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Preface

In the fall of 1974 I ran across George Polya’s little volume, How to Solve
It. I was a practicing mathematician, a few years out of graduate school and
happily producing theorems 1n topology and measure theory. POlya wrote
about problem solving, more specifically about the strategies used by mathe-
maticians to solve problems. The book was fun to read. I zipped through 1it,
nodding my head 1n agreement with the author; the strategies he described
for solving problems were, with uncanny accuracy, the kinds of things I did
when I did mathematics.

My first reaction to the book was sheer pleasure. If, after all, I had discov-
ered for myself the problem-solving strategies described by an eminent
mathematician, then I must be an honest-to-goodness mathematician my-
self! After a while, however, the pleasure gave way to annoyance. These
kinds of strategies had not been mentioned at any time during my academic
career. Why wasn’t I given the book when I was a freshman, to save me the
trouble of discovering the strategies on my own?

The next day I spoke to the colleague who trained our department’s team
for the Putnam exam, a prestigious nationwide mathematics competition.
Did he use Polya’s book? “No,” he said. “It’s worthless.” His teams did quite
well, so there must have been some truth in what he said — but at the same
time, I had the gut feeling that Polya had identified something significant.
The conflict had to be resolved.

Since then the two major questions that have preoccupied me are, What
does 1t mean to ““think mathematically’’? and, How can we help students to
do 1t? Those are the 1ssues at the core of this book, which summarnzes a

XI
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decade of eftorts to understand and teach mathematical problem-solving
skills.

What does this book have to ofter, and to whom? It 1s addressed to people
with research interests in the nature of mathematical thinking at any level, to
people with an interest in “higher-order thinking skills” in any domain, and
to all mathematics teachers. The focal point of the book is a framework for
the analysis of complex problem-solving behavior. That framework 1s pre-
sented 1n Part One, which consists of Chapters 1 through 5. It describes four
qualitatively different aspects of complex intellectual activity: cognitive re-
sources, the body of facts and procedures at one’s disposal; heuristics, ‘‘rules
of thumb” for making progress in difficult situations; control, having to do
with the efliciency with which individuals utilize the knowledge at their
disposal; and belief systems, one’s perspectives regarding the nature of a
discipline and how one goes about working in 1t. Part Two of the book,
consisting of Chapters 6 through 10, presents a series of empirical studies that
flesh out the analytical framework. These studies document the ways that
competent problem solvers make the most of the knowledge at their dis-
posal. They include observations of students, indicating some typical road-
blocks to success. Data taken from students before and after a series of
intensive problem-solving courses document the kinds of learning that can
result from carefully designed instruction. Finally, observations made 1n
typical high school classrooms serve to indicate some of the sources of
students’ (often counterproductive) mathematical behavior.

As the scope of the categories in the framework suggests, I argue that
coming to grips with any discipline—and, in particular, learning to think
mathematically —involves a great deal more than having large amounts of
subject-matter knowledge at one’s fingertips. It includes being flexible and
resourceful within the discipline, using one’s knowledge efhiciently, and
understanding and accepting the tacit ‘“‘rules of the game.” The framework
represents an attempt to elaborate a spectrum of behaviors that comprise
mathematical thinking. My experience and most of my research observa-
tions have been at the secondary and college levels, so the discussions deal
with mathematics at those levels. The 1ssues, however, are relevant to inves-
tigations of mathematical behavior at any level. In fact, most of the i1ssues
discussed here apply in much broader contexts than mathematics. Higher-
order skills such as monitoring and assessing one’s progress ‘‘on line” (and
thereby avoiding wild-goose chases) are as important in physics or in writing
an essay as they are in mathematics. To address these 1ssues in mathematics
I have borrowed or adapted methodologies from artificial intelligence
and information-processing psychology (more generally, from cognitive
science), research on writing, naive physics, and decision theory, to name
just a few. In turn, the methodological tools developed and discussed here
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can be applied (or adapted) to address higher-order thinking skills in those
domains.

As noted above, my interests 1n understanding and teaching mathemati-
cal-thinking skills go hand 1n hand. The research described here indicates
that when instruction focuses almost exclusively on mastery of facts and
procedures, students are not likely to develop some of the higher-order skills
necessary for using mathematics. It also indicates that when teaching focuses
on those skills, students can learn them. This book describes much of the
“why’” and some of the “how to” of teaching problem solving; it describes the
results of instruction that does, and does not, focus on problem solving. It
suggests ways that we might wish to teach mathematics, so that our students
will indeed learn to think mathematically. I hope 1t will be of interest to
teachers of mathematics at all levels.






