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Introduction

You use logic every day — and I bet you didn’t even realize it. For
instance, consider these examples of times when you might use logic:

� Planning an evening out with a friend

� Asking your boss for a day off or for a raise

� Picking out a shirt to buy among several that you like

� Explaining to your kids why homework comes before TV

At all of these times, you use logic to clarify your thinking and get other
people to see things from your perspective.

Even if you don’t always act on it, logic is natural — at least to humans. And
logic is one of the big reasons why humans have lasted so long on a planet
filled with lots of other creatures that are bigger, faster, more numerous, and
more ferocious.

And because logic is already a part of your life, after you notice it, you’ll see it
working (or not working) everywhere you look.

This book is designed to show you how logic arises naturally in daily life.
Once you see that, you can refine certain types of thinking down to their
essence. Logic gives you the tools for working with what you already know
(the premises) to get you to the next step (the conclusion). Logic is also great
for helping you spot the flaws in arguments — unsoundness, hidden assump-
tions, or just plain unclear thinking.

About This Book
Logic has been around a long time — almost 2,400 years and counting! So,
with so many people (past and present) thinking and writing about logic, you
may find it difficult to know where to begin. But, never fear, I wrote this book
with you in mind.

If you’re taking an introductory course in logic, you can supplement your
knowledge with this book. Just about everything you’re studying in class is
explained here simply, with lots of step-by-step examples. At the same time, if
you’re just interested in seeing what logic is all about, this book is also a
great place for you to start.
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Logic For Dummies is for anybody who wants to know about logic — what it
is, where it came from, why it was invented, and even where it may be going.
If you’re taking a course in logic, you’ll find the ideas that you’re studying
explained clearly, with lots of examples of the types of problems your profes-
sor will ask you to do. In this book, I give you an overview of logic in its many
forms and provide you with a solid base of knowledge to build upon.

Logic is one of the few areas of study taught in two different college depart-
ments: math and philosophy. The reason that logic can fit into two seemingly
different categories is historical: Logic was founded by Aristotle and devel-
oped by philosophers for centuries. But, about 150 years ago, mathemati-
cians found that logic was an indispensable tool for grounding their work as
it became more and more abstract.

One of the most important results of this overlap is formal logic, which takes
ideas from philosophical logic and applies them in a mathematical frame-
work. Formal logic is usually taught in philosophy departments as a purely
computational (that is, mathematical) pursuit.

When writing this book, I tried to balance both of these aspects of logic.
Generally speaking, the book begins where logic began — with philosophy —
and ends where it has been taken — in mathematics. 

Conventions Used in This Book
To help you navigate through this book, we use the following conventions:

� Italics are used for emphasis and to highlight new words and terms
defined in the text. They’re also used for variables in equations.

� Boldfaced text indicates keywords in bulleted lists and also true (T) and
false (F) values in equations and tables. It’s also used for the 18 rules of
inference in SL and the 5 rules of inference in QL.

� Sidebars are shaded gray boxes that contain text that’s interesting to
know but not critical to your understanding of the chapter or topic.

� Twelve-point boldfaced text (T and F) text is used in running examples
of truth tables and quick tables to indicate information that’s just been
added. It’s used in completed truth tables and quick tables to indicate
the truth value of the entire statement.

� Parentheses are used throughout statements, instead of a combination
of parentheses, brackets, and braces. Here’s an example:

~((P 0 Q) → ~R)

2 Logic For Dummies 
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What You’re Not to Read
I would be thrilled if you sat down and read this book from cover to cover,
but let’s face it: No one has that kind of time these days. How much of this
book you read depends on how much logic you already know and how thor-
oughly you want to get into it.

Do, however, feel free to skip anything marked with a Technical Stuff icon.
This info, although interesting, is usually pretty techie and very skippable.
You can also bypass any sidebars you see. These little asides often provide
some offbeat or historical info, but they aren’t essential to the other material
in the chapter.

Foolish Assumptions
Here are a few things we’ve assumed about you:

� You want to find out more about logic, whether you’re taking a course or
just curious.

� You can distinguish between true and false statements about commonly
known facts, such as “George Washington was the first president,” and
“The Statue of Liberty is in Tallahassee.”

� You understand simple math equations.

� You can grasp really simple algebra, such as solving for x in the equation
7 – x = 5

How This Book Is Organized
This book is separated into six parts. Even though each part builds on the
information from earlier parts, the book is still arranged in a modular way. So,
feel free to skip around as you like. For example, when I discuss a new topic
that depends on more basic material, I refer you to the chapter where I intro-
duced those basics. If, for right now, you only need info on a certain topic,
check out the index or the table of contents — they’ll for sure point you in
the right direction.

3Introduction
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Here’s a thumbnail sketch of what the book covers:

Part I: Overview of Logic
What is logic? What does it mean to think logically, or for that matter illogi-
cally, and how can you tell? Part I answers these questions (and more!). The
chapters in this part discuss the structure of a logical argument, explain what
premises and conclusions are, and track the development of logic in its many
forms, from the Greeks all the way to the Vulcans.

Part II: Formal Sentential Logic (SL)
Part II is your introduction to formal logic. Formal logic, also called symbolic
logic, uses its own set of symbols to take the place of sentences in a natural
language such as English. The great advantage of formal logic is that it’s an
easy and clear way to express logical statements that would be long and com-
plicated in English (or Swahili).

You discover sentential logic (SL for short) and the five logical operators that
make up this form. I also show how to translate back and forth between
English and SL. Finally, I help you understand how to evaluate a statement to
decide whether it’s true or false using three simple tools: truth tables, quick
tables, and truth trees.

Part III: Proofs, Syntax, and 
Semantics in SL
Just like any logic geek, I’m sure you’re dying to know how to write proofs 
in SL — yeah, those pesky formal arguments that link a set of premises to a
conclusion using the rules of inference. Well, you’re in luck. In this part, you
discover the ins and outs of proof writing. You also find out how to write con-
ditional and indirect proofs, and how to attack proofs as efficiently as possi-
ble using a variety of proof strategies.

You also begin looking at SL from a wider perspective, examining it on the
levels of both syntax and semantics.
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You find out how to tell a statement from a string of symbols that just looks
like a statement. I also discuss how the logical operators in SL allow you to
build sentence functions that have one or more input values and an output
value. From this perspective, you see how versatile SL is for expressing all
possible sentence functions with a minimum of logical operators.

Part IV: Quantifier Logic (QL)
If you’re looking to discover all there is to know about quantifier logic (or QL,
for short), look no further: This part serves as your one-stop shopping intro-
duction. QL encompasses everything from SL, but extends it in several impor-
tant ways.

In this part, I show you how QL allows you to capture more intricacies of a
statement in English by breaking it down into smaller parts than would be
possible in SL. I also introduce the two quantification operators, which make
it possible to express a wider variety of statements. Finally, I show you how
to take what you already know about proofs and truth trees and put it to
work in QL.

Part V: Modern Developments in Logic
The power and subtlety of logic becomes apparent as you examine the
advances in this field over the last century. In this part, you see how logic
made the 19th century dream of the computer a reality. I discuss how varia-
tions of post-classical logic, rooted in seemingly illogical assumptions, can be
consistent and useful for describing real-world events.

I also show you how paradoxes fundamentally challenged logic at its very
core. Paradoxes forced mathematicians to remove all ambiguities from logic
by casting it in terms of axiom systems. Ultimately, paradoxes inspired one
mathematician to harness paradox itself as a way to prove that logic has its
limitations.

Part VI: The Part of Tens
Every For Dummies book contains a Part of Tens. Just for fun, this part of the
book includes a few top-ten lists on a variety of topics: cool quotes, famous
logicians, and pointers for passing exams.

5Introduction
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Icons Used in This Book
Throughout this book, you’ll find four icons that highlight different types of
information:

I use this icon to point out the key ideas that you need to know. Make sure
you understand the information in these paragraphs before reading on!

This icon highlights helpful hints that show you the easy way to get things
done. Try them out, especially if you’re enrolled in a logic course.

Don’t skip these icons! They show you common errors that you want to
avoid. The paragraphs that don this important icon help you recognize where
these little traps are hiding so that you don’t take a wrong step and fall in.

This icon alerts you to interesting, but unnecessary, trivia that you can read
or skip over as you like.

Where to Go from Here
If you have some background in logic and you already have a handle on the
Part I stuff, feel free to jump forward where the action is. Each part builds on
the previous parts, so if you can read Part III with no problem, you probably
don’t need to concentrate on Parts I and II (unless of course you just want a
little review).

If you’re taking a logic course, you may want to read Parts III and IV 
carefully — you may even try to reproduce the proofs in those chapters 
with the book closed. Better to find out what you don’t know while you’re
studying than while you’re sweating out an exam!

If you’re not taking a logic course — complete with a professor, exams, and a
final grade — and you just want to discover the basics of logic, you may want to
skip or simply skim the nitty-gritty examples of proofs in Parts III and IV. You’ll
still get a good sense of what logic is all about, but without the heavy lifting.

If you forge ahead to Parts IV and V, you’re probably ready to tackle some
fairly advanced ideas. If you’re itching to get to some meaty logic, check out
Chapter 22. This chapter on logical paradoxes has some really cool stuff to
take your thinking to warp speed. Bon voyage!
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Part I
Overview of Logic
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In this part . . .

So, let me guess, you just started your first logic class
and you’re scrambling around trying to discover the

ins and outs of logic as quickly as possible because you
have your first test in 48 hours. Or, maybe you’re not
scrambling at all and you’re just looking for some insight
to boost your understanding. Either way, you’ve come to
the right place.

In this part, you get a firsthand look at what logic is all
about. Chapter 1 gives an overview of how you (whether
you know it or not) use logic all the time to turn the facts
that you know into a better understanding of the world.
Chapter 2 presents the history of logic, with a look at the
many types of logic that have been invented over the 
centuries. Finally, if you’re itching to get started, flip to
Chapter 3 for an explanation of the basic structure of a
logical argument. Chapter 3 also focuses on key concepts
such as premises and conclusions, and discusses how to
test an argument for validity and soundness.
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Chapter 1

What Is This Thing Called Logic?
In This Chapter
� Seeing the world from a logical point of view

� Using logic to build valid arguments

� Applying the laws of thought

� Understanding the connection between math and logic

You and I live in an illogical world. If you doubt this fact, just flip on the
evening news. Or really listen to the guy sitting at the next barstool. Or,

better yet, spend the weekend with your in-laws.

With so many people thinking and acting illogically, why should you be any
different? Wouldn’t it be more sensible just to be as illogical as the rest of the
human race?

Well, okay, being illogical on purpose is probably not the best idea. For one
thing, how can it possibly be sensible to be illogical? For another, if you’ve
picked this book up in the first place, you’re probably not built to be illogical.
Let’s face it — some folks thrive on chaos (or claim to), while others don’t.

In this chapter, I introduce you to the basics of logic and how it applies to
your life. I tell you a few words and ideas that are key to logic. And, I touch
very briefly on the connections between logic and math.

Getting a Logical Perspective
Whether you know it or not, you already understand a lot about logic. In fact,
you already have a built-in logic detector. Don’t believe me? Take this quick
test to see whether you’re logical:

Q: How many pancakes does it take to shingle a doghouse?

A: 23, because bananas don’t have bones.
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If the answer here seems illogical to you, that’s a good sign that you’re at
least on your way to being logical. Why? Simply because if you can spot
something that’s illogical, you must have a decent sense of what actually is
logical.

In this section, I start with what you already understand about logic (though
you may not be aware of it), and build towards a foundation that will help
you in your study of logic.

Bridging the gap from here to there
Most children are innately curious. They always want to know why every-
thing is the way it is. And for every because they receive, they have one more
why. For example, consider these common kid questions:

Why does the sun rise in the morning?

Why do I have to go to school?

Why does the car start when you turn the key?

Why do people break the law when they know they could go to jail?

When you think about it, there’s a great mystery here: Even when the world
doesn’t make sense, why does it feel like it should?

Kids sense from an early age that even though they don’t understand some-
thing, the answer must be somewhere. And they think, “If I’m here and the
answer is there, what do I have to do to get there?” (Often, their answer is to
bug their parents with more questions.)

Getting from here to there — from ignorance to understanding — is one of
the main reasons logic came into existence. Logic grew out of an innate
human need to make sense of the world and, as much as possible, gain some
control over it.

Understanding cause and effect
One way to understand the world is to notice the connection between cause
and effect.

As you grow from a child to an adult, you begin to piece together how one
event causes another. Typically, these connections between cause and effect
can be placed in an if-statement. For example, consider these if-statements:
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If I let my favorite ball roll under the couch, then I can’t reach it.

If I do all of my homework before Dad comes home, then he’ll play catch
with me before dinner.

If I practice on my own this summer, then in the fall the coach will pick me
for the football team.

If I keep asking her out really nicely and with confidence, then eventually
she will say yes.

Understanding how if-statements work is an important aspect of logic.

Breaking down if-statements
Every if-statement is made up of the following two smaller statements called
sub-statements: The antecedent, which follows the word if, and the consequent,
which follows the word then. For example, consider this if-statement:

If it is 5 p.m., then it’s time to go home.

In this statement, the antecedent is the sub-statement

It is 5 p.m.

The consequent is the sub-statement

It’s time to go home

Notice that these sub-statements stand as complete statements in their own
right.

Stringing if-statements together
In many cases, the consequent of one if-statement becomes the antecedent of
another. When this happens, you get a string of consequences, which the
Greeks called a sorites (pronounced sore-it-tease). For example:

In this case, you can link these if-statements together to form a new if-statement:

If it’s 5 p.m., then I need to call my husband to make reservations at the
restaurant.

If it’s 5 p.m., then it’s time to go home.

If it’s almost time for dinner, then I need to call my husband to make 
reservations at the restaurant.

If it’s time to go home, then it’s almost time for dinner.

11Chapter 1: What Is This Thing Called Logic?
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Thickening the plot
With more life experience, you may find that the connections between cause
and effect become more and more sophisticated:

If I let my favorite ball roll under the couch, then I can’t reach it, unless I
scream so loud that Grandma gets it for me, though if I do that more than
once, then she gets annoyed and puts me back in my highchair.

If I practice on my own this summer but not so hard that I blow my knees
out, then in the fall the coach will pick me for the football team only if he
has a position open, but if I do not practice, then the coach will not pick me.

Everything and more
As you begin to understand the world, you begin to make more general state-
ments about it. For example:

All horses are friendly.

All boys are silly.

Every teacher at that school is out to get me.

Every time the phone rings, it’s for my sister.

Words like all and every allow you to categorize things into sets (groups of
objects) and subsets (groups within groups). For example, when you say “All
horses are friendly,” you mean that the set of all horses is contained within
the set of all friendly things.

Existence itself
You also discover the world by figuring out what exists and doesn’t exist.
For example:

Some of my teachers are nice.

There is at least one girl in school who likes me.

No one in the chess club can beat me.

There is no such thing as a Martian.

Words like some, there is, and there exists show an overlapping of sets called
an intersection. For example, when you say, “Some of my teachers are nice,”
you mean that there’s an intersection between the set of your teachers and
the set of nice things.
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Similarly, words like no, there is no, and none show that there’s no intersec-
tion between sets. For example, when you say “No one in the chess club can
beat me,” you mean that there’s no intersection between the set of all the
chess club members and the set of all the chess players who can beat you.

A few logical words
As you can see, certain words show up a lot as you begin to make logical con-
nections. Some of these common words are:

if . . . then and but or

not unless though every

all every each there is

there exists some there is no none

Taking a closer look at words like these is an important job of logic because
when you do this, you begin to see how these words allow you to divide the
world in different ways (and therefore understand it better).

Building Logical Arguments
When people say “Let’s be logical” about a given situation or problem, they
usually mean “Let’s follow these steps:”

1. Figure out what we know to be true.

2. Spend some time thinking about it.

3. Find the best course of action.

In logical terms, this three-step process involves building a logical argument.
An argument contains a set of premises at the beginning and a conclusion at
the end. In many cases, the premises and the conclusion will be linked by a
series of intermediate steps. In the following sections, I discuss them in the
order that you’re likely to encounter them.

Generating premises
The premises are the facts of the matter: The statements that you know 
(or strongly believe) to be true. In many situations, writing down a set of
premises is a great first step to problem solving.

13Chapter 1: What Is This Thing Called Logic?
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For example, suppose you’re a school board member trying to decide
whether to endorse the construction of a new school that would open in
September. Everyone is very excited about the project, but you make some
phone calls and piece together your facts, or premises.

Premises:

The funds for the project won’t be available until March.

The construction company won’t begin work until they receive payment.

The entire project will take at least eight months to complete.

So far, you only have a set of premises. But when you put them together,
you’re closer to the final product — your logical argument. In the next sec-
tion, I show you how to combine the premises together.

Bridging the gap with intermediate steps
Sometimes an argument is just a set of premises followed by a conclusion. In
many cases, however, an argument also includes intermediate steps that show
how the premises lead incrementally to that conclusion.

Using the school construction example from the previous section, you may
want to spell things out like this:

According to the premises, we won’t be able to pay the construction com-
pany until March, so they won’t be done until at least eight months later,
which is November. But, school begins in September. Therefore. . .

The word therefore indicates a conclusion and is the beginning of the final
step, which I discuss in the next section.

Forming a conclusion
The conclusion is the outcome of your argument. If you’ve written the inter-
mediate steps in a clear progression, the conclusion should be fairly obvious.
For the school construction example I’ve been using, here it is:

Conclusion:

The building won’t be complete before school begins.

If the conclusion isn’t obvious or doesn’t make sense, something may be
wrong with your argument. In some cases, an argument may not be valid.
In others, you may have missing premises that you’ll need to add.
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Deciding whether the argument is valid
After you’ve built an argument, you need to be able to decide whether it’s
valid, which is to say it’s a good argument.

To test an argument’s validity, assume that all of the premises are true and
then see whether the conclusion follows automatically from them. If the 
conclusion automatically follows, you know it’s a valid argument. If not, the
argument is invalid.

Understanding enthymemes
The school construction example argument may seem valid, but you also
may have a few doubts. For example, if another source of funding became
available, the construction company may start earlier and perhaps finish by
September. Thus, the argument has a hidden premise called an enthymeme
(pronounced en-thim-eem), as follows:

There is no other source of funds for the project.

Logical arguments about real-world situations (in contrast to mathematical
or scientific arguments) almost always have enthymemes. So, the clearer you
become about the enthymemes hidden in an argument, the better chance you
have of making sure your argument is valid.

Uncovering hidden premises in real-world arguments is more related to
rhetoric, which is the study of how to make cogent and convincing arguments.
I touch upon both rhetoric and other details about the structure of logical
arguments in Chapter 3.

Making Logical Conclusions Simple 
with the Laws of Thought

As a basis for understanding logic, philosopher Bertrand Russell set down
three laws of thought. These laws all have their basis in ideas dating back to
Aristotle, who founded classical logic more than 2,300 years ago. (See
Chapter 2 for more on the history of logic.)

All three laws are really basic and easy to understand. But, the important
thing to note is that these laws allow you to make logical conclusions about
statements even if you aren’t familiar with the real-world circumstances that
they’re discussing.

15Chapter 1: What Is This Thing Called Logic?
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The law of identity
The law of identity states that every individual thing is identical to itself.

For example:

Susan Sarandon is Susan Sarandon.

My cat, Ian, is my cat, Ian

The Washington Monument is the Washington Monument.

Without any information about the world, you can see from logic alone that
all of these statements are true. The law of identity tells you that any state-
ment of the form “X is X,” must be true. In other words, everything in the uni-
verse is the same as itself. In Chapter 19, you’ll see how this law is explicitly
applied to logic.

The law of the excluded middle
The law of the excluded middle states that every statement is either true or
false.

For example, consider these two statements:

My name is Mark.

My name is Algernon.

Again, without any information about the world, you know logically that each
of these statements is either true or false. By the law of the excluded middle,
no third option is possible — in other words, statements can’t be partially
true or false. Rather, in logic, every statement is either completely true or
completely false.

As it happens, I’m content that the first statement is true and relieved that
the second is false.

The law of non-contradiction
The law of non-contradiction states that given a statement and its opposite,
one is true and the other is false.
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For example:

My name is Algernon.

My name is not Algernon.

Even if you didn’t know my name, you could be sure from logic alone that one
of these statements is true and the other is false. In other words, because of
the law of contradiction, my name can’t both be and not be Algernon.

Combining Logic and Math
Throughout this book, many times I prove my points with examples that use
math. (Don’t worry — there’s nothing here that you didn’t learn in fifth grade
or before.) Math and logic go great together for two reasons, which I explain
in the following sections.

Math is good for understanding logic
Throughout this book, as I’m explaining logic to you, I sometimes need exam-
ples that are clearly true or false to prove my points. As it turns out, math
examples are great for this purpose because, in math, a statement is always
either true or false, with no gray area between.

On the other hand, sometimes random facts about the world may be more
subjective, or up for debate. For example, consider these two statements:

George Washington was a great president.

Huckleberry Finn is a lousy book.

Most people would probably agree in this case that the first statement is true
and the second is false, but it’s definitely up for debate. But, now look at
these two statements:

The number 7 is less than the number 8.

Five is an even number.

Clearly, there’s no disputing that the first statement is true and that the
second is false.
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Logic is good for understanding math
As I discuss earlier in this chapter, the laws of thought on which logic is
based, such as the law of the excluded middle, depend on black-and-white
thinking. And, well, nothing is more black and white than math. Even though
you may find areas such as history, literature, politics, and the arts to be
more fun, they contain many more shades of gray.

Math is built on logic as a house is built on a foundation. If you’re interested
in the connection between math and logic, check out Chapter 22, which
focuses on how math starts with obvious facts called axioms and then uses
logic to form interesting and complex conclusions called theorems.
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Chapter 2

Logical Developments from
Aristotle to the Computer

In This Chapter
� Understanding the roots of logic

� Discovering classical and modern logic

� Looking at 20th century logic

When you think about how illogical humans can be, it’s surprising to
discover how much logic has developed over the years. Here’s just a

partial list of some varieties of logic that are floating around out there in the
big world of premises and conclusions:

Boolean logic Modern logic Quantifier logic

Classical logic Multi-valued logic Quantum logic

Formal logic Non-classical logic Sentential logic

Fuzzy logic Predicate logic Syllogistic logic

Informal logic Propositional logic Symbolic logic

As your eyes scan all of these varieties of logic, you may feel a sudden urge to
embrace your humanity fully and leave logic to the Vulcans. The good news, as
you’ll soon discover, is that a lot of these varieties are quite similar. After
you’re familiar with a few of them, the rest become much easier to understand.

So, where did all of these types of logic come from? Well, that’s a long 
story — in fact, it’s a story that spans more than 2,000 years. I know
2,000 years seems like quite a lot to cram into one chapter, but don’t worry
because I guide you through only the most important details. So, get ready
for your short history lesson.
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Classical Logic — from Aristotle 
to the Enlightenment

The ancient Greeks had a hand in discovering just about everything, and
logic is no exception. For example, Thales and Pythagoras applied logical
argument to mathematics. Socrates and Plato applied similar types of reason-
ing to philosophical questions. But, the true founder of classical logic was
Aristotle.

When I talk about classical logic in this section, I’m referring to the historical
period in which logic was developed, in contrast with modern logic, which I
discuss later in the chapter. But, classical logic can also mean the most standard
type of logic (which most of this book is about) in contrast with non-classical
logic (which I discuss in Chapter 21). I try to keep you clear as I go along.

Aristotle invents syllogistic logic
Before Aristotle (384–322 BC), logical argument was applied intuitively where
appropriate in math, science, and philosophy. For example, given that all
numbers are either even or odd, if you could show that a certain number
wasn’t even, you knew, then, that it must be odd. The Greeks excelled at this
divide-and-conquer approach. They regularly used logic as a tool to examine
the world.

Aristotle, however, was the first to recognize that the tool itself could be
examined and developed. In six writings on logic — later assembled as a
single work called Organon, which means tool — he analyzed how a logical
argument functions. Aristotle hoped that logic, under his new formulation,
would serve as a tool of thought that would help philosophers understand
the world better.

Aristotle considered the goal of philosophy to be scientific knowledge, and
saw the structure of scientific knowledge as logical. Using geometry as his
model, he saw that science consisted of proofs, proofs of syllogisms, syllo-
gisms of statements, and statements of terms. So, in the Organon, he worked
from the bottom upwards: The first book, the Categories, deals with terms;
the second, On Interpretation, with statements; the third, Prior Analytics, with
syllogisms; and the fourth, Posterior Analytics, with proofs.

Prior Analytics, the third book in the Organon series, delves directly into what
Aristotle called syllogisms, which are argument structures that, by their very
design, appear to be indisputably valid.

The idea behind the syllogism was simple — so simple, in fact, that it had
been taken for granted by philosophers and mathematicians until Aristotle
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noticed it. In a syllogism, the premises and conclusions fit together in such a
way that, once you accept the premises as true, you must accept that the
conclusion is true as well — regardless of the content of the actual argument
being made.

For example, here’s Aristotle’s most famous syllogism:

Premises:

All men are mortal.

Socrates is a man.

Conclusion:

Socrates is mortal.

The following argument is similar in form to the first. And it’s the form of the
argument, not the content, that makes it indisputable. Once you accept the
premises as true, the conclusion follows as equally true.

Premises:

All clowns are scary.

Bobo is a clown.

Conclusion:

Bobo is scary.

Categorizing categorical statements
Much of Aristotle’s attention focused on understanding what he called cate-
gorical statements. Categorical statements are simply statements that talk
about whole categories of objects or people. Furniture, chairs, birds, trees,
red things, Meg Ryan movies, and cities that begin with the letter T are all
examples of categories.

In keeping with the law of the excluded middle (which I discuss in Chapter 1),
everything is either in a particular category or not in it. For example, a red
chair is in the category of furniture, chairs, and red things, but not in the cat-
egory of birds, trees, Meg Ryan movies, or cities that begin with the letter T.

Aristotle broke categorical statements down into the following two types :

� Universal statements: These are statements that tell you something
about an entire category. Here’s an example of a universal statement:

All dogs are loyal.
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This statement relates two categories and tells you that everything in
the category of dogs is also in the category of loyal things. You can con-
sider this a universal statement because it tells you that loyalty is a uni-
versal quality of dogs.

� Particular statements: These are statements that tell you about the exis-
tence of at least one example within a category. Here’s an example of a
particular statement:

Some bears are dangerous.

This statement tells you that at least one item in the category of bears is
also in the category of dangerous things. This statement is considered a
particular statement because it tells you that at least one particular bear
is dangerous.

Understanding the square of oppositions
The square of oppositions — a tool Aristotle developed for studying categori-
cal statements — organizes the four basic forms of categorical statements
that appear frequently in syllogisms. These four forms are based on the posi-
tive and negative forms of universal and particular statements.

Aristotle organized these four types of statements into a simple chart similar
to Table 2-1. Aristotle’s most famous example was based on the statement
“All humans are mortal.” However, the example in the table is inspired by my
sleeping cat.

Table 2-1: The Square of Oppositions
Positive Forms Negative Forms

Universal Forms A: All cats are sleeping. E: No cats are sleeping.

There doesn’t exist a All cats are not sleeping.
cat that isn’t sleeping.

No cats are not sleeping. There isn’t a cat that is sleeping.

Every cat is sleeping. There doesn’t exist a sleeping cat.

Particular Forms I: Some cats are sleeping. O: Not all cats are sleeping.

Not all cats are not sleeping. Some cats are not sleeping.

At least one cat is sleeping. There is at least one cat that isn’t
sleeping.

There exists a sleeping cat. Not every cat is sleeping.
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As you can see from the table, each type of statement expresses a different
relationship between the category of cats and the category of sleeping
things. In English, you can express each type of statement in a variety of
ways. I’ve listed a few of these in the table, but many more are possible in
each case.

Aristotle noticed relationships among all of these types of statements. The
most important of these relationships is the contradictory relationship
between those statements that are diagonal from each other. With contradic-
tory pairs, one statement is true and the other false.

For example, look at the A and O statements in Table 2-1. Clearly, if every cat
in the world is sleeping at the moment, then A is true and O is false; other-
wise, the situation is reversed. Similarly, look at the E and I statements. If
every cat in the world is awake, then E is true and I is false; otherwise, the 
situation is reversed.

If you’re wondering, the letters for the positive forms A and I are reputed to
come from the Latin word AffIrmo, which means “I affirm.” Similarly, the let-
ters for the negative forms E and O are said to come from the Latin word
nEgO, which means “I deny.” The source of these designations is unclear, but
you can rule out Aristotle, who spoke Greek, not Latin.

Euclid’s axioms and theorems
Although Euclid (c. 325–265 BC) wasn’t strictly a logician, his contributions
to logic were undeniable.

Euclid is best known for his work in geometry, which is still called Euclidean
geometry in his honor. His greatest achievement here was his logical organiza-
tion of geometric principles into axioms and theorems.

Euclid began with five axioms (also called postulates) — true statements that
he believed were simple and self-evident. From these axioms, he used logic to
prove theorems — true statements that were more complex and not immedi-
ately obvious. In this way, he succeeded in proving the vast body of geometry
logically followed from the five axioms alone. Mathematicians still use this
logical organization of statements into axioms and theorems. For more on
this topic, see Chapter 22.

Euclid also used a logical method called indirect proof. In this method, you
assume the opposite of what you want to prove and then show that this
assumption leads to a conclusion that’s obviously incorrect.
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For example, a detective in a murder mystery might reason: “If the butler
committed the murder, then he must have been in the house between 7 p.m.
and 8 p.m. But, witnesses saw him in the city twenty miles away during those
hours, so he couldn’t have also been in the house. Therefore, the butler
didn’t commit the murder.”

Indirect proof is also called proof by contradiction and reductio ad absurdum,
which is Latin for reduced to an absurdity. Flip to Chapter 11 for more about
how to use indirect proof.

Chrysippus and the Stoics
While Aristotle’s successors developed his work on the syllogistic logic of
categorical statements, another Greek school of philosophy, the Stoics, took
a different approach. They focused on conditional statements, which are state-
ments that take the form if . . . then. . . . For example:

If clouds are gathering in the west, then it will rain.

Most notable among these logicians was Chrysippus (279–206 BC). He 
examined arguments using statements that were in this if . . . then . . . form. 
For example:

Premises:

If clouds are gathering in the west, then it will rain.

Clouds are gathering in the west.

Conclusion:

It will rain.

Certainly, there are connections between the Aristotelian and the Stoic
approaches. Both focused on sets of premises containing statements that,
when true, tended to fit together in a way that forced the conclusion to be
true as well. But friction between the two schools of thought caused logic to
develop in two separate strands for over a century, though over time these
merged into a unified discipline.

Logic takes a vacation
After the Greeks, logic went on a very long vacation, with a few sporadic
revivals.
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Throughout the Roman Empire and Medieval Europe for over a thousand
years, logic was often disregarded. Aristotle’s writing on logic was occasion-
ally translated with some commentary by the translator. However, very few
people wrote original treatises on logic.

During the first millennium AD, more work on logic was done in the Arab
world. Both Christian and Muslim philosophers in Baghdad continued to
translate and comment upon Aristotle. Avicenna (980–1037) broke from
this practice, studying logical concepts that involve time, such as always,
sometimes, and never.

The 12th century saw a renewed interest in logic, especially logical fallacies,
which are flaws in arguments. Some of this work, which was begun with
Aristotle in his Sophistic Refutations, was used by theologians during this time
of ever-widening Catholic influence in Europe. Throughout the next few cen-
turies, philosophers continued to study questions of language and argument
as they related to logic.

Additionally, as one of the seven liberal arts, logic was also central to the cur-
riculum of the universities developing at this time. (I’m sure you are dying to
know that the other six liberal arts were: grammar, rhetoric, arithmetic,
geometry, astronomy, and music.)

Modern Logic — the 17th, 18th, 
and 19th Centuries

In Europe, as the Age of Faith gradually gave way to the Age of Reason in the
16th and 17th centuries, thinkers became optimistic about finding answers to
questions about the nature of the universe.

Even though scientists (such as Isaac Newton) and philosophers (such as
René Descartes) continued to believe in God, they looked beyond church
teachings to provide answers as to how God’s universe operated. Instead,
they found that many of the mysteries of the world — such as the fall of an
apple or the motion of the moon in space — could be explained mechanisti-
cally and predicted using mathematics. With this surge in scientific thought,
logic rose to preeminence as a fundamental tool of reason.

Leibniz and the Renaissance
Gottfried Leibniz (1646–1716) was the greatest logician of the Renaissance in
Europe. Like Aristotle, Leibniz saw the potential for logic to become an indis-
pensable tool for understanding the world. He was the first logician to take
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Aristotle’s work a significant step farther by turning logical statements into
symbols that could then be manipulated like numbers and equations. The
result was the first crude attempt at symbolic logic.

In this way, Leibniz hoped logic would transform philosophy, politics, and
even religion into pure calculation, providing a reliable method to answer all
of life’s mysteries with objectivity. In a famous quote from The Art of
Discovery (1685), he says:

The only way to rectify our reasonings is to make them as tangible as
those of the Mathematicians, so that we can find our error at a glance,
and when there are disputes among persons, we can simply say: 
“Let us calculate, without further ado, to see who is right.”

Unfortunately, his dream of transforming all areas of life into calculation was
not pursued by the generation that followed him. His ideas were so far ahead
of their time that they were not recognized as important. After his death,
Leibniz’s writings on logic as symbolic calculation gathered dust for almost
200 years. By the time they were rediscovered, logicians had already caught
up with these ideas and surpassed them. As a result, Leibniz was not nearly
as influential as he might have been during this crucial phase in the develop-
ment of logic.

Working up to formal logic
For the most part, logic was studied informally — that is, without the use of
symbols in place of words — into the beginning of 19th century. Beginning
with Leibniz, mathematicians and philosophers up to this time had impro-
vised a wide variety of notations for common logical concepts. These sys-
tems, however, generally lacked any method for full-scale computation and
calculation.

By the end of the 19th century, however, mathematicians had developed
formal logic — also called symbolic logic — in which computable symbols
stand for words and statements. Three key contributors to formal logic were
George Boole, Georg Cantor, and Gottlob Frege.

Boolean algebra
Named for its inventor, George Boole (1815–1864), Boolean algebra is the first
fully fleshed-out system that handles logic as calculation. For this reason, it’s
considered the precursor to formal logic.

Boolean algebra is similar to standard arithmetic in that it uses both numeri-
cal values and the familiar operations for addition and multiplication. Unlike
arithmetic, however, only two numbers are used: 0 and 1, which signify false
and true, respectively.
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For example:

Let A = Thomas Jefferson wrote the Declaration of Independence.

Let B = Paris Hilton wrote the U.S. Constitution.

Because the first statement is true and the second is false (thank goodness!),
you can say:

A = 1 and B = 0

In Boolean algebra, addition is interpreted as or, so the statement

Thomas Jefferson wrote the Declaration of Independence or Paris Hilton
wrote the U.S. Constitution

is translated as

A + B = 1 + 0 = 1

Because the Boolean equation evaluates to 1, the statement is true. Similarly,
multiplication is interpreted as and, so the statement

Thomas Jefferson wrote the Declaration of Independence and Paris Hilton
wrote the U.S. Constitution

is translated as

A × B = 1 × 0 = 0

In this case, the Boolean equation evaluates to 0, so the statement is false.

As you can see, the calculation of values is remarkably similar to arithmetic.
But the meaning behind the numbers is pure logic.

Check out Chapter 14 for more on Boolean algebra.

Cantor’s set theory
Set theory, pioneered by Georg Cantor in the 1870s, was another foreshadow-
ing of formal logic, but with far wider influence and usefulness than Boolean
algebra.

Loosely defined, a set is just a collection of things, which may or may not
have something in common. Here are a few examples:

{1, 2, 3, 4, 5, 6}

{Batman, Wonder Woman, Spiderman}

{Africa, Kelly Clarkson, November, Snoopy}

27Chapter 2: Logical Developments from Aristotle to the Computer

06_799416 ch02.qxp  10/26/06  10:29 AM  Page 27



This simple construction is tremendously effective for characterizing impor-
tant core ideas of logic. For example, consider this statement:

All U.S. states that contain the letter z begin with the letter A.

This statement can be verified by identifying the sets of all states that contain
the letter z and begin with the letter A. Here are the two sets:

Set 1: {Arizona} Set 2: {Alabama, Alaska, Arizona, Arkansas}

As you can see, every member of the first set is also a member of the second
set. Thus, the first set is a subset of the second set, so the original statement
is true.

Despite its apparent simplicity — or, rather, because of it — set theory would
soon become the foundation of logic and, ultimately, of formal mathematics
itself.

Frege’s formal logic
Gottlob Frege (1848–1925) invented the first real system of formal logic. The
system he invented is really one logical system embedded within another.
The smaller system, sentential logic — also known as propositional logic — uses
letters to stand for simple statements, which are then linked together using
symbols for five key concepts: not, and, or, if, and if and only if. For example:

Let E = Evelyn is at the movies.

Let P = Peter is at home.

These definitions allow you to take these two statements:

Evelyn is at the movies and Peter is at home.

If Evelyn is at the movies, then Peter is not at home.

and turn them into symbols as follows:

E & P

E → ~P

In the first statement, the symbol & means and. In the second, the symbol →
means if. . .then, and the symbol ~ means not.

I discuss sentential logic in more detail in Parts II and III.

The larger system, quantifier logic — also known as predicate logic — includes
all of the rules from sentential logic, but expands upon them. Quantifier logic
uses different letters to stand for the subject and the predicate of a simple
statement. For example:
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Let e = Evelyn

Let p = Peter

Let Mx = x is at the movies

Let Hx = x is at home

These definitions allow you to represent these two statements:

Evelyn is at the movies and Peter is at home

If Evelyn is at the movies, then Peter is not at home

as

Me & Hp

Me → ~Hp

Quantifier logic also includes two additional symbols for all and some, which
allows you to represent the statements

Everyone is at the movies

Someone is at home

as

6x [Mx]

7x [Hx]

Quantifier logic has the power to represent the four basic categorical state-
ments from Aristotle’s square of oppositions (see the section “Categorizing
categorical statements” earlier in the chapter). In fact, in its most developed
form, quantifier logic is as powerful as all previous formulations of logic.

Check out Part IV for more on quantifier logic.

Logic in the 20th Century and Beyond
By the end of the 19th century, following Euclid’s example (see “Euclid’s
axioms and theorems” earlier in this chapter), mathematicians sought to
reduce everything in mathematics to a set of theorems logically dependent
on a small number of axioms.
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Frege, the inventor of the first real system of formal logic, saw the possibility
that mathematics itself could be derived from logic and set theory. Beginning
with only a few axioms about sets, he showed that numbers and, ultimately,
all of mathematics followed logically from these axioms.

Frege’s theory seemed to work well until Bertrand Russell (1872–1970) found
a paradox, or an inconsistency that occurs when a set may contain itself as a
member. Within Frege’s system, Russell saw that it was possible to create a
set containing every set that doesn’t contain itself as a member. The problem
here is that if this set contains itself, then it doesn’t contain itself, and vice
versa. This inconsistency became known as Russell’s Paradox. (I discuss
Russell’s Paradox further in Chapter 22.)

Frege was devastated by the error, but Russell saw merit in his work. From
1910 to 1913, Bertrand Russell and Alfred North Whitehead produced the
three-volume Principia Mathematica, a reworking of Frege’s ideas grounding
mathematics in axioms of set theory and logic.

Non-classical logic
The project of reducing math and logic to a short list of axioms opens up an
interesting question: What happens if you start with a different set of axioms?

One possibility, for example, is to allow a statement to be something other
than either true or false. In other words, you can allow a statement to violate
the law of the excluded middle (see Chapter 1). The blatant violation of this
law would have been unthinkable to the Greeks, but with logic formulated
simply as a set of axioms, the possibility became available.

In 1917, Jan Lukasiewicz pioneered the first multi-valued logic, in which a
statement may be not only true or false, but also possible. This system would
be useful for classifying a statement such as this:

In the year 2162, the Yankees will win the World Series.

The introduction of category possible to the true and false pantheon was the
first radical departure from classical logic — all of the logic that had existed
before — into a new area called non-classical logic. (You can find out more
about forms of non-classical logic — including fuzzy logic and quantum 
logic — in Chapter 21.)

Gödel’s proof
The Principia Mathematica, the three-volume series written by Bertrand
Russell and Alfred North Whitehead, firmly established logic as an essential
foundation of math. However, more surprises were in store for logic.
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With mathematics defined in terms of a set of axioms the question arose as to
whether this new system was both consistent and complete. That is, was it
possible to use logic to derive every true statement about math from these
axioms, and no false statements?

In 1931, Kurt Gödel showed that an infinite number of mathematical state-
ments are true but can’t be proven given the axioms of the Principia. He also
showed that any attempt to reduce math to a consistent system of axioms
produces the same result: an infinite number of mathematical truths, called
undecidable statements, which aren’t provable within that system.

This result, called the Incompleteness Theorem, established Gödel as one of
the greatest mathematicians of the 20th century.

In a sense, Gödel’s Incompleteness Theorem provided a response to Leibniz’s
hope that logic would someday provide a method for calculating answers to
all of life’s mysteries. The response, unfortunately, was a definitive “No!”
Logic — at least in its current formulation — is insufficient to prove every
mathematical truth, let alone every truth of this complex world.

The age of computers
Rather than focus on what logic can’t do, however, mathematicians and sci-
entists have found endless ways to use logic. Foremost among these uses is
the computer, which some experts (especially computer scientists) deem the
greatest invention of the 20th century.

Hardware, the physical design of computer circuitry, uses logic gates, which
mimic the basic functions of sentential logic — taking input in the form of
electric current from one or two sources and outputting current only under
given conditions.

For example, a NOT gate outputs current only when no current is flowing
from its one input. An AND gate outputs only when current is flowing in from
both of its inputs. And finally, an OR gate outputs only when current is flow-
ing in from at least one of its two inputs.

Software, the programs that direct the actions of the hardware, is all written
in computer languages, such as Java, C++, Visual Basic, Ruby, or Python.
Although all computer languages have their differences, each contains a core
of similarities, including a set of key words from sentential logic, such as and,
or, if . . . then, and so on.

Check out Chapter 20 for more on how logic is used in computer hardware
and software.
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Searching for the final frontier
Will logic ever be sufficient to describe all of the subtleties of the human
mind and the complexities of the universe? My guess is probably not — 
especially in its current formulation.

But, logic is an immensely powerful tool whose uses have only begun to be
tapped into. And who knows? Even as I write this book, logicians are working
to develop more expressive logical systems to expand the capabilities of
mathematics and the sciences. Their efforts may yet produce inventions that
surpass all current expectations and dreams.
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Chapter 3

Just for the Sake of Argument
In This Chapter
� Breaking down the parts of a logical argument

� Separating logic from the pretenders

� Examining the wide-ranging applications of logic

Simply put, logic is the study of how to tell a good argument from a 
bad one.

In daily life, most people use the word argument to describe anything from a
tense disagreement to a shouting match. An argument, however, doesn’t have
to be heated or angry. The idea behind logical argument is simple: I want to
convince you of something, so I point out some facts that you already agree
with. Then, I show you how what I’m trying to prove follows naturally from
these facts.

In this chapter, I explain what logic is and walk you through the elements 
of a logical argument. I also provide you with lots of examples, show you
what logic isn’t, and run through the various fields that use logic. When
you’re done, you may still find yourself on the wrong end of an argument, but
at least you won’t be accused of being illogical!

Defining Logic
Here’s what you need to know about logic:

� Logic is the study of argument validity, which is whether a logical argu-
ment is valid (good) or invalid (bad).

� An argument, in logic, is a set of one or more premises followed by a 
conclusion, which are often connected by one or more intermediate 
statements.
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� The premises and the conclusion are always statements — sentences
that give information and that are either true or false.

� In a valid argument, if all of the premises are true, the conclusion must
also be true.

When you put it all together, then, here’s what you get:

Logic is the study of how to decide the circumstances in which a set of
true premises leads to a conclusion that is also true.

That’s it! As you go through this book, keep this definition in mind. Write it
down on an index card and paste it to the mirror in your bathroom. Every
topic in logic relates to this central idea in some way.

Examining argument structure
A logical argument must have one or more premises followed by a conclusion.
Here’s an example of a logical argument:

Nick: I love you.

Mabel: Yes, I know.

Nick: And you love me.

Mabel: True.

Nick: And people who love each other should get married.

Mabel: OK.

Nick: So we should get married.

This may not be the most romantic marriage proposal you’ve ever heard, but
you get the idea. If Mabel really does agree with all three of Nick’s statements,
his argument should convince her to marry him.

Take a closer look at the structure of Nick’s argument and you can see that it
contains three premises and one conclusion. Boiling it down to its most basic
form, Nick is saying:

Premises:

I love you.

You love me.

People who love each other should get married.
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Conclusion:

We should get married.

The premises and the conclusion of an argument all have one thing in
common: They are statements. A statement is simply a sentence that gives
information.

For example, the following are all statements, though none yet fit into the
premise or conclusion category:

� The capital of Mississippi is Jackson.

� Two plus two equals five.

� Your red dress is prettier than your blue one.

� Men are just like dogs.

In contrast, the following are not statements:

� A big blue Cadillac (not a complete sentence)

� Do you come here often? (a question)

� Clean your room right now. (a command)

� Golly! (an exclamation)

In logic, the information that a statement provides, and therefore the statement
itself, may be either true or false. (This rule applies whether the statement
you’re talking about is being used as one of an argument’s premises or as its
conclusion.) This is called the truth value of that statement.

Because logicians deal with truth values all the time, they save on the ever-
rising cost of ink by referring to the truth value as just the value of the state-
ment. In this book, I use both terms, but they mean the same thing.

Sometimes you can easily verify the truth value of a statement. The value of a
statement that says “The capital of Mississippi is Jackson” is true because
Mississippi’s capital is, in fact, Jackson. And two plus two is four, not five, so
the value of the statement “Two plus two equals five” is false.

In other cases, the truth value of a statement is more difficult to verify. For
example, how do you decide whether one dress really is prettier than
another, or whether men really are just like dogs?

For the moment, don’t worry about how you figure out whether a statement
is true or false, or even if you can figure it out. I touch on this in the “The
sound of soundness” section later in the chapter.
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Looking for validation
In a good argument — or a valid argument, as logicians say — when all the
premises are true, the conclusion must also be true.

Valid arguments are at the very heart of logic. Remember, in a logical argu-
ment, I want to convince you of something, so I point out facts that you
already agree with (premises), then show you that what I’m trying to prove
(the conclusion) follows from these facts. If the argument is valid, it’s airtight,
so the conclusion inevitably follows from the premises.

For example, suppose your professor says to you, “Everyone who studied did
well on my midterm. And you studied, so you did well.” Break this statement
down into premises and a conclusion to see what you get:

Premises:

If a student studied, then he or she did well on the midterm.

You studied.

Conclusion:

You did well on the midterm.

The preceding argument is an example of a valid argument. You can see that
if both premises are true, then the conclusion must be true as well.

Now you can see why I also state in the preceding section that validity rests
upon the structure of the argument. When this structure is missing, an argu-
ment is invalid even if all of its statements are true. For example, here is an
invalid argument:

Premises:

George Washington was the first U.S. president.

Albert Einstein proposed the Theory of Relativity.

Conclusion:

Bill Gates is the richest man in the world.

All of these statements happen to be true. But that doesn’t mean the argu-
ment is valid. In this case, the argument is invalid because no structure is in
place to ensure that the conclusion must follow from the premises. If
Microsoft stock suddenly crashed and Bill Gates was penniless tomorrow, the
premises would be true and the conclusion false.
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Studying Examples of Arguments
Because arguments are so important to logic, I include in this section a few
more examples so you can get a sense of how they work.

Some of these examples have arguments in which the first premise is in the
form “If . . . then . . . .” If something happens, then something else will happen.
You can think of this type of sentence as a slippery slide: Just step onto the if
at the top of the slide and you end up sliding down into the then at the
bottom.

Aristotle was the first person to study the form of arguments. For example:

Premises:

All men are mortal.

Socrates is a man.

Conclusion:

Socrates is mortal.

He called this form of argument a syllogism. (See Chapter 2 for a closer look at
early forms of logic by Aristotle and other thinkers.)

After you get the hang of how logical arguments work, the variations are end-
less. In Parts II through V of this book, you discover even more precise and
useful ways to create, understand, and prove logical arguments. For now,
though, these examples give you a taste of what valid arguments are all about.

Ice cream Sunday
Suppose that on Sunday, your son, Andrew, reminds you: “You said that if we go
to the park on Sunday, we can get ice cream. And now we’re going to the park,
so that means we can get ice cream.” His logic is impeccable. To show why this
is so, here is Andrew’s argument separated into premises and a conclusion:

Premises:

If we go to the park, then we can get ice cream.

We’re going to the park.

Conclusion:

We can get ice cream.
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The first premise sets up the if-then slope, and the second is where you step
onto it. As a result, you land inevitably in the conclusion.

Fifi’s lament
Suppose one afternoon, you arrive home from school to hear your mother
make the following argument: “If you cared about your dog, Fifi, you would
take her for a walk every day after school. But you don’t do that, so you don’t
care about her.” Here’s what you get when you break this argument down into
its premises and a conclusion:

Premises:

If you cared about Fifi, then you would walk her every day.

You don’t walk Fifi every day.

Conclusion:

You don’t care about Fifi.

The first premise here sets up an if-then slope. The second premise, however,
tells you that you don’t end up at the bottom of the slope. The only way this
could happen is if you didn’t step onto the slope in the first place. So, your
mother’s conclusion is valid — poor Fifi!

Escape from New York
Suppose that your friend Amy, describing where she lives, makes the follow-
ing argument: “Manhattan is in New York. And Hell’s Kitchen is in Manhattan.
My apartment is in Hell’s Kitchen, and I live there, so I live in New York.” 
This argument also relies on the if-then slope, but doesn’t contain the words
“if” and “then.” They’re implied in the argument but not stated specifically. 
I make this clear below:

Premises:

If something is in my apartment, then it’s in Hell’s Kitchen.

If something is in Hell’s Kitchen, then it’s in Manhattan.

If something is in Manhattan, then it’s in New York.

I live in my apartment.

Conclusion:

I live in New York.
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The if-then slope makes a conclusion apparent in this case. In this example,
though, one slope leads to another, which leads to another. After you know
that Amy lives in her apartment, you have no choice but to slide down the
next three slopes to conclude that she lives in New York.

The case of the disgruntled employee
Suppose your wife, Madge, arrives home from work in a huff and says: “You
can find three kinds of bosses in this world: the ones who pay you on time,
the ones who apologize when they pay you late, and the ones who just don’t
value you as an employee. Well, my paycheck is late and my boss hasn’t apol-
ogized, so I know that he doesn’t value me.”

Here’s her argument:

Premises:

A boss pays his employees on time or apologizes when he pays late or
doesn’t value you.

My boss didn’t pay me on time.

My boss didn’t apologize for the delay.

Conclusion:

My boss doesn’t value me.

This argument relies not on an if-then slope, but on a set of alternatives set
up using the word “or.” The first premise sets up the choice, while the second
and third each eliminate an alternative. The conclusion is the only alternative
that remains.

What Logic Isn’t
Because it has been around for about 2,000 years, logic has had a chance to
weave itself into the fabric of much of our culture. And Star Trek’s Mr. Spock
is only the tip of the iceberg.

Consider a few cultural stereotypes that involve logic: If you meet someone
who’s quiet and thoughtful, you may think that she is a logical person. When
someone makes a rash or hasty decision — or one that you just don’t agree
with — you may accuse him of being illogical and advise him to think logically
about what he’s doing. On the other hand, if you find someone cold or
detached, you may decide that he’s ruled by logic.
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Because logic is so loosely defined in common speech, people have all sorts
of misconceptions about it. In some circles, logic is revered as the greatest
human endeavor. In others, it’s despised and looked at as an exercise for the
ivory tower, which is remote from the challenges that face ordinary people in
their daily lives.

Logic may have both a good and a bad reputation because people think it’s
something that it isn’t. In this section, I pull out all the stops and show you
exactly what logic is — and what it isn’t.

You can use Table 3-1 as handy reference to compare what logic can and 
can’t do.

Table 3-1 The Cans and Cannots of Logic
Logic Can’t Logic Can

Create a valid argument. Critique a given argument for validity.

Tell you what is true or false in reality. Tell you how to work with true and
false statements.

Tell you if an argument is sound. Tell you if an argument is valid.

Justify conclusions arrived at by induction. Justify conclusions arrived at by
deduction.

Make an argument rhetorically stronger Provide the basis for rhetorical 
(more convincing). improvement.

Thinking versus logic
Reasoning, or even just plain thinking, is a hugely complex process that is only
barely understood. And — to part company with Mr. Spock and his clan —
logic is one piece of that reasoning process, but it doesn’t make up the whole
thing.

Think about the type of reasoning you might use to resolve a dispute
between two children. You’d need to observe what is happening, relate this
experience to past experiences, and try to figure out what might happen in
the future. You might choose to act harshly by threatening to punish them.
You might act kindly and reassure them. You might remain impartial and
listen to both sides of the story. Or you might take a little from all of these
approaches.

40 Part I: Overview of Logic 

07_799416 ch03.qxp  10/26/06  10:29 AM  Page 40



In short, you would have a lot of options and would somehow find a way to
keep the peace (or maybe none of them would work, but that’s a subject for
Parenting For Dummies, not Logic For Dummies). All of these options involve
thinking. Even sending both kids to their rooms without any attempt to
understand what’s going on requires the kind of thinking that humans do best
(but that even the smartest dog cannot do).

However, if you limited yourself to logic when keeping the peace with your
kids, you wouldn’t get anywhere. Logic doesn’t tell you what to do or how to
act — it’s not that kind of a tool. So when you respond to a situation by
observing, thinking, and not letting emotion sway your actions, realize that
you’re calling on a whole host of abilities that are far more sophisticated 
(and also far less certain!) than logic.

Don’t get logic and thinking confused. Logic is just one aspect of thinking, but
it’s an aspect that has been studied so rigorously that it’s understood very
well. In this way, logic is a lot more — and also a lot less — than just clear
thinking unclouded by emotion.

Reality — what a concept!
Because with logic you’re constantly working with true and false statements,
you may think that the point of it is to tell you what is true and what is 
false — in other words, you may think that logic is supposed to tell you the
nature of reality in objective terms. But, in fact, logic can’t tell you what’s
objectively true or false — it can only tell you what’s true or false relative to
other statements that you already know (or believe) to be true or false.

For example, look at these two statements:

New Jersey is a U.S. state.

Stealing is always wrong.

The first statement seems simple to verify as true, but the second seems diffi-
cult to verify at all. But, in either case, logic doesn’t tell you right from wrong
or even whether New Jersey is a state — you have to find other sources for
those things. What logic does tell you is whether an argument is valid — that
is, whether a set of true premises produces a true conclusion.

The only exception to this rule involves statements that are true in only a
very limited and trivial sense. For example:

All blue things are blue.

Either Toonsis is a dog or he isn’t a dog.

If you’re a salesman living in Denver, then you’re a salesman.
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Statements like these are called tautologies. Tautologies have an important
role to play in logic, and you find out about that role in Chapter 6. For now,
though, just understand that the main reason they’re so reliably true is
because they don’t really convey any information about the world. As far as
figuring out what in this crazy, complex world is true or false — you’re on
your own.

The sound of soundness
A sound argument is simply a valid argument plus the fact that the premises
are true, making the conclusion true as well.

Soundness goes hand in hand with reality. But, because logic doesn’t tell
whether a statement is true or false, it also doesn’t tell whether an argument
is sound. Even a valid argument will produce a lousy conclusion if you give it
a bunch of rotten premises. For example:

Premises:

Jennifer Lopez is on earth.

When the Messiah is on earth, the end times have arrived.

Jennifer Lopez is the Messiah.

Conclusion:

The end times have arrived.

Here you have a logically valid argument. However, is it sound or unsound? I
personally have a hard time accepting the third premise as true, so I would
have to say it’s an unsound argument. And you may well agree. The point is
this: Because logic won’t take a side about whether that statement is true in
reality, logic also won’t help you decide whether the argument is sound.

Make sure you see the difference between a valid argument and a sound argu-
ment. A valid argument contains a big if: If all of the premises are true, then
the conclusion must also be true. A sound argument is a valid argument with
one further condition: The premises really are true, so, of course, the conclu-
sion really is true as well.

Note that when you start off with an invalid argument, logic has a lot to say: If
an argument is invalid it’s always unsound as well. Figure 3-1 shows a little
tree structure that may help you understand arguments better.
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Deduction and induction
Because deduction rhymes with reduction, you can easily remember that in
deduction, you start with a set of possibilities and reduce it until a smaller
subset remains.

For example, a murder mystery is an exercise in deduction. Typically, the
detective begins with a set of possible suspects — for example, the butler,
the maid, the business partner, and the widow. By the end of the story, he or
she has reduced this set to only one person — for example, “The victim died
in the bathtub but was moved to the bed. But, neither woman could have
lifted the body, nor could the butler with his war wound. Therefore, the busi-
ness partner must have committed the crime.”

Induction begins with the same two letters as the word increase, which can
help you remember that in induction, you start with a limited number of
observations and increase that number by generalizing.

For example, suppose you spend the weekend in a small town and the first
five people you meet are friendly, so you inductively conclude the following:
“Everybody here is so nice.” In other words, you started with a small set of
examples and you increased it to include a larger set.

Logic allows you to reason deductively with confidence. In fact, it’s tailor-
made for sifting through a body of factual statements (premises), ruling out
plausible but inaccurate statements (invalid conclusions), and getting to the
truth (valid conclusions). For this reason, logic and deduction are intimately
connected.

