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7 Introduction 7

Numbers have frequently been called a universal 
language for their ability to transmit information 

across cultures. The scoreboard at an Olympic basketball 
game, for example, needs no translation no matter the 
number of languages spoken by the fans. When asked 
“What time is it?” in a foreign city, all a tourist must do is 
hold up her watch to provide the answer. For everything 
from sports to shopping to computer cryptography, 
numbers are fundamental to everyday life today. This book 
offers an overview of the development of numbers, their 
expression in mathematics and measurement, and profi les 
of visionaries who saw order amidst the numbers.

Like language, numbers arose along with human civili-
zation, and in turn helped civilization rise. Their use 
developed from people’s desires to count up their chickens 
and other important possessions and, perhaps, measure 
their humble dwelling. Most early number systems were 
based on the most handy counting device available—ten 
fi ngers—the inspiration for the decimal system that still 
dominates today. Notable exceptions to the base-10 
scheme formed in Mesopotamia where they established a 
base-60 system that still thrives in the measurement of 
time and angles and the base-20 system the Maya later 
developed in North America.

Increasing trade and commerce helped drive the need 
for numbers as people settled in towns and cities. At fi rst, 
people most likely scratched tallies on stones or put simple 
notches on a stick to count important objects. But soon, 
merchants, traders, and tax collectors in every budding 
civilization required better ways to manage their accounts. 

In a huge conceptual shift, numbers gradually evolved 
from concrete tools for counting and measuring to become 
abstract ideas in their own right. This shift in thinking 
began to appear in discrete notations for the numbers 
themselves. Symbols for specifi c numbers appear in Egypt 
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beginning in about 3400 BCE, in Mesopotamia about 400 
years after that, and in China around 1600 BCE. Number 
symbols appear in Crete beginning in about 1200 BCE. 
Like most useful ideas, this knowledge of numbers and 
mathematics flowed between cultures, regions, and conti-
nents as trade expanded, and also cross-pollinated with 
existing counting and number systems. 

Number symbols did not appear in India until later, 
about 300 BCE. But over the next 1,000 years, Indian 
scholars laid claim to three revolutionary ideas that ener-
gized the field of mathematics: 1) a more efficient 
notational system, 2) the place-value system, and 3) a func-
tioning concept of zero.

India was the primary source of the number notations 
1, 2, 3, 4, 5, 6, 7, 8, 9, and eventually 0, used almost univer-
sally today. These digits are commonly known as the 
Hindu-Arabic system, in part because the Arab-Muslim 
world greatly aided its dissemination.

Some mathematicians had already employed the 
notion of zero, but Indian scholars fully developed its 
conception and function. The existence and value of zero 
goes unquestioned today, but it was a high conceptual 
hurdle for early thinkers. They struggled with a symbol 
that could represent nothing and act as a placeholder for 
an empty value in the place-value system. 

Even while these fundamental concepts were being 
put forth, mathematicians had been making advances in 
understanding algebra and geometry. Pythagoras, accord-
ing to tradition, had hashed out his theorem regarding 
right triangles in the 6th century BCE. Euclid’s work 
around 300 BCE earned him the title of “Father of 
Geometry.” Diophantus of Alexandria, around 250 CE, 
expanded the understanding of algebra. Aryabhata I of 
India [5th century CE] explained quadratic equations, 
assembled a table of sines, and explored spherical 
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astronomy by means of plane trigonometry and spherical 
geometry—in verse couplets to aid memorization, no less.

Around 800 CE, the efforts of Muh.ammad ibn Mu-sa- 
al-Khwa-rizmı- helped summarize these centuries of 
mathematical developments. Two seminal works by this 
polymath, who lived in Baghdad, clarified, expanded, and 
fostered the spread of new ideas in mathematics. His 
Latinized name and the title of one of his works subse-
quently gave rise to the terms algorithm and algebra.

Up to this time, mathematics in Europe had lagged 
behind the centers of learning in Asia, the Middle East, 
and parts of the Mediterranean. A few Latin translations 
of al-Khwa-rizmı- had introduced the key concepts of the 
Hindu-Arabic numerals, place value, and zero. This trickle 
of new mathematical ideas turned into a spring with the 
1202 publication of Book of the Abacus by Italian Leonardo 
Pisano, also known as Fibonacci. It was the first European 
text to present the breadth of Indian and Arabic mathe-
matics. This jolt of sophistication accelerated the 
development of mathematics and science.

A new “universal language” of mathematics had now 
found general acceptance throughout much of the Old 
World. The innovation of the movable-type printing press 
in the mid-1400s added to the explosive spread of mathe-
matical and scientific knowledge. The demand for more 
accurate calculations and measurements for navigation 
and the physical sciences helped drive mathematical inno-
vation. For example, Scotsman John Napier (1550–1617) 
originated the concept of logarithms as an invaluable 
device for managing large, complex computations.

The exploration of numbers and mathematics has 
always tended toward the esoteric and at its cutting edge 
has grown increasingly intricate in the last 400 years. The 
study of numbers moved into a new phase when Pierre de 
Fermat (1601–1605) founded modern number theory, a 
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field concerned with properties of the positive integers 
such as 1, 2, and 3. Number theory is sometimes called 
“higher arithmetic” because of its emphasis on pure idea 
rather than practical applications. Fermat posed questions 
and identified issues that have shaped number theory ever 
since, but he wrote little and often did not publish proofs 
of his own ideas. Without the interest of other mathema-
ticians, who were more concerned with the exciting new 
discoveries in astronomy and geometry at that time, number 
theory languished until the prolific and influential Swiss 
mathematician Leonhard Euler (1707–83) reignited inter-
est in it. Euler published more than 1,000 pages of research 
on the subject, much of it proofs of Fermat, bringing num-
ber theory into the mainstream. A number of thinkers 
continued to develop the field through the 19th century.
The once esoteric world of number theory, which seemed 
to have no practical applications 400 years ago, now 
reaches into virtually every human activity and endeavor 
today. It seems to inch closer to a Pythagorean vision, as 
described by Aristotle more than two millennia ago: “The 
so-called Pythagoreans, who were the first to take up 
mathematics . . . fancied that the principles of mathematics 
were the principles of all things.”

The history of measurement follows a similar path to 
that of numbers and mathematics. Its value in commerce, 
engineering, construction, manufacturing, and science, as 
well as in personal and domestic activities is very difficult 
to overstate.

Measurement, at its base, is a process of comparing 
the known and the unknown. A tape measure provides a 
known measurement for length, useful for comparing 
with the unknown height of a toddler, for example. An 
accurate stopwatch ticks out a known quantity of time 
that can be compared to the unknown time it takes a 
sprinter to run 100 metres.
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Archeologists have found evidence of measuring 
practices from Mesopotamia but generally recognize the 
Egyptian cubit, developed around 3000 BCE, as the most 
common linear measurement in the ancient world. The 
cubit and other measuring standards began to work their 
way west from the Middle East and spread through trade 
and conquest, until they were ubiquitous in the ancient 
world. Originally, techniques encompassed four main 
measurements: mass (or weight), distance (or length), area, 
and volume. The variety of phenomena that we measure 
today has expanded beyond these original four, of course. 
They now include time, temperature, light, pressure, 
electricity, energy, and magnetism, as well as hybrids mea-
surements such as acceleration (distance over time) and 
force (mass times acceleration).

Like the relationship between numbers and fingers, 
early measurement tools and units were usually based on 
the body. The Egyptian cubit, for example, was originally 
based on the length between the elbow and outstretched 
fingertips. This rule of thumb was at some point standard-
ized into the royal cubit of 524 millimetres (20.62 inches). 
The remarkable symmetry of the Pyramids of Giza stands 
as proof of the accuracy of this measurement device, as 
well as a testament to the talents of its builders.

As trade and other interactions brought differing 
communities and cultures into contact, it benefited them 
to reach agreements on weights and measures. Such 
standards sought to guarantee a certain level of portability 
and reliability in commerce and technology, so that an 
amphora of wine (about 34 litres) in one Roman village 
met the expectations in another, at least in terms of vol-
ume. For this reason, societies and governments have long 
placed a premium on standardizing weights and measures. 
The role of the federal government in fixing the standard 
of weights and measures is even enshrined in the U.S. 

7 Introduction 7
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Constitution and merited mention in the first inaugural 
address of President George Washington.

An effective system of weights and measures depends 
on three principles. First, the system must have uniformity, 
that is, accurate and reliable standards of such measures as 
mass and length, for example, based on agreed-to units. 
Second, the system needs units, or recognized and 
accepted quantities with a shared terminology. Finally, the 
system must have standards, that is, physical embodiments 
of these units, such as the block of black granite—a royal 
cubit long—against which the ancient Egyptian craftsmen 
regularly checked their royal cubit sticks.

Historically, establishing a standardized system of 
weights and measures has been more easily proposed than 
instituted. People by nature are conservative when it 
comes to day-to-day practices, and planned measurement 
systems have always struggled with tradition and existing 
infrastructure that may have evolved over centuries. In 
early China, for instance, units of land area and other 
measurements varied from region to region and even from 
profession to profession. It took China’s first emperor, 
Shihuangdi, to impose regulations that set empire-wide 
standards for basic units in the 200s BCE. 

Often, major shifts in measurement systems require 
social and political upheaval to gain traction. That was the 
case with the metric system. The concept of a decimal-
based system of measurement had been imagined as early 
as the 17th century, due in part to the commercial and 
trade needs of an increasingly integrated Europe. 
Academics in Revolutionary France fleshed out the metric 
system in the late 1700s, and in 1799 it was officially 
adopted under the motto “For all people, for all time.” 
Napoleon’s subsequent conquests facilitated its rapid 
introduction across Europe. It took root and over the next 
150 years spread to most of the rest of the world.
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Today, the metric system—like the unified system of 
numbers and mathematics—provides the uniformity nec-
essary for a global economy and the scientific community’s 
broad collaborations across international and cultural 
boundaries. Only three countries—Myanmar (Burma), 
Liberia, and the United States—have not adopted the 
standard metric system, known as the International 
System of Units, as their official system of measurement. 
Still, metres, litres, and grams are the terms used in the vast 
majority of labs, factories, and classrooms in the world—a 
universal language indeed.

7 Introduction 7
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C H A P T E R  1
n U M B e R s

The notions of numbers and measurement appeared 
thousands of years ago. Early herders needed to know 

how many goats they had in their fl ocks. Early farmers 
needed to understand how much grain they had stored for 
the winter. When bartering, people needed to keep track 
of how many items or how much of a substance was traded. 
This volume presents the history and principles of these 
subjects.

      Just as the fi rst attempts at writing came long after the 
development of speech, so the fi rst efforts at the graphical 
representation of numbers came long after people had 
learned how to count. Probably the earliest way of keeping 
record of a count was by some tally system involving 
physical objects such as pebbles or sticks. Judging by the 
habits of indigenous peoples today as well as by the oldest 
remaining traces of written or sculptured records, the 
earliest numerals were simple notches in a stick, scratches 
on a stone, marks on a piece of pottery, and the like. Having 
no fi xed units of measure, no coins, no commerce beyond 
the rudest barter, no system of taxation, and no needs 
beyond those to sustain life, people had no necessity for 
written numerals until the beginning of what are called 
historical times. Vocal sounds were probably used to 
designate the number of objects in a small group long 
before there were separate symbols for the small numbers, 
and it seems likely that the sounds differed according to 
the kind of object being counted. The abstract notion of 
two, signifi ed orally by a sound independent of any par-
ticular objects, probably appeared very late. 
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Some ancient symbols for 1 and 10. Encyclopædia Britannica, Inc.

Numerals and numeral systems

Number Bases

When it became necessary to count frequently to numbers 
larger than 10 or so, the numeration had to be systematized 
and simplified; this was commonly done through use of a 
group unit or base, just as might be done today counting 
43 eggs as three dozen and seven. In fact, the earliest 
numerals of which there is a definite record were simple 
straight marks for the small numbers with some special 
form for 10. These symbols appeared in Egypt as early as 
3400 BCE and in Mesopotamia as early as 3000 BCE, long 
preceding the first known inscriptions containing numerals 
in China (c. 1600 BCE), Crete (c. 1200 BCE), and India (c. 
300 BCE). Some ancient symbols for 1 and 10 are given in 
the figure.
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The special position occupied by 10 stems from the 
number of human fingers, of course, and it is still evident in 
modern usage not only in the logical structure of the deci-
mal number system but in the English names for the 
numbers. Thus, eleven comes from Old English endleofan, 
literally meaning “[ten and] one left [over],” and twelve 
from twelf, meaning “two left;” the endings -teen and -ty 
both refer to ten, and hundred comes originally from a pre-
Greek term meaning “ten times [ten].”

It should not be inferred, however, that 10 is either the 
only possible base or the only one actually used. The pair 
system, in which the counting goes “one, two, two and 
one, two twos, two and two and one,” and so on, is found 
among the ethnologically oldest tribes of Australia, in many 
Papuan languages of the Torres Strait and the adjacent 
coast of New Guinea, among some African Pygmies, and 
in various South American tribes. The indigenous peoples 
of Tierra del Fuego and the South American continent use 
number systems with bases three and four. The quinary 
scale, or number system with base five, is very old, but in 
pure form it seems to be used at present only by speakers 
of Saraveca, a South American Arawakan language; else-
where it is combined with the decimal or the vigesimal 
system, where the base is 20. Similarly, the pure base six 
scale seems to occur only sparsely in northwest Africa 
and is otherwise combined with the duodecimal, or base 
12, system.

In the course of history, the decimal system finally over-
shadowed all others. Nevertheless, there are still many 
vestiges of other systems, chiefly in commercial and 
domestic units, where change always meets the resistance 
of tradition. Thus, 12 occurs as the number of inches in a 
foot, months in a year, ounces in a pound (troy weight or 
apothecaries’ weight), and twice 12 hours in a day, and both 
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the dozen and the gross measure by twelves. In English the 
base 20 occurs chiefly in the score (“Four score and seven 
years ago . . .”); in French it survives in the word quatre-
vingts (“four twenties”), for 80; other traces are found in 
ancient Celtic, Gaelic, Danish, and Welsh. The base 60 
still occurs in measurement of time and angles.

Numeral Systems

It appears that the primitive numerals were |, ||, |||, and so 
on, as found in Egypt and the Grecian lands, or −, =, =̄, and 
so on, as found in early records in East Asia, each going as 
far as the simple needs of people required. As life became 
more complicated, the need for group numbers became 
apparent, and it was only a small step from the simple 
system with names only for one and ten to the further 
naming of other special numbers. Sometimes this hap-
pened in a very unsystematic fashion; for example, the 
Yukaghirs of Siberia counted, “one, two, three, three and 
one, five, two threes, two threes and one, two fours, ten 
with one missing, ten.” Usually, however, a more regular 
system resulted, and most of these systems can be classi-
fied, at least roughly, according to the logical principles 
underlying them.

Simple Grouping Systems

In its pure form a simple grouping system is an assign-
ment of special names to the small numbers, the base b, 
and its powers b2, b3, and so on, up to a power bk large 
enough to represent all numbers actually required in 
use. The intermediate numbers are then formed by 
addition, each symbol being repeated the required num-
ber of times, just as 23 is written XXIII in Roman 
numerals.
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The earliest example of this kind of system is the 
scheme encountered in hieroglyphs, which the Egyptians 
used for writing on stone. (Two later Egyptian systems, the 
hieratic and demotic, which were used for writing on 
clay or papyrus, will be considered below; they are not 
simple grouping systems.) The number 258,458 written in 
hieroglyphics appears in the figure.

Numbers of this size actually occur in extant records 
concerning royal estates and may have been commonplace 
in the logistics and engineering of the great pyramids.

Cuneiform Numerals

Around Babylon, clay was abundant, and the people 
impressed their symbols in damp clay tablets before dry-
ing them in the sun or in a kiln, thus forming documents 
that were practically as permanent as stone. Because 
the pressure of the stylus gave a wedge-shaped symbol, the 
inscriptions are known as cuneiform, from the Latin cuneus 
(“wedge”) and forma (“shape”). The symbols could be made 
either with the pointed or the circular end (hence curvi-
linear writing) of the stylus, and for numbers up to 60 

Ancient Egyptians customarily wrote from right to left. Because they did not 
have a positional system, they needed separate symbols for each power of 10. 
Encyclopædia Britannica, Inc.

7 Numbers 7
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these symbols were used in the same way as the hiero-
glyphs, except that a subtractive symbol was also used. 
The figure

shows the number 258,458 in cuneiform.
The cuneiform and the curvilinear numerals occur 

together in some documents from about 3000 BCE. 
There seem to have been some conventions regarding 
their use: cuneiform was always used for the number of 
the year or the age of an animal, while wages already paid 
were written in curvilinear and wages due in cuneiform. 
For numbers larger than 60, the Babylonians used a mixed 
system, described below.

Greek Numerals

The Greeks had two important systems of numerals, 
besides the primitive plan of repeating single strokes, as in 
||| ||| for six, and one of these was again a simple grouping 
system. Their predecessors in culture—the Babylonians, 
Egyptians, and Phoenicians—had generally repeated the 
units up to 9, with a special symbol for 10, and so on. The 
early Greeks also repeated the units to 9 and probably had 
various symbols for 10. In Crete, where the early 

The number 258,458 expressed in the sexagesimal (base 60) system of the 
Babylonians and in cuneiform. Encyclopædia Britannica, Inc.



27

civilization was so much influenced by those of Phoenicia 
and Egypt, the symbol for 10 was −, a circle was used for 
100, and a rhombus for 1,000. Cyprus also used the hori-
zontal bar for 10, but the precise forms are of less 
importance than the fact that the grouping by tens, with 
special symbols for certain powers of 10, was characteristic 
of the early number systems of the Middle East.

The Greeks, who entered the field much later and 
were influenced in their alphabet by the Phoenicians, 
based their first elaborate system chiefly on the initial 
letters of the numeral names. This was a natural thing for 
all early civilizations, since the custom of writing out the 
names for large numbers was at first quite general, and 
the use of an initial by way of abbreviation of a word is 
universal. The Greek system of abbreviations, known 
today as Attic numerals, appears in the records of the 5th 
century BCE but was probably used much earlier.

Roman Numerals

The direct influence of Rome for such a long period, the 
superiority of its numeral system over any other simple 
one that had been known in Europe before about the 10th 
century, and the compelling force of tradition explain the 
strong position that the system maintained for nearly 
2,000 years in commerce, in scientific and theological 
literature, and in belles lettres. It had the great advantage 
that, for the mass of users, memorizing the values of only 
four letters was necessary—V, X, L, and C. Moreover, it 
was easier to see three in III than in 3 and to see nine in 
VIIII than in 9, and it was correspondingly easier to add 
numbers—the most basic arithmetic operation.

As in all such matters, the origin of these numerals is 
obscure, although the changes in their forms since the 3rd 
century BCE are well known. The theory of German his-
torian Theodor Mommsen (1850) has had wide acceptance. 
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Momson argued that the use of V for five is due to the fact 
that it is a kind of hieroglyph representing the open hand 
with its five fingers. Two of these V symbols, one inverted 
on the top of the other, would form an X, which eventually 
became the symbol for 10. Three of the other symbols, he 
asserted, were modifications of Greek letters not needed 
in the Etruscan and early Latin alphabet. These were Χ 
(chi) for 50, which later became the L; θ (theta) for 100, 
which later changed to C under the influence of the Latin 
word centum (“hundred”); and Φ (phi) for 1,000, which 
finally took the forms I and M. The last of these, the sym-
bol M, was most likely chosen because the word mille 
means “a thousand.”

The oldest noteworthy inscription containing numer-
als representing very large numbers is on the Columna 
Rostrata, a monument erected in the Roman Forum to com-
memorate a victory in 260 BCE over Carthage during the 
First Punic War. In this column a symbol for 100,000, which 
was an early form of (((I))), was repeated 23 times, making 
2,300,000. This illustrates not only the early Roman use of 
repeated symbols but also a custom that extended to mod-
ern times—that of using (I) for 1,000, ((I)) for 10,000, and 
(((I))) for 100,000, and ((((I)))) for 1,000,000. The symbol (I) 
for 1,000 frequently appears in various other forms, includ-
ing the cursive ∞. All these symbols persisted until long after 
printing became common. In the Middle Ages a bar (known 
as the vinculum or titulus) was placed over a number to 
multiply it by 1,000, but this use is not found in the Roman 
inscriptions. When the bar appeared in early manuscripts, 
it was merely for the purpose of distinguishing numerals 
from words. Also used in the Middle Ages were such forms 
as |X| or |X| for 1,000,000 and |M| for 100,000,000.

Of the later use of the numerals, a few of the special 
types are as follows:
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1.	  c∙lxiiij∙ccc∙l∙i for 164,351, Adelard of Bath (c. 1120)
2.	 II.DCCC.XIIII for 2,814, Jordanus 

Nemorarius (c. 1125)
3.	 M DCLVI for 1,656, in San Marco, Venice
4.	 cIɔ.Iɔ.Ic for 1,599, Leiden edition of the work 

of Martianus Capella (1599)
5.	 IIIIxx et huit for 88, a Paris treaty of 1388
6.	 four Cli.M for 451,000, Humphrey Baker’s 

The Well Spryng of Sciences Whiche Teacheth  
the Perfecte Woorke and Practise of  
Arithmeticke (1568)

7.	 vj.C for 600 and CCC.M for 300,000, Robert 
Recorde (c. 1542)

Item (1) represents the use of the vinculum; (2) represents 
the place value as it occasionally appears in Roman numerals 
(D represents 500); (3) illustrates the not infrequent use of D, 
like D, originally half of (I), the symbol for 1,000; (4) illus-
trates the persistence of the old Roman form for 1,000 
and 500 and the subtractive principle so rarely used by the 
Romans for a number like 99; (5) shows the use of quatre-
vingts for 80, commonly found in French manuscripts until 
the 17th century and occasionally later, the numbers often 
being written like iiijxx, vijxx, and so on; and (6) represents the 
coefficient method, “four C” meaning 400, a method often 
leading to forms like ijM or IIM for 2,000, as shown in (7).

The subtractive principle is seen in Hebrew number 
names, as well as in the occasional use of IV for 4 and IX 
for 9 in Roman inscriptions. The Romans also used unus de 
viginti (“one from twenty”) for 19 and duo de viginti (“two 
from twenty”) for 18, occasionally writing these numbers 
as XIX (or IXX) and IIXX, respectively. On the whole, 
however, the subtractive principle was little used in the 
numerals of the Classical period.
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Multiplicative Grouping Systems

In multiplicative systems, special names are given not only 
to 1, b, b2, and so on but also to the numbers 2, 3, . . ., b − 1; 
the symbols of this second set are then used in place of 
repetitions of the first set. Thus, if 1, 2, 3, . . ., 9 are desig-
nated in the usual way but 10, 100, and 1,000 are replaced 
by X, C, and M, respectively, then in a multiplicative 
grouping system one should write 7,392 as 7M3C9X2.

The principal example of this kind of notation is the 
Chinese numeral system, three variants of which are 
shown in the figure below.

The modern national and mercantile systems are posi-
tional systems, as described below, and use a circle for zero.

Ciphered Numeral Systems

In ciphered systems, names are given not only to 1 and the 
powers of the base b but also to the multiples of these 
powers. Thus, starting from the artificial example given 
above for a multiplicative grouping system, one can obtain a 
ciphered system if unrelated names are given to the numbers 
1, 2, . . ., 9; X, 2X, . . ., 9X; C, 2C, . . ., 9C; M, 2M, . . ., 9M. 

Encyclopædia Britannica, Inc.
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This requires memorizing many different symbols, but it 
results in a very compact notation.

The first ciphered system seems to have been the 
Egyptian hieratic (literally “priestly”) numerals, so called 
because the priests were presumably the ones who had the 
time and learning required to develop this shorthand out-
growth of the earlier hieroglyphic numerals. An Egyptian 
arithmetical work on papyrus, employing hieratic numer-
als, was found in Egypt about 1855; known after the name 
of its purchaser as the Rhind papyrus, it provides the chief 
source of information about this numeral system. There 
was a still later Egyptian system, the demotic, which was 
also a ciphered system.

As early as the 3rd century BCE, a second system of 
numerals, paralleling the Attic numerals, came into use in 
Greece that was better adapted to the theory of numbers, 
though it was more difficult for the trading classes to com-
prehend. These Ionic, or alphabetical, numerals, were simply 
a cipher system in which nine Greek letters were assigned to 
the numbers 1–9, nine more to the numbers 10, . . ., 90, and 
nine more to 100, . . ., 900. Thousands were often indicated 
by placing a bar at the left of the corresponding numeral.

Such numeral forms were not particularly difficult for 
computing purposes once the operator was able automati-
cally to recall the meaning of each. Only the capital letters 
were used in this ancient numeral system, the lowercase 
letters being a relatively modern invention.

Other ciphered numeral systems include Coptic, Hindu 
Brahmin, Hebrew, Syrian, and early Arabic. The last three, 
like the Ionic, are alphabetic ciphered numeral systems.

Positional Numeral Systems

The decimal number system is an example of a positional 
system, in which, after the base b has been adopted, the 
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digits 1, 2, . . ., b − 1 are given special names, and all larger 
numbers are written as sequences of these digits. It is the 
only one of the systems that can be used for describing 
large numbers, since each of the other kinds gives special 
names to various numbers larger than b, and an infinite 
number of names would be required for all the numbers. 
The success of the positional system depends on the fact 
that, for an arbitrary base b, every number N can be 
written in a unique fashion in the form

N = anb
n + an − 1b

n − 1 +  . . .  + a1b + a0

where an, an − 1, . . ., a0 are digits; i.e., numbers from the group 
0, 1, . . ., b − 1. Then N to the base b can be represented by 
the sequence of symbols anan − 1 . . . a1a0. It was this principle 
which was used in the multiplicative grouping systems, 
and the relation between the two kinds of systems is 
immediately seen from the earlier noted equivalence 
between 7,392 and 7M3C9X2; the positional system 
derives from the multiplicative simply by omitting the 
names of the powers b, b2, and so on and by depending on 
the position of the digits to supply this information. It is 
then necessary, however, to use some symbol for zero to 
indicate any missing powers of the base; otherwise 792 
could mean, for example, either 7M9X2 (i.e., 7,092) or 
7C9X2 (792).