Acknowledgments

A number of good friends and colleagues have helped to shape the con-
tents of this book. Working with Karel deLeeuw, I learned to do real mathe-
matics and also to pursue 1ssues that seem important whether or not they
happen to be fashionable. It was Ruth von Blum who convinced me that
1Issues of mathematical cognition and of mathematics teaching were worth
taking seriously as objects of intellectual inquiry. Fred Reif showed me that
such 1ssues can be approached with the same care and precision with which
one expects to approach difficult questions 1n mathematics and science.
John Seely Brown has been a consistently valuable critic and source of ideas
through the years. To these and many other colleagues I owe sincere thanks;
the work described here is much better for their help. The mistakes, of
course, are all mine.

This book, and a large part of the research on which 1t 1s based, were
produced with the help of a research grant from the Spencer Foundation; the
earlier empirical work was supported by the National Science Foundation. It
1S a pleasure to acknowledge that generous support. The grant from the
Spencer Foundation enabled David Spanagel, Margaret Davidson, and
Roger Meike to take part in the project. David Spanagel’s help included
developing research tools, videotaping classes in local schools, reviewing and
proofreading draft versions of the manuscript, and compiling the author
index. Margaret Davidson grappled successfully with the transcription of
barely audible audiotapes and typed the mynad draft versions of the manu-
script. Roger Meike was our resource for computation, both for statistical
analyses and simulation models. Jane Schoenfeld compiled the subject
index. Herb Ginsburg and Fred Reif read the (n — 1)st draft version of the

XV



XVI Acknowledgments

manuscript and made valuable suggestions for its improvement. Each of
these people made a significant contribution to the book you are now
reading.

[t was a pleasure to work with Academic Press, whose staft consistently
produced high-quality work, on schedule, as the book evolved from manu-
script to finished form.

To all of the friends and colleagues who contributed in so many ways to the
book, my most grateful thanks.



Introduction and Overview

This book 1s about doing, understanding, and teaching mathematical
problem solving. Most of the problems discussed are approprate for college
freshmen, with a tolerance of about 2 years; that 1s, they are generally accessi-
ble to tenth or eleventh graders, but mathematics majors at the juniorlevel in
college will often find them challenging. Few of the problems require a
knowledge of mathematics as sophisticated as calculus in order to be solved.
Virtually all, however, require a substantial amount of thinking. Under-
standing the nature of mathematical thinking 1s the 1ssue at the core of this
book, and pursuing it will lead us to a host of related issues. The following
hypothetical experiment introduces some of the major ones.

Two groups of people participate in that experiment. The first group
consists of a dozen mathematically talented undergraduates, say, the top 12
first-year mathematics majors at a particular university. The second group
consists of a dozen members of the mathematics department at the same
university. The mathematicians are randomly selected, save for one condi-
tion: They have not done any plane geometry for at least 10 years. (Surpris-
ingly, this 1s not an unusual condition. Randomly selected mathematicians
have not, 1n all likelithood, done any plane geometry since their high school
days.) Each of the participants will be asked to solve a series of geometry
problems similar to Problems 1.1 and 1.2, given below.

Problem 1.1 You are given two intersecting straight lines and a point P
marked on one of them, as in the figure below. Show how to
construct, using straightedge and compass, a circle that 1s

1



2 Introduction and Overview

tangent to both lines and that has the point P as its point of
tangency to one of the lines.

Figure 0.1

Problem 1.2 You are given a fixed triangle 7 with base B, as in the figure
below. Show that 1t 1s always possible to construct, with
straightedge and compass, a straight line that 1s parallel to B
and that divides T into two parts of equal area. Can you
similarly divide 7 into five parts of equal area?

B
Figure 0.2

Problems like these, which are discussed extensively in the sequel, are
“nonstandard’ in that they are not typically covered in high school geometry
courses. The college students are likely to possess more than enough factual
knowledge to solve these problems. However, the nonstandard nature of
the problems ensures that the students will not be able to solve them by
simply recalling and applying famihar solution patterns (known as problem
schemata). Nor will the problems be familiar to the faculty. Moreover,
since none of the faculty has done geometry for many years, their initial
recall of directly relevant facts and proceduresis likely to be a good deal more
shaky than the students’. We can expect both groups of subjects to find at
least some of the problems challenging.

The subjects are trained to solve problems out loud. Their verbal reports
as they work are recorded, and the recordings are transcribed. These tran-
scripts (called protocols) and the written work produced by the subjects
constitute our data. We consider two questions:

1. Which group will do better on the problems, and why?
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2. Given the protocol and the written work produced by one of the sub-
jects, would we be able to determine whether that person was a student
or a professor?