Deduction works especially well in math, where the objects of study are
clearly defined and where little or no gray area exists. For example, each of
the counting numbers is either even or odd. So, if you want to prove that a
number is odd, you can do so by ruling out that the number is divisible by 2.
See the “Whose Logic Is It, Anyway?” section for more examples of how and
where logic is applied.

Arguments

Invalid

UnsoundSound

Valid

Figure 3-1:
A look at a
logic tree
can help

you tell
where your
arguments

fall.
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On the other hand, as apparently useful as induction is, it’s logically flawed.
Meeting 5 friendly people — or 10 or 10,000 — is no guarantee that the next
one you meet won’t be nasty. Meeting 10,000 people doesn’t even guarantee
that most people in the town are friendly — you may have just met all the
nice ones.

Logic, however, is more than just a good strong hunch that a conclusion is
correct. The definition of logical validity demands that if your premises are
true, the conclusion is also true. Because induction falls short of this stan-
dard, it’s considered the great white elephant of both science and philoso-
phy: It looks like it may work, but in the end it just takes up a lot of space in
the living room.

Rhetorical questions
Rhetoric is the study of what makes an argument cogent and convincing.

Take a look at the following argument:

Premises:

Science can’t explain everything in nature.

Anything in nature can be explained by either science or by the existence
of God.

Conclusion:

God exists.

Even though this may or may not be a sound argument, it’s a valid argument.
However, it may not be a cogent argument.

What makes an argument cogent is close to what makes it sound (see the
“The sound of soundness” section earlier in the chapter). In a sound argu-
ment, the premises are true beyond all doubt. In a cogent argument, the
premises are true beyond a reasonable doubt.

The phrase “reasonable doubt” may remind you of a courtroom. This connec-
tion makes sense because lawyers make logical arguments that are intended
to convince a judge or a jury of a certain conclusion. In order to be cogent,
the lawyer’s arguments must be valid and the premises of these arguments
must be believable. (See the section “Tell it to the judge (law)” where I talk
about the relevance of logic in a legal context.)
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Considering that logic is concerned with validity rather than soundness, how
does logic enter into the process of making an argument cogent? It does so
by drawing a clear distinction between the underlying form of an argument
and its content.

The form of an argument is what logic is all about. If the form doesn’t func-
tion correctly, your argument falls apart. However, when it does function cor-
rectly, you can move on with confidence to the content of your argument.

Go back and take a look at the argument at the beginning of this section. 
I said that it’s a valid argument but that it may not be cogent. Why? For one
thing, the second premise is full of holes. Consider the following:

� What if science can’t currently explain everything in nature but someday
is able to?

� What happens if something other than science or the existence of God
can explain some things?

� What if there is simply no explanation for everything we see in nature?

Each of these questions is a plausible exception to the argument. You need to
address these exceptions if you want your argument to convince intelligent,
clear-thinking people that your thinking is correct. In other words, you need
to address the rhetorical issues within your argument.
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The science of induction
Induction is reasoning from a limited number of
observations toward a general conclusion. A
classic example: After observing that 2 or 10 or
1,000 ravens are black, you may decide that all
ravens are black.

Inductive arguments, while they may be con-
vincing, are not logically valid. (You never know,
a white or pink raven may be out there some-
where.) But, although induction is logically
unreliable, scientists seem to use it all the time
with great success to explain all sorts of events
in the universe. The philosopher Karl Popper
took on the apparent contradiction, showing
that induction isn’t necessary for scientific 
discovery.

Popper’s answer, in a nutshell, is that 
science doesn’t really use induction to prove
anything — it just looks that way. Instead,
Popper says that scientists develop theories
that fit their observations and then they 
disprove alternative theories. So, the last theory
left standing becomes the accepted explanation
until a better theory is found. (This may sound
cavalier, as if any halfwit could come up with a
crackpot theory and have it accepted. But, sci-
entists are extremely adept at disproving plau-
sible theories, so don’t quit your day job.)

Even though some thinkers still question
Popper’s explanation, many find it a good expla-
nation that resolves a centuries-old philosophi-
cal problem.

07_799416 ch03.qxp  10/26/06  10:29 AM  Page 45



In reality, however, appealing to the intelligence of an audience may be less
effective than an appeal to powerful emotions and irrational beliefs. In such
cases, a simple, flawed argument may be more convincing than a sound argu-
ment that the audience has trouble understanding. A shaky argument from a
speaker whom the audience likes can be convincing where a brilliant but
obnoxious display of intellect may be only alienating.

The study of what makes an argument cogent or convincing is useful and
provocative, but it’s also outside the scope of this book. From a purely logical
standpoint, once an argument is valid, no further improvement is possible.

Whose Logic Is It, Anyway?
With all the restrictions placed upon it, you may think that logic is too
narrow to be of much use. But this narrowness is logic’s great strength. Logic
is like a laser — a tool whose best use is not illumination, but rather focus. 
A laser may not provide light for your home, but, like logic, its great power
resides in its precision. The following sections describe just a few areas in
which logic is commonly used.

Pick a number (math)
Mathematics is tailor-made to use logic in all its power. In fact, logic is one of
the three theoretical legs that math stands on. (The other two are set theory
and number theory, if you’re wondering.)

Logic and math work so well together because they’re both independent from
reality and because they’re tools that are used to help people make sense
of the world. For example, reality may contain three apples or four bananas,
but the ideas of three and four are abstractions, even though they’re abstrac-
tions that most people take for granted.

Math is made completely of such abstractions. When these abstractions get
complicated — at the level of algebra, calculus, and beyond — logic can be
called on to help bring order to their complexities. Mathematical ideas such
as number, sum, fraction, and so on are clearly defined without exceptions.
That’s why statements about these ideas are much easier to verify than a
statement about reality, such as “People are generally good at heart” or even
“All ravens are black.”
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Fly me to the moon (science)
Science uses logic to a great advantage. Like math, science uses abstractions
to make sense of reality and then applies logic to these abstractions

The sciences attempt to understand reality by:

1. Reducing reality to a set of abstractions, called a model.

2. Working within this model to reach a conclusion.

3. Applying this conclusion back to reality again.

Logic is instrumental during the second step, and the conclusions that sci-
ence attains are, not surprisingly, logical conclusions. This process is most
successful when a good correlation exists between the model and reality and
when the model lends itself well to the type of calculations that logic handles
comfortably.

The areas of science that rely most heavily on logic and math are the quantifi-
able sciences, such as physics, engineering, and chemistry. The qualitative 
sciences — biology, physiology, and medicine — use logic but with a bit less
certainty. Finally, the social sciences — such as psychology, sociology, and
economics — are the sciences whose models bear the least direct correlation
to reality, which means they tend to rely less on pure logic.

Switch on or off (computer science)
Medicine used to be called the youngest science, but now that title has been
handed over to computer science. A huge part of the success of the com-
puter revolution rests firmly on logic.

Every action your computer completes happens because of a complex struc-
ture of logical instructions. At the hardware level — the physical structure 
of the machine — logic is instrumental in the design of complex circuits that
make the computer possible. And, at the software level — the programs 
that make computers useful — computer languages based on logic provide
for the endless versatility that sets the computer apart from all other
machines.

See Chapter 20 for an in-depth discussion of logic as it relates to computers.
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Tell it to the judge (law)
As with mathematics, laws exist primarily as sets of definitions: contracts,
torts, felonies, intent to cause bodily harm, and so on. These concepts all come
into being on paper and then are applied to specific cases and interpreted in
the courts. A legal definition provides the basis for a legal argument, which is
similar to a logical argument.

For example, to demonstrate copyright infringement, a plaintiff may need to
show that the defendant published a certain quantity of material under his
own name, for monetary or other compensation, when this writing was pro-
tected by a preexisting copyright.

These criteria are similar to the premises in a logical argument: If the
premises are found to be true, the conclusion — that the defendant has com-
mitted copyright infringement — must also be true.

Find the meaning of life (philosophy)
Logic had its birth in philosophy and is often still taught as an offshoot of
philosophy rather than math. Aristotle invented logic as a method for com-
prehending the underlying structure of reason, which he saw as the motor
that propelled human attempts to understand the universe in the widest pos-
sible terms.

As with science, philosophy relies on models of reality to help provide expla-
nations for what we see. Because the models are rarely mathematical, how-
ever, philosophy tends to lean more toward rhetorical logic than
mathematical logic.
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Part II
Formal Sentential

Logic (SL)
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In this part . . .

If you’ve ever glanced at a logic textbook (maybe the one
that’s been sitting on your desk accumulating dust since

the semester began!), you may have wondered what those
funky symbols → and ↔ mean. And, this is where you can
find out. This part is exclusively about sentential logic, or
SL for short, where all those symbols come into play.

In Chapter 4, you find out how to translate statements
from English into SL using constants, variables, and the
five logical operators. Chapter 5 gives you tips for when
you enter the tricky world of evaluating SL statements to
decide whether that statement is true or false. In Chapter 6,
I introduce truth tables, which are powerful tools to find out
all sorts of things about SL statements. Chapter 7 shows
you how quick tables can replace truth tables as a fast
way to solve problems. Finally, in Chapter 8, I introduce
truth trees, which have all the advantages of truth tables
and quick tables but none of the disadvantages.
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Chapter 4

Formal Affairs
In This Chapter
� Introducing formal logic

� Defining the five logical operators

� Translating statements

If you look at a few logical arguments, which you can do in Chapter 3, you
may get the sneaking suspicion that they all have a lot in common. And

you’d be right. Over the centuries, logicians have examined their fair share of
argument examples, and what they found is that certain patterns of argu-
ments come up again and again. These patterns can be captured with a small
number of symbols, which can then be studied for their common features.

In this chapter, I introduce formal logic, a foolproof set of methods for deter-
mining whether an argument is valid or invalid. I show you how to represent
statements with placeholders called constants and variables, and I introduce
the five logical operators used for connecting simple statements into more
complex ones.

The logical operators work very much like the familiar operators in arith-
metic (like addition, subtraction, and so on), and I point out their similarities
so that you can get comfortable with the new symbols. Finally, I show you
how to translate statements in English into logical statements and vice versa.

Observing the Formalities 
of Sentential Logic

As I discuss in Chapter 2, sentential logic (or SL; also known as propositional
logic) is one of two forms of classical formal logic. (The other form is quantifier
logic, or QL, also known as predicate logic; I introduce SL in this chapter and
dig deeper into it throughout Parts II and III. I save QL until Part IV.)
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Logical arguments are communicated in language, but natural languages such
as English tend to be imprecise. Words often have more than one meaning
and sentences can be misinterpreted.

To help solve this problem, mathematicians and philosophers developed sen-
tential logic, a language specifically designed to express logical arguments
with precision and clarity. Because SL is a symbolic language, it has the
added advantage of allowing for calculation according to precisely defined
rules and formulas. Just as with mathematics, as long as you follow the rules
correctly, the correct answer is guaranteed.

In the following sections, I introduce a few types of symbols that SL uses to
achieve these goals.

Statement constants
If you ever spent a day in an algebra or pre-algebra class, you were probably
exposed to that elusive little fellow known as x. Your teacher probably told
you that x stood for a secret number and that it was your job to make x talk.
He or she then showed you all sorts of sadistic ways of torturing poor little x
until at last it broke down and revealed its true numerical identity. Oh, what
fun that was.

Making letters stand for numbers is one thing mathematicians are really good
at doing. So it isn’t surprising that formal logic, which was developed by
mathematicians, also uses letters as stand-ins. In the chapter introduction, I
let on that logic uses statements rather than numbers, so it’s logical to guess
that in formal logic, letters stand for statements. For example:

Let K = Katy is feeding her fish.

Let F = The fish are joyfully flapping their little fins.

When a letter stands for a statement in English, the letter’s called a statement
constant. By convention, capital letters are used for constants.

For some reason, when it comes to constants, logicians tend to like the let-
ters P and Q the most. Some folks say this is because P is the first letter in the
word proposition, which means the same thing as statement, and Q just came
along for the ride. My own personal theory is that after studying all that alge-
bra in school, logicians were tired of using X and Y.

Statement variables
When logicians got the idea to make letters stand for statements, they just ran
with it. They realized that they could use a letter for any statement, even a state-
ment in SL. When letters are used in this way, they’re called statement variables.
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Throughout this book, I use variables to show overall patterns in SL and con-
stants for nitty-gritty examples.

When a letter stands for a statement in SL, the letter’s called a statement vari-
able. By convention, small letters are used for variables. In this book, I use x
and y almost exclusively, and occasionally use w and z when needed.

Truth value
As I cover in Chapter 3, every statement in logic has a truth value that’s either
true or false. In formal logic, true is shortened to T and false to F.

For example, consider the truth values of these two statement constants:

Let N = The Nile is the longest river in Africa.

Let L = Leonardo DiCaprio is the king of the world.

As it happens, it’s true that the Nile is the longest river in Africa, so the truth
value of N is T. And it so happens that Leonardo DiCaprio is not the king of
the world, so the truth value of L is F.

Boolean algebra, the precursor to formal logic, uses the value 1 to represent
T and 0 to represent F. These two values are still used in computer logic. 
(I discuss Boolean algebra in Chapter 14 and computer logic in Chapter 20.)

The Five SL Operators
SL has five basic operators, as you can see in Table 4-1. These logical opera-
tors are similar to the arithmetic operators in that they take values you give
them and produce a new value. However, logical operators really only deal
with two values: the truth values, T and F. In the sections that follow, I
explain each of the operators in Table 4-1.

Table 4-1 The Five Logical Operators
Operator Technical Name What It Means Example

~ Negation Not ~x

& Conjunction And x & y

0 Disjunction Or x 0 y

→ Conditional If . . . then x → y

↔ Biconditional If and only if x ↔ y
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Feeling negative
You can turn any statement into its opposite by adding or changing a few words.
This is called negating the statement. Of course, negating a true statement turns
it into a false statement, and negating a false statement makes it true. In general,
then, every statement has the opposite truth value from its negation.

For example, I can tweak statement N below by simply inserting one little word:

N = The Nile is the longest river in Africa.

~N = The Nile is not the longest river in Africa.

The addition of not transforms the original statement into its opposite, which
is the negation of that statement. Having established that the value of N is 
T (see the “Truth value” section earlier in the chapter), I can conclude that
the value of its negation is F.

In SL, the negation operator is tilde (~). Consider another example of negation:

L = Leonardo DiCaprio is the king of the world.

~L = Leonardo DiCaprio is not the king of the world.

In this case, after establishing that the value of L is F (see the “Truth value”
section earlier in the chapter), you also know that that value of ~L is T.

This information is simple to summarize in a table, as follows:

Memorize the information in this table. You’ll be using it a lot in the other
chapters.

As you can see, in the table I use the variable x to stand for any SL statement.
When the SL statement that x stands for is true, then ~x is false. On the other
hand, when the statement that x stands for is false, then ~x is true.

Different books on logic may use the dash (–) or another symbol that looks
like a sideways L for the not-operator rather than the tilde. I’m a tilde sort of
guy, but whatever the symbol, it means the same thing.

x ~x

T F

F T
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Feeling even more negative
Although negation is only just the beginning, SL’s little system of symbols has
already grown more powerful than it looks. For example, given that the value
of a new statement R is T and that its negation ~R is F, what can you say
about ~~R?

If you guessed that the value of ~~R is T, give yourself a pat on the back. And as
you do, notice that you were able to figure this out even though I didn’t define R.

Witness the magic and power of logic. With just a few simple rules, you know
that any statement of this form must be true, even if you don’t know exactly
what the statement is. This guarantee is similar to the idea that as soon as you
know that 2 apples + 3 apples = 5 apples, you know that your result will be true
no matter what you’re counting: apples, dinosaurs, leprechauns — whatever.

Tabling the motion
Because R can take on only two possible truth values — T or F — you can
organize the information about ~R, ~~R, and so forth in a table:

Tables of this kind are called truth tables. The first column contains the two
possible truth values of R: T and F. The remaining columns give the corre-
sponding values for the different related statements: ~R, ~~R, and so on.

Reading truth tables is pretty straightforward. Using the sample table above,
if you know that the value of R is F and want to find out the value of ~~~R, you
find the point where the bottom row crosses the last column. The truth value
in this position tells you that when R is F, ~~~R is T.

Chapter 6 shows you how truth tables are a powerful tool in logic, but for
now, I just use them to organize information clearly.

Displaying a show of ands
The symbol & is called the conjunction operator or, more simply, the and-
operator. You can think of it as simply the word and placed between two
statements, joining them together to make a new statement.

R ~R

T F

F T

~~R ~~~R

T F

F T
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Check out this statement:

Albany is the capital of New York and Joe Montana was quarterback for
the San Francisco 49ers.

Is this statement true or false? To decide, you need to recognize that this
statement really contains two smaller statements: one about Albany and
another about Joe Montana. Its truth value depends on the truth value of
both parts.

Because both parts are true, the statement as a whole is true. Suppose, how-
ever, that one of the statements were false. Imagine some alternate universe
where Albany is not the capital of New York or where Joe Montana was never
the quarterback of the 49ers in the past. In either case, the truth value of the
statement would be false.

In logic, you handle statements that involve the word and in a special way.
First, each smaller statement is assigned a constant:

Let A = Albany is the capital of New York.

Let J = Joe Montana was the quarterback for the San Francisco 49ers.

Then, you connect the two constants as follows:

A & J

The truth value of this new statement is based on the truth values of the two
parts that you’ve joined together. If both of these parts are true, then the
whole statement is true. On the other hand, if either of these parts (or both
of them) is false, then the whole statement is false.

For the &-operator, you can organize the truth values of x and y into a table:

x y

T T

T F

x & y

T

F

F T F

F F F
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Memorize the information in this table. Here’s a quick way to remember it:
An and-statement is true only when both parts of the statement are true.
Otherwise, it’s false.

Notice that the table for the &-operator above has four rows rather than just
the two rows that were needed for the ~-operator (see the “Tabling the
motion” section earlier in the chapter). The tables are different because the
&-operator always operates on two variables, so its table has to track all four
paired values for x and y.

Different books on logic may use a dot (⋅) or an inverted V for the and-operator
rather than the ampersand. In other books, x & y is simply written xy. Whatever
the convention, it means the same thing.

Digging for or
As with and, a statement may be made up of two smaller statements joined
together with the word or. Logic provides an operator for the word or: The
disjunction operator, or just plain or-operator, is 0.

Take a look at this statement:

Albany is the capital of New York or Joe Montana was quarterback for the
San Francisco 49ers.

If you designate the first part of the statement as A and the second part as Q,
you can connect the two constants A and Q as follows:

A 0 Q

Is this statement true? Just as with a &-statement, when both parts of a 0-
statement are true, the entire statement is true. Therefore, the statement A 0
Q has a truth value T. However, with a 0-statement, even if only one part is
true, the statement as a whole is still true. For example:

Let A = Albany is the capital of New York.

Let S = Joe Montana was the shortstop for the Boston Red Sox.

Now the statement A 0 S means:

Albany is the capital of New York or Joe Montana was shortstop for the
Boston Red Sox.

Even though the second part of this statement is false, the whole statement is
true because one part of it is true. Therefore, A 0 S has a truth value of T.
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But when both parts of a 0-statement statement are false, the whole state-
ment is false. For example:

Let Z = Albany is the capital of New Zealand.

Let S = Joe Montana was the shortstop for the Boston Red Sox.

Now the statement Z 0 S means:

Albany is the capital of New Zealand or Joe Montana was the shortstop
for the Boston Red Sox.

This is a false statement because both parts of it are false. So Z 0 S has a
value of F.

For the 0-operator, you can make a table with four rows that covers all possi-
ble combinations of truth values for x and y:

Memorize the information in this table. A quick way to remember it is: An or-
statement is false only when both parts of it are false. Otherwise, it’s true.

In English, the word or has two distinct meanings:

� Inclusive or: When or means “this choice or that choice, or both”; the
possibility that both parts of the statement are true is included. An
example of an inclusive or is when a mom says “Before you go out, you
need to clean your room or do your homework.” Clearly, she means for
her child to do one of these tasks or both of them.

� Exclusive or: When or means “this choice or that choice, but not both”;
the possibility that both parts of the statement are true is excluded. An
example of an exclusive or is when a mom says, “I’ll give you money to
go to the mall today or horseback riding tomorrow.” She means that her
child gets money for one of these treats, but not both.

x y

T T

T F

x 0 y

T

T

F T T

F F F
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English is ambiguous, but logic isn’t. By convention, in logic, the 0-operator
is always inclusive. If both parts of a 0-statement are true, the statement
also is true.

Both the inclusive and exclusive or are used in the design of logic gates, an
integral part of computer hardware. See Chapter 20 for more on computer
logic.

Getting iffy
The symbol → is called the conditional operator, also known as the if . . . 
then-operator or just the if-operator. To understand how the →-operator
works, take a look at this statement:

If a wig is hanging off of a bedpost in the guest room, then Aunt Doris is
visiting.

You can see that the statement contains two separate statements, each of
which can be represented by a statement constant:

Let W = A wig is hanging off of a bedpost in the guest room.

Let D = Aunt Doris is visiting.

Then, connect the two with a new operator:

W → D

As with the other operators covered in this chapter, for the →-operator, you
can make a table with four rows that covers all possible combinations of
truth values for x and y:

x y

T T

T F

x → y

T

F

F T T

F F T
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Memorize the information in this table. A quick way to remember it is: An if-
statement is false only when the first part of it is true and the second part is
false. Otherwise, it’s true.

Different books on logic may use a � for the if-operator rather than the arrow.
Whatever the symbol, it means the same thing.

There’s nothing random about the way the →-operator looks. The arrow
points from left to right for an important reason: When an if-statement is true
and the first part of it is true, the second part must be true as well.

To make this clear, I need a couple new constants:

Let B = You’re in Boston.

Let M = You’re in Massachusetts.

Now, consider the statement

B → M

This statement means, “If you’re in Boston, then you’re in Massachusetts.”
Clearly, the statement is true, but why is this so? Because Boston is com-
pletely inside Massachusetts.

The converse of a statement
When you reverse an if-statement, you produce a new statement called the
converse of that statement. For example, here’s an if-statement followed by its
converse:

If-statement: If you’re in Boston, then you’re in Massachusetts.

Converse: If you’re in Massachusetts, then you’re in Boston.

When an if-statement is true, it doesn’t necessarily follow that its converse is
true as well. Although the original statement above is true, the converse is
false. You could be in Concord, Provincetown, or any number of other places
in Massachusetts.

The inverse of a statement
When you negate both parts of an if-statement, you get another statement
called the inverse of that statement. For example, compare the following:

If-statement: If you’re in Boston, then you’re in Massachusetts.

Inverse: If you’re not in Boston, then you’re not in Massachusetts.
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When an if-statement is true, it doesn’t necessarily follow that its inverse is
true as well. Using the preceding example, even if you’re not in Boston, you
could still be somewhere else in Massachusetts.

The contrapositive of a statement
When you both reverse the order and negate the two parts of an if-statement,
you get the contrapositive of the original statement. I know; I know. It’s getting
deep. But I have an example:

If-statement: If you’re in Boston, then you’re in Massachusetts.

Contrapositive: If you’re not in Massachusetts, then you’re not in Boston.

An if-statement and its contrapositive always have the same truth value.
Using the example, given that the first part is true — you’re not in
Massachusetts — it’s obvious that you can’t be in Boston.

Although a statement and its contrapositive always have the same truth
value, in practice proving the contrapositive of a statement is sometimes
easier than proving the statement itself. (For more on proofs in SL, flip to 
Part III.) The converse of a statement always has the same truth value as the
inverse of the same statement. This is because the converse and inverse are
actually contrapositives of each other.

Getting even iffier
In SL, the if-and-only-if-operator (↔) is similar to the if-operator (see “Getting
iffy” earlier in the chapter) but has more going on. The best way to under-
stand the if-and-only-if-operator is first to establish an if-statement and then
work your way along.

Consider this if-statement:

If a wig is hanging off of a bedpost in the guest room, then Aunt Doris is
visiting.

This statement says:

1. If you see a wig, then you know that Aunt Doris is here, but

2. If you see Aunt Doris, then you can’t be sure that there is a wig.

This if-statement can be represented in SL as W → D, with the arrow pointing
in the direction of implication: Wig implies Doris.
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Now consider this statement:

A wig is hanging off of a bedpost in the guest room if and only if Aunt
Doris is visiting.

This statement is similar to the previous one, but it extends things a bit fur-
ther. In this case, the statement says:

1. If you see a wig, then you know that Aunt Doris is here, and

2. If you see Aunt Doris, then you know that there is a wig.

This statement can be represented in SL as W ↔ D, with the double arrow pro-
viding a clue to its meanings: Both wig implies Doris, and Doris implies wig.

Because the if-operator (→) is also called the conditional operator, the if-and-
only-if-operator (↔) is quite logically called the biconditional operator.
Another shorter way of referring to it is the iff-operator. But this stuff can be
tricky enough, so to be clear, I spell it out as if-and-only-if.

Don’t confuse the if-and-only-if-operator (↔) with the if-operator (→).

As with the other operators, for the ↔-operator, you can make a table with
four rows that covers all possible combinations of truth values for x
and y:

Memorize the information in this table. A quick way to remember it is: An if-
and-only-if-statement is true only when both parts of it have the same truth
value. Otherwise, it’s false.

An important feature of the if-and-only-if-statement is that both parts of the
statement are logically equivalent, which means that one can’t be true with-
out the other.

x y

T T

T F

x ↔ y

T

F

F T F

F F T
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Check out two more examples of if-and-only-if-statements:

You’re in Boston if and only if you’re in Beantown.

A number is even if and only if you can divide it by two without a remainder.

The first statement is saying that Boston is Beantown. The second statement
is pointing out the equivalence of its two parts — being an even number is
equivalent to being evenly divisible by two.

Different books on logic may use / for the if-and-only-if-operator rather than
the double arrow. Whatever the symbol, it means the same thing.

How SL Is Like Simple Arithmetic
As I discuss in “The Five SL Operators” section earlier in this chapter, SL is a
close cousin to math in that the operators for both disciplines take values
you give them and produce a new value. But the similarity doesn’t stop there.
After you see a few other similarities, SL becomes much easier to understand.

The ins and outs of values
In arithmetic, each of the four basic operators turns two numbers into one
number. For example:

6 + 2 = 8 6 – 2 = 4 6 × 2 = 12 6 ÷ 2 = 3

The two numbers you start out with are called input values, and the number
you end up with is the output value.

In each case, placing the operator between two input values (6 and 2) pro-
duces an output value (in boldface). Because there are two input values,
these operators are called binary operators.

The minus sign also serves another purpose in math. When you place it in
front of a positive number, the minus sign turns that number into a negative
number. But when you place it in front of a negative number, the minus sign
turns that number into a positive number. For example:

– –4 = 4

In this case, the first minus sign operates on one input value (–4) and pro-
duces an output value (4). When used in this way, the minus sign is a unary
operator, because there is only one input value.
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In arithmetic, you have to worry about an infinite number of values. SL, how-
ever, only has two values: T and F. (For more on these truth values, jump
back to the “Truth value” section earlier in this chapter.)

As with arithmetic, logic has four binary operators and one unary operator.
In SL, the binary operators are &, 0 →, and ↔, and the unary operator 
is ~. (Each of these operators is covered in the section “The Five SL Operators”
earlier in this chapter.)

For both types of operators, the same basic rules apply in SL as in arithmetic:

� Stick a binary operator between any pair of input values and you get an
output value.

� Place a unary operator in front of an input value and you get an output
value.

For example, starting with a pair of input values, F and T, in that order, you
can combine them by using the four binary operators as follows:

F & T = F F 0 T = T F → T = T F ↔ T = T

In each case, the operator produces an output value, which of course is
either T or F. Similarly, placing the unary operator ~ in front of either input
value T or F produces an output value:

~F = T ~T = F

There’s no substitute for substitution
Even if you’ve had only the slightest exposure to algebra, you know that let-
ters can stand for numbers. For example, if I tell you that

a = 9 and b = 3

you can figure out that

a + b = 12 a – b = 6 a × b = 27 a ÷ b = 3

When you’re working with constants in SL, the same rules apply. You just
need to substitute the correct values (T or F) for each constant. For example,
look at the following problem:

Given that P is true, Q is false, and R is true, find the values of the follow-
ing statements:
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1. P 0 Q

2. P → R

3. Q ↔ R

In problem 1, you substitute T for P and F for Q. This gives you T 0 F, which
equals T.

In problem 2, you substitute T for P and T for R. This gives you T → T, which
equals T.

In problem 3, you substitute F for Q and T for R. This gives you F ↔ T, which
equals F.

Parenthetical guidance suggested
In arithmetic, parentheses are used to group numbers and operations
together. For example:

–((4 + 8) ÷ 3)

In this expression, the parentheses tell you to solve 4 + 8 first, which gives
you 12. Then, moving outward to the next set of parentheses, you solve 12 ÷
3, giving you 4. Finally, the unary negation operator (–) changes this to –4.

In general, then, you start with the innermost pair of parentheses and work
your way out. SL uses parentheses in the same way. For example, given that 
P is true, Q is false, and R is true, find the value of the following statement:

~((P 0 Q) → ~R)

Starting with the innermost pair of parentheses, P 0 Q becomes T 0 F, which
simplifies to T. Then, moving outward to the next pair of parentheses, T → ~R
becomes T → F, which simplifies to F. And finally, the ~ appearing outside all
the parentheses changes this F to T.

The process of reducing a statement with more than one value down to a
single value is called evaluating the statement. It’s an important tool that you
find out more about in Chapter 5.

Lost in Translation
SL is a language, so after you know the rules, you can translate back and
forth between SL and English . . . or Spanish or Chinese, for that matter — but
let’s stick to English! (However, if you’re into Spanish or Chinese, check out
Spanish For Dummies or Chinese For Dummies.)
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The main strength of SL is that it’s clear and unambiguous. These qualities
make it easy to start with a statement in SL and translate it into English.
That’s why I call this translation direction the easy way. English, however, 
can be unclear and ambiguous. (See the section “Digging for or” earlier in
the chapter for evidence that even the simple word or has several meanings,
depending on how you use it.) Because you have to be very careful when
translating sentences from English into SL, I call this the not-so-easy way.

Discovering how to translate statements in both directions will sharpen your
understanding of SL by making the concepts behind all of these odd little
symbols a lot clearer. And as you proceed into the next few chapters, if you
start to get confused, just remember that every statement in SL, no matter
how complex, could also be stated in English.

The easy way — translating 
from SL to English
Sometimes examples say it best. So here are examples of several ways to
translate each type of operator. They’re all pretty straightforward, so pick
your favorite and run with it. Throughout this section, I use the following
statement constants:

Let A = Aaron loves Alma.

Let B = The boat is in the bay.

Let C = Cathy is catching catfish.

Translating statements with ~
You can translate the statement ~A into English in any of the following ways:

It is not the case that Aaron loves Alma.

It isn’t true that Aaron loves Alma.

Aaron does not love Alma.

Aaron doesn’t love Alma.

Translating statements with &
Here are two ways to translate the SL statement A & B:

Aaron loves Alma and the boat is in the bay.

Both Aaron loves Alma and the boat is in the bay.
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Translating statements with 0
Here are two ways to translate A 0 C:

Aaron loves Alma or Cathy is catching catfish.

Either Aaron loves Alma or Cathy is catching catfish.

Translating statements with →
You can translate the statement B → C in any of the following ways:

If the boat is in the bay, then Cathy is catching catfish.

The boat is in the bay implies Cathy is catching catfish.

The boat is in the bay implies that Cathy is catching catfish.

The boat is in the bay only if Cathy is catching catfish.

Translating statements with ↔
There’s really only one way to translate the SL statement C ↔ A:

Cathy is catching catfish if and only if the boat is in the bay.

Translating more complex statements
For more complex statements, you can refer to the guidelines I discussed ear-
lier in the chapter, in “How SL Is Like Simple Arithmetic.” Simply translate
statements step by step, starting from inside the parentheses. For example:

(~A & B) 0 ~C

The part inside the parentheses is (~A & B), which translates as

Aaron doesn’t love Alma and the boat is in the bay.

Adding on the last part of the statement produces:

Aaron doesn’t love Alma and the boat is in the bay or Cathy is not catch-
ing catfish.

Notice that although the sentence is technically correct, it’s somewhat con-
fusing because the parentheses are gone and everything runs together. A
good way to clean it up is to translate it as

Either Aaron doesn’t love Alma and the boat is in the bay or Cathy is not
catching catfish.
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The word either clarifies just how much the word or is meant to encompass.
In contrast, the statement

~A & (B 0 ~C)

can be translated as

Aaron doesn’t love Alma and either the boat is in the bay or Cathy is not
catching catfish.

Now take a look at another example:

~(A → (~B & C))

Starting from the inner parentheses, you translate (~B & C) as

The boat is not in the bay and Cathy is catching catfish.

Moving to the outer parentheses, (A → (~B & C)) becomes this:

If Aaron loves Alma, then both the boat is not in the bay and Cathy is
catching catfish.

Note the addition of the word both to make it clear that the original and-
statement is in parentheses. Finally, add on the ~ to get:

It isn’t the case that if Aaron loves Alma, then both the boat is not in the
bay and Cathy is catching catfish.

Okay, so it’s a little hairy, but it makes about as much sense as a sentence like
that ever will. You’ll probably never have to translate statements much more
complicated than these, but you should still reflect for a moment on the fact
that SL can handle statements of any length with perfect clarity.

The not-so-easy way — translating 
from English to SL
Each of the four binary operators in SL (&, 0 →, and ↔) is a connector that
joins a pair of statements together. In English, words that connect statements
together are called conjunctions. Here are some examples of conjunctions:
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The ~-operator is usually translated into English as not, but it also can appear
in other clever disguises, such as contractions (can’t, don’t, won’t, and so
on). With all this variety in language, an exhaustive account of how to turn
English into SL would probably take ten books this size. What follows, then, is
a slightly shorter account. In this section, I list some of the most common
words and phrases, discuss each one, and then provide an example of how to
translate it into SL.

First, though, I need to define some constants:

Let K = Chloe lives in Kentucky.

Let L = Chloe lives in Louisville.

Let M = I like Mona.

Let N = I like Nunu.

Let O = Chloe likes Olivia.

But, though, however, although, nevertheless . . .
Lots of words in English link statements together with the same logical mean-
ing as the word and. Here are a few examples:

I like Mona, but I like Nunu.

Though I like Mona, I like Nunu.

Although I like Mona, I like Nunu.

I like Mona; however, I like Nunu.

I like Mona; nevertheless, I like Nunu.

Each of these words provides a slightly different meaning, but because you’re
just talking logic here, you translate them all as

M & N

After a statement has been translated from English to SL, the rules of SL take
over. So here, just as with any &-statement, if either M or N is false, the state-
ment M & N is false. Otherwise, it’s true.
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Neither . . . nor
The neither . . . nor structure negates both parts of the statement. For example:

I like neither Mona nor Nunu.

This statement means that both I don’t like Mona and I don’t like Nunu.
Translate this statement into SL as

~M & ~N

Not . . . both
The not . . . both structure means that even though the statement as a whole
is negated, either part by itself may not be negated. For example:

I do not like both Mona and Nunu.

This statement says that even though I don’t like both women together, I may
like one of them. So you translate this statement as

~(M & N)

. . . If . . .
You already know how to translate a statement that starts with the word if.
But this becomes more confusing when you find the word if placed in the
middle of a statement, as in:

I like Mona if Chloe likes Olivia.

To clarify the statement, just untangle it as follows:

If Chloe likes Olivia, I like Mona.

With the statement reorganized, you can see that the way to translate it is:

O → M

. . . Only if . . .
This one is tricky until you think about it, and then it’s really easy and you’ll
get it right every time. First, notice that the following statement is true:

Chloe lives in Louisville only if she lives in Kentucky.

This makes sense, because the only way that Chloe can live in Louisville is if
she lives in Kentucky. Now, notice that the following statement is also true:

If Chloe lives in Louisville, then she lives in Kentucky.
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This shows you that the two sentences are logically equivalent. So when
faced with an . . . only if . . . between two parts of a statement, just realize that
it’s an if-statement that’s already in the correct order. Translate it as

L → K

. . . Or . . .
As I mention in the section “Digging for or” earlier in this chapter, this little
word is big trouble. For example, it appears in this statement:

Chloe lives in Kentucky or Chloe likes Olivia.

Depending on how it’s used, or can have two different meanings:

Chloe lives in Kentucky or Chloe likes Olivia, or both.

Chloe lives in Kentucky or Chloe likes Olivia, but not both.

Given or’s multiple personalities, my advice is this: When you see an or looking
lonesome in a statement to be translated, it probably means that someone
(like your professor) wants to make sure you know that, in logic, or always
means or . . . or both. So translate the statement as

K 0 O

. . . Or . . . or both
This structure is clear and easy: It says what it means and means what it
says. For example:

Chloe lives in Kentucky or Chloe likes Olivia, or both.

Translate this statement as

K 0 O

. . . Or . . . but not both
This structure has a clear meaning, but it’s not so easy to translate. For 
example:

Chloe lives in Kentucky or Chloe likes Olivia, but not both.

In order to translate the words but not both into SL, you need to do some
fancy logical footwork. As I discuss in the section “But, though, however,
although, nevertheless . . .” earlier in the chapter, the word but becomes &,
and the words not both are translated here as ~(K & O). Putting it all together,
you translate the whole statement as

(K 0 O) & ~(K & O)

71Chapter 4: Formal Affairs

09_799416 ch04.qxp  10/26/06  10:29 AM  Page 71



72 Part II: Formal Sentential Logic (SL) 

09_799416 ch04.qxp  10/26/06  10:29 AM  Page 72



Chapter 5

The Value of Evaluation
In This Chapter
� Evaluating SL statements

� Identifying a statement’s main operator

� Knowing the eight forms of SL statements

People love simplicity.

Have you ever read halfway through a movie review and then skipped to the
end to find out whether the movie got a thumbs up or a thumbs down? Or,
have you paged through a car magazine checking out how many stars every
car received? I’m sure you never sat with a friend rating the guys or girls you
both know on a scale of 1 to 10.

Movies, cars, guys, and girls are complicated. There’s so much to under-
stand. But people love simplicity. I’m sure you, like me, feel a sense of relief
when you can reduce all of that complexity down to something small enough
to carry in your pocket.

Logic was invented with this need in mind. In Chapter 4, you discover how to
take a complicated statement in English and write it with just a few symbols
in SL. In this chapter, you take this one step further by figuring out how to
take a complicated statement in formal logic and reduce it to a single truth
value: either T or F. Like the thumbs up or thumbs down of movie reviews,
life doesn’t get much simpler than that.

This conversion process is called evaluating a statement or computing a state-
ment’s truth value. Whichever term you use, it’s one of the key skills you need
in your study of logic. After you’ve mastered this process, a lot of locked
doors will suddenly fling themselves open.
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Value Is the Bottom Line
An important aspect of SL is that it allows you to simplify complex state-
ments through the process of evaluation. When you evaluate an SL statement,
you replace all of its constants with truth values (T or F) and then reduce the
statement to a single truth value. When you think evaluation, remember that it
means to find the value of something.

Correctly evaluating statements is probably the most important skill to
master early on in your study of logic. Students who have trouble with this
skill suffer for two reasons:

� It’s time-consuming and frustrating if you don’t know how to do it well.

� It’s the first step you need to handle a bunch of other stuff, as you see
later on in the book.

Here’s the good news: Evaluating is a plug-and-chug skill. It doesn’t require
cleverness or ingenuity. You just need to know the rules of the game, and
then you need to practice, practice, practice.

Those rules of the game for evaluating SL statements are a lot like the rules
you already know for evaluating arithmetic statements. (Check out Chapter 4,
where I outline other similarities between SL and arithmetic.) For example,
take a look at this simple arithmetic problem:

5 + (2 × (4 – 1)) = ?

To solve the problem, first evaluate what’s inside the innermost set of paren-
theses. That is, because the value of 4 – 1 is 3, you can replace (4 – 1) with 3,
and the problem becomes:

5 + (2 × 3) = ?

Next, evaluate what’s inside the remaining set of parentheses. This time,
because the value of 2 × 3 is 6, you can make another replacement:

5 + 6 = ?

At this point, the problem is easy to solve. Because 5 + 6 evaluates to 11, this
is the answer. Through a series of evaluations, a string of numbers and sym-
bols reduces to a single value.
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Getting started with SL evaluation
Look at the following problem in SL:

Evaluate the statement ~(~P → (~Q & R)

Here, the goal is the same as with an arithmetic problem: You want to evalu-
ate the statement that you’re given, which means you need to find its value.

In the arithmetic problem I discussed earlier in the chapter, though, you
already knew the values of the four numbers (5, 2, 4, and 1). In the SL prob-
lem, you need to know the values of P, Q, and R. That is, you need to know an
interpretation for the statement.

An interpretation of a statement is a fixed set of truth values for all of the con-
stants in that statement.

For example, one possible interpretation for the statement is that P = T, Q = F,
and R = T.

Remember that P, Q, and R are constants and that T and F are truth values.
So when I write P = T, this is doesn’t mean that these two things are equal.
Instead, it is notation that means “the truth value of P is T.

You may not know for certain that this interpretation is correct, but you can
still solve the problem under this interpretation — that is, under the assump-
tion that it is correct. So, the full problem in this case would be:

Under the interpretation P = T, Q = F, R = T, evaluate the statement 
~(~P → (~Q & R)).

Now you can solve this problem. The first thing to do is replace each con-
stant with its truth value:

~(~T → (~F & T))

After you replace the constants in an SL statement with their truth values,
technically you don’t have a statement any more, and the purists may scowl.
But while you are learning about evaluation, turning SL statements into
expressions of this kind is helpful.

The second and third ~-operators are directly linked to truth values, which
makes them easy to evaluate because the value of ~T is F and the value of ~F
is T. (Check out Chapter 4 for a refresher on working with the logical opera-
tors that you find in this chapter.) So, you can rewrite the expression:

~(F → (T & T))
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Parentheses in SL work just as they do in arithmetic. They break up an
expression so that it’s clear what you need to figure out first. In this case,
the innermost set of parentheses contains T & T. And because the value 
of T & T is T, this expression simplifies to:

~(F → T)

Now, evaluate what’s in the remaining set of parentheses. Because the value
of F → T is T, the expression simplifies further to:

~(T)

At this point, it’s easy to see that ~T evaluates to F, which is the answer. The
result here is similar to the result of the arithmetic problem: You started with
a complex statement and evaluated it by finding its value, which in logic is
always either T or F.

Stacking up another method
The evaluation method I used in the previous section works for all state-
ments in SL, no matter how complex they are. In this next example, I use the
same method with a small cosmetic change: Instead of rewriting the entire
equation at every step, I just accumulate truth values as I go along. Here’s a
new problem:

Evaluate ~(~P & (~Q ↔ R)) using the interpretation P = F, Q = T, and R = T.

The first step is to replace the constants by their truth values. In the previous
section’s example, I rewrote the whole equation. This time, just place the
truth value for each constant directly below it:

This example has two ~-operators that immediately precede constants. These
operators are very easy to work with: Simply put the correct value under
each operator. As you can see below, the new values are larger, and the
underlined values next to them show you where these values came from.

TF FT T

~(~P & (~Q ↔ R))

F T T
~(~P & (~Q ↔ R))
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At this stage, don’t try to evaluate any ~-operator that immediately precedes
an open parenthesis. Because this operator negates everything inside the
parentheses, you have to wait until you know the value of everything inside
before you can put the operator into play.

Now you can work on what’s inside the parentheses. Be sure to start on the
inside set. The operator you’re evaluating here is the ↔-operator. On one
side of it, the value of ~Q is F. On the other side, the value of R is T. That
gives you F ↔ T, which evaluates to F. Place this value, directly under the
operator you just evaluated, which is the ↔-operator. Doing so allows you to
see that the value of everything inside the parentheses is F:

Now move outward to the next set of parentheses. Here, you’re evaluating the
&-operator. On one side, the value of ~P is T. On the other side, the value of
everything inside the inner parentheses (that is, the value under the ↔) is F.
That gives you T & F, which evaluates to F. Place this value under the &-operator:

The final step is to evaluate the entire statement. The operator you’re 
evaluating now is the ~-operator. This negates everything inside the 
parentheses — meaning the value under the &-operator, which evaluates 
to F. Place this value under the ~-operator:

Now, everything is evaluated, so this last value, T, is the value of the whole
statement. In other words, when P = F, Q = T, and R = T, the statement ~(~P &
(~Q ↔ R)) evaluates to T. As you can see, evaluation allows you to turn a
great deal of information into a single truth value. It doesn’t get much simpler
than that!

Making a Statement
Now that you’ve had a taste of evaluation, I’m going to give you a closer look
at how SL statements work. After you understand a little bit more about
statements, you’ll find that they practically evaluate themselves.

TF FTT TF F

~(~P & (~Q ↔ R))

TF FTF TF

~(~P & (~Q ↔ R))

TF FT F T

~(~P & (~Q ↔ R))
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Identifying sub-statements
A sub-statement is any piece of a statement that can stand on its own as a
complete statement.

For example, the statement P 0 (Q & R) contains the following two sub-
statements that can stand on their own as complete statements:

� Q & R

� P

And here is an example of a piece of the statement P 0 (Q & R) that is not a
sub-statement: 0 (Q &. Even though this is a piece of the statement, it obvi-
ously isn’t a complete statement in its own right. Instead, it’s just a meaning-
less string of SL symbols. (In Chapter 13, you discover the fine points of how
to tell a statement from a string of symbols.)

When you evaluate a statement, you begin by placing values on the smallest
possible sub-statements, which are the individual constants.

For example, suppose you want to evaluate the statement P 0 (Q & R) based
on the interpretation P = T, Q = T, R = F. You begin by placing the truth value
below each constant:

Now you can evaluate the larger sub-statement Q & R:

Finally, you can evaluate the whole statement:

As you can see, evaluation of a long statement works best when you break it
down piece by piece into sub-statements that can be evaluated more easily.

T
P 0 (Q & R)

FFTT

F
P 0 (Q & R)

FTT

T T F
P 0 (Q & R)
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Scoping out a statement
Once you know what a sub-statement is, it’s easy to understand the scope of
an operator. The scope of an operator is the smallest sub-statement that
includes the operator in question.

For example, take the statement (P → (Q 0 R)) ↔ S. Suppose you want to
know the scope of the 0-operator. Two possible sub-statements that include
this operator are P → (Q 0 R) and Q 0 R. The shorter of the two is Q 0 R, so
this is the scope of the operator.

You can also think of an operator’s scope as the range of influence that this
operator holds over the statement.

To illustrate the range of influence, I’ve underlined the scope of the 
0-operator in the following statement:

(P → (Q 0 R)) ↔ S

This shows that the 0-operator affects, or influences, the constants Q and R,
but not the constants P or S.

In contrast, I’ve underlined the scope of the →-operator in the same 
statement:

(P → (Q 0 R)) ↔ S

This shows that the →-operator’s range of influence includes the constant P
and the sub-statement (Q 0 R), but not the constant S.

Before you can evaluate an operator, you need to know the truth value of
every other constant and operator in its scope. And, once you understand
how to find the scope of an operator, it’s easy to see why you need to begin
evaluating a statement from inside the parentheses.

For example, in the statement (P → (Q 0 R)) ↔ S, the 0-operator is within the
scope of the →-operator. This means that you can’t evaluate the →-operator
until you know the value of the 0-operator.

Be careful when figuring out the scope operators in statements with 
~-operators. The scope of a ~-operator is always the smallest sub-statement
that immediately follows it. When a ~-operator is in front of a constant, its
scope includes only that constant. You can think of a ~-operator in front of
a constant as being bound to that constant. For example, the scope of the
first ~-operator is underlined:

~P & ~(Q & R)
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In contrast, when a ~-operator is in front of an open parenthesis, its scope is
everything inside that set of parentheses. For example, the scope of the
second ~-operator is underlined:

~P & ~(Q & R)

Similarly, you might underline the scope of the 0-operator in the statement
~(P 0 Q) as follows:

~(P 0 Q) WRONG!

In this case, the ~-operator is outside the parentheses, so it’s outside the
scope of the 0-operator.

~(P 0 Q) RIGHT!

So when you’re evaluating this statement, first evaluate the sub-statement 
P 0 Q, and then evaluate the entire statement.

The main attraction: Finding 
main operators
The main operator is the most important operator in a statement, for the fol-
lowing reasons:

� Every SL statement has just one main operator.

� The scope of the main operator is the whole statement. Thus, the main
operator affects every other constant and operator in the statement.

� The main operator is the last operator that you evaluate. This fact
makes sense when you think about it: Because the scope of the main
operator is everything else in the statement, you need to evaluate every-
thing else before you can evaluate the main operator.

For example, suppose you want to evaluate (P → (Q ↔ R)) & S under a
given interpretation. First you need to evaluate the sub-statement Q ↔ R
to get the value of the ↔-operator. Doing this allows you to evaluate P →
(Q ↔ R) to get the value of the →-operator. And finally, you can evaluate
the whole statement, which gives you the value of the statement’s main
operator, the &-operator. (I show you how to find the main operator later
in this section.)

� The main operator’s value is the same as the value of the statement
itself.

� The main operator falls outside of all parentheses, except when the
whole statement includes an extra (and removable) set of parenthe-
ses. I explain this in detail in the remainder of this section.
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Because the main operator is so important, you need to be able to pick it out
of any statement. Doing so is usually quite simple with a few quick rules of
thumb. Every SL statement falls into one of the three cases I outline in the 
following sections. If you come across one that doesn’t, it isn’t well-formed,
which means it really isn’t a statement at all. I discuss this more in Chapter 14.
For now, though, any statement you run across will have a main operator that
you can find without difficulty.

When only one operator is outside the parentheses
Sometimes, it’s easy to find the main operator because it’s the only operator
outside all parentheses. For example, take a look at this statement:

(P 0 ~Q) & (R → P)

The main operator here is the &-operator. Similarly, check out this statement:

~(P & (Q ↔ R))

The main operator here is the ~-operator.

When no operator is outside the parentheses
If you find no operator outside the parentheses, you have to remove a set of
parentheses. For example, in the following statement, the outer set of paren-
theses really isn’t necessary:

((~P ↔ Q) → R)

But, removing them gives you this:

(~P ↔ Q) → R

Now, the only operator outside the parentheses is the →-operator, which is
indeed the main operator.

In this book, I avoid using unnecessary parentheses because they take up
space and don’t add anything useful to a statement. In Chapter 14, I discuss
the nitty-gritty details of why a statement may contain extra parentheses.

When more than one operator is outside the parentheses
In some statements, you may find more than one operator outside the paren-
theses. For example:

~(~P → Q) 0 ~(P → Q)

When there is more than one operator outside the parentheses, the main
operator is always the one that isn’t a ~-operator.

In the preceding example, the main operator is the 0-operator.
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Eight Forms of SL Statements
In SL, a variable can stand for an entire statement (or sub-statement). You
can use variables to classify SL statements into eight different statement
forms, which are generalized versions of SL statements. Table 5-1 shows the
eight basic statement forms.

Table 5-1 The Eight Forms of SL Statements
Positive Forms Negative Forms

x & y ~(x & y)

x 0 y ~(x 0 y)

x → y ~(x → y)

x ↔ y ~(x ↔ y)

To see how these statements work, here are three statements whose main
operators are all &-operators:

P & Q

(P 0 ~Q) & ~(R → S)

(((~P ↔ Q) → R) 0 (~Q & S)) & R
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Parts of the whole
Personally, I find all of the following terminology
for the various parts of a statement to be a bit
over the top. If your professor wants you to
know these terms, you’re going to have to mem-
orize them. But for me, the important thing is
that when you’re given an SL statement, you
can find the main operator and pick out which
of the eight forms it’s in. When it becomes
important to speak about the various parts of a
statement, it’s just as easy to say “first part” and
“second part.”

Here are some quick rules of thumb:

� When a statement is in the form x & y, it’s
a &-statement, which is also called a 

conjunction. In this case, both parts of the
statement are called conjuncts.

� When a statement is in the form x 0 y, it’s 
a 0-statement, which is also called a 
disjunction. In this case, both parts of the
statement are called disjuncts.

� When a statement is in the form x → y, it’s
a →-statement, which is also called an
implication. In this case, the first part of the
statement is called the antecedent, and the
second part is called the consequent.

� When a statement is in the form x ↔ y, it’s
a ↔-statement, which is also called a
double implication.
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Although all of these statements are obviously different, you can represent
each of them using the following statement form:

x & y

For example, in the statement P & Q, the variable x stands for the sub-
statement P, and the variable y stands for the sub-statement Q. Similarly, in
the statement (P 0 ~Q) & ~(R → S), x stands for the sub-statement (P 0 ~Q),
and y stands for the sub-statement ~(R → S). And finally, in the statement 
(((~P ↔ Q) → R) 0 (~Q & S)) & R, x stands for (((~P ↔ Q) → R) 0 (~Q & S))
and y stands for R.

When a statement’s main operator is one of the four binary operators 
(&, 0, →, or ↔), its statement form is one of the four positive forms in
Table 5-1. However, when a statement’s main operator is the ~-operator, its
form is one of the negative forms in Table 5-1. To find out which one, you
need to look at the operator with the next-widest scope. For example:

~((P → Q) ↔ (Q 0 R))

In this case, the main operator is the ~-operator. The &-operator has the next-
widest scope, covering everything inside the parentheses. So, you can repre-
sent this statement using this statement form:

~(x ↔ y)

This time, the variable x stands for the sub-statement (P → Q), and the vari-
able y stands for the sub-statement (Q 0 R).

Learning to recognize the basic form of a given statement is a skill you’ll use
in later chapters. For now, be aware that every statement can be represented
by just one of the eight basic statement forms.

Evaluation Revisited
After reading about the new concepts in this chapter, you’ll probably find
that evaluation makes more sense. You’re less likely to make mistakes
because you understand how all the pieces of the statement fit together.

For example, suppose you want to evaluate ~(~(P 0 Q) & (~R ↔ S)) under the
interpretation P = T, Q = F, R = F, and S = T. It looks hairy, but you should be
up for the challenge!

Before you begin, look at the statement. It’s in the form ~(x & y), with the first
part of the statement being ~(P 0 Q) and the second part being (~R ↔ S). You
need to get the truth value of both of these parts before you can evaluate the
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&-operator. Only then can you evaluate the first ~-operator, which is the
statement’s main operator.

You start out by placing the truth values under the appropriate constants:

Now, you can write in the value of the ~-operator in front of the constant R:

At this point, you can get the value of both the 0-operator and the ↔-operator:

You may be tempted at this point to evaluate the &-operator, but first you
need the value of the sub-statement ~(x 0 y), which means that you need to
get the value of the ~-operator:

Now you can evaluate the &-operator:

And finally, after you’ve evaluated every other operator in the statement, you
can evaluate the main operator:

The truth value of the main operator is the value of the whole statement, so
you know that under the given interpretation, the statement is true.

T
~(~(P 0 Q) & (~R ↔ S))

T F F TTTFTF

F
~(~(P 0 Q) & (~R ↔ S))

T F TTTFTF

F
~(~(P 0 Q) & (~R ↔ S))

T F TTTFT

TT
~(~(P 0 Q) & (~R ↔ S))

T F TTF

T
~(~(P 0 Q) & (~R ↔ S))

T F TF

T F F T
~(~(P 0 Q) & (~R ↔ S))
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Chapter 6

Turning the Tables: Evaluating
Statements with Truth Tables

In This Chapter
� Creating and analyzing truth tables

� Knowing when statements are tautologies, contradictions, or contingent

� Understanding semantic equivalence, consistency, and validity

In this chapter, you discover one of the most important tools in sentential
logic (SL): the truth table. Truth tables allow you to evaluate a statement

under every possible interpretation, which in turn allows you to make gen-
eral conclusions about a statement even when you don’t know the truth
values of its constants.

Truth tables open up vast new logical territory. First of all, truth tables are 
an easy way to find out whether an argument is valid or invalid — a central
question in logic. But beyond this, truth tables make it possible to identify
tautologies and contradictions: Statements in SL that are always true or always
false.

You can also use truth tables to decide whether a set of statements is 
consistent — that is, whether it’s possible that all of them are true. Finally,
with truth tables, you can figure out whether two statements are semantically
equivalent — that is, whether they have the same truth value in all possible
cases.

This is where the rubber meets the road, so fasten your seat belts!
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Putting It All on the Table: 
The Joy of Brute Force

Sometimes, solving a problem requires cleverness and ingenuity. Before you
can get the answer, you need to have that “Aha!” moment that allows you to
see things in a whole new way. “Aha!” moments can be exhilarating, but also
frustrating, especially if you’re working on an exam under time pressure and
the “Aha!” is nowhere in sight.

Truth tables are the antidote to “Aha!” They rely on a method that mathe-
maticians informally call brute force. In this type of approach, instead of
trying to find that one golden path to success, you doggedly exhaust all pos-
sible paths. Brute force methods can be time-consuming, but at the end of
the day, you always find the answer you’re looking for.

Here’s how it works. Suppose on your first exam you’re given this cryptic
question:

What can you say about this statement: P → (~Q → (P & ~Q))? Justify
your answer.

With the clock ticking, you can probably think of a lot of things you want to
say about the statement, but they’re not going to get you any points on the
test. So, you stare at it, waiting for the “Aha!” to arrive. And suddenly it does.
You finally think about it this way:

This statement is just stating the obvious: “If I assume P is true and then
assume that Q is false, I can conclude that P is true and Q is false.” So, the
statement is always true.

That wasn’t so bad. Still, what if the “Aha!” never arrived? What if you weren’t
sure how to “justify your answer?” Or, worst of all, what if the question you
faced looked like this:

What can you say about this statement: ((~P 0 Q) → ((R & ~S ) 0 T )) →
(~U 0 ((~R 0 S ) → T )) → ((P & ~U ) 0 (S → T ))? Justify your answer.