The Babylonians developed (c. 3000–2000 BCE) a 
positional system with base 60—a sexagesimal system. 
With such a large base, it would have been awkward to 
have unrelated names for the digits 0, 1, . . ., 59, so a simple 
grouping system to base 10 was used for these numbers, as 
shown in the figure on page 24.

In addition to being somewhat cumbersome because 
of the large base chosen, the Babylonian system suffered 
until very late from the lack of a zero symbol; the resulting 
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ambiguities may well have bothered the Babylonians as 
much as later translators.

In the course of early Spanish expeditions into Yucatan, 
it was discovered that the Maya, at an early but still 
undated time, had a well-developed positional system, 
complete with zero. It seems to have been used primarily 
for the calendar rather than for commercial or other 
computation; this is reflected in the fact that, although 
the base is 20, the third digit from the end signifies mul-
tiples not of 202 but of 18  ×  20, thus giving their year a 
simple number of days. The digits 0, 1, . . ., 19 are, as in the 
Babylonian, formed by a simple grouping system, in this 
case to base 5 (see figure); the groups were written 
vertically.

The Mayan number system, which is base 20 with simple grouping to base 5. 
Encyclopædia Britannica, Inc.
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Neither the Mayan nor the Babylonian system was 
ideally suited to arithmetical computations, because the 
digits—the numbers less than 20 or 60—were not repre-
sented by single symbols. The complete development of 
this idea must be attributed to the Hindus, who also were 
the first to use zero in the modern way. As was mentioned 
earlier, some symbol is required in positional number sys-
tems to mark the place of a power of the base not actually 
occurring. This was indicated by the Hindus by a dot or 
small circle, which was given the name sunya, the Sanskrit 
word for “vacant.” This was translated into the Arabic s.ifr 
about 800 CE with the meaning kept intact, and the latter 
was transliterated into Latin about 1200, the sound being 
retained but the meaning ignored. Subsequent changes 
have led to the modern cipher and zero.

A symbol for zero appeared in the Babylonian system 
about the 3rd century BCE. However, it was not used 
consistently and apparently served to hold only interior 
places, never final places, so that it was impossible to dis-
tinguish between 77 and 7,700, except by the context.

Development of Modern Numerals and 
Numeral Systems

The Hindu-Arabic System

Several different claims, each having a certain amount of 
justification, have been made with respect to the origin 
of modern Western numerals, commonly spoken of as 
Arabic but preferably as Hindu-Arabic. These include the 
assertion that the origin is to be found among the Arabs, 
Persians, Egyptians, and Hindus. It is not improbable that 
the intercourse among traders served to carry such sym-
bols from country to country, so that modern Western 
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numerals may be a conglomeration from different sources. 
However, as far as is known, the country that first used the 
largest number of these numeral forms is India. The 1, 4, 
and 6 are found in the Ashoka inscriptions (3rd century 
BCE); the 2, 4, 6, 7, and 9 appear in the Nana Ghat inscrip-
tions about a century later; and the 2, 3, 4, 5, 6, 7, and 9 in 
the Nasik caves of the 1st or 2nd century CE—all in forms 
that have considerable resemblance to today’s, 2 and 3 
being well-recognized cursive derivations from the ancient 
= and =̄. None of these early Indian inscriptions gives evi-
dence of place value or of a zero that would make modern 
place value possible. Hindu literature gives evidence that 
the zero may have been known earlier, but there is no 
inscription with such a symbol before the 9th century.

The first definite external reference to the Hindu 
numerals is a note by Severus Sebokht, a bishop who lived 
in Mesopotamia about 650. Since he speaks of “nine signs,” 
the zero seems to have been unknown to him. By the close 
of the 8th century, however, some astronomical tables of 
India are said to have been translated into Arabic at Baghdad, 
and in any case the numeral became known to Arabian 
scholars about this time. About 825 the mathematician 
Muh.ammad ibn Mu-sa- al-Khwa-rizmı- wrote a small book 
on the subject, and this was translated into Latin by 
Adelard of Bath (c. 1120) under the title of Liber Algorismi de 
numero Indorum. The earliest European manuscript known 
to contain Hindu numerals was written in Spain in 976.

The advantages enjoyed by the perfected positional 
system are so numerous and so manifest that the Hindu-
Arabic numerals and the base 10 have been adopted almost 
everywhere. These might be said to be the nearest 
approach to a universal human language yet devised; they 
are found in Chinese, Japanese, and Russian scientific 
journals and in every Western language.
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The Binary System

There is one area, however, in which the familiar decimal 
system is no longer supreme: the electronic computer. 
Here the binary positional system has been found to have 
great advantages over the decimal. In the binary system, 
in which the base is 2, there are just two digits, 0 and 1; the 
number two must be represented here as 10, since it plays 
the same role as does 10 in the decimal system. The first 
few binary numbers are displayed in the table.

Decimal numerals  
represented by digits

decimal binary conversion
0 = 0 0 ( 20 )

1 = 1 1 ( 20 )

2 = 10 1 ( 21 ) + 0 ( 20 )

3 = 11 1 ( 21 ) + 1 ( 20 )

4 = 100 1 ( 22 ) + 0 ( 21 ) + 0 ( 20 )

5 = 101 1 ( 22 ) + 0 ( 21 ) + 1 ( 20 )

6 = 110 1 ( 22 ) + 1 ( 21 ) + 0 ( 20 )

7 = 111 1 ( 22 ) + 1 ( 21 ) + 1 ( 20 )

8 = 1000 1 ( 23 ) + 0 ( 22 ) + 0 ( 21 ) + 0 ( 20 )

9 = 1001 1 ( 23 ) + 0 ( 22 ) + 0 ( 21 ) + 1 ( 20 )

10 = 1010 1 ( 23 ) + 0 ( 22 ) + 1 ( 21 ) + 0 ( 20 )

A binary number is generally much longer than its 
corresponding decimal number; for example, 256,058 has 
the binary representation 111 11010 00001 11010. The 
reason for the greater length of the binary number is that 
a binary digit distinguishes between only two possibilities, 
0 or 1, whereas a decimal digit distinguishes among 10 
possibilities; in other words, a binary digit carries less 
information than a decimal digit. Because of this, its name 
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has been shortened to bit; a bit of information is thus 
transmitted whenever one of two alternatives is realized 
in the machine. It is of course much easier to construct a 
machine to distinguish between two possibilities than 
among 10, and this is another advantage for the base 2; but 
a more important point is that bits serve simultaneously 
to carry numerical information and the logic of the prob-
lem. That is, the dichotomies of yes and no, and of true 
and false, are preserved in the machine in the same way as 
1 and 0, so in the end everything reduces to a sequence of 
those two characters.

Arithmetic

Arithmetic (a term derived from the Greek word arithmos, 
“number”) refers generally to the elementary aspects of 
the theory of numbers, arts of mensuration (measure-
ment), and numerical computation (that is, the processes 
of addition, subtraction, multiplication, division, raising 
to powers, and extraction of roots). Its meaning, however, 
has not been uniform in mathematical usage. An eminent 
German mathematician, Carl Friedrich Gauss, in 
Disquisitiones Arithmeticae (1801), and certain modern-day 
mathematicians have used the term to include more 
advanced topics. The reader interested in the latter is 
referred to the section on number theory.

Fundamental Definitions and Laws

Natural Numbers

In a collection (or set) of objects (or elements), the act of 
determining the number of objects present is called count-
ing. The numbers thus obtained are called the counting 
numbers or natural numbers (1, 2, 3, . . .). For an empty set, 
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no object is present, and the count yields the number 0, 
which, appended to the natural numbers, produces what 
are known as the whole numbers.

If objects from two sets can be matched in such a way 
that every element from each set is uniquely paired with 
an element from the other set, the sets are said to be equal 
or equivalent. The concept of equivalent sets is basic to 
the foundations of modern mathematics and has been 
introduced into primary education, notably as part of the 
“new math” that has been alternately acclaimed and 
decried since it appeared in the 1960s.

Addition and Multiplication

Combining two sets of objects together, which contain a 
and b elements, a new set is formed that contains a + b = c 
objects. The number c is called the sum of a and b; and 
each of the latter is called a summand. The operation of 
forming the sum is called addition, the symbol + being 
read as “plus.” This is the simplest binary operation, where 
binary refers to the process of combining two objects.

A page from a first-grade workbook typical of “new math” might state: “Draw 
connecting lines from triangles in the first set to triangles in the second set. Are 
the two sets equivalent in number?” © Encyclopædia Britannica, Inc.
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From the definition of counting it is evident that the 
order of the summands can be changed and the order of 
the operation of addition can be changed, when applied to 
three summands, without affecting the sum. These are 
called the commutative law of addition and the associative 
law of addition, respectively (see table).

Fundamental Laws of Arithmetic
Commutative law of addition: a + b = b + a

Associative law of addition: a + ( b + c ) = ( a + b ) + c

Commutative law of multiplication: a b = b a

Associative law of multiplication: a ( b c ) = ( a b ) c

Distributive law: a ( b + c ) = a b + a c

If there exists a natural number k such that a = b + k, it 
is said that a is greater than b (written a > b) and that b is 
less than a (written b < a). If a and b are any two natural 
numbers, then it is the case that either a = b or a > b or a < b 
(the trichotomy law).

From the above laws, it is evident that a repeated sum 
such as 5  +  5 +  5 is independent of the way in which the 
summands are grouped; it can be written 3  ×  5. Thus, a 
second binary operation called multiplication is defined. 
The number 5 is called the multiplicand; the number 3, 
which denotes the number of summands, is called the 
multiplier; and the result 3 × 5 is called the product. The 
symbol × of this operation is read “times.” If such letters as 
a and b are used to denote the numbers, the product a × b 
is often written a∙b or simply ab. If three rows of five dots 
each are written, as illustrated below,
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it is clear that the total number of dots in the array is 3 × 5, 
or 15. This same number of dots can evidently be written 
in five rows of three dots each, whence 5 × 3 = 15. The argu-
ment is general, leading to the law that the order of the 
multiplicands does not affect the product, called the 
commutative law of multiplication. But it is notable that 
this law does not apply to all mathematical entities. 
Indeed, much of the mathematical formulation of modern 
physics, for example, depends crucially on the fact that 
some entities do not commute.

By the use of a three-dimensional array of dots, it 
becomes evident that the order of multiplication when 
applied to three numbers does not affect the product. Such 
a law is called the associative law of multiplication. If the 15 
dots written above are separated into two sets, as shown,

then the first set consists of three columns of three dots 
each, or 3 × 3 dots; the second set consists of two columns 
of three dots each, or 2 × 3 dots; the sum (3 × 3) + (2 × 3) con-
sists of 3 + 2 = 5 columns of three dots each, or (3 + 2) × 3 
dots. In general, one may prove that the multiplication of 
a sum by a number is the same as the sum of two appropriate 
products. Such a law is called the distributive law.

Integers

Subtraction has not been introduced for the simple reason 
that it can be defined as the inverse of addition. Thus, the 
difference a  −  b of two numbers a and b is defined as a 
solution x of the equation b + x = a. If a number system is 
restricted to the natural numbers, differences need not 
always exist, but, if they do, the five basic laws of 
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arithmetic, as already discussed, can be used to prove that 
they are unique. Furthermore, the laws of operations of 
addition and multiplication can be extended to apply to 
differences. The whole numbers (including zero) can be 
extended to include the solution of 1 + x = 0, that is, the 
number −1, as well as all products of the form −1  ×  n, in 
which n is a whole number. The extended collection of 
numbers is called the integers, of which the positive 
integers are the same as the natural numbers. The num-
bers that are newly introduced in this way are called 
negative integers.

Exponents

Just as a repeated sum a + a + ... + a of k summands is written 
ka, so a repeated product a × a × ... × a of k factors is written ak. 
The number k is called the exponent, and a the base of the 
power ak.

The fundamental laws of exponents follow easily from 
the definitions, and other laws are immediate consequences 
of the fundamental ones.

Theory of Divisors

At this point an interesting development occurs, for, so 
long as only additions and multiplications are performed 
with integers, the resulting numbers are invariably them-
selves integers—that is, numbers of the same kind as their 
antecedents. This characteristic changes drastically, how-
ever, as soon as division is introduced. Performing division 
(its symbol ÷, read “divided by”) leads to results, called 
quotients or fractions, which surprisingly include numbers 
of a new kind—namely, rationals—that are not integers. 
These, though arising from the combination of integers, 
patently constitute a distinct extension of the natural-
number and integer concepts as defined above. By means 
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of the application of the division operation, the domain of 
the natural numbers becomes extended and enriched 
immeasurably beyond the integers.

The preceding illustrates one of the proclivities that 
are often associated with mathematical thought: relatively 
simple concepts (such as integers), initially based on very 
concrete operations (for example, counting), are found to 
be capable of assuming novel meanings and potential uses, 
extending far beyond the limits of the concept as origi-
nally defined. A similar extension of basic concepts, with 
even more powerful results, will be found with the intro-
duction of irrationals.

A second example of this pattern is presented by the 
following: Under the primitive definition of exponents, 
with k equal to either zero or a fraction, ak would, at first 
sight, appear to be utterly devoid of meaning. Clarification 
is needed before writing a repeated product of either zero 
factors or a fractional number of factors. Considering the 
case k  =  0, a little reflection shows that a0 can, in fact, 
assume a perfectly precise meaning, coupled with an addi-
tional and quite extraordinary property. Since the result of 
dividing any (nonzero) number by itself is 1, or unity, it 
follows that

am ÷ am = am −m = a0 = 1.

Not only can the definition of ak be extended to include 
the case k  =  0, but the ensuing result also possesses the 
noteworthy property that it is independent of the particu-
lar (nonzero) value of the base a. A similar argument may 
be given to show that ak is a meaningful expression even 
when k is negative, namely,

a−k = 1/ak.
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The original concept of exponent is thus broadened to 
a great extent.

Fundamental Theory

If three positive integers a, b, and c are in the relation ab = c, 
it is said that a and b are divisors or factors of c, or that a 
divides c (written a|c), and b divides c. The number c is said 
to be a multiple of a and a multiple of b.

The number 1 is called the unit, and it is clear that 1 is 
a divisor of every positive integer. If c can be expressed as 
a product ab in which a and b are positive integers each 
greater than 1, then c is called composite. A positive integer 
neither 1 nor composite is called a prime number. Thus, 2, 
3, 5, 7, 11, 13, 17, 19,  . . . are prime numbers. The ancient 
Greek mathematician Euclid proved in his Elements (c. 300 
BCE) that there are infinitely many prime numbers.

The fundamental theorem of arithmetic was proved 
by Gauss in his Disquisitiones Arithmeticae. It states that 
every composite number can be expressed as a product of 
prime numbers and that, save for the order in which the 
factors are written, this representation is unique. Gauss’s 
theorem follows rather directly from another theorem of 
Euclid to the effect that if a prime divides a product, then it 
also divides one of the factors in the product; for this reason 
the fundamental theorem is sometimes credited to Euclid.

For every finite set a1, a2,  . . ., ak of positive integers, 
there exists a largest integer that divides each of these 
numbers, called their greatest common divisor (GCD). If 
the GCD = 1, the numbers are said to be relatively prime. 
There also exists a smallest positive integer that is a 
multiple of each of the numbers, called their least common 
multiple (LCM).

A systematic method for obtaining the GCD and 
LCM starts by factoring each ai (where i = 1, 2, . . ., k) into a 
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product of primes p1, p2, . . ., ph, with the number of times 
that each distinct prime occurs indicated by qi; thus, 

Then the GCD is obtained by multiplying together 
each prime that occurs in every ai as many times as it 
occurs the fewest (smallest power) among all of the ai. The 
LCM is obtained by multiplying together each prime that 
occurs in any of the ai as many times as it occurs the most 
(largest power) among all of the ai. An example is easily 
constructed. Given a1  =  3,000  =  23  ×  31  ×  53 and 
a2 = 2,646 = 21 × 33 × 72, the GCD = 21 × 31 = 6 and the LCM = 
23  ×  33  ×  53  ×  72  =  1,323,000. When only two numbers are 
involved, the product of the GCD and the LCM equals 
the product of the original numbers. (See the table for 
useful divisibility tests.)

Some Divisibility Rules
divisor condition

2 The number is even.
3 The sum of the digits in the number is divisible by 3.

4 
The last two digits in the number form a number 
that is divisible by 4.

5 The number ends in 0 or 5.

6 
The number is even and the sum of its digits is 
divisible by 3.

8
The last three digits in the number form a number 
that is divisible by 8.

9 The sum of the digits in the number is divisible by 9.
10 The number ends in 0.

11
The difference between the sum of the number’s 
digits in the odd places and that of the digits in the 
even places is either 0 or divisible by 11.
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If a and b are two positive integers, with a  >  b, two 
whole numbers q and r exist such that a = qb + r, with r less 
than b. The number q is called the partial quotient (the 
quotient if r  =  0), and r is called the remainder. Using a 
process known as the Euclidean algorithm, which works 
because the GCD of a and b is equal to the GCD of b and 
r, the GCD can be obtained without first factoring the 
numbers a and b into prime factors. The Euclidean algo-
rithm begins by determining the values of q and r, after 
which b and r assume the role of a and b and the process 
repeats until finally the remainder is zero; the last positive 
remainder is the GCD of the original two numbers. For 
example, starting with 544 and 119:

•	 1. 544 = 4 × 119 + 68;
•	 2. 119 = 1 × 68 + 51;
•	 3. 68 = 1 × 51 + 17;
•	 4. 51 = 3 × 17.

Thus, the GCD of 544 and 119 is 17.

Rational Numbers

From a less abstract point of view, the notion of division, 
or of fraction, may also be considered to arise as follows: if 
the duration of a given process is required to be known to 
an accuracy of better than one hour, the number of min-
utes may be specified; or, if the hour is to be retained as 
the fundamental unit, each minute may be represented by 
1/60 or by 

In general, the fractional unit 1/d is defined by the prop-
erty d × 1/d = 1. The number n × 1/d is written n/d and is called 
a common fraction. It may be considered as the quotient 
of n divided by d. The number d is called the denominator 
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(it determines the fractional unit or denomination), and 
n is called the numerator (it enumerates the number of 
fractional units that are taken). The numerator and denom-
inator together are called the terms of the fraction. A 
positive fraction n/d is said to be proper if n < d; otherwise 
it is improper.

The numerator and denominator of a fraction are not 
unique, since for every positive integer k, the numerator 
and denominator of a fraction can each simultaneously be 
multiplied by the integer k without altering the fractional 
value. Every fraction can be written as the quotient of two 
relatively prime integers, however. In this form it is said to 
be in lowest terms.

The integers and fractions constitute what are called 
the rational numbers. The five fundamental laws stated 
earlier with regard to the positive integers can be general-
ized to apply to all rational numbers.

Adding and Subtracting Fractions

From the definition of fraction it follows that the sum (or 
difference) of two fractions having the same denominator 
is another fraction with this denominator, the numerator 
of which is the sum (or difference) of the numerators of 
the given fractions. Two fractions having different denom-
inators may be added or subtracted by first reducing them 
to fractions with the same denominator. Thus, to add a/b 
and c/d, the LCM of b and d, often called the least common 
denominator of the fractions, must be determined. It 
follows that there exist numbers k and l such that kb = ld, 
and both fractions can be written with this common 
denominator, so that the sum or difference of the fractions 
is obtained by the simple operation of adding or subtracting 
the new numerators and placing the value over the new 
denominator.
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Multiplying and Dividing Fractions

In order to multiply two fractions—in case one of the 
numbers is a whole number, it is placed over the number 1 
to create a fraction—the numerators and denominators 
are multiplied separately to produce the new fraction’s 
numerator and denominator: a/b × c/d = ac/bd. In order to 
divide by a fraction, it must be inverted—that is, the 
numerator and denominator interchanged—after which it 
becomes a multiplication problem: a/b ÷ c/d = a/b × d/c = ad/bc.

Theory of Rationals

A method of introducing the positive rational numbers 
that is free from intuition (that is, with all logical steps 
included) was given in 1910 by the German mathematician 
Ernst Steinitz. In considering the set of all number pairs 
(a, b), (c, d), . . . in which a, b, c, d, . . . are positive integers, 
the equals relation (a,  b)  =  (c,  d) is defined to mean that 
ad  =  bc, and the two operations + and × are defined so 
that the sum of a pair (a, b) + (c, d) = (ad + bc, bd) is a pair and 
the product of a pair (a, b) × (c, d) = (ac, bd) is a pair. It can 
be proved that, if these sums and products are properly 
specified, the fundamental laws of arithmetic hold for 
these pairs and that the pairs of the type (a, 1) are abstractly 
identical with the positive integers a. Moreover, 
b  ×  (a, b) = a, so that the pair (a, b) is abstractly identical 
with the fraction a/b.

Irrational Numbers

It was known to the Pythagoreans (followers of the ancient 
Greek mathematician Pythagoras) that, given a straight 
line segment a and a unit segment u, it is not always pos-
sible to find a fractional unit such that both a and u are 
multiples of it (see incommensurables). For instance, if the 
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sides of an isosceles right triangle have length 1, then by 
the Pythagorean theorem the hypotenuse has a length the 
square of which must be 2. But there exists no rational 
number the square of which is 2.

Eudoxus of Cnidus, a contemporary of Plato, estab-
lished the technique necessary to extend numbers beyond 
the rationals. His contribution, one of the most important 
in the history of mathematics, was included in Euclid’s 
Elements and elsewhere, and then it lay dormant until the 
modern period of growth in mathematical analysis in 
Germany in the 19th century.

It is customary to assume on an intuitive basis that, 
corresponding to every line segment and every unit length, 
there exists a number (called a positive real number) that 
represents the length of the line segment. Not all such 
numbers are rational, but every one can be approximated 
arbitrarily closely by a rational number. That is, if x is a 
positive real number and ε is any positive rational number—
no matter how small—it is possible to find two positive 
rational numbers a and b within ε distance from each other 
such that x is between them; in symbols, given any ε > 0, 
there exist positive rational numbers a and b such that 
b − a < ε and a < x < b. In problems in mensuration, irratio-
nal numbers are usually replaced by suitable rational 
approximations.

A rigorous development of the irrational numbers is 
beyond the scope of arithmetic. They are most satisfacto-
rily introduced by means of Dedekind cuts, as introduced 
by the German mathematician Richard Dedekind, or 
sequences of rationals, as introduced by Eudoxus and 
developed by the German mathematician Georg Cantor. 
These methods are discussed in analysis.

The employment of irrational numbers greatly 
increases the scope and usefulness of arithmetic. For 
instance, if n is any whole number and a is any positive real 
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number, there exists a unique positive real number n√a, 
called the nth root of a, whose nth power is a. The root 
symbol √ is a conventionalized r for radix, or “root.” The 
term evolution is sometimes applied to the process of find-
ing a rational approximation to an nth root.

Modular Arithmetic

Modular arithmetic, sometimes referred to as clock arith-
metic in its most elementary form, is arithmetic done 
with a count that resets itself to zero every time a certain 
whole number N greater than one, known as the modulus 
(mod), has been reached. Examples are a digital clock in 
the 24-hour system, which resets itself to 0 at midnight 
(N = 24), and a circular protractor marked in 360 degrees 
(N = 360). Modular arithmetic is important in number 
theory, where it is a fundamental tool in the solution of 
Diophantine equations (particularly those restricted to inte-
ger solutions). Generalizations of the subject led to 
important 19th-century attempts to prove Fermat’s last 
theorem and the development of significant parts of 
modern algebra.

Under modular arithmetic (with mod N), the only 
numbers are 0, 1, 2, . . ., N − 1, and they are known as resi-
dues modulo N. Residues are added by taking the usual 
arithmetic sum, then subtracting the modulus from the 
sum as many times as is necessary to reduce the sum to a 
number M between 0 and N − 1 inclusive. M is called the 
sum of the numbers modulo N. Using notation introduced 
by the German mathematician Carl Friedrich Gauss in 
1801, one writes, for example, 2 + 4 + 3 + 7  =̄ 6 (mod 10), 
where the symbol =̄ is read “is congruent to.”

Examples of the use of modular arithmetic occur in 
ancient Chinese, Indian, and Islamic cultures. In particu-
lar, they occur in calendrical and astronomical problems 
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since these involve cycles (man-made or natural), but one 
also finds modular arithmetic in purely mathematical 
problems. An example from a 3rd-century-CE Chinese 
book, Sun Zi’s Sunzi suanjing (Master Sun’s Mathematical 
Manual), asks

We have a number of things, but we do not know exactly how 
many. If we count them by threes we have two left over. If we 
count by fives we have three left over. If we count by sevens 
there are two left over. How many things are there?

This is equivalent to asking for the solution of the 
simultaneous congruences X =̄ 2 (mod 3), X =̄ 3 (mod 5), and 
X =̄ 2 (mod 7), one solution of which is 23. The general solu-
tion of such problems came to be known as the Chinese 
remainder theorem.

The Swiss mathematician Leonhard Euler pioneered 
the modern approach to congruence about 1750, when he 
explicitly introduced the idea of congruence modulo a 
number N and showed that this concept partitions the 
integers into N congruence classes, or residue classes. 
Two integers are in the same congruence class modulo N if 
their difference is divisible by N. For example, if N is 5, 
then −6 and 4 are members of the same congruence class 
{. . ., −6, −1, 4, 9, . . .}. Since each congruence class may be 
represented by any of its members, this particular class 
may be called, for example, “the congruence class of −6 
modulo 5” or “the congruence class of 4 modulo 5.”

