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7 Introduction 7

In this volume, insight into the discoverers, their inno-
vations, and how their achievements resulted in 

changing our world today is presented. The reader is 
invited to delve deeply into the mathematical workings or 
pursue these topics in a more general manner. A calculus 
student could do worse than to have readily available the 
history and development of calculus, its applications and 
examples, plus the major players of the math all gathered 
under one editorial roof.

Some old themes of human achievement and prog-
ress appear within these pages, such as the classic brilliant 
mathematical mind recognizing past accomplishment and 
subsequently forming that past brilliancy into yet another. 
Call this theme “cooperation.” But it isn’t always human 
nature to cooperate. Rather, sometimes competition rules 
the day, wherein brilliant minds who cannot accept the 
achievements of others are stirred to prove them wrong, 
but in so doing, also make great discoveries. And indeed, 
it turns out that not all of analysis and calculus discover-
ies have consisted of pleasant relationships—battles have 
even broken out within the same family.

One might suspect that, since the world awaited the 
discovery of calculus, we would have witnessed fireworks 
between the two men who suddenly—simultaneously and 
independently—discovered it. We might even suspect foul 
play, or at least remark to ourselves, “Come on, two guys dis-
cover calculus at the same time? What are the odds of that?”

But simultaneously discover calculus they did. And 
the times have proven convincingly that the approach 
of Sir Isaac Newton (circa 1680, England) differed from 
that of the other discoverer, Gottfried Wilhelm Leibniz 
(1684, Germany). Both discoveries are recognized today as 
legitimate.

That two people find an innovation that reshapes 
the world at any time, let alone the same time, is not so 



7 The Britannica Guide to Analysis and Calculus 7

14

remote from believability when considering what was 
swirling around these men in the worldwide mathematics 
community. The 60-year span of 1610–1670 that immedi-
ately preceded calculus was filled with novel approaches 
both competitive and cooperative. Progress was sought 
on a broad scale. Newton and Leibniz were inspired by 
this activity.

Newton relied upon, among others, the works of 
Dutch mathematician Frans van Schooten and English 
mathematician John Wallis. Leibniz’s influences included 
a 1672 visit from Dutch scientist Christiaan Huygens. Both 
Newton and Leibniz were influenced greatly by the work 
of Newton’s teacher, Isaac Barrow (1670). But Barrow’s 
geometrical lectures proceeded geometrically, thus limit-
ing him from reaching the final plateau of the true calculus 
that was about to be found.

Newton was extremely committed to rigour with his 
mathematics. A man not given to making noise, he was 
slow to publish. Perhaps his calculus was discovered en 
route to pursuits of science. His treatise on fluxions, nec-
essary for his calculus, was developed in 1671 but was not 
published until sixty-five years later, in 1736, long after the 
birth of his calculus.

Leibniz, on the contrary, favoured a vigorous approach 
and had a talent for attracting supporters. As it happened, 
the dispute between followers of Leibniz and Newton 
grew bitter, favouring Leibniz’s ability to further his own 
works. Newton was less well known at the time. And not 
only did Leibniz’s discovery catch hold because his fol-
lowers helped push it—the locus of mathematics had 
now shifted from England to the Continent. Historian 
Michael Mahoney writes of a certain tragedy concerning 
Newton’s mathematical isolation: “Whatever the revo-
lutionary influence of [Newton’s] Principia, math would 
have looked much the same if Newton had never existed. 
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In that endeavour he belonged to a community, and he was 
far from indispensable to it.” While Mahoney refers here 
solely to Newton’s mathematics notoriety, Newton’s enor-
mous science contributions remain another matter.

Calculus soon established the deep connection 
between geometry and physics, in the process trans-
forming physics and giving new impetus to the study of 
geometry. Calculus became a prerequisite for the study of 
physics, chemistry, biology, economics, finance, actuarial 
sciences, engineering, and many other fields. Calculus was 
exploding into weighty fragments, each of which became 
an important subject of its own and taking on its own 
identity: ordinary calculus, partial differentiation, differ-
ential equations, calculus of variations, infinite series, and 
differential geometry. Applications to the sciences were 
discovered.

Both preceding and following the discovery of calcu-
lus, the Swiss Bernoulli family provided a compelling study 
of the strange ways in which brilliance is revealed. The 
Bernoulli brothers, Jakob (1655–1705) and Johann (1667–
1748), were instructed by their father, a pharmacist, to 
take up vocations in theology and medicine, respectively. 
The kids didn’t listen to Dad. They liked math better.

Brother Jakob went on to coin the term “integral” in 
this new field of calculus. Jakob also applied calculus to 
bridge building. His catenary studies of a chain suspended 
from two poles was an idea that found a home in the build-
ing of suspension bridges. Jakob’s probability theory led 
to a formula still used in most high school intermediate 
algebra classes to determine the probability that, say, 
a baseball team will win three games out of four against 
another team if their past records are known.

Jakob’s brother Johann made significant contribu-
tions to math applied to the building of clocks, ship 
sails, and optics. He also discovered what is now known 
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as L’Hôpital’s rule. (Oddly, Guillaume-François-Antoine 
de L’Hôpital took calculus lessons from Johann. Yet in 
L’Hôpital’s widely accepted textbook (1696), Analysis of the 
Infinitely Small, the aforementioned innovation of Johann 
Bernoulli appeared as L’Hôpital’s rule and notably was not 
called Bernoulli’s rule.) Undaunted, Johann began serious 
study of other pursuits with his brother.

That endeavour proved to be a short-lived attempt at 
cooperation.

The two fell into a disagreement over the equation 
of the path of a particle if acted upon by gravity alone (a 
problem first tackled by Galileo, who had been dropping 
stones and other objects from the Leaning Tower of Pisa in 
the early 1600s). The path of the Bernoulli brothers’ argu-
ment led to a protracted and bitter dispute between them. 
Jakob went so far as to offer a reward for the solution. 
Johann, seeing that move as a slap in the face, took up the 
challenge and solved it. Jakob, however, rejected Johann’s 
solution. Ironically, the brothers were possibly the only 
two people in the world capable of understanding the 
concept. But whether they were engaged in cooperation, 
competition, or a combination of both, what emerged was 
yet another Bernoulli brilliancy, the calculus of variations. 
The mathematical world was grateful.

Jakob died a few years later. Johann went on to more 
fame. But with his battling brother gone, his new rival may 
very well have become his own son, Daniel.

Daniel Bernoulli was to become the most prolific and 
distinguished of the Bernoulli family. Oddly enough, this 
development does not appear to have sat well with his 
father, Johann. Usually a parent brags about his child, but 
not this time. The acorn may not have fallen far enough 
from the tree for Johann’s liking, as his son’s towering 
intellect cast his own accomplishments in shadow—or so 
the father seemed to think.
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It wasn’t long before Daniel was making great inroads 
into differential equations and probability theory, win-
ning prizes for his work on astronomy, gravitation, tides, 
magnetism, ocean currents, and the behaviour of ships at 
sea. His aura grew with further achievements in medicine, 
mechanics, and physics. By 1738 father Johann had had 
enough. He is said to have published Hydraulica with as 
much intent to antagonize his son as to upstage him.

Daniel, perhaps as a peace offering, shared with his 
father a prize he, Daniel, won for the study of planetary 
orbits. But his father was vindictive. Johann Bernoulli 
threw Daniel out of the house and said the prize should 
have been his, Johann’s, alone.

Despite the grand achievements and discoveries of 
Newton, Leibniz, the battling Bernoullis, and many others, 
the output of Leonhard Euler (1707–1783) is said to have 
dwarfed them all. Euler leaves hints of having been the 
cooperative type, taking advantage of what he saw as func-
tional, rather than fretting over who was getting credit.

To understand Euler’s contributions we should first 
remind ourselves of the branch of mathematics in which 
he worked. Analysis is defined as the branch of math-
ematics dealing with continuous change and certain 
emergent processes: limits, differentiation, integration, 
and more. Analysis had the attention of the mathemat-
ics world. Euler took advantage and apparently not in a 
selfish manner.

By way of example, 19-year-old Joseph-Louis Lagrange, 
who was to follow Euler as a leader of European mathe-
matics, wrote to Euler in 1755 to announce a new symbol 
for calculus—it had no reference to geometric configura-
tion, which was quite distinct from Euler’s mathematics. 
Euler might have said, “Who is this upstart? At 19, what 
could he possibly know?” Euler used geometry. Lagrange 
didn’t. Euler immediately adopted Lagrange’s ideas, and 
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the two revised the subject creating new techniques. Euler 
demonstrated the traits of a person with an open mind. 
That mind would make computer software applications 
possible for 21st century commercial transactions.

Euler’s Introduction to the Analysis of the Infinite (1748) 
led to the zeta function, which strengthened proof that 
the set of prime numbers was an infinite set. A prime num-
ber has only two factors, 1 and itself. In other words, only 
two numbers multiply out to a prime number. Examples 
of the primes are 2, 3, 5, 7, 11, 13, and 17. The question was 
whether the set of primes was infinite. The answer from 
the man on the street might be, “Does it matter?”

The answer to that question is a word that boggles the 
mind of all new math students—and many mature ones. It’s 
the word “rigour,” associated with the term “hard work.” 
Rigour means real proof and strictness of judgment—
demonstrating something mathematically until we know 
that it is mathematically true.

That’s what Euler’s zeta function did for prime numbers—
proved that the set was infinite. Today, prime numbers are 
the key to the security of most electronic transactions. 
Sensitive information such as our bank balances, account 
numbers, and Social Security numbers are “hidden” in 
the infinite number of primes. Had we not been assured 
that the set of primes was infinite through Euler’s rigour, 
we could not have used primes for keeping our computer 
credit card transactions secure.

But just when it seems that rigour is crucial, it occasion-
ally proves to be acceptable if delivered later. That story 
begins with the Pythagoras cult investigating music, which 
led to applications in understanding heat, sound, light, 
fluid dynamics, elasticity, and magnetism. First the music, 
then the rigour. The Pythagoreans discovered that ratios of 
2:1 or 3:2 for violin string lengths yielded the most pleasing 
sounds. Some 2,000 years later, Brook Taylor (1714) elevated 
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that theory and calculated the frequency today known as 
pitch. Jean Le Rond d’Alembert (1746) showed the intri-
cacies by applying partial derivatives. Euler responded to 
that, and his response was held suspect by Daniel Bernoulli, 
who smelled an error with Euler’s work but couldn’t find 
it. The problem? Lack of rigour. In fact Euler had made a 
mistake. It would take another century to figure out this 
error of Euler’s suspected by Bernoulli. But the lack of 
rigour did not get in the way. Discoveries were happening 
so fast both around this theory and caused by it, that math 
did not and could not wait for the rigour, which in this case 
was a good thing. French mathematician Pierre-Simon de 
Laplace (1770s) and Scottish physicist James Clerk Maxwell 
(1800s) extended and refined the theory that would later 
link Pythagorean harmony, the work of Taylor, d’Alembert, 
Laplace, Maxwell, and finally Euler’s amended work, and 
others, with mathematical knowledge of waves that gave 
us radio, television, and radar. All because of music and 
generations of mathematicians’ curiosity and desire to see 
knowledge stretched to the next destination.

One extra note on rigour and its relationship to analy-
sis. Augustin-Louis Cauchy (1789–1857) proposed basing 
calculus on a sophisticated and difficult interpretation of 
two points arbitrarily close together. His students hated 
it. It was too hard. Cauchy was ordered to teach it anyway 
so students could learn and use it. His methods gradually 
became established and refined to form the core of mod-
ern rigorous calculus, the subject now called mathematical 
analysis. With rigour Cauchy proved that integration and 
differentiation are mutually inverse, giving for the first 
time the rigorous foundation to all elementary calculus 
of his day.

Rigour, vigour, cooperation, and competition: prod-
ucts of the mind, heart, soul, and psyche await readers in 
The Britannica Guide to Analysis and Calculus.

7 Introduction 7
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CHAPTER 1
MeAsURInG 

ContInUoUs CHAnGe

      Analysis is the branch of mathematics that deals with 
continuous change and with certain general types of 

processes that have emerged from the study of continuous 
change, such as limits, differentiation, and integration. 
Since the discovery of the differential and integral calcu-
lus by Isaac Newton and Gottfried Wilhelm Leibniz at the 
end of the 17th century, analysis has grown into an enor-
mous and central fi eld of mathematical research, with 
applications throughout the sciences and in areas such as 
fi nance, economics, and sociology. 

 The historical origins of analysis can be found in 
attempts to calculate spatial quantities such as the length 
of a curved line or the area enclosed by a curve. These 
problems can be stated purely as questions of mathe-
matical technique, but they have a far wider importance 
because they possess a broad variety of interpretations in 
the physical world. The area inside a curve, for instance, 
is of direct interest in land measurement: how many acres 
does an irregularly shaped plot of land contain? But the 
same technique also determines the mass of a uniform 
sheet of material bounded by some chosen curve or the 
quantity of paint needed to cover an irregularly shaped sur-
face. Less obviously, these techniques can be used to fi nd 
the total distance traveled by a vehicle moving at varying 
speeds, the depth at which a ship will fl oat when placed in 
the sea, or the total fuel consumption of a rocket. 

 Similarly, the mathematical technique for fi nding a 
tangent line to a curve at a given point can also be used 
to calculate the steepness of a curved hill or the angle 
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through which a moving boat must turn to avoid a colli-
sion. Less directly, it is related to the extremely important 
question of the calculation of instantaneous velocity or 
other instantaneous rates of change, such as the cooling 
of a warm object in a cold room or the propagation of a 
disease organism through a human population.

Bridging the gap Between 
arithmetic and geometry

Mathematics divides phenomena into two broad classes, 
discrete and continuous, historically corresponding to 
the division between arithmetic and geometry. Discrete 
systems can be subdivided only so far, and they can 
be described in terms of whole numbers 0, 1, 2, 3, … . 
Continuous systems can be subdivided indefinitely, and 
their description requires the real numbers, numbers rep-
resented by decimal expansions such as 3.14159…, possibly 
going on forever. Understanding the true nature of such 
infinite decimals lies at the heart of analysis.

The distinction between discrete mathematics and 
continuous mathematics is a central issue for mathe-
matical modeling, the art of representing features of the 
natural world in mathematical form. The universe does 
not contain or consist of actual mathematical objects, but 
many aspects of the universe closely resemble mathemati-
cal concepts. For example, the number 2 does not exist as a 
physical object, but it does describe an important feature 
of such things as human twins and binary stars. In a similar 
manner, the real numbers provide satisfactory models for 
a variety of phenomena, even though no physical quantity 
can be measured accurately to more than a dozen or so 
decimal places. It is not the values of infinitely many deci-
mal places that apply to the real world but the deductive 
structures that they embody and enable.
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The atom is one of the smallest pieces of matter. It is made up of three smaller 
pieces—the neutron, the proton, and the electron. There are branches of science 
that study matter on this tiny scale, but calculus takes a larger, more continu-
ous view. Photodisc/Getty Images

Analysis came into being because many aspects of the 
natural world can profitably be considered as being con-
tinuous—at least, to an excellent degree of approximation. 
Again, this is a question of modeling, not of reality. Matter 
is not truly continuous. If matter is subdivided into suf-
ficiently small pieces, then indivisible components, or 
atoms, will appear. But atoms are extremely small, and, 
for most applications, treating matter as though it were 
a continuum introduces negligible error while greatly 
simplifying the computations. For example, continuum 
modeling is standard engineering practice when study-
ing the flow of fluids such as air or water, the bending of 
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elastic materials, the distribution or flow of electric cur-
rent, and the flow of heat.

discovery of the calculus and 
the search for foundations

Two major steps led to the creation of analysis. The first 
was the discovery of the surprising relationship, known 
as the fundamental theorem of calculus, between spatial 
problems involving the calculation of some total size or 
value, such as length, area, or volume (integration), and 
problems involving rates of change, such as slopes of 
tangents and velocities (differentiation). Credit for the 
independent discovery, about 1670, of the fundamental 
theorem of calculus together with the invention of tech-
niques to apply this theorem goes jointly to Gottfried 
Wilhelm Leibniz and Isaac Newton.

While the utility of calculus in explaining physical 
phenomena was immediately apparent, its use of infinity 
in calculations (through the decomposition of curves, geo-
metric bodies, and physical motions into infinitely many 
small parts) generated widespread unease. In particular, 
the Anglican bishop George Berkeley published a famous 
pamphlet, The Analyst; or, A Discourse Addressed to an Infidel 
Mathematician (1734), pointing out that calculus—at least, 
as presented by Newton and Leibniz—possessed serious 
logical flaws. Analysis grew out of the resulting pains-
takingly close examination of previously loosely defined 
concepts such as function and limit.

Newton’s and Leibniz’s approach to calculus had been 
primarily geometric, involving ratios with “almost zero” 
divisors—Newton’s “fluxions” and Leibniz’s “infinitesi-
mals.” During the 18th century calculus became increasingly 
algebraic, as mathematicians—most notably the Swiss 
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Leonhard Euler and the Italian French Joseph-Louis 
Lagrange—began to generalize the concepts of continu-
ity and limits from geometric curves and bodies to more 
abstract algebraic functions and began to extend these 
ideas to complex numbers. Although these developments 
were not entirely satisfactory from a foundational stand-
point, they were fundamental to the eventual refinement 
of a rigorous basis for calculus by the Frenchman Augustin-
Louis Cauchy, the Bohemian Bernhard Bolzano, and above 
all the German Karl Weierstrass in the 19th century.

numBers and functions

Number Systems

There are a variety of number systems—that is, collections 
of mathematical objects (numbers) that can be operated 
on by some or all of the standard operations of arithmetic: 
addition, multiplication, subtraction, and division. These 
main number systems are:

• The natural numbers N. These numbers are 
the positive (and zero) whole numbers 0, 1, 2, 3, 
4, 5, … . If two such numbers are added or mul-
tiplied, the result is again a natural number.

• The integers Z. These numbers are the positive 
and negative whole numbers … , −5, −4, −3, −2, −1, 
0, 1, 2, 3, 4, 5, … . If two such numbers are added, 
subtracted, or multiplied, the result is again an 
integer.

• The rational numbers Q. These numbers are 
the positive and negative fractions p/q where 
p and q are integers and q ≠ 0. If two such 
numbers are added, subtracted, multiplied, or 
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divided (except by 0), the result is again a ratio-
nal number.

• The real numbers R. These numbers are the 
positive and negative infinite decimals (includ-
ing terminating decimals that can be considered 
as having an infinite sequence of zeros on the 
end). If two such numbers are added, sub-
tracted, multiplied, or divided (except by 0), 
the result is again a real number.

• The complex numbers C. These numbers are 
of the form x + iy where x and y are real num-
bers and i = √−1. If two such numbers are added, 
subtracted, multiplied, or divided (except by 
0), the result is again a complex number.

Functions

In simple terms, a function f is a mathematical rule that 
assigns to a number x (in some number system and pos-
sibly with certain limitations on its value) another number 
f(x). For example, the function “square” assigns to each 
number x its square x 2. Note that it is the general rule, not 
specific values, that constitutes the function.

The common functions that arise in analysis are usu-
ally definable by formulas, such as f(x) = x 2. They include 
the trigonometric functions sin (x), cos (x), tan (x), and so 
on; the logarithmic function log (x); the exponential func-
tion exp (x) or ex (where e = 2.71828… is a special constant 
called the base of natural logarithms); and the square root 
function √x. However, functions need not be defined by 
single formulas (indeed by any formulas). For example, the 
absolute value function |x| is defined to be x when x ≥ 0 but 
−x when x < 0 (where ≥ indicates greater than or equal to 
and < indicates less than).
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the proBlem of continuity

The logical difficulties involved in setting up calculus on 
a sound basis are all related to one central problem, the 
notion of continuity. This in turn leads to questions about 
the meaning of quantities that become infinitely large or 
infinitely small—concepts riddled with logical pitfalls. 
For example, a circle of radius r has circumference 2πr 
and area πr2, where π is the famous constant 3.14159…. 
Establishing these two properties is not entirely straight-
forward, although an adequate approach was developed 
by the geometers of ancient Greece, especially Eudoxus 
and Archimedes. It is harder than one might expect to 
show that the circumference of a circle is proportional to 
its radius and that its area is proportional to the square of 
its radius. The really difficult problem, though, is to show 
that the constant of proportionality for the circumfer-
ence is precisely twice the constant of proportionality for 
the area—that is, to show that the constant now called 
π really is the same in both formulas. This boils down 
to proving a theorem (first proved by Archimedes) that 
does not mention π explicitly at all: the area of a circle 
is the same as that of a rectangle, one of whose sides is 
equal to the circle’s radius and the other to half the circle’s 
circumference.

Approximations in Geometry

A simple geometric argument shows that such an equal-
ity must hold to a high degree of approximation. The 
idea is to slice the circle like a pie, into a large number 
of equal pieces, and to reassemble the pieces to form an 
approximate rectangle. Then the area of the “rectangle” 
is closely approximated by its height, which equals the 
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Geometry is a study in approximations in many ways. Mathematicians dis-
covered the area of a circle by breaking it into ever-smaller triangles and then 
fitting those triangles into a rectangle, a shape for which they knew how to 
measure the area. Copyright Encyclopædia Britannica; rendering for 
this edition by Rosen Educational Services

circle’s radius, multiplied by the length of one set of 
curved sides—which together form one-half of the circle’s 
circumference. Unfortunately, because of the approxima-
tions involved, this argument does not prove the theorem 
about the area of a circle. Further thought suggests that 
as the slices get very thin, the error in the approximation 
becomes very small. But that still does not prove the theo-
rem, for an error, however tiny, remains an error. If it made 
sense to talk of the slices being infinitesimally thin, how-
ever, then the error would disappear altogether, or at least 
it would become infinitesimal.

Actually, there exist subtle problems with such a 
construction. It might justifiably be argued that if the 
slices are infinitesimally thin, then each has zero area; 
hence, joining them together produces a rectangle with 
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zero total area since 0 + 0 + 0 +· · · = 0. Indeed, the very 
idea of an infinitesimal quantity is paradoxical because 
the only number that is smaller than every positive num-
ber is 0 itself.

The same problem shows up in many different guises. 
When calculating the length of the circumference of a cir-
cle, it is attractive to think of the circle as a regular polygon 
with infinitely many straight sides, each infinitesimally 
long. (Indeed, a circle is the limiting case for a regular 
polygon as the number of its sides increases.) But while 
this picture makes sense for some purposes—illustrating 
that the circumference is proportional to the radius—for 
others it makes no sense at all. For example, the “sides” 
of the infinitely many-sided polygon must have length 0, 
which implies that the circumference is 0 + 0 + 0 + · · · = 0, 
clearly nonsense.

Infinite Series

Similar paradoxes occur in the manipulation of infinite 
series, such as

   1⁄2 + 1⁄4 + 1⁄8 + · · · (1)

continuing forever. This particular series is relatively 
harmless, and its value is precisely 1. To see why this should 
be so, consider the partial sums formed by stopping after 
a finite number of terms. The more terms, the closer the 
partial sum is to 1. It can be made as close to 1 as desired 
by including enough terms. Moreover, 1 is the only num-
ber for which the above statements are true. It therefore 
makes sense to define the infinite sum to be exactly 1. 
(Series whose successive terms differ by a common ratio, 
in this example by 1⁄2, are known as geometric series.)
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Other infinite series are less well-behaved—for example, 
the series

   1 − 1 + 1 − 1 + 1 − 1 + · · · . (2)

If the terms are grouped one way, (1 − 1) + (1 − 1) + (1 − 1) + ···, 
then the sum appears to be 0 + 0 + 0 +·· · = 0. But if the terms 
are grouped differently, 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·, then 
the sum appears to be 1 + 0 + 0 + 0 + · · · = 1. It would be fool-
ish to conclude that 0 = 1. Instead, the conclusion is that 
infinite series do not always obey the traditional rules of 
algebra, such as those that permit the arbitrary regrouping 
of terms.

The difference between series (1) and (2) is clear from 
their partial sums. The partial sums of (1) get closer and 
closer to a single fixed value—namely, 1. The partial sums 
of (2) alternate between 0 and 1, so that the series never 
settles down. A series that does settle down to some defi-
nite value, as more and more terms are added, is said to 
converge, and the value to which it converges is known as 
the limit of the partial sums. All other series are said to 
diverge.

The Limit of a Sequence

All the great mathematicians who contributed to the 
development of calculus had an intuitive concept of 
limits, but it was only with the work of the German math-
ematician Karl Weierstrass that a completely satisfactory 
formal definition of the limit of a sequence was obtained.

Consider a sequence (an) of real numbers, by which is 
meant an infinite list a0, a1, a2, …. It is said that an converges 
to (or approaches) the limit a as n tends to infinity, if the 
following mathematical statement holds true: For every 
ε > 0, there exists a whole number N such that |an  − a| < ε 
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for all n > N. Intuitively, this statement says that, for any 
chosen degree of approximation (ε), there is some point 
in the sequence (N) such that, from that point onward 
(n > N), every number in the sequence (an ) approximates 
a within an error less than the chosen amount (|an  − a| < ε). 
Stated less formally, when n becomes large enough, an can 
be made as close to a as desired.

For example, consider the sequence in which 
an  = 1/(n + 1), that is, the sequence 1, 1 ⁄2, 1⁄3, 1⁄4, 1⁄5, …, going 
on forever. Every number in the sequence is greater than 
zero, but, the farther along the sequence goes, the closer 
the numbers get to zero. For example, all terms from the 
10th onward are less than or equal to 0.1, all terms from 
the 100th onward are less than or equal to 0.01, and so on. 
Terms smaller than 0.000000001, for instance, are found 
from the 1,000,000,000th term onward. In Weierstrass’s 
terminology, this sequence converges to its limit 0 as 
n tends to infinity. The difference |an  − 0| can be made 
smaller than any ε by choosing n sufficiently large. In fact, 
n > 1 ⁄ε suffices. So, in Weierstrass’s formal definition, N is 
taken to be the smallest integer > 1⁄ε.

This example brings out several key features of 
Weierstrass’s idea. First, it does not involve any mystical 
notion of infinitesimals. All quantities involved are ordi-
nary real numbers. Second, it is precise. If a sequence 
possesses a limit, then there is exactly one real number 
that satisfies the Weierstrass definition. Finally, although 
the numbers in the sequence tend to the limit 0, they need 
not actually reach that value.

Continuity of Functions

The same basic approach makes it possible to formalize 
the notion of continuity of a function. Intuitively, a func-
tion f(t) approaches a limit L as t approaches a value p if, 
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whatever size error can be tolerated, f(t) differs from L by 
less than the tolerable error for all t sufficiently close to p. 
But what exactly is meant by phrases such as “error,” “pre-
pared to tolerate,” and “sufficiently close”?

Just as for limits of sequences, the formalization of 
these ideas is achieved by assigning symbols to “tolerable 
error” (ε) and to “sufficiently close” (δ). Then the defini-
tion becomes: A function f(t) approaches a limit L as t 
approaches a value p if for all ε > 0 there exists δ > 0 such 
that |f(t) − L| < ε whenever |t − p| < δ. (Note carefully that 
first the size of the tolerable error must be decided upon. 
Only then can it be determined what it means to be “suf-
ficiently close.”)

Having defined the notion of limit in this context, 
it is straightforward to define continuity of a function. 
Continuous functions preserve limits. This means that a 
function f is continuous at a point p if the limit of f (t) as 
t approaches p is equal to f(p). And f is continuous if it is 
continuous at every p for which f (p) is defined. Intuitively, 
continuity means that small changes in t produce small 
changes in f(t)—there are no sudden jumps.

properties of the real numBers

Earlier, the real numbers were described as infinite deci-
mals, although such a description makes no logical sense 
without the formal concept of a limit. This is because an 
infinite decimal expansion such as 3.14159… (the value of 
the constant π) actually corresponds to the sum of an infi-
nite series 3 + 1⁄10 + 4 ⁄100 + 1 ⁄1,000 + 5 ⁄10,000 + 9⁄100,000 + · · ·, and the 
concept of limit is required to give such a sum meaning.

It turns out that the real numbers (unlike, say, the ratio-
nal numbers) have important properties that correspond 
to intuitive notions of continuity. For example, consider 
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the function x2 − 2. This function takes the value −1 when 
x = 1 and the value +2 when x = 2. Moreover, it varies con-
tinuously with x. It seems intuitively plausible that, if a 
continuous function is negative at one value of x (here at 
x = 1) and positive at another value of x (here at x = 2), then 
it must equal zero for some value of x that lies between 
these values (here for some value between 1 and 2). This 
expectation is correct if x is a real number: the expression 
is zero when x = √2 = 1.41421…. However, it is false if x is 
restricted to rational values because there is no rational 
number x for which x2 = √2. (The fact that 2 is irrational has 
been known since the time of the ancient Greeks.)

In effect, there are gaps in the system of rational 
numbers. By exploiting those gaps, continuously varying 
quantities can change sign without passing through zero. 
The real numbers fill in the gaps by providing additional 
numbers that are the limits of sequences of approximating 
rational numbers. Formally, this feature of the real num-
bers is captured by the concept of completeness.

One awkward aspect of the concept of the limit of a 
sequence (an ) is that it can sometimes be problematic to 
find what the limit a actually is. However, there is a closely 
related concept, attributable to the French mathemati-
cian Augustin-Louis Cauchy, in which the limit need not 
be specified. The intuitive idea is simple. Suppose that a 
sequence (an) converges to some unknown limit a. Given 
two sufficiently large values of n, say r and s, then both ar and 
as are very close to a, which in particular means that they 
are very close to each other. The sequence (an) is said to be a 
Cauchy sequence if it behaves in this manner. Specifically, 
(an) is Cauchy if, for every ε > 0, there exists some N such 
that, whenever r, s > N, |ar  − as | < ε. Convergent sequences 
are always Cauchy, but is every Cauchy sequence conver-
gent? The answer is yes for sequences of real numbers but 
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no for sequences of rational numbers (in the sense that 
they may not have a rational limit).

A number system is said to be complete if every Cauchy 
sequence converges. The real numbers are complete, while 
the rational numbers are not. Completeness is one of the 
key features of the real number system, and it is a major 
reason why analysis is often carried out within that system.

The real numbers have several other features that 
are important for analysis. They satisfy various ordering 
properties associated with the relation less than (<). The 
simplest of these properties for real numbers x, y, and z are:

 
• Trichotomy law. One and only one of the state-

ments x < y, x = y, and x > y is true.
• Transitive law. If x < y and y < z, then x < z.
• If x < y, then x + z < y + z for all z.
• If x < y and z > 0, then xz < y z.

More subtly, the real number system is Archimedean. 
This means that, if x and y are real numbers and both 
x, y > 0, then x + x +· · ·+ x > y for some finite sum of x’s. 
The Archimedean property indicates that the real num-
bers contain no infinitesimals. Arithmetic, completeness, 
ordering, and the Archimedean property completely char-
acterize the real number system.
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CALCULUs

       With the technical preliminaries out of the way, the 
two fundamental aspects of calculus may be 

examined: 

•   Finding the instantaneous rate of change of a 
variable quantity. 

•  Calculating areas, volumes, and related “totals” 
by adding together many small parts.  

 Although it is not immediately obvious, each process 
is the inverse of the other, and this is why the two are 
brought together under the same overall heading. The fi rst 
process is called differentiation, the second integration.   

 differentiation 

 Differentiation is about rates of change. For geometric 
curves and fi gures, this means determining the slope, or 
tangent, along a given direction. Being able to calculate 
rates of change also allows one to determine where maxi-
mum and minimum values occur—the title of Leibniz’s 
fi rst calculus publication was “ Nova Methodus pro Maximis 
et Minimis, Itemque Tangentibus, qua nec Fractas nec Irrationales 
Quantitates Moratur, et Singulare pro illi Calculi Genus ” (1684; 
“A New Method for Maxima and Minima, as Well as 
Tangents, Which Is Impeded Neither by Fractional nor by 
Irrational Quantities, and a Remarkable Type of Calculus 
for This”). Early applications for calculus included the 
study of gravity and planetary motion, fl uid fl ow and ship 
design, and geometric curves and bridge engineering.   

CHAPTER 2
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Average Rates of Change 

A simple illustrative example of rates of change is the 
speed of a moving object. An object moving at a constant 
speed travels a distance that is proportional to the time. 
For example, a car moving at 50 kilometres per hour (km/
hr) travels 50 km (31 miles) in 1 hr, 100 km (62 miles) in 2 hr, 
150 km (93 miles) in 3 hr, and so on. A graph of the distance 
traveled against the time elapsed looks like a straight line 
whose slope, or gradient, yields the speed.

Constant speeds pose no particular problems—in 
the example above, any time interval yields the same 
speed—but variable speeds are less straightforward. 
Nevertheless, a similar approach can be used to calculate 
the average speed of an object traveling at varying speeds: 
simply divide the total distance traveled by the time taken 
to traverse it. Thus, a car that takes 2 hr to travel 100 km 
moves with an average speed of 50 km/hr. However, it 
may not travel at the same speed for the entire period. 
It may slow down, stop, or even go backward for parts of 
the time, provided that during other parts it speeds up 
enough to cover the total distance of 100 km. Thus, aver-
age speeds—certainly if the average is taken over long 
intervals of time—do not tell us the actual speed at any 
given moment.

Instantaneous Rates of Change

In fact, it is not so easy to make sense of the concept of 
“speed at a given moment.” How long is a moment? Zeno of 
Elea, a Greek philosopher who flourished about 450 BCE, 
pointed out in one of his celebrated paradoxes that a mov-
ing arrow, at any instant of time, is fixed. During zero time 
it must travel zero distance. Another way to say this is 
that the instantaneous speed of a moving object cannot be 
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calculated by dividing the distance that it travels in zero 
time by the time that it takes to travel that distance. This 
calculation leads to a fraction, 0⁄0, that does not possess 
any well-defined meaning. Normally, a fraction indicates 
a specific quotient. For example, 6⁄3 means 2, the number 
that, when multiplied by 3, yields 6. Similarly, 0⁄0 should 
mean the number that, when multiplied by 0, yields 0. But 
any number multiplied by 0 yields 0. In principle, then, 
0⁄0 can take any value whatsoever, and in practice it is best 
considered meaningless.

Despite these arguments, there is a strong feeling that 
a moving object does move at a well-defined speed at each 
instant. Passengers know when a car is traveling faster or 
slower. So the meaninglessness of 0⁄0 is by no means the 
end of the story. Various mathematicians—both before 
and after Newton and Leibniz—argued that good approx-
imations to the instantaneous speed can be obtained by 
finding the average speed over short intervals of time. If 
a car travels 5 metres (16.4 feet) in one second, then its 
average speed is 18 km/hr (11 mph), and, unless the speed 
is varying wildly, its instantaneous speed must be close to 
18 km/hr. A shorter time period can be used to refine the 
estimate further.

If a mathematical formula is available for the total dis-
tance traveled in a given time, then this idea can be turned 
into a formal calculation. For example, suppose that 
after time t seconds an object travels a distance t2 metres. 
(Similar formulas occur for bodies falling freely under 
gravity, so this is a reasonable choice.) To determine the 
object’s instantaneous speed after precisely one second, 
its average speed over successively shorter time intervals 
will be calculated.

To start the calculation, observe that between time 
t = 1 and t = 1.1 the distance traveled is 1.12 − 1 = 0.21. The 
average speed over that interval is therefore 0.21/0.1 = 2.1 
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metres (6.9 feet) per second. For a finer approximation, 
the distance traveled between times t = 1 and t = 1.01 is 
1.012 − 1 = 0.0201, and the average speed is 0.0201/0.01 = 2.01 
metres per second. Table 1 displays successively finer 
approximations to the average speed after one second. It 
is clear that the smaller the interval of time, the closer the 
average speed is to 2 metres (6.6 feet) per second.

The structure of the entire table points very compel-
lingly to an exact value for the instantaneous speed—namely, 
2 metres per second. Unfortunately, 2 cannot be found 
anywhere in the table. However far it is extended, every 
entry in the table looks like 2.000…0001, with perhaps 
a huge number of zeros, but always with a 1 on the end. 
Neither is there the option of choosing a time interval of 
0, because then the distance traveled is also 0, which leads 
back to the meaningless fraction 0⁄0.

Formal Definition of the Derivative

More generally, suppose an arbitrary time interval h 
starts from the time t = 1. Then the distance traveled is 
(1 + h)2 −12, which simplifies to give 2h + h2. The time taken 
is h. Therefore, the average speed over that time interval 
is (2h + h2)/h, which equals 2 + h, provided h ≠ 0. Obviously, 
as h approaches zero, this average speed approaches 
2. Therefore, the definition of instantaneous speed is 
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satisfied by the value 2 and only that value. What has not 
been done here—indeed, what the whole procedure delib-
erately avoids—is to set h equal to 0. As Bishop George 
Berkeley pointed out in the 18th century, to replace 
(2h + h2)/h by 2 + h, one must assume h is not zero, and that 
is what the rigorous definition of a limit achieves.

Even more generally, suppose the calculation starts 
from an arbitrary time t instead of a fixed t = 1. Then the 
distance traveled is (t + h)2 − t2, which simplifies to 2th + h2. 
The time taken is again h. Therefore, the average speed 
over that time interval is (2th + h2)/h, or 2t + h. Obviously, 
as h approaches zero, this average speed approaches the 
limit 2t.

This procedure is so important that it is given a special 
name: the derivative of t2 is 2t, and this result is obtained 
by differentiating t2 with respect to t.

One can now go even further and replace t2 by any 
other function f of time. The distance traveled between 
times t and t + h is f (t + h) − f (t). The time taken is h. So the 
average speed is

   (f(t + h) − f(t))/h. (3)

If (3) tends to a limit as h tends to zero, then that limit 
is defined as the derivative of f(t), written f ′(t). Another 
common notation for the derivative is df/dt, symbolizing 
a small change in f divided by a small change in t. A func-
tion is differentiable at t if its derivative exists for that 
specific value of t. It is differentiable if the derivative 
exists for all t for which f(t) is defined. A differentiable 
function must be continuous, but the converse is false. 
(Indeed, in 1872 Weierstrass produced the first example 
of a continuous function that cannot be differentiated at 
any point—a function now known as a nowhere differen-
tiable function.)
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A graph showing a classic parabola. Rosen Educational Services

Graphical Interpretation

The above ideas have a graphical interpretation. 
Associated with any function f(t) is a graph in which the 
horizontal axis represents the variable t and the vertical 
axis represents the value of the function. Choose a value 
for t, calculate f(t), and draw the corresponding point. 
Now repeat for all appropriate t. The result is a curve, the 
graph of f. For example, if f(t) = t2, then f(t) = 0 when t = 0, 
f(t) = 1 when t = 1, f(t) = 4 when t = 2, f(t) = 9 when t = 3, and 
so on, leading to the curve known as a parabola.

Expression (3), the numerical calculation of the aver-
age speed traveled between times t and t + h, also can be 
represented graphically. The two times can be plotted as 
two points on the curve, and a line can be drawn joining 
the two points. This line is called a secant, or chord, of the 
curve, and its slope corresponds to the change in distance 
with respect to time—that is, the average speed traveled 
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between t and t + h. If, as h becomes smaller and smaller, 
this slope tends to a limiting value, then the direction of 
the chord stabilizes and the chord approximates more 
and more closely the tangent to the graph at t. Thus, the 
numerical notion of instantaneous rate of change of f(t) 
with respect to t corresponds to the geometric notion of 
the slope of the tangent to the graph.

The graphical interpretation suggests a number of use-
ful problem-solving techniques. An example is finding the 
maximum value of a continuously differentiable function 
f(x) defined in some interval a ≤ x ≤ b. Either f attains its 
maximum at an endpoint, x = a or x = b, or it attains a maxi-
mum for some x inside this interval. In the latter case, as 
x approaches the maximum value, the curve defined by f 
rises more and more slowly, levels out, and then starts to 
fall. In other words, as x increases from a to b, the deriva-
tive f ′(x) is positive while the function f (x) rises to its 
maximum value, f ′(x) is 0 at the value of x for which f (x) has 
a maximum value, and f ′(x) is negative while f (x) declines 
from its maximum value. Simply stated, maximum values 
can be located by solving the equation f ′(x) = 0.

It is necessary to check whether the resulting value 
genuinely is a maximum, however. First, all of the above 
reasoning applies at any local maximum—a place where 
f(x) is larger than all values of f(x) for nearby values of 
x. A function can have several local maxima, not all of 
which are overall (“global”) maxima. Moreover, the deriv-
ative f ′(x) vanishes at any (local) minimum value inside 
the interval. Indeed, it can sometimes vanish at places 
where the value is neither a maximum nor a minimum. 
An example is f (x) = x3 for −1 ≤ x ≤1. Here f ′(x) = 3x2 so 
f ′(0) = 0, but 0 is neither a maximum nor a minimum. For 
x < 0 the value of f(x) gets smaller than the value f(0) = 0, 
but for x > 0 it gets larger. Such a point is called a point 
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of inflection. In general, solutions of f ′(x) = 0 are called 
critical points of f.

Local maxima, local minima, and points of inflection 
are useful features of a function f that can aid in sketch-
ing its graph. Solving the equation f ′(x) = 0 provides a list 
of critical values of x near which the shape of the curve is 
determined—concave up near a local minimum, concave 
down near a local maximum, and changing concavity at 
an inflection point. Moreover, between any two adjacent 
critical points of f, the values of f either increase steadily 
or decrease steadily—that is, the direction of the slope 
cannot change. By combining such information, the 
general qualitative shape of the graph of f can often be 
determined.

For example, suppose that f(x) = x3 − 3x + 2 is defined 
for −3 ≤ x ≤ 3. The critical points are solutions x of 
0 = f ′(x) = 3x2 − 3. That is, x = −1 and x = 1. When x < −1 the 
slope is positive; for −1 < x < 1 the slope is negative; for 
x > 1 the slope is positive again. Thus, x = −1 is a local maxi-
mum, and x = 1 is a local minimum. Therefore, the graph 
of f slopes upward from left to right as x runs from −3 to 
−1, then slopes downward as x runs from −1 to 1, and finally 
slopes upward again as x runs from 1 to 3.

Higher-Order Derivatives

The process of differentiation can be applied several times 
in succession, leading in particular to the second deriva-
tive f″ of the function f, which is just the derivative of the 
derivative f′. The second derivative often has a useful phys-
ical interpretation. For example, if f(t) is the position of an 
object at time t, then f′(t) is its speed at time t and f″(t) is its 
acceleration at time t. Newton’s laws of motion state that 
the acceleration of an object is proportional to the total 
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force acting on it. This means that second derivatives are 
of central importance in dynamics. The second derivative 
is also useful for graphing functions, because it can quickly 
determine whether each critical point, c, corresponds to a 
local maximum (f″(c) < 0), a local minimum (f″(c) > 0), or a 
change in concavity (f″(c) = 0). Third derivatives occur in 
such concepts as curvature. Even fourth derivatives have 
their uses, notably in elasticity. The nth derivative of f(x) is 
denoted by f (n)(x) or d nf ⁄dx n

 and has important applications 
in power series.

An infinite series of the form a0 + a1x + a2x 2 +· · ·, where 
x and the aj are real numbers, is called a power series. The 
aj are the coefficients. The series has a legitimate mean-
ing, provided the series converges. In general, there exists 
a real number R such that the series converges when 
−R < x < R but diverges if x < −R or x > R. The range of 
values −R < x < R is called the interval of convergence. The 
behaviour of the series at x = R or x = −R is more delicate 
and depends on the coefficients. If R = 0 the series has 
little utility, but when R > 0 the sum of the infinite series 
defines a function f(x). Any function f that can be defined 
by a convergent power series is said to be real-analytic.

The coefficients of the power series of a real-ana-
lytic function can be expressed in terms of derivatives of 
that function. For values of x inside the interval of con-
vergence, the series can be differentiated term by term. 
That is, f ′(x) = a1 + 2a2x + 3a3x2 +· · ·, and this series also con-
verges. Repeating this procedure and then setting x = 0 
in the resulting expressions shows that a0 = f(0), a1 = f ′(0), 
a2 = f ″(0)/2, a3 = f ′′′(0)/6, and, in general, aj  = f (j)(0)/j!. That 
is, within the interval of convergence of f,
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This expression is the Maclaurin series of f, otherwise 
known as the Taylor series of f about 0. A slight generaliza-
tion leads to the Taylor series of f about a general value x:

All these series are meaningful only if they converge.
For example, it can be shown that ex = 1 + x + x2⁄2! + x3⁄3! +· · ·, 

sin (x) = x − x3⁄3! + x5⁄5! − · · ·, cos (x) = 1 − x2⁄2! + x4⁄4! − · · ·, and these 
series converge for all x.

integration

Like differentiation, integration has its roots in ancient 
problems—particularly, finding the area or volume of irreg-
ular objects and finding their centre of mass. Essentially, 
integration generalizes the process of summing up many 
small factors to determine some whole.

Also like differentiation, integration has a geometric 
interpretation. The (definite) integral of the function f, 
between initial and final values t = a and t = b, is the area of 
the region enclosed by the graph of f, the horizontal axis, 
and the vertical lines t = a and t = b. It is denoted by the 
symbol ∫a

bf (t)dt. Here the symbol ∫ is an elongated s, for 
sum, because the integral is the limit of a particular kind 
of sum. The values a and b are often, confusingly, called the 
limits of the integral; this terminology is unrelated to the 
limit concept introduced above.

The Fundamental Theorem of Calculus

The process of calculating integrals is called integration. 
Integration is related to differentiation by the fundamental 



45

theorem of calculus, which states that (subject to the mild 
technical condition that the function be continuous) the 
derivative of the integral is the original function. In symbols, 
the fundamental theorem is stated as d ⁄dt(∫a

tf(u)d u) = f(t).
The reasoning behind this theorem can be demon-

strated in a logical progression, as follows: Let A(t) be the 
integral of f from a to t. Then the derivative of A(t) is very 
closely approximated by the quotient (A(t + h) − A(t))/h. 
This is 1⁄h times the area under the graph of f between t and 
t + h. For continuous functions f the value of f(t), for t in 
the interval, changes only slightly, so it must be very close 
to f(t). The area is therefore close to h f(t), so the quotient 
is close to h f(t)/h = f(t). Taking the limit as h tends to zero, 
the result follows.

Antidifferentiation

Strict mathematical logic aside, the importance of the 
fundamental theorem of calculus is that it allows one to 
find areas by antidifferentiation—the reverse process to 
differentiation. To integrate a given function f, just find a 
function F whose derivative F′ is equal to f. Then the value 
of the integral is the difference F(b) − F(a) between the 
value of F at the two limits. For example, since the deriva-
tive of t3 is 3t2, take the antiderivative of 3t2 to be t3. The area 
of the region enclosed by the graph of the function y = 3t2, 
the horizontal axis, and the vertical lines t = 1 and t = 2, for 
example, is given by the integral ∫1

23t 2dt. By the fundamen-
tal theorem of calculus, this is the difference between the 
values of t3 when t = 2 and t = 1. That is, 23 − 13 = 7.

All the basic techniques of calculus for finding inte-
grals work in this manner. They provide a repertoire of 
tricks for finding a function whose derivative is a given 
function. Most of what is taught in schools and colleges 
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under the name calculus consists of rules for calculating 
the derivatives and integrals of functions of various forms 
and of particular applications of those techniques, such as 
finding the length of a curve or the surface area of a solid 
of revolution.

Table 2 lists the derivatives and integrals of a small 
number of elementary functions. In the table, the symbol 
c denotes an arbitrary constant. (Because the derivative of 
a constant is zero, the antiderivative of a function is not 
unique: adding a constant makes no difference. When an 
integral is evaluated between two specific limits, this con-
stant is subtracted from itself and thus cancels out. In the 
indefinite integral, another name for the antiderivative, 
the constant must be included.)

The Riemann Integral

The task of analysis is to provide not a computational 
method but a sound logical foundation for limiting pro-
cesses. Oddly enough, when it comes to formalizing the 
integral, the most difficult part is to define the term area. 
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It is easy to define the area of a shape whose edges are 
straight. For example, the area of a rectangle is just the 
product of the lengths of two adjoining sides. But the area 
of a shape with curved edges can be more elusive. The 
answer, again, is to set up a suitable limiting process that 
approximates the desired area with simpler regions whose 
areas can be calculated.

The first successful general method for accomplish-
ing this is usually credited to the German mathematician 
Bernhard Riemann in 1853, although it has many precur-
sors (both in ancient Greece and in China). Given some 
function f(t), consider the area of the region enclosed by 
the graph of f, the horizontal axis, and the vertical lines 
t = a and t = b. Riemann’s approach is to slice this region 
into thin vertical strips and to approximate its area by 
sums of areas of rectangles, both from the inside and from 
the outside. If both of these sums converge to the same 
limiting value as the thickness of the slices tends to zero, 
then their common value is defined to be the Riemann 
integral of f between the limits a and b. If this limit exists 
for all a, b, then f is said to be (Riemann) integrable. Every 
continuous function is integrable.

7 Calculus 7
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CHAPTER 3
DIFFeRentIAL 

eQUAtIons

       How far does an object fall in a certain time? How fast 
does radioactive material decay? How does a capaci-

tor discharge? The answers to all these questions can be 
found using differential equations.   

 ordinary differential 
equations 

   Newton and Differential Equations 

 Analysis is one of the cornerstones of mathematics. It 
is important not only within mathematics itself but also 
because of its extensive applications to the sciences. The 
main vehicles for the application of analysis are differen-
tial equations, which relate the rates of change of various 
quantities to their current values, making it possible—in 
principle and often in practice—to predict future behav-
iour. Differential equations arose from the work of Isaac 
Newton on dynamics in the 17th century.   