These are times for brute force, and truth tables are the ticket.
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Baby’s First Truth Table
A truth table is a way of organizing information in SL. It allows you to set up
every possible combination of values for every constant and see what hap-
pens in each case. You’ve already seen some small truth tables in Chapter 4:
As I introduced each of the five SL operators, I included a truth table showing
how to interpret all possible input values to obtain an output value.

In the following section, I show you how to set up, fill in, and draw conclusions
from a truth table by working through the statement P → (~Q → (P & ~Q)).

Setting up a truth table
A truth table is a way to organize every possible interpretation of a statement
into horizontal rows, allowing you to evaluate the statement under all of
these interpretations.

Setting up a truth table is a simple four-step process:

1. Set up the top row of the table with each constant on the left and the
statement on the right.

2. Determine the number of additional rows that your table needs,
based on the number of constants in the statement.

A truth table needs one row for every possible interpretation for the
given statement. To figure out how many rows you need, multiply the
number two by itself one time for every constant in that statement.
Because the statement P → (~Q → (P & ~Q)) has two constants, you’ll
need four rows.

To make sure that you’re on the right track, check out Table 6-1, which
contains the number of rows you need for statements with one to five
constants.

P P → (~ (P &Q → ~ Q))Q
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Table 6-1 Number of Constants and Rows in Truth Table
Number of Constants Number of Interpretations 
Constants (Rows in Truth Table)

1 P 2

2 P and Q 2 × 2 = 4

3 P, Q, and R 2 × 2 × 2 = 8

4 P, Q, R, and S 2 × 2 × 2 × 2 = 16

5 P, Q, R, S, and T 2 × 2 × 2 × 2 × 2 = 32

3. Set up the constant columns so that with every possible combination
of truth values is accounted for.

A good way to fill in these columns with Ts and Fs is to start in the right-
hand constant column (in this case, the Q column) and fill that column
in by alternating Ts and Fs — T F T F — all the way down. Then move
one column to the left and fill that column in, alternating the Ts and Fs
by twos — T T F F. If there are more columns (for example, you have
three or four constants in a statement), continue alternating by fours 
(T T T T F F F F. . .), eights (T T T T T T T T F F F F F F F F. . .), and so on.

So, in this example, alternate T F T F under the Q column, and then T T F
F under the P column:

4. Draw horizontal lines between rows, and draw vertical lines separat-
ing all constants and operators in the statement.

P P → (~ (P &Q → ~ Q))Q

T T

T F

F T

F F
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I suggest this step for three reasons. First, the table starts out neat so
you don’t get confused. Second, you’ll know the table is finished when
all the little boxes are filled in with Ts and Fs. And third, the completed
table is clear and readable. (If you draw the lines nicely with a ruler,
you’ll melt the heart of even the iciest professor.)

You don’t need columns for parentheses, but be sure to bunch each
parenthesis in with the constant or operator that immediately follows it,
except for those at the end of the statement.

Filling in a truth table
Every row of your truth table accounts for a different interpretation of the
statement. Filling in the truth table now becomes simply the process of evalu-
ating the statement under every interpretation (in this case, under all four
interpretations).

In Chapter 4, I discuss how to evaluate a statement from the inside out. The
rules are still the same in this instance, but now you need to work every step
of the process on every row of the table.

The step-by-step procedure that follows shows you how to work down the
columns because it’s easier and faster than trying to evaluate row by row.

As I work through the steps, note that each column I’ve just filled in is under-
lined, and each column I used during this step is in boldface.

1. Copy the value of each constant into the proper statement columns for
those constants.

T T

T F

F T

F F

P P → (~ (P &Q → ~ Q))Q
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Just copying. Pretty simple, right?

2. In each of the columns that has a ~-operator directly in front of a con-
stant, write the corresponding negation of that constant in each row.

Make sure that every ~-operator is in front of a constant. If it’s in front of
an open parenthesis, it negates the entire value of everything inside the
parentheses. In that case, you have to wait until you know this value.

As you can see, this step is not much more difficult than the previous one.

3. Starting with the innermost set of parentheses, fill in the column
directly below the operator for that part of the statement.

Step 3 is really the meat and potatoes of truth tables. The good news
here is that with practice you’re going to get really fast at this stage of
filling in the tables.

The innermost parentheses in this example contain the statement 
P & ~Q. The operator you’re using to evaluate is the &-operator, and 
the two input values are in the columns under P and the ~-operator.

T T

T F

F T

F F

T

T

F

F

F

T

F

T

T

T

F

F

T

F

T

F

P P → (~ (P &Q → ~ Q))Q

F

T

F

T

T

F

T

F

T T

T F

F T

F F

T

T

F

F

T

F

T

F

T

T

F

F

T

F

T

F

P P → (~ (P &Q → ~ Q))Q
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For example, in the first row, the value under P is T and the value under
the ~-operator is F. And T & F evaluates to F, so write this value in this
row directly under the &-operator.

Repeat this step for the other three rows and your table should look
like this:

4. Repeating Step 3, work your way outward from the first set of paren-
theses until you’ve evaluated the main operator for the statement.

Moving outward to the next set of parentheses, the operator you’re
using to evaluate is the →-operator inside the outermost parentheses.
The two input values are in the columns under the first ~-operator and
the &-operator.

For example, in the first row, the value under the ~-operator is F and the
value under the &-operator is F. And F → F evaluates to T, so write this
value in the row directly under the →-operator.

Complete the column and your table should look like this:

T T

T F

F T

F F

T

T

F

F

T

T

F

F

T

F

T

F

T

T

T

F

F

T

F

T

P P → (~ (P &Q → ~ Q))Q

F

T

F

T

T

F

T

F

F

T

F

F

T T

T F

F T

F F

T

T

F

F

T

T

F

F

T

F

T

F

F

T

F

T

P P → (~ (P &Q → ~ Q))Q

F

T

F

F

F

T

F

T

T

F

T

F
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Now you’re ready to move to the main operator, the →-operator outside
the parentheses (flip back to Chapter 5 for information on how to deter-
mine the main operator). The two input values are in the columns under
the P and the column under the other →-operator.

For example, in the first row, the value under the P is T and the value
under the →-operator is T. And T → T evaluates to T, so write this
directly under the main →-operator.

Finishing up the column gives you:

The column under the main operator should be the last column you fill
in. If it isn’t, you better erase (you were using pencil, weren’t you?) and
retrace your steps!

Reading a truth table
Circle the entire column under the main operator, so that the information
jumps out at you when it’s time to read the table. The column under the main
operator is the most important column in the table. It tells you the truth
value for each interpretation of the statement.

For example, if you want to know how the statement evaluates when P is false
and Q is true, just check the third row of the table. The value in this row under
the main operator is T, so when P is false and Q is true, the statement evalu-
ates as true.

At this point, with great confidence you can go back to the original question:

What can you say about this statement: P → (~Q → (P & ~Q))? Justify
your answer.

T T

T F

F T

F F

T

T

F

F

T

T

F

F

T

F

T

F

T

T

T

T

F

T

F

T

P P → (~ (P &Q → ~ Q))Q

F

T

F

T

T

F

T

F

F

T

F

F

T

T

T

F
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With your trusty truth table, you can tell your professor exactly what he or
she wants to hear about the statement: that the statement is always true,
regardless of the value of the constants P and Q.

And how do you justify this? You don’t have to, because the truth table does
it for you. As long as you filled it in correctly, the table tracks every possible
interpretation of the statement. No other interpretations are possible, so
your work is complete.

Putting Truth Tables to Work
After you know how to use truth tables, you can begin to understand SL at 
a whole new level. In this section, I show you how to tackle a few common
problems about individual statements, pairs and sets of statements, and
arguments. (In later chapters, I also show you how to tackle these same 
questions using a variety of different tools.)

Taking on tautologies and contradictions
Every statement in SL falls into one of these three categories: tautologies
(true under every interpretation), contradictions (false under every interpre-
tation), or contingent statements (either true or false depending upon the
interpretation).

In the “Baby’s First Truth Table” section, earlier, you see how you can use
truth tables to sort out the truth value of a statement under every possible
interpretation, which allows you to divide statements into three important
categories:

� Tautologies: A tautology is a statement that is always true, regardless of
the truth values of its constants. An example of a tautology is the state-
ment P 0 ~P. Because either P or ~P is true, at least one part of this or-
statement is true, so the statement is always true.

� Contradictions: A contradiction is a statement that is always false,
regardless of the truth values of its constants. An example of a contra-
diction is the statement P & ~P. Because either P or ~P is false, at least
one part of this and-statement is false, so the statement is always false.

� Contingent statements: A contingent statement is a statement that is true
under at least one interpretation and false under at least one interpreta-
tion. An example of a contingent statement is P → Q. This statement is
true when P is true and Q is true, but false when P is true and Q is false.
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Don’t make the mistake of thinking that every statement is either a tautology or
a contradiction. Plenty of contingent statements don’t fall into either category.

Truth tables are an ideal tool for deciding which category a particular statement
falls into. For example, in the “Baby’s First Truth Table” section earlier in this
chapter, you used a truth table to show that the statement P → (~Q → (P & ~Q))
evaluates as true in every row of the truth table, so the statement is a tautology.

Similarly, if a statement evaluates as false in every row of a truth table, it’s a
contradiction. And, finally, if a statement evaluates as true in at least one row
and false in at least one row, it’s a contingent statement.

Judging semantic equivalence
When you look at single statements, you can use truth tables to evaluate
them under all possible combinations of truth values for their constants.
Now, you’re going to take this process a step further and compare two state-
ments at a time.

When two statements are semantically equivalent, they have the same truth
value under all interpretations.

You already know a simple example of two statements that are semantically
equivalent: P and ~~P. When the value P is T, the value of ~~P is also T.
Similarly, when the value of P is F, the value of ~~P is also F.

This example is easy to check because, with only one constant, there are only
two possible interpretations. As you can probably imagine, the more con-
stants you have, the hairier semantic equivalence becomes.

However, a truth table can help. For example, are the statements P → Q and
~P 0 Q semantically equivalent? You can find out by making a truth table for
these two statements.

T T

T F

F T

F F

P P → PQ 0~Q Q
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As I cover in the “Baby’s First Truth Table” section earlier in the chapter, the
first step for filling out the table is to copy the value of each constant into the
proper columns:

Second, handle any ~-operator that applies directly to a constant:

Third, complete the evaluations on both statements separately, just as you
would for a single statement:

T T

T F

F T

F F

T T

T F

F T

F F

F T

F F

T T

T F

T

T

F

F

P P → ~Q P 0Q Q

T T

T F

F T

F F

T T

T F

F T

F F

T T

T F

F T

F F

P P → PQ 0Q Q~
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When two statements have the same truth value on every line of the truth
table, they’re semantically equivalent. Otherwise, they’re not.

The table shows that in this case, the two statements are semantically equiv-
alent. Chapter 8 shows how this important concept of semantic equivalence
is applied to proofs in SL.

Staying consistent
If you can compare two statements at a time, why not more than two?

When a set of statements is consistent, at least one interpretation makes all
of those statements true. When a set of statements is inconsistent, no inter-
pretation makes all of them true.

For example, look at the following set of statements:

P 0 ~Q

P → Q

P ↔ ~Q

Is it possible for all three of these statements to be true at the same time?
That is, is there any combination of truth values for the constants P and Q
that causes all three statements to be evaluated as true?

Again, a truth table is the tool of choice. This time, however, you put all three
statements on the truth table. I’ve taken the liberty of filling in the correct
information for the first statement. First, I copied the values of P and Q for

T T

T F

F T

F F

T T

T F

F T

F F

T T

F F

T T

T

T

F

T

T F

T

T

F

F

F

F

T

T

P P → ~Q P 0Q Q
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each row in the correct columns. Next, I evaluated the value of ~Q. Finally, I
evaluated the whole statement P 0 ~Q, placing the value for each row under
the main operator.

In three of the four rows, the statement evaluates as true. But when P is true
and Q is false, the statement is false. Because you’re looking for a row in
which all three statements are true, you can rule out this row.

When filling a truth table to test for consistency, move vertically as usual, but
evaluate one statement at a time. When you find a row where the statement
evaluates as false, draw a line all the way through it. Drawing a line through
the row saves you a few steps by reminding you not to evaluate any other
statement in that row.

Repeating this process for the next two statements gives the following result:

T T

T F

F T

F F

T F

T T

F F

F

T

T

F

T

T

F

TT

T T

T F

F F

T

F

T

F

T F

F

F

F T

T

F

P P 0 PQ → Q~ PQ ↔ ~ Q

T T

T F

F T

F F

T F

T T

F F

F

T

T

F

T T

T

F

T

F

P P 0 PQ → Q~ PQ ↔ ~ Q
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When every row of the truth table has at least one statement that evaluates
as false, the statements are inconsistent. Otherwise, they’re consistent.

In this case, you know that the three statements are inconsistent because
under all interpretations, at least one statement is false.

Arguing with validity
As I discuss in Chapter 3, in a valid argument, when all the premises are true,
the conclusion must also be true. Here is the same basic idea defined in terms
of interpretations:

When an argument is valid, no interpretation exists for which all of the
premises are true and the conclusion is false. When an argument is invalid,
however, at least one interpretation exists for which all of its premises are
true and the conclusion is false.

You can also use truth tables to decide whether an entire argument is valid.
For example, here is an argument:

Premises:

P & Q

R → ~P

Conclusion:

~Q ↔ R

In this case, the argument has three constants — P, Q, and R — so the truth
table needs to have eight rows, because 2 × 2 × 2 = 8 (refer to Table 6-1).

To set up a large truth table: Start in the rightmost constant column (R in this
case) and write T, F, T, F, and so on, alternating every other row until you get
to the end. Then move one column to the left and write T, T, F, F, and so on,
alternating every two rows. Keep moving left and doubling, alternating next
by fours, then by eights, and so forth until the table is complete.

Here is the truth table as it needs to be set up:
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In the section “Staying consistent,” I mention the advantage of evaluating an
entire statement before moving on to the next statement. Here’s the table
after the first statement has been evaluated:

T T

T T

T F

T F

T

F

T

F

P R P R RQ → ~& PQ ~ Q ↔

F T

F T

F F

F F

T

F

T

F

T T

T T

T F

T F

T

T

F

F

F F

F F

F F

F F

T

T

F

F

T T

T T

T F

T F

T

F

T

F

P R P R RQ → ~& PQ ~ Q ↔

F T

F T

F F

F F

T

F

T

F
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When you find a row where either a premise evaluates as false or the conclu-
sion evaluates as true, draw a line all the way through it. Drawing a line
through the row saves you a few steps by reminding you not to evaluate 
any other statement in this row.

The first column of this example is especially helpful because in six of the
eight rows of the previous table, the first premise is false, which means you
can rule out these six rows. Here is what the rest of the table looks like when
completed:

When no row of the truth table contains all true premises and a false conclu-
sion, the argument is valid; otherwise, it’s invalid.

As you can see, the only row in the previous table that has all true premises
also has a true conclusion, so this argument is valid.

Putting the Pieces Together
The previous sections of this chapter show how to use truth tables to test for
a variety of logical conditions. Table 6-2 organizes this information.

T T

T T

T F

T F

T

F

T

F

P R P R RQ → ~& PQ ~ Q ↔

F T

F T

F F

T

F

F

T

T T

T F

T F

T F

T

T

T

F T

F

F F T T F

T

T

F

F

F F

F F

F

T

T

F F T F F

F

F

F
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Table 6-2 Truth Table Tests for a Variety of Logical Conditions
Condition Being Tested Number of Condition Verified When

Statements

Tautology 1 Statement is true in every row.

Contradiction 1 Statement is false in every row.

Contingent Statement 1 Statement is true in at least one
row and false in at least one row.

Semantic Equivalence 2 Both statements have the same
truth value in every row.

Semantic Inequivalence 2 The two statements have differ-
ent values in at least one row.

Consistency 2 or more All statements are true in at
least one row.

Inconsistency 2 or more All statements aren’t true in any
row.

Validity 2 or more In every row where all premises
are true, the conclusion is also
true.

Invalidity 2 or more All premises are true and the
conclusion is false in at least
one row.

If you have a sneaking suspicion that all of these concepts are somehow con-
nected, you’re right. Read on to see how they all fit together.

Connecting tautologies and contradictions
You can easily turn a tautology into a contradiction (or vice versa) by negat-
ing the whole statement with a ~-operator.

Recall from earlier that the statement

P → (~Q → (P & ~Q))

is a tautology. So its negation, the statement

~(P → (~Q → (P & ~Q)))
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is a contradiction. To make sure this is so, here’s the truth table for this new
statement:

As you can see, the only thing that has changed is that the main operator
of the statement — the only operator outside the parentheses — is now
the ~-operator.

It should also be clear that you can turn a contradiction into a tautology in
the same way. Thus, the statement

~(~(P → (~Q → (P & ~Q))))

is a tautology, which shows you that even though tautologies and contradic-
tions are polar opposites, they’re very closely linked.

Linking semantic equivalence 
with tautology
When you connect any two semantically equivalent statements with the ↔-
operator, the resulting statement is a tautology.

As you saw earlier, the two statements

P → Q and ~P 0 Q

are semantically equivalent. That is, no matter what truth values you choose
for P and Q, the two statements have the same evaluation.

T T

T F

F T

F F

T T

T T

F T

F

F

F

F

F T

T

F

T

F

T T

T T

F F

T F

T

F

F

F

T

F

T

F

P ~ (P →Q (P &→ ~Q)))(~Q
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Now connect these two statement with a ↔-operator:

(P → Q) ↔ (~P 0 Q)

The result is a tautology. If you doubt this result, look at the truth table for
this statement:

And, of course, you can turn this tautology into a contradiction by negating it
as follows:

~((P → Q) ↔ (~P 0 Q))

Linking inconsistency with contradiction
When you connect an inconsistent set of statements into a single statement
by repeated use of the &-operator, the resulting statement is a contradiction.

As you saw earlier, the three statements

P 0 ~Q

P → Q

P ↔ ~Q

are inconsistent. That is, under any interpretation, at least one of them is false.

Now connect these three statements with &-operators:

((P 0 ~Q) & (P → Q)) & (P ↔ ~Q)

T T

T F

F T

F

T

T

F

FF

T T

F F

T T

T

T

T

T

TF

F T

F T

T F

T F

T

F

T

T

T

F

T

F

P (P → (~Q P 0Q) Q)↔
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When you use operators to connect more than two statements, you need to
use extra parentheses so it’s clear which operator is the main operator. I dis-
cuss this in more detail in Chapter 14.

The main operator is the second &-operator — the only operator outside the
parentheses — but in any case, the result is a contradiction. To verify this
result, you can use a table to evaluate the statement for all interpretations.
First, evaluate everything inside the first set of parentheses:

Next, evaluate the entire statement:

As predicted, the statement evaluates as false on every line of the table, so
it’s a contradiction.

T T

T F

F T

F

T

T

F

FF

T F

T T

F F

T

F

F

F

FT

T

F

T

F

P ((P 0Q &~ Q)

T

T

F

F

T T

F F

T T

T F

T

F

T

F

T

T

F

F

(P → (PQ)) &

T

F

F

T

F F

T T

T F

F T

↔ ~ Q)

T T

T F

F T

F

T

T

F

FF

T F

T T

F F

T

T

F

F

TT

T

F

T

F

P ((P 0Q &~ Q)

T

T

F

F

T T

F F

T T

T F

T

F

T

F

T

T

F

F

(P → (PQ)) &

F F

T T

T F

F T

↔ ~ Q)
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Linking validity with contradiction
As you may have guessed, argument validity can also be woven into this
tapestry. For example, here’s an old favorite example of a valid argument
(yes, people who are into logic have old favorites):

Premises:

P → Q

Q → R

Conclusion:

P → R

Because this argument’s valid, you know it’s impossible that both premises
are true and the conclusion is false. In other words, if you filled in a truth
table, none of the rows would look like this:

Similarly, if you negated the conclusion by using a ~-operator and then filled
in another truth table, none of the rows would look like this:

But if no interpretation makes all of these statements true, you can consider
this is an inconsistent set of statements.

T T T

P → R ~→ →(PQ Q R)

T T F

P → R P→ → RQ Q
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When you negate the conclusion of a valid argument, you get a set of incon-
sistent statements. (It may seem a little backward that validity and inconsis-
tency are linked, but that’s the way it shakes out.) You can also turn this set
of inconsistent statements into a contradiction by connecting them with the
&-operator:

To turn a valid argument into a contradictory statement, connect all of the
premises plus the negation of the conclusion by repeated use of the &-operator.

T

((P Q) R))→ (Q (P& &→ →~ R)
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Making even more connections
For those purists among you who just have to
know how everything fits together:

� When you connect any two semantically
inequivalent statements with the ↔ operator,
the resulting statement is not a tautology —
that is, it’s either a contingent statement or a
contradiction.

� When you negate the conclusion of an
invalid argument, you get a consistent set of
statements.

� When you connect an inconsistent set of
statements into a single statement by
repeated use of the &-operator, the result-
ing statement is not a contradiction — that
is, it’s either a contingent statement or a
tautology.
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Chapter 7

Taking the Easy Way Out: 
Creating Quick Tables

In This Chapter
� Looking at the truth values of whole statements

� Understanding how to set up, fill in, and read a quick table

� Knowing what type of statements you’re working with

Okay, if you’ve been reading this book for the last few chapters, you likely
have the hang of the whole truth table thing, and you may be getting

pretty good at them — maybe even too good for your own good.

For example, suppose early Monday morning, your professor walks into class
with a cup of coffee, two doughnuts, and the morning paper. She gives you an
in-class assignment to write up a truth table for the following statement:

P → ((Q & R) 0 (~P & S))

Then, she sits down, opens her newspaper, and ignores everybody.

Ugh! With four constants, you’re talking sixteen rows of evaluation purgatory.
But, you’re one of those troublemakers, so you go up to her desk and point
out that the main operator of the statement is the →-operator, because it’s
the only operator outside the parentheses. She rattles her newspaper with
annoyance.

You persist, carefully explaining to her your brand new insight: “Don’t you
see? All eight interpretations with P as false have to make the entire state-
ment true. Isn’t that right?” She takes a big bite of doughnut and uses this
jelly-filled bite as an excuse not to say anything while she glares at you.

Finally, you get up the courage to ask her this: “So, how about if I just mark
those eight rows as true, without going through all the steps?”
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She snaps “No!”, and you skulk back to your desk.

Like I said, you’re a troublemaker. You’re probably the type who reads (or
maybe even writes) For Dummies books. Read on, MacDuff.

You’re not too far off with your troublemaker thinking. There’s a better way
than plugging and chugging for problems like these (unless your professor 
is feeling particularly cruel) — the quick table! Unlike truth tables, which
require you to evaluate a problem under every possible interpretation, quick
tables use only one row to do the work of an entire truth table.

In this chapter, you see how quick tables save you time by working with state-
ments as a whole instead of in parts, as truth tables do. I show you how to rec-
ognize the types of problems that are more easily solved with quick tables
than with truth tables. And, I walk you through the strategies and methods
that help you use quick tables to solve a variety of common problems.

Dumping the Truth Table for a 
New Friend: The Quick Table

Truth tables are ordered, precise, thorough — and tedious! They’re tedious
because you have to evaluate every possible interpretation in order to solve
a problem.

When using truth tables, you start with the parts of a statement (the truth
values of the constants) and finish with the whole statement (the value of the
main operator). This method of starting with the parts and ending with the
whole is both the strength and the weakness of truth tables. Because you
must evaluate a statement under every possible interpretation, you’re sure to
cover all of the bases. For the same reason, however, a lot of your work is
repetitive — in other words, tedious and boring!

But, as you saw happen with the troublemaking student in the chapter intro,
a lot of these interpretations tend to be redundant. So, in many cases, you
can eliminate bunches of them all at once. At the same time, however, you
need to be careful to throw away only the wrong interpretations and hold
onto the right ones. To make sure you’re sure you’re chucking the right inter-
pretations, you need a system (and I just so happen to provide you with one
in this chapter).
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Just the opposite of truth tables, with quick tables, you start with the whole
statement — the truth value of the main operator — and finish with the
values of its parts, which are the values of the constants. The idea behind this
method is to start out with just one truth value for a statement and, by making
a few smart decisions, save a lot of time by eliminating repetitive work.

You can use quick tables in place of truth tables to test for any of the condi-
tions discussed in Chapter 6 and listed there in Table 6-2.

Generally speaking, the following three types of problems are those types
where you want to toss aside your old familiar truth tables in favor of quick
tables:

� Problems that your professor tells you to do using quick tables: ’nuff
said!

� Problems with four or more constants: Big tables mean big trouble.
You’re bound to make mistakes no matter how careful you are. In these
cases, quick tables are virtually guaranteed to save you time.

� Problems with statements that are “easy types”: Some types of state-
ments are easy to crack with quick tables. I show you how to recognize
them later in this chapter in the section “Working Smarter (Not Harder)
with Quick Tables.”

Outlining the Quick Table Process
In this section, I give you an overview of the three basic steps to using quick
tables. An example is probably the best way to understand how to use these
tables. So, I walk you through an example, and then I fill in more details in
later sections.

Each of the three steps to using a quick table can be made easier if you know
a few tricks about how to approach it. I provide those a bit later, but for now,
just follow along and, if you have any questions, you can find answers later in
the chapter.

Here’s the example you’ll follow through the next couple of sections: Suppose
you want to know whether the following statements are consistent or incon-
sistent:

P & Q Q → R R → P
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Making a strategic assumption
All quick tables begin with a strategic assumption. In this example, you
assume that all three statements are true, and you see where this leads.

Given this strategic assumption, every quick table can lead to two possible
outcomes:

� Finding an interpretation under your assumption

� Disproving the assumption by showing that no such interpretation
exists

Depending on the problem you’re solving, each outcome leads to a different
conclusion you can draw.

Think about the example problem this way: If the statements P & Q, Q → R,
and R → P are consistent, the truth values of all three statements are T under
at least one interpretation (check out Chapter 6 to review the definition of
consistency).

So, a good strategy is to assume that the truth value of each statement is T
and then see whether you can make this assumption work. For example,
here’s what your table would look like:

Flip to the “Planning Your Strategy” section later in the chapter to see how to
set up a quick table to solve every type of problem you’ve handled with truth
tables. There, I provide you with a complete list of the strategic assumptions
you should use for each type of problem.

Filling in a quick table
After the quick table is set up, you look for any further conclusions that can
be drawn about the truth values of any parts of the statement. In the case of
this section’s ongoing example, because the statement P & Q is true, both
sub-statements P and Q are also true:

P & Q Q → R R → P
T T T
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After you know that P and Q are both true, you can fill in this information
everywhere that these constants appear, like this:

Now look at the second statement, Q → R. The entire statement is true and
the first part is also true, so the second part has to be true as well. Therefore,
R is true everywhere it appears. So, your table should now look like this:

At this point, all of the constants are filled in, so you are ready to read your
quick table.

Reading a quick table
When you’ve completely filled in a quick table, you have a possible interpreta-
tion, but you need to make sure that it really works

When you think you have an interpretation that works, check to make sure that

� Every constant has the same truth value everywhere it appears.

� Every evaluation is correct under that interpretation.

The example that I’m using passes both of these tests. Each of the three vari-
ables has the same truth value wherever it appears. (For example, the value
of P is T throughout.) And, every evaluation is correct under this interpreta-
tion. (For example, the value of P & Q is T, which is correct.)

So you’ve found an interpretation that makes your original assumption cor-
rect, which means that all three statements are consistent.

P & Q Q → R R → P
TTT T T T T TT

P & Q Q → R R → P
TTT T T T T

P & Q Q → R R → P
T T T TT
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Disproving the assumption
In the ongoing example from the preceding sections, the assumption led to an
interpretation. But, as I state in the “Making a strategic assumption” section
earlier in the chapter, this doesn’t always happen. Sometimes, you may find
that an assumption leads to an impossible situation.

For example, suppose you want to know whether the statement (P & Q) & ((Q
↔ R) & ~P) is a contradiction — that is, whether its truth value is F under
every interpretation.

As always, you begin with a strategic assumption. In this case, assume that
the statement isn’t a contradiction, so its truth value is T under at least one
interpretation:

As I discuss in Chapter 5, this statement’s main operator — the only operator
that appears outside of all parentheses — is the second &-operator. So this
statement is of the form x & y. Under the assumption that the whole state-
ment is true, you can conclude that both sub-statements are also true, which
would make your table look like this:

But, notice that both P & Q and (Q ↔ R) & ~P are also of the form x & y,
which means that P, Q, Q ↔ R, and ~P are all true:

So far, so good. In just a couple of steps, you’ve made a lot of progress. However,
here comes trouble: It seems that P and ~P are both true, which clearly can’t be
correct. This impossibility disproves the original assumption — which was that
the statement isn’t a contradiction. Therefore, the statement is a contradiction.

(P & Q) & ((Q ↔ R) & ~P) 
T TTT T TT

(P & Q) & ((Q ↔ R) & ~P) 
TT T

(P & Q) & ((Q ↔ R) & ~P) 
T
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When you disprove an assumption, you need to be careful that you’ve truly
ruled out all possible interpretations. Because the fact that you’ve ruled them
out may not be self-evident from the finished quick table, some professors
may require a brief explanation about how you arrived at your conclusion.

Here is the type of explanation that would do just fine for this example:
“Assume the statement is not a contradiction. So, at least one interpretation
makes the statement true. Then, (P & Q) and ((Q ↔ R) & ~P) are true. But
then, both P and ~P are true, which is impossible, so the statement is a 
contradiction.”

Planning Your Strategy
When testing for any of the conditions listed in Chapter 6, in Table 6-2, you
begin with a strategic assumption and then look for an interpretation that
fits. If you indeed find such an interpretation, you have one answer; if you
find that no interpretation exists, you have another answer.

This section is a summary of the information you need to set up and read a
quick table. For each case, I give you the assumption you need to start with,
provide an example and your first step, and then tell you how to read both
possible outcomes.

In each case, the strategic assumption I give you is the best way (and some-
times the only way) to test for the given condition using a quick table. That’s
because the assumption in each case allows you to draw a conclusion based
on the existence (or non-existence) of a single interpretation — and quick
tables are tailor-made to find a single interpretation if one exists.

Tautology
Strategic assumption: Try to show that the statement is not a tautology, so
assume that the statement is false.

Example: Is ((P → Q → R)) → ((P & Q) → R) a tautology?

First step:

(P → Q → R) → ((P & Q) → R)
F
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Outcomes:

� If you find an interpretation under this assumption: The statement is
not a tautology — it’s either a contradiction or a contingent statement.

� If you disprove the assumption: The statement is a tautology.

Contradiction
Strategic assumption: Try to show that the statement is not a contradiction,
so assume that the statement is true.

Example: Is ((P → Q → R)) → ((P & Q) → R) a contradiction?

First step:

Outcomes:

� If you find an interpretation under this assumption: The statement is
not a contradiction — it’s either a tautology or a contingent statement.

� If you disprove the assumption: The statement is a contradiction.

Contingent statement
Use the previous two tests for tautology and contradiction. If the statement
isn’t a tautology and isn’t a contradiction, it must be a contingent statement.

Semantic equivalence and inequivalence
Strategic assumption: Try to show that the two statements are semantically
inequivalent, so connect them using a ↔-operator and assume that this new
statement is false.

Example: Are P & (Q 0 R) and (P 0 Q) & (P 0 R) semantically equivalent 
statements?

(P → Q → R) → ((P & Q) → R)
T
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First step:

Outcomes:

� If you find an interpretation under the assumption: The statements are
semantically inequivalent.

� If you disprove the assumption: The statements are semantically 
equivalent.

Consistency and inconsistency
Strategic assumption: Try to show that the set of statements is consistent, so
assume that all of the statements are true.

Example: Are the statements P & Q, ~(~Q 0 R), and ~R → ~P consistent or
inconsistent?

First step:

Outcomes:

� If you find an interpretation under the assumption: The set of state-
ments is consistent.

� If you disprove the assumption: The set of statements is inconsistent.

Validity and invalidity
Strategic assumption: Try to show that the argument is invalid, so assume
that all of the premises are true and the conclusion is false.

Example: Is this argument valid or invalid?

P & Q          ~(~Q 0 R)           ~R → ~P 
TTT

(P & (Q 0 R)) ↔ ((P 0 Q) & (P 0 R)) 
F
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Premises:

P → Q

~(P ↔ R)

Conclusion:

~(~Q & R)

First step:

Outcomes:

� If you find an interpretation under the assumption: The argument is
invalid.

� If you disprove the assumption: The argument is valid.

Working Smarter (Not Harder) 
with Quick Tables

Part of the trade-off in using quick tables is that you have to think about how
to proceed instead of just writing out all of the possibilities. So, quick tables
become a lot easier when you know what to look for. In this section, I show
you how to use quick tables to your best advantage.

In Chapter 5, I discuss the eight basic forms of SL statements as a way to
understand evaluation. These forms are even more helpful when you’re using
quick tables, so take a look at Table 5-1 if you need a quick refresher.

When you’re working with quick tables, the truth value of each basic state-
ment form becomes important. Two possible truth values (T and F) for each
of the eight forms gives you 16 different possibilities. Some of these are easier
to use in quick tables than others. I start with the easy ones.

P → Q           ~(P ↔ R)           ~(~Q & R) 
FTT
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Recognizing the six easiest types 
of statements to work with
Of the 16 types of SL statements (including truth values), 6 are easy to work
with when using quick tables. With each of these types, the truth value of the
statement’s two sub-statements, x and y, are simple to figure out.

For example, suppose that you have a statement in the form x & y and you
know its truth value is T. Remember that the only way a &-statement can be
true is when both parts of it are true, so you know that the values of both x
and y are also T.

Similarly, suppose you have a statement in the form ~(x & y) and you know its
truth value is F. In this case, it’s easy to see that the value of x & y is T, which
again means that the values of both x and y are T.

Figure 7-1 shows you the six easiest types of SL statements to work with.
After you recognize these statements, you can often move very quickly
through a quick table.

For example, suppose you want to find out whether the following is a valid or
invalid argument:

Premises:

~(P → (Q 0 R))

~(P & (Q ↔ ~R))

Starting with either:

x & y   OR   ~(x & y)

Leads to:

x & y

Values of x and y:

x is T and y is T
T F T T T

x 0 y   OR   ~(x 0 y) x 0 y x is F and y is F
F T F F F

x → y   OR   ~(x → y) x → y x is T and y is F
F T T F F

Figure 7-1:
The six
easiest

types of SL
statements.
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Conclusion:

(P & ~R)

The first step is always to pick the correct strategy. In this case, as shown in
the “Planning Your Strategy” section earlier in the chapter, you assume the
premises to be true and the conclusion to be false. (In other words, you
assume that the argument is invalid and you look for an interpretation that
fits this assumption.) Your table will look like this:

Notice that the first statement is in the form ~(x → y), with a truth value of T.
Referring to Figure 7-1, you know that P is true and Q 0 R is false, which means
you can fill in your table like this:

Now that you know the value of Q 0 R is F, you can refer again to Figure 7-1
and see that Q and R are both false:

In only three steps, you’ve figured out the truth values of all three constants,
so you can fill these in like this:

Now, you need to finish filling in the table and check to see whether this
interpretation works for every statement:

~(P → (Q 0 R))          ~(P & (Q ↔ ~R))           (P & ~R) 
FT FT F FF T TT T FF F F FT

~(P → (Q 0 R))          ~(P & (Q ↔ ~R))           (P & ~R) 
FT F FFT TT T FF F F

~(P → (Q 0 R))          ~(P & (Q ↔ ~R))           (P & ~R) 
FTFFT T FF

~(P → (Q 0 R))          ~(P & (Q ↔ ~R))           (P & ~R) 
FTTT FF

~(P → (Q 0 R))          ~(P & (Q ↔ ~R))           (P & ~R) 
FTT
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In this case, the second statement is correct. However, the third statement is
incorrect: Both parts of the &-statement are true, so the value of the whole
statement can’t be F. This disproves the assumption that the argument is
invalid, so you know that the argument is valid.

Working with the four not-so-easy 
statement types
Sometimes, you’re going to get stuck with types of SL statements that aren’t
as easy to work with as those six I introduced in the previous section. This is
especially true when you’re testing for semantic equivalence because, as I
discuss earlier in the chapter in “Planning Your Strategy,” the strategy here is
to join the two statements with a ↔-operator.

All four statement types that contain the ↔-operator give two possible sets of
values for x and y, as shown in Figure 7-2.

Suppose you want to find out whether the statements ~(P 0 (Q → R)) and 
((P → R) & Q) are semantically equivalent or inequivalent. The strategy here
is to connect the two statements with a ↔-operator, and then you can
assume that this new statement is false. (In other words, assume that the two
statements are semantically inequivalent.) Your table would look like this:

~(P 0 (Q → R)) ↔ ((P → R) & Q) 
F

Starting with either:

x ↔ y   OR   ~(x ↔ y)

Leads to:

x ↔ y

Values of x and y:

x is T  and  y is T  OR
x is F  and  y is F

EITHER
T F T T T

F T F

x ↔ y
x is T  and  y is F  OR
x is F  and  y is T

EITHER
T F F
F F T

x ↔ y   OR   ~(x ↔ y)
F T

Figure 7-2:
Four not-so-

easy types
of SL

statements.

119Chapter 7: Taking the Easy Way Out: Creating Quick Tables

12_799416 ch07.qxp  10/26/06  10:31 AM  Page 119



As you can see from Figure 7-2, you can take the following two possible
avenues for this statement:

When looking at the first avenue, notice that the first part of the statement
is one of the six easy types to work with, so you can fill in your table as
shown here:

Furthermore, once you know that Q → R is false, you can conclude that Q is
true and R is false. Now you can fill in your table like this:

After you know the values of all three constants, you can fill in the rest of the
table:

Under this interpretation, the two parts of the &-statement are true, but the
statement itself is false, which is incorrect. So, the search for an interpreta-
tion that works goes on.

Now, you can try the second avenue:

~(P 0 (Q → R)) ↔ ((P → R) & Q) 
F TF

~(P 0 (Q → R)) ↔ ((P → R) & Q) 
T TFF FF F FF FT T

~(P 0 (Q → R)) ↔ ((P → R) & Q) 
T FF FF FFT

~(P 0 (Q → R)) ↔ ((P → R) & Q) 
T F F FFF

~(P 0 (Q → R)) ↔ ((P → R) & Q) 
F FT
F TF
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In this avenue, the second part of the statement is an easy type, so you can
fill in the table as follows:

Now, you know that Q is true. Also, the 0-statement in the first part is true
because its negation is false. So, you fill in the table, which should now look
like this:

At this point, you have no more solid conclusions to make. But, you’re close
to finished, and with a quick table you need to find only one interpretation
that works. In this case, I suggest that you make a guess and see where it
takes you.

Suppose, for example, that the value of P were T. Then to make the sub-
statement P → R true, the value of R would also have to be T. So, it looks like
you get a perfectly good interpretation of the statement when the values of
all three constants are T. Fill in your table so that it looks like this:

This checks out because, as I discussed in “Reading a quick table,” every con-
stant has the same truth value everywhere it appears, and the entire evalua-
tion is correct under that interpretation. So, you’ve found an interpretation
under your original assumption, which means that the two statements are
semantically inequivalent.

You may be wondering what would have happened if you had guessed that
the value of P were F. In this case, you would have found an alternative inter-
pretation, with the truth value of R being T. But it doesn’t matter — with
quick tables, you need to find only one interpretation, and you’re done.

~(P 0 (Q → R)) ↔ ((P → R) & Q) 
FF T TTT T T T T TT

~(P 0 (Q → R)) ↔ ((P → R) & Q) 
FF T TTTT

~(P 0 (Q → R)) ↔ ((P → R) & Q) 
FF T TT
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Coping with the six difficult 
statement types
Six types of SL statements don’t lend themselves very well to quick tables.
Figure 7-3 shows why this is so.

As you can see, each of these types of statements leads to three possible
avenues, and if you’re using a quick table to solve this problem, you’re in for a
long, cumbersome search. Fortunately, you have other options. The following
sections show you your options when you’re facing three possible outcomes.

The first way: Use a truth table
One way to avoid the trouble of these types of statements is to fall back on
truth tables. Truth tables are always an option (unless your professor forbids
them), and they’ll always give you the right answer. The downside of truth
tables, as always, is that if a problem has a lot of different constants, you’re in
for a lot of work.

Starting with either:

x & y   OR   ~(x & y)

Leads to:

x & y

Values of x and y:

x is T  and  y is F  OR
x is F  and  y is T  OR

EITHER
F T T F F

F F T
x is F  and  y is FF F F

x 0 y   OR   ~(x 0 y) x 0 y
x is T  and  y is T  OR
x is T  and  y is F  OR

EITHER
T F T T T

T T F
x is F  and  y is TF T T

x → y   OR   ~(x → y) x → y
x is T  and  y is T  OR
x is F  and  y is T  OR

EITHER
T F T T T

F T T
x is F  and  y is FF T F

Figure 7-3:
The six
difficult

types of SL
statements.
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The second way: Use a quick table
The second way to solve a difficult problem is just to grit your teeth and try
all three avenues with a quick table. After all, you figured out how to chase
down two avenues in the previous example. And besides, you might get lucky
and find an interpretation that works on the first try.

For example, suppose you want to find out whether the statement (~(P → Q)
& ~(R 0 S)) → (Q ↔ R) is a contradiction. The strategy in this case is to make
the following assumption:

which leads to three possible avenues:

Fortunately, the first avenue leads someplace promising: Notice that the sub-
statement (~(P → Q) & ~(R 0 S)) is a &-statement whose value is T, which is
one of the six easy types of statements. The table looks like this:

Even better, the two smaller statements are also easy types, leaving the table
looking like this:

Now you can plug in the values of Q and R:

(~(P → Q) & ~(R 0 S)) → (Q ↔ R) 
T TT T FT T F F F F FF

(~(P → Q) & ~(R 0 S)) → (Q ↔ R) 
T TT T FT FT F FF

(~(P → Q) & ~(R 0 S)) → (Q ↔ R) 
T TTT T

(~(P → Q) & ~(R 0 S)) → (Q ↔ R) 
T TT
T TF
T FF

(~(P → Q) & ~(R 0 S)) → (Q ↔ R) 
T
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In just three steps, you found an interpretation that works under the assump-
tion that the statement is true, so the statement is not a contradiction.

You won’t always get this lucky, but you can see that in this case, a quick
table still worked a lot faster than a truth table. Good luck!

The third way: Use a truth tree
In Chapter 8, I introduce truth trees as a perfect alternative for situations like
these. When truth tables are too long and quick tables are too difficult, a
truth tree may be your best friend.
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Chapter 8

Truth Grows on Trees
In This Chapter
� Decomposing SL statements with truth trees

� Testing for consistency, validity, and semantic equivalence

� Categorizing tautologies, contradictions, and contingent statements with truth trees

In Chapters 6 and 7, I show you how to use truth tables and quick tables to
get information about sentential logic (SL) statements and sets of state-

ments. In this chapter, I introduce you to the third (and my favorite!) method
for solving logic problems: truth trees.

In the following sections, I show you how truth trees work by a process of
decomposing SL statements into their sub-statements. Then I show you how
to use truth trees to solve the same types of problems you’ve been handling
with truth tables and quick tables.

Understanding How Truth Trees Work
Truth trees are a powerful tool by any standard. In fact, I think that they’re the
best tool in this book to solve nearly every type of problem you’ll come
across in logic. Why? Glad you asked.

First of all, truth trees are easy: They’re easy to master and easy to use.

Truth trees combine the best features of both truth tables and quick tables,
but without the baggage of either. For example, like truth tables, truth trees
are a plug-and-chug method (though a couple of smart choices along the way
can still help you out), but they’re much shorter. And, like quick tables, truth
trees avoid repetitive evaluation, but they never lead to trouble such as
guesswork or problems with three possible avenues to eliminate.
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Truth trees are a perfect way to solve SL problems of any size with maximum
efficiency. They’re also useful in quantifier logic (QL), the larger logical
system I discuss in Part IV.

In Chapter 5, I discuss the eight basic forms of SL statements. These become
important once again as you study truth trees, because truth trees handle
each of these forms in a different way. (If you need a refresher on these eight
forms, flip to Table 5-1.)

Decomposing SL statements
Truth trees work by decomposing statements — that is, breaking statements
into smaller sub-statements.

For example, if you know that the statement (P 0 Q) & (Q 0 R) is true, you
know that both the sub-statement (P 0 Q) is true and the sub-statement 
(Q 0 R) is true. In general, then, you can break any true statement of the form
x & y into two true statements, x and y.

In some cases, decomposing a statement means breaking it off into two state-
ments, where at least one of which is true. For example, if you know that the
statement (P → Q) 0 (Q ↔ R) is true, you know that either the sub-statement
(P → Q) or the sub-statement (Q ↔ R) is true. In general, then, you can break
any true statement of the form x 0 y into two statements, x and y, where at
least one of which is true.

Forms of true statements that lead directly to other true statements are
called single branching statements. Forms that lead in two possible directions
are called double branching statements. Double branching statements always
lead to either one or two sub-statements per branch.

Figure 8-1 shows a list of all eight basic forms of SL statements with their
decompositions.

For example, if you’re decomposing the statement (P → Q) 0 (Q → R), you
begin by breaking it into two sub-statements as follows:

(P →→ Q) 0 (Q → R)

(Q → R)(P → Q)
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Notice that I checked the statement (P → Q) 0 (Q → R) after I decomposed it
into its two sub-statements. The checkmarks let you know that I’m finished
with this statement — though now I need to deal with its two sub-statements.

Next, you break each sub-statement into smaller sub-statements, according
to the rules provided in Figure 8-1.

You can see now how truth trees got their name. The final structure resem-
bles an upside-down tree, like this:

(P → Q) 0 (Q → R)

(Q →→ R)

R~QQ~P

(P → Q)

Single Branching

x & y

x

y

~(x 0 y)

~x

~y

~(x → y)

x

~y

~(x & y)x ↔ y

x ~x

y ~y

Double Branching to
Two Sub-Statements

Double Branching to
One Sub-Statement

~(x ↔ y)

x ~x

~y y

~x ~y

x 0 y

x y

x → y

~x y

Figure 8-1:
The eight

types of SL
statements

with decom-
positions.
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Here, I again checked the statements that I decomposed. Also note the cir-
cling convention. After you decompose a statement down to either a single
constant or its negation, circling makes it easier to keep track of. In this case,
I circled ~P, Q, ~Q, and R.

After you break down every statement in this way, the truth tree is complete.
Each branch tells you something about one or more interpretations that
would make the original statement true. To find these interpretations, trace
from the beginning of the trunk all the way to the end of that branch and note
all of the circled statements that you pass through along the way.

For example, tracing from the beginning of the trunk to the end of the first
branch, the only circled statement you pass through is ~P. So, this branch
tells you that any interpretation in which P is false will make the original
statement true.

Solving problems with truth trees
You can use a truth tree to solve any problem that can be solved using a
truth table or a quick table. As with these other tools, truth trees follow a
step-by-step process. Here are the steps for a truth tree:

1. Set up. To set up a truth tree, construct its trunk according to the type of
problem you’re trying to solve.

The trunk consists of the statement or statements you need to decompose.

2. Fill in. To fill in a truth tree, use the rules of decomposition listed in
Figure 8-1 to create all of its branches.

3. Read. To read the completed truth tree, check to see which of the fol-
lowing two outcomes has occurred:

• At least one branch is left open: At least one interpretation makes
every statement in the trunk of the tree true.

• All of the branches are closed: No interpretation makes every
statement in the trunk of the tree true. (In the following section, 
I show you how to close off a branch.)

Showing Consistency or Inconsistency
You can use truth trees to figure out whether a set of statements is consistent
or inconsistent. (See Chapter 6 for more on consistency.) For example, 
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suppose you want to figure out whether the three statements P & ~Q, Q 0 ~R,
and ~P → R are consistent or inconsistent.

To decide whether a set of statements is consistent (at least one interpreta-
tion makes all of those statements true) or inconsistent (no interpretation
makes all of them true), construct a truth tree using that set of statements as
its trunk. Here’s your trunk:

After you create your trunk, you can begin decomposing the first statement,
P & ~Q. Here’s what you get:

I checked the statement P & ~Q after I decomposed it into its two sub-
statements and circled the single constants — P and ~Q.

The next statement is Q 0 ~R, which decomposes along two separate
branches as follows:

P & ~Q

Q 00 ~R

P

~Q

~P → R

~RQ

X

P & ~Q

Q 0 ~R

P

~Q

~P → R

P & ~Q

Q 00 ~R

~P → R
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When tracing from the beginning of a trunk to the end of a branch would
force you to pass through a pair of contradictory circled statements, close off
that branch with an X.

In this case, tracing all the way from the beginning of the trunk to the end of
the branch on the left forces you to pass through the three circled statements
P, ~Q, and Q. But ~Q and Q are contradictory statements, so I’ve closed off
that branch.

The reason for closing off this branch makes sense when you think about it.
This branch tells you that any interpretation in which the statements P, ~Q,
and Q are true would make all three original statements true. But, ~Q and Q
can’t both be true, so this branch provides no possible interpretations.

The final statement to decompose is ~P → R. As you know from Figure 8-1, the
branches for this statement will look like this:

You can see again here that I’ve closed off a branch where a contradiction
has been reached. In this case, the contradiction is R and ~R.

Your truth tree is finished when one of the following occurs:

� Every statement or constant has been either checked or circled

� Every branch has been closed off

P & ~Q

Q 0 ~R

P

~Q

~P →→ R

~RQ

X

RP

X
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In this example, every item has been either checked or circled, so the tree is
finished. After the tree is finished, check to see whether any branches are
still open. The presence or absence of open branches on a finished truth tree
allows you to determine whether the original set of statements is consistent
or inconsistent. Follow these guidelines:

� If the finished truth tree has at least one open branch, the set of state-
ments is consistent.

� If the finished truth tree has all closed branches, the set of statements is
inconsistent.

As you can see, the example in this section still has one branch open, which
means that an interpretation exists under which the three statements are all
true. So, in this case, the set of statements is consistent.

If you want to know what this interpretation is, just trace from the trunk to
the end of this branch. When you trace the length of the tree, you find that the
circled items are P, ~Q, and ~R and the final P. So, the only interpretation
that makes the three original statements true is when the value of P is T
and the values of both Q and R are F.

Testing for Validity or Invalidity
Truth trees are also handy when you want to determine an argument’s 
validity or invalidity (see Chapter 6 for more on validity). For example, 
suppose you want to figure out whether the following argument is valid or
invalid:

Premises:

~P ↔ Q

~(P 0 R)

Conclusion:

~Q & ~R

To decide whether an argument is valid or invalid, construct a truth tree
using the premises and the negation of the conclusion as its trunk.
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Using the example I introduced at the beginning of this section, create a trunk
that looks like this:

You don’t, however, have to start at the top of the tree. Decomposing state-
ments in a different order is often helpful. Figure 8-1 divides the eight basic
statement forms into three columns. This division can help you decide what
order to decompose your statements. Whenever you have more than one
statement in the trunk of your truth tree, decompose them in this order:

1. Single branching

2. Double branching with two sub-statements

3. Double branching with one sub-statement

Decomposing statements in this order makes sense. Whenever you can,
choose a single branch path to keep your trees as small as possible. But,
when you have no choice but to double branch, choose a double branch with
two sub-statements. Adding two statements increases the chance that you’ll
be able to close off one of the branches.

In this example, only the second statement, ~(P 0 R), leads to a single branch.
So, you decompose it first, like this:

Both of the remaining statements lead to double branches. But only the first
statement, (~P ↔ Q), decomposes to two sub-statements. So, you decompose
that one next:

~P ↔ Q

~(P 00 R)

~(~Q & ~R)

~P

~R

~P ↔↔ Q

~(P 0 R)

~(~Q & ~R)
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At this point, one branch is closed off: Tracing from the beginning of the
trunk to the end of this branch forces you to pass through both ~P and P,
which is a contradiction. The final step, decomposing ~(~Q & ~R), leads your
truth tree to look like this:

Notice that you only have to add the new decomposition to the open branch
but not to the closed-off branch. Now every statement is either checked or
circled, so the tree is complete.

~P ↔ Q

~(P 0 R)

~(~Q & ~R)

~P

~R

P~P

Q ~Q

X

RQ

X

~P ↔↔ Q

~(P 0 R)

~(~Q & ~R)

~P

~R

P~P

Q ~Q

X
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When checking a truth tree for validity or invalidity the following guidelines
apply:

� If the truth tree has at least one open branch, the argument is invalid.

� If the truth tree has all closed branches, the argument is valid.

In this section’s example, one branch is still open, so the argument is invalid.
Trace from the trunk to the end of this branch and you will find the circled
statements ~P, Q, and ~R. This tells you that the only interpretation under
which this argument is invalid is when the value of P and R are both F and the
value of Q is T.

Separating Tautologies, Contradictions,
and Contingent Statements

In Chapter 6, I show you that every statement in SL is categorized as a tautology
(a statement that’s always true), a contradiction (a statement that’s always
false), or a contingent statement (a statement that can be either true or false,
depending on the value of its constants). You can use truth trees to separate
SL statements into these three categories.

Tautologies
Suppose you want to test the statement ((P & Q) 0 R) → ((P ↔ Q) 0 (R 0

(P & ~Q)) to determine whether it’s a tautology.

To show that a statement is a tautology, construct a truth tree using the 
negation of that statement as its trunk.

Using the negation of the example statement I just introduced, you can create
a trunk that looks like this:

Even though this statement looks big and hairy, you know that it corresponds
to one of the eight basic forms from Chapter 5 (listed in Table 5-1.) You just
need to figure out which is the correct form. I go into this in Chapter 5, but a
little refresher here wouldn’t hurt.

~(((P & Q) 0 0 R) → ((P ↔ Q) 0 0 (R 0 (P & ~Q)))
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The main operator is the first ~-operator — the only operator that is outside
of all parentheses — so the statement is one of the four negative forms. And
the scope of the →-operator covers the rest of the statement, so this state-
ment is of the form ~(x → y). As you can see in Figure 8-1, this form is single-
branching, so your truth tree should now look like this:

Notice that I removed the outer parentheses from the sub-statement 
((P & Q) 0 R). This is a legitimate step, as I explain in Chapter 14.

Now, the last statement is of the form ~(x 0 y), which is also single-branching.
Therefore, according to the order in which you should decompose multiple
statements (see the “Testing for Validity or Invalidity” section earlier in the
chapter), that’s the statement to work on next. Fill in your truth table as follows:

Again, the last statement is of the form ~(x 0 y), so it’s single branching, and
therefore, next up:

Even though this example may look long, step back a minute and notice that
you’ve already taken three steps without double-branching. Not having to
double-branch saves you tons of work as you proceed because you have to
worry about only one branch rather than two (or four, or eight!).

~(P & ~Q)

~R

~(((P & Q) 0 R) → ((P ↔ Q) 0 (R 0 (P & ~Q)))

(P & Q) 0 R

~(P ↔ Q)

~(R 0 (P & ~Q))

~((P ↔ Q) 0  (R 0 (P & ~Q)))

~(((P & Q) 0 R) → ((P ↔ Q) 0 (R 0 (P & ~Q)))

(P & Q) 0 R

~(P ↔↔ Q)

~(R 0 (P & ~Q))

~((P ↔ Q) 0 0 (R 0 (P & ~Q)))

(P & Q) 0 0 R

~((P ↔ Q) 0 0 (R 0 (P & ~Q)))

~(((P & Q) 0 0 R) → ((P ↔ Q) 0 0 (R 0 (P & ~Q)))
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Eventually, though, you have to double-branch with this example. Because it
branches to two sub-statements, start with the statement ~(P ↔ Q), accord-
ing to the order of decomposition I provide in the “Testing for Validity or
Invalidity” section earlier. Your truth tree should now look like this:

Now decompose (P & Q) 0 R:

This step closes off two of the four branches. Now, P & Q is single branching,
so decompose this statement on both remaining branches, like this:

(P & Q) 00 R

~(R V (P & ~Q))

~R

~(((P & Q) 0 R) → ((P ↔ Q) 0 (R 0 (P & ~Q)))

~((P ↔ Q) 0  (R 0 (P & ~Q)))

~(P ↔ Q)

XX

P ~P

~Q Q

P & QR RP & Q

~(P & ~Q)

~(P ↔↔ Q)

~(R V (P & ~Q))

~(P & ~Q)

~R

P ~P

~Q Q

~(((P & Q) 0 R) → ((P ↔ Q) 0 (R 0 (P & ~Q)))

(P & Q) 0 R

~((P ↔ Q) 0  (R 0 (P & ~Q)))
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You’ve now closed all remaining branches. Note that the statement ~(P & ~Q)
is not checked. This makes no difference, though, because after every branch
is closed off, the tree is finished.

When testing to determine whether a statement is a tautology, follow these
guidelines:

� If the truth tree has at least one open branch, the statement is not a tau-
tology — it’s either a contradiction or a contingent statement. (To con-
firm or rule out contradiction as a possibility, you would need another
tree, as I describe in the next section.)

� If the truth tree has no open branches, the statement is a tautology.

In this section’s example, the tree shows you that the statement is a 
tautology.

Contradictions
Suppose you want to test the statement (P ↔ Q) & (~(P & R) & (Q ↔ R)) to
determine whether it’s a contradiction.