In Euler’s system any N numbers that leave different 
remainders on division by N may represent the congruence 
classes modulo N. Thus, one possible system for arithmetic 
modulo 5 would be −2, −1, 0, 1, 2. Addition of congruence 
classes modulo N is defined by choosing any element from 
each class, adding the elements together, and then taking 
the congruence class modulo N that the sum belongs to as 
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the answer. Euler similarly defined subtraction and multi-
plication of residue classes. For example, to multiply −3 by 
4 (mod 5), first multiply −3 × 4 = −12; since −12 =̄ 3 (mod 5), the 
solution is −3 × 4 =̄ 3 (mod 5). Euler showed that one would 
get the same result with any two elements from the cor-
responding congruence classes.

Note that when the modulus N is not prime, division is 
not always possible. For example, 1 ÷ 2  =̄ 3 (mod 5), since 
2 × 3 =̄ 1 (mod 5). However, the equation 1 ÷ 2  =̄ X (mod 4) 
does not have a solution, since there is no X such that 
2 × X =̄ 1 (mod 4). When the modulus N is not prime, it is 
possible to divide a class represented by r by a class repre-
sented by s if and only if s and N are relatively prime (that 
is, if their only common factor is the number 1). For example, 
7 ÷ 4 =̄ 4 (mod 9) since 4 × 4 =̄ 7 (mod 9)—in this case, 7 and 
9 are relatively prime.

Logarithms

A logarithm is the exponent or power to which a base must 
be raised to yield a given number. Expressed mathemati-
cally, x is the logarithm of n to the base b if bx = n, in which 
case one writes x = logb n. For example, 23 = 8; therefore, 3 is 
the logarithm of 8 to base 2, or 3 = log2 8. In the same fash-
ion, since 102 = 100, then 2 = log10 100. Logarithms of the 
latter sort (that is, logarithms with base 10) are called com-
mon, or Briggsian, logarithms and are written simply log n.

Invented in the 17th century to speed up calculations, 
logarithms vastly reduced the time required for multiplying 
numbers with many digits. They were basic in numerical 
work for more than 300 years, until the perfection of 
mechanical calculating machines in the late 19th century 
and computers in the 20th century rendered them obsolete 
for large-scale computations. The natural, or Napierian, 
logarithm (with base e  ≅ 2.71828 and written ln  n), 
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however, continues to be one of the most useful functions 
in mathematics, with applications to mathematical mod-
els throughout the physical and biological sciences.

Properties of Logarithms

Logarithms were quickly adopted by scientists because 
of various useful properties that simplified long, tedious 
calculations. In particular, scientists could find the prod-
uct of two numbers m and n by looking up each number’s 
logarithm in a special table, adding the logarithms 
together, and then consulting the table again to find the 
number with that calculated logarithm (known as its anti-
logarithm). Expressed in terms of common logarithms, 
this relationship is given by log  mn  =  log  m  +  log  n. For 
example, 100 × 1,000 can be calculated by looking up the 
logarithms of 100 (2) and 1,000 (3), adding the logarithms 
together (5), and then finding its antilogarithm (100,000) in 
the table. Similarly, division problems are converted into 

Adding machines, like those seen in use above, were developed by William 
Seward Burroughs in the late 19th century to facilitate the solving of arith-
metical problems. SSPL/Getty Images
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subtraction problems with logarithms: log  m/n  =  log  m − 
log n. This is not all; the calculation of powers and roots 
can be simplified with the use of logarithms. Logarithms 
can also be converted between any positive bases (except 
that 1 cannot be used as the base since all of its powers are 
equal to 1).

Only logarithms for numbers between 0 and 10 are 
typically included in logarithm tables. To obtain the loga-
rithm of some number outside of this range, the number 
must first be written in scientific notation as the product 
of its significant digits and its exponential power—for 
example, 358 would be written as  3.58  ×  102, and 0.0046 
would be written as 4.6 × 10−3. Then the logarithm of the 
significant digits—a decimal fraction between 0 and 1, 
known as the mantissa—can be found in a table. Finally, 
the integer exponential power, known as the characteris-
tic of the logarithm, is appended before the decimal point 
to give the logarithm of the original number. However, 
when this integer is negative, the minus sign is omitted 
and a bar is placed over it to distinguish it from the posi-
tive mantissa. For example, to find the logarithm of 
0.0046, one would look up log 4.6 ≅ 0.6628 and then write 
log 0.0046 ≅ 3.6628.

History of Logarithms

The invention of logarithms was foreshadowed by the 
comparison of arithmetic and geometric sequences. In a 
geometric sequence each term forms a constant ratio with 
its successor; for example,

. . . 1/1,000, 1/100, 1/10, 1, 10, 100, 1,000 . . .

has a common ratio of 10. In an arithmetic sequence each 
successive term differs by a constant, known as the com-
mon difference; for example,
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 . . . −3, −2, −1, 0, 1, 2, 3 . . . 

has a common difference of 1. Note that a geometric 
sequence can be written in terms of its common ratio; for 
the example geometric sequence given above:

 . . . 10−3, 10−2, 10−1, 100, 101, 102, 103 . . . .

Multiplying two numbers in the geometric sequence, say 
1/10 and 100, is equal to adding the corresponding expo-
nents of the common ratio, −1 and 2, to obtain 101  =  10. 
Thus, multiplication is transformed into addition. The 
original comparison between the two series, however, was 
not based on any explicit use of the exponential notation; 
this was a later development. In 1620 the first table based 
on the concept of relating geometric and arithmetic 
sequences was published in Prague by the Swiss mathema-
tician Joost Bürgi.

The Scottish mathematician John Napier published 
his discovery of logarithms in 1614. His purpose was to 
assist in the multiplication of quantities that were then 
called sines. The whole sine was the value of the side of a 
right-angled triangle with a large hypotenuse. (Napier’s 
original hypotenuse was 107.) His definition was given in 
terms of relative rates.

The logarithme, therefore, of any sine is a number very neerely 
expressing the line which increased equally in the meene time 
whiles the line of the whole sine decreased proportionally into 
that sine, both motions being equal timed and the beginning 
equally shift.

In cooperation with the English mathematician 
Henry Briggs, Napier adjusted his logarithm into its 
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modern form. For the Naperian, or natural, logarithm the 
comparison would be between points moving on a gradu-
ated straight line, the L point (for the logarithm) moving 
uniformly from minus infinity to plus infinity, the X point 
(for the sine) moving from zero to infinity at a speed pro-
portional to its distance from zero. Furthermore, L is zero 
when X is one and their speed is equal at this point. The 
essence of Napier’s discovery is that this constitutes a gen-
eralization of the relation between the arithmetic and 
geometric series; i.e., multiplication and raising to a power 
of the values of the X point correspond to addition and 
multiplication of the values of the L point, respectively. In 
practice it is convenient to limit the L and X motion by 
the requirement that L = 1 at X = 10 in addition to the con-
dition that X  =  1 at L  =  0. This change produced the 
Briggsian, or common, logarithm.

Napier died in 1617 and Briggs continued alone, pub-
lishing in 1624 a table of logarithms calculated to 14 
decimal places for numbers from 1 to 20,000 and from 
90,000 to 100,000. In 1628 the Dutch publisher Adriaan 
Vlacq brought out a 10-place table for values from 1 to 
100,000, adding the missing 70,000 values. Both Briggs 
and Vlacq engaged in setting up log trigonometric tables. 
Such early tables were either to one-hundreth of a degree 
or to one minute of arc. In the 18th century, tables were 
published for 10-second intervals, which were convenient 
for seven-decimal-place tables. In general, finer intervals 
are required for calculating logarithmic functions of 
smaller numbers—for example, in the calculation of the 
functions log sin x and log tan x.

The availability of logarithms greatly influenced the 
form of plane and spherical trigonometry. The proce-
dures of trigonometry were recast to produce formulas 
in which the operations that depend on logarithms are 
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done all at once. The recourse to the tables then con-
sisted of only two steps, obtaining logarithms and, after 
performing computations with the logarithms, obtaining 
antilogarithms.

Number theory

Number theory is concerned with properties of the posi-
tive integers (1, 2, 3, . . . ). Sometimes called “higher 
arithmetic,” it is among the oldest and most natural of 
mathematical pursuits.

Number theory has always fascinated amateurs as well 
as professional mathematicians. In contrast to other 
branches of mathematics, many of the problems and theo-
rems of number theory can be understood by laypersons, 
although solutions to the problems and proofs of the 
theorems often require a sophisticated mathematical 
background.

Until the mid-20th century, number theory was con-
sidered the purest branch of mathematics, with no direct 
applications to the real world. The advent of digital com-
puters and digital communications revealed that number 
theory could provide unexpected answers to real-world 
problems. At the same time, improvements in computer 
technology enabled number theorists to make remarkable 
advances in factoring large numbers, determining primes, 
testing conjectures, and solving numerical problems once 
considered out of reach.

Modern number theory is a broad subject that is clas-
sified into subheadings such as elementary number theory, 
algebraic number theory, analytic number theory, geomet-
ric number theory, and probabilistic number theory. These 
categories reflect the methods used to address problems 
concerning the integers.
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From Prehistory Through Classical Greece

The ability to count dates back to prehistoric times. This is 
evident from archaeological artifacts, such as a 10,000-year-
old bone from the Congo region of Africa with tally marks 
scratched upon it—signs of an unknown ancestor count-
ing something. Very near the dawn of civilization, people 
had grasped the idea of “multiplicity” and thereby had 
taken the first steps toward a study of numbers.

It is certain that an understanding of numbers existed 
in ancient Mesopotamia, Egypt, China, and India, for tab-
lets, papyri, and temple carvings from these early cultures 
have survived. A Babylonian tablet known as Plimpton 
322 (c. 1700 BCE) is a case in point. In modern notation, it 
displays number triples x, y, and z with the property that 
x2 + y2 = z2. One such triple is 2,291, 2,700, and 3,541, where 
2,2912  +  2,7002  = 3,5412. This certainly reveals a degree of 
number theoretic sophistication in ancient Babylon.

Despite such isolated results, a general theory of num-
bers was nonexistent. For this—as with so much of 
theoretical mathematics—one must look to the Classical 
Greeks, whose groundbreaking achievements displayed 
an odd fusion of the mystical tendencies of the 
Pythagoreans and the severe logic of Euclid’s Elements (c. 
300 BCE).

Pythagoras

According to tradition, Pythagoras (c. 580–500 BCE) 
worked in southern Italy amid devoted followers. His 
philosophy enshrined number as the unifying concept 
necessary for understanding everything from planetary 
motion to musical harmony. Given this viewpoint, it is not 
surprising that the Pythagoreans attributed quasi-rational 
properties to certain numbers.
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For instance, they attached significance to perfect 
numbers—i.e., those that equal the sum of their proper 
divisors. Examples are 6 (whose proper divisors 1, 2, and 3 
sum to 6) and 28 (1 + 2 + 4 + 7 + 14). The Greek philosopher 
Nicomachus of Gerasa (flourished c. 100 CE), writing 
centuries after Pythagoras but clearly in his philosophical 
debt, stated that perfect numbers represented “virtues, 
wealth, moderation, propriety, and beauty.” (Some modern 
writers label this kind of thinking numerical theology.)

In a similar vein, the Greeks called a pair of integers 
amicable (“friendly”) if each was the sum of the proper 
divisors of the other. They knew only a single amicable 
pair: 220 and 284. One can easily check that the sum of 
the proper divisors of 284 is 1  +  2  +  4  +  71  +  142  =  220  
and the sum of the proper divisors of 220 is 1 + 2 + 4 + 5 + 
10 + 11 + 20 + 22 + 44 + 55 + 110 = 284. For those prone to 
number mysticism, such a phenomenon must have seemed 
like magic.

Euclid

By contrast, Euclid presented number theory without the 
flourishes. He began Book VII of his Elements by defining 
a number as “a multitude composed of units.” The plural 
here excluded 1; for Euclid, 2 was the smallest “number.” 
He later defined a prime as a number “measured by a unit 
alone” (i.e., whose only proper divisor is 1), a composite as 
a number that is not prime, and a perfect number as one 
that equals the sum of its “parts” (i.e., its proper divisors).

From there, Euclid proved a sequence of theorems 
that marks the beginning of number theory as a mathe-
matical (as opposed to a numerological) enterprise. Four 
Euclidean propositions deserve special mention.

The first, Proposition 2 of Book VII, is a procedure for 
finding the greatest common divisor of two whole 
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numbers. This fundamental result is now called the 
Euclidean algorithm in his honour.

Second, Euclid gave a version of what is known as the 
unique factorization theorem or the fundamental theo-
rem of arithmetic. This says that any whole number can be 
factored into the product of primes in one and only one 
way. For example, 1,960 = 2 × 2 × 2 × 5 × 7 × 7 is a decomposi-
tion into prime factors, and no other such decomposition 
exists. Euclid’s discussion of unique factorization is not 
satisfactory by modern standards, but its essence can be 
found in Proposition 32 of Book VII and Proposition 14 of 
Book IX.

Third, Euclid showed that no finite collection of 
primes contains them all. His argument, Proposition 20 of 
Book IX, remains one of the most elegant proofs in all of 
mathematics. Beginning with any finite collection of 
primes—say, a, b, c, . . ., n—Euclid considered the number 
formed by adding one to their product: N = (abc ... n) + 1. 
He then examined the two alternatives:(1) If N is prime, 
then it is a new prime not among a, b, c, . . ., n because it is 
larger than all of these. For example, if the original primes 
were 2, 3, and 7, then N = (2 × 3 × 7) + 1 = 43 is a larger prime. 
(2) Alternately, if N is composite, it must have a prime factor 
which, as Euclid demonstrated, cannot be one of the orig-
inals. To illustrate, begin with primes 2, 7, and 11, so that 
N =  (2 × 7 × 11) + 1 = 155. This is composite, but its prime 
factors 5 and 31 do not appear among the originals. Either 
way, a finite set of primes can always be augmented. It 
follows, by this beautiful piece of logic, that the collection 
of primes is infinite.

Fourth, Euclid ended Book IX with a blockbuster: if 
the series 1 + 2 + 4 + 8 + . . . + 2k sums to a prime, then the 
number N  =  2k(1  +  2  +  4  +  . . .  +  2k) must be perfect. For 
example, 1 + 2 + 4 = 7, a prime, so 4(1 + 2 + 4) = 28 is perfect. 
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Euclid’s “recipe” for perfect numbers was a most impressive 
achievement for its day.

Diophantus

Of later Greek mathematicians, especially noteworthy is 
Diophantus of Alexandria (flourished c. 250), author of 
Arithmetica. This book features a host of problems, the 
most significant of which have come to be called 
Diophantine equations. These are equations whose solu-
tions must be whole numbers. For example, Diophantus 
asked for two numbers, one a square and the other a cube, 
such that the sum of their squares is itself a square. In 
modern symbols, he sought integers x, y, and z such that 
(x2)2 + (y3)2 = z2. It is easy to find real numbers satisfying this 
relationship (e.g., x = √2, y = 1, and z = √5), but the require-
ment that solutions be integers makes the problem more 
difficult. (One answer is x = 6, y = 3, and z = 45.) Diophantus’s 
work strongly influenced later mathematics.

Number Theory in the East

The millennium following the decline of Rome saw no 
significant European advances, but Chinese and Indian 
scholars were making their own contributions to the 
theory of numbers. Motivated by questions of astronomy 
and the calendar, the Chinese mathematician Sun Zi (Sun 
Tzu; flourished c. 250 CE) tackled multiple Diophantine 
equations. As one example, he asked for a whole number 
that when divided by 3 leaves a remainder of 2, when 
divided by 5 leaves a remainder of 3, and when divided by 7 
leaves a remainder of 2 (his answer: 23). Almost a thousand 
years later, Qin Jiushao (1202–61) gave a general procedure, 
now known as the Chinese remainder theorem, for solving 
problems of this sort.
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Meanwhile, Indian mathematicians were hard at 
work. In the 7th century Brahmagupta took up what is 
now (erroneously) called the Pell equation. He posed the 
challenge to find a perfect square that, when multiplied 
by 92 and increased by 1, yields another perfect square. 
That is, he sought whole numbers x and y such that 
92x2  +  1  =  y2—a Diophantine equation with quadratic 
terms. Brahmagupta suggested that anyone who could 
solve this problem within a year earned the right to be 
called a mathematician. His solution was x  =  120 and 
y = 1,151.

In addition, Indian scholars developed the so-called 
Hindu-Arabic numerals—the base-10 notation subse-
quently adopted by the world’s mathematical and civil 
communities. Although more number representation 
than number theory, these numerals have prevailed due to 
their simplicity and ease of use. The Indians employed 
this system—including the zero—as early as 800 CE.

At about this time, the Islamic world became a math-
ematical powerhouse. Situated on trade routes between 
East and West, Islamic scholars absorbed the works of 
other civilizations and augmented these with homegrown 
achievements. For example, Thabit ibn Qurrah (active in 
Baghdad in the 9th century) returned to the Greek prob-
lem of amicable numbers and discovered a second pair: 
17,296 and 18,416.

Modern Number Theory

As mathematics filtered from the Islamic world to 
Renaissance Europe, number theory received little serious 
attention. The period from 1400 to 1650 saw important 
advances in geometry, algebra, and probability, not to 
mention the discovery of both logarithms and analytic 
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geometry. But number theory was regarded as a minor 
subject, largely of recreational interest.

Pierre de Fermat

Credit for changing this perception goes to Pierre de 
Fermat (1601–65), a French magistrate with time on his 
hands and a passion for numbers. Although he published 
little, Fermat posed the questions and identified the issues 
that have shaped number theory ever since. Here are a few 
examples:

•	 In 1640 he stated what is known as Fermat’s 
little theorem—namely, that if p is prime and a 
is any whole number, then p divides evenly into 
ap  −  a. Thus, if p  =  7 and a  =  12, the far-from-
obvious conclusion is that 7 is a divisor of 
127 − 12 = 35,831,796. This theorem is one of the 
great tools of modern number theory.

•	 Fermat investigated the two types of odd 
primes: those that are one more than a multiple 
of 4 and those that are one less. These are des-
ignated as the 4k  +  1 primes and the 4k  −  1 
primes, respectively. Among the former are 
5 = 4 × 1 + 1 and 97 = 4 × 24 + 1; among the latter 
are 3 = 4 × 1 − 1 and 79 = 4 × 20 − 1. Fermat asserted 
that any prime of the form 4k + 1 can be written 
as the sum of two squares in one and only one 
way, whereas a prime of the form 4k − 1 cannot 
be written as the sum of two squares in any 
manner whatever. Thus, 5 = 22 + 12 and 97 = 92 + 42, 
and these have no alternative decompositions 
into sums of squares. On the other hand, 3 and 
79 cannot be so decomposed. This dichotomy 
among primes ranks as one of the landmarks of 
number theory.
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•	 In 1638 Fermat asserted that every whole 
number can be expressed as the sum of four or 
fewer squares. He claimed to have a proof but 
did not share it.

•	 Fermat stated that there cannot be a right tri-
angle with sides of integer length whose area is 
a perfect square. This amounts to saying that 
there do not exist integers x, y, z, and w such 
that x2 + y2 = z2 (the Pythagorean relationship) 
and that w2 = ½ (base) (height) = xy/2.

Uncharacteristically, Fermat provided a proof of this 
last result. He used a technique called infinite descent that 
was ideal for demonstrating impossibility. The logical 
strategy assumes that there are whole numbers satisfying 
the condition in question and then generates smaller 
whole numbers satisfying it as well. Reapplying the argu-
ment over and over, Fermat produced an endless sequence 
of decreasing whole numbers. But this is impossible, for 
any set of positive integers must contain a smallest 
member. By this contradiction, Fermat concluded that no 
such numbers can exist in the first place.

Two other assertions of Fermat should be mentioned. 
One was that any number of the form 22n + 1 must be prime. 
He was correct if n = 0, 1, 2, 3, and 4, for the formula yields 
primes 220  +  1  =  3, 221  +  1  =  5, 222  +  1  =  17, 223  +  1  =  257, and 
224  +  1  =  65,537. These are now called Fermat primes. 
Unfortunately for his reputation, the next such number 
225 + 1 = 232 + 1 = 4,294,967,297 is not a prime (more about 
that later). Even Fermat was not invincible.

The second assertion is one of the most famous state-
ments from the history of mathematics. While reading 
Diophantus’s Arithmetica, Fermat wrote in the book’s 
margin: “To divide a cube into two cubes, a fourth power, 
or in general any power whatever into two powers of the 
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same denomination above the second is impossible.” He 
added that “I have assuredly found an admirable proof of 
this, but the margin is too narrow to contain it.”

In symbols, he was claiming that if n > 2, there are no 
whole numbers x, y, z such that xn + yn = zn, a statement that 
came to be known as Fermat’s last theorem. For three and 
a half centuries, it defeated all who attacked it, earning a 
reputation as the most famous unsolved problem in 
mathematics.

Despite Fermat’s genius, number theory still was rela-
tively neglected. His reluctance to supply proofs was 
partly to blame, but perhaps more detrimental was the 
appearance of calculus in the last decades of the 17th 
century. Calculus is the most useful mathematical tool of 
all, and scholars eagerly applied its ideas to a range of real-
world problems. By contrast, number theory seemed too 
“pure,” too divorced from the concerns of physicists, 
astronomers, and engineers.

Number Theory in the 18th Century

Credit for bringing number theory into the mainstream, 
for finally realizing Fermat’s dream, is due to the 18th cen-
tury’s dominant mathematical figure, the Swiss Leonhard 
Euler (1707–83). Euler was the most prolific mathematician 
ever—and one of the most influential—and when he 
turned his attention to number theory, the subject could 
no longer be ignored.

Initially, Euler shared the widespread indifference 
of his colleagues, but he was in correspondence with 
Christian Goldbach (1690–1764), a number theory 
enthusiast acquainted with Fermat’s work. Like an 
insistent salesman, Goldbach tried to interest Euler in 
the theory of numbers, and eventually his insistence 
paid off.
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It was a letter of Dec. 1, 1729, in which Goldbach asked 
Euler, “Is Fermat’s observation known to you, that all num-
bers 22n + 1 are primes?” This caught Euler’s attention. Indeed, 
he showed that Fermat’s assertion was wrong by splitting the 
number 225 + 1 into the product of 641 and 6,700,417.

Through the next five decades, Euler published over a 
thousand pages of research on number theory, much of it 
furnishing proofs of Fermat’s assertions. In 1736 he proved 
Fermat’s little theorem. By midcentury he had established 
Fermat’s theorem that primes of the form 4k  +  1 can be 
uniquely expressed as the sum of two squares. He later 
took up the matter of perfect numbers, demonstrating 
that any even perfect number must assume the form dis-
covered by Euclid 20 centuries earlier. And when he turned 
his attention to amicable numbers—of which, by this 
time, only three pairs were known—Euler vastly increased 
the world’s supply by finding 58 new ones!

Of course, even Euler could not solve every problem. 
He gave proofs, or near-proofs, of Fermat’s last theorem 
for exponents n  =  3 and n  =  4 but despaired of finding a 
general solution. And he was completely stumped by 
Goldbach’s assertion that any even number greater than 2 
can be written as the sum of two primes. Euler endorsed 
the result—today known as the Goldbach conjecture—
but acknowledged his inability to prove it.

Euler gave number theory a mathematical legitimacy, 
and thereafter progress was rapid. In 1770, for instance, 
Joseph-Louis Lagrange (1736–1813) proved Fermat’s asser-
tion that every whole number can be written as the sum of 
four or fewer squares. Soon thereafter, he established a 
beautiful result known as Wilson’s theorem: p is prime if 
and only if p divides evenly into

[(p−1) × (p−2) × ... × 3 × 2 × 1] + 1.

7 Numbers 7



7 The Britannica Guide to Numbers and Measurement 7

66

Number Theory in the 19th Century

Disquisitiones Arithmeticae

Of immense significance was the 1801 publication of 
Disquisitiones Arithmeticae by Carl Friedrich Gauss (1777–
1855). This became, in a sense, the holy writ of number 
theory. In it Gauss organized and summarized much of the 
work of his predecessors before moving boldly to the fron-
tier of research. Observing that the problem of resolving 
composite numbers into prime factors is “one of the most 
important and useful in arithmetic,” Gauss provided the 
first modern proof of the unique factorization theorem. 
He also gave the first proof of the law of quadratic reci-
procity, a deep result previously glimpsed by Euler. To 
expedite his work, Gauss introduced the idea of congru-
ence among numbers—i.e., he defined a and b to be 
congruent modulo m (written a  =̄  b mod m) if m divides 
evenly into the difference a − b. For instance, 39 =̄ 4 mod 7. 
This innovation, when combined with results like Fermat’s 
little theorem, has become an indispensable fixture of 
number theory.

From Classical to Analytic Number Theory

Inspired by Gauss, other 19th-century mathematicians 
took up the challenge. Sophie Germain (1776–1831), who 
once stated, “I have never ceased thinking about the 
theory of numbers,” made important contributions to 
Fermat’s last theorem, and Adrien-Marie Legendre (1752–
1833) and Peter Gustav Lejeune Dirichlet (1805–59) 
confirmed the theorem for n  =  5—i.e., they showed that 
the sum of two fifth powers cannot be a fifth power. In 
1847 Ernst Kummer (1810–93) went further, demonstrat-
ing that Fermat’s last theorem was true for a large class 
of exponents; unfortunately, he could not rule out the 
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possibility that it was false for a large class of exponents, 
so the problem remained unresolved.

The same Dirichlet (who reportedly kept a copy of 
Gauss’s Disquisitiones Arithmeticae by his bedside for eve-
ning reading) made a profound contribution by proving 
that, if a and b have no common factor, then the arithme-
tic progression a, a  +  b, a  +  2b, a  +  3b, . . . must contain 
infinitely many primes. Among other things, this estab-
lished that there are infinitely many 4k  +  1 primes and 
infinitely many 4k − 1 primes as well. But what made this 
theorem so exceptional was Dirichlet’s method of proof: 
he employed the techniques of calculus to establish a 
result in number theory. This surprising but ingenious 
strategy marked the beginning of a new branch of the 
subject: analytic number theory.