 Newton’s Laws of Motion 

 Imagine a body moving along a line, whose distance from 
some chosen point is given by the function  x ( t ) at time  t . 
(The symbol  x  is traditional here rather than the symbol  f
for a general function, but this is purely a notational con-
vention.) The instantaneous velocity of the moving body 
is the rate of change of distance—that is, the derivative 
x ′( t ). Its instantaneous acceleration is the rate of change of 
velocity—that is, the second derivative  x ″( t ). According to 
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the most important of Newton’s laws of motion, the accel-
eration experienced by a body of mass  m  is proportional 
to the force  F  applied, a principle that can be expressed by 
the equation

    F  =  m  x ″. (4)  

 Suppose that  m  and  F  (which may vary with time) are 
specifi ed, and one wishes to calculate the motion of the 
body. Knowing its acceleration alone is not satisfactory; 
one wishes to know its position  x  at an arbitrary time 
 t . In order to apply equation (4), one must solve for  x , 
not for its second derivative  x ″. Thus, one must solve an 
equation for the quantity  x  when that equation involves 
derivatives of  x . Such equations are called differential 
equations, and their solution requires techniques that 
go well beyond the usual methods for solving algebraic 
equations. 

 For example, consider the simplest case, in which the 
mass  m  and force  F  are constant, as is the case for a body 
falling under terrestrial gravity. Then equation (4) can be 
written as

    x ″( t ) =   F  ⁄  m  . (5)

Integrating (5) once with respect to time gives

    x ′( t ) =   F  t  ⁄  m   +  b  (6)

where  b  is an arbitrary constant. Integrating (6) with 
respect to time yields  x ( t ) =   F  t  2  ⁄ 2 m   +  b  t  +  c  with a second con-
stant  c . The values of the constants  b  and  c  depend upon 
initial conditions. Indeed,  c  is the initial position, and  b  is 
the initial velocity. 
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A crash test is a prime illustration of Newton's first law of motion, which has 
to do with inertia. An object in motion will remain in motion until a force acts 
upon it. If a car hits a wall, the passenger keeps moving until a seat belt stops 
him or he comes into contact with another object that applies a force. TRL 
Ltd. Photo Researchers, Inc

Exponential Growth and Decay

Newton’s equation for the laws of motion could be solved 
as above, by integrating twice with respect to time, because 
time is the only variable term within the function x″. Not 
all differential equations can be solved in such a simple 
manner. For example, the radioactive decay of a substance 
is governed by the differential equation

   x′(t) = −kx(t) (7)

where k is a positive constant and x(t) is the amount of 
substance that remains radioactive at time t. The equation 
can be solved by rewriting it as

   x′(t)⁄x(t) = −k. (8)
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The left-hand side of (8) can be shown to be the deriva-
tive of ln x(t), so the equation can be integrated to yield ln 
x(t) + c = −k t for a constant c that is determined by initial 
conditions. Equivalently, x(t) = e−(kt + c). This solution repre-
sents exponential decay: in any fixed period of time, the 
same proportion of the substance decays. This property of 
radioactivity is reflected in the concept of the half-life of 
a given radioactive substance—that is, the time taken for 
half the material to decay.

A surprisingly large number of natural processes 
display exponential decay or growth. [Change the sign 
from negative to positive on the right-hand side of (7) to 
obtain the differential equation for exponential growth.] 
However, this is not quite so surprising if consideration is 
given to the fact that the only functions whose derivatives 
are proportional to themselves are exponential functions. 
In other words, the rate of change of exponential functions 
directly depends upon their current value. This accounts 
for their ubiquity in mathematical models. For instance, 
the more radioactive material present, the more radiation 
is produced. Similarly, the greater the temperature differ-
ence between a “hot body” in a “cold room,” the faster the 
heat loss (known as Newton’s law of cooling and an essen-
tial tool in the coroner’s arsenal). The larger the savings, 
the greater the compounded interest. And the larger the 
population (in an unrestricted environment), the greater 
the population explosion.

Dynamical Systems Theory and Chaos

The classical methods of analysis have their limitations. 
For example, differential equations describing the motion 
of the solar system do not admit solutions by power series 
(i.e., infinite sums of multiples of powers). Ultimately, 
this is because the dynamics of the solar system is too 
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complicated to be captured by such simple, well-behaved 
objects as power series. One of the most important modern 
theoretical developments has been the qualitative theory 
of differential equations, otherwise known as dynamical 
systems theory, which seeks to establish general proper-
ties of solutions from general principles without writing 
down any explicit solutions at all. Dynamical systems the-
ory combines local analytic information, collected in small 
“neighbourhoods” around points of special interest, with 
global geometric and topological properties of the shape 
and structure of the manifold in which all the possible 
solutions, or paths, reside—the qualitative aspect of the 
theory. (A manifold, also known as the state space or phase 
space, is the multidimensional analog of a curved surface.) 
This approach is especially powerful when employed in 
conjunction with numerical methods, which use comput-
ers to approximate the solution.

The qualitative theory of differential equations 
was the brainchild of the French mathematician Henri 
Poincaré at the end of the 19th century. A major stimu-
lus to the development of dynamical systems theory was 
a prize offered in 1885 by King Oscar II of Sweden and 
Norway for a solution to the problem of determining 
the stability of the solar system. The problem was stated 
essentially as follows: Will the planets of the solar system 
continue forever in much the same arrangement as they 
do at present? Or could something dramatic happen, such 
as a planet being flung out of the solar system entirely or 
colliding with the Sun? Mathematicians already knew that 
considerable difficulties arise in answering any such ques-
tions as soon as the number of bodies involved exceeds 
two. For two bodies moving under Newtonian gravitation, 
it is possible to solve the differential equation and deduce 
an exact formula for their motion. That is, they move in 
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ellipses about their mutual centre of gravity. Newton car-
ried out this calculation when he showed that the inverse 
square law of gravitation explains Johannes Kepler’s dis-
covery that planetary orbits are elliptical. The motion of 
three bodies proved less tractable—indeed, nobody could 
solve the “three-body problem”—and the solar system 
is a ten-body problem (or something like a thirty-body 
problem if one includes the satellites of the planets and a 
many-thousand-body problem if one includes asteroids).

Undaunted, Poincaré set up a general framework for 
the problem, but, in order to make serious progress, he was 
forced to specialize to three bodies and to assume that one 
of them has negligible mass in comparison with the other 
two. This approach is known as the “restricted” three-body 
problem, and his work on it won Poincaré the prize.

Ironically, the prizewinning memoir contained a seri-
ous mistake, and Poincaré’s biggest discovery in the area 
came when he hastened to put the error right (costing him 
more in printing expenses than the value of the prize). It 
turned out that even the restricted three-body problem 
was still too difficult to be solved. What Poincaré did man-
age to understand, though, was why it is so hard to solve. 
By ingenious geometric arguments, he showed that plan-
etary orbits in the restricted three-body problem are too 
complicated to be describable by any explicit formula. He 
did so by introducing a novel idea, now called a Poincaré 
section. Suppose one knows some solution path and wants 
to find out how nearby solution paths behave. Imagine a 
surface that slices through the known path. Nearby paths 
will also cross this surface and may eventually return to it. 
By studying how this “point of first return” behaves, infor-
mation is gained about these nearby solution paths.

Today the term chaos is used to refer to Poincaré’s dis-
covery. Sporadically during the 1930s and ’40s and with 
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increasing frequency in the 1960s, mathematicians and 
scientists began to notice that simple differential equa-
tions can sometimes possess extremely complex solutions. 
The American mathematician Stephen Smale, continuing 
to develop Poincaré’s insights on qualitative properties 
of differential equations, proved that in some cases the 
behaviour of the solutions is effectively random. Even 
when there is no hint of randomness in the equations, 
there can be genuine elements of randomness in the solu-
tions. The Russian school of dynamicists under Andrey 
Kolmogorov and Vladimir Arnold developed similar ideas 
at much the same time.

These discoveries challenged the classical view of deter-
minism, the idea of a “clockwork universe” that merely 
works out the consequences of fixed laws of nature, starting 
from given initial conditions. By the end of the 20th century, 
Poincaré’s discovery of chaos had grown into a major disci-
pline within mathematics, connecting with many areas of 
applied science. Chaos was found not just in the motion of 
the planets but in weather, disease epidemics, ecology, fluid 
flow, electrochemistry, acoustics, even quantum mechan-
ics. The most important feature of the new viewpoint on 
dynamics—popularly known as chaos theory but really just 
a subdiscipline of dynamical systems theory—is not the 
realization that many processes are unpredictable. Rather, 
it is the development of a whole series of novel techniques 
for extracting useful information from apparently random 
behaviour. Chaos theory has led to the discovery of new 
and more efficient ways to send space probes to the Moon 
or to distant comets, new kinds of solid-state lasers, new 
ways to forecast weather and estimate the accuracy of such 
forecasts, and new designs for heart pacemakers. It has 
even been turned into a quality-control technique for the 
wire- and spring-making industries.
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partial differential equations

From the 18th century onward, huge strides were made in 
the application of mathematical ideas to problems arising 
in the physical sciences: heat, sound, light, fluid dynam-
ics, elasticity, electricity, and magnetism. The complicated 
interplay between the mathematics and its applications 
led to many new discoveries in both. The main unifying 
theme in much of this work is the notion of a partial dif-
ferential equation.

Musical Origins

The problem that sparked the entire development was 
deceptively simple, and it was surprisingly far removed 
from any serious practical application, coming not so 
much from the physical sciences but from music: What is 
the appropriate mathematical description of the motion 
of a violin string?

Harmony

The students of Pythagoras in ancient Greece also found 
inspiration in music, especially musical harmony. They 
experimented with the notes sounded by strings of vari-
ous lengths, and one of their great discoveries was that 
two notes sound pleasing together, or harmonious, if the 
lengths of the corresponding strings are in simple numeri-
cal ratios such as 2:1 or 3:2. It took more than two millennia 
before mathematics could explain why these ratios arise 
naturally from the motion of elastic strings.

Normal Modes

Probably the earliest major result was obtained in 1714 by 
the English mathematician Brook Taylor, who calculated 
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This is a sound wave. There are peaks and troughs, or highs and lows. These 
highs and lows define the amplitude of a sound wave. © www.istockphoto.
com/Phil Morley

the fundamental vibrational frequency of a violin string 
in terms of its length, tension, and density. The ancient 
Greeks knew that a vibrating string can produce many 
different musical notes, depending on the position of the 
nodes, or rest-points. Today it is known that musical pitch 
is governed by the frequency of the vibration—the number 
of complete cycles of vibrations every second. The faster 
the string moves, the higher the frequency and the higher 
the note that it produces. For the fundamental frequency, 
only the end points are at rest. If the string has a node at 
its centre, then it produces a note at exactly double the 
frequency (heard by the human ear as one octave higher). 
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The more nodes there are, the higher the frequency of the 
note. These higher vibrations are called overtones.

The vibrations produced are standing waves. That is, 
the shape of the string at any instant is the same, except 
that it is stretched or compressed in a direction at right 
angles to its length. The maximum amount of stretching 
is the amplitude of the wave, which physically determines 
how loud the note sounds. The waveforms shown are 
sinusoidal in shape—given by the sine function from 
trigonometry—and their amplitudes vary sinusoidally 
with time. Standing waves of this simple kind are called 
normal modes. Their frequencies are integer multiples of 
a single fundamental frequency—the mathematical source 
of the Pythagoreans’ simple numerical ratios.

Partial Derivatives

In 1746 the French mathematician Jean Le Rond 
d’Alembert showed that the full story is not quite that 
simple. There are many vibrations of a violin string that 
are not normal modes. In fact, d’Alembert proved that the 
shape of the wave at time t = 0 can be arbitrary.

Imagine a string of length l, stretched along the x-axis 
from (0, 0) to (l, 0), and suppose that at time t the point 
(x, 0) is displaced by an amount y(x, t) in the y-direction. 
The function y(x, t)—or, more briefly, just y—is a function 
of two variables. That is, it depends not on a single variable 
t but upon x as well. If some value for x is selected and kept 
fixed, it is still possible for t to vary. Therefore a function 
f(t) can be defined by f(t) = y(x, t) for this fixed x. The deriv-
ative f ′(t) of this function is called the partial derivative of 
y with respect to t, and the procedure that produces it is 
called partial differentiation with respect to t. The partial 
derivative of f with respect to t is written ∂y/∂t, where the 
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symbol ∂ is a special form of the letter d reserved for this 
particular operation. An alternative, simpler notation is yt. 
Analogously, fixing t instead of x gives the partial deriva-
tive of y with respect to x, written ∂y/∂x or yx. In both cases, 
the way to calculate a partial derivative is to treat all other 
variables as constants and then find the usual derivative of 
the resulting function with respect to the chosen variable. 
For example, if y(x, t) = x2 + t3, then yt = 3t2 and yx = 2x.

Both yx and yt are again functions of the two variables 
x and t, so they in turn can be partially differentiated with 
respect to either x or t. The partial derivative of yt with 
respect to t is written ytt or ∂2y/∂t2; the partial derivative 
of yt with respect to x is written ytx or ∂2y/∂t∂x; and so on. 
Henceforth the simpler subscript notation will be used.

D’Alembert’s Wave Equation

D’Alembert’s wave equation takes the form

   ytt = c2yxx. (9)

Here c is a constant related to the stiffness of the string. 
The physical interpretation of (9) is that the accelera-
tion (ytt) of a small piece of the string is proportional to 
the tension (yxx) within it. Because the equation involves 
partial derivatives, it is known as a partial differential 
equation—in contrast to the previously described differ-
ential equations, which, involving derivatives with respect 
to only one variable, are called ordinary differential equa-
tions. Since partial differentiation is applied twice (for 
instance, to get ytt from y), the equation is said to be of 
second order.

In order to specify physically realistic solutions, 
d’Alembert’s wave equation must be supplemented by 
boundary conditions, which express the fact that the ends 
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of a violin string are fixed. Here the boundary conditions 
take the form

  y(0, t) = 0 and y(l, t) = 0 for all t. (10)

D’Alembert showed that the general solution to (10) is

  y(x, t) = f(x + c t) + g(x − ct) (11)

where f and g are arbitrary functions (of one variable). 
The physical interpretation of this solution is that f rep-
resents the shape of a wave that travels with speed c along 
the x-axis in the negative direction, while g represents the 
shape of a wave that travels along the x-axis in the positive 
direction. The general solution is a superposition of two 
traveling waves.

In order to satisfy the boundary conditions given in 
(10), the functions f and g must be related by the equations 
f(−ct) + g(ct) = 0 and f(l − ct) + g(l + ct) = 0 for all t. These 
equations imply that g = −f, that f is an odd function—one 
satisfying f(−u) = −f(u)—and that f is periodic with period 
2l, meaning that f(u + 2l ) = f(u) for all u. Notice that the 
part of f lying between x = 0 and x = l is arbitrary, which 
corresponds to the physical fact that a violin string can be 
started vibrating from any shape whatsoever (subject to its 
ends being fixed). In particular, its shape need not be sinu-
soidal, proving that solutions other than normal modes 
can occur.

Trigonometric Series Solutions

In 1748, in response to d’Alembert’s work, the Swiss math-
ematician Leonhard Euler wrote a paper, Sur la vibration 
des cordes (“On the Vibrations of Strings”). In it he repeated 
d’Alembert’s derivation of the wave equation for a string, 
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but he obtained a new solution. Euler’s innovation was to 
permit f and g to be what he called discontinuous curves 
(though in modern terminology it is their derivatives 
that are discontinuous, not the functions themselves). To 
Euler, who thought in terms of formulas, this meant that 
the shapes of the curves were defined by different formu-
las in different intervals. In 1749 he went on to explain that 
if several normal mode solutions of the wave equation are 
superposed, the result is a solution of the form 

where the coefficients a1, a2, a3, … are arbitrary constants. 
Euler did not state whether the series should be finite or 
infinite. Nonetheless it eventually turned out that infi-
nite series held the key to a central mystery, the relation 
between d’Alembert’s arbitrary function solutions (11) and 
Euler’s trigonometric series solutions (12). Every solution of 
Euler’s type can also be written in the form of d’Alembert’s 
solution, but is the converse true? This question was the 
subject of a lengthy controversy, whose final conclusion was 
that all possible vibrations of the string can be obtained 
by superposing infinitely many normal modes in suitable 
proportions. The normal modes are the basic components. 
The vibrations that can occur are all possible sums of con-
stant multiples of finitely or infinitely many normal modes. 
As the Swiss mathematician Daniel Bernoulli expressed it 
in 1753: “All new curves given by d’Alembert and Euler are 
only combinations of the Taylor vibrations.”

The controversy was not really about the wave equa-
tion. It was about the meaning of the word function. Euler 
wanted it to include his discontinuous functions, but he 
thought—wrongly as it turned out—that a trigonometric 
series cannot represent a discontinuous function, because 
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it provides a single formula valid throughout the entire 
interval 0 ≤ x ≤ l. Bernoulli, mostly on physical grounds, 
was happy with the discontinuous functions, but he 
thought—correctly but without much justification—that 
Euler was wrong about their not being representable by 
trigonometric series. It took roughly a century to sort out 
the answers—and, along the way, mathematicians were 
forced to take what might seem to be logical hairsplitting 
very seriously indeed, because it was only by being very 
careful about logical rigour that the problem could be 
resolved in a satisfactory and reliable manner.

Mathematics did not wait for this resolution, though. 
It plowed ahead into the disputed territory, and every new 
discovery made the eventual resolution that much more 
important. The first development was to extend the wave 
equation to other kinds of vibrations—for example, the 
vibrations of drums. The first work here was also Euler’s, 
in 1759. Again he derived a wave equation, describing how 
the displacement of the drum skin in the vertical direction 
varies over time. Drums differ from violin strings not only 
in their dimensionality—a drum is a flat two-dimensional 
membrane—but in having a much more interesting bound-
ary. If z(x, y, t) denotes the displacement at time t in the 
z-direction of the portion of drum skin that lies at the point 
(x, y) in the plane, then Euler’s wave equation takes the form

   ztt = c2(zxx + zyy) (13)

with boundary conditions

   z(x, y, t) = 0 (14)

whenever (x, y) lies on the boundary of the drum. Equation 
(13) is strikingly similar to the wave equation for a violin 
string. Its physical interpretation is that the acceleration 
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of a small piece of the drum skin is proportional to the 
average tension exerted on it by all nearby parts of the 
drum skin. Equation (14) states that the rim of the drum 
skin remains fixed. In this whole subject, boundaries are 
absolutely crucial.

The mathematicians of the 18th century were able to 
solve the equations for the motion of drums of various 
shapes. Again they found that all vibrations can be built up 
from simpler ones, the normal modes. The simplest case 
is the rectangular drum, whose normal modes are com-
binations of sinusoidal ripples in the two perpendicular 
directions.

fourier analysis

Nowadays, trigonometric series solutions (12) are called 
Fourier series, after Joseph Fourier, who in 1822 published 
one of the great mathematical classics, The Analytical 
Theory of Heat. Fourier began with a problem closely anal-
ogous to the vibrating violin string: the conduction of heat 
in a rigid rod of length l. If T(x, t) denotes the temperature 
at position x and time t, then it satisfies a partial differen-
tial equation

   Tt = a2Txx (15)

that differs from the wave equation only in having the 
first time derivative Tt instead of the second, Ttt. This 
apparently minor change has huge consequences, both 
mathematical and physical. Again there are boundary con-
ditions, expressing the fact that the temperatures at the 
ends of the rod are held fixed—for example,

  T(0, t) = 0 and T(l, t) = 0, (16)
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if the ends are held at zero temperature. The physical 
effect of the first time derivative is profound: instead of 
getting persistent vibrational waves, the heat spreads out 
more and more smoothly—it diffuses.

Fourier showed that his heat equation can be solved 
using trigonometric series. He invented a method (now 
called Fourier analysis) of finding appropriate coefficients 
a1, a2, a3, … in equation (12) for any given initial temperature 
distribution. He did not solve the problem of providing 
rigorous logical foundations for such series—indeed, along 
with most of his contemporaries, he failed to appreciate the 
need for such foundations—but he provided major moti-
vation for those who eventually did establish foundations.

These developments were not just of theoretical 
interest. The wave equation, in particular, is exceedingly 
important. Waves arise not only in musical instruments 
but in all sources of sound and in light. Euler found a 
three-dimensional version of the wave equation, which he 
applied to sound waves. It takes the form

  wtt = c2(wxx + wyy + wzz) (17)

where now w(x, y, z, t) is the pressure of the sound wave at 
point (x, y, z) at time t. The expression wxx + wyy + wzz is called 
the Laplacian, after the French mathematician Pierre-
Simon de Laplace, and is central to classical mathematical 
physics. Roughly a century after Euler, the Scottish physi-
cist James Clerk Maxwell extracted the three-dimensional 
wave equation from his equations for electromagnetism, 
and in consequence he was able to predict the existence of 
radio waves. It is probably fair to suggest that radio, tele-
vision, and radar would not exist today without the early 
mathematicians’ work on the analytic aspects of musical 
instruments.

7 Differential Equations 7
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CHAPTER 4
otHeR AReAs 

oF AnALYsIs

 Modern analysis is far too broad to describe in detail. 
Instead, a small selection of other major areas is 

explored below to convey some fl avour of the subject.   

 complex analysis 

 In the 18th century a far-reaching generalization of analy-
sis was discovered, centred on the so-called imaginary 
number  i  = √-1. (In engineering this number is usually 
denoted by  j .) The numbers commonly used in everyday 
life are known as real numbers, but in one sense this name 
is misleading. Numbers are abstract concepts, not objects 
in the physical universe. So mathematicians consider real 
numbers to be an abstraction on exactly the same logical 
level as imaginary numbers. 

 The name  imaginary  arises because squares of real 
numbers are always positive. In consequence, positive 
numbers have two distinct square roots—one positive, 
one negative. Zero has a single square root—namely, zero. 
And negative numbers have no “real” square roots at all. 
However, it has proved extremely fruitful and useful to 
enlarge the number concept to include square roots of 
negative numbers. The resulting objects are numbers in 
the sense that arithmetic and algebra can be extended to 
them in a simple and natural manner. They are imaginary 
in the sense that their relation to the physical world is less 
direct than that of the real numbers. Numbers formed by 
combining real and imaginary components, such as 2 + 3 i , 
are said to be complex (meaning they are composed of sev-
eral parts rather than complicated). 
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7 Other Areas of Analysis 7

 The fi rst indications that complex numbers might 
prove useful emerged in the 16th century from the solution 
of certain algebraic equations by the Italian mathemati-
cians Girolamo Cardano and Raphael Bombelli. By the 
18th century, after a lengthy and controversial history, 
they became fully established as sensible mathematical 
concepts. They remained on the mathematical fringes 
until it was discovered that analysis, too, can be extended 
to the complex domain. The result was such a powerful 
extension of the mathematical tool kit that philosophical 
questions about the meaning of complex numbers became 
submerged amid the rush to exploit them. Soon the math-
ematical community had become so used to complex 
numbers that it became hard to recall that there had been 
a philosophical problem at all.   

 formal definition of 
complex numBers 

 The modern approach is to defi ne a complex number  x  +  i  y
as a pair of real numbers ( x ,  y ) subject to certain algebraic 
operations. Thus one wishes to add or subtract, ( a ,  b ) ± ( c , 
d ), and to multiply, ( a ,  b ) × ( c ,  d ), or divide, ( a ,  b )/( c ,  d ), these 
quantities. These are inspired by the wish to make ( x , 0) 
behave like the real number  x  and, crucially, to arrange 
that (0, 1) 2  = (−1, 0)—all the while preserving as many of 
the rules of algebra as possible. This is a formal way to set 
up a situation which, in effect, ensures that one may oper-
ate with expressions  x  +  i  y  using all the standard algebraic 
rules but recalling when necessary that  i  2  may be replaced 
by −1. For example, (1 + 3 i  ) 2  = 1 2  + 2·3 i  + (3 i  ) 2  = 1 + 6 i  + 9 i   2  =
1 + 6 i  − 9 = −8 + 6 i .

A geometric interpretation of complex numbers is 
readily available, inasmuch as a pair ( x ,  y ) represents a 
point in a plane. Whereas real numbers can be described 
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by a single number line, with negative numbers to the left 
and positive numbers to the right, the complex numbers 
require a number plane with two axes, real and imaginary.

extension of analytic  
concepts to complex numBers

Analytic concepts such as limits, derivatives, integrals, 
and infinite series are based upon algebraic ideas, together 
with error estimates that define the limiting process: cer-
tain numbers must be arbitrarily well approximated by 
particular algebraic expressions. In order to represent 
the concept of an approximation, all that is needed is a 
well-defined way to measure how “small” a number is. For 
real numbers this is achieved by using the absolute value 
|x |. Geometrically, it is the distance along the real num-
ber line between x and the origin 0. Distances also make 
sense in the complex plane, and they can be calculated, 
using Pythagoras’s theorem from elementary geometry 
(the square of the hypotenuse of a right triangle is equal to 
the sum of the squares of its two sides), by constructing a 
right triangle such that its hypotenuse spans the distance 
between two points and its sides are drawn parallel to the 
coordinate axes. This line of thought leads to the idea that 
for complex numbers the quantity analogous to |x | is

Since all the rules of real algebra extend to complex 
numbers and the absolute value is defined by an alge-
braic formula, it follows that analysis also extends to the 
complex numbers. Formal definitions are taken from the 
real case, real numbers are replaced by complex numbers, 
and the real absolute value is replaced by the complex 
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absolute value. Indeed, this is one of the advantages of 
analytic rigour: without this, it would be far less obvious 
how to extend such notions as tangent or limit from the 
real case to the complex.

In a similar vein, the Taylor series for the real expo-
nential and trigonometric functions shows how to extend 
these definitions to include complex numbers—just 
use the same series but replace the real variable x by the 
complex variable z. This idea leads to complex-analytic 
functions as an extension of real-analytic ones.

Because complex numbers differ in certain ways from 
real numbers—their structure is simpler in some respects 
and richer in others—there are differences in detail 
between real and complex analysis. Complex integration, 
in particular, has features of complete novelty. A real func-
tion must be integrated between limits a and b, and the 
Riemann integral is defined in terms of a sum involving 
values spread along the interval from a to b. On the real 
number line, the only path between two points a and b 
is the interval whose ends they form. But in the complex 
plane there are many different paths between two given 
points. The integral of a function between two points is 
therefore not defined until a path between the endpoints 
is specified. This done, the definition of the Riemann 
integral can be extended to the complex case. However, 
the result may depend on the path that is chosen.

Surprisingly, this dependence is very weak. Indeed, 
sometimes there is no dependence at all. But when there 
is, the situation becomes extremely interesting. The value 
of the integral depends only on certain qualitative features 
of the path—in modern terms, on its topology. (Topology, 
often characterized as “rubber sheet geometry,” stud-
ies those properties of a shape that are unchanged if it 
is continuously deformed by being bent, stretched, and 
twisted but not torn.) So complex analysis possesses a new 
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ingredient, a kind of flexible geometry, that is totally lack-
ing in real analysis. This gives it a very different flavour.

All this became clear in 1811 when, in a letter to the 
German astronomer Friedrich Bessel, the German math-
ematician Carl Friedrich Gauss stated the central theorem 
of complex analysis:

I affirm now that the integral…has only one value even if 
taken over different paths, provided [the function]… does not 
become infinite in the space enclosed by the two paths.

A proof was published by Cauchy in 1825, and this result 
is now named Cauchy’s theorem. Cauchy went on to develop 
a vast theory of complex analysis and its applications.

Part of the importance of complex analysis is that it is 
generally better-behaved than real analysis, the many-val-
ued nature of integrals notwithstanding. Problems in the 
real domain can often be solved by extending them to the 
complex domain, applying the powerful techniques pecu-
liar to that area, and then restricting the results back to 
the real domain again. From the mid-19th century onward, 
the progress of complex analysis was strong and steady. 
A system of numbers once rejected as impossible and 
nonsensical led to a powerful and aesthetically satisfying 
theory with practical applications to aerodynamics, fluid 
mechanics, electric power generation, and mathematical 
physics. No area of mathematics has remained untouched 
by this far-reaching enrichment of the number concept.

some Key ideas of  
complex analysis

A complex number is normally denoted by z = x + iy. A 
complex-valued function f assigns to each z in some region 
Ω of the complex plane a complex number w = f(z). Usually 
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it is assumed that the region Ω is connected (all in one 
piece) and open (each point of Ω can be surrounded by 
a small disk that lies entirely within Ω). Such a function 
f is differentiable at a point z0 in Ω if the limit exists as z 
approaches z0 of the expression

This limit is the derivative f ′(z). Unlike real analysis, if 
a complex function is differentiable in some region, then 
its derivative is always differentiable in that region, so f ″(z) 
exists. Indeed, derivatives f (n)(z) of all orders n = 1, 2, 3, … 
exist. Even more strongly, f (z) has a power series expansion 
f (z) = c0 + c1(z − z0) + c2(z − z0)2 + · · · with complex coefficients 
cj. This series converges for all z lying in some disk with 
centre z0. The radius of the largest such disk is called the 
radius of convergence of the series. Because of this power 
series representation, a differentiable complex function is 
said to be analytic.

The elementary functions of real analysis, such as 
polynomials, trigonometric functions, and exponential 
functions, can be extended to complex numbers. For 
example, the exponential of a complex number is defined 
by ez = 1 + z + z2⁄2! + z3⁄3! +· · · where n! = n(n − 1)· · ·3·2·1. It turns 
out that the trigonometric functions are related to the 
exponential by way of Euler’s famous formula eiθ = cos (θ) 
+ isin (θ), which leads to the expressions cos (z) = (eiz+ e−iz)⁄2 
sin (z) = (eiz − e−iz) ⁄2i. Every complex number can be written 
in the form z = reiθ for real r ≥ 0 and real θ. Here r is the 
absolute value (or modulus) of z, and θ is known as its argu-
ment. The value of θ is not unique, but the possible values 
differ only by integer multiples of 2π. In consequence, the 
complex logarithm is many-valued: log (z) = log (reiθ) = log 
|r| + i(θ + 2nπ) for any integer n.

7 Other Areas of Analysis 7
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The integral ∫C f(z)dz of an analytic function f along a 
curve (or contour) C in the complex plane is defined in a 
similar manner to the real Riemann integral. Cauchy’s the-
orem, mentioned above, states that the value of such an 
integral is the same for two contours C1 and C2, provided 
both curves lie inside a simply connected region Ω—a 
region with no “holes.” When Ω has holes, the value of the 
integral depends on the topology of the curve C but not 
its precise form. The essential feature is how many times 
C winds around a given hole—a number that is related to 
the many-valued nature of the complex logarithm.

measure theory

A rigorous basis for the new discipline of analysis was 
achieved in the 19th century, in particular by the German 
mathematician Karl Weierstrass. Modern analysis, however, 
differs from that of Weierstrass’s time in many ways, and the 
most obvious is the level of abstraction. Today’s analysis is 
set in a variety of general contexts, of which the real line and 
the complex plane are merely two rather simple examples. 
One of the most important spurs to these developments 
was the invention of a new—and improved—definition 
of the integral by the French mathematician Henri-Léon 
Lebesgue about 1900. Lebesgue’s contribution made pos-
sible the subbranch of analysis known as measure theory.

In Lebesgue’s day, mathematicians had noticed a 
number of deficiencies in Riemann’s way of defining 
the integral. Many functions with reasonable properties 
turned out not to possess integrals in Riemann’s sense. 
Moreover, certain limiting procedures, when applied to 
sequences not of numbers but of functions, behaved in 
very strange ways as far as integration was concerned. 
Several mathematicians tried to develop better ways to 
define the integral, and the best of all was Lebesgue’s.
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Consider, for example, the function f defined by 
f(x) = 0 whenever x is a rational number but f(x) = 1 when-
ever x is irrational. What is a sensible value for ∫0

1f(x)dx? 
Using Riemann’s definition, this function does not pos-
sess a well-defined integral. The reason is that within any 
interval it takes values both 0 and 1, so that it hops wildly 
up and down between those two values. Unfortunately for 
this example, Riemann’s integral is based on the assump-
tion that over sufficiently small intervals the value of the 
function changes by only a very small amount.

However, there is a sense in which the rational num-
bers form a very tiny proportion of the real numbers. In 
fact, “almost all” real numbers are irrational. Specifically, 
the set of all rational numbers can be surrounded by a 
collection of intervals whose total length is as small as is 
wanted. In a well-defined sense, then, the “length” of the 
set of rational numbers is zero. There are good reasons why 
values on a set of zero length ought not to affect the inte-
gral of a function—the “rectangle” based on that set ought 
to have zero area in any sensible interpretation of such a 
statement. Granted this, if the definition of the function f 
is changed so that it takes value 1 on the rational numbers 
instead of 0, its integral should not be altered. However, 
the resulting function g now takes the form g(x) = 1 for all x, 
and this function does possess a Riemann integral. In fact, 
∫a

bg(x)dx = b − a. Lebesgue reasoned that the same result 
ought to hold for f—but he knew that it would not if the 
integral were defined in Riemann’s manner.

The reason why Riemann’s method failed to work for f 
is that the values of f oscillate wildly over arbitrarily small 
intervals. Riemann’s approach relied upon approximating 
the area under a graph by slicing it, in the vertical direc-
tion, into very thin slices. The problem with his method 
was that vertical direction: vertical slices permit wild 
variation in the value of the function within a slice. So 
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Lebesgue sliced the graph horizontally instead. The varia-
tion within such a slice is no more than the thickness of 
the slice, and this can be made very small. The price to be 
paid for keeping the variation small, though, is that the 
set of x for which f(x) lies in a given horizontal slice can be 
very complicated. For example, for the function f defined 
earlier, f(x) lies in a thin slice around 0 whenever x is ratio-
nal and in a thin slice around 1 whenever x is irrational.

However, it does not matter if such a set is compli-
cated: it is sufficient that it should possess a well-defined 
generalization of length. Then that part of the graph of f 
corresponding to a given horizontal slice will have a well-
defined approximate area, found by multiplying the value 
of the function that determines the slice by the “length” of 
the set of x whose functional values lie inside that slice. So 
the central problem faced by Lebesgue was not integration 
as such at all. It was to generalize the concept of length to 
sufficiently complicated sets. This Lebesgue managed to 
do. Basically, his method is to enclose the set in a collec-
tion of intervals. Since the generalized length of the set is 
surely smaller than the total length of the intervals, it only 
remains to choose the intervals that make the total length 
as small as possible.

This generalized concept of length is known as the 
Lebesgue measure. Once the measure is established, 
Lebesgue’s generalization of the Riemann integral can be 
defined, and it turns out to be far superior to Riemann’s 
integral. The concept of a measure can be extended con-
siderably—for example, into higher dimensions, where 
it generalizes such notions as area and volume—leading 
to the subbranch known as measure theory. One funda-
mental application of measure theory is to probability and 
statistics, a development initiated by Russian mathemati-
cian Andrey Kolmogorov in the 1930s.
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functional analysis

In the 1920s and ’30s a number of apparently different areas 
of analysis all came together in a single generalization—
rather, two generalizations, one more general than the 
other. These were the notions of a Hilbert space and 
a Banach space, named after the German mathemati-
cian David Hilbert and the Polish mathematician Stefan 
Banach, respectively. Together they laid the foundations 
for what is now called functional analysis.

Functional analysis starts from the principle that, in 
order to define basic analytic notions such as limits or the 
derivative, it is sufficient to be able to carry out certain 
algebraic operations and to have a suitable notion of size. 
For real analysis, size is measured by the absolute value |x|; 
for complex analysis, it is measured by the absolute value 
|x + i y|. Analysis of functions of several variables—that 
is, the theory of partial derivatives—can also be brought 
under the same umbrella. In the real case, the set of real 
numbers is replaced by the vector space Rn of all n-tuples 
of real numbers x = (x1, …, xn) where each xj is a real num-
ber. Used in place of the absolute value is the length of the 
vector x, which is defined to be

In fact there is a closely related notion, called an inner 
product, written x, y , where x, y are vectors. It is equal to 
x1 y1 +· · ·+ xn yn. The inner product relates not just to the sizes 
of x and y but to the angle between them. For example, 
x, y  = 0 if and only if x and y are orthogonal—at right angles 
to each other. Moreover, the inner product determines 
the length, because ||x|| = √ x, x . If F(x) = (f1(x), …, fk(x)) is a 
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vector-valued function of a vector x = (x1, …, xn), the deriva-
tive no longer has numerical values. Instead, it is a linear 
operator, a special kind of function.

Functions of several complex variables similarly 
reduce to a study of the space Cn of n-tuples of complex 
numbers x + iy = (x1 + iy1, …, xn + iyn). Used in place of the 
absolute value is

However, the correct concept of an analytic function of 
several complex variables is subtle and was developed only 
in the 20th century. Henceforth only the real case is con-
sidered here.

Hilbert realized that these ideas could be extended from 
vectors—which are finite sequences of real numbers—to 
infinite sequences of real numbers. Define (the simplest 
example of) Hilbert space to consist of all infinite sequences 
x = (x0, x1, x2, …) of real numbers, subject to the condition that 
the sequence is square-summable, meaning that the infinite 
series x0

2 + x1
2 + x2

2 +··· converges to a finite value. Now define 
the inner product of two such sequences to be x, y  = x0y0 
+ x1y1 + x2y2 +···. It can be shown that this also takes a finite 
value. Hilbert discovered that it is possible to carry out the 
basic operations of analysis on Hilbert space. For example, 
it is possible to define convergence of a sequence b0, b1, b2, … 
where the bj are not numbers but elements of the Hilbert 
space—infinite sequences in their own right. Crucially, with 
this definition of convergence, Hilbert space is complete: 
every Cauchy sequence is convergent. Completeness is cen-
tral to analysis for real-valued functions, and the same goes 
for functions on a Hilbert space.

More generally, a Hilbert space in the broad sense can be 
defined to be a (real or complex) vector space with an inner 
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product that makes it complete, as well as determining a 
norm—a notion of length subject to certain constraints. 
There are numerous examples. Furthermore, this notion 
is very useful because it unifies large areas of classical anal-
ysis. It makes excellent sense of Fourier analysis, providing 
a satisfactory setting in which convergence questions are 
relatively unsubtle and straightforward. Instead of resolv-
ing various delicate classical issues, it bypasses them 
entirely. It organizes Lebesgue’s theory of measures. 
The theory of integral equations—like differential equa-
tions but with integrals instead of derivatives—was very 
popular in Hilbert’s day, and that, too, could be brought 
into the same framework. What Hilbert could not antici-
pate, since he died before the necessary physical theories 
were discovered, was that Hilbert space would also turn 
out to be ideal for quantum mechanics. In classical phys-
ics an observable value is just a number. Today a quantum 
mechanical observable value is defined as an operator on 
a Hilbert space.

Banach extended Hilbert’s ideas considerably. A 
Banach space is a vector space with a norm, but not nec-
essarily given by an inner product. Again the space must 
be complete. The theory of Banach spaces is extremely 
important as a framework for studying partial dif-
ferential equations, which can be viewed as algebraic 
equations whose variables lie in a suitable Banach space. 
For instance, solving the wave equation for a violin string 
is equivalent to finding solutions of the equation P(u) = 0, 
where u is a member of the Banach space of functions 
u(x) defined on the interval 0 ≤ x ≤ l and where P is the 
wave operator

 .
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variational principles  
and gloBal analysis

The great mathematicians of Classical times were very 
interested in variational problems. An example is the 
famous problem of the brachistochrone: find the shape 
of a curve with given start and end points along which a 
body will fall in the shortest possible time. The answer is 
(part of) an upside-down cycloid, where a cycloid is the 
path traced by a point on the rim of a rolling circle. More 
important for the purposes of this book is the nature of 
the problem: from among a class of curves, select the one 
that minimizes some quantity.

Variational problems can be put into Banach space 
language too. The space of curves is the Banach space, 
the quantity to be minimized is some functional (a func-
tion with functions, rather than simply numbers, as input) 
defined on the Banach 
space, and the methods 
of analysis can be used to 
determine the minimum. 
This approach can be 
generalized even further, 
leading to what is now 
called global analysis.

Global analysis has 
many applications to math-
ematical physics. Euler and 
the French mathematician 
Pierre-Louis Moreau de 
Maupertuis discovered that 
the whole of Newtonian 
mechanics can be restated 
in terms of a variational 

Pierre-Louis Moreau de Maupertuis. 
Royal Astronomical Society/Photo 
Researchers, Inc.
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principle: mechanical systems move in a manner that mini-
mizes (or, more technically, extremizes) a functional known 
as action. The French mathematician Pierre de Fermat 
stated a similar principle for optics, known as the prin-
ciple of least time: light rays follow paths that minimize the 
total time of travel. Later the Irish mathematician William 
Rowan Hamilton found a unified theory that includes 
both optics and mechanics under the general notion of a 
Hamiltonian system—nowadays subsumed into a yet more 
general and abstract theory known as symplectic geometry.

An especially fascinating area of global analysis con-
cerns the Plateau problem. The blind Belgian physicist 
Joseph Plateau (using an assistant as his eyes) spent many 
years observing the form of soap films and bubbles. He 
found that if a wire frame in the form of some curve is 
dipped in a soap solution, then the film forms beauti-
ful curved surfaces. They are called minimal surfaces 
because they have minimal area subject to spanning the 
curve. (Their surface tension is proportional to their 
area, and their energy is proportional to surface ten-
sion, so they are actually energy-minimizing films.) For 
example, a soap bubble is spherical because a sphere has 
the smallest surface area, subject to enclosing a given vol-
ume of air.

The mathematics of minimal surfaces is an exciting 
area of current research with many attractive unsolved 
problems and conjectures. One of the major triumphs of 
global analysis occurred in 1976 when the American math-
ematicians Jean Taylor and Frederick Almgren obtained 
the mathematical derivation of the Plateau conjecture, 
which states that, when several soap films join together 
(for example, when several bubbles meet each other along 
common interfaces), the angles at which the films meet  
are either 120 degrees (for three films) or approximately 108 
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degrees (for four films). 
Plateau had conjectured this 
from his experiments.

constructive 
analysis

One philosophical feature 
of traditional analysis, 
which worries mathema-
ticians whose outlook is 
especially concrete, is that 
many basic theorems assert 
the existence of various 
numbers or functions but 
do not specify what those 
numbers or functions are. 
For instance, the complete-
ness property of the real 
numbers indicates that 

every Cauchy sequence converges but not what it con-
verges to. A school of analysis initiated by the American 
mathematician Errett Bishop has developed a new frame-
work for analysis in which no object can be deemed to 
exist unless a specific rule is given for constructing it. This 
school is known as constructive analysis, and its devotees 
have shown that it is just as rich in structure as traditional 
analysis and that most of the traditional theorems have 
analogs within the constructive framework. This phi-
losophy has its origins in the earlier work of the Dutch 
mathematician-logician L.E.J. Brouwer, who criticized 
“mainstream” mathematical logicians for accepting proofs 
that mathematical objects exist without there being any 
specific construction of them (for example, a proof that 

Joseph Plateau (1801–1883) became a 
professor of physics in Ghent in 1835. 
He was blinded by the Sun during his 
investigations into the Sun's effect 
on the human eye. He continued his 
work in physics, including his work on 
minimal surfaces, using the help of an 
assistant. SSPL via Getty Images
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some series converges without any specification of the 
limit which it converges to). Brouwer founded an entire 
school of mathematical logic, known as intuitionism, to 
advance his views.

However, constructive analysis remains on the fringes 
of the mathematical mainstream, probably because most 
mathematicians accept classical existence proofs and see 
no need for the additional mathematical baggage involved 
in carrying out analysis constructively. Nevertheless, con-
structive analysis is very much in the same algorithmic 
spirit as computer science, and in the future there may be 
some fruitful interaction with this area.

nonstandard analysis

A very different philosophy—pretty much the exact 
opposite of constructive analysis—leads to nonstan-
dard analysis, a slightly misleading name. Nonstandard 
analysis arose from the work of the German-born math-
ematician Abraham Robinson in mathematical logic, and 
it is best described as a variant of real analysis in which 
infinitesimals and infinities genuinely exist—without any 
paradoxes. In nonstandard analysis, for example, one can 
define the limit a of a sequence an to be the unique real 
number (if any) such that |an − a| is infinitesimal for all infi-
nite integers n.

Generations of students have spent years learning, 
painfully, not to think that way when studying analysis. 
Now it turns out that such thinking is entirely rigorous, 
provided that it is carried out in a rather subtle context. 
As well as the usual systems of real numbers R and natu-
ral numbers N, nonstandard analysis introduces two more 
extensive systems of nonstandard real numbers R* and 
nonstandard natural numbers N*. The system R* includes 
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numbers that are infinitesimal relative to ordinary real 
numbers R. That is, nonzero nonstandard real numbers 
exist that are smaller than any nonzero standard real num-
ber. (What cannot be done is to have nonzero nonstandard 
real numbers that are smaller than any nonzero nonstan-
dard real number, which is impossible for the same reason 
that no infinitesimal real numbers exist.) In a similar way, 
R* also includes numbers that are infinite relative to ordi-
nary real numbers.

In a very strong sense, it can be shown that nonstandard 
analysis accurately mimics the whole of traditional analy-
sis. However, it brings dramatic new methods to bear, and 
it has turned out, for example, to offer an interesting new 
approach to stochastic differential equations—like stan-
dard differential equations but subject to random noise. 
As with constructive analysis, nonstandard analysis sits 
outside the mathematical mainstream, but its prospects 
of joining the mainstream seem excellent.
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HIstoRY oF AnALYsIs

CHAPTER 5

      Analysis has its roots in the speculations of the ancient 
Greeks. They wondered about the nature of num-

bers, of motion, and the infi nite. Over the past 2,500 years, 
mathematicians have built upon those earliest specula-
tions to create the rich discipline of analysis.   

 the greeKs encounter 
continuous magnitudes 

 Analysis consists of those parts of mathematics in which 
continuous change is important. These include the study of 
motion and the geometry of smooth curves and surfaces—
in particular, the calculation of tangents, areas, and volumes. 
Ancient Greek mathematicians made great progress in 
both the theory and practice of analysis. Theory was 
forced upon them about 500  BCE  by the Pythagorean 
discovery of irrational magnitudes and about 450  BCE  by 
Zeno’s paradoxes of motion.   

 The Pythagoreans and Irrational Numbers 

   Initially, the Pythagoreans believed that all things could 
be measured by the discrete natural numbers (1, 2, 3, …) 
and their ratios (ordinary fractions, or the rational num-
bers). This belief was shaken, however, by the discovery 
that the diagonal of a unit square (that is, a square whose 
sides have a length of 1) cannot be expressed as a rational 
number. This discovery was brought about by their own 
Pythagorean theorem, which established that the square 
on the hypotenuse of a right triangle is equal to the sum of 
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the squares on the other two sides—in modern notation, 
c2 = a2 + b2. In a unit square, the diagonal is the hypotenuse 
of a right triangle, with sides a = b = 1, hence its measure 
is √2—an irrational number. Against their own intentions, 
the Pythagoreans had thereby shown that rational num-
bers did not suffice for measuring even simple geometric 
objects. Their reaction was to create an arithmetic of line 
segments, as found in Book II of Euclid’s Elements (c. 300 
BCE), that included a geometric interpretation of rational 
numbers. For the Greeks, line segments were more gen-
eral than numbers because they included continuous as 
well as discrete magnitudes.

Indeed, √2 can be related to the rational numbers only 
via an infinite process. This was realized by Euclid, who 
studied the arithmetic of both rational numbers and line 
segments. His famous Euclidean algorithm, when applied 
to a pair of natural numbers, leads in a finite number of 

Visual demonstration of the Pythagorean theorem. This may be the original 
proof of the ancient theorem, which states that the sum of the squares on the 
sides of a right triangle equals the square on the hypotenuse (a2 + b2 = c2). In 
the box on the left, the green-shaded a2 and b2 represent the squares on the 
sides of any one of the identical right triangles. On the right, the four triangles 
are rearranged, leaving c2, the square on the hypotenuse, whose area by simple 
arithmetic equals the sum of a2 and b2. For the proof to work, one must only see 
that c2 is indeed a square. This is done by demonstrating that each of its angles 
must be 90 degrees, since all the angles of a triangle must add up to 180 degrees. 
Encyclopædia Britannica, Inc.
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steps to their greatest common divisor. However, when 
applied to a pair of line segments with an irrational ratio, 
such as √2 and 1, it fails to terminate. Euclid even used this 
nontermination property as a criterion for irrationality. 
Thus, irrationality challenged the Greek concept of num-
ber by forcing them to deal with infinite processes.

Zeno’s Paradoxes and the Concept of Motion

Just as √2 was a challenge to the Greeks’ concept of num-
ber, Zeno’s paradoxes were a challenge to their concept of 
motion. In his Physics (c. 350 BCE), Aristotle quoted Zeno 
as saying:

There is no motion because that which is moved must arrive 
at the middle [of the course] before it arrives at the end.

Zeno’s arguments are known only through Aristotle, 
who quoted them mainly to refute them. Presumably, 
Zeno meant that, to get anywhere, one must first go half 
way and before that one-fourth of the way and before that 
one-eighth of the way and so on. Because this process of 
halving distances would go on into infinity (a concept that 
the Greeks would not accept as possible), Zeno claimed 
to “prove” that reality consists of changeless being. Still, 
despite their loathing of infinity, the Greeks found that 
the concept was indispensable in the mathematics of con-
tinuous magnitudes. So they reasoned about infinity as 
finitely as possible, in a logical framework called the the-
ory of proportions and using the method of exhaustion.