P

Q

P

Q

X X

XX

(P & Q) 0 R

P ~P

~Q Q

P & QR RP & Q

~(R V (P & ~Q))

~(P & ~Q)

~R

~(((P & Q) 0 R) → ((P ↔ Q) 0 (R 0 (P & ~Q)))

~((P ↔ Q) 0  (R 0 (P & ~Q)))

~(P ↔ Q)
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To show that a statement is a contradiction, construct a truth tree using
the statement as its trunk. The trunk for the example I just introduced looks
like this:

Fortunately, the first decomposition of this statement is single-branching:

Now you have a choice to decompose either P ↔ Q or ~(P & R) & (Q ↔ R).
But, according to Figure 8-1, the last statement is single-branching, so take
that route first:

Because you’ve run out of single-branching statements, it’s time to double-
branch, starting with statements that produce two sub-statements. Begin
with P ↔ Q:

~(P & R)

Q ↔ R

P ↔↔ Q

~(P & R) & (Q ↔ R)

(P ↔ Q) & (~(P & R) & (Q ↔ R))

~PP

~QQ

~(P & R)

Q ↔↔ R

P ↔ Q

~(P & R) & (Q ↔ R)

(P ↔ Q) & (~(P & R) & (Q ↔ R))

P ↔↔ Q

~(P & R) & (Q ↔ R)

(P ↔ Q) & (~(P & R) & (Q ↔ R))

(P ↔↔ Q) & (~(P & R) & (Q ↔ R))
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And now decompose Q ↔ R:

This step closes off two of the four branches. Your last step is to decompose
~(P & R) like this:

~(P & R)

Q ↔ R

P ↔ Q

~(P & R) & (Q ↔ R)

(P ↔ Q) & (~(P & R) & (Q ↔ R))

~PP

~QQ

~RR~R

XX

R

~QQ~QQ

~R~P

XX

~R~P

~(P & R)

Q  ↔ R

P ↔ Q

~(P & R) & (Q ↔ R)

(P ↔ Q) & (~(P & R) & (Q ↔ R))

~PP

~QQ

~RR~R

XX

R

~QQ~QQ
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Because every statement is either checked or circled, the tree is now 
complete.

When testing to determine whether a statement is a contradiction, apply
these guidelines:

� If the truth tree has at least one open branch, the statement is not a 
contradiction — it’s either a tautology or a contingent statement.
(To confirm or rule out tautology as a possibility, you would need
another tree, as I describe in the previous section.)

� If the truth tree has no open branches, the statement is a contradiction.

In this example, two branches remain open, so the statement isn’t a 
contradiction.

Even though two branches remain open in this tree, only one interpretation
makes the original statement true. Trace from the trunk to the end of either
open branch to see that this interpretation is that P, Q, and R are all false.

Contingent statements
Checking to see whether a statement is contingent is, as always, just a matter
of ruling out that it’s either a tautology or a contradiction. (Flip to Chapter 6
for details on contingent statements.)

When testing to determine whether a statement is contingent, use the previous
two tests for tautology and contradiction. If the statement isn’t a tautology
and isn’t a contradiction, it must be a contingent statement.

Checking for Semantic Equivalence or
Inequivalence

If you have to check a pair of statements for semantic equivalence or inequiv-
alence, you’re in luck, because truth trees can help you out. (As I explain in
Chapter 6, when two statements are semantically equivalent, they both have
the same truth value under every interpretation.)

140 Part II: Formal Sentential Logic (SL) 

13_799416 ch08.qxp  10/26/06  10:31 AM  Page 140



To decide whether a pair of statements is semantically equivalent or inequiv-
alent, you have to construct two truth trees:

� One tree using the first statement and the negation of the second state-
ment as its trunk

� The other tree using the negation of the first statement and the second
statement as its trunk

Suppose you want to find out whether the statements ~P → (Q → ~R) and 
~(P 0 ~Q) → ~R are semantically equivalent or inequivalent. In this case, you
need to make two trees, with trunks as follows:

Starting with Tree #1, the second statement is of the single-branching form
~(x → y), so decompose this statement first:

The statement ~(P 0 ~Q) is also single-branching, so work on it next:

~P → (Q → ~R)
~(~(P 0 ~Q) → ~R)
~(P 00 ~Q)

R

~P

Q

~P → (Q → ~R)
~(~(P 00 ~Q) → ~R)
~(P 0 ~Q)

R

~P →→ (Q → ~R)
Tree #1:

~(~(P 0 ~Q) → ~R)
~(~P → (Q → ~R))
Tree #2:

~(P 0 ~Q) → ~R

141Chapter 8: Truth Grows on Trees

13_799416 ch08.qxp  10/26/06  10:31 AM  Page 141



Next, move on to the first statement, since you skipped it initially:

This step closes off one branch. Now, decomposing Q → ~R, you get:

Tree #1 is now complete.

When testing a pair of statements to determine whether they’re semantically
equivalent or inequivalent, follow these guidelines:

� If either truth tree has at least one open branch, the statements are
semantically inequivalent.

� If both truth trees have all closed branches, the statements are 
semantically equivalent.

~P → (Q → ~R)
~(~(P 0 ~Q) → ~R)
~(P 0 ~Q)

R

~P

P

X

Q  → ~R

Q

~Q ~R

X X

~P → (Q → ~R)
~(~(P 0 ~Q) → ~R)
~(P 0 ~Q)

R

~P

P

X

Q  → ~R

Q
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If the first tree has at least one open branch, the statements are semantically
inequivalent, which means you can skip the second tree.

Because the first tree in the example has all closed branches, you need to
move on to the next tree. In this case, the first statement is single-branching,
so decompose it first as follows:

The statement ~(Q → ~R) is also single-branching, so work on it next:

The remaining statement, ~(P 0 ~Q) → ~R, is double-branching, so decom-
pose it next, like this:

~(~P → (Q → ~R))
~(P 00 ~Q) → ~R
~P

~(Q → ~R)

Q

R

~R

X

P 0 ~Q

~(~P → (Q → ~R))
~(P 0 ~Q) → ~R
~P

~(Q →→ ~R)

Q

R

~(~P →→ (Q → ~R))
~(P 0 ~Q) → ~R
~P

~(Q → ~R)
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This step closes off one branch. Finally, decomposing P 0 ~Q gives you:

All of the branches on each tree are closed off, so you know that the state-
ments are semantically equivalent.

~(~P → (Q → ~R))
~(P 0 ~Q) → ~R
~P

~(Q → ~R)

Q

R

~R

X

P 0 ~Q

~Q

X

P

X
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Part III
Proofs, Syntax, and

Semantics in SL
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In this part . . .

Proofs are the very heart of logic. For some students,
though, writing proofs in logic is where they lose

heart. But fear not! Proofs aren’t as difficult as you’ve
been led to believe — if you take the right approach.

In this part, you can expect to master SL proofs. Chapter 9
shows you what a proof looks like and how to construct
one. You also discover the first eight rules of inference,
which make up the set of implications rules. In Chapter 10,
I discuss the remaining ten rules of inference, which are
considered the set of equivalence rules. Chapters 9 and 10
focus on direct proof methods, while in Chapter 11, I intro-
duce you to two new proof methods: conditional proof and
indirect proof. In Chapter 12, I show you how and when to
use all of these tools as I discuss proof strategies.

You also get the big picture of SL. In Chapter 13, you dis-
cover why the five SL operators are sufficient to produce
any logical function in SL. In Chapter 14, I discuss a vari-
ety of topics related to the syntax and semantics of SL.
Here, I show you how to decide whether a string of sym-
bols in SL is also a well-formed formula. And finally, I give
you a taste of Boolean algebra.
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Chapter 9

What Have You Got to Prove?
In This Chapter
� Introducing formal direct proof

� Constructing proofs using the rules of inferences

You may already have some experience writing proofs, those tricky prob-
lems that were an important part of high school geometry. In geometry

proofs, you started with a set of simple axioms (also called postulates), such
as “All right angles are equal,” and figured out how to build toward ever more
complex statements called theorems.

Computer programming, in which you use simple statements to create com-
plex software, also resembles the proof method. This idea of complexity aris-
ing out of simplicity is also common to proofs in sentential logic (SL).

In a sense, constructing a proof is like building a bridge from one side of a
river to another. The starting point is the set of premises you’re given, and
the end point is the conclusion you’re trying to reach. And the pieces you use
to build the bridge are the rules of inference, a set of 18 ways to turn old state-
ments into new ones.

In this chapter, I introduce you to the first eight rules of inference — the set
of implications rules. And along the way, you find out a bit about what proofs
look like.

Even though these rules are clear and unambiguous, it’s not always obvious
how to use them in a particular case. There’s an art to writing proofs that can
make the process interesting and satisfying when you get it right, but frus-
trating when you don’t. The good news is that a bunch of great tricks exist
and, once you know them, you’ll have a lot of ammo to use when the going
gets tough.

15_799416 ch09.qxp  10/26/06  10:32 AM  Page 147



Bridging the Premise-Conclusion Divide
A valid argument is like a bridge — it gives you a way from here (the
premises) to there (the conclusion), even if rough waters are rushing below.
Proofs give you a way to build such a bridge so that you know it is safe to
travel from one side to the other.

For example, take the following argument.

Premises:

P → Q

P

Conclusion:

Q

Because proofs concentrate so heavily on arguments, in this chapter I intro-
duce a new space-saving convention for writing arguments. Using this con-
vention, you can write the preceding argument as

P → Q, P : Q

As you can see, a comma separates the premises P → Q and P, and a colon
separates the conclusion Q. When you say that an argument is valid, you’re
saying in effect that your bridge is safe; that is, if you start on the left side
(with the premises being true), you’re safe to cross over to the right side 
(the conclusion is also true).

As a short example from arithmetic, look at this simple addition problem:

2 + 3 = 5

This equation is correct, so if you add 1 to both sides, you also get a correct
equation:

2 + 3 + 1 = 5 + 1

Checking that the equation is still correct is easy because both sides add up
to six.

Now, try the same thing using variables:

a = b
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Suppose you add a third variable to both sides:

a + c = b + c

Is this equation correct? Well, you can’t say for sure because you don’t know
what the variables stand for. But, even without knowing what they stand for,
you can say that if the first equation is correct, then the second equation
must also be correct.

So, the following is a valid statement:

a = b → a + c = b + c

With this information, you can build the following argument:

Premises:

a = b

a = b → a + c = b + c

Conclusion:

a + c = b + c

After you know that the left side of a valid argument is true, you know that
you’re safe to cross over to the right side — in other words, that the right
side is also true. And it doesn’t matter what numbers you fill in. As long as
you start out with a true statement and keep the general form of the argu-
ment, you always end up with a true statement.

Using Eight Implication Rules in SL
Proofs in SL work very much like proofs in arithmetic. The only difference is
that instead of using arithmetic symbols, they use the SL operators you’ve
come to know and love (refer to Chapter 4 for more on these fun-loving 
operators).

SL provides eight implication rules, which are rules that allow you to build 
a bridge to get from here to there. In other words, you start with one or 
more true statements and end up with another one. Most of these rules are
simple — they may seem even trivial. But, this simplicity is their power
because it allows you to handle much more complex ideas with great 
confidence.
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In this section, I introduce these eight rules and show you how to use them to
write proofs in SL. Along the way, I give you a few tricks for making this task a
bit easier. (See Chapter 12 for more in-depth coverage of proof strategies.) I
also provide you with a number of ways to remember these rules for when
exam time rolls around.

At the end of the day, you’ll need to memorize these rules. But, work with
them for a while and you may find that you remember most of them without
too much effort.

The → rules: Modus Ponens 
and Modus Tollens
In Chapter 3, I compare if-statements to a slippery slide: If the first part of the
statement is true, then the second part must be true in order for the state-
ment to be true. Both implication rules in this section — Modus Ponens (MP)
and Modus Tollens (MT) — take advantage of this idea in different ways.

Modus Ponens (MP)
MP takes advantage of the slippery slide idea directly: It tells you “If you
know that a statement of the form x → y is true, and you also know that the x
part is true, then you can conclude that the y part is also true.” In other
words, once you step on the top of the slide at x, you have no choice but to
end up at y.

MP: x → y, x : y

MP says that any argument of this form is valid. Here it is in its simplest form:

P → Q, P : Q.

But, by the same rule, these similar arguments are all valid as well:

~P → ~Q, ~P : ~Q

(P & Q) → (R & S), P & Q : R & S

(P ↔ ~(Q & ~R)) → (~S 0 (R → P)), (P ↔ ~(Q & ~R)) : (~S 0 (R → P))

A typical proof has a bunch of numbered rows. The top rows are the
premises, the last row is the conclusion, and the rows in-between are the
intermediate steps to logically connect them. Each row has a line number and
a statement, followed by a justification for that statement (which includes the
rule and the row numbers it affects).
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For example, here’s a proof for the argument (P & Q) → R, (P & Q) : R:

1. (P & Q) → R P

2. (P & Q) P

3. R 1, 2 MP

As you can see, this proof didn’t require any intermediate steps. The
premises (P) led immediately to the conclusion, with the justification being
the rule MP applied to lines 1 and 2.

Now try to prove that this slightly more complicated argument is valid:

P → Q, Q → R, R → S, P : S

The first step to any proof is always the same: Copy down all of the
premises with line numbers and justifications. Here’s what your first
step should look like:

1. P → Q P

2. Q → R P

3. R → S P

4. P P

After you’ve copied your premises, look for a step that you can take. In this
case, you can use MP with lines 1 and 4:

5. Q 1, 4 MP

MP allows you to derive a new statement, Q, which, you can use as part of
your next step. This time, you can use MP with lines 2 and 5:

6. R 2, 5 MP

Again, you derived a new statement, R, which you can use for your next step.
The last step practically writes itself:

7. S 3, 6 MP

You know you’re finished when the conclusion of the argument appears. In
this case, S is the conclusion you were looking to justify, so you’re done.
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Modus Tollens (MT)
MT uses the slippery slide idea in a different way from how MP uses it: It tells
you “If you know that a statement of the form x → y is true, and you also
know that the y part is false, you can conclude that the x part is also false.”
In other words, if you don’t end up on the bottom of the slide at y, then you
didn’t step onto it in the first place at x.

MT: x → y, ~y : ~x

As with MP (shown in the previous section), MT and all of the other rules of
inference can be generalized. Thus, a few easily provable valid arguments in
this form are as follows:

P → Q, ~Q : ~P

(P & Q) → R, ~R : ~(P & Q)

(P 0 Q) → (R ↔ S), ~(R ↔ S) : ~(P 0 Q)

Knowing this rule, you can now prove the validity of this argument:

P → Q, ~P → R, ~Q : R

As always, begin by copying the premises:

1. P → Q P

2. ~P → R P

3. ~Q P

So far, I’ve given you two rules to work with — MP and MT. You’ll need both
in this proof.

In most proofs, short statements are easier to work with than long ones.

The shortest statement here is ~Q, so a good plan is to hunt around for a way
to use it. You don’t have to hunt too far, because you can use MT as follows:

4. ~P 1, 3 MT

Now you can use MP:

5. R 2, 4 MP

Again, the proof is finished when the conclusion appears.
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The & rules: Conjunction and
Simplification
The two & rules are related by a common factor: &-statements. Simplification
(Simp) is useful for breaking down &-statements at the beginning of a proof
and Conjunction (Conj) for building them up at the end.

Conjunction (Conj)
Conj says “If you know two things separately, then you also know both of
them together.”

Conj: x, y : x & y

Conj is a pretty straightforward rule: If you have two true statements, x and y,
you can conclude that the statement x & y is also true.

Try this proof on for size:

P → Q, R → S, P, ~S : (P & ~S) & (Q & ~R)

First, copy the premises:

1. P → Q P

2. R → S P

3. P P

4. ~S P

Writing a proof can be a little like a treasure hunt: Try to find your way to the
next clue by whatever means you can. For example, study the conclusion so
you know where you’re trying to go. Then look at the premises and see what
will help you get there.

Generally speaking, long conclusions make for easier proofs than short ones.
The strategy is to try to build a long conclusion one sub-statement at a time.

In this proof, you want to build the sub-statements (P & ~S) and (Q & ~R). The
operators in these sub-statements are &-operators, which clues you in that
Conj can help you build them. In fact, you can get one of them in one step:

5. P & ~S 3, 4 Conj

153Chapter 9: What Have You Got to Prove?

15_799416 ch09.qxp  10/26/06  10:32 AM  Page 153



Look for statements that have constants in common, and see whether you
can combine them using the rules of inference.

Looking at the example, you can see that lines 1 and 3 have constants in
common, and so do lines 2 and 4:

6. Q 1, 3 MP

7. ~R 2, 4 MT

Now you can combine these two statements using Conj:

8. Q & ~R 6, 7 Conj

This gives you the other sub-statement of the conclusion. The only thing left
to do is to build the conclusion using the pieces you’ve gathered:

9. (P & ~S) & (Q & ~R) 5, 8 Conj

This was a long, nine-line proof, but when you work it piece by piece, it falls
together.

Now that you’ve walked through this proof, copy down the argument, close
the book, and see whether you can do it by yourself. You may find a few stick-
ing points along the way, but it’s better to discover them here than on an
exam!

Simplification (Simp)
Simp tells you, “If you have two things together, than you also have either of
those things separately.”

Simp: x & y : x

x & y : y

Simp is sort of the flip side of Conj. But, instead of starting with the pieces
and building to the whole, you start with the whole and reduce to either of
the pieces.

Try writing the proof for this argument:

P → Q, R → S, P & ~S : Q & ~R
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As always, copy down your premises, like so:

1. P → Q P

2. R → S P

3. P & ~S P

Use Simp early in a proof to unpack &-statements — that is, turn long 
&-statements into shorter statements. This gives you easier statements
to work with, which you can use to build your conclusion.

Line 3 is your only opportunity to use this rule:

4. P 3, Simp

5. ~S 3, Simp

You may be noticing a certain similarity among the proofs in this chapter. If
you are, that’s good! These next two steps should look pretty familiar by now:

6. Q 1, 4 MP

7. ~R 2, 5 MT

All that remains is to put the pieces together, like this:

8. Q & ~R 6, 7 Conj

The 0 rules: Addition and 
Disjunctive Syllogism
As Simp is related to Conj, Disjunctive Syllogism (DS) is similarly related to
Addition (Add). Both rules work with 0-statements. DS breaks them down
and Add builds them up.

Addition (Add)
Add tells you, “If you know x, then you can conclude either x or y.”

Add: x : x 0 y

At first glance, this rule can seem downright weird. You may be asking “If I’m
starting only with x, where did the y come from?” Believe it or not, the beauty
of Add is the seemingly magical appearance of the y out of thin air.
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Remember, to build a 0-statement that’s true, you only need one part of it to
be true (see Chapter 4). The other part can be anything you like.

Try out this proof:

Q → S, Q: ((P ↔ ~Q) ↔ R) 0 ((P 0 S) & (Q 0 R))

This proof sure looks screwy. There isn’t much to work with — just two
premises:

1. Q → S P

2. Q P

The first step almost suggests itself:

3. S 1, 2 MP

When the conclusion of an argument is a 0-statement, you only need to build
one of the two sub-statements, and then you can use Add to tack on the rest.

The key thing to realize here is that you have two choices: You can either
prove the first part of the conclusion — ((P ↔ ~Q) ↔ R) — or the second
part — ((P 0 S) & (Q 0 R)). Place your bets on the second part, because I
haven’t yet given you any rules to handle ↔-statements.

A proof is like a bridge: The bigger the bridge, the more likely it was built
from two sides rather than just one. So, for tougher proofs like this one, write
the conclusion you’re trying to reach at the bottom of the page and work
your way up.

In this case, the conclusion will look like this:

6. (P 0 S) & (Q 0 R)

7. ((P ↔ ~Q) ↔ R) 0 ((P 0 S) & (Q 0 R)) 6 Add

With this setup, basically I’m saying “I’m not sure yet how I got here, but the
last step was to tack on that hairy ↔-statement stuff using Add.” (By the
way, don’t worry too much about statement numbers while you’re working
backwards — it just so happens that I have ESP.)

Now, look at line 6. Again, while working backwards, the question to ask is
“How could I end up here?” This time, you notice that (P 0 S) & (Q 0 R) is an
&-statement. And one way to build an &-statement is by tacking together the
two parts of the statement with Conj:
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4. P 0 S

5. Q 0 R

6. (P 0 S) & (Q 0 R) 4, 5 Conj

7. ((P ↔ ~Q) ↔ R) 0 ((P 0 S) & (Q 0 R)) 6 Add

Again, you’re not sure exactly how you got here, but if you can find a way to
build the statements P 0 S and Q 0 R, the rest follows.

Now, it’s easier to see how the magic happened in the first place, because
building P 0 S and Q 0 R aren’t really so difficult. Look back up to lines 2 and 3
and use Add to bridge the gap. Here’s how the whole proof looks from start
to finish:

1. Q → S P

2. Q P

3. S 1, 2 MP

4. P 0 S 2 Add

5. Q 0 R 3 Add

6. ((P 0 S) & (Q 0 R)) 4, 5 Conj

7. ((P ↔ ~Q) ↔ R) 0 ((P 0 S) & (Q 0 R)) 6 Add

Disjunctive Syllogism (DS)
DS says “If you have two options and you can eliminate one of them, you can
be sure of the one that’s left.”

DS: x 0 y, ~x : y

x 0 y, ~y : x

DS is related to Add in this way: DS breaks down 0-statements, and Add
builds them up.

See what you can do with this argument:

P → ~Q, P 0 R, Q 0 S, ~R : ~P 0 S

First you copy your premises:

1. P → ~Q P

2. P 0 R P

3. Q 0 S P

4. ~R P
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In this case, the simplest statement is ~R. Line 2 also contains the constant R.
These two statements allow you to use DS immediately:

5. P 2, 4 DS

Now that you have the statement P, the next statement follows easily:

6. ~Q 1, 5 MP

Now you have another opportunity to use DS:

7. S 3, 6 DS

And, finally, don’t miss the opportunity to use Add:

8. ~P 0 S 7 Add

The Double → Rules: Hypothetical
Syllogism and Constructive Dilemma
Hypothetical Syllogism (HS) and Constructive Dilemma (CD) allow you to draw
conclusions when you start out with two →-statements. You won’t use them
as often as the other six rules I mention in this chapter, but you’ll still need
them from time to time.

Hypothetical Syllogism (HS)
HS makes sense when you look at it. It tells you “If you know that x leads to y
and that y leads to z, then x leads to z.”

HS: x → y, y → z : x → z

Note that HS is the first rule so far that contains no single constants. It neither
breaks down statements nor builds them up.

Here’s an example for you to try:

P → Q, Q → R, R → S, ~S : ~P & (P → S)

As usual, write out your premises:

1. P → Q P

2. Q → R P

3. R → S P

4. ~S P
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Looking at the conclusion, you need to get two pieces — ~P and P → S — and
then put them together using Conj. You can get them in either order. I start
by using HS:

5. P → R 1, 2 HS

6. P → S 3, 5 HS

That gives you the first piece. But now, the second piece isn’t difficult to find:

7. ~P 4, 6 MT

Then, just put them together using Conj:

8. ~P & (P → S) 5, 7 Conj

Constructive Dilemma (CD)
CD is less intuitive than the other rules in this chapter until you really think
about it: In plain English, it says “Suppose you know that you have either w
or x. And you also know that w gives you y and that x gives you z. Well, then
you have either y or z.”

CD: w 0 x, w → y, x → z : y 0 z

This rule is also the only one that uses three statements to produce one,
which allows for few opportunities to use CD. However, when such an oppor-
tunity arises, it’s usually hanging there like neon sign. In other words, it’s
super easy to find.

In this example, I give you six premises in a desperate attempt to camouflage
this opportunity:

P → Q, Q → R, S → T, U → V, S 0 U, ~R : (~P & ~Q) & (T 0 V)

So, first write out your premises:

1. P → Q P

2. Q → R P

3. S → T P

4. U → V P

5. S 0 U P

6. ~R P

At first glance, this example is just a huge mess. One thing to notice, though,
is that the conclusion is an &-statement. This means that if you can get both
parts of it — ~P & ~Q and T 0 V — you can use Conj to get the whole thing.
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First, use CD to get T 0 V:

7. T 0 V 3, 4, 5 CD

Now, how do you get ~P & ~Q? Of course, just get ~P and ~Q. Not so bad,
right? Here’s what these steps look like:

8. ~Q 2, 6 MT

9. ~P 1, 8 MT

10. ~P & ~Q 8, 9 Conj

To complete the proof, just put them together with Conj, like so:

11. (~P & ~Q) & (T 0 V) 7, 10 Conj
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Chapter 10

Equal Opportunities: Putting
Equivalence Rules to Work

In This Chapter
� Understanding the difference between equivalence rules and implication rules

� Using ten important equivalence rules

If you like implication rules (see Chapter 9), you’re going to adore the other
ten rules of inference — the equivalence rules — that I go over in this chap-

ter. Why? Let me count the ways.

First of all, these rules will dazzle and astound you (and numerous other
admirers) with the ease that they provide you in working logic problems. 
For example, just try proving the validity of the following argument using
only implication rules:

~(P & Q), P : ~Q

Alas, you can’t. But, lucky for you, with the new and improved equivalence
rules in this chapter, problems like these are just momentary distractions on
an otherwise cloudless day. And there’s even more good news: Equivalence
rules are generally easier and more flexible to use within proofs for several
important reasons, which are also covered here.

In this chapter, you discover how to apply ten important equivalence rules,
get tips on when and how to use them, and continue to sharpen your skill at
proving the validity of arguments. The proofs in this chapter also make full
use of the implication rules.
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Distinguishing Implications 
and Equivalences

The implication rules that I discuss in Chapter 9 have several key limitations
that the equivalence rules in this chapter don’t have. In this way, the equiva-
lence rules are more flexible and generally more useful than the implication
rules. Read on to find out the differences between these two sets of rules.

Thinking of equivalences as ambidextrous
One of the most important differences between equivalences and implica-
tions is how they work: Equivalences work in both directions whereas 
implications work only in one direction.

For example, when you know that x → y and x are both true, Modus Ponens
(MP) tells you that y is also true (see Chapter 9). However, reversing that
deduction gets you into trouble because knowing that y is true is certainly
not enough information to decide that x → y and x are both true.

Luckily, this limitation doesn’t apply to the ten equivalence rules.
Equivalence rules tell you that two statements are interchangeable: anywhere
you can use one statement, you can use the other, and vice versa.

Applying equivalences to part of the whole
Another difference between equivalences and implications is that equiva-
lences can be applied to part of a statement, but implications can’t. Here’s an
example of an obvious mistake when working with implications:

1. (P & Q) → R P

2. P 1, Simp (WRONG!)

Remember that the Simplification rule (Simp) states that x & y : x. So, the mis-
take here is thinking that you can apply the implication rule Simp to part of
line 1 (P & Q). Equivalence rules, however, aren’t bound by such restrictions.

162 Part III: Proofs, Syntax, and Semantics in SL 

16_799416 ch10.qxp  10/26/06  10:32 AM  Page 162



Discovering the Ten Valid Equivalences
Let me guess, you’re just chomping at the bit to get to know these ten equiva-
lence rules, which you’ll need to memorize, by the way. Well, here they are,
complete with examples. 

One bit of notation you’ll need to know is the double-colon symbol ::. When
placed between two statements, this symbol means that the two statements
are equivalent — that is, you can substitute one for the other whenever
needed.

Double Negation (DN)
DN is simple. It tells you “If x is true, then not not x is also true.”

DN: x :: ~~x

If you read Chapter 9, you can probably work through the following proof in
your sleep, without using any equivalence rules:

~P → Q, ~Q : P

1. ~P → Q P

2. ~Q P

3. P 1, 2 MT

However, every time you negate a negation — for example, when you negate
~P and change it into P — you’re technically required to follow these steps:

1. Negate ~P by changing it into ~~P.

2. Use Double Negation (DN) to change ~~P into P.

So, the proof at the beginning of this section is technically missing a step —
see the following version:

~P → Q, ~Q : P

1. ~P → Q P

2. ~Q P

3. ~(~P) 1, 2 MT

4. P 3 DN
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Check to see if your teacher is a stickler for this technicality. If so, be careful
not to assume a DN without putting it explicitly in your proof.

I’m going out on a brittle limb here: Throughout this chapter, I use DN fre-
quently without referencing it. My philosophy is that you don’t need to get all
bent out of shape every time you flip from negative to positive. So sue me if
you must, but I don’t know nothing about double negation.

Contraposition (Contra)
Chapter 4 tells you that a statement of the form x → y and its contrapositive
(~y → ~x) always have the same truth value. Chapter 6 clues you in that two
statements that always have the same truth value are semantically equiva-
lent. These two facts put together give you Contra.

Contra: x → y :: ~y → ~x

Contra is related to Modus Tollens (MT), which I introduced in Chapter 9.
Each of these rules is saying: “When you start out knowing that the statement
x → y is true, then the fact that ~y is true leads quickly to ~x.”

An easy way to think of Contra is: Reverse and negate both. That is, you can
reverse the two parts of a →-statement as long as you negate both parts of it.
For example, take a look at this proof:

P → Q, ~P → R : ~R → Q

1. P → Q P

2. ~P → R P

This proof gives you two opportunities to use Contra:

3. ~Q → ~P 1 Contra

4. ~R → P 2 Contra

Now, you can complete the proof in one step using HS:

5. ~R → Q 1, 4 HS

By the way, notice that in this proof you didn’t use line 3 and, in fact, you can
cross it out now if you like. (Your professor probably won’t take off points for
showing unnecessary steps, but if you’re unsure, then cross it out.)
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You don’t have to use every statement or even every premise (though most
of the time you will need them all). But, it can be useful to write down what-
ever statements you can derive and then see if you need them. You’ll learn
more about this strategy of jotting down the easy stuff in Chapter 12.

Implication (Impl)
The rational behind Impl is simple: When you know that the statement x → y
is true, you know that either x is false (that is, ~x is true) or that y is true. In
other words, you know that the statement ~x 0 y is true.

Impl: x → y :: ~x 0 y

What you probably didn’t know, though, is that this rule works in reverse (as
do all valid equivalences). So, whenever you’re given x 0 y, you can change it
to ~x → y. Professors who are sticklers may insist that you first change x 0 y
to ~~x 0 y using DN and then change this to ~x → y using Impl.

An easy way to think of Impl is: Change and negate the first. For example, you
change a →-statement to a 0-statement (or vice versa), as long as you negate
the first part of the statement. Check out this proof:

P → Q, P 0 R : Q 0 R

1. P → Q P

2. P 0 R P

As you can see, this is a tough little proof because you don’t have much to go
on and it doesn’t have any single-constant statements.

Impl links every 0-statement with a →-statement. Also, Contra gives you two
versions of every →-statement. That’s three forms to work with.

For example, P → Q has two equivalent forms: ~P 0 Q by Impl and ~Q → ~P
by Contra. Writing both out involves no cost or obligation and seeing them
may suggest something, so be sure to write out all of your steps as you see
them. Here they are:

3. ~P 0 Q 1 Impl

4. ~Q → ~P 1 Contra

The same is true of P 0 R:

5. ~P → R 2 Impl

6. ~R → P 2 Contra
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Now look at what you’re trying to prove: Q 0 R. With Impl, this is the same as
~Q → R. Aha! So, here are the next steps:

7. ~Q → R 4, 5 HS

8. Q 0 R 7 Impl

You didn’t need lines 3 and 6, but they’re free, so who cares? (If the answer to
this rhetorical question is “My professor cares — he takes off points for extra
steps,” then go back and cross out as needed.)

When in doubt on a proof, write down as many statements as you can. It can’t
hurt and often helps. I call this strategy kitchen-sinking because you’re throw-
ing everything but the kitchen sink at the problem. I discuss it and other
proof strategies in greater detail in Chapter 12.

Exportation (Exp)
Exp isn’t intuitively obvious until you put it into words (which I do for you
momentarily), and then its meaning jumps right out at you.

Exp: x → (y → z) :: (x & y) → z

To understand this rule, think of an example where x → (y → z) could be the
form of an English statement. Here’s one possibility:

If I go to work today, then if I see my boss, then I’ll ask for a raise.

Now think of a similar example with (x & y) → z:

If I go to work today and I see my boss, then I’ll ask for a raise.

These two statements essentially mean the same thing, which should tell you
that the two statement forms they’re based on are semantically equivalent. 

Don’t mix up the parentheses! Exp tells you nothing about the statement 
(x → y) → z or the statement x & (y → z).

Try this proof on for size:

(P & Q) → R, ~R 0 S, P : Q → S

1. (P & Q) → R P

2. ~R 0 S P

3. P P
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Statement 1 is in one of the two forms that Exp works with, so try it:

4. P → (Q → R) 1, Exp

Now, another avenue opens up:

5. Q → R 3, 4 MP

Okay, so you have Q → R, but now you need Q → S. If only you could get your
hot little hands on R → S, which would allow you to build the bridge you
need using HS. Consider these steps:

6. R → S 2 Impl

7. Q → S 5, 6 HS

Commutation (Comm)
You may remember the commutative property from arithmetic as the rule
telling you that order doesn’t affect addition and multiplication — for exam-
ple, 2 + 3 = 3 + 2 and 5 × 7 = 7 × 5.

In SL, Comm tells you that order doesn’t affect operations with either the 
&-operator or the 0-operator. Thus, Comm has two versions:

Comm: x & y :: y & x

x 0 y :: y 0 x

Like DN, Comm may seem so obvious that you think it almost doesn’t need to
be mentioned. But, unlike DN, I think it’s worth mentioning when you use it in
a proof, and your professor probably will, too.

Here’s an example of a proof where Comm comes in handy:

P & (~Q → R) : (R 0 Q) & P

1. P & (~Q → R) P

2. P 1 Simp

3. ~Q → R 1 Simp

4. Q 0 R 3 Impl

Here comes your Comm opportunity — don’t miss it!

5. R 0 Q 4 Comm

6. (R 0 Q) & P 5 Conj

167Chapter 10: Equal Opportunities: Putting Equivalence Rules to Work

16_799416 ch10.qxp  10/26/06  10:32 AM  Page 167



Association (Assoc)
Assoc tells you that for statements with all &-operators or with all 
0-operators, you can move the parentheses around freely.

Assoc: (x & y) & z :: x & (y & z)

(x 0 y) 0 z :: x 0 (y 0 z)

Like Comm, Assoc also has counterparts in arithmetic. For example, (3 + 4) +
5 = 3 + (4 + 5)

Assoc and Comm can be powerful tools when used together. By using just
these two rules, you can rearrange, in any way you like, any statement that
consists of all &-statements or all 0-statements. Just be careful that you do it
step by step.

Here’s a proof to try out:

(P → Q) 0 R : Q 0 (R 0 ~P)

As always, write the premise first:

1. (P → Q) 0 R P

Notice that the conclusion has only 0-statements. So, if you can find a way to
write the premise with only 0-statements, you’ll be able to finish the proof
using only Comm and Assoc. Here’s the next step.

2. (~P 0 Q) 0 R 1 Impl

Notice that I used Impl on only part of the premise.

At this point, the strategy is just to rearrange the constants in line 2 to make
this statement look like the conclusion. Because the first constant in the con-
clusion is Q, the next step will get the Q in its proper position:

3. (Q 0 ~P) 0 R 2 Comm

Notice that, again, I applied the equivalence rule to part of the statement.
Next, I want to move the parentheses to the right using Assoc:

4. Q 0 (~P 0 R) 3 Assoc

All that’s left to do now is switch around ~R and P:

5. Q 0 (R 0 ~P) 4. Comm
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This particular proof also works in reverse — that is, you can use the conclu-
sion to prove the premise. This is true of any proof that has only one premise
and uses only equivalence rules. This also tells you that the premise and con-
clusion are semantically equivalent.

Distribution (Dist)
As with Exp, Dist is confusing until you put it into words, and then it makes
sense.

Dist: x & (y 0 z) :: (x & y) 0 (x & z)

x 0 (y & z) :: (x 0 y) & (x 0 z)

This rule, too, has an analogous form in arithmetic. For example:

2 × (3 + 5) = (2 × 3) + (2 × 5)

For this reason, multiplication distributes over addition. Note that the reverse
isn’t true:

2 + (3 × 5) ≠ (2 + 3) × (2 + 5)

In SL, however, the &-operator and the 0-operator distribute over each other.
Here’s how it works. I start with a statement in English that matches the form
x & (y 0 z):

I have a pet and it’s either a cat or a dog.

And here’s the parallel statement for (x & y) 0 (x & z):

Either I have a pet and it’s a cat or I have a pet and it’s a dog.

These two statements mean the same thing, which should help you under-
stand why Dist works.

Similarly, here’s how the 0-operator distributes over the &-operator. This
time, I start with a statement that matches the form x 0 (y & z):

I have to take either organic chemistry or both botany and zoology.

The parallel statement for (x 0 y) & (x 0 z) is a little awkward to translate, but
here it is:

I have to take either organic chemistry or botany, and I also have to take
either organic chemistry or zoology.
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Spend a moment comparing this statement with the last to convince yourself
that they mean the same thing.

Here’s an example of a proof to get you started:

Q 0 R, ~(P & Q), P : R

1. Q 0 R P

2 ~(P & Q) P

3. P P

You could apply Impl and Contra to statement 1, which wouldn’t hurt, and I
recommend this tactic when you’re hunting around for ideas. However, I take
this in another direction to show you how to use Dist:

4. P & (Q 0 R) 1, 3 Conj

5. (P & Q) 0 (P & R) 4 Dist

Now, the wheels are turning. What next?

When you get stuck in the middle of a proof, look at the premises that you
haven’t used to get ideas.

Notice that the second premise is really just the negation of the first part of
statement 5, which allows you to use DS:

6. P & R 2, 5 DS

7. R 6 Simp

This is a tough little proof, and you may be wondering what you would have
done if you hadn’t known to use Conj to derive statement 4. In the next sec-
tion, I show you how to tackle this same proof in an entirely different way.

DeMorgan’s Theorem (DeM)
Like Dist and Exp, DeM also becomes clearer with an example using state-
ments in English.

DeM: ~(x & y) :: ~x 0 ~y

~(x 0 y) :: ~x & ~y
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Here’s a statement in English that matches the form ~(x & y). Notice that this
statement is the not . . . both situation I discuss in Chapter 4:

It’s not true that I’m both rich and famous.

And here’s the parallel statement matching the form ~x 0 ~y:

Either I’m not rich or I’m not famous.

As you can see, these two statements mean the same thing, which gives you
an intuitive grasp on why the corresponding forms are equivalent.

Here’s a statement in English that matches the form ~(x 0 y). Notice that this
statement is the neither . . . nor situation, which I discuss in Chapter 4:

Jack is neither a doctor nor a lawyer.

And here is the parallel statement matching ~x & ~y:

Jack isn’t a doctor and he isn’t a lawyer.

Use DeM to change statements of the forms ~(x & y) and ~(x 0 y) into forms
that are easier to work with.

Here’s the argument I used in the preceding section:

Q 0 R, ~(P & Q), P : R

1. Q 0 R P

2 ~(P & Q) P

3. P P

This time, instead of setting up to use Dist, I start by applying DeM to 
statement 2:

4. ~P 0 ~Q 2 DeM

Because this statement is so much easier to work with, you’re more likely to
see this step:

5. ~Q 3, 4 DS

The proof now practically finishes itself:

6. R 1, 5 DS
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You can almost always find more than one way to get to where you’re going
within a proof. If your first attempt doesn’t work, try another route.

Tautology (Taut)
Taut is the simplest rule in the chapter.

Taut: x & x :: x

x 0 x :: x

In fact, an “Uh-duh!” may be in order here. So why bother?

To be honest, you don’t really need Taut in the &-statement case. You can
change x & x to x by using Simp and can change x to x & x by using Conj.
Similarly, in the 0-statement case, you can change x to x 0 x by using Add.
However, if you’re stuck with x 0 x and need to get x, Taut is the way to go.

Even so, I can think of only one way you’d be likely to run into this kind of sit-
uation, and it’s kind of cute:

P → ~P : ~P

I can hear you already: “Is this proof even possible?” Yes, it is. Take a look:

1. P → ~P P

2. ~P 0 ~P 1 Impl

3. ~P 2 Taut

So, given that the statement P → ~P is true, you can prove that ~P is also true.

Equivalence (Equiv)
You may think that I lost track of ↔-statements. In fact, you may notice that
of the 18 rules of inference I discuss in this chapter and Chapter 9, Equiv is
the only one that even includes a ↔-statement.

Equiv: x ↔ y :: (x → y) & (y → x)

x ↔ y :: (x & y) 0 (~x & ~y)

Now, the truth can be told: I’ve been ignoring these statements because
they’re so darned ornery to work with in proofs.
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One reason for the relative orneriness of ↔-statements is that their truth
tables are perfectly symmetrical. In contrast to the tables for the other three
binary operators, the table for the ↔-operator divides evenly into two true
statements and two false ones. This symmetry is very pretty visually, but it
isn’t much help when you want to narrow a field down to one possibility.

So, when an argument contains a ↔-operator, you’re going to have to get rid
of it, and the sooner, the better. And you’re in luck because the two Equiv
rules can help you do just that.

The first of the two Equiv forms exploits the idea that in a ↔-statement, the
arrow goes in both directions. It just pulls the statement apart into two →-
statements and connects them with a &-operator. The second form of Equiv
exploits the idea that both parts of a ↔-statement have the same truth value,
which means that either x and y are both true or both false.

Take a look at this argument:

P ↔ (Q & R), Q : P 0 ~R

1. P ↔ (Q & R) P

2. Q P

When you have a ↔-statement as a premise, automatically write both Equiv
forms in your proof:

3. (P → (Q & R)) & ((Q & R) → P) 1 Equiv

4. (P & (Q & R)) 0 (~P & ~(Q & R)) 1 Equiv

While you’re at it, use Simp to unpack the &-statement version of Equiv:

5. P → (Q & R) 3 Simp

6. (Q & R) → P 3 Simp

Voila! You’ve written four statements automatically. At this point, look to see
what you have. In this case, line 6 looks like an Exp waiting to happen:

7. Q → (R → P) 6 Exp

From here, notice that you haven’t even touched line 2 yet, and it all falls into
place like so:

8. R → P 2, 7 MP

9. ~R 0 P 8 Impl

10. P 0 ~R 9 Comm
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In this case, you didn’t need the second Equiv form. But, check out this proof
where you do need it:

P ↔ Q, R → (P 0 Q) : R → (P & Q)

This is the most advanced proof in this chapter.

Study all the steps to make sure you understand them, then try to reproduce
it with the book closed. If you master this, you’ll have a good grasp on some
of the most difficult of the 18 rules of inference.

As always, the premises come first:

1. P ↔ Q P

2. R → (P 0 Q) P

And here are the four statements you can write out without much thought, all
from the first premise:

3. (P → Q) & (Q → P) 1 Equiv

4. (P & Q) 0 (~P & ~Q) 1 Equiv

5. P → Q 3 Simp

6. Q → P 3 Simp

Now, notice that line 2 is R → (P 0 Q), and the conclusion is R → (P & Q). So,
if you could find a way to derive (P 0 Q) → (P & Q), then the implication rule
HS would give you the conclusion.

In the end, though, only line 4 proves useful and allows for the following
fancy footwork:

7. ~(P & Q) → (~P & ~Q) 4 Impl

8. ~(~P & ~Q) → (P & Q) 7 Contra

9. (P 0 Q) → (P & Q) 8 DeM

10. R → (P & Q) 2, 6 HS
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Chapter 11

Big Assumptions with Conditional
and Indirect Proofs

In This Chapter
� Understanding conditional proof

� Assuming and discharging premises

� Proving arguments with indirect proof

� Mixing conditional and indirect proofs

Have you ever seen one of those cheesy infomercials where the
announcer keeps asking, “Now how much would you pay?” as he

throws in a bunch of extra stuff you don’t want with your $19.95 oven-safe
goggles — the cheese grater, ice crusher, and the potato peeler that writes
under water. This chapter is going to be a bit like those commercials, but
with one key difference: I’m going to throw in all sorts of extra stuff that you
really do want.

In this chapter, I introduce two new forms of proof — conditional proof and
indirect proof — completely free of charge. Unlike the direct proofs I discuss in
Chapters 9 and 10, conditional proof and indirect proof involve an assump-
tion, which is an additional premise that you don’t know is true but you
assume is true.

Also at no further cost to you, in this chapter, I show you not only how but
also when to use each of these methods.

Conditional proof almost always makes a proof easier, but you can’t always
use it. However, when the conclusion to an argument is a →-statement, condi-
tional proof is usually the way to go. On the other hand, indirect proof, also
called proof by contradiction, is an industrial strength method that works for
every proof. However, even though it’s sometimes the only method that will
work, it isn’t necessarily always the easiest way, so use it sparingly.
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Conditioning Your Premises 
with Conditional Proof

So, you’ve been a diligent student — you’ve practiced writing proofs until
you can do it in your sleep. You’ve even memorized every implication and
equivalence rule from Chapters 9 and 10. Congratulations, you’ve made it
through the ugliness alive!

So, you think you’re all set to be your school’s resident logician and then,
wham, this argument rocks your world:

P → ~Q, P 0 ~R : Q → ((~P & ~R) 0 (Q → P))

Well, at least you know how to start:

1. P → ~Q P

2. P 0 ~R P

Hmmm, after writing out these premises, there’s no doubt about it, this is
going to be one hairy proof.

But, what’s the harm in giving it the old college try? Here are a few of the
statements you come up with along the way:

3. Q → ~P 1 Contra

4. ~Q 0 ~P 1 Impl

5. ~(Q & P) 4 DeM

6. ~(~P & R) 2 DeM

7. ~P → ~R 2 Impl

8. R → P 7 Contra

9. R → ~Q 1, 8 HS

10. Q → R 9 Contra

11. ~Q 0 R 10 Impl

None of these statements really get you where you need to be. So, it’s time for
a new tactic — one that’s easy to use and that actually works. Yup, you
guessed it: The easy-to-use tactic I’m hinting at is conditional proof.
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Understanding conditional proof
Conditional proof allows you to use part of the conclusion as a premise that
you can use to prove the rest of the conclusion.

To prove the validity of an argument whose conclusion is in the form x → y
(that is, any →-statement), you can follow these steps:

1. Detach the sub-statement x.

2. Add x to your list of premises as an assumed premise (AP).

3. Prove the sub-statement y as if it were the conclusion.

The idea is simple, but brilliant. So, in the example from the previous section,
instead of working your way through and trying to prove that the conclusion
Q → ((~P & ~R) 0 (Q → P)) is valid, conditional proof allows you to:

1. Detach the sub-statement Q.

2. Add Q to the list of premises as an AP.

3. Prove the sub-statement (~P & ~R) 0 (Q → P) as if it were the conclusion.

The premises are the same, but now you have an additional assumed premise
(AP). Here’s how it works:

1. P → ~Q P

2. P 0 ~R P

3. Q AP

With this proof, you’re trying to build the statement ((~P & ~R) 0 (Q → P)).
This time, however, you have a way to break your premises down and get the
pieces you need. For example, check out these steps:

4. ~P 1, 3 MT

5. ~R 2, 4 DS

With all three single-constant statements at your fingertips, you can go
to work:

6. ~P & ~R 4, 5 Conj

7. (~P & ~R) 0 (Q → P) 6 Add

To complete the proof, here’s the final formality:

8. Q → ((~P & ~R) 0 (Q → P)) 3–7 CP
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This final step is called discharging the AP, which makes clear to the reader
that, even though you were operating as if the assumption were true from
statements 3 through 7, you’re no longer making this assumption in state-
ment 8. In other words, the conclusion is true even if the assumption
isn’t true!

You may be asking “But I can’t do that, can I? I didn’t prove that the actual
conclusion is true. All I proved is that part of it is true. And worse yet, I did it
using a phony premise that I stole from the conclusion.”

You’re right. This setup seems too good to be true. After all, premises are like
money in the bank, and the conclusion is like a nasty credit card debt you’d
rather not look at. But, what if I told you that you could cut your debt in half
and put money in the bank? That’s exactly what conditional proof allows you
to do — it’s fair, legal, and no credit agency will contact you.

For example, recall that the original argument looked like this:

P → ~Q, ~(~P & R) : Q → (~(P 0 R) 0 (Q → P))

If the conclusion could talk, it would say, “You need to show me that if Q is
true, then ~(P 0 R) 0 (Q → P) is also true.”

Using a conditional proof, you talk back to the conclusion, saying “Okay
then, I’ll show you that assuming Q is true ~(P 0 R) 0 (Q → P) is also true.”
And then you do exactly that: You assume that Q is true and then you prove
the rest.

Tweaking the conclusion
You can apply equivalence rules to the conclusion of an argument to make
conditional proof easier to use.

Flipping conclusions with Contra
To take full advantage of this section, you have to first remember that you
can use every →-statement in two ways: The way it is and in its Contra form
(see Chapter 10). So when the conclusion is a →-statement, you can use con-
ditional proof to attack it in two different ways.

For example, check out this proof, which is taken at face value:

P → Q, R 0 (Q → P) : ~(P ↔ Q) → R

1. P → Q P

2. R 0 (Q → P) P

3. ~(P ↔ Q) AP

178 Part III: Proofs, Syntax, and Semantics in SL 

17_799416 ch11.qxp  10/26/06  10:32 AM  Page 178



If you begin the proof in this way, your assumed premise is not very helpful.

But, imagine using Contra on the conclusion to get ~R → (P ↔ Q). Using
Contra allows you to take the following steps:

1. P → Q P

2. R 0 (Q → P) P

3. ~R AP

In this case, you’re trying to prove (P ↔ Q). This solution is much more
straightforward:

4. Q → P 2, 3 DS

5. (P → Q) & (Q → P) 1, 5 Conj

6. P ↔ Q 5 Equiv

Now, you can discharge your AP as follows:

7. ~R → (P ↔ Q) 3–6 CP

And don’t forget to take the proof all the way to the conclusion:

8. ~(P ↔ Q) → R 7 Contra

Any changes you make to the conclusion will appear at the end of the proof,
even after you discharge the assumption.

In this case, even though you thought of using Contra first, and you wrote the
proof with this in mind, it actually appears last.

Winning through implication
You can also turn any 0-statement into a →-statement by using Impl (see
Chapter 10). Using Impl makes any 0-statement a potential candidate for 
conditional proof.

For example, consider this argument:

P : ~R 0 (Q → (P & R))

Without conditional proof, you don’t have much hope. But, the problem
becomes much simpler after you notice that you can use Impl to rewrite the
conclusion as

R → (Q → (P & R))
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And even better, you can use Exp to rewrite it again:

(R & Q) → (P & R)

So, now you’re ready to go with your proof:

1. P P

2. R & Q AP

Now you want to get P & R. These steps practically write themselves:

3. R 2 Simp

4. P & R 1, 3 Conj

With almost no effort, you are ready to discharge your AP:

5. (R & Q) → (P & R) 2–4 CP

After you discharge the AP, the rest is just tracing back to the original form of
the conclusion:

6. R → (Q → (P & R)) 5 Exp

7. ~R 0 (Q → (P & R)) 6 Impl

Stacking assumptions
After you assume a premise, if the new conclusion is a →-statement (or can
be turned into one), you can assume another premise. This is nice way to get
two (or more!) assumptions for the price of one. Here’s an example:

~Q 0 R : (P 0 R) → ((Q & S) → (R & S))

Start out, as usual, with your premise and AP:

1. ~Q 0 R P

2. P 0 R AP

Unfortunately, you still have a long way to go to prove (Q & S) → (R & S). But,
because the new conclusion is a →-statement, you can pull out another AP,
like this:

3. Q & S AP
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Now, the new goal becomes proving R & S. Here’s what the steps look like:

4. Q 3 Simp

5. S 3 Simp

6. R 1, 4 DS

7. R & S 5, 6 Conj

At this point, you can discharge the last AP that you assumed:

8. (Q & S) → (R & S) 3–7 CP

And now, you can discharge the first AP:

9. (P 0 R) → ((Q & S) → (R & S)) 2–8 CP

When you assume more than one premise, you must discharge them in
reverse order: Discharge the last premise first and then work your way back
to the first premise.

Thinking Indirectly: Proving Arguments
with Indirect Proof

Just when you thought everything was going your way, you come across an
argument that you just can’t figure out. For example, consider this argument:

P → (Q & ~R), R : ~(P 0 ~R)

1. P → (Q & ~R) P

2. R P

Seemingly not much you can do with this argument, huh? And because the
conclusion is in a form that you cannot turn into a →-statement, conditional
proof is out of the picture, so you may think you’re really stuck. The good
news is that you’re not stuck at all. In fact, a whole new world is about to
open up to you. And a beautiful world at that!

This section shows you how to use indirect proof, which unlike conditional
proof, is always an option no matter what the conclusion looks like.
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Introducing indirect proof
Indirect proof (also called proof by contradiction) is a type of logical judo. The
idea here is to assume that the conclusion is false and then show why this
assumption is wrong. Success means that your conclusion was true all along.

To prove that any argument is valid, you can follow these steps:

1. Negate the conclusion.

2. Add the negation to your list of premises as an assumption.

3. Prove any contradictory statement (any statement of the form x & ~ x).

When working on the example from earlier in this section, instead of trying to
prove the conclusion, ~(P 0 ~R), use indirect proof, which allows you to use its
negation, P 0 ~R, as an assumed premise (AP). Just remember that now you’re
looking to prove that this assumption leads to a contradictory statement.

Here’s what the proof would look like:

P → (Q & ~R), R : ~(P 0 ~R)

1. P → (Q & ~R) P

2. R P

3. P 0 ~R AP

Your goal now is to prove a statement and its negation, then use them to
build a contradictory &-statement, like this:

With the AP at your disposal, options suddenly open up:

4. P 2, 3 DS

5. Q & ~R 1, 4 MP

6. ~R Simp

At this point, you’ve derived both R and ~R, so you can build them into a
single contradictory statement as follows:

7. R & ~R 2, 6 Conj

The assumption has led to an impossible situation, so you know that the AP
must be false. If P 0 ~R is false, then ~(P 0 ~R) must be true:

8. ~(P 0 ~R) 3–7 IP
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As with conditional proof, you need to discharge the AP, which makes clear
that, even though you were operating as if the assumption were true from
statements 3 through 7, you’re no longer making this assumption in state-
ment 8. In fact, the very thing you’ve proved is that the assumption isn’t true!

Proving short conclusions
As I mention in Chapter 9, arguments where the conclusion is shorter than
the premises tend to be more difficult to prove than those where the conclu-
sion is longer, because breaking down long premises can be tricky.

However, indirect proof works especially well when the conclusion is shorter
than the premises because the negated conclusion becomes a nice short
premise for you to use. For example, consider this argument:

~((~P 0 Q) & R) → S, P 0 ~R : S

1. ~((~P 0 Q) & R) → S P

2. P 0 ~R P

3. ~Q 0 S P

One way or another, you’re going to have to break down the first premise, but
it will be easier with some help:

4. ~S AP

Immediately, things open up and you can take the following steps:

5. (~P 0 Q) & R 1, 4 MT

6. ~P 0 Q 5 Simp

7. R 5 Simp

Remember, you’re trying to derive two contradictory statements. But now,
the opportunities are more plentiful:

8. P 2, 7 DS

9. Q 6, 8 DS

10. S 3, 9 DS

When you’re doing an indirect proof, don’t be fooled into thinking you’re
done after you prove the conclusion. Remember that you also need to build a
contradictory statement.
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In this case, the AP leads to its own negation, which allows you to complete
the proof:

11. S & ~S 4, 10 Conj

12. S 4–11 CP

Superficially, line 12 looks like line 10, but now you’ve discharged the AP, so
the proof is complete.

Combining Conditional and 
Indirect Proofs

Here’s a common question from students: If I’m already using an AP for a con-
ditional proof, do I have to start over if I want to add an AP for an indirect
proof?

The good news is that you don’t have to start over, as this example explains:

~P & Q → (~R & S), Q : R → P

1. ~P & Q → (~R & S) P

2. Q P

On your first pass over the proof, you can only manage to get this:

3. ~(~P & Q) 0 (~R & S) 1 Impl

Maybe the next step is there, but in any case, you’re not seeing it. So, you
have to move on. And because conditional proof is an option, you try it first:

4. R AP (for conditional
proof)

Now you’re trying to prove P, but you’re still not sure how to do this directly.
Now, you can move on to indirect proof by negating what you’re now trying
to prove and adding it as a premise:

5. ~P AP (for indirect proof)

Now the goal is to find a contradiction. Suddenly, the pieces fall into place:
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6. ~P & Q 2, 5 Conj

7. ~R & S 1, 6 MP

8. ~R 7 Simp

Now you’re ready to discharge the AP for the indirect proof:

9. R & ~R 4, 8 Conj

10. P 5–9 IP

Of course, proving P was the goal of the original conditional proof, so here’s
what you get:

11. R → P 4–10 CP

When using conditional and indirect proof methods together, discharge your
APs starting with the last one you added and work your way back to the first.
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Chapter 12

Putting It All Together: Strategic
Moves to Polish Off Any Proof

In This Chapter
� Handling easy proofs quickly

� Using conditional proof to work through moderate proofs

� Giving difficult proofs a run for their money

Some logic problems almost solve themselves. Others look tough at first
but soon fall in line when you know what to do. Still others kick and

scream every step of the way until you whip them into submission.

This chapter is all about what the Serenity Prayer calls “the wisdom to know
the difference.” And the wisdom you gain will be the calm confidence you
need to write sentential logic (SL) proofs with ease when possible and with
perseverance when necessary.

Just as the American justice system declares a defendant “innocent until
proven guilty,” in this chapter, I recommend the same sort of approach with
proofs: “Easy until proven difficult.” First, I show you how to make a quick
assessment of an argument to get a gut sense of how tough it will be to prove.
Next, I describe a few quick-and-dirty moves that are enough to handle the
easy proofs in five minutes or less.

For more stubborn proofs, I show you how and when to pull out the condi-
tional proof technique from Chapter 11. The technique is often enough to
complete proofs of moderate difficulty.

And finally, for the really tough ones, I show you how to use the form of an SL
statement to your advantage by breaking down long premises and working
both ends against the middle to complete the proof. I also show you an
advanced method of indirect proof.

18_799416 ch12.qxp  10/26/06  10:32 AM  Page 187



Easy Proofs: Taking a Gut Approach
You don’t need a machine gun to kill a mosquito. Similarly, you don’t need to
devise a brilliant strategy to solve an easy problem. You just need to spend
five minutes looking at what’s in front of you and jotting down a few ideas.
The following sections show you a few quick tricks for writing simple proofs
with grace and speed.