Prime Number Theorem

One of the supreme achievements of 19th-century math-
ematics was the prime number theorem, and it is worth a 
brief digression. To begin, designate the number of primes 
less than or equal to n by π(n). Thus π(10) = 4 because 2, 3, 5, 
and 7 are the four primes not exceeding 10. Similarly 
π(25) = 9 and π(100) = 25. Next, consider the proportion of 
numbers less than or equal to n that are prime—i.e., π(n)/n. 
Clearly π(10)/10  =  0.40, meaning that 40 percent of the 
numbers not exceeding 10 are prime.

A pattern is anything but clear, but the prime number 
theorem identifies one, at least approximately, and thereby 
provides a rule for the distribution of primes among the 
whole numbers. The theorem says that, for large n, the pro-
portion π(n)/n is roughly 1/log n, where log n is the natural 
logarithm of n. This link between primes and logs is nothing 
short of extraordinary.

One of the first to perceive this was the young Gauss, 
whose examination of log tables and prime numbers 
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suggested it to his fertile mind. Following Dirichlet’s 
exploitation of analytic techniques in number theory, 
Bernhard Riemann (1826–66) and Pafnuty Chebyshev 
(1821–94) made substantial progress before the prime 
number theorem was proved in 1896 by Jacques Hadamard 
(1865–1963) and Charles Jean de la Vallée-Poussin (1866–
1962). This brought the 19th century to a triumphant close.

Number Theory in the 20th Century

The next century saw an explosion in number theoretic 
research. Along with classical and analytic number theory, 
scholars now explored specialized subfields such as algebraic 
number theory, geometric number theory, and combina-
torial number theory. The concepts became more abstract 
and the techniques more sophisticated. Unquestionably, 
the subject had grown beyond Fermat’s wildest dreams.

One of the great contributors from early in the 20th 
century was the incandescent genius Srinivasa Ramanujan 
(1887–1920). Ramanujan, whose formal training was as 
limited as his life was short, burst upon the mathematical 
scene with a series of brilliant discoveries. Analytic number 
theory was among his specialties, and his publications 
carried titles such as “Highly composite numbers” and 
“Proof that almost all numbers n are composed of about 
log(log n) prime factors.”

A legendary figure in 20th-century number theory was 
Paul Erdös (1913–96), a Hungarian genius known for his 
deep insights, his vast circle of collaborators, and his per-
sonal eccentricities. At age 18, Erdös published a 
much-simplified proof of a theorem of Chebyshev stating 
that, if n ≥ 2, then there must be a prime between n and 2n. 
This was the first in a string of number theoretic results 
that would span most of the century. In the process, 
Erdös—who also worked in combinatorics, graph theory, 
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and dimension theory—published over 1,500 papers with 
more than 500 collaborators from around the world. He 
achieved this astonishing output while living more or less 
out of a suitcase, traveling constantly from one university 
to another in pursuit of new mathematics. It was not 
uncommon for him to arrive, unannounced, with the 
declaration that “My brain is open” and then to plunge 
into the latest problem with gusto.

Two later developments deserve mention. One was 
the invention of the electronic computer, whose speed 
has been advantageously applied to number theoretic 
questions. As an example, Euler once speculated that at 
least four fourth powers must be added together for the 
sum to be a fourth power. But in 1988, using a combination 
of mathematical insight and computer muscle, the 
American Noam Elkies discovered that 2,682,4404 + 15,36
5,6394 + 18,796,7604 = 20,615,6734—a stupendous counter-
example that destroyed Euler’s conjecture. (The number 
on the right contains 30 digits, so there is little wonder 
that Euler missed it.)

Second, number theory acquired an applied flavour, 
for it became instrumental in designing encryption 
schemes widely used in government and business. These 
rely upon the factorization of gigantic numbers into 
primes—a factorization that the code’s user knows and 
the potential code-breaker does not. This application runs 
counter to the long-held perception of number theory as 
beautiful but essentially useless.

Twentieth-century number theory reached a much-
publicized climax in 1995, when Fermat’s last theorem was 
proved by the Englishman Andrew Wiles, with timely 
assistance from his British colleague Richard Taylor. Wiles 
succeeded where so many had failed with a 130-page proof 
of incredible complexity, one that certainly would not fit 
into any margin.
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Unsolved Problems

This triumph notwithstanding, number theory remains 
the source of many unsolved problems, some of the 
most perplexing of which sound innocent enough. For 
example:

•	 Do any odd perfect numbers exist?
•	 �Are there infinitely many primes of the form 

n2 + 1 (i.e., one more than a perfect square)?
•	 �Are there infinitely many pairs of twin primes 

(i.e., primes that differ by 2, like 5 and 7 or 41 
and 43)?

•	 �Is Goldbach’s conjecture true? (Euler failed to 
prove it; so has everyone since.)

Although there has been no lack of effort, these ques-
tions remain open. Perhaps, like Fermat’s last theorem, 
they will eventually be resolved. Or perhaps they will 
remain as challenges into the indefinite future. In order to 
spur research efforts across a wide range of mathematical 
disciplines, the privately funded Clay Mathematics 
Institute of Cambridge, Massachusetts, named seven 
“Millennium Prize Problems” in 2000, each with a million-
dollar award for a correct solution. In any case, these 
mysteries justify Eric Temple Bell’s characterization of 
number theory as “the last great uncivilized continent 
of mathematics.”

The theory of numbers, then, is a vast and challenging 
subject as old as mathematics and as fresh as today’s news. 
Its problems retain their fascination because of an appar-
ent (often deceptive) simplicity and an irresistible beauty. 
With such a rich and colorful history, number theory 
surely deserves to be called, in the famous words of Gauss, 
“the queen of mathematics.”
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Set theory

Set theory is the branch of mathematics that deals with 
the properties of well-defined collections of objects, 
which may or may not be of a mathematical nature, 
such as numbers or functions. The theory is less valuable 
in direct application to ordinary experience than as a 
basis for precise and adaptable terminology for the def-
inition of complex and sophisticated mathematical 
concepts.

Between the years 1874 and 1897, the German mathe-
matician and logician Georg Cantor created a theory of 
abstract sets of entities and made it into a mathematical 
discipline. This theory grew out of his investigations of 
some concrete problems regarding certain types of infi-
nite sets of real numbers. A set, wrote Cantor, is a collection 
of definite, distinguishable objects of perception or 
thought conceived as a whole. The objects are called 
elements or members of the set.

The theory had the revolutionary aspect of treating 
infinite sets as mathematical objects that are on an equal 
footing with those that can be constructed in a finite num-
ber of steps. Since antiquity, a majority of mathematicians 
had carefully avoided the introduction into their argu-
ments of the actual infinite (i.e., of sets containing an 
infinity of objects conceived as existing simultaneously, at 
least in thought). Since this attitude persisted until almost 
the end of the 19th century, Cantor’s work was the subject 
of much criticism to the effect that it dealt with fictions—
indeed, that it encroached on the domain of philosophers 
and violated the principles of religion. Once applications 
to analysis began to be found, however, attitudes began to 
change, and by the 1890s Cantor’s ideas and results were 
gaining acceptance. By 1900, set theory was recognized as 
a distinct branch of mathematics.
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At just that time, however, several contradictions in 
so-called naive set theory were discovered. In order to 
eliminate such problems, an axiomatic basis was devel-
oped for the theory of sets analogous to that developed 
for elementary geometry. The degree of success that has 
been achieved in this development, as well as the present 
stature of set theory, has been well expressed in the Nicolas 
Bourbaki Éléments de mathématique (begun 1939; “Elements 
of Mathematics”): “Nowadays it is known to be possible, 
logically speaking, to derive practically the whole of 
known mathematics from a single source, The Theory 
of Sets.”

Introduction to Naive Set Theory

Fundamental Set Concepts

In naive set theory, a set is a collection of objects (called 
members or elements) that is regarded as being a single 
object. To indicate that an object x is a member of a set A 
one writes x ∊ A, while x ∉ A indicates that x is not a mem-
ber of A. A set may be defined by a membership rule 
(formula) or by listing its members within braces. For 
example, the set given by the rule “prime numbers less 
than 10” can also be given by {2, 3, 5, 7}. In principle, any 
finite set can be defined by an explicit list of its members, 
but specifying infinite sets requires a rule or pattern to 
indicate membership; for example, the ellipsis in 
{0,  1,  2,  3, 4,  5, 6, 7, . . .} indicates that the list of natural 
numbers null goes on forever. The empty (or void, or null) 
set, symbolized by {} or Ø, contains no elements at all. 
Nonetheless, it has the status of being a set.

A set A is called a subset of a set B (symbolized by 
A ⊆ B) if all the members of A are also members of B. For 
example, any set is a subset of itself, and Ø is a subset of 
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any set. If both A ⊆ B and B ⊆ A, then A and B have exactly 
the same members. Part of the set concept is that in this 
case A = B; that is, A and B are the same set.

Operations on Sets

The symbol ∪ is employed to denote the union of two 
sets. Thus, the set A ∪ B—read “A union B” or “the union 
of A and B”—is defined as the set that consists of all elements 
belonging to either set A or set B (or both). For example, 
suppose that Committee A, consisting of the 5 members 
Jones, Blanshard, Nelson, Smith, and Hixon, meets with 
Committee B, consisting of the 5 members Blanshard, 
Morton, Hixon, Young, and Peters. Clearly, the union of 
Committees A and B must then consist of 8 members 
rather than 10—namely, Jones, Blanshard, Nelson, Smith, 
Morton, Hixon, Young, and Peters.

The intersection operation is denoted by the symbol 
∩. The set A ∩ B—read “A intersection B” or “the inter-
section of A and B”—is defined as the set composed of all 
elements that belong to both A and B. Thus, the intersection 
of the two committees in the foregoing example is the set 
consisting of Blanshard and Hixon.

If E denotes the set of all positive even numbers and 
O denotes the set of all positive odd numbers, then their 
union yields the entire set of positive integers, and their inter-
section is the empty set. Any two sets whose intersection 
is the empty set are said to be disjoint.

When the admissible elements are restricted to some 
fixed class of objects U, U is called the universal set (or 
universe). Then for any subset A of U, the complement of 
A (symbolized by A' or U − A) is defined as the set of all 
elements in the universe U that are not in A. For example, 
if the universe consists of the 26 letters of the alphabet, 
the complement of the set of vowels is the set of 
consonants.
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In analytic geometry, the points on a Cartesian grid are 
ordered pairs (x, y) of numbers. In general, (x, y) ≠  (y, x); 
ordered pairs are defined so that (a, b) = (c, d) if and only 
if both a = c and b = d. In contrast, the set {x, y} is identical 
to the set {y,  x} because they have exactly the same 
members.

The Cartesian product of two sets A and B, denoted 
by A  ×  B, is defined as the set consisting of all ordered 
pairs (a,  b) for which a  ∊  A and b  ∊  B. For example, if 
A = {x, y} and B = {3, 6, 9}, then A × B = {(x, 3), (x, 6), (x, 9), 
(y, 3), (y, 6), (y, 9)}.

Relations in Set Theory

In mathematics, a relation is an association between, or 
property of, various objects. Relations can be represented 
by sets of ordered pairs (a, b) where a bears a relation to b. 
Sets of ordered pairs are commonly used to represent rela-
tions depicted on charts and graphs, on which, for 
example, calendar years may be paired with automobile 
production figures, weeks with stock market averages, 
and days with average temperatures.

A function f can be regarded as a relation between each 
object x in its domain and the value f(x). A function f is a 
relation with a special property, however: each x is related 
by f to one and only one y. That is, two ordered pairs (x, y) 
and (x, z) in f imply that y = z.

A one-to-one correspondence between sets A and B is 
similarly a pairing of each object in A with one and only 
one object in B, with the dual property that each object in 
B has been thereby paired with one and only one object in 
A. For example, if A = {x, z, w} and B = {4, 3, 9}, a one-to-one 
correspondence can be obtained by pairing x with 4, z 
with 3, and w with 9. This pairing can be represented by 
the set {(x, 4), (z, 3), (w, 9)} of ordered pairs.
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Many relations display identifiable properties. For 
example, in the relation “is the same colour as,” each 
object bears the relation to itself as well as to some other 
objects. Such relations are said to be reflexive. The order-
ing relation “less than or equal to” (symbolized by ≤) is 
reflexive, but “less than” (symbolized by <) is not. The 
relation “is parallel to” (symbolized by ∥) has the property 
that, if an object bears the relation to a second object, 
then the second also bears that relation to the first. 
Relations with this property are said to be symmetric. 
(Note that the ordering relation is not symmetric.) These 
examples also have the property that whenever one object 
bears the relation to a second, which further bears the 
relation to a third, then the first bears that relation to 
the third—e.g., if a < b and b < c, then a < c. Such relations 
are said to be transitive.

Relations that have all three of these properties—
reflexivity, symmetry, and transitivity—are called 
equivalence relations. In an equivalence relation, all ele-
ments related to a particular element, say a, are also related 
to each other, and they form what is called the equivalence 
class of a. For example, the equivalence class of a line for 
the relation “is parallel to” consists of the set of all lines 
parallel to it.

Essential Features of Cantorian Set Theory

At best, the foregoing description presents only an intui-
tive concept of a set. Essential features of the concept as 
Cantor understood it include: (1) that a set is a grouping 
into a single entity of objects of any kind, and (2) that, 
given an object x and a set A, exactly one of the statements 
x ∊ A and x ∉ A is true and the other is false. The definite 
relation that may or may not exist between an object and 
a set is called the membership relation.
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A further intent of this description is conveyed by 
what is called the principle of extension—a set is deter-
mined by its members rather than by any particular way of 
describing the set. Thus, sets A and B are equal if and only 
if every element in A is also in B and every element in B 
is in A; symbolically, x ∊  A implies x ∊  B and vice versa. 
There exists, for example, exactly one set the members of 
which are 2, 3, 5, and 7. It does not matter whether its 
members are described as “prime numbers less than 10” or 
listed in some order (which order is immaterial) between 
small braces, possibly {5, 2, 7, 3}.

The positive integers {1, 2, 3, . . .} are typically used for 
counting the elements in a finite set. For example, the set 
{a, b, c} can be put in one-to-one correspondence with the 
elements of the set {1, 2, 3}. The number 3 is called the car-
dinal number, or cardinality, of the set {1, 2, 3} as well as 
any set that can be put into a one-to-one correspondence 
with it. (Because the empty set has no elements, its car-
dinality is defined as 0.) In general, a set A is finite and its 
cardinality is n if there exists a pairing of its elements with 
the set {1, 2, 3, . . . , n}. A set for which there is no such 
correspondence is said to be infinite.

To define infinite sets, Cantor used predicate formulas. 
The phrase “x is a professor” is an example of a formula; if 
the symbol x in this phrase is replaced by the name of a 
person, there results a declarative sentence that is true or 
false. The notation S(x) will be used to represent such a 
formula. The phrase “x is a professor at university y and x 
is a male” is a formula with two variables. If the occur-
rences of x and y are replaced by names of appropriate, 
specific objects, the result is a declarative sentence that is 
true or false. Given any formula S(x) that contains the 
letter x (and possibly others), Cantor’s principle of abstrac-
tion asserts the existence of a set A such that, for each 
object x, x ∊ A if and only if S(x) holds. (Mathematicians 
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later formulated a restricted principle of abstraction, also 
known as the principle of comprehension, in which self-
referencing predicates, or S(A), are excluded in order to 
prevent certain paradoxes. Because of the principle of 
extension, the set A corresponding to S(x) must be unique, 
and it is symbolized by {x | S(x)}, which is read “The set of 
all objects x such that S(x).” For instance, {x  | x is blue} is 
the set of all blue objects. This illustrates the fact that the 
principle of abstraction implies the existence of sets the ele-
ments of which are all objects having a certain property. It 
is actually more comprehensive. For example, it asserts 
the existence of a set B corresponding to “Either x is an 
astronaut or x is a natural number.” Astronauts have no 
particular property in common with numbers (other than 
both being members of B).

Equivalent Sets

Cantorian set theory is founded on the principles of exten-
sion and abstraction, described above. To describe some 
results based upon these principles, the notion of equiva-
lence of sets will be defined. The idea is that two sets are 
equivalent if it is possible to pair off members of the first 
set with members of the second, with no leftover mem-
bers on either side. To capture this idea in set-theoretic 
terms, the set A is defined as equivalent to the set B 
(symbolized by A =̄ B) if and only if there exists a third set 
the members of which are ordered pairs such that: (1) the 
first member of each pair is an element of A and the sec-
ond is an element of B, and (2) each member of A occurs as 
a first member and each member of B occurs as a second 
member of exactly one pair. Thus, if A and B are finite and 
A =̄ B, then the third set that establishes this fact provides 
a pairing, or matching, of the elements of A with those of 
B. Conversely, if it is possible to match the elements of A 
with those of B, then A =̄ B, because a set of pairs meeting 

7 Numbers 7



7 The Britannica Guide to Numbers and Measurement 7

78

requirements (1) and (2) can be formed—i.e., if a ∊  A is 
matched with b  ∊  B, then the ordered pair (a,  b) is one 
member of the set. By thus defining equivalence of sets in 
terms of the notion of matching, equivalence is formu-
lated independently of finiteness. As an illustration 
involving infinite sets, null may be taken to denote the set 
of natural numbers 0,  1,  2,  . . . (some authors exclude 0 
from the natural numbers). Then {(n, n2)  | n ∊ null} estab-
lishes the seemingly paradoxical equivalence of null and 
the subset of null formed by the squares of the natural 
numbers.

As stated previously, a set B is included in, or is a subset 
of, a set A (symbolized by B ⊆ A) if every element of B is an 
element of A. So defined, a subset may possibly include all 
of the elements of A, so that A can be a subset of itself. 
Furthermore, the empty set, because it by definition has 
no elements that are not included in other sets, is a subset 
of every set.

If every element of set B is an element of set A, but the 
converse is false (hence B ≠ A), then B is said to be prop-
erly included in, or is a proper subset of, A (symbolized by 
B ⊂ A). Thus, if A = {3, 1, 0, 4, 2}, both {0, 1, 2} and {0, 1, 2, 3, 4} 
are subsets of A; but {0, 1, 2, 3, 4} is not a proper subset. A 
finite set is nonequivalent to each of its proper subsets. 
This is not so, however, for infinite sets, as is illustrated 
with the set null in the earlier example. (The equivalence 
of null and its proper subset formed by the squares of its 
elements was noted by Galileo Galilei in 1638, who con-
cluded that the notions of less than, equal to, and greater 
than did not apply to infinite sets.)

Cardinality and Transfinite Numbers

The application of the notion of equivalence to infinite 
sets was first systematically explored by Cantor. With null 
defined as the set of natural numbers, Cantor’s initial 
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significant finding was that the set of all rational numbers 
is equivalent to null but that the set of all real numbers is 
not equivalent to null. The existence of nonequivalent 
infinite sets justified Cantor’s introduction of “transfinite” 
cardinal numbers as measures of size for such sets. Cantor 
defined the cardinal of an arbitrary set A as the concept 
that can be abstracted from A taken together with the 
totality of other equivalent sets. Gottlob Frege, in 1884, 
and Bertrand Russell, in 1902, both mathematical logi-
cians, defined the cardinal number  of a set A somewhat 
more explicitly, as the set of all sets that are equivalent to 
A. This definition thus provides a place for cardinal num-
bers as objects of a universe whose only members are sets.

The above definitions are consistent with the usage of 
natural numbers as cardinal numbers. Intuitively, a cardinal 
number, whether finite (i.e., a natural number) or transfinite 
(i.e., nonfinite), is a measure of the size of a set. Exactly 
how a cardinal number is defined is unimportant; what is 
important is that  if and only if A =̄ B.

To compare cardinal numbers, an ordering relation 
(symbolized by <) may be introduced by means of the defi-
nition  if A is equivalent to a subset of B and B is 
equivalent to no subset of A. Clearly, this relation is irre-
flexive  and transitive:  and  imply .

When applied to natural numbers used as cardinals, 
the relation < (less than) coincides with the familiar order-
ing relation for null, so that < is an extension of that 
relation.

The symbol ℵ0 (aleph-null) is standard for the cardinal 
number of null (sets of this cardinality are called denumer-
able), and ℵ (aleph) is sometimes used for that of the set of 
real numbers. Then n < ℵ0 for each n ∊ null and ℵ0 < ℵ.

This, however, is not the end of the matter. If the 
power set of a set A—symbolized P(A)—is defined as 
the set of all subsets of A, then, as Cantor proved, 
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for every set A—a relation that is known as Cantor’s 
theorem. It implies an unending hierarchy of transfinite 
cardinals: . Cantor proved that 

 and suggested that there are no cardinal numbers 
between ℵ0 and ℵ, a conjecture known as the continuum 
hypothesis.

There is an arithmetic for cardinal numbers based on 
natural definitions of addition, multiplication, and expo-
nentiation (squaring, cubing, and so on), but this arithmetic 
deviates from that of the natural numbers when transfinite 
cardinals are involved. For example, ℵ0 + ℵ0 = ℵ0 (because 
the set of integers is equivalent to null), ℵ0 · ℵ0 = ℵ0 
(because the set of ordered pairs of natural numbers is 
equivalent to null), and c + ℵ0 = c for every transfinite 
cardinal c (because every infinite set includes a subset 
equivalent to null).

The so-called Cantor paradox, discovered by Cantor 
himself in 1899, is the following. By the unrestricted prin-
ciple of abstraction, the formula “x is a set” defines a set U; 
i.e., it is the set of all sets. Now P(U) is a set of sets and so 
P(U) is a subset of U. By the definition of < for cardinals, 
however, if A ⊆ B, then it is not the case that . Hence, 
by substitution, . But by Cantor’s theorem, 

. This is a contradiction. In 1901 Russell devised 
another contradiction of a less technical nature that is 
now known as Russell’s paradox. The formula “x is a set and 
(x ∉ x)” defines a set R of all sets not members of themselves. 
Using proof by contradiction, however, it is easily shown 
that (1) R ∊ R. But then by the definition of R it follows 
that (2) (R ∉ R). Together, (1) and (2) form a contradiction.

Axiomatic Set Theory

In contrast to naive set theory, the attitude adopted in an 
axiomatic development of set theory is that it is not 
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necessary to know what the “things” are that are called “sets” 
or what the relation of membership means. Of sole concern 
are the properties assumed about sets and the membership 
relation. Thus, in an axiomatic theory of sets, set and the 
membership relation ∊ are undefined terms. The assump-
tions adopted about these notions are called the axioms of 
the theory. Axiomatic set theorems are the axioms together 
with statements that can be deduced from the axioms using 
the rules of inference provided by a system of logic. Criteria 
for the choice of axioms include: (1) consistency—it should 
be impossible to derive as theorems both a statement and 
its negation; (2) plausibility—axioms should be in accord 
with intuitive beliefs about sets; and (3) richness—desirable 
results of Cantorian set theory can be derived as theorems.

The Zermelo-Fraenkel Axioms

The first axiomatization of set theory was given in 1908 
by Ernst Zermelo, a German mathematician. From his 
analysis of the paradoxes described above in the section 
Cardinality and Transfinite Numbers, he concluded that 
they are associated with sets that are “too big,” such as the 
set of all sets in Cantor’s paradox. Thus, the axioms that 
Zermelo formulated are restrictive insofar as the asserting 
or implying of the existence of sets is concerned. As a con-
sequence, there is no apparent way, in his system, to derive 
the known contradictions from them. On the other 
hand, the results of classical set theory short of the para-
doxes can be derived. Zermelo’s axiomatic theory is here 
discussed in a form that incorporates modifications and 
improvements suggested by later mathematicians, princi-
pally Thoralf Albert Skolem, a Norwegian pioneer in 
metalogic, and Abraham Adolf Fraenkel, an Israeli mathe-
matician. In the literature on set theory, it is called 
Zermelo-Fraenkel set theory and abbreviated ZFC (“C” 
because of the inclusion of the axiom of choice).
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Schemas for Generating Well-Formed Formulas

The ZFC “axiom of extension” conveys the idea that, as in 
naive set theory, a set is determined solely by its members. 
It should be noted that this is not merely a logically 
necessary property of equality but an assumption about 
the membership relation as well.

The set defined by the “axiom of the empty set” is the 
empty (or null) set Ø.

For an understanding of the “axiom schema of separa-
tion” considerable explanation is required. Zermelo’s original 
system included the assumption that, if a formula S(x) is “def-
inite” for all elements of a set A, then there exists a set the 
elements of which are precisely those elements x of A for 
which S(x) holds. This is a restricted version of the principle 
of abstraction, now known as the principle of comprehen-
sion, for it provides for the existence of sets corresponding 
to formulas. It restricts that principle, however, in two ways: 
(1) Instead of asserting the existence of sets unconditionally, 
it can be applied only in conjunction with preexisting sets, 
and (2) only “definite” formulas may be used. Zermelo offered 
only a vague description of “definite,” but clarification was 
given by Skolem (1922) by way of a precise definition of what 
will be called simply a formula of ZFC. Using tools of 
modern logic, the definition may be made as follows:

•	 I. For any variables x and y, x ∊ y and x = y are 
formulas (such formulas are called atomic).

•	 II. If S and T are formulas and x is any variable, 
then each of the following is a formula: If S, 
then T; S if and only if T; S and T; S or T; not 
S; for all x, S; for some x, T.