In answer to the first question most people choose the faculty and then
justify their choice by saying that “the faculty are brighter” or “they know
more’”’ or ‘“‘they have more experience.” In fact, the faculty do outperform
the students, and the contest 1s not even close. But these justifications are
not really explanations. Let us take them one at a time. We can dispatch
with “the faculty are brighter” by altering the experiment in the following
way. Suppose that we were able to obtain protocols of these faculty
members solving the geometry problems when they themselves were stu-
dents. Would they do better on the problems as students or as professional
mathematicians? Provided that the problems were sufhiciently difficult, we
would probably bet on the faculty members as practicing mathematicians —
so simple brainpower 1s eliminated as an explanation.

What do we mean by “‘the faculty know more”’? The obvious meaning —
that they have a better mastery of the facts and procedures required for plane
geometry —1s false. After a 10-year hiatus, many of the specific facts and
procedures that the faculty once knew have faded from memory. Proofs of
theorems that were once required, and even knowledge of basic results — for
example, that every angle inscribed in the diameter of a circle 1s a right
angle — may well be forgotten. When they begin work on the problems the
students will remember more of the basics and thus have the 1nitial advan-
tage over the faculty. (If oneisconcerned about poor memory on the part of
the students, the experiment can be changed again, using in their stead the
same college faculty just after they had completed their high school geometry
courses. The odds are still with the faculty as professionals, even though
they were every bit as bright in high school as they are now and had the
advantage 1n terms of relevant facts and procedures.) So whatever gives the
faculty the advantage 1s more than simple subject matter knowledge. That
leaves “‘experience.”

This last answer 1s not wrong, but 1t is inadequate. By analogy, consider
the answer ‘‘aging” to the question, What causes senility? Of course, senility
occurs with aging, but saying so really begs the question. The impled and
more precise question 1S, Can we explain the underlying biological and
chemical processes that comprise the phenomenon known as senility? Clar-
1fying this question, elaborating on it, and exploring it lead one into deep
questions of medical science.

In a sitmilar vein, one can begin to formulate questions about experience
with greater precision. When the faculty members sit down to work on the
problems, there are fewer resources immediately accessible to them than to
the students. Yet the faculty manage, somehow, to see what makes the
problem tick, to retrieve or generate the facts they need, to come up with a
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variety of plausible directions for exploration where the students do not, and
so on — all with some sense of purposefulness and efliciency. To specify the
nature of these skills and to elaborate the means by which they are achieved is
to begin to provide a real explanation of what the faculty’s experience means.

Most people would probably be inclined to answer the second question in
the athrmative, based on the feeling that the faculty’s expertise should some-
how be evident in the work they produce. To focus on what constitutes that
expertise, let us imagine three conditions under which one might make the
discrimination:

1. The solutions are graded by a third party, and we are given the grades
earned by the subject on the problems.

2. We are given the final solutions handed in for grading by the subject.

3. We are given the transcripts produced by the subject as he or she
worked through the problems, and the scratch work he or she pro-

duced.

We would, of course, be least confident of our judgments in the first case
and most certain in the third. The point to observe with regard to option (1)
1S that the scores 1n themselves are not very rich sources of information; test
scores rarely are. They may tell us how well someone performed, but they
say virtually nothing about what the person actually did. In option (2) we
have much more information, of the type customarily used to judge prob-
lem-solving performance. But it, too, 1s lacking. The difhiculty in using
such information is that two people may come upon the same solution
through entirely difterent means. For example, one person might stumble
upon a construction that “works” and not be able to justify it (the search
space 1s relatively small for some of these problems); another person might
derive the same construction logically and coherently. Yet, their descrip-
tions of the construction, which i1s what they were asked to produce, may be
identical. Similarly, there are both good and bad failures. One person may
not come to grips with a problem at all, or might waste the allotted time
pursuing irrelevant trivia, while another person may make a series of entirely
plausible, but ultimately unsuccessful, attempts to solve the problem. In
both cases, it 1s what the person does, rather than what the person produces,
that 1s the determining factor in making our decision. It 1s precisely the
insights into problem-solving processes that make option (3) so much better
a choice.