Look at the problem
Looking really does mean just looking. The three suggestions I discuss in the
following sections should take less than a minute, but it’s a quality minute.

Compare the premises and the conclusion
Do the premises look somewhat similar to the conclusion, or are they very
different? If they look similar, the proof may not be so difficult; otherwise, it
may be trickier.

In either case, think about what has to happen to bridge the gap. Can you
think of any hunches as how to proceed?

That’s all this step requires — thinking and working from your gut.

Notice the lengths of the premises and the conclusion
Generally speaking, short premises and a long conclusion indicate an easy
proof, whereas long premises and a short conclusion indicate a more difficult
proof.

When given enough short premises, you can build almost any conclusion you
like. However, on the flip side, breaking down long premises enough to get a
short conclusion can be tricky.

In the upcoming section “Jot down the easy stuff,” I show you a bunch of
ways to break down premises. For now, just get a gut sense of how tough the
proof will be based on this rule of thumb: The shorter the premises, the easier
the proof.

Look for repeated chunks of statements
When you notice chunks of statements that are repeated in an argument,
underline them to make them stand out. The best strategy for these chunks is
often to leave them alone rather than break them down.

For example, look at this argument:

(P ↔ Q) → ~(R & S), R & S : ~(P ↔ Q)
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You could hammer away at the statement (P ↔ Q) → ~(R & S) to break it
down, but there’s no reason to. After you notice that the chunks (P ↔ Q) and
(R & S) are repeated in the statement, this one-step solution presents itself:

1. (P ↔ Q) → ~(R & S) P

2. R & S P

3. ~(P ↔ Q) 1, 2 MT

For now, just noticing these sorts of chunks will keep you speeding on your way.

Jot down the easy stuff
With one minute down, this section gives you four more one-minute strate-
gies to move you along. I call this type of strategy kitchen-sinking, because
you’re using everything in your proof except the kitchen sink.

As you use these strategies, don’t hesitate to go for the finish if you see that
the way is clear.

Break down statements using Simp and DS
Simp and DS are the two simplest rules for breaking down &-statements and
0-statements (see Chapter 9 for all of your Simp and DS needs). The more
you break down premises early on, the better your chances are for building
up the conclusion.

Expand your options using Impl and Contra
Use Impl (see Chapter 10) to convert 0-statements to →-statements, and vice
versa. Then use Contra to convert every →-statement to its contrapositive.
Use these rules to rewrite every statement you can because in either direc-
tion, these are easy ways to expand your options for later.

Use MP and MT wherever possible
Opportunities to use MP and MT (as seen in Chapter 9) are easy to spot and
tend to give you simple statements to work with.

Convert all negative statements using DeM
Generally speaking, DeM is the only rule that allows you to convert the four
negative forms of SL statements to positive ones.

DeM works directly on statements of the forms ~(x & y) and ~(x 0 y), as I
cover in Chapter 10. But, even when you’re up against →-statements and 
↔-statements, the two remaining negative forms, you can use DeM after
employing a few other rules to get these statements into the forms ~(x & y)
and ~(x 0 y).
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For example, to convert ~(x → y) use these steps:

1. ~(x → y) P

2. ~(~x 0 y) 1 Impl

3 x & ~y 2 DeM

4. x 3 Simp

5. ~y 3 Simp

In just a few steps, you’ve turned a complex-looking statement into two
simple ones.

Even when you’re saddled with the dreaded form ~(x ↔ y), you can use
Equiv and then break every piece down with DeM. For example, take a look
at these steps:

1. ~(x ↔ y) P

2. ~((x & y) 0 (~x & ~y)) 1 Equiv

3. ~(x & y) & ~(~x & ~y) 2 DeM

4. ~(x & y) 3 Simp

5. ~(~x & ~y) 3 Simp

At this point, you can use DeM again to simplify statements 4 and 5 still fur-
ther. Sure, it’s a few extra steps, but you’ve turned an impenetrable statement
into two very simple ones.

Know when to move on
Suppose you’ve spent about five minutes with a particularly hairy problem.
You’ve looked at it and turned it over in your head. You’ve already jotted
down a few simple statements — or maybe there were none to jot down —
and now you’re just about out of ideas.

My advice: Five minutes. That’s all I’d give the gut strategy. And that goes
double if the premises are long and the conclusion is short. If the proof 
doesn’t jump out at you in five minutes, you need stronger medicine so that
the next five minutes are productive rather than frustrating.

Even if you have to move on to a new tactic, you don’t have to start over. Any
statement that you’ve already proved is yours to keep and use throughout
the rest of the proof.
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Moderate Proofs: Knowing When 
to Use Conditional Proof

Stronger medicine is coming right up in this section. After you’ve abandoned
hope that the problem is simple, it’s time to pull out the conditional proof.

Use conditional proof as your first choice whenever possible because it tends
to be the quickest way to a solution for a problem of medium difficulty.

To decide when conditional proof is possible, look at the conclusion you are
trying to prove and decide which of the eight basic forms it is. (Check out
Chapter 5 for a rundown on all eight basic forms of SL statements.)

You can always use conditional proof for three of the eight basic forms,
which I call the friendly forms. You can also use conditional proof for two of
the forms, which I call the slightly-less-friendly forms, but more work is neces-
sary. And finally, you can’t use conditional proof for the remaining three
forms, which I call the unfriendly forms:

Friendly Forms Slightly-Less-Friendly Forms Unfriendly Forms

x → y (x ↔ y) x & y

x 0 y ~(x ↔ y) ~(x → y)

~(x & y) ~(x 0 y)

In this section, I discuss the cases when you can use conditional proof. I save
the remaining cases for the section “Difficult Proofs: Knowing What to Do
When the Going Gets Tough.”

The three friendly forms: x → y, 
x 0 y, and ~(x & y)
Obviously, you can always use conditional proof on any conclusion in the
form x → y. But, you can also easily use conditional proof on any conclusion
in the forms x 0 y and ~(x & y).

You can turn any conclusion of the form x 0 y into a conditional form just by
using Impl. This rule turns it into ~x → y.
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For example, suppose you want to prove this argument:

R : ~(P & Q) 0 (Q & R)

1. R P

Not much is going on here. But, after you realize that the conclusion is equiv-
alent to (P & Q) → (Q & R), you can use conditional proof:

2. P & Q AP

3. Q 2 Simp

4. Q & R 1, 3 Conj

5. (P & Q) → (Q & R) 2–4 CP

After your AP is discharged, all that’s left to do is show how the statement
you just built is equivalent to the conclusion you’re trying to prove:

6. ~(P & Q) 0 (Q & R) 5 Impl

The other easy form to work with is ~(x & y). When your conclusion is in 
this form, you need to use DeM to get it out of the negative form, changing it
to ~x 0 ~y. From here, use Impl to change it to x → ~y.

For example, suppose you want to prove this argument:

~P → Q, P → ~R : ~(~Q & R)

1. ~P → Q P

2. P → ~R P

The insight here is to realize that the conclusion is equivalent to Q 0 ~R
(by DeM), which is then equivalent to ~Q → ~R (by Impl). Again, you can use
a conditional proof:

3. ~Q AP

4. P 1, 3 MT

5. ~R 2, 4 MP

6. ~Q → ~R 3–5 CP

As with previous examples, after you’ve discharged your AP, you need to
complete the bridge from the statement you’ve built to the conclusion you
started with:

7. Q 0 ~R 6 Impl

8. ~(~Q & R) 7 DeM
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The two slightly-less-friendly forms: 
x ↔ y and ~(x ↔ y)
If I’ve said it once, I’ve said it a thousand times: Working with ↔-statements is
always a little dicey. But, luckily, the principle here is the same as with the
very friendly forms.

Always remember, and please don’t ever forget, that the first step with a ↔-
statement is always to get rid of the ↔-operator by using Equiv. Knowing
that bit of advice will get you halfway home if you happen to get lost.

To work with a conclusion that’s in the form of x ↔ y, you first have to
use Equiv to change it to (x & y) 0 (~x & ~y). You should recognize that 
0-statement as a very friendly form, which allows you to use Impl to change
it to ~(x & y) → (~x & ~y).

For example, suppose you want to prove this argument:

((~P 0 Q) 0 ~R) → ~(P 0 R) : P ↔ R

1. ((~P 0 Q) 0 ~R) → ~(P 0 R) P

I’m not going to kid you: This is a tough proof. Without finding a way to turn
it into a conditional, it’s just about hopeless. Fortunately, you can use Equiv
to change the conclusion to (P & R) 0 (~P & ~R), and from there, change it to
~(P & R) → (~P & ~R) using Impl. Check it out:

2. ~(P & R) AP

3. ~P 0 ~R 2 DeM

Now, you’re trying to prove ~P & ~R. The big question at this point is “How do
I use that hairy premise in line 1?” (This is why I say that long premises make
for difficult proofs.) Okay, first things first: You can at least unpack the
premise a little bit using DeM on the second part:

4. ((~P 0 Q) 0 ~R) → (~P & ~R) 1 DeM

The second part of this statement looks just like what you’re trying to prove
for your conditional proof. So, if you can build the first part of this statement,
you can use MP to get the second part. The goal now, then, is to prove the
statement (~P 0 Q) 0 ~R.

But, now you’re probably wondering how you get a Q from nothing at all. The
great insight here is that you can use Add to tack a Q onto ~P 0 ~R:

5. (~P 0 ~R) 0 Q 3 Add
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The next part of this proof requires just a bunch of manipulation using Assoc
and Comm:

6. ~P 0 (~R 0 Q) 5 Assoc

7. ~P 0 (Q 0 ~R) 6 Comm

8. (~P 0 Q) 0 ~R 7 Assoc

Finally, you get a glimpse of the Holy Grail: You can use line 8 together with
line 4 to derive what you need to discharge your premise:

9. ~P & ~R 4, 8 MP

10. ~(P & R) → (~P & ~R) 2–9 CP

As usual, after discharging the AP, you need to make the statement that
you’ve just built look like the conclusion:

11. (P & R) 0 (~P & ~R) 10 Impl

12. P ↔ R 11 Equiv

Okay, so that was a bear of a proof. But turning that tough conclusion into a
more manageable form made it totally possible.

Proving conclusions that are in these slightly-less-friendly forms can get
tough. This example is certainly pushing the envelope of what I’d call
medium difficulty. I give an example of how to prove a conclusion in the form
~(x ↔ y) later in this chapter, in the “Difficult Proofs: Knowing What to Do
When the Going Gets Tough” section.

The three unfriendly forms: x & y, 
~(x 0 y), and ~(x → y)
When the conclusion falls into this category, conditional proof is almost
never an option because, as a rule, you can’t turn these three forms into the
form x → y.

To understand why you can’t use conditional proof in these cases, first 
notice that no rule exists for turning a statement that’s in the form x & y into
a →-statement. Similarly, statements in the two remaining unfriendly forms
are easy to turn into &-statements, but again you get stuck if you try to turn
them into →-statements.
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Whenever you’re faced with a conclusion that’s in an unfriendly form, my
advice is to move on and attempt a direct or indirect proof. In either case,
you’re probably looking at a difficult proof.

Difficult Proofs: Knowing What to Do
When the Going Gets Tough

When a gut attempt at a direct proof fails, and you can’t use conditional
proof, you’re probably facing a difficult proof. In these cases, you’re faced
with a choice of trying to push forward with a direct proof or switching over
to an indirect proof.

The upcoming sections show you some strategies that help push you
through the really tough proofs.

Choose carefully between direct 
and indirect proof
If you come across a problem whose conclusion can’t be turned into a →-
statement (which would allow you to use conditional proof), consider direct
proof your first choice except when you hit one of the three exceptions that I
list in this section.

Even if you don’t find a direct proof in the first five minutes, stick with it for a
while longer when you can’t use a conditional proof. In the best case sce-
nario, using some of the ideas later in this chapter, you may find a direct
proof without switching to indirect proof. And at worst, if you need to switch
to indirect proof, you can still use all of the statements you came up with
while looking for a direct proof.

This switcheroo is not true in the reverse direction: If you switch to indirect
proof too early and then later want to abandon ship and try direct proof
again, you can’t use any of the statements you found while looking for an
indirect proof.

Exception #1: When the conclusion is short
Indirect proof can be very helpful when the conclusion is a short statement
and most or all of the premises are long. In this case, turning a troublesome
short conclusion into a helpful short premise is a win-win situation.
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Exception #2: When the conclusion is long but negated
Indirect proof is especially good for handling conclusions that are in negative
forms — ~(x 0 y) and ~(x → y) — because a negated conclusion will become a
positive premise. For example:

P, Q : ~((Q 0 R) → (~P & R))

1. P P

2. Q P

3. (Q 0 R) → (~P & R) AP

Using indirect proof changes the conclusion to a positive form and then adds
it as a premise. Now you can begin to chip away at it:

4. Q 0 R 2 Add

5. ~P & R 3, 4 MP

6. ~P 5 Simp

7. P & ~P 1, 6 Conj

8. ~((Q 0 R) → (~P & R)) 3–8 IP

Exception #3: When all hope seems lost
The third place to use an indirect proof is when you’ve banged away at it with
direct proof for a while and you’re not getting anywhere. Just wait a while is all
I ask. Converting from direct to indirect proof is always easy. And even if you’re
using a conditional proof already, you can always convert to indirect proof just
by adding on another AP. (See Chapter 11 for an example of how AP works.)

Work backwards from the conclusion
I’ve compared writing a proof to building a bridge to get you from here to there.
And usually, that’s exactly what happens: You’re able to get from here to there.
But, sometimes, it doesn’t work out as well. So, if you find yourself in a bind
and you can’t get there from here, it may be easier to get here from there.

In Chapter 9, I show you a quick example of working backwards from the con-
clusion. In this section, you use this skill to write a very difficult proof. For
example, suppose you want to prove this argument:

P → Q, (P → R) → S, (~Q 0 ~S) & (R 0 ~S) : ~(Q ↔ R)

The conclusion is of the form ~(x ↔ y), one of the two “slightly-less-friendly”
forms. So if you want to use a conditional proof, you’re going to have to
rearrange the conclusion. Here, writing down the end of the proof before the
beginning is a good idea:
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99. ~(Q ↔ R)

You begin by numbering the last line of the proof 99. You’re not going to need
that many lines, but you can renumber them at the end. As you can see, the
last line contains the conclusion in all its glory.

Then start thinking backwards from the conclusion about how you may have
ended up at that conclusion in particular. In this case, the best way to do the
proof is to use conditional proof, which means that the conclusion has to be
a →-statement. And the first step was to use Equiv to turn the statement into
the friendly form ~(x & y):

98. ~((Q → R) & (R → Q))

99. ~(Q ↔ R) 98 Equiv

Now, you have to decide what step came just before the one you just figured
out. This time, you use DeM to get statement 97 out of its negative form:

97. ~(Q → R) 0 ~(R → Q)

98. ~((Q → R) & (R → Q)) 97 DeM

99. ~(Q ↔ R) 98 Equiv

After you get the hang of it, you can see that the next step is to turn state-
ment 97 into a →-statement by using Impl:

95. ~(R → Q)

96. (Q → R) → ~(R → Q) 4–95 CP

97. ~(Q → R) 0 ~(R → Q) 96 Impl

98. ~((Q → R) & (R → Q)) 97 DeM

99. ~(Q ↔ R) 98 Equiv

After all that, you now have the Holy Grail in your hot little hands. You know
how the story ends: Having assumed Q → R and used it to build ~(R → Q),
you discharge this assumption by joining these two sub-statements using 
the →-operator.

And now, of course, you know a lot more about how the story begins. In par-
ticular, you know that your AP should be Q → R. So, you know your begin-
ning steps would look like this:

1. P → Q P

2. (P → R) → S P

3. (~Q 0 ~S) & (R 0 ~S) P

4. Q → R AP

197Chapter 12: Putting It All Together: Strategic Moves to Polish Off Any Proof

18_799416 ch12.qxp  10/26/06  10:32 AM  Page 197



Now the goal is building the statement ~(R → Q), which is the last backward
step you figured out. When you look at your AP and line 1, something proba-
bly jumps out at you:

5. P → R 1, 4 HS

Then you look at line 2 and you feel like it’s your birthday:

6. S 2, 5 MP

What now? Line 3 is the only premise left, and the form probably looks very,
very familiar:

7. (~Q & R) 0 ~S 3 Dist

Then you get another break:

8. ~Q & R 6, 7 DS

When you hit this point in the proof, it pays to know how to manipulate the
eight basic forms:

9. ~(Q 0 ~R) 8 DeM

10. ~(~R 0 Q) 9 Comm

11. ~(R → Q) 10 Impl

At this point, you’ve reached your goal, and all you need to do is renumber
the last few rows:

12. (Q → R) → ~(R → Q) 4–11 CP

13. ~(Q → R) 0 ~(R → Q) 12 Impl

14. ~((Q → R) & (R → Q)) 13 DeM

15. ~(Q ↔ R) 14 Equiv

Go deeper into SL statements
By now, you’re probably getting good at noticing which of the eight forms a
statement falls into. Sometimes, though, this isn’t quite enough. When a proof
is difficult, it often depends on your understanding the structure of state-
ments at a deeper level.

You may have noticed that three of the equivalence rules break a statement
into three parts (x, y, and z) rather than just two. These rules are Exp, Assoc,
and Dist (see Chapter 10). You probably haven’t used these as much as some
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of the other rules, but for the tough proofs you definitely need them. After
you start looking for opportunities to use these three rules, you’ll find them
all around you.

For example, look at these three statements:

(P 0 Q) 0 R

(P & Q) 0 R

(P & Q) 0 (R 0 S)

Can you spot that all of these statements both have the same basic form 
x 0 y? But, don’t let this similarity in basic structure blind you to important
differences in the deeper structure of these statements.

For example, you can apply Assoc to the first statement but not the second,
and Dist to the second but not the first. And you can apply both Assoc and
Dist to the third statement. These differences become essential when proofs
become difficult. Read this section to get some tips on noticing and exploit-
ing these differences.

Using Exp
Exp: x → (y → z) is equivalent to (x & y) → z

For example, check out this statement:

(P & Q) → (R → S)

This statement is in the form x → y. But you can also look at it in two other
ways. One possibility, taking (P & Q) as a single chunk, is to notice that the
statement looks like:

x → (y → z)

In this case, you can use Exp to change the statement to

((P & Q) & R) → S

A second option, taking (R → S) as a single chunk, is to notice that the state-
ment looks like

(x & y) → z

This time, you can use Exp in the other direction, like this:

P → (Q → (R → S))
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Combining Assoc with Comm
Assoc: (x & y) & z is equivalent to x & (y & z)

(x 0 y) 0 z is equivalent to x 0 (y 0 z)

For example, consider this statement:

~(P 0 Q) → (R 0 S)

One way to go here is to apply Impl so that you get this:

(P 0 Q) 0 (R 0 S)

Now, you can apply Assoc in two different directions:

P 0 (Q 0 (R 0 S))

((P 0 Q) 0 R) 0 S

You can also use Comm to rearrange the variables in a bunch of different
ways. For example, just working with P 0 (Q 0 (R 0 S)), you can get:

P 0 (Q 0 (S 0 R))

P 0 ((R 0 S) 0 Q)

(Q 0 (R 0 S)) 0 P

If you can express a statement using only 0-operators (or only &-operators),
you can use a combination of Assoc and Comm to rearrange the variables in
any order you like, which can be a very powerful tool that helps you shape a
statement into just about anything you need.

Getting Dist
Dist: x & (y 0 z) is equivalent to (x & y) 0 (x & z)

x 0 (y & z) is equivalent to (x 0 y) & (x 0 z)

Dist also has two other forms worth knowing, with the sub-statement in
parentheses at the front:

(x 0 y) & z is equivalent to (x & z) 0 (y & z)

(x & y) 0 z is equivalent to (x 0 z) & (y 0 z)

Most professors find these other two forms of the rule acceptable. However,
a few sticklers may make you use Comm to turn (x 0 y) & z into z & (x 0 y)
before applying Dist. Or, similarly, they may require you to use Comm to turn
(x & y) 0 z into z & (x & y) before applying Dist.

For example, suppose you have this statement:
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P 0 (Q & (R 0 S))

You can use Dist two ways here. First, taking (R 0 S) as a single chunk, notice
that the statement looks like this:

x 0 (y & z)

Now you can rewrite the statement so that it looks like this:

(P 0 Q) & (P 0 (R 0 S))

The advantage here is that you can use Simp to separate the statement into
two smaller statements:

P 0 Q

P 0 (R 0 S)

The second option is to use Dist on the sub-statement Q & (R 0 S), which
would give you

P 0 ((Q & R) 0 (Q & S))

Now, you have three sub-statements — P, (Q & R), and (Q & S) — joined by 0-
statements, which means that you can use Assoc and Comm to arrange them in
any order you like (as long as you keep the stuff inside the parentheses intact).

One great use of Dist is that it allows you to change the main operator of a
statement from & to 0. By changing the main operator in this way, you can
change an unfriendly conclusion — that is, one on which you can’t use a con-
ditional proof — to a friendly one.

For example, consider this statement:

P & (Q 0 R)

In most cases, when you’re faced with a conclusion in the form x & y, you can
forget about conditional proof. But, in this case, you can use Dist to change it to:

(P & Q) 0 (P & R)

Now, you have the conclusion in a friendly form, and you can use Impl to
turn it into a →-statement:

~(P & Q) → (P & R)

Similarly, another unfriendly form is ~(x → y). Knowing this form may cause
you to abandon conditional proof on the following conclusion:

~(P → ~(Q 0 R))
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But, fortunately, you can get this conclusion out of its negative form in two
steps. First, use Impl to make it look like this:

~(~P 0 ~(Q 0 R))

Next, use DeM:

P & (Q 0 R)

Surprisingly, this conclusion is the same as the one I started out with in the 
P & (Q 0 R) example (five statements above this one), so you can use Dist as
you did there to transform it to a friendly form, and then attack it with a con-
ditional proof.

Break down long premises
As I’ve mentioned several times, breaking down long premises can be diffi-
cult. Sometimes, though, there’s no way around it. For example, take a look at
this argument:

(P & Q) 0 (Q → R), Q, ~R : P

1. (P & Q) 0 (Q → R) P

2. Q P

3. ~R P

The key to this one — whether you go with a direct or an indirect proof — is
to find a way to break down that long premise. I suggest a direct proof.

When working with a long premise, decide which form of SL statement it is.
Doing so often helps suggest the next step you should take.

The form of the first premise is x 0 y. When faced with a 0-statement, first try
using Impl:

4. ~(P & Q) → (Q → R) 1 Impl

Then you can look at this statement as x → (y → z), which allows you to
try Exp:

5. (~(P & Q) & Q) → R 4 Exp

You’re in good shape now because you’ve isolated R as the second part of the
statement. So, you can use MT:

6. ~(~(P & Q) & Q) 3, 5 MT
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Be careful that you don’t try to cancel out the two ~-operators here. The first
one applies the entire statement, whereas the second one applies only to the
sub-statement (P & Q).

Now, the form of the statement is ~(x & y), which means you’ve come across
a good time to use DeM:

7. (P & Q) 0 ~Q 6 DeM

The rest of the steps suggest themselves:

8. P & Q 2, 7 DS

9. P 8 Simp

Note that keeping track of the form of the statement was instrumental in peel-
ing away layer after layer of this premise. Sometimes, when students see
tough proofs like these, they ask, “But what if I just don’t see it? And what if I
can’t figure out the next step?”

The good news is that you can almost always find more than one way to do a
proof. So, I’m going to show you that even if you start out differently, you can
usually still find a way to make it work.

Here’s the same proof that I just discussed, but with a different opening step:

1. (P & Q) 0 (Q → R) P

2. Q P

3. ~R P

In this case, start by applying Impl not to the main operator but to the
second part of the statement:

4. (P & Q) 0 (~Q 0 R) 1 Impl

This time, you can look at this statement as a form of x 0 (y 0 z), which
means you can use Assoc:

5. ((P & Q) 0 ~Q) 0 R 4 Assoc

Surprise, surprise — you’re again in the position to use DS. However, this
time you can use it twice in a row:

6. (P & Q) 0 ~Q 3, 5 DS

7. P & Q 2, 6 DS

And, once again, the answer emerges:

8. P 7 Simp
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Make a shrewd assumption
In Chapter 11, I show you how to use indirect proof by assuming the negation
of the conclusion and then disproving it.

But, with indirect proof, you aren’t limited to using the negation of the con-
clusion. In fact, you can make any assumption and try to disprove it. If you
are successful, then you have proved the negation of the assumption, and
this can often help you prove the conclusion.

Although you can make any assumption, the strategy here is to pick an
assumption that will quickly lead to a contradiction. For example, here is
the argument that I proved valid in the earlier section “Break down long
premises”:

(P & Q) 0 (Q → R), Q, ~R : P

1. (P & Q) 0 (Q → R) P

2. Q P

3. ~R P

In this proof, you’re looking for a quick way to break down the first premise.
This time, you create an assumed premise out of thin air that will help make
this happen:

4. ~(P & Q) AP

As with all indirect proofs, now you’re looking for a contradiction. But, this
takes only a few lines:

5. Q → R 1, 4 DS

6. R 2, 5 MP

7. R & ~R 3, 6 Conj

As usual, the next step is to discharge your AP:

8. P & Q 4-7 IP

Now, completing the proof is almost trivial:

9. P 8 Simp
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Chapter 13

One for All and All for One
In This Chapter
� Understanding the sufficiency of the SL operators

� Creating SL systems with fewer than five operators

� Appreciating Sheffer’s stroke

In Chapter 4, I show you that the word or has two different meanings in
English: The inclusive or means “either this or that, or both,” whereas the

exclusive or means “either this or that, but not both.”

I also note that the 0-operator in sentential logic (SL) removes this ambiguity
because it always represents the inclusive or. At the time, you may have
thought that this was highly unfair and discriminatory. In fact, the more
rebellious among you may have thought about starting a movement to add 
a sixth operator to SL.

But, before you take to the streets carrying homemade signs and chanting
“Two, four, six, eight, the exclusive or is really great,” read this chapter. In
these pages, you find out how the exclusive or — as well as any other home-
made operator you may come up with — is already covered by the five SL
operators. In fact, in this chapter, I show you how these five symbols allow
you to express any possible truth function you care to devise.

You also discover how you can express any possible truth function with
fewer than five SL operators. In fact, you may be surprised how much you can
do with so little.
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Making Do with the Five SL Operators
After you’ve been working with the five SL operators for a while, you may
begin to wonder whether a few more operators would make the language
more useful. In this section, I show you that the answer is a resounding “No!”

In order to demonstrate this point, I invent a new fictional operator — the 
?-operator — for the sake of this discussion. The ?-operator will work just like
an exclusive or (see Chapter 4), which means either . . . or . . . but not both.
Here’s a truth table for this new operator:

You could then use this newfangled operator just like you would use any
other operators in SL. For example, you could combine it with the old familiar
operators to make a statement like (P ? Q) → P.

You could even use a truth table to discover under which interpretations the
value of this statement is T or F:

It seems like a great idea. So why hasn’t it caught on? Well, because you don’t
need it. You can get the same result using only standard SL operators:

P (P ? Q)Q P→

T

F

T

F

T

T

F

T

F

T

T
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T

T

F

F
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T
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F

F
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As you can see, the statements x ? y and ~(x ↔ y) are semantically equivalent
(see Chapter 6 for more on semantic equivalence). And when two statements
are equivalent, you can substitute one for the other.

For example, you can substitute the statement ~(P ↔ Q) → P for the state-
ment (P ? Q) → P. As the following table verifies, these two statements are
also semantically equivalent:

So, you really don’t need a ?-operator to represent the exclusive or. The five
operators are sufficient for all your exclusive-or needs.

In fact, any operator you could possibly invent would be equally unneces-
sary. That is, the five SL operators are sufficient to represent any statement
you may wish to express in SL without resorting to additional operators.

P (P ? Q)Q P→

T

F

T

F

T

T

F

T

F

T
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F

F

T

F

T
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T

T
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T

T

F

F

~
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F
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↔ Q) P→
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F

F

x x ? y ~ (xy y)↔
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Downsizing — A True Story
In the preceding section, I showed you that the ?-operator was unnecessary
by showing you how to represent the statement (x ? y) as ~(x ↔ y). In other
words, I showed you that these two statements are semantically equivalent.

When two statements are semantically equivalent, you can substitute one for
another whenever you choose. This swapping power comes in handy when
you’re doing proofs. It also causes an unexpected result, as the fable in the
upcoming sections illustrates.

In this section, you’ll use your knowledge of the equivalence rules (see
Chapter 10) to see how you can eliminate SL operators and still express 
what you need to express in SL.

The tyranny of power
Suppose you’re just getting tired of the ↔-operator. It’s late to work all the
time and is always taking sick days. You want to pull a Donald Trump and say
“You’re fired!” but you’re worried that the other four operators won’t be able
to do the job by themselves. Then you get an idea.

Using the Equiv rule (see Chapter 10), any statement of the form x ↔ y is
equivalent to (x & y) 0 (~x & ~y). Because of this equivalence, you decide to
give the other operators fancy new titles and shift around their responsibili-
ties. From now on, instead of using the ↔-operator, you’ll use a combination
of other variables and operators.

For example, instead of writing

P & (Q ↔ R)

you’ll write

P & ((Q & R) 0 (~Q 0 ~R)).

Similarly, instead of writing

(P → ~Q) ↔ (R & S)

you’ll write

((P → ~Q) & (R & S)) 0 (~(P → ~Q) & ~(R & S))
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It’s a little awkward, but it works. In fact, the great discovery here is that
you’re now able to do everything with four operators that you used to do
with five. And when I say everything, I mean everything.

The blow of insurrection
It’s lonely at the top — even for logic operators. First thing Monday morning,
the →-operator shuffles into your office without knocking. It doesn’t like the
new arrangement one bit, and after much shouting, it gives you an ultimatum:
“Either rehire the ↔-operator or fire me!”

Of course, you don’t take kindly to that type of talk, so you have the →-operator
escorted out of the building by a burly pair of parentheses. (This is officially
where the story takes on an allegorical life all its own.) After the heat of the
moment cools a bit, you realize you have another hole to fill.

But again, with the Impl rule (see Chapter 10), you can always replace any
statement of the form x → y with the equivalent statement ~x 0 y. This means,
for example, that you can rewrite the statement

(((P → Q) & R) → S)

as

(~((~P 0 Q) & R) 0 S)

And again, the whole system is up and running. You can do everything with
three operators (~, &, and 0) that you used to do with five.

These three operators are sufficient to express all SL statements, which is of
major importance in Boolean algebra, the first rigorous formalization of logic.
You can read more about Boolean algebra in Chapter 14.

The horns of dilemma
Just when things seem back to normal in the operator fable, the &-operator
and the 0-operator request a meeting. They’re working longer hours and they
know you need them, so they both want big raises.

You offer the operators cigars and brandy and tell them you’ll place their
request at the top of the agenda at the next Board of Directors’ meeting. After
they’re out of your office, you devise a plan to get rid of one of them so that
you can give the other a 50 percent raise and still come out ahead on the deal.
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Using DeMorgan’s Laws (DeM from Chapter 10), you realize that you can
replace any statement of the form x & y with the equivalent statement 
~(~x 0 ~y). But, then again, you can also replace any statement of the 
form x 0 y with the equivalent statement ~(~x & ~y).

For the first time, you hesitate. You even consider firing both of them and
rehiring the →-operator (figuring that you could replace x & y with ~(x → ~y)
and replace x 0 y with ~x 0 y).

In any case, you now have a lot of room to negotiate. The following three
combinations would allow just two operators to do the job of all five:

~ and &

~ and 0

~ and →

The (Sheffer’s) stroke of genius
You didn’t see it coming. In walks your most faithful employee, the ~-operator,
to give one month’s notice. And this time, it isn’t about the money, the hours,
or even the office mood. It wants nothing more, in fact, than an early retire-
ment with a halfway decent settlement package.

With this news, you may have to close up shop for good. Even if all four oper-
ators came back, you can’t negate a statement without the ~-operator.

Just when everything looks most unfortunate, a surprise visitor appears: the
|-operator. The |-operator is pronounced nand operator (short for not and).
It’s sometimes called Sheffer’s stroke, after inventor, Henry Sheffer. The state-
ment x | y is semantically equivalent to the statement ~(x & y).

x x | y ~ (xy y)&
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Hiring on this new help provides some distinct advantages. For example, with
this operator, you can express a negative expression, such as ~x, using the
expression x | x:

You can also express &-statements using the expression (x | y) | (x | y).
Additionally, you can express 0-statements, such as x 0 y, using the expres-
sion (x | x) | (y | y).

In fact, Sheffer’s stroke allows you to express all that the five SL operators
allow by using just this one operator. For example, take the expression

X → (Y ↔ R)

Start out by dropping the ↔-operator:

X → ((Y & R) 0 (~Y 0 ~R))

Then take care of the → operator:

~X 0 ((Y & R) 0 (~Y 0 ~R))

Now take care of the &-operators and 0 -operators:

~X 0 (((Y | R) | (Y | R)) 0 (~Y 0 ~R))

~X 0 (((Y | R) | (Y | R)) 0 (~Y | ~Y) | (~R | ~R))

~X 0 ((((Y | R) | (Y | R)) | ((Y | R) | (Y | R))) | (((~Y | ~Y) | (~R | ~R)) |
((~Y | ~Y) | (~R | ~R))))

(~X | ~X) | (((((Y | R) | (Y | R)) | ((Y | R) | (Y | R))) | (((~Y | ~Y) | 
(~R | ~R)) | ((~Y | ~Y) | (~R | ~R)))) | ((((Y | R) | (Y | R)) | ((Y | R) | 
(Y | R))) | (((~Y | ~Y) | (~R | ~R)) | ((~Y | ~Y) | (~R | ~R)))))

Finally, handle the ~-operators:

((X | X) | (X | X)) | (((((Y | R) | (Y | R)) | ((Y | R) | (Y | R))) | ((((Y | Y) |
(Y | Y)) | ((R | R) | (R | R))) | (((Y | Y) | (Y | Y)) | ((R | R) | (R | R))))) |
((((Y | R) | (Y | R)) | ((Y | R) | (Y | R))) | ((((Y | Y) | (Y | Y)) | ((R | R) |
(R | R))) | (((Y | Y) | (Y | Y)) | ((R | R) | (R | R))))))

All right, so it’s a little tedious, but it can be done. So, after much thought,
you proclaim “You’re hired!” Cue the flashing lights and applause.

~x x  |  xx
F

T

F

T

T

F
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The moral of the story
Of course, in reality the five SL operators are in little danger of being fired,
and I highly doubt they’ll be retiring anytime soon, which is a darn good
thing. Even though the |-operator is logically capable of handling all of SL, the
final example in the previous section shows you just how eyeball-bending
these statements would be without the other operators.

To make an analogy, if you’re computer savvy, you know that everything you
do on a computer is translated into 1s and 0s. Your computer keypad, how-
ever, contains far more than just these two keys.

This redundancy may be logically unnecessary, but it makes using a com-
puter much easier (just like the five SL operators make logic so much easier).
You can use your natural language rather than the computer’s language.

And, in a similar way, the five SL operators closely parallel words such as
and, or, not, and so on, to make it easier for you to think about the meaning of
what you’re doing rather than the rules for doing it.
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Chapter 14

Syntactical Maneuvers and
Semantic Considerations

In This Chapter
� Understanding syntax and semantics

� Discovering well-formed formulas (WFFs)

� Seeing the symbolic connection between Boolean algebra and SL

Steve Martin once remarked that you never hear people say:

“Hand me that piano.”

The reason this statement is funny is because on one level it’s a perfectly
normal sentence and on another level it’s completely absurd. This chapter is
all about these two levels, which include the following:

� Syntax: Syntax, which is the level of grammar, is where Steve Martin’s
sentence masquerades as normal. After all, “Hand me that piano.” is a
grammatical sentence, from the capital letter at the beginning to the
period at the end. Syntax is all about the form, or internal structure, of
language. It’s all about the rules that make language possible.

� Semantics: Semantics, which is the level of meaning, is where Steve
Martin’s sentence reveals itself to be ridiculous. In other words, you can
hand someone a pen, a wallet, or even a skunk, but you just can’t hand a
person a piano. Semantics is all about the function, or external usage, of
language. Here, it’s all about the meaning that makes language worthwhile.

Whether you’re describing a natural language, such as English, or an
invented language, such as sentential logic (SL), syntax and semantics both
play vital roles. In this chapter, I clarify this key distinction between syntax
and semantics in SL. I discuss the rules for well-formed formulas in SL, which
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describe how to tell an SL statement from a mere string of symbols. Finally, I
introduce Boolean algebra, which is an earlier system of logic.

Are You WFF Us or Against Us?
I have an easy question for you. Which of the following is a statement in SL?

A) (P 0 Q) → ~R

B) 0 R Q →)~( P

If you chose statement A, you’re correct. Now, a more difficult question: How
did you know?

You may be tempted to respond with a resounding “Uh, duh!” However, it’s
worth noticing that A and B contain all the same symbols. They even contain
the same number of spaces between the symbols (four, but who’s counting?)
Okay, so B looks like A after it went through the blender. But, is that really a
good enough reason to reject it as an SL statement? Actually, it’s a very good
reason.

SL, like any other language, is more than just a bunch of symbols thrown
together in any order. The order of its symbols is just one of the things that
allow a language to function. And if order weren’t so important, you could
write an English sentence like this: Dog food than Empire State Building cobra
wine goblet Barbra Streisand glass pagoda fdao udos keowe !voapa-aifaoidao-
faid, ; s; j?jj;ag u,R.

Yeah, you’re right. That last “sentence” makes no sense. It should remind
you, however, that the English language also has rules for how you can com-
bine its symbols. These rules are commonly called grammar, and even
though you may say that you don’t have the faintest clue about it, even as
you read this book, your brain is crunching through these rules with great
speed and accuracy.

Grammar — also known as syntax — is simply a set of rules for how discrete
chunks of language can be ordered. In written language, these chunks are
called words and punctuation. In SL, these chunks are called constants, oper-
ators, and parentheses.

In this section, you’ll learn how to tell a statement in SL from a clever pre-
tender posing as a statement. You’ll learn the precise rules for building a
string of SL symbols to find out whether it’s a statement. 
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Understanding WFFs (with 
a few strings attached)
Any random series of SL symbols is called a string. Some strings are statements
and others aren’t. Deciding whether a string is a statement is a syntactic 
question — that is, a question about the form of the string. 

When you’re talking about syntax, replacing the word statement with the term
well-formed formula is common. Notice that the word form appears twice here
to hammer home the understanding that the form (in other words, the
syntax) of the string is in question. The phrase well-formed formula is short-
ened to WFF, which gets pronounced “wiff” by logicians in the know.

Every string of SL symbols is either a WFF or a non-WFF.

Make no mistake: In SL, the words statement and WFF mean exactly the same
thing. But, when you get to talking about strings at your next cocktail party
or logician soiree, you’ll want to say WFF instead of statement, so that’s what
I do here.

You already know intuitively that (P 0 Q) → ~R is a WFF but that 0RQ →)~( P
isn’t. And, in this case, your intuition is correct — but what exactly fuels this
intuition? Here, I show you three simple rules for turning that intuition into
knowledge.

With these three simple rules, you can build any of the SL statements you
have seen in this book, and any you will ever see in the future. And just as
important, you’re prevented from building strings that aren’t WFFs. Without
further ado, here are the three life-saving rules:

� Rule 1: Any constant (P, Q, R, and so on) is a WFF.

� Rule 2: If any string x is a WFF, then the string ~x is also a WFF.

� Rule 3: If any two strings x and y are both WFFs, then the strings (x & y),
(x 0 y), (x → y), and (x ↔ y) are all WFFs.

So, now, give it a shot: How do you build (P 0 Q) → ~R?

From Rule 1, P, Q, and R are all WFFs:

P Q R Rule 1

Then, from Rule 2, the string ~R is also a WFF:

P Q ~R Rule 2
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Rule 3 says that the string (P 0 Q) is a WFF:

(P 0 Q) ~R Rule 3

And, then applying Rule 3 again, the string ((P 0 Q) → ~R) is a WFF.

((P 0 Q) → ~R) Rule 3

Relaxing the rules
Technically speaking, every WFF in SL should begin and end with parenthe-
ses. But, in practice, this is rarely the case. As you can see throughout this
book, statements rarely begin and end with parentheses.

Removing the outer parentheses from a WFF results in what logicians call the
relaxed version of that WFF.

As you can see from the example in the previous section, the rules show that
the string ((P 0 Q) → ~R) is a WFF. Is that WFF the same thing as (P 0 Q) → ~R?
Strictly speaking, it isn’t. So, Rule 4 — also known as the relaxation rule — takes
care of this.

By convention, with this rule, you can remove the outer parentheses from a
WFF to create a relaxed version of that WFF. Technically, though, the relaxed
version of a WFF isn’t a WFF, and Rule 4 isn’t a rule. Instead, it’s a convention
that makes WFFs a little easier to read.

You may not use this relaxed version to build new WFFs.

Separating WFFs from non-WFFs
Remember that the purpose of these rules for building SL statements is not
only to allow you to build WFFs, but also to prevent you from building strings
that resemble WFFs (but really aren’t). Take a look at the following messy
string:

0RQ →)~( P

You don’t have much hope trying to build this wacky string. But, here’s some-
thing that looks like it may be a WFF:

(P 0 ~Q) → (R 0 S) & ~T
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Can you build this statement using the rules? Here’s how you might try:

P Q R S T Rule 1

P ~Q R S ~T Rule 2

(P 0 ~Q) (R 0 S) ~T Rule 3

At this point, you have all the parentheses you wanted to add, but you’re still
missing two operators. Even if you were to use the relaxed version of the
statement, you can’t get both operators into the statement without adding
another set of parentheses, which is exactly the point. The string

(P 0 ~Q) → (R 0 S) & ~T

isn’t a WFF. Its main operator could be either the →-operator or the &-operator.
And this ambiguity is a definite no-no because, as I cover in Chapter 4, an SL
statement can have only one main operator.

Deciding whether a string is a WFF is, in a sense, like deciding whether a
vessel is seaworthy. For instance, before setting a boat in the water, climbing
in, and paddling away, you probably want to see whether it has any cracks or
holes. If you do find some holes, you’d better patch them up (if they’re fix-
able) before you set off.

What is true of boats in the water is also true of strings in SL. If you mistak-
enly think it’s well-formed (seaworthy) and try to use it in a truth table or
proof (sail it), you’re going to run into trouble (sink like a stone).

Comparing SL to Boolean Algebra
In Chapter 13, I show you how you can get along in SL with only three opera-
tors (~, &, and 0) and still do everything that you did with five operators.

The earliest version of formal logic — that is, logic with symbols rather than
English words — made use of the fact that you can get along with only three
operators. As I discuss in Chapter 2, Boolean algebra, invented by George
Boole, was the first attempt at turning philosophical logic into a rigorous
mathematical system. In fact, this form of logic was more closely linked to 
the mathematics that you learned in school than SL is.
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Believe it or not, Boolean algebra is actually much easier than the algebra that
you learned (or didn’t) in school. For one thing, you work with only two num-
bers: 0 and 1. You also only have to worry about addition and multiplication.
In this section, I show you the similarities between SL and Boolean algebra.

Reading the signs
Boolean algebra is really just a version of SL that uses different symbols, so in
this section I start exploring Boolean algebra by making just a few little
changes to SL.

In fact, I’m going to change only five symbols, which I outline in Table 14-1.

Table 14-1 Corresponding Symbols in SL and Boolean Algebra
SL Symbol Boolean Algebra Symbol

T 1

F 0

~ –

& ×

0 +

Constants are used in the same way in Boolean algebra as in SL, so when
using the new symbols, you can draw the same basic truth tables that you’re
used to (see Chapter 6). For example, you can draw a truth table linking the
&-operation in SL with Boolean multiplication:

Make sure you know that the &-operator in SL is multiplication (×) in Boolean
algebra. Because & means and, you may mistakenly associate this operator
with addition.

Q P & QP
T

F

T

F

T

F

F

F

T

T

F

F

Q P × QP
1

0

1

0

1

0

0

0

1

1

0

0
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Notice that Boolean multiplication, symbolized by the times sign (×), is
exactly the same as regular multiplication with 1s and 0s: 1 × 1 = 1 and any-
thing multiplied by 0 is equal to 0.

Similarly, you can draw a truth table linking the 0-operator in SL with Boolean
addition:

In this case, Boolean addition works like regular addition, but with one excep-
tion: In Boolean addition, 1 + 1 = 1 because 1 is simply the highest number in
the system.

Finally, you can draw a truth table linking the ~-operator with Boolean 
negation:

You may find it strange that in Boolean algebra –1 = 0 and –0 = 1. But remem-
ber that 1 and 0 in Boolean algebra are similar to T and F in SL. So, obviously
it’s not so strange to think of it as ~T = F and ~F = T.

Using the equal sign (=) with the other mathematical symbols is quite nat-
ural. Equality in Boolean algebra means the same thing as truth value in SL.
You can also think of the equal sign as meaning that two statements are
semantically equivalent, which is to say that they have the same truth value
no matter what value the variables stand for (see Chapter 6 for more on
semantic equivalence).

Table 14-2 shows the connection between the assignment of truth value in SL
and equality in Boolean algebra.

~P P P
F

T

1

0

T

F

–P
0

1

Q P 0 QP
T

F

T

F

T

T

T

F

T

T

F

F

Q P + QP
1

0

1

0

1

1

1

0

1

1

0

0
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Table 14-2 Using the Equal Sign (=) in Boolean Algebra
SL Truth Value or Semantic Equivalence Boolean Equality

“The truth value of P is T.” P = 1

“The truth value of Q is F.” Q = 0

“The truth value of P 0 ~P is T.” P + –P = 1

“P & Q is semantically equivalent to Q & P” P × Q = Q × P

“~(P 0 Q) is semantically equivalent to ~P & ~Q.” –(P + Q) = –P × –Q

Doing the math
In SL, you avoid writing strings that mix constants with the values T and F. In
Boolean algebra, this avoidance isn’t necessary. In fact, you can discover a
lot about logic by mixing these different types of symbols. For example,

P × 0 = 0

reminds you that any &-statement — remember, the multiplication sign
stands in for the &-operator — that contains a false sub-statement (0) is false,
no matter what the rest of the statement looks like. Similarly, the equation

P + 0 = P

tells you that when a 0-statement contains a false sub-statement, its truth value
depends on the value of the other sub-statement. And the equation

P × 1 = P

tells you that when a &-statement contains a true sub-statement (1), its truth
value depends upon the value of the other sub-statement.

Similarly, the equation

P + 1 = 1

tells you that when a 0-statement contains a true sub-statement, the state-
ment is always true.
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Understanding rings and things
Both Boolean algebra and arithmetic in the non-negative integers (0, 1, 2, 3,
and so on) are semirings, which means that they share a set of common 
properties.

For example, notice that the first three equations in the previous section are
also true in regular arithmetic. They work simultaneously on two levels — as
expressions of logical truth and as expressions of arithmetic truth.

In Chapter 10, I show you that in SL, the commutative, associative, and dis-
tributive properties from arithmetic carry over into logic. Table 14-3 shows a
short list of important properties in Boolean algebra.

Table 14-3 Properties Common to Both Boolean Algebra and 
Arithmetic (and All Other Semirings)

Property Addition Multiplication

Identity element P + 0 = P P × 1 = P

Annihilator n/a P × 0 = 0

Commutative P + Q = Q + P P × Q = Q × P

Associative (P + Q) + R = P + (Q + R) (P × Q) × R = P × (Q × R)

Distributive P × (Q + R) = (P × Q) + (P × R) n/a

This set of properties is sufficient to classify both Boolean algebra and con-
ventional arithmetic as examples of semirings. Every semiring has the five
properties listed in Table 14-3.

Exploring syntax and semantics 
in Boolean algebra
Boolean algebra provides an interesting opportunity to focus on some of the
differences between syntax and semantics that I discussed earlier in this
chapter.

Boolean algebra and SL are quite different with regard to syntax, but very
similar in terms of semantics.
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On the level of syntax, Boolean algebra and SL are as different as French and
German: Even if you understand one of them, you still have to learn the lan-
guage if you want to understand the other.

But, after you know the syntactic rules of both, you can see that both systems
can be used to express similar sorts of ideas. And looking at how symbols
express ideas is the very heart of semantics. Notice how a statement in
Boolean algebra has two separate meanings that are independent from each
other. For example, consider the following statement:

1 × 0 = 0

On one level, this statement expresses an arithmetic truth. In other words,
when you multiply 1 by 0, the result is 0. But on another level, it expresses a
logical truth, meaning that when you connect a true statement with a false
statement using the word and, the result is a false statement. Depending on
which semantic context you’re working in, an equation in Boolean algebra
works equally well to express a mathematical truth and a logical truth.
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Part IV
Quantifier 
Logic (QL)

21_799416 pt04.qxp  10/26/06  10:33 AM  Page 223



In this part . . .

In Part IV, you’ll take a deeper cut into logic as you 
discover quantifier logic, or QL for short. QL uses

everything you know about SL, but it extends this info to
handle a wider variety of problems. In fact, QL is powerful
enough to handle everything that all earlier forms of logic
(2,000 years of them!) could do.

In Chapter 15, you get the basics of QL, including two new
quantification operators. In Chapter 16, you find out how
to translate statements from English into QL. In Chapter 17,
I show you how to write proofs in QL using the skills that
you already know from SL. In Chapter 18, I introduce rela-
tions and identities, which are two tools for making QL
more expressive. Finally, in Chapter 19, you figure out how
to use truth trees in QL, and you discover the surprising
truth about infinite trees (how’s that for a cliffhanger?).
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Chapter 15

Expressing Quantity with Quality:
Introducing Quantifier Logic

In This Chapter
� Getting an overview of quantifier logic

� Going beyond SL with the universal and existential quantifiers

� Distinguishing statements from statement forms

In Chapter 3, I show you that logic is all about deciding whether an argument
is valid or invalid. So, if you’ve read Chapter 3 and I say take a look at the fol-

lowing argument, you can probably tell me that it’s a perfectly valid argument:

Premises:

All of my children are honest.

At least one of my children is a lawyer.

Conclusion:

At least one honest lawyer exists.

This argument is indeed valid. However, the problem comes when you try 
to use sentential logic (SL) to show that it’s valid. None of these three state-
ments contains familiar words such as and, or, if, or not, so you can’t use the
five SL operators to express them.

So, the best you can do is to express the statements as SL constants. For
example:

Let C = All of my children are honest.

Let L = At least one of my children is a lawyer.

Let H = At least one honest lawyer exists.
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After you express the statements as constants, you can put together the fol-
lowing argument:

C, L: H

Clearly, something important was lost in translation from English to SL, so no
matter what method you use (truth table, quick table, truth tree, or proof),
this SL argument is invalid. So, either the original argument really is invalid
(which it isn’t) or SL is wrong (which it isn’t). Or, maybe you should peek at
what’s behind Door Number Three!

This chapter (as well as Chapters 16 through 19) gives you a peek behind
that magic door. And behind that door, you find a solution to your problem.
In this chapter, I help you understand why this argument is valid without
completely trashing everything you’ve discovered about logic so far.

Instead, I show you how to take all of SL and extend it to a new and more
powerful formal logical language called quantifier logic. This newfangled lan-
guage introduces you to two new symbols that allow you to express logical
concepts that are way beyond the reach of SL. Get ready because a whole
new logical world awaits!

Taking a Quick Look at Quantifier Logic
Quantifier logic (QL) uses much of the same structure as sentential logic (SL).
You may recall that SL has both constants and variables (see Chapter 4).
A constant represents a statement in a natural language (such as English)
whereas a variable represents a statement in SL. QL has both constants and
variables, but it uses them in a different way that allows you to break state-
ments into smaller pieces for greater precision.

In some books, quantifier logic is also called quantificational logic, predicate
logic, or first-order predicate logic.

Using individual constants 
and property constants
QL has the following two types of constants (rather than just one like in SL):
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� Individual constants: An individual constant represents the subject of a
sentence with a lowercase letter from a to u.

� Property constants: A property constant represents the predicate of a
sentence with a capital letter from A to Z.

As in SL, the formal logical language QL allows you to translate statements in
English into symbols. You may remember from SL that when you want to
translate a statement from English into formal logic, the first step is to define
some constants. For example, suppose you want to translate the following
statement:

David is happy.

First, define an individual constant to represent the subject of the sentence:

Let d = David

Next, define a property constant to represent the predicate of the sentence:

Let Hx = x is happy

To write the statement in QL, just replace the x with the individual constant:

Hd

In English, the subject usually comes before the predicate. But in QL, this
order is always reversed. This reversal can be confusing at first, so make sure
you keep it clear.

You can already see from this example the added flexibility QL affords you.
With SL, you’d only be able to assign one variable to the entire statement,
like this:

Let D = David is happy. (SL TRANSLATION)

Here’s another example of how to translate an English statement into QL:

The cat was on the mat.

First define both the individual and the property constants:

Let c = the cat

Let Mx = x was on the mat
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Now, you can translate the original statement as

Mc

Note that this translation works well no matter how long the subject and
predicate are. For example, you can even translate the following verbose 
sentence:

My obstreperous aunt from Wisconsin with three sniveling French poodles
is leaving on a three-month tour of six countries in Europe and Africa.

In this case, define your constants as follows:

Let a = my obstreperous aunt from Wisconsin with three sniveling French
poodles

Let Lx = x is leaving on a three-month tour of six countries in Europe and
Africa

Then, you can easily translate the statement as

La

Only use an individual constant to represent a single thing — never more
than one thing.

For instance, when looking at the previous example, the subject of the sen-
tence is the aunt, and the poodles are just part of her description. But sup-
pose the sentence read like this:

My obstreperous aunt from Wisconsin and her three sniveling French
poodles are leaving on a three-month tour of six countries in Europe 
and Africa.

In QL, you can’t use one constant to represent the group of three poodles.
Instead, you need to define three more individual constants — one for each
of the three poodles. For example, suppose the poodles are named Fifi, Kiki,
and Elvis. Then you might use the following definitions:

Let f = Fifi

Let k = Kiki

Let e = Elvis
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Then, because they’re all going on tour together, you could express the state-
ment as

La & Lf & Lk & Le

As you can see, the &-operator from SL is also used in QL. In the next section,
you see how all five SL operators come into play.

Formally defining constants is an important technical point, but it’s easy 
and you’ll probably get the hang of it quickly. So, from now on, I leave it out
unless it’s necessary for clarity.

Incorporating the SL operators
QL contains the five operators from SL: ~, &, 0, →, and ↔. You can get a lot of
mileage out of this new formulation for statements, especially when you add
in the SL operators that you already know. Suddenly, with QL, you can trans-
late sentences into symbols at a much deeper level than you could when just
using SL.

For example, take the statement “Nadine is an accountant and her secretary
is on vacation.” In SL, you can only crudely break the sentence into two parts:

N & S (SL TRANSLATION)

With QL, however, you can distinguish four separate pieces of the sentence
and use these four pieces to represent the sentence as follows:

An & Ms

Similarly, the statement

Genevieve is either a Scorpio or an Aquarius.

can be translated as

Sg 0 Ag

Here, the sentence is understood as “Either Genevieve is a Scorpio or
Genevieve is an Aquarius.”

In a similar way, the statement

If Henry is a nice guy then I am the Queen of Sheba.
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can be translated as

Nh → Qi

And, finally, the statement

Five is odd if and only if it’s not divisible by two.

can be translated as

Of ↔ ~Df

In this sentence, the word it is a pronoun that stands for five, so I use the indi-
vidual constant f in both cases.

As you can see from these examples, the single-letter constants of SL have
been replaced by double-letter terms in QL. But, never fear, you can still 
combine these terms according to the same rules you used in SL.

Understanding individual variables
In QL, an individual variable represents an unspecified subject of a sentence
with a lowercase letter v, w, x, y, or z.

You’ve already seen individual variables used in the formal definition of prop-
erty constants. For example, in the definition

Let Hx = x is happy

the individual variable is x. And as you’ve already seen, you can replace this
variable with an individual constant to create a QL statement. For example,
when you represent the sentence “David is happy” in QL as

Hd

you replace the variable x with the constant d.

You may notice that QL has individual constants, individual variables, and
property constants, but not property variables. Property variables come into
play in second-order predicate logic (see Chapter 21), which is why QL is also
called first-order predicate logic.
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To save space, I shorten the phrase individual variable to variable throughout
Part IV.

Expressing Quantity with 
Two New Operators

So far in this chapter, you’ve looked at a few examples to see how QL repre-
sents statements that can be expressed in SL. Now, in this section, you’re
going to see how QL goes into territory that SL can’t cover.

The main vehicles for this new expressiveness are two new symbols: 6 and 7.

Understanding the universal quantifier
The symbol 6 is called the universal quantifier. It’s always used with a vari-
able, such as x, with 6x being translated into English as “For all x . . .”

At the beginning of this chapter, you saw how troublesome it was to translate
the statement “All of my children are honest” into SL in any useful way. But
with the universal quantifier, you now have the power.

For example, first you need to attach the universal quantifier to a variable.
Set up the problem with empty brackets, as shown here:

6x [ ]

After you’ve set this problem up, you can use the rules you already know to
translate the rest of the statement. Then you place the result in the brackets:

6x [Cx → Hx]

You read this statement as “For all x, if x is my child, then x is honest.” It may
seem a bit clunky at first, but after you get used to the setup, the possibilities
are literally endless.

You can also use 6 to translate words like every and each. I get into transla-
tions in detail in Chapter 16.
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Expressing existence
The symbol 7 is called the existential quantifier. It’s always used with a vari-
able, such as x, with 7x being translated into English as “There exists an x
such that . . .”