Formulas are constructed recursively (in a finite 
number of systematic steps) beginning with the (atomic) 
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formulas of (I) and proceeding via the constructions 
permitted in (II). “Not (x ∊ y),” for example, is a formula 
(which is abbreviated to x ∉  y), and “There exists an x 
such that for every y, y ∉ x” is a formula. A variable is free 
in a formula if it occurs at least once in the formula with-
out being introduced by one of the phrases “for some x” 
or “for all x.” Henceforth, a formula S in which x occurs 
as a free variable will be called “a condition on x” and 
symbolized S(x). The formula “For every y, x  ∊  y,” for 
example, is a condition on x. It is to be understood that 
a formula is a formal expression—i.e., a term without 
meaning. Indeed, a computer can be programmed to 
generate atomic formulas and build up from them other 
formulas of ever-increasing complexity using logical 
connectives (“not,” “and,” etc.) and operators (“for all” 
and “for some”). A formula acquires meaning only when 
an interpretation of the theory is specified; i.e., when (1) 
a nonempty collection (called the domain of the inter-
pretation) is specified as the range of values of the variables 
(thus the term set is assigned a meaning, viz., an object in 
the domain), (2) the membership relation is defined for 
these sets, (3) the logical connectives and operators are 
interpreted as in everyday language, and (4) the logical 
relation of equality is taken to be identity among the 
objects in the domain.

The phrase “a condition on x” for a formula in which x 
is free is merely suggestive; relative to an interpretation, 
such a formula does impose a condition on x. Thus, the 
intuitive interpretation of the “axiom schema of separa-
tion” is: given a set A and a condition on x, S(x), those 
elements of A for which the condition holds form a set. It 
provides for the existence of sets by separating off certain 
elements of existing sets. Calling this the axiom schema of 
separation is appropriate, because it is actually a schema 
for generating axioms—one for each choice of S(x).
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Axioms for Compounding Sets

Although the axiom schema of separation has a construc-
tive quality, further means of constructing sets from 
existing sets must be introduced if some of the desirable 
features of Cantorian set theory are to be established. 
Three axioms—axiom of pairing, axiom of union, and 
axiom of power set—are of this sort.

By using five of the axioms (2–6), a variety of basic 
concepts of naive set theory (e.g., the operations of union, 
intersection, and Cartesian product; the notions of rela-
tion, equivalence relation, ordering relation, and function) 
can be defined with ZFC. Further, the standard results 
about these concepts that were attainable in naive set 
theory can be proved as theorems of ZFC.

Axioms for Infinite and Ordered Sets

If I is an interpretation of an axiomatic theory of sets, the 
sentence that results from an axiom when a meaning has 
been assigned to “set” and “∊,” as specified by I, is either 
true or false. If each axiom is true for I, then I is called a 
model of the theory. If the domain of a model is infinite, 
this fact does not imply that any object of the domain is an 
“infinite set.” An infinite set in the latter sense is an object 
d of the domain D of I for which there is an infinity of 
distinct objects d' in D such that d'Ed holds (E standing 
for the interpretation of ∊). Though the domain of any 
model of the theory of which the axioms thus far discussed 
are axioms is clearly infinite, models in which every set is 
finite have been devised. For the full development of 
classical set theory, including the theories of real numbers 
and of infinite cardinal numbers, the existence of infinite 
sets is needed; thus the “axiom of infinity” is included.

The existence of a unique minimal set ω having prop-
erties expressed in the axiom of infinity can be proved; its 
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distinct members are Ø, {Ø}, {Ø, {Ø}}, {Ø, {Ø}, {Ø, {Ø}}}, . . . . 
These elements are denoted by 0, 1, 2, 3, . . . and are called 
natural numbers. Justification for this terminology rests 
with the fact that the Peano postulates (five axioms pub-
lished in 1889 by the Italian mathematician Giuseppe 
Peano), which can serve as a base for arithmetic, can be 
proved as theorems in set theory. Thereby the way is paved 
for the construction within ZFC of entities that have all 
the expected properties of the real numbers.

The origin of the axiom of choice was Cantor’s recog-
nition of the importance of being able to “well-order” 
arbitrary sets—i.e., to define an ordering relation for a 
given set such that each nonempty subset has a least ele-
ment. The virtue of well-ordering a set is that it offers a 
means of proving that a property holds for each of its 
elements by a process (transfinite induction) similar to 
mathematical induction. Zermelo (1904) gave the first 
proof that any set can be well-ordered. His proof employed 
a set-theoretic principle that he called the “axiom of 
choice,” which, shortly thereafter, was shown to be equiv-
alent to the so-called well-ordering theorem.

Intuitively, the axiom of choice asserts the possibility 
of making a simultaneous choice of an element in every 
nonempty member of any set; this guarantee accounts for 
its name. The assumption is significant only when the set 
has infinitely many members. Zermelo was the first to 
state explicitly the axiom, although it had been used but 
essentially unnoticed earlier. It soon became the subject 
of vigorous controversy because of its nonconstructive 
nature. Some mathematicians rejected it totally on this 
ground. Others accepted it but avoided its use whenever 
possible. Some changed their minds about it when its 
equivalence with the well-ordering theorem was proved as 
well as the assertion that any two cardinal numbers c and d 
are comparable (i.e., that exactly one of c < d, d < c, c = d 
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holds). There are many other equivalent statements, 
though even today a few mathematicians feel that the use 
of the axiom of choice is improper. To the vast majority, 
however, it, or an equivalent assertion, has become an 
indispensable and commonplace tool. (Because of this 
controversy, ZFC was adopted as an acronym for the 
majority position with the axiom of choice and ZF for 
the minority position without the axiom of choice.)

Schema for Transfinite Induction and  
Ordinal Arithmetic

When Zermelo’s axioms were found to be inadequate for 
a full-blown development of transfinite induction and 
ordinal arithmetic, Fraenkel and Skolem independently 
proposed an additional axiom schema to eliminate the 
difficulty. As modified by John von Neumann, a Hungarian-
born American mathematician, it says, intuitively, that if 
with each element of a set there is associated exactly one 
set, then the collection of the associated sets is itself a set; 
i.e., it offers a way to “collect” existing sets to form sets. As 
an illustration, each of ω, P(ω), P(P(ω)), . . ., formed by 
recursively taking power sets (sets formed of all the subsets 
of the preceding set), is a set in the theory based on 
Zermelo’s original eight axioms. But there appears to be 
no way to establish the existence of the set having all these 
sets as its members. However, an instance of the “axiom 
schema of replacement” provides for its existence.

Intuitively, the axiom schema of replacement is the 
assertion that, if the domain of a function is a set, then so 
is its range. That this is a powerful schema (in respect to 
the further inferences that it yields) is suggested by the 
fact that the axiom schema of separation can be derived 
from it and that, when applied in conjunction with the 
axiom of the power set, the axiom of pairing can be deduced.
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The axiom schema of replacement has played a signifi-
cant role in developing a theory of ordinal numbers. In 
contrast to cardinal numbers, which serve to designate the 
size of a set, ordinal numbers are used to determine posi-
tions within a prescribed well-ordered sequence. Under 
an approach conceived by von Neumann, if A is a set, 
the successor A' of A is the set obtained by adjoining A 
to the elements of A (A' = A ∪ {A}). In terms of this notion 
the natural numbers, as defined above, are simply the 
succession 0, 0', 0", 0''', . . . ; i.e., the natural numbers are 
the sets obtained starting with Ø and iterating the prime 
operation a finite number of times. The natural numbers 
are well-ordered by the ∊ relation, and with this ordering 
they constitute the finite ordinal numbers. The axiom of 
infinity secures the existence of the set of natural numbers, 
and the set ω is the first infinite ordinal. Greater ordinal 
numbers are obtained by iterating the prime operation 
beginning with ω. An instance of the axiom schema of 
replacement asserts that ω, ω', ω", . . . form a set. The union 
of this set and ω is the still greater ordinal that is denoted 
by ω2 (employing notation from ordinal arithmetic). A 
repetition of this process beginning with ω2 yields the 
ordinals (ω2)', (ω2)", . . .; next after all of those of this form 
is ω3. In this way the sequence of ordinals ω, ω2, ω3, . . . is 
generated. An application of the axiom schema of replace-
ment then yields the ordinal that follows all of these in 
the same sense in which ω follows the finite ordinals; in the 
notation from ordinal arithmetic, it is ω2. At this point 
the iteration process can be repeated. In summary, the 
axiom schema of replacement together with the other 
axioms make possible the extension of the counting pro-
cess as far beyond the natural numbers as one chooses.

In the ZFC system, cardinal numbers are defined as 
certain ordinals. From the well-ordering theorem (a 
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consequence of the axiom of choice), it follows that every 
set A is equivalent to some ordinal number. Also, the total-
ity of ordinals equivalent to A can be shown to form a set. 
Then a natural choice for the cardinal number of A is the 
least ordinal to which A is equivalent. This is the motiva-
tion for defining a cardinal number as an ordinal that is 
not equivalent to any smaller ordinal. The arithmetics of 
both cardinal and ordinal numbers have been fully devel-
oped. That of finite cardinals and ordinals coincides with 
the arithmetic of the natural numbers. For infinite cardi-
nals, the arithmetic is uninteresting since, as a consequence 
of the axiom of choice, both the sum and product of two 
such cardinals are equal to the maximum of the two. In 
contrast, the arithmetic of infinite ordinals is interesting 
and presents a wide assortment of oddities.

In addition to the guidelines already mentioned for 
the choice of axioms of ZFC, another guideline is taken 
into account by some set theorists. For the purposes of 
foundational studies of mathematics, it is assumed that 
mathematics is consistent; otherwise, any foundation 
would fail. It may thus be reasoned that, if a precise 
account of the intuitive usages of sets by mathematicians 
is given, an adequate and correct foundation will result. 
Traditionally, mathematicians deal with the integers, with 
real numbers, and with functions. Thus, an intuitive hier-
archy of sets in which these entities appear should be a 
model of ZFC. It is possible to construct such a hierarchy 
explicitly from the empty set by iterating the operations 
of forming power sets and unions in the following way.

The bottom of the hierarchy is composed of the sets 
A0 = Ø, A1, . . . , An, . . . , in which each An + 1 is the power set 
of the preceding An. Then one can form the union Aω of all 
sets constructed thus far. This can be followed by iterating 
the power set operation as before: Aω' is the power set of 
Aω and so forth. This construction can be extended to 
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arbitrarily high transfinite levels. There is no highest level 
of the hierarchy; at each level, the union of what has been 
constructed thus far can be taken and the power set oper-
ation applied to the elements. In general, for each ordinal 
number α one obtains a set Aα, each member of which is a 
subset of some Aβ that is lower in the hierarchy. The hier-
archy obtained in this way is called the iterative hierarchy. 
The domain of the intuitive model of ZFC is conceived as 
the union of all sets in the iterative hierarchy. In other 
words, a set is in the model if it is an element of some set 
Aα of the iterative hierarchy.

Axiom for Eliminating Infinite Descending Species

From the assumptions that this system of set theory is suf-
ficiently comprehensive for mathematics and that it is the 
model to be “captured” by the axioms of ZFC, it may be 
argued that models of axioms  that differ sharply from this 
system should be ruled out. The discovery of such a model 
led to the formulation by von Neumann of axiom 10, the 
axiom of restriction, or foundation axiom.

This axiom eliminates from the models of the first 
nine axioms those in which there exist infinite descending 
∊-chains (i.e., sequences x1, x2, x3, . . . such that x2 ∊ x1, x3 ∊ x2, 
. . .), a phenomenon that does not appear in the model 
based on an iterative hierarchy described above. (The 
existence of models having such chains was discovered by 
the Russian mathematician Dimitry Mirimanoff in 1917.) 
It also has other attractive consequences; e.g., a simpler 
definition of the notion of ordinal number is possible. Yet 
there is no unanimity among mathematicians whether 
there are sufficient grounds for adopting it as an additional 
axiom. On the one hand, the axiom is equivalent (in a 
theory that allows only sets) to the statement that every 
set appears in the iterative hierarchy informally described 
above—there are no other sets. So it formulates the view 

7 Numbers 7



7 The Britannica Guide to Numbers and Measurement 7

90

that this is what the universe of all sets is really like. On 
the other hand, there is no compelling need to rule out 
sets that might lie outside the hierarchy—the axiom has 
not been shown to have any mathematical applications.

The Neumann-Bernays-Gödel Axioms

The second axiomatization of set theory originated with 
John von Neumann in the 1920s. His formulation differed 
considerably from ZFC because the notion of function, 
rather than that of set, was taken as undefined, or 
“primitive.” In a series of papers beginning in 1937, how-
ever, the Swiss logician Paul Bernays, a collaborator with 
the German formalist David Hilbert, modified the von 
Neumann approach in a way that put it in much closer 
contact with ZFC. In 1940, the Austrian-born American 
logician Kurt Gödel, known for his undecidability proof, 
further simplified the theory. This axiomatic version of set 
theory is called NBG, after the Neumann-Bernays-Gödel 
axioms. As will be explained shortly, NBG is closely related 
to ZFC, but it allows explicit treatment of so-called 
classes: collections that might be too large to be sets, such 
as the class of all sets or the class of all ordinal numbers.

For expository purposes it is convenient to adopt two 
undefined notions for NBG: class and the binary relation 
∊ of membership (though, as is also true in ZFC, ∊ suf-
fices). For the intended interpretation, variables take 
classes—the totalities corresponding to certain properties—
as values. A class is defined to be a set if it is a member of 
some class; those classes that are not sets are called proper 
classes. Intuitively, sets are intended to be those classes 
that are adequate for mathematics, and proper classes are 
thought of as those collections that are “so big” that, if 
they were permitted to be sets, contradictions would 
follow. In NBG, the classical paradoxes are avoided by 
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proving in each case that the collection on which the para-
dox is based is a proper class—i.e., is not a set.

Comments about the axioms that follow are limited to 
features that distinguish them from their counterpart in 
ZFC. The axiom schema for class formation is presented 
in a form to facilitate a comparison with the axiom schema 
of separation of ZFC. In a detailed development of NBG, 
however, there appears instead a list of seven axioms (not 
schemas) that state that, for each of certain conditions, 
there exists a corresponding class of all those sets satisfy-
ing the condition. From this finite set of axioms, each an 
instance of the above schema, the schema (in a general-
ized form) can be obtained as a theorem. When obtained 
in this way, the axiom schema for class formation of NBG 
is called the class existence theorem.

In brief, axioms 4 through 8 of NBG are axioms of set 
existence. The same is true of the next axiom, which for 
technical reasons is usually phrased in a more general 
form. Finally, there may appear in a formulation of NBG 
an analog of the last axiom of ZFC (axiom of restriction).

A comparison of the two theories that have been for-
mulated is in order. In contrast to the axiom schema of 
replacement of ZFC, the NBG version is not an axiom 
schema but an axiom. Thus, with the comments above 
about the ZFC axiom schema of separation in mind, it fol-
lows that NBG has only a finite number of axioms. On the 
other hand, since the axiom schema of replacement of 
ZFC provides an axiom for each formula, ZFC has infi-
nitely many axioms—which is unavoidable because it is 
known that no finite subset yields the full system of axi-
oms. The finiteness of the axioms for NBG makes the 
logical study of the system simpler. The relationship 
between the theories may be summarized by the state-
ment that ZFC is essentially the part of NBG that refers 
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only to sets. Indeed, it has been proved that every theorem 
of ZFC is a theorem of NBG and that any theorem of 
NBG that speaks only about sets is a theorem of ZFC. 
From this it follows that ZFC is consistent if and only if 
NBG is consistent.

Limitations of Axiomatic Set Theory

The fact that NBG avoids the classical paradoxes and that 
there is no apparent way to derive any one of them in ZFC 
does not settle the question of the consistency of either 
theory. One method for establishing the consistency of an 
axiomatic theory is to give a model—i.e., an interpreta-
tion of the undefined terms in another theory such that 
the axioms become theorems of the other theory. If this 
other theory is consistent, then that under investigation 
must be consistent. Such consistency proofs are thus rela-
tive: the theory for which a model is given is consistent if 
that from which the model is taken is consistent. The 
method of models, however, offers no hope for proving 
the consistency of an axiomatic theory of sets. In the case 
of set theory and, indeed, of axiomatic theories generally, 
the alternative is a direct approach to the problem.

If T is the theory of which the (absolute) consistency is 
under investigation, this alternative means that the prop-
osition “There is no sentence of T such that both it and its 
negation are theorems of T” must be proved. The mathe-
matical theory (developed by the formalists) to cope with 
proofs about an axiomatic theory T is called proof theory, 
or metamathematics. It is premised upon the formulation 
of T as a formal axiomatic theory—i.e., the theory of infer-
ence (as well as T) must be axiomatized. It is then possible 
to present T in a purely symbolic form—i.e., as a formal 
language based on an alphabet the symbols of which are 
those for the undefined terms of T and those for the logi-
cal operators and connectives. A sentence in this language 
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is a formula composed from the alphabet according to pre-
scribed rules. The hope for metamathematics was that, by 
using only intuitively convincing, weak number-theoretic 
arguments (called finitary methods), unimpeachable proofs 
of the consistency of such theories as axiomatic set theory 
could be given.

That hope suffered a severe blow in 1931 from a theo-
rem proved by Kurt Gödel about any formal theory S that 
includes the usual vocabulary of elementary arithmetic. 
By coding the formulas of such a theory with natural num-
bers (now called Gödel numbers) and by talking about 
these numbers, Gödel was able to make the metamathe-
matics of S become part of the arithmetic of S and hence 
expressible in S. The theorem in question asserts that the 
formula of S that expresses (via a coding) “S is consistent” 
in S is unprovable in S if S is consistent. Thus, if S is con-
sistent, then the consistency of S cannot be proved within 
S; rather, methods beyond those that can be expressed or 
reflected in S must be employed. Because, in both ZFC 
and NBG, elementary arithmetic can be developed, 
Gödel’s theorem applies to these two theories. Although 
there remains the theoretical possibility of a finitary proof 
of consistency that cannot be reflected in the foregoing 
systems of set theory, no hopeful, positive results have 
been obtained.

Other theorems of Gödel when applied to ZFC (and 
there are corresponding results for NBG) assert that, if 
the system is consistent, then (1) it contains a sentence 
such that neither it nor its negation is provable (such a 
sentence is called undecidable), (2) there is no algorithm 
(or iterative process) for deciding whether a sentence of 
ZFC is a theorem, and (3) these same statements hold for 
any consistent theory resulting from ZFC by the adjunction 
of further axioms or axiom schemas. Apparently ZFC can 
serve as a foundation for all of present-day mathematics 
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because every mathematical theorem can be translated 
into and proved within ZFC or within extensions obtained 
by adding suitable axioms. Thus, the existence of undecid-
able sentences in each such theory points out an inevitable 
gap between the sentences that are true in mathematics 
and sentences that are provable within a single axiomatic 
theory. The fact that there is more to conceivable mathe-
matics than can be captured by the axiomatic approach 
prompted the American logician Emil Post to comment in 
1944 that “mathematical thinking is, and must remain, 
essentially creative.”

Present Status of Axiomatic Set Theory

The foundations of axiomatic set theory are in a state of sig-
nificant change as a result of new discoveries. The situation 
with alternate (and conflicting) axiom systems for set theory 
is analogous to the 19th-century revolution in geometry that 

Mathematician Kurt Gödel, left, walks with his close friend, Albert Einstein. 
Though most famous for his incompleteness theorem, Gödel made other signifi-
cant contributions to the field of mathematics, including his work on axiomatic 
set theory. Leonard McCombe/Time & Life Pictures/Getty Images
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was set off by the discovery of non-Euclidean geometries. It 
is difficult to predict the ultimate consequences of these late 
20th-century findings for set theory, but already they have 
had profound effects on attitudes about certain axioms and 
have forced the realization of a continuous search for addi-
tional axioms. These discoveries have focused attention on 
the concept of the independence of an axiom. If T is an axi-
omatic theory and S is a sentence (i.e., a formula) of T that 
is not an axiom, and if T + S denotes the theory that results 
from T upon the adjunction of S to T as a further axiom, 
then S is said to be consistent with T if T + S is consistent 
and independent of T whenever both S and ~S (the negation 
of S) are consistent with T. Thus, if S is independent of T, 
then the addition of S or ~S to T yields a consistent theory. 
The role of the axiom of restriction (AR) can be clarified in 
terms of the notion of independence. If ZF' denotes the 
theory obtained from ZF by deleting AR and either retain-
ing or deleting the axiom of choice (AC), then it can be 
proved that, if ZF' is consistent, AR is independent of ZF'.

Of far greater significance for the foundations of set the-
ory is the status of AC relative to the other axioms of ZF. 
The status in ZF of the continuum hypothesis (CH) and its 
extension, the generalized continuum hypothesis (GCH), 
are also of profound importance. In the following discussion 
of these questions, ZF denotes Zermelo-Fraenkel set theory 
without AC. The first finding was obtained by Kurt Gödel 
in 1939. He proved that AC and GCH are consistent relative 
to ZF (i.e., if ZF is consistent, then so is ZF + AC + GCH) by 
showing that a contradiction within ZF + AC + GCH can be 
transformed into a contradiction in ZF. In 1963 American 
mathematician Paul Cohen proved that (1) if ZF is consis-
tent, then so is ZF + AC + ~CH, and (2) if ZF is consistent, 
then so is ZF + ~AC. Since in ZF + AC it can be demonstrated 
that GCH implies CH, Gödel’s theorem together with 
Cohen’s establishes the independence of AC and CH. For 

7 Numbers 7



7 The Britannica Guide to Numbers and Measurement 7

96

his proofs Cohen introduced a new method (called forc-
ing) of constructing interpretations of ZF  +  AC. The 
method of forcing is applicable to many problems in set 
theory, and since 1963 it has been used to give indepen-
dence proofs for a wide variety of highly technical 
propositions. Some of these results have opened new 
avenues for attacks on important foundational questions.

The current unsettled state of axiomatic set theory 
can be sensed by the responses that have been made to the 
question of how to regard CH in the light of its indepen-
dence from ZF + AC. Someone who believes that set theory 
deals only with nonexistent fictions will have no concern 
about the question. But for most mathematicians sets 
actually exist; in particular, ω and P(ω) exist (the set of the 
natural numbers and its power set, respectively). Further, 
it should be the case that every nondenumerable subset of 
P(ω) either is or is not equivalent to P(ω); i.e., CH either is 
true or is false. Followers of this faith regard the axioms of 
set theory as describing some well-defined reality—one in 
which CH must be either true or false. Thus there is the 
inescapable conclusion that the present axioms do not 
provide a complete description of that reality. A search for 
new axioms is in progress. One who hopes to prove CH as 
a theorem must look for axioms that restrict the number of 
sets. There seems to be little hope for this restriction, how-
ever, without changing the intuitive notion of the set. Thus 
the expectations favour the view that CH will be disproved. 
This disproof requires an axiom that guarantees the exis-
tence of more sets—e.g., of sets having cardinalities greater 
than those that can be proved to exist in ZF + AC. So far, 
none of the axioms that have been proposed that are aimed 
in this direction (called “generalized axioms of infinity”) 
serves to prove ~CH. Although there is little supporting 
evidence, the optimists hope that the status of the con-
tinuum hypothesis will eventually be settled.
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C H A P T E R  2
G R e A t  A R I t H M e t I C I A n s 
A n D  n U M B e R  t H e o R I st s

 Mathematics is often called the universal language. 
Even many animals can recognize or count small 

numbers. It should therefore come as no surprise that the 
oldest known written records contain numbers, often in 
trade and tax receipts. Nevertheless, the study of numbers 
in their own right lagged behind the development of 
geometry, which dates back to at least 3000  BCE  in the 
Fertile Crescent from the Nile valley to Mesopotamia. 
Although ancient mathematicians dabbled in their consid-
eration, the real impetus for the study of numbers began 
with Diophantus of Alexandria in the 3rd century  CE .   

 the aNcieNt world   

 Aryabhata I  
(b. 476, possibly Ashmaka or Kusumapura, India)

Aryabhata was an astronomer and the earliest Indian 
mathematician whose work and history are available to 
modern scholars. Known as Aryabhata I or Aryabhata the 
Elder to distinguish him from a 10th-century Indian 
mathematician of the same name, he fl ourished in 
Kusumapura—near Patalipurta (Patna), then the capital 
of the Gupta dynasty—where he composed at least 
two works, Aryabhatiya ( c.  499) and the now lost 
Aryabhatasiddhanta. Aryabhatasiddhanta circulated mainly 
in the northwest of India and, through the Sa-sa-nian 
dynasty (224–651) of Iran, had a profound infl uence on 
the development of Islamic astronomy. Its contents are 
preserved to some extent in the works of Varahamihira 
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(flourished c. 550), Bhaskara I (flourished c. 629), 
Brahmagupta (598–c. 665), and others. It is one of the ear-
liest astronomical works to assign the start of each day to 
midnight.

Aryabhatiya was particularly popular in South India, 
where numerous mathematicians over the ensuing millen-
nium wrote commentaries. Written in verse couplets, this 
work deals with mathematics and astronomy. Following 
an introduction that contains astronomical tables and 
Aryabhata’s system of phonemic number notation, the 
work is characteristically divided into three sections: 
Ganita (“Mathematics”), Kala-kriya (“Time Calculations”), 
and Gola (“Sphere”).

In Ganita Aryabhata names the first 10 decimal places 
and gives algorithms for obtaining square and cubic roots, 
utilizing the decimal number system. Then he treats geo-
metric measurements—employing 62,832/20,000 (= 3.1416) 
for π—and develops properties of similar right-angled 
triangles and of two intersecting circles. Utilizing the 
Pythagorean theorem, he obtained one of the two meth-
ods for constructing his table of sines. He also realized 
that second-order sine difference is proportional to sine. 
Mathematical series, quadratic equations, compound 
interest (involving a quadratic equation), proportions 
(ratios), and the solution of various linear equations are 
among the arithmetic and algebraic topics included. 
Aryabhata’s general solution for linear indeterminate 
equations, which Bhaskara I called kuttakara (“pulverizer”), 
consisted of breaking the problem down into new prob-
lems with successively smaller coefficients—essentially 
the Euclidean algorithm and related to the method of 
continued fractions.

