∼ N(0, V )
with V an s × s nonsingular matrix, then Y ′V −1Y ∼ χ2(s). Use this fact
along with the asymptotic distribution of d to obtain a test of the hypothesis
of marginal homogeneity. Apply the test of marginal homogeneity to the
data of Exercise 2.6.10.



11
The Matrix Approach to Logit
Models

In this chapter, we again discuss logistic regression and logit models, but
here we use the matrix approach of Chapter 10. Section 1 discusses the
equivalence of logit models and log-linear models. This equivalence is used
to arrive at results on estimation and testing. Because the data in a typical
logistic regression correspond to very sparse data in a contingency table, the
asymptotic results of Section 10.2 are not appropriate. Section 6 presents
results from Haberman (1977) that are appropriate for logistic regression
models. Section 2 discusses model selection criteria for logistic regression.
Direct fitting of logit models is considered in Section 3. The appropriate
maximum likelihood equations and Newton-Raphson procedure are given.
Section 4 indicates how the weighted least squares model-fitting procedure
is applied to logit models. Models appropriate for response variables with
more than two categories are examined in Section 5. Finally, Section 7
considers the discrimination problem.

11.1 Estimation and Testing for Logistic Models

In general, if the dependent variable has only two categories, regardless
of the number of predictor variables, the table can be considered as a
two-dimensional table with two columns (one column for each category of
the dependent variable). In this structure, all predictor variables are being
pooled into the rows of the table. For t distinct sets of predictor variables,



364 11. The Matrix Approach to Logit Models

we can write the 2t × 1 vector of observations as

n = (n11, n21, . . . , nt1, n12, . . . , nt2)′

with similar notations for p, m, and µ. A logistic model is a linear model
for the values log(pi1/pi2). Note that we are modeling the log odds of
category 1 compared to category 2. These are the log odds of observing
category 1 given that the observation falls in row i. If each row constitutes
an independent binomial, then we are simply modeling the log odds for the
various binomials.
Logistic models are nothing more than log-linear models. All of the re-

sults of Chapter 10 apply to logistic models. We now consider the exact
nature of this equivalence for prospective studies.
Let η =

(
log(p11/p12), log(p21/p22), . . . , log(pt1/pt2)

)′ be the vector of
log odds. A linear logistic model is a model η = Xβ, where X is a t × k
matrix. Define

L′ = [It,−It]

and note that for prospective studies, log(pi1/pi2) = log(mi1/mi2) =
log(mi1) − log(mi2), so

η = L′µ .

Thus, the logistic model can be written as

L′µ = Xβ .

Now define a log-linear model

µ = X∗ξ

where

X∗ =
[
It X
It 0

]
and ξ =

[
γ
β

]
.

It is easily seen that if µ = X∗ξ, then L′µ = Xβ. It is only moderately
more difficult to see (cf. Section 12.4 and Christensen, 1996b, Section 3.3)
that

{µ|L′µ = Xβ} = C(X∗) .

Thus, the restriction on µ imposed by the logistic model η = Xβ is precisely
the same as the log-linear model µ = X∗ξ. In other words, the logistic model
η = Xβ is identical to the log-linear model µ = X∗ξ.
Unfortunately, there can be problems with the asymptotic results of

Chapter 10 when applied to logistic models. The asymptotic results of
Section 10.2 are based on the assumption of a fixed number of cells q in
the table. This number is q = 2t. It is assumed that the sample size in each
cell gets large. Often, logistic models are used in situations that are more
similar to regression than analysis of variance. In such cases, any additional
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observations obtained typically correspond to new rows of the design ma-
trix X. This implies the addition of a new row to the t× 2 table; thus, the
assumption of a fixed number of cells is invalidated. These issues are dealt
with in Section 6.
In practice, the data are fixed and neither the sample sizes nor the num-

ber of cells increases. Both remain constant. If the number of observations
in each cell is reasonably large, the usual asymptotic theory should work
adequately. If the number of cells is large relative to the number of ob-
servations, new asymptotic results are required as a basis for statistical
inference.
Frequently, when the dependent variable has two categories, the data

are collected so that for each unique set of predictor variables (i.e., for each
row of the t × 2 table), the counts are independent and have a binomial
distribution. As in Section 10.4, the existence of product-multinomial sam-
pling (product-binomial, in this instance) restricts us to a special form for
the design matrix of the log-linear model. In particular, it is required that
C(Z) ⊂ C(X∗) where Z is a matrix of indicators for the rows of the t × 2
table. With µ = (µ11, . . . , µt1, µ12, . . . , µt2)′,

Z =
[
It
It

]
.

Since

X∗ =
[
It X
It 0

]
,

it is clearly the case that C(Z) ⊂ C(X∗). It follows that hypothesizing
a logistic model automatically makes the model appropriate for product-
binomial sampling.
Moreover, when fitting logistic models, it suffices to imagine fitting a

log-linear model to a table with product-binomial sampling. This mental
device of imagining product-binomial sampling assures that the structure
of the log-linear model implies the existence of a valid logistic model. To see
this, note that a quite arbitrary model appropriate for product-binomial
sampling can be written with the design matrix

[
It X1
It X2

]
.

However, C
([

It X1
It X2

])
= C

([
It X1 − X2
It 0

])
where

[
It X1 − X2
It 0

]

has the form given earlier for logistic models.

Estimation
We now consider the problem of estimation in a logistic model η = Xβ.
Recall that X is t × k and that η and β are t and k vectors, respectively.
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In particular, consider estimation of a linear function ρ′η, where ρ is an
arbitrary t × 1 vector. Note that ρ′η = ρ′Xβ, so these functions can be
considered as functions of β. If rank(X) = k and ei is a t vector of 0s with
a 1 in the ith position, then choosing ρ′ = e′

i(X
′X)−1X ′ gives ρ′Xβ = βi,

where β = (β1, . . . , βk)′.
Write

XL =
[
X
0

]
,

where XL is 2t × k and 0 is a t × k matrix of zeros. As above, η = Xβ is
equivalent to

µ = X∗ξ =
[
It X
It 0

] [
γ
β

]
= [Z,XL]

[
γ
β

]

= Zγ +XLβ ,

where β is identical in the logistic and log-linear models.
Using invariance of the MLEs, the MLE of ρ′η comes directly from the

MLE of µ. Because η = L′µ,

ρ′η̂ = ρ′L′µ̂ .

In terms of estimating β, we get

ρ′Xβ̂ ≡ ρ′η̂
= ρ′L′µ̂
= ρ′L′(Zγ̂ +XLβ̂)

= ρ′L′XLβ̂

= ρ′Xβ̂ .

Thus, ρ′Xβ can be estimated in either the logistic model or the log-linear
model and the estimates are identical.
To form tests and confidence intervals for ρ′Xβ, we need a distribution

for ρ′Xβ̂. Asymptotically, for any vector ρ∗,

ρ′
∗µ̂ − ρ′

∗X∗ξ√
ρ′∗(A − Az)D−1(m)ρ∗

∼ N(0, 1) (1)

and

A − Az = X∗(X ′
∗DX∗)−1X ′

∗D − Z(Z ′DZ)−Z ′D
= X∗(X ′

∗D(m)X∗)−1X ′
∗D(m) − Z ′(Z ′D(m)Z)−1Z ′D(m) ,

so

(A − Az)D−1(m) = X∗(X ′
∗D(m)X∗)−1X ′

∗ − Z(Z ′D(m)Z)−1Z ′ .
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For estimating ρ′Xβ in a logistic model, let ρ′
∗ = ρ′L′, so ρ′

∗µ̂ = ρ′η̂ and
ρ′

∗X∗ξ = ρ′Xβ. To apply (1), we need to find ρ′
∗(A−Az)D−1(m)ρ∗. In the

appendix to this section, it is shown that

ρ′
∗(A − Az)D−1(m)ρ∗ = ρ′X[X ′D(b)X]−1X ′ρ , (2)

where
b = (b1, . . . , bt)′

and
bi = mi1mi2/(mi1 +mi2) .

Taking b̂i = m̂i1m̂i2/ni· and b̂ = (b̂1, . . . , b̂t)′ gives, asymptotically,

ρ′η̂ − ρ′Xβ
√
ρ′X[X ′D(b̂)X]−1X ′ρ

∼ N(0, 1) .

Tests and confidence intervals follow in the usual way. In particular, using
ρ′ = e′

i = (0, · · · , 0, 1, 0, · · · , 0), for large samples

log(p̂i1/p̂i2) − log(pi1/pi2)√
âii

/
b̂i

∼ N(0, 1) , (3)

where âii is the leverage as found in Section 4.3 as modified by Subsec-
tion 4.4.1. The asymptotic variance for log odds ratios can also be com-
puted. Except for the difference in the weights bi, the value

Var(ρ′η̂) = ρ′X (X ′D(b)X)−1
X ′ρ

looks like that used in Section 10.2. Methods for evaluating variances are
similar.
Using the delta method of Exercise 10.8.4, the logistic transform, (3),

and writing Ni = ni1 + ni2, asymptotic inferences for pij are based on

p̂ij − pij√
p̂ij(1 − p̂ij)âii/Ni

∼ N(0, 1) ,

cf. Exercise 11.8.5

Testing Hypotheses
Assume a logistic model η = Xβ and consider the problem of testing a
reduced model η0 = X0β0 against η = Xβ, where C(X0) ⊂ C(X). This test
can be performed by testing log-linear models. The full model corresponds
to µ = X∗ξ. We can write the reduced model as

µ0 = X∗0ξ0,
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where
X∗0 = [Z,XL0]

and

XL0 =
[
X0
0

]
.

The degrees of freedom for the chi-square test is rank(X∗)−rank(X∗0) =
rank(X) − rank(X0). The likelihood ratio test statistic is

G2 = 2
t∑

i=1

2∑

j=1

m̂ij log(m̂ij/m̂0ij) .

Appendix
To simplify notation somewhat, let

Dm ≡ D(m).

In this appendix, we wish to show equation (2), i.e., for ρ′
∗ = ρ′L′,

ρ′
∗X∗[X ′

∗DmX∗]−1X ′
∗ρ − ρ′

∗Z[Z
′DmZ]−1Z ′ρ∗ = ρ′X[X ′D(b)X]−1X ′ρ.

The algebra necessary for this demonstration is quite nasty. We break it
up into several parts.

Lemma 11.1.1. ρ′
∗Z[Z

′DmZ]−1Z ′ρ∗ = 0.

Proof. ρ′
∗Z = ρ′L′Z but L′Z = 0. �

Now, all we have to deal with is

ρ′
∗X∗[X ′

∗DmX]−1X ′
∗ρ .

We will rewrite this using a perpendicular projection operator (cf. Chris-
tensen, 1996b, Appendix B) and then use a property of perpendicular pro-
jection operators to derive the result. Let

D1/2
m = D(

√
m11, . . . ,

√
mt2)

so that

ρ′
∗X∗[X ′

∗DmX∗]−1X ′
∗ρ∗

= ρ′L′X∗[X ′
∗DmX∗]−1X ′

∗Lρ

= ρ′L′D−1/2
m

[
D1/2

m X∗[X ′
∗DmX∗]−1X ′

∗D
1/2
m

]
D−1/2

m Lρ (4)

= ρ′L′D−1/2
m PD−1/2

m Lρ ,
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where P = D
1/2
m X∗[X ′

∗DmX∗]−1X ′
∗D

1/2
m . The matrix P is the perpendicu-

lar projection operator onto

C(D1/2
m X∗) = C(D1/2

m Z,D1/2
m XL).

We need one property of the perpendicular projection operator (cf. Chris-
tensen, 1996b, Section 9.2), namely

P = M1 +M2,

where
M1 = D1/2

m Z[Z ′DmZ]−1Z ′D1/2
m (5)

and

M2 = (I − M1)D1/2
m XL[X ′

LD
1/2
m (I − M1)D1/2

m XL]−1

× X ′
LD

1/2
m (I − M1). (6)

From (4), we see that

ρ′
∗X∗[X ′

∗DmX∗]−1X ′
∗ρ

= ρ′L′D−1/2
m M1D

−1/2
m Lρ+ ρ′L′D−1/2

m M2D
−1/2
m Lρ .

The first term on the right-hand side vanishes.

Lemma 11.1.2. ρ′L′D−1/2
m M1D

−1/2
m Lρ = 0.

Proof. Note that 0 = L′Z = L′D−1/2
m [D1/2

m Z]. Using formula (5) for
M1, we see that 0 = L′D−1/2

m M1. �

By Lemmas 11.1.1 and 11.1.2, we have reduced the demonstration of
equation (2) to showing

ρ′L′D−1/2
m M2D

−1/2
m Lρ = ρ′X[X ′D(b)X]−1X ′ρ . (7)

Again, we break the demonstration into parts.

Lemma 11.1.3. ρ′L′D−1/2
m (I − M1)D

1/2
m XL = ρ′X.

Proof. As in the proof of Lemma 11.1.2, L′D−1/2
m M1 = 0. Thus,

ρ′L′D−1/2
m (I − M1)D1/2

m XL = ρ′L′D−1/2
m D1/2

m XL

= ρ′L′XL

= ρ′X . �
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Define m1 = (m11, . . . ,mt1)′ and m2 = (m12, . . . ,mt2)′.

Lemma 11.1.4. X ′
LDmZ = X ′D(m1).

Proof.

X ′
LDmZ = [X ′, 0′]

[
D(m1) 0

0 D(m2)

] [
It
It

]

= X ′D(m1) . �

A similar argument yields

Lemma 11.1.5. X ′
LDmXL = X ′D(m1)X.

We need two additional results.

Lemma 11.1.6. [Z ′DmZ] = D(m1 +m2).

Proof.

Z ′DmZ = [It, It]
[
D(m1) 0

0 D(m2)

] [
It
It

]

= D(m1) +D(m2)
= D(m1 +m2). �

Lemma 11.1.7. X ′
LD

1/2
m (I − M1)D

1/2
m XL = X ′D(b)X.

Proof. Using Lemmas 11.1.4, 11.1.5, and 11.1.6 gives

X ′
LD

1/2
m (I − M1)D1/2

m XL

= X ′
LDmXL − X ′

LDmZ[Z ′DmZ]−1Z ′DmXL

= X ′D(m1)X − X ′D(m1)D−1(m1 +m2)D(m1)X
= X ′[D(m1) − D(m1)D−1(m1 +m2)D(m1)]X
= X ′D(b)X . �

We can now obtain equation (7). Using (6), Lemmas 11.1.3 and 11.1.7
give

ρ′L′D−1/2
m M2D

−1/2
m Lρ = ρ′X[X ′D(b)X]−1X ′ρ

and we are done.
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11.2 Model Selection Criteria for Logistic
Regression

The purpose of this section is to show that not only do the model selec-
tion criteria of Section 3.6 apply to logistic regression, but that they have
interpretations similar to those in normal theory regression.
For a logistic regression model η = Xβ or, equivalently,

µ =
[
It X
It 0

] [
α
β

]
,

write the likelihood ratio test statistic for testing the model against the
saturated model as G2(X). Let J be a t × 1 matrix of one’s.

A natural definition of R2 for logit models gives precisely the same def-
inition as for log-linear models. In defining R2 for logistic regression, the
smallest interesting model is typically the model that contains only the
intercept

η = Jγ .

The corresponding log-linear model is

µ =
[
It J
It 0

] [
ξ
γ

]
(1)

which is equivalent to

µ = X0δ ≡
[
It J 0
It 0 J

]



α
γ1
γ2



 . (2)

These are equivalent because the µ vectors that can be obtained from the
models are identical. Any µ from model (1) can be obtained from model
(2) by taking α = ξ, γ1 = γ, and γ2 = 0. Conversely, any µ from model (2)
can be obtained from model (1) by taking ξ = α + Jγ2 and γ = γ1 − γ2.
This is really just a demonstration that C(X0) is identical to the column
space of the model matrix in (1). If we think of logistic regression as the
analysis of a t × 2 table, model (2) is

log(mij) = αi + γj

which is the model of independence. So comparing the logistic model η =
Xβ to the logistic intercept model η = Jγ is the same as comparing the
log-linear equivalent of η = Xβ to the independence model.

The G2(X) statistic is the same whether considering logit models or
their log-linear equivalents. If k = rank(X), the degrees of freedom are the
number of cells in the table minus the rank of the log-linear model design
matrix, 2t−(t+k) = t−k. Note that this can also be viewed as the number



372 11. The Matrix Approach to Logit Models

of cases (number of independent binomials) minus the rank of the logistic
model design matrix, just like the degrees of freedom error in a normal
theory model. The independence model is equivalent to fitting an intercept
in logistic regression, so G2(X0) has degrees of freedom 2t − t − 1 = t − 1.
Note that this is the number of cases minus 1 for the intercept, just like
the error for fitting only an intercept in normal theory regression.
The log-linear model definition

R2 =
G2(X0) − G2(X)

G2(X0)

(cf. Section 3.6) makes perfect sense when applied to logistic regression
models. The definition of Adj R2 when applied to logit models gives

Adj R2 = 1 − G2(X)/(t − k)
G2(X0)/(t − 1)

.

Finally, Akaike’s information criterion suggests picking X to minimize

Ax = G2(X) − [
(2t) − 2

(
t+ k

)]

= G2(X) + 2k.

Because t is fixed, minimizing Ax is equivalent to minimizing

Ax − q ≡ Ax − 2t = G2(X) − 2[t − k] .

As illustrated in Section 4.1, it is common to report A∗, the information
relative to a full model.

11.3 Likelihood Equations and Newton-Raphson

When dealing with logit models, some simplification occurs in the likelihood
equations and the Newton-Raphson algorithm. Write the log-linear model
version of the logit model η = Xβ as

µ =
[
It X
It 0

] [
γ
β

]
, (1)

where X is a t × k matrix. Write mj = (m1j , . . . ,mtj)′ and nj =
(n1j , . . . , ntj)′ for j = 1, 2, so m′ = (m′

1,m
′
2) and n′ = (n′

1, n
′
2). Also

write N = (N1, . . . , Nt)′, where

Ni = ni1 + ni2 .
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As in Chapter 10, the likelihood equations are
[
I ′
t I ′

t

X ′ 0

]
(n − m) = 0 .

Noting that n2 = N − n1, we get the equations
[
I ′
t I ′

t

X ′ 0

] [
n1 − m1

N − n1 − m2

]
= 0

or [
(n1 − m1) + (N − n1 − m2)

X ′(n1 − m1)

]
= 0 ,

which simplifies to [
N − (m1 +m2)
X ′(n1 − m1)

]
= 0 . (2)

We are seeking values γ̂ and β̂ that give solutions to equation (2). We
now show that the value of γ̂ can be determined by the value of β̂. Write

X =






x′
1
...
x′
t






and γ̂ = (γ̂1, . . . , γ̂t)′; then,

m̂i1 = exp[γ̂i + x′
iβ̂] ,

m̂i2 = exp[γ̂i] .
(3)

Because γ̂ and β̂ provide a solution to (2), Ni = m̂1i + m̂2i and

Ni = exp[γ̂i + x′
iβ̂] + exp[γ̂i]

= eγ̂i [1 + exp(x′
iβ̂)] ,

so
eγ̂i = Ni/[1 + exp(x′

iβ̂)] (4)

and
γ̂i = log(Ni/[1 + exp(x′

iβ̂)]) .

This completes the demonstration.

Because γ̂ is a function of β̂, the likelihood equations can be reduced to
the bottom half of (2), which is solely a function of β. The top half of (2)
is satisfied for any β̂ by taking γ̂ as indicated above. To write the bottom
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half of (2) as a function of β, we need only write m1 as a function of β.
From equations (3) and (4)

mi1 = eγiex
′
iβ

= (Ni/[1 + ex
′
iβ ])ex

′
iβ (5)

= Ni
ex

′
iβ

1 + ex
′
i
β
.

We can use the Newton-Raphson algorithm to find a solution to the likeli-
hood equations

X ′(n1 − m1) = 0 .

The highlights of using Newton-Raphson are given below. More detailed
discussions are given in Chapter 10 and Section 12.4. To apply Newton-
Raphson, we need the derivative of X ′(n1 −m1(β)) with respect to β, i.e.,
the matrix of partial derivatives with respect to the βj ’s. Using the chain
rule, this is just −X ′ times the matrix of partial derivatives of m1(β) with
respect to β. Note that

m1(β) = [m11(β), . . . ,mt1(β)]
′

=
[
N1e

x′
1β/(1 + ex

′
1β), . . . , Nte

x′
tβ/(1 + ex

′
tβ)

]′
.

The partial derivative of m1i(β) with respect to βj is

∂mi1(β)
∂βj

= Nixije
x′

iβ(1 + ex
′
iβ)−1

+Nie
x′

iβ(−1)(1 + ex
′
iβ)−2xije

x′
iβ (6)

= Nixij



 ex
′
iβ

(1 + ex
′
i
β)

−
(

ex
′
iβ

1 + ex
′
i
β

)2


 .

Recalling equation (5), define

pi ≡ mi1
/
Ni = ex

′
iβ
/
(1 + ex

′
iβ) . (7)

For product-binomial sampling, pi is the probability of an observation in
the ith row occurring in the first column of the table. Substituting pi into
(6), the partial derivative is

∂mi1(β)
∂βj

= Nixij(pi − p2i )

= Nipi(1 − pi)xij .
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The matrix of partial derivatives can be written as

dm1(β) =






N1p1(1 − p1)x11 · · · N1p1(1 − p1)x1k
...