This brief discussion raises the i1ssues that are central 1n all that follows.
First, 1t reveals my bias that there 1s much more to doing and understanding
mathematics than simply mastering the subject matter. What one does with
the facts at his or her disposal accounts, 1n large part, for problem-solving
success. Second, 1t points to problem-solving processes as being absolutely
central in any discussion of mathematical performance. This book is de-
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voted to the exploration of the mathematical processes, mathematical strate-
gies, and tacit mathematical understandings that constitute thinking mathe-
matically. The focus here 1s primarily on research, although there 1s a strong
“applied’” component to the work as well. Much of the research 1s inspired,
and informed, by classroom aplications.

To sum things up 1n a phrase, the goal of the research that has generated
this book 1s to make sense of people’s mathematical behavior—to explain
what goes on 1n their heads as they engage in mathematical tasks of some
complexity. This book 1s divided 1into two parts, dealing, respectively, with
the theoretical and empirical aspects of understanding and exploring mathe-
matical behavior.

Part I, consisting of Chapters 1 through 5, 1san attempt to outline and flesh
out a theoretical framework for investigating mathematical thinking.
Chapter 1 presents an overview of the framework, and the four chapters that
follow elaborate the four major categoriesin it. Chapter 2 ofters a discussion
of resources, an inventory of the mathematical knowledge possessed by the
individual. In brief, What does the individual “know,” and how i1s that
knowledge accessed for use? Chapter 3 focuses on heuristics, the general
mathematical problem-solving strategies or rules of thumb for successful
problem solving whose 1nvestigation was pioneered by George Polya. We
shall explore the nature of such strategies, and the kinds of knowledge that
are actually required to implement them. Chapter 4 considers the issue of
control. The 1dea 1s that mathematical performance depends not only on
what one knows but on how one uses that knowledge, and with what eth-
ciency. Competent decision-making can help to ensure success even
though one has few resources to begin with, and poor decision-making can
guarantee failure despite potential access to a large collection of resources.
The nature of such decision-making in mathematical problem solving, and
1ts effects, are explored in detail. Finally, Chapter 5 deals with belief sys-
tems, the set of understandings about mathematics that establish the psycho-
logical context within which individuals do mathematics. We shall see that
people’s mathematical “world views”’ determine their orientation toward
problems, the tools and techniques that they think are relevant, and even
their unconscious access (or lack of access) to potentially related and useful
maternial.

The 1ssues 1n Part I are quite broad. Contributions to our understanding
of those 1ssues come from disciplines as diverse as mathematics education,
artificial intelligence (Al), cognitive anthropology, and developmental psy-
chology. While this situation 1s natural and healthy, there are ways in which
1t makes for difhiculties. Papers within any disciplinary tradition are usually
written under the assumption that readers will share the author’s paradigmes,

assumptions, and language. Readers from outside that discipline can find 1t
hard to penetrate the barier of assumptions and language, to uncover rele-
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vant results, and to see connections that might otherwise be seen. For that
reason my intention in writing Part I 1s partly tutorial. Where possible there
are references to work in other fields that I have found useful.

To put things simply, Part II ofters some of the detailed evidence upon
which the hypotheses advanced in Part I are based. It offers selections from
a series of empirical studies begun in 1975. Most of these studies were
dual-purpose, seeking (1) to develop a methodology for investigating a par-
ticular aspect of mathematical behavior and (2) to use that methodology to
explore and elucidate the framework described in PartI. While thisresearch
was being conducted, I taught a series of problem-solving courses based on
(and contributing to) the 1deas in the framework. These courses served as
the laboratornies for some of the research. A number of the chaptersn Part I1
characterize students’ behavior before, during, and after my problem-solv-
ing courses. Part II proceeds in chronological order.

When the research for Chapter 6 was undertaken, 1t was an open question
as to whether students could master heuristic strategies—in any circum-
stances. Chapter 6 describes a small-scale laboratory study that explores
that 1ssue 1n relatively ideal conditions. The results were positive, and the
research moved from the laboratory to the real world. Chapter 7 offers the
first full-fledged documentation of the results of one of my problem-solving
courses. A series of paper-and-pencil tests were developed to capture var-
10us aspects of problem-solving processes. These measures were used to
characterize students’ mathematical behavior before and after their partici-
pation in my course, and in Chapter 7 they provide clear documentation of
the kinds of changes in mathematical behavior that can be induced by
problem-solving instruction. Chapter 8 also looks at students’ performance
before and after the course, but this time with an eye toward more detailed
cognitive structures (what I categorize as resources). It also ofters a direct
comparison of novice and expert behavior. The research indicates that
experts and novices perceive different things in mathematical problem state-
ments and that they are led by those perceptions to approach the problems
difterently. It shows that with practice the novices’ perceptions become
more expert-like.