The theory of proportions was created by Eudoxus 
about 350 BCE and preserved in Book V of Euclid’s 
Elements. It established an exact relationship between 
rational magnitudes and arbitrary magnitudes by defining 
two magnitudes to be equal if the rational magnitudes less 
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than them were the same. In other words, two magnitudes 
were different only if there was a rational magnitude strictly 
between them. This definition served mathematicians for 
two millennia and paved the way for the arithmetization 
of analysis in the 19th century, in which arbitrary numbers 
were rigorously defined in terms of the rational numbers. 
The theory of proportions was the first rigorous treat-
ment of the concept of limits, an idea that is at the core 
of modern analysis. In modern terms, Eudoxus’s theory 
defined arbitrary magnitudes as limits of rational magni-
tudes, and basic theorems about the sum, difference, and 
product of magnitudes were equivalent to theorems about 
the sum, difference, and product of limits.

The Method of Exhaustion

The method of exhaustion, also due to Eudoxus, was a gen-
eralization of the theory of proportions. Eudoxus’s idea 
was to measure arbitrary objects by defining them as com-
binations of multiple polygons or polyhedra. In this way, 
he could compute volumes and areas of many objects with 
the help of a few shapes, such as triangles and triangular 
prisms, of known dimensions. For example, by using stacks 
of prisms, Eudoxus was able to prove that the volume of 
a pyramid is one-third of the area of its base B multiplied 
by its height h, or in modern notation Bh/3. Loosely speak-
ing, the volume of the pyramid is “exhausted” by stacks 
of prisms as the thickness of the prisms becomes progres-
sively smaller. More precisely, what Eudoxus proved is 
that any volume less than Bh/3 may be exceeded by a stack 
of prisms inside the pyramid, and any volume greater than 
Bh/3 may be undercut by a stack of prisms containing the 
pyramid. Hence, the volume of the pyramid itself can be 
only Bh/3—all other possibilities have been “exhausted.” 
Similarly, Eudoxus proved that the area of a circular disk 
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is proportional to the square of its radius and that the vol-
ume of a cone (obtained by exhausting it by pyramids) is 
also Bh/3, where B is again the area of the base and h is the 
height of the cone.

The greatest exponent of the method of exhaustion 
was Archimedes (c. 285–212/211 BCE). Among his discover-
ies using exhaustion were the area of a parabolic segment, 
the volume of a paraboloid, the tangent to a spiral, and a 
proof that the volume of a sphere is two-thirds the volume 
of the circumscribing cylinder. His calculation of the area 
of the parabolic segment involved the application of infi-
nite series to geometry. In this case, the infinite geometric 
series 1 + 1 ⁄4 + 1 ⁄16 + 1 ⁄64 +· · · = 4 ⁄3 is obtained by successively 
adding a triangle with unit area, then triangles that total 
1 ⁄4 unit area, then triangles of 1⁄16, and so forth, until the 
area is exhausted. Archimedes avoided actual contact with 
infinity, however, by showing that the series obtained by 
stopping after a finite number of terms could be made to 
exceed any number less than 4⁄3. In modern terms, 4⁄3 is the 
limit of the partial sums.

models of motion in  
medieval europe

The ancient Greeks applied analysis only to static 
problems—either to pure geometry or to forces in 
equilibrium. Problems involving motion were not well 
understood, perhaps because of the philosophical doubts 
exemplified by Zeno’s paradoxes or because of Aristotle’s 
erroneous theory that motion required the continuous 
application of force.

Analysis began its long and fruitful association with 
dynamics in the Middle Ages, when mathematicians in 
England and France studied motion under constant accel-
eration. They correctly concluded that, for a body under 
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constant acceleration over a given time interval, total dis-
placement = time × velocity at the middle instant. 

This result was discovered by mathematicians at 
Merton College, Oxford, in the 1330s, and for that reason 
it is sometimes called the Merton acceleration theorem. 
A very simple graphical proof was given about 1361 by the 
French bishop and Aristotelian scholar Nicholas Oresme. 
He observed that the graph of velocity versus time is a 
straight line for constant acceleration and that the total 
displacement of an object is represented by the area 
under the line. This area equals the width (length of the 
time interval) times the height (velocity) at the middle of 
the interval.

In making this translation of dynamics into geometry, 
Oresme was probably the first to explicitly use coordi-
nates outside of cartography. He also helped to demystify 
dynamics by showing that the geometric equivalent of 
motion could be quite familiar and tractable. For example, 
from the Merton acceleration theorem the distance trav-
eled in time t by a body undergoing constant acceleration 
from rest is proportional to t2. At the time, it was not 
known whether such motion occurs in nature, but in 1604 
the Italian mathematician and physicist Galileo discov-
ered that this model precisely fits free-falling bodies.

Galileo also overthrew the mistaken dogma of 
Aristotle that motion requires the continual application 
of force by asserting the principle of inertia: in the absence 
of external forces, a body has zero acceleration. That is, a 
motionless body remains at rest, and a moving body trav-
els with constant velocity. From this he concluded that a 
projectile—which is subject to the vertical force of gravity 
but negligible horizontal forces—has constant horizontal 
velocity, with its horizontal displacement proportional 
to time t. Combining this with his knowledge that the 
vertical displacement of any projectile is proportional 
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This image shows an alleged experiment performed by Galileo Galilei 
(1564–1642) around 1620 in which he dropped a wooden ball and a heavier 
cannonball from the Leaning Tower of Pisa. This experiment was designed to 
prove to the Aristotelian followers that all objects, regardless of weight, fall at 
the same speed. Hulton Archive/Getty Images

to t2, Galileo discovered that a projectile’s trajectory is a 
parabola.

The three conic sections (ellipse, parabola, and hyper-
bola) had been studied since antiquity, and Galileo’s 
models of motion gave further proof that dynamics could 
be studied with the help of geometry. In 1609 the German 
astronomer Johannes Kepler took this idea to the cosmic 
level by showing that the planets orbit the Sun in ellipses. 
Eventually, Newton uncovered deeper reasons for the 
occurrence of conic sections with his theory of gravitation.

During the period from Oresme to Galileo, there were 
also some remarkable discoveries concerning infinite series. 
Oresme summed the series 1 ⁄2 + 2⁄22 + 3 ⁄23 + 4⁄24 + · · · = 2, and he 
also showed that the harmonic series 1 + 1 ⁄2 + 1 ⁄3 + 1 ⁄4 + · · · does 
not have a finite sum, because in the successive groups of 
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terms 1 ⁄2,  1 ⁄3 + 1 ⁄4,  1 ⁄5 +  1 ⁄6 +  1 ⁄7 + 1 ⁄8, … each group has a sum 
greater than 1 ⁄2. With his use of infinite series, coordinates, 
and graphical interpretations of motion, Oresme was on 
the brink of a decisive advance beyond the discoveries of 
Archimedes. All that Oresme lacked was a symbolic lan-
guage to unite his ideas and allow them to be manipulated 
mathematically. That symbolic language was to be found in 
the emerging mathematical discipline of algebra.

analytic geometry

About 1630 the French mathematicians Pierre de Fermat 
and René Descartes independently realized that algebra 
was a tool of wondrous power in geometry and invented 
what is now known as analytic geometry. If a curve in 
the plane can be expressed by an equation of the form 
p(x, y) = 0, where p(x, y) is any polynomial in the two vari-
ables, then its basic properties can be found by algebra. 
(For example, the polynomial equation x2 + y2 = 1 describes 
a simple circle of radius 1 about the origin.) In particular, 
it is possible to find the tangent anywhere along the curve. 
Thus, what Archimedes could solve only with difficulty 
and for isolated cases, Fermat and Descartes solved in rou-
tine fashion and for a huge class of curves (now known as 
the algebraic curves).

It is easy to find the tangent by algebra, but it is some-
what harder to justify the steps involved. In general, the 
slope of any curve y = f(x) at any value of x can be found by 
computing the slope of the chord

and taking its limit as h tends to zero. This limit, written 
as f′(x), is called the derivative of the function f. Fermat’s 
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method showed that the derivative of x2 is 2x and, by 
extension, that the derivative of xk is kxk − 1 for any natural 
number k.

the fundamental theorem  
of calculus

Differentials and Integrals

The method of Fermat and Descartes is part of what is now 
known as differential calculus, and indeed it deserves the 
name calculus, being a systematic and general method for 
calculating tangents. At the same time, mathematicians 
were trying to calculate other properties of curved figures, 
such as their arc length, area, and volume. These calcula-
tions are part of what is now known as integral calculus. A 
general method for integral problems was not immediately 
apparent in the 17th century, although algebraic techniques 
worked well in certain cases, often in combination with 
geometric arguments. In particular, contemporaries of 
Fermat and Descartes struggled to understand the prop-
erties of the cycloid, a curve not studied by the ancients. 
The cycloid, as you may recall, is traced by a point on the 
circumference of a circle as it rolls along a straight line.

The cycloid was commended to the mathematicians of 
Europe by Marin Mersenne, a French priest who directed 
much of the scientific research in the first half of the 
16th century by coordinating correspondence between 
scientists. About 1634 the French mathematician Gilles 
Personne de Roberval first took up the challenge, by prov-
ing a conjecture of Galileo that the area enclosed by one 
arch of the cycloid is three times the area of the generat-
ing circle.

Roberval also found the volume of the solid formed 
by rotating the cycloid about the straight line through 
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its endpoints. Because his position at the Collège Royal 
had to be reclaimed every three years in a mathematical 
contest—in which the incumbent set the questions—he 
was secretive about his methods. It is now known that his 
calculations used indivisibles (loosely speaking, “nearly” 
dimensionless elements) and that he found the area 
beneath the sine curve, a result previously obtained by 
Kepler. In modern language, Kepler and Roberval knew 
how to integrate the sine function.

Results on the cycloid were discovered and rediscov-
ered over the next two decades by Fermat, Descartes, and 
Blaise Pascal in France, Evangelista Torricelli in Italy, and 
John Wallis and Christopher Wren in England. In par-
ticular, Wren found that the length (as measured along 
the curve) of one arch of the cycloid is eight times the 
radius of the generating circle, demolishing a speculation 
of Descartes that the lengths of curves could never be 
known. Such was the acrimony and national rivalry stirred 
up by the cycloid that it became known as the Helen of 
geometers because of its beauty and ability to provoke 
discord. Its importance in the development of mathemat-
ics was somewhat like solving the cubic equation—a small 
technical achievement but a large encouragement to solve 
more difficult problems.

A more elementary, but fundamental, problem was to 
integrate x k—that is, to find the area beneath the curves 
y = xk where k = 1, 2, 3, …. For k = 2 the curve is a parabola, 
and the area of this shape had been found in the 3rd cen-
tury BCE by Archimedes. For an arbitrary number k, the 
area can be found if a formula for 1k + 2k +· · ·+ nk is known. 
One of Archimedes’ approaches to the area of the parab-
ola was, in fact, to find this sum for k = 2. The sums for 
k = 3 and k = 4 had been found by the Arab mathematician 
Abū ‘Alī al-H· asan ibn al-Haytham (c. 965–1040) and for k 
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up to 13 by Johann Faulhaber in Germany in 1622. Finally, 
in the 1630s, the area under y = x k was found for all natu-
ral numbers k. It turned out that the area between 0 and 
x is simply x k + 1/(k + 1), a solution independently discov-
ered by Fermat, Roberval, and the Italian mathematician 
Bonaventura Cavalieri.

Discovery of the Theorem

This hard-won result became almost a triviality with the 
discovery of the fundamental theorem of calculus a few 
decades later. The fundamental theorem states that the 
area under the curve y = f(x) is given by a function F(x) 
whose derivative is f(x), F′(x) = f(x). The fundamental 
theorem reduced integration to the problem of finding a 
function with a given derivative; for example, xk + 1/(k + 1) is 
an integral of x k because its derivative equals x k.

The fundamental theorem was first discovered by 
James Gregory in Scotland in 1668 and by Isaac Barrow 
(Newton’s predecessor at the University of Cambridge) 
about 1670, but in a geometric form that concealed its 
computational advantages. Newton discovered the result 
for himself about the same time and immediately realized 
its power. In fact, from his viewpoint the fundamental 
theorem completely solved the problem of integration. 
However, he failed to publish his work, and in Germany 
Leibniz independently discovered the same theorem 
and published it in 1686. This led to a bitter dispute over 
priority and over the relative merits of Newtonian and 
Leibnizian methods. This dispute isolated and impover-
ished British mathematics until the 19th century.

For Newton, analysis meant finding power series for 
functions f(x)—i.e., infinite sums of multiples of powers 
of x. A few examples were known before his time—for 
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example, the geometric series for 1/(1 − x), 1⁄(1 − x) = 1 + x + x2 
+ x3 + x4 +· · ·, which is implicit in Greek mathematics, and 
series for sin (x), cos (x), and tan−1 (x), discovered about 
1500 in India although not communicated to Europe. 
Newton created a calculus of power series by showing 
how to differentiate, integrate, and invert them. Thanks 
to the fundamental theorem, differentiation and integra-
tion were easy, as they were needed only for powers x k. 
Newton’s more difficult achievement was inversion: given 
y = f(x) as a sum of powers of x, find x as a sum of powers 
of y. This allowed him, for example, to find the sine series 
from the inverse sine and the exponential series from the 
logarithm.

For Leibniz the meaning of calculus was somewhat dif-
ferent. He did not begin with a fixed idea about the form of 
functions, and so the operations he developed were quite 
general. In fact, modern derivative and integral symbols 
are derived from Leibniz’s d for difference and ∫ for sum. 
He applied these operations to variables and functions 
in a calculus of infinitesimals. When applied to a variable 
x, the difference operator d produces dx, an infinitesimal 
increase in x that is somehow as small as desired without 
ever quite being zero. Corresponding to this infinitesimal 
increase, a function f(x) experiences an increase df = f ′dx, 
which Leibniz regarded as the difference between values 
of the function f at two values of x a distance of dx apart. 
Thus the derivative f ′ = df /dx was a quotient of infinitesi-
mals. Similarly, Leibniz viewed the integral ∫f(x)dx of f(x) 
as a sum of infinitesimals—infinitesimal strips of area 
under the curve y = f (x)—so that the fundamental theo-
rem of calculus was for him the truism that the difference 
between successive sums is the last term in the sum: 
d∫f(x)dx = f(x)dx.

In effect, Leibniz reasoned with continuous quantities 
as if they were discrete. The idea was even more dubious 
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Gottfried Wilhelm Leibniz (1646–1716) reached the same conclusions as did 
Isaac Newton regarding integral and differential calculus. He published his 
work before Newton, however, in 1686. Archive Photos/Getty Images
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than indivisibles, but, combined with a perfectly apt  
notation that facilitated calculations, mathematicians 
initially ignored any logical difficulties in their joy at 
being able to solve problems that until then were intrac-
table. Both Leibniz and Newton (who also took advantage 
of mysterious nonzero quantities that vanished when 
convenient) knew the calculus was a method of unparal-
leled scope and power, and they both wanted the credit 
for inventing it. True, the underlying infinitesimals were 
ridiculous—as the Anglican bishop George Berkeley 
remarked in his The Analyst; or, A Discourse Addressed to an 
Infidel Mathematician (1734):

They are neither finite quantities…nor yet nothing. May we 
not call them ghosts of departed quantities?

However, results found with their help could be con-
firmed (given sufficient, if not quite infinite, patience) by 
the method of exhaustion. So calculus forged ahead, and 
eventually the credit for it was distributed evenly, with 
Newton getting his share for originality and Leibniz his 
share for finding an appropriate symbolism.

Calculus Flourishes

Newton had become the world’s leading scientist, thanks 
to the publication of his Principia (1687), which explained 
Kepler’s laws and much more with his theory of gravita-
tion. Assuming that the gravitational force between bodies 
is inversely proportional to the distance between them, he 
found that in a system of two bodies the orbit of one relative 
to the other must be an ellipse. Unfortunately, Newton’s 
preference for classical geometric methods obscured the 
essential calculus. The result was that Newton had admir-
ers but few followers in Britain, notable exceptions being 
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Brook Taylor and Colin Maclaurin. Instead, calculus flour-
ished on the Continent, where the power of Leibniz’s 
notation was not curbed by Newton’s authority.

For the next few decades, calculus belonged to Leibniz 
and the Swiss brothers Jakob and Johann Bernoulli. 
Between them they developed most of the standard 
material found in calculus courses: the rules for differen-
tiation, the integration of rational functions, the theory 
of elementary functions, applications to mechanics, and 
the geometry of curves. To Newton’s chagrin, Johann even 
presented a Leibniz-style proof that the inverse square 
law of gravitation implies elliptical orbits. He claimed, 
with some justice, that Newton had not been clear on this 
point. The first calculus textbook was also due to Johann—
his lecture notes Analyse des infiniment petits (“Infinitesimal 
Analysis”) was published by the marquis de l’Hôpital in 
1696—and calculus in the next century was dominated by 
his great Swiss student Leonhard Euler, who was invited to 
Russia by Catherine the Great and thus helped to spread 
the Leibniz doctrine to all corners of Europe.

Perhaps the only basic calculus result missed by the 
Leibniz school was one on Newton’s specialty of power 
series, given by Taylor in 1715. The Taylor series neatly 
wraps up the power series for 1/(1 − x), sin (x), cos (x), 
tan−1 (x) and many other functions in a single formula:

Here f ′(a) is the derivative of f at x = a, f ′′(a) is the derivative 
of the derivative (the “second derivative”) at x = a, and so on 
(see Higher-Order Derivatives on page 42). Taylor’s formula 
pointed toward Newton’s original goal—the general study 
of functions by power series—but the actual meaning of 
this goal awaited clarification of the function concept.

7 History of Analysis 7



7 The Britannica Guide to Analysis and Calculus 7

96

elaBoration and 
generalization

Euler and Infinite Series

The 17th-century techniques of differentiation, inte-
gration, and infinite processes were of enormous power 
and scope, and their use expanded in the next century. 
The output of Euler alone was enough to dwarf the com-
bined discoveries of Newton, Leibniz, and the Bernoullis. 
Much of his work elaborated on theirs, developing the 
mechanics of heavenly bodies, fluids, and flexible and 
elastic media. For example, Euler studied the difficult 
problem of describing the motion of three masses under 
mutual gravitational attraction (now known as the three-
body problem). Applied to the Sun-Moon-Earth system, 
Euler’s work greatly increased the accuracy of the lunar 
tables used in navigation—for which the British Board of 
Longitude awarded him a monetary prize. He also applied 
analysis to the bending of a thin elastic beam and in the 
design of sails.

Euler also took analysis in new directions. In 1734 he 
solved a problem in infinite series that had defeated his 
predecessors: the summation of the series 1⁄12 + 1⁄22 + 1⁄32 +  
1 ⁄42 + · · ·. Euler found the sum to be π2⁄6 by the bold step of 
comparing the series with the sum of the roots of the fol-
lowing infinite polynomial equation (obtained from the 
power series for the sine function): sin (√x)⁄√x = 1 − x⁄3! + x2⁄5! − x3⁄7! + 
· · · = 0. Euler was later able to generalize this result to find 
the values of the function

for all even natural numbers s.
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The function ζ(s), later known as the Riemann zeta 
function, is a concept that really belongs to the 19th century. 
Euler caught a glimpse of the future when he discovered the 
fundamental property of ζ(s) in his Introduction to Analysis of 
the Infinite (1748): the sum over the integers 1, 2, 3, 4, … equals 
a product over the prime numbers 2, 3, 5, 7, 11, 13, 17, …, namely

This startling formula was the first intimation that 
analysis—the theory of the continuous—could say some-
thing about the discrete and mysterious prime numbers. The 
zeta function unlocks many of the secrets of the primes—
for example, that there are infinitely many of them. To see 
why, suppose there were only finitely many primes. Then 
the product for ζ(s) would have only finitely many terms and 
hence would have a finite value for s = 1. But for s = 1 the sum 
on the left would be the harmonic series, which Oresme 
showed to be infinite, thus producing a contradiction.

Of course it was already known that there were infinitely 
many primes—this is a famous theorem of Euclid—but 
Euler’s proof gave deeper insight into the result. By the end 
of the 20th century, prime numbers had become the key to 
the security of most electronic transactions, with sensitive 
information being “hidden” in the process of multiplying 
large prime numbers. This demands an infinite supply of 
primes, to avoid repeating primes used in other transac-
tions, so that the infinitude of primes has become one of 
the foundations of electronic commerce.

Complex Exponentials

As a final example of Euler’s work, consider his famous for-
mula for complex exponentials eiθ = cos (θ) + i sin (θ), where 
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i = √−1. Like his formula for ζ(2), which surprisingly relates 
π to the squares of the natural numbers, the formula for 
eiθ relates all the most famous numbers—e, i, and π—in a 
miraculously simple way. Substituting π for θ in the for-
mula gives eiπ = −1, which is surely the most remarkable 
formula in mathematics.

The formula for eiθ appeared in Euler’s Introduction, 
where he proved it by comparing the Taylor series for the 
two sides. The formula is really a reworking of other for-
mulas due to Newton’s contemporaries in England, Roger 
Cotes and Abraham de Moivre—and Euler may also have 
been influenced by discussions with his mentor Johann 
Bernoulli—but it definitively shows how the sine and 
cosine functions are just parts of the exponential function. 
This, too, was a glimpse of the future, where many a pair 
of real functions would be fused into a single “complex” 
function. Before explaining what this means, more needs 
to be said about the evolution of the function concept in 
the 18th century.

Functions

Calculus introduced mathematicians to many new func-
tions by providing new ways to define them, such as with 
infinite series and with integrals. More generally, func-
tions arose as solutions of ordinary differential equations 
(involving a function of one variable and its derivatives) 
and partial differential equations (involving a function of 
several variables and derivatives with respect to these vari-
ables). Many physical quantities depend on more than one 
variable, so the equations of mathematical physics typi-
cally involve partial derivatives.

In the 18th century the most fertile equation of this 
kind was the vibrating string equation, discussed previously, 
that had been derived by the French mathematician Jean 
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Le Rond d’Alembert in 1747. As noted, this equation related 
to rates of change of quantities arising in the vibration of a 
taut violin string. This led to the amazing conclusion that 
an arbitrary continuous function f(x) can be expressed, 
between 0 and 2π, as a sum of sine and cosine functions in 
a series (later called a Fourier series) of the form y = f(x) = 
a0/2 + (a1 cos (πx) + b1 sin (πx)) + (a2 cos (2πx) + b2 sin (2πx)) + ·· ·. 

But what is an arbitrary continuous function, and is it 
always correctly expressed by such a series? Indeed, does 
such a series necessarily represent a continuous function at 
all? The French mathematician Joseph Fourier addressed 
these questions in his The Analytical Theory of Heat (1822). 
Subsequent investigations turned up many surprises, 
leading not only to a better understanding of continuous 
functions but also of discontinuous functions, which do 
indeed occur as Fourier series. This in turn led to impor-
tant generalizations of the concept of integral designed to 
integrate highly discontinuous functions—the Riemann 
integral of 1854 and the Lebesgue integral of 1902.

Fluid Flow

Evolution in a different direction began when the French 
mathematicians Alexis Clairaut in 1740 and d’Alembert 
in 1752 discovered equations for fluid flow. Their equa-
tions govern the velocity components u and v at a point 
(x, y) in a steady two-dimensional flow. Like a vibrating 
string, the motion of a fluid is rather arbitrary, although 
not completely—d’Alembert was surprised to notice that 
a combination of the velocity components, u + iv, was a 
differentiable function of x + iy. Like Euler, he had discov-
ered a function of a complex variable, with u and v its real 
and imaginary parts, respectively.

This property of u + iv was rediscovered in France 
by Augustin-Louis Cauchy in 1827 and in Germany by 
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Bernhard Riemann in 1851. By this time complex numbers 
had become an accepted part of mathematics, obey-
ing the same algebraic rules as real numbers and having 
a clear geometric interpretation as points in the plane. 
Any complex function f(z) can be written in the form f(z) = 
f(x + iy) = u(x, y) + iv(x, y), where u and v are real-valued 
functions of x and y. Complex differentiable functions are 
those for which the limit f ′(z) of (f(z + h) − f(z))/h exists as 
h tends to zero. However, unlike real numbers, which can 
approach zero only along the real line, complex numbers 
reside in the plane, and an infinite number of paths lead to 
zero. It turned out that, in order to give the same limit f′(z) 
as h tends to zero from any direction, u and v must satisfy 
the constraints imposed by the Clairaut and d’Alembert 
equations.

A way to visualize differentiability is to interpret the 
function f as a mapping from one plane to another. For 
f ′(z) to exist, the function f must be “similarity preserv-
ing in the small,” or conformal, meaning that infinitesimal 
regions are faithfully mapped to regions of the same shape, 
though possibly rotated and magnified by some factor. 
This makes differentiable complex functions useful in 
actual mapping problems, and they were used for this pur-
pose even before Cauchy and Riemann recognized their 
theoretical importance.

Differentiability is a much more significant property 
for complex functions than for real functions. Cauchy 
discovered that, if a function’s first derivative exists, 
then all its derivatives exist, and therefore it can be rep-
resented by a power series in z—its Taylor series. Such a 
function is called analytic. In contrast to real differen-
tiable functions, which are as “flexible” as string, complex 
differentiable functions are “rigid” in the sense that any 
region of the function determines the entire function. 
This is because the values of the function over any region, 
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no matter how small, determine all its derivatives, and 
hence they determine its power series. Thus, it became 
feasible to study analytic functions via power series, a 
program attempted by the Italian French mathemati-
cian Joseph-Louis Lagrange for real functions in the 18th 
century but first carried out successfully by the German 
mathematician Karl Weierstrass in the 19th century, after 
the appropriate subject matter of complex analytic func-
tions had been discovered.

reBuilding the foundations

Arithmetization of Analysis

Before the 19th century, analysis rested on makeshift 
foundations of arithmetic and geometry, supporting the 
discrete and continuous sides of the subject, respectively. 
Mathematicians since the time of Eudoxus had doubted 
that “all is number,” and when in doubt they used geom-
etry. This pragmatic compromise began to fall apart in 
1799, when Gauss found himself obliged to use continuity 
in a result that seemed to be discrete—the fundamental 
theorem of algebra.

The theorem says that any polynomial equation has a 
solution in the complex numbers. Gauss’s first proof fell 
short (although this was not immediately recognized) 
because it assumed as obvious a geometric result actually 
harder than the theorem itself. In 1816 Gauss attempted 
another proof, this time relying on a weaker assumption 
known as the intermediate value theorem: if f(x) is a con-
tinuous function of a real variable x and if f(a) < 0 and 
f(b) > 0, then there is a c between a and b such that f(c) = 0.

The importance of proving the intermediate value 
theorem was recognized in 1817 by the Bohemian math-
ematician Bernhard Bolzano, who saw an opportunity 
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to remove geometric assumptions from algebra. His 
attempted proof introduced essentially the modern condi-
tion for continuity of a function f at a point x: f(x + h) − f(x) 
can be made smaller than any given quantity, provided h 
can be made arbitrarily close to zero. Bolzano also relied on 
an assumption—the existence of a greatest lower bound: 
if a certain property M holds only for values greater than 
some quantity l, then there is a greatest quantity u such 
that M holds only for values greater than or equal to u. 
Bolzano could go no further than this, because in his time 
the notion of quantity was still too vague. Was it a number? 
Was it a line segment? And in any case how does one decide 
whether points on a line have a greatest lower bound?

The same problem was encountered by the German 
mathematician Richard Dedekind when teaching calcu-
lus, and he later described his frustration with appeals to 
geometric intuition:

For myself this feeling of dissatisfaction was so overpowering 
that I made a fixed resolve to keep meditating on the question 
till I should find a purely arithmetic and perfectly rigorous 
foundation for the principles of infinitesimal analysis.…I suc-
ceeded on November 24, 1858.

Dedekind eliminated geometry by going back to an 
idea of Eudoxus but taking it a step further. Eudoxus said, 
in effect, that a point on the line is uniquely determined 
by its position among the rationals. That is, two points 
are equal if the rationals less than them (and the rationals 
greater than them) are the same. Thus, each point creates 
a unique “cut” (L, U) in the rationals, a partition of the set 
of rationals into sets L and U with each member of L less 
than every member of U.

Dedekind’s small but crucial step was to dispense 
with the geometric points supposed to create the cuts. 
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He defined the real numbers to be the cuts (L, U) just 
described—that is, as partitions of the rationals with each 
member of L less than every member of U. Cuts included 
representatives of all rational and irrational quantities 
previously considered, but now the existence of greatest 
lower bounds became provable and hence also the inter-
mediate value theorem and all its consequences. In fact, 
all the basic theorems about limits and continuous func-
tions followed from Dedekind’s definition—an outcome 
called the arithmetization of analysis.

The full program of arithmetization, based on a dif-
ferent but equivalent definition of real number, is mainly 
due to Weierstrass in the 1870s. He relied on rigorous 
definitions of real numbers and limits to justify the com-
putations previously made with infinitesimals. Bolzano’s 
1817 definition of continuity of a function f at a point x, 
mentioned above, came close to saying what it meant for 
the limit of f(x + h) to be f(x). The final touch of precision 
was added with Cauchy’s “epsilon-delta” definition of 1821: 
for each ε > 0 there is a δ > 0 such that |f(x + h) − f(x)| < ε for 
all |h| < δ.

Analysis in Higher Dimensions

While geometry was being purged from the foundations of 
analysis, its spirit was taking over the superstructure. The 
study of complex functions, or functions with two or more 
variables, became allied with the rich geometry of higher-
dimensional spaces. Sometimes the geometry guided the 
development of concepts in analysis, and sometimes it 
was the reverse. A beautiful example of this interaction 
was the concept of a Riemann surface. The complex num-
bers can be viewed as a plane (as pointed out in the section 
on fluid flow), so a function of a complex variable can be 
viewed as a function on the plane. Riemann’s insight was 
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This model of the Riemann sphere has its south pole resting on the origin of the 
complex plane. Each point on the surface of the Riemann sphere corresponds 
to a unique point in the complex plane and vice versa. This is indicated by the 
rays extending from the sphere’s north pole through some point on the sphere’s 
surface and through some point in the plane. Because a ray that is tangent to 
the north pole does not intersect the complex plane, the north pole corresponds 
to infinity. Encyclopædia Britannica, Inc.

that other surfaces can also be provided with complex 
coordinates, and certain classes of functions belong to 
certain surfaces. For example, by mapping the plane ste-
reographically onto the sphere, each point of the sphere 
except the north pole is given a complex coordinate, and it 
is natural to map the north pole to infinity, ∞. When this is 
done, all rational functions make sense on the sphere. For 
example, 1⁄z is defined for all points of the sphere by making 
the natural assumptions that 1 ⁄0 = ∞ and 1⁄∞ = 0. This leads 
to a remarkable geometric characterization of the class of 
rational complex functions—they are the differentiable 
functions on the sphere. One similarly finds that the ellip-
tic functions (complex functions that are periodic in two 
directions) are the differentiable functions on the torus.

Functions of three, four, … variables are naturally stud-
ied with reference to spaces of three, four, … dimensions, 
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but these are not necessarily the ordinary Euclidean spaces. 
The idea of differentiable functions on the sphere or torus 
was generalized to differentiable functions on manifolds 
(topological spaces of arbitrary dimension). Riemann sur-
faces, for example, are two-dimensional manifolds.

Manifolds can be complicated, but it turned out that 
their geometry, and the nature of the functions on them, 
is largely controlled by their topology, the rather coarse 
properties invariant under one-to-one continuous map-
pings. In particular, Riemann observed that the topology 
of a Riemann surface is determined by its genus, the num-
ber of closed curves that can be drawn on the surface 
without splitting it into separate pieces. For example, the 
genus of a sphere is zero and the genus of a torus is one. 
Thus, a single integer controls whether the functions on 
the surface are rational, elliptic, or something else.

The topology of higher-dimensional manifolds is 
subtle, and it became a major field of 20th-century math-
ematics. The first inroads were made in 1895 by the French 
mathematician Henri Poincaré, who was drawn into 
topology from complex function theory and differential 
equations. The concepts of topology, by virtue of their 
coarse and qualitative nature, are capable of detecting 
order where the concepts of geometry and analysis can see 
only chaos. Poincaré found this to be the case in studying 
the three-body problem, and it continues with the intense 
study of chaotic dynamical systems.

The moral of these developments is perhaps the fol-
lowing: It may be possible and desirable to eliminate 
geometry from the foundations of analysis, but geometry 
still remains present as a higher-level concept. Continuity 
can be arithmetized, but the theory of continuity involves 
topology, which is part of geometry. Thus, the ancient 
complementarity between arithmetic and geometry 
remains the essence of analysis.

7 History of Analysis 7
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CHAPTER 6
GReAt FIGURes In tHe 
HIstoRY oF AnALYsIs

      the ancient and 
medieval period 

 Although we know almost nothing about the lives of such 
great ancient mathematicians as Euclid and Pythagoras, 
the work that they did still stands among humanity’s great-
est intellectual achievements. Their work paved the way for 
those great fi gures of the Middle Ages, Nicholas Oresme 
and Ibn al-Haytham, who prepared the way for calculus.   

 Archimedes 
 (b.  c.  290–280, Syracuse, Sicily [now in Italy]—d. 212/211  BCE , Syracuse) 

 Archimedes was the most famous mathematician and 
inventor of ancient Greece. He is especially important 
for his discovery of the relation between the surface and 
volume of a sphere and its circumscribing cylinder. He 
is known for his formulation of a hydrostatic principle 
(known as Archimedes’ principle) and a device for rais-
ing water, still used in developing countries, known as the 
Archimedes screw. 

 Archimedes probably spent some time in Egypt early 
in his career, but he resided for most of his life in Syracuse, 
the principal Greek city-state in Sicily, where he was on 
intimate terms with its king, Hieron II. Archimedes 
published his works in the form of correspondence with 
the principal mathematicians of his time, including the 
Alexandrian scholars Conon of Samos and Eratosthenes 
of Cyrene. He played an important role in the defense of 
Syracuse against the siege laid by the Romans in 213  BCE  
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by constructing war machines so effective that they long 
delayed the capture of the city. When Syracuse eventually 
fell to the Roman general Marcus Claudius Marcellus in 
the autumn of 212 or spring of 211  BCE , Archimedes was 
killed in the sack of the city. 

 Far more details survive about the life of Archimedes 
than about any other ancient scientist, but they are largely 
anecdotal, refl ecting the impression that his mechani-
cal genius made on the popular imagination. Thus, he is 
credited with inventing the Archimedes screw, and he 
is supposed to have made two “spheres” that Marcellus 
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The Archimedes screw is shown in this 1548 woodcut from a text on architec-
ture published in 1548. The Archimedes screw was devised by Archimedes in 
the 3rd century BCE and is still in use today. SSPL via Getty Images
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took back to Rome—one a star globe and the other a 
device (the details of which are uncertain) for mechani-
cally representing the motions of the Sun, the Moon, 
and the planets. The story that he determined the pro-
portion of gold and silver in a wreath made for Hieron 
by weighing it in water is probably true, but the version 
that has him leaping from the bath in which he suppos-
edly got the idea and running naked through the streets 
shouting “Heurēka!” (“I have found it!”) is popular embel-
lishment. Equally apocryphal are the stories that he used 
a huge array of mirrors to burn the Roman ships besieg-
ing Syracuse; that he said, “Give me a place to stand and I 
will move the Earth”; and that a Roman soldier killed him 
because he refused to leave his mathematical diagrams—
although all are popular reflections of his real interest in 
catoptrics (the branch of optics dealing with the reflec-
tion of light from mirrors, plane or curved), mechanics, 
and pure mathematics.

According to Plutarch (c. 46–119 CE), Archimedes had 
so low an opinion of the kind of practical invention at 
which he excelled and to which he owed his contemporary 
fame that he left no written work on such subjects. While 
it is true that—apart from a dubious reference to a trea-
tise, “On Sphere-Making”—all of his known works were 
of a theoretical character, his interest in mechanics nev-
ertheless deeply influenced his mathematical thinking. 
Not only did he write works on theoretical mechanics and 
hydrostatics, but his treatise Method Concerning Mechanical 
Theorems shows that he used mechanical reasoning as a 
heuristic device for the discovery of new mathematical 
theorems.

There are nine extant treatises by Archimedes in 
Greek. The principal results in On the Sphere and Cylinder 
(in two books) are that the surface area of any sphere of 
radius r is four times that of its greatest circle (in modern 
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notation, S = 4πr2) and that 
the volume of a sphere is 
two-thirds that of the cylin-
der in which it is inscribed 
(leading immediately to the 
formula for the volume, 
V = 4 ⁄3π r 3). Archimedes 
was proud enough of the 
latter discovery to leave 
instructions for his tomb 
to be marked with a sphere 
inscribed in a cylinder. 
Marcus Tullius Cicero 
(106–43 BCE) found the 
tomb, overgrown with veg-
etation, a century and a half 
after Archimedes’ death.

Measurement of the Circle 
is a fragment of a longer 
work in which π (pi), the ratio of the circumference to 
the diameter of a circle, is shown to lie between the lim-
its of 310⁄71 and 31⁄7. Archimedes’ approach to determining 
π, which consists of inscribing and circumscribing regu-
lar polygons with a large number of sides, was followed by 
everyone until the development of infinite series expan-
sions in India during the 15th century and in Europe 
during the 17th century. This work also contains accurate 
approximations (expressed as ratios of integers) to the 
square roots of 3 and several large numbers.

On Conoids and Spheroids deals with determining the 
volumes of the segments of solids formed by the revo-
lution of a conic section (circle, ellipse, parabola, or 
hyperbola) about its axis. In modern terms, these are 
problems of integration. On Spirals develops many proper-
ties of tangents to, and areas associated with, the spiral of 
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The surface area of a sphere is 4πr2 and 
the surface area of the circumscribing 
cylinder is 6πr2. Hence, any sphere 
has two-thirds the surface area of its 
circumscribing cylinder. Archimedes 
(d. 212/211 BCE) was so proud of his 
discovery of this relationship that he 
had the formula chiseled on his tomb. 
Encyclopædia Britannica, Inc.
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Archimedes—i.e., the locus of a point moving with uni-
form speed along a straight line that itself is rotating with 
uniform speed about a fixed point. It was one of only a 
few curves beyond the straight line and the conic sections 
known in antiquity.

On the Equilibrium of Planes (or Centres of Gravity of 
Planes; in two books) is mainly concerned with establishing 
the centres of gravity of various rectilinear plane figures 
and segments of the parabola and the paraboloid. The first 
book purports to establish the “law of the lever” (magni-
tudes balance at distances from the fulcrum in inverse ratio 
to their weights), and it is mainly on the basis of this treatise 
that Archimedes has been called the founder of theoretical 
mechanics. Much of this book, however, is undoubtedly 
not authentic, consisting as it does of inept later additions 
or reworkings, and it seems likely that the basic principle 
of the law of the lever and—possibly—the concept of the 
centre of gravity were established on a mathematical basis 
by scholars earlier than Archimedes. His contribution was 
rather to extend these concepts to conic sections.

Quadrature of the Parabola demonstrates, first by 
“mechanical” means (as in Method, below) and then by 
conventional geometric methods, that the area of any seg-
ment of a parabola is 4 ⁄3 of the area of the triangle having 
the same base and height as that segment. This is, again, a 
problem in integration.

Method Concerning Mechanical Theorems describes a pro-
cess of discovery in mathematics. It is the sole surviving 
work from antiquity, and one of the few from any period, 
that deals with this topic. In it Archimedes recounts how 
he used a “mechanical” method to arrive at some of his key 
discoveries, including the area of a parabolic segment and 
the surface area and volume of a sphere. The technique 
consists of dividing each of two figures into an infinite 
but equal number of infinitesimally thin strips, then 
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“weighing” each corresponding pair of these strips against 
each other on a notional balance to obtain the ratio of the 
two original figures. Archimedes emphasizes that, though 
useful as a heuristic method, this procedure does not con-
stitute a rigorous proof.

On Floating Bodies (in two books) survives only partly 
in Greek, the rest in medieval Latin translation from the 
Greek. It is the first known work on hydrostatics, of which 
Archimedes is recognized as the founder. Its purpose is 
to determine the positions that various solids will assume 
when floating in a fluid, according to their form and the 
variation in their specific gravities. In the first book vari-
ous general principles are established, notably what has 
come to be known as Archimedes’ principle: a solid denser 
than a fluid will, when immersed in that fluid, be lighter by 
the weight of the fluid it displaces.

Archimedes’ mathematical proofs and presentation 
exhibit great boldness and originality of thought on the one 
hand and extreme rigour on the other, meeting the high-
est standards of contemporary geometry. While the Method 
shows that he arrived at the formulas for the surface area 
and volume of a sphere by “mechanical” reasoning involv-
ing infinitesimals, in his actual proofs of the results in Sphere 
and Cylinder he uses only the rigorous methods of successive 
finite approximation that had been invented by Eudoxus of 
Cnidus in the 4th century BCE. These methods, of which 
Archimedes was a master, are the standard procedure in all 
his works on higher geometry that deal with proving results 
about areas and volumes. Their mathematical rigour stands 
in strong contrast to the “proofs” of the first practitioners 
of integral calculus in the 17th century, when infinitesimals 
were reintroduced into mathematics. Yet Archimedes’ 
results are no less impressive than theirs.

The greatest impact of Archimedes’ work on later 
mathematicians came in the 16th and 17th centuries with 
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the printing of texts derived from the Greek, and eventu-
ally of the Greek text itself, the Editio Princeps, in Basel in 
1544. The Latin translation of many of Archimedes’ works 
by Federico Commandino in 1558 contributed greatly to 
the spread of knowledge of them, which was reflected in 
the work of the foremost mathematicians and physicists 
of the time, including Johannes Kepler and Galileo Galilei. 
David Rivault’s edition and Latin translation (1615) of the 
complete works, including the ancient commentaries, 
was enormously influential in the work of some of the 
best mathematicians of the 17th century, notably René 
Descartes and Pierre de Fermat. Without the background 
of the rediscovered ancient mathematicians, among whom 
Archimedes was paramount, the development of math-
ematics in Europe in the century between 1550 and 1650 
is inconceivable. It is unfortunate that Method remained 
unknown to both Arabic and Renaissance mathemati-
cians (it was only rediscovered in the late 19th century), 
for they might have fulfilled Archimedes’ hope that the 
work would prove useful in the discovery of theorems.

Euclid
(b. c. 300 BCE, Alexandria, Egypt)

The most prominent mathematician of Greco-Roman 
antiquity was Euclid (Greek: Eukleides), who was best 
known for his treatise on geometry, the Elements.

Of Euclid’s life nothing is known except what the 
Greek philosopher Proclus (c. 410–485 CE) reports in his 
“summary” of famous Greek mathematicians. According 
to him, Euclid taught at Alexandria in the time of Ptolemy 
I Soter, who reigned over Egypt from 323 to 285 BCE. 
Medieval translators and editors often confused him with 
the philosopher Eukleides of Megara, a contemporary of 
Plato about a century before, and therefore called him 



113

7 Great Figures in the History of Analysis 7

Megarensis. Proclus supported his date for Euclid by writ-
ing “Ptolemy once asked Euclid if there was not a shorter 
road to geometry than through the Elements, and Euclid 
replied that there was no royal road to geometry.” Today 
few historians challenge the consensus that Euclid was 
older than Archimedes.

Euclid compiled his Elements from a number of works 
of earlier men. Among these are Hippocrates of Chios 
(flourished c. 460 BCE), not to be confused with the phy-
sician Hippocrates of Cos (c. 460–377 BCE). The latest 
compiler before Euclid was Theudius, whose textbook 
was used in the Academy and was probably the one used 
by Aristotle (384–322 BCE). The older elements were at 
once superseded by Euclid’s and then forgotten. For his 
subject matter Euclid doubtless drew upon all his prede-
cessors, but it is clear that the whole design of his work 
was his own, culminating in the construction of the five 
regular solids, now known as the Platonic solids.

A brief survey of the Elements belies a common belief 
that it concerns only geometry. This misconception may be 
caused by reading no further than Books I through IV, which 
cover elementary plane geometry. Euclid understood that 
building a logical and rigorous geometry (and mathemat-
ics) depends on the foundation—a foundation that Euclid 
began in Book I with 23 definitions (such as “a point is that 
which has no part” and “a line is a length without breadth”), 
five unproved assumptions that Euclid called postulates 
(now known as axioms), and five further unproved assump-
tions that he called common notions. Book I then proves 
elementary theorems about triangles and parallelograms 
and ends with the Pythagorean theorem.

The subject of Book II has been called geometric alge-
bra because it states algebraic identities as theorems about 
equivalent geometric figures. Book II contains a construc-
tion of “the section,” the division of a line into two parts 
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such that the ratio of the larger to the smaller segment 
is equal to the ratio of the original line to the larger seg-
ment. (This division was renamed the golden section in 
the Renaissance after artists and architects rediscovered 
its pleasing proportions.) Book II also generalizes the 
Pythagorean theorem to arbitrary triangles, a result that 
is equivalent to the law of cosines. Book III deals with 
properties of circles and Book IV with the construction 
of regular polygons, in particular the pentagon.

Book V shifts from plane geometry to expound a gen-
eral theory of ratios and proportions that is attributed 
by Proclus (along with Book XII) to Eudoxus of Cnidus. 
While Book V can be read independently of the rest of 
the Elements, its solution to the problem of incommensu-
rables (irrational numbers) is essential to later books. In 
addition, it formed the foundation for a geometric theory 
of numbers until an analytic theory developed in the late 
19th century. Book VI applies this theory of ratios to plane 
geometry, mainly triangles and parallelograms, culminat-
ing in the “application of areas,” a procedure for solving 
quadratic problems by geometric means.

Books VII–IX contain elements of number theory, 
where number (arithmos) means positive integers greater 
than 1. Beginning with 22 new definitions—such as unity, 
even, odd, and prime—these books develop various 
properties of the positive integers. For instance, Book 
VII describes a method, antanaresis (now known as the 
Euclidean algorithm), for finding the greatest common 
divisor of two or more numbers; Book VIII examines 
numbers in continued proportions, now known as geo-
metric sequences (such as ax, ax2, ax3, ax4…); and Book IX 
proves that there are an infinite number of primes.

Books XI–XIII examine three-dimensional figures, 
in Greek stereometria. Book XI concerns the intersections 
of planes, lines, and parallelepipeds (solids with parallel 
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parallelograms as opposite faces). Book XII applies Eudoxus’ 
method of exhaustion to prove that the areas of circles are 
to one another as the squares of their diameters and that  
the volumes of spheres are to one another as the cubes of 
their diameters. Book XIII culminates with the construc-
tion of the five regular Platonic solids (pyramid, cube, 
octahedron, dodecahedron, icosahedron) in a given sphere.

The unevenness of the several books and the varied 
mathematical levels may give the impression that Euclid 
was but an editor of treatises written by other mathema-
ticians. To some extent this is certainly true, although it 
is probably impossible to figure out which parts are his 
own and which were adaptations from his predecessors. 
Euclid’s contemporaries considered his work final and 
authoritative. If more was to be said, it had to be as com-
mentaries to the Elements.

Almost from the time of its writing, the Elements 
exerted a continuous and major influence on human 
affairs. It was the primary source of geometric reasoning, 
theorems, and methods at least until the advent of non-
Euclidean geometry in the 19th century. It is sometimes 
said that, other than the Bible, the Elements is the most 
translated, published, and studied of all the books pro-
duced in the Western world. Euclid may not have been a 
first-class mathematician, but he set a standard for deduc-
tive reasoning and geometric instruction that persisted, 
practically unchanged, for more than 2,000 years.

Eudoxus of Cnidus
(b. c. 395–390, Cnidus, Asia Minor [now in Turkey]—d. 342–337 
BCE, Cnidus)

Eudoxus was a Greek mathematician and astronomer 
who substantially advanced proportion theory, contrib-
uted to the identification of constellations and thus to the 
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development of observational astronomy in the Greek 
world, and established the first sophisticated, geometrical 
model of celestial motion. He also wrote on geography and 
contributed to philosophical discussions in Plato’s Academy. 
Although none of his writings survive, his contributions are  
known from many discussions throughout antiquity.

According to the 3rd century CE historian Diogenes 
Laërtius (the source for most biographical details), 
Eudoxus studied mathematics with Archytas of Tarentum 
and medicine with Philistion of Locri. At age 23 he 
attended lectures in Athens, possibly at Plato’s Academy 
(opened c. 387 BCE). After two months he left for Egypt, 
where he studied with priests for 16 months. Earning his 
living as a teacher, Eudoxus then returned to Asia Minor, 
in particular to Cyzicus on the southern shore of the Sea 
of Marmara, before returning to Athens where he associ-
ated with Plato’s Academy.

Aristotle preserved Eudoxus’s views on metaphys-
ics and ethics. Unlike Plato, Eudoxus held that forms are 
in perceptible things. He also defined the good as what 
all things aim for, which he identified with pleasure. He 
eventually returned to his native Cnidus where he became 
a legislator and continued his research until his death at 
age 53. Followers of Eudoxus, including Menaechmus and 
Callippus, flourished in both Athens and in Cyzicus.