...
Ntpt(1 − pt)xt1 · · · Ntpt(1 − pt)xtk






= D(Nipi(1 − pi))X .

The matrix of partial derivatives for X ′(n − m(β)) is then

X ′dm1(β) = X ′D(Nipi(1 − pi))X .

Note that Nipi(1 − pi) = bi from (11.1.2).
We can now apply the Newton-Raphson algorithm. Given a current es-

timate βs, the next estimate is

βs+1 = βs + δs ,

where
δs = [X ′D(Nipi(1 − pi))X]−1X ′(n1 − m1(βs))

and pi in Nipi(1 − pi) is actually pi = pi(βs) as defined by equation (7).
As with log-linear models, the estimates can be found by doing a series

of weighted regressions. Let yi = x′
iβs + [ni1 − mi1(βs)]/Nipi(1 − pi), so

that
Y = Xβs +D(Nipi(1 − pi))−1(n1 − m1(βs)) .

If the weighted regression model

Y = Xβ + e , E(e) = 0 , Cov(e) = D−1(Nipi(1 − pi))

is fitted, then the estimate of β is

βs+1 = [X ′D(Nipi(1 − pi))X]−1X ′D(Nipi(1 − pi))Y
= βs + δs .

11.4 Weighted Least Squares for Logit Models

The methods introduced by Grizzle, Starmer, and Koch (1969) are actually
quite general and can be applied to logit models as well as log-linear models,
cf. Section 10.6. As before, asymptotic properties of the GSK method are
often the same as maximum likelihood, but the small sample justification is
less compelling. Moreover, for some small samples, the GSK method cannot
be used at all unless ad hoc modifications to the data are introduced.
As with log-linear models, the GSK method amounts to performing one

step of the Newton-Raphson algorithm. For a logit model

η = Xβ ,
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where

η = [µ11 − µ21, . . . , µ1t − µ2t]′

= [log(p11/p21), . . . , log(p1t/p2t)]
′
.

The model

Y = Xβ + e , E(e) = 0 , Cov(e) = D−1(Nip̂i(1 − p̂i))

is fitted where
p̂i ≡ p̂i1 = ni1/Ni (1)

and
Y = [y1, . . . , yt]′

with
yi = log[p̂i/(1 − p̂i)] .

The justification for the GSK procedure is asymptotic. The estimates
obtained are asymptotically optimal if the Ni’s are all large. As the justifi-
cation for the GSK procedure is based on its large sample optimality, there
is no apparent reason to use GSK for small samples. Moreover, it is not
clear that the sort of asymptotic arguments which involve large numbers
of small samples can be extended to the GSK approach.
Perhaps the most obvious difficulty with the GSK approach is that if p̂i is

either zero or one, yi is not defined. WhenNi = 1, yi is always undefined. Of
course, the corresponding weight from the inverse of the covariance matrix
is also zero, so one could argue that GSK simply ignores such cases. But
this could result in ignoring great quantities of data. For the Chapman
data of Section 4.1, all of the data would be ignored. An ad hoc correction
for this problem has been proposed, which is simply to substitute for any
value p̂i that is 0 or 1, the values p̂i ± εi, where the substitution forces p̂i to
be between 0 and 1 and εi is some small number. It is frequently suggested
that any values nij = 0 be replaced by nij = 0.5.
It may be noted that the p̂i’s given in (1) are also the natural start-

ing values for the Newton-Raphson algorithm and that small samples also
require that p̂i’s of 0 or 1 be adjusted before they can be used. The key
difference is that the justification for MLEs does not depend on properties
of the starting values. Any starting values that lead to MLEs are perfectly
acceptable. The GSK method depends crucially on the initial estimates.
The details of a GSK logit model analysis will not be given because, for

uniformly large samples, they are exactly analogous to the log-linear model
analysis given in Section 10.6. For large Ni’s, the SSE can be used to give
a chi-square test for lack of fit. The degrees of freedom for the test are the
degrees of freedom for error. Models can be compared by comparing sums
of squares for error. Reported standard errors must be corrected for the
root mean square error; t statistics must be corrected for the root mean
square error and compared to the standard normal distribution. The only
difference is that a valid standard error exists for the intercept.
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11.5 Multinomial Response Models

An integral point in the definition of logistic regression models is that the
response variable has only two categories. The model posits a linear mean
structure for log(mi1/mi2). As discussed in the previous chapter, if the
response variable has more than two categories, it is by no means clear
how to extend the logistic regression model to deal with the additional
categories. It may then be somewhat surprising to find that it is clear how
to extend the log-linear model version of the logistic regression model to
more than two categories. We will discuss the appropriate log-linear model
for a three-category response model. Extensions to responses with more
than three categories follow the same pattern.
Before beginning with three-category responses, we reconsider the nature

of the log-linear model for a two-category response. The model is

µ =
[
I X
I 0

] [
α
β

]
. (1)

This model lacks symmetry in the categories. The model matrix has an X
submatrix corresponding to the first category of each response, but for the
second category, the submatrix is zero. A model that treats the first and
second categories on the same basis is the model

µ =
[
I X 0
I 0 X

]



α
γ1
γ2



 . (2)

The important thing to note about model (2) is that it is equivalent to
model (1). Any vector µ from model (1) can be obtained from (2) and vice
versa. To see this, note that

C

([
I X
I 0

])
= C

([
I X 0
I 0 X

])
.

Any two models with the same column space are equivalent models. Model
(2) is a reparametrization of (1).
Given model (2), there is an obvious generalization to a three-category

response. Simply take

µ =




I X 0 0
I 0 X 0
I 0 0 X










α
γ1
γ2
γ3




 (3)

where µ = (µ11, . . . , µt1, µ12, . . . , µt2, µ13, . . . , µt3)′. As model (2) is equiv-
alent to model (1), it is easily seen that model (3) is equivalent to

µ =




I X 0
I 0 X
I 0 0








α
β1
β2



 .
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Writing

X =






x′
1
...
x′
t






gives model (3) as
log(mij) = µij = αi + x′

iγj (4)

where i = 1, . . . , t and j = 1, 2, 3. With this notation, it becomes a simple
matter to consider models such as

log(mij/mi j+1) = x′
i(γj − γj+1) , j = 1, . . . , J − 1,

or
log(mij/miJ) = x′

i(γj − γJ) , j = 1, . . . , J − 1,

as were discussed in Chapter 4. Note that if X contains a column of ones,
model (4) includes a term for column effects; thus, both the row and column
margins of the t × 3 table are fixed.

11.6 Asymptotic Results

We now consider asymptotic results for log-linear models contained in
Haberman (1977). The results are quite general. In particular, we will show
that they give the standard asymptotics for log-linear models and we will
show how they apply to logistic regression. In Section 11.1, no explicit
discussion was given concerning the nature of the asymptotic theory used
to justify the results on estimation and testing. If the expected count in
each cell approaches infinity, the usual asymptotic theory applies. Unfortu-
nately, in regression settings, this is often not appropriate. For regression
problems, a more reasonable approach is to allow additional observations
to have distinct values of the predictor variables rather than having them
occur at values of the predictor variables that have already occurred. These
additional observations with new predictors constitute new cells in the ta-
ble, so the table itself is getting larger. We need to think in terms of the
convergence of a sequence of models. Haberman’s results do this. They ap-
ply when fitting log-linear models to many situations in which there are few
observations relative to the number of cells in the table. In particular, they
satisfy our need for asymptotic results appropriate to logistic regression.
Frequently, they do not apply when testing a log-linear model against the
saturated model with data from a large sparse multinomial distribution.
For asymptotic results that apply to this case, see Koehler (1986). Other
results on large sparse multinomials are contained in Koehler and Larntz
(1980), Simonoff (1983, 1985, 1986), and Zelterman (1987). The mathemat-
ics in this section are the most sophisticated in the book (with the possible
exception of Chapter 12).
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Before discussing Haberman’s asymptotic results, we set notation for a
fixed sample size problem. Consider a log-linear model

µ = Xβ (1)

where µ = log(m). To deal with the sampling scheme, assume that C(Z) ⊂
C(X). We are interested in the asymptotic distribution of those estimable
functions of β that do not depend on the parameters that are forced into the
model to deal with the sampling scheme. In other words, we are interested in
functions γ′µ = γ′Xβ for which γ′Z = 0. Moreover, to avoid trivial cases,
we assume that γ′X �= 0. The MLE of µ is denoted µ̂. The asymptotic
variance of γ′µ̂ will be related to the function

σ2(γ′µ̂) = γ′A(m)D−1(m)γ

where A(m) = X(X ′D(m)X)−1X ′D(m). This function can be estimated
by

σ̂2(γ′µ̂) = γ′A(m̂)D−1(m̂)γ .

Also of interest are the asymptotic distributions of the Pearson test
statistic X2 and the likelihood ratio test statistic G2 for testing model (1)
against a reduced model

µ = Wδ (2)

where C(Z) ⊂ C(W ) ⊂ C(X). Let r = rank(X) − rank(Z) and s =
rank(W ) − rank(Z).
The asymptotic results require one more concept. Let

Az = Z(Z ′D(m)Z)−1Z ′D(m)

and let N (Az) be the null space of Az, i.e.,

N (Az) = {x|Azx = 0}.

If we write a vector in C(X) as x = (x1, . . . , xq)′, define d to be

d = sup
{

|xi|
/√

x′D(m)x : x ∈ N (Az) ∩ C(X)
}
. (3)

To get asymptotic results, consider a sequence of log-linear models in-
dexed by t. Thus, the log-linear models are

µt = Xtβt

where µt = log(mt) and C(Zt) ⊂ C(Xt). Our estimable functions of interest
are γ′

tµt, where γ
′
tZt = 0. The MLE of γ′

tµt is γ
′
tµ̂t. Similarly,

σ2(γ′
tµ̂t) = γ′

tAt(mt)D−1(mt)γt
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and
σ̂2(γ′

tµ̂t) = γ′
tAt(m̂t)D−1(m̂t)γt .

The reduced model of interest in testing models is

µt = Wtδt

with C(Zt) ⊂ C(Wt) ⊂ C(Xt). The ranks are rt = rank(Xt)−rank(Zt) and
st = rank(Wt)− rank(Zt). Note that rt is also the rank of N (Azt)∩C(Xt),
cf. Proposition 11.6.5. Finally,

dt = sup
{

|xi|
/√

x′D(mt)x : x ∈ N (Azt) ∩ C(Xt)
}
.

Obviously, the standard asymptotic results will not hold for all sequences
of log-linear models. There must be some restrictions on the models. The
restriction involves dt.

Theorem 11.6.1. If rtdt → 0 as t → ∞, then

(a) [γ′
tµ̂t − γ′

tµt]
/√

σ2(γ′
tµ̂t)

L→ N(0, 1),

(b) σ̂2(γ′
tµ̂t)/σ

2(γ′
tµ̂t)

P→ 1.

Corollary 11.6.2. If rtdt → 0 as t → ∞, then

[γ′
tµ̂t − γ′

tµt]
/√

σ̂2(γ′
tµ̂t)

L→ N(0, 1) .

Let G2 and X2 be the likelihood ratio and Pearson test statistics for
testing model (2) against model (1).

Theorem 11.6.3. If rtdt → 0 and rt − st → f as t → ∞ and if
µt ∈ C(Wt) for t ≥ 0, then

(a) G2
t

L→ χ2(f),

(b) X2
t

L→ χ2(f),

(c) G2
t − X2

t
P→ 0.

These results imply the usual asymptotic results, cf. Chapter 12. In the
usual results, replace the index t by the sample size N . For all N , we
have ZN = Z, WN = W , XN = X, and γN = γ. Moreover, rN = r,
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rN − sN = r − s, and mN = Nm∗, where m∗ is defined as in Section 10.3.
With these adjustments, Theorems 1 and 3 give the standard results. For
the theorems to apply, we need rNdN → 0. Because rN is fixed, this is
simply the condition that dN → 0. To see that dN → 0, use the Cauchy-
Schwartz inequality. Let ei = (0, . . . , 0, 1, 0, . . . , 0)′ where the 1 is in the ith
place. Thus, for any vector x, xi = e′

ix.

Proposition 11.6.4. As N → ∞, dN → 0.

Proof. By Cauchy-Schwartz, for x ∈ C(X)

(e′
ix)

2 = ([e′
iD(1/

√
mN )][D(

√
mN )x])2

≤ (e′
iD(1/mN )ei)(x′D(mN )x) .

By the definition of dN ,

d2N ≤ sup{(e′
ix)

2/x′D(mN )x : x ∈ C(X)}
≤ max

i
e′
iD(1/mN )ei

= N−1max
i

e′
iD(1/m∗)ei .

Because maxi e′
iD(1/m∗)ei is a fixed positive constant, d2N → 0; thus, dN →

0. �

A primary use of these theorems is in their application to logistic re-
gression models. In logistic regression, the model is η = Xβ, where
η = (log(m11/m21), . . . , log(m1t/m2t))′. The equivalent log-linear model
is

µ =
[
I X
I 0

] [
α
β

]
≡ [Z,XL]

[
α
β

]
.

As discussed in Section 1, rather than letting the mij ’s get large (i.e.,
taking additional observations in existing cells), it is more realistic to let
the number of cells get large while retaining the same basic structure in
the logistic regression model. In other words, as the sample size increases,
we add new rows to the design matrix while the expected counts in each
cell are allowed to remain small.
Setting the notation for this case, µt is a 2t × 1 matrix,

µt =
[
It Xt

It 0

] [
αt

βt

]
(4)

where It is a t × t identity matrix, 0 is a t × p matrix of zeros, and Xt is
a t× p design matrix for the logistic regression model. We assume that for
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t large enough, the matrix Xt has rank(Xt) = p. For testing (4) against a
reduced model, write the reduced model as

µt =
[
It X0t
It 0

] [
αt

ηt

]
(5)

where C(X0t) ⊂ C(Xt) and rank(X0t) = p0. Note that the full model
is a log-linear model where the rank of the design matrix is t + p and
rt = (t+p)− t = p. Similarly, for the reduced model, st = (t+p0)− t = p0.
As a practical matter, we never really have a sequence of models. We

have one model. Thus, t is fixed (it is the number of binomial populations
in the logistic regression). To apply Theorem 11.6.1, we need rtdt → 0;
thus, if rd is small for our model, we use the approximation

γ′µ̂ − γ′µ
√
σ̂2(γ′µ̂)

∼ N(0, 1) .

To apply Theorem 11.6.3, we need rtdt → 0 and (rt − st) → f . In our
current setup, rt − st = p − p0, which is fixed; so, again, if rd is small and
the reduced model is adequate, we use the approximations

G2 ∼ χ2(p − p0)

and
X2 ∼ χ2(p − p0) .

It remains for us to get a handle on what conditions are necessary to have
rtdt → 0. Before doing that, we comment on why lack of fit tests often work
poorly for logistic regression. The standard test for lack of fit of a logistic
regression model is to test a model against the saturated log-linear model.
To simplify notation, we will use model (5) as the model to be tested, but
now, instead of testing model (5) against a model with similar structure
like model (4), we test it against the saturated model. The saturated model
can be written

µt =
[
It It
It 0

] [
αt

βt

]
.

The difference between the saturated model and model (4) is that Xt is
replaced by It. Whereas rank(Xt) = p, we now have rank(It) = t. With
the saturated model as the full model, we have rt = t. For Theorem 11.6.3
to apply, we need rtdt → 0 and, for some value f , rt − st → f . First,
rt−st = t−p0 → ∞, so there is no appropriate number of degrees of freedom
for the asymptotic test. More importantly, because the condition rtdt → 0
is the condition used to ensure that the model behaves well asymptotically
and because the saturated model has rtdt = tdt, for the saturated model
to behave well asymptotically it must have dt → 0 very rapidly. Under
standard sampling schemes, this does not happen and Theorem 11.6.3 does
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not apply. This is not to say that the lack of fit test will always work poorly.
If the expected counts in each cell are large, we do not need to appeal to the
sequence of models argument and, thus, the usual asymptotic results give
an approximate χ2 distribution for the lack of fit test. However, if expected
cell counts are not large, there is no reason to believe that the asymptotic
lack of fit test will work well and experience indicates that it does not work
well.
A condition under which rtdt → 0 for a sequence of logistic regres-

sion models is that the logistic regression leverages aii all approach zero
while the bi’s do not, cf. equation (11.1.2). The remainder of this sec-
tion is devoted to mathematical details associated with this demonstra-
tion. It requires a facility with linear models comparable to that developed
in Christensen (1996b). The primary result is finding an explicit form for
(A − Az)D−1(m).

With rt = p for all t, it suffices to show that dt → 0. To do this, we will
characterize d for an arbitrary logistic regression model.
The expected cell counts are m = (m11,m21, . . . ,mt1,m12, . . . ,mt2)′.

Write mj = (m1j , . . . ,mtj) for j = 1, 2 so that m′ = (m′
1,m

′
2). For a

logistic regression model, write

W ≡ X∗ =
[
I X
I 0

]
,

so the symbol W is playing the role generally reserved for X in a log-linear
model. Write A = W (W ′D(m)W )−1W ′D(m).

For logistic regression, the value of d is defined as the sup of a function
of w over all w’s in N (Az)∩C(W ). First, we need to characterize N (Az)∩
C(W ).

Proposition 11.6.5. N (Az) ∩ C(W ) = C(A − Az).

Proof. A is a projection operator onto C(W ). In particular, for w ∈
C(W ), Aw = w and AA = A. Similarly, Az is a projection operator onto
C(Z). Moreover, AAz = Az.

If w ∈ N (Az) ∩ C(W ), then (A − Az)w = Aw − Azw = Aw = w; thus,
w ∈ C(A − Az).
If w ∈ C(A−Az), clearly w ∈ C(W ). We need to show that w ∈ N (Az).

The matrix (A−Az) is a projection operator, so (A−Az)w = w and, thus,
w = (A − Az)w = Aw − Azw = w − Azw, so Azw = 0. �

We now examine the behavior of d. For i = 1, . . . , 2t, let ei =
(0, . . . , 0, 1, 0, . . . , 0)′ where the 1 is in the ith place. By (3),

d = sup
{
max

i
|e′
ix|/

√
x′D(m)x : x ∈ C(A − Az)

}
.
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Because x ∈ C(A−Az) can be written as x = (A−Az)b for some b, write

d = sup
{
max

i
|e′
i(A − Az)b|

/√
b′(A − Az)′D(m)(A − Az)b : all b

}
.

Note that

|e′
i(A − Az)b|
= |e′

i(A − Az)(A − Az)b|
= |[e′

i(A − Az)D−1(
√
m)][D(

√
m)(A − Az)b]|

≤
√
e′
i(A − Az)D−1(m)(A − Az)′ei

√
b′(A − Az)′D(m)(A − Az)b

where the inequality is just the Cauchy-Schwartz inequality. It follows that

d ≤ max
i

√
e′
i(A − Az)D−1(m)(A − Az)′ei .

Proposition 11.6.6. (A−Az)D−1(m)(A−Az)′ = (A−Az)D−1(m).

Proof. Using the definitions of A and Az, the fact that (A−Az)Z = 0,
and that AZ = Z, so Z ′A′ = Z ′, we find

(A − Az)D−1(m)(A − Az)′

= (A − Az)D−1(m)D(m)[W (W ′D(m)W )−1W ′ − Z(Z ′D(m)Z)−1Z ′]
= (A − Az)[W (W ′D(m)W )−1W ′ − Z(Z ′D(m)Z)−1Z ′]
= (A − Az)[W (W ′D(m)W )−1W ′]
= A[W (W ′D(m)W )−1W ′] − Az[W (W ′D(m)W )−1W ′]
= [W (W ′D(m)W )−1W ′]

− Z(Z ′D(m)Z)−1Z ′D(m)[W (W ′D(m)W )−1W ′]
= AD−1(m) − Z(Z ′D(m)Z)−1Z ′A′

= AD−1(m) − Z(Z ′D(m)Z)−1Z ′

= AD−1(m) − AzD
−1(m)

= (A − Az)D−1(m).
�

Using Proposition 11.6.6, we now have

d ≤ max
i

√
e′
i(A − Az)D−1(m)ei . (6)
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So far, we have not used the logistic regression structure of the log-linear
model. We now use the special structure of logistic regression to further
characterize inequality (6).

Proposition 11.6.7.

Az =
[
D(m1)D−1(m1 +m2) D(m2)D−1(m1 +m2)
D(m1)D−1(m1 +m2) D(m2)D−1(m1 +m2)

]
.

Proof. This follows immediately from Lemma 11.1.6, the definitions
of Z and Az, and the fact that

D(m) =
[
D(m1) 0

0 D(m2)

]
. �

To simplify notation, for vectors v = (v1, . . . , vq)′ and u = (u1, . . . , uq)′,
let vu = (v1u1, . . . , vquq)′ and v/u = (v1/u1, . . . , vq/uq)′. As in (11.1.2),
b ≡ m1m2/(m1 +m2).

Proposition 11.6.8.

A − Az

=
[

D(m2/(m1 +m2))X
−D(m1/(m1 +m2))X

]
[X ′D(b)X]−1 [X ′D(b) , −X ′D(b)] .