With Kala-kriya Aryabhata turned to astronomy—in 
particular, treating planetary motion along the ecliptic. 
The topics include definitions of various units of time, 



99

7 Great Arithmeticians and Number Theorists 7

eccentric and epicyclic models of planetary motion, 
planetary longitude corrections for different terrestrial 
locations, and a theory of “lords of the hours and days” 
(an astrological concept used for determining propitious 
times for action).

Aryabhatiya ends with spherical astronomy in Gola, 
where he applied plane trigonometry to spherical geom-
etry by projecting points and lines on the surface of a 
sphere onto appropriate planes. Topics include prediction 
of solar and lunar eclipses and an explicit statement that 
the apparent westward motion of the stars is due to the 
spherical Earth’s rotation about its axis. Aryabhata also 
correctly ascribed the luminosity of the Moon and planets 
to reflected sunlight.

The Indian government named its first satellite 
Aryabhata (launched 1975) in his honour.

Diophantus of Alexandria
(fl. c. 250 CE)

Diophantus was a Greek mathematician, famous for his 
work in algebra.

What little is known of Diophantus’s life is circum-
stantial. From the appellation “of Alexandria” it seems 
that he worked in the main scientific centre of the ancient 
Greek world; and because he is not mentioned before the 
4th century, it seems likely that he flourished during the 
3rd century. An arithmetic epigram from the Anthologia 
Graeca of late antiquity, purported to retrace some land-
marks of his life (marriage at 33, birth of his son at 38, death 
of his son four years before his own at 84), may well be 
contrived. Two works have come down to us under his 
name, both incomplete. The first is a small fragment on 
polygonal numbers (a number is polygonal if that same 
number of dots can be arranged in the form of a regular 
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polygon). The second, a large and extremely influential 
treatise upon which all the ancient and modern fame of 
Diophantus reposes, is his Arithmetica. Its historical 
importance is twofold: it is the first known work to employ 
algebra in a modern style, and it inspired the rebirth of 
number theory.

The Arithmetica begins with an introduction addressed 
to Dionysius—arguably St. Dionysius of Alexandria. After 
some generalities about numbers, Diophantus explains 
his symbolism—he uses symbols for the unknown (corre-
sponding to our x) and its powers, positive or negative, as 
well as for some arithmetic operations—most of these 
symbols are clearly scribal abbreviations. This is the first 
and only occurrence of algebraic symbolism before the 
15th century. After teaching multiplication of the powers 
of the unknown, Diophantus explains the multiplication of 
positive and negative terms and then how to reduce an 
equation to one with only positive terms (the standard 
form preferred in antiquity). With these preliminaries out 
of the way, Diophantus proceeds to the problems. Indeed, 
the Arithmetica is essentially a collection of problems with 
solutions, about 260 in the part still extant.

The introduction also states that the work is divided 
into 13 books. Six of these books were known in Europe in 
the late 15th century, transmitted in Greek by Byzantine 
scholars and numbered from I to VI; four other books 
were discovered in 1968 in a 9th-century Arabic translation 
by Qust.a- ibn Lu-qa-. However, the Arabic text lacks math-
ematical symbolism, and it appears to be based on a later 
Greek commentary—perhaps that of Hypatia (c. 370–
415)—that diluted Diophantus’s exposition. We now know 
that the numbering of the Greek books must be modified: 
the Arithmetica thus consists of Books I to III in Greek, 
Books IV to VII in Arabic, and, presumably, Books VIII 
to X in Greek (the former Greek Books IV to VI). Further 
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renumbering is unlikely; it is fairly certain that the 
Byzantines only knew the six books they transmitted and 
the Arabs no more than Books I to VII in the commented 
version.

The problems of Book I are not characteristic, being 
mostly simple problems used to illustrate algebraic reck-
oning. The distinctive features of Diophantus’s problems 
appear in the later books: they are indeterminate (having 
more than one solution), are of the second degree or are 
reducible to the second degree (the highest power on 
variable terms is 2, i.e., x2), and end with the determination 
of a positive rational value for the unknown that will make 
a given algebraic expression a numerical square or some-
times a cube. (Throughout his book Diophantus uses 
“number” to refer to what are now called positive, rational 
numbers; thus, a square number is the square of some 
positive, rational number.) Books II and III also teach 
general methods. In three problems of Book II it is 
explained how to represent: (1) any given square number 
as a sum of the squares of two rational numbers; (2) any 
given nonsquare number, which is the sum of two known 
squares, as a sum of two other squares; and (3) any given 
rational number as the difference of two squares. While 
the first and third problems are stated generally, the 
assumed knowledge of one solution in the second problem 
suggests that not every rational number is the sum of two 
squares. Diophantus later gives the condition for an integer: 
the given number must not contain any prime factor of the 
form 4n + 3 raised to an odd power, where n is a non-negative 
integer. Such examples motivated the rebirth of number 
theory. Although Diophantus is typically satisfied to 
obtain one solution to a problem, he occasionally mentions 
in problems that an infinite number of solutions exists.

In Books IV to VII Diophantus extends basic meth-
ods such as those outlined above to problems of higher 
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degrees that can be reduced to a binomial equation of the 
first or second degree. The prefaces to these books state 
that their purpose is to provide the reader with “experience 
and skill.” While this recent discovery does not increase 
knowledge of Diophantus’s mathematics, it does alter the 
appraisal of his pedagogical ability. Books VIII and IX 
(presumably Greek Books IV and V) solve more difficult 
problems, even if the basic methods remain the same. For 
instance, one problem involves decomposing a given 
integer into the sum of two squares that are arbitrarily 
close to one another. A similar problem involves decom-
posing a given integer into the sum of three squares; in it, 
Diophantus excludes the impossible case of integers of 
the form 8n + 7 (again, n is a non-negative integer). Book X 
(presumably Greek Book VI) deals with right-angled 
triangles with rational sides and subject to various further 
conditions.

The contents of the three missing books of the 
Arithmetica can be surmised from the introduction, where, 
after saying that the reduction of a problem should “if 
possible” conclude with a binomial equation, Diophantus 
adds that he will “later on” treat the case of a trinomial 
equation—a promise not fulfilled in the extant part.

Although he had limited algebraic tools at his disposal, 
Diophantus managed to solve a great variety of problems, 
and the Arithmetica inspired Arabic mathematicians such 
as al-Karajı- (c. 980–1030) to apply his methods. The most 
famous extension of Diophantus’s work was by Pierre de 
Fermat (1601–65), the founder of modern number theory. 
In the margins of his copy of the Arithmetica, Fermat wrote 
various remarks, proposing new solutions, corrections, 
and generalizations of Diophantus’s methods as well as 
some conjectures such as Fermat’s last theorem, which 
occupied mathematicians for generations to come. 
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Indeterminate equations restricted to integral solutions 
have come to be known, though inappropriately, as 
Diophantine equations.

Muh. ammad ibn Mu-sa- al-Khwa-rizmi-

(b. c. 780, Baghdad, Iraq—d. c. 850)

Al-Khwa-rizmı- was a Muslim mathematician and astrono-
mer whose major works introduced Hindu-Arabic 
numerals and the concepts of algebra into European 
mathematics. Latinized versions of his name and of his 
most famous book title live on in the terms algorithm and 
algebra.

Al-Khwa-rizmı- lived in Baghdad, where he worked at 
the “House of Wisdom” (Da-r al-H. ikma) under the caliphate 
of al-Ma’mu-n. (The House of Wisdom acquired and 
translated scientific and philosophic treatises, particularly 
Greek, as well as publishing original research.) Al-Kwa-rizmı-’s 
work on elementary algebra, al-Kita-b al-mukhtas.ar fı- H. isa-b 
al-jabr wa’l-muqa-bala (“The Compendious Book on 
Calculation by Completion and Balancing”), was trans-
lated into Latin in the 12th century, from which the title 
and term Algebra derives. Algebra is a compilation of rules, 
together with demonstrations, for finding solutions of 
linear and quadratic equations based on intuitive geometric 
arguments, rather than the abstract notation now associated 
with the subject. Its systematic, demonstrative approach 
distinguishes it from earlier treatments of the subject. It 
also contains sections on calculating areas and volumes of 
geometric figures and on the use of algebra to solve inheri-
tance problems according to proportions prescribed by 
Islamic law. Elements within the work can be traced from 
Babylonian mathematics of the early 2nd millennium BCE 
through Hellenistic, Hebrew, and Hindu treatises.
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In the 12th century a 
second work by 
al-Khwa-rizmı- introduced 
Hindu-Arabic numerals 
and their arithmetic to 
the West. It is preserved 
only in a Latin transla-
tion, Algoritmi de numero 
Indorum (“Al-Khwa-rizmı- 
Concerning the Hindu 
Art of Reckoning”). From 
the name of the author, 
rendered in Latin as 
algoritmi, originated the 
term algorithm.

A third major book 
was his Kita-b s.u-rat al-ard. 

(“The Image of the Earth”; translated as Geography), which 
presented the coordinates of localities in the known world 
based, ultimately, on those in the Geography of Ptolemy 
(fl. 127–145 CE) but with improved values for the length of 
the Mediterranean Sea and the location of cities in Asia 
and Africa. He also assisted in the construction of a world 
map for al-Ma’mu-n and participated in a project to deter-
mine the circumference of the Earth, which had long been 
known to be spherical, by measuring the length of a degree 
of a meridian through the plain of Sinja-r in Iraq.

Finally, al-Khwa-rizmı- also compiled a set of astro-
nomical tables (Zı-j), based on a variety of Hindu and 
Greek sources. This work included a table of sines, evi-
dently for a circle of radius 150 units. Like his treatises on 
algebra and Hindu-Arabic numerals, this astronomical 
work (or an Andalusian revision thereof) was translated 
into Latin.

Detail from a 1983 commemorative 
stamp from the U.S.S.R. celebrates 
Muh. ammad ibn Mu-sa- al-Khwa-rizmı- 
on the 1200th anniversary of his birth. 
Though nothing is known today about 
his actual appearance, the significance 
of his work on algebra and beyond has 
endured for centuries.
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Nicomachus of Gerasa
(fl. c. 100 CE, Gerasa, Roman Syria [now Jarash, Jordan])

Nicomachus was a neo-Pythagorean philosopher and math-
ematician who wrote Arithme-tike- eisag0-ge- (Introduction 
to Arithmetic), an influential treatise on number theory. 
Considered a standard authority for 1,000 years, the book 
sets out the elementary theory and properties of numbers 
and contains the earliest-known Greek multiplication table.

Nicomachus was interested in philosophical questions 
dealing with whole numbers, the classification of even and 
odd numbers and their ratios, and wondrous or curious 
properties of numbers. For example, he was interested in 
the notion of “perfect numbers,” such as 6, which equals the 
sum of its proper divisors, and “amicable numbers,” pairs 
of numbers, such as 220 and 284, whose proper divisors sum 
to one another. He was not interested, however, in abstract 
theorems on whole numbers and their proofs, as found in 
Books VII–IX of Euclid’s Elements; contrary to Euclid’s 
approach, Nicomachus would merely give specific numerical 
examples. A Latin translation of the Arithme-tike- by Lucius 
Apuleius (c. 124–170) is lost, but a version by Ancius Boethius 
(c. 470–524) survived and was used in schools up to the 
Renaissance. Nicomachus also wrote Encheiridion Harmonike-s 
(“Handbook of Harmony”) on the Pythagorean theory of 
music and the two-volume Theologoumena arithmetike-s (“The 
Theology of Numbers”) on the mystic properties of num-
bers; only fragments of the latter survive.

Leonardo Pisano
(b. c. 1170, Pisa?—d. after 1240)

Leonardo Pisano, also known as Fibonacci, was a medieval 
Italian mathematician and author of Liber abaci (1202; 
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“Book of the Abacus”), the first European work on Indian 
and Arabian mathematics.

Little is known about Leonardo’s life beyond the few 
facts given in his mathematical writings. During his boy-
hood his father, Guglielmo, a Pisan merchant, was 
appointed consul over the community of Pisan merchants 
in the North African port of Bugia (now Bejaïa, Alg.). 
Leonardo was sent to study calculation with an Arab 
master. He later went to Egypt, Syria, Greece, Sicily, and 
Provence, where he studied different numerical systems 
and methods of calculation.

When Leonardo’s Liber abaci first appeared, Hindu-
Arabic numerals were known to only a few European 
intellectuals through translations of the writings of the 
9th-century Arab mathematician Muh.ammad ibn Mu-sa- 
al-Khwa-rizmı-. The first seven chapters dealt with the 
notation, explaining the principle of place value, by which 
the position of a figure determines whether it is a unit, 10, 
100, and so forth, and demonstrating the use of the numer-
als in arithmetical operations. The techniques were then 
applied to such practical problems as profit margin, barter, 
money changing, conversion of weights and measures, 
partnerships, and interest. Most of the work was devoted 
to speculative mathematics—proportion (represented by 
such popular medieval techniques as the Rule of Three 
and the Rule of Five, which are rule-of-thumb methods of 
finding proportions), the Rule of False Position (a method 
by which a problem is worked out by a false assumption, 
then corrected by proportion), extraction of roots, and 
the properties of numbers, concluding with some geome-
try and algebra. In 1220 Leonardo produced a brief work, 
the Practica geometriae (“Practice of Geometry”), which 
included eight chapters of theorems based on Euclid’s 
Elements and On Divisions.
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The Liber abaci, which was widely copied and imitated, 
drew the attention of the Holy Roman emperor Frederick 
II. In the 1220s Leonardo was invited to appear before the 
emperor at Pisa, and there John of Palermo, a member 
of Frederick’s scientific entourage, propounded a series of 
problems, three of which Leonardo presented in his 
books. The first two belonged to a favourite Arabic type, 
the indeterminate, which had been developed by the 3rd-
century Greek mathematician Diophantus. This was an 
equation with two or more unknowns for which the 
solution must be in rational numbers (whole numbers or 
common fractions). The third problem was a third-degree 
equation (i.e., containing a cube), x3 + 2x2 + 10x = 20 
(expressed in modern algebraic notation), which Leonardo 
solved by a trial-and-error method known as approxi-
mation; he arrived at the answer

in sexagesimal fractions (a fraction using the Babylonian 
number system that had a base of 60), which, when trans-
lated into modern decimals (1.3688081075), is correct to 
nine decimal places.

For several years Leonardo corresponded with 
Frederick II and his scholars, exchanging problems 
with them. He dedicated his Liber quadratorum (1225; 
“Book of Square Numbers”) to Frederick. Devoted entirely 
to Diophantine equations of the second degree (i.e., 
containing squares), the Liber quadratorum is considered 
Leonardo’s masterpiece. It is a systematically arranged 
collection of theorems, many invented by the author, who 
used his own proofs to work out general solutions. 
Probably his most creative work was in congruent 
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numbers—numbers that give the same remainder when 
divided by a given number. He worked out an original 
solution for finding a number that, when added to or sub-
tracted from a square number, leaves a square number. His 
statement that x2 + y2 and x2 − y2 could not both be squares 
was of great importance to the determination of the area 
of rational right triangles. Although the Liber abaci was 
more influential and broader in scope, the Liber quadratorum 
alone ranks Leonardo as the major contributor to number 
theory between Diophantus and the 17th-century French 
mathematician Pierre de Fermat.

Except for his role in spreading the use of the Hindu-
Arabic numerals, Leonardo’s contribution to mathematics 
has been largely overlooked. His name is known to modern 
mathematicians mainly because of the Fibonacci sequence 
derived from a problem in the Liber abaci:

A certain man put a pair of rabbits in a place surrounded on 
all sides by a wall. How many pairs of rabbits can be produced 
from that pair in a year if it is supposed that every month each 
pair begets a new pair which from the second month on 
becomes productive?

The resulting number sequence, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 
(Leonardo himself omitted the first term), in which each 
number is the sum of the two preceding numbers, is the first 
recursive number sequence (in which the relation between 
two or more successive terms can be expressed by a formula) 
known in Europe. Terms in the sequence were stated in a 
formula by the French-born mathematician Albert Girard 
in 1634: un + 2 = un + 1 + un, in which u represents the term and 
the subscript its rank in the sequence. The mathematician 
Robert Simson at the University of Glasgow in 1753 noted 
that, as the numbers increased in magnitude, the ratio 
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between succeeding 
numbers approached 
the number α, the 
golden ratio, whose 
value is 1.6180 . . ., or 
(1 + 5)/2. In the 19th 
century the term 
Fibonacci sequence 
was coined by the 
French mathemati-
cian Edouard Lucas, 
and scientists began 
to discover such 
sequences in nature; 
for example, in the 
spirals of sunflower 
heads, in pine cones, 
in the regular 
descent (genealogy) 
of the male bee, in 
the related logarith-
mic (equiangular) spiral in snail shells, in the arrangement 
of leaf buds on a stem, and in animal horns.

Qin Jiushao
(b. c. 1202, Puzhou [modern Anyue, Sichuan province], China—d. c. 
1261, Meizhou [modern Meixian, Guangdong province])

Chinese mathematician Qin Jiushao developed a method 
of solving simultaneous linear congruences.

In 1219 Qin joined the army as captain of a territorial 
volunteer unit and helped quash a local rebellion. In 1224–
25 Qin studied astronomy and mathematics in the capital 
Lin’an (modern Hangzhou) with functionaries of the 

Leonardo Pisano (“Fibonacci”), statue by 
Giovanni Paganucci, 1863; in the camposanto 
in Pisa, Italy. © www.istockphoto.com/
Roberto A. Sanchez
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Imperial Astronomical Bureau and with an unidentified 
hermit. In 1233 Qin began his official mandarin (govern-
ment) service. He interrupted his government career for 
three years beginning in 1244 because of his mother’s 
death; during the mourning period he wrote his only 
mathematical book, now known as Shushu jiuzhang (1247; 
“Mathematical Writings in Nine Sections”). He later rose 
to the position of provincial governor of Qiongzhou (in 
modern Hainan), but charges of corruption and bribery 
brought his dismissal in 1258. Contemporary authors men-
tion his ambitious and cruel personality.

His book is divided into nine “categories,” each con-
taining nine problems related to calendrical computations, 
meteorology, surveying of fields, surveying of remote 
objects, taxation, fortification works, construction works, 
military affairs, and commercial affairs. Categories con-
cern indeterminate analysis, calculation of the areas and 
volumes of plane and solid figures, proportions, calcula-
tion of interest, simultaneous linear equations, 
progressions, and solution of higher-degree polynomial 
equations in one unknown. Every problem is followed by 
a numerical answer, a general solution, and a description 
of the calculations performed with counting rods.

The two most important methods found in Qin’s 
book are for the solution of simultaneous linear con-
gruences N =̄ r1 (mod m1) =̄ r2 (mod m2) =̄ . . . =̄ rn (mod mn) 
and an algorithm for obtaining a numerical solution of 
higher-degree polynomial equations based on a process 
of successively better approximations. This method 
was rediscovered in Europe about 1802 and was known 
as the Ruffini-Horner method. Although Qin’s is the 
earliest surviving description of this algorithm, most 
scholars believe that it was widely known in China before 
this time.
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Renaissance Europe

Henry Briggs
(b. February 1561, Warleywood, Yorkshire, Eng.—d. Jan. 26, 1630, 
Oxford)

Henry Briggs was an English mathematician and inventor 
of the common, or Briggsian, logarithm. His writings 
were mainly responsible for the widespread acceptance 
of logarithms throughout Europe. His innovation was 
instrumental in easing the burden of mathematicians, 
astronomers, and other scientists who must make long 
and tedious calculations.

About 1577 Briggs entered St. John’s College, Cambridge, 
where he received a bachelor’s degree in 1581 and a mas-
ter’s degree in 1585. He was elected a fellow of St. John’s in 
1589 and a lecturer in mathematics and medicine there 
in 1592. While at St. John’s, Briggs began research in 
astronomy and navigation with the mathematician 
Edward Wright. In 1596 Briggs was appointed the first 
professor of geometry at the newly opened Gresham 
College in London, and for more than two decades he was 
instrumental in establishing it as a major centre for scien-
tific research and advanced mathematical instruction. 
Briggs also took an active part in bridging the gap between 
mathematical theory and practice. He instructed mari-
ners in navigation, advised explorers on various proposed 
expeditions, and invested in the London Company 
(responsible for founding Jamestown, Virginia, in 1607). 
His publications from this period include A Table to find 
the Height of the Pole, the Magnetic Declination being given 
(1602) and Tables for the Improvement of Navigation (1610); 
he returned to the subject of exploration later with A 
Treatise of the Northwest Passage to the South Sea, Through the 
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Continent of Virginia and by Fretum Hudson (1622). In addi-
tion, Briggs’s advice was avidly sought on surveying, 
shipbuilding, mining, and drainage.

Briggs’s early research focused primarily on astronomy 
and its applications to navigation, and he was among the 
first to disseminate the ideas of the astronomer Johannes 
Kepler (1571–1630) in England. However, with the publica-
tion of John Napier’s Mirifici Logarithmorum Canonis 
Descriptio (1614; “Description of the Marvelous Canon of 
Logarithms”), Briggs immediately realized the logarithm’s 
potential to ease astronomical and navigational calculations 
and so turned his attention and energy to improving the 
idea. During 1615 and 1616 Briggs paid two long visits to 
Edinburgh, Scotland, to collaborate with Napier on his 
new invention, during which time he convinced Napier of 
the benefit of modifying his logarithms to use base 10, 
now known as common logarithms, or Briggsian loga-
rithms in his honour. (Napier had used a base approximately 
equal to 1/e, where e ≅ 2.718, and logarithms with base e are 
now called natural logarithms, or Napierian logarithms.) 
In 1617, shortly after Napier’s death, Briggs published 
Logarithmorum Chilias Prima (“Introduction to 
Logarithms”), wherein he offered a brief explanation of 
the new invention together with the logarithms of numbers 
from 1 to 1,000, calculated to 14 decimal places. For the 
next several years, Briggs devoted himself to the time-
consuming and laborious task of constructing a larger 
table of logarithms. The Arithmetica Logarithmica 
(“Common Logarithms”), published in 1624, advertised 
the utility of logarithms in expediting calculations. In 
addition to tables of logarithms from 1 to 20,000 and from 
90,000 to 100,000 calculated to 14 decimal places, an 
extended preface provided ample testimony of Briggs’s 
originality. The preface contained an important discus-
sion of the nature and construction of logarithms that 
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anticipated by nearly half a century the foundational work 
of James Gregory (1638–1675) and Isaac Newton (1643–
1727), among others. Furthermore, Briggs’s lengthy 
immersion in the practical interpolation of logarithmic 
functions resulted in his anticipating Newton in the dis-
covery of the binomial theorem.

By the time the Arithmetica Logarithmica was pub-
lished, Briggs no longer resided in London, as he was 
elected Savilian Professor of Astronomy at the University 
of Oxford in 1619. The following year he published an 
edition of the first six books of Euclid’s Elements but, 
unfortunately, did not live long enough to complete a 
revised and full edition of the text. His final publication, 
the Trigonometria Britannica (1633; “Trigonometry in 
Britain”), covering the application of logarithms to trigo-
nometric functions, appeared posthumously.

Joost Bürgi
(b. Feb. 28, 1552, Lichtensteig, Switz.—d. Jan. 31, 1632, Kassel, 
Hesse-Kassel)

Joost Bürgi was a Swiss mathematician who invented loga-
rithms independently of the Scottish mathematician 
John Napier.

Bürgi served as court watchmaker to Duke Wilhelm IV 
of Hesse-Kassel from 1579 to 1592 and worked in the royal 
observatory at Kassel, where he developed geometrical and 
astronomical instruments. Word of his exceptional instru-
ments reached Prague, where Holy Roman Emperor Rudolf 
II was trying to establish a science centre, and in about 1603 
Bürgi journeyed to Prague to take up the post of imperial 
clockmaker. Later he also became assistant to the German 
astronomer Johannes Kepler.

Bürgi was a major contributor to the development of 
decimal fractions and exponential notation, but his most 
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notable contribution was published in 1620 as a table of 
antilogarithms. He may have developed the idea for loga-
rithms as early as 1588, but he certainly had compiled his 
table before his journey to Prague, more than 10 years 
before Napier published his own logarithm table in 1614.

Pierre de Fermat
(b. Aug. 17, 1601, Beaumont-de-Lomagne, France—d. Jan. 12, 1665, 
Castres)

Pierre de Fermat is often called the founder of the modern 
theory of numbers. Together with fellow Frenchman René 
Descartes, Fermat was one of the two leading mathemati-
cians of the first half of the 17th century. Independently of 
Descartes, Fermat discovered the fundamental principle 

of analytic geometry. His 
methods for finding tan-
gents to curves and their 
maximum and minimum 
points led him to be regarded 
as the inventor of the differ-
ential calculus. Through his 
correspondence with Blaise 
Pascal he was a cofounder 
of the theory of probability.