Eudoxus’s contributions to the early theory of propor-
tions (equal ratios) forms the basis for the general account 
of proportions found in Book V of Euclid’s Elements. 
Where previous proofs of proportion required separate 
treatments for lines, surfaces, and solids, Eudoxus pro-
vided general proofs. It is unknown, however, how much 
later mathematicians may have contributed to the form 
found in the Elements. He certainly formulated the bisec-
tion principle that given two magnitudes of the same sort 
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one can continuously divide the larger magnitude by at 
least halves so as to construct a part that is smaller than 
the smaller magnitude.

Similarly, Eudoxus’s theory of incommensurable mag-
nitudes (magnitudes lacking a common measure) and the 
method of exhaustion (its modern name) influenced Books 
X and XII of the Elements, respectively. Archimedes, in On 
the Sphere and Cylinder and in the Method, singled out for 
praise two of Eudoxus’s proofs based on the method of 
exhaustion: that the volumes of pyramids and cones are 
one-third the volumes of prisms and cylinders, respec-
tively, with the same bases and heights. Various traces 
suggest that Eudoxus’s proof of the latter began by assum-
ing that the cone and cylinder are commensurable, before 
reducing the case of the cone and cylinder being incom-
mensurable to the commensurable case. Since the modern 
notion of a real number is analogous to the ancient notion 
of ratio, this approach may be compared with 19th-century 
definitions of the real numbers in terms of rational num-
bers. Eudoxus also proved that the areas of circles are 
proportional to the squares of their diameters.

Eudoxus is also probably largely responsible for the 
theory of irrational magnitudes of the form a ± b (found 
in the Elements, Book X), based on his discovery that 
the ratios of the side and diagonal of a regular pentagon 
inscribed in a circle to the diameter of the circle do not 
fall into the classifications of Theaetetus of Athens (c. 417–
369 BCE). According to Eratosthenes of Cyrene, Eudoxus 
also contributed a solution to the problem of doubling the  
cube—that is, the construction of a cube with twice  
the volume of a given cube.

Eudoxus is the most innovative Greek mathematician 
before Archimedes. His work forms the foundation for 
the most advanced discussions in Euclid’s Elements and set 
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the stage for Archimedes’ study of volumes and surfaces. 
The theory of proportions is the first completely articu-
lated theory of magnitudes.

Ibn al-Haytham
(b. c. 965, Basra, Iraq—d. c. 1040 CE, Cairo, Egypt)

Abū ‘Alī al-H· asan ibn al-Haytham was an Arab mathemati-
cian and astronomer who made significant contributions to 
the principles of optics and the use of scientific experiments.

Conflicting stories are told about the life of Ibn 
al-Haytham, particularly concerning his scheme to reg-
ulate the Nile. In one version, told by the historian Ibn 
al-Qift·ī (d. 1248), Ibn al-Haytham was invited by al-H· ākim 
(reigned 996–1021; also known as “The Mad Caliph”) to 
Egypt to demonstrate his claim that he could regulate the 
Nile. However, after personally reconnoitering near the 
southern border of Egypt, Ibn al-Haytham confessed his 
inability to engineer such a project. Although still given an 
official position by the caliph, Ibn al-Haytham began to 
fear for his life, so he feigned madness and was confined to 
his own home until the end of al-H· ākim’s caliphate. Ibn 
al-Qift·ī also reports that Ibn al-Haytham then earned a 
living in Egypt largely by copying manuscripts. In fact, 
he claimed to possess a manuscript in Ibn al-Haytham’s 
handwriting from 1040.

There are three lists of Ibn al-Haytham’s writings, 
the first of which comes with his autobiography (1027), 
that collectively enumerate almost 100 works. It has 
recently been plausibly argued that there were two Ibn 
al-Haythams: al-H· asan ibn al-H· asan, the mathematician 
who wrote on optics, and Muh· ammad ibn al-H· asan, the 
astronomer-philosopher who wrote the autobiography 
and the works in the first and second lists.
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In his H· all shukūk fī Kitāb Uqlīdis (“Solution of the 
Difficulties of Euclid’s Elements”) Ibn al-Haytham inves-
tigated particular cases of Euclid’s theorems, offered 
alternative constructions, and replaced some indi-
rect proofs with direct proofs. He made an extended 
study of parallel lines in Sharz mus· ādarāt Kitāb Uqlīdis 
(“Commentary on the Premises of Euclid’s Elements”) 
and based his treatment of parallels on equidistant lines 
rather than Euclid’s definition of lines that never meet. 
His Maqāla fī tamām Kitāb al-Makhrūt·āt (“Completion of 
the Conics”) is an attempt to reconstruct the lost eighth 
book of Apollonius’s Conics (c. 200 BCE). Among his other 
mathematical works are treatises on the area of crescent-
shaped figures and on the volume of a paraboloid of 
revolution (formed by rotating a parabola about its axis).

Nicholas Oresme
(b. c. 1320, Normandy, France—d. July 11, 1382 CE, Lisieux)

The work of the French Roman Catholic bishop, scholas-
tic philosopher, economist, and mathematician Nicholas 
Oresme provided some basis for the development of 
modern mathematics and science and of French prose, 
particularly its scientific vocabulary.

It is known that Oresme was of Norman origin, 
although the exact place and year of his birth are uncertain. 
Similarly, the details of his early education are unknown. 
In 1348 his name appears on a list of graduate scholar-
ship holders in theology at the College of Navarre at the 
University of Paris. As Oresme became grand master of 
the college in 1356, he must have completed his doctorate 
in theology before this date. Oresme was appointed canon 
(1362) and dean (1364) of the Cathedral of Rouen and also 
canon at the Sainte-Chapelle in Paris (1363). From about 
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1370, at the behest of King Charles V of France, Oresme 
translated Aristotle’s Ethics, Politics, and On the Heavens, as 
well as the pseudo-Aristotelian Economics, from Latin into 
French. His effect on the French language can be discerned 
through his creation of French equivalents for many Latin 
scientific and philosophical terms. Oresme was elected 
bishop of Lisieux in 1377 and was consecrated in 1378.

Oresme presented his economic ideas in commen-
taries on the Ethics, Politics, and Economics, as well as an 
earlier treatise, De origine, natura, jure et mutationibus mon-
etarum (c. 1360; “On the Origin, Nature, Juridical Status 
and Variations of Coinage”). Oresme argued that coin-
age belongs to the public, not to the prince, who has no 
right to vary arbitrarily the content or weight. His abhor-
rence of the effects of debasing the currency influenced 
Charles’s monetary and tax policies. Oresme is generally 
considered the greatest medieval economist.

Oresme is also considered one of the most eminent 
scholastic philosophers, famous for his independent 
thinking and his critique of several Aristotelian tenets. He 
rejected Aristotle’s definition of a body’s place as the inner 
boundary of the surrounding medium in favour of a defini-
tion of place as the space occupied by the body. Similarly, 
he rejected Aristotle’s definition of time as the measure of 
motion, arguing instead for a definition of time as the suc-
cessive duration of things, independent of motion.

Oresme was a determined opponent of astrology, 
which he attacked on religious and scientific grounds. 
In De proportionibus proportionum (“On Ratios of Ratios”) 
Oresme first examined raising rational numbers to 
rational powers before extending his work to include irra-
tional powers. The results of both operations he termed 
irrational ratios, although he considered the first type 
commensurable with rational numbers, and the latter 
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not. His motivation for this study was a suggestion of the 
theologian-mathematician Thomas Bradwardine (c. 1290–
1349) that the relationship between forces (F), resistances 
(R), and velocities (V) is exponential. In modern terms: 
F2/R2 = (F1/R1 )V2/V1 .

Oresme then asserted that the ratio of any two celes-
tial motions is probably incommensurable. This excludes 
precise predictions of successively repeating conjunctions, 
oppositions, and other astronomical aspects, and he sub-
sequently claimed, in Ad pauca respicientes (its name derives 
from the opening sentence “Concerning some matters…”), 
that astrology was thereby refuted. As with astrology, he 
fought against the widespread belief in occult and “mar-
velous” phenomena by explaining them in terms of natural 
causes in Livre de divinacions (“Book of Divinations”).

Oresme’s main contributions to mathematics are 
contained in his Tractatus de configurationibus qualitatum 
et motuum (“Treatise on the Configurations of Qualities 
and Motions”). In this work Oresme conceived of the 
idea of using rectangular coordinates (latitudo and longi-
tudo) and the resulting geometric figures to distinguish 
between uniform and nonuniform distributions of vari-
ous quantities, even extending his definition to include 
three-dimensional figures. Thus, Oresme helped lay the 
foundation that later led to the discovery of analytic geom-
etry by René Descartes (1596–1650). Furthermore, he used 
his figures to give the first proof of the Merton theorem: 
the distance traveled in any given period by a body mov-
ing under uniform acceleration is the same as if the body 
moved at a uniform speed equal to its speed at the mid-
point of the period. Some scholars believe that Oresme’s 
graphical representation of velocities was of great influ-
ence in the further development of kinematics, affecting 
in particular the work of Galileo (1564–1642).
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Pythagoras
(b. c. 580, Samos, Ionia [now in Greece]—d. c. 500 BCE, 
Metapontum, Lucania [now in Italy])

Greek philosopher, mathematician, and founder of the 
Pythagorean brotherhood that, although religious in 
nature, formulated principles that influenced the thought 
of Plato and Aristotle and contributed to the development 
of mathematics and Western rational philosophy.

Pythagoras. Hulton Archive/Getty Images
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Pythagoras migrated to southern Italy about 532 
BCE, apparently to escape Samos’s tyrannical rule, and 
established his ethico-political academy at Croton (now 
Crotone, Italy).

It is difficult to distinguish Pythagoras’s teachings 
from those of his disciples. None of his writings have 
survived, and Pythagoreans invariably supported their 
doctrines by indiscriminately citing their master’s author-
ity. Pythagoras, however, is generally credited with the 
theory of the functional significance of numbers in the 
objective world and in music. Other discoveries often 
attributed to him (e.g., the incommensurability of the side 
and diagonal of a square, and the Pythagorean theorem 
for right triangles) were probably developed only later by 
the Pythagorean school. More probably the bulk of the 
intellectual tradition originating with Pythagoras him-
self belongs to mystical wisdom rather than to scientific 
scholarship.

Zeno of Elea
(b. c. 495—d. c. 430 BCE)

Zeno of Elea was a Greek philosopher and mathemati-
cian, whom Aristotle called the inventor of dialectic. He is 
especially known for his paradoxes that contributed to the 
development of logical and mathematical rigour and that 
were insoluble until the development of precise concepts 
of continuity and infinity.

Zeno was famous for the paradoxes whereby, in order 
to recommend the Parmenidean doctrine of the existence 
of “the one” (i.e., indivisible reality), he sought to con-
trovert the common-sense belief in the existence of “the 
many” (i.e., distinguishable qualities and things capable of 
motion). Zeno was the son of a certain Teleutagoras and 
the pupil and friend of Parmenides. In Plato’s Parmenides, 
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Socrates, “then very young,” converses with Parmenides 
and Zeno, “a man of about forty.” But it may be doubted 
whether such a meeting was chronologically possible. 
Plato’s account of Zeno’s purpose, however, is presumably 
accurate. In reply to those who thought that Parmenides’ 
theory of the existence of “the one” involved inconsis-
tencies, Zeno tried to show that the assumption of the 
existence of a plurality of things in time and space carried 
with it more serious inconsistencies. In early youth he col-
lected his arguments in a book, which, according to Plato, 
was put into circulation without his knowledge.

Zeno made use of three premises: first, that any unit 
has magnitude; second, that it is infinitely divisible; and 
third, that it is indivisible. Yet he incorporated arguments 
for each: for the first premise, he argued that that which, 
added to or subtracted from something else, does not 
increase or decrease the second unit, is nothing. For the 
second, he postulated that a unit, being one, is homoge-
neous and that therefore, if divisible, it cannot be divisible 
at one point rather than another. And for the third, he said 
that a unit, if divisible, is divisible either into extended 
minima, which contradicts the second premise or, because 
of the first premise, into nothing. He had in his hands a 
very powerful complex argument in the form of a dilemma, 
one horn of which supposed indivisibility, the other infi-
nite divisibility, both leading to a contradiction of the 
original hypothesis. His method had great influence and 
may be summarized as follows: he continued Parmenides’ 
abstract, analytic manner but started from his opponents’ 
theses and refuted them by reductio ad absurdum. It was 
probably the two latter characteristics which Aristotle had 
in mind when he called him the inventor of dialectic.

That Zeno was arguing against actual opponents, 
Pythagoreans who believed in a plurality composed of 
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numbers that were thought of as extended units, is a mat-
ter of controversy. It is not likely that any mathematical 
implications received attention in his lifetime. But in fact 
the logical problems which his paradoxes raise about a 
mathematical continuum are serious, fundamental, and 
inadequately solved by Aristotle.

the 17th and 18th centuries 

The 17th and 18th centuries saw the invention of calculus 
by Isaac Newton and Gottfried Leibniz. Mathematicians 
like Laplace and the Bernoulli family applied the insights 
gleaned from analysis to the scientific problems of the day.

Jean Le Rond d’Alembert
(b. Nov. 17, 1717, Paris, France—d. Oct. 29, 1783, Paris)

The French mathematician, philosopher, and writer Jean 
Le Rond d’Alembert achieved fame as a mathematician 
and scientist before acquiring a considerable reputation 
as a contributor to and editor of the famous Encyclopédie.

The illegitimate son of a famous hostess, Mme de Tencin, 
and one of her lovers, the chevalier Destouches-Canon, 
d’Alembert was abandoned on the steps of the Parisian 
church of Saint-Jean-le-Rond, from which he derived his 
Christian name. Although Mme de Tencin never recog-
nized her son, Destouches eventually sought out the child 
and entrusted him to a glazier’s wife, whom d’Alembert 
always treated as his mother. Through his father’s influ-
ence, he was admitted to a prestigious Jansenist school, 
enrolling first as Jean-Baptiste Daremberg and subse-
quently changing his name, perhaps for reasons of euphony, 
to d’Alembert. Although Destouches never disclosed his 
identity as father of the child, he left his son an annuity of 
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1,200 livres. D’Alembert’s 
teachers at first hoped 
to train him for theology, 
being perhaps encouraged 
by a commentary he wrote 
on St. Paul’s Letter to the 
Romans, but they inspired 
in him only a lifelong aver-
sion to the subject. He 
spent two years studying 
law and became an advo-
cate in 1738, although he 
never practiced. After tak-
ing up medicine for a year, 
he finally devoted himself 
to mathematics—“the only 
occupation,” he said later, 
“which really interested me.”  

Apart from some private lessons, d’Alembert was almost 
entirely self-taught.

In 1739 he read his first paper to the Academy of 
Sciences, of which he became a member in 1741. In 1743, 
at the age of 26, he published his important Traité de 
dynamique, a fundamental treatise on dynamics contain-
ing the famous “d’Alembert’s principle,” which states that 
Newton’s third law of motion (for every action there is an 
equal and opposite reaction) is true for bodies that are free 
to move as well as for bodies rigidly fixed. Other math-
ematical works followed very rapidly. In 1744 he applied 
his principle to the theory of equilibrium and motion of 
fluids, in his Traité de l’équilibre et du mouvement des fluides. 
This discovery was followed by the development of partial 
differential equations, a branch of the theory of calculus, 
the first papers on which were published in his Réflexions 
sur la cause générale des vents (1747). It won him a prize at 

Jean Le Rond d’Alembert was a mathe-
matician, a philosopher, and a scientific 
editor who worked with Diderot on 
the Encyclopédie. Kean Collection/
Hulton Archive/Getty Images
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the Berlin Academy, to which he was elected the same 
year. In 1747 he applied his new calculus to the problem of 
vibrating strings, in his Recherches sur les cordes vibrantes. In 
1749 he furnished a method of applying his principles to 
the motion of any body of a given shape. And in 1749 he 
found an explanation of the precession of the equinoxes (a 
gradual change in the position of the Earth’s orbit), deter-
mined its characteristics, and explained the phenomenon 
of the nutation (nodding) of the Earth’s axis, in Recherches 
sur la précession des équinoxes et sur la nutation de l’axe de la 
terre. In 1752 he published Essai d ’une nouvelle théorie de la 
résistance des fluides, an essay containing various original 
ideas and new observations. In it he considered air as 
an incompressible elastic fluid composed of small parti-
cles and, carrying over from the principles of solid body 
mechanics the view that resistance is related to loss of 
momentum on impact of moving bodies, he produced the 
surprising result that the resistance of the particles was 
zero. D’Alembert was himself dissatisfied with the result; 
the conclusion is known as “d’Alembert’s paradox” and is 
not accepted by modern physicists. In the Memoirs of the 
Berlin Academy he published findings of his research on 
integral calculus—which devises relationships of variables 
by means of rates of change of their numerical value—a 
branch of mathematical science that is greatly indebted 
to him. In his Recherches sur différents points importants du 
système du monde (1754–56) he perfected the solution of the 
problem of the perturbations (variations of orbit) of the 
planets that he had presented to the academy some years 
before. From 1761 to 1780 he published eight volumes of 
his Opuscules mathématiques.

Meanwhile, d’Alembert began an active social life and 
frequented well-known salons, where he acquired a consid-
erable reputation as a witty conversationalist and mimic. 
Like his fellow Philosophes—those thinkers, writers, 
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and scientists who believed in the sovereignty of reason 
and nature (as opposed to authority and revelation) and 
rebelled against old dogmas and institutions—he turned 
to the improvement of society. A rationalist thinker in the 
free-thinking tradition, he opposed religion and stood for 
tolerance and free discussion. In politics the Philosophes 
sought a liberal monarchy with an “enlightened” king 
who would supplant the old aristocracy with a new, intel-
lectual aristocracy. Believing in man’s need to rely on his 
own powers, they promulgated a new social morality to 
replace Christian ethics. Science, the only real source of 
knowledge, had to be popularized for the benefit of the 
people, and it was in this tradition that he became associ-
ated with the Encyclopédie about 1746. When the original 
idea of a translation into French of Ephraim Chambers’ 
English Cyclopædia was replaced by that of a new work 
under the general editorship of the Philosophe Denis 
Diderot, d’Alembert was made editor of the mathemati-
cal and scientific articles. In fact, he not only helped with 
the general editorship and contributed articles on other 
subjects but also tried to secure support for the enterprise 
in influential circles. He wrote the Discours préliminaire 
that introduced the first volume of the work in 1751. This 
was a remarkable attempt to present a unified view of 
contemporary knowledge, tracing the development and 
interrelationship of its various branches and showing how 
they formed coherent parts of a single structure. The sec-
ond section of the Discours was devoted to the intellectual 
history of Europe from the time of the Renaissance. In 
1752 d’Alembert wrote a preface to Volume III, which was 
a vigorous rejoinder to the Encyclopédie’s critics. Gradually 
discouraged by the growing difficulties of the enterprise, 
d’Alembert gave up his share of the editorship at the 
beginning of 1758, thereafter limiting his commitment to 
the production of mathematical and scientific articles.
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In 1765 a serious illness compelled him to leave his fos-
ter-mother’s house, and he eventually went to live in the 
house of Julie de Lespinasse, with whom he fell in love. 
He was the leading intellectual figure in her salon, which 
became an important recruiting centre for the French 
Academy. Although they may have been intimate for a 
short time, d’Alembert soon had to be satisfied with the 
role of steadfast friend. He discovered the extent of her 
passionate involvement with other men only after Julie’s 
death in 1776. He transferred his home to an apartment at 
the Louvre—to which he was entitled as permanent secre-
tary to the French Academy—where he died.

Isaac Barrow
(b. October 1630, London, Eng.—d. May 4, 1677, London)

The English classical scholar, theologian, and mathemati-
cian Isaac Barrow was the teacher of Isaac Newton. He 
developed a method of determining tangents that closely 

approached the methods of calcu-
lus, and he first recognized that 

what became known as the 
processes of integration and 
differentiation in calculus 
are inverse operations.

Barrow entered Trinity 
College, Cambridge, in 
1643. There he distinguished 
himself as a classical scholar 
as well as a mathemati-
cian, earning his bachelor’s 
degree in 1648. He was 
elected a fellow of the col-
lege in 1649 and received 
his master’s degree in 1652. 

Isaac Barrow, pencil drawing by 
David Loggan, 1676; in the National 
Portrait Gallery, London. Courtesy 
of the National Portrait Gallery, 
London
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Such precociousness helped to shield him from Puritan 
rule, for Barrow was an outspoken Royalist and Anglican. 
By the mid-1650s he contemplated the publication of a full 
and accurate Latin edition of the Greek mathematicians, 
yet in a concise manner that utilized symbols for brevity. 
However, only Euclid’s Elements and Data appeared in 1656 
and 1657, respectively, while other texts that Barrow pre-
pared at the time—by Archimedes, Apollonius of Perga, 
and Theodosius of Bythnia—were not published until 
1675. Barrow embarked on a European tour before the 
Elements was published, as the political climate in England 
deteriorated and the Regius professorship of Greek at 
the University of Oxford, to which he had been elected, 
was given to another. He spent four years in France, Italy, 
and Constantinople, returning to England with the resto-
ration of the Stuart monarchy in 1660. On his return to 
England, Barrow was ordained in the Anglican Church and 
appointed to a Greek professorship at Cambridge. In 1662 
he was also elected professor of geometry, but he resigned 
both positions after his election as Lucasian Professor of 
Mathematics at Cambridge in 1663.

Barrow was instrumental in institutionalizing the 
study of mathematics at Cambridge. From 1664 to 1666, he 
delivered a set of mathematical lectures—predominantly 
on the foundations of mathematics—that were published 
posthumously as Lectiones mathematicae (1683). These lec-
tures treated such basic concepts as number, magnitude, 
and proportion; delved into the relationship between 
the various branches of mathematics; and considered 
the relation between mathematics and natural philoso-
phy—most notably the concept of space. Barrow followed 
these with a series of lectures on geometry, Lectiones geo-
metricae (1669), that were far more technical and novel. In 
investigating the generation of curves by motion, Barrow 
recognized the inverse relationship between integration 
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and differentiation and came close to enunciating the fun-
damental theorem of calculus. His last series of lectures, 
on optics, Lectiones opticae (1670), built on the work of 
Johannes Kepler, René Descartes, and Thomas Hobbes, 
among others. In these lectures Barrow made major con-
tributions to determining image location after reflection 
or refraction; opened new vistas for the study of astig-
matism and caustics (a collection of rays that, emanating 
from a single point, are reflected or refracted by a curved 
surface); and made suggestions toward a theory of light 
and colours.

Barrow’s tenure as mathematics professor coincided 
with the maturation of Newton’s mathematical studies, 
and scholars often debate the exact nature of their relation-
ship. Barrow was not Newton’s official tutor, though they 
were both members of Trinity College. Newton attended 
Barrow’s lectures, and it is clear that Barrow encouraged 
and furthered Newton’s studies. Fully cognizant of the 
young man’s talents, Barrow resigned his professorship in 
1669 in Newton’s favour and accepted a position as royal 
chaplain in London. In 1673 Barrow was appointed master 
of Trinity College by King Charles II.

Although Barrow was regarded by his mathematical 
contemporaries in England as second only to Newton, he 
was more widely esteemed for his sermons and other writ-
ings on behalf of the Church of England, and these were 
often reprinted well into the 19th century.

Daniel Bernoulli
(b. Feb. 8 [Jan. 29, Old Style], 1700, Groningen, Neth.—d. March 17, 
1782, Basel, Switz.)

Daniel Bernoulli was the most distinguished of the second 
generation of the Bernoulli family of Swiss mathemati-
cians. He investigated not only mathematics but also such 
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fields as medicine, biology, physiology, mechanics, physics, 
astronomy, and oceanography. Bernoulli’s theorem, which 
he derived, is named after him.

Daniel Bernoulli was the second son of Johann 
Bernoulli, who first taught him mathematics. After study-
ing philosophy, logic, and medicine at the universities of 
Heidelberg, Strasbourg, and Basel, he received an M.D. 
degree (1721). In 1723–24 he wrote Exercitationes quaedam 
Mathematicae on differential equations and the physics of 
flowing water, which won him a position at the influential 
Academy of Sciences in St. Petersburg, Russia. Bernoulli 
lectured there until 1732 in medicine, mechanics, and 
physics, and he researched the properties of vibrating and 
rotating bodies and contributed to probability theory. In 
that same year he returned to the University of Basel to 
accept the post in anatomy and botany. By then he was 
widely esteemed by scholars and also admired by the pub-
lic throughout Europe.

Daniel’s reputation was established in 1738 with 
Hydrodynamica, in which he considered the properties 
of basic importance in fluid flow, particularly pressure, 
density, and velocity, and set forth their fundamental 
relationship. He put forward what is called Bernoulli’s 
principle, which states that the pressure in a fluid 
decreases as its velocity increases. He also established the 
basis for the kinetic theory of gases and heat by demon-
strating that the impact of molecules on a surface would 
explain pressure and that, assuming the constant, random 
motion of molecules, pressure and motion increase with 
temperature. About 1738 his father published Hydraulica. 
This attempt by Johann to obtain priority for himself was 
another instance of his antagonism toward his son.

Between 1725 and 1749 Daniel won 10 prizes from the 
Paris Academy of Sciences for work on astronomy, grav-
ity, tides, magnetism, ocean currents, and the behaviour 
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of ships at sea. He also made substantial contributions in 
probability. He shared the 1735 prize for work on plane-
tary orbits with his father, who, it is said, threw him out 
of the house for thus obtaining a prize he felt should be 
his alone. Daniel’s prizewinning papers reflected his suc-
cess on the research frontiers of science and his ability to 
set forth clearly before an interested public the scientific 
problems of the day. In 1732 he accepted a post in botany 
and anatomy at Basel; in 1743, one in physiology; and in 
1750, one in physics.

Jakob Bernoulli
(b. Jan. 6, 1655 [Dec. 27, 1654, Old Style], Basel, Switz.—d. Aug. 16, 
1705, Basel)

Jakob Bernoulli was the first of the Bernoulli family of 
Swiss mathematicians. He introduced the first principles 
of the calculus of variation. Bernoulli numbers, a concept 
that he developed, were named for him.

The scion of a family of drug merchants, Jakob Bernoulli 
was compelled to study theology but became interested 
in mathematics despite his father’s opposition. His trav-
els led to a wide correspondence with mathematicians. 
Refusing a church appointment, he accepted a professo-
rial chair of mathematics at the University of Basel in 1687. 
And, following his mastery of the mathematical works of 
John Wallis, Isaac Barrow (both English), René Descartes 
(French), and G.W. Leibniz, who first drew his attention 
to calculus, he embarked upon original contributions. In 
1690 Bernoulli became the first to use the term integral 
in analyzing a curve of descent. His 1691 study of the cat-
enary, or the curve formed by a chain suspended between 
its two extremities, was soon applied in the building of 
suspension bridges. In 1695 he also applied calculus to the 
design of bridges. During these years, he often engaged 
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in disputes with his brother Johann Bernoulli over math-
ematical issues.

Jakob Bernoulli’s pioneering work Ars Conjectandi 
(published posthumously, 1713; “The Art of Conjecturing”) 
contained many of his finest concepts: his theory of per-
mutations and combinations; the so-called Bernoulli 
numbers, by which he derived the exponential series; his 
treatment of mathematical and moral predictability; and 
the subject of probability—containing what is now called 
the Bernoulli law of large numbers, basic to all modern 
sampling theory. His works were published as Opera Jacobi 
Bernoullii, 2 vol. (1744).

Johann Bernoulli
(b. Aug. 6 [July 27, Old Style], 1667, Basel, Switz.—d. Jan. 1,  
1748, Basel)

Johann Bernoulli was a major member of the Bernoulli fam-
ily of Swiss mathematicians. He investigated the then new 
mathematical calculus, which he applied to the measure-
ment of curves, to differential equations, and to mechanical 
problems.

The son of a pharmacist, Johann studied medicine and 
obtained his doctor’s degree in Basel in 1694, with a thesis 
on muscular contraction. However, he turned to mathe-
matics despite his father’s opposition. In 1691–92 he wrote 
two texts, not published until later, on differential and 
integral calculus. In 1692 he taught calculus to the math-
ematician Guillaume-François-Antoine de L’Hôpital, who 
agreed to pay him for mathematical discoveries. From 
1695 to 1705 he taught mathematics at Groningen, Neth., 
and, on the death of his elder brother, Jakob, assumed a 
professorship at Basel.

Johann exceeded his brother in the number of con-
tributions he made to mathematics. He applied calculus 
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to the determination of lengths and areas of curves, such 
as the isochrone, along which a body will fall at constant 
speed, and the tautochrone, which was found to be impor-
tant in clock construction. He also made contributions to 
the theory of differential equations, the mathematics of 
ship sails, and optics. Johann sent to L’Hôpital in Paris a 
method or rule for solving problems involving limits that 
would apparently be expressed by the ratio of zero to 
zero, now called L’Hôpital’s rule on indeterminate forms 
because it was included in L’Hôpital’s influential text-
book of 1696, Analyse des infiniment petits (“Analysis of the 
Infinitely Small”).

The Bernoulli brothers often worked on the same 
problems, but not without friction. Their most bit-
ter dispute concerned finding the equation for the path 
followed by a particle from one point to another in the 
shortest time, if the particle is acted upon by gravity 
alone, a problem originally discussed by Galileo. In 1697 
Jakob offered a reward for its solution. Accepting the chal-
lenge, Johann proposed the cycloid, the path of a point on 

Johann Bernoulli and Jakob Bernoulli working on mathematical problems. © 
Photos.com/Jupiterimages
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a moving wheel, pointing out at the same time the rela-
tion this curve bears to the path described by a ray of light 
passing through strata of variable density. A protracted, 
bitter dispute then arose when Jakob challenged the solu-
tion and proposed his own. The dispute marked the origin 
of a new discipline, the calculus of variations.

Ardent in his friendships and keen in his resentments, 
Johann zealously defended the cause of G.W. Leibniz in 
the dispute with Isaac Newton over who had originated 
calculus. His text in integral calculus appeared in 1742 and 
his differential calculus shortly afterward. During his last 
years he worked mainly on the principles of mechanics. 
His works were published in Opera Johannis Bernoullii, 4 
vol. (1742).

Bonaventura Cavalieri
(b. 1598, Milan [Italy]—d. Nov. 30, 1647, Bologna, Papal States)

Francesco Bonaventura Cavalieri was an Italian mathema-
tician who made developments in geometry that were 
precursors to integral calculus.

As a boy Cavalieri joined the Jesuati, a religious order 
that followed the rule of St. Augustine and was suppressed 
in 1668 by Pope Clement IX. Euclid’s works stimulated his 
interest in mathematics, and, after he met Galileo, Cavalieri 
considered himself a disciple of that great astronomer.

By 1629, when he was appointed professor of math-
ematics of the University of Bologna, Cavalieri had 
completely developed his method of indivisibles, a means 
of determining the size of geometric figures similar to 
the methods of integral calculus. He delayed publishing 
his results for six years out of deference to Galileo, who 
planned a similar work. Cavalieri’s work appeared in 1635 
and was entitled Geometria Indivi si bilibus Continuorum 
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Nova Quadam Ratione Promota (“A Certain Method for 
the Development of a New Geometry of Continuous 
Indivisibles”). As stated in his Geometria, the method 
of indivisibles was unsatisfactory and fell under heavy 
criticism, notably from the contemporary Swiss math-
ematician Paul Guldin. In reply to this criticism, Cavalieri 
wrote Exercitationes Geometricae Sex (1647; “Six Geometrical 
Exercises”), stating the principle in the more satisfactory 
form that was widely employed by mathematicians during 
the 17th century.

Cavalieri was largely responsible for introducing 
the use of logarithms as a computational tool in Italy 
through his book Directorium Generale Uranometricum 
(1632; “A General Directory of Uranometry”). His other 
works include Lo specchio ustorio ouero trattato delle settioni 
coniche (1632; “The Burning Glass; or, A Treatise on Conic 
Sections”) and Trigonometria plana et sphaerica, linearis et log-
arithmica (1643; “Plane, Spherical, Linear, and Logarithmic 
Trigonometry”).

Leonhard Euler
(b. April 15, 1707, Basel, Switz.—d. Sept. 18, 1783, St. Petersburg, Russia)

The Swiss mathematician and physicist Leonhard Euler 
was one of the founders of pure mathematics. He not only 
made decisive and formative contributions to the subjects 
of geometry, calculus, mechanics, and number theory but 
also developed methods for solving problems in observa-
tional astronomy and demonstrated useful applications of 
mathematics in technology and public affairs.

Euler’s mathematical ability earned him the esteem 
of Johann Bernoulli, one of the first mathematicians in 
Europe at that time, and of his sons Daniel and Nicolas. 
In 1727 he moved to St. Petersburg, where he became 
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an associate of the St. Petersburg Academy of Sciences 
and in 1733 succeeded Daniel Bernoulli to the chair of 
mathematics.

By means of his numerous books and memoirs that he 
submitted to the academy, Euler carried integral calculus 
to a higher degree of perfection, developed the theory of 
trigonometric and logarithmic functions, reduced analyti-
cal operations to a greater simplicity, and threw new light 
on nearly all parts of pure mathematics. Overtaxing him-
self, Euler in 1735 lost the sight of one eye. Then, invited 
by Frederick the Great in 1741, he became a member of 
the Berlin Academy, where for 25 years he produced a 
steady stream of publications, many of which he contrib-
uted to the St. Petersburg Academy, which granted him a 
pension. In 1748, in his Introductio in analysin infinitorum, 
he developed the concept of function in mathematical 
analysis, through which variables are related to each other 
and in which he advanced the use of infinitesimals and 
infinite quantities. He did for modern analytic geometry 
and trigonometry what the Elements of Euclid had done 
for ancient geometry, and the resulting tendency to ren-
der mathematics and physics in arithmetical terms has 
continued ever since. He is known for familiar results in 
elementary geometry; for example, the Euler line through 
the orthocentre (the intersection of the altitudes in a tri-
angle), the circumcentre (the centre of the circumscribed 
circle of a triangle), and the barycentre (the “centre of 
gravity,” or centroid) of a triangle. He was responsible for 
treating trigonometric functions—i.e., the relationship 
of an angle to two sides of a triangle—as numerical ratios 
rather than as lengths of geometric lines and for relating 
them, through the so-called Euler identity (e iθ = cos θ + 
i sin θ), with complex numbers (e.g., 3 + 2√-1). He discov-
ered the imaginary logarithms of negative numbers and 
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showed that each complex number has an infinite number 
of logarithms.

Euler’s textbooks in calculus, Institutiones calculi differ-
entialis in 1755 and Institutiones calculi integralis in 1768–70, 
have served as prototypes to the present because they con-
tain formulas of differentiation and numerous methods of 
indefinite integration, many of which he invented himself, 
for determining the work done by a force and for solving 
geometric problems. And he made advances in the theory 
of linear differential equations, which are useful in solving 
problems in physics. Thus, he enriched mathematics with 
substantial new concepts and techniques. He introduced 
many current notations, such as Σ for the sum, ∫n for the 
sum of divisors of n, and the symbol e for the base of natu-
ral logarithms. He also introduced a, b, and c for the sides 
of a triangle and A, B, and C for the opposite angles. He 
was the first to use the letter “f ” and parentheses for a 
function, the symbol π for the ratio of circumference to 
diameter in a circle, and i for √-1 as well.

After Frederick the Great became less cordial toward 
him, Euler in 1766 accepted the invitation of Catherine II 
to return to Russia. Soon after his arrival at St. Petersburg, 
a cataract formed in his remaining good eye, and he spent 
the last years of his life in total blindness. Despite this 
tragedy, his productivity continued undiminished, sus-
tained by an uncommon memory and a remarkable facility 
in mental computations. His interests were broad, and his 
Lettres à une princesse d ’Allemagne in 1768–72 were an admi-
rably clear exposition of the basic principles of mechanics, 
optics, acoustics, and physical astronomy. Not a classroom 
teacher, Euler nevertheless had a more pervasive peda-
gogical influence than any modern mathematician. He 
had few disciples, but he helped to establish mathematical 
education in Russia.
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Euler devoted considerable attention to develop-
ing a more perfect theory of lunar motion, which was 
particularly troublesome, since it involved the so-called 
three-body problem—the interactions of Sun, Moon, and 
Earth. His partial solution, published in 1753, assisted the 
British Admiralty in calculating lunar tables, of impor-
tance then in attempting to determine longitude at sea. 
One of the feats of his blind years was to perform all the 
elaborate calculations in his head for his second theory 
of lunar motion in 1772. Throughout his life Euler was 
much absorbed by problems dealing with the theory of 
numbers, which treats of the properties and relationships 
of integers, or whole numbers (0, ±1, ±2, etc.). In this, his 
greatest discovery, in 1783, was the law of quadratic reci-
procity, which has become an essential part of modern 
number theory.

Pierre de Fermat
(b. Aug. 17, 1601, Beaumont-de-Lomagne, France—d. Jan. 12,  
1665, Castres)

French mathematician Pierre de Fermat was one of 
the leading mathematicians of the first half of the 17th 
century. Independently of French philosopher René 
Descartes, Fermat discovered the fundamental principle 
of analytic geometry. His methods for finding tangents to 
curves and their maximum and minimum points led him 
to be regarded as the inventor of the differential calculus. 
Through his correspondence with Blaise Pascal he was a 
co-founder of the theory of probability.

Little is known of Fermat’s early life and education. He 
was of Basque origin and received his primary education 
in a local Franciscan school. He studied law, probably at 
Toulouse and perhaps also at Bordeaux. Having developed 
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tastes for foreign languages, classical literature, and 
ancient science and mathematics, Fermat followed the 
custom of his day in composing conjectural “restorations” 
of lost works of antiquity. By 1629 he had begun a recon-
struction of the long-lost Plane Loci of Apollonius, the 
Greek geometer of the 3rd century BCE. He soon found 
that the study of loci, or sets of points with certain charac-
teristics, could be facilitated by the application of algebra 
to geometry through a coordinate system. Meanwhile, 
Descartes had observed the same basic principle of ana-
lytic geometry, that equations in two variable quantities 
define plane curves. Because Fermat’s Introduction to Loci 
was published posthumously in 1679, the exploitation of 
their discovery, initiated in Descartes’s Géométrie of 1637, 
has since been known as Cartesian geometry.

In 1631 Fermat received the baccalaureate in law from 
the University of Orléans. He served in the local parlia-
ment at Toulouse, becoming councillor in 1634. Sometime 
before 1638 he became known as Pierre de Fermat, though 
the authority for this designation is uncertain. In 1638 he 
was named to the Criminal Court.

Fermat’s study of curves and equations prompted 
him to generalize the equation for the ordinary parabola 
ay = x2, and that for the rectangular hyperbola xy = a2, to 
the form an - 1y = xn. The curves determined by this equa-
tion are known as the parabolas or hyperbolas of Fermat 
according as n is positive or negative. He similarly general-
ized the Archimedean spiral r = aθ. These curves in turn 
directed him in the middle 1630s to an algorithm, or rule 
of mathematical procedure, that was equivalent to differ-
entiation. This procedure enabled him to find equations of 
tangents to curves and to locate maximum, minimum, and 
inflection points of polynomial curves, which are graphs 
of linear combinations of powers of the independent 
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variable. During the same years, he found formulas for 
areas bounded by these curves through a summation pro-
cess that is equivalent to the formula now used for the 
same purpose in the integral calculus. Such a formula is:

It is not known whether or not Fermat noticed that 
differentiation of xn, leading to nan - 1, is the inverse of inte-
grating xn. Through ingenious transformations he handled 
problems involving more general algebraic curves, and he 
applied his analysis of infinitesimal quantities to a variety 
of other problems, including the calculation of centres of 
gravity and finding the lengths of curves. Descartes in the 
Géométrie had reiterated the widely held view, stemming 
from Aristotle, that the precise rectification or determi-
nation of the length of algebraic curves was impossible. 
But Fermat was one of several mathematicians who, 
in the years 1657–59, disproved the dogma. In a paper 
entitled “De Linearum Curvarum cum Lineis Rectis 
Comparatione” (“Concerning the Comparison of Curved 
Lines with Straight Lines”), he showed that the semicu-
bical parabola and certain other algebraic curves were 
strictly rectifiable. He also solved the related problem 
of finding the surface area of a segment of a paraboloid 
of revolution. This paper appeared in a supplement to 
the Veterum Geometria Promota, issued by the mathemati-
cian Antoine de La Loubère in 1660. It was Fermat’s only 
mathematical work published in his lifetime.

Fermat differed also with Cartesian views concerning 
the law of refraction (the sines of the angles of incidence 
and refraction of light passing through media of different 
densities are in a constant ratio), published by Descartes 
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in 1637 in La Dioptrique. Like La Géométrie, it was an appen-
dix to his celebrated Discours de la méthode. Descartes 
had sought to justify the sine law through a premise that 
light travels more rapidly in the denser of the two media 
involved in the refraction. Twenty years later Fermat noted 
that this appeared to be in conflict with the view espoused 
by Aristotelians that nature always chooses the shortest 
path. Applying his method of maxima and minima and 
making the assumption that light travels less rapidly in 
the denser medium, Fermat showed that the law of refrac-
tion is consonant with his “principle of least time.” His 
argument concerning the speed of light was found later to 
be in agreement with the wave theory of the 17th-century 
Dutch scientist Christiaan Huygens, and in 1849 it was 
verified experimentally by A.-H.-L. Fizeau.

Through the mathematician and theologian Marin 
Mersenne, who, as a friend of Descartes, often acted as 
an intermediary with other scholars, Fermat in 1638 main-
tained a controversy with Descartes on the validity of 
their respective methods for tangents to curves. Fermat’s 
views were fully justified some 30 years later in the calcu-
lus of Sir Isaac Newton. Recognition of the significance 
of Fermat’s work in analysis was tardy, in part because he 
adhered to the system of mathematical symbols devised 
by François Viète, notations that Descartes’s Géométrie 
had rendered largely obsolete. The handicap imposed by 
the awkward notations operated less severely in Fermat’s 
favourite field of study, the theory of numbers. But here, 
unfortunately, he found no correspondent to share his 
enthusiasm. In 1654 he had enjoyed an exchange of letters 
with his fellow mathematician Blaise Pascal on problems 
in probability concerning games of chance, the results of 
which were extended and published by Huygens in his De 
Ratiociniis in Ludo Aleae (1657).
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James Gregory
(b. November 1638, Drumoak [near Aberdeen], Scot.—d. October 
1675, Edinburgh)

James Gregory was a Scottish mathematician and astrono-
mer who discovered infinite series representations for a 
number of trigonometry functions, although he is mostly 
remembered for his description of the first practical reflect-
ing telescope, now known as the Gregorian telescope.

James Gregory. © Photos.com/Jupiterimages
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The son of an Anglican priest, Gregory received his 
early education from his mother. After his father’s death 
in 1650, he was sent to Aberdeen, first to grammar school 
and then to Marischal College, graduating from the lat-
ter in 1657. (This Protestant college was combined with 
the Roman Catholic King’s College in 1860 to form the 
University of Aberdeen.)

Following graduation, Gregory traveled to London 
where he published Optica Promota (1663; “The Advance 
of Optics”). This work analyzed the refractive and reflec-
tive properties of lens and mirrors based on various conic 
sections and substantially developed Johannes Kepler’s 
theory of the telescope. In the epilogue, Gregory pro-
posed a new telescope design with a secondary mirror in 
the shape of a concave ellipsoid that would collect the 
reflection from a primary parabolic mirror and refocus 
the image back through a small hole in the centre of the 
primary mirror to an eyepiece. In this work Gregory also 

James Gregory’s telescope design (1663) uses two concave mirrors—a primary 
parabolic-shaped mirror and a secondary elliptic-shaped mirror—to focus 
images in a short telescope tube. As indicated by the yellow rays in the figure: 
(1) light enters the open end of the telescope; (2) light rays travel to the primary 
mirror, where they are reflected and concentrated at the prime focus; (3) a sec-
ondary mirror slightly beyond the prime focus reflects and concentrates the 
rays near a small aperture in the primary mirror; and (4) the image is viewed 
through an eyepiece. Encyclopædia Britannica, Inc.



146

7 The Britannica Guide to Analysis and Calculus 7

introduced estimation of stellar distances by photometric 
methods.

In 1663 Gregory visited The Hague and Paris before 
settling in Padua, Italy, to study geometry, mechanics, and 
astronomy. While in Italy he wrote Vera Circuli et Hyperbolae 
Quadratura (1667; “The True Squaring of the Circle and 
of the Hyperbola”) and Geometriae Pars Universalis (1668; 
“The Universal Part of Geometry”). In the former work 
he used a modification of the method of exhaustion of 
Archimedes (c. 285–212/211 BCE) to find the areas of the 
circle and sections of the hyperbola. In his construction of 
an infinite sequence of inscribed and circumscribed geo-
metric figures, Gregory was one of the first to distinguish 
between convergent and divergent infinite series. In the 
latter work Gregory collected the main results then known 
about transforming a very general class of curves into sec-
tions of known curves (hence the designation “universal”), 
finding the areas bounded by such curves, and calculating 
the volumes of their solids of revolution.

On the strength of his Italian treatises, Gregory was 
elected to the Royal Society on his return to London in 
1668 and appointed to the University of St. Andrews, 
Scotland. In 1669, shortly after his return to Scotland, 
he married a young widow and started his own family. 
He visited London only once again, in 1673, to purchase 
supplies for what would have been Britain’s first public 
astronomical observatory. In 1674, however, he became 
dissatisfied with the University of St. Andrews and left for 
the University of Edinburgh.

Although Gregory did not publish any more mathemat-
ical papers after his return to Scotland, his mathematical 
research continued. In 1670 and 1671 he communicated 
to the English mathematician John Collins a number of 
important results on infinite series expansions of various 
trigonometry functions, including what is now known as 
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Gregory’s series for the arctangent function: arctan x = x − 
x3⁄3 + x5⁄5 − x7⁄7 + … Knowing that the arctangent of 1 is equal 
to π ⁄4 led to the immediate substitution of 1 for x in this 
equation to produce the first infinite series expansion for 
π. Unfortunately, this series converges too slowly to π for 
the practical generation of digits in its decimal expansion. 
Nevertheless, it encouraged the discovery of other, more 
rapidly convergent infinite series for π.

The extent of Gregory’s work has only been known 
and appreciated since the publication of James Gregory: 
Tercentenary Memorial Volume (ed. by H.W. Turnbull; 
1939), which contains most of his letters and posthumous 
manuscripts.

Joseph-Louis Lagrange, comte de l’Empire
(b. Jan. 25, 1736, Turin, Sardinia-Piedmont [Italy]—d. April 10, 1813, 
Paris, France)

The Italian-French mathematician Joseph-Louis Lagrange, 
comte de l’Empire, made great contributions to number 
theory and to analytic and celestial mechanics. His most 
important book, Mécanique analytique (1788; “Analytic 
Mechanics”), was the basis for all later work in this field.

Lagrange was from a well-to-do family of French origin 
on his father’s side. His father was treasurer to the king 
of Sardinia and lost his fortune in speculation. Lagrange 
later said, “If I had been rich, I probably would not have 
devoted myself to mathematics.” His interest in math-
ematics was aroused by the chance reading of a memoir 
by the English astronomer Edmond Halley. At 19 (some 
say 16) he was teaching mathematics at the artillery school 
of Turin (he would later be instrumental in founding the 
Turin Academy of Sciences). His early publications, on 
the propagation of sound and on the concept of maxima 
and minima, were well received. The Swiss mathematician 
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Leonhard Euler praised Lagrange’s version of his theory 
of variations.

By 1761 Lagrange was already recognized as one of the 
greatest living mathematicians. In 1764 he was awarded 
a prize offered by the French Academy of Sciences for 
an essay on the libration of the Moon (i.e., the apparent 
oscillation that causes slight changes in position of lunar 
features on the face that the Moon presents to the Earth). 
In this essay he used the equations that now bear his name. 
His success encouraged the academy in 1766 to propose, 
as a problem, the theory of the motions of the satellites 
of Jupiter. The prize was again awarded to Lagrange, and 
he won the same distinction in 1772, 1774, and 1778. In 
1766, on the recommendation of Euler and the French 
mathematician Jean d’Alembert, Lagrange went to Berlin 
to fill a post at the academy vacated by Euler. This post 
had been offered at the invitation of Frederick the Great, 
who expressed the wish of “the greatest king in Europe” to 
have “the greatest mathematician in Europe” at his court.

Lagrange stayed in Berlin until 1787. His productiv-
ity in those years was prodigious: he published papers on 
the three-body problem, which concerns the evolution of 
three particles mutually attracted according to Sir Isaac 
Newton’s law of gravity; differential equations; prime 
number theory; the fundamentally important number-
theoretic equation that has been identified (incorrectly 
by Euler) with John Pell’s name; probability; mechan-
ics; and the stability of the solar system. In his long 
paper “Réflexions sur la résolution algébrique des équa-
tions” (1770; “Reflections on the Algebraic Resolution of 
Equations”), he inaugurated a new period in algebra and 
inspired Évariste Galois to his group theory.

A kind and quiet man, living only for science, Lagrange 
had little to do with the factions and intrigues around the 
king. When Frederick died, Lagrange preferred to accept 
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Louis XVI’s invitation to Paris. He was given apart-
ments in the Louvre, was continually honoured, and was 
treated with respect throughout the French Revolution. 
From the Louvre he published his classic Mécanique ana-
lytique, a lucid synthesis of the hundred years of research 
in mechanics since Newton, based on his own calculus of 
variations, in which certain properties of a mechanistic 
system are inferred by considering the changes in a sum (or 
integral) that are due to conceptually possible (or virtual) 
displacements from the path that describes the actual his-
tory of the system. This led to independent coordinates 
that are necessary for the specifications of a system of a 
finite number of particles, or “generalized coordinates.” It 
also led to the so-called Lagrangian equations for a classi-
cal mechanical system in which the kinetic energy of the 
system is related to the generalized coordinates, the corre-
sponding generalized forces, and the time. The book was 
typically analytic. He stated in his preface that “one can-
not find any figures in this work.”