Proof. The perpendicular projection operator onto C(D(
√
m)W ) is

D(
√
m)AD−1(

√
m) ≡ Mw and the perpendicular projection operator onto

C (D(
√
m)Z) is D(

√
m)AzD

−1(
√
m) ≡ Mz. It follows that

Mw − Mz = D(
√
m)AD−1(

√
m) − D(

√
m)AzD

−1(
√
m)

= D(
√
m)(A − Az)D−1(

√
m) .

If we can find Mw − Mz, then A − Az = D−1(
√
m)(Mw − Mz)D(

√
m).

The matrix Mw − Mz is the perpendicular projection operator onto

C

(
(I − Mz)D(

√
m)

[
X
0

])
,

cf. Christensen (1996b, Sections 9.1, 9.2).

(I − Mz)D(
√
m)

[
X
0

]

=
[
D(

√
m1)X
0

]
−

[
D(m1

√
m1/(m1 +m2))X

D(m1
√
m2/(m1 +m2))X

]

=
[

D(
√
m1m2/(m1 +m2))X

−D(
√
m2m1/(m1 +m2))X

]
.
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Multiplying out to get the perpendicular projection operator and simplify-
ing gives the result. �

Finally, the main result is

Proposition 11.6.9.

(A − Az)D−1(m) =
[

D(m2/(m1 +m2))X
−D(m1/(m1 +m2))X

]
[X ′D(b)X]−1

× [X ′D(m2/(m1 +m2)) , −X ′D(m1/(m1 +m2))]

Proof. Multiply A − Az by D−1(m). �

We can now examine the exact nature of e′
i(A − Az)D−1(m)ei. Write

X =







x′
1

x′
2
...
x′
t





 ;

then for i = 1, . . . , t, let j = i and

e′
i(A − Az)D−1(m)ei = [mj2/(mj1 +mj2)]2x′

j [X
′D(b)X]−1xj ,

for i = t+ 1, . . . , 2t, let j = i − t and

e′
i(A − Az)D−1(m)ei = [mj1/(mj1 +mj2)]2x′

j [X
′D(b)X]−1xj .

If these terms approach zero for a sequence of logistic regression mod-
els, then inequality (6) implies that Theorems 11.6.1 and 11.6.3 hold. In
practice, if these terms are small for all i, then Theorems 11.6.1 and 11.6.3
should provide reasonable approximate distributions. The key (cf. Exercise
11.1) is that theX matrix needs to have the property that x′

i[X
′D(b)X]−1xi

is small for all i.
This condition can also be related to linear model theory. If the elements

of m1 and m2 are bounded above zero, then the terms

x′
i[X

′D(b)X]−1xi

will converge to zero if and only if the terms x′
i[X

′X]−1xi converge to zero.
The condition that the terms x′

i[X
′X]−1xi all converge to zero is known

as Huber’s condition. This is the condition assumed by Arnold (1981) to
show that the usual distributions hold asymptotically for linear models
with non-normal independent errors. Similarly, if Huber’s condition holds
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for a logistic regression model, then the usual asymptotic results for logistic
regression hold. Note that Huber’s condition is sufficient to imply that
asymptotic results hold; it is not a necessary condition.

Exercise 11.1. Show for logistic regression that dt → 0 as the maximum
leverage goes to zero.

11.7 Discrimination, Allocation, and
Retrospective Data

The Chapman data of Section 4.1 are the result of a prospective study; a
large number of people were sampled and they were classified by whether
they had experienced a coronary incident and by their values on the vari-
ables age, systolic blood pressure, diastolic blood pressure, cholesterol,
height, and weight. Only 26 of the 200 people had coronary incidents,
so most of the information in the data is about people who did not have
coronaries.
Retrospective studies are commonly used to examine events that are rel-

atively rare, like coronary incidents. They address the problem of having
a sample that contains few observations on the rare event. Consider a re-
sponse variable with three levels: no incident, mild coronary incident, and
severe coronary incident. One might take a sample of 125 people with no
incidents, a sample of 40 people with mild incidents, and a sample of 35
people with severe coronary incidents. Thus, the sample sizes in the rare
event categories are fixed by design. Once again, the case variables age,
systolic blood pressure, diastolic blood pressure, cholesterol, height, and
weight can be measured for each of the 200 individuals. When the response
categories are also the populations sampled, it is easier to get substantial
numbers of observations in each response category. Prospective and retro-
spective studies were discussed earlier at the beginning of Chapter 4.
While all of the case variables discussed above are really continuous,

there are only a finite number of values that one could actually measure
for any of the variables. For example, one often measures age in integer
values of years and height in integer values of inches. Moreover, there are
upper bounds on these values. Similar limitations based on the accuracy of
the measuring instruments exist for all continuous variables. Thus, there
are only a finite number of combinations of the case variables that can
be considered. Call this very large but finite number S. The retrospective
study described above yields a 3×S table in which each of the three rows is
an independent multinomial sample. We wish to model these multinomials
so that we can explain the data and, perhaps more importantly, predict
the population into which a new case would fall when only the information
on the case variables is available. The modeling problem can be thought of
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as discriminating among the three populations. The prediction problem is
one of allocating new cases to the appropriate population.

Consider the allocation problem in more detail. Write the case variables
as a vector xi = (Agi, Si, Di, Chi, Hi,Wi)′, i = 1, . . . , S. The value phi is
the probability under population h of being in the category determined by
xi. Here, h = 1, 2, 3 and i = 1, . . . , S. Write

f(xi|h) = phi .

The function f(xi|h) is just the discrete density (probability mass function)
of population h. The value of h is a parameter. Given a new case with known
case variables x in one of the S observable categories, we can view f(x|h) as
a likelihood function. The maximum likelihood allocation rule assigns the
new case x to the population h that has the largest value for the likelihood.
The only problem with this procedure is that the probabilities f(x|h)

are not known. They have to be estimated from the data. S is typically ex-
tremely large, so there are typically many more parameters (probabilities)
to be estimated than observations with which to estimate them. Some sort
of additional assumptions must be made in order to proceed.
One way to proceed is to abandon the fact that the observed data are

discrete and assume a continuous density f(x|h) as a model for the obser-
vations. If the underlying but unobservable case variables are continuous,
this is extremely reasonable. In fact, it is so reasonable that people often
overlook the fact that it is an approximation to what is properly a discrete
distribution for the observations. The problem is not in approximating a
discrete distribution with a continuous distribution but in finding a con-
tinuous distribution that provides an appropriate model. Traditionally, the
case variables have been modeled with a multivariate normal distribution.
For multivariate normals, estimating the mean vector and the covariance
matrix for each population leads to natural estimates for the f(x|h)’s. This
approach to discrimination and allocation is originally due to R. A. Fisher
(1936). More recently, nonparametric density estimation has been used to
model the distributions, cf. Seber (1984, Section 6.5).
Rather than invoking continuity, another way to proceed is to cut down

the number of categories to a manageable size. Rather than using all S
categories, one can restrict attention to the x values that were actually
observed. In our hypothetical example, if all the xi’s are distinct, this re-
striction yields a 3 × 200 table. The xi’s are frequently distinct when any
of the case variables are continuous, but if they are not distinct, it simply
reduces the number of columns in the table. We will assume that the xi’s
are distinct.
The original sampling scheme for the 3×S table was product-multinomial

in the rows and the standard method of analysis, as illustrated in Section
4.7, also treats the 3× 200 table as product-multinomial in the rows. Alas,
restricting the table invalidates this product-multinomial sampling scheme
for the reduced table. For example, under product-multinomial sampling,
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there is a positive probability of getting zeros for all three of the counts in
a given column. We are using only the xi’s that are actually observed, so
every column must have at least one observation in it.
There are two ways to analyze the data in the 3×200 table. The standard

method illustrated in Section 4.7 is both a partial likelihood analysis and an
extended likelihood analysis. Alternatively, one can perform a conditional
likelihood analysis to obtain information on some parameters.
Partial likelihood analysis depends on having a likelihood that can be

factored into the product of two terms. One term, the partial likelihood,
must involve all of the parameters of interest and only those parameters.
The second term involves only nuisance parameters. Without loss of gener-
ality, assume that the actual observations occur in the first 200 categories.
For each population h, let ph = (ph1, . . . , phS)′ be the probability vector
and let Nh ≡ nh· be the sample size. The likelihood is

L(p1, p2, p3) =
3∏

h=1

S∏

i=1

pnhi

hi

=

{
3∏

h=1

200∏

i=1

pnhi

hi

}{
3∏

h=1

S∏

i=201

pnhi

hi

}

=

{
3∏

h=1

200∏

i=1

pnhi

hi

}

where the last equality holds because for i > 200, nhi = 0 and any log-
linear model has phi > 0 for all h and i. With all the zero counts, the
likelihood cannot be maximized subject to the condition of positive cell
probabilities. However, this function is also the partial likelihood involving
only the parameters phi, h = 1, 2, 3, i = 1, . . . , 200. As such, it can be
maximized.
Technically, write

L(p1, p2, p3) =

{
3∏

h=1

200∏

i=1

pnhi

hi

}

· Γ(phi : h = 1, 2, 3; i = 201, . . . , S)

where

Γ(phi : h = 1, 2, 3; i = 201, . . . , S) ≡ 1.

We have factorized the likelihood appropriately, so the partial likelihood
for phi : h = 1, 2, 3, i = 1, . . . , 200 is

3∏

h=1

200∏

i=1

pnhi

hi .
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Obviously, the log of the partial likelihood is

3∑

h=1

200∑

i=1

nhi log(phi) .

We now incorporate a log-linear model into the analysis. Assume a typical
multinomial response model for the parameters

mhi = Nhphi

that consists of
log(mhi) = αi + x′

iγh (1)

for all h and i, cf. model (11.5.4). Dropping a constant that depends only
on the Nh’s, the log-likelihood becomes

�(γ1, γ2, γ3, αi, i = 1, . . . , S) =
3∑

h=1

S∑

i=1

nhi log(mhi)

=
3∑

h=1

S∑

i=1

nhi [αi + x′
iγh]

=
3∑

h=1

200∑

i=1

nhi [αi + x′
iγh]

where, again, the last equality follows from the fact that nhi = 0 for i =
201, . . . , S. In the 3 × S table, the row totals are fixed by the product-
multinomial sampling scheme. The standard analysis of the 3 × 200 table
also treats the rows as product-multinomials, so the row totals are fixed.
Fixing the row totals requires the inclusion of main effects for rows in the
log-linear model. These can be incorporated into the x′

iγh terms. Write
x′
i = (1, xi2, . . . , xip), where the case variables are xi2, . . . , xip. Then with

γh = (γh1, . . . , γhp)′, the intercept parameters γh1 are the row main effects.
For a partial likelihood analysis, observe that the log-likelihood is the

sum of two terms, one of which depends on the parameters of interest
γ1, γ2, γ3, αi, i = 1, . . . , 200, and another, which in this case is identically
equal to zero, that depends only on αi, i = 201, . . . , S. (The second function
is identically zero, so it depends on anything we want it to depend on.)
A partial likelihood analysis then obtains estimates of γ1, γ2, γ3, αi, i =
1, . . . , 200, by maximizing the term that involves only those parameters.
Of course, the only difference between the log partial likelihood and the
log-likelihood is that the log partial likelihood is considered as a function
of fewer parameters. In particular, the log partial likelihood is exactly the
same as the log-likelihood for the 3× 200 table under product-multinomial
sampling. Thus, the MLEs from the standard analysis are maximum partial
likelihood estimates for the full 3 × S table.
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Another productive way to use the log-likelihood is to consider extended
maximum likelihood estimates, cf. Haberman (1974a, p. 402). An estimate
m̂ is an extended maximum likelihood estimate if the log-likelihood �(m)
converges to its supremum as m converges to m̂. In this setup, the usual
MLEs from the 3× 200 table are extended MLEs. The log-likelihood func-
tion only depends on γ1, γ2, γ3, αi, i = 1, . . . , 200, so the reduced table
MLEs together with p̂hi = 0 for h = 1, 2, 3, i = 201, . . . , S maximize the
full table log-likelihood function subject to the constraints p̂h· = 1. The
only problem is that log-linear models do not allow p̂hi = 0 for any h, i.
Allowing extended MLEs removes the problem.
Whether the justification is partial likelihood or extended likelihood, we

arrive at an analysis based on the MLEs for the 3×200 table with product-
multinomial sampling in the rows. Details of the analysis are given in the
next subsection.
The conditional likelihood analysis simply defines the likelihood in terms

of the conditional distribution of the 3×200 table given that these were the
only 200 columns of the 3 × S table that were observed. The conditional
likelihood of the 3 × 200 table is

3∏

h=1

200∏

i=1

pnhi

hi

/∑

r

3∏

h=1

200∏

i=1

prhi

hi (2)

where the sum is over all 3 × S tables of counts r = (r11, . . . , r3S)′ with

rh· = nh· = Nh, h = 1, 2, 3 ,

r·i = n·i = 1, i = 1, . . . , 200 ,

r·i = 0, i = 201, . . . , S .

It is not difficult to see that the conditional likelihood does not depend
on the αi’s or the intercept terms γh1, cf. Exercise 11.8.4. Thus, any in-
ferences that require estimates of these quantities cannot be made using
the conditional likelihood approach. In particular, it will be seen in the
next subsection that allocation of observations depends on the vectors γh,
including the components γh1. Thus, the conditional likelihood approach
cannot be used for allocation.
The key early paper on logistic discrimination was written by Anderson

(1972). Anderson and Blair (1982) clarified several aspects of the theory
and introduced another basis for analysis: penalized maximum likelihood.
Some other relevant works are Farewell (1979), Prentice and Pyke (1979),
and Breslow and Day (1980).

The Partial Likelihood Analysis
We have a vector of allocation variables x′

i = (xi1, . . . , xip) that are ob-
served on each of t individuals. Thus, far in the section, we have always
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used t = 200, but the conclusions hold for any value of t. In addition to
observing the xi’s, we know to which of the three populations each indi-
vidual belongs. Our goal is to use the information on these t individuals in
order to allocate future individuals into an appropriate population.
To do this, we set up a model similar to the standard multinomial re-

sponse model. Let

X =






x′
1
...
x′
t




 .

Our data are

n = (n11, . . . , n1t, n21, . . . , n2t, n31, . . . , n3t)′

where nhi = 1 if the ith case belongs to population h and nhi = 0 otherwise.
For a prospective multinomial response model, the 3 × t table either is or
can be considered to be the result of taking t independent trinomial samples
and can be analyzed by standard logistic regression. With the retrospective
sampling appropriate for discrimination problems, the sampling scheme
is the result of taking three independent multinomial samples each with
S categories where S is large and unknown. As discussed above, for the
purpose of estimation the samples can be treated as three independent
multinomials with t categories. The standard prospective approach assumes
that column totals of the 3 × t table are fixed by the sampling scheme,
whereas the retrospective (discrimination) approach assumes that the row
totals are fixed by the sampling scheme.
With a 3 × t table in which the row totals are fixed, indicator variables

must be included in the model to ensure that the estimated row totals
equal the observed row totals. This is accomplished by requiring that the
X matrix include a column of 1s (or its equivalent). In other words, for lo-
gistic models, the sampling scheme requires that models for discrimination
data include intercepts. It is a common practice to include an intercept in
multinomial response models, so the fact that an intercept is required for
retrospective data is easily overlooked.
The log-linear model log(mhi) = αi + x′

iγh for the 3 × t table is written
in matrix form as

log(m) = µ =




It X 0 0
It 0 X 0
It 0 0 X










α
γ1
γ2
γ3




 .

This model is of exactly the same form as a standard multinomial response
model and is fit in exactly the same way. The difference is in the interpreta-
tion of the underlying probabilities. In prospective sampling, the multino-
mial expected cell counts are mhi = n·iphi where p·i = 1. For retrospective
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sampling,
mhi = nh·phi = Nhphi

where
ph· = 1 .

In particular,
log(phi) = αi + x′

iγh − log(nh·) .

The MLE of log(phi), under the device of treating the sampling as product-
multinomial in the rows of the 3×t table, is both the maximum partial like-
lihood estimate and an extended maximum likelihood estimate of log(phi)
in the full 3 × S table.

The maximum likelihood allocation method applied to the observed data
assigns case i to the population h with log(phi) = maxk{log(pki)}. The es-
timated maximum likelihood allocation method assigns i to the population
h with

log(p̂hi) = max
k

{log(p̂ki)}. (3)

Note that equation (3) is equivalent to

α̂i + x′
iγ̂h − log(nh·) = max

k
{α̂i + x′

iγ̂k − log(nk·)}

which is equivalent to

x′
iγ̂h − log(nh·) = max

k
{x′

iγ̂k − log(nk·)} . (4)

Equation (4) does not depend on the α̂i’s; thus, the allocation procedure
depends on the individual only through the value of xi.
Equation (4) can also be used as the basis for classifying new cases from

an unknown population into one of the three possible populations. If the
new case has observation vector x, the estimated maximum likelihood al-
location rule is to classify the new case into population h if

x′γ̂h − log(nh·) = max
k

{x′γ̂k − log(nk·)} .

This result depends on the fact that the allocation rule is really a function
of the likelihood ratios of the various populations. The likelihood ratios
depend only on x, the γ’s, and the log(nh·)’s. All of these are either known
or can be estimated. For a given value of x, the corresponding value of α
does not enter into the analysis. Moreover, as illustrated in Section 4.7, if
the likelihood ratios can be estimated, the posterior probabilities can also
be estimated.
To evaluate how well the model discriminates between populations, check

to see how often the cases in the data are allocated to the correct popula-
tion. In other words, when case i is really in population h, see how often
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the probability that case i comes from population h is larger than the prob-
abilities that case i comes from any of the other populations. Because the
evaluation is carried out on the same data that generated the estimates of
the phi’s, the results of the evaluation will be biased in favor of the dis-
crimination method; i.e., the method will look better than it really is. See
Section 4.7 for more discussion of this problem.

11.8 Exercises

Exercise 11.8.1. Analyze the data of Exercise 8.4.1 as a logistic re-
gression with nodal involvement as the response. Include the investigation
of higher-order interactions in your analysis. The original investigator was
particularly interested in whether acid was a valuable predictor of nodal
involvement.

Exercise 11.8.2. Asymptotic Inference for the LD(50).
In Exercise 4.8.9, models and methods for estimating the LD(50) were
discussed. Use the delta method of Exercise 10.8.4 to obtain an asymptotic
standard error for the LD(50). Using the data of Exercise 4.8.11, give a
99% confidence interval for the LD(50).

Exercise 11.8.3. Fieller’s Method for the LD(50).
Fieller’s method is an alternative to the delta method for obtaining an
asymptotic confidence interval for the LD(50), cf. Exercise 11.8.2. Fieller’s
method is thought to be less sensitive to the high correlation that is typi-
cally present between α̂ and β̂. From standard results, one can obtain the
estimated asymptotic variance and covariance for α̂ and β̂; thus, for any
fixed but unknown value w, an asymptotic standard error for α̂ + β̂w is
readily available as a function of w. Denote this standard error by σ̂(w).
If α + βw is some known value Q, a 99% confidence region for w can be
obtained from

.99 = Pr

(

−2.5758 ≤ (α̂+ β̂w) − Q

σ̂(w)
≤ 2.5758

)

= Pr
(
(α̂+ β̂w − Q)2 − 2.57582 σ̂2(w) ≤ 0

)
.

The 99% confidence region consists of all values of w that satisfy

(α̂+ β̂w − Q)2 − 2.57582σ̂2(w) ≤ 0.

Show how to use the quadratic formula to find the end points of the region.
Under what conditions is the confidence region an interval? What other
possibilities exist? How does this result apply to estimating the LD(50)?
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Using the data of Exercise 4.6.11, give a 99% confidence interval for the
LD(50).

Exercise 11.8.4. Show that the conditional likelihood given by equation
(11.7.1) and display (11.7.2) does not depend on the αi’s or the intercept
terms γh1. Here, x′

i = (1, xi2, . . . , xik) and γ = (γh1, . . . , γhk)
′.

Exercise 11.8.5. Use the delta method of Exercise 10.8.4, the logistic
transform, and (11.1.3) to show that

p̂ij − pij√
p̂ij(1 − p̂ij)âii/Ni

∼ N(0, 1) ,

where Ni = ni1 + ni2.



12
Maximum Likelihood Theory for
Log-Linear Models

This chapter presents the basic theoretical results of fitting log-linear mod-
els by maximum likelihood. The level of mathematical sophistication is
considerably higher than in the rest of the book. The presentation assumes
knowledge of advanced calculus, mathematical statistics, and large sample
theory. Although the results in this chapter are proven in a different man-
ner than for regular linear models, the results themselves are quite similar
in nature. The common linear structure of the two techniques leads to the
well-known analogies between them. A familiarity with log-linear models
at the level of, say Fienberg (1980), is assumed.
In order to simplify proofs, the o(·), O(·), op(·), Op(·) notations have been

used extensively. See Bishop, Fienberg, and Holland (1975) for a detailed
discussion of these.
Section 1 introduces notation and recalls some analytic results. Section 2

discusses finite sample properties of maximum likelihood estimators. Sec-
tion 3 treats asymptotic results. Section 4 examines how the theory ap-
plies to weighted least squares, obtaining variance estimates, and logit and
multinomial response models. Section 5 contains two proofs that are more
involved than the rest of the chapter.