The discussion is substantially broadened in Chapters 9 and 10. The data
1in those chapters are videotapes of problem-solving sessions and their tran-
scripts (or protocols). The research question, simply put, 1s how to make
sense of them. Chapter 9 explores the 1ssue of verbal methods 1n general,
looking at the reliability of analyses of verbal problem-solving sessions. Its
primary focus i1s on the analysis of problem-solving performance at the
macroscopic level, with an emphasis on control or executive behavior. A
rigorous framework for such analyses 1s presented and discussed. Chapter
10 addresses the 1ssue of belief systems and their influences on behavior. It
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begins with a before-and-after comparison that demonstrates how changes
1n students’ beliefs about the nature of mathematics can result in changes in
their performance. It continues with a discussion of the origins of students’
beliefs about mathematics. Evidence for that discussion i1s drawn from
videotapes of typical classroom instruction. The discussion of those beliefs
and of their implications brings to a close this attempt to sketch, in broad
terms, the dimensions of mathematical behavior and the factors that shape
1t. As the final section indicates, we have only taken the first few steps on the
long road toward an understanding of mathematical thinking— but I think
those steps are 1n the right direction.
Figure 0.3 provides a guide to the overall structure of the book.
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Figure 0.3 A map of the book’s contents.
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Aspects ot Mathematical Thinking:
A Theoretical Overview






A Framework tor the Analysis of
Mathematical Behavior

Overview

This chapter outlines a framework for examining what people know, and

what people do, as they work on problems with substantial mathematical
content. As an example, consider the following situation. Suppose that an
individual or a small group of people works out loud on a mathematical
problem of moderate difficulty. The problem solver does not have easy
access to a procedure for solving the problem —a state of affairs that would
make the task an exercise rather than a problem —but does have an ade-
quate background with which to make progress on it; say, it might be feasible
to reach a solution 1n a half hour or so. Moreover, the person wants to solve
the problem and works actively at it. We observe the solution process as it
takes place. We may interview the problem solver, or administer any tests
we consider to be approprniate. The goal 1S to explain, as accurately as
possible, what takes place during the solution attempt. What mathematical
knowledge 1s accessible to the problem solver? How s 1t chosen? How is it
used? Why does the solution evolve the way i1t does? In what ways do the
aproaches taken to solve the problem reflect the individual’s understanding
of this area of mathematics, and what is the relationship between that under-
standing and the individual’s problem-solving performance? And finally,
what accounts for the success or failure of the problem-solving attempt?

11



12 | The Analysis ot Mathematical Behavior

My purpose here 1s to sketch out the dimensions of an explanatory frame-
work for dealing with such questions. In a general way, the framework
serves as a preécis for the balance of the book. The i1ssues raised here are
treated at length 1n the balance of Part One (Chapters 2-5) and they serve as
the background for the empirical studies described 1n Part Two (Chapters
6-10). But the framework stands on its own. I argue that the four catego-
ries of knowledge and behavior introduced here must be dealt with, if one
wishes to “‘explain” human problem-solving behavior.

Some comments about my current perspective on the relationship be-
tween problem solving and understanding will help to set the stage for what
follows. Early in my career I took “the ability to solve problems’ as an
operational definition of understanding. You understand how to think
mathematically when you are resourceful, flexible, and efhcient in your
ability to deal with new problems in mathematics. My early problem-solv-
1ng courses (the first offered to upper-division mathematics majors at Berke-
ley 1n 1976, the second to lower-division students at Hamilton College in
1978 -~79) reflected that perspective. Of course, any mathematical prob-
lem-solving performance is built on a foundation of basic mathematical
knowledge, which I call the resources available to the individual. I began
with the assumption that my students had nearly adequate resources for
problem solving, and then I provided enough practice on introductory prob-
lems so that their skills were indeed serviceable. These basic skills were the
foundation upon which the course was built. The course was designed to
provide the tools for resourcefulness and efhiciency. To be resourceful,
students needed (I thought) to be familiar with a broad range of general
problem-solving techniques known as heuristics. To be efhcient, they
needed coaching in how to manage the resources at their disposal. The
course focused on providing these skills. Heuristic techniques were care-
fully delineated and carefully taught, and “executive” or “control” 1ssues
were dealt with through instruction in an explicit executive strategy. My test
for the success of such courses reflected the operational definition of under-
standing as the ability to solve problems. Thus a problem-solving course
was a success 1f, after instruction, the students showed markedly improved
performance on a collection of problems that were not directly related to the
problems that they had studied 1n the course. An even more stringent test is
that the examination problems should be unlike the problems they studied
1n the course. My courses passed both kinds of tests with flying colors (see
Chapter 7).