The Revolution, which began in 1789, pressed 
Lagrange into work on the committee to reform the met-
ric system. When the great chemist Antoine-Laurent 
Lavoisier was guillotined, Lagrange commented, “It took 
them only an instant to cut off that head, and a hundred 
years may not produce another like it.” When the École 
Centrale des Travaux Publics (later renamed the École 
Polytechnique) was opened in 1794, he became, with 
Gaspard Monge, its leading professor of mathematics. 
His lectures were published as Théorie des fonctions analy-
tiques (1797; “Theory of Analytic Functions”) and Leçons 
sur le calcul des fonctions (1804; “Lessons on the Calculus 
of Functions”) and were the first textbooks on real ana-
lytic functions. In them Lagrange tried to substitute an 
algebraic foundation for the existing and problematic 
analytic foundation of calculus—although ultimately 
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unsuccessful, his criticisms spurred others to develop the 
modern analytic foundation. Lagrange also continued 
to work on his Mécanique analytique, but the new edition 
appeared only after his death.

Napoleon honoured the aging mathematician, making 
him a senator and a count of the empire, but he remained 
the quiet, unobtrusive academician, a venerable figure 
wrapped in his thoughts.

Pierre-Simon, marquis de Laplace
(b. March 23, 1749, Beaumount-en-Auge, Normandy, France—d. 
March 5, 1827, Paris)

The French mathematician, astronomer, and physicist 
Pierre-Simon, marquis de Laplace, is best known for his 
investigations into the stability of the solar system.

Laplace successfully accounted for all the observed 
deviations of the planets from their theoretical orbits by 
applying Sir Isaac Newton’s theory of gravitation to the 
solar system, and he developed a conceptual view of evo-
lutionary change in the structure of the solar system. He 
also demonstrated the usefulness of probability for inter-
preting scientific data.

Laplace was the son of a peasant farmer. Little is known 
of his early life except that he quickly showed his math-
ematical ability at the military academy at Beaumont. 
In 1766 Laplace entered the University of Caen, but he 
left for Paris the next year, apparently without taking a 
degree. He arrived with a letter of recommendation to the 
mathematician Jean d’Alembert, who helped him secure 
a professorship at the École Militaire, where he taught 
from 1769 to 1776.

In 1773 he began his major lifework—applying Newtonian 
gravitation to the entire solar system—by taking up a par-
ticularly troublesome problem: why Jupiter’s orbit appeared 
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to be continuously shrinking while Saturn’s continually 
expanded. The mutual gravitational interactions within the 
solar system were so complex that mathematical solution 
seemed impossible. Indeed, Newton had concluded that 
divine intervention was periodically required to preserve 
the system in equilibrium. Laplace announced the invari-
ability of planetary mean motions (average angular velocity). 
This discovery in 1773, the first and most important step in 
establishing the stability of the solar system, was the most 
important advance in physical astronomy since Newton. 
It won him associate membership in the French Academy 
of Sciences the same year.

During 1784–85 Laplace worked on the subject of 
attraction between spheroids. In this work the potential 
function of later physics can be recognized for the first 
time. Laplace explored the problem of the attraction of 
any spheroid upon a particle situated outside or upon its 
surface. Through his discovery that the attractive force 
of a mass upon a particle, regardless of direction, can be 
obtained directly by differentiating a single function, 
Laplace laid the mathematical foundation for the scien-
tific study of heat, magnetism, and electricity.

In 1786 Laplace proved that the eccentricities and 
inclinations of planetary orbits to each other will always 
remain small, constant, and self-correcting. The effects 
of perturbations were therefore conservative and peri-
odic, not cumulative and disruptive. Laplace removed the 
last apparent anomaly from the theoretical description 
of the solar system in 1787 with the announcement that 
lunar acceleration depends on the eccentricity of Earth’s 
orbit. Although the mean motion of the Moon around 
Earth depends mainly on the gravitational attraction 
between them, it is slightly diminished by the pull of the 
Sun on the Moon. This solar action depends, however, on 
changes in the eccentricity of Earth’s orbit resulting from 



7 The Britannica Guide to Analysis and Calculus 7

152

perturbations by the other planets. As a result, the Moon’s 
mean motion is accelerated as long as Earth’s orbit tends 
to become more circular. But, when the reverse occurs, 
this motion is retarded. The inequality is therefore not 
truly cumulative, Laplace concluded, but is of a period 
running into millions of years. The last threat of instabil-
ity thus disappeared from the theoretical description of 
the solar system.

In 1796 Laplace published Exposition du système du monde 
(The System of the World), a semipopular treatment of his 
work in celestial mechanics and a model of French prose. 
The book included his “nebular hypothesis”—attributing 
the origin of the solar system to cooling and contracting 
of a gaseous nebula—which strongly influenced future 
thought on planetary origin. His Traité de mécanique céleste 
(Celestial Mechanics), appearing in five volumes between 
1798 and 1827, summarized the results obtained by his 
mathematical development and application of the law 
of gravitation. He offered a complete mechanical inter-
pretation of the solar system by devising methods for 
calculating the motions of the planets and their satellites 
and their perturbations, including the resolution of tidal 
problems. The book made him a celebrity.

In 1814 Laplace published a popular work for the 
general reader, Essai philosophique sur les probabilités (A 
Philosophical Essay on Probability). This work was the intro-
duction to the second edition of his comprehensive and 
important Théorie analytique des probabilités (Analytic 
Theory of Probability), first published in 1812, in which he 
described many of the tools he invented for mathemati-
cally predicting the probabilities that particular events 
will occur in nature. He applied his theory not only to 
the ordinary problems of chance but also to the inquiry 
into the causes of phenomena, vital statistics, and future 
events, while emphasizing its importance for physics and 
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astronomy. The book is notable also for including a special 
case of what became known as the central limit theorem. 
Laplace proved that the distibution of errors in large data 
samples from astronomical observations can be approxi-
mated by a Gaussian or normal distribution.

Probably because he did not hold strong political views 
and was not a member of the aristocracy, he escaped impris-
onment and execution during the French Revolution. 
Laplace was president of the Board of Longitude, aided in 
the organization of the metric system, helped found the 
scientific Society of Arcueil, and was created a marquis. 
He served for six weeks as minister of the interior under 
Napoleon, who famously reminisced that Laplace “carried 
the spirit of the infinitesimal into administration.”

Gottfried Wilhelm Leibniz
(b. July 1 [June 21, Old Style], 1646, Leipzig, Ger.—d. Nov. 14, 1716, 
Hannover, Hanover)

The German philosopher, mathematician, and political 
adviser Gottfried Wilhelm Leibniz was important both as 
a metaphysician and as a logician and distinguished also 
for his independent invention of the differential and inte-
gral calculus.

Leibniz was born into a pious Lutheran family near 
the end of the Thirty Years’ War, which had laid Germany 
in ruins. As a child, he was educated in the Nicolai School 
but was largely self-taught in the library of his father, who 
had died in 1652. At Easter time in 1661, he entered the 
University of Leipzig as a law student. There he came into 
contact with the thought of men who had revolutionized 
science and philosophy—men such as Galileo, Francis 
Bacon, Thomas Hobbes, and René Descartes. Leibniz 
dreamed of reconciling—a verb that he did not hesi-
tate to use time and again throughout his career—these 
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modern thinkers with the Aristotle of the Scholastics. 
In 1666 he wrote De Arte Combinatoria (“On the Art of 
Combination”), in which he formulated a model that 
is the theoretical ancestor of some modern computers: 
all reasoning, all discovery, verbal or not, is reducible to 
an ordered combination of elements, such as numbers, 
words, sounds, or colours.

After completing his legal studies in 1666, Leibniz 
applied for the degree of doctor of law. He was refused 
because of his age and consequently left his native city 
forever. At Altdorf—the university town of the free city 
of Nürnberg—his dissertation De Casibus Perplexis (“On 
Perplexing Cases”) procured him the doctor’s degree at 
once, as well as the immediate offer of a professor’s chair, 
which, however, he declined. During his stay in Nürnberg, 
he met Johann Christian, Freiherr von Boyneburg, one 
of the most distinguished German statesmen of the day. 
Boyneburg took him into his service and introduced him 
to the court of the prince elector, the archbishop of Mainz, 
Johann Philipp von Schönborn, where he was concerned 
with questions of law and politics.

King Louis XIV of France was a growing threat to the 
German Holy Roman Empire. To ward off this danger 
and divert the king’s interests elsewhere, the archbishop 
hoped to propose to Louis a project for an expedition 
into Egypt. Because he was using religion as a pretext, he 
expressed the hope that the project would promote the 
reunion of the church. Leibniz, with a view toward this 
reunion, worked on the Demonstrationes Catholicae. His 
research led him to situate the soul in a point—this was 
new progress toward the monad—and to develop the 
principle of sufficient reason (nothing occurs without 
a reason). His meditations on the difficult theory of the 
point were related to problems encountered in optics, 
space, and movement. They were published in 1671 under 
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the general title Hypothesis Physica Nova (“New Physical 
Hypothesis”). He asserted that movement depends, as in 
the theory of the German astronomer Johannes Kepler, 
on the action of a spirit (God).

In 1672 the Elector sent the young jurist on a mission 
to Paris, where he arrived at the end of March. He was 
soon left without protectors by the deaths of Freiherr von 
Boyneburg in December 1672 and of the Elector of Mainz 
in February 1673. He was now, however, free to pursue his 
scientific studies. In search of financial support, he con-
structed a calculating machine and presented it to the 
Royal Society during his first journey to London, in 1673.

Late in 1675 Leibniz laid the foundations of both 
integral and differential calculus. With this discovery, he 
ceased to consider time and space as substances—another 
step closer to monadology. He began to develop the notion 
that the concepts of extension and motion contained an 
element of the imaginary, so that the basic laws of motion 
could not be discovered merely from a study of their 
nature. Nevertheless, he continued to hold that exten-
sion and motion could provide a means for explaining and 
predicting the course of phenomena. Thus, contrary to 
Descartes, Leibniz held that it would not be contradictory 
to posit that this world is a well-related dream. If visible 
movement depends on the imaginary element found in 
the concept of extension, it can no longer be defined by 
simple local movement; it must be the result of a force. 
In criticizing the Cartesian formulation of the laws of 
motion, known as mechanics, Leibniz became, in 1676, 
the founder of a new formulation, known as dynamics, 
which substituted kinetic energy for the conservation of 
movement. At the same time, beginning with the principle 
that light follows the path of least resistance, he believed 
that he could demonstrate the ordering of nature toward 
a final goal or cause.
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Leibniz continued his work but was still without an 
income-producing position. By October 1676, however, 
he had accepted a position in the employment of John 
Frederick, the duke of Braunschweig-Lüneburg. John 
Frederick, a convert to Catholicism from Lutheranism in 
1651, had become duke of Hanover in 1665. He appointed 
Leibniz librarian, but, beginning in February 1677, Leibniz 
solicited the post of councillor, which he was finally 
granted in 1678. It should be noted that, among the great 
philosophers of his time, he was the only one who had to 
earn a living. As a result, he was always a jack-of-all-trades 
to royalty.

Trying to make himself useful in all ways, Leibniz 
proposed that education be made more practical, that 
academies be founded. He worked on hydraulic presses, 
windmills, lamps, submarines, clocks, and a wide variety 
of mechanical devices. He devised a means of perfect-
ing carriages and experimented with phosphorus. He 
also developed a water pump run by windmills, which 
ameliorated the exploitation of the mines of the Harz 
Mountains, and he worked in these mines as an engineer 
frequently from 1680 to 1685. Leibniz is considered to be 
among the creators of geology because of the observa-
tions he compiled there, including the hypothesis that the 
Earth was at first molten. These many occupations did not 
stop his work in mathematics: In March 1679 he perfected 
the binary system of numeration (i.e., using two as a base), 
and at the end of the same year he proposed the basis for 
analysis situs, now known as general topology, a branch of 
mathematics that deals with selected properties of collec-
tions of related physical or abstract elements. He was also 
working on his dynamics and his philosophy, which was 
becoming increasingly anti-Cartesian. At this point, Duke 
John Frederick died on Jan. 7, 1680, and his brother, Ernest 
Augustus I, succeeded him.
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Leibniz continued his developments in mathematics. In 
1681 he was concerned with the proportion between a circle 
and a circumscribed square and, in 1684, with the resistance 
of solids. In the latter year he published Nova Methodus pro 
Maximis et Minimis (“New Method for the Greatest and the 
Least”), which was an exposition of his differential calculus.

In 1685 Leibniz was named historian for the House of 
Brunswick and, on this occasion, Hofrat (“court adviser”). 
His job was to prove, by means of genealogy, that the 
princely house had its origins in the House of Este, an 
Italian princely family, which would allow Hanover to 
lay claim to a ninth electorate. In search of these docu-
ments, Leibniz began travelling in November 1687. Going 
by way of southern Germany, he arrived in Austria, where 
he learned that Louis XIV had once again declared a state 
of war. In Vienna, he was well received by the Emperor. 
He then went to Italy. Everywhere he went, he met scien-
tists and continued his scholarly work, publishing essays 
on the movement of celestial bodies and on the dura-
tion of things. He returned to Hanover in mid-July 1690. 
His efforts had not been in vain. In October 1692 Ernest 
Augustus obtained the electoral investiture.

Until the end of his life, Leibniz continued his duties 
as historian. He did not, however, restrict himself to a 
genealogy of the House of Brunswick. He enlarged his 
goal to a history of Earth, which included such matters as 
geological events and descriptions of fossils. He searched 
by way of monuments and linguistics for the origins and 
migrations of peoples; then for the birth and progress 
of the sciences, ethics, and politics; and, finally, for the 
elements of a historia sacra. In this project of a universal 
history, Leibniz never lost sight of the fact that everything 
interlocks. Even though he did not succeed in writing this 
history, his effort was influential because he devised new 
combinations of old ideas and invented totally new ones.
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Colin Maclaurin
(b. February 1698, Kilmodan, Argyllshire, Scot.—d. June 14, 1746, 
Edinburgh)

The Scottish mathematician Colin Maclaurin developed 
and extended Sir Isaac Newton’s work in calculus, geom-
etry, and gravitation.

A child prodigy, he entered the University of Glasgow 
at age 11. At the age of 19 he was elected a professor of 
mathematics at Marischal College, Aberdeen, and two 
years later he became a fellow of the Royal Society of 
London. At this time he became acquainted with Newton. 
In his first work, Geometrica Organica; Sive Descriptio 
Linearum Curvarum Universalis (1720; “Organic Geometry, 
with the Description of the Universal Linear Curves”), 
Maclaurin developed several theorems similar to some in 
Newton’s Principia, introduced the method of generating 
conic sections (the circle, ellipse, hyperbola, and parabola) 

that bears his name, and showed that 
certain types of curves (of the 

third and fourth degree) can be 
described by the intersection 

of two movable angles.
On the recommenda-

tion of Newton, he was 
made a professor of math-

ematics at the University 
of Edinburgh in 1725. 
In 1740 he shared, with 
the Swiss mathemati-
cians Leonhard Euler and 
Daniel Bernoulli, the prize 
offered by the French 
Academy of Sciences for 
an essay on tides.

Maclaurin, engraving by S. Freeman; in 
the British Museum. Courtesy of the 
trustees of the British Museum; pho-
tograph, J.R. Freeman & Co. Ltd.
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His two-volume Treatise of Fluxions (1742), a defense of 
the Newtonian method, was written in reply to criticisms 
by Bishop George Berkeley of England that Newton’s cal-
culus was based on faulty reasoning. Apart from providing 
a geometric framework for Newton’s method of fluxions, 
the treatise is notable on several counts. It contains solu-
tions to a number of geometric problems, shows that 
stable figures for a homogeneous rotating fluid mass are 
the ellipsoids of revolution, and gives for the first time the 
correct theory for distinguishing between maxima and 
minima in general, pointing out the importance of the 
distinction in the theory of the multiple points of curves. 
It also contains a detailed discussion of infinite series, 
including the special case of Taylor series now named in 
his honour.

In 1745, when Jacobites (supporters of the Stuart 
king James II and his descendants) were marching on 
Edinburgh, Maclaurin took a prominent part in prepar-
ing trenches and barricades for the city’s defense. As soon 
as the rebel army captured Edinburgh, Maclaurin fled 
to England until it was safe to return. The ordeal of his 
escape ruined his health, and he died at age 48.

Maclaurin’s Account of Sir Isaac Newton’s Philosophical 
Discoveries was published posthumously, as was his Treatise of 
Algebra (1748). “De Linearum Geometricarum Proprietatibus 
Generalibus Tractatus” (“A Tract on the General Properties 
of Geometrical Lines”), noted for its elegant geometric 
demonstrations, was appended to his Algebra.

Sir Isaac Newton
(b. Dec. 25, 1642 [Jan. 4, 1643, New Style], Woolsthorpe, Lincolnshire, 
Eng.—d. March 20 [March 31], 1727, London)

The English physicist and mathematician Sir Isaac 
Newton was the culminating figure of the scientific 
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revolution of the 17th century. In mechanics, his three 
laws of motion, the basic principles of modern physics, 
resulted in the formulation of the law of universal gravi-
tation. In mathematics, he was the original discoverer of 
the infinitesimal calculus. Newton’s Philosophiae Naturalis 
Principia Mathematica (Mathematical Principles of Natural 

Sir Isaac Newton is arguably one of the most recognizable names in science 
and mathematics. He discovered the laws of motion, calculus (an honour 
shared with Leibniz), and gravity, and developed a theory of colour based 
on the light spectrum of white light, among other accomplishments. Archive 
Photos/Getty Images
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Philosophy), 1687, was one of the most important single 
works in the history of modern science.

Born in the hamlet of Woolsthorpe, Newton was the 
only son of a local yeoman, also Isaac Newton, who had 
died three months before, and of Hannah Ayscough. 
That same year, at Arcetri near Florence, Galileo Galilei 
had died. Newton would eventually pick up his idea of a 
mathematical science of motion and bring his work to full 
fruition. A tiny and weak baby, Newton was not expected 
to survive his first day of life, much less 84 years. Deprived 
of a father before birth, he soon lost his mother as well, for 
within two years she married a second time. Her husband, 
the well-to-do minister Barnabas Smith, left young Isaac 
with his grandmother and moved to a neighbouring vil-
lage to raise a son and two daughters. For nine years, until 
the death of Barnabas Smith in 1653, Isaac was effectively 
separated from his mother, and his pronounced psychotic 
tendencies have been ascribed to this traumatic event. He 
hated his stepfather. When he examined the state of his 
soul in 1662 and compiled a catalog of sins in shorthand, 
he remembered “Threatning my father and mother Smith 
to burne them and the house over them.” The acute sense 
of insecurity that rendered him obsessively anxious when 
his work was published and irrationally violent when he 
defended it accompanied Newton throughout his life and 
can plausibly be traced to his early years.

After his mother was widowed a second time, she 
determined that her first-born son should manage her 
now considerable property. It quickly became apparent, 
however, that this would be a disaster, both for the estate 
and for Newton. He could not bring himself to concen-
trate on rural affairs—set to watch the cattle, he would 
curl up under a tree with a book. Fortunately, the mistake 
was recognized, and Newton was sent back to the gram-
mar school in Grantham, where he had already studied, 
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to prepare for the university. As with many of the leading 
scientists of the age, he left behind in Grantham anec-
dotes about his mechanical ability and his skill in building 
models of machines, such as clocks and windmills. At the 
school he apparently gained a firm command of Latin but 
probably received no more than a smattering of arithme-
tic. By June 1661, he was ready to matriculate at Trinity 
College, Cambridge, somewhat older than the other 
undergraduates because of his interrupted education.

When Newton arrived in Cambridge in 1661, the 
movement now known as the scientific revolution was 
well advanced, and many of the works basic to modern 
science had appeared. Astronomers from Copernicus 
to Kepler had elaborated the heliocentric system of the 
universe. Galileo had proposed the foundations of a 
new mechanics built on the principle of inertia. Led by 
Descartes, philosophers had begun to formulate a new 
conception of nature as an intricate, impersonal, and inert 
machine. Yet as far as the universities of Europe, including 
Cambridge, were concerned, all this might well have never 
happened. They continued to be the strongholds of out-
moded Aristotelianism, which rested on a geocentric view 
of the universe and dealt with nature in qualitative rather 
than quantitative terms.

Like thousands of other undergraduates, Newton began 
his higher education by immersing himself in Aristotle’s 
work. Even though the new philosophy was not in the curric-
ulum, it was in the air. Some time during his undergraduate 
career, Newton discovered the works of the French natu-
ral philosopher René Descartes and the other mechanical 
philosophers, who, in contrast to Aristotle, viewed physical 
reality as composed entirely of particles of matter in motion 
and who held that all the phenomena of nature result  
from their mechanical interaction. A new set of notes, 
which he entitled “Quaestiones Quaedam Philosophicae” 



163

7 Great Figures in the History of Analysis 7

(“Certain Philosophical Questions”), begun sometime in 
1664, usurped the unused pages of a notebook intended 
for traditional scholastic exercises. Under the title he 
entered the slogan “Amicus Plato amicus Aristoteles magis 
amica veritas” (“Plato is my friend, Aristotle is my friend, 
but my best friend is truth”). Newton’s scientific career 
had begun.

The “Quaestiones” reveal that Newton had discovered 
the new conception of nature that provided the framework 
of the scientific revolution. He had thoroughly mastered 
the works of Descartes and had also discovered that the 
French philosopher Pierre Gassendi had revived atom-
ism, an alternative mechanical system to explain nature. 
The “Quaestiones” also reveal that Newton already was 
inclined to find the latter a more attractive philosophy 
than Cartesian natural philosophy, which rejected the 
existence of ultimate indivisible particles. The works 
of the 17th-century chemist Robert Boyle provided the 
foundation for Newton’s considerable work in chemistry.

Although he did not record it in the “Quaestiones,” 
Newton had also begun his mathematical studies. He 
again started with Descartes, from whose La Géometrie he 
branched out into the other literature of modern analysis 
with its application of algebraic techniques to problems 
of geometry. He then reached back for the support of 
classical geometry. Within little more than a year, he had 
mastered the literature. Pursuing his own line of analy-
sis, he began to move into new territory. He discovered 
the binomial theorem, and he developed the calculus, a 
more powerful form of analysis that employs infinitesi-
mal considerations in finding the slopes of curves and 
areas under curves.

By 1669 Newton was ready to write a tract summa-
rizing his progress, De Analysi per Aequationes Numeri 
Terminorum Infinitas (“On Analysis by Infinite Series”), 
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which circulated in manuscript through a limited circle 
and made his name known. During the next two years 
he revised it as De methodis serierum et fluxionum (“On the 
Methods of Series and Fluxions”). The word fluxions, 
Newton’s private rubric, indicates that the calculus had 
been born. Despite the fact that only a handful of savants 
were even aware of Newton’s existence, he had arrived at 
the point where he had become the leading mathemati-
cian in Europe.

When Newton received the bachelor’s degree in April 
1665, the most remarkable undergraduate career in the his-
tory of university education had passed unrecognized. On 
his own, without formal guidance, he had sought out the 
new philosophy and the new mathematics and made them 
his own, but he had confined the progress of his studies to 
his notebooks. Then, in 1665, the plague closed the univer-
sity, and for most of the following two years he was forced 
to stay at his home, contemplating at leisure what he had 
learned. During the plague years Newton laid the founda-
tions of the calculus and extended an earlier insight into 
an essay, “Of Colours,” which contains most of the ideas 
elaborated in his Opticks. It was during this time that he 
examined the elements of circular motion and, applying his 
analysis to the Moon and the planets, derived the inverse 
square relation that the radially directed force acting on a 
planet decreases with the square of its distance from the 
Sun—which was later crucial to the law of universal gravi-
tation. The world heard nothing of these discoveries.

In August 1684, Newton was visited by the British 
astronomer Edmond Halley, who was also troubled by the 
problem of orbital dynamics. Upon learning that Newton 
had solved the problem, he extracted Newton’s promise to 
send the demonstration. Three months later he received 
a short tract entitled De Motu (“On Motion”). Already 
Newton was at work improving and expanding it. In two 
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and a half years, the tract De Motu grew into Philosophiae 
Naturalis Principia Mathematica, which is not only Newton’s 
masterpiece but also the fundamental work for the whole 
of modern science.

Significantly, De Motu did not state the law of universal 
gravitation. For that matter, even though it was a treatise 
on planetary dynamics, it did not contain any of the three 
Newtonian laws of motion. Only when revising De Motu 
did Newton embrace the principle of inertia (the first law) 
and arrive at the second law of motion. The second law, the 
force law, proved to be a precise quantitative statement of 
the action of the forces between bodies that had become 
the central members of his system of nature. By quantify-
ing the concept of force, the second law completed the 
exact quantitative mechanics that has been the paradigm 
of natural science ever since.

The quantitative mechanics of the Principia is not 
to be confused with the mechanical philosophy. The lat-
ter was a philosophy of nature that attempted to explain 
natural phenomena by means of imagined mechanisms 
among invisible particles of matter. The mechanics of 
the Principia was an exact quantitative description of the 
motions of visible bodies. It rested on Newton’s three laws 
of motion: (1) that a body remains in its state of rest unless 
it is compelled to change that state by a force impressed 
on it. (2) that the change of motion (the change of veloc-
ity times the mass of the body) is proportional to the 
force impressed. (3) that to every action there is an equal 
and opposite reaction. The analysis of circular motion 
in terms of these laws yielded a formula of the quantita-
tive measure, in terms of a body’s velocity and mass, of 
the centripetal force necessary to divert a body from its 
rectilinear path into a given circle. When Newton substi-
tuted this formula into Kepler’s third law, he found that 
the centripetal force holding the planets in their given 
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orbits about the Sun must decrease with the square of the 
planets’ distances from the Sun. He applied the ancient 
Latin word gravitas (literally, “heaviness” or “weight”) to 
this force.

The Principia immediately raised Newton to inter-
national prominence. In their continuing loyalty to the 
mechanical ideal, Continental scientists rejected the idea 
of action at a distance for a generation, but even in their 
rejection they could not withhold their admiration for the 
technical expertise revealed by the work. Young British 
scientists spontaneously recognized him as their model.

With the publication of the Principia the great bulk 
of his creative work had been completed. He was never 
again satisfied with the academic cloister, and he sought a 
place in London. Finally, in 1696, he was appointed warden 
of the mint. Although he did not resign his Cambridge 
appointments until 1701, he moved to London and hence-
forth centred his life there. The move to London was the 
effective conclusion of his creative activity.

In London, Newton assumed the role of patriarch of 
English science. In 1703 he was elected President of the 
Royal Society. Four years earlier, the French Académie des 
Sciences (Academy of Sciences) had named him one of eight 
foreign associates. In 1705 Queen Anne knighted him, the 
first occasion on which a scientist was so honoured.

In Gottfried Wilhelm Leibniz, the German philoso-
pher and mathematician, Newton met a contestant more 
of his own calibre. It is now well established that Newton 
developed the calculus before Leibniz seriously pursued 
mathematics. It is almost universally agreed that Leibniz 
later arrived at the calculus independently. There has 
never been any question that Newton did not publish his 
method of fluxions. Thus, it was Leibniz’s paper in 1684 
that first made the calculus a matter of public knowledge. 
In the Principia Newton hinted at his method, but he 



167

7 Great Figures in the History of Analysis 7

did not really publish it until he appended two papers to 
the Opticks in 1704. By then the priority controversy was 
already smouldering. If, indeed, it mattered, it would be 
impossible finally to assess responsibility for the ensuing 
fracas. What began as mild innuendoes rapidly escalated 
into blunt charges of plagiarism on both sides. Egged on 
by followers anxious to win a reputation under his aus-
pices, Newton allowed himself to be drawn into the centre 
of the fray. And, once his temper was aroused by accusa-
tions of dishonesty, his anger was beyond constraint. 
Leibniz’s conduct of the controversy was not pleasant, 
and yet it paled beside that of Newton. As president of 
the Royal Society, he appointed an “impartial” committee 
to investigate the issue, secretly wrote the report officially 
published by the society, and reviewed it anonymously in 
the Philosophical Transactions. Even Leibniz’s death could 
not allay Newton’s wrath, and he continued to pursue the 
enemy beyond the grave. The battle with Leibniz, the 
irrepressible need to efface the charge of dishonesty, dom-
inated the final 25 years of Newton’s life. It obtruded itself 
continually upon his consciousness. Almost any paper on 
any subject from those years is apt to be interrupted by a 
furious paragraph against the German philosopher, as he 
honed the instruments of his fury ever more keenly. In the 
end, only Newton’s death ended his wrath.

Gilles Personne de Roberval
(b. Aug. 8, 1602, Roberval, France—d. Oct. 27, 1675, Paris)

Gilles Personne de Roberval was a French mathematician 
who made important advances in the geometry of curves.

In 1632 Roberval became professor of mathematics at 
the Collège de France, Paris, a position he held until his 
death. He studied the methods of determination of sur-
face area and volume of solids, developing and improving 
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the method of indivisibles used by the Italian mathema-
tician Bonaventura Cavalieri for computing some of the 
simpler cases. He discovered a general method of drawing 
tangents, by treating a curve as the result of the motion 
of a moving point and by resolving the motion of the 
point into two simpler components. He also discovered a 
method for obtaining one curve from another, by means 
of which planar regions of finite dimensions can be found 
that are equal in area to the regions between certain curves 
and their asymptotes (lines that the curves approach but 
never intersect). To these curves, which were also used to 
determine areas, the Italian mathematician Evangelista 
Torricelli gave the name of Robervallian lines.

Brook Taylor
(b. Aug. 18, 1685, Edmonton, Middlesex, Eng.—d. Dec. 29,  
1731, London)

The British mathematician Brook Taylor was a proponent 
of Newtonian mechanics and noted for his contributions 
to the development of calculus.

Taylor was born into a prosperous and educated family 
who encouraged the development of his musical and artis-
tic talents, both of which found mathematical expression 
in his later life. He was tutored at home before he entered 
St. John’s College, Cambridge, in 1701 to study law. He 
completed his LL.B. in 1709 and his doctorate in 1714, but 
it is doubtful that he ever practiced as a lawyer.

Taylor’s first important mathematical paper, which 
provided a solution to the problem of the centre of oscil-
lation of a body, was published in 1714, although he had 
actually written it by 1708. His delay in publishing led to 
a priority dispute with the noted Swiss mathematician 
Johann Bernoulli. Taylor’s famous investigation of the 
vibrating string, a topic that played a large role in clarifying 
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what mathematicians meant by a function, was also pub-
lished in 1714.

Taylor’s Methodus Incrementorum Directa et Inversa (1715; 
“Direct and Indirect Methods of Incrementation”) added 
to higher mathematics a new branch now called the cal-
culus of finite differences. Using this new development, 
Taylor studied a number of special problems, including the 
vibrating string, the determination of the centres of oscil-
lation and percussion, and the path of a light ray refracted 
in the atmosphere. The Methodus also contained the cel-
ebrated formula known as Taylor’s theorem, which Taylor 
had first stated in 1712 and the full significance of which 
began to be recognized only in 1772 when the French 
mathematician Joseph-Louis Lagrange proclaimed it the 
basic principle of differential calculus.

A gifted artist, Taylor set forth in Linear Perspective 
(1715) the basic principles of perspective. This work and 
his New Principles of Linear Perspective (1719) contained 
the first general treatment of the principle of vanishing 
points. Taylor was elected a fellow of the Royal Society of 
London in 1712 and in the same year sat on the committee 
for adjudicating Sir Isaac Newton’s and Gottfried Wilhelm 
Leibniz’s conflicting claims of priority in the invention of 
calculus.

Evangelista Torricelli
(b. Oct. 15, 1608, Faenza, Romagna—d. Oct. 25, 1647, Florence)

The Italian physicist and mathematician Evangelista 
Torricelli invented the barometer, and his work in 
geometry aided in the eventual development of integral 
calculus. Inspired by Galileo’s writings, he wrote a trea-
tise on mechanics, De Motu (“Concerning Movement”), 
which impressed Galileo. In 1641 Torricelli was invited 
to Florence, where he served the elderly astronomer as 
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secretary and assistant during the last three months of 
Galileo’s life. Torricelli was then appointed to succeed him 
as professor of mathematics at the Florentine Academy.

Two years later, pursuing a suggestion by Galileo, he 
filled a glass tube 1.2 metres (4 feet) long with mercury 
and inverted the tube into a dish. He observed that some 
of the mercury did not flow out and that the space above 
the mercury in the tube was a vacuum. Torricelli became 
the first man to create a sustained vacuum. After much 
observation, he concluded that the variation of the height 
of the mercury from day to day was caused by changes 
in atmospheric pressure. He never published his find-
ings, however, because he was too deeply involved in the 
study of pure mathematics—including calculations of 
the cycloid, a geometric curve described by a point on 
the rim of a turning wheel. In his Opera Geometrica (1644; 
“Geometric Works”), Torricelli included his findings on 
fluid motion and projectile motion.

John Wallis
(b. Nov. 23, 1616, Ashford, Kent, Eng.—d. Oct. 28, 1703, Oxford, 
Oxfordshire)

The English mathematician John Wallis contributed sub-
stantially to the origins of the calculus and was the most 
influential English mathematician before Isaac Newton.

Wallis learned Latin, Greek, Hebrew, logic, and arith-
metic during his early school years. In 1632 he entered 
the University of Cambridge, where he received B.A. 
and M.A. degrees in 1637 and 1640, respectively. He was 
ordained a priest in 1640 and shortly afterward exhibited 
his skill in mathematics by deciphering a number of cryp-
tic messages from Royalist partisans that had fallen into 
the hands of the Parliamentarians. In 1645, the year of 
his marriage, Wallis moved to London, where in 1647 his 
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serious interest in mathe-
matics began when he read 
William Oughtred’s Clavis 
Mathematicae (“The Keys 
to Mathematics”).

Wallis’s appointment in 
1649 as Savilian professor of 
geometry at the University 
of Oxford marked the 
beginning of intense math-
ematical activity that lasted 
almost uninterruptedly to 
his death. A chance perusal  
of the works of the Ital-
ian physicist Evangelista 
Torricelli, who developed 
a method of indivisibles to 
effect the quadrature of curves, derived from the Italian 
mathematician Bonaventura Cavalieri, stimulated Wallis’s 
interest in the age-old problem of the quadrature of the 
circle, that is, finding a square that has an area equal to 
that of a given circle. In his Arithmetica Infinitorum (“The 
Arithmetic of Infinitesimals”) of 1655, the result of his 
interest in Torricelli’s work, Wallis extended Cavalieri’s law 
of quadrature by devising a way to include negative and 
fractional exponents. Thus he did not follow Cavalieri’s 
geometric approach and instead assigned numerical val-
ues to spatial indivisibles. By means of a complex logical 
sequence, he established the following relationship:

Isaac Newton reported that his work on the binomial 
theorem and on the calculus arose from a thorough study 

John Wallis, oil painting after a por-
trait by Sir Godfrey Kneller; in the 
National Portrait Gallery, London. 
Courtesy of the National Portrait 
Gallery, London
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of the Arithmetica Infinitorum during his undergraduate 
years at Cambridge. The book promptly brought fame 
to Wallis, who was then recognized as one of the leading 
mathematicians in England.

In 1657 Wallis published the Mathesis Universalis 
(“Universal Mathematics”), on algebra, arithmetic, and 
geometry, in which he further developed notation. He 
invented and introduced the symbol ∞ for infinity. This 
symbol found use in treating a series of squares of indi-
visibles. His introduction of negative and fractional 
exponential notation was an important advance. The idea 
of the power of a number is very old. The application of 
the exponent dates from the 14th century. The French 
mathematician René Descartes in 1632 first used the sym-
bol a3. However Wallis was the first to demonstrate the 
utility of the exponent, particularly by his negative and 
fractional exponents.

Wallis was active in the weekly scientific meetings 
that, beginning as early as 1645, led to the formation of 
the Royal Society of London by charter of King Charles II 
in 1662. In his Tractatus de Sectionibus Conicis (1659; “Tract 
on Conic Sections”), he described the curves that are 
obtained as cross sections by cutting a cone with a plane 
as properties of algebraic coordinates. His Mechanica, sive 
Tractatus de Motu (“Mechanics, or Tract on Motion”) in 
1669–71 (three parts) refuted many of the errors regarding 
motion that had persisted since the time of Archimedes. 
He gave a more rigorous meaning to such terms as force 
and momentum, and he assumed that the gravity of the 
Earth may be regarded as localized at its centre.

Wallis’s life was embittered by quarrels with his con-
temporaries, including the political philosopher Thomas 
Hobbes, who characterized his Arithmetica Infinitorum 
as a “scab of symbols,” and the Dutch mathemati-
cian Christiaan Huygens, whom he once tricked with 
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an anagram concerning a possible satellite of Saturn. 
Against the French philosopher and mathematician  
René Descartes he was particularly severe. Approaching 
his 70th year, Wallis published, in 1685, his Treatise on 
Algebra, an important study of equations that he applied 
to the properties of conoids, which are shaped almost 
like a cone. Moreover, in this work he anticipated the 
concept of complex numbers (e.g., a + b√-1, in which a and 
b are real).

By applying algebraic techniques rather than those of 
traditional geometry, Wallis contributed substantially to 
solving problems involving infinitesimals—that is, those 
quantities that are incalculably small. Thereby math-
ematics, eventually through the differential and integral 
calculus, became the most powerful tool of research in 
astronomy and theoretical physics. Wallis’s many mathe-
matical and scientific works were collected and published 
together as the Opera Mathematica in three folio volumes 
in 1693–99.

the 19th and 20th centuries

In the 19th and 20th centuries, the foundations of analy-
sis were examined in detail by mathematicians such as 
Richard Dedekind and David Hilbert. New avenues of 
inquiry were opened, such as functional analysis by Stefan 
Banach and measure theory by Henri-Léon Lebesgue.

Stefan Banach
(b. March 30, 1892, Kraków, Austria-Hungary [now in Poland]—  
d. Aug. 31, 1945, Lvov, Ukrainian S.S.R. [now Lviv, Ukraine])

The Polish mathematician Stefan Banach founded mod-
ern functional analysis and helped develop the theory of 
topological vector spaces.
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Banach was given the surname of his mother, who was 
identified as Katarzyna Banach on his birth certificate, 
and the first name of his father, Stefan Greczek. He never 
knew his mother, and when still a young boy he was sent 
by his father to be raised by a family in Kraków. Banach 
apparently worked his way through the engineering school 
at the Lvov Technical University from 1910 to 1914. Unfit 
for military service because of poor eyesight, he worked 
on road constructions and taught at local schools during 
World War I.

At the end of the war several mathematical papers 
that Banach had worked on in his spare time were pub-
lished and resulted in his being offered an assistantship 
at Lvov Technical University in 1920. Awarded a doctor-
ate by the University of Lvov (now Ivan Franco National 
University of Lviv) in 1922, Banach began his lifelong 
affiliation with the university, building a school of math-
ematics and founding an important new mathematics 
journal, Studia Mathematica, in 1929. He was elected presi-
dent of the Polish Mathematical Society in 1939, but his 
life changed with the Nazi occupation from 1941 to 1944. 
Under the occupation, Banach was compelled to feed lice 
for a German study of infectious diseases. He died of lung 
cancer in 1945 before he could resume his academic life 
with an appointment at Jagiellonian University, Kraków.

Banach contributed to the theory of orthogonal 
series and made innovations in the theory of measure and 
integration, but his most important contribution was in 
functional analysis. Of his published works, his Théorie des 
opérations linéaires (1932; “Theory of Linear Operations”) 
is the most important. Banach and his coworkers sum-
marized the previously developed concepts and theorems 
of functional analysis and integrated them into a compre-
hensive system. Banach himself introduced the concept 
of normed linear spaces, which are now known as Banach 
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spaces. He also proved several fundamental theorems in 
the field, and his applications of theory inspired much of 
the work in functional analysis for the next few decades.

His two-volume collected works with commentaries, 
Oeuvres avec des commentaires, was published in 1979.

Bernhard Bolzano
(b. Oct. 5, 1781, Prague, Bohemia, Austrian Habsburg domain [now in 
Czech Republic]—d. Dec. 18, 1848, Prague)

The Bohemian mathematician and theologian Bernhard 
Bolzano provided a more detailed proof for the binomial 
theorem in 1816 and suggested the means of distinguish-
ing between finite and infinite classes.

Bolzano graduated from the University of Prague as 
an ordained priest in 1805 and was immediately appointed 
professor of philosophy and religion at the university. 
Within a matter of years, however, Bolzano alienated 
many faculty and church leaders with his teachings of the 
social waste of militarism and the needlessness of war. He 
urged a total reform of the educational, social, and eco-
nomic systems that would direct the nation’s interests 
toward peace rather than toward armed conflict between 
nations. Upon his refusal to recant his beliefs, Bolzano was 
dismissed from the university in 1819 and at that point 
devoted his energies to his writings on social, religious, 
philosophical, and mathematical matters.

Bolzano held advanced views on logic, mathematical 
variables, limits, and continuity. In his studies of the phys-
ical aspects of force, space, and time he proposed theories 
counter to those suggested by the German philosopher 
Immanuel Kant. Much of his work remained unpublished 
during his lifetime and did not have wide impact until the 
late 19th and early 20th centuries, when a number of his 
conclusions were arrived at independently.
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Bolzano’s published works include Der binomische 
Lehrsatz (1816; “The Binomial Theorem”), Rein analyt-
ischer Beweis (1817; “Pure Analytic Proof”), Functionenlehre 
(1834; “Functions Model”), Wissenschaftslehre, 4 vol. (1834; 
“Scientific Model”), Versuch einer neuen Darstellung der Logik, 
4 vol. (1837; “An Attempt at a New Presentation of Logic”), 
and Paradoxien des Unendlichen (1851; “Paradoxes of Infinity”).

Luitzen Egbertus Jan Brouwer
(b. Feb. 27, 1881, Overschie, Neth.—d. Dec. 2, 1966, Blaricum)

Luitzen Egbertus Jan Brouwer was a Dutch mathemati-
cian who founded mathematical intuitionism (a doctrine 
that views the nature of mathematics as mental construc-
tions governed by self-evident laws) and whose work 
completely transformed topology, the study of the most 
basic properties of geometric surfaces and configurations.

Brouwer studied mathematics at the University of 
Amsterdam from 1897 to 1904. Even then he was inter-
ested in philosophical matters, as evidenced by his Leven, 
Kunst, en Mystiek (1905; “Life, Art, and Mysticism”). In 
his doctoral thesis, “Over de grondslagen der wiskunde” 
(1907; “On the Foundations of Mathematics”), Brouwer 
attacked the logical foundations of mathematics, as repre-
sented by the efforts of the German mathematician David 
Hilbert and the English philosopher Bertrand Russell, and 
shaped the beginnings of the intuitionist school. The fol-
lowing year, in “Over de onbetrouwbaarheid der logische 
principes” (“On the Untrustworthiness of the Logical 
Principles”), he rejected as invalid the use in mathematical 
proofs of the principle of the excluded middle (or excluded 
third). According to this principle, every mathematical 
statement is either true or false. No other possibility is 
allowed. Brouwer denied that this dichotomy applied to 
infinite sets.
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Brouwer taught at the University of Amsterdam from 
1909 to 1951. He did most of his important work in topol-
ogy between 1909 and 1913. In connection with his studies 
of the work of Hilbert, he discovered the plane transla-
tion theorem, which characterizes topological mappings 
of the Cartesian plane, and the first of his fixed-point 
theorems, which later became important in the estab-
lishment of some fundamental theorems in branches of 
mathematics such as differential equations and game 
theory. In 1911 he established his theorems on the invari-
ance of the dimension of a manifold under continuous 
invertible transformations. In addition, he merged the 
methods developed by the German mathematician Georg 
Cantor with the methods of analysis situs, an early stage 
of topology. In view of his remarkable contributions, 
many mathematicians consider Brouwer the founder of 
topology.

In 1918 he published a set theory, the following year a 
theory of measure, and by 1923 a theory of functions, all 
developed without using the principle of the excluded mid-
dle. He continued his studies until 1954, and, although he 
did not gain widespread acceptance for his precepts, intu-
itionism enjoyed a resurgence of interest after World War 
II, primarily because of contributions by the American 
mathematician Stephen Cole Kleene. His Collected Works, 
in two volumes, was published in 1975–76.

Augustin-Louis, Baron Cauchy
(b. Aug. 21, 1789, Paris, France—d. May 23, 1857, Sceaux)

The French mathematician Augustin-Louis, Baron 
Cauchy, pioneered in analysis and the theory of substitu-
tion groups (groups whose elements are ordered sequences 
of a set of things). He was one of the greatest of modern 
mathematicians.
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At the onset of the Reign of Terror (1793–94) dur-
ing the French Revolution, Cauchy’s family fled from 
Paris to the village of Arcueil, where Cauchy first became 
acquainted with the mathematician Pierre-Simon Laplace 
and the chemist Claude-Louis Berthollet.

Cauchy became a military engineer and in 1810 went to 
Cherbourg to work on the harbours and fortifications for 
Napoleon’s English invasion fleet. In spite of his work load 
he produced several mathematical papers of note, includ-
ing the solution of a problem sent to him by Joseph-Louis 
Lagrange that established a relationship between the 
number of edges, the number of vertices, and the number 
of faces of a convex polyhedron, and the solution of Pierre 
de Fermat’s problem on polygonal numbers.

Cauchy returned to Paris in 1813, and Lagrange and 
Laplace persuaded him to devote himself entirely to math-
ematics. The following year he published the memoir on 
definite integrals that became the basis of the theory of 
complex functions. From 1816 he held professorships in 
the Faculty of Sciences, the Collège de France, and the 
École Polytechnique, all in Paris. When Gaspard Monge 
was expelled for political reasons from the Academy of 
Sciences (1816), Cauchy was appointed to fill the vacancy. 
The same year he won the grand prix of the Institute of 
France for a paper on wave propagation, now accepted as 
a classic in hydrodynamics. In 1822 he laid the foundations 
of the mathematical theory of elasticity.

Cauchy’s greatest contributions to mathematics, charac-
terized by the clear and rigorous methods that he introduced, 
are embodied predominantly in his three great treatises: 
Cours d’analyse de l’École Royale Polytechnique (1821; “Courses 
on Analysis from the École Royale Polytechnique”); Résumé 
des leçons sur le calcul infinitésimal (1823; “Résumé of Lessons 
on Infinitesimal Calculus”); and Leçons sur les applications 
du calcul infinitésimal à la géométrie (1826–28; “Lessons on the 
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Applications of Infinitesimal Calculus to Geometry”). The 
first phase of modern rigour in mathematics originated in 
his lectures and researches in analysis during the 1820s. He 
clarified the principles of calculus and put them on a satis-
factory basis by developing them with the aid of limits and 
continuity, concepts now considered vital to analysis. To 
the same period belongs his development of the theory of 
functions of a complex variable (a variable involving a mul-
tiple of the square root of minus one), today indispensable 
in applied mathematics from physics to aeronautics.

Although acting only from the highest motives, 
Cauchy often offended his colleagues by his self-righteous 
obstinacy and aggressive religious bigotry. Upon the exile 
of Charles X in 1830 and the ascension of Louis-Philippe to 
the throne, Cauchy went into exile, too, rather than take 
the oath of allegiance. A chair of mathematical physics was 
created for him at the University of Turin, but in 1833 he 
left to tutor the Duke de Bordeaux, grandson of Charles 
X. In 1838, with the suspension of the oath, he returned 
to France, resuming his chair at the École Polytechnique.

Cauchy made substantial contributions to the theory 
of numbers and wrote three important papers on error 
theory. His work in optics provided a mathematical basis 
for the workable but somewhat unsatisfactory theory of 
the properties of the ether, a hypothetical, omnipresent 
medium once thought to be the conductor of light. His 
collected works, Oeuvres complètes d ’Augustin Cauchy (1882–
1970), were published in 27 volumes.

Richard Dedekind
(b. Oct. 6, 1831, Braunschweig, duchy of Braunschweig [Germany]— 
d. Feb. 12, 1916, Braunschweig)

German mathematician Julius Wilhelm Richard Dedekind 
developed a major redefinition of irrational numbers in 
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terms of arithmetic concepts. Although not fully rec-
ognized in his lifetime, his treatment of the ideas of the 
infinite and of what constitutes a real number continues 
to influence modern mathematics.

Dedekind was the son of a lawyer. While attend-
ing the Gymnasium Martino-Catharineum in 1838–47 
in Braunschweig, he was at first interested primarily in 
chemistry and physics. At the Caroline College in 1848–
50, however, he turned to calculus, algebra, and analytic 
geometry, which helped qualify him to study advanced 
mathematics at the University of Göttingen under the 
mathematician Carl Friedrich Gauss.

After two years of independent study of algebra, 
geometry, and elliptic functions, Dedekind served as 
Privatdozent (“unsalaried lecturer”) in 1854–58 at the 
University of Göttingen, where, in his lectures, he intro-
duced, probably for the first time, the Galois theory of 
equations and attended the lectures of the mathematician 
Peter Gustav Lejeune Dirichlet. These experiences led 
Dedekind to see the need for a redefinition of irrational 
numbers in terms of arithmetic properties. The geomet-
ric approach had led Eudoxus in the 4th century BCE to 
define them as approximations by rational numbers (e.g., a 
series of nonrepeating decimals, as √2 = 1.414213 … ).