12.1 Notation

All vectors are considered as column vectors unless otherwise stated.
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We will frequently apply the same real valued function to each element
of a vector. Let x be a vector in Rs and f a function from R to R, then
the function from Rs to Rs that maps x elementwise is denoted

f(x) =
(
f(x1), . . . , f(xs)

)′
.

The most common choice of f will be the log function; thus, log(x) =
(log x1, . . . , log xs)′.

A diagonal matrix with the values of the vector x on the diagonal will
be written D(x). As usual, an s × 1 vector of ones is written Js with the
subscript dropped when the dimension is clear.
Proofs using the op(·), Op(·) notation are usually divided into an analytic

argument and a stochastic argument. To reduce the length of the discussion,
these arguments have frequently been run together. Therefore, if f(x) =
o(g(x)) and XN is a sequence of random variables, we write f(XN ) =
o(g(XN )). Two frequently used properties are (a) o(Op(N−α)) = op(N−α)
for any α > 0 and (b) o(op(1)) = op(1). For example, if g(XN ) = op(1), we
have f(XN ) = o(g(XN )) = o(op(1)) = op(1).
If F is a function from Rs into Rt with F (x) = (f1(x), . . . , ft(x))′, then

the derivative of F at c is the t × s matrix of partial derivatives,

dF (c) = [∂fi/∂xj |x=c].

If g maps Rs into R, then dg(c) is a 1×s row vector. The second derivative
matrix of g at c is

d2g(c) = d[(dg(x))′|x=c] =
[
∂2g/∂xi∂xj |x=c

]
,

which is an s × s matrix. Taylor’s theorem can be written

g(x) = g(c) + dg(c)(x − c) + (x − c)′
[
d2g(c)

]
(x − c)/2 + o

(‖x − c‖2),

where ‖x−c‖2 = (x−c)′(x−c). Critical points are points c, where dg(c) = 0.
The chain rule can be written as a matrix product: If f : Rs → Rt and
g : Rt → Ru, then d(g ◦ f)(c) = dg(f(c))df(c).

12.2 Fixed Sample Size Properties

Consider a table of counts with q cells. The observations are denoted n =
(n1, . . . , nq)′. The ni’s are assumed to be the result of Poisson, multinomial,
or product-multinomial sampling. Let E(n) = m and let X be a known q×p
matrix. The log-linear model is log(m) ≡ µ = Xb for some vector b. The
log-linear model is simply the requirement that µ ∈ C(X). Unless otherwise
indicated, X will be assumed to have rank p.
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If the observations ni in the cells are independent Poisson(mi) random
variables, the likelihood function is

q∏

i=1

[
e−mimni

i /ni!
]
. (1)

The log-likelihood is

�p(n, µ) =
q∑

i=1

[−mi + ni logmi − log(ni!)]

=
q∑

i=1

[−eµi + niµi − log(ni!)] (2)

=
q∑

i=1

−eµi + n′µ −
q∑

i=1

log(ni!).

If the log-linear model holds, µ = Xb, so

�p(n, µ) = n′Xb −
q∑

i=1

eµi −
q∑

i=1

log(ni!).

Since the distribution of n is in the exponential family, X ′n is a complete
sufficient statistic.
If the observations come from a product-multinomial sampling scheme,

certain of the margins are fixed. Assume that there are r independent
multinomials. (If r = 1, the sampling scheme is a simple multinomial.)
Partition {1, . . . , q} into r sets Q1, . . . , Qr, each set containing the indices
for one of the multinomials. For i = 1, . . . , q, j = 1, . . . , r, let xj be a vector
with ith row, xij = δQj

(i) where δQj
(i) is one if i ∈ Qj and zero otherwise.

Thus, xj is a column of dummy variables indicating the jth population. By
the sampling scheme, n′xj is fixed for j = 1, . . . , r. In particular, n′xj =
m′xj = Nj , the sample size for the jth multinomial. It will be convenient
to combine the vectors xj into a matrix, say X0 = [x1, . . . , xr].
With product-multinomial sampling, there are two restrictions on the

parameters: (a) µ ∈ C(X), and (b) n′X0 = m′X0. Estimates of the parame-
ters also need to satisfy these conditions. If we assume that C(X0) ⊂ C(X),
we will see that the MLE of m, based only on condition (a), will automat-
ically satisfy condition (b).
We will assume throughout that C(X0) ⊂ C(X). For Poisson sampling,

X0 can be taken as a matrix of zeros. We also need the assumption that
Jq ∈ C(X). For product-multinomial sampling, Jq ∈ C(X0), so this is not
a new restriction. For Poisson sampling, we are requiring that an overall
mean (or its equivalent) be fitted.
Recall that the probability of an occurrence in the ith cell under product-

multinomial sampling is mi/Nj , where i ∈ Qj , so the likelihood function
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is
r∏

k=1







Nk!
/∏

i∈Qk

ni!




∏

i∈Qk

(
mi

Nk

)ni



. (3)

Let �m(n, µ) be the log of (3). For �m(n, µ) to be a log-likelihood, µ must
have the property that n′X0 = m′X0, where m = eµ. In fact, �m(n, µ)
is only defined for such µ. In particular, the maximum likelihood estimate
of µ, under product-multinomial sampling, must be a value of µ for which
�m(n, µ) is defined. We will expand the domain of �m(n, µ) to include all
real vectors µ. For a log-linear model µ ∈ C(X) with C(X0) ⊂ C(X),
we will find the maximum of �m(n, µ) without reference to the condition
n′X0 = m′X0. We will then observe that the value of µ that maximizes
�m(n, µ) also satisfies the condition n′X0 = m′X0. This value of µ must
be the maximum likelihood estimate.
We now proceed to expand the domain of �m(n, µ). Since

∑
i∈Qk

ni =∑
i∈Qk

mi = Nk, (3) can be rewritten as

r∏

k=1



Nk!eNkN−Nk

k

∏

i∈Qk

(
mni

i e−mi/ni!
)




or [
r∏

k=1

Nk!eNkN−Nk

k

][
q∏

i=1

e−mimni
i /ni!

]

. (4)

The second term in (4) is exactly (1). The first term depends only on the
Nk’s. If we write a(N1, . . . , Nr) as the log of the first term we can write the
log-likelihood for product-multinomial sampling as

�m(n, µ) = a(N1, . . . , Nr) + �p(n, µ).

Since �m(n, µ) is defined only for values of µ satisfying n′X0 = m′X0,
this relationship holds only for such values of µ. However, the relationship
can be used to define the function �m(n, µ) for all values of µ, because
�p(n, µ) is defined for all values of µ. Since the difference of �p(n, µ) and
�m(n, µ) does not depend on µ, the maximums of the two functions, with
respect to µ, will occur at the same place.

Rather than using either �p(n, µ) or �m(n, µ), remove the term in (2)
that does not depend on µ to define

�(n, µ) = n′µ −
q∑

i=1

eµi = n′µ − J ′m. (5)

For any of the sampling schemes considered, it will be enough to find MLEs
by maximizing �(n, µ).
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If the log-linear model µ ∈ C(X) holds, we need to maximize �(n, µ)
subject to the condition that µ ∈ C(X). Since X is of full rank, µ can be
written uniquely as µ = Xb. We need to find the unconstrained maximum
of

fn(b) ≡ �(n, µ).

Taking derivatives with respect to b (and µ)

dfn(b) = [d�(n, µ)] dµ(b),

d�(n, µ) = d

(

n′µ −
q∑

i=1

eµi

)

= n′ − (eµ1 , . . . , eµq ) = n′ − m′,

and
dµ(b) = d(Xb) = X.

Substituting, we get
dfn(b) = (n − m)′X. (6)

It should be recalled that m is a function of b (m = m(b)).
Critical points are found by setting the partial derivative matrix, dfn(b),

equal to zero. As will be seen below, b̂, the MLE of b, must occur at a
critical point, so b̂ must satisfy

X ′m(b̂) = X ′n. (7)

In particular, since C(X0) ⊂ C(X), we have X ′
0m(b̂) = X ′

0n. As indi-
cated above, if C(X0) ⊂ C(X) the additional restriction on the MLEs
from product-multinomial sampling is automatically satisfied.
By considering d2fn(b), we can investigate the nature of the critical

points.

d2fn(b) = d(dfn(b)′) = d(X ′n − X ′m(b)) = −X ′dm(b). (8)

Write

X =






x′
1
...
x′
q




 = [xij ] ,

then
m(b) = (m1, . . . ,mq)

′ =
(
ex

′
1b, . . . , ex

′
qb
)′
.

Therefore,

dm(b) =






x11e
x′
1b · · · x1pe

x′
1b

...
...

xq1e
x′

qb · · · xqpe
x′

qb
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=






x′
1e

x′
1b

...
x′
qe

x′
qb




 =






x′
1m1
...

x′
qmq




 (9)

= D(m)X,

where m = m(b). Substitution into (8) gives

d2fn(b) = −X ′D(m(b))X. (10)

In a log-linear model, mi is always positive because mi = eµi ; therefore,
d2fn(b) is negative definite and fn(b) is strictly convex. If fn(b) takes on its
maximum, it must be at a critical point and the maximum is unique. The
maximum is the MLE b̂ = b̂(n). b̂ uniquely determines MLEs µ̂ = µ̂(n) =
Xb̂ and m̂ = m̂(n) = m(µ̂) = m(b̂).
A simple condition exists that ensures that fn(b) takes on its maximum.

Theorem 12.2.1. If there exists ξ ⊥ C(X) such that ni + ξi > 0 for
i = 1, . . . , q, then �(n, µ) = fn(b) attains its maximum.

Proof.

�(n, µ) = n′µ −
q∑

i=1

eµi .

Let ξ ⊥ C(X), then for µ ∈ C(X), �(n, µ) = g(µ) where

g(µ) = (n+ ξ)′µ −
q∑

i=1

eµi

=
q∑

i=1

(ni + ξi)µi − eµi .

With all the ni + ξi’s positive, as any µi → −∞, g(µ) → −∞. Similarly, if
any µi → ∞, g(µ) → −∞. This establishes that the convex function g(µ)
must take on its maximum. Moreover, g(µ) must take on its maximum for
µ ∈ C(X) because C(X) is a closed set. �

In particular, if all the ni’s are positive, the MLE of µ exists. Henceforth,
we assume that the (unique) MLE of µ exists.
In finding MLEs of µ and m, we relied on a particular parameterization

µ = Xb. Any alternative parameterization µ = Zγ where C(Z) = C(X) is
equally valid. Regardless of the parameterization, we are maximizing �(n, µ)
subject to the constraint that µ ∈ C(X). Since we found a unique MLE
µ̂, it must be valid for any parameterization. Similarly, m̂ does not depend
on the parameterization. In particular, Z need not be of full column rank.
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When Z is not of full rank, γ is not estimable. The problem of estimability
can be handled as it is for standard linear models.
For testing hypotheses, the likelihood ratio test statistic (LRTS) is often

used. To test

H0 : µ = µ0 versus HA : µ �= µ0 where µ0 ∈ C(X),

the LRTS is −2[�(n, µ0) − �(n, µ̂)]. For testing

H0 : µ ∈ C(X1) versus HA : µ /∈ C(X1) where C(X1) ⊂ C(X), (11)

the LRTS is −2[�(n, µ̂1) − �(n, µ̂)], where µ̂1 is the MLE of µ for the log-
linear model µ ∈ C(X1). [The reduced model is also assumed to have
C(X0) ⊂ C(X1) and J ∈ C(X1).]
In both cases, the LRTS simplifies considerably. We investigate the LRTS

for hypothesis (11). From (5), �(n, µ̂1)− �(n, µ̂) = n′(µ̂1 − µ̂)−J ′(m̂1 − m̂).
Since J ∈ C(X1) ⊂ C(X), from (7) we get J ′(m̂1 − m̂) = J ′n − J ′n = 0.
Substitution gives

�(n, µ̂1) − �(n, µ̂) = n′(µ̂1 − µ̂).

Since µ̂1, µ̂ ∈ C(X), (7) also gives

n′(µ̂1 − µ̂) = n′M(µ̂1 − µ̂) = m̂′M(µ̂1 − µ̂) = m̂′(µ̂1 − µ̂),

where M = X(X ′X)−1X ′ is the perpendicular projection matrix onto
C(X). Thus, the LRTS is

− 2[m̂′(µ̂1 − µ̂)] = 2
q∑

i=1

m̂i log(m̂i/m̂1i). (12)

Contingency tables with structural zeros (mi = 0) frequently occur. Un-
der the sampling schemes considered here, mi = 0 implies that Pr(ni =
0) = 1; therefore, without loss of generality, such cells can simply be
dropped from the model and the theory does not change.

12.3 Asymptotic Properties

In establishing asymptotic properties, we let N go to infinity, where N is
the total sample size in product-multinomial sampling and the sum of the
expected values for the q cells in Poisson sampling. For product-multinomial
sampling, we assume that the probabilities in each cell remain constant
and that the individual sample sizes for each population remain in a fixed
proportion; i.e., Nj/N remains constant. For Poisson sampling, we assume
that the ratio of any pair of expected values remains constant.
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Terminology appropriate for product-multinomial sampling will be used,
but the results also hold for Poisson sampling. N will be referred to as the
sample size. nN is a sample of size N with E(nN ) = mN . By our assump-
tions, mN = Nm∗ for some vector m∗. For multinomial sampling, m∗ is
the vector of probabilities. For product-multinomial sampling, m∗ is the
vector of normalized probabilities. The probabilities are normalized by the
relative sizes of the populations so that J ′m∗ =

∑q
i=1m

∗
i = 1. In particu-

lar, if i is a cell in the jth multinomial population, m∗
i is pi(Nj/N) where pi

is the probability of getting an observation from the jth population in the
ith cell. For Poisson sampling, m∗ is the vector of expected values divided
by N , thus mN = Nm∗. Note that for all sampling schemes, J ′mN = N ,
hence J ′m∗ = 1.
For a log-linear model to be valid, we need additional restrictions on

mN . In particular, writing µN = log(mN ), we need µN ∈ C(X). Since
mN = Nm∗, we have µN = log(mN ) = (log N)J + log(m∗). Since J
is assumed to be in C(X), it is sufficient to require log(m∗) ∈ C(X).
Henceforth, we make the assumption that for some b∗, log(m∗) = Xb∗.
Define µ∗ = Xb∗; then, µN = µ∗ + (log N)J .

Some special matrices will be used frequently in the sequel. Let D =
D(m∗) and A = X(X ′DX)−1X ′D. Let A0 and A1 be defined as A, with
X0 and X1 replacing X. Note that A is a projection matrix onto C(X).
(In fact, A is the perpendicular projection matrix for the inner product
determined by D.) A has the same form as a matrix giving best linear
unbiased estimates in a regular linear model with covariance matrix D−1.
Taking D1/2 = D(

√
m∗) we see that P = D1/2AD−1/2 is the perpendicular

projection matrix onto C(D1/2X) (with the usual inner product).
We first consider properties of nN for large samples. These results are

well known but necessary for the rest of the development.

Theorem 12.3.1.

(1) N−1nN → m∗ a.s.,

(2) N−1nN
P→ m∗,

(3) N−1/2(nN − mN ) L→ N(0, D[I − A0]), and

(4) N−1(nN − mN ) = Op

(
N−1/2

)
.

Justification. For product-multinomial sampling, (1) is a direct ap-
plication of the strong law of large numbers applied to the elements of
nN . For Poisson sampling, (1) follows from Chebyshev’s inequality and the
Borel-Cantelli Lemma. Part (2) follows from (1). Part (4) follows from (3).
It remains only to show (3).
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(a) Poisson sampling. For Poisson sampling, X0 = 0, so A0 = 0. Since
the nNi’s are independent, it suffices to show the N−1/2 (nNi − mNi) is
asymptotically N(0,m∗

i ). We use a moment generating function argument.
The moment generating function of a random variable w is ϕw(u) = E(euw).
These behave similarly to characteristic functions, but moment generating
functions do not exist for some random variables. The moment generating
function we need is

ϕN−1/2(nNi−mNi)(u) = ϕnNi
(N−1/2u) exp

(
−N−1/2mNiu

)
,

where
ϕnNi

(u) = exp[−mNi(1 − eu)].

Using a Taylor’s expansion,

eau = 1 + au+ a2u2/2 + a3ũ3/6,

for some ũ ∈ [0, u], we can write

logϕN−1/2(nNi−mNi)(u)

= −mNi

[
1 − eN

−1/2u
]

− N−1/2mNiu

= −mNi

[
1 −

(
1 +N−1/2u+N−1u2/2 +N−3/2ũ3/6

)]
− N−1/2mNiu

= N−1mNiu
2/2 +N−3/2mNiũ

3/6
= m∗

i u
2/2 +N−1/2m∗

i ũ
3/6.

As N → ∞,
logϕN−1/2(nNi−mNi)(u) → m∗

i u
2/2,

so
N−1/2(nNi − mNi)

L→ N(0,m∗
i ).

(b) Multinomial Sampling. For multinomial sampling, X0 = J , and A0 =
JJ ′D, so D [I − A0] = D − DJJ ′D. Part (3) is then the standard large
sample result for multinomials, which is an immediate consequence of the
multivariate central limit theorem.

(c) Product-Multinomial Sampling. The different multinomial populations
are asymptotically normal and they are independent by assumption. It
remains only to establish that D [I − A0] is the correct block diago-
nal covariance matrix. Write nN so that all observations in the first
multinomial population are listed first, the second population is listed
second, etc. Considering the implied structure of X0, it is easily seen
that (X ′

0DX0)
−1 = ND∗, where D∗ = Diag

(
N−1

1 , . . . , N−1
r

)
, and that

D [I − A0] = D−NDX0D
∗X ′

0D. It is easily seen that D−NDX0D
∗X ′

0D
is precisely the block diagonal matrix needed. �
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The main result used in finding asymptotic properties of maximum likeli-
hood estimates is a relationship between the MLE µ̂N and the observations
nN .

Lemma 12.3.2. N1/2(µ̂N − µN ) − (
AD−1

)
N−1/2(nN − mN ) P→ 0.

Proof. See Section 5. �

Since the asymptotic distribution of N−1/2(nN − mN ) is known, the
lemma gives the asymptotic distribution of N1/2(µ̂N − µN ) and, by a Tay-
lor’s expansion, the asymptotic distribution of N−1/2(m̂N − mN ).

Theorem 12.3.3.

(1) N1/2(µ̂N − µN ) L→ N
(
0, [A − A0]D−1

)
.

(2) µ̂N − µN
P→ 0.

(3) N−1/2(m̂N − mN ) L→ N(0, D [A − A0]) .

(4) N−1m̂N
P→ m∗.

Proof.
(1) Theorem 12.3.1 and Lemma 12.3.2 imply that

N1/2(µ̂N − µN ) L→ N
(
0, AD−1[D(I − A0)]D−1A′).

It is easily seen that

AD−1[D(I − A0)]D−1A′ = AD−1A′ − AA0D
−1A′

= AD−1 − A0D
−1

= (A − A0)D−1.

(2) From (1), N1/2(µ̂N − µN ) = Op(1), so µ̂N −µN = Op

(
N−1/2

)
= op(1).

(3) Recall that exp(y) = (ey1 , . . . , eyq )′. Taylor’s theorem gives

exp(y) = exp(x) + [d exp(x)] (y − x) + o(‖y − x‖)
= exp(x) +D

(
exp(x)

)
(y − x) + o(‖y − x‖). (1)

Let y = µ̂N−( 1
2 log N

)
J and x = µN−( 1

2 log N
)
J . Since µ̂N−µN = op(1),

rearranging equation (1) and evaluating exp(y) and exp(x) gives

N−1/2m̂N − N−1/2mN −
[
D
(
N−1/2mN

)]
(µ̂N − µN ) = o

(
op(1)

)
= op(1).
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Since mN = Nm∗, we have

N−1/2(m̂N − mN ) − [D]N1/2(µ̂N − µN ) = op(1).

Applying part (1) of the theorem, we see that

N−1/2(m̂N − mN ) L→ N
(
0, D(A − A0)D−1D

)
,

but D(A − A0)D−1D = D(A − A0).

(4) N−1/2(m̂N − mN ) = Op(1) by part (3), so N−1(m̂N − mN ) =
Op

(
N−1/2

)
= op(1). Now part (4) follows by observing that N−1mN = m∗.

�

It is of interest to note that Theorem 12.3.3 implies µ̂N −(log N)J P→ µ∗,
so µ̂N is not consistent for µ∗.

The following corollary will be useful in examining the likelihood ratio
test.

Corollary 12.3.4. b̂N − bN = Op

(
N−1/2

)
, therefore b̂N − bN

P→ 0.

Proof. From Theorem 12.3.3, Xb̂N − XbN = µ̂N − µN =
Op

(
N−1/2

)
. It follows that b̂N − bN = (X ′X)−1X ′

[
Xb̂N − XbN

]
=

(X ′X)−1X ′Op

(
N−1/2

)
= Op

(
N−1/2

)
. �

We now consider the problem of testing

H0 : µN = µ0N versus HA : µN �= µ0N . (2)

As the sample size N gets larger, mN gets larger and so does µN . Using a
fixed value for the hypothesis, say H0 : µN = µ0, is not appropriate.
µ0N must be in C(X) and compatible with having a sample size ofN , i.e.,

J ′m0N = N . In accordance with our other assumptions, we consider only
the case where µ0N = (log N)J+µ∗

0 with µ∗
0 ∈ C(X), and J ′m∗

0 = 1. m0N ,
b0N , m∗

0, and b∗
0 are defined in the usual way. Note that (2) is equivalent to

H0 : m∗ = m∗
0 versus HA : m∗ �= m∗

0,

so one can think of the hypothesis as being on the (normalized) vector of
probabilities.
The asymptotic distribution theory for the more interesting hypothesis

H0 : µN ∈ C(X1) versus HA : µN /∈ C(X1), (3)

where C(X0) ⊂ C(X1) ⊂ C(X), can be handled quite simply after dealing
with (2).
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We want to show that the likelihood ratio test statistic (LRTS),
−2[�(nN , µ0N ) − �(nN , µ̂N )], has an asymptotic χ2 distribution.