My notion of success for such courses has evolved in recent years. More
accurately, my notion of what it means to understand mathematics (and,
therefore, of what one should teach) has evolved. This change came about
as a result of my research, in which I made detailed examinations of video-
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tapes of students’ problem-solving performance. By most measures, the
students I videotaped were the successes of our educational system. Vir-
tually all of them had completed at least one semester of college mathematics
(calculus or beyond) with high grades. Many were volunteers for my prob-
lem-solving course. The fact that they had enrolled indicated that they were
partial to mathematics (1t was an optional course, fulfilling no requirements)
and relatively confident about their abilities (it had a reputation for being
difficult). Yet, examining the problem-solving performance of these and
other students revealed some unpleasant realities. The videotapes revealed
that the students’ resources were far weaker than their performance (on
standard tests, etc.) would 1ndicate; typical instruction and testing provide
little opportunity for students to demonstrate the breadth and depth of their
misconceptions. They confirmed that students have little or no awareness
of, or ability to use, mathematical heuristics. They indicated that the gen-
eral 1ssue of how one selects and deploys the resources at one’s disposal — the
1ssue of control— was far broader, and far more cnitical, than I had thought.
In most testing situations students are asked to work problems similar to
those they have been trained to solve. As a result, the context keeps them 1n
the right arena, even when they are unable to solve the problems. The
problems I asked students to solve were certainly within their capability and
were often technically easier than problems they solved 1n other classes.
They were not, however, put forth in a context that oriented the students
toward the “appropriate’ solution methods. Time and time again the stu-
dents working such nonstandard problems would go oft on wild goose chases
that, uncurtailed, guaranteed their failure. The issue for students is often
not how efhiciently they will use the relevant resources potentially at their
disposal. Itiswhether they will allow themselves access to those resources at
all.

A final category of knowledge, belief systems, 1s more subtle. The close
examination of these students’ problem-solving performance revealed that
many of them had serious misunderstandings about mathematics. Even the
more successful students often held perspectives that were deeply antimath-
ematical in fundamental ways and that had clearly negative eftects on their
problem-solving behavior. In some cases, students survived (often with
good grades!) by implementing well-learned mechanical procedures, in do-
mains about which they understood virtually nothing. In other cases, much
of the mathematical knowledge that the students had at their disposal, and
that they should have been able to use, went unused in problem solving.
This was not because they had forgotten 1t (a matter of resources) or because
they ran out of time to use it (a matter of control), but because they did not
perceive their mathematical knowledge as being useful to them, and conse-
quently did not call upon it. The clearest cases come from geometry, de-
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scribed below and extensively in Chapters 5 and 10. These examples and
others demonstrate that students’ problem-solving performance 1s not sim-
ply the product of what the students know; it is also a function of their
perceptions of that knowledge, derived from their experiences with mathe-
matics. That is, their beliefs about mathematics — consciously held or not
—establish the psychological context within which they do mathematics.

These findings indicate that a view of problem solving as an operational
definition of understanding 1s too narrow. So, t0o0, 1S any positivist view that
considers teaching problem solving to be equivalent to providing a set of
prescriptions for students’ productive behavior. Whether one wishes to
explain problem-solving performance, or to teach it, the i1ssues are more
complex. One must deal with (1) whatever mathematical information
problem solvers understand or misunderstand, and might bring to bear on a
problem; (2) techniques they have (or lack) for making progress when things
look bleak; (3) the way they use, or fail to use, the information at their
disposal; and (4) their mathematical world view, which determines the ways
that the knowledge 1n the first three categories 1s used.

This discussion 1s summarized, formally, in Table 1.1. Each of the four
categories in Table 1.1 will be expanded 1nto a full chapter (Chapters 2 -3,
respectively). To get a better sense of the contents of each category, and also
to see the boundanies and relationships among the categories, we turn to
some specifics. The next section presents some problems typical of those
considered in this book and discusses some behavior typical of students and
others who have worked on the problems.