In 1858 Dedekind joined the faculty of the Zürich 
Polytechnic, where he remained for five years. In 1862 
he accepted a position in the Technical High School in 
Braunschweig, where he remained in comparative isola-
tion for the rest of his life.

While teaching there, Dedekind developed the idea 
that both rational and irrational numbers could form a 
continuum (with no gaps) of real numbers, provided that 
the real numbers have a one-to-one relationship with 
points on a line. He said that an irrational number would 
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then be that boundary value that separates two especially 
constructed collections of rational numbers.

Dedekind perceived that the character of the con-
tinuum need not depend on the quantity of points on a 
line segment (or continuum) but rather on how the line 
submits to being divided. His method, now called the 
Dedekind cut, consisted in separating all the real numbers 
in a series into two parts such that each real number in 
one part is less than every real number in the other. Such a 
cut, which corresponds to a given value, defines an irratio-
nal number if no largest or no smallest is present in either 
part. Whereas a rational number is defined as a cut in 
which one part contains a smallest or a largest. Dedekind 
would therefore define the square root of 2 as the unique 
number dividing the continuum into two collections of 
numbers such that all the members of one collection are 
greater than those of the other, or that cut, or division, 
separating a series of numbers into two parts such that 
one collection contains all the numbers whose squares are 
larger than 2 and the other contains all the numbers whose 
squares are less than 2.

Dedekind developed his arithmetical rendering of irra-
tional numbers in 1872 in his Stetigkeit und Irrationale Zahlen 
(Eng. trans., “Continuity and Irrational Numbers,” pub-
lished in Essays on the Theory of Numbers). He also proposed, 
as did the German mathematician Georg Cantor, two years 
later, that a set—a collection of objects or components—is 
infinite if its components may be arranged in a one-to-one 
relationship with the components of one of its subsets. 
By supplementing the geometric method in analysis, 
Dedekind contributed substantially to the modern treat-
ment of the infinitely large and the infinitely small.

While vacationing in Interlaken, Switz., in 1874, 
Dedekind met Cantor. Dedekind gave a sympathetic 
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hearing to an exposition of the revolutionary idea of sets 
that Cantor had just published, which later became prom-
inent in the teaching of modern mathematics. Because 
both mathematicians were developing highly original con-
cepts, such as in number theory and analysis, which were 
not readily accepted by their contemporaries, and because 
both lacked adequate professional recognition, a lasting 
friendship developed.

Continuing his investigations into the properties and 
relationships of integers—that is, the idea of number—
Dedekind published Über die Theorie der ganzen algebraischen 
Zahlen (1879; “On the Theory of Algebraic Whole 
Numbers”). There he proposed the “ideal” as a collection 
of numbers that may be separated out of a larger collection, 
composed of algebraic integers that satisfy polynomial 
equations with ordinary integers as coefficients. The ideal 
is a collection of all algebraic integer multiples of a given 
algebraic integer. For example, the notation (2) represents 
such a particular collection, as . . . -8, -6, -4, -2, 0, 2, 4, 6, 
8 . . . . The sum of two ideals is an ideal that is composed of 
all the sums of all their individual members. The product 
of two ideals is similarly defined. Ideals, considered as inte-
gers, can then be added, multiplied, and hence factored. 
By means of this theory of ideals, he allowed the process 
of unique factorization—that is, expressing a number as 
the product of only one set of primes, or 1 and itself—to 
be applied to many algebraic structures that hitherto had 
eluded analysis.

Joseph, Baron Fourier
(b. March 21, 1768, Auxerre, France—d. May 16, 1830, Paris)

The French mathematician Jean-Baptiste-Joseph, Baron 
Fourier, known also as an Egyptologist and administrator, 
exerted strong influence on mathematical physics through 
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his Théorie analytique de la 
chaleur (1822; The Analytical 
Theory of Heat). He showed 
how the conduction of 
heat in solid bodies may be 
analyzed in terms of infi-
nite mathematical series 
now called by his name, 
the Fourier series. Far tran-
scending the particular 
subject of heat conduc-
tion, his work stimulated 
research in mathematical 
physics, which has since 
been often identified with 
the solution of boundary-
value problems, encompassing many natural occurrences 
such as sunspots, tides, and the weather. His work also had 
a great influence on the theory of functions of a real vari-
able, one of the main branches of modern mathematics.

Fourier, the son of a tailor, first attended the local mili-
tary school conducted by Benedictine monks. He showed 
such proficiency in mathematics in his early years that he 
later became a teacher in mathematics at the same school. 
The ideals of the French Revolution then swept him into 
politics, and more than once his life was in danger. When 
the École Normale was founded in 1794 in Paris, he was 
among its first students, and, in 1795, he became a teacher 
there. The same year, after the École Polytechnique was 
opened, he joined its faculty and became a colleague of 
Gaspard Monge and other mathematicians.

In 1798, with Monge and others, Fourier accompanied 
Napoleon on his expedition to Egypt. Until 1801 he was 
engaged in extensive research on Egyptian antiquities, 
gave advice on engineering and diplomatic undertakings, 

Joseph Fourier, lithograph by Jules 
Boilly, 1823; in the Academy of 
Sciences, Paris. Giraudon/Art 
Resource, New York
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and served for three years as the secretary of the Institut 
d’Égypte, which Napoleon established in Cairo in 1798.

After his return to France, Fourier was charged with 
the publication of the enormous mass of Egyptian materi-
als. This became the Description de l’Égypte, to which he also 
wrote a lengthy historical preface on the ancient civiliza-
tion of Egypt. He was also appointed prefect (administrator 
for the national government and département) of the Isère 
département, a position he held from 1802 to 1814, with his 
headquarters at Grenoble. He showed great administra-
tive ability, as in directing the drainage of swamps, while 
continuing his Egyptological and mathematical work. In 
1809 Napoleon made him a baron. Following Napoleon’s 
fall from power in 1815, Fourier was appointed director of 
the Statistical Bureau of the Seine, allowing him a period 
of quiet academic life in Paris. In 1817 he was elected to 
the Académie des Sciences, of which, in 1822, he became 
perpetual secretary. Because of his work in Egyptology 
he was elected in 1826 to the Académie Française and the 
Académie de Médecine.

Fourier began his work on the Théorie analytique de la 
chaleur in Grenoble in 1807 and completed it in Paris in 1822. 
His work enabled him to express the conduction of heat in 
two-dimensional objects (i.e., very thin sheets of material) 
in terms of the differential equation

in which u is the temperature at any time t at a point (x, y) 
of the plane and k is a constant of proportionality called 
the diffusivity of the material. The problem is to find the 
temperature, for example, in a conducting plate, if at time 
t = 0, the temperature is given at the boundary and at the 
points of the plane. For the solution of such problems in 
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one dimension, Fourier introduced series with sines and 
cosines as terms:

Such Fourier series, already occasionally used by 
Leonhard Euler and other 18th-century mathematicians, 
but somewhat distrusted, received through Fourier their 
important position in modern mathematics. He also 
extended this concept into the so-called Fourier integral. 
Doubts of the validity of the Fourier series, which led later 
mathematicians to a fundamental renewal of the con-
cept of real function, were resolved by P.G.L. Dirichlet, 
Bernhard Riemann, Henri Lebesgue, and others.

Fourier worked on the theory almost his entire life. He 
was also interested in the determination of roots of alge-
braic equations (the so-called theorem of Fourier).

Carl Friedrich Gauss
(b. April 30, 1777, Brunswick [Germany]—d. Feb. 23, 1855,  
Göttingen, Hanover)

The German mathematician Carl Friedrich Gauss is gen-
erally regarded as one of the greatest mathematicians of 
all time for his contributions to number theory, geom-
etry, probability theory, geodesy, planetary astronomy, 
the theory of functions, and potential theory (including 
electromagnetism).

Gauss was the only child of poor parents. He was 
rare among mathematicians in that he was a calculat-
ing prodigy, and he retained the ability to do elaborate 
calculations in his head most of his life. Impressed by 
this ability and by his gift for languages, his teachers 
and his devoted mother recommended him to the duke 
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of Brunswick in 1791, who granted him financial assis-
tance to continue his education locally and then to study 
mathematics at the University of Göttingen from 1795 
to 1798. Gauss’s pioneering work gradually established 
him as the era’s preeminent mathematician, first in the 
German-speaking world and then farther afield, although 
he remained a remote and aloof figure.

Gauss’s first significant discovery, in 1792, was that a 
regular polygon of 17 sides can be constructed by ruler and 
compass alone. Its significance lies not in the result but in 
the proof, which rested on a profound analysis of the fac-
torization of polynomial equations and opened the door 
to later ideas of Galois theory. His doctoral thesis of 1797 
gave a proof of the fundamental theorem of algebra: every 
polynomial equation with real or complex coefficients has 
as many roots (solutions) as its degree (the highest power 
of the variable). Gauss’s proof, though not wholly convinc-
ing, was remarkable for its critique of earlier attempts. 
Gauss later gave three more proofs of this major result, 
the last on the 50th anniversary of the first, which shows 
the importance he attached to the topic.

Gauss’s recognition as a truly remarkable talent, though, 
resulted from two major publications in 1801. Foremost 
was his publication of the first systematic textbook on 
algebraic number theory, Disquisitiones Arithmeticae. This 
book begins with the first account of modular arithme-
tic, gives a thorough account of the solutions of quadratic 
polynomials in two variables in integers, and ends with 
the theory of factorization mentioned above. This choice 
of topics and its natural generalizations set the agenda in 
number theory for much of the 19th century, and Gauss’s 
continuing interest in the subject spurred much research, 
especially in German universities.

The second publication was his rediscovery of the aster-
oid Ceres. Its original discovery, by the Italian astronomer 
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Giuseppe Piazzi in 1800, had caused a sensation, but it van-
ished behind the Sun before enough observations could be 
taken to calculate its orbit with sufficient accuracy to know 
where it would reappear. Many astronomers competed for 
the honour of finding it again, but Gauss won. His success 
rested on a novel method for dealing with errors in observa-
tions, today called the method of least squares. Thereafter 
Gauss worked for many years as an astronomer and pub-
lished a major work on the computation of orbits—the 
numerical side of such work was much less onerous for 
him than for most people. As an intensely loyal subject of 
the duke of Brunswick and, after 1807 when he returned 
to Göttingen as an astronomer, of the duke of Hanover, 
Gauss felt that the work was socially valuable.

Gauss also wrote on cartography, the theory of map 
projections. For his study of angle-preserving maps, he 
was awarded the prize of the Danish Academy of Sciences 
in 1823. This work came close to suggesting that complex 
functions of a complex variable are generally angle-preserv-
ing, but Gauss stopped short of making that fundamental 
insight explicit, leaving it for Bernhard Riemann, who had 
a deep appreciation of Gauss’s work. Gauss also had other 
unpublished insights into the nature of complex functions 
and their integrals, some of which he divulged to friends.

In fact, Gauss often withheld publication of his dis-
coveries. As a student at Göttingen, he began to doubt the 
a priori truth of Euclidean geometry and suspected that 
its truth might be empirical. For this to be the case, there 
must exist an alternative geometric description of space. 
Rather than publish such a description, Gauss confined 
himself to criticizing various a priori defenses of Euclidean 
geometry. It would seem that he was gradually convinced 
that there exists a logical alternative to Euclidean geom-
etry. However, when the Hungarian János Bolyai and the 
Russian Nikolay Lobachevsky published their accounts of 
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a new, non-Euclidean geometry about 1830, Gauss failed 
to give a coherent account of his own ideas. It is possible 
to draw these ideas together into an impressive whole, in 
which his concept of intrinsic curvature plays a central 
role, but Gauss never did this. Some have attributed this 
failure to his innate conservatism, others to his incessant 
inventiveness that always drew him on to the next new 
idea, still others to his failure to find a central idea that 
would govern geometry once Euclidean geometry was no 
longer unique. All these explanations have some merit, 
though none has enough to be the whole explanation.

Another topic on which Gauss largely concealed his 
ideas from his contemporaries was elliptic functions. 
He published an account in 1812 of an interesting infi-
nite series, and he wrote but did not publish an account 
of the differential equation that the infinite series satis-
fies. He showed that the series, called the hypergeometric 
series, can be used to define many familiar and many new 
functions. But by then he knew how to use the differen-
tial equation to produce a very general theory of elliptic 
functions and to free the theory entirely from its origins 
in the theory of elliptic integrals. This was a major break-
through, because, as Gauss had discovered in the 1790s, 
the theory of elliptic functions naturally treats them as 
complex-valued functions of a complex variable, but the 
contemporary theory of complex integrals was utterly 
inadequate for the task. When some of this theory was 
published by the Norwegian Niels Abel and the German 
Carl Jacobi about 1830, Gauss commented to a friend that 
Abel had come one-third of the way. This was accurate, 
but it is a sad measure of Gauss’s personality in that he 
still withheld publication. After Gauss’s death in 1855, the 
discovery of many novel ideas among his unpublished 
papers extended his influence well into the remainder of 
the century.
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David Hilbert
(b. Jan. 23, 1862, Königsberg, Prussia [now Kaliningrad, Russia]—d. 
Feb. 14, 1943, Göttingen, Ger.)

German mathematician David Hilbert reduced geometry 
to a series of axioms and contributed substantially to the 
establishment of the formalistic foundations of math-
ematics. His work in 1909 on integral equations led to 
20th-century research in functional analysis.

The first steps of Hilbert’s career occurred at the 
University of Königsberg, at which, in 1884, he finished his 
Inaugurel-dissertation (Ph.D.). He remained at Königsberg 
as a Privatdozent (lecturer, or assistant professor) in 1886–
92, as an Extraordinarius (associate professor) in 1892–93, 
and as an Ordinarius in 1893–95. In 1892 he married Käthe 
Jerosch, and they had one child, Franz. In 1895 Hilbert 
accepted a professorship in mathematics at the University 
of Göttingen, at which he remained for the rest of his life.

The University of Göttingen had a flourishing tradition 
in mathematics, primarily as the result of the contributions 
of Carl Friedrich Gauss, Peter Gustav Lejeune Dirichlet, 
and Bernhard Riemann in the 19th century. During the 
first three decades of the 20th century this mathematical 
tradition achieved even greater eminence, largely because 
of Hilbert. The Mathematical Institute at Göttingen drew 
students and visitors from all over the world.

Hilbert’s intense interest in mathematical physics 
also contributed to the university’s reputation in physics. 
His colleague and friend, the mathematician Hermann 
Minkowski, aided in the new application of mathematics 
to physics until his untimely death in 1909. Three winners 
of the Nobel Prize for Physics—Max von Laue in 1914, 
James Franck in 1925, and Werner Heisenberg in 1932—
spent significant parts of their careers at the University of 
Göttingen during Hilbert’s lifetime.
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In a highly original way, Hilbert extensively modi-
fied the mathematics of invariants—the entities that are 
not altered during such geometric changes as rotation, 
dilation, and reflection. Hilbert proved the theorem of 
invariants—that all invariants can be expressed in terms 
of a finite number. In his Zahlbericht (“Commentary on 
Numbers”), a report on algebraic number theory pub-
lished in 1897, he consolidated what was known in this 
subject and pointed the way to the developments that fol-
lowed. In 1899 he published the Grundlagen der Geometrie 
(The Foundations of Geometry, 1902), which contained his 
definitive set of axioms for Euclidean geometry and a keen 
analysis of their significance. This popular book, which 
appeared in 10 editions, marked a turning point in the axi-
omatic treatment of geometry.

A substantial part of Hilbert’s fame rests on a list 
of 23 research problems he enunciated in 1900 at the 
International Mathematical Congress in Paris. In his 
address, “The Problems of Mathematics,” he surveyed 
nearly all the mathematics of his day and endeavoured 
to set forth the problems he thought would be signifi-
cant for mathematicians in the 20th century. Many of the 
problems have since been solved, and each solution was a 
noted event. Of those that remain, however, one, in part, 
requires a solution to the Riemann hypothesis, which is 
usually considered to be the most important unsolved 
problem in mathematics.

In 1905 (and again from 1918) Hilbert attempted to lay a 
firm foundation for mathematics by proving consistency—
that is, that finite steps of reasoning in logic could not lead 
to a contradiction. But in 1931 the Austrian–U.S. math-
ematician Kurt Gödel showed this goal to be unattainable: 
propositions may be formulated that are undecidable. 
Thus, it cannot be known with certainty that mathemati-
cal axioms do not lead to contradictions. Nevertheless, the 
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development of logic after Hilbert was different, for he 
established the formalistic foundations of mathematics.

Hilbert’s work in integral equations in about 1909 led 
directly to 20th-century research in functional analysis 
(the branch of mathematics in which functions are stud-
ied collectively). His work also established the basis for his 
work on infinite-dimensional space, later called Hilbert 
space, a concept that is useful in mathematical analysis 
and quantum mechanics. Making use of his results on 
integral equations, Hilbert contributed to the develop-
ment of mathematical physics by his important memoirs 
on kinetic gas theory and the theory of radiations. In 1909 
he proved the conjecture in number theory that for any n, 
all positive integers are sums of a certain fixed number of 
nth powers. For example, 5 = 22 + 12, in which n = 2. In 1910 
the second Bolyai award went to Hilbert alone and, appro-
priately, Henri Poincaré wrote the glowing tribute.

The city of Königsberg in 1930, the year of his retire-
ment from the University of Göttingen, made Hilbert an 
honorary citizen. For this occasion he prepared an address 
entitled “Naturerkennen und Logik” (“The Understanding of 
Nature and Logic”). The last six words of Hilbert’s address 
sum up his enthusiasm for mathematics and the devoted 
life he spent raising it to a new level: “Wir müssen wissen, 
wir werden wissen” (“We must know, we shall know”). The 
last decade of Hilbert’s life was darkened by the tragedy 
brought to himself and to so many of his students and col-
leagues by the Nazi regime.

Andrey Kolmogorov
(b. April 25 [April 12, Old Style], 1903, Tambov, Russia—d. Oct. 20, 
1987, Moscow)

The work of the Russian mathematician Andrey 
Nikolayevich Kolmogorov influenced many branches of 



7 The Britannica Guide to Analysis and Calculus 7

192

modern mathematics, especially harmonic analysis, prob-
ability, set theory, information theory, and number theory. 
A man of broad culture, with interests in technology, his-
tory, and education, he played an active role in the reform 
of education in the Soviet Union. He is best remembered 
for a brilliant series of papers on the theory of probability.

Kolmogorov’s mother died giving him birth. He was 
raised by her sister and took his maternal grandfather’s 
family name. His aunt moved with him to Moscow when 
he was seven years old, where he demonstrated an early 
interest in biology and history. In 1920, as yet undecided 
over a career, he enrolled simultaneously at Moscow 
State University to study history and mathematics and at 
the Mendeleev Chemical Engineering Institute to study 
metallurgy. However, he soon revealed a remarkable tal-
ent for mathematics and specialized in that subject. As a 
19-year-old student he was entrusted with teaching mathe-
matics and physics courses in the Potylikhin Experimental 
School, and by the time he graduated in 1925 he had 
published 10 mathematical papers, most of them on trigo-
nometric series—an extraordinary output for a student. 
This astonishing outburst of mathematical creativity 
continued as a graduate student with eight more papers 
written through 1928. He later expanded the most impor-
tant of these papers, “General Theory of Measure and 
Probability Theory”—which aimed to develop a rigorous, 
axiomatic foundation for probability—into an influential 
monograph Grundbegriffe der Wahrscheinlichkeitsrechnung 
(1933; Foundations of the Theory of Probability, 1950). In 1929, 
having completed his doctorate, Kolmogorov was elected 
a member of the Institute of Mathematics and Mechanics 
at Moscow State University, with which he remained asso-
ciated for the rest of his life. In 1931, following a radical 
restructuring of the Moscow mathematical community, he 
was elected a professor. Two years later he was appointed 
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director of the Mathematical Research Institute at the 
university, a position he held until 1939 and again from 1951 
to 1953. In 1938 he was chosen to head the new department 
of probability and statistics at the Steklov Mathematical 
Institute of the U.S.S.R. Academy of Sciences in Moscow 
(now the Russian Academy of Sciences), a position that he 
held until 1958. He was elected to the Academy of Sciences 
in 1939, and between 1946 and 1949 he was also the head 
of the Turbulence Laboratory of the U.S.S.R. Academy of 
Sciences Institute of Theoretical Geophysics in Moscow.

Of the many areas of pure and applied mathematical 
research to which Kolmogorov contributed, probability 
theory is unquestionably the most important, in terms 
of both the depth and breadth of his contributions. In 
addition to his work on the foundations of probability, 
he contributed profound papers on stochastic processes, 
especially Markov processes. In Markov processes only 
the present state has any bearing upon the probabil-
ity of future states. States are therefore said to retain no 
“memory” of past events. Kolmogorov invented a pair of 
functions to characterize the transition probabilities for 
a Markov process and showed that they amount to what 
he called an “instantaneous mean” and an “instantaneous 
variance.” Using these functions, he was able to write a set 
of partial differential equations to determine the prob-
abilities of transition from one state to another. These 
equations provided an entirely new approach to the appli-
cation of probability theory in physics, chemistry, civil 
engineering, and biology. To note just two examples, in 
1937 Kolmogorov published a paper on the use of statisti-
cal theory to study the process of crystallization, and the 
following year he published a paper on mathematical biol-
ogy using a branching stochastic process to describe the 
asymptotic probability of extinction of a species over a 
large number of generations.
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Kolmogorov’s interest in problems of turbulence 
in fluids (turbulent flow) arose in the late 1930s, when 
he realized that the recently developed stochastic field 
theory would be relevant to these problems. In 1941 and 
1942 he contributed four papers to this area, in which his 
contributions were multiplied by a talented group of col-
laborators working under his direction.

During the 1930s, while continuing a prolific output 
of papers on particular mathematical topics, Kolmogorov 
began to write articles on methodological questions 
involving the theories of real analysis and probability. He 
also began to write expository articles for encyclopedias 
and journals aimed at a popular audience. After the end 
of World War II, established as one of the leading Soviet 
mathematicians, he began writing articles of historical 
and philosophical content. During the 1950s he contrib-
uted more than 80 articles to the second edition of the 
Great Soviet Encyclopedia.

In the mid-1950s Kolmogorov began to work on 
problems of information theory. He was inspired, in part, 
by the earlier nonrigorous work of the American engineer 
Claude Shannon. Working with Israil Gelfand and Akiva 
Yaglom, he was able to give a mathematical definition of 
the notion of quantity of information. In the 1960s he 
began writing articles on automata theory and theory of 
algorithms. The breadth of his culture and interests is 
shown by articles that he wrote at this time on the metrical 
structure of some of the masterpieces of Russian poetry.

The late 1960s marked Kolmogorov’s entrance into 
the theory of pedagogy, in which he was enormously influ-
ential through his textbooks and his service as a member 
of the U.S.S.R. Academy of Pedagogical Sciences. He 
cowrote and reviewed school textbooks and actively par-
ticipated in reforming the mathematics curriculum in 
Soviet schools. Though suffering from Parkinson’s disease 
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and nearly blind during the last few years of his life, he 
continued to take an active interest in the mathematical 
world until he died.

Henri-Léon Lebesgue
(b. June 28, 1875, Beauvais, France—d. July 26, 1941, Paris),

Henri-Léon Lebesgue was a French mathematician whose 
generalization of the Riemann integral revolutionized the 
field of integration.

Lebesgue was maître de conférences (lecture master) at 
the University of Rennes from 1902 until 1906, when he 
went to Poitiers, first as chargé de cours (assistant lecturer) 
of the faculty of sciences and later as professor. In 1910 
he went to the Sorbonne in Paris as maître de conférences 
in mathematical analysis, and in 1921 he became a profes-
sor at the Collège de France. In 1917 he was awarded the 
Prix Saintour, and in 1922 he was elected to the French 
Academy of Sciences. He was made an honorary member 
of the London Mathematical Society in 1924 and a foreign 
member of the Royal Society of London in 1930.

One of the greatest mathematicians of his day, Lebesgue 
made an important contribution to topology with his cov-
ering theorem (which helps define the dimension of a set). 
He also worked on Fourier series and potential theory, but 
his main work was on integration theory.

Toward the close of the 19th century, mathematical 
analysis was limited effectively to continuous functions, 
and artificial restrictions were necessary to cope with dis-
continuities that cropped up with greater frequency as 
more exotic functions were encountered. The Riemann 
method of integration was applicable only to continu-
ous and a few discontinuous functions. Influenced 
by the work of Émile Borel, Camille Jordan, and oth-
ers, Lebesgue formulated a new theory of measure and 
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framed a new definition of the definite integral, which he 
presented in his doctoral thesis at the Sorbonne in 1902. 
The Lebesgue integral is one of the great achievements 
of modern real analysis, and Lebesgue integration was 
instrumental in greatly expanding the scope of Fourier 
analysis.

In addition to about 50 papers, Lebesgue wrote two 
major books, Leçons sur l’intégration et la recherche des fonc-
tions primitives (1904; “Lessons on Integration and Analysis 
of Primitive Functions”) and Leçons sur les séries trigonomé-
triques (1906; “Lessons on the Trigonometric Series”).

Henri Poincaré
(b. April 29, 1854, Nancy, France—d. July 17, 1912, Paris)

French mathematician Jules Henri Poincaré was one of 
the greatest mathematicians and mathematical physicists 
at the end of the 19th century. He made a series of pro-
found innovations in geometry, the theory of differential 
equations, electromagnetism, topology, and the philoso-
phy of mathematics.

Poincaré grew up in Nancy and studied mathemat-
ics from 1873 to 1875 at the École Polytechnique in Paris. 

He continued his studies 
at the Mining School in 
Caen before receiving his 
doctorate from the École 
Polytechnique in 1879. 
While a student, he discov-
ered new types of complex 
functions that solved a 
wide variety of differential 
equations. This major work 
involved one of the first 
“mainstream” applications Henri Poincaré, 1909. H. Roger-Viollet
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of non-Euclidean geometry, a subject discovered by 
the Hungarian János Bolyai and the Russian Nikolay 
Lobachevsky about 1830 but not generally accepted by math-
ematicians until the 1860s and ’70s. Poincaré published a 
long series of papers on this work in 1880–84 that effectively 
made his name internationally. The prominent German 
mathematician Felix Klein, only five years his senior, was 
already working in the area, and it was widely agreed that 
Poincaré came out the better from the comparison.

In the 1880s Poincaré also began work on curves 
defined by a particular type of differential equation, in 
which he was the first to consider the global nature of the 
solution curves and their possible singular points (points 
where the differential equation is not properly defined). 
He investigated such questions as: Do the solutions spi-
ral into or away from a point? Do they, like the hyperbola, 
at first approach a point and then swing past and recede 
from it? Do some solutions form closed loops? If so, do 
nearby curves spiral toward or away from these closed 
loops? He showed that the number and types of singular 
points are determined purely by the topological nature of 
the surface. In particular, it is only on the torus that the 
differential equations he was considering have no singu-
lar points.

Poincaré intended this preliminary work to lead to the 
study of the more complicated differential equations that 
describe the motion of the solar system. In 1885 an added 
inducement to take the next step presented itself when 
King Oscar II of Sweden offered a prize for anyone who 
could establish the stability of the solar system. This would 
require showing that equations of motion for the planets 
could be solved and the orbits of the planets shown to be 
curves that stay in a bounded region of space for all time. 
Some of the greatest mathematicians since Isaac Newton 
had attempted to solve this problem, and Poincaré soon 
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realized that he could not make any headway unless he con-
centrated on a simpler, special case, in which two massive 
bodies orbit one another in circles around their common 
centre of gravity while a minute third body orbits them 
both. The third body is taken to be so small that it does not 
affect the orbits of the larger ones. Poincaré could estab-
lish that the orbit is stable, in the sense that the small body 
returns infinitely often arbitrarily close to any position it 
has occupied. This does not mean, however, that it does not 
also move very far away at times, which would have disas-
trous consequences for life on Earth. For this and other 
achievements in his essay, Poincaré was awarded the prize 
in 1889. But, on writing the essay for publication, Poincaré 
discovered that another result in it was wrong, and in put-
ting that right he discovered that the motion could be 
chaotic. He had hoped to show that if the small body could 
be started off in such a way that it traveled in a closed orbit, 
then starting it off in almost the same way would result 
in an orbit that at least stayed close to the original orbit. 
Instead, he discovered that even small changes in the ini-
tial conditions could produce large, unpredictable changes 
in the resulting orbit. (This phenomenon is now known 
as pathological sensitivity to initial positions, and it is one 
of the characteristic signs of a chaotic system.) Poincaré 
summarized his new mathematical methods in astronomy 
in Les Méthodes nouvelles de la mécanique céleste, 3 vol. (1892, 
1893, 1899; “The New Methods of Celestial Mechanics”).

Poincaré was led by this work to contemplate math-
ematical spaces (now called manifolds) in which the 
position of a point is determined by several coordi-
nates. Very little was known about such manifolds, and, 
although the German mathematician Bernhard Riemann 
had hinted at them a generation or more earlier, few had 
taken the hint. Poincaré took up the task and looked for 
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ways in which such manifolds could be distinguished, thus 
opening up the whole subject of topology, then known 
as analysis situs. Riemann had shown that in two dimen-
sions surfaces can be distinguished by their genus (the 
number of holes in the surface), and Enrico Betti in Italy 
and Walther von Dyck in Germany had extended this 
work to three dimensions, but much remained to be done. 
Poincaré singled out the idea of considering closed curves 
in the manifold that cannot be deformed into one another. 
For example, any curve on the surface of a sphere can be 
continuously shrunk to a point, but there are curves on 
a torus (curves wrapped around a hole, for instance) that 
cannot. Poincaré asked if a three-dimensional manifold 
in which every curve can be shrunk to a point is topo-
logically equivalent to a three-dimensional sphere. This 
problem (now known as the Poincaré conjecture) became 
one of the most important unsolved problems in alge-
braic topology. Ironically, the conjecture was first proved 
for dimensions greater than three: in dimensions five and 
above by Stephen Smale in the 1960s and in dimension 
four as a consequence of work by Simon Donaldson and 
Michael Freedman in the 1980s. Finally, Grigori Perelman 
proved the conjecture for three dimensions in 2006. All 
of these achievements were marked with the award of a 
Fields Medal. Poincaré’s Analysis Situs (1895) was an early 
systematic treatment of topology, and he is often called 
the father of algebraic topology.

Poincaré felt that our understanding of the natural 
numbers was innate and therefore fundamental, so he was 
critical of attempts to reduce all of mathematics to sym-
bolic logic (as advocated by Bertrand Russell in England 
and Louis Couturat in France) and of attempts to reduce 
mathematics to axiomatic set theory. In these beliefs he 
turned out to be right, as shown by Kurt Gödel in 1931.
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Bernhard Riemann
(b. Sept. 17, 1826, Breselenz, Hanover [Germany]—d. July 20, 1866, 
Selasca, Italy)

German mathematician Georg Friedrich Bernhard 
Riemann’s profound and novel approaches to the study 
of geometry laid the mathematical foundation for Albert 
Einstein’s theory of relativity. He also made important 
contributions to the theory of functions, complex analy-
sis, and number theory.

Riemann was born into a poor Lutheran pastor’s fam-
ily, and all his life he was a shy and introverted person. He 
was fortunate to have a schoolteacher who recognized his 
rare mathematical ability and lent him advanced books to 
read, including Adrien-Marie Legendre’s Number Theory 
(1830). Riemann read the book in a week and then claimed 
to know it by heart. He went on to study mathematics at 
the University of Göttingen in 1846–47 and 1849–51 and 
at the University of Berlin (now the Humboldt University 
of Berlin) in 1847–49. He then gradually worked his way up 
the academic profession, through a succession of poorly 
paid jobs, until he became a full professor in 1859 and 
gained, for the first time in his life, a measure of financial 
security. However, in 1862, shortly after his marriage to 
Elise Koch, Riemann fell seriously ill with tuberculosis. 
Repeated trips to Italy failed to stem the progress of the 
disease, and he died in Italy in 1866.

Riemann’s visits to Italy were important for the 
growth of modern mathematics there. Enrico Betti in par-
ticular took up the study of Riemannian ideas. Ill health 
prevented Riemann from publishing all his work, and 
some of his best was published only posthumously—e.g., 
the first edition of Riemann’s Gesammelte mathematische 
Werke (1876; “Collected Mathematical Works”), edited by 
Richard Dedekind and Heinrich Weber.
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Riemann’s influence was initially less than it might 
have been. Göttingen was a small university, Riemann 
was a poor lecturer, and, to make matters worse, several 
of his best students died young. His few papers are also 
difficult to read, but his work won the respect of some of 
the best mathematicians in Germany, including his friend 
Dedekind and his rival in Berlin, Karl Weierstrass. Other 
mathematicians were gradually drawn to his papers by 
their intellectual depth, and in this way he set an agenda 
for conceptual thinking over ingenious calculation. This 
emphasis was taken up by Felix Klein and David Hilbert, 
who later established Göttingen as a world centre for 
mathematics research, with Carl Gauss and Riemann as 
its iconic figures.

In his doctoral thesis (1851), Riemann introduced a way 
of generalizing the study of polynomial equations in two 
real variables to the case of two complex variables. In the 
real case a polynomial equation defines a curve in the plane. 
Because a complex variable z can be thought of as a pair of 
real variables x + iy (where i = √-1), an equation involving 
two complex variables defines a real surface—now known 
as a Riemann surface—spread out over the plane. In 1851 
and in his more widely available paper of 1857, Riemann 
showed how such surfaces can be classified by a number, 
later called the genus, that is determined by the maximal 
number of closed curves that can be drawn on the surface 
without splitting it into separate pieces. This is one of the 
first significant uses of topology in mathematics.

In 1854 Riemann presented his ideas on geometry for 
the official postdoctoral qualification at Göttingen; the 
elderly Gauss was an examiner and was greatly impressed. 
Riemann argued that the fundamental ingredients for 
geometry are a space of points (called today a manifold) 
and a way of measuring distances along curves in the 
space. He argued that the space need not be ordinary 
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Euclidean space and that it could have any dimension (he 
even contemplated spaces of infinite dimension). Nor is 
it necessary that the surface be drawn in its entirety in 
three-dimensional space. A few years later this inspired the 
Italian mathematician Eugenio Beltrami to produce just 
such a description of non-Euclidean geometry, the first 
physically plausible alternative to Euclidean geometry. 
Riemann’s ideas went further and turned out to provide 
the mathematical foundation for the four-dimensional 
geometry of space-time in Einstein’s theory of general 
relativity. It seems that Riemann was led to these ideas 
partly by his dislike of the concept of action at a distance 
in contemporary physics and by his wish to endow space 
with the ability to transmit forces such as electromagne-
tism and gravitation.

In 1859 Riemann also introduced complex function 
theory into number theory. He took the zeta function, 
which had been studied by many previous mathemati-
cians because of its connection to the prime numbers, 
and showed how to think of it as a complex function. The 
Riemann zeta function then takes the value zero at the 
negative integers (the so-called trivial zeros) and also at 
points on a certain line (called the critical line). Standard 
methods in complex function theory, due to Augustin-
Louis Cauchy in France and Riemann himself, would give 
much information about the distribution of prime num-
bers if it could be shown that all the nontrivial zeros lie on 
this line—a conjecture known as the Riemann hypothesis. 
All nontrivial zeros discovered thus far have been on the 
critical line. In fact, infinitely many zeros have been dis-
covered to lie on this line. Such partial results have been 
enough to show that the number of prime numbers less 
than any number x is well approximated by x/ln x. The 
Riemann hypothesis was one of the 23 problems that 
Hilbert challenged mathematicians to solve in his famous 
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1900 address, “The Problems of Mathematics.” Over the 
years a growing body of mathematical ideas have built 
upon the assumption that the Riemann hypothesis is 
true. Its proof, or disproof, would have far-reaching con-
sequences and confer instant renown.

Riemann took a novel view of what it means for math-
ematical objects to exist. He sought general existence 
proofs, rather than “constructive proofs” that actually 
produce the objects. He believed that this approach led 
to conceptual clarity and prevented the mathematician 
from getting lost in the details, but even some experts dis-
agreed with such nonconstructive proofs. Riemann also 
studied how functions compare with their trigonometric 
or Fourier series representation, which led him to refine 
ideas about discontinuous functions. He showed how 
complex function theory illuminates the study of minimal 
surfaces (surfaces of least area that span a given bound-
ary). He was one of the first to study differential equations 
involving complex variables, and his work led to a pro-
found connection with group theory. He introduced new 
general methods in the study of partial differential equa-
tions and applied them to produce the first major study of 
shock waves.

Stephen Smale
(b. July 15, 1930, Flint, Mich., U.S.)

American mathematician Stephen Smale was awarded the 
Fields Medal in 1966 for his work on topology in higher 
dimensions.

Smale grew up in a rural area near Flint. From 1948 
to 1956 he attended the University of Michigan, obtain-
ing B.S., M.S., and Ph.D. degrees in mathematics. As an 
instructor at the University of Chicago from 1956 to 1958, 
Smale achieved notoriety by proving that there exists an 
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eversion of the sphere (meaning, in a precise theoretical 
sense, that it is possible to turn a sphere inside out).

In 1960 Smale obtained his two most famous math-
ematical results. First he constructed a function, now 
known as the horseshoe, that serves as a paradigm for 
chaos. Next Smale proved the generalized Poincaré con-
jecture for all dimensions greater than or equal to five. 
(The classical conjecture states that a simply connected 
closed three-dimensional manifold is a three-dimensional 
sphere, a set of points in four-dimensional space at the 
same distance from the origin.) The two-dimensional 
version of this theorem (the two-dimensional sphere is 
the surface of a common sphere in three-dimensional 
space) was established in the 19th century, and the 
three-dimensional version was established at the start 
of the 21st century. Smale’s work was remarkable in that 
he bypassed dimensions three and four to resolve the 
problem for all higher dimensions. In 1961 he followed 
up with the h-cobordism theorem, which became the 
fundamental tool for classifying different manifolds in 
higher-dimensional topology.

In 1965 Smale took a six-month hiatus from math-
ematical research to join radical activist Jerry Rubin in 
establishing the first campaign of nonviolent civil dis-
obedience directed at ending U.S. involvement in the 
Vietnam War. Smale’s mathematical and political lives col-
lided the following year at the International Congress of 
Mathematicians in Moscow, where he received the Fields 
Medal. There Smale held a controversial press conference 
in which he criticized the actions of both the U.S. and 
Soviet governments.

Smale’s mathematical work is notable for both its 
breadth and depth, reaching the areas of topology, dynami-
cal systems, economics, nonlinear analysis, mechanics, and 
computation. In 1994 Smale retired from the University 
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of California at Berkeley and then joined the faculty of the 
City University of Hong Kong.

Smale’s publications include Differential Equations, 
Dynamical Systems, and Linear Algebra (1974; with Morris 
W. Hirsch), The Mathematics of Time: Essays on Dynamical 
Systems, Economic Processes, and Related Topics (1980), and 
The Collected Papers of Stephen Smale (2000).

Karl Weierstrass
(b. Oct. 31, 1815, Ostenfelde, Bavaria [Germany]—d. Feb. 19,  
1897, Berlin)

German mathematician Theodor Wilhelm Karl Weierstrass 
was one of the founders of the modern theory of functions.

His domineering father sent him to the University of 
Bonn at age 19 to study law and finance in preparation for a 
position in the Prussian civil service. Weierstrass pursued 
four years of intensive fencing and drinking and returned 
home with no degree. He then entered the Academy of 
Münster in 1839 to prepare for a career as a secondary 
school teacher. At Münster he came under the influence 
of Cristof Gudermann, professor of mathematics, who 
was particularly interested in the theory of elliptic func-
tions. Gudermann cultivated Weierstrass’s interest in the 
theory of functions with emphasis on the expansion of 
functions by power series.

In 1841 Weierstrass obtained his teacher’s certificate 
and began a 14-year career as a teacher of mathematics at 
the Pro-Gymnasium in Deutsche Krone (1842–48) and at 
the Collegium Hoseanum in Braunsberg (1848–56). During 
this time of isolation from other mathematicians—his 
salary was so small that he could not even correspond with 
his fellows—Weierstrass worked unceasingly on analy-
sis. He conceived and in large part carried out a program 
known as the arithmetization of analysis, under which 
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analysis is based on a rigorous development of the real 
number system. His preoccupation with rigour in math-
ematics is illustrated by his later development (1861) of a 
function that, though continuous, had no derivatives at 
any point. This idiosyncrasy of an apparently differen-
tiable function caused consternation among the school of 
analysts who depended heavily upon intuition.

Weierstrass’s work on the theory of functions was 
guided by his desire to complete the work begun by Niels 
Abel of Norway and Karl Jacobi of Germany, primarily 
Abel’s theorem that the number of independent integrals 
of algebraic functions is finite and Jacobi’s discovery of 
multiple periodic functions of many variables.

In 1854 Weierstrass burst from obscurity when his 
unexpected memoir on Abelian functions was published 
in Crelle’s Journal. The University of Königsberg conferred 
upon him an honorary doctor’s degree, and in 1856 a posi-
tion was found for him at the Royal Polytechnic School 
in Berlin. Weierstrass contributed few papers to scholarly 
journals. His work was embodied in his lectures, which 
were collected in Gesammelte Abhandlungen, 8 vol. (1894–
1927; “Collected Works”).

Known as the father of modern analysis, Weierstrass 
devised tests for the convergence of series and contrib-
uted to the theory of periodic functions, functions of real 
variables, elliptic functions, Abelian functions, converging 
infinite products, and the calculus of variations. He also 
advanced the theory of bilinear and quadratic forms. His 
greatest influence was felt through his students (among 
them Sofya Kovalevskaya), many of whom became cre-
ative mathematicians.
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CHAPTER 7
ConCePts In AnALYsIs 

AnD CALCULUs

   algeBraic versus 
transcendental oBjects 

 One important difference between the differential calcu-
lus of Pierre de Fermat and René Descartes and the full 
calculus of Isaac Newton and Gottfried Wilhelm Leibniz 
is the difference between algebraic and transcendental 
objects. The rules of differential calculus are complete in 
the world of algebraic curves—those defi ned by equations 
of the form  p ( x ,  y ) = 0, where  p  is a polynomial. (For example, 
the most basic parabola is given by the polynomial equa-
tion  y  =  x   2 .) In his  Geometry  of 1637, Descartes called these 
curves “geometric,” because they “admit of precise and 
exact measurement.” He contrasted them with “mechani-
cal” curves obtained by processes such as rolling one curve 
along another or unwinding a thread from a curve. He 
believed that the properties of these curves could never be 
exactly known. In particular, he believed that the lengths 
of curved lines “cannot be discovered by human minds.” 

 The distinction between geometric and mechanical 
is actually not clear-cut: the cardioid, obtained by rolling 
a circle on a circle of the same size, is algebraic, but the 
cycloid, obtained by rolling a circle along a line, is not. 
However, it is generally true that mechanical processes 
produce curves that are nonalgebraic—or transcendental, 
as Leibniz called them. Where Descartes was really wrong 
was in thinking that transcendental curves could never 
be exactly known. It was precisely the integral calculus 
that enabled mathematicians to come to grips with the 
transcendental. 
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A good example is the catenary, the shape assumed by 
a hanging chain. The catenary looks like a parabola, and 
indeed Galileo conjectured that it actually was. However, 
in 1691 Johann Bernoulli, Christiaan Huygens, and Leibniz 
independently discovered that the catenary’s true equa-
tion was not y = x2 but y = (ex + e−x)⁄2 .

The above formula is given in modern notation. 
Admittedly, the exponential function ex had not been 
given a name or notation by the 17th century. However, 
its power series had been found by Newton, so it was in a 
reasonable sense exactly known.

Newton was also the first to give a method for rec-
ognizing the transcendance of curves. Realizing that an 
algebraic curve p(x, y) = 0, where p is a polynomial of total 
degree n, meets a straight line at most n points, Newton 
remarked in his Principia that any curve meeting a line 
in infinitely many points must be transcendental. For 
example, the cycloid is transcendental, and so is any spiral 
curve. In fact, the catenary is also transcendental, though 
this did not become clear until the periodicity of the expo-
nential function for complex arguments was discovered in 
the 18th century.

The distinction between algebraic and transcendental 
may also be applied to numbers. Numbers like √2 are called 
algebraic numbers because they satisfy polynomial equa-
tions with integer coefficients. (In this case, √2 satisfies 
the equation x2 = 2.) All other numbers are called tran-
scendental. As early as the 17th century, transcendental 
numbers were believed to exist, and π was the usual sus-
pect. Perhaps Descartes had π in mind when he despaired 
of finding the relation between straight and curved lines. 
A brilliant, though flawed, attempt to prove that π is tran-
scendental was made by James Gregory in 1667. However, 
the problem was too difficult for 17th-century methods. 
The transcendance of π was not successfully proved until 
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1882, when Carl Lindemann adapted a proof of the tran-
scendance of e found by Charles Hermite in 1873.

argand diagram

The Argand diagram is a graphic portrayal of complex 
numbers, those of the form x + yi, in which x and y are real 
numbers and i is the square root of −1. It was devised by 
the Swiss mathematician Jean Robert Argand about 1806. 
A similar representation had been proposed by the Danish 
surveyor Caspar Wessel in 1797, but this was not generally 
known until later. One axis represents the pure imaginary 
numbers (those consisting of the yi portion only). The sec-
ond axis represents the real numbers (x-values only). This 
permits the complex numbers to be plotted as points in 
the plane defined by the two axes.

Bessel function

The Bessel functions (also called the Cylinder functions), 
are a set of mathematical functions systematically derived 
around 1817 by the German astronomer Friedrich Wilhelm 
Bessel during an investigation of solutions of one of 
Kepler’s equations of planetary motion. Particular func-
tions of the set had been formulated earlier by the Swiss 
mathematicians Daniel Bernoulli, who studied the oscilla-
tions of a chain suspended by one end, and Leonhard Euler, 
who analyzed the vibrations of a stretched membrane.

After Bessel published his findings, other scien-
tists found that the functions appeared in mathematical 
descriptions of many physical phenomena, including the 
flow of heat or electricity in a solid cylinder, the propaga-
tion of electromagnetic waves along wires, the diffraction 
of light, the motions of fluids, and the deformations of 
elastic bodies. One of these investigators, Lord Rayleigh, 
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also placed the Bessel functions in a larger context by 
showing that they arise in the solution of Laplace’s equa-
tion when the latter is formulated in cylindrical (rather 
than Cartesian or spherical) coordinates.

Specifically, a Bessel function is a solution of the dif-
ferential equation

which is called Bessel’s equation. For integral values of n, 
the Bessel functions are

The graph of J0(x) looks like that of a damped cosine 
curve, and that of J1(x) looks like that of a damped sine curve. 

Certain physical problems lead to differential equa-
tions analogous to Bessel’s equation. Their solutions take 
the form of combinations of Bessel functions and are 
called Bessel functions of the second or third kind.

Bessel functions. Encyclopædia Britannica, Inc.
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Boundary value

The boundary value is a condition accompanying a dif-
ferential equation in the solution of physical problems. 
In mathematical problems arising from physical situa-
tions, there are two considerations involved when finding 
a solution: (1) the solution and its derivatives must satisfy 
a differential equation, which describes how the quantity 
behaves within the region. And (2) the solution and its 
derivatives must satisfy other auxiliary conditions either 
describing the influence from outside the region (bound-
ary values) or giving information about the solution at a 
specified time (initial values), representing a compressed 
history of the system as it affects its future behaviour. A 
simple example of a boundary-value problem may be dem-
onstrated by the assumption that a function satisfies the 
equation f ′(x) = 2x for any x between 0 and 1 and that it 
is known that the function has the boundary value of 2 
when x = 1. The function f(x) = x2 satisfies the differential 
equation but not the boundary condition. The function 
f(x) = x2 + 1, on the other hand, satisfies both the differen-
tial equation and the boundary condition. The solutions 
of differential equations involve unspecified constants, or 
functions in the case of several variables, which are deter-
mined by the auxiliary conditions.

The relationship between physics and mathematics is 
important here, because it is not always possible for a solu-
tion of a differential equation to satisfy arbitrarily chosen 
conditions. But if the problem represents an actual physi-
cal situation, it is usually possible to prove that a solution 
exists, even if it cannot be explicitly found. For partial 
differential equations, there are three general classes of 
auxiliary conditions: (1) initial-value problems, as when the 
initial position and velocity of a traveling wave are known, 
(2) boundary-value problems, representing conditions on 
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the boundary that do not change from moment to moment, 
and (3) initial- and boundary-value problems, in which the 
initial conditions and the successive values on the bound-
ary of the region must be known to find a solution.

calculus of variations

The calculus of variations is the branch of mathematics 
concerned with the problem of finding a function for 
which the value of a certain integral is either the larg-
est or the smallest possible. Many problems of this kind 
are easy to state, but their solutions commonly involve 
difficult procedures of the differential calculus and dif-
ferential equations.