Theorem 12.3.5. If µN = µ0N , then −2[�(nN , µ0N ) − �(nN , µ̂N )] L→
χ2(p − r).

Proof. The proof is in four parts. The first three find statistics
asymptotically equivalent to the LRTS. The last one establishes the distri-
bution of the LRTS.

(a) Let fn(b) = �(n, µ(b)). A Taylor’s expansion of fn(b) about b̃ gives

fn(b) = fn(b̃) + [dfn(b̃)](b − b̃) +
1
2
(b − b̃)′

[
d2fn(b̃)

]
(b − b̃)

+ o
(
‖b − b̃‖2

)
.

Substituting for dfn(b̃) and d2fn(b̃) as found in (12.2.6) and (12.2.10), we
get

fn(b) − fn(b̃) −
[
n − m(b̃)

]′
X(b − b̃)

+
1
2
(b − b̃)′

[
X ′D

(
m(b̃)

)
X

]
(b − b̃) = o

(
‖b − b̃‖2

)
. (4)

Apply equation (4) with n = nN , b̃ = b̂N , and b = bN . From Corollary
12.3.4, b̂N − bN = op(1), so

�(nN , µN ) − �(nN , µ̂N ) − (n − m̂N )′X(bN − b̂N )

+
1
2
(bN − b̂N )′ [X ′D(m̂N )X](bN − b̂N ) = o

(
op(1)

)
. (5)

By (12.2.7), (nN − m̂N )′X = 0. After multiplying by −2, (5) becomes

− 2[�(nN , µN ) − �(nN , µ̂N )]− (µN − µ̂N )′D(m̂N )(µN − µ̂N ) = op(1). (6)

The quadratic form in (6) can be rewritten as

N1/2(µN − µ̂N )′D
(
N−1m̂N

)
N1/2(µN − µ̂N ). (7)

(b) For random variables YN and ZN , it is well known that if YN
L→ Y

and ZN
P→ 0, then YNZN

P→ 0. Repeated application of this gives the
result: if YN

L→ Y and ZN
P→ Z, then Y ′

NZNYN − Y ′
NZYN

P→ 0 where YN
is a q vector and ZN is a q× q matrix. Let ZN = D

(
N−1m̂N

)
in (7). Since

N−1m̂N
P→ m∗,

N1/2(µN − µ̂N )′D
(
N−1m̂N

)
N1/2(µN − µ̂N )

− N1/2(µN − µ̂N )′DN1/2(µN − µ̂N ) P→ 0.



408 12. Maximum Likelihood Theory for Log-Linear Models

(c) Applying Lemma 12.3.2 gives

N1/2(µN − µ̂N )′DN1/2(µN − µ̂N )

− N−1/2(nN − mN )′D−1A′DAD−1N−1/2(nN − mN ) P→ 0. (8)

It is easily seen that

D−1A′DAD−1 = AD−1 = D−1/2PD−1/2.

Recall that, D−1/2 = D
(
1
/√

m∗) and P is the perpendicular projection
matrix onto C(D−1/2X). Rewrite the second quadratic form in (8) as

[
D−1/2N−1/2(nN − mN )

]′
P

[
D−1/2N−1/2(nN − mN )

]
. (9)

(d) From Theorem 12.3.1, D−1/2N−1/2(nN − mN ) L→ Y , where Y ∼
N

(
0, D1/2[I − A0]D−1/2

)
. As in part (c), it is easy to see that D1/2[I −

A0]D−1/2 = I − P0, where P0 is the perpendicular projection matrix onto
C(D−1/2X0). The quadratic form (9) converges in distribution to Y ′PY .
By Theorem 1.3.6 in Christensen (1996b), Y ′PY will have a χ2 distribution
with tr[P (I − P0)] degrees of freedom if

(I − P0)P (I − P0)P (I − P0) = (I − P0)P (I − P0). (10)

Since C(P0) ⊂ C(P ), we have PP0 = P0. Simplifying gives both sides of
(10) as (P − P0).
The theorem follows by observing that under H0, µN = µ0N , so the

asymptotic distribution of (9) is the same as that of the LRTS, and that
tr[P (I − P0)] = tr[P − P0] = tr(P ) − tr(P0) = p − r. �

We would like to show that the likelihood ratio test is consistent. That
is, if µ0N �= µN , then −2[�(nN , µ0N ) − �(nN , µ̂N )] P→ ∞. Consistency is an
immediate result of the following theorem.

Theorem 12.3.6.

−2N−1[�(nN , µ0N ) − �(nN , µ̂N )] P→ −2[�(m∗, µ∗
0) − �(m∗, µ∗)] .

If µ0N − µN ≡ µ∗
0 − µ∗ �= 0, the right-hand side is strictly positive.

Proof.

−2N−1[�(nN , µ0N ) − �(nN , µ̂N )] (11)
= −2N−1[�(nN , µ0N ) − �(nN , µN )] − 2N−1[�(nN , µN ) − �(nN , µ̂N )] .
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Consider the second term of (11). From (6),

−2N−1[�(nN , µN ) − �(nN , µ̂N )]
− N−1(µN − µ̂N )′D(m̂N )(µN − µ̂N ) = op

(
N−1) = op(1).

Since (µN − µ̂N ) P→ 0 and N−1m̂N
P→ m∗, we have N−1(µN −

µ̂N )′D(m̂N )(µN − µ̂N ) P→ 0. Therefore, −2N−1[�(nN , µN ) − �(nN , µ̂N )] P→
0.
Now consider the first term on the right of (11). By definition,

−2N−1[�(nN , µ0N ) − �(nN , µN )]
= −2N−1[n′

Nµ0N − J ′m0N ] + 2N−1[n′
NµN − J ′mN ]

= −2N−1[n′
N (µ0N − µN ) − J ′(m0N − mN )] .

Since µ0N −µN = µ∗
0 −µ∗, N−1m0N = m∗

0, N
−1mN = m∗, and N−1nN

P→
m∗, we have

−2N−1[�(nN , µ0N ) − �(nN , µN )] P→ −2[m∗(µ∗
0 − µ∗) − J ′(m∗

0 − m∗)]
= −2[�(m∗, µ∗

0) − �(m∗, µ∗)] .

As discussed in Lemma 12.5.3, µ∗ is the unique MLE of µ when the data
are m∗ [i.e. µ∗ = µ̂(m∗)], so �(m∗, µ∗) is the unique maximum of �(m∗, µ).
If µ∗

0 �= µ∗, −2[�(m∗, µ∗
0) − �(m∗, µ∗)] > 0. �

We now consider the problem of testing (3).

Theorem 12.3.7. If µN ∈ C(X1), then −2[�(nN , µ̂1N ) − �(nN , µ̂N )] L→
χ2(p−p1), where µ̂1N is the MLE of µN under the model µN ∈ C(X1) and
r(X1) = p1.

Proof.

−2[�(nN , µ̂1N ) − �(nN , µ̂N )]
= −2[�(nN , µN ) − �(nN , µ̂N )] + 2[�(nN , µN ) − �(nN , µ̂1N )] .

Since C(X1) ⊂ C(X), the proof of Theorem 12.3.5 applies to both terms
on the right-hand side. In particular, (9) can be applied as is and also
with X1 substituted for X. If P1 is the perpendicular projection matrix
onto C(D−1/2X1), then P1 = PP1 = P1P , so the LRTS is asymptotically
equivalent to

[
D−1/2N−1/2(nN − mN )

]′
(P − P1)

[
D−1/2N−1/2(nN − mN )

]
.

Since (P −P1)(I−P0)(P −P1) = (P −P1), verification of the conditions of
Theorem 1.3.6 is trivial. The LRTS has a χ2 distribution with r(P −P1) =
p − p1 degrees of freedom. �
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Theorem 12.3.8 establishes the consistency of the likelihood ratio test for
hypothesis (3).

Theorem 12.3.8.

−2N−1[�(nN , µ̂1N ) − �(nN , µ̂N )] P→ −2[�(m∗, µ̂1(m∗)) − �(m∗, µ∗)] .

µN /∈ C(X1) if and only if the right-hand side is positive.

Proof. The proof involves several arguments from the proof of
Lemma 12.3.2, so it is deferred until Section 5. �

Finally, we establish the asymptotic equivalence under H0 of the LRTS
and the Pearson test statistic (PTS). The Pearson test statistic is

(m̂N − m̂1N )′D−1(m̂1N )(m̂N − m̂1N ) (12)

for the hypothesis (3).

Theorem 12.3.9. If µN ∈ C(X1), then

−2[�(nN , µ̂1N ) − �(nN , µ̂N )] − (m̂N − m̂1N )′D−1(m̂1N )(m̂N − m̂1N ) P→ 0.

Proof. The PTS can be written elementwise as
q∑

i=1

(m̂Ni − m̂1Ni)
2/
m̂1Ni. (13)

The elementwise form for the LRTS is found in (12.2.12). Note that (13)
is equivalent to

N

q∑

i=1

[
N−1(m̂Ni − m̂1Ni)

]2/
N−1m̂1Ni

and the LRTS is

2N
q∑

i=1

(
N−1m̂Ni

)[
log

(
N−1m̂Ni

) − log
(
N−1m̂1Ni

)]
. (14)

To simplify notation, let (x, y) = (N−1m̂N , N
−1m̂1N ). Taking a second-

order expansion of (14) about (m∗,m∗) gives

2N
q∑

i=1

xi [log xi − log yi]
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= 2N
q∑

i=1

m∗
i [log m∗

i − log m∗
i ]

+ 2N
q∑

i=1

[log xi − log yi + xi(1/xi)] |(x,y)=(m∗,m∗)(xi − m∗
i )

+ 2N
q∑

i=1

[−xi(1/yi)] |(x,y)=(m∗,m∗)(yi − m∗
i )

+N

q∑

i=1

[
x−1
i

] |x=m∗(xi − m∗
i )

2

+ 2N
q∑

i=1

[−y−1
i

] |y=m∗(xi − m∗
i )(yi − m∗

i )

+N

q∑

i=1

[
xiy

−2
i

] |(x,y)=(m∗,m∗)(yi − m∗
i )

2

+No
(‖x − m∗‖2 + ‖y − m∗‖2) .

This easily simplifies to

2N
q∑

i=1

xi [log xi − log yi]

= 2N
q∑

i=1

(xi − yi)

+N

q∑

i=1

(1/m∗
i )

[
(xi − m∗

i )
2 − 2(xi − m∗

i )(yi − m∗
i ) + (yi − m∗

i )
2]

+No
(‖x − m∗‖2 + ‖y − m∗‖2)

= N

q∑

i=1

(xi − yi)
2/
m∗

i +No
(‖x − m∗‖2 + ‖y − m∗‖2) .

The last equality is because J ∈ C(X1) ⊂ C(X), so that by (12.2.7),
NJ ′x = J ′nN = NJ ′y and J ′(x − y) = 0.
In our regular notation,

2
q∑

i=1

m̂Ni

[
log

(
m̂Ni

/
m̂1Ni

)]
=

q∑

i=1

(m̂Ni − m̂1Ni)
2/
mNi

+No
(‖N−1(m̂N − mN ) ‖2 + ‖N−1(m̂1N − mN ) ‖2) .

Investigating the argument of o(·),
‖N−1(m̂N − mN ) ‖2 + ‖N−1(m̂1N − mN ) ‖2

=
[
Op

(
N−1/2

)]2
+

[
Op

(
N−1/2

)]2
= Op

(
N−1) .
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Since o(Op(N−1)) = op(N−1) and Nop(N−1) = op(1), we have the LRTS
asymptotically equivalent to

q∑

i=1

(m̂Ni − m̂1Ni)
2/
mNi

= (m̂N − m̂1N )′D−1(mN )(m̂N − m̂1N ) (15)
= N−1/2(m̂N − m̂1N )′D−1(m∗)N−1/2(m̂N − m̂1N ).

Under H0, D−1
(
N−1m̂1N

) P→ D−1(m∗), so (15) is asymptotically equiva-
lent to (12) the PTS. �

A similar argument holds to show that the LRTS and the PTS are asymp-
totically equivalent under H0 for testing the hypothesis (2). Results similar
to Theorems 12.3.6 and 12.3.8 also exist for the PTS. For a more extensive
discussion of the asymptotic properties of log-linear models, see Haberman
(1974a).

12.4 Applications

a) Weighted Least Squares. We now consider two methods of obtaining
estimates for log-linear models. The first is the Newton-Raphson technique,
which is an iterative method for obtaining the maximum likelihood esti-
mates. The Newton-Raphson method can be performed by doing a series
of weighted least squares regression analyses. The second method is an ap-
proximate technique based on the asymptotic results that we have derived.
It is a noniterative weighted least squares regression approach.
The Newton-Raphson technique is an iterative procedure for finding

where a function equals the zero vector. Let g be a function mapping Rp

into Rp. We wish to find b∗ such that g(b∗) = 0. Let b0 be an initial guess
for b∗. Newton-Raphson defines (recursively) a sequence bt that converges
to b∗. By Taylor’s theorem, if bt+1 is near bt, we have the approximate
equality

g(bt+1) = g(bt) + [dg(bt)] δt ,

where δt = bt+1 − bt. The Newton-Raphson technique assumes that bt is
known, sets g(bt+1) = 0, and seeks to find bt+1, i.e.,

0 = g(bt) + [dg(bt)] δt ,

so
δt = − [dg(bt)]

−1
g(bt) (1)

and
bt+1 = bt + δt.
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For finding maximum likelihood estimates, we wish to find where the deriva-
tive of fn(b) ≡ �(n,Xb) is zero. With g(b) ≡ [dfn(b)]

′ and substituting
(12.2.6) and (12.2.10) into (1), we get

δt =
[
X ′D

(
m(bt)

)
X

]−1
X ′(n − m(bt)

)
.

The sequence bt converges to a critical point of �(n,Xb) which, as we have
seen, must be the MLE of b under fairly weak conditions.
A weighted least squares computer program can be used to execute the

Newton-Raphson procedure. Fit the model Y = Xb+e, E(e) = 0, Cov(e) =
D
(
m(bt)

)−1 where Y is taken as

Y = Xbt +D
(
m(bt)

)−1(
n − m(bt)

)

= log(mt) +D(mt)−1(n − mt).

Let bt+1 denote the estimate of b obtained from this procedure. Clearly,

bt+1 =
[
X ′D

(
m(bt)

)
X

]−1
X ′D(mt)Y

= bt +
[
X ′D

(
m(bt)

)
X

]−1
X ′(n − m(bt)

)
,

which is the Newton-Raphson value for bt+1.
The second method is based on the asymptotic results of Theorem 12.3.3

and the fact, shown in Theorem 10.1.3 in Christensen (1996b), that best
linear unbiased estimates (BLUEs) for the linear model Y = Xβ+e, E(e) =
0, Cov(e) = V , are the same as those for the model Y = Xβ+ e, E(e) = 0,
Cov(e) = V +XUX ′, where U is any non-negative definite matrix.

The saturated log-linear model, µ ∈ Rq always fits the data. For the
saturated model µ̂ = log(n) and A = I. If N is large, Theorem 12.3.3 gives
the asymptotic relation

log(n) − µ ∼ N
(
0, (I − A0)D−1(m)

)
. (2)

It will be convenient to rewrite the term A0D
−1(m). It is easily seen that

A0D
−1(m) = X0 (X ′

0D(m)X0)
−1

X ′
0.

Now consider the term X ′
0D(m)X0. The matrix X0 has the same structure

as the design matrix for a one-way ANOVA model, say

yij = µi + eij .

Exploiting the simple form of X0 and the fact that X ′
0n = X ′

0m =
(N1, . . . , Nr)

′, it is easily seen that

X ′
0D(m)X0 = D(X ′

0n).
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We now have
A0D

−1(m) = X0D
−1(X ′

0n)X
′
0,

and the asymptotic distribution of log(n) is

log(n) − µ ∼ N
(
0, D−1(m) − X0D

−1(X ′
0n)X

′
0
)
. (3)

Imposing the linear constraint µ = Xb, the asymptotic distribution (3)
leads to fitting the linear model

log(n) = Xb+ e, E(e) = 0, Cov(e) = D−1(m)−X0D
−1(X ′

0n)X
′
0. (4)

By Theorem 10.1.3, the BLUEs in model (4) are the same as those in

log(n) = Xb+ e, E(e) = 0, Cov(e) = D−1(m). (5)

Of course, m is unknown, so (5) cannot be used directly. Estimating m
with n gives the model

log(n) = Xb+ e, E(e) = 0, Cov(e) = D−1(n). (6)

Note that n is the MLE of m under the saturated model. One virtue of
model (6) is that it can be fit with any regression program that does
weighted regression.
Besides the rationale just given, there are two other justifications for

using this approximate procedure. First, if we take m0 = n in the Newton-
Raphson algorithm, then the first step of the algorithm is precisely fit-
ting model (6). Second, for product-multinomial data, fitting model (6)
is the same procedure as that proposed by Grizzle, Starmer, and Koch
(1969). In their paper, they consider modeling the vector of probabili-
ties p = (p1, . . . , pq)′. Their method specifies a generalized linear model
F (p) = Xb, where F is a quite general function from Rq into Rq. In
particular, one can choose F (p) = log(m). With this choice of F , their es-
timation procedure amounts to a weighted least squares analysis with the
covariance matrix

Cov(e) = D−1(n) − X0D
−1(X ′

0n)X
′
0.

Because C(X0) ⊂ C(X), the best linear unbiased estimates under this
covariance matrix are the same as those using model (6).

b) Asymptotic Variances Under Saturated Models. The relation (2) is the
basis for a number of asymptotic variance formulas commonly used with
saturated models. For a saturated model, Cov(µ̂) = D−1(m) − A0D

−1(m).
Suppose that we write a saturated model µ = Xb, where X = [X0, X1]

and b′ = [b′
0, b

′
1]. The parameter b0 is forced into the model to deal

with the product-multinomial sampling. [Recall that to deal with product-
multinomial sampling, we always assume that C(X0) ⊂ C(X).] For a linear
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function ρ′µ where ρ ⊥ X0, one gets ρ′µ = ρ′X0b0 + ρ′X1b1 = ρ′X1b1 and
Var(ρ′µ̂) = ρ′D−1(m)ρ because ρ′A0D

−1(m)ρ = 0. The maximum likeli-
hood estimate of ρ′D−1(m)ρ is ρ′D−1(n)ρ. In other words, for estimable
functions of the parameters that are not forced into the model (i.e., func-
tions involving only b1), the estimate of the variance of ρ′µ̂ = ρ′X1b̂1 is
ρ′D−1(n)ρ.

Example 12.4.1. Consider now a 2 × 3 table. One log-odds ratio is
µ11 − µ12 − µ21 + µ22, with estimate log(n11n22/n12n21). The estimated
variance is then n−1

11 + n−1
12 + n−1

21 + n−1
22 .

c) Logit and Multinomial Response Models. Suppose that the sam-
pling scheme is product-multinomial where each multinomial has ex-
actly two categories. Without loss of generality, we can write n =
(n11, . . . , nr1, n12, . . . , nr2)′ where the pairs (ni1, ni2) are the multinomial
outcomes. (This two-subscript notation will be used for all vectors dis-
cussed.)
Logits are defined by log(mi1/mi2) = µi1 − µi2. Let η = (µ11 −

µ12, . . . , µr1−µr2)′ be the vector of logits. A logit model is a model η = Zβ∗
for some β∗, where Z is an r × p matrix.

We wish to show that the logit model defines a log-linear model for µ.
Let Ir be an r × r identity matrix, and let L′ = [Ir,−Ir], so that η = L′µ.
Then the restriction placed on µ is that µ ∈ M, where M = {µ|L′µ =
Zβ∗ for some β∗}. Because of the product-multinomial sampling, we have
X0 = [Ir, Ir]

′. Now let

X∗ =
[
Z
0rp

]
,

where 0rp is an r × p matrix of zeros. It is easily seen that M = {µ|L′µ =
L′X∗β∗ for some β∗}. Arguing as in Section 3.3 of Christensen (1996b), M
is a vector space, so the logit model has defined a log-linear model.

Example 12.4.2. For a 3 × 2 table, a linear logit model is defined by
µi1 − µi2 = γ0 + γ1ti, i = 1, 2, 3. The equation L′µ = L′X∗β∗ becomes

[
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

]







µ11
µ21
µ31
µ12
µ22
µ32







=

[
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

]







1 t1
1 t2
1 t3
0 0
0 0
0 0








[
γ0
γ1

]
.

Continuing as in Section 3.3, M can be rewritten as M = {µ|µ = µ0 +
µ1, where µ0 ⊥ C(L) and µ1 ∈ C(X∗)}. Thus, M is the space spanned by
the columns of X∗ and any spanning set for the orthogonal complement of
C(L). In particular, X0 is a matrix with C(X0) = C(L)⊥. We can write
the log-linear model as µ = X0β0 +X∗β∗.