Fermat vainly sought to 
persuade Pascal to join him 
in research in number the-
ory. Inspired by an edition in 
1621 of the Arithmetica of 
Diophantus, the Greek 
mathematician of the 3rd 
century CE, Fermat had dis-
covered new results in the 
so-called higher arithmetic, 

Fermat, portrait by Roland Lefèvre; 
in the Narbonne City Museums, 
France. Courtesy of the Musée 
de la Ville de Narbonne, France
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many of which concerned properties of prime numbers 
(those positive integers that have no factors other than 1 
and themselves). One of the most elegant of these had been 
the theorem that every prime of the form 4n + 1 is uniquely 
expressible as the sum of two squares. A more important 
result, now known as Fermat’s lesser theorem, asserts that if 
p is a prime number and if a is any positive integer, then ap - a 
is divisible by p. Fermat seldom gave demonstrations of his 
results, and in this case proofs were provided by Gottfried 
Leibniz, the 17th-century German mathematician and 
philosopher, and Leonhard Euler, the 18th-century Swiss 
mathematician. For occasional demonstrations of his theo-
rems Fermat used a device that he called his method of 
“infinite descent,” an inverted form of reasoning by recur-
rence or mathematical induction. One unproved conjecture 
by Fermat turned out to be false. In 1640, in letters to math-
ematicians and to other knowledgeable thinkers of the day, 
including Blaise Pascal, he announced his belief that num-
bers of the form 22n + 1, known since as “numbers of Fermat,” 
are necessarily prime; but a century later Euler showed 
that 225 + 1 has 641 as a factor. It is not known if there are any 
primes among the Fermat numbers for n > 5. Carl Friedrich 
Gauss in 1796 in Germany found an unexpected application 
for Fermat numbers when he showed that a regular polygon 
of N sides is constructible in a Euclidean sense if N is a prime 
Fermat number or a product of distinct Fermat primes. By 
far the best known of Fermat’s many theorems is a problem 
known as his “great,” or “last,” theorem. This appeared in 
the margin of his copy of Diophantus’s Arithmetica and 
states that the equation xn + yn = zn, where x, y, z, and n are 
positive integers, has no solution if n is greater than 2. This 
theorem remained unsolved until the late 20th century.

Fermat was the most productive mathematician of his 
day. But his influence was circumscribed by his reluctance 
to publish.
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Carl Friedrich Gauss
(b. April 30, 1777, Brunswick [Germany]—d. Feb. 23, 1855, Göttingen, 
Hanover)

German Carl Friedrich Gauss is generally regarded as one 
of the greatest mathematicians of all time for his contri-
butions to number theory, geometry, probability theory, 
geodesy, planetary astronomy, the theory of functions, and 
potential theory (including electromagnetism).

Gauss’s first significant discovery, in 1792, was that a 
regular polygon of 17 sides can be constructed by ruler and 
compass alone. Its significance lies not in the result but in 
the proof, which rested on a profound analysis of the fac-
torization of polynomial equations and opened the door 
to later ideas of Galois theory. His doctoral thesis of 1797 
gave a proof of the fundamental theorem of algebra: every 
polynomial equation with real or complex coefficients has 
as many roots (solutions) as its degree (the highest power 
of the variable). Gauss’s proof, though not wholly convinc-
ing, was remarkable for its critique of earlier attempts. 
Gauss later gave three more proofs of this major result, 
the last on the 50th anniversary of the first, which shows 
the importance he attached to the topic.

Gauss’s recognition as a truly remarkable talent, 
though, resulted from two major publications in 1801. 
Foremost was his publication of the first systematic text-
book on algebraic number theory, Disquisitiones 
Arithmeticae. This book begins with the first account of 
modular arithmetic, gives a thorough account of the solu-
tions of quadratic polynomials in two variables in integers, 
and ends with the theory of factorization mentioned 
above. This choice of topics and its natural generalizations 
set the agenda in number theory for much of the 19th cen-
tury, and Gauss’s continuing interest in the subject spurred 
much research, especially in German universities.
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The second publication was his rediscovery of the 
asteroid Ceres. Its original discovery, by the Italian astron-
omer Giuseppe Piazzi in 1800, had caused a sensation, but 
it vanished behind the Sun before enough observations 
could be taken to calculate its orbit with sufficient accu-
racy to know where it would reappear. Many astronomers 
competed for the honour of finding it again, but Gauss 
won. His success rested on a novel method for dealing 
with errors in observations, today called the method of 
least squares. Thereafter Gauss worked for many years 
as an astronomer and published a major work on the com-
putation of orbits—the numerical side of such work was 
much less onerous for him than for most people. As an 
intensely loyal subject of the duke of Brunswick and, after 
1807 when he returned to Göttingen as an astronomer, of 
the duke of Hanover, Gauss felt that the work was socially 
valuable.

Similar motives led Gauss to accept the challenge of 
surveying the territory of Hanover, and he was often out 
in the field in charge of the observations. The project, 
which lasted from 1818 to 1832, encountered numerous 
difficulties, but it led to a number of advancements. One 
was Gauss’s invention of the heliotrope (an instrument 
that reflects the Sun’s rays in a focused beam that can be 
observed from several miles away), which improved the 
accuracy of the observations. Another was his discovery 
of a way of formulating the concept of the curvature of a 
surface. Gauss showed that there is an intrinsic measure 
of curvature that is not altered if the surface is bent with-
out being stretched. For example, a circular cylinder and a 
flat sheet of paper have the same intrinsic curvature, 
which is why exact copies of figures on the cylinder can be 
made on the paper (as, for example, in printing). But a 
sphere and a plane have different curvatures, which is why 
no completely accurate flat map of the Earth can be made.
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Gauss published works on number theory, the mathe-
matical theory of map construction, and many other 
subjects. In the 1830s he became interested in terrestrial 
magnetism and participated in the first worldwide survey 
of the Earth’s magnetic field (to measure it, he invented 
the magnetometer). With his Göttingen colleague, the 
physicist Wilhelm Weber, he made the first electric tele-
graph, but a certain parochialism prevented him from 
pursuing the invention energetically. Instead, he drew 
important mathematical consequences from this work for 
what is today called potential theory, an important branch 
of mathematical physics arising in the study of electro-
magnetism and gravitation.

Gauss also wrote on cartography, the theory of map 
projections. For his study of angle-preserving maps, he was 
awarded the prize of the Danish Academy of Sciences in 
1823. This work came close to suggesting that complex func-
tions of a complex variable are generally angle preserving, 
but Gauss stopped short of making that fundamental 
insight explicit, leaving it for Bernhard Riemann, who had 
a deep appreciation of Gauss’s work. Gauss also had other 
unpublished insights into the nature of complex functions 
and their integrals, some of which he divulged to friends.

Christian Goldbach
(b. March 18, 1690, Königsberg, Prussia [now Kaliningrad, 
Russia]—d. Nov. 20, 1764, Moscow, Russia)

The Russian mathematician Christian Goldbach is pri-
marily remembered today for his contributions to number 
theory, including Goldbach’s conjecture.

In 1725 Goldbach became professor of mathematics 
and historian of the Imperial Academy at St. Petersburg. 
Three years later he went to Moscow as tutor to Tsar 
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Peter II, and from 1742 he served as a staff member of the 
Russian Ministry of Foreign Affairs.

Goldbach first proposed the conjecture that bears his 
name in a letter to the Swiss mathematician Leonhard 
Euler in 1742. He claimed that “every number greater 
than 2 is an aggregate of three prime numbers.” Because 
mathematicians in Goldbach’s day considered 1 a prime 
number (prime numbers are now defined as those positive 
integers greater than 1 that are divisible only by 1 and 
themselves), Goldbach’s conjecture is usually restated in 
modern terms as: Every even natural number greater than 
2 is equal to the sum of two prime numbers.

The first breakthrough in the effort to prove 
Goldbach’s conjecture occurred in 1930, when the Soviet 
mathematician Lev Genrikhovich Shnirelman proved 
that every natural number can be expressed as the sum of 
not more than 20 prime numbers. In 1937 the Soviet math-
ematician Ivan Matveyevich Vinogradov went on to prove 
that every “sufficiently large” (without stating exactly how 
large) odd natural number can be expressed as the sum of 
not more than three prime numbers. The latest refine-
ment came in 1973, when the Chinese mathematician 
Chen Jing Run proved that every sufficiently large even 
natural number is the sum of a prime and a product of at 
most two primes.

Goldbach also made notable contributions to the 
theory of curves, to infinite series, and to the integration 
of differential equations.

Marin Mersenne
(b. Sept. 8, 1588, near Oizé, Maine, France—d. Sept. 1, 1648, Paris)

Marin Mersenne was a French theologian, natural philoso-
pher, and mathematician. While best remembered by 

7 Great Arithmeticians and Number Theorists 7



7 The Britannica Guide to Numbers and Measurement 7

120

mathematicians for his search for a formula to generate 
prime numbers based on what are now known as “Mersenne 
numbers,” his wider significance stems from his role as 
correspondent, publicizing and disseminating the work of 
some of the greatest thinkers of his age.

Mersenne was educated at the Jesuit college of La 
Flèche soon after its founding in 1604. He left La Flèche 
about 1609 to study theology in Paris at both the Sorbonne 
and the Collège de France. In 1611 he entered the austere 
Roman Catholic Order of Minims, spending his novitiate 
at Nigeon and Meaux. From 1614 to 1618 he taught philos-
ophy and theology at Nevers. He resided in Paris, except 
for frequent trips abroad, from 1619 until his death in 1648.

Mersenne’s earliest publications, such as Quaestiones 
celeberrime in Genesim (1623; “Frequent Questions 
Concerning Genesis”) and La vérité des sciences (1625; “The 
Truth of Science”), defended orthodox theology by distin-
guishing between the ultimate nature, or essence, of things 
(knowable only by God) and the contingent facts observ-
able by man. He disagreed, however, with the views of 
skepticism that the world is completely unknowable. He 
asserted that knowledge should freely advance through 
experiment and observation—frequently chiding scholars 
for not including accurate experimental data in their 
papers—while insisting that hypotheses are, at best, prob-
able explanations. He also distinguished between a 
rational, indeed mechanistic, natural world populated by 
living automatons and a sentient humanity. From 1626 
Mersenne’s publications concentrated on applied mathe-
matical sciences, such as astronomy and optics.

In 1635 Mersenne formed the informal, private 
Académie Parisienne (the precursor to the French 
Academy of Sciences), where many of the leading mathe-
maticians and natural philosophers of France shared their 
research. He used this forum to disseminate the ideas of 
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René Descartes, who had moved to the Netherlands in 
1629. He also assisted in the publication of Descartes’s 
Discours de la méthode (1637; “Discourse on Method”) and 
took charge of soliciting the “Objections” appended to 
Descartes’s Meditationes (1641; “Meditations”). Other lumi-
naries that Mersenne corresponded with, promulgated 
the ideas of, and mediated disputes among include Galileo 
Galilei, Blaise Pascal, Christiaan Huygens, and Pierre de 
Fermat. During the 1630s Mersenne was particularly 
important in promoting the work of Galileo. Through two 
small books and discussions of Galileo’s work in his corre-
spondence, Mersenne disseminated Galileo’s ideas beyond 
Italy and greatly facilitated the acceptance of mechanical 
explanations against remnants of scholasticism.

In 1644 Mersenne communicated some research of his 
on numbers of the form 2n − 1, now known as Mersenne 
numbers. He observed that if 2n − 1 is prime, then n must 
be prime, but that the converse is not necessarily true. 
Although he failed to find a formula for primes (it is not 
certain that one even exists), Mersenne numbers continue 
to interest mathematicians, and his formula is still useful 
in testing large numbers to determine if they are prime.

Mersenne made several lengthy trips to the 
Netherlands, provincial France, and Italy. From the latter 
excursion he brought back news to France in 1645 of the 
barometric experiment of Evangelista Torricelli, which 
led to the famous work of Pascal on the weight of the air.

John Napier
(b. 1550, Merchiston Castle, near Edinburgh, Scot.—d. April 4, 1617, 
Merchiston Castle)

John Napier was a Scottish mathematician and theologi-
cal writer who originated the concept of logarithms as a 
mathematical device to aid in calculations.
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Napier devoted most 
of his leisure to the 
study of mathematics, 
particularly to devising 
methods of facilitating 
computation, and it is 
with the greatest of 
these, logarithms, that 
his name is associated. 
He began working on 
logarithms probably as 
early as 1594, gradually 
elaborating his compu-
tational system whereby 
roots, products, and 
quotients could be 
quickly determined 
from tables showing 
powers of a fixed num-
ber used as a base.

His contributions to 
this powerful mathe-
matical invention are 

contained in two treatises: Mirifici Logarithmorum Canonis 
Descriptio (Description of the Marvelous Canon of Logarithms), 
which was published in 1614, and Mirifici Logarithmorum 
Canonis Constructio (Construction of the Marvelous Canon of 
Logarithms), which was published two years after his death. 
In the former, he outlined the steps that had led to his 
invention.

Logarithms were meant to simplify calculations, espe-
cially multiplication, such as those needed in astronomy. 
Napier discovered that the basis for this computation was 
a relationship between an arithmetical progression—a 
sequence of numbers in which each number is obtained, 

John Napier, detail of an oil painting, 
1616; in the collection of the University 
of Edinburgh. Courtesy of the Univer
sity of Edinburgh; photograph, the 
Scottish National Portrait Gallery
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following a geometric progression, from the one immedi-
ately preceding it by multiplying by a constant factor, 
which may be greater than unity (e.g., the sequence 2, 4, 8, 
16 . . .) or less than unity (e.g., 8, 4, 2, 1, ½ . . .).

In the Descriptio, besides giving an account of the 
nature of logarithms, Napier confined himself to an 
account of the use to which they might be put. He prom-
ised to explain the method of their construction in a later 
work. This was the Constructio, which claims attention 
because of the systematic use in its pages of the decimal 
point to separate the fractional from the integral part of a 
number. Decimal fractions had already been introduced 
by the Flemish mathematician Simon Stevin in 1586, but 
his notation was unwieldy. The use of a point as the sepa-
rator occurs frequently in the Constructio. Joost Bürgi, the 
Swiss mathematician, between 1603 and 1611 indepen-
dently invented a system of logarithms, which he published 
in 1620. But Napier worked on logarithms earlier than 
Bürgi and has the priority due to his prior date of publica-
tion in 1614.

Although Napier’s invention of logarithms overshadows 
all his other mathematical work, he made other mathe-
matical contributions. In 1617 he published his Rabdologiae, 
seu Numerationis per Virgulas Libri Duo (Study of Divining 
Rods, or Two Books of Numbering by Means of Rods, 1667); in 
this he described ingenious methods of multiplying and 
dividing of small rods known as Napier’s bones, a device 
that was the forerunner of the slide rule. He also made 
important contributions to spherical trigonometry, par-
ticularly by reducing the number of equations used to 
express trigonometrical relationships from 10 to 2 gen-
eral statements. He is also credited with certain 
trigonometrical relations—Napier’s analogies—but it 
seems likely that the English mathematician Henry 
Briggs had a share in these.
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The modern era

Paul Isaak Bernays
(b. Oct. 17, 1888, London, Eng.—d. Sept. 18, 1977, Zürich, Switz.)

Paul Bernays is best known for his work in proof theory 
and axiomatic set theory, which helped create the new 
discipline of mathematical logic.

After obtaining his doctorate from the University of 
Göttingen in Germany under Edmund Landau in 1912, 
Bernays taught for five years at the University of Zürich 
before returning to Göttingen. There he collaborated 
closely with the prominent mathematician David Hilbert, 
who in the twilight of his career sought to overcome the 
challenges to classical mathematics posed by L.E.J. 
Brouwer’s intuitionism. Bernays’s own philosophical 
views remained in the background during the “founda-
tions crisis” of the 1920s. Nevertheless, he served as a 
strong pillar of support for Hilbert’s program to formalize 
mathematics. Taking Hilbert’s name as coauthor, he wrote 
the classic study Grundlagen der Mathematik, 2 vol. (1934–
39; reissued 1968–70; “Foundations of Mathematics”). In 
1956 Bernays also revised Hilbert’s Grundlagen der Geometrie 
(1899; The Foundations of Geometry), which went through 
several editions.

After the Nazi takeover in 1933, Bernays was compelled 
to give up his post and moved to Switzerland. In Zürich he 
delved into the realm of set theory, trying to streamline the 
Zermelo-Fraenkel system of axioms. This work appeared 
in a series of articles under the title “A System of Axiomatic 
Set Theory” (1937–54), from which the principal theses 
were published as Axiomatic Set Theory (1958). In it Bernays 
simplified and refined the work of John von Neumann on 
logic and set theory; these modifications were further 
developed by the logician Kurt Gödel.
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Georg Cantor
(b. March 3, 1845, St. Petersburg, Russia—d. Jan. 6, 1918, Halle, Ger.)

Georg Cantor founded set theory and introduced the 
mathematically meaningful concept of transfinite numbers, 
indefinitely large but distinct from one another.

An important exchange of letters with Richard 
Dedekind, mathematician at the Brunswick Technical 
Institute, who was his lifelong friend and colleague, 
marked the beginning of Cantor’s ideas on the theory of 
sets. Both agreed that a set, whether finite or infinite, is a 
collection of objects (e.g., the integers, {0, ±1, ±2 . . .}) that 
share a particular property while each object retains its 
own individuality. But when Cantor applied the device of 
the one-to-one correspondence (e.g., {a, b, c} to {1, 2, 3}) to 
study the characteristics of sets, he quickly saw that they 
differed in the extent of their membership, even among 
infinite sets. (A set is infinite if one of its parts, or subsets, 
has as many objects as itself.) His method soon produced 
surprising results.

In 1873 Cantor demonstrated that the rational numbers, 
though infinite, are countable (or denumerable) because 
they may be placed in a one-to-one correspondence with 
the natural numbers (i.e., the integers, as 1, 2, 3, . . .). He 
showed that the set (or aggregate) of real numbers (com-
posed of irrational and rational numbers) was infinite and 
uncountable. Even more paradoxically, he proved that the 
set of all algebraic numbers contains as many components 
as the set of all integers and that transcendental numbers 
(those that are not algebraic, as π), which are a subset of 
the irrationals, are uncountable and are therefore more 
numerous than integers, which must be conceived as 
infinite.

But Cantor’s paper, in which he first put forward these 
results, was refused for publication in Crelle’s Journal by one 
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of its referees, Leopold Kronecker, who henceforth vehe-
mently opposed his work. On Dedekind’s intervention, 
however, it was published in 1874 as “Über eine Eigenschaft 
des Inbegriffes aller reellen algebraischen Zahlen” (“On a 
Characteristic Property of All Real Algebraic Numbers”).

While honeymooning the same year with his bride, Vally 
Guttman, at Interlaken, Switz., Cantor met Dedekind, who 
gave a sympathetic hearing to his new theory. Cantor’s salary 
was low, but the estate of his father, who died in 1863, enabled 
him to build a house for his wife and five children. Many of 
his papers were published in Sweden in the new journal 
Acta Mathematica, edited and founded by Gösta Mittag-
Leffler, one of the first persons to recognize his ability.

Cantor’s theory became a whole new subject of 
research concerning the mathematics of the infinite (e.g., 
an endless series, as 1, 2, 3, . . ., and even more complicated 
sets), and his theory was heavily dependent on the device 
of the one-to-one correspondence. In thus developing 
new ways of asking questions concerning continuity and 
infinity, Cantor quickly became controversial. When he 
argued that infinite numbers had an actual existence, he 
drew on ancient and medieval philosophy concerning the 
“actual” and “potential” infinite and also on the early reli-
gious training given him by his parents. In his book on 
sets, Grundlagen einer allgemeinen Mannigfaltigkeitslehre 
(“Foundations of a General Theory of Aggregates”), 
Cantor in 1883 allied his theory with Platonic metaphysics. 
By contrast, Kronecker, who held that only the integers 
“exist” (“God made the integers, and all the rest is the 
work of man”), for many years heatedly rejected his rea-
soning and blocked his appointment to the faculty at the 
University of Berlin.

In 1895–97 Cantor fully propounded his view of conti-
nuity and the infinite, including infinite ordinals and 
cardinals, in his best known work, Beiträge zur Begründung 
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der transfiniten Mengelehre (published in English under the 
title Contributions to the Founding of the Theory of Transfinite 
Numbers, 1915). This work contains his conception of 
transfinite numbers, to which he was led by his demon-
stration that an infinite set may be placed in a one-to-one 
correspondence with one of its subsets. By the smallest 
transfinite cardinal number he meant the cardinal number 
of any set that can be placed in one-to-one correspon-
dence with the positive integers. This transfinite number 
he referred to as aleph-null. Larger transfinite cardinal 
numbers were denoted by aleph-one, aleph-two, . . .. He 
then developed an arithmetic of transfinite numbers that 
was analogous to finite arithmetic. Thus, he further 
enriched the concept of infinity. The opposition he faced 
and the length of time before his ideas were fully assimi-
lated represented in part the difficulties of mathematicians 
in reassessing the ancient question: “What is a number?” 
Cantor demonstrated that the set of points on a line pos-
sessed a higher cardinal number than aleph-null. This led 
to the famous problem of the continuum hypothesis, 
namely, that there are no cardinal numbers between aleph-
null and the cardinal number of the points on a line. This 
problem has, in the first and second halves of the 20th 
century, been of great interest to the mathematical world 
and was studied by many mathematicians, including the 
Czech-Austrian-American Kurt Gödel and the American 
Paul J. Cohen.

Paul Joseph Cohen
(b. April 2, 1934, Long Branch, N.J., U.S.—d. March 23, 2007, 
Stanford, Calif.)

Paul Cohen was awarded the Fields Medal in 1966 for his 
proof of the independence of the continuum hypothesis 
from the other axioms of set theory.
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Cohen attended the University of Chicago (M.S., 1954; 
Ph.D., 1958). He held appointments at the University of 
Rochester, N.Y. (1957–58), and the Massachusetts Institute 
of Technology (1958–59) before joining the Institute for 
Advanced Study, Princeton, N.J. (1959–61). In 1961 he 
moved to Stanford University in California; he became 
professor emeritus in 2004.

Cohen was awarded the Fields Medal at the 
International Congress of Mathematicians in Moscow in 
1966. Cohen solved a problem (first on David Hilbert’s 
influential 1900 list of important unsolved problems) 
concerning the truth of the continuum hypothesis. Georg 
Cantor’s continuum hypothesis states that there is no 
cardinal number between ℵ0 and 2ℵ0. In 1940 Kurt Gödel 
had shown that, if one accepts the Zermelo-Fraenkel sys-
tem of axioms for set theory, then the continuum 
hypothesis is not disprovable. Cohen, in 1963, showed 
that it is not provable under these hypotheses and hence 
is independent of the other axioms. To do this he intro-
duced a new technique known as forcing, a technique that 
has since had significant applications throughout set 
theory. The question still remains whether, with some 
axiom system for set theory, the continuum hypothesis is 
true. Alonzo Church, in his comments to the Congress in 
Moscow, suggested that the “Gödel-Cohen results and 
subsequent extensions of them have the consequence 
that there is not one set theory but many, with the differ-
ence arising in connection with a problem which intuition 
still seems to tell us must ‘really’ have only one true solu-
tion.” After proving his startling result about the 
continuum hypothesis, Cohen returned to research in 
analysis.

Cohen’s publications include Set Theory and the 
Continuum Hypothesis (1966).
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Richard Dedekind
(b. Oct. 6, 1831, Braunschweig, duchy of Braunschweig 
[Germany]—d. Feb. 12, 1916, Braunschweig)

Richard Dedekind developed a major redefinition of irra-
tional numbers in terms of arithmetic concepts. Although 
not fully recognized in his lifetime, his treatment of the 
ideas of the infinite and of what constitutes a real number 
continues to influence modern mathematics.

Dedekind was the son of a lawyer. While attending the 
Gymnasium Martino-Catharineum in 1838–47 in 
Braunschweig, he was at first interested primarily in chem-
istry and physics. At the Caroline College in 1848–50, 
however, he turned to calculus, algebra, and analytic geom-
etry, which helped qualify him to study advanced 
mathematics at the Uni
versity of Göttingen under 
the mathematician Carl 
Friedrich Gauss.

After two years of inde-
pendent study of algebra, 
geometry, and elliptic func-
tions, Dedekind served as 
Privatdozent (“unsalaried 
lecturer”) in 1854–58 at the 
University of Göttingen, 
where, in his lectures, he 
introduced, probably for 
the first time, the Galois 
theory of equations and 
attended the lectures of 
the mathematician Peter 
Gustav Lejeune Dirichlet. 
These experiences led 

Richard Dedekind. Courtesy of 
the Library of the Swiss Federal 
Institute of Technology, Zurich
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Dedekind to see the need for a redefinition of irrational 
numbers in terms of arithmetic properties. The geometric 
approach had led Eudoxus in the 4th century BCE to 
define them as approximations by rational numbers (e.g., a 
series of nonrepeating decimals, as 2 = 1.414213 . . . ).

In 1858 Dedekind joined the faculty of the Zürich 
Polytechnic, where he remained for five years. In 1862 he 
accepted a position in the Technical High School in 
Braunschweig, where he remained in comparative isola-
tion for the rest of his life.

While teaching there, Dedekind developed the idea 
that both rational and irrational numbers could form a 
continuum (with no gaps) of real numbers, provided that 
the real numbers have a one-to-one relationship with 
points on a line. He said that an irrational number would 
then be that boundary value that separates two especially 
constructed collections of rational numbers.

Dedekind perceived that the character of the contin-
uum need not depend on the quantity of points on a line 
segment (or continuum) but rather on how the line submits 
to being divided. His method, now called the Dedekind 
cut, consisted in separating all the real numbers in a series 
into two parts such that each real number in one part is less 
than every real number in the other. Such a cut, which cor-
responds to a given value, defines an irrational number if 
no largest or no smallest is present in either part; whereas 
a rational is defined as a cut in which one part contains a 
smallest or a largest. Dedekind would therefore define the 
square root of 2 as the unique number dividing the con-
tinuum into two collections of numbers such that all the 
members of one collection are greater than those of the 
other, or that cut, or division, separating a series of num-
bers into two parts such that one collection contains all 
the numbers whose squares are larger than 2 and the other 
contains all the numbers whose squares are less than 2.
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Dedekind developed his arithmetical rendering of 
irrational numbers in 1872 in his Stetigkeit und Irrationale 
Zahlen (Eng. trans., “Continuity and Irrational Numbers,” 
published in Essays on the Theory of Numbers). He also pro-
posed, as did the German mathematician Georg Cantor, 
two years later, that a set—a collection of objects or 
components—is infinite if its components may be 
arranged in a one-to-one relationship with the compo-
nents of one of its subsets. By supplementing the geometric 
method in analysis, Dedekind contributed substantially 
to the modern treatment of the infinitely large and the 
infinitely small.