The isoperimetric problem—that of finding, among 
all plane figures of a given perimeter, the one enclosing 
the greatest area—was known to Greek mathematicians 
of the 2nd century BCE. The term isoperimetric problem has 
been extended in the modern era to mean any problem 
in the calculus of variations in which a function is to be 
made a maximum or a minimum, subject to an auxiliary 
condition called the isoperimetric condition, although it 
may have nothing to do with perimeters. For example, 
the problem of finding a solid of given volume that has 
the least surface area is an isoperimetric problem, the 
given volume being the auxiliary, or isoperimetric, con-
dition. An example of an isoperimetric problem from 
the field of aerodynamics is that of finding the shape of a 
solid having a given volume that will encounter minimum 
resistance as it travels through the atmosphere at a con-
stant velocity.

Modern interest in the calculus of variations began 
in 1696 when Johann Bernoulli of Switzerland proposed 
a brachistochrone (“least-time”) problem as a challenge 
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to his peers. Suppose that a thin wire in the shape of a 
curve joins two points at different elevations. Further sup-
pose that a bead is placed on the wire at the higher point 
and allowed to slide under gravity, starting from rest and 
assuming no friction. The question is: What should be the 
shape of the curve so that the bead will reach the lower 
point in the least time?

The problem was solved independently in 1696 
by Johann Bernoulli, his brother Jakob Bernoulli, the 
German Gottfried Wilhelm Leibniz, the Frenchman 
Guillaume-François-Antoine, marquis de L’Hôpital, and 
the Englishman Isaac Newton. Their basic idea was to 
set up an integral for the total time of fall in terms of the 
unknown curve and then vary the curve so that a minimum 
time is obtained. This technique, typical of the calculus of 
variations, led to a differential equation whose solution is 
a curve called the cycloid.

It is possible to formulate various scientific laws in 
terms of general principles involving the calculus of vari-
ations. These are called variational principles and are 
usually expressed by stating that some given integral is 
a maximum or a minimum. One example is the French 
mathematician Pierre-Louis Moreau de Maupertuis’s 
principle of least action (c. 1744), which sought to explain 
all processes as driven by a demand that some property 
be economized or minimized. In particular, minimizing 
an integral, called an action integral, led several math-
ematicians (most notably the Italian-French Joseph-Louis 
Lagrange in the 18th century and the Irish William Rowan 
Hamilton in the 19th century) to a teleological explana-
tion of Newton’s laws of motion. Nevertheless, a general 
appreciation of the principle of least resistance came only 
with its use in the 1940s as a foundation for quantum 
electrodynamics.
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Applications of variational principles also occur in elas-
ticity, electromagnetic theory, aerodynamics, the theory 
of vibrations, and other areas in engineering and science.

chaos theory

The study of apparently random or unpredictable behav-
iour in systems governed by deterministic laws is called 
chaos theory. A more accurate term, “deterministic chaos,” 
suggests a paradox because it connects two notions that 
are familiar and commonly regarded as incompatible. 
The first is that of randomness or unpredictability, as in  
the trajectory of a molecule in a gas or in the voting 
choice of a particular individual from out of a population. 
In conventional analyses, randomness was considered 
more apparent than real, arising from ignorance of the 
many causes at work. In other words, it was commonly 
believed that the world is unpredictable because it is 
complicated. The second notion is that of deterministic 
motion, as that of a pendulum or a planet, which has been 
accepted since the time of Isaac Newton as exemplifying 
the success of science in rendering predictable that which 
is initially complex.

In recent decades, however, a diversity of systems 
have been studied that behave unpredictably despite their 
seeming simplicity and the fact that the forces involved 
are governed by well-understood physical laws. The com-
mon element in these systems is a very high degree of 
sensitivity to initial conditions and to the way in which 
they are set in motion. For example, the meteorologist 
Edward Lorenz discovered that a simple model of heat 
convection possesses intrinsic unpredictability, a circum-
stance he called the “butterfly effect,” suggesting that the 
mere flapping of a butterfly’s wing can change the weather. 



215

7 Concepts in Analysis and Calculus 7

A more homely example is the pinball machine: the ball’s 
movements are precisely governed by laws of gravitational 
rolling and elastic collisions—both fully understood—yet 
the final outcome is unpredictable.

In classical mechanics the behaviour of a dynamical 
system can be described geometrically as motion on an 
“attractor.” The mathematics of classical mechanics effec-
tively recognized three types of attractor: single points 
(characterizing steady states), closed loops (periodic 
cycles), and tori (combinations of several cycles). In the 
1960s a new class of “strange attractors” was discovered by 
the American mathematician Stephen Smale. On strange 
attractors the dynamics is chaotic. Later it was recognized 
that strange attractors have detailed structure on all scales 
of magnification. A direct result of this recognition was 

Romanesco broccoli grows naturally in a fractal pattern. Each bud is made up 
of a series of smaller buds, which are all arranged in a logarithmic spiral. © 
www.istockphoto.com
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the development of the concept of the fractal (a class of 
complex geometric shapes that commonly exhibit the 
property of self-similarity), which led in turn to remark-
able developments in computer graphics.

Applications of the mathematics of chaos are highly 
diverse, including the study of turbulent flow of fluids, 
irregularities in heartbeat, population dynamics, chemical 
reactions, plasma physics, and the motion of groups and 
clusters of stars.

continuity

Continuity is the rigorous formulation of the intuitive 
concept of a function that varies with no abrupt breaks or 
jumps. A function is a relationship in which every value of 
an independent variable—say x—is associated with a value 
of a dependent variable—say y. Continuity of a function 
is sometimes expressed by saying that if the x-values are 
close together, then the y-values of the function will also 
be close. But if the question “How close?” is asked, dif-
ficulties arise.

For close x-values, the distance between the y-values 
can be large even if the function has no sudden jumps. For 
example, if y = 1,000x, then two values of x that differ by 
0.01 will have corresponding y-values differing by 10. On 
the other hand, for any point x, points can be selected 
close enough to it so that the y-values of this function will 
be as close as desired, simply by choosing the x-values to 
be closer than 0.001 times the desired closeness of the 
y-values. Thus, continuity is defined precisely by saying 
that a function f(x) is continuous at a point x0 of its domain 
if and only if, for any degree of closeness ε desired for the 
y-values, there is a distance δ for the x-values (in the above 
example equal to 0.001ε) such that for any x of the domain 
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within the distance δ from x0, f(x) will be within the dis-
tance ε from f(x0). In contrast, the function that equals 0 
for x less than or equal to 1 and that equals 2 for x larger 
than 1 is not continuous at the point x = 1, because the dif-
ference between the value of the function at 1 and at any 
point ever so slightly greater than 1 is never less than 2.

A function is said to be continuous if and only if it is 
continuous at every point of its domain. A function is said 
to be continuous on an interval, or subset of its domain, 
if and only if it is continuous at each point of the interval. 
The sum, difference, and product of continuous functions 
with the same domain are also continuous, as is the quo-
tient, except at points at which the denominator is zero. 
Continuity can also be defined in terms of limits by saying 
that f(x) is continuous at x0 of its domain if and only if, for 
values of x in its domain,

A more abstract definition of continuity can be given 
in terms of sets, as is done in topology, by saying that for 
any open set of y-values, the corresponding set of x-values 
is also open. (A set is “open” if each of its elements has a 
“neighbourhood,” or region enclosing it, that lies entirely 
within the set.) Continuous functions are the most basic 
and widely studied class of functions in mathematical 
analysis, as well as the most commonly occurring ones in 
physical situations.

convergence

Convergence is the property (exhibited by certain infinite 
series and functions) of approaching a limit more and more 
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closely as an argument (variable) of the function increases or 
decreases or as the number of terms of the series increases.

For example, the function y = 1/x converges to zero as x 
increases. Although no finite value of x will cause the value 
of y to actually become zero, the limiting value of y is zero 
because y can be made as small as desired by choosing x 
large enough. The line y = 0 (the x-axis) is called an asymp-
tote of the function.

Similarly, for any value of x between (but not includ-
ing) −1 and +1, the series 1 + x + x2 +· · ·+ xn converges toward 
the limit 1/(1 − x) as n, the number of terms, increases. The 
interval −1 < x < 1 is called the range of convergence of the 
series. For values of x outside this range, the series is said 
to diverge.

curvature

Curvature is the rate of change of direction of a curve with 
respect to distance along the curve. At every point on a 
circle, the curvature is the reciprocal of the radius. For 
other curves (and straight lines, which can be regarded as 
circles of infinite radius), the curvature is the reciprocal of 
the radius of the circle that most closely conforms to the 
curve at the given point.

The curvature at each point of a line is defined to be 1/r, where r is the radius 
of the osculating, or “kissing,” circle that best approximates the line at the given 
point. Encyclopædia Britannica, Inc.
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If the curve is a section of a surface (that is, the curve 
formed by the intersection of a plane with the surface), 
then the curvature of the surface at any given point can 
be determined by suitable sectioning planes. The most 
useful planes are two that both contain the normal (the 
line perpendicular to the tangent plane) to the surface at 
the point. One of these planes produces the section with 
the greatest curvature among all such sections. The other 
produces that with the least. These two planes define  
the two so-called principal directions on the surface at the 
point. These directions lie at right angles to one another. 
The curvatures in the principal directions are called the 
principal curvatures of the surface. The mean curvature of 
the surface at the point is either the sum of the principal 
curvatures or half that sum (usage varies among authori-
ties). The total (or Gaussian) curvature is the product of 
the principal curvatures.

The normal, or perpendicular, at each point of a surface defines the correspond-
ing tangent plane, and vice versa. Encyclopædia Britannica, Inc.
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derivative

The rate of change of a function with respect to a vari-
able is called the derivative. Derivatives are fundamental 
to the solution of problems in calculus and differential 
equations. In general, scientists observe changing sys-
tems (dynamical systems) to obtain the rate of change 
of some variable of interest, incorporate this informa-
tion into some differential equation, and use integration 
techniques to obtain a function that can be used to pre-
dict the behaviour of the original system under diverse 
conditions.

Geometrically, the derivative of a function can be 
interpreted as the slope of the graph of the function or, 
more precisely, as the slope of the tangent line at a point. 
Its calculation, in fact, derives from the slope formula for 
a straight line, except that a limiting process must be used 
for curves. The slope is often expressed as the “rise” over 

the “run,” or, in Cartesian 
terms, the ratio of the 
change in y to the change 
in x. For a straight line, 
the formula for the slope 
is (y1 − y0)/(x1 − x0). Another 
way to express this for-
mula is [f(x0 + h) − f(x0)]/h, 
if h is used for x1 − x0 and 
f(x) for y. This change 
in notation is useful for 
advancing from the idea 
of the slope of a line to 
the more general con-
cept of the derivative of a 
function.

Two points, such as (x0, y0 ) and (x1, y1 ), 
determine the slope of a straight line.



221

7 Concepts in Analysis and Calculus 7

For a curve, this ratio depends on where the points 
are chosen, reflecting the fact that curves do not have 
a constant slope. To find the slope at a desired point, 
the choice of the second point needed to calculate the 
ratio represents a difficulty because, in general, the ratio 
will represent only an average slope between the points, 
rather than the actual slope at either point. To get around 
this difficulty, a limiting process is used whereby the sec-
ond point is not fixed but specified by a variable, as h in 
the ratio for the straight line above. Finding the limit in 
this case is a process of finding a number that the ratio 
approaches as h approaches 0, so that the limiting ratio will 
represent the actual slope at the given point. Some manip-
ulations must be done on the quotient [f(x0 + h) − f(x0)]/h 
so that it can be rewritten in a form in which the limit 
as h approaches 0 can 
be seen more directly. 
Consider, for example, 
the parabola given by x2. 
In finding the derivative 
of x2 when x is 2, the quo-
tient is [(2 + h)2 − 22]/h. 
By expanding the 
numerator, the quotient  
becomes (4 + 4h + h2 − 4)/h 
= (4h + h2)/h. Both numer-
ator and denominator 
still approach 0, but if h 
is not actually zero but 
only very close to it, then 
h can be divided out, giv-
ing 4 + h, which is easily 
seen to approach 4 as h 
approaches 0.

The slope, or instantaneous rate of change, for 
a curve at a particular point (x0, f(x0)) can be 
determined by observing the limit of the aver-
age rate of change as a second point (x0 + h,  
f(x0 + h)) approaches the original point.
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To sum up, the derivative of f(x) at x0, written as f′(x0), 
(df/dx)(x0), or Df(x0), is defined as

if this limit exists.
Differentiation—i.e., calculating the derivative—

seldom requires the use of the basic definition but can 
instead be accomplished through a knowledge of the three 
basic derivatives, the use of four rules of operation, and a 
knowledge of how to manipulate functions.

difference equation

The mathematical equality involving the differences 
between successive values of a function of a discrete vari-
able is called a difference equation. A discrete variable is 
one that is defined or of interest only for values that differ 
by some finite amount, usually a constant and often 1. For 
example, the discrete variable x may have the values x0 = 
a, x1 = a + 1, x2 = a + 2, . . . , xn = a + n. The function y has the 
corresponding values y0, y1, y2, . . . , yn, from which the dif-
ferences can be found:

Any equation that relates the values of Δyi to each 
other or to xi is a difference equation. In general, such an 
equation takes the form
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Systematic methods have been developed for the 
solution of these equations and for those in which, for 
example, second-order differences are involved. A second-
order difference is defined as

differential

The differential is an expression based on the derivative 
of a function, useful for approximating certain values of 
the function. The derivative of a function at the point x0, 
written as f ′(x0), is defined as the limit as Δx approaches 
0 of the quotient Δy/Δx, in which Δy is f(x0 + Δx) − f(x0). 
Because the derivative is defined as the limit, the closer 
Δx is to 0, the closer will be the quotient to the deriva-
tive. Therefore, if Δx is small, then Δy ≈ f ′(x0)Δx (the wavy 
lines mean “is approximately equal to”). For example, to 
approximate f(17) for f(x) = √x, first note that its derivative 
f ′(x) is equal to (x−1⁄2)/2. Choosing a computationally conve-
nient value for x0, in this case the perfect square 16, results 
in a simple calculation of f ′(x0) as 1/8 and Δx as 1, giving 
an approximate value of 1/8 for Δy. Because f (16) is 4, it 
follows that f(17), or √17, is approximately 4.125, the actual 
value being 4.123 to three decimal places.

differential equation

A differential equation is a mathematical statement 
containing one or more derivatives—that is, terms rep-
resenting the rates of change of continuously varying 
quantities. Differential equations are very common in 
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science and engineering, as well as in many other fields of 
quantitative study, because what can be directly observed 
and measured for systems undergoing changes are their 
rates of change. The solution of a differential equa-
tion is, in general, an equation expressing the functional 
dependence of one variable upon one or more others. It 
ordinarily contains constant terms that are not present in 
the original differential equation. Another way of saying 
this is that the solution of a differential equation produces 
a function that can be used to predict the behaviour of the 
original system, at least within certain constraints.

Differential equations are classified into several broad 
categories, and these are in turn further divided into 
many subcategories. The most important categories are 
ordinary differential equations and partial differential 
equations. When the function involved in the equation 
depends on only a single variable, its derivatives are ordi-
nary derivatives and the differential equation is classed as 
an ordinary differential equation. On the other hand, if 
the function depends on several independent variables, so 
that its derivatives are partial derivatives, the differential 
equation is classed as a partial differential equation. The 
following are examples of ordinary differential equations:

In these, y stands for the function, and either t or x is 
the independent variable. The symbols k and m are used 
here to stand for specific constants.
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Whichever the type may be, a differential equation is 
said to be of the nth order if it involves a derivative of the 
nth order but no derivative of an order higher than this. 
The equation

is an example of a partial differential equation of the sec-
ond order. The theories of ordinary and partial differential 
equations are markedly different, and for this reason the 
two categories are treated separately.

Instead of a single differential equation, the object of 
study may be a simultaneous system of such equations. 
The formulation of the laws of dynamics frequently leads 
to such systems. In many cases, a single differential equa-
tion of the nth order is advantageously replaceable by a 
system of n simultaneous equations, each of which is of 
the first order, so that techniques from linear algebra can 
be applied.

An ordinary differential equation in which, for 
example, the function and the independent variable are 
denoted by y and x is in effect an implicit summary of 
the essential characteristics of y as a function of x. These 
characteristics would presumably be more accessible to 
analysis if an explicit formula for y could be produced. 
Such a formula, or at least an equation in x and y (involv-
ing no derivatives) that is deducible from the differential 
equation, is called a solution of the differential equation. 
The process of deducing a solution from the equation by 
the applications of algebra and calculus is called solving 
or integrating the equation. It should be noted, however, 
that the differential equations that can be explicitly solved 
form but a small minority. Thus, most functions must be 
studied by indirect methods. Even its existence must be 
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proved when there is no possibility of producing it for 
inspection. In practice, methods from numerical analy-
sis, involving computers, are employed to obtain useful 
approximate solutions.

differentiation

The process of finding the derivative, or rate of change, 
of a function is called differentiation. In contrast to the 
abstract nature of the theory behind it, the practical 
technique of differentiation can be carried out by purely 
algebraic manipulations, using three basic derivatives, 
four rules of operation, and a knowledge of how to manip-
ulate functions.

The three basic derivatives (D) are: (1) for algebraic 
functions, D(xn) = nxn − 1, in which n is any real number; (2) 
for trigonometric functions, D(sin x) = cos x; and (3) for 
exponential functions, D(ex) = ex.

For functions built up of combinations of these classes 
of functions, the theory provides the following basic rules 
for differentiating the sum, product, or quotient of any 
two functions f(x) and g(x) the derivatives of which are 
known (where a and b are constants): D(af + bg) = aDf + 
bDg (sums); D(fg) = fDg + gDf (products); and D(f/g) = (gDf − 
fDg)/g2 (quotients).

The other basic rule, called the chain rule, provides 
a way to differentiate a composite function. If f(x) and 
g(x) are two functions, the composite function f(g(x)) 
is calculated for a value of x by first evaluating g(x) and 
then evaluating the function f at this value of g(x). For 
instance, if f(x) = sin x and g(x) = x2, then f(g(x)) = sin x2, 
while g(f(x)) = (sin x)2. The chain rule states that the deriv-
ative of a composite function is given by a product, as 
D(f(g(x))) = Df(g(x)) · Dg(x). In words, the first factor on the 
right, Df(g(x)), indicates that the derivative of Df(x) is first 
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found as usual, and then x, wherever it occurs, is replaced 
by the function g(x). In the example of sin x2, the rule gives 
the result D(sin x2) = Dsin(x2) · D(x2) = (cos x2) · 2x.

In the German mathematician Gottfried Wilhelm 
Leibniz’s notation, which uses d/dx in place of D and thus 
allows differentiation with respect to different variables to 
be made explicit, the chain rule takes the more memorable 
“symbolic cancellation” form: d(f(g(x)))/dx = df/dg · dg/dx. 

direction field

A direction field is a way of graphically representing the 
solutions of a first-order differential equation without 
actually solving the equation. The equation y′ = f (x,y) gives 
a direction, y′, associated with each point (x,y) in the plane 
that must be satisfied by any solution curve passing through 
that point. The direction field is defined as the collection 
of small line segments passing through various points hav-
ing a slope that will satisfy the given differential equation 
at that point. The actual family of curves (solutions of the 
differential equation) must have a direction at each point 
that agrees with that of the line segment of the direction 
field at that point, so that this method is valuable for gain-
ing some feeling for the behaviour of the solutions in cases 
in which the equation is difficult to solve or in which the 
solution is a complicated function. Often it is helpful when 
drawing the direction field to determine the lines or curves, 
called isoclines, on which the slope of the direction field 
segments is constant. For example, in the equation y′ = x + 
y the slope will have the constant value k when k = x + y, or 
when y = -x + k. That is, the isoclines are straight lines with 
a slope of -1. These lines can then be sketched in lightly to 
aid in constructing the direction field. The actual family of 
solutions in this case is y = aex - x - 1 for any constant a, as 
found by methods of differential equations.
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dirichlet proBlem

The Dirichlet problem is that of formulating and solving 
certain partial differential equations that arise in stud-
ies of the flow of heat, electricity, and fluids. Initially, the 
problem was to determine the equilibrium temperature 
distribution on a disk from measurements taken along 
the boundary. The temperature at points inside the disk 

Peter Gustav Lejeune Dirichlet (1805–1859) proved, among many other nota-
ble contributions to mathematics, that in any arithmetic progression in which 
the first term was coprime to the difference there are infinitely many primes. 
Hulton Archive/Getty Images
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must satisfy a partial differential equation called Laplace’s 
equation corresponding to the physical condition that the 
total heat energy contained in the disk shall be a mini-
mum. A slight variation of this problem occurs when there 
are points inside the disk at which heat is added (sources) 
or removed (sinks) as long as the temperature still remains 
constant at each point (stationary flow), in which case 
Poisson’s equation is satisfied. The Dirichlet problem 
can also be solved for any simply connected region—i.e., 
one containing no holes—if the temperature varies con-
tinuously along the boundary. The problem is named for 
the 19th-century German mathematician Peter Gustav 
Lejeune Dirichlet, who suggested the first general method 
of solving this class of problems.

elliptic equation

The elliptic equations are a class of partial differential 
equations describing phenomena that do not change 
from moment to moment, as when a flow of heat or fluid 
takes place within a medium with no accumulations. The 
Laplace equation, uxx + uyy = 0, is the simplest such equa-
tion describing this condition in two dimensions. In 
addition to satisfying a differential equation within the 
region, the elliptic equation is also determined by its val-
ues (boundary values) along the boundary of the region, 
which represent the effect from outside the region. These 
conditions can be either those of a fixed temperature dis-
tribution at points of the boundary (Dirichlet problem) or 
those in which heat is being supplied or removed across 
the boundary in such a way as to maintain a constant tem-
perature distribution throughout (Neumann problem).

If the highest-order terms of a second-order partial 
differential equation with constant coefficients are linear 
and if the coefficients a, b, c of the uxx, uxy, uyy terms satisfy 
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the inequality b2 − 4ac < 0, then, by a change of coordinates, 
the principal part (highest-order terms) can be written as 
the Laplacian uxx + uyy. Because the properties of a physi-
cal system are independent of the coordinate system used 
to formulate the problem, it is expected that the prop-
erties of the solutions of these elliptic equations should 
be similar to the properties of the solutions of Laplace’s 
equation. If the coefficients a, b, and c are not constant but 
depend on x and y, then the equation is called elliptic in a 
given region if b2 − 4ac < 0 at all points in the region. The 
functions x2 − y2 and excos y satisfy the Laplace equation, 
but the solutions to this equation are usually more com-
plicated because of the boundary conditions that must be 
satisfied as well.

exact equation

An exact equation is a type of differential equation that 
can be solved directly without the use of any of the special 
techniques in the subject. A first-order differential equa-
tion (of one variable) is called exact, or an exact differential, 
if it is the result of a simple differentiation. The equation 
P(x, y)y′ + Q(x, y) = 0, or in the equivalent alternate notation 
P(x, y)dy + Q(x, y)dx = 0, is exact if Px(x, y) = Qy(x, y). (The 
subscripts in this equation indicate which variable the  
partial derivative is taken with respect to.) In this case, 
there will be a function R(x, y), the partial x-derivative 
of which is Q and the partial y-derivative of which is P, 
such that the equation R(x, y) = c (where c is constant) will 
implicitly define a function y that will satisfy the original 
differential equation.

For example, in the equation (x2 + 2y)y′ + 2xy + 1 = 0, the 
x-derivative of x2 + 2y is 2x and the y-derivative of 2xy + 1 is 
also 2x, and the function R = x2y + x + y2 satisfies the condi-
tions Rx = Q and Ry = P. The function defined implicitly by 
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x2y + x + y2 = c will solve the original equation. Sometimes if 
an equation is not exact, it can be made exact by multiply-
ing each term by a suitable function called an integrating 
factor. For example, if the equation 3y + 2xy′ = 0 is multi-
plied by 1/xy, it becomes 3/x + 2y′/y = 0, which is the direct 
result of differentiating the equation in which the natu-
ral logarithmic function (ln) appears: 3 ln x + 2 ln y = c, or 
equivalently x3y2 = c, which implicitly defines a function 
that will satisfy the original equation.

Higher-order equations are also called exact if they are 
the result of differentiating a lower-order equation. For 
example, the second-order equation p(x)y″ + q(x)y′ + r(x)y = 0 is 
exact if there is a first-order expression p(x)y′ + s(x)y such 
that its derivative is the given equation. The given equa-
tion will be exact if, and only if, p″ − q′ + r = 0, in which case 
s in the reduced equation will equal q − p′. If the equation is 
not exact, there may be a function z(x), also called an inte-
grating factor, such that when the equation is multiplied 
by the function z it becomes exact.

exponential function

The exponential function is a relation of the form y = ax, 
with the independent variable x ranging over the entire 
real number line as the exponent of a positive number 
a. Probably the most important of the exponential func-
tions is y = ex, sometimes written y = exp (x), in which e 
(2.7182818…) is the base of the natural system of logarithms 
(ln). By definition x is a logarithm, and there is thus a loga-
rithmic function that is the inverse of the exponential 
function. Specifically, if y = ex, then x = ln y. The exponen-
tial function is also defined as the sum of the infinite series 
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which converges for all x and in which n! is a product of the 
first n positive integers. Thus in particular, the constant

The exponential functions are examples of nonalgebraic, 
or transcendental, functions—i.e., functions that cannot be 
represented as the product, sum, and difference of variables 
raised to some nonnegative integer power. Other common 
transcendental functions are the logarithmic functions and 
the trigonometric functions. Exponential functions fre-
quently arise and quantitatively describe a number of 
phenomena in physics, such as radioactive decay, in which 
the rate of change in a process or substance depends 
directly on its current value.

The exponential and natural logarithm functions are inverse functions. That 
is, applying one and then the other to some value returns the original value. 
This can be seen graphically by the functions’ symmetry with respect to the line 
x = y. Encyclopædia Britannica, Inc.
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extremum 

Any point at which the value of a function is largest 
(a maximum) or smallest (a minimum) is an extremum 
(plural extrema). There are both absolute and relative 
(or local) maxima and minima. At a relative maximum 
the value of the function is larger than its value at imme-
diately adjacent points, while at an absolute maximum 
the value of the function is larger than its value at any 
other point in the interval of interest. At relative max-
ima inside the interval, if the function is smooth rather 
than peaked, its rate of change, or derivative, is zero. 
The derivative may be zero, however, at a point where 
the function has neither a maximum nor a minimum, 
as in the case for the function x3 at x = 0. One way to 
determine this is by going back to the original defini-
tion and finding the value of the function at immediately 
adjacent points. For example, the function x3 - 3x has the 
derivative 3x2 - 3, which equals 0 when x is ±1. By testing 
nearby points, such as 0.9 and 1.1, the function is seen 
to have a relative minimum when x is 1 and, similarly, a 
relative maximum when x is -1. There is also a second-
derivative test: if the derivative of a function is zero at 
a point, then the function will have a relative maximum 
or minimum if the second derivative at that point is less 
than or greater than 0, respectively, the test failing if it 
equals 0. Relative maxima can also occur at points at 
which the derivative fails to exist, and these points must 
also be tested.

The theory of extrema applies to practical problems 
of optimization, such as finding the dimensions for a 
container that will hold the maximum volume for a given 
amount of material used in its construction. Locating the 
extreme points also aids in graphing functions. 
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fluxion

Fluxion was the original term for derivative introduced by 
Isaac Newton in 1665. Newton referred to a varying (flow-
ing) quantity as a fluent and to its instantaneous rate of 
change as a fluxion. Newton stated that the fundamen-
tal problems of the infinitesimal calculus were: (1) given 
a fluent (that would now be called a function), to find its 
fluxion (now called a derivative); and, (2) given a fluxion 
(a function), to find a corresponding fluent (an indefinite 
integral). Thus, if y = x3, the fluxion of the quantity y equals 
3x2 times the fluxion of x. In modern notation, dy/dt = 
3x2(dx/dt). Newton’s terminology and notations of fluxions 
were eventually discarded in favour of the derivatives and 
differentials that were developed by G.W. Leibniz.

fourier transform

As a transform of an integrable complex-valued function f of 
one real variable, the Fourier transform is the complex-valued 
function fˆ of a real variable defined by the following equation

In the integral equation

the function f (y) is an integral transform of F(x), and K(x,y) 
is the kernel. Often the reciprocal relationship is valid:
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function

A function is an expression, rule, or law that defines a rela-
tionship between one variable (the independent variable) 
and another variable (the dependent variable). Functions 
are ubiquitous in mathematics and are essential for formu-
lating physical relationships in the sciences. The modern 
definition of function was first given in 1837 by the German 
mathematician Peter Dirichlet:

If a variable y is so related to a variable x that whenever a 
numerical value is assigned to x, there is a rule according to 
which a unique value of y is determined, then y is said to be a 
function of the independent variable x.

This relationship is commonly symbolized as y = f(x). 
In addition to f(x), other abbreviated symbols such as 
g(x) and P(x) are often used to represent functions of the 
independent variable x, especially when the nature of the 
function is unknown or unspecified.

Many widely used mathematical formulas are expres-
sions of known functions. For example, the formula for 
the area of a circle, A = πr2, gives the dependent variable 
A (the area) as a function of the independent variable r 
(the radius). Functions involving more than two variables 
also are common in mathematics, as can be seen in the 
formula for the area of a triangle, A = bh/2, which defines 
A as a function of both b (base) and h (height). In these 
examples, physical constraints force the independent 
variables to be positive numbers. When the independent 
variables are also allowed to take on negative values—thus, 
any real number—the functions are known as real-valued 
functions.

The formula for the area of a circle is an example 
of a polynomial function. The general form for such 
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functions is P(x) = a0 + a1 x + a2x2+ · · · + an x n, where the 
coefficients (a0, a1, a2,…, an ) are given, x can be any real 
number, and all the powers of x are counting numbers 
(1, 2, 3, …). (When the powers of x can be any real number, 
the result is known as an algebraic function.) Polynomial 
functions have been studied since the earliest times 
because of their versatility—practically any relationship 
involving real numbers can be closely approximated by 
a polynomial function. Polynomial functions are char-
acterized by the highest power of the independent 
variable. Special names are commonly used for such 
powers from one to five—linear, quadratic, cubic, quar-
tic, and quintic.

Polynomial functions may be given geometric repre-
sentation by means of analytic geometry. The independent 
variable x is plotted along the x-axis (a horizontal line), and 
the dependent variable y is plotted along the y-axis (a ver-
tical line). The graph of the function then consists of the 
points with coordinates (x, y) where y = f(x).

Another common type of function that has been 
studied since antiquity is the trigonometric functions, 
such as sin x and cos x, where x is the measure of an angle. 
Because of their periodic nature, trigonometric func-
tions are often used to model behaviour that repeats, or 
“cycles.” Nonalgebraic functions, such as exponential and 
trigonometric functions, are also known as transcendental 
functions.

Practical applications of functions whose variables are 
complex numbers are not so easy to illustrate, but they are 
nevertheless very extensive. They occur, for example, in 
electrical engineering and aerodynamics. If the complex 
variable is represented in the form z = x + iy, where i is the 
imaginary unit (the square root of −1) and x and y are real 
variables, it is possible to split the complex function into 
real and imaginary parts: f(z) = P(x, y) + iQ(x, y).
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By interchanging the roles of the independent and depen-
dent variables in a given function, one can obtain an inverse 
function. Inverse functions do what their name implies: 
they undo the action of a function to return a variable to its 
original state. Thus, if for a given function f(x) there exists a 
function g(y) such that g(f(x)) = x and f(g(y)) = y, then g is called 
the inverse function of f and given the notation f−1, where by 
convention the variables are interchanged. For example, the 
function f(x) = 2x has the inverse function f−1(x) = x/2.

A function may be defined by means of a power series. 
For example, the infinite series

could be used to define these functions for all complex val-
ues of x. Other types of series and also infinite products may 

Graphs of some trigonometric functions. Note that each of these functions is 
periodic. Thus, the sine and cosine functions repeat every 2π, and the tangent 
and cotangent functions repeat every π. Encyclopædia Britannica, Inc.
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be used when convenient. An important case is the Fourier 
series, expressing a function in terms of sines and cosines:

Such representations are of great importance in phys-
ics, particularly in the study of wave motion and other 
oscillatory phenomena.

Sometimes functions are most conveniently defined by 
means of differential equations. For example, y = sin x is the 
solution of the differential equation d2y/dx2 + y = 0 having 
y = 0, dy/dx = 1 when x = 0. Similarly, y = cos x is the solution 
of the same equation having y = 1, dy/dx = 0 when x = 0.

harmonic analysis

Harmonic analysis is the mathematical procedure for 
describing and analyzing phenomena of a periodically 
recurrent nature. Many complex problems have been 
reduced to manageable terms by the technique of breaking 
complicated mathematical curves into sums of compara-
tively simple components.

Many physical phenomena, such as sound waves, alter-
nating electric currents, tides, and machine motions and 
vibrations, may be periodic in character. Such motions can 
be measured at a number of successive values of the inde-
pendent variable, usually the time, and these data or a curve 
plotted from them will represent a function of that indepen-
dent variable. Generally, the mathematical expression for 
the function will be unknown. However, with the periodic 
functions found in nature, the function can be expressed as 
the sum of a number of sine and cosine terms. Such a sum 
is known as a Fourier series, after the French mathemati-
cian Joseph Fourier (1768–1830), and the determination of 
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the coefficients of these terms is called harmonic analysis. 
One of the terms of a Fourier series has a period equal to 
that of the function, f(x), and is called the fundamental. 
Other terms have shortened periods that are integral sub-
multiples of the fundamental. These are called harmonics. 
The terminology derives from one of the earliest applica-
tions, the study of the sound waves created by a violin.

In 1822 Fourier stated that a function y = f(x) could be 
expressed between the limits x = 0 and x = 2π by the infi-
nite series that is now given in the form

provided the function is single-valued, finite, and continu-
ous except for a finite number of discontinuities, and where

and

for k ≥ 0. With the further restriction that there be only a 
finite number of extrema (local maxima and minima), the 
theorem was proved by the German mathematician Peter 
Lejeune Dirichlet in 1829.

The use of a larger number of terms will increase the 
accuracy of the approximation, and the large amounts of 
calculations needed are best done by machines called har-
monic (or spectrum) analyzers. These measure the relative 
amplitudes of sinusoidal components of a periodically recur-
rent function. The first such instrument was invented by 
the British mathematician and physicist William Thomson 
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(later Baron Kelvin) in 1873. This machine, used for the har-
monic analysis of tidal observations, embodied 11 sets of 
mechanical integrators, one for each harmonic to be mea-
sured. A still more complicated machine, handling up to 80 
coefficients, was designed in 1898 by the American physi-
cists Albert Abraham Michelson and Samuel W. Stratton.

Early machines and methods made use of an experi-
mentally determined curve or set of data. In the case of 
electric currents or voltages, an entirely different method 
is possible. Instead of making an oscillographic record of 
the voltage or current and analyzing it mathematically, the 
analysis is performed directly on the electric quantity by 
recording the response as the natural frequency of a tuned 
circuit is varied through a wide range. Thus, harmonic ana-
lyzers and synthesizers of the 20th century tended to be 
electromechanical rather than purely mechanical devices. 
Modern analyzers display the frequency-modulated sig-
nals visually by means of a cathode-ray tube, and digital 
or analog computer principles are used to carry out the 
Fourier analysis automatically, thereby achieving approxi-
mations of great accuracy.

harmonic function

A mathematical function of two variables having the 
property that its value at any point is equal to the average 
of its values along any circle around that point, provided 
the function is defined within the circle, is a harmonic 
function. An infinite number of points are involved in this 
average, so that it must be found by means of an integral, 
which represents an infinite sum. In physical situations, 
harmonic functions describe those conditions of equi-
librium such as the temperature or electrical charge 
distribution over a region in which the value at each point 
remains constant.
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Harmonic functions can also be defined as functions 
that satisfy Laplace’s equation, a condition that can be 
shown to be equivalent to the first definition. The sur-
face defined by a harmonic function has zero convexity, 
and these functions thus have the important property 
that they have no maximum or minimum values inside the 
region in which they are defined. Harmonic functions are 
also analytic, which means that they possess all derivatives 
(are perfectly “smooth”) and can be represented as polyno-
mials with an infinite number of terms, called power series.

Spherical harmonic functions arise when the spheri-
cal coordinate system is used. (In this system, a point in 
space is located by three coordinates, one representing 
the distance from the origin and two others represent-
ing the angles of elevation and azimuth, as in astronomy.) 
Spherical harmonic functions are commonly used to 
describe three-dimensional fields, such as gravitational, 
magnetic, and electrical fields, and those arising from cer-
tain types of fluid motion.

infinite series

An infinite series is a sum of infinitely many numbers 
related in a given way and listed in a given order. Infinite 
series are useful in mathematics and in such disciplines as 
physics, chemistry, biology, and engineering.

For an infinite series a1 + a2 + a3 +· · ·, a quantity 
sn = a1 + a2 +· · ·+ an, which involves adding only the first n 
terms, is called a partial sum of the series. If sn approaches 
a fixed number S as n becomes larger and larger, the series 
is said to converge. In this case, S is called the sum of the 
series. An infinite series that does not converge is said to 
diverge. In the case of divergence, no value of a sum is 
assigned. For example, the nth partial sum of the infinite 
series 1 + 1 + 1 +· · · is n. As more terms are added, the partial 
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sum fails to approach any finite value (it grows without 
bound). Thus, the series diverges. An example of a conver-
gent series is

As n becomes larger, the partial sum approaches 2, 
which is the sum of this infinite series. In fact, the series 
1 + r + r2 + r3 +· · · (in the example above r equals 1/2) con-
verges to the sum 1/(1 − r) if 0 < r < 1 and diverges if r ≥ 1. 
This series is called the geometric series with ratio r and 
was one of the first infinite series to be studied. Its solu-
tion goes back to Zeno of Elea’s paradox involving a race 
between Achilles and a tortoise.

Certain standard tests can be applied to determine 
the convergence or divergence of a given series, but such 
a determination is not always possible. In general, if the 
series a1 + a2 +· · · converges, then it must be true that an 
approaches 0 as n becomes larger. Furthermore, adding 
or deleting a finite number of terms from a series never 
affects whether or not the series converges. Furthermore, 
if all the terms in a series are positive, its partial sums 
will increase, either approaching a finite quantity (con-
verging) or growing without bound (diverging). This 
observation leads to what is called the comparison test: 
if 0 ≤ an ≤ bn for all n and if b1 + b2 +· · · is a convergent 
infinite series, then a1 + a2 +· · · also converges. When the 
comparison test is applied to a geometric series, it is 
reformulated slightly and called the ratio test: if an > 0 
and if an + 1/an ≤ r for some r < 1 for every n, then a1 + a2 +· · · 
converges. For example, the ratio test proves the conver-
gence of the series
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Many mathematical problems that involve a compli-
cated function can be solved directly and easily when the 
function can be expressed as an infinite series involving 
trigonometric functions (sine and cosine). The process 
of breaking up a rather arbitrary function into an infinite 
trigonometric series is called Fourier analysis or harmonic 
analysis and has numerous applications in the study of var-
ious wave phenomena.

infinitesimals

Infinitesimals were introduced by Isaac Newton as a 
means of “explaining” his procedures in calculus. Before 
the concept of a limit had been formally introduced and 
understood, it was not clear how to explain why calculus 
worked. In essence, Newton treated an infinitesimal as 
a positive number that was smaller, somehow, than any 
positive real number. In fact, it was the unease of math-
ematicians with such a nebulous idea that led them to 
develop the concept of the limit.

The status of infinitesimals decreased further as a 
result of Richard Dedekind’s definition of real numbers as 
“cuts.” A cut splits the real number line into two sets. If 
there exists a greatest element of one set or a least element 
of the other set, then the cut defines a rational number. 
Otherwise the cut defines an irrational number. As a logi-
cal consequence of this definition, it follows that there is 
a rational number between zero and any nonzero number. 
Hence, infinitesimals do not exist among the real numbers.

This does not prevent other mathematical objects 
from behaving like infinitesimals, and mathematical logi-
cians of the 1920s and ’30s actually showed how such 
objects could be constructed. One way to do this is to use 
a theorem about predicate logic proved by Kurt Gödel in 
1930. All of mathematics can be expressed in predicate 
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logic, and Gödel showed that this logic has the following 
remarkable property:

A set Σ of sentences has a model [that is, an interpretation that 
makes it true] if any finite subset of Σ has a model.

This theorem may be used to construct infinitesimals as 
follows. First, consider the axioms of arithmetic, together 
with the following infinite set of sentences (expressible in 
predicate logic) that say “ι is an infinitesimal”: ι > 0, ι < 1⁄2, 
ι <  1⁄3 , ι < 1⁄4, ι < 1⁄5, …. 

Any finite subset of these sentences has a model. For 
example, say the last sentence in the subset is “ι < 1/n”. Then 
the subset can be satisfied by interpreting ι as 1/(n + 1). It 
then follows from Gödel’s property that the whole set has 
a model. That is, ι is an actual mathematical object.

The infinitesimal ι cannot be a real number, of course, 
but it can be something like an infinite decreasing sequence. 
In 1934 the Norwegian Thoralf Skolem gave an explicit 
construction of what is now called a nonstandard model 
of arithmetic, containing “infinite numbers” and infinitesi-
mals, each of which is a certain class of infinite sequences.

In the 1960s the German-born American Abraham 
Robinson similarly used nonstandard models of analysis to 
create a setting where the nonrigorous infinitesimal argu-
ments of early calculus could be rehabilitated. He found 
that the old arguments could always be justified, usually 
with less trouble than the standard justifications with lim-
its. He also found infinitesimals useful in modern analysis 
and proved some new results with their help. Quite a few 
mathematicians have converted to Robinson’s infinitesi-
mals, but for the majority they remain “nonstandard.” 
Their advantages are offset by their entanglement with 
mathematical logic, which discourages many analysts.
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infinity

Infinity is the concept of something that is unlimited, 
endless, without bound. The common symbol for infinity, 
∞, was invented by the English mathematician John Wallis 
in 1657. Three main types of infinity may be distinguished: 
the mathematical, the physical, and the metaphysical. 
Mathematical infinities occur, for instance, as the number 
of points on a continuous line or as the size of the end-
less sequence of counting numbers: 1, 2, 3,…. Spatial and 
temporal concepts of infinity occur in physics when one 
asks if there are infinitely many stars or if the universe 
will last forever. In a metaphysical discussion of God or 
the Absolute, there are questions of whether an ultimate 
entity must be infinite and whether lesser things could be 
infinite as well.

The ancient Greeks expressed infinity by the word 
apeiron, which had connotations of being unbounded, 
indefinite, undefined, and formless. One of the earliest 
appearances of infinity in mathematics regards the ratio 
between the diagonal and the side of a square. Pythagoras 
(c. 580–500 BCE) and his followers initially believed that 
any aspect of the world could be expressed by an arrange-
ment involving just the whole numbers (0, 1, 2, 3,…), but 
they were surprised to discover that the diagonal and 
the side of a square are incommensurable—that is, their 
lengths cannot both be expressed as whole-number mul-
tiples of any shared unit (or measuring stick). In modern 
mathematics this discovery is expressed by saying that the 
ratio is irrational and that it is the limit of an endless, non-
repeating decimal series. In the case of a square with sides 
of length 1, the diagonal is √2, written as 1.414213562…, 
where the ellipsis (…) indicates an endless sequence of dig-
its with no pattern.
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Both Plato (428/427–348/347 BCE) and Aristotle 
(384–322 BCE) shared the general Greek abhorrence of 
the notion of infinity. Aristotle influenced subsequent 
thought for more than a millennium with his rejection of 
“actual” infinity (spatial, temporal, or numerical), which 
he distinguished from the “potential” infinity of being 
able to count without end. To avoid the use of actual infin-
ity, Eudoxus of Cnidus (c. 400–350 BCE) and Archimedes 
(c. 285–212/211 BCE) developed a technique, later known as 
the method of exhaustion, whereby an area was calculated 
by halving the measuring unit at successive stages until the 
remaining area was below some fixed value (the remaining 
region having been “exhausted”).

The issue of infinitely small numbers led to the 
discovery of calculus in the late 1600s by the English math-
ematician Isaac Newton and the German mathematician 
Gottfried Wilhelm Leibniz. Newton introduced his own 
theory of infinitely small numbers, or infinitesimals, to 
justify the calculation of derivatives, or slopes. In order 
to find the slope (that is, the change in y over the change 
in x) for a line touching a curve at a given point (x, y), he 
found it useful to look at the ratio between dy and dx, 
where dy is an infinitesimal change in y produced by mov-
ing an infinitesimal amount dx from x. Infinitesimals were 
heavily criticized, and much of the early history of analy-
sis revolved around efforts to find an alternate, rigorous 
foundation for the subject. The use of infinitesimal num-
bers finally gained a firm footing with the development of 
nonstandard analysis by the German-born mathematician 
Abraham Robinson in the 1960s.

A more direct use of infinity in mathematics arises 
with efforts to compare the sizes of infinite sets, such 
as the set of points on a line (real numbers) or the set of 
counting numbers. Mathematicians are quickly struck 
by the fact that ordinary intuitions about numbers are 
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misleading when talk-
ing about infinite sizes. 
Medieval thinkers were 
aware of the paradoxical 
fact that line segments of 
varying lengths seemed to 
have the same number of 
points. For instance, draw 
two concentric circles,  
one twice the radius (and 
thus twice the circumfer-
ence) of the other. Surprisingly, each point P on the outer 
circle can be paired with a unique point P ′ on the inner cir-
cle by drawing a line from their common centre O to P and 
labeling its intersection with the inner circle P ′. Intuition 
suggests that the outer circle should have twice as many 
points as the inner circle, but in this case infinity seems to 
be the same as twice infinity. In the early 1600s, the Italian 
scientist Galileo Galilei addressed this and a similar non-
intuitive result now known as Galileo’s paradox. Galileo 
demonstrated that the set of counting numbers could be 
put in a one-to-one correspondence with the apparently 
much smaller set of their squares. He similarly showed 
that the set of counting numbers and their doubles (i.e., 
the set of even numbers) could be paired up. Galileo con-
cluded that “we cannot speak of infinite quantities as 
being the one greater or less than or equal to another.” 
Such examples led the German mathematician Richard 
Dedekind in 1872 to suggest a definition of an infinite set 
as one that could be put in a one-to-one relationship with 
some proper subset.

The confusion about infinite numbers was resolved 
by the German mathematician Georg Cantor beginning 
in 1873. First Cantor rigorously demonstrated that the 
set of rational numbers (fractions) is the same size as the 

Concentric circles demonstrate that 
twice infinity is the same as infinity. 
Encyclopædia Britannica, Inc.
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counting numbers. Hence, they are called countable, or 
denumerable. Of course this came as no real shock, but 
later that same year Cantor proved the surprising result 
that not all infinities are equal. Using a so-called “diagonal 
argument,” Cantor showed that the size of the counting 
numbers is strictly less than the size of the real numbers. 
This result is known as Cantor’s theorem.

To compare sets, Cantor first distinguished between 
a specific set and the abstract notion of its size, or car-
dinality. Unlike a finite set, an infinite set can have the 
same cardinality as a proper subset of itself. Cantor used 
a diagonal argument to show that the cardinality of any 
set must be less than the cardinality of its power set—i.e., 
the set that contains all the given set’s possible subsets. 
In general, a set with n elements has a power set with 2n 
elements, and these two cardinalities are different even 
when n is infinite. Cantor called the sizes of his infinite 
sets “transfinite cardinals.” His arguments showed that 
there are transfinite cardinals of endlessly many different 
sizes (such as the cardinals of the set of counting numbers 
and the set of real numbers).

The transfinite cardinals include aleph-null (the size of 
the set of whole numbers), aleph-one (the next larger infin-
ity), and the continuum (the size of real numbers). These 
three numbers are also written as ℵ0, ℵ1, and c, respectively. 
By definition ℵ0 is less than ℵ1, and by Cantor’s theorem 
ℵ1 is less than or equal to c. Along with a principle known 
as the axiom of choice, the proof method of Cantor’s 
theorem can be used to ensure an endless sequence of 
transfinite cardinals continuing past ℵ1 to such numbers 
as ℵ2 and ℵℵ0

.
The continuum problem is the question of which of the 

alephs is equal to the continuum cardinality. Cantor con-
jectured that c = ℵ1. This is known as Cantor’s continuum 
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hypothesis (CH). CH can also be thought of as stating 
that any set of points on the line either must be countable 
(of size less than or equal to ℵ0) or must have a size as large 
as the entire space (be of size c).

In the early 1900s a thorough theory of infinite sets was 
developed. This theory is known as ZFC, which stands for 
Zermelo-Fraenkel set theory with the axiom of choice. CH 
is known to be undecidable on the basis of the axioms in 
ZFC. In 1940 the Austrian-born logician Kurt Gödel was 
able to show that ZFC cannot disprove CH, and in 1963 
the American mathematician Paul Cohen showed that 
ZFC cannot prove CH. Set theorists continue to explore 
ways to extend the ZFC axioms in a reasonable way so as 
to resolve CH. Recent work suggests that CH may be false 
and that the true size of c may be the larger infinity ℵ2.

integral

An integral is either a numerical value equal to the area 
under the graph of a function for some interval (definite 
integral) or a new function the derivative of which is the 
original function (indefinite integral). These two mean-
ings are related by the fact that a definite integral of any 
function that can be integrated can be found using the 
indefinite integral and a corollary to the fundamental 
theorem of calculus. The definite integral (also called 
Riemann integral) of a function f(x) is denoted as

and is equal to the area of the region bounded by the 
curve (if the function is positive between x = a and x = b)y 
= f(x), the x-axis, and the lines x = a and x = b. An indefinite 
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integral, sometimes called an antiderivative, of a function 
f(x), denoted by

is a function the derivative of which is f (x). Because the 
derivative of a constant is zero, the indefinite integral is 
not unique. The process of finding an indefinite integral is 
called integration. 

integral equation

An equation in which the unknown function to be found 
lies within an integral sign is called an integral equation. 
An example of an integral equation is

in which f(x) is known; if f(x) = f(-x) for all x, one solution is

integral transform

An integral transform is a mathematical operator that  
produces a new function f(y) by integrating the product 
of an existing function F(x) and a so-called kernel func-
tion K(x, y) between suitable limits. The process, which is 
called transformation, is symbolized by the equation f(y) = 
∫K(x, y)F(x)dx. Several transforms are commonly named for 
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the mathematicians who introduced them: in the Laplace 
transform, the kernel is e−xy and the limits of integration are 
zero and plus infinity. In the Fourier transform, the kernel 
is (2π)−1/2e−ixy and the limits are minus and plus infinity.