Typical Problems, Typical Behavior:
The Four Categories lllustrated

The following three problems are typical of those I have used 1n my
research and are discussed extensively in the next four chapters. Thereis, of
course, no such thing as a typical student. However, most of the students
discussed here shared the following properties. They were college freshmen
or sophomores who had spent a year studying Euclidean geometry in high
school, who had studied at least one semester of difterential calculus when
they were taped (those working Problem 1.3 had in general, completed
multivariate calculus), and who had received either A’s or B’s 1n their college
mathematics courses. They had either volunteered for my problem-solving
course or volunteered to be videotaped, both positive indications regarding
their mathematical abilities and interests. Their mathematics courses had
provided them, 1n the recent past, with the formal tools that would have
enabled them to solve Problems 1.1-1.3.
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Table 1.1
Knowledge and Behavior Necessary for an Adequate Charactenization of Mathematical
Problem-Solving Performance

Resources: Mathematical knowledge possessed by the individual that can be brought to bear on the problem
at hand

Intuitions and informal knowledge regarding the domain

Facts

Algornithmic procedures

“Routine” nonalgonthmic procedures

Understandings (propositional knowledge) about the agreed-upon rules for working in the domain

Heuristics: Strategies and techniques for making progress on unfamiliar or nonstandard problems; rules of
thumb for effective problem solving, including

Drawing figures; introducing suitable notation

Exploiting related problems

Reformulating problems; working backwards

Testing and venfication procedures

Control: Global decisions regarding the selection and implementation of resources and strategies
Planning
Monitonng and assessment
Decision-making
Conscious metacognitive acts

Belief Systems.: One’s ‘““mathematical world view,” the set of (not necessarily conscious) determinants of an

individual’s behavior
About self
About the environment

About the topic
About mathematics

Problem 1.1 You are given two intersecting straight lines and a point P
marked on one of them, as in Figure 1.1 below. Show how
to construct, using straightedge and compass, a circle that is
tangent to both lines and that has the point P as its point of
tangency to one of the lines.

Figure 1.1
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Problem 1.2 You are given a fixed triangle 7" with base B, as in Figure 1.2.
Show that 1t 1s always possible to construct, with straightedge
and compass, a straight line that 1s parallel to B and that
divides 7 into two parts of equal area. Can you similarly
divide T into five parts of equal area?

T

B
Figure 1.2

Problem 1.3 Three points are chosen on the circumference of a circle of
radius R, and the trniangle containing them i1s drawn. What
choice of points results in the triangle with the largest possi-
ble area? Justify your answer as well as you can.

Prior to describing 1n detail what 1s covered by the framework, I should
1ISsue some caveats about what 1s not. The framework as outlined in Table
1.1 1s far from comprehensive, because a complete explanation of problem-
solving performance would require many other levels of analysis. At the
microscopic (more fine-grained) end of the spectrum, one needs to be con-
cerned with the processes that Monsell (198 1) characterized as the ‘““nuts and
bolts of cognition” (neural processes and memory mechanisms, for exam-
ple). Such processes are beyond the scope of this book. Here I assume
simply that my students have memories and that those memories work
reasonably well; I worry about what my students remember but not about
the biological mechanisms that allow them to do so. At the macroscopic
end of the spectrum, there 1s the broad range of social cooperative behaviors
within which most ‘“‘real” problem solving takes place, for example, the
complex set of interactions required for the publication of this book. Those,
too, extend beyond what 1s covered here.

A warning should be 1ssued about the dangers of interpreting terminology
1n any cross-disciplinary work such as this. Many of the terms used here
have different meanings in different disciplines or have connotations that
suggest meanings that differ from the onesIintend. Forexample, the phrase
mathematical knowledge 1n the description of resources might suggest that
1Issues of classical mathematical epistemology are about to be dealt with.
They are not, at least not directly. The mathematical knowledge discussed
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here 1S the knowledge possessed by the individual, which 1s a different matter
entirely (see the following section on resources). I have tried to avoid such
“loaded” terms wherever possible, and to specify the sense in which I use
those terms whose use 1s unavoidable. Nonetheless, caveat lector. The tour
categories are briefly described below.

Resources

To understand why an attempt to solve a problem evolves the way that 1t
does, we need to know first what *‘tools’” the problem solver starts with.
Ideally this first category, resources, provides that kind of information. Itis
intended as an inventory of all the facts, procedures, and skills—1n short, the
mathematical knowledge — that the individual 1s capable of bringing to bear
on a particular problem. Theideais tocharacterize what might be called the
problem solver’s “initial search space.” What avenues are open, at least
potentially, for exploration? It 1s essential to understand that in discussing
human problem-solving performance we are concerned with an individual,
genetic epistemology rather than an abstract mathematical epistemology.*

In order to understand what someone does while working any of the
problems given above, we need to have an inventory of what the individual
knows, believes, or suspects to be true. We need to know how that informa-
tion 1s organized, stored, and accessed. Here I first consider the contents of
resources, and then briefly discuss 1ssues related to accessing that knowledge.