416 12. Maximum Likelihood Theory for Log-Linear Models

It was assumed at the beginning of the discussion that the sampling was
product-multinomial with two categories in each multinomial. Normally, we
consider only log-linear models µ = Xb such that C(X0) ⊂ C(X). In the
current case, we have defined the logit model, i.e., µ ∈ M, M = {µ|L′µ =
L′X∗β∗ for some β∗}. We have then shown that M = C(X0, X∗), so that
a logit model must satisfy the condition C(X0) ⊂ M. It is interesting to
note that even if the two-category product-multinomial sampling scheme
had not been assumed, the logit model would still correspond to a log-linear
model consistent with that sampling scheme.

Example 12.4.3. Write the log-linear version of the logit model as µ =
Xβ, where X = [X0, X∗] and β′ = [β′

0, β
′
∗]. Because the MLEs satisfy

X ′n = X ′m̂, we have X ′
0n = X ′

0m̂, i.e., ni· = m̂i· for i = 1, . . . , r. The
log-linear model must be of the form

log(mij) = u1(i) + · · · .
The notation we have used is quite general, but it lends itself best to two-
dimensional tables. Consider a four-dimensional log-linear model with a
logit model in the last variable. If the observations are nhijk, we have done
nothing but substitute the three subscripts hij for the one subscript k. The
argument presented here implies that the MLEs must satisfy nhij· = m̂hij·
and the log-linear model must be of the form

log(mhijk) = u123(hij) + · · · .

Consider now the problem of estimating ρ′
1η; we can write ρ = Lρ1 so

that ρ′
1η = ρ′

1L
′µ = ρ′µ. Because of the particular structures of L and X∗

and the fact that C(L) ⊥ C(X0), the estimate of ρ′
1η is

ρ′
1η̂ = ρ′µ̂ = ρ′

1L
′(X0β̂0 +X∗β̂∗) = ρ′

1L
′X∗β̂∗ = ρ′

1Zβ̂∗.

The estimates in the logit model come directly from the log-linear model
and all the asymptotic distribution results continue to apply. In particular,
the estimate of η = Zβ∗ is η̂ = Zβ̂∗, where β̂∗ is estimated from the log-
linear model.
Consider a logit model η = Zβ∗ and a corresponding log-linear model

µ = Xβ, where X = [X0, X∗] and β′ = [β′
0, β

′
∗]. We wish to be able to test

the adequacy of a reduced logit model, say η = Z1γ∗, where C(Z1) ⊂ C(Z).
If the log-linear model corresponding to η = Z1γ∗, say µ = X1γ, has
C(X1) ⊂ C(X), then the test can proceed immediately from log-linear
model theory. If Z1 is a r × p1 matrix, we can write X ′

1∗ = [Z ′
1, 0

′
rp1

] and
X1 = [X0, X1∗]. Clearly, if C(Z1) ⊂ C(Z), we have C(X1∗) ⊂ C(X∗) and
C(X1) ⊂ C(X), so the test can proceed.

The hypothesis that a logit model η = Z1γ∗ fits the data relative
to a general log-linear model µ = Xβ is equivalent to hypothesizing,
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for X1∗ with C(X1∗) ⊂ C(X), that µ ∈ M, where M = {µ|µ ∈
C(X) and L′µ = L′X1∗γ for some γ}. We can rewrite M as M = {µ|µ =
µ0 + µ1, where µ1 ∈ C(X1∗), µ0 ∈ C(X) and µ0 ⊥ C(L)}. Thus, M is
the space spanned by the columns of X1∗ and any spanning set for the
subspace of C(X) orthogonal to C(L). The usual test for lack of fit of a
logit model is H0 : µ ∈ M versus HA : µ ∈ Rq, i.e., C(X) = Rq.
Many types of multinomial response models can be written as log-linear

models using the method outlined here. An exception are continuation ratio
models. They do not correspond to a single log-linear model.

d) Estimation of Parameters. Estimation of parameters in log-linear
models is very similar to that in standard linear models. A standard linear
model

Y = Xβ + e, E(e) = 0

implies that
E(Y ) = Xβ.

The least squares estimate of Xβ is Ŷ = MY . The least squares estimate
of ρ′Xβ is ρ′MŶ = ρ′MY .

Similarly, in a log-linear model we have

log(m) ≡ µ = Xb.

Computer programs often give the MLE of m, i.e., m̂. From this, one can
obtain µ̂ = log(m̂). Because µ̂ ∈ C(X), the MLE of ρ′Xb is ρ′µ̂ = ρ′Mµ̂.
The key to finding the estimate of an estimable function λ′β or λ′b is

in obtaining Mρ so that λ′ = ρ′X = ρ′MX. Given Mρ, estimates in the
standard linear model can be obtained from Y and estimates in a log-linear
model can be obtained from µ̂. Finding such a vector Mρ depends only on
λ and X. It does not depend on whether a linear or a log-linear model
is being fitted. Christensen (1996b) discusses, in great detail, how to find
estimates of estimable functions for standard linear models. The procedure
amounts to finding Mρ. Precisely the same vectors Mρ work for log-linear
models. In other words, if one knows how to use Y to estimate something
in a standard linear model, exactly the same technique applied to µ̂ will
give the estimate in a log-linear model.

Example 12.4.4. Consider a two-dimensional table with parameteriza-
tion

µij = γ + αi + βj + (αβ)ij .

In discussions of log-linear models, this model would commonly be written
as

µij = u+ u1(i) + u2(j) + u12(ij) ,
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but it is the same model with either parameterization. Estimates follow just
as in a two-way ANOVA. To simplify this as much as possible, let zij = µ̂ij
and assume the “usual” side conditions, then

γ̂ = z̄·· ,
α̂i = z̄i· − z̄·· ,
β̂i = z̄·j − z̄·· ,

(̂αβ)ij = zij − z̄i· − z̄·j + z̄·· .

It seems very reasonable (to me at any rate) to restrict estimation to es-
timable functions of b. In that case, the choice of side conditions is of no
importance.
Tests and confidence intervals for ρ′Xb can be based on Theorem 12.3.3.

A large sample approximation is

ρ′µ̂ − ρ′Xb
√
ρ′(A − A0)D−1(m)ρ

∼ N(0, 1).

Of course, AD−1(m) has to be estimated in order to get a standard er-
ror. [A0D

−1(m) does not depend on unknown parameters.] As indicated
in application (b), variances are easy to find in the saturated model; un-
fortunately, the estimable functions of b are generally quite complicated
in the saturated model. If one is willing to use side conditions, the side
conditions can sometimes give the illusion that the estimable functions are
not complicated.

12.5 Proofs of Lemma 12.3.2 and Theorem 12.3.8

Two results from advanced calculus are needed. Recall that if F : Rq ×
Rp → Rp, then dF (x, y) is a p by q + p matrix. Partition dF (x, y) into a
p × q matrix, say dxF = [∂Fi/∂xj ], and a p × p matrix, dyF = [∂Fi/∂yj ].

The Implicit Function Theorem. If F : Rq ×Rp → Rp, F (a, c) =
0, F (a, y) is differentiable, and dyF is nonsingular at y = c, then F (x, y) =
0 determines y uniquely as a function of x in a neighborhood of (a, c).
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This unique function, say ξ(x), is differentiable and satisfies ξ(a) = c and
F (x, ξ(x)) = 0 for x in a neighborhood of a.

Proof. See Bartle (1964). �

Corollary 12.5.1. dξ(x) = −[dyF ]−1[dxF ] where y = ξ(x).

Proof. See Bartle (1964). �

Lemma 12.5.2. If a is a scalar and n is a q vector of counts, then

(1) m̂(an) = am̂(n)

(2) µ̂(an) = [log(a)]J + µ̂(n).

Proof. m̂(an) is the unique solution of [an − m]′X = 0 with
log(m̂(an)) ∈ C(X). We will show that am̂(n) is also a solution with
log(am̂(n)) ∈ C(X), so m̂(an) = am̂(n). m̂(n) is the unique solution of
[n − m]′X = 0 with log(m̂(n)) ∈ C(X). Clearly, if [n − m̂(n)]′X = 0,
then [an− am̂(n)]′X = 0, but log(am̂(n)) = [log(a)]J + log(m̂(n)) ∈ C(X)
because both J and log(m̂(n)) are in C(X).

Taking logs gives µ̂(an) = [log(a)]J + µ̂(n). �

Lemma 12.5.3. µ̂(m∗) = µ∗ and m̂(m∗) = m∗.

Proof. By definition, m∗ = m(b∗), so b∗ is a solution of [m∗ −
m(b)]′X = 0. Since µ̂(m∗) is unique, we must have µ̂(m∗) = Xb∗ = µ∗.

m̂(m∗) = exp[µ̂(m∗)] = exp[µ∗] = m∗. �

Lemma 12.3.2 N1/2(µ̂N − µN ) − (
AD−1

)
N−1/2(nN − mN ) P→ 0.

Proof. The MLE µ̂N is defined by µ̂N = Xb̂N , where b̂N is a
function of nN which is defined implicitly as the solution to dfnN

(b) =
[nN − m(b)]′X = 0.
The proof follows from investigating the properties of the Taylor’s ex-

pansion

µ̂(n) = µ̂(n0) + dµ̂(n0)(n − n0) + o(‖n − n0‖). (1)
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The expansion is applied with n = N−1nN and n0 = N−1mN = m∗.
Rewriting (1) gives

µ̂(N−1nN ) − µ̂(m∗) − dµ̂(m∗)(N−1nN − m∗) = o(‖N−1nN − m∗‖). (2)

We examine the terms µ̂(N−1nN ) − µ̂(m∗) and dµ̂(m∗) separately.

(a) We show that for any observations vector nN ,

µ̂(N−1nN ) − µ̂(m∗) = µ̂(nN ) − µN .

By Lemmas 12.5.2 and 12.5.3,

µ̂(N−1nN ) − µ̂(m∗) = [log N−1]J + µ̂(nN ) − µ∗.

Since µN = [log N ]J + µ∗, we have the result.

(b) We characterize the q× q matrix dµ̂(m∗). µ̂(n) = Xb̂(n), so dµ̂(n) =
X[db̂(n)], with b̂(n) defined implicitly as a zero of F (n, b) = X ′[n − m(b)].
For any fixed vector b0, let n0 = m(b0). Then F (n0, b0) = 0, so by the
Implicit Function Theorem, there exists b̂(n) such that if n is close to n0,
F (n, b̂(n)) = 0 and (from Corollary 12.5.1) db̂(n) = −[db̂F ]−1[dnF ]. To
find db̂(n), we need dF (n, b) = [X ′,−X ′dm(b)]. From (12.2.9), dm(b) =
D(m(b))X, so dF (n, b) = [X ′,−X ′D(m(b))X],

db̂(n) = [X ′D(m̂)X]−1X ′,

and dµ̂(n) = X[X ′D(m(b))X]−1X ′. In particular, dµ̂(n0) is always defined.
We need dµ̂(m∗). From Lemma 12.5.3, we have that F (m∗, b̂(m∗)) = 0,

so dµ̂(m∗) is defined and dµ̂(m∗) = X[X ′D(m̂(m∗))X]−1X ′. Again, from
Lemma 12.5.3, m̂(m∗) = m∗, so D(m̂(m∗)) = D(m∗) = D and dµ̂(m∗) =
X[X ′DX]−1X ′ = AD−1.

(c) Using ‖N−1nN −m∗‖ = Op

(
N−1/2

)
and the results of (a) and (b) in

(2) gives

µ̂(nN ) − µN − (
AD−1)N−1(nN − mN ) = o

(
Op

(
N−1/2

))
= op

(
N−1/2

)
.

Multiplying through by N1/2 gives

N1/2(µ̂N − µN ) − (
AD−1)N−1/2(nN − mN ) = op(1). �

Theorem 12.3.8.

−2N−1[�(nN , µ̂1N ) − �(nN , µ̂N )] P→ −2[�(m∗, µ̂1(m∗)) − �(m∗, µ∗)] .
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µN /∈ C(X1) if and only if the right-hand side is positive.

Proof.

−2N−1[�(nN , µ̂1N ) − �(nN , µ̂N )]
= −2N−1[�(nN , µ̂1N ) − �(nN , µN )] + 2N−1[�(nN , µ̂N ) − �(nN , µN )] .

As in Theorem 12.3.6,

2N−1[�(nN , µ̂N ) − �(nN , µN )] P→ 0,

so we need only investigate the behavior of

−2N−1[�(nN , µ̂1N ) − �(nN , µN )]
= −2N−1[n′

N (µ̂1N − µN ) − J ′(m̂1N − mN )] .

From Theorem 12.3.1, N−1nN
P→ m∗. As in the proof of Lemma 12.3.2,

µ̂1N −µN = µ̂1
(
N−1nN

)−µ∗ and N−1(m̂1N − mN ) = m̂1
(
N−1nN

)−m∗.
By the continuity of m̂1(·) and µ̂1(·) (ensured by the Implicit Function
Theorem), m̂1

(
N−1nN

) P→ m̂1(m∗) and µ̂1
(
N−1nN

) P→ µ̂1(m∗), so

−2N−1[�(nN , µ̂1N ) − �(nN , µN )]
P→ −2[m∗′(µ̂1(m∗) − µ∗) − J ′(m̂1(m∗) − m∗)]
= −2[�(m∗, µ̂1(m∗)) − �(m∗, µ∗)] .

Since µ̂(m∗) = µ∗, �(m∗, µ∗) is the unique maximum of �(m∗, µ) for µ ∈
C(X). Since µ̂1(m∗) is in C(X), if µ̂1(m∗) �= µ∗,

−2[�(m∗, µ̂1(m∗)) − �(m∗, µ∗)] > 0.

This occurs whenever µ∗ /∈ C(X1) because µ̂1(m∗) ∈ C(X1). Finally, µ∗ /∈
C(X1) if and only if µN /∈ C(X1). �



13
Bayesian Binomial Regression

Standard methods for analyzing binomial regression data rely on asymp-
totic inferences. Bayesian methods performed using simple computations
apply for any sample size. We discuss Bayesian inferences for binomial re-
gression with an emphasis on inferences for the probability of “success.”
Furthermore, we illustrate diagnostic tools, perform model selection among
non-nested models, and examine the sensitivity of the Bayesian methods.
This chapter is closely related to Bedrick, Christensen, and Johnson (1997)
and to earlier drafts of that article.
Section 1 introduces Bayesian binomial regression. Section 2 discusses

standard Bayesian inference procedures with an emphasis on the predictive
distribution. Section 3 presents Bayesian diagnostics including influence
measures, global model checking methods, and a procedure for selection of
the appropriate link function. Section 4 discusses computations.

13.1 Introduction

The purpose of this chapter is to illustrate the simplicity of a fully Bayesian
approach to binomial regression models. Historically, it has been difficult
to specify realistic prior information on regression coefficients in nonlinear
models, and computations for inference and diagnostics were difficult due
to intractable integrations. These difficulties no longer exist. We illustrate
a fairly complete analysis for two data sets using methods that are simple
and easy to apply. In particular, we discuss a method for specifying the
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prior distribution that focuses on binomial probabilities, rather than es-
oteric regression coefficients. For computations, we focus on Monte Carlo
methods because of their flexibility and their ease of implementation. We
show how Monte Carlo sampling is used for prediction, making inferences
on regression coefficients and probabilities, diagnostics, model checking,
link selection, and sensitivity analysis of the prior.
Leonard (1972) first discussed Bayesian hierarchical models for binomial

data. Zellner and Rossi (1984) gave a overview of Bayesian methods for bi-
nomial regression models. Johnson and Geisser (1985) and Johnson (1985)
introduced general Bayesian predictive and estimative case deletion diag-
nostics that apply to binomial regression. We integrate these ideas along
with Box’s (1980) work on model checking to provide a variety of tools
appropriate for analyzing binomial response data.
Consider regression data (yi, x′

i), i = 1, . . . , n, where the xi’s are known
k vectors of covariates and the yi’s are independent binomial random vari-
ables with Ni trials. The probability of success p for any single trial y
with covariate x is F (x′β), i.e., F (x′β) ≡ p ≡ Pr(y = 1|x, β). Here, the
vector β is an unknown k vector of regression coefficients. Although the
function F (·) could be an arbitrary cdf, we consider logistic, probit, and
complementary log-log regression models in which F (x′β) is modeled as
one of

F (x′β) =






ex
′β
/[

1 + ex
′β
]

Logistic
Φ(x′β) Probit
1 − exp

[
−ex

′β
]

Complementary log-log .

Here, Φ(u) is the cdf of a standard normal distribution. The success prob-
ability p is related to β through F−1(p) = x′β, which is the link function
from Chapter 9. For the logistic, probit, and complementary log-log mod-
els, F−1(p) = log{p/(1 − p)}, Φ−1(p), and log{− log(1 − p)}, respectively.
The likelihood function for the complete data Y = (y1, . . . , yn)′ is

L(β|Y ) ≡
n∏

i=1

L(β|yi) ≡
n∏

i=1

(
Ni

yi

)
[F (x′

iβ)]
yi [1 − F (x′

iβ)]
Ni−yi . (1)

For a prior distribution on β, say π(β), obtaining posterior and predictive
distributions requires computing the posterior of β,

π(β|Y ) =
L(β|Y )π(β)∫
L(β|Y )π(β)dβ

.

Most interesting aspects of a Bayesian analysis can be obtained from var-
ious integrals involving this posterior density. Integrals involving π(β|Y )
are intractable, so we must use approximations.
Monte Carlo methods yield a discrete approximation to the posterior

distribution that takes values βr with probability q̃r, r = 1, . . . , t. Methods
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for obtaining a discrete approximation are discussed in Section 4. Given a
function h(β), the posterior expectation E{h(β) | Y } is approximated by

∫
h(β)π(β|Y )dβ .=

t∑

r=1

h(βr)q̃r. (2)

Typically, the Strong Law of Large Numbers implies that the error in the
approximation converges almost surely to zero as the simulation sample
size t increases.

13.2 Bayesian Inference

13.2.1 Specifying the Prior and Approximating the Posterior
Bayesian inference requires the specification of a prior distribution π(β).
In the past, several methods of specifying priors for binomial regression
problems have been used. The standard approach has been to assume either
a normal distribution for β or the “noninformative” diffuse prior π(β) = 1.
These are convenient in large sample situations where the posterior on β is
approximately normal. See Zellner and Rossi (1984) for relevant discussion.
Another type of prior focuses on the assessment of “success” probabilities
for various choices of covariate values, rather than on the assessment of
regression coefficients.

Example 13.2.1. Consider a simple situation with k = 2. Imagine that
we are recruiting statistics students into a graduate program. We will at-
tempt to recruit from two populations: domestic students (i = 1) and
international students (i = 2). If N1 domestic students apply and N2 inter-
national students apply, assuming independence of students we successfully
recruit y1 ∼ Bin(N1, p1) domestic students and y2 ∼ Bin(N2, p2) interna-
tional students. We can write a one-way ANOVA logit model

log{pi/(1 − pi)} = µ+ αi,

i = 1, 2. This model is overparameterized, so we impose the side condition
α1 = 0 to make the model a logistic regression. We now have

log{p1/(1 − p1)} = µ, log{p2/(1 − p2)} = µ+ α2.

The graduate advisor has specified prior distributions p1 ∼ Beta(4, 4) and
p2 ∼ Beta(4, 1), reflecting (in part) the beliefs that about 80% = E(p2) =
4/(4+1) of the international students and half, [4/(4+4)], of the domestic
students will be successfully recruited. The prior specification includes the
assumption that p1 and p2 are independent. Having placed a joint distribu-
tion on p1 and p2, it is a calculus problem to determine the corresponding
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distribution on the “regression” parameters µ and α2. We discuss the exact
procedure later. While we assumed that the distributions of p1 and p2 were
independent, the approach can, in theory, be carried out with any joint
distribution for p1 and p2. The problem is not in doing the calculus, but in
specifying a realistic joint distribution when the independence assumption
is not appropriate.
The independence assumption is a key part of the procedure. With p1 and

p2 independent, if we were told the value of p1, we should not be inclined to
revise our thinking about p2. That certainly seems reasonable if we are told
that p1 is something near its expected value .5. It seems less reasonable if we
are told, say, that p1 ≥ .95. Knowing that p1 ≥ .95 would probably make us
want to revise our distribution of p2 to make larger values more probable.
However, .95 is 2.7 prior standard deviations above the prior mean for p1,
so this event is extremely unlikely under the prior specification. If p1 ≥ .95
is more likely than the original prior specification allows, the entire prior
should be recalibrated, at which point the independence assumption may be
called in question. However, if, after reflection, those situations that might
cause concern about the independence assumption are thought unlikely,
then we believe the independence assumption is reasonable.
Lack of independence can also occur if the international students were

thought to be very similar to the domestic students regardless of the behav-
ior of the domestic students. In this case, knowing p̃1 is highly informative
about p̃2 and our prior is not appropriate.