Integral transforms are valuable for the simplification 
that they bring about, most often in dealing with differen-
tial equations subject to particular boundary conditions. 
Proper choice of the class of transformation usually makes 
it possible to convert not only the derivatives in an intrac-
table differential equation but also the boundary values 
into terms of an algebraic equation that can be easily 
solved. The solution obtained is, of course, the transform 
of the solution of the original differential equation, and 
it is necessary to invert this transform to complete the 
operation. For the common transformations, tables are 
available that list many functions and their transforms.

integraph

The integraph is a mathematical instrument for plotting 
the integral of a graphically defined function. Two such 
instruments were invented independently about 1880 
by the British physicist Sir Charles Vernon Boys and the 
Lithuanian mathematician Bruno Abdank Abakanowicz 
and were later modified and improved by others. The inte-
graph draws the graph of the integral as the user traces the 
graph of the given function. 

integration

In mathematics, integration is the technique of finding  
a function g(x) the derivative of which, Dg(x), is equal to 
a given function f(x). This is indicated by the integral sign 
“∫,” as in ∫f(x), usually called the indefinite integral of the 
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function. (The symbol dx is usually added, which merely 
identifies x as the variable.) The definite integral, written

with a and b called the limits of integration, is equal to 
g(b) − g(a), where Dg(x) = f(x).

Some antiderivatives can be calculated by merely 
recalling which function has a given derivative, but the 
techniques of integration mostly involve classifying the 
functions according to which types of manipulations 
will change the function into a form the antiderivative of 
which can be more easily recognized. For example, if one is 
familiar with derivatives, the function 1/(x + 1) can be easily 
recognized as the derivative of loge(x + 1). The antideriva-
tive of (x2 + x + 1)/(x + 1) cannot be so easily recognized, but 
if written as x(x + 1)/(x + 1) + 1/(x + 1) = x + 1/(x + 1), it then can 
be recognized as the derivative of x2/2 + loge(x + 1). One use-
ful aid for integration is the theorem known as integration 
by parts. In symbols, the rule is ∫fDg = fg − ∫gDf. That is, if 
a function is the product of two other functions, f and one 
that can be recognized as the derivative of some function 
g, then the original problem can be solved if one can inte-
grate the product gDf.  For example, if f = x, and Dg = cos x, 
then ∫x·cos x = x·sin x − ∫sin x = x·sin x − cos x + C. Integrals 
are used to evaluate such quantities as area, volume, work, 
and, in general, any quantity that can be interpreted as the 
area under a curve.

integrator

The integrator is an instrument for performing the mathe-
matical operation of integration, important for the solution 
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of differential and integral equations and the generation of 
many mathematical functions.

The earliest integrator was a mechanical instrument 
called the planimeter. A simple mechanical integrator of 
the disk-and-wheel variety has essential parts mounted 
on mutually perpendicular shafts, with a means of posi-
tioning the wheel in frictional contact with the disk, or 
turntable. In use, an angular displacement of the disk 
causes the wheel to turn correspondingly. The radius 
of the integrating wheel introduces a scale factor, and 
its positioning on the disk represents the integrand. 
Thus the rotations of the disk and the wheel are related 
through multiplicative factors and the number of turns 
made by the integrating wheel (for any number of turns 
of the disk) will be expressed as a definite integral of 
the function represented by the variable position of the 
wheel on the disk.

Electronic integrators or electrical integrating circuits 
have largely displaced mechanical integrators. For time-
varying input, if the resistance R is very large compared 
with the capacitive reactance XC of the capacitor C, the 
current will be almost in phase with the input voltage EIN, 
but the output voltage EOUT will lag the phase of the input 
voltage EIN by almost 90°. Thus the output voltage EOUT 
is the time integral of the input voltage EIN, as well as the 
product of the current and the capacitive reactance, XC.

Viewed as analogues, many common devices can be 
considered as integrators—examples being the odometer 
and the watt-hour meter.

isoperimetric proBlem

The determination of the shape of the closed plane 
curve having a given length and enclosing the maximum 
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area is the isoperimetric problem. (In the absence of any 
restriction on shape, the curve is a circle.) The calculus of 
variations evolved from attempts to solve this problem 
and the brachistochrone (“least-time”) problem.

In 1638 the Italian mathematician and astronomer 
Galileo Galilei first considered the brachistochrone 
problem, although his solution was flawed. With the 
discovery of calculus, a new approach to the solution 
became available, and the Swiss mathematician Johann 
Bernoulli issued a challenge in 1697 to mathematicians. 
Isoperimetrics was made the subject of an investigation in 
the 1690s by Johann and his older brother Jakob Bernoulli, 
who found and classified many curves having maximum or 
minimum properties. A major step in generalization was 
taken by the Swiss mathematician Leonhard Euler, who 
published the rule (1744) later known as Euler’s differen-
tial equation, useful in the determination of a minimizing 
arc between two points on a curve having continuous sec-
ond derivatives and second partial derivatives. His work 
was soon supplemented by that of the French mathemati-
cians Joseph-Louis Lagrange and Adrien-Marie Legendre, 
among others.

Techniques of the calculus of variations are frequently 
applied in seeking a particular arc from some given class 
for which some parameter (length or other quantity 
dependent upon the entire arc) is minimal or maximal. 
Surfaces or functions of several variables may be involved. 
A problem in three-dimensional Euclidean space (that of 
finding a surface of minimal area having a given bound-
ary) has received much attention and is called the Plateau 
problem. As a physical example, consider the shapes of 
soap bubbles and raindrops, which are determined by the 
surface tension and cohesive forces tending to maintain 
the fixed volume while decreasing the area to a minimum. 
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Other examples may be found in mechanics, electricity, 
relativity, and thermodynamics.

Kernel

The kernel is a known function that appears in the inte-
grand of an integral equation. Thus, in the equation

both the kernel function, K(x, y), and g(x) are given, and f(x) 
is the function sought. As an example, in Abel’s equation 
for the curve followed by a particle moving in a vertical 
plane under the influence of gravity, which takes the form 
of the integral equation

in which t is time, the kernel function is

with g the acceleration of gravity. Other kernels in mathe-
matics, such as the Dirichlet kernel and Fejér’s kernel, are 
concerned with Fourier series.

lagrangian function

The Lagrangian function (also called the Lagrangian) is a 
quantity that characterizes the state of a physical system. 
In mechanics, the Lagrangian function is just the kinetic 
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energy (energy of motion) minus the potential energy 
(energy of position).

One may think of a physical system, changing as time 
goes on from one state or configuration to another, as pro-
gressing along a particular evolutionary path, and ask, from 
this point of view, why it selects that particular path out of all 
the paths imaginable. The answer is that the physical system 
sums the values of its Lagrangian function for all the points 
along each imaginable path and then selects that path with 
the smallest result. This answer suggests that the Lagrangian 
function measures something analogous to increments of 
distance, in which case one may say, in an abstract way, that 
physical systems always take the shortest paths.

In the special case of a ray of light, the path of system 
configurations is just the ordinary path of the light through 
space, and the Lagrangian function reduces simply to a 
measure of the passage of time. The particular curved path 
that a light ray takes through a refracting lens is therefore 
just the one that takes the least time.

The principle is, however, much more general than that, 
and it is a remarkable discovery that it seems to describe all 
phenomena equally well, including, for example, the travel 
of a rocket to the moon, and the likelihood that collid-
ing subatomic particles will scatter each other in selected 
directions.

laplace’s equation

The second-order partial differential equation known 
as Laplace’s equation is widely useful in physics because 
its solutions R (known as harmonic functions) occur in 
problems of electrical, magnetic, and gravitational poten-
tials, of steady-state temperatures, and of hydrodynamics. 
The equation was discovered by the French mathemati-
cian and astronomer Pierre-Simon Laplace (1749–1827). 
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Laplace’s equation states that the sum of the second-
order partial derivatives of R, the unknown function, with 
respect to the Cartesian coordinates, equals zero:

The sum on the left often is represented by the expres-
sion ∇2R, in which the symbol ∇2 is called the Laplacian, 
or the Laplace operator.

Many physical systems are more conveniently described 
by the use of spherical or cylindrical coordinate systems. 
Laplace’s equation can be recast in these coordinates. For 
example, in cylindrical coordinates, Laplace’s equation is

laplace transform

The Laplace transform is an integral transform invented 
by the French mathematician Pierre-Simon Laplace, and 
systematically developed by the British physicist Oliver 
Heaviside (1850–1925), to simplify the solution of many dif-
ferential equations that describe physical processes. Today 
it is used most frequently by electrical engineers in the solu-
tion of various electronic circuit problems.

The Laplace transform f(p), also denoted by L{F(t)} or 
Lap F(t), is defined by the integral

involving the exponential parameter p in the kernel 
K = e−pt. The linear Laplace operator L thus transforms 
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each function F(t) of a certain set of functions into some 
function f (p). The inverse transform F(t) is written L−1{f(p)} 
or Lap−1f(p).

leBesgue integral

The Lebesgue integral is a way of extending the concept of 
area inside a curve to include functions that do not have 
graphs that can be represented pictorially. The graph of a 
function is defined as the set of all pairs of x- and y-values 
of the function. A graph can be represented pictorially if 
the function is piecewise continuous, which means that 
the interval over which it is defined can be divided into 
subintervals on which the function has no sudden jumps. 
Because the Riemann integral is based on the Riemann 
sums, which involve subintervals, a function not definable 
in this way will not be Riemann integrable.

For example, the function that equals 1 when x is ratio-
nal and equals 0 when x is irrational has no interval in 
which it does not jump back and forth. Consequently, the 
Riemann sum f (c1)Δx1 + f (c2)Δx2 +· · ·+ f(cn)Δxn has no limit 
but can have different values depending upon where the 
points c are chosen from the subintervals Δx.

Lebesgue sums are used to define the Lebesgue integral 
of a bounded function by partitioning the y-values instead 
of the x-values as is done with Riemann sums. Associated 
with the partition {yi} (= y0, y1, y2,…, yn ) are the sets Ei com-
posed of all x-values for which the corresponding y-values 
of the function lie between the two successive y-values yi − 1 
and yi. A number is associated with these sets Ei, written 
as m(Ei) and called the measure of the set, which is sim-
ply its length when the set is composed of intervals. The 
following sums are then formed: S = m(E0)y1 + m(E1)y2 +· · ·+ 
m(En − 1)yn and s = m(E0)y0 + m(E1)y1 +· · ·+ m(En − 1 )yn − 1.
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As the subintervals in the y-partition approach 0, 
these two sums approach a common value that is defined 
as the Lebesgue integral of the function.

The Lebesgue integral is the concept of the measure 
of the sets Ei in the cases in which these sets are not com-
posed of intervals, as in the rational/irrational function 
above, which allows the Lebesgue integral to be more gen-
eral than the Riemann integral.

limit

The mathematical concept of the limit is based on the 
idea of closeness, used primarily to assign values to cer-
tain functions at points where no values are defined, in 
such a way as to be consistent with nearby values. For 
example, the function (x2 −  1)/(x −  1) is not defined when 
x is 1, because division by zero is not a valid mathematical 
operation. For any other value of x, the numerator can be 
factored and divided by the (x −  1), giving x + 1. Thus, this 
quotient is equal to 2 for all values of x except 1, which 
has no value. However, 2 can be assigned to the function 
(x2 −  1)/(x −  1) not as its value when x equals 1 but as its limit 
when x approaches 1.

One way of defining the limit of a function f(x) at a 
point x0, written as

is by the following: if there is a continuous (unbroken) 
function g(x) such that g(x) = f(x) in some interval around 
x0, except possibly at x0 itself, then
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The following more-basic definition of limit, indepen-
dent of the concept of continuity, can also be given:

if, for any desired degree of closeness ε, one can find an 
interval around x0 so that all values of f(x) calculated here 
differ from L by an amount less than ε (i.e., if |x −  x0| < δ, 
then |f (x) −  L | < ε). This last definition can be used to 
determine whether or not a given number is in fact a limit. 
The calculation of limits, especially of quotients, usually 
involves manipulations of the function so that it can be 
written in a form in which the limit is more obvious, as in 
the above example of (x2 −  1)/(x −  1).

Limits are the method by which the derivative, or rate 
of change, of a function is calculated, and they are used 
throughout analysis as a way of making approximations 
into exact quantities, as when the area inside a curved 
region is defined to be the limit of approximations by 
rectangles.

line integral

The line, or contour, integral is the integral of a function of 
several variables, defined on a line or curve C with respect 
to arc length s:

as the maximum segment Δi s of C approaches 0. The line 
integrals
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are defined analogously. Line integrals are used extensively 
in the theory of functions of a complex variable.

mean-value theorem

The mean-value theorem deals with a type of average 
useful for approximations and for establishing other theo-
rems, such as the fundamental theorem of calculus.

The theorem states that the slope of a line connecting 
any two points on a “smooth” curve is the same as the slope 
of some line tangent to the curve at a point between the 
two points. In other words, at some point the slope of the 
curve must equal its average slope. In symbols, if the func-
tion f(x) represents the curve, a and b the two endpoints, 
and c the point between, then [f (b) − f (a)]/(b − a) = f ′(c), in 
which f ′(c) represents the slope of the tangent line at c, as 
given by the derivative.

Although the mean-value theorem seemed obvious 
geometrically, proving the result without appeal to dia-
grams involved a deep examination of the properties of 
real numbers and continuous functions. Other mean-value 
theorems can be obtained from this basic one by letting 
f(x) be some special function.

measure

In mathematics, measure is a generalization of the con-
cepts of length and area to arbitrary sets of points not 
composed of intervals or rectangles. Abstractly, a measure 
is any rule for associating with a set a number that retains 
the ordinary measurement properties of always being 
nonnegative and such that the sum of the parts equals the 
whole. More formally, the measure of the union of two 
nonoverlapping sets is equal to the sum of their individual 
measures. The measure of an elementary set composed 
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of a finite number of nonoverlapping rectangles can be 
defined simply as the sum of their areas found in the usual 
manner. (And analogously, the measure of a finite union of 
nonoverlapping intervals is the sum of their lengths.)

For other sets, such as curved regions or vaporous 
regions with missing points, the concepts of outer and 
inner measure must first be defined. The outer measure of 
a set is the number that is the lower bound of the area of all 
elementary rectangular sets containing the given set, while 
the inner measure of a set is the upper bound of the areas of 
all such sets contained in the region. If the inner and outer 
measures of a set are equal, this number is called its Jordan 
measure, and the set is said to be Jordan measurable.

Unfortunately, many important sets are not Jordan 
measurable. For example, the set of rational numbers 
from zero to one does not have a Jordan measure because 
there does not exist a covering composed of a finite collec-
tion of intervals with a greatest lower bound (ever smaller 
intervals can always be chosen). It has a measure, how-
ever, that can be found in the following way: The rational 
numbers are countable (can be put in a one-to-one rela-
tionship with the counting numbers 1, 2, 3,…), and each 
successive number can be covered by intervals of length 
1/8, 1/16, 1/32,…, the total sum of which is 1/4, calculated 
as the sum of the infinite geometric series. The rational 
numbers could also be covered by intervals of lengths 
1/16, 1/32, 1/64,…, the total sum of which is 1/8. By start-
ing with smaller and smaller intervals, the total length of 
intervals covering the rationals can be reduced to smaller 
and smaller values that approach the lower bound of zero, 
and so the outer measure is 0. The inner measure is always 
less than or equal to the outer measure, so it must also be 
0. Therefore, although the set of rational numbers is infi-
nite, their measure is 0. In contrast, the irrational numbers 
from zero to one have a measure equal to 1. Hence, the 
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measure of the irrational numbers is equal to the mea-
sure of the real numbers. In other words, “almost all” real 
numbers are irrational numbers. The concept of measure 
based on countably infinite collections of rectangles is 
called Lebesgue measure.

minimum

The minimum is the point at which the value of a function 
is less than or equal to the value at any nearby point (local 
minimum) or at any point (absolute minimum).

newton and infinite series

Isaac Newton’s calculus actually began in 1665 with his dis-
covery of the general binomial series (1 + x)n = 1 + nx + n(n − 1)⁄2! · 
x2 + n(n − 1)(n − 2)⁄3! · x3 + · · · for arbitrary rational values of n. With 
this formula he was able to find infinite series for many 
algebraic functions (functions y of x that satisfy a poly-
nomial equation p(x, y) = 0). For example, (1 + x)−1 = 1 − x + 
x2 − x3 + x4 − x5 +· · · and 1⁄√(1 − x2) = (1 + (−x2))−1/2 = 1 + 1 ⁄2 · x2 + 1·3 ⁄2·4 · 
x4+ 1·3·5 ⁄2·4·6 · x6 + · · · .

In turn, this led Newton to infinite series for inte-
grals of algebraic functions. For example, he obtained the 
logarithm by integrating the powers of x in the series for 
(1 + x)−1 one by one, log (1 + x) = x − x2⁄2 + x3⁄3 − x4⁄4 + x5⁄5 − x6⁄6 + 
· · · , and the inverse sine series by integrating the series for 
1/√(1 − x2), sin−1(x) = x + 1⁄2 · x3⁄3 + 1·3⁄2·4 · x5⁄5 + 1·3·5 ⁄2·4·6 · x7⁄7 + · · · .

Finally, Newton crowned this virtuoso performance by 
calculating the inverse series for x as a series in powers of 
y = log (x) and y = sin−1 (x), respectively, finding the expo-
nential series x = 1 + y⁄1! + y2⁄2! + y3⁄3! + y4⁄4! + · · · and the sine series 
x = y − y3⁄3!  + y5⁄5! − y7⁄7! + · · · .

Note that the only differentiation and integration 
Newton needed were for powers of x, and the real work 
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involved algebraic calculation with infinite series. Indeed, 
Newton saw calculus as the algebraic analogue of arith-
metic with infinite decimals, and he wrote in his Tractatus 
de Methodis Serierum et Fluxionum (1671; “Treatise on the 
Method of Series and Fluxions”):

I am amazed that it has occurred to no one (if you except N. 
Mercator and his quadrature of the hyperbola) to fit the doc-
trine recently established for decimal numbers to variables, 
especially since the way is then open to more striking conse-
quences. For since this doctrine in species has the same 
relationship to Algebra that the doctrine of decimal numbers 
has to common Arithmetic, its operations of Addition, 
Subtraction, Multiplication, Division and Root extraction 
may be easily learnt from the latter’s.

For Newton, such computations were the epitome of calcu-
lus. They may be found in his Tractatus and the manuscript 
De Analysi per Aequationes Numero Terminorum Infinitas 
(1669; “On Analysis by Equations with an Infinite Number 
of Terms”), which he was stung into writing after his loga-
rithmic series was rediscovered and published by Nicolaus 
Mercator. Newton offered the much more comprehensive 
Tractatus and De Analysi to Cambridge University Press 
and the Royal Society, but—amazing as it seems today—
they were rejected. This experience left Newton reluctant 
to publish anything, which of course only hurt him in his 
priority dispute with Gottfried Wilhelm Leibniz.

ordinary differential 
equation

An ordinary differential equation relates a function f of 
one variable to its derivatives. (The adjective ordinary 
here refers to those differential equations involving one 
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variable, as distinguished from such equations involving 
several variables, called partial differential equations.)

The derivative, written f ′ or df/dx, of a function f 
expresses its rate of change at each point—that is, how fast 
the value of the function increases or decreases as the value 
of the variable increases or decreases. For the function 
f = ax + b (representing a straight line), the rate of change is 
simply its slope, expressed as f ′ = a. For other functions, the 
rate of change varies along the curve of the function, and 
the precise way of defining and calculating it is the subject 
of differential calculus. In general, the derivative of a func-
tion is again a function, and therefore the derivative of the 
derivative can also be calculated, ( f ′)′ or simply f ″ or d2f/dx2, 
and is called the second-order derivative of the original 
function. Higher-order derivatives can be similarly defined.

The order of a differential equation is defined to 
be that of the highest order derivative it contains. The 
degree of a differential equation is defined as the power 
to which the highest order derivative is raised. The equa-
tion (f ″′ )2 + (f ″)4 + f = x is an example of a second-degree, 
third-order differential equation. A first-degree equation 
is called linear if the function and all its derivatives occur 
to the first power and if the coefficient of each derivative 
in the equation involves only the independent variable x.

Some equations, such as f ′= x2, can be solved by merely 
recalling which function has a derivative that will satisfy 
the equation, but in most cases the solution is not obvious 
by inspection, and the subject of differential equations 
consists partly of classifying the numerous types of equa-
tions that can be solved by various techniques.

orthogonal trajectory

The family of curves that intersect another family of 
curves at right angles is called orthogonal trajectories. 
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Such families of mutually orthogonal curves occur in 
such branches of physics as electrostatics, in which the 
lines of force and the lines of constant potential are 
orthogonal. They also occur in hydrodynamics, in which 
the streamlines and the lines of constant velocity are 
orthogonal.

In two dimensions, a family of curves is given by the 
function y = f(x, k), in which the value of k, called the param-
eter, determines the particular member of the family. Two 
lines are orthogonal, or perpendicular, if their slopes are 
negative reciprocals of each other. Curves are said to be 
perpendicular if their slopes at the point of intersection 
are perpendicular. Depending on context, the slope may 
also be called the tangent or the derivative, and it can be 
found using differential calculus. This derivative, written 
as y′, will also be a function of x and k. Solving the origi-
nal equation for k in terms of x and y and substituting this 
expression into the equation for y′ will give y′ in terms of x 
and y, as some function y′ = g(x, y).

A member of the family of orthogonal trajectories, y1, 
must have a slope satisfying y′1 = −1/y′ = −1/g(x, y), resulting 
in a differential equation that will have the orthogonal 
trajectory as its solution. To illustrate, if y = kx2 represents 
a family of parabolas, then y′ = 2kx, and, because k = y/x2, 
a substitution of the latter in the former yields y′ = 2y/x. 
Solving this for the orthogonal curve gives the solution 
y2 + (x2/2) = k, which represents a family of ellipses orthogo-
nal to the family of parabolas.

paraBolic equation

A parabolic equation is any of a class of partial differential 
equations arising in the mathematical analysis of diffu-
sion phenomena, as in the heating of a slab. The simplest 
such equation in one dimension, uxx = ut, governs the 
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temperature distribution at the various points along a thin 
rod from moment to moment. The solutions to even this 
simple problem are complicated, but they are constructed 
largely from a function called the fundamental solu-
tion of the equation, given by an exponential function, 
exp [(−x2/4t)/t1/2]. To determine the complete solution to 
this type of problem, the initial temperature distribution 
along the rod and the manner in which the temperature at 
the ends of the rod is changing must also be known. These 
additional conditions are called initial values and bound-
ary values, respectively, and together are sometimes called 
auxiliary conditions.

In the analogous two- and three-dimensional problems, 
the initial temperature distribution throughout the region 
must be known, as well as the temperature distribution 
along the boundary from moment to moment. The differ-
ential equation in two dimensions is, in the simplest case, 
uxx + uyy = ut, with an additional uzz term added for the three-
dimensional case. These equations are appropriate only if 
the medium is of uniform composition throughout, while, 
for problems of nonuniform composition or for some 
other diffusion-type problems, more complicated equa-
tions may arise. These equations are also called parabolic 
in the given region if they can be written in the simpler 
form described above by using a different coordinate 
system. An equation in one dimension the higher-order 
terms of which are au xx + buxt + cutt can be so transformed if 
b2 − 4ac = 0. If the coefficients a, b, c depend on the values 
of x, the equation will be parabolic in a region if b2 − 4ac = 0 
at each point of the region.

partial differential equation

A partial differential equation relates a function of sev-
eral variables to its partial derivatives. A partial derivative 
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of a function of several variables expresses how fast the 
function changes when one of its variables is changed, the 
others being held constant (compare ordinary differential 
equation). The partial derivative of a function is again a 
function, and, if f(x, y) denotes the original function of 
the variables x and y, the partial derivative with respect to 
x—i.e., when only x is allowed to vary—is typically writ-
ten as fx(x, y) or ∂f/∂x. The operation of finding a partial 
derivative can be applied to a function that is itself a par-
tial derivative of another function to get what is called a 
second-order partial derivative. For example, taking the 
partial derivative of fx(x, y) with respect to y produces a 
new function fxy(x, y), or ∂2f/∂y∂x. The order and degree of 
partial differential equations are defined the same as for 
ordinary differential equations.

In general, partial differential equations are difficult 
to solve, but techniques have been developed for simpler 
classes of equations called linear, and for classes known 
loosely as “almost” linear, in which all derivatives of an 
order higher than one occur to the first power and their 
coefficients involve only the independent variables.

Many physically important partial differential equa-
tions are second-order and linear. For example:

• uxx + uyy = 0 (two-dimensional Laplace equation)
• uxx = ut (one-dimensional heat equation)
• uxx − uyy = 0 (one-dimensional wave equation)

The behaviour of such an equation depends heavily 
on the coefficients a, b, and c of auxx + buxy + cuyy. They are 
called elliptic, parabolic, or hyperbolic equations accord-
ing as b2 − 4ac < 0, b2 − 4ac = 0, or b2 − 4ac > 0, respectively. 
Thus, the Laplace equation is elliptic, the heat equation is 
parabolic, and the wave equation is hyperbolic.
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planimeter

The planimeter is a mathematical instrument for directly 
measuring the area bounded by an irregular curve, and 
hence the value of a definite integral.

The first such instrument, employing a disk-and-
wheel principle to integrate, was invented in 1814 by J.H. 
Hermann, a Bavarian engineer. Improved mechanisms 
were invented by the British mathematical physicist 
James Clerk Maxwell (1855) and the Scottish engineer James 
Thomson (1876). So far as is known, Maxwell never actually 
built a working model of his invention, which he called a 
platometer, but Thomson’s principle was not only applied 
in planimeters but adapted by his brother, the physicist 
William Thomson (later 1st Baron Kelvin), for a machine 
used in harmonic analysis of tides. A practical, inexpensive 
polar planimeter was invented by the Swiss mathemati-
cian Jacob Amsler about 1854. It consists of a pole arm, or 
bar, which has a weight at one end, and a tracer arm, the 
end of which has a point that the operator guides around 
the boundary of the area in question. Both arms rest in a 
carriage that moves as the tracer arm is moved. A vernier 
wheel within the carriage provides directly the area that 
is measured, calibration of vernier and area units being 
undertaken at the outset.

power series

A power series is an infinite series that can be thought of 
as a polynomial with an infinite number of terms, such as 
1 + x + x2 + x3 +· · ·. Usually, a given power series will con-
verge (that is, approach a finite sum) for all values of 
x within a certain interval around zero—in particular, 
whenever the absolute value of x is less than some positive 
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number r, known as the radius of convergence. Outside 
of this interval the series diverges (is infinite), while the 
series may converge or diverge when x = ± r. The radius 
of convergence can often be determined by a version of 
the ratio test for power series: given a general power series 
a0 + a1x + a2x2 +· · ·, in which the coefficients are known, the 
radius of convergence is equal to the limit of the ratio of 
successive coefficients. Symbolically, the series will con-
verge for all values of x such that

For instance, the infinite series 1 + x + x2 + x3 +· · · has a 
radius of convergence of 1 (all the coefficients are 1)—that 
is, it converges for all −1 < x < 1—and within that interval 
the infinite series is equal to 1/(1 − x). Applying the ratio test 
to the series 1 + x/1! + x2/2! + x3/3! +· · · (in which the factorial 
notation n! means the product of the counting numbers 
from 1 to n) gives a radius of convergence of

so that the series converges for any value of x.
Most functions can be represented by a power series 

in some interval. Although a series may converge for all 
values of x, the convergence may be so slow for some val-
ues that using it to approximate a function will require 
calculating too many terms to make it useful. Instead of 
powers of x, sometimes a much faster convergence occurs 
for powers of (x − c), where c is some value near the desired 
value of x. Power series have also been used for calculating 
constants such as π and the natural logarithm base e and 
for solving differential equations.

.
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quadrature

The process of determining the area of a plane geometric 
figure by dividing it into a collection of shapes of known 
area (usually rectangles) and then finding the limit (as the 
divisions become ever finer) of the sum of these areas is 
called quadrature. When this process is performed with 
solid figures to find volume, the process is called cubature. 
A similar process called rectification is used in deter-
mining the length of a curve. The curve is divided into 
a sequence of straight line segments of known length. 
Because the definite integral of a function determines the 
area under its curve, integration is still sometimes referred 
to as quadrature.

separation of variaBles

One of the oldest and most widely used techniques for 
solving some types of partial differential equations is 
separation of variables. A partial differential equation 
is called linear if the unknown function and its deriva-
tives have no exponent greater than one and there are no 
cross-terms—i.e., terms such as ff ′ or f ′f ′′ in which the 
function or its derivatives appear more than once. An 
equation is called homogeneous if each term contains the 
function or one of its derivatives. For example, the equa-
tion f′ + f 2 = 0 is homogeneous but not linear, f ′ + x2 = 0 is 
linear but not homogeneous, and fxx + fyy = 0 is both homo-
geneous and linear.

If a homogeneous linear equation in two variables 
has a solution f(x, y) that consists of a product of fac-
tors g(x) and h(y), each involving only a single variable, 
the solution of the equation can sometimes be found 
by substituting the product of these unknown factors 
in place of the unknown composite function, obtaining 
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in some cases an ordinary differential equation for each 
variable. For example, if f(x, y) is to satisfy the equation 
fxx + fyy = 0, then by substituting g(x)h(y) for f(x, y) the equa-
tion becomes gxx h + g hyy = 0, or −gxx/g = hyy/h. Because the 
left side of the latter equation depends only on the vari-
able x and the right side only on y, the two sides can be 
equal only if they are both constant. Therefore, −gxx/g = c, 
or gxx + cg = 0, which is an ordinary differential equation in 
one variable and which has the solutions g = a sin (xc1/2) and 
g = a cos (xc1/2). In a similar manner, hyy/h = c, and h = e±yc1/2. 
Therefore, f = gh = ae±yc1/2 sin (xc1/2)and ae±yc1/2 sin (xc1/2)are solu-
tions of the original equation fxx + fyy = 0. The constants a 
and c are arbitrary and will depend upon other auxiliary 
conditions (boundary and initial values) in the physical 
situation that the solution to the equation will have to 
satisfy. A sum of terms such as ae±yc1⁄2 sin (xc1⁄2) with differ-
ent constants a and c will also satisfy the given differential 
equation, and, if the sum of an infinite number of terms is 
taken (called a Fourier series), solutions can be found that 
will satisfy a wider variety of auxiliary conditions, giving 
rise to the subject known as Fourier analysis, or harmonic 
analysis. The method of separation of variables can also be 
applied to some equations with variable coefficients, such 
as fxx + x2fy = 0, and to higher-order equations and equa-
tions involving more variables.

singular solution

The singular solution of a differential equation cannot be 
obtained from the general solution gotten by the usual 
method of solving the differential equation. When a dif-
ferential equation is solved, a general solution consisting 
of a family of curves is obtained. For example, (y′)2 = 4y has 
the general solution y = (x + c)2, which is a family of parab-
olas. The line y = 0 is also a solution of the differential 
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equation, but it is not a member of the family constituting 
the general solution. The singular solution is related to the 
general solution by its being what is called the envelope of 
that family of curves representing the general solution. An 
envelope is defined as the curve that is tangent to a given 
family of curves. If the singular solution is an envelope, 
it can be found from the general solution by solving the 
maximum (or minimum) problem of finding the value of 
the parameter c for which y has a maximum (or minimum) 
value for a fixed x, and then substituting this value for c 
back into the general solution. In the example given, y has 
its minimum value for each x when c = -x, giving the singu-
lar solution as indicated.

singularity

In a function of the complex variable z, a point is called a 
singularity if the function is not analytic there (that is, the 
function cannot be expressed as an infinite series in powers 
of z) although, at points arbitrarily close to the singularity, 
the function may be analytic, in which case it is called an 
isolated singularity. In general, because a function behaves 
in an anomalous manner at singular points, singularities 
must be treated separately when analyzing the function, 
or mathematical model, in which they appear.

For example, the function f (z) = ez/z is analytic 
throughout the complex plane—for all values of z—
except at the point z = 0, where the series expansion is 
not defined because it contains the term 1/z. The series 
is 1/z + 1 + z/2 + z2/6 +· · ·+ zn/(n+1)! +· · · where the factorial 
symbol (k!) indicates the product of the integers from k 
down to 1. When the function is bounded in a neighbour-
hood around a singularity, the function can be redefined 
at the point to remove it. Hence it is known as a remov-
able singularity. In contrast, the above function tends to 
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infinity as z approaches 0. Thus, it is not bounded and the 
singularity is not removable (in this case, it is known as a 
simple pole).

special function

A special function is any of a class of mathematical func-
tions that arise in the solution of various classical problems 
of physics. These problems generally involve the flow of 
electromagnetic, acoustic, or thermal energy. Different 
scientists might not completely agree on which functions 
are to be included among the special functions, although 
there would certainly be very substantial overlap.

At first glance, the physical problems mentioned above 
seem to be very limited in scope. From a mathematical 
point of view, however, different representations have to 
be sought, depending on the configuration of the physi-
cal system for which these problems are to be solved. 
For example, in studying propagation of heat in a metal-
lic bar, one could consider a bar with a rectangular cross 
section, a round cross section, an elliptical cross section, 
or even more-complicated cross sections. The bar might 
be straight or curved. Every one of these situations, while 
dealing with the same type of physical problem, leads to 
somewhat different mathematical equations.

The equations to be solved are partial differential 
equations. To apprehend how these equations come 
about, one can consider a straight rod along which there is 
a uniform flow of heat. Let u(x, t) denote the temperature 
of the rod at time t and location x, and let q(x, t) denote the 
rate of heat flow. The expression ∂q/∂x denotes the rate at 
which the rate of heat flow changes per unit length and 
therefore measures the rate at which heat is accumulating 
at a given point x at time t. If heat is accumulating, the 
temperature at that point is rising, and the rate is denoted 
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by ∂u/∂t. The principle of conservation of energy leads 
to ∂q/∂x = k(∂u/∂t), where k is the specific heat of the rod. 
This means that the rate at which heat is accumulating at 
a point is proportional to the rate at which the tempera-
ture is increasing. A second relationship between q and u is 
obtained from Newton’s law of cooling, which states that 
q = K(∂u/∂x). The latter is a mathematical way of assert-
ing that the steeper the temperature gradient (the rate 
of change of temperature per unit length), the higher the 
rate of heat flow. Elimination of q between these equa-
tions leads to ∂2u/∂x2 = (k/K)(∂u/∂t), the partial differential 
equation for one-dimensional heat flow.

The partial differential equation for heat flow in three 
dimensions takes the form ∂2u/∂x 2 + ∂2u/∂y2 + ∂2u/∂z2 = (k/K)
(∂u/∂t). The latter equation is often written ∇2u = (k/K)
(∂u/∂t), where the symbol ∇, called del or nabla, is known 
as the Laplace operator. ∇ also enters the partial differ-
ential equation dealing with wave-propagation problems, 
which has the form ∇2u = (1/c2)(∂2u/∂t2), where c is the speed 
at which the wave propagates.

Partial differential equations are harder to solve than 
ordinary differential equations, but the partial differen-
tial equations associated with wave propagation and heat 
flow can be reduced to a system of ordinary differential 
equations through a process known as separation of vari-
ables. These ordinary differential equations depend on 
the choice of coordinate system, which in turn is influ-
enced by the physical configuration of the problem. The 
solutions of these ordinary differential equations form the 
majority of the special functions of mathematical physics.

For example, in solving the equations of heat flow or 
wave propagation in cylindrical coordinates, the method 
of separation of variables leads to Bessel’s differential 
equation, a solution of which is the Bessel function, 
denoted by Jn(x).
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Among the many other special functions that satisfy 
second-order differential equations are the spherical har-
monics (of which the Legendre polynomials are a special 
case), the Tchebychev polynomials, the Hermite polyno-
mials, the Jacobi polynomials, the Laguerre polynomials, 
the Whittaker functions, and the parabolic cylinder func-
tions. As with the Bessel functions, one can study their 
infinite series, recursion formulas, generating functions, 
asymptotic series, integral representations, and other 
properties. Attempts have been made to unify this rich 
topic, but not one has been completely successful. In spite 
of the many similarities among these functions, each has 
some unique properties that must be studied separately. 
But some relationships can be developed by introducing 
yet another special function, the hypergeometric function, 
which satisfies the differential equation z(1 − z)d2y/dx2 + 
[c − (a + b + 1)z] dy/dx − aby = 0. Some of the special functions 
can be expressed in terms of the hypergeometric function.

While it is true, both historically and practically, that 
the special functions and their applications arise primarily 
in mathematical physics, they do have many other uses in 
both pure and applied mathematics. Bessel functions are 
useful in solving certain types of random-walk problems. 
They also find application in the theory of numbers. The 
hypergeometric functions are useful in constructing so-
called conformal mappings of polygonal regions whose 
sides are circular arcs.

spiral

A spiral is a plane curve that, in general, winds around a 
point while moving ever farther from the point. Many 
kinds of spiral are known, the first dating from the days 
of ancient Greece. The curves are observed in nature, and 
human beings have used them in machines and in ornament, 
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notably architectural—for example, the whorl in an Ionic 
capital. The two most famous spirals are described below.

Although Greek mathematician Archimedes did not 
discover the spiral that bears his name, he did employ it 
in his On Spirals (c. 225 BCE) to square the circle and tri-
sect an angle. The equation of the spiral of Archimedes is 
r = aθ, in which a is a constant, r is the length of the radius 
from the centre, or beginning, of the spiral, and θ is the 
angular position (amount of rotation) of the radius. Like 
the grooves in a phonograph record, the distance between 
successive turns of the spiral is a constant—2πa, if θ is 
measured in radians.

The equiangular, or logarithmic, spiral was discovered 
by the French scientist René Descartes in 1638. In 1692 
the Swiss mathematician Jakob Bernoulli named it spira 
mirabilis (“miracle spiral”) for its mathematical properties; 
it is carved on his tomb. The general equation of the loga-
rithmic spiral is r = aeθ cot b, in which r is the radius of each 
turn of the spiral, a and b are constants that depend on the 

particular spiral, θ is 
the angle of rotation as 
the curve spirals, and e 
is the base of the natu-
ral logarithm. Whereas 
successive turns of the 
spiral of Archimedes 
are equally spaced, 
the distance between 
successive turns of 
the logarithmic spiral 
increases in a geomet-
ric progression (such as 
1, 2, 4, 8, …). Among its 
other interesting prop-
erties, every ray from 

Section of pearly, or chambered, nautilus 
(Nautilus pomphius) with its naturally 
spiral-shaped shell. Courtesy of the 
American Museum of Natural History, 
New York
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its centre intersects every turn of the spiral at a constant 
angle (equiangular), represented in the equation by b. Also, 
for b = π/2 the radius reduces to the constant a—in other 
words, to a circle of radius a. This approximate curve is 
observed in spider webs and, to a greater degree of accu-
racy, in the chambered nautilus, and in certain flowers.

staBility

The condition in which a slight disturbance in a system 
does not produce too disrupting an effect on that system 
is called stability. In terms of the solution of a differential 
equation, a function f(x) is said to be stable if any other 
solution of the equation that starts out sufficiently close 
to it when x = 0 remains close to it for succeeding values of 
x. If the difference between the solutions approaches zero 
as x increases, the solution is called asymptotically stable. 
If a solution does not have either of these properties, it is 
called unstable.

For example, the solution y = CE-x of the equation 
y′ = -y is asymptotically stable, because the difference of 
any two solutions c1e-x and c2e-x is (c1 - c2)e-x, which always 
approaches zero as x increases. The solution y = cex of the 
equation y′ = y, on the other hand, is unstable, because 
the difference of any two solutions is (c1 - c2)ex, which 
increases without bound as x increases. A given equation 
can have both stable and unstable solutions. For example, 
the equation y′ = -y(1 - y)(2 - y) has the solutions y = 1, y = 0, 
y = 2, y = 1 + (1 + c2e-2x)-1/2, and y = 1 - (1 + c2e-2x)-1/2. All these solu-
tions except y = 1 are stable because they all approach the 
lines y = 0 or y = 2 as x increases for any values of c that allow 
the solutions to start out close together. The solution y = 1 
is unstable because the difference between this solution 
and other nearby ones is (1 + c2e-2x)-1/2, which increases to 
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1 as x increases, no matter how close it is initially to the 
solution y = 1.

Stability of solutions is important in physical problems 
because if slight deviations from the mathematical model 
caused by unavoidable errors in measurement do not 
have a correspondingly slight effect on the solution, the 
mathematical equations describing the problem will not 
accurately predict the future outcome. Thus, one of the 
difficulties in predicting population growth is the fact that 
it is governed by the equation y = axce, which is an unstable 
solution of the equation y′ = ay. Relatively slight errors in 
the initial population count, c, or in the breeding rate, a, 
will cause quite large errors in prediction, even if no dis-
turbing influences occur.

sturm-liouville proBlem

The Sturm-Liouville problem, or eigenvalue problem, 
is a certain class of partial differential equations (PDEs) 
subject to extra constraints, known as boundary values, 
on the solutions. Such equations are common in both 
classical physics (e.g., thermal conduction) and quantum 
mechanics (e.g., Schrödinger equation) to describe pro-
cesses where some external value (boundary value) is held 
constant while the system of interest transmits some form 
of energy.

In the mid-1830s the French mathematicians Charles-
François Sturm and Joseph Liouville independently 
worked on the problem of heat conduction through a 
metal bar, in the process developing techniques for solv-
ing a large class of PDEs, the simplest of which take the 
form [p(x)y′]′ + [q(x) − λr(x)]y = 0 where y is some physical 
quantity (or the quantum mechanical wave function) and λ 
is a parameter, or eigenvalue, that constrains the equation 
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so that y satisfies the boundary values at the endpoints of 
the interval over which the variable x ranges. If the func-
tions p, q, and r satisfy suitable conditions, the equation 
will have a family of solutions, called eigenfunctions, cor-
responding to the eigenvalue solutions.

For the more-complicated nonhomogeneous case in 
which the right side of the above equation is a function, 
f(x), rather than zero, the eigenvalues of the corresponding 
homogeneous equation can be compared with the eigen-
values of the original equation. If these values are different, 
the problem will have a unique solution. On the other 
hand, if one of these eigenvalues matches, the problem 
will have either no solution or a whole family of solutions, 
depending on the properties of the function f(x).

taylor series

The Taylor series is the expression of a function f—
for which the derivatives of all orders exist—at a point 
a in the domain of f in the form of the power series 
∑∞

n = 0  f (n) (a) (z − a)n/n! in which Σ denotes the addition of 
each element in the series as n ranges from zero (0) to 
infinity (∞), f(n) denotes the nth derivative of f, and n! is the 
standard factorial function. The series is named for the 
English mathematician Brook Taylor. If a = 0 the series is 
called a Maclaurin series, after the Scottish mathemati-
cian Colin Maclaurin.

variation of parameters

The variation of parameters is a general method for finding 
a particular solution of a differential equation by replacing 
the constants in the solution of a related (homogeneous) 
equation by functions and determining these functions so 
that the original differential equation will be satisfied.
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To illustrate the method, suppose it is desired to find a 
particular solution of the equation y″ + p(x)y′ + q(x)y = g(x).
To use this method, it is necessary first to know the general 
solution of the corresponding homogeneous equation—
i.e., the related equation in which the right-hand side is 
zero. If y1(x) and y2(x) are two distinct solutions of the 
equation, then any combination ay1(x) + by2(x)will also be 
a solution, called the general solution, for any constants a 
and b.

The variation of parameters consists of replacing the 
constants a and b by functions u1(x) and u2(x) and deter-
mining what these functions must be to satisfy the original 
nonhomogeneous equation. After some manipulations, it 
can be shown that if the functions u1(x) and u2(x) satisfy the 
equations u′1y1 + u′2 y2 = 0 and u1′y1′ + u2′y2′ = g,then u1 y1 + u2 y2 
will satisfy the original differential equation. These last 
two equations can be solved to give u1′ = −y2 g/(y1 y2′ − y1′y2) 
and u2′ = y1g/(y1 y2′ − y1′y2). These last equations either will 
determine u1 and u2 or else will serve as a starting point for 
finding an approximate solution.
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axiom  A statement accepted as true as the basis for argu-
ment or inference; established rule or principle, or 
self-evident truth.

brachistochrone  A cycloid, or the curve of fastest 
descent for a body moving from one point, and 
restricted to moving on the curve and assuming there 
is no gravity or other force acting on it, to a second 
point. 

complex number  Number made up of a real number 
and an imaginary one. It often takes the form of a+bi, 
where a and b are real numbers and i is imaginary 
(where i2= -1).

conformal  Having to do with a function that preserves 
angles, or leaves the size of the angle between corre-
sponding curves unchanged. 

derivative  The limit of the ratio of the change in a func-
tion to the corresponding change in its independent 
variable as the latter change approaches zero. 

dynamical systems theory  This theory is part of 
applied mathematics and is used to describe the 
behaviour of complex dynamical systems, such as the 
fl ow of water in a pipe or the number of fi sh in a pond 
in a given season. It helps describe math rules where 
any object in a specifi c space is dependent on time. 

factorial  The product of all the positive integers from 1 
to n, denoted by the symbol n!.

heuristic  Involving or serving as an aid to learning, 
discovery, or problem-solving by experimental and 
especially trial-and-error methods. 
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hypergeometric series  A probability function that gives 
the probability of obtaining exactly x elements of one 
kind and n – x of another if n elements are chosen at 
random without replacement from a finite population 
containing N elements.

imaginary number  A complex number, such as 2 + 3i, 
in which the coefficient of the imaginary unit is  
not zero. 

integral  The area under the graph of a function over 
some defined interval or a new function of which the 
derivative is the original function.

irrational number  A number` that can be expressed as 
an infinite decimal with no set of consecutive dig-
its repeating itself indefinitely and that cannot be 
expressed as the quotient of two integers. 

isocline  Lines that indicate an equality of inclination 
or slope. 

logarithm  The exponent that indicates the power to 
which a number is raised to produce a given number.

manifold  A topological space such that every point has 
a neighbourhood which is homeomorphic (or able to 
be mapped one-to-one between sets so both the func-
tion and its inverse are continuous) to the interior of 
a sphere in Euclidean space of the same number of 
dimensions.

monad  An atom, or a unit.
natural number  The number one or any number 

obtained by adding 1 to this number one or  
more times. 

nutation  Oscillatory motion of the axis of a rotating 
body, much like the wobble of a spinning top. 

parabola  A plane curve generated by a point so that its 
distance from a fixed point is equal to its distance 
from a fixed line. 
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power series  An infinite series whose terms are suc-
cessive integral powers of a variable multiplied by 
constants. 

quotient  The number resulting from the division of one 
number by another. 

radian  A unit of plane angular measurement that is equal 
to the angle at the centre of a circle subtended by an 
arc equal in length to the radius. 

rational number  An integer or the quotient of two 
integers.

real number  One of the numbers that have no imagi-
nary parts and are made up of the rational and 
irrational numbers. 

secant  In trigonometry, this is the function that for an 
acute angle is the ratio of the hypotenuse of a right 
triangle of which the angle is considered part and the 
leg adjacent to the triangle. 

transcendental number  Number that is not the root of 
any algebraic equation with rational coefficients.
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mathematicians. T.W. Körner, Fourier Analysis (1988, reissued 
with corrections, 1989), is a clear and simple introduction 
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(1990, reprinted with corrections, 1997), an excellent 
textbook; and Lawrence W. Baggett, Functional Analysis: 
A Primer (1992), a thorough introduction, are suitable 
for advanced undergraduates. Stefan Hildebrandt and 
Anthony Tromba, The Parsimonious Universe: Shape and 
Form in the Natural World (1996), is a popular account of the 
classical problems in the calculus of variations—the iso-
perimetric problem, shortest paths, brachistochrone, least 
action, and soap films—with magnificent illustrations. U. 
Brechtken-Manderscheid, Introduction to the Calculus of 
Variations (1991; originally published in German, 1983), is 
an undergraduate text on the calculus of variations and its 
uses in science. Frank Morgan, Geometric Measure Theory: 
A Beginner’s Guide, 3rd ed. (2000), presents the Plateau 
problem from the modern geometric viewpoint, an excel-
lent introduction to global analysis as applied to a classic 
variational problem. Errett Bishop and Douglas Bridges, 
Constructive Analysis (1985), offers a fairly accessible intro-
duction to the ideas and methods of constructive analysis. 
Abraham Robinson, Non-Standard Analysis, rev. ed. (1974, 
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who made the field of nonstandard analysis respectable.
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