At the beginning of this chapter, you saw that SL is limited in its ability to
express the statement “At least one of my children is a lawyer.” However, the
existential quantifier makes expression of this statement possible.

First, as with the universal quantifier, attach the existential quantifier to a
variable:

7x [ ]

Now, inside the brackets, translate the rest of the statement:

7x [Cx & Lx]

You can read this statement as “There exists an x such that x is my child and
x is a lawyer.”

Similarly, you can use 7 to translate the statement “At least one honest
lawyer exists:”

7x [Hx & Lx]

This statement translates literally “There exists an x such that x is a lawyer
and x is honest.”

So, here’s your first argument in QL:

6x [Cx → Hx], 7x [Cx & Lx] : 7x [Hx & Lx]

As you can see, a lot more is going on here than in the SL version. And that’s
a good thing, because QL has captured in symbols exactly what’s valid about
this argument. But, before you look at how to prove that this argument is
valid, you’ll need to get a little more background.

You can also use 7 to translate words such as some, there is, and there are. I
discuss translations of this kind in Chapter 16.
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Creating context with the 
domain of discourse
Because QL can handle a wider range of circumstances than SL, a new type of
ambiguity arises when translating from English to QL.

For example, look at this statement:

Everyone is wearing a suit.

You can translate this statement into QL as follows:

6x [Sx ]

This translates literally as “For all x, x is wearing a suit,” which is false. But 
if the context you are speaking of is a meeting of four male coworkers, the
statement might be true.

To prevent this potential for confusion, you need to be clear about the con-
text of a statement. For this reason, you must place variables in a context
called the domain of discourse.

The domain of discourse provides a context for statements that contain vari-
ables. For example, if the domain of discourse is people, then x can stand for
me, or you, or your Aunt Henrietta, but not for the Bart Simpson, your cell
phone, or the planet Jupiter.

In math, the domain of discourse is often taken for granted. For example,
when you write the equation x + 2 = 5, you can assume that the variable x
stands for a number, so the domain of discourse in this case is the set of all
numbers.

How you translate a statement from English into QL is often dependent upon
the domain of discourse. To see why this is so, take a look at two translations
of an argument using two different domains of discourse:

Premises:

All of my children are honest.

At least one of my children is a lawyer.

Conclusion:

At least one honest lawyer exists.
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For the first translation, here’s a declaration I use:

Domain: Unrestricted

An unrestricted domain means that x can be literally anything: a flea, a uni-
corn, the Declaration of Independence, the Andromeda Galaxy, the word
butter, or your first kiss. (You thought I was kidding when I said anything,
didn’t you?) This wide range isn’t a problem, though, because the statements
themselves put restrictions on what x can be.

With this domain of discourse, the argument translates into QL as

6x [Cx → Hx], 7x [Cx & Lx] : 7x [Hx & Lx]

You may think that the domain of discourse is just a technical point that
doesn’t really affect the argument, but that isn’t the case. In fact, when writ-
ing an argument, you can use the domain of discourse to your advantage by
cleverly choosing a domain that makes the translation from English into QL
easier and more concise.

For this second translation of the same argument, I can start out by declaring
a different domain:

Domain: My children

Now, all of the variables are under a significant restriction, which means that
I can translate the statement “All of my children are honest” as

6x [Hx]

instead of the earlier statement I used:

6x [Cx → Hx]

You read 6x[Hx] as “For all x, x is honest” or simply, “All x is honest.” Note
that the statement itself doesn’t mention the fact that x is one of my children
(Cx from the previous statement) because the domain of discourse handles
this restriction.

Similarly, using the same domain of discourse, you can translate the state-
ment “At least one of my children is a lawyer” in the following way:

7x [Lx]
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You read this statement as “There exists an x such that x is a lawyer.” Again,
the statement itself doesn’t mention that x is one of my children because this
restriction is covered by the domain of discourse.

Finally, you can translate “At least one honest lawyer exists” as

7x [Hx & Lx]

This is the same translation as when the domain is unrestricted because the
statement contains no mention of my children. Thus, within the domain “My
children,” the same argument translates as

6x [Hx], 7x [Lx] : 7x [Hx & Lx]

As you can see, this argument is a little shorter and simpler than the argu-
ment using an unrestricted domain.

Be sure to use just one domain of discourse for a single argument or for any
statements that you’re analyzing as a group. Switching between domains is a
lot like trying to add apples and oranges, and the result is usually a mixed up
argument that doesn’t give you proper results.

The domain of discourse is important from a technical standpoint, but most
of the time you can use an unrestricted domain. So, from now on, unless I
state otherwise, assume that the domain is unrestricted.

Picking out Statements 
and Statement Forms

In Chapter 5, I describe the difference in SL between a statement, for exam-
ple, (P & Q) → R, and a statement form, such as (x & y) → z. Simply put, a
statement has constants but no variables, and a statement form has variables
but no constants.

In QL, however, a single expression can have both constants and variables. In
this section, I explain how constants and variables get used, and show you
what constitutes a statement in QL.
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Determining the scope of a quantifier
In Chapter 5, I discuss how parentheses limit the scope of an SL operator.
Consider, for example, this SL statement:

P & (Q 0 R)

The &-operator in this statement is outside of the parentheses, so its scope is
the whole statement, which means that this operator affects every variable in
the statement. On the other hand, the 0-operator is inside the parentheses, so
its scope is limited to what’s inside the parentheses. That is, this operator
affects only the constants Q and R, but not P.

In QL, the scope of the quantifiers 6 and 7 is limited in a similar way, but with
brackets instead of parentheses. For example, check out this statement:

Ax [Cx → Nx] & Rb

The scope of the quantifier 6 is limited to what’s inside the brackets: 
Cx → Nx. In other words, this quantifier doesn’t affect the &-operator or
the sub-statement Rb.

Discovering bound variables 
and free variables
You thought you knew enough about variables already, didn’t you? Well, get
ready because here’s another exciting lesson. When you’re sitting at your
desk pondering an expression, remember that every variable in that expres-
sion is considered either bound or free. Here’s what I mean:

� A bound variable is a variable that’s being quantified.

� A free variable is a variable that isn’t being quantified.

Easy enough, right? To completely understand the difference between bound
variables and free variables, take a look at the following expression:

7x [Dx → My] & Lx

Can you guess which of the variables in this expression are bound and which
are free?
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When a variable is outside of all brackets, it’s always free. This is because the
scope of a quantifier is always limited to what’s inside a set of brackets. So,
the x in Lx is a free variable.

However, also remember that just because a variable is inside a set of brack-
ets doesn’t mean that it’s bound. In the example, the variable y is also free
even though it’s inside the brackets. This is because these brackets define
the scope of 7x, which is operating on x, not y.

You can probably guess by now that the variable x in Dx is a bound variable.
You can be sure of this because it appears inside the brackets and because
these brackets define the scope of 7x, which does quantify x.

The difference between bound variables and free variables becomes impor-
tant in Chapter 17 when you dive into QL proofs. For now, make sure you
understand that a bound variable is being quantified and a free variable isn’t
being quantified.

Knowing the difference between 
statements and statement forms
With your new knowledge about bound variables and free variables from the
previous section, you’ll easily be able to tell the difference between state-
ments and statement forms.

When you’re evaluating an expression, you can be sure that each one falls
into one of two categories:

� Statements: A statement contains no free variables.

� Statement forms: A statement form contains at least one free variable.

Distinguishing a statement from a statement form is that easy. For example,
consider the following expression:

6x [Cx → Hx] & Ok

This expression is a statement because it has no free variables. Note that
both instances of the variable x appear inside the brackets within the scope
of the quantifier 6x. Additionally, k appears outside the brackets, but it’s a
constant, not a variable.
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On the other hand, consider this expression:

6x [Cx → Hx] & Ox

This expression has one free variable (the x in Ox), which falls outside of 
the brackets and is, therefore, outside the scope of the quantifier 6x. So, the
expression is a statement form rather than a statement.

Formal definitions in QL use statement forms that you can then turn into
statements. For example, look at this definition:

Let Ix = x is Italian

The expression Ix is a statement form because the variable x is free. But, you
turn this statement form into a statement when you replace the variable with
an individual constant. For example, to translate the statement

Anna is Italian.

you might write:

Ia

Similarly, binding the variable in a statement form also turns the statement
form into a statement. For example, to translate the statement

Somebody is Italian.

you can write

7x [Ix]

The difference between statements and statement forms becomes important
in Chapter 18 when you begin writing QL proofs. For now, just make sure you
understand that a statement has no free variables.

238 Part IV: Quantifier Logic (QL) 

22_799416 ch15.qxp  10/26/06  10:33 AM  Page 238



Chapter 16

QL Translations
In This Chapter
� Recognizing the four basic forms of categorical statements as all, some, not all, and no

statements

� Using either the 6 or the 7 quantifier to translate each of the basic forms 

� Translating English statements that begin with words other than all, some, not all, or no

In Chapter 15, I introduce you to quantifier logic (QL), paying special atten-
tion to the two quantifiers 6 and 7. I also show you how to translate a few

simple statements into QL.

In this chapter, I show you how to translate the four most basic forms of 
categorical statements from English into QL. These tend to be statements that
begin with the words all, some, not all, and no. (Take a quick look at Chapter 2
for more information about categorical statements.)

This chapter also covers how to translate each of these four forms using
either the 6 or the 7 quantifier. Finally, I show you how to recognize categori-
cal statements that don’t begin with any of the four key words.

Translating the Four Basic Forms 
of Categorical Statements

In this section, I show you how to translate the words all, some, not all, and
no. You’ll use these forms a lot while learning to translate from English into
QL. (If you need to, take a peek at Chapter 2 to make sure you understand the
basic forms.) Next, I show you how to translate statements beginning with all
and some. After you understand how to translate those statements, the state-
ments beginning with not all and no are pretty easy.

23_799416 ch16.qxp  10/26/06  10:34 AM  Page 239



After you know how to translate statements beginning with the words all,
some, not all, and no, a lot of the hard work is done. In general, the easiest
way to approach these types of statements is to set up a quantifier and brack-
ets as in Table 16-1:

Table 16-1 Translations of the Four Basic Forms 
of Categorical Statements 

English Word QL Quantifier

All 6 [ ]

Some 7 [ ]

Not all ~6x [ ]

No ~7x [ ]

“All” and “some”
Translating statements from English into QL isn’t difficult, but you have to be
aware of a couple of sticking points regarding restricted and unrestricted
domains. (For a refresher on how to use the domain of discourse, flip to
Chapter 15.)

In this section, I show you how to translate statements beginning with the
words all and some into QL.

Using a restricted domain
Two statements in English may be identical except for the words all or some.
For this reason, you may think that their QL translations would be identical
except for the choice of quantifier (6 or 7). When the domain is restricted,
this is often exactly how things work out.

For example, take the following two statements:

All horses are brown.

Some horses are brown.

Suppose you use a restricted domain of discourse:

Domain: Horses

240 Part IV: Quantifier Logic (QL) 

23_799416 ch16.qxp  10/26/06  10:34 AM  Page 240



If you use a restricted domain, you need to define only one property constant
to translate the two statements. For example:

Let Bx = x is brown

Now you can translate both statements as follows:

6x [Bx]

7x [Bx]

As you can see, the only difference between the two QL statements is that
you replaced 6 in the first statement with 7 in the second. Just as you’d
expect, nothing tricky here.

For the rest of this chapter, I focus on translations in an unrestricted domain.

Using an unrestricted domain
Restricting the domain isn’t always possible, so this time, suppose that your
domain of discourse is unrestricted:

Domain: Unrestricted

Now, to translate the statements from the previous section, you need another
property constant. So, here are the two constants you need, including the
one from the previous section:

Let Bx = x is brown

Let Hx = x is a horse

Let Fx = x can fly

Now you can translate the statement “All horses are brown,” as

6x [Hx → Bx]

This statement translates literally as “For all x, if x is a horse, then x is
brown.”

But, on the other hand, you translate the statement “Some horses are
brown,” as

7x [Hx & Bx]
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This statement translates literally as “There exists an x such that x is a horse
and x is brown.”

Notice that the difference between the two statements is more than just the
quantifiers 6 and 7. In the first statement, you use a →-operator, whereas in
the second you use a &-operator.

Take a look at what happens, though, if you mix up these operators. Suppose
you tried to translate the first statement as

6x [Hx & Bx] WRONG!

This translation is wrong because what it actually says is, “For all x, x is
both a horse and brown.” More informally, it says “Everything is a brown
horse.” And because the domain is unrestricted, everything really does
mean everything, which obviously isn’t what you meant.

As another example, suppose that you tried to translate the statement

Some horses can fly.

as

7x [Hx → Fx] WRONG!

Again, this translation is wrong because it says “There exists an x such that if
x is a horse, then x can fly.” The problem here is a bit more subtle.

Suppose x is something other than a horse — for example, a shoe. Then, the
first part of the statement inside the brackets is false, which makes every-
thing inside the brackets true. So, in this case, the statement seems to be
telling you that the existence of a shoe means that some horses can fly.
Again, something has gone wrong with the translation.

When translating from English into SL, use the following rules of thumb:

� When using 6, use a →-statement inside the brackets.

� When using 7, use a &-statement inside the brackets.

“Not all” and “no”
After you know how to translate the two positive forms of categorical state-
ments, translating the two negative forms — not all and no — is easy. As I discuss
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in Chapter 2, a not all statement is just the contradictory form of an all state-
ment. Similarly, a no statement is the contradictory form of a some statement.

For example, you already know how to translate the statement

All horses are brown.

as

6x [Hx → Bx]

Thus, its contradictory form is

Not all horses are brown.

This statement translates easily as follows:

~6x [Hx → Bx]

Furthermore, because all and not all statements are contradictory, you know
that exactly one of these statements is true and the other is false.

Similarly, you also know how to translate the statement

Some horses can fly.

as

7x [Hx & Fx]

This statement’s contradictory form is

No horses can fly.

As you may have guessed, this statement translates as

~7x [Hx & Fx]

Again, because some and no statements are contradictory, exactly one is true
and the other is false.
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Discovering Alternative Translations 
of Basic Forms

QL is very versatile and offers you more than one way to translate each form.
In this section, I show you how to translate each of the four basic forms of
categorical statements using both the 6 and 7 quantifiers.

Knowing both versions of each translation will help you understand the
hidden connection between the two quantifiers 6 and 7.

For the examples in this section, I use the following definitions:

Let Dx = x is a dog

Let Px = x is playful

Table 16-2 organizes the information from this section about translating the
four basic forms from English into QL. For each form, I list two English state-
ments. The first statement gives the simplest way to say it in English and its
most direct translation into QL. The second gives an alternative phrasing of
the same idea with a translation of this phrasing.

Table 16-2 Alternative Translations of the Four Basic 
Forms of Categorical Statements

English Translations QL Translations

All dogs are playful. 6 [Dx → Px]
(No dogs are not playful.) (~7 [Dx & ~Px])

Some dogs are playful. 7 [Dx & Px]
(Not all dogs are not playful.) (~6 [Dx → ~Px])

Not all dogs are playful. ~6 [Dx → Px]
(Some dogs are not playful.) (7 [Dx & ~Px])

No dogs are playful. ~7 [Dx & Px]
(All dogs are not playful.) (6 [Dx → ~Px])
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Translating “all” with 7
It makes perfect sense to translate the statement “All dogs are playful” as

6x [Dx → Px]

Think about it. Even if it is upside down, the 6 stands for all. That’s why I dis-
cussed this translation first.

But, when you think about it some more, you may realize that when you say
all dogs are playful, you’re making an equivalent statement:

No dogs are not playful.

In other words, this statement is just a no statement with the word not
inserted. So, a perfectly good translation is:

~7x [Dx & ~Px]

The literal translation here is this: “It isn’t true that there exists an x such
that x is a dog and x is not playful.” But, both English statements mean the
same thing, so both QL statements are semantically equivalent. (For more on
semantic equivalence, see Chapter 6.).

Translating “some” with 6
In the same way that you can translate all with 7, you can use the 6 quantifier
to translate the word some. For example, consider the statement

Some dogs are playful.

The direct translation of this statement into QL is

7x [Dx & Px]

In this case, note that this statement means the same thing as

Not all dogs are not playful.

So, you can treat this statement as a not all statement with the word not
inserted. It translates as

~6x [Dx → ~Px]
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In this case, the literal translation is “It isn’t true that for all x, if x is a dog,
then x is not playful.” But, the two statements in English mean the same
thing, so the two QL statements are semantically equivalent.

Translating “not all” with 7
Suppose you want to translate the following statement:

Not all dogs are playful.

You already know how to translate this statement as

~6x [Dx → Px]

But, here’s another way to think about it: Because not all dogs are playful,
there’s at least one dog somewhere that is not playful. So, you can rephrase
the original statement as

Some dogs are not playful.

To express this idea, you can use the following translation:

7x [Dx & ~Px]

The more exact translation for this statement is “There exists an x such that
x is a dog and x is not playful.” But these two English statements mean the
same thing, and so do their counterparts in QL.

Translating “no” with 6
Suppose you want to translate this statement:

No dogs are playful.

The simplest translation is

~7x [Dx & Px]

The more exact translation here is “It is not true that there exists an x such
that x is a dog and x is playful.”
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As you may have guessed, you can think of this translation another way. For
instance, the fact that no dogs are playful means the following:

All dogs are not playful.

You can express this idea in QL as

6x [Dx → ~Px]

The more exact translation in this case is: “For all x, if x is a dog, then x is not
playful.”

Once again, because the two English statements mean the same thing, their
translations into QL are semantically equivalent.

Identifying Statements in Disguise
So, now you understand how to translate the four most basic forms of cate-
gorical statements from English into QL. Well, you’re in for a treat because in
this section, I help you broaden this understanding.

Here, I show you how to recognize statements that don’t start with the exact
words you are used to. When you’re done, you’ll be ready to take on a much
wider variety of statements in English and turn them into QL.

Recognizing “all” statements
Even if a statement doesn’t begins with the word all, it may mean something
close enough to use the 6 quantifier. Here are some examples, followed by
translations into QL:

Any father would risk his life to save his child.

6x [Fx → Rx]

Every man in this room is single and eligible.

6x [Mx → (Sx & Ex)]

The family that prays together stays together; while every family that
takes vacations together always laughs a lot.

6x [Px → Sx] & 6x [Vx → Lx]
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In the last example, you can quantify the variable x twice because you’re
making a statement about all families. 

Recognizing “some” statements
You may run across certain statements that are close enough to some state-
ments that you’ll want to use the 7 quantifier to translate them. For example,
consider these statements with their translations:

At least one of the guests at this party committed the crime.

7x [Gx & Cx]

Many teenagers are rebellious and headstrong.

7x [Tx & (Rx & Hx)]

Both corrupt plumbers and honest judges exist.

7x [Px & Cx] & 7y [Jy & Hy]

Notice in the last example that you need two variables — x and y. These vari-
ables make it clear that while both groups (corrupt plumbers and honest
judges) exist, they don’t necessarily overlap.

Recognizing “not all” statements
You can easily translate a few statements that don’t include the words not all
by using ~6. For example, consider these statements that are considered not
all statements:

Not every musician is flaky.

~6x [Mx → Fx]

Fewer than 100 percent of accountants are reserved and thorough.

~6x [Ax → (Rx & Tx)]

All that glitters is not gold.

~6x [Ix → Ox] (Because the words glitters and gold begin with the letter g,
I’m using the first vowel in each case.)
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Even though this last example begins with the word all, it’s a not all state-
ment that means “Not all things that glitter are gold.” So, be sure to think
through what a statement is really saying before translating it!

Recognizing “no” statements
You’ve probably guessed by now that some statements that don’t start 
with the word no are easy to translate using ~7. You’re right on the money.
Consider these statements and their translations:

Not a single person on the jury voted to acquit the defendant.

~7x [Jx & Vx]

There aren’t any doctors or even college graduates in our family.

~7x [Fx & (Dx 0 Cx)]

Nobody who buys a restaurant makes money without putting in long
hours.

~7x [Bx & (Mx & ~Px)]

You can think of the last statement as “No person exists who buys a restau-
rant and makes money and doesn’t put in long hours.”
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Chapter 17

Proving Arguments with QL
In This Chapter
� Comparing proofs in SL and QL

� Applying quantifier negation (QN) in QL

� Using the four quantifier rules UI, EI, UG, and EG

Here’s the good news: If you’ve got the hang of sentential logic (SL)
proofs, you already know 80 percent of what you need to write proofs

in quantifier logic (QL). So, first you need to figure out how much you already
know. If you need a quick refresher, take a look at the chapters in Part III,
which tell you everything you need to know.

In this chapter, I start out by showing you how proofs in QL are similar to
those in SL. One way that they’re similar is that they both use the eight impli-
cation rules and the ten equivalence rules. I show you exactly how and when
to use these rules.

After you get comfortable with a few simple proofs in QL, I also introduce an
additional rule, quantifier negation (QN), which allows you to make changes
that affect the quantifier (6 or 7). Luckily, this rule, which is the first rule
that’s unique to QL, is an easy one to master.

The rest of the chapter focuses on the four quantifier rules: Universal
Instantiation (UI), Existential Instantiation (EI), Universal Generalization
(UG), and Existential Generalization (EG). The first two rules allow you to
remove each type of quantifier from a QL statement. The other two rules
allow you to add either type of quantifier to a QL statement.

As a group, the four quantifier rules allow you to use the eight implication
rules from SL to their maximum benefit. Read on to find out how.
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Applying SL Rules in QL
The 18 rules of inference from SL are one huge slice of the 80 percent you
already know about writing proofs in QL. These rules include the eight impli-
cation rules from Chapter 9 and the ten equivalence rules from Chapter 10.
In smany cases, you can transfer these rules over to QL proofs with only
minor adjustments.

This section shows you the many similarities between proofs in QL and SL.

Comparing similar SL and QL statements
One key difference between SL and QL is the way the two languages handle
simple statements. For example, to translate the statement “Howard is sleep-
ing” into SL, you might write:

H (SL TRANSLATION)

To translate the same statement into QL, you might write:

Sh (QL TRANSLATION)

Similarly, to translate the more complex statement “Howard is sleeping and
Emma is awake” into SL, you might write:

H & E (SL TRANSLATION)

To translate the same statement into QL, you might write:

Sh & Ae (QL TRANSLATION)

Neither of these English statements contains any words that require you to
use a quantifier (6 or 7). That’s why you can translate them both into either
SL or QL.

In fact, in such cases only one difference exists between SL and QL transla-
tions: the constants. For example, in SL, you translate a simple English state-
ment into a single-letter constant (for example, H or E), which can then stand
on its own as an SL statement.

In QL, however, you translate the same English statement into a two-letter
combination of a property constant and an individual constant (for example,
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Sh or Ae), which can then stand on its own as a QL statement. (Flip to
Chapter 4 for more on SL constants and Chapter 15 for QL constants.)

For QL statements, the rule of thumb is just to treat the two-letter combina-
tions as indivisible building blocks of larger statements. That is, you’re not
going to break them apart, so you can just treat them as units, as you would
treat single-letter constants in SL. (See Chapter 18 to learn about identities,
the one exception to this rule.)

Transferring the eight implication 
rules from SL into QL
Because SL and QL are so similar, you can easily apply the eight implication
rules to any QL statement or statement form, just as you would in SL.

As in SL, when you use the eight implication rules in QL, you can only apply
them to whole statements or statement forms — never to partial statements
or statement forms. (Check out Chapter 9 for a refresher on how to use the
implication rules.)

Working with QL statements without a quantifier
Here I show you how the eight implication rules apply to QL statements with-
out a quantifier. For example, suppose you want to prove this argument:

Jn → Bn, ~Bn 0 Ep, Jn : Ep

Begin, as always, by listing the premises:

1. Jn → Bn P

2. ~Bn 0 Ep P

3. Jn P

Now, continue as you would with an SL proof, but treat the two-letter con-
stants as indivisible chunks, just like the single-letter constants and variables
in QL:

4. Bn 1, 3 MP

5. Ep 2, 4 DS
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Working with QL statements with a quantifier
Using the eight implication rules from SL also works for QL statements with a
quantifier. As I noted in the preceding section, just make sure you’re applying
the rules to whole statements and statement forms.

For example, suppose you want to prove the following argument:

6x [Nx] & 7y [Py] : (6x [Nx] 0 6y [Py]) & (7x [Nx] 0 7y [Py])

Again, start with the premise:

1. 6x [Nx] & 7y [Py] P

Now you can work with this entire statement as in SL:

2. 6x [Nx] 1 Simp

3. 7y [Py] 1 Simp

4. 6x [Nx] 0 6y [Py] 2 Add

5. 7x [Nx] 0 7y [Py] 3 Add

6. (6x [Nx] 0 6y [Py]) & (7x [Nx] 0 7y [Py]) 4, 5 Conj

You can’t apply the implication rules to part of a statement, even when that
part is the only thing in the brackets of a statement with a quantifier.

For example, here’s an invalid argument:

Premises:

Some members of my family are doctors.

Some members of my family never finished high school.

Conclusion:

Some doctors never finished high school.

And here’s the “proof” of this argument:

7x [Fx & Dx], 7x [Fx & Nx] : 7x [Dx & Nx]

1. 7x [Fx & Dx] P

2. 7x [Fx & Nx] P

3. 7x [Dx] 1 Simp WRONG!

4. 7x [Nx] 2 Simp WRONG!

5. 7x [Dx & Nx] 3, 4 Conj WRONG!
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Obviously, something is very wrong here. The moral of the story is that you
aren’t allowed to apply Simp, Conj, or any other implication rule to the stuff
inside the brackets and just ignore the rest of the statement. (Later in this
chapter, I show you how to prove arguments like this one without breaking
this rule.)

Working with QL statement forms
In Chapter 15, I show you that in QL, a property constant combined with an
individual variable (for example, Px) is not really a statement unless it’s
inside a pair of brackets and modified by a quantifier (for example, 6x [Px]).
When it appears free, it isn’t a statement at all, but rather a statement form.

The good news is that when writing proofs, you can treat statement forms the
same as statements. Later in the chapter, I give specific examples of how
statement forms can arise in the course of a QL proof. For now, just know
that the eight implication rules also apply to statement forms.

Employing the ten SL equivalence 
rules in QL
You can apply the ten equivalence rules to any whole QL statement or state-
ment form or to any part of a QL statement or statement form.

In Chapter 10, I explain that the equivalence rules give you greater flexibility
than the implication rules. One reason for this flexibility is that you can apply
the ten equivalence rules not only to whole SL statements, but also to parts
of statements. This same application also works in QL. For example, suppose
you want to prove the following argument:

7x [Cx → ~Sx] : 7x ~[Cx & ~Sx]

1. 7x [Cx → ~Sx] P

Because the 7x remains unchanged from the premise to the conclusion, your
main challenge here is to change the rest of the statement. And you can do
this by using two of your favorite equivalence rules:

2. 7x [~Cx 0 ~Sx] 1 Impl

3. 7x ~[Cx & Sx] 2 DeM

This flexibility with regard to equivalence rules also applies equally well to
statement forms.
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For example, the expression Cx → ~Sx is a statement form because the vari-
able x is unquantified (see Chapter 15). You can use the equivalence rule
Impl (see Chapter 10) to rewrite this statement form as ~Cx 0 ~Sx.

Later in the chapter, I discuss how sentence forms find their way into QL
proofs.

Transforming Statements with 
Quantifier Negation (QN)

In transferring over the rules for SL proofs into QL, you’ve had to work
around the quantifiers 6 and 7. For some proofs, working around the quanti-
fiers in this way won’t hold you back, but suppose you want to prove this
argument:

6x [Hx → Bx] : ~7x [Hx & ~Bx]

This argument may look familiar if you’ve read Chapter 16. There, I use the
premise statement to stand for “All horses are brown” and the conclusion
statement to stand for “No horses are not brown.” Because these two state-
ments are equivalent, you can start with the first and prove the second.

The problem here is that the quantifier changes from 6 to ~7, and nothing
from SL is going to help with that. Luckily, QN comes to the rescue. Read on
to see how.

Introducing QN
Quantifier Negation (QN) allows you to change a QL statement to an equiva-
lent statement by taking the following three steps:

1. Place a ~-operator immediately before the quantifier.

2. Change the quantifier (from 6 to 7, or from 7 to 6).

3. Place a ~-operator immediately after the quantifier.

As in SL, if the resulting statement has any instances of two adjacent 
~-operators, you can remove both of them. This removal uses the double
negation rule (DN) without referencing it, as I discuss in Chapter 10.

Table 17-1 lists the four distinct cases in which you can use QN.

256 Part IV: Quantifier Logic (QL) 

24_799416 ch17.qxp  10/26/06  10:34 AM  Page 256



Table 17-1 The Four Quantifier Negation (QN) Rules
Direct Statement Equivalent Statement

All 6x [Px] ~7x ~[Px]

Not all ~6x [Px] 7x ~[Px]

Some 7x [Px] ~6x ~[Px]

No ~7x [Px] 6x ~[Px]

Note that in each case, the ~-operator that follows the quantifier doesn’t
change what’s inside the brackets, but simply negates the entire contents.

Like the ten equivalence rules, QN works in both directions.

For example, you can start with this statement:

~7x ~[Gx 0 Hx]

and end up with this one:

6x [Gx 0 Hx]

And also, just as you can with the ten equivalence rules, you can apply QN to
part of a statement.

For example, you can change the following statement:

6x [Mx 0 Lx] & 7x [Cx 0 Fx]

to this:

~7x ~[Mx 0 Lx] & 7x [Cx 0 Fx]

Using QN in proofs
With QN and the rules from SL, you can now prove the following argument:

6x [Bx → Cx] : ~7x [Bx & ~Cx]

1. 6x [Bx → Cx] P
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QN handles the big change involving the quantifier:

2. ~7x ~[Bx → Cx] 1 QN

The rest of the proof is just a couple of tweaks using the equivalence rules:

3. ~7x ~[~Bx 0 Cx] 2 Impl

4. ~7x [Bx & ~Cx] 3 DeM

Because QN and the equivalence rules are all true in both directions, you
could just as easily prove ~7x [Bx & ~Cx] : 6x [Bx → Cx] by reversing the
steps. This reversal gives rigorous proof that these two statements mean the
same thing — that is, they’re semantically equivalent (for more information
on semantic equivalence, see Chapter 6).

Table 17-2 encapsulates this information for the all and not all statements,
listing four equivalent ways to write each type of statement.

Table 17-2 Four Equivalent Ways to Write 
All and Not All Statements

All Not All

Direct statement 6x [Bx → Cx] ~6x [Bx → Cx]

Apply QN ~7x ~[Bx → Cx] 7x ~[Bx → Cx]

Applying Impl ~7x ~[~Bx 0 Cx] 7x ~[~Bx 0 Cx]

Applying DeM ~7x [Bx & ~Cx] 7x [Bx & ~Cx]

Table 17-3 lists the equivalent ways to write some and no statements.

Table 17-3 Four Equivalent Ways to Write 
Some and No Statements

Some No

Direct statement 7x [Bx & Cx] ~7x [Bx & Cx]

Apply QN ~6x ~[Bx & Cx] 6x ~[Bx & Cx]

Applying DeM ~6x [~Bx 0 ~Cx] 6x [~Bx 0 ~Cx]

Applying Impl ~6x [Bx → ~Cx] 6x [Bx → ~Cx]
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Exploring the Four Quantifier Rules
When you started using the rules for proofs in SL, you probably found that
different rules were helpful for different things. For example, Simp and DS
were good for breaking statements down, while Conj and Add were good for
building them up.

A similar idea applies in QL. Two of the four quantifier rules are instantiation
rules, as you can see in Table 17-4. These two rules allow you to remove the
quantifier and brackets from a QL statement, breaking the statement down
so that the SL rules can do their thing. The other two quantifier rules are 
generalization rules. These rules allow you to add quantifiers and brackets
to build up the statements you need to complete the proof.

Table 17-4 The Four Quantifier Rules in QL and Their Limitations
Quantifier Breaking Down Building Up

6 Universal Instantiation (UI) Universal Generalization (UG)

* Changes a bound variable * Changes a free variable (not a 
to either a free variable or constant) to a bound variable.
a constant.

* This bound variable must not 
already appear in an earlier line in 
the proof justified by EI or an 
undischarged AP.

7 Existential Instantiation (EI) Existential Generalization (EG)

* Changes a bound variable * Changes either a free variable or 
to a free variable (not a a constant to a bound variable.
constant).

*This variable must not be 
free in an earlier line in the 
proof.

Two of these rules — UI and EG — are relatively easy, so I go over these first.
UI allows you to break down statements quantified with 6, whereas EG
allows you to build up statements using the 7 quantifier.

259Chapter 17: Proving Arguments with QL

24_799416 ch17.qxp  10/26/06  10:34 AM  Page 259



After you master UI and EG, you’ll be ready for EI and UG. These two rules
are a little trickier because they include some limitations that UI and EG
don’t have. But, in principle, EI is just another break-down rule and UG is just
another build-up rule. The following sections give you everything you need to
know to figure out how to use these four rules.

Easy rule #1: Universal 
Instantiation (UI)
Universal Instantiation (UI) allows you to do the following:

� Free the bound variable in a 6-statement by removing the quantifier and
the brackets.

� Having freed this variable, uniformly change it wherever it appears to
any individual constant or variable if you choose to do so.

For example, suppose you know that this statement is true:

All snakes are reptiles.

In QL, you can express this statement as

6x [Sx → Rx]

Because you know a fact about all snakes, it’s safe to say that a similar state-
ment about a specific snake is also true:

If Binky is a snake, then Binky is a reptile.

UI allows you to make this leap formally:

Sb → Rb

The result is a statement that looks a lot like an SL statement, which means
you can use the 18 SL rules.

Warming up with a proof
As practice, this section gives you an example of a warm-up proof. Suppose
you want to prove the validity of this argument:
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Premises:

All elephants are gray.

Tiny is an elephant.

Conclusion:

Tiny is gray.

Translate this argument into QL as follows:

6x [Ex → Gx], Et : Gt

As with an SL proof, begin by listing the premises:

1. 6x [Ex → Gx] P

2. Et P

Now, “unpack” the first premise using UI:

3. Et → Gt 1 UI

Here, I first removed the 6x and the brackets. I also chose to change the 
variable x uniformly (that is, everywhere it appears in the statement) to the
individual constant t. I chose t in this case because this is the constant that
appears in line 2, which becomes useful in the next step.

Now you can complete the proof using an old, familiar rule from SL:

4. Gt 2, 3 MP

Valid and invalid uses of UI
UI gives you a lot of options for when you’re scrounging for the next steps in
a proof.

For example, suppose you’re given the following premise:

6x [(Pa & Qx) → (Rx & Sb)]

The simplest thing that UI allows you to do is to simply remove the quantifier
and brackets and keep the same variable:

(Pa & Qx) → (Rx & Sb)
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UI also allows you to change the variable, as long as you make this change
uniformly throughout the entire expression:

(Pa & Qy) → (Ry & Sb)

Furthermore, with UI you change the variable to any constant you choose,
even constants that already appear in the statement, as long as you make the
change uniformly throughout the statement. For example:

(Pa & Qa) → (Ra & Sb)

(Pa & Qb) → (Rb & Sb)

(Pa & Qc) → (Rc & Sb)

In each case, I’ve replaced the variable x uniformly with a constant — first a,
then b, and finally c.

When using UI, you must replace the variable uniformly with a single choice
of a constant or variable. And you must preserve constants from the original
statement.

For example, here is an invalid use of UI:

(Pa & Qa) → (Rb & Sb) WRONG!

In this invalid statement, I’ve incorrectly changed one x to an a and the other
to a b. These replacements are wrong because the changes must be uniform —
you must replace every x with the same constant or the same variable
throughout. Here’s another invalid use of UI:

(Px & Qx) → (Rx & Sx) WRONG!

In this statement, I’ve incorrectly tampered with the constants a and b. These
changes are wrong because UI only allows you to change the variable that’s
being quantified in the original statement — in this case, x. Other variables
and constants in the original statement must remain the same.

Easy rule #2: Existential 
Generalization (EG)
Existential Generalization (EG) allows you to change either an individual con-
stant or a free variable to a bound variable by adding brackets and quantify-
ing it with 7.
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For example, suppose you know that this statement is true:

My car is white.

In QL, you can express this statement as

Wc

Because you have an example of a specific thing that is white, you know more
generally that something is white, so it’s safe to say

There exists an x such that x is white.

You can make this leap formally using EG:

7x [Wx]

Warming up with a proof
Just as UI allows you to break down QL statements at the beginning of a
proof, EG allows you to build them back up at the end.

For example, suppose you want to prove that the following argument is valid:

6x [Px → Qx], 6x [(Pb & Qx) → Rx], Pa & Pb : 7x [Rx]

1. 6x [Px → Qx] P

2. 6x [(Pb & Qx) → Rx] P

3. Pa & Pb P

First, use UI to unpack the first two premises:

4. Pa → Qa 1 UI

5. (Pb & Qa) → Ra 2 UI

Line 5 illustrates a point I discussed in the previous section: You can replace
both instances of the variable x in statement 2 with the constant a, but the
constant b must remain unchanged.

Next, use Simp to break down statement 3:

6. Pa 3 Simp

7. Pb 3 Simp
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Now you can call forth all your old tricks from SL proofs:

8. Qa 4, 6 MP

9. Pb & Qa 7, 8 Conj

10. Ra 5, 9 MP

You’ve now found one example of a constant (a) that has the property you’re
seeking (R), so you can complete the proof using EG:

11. 7x [Rx] 10 EG

Valid and Invalid Uses of EG
EG gives you the same choices as UI, but with EG you’re adding brackets and
binding variables rather than removing brackets and freeing variables.

EG allows you to change any constant to a variable and then bind that vari-
able using the quantifier 7. As with UI, the changes you make must be uni-
form throughout. For example, suppose you have this premise:

(Pa & Qb) → (Rb 0 Sa)

You can use EG to change either constant (a or b) to a variable and bind it
with a 7 quantifier:

7x [(Px & Qb) → (Rb 0 Sx)]

7x [(Pa & Qx) → (Rx 0 Sa)]

As with UI, when you use EG, the changes you make to constants must be
uniform throughout. For example, here are three invalid uses of EG:

7x [(Px & Qx) → (Rx 0 Sx)] WRONG!

In this invalid statement, I incorrectly changed both constants a and b to x.

7x [(Px & Qb) → (Rb 0 Sa)] WRONG!

Here, I went the other direction and changed one a but not the other.

7x [(Pa & Qb) → (Rb 0 Sa)] WRONG!

In this statement, I failed to change any constants to variables.
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EG also allows you to make similar changes to statement forms. Statement
forms won’t be premises in an argument but they may arise from using UI and
other quantifier rules. Suppose you have this statement form:

(Vx & Ty) 0 (Cx → Gy)

You can use EG to bind either variable:

7x [(Vx & Ty) 0 (Cx → Gy)]

7y [(Vx & Ty) 0 (Cx → Gy)]

You can also use EG to make a change of variable, as long as you make this
change uniformly throughout:

7z [(Vx & Tz) 0 (Cx → Gz)]

7z [(Vz & Ty) 0 (Cz → Gy)]

Note that all four of these examples are still statement forms because in each
case one variable is still free. 

As with constants, when you use EG to bind or change variables, the changes
need to be uniform throughout the statement form. Here are some invalid
uses of EG applied to statement forms:

7x [(Vx & Tx) 0 (Cx → Gx)] WRONG!

In this invalid statement, I incorrectly used EG to bind both variables x and y
using the variable x.

7z [(Vx & Tz) 0 (Cx → Gy)] WRONG!

Here, I changed one y to a z but failed to change the other y.

7z [(Vx & Ty) 0 (Cx → Gy)] WRONG!

In this statement, I bound the variable z but failed to change any variables to z.

Not-so-easy rule #1: Existential
Instantiation (EI)
Existential Instantiation (EI) allows you to free the bound variable in an 7-
statement (or change it to a different variable) by removing the quantifier
and the brackets — provided that this variable isn’t already free in an earlier
line of the proof.
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You’re right, this description is a mouthful. So, to keep it simple, I explain it
bit by bit. And I start by explaining everything up to the word provided.

How EI is similar to UI
The first part of the description of EI is similar to UI, except that it works
with 7-statements (instead of 6-statements). Suppose you have the following
statement:

Something is green.

You can represent this statement in QL as follows:

7x [Gx]

As with UI, EI allows you to free the bound variable, giving you this:

Gx

This statement form means “x is green,” which is close to the meaning of the
original statement. EI also allows you to change the variable:

Gy

In this case, the statement form means “y is green,” is also close to what you
started with because variables are just placeholders.

EI works with variables but not constants
Unlike UI, however, EI doesn’t allow you to change the variable to a constant.
For example, consider the following:

1. 7x [Gx] P

2. Ga 1 EI WRONG!

The reason you can’t use EI in this way is simple: Just because the original
sentence said that something is green is no reason to assume that applesauce,
armadillos, Alaska, Ava Gardner, or any other specific thing that a might rep-
resent is also green.

EI is more restrictive than UI. With UI, you start out knowing that everything
has a given property, so you can conclude that any constant or variable also
has it. But with EI, you start out knowing only that something has that prop-
erty, so you can only conclude that a variable also has it.
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An example using EI
To help you better understand how to use EI, consider the following 
argument:

6x [Cx → Dx], 7x [~Dx] : ~6x [Cx]

1. 6x [Cx → Dx] P

2. 7x [~Dx] P

First of all, use UI and EI to remove the quantifiers. But use EI before using UI.
(This order has to do with stuff in the definition of EI that comes after the
word provided, which I explain later.)

3. ~Dx 2 EI

4. Cx → Dx 3 UI

The next step is obvious, even if you’re not quite sure yet how it helps:

5. ~Cx 3, 4 MT

Now, you know something about this variable x — namely, that x doesn’t
have the property C. So, you can use EG to make the more general statement
“There exists an x such that x doesn’t have the property C:

6. 7x [~Cx]

To complete the proof, you can use QN. For clarity, in this case I take an extra
step and explicitly use double negation (DN):

7. ~6x ~[~Cx] 6 QN

8. ~6x [Cx] 7 DN

EI only allows you to free a variable that isn’t free elsewhere
In the example in the previous section, I purposely used EI before I used UI.
Now I explain why.

Note that the last part of the EI definition says “provided that this variable
isn’t already free in an earlier line of the proof.” So, referring to the example
in the previous section, if I had written Cx → Dx as line 3, I couldn’t have used
EI to write ~Dx in line 4.
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This limitation may seem like a technicality, but trust me, it’s important. To
show you why, I pretend to prove an argument that’s obviously false. Then I
show you where the trouble comes from. Here’s the argument:

Premises:

People exist.

Cats exist.

Conclusion:

Some people are cats.

The argument translated into QL is:

7x [Px], 7x [Cx] : 7x [Px & Cx]

And here’s the “proof”:

1. 7x [Px] P

2. 7x [Cx] P

3. Px 1 EI

4. Cx 2 EI WRONG!

5. Px & Cx 3, 4 Conj

6. 7x [Px & Cx] 5 EG

There must be a catch. Otherwise, you’d find some cat people wandering
around with the rest of the human race. (I wonder if they get hairballs.)
So, where does the problem come from?

Line 3 is fine: I use EI to free the variable x. But then in line 4, I try to use EI to
free the variable x again. This move is a big no-no, and it leads to the mess that
results. Because I’ve already freed the variable x in line 3, I’m not allowed to
use this variable with EI in line 4.

I could have written Py or Pz in line 4, but then the rest of the argument
would have fallen apart. But, this is a good thing, because bad arguments
are supposed to fall apart.

Valid and Invalid Uses of EI
In this section, I clarify exactly how and when you can use EI.
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For example, suppose you’re given these two premises:

1. 7x [(Rx & Fa) → (Hx & Fb)] P

2. 7y [Ny] P

As with UI, EI allows you to free a variable, with the option of changing it
along the way. Here are three valid next steps:

3. (Rx & Fa) → (Hx & Fb) 1 EI

4. (Ry & Fa) → (Hy & Fb) 1 EI

5. Nz 2 EI

In line 3, I used EI to free the variable x. This is the most common use of EI. In
line 4, I changed the variable from x to y and then freed it using EI. This is
also a valid option. And then in line 5, I wanted EI to free the variable from
line 2. But because I had already freed x and y in previous lines, I needed to
pick a new variable z.

As with UI, if you change the variable using EI, you must make uniform
changes throughout. For example, check out this invalid statement:

6. (Rv & Fa) → (Hw & Fb) 1 EI WRONG!

In line 6, I incorrectly changed one x to v and the other to w. This change is
just as wrong with EI as it would be with UI.

But, EI limits your options in ways that UI doesn’t. For example, take a look at
this invalid statement:

7. (Ra & Fa) → (Ha & Fb) 1 EI WRONG!

In line 7, I uniformly changed the variable x to the individual constant a. Not
allowed! With EI, variables must remain variables. Take a look at the last
invalid statement:

8. Nx 2 EI WRONG!

In line 8, I changed the variable y to x. But the variable x already appears as a
free variable in line 3, so you’re not allowed to use it a second time with EI.
This type of error is the most common one you’re likely to make with EI, so
watch out for it.
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Not-so-easy rule #2: Universal
Generalization (UG)
Universal Generalization (UG) allows you to change a free variable to a
bound variable by adding brackets and quantifying it with 6 — provided
that this variable isn’t free in an earlier line of the proof that’s justified
either by EI or by an undischarged AP (flip to Chapter 11 for more on 
discharging an AP).

As with EI, UG is fairly straightforward up to the word provided. To make it as
easy as possible, I explain it piece by piece.

How UG is similar to EG
For the most part, UG is similar to EG. The biggest difference is that EG works
with 7 statements (instead of 6-statements, which UG uses). Suppose you’re
given the following definition:

Let Nx = x is nice

Suppose further at some point in a proof, you arrive at the following state-
ment form:

Nx

Under the proper circumstances, UG allows you to derive the more general
statement “For all x, x is nice,” or, more simply put, “Everything is nice”:

6x [Nx]

The variable you choose in this case doesn’t really matter, so you can also
use UG to write:

6y [Ny]

UG works with variables but not constants
Unlike EG, UG doesn’t allow you to change a constant to a variable. For exam-
ple, consider the following:

1. Nc P

2. 6x [Nx] 1 UG WRONG!
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The reason this statement is wrong is simple: Just because the original sen-
tence said that whatever c stands for (cars, cows, Cadillacs, or Candice
Bergen) is nice, you can’t jump to the conclusion that everything is also nice.

UG is more restrictive than EG. With EG, you want to show that something
has a given property by finding one specific thing — either a constant or a
variable — that has that property. With UG, however, you want to show that
everything has that property by finding a variable that has it.

An example using UG
As with EG, UG is most often used at the end of a proof to build a statement
form that you’ve pieced together into a statement by quantifying it with 6.
Consider this argument:

6x [Bx → Cx], 6y [~Cy 0 Dy] : 6x [Bx → Dx]

1. 6x [Bx → Cx] P

2. 6y [~Cy 0 Dy] P

The first step is to break open the two premises using UI:

3. Bx → Cx 1 UI

4. ~Cx 0 Dx 2 UI

Note that in line 4, UI provides the freedom to change the variable from y to x
without worrying that x is already free in line 3. And once the variables are all
the same, you can move forward as if you were writing an SL proof:

5. Cx → Dx 4 Impl

6. Bx → Dx 3, 5 HS

Now, everything is set up for completing the proof with UG:

7. 6x [Bx → Dx] 6 UG

UG only allows you to bind a variable that isn’t free on a 
line justified by either EI or an undischarged AP
So, here’s my confession: I think the rule UG is just about the orneriest con-
cept in this whole book. Okay, now I’ve said it. And what makes UG a problem
is this rule about how it’s not supposed to be used.
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But, look on the bright side: when you’ve mastered UG, you can rest assured
that nothing worse is in store for you.

First off, imagine that you start a club that has one member: you. Even though
you start off small, you have big plans for the club: Eventually, you want every-
one in the whole world to join. Your sense of logic is somewhat twisted, so
you make this argument:

Premise:

A member of my club exists.

Conclusion:

Everything is a member of my club.

Then, you translate this argument into QL as follows:

7x [Mx] : 6x [Mx]

This plan sounds a little fishy, but then you “prove” your argument like this:

1. 7x [Mx] P

2. Mx 1 EI

3. 6x [Mx] 2 UG WRONG!

Somehow, in two easy steps, you increased your club membership from a
single member to everything in the entire universe. Just imagine what UNICEF
could do with this argument!

Here’s the problem: The variable x is free on line 2, which is justified by EI,
so you can’t use UG to bind x in line 3. This scenario is exactly what the 
definition of UG after the word provided is getting at.

As another example, imagine that you’re not a billionaire. (If this is difficult
to imagine, repeat after me: “I am not a billionaire.”) From this premise,
you’re going to try to prove that Donald Trump isn’t a billionaire. Here’s your
argument:

Premise:

I am not a billionaire.
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Conclusion:

Donald Trump isn’t a billionaire.

The translation of this argument into QL is as follows:

~Bi : ~Bt

And, now, here’s the “proof”:

1. ~Bi P

2. Bx AP

Here, I use an advanced indirect proof strategy that I discuss more in
Chapter 12: I make up an assumed premise (AP) and then work to prove a
contradiction. If I’m successful, I have proved the negation of the AP. In gen-
eral, this is a perfectly valid strategy, but the next step contains a fatal error:

3. 6x [Bx] 1 UG WRONG!

4. Bi 2 UI

5. Bi & ~Bi 1, 4 Conj

6. ~Bx 2–5 IP

Having discharged my AP, the rest of the proof looks simple:

7. 6x [~Bx] 6 UG

8. ~Bt 7 UI

The problem this time is that the variable x is free in line 2, which is justified
by an undischarged AP, which means that you can’t use UG to bind x.

Notice, however, that in line 7, the proof includes a perfectly valid usage of
UG to bind x. The only difference here is that by this point in the proof, the
AP has been discharged.

The moral of the story is that whenever you want to use UG, you need to
check first to make sure that the variable you’re trying to bind is not free in
either of the following:

� A line that’s justified by EI

� A line that’s justified by an AP that has not been discharged
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Valid and Invalid Uses of UG
Here is a summary of when you can and can’t use UG. Suppose you have the
following proof in progress (this takes a little setting up):

1. 6x [Tx] P

2. 7y [Gy] P

3. Sa P

4. Tx 1 UI

5. Gy 2 EI

6. Tx & Sa 3, 4 Conj

7. (Tx & Sa) & Gy 5, 6 Conj

8. Hz AP

Now, you can use UG to bind the variable x in line 7:

9. 6x [(Tx & Sa) & Gy] 7 UG

But, you can’t use UG to change the constant a in line 7 to a variable and
bind it:

10. 6w [(Tx & Sa) & Gy] 7 UG WRONG!

You also can’t use UG to bind the variable y in line 7, because this variable
appears free on line 5, which is justified by EI:

11. 6y [(Tx & Sa) & Gy] 7 UG WRONG!

Furthermore, you can’t use UG to bind the variable z in line 8, because this
variable is justified by an AP that is still undischarged:

12. 6z [Hz] 8 UG WRONG!
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Chapter 18

Good Relations and 
Positive Identities

In This Chapter
� Understanding relational expressions

� Discovering identities

� Writing proofs using relations and identities

In sentential logic (SL), you represent a basic statement with just one 
letter — a constant. For example, you can represent the statement “Barb is

a tree surgeon,” as

B (SL TRANSLATION)

In quantifier logic (QL), you represent the same sentence with a two-letter
combination of a property constant and an individual constant, for example:

Tb

This representation works great. But, suppose you want to translate the
statement “Barb hired Marty” into QL. Now that more than one person is in
the picture, you need a way to express their relationship.

Or suppose you want to translate the statement “Barb is the best tree sur-
geon in the county.” In this case, you aren’t describing a property that applies
to Barb, but rather her identity as the single best tree surgeon in the county.

Fortunately, QL allows you to express these more sophisticated ideas easily.
In this chapter, I discuss both relations and identities in QL. Relations allow
you to express statements that have more than one key player, and identities
help you handle situations where the key player is identified with an alterna-
tive but uniquely-fitting description. Finally, I show you how these new con-
cepts fit into the whole picture of QL.
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Relating to Relations
Up until now, you’ve been using monadic expressions: Statements and state-
ment forms that have only one individual constant or variable. For example,
the statement

Na

has only one individual constant: a. Similarly, the statement form

Nx

has only one variable: x.

In this section, I help you expand your notion of expressions to include those
with more than one individual constant or variable.

Defining and using relations
A relational expression has more than one individual constant or variable.

Defining a relational expression is quite easy after you know the basics of
defining a monadic expression (see Chapter 15). For example, you can define
a monadic expression as follows:

Let Nx = x is nosy

Then, you might translate the sentence “Arkady is nosy” as

Na

But, suppose you have the statement:

Arkady is nosier than Boris.

In this case, you can begin by defining the following relational expression:

Let Nxy = x is nosier than y

Then, you can use this expression to translate the statement as follows:

Nab
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Similarly, you can translate the statement

Boris is nosier than Arkady

as

Nba

The order of the individual constants or variables in a relational expression is
crucial — don’t mix them up!

Connecting relational expressions
You can use the five SL operators (~, &, 0, →, and ↔) to connect relational
statements and statement forms just as with monadic expressions. (For more
on distinguishing statements from statement forms, flip to Chapter 15.)

After you’ve translated a statement from English into a relational expression,
it becomes an indivisible unit just like a monadic expression. From then on,
the same rules apply for using the five operators.

For example, suppose you want to say:

Kate is taller than Christopher, but Christopher is taller than Paula.

First, define the constants:

Let k = Kate

Let c = Christopher

Let p = Paula

Next, define the appropriate relational expression:

Let Txy = x is taller than y

Now, you can translate the statement

Tkc & Tcp

Similarly, you can translate the statement

If Kate is taller than Christopher, then she is also taller than Paula.

as

Tkc → Tkp
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Making use of quantifiers with relations
You can use the two QL quantifiers (6 and 7) to connect relational state-
ments and statement forms just as with monadic expressions.

Using quantifiers with relations isn’t substantially different from using them
with monadic expressions.

For example, suppose you want to translate the following English statement
into QL:

Everybody likes chocolate.

First define the relational expression:

Let Lxy = x likes y

Then, define the individual constant:

Let c = chocolate

Now, you’re ready to translate the statement as follows:

6x [Lxc]

Similarly, suppose you have the following expression:

Someone introduced Dolly to Jack.

This time, you need to define a relational expression that takes three individ-
ual variables:

Let Ixyz = x introduced y to z

Using the initials for Dolly and Jack as individual constants, and binding the
variable x with the quantifier 7, you can translate the statement:

7x [Ixdj]

You can also translate the statement

Jack introduced Dolly to everyone.

as

6x [Ijdx]
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Notice that you can still use the variable x here even though the definition for
the relational expression uses y in this position. The choice of variable isn’t
important here as long you’ve quantified it properly.

Working with multiple quantifiers
Because relations have more than one variable, they open up the possibility
of statements with more than one quantifier. For example, you can translate
the statement

Everybody introduced someone to Jack.

as

6x 7y [Ixyj]

By breaking down this statement, you realize that it literally states: “For all x,
there exists a y such that x introduced y to Jack.”

Similarly, if you want to translate the following statement into QL:

Jack introduced someone to everyone.

You can use the following statement:

6x 7y [Ijyx]

This statement means “For all x, there exists a y such that Jack introduced y
to x.”

Be careful with the order of quantifiers. Changing the order of quantifiers
from 6x 7y to 7y 6x changes the meaning of statement even if the contents of
the brackets remains the same.

Here is the distinction between statements starting with 6x 7y and those
starting with 7y 6x

� Generally speaking, 6x 7y means “For all x, there exists a y such that . . .”,
which means that y may be different for two different x’s.

� On the other hand, 7y 6x means “There exists a y such that for all x . . .”,
which means that the y is the same for every x.
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To make this distinction clear, I define a new property constant:

Let Mxy = x is married to y

Now, suppose I want to express the idea that all people are married. I can
translate the statement as

6x 7y [Mxy]

This statement literally means “For all x, there exists a y such that x is mar-
ried to y.”

But suppose I reverse the quantifiers:

7y 6x [Mxy]

Now, it means “There exists a y such that for all x, x is married to y.” In this
case, I’m saying that all people are married to the same person. This is defi-
nitely not what I had in mind.

Multiple quantifiers are especially useful to express mathematical ideas. For
example, suppose you want to express the idea that the counting numbers 
(1, 2, 3 . . .) are infinite. You can express this idea by defining a relational
expression:

Let Gxy = x is greater than y

Now, you can express the infinity of all numbers by stating that for every
number, there exists a number that’s greater:

6x 7y [Gyx]

In other words, “For all x, there exists a y such that y is greater than x.”

Writing proofs with relations
When you’re writing proofs, relational expressions work pretty much the
same as monadic expressions. They stand as discrete and inseparable
chunks that you can manipulate using the 18 rules of inference for SL
(see Chapters 9 and 10).

Quantifier negation (QN) and the four quantifier rules also work the same
with relational expressions as they do with monadic expressions (I cover
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these fabulous results in logic in Chapter 17). The main difference is that 
now you may need to write proofs that include statements with multiple
quantifiers.

Using QN with multiple quantifiers
QN works the same with multiple quantifiers as it does with single quanti-
fiers. (Flip to Chapter 17 for a refresher on using QN.) Just make sure you are
clear which quantifier you are changing.

For example, here’s a new declaration:

Let Pxy = x gave a present to y

Suppose you want to prove the following argument:

Premise:

Everyone gave at least one person a present.

Conclusion:

Nobody didn’t give a present to anybody.

You can write this argument in QL as follows:

6x 7y [Pxy] : ~7x 6y ~[Pxy]

1. 6x 7y [Pxy] P

2. ~7x ~7y [Pxy] 1 QN

In line 2, I underlined the first quantifier because it’s the focus of the change
from line 1. Notice that I placed a ~-operator before this quantifier, changed the
quantifier from 6x to 7x, and placed another ~-operator after this quantifier.