The main idea in Example 13.2.1 was to specify prior distributions for
p1 and p2 rather than on the regression parameters µ and α2. We do this
because p1 and p2 have natural interpretations. In a simple logistic regres-
sion,

log{p/(1 − p)} = β0 + β1τ ,

there are again only two regression parameters (β0 and β1), but there is
no obvious choice for probabilities p1 and p2 at which to specify the prior.
In such cases, we must pick two values, say τ̃1 and τ̃2, and specify prior
distributions for p̃1, the probability of success when τ = τ̃1, and p̃2, the
probability of success when τ = τ̃2.

Example 13.2.2. O-Ring Data.
Consider fitting a simple regression model on temperature to the data in
Table 2.1. Let pi be the probability that any O-ring fails in case i and model
this as F−1(pi) = β0 + β1τi = x′

iβ, where τi is the temperature. Our prior
is defined by giving independent distributions to the probabilities of O-ring
failure at temperatures τ̃1 = 55 and τ̃2 = 75 degrees Fahrenheit. Write

β0 + β1τ̃i = [1, τ̃i]
[
β0
β1

]
= x̃′

iβ
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and define p̃1 and p̃2 by p̃i = F (x̃′
iβ). The τ̃i’s should be chosen in the

expected range of the observed temperatures but far enough apart so that
information about the corresponding probabilities can be reasonably as-
sumed independent. The selected temperatures should also be amenable to
expert opinion. Our priors on p̃1 and p̃2 are Beta(1, .577) and Beta(.577, 1)
respectively. The prior on p̃1 was chosen because it has a “J” shape and
gives Pr[p̃1 > 1/2] = 2/3. The prior on p̃2 has a “J” shape and gives
Pr[p̃2 < 1/2] = 2/3.

The prior on β = (β0, β1)′ is determined using the change-of-variables
method. Under the logistic model, the prior on β is a data augmentation
prior (DAP) in the sense that it has the same functional form as the like-
lihood function, i.e.,

π(β) ∝
2∏

i=1

[F (x̃′
iβ)]

ỹi [1 − F (x̃′
iβ)]

Ñi−ỹi ,

where Ñ1 = Ñ2 = 1.577, ỹ1 = 1, and ỹ2 = .577. With this DAP, the prior
on p̃1 can be thought of as one prior O-ring failure out of 1.577 trials at
τ̃1 = 55, and for p̃2, it can be thought of as .577 prior O-ring failures out
of 1.577 trials at τ̃2 = 75. The weight attached to the prior is equivalent
to Ñ1 + Ñ2 “prior” observations, about 3. The posterior density for β also
has the same functional form as the likelihood, i.e.,

π(β|Y ) ∝
n∏

i=1

[F (x′
iβ)]

yi [1 − F (x′
iβ)]

Ni−yi

2∏

i=1

[F (x̃′
iβ)]

ỹi [1 − F (x̃′
iβ)]

Ñi−ỹi .

Many standard computer programs, e.g., GLIM and SPLUS, can be used
to find the posterior mode βM and an asymptotic dispersion matrix Σ(βM )
for the posterior. To compute the mode, simply augment the observed
data with a prior “binomial” observation at 55 degrees consisting of 1.577
trials and 1 observed O-ring failure and include a prior observation at 75
degrees with 1.577 trials and .577 O-ring failures. The posterior mode of
β is the maximum likelihood estimate (MLE) from the augmented data.
The asymptotic covariance matrix computed from the augmented data is
the asymptotic dispersion matrix for the posterior. These quantities are
of interest in themselves and can also be used to create a good discrete
approximation to the posterior.
Figures 13.1 and 13.2 give contour plots of the prior and posterior distri-

butions on β, respectively. Note the high correlation between β0 and β1 in
both the prior and the posterior. The posterior exhibits appreciable skew-
ness, with longer tails in the direction of small slopes and large intercepts.
The high correlation between β0 and β1 is largely eliminated if we stan-
dardize the temperature to have mean zero, i.e., if we change the model to
logit(pi) = β0 + β1(τi − τ̄·). For some problems, this may be preferable to
ease the computational burden. As there were no computational difficulties
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with these data, and as prediction and model validation are independent
of the regression parameterization, we consider only the original version of
the model.

In general, we derive the prior on β for a model with k regression param-
eters from a prior elicited on success probabilities p̃i at k suitably selected
predictor vectors x̃i. We place independent Beta(ỹi, Ñi−ỹi) priors on the p̃i,
regardless of the choice of the link function. For an arbitrary link function,
the induced prior on β has the form

π(β) ∝
k∏

i=1

[F (x̃′
iβ)]

ỹi−1[1 − F (x̃′
iβ)]

Ñi−ỹi−1f(x̃′
iβ),

where f(·) is the first derivative of the function F (·). In the case of logistic
regression,

π(β) ∝
k∏

i=1

[F (x̃′
iβ)]

ỹi [1 − F (x̃′
iβ)]

Ñi−ỹi , (1)

which has the same form as the likelihood function. Therefore, (1) is a
data augmentation prior (DAP), so named because the likelihood times
the prior has the form of a likelihood with additional “prior” data (ỹi, Ñi),
i = 1, . . . , k. In other words, for the logistic model we can think of the
parameters of the prior distribution as a prior sample size Ñi and a prior
number of successes ỹi corresponding to the vector of predictors x̃i.
Incidentally, this procedure can also be executed with priors for the p̃i’s

other than betas. In fact, with different link functions, different distribu-
tions on the p̃i’s lead to different DAPs. (Note that the likelihood depends
on the link function, so DAPs depend on the link function.)
We now consider our primary example.

Example 13.2.3. Trauma Data.
We analyze data on a randomly selected subset of 300 patients admitted
to the University of New Mexico Trauma Center between the years 1991
and 1994. For each patient, we have their injury severity score (ISS), their
revised trauma score (RTS), their AGE, the type of injuries (TI), that
is, whether they were blunt (TI = 0), e.g., the result of a car crash, or
penetrating (TI = 1), e.g., gunshot wounds, and the dependent variable,
whether the patient eventually survived the injuries. The ISS is an over-
all index of a patient’s injuries based on the approximately 1300 injuries
catalogued in the Abbreviated Injury Scale. The ISS can take on values
from 0 for a patient with no injuries to 75 for a patient with severe injuries
in three or more body areas. The RTS is an index of physiologic injury
and is constructed as a weighted average of an incoming patient’s systolic
blood pressure, respiratory rate, and Glasgow Coma Scale. The RTS takes
on values from 0 for a patient with no vital signs to 7.84 for a patient with
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normal vital signs. The data are available electronically from STATLIB as
well as from my web homepage:

http://stat.unm.edu/˜fletcher

Additional information is given in the Preface.
Figure 13.3 gives side-by-side boxplots comparing the 278 survivors and

22 fatalities on RTS, ISS, and AGE. Seventeen of the 225 patients with
blunt injuries died. Five of the 75 patients with penetrating injuries died.
The data were provided by Dr. Turner Osler, a trauma surgeon at the

University of Vermont and former head of the Burn Unit at the University
of New Mexico Trauma Center. Dr. Osler proposed a logistic regression
model to estimate the probability of a patient’s death using an intercept
and predictors ISS, RTS, patient’s AGE (used as a surrogate for physiologic
reserve), TI, and an interaction between AGE and TI. Similar logistic mod-
els are used by trauma centers throughout the United States. Dr. Osler’s
expert opinions formed the basis for our prior distribution.
To induce a proper prior distribution on the k = 6 dimensional vector β,

we require a joint distribution on death probabilities for 6 sets of conditions
x̃′
i = (1, ISSi, RTSi, AGEi, T Ii, AGEi × TIi). Based on discussions with

our expert and two-dimensional plots of the data, we defined a 24 factorial
design having ISS at levels 25 and 41, RTS at levels 3.34 and 7.84, AGE
at levels 10 and 60, and TI at levels 0 and 1. The idea was to pick values
of the variables that were relatively extreme within the data but still had
substantial probabilities for both success and failure. The prior conditions
were chosen as a 1/4 replicate of this 24 with two center points. However,
the center points were taken to be values that could actually exist — none
of ISS, RTS, and TI are truly continuous variables. In fact, TI is a binary
variable, so one “center point” was taken with TI = 0 and the other with
TI = 1. Bedrick, Christensen, and Johnson (1996) (henceforth referred to
as BCJ) recommend calculating the condition number of the matrix X̃ =
(x̃1, . . . , x̃k)′ to ascertain that the chosen x̃i’s are not too close or too far
apart. See Belsley (1991) for discussion of condition numbers. Beta priors
were found to be suitable for the p̃i’s with parameters given in Table 13.1.
Figure 13.4 gives plots of the priors on the p̃i’s as well as the posteriors. The
priors are generally consistent with the posteriors. Relative to the amount
of data, the priors are not overwhelming, being the equivalent of 57.5 =∑6

i=1 Ñi observations compared to 300 data points. (The posterior densities
were obtained by sampling from the discrete approximate posterior and
smoothing the samples.)
Our initial discussion with Dr. Osler involved eliciting 1st, 50th, and 99th

percentiles for each p̃i. These actually overspecify a beta distribution. We
wrote a computer program to find the beta distributions that most nearly
satisfied the specifications, plotted these distributions, and validated them
with our expert.
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TABLE 13.1. Trauma Data: Prior Specification

Design for Prior Beta (ỹi, Ñi − ỹi)
i x̃′

i ỹi Ñi − ỹi

1 1 25 7.84 60 0 0 1.1 8.5
2 1 25 3.34 10 0 0 3.0 11.0
3 1 41 3.34 60 1 60 5.9 1.7
4 1 41 7.84 10 1 10 1.3 12.0
5 1 33 5.74 35 0 0 1.1 4.9
6 1 33 5.74 35 1 35 1.5 5.5

The first probability p̃1 corresponds to an individual that “has good
physiology, is ‘not bad hurt,’ does not have a lot of reserve,” and for whom
there is “added uncertainty due to age.” The Beta(1.1, 8.5) suitably reflects
Dr. Osler’s uncertainty about p̃1. The median of his prior is around .09. The
second type of individual “has bad physiology, is very ill, but is young and
resilient and is not so bad hurt.” The prior for p̃2 is Beta(3, 11) with median
around .20. Incidentally, “bad physiology” and “very ill” apparently refer
to bad RTS scores, while how badly hurt one is relates to ISS. The third
individual has “bad physiology, a pretty bad injury, and there is much more
uncertainty here due to the age factor.” The prior is Beta(5.9, 1.7) with
median around .8. Prior individual four “is young, resilient, and has a big
injury.” The prior is Beta(1.3, 12) with a median of around .07.
Dr. Osler had more difficulty with the 5th and 6th types of individuals

because their conditions were both less extreme and more related than
those already considered. The priors for p̃5 and p̃6 are Beta(1.1,4.9) with
approximate median .15, and Beta(1.5, 5.5) with approximate median .19,
respectively.
The assumption of independence seems reasonable with the possible ex-

ception of p̃5 and p̃6. If our expert were told that p̃5 = .3, he would definitely
want to revise his probability for p̃6 upward. This is because he is fairly
confident that the difference between these two probabilities, p̃6 − p̃5, is
positive but reasonably small, while he is less certain about the magnitude
of the probabilities themselves. Having p̃6 − p̃5 small but positive is reflect-
ing his perception that penetrating injuries are worse than blunt ones but
not a lot worse.
Because of our concern about possible lack of independence for the two

values p̃6 and p̃5 only, we also considered a prior in which the information
about p̃6 was left out of the specification. This results in a partially infor-
mative prior (see BCJ, Sec. 4.1, for a full discussion) which is an improper
DAP using five prior observations instead of the six required for a proper
DAP. We found that all statistical inferences were essentially the same for
the two priors, so we have presented results only for the full prior.
Finally, it should be pointed out that the process of coming up with a

prior is very much a collaboration between the expert and the statisticians.
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The judgement and expertise of both are needed. It is also quite a bit of
work for everyone involved.

Bedrick, Christensen, and Johnson (1996, 1997) give further details on
this approach to specifying priors for regression problems, including dis-
cussions of priors with order restrictions on the p̃i’s and partial prior in-
formation. As mentioned above, a particularly useful form of partial prior
information is specifying k′ < k values p̃i.

The genesis of this approach lies with Tsutakawa (1975), Tsutakawa and
Lin (1986), and Grieve (1988) who considered independent prior distribu-
tions on two probabilities of “success” in simple linear binomial regres-
sion problems. Tsutakawa and Lin (1986) argued that eliciting information
about success probabilities should be much easier than eliciting information
about regression coefficients, a position with which we heartily agree. This
is clearly true if one entertains the possibility of two or more models, such
as logistic regression versus probit regression. The regression coefficients for
these two models require separate elicitations, whereas if one has elicited a
prior for probabilities, it is straightforward to induce the requisite prior on
β for either model.

BCJ extended the Tsutakawa approach to generalized linear models
(GLMs) with multiple covariates. For a hypothetical observation ỹi with
covariate vector x̃i, BCJ specify a prior on the mean value E(ỹi|x̃i). This
is done for k locations x̃i, i = 1, . . . , k, where k is the common dimen-
sion of the x̃i’s. The prior on the regression coefficient vector β is induced
by transforming the distribution on the E(ỹi|x̃i)’s into a distribution on β.
BCJ call such priors conditional means priors (CMPs) and elaborate on the
approach in considerable detail. The conditional means provide parameters
that are more intuitive than regression coefficients and thus easier to spec-
ify prior information for. BCJ also make connections between CMPs and
DAPs. (Note that to make the GLM approach apply to binomial regression,
just as in Chapter 9, the yi’s have to be defined as binomial proportions
rather than our usual binomial counts.)
A key feature in this approach is assuming prior independence of the

E(ỹi|x̃i)’s. This assumption might be unreasonable if the x̃i’s are “too close”
together (cf. Grieve, 1988). There are also technical difficulties if they are
“too far apart.” BCJ (Sec. 5) examined these issues in detail.

13.2.2 Predictive Probabilities
The predictive probability of success in one new trial y with covariate x is

Pr(y = 1|Y, x) = E[F (x′β)|Y, x] =
∫

F (x′β)π(β|Y ) dβ. (2)
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form

Pr(a < βj ≤ b|Y ) =
∫

I(a,b](βj)π(β|Y )dβ .=
t∑

r=1

I(a,b](βrj )q̃r

where I(a,b](βj) is 1 if a < βj ≤ b and 0 otherwise.

Example 13.2.2 continued. Table 13.2 presents posterior means, stan-
dard deviations, and percentiles of β0 and β1 for the O-ring data. Using
our prior, Pr(β1 < 0|Y ) > .99, which suggests the slope is not zero. Fig-
ure 13.8 gives the Bayesian marginal posterior density for β1 in the O-ring
data. As before, this was actually generated by smoothing 5000 samples
from the approximate posterior distribution, i.e., using Rubin’s (1987) SIR
algorithm.

TABLE 13.2. Posterior Marginal Distribution: O-Rings

Full Data Case 18 Deleted
β0 β1 β0 β1

β̂i = E(βi|Y ) 12.97 −.2018 16.92 −.2648
Std. Dev.(βi|Y ) 5.75 .0847 7.09 .1056

5% 4.56 −.355 6.85 −.459
25% 9.04 −.251 11.98 −.324
50% 12.44 −.194 16.13 −.252
75% 16.20 −.144 20.86 −.191
95% 23.38 −.077 29.96 −.114

Example 13.2.3 continued. Table 13.3 presents posterior means, stan-
dard deviations, and percentiles for the βj ’s from the trauma data along
with the maximum likelihood estimates, and asymptotic standard errors as
well as posterior summaries obtained from the diffuse prior π(β) = 1. In
addition, the informative prior gives Pr(β1 > 0|Y ) > .99, which suggests
that the coefficient of ISS is not zero. Recall that low values of RTS are
bad for the patient, so the tendency of the RTS coefficients to be negative
is reasonable. Central 90% posterior intervals for the βj ’s are about 3/4’s
as wide using the informative prior as with the diffuse prior.

13.2.4 Inference for LDα

With the O-ring data, it is of interest to estimate the temperature at which
the chance of O-ring failure is, say 50%, or some other prespecified amount
α. This percentile is often called the LDα in bioassay problems (LD for
“lethal dose”), and satisfies LDα = {F−1(α) − β0}/β1. The LDα is a
function of the vector β, so its approximate posterior distribution is easily
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TABLE 13.3. Fitted Trauma Model

Informative Posterior Summaries Maximum Likelihood
Based on informative prior

Variable Estimate Std. Error .05% .95% Estimate Std. Error
Intercept −1.79 1.10 −3.54 .02 −2.73 1.62
ISS .07 .02 .03 .10 .08 .03
RTS −.60 .14 −.82 −.37 −.55 .17
AGE .05 .01 .03 .07 .05 .01
TI 1.10 1.06 −.66 2.87 1.34 1.33
AGE × TI −.02 .03 −.06 .03 −.01 .03

Posterior Summaries
Based on diffuse prior

Variable Estimate Std. Error .05% .95%
Intercept −2.81 1.60 −5.34 −.18
ISS .09 .03 .05 .13
RTS −.59 .17 −.86 −.32
AGE .06 .02 .03 .09
TI 1.46 1.36 −.79 3.69
AGE × TI −.01 .03 −.07 .05

obtained. The approximate posterior takes on the value {F−1(α)−βr0}/βr1
with probability q̃r.
Table 13.4 presents the posterior median and central 90% intervals for

LDα using five values of α for the O-ring data. In particular, the Bayesian
analysis gives 69.8 degrees as the posterior median temperature at which
the chance of O-ring failure is .25. The tails of the LDα’s are very heavy
due to a non-negligible probability of getting β1 values near zero.

TABLE 13.4. Posterior Summaries for LDα’s

Full Data Case 18 Deleted
Percentiles Percentiles

α 5% 50% 95% α 5% 50% 95%
.90 30.2 52.9 60.4 .90 39.8 55.1 61.2
.75 43.4 58.5 64.0 .75 48.9 59.4 64.0
.50 55.9 64.2 68.5 .50 57.5 63.8 67.5
.25 65.1 69.8 76.4 .25 64.1 68.1 73.0
.10 70.3 75.4 88.3 .10 68.3 72.4 80.9

13.3 Diagnostics

In this section, we examine a variety of influence diagnostics based on delet-
ing cases. We also explore Box’s (1980) method of model checking. Finally,
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we consider the choice of an appropriate link function and an associated
case deletion diagnostic.

13.3.1 Case Deletion Influence Measures
Case deletion diagnostics were pioneered by Cook (1977), Belsley, Kuh
and Welsch (1980), and Pregibon (1981). Johnson and Geisser (1982, 1983,
1985) introduced Bayesian predictive and estimative case deletion diag-
nostics for the linear model and Johnson (1985) introduced diagnostics
for the estimation of probabilities in logistic regression. Here we present
the Johnson-Geisser influence measures for this nonlinear Bayesian setting.
Our purpose is to detect those cases that, upon deletion from the data,
noticeably affect inferences. For example, if the predictive probability of
O-ring failure were to change radically upon deletion of a single case, it is
incumbent upon us to report and quantify that fact. It may or may not be
appropriate to delete such cases in a final analysis.
The effect of case deletion on the posterior of β is easily formulated.

Recalling (13.1.1), the likelihood for β based on all the data except yi is

L(β|Y(i)) = L(β|Y )
L(β|yi)

where Y(i) denotes the data Y with yi deleted. It follows that

π(β|Y(i)) =
L(β|Y(i))π(β)∫
L(β|Y(i))π(β)dβ

=
π(β|Y )/L(β|yi)∫
π(β|Y )/L(β|yi)dβ . (1)

If we renormalize the probability weights in our discrete approximation,

q̃r(i) =
q̃r/L(βr|yi)

∑t
k=1 q̃k/L(βk|yi)

,

then the distribution taking values βr with probability q̃r(i) gives a discrete
approximation to the posterior (1). Expectations with respect to π(β|Y(i))
are evaluated using this approximate distribution.

Estimative Influence
Kullback-Leibler (KL) divergences can be used as in Johnson and Geisser
(1985) and Pettit and Smith (1985) to measure the discrepancy between
full and reduced data posteriors. The KL divergence with respect to the
posterior density with the ith case deleted is defined as

Dβ
1i ≡

∫
log

[
π(β|Y(i))
π(β|Y )

]
π(β|Y(i))dβ ≥ 0.
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A large value of Dβ
1i indicates that deletion of case i results in a differ-

ent posterior for β than if it were retained, possibly resulting in different
inferences for β.
We now present a computational formula for Dβ

1i. The predictive proba-
bility that a future binomial observation y with covariate vector xi equals
the observed yi value, given Y(i), can be expressed in two equivalent ways:

Pr(y = yi|Y(i), xi) =
∫

L(β|yi)π(β|Y(i))dβ =
L(β|yi)π(β|Y(i))

π(β|Y )
. (2)

To see this, note that from (1),

L(β|yi)π(β|Y(i))
π(β|Y )

=
1∫

π(β|Y )/L(β|yi)dβ .

Also, from (1),

∫
L(β|yi)π(β|Y(i))dβ =

∫
L(β|yi)π(β|Y )/L(β|yi)dβ∫

π(β|Y )/L(β|yi)dβ =
1∫

π(β|Y )/L(β|yi)dβ .

Equation (2) gives

Dβ
1i =

∫
log

[
Pr(y = yi|Y(i), xi)

L(β|yi)
]
π(β|Y(i))dβ

= log Pr(y = yi|Y(i), xi) −
∫

logL(β|yi)π(β|Y(i))dβ

.= log

{
t∑

r=1

L(βr|yi)q̃r(i)
}

−
t∑

r=1

logL(βr|yi)q̃r(i).