One broad class of resources consists of the set of relevant facts known by
the individual, with each fact indexed by the degree to which 1t 1s “known.”
As an obvious example, consider a person trying to solve Problem 1.1. Does
that person (1) know for certain that, (2) think i1t 1s likely that, (3) think 1t
might be possible that, or (4) have no 1dea that the segment CP1n Figure 1.3
1s perpendicular to the line segment VV'P? An attempt to solve Problem 1.1
may evolve 1n radically difterent ways depending on the answer to that
question. In this case the relevant information 1s clearly essential for a
solution. Other knowledge may be equally essential but 1n far less obvious
ways. Such 1s the case with broad understandings (sometimes called propo-
sitional knowledge) regarding the nature of geometric argumentation.

* For a clear contrast of genetic and abstract mathematical epistemologies, see Beth and
Piaget (1966), especially Chapters VII fl. Twocomments: (1) “Genetic’ i1s meant in the sense of
the ““genesis’ of knowledge as Piaget uses the term, and should not be confused with hereditary
(biologically genetic) traits. (2) Personally, I am more sympathetic to the epistemological
stances taken by Kitcher (1983) and Lakatos (1977) than I am to the “logicism’ advanced by
Beth or 1ts classical competitors (Platonism, formalism, constructivism), but that is neither here
nor there. Theissue here 1s not What is true? but What does the individual problem solver hold
to be true? That 1s the foundation upon which the individual builds when solving problems.
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Figure 1.3

From the fact that CPand VP in Figure 1.3 are perpendicular, the mathe-
matician derives a partial solution to Problem 1.1. This partial solution 1s
derived from a global understanding regarding geometrical deduction, in
which Figure 1.3 plays a dual role. On the one hand, Figure 1.3 1s just a
particular diagram, representing itself and no more —a circle of given radius
tangent to two particular lines. Some statements regarding the figure (e.g.,
statements that depend on the size of the angle between the two given lines or
on the radius of the given circle) pertain to that figure in particular and do not
generalize. On the other hand, Figure 1.3 serves as a generic example
representing al/l diagrams in which a circle 1s tangent to two intersecting
lines. The generic properties possessed by that circle must be shared by all
similarly structured diagrams, 1n particular by the desired solution to Prob-
lem 1.1. Since CP and VP are perpendicular in Figure 1.3, 1t must be the
case that the center of the circle one wishes to construct in Problem 1.1 lies
on the perpendicular drawn through P.

Moreover, the mathematician knows that additional generic information
derived from Figure 1.3 yields corresponding information regarding Prob-
lem 1.1. Thus, for example, proving that the line segment C'}'(when drawn
in Figure 1.3) will bisect angle PV Q, provides a solution to the given prob-
lem. Note, however, that one must understand the generic nature of the
diagram 1n Figure 1.3 in order to solve the problem in this way. Lacking
such an understanding, one sees only that the solution to Problem 1.1 will
“look like’” Figure 1.3; one does not have a means of exploiting the similar-
ity. Thus understandings about the implications of formal procedures in a
domain make up part of one’s resources regarding that domain. Similar
understandings of a much less formal nature have to do with one’s intuitions
regarding the nature of objects in a domain. Within geometry, for example,
the van Hieles’ work (see, e.g., Freudenthal, 1973; Hofter, 1983; van Hiele,
1976) clearly documents the importance of the empirical, intuitive founda-
tions that underlie the ability to deal with their formalizations as abstract
mathematical objects. The van Hieles’ theory of thought levels in geometry
specifically posits that students need to develop intuitive understandings of
the natures of geometric figures before they can deal meaningfully with the
formal aspects of geometry.
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B
Figure 1.4

A second class of resources consists of the algorithmic procedures known
by the individual. Can the problem solver construct the perpendicular to
the top line in Figure 1.1 that passes through P, for example, or bisect the
acute angle at ’'? Having determined the location of the line L that meets
the conditions of Problem 1.2, can the problem solver use straightedge and
compass to divide a given line segment by V2. and construct a line parallel to
the base B through the designated point (see Figure 1.4)? Algonthmic
procedures include all standard constructions, algebraic, manipulations,
differentiation, and so forth.

Another class of resources qualitatively difterent from the algorithmic
procedures like those just mentioned consists of what might be called routine
procedures. Problem 1.3, for example, can be worked as a routine multi-
variate calculus problem. To solve such problems one obtains a formula for
the desired quantity (here the area of a representative triangle) as a function
of two or more variables and then applies the relevant techniques of the
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