3. ~7x ~~6y ~[Pxy] 2 QN

4. ~7x 6y ~[Pxy] 3 DN

In line 3, the second quantifier is now the focus of the change from line 2.
Again, I’ve added ~-operators before and after this quantifier and changed it
from 7y to 6y. To keep the proof crystal clear, I’ve taken an additional line to
apply the double negation rule (DN).
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Using the four quantifier rules with multiple quantifiers
When using the four quantifier rules — UI, EG, EI, and UG (see Chapter 17) —
with multiple quantifiers, an important restriction comes into play: You can
only remove the first (leftmost) quantifier or add a new first quantifier.

In practice, this restriction means that you have to do the following:

� Break statements down from the outside in.

� Build statements up from the inside out.

For example, take a look at this proof:

6x 6y [Jxy → Kyx], 7x ~7y [Kyx] : 7x 6y [~Jxy]

1. 6x 6y [Jxy → Kyx] P

2. 7x ~7y [Kyx] P

First, a quick switch of quantifiers in the second premise to move the ~-operator
to the right and get it out of the way:

3. 7x 6y ~[Kyx] 2 QN

But, this premise still has a 7-quantifier, so I have to use existential instantia-
tion (EI). I need to get this step out of the way as soon as possible before x
shows up free in the proof (see Chapter 17 for more on EI). So, now I go about
breaking it down from the outside in:

4. 6y ~[Kyx] 3 EI

5. ~Kyx 4 UI

Now I’m at the first premise, again breaking down from the outside in:

6. 6y [Jxy → Kyx] 1 UI

7. Jxy → Kyx 6 UI

The next step is pretty clear:

8. ~Jxy 5, 7 MT

Time to build the conclusion from the inside out:

9. 6y [~Jxy] 8 UG
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This use of universal generalization (UG) is valid because in line 4, the vari-
able y is still bound. Finally you use existential generalization (EG) to finish
off the proof:

10. 7x 6x [~Jxy] 9 EG

Identifying with Identities
Look at the following two statements:

George Washington was a U.S. president.

George Washington was the first U.S. president.

You can translate the first statement into QL easily as

Pg

At first glance, you might think that you could handle the second statement
with the same approach. But, you can’t because these two statements, even
though they look similar, are actually quite different.

The first statement describes Washington in terms of a property that’s possi-
bly shared by others (for example, by Abraham Lincoln). That’s why you can
easily use a property constant to translate this statement into QL (see Chapter 15
for more on property constants).

The second statement, however, tells us about Washington in terms of his iden-
tity as the one and only first U.S. president. To translate this statement into QL,
you need something new — and this something new is a way to express iden-
tity. I discuss the ins and outs of identities in the following sections.
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Regarding self-referential statements
A few fine points to proofs with relations are
beyond the scope of this book. Many of these
issues arise with the issue of self-referential
statements, which are relational expressions
with a repeated individual constant.

For example, when given the statement “Jack
loves everybody” — 6x [Ljx] — you can use UI

to infer the statement “Jack loves himself” —
Ljj.

Self-referential statements are necessary to
make QL fully expressive, but you need to keep
a close eye on them in proofs.
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Understanding identities
An identity tells you that two different individual constants refer to the same
thing, meaning that they’re interchangeable in QL.

What does it mean to say that George Washington was the first U.S. presi-
dent? Essentially, you’re saying that anywhere you talk about George
Washington, you can substitute the words the first U.S. president, and vice
versa.

In QL, you can state an identity formally as follows (assuming g stands for
George Washington and f stands for the first U.S. president):

g = f

You can also use an identity with a quantifier:

7x [x = f]

This statement translates to: “There exists an x such that x is the first U.S.
president,” or, more simply, “The first U.S. president exists.”
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Indirect discourse and identity
There are intriguing exceptions to the idea that
identity means you can substitute freely from
one statement to another without changing 
the meaning. For example, look at these two
statements:

Sally believed that Abraham Lincoln was
the first U.S. president.

Sally believed that Abraham Lincoln was
George Washington.

Clearly, these statements don’t mean the same
thing, and the first statement can be true and
the second false.

For this reason, QL doesn’t work with state-
ments that contain indirect discourse, such as

Elton hoped that Mary had paid the gas bill.

The boss insisted that everybody arrive on
time.

We know that Clarissa is lying.

It is necessary that the sun rise every 
morning.

See Chapter 21 for a discussion of non-classi-
cal systems of logic that attempt to account for
statements of these kinds.

But remember that, as far as QL is concerned,
once you define an identity between two con-
stants, you are saying it’s OK to substitute one
constant for the other.
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Writing proofs with identities
QL contains two rules just for handling identities. They’re so easy to under-
stand and use that I give you just one example of each, and you’ll be all set.

Rule of Identity (ID)
ID just provides formally for the substitution of one constant for another in a
proof after the identity of these constants has been shown.

After you establish an identity of the form x = y in a proof, ID allows you to
rewrite any line of that proof by substituting x for y (or y for x).

Here’s an argument that requires an identity:

Premises:

Every person deserves respect.

Steve Allen is a person.

Steve Allen was the original host of The Tonight Show.

Conclusion:

The original host of The Tonight Show deserves respect.

Here’s the same argument translated into QL:

6x [Px → Dx], Ps, s = o : Do

The proof of this argument is straightforward:

1. 6x [Px → Dx] P

2. Ps P

3. s = o P

4. Ps → Ds 1 UI

5. Ds 2, 4 MP

6. Do 5 ID

I used ID on the last step to substitute o for s. In most cases, whenever you
need to use ID, you’ll be able to see the opportunity from miles away.

Identity Reflexivity (IR)
IR is even easier to understand than ID. It just tells you that it’s okay to
assume that everything is identical to itself, no matter what you’re proving.
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IR allows you to insert the statement 6x [x = x] at any point in a proof.

This statement 6x [x = x] translates into English as “For all x, x is identical to
x,” or, more simply, “Everything is identical to itself.”

IR is one of those rules you’re almost never going to need unless the teacher
sets up a proof on an exam that requires it (which is always possible). For
example, take a look at the following proof:

6x [((x = m) 0 (x = n)) → Tx] : Tm & Tn

1. 6x [((x = m) 0 (x = n)) → Tx] P

2. ((m = m) 0 (m = n)) → Tm 1 UI

3. ((n = m) 0 (n = n)) → Tn 1 UI

I used UI to unpack the premise in two different ways: In line 2, changing the
variable x to the constant m, and in line 3 changing x to n. Now, you can pull
out IR:

4. 6x [x = x] IR

IR is like an extra premise, so you don’t need to reference any line numbers
when you use it. After using IR, you can use UI to get the identity statements
you need:

5. m = m 4 UI

6. n = n 4 UI

This time, I used UI to unpack line 4 in two different ways, again changing x
first to m and then to n.

Now everything is in place to finish the proof using only rules of inference
from SL:

7. (m = m) 0 (m = n) 5 Add

8. (n = m) 0 (n = n) 6 Add

9. Tm 2, 7 MP

10. Tn 3, 8 MP

11. Tm & Tn 9, 10 Conj
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Chapter 19

Planting a Quantity of Trees
In This Chapter
� Extending the truth tree method to QL statements

� Understanding non-terminating truth trees

In Chapter 8, I show you how to use truth trees in sentential logic (SL) for a
variety of different purposes. In this chapter, you see how this method can

be extended to quantifier logic (QL). As in SL, truth trees in QL are generally
simpler than proofs. You don’t need to have a brainstorm to make them
work — just plug and chug. I warn you right up front that (unfortunately)
QL truth trees have limitations.

In this chapter, I show you how to make the most of the truth tree method for
solving problems in QL. I also show you an important drawback — the non-
terminating tree.

Applying Your Truth Tree 
Knowledge to QL

Everything you know about building truth trees in SL also applies to QL trees.
In this section, I give you a QL example to show you how it’s done. If at anytime
you come across something unfamiliar and you get stuck, flip to Chapter 8 for
a refresher.

Using the decomposition rules from SL
Suppose you want to test whether the following set of three statements is
consistent:

Ma 0 ~Tb

~Ma & Lc

~Tb
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As with trees in SL, the first step in deciding whether statements are consistent
or inconsistent is to build the trunk of the tree using these three statements:

Notice that I circled the third statement because it’s already in a form that
can’t be decomposed further.

Now, I can build the tree using the decomposition rules from SL. I start with
the second statement because it’s a single-branching statement:

Having decomposed the statement ~Ma & Lc, I checked this statement to
show that I’m done with it. And again, I circled the resulting statements that
are fully decomposed. The only statement left that isn’t checked or circled is
the first statement:

Ma 00 ~Tb

~Ma & Lc

~Tb

~Ma

Ma

X

~Tb

Lc

Ma 0 ~Tb

~Ma & Lc

~Tb

~Ma

Lc

Ma 00 ~Tb

~Ma & Lc

~Tb
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Now, every statement is either checked or circled, so the tree is finished.

Notice that I also closed off the branch that ends with Ma by placing an X
below it. As with SL trees, the reason for closing off this branch is simple:
To travel all the way from the beginning of the trunk to the end of this
branch, you need to pass through both ~Ma and Ma. Because a statement and
its negation can’t both be true, the branch is closed off. And this is the only
reason to close off a branch.

But the branch that ends with ~Tb has no such contradiction, so I left it open.
As with SL trees, because this truth tree has at least one open branch, the set
of three statements is considered consistent.

Adding UI, EI, and QN
For statements with quantifiers, you need to add in some of the QL quantifier
rules from Chapter 17. For breaking down statements in trees, use universal
instantiation (UI) and existential instantiation (EI). And for removing the 
~-operator from a quantifier, use quantifier negation (QN).

Here’s an argument with one premise, which I test for validity using a truth tree:

~7x [Gx & ~Nx] : 6x [Gx → Nx]

As always, the first step is to build the trunk of the tree using the premise and
the negation of the conclusion:

~7x [Gx & ~Nx]

~6x [Gx → Nx]

Because both statements have negated quantifiers, use QN to move the 
~-operators. (Note that you don’t have to use line justifications such as QN,
UI, or EI with a tree as you do with a proof.) I save space here by taking two
steps at once:

~7x [Gx & ~Nx]

~6x [Gx → Nx]

66x ~[Gx & ~Nx]

7x ~[Gx → Nx]
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Now you’re ready to use UI and EI. However, remember the limitation on EI:
Just as in QL proofs, you can only use EI to free a variable that isn’t already
free. So, in this example, you have to get EI out of the way before using UI:

When you use UI, don’t check the statement that you just decomposed. I tell
you why later in the chapter. But, for now, just remember the rule: When you
use EI, check the decomposed statement as usual, but don’t check it when
you use UI.

At this point, you can start decomposing statements using the rules from SL
truth trees. When possible, start with a single-branching statement:

Finally, decompose the double-branching statement:

~7x [Gx & ~Nx]

~6x [Gx → Nx]

6x ~[Gx & ~Nx]

7x ~[Gx → Nx]

~[Gx → Nx]

~[Gx & ~Nx]

Gx

~Nx

~7x [Gx & ~Nx]

~6x [Gx → Nx]

6x ~[Gx & ~Nx]

7x ~[Gx → Nx]

~[Gx →→ Nx]

~[Gx & ~Nx]
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Both branches lead to contradictions, so they both get closed off with X’s.
Because every branch has been closed off, the tree is finished and the argu-
ment is considered valid.

Using UI more than once
In the example from the previous section, I told you that when you use UI to
decompose a statement, you must not check it as complete. I promised an
explanation, and here it comes.

When you decompose a 6-statement using UI, you have an unlimited number
of constants you can choose for the decomposition. So, leave the statement
unchecked because you may need to use it again.

For example, consider this argument:

6x [Hx → Jx], Ha & Hb : Ja & Jb

~7x [Gx & ~Nx]

~6x [Gx → Nx]

6x ~[Gx & ~Nx]

7x ~[Gx → Nx]

~[Gx → Nx]

~[Gx & ~Nx]

Gx

~Nx

Nx~Gx

XX
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Set up the trunk of the tree as usual:

I know I need to decompose the first premise using UI, but I have many
choices. I could decompose it to Hx → Jx, or Ha → Ja, or Hb → Jb, or an infi-
nite number of other possible statements. As you will see in this example,
I may need more than one of these decompositions to complete the tree, 
so I have to leave the 6-statement unchecked so that I am free to decompose
it again as needed.

For my first decomposition, I want to go in a direction that looks useful, so I
choose a decomposition that includes one of the constants that appears in
other statements in the tree. I start with the constant a:

I left the statement that I just decomposed unchecked, and now I move on to
the next step:

6x [Hx → Jx]
Ha & Hb

Ha → Ja
~(Ja & Jb)

Ha

Hb

6x [Hx → Jx]
Ha & Hb

Ha →→ Ja
~(Ja & Jb)

66x [Hx → Jx]
Ha & Hb
~(Ja & Jb)
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This time, I checked the statement as usual. Now I have to double-branch:

Fortunately, one of the branches gets closed off, and I get started on the
next step:

6x [Hx → Jx]
Ha & Hb

Ha → Ja
~(Ja & Jb)

Ha

Hb

Ja~Ha

X

~Jb~Ja

X

6x [Hx → Jx]
Ha & Hb

Ha → Ja
~(Ja & Jb)

Ha

Hb

Ja~Ha

X
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You may be tempted at this point to think that the tree is finished. But remem-
ber that the tree is only finished when:

� Every item has been either checked or circled.

� Every branch has been closed off.

If these rules don’t sound familiar, check out Chapter 8. Here’s the punch line:
The reason the tree isn’t finished yet is because when I used UI to decompose
the first statement, I didn’t check it off as complete. So, now, I decompose this
statement in a different way that allows me to complete the tree.

In this case, I decompose the unchecked 6-statement using the other constant
that appears in the tree — namely, the constant b:

Note that even when I use UI to decompose the first statement for the second
(or third, or hundredth) time, I leave the statement unchecked in case I need
to use it again. Now, just one final decomposition and I’m done:

6x [Hx → Jx]
Ha & Hb

Ha → Ja
~(Ja & Jb)

Ha

Hb

Ja~Ha

X

~Jb

Hb → Jb

~Ja

X
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With this last decomposition, every branch is closed off, which means I’m done.
Because all of the branches are closed off, you know the argument is valid.

Non-Terminating Trees
SL trees are my favorite logical tool because they don’t require you to be
clever. You just have to follow the right steps to the end and you get the 
correct answer every time.

Unfortunately, QL trees tend to be a bit more unruly. In some cases, a tree just
grows and grows and grows — and never stops growing. This type of tree is
called a non-terminating tree (or an infinite tree), and it makes things interest-
ing, if not somewhat frustrating.

6x [Hx → Jx]
Ha & Hb

Ha → Ja
~(Ja & Jb)

Ha

Hb

Ja~Ha

X

~Jb

Hb → Jb

~Ja

X

Jb~Hb

XX
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As you probably already know, there are only two ways to finish a tree:
Either check or circle every statement or close off every branch with an X.
But, in QL, it just isn’t always possible to complete a tree.

To illustrate, here’s a statement that I translate into QL and then test using a
truth tree:

The counting numbers aren’t infinite.

This is a false statement, because the counting numbers (1, 2, 3. . .) go on for-
ever, so they are infinite. But, it’s a statement that you can express in QL.
First, I declare a domain of discourse:

Domain: Counting numbers

Now, I define a relation:

Lxy = x is less than y

I want to express the idea that no matter what number x I choose, that
number is less than some other number y, and then negate it. Here’s how
I write it:

~6x 7y [Lxy]

This translates literally as “It isn’t true that for all x, there exists a y such
that x is less than y,” or, more informally, “The counting numbers aren’t 
infinite.”

Suppose I want to test to see if this statement is a tautology. It better not be a
tautology, because I already have an interpretation that makes it false.

As I point out in Chapter 8, to use a truth tree to see whether a statement is a
tautology, negate that statement and use it as your trunk. When you complete
the tree, if at least one open branch remains, the statement is a tautology;
otherwise, it’s either a contradiction or a contingent statement.

So, my first step is to negate the statement and use it as the trunk of my tree,
and then decompose using UI, remembering not to check off the statement.
To save space, I do both steps at once:

77y [Lxy]

6x 7y [Lxy]
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Next, I decompose this new statement using EI:

In this case, I decomposed the statement changing the variable to z in the
hopes that I might be able to get rid of this variable later by applying UI again
to the first statement.

At this point, the tree isn’t complete because a branch is open and a state-
ment isn’t checked. But, there’s still a chance I can close off the branch with a
clever use of UI applied to the first statement. And, because the variable z is
now in the mix, I use this constant in my decomposition:

Now, another application of EI:

This time, I introduce the variable w, but it doesn’t matter. In fact, there’s
nothing you can do to complete the tree, either by closing off the branch or
checking off the first statement. What you have here is a non-terminating tree.

Because the tree is never finished, it tells you nothing about whether the state-
ment you are testing is a tautology. Non-terminating trees are the reason that
truth trees, which are always useful in SL, have a more limited function in QL.

7y [Lxy]

6x 7y [Lxy]

7y [Lzy]

Lxz

Lzw

7y [Lxy]

6x 7y [Lxy]

7y [Lzy]

Lxz

7y [Lxy]

6x 7y [Lxy]

Lxz
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Part V
Modern

Developments 
in Logic
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In this part . . .

Logic may have started with Aristotle, but it certainly
didn’t end with him. Part V brings you completely up

to date, discussing logic in the 20th century and beyond.

In Chapter 20, you discover how logic is instrumental to
the computer at the levels of both hardware and software.
Chapter 21 presents a few examples of non-classical logic —
which are forms of logic that start off with different sets
of assumptions than those forms I discuss in the rest of
this book. I show you some startling differences between
what seems obvious and what is possible in logic. Finally,
Chapter 22 examines how paradoxes challenge logic, and
how questions of consistency and completeness in logic
led to the most important mathematical discovery of the
century.
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Chapter 20

Computer Logic
In This Chapter
� Appreciating the earliest computers

� Understanding how logic works in today’s computers

The computer has been called the most important invention of the 20th
century (well, except for maybe the auto-drip coffee maker). And what

sets the computer apart from other inventions — for example, the airplane,
the radio, the television, or the nuclear power generator — is its versatility.

When you think about it, most machines are just tools for doing repetitive
work that humans don’t like to do — and honestly, machines generally do
their jobs better than humans could ever do them. From the can opener to the
car wash, machines have long been built to mimic human movement and
then improve upon it.

So, it makes sense that along the way, people began to wonder whether a
machine could be built to take over some of the repetitive mental labor that
humans must do day in and day out. To some extent, adding machines and
cash registers were invented to do just that. But, these inventions were also
limited in what they could do. Just as you can’t expect a can opener to wash
a car, you can’t expect an adding machine to do long division, let alone differ-
ential calculus.

A few visionaries, however, saw the possibility that a single machine might be
capable of performing an unlimited number of functions.

In this chapter, I show you the role that logic played in the design of the com-
puter. I start out with the beginnings of the computer — with the work of
Charles Babbage and Ada Lovelace. Then, I discuss how Alan Turing showed,
in theory at least, that a computer can perform any calculation that a human
can. Finally, I focus on the ways in which logic forms the underpinning of the
computer at the levels of both hardware and software.
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The Early Versions of Computers
Even though the work of building the first electronic computers began in
the 1940s, the idea and design for them began more than a century earlier.
The computer began as a crackpot idea that never really got off the ground,
and it developed into one of the most important inventions in history.

Babbage designs the first computers
Charles Babbage (1791–1871) is credited as the inventor of the computer.
Even though his two models — the difference engine and the later analytical
engine — were both designed to be powered by mechanical energy rather
than electrical energy, they were highly sophisticated machines and had
much more in common with later computers than with other inventions of
the day.

Babbage began working on the difference engine in the 1820s. Unfortunately,
even though he completed its design, he never finished building the machine.
Funding difficulties and Babbage’s personality conflicts with others on the
project are cited as the reason for the failure to finish. (But, I’m sure that
even modern-day computer engineers can relate to these obstacles.)

It wasn’t until 1991 when the first and only difference engine was built in
accordance with Babbage’s plans. The builders limited themselves to the
technology that would have been available in Babbage’s time. They found
that the machine worked in accordance with its plans, performing complex
mathematical calculations with perfect accuracy.

After Babbage abandoned his plan to build the difference engine, he took up
a more ambitious project — designing the analytical engine. This project
incorporated the skills he had learned from the difference engine, but he took
them a step further. One major improvement was that the analytical engine
could be programmed with punch cards, making it more versatile and easier
to use than the difference engine. Ada Lovelace, a mathematician and friend
of Babbage’s, assisted greatly in the design of the analytical engine. She also
wrote several programs that would have run on the engine had it been built.

Turing and his UTM
After Charles Babbage’s death in 1871, his designs gathered dust for decades
until another visionary — Alan Turing (1912–1954) — approached the idea of
mechanized computing from a different angle.

Turing saw the need to clarify exactly what was meant by computation,
which humans had been doing for centuries using algorithms. Algorithms
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are simply mechanical procedures that produce a desired result in a finite
number of steps. For example, the procedure for multiplying two numbers is
an algorithm. As long as you follow the steps correctly, you’re guaranteed to
eventually get the right answer, no matter how big the numbers.

Turing found that algorithms could be broken down into small enough steps
that they could be performed by an extremely simple machine. He called this
machine the universal Turing machine (UTM).

Unlike Babbage, Turing never expected his machine to be built. Instead, it
was a theoretical model that could be described in principle without being
realized. However, the basic capability of a universal Turing machine is shared
by all computers. In other words, every computer, no matter what its design,
is neither more nor less capable of calculation than any other.

Explaining the UTM
The UTM consists of a paper strip of arbitrary length that’s divided into boxes.
Each box contains a single symbol from a finite set of symbols. The paper
strip is on rollers so that it moves one box at a time past a pointer, which can
both read the symbol in that square and, in some cases, erase it and write a
different symbol.

For example, suppose you wanted to write a program to multiply two numbers
together. You would begin by writing two numbers onto the strip, separating
them with the multiplication operator:

These numbers would be the program’s initial conditions. By the end of the
procedure, the result would look like this:

Turing laid out a set of allowable steps for getting from start to finish. These
steps form what is called a program. A program consists of a list of states
that tell the machine what actions to take based on what the pointer reads.
Depending upon which state the machine is in, it performs different specific
actions. The general form of these actions are as follows:

1. Optionally change the symbol in that box to a different symbol.

2. Optionally change the state that the machine is in.

3. Move one box to the right or left.

7 5 8 X 6 3 = 4  7  7  5  4
0

7 5 8 X 6 3
0
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For example, when the machine is in state #1, and the pointer reads the
number 7, the actions might be

1. Leave the 7 unchanged.

2. Change the machine from state #1 to state #10.

3. Move one box to the right.

However, when the machine is in state #2, and the pointer reads the number
7, the actions might be

1. Change the 7 to an 8.

2. Leave the state unchanged.

3. Move one box to the left.

Even though these actions seem crude, Turing showed that it’s possible to
perform sophisticated calculations in this way. Far more importantly, he proved
that it’s possible to perform any calculation in this way. That is, any algorithmic
method that a human can learn to do, the UTM can also be programmed to do.

Relating the UTM to logic
But, you may ask, what does the UTM have to do with logic? To understand
the connection, notice that the specifications for the machine make deciding
the truth value of certain types of statements simple. For example, at the
start of the multiplication example, this statement is true:

The machine is in state #1, and the pointer is on 7.

Based on the truth of this statement, the machine performs the proper
actions, which resets the machine so that now this statement is true:

The machine is in state #10, and the pointer is on 5.

Logic is ideal for describing the conditions of the machine at any time. As you
see in the next section, computer scientists have capitalized on the descrip-
tive power of logic in the design of both hardware and software.

The Modern Age of Computers
The early ideas and theories Babbage and Turing — computer development
pioneers — set the stage for the development of the modern computer.
And, with electric power becoming more and more commonplace, the next
advance in computers followed quickly. Built in the 1940s, ENIAC (short for
Electronic Numerical Integrator and Computer) was the first electronic com-
puter. Improved models developed swiftly.
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All computers that have ever been developed (so far), including your home
computer or laptop, can be divided into two levels of functionality:

� Hardware: The physical structure of the computer

� Software: The programs that run on the computer

As I explain in this section, logic plays an integral role in computing at both
the hardware and software levels.

Hardware and logic gates
A truth function takes one or two input values and then outputs a value. Input
and output values can be either of the two truth values (T or F). (See Chapter 13
for a refresher on truth functions.)

All five logical operators in sentential logic (SL) are truth functions. Three of
them — the ~-operator, the &-operator, and the 0-operator — are sufficient to
build every possible truth function (see Chapter 13). Similarly, the |-operator
(also known as Sheffer’s stroke) by itself is also sufficient for building every
possible truth function.

At the most basic level, computer circuits mimic truth functions. Instead of
using the values T and F, however, computers use the values 1 and 0 as is
done in Boolean algebra (see Chapter 14). In honor of George Boole, variables
taking only these two values are called Boolean variables. When the current
flow in a specific part of the circuit is on, the value there is said to be 1; when
it’s off, the value there is 0.

Types of logic gates
The behavior of operators is mimicked by logic gates, which allow currents
to pass through circuits in a predetermined way. Six common gates are NOT,
AND, OR, NAND, NOR, and XOR.

For example, here’s a diagram for a NOT gate:

In Boolean terms, a NOT gate changes an input of 0 to an output of 1, and an
input of 1 to an output of 0. In other words, when the current flowing into the
gate is on, the current flowing out of it is off; when the current flowing in is
off, the current flowing out is on.

P ~P
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The NOT gate is the only gate that has just one input. This single input paral-
lels the ~-operator in that it’s the only unary operator in SL. (By unary, I mean
that the ~-operator is placed in front of one constant rather than placed
between two constants.) The remaining gates all have two inputs. For exam-
ple, take a look at a diagrams for an AND gate and an OR gate, respectively:

An AND gate turns its output current on only when both of its sources of
input current are on; otherwise, its output current remains off. And, as you
may have guessed, an OR gate outputs current when either of its input
sources are on; otherwise, its output remains off.

Even though the NOT, AND, and OR gates are sufficient for imitating any 
possible SL truth function, for practical reasons having a greater variety of
building blocks is helpful. The following three gates are also commonly used:

� NAND: Short for not and, this gate behaves in a similar fashion to 
the |-operator (see Chapter 13). Its output is 0 only when both of its
inputs are 1; otherwise, its output is 0.

� XOR: Pronounced “ex-or,” and short for exclusive or, this gate behaves
like the exclusive or function that I discuss in Chapter 13. That is, when
exactly one of its two inputs is 1, its output is also 1; otherwise, its
output is 0.

� NOR: Short for not or, this gate turns on its output current only when
both of its inputs are off; otherwise, its output current remains off.

Computers and logic gates
Gates are the building blocks of a computer’s CPU (computer processing unit),
which is the part of a computer where data is manipulated. Data is stored in
memory devices and moved into and out of the CPU as needed, but the real
“thinking” that goes on in a computer happens here in the CPU.

P

Q
P 0 Q

P

Q
P & Q
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As Turing’s work showed (see the earlier section “Turing and his UTM”), a
short list of simple data manipulations is sufficient to calculate everything
that can possibly be calculated. And logic gates provide more than enough of
the basic functionality for reproducing a universal Turing machine.

Believe it or not, Charles Babbage’s analytical engine, discussed earlier in
this chapter, which ran programs on punch cards, would have no more and no
less computing capability than today’s state-of-the-art computers. Of course,
today’s computers have tons more memory and perform all processes with
lightning speed compared with the Babbage model. But, in principle, both
machines are sufficient to perform every possible mathematical calculation.

Software and computer languages
Computer hardware alone is already far more complex than just about any
machine you can name. Still, no matter how complex the basic machinery of
a computer is, it’s still limited to perform whatever functions it was designed
to perform — just like any other machine.

For some applications, these limited capabilities are all that are needed.
Computer circuits for cars, watches, and household appliances, for example,
do a fine job of regulating the machines they’re built into. But, if you tried to
use the circuit board from a BMW to run your dishwasher — or even a differ-
ent type of car — you’d be disappointed at the results.

So why is your Mac or PC able to perform a seemingly endless number of
tasks? The answer, of course, is software.

Software is any computer program that tells the hardware what tasks to carry
out. All software is written in one of many computer languages, such as Java,
C++, Visual Basic, COBOL, and Ada (named in honor of Ada Lovelace, whose
work I mentioned earlier in this chapter). Even though all computer languages
have differences in syntax and have various strengths and weaknesses, they
all have one thing in common: logic.

As with SL, computer languages allow you to declare variables and constants
to which you can then assign values. For example, suppose you want to declare
a variable called “month” and set its initial value to 10. Here are the lines of
computer code you would write in several different languages:

� Java: int month = 10;

� Visual Basic: Dim Month as Integer = 10

� PL/I: DCL MONTH FIXED BINARY(31, 0) INIT(10);
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As you can see, in each language the syntax is different, but the main idea is
the same. After you have variables to work with, you can build statements that
test whether certain conditions are true or false — and then you can take
action based on the results.

For example, suppose you want to send a message if and only if the date is
October 10th. Here’s how you might write an if-statement in each of the three
languages to test whether the month and day are correct, and, if so, how to
perform the proper action:

� Java:

if (month == 10 && day == 9)

message = “Happy Leif Ericson Day!”;

� Visual Basic:

If Month = 10 And Day = 9 Then _

Message = “Happy Leif Ericson Day!”

� PL/I:

IF MONTH = 10 & DAY = 9 THEN

MESSAGE = ‘Happy Leif Ericson Day!’;

Again, the syntax differs from language to language, but the meaning is essen-
tially the same.

You can see how the structure of a programming language allows you to 
use a computer to do, in a more streamlined fashion, what a universal
Turing machine can only do in very tiny steps. Nevertheless, the basic
idea behind both types of computers is the same:

1. Set initial conditions.

2. Test the current conditions and make appropriate changes as needed.

3. Repeat Step 2 as often as necessary until complete.
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Chapter 21

Sporting Propositions: 
Non-Classical Logic

In This Chapter
� Introducing possibility with multi-valued logic and fuzzy logic

� Understanding modal, higher-order, and paraconsistent logic

� Appreciating the mystery of quantum logic

To most people, the question “What if 2 + 2 = 5?” is absurd. I mean, c’mon,
asking yourself “What if . . .?” in many cases is pointless because you

know it could never be true. For example, consider this wacky question:
“What if little green Martians landed their flying saucer on my front lawn and
drove off in my car?”

But, to logicians, these “What if?” questions are a sporting proposition — a
challenge that’s inviting just because it’s so preposterous. By the early 20th
century, logic had been reduced to a relatively short list of basic assumptions
called axioms. (See Chapter 22 for more on the axioms of logic.) These
axioms were considered self-evident, and if you accepted them, everything
else from logic followed.

But, what if you didn’t accept them? What if, for the sake of argument, you
changed an axiom the way that a baker changes an ingredient in a cake recipe?

Of course, a baker must choose carefully when changing ingredients. For exam-
ple, replacing baking powder with sugar would stop a cake from rising, and
replacing chocolate with garlic would result in a cake that even your dog
wouldn’t eat.

Similarly, a logician needs to choose carefully when changing axioms. Even
a small change can result in a logical system that is full of contradictions.
And even if a system were consistent, it may prove trivial, uninteresting, or
useless — the garlic cake of logic. But given these caveats, a few mavericks
have still fashioned alternative systems of logic.
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Welcome to the world of non-classical logic, the modern response to more
than 2,000 years of classical logic (which includes just about everything I dis-
cuss in this book). In this chapter, I give you a taste of several non-classical
systems of logic. These systems may not only challenge your notions of true
and false, but they may also surprise you in how useful they turn out to be in
the real world.

Opening Up to the Possibility
In Chapter 1, I introduce you to the law of the excluded middle — which is
the rule that a statement is either true or false, with no in-between allowed.
This rule is an important assumption of logic, and for thousands of years it
has served logic well.

When I introduce this law, I make it clear that not everything in the world fits
together so neatly. Nor does it have to. The statement “Harry is tall” may be
true when Harry is standing with a group of children, but it’s false when he’s
standing next to the Boston Celtics.

Typically, logicians acknowledge this black-and-whiteness to be a limitation
of logic. Logic doesn’t handle shades of gray, so if you want to work with this
statement, you must agree on a definition for the word tall. For example, you
may define a man who stands six feet or more as tall, and all others as not tall.

The law of the excluded middle was a cornerstone of logic from Aristotle well
into the 20th century. This law was one of those things you just accepted as a
necessary assumption if you wanted to get anywhere with logic. But, in 1917,
a man named Jan Lukasiewicz began wondering what would happen if he
added a third value to logic. Check out the upcoming sections to see where
Lukasiewicz’s ponderings took him — and logic as a whole.

Three-valued logic
Jan Lukasiewicz decided to see what would happen if a third value, one that
was neither true nor false, was added to logic. He called this value possible,
and he stated that it could be assigned to statements whose truths were
inconclusive, such as:

It will rain in Brooklyn tomorrow.

Doctors will someday find a cure for the common cold.

Life exists on other planets.
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Possible seems to exist somewhere between true and false. For this reason,
Lukasiewicz started out with the Boolean representation of 1 for true and 0
for false. (See Chapter 14 for more about Boolean algebra.) He then added a
third value, 1⁄2, for the possible value.

The result was three-valued logic. Three-valued logic uses the same operators
as classical logic, but with new definitions to cover the new value. For exam-
ple, here’s a truth table for ~x:

x ~x

1 0
1⁄2 1⁄2

0 1

This value for possibility makes sense when you use it in an example:

Let P = It will rain in Brooklyn tomorrow.

If the truth value P is 1⁄2 — that is, if it’s possible — it’s also possible that it
won’t rain in Brooklyn tomorrow. So, the value of ~P is also 1⁄2.

By a similar line of reasoning, you can figure out the truth value of &-statements
and 0-statements that include one or more sub-statements whose values are
possible. For example:

Either George Washington was the first president or it will rain in
Brooklyn tomorrow.

This statement is true (the first part is true, so the rest doesn’t matter), so its
value is 1.

Multi-valued logic
After the door is open for an intermediate truth value, you can create a logical
system with more than one intermediate value — in fact, any number you
choose. For example, imagine a system with 11 values, from 0 to 1 with incre-
ments of 1/10 in between. This system is an example of multi-valued logic.

1/10
2/10

3/10
4/10

5/10
6/10

7/10
8/10

9/10 10
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How do you compute the truth value of statements with this system? In multi-
valued logic, the rules are simple:

� ~-rule: ~x means 1 – x.

� &-rule: x & y means choose the smaller value.

� 0-rule: x 0 y means choose the larger value.

These three rules may seem odd, but they work. And, you can also use them
with three-valued logic and Boolean algebra.

For example:

~2/10 = 8/10 ~-rule

3/10 & 8/10 = 3/10 &-rule

1/10 0 6/10 = 6/10 0-rule

7/10 & 7/10 = 7/10 &-rule

9/10 0 9/10 = 9/10 0-rule

You can even add in the other two sentential logic (SL) operators using
the logical equivalence rules Impl and Equiv (see Chapter 10 for more on
equivalence rules):

� Impl: x → y = ~x 0 y

� Equiv: x ↔ y = (x → y) & (y → x)

With these multi-value logic rules, you can calculate the value of any expres-
sion step by step, much as you would write a proof. For example:

4/10 ↔ 3/10

= (4/10 → 3/10) & (3/10 → 4/10) Equiv

= (~4/10 0 3/10) & (~3/10 0 4/10) Impl

= (6/10 0 3/10) & (7/10 0 4/10) ~-rule

= 6/10 & 7/10 0-rule

= 6/10 &-rule

Jan Lukasiewicz focused on the syntax of the system while leaving the 
semantics open to interpretation (see Chapter 14 for details on syntax and
semantics). In other words, calculation in multi-valued logic is completely
rule based, but the meaning of your result is open to interpretation.
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(I describe several ways you might interpret results in the following section,
“Fuzzy logic.”)

Fuzzy logic
Some critics of multi-valued logic have questioned its usefulness to describe
possible future events. They cite probability theory as the more appropriate
tool for looking into the future. (Probability theory also calculates possibility,
but it uses a different method of calculation.)

This criticism has some merit. For example, if the chance of rain in Brooklyn
is 3/10 and in Dallas 7/10, probability theory calculates the chance of rain in
both places by multiplying these values:

3/10 × 7/10 = 21/100

On the other hand, multi-valued logic would calculate this value as 3/10.
But, because probability theory is very well established, this discrepancy
calls into question the usefulness of multi-valued logic.

In the 1960s, however, mathematician Lotfi Zadeh saw the potential for multi-
valued logic to represent not what’s possibly true but what’s partially true.

Consider the following statement:

I am hungry.

After you eat a big meal, this statement will most likely be false. If you don’t
eat for several hours, though, eventually it will be true again. Most people,
however, don’t experience this change as black-and-white, but rather as
shades of gray. That is, they find that the statement becomes more true
(or false) over time.

In fact, most so-called opposites — tall or short, hot or cold, happy or sad,
naïve or worldly, and so forth — aren’t separated by a sharp line. Instead,
they’re ends of a continuum that connects subtle shadings. In most cases,
shadings of these types are somewhat subjective.

Zadeh’s answer to these issues is fuzzy logic, which is an extension of multi-
valued logic. As with multi-valued logic, fuzzy logic permits values of 0 for
completely false, values of 1 for completely true, or values in-between to
describe shadings of truth. But, unlike multi-valued logic, all values between
0 and 1 are permitted.
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Pricing out a new TV
To understand fuzzy logic a bit better, consider a hypothetical couple Donna
and Jake. They have agreed to buy a brand-new television for their living room.
Donna is thinking about a medium-sized model for around $500, but Jake has
in mind a giant plasma screen that costs about $2,000. Of course, when they
arrive at the store, the rude awakening occurs. If they look at their disagree-
ment from the perspective of two-valued logic, they’ll never make a decision.

But, after they start hashing things out, it’s clear that some flexibility exists in
both of their ideas.

As in multi-valued logic, &-statements in fuzzy logic are handled as the
smaller of two values, and 0-statements are handled as the larger of two
values. In this case, the question calls for an &-statement: Both Donna and
Jake must agree on an amount to spend.

A small amount of notation will be helpful:

Let D(x) = Donna’s truth value for x dollars.

Let J(x) = Jake’s truth value for x dollars.

Now you can set up this statement to capture their combined reaction to a
particular price:

D(x) & J(x)

So, when a salesman shows them televisions in the $500 range, he gets a 1
from Donna and a 0 from Jake:

D(500) & J(500) = 1 & 0 = 0

Then, when he shows the couple televisions in the $2,000 range, he gets a 0
from Donna and a 1 from Jake:

D(2000) & J(2000) = 0 & 1 = 0

When he finds the middle range, the impasse begins to loosen. Donna and
Jake settle on a $1,100 projector television, which they both find to be the
highest value possible:

D(1100) & J(1100) = .75 & .75 = .75

Buying votes
Of course, not all problems can be settled by &-statements. In some cases, you
may find that a 0-statement is the ticket. If so, fuzzy logic can still handle it.
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For example, suppose you’re a politician who needs one more vote from your
city council to push through a land-use bill. The two abstaining voters are
Rita and Jorge, both of whom are waiting to see how much money you allo-
cate for a school playground project before casting their votes. Rita hopes
you’ll spend around $5,000, and Jorge wants you to spend about $25,000:

Because you only need one vote, you set up a 0-statement as follows:

R(x) 0 J(x)

At first, you think a compromise might work, so you try to split the difference
at $15,000:

R(15000) 0 J(15000) = .1 0 .1 = .1

Not a very good outcome. With this scenario, both council members will be
so unhappy that they’ll most likely both vote against your bill. But then you
try both $5,000 and $25,000:

R(5000) 0 J(5000) = 1 0 0 = 1

R(25000) 0 J(25000) = 0 0 1 = 1

What a difference! You can choose either of these values and make at least
one council member happy, which is all you need to ensure victory.

Getting into a New Modality
Like multi-valued logic, modal logic attempts to handle not just the true and
the false, but the possible. For this reason, modal logic introduces two new
operators: the possibility operator and the necessity operator:

Zx = It is possible that x.

Xx = It is necessary that x.

For example:

Let C = Circles are round.

Then ZC means “It is possible that circles are round,” and XC means “It is
necessary that circles are round.”

The two modal operators are logically connected as follows:

Xx = ~ Z~x
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For example, the statement “It is necessary that circles are round,” is 
equivalent to the statement “It is not possible that circles are not round.”
Similarly, the following equation also holds true:

Zx = ~X~x

For example, the statement “It is possible that ghosts are real,” is equivalent
to the statement “It is not necessary that ghosts are not real.”

One important aspect of modal logic is the distinction between necessary truth
and contingent truth. To understand the distinction, consider the following
example:

Let S = It snowed yesterday in Brooklyn.

Suppose that it really did snow yesterday in Brooklyn. In that case, both of
these statements are true:

S TRUE

S 0 ~S TRUE

Even though both statements are true, a difference exists between the types
of truth. The first statement is contingently true because its truth is contingent
on what actually happened. That is, the situation might have been different.
It’s even possible that the weather report was inaccurate.

The second statement, however, is necessarily true. That is, regardless of the
circumstances in Brooklyn yesterday, there is a logical necessity that the
statement is true.

The shading of difference becomes clearer after I add the necessity operator:

XS FALSE

XS 0 ~S FALSE

In this case, the first statement says: “It is necessary that it snowed yesterday
in Brooklyn.” In modal logic, this statement is false, because a scenario could
exist in which it didn’t snow there yesterday. On the other hand, the second
statement says: “It is necessary that it either snowed or didn’t snow yester-
day in Brooklyn.” This statement is true, underscoring the stronger level of
truth independent of real-world events.
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Taking Logic to a Higher Order
Recall that quantifier logic (QL) includes individual constants, individual vari-
ables, and property constants, but not property variables. This allows you to
quantify individuals but not properties. For example, you can represent the
sentence

All bankers are rich.

as

6x [Bx → Rx]

To be specific, this statement tells you that anything that has the property of
being a banker also has the property of being rich.

After you start focusing on properties themselves, however, you may want
to discuss them in a logical fashion. For example, suppose you’re hiring an
assistant and you’re looking for someone who’s friendly, intelligent, and
upbeat. In QL, it’s easy to declare constants for these properties:

Let F = x is friendly.

Let I = x is intelligent.

Let U = x is upbeat.
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Handling statements of indirect discourse
Modal logic is just one type of logic that
attempts to include statements of indirect dis-
course that can’t be translated into SL and QL.
Deontic logic allows you to handle statements
of obligation and permission. For example:

You must stop at a red light.

You are allowed to go through a yellow light.

Similarly, epistemic logic includes operators for
handling statements of knowledge and belief.
For example:

Arnie knows that Beth is waiting for him.

Arnie believes that Beth is waiting for him.
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Then you can represent the following sentence:

Nadia is intelligent and Jason is upbeat.

as

In & Uj

However, with QL, you can’t represent this statement:

Nadia has every property that Jason has.

Second-order logic (also called second-order predicate logic) allows you to
handle statements about properties that individuals possess by quantifying
property variables rather than just individual variables. For example, sup-
pose that X stands for some property. Having that variable set in place, you
can now represent the previous statement as:

6X [Xj → Xn]

The literal translation of this statement is “For every property X, if Jason has
the property X, then Nadia has the property X.”

You can also quantify individual variables. For example, consider the follow-
ing statement:

Someone has every property that Jason has.

You can represent this statement as:

6X 7y [Xj → Xy]

The literal translation for this representation is “For every property X, there
exists an individual y such that if Jason has the property X, then y has the
property X.”

Moving Beyond Consistency
In a sense, paraconsistent logic is the flip side of multi-valued logic. In multi-
valued logic, a statement may be neither true nor false. In paraconsistent
logic, a statement may be both true and false. That is, every statement has at
least one but possibly two truth values: T and/or F.
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In other words, it’s possible for a statement of the form

x & ~x

to be true. To put it another way, paraconsistent logic allows you to break the
law of non-contradiction by allowing a statement to be both true and false.
(See Chapter 1 for more on the law of non-contradiction.)

This essential difference between paraconsistent and classical logic also 
creates further waves with one important rule of inference — disjunctive 
syllogism (DS). To refresh your memory, check out Chapter 9 and consider
these constants:

Let A = Ken lives in Albuquerque.

Let S = Ken lives in Santa Fe.

In classical logic, DS allows you to make the following inference:

A 0 S, ~A : S

What this argument means is that if Ken lives in either Albuquerque or Santa
Fe and he doesn’t live in Albuquerque, then he lives in Santa Fe.

In paraconsistent logic, however, this inference doesn’t hold true. Even though
the failure of DS in paraconsistent logic may sound wacky at first, the reason
makes sense when you think about it.

Suppose that both A and ~A are true, which is allowed in paraconsistent
logic, no matter how odd it sounds. That is, Ken both does and doesn’t live
in Albuquerque. In that case, the statement

A 0 S

is true even if S is false. And, as I just said, the statement

~A

is also true. In this case, both of these statements are true, but the statement

S

is false. In other words, the two premises are true and the conclusion is false,
so DS is an invalid argument in paraconsistent logic.
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In this way, paraconsistent logic remains consistent even though, by defini-
tion, it’s inconsistent. Or, putting it another way, paraconsistent logic is both
consistent and inconsistent — which, when you think about it, is kind of the
whole idea in a nutshell. Or not.

Making a Quantum Leap
Have you ever seen a con artist play the shell game? He takes a pea, places it
on a table, and hides it under a walnut shell. Then he places two more empty
shells on the table next to it and deftly moves the three shells around on the
table. If you can guess which shell the pea is hidden under, you win.

This clever trick looks easy, but it has separated many a mark from his money.
Usually, the con artist is an expert in sleight of hand and can move the bean
into his palm and then under a different shell without being detected.

Subatomic particles also seem to operate in accordance with a cosmic shell
game that’s easy to describe but very difficult to make sense of. These particles
are the building blocks that everything in the universe is made out of —
including you, me, and this book. And, the more that scientists find out about
how the universe works on this sub-microscopic level, the stranger it becomes.

Introducing quantum logic
One of the strangest aspects of the way the universe behaves at the very
smallest level is that logic itself breaks down. Why it happens is anybody’s
guess, though a few theoretical physicists are hot on the trail of answers. But,
what happens is very well documented, and it’s described by quantum logic.

As I fill you in on quantum logic, just remember two things:

� Quantum logic is science, not science fiction — countless scientific
experiments have shown it to be the way things work.

� It just doesn’t make sense.

So, as I describe it, don’t worry that you’re missing something that the rest of
the world understands. They don’t understand why the universe works this
way any more than you will. So, just focus on what happens, and you’ll be all
right.
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Playing the shell game
Imagine a shell game with only two shells, played with subatomic particles,
which I’ll call peas, because the letter p is short for particle. In this realm,
quantum logic runs the show. Now, begin with the understanding that the 
following statement is true:

Statement #1: The pea is on the table and it’s under either the left shell
or the right shell.

In quantum logic, many of the basic assumptions of classical logic are left intact.
A statement may have one of only two possible values: T or F. Similarly, the
basic operators from SL work just the same here. So, in quantum logic, just as
in SL, you can declare variables like these, as illustrated in Figure 21-1:

Let P = The pea is on the table.

Let Q = The pea is under the left shell.

Let R = The pea is under the right shell.

With this structure in place, you can write a statement in English and trans-
late it into symbols. For example, Statement #1 translated into quantum logic
becomes this:

P & (Q 0 R)

So far, so good: Everything up until now has been the same as in SL. Now, if
you were using SL, you could use the distributive law (see Chapter 10) to
write an equivalent statement. But, in quantum logic, the distributive law
doesn’t apply, so you can’t rewrite the previous statement as this:

(P & Q) 0 (P & R) WRONG!

The pea is under
one of these
two shells.

The pea isn’t
under the left

shell.

The pea isn’t
under the
right shell.

Figure 21-1:
A mind-
bending

shell game.
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But, before you toss this statement aside, notice that it translates back into
English in this way:

Statement #2: Either the pea is on the table and it is under the left shell
or the pea is on the table and it is under the right shell.

In other words, Statement #1 and Statement #2 aren’t necessarily equivalent,
nor does one necessarily imply the other. So, it’s possible for Statement #1 to
be true and Statement #2 to be false. That is, it’s true that the pea is under
one of the two shells, but it isn’t under the left shell and it isn’t under the
right shell.

As you can see from this example, quantum logic fundamentally contradicts
SL. It also contradicts everything that seems possible, normal, and sane. But
that’s the situation. The particles that make up the universe obey these laws.
Spooky, huh?
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Chapter 22

Paradox and Axiomatic Systems
In This Chapter
� Understanding set theory and Russell’s Paradox

� Seeing how the SL axiomatic system measures up

� Appreciating consistency and completeness

� Limiting mathematics with Gödel’s Incompleteness Theorem

Consider the following statement:

This statement is false.

If the statement is true, then it must be false. However, if it’s false, it must be
true. This problem, called the Liar’s Paradox, dates back to the Greeks.

At first glance, this paradox seems no more than a curiosity. But, in various
forms, paradoxes like this one have surfaced and resurfaced, causing trouble
for logicians and challenging them to search for ways to resolve them.

In this chapter, I explain Russell’s Paradox (a modification of the Liar’s Paradox),
which forced logicians to make a radical restructuring of the foundations of
set theory and logic. This leads to a discussion of the Principia Mathematica,
which is an attempt to formulate set theory, logic, and ultimately all of math
based upon a set of assumptions called axioms. You can also see how logic
fares against the ultimate tests of mathematical certainty. And, finally, you
can catch a glimpse of the limits of what can be proven logically as I intro-
duce Gödel’s incompleteness theorem.

Grounding Logic in Set Theory
Gottlob Frege’s formulation of logic in the late 19th century depended on 
the relatively new work of Georg Cantor called set theory. Set theory provides
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a remarkably simple way to organize objects in the real world, but it also 
provides a unified way to define mathematical objects, such as numbers, by
their mathematical properties.

In this section, I show you how set theory provided a natural foundation for
logic, how this foundation was threatened, and how it was made solid again.

Setting things up
Set theory deals with, not surprisingly, sets. A set is simply a collection of
things. For example:

Let S = the set of all the shirts I own.

Let H = the set of all the hats that you own.

A set is only properly defined when you can clearly distinguish what’s in the
set and what’s not.

The items in a particular set are called elements of that set. For example,
the shirt I’m wearing right now is an element of set S, and your favorite hat
(assuming you own it) is an element of set H.

Sets may contain other sets, called subsets. For example:

Let B = the set of all the blue shirts I own.

Let L = the set of all the shirts I own that are in the laundry basket.

Both B and L are subsets of S. That is, any element that’s in either of these
sets is also in set S.

Even though set theory may seem rather simplistic, it’s actually a powerful
way to express logical ideas.

For example, consider the following statement

All of my blue shirts are in the laundry basket.

This statement is easily expressible in quantifier logic (QL):

6x [Bx → Lx]

This statement is true if and only if set B is a subset of set L:
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Though set theory and logic look different on the surface, they both express
similar ideas. That’s why Frege formally grounded his logic in the apparently
solid ground of set theory. As long as set theory was free from contradictions,
logic was presumed consistent as well. And set theory was so simple that it
seemed unassailable.

Trouble in paradox: Recognizing 
the problem with set theory
It took a genius, Bertrand Russell, to spot a problem with set theory. In his
honor, this flaw is called Russell’s Paradox. This paradox hinges on the notion
of self-reference. For example, the Liar’s Paradox is a paradox of self-reference:
The root of the problem is that the sentence speaks about itself.

Set theory faced a similar problem because it was possible for a set to contain
itself as an element. Most of the time, however, sets don’t contain themselves
as elements. For instance, looking back to the shirt and hat example from the
previous section, you see that set S contains only shirts and set H contains
only hats. But, consider this set:

Let X = the set of all the sets mentioned in this chapter.

Set X contains sets S, H, B, and L as elements, of course, but it also contains
itself as an element, because set X is mentioned in this chapter.

Set of all the shirts I own

Set of all the blue shirts I own

Set of all the shirts I own
that are in the laundry
basket
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This isn’t a problem by itself, but it quickly leads to one. Consider what
would happen if you defined this set:

Let Z = the set of all sets that don’t contain themselves as elements.

In this case, sets S, H, B, and L are elements of set Z, but set X isn’t. Here’s the
real question:

Is set Z an element of itself?

The problem here is similar to the Liar’s Paradox: If set Z is an element of itself,
then by definition it isn’t an element of itself. And if set Z isn’t an element of
itself, then by definition it is.

Developing a solution in the 
Principia Mathematica
Russell’s Paradox (see the preceding section) was more than just troubling.
(Frege was supposedly stricken from the belief that his entire work had been
destroyed.) The paradox actually forced logicians to recast set theory and
logic in a different way. The trick became figuring out how to keep the para-
dox from creeping in while still retaining the bulk of what was useful and
descriptive in the original systems.

In an attempt to resolve the paradox, as well as to create a solid foundation
for mathematics, in the first decade of the 20th century, Bertrand Russell and
Alfred North Whitehead wrote the Principia Mathematica. This ambitious work
was the first full-scale attempt to describe all of mathematics as a formal
axiomatic system — an organization of mathematical ideas based on a small
number of statements assumed to be true.

The core of an axiomatic system is a short list of simple statements called
axioms. Axioms are combined in specifically defined ways to derive a much
larger set of statements called theorems. Russell and Whitehead carefully
chose their axioms with several purposes in mind:

� Creating a system powerful enough to derive sophisticated statements
about mathematics as theorems.

� Avoiding all inconsistencies, such as Russell’s Paradox.

� Showing that all possible mathematical truths could be derived as 
theorems.

Russell and Whitehead were certainly successful in achieving the first goal.
And, their system also eliminated paradoxes of self-reference, such as Russell’s
Paradox. However, whether the Principia Mathematica could avoid all inconsis-
tencies and provide a method to derive all of mathematics remained to be seen.
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Even though the axiom set of the Principia did solve the problem of Russell’s
Paradox, in practice it was awkward, so it didn’t catch on with mathematicians.
Instead, a different set of axioms, the Zermelo-Frankel axioms (ZF axioms),
solved the problem by distinguishing sets from more loosely defined objects
known as classes.

Today, the words set theory usually refers to one of several versions of set
theory based in the ZF axioms. On the other hand, simpler versions of
set theory do exist that don’t attempt to prevent such paradoxes. These 
versions are collectively called naïve set theory.

Understanding how axiomatic systems work is a major goal of this chapter.
I discuss this concept in greater detail in the sections that follow.

Discovering the Axiomatic System for SL
To give you a sense of how theorems are formally derived in SL, this section
shows you the basic structure of the axiomatic system that Russell and
Whitehead developed for the Principia Mathematica.

In a nutshell, a formal axiomatic system has four requirements. All of these
requirements are cast in terms of sets, because in logic and all other 
mathematics at the most formal level, everything is cast in terms of sets.
That’s why getting the bugs out of set theory, as I describe in the section
“Grounding Logic in Set Theory,” was so critical.

These four requirements are

� Requirement #1: A set of symbols

� Requirement #2: A set of rules for deciding which strings of symbols are
well-formed formulas (WFFs)

� Requirement #3: A set of axioms

� Requirement #4: A set of rules for combining axioms and/or theorems
to create new theorems

So, with those requirements in mind, you can see how well SL fits the defini-
tion of an axiomatic system. Requirement #1 is fulfilled because SL contains
a set of symbols — operators, constants, and parentheses (see Chapter 4).
Requirement #2 is fulfilled with the set of rules for WFFs (see Chapter 14).

To satisfy requirement #3, here are the four SL axioms from the Principia
Mathematica:

1. (x 0 x) → x

2. x → (x 0 y)
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3. (x 0 y) → (y 0 x)

4. (x 0 y) → ((z 0 x) → (z 0 y))

As far as requirement #4, take a look at the following two rules for making
new SL theorems:

� Rule of Substitution: In each case, you can substitute a constant or
an entire statement for a variable, as long as you do so uniformly
throughout.

For example, two possible substitutions for axiom #1 are

(P 0 P) → P

((P & Q) 0 (P & Q)) → (P & Q)

� Modus Ponens (MP): If you know that x → y and x are both theorems,
you may add y to your list of theorems. See Chapter 9 for more on
Modus Ponens.

From this short list of rules, it’s possible to derive all of the rules of infer-
ence for SL, which I cover in Part III. This shows you that, even though
this list of axioms is short, the theorems it allows you to derive are very 
powerful.

Proving Consistency and Completeness
With the formalization of SL as an axiomatic system came two important
proofs about SL: In SL, every theorem is a tautology, and every tautology 
is a theorem. That is, theorems and tautologies are equivalent in SL.

Throughout this book you use both truth tables and proofs indiscriminately to
draw conclusions about SL statements. After you know that every theorem is 
a tautology and vice versa, you have license to apply both syntactic methods
(proofs) and semantic methods (truth tables) to a specific problem. (You can
test whether a particular theorem is a tautology by simply making a truth table
and checking it with the method I discuss in Chapter 6.)

Still, when you step back a moment, you should realize that the equivalence
of theorems and tautologies in SL isn’t to be taken for granted. Why isn’t
it the case, for example, that a theorem turns out not to be a tautology?
Or, conversely, why isn’t there a tautology that can’t be produced as a 
theorem using the limited axioms and rules in the previous section?

The first question deals with the consistency of SL, and the second deals with
the completeness of SL. I discuss both of these in the following sections.
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Consistency and completeness of SL and QL
In 1921, mathematician Emil Post proved that SL is both consistent and 
complete. An axiomatic system is consistent if and only if every theorem 
generated in that system is a tautology. An axiomatic system is complete if
and only if every tautology can be generated as a theorem in that system.