The KL divergence with respect to the posterior based on all observations
is defined as

Dβ
2i ≡

∫
log

[
π(β|Y )
π(β|Y(i))

]
π(β|Y )dβ.

Using equation (2),

Dβ
2i

.=
t∑

r=1

logL(βr|yi)q̃r − log

{
t∑

r=1

L(βr|yi)q̃r(i)
}

.

The symmetric divergence is defined to be the sum of the divergences for
the deleted and full posteriors, Dβ

i ≡ Dβ
1i +Dβ

2i.
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Predictive Influence
The predictive distribution for a single trial is Bernoulli, i.e., takes on the
values 0 and 1. The symmetric KL divergence is used to measure the dis-
crepancy between full and reduced data predictive distributions. The sym-
metric KL divergence between two Bernoulli distributions with probabili-
ties p and q reduces to

J(p, q) ≡ (p − q) log
(
p(1 − q)
(1 − p)q

)
.

As in Johnson (1985), we define a symmetric predictive divergence diag-
nostic for predicting new observations at the original data locations when
case i is deleted:

Dp
i ≡

n∑

j=1

J
(
Pr(y = 1|Y, xj),Pr(y = 1|Y(i), xj)

)
.

Here, Pr(y = 1|Y, x) is the predictive probability of success from all the data
as defined in (13.2.2), and Pr(y = 1|Y(i), x) is the predictive probability of
success based on all the data except case i:

Pr(y = 1|Y(i), x) =
∫

F (x′β)π(β|Y(i))dβ .=
t∑

r=1

F (x′βr)q̃r(i).

The symmetric predictive divergence diagnostic for predicting observa-
tions at an arbitrary set of locations, say xfj , j = 1, . . . , r, is

Df
i ≡

r∑

j=1

J
(
Pr(y = 1|Y, xfj ),Pr(y = 1|Y(i), xfj )

)
.

A large value of Dp
i or Df

i indicates that deletion of case i results in dif-
ferent predictive probabilities than if it were retained, possibly resulting in
different inferences or decisions.

Example 13.3.1. O-Ring Data.
Figure 13.9 gives index plots of Dp

i and Df
i for the O-ring data. The new

locations used in defining Df
i were xfj = 31, 33, 35, . . . , 51. The plots for

Dβ
1i and Dβ

2i were similar to the plot of Dp
i , so they are not included.

Case 18, which corresponds to the flight where O-rings failed at the highest
launch temperature, consistently stands out. Note that the values of Df

i are
larger for cases with low temperatures. This occurs because the predictions
being made are also at low temperatures. The estimative measures and the
predictive measure Dp

i are qualitatively similar for these data, although
they need not be in general.
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13.3.2 Model Checking
We consider two methods for model checking. The first is a global model
check due to Box (1980). This involves finding the probability that a new
vector Y∗ has a marginal probability smaller than that of the vector Y that
we actually observed, i.e.,

Pr [p(Y∗) ≤ p(Y )] ,

where
p(Y ) =

∫
L(β|Y )π(β)dβ.

This is essentially a P value, so small values are of significance. For the
O-ring data, this value is approximated as .58. The probability is large,
so there is no indication of a substantial problem with the model. If the
improper diffuse prior π(β) = 1 is used, the required marginal distribution
of the data may not exist.
Another model check considers the criterion for one element of the Y

vector at a time, i.e.,
Pr [p(yi∗) ≤ p(yi)] .

This can be viewed as a Bayesian outlier check because we are assessing
whether each observation is unusual relative to the model. For the O-ring
data, all of these values are 1 except the two identical cases 13 and 14 that
give .43 and case 18 that gives .37. This diagnostic gives no indication of
substantial problems with the model.
The model checking computations were performed by sampling from

the prior distribution. We sample pairs (p̃1, p̃2) and solve the equations
F−1(p̃i) = β0 + β1x̃i, i = 1, 2, to obtain samples of β0 and β1. Sampling
the pairs (p̃1, p̃2) is easy with our prior because the p̃i’s have independent
beta distributions. Given a sample βr#, r = 1, . . . , v, from the prior,

p(Y ) .=
1
v

v∑

r=1

L(βr#|Y ).

For an individual component,

p(yi)
.=
1
v

v∑

r=1

L(βr#|yi).

Computing Pr[p(Y∗) ≤ p(Y )] for a new vector Y∗ requires an additional
round of sampling. For each βr#, r = 1, . . . , v, generate new independent
random variables yir∗, i = 1, . . . , n, that are Bin(Ni, F (x′

iβ
r
#)), respectively.

The yir∗’s form vectors Yr∗ for which we can compute p(Yr∗) as above.
Pr[p(Y∗) ≤ p(Y )] is approximated by the proportion of p(Yr∗)’s that are no
greater than p(Y ). Computation of Pr[p(yi∗) ≤ p(yi)] is similar.
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Rubin (1988) advocated Bayesian model checks using predictive rather
than marginal distributions. On the O-ring data, Rubin’s analogues of the
global and local model checks lead to identical conclusions. Chaloner and
Brant (1988) check for outliers using the posterior of β. Similar methods
also apply to the trauma data.

13.3.3 Link Selection
We now allow the Bayesian paradigm to indicate which of the three link
function models is most appropriate for the data: logistic (M1), probit
(M2), or complementary log-log (M3). Bayes factors for comparing models
Mj and Mk are numbers BFjk such that

P (Mj |Y )
P (Mk|Y )

=
[
BFjk

]P (Mj)
P (Mk)

.

The Bayes factor is the multiplier that changes the prior odds for the models
into the posterior odds. It is a simple application of Bayes’s theorem to show
that

BFjk =
p(Y |Mj)
p(Y |Mk)

.

p(Y |M1) was computed previously as p(Y ); it is the marginal probability of
obtaining Y from the logistic model. Computing p(Y |M) for an alternative
model M involves integrating the corresponding likelihood function with
respect to the induced prior on β for that model. As in the logistic case,
p(Y |M) is estimated using samples generated from the prior on the p̃j ’s.

Example 13.3.1 continued. O-Ring Data.
For the O-ring data, the Bayes factors under our prior are BF21 = 1.086,
BF31 = 1.403, and, thus, BF32 = BF31/BF21 = 1.403/1.086 = 1.292.
None of these values is large enough to suggest a serious preference for one
of the three models. In particular, if the prior odds for the probit versus
logit models are 1, the posterior odds are merely 1.086.

Example 13.3.2 continued. Trauma Data.
For the trauma data, the Bayes factors under our prior are BF21 = 1.05,
BF13 = 20.72, and, thus,

BF23 = BF21/BF31 = BF21BF13 = 1.05(20.72) = 21.83 .

There is a suggestion against the complementary log-log model, but there
is little to choose from between the logistic and probit models. If the prior
odds for the probit versus logit models are 1, the posterior odds are merely
1.05. (These numbers were based on an importance sample of 10,000 ob-
servations. Based on only 2000 observations, we got BF21 = 1.97, BF13
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from the new posteriors might be needed. When changes in the prior are
not dramatic, renormalization of the original Monte Carlo weights might
be sufficient. For example, the posterior based on a prior π∗(β) is approx-
imated by the discrete distribution taking values βr with probabilities q̃∗

r ,
where

q̃∗
r =

π∗(βr)q̃r/π(βr)
∑t

k=1 π
∗(βk)q̃k/π(βk)

.

Example 13.3.1 continued. O-Ring Data.
We used two additional priors to evaluate the sensitivity of our analysis.
Each of the priors is a product of independent beta distributions placed at
τ̃1 = 55 and τ̃2 = 75 degrees. Prior II [p̃1 ∼ Beta(.9,.1) and p̃2 ∼ Beta(.1,.9)]
places a prior (mean) probability of .9 for O-ring failure at 55 degrees
and prior probability of .1 for O-ring failure at 75 degrees, while making
the beliefs equivalent to one prior observation. Prior III placed Jeffrey’s
“noninformative” Beta(.5,.5) priors on the p̃’s. The posteriors using the
original prior and Prior III were similar, whereas the posterior using Prior II
was similar to the posterior obtained from the original prior after omitting
case 18. Given the small effect of case 18 on our original analysis, we felt
that our posterior analysis was not overly sensitive to these changes in the
prior.

Example 13.3.2 continued. Trauma Data.
To examine sensitivity to the prior specifications, we considered case dele-
tions of the “prior observations.” In Figure 13.12 we present plots of
p(y = 1|Y, xj , Ỹ ) − p(y = 1|Y, xj , Ỹ(i)), where each is a predictive prob-
ability of success but based on different prior information. Here, the data
are the same and the priors involve case deletion. In Figure 13.10, the data
involve case deletion but the priors are the same. Note that Ỹ(i) represents
partial prior information in the sense of BCJ.

13.4 Posterior Computations and Sample Size
Calculation

In recent years, Bayesian analysis has been performed by using numerical
integrations (Naylor and Smith, 1982; Smith et al., 1985), by using the an-
alytic Laplace approximation (Leonard,1982; Tierney and Kadane, 1986;
Kass et al., 1988), and by using Monte Carlo methods (Zellner and Rossi,
1984; Gelfand and Smith, 1990; Dellaportas and Smith, 1993). See Gel-
man et al. (1995, Chaps. 9-11) for a nice summary of these methods. We
prefer Monte Carlo methods to Laplace approximations in regression prob-
lems because when performing many predictions, only a single Monte Carlo
sample is necessary to perform all predictions, while the Laplace method
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requires a separate analytic approximation for each prediction. We prefer
Monte Carlo methods to numerical integration because of their potential
to deal with high-dimensional problems. Monte Carlo methods provide a
discrete approximation to the posterior distribution. We discuss a variant
of importance sampling that is especially simple when used with a DAP.
In importance sampling, one chooses a density function g(β) that is sim-

ilar in shape to the known kernel of the posterior L(β|Y )π(β) with tails
that do not decay more rapidly than the tails of the posterior. Then sam-
ple β1, . . . , βt from the distribution with density g(β). For r = 1, . . . , t,
compute the weights

qr = q(βr) =
L(βr|Y )π(βr)

g(βr)
(1)

and

q̃r = qr

/ t∑

k=1

qk.

The discrete approximation to the posterior distribution takes values βr

with probability q̃r.
Under fairly weak assumptions (cf. Geweke, 1989), the approximation in

(13.1.2) has a large sample normal distribution with estimated variance

σ̂2h =
t∑

r=1

{h(βr) − θ̄h}2q̃r (2)

where θ̄h is the approximation from (13.1.2). The variance of θ̄h depends
critically on the tails of g(β) through the weight function q(β) of (1).
Geweke (1989) concluded that to attain high efficiency across a variety of
functions, q(β) should be reasonably constant with small tails. If the tails
of the importance function were allowed to decrease much more rapidly
than the tails of the posterior density, the normalized weights q̃r could be
dominated by individual importance samples in the tail of the approximate
posterior. This needlessly inflates the variance of θ̄h. Similar difficulties can
arise with any renormalization of the weights for dealing with case deletions
or different priors.
A natural choice for the importance density g(β) is a multivariate Stu-

dent’s t density with v degrees of freedom, with location equal to the
posterior mode βM , and dispersion proportional to Σ(βM ), the asymp-
totic posterior covariance matrix evaluated at the mode. The approximate
N(βM ,Σ(βM )) posterior density is an alternative possibility, but the thin
tails of the normal often cause problems; see Zellner and Rossi (1984). John-
son (1987) gives simple algorithms for generating the multivariate normal
and t(v) distributions.

Prior to selecting the importance sampling density g(β), plot the kernel
of π(β|Y ) along the asymptotic principal component directions and choose
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the degrees of freedom v so that the tails of g(β) are at least as heavy as
those of π(β|Y ). Specifically, with Σ(βM ) = TT ′, where the columns of T
are orthogonal, plot g(βM + δTei) as a function of δ in each of the unit
directions ei, i = 1, ..., k, and similarly for the kernel of the posterior. (ei is
a vector of 0s except for a 1 in the ith place.) In cases of extreme asymmetry
along these directions, we recommend sampling from split-t distributions.
The split-t distributions allow for different tail heights in each direction, in
addition to asymmetry about the mode; see Geweke (1989) for details.
Figure 13.13 gives a plot of the posterior kernel and the normal, t(6), and

split-t(6) densities in the direction of the first principal component for the
O-ring data. Each function was normalized to have a maximum value of 1.
The plot of the posterior reflects the skewness seen in Figure 13.2. The nor-
mal density is inferior to the t(6) density as an importance function because
the normal underestimates the posterior upper tail in this direction. The
weights q(β) in this direction at 3, 4, and 4.5 standard deviations above
zero are 5, 40, and 150 times greater than the weight at zero for the normal
density. For the t(6) density, this ratio is below 3. The corresponding plot
along the second principal component was similar, with the exception that
the posterior is skewed to the left. The split-t(6) density has heavier tails
than the posterior in each direction and reproduces the shape in the center
of the posterior. We concluded that the split-t(6) is best among the three
importance functions, with the t(6) a close second. Heavier tails on the t
distribution could have been obtained by reducing the degrees of freedom,
but this was unnecessary. The posterior summaries based on both t(6) and
split-t(6) sampling were obtained; they were similar.

For the O-ring data, we decided on the importance sample size by first
generating a pilot study of 500 samples. Prediction was a primary goal.
We decided that the estimates for the probability of O-ring failure F (x′β)
and success 1 − F (x′β) at the 23 observed lift-off temperatures must be
accurate. The maximum coefficient of variation across estimates under our
prior was 4.4%. To reduce this to a target value 2%, the sample size needed
to be increased by a factor of (2.2)2 = 4.84, to approximately 2500. We
decided to sample 5000 observations. The estimated maximum coefficient
of variation for the parameters of interest based on 5000 samples was 1.4%.
Similar methods were used for the trauma data, with a pilot study of 2500
samples and a total sample of 10,000 from a split-t(6).
We noted earlier that βM and Σ(βM ) are easily computed using stan-

dard software when the prior is a DAP. An interesting special case is the
improper prior π(β) = 1, where βM is the MLE β̂ml based on the original
data and Σ(βM )−1 is the observed Fisher information evaluated at β̂ml.
For non-DAP priors, the posterior mode βM must be computed using spe-
cialized software for numerical maximization. Typically, βM is the solution
to S(β) = 0, where S(β) is the vector of partial derivatives of the log of
the posterior kernel, i.e., log{L(β|Y )π(β)}. The inverse of minus one times
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The recent books by Carlin and Louis (1996), Gelman et al. (1995), and
Gilks, Richardson and Spiegelhalter (1996) examine a variety of complex
modeling problems that can be handled easily using Bayesian methods.
Standard references for Bayesian prediction are Aitchison and Dunsmore
(1975) and Geisser (1993).



Appendix: Tables

A.1 The Greek Alphabet

TABLE .1. The Greek alphabet

Capital Small Name Capital Small Name
A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ, ∂ delta Π π pi
E ε, ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ θ theta Υ υ upsilon
I ι iota Φ φ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega



456 Appendix: Tables

A.2 Tables of the χ2 Distribution

TABLE .2. Percentiles of the χ2 Distribution

Percentiles
df 0.80 0.90 0.95 0.975 0.98 0.99 0.995 0.999
1 1.64 2.71 3.84 5.02 5.41 6.63 7.88 10.83
2 3.22 4.61 5.99 7.38 7.82 9.21 10.60 13.82
3 4.64 6.25 7.81 9.35 9.84 11.35 12.84 16.27
4 5.99 7.78 9.49 11.14 11.67 13.28 14.86 18.47
5 7.29 9.24 11.07 12.83 13.39 15.09 16.75 20.51
6 8.56 10.65 12.59 14.45 15.03 16.81 18.55 22.46
7 9.80 12.02 14.07 16.01 16.62 18.47 20.28 24.32
8 11.03 13.36 15.51 17.53 18.17 20.09 21.95 26.13
9 12.24 14.68 16.92 19.02 19.68 21.67 23.59 27.88

10 13.44 15.99 18.31 20.48 21.16 23.21 25.19 29.59
11 14.63 17.27 19.67 21.92 22.62 24.73 26.76 31.26
12 15.81 18.55 21.03 23.34 24.05 26.22 28.30 32.91
13 16.99 19.81 22.36 24.74 25.47 27.69 29.82 34.53
14 18.15 21.06 23.69 26.12 26.87 29.14 31.32 36.12
15 19.31 22.31 25.00 27.49 28.26 30.58 32.80 37.70
16 20.47 23.54 26.30 28.85 29.63 32.00 34.27 39.25
17 21.61 24.77 27.59 30.19 30.99 33.41 35.72 40.79
18 22.76 25.99 28.87 31.53 32.35 34.81 37.16 42.31
19 23.90 27.20 30.14 32.85 33.69 36.19 38.58 43.82
20 25.04 28.41 31.41 34.17 35.02 37.57 34.00 45.31
21 26.17 29.61 32.67 35.48 36.34 38.93 41.40 46.80
22 27.30 30.81 33.92 36.78 37.66 40.29 42.80 48.27
23 28.43 32.01 35.17 38.08 38.97 41.64 44.18 49.73
24 29.55 33.20 36.41 39.36 40.27 42.98 45.56 51.18
25 30.67 34.38 37.65 40.65 41.57 44.31 46.93 52.62
26 31.79 35.56 38.89 41.92 42.86 45.64 48.29 54.05
27 32.91 36.74 40.11 43.19 44.14 46.96 49.65 55.48
28 34.03 37.92 41.34 44.46 45.42 48.28 50.99 56.89
29 35.14 39.09 42.56 45.72 46.69 49.59 52.34 58.30
30 36.25 40.26 43.77 46.98 47.96 50.89 53.67 59.70
31 37.36 41.42 44.99 48.23 49.23 52.19 55.00 61.10
32 38.47 42.59 46.19 49.48 50.49 53.49 56.33 62.49
33 39.57 43.75 47.40 50.73 51.74 54.77 57.65 63.87
34 40.68 44.90 48.60 51.97 52.99 56.06 58.96 65.25
35 41.78 46.06 49.80 53.20 54.24 57.34 60.27 66.62
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TABLE .3. Percentiles of the χ2 Distribution

Percentiles
df 0.80 0.90 0.95 0.975 0.98 0.99 0.995 0.999
36 42.88 47.21 51.00 54.44 55.49 58.62 61.58 67.99
37 43.98 48.36 52.19 55.67 56.73 59.89 62.89 69.35
38 45.08 49.51 53.38 56.90 57.97 61.16 64.18 70.71
39 46.17 50.66 54.57 58.12 59.20 62.43 65.48 72.06
40 47.27 51.81 55.76 59.34 60.44 63.69 66.77 73.41
41 48.36 52.95 56.94 60.56 61.67 64.95 68.05 74.75
42 49.46 54.09 58.12 61.78 62.89 66.21 69.34 76.09
43 50.55 55.23 59.30 62.99 64.11 67.46 70.62 77.42
44 51.64 56.37 60.48 64.20 65.34 68.71 71.89 78.75
45 52.73 57.51 61.66 65.41 66.55 69.96 73.17 80.08
46 53.82 58.64 62.83 66.62 67.77 71.20 74.44 81.40
47 54.91 59.77 64.00 67.82 68.99 72.44 75.70 82.72
48 55.99 60.91 65.17 69.02 70.20 73.68 76.97 84.03
49 57.08 62.04 66.34 70.22 71.41 74.92 78.23 85.35
50 58.16 63.17 67.51 71.42 72.61 76.15 79.49 86.66
51 59.25 64.29 68.67 72.62 73.82 77.39 80.75 87.97
52 60.33 65.42 69.83 73.81 75.02 78.62 82.00 89.27
53 61.41 66.55 70.99 75.00 76.22 79.84 83.25 90.57
54 62.50 67.67 72.15 76.19 77.42 81.07 84.50 91.88
55 63.58 68.80 73.31 77.38 78.62 82.29 85.75 93.17
56 64.66 69.92 74.47 78.57 79.81 83.51 87.00 94.47
57 65.74 71.04 75.62 79.75 81.01 84.73 88.24 95.75
58 66.82 72.16 76.78 80.93 82.200 85.95 89.47 97.03
59 67.90 73.28 77.93 82.12 83.39 87.17 90.72 98.34
60 68.97 74.40 79.08 83.30 84.58 88.38 91.96 99.62
70 79.72 85.53 90.53 95.02 96.39 100.42 104.21 112.31
80 90.41 96.58 101.88 106.63 108.07 112.33 116.32 124.84
90 101.05 107.57 113.15 118.13 119.65 124.11 128.30 137.19

100 111.67 118.50 124.34 129.56 131.14 135.81 140.18 149.48
110 122.25 129.39 135.48 140.92 142.56 147.42 151.95 161.59
120 132.81 140.23 146.57 152.21 153.92 158.95 163.65 173.62
150 164.35 172.58 179.58 185.80 187.67 193.20 198.35 209.22
200 216.61 226.02 234.00 241.06 243.19 249.45 255.28 267.62
250 268.60 279.05 287.88 295.69 298.05 304.95 311.37 324.93
300 320.40 331.79 341.39 349.87 352.42 359.90 366.83 381.34
350 372.05 384.31 394.62 403.72 406.45 414.47 421.89 437.43
400 423.59 436.65 447.63 457.308 460.20 468.71 476.57 492.99
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