Although inconsistency loomed as a danger to axiomatic systems, threaten-
ing to undermine even the most carefully constructed work (for example,
Gottlob Frege’s logic), completeness was more like the Holy Grail. In other
words, although inconsistency was something that mathematicians and logi-
cians had to be careful of, completeness was just flat-out difficult to come by.

In fact, completeness was the unspoken goal of mathematics dating back to
the Greeks. Euclid, for example, is honored as the founder of geometry even
though geometry had been studied for hundreds or even thousands of years
before him. (See Chapter 2 for more on Euclid.) Euclid’s great insight was that
geometry could be founded on five axioms, and that from these, all other true
statements about geometry could be derived as theorems.

The decade following Emil Post’s proof was a fruitful time for logic. In 1928,
David Hilbert and William Ackerman proved that quantifier logic (QL) is con-
sistent. Then, in 1931, Kurt Gödel proved that QL is complete. Moreover, this
important result was his doctoral dissertation, which was the first work of the
man who would become one of the greatest mathematicians of the 20th century.

Formalizing logic and mathematics 
with the Hilbert Program
By the 1920s, logic and mathematics had developed sufficiently for a precise
examination of whether every mathematical truth could be shown as a theorem.
Mathematician David Hilbert was instrumental in advocating the complete
formalization of logic and mathematics. This formalization became known as
the Hilbert Program.

Hilbert realized that what philosophers and mathematicians had been 
intuitively reaching for since the days of Aristotle and Euclid was now poten-
tially in reach: a single axiomatic system, purged of inconsistencies, for
expressing and calculating all logical and mathematical truths.

Hilbert’s Program stressed the need for placing all of mathematics in strict
axiomatic terms. All logical assumptions must be stated explicitly in formal
language that lacked all ambiguity. (The Principia Mathematica was an exam-
ple of an attempt at such formalization, and Hilbert studied it in depth.) 
From this foundation, the intuitive notion of mathematical proof could
itself be formalized, resulting in proof theory.
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Hilbert championed the ongoing search for consistency and completeness
proofs for axiomatic systems. Comparing an axiomatic system to a ship at
sea, you could say that consistency means the ship won’t sink and that 
completeness means the ship will take you everywhere you want to go.

Gödel’s Incompleteness Theorem
The proofs that QL was both consistent and complete made mathematicians
optimistic that the Hilbert Program would succeed. Ironically, the man who
proved the completeness of QL would soon after demonstrate that the
Hilbert Program would never succeed.

In 1931, Kurt Gödel published his Incompleteness Theorem, which states that
no axiomatic system can have all three of the following properties:

� Consistency: Every theorem of the system is a tautology in an area that
the system intends to model.

� Completeness: Every tautology in an area that the system intends to
model is a theorem of the system.

� Sufficient power to model mathematics: The system can be applied as a
model for mathematics.
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Peano’s axioms
One important difference exists between the
axioms of the Principia Mathematica and the
axioms of logic: The Principia axioms were strong
enough to derive mathematically sophisticated
statements. (See the section “Developing a solu-
tion in the Principia Mathematica” for more on
the Principia.)

The Principia axioms made it possible to derive
five foundational axioms of number theory —
the foundation of all higher mathematics —
developed by mathematician Giuseppe Peano:

1. Zero is a number.

2. If a is a number, then the successor of a is
a number.

3. Zero is not the successor of a number.

4. Two numbers whose successors are equal
are themselves equal.

5. If a set S contains zero and the successor
of every number, then every number is in S.
(This is called the Induction Axiom.)

In 1931, Gödel showed that the Principia
Mathematica, an axiomatic system powerful
enough to derive Peano’s axioms (and thus
model mathematics), was doomed to be either
inconsistent or incomplete. More generally, he
showed that any axiomatic system powerful
enough to model mathematics was similarly
doomed.
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The importance of Gödel’s theorem
This theorem is generally considered to be the most important mathematical
result of the 20th century. It’s astounding because it places limits on what
mathematics can do — or, more precisely, places limits on the degree to
which axiomatic systems can describe mathematics. And, in one coup de
grace, Gödel’s Incompleteness Theorem demonstrated that the goal of the
Hilbert Program (see the preceding section) was unattainable.

Interestingly, Gödel proved his conjecture by adopting a strategy along the
same lines as the Liar’s Paradox and Russell’s Paradox: namely, self-reference.
But, instead of being confounded by paradox, Gödel made paradox work in
his favor. His strategy hinged on the fact that any system expressive enough
to model complex mathematics would also be expressive enough to model
itself — an extremely tricky task.

How he did it
As a first step, Gödel showed how to assign a unique number, called the Gödel
number, to every string of symbols in a system. This numbering allowed him
to uniquely number not only random strings but also statements, theorems,
and even entire arguments, valid or otherwise. For example, all of these
strings could be represented:

4 + 9 = 13

4 + 9 = 1962

6x 7y [x + y = 3]

=48<+33-=7=

Because Gödel numbering worked at the level of the string, literally nothing
that could be expressed in the system escaped his numbering, including that
last string, which is meaningless.

Next, he showed how to use the system to build special statements called
meta-statements, which referred to other statements. For example:

The statement “4 + 9 = 13” is a theorem.

The statement “4 + 9 = 13” is not a theorem.

The statement “4 + 9 = 13” includes the symbol “3.”

There exists a proof that the statement “4 + 9 = 13” is a theorem.

These meta-statements themselves were just statements, each with its own
Gödel number. In this way, one meta-statement could refer to another meta-
statement. A meta-statement could even refer to itself. For example:
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“There does not exist a proof that this statement is a theorem.”

The paradox in the previous statement is even more subtle than it appears
because Gödel built the statement to guarantee that at the level of semantics,
the statement is a tautology. (The math behind this guarantee is completely
over the top, so just take my word for it.) But then consider the following:

� If the statement can be derived as a theorem, then it isn’t a theorem, so
the contradiction of the statement can also be derived as a theorem,
making the system by definition inconsistent.

� If the statement can’t be derived as a theorem, then the system is by 
definition incomplete.

If it sounds complicated, that’s because it is. And I’ve only scratched the 
surface. Understanding what Gödel accomplished is fascinating, but 
understanding how he accomplished it is something that even most 
mathematicians have only attained in a more or less sketchy fashion.

Pondering the Meaning of It All
Since Gödel published his proof, which undermines the usefulness of
axiomatic systems to express mathematical truth, opinions have been
divided about its meaning on a philosophical level.

In a sense, Gödel’s Incompleteness Theorem was a response to Leibniz’s 
250-year-old dream of finding a system of logic powerful enough to calculate
questions of law, politics, and ethics. (See Chapter 2 for more about Leibniz.)
And Gödel’s response was a definitive “No! You just can’t do that!” Given that
logic is insufficient for framing a complete model of mathematics, it certainly
seems unlikely that it will ever adequately provide the tools to resolve ethical
questions by mere calculation.

You might think that Gödel’s proof implies that the rational mind is limited in
its ability to understand the universe. But, though the mind may have its limi-
tations, Gödel’s result doesn’t prove that these limitations exist. The proof
just discusses how axiomatic systems are limited in how well they can be
used to model other types of phenomena. The mind, however, may possess
far greater capacities than an axiomatic system or a Turing machine.

Another common, and probably hasty, reaction to Gödel’s work is to assume
that his proof implies a limit on artificial intelligence. After all, human intelli-
gence has developed rather well in this universe. Why couldn’t other forms
of intelligence, even artificial ones, develop along similar lines?

Like other uncanny scientific results of the 20th century, such as Relativity
Theory and Quantum Mechanics, Gödel’s proof answers one set of questions
only to open up a new set of questions that are far more compelling.
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Part VI
The Part of Tens
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In this part . . .

Who doesn’t love a couple of good top ten lists?
Well, I sure hope you do because in this part, you

get three top tens that give you some fun info on logic —
some of which might just help you pass your next exam!

Chapter 23 shows off my ten favorite quotes about logic,
from thinkers and cynics throughout the ages. In Chap-
ter 24, I give you my nominees for the ten best logicians.
Chapter 25 contains ten great tips for passing a logic exam.
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Chapter 23

Ten Quotes about Logic
In This Chapter
� Logic Quotes for $500, please

� Getting some logical perspective

O kay, so I actually included 11 quotes here — but who’s counting?
They’re all interesting and offer a variety of perspectives on logic.

“Logic is the beginning of wisdom, not the end.”

Leonard Nimoy — American actor (speaking as Spock on Star Trek)

“Logic: The art of thinking and reasoning in strict accordance with the
limitations and incapacities of the human misunderstanding.”

Ambrose Bierce — American writer/satirist

“Logic is the anatomy of thought.”

John Locke — 17th century English philosopher

“Pure logic is the ruin of the spirit.”

Antoine de Saint-Exupery — French writer

“Logic is the art of going wrong with confidence.”

Joseph Wood Krutch — American naturalist/writer

“Logic is like the sword — those who appeal to it shall perish by it.”

Samuel Butler — English novelist/essayist

“You can only find truth with logic if you have already found truth without it.”

G. K. Chesterton — English writer
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“Logic will get you from A to B. Imagination will take you everywhere.”

Albert Einstein — German physicist

“Logic takes care of itself; all we have to do is to look and see how it does it.”

Ludwig Wittgenstein — Austrian philosopher

“Logic is in the eye of the logician.”

Gloria Steinem — American activist/writer

“You can use logic to justify anything. That’s its power and its flaw.”

Kate Mulgrew — American actor 
(speaking as Captain Kathryn Janeway on Star Trek Voyager)
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Chapter 24

Ten Big Names in Logic
In This Chapter
� Seeing how Aristotle changed it all

� Discovering the people who transformed logic

� Understanding the evolution of logic

Here are my nominees for the Logic Hall of Fame. Lots of great minds had to
be passed over, or this list would be miles long, but here are my top ten.

Aristotle (384–322 BC)
Aristotle was the originator of logic. Before him, philosophers (such as
Socrates and Plato) and mathematicians (such as Pythagoras and Thales)
presented arguments on a wide variety of topics. But, Aristotle was the first
to examine the structure of argument itself.

In a series of six philosophical writings on logic, later collected as a single
work titled Organon, Aristotle identified the foundational concepts in logic.
He defined a statement as a sentence that possesses either truth or falsehood
(for more on statements, flip to Chapters 1 and 3). He also studied valid argu-
ment structures called syllogisms (see Chapter 2), which contained premises
that led inevitably to a conclusion. For centuries after his death, Aristotle’s
writings on logic were often studied and commented upon, but rarely sur-
passed. (See Chapter 2 for more fun facts about Aristotle.)

Gottfried Leibniz (1646–1716)
A bona fide Renaissance man, Gottfried Leibniz was the first philosopher
in the Age of Reason to see the potential for logic to be used as a tool for 
calculation. He hoped that logical calculation would someday be on par with
mathematics. He even worked out the beginnings of a symbolic representa-
tion of logic, anticipating formal logic by 200 years. (Check out Chapter 2 to
read more about Leibniz.)
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George Boole (1815–1864)
George Boole invented Boolean algebra, which was the prototype for formal
logic. Boolean algebra was the first system of logic that used pure calculation
to determine the truth value of statements. Boole used 1 to represent true
and 0 to represent false. Computer scientists still use Boolean variables as
objects that can take only these two values and no others. (See Chapter 2 for
more on Boole and Chapter 14 for a look at Boolean algebra.)

Lewis Carroll (1832–1898)
Even though he’s most famous as the author of Alice in Wonderland, Lewis
Carroll (whose real name was Charles Dodgson), a professor of mathematics
at Cambridge University in England, also wrote several books on logic.
He also delighted in writing logic puzzles. Here’s an old favorite of his:

Babies are illogical.

Nobody is despised who can manage a crocodile.

Illogical persons are despised.

The goal here is to use all three premises to arrive at a logical conclusion,
which in this case is “Babies can’t manage crocodiles.”

To be fair, Carroll probably shouldn’t be on this list — his contributions to logic
were mostly recreational. But, then again, he was a logician and he certainly
is a big name, so one might equally draw the conclusion that he’s a big name
in logic, logically speaking.

Georg Cantor (1845–1918)
Georg Cantor was the inventor of set theory, which was the foundation of logic
and, arguably, for all other mathematics. (Flip to Chapter 2 for more on Cantor
and Chapter 22 for more on set theory.) He was also the first to incorporate
into math an understanding of infinity as a calculable entity instead of just a
mysterious phantom. For all these achievements and more, Cantor is on
everybody’s short list for the greatest mathematician of the 19th century.
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Gottlob Frege (1848–1925)
Gottlob Frege, inventor of formal logic, built upon the work of Boole, Cantor,
and others to develop the first logical systems recognizable as what were
to become sentential logic and quantifier logic. His logic included the five 
logical operators not, and, or, if, and if and only if. It also included symbols
for all and there exists. Check out Chapter 2 to read more about Frege and
his contribution to logic.

Bertrand Russell (1872–1970)
Bertrand Russell’s nearly-100-year life span included such notable achievements
as Russell’s paradox and co-authorship of the Principia Mathematica with
Alfred North Whitehead.

Russell’s paradox resulted in a reformulation of Frege’s logic and Cantor’s
set theory — both foundational systems that had previously appeared 
unassailable. The Principia Mathematica was Russell’s attempt to formu-
late mathematics with perfect logical consistency and completeness. See
Chapter 2 for further discussion of Russell and his place in the history of
logic and mathematics.

David Hilbert (1862–1943)
David Hilbert was tremendously influential in both logic and mathematics.
He advocated for the rigorous reduction of all mathematics to axioms 
(self-evident truths) and theorems (statements that could be logically
proved from axioms). This trend in mathematics became known as the
Hilbert Program, whose goal became the creation of an axiom system for
mathematics that was both consistent and complete — that is, produced all
possible true theorems and no false ones.

Although Kurt Gödel proved that the goal of the Hilbert Program wasn’t
attainable, Hilbert’s contribution to the development of mathematical logic
is undeniable. (See Chapter 22 for more on Hilbert.)
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Kurt Gödel (1906–1978)
Gödel proved that logic, in its most powerful form (quantifier logic), is mathe-
matically both consistent and complete. Consistency means that logic is free
from contradictions. Completeness means that all true logical statements can
be proved by syntactic methods. (See Chapter 7 for a discussion of syntactic
proof.)

Gödel is most famous, however, for his proof that mathematics as a whole
does not possess consistency and completeness. He said that any mathemati-
cal system that’s free from contradictions must contain statements that are
true but can’t be proved as true using the axioms of that system. This discovery
signaled the end of the Hilbert Program and is generally considered the most
important mathematical result of the 20th century. See Chapters 2 and 22 for
more details on Gödel’s important work.

Alan Turing (1912–1954)
Alan Turing proved that all calculations that humans perform can be equally
accomplished by a computer having a specified set of simple functions.
These functions include the ability to check whether certain types of condi-
tions are true or false and to take action based on the result.

Turing called any computer of this kind a universal Turing machine (UTM).
Because every modern computer is a UTM, and logic is at the heart of how
any UTM processes data, logic is a cornerstone of computer science. (Flip to
Chapter 20 for more on how logic and computer science work together.)
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Chapter 25

Ten Tips for Passing a Logic Exam
In This Chapter
� Discovering techniques to help you effectively write a logic exam

� Figuring the quickest way out of a jam

� Understanding the importance of checking your work and admitting your mistakes

So, let me guess — you’re frantically reading this book eight hours
before your big logic final? Not to worry. This quick chapter offers ten

tips to help you excel at exam time. Read on — the grade you save may be
your own!

Breathe
As you sit down and wait for your prof to hand out the exam, take a deep
breath in to a slow count of five and then breathe out in the same way.
Repeat. That’s all. Do this for a minute or so (no more than that — you don’t
want to hyperventilate!). You’ll find that you’re now much calmer.

Start by Glancing over the Whole Exam
It takes only a minute, but looking through the entire test gets your brain
working on the problems subconsciously as early as possible. As a result, a
few of the problems may work themselves out more easily as you go along.

This technique also allows you to find helpful clues. For example, Question 3
may ask you to define a term that appears in Questions 5, 6, and 7.
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Warm up with an Easy Problem First
Why shouldn’t you warm up with an easy problem? Athletes know the 
importance of a warm-up to get everything moving. And, I guarantee that
just putting something down on paper will make you feel better instantly.

Fill in Truth Tables Column by Column
When filling in a truth table, you can do it the easy way or the hard way.
The easy way is column by column, as I show in Chapter 6.

If you try to go row by row instead, you’ll have to keep switching gears, and it
will take longer to achieve the same result.

If You Get Stuck, Jot Down Everything
Because proofs look so neat in the book, some students think they have to
figure them out in their heads before they begin.

But writing proofs is a messy process, so feel free to be a mess. Use scratch
paper to write down every possible path you can think of. After the big “Aha!”
happens, start writing the proof neatly on the page you intend to turn in.

If You REALLY Get Stuck, Move On
It happens: The answer is staring you square in the face and you can’t see it.
The minutes are whizzing away, your heart is pounding, and your palms are
so sweaty that your pencil is dripping.

If you’re the praying kind, this would be a good time to start. But, remember,
the Lord helps those who help themselves, and so I say unto thee: Moveth on!

Better to miss this one question than the five that you never got to because
you got stuck. If you have time, you can always go back. And when you do,
the answer may just jump out at you.
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If Time Is Short, Finish the Tedious Stuff
Generally speaking, truth tables and truth trees tend to be plug-and-chug
methods: Slow and steady work will always get you there. Quick tables and
proofs, on the other hand, tend to be creative methods: They can go quickly
if you have the right insight, but you have no guarantees.

So, when the professor calls out “Ten minutes left!” and she really means it,
put aside the ornery proof that just isn’t speaking to you at the moment and
pick up the tedious truth table you’ve been avoiding for half the exam. As the
exam grinds to its close, you’re more likely to make progress if you work on
the table instead of just staring at the impenetrable proof.

Check Your Work
I’m aware that in certain circles, checking your work on an exam is considered
one of those quaint, spinsterly virtues — like carrying a monogrammed hanky
or removing your hat upon entering a building. 

But think about the last time you didn’t check over your exam before handing
it in. Did you really do something important with those seven or eight min-
utes you saved? No, you probably spent those precious minutes out in the
hall with your friends from class, yapping about the exam.

And don’t you just hate getting your exam back after it has been graded and
catching those silly errors only because they’re circled in red?

All right, so I’m sneezing into the wind here. But, even if you catch only one
little three-point mistake, you may just bump yourself up a partial letter grade.
And catching 5-, 10-, or even 20-point mistakes is not that uncommon.

Admit Your Mistakes
I know that this piece of advice flies in the face of all your survival instinct,
but that’s why I’m telling you.

For example, consider this tragic story: You’ve sweated for half an hour over
a hairy proof trying to prove (P & Q). And as the professor starts calling for
your blue books, you get to the last line and find you’ve proved ~(P & Q).
Ouch! If you had time, you could go through your proof line by line and find
the error, but time is exactly what you don’t have.
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Your first instinct — maybe the prof won’t notice, and she’ll give me full
credit — is dead wrong. (Your second instinct, which is to quit school and
move to a Tibetan monastery, is also probably not a good idea.) If you leave
the mistake as is, your professor will think that you don’t know the difference
between a statement and its negation.

Instead, circle the error and write a note: “I know this is wrong, but no time to
fix it.” Now when the professor reads through it, she has some context. If you
just made a minor mistake, such as dropping a ~ operator, she’ll probably
just ding you for a point or two. Even if you screwed up royally, at least she
knows that you’re aware of it. So, now she knows you’re not completely clue-
less and you’re rather honest as well. Either way, you win!

Stay Until the Bitter End
Keep writing until the professor pries the pencil from your blistered fingers.
You’re bound to pick up a few points in those last few minutes, and the prof
will notice your extra effort.

344 Part VI: The Part of Tens 

34_799416 ch25.qxp  10/26/06  10:36 AM  Page 344



• Numbers •
0 in Boolean algebra, corresponding

symbol in SL, 218
1 in Boolean algebra, corresponding

symbol in SL, 218

• Symbols •
?-operator, truth table for, 206
~-operator. See negation operator (~) 
6 (universal QL quantifier)

connecting relational statements with,
278

starting statements with, 279
translating no with, 246
translating not all with, 245
translating some with, 245
using, 231, 291

7 (existential QL quantifier)
connecting relational statements with,

278
starting statements with, 279
translating all with, 245
using, 232

0 (disjunction) operator. See disjunction
operator (0)

Z (possibility) operator, using in modal
logic, 315–316

X (necessity) operator, using in modal
logic, 315–316

– (minus) sign, using as unary operator,
63, 65

– in Boolean algebra, corresponding
symbol in SL, 218

& rules, using in proofs, 153–155

&-operator. See conjunction (&) operator
&-statements. See also conjunction

operator (&)
expressing with nand (|) operator, 211
unpacking with Simp & rule, 155, 173
using in fuzzy logic, 314

( ) (parentheses)
grouping numbers and operations

with, 65
interpreting statements outside of, 236
operators in, 81
in truth tables, 90–91
using in Exp equivalence, 166
using in SL (sentential logic), 76
using with WFFs, 216

, (comma), using in arguments, 148
: (colon), using in arguments, 148
[] (brackets)

adding in EG, 264
interpreting variables outside of, 236–237
removing in UI, 261

| (nand)-operator, using, 210–211
~ (negation) operator

example of, 53
translating statements with, 66
using, 54–55
using tables with, 55

~ (x & y) conditional proofs, using, 191–192
~ (x ↔ y) conditional proofs, using,

193–194, 196–197
~ (x → y) conditional proofs, using,

194, 201
~ (x 0 y) conditional proofs, using, 194
~ in SL, corresponding symbol in Boolean

algebra, 218
~ (~x & ~y) statements, replacing x 0 y

statements with, 210

Index
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~(x & y) ~(x 0 y) statements, using DeM
with, 171

~(x 0 ~ y) statements, replacing x & y
statements with, 210

~x 0 y, replacing x → y statements with,
209

+ in Boolean algebra, corresponding
symbol in SL, 218

↔ operator. See biconditional operator
(↔)

= (equal) sign, using in Boolean algebra,
219–220

→ operator. See conditional operator (→) 

• A •
A statement, explanation of, 23
actions, relationship to program states,

303–304
Add 0 rule

using in conditional proofs, 193
using in proofs, 155–157

algebra, comparing Boolean algebra to SL,
217–222

algorithms, use by Alan Turing, 303
Alice in Wonderland (Lewis Carroll), 338
all

QL quantifier for, 240
QN rule for, 257
relationship to sets, 12
translating with (7), 245
using restricted domain of discourse

with, 240–241
using unrestricted domain with, 241–242

all statements
equivalent ways for writing of, 258
recognizing in QL (quantifier logic), 247

although, similarity to and, 69
and. See also conjunction operator (&) 

conjunctions similar to, 69
use in Frege’s formal logic, 28

AND logic gate
diagram for, 306
example of, 31

annihilator property, addition and
multiplication examples for, 221

antecedent
including in if-statements, 11
in SL evaluation, 84

AP (assumed premise). See also premises
adding for indirect proofs, 184–185
discharging, 178–179, 181, 183
relationship to conditional proofs, 177
using in indirect proofs, 182
using in proofs, 196–197
using with variables and UG, 273

arguments. See logical arguments
Aristotle

contributions of, 337
goal of philosophy espoused by, 20
invention of syllogistic logic by, 20–23
use of square of oppositions by, 22–23

arithmetic problem, evaluating, 74
The Art of Discovery (Gottfried Leibniz), 26
Assoc (association) equivalence

combining with Comm, 200
versus Comm (commutation), 168
using, 168–169
using in conditional proofs, 194
using in proofs, 199, 201
using with long premises, 203

associative property, addition and
multiplication examples for, 221

assumed premise (AP)
adding for indirect proofs, 184–185
discharging, 178–179, 181, 183
relationship to conditional proofs, 177
using in indirect proofs, 181
using in proofs, 196–197
using with variables and UG, 273

assumptions. See also strategic
assumptions

stacking, 180–181
strategy for, 204

axiomatic systems
consistency and completeness of, 329
mathematics as, 326–327
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relationship to Incompleteness Theorem,
330

requirements for cogent arguments,
327–328

axioms
contrasting in logic and Principia

Mathematica, 330
definition of, 23
deriving for number theory, 330

• B •
Babbage, Charles, design of computers by,

302
belief, statements of, 317
biconditional operator (↔) 

alternatives for, 208
connecting statements with, 103
connecting semantically inequivalent

statements with, 106
connecting statements with, 103
eliminating from arguments, 173
example of, 53
translating statements with, 67
using, 61–63
using in conditional proofs, 193–194
using with quick tables, 119–121

binary operators
explanation of, 63
as main operators, 83
in SL (sentential logic), 64

Boole, George, contributions of, 26, 338
Boolean algebra

comparing SL (sentential logic) to,
217–222

expressing equality in, 219
mixing T and F values in, 220
NOT gates in, 305–306
overview of, 26–27
properties in, 221
semirings in, 221
versus SL (sentential logic), 221–222
syntax and semantics in, 221–222

Boolean multiplication, symbol for, 219

bound variables
adding in EG (Existential Generalization),

264
discovering in QL (quantifier logic),

236–237
freeing with UI (Universal Instantiation)

QL rule, 260–262
manipulating with UI (Universal

Instantiation) QL rule, 260–262
using with UG (Universal Generalization),

271–273
brackets ([])

adding in EG, 264
interpreting variables outside of, 236–237
removing in UI, 261

branches of truth trees
closing in QL, 289
closing off, 130

branching statements
illustration of, 127
relationship to truth trees, 126

brute force approach, using with truth
tables, 86

but, similarity to and, 69

• C •
Cantor, Georg (set theory), 27–28, 338
Carroll, Lewis, contributions of, 338
categorical statements, categorizing, 21–22
cause and effect, connection between,

10–12
CD (constructive dilemma) rule, using in

proofs, 159–160
classical logic, syllogistic logic, 20–23
cogent argument, requirement for, 44–45
colon (:), using in arguments, 148
columns in truth tables, filling in, 89–91
Comm (commutation) equivalence

versus Assoc (association), 168
combining Assoc with, 200
versus DN (double negation), 167
using, 167
using in conditional proofs, 194
using in proofs, 201
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comma (,), using in arguments, 148
commutative property, addition and

multiplication examples for, 221
computer circuits, mimicking of truth

functions by, 305
computer hardware, use of logic gates

with, 31, 305–307
computer languages, using with software,

307–308
computer science, using logic in, 47
computers

basic ideas behind, 308
design by Charles Babbage, 302
ENIAC (Electronic Numerical Integrator

and Computer), 304
levels of functionality of, 305
and logic gates, 306–307
Turing and UTM, 302–304

concepts, organizing into sets, 12
conclusions

for arguments, 36
comparing premises with, 188
of conditional statements, 24
considering lengths of, 188
forming, 14
in logical arguments, 34–35
proving short conclusions, 183–184
relationship to direct and indirect proofs,

194–195
as statements, 34
of syllogisms, 21
for testing validity or invalidity with truth

tree, 131
using in proofs, 153
working backwards from, 196–198

conditional operator (→) 
example of, 53
linking 0-statements with, 162, 179
representing, 60
translating statements with, 67
using, 59–61, 150–151
using in conditional proofs, 178, 195

conditional proofs. See also indirect
proofs; proofs

combining with indirect proofs, 184–185
forms of, 191–194
guidelines for use of, 191–194
overview of, 177–178
requirement for, 195
tweaking conclusions for, 178–180

conditional statements, example of, 24
Conj & rule

restriction related to QL statements, 255
using in proofs, 153–154, 156–157,

159–160, 170
conjunction operator (&). See also

&-statements; and
connecting statements with, 103–104
determining scope of, 236
evaluating, 84
example of, 53
representing, 57, 218
translating statements with, 66
using, 55–57, 229

conjunctions
examples of, 68–69
occurrence in SL statements, 82

consequent, using in SL evaluation, 84
consistency

showing with truth trees, 129–131
of SL and QL, 329
strategic assumptions for, 115
testing with truth tables, 96–98, 101

constants. See also individual constants
in QL; property constants in QL

declaring for properties in QL, 317
expressing statements of valid arguments

as, 225–226
order in relational expressions, 277
in QL (quantifier logic), 226–227
including in truth tables, 88
using in expressions, 276
using in proofs, 154
in SL (sentential logic), 64–65
using in SL and Boolean algebra, 218
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constructive dilemma (CD) rule, using in
proofs, 159–160

context, creating with domain of discourse,
233–235

contingent statements
separating with truth trees, 140
SL statements as, 93
strategic assumptions for, 114
testing with truth tables, 101

contingent versus necessary truth,
distinguishing in modal logic, 316

Contra (contraposition) equivalence
flipping conclusions with, 178–179
versus MT (Modus Tollens) implication

rule, 164
using, 164, 170, 189

contradictions
converting tautologies into, 101–102
identification of, 85
linking inconsistency with, 103–104
linking validity with, 105–106
separating with truth trees, 137–140
SL statements as, 93
strategic assumptions for, 114
testing with truth tables, 101

contradictory pairs, occurrence in square
of oppositions, 23

contradictory statements, converting valid
arguments into, 106

contrapositive of statement, explanation
of, 61

• D •
decomposition rules, using with QL trees,

287–289
deduction versus inductions, 43–44
DeM (DeMorgan’s theorem)

converting negative statements with,
189–190

using in proofs, 170–171, 210
using with long premises, 203
using with proofs, 197

deontic logic, handling statements of
obligation and permission with, 317

difference engine, building of, 302
direct proofs

breaking down long premises with, 202
versus indirect proofs, 195–196

disjunction operator (0)
converting to →-statements, 179 
corresponding symbol in Boolean

algebra, 218
example of, 53
as main operator, 81
removing ambiguity of or with, 205
scope of, 79
translating statements with, 67
using, 57–59, 155–158
using in fuzzy logic, 314–315
using with nand (|) operator, 211

disjunctions, occurrence in SL
statements, 82

disjunctive syllogism (DS) 0 rule
breaking down premises with, 189
relationship to paraconsistent logic, 319
using in proofs, 157–158

Dist (distribution) equivalence
versus Exp (exportation), 169
using in proofs, 169–170, 199, 200–202

distributive property, addition and
multiplication examples for, 221

DN (double negation) equivalence
versus Comm (commutation), 167
using, 163–164
using with QN and multiple quantifiers,

281
domain of discourse

creating context with, 233–235
declaring for QL tree, 296
unrestricted domain in, 234

double → rules, using in proofs, 158–160
double branching statements

illustration of, 127
relationship to truth trees, 126

double implications, occurrence in SL
statements, 82
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double negation (DN) equivalence, using
with QN and multiple quantifiers, 281

DS (disjunctive syllogism) 0 rule
breaking down premises with, 189
relationship to paraconsistent logic, 319
using in proofs, 157–158

• E •
E statement, explanation of, 23
EG (Existential Generalization) QL rule

changing statement forms with, 265
comparing to UG QL rule, 270
explanation of, 262–263
proof for, 263–264
valid and invalid uses of, 264–265

EI (Existential Instantiation) QL rule
comparing to UI QL rule, 266
explanation of, 265–266
using, 267
using with free variables, 267–268
using with multiple quantifiers, 282
using with QL trees, 289–291, 297
using with variables, 266
valid and invalid uses of, 268–269

elements, role in sets, 324
English

QL quantifiers for, 240
translating in into SL (sentential logic), 242
translating SL (sentential logic) to, 66–68
translating to QL (quantifier logic) from,

233–235
translating to SL (sentential logic), 68–71

ENIAC (Electronic Numerical Integrator
and Computer), development of,
304–305

enthymemes, example of, 15
epistemic logic, handling statements of

knowledge and belief with, 317
equal (=) sign, using in Boolean algebra,

219–220
equality, expressing in Boolean algebra, 219

Equiv (equivalence)
using, 172–174, 190, 208
using in conditional proofs, 193
using in multi-valued logic, 312
using in QL (quantifier logic), 255–256

equivalences
applying to conclusions for conditional

proofs, 178–180
applying to part of whole, 162
Assoc (association), 168–169
Comm (commutation), 167
conceptualizing, 162
Contra (contraposition), 164
DeM (DeMorgan’s theorem), 170–171
Dist (distribution), 169–170
DN (double negation), 163–164
Equiv (equivalence), 172–174
Exp (exportation), 166–167
Impl (implication), 165–166
versus implications, 162
Taut (tautology), 172

escape from New York argument, example
of, 38–39

Euclid, axioms and theorems of, 23–24
evaluation, process of, 74
every, relationship to sets, 12
everything, interpreting in unrestricted

domain, 242
exams, tips for passing logic exams,

341–344
existence

determining, 12
expressing, 232

Existential Generalization (EG) QL rule. See
EG (Existential Generalization) QL rule

Existential Instantiation (EI) QL rule. See EI
(Existential Instantiation) QL rule

existential QL quantifier (7)
connecting relational statements with,

278
starting statements with, 279
translating all with, 245
using, 232
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Exp (exportation) equivalence
versus Dist (distribution), 169
using, 166–167, 180
using in proofs, 199
using with long premises, 202

expressions. See also relational
expressions

evaluating, 237
monadic expressions, 276

• F •
F

including in truth tables, 88
using with formal logic, 53

F in SL, corresponding symbol in Boolean
algebra, 218

Fifi’s lament argument, example of, 38
first-order predicate logic. See QL

(quantifier logic)
formal logic

Boolean algebra, 26–27
Cantor’s set theory, 27–28
Frege’s formal logic, 28–29
use of letters and statements in, 52

forms, inclusion in square of oppositions,
22–23

free variables
absence in statements, 237
discovering in QL (quantifier logic),

236–237
in statement forms, 237–238
using EI (Existential Instantiation) QL rule

with, 267–268
Frege, Gottlob (formal logic), contritutions

of, 28–30
fuzzy logic, overview of, 313–315

• G •
gates. See logic gates
Gödel, Kurt

and axiomatic systems, 330
and completeness of QL, 329

contributions of, 340
Incompleteness Theorem of, 330–332

Gödel number, role in Incompleteness
Theorem, 331

Gödel’s proof
impact of, 332
overview of, 30–31

grammar, significance of, 214

• H •
hardware, use of logic gates with,

31, 305–307
Hilbert, David

and consistency of QL, 329
contributions of, 339
and formalization of logic and

mathematics, 329–330
Hilbert Program

development of, 329–330
versus Incompleteness Theorem, 331

however, similarity to and, 69
HS (hypothetical syllogism) rule, using in

proofs, 158–159, 174
hypothetical syllogism (HS) rule, using in

proofs, 158–159, 174

• I •
I statement, explanation of, 23
ice cream Sunday argument, example of,

37–38
ID (rule of identity), using, 285
identities. See also laws of thought

explanation of, 284
and indirect discourse, 284
using with QL quantifiers, 284
writing proofs with, 285–286

identity element property, addition and
multiplication examples for, 221

identity reflexivity (IR), using, 285–286
if, use in Frege’s formal logic, 28
if and only if, use in Frege’s formal logic, 28
...if... statement, example of, 70–71
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if...then-operator. See conditional operator
(→) operator

if-statements. See also biconditional
operator (↔); conditional operator
(→) 

contrapositive of, 61
negating both parts of, 60
relationship to cause and effect, 10–11
reversing, 60
as slippery slides, 150
writing in computer languages, 308

Impl (implication) rule
using in conditional proofs, 191–192, 193
using, 165–166, 170, 179–180, 189, 209
using in multi-valued logic, 312
using in proofs, 197, 200–202
using with long premises, 203

implication rules
versus equivalences, 162
MP (Modus Ponens), 150–151
MT (Modus Tollens), 152
transferring from SL into QL, 253–255
using with SL (sentential logic), 149–150

implications, occurrence in SL
statements, 82

Incompleteness Theorem (Gödel)
explanation of, 31
significance of, 330–332

inconsistency
linking with contradiction, 103–104
showing with truth trees, 129–131
strategic assumptions for, 115
testing with truth tables, 101

inconsistent statements, connecting, 106
indirect discourse

in modal logic, 317
relationship to identities, 284

indirect proofs. See also conditional
proofs; proofs

assumptions related to, 204
combining with conditional proofs,

184–185

versus direct proofs, 195–196
explanation of, 23–24
proving arguments with, 181–184

individual constants in QL. See also
constants; property constants in QL

defining, 227–228
description of, 227

individual variables, using in QL (quantifier
logic), 230. See also variables

induction
versus deduction, 43–44
overview of, 45

input value, explanation of, 63
interpretations, determining for

statements, 75
intersection, relationship to sets, 12
invalid arguments, negating conclusions of,

106
invalidity

strategic assumptions for, 115
testing with truth tables, 101
testing with truth trees, 131–134

IR (identity reflexivity), using, 285–286

• J •
Java

declaring “month” variable in, 307
writing if-statement in, 308

• K •
knowledge, statements of, 317

• L •
languages. See computer languges
law, using logic in, 48
laws of thought. See also identities

law of excluded middle, 16, 310
law of identity, 16
law of non-contradiction, 16–17
origin of, 15–17
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Leibniz, Gottfried
contributions of, 337
relationship to Aristotle, 25–26

letters
representing numbers with, 64–65
using as statement variables, 52–53
using with statements in formal logic, 52

Liar’s Paradox, relationship to Russell’s
Paradox, 326

logic. See also non-classical logic
applying math to, 17
applying to math, 18
axioms in, 330
capabilities of, 40
Chrysippus and the Stoics, 24
classical logic, 20–23
in computer science, 47
definition of, 33
Euclid’s axioms and theorems, 23–24
formal logic, 26–29
formalizing, 329–330
Gödel’s proof, 30–31
in law, 48
modern logic, 25–29
multi-valued logic, 30
non-classical logic, 30
paraconsistent logic, 318
in philosophy, 48
quotes about, 335–336
relating UTM to, 304
relationship to set theory, 325
in science, 46
second-order logic, 318
versus thinking, 40–41
types of, 19
using math in, 45

logic exams, tips for passing of, 341–344
logic gates

and computers, 306–307
use with computer hardware, 31, 305–307

logic tree, example of, 43

logical arguments. See also sound
arguments

flaws in, 25
form of, 45
intermediate steps of, 14
pre-Aristotelian application of, 20
proving validity of, 182
proving with indirect proofs, 181–184
requirements for cogent arguments, 44
saving space in writing of, 148
structure of, 34–35
using domain of discourse with, 235
using enthymemes with, 15
validating, 148–149
validity of, 15, 98–100

logical conditions, testing with truth
tables, 101

logical fallacy, explanation of, 25
logical operators. See also main operators

biconditional operator (↔), 61–63
conditional operator (→), 59–61
conjunction operator (&), 55–57
determining scope of, 79–80
disjunction operator (0), 57–59
evaluating, 76–77
expressing quantity with, 231–235
in modal logic, 315–316
negation operator (~), 54–55
streamlining use of, 206–207, 210
table of, 53
as truth functions, 305
using in QL, 229–230
using in relational expressions, 277

logical words, examples of, 13
Lukasiewicz, Jan

multi-valued logic, 30
three-valued logic, 310–311

• M •
main operators. See also logical operators

as binary operators, 83
evaluating in truth tables, 91–92
finding, 80–81
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mathematical ideas, expressing with
quantifiers, 280

mathematics
applying logic to, 18
applying to logic, 17
as axiomatic system, 326–327
deduction in, 43
domain of discourse in, 233
formalizing, 329–330
semirings in, 221
using in logic, 45

meta-statements, role in Incompleteness
Theorem, 331

minus sign (–) sign, using as unary
operator, 63, 65

modal logic
indirect discourse in, 317
overview of, 315–316

modern logic, Leibniz and Renaissance,
25–26

monadic expression, definition of, 276
MP (Modus Ponens) implication rule

in axiomatic systems, 328
using in conditional proofs, 193
using in proofs, 150–151, 189

MT (Modus Tollens) implication rule
versus Contra equivalence, 164
using with long premises, 202
using in proofs, 152, 189

multiplication, symbols for, 218–219
multi-valued logic

development of, 30
versus fuzzy logic, 313
overview of, 311–312
versus paraconsistent logic, 318

• N •
nand (|) operator, using, 210–211
NAND logic gate, explanation of, 306
necessary versus contingent truth,

distinguishing in modal logic, 316
necessity operator (X), using in modal

logic, 315–316

negation operator (~)
connecting tautologies and

contradictions with, 101–102
determining scope of, 79–80
example of, 53
including in truth tables, 90
as main operator, 83
representing, 54, 69
translating statements with, 66
using, 54–55
using tables with, 55

negative forms, inclusion in square of
oppositions, 22–23

negative statements, converting with DeM,
189–190

neither...nor structure, example of, 70
nevertheless, similarity to and, 69
no

equivalent ways for writing of, 258
QL quantifier for, 240
QN (Quantifier Negation) rule for, 257
relationship to intersection, 13
translating in QL (quantifier logic),

242–243
translating with (6), 246–247

no statements, recognizing in QL
(quantifier logic), 249

non-classical logic. See also logic
fuzzy logic, 313–315
modal logic, 315–316
multi-valued logic, 311–312
paraconsistent logic, 318–320
quantum logic, 320–322
second-order logic, 317–318
three-valued logic, 310–311

none, relationship to intersection, 13
non-terminating QL tree, explanation of,

295
NOR logic gate, explanation of, 306
nor...both structure, example of, 70
not, use in Frege’s formal logic, 28
not all

QL quantifier for, 240
QN (Quantifier Negation) rule for, 257
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translating in QL (quantifier logic),
242–243

translating with (6), 245–246
not all statements

equivalent ways for writing of, 258
recognizing in QL (quantifier logic), 248

NOT logic gate
diagram for, 305
example of, 31
input for, 306

not operator. See negation operator (~) 
number theory, deriving axioms of, 330
numbers

grouping with operations, 65
representing with letters, 64–65

• O •
O statement, explanation of, 23
obligation, statements of, 317
...only if... statement, example of, 70–71
operators. See logical operators
or

inclusive versus exclusive or, 58
meanings of, 205
use in Frege’s formal logic, 28

OR gate
diagram for, 306
example of, 31

...or...but not both statement, example of, 71

...or...or both statement, example of, 71
Organon (Aristotle), content of, 20
or-operator. See disjunction operator (0) 
output value, explanation of, 63

• P •
P, using with constants, 52
paraconsistent logic, overview of, 318–320
paradoxes

definition of, 30
in Incompleteness Theorem, 331–332

parentheses (())
grouping numbers and operations with, 65
interpreting statements outside of, 236
operators in, 81
in truth tables, 90–91
using in Exp equivalence, 166
using in SL (sentential logic), 76
using with WFFs, 216

particles, representing in shell game,
321–322

particular forms, inclusion in square of
oppositions, 22–23

particular statements, inclusion in
categorical statements, 22

Peano’s axioms, derivation of, 330
peas, using in shell game, 321–322
permission, statements of, 317
philosophy

Aristotelian concept of, 20
using logic in, 48

PL/I
declaring “month” variable in, 307
writing if-statement in, 308

Popper, Karl (induction), 45
positive forms, inclusion in square of

oppositions, 22–23
possibility operator (Z), using in modal

logic, 315–316
Post, Emil (consistency and completeness

of SL), 329
postulate, definition of, 23
predicate logic. See QL (quantifier logic)
premises. See also AP (assumed premise)

for arguments, 36
breaking down, 189–190, 202
comparing with conclusions, 188
considering lengths of, 188
in logical arguments, 34–35
as statements, 34
of syllogisms, 21

Principia Mathematica (Russell and
Whitehead), 30, 326–330

problems, solving with truth trees, 128
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programming languages, using with
software, 307–308

programs, use by UTM (universal Turing
machine), 303

proof by contradiction, explanation of, 24
proof theory, development of, 330
proofs. See also conditional proofs;

equivalences; indirect proofs
breaking down premises in, 189–190
as bridges, 148, 156
comparing premises and conclusions in,

188
considering lengths of premises and

conclusions in, 188
direct versus indirect proofs, 195–196
for EG (Existential Generalization)

QL rule, 263–264
finding clues for, 153
first step of, 151
looking for repeated chunks of

statements in, 188–189
numbered rows in, 150
for UI (Universal Instantiation) QL rule,

260–261
using & rules in, 153–155
using → rules in, 150–151
using CD (constructive dilemma) rule in,

159–160
using different approaches with, 190
using double → rules in, 158–160
using DS (disjunctive syllogism) 0 rule in,

157–158
using HS (hypothetical syllogism) rule in,

158–159
using QN (Quantifier Negation) in,

257–258
using 0 rules in, 155–158
working backwards from conclusions in,

196–198
writing down statements in, 163
writing with identities, 285–286
writing with relational expressions,

280–283

properties
declaring constants for in QL, 317
using second-order logic with, 317

property constants in QL. See also
constants; individual constants in QL

defining, 227–228
description of, 227
relationship to statement forms, 255

propositional logic. See SL (sentential
logic)

• Q •
Q, using with constants, 52
QL (quantifier logic). See also QN

(quantifier negation)
applying SL rules in, 252–256
consistency and completeness of, 329
constants in, 226–227
discovering bound variables in, 236–237
discovering free variables in, 236–237
employing SL equivalence rules in,

255–256
explanation of, 28–29
as first-order predicate logic, 230
individual variables in, 230
operators in, 229–230
quantifying individuals with, 317
recognizing all statements in, 247
recognizing no statements in, 249
recognizing not all statements in, 248
recognizing some statements in, 248
versus SL (sentential logic), 226–227
statements and statement forms in,

235–238
translating from English to, 233–235
translating SL implication rules into,

253–255
QL quantifier rules

EG (Existential Generalization), 262–265
EI (Existential Instantiation), 265–269
overview of, 260–261
UG (Universal Generalization), 270–274
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UI (Universal Instantiation), 260–262
using with multiple quantifiers, 282–283

QL quantifiers
connecting relational statements with,

278
determining scope of, 236
for English words, table of, 240
expressing mathematical ideas with, 280
order of, 279
using, 279–280
using identities with, 284
using with QL statements, 254–255
using quantifier rules with, 282–283

QL statement forms. See statement forms
QL statements. See also statements

comparing to SL statements, 252–253
using quantifiers with, 254–255
using without quantifiers, 253

QL translations for categorical statements,
table of, 244

QL trees. See also truth trees
non-terminating trees, 295
using decomposition rules with, 287–289
using EI (existential instantiation) with,

289–291
using QN (quantifier negation) with,

289–291
using UI (universal instantiation) with,

289–295
QN (quantifier negation). See also QL

(quantifier logic)
creating equivalent statements with,

256–257
using in proofs, 257–258
using with multiple quantifiers, 281
using with QL trees, 289–291

quantifier rules. See QL quantifier rules
quantifiers. See QL quantifiers
quantity, expressing with operators,

231–235
quantum logic, overview of, 320–322

quick tables. See also truth tables; truth
trees

beginning with strategic assumptions, 110
comparing to truth tables, 109
developing strategies for, 118
filling in, 110–111
four difficult SL statements used with,

119–121
guidelines for use of, 109
planning strategy for, 113–116
reading, 111
six difficult SL statements used with,

122–124
six easiest types of SL statements used

with, 117–119
versus truth tables, 122
using truth values with, 116

quotes about logic, 335–336

• R •
range of influence, relationship to operator

scope, 79
reality, applying science to, 47
reasoning, process of, 40–41
reductio ad absurdum, explanation of, 24
relational expressions. See also

expressions
connecting, 277
declaring for QL tree, 296
defining and using, 276–277
order of constants and variables in, 277
self-referential statements as, 283
writing proofs with, 280–283

relational statements, connecting with QL
quantifiers, 278

restricted domain of discourse, using with
all and some, 240–241

rhetoric, definition of, 15, 44
rows, creating for truth tables, 87–88
rule of identity (ID), using, 285
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Russell, Bertrand
contributions of, 339
laws of thought, 15–17
Principia Mathematica, 30, 326–330
relationship to Frege’s formal logic, 30

Russell’s Paradox, relationship to set
theory, 325–326

• S •
science, using logic in, 47
scope

of operators, 79–80
of quantifiers in QL (quantifier logic), 236

second-order logic, explanation of, 318
self-referential statements, significance of,

283
semantic equivalence

checking with truth trees, 141–144
judging, 94–96
linking with tautology, 102–103
significance of, 207–208
strategic assumptions for, 114–115
testing with truth tables, 101

semantic inequivalence
checking with truth trees, 141–144
strategic assumptions for, 114–115
testing with truth tables, 101

semantically inequivalent statements,
connecting, 106

semantics
in Boolean algebra, 221–222
significance of, 213

semiring, explanation of, 221
sentential logic. See SL (sentential logic)
set theory

development by Georg Cantor, 338
elements in, 324
overview of, 27–28, 324–325
relationship to logic, 325
significance of, 327
subsets in, 324

sets
organizing concepts with, 12
relationship to intersections, 12

Sheffer’s stroke, using, 210–211
shell game, relationship to quantum logic,

320–322
Simp & rule

breaking down premises with, 189
explanation of, 162
restriction related to QL statements, 255
using in proofs, 154–155, 173, 201
using with EG (Existential Generalization)

QL rule, 263
single branching statements

illustration of, 127
relationship to truth trees, 126

SL (sentential logic)
advantage of, 66
as axiomatic system, 328
axiomatic system for, 327–328
binary operators in, 64
versus Boolean algebra, 221–222
comparing to arithmetic, 63–65
comparing to Boolean algebra, 217–222
consistency and completeness of, 329
explanation of, 28, 52
identifying statements in, 214
implication rules of, 149–150
versus QL (quantifier logic), 226–227
representing basic statements in, 275
as symbolic language, 52
translating English to, 68–71
translating from English to, 242
translating implication rules into QL,

253–255
translating to English, 66–68
using constants in, 64–65
using parentheses (( )) in, 76
using with valid arguments, 225

SL rules, applying in QL (quantifier logic),
252–256
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SL statements. See also statements
categories of, 93
categorizing, 94
decomposing, 126–128
evaluating, 74–77
forms of, 82
four difficult types used with quick

tables, 119–121
versus QL statements, 252–253
six difficult types used with quick tables,

122–124
six easiest types used with quick tables,

117–119
slippery slide. See if-statements
software, computer languages used with,

31, 307–308
some

QL quantifier for, 240
QN (Quantifier Negation) rule for, 257
relationship to intersection, 12
translating with (6), 245
using restricted domain of discourse

with, 240–241
using unrestricted domain with, 241–242

some statements
equivalent ways for writing of, 258
recognizing in QL (quantifier logic), 248

sorites, relationship to if-statements, 11
sound arguments. See also logical

arguments
overview of, 42–43
versus valid arguments, 42

square of oppositions, overview of, 22–23
statement constants, relationship to truth

values, 53
statement forms

changing with EG (Existential
Generalization), 265

relationship to property constants, 255
versus statements, 235, 237–238

statement variables, using letters as,
52–53. See also variables

statements. See also QL statements; SL
statements; sub-statements

breaking down, 189
consistency of, 85, 96–98
converting negative statements with

DeM, 189
decomposing, 132
definition of, 35
determining consistency or inconsistency

of, 109, 288
determining interpretations of, 75
evaluating, 74
evaluating main operators for, 91–92
identifying in SL, 214
of knowledge and belief, 317
looking for repeated chunks of, 

188–189
of obligation and permission, 317
organizing with truth tables, 87–89
premises and conclusions as, 34
representing in SL (sentential logic), 275
rules for building of, 215–216
semantic equivalence of, 85, 94–96
showing as tautologies, 134–137
showing consistency and inconsistency

of, 129–131
in SL versus QL, 252–253
versus statement forms, 235, 237–238
substitution of, 207
transforming with QN (Quantifier

Negation), 256–258
translating, 66–68
truth values of, 35, 53
using letters with, 52
writing down in proofs, 163

states in programs, explanation of, 303
Stoics, conditional statements used by, 24
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strategic assumptions. See also
assumptions

beginning quick tables with, 110
for consistency, 115
for contingent statements, 114
for contradictions, 114
disproving, 112–113
for inconsistency, 115
for invalidity, 115
for semantic equivalence, 114–115
for semantic inequivalence, 114–115
for tautologies, 113–114
for validity, 115–116

strategy, planning for quick tables,
113–116, 118

strings
definition of, 215
identifying as WFFs, 216–217

subsets
role in sets, 324
using in set theory, 28

sub-statements. See also statements
building in proofs, 153
identifying, 78
including in if-statements, 11

substitution rule, applying in axiomatic
systems, 328

syllogistic logic, Aristotle’s invention of,
20–23

symbolic logic. See formal logic
syntax

in Boolean algebra, 221–222
significance of, 213

• T •
T

including in truth tables, 88
using with formal logic, 53

T and F values, mixing in Boolean algebra,
220

T in SL, corresponding symbol in Boolean
algebra, 218

tables. See quick tables; truth tables
Taut (tautology) equivalence, using, 172
tautologies

converting into contradictions, 101–102
examples of, 41–42
identification of, 85
linking semantic equivalence with,

102–103
relationship to theorems, 328
separating with truth trees, 134–137
SL statements as, 93
strategic assumptions for, 113–114
testing for QL tree, 296–297
testing with truth tables, 101

theorems
in axiomatic systems, 328
definition of, 23
relationship to tautologies, 328

there exists, relationship to intersection, 12
there is no, relationship to intersection, 13
there is, relationship to intersection, 12
thinking versus logic, 40–41
though, similarity to and, 69
three-valued logic, overview of, 310–311
true statements, forms of, 126
trunk of truth tree

constructing, 128
constructing in QL, 288

truth function, explanation of, 305
truth in modal logic, types of, 316
truth tables. See also quick tables; truth

trees
capabilities of, 85, 87
comparing to quick tables, 109
constants and rows in, 88
determining statement consistency with,

96–98
determining valid arguments with, 98–100
filling in, 89–92, 342
judging semantic equivalence with, 94–96
for ?-operator, 206
versus quick tables, 122
reading, 55, 92–93
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setting up, 87–89
starting, 108
tediousness of, 108
testing logical conditions with, 101
using brute force approach with, 86
using with &-operator, 56
using with → (conditional) operator, 59
using with biconditional (↔) operator, 62
using with or-operator, 58
using with SL and Boolean algebra, 219

truth trees. See also QL trees
checking for semantic equivalence with,

141–144
checking for semantic inequivalence with,

141–144
closing off branches of, 130
decomposing SL statements with,

126–128
features of, 125
finding interpretations in, 128
finishing, 130–131
separating contingent statements with,

140
separating contradictions with, 137–140
separating tautologies with, 134–137
showing consistency and inconsistency

with, 129–131
solving problems with, 128
testing for validity and invalidity with,

131–134
truth values

assigning in SL relative to Boolean
algebra, 219–220

computing in multi-valued logic, 312
relationship to statements, 35
in SL evaluation, 75–76
using with quick tables, 116
using with statements, 53

Turing, Alan
contributions of, 340
development of UTM by, 302–304

TV pricing example of fuzzy logic, 314

• U •
UG (Universal Generalization) QL rule

comparing to EG (Existential
Instantiation) QL rule, 270

explanation of, 270
using, 271
using variables with, 271–273
using with multiple quantifiers, 283
using with variables, 270–271
valid and invalid uses of, 274

UI (Universal Instantiation) QL rule
comparing to EI (Existential Instantiation)

QL rule, 265–266
explanation of, 260
proof for, 260–261
using with QL trees, 289–295
valid and invalid uses of, 261–262

unary operator, using minus sign (–) as,
63, 65

undecidable statement, explanation of, 31
undischarged AP, using in UG (Universal

Generalization), 273
universal forms, inclusion in square of

oppositions, 22–23
Universal Generalization (UG) QL rule. See

UG (Universal Generalization) QL rule
Universal Instantiation (UI) QL rule. See UI

(Universal Instantiation) QL rule
universal (6) QL quantifier

connecting relational statements with,
278

starting statements with, 279
translating no with, 246
translating not all with, 245
translating some with, 245
using, 231

universal statements, inclusion in
categorical statements, 21–22

unrestricted domains
using, 234–235
using with all and some, 241–242
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UTM (universal Turing machine)
development of, 303–304
relating to logic, 304

• V •
valid arguments

characteristics of, 36
converting into contradictory statements,

106
determining with truth tables, 98–100
negating conclusions of, 106
proving, 182
versus sound arguments, 42
using SL (sentential logic) with, 225

validity
linking with contradiction, 105–106
strategic assumptions for, 115–116
testing with truth tables, 101
testing with truth trees, 131–134

values, finding, 74
variables. See also individual variables;

statement variables
changing in UI (Universal Instantiation),

262
declaring in computer languages, 307
discovering bound variables in QL,

236–237
discovering free variables in QL, 236–237
manipulating with EG (Existential

Generalization), 265
manipulating with UI (Universal

Instantiation) QL rule, 261
order in relational expressions, 277
using EI (Existential Instantiation) QL rule

with, 266
using in equations, 148–149
using in expressions, 276
using UG (Universal Generalization) QL

rule with, 270–271

using universal quantifier (6) with, 231
using with relational statements, 279

Visual Basic
declaring “month” variable in, 307
writing if-statement in, 308

• W •
WFFs (well-formed formulas)

format of, 216
overview of, 215–216
separating from non-WFFs, 216–217

• X •
X, closing off branches of truth trees

with, 130
x & y conditional proofs, using, 194
x & y statements, replacing, 210
x | y statement, semantic equivalence

of, 210
x ↔ y statements, using Equiv rule

with, 208
x → y statements, replacing with ~x 0 y,

209
x in Boolean algebra, corresponding

symbol in SL, 218
x 0 y conditional proofs, using, 191–192
x 0 y statements, replacing, 210
x ↔ y conditional proofs, using, 193–194
x → y conditional proofs, using, 191–192
XOR logic gate, explanation of, 306

• Z •
Zadeh, Lotfi (fuzzy logic), 313
ZF (Zermeto-Frankel) axioms, significance

of, 327
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