While vacationing in Interlaken, Switz., in 1874, 
Dedekind met Cantor. Dedekind gave a sympathetic 
hearing to an exposition of the revolutionary idea of sets 
that Cantor had just published, which later became prom-
inent in the teaching of modern mathematics. Because 
both mathematicians were developing highly original 
concepts, such as in number theory and analysis, which 
were not readily accepted by their contemporaries, and 
because both lacked adequate professional recognition, a 
lasting friendship developed.

Continuing his investigations into the properties and 
relationships of integers—that is, the idea of number—
Dedekind published Über die Theorie der ganzen algebraischen 
Zahlen (1879; “On the Theory of Algebraic Whole 
Numbers”). There he proposed the “ideal” as a collection 
of numbers that may be separated out of a larger collection, 
composed of algebraic integers that satisfy polynomial 
equations with ordinary integers as coefficients. The ideal 
is a collection of all algebraic integer multiples of a given 
algebraic integer. For example, the notation (2) represents 
such a particular collection, as . . . −8, −6, −4, −2, 0, 2, 4, 6, 8 
. . .. The sum of two ideals is an ideal that is composed of 
all the sums of all their individual members. The product 
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of two ideals is similarly defined. Ideals, considered as 
integers, can then be added, multiplied, and hence fac-
tored. By means of this theory of ideals, he allowed the 
process of unique factorization—that is, expressing a 
number as the product of only one set of primes, or 1 and 
itself—to be applied to many algebraic structures that 
hitherto had eluded analysis.

Peter Gustav Lejeune Dirichlet
(b. Feb. 13, 1805, Düren, French Empire [now in Germany]—d. May 5, 
1859, Göttingen, Hanover)

Peter Dirichlet made valuable contributions to number 
theory, analysis, and mechanics. He taught at the universi-
ties of Breslau (1827) and Berlin (1828–55) and in 1855 
succeeded Carl Friedrich Gauss at the University of 
Göttingen.

Dirichlet made notable contributions still associated 
with his name in many fields of mathematics. In number 
theory he proved the existence of an infinite number of 
primes in any arithmetic series a + b, 2a + b, 3a + b, . . ., na 
+ b, in which a and b are not divisible by one another. He 
developed the general theory of units in algebraic number 
theory. His Vorlesungen über Zahlentheorie (1863; “Lectures 
Concerning Number Theory”), with later addenda, con-
tains some material important to the theory of ideals.

In 1837 Dirichlet proposed the modern concept of a 
function y = f (x) in which for every x, there is associated 
with it a unique y. In mechanics he investigated the equi-
librium of systems and potential theory, which led him to 
the Dirichlet problem concerning harmonic functions 
with prescribed boundary values. His Gesammelte Werke 
(1889, 1897; “Collected Works”) was published in two 
volumes.
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Gottlob Frege
(b. Nov. 8, 1848, Wismar, Mecklenburg-Schwerin [now in 
Germany]—d. July 26, 1925, Bad Kleinen, Ger.)

Gottlob Frege founded modern mathematical logic. Working 
on the borderline between philosophy and mathematics—
viz., in the philosophy of mathematics and mathematical 
logic (in which no intellectual precedents existed)—Frege 
discovered, on his own, the fundamental ideas that have 
made possible the whole modern development of logic 
and thereby invented an entire discipline.

In 1879 Frege published his Begriffsschrift (“Concept
script”), in which, for the first time, a system of 
mathematical logic in the modern sense was presented. No 
one at the time, however—philosopher or mathematician—
comprehended clearly what Frege had done, and when, 
some decades later, the 
subject began to get under 
way, his ideas reached oth-
ers mostly as filtered 
through the minds of other 
men, such as Peano; in his 
lifetime there were very 
few—one was Bertrand 
Russell—to give Frege the 
credit due to him. He was 
not yet too downcast by 
the failure of the learned 
world to appreciate the 
Begriffsschrift, which, after 
all, discourages the reader 
by the use of a complex and 
unfamiliar symbolism to 
express unfamiliar ideas. 

Gottlob Frege. Courtesy of the 
Universitatsbibliothek, Jena, Ger.
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He resolved, however, to compose his next book without 
the use of any symbols at all.

There followed a period of intensive work on the phi-
losophy of logic and of mathematics, embodied initially in 
his first book, Die Grundlagen der Arithmetik (1884; The 
Foundations of Arithmetic). The Grundlagen was a work that 
must on any count stand as a masterpiece of philosophical 
writing. The only review that the book received, however, 
was a devastatingly hostile one by Georg Cantor, the 
mathematician whose ideas were the closest to Frege’s, 
who had not bothered to understand Frege’s book before 
subjecting it to totally unmerited scorn.

Wounded by the reception of his second book, Frege 
nevertheless devoted the next decade to producing a series 
of brilliant philosophical articles in which he elaborated 
his philosophy of logic. These articles contain many deep 
insights, although, as Frege systematized his theories, 
there appeared a certain hardening into a kind of scholas-
ticism. There followed a return to the philosophy of 
mathematics with the first volume of Grundgesetze der 
Arithmetik (1893; partial Eng. trans., Basic Laws of 
Arithmetic), in which Frege presented, in a modified ver-
sion of the symbolic system of the Begriffsschrift, a rigorous 
development of the theory of Grundlagen. This, too, 
received only a single review (by Peano). The neglect of 
what was to have been his chef d’oeuvre finally embittered 
Frege, who had complained, in the preface, of the appar-
ent ignorance of his work on the part of writers working in 
allied fields. The resulting bitterness shows in the style of 
Frege’s controversial writing. Seldom has criticism of pre-
vious writers been more deadly than in his Grundlagen; but 
it is expressed with a lightness of touch and is never unfair. 
In volume 2 of the Grundgesetze (1903), however, the attacks 
became heavyhanded and abusive—a means of getting 
back at the world that had ignored him.
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A worse disaster than neglect, however, was in store 
for him. While volume 2 of the Grundgesetze was at the 
printer’s, he received on June 16, 1902, a letter from one of 
the few contemporaries who had read and admired his 
works—Bertrand Russell. The latter pointed out, mod-
estly but correctly, the possibility of deriving a 
contradiction in Frege’s logical system—the celebrated 
Russell paradox. The two exchanged many letters; and, 
before the book was published, Frege had devised a mod-
ification of one of his axioms intended to restore 
consistency to the system. This he explained in an appen-
dix to the book. After Frege’s death, it would be shown by 
a Polish logician, Stanisław Leśniewski, that Frege’s modi-
fied axiom still leads to contradiction. Probably Frege 
never discovered this. Even a brief inspection, however, of 
the proofs of the theorems in volume 1 would have revealed 
that several crucial proofs would no longer go through, 
and this Frege must have found out.

In any case, 1903 effectively marks the end of Frege’s 
productive life. He never published the projected third 
volume of the Grundgesetze, and he took no part in the 
development of the subject, mathematical logic, that he 
had founded, though it had progressed considerably by 
the time of his death.

Kurt Gödel
(b. April 28, 1906, Brünn, Austria-Hungary [now Brno, Czech 
Rep.]—d. Jan. 14, 1978, Princeton, N.J., U.S.)

Kurt Gödel obtained what may be the most important 
mathematical result of the 20th century: his famous 
incompleteness theorem, which states that within any 
axiomatic mathematical system there are propositions 
that cannot be proved or disproved on the basis of the 
axioms within that system; thus, such a system cannot be 
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simultaneously complete and consistent. This proof estab-
lished Gödel as one of the greatest logicians since Aristotle, 
and its repercussions continue to be felt and debated today.

As a German-speaking Austrian, Gödel suddenly 
found himself living in the newly formed country of 
Czechoslovakia when the Austro-Hungarian Empire was 
broken up at the end of World War I in 1918. Six years later, 
though, he went to study in Austria, at the University of 
Vienna, where he earned his doctorate in mathematics in 
1929. He joined the faculty at the University of Vienna the 
next year.

During that period, Vienna was one of the intellectual 
hubs of the world. It was home to the famed Vienna Circle, 
a group of scientists, mathematicians, and philosophers 
who endorsed the naturalistic, strongly empiricist, and 
antimetaphysical view known as logical positivism. 
Gödel’s dissertation adviser, Hans Hahn, was one of the 
leaders of the Vienna Circle, and he introduced his star 
student to the group. However, Gödel’s own philosophical 
views could not have been more different from those of 
the positivists. He subscribed to Platonism, theism, and 
mind-body dualism. In addition, he was also somewhat 
mentally unstable and subject to paranoia—a problem 
that grew worse as he aged. Thus, his contact with the 
members of the Vienna Circle left him with the feeling 
that the 20th century was hostile to his ideas.

In his doctoral thesis, “Über die Vollständigkeit des 
Logikkalküls” (“On the Completeness of the Calculus of 
Logic”), published in a slightly shortened form in 1930, 
Gödel proved one of the most important logical results of 
the century—indeed, of all time—namely, the complete-
ness theorem, which established that classical first-order 
logic, or predicate calculus, is complete in the sense that 
all of the first-order logical truths can be proved in stan-
dard first-order proof systems.
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This, however, was nothing compared with what Gödel 
published in 1931—namely, the incompleteness theorem: 
“Über formal unentscheidbare Sätze der Principia 
Mathematica und verwandter Systeme” (“On Formally 
Undecidable Propositions of Principia Mathematica and 
Related Systems”). Roughly speaking, this theorem estab-
lished the result that it is impossible to use the axiomatic 
method to construct a mathematical theory, in any branch 
of mathematics, that entails all of the truths in that 
branch of mathematics. (In England, Alfred North 
Whitehead and Bertrand Russell had spent years on such 
a program, which they published as Principia Mathematica 
in three volumes in 1910, 1912, and 1913.) For instance, it is 
impossible to come up with an axiomatic mathematical 
theory that captures even all of the truths about the natu-
ral numbers (0, 1, 2, 3, . . .). This was an extremely important 
negative result, as before 1931 many mathematicians were 
trying to do precisely that—construct axiom systems that 
could be used to prove all mathematical truths. Indeed, 
several well-known logicians and mathematicians (e.g., 
Whitehead, Russell, Gottlob Frege, David Hilbert) spent 
significant portions of their careers on this project. 
Unfortunately for them, Gödel’s theorem destroyed this 
entire axiomatic research program.

After the publication of the incompleteness theorem, 
Gödel became an internationally known intellectual figure. 
He traveled to the United States several times and lectured 
extensively at Princeton University in New Jersey, where 
he met Albert Einstein. This was the beginning of a close 
friendship that would last until Einstein’s death in 1955.

After Nazi Germany annexed Austria on March 12, 
1938, Gödel found himself in a rather awkward situation, 
partly because he had a long history of close associations 
with various Jewish members of the Vienna Circle (indeed, 
he had been attacked on the streets of Vienna by youths 
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who thought that he was Jewish) and partly because he 
was suddenly in danger of being conscripted into the 
German army. On Sept. 20, 1938, Gödel married Adele 
Nimbursky (née Porkert), and, when World War II broke 
out a year later, he fled Europe with his wife, taking the 
trans-Siberian railway across Asia, sailing across the Pacific 
Ocean, and then taking another train across the United 
States to Princeton, N.J., where, with the help of Einstein, 
he took up a position at the newly formed Institute for 
Advanced Studies (IAS). He spent the remainder of his 
life working and teaching at the IAS, from which he 
retired in 1976. Gödel became a U.S. citizen in 1948.

In 1940, only months after he arrived in Princeton, 
Gödel published another classic mathematical paper, 
“Consistency of the Axiom of Choice and of the 
Generalized Continuum-Hypothesis with the Axioms of 
Set Theory,” which proved that the axiom of choice and 
the continuum hypothesis are consistent with the stan-
dard axioms (such as the Zermelo-Fraenkel axioms) of set 
theory. This established half of a conjecture of Gödel’s—
namely, that the continuum hypothesis could not be 
proven true or false in standard set theories. Gödel’s proof 
showed that it could not be proven false in those theories. 
In 1963 American mathematician Paul Cohen demon-
strated that it could not be proven true in those theories 
either, vindicating Gödel’s conjecture.

Bertrand Russell
(b. May 18, 1872, Trelleck, Monmouthshire, Wales—d. Feb. 2, 1970, 
Penrhyndeudraeth, Merioneth, Wales)

Bertrand Russell was a founding figure in the analytic 
movement in Anglo-American philosophy and recipient 
of the Nobel Prize for Literature in 1950. Russell’s contri-
butions to logic, epistemology, and the philosophy of 
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mathematics established him as one of the foremost 
philosophers of the 20th century. To the general public, 
however, he was best known as a campaigner for peace and 
as a popular writer on social, political, and moral subjects. 
During a long, productive, and often turbulent life, he 
published more than 70 books and about 2,000 articles, 
married four times, became involved in innumerable 
public controversies, and was honoured and reviled in 
almost equal measure throughout the world.

Inspired by the work of the mathematicians whom he 
so greatly admired, Russell conceived the idea of demon-
strating that mathematics not only had logically rigorous 
foundations but also that it was in its entirety nothing but 
logic. The philosophical case for this point of view—sub-
sequently known as logicism—was stated at length in The 
Principles of Mathematics (1903). There Russell argued that 
the whole of mathematics could be derived from a few 
simple axioms that made no use of specifically mathemati-
cal notions, such as number and square root, but were 
rather confined to purely logical notions, such as proposi-
tion and class. In this way not only could the truths of 
mathematics be shown to be immune from doubt, they 
could also be freed from any taint of subjectivity, such as 
the subjectivity involved in Russell’s earlier Kantian view 
that geometry describes the structure of spatial intuition. 
Near the end of his work on The Principles of Mathematics, 
Russell discovered that he had been anticipated in his 
logicist philosophy of mathematics by the German math-
ematician Gottlob Frege, whose book The Foundations of 
Arithmetic (1884) contained, as Russell put it, “many things 
. . . which I believed I had invented.” Russell quickly added 
an appendix to his book that discussed Frege’s work, 
acknowledged Frege’s earlier discoveries, and explained 
the differences in their respective understandings of the 
nature of logic.
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The tragedy of Russell’s intellectual life is that the 
deeper he thought about logic, the more his exalted con-
ception of its significance came under threat. He himself 
described his philosophical development after The 
Principles of Mathematics as a “retreat from Pythagoras.” 
The first step in this retreat was his discovery of a contra-
diction—now known as Russell’s Paradox—at the very 
heart of the system of logic upon which he had hoped to 
build the whole of mathematics. The contradiction arises 
from the following considerations: Some classes are 
members of themselves (e.g., the class of all classes), and 
some are not (e.g., the class of all men), so we ought to be 
able to construct the class of all classes that are not mem-
bers of themselves. But now, if we ask of this class “Is it a 
member of itself?” we become enmeshed in a contradic-
tion. If it is, then it is not, and if it is not, then it is. This is 
rather like defining the village barber as “the man who 
shaves all those who do not shave themselves” and then 
asking whether the barber shaves himself or not.

At first this paradox seemed trivial, but the more 
Russell reflected upon it, the deeper the problem seemed, 
and eventually he was persuaded that there was something 
fundamentally wrong with the notion of class as he had 
understood it in The Principles of Mathematics. Frege saw 
the depth of the problem immediately. When Russell 
wrote to him to tell him of the paradox, Frege replied, 
“arithmetic totters.” The foundation upon which Frege 
and Russell had hoped to build mathematics had, it 
seemed, collapsed. Whereas Frege sank into a deep depres-
sion, Russell set about repairing the damage by attempting 
to construct a theory of logic immune to the paradox. Like 
a malignant cancerous growth, however, the contradiction 
reappeared in different guises whenever Russell thought 
that he had eliminated it.
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Eventually, Russell’s attempts to overcome the para-
dox resulted in a complete transformation of his scheme 
of logic, as he added one refinement after another to the 
basic theory. In the process, important elements of his 
“Pythagorean” view of logic were abandoned. In particular, 
Russell came to the conclusion that there were no such 
things as classes and propositions and that therefore, 
whatever logic was, it was not the study of them. In their 
place he substituted a bewilderingly complex theory 
known as the ramified theory of types, which, though it 
successfully avoided contradictions such as Russell’s 
Paradox, was (and remains) extraordinarily difficult to 
understand. By the time he and his collaborator, Alfred 
North Whitehead, had finished the three volumes of 
Principia Mathematica (1910–13), the theory of types and 
other innovations to the basic logical system had made it 
unmanageably complicated. Very few people, whether 
philosophers or mathematicians, have made the gargan-
tuan effort required to master the details of this 
monumental work. It is nevertheless rightly regarded as 
one of the great intellectual achievements of the 20th 
century.

Principia Mathematica is a herculean attempt to dem-
onstrate mathematically what The Principles of Mathematics 
had argued for philosophically, namely that mathematics 
is a branch of logic. The validity of the individual formal 
proofs that make up the bulk of its three volumes has gone 
largely unchallenged, but the philosophical significance of 
the work as a whole is still a matter of debate. Does it 
demonstrate that mathematics is logic? Only if one regards 
the theory of types as a logical truth, and about that there 
is much more room for doubt than there was about the 
trivial truisms upon which Russell had originally intended 
to build mathematics. Moreover, Kurt Gödel’s first 

7 Great Arithmeticians and Number Theorists 7



7 The Britannica Guide to Numbers and Measurement 7

142

incompleteness theorem (1931) proves that there cannot 
be a single logical theory from which the whole of mathe-
matics is derivable: all consistent theories of arithmetic 
are necessarily incomplete. Principia Mathematica cannot, 
however, be dismissed as nothing more than a heroic 
failure. Its influence on the development of mathematical 
logic and the philosophy of mathematics has been immense.

Alan Mathison Turing
(b. June 23, 1912, London, Eng.—d. June 7, 1954, Wilmslow, Cheshire) 

Alan Turing made major contributions to mathematics, 
cryptanalysis, logic, philosophy, and biology and to the new 
areas later named computer science, cognitive science, 
artificial intelligence, and artificial life.

In 1936 Turing’s seminal paper On Computable Numbers, 
with an application to the Entscheidungsproblem [Decision 
Problem] was recommended for publication by the 
American mathematician-logician Alonzo Church, who 
had himself just published a paper that reached the same 
conclusion as Turing’s. Later that year, Turing moved to 
Princeton University to study for a Ph.D. in mathematical 
logic under Church’s direction (completed in 1938).

The Entscheidungsproblem seeks an effective method 
for deciding which mathematical statements are provable 
within a given formal mathematical system and which are 
not. In 1936 Turing and Church independently showed 
that in general this problem has no solution, proving that 
no consistent formal system of arithmetic is decidable. This 
result and others—notably the mathematician-logician 
Kurt Gödel’s incompleteness theorems—ended the dream 
of a system that could banish ignorance from mathematics 
forever. (In fact, Turing and Church showed that even some 
purely logical systems, considerably weaker than arithme-
tic, are undecidable.) An important argument of Turing’s 
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One of the Bombe machines designed by Alan Turing. The code-breaking 
capabilities of the Bombe machines were crucial to the efforts of Allied intel-
ligence during the Second World War. SSPL/Getty Images

and Church’s was that the class of lambda-definable func-
tions (functions on the positive integers whose values can 
be calculated by a process of repeated substitution) coin-
cides with the class of all functions that are effectively 
calculable—or computable. This claim is now known as 
Church’s thesis—or as the Church-Turing thesis when 
stated in the form that any effectively calculable function 
can be calculated by a universal Turing machine, a type of 
abstract computer that Turing had introduced in the 
course of his proof.

In the summer of 1938 Turing returned from the United 
States to his fellowship at King’s College. At the outbreak 
of hostilities with Germany in September 1939, he joined 
the wartime headquarters of the Government Code and 
Cypher School at Bletchley Park, Buckinghamshire. The 
British government had just been given the details of efforts 
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by the Poles, assisted by the French, to break the Enigma 
code, used by the German military for their radio commu-
nications. During 1939 and the spring of 1940, Turing and 
others designed a code-breaking machine known as the 
Bombe. Turing’s ingenious Bombes kept the Allies supplied 
with intelligence for the remainder of the war. By early 
1942 the Bletchley Park cryptanalysts were decoding 
about 39,000 intercepted messages each month, which 
rose subsequently to more than 84,000 per month. At the 
end of the war, Turing was made an officer of the Order of 
the British Empire for his code-breaking work.

Turing was a founding father of modern cognitive sci-
ence and a leading early exponent of the hypothesis that 
the human brain is in large part a digital computing 
machine. He theorized that the cortex at birth is an 
“unorganised machine” that through “training” becomes 
organized “into a universal machine or something like it.” 
A pioneer of artificial intelligence, Turing proposed (1950) 
what subsequently became known as the Turing test as a 
criterion for whether a machine thinks.

Ivan Matveyevich Vinogradov
(b. Sept. 2 [Sept. 14, New Style], 1891, Milolyub Russia—d. March 20, 
1983, Moscow)

Ivan Vinogradov is known for his contributions to analytic 
number theory, especially his partial solution of the 
Goldbach conjecture (proposed in 1742), that every inte-
ger greater than two can be expressed as the sum of three 
prime numbers.

In 1914 Vinogradov graduated from the University of 
St. Petersburg (renamed the Leningrad State University in 
1924 and the St. Petersburg State University in 1991). From 
1918 to 1920 he taught at Perm State University—founded 
in 1916, originally as a branch of the University of St. 
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Petersburg—and was then appointed professor of mathe-
matics at St. Petersburg. From 1925 he also served as head 
of the department of number theory there. He became 
director of the V.A. Steklov Institute of Mathematics, 
Moscow, in 1932 and, in 1934, professor of mathematics 
at Moscow State University. Because of his profound con-
tributions to analytic number theory Vinogradov became 
one of the leaders of Soviet mathematics, serving as a 
member of the International Mathematical Association 
when it met at Saint Andrews, Scotland, in 1958 and head-
ing the Soviet delegation to the International Congress of 
Mathematicians (ICM)—the governing body that awards 
the Fields medal—in Edinburgh that year. When the 
Russian Academy of Sciences adopted a new constitution 
in 1963, he was elected a member. In 1966, when the Soviet 
Union hosted the ICM in Moscow, he was selected to give 
one of the invited hour-long addresses.

Vinogradov’s most famous result was his proof (1937; 
“Some theorems concerning the theory of prime num-
bers”) that every sufficiently large odd integer can be 
expressed as the sum of three odd primes, which consti-
tuted a partial solution of Goldbach’s conjecture. Among 
his other published works are The Method of Trigonometrical 
Sums in the Theory of Numbers, trans. and rev. by K. F. Roth 
(1954; originally published in Russian, 1947), and An 
Introduction to the Theory of Numbers (1955; reissued 1961; 
trans. from Russian 6th ed., 1952). A collection of his work 
in Russian is Izbrannye trudy (1952, reissued 1955).

John von Neumann
(b. Dec. 28, 1903, Budapest, Hung.—d. Feb. 8, 1957, Washington, 
D.C., U.S.)

John von Neumann was a Hungarian-born American 
mathematician. As an adult, he appended von to his 
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Mathematician John von Neumann (center) chatted with graduate students 
during afternoon tea at Princeton University in 1947. Alfred Eisenstaedt/
Time & Life Pictures/Getty Images
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surname; the hereditary title had been granted his father 
in 1913. Von Neumann grew from child prodigy to one of 
the world’s foremost mathematicians by his mid-twenties. 
Important work in set theory inaugurated a career that 
touched nearly every major branch of mathematics. Von 
Neumann’s gift for applied mathematics took his work in 
directions that influenced quantum theory, automata 
theory, economics, and defense planning. Von Neumann 
pioneered game theory and, along with Alan Turing and 
Claude Shannon, was one of the conceptual inventors of 
the stored-program digital computer.

Von Neumann commenced his intellectual career at a 
time when the influence of David Hilbert and his program 
of establishing axiomatic foundations for mathematics 
was at a peak. A paper von Neumann wrote while still at 
the Lutheran Gymnasium (“The Introduction of 
Transfinite Ordinals,” published 1923) supplied the now-
conventional definition of an ordinal number as the set of 
all smaller ordinal numbers. This neatly avoids some of 
the complications raised by Georg Cantor’s transfinite 
numbers. Von Neumann’s “An Axiomatization of Set 
Theory” (1925) commanded the attention of Hilbert him-
self. From 1926 to 1927 von Neumann did postdoctoral 
work under Hilbert at the University of Göttingen. The 
goal of axiomatizing mathematics was defeated by Kurt 
Gödel’s incompleteness theorems, a barrier that was 
understood immediately by Hilbert and von Neumann.

In 1933 von Neumann became one of the first profes-
sors at the Institute for Advanced Study (IAS), Princeton, 
N.J. The same year, Adolf Hitler came to power in 
Germany, and von Neumann relinquished his German 
academic posts. In late 1943 von Neumann began work on 
the Manhattan Project at the invitation of J. Robert 
Oppenheimer. Von Neumann was an expert in the 
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nonlinear physics of hydrodynamics and shock waves, an 
expertise that he had already applied to chemical explo-
sives in the British war effort. At Los Alamos, N.M., von 
Neumann worked on Seth Neddermeyer’s implosion 
design for an atomic bomb. The Fat Man atomic bomb, 
dropped on the Japanese port of Nagasaki, used this 
design. Von Neumann participated in the selection of a 
Japanese target, arguing against bombing the Imperial 
Palace, Tokyo.

Overlapping with this work was von Neumann’s mag-
num opus of applied math, Theory of Games and Economic 
Behavior (1944), cowritten with Princeton economist 
Oskar Morgenstern. The collaboration with Morgernstern 
burgeoned to 641 pages, the authors arguing for game 
theory as the “Newtonian science” underlying economic 
decisions.

In the postwar years, von Neumann spent increasing 
time as a consultant to government and industry. Starting 

The design for the Fat Man atomic bomb, shown above, was developed with 
the help of John von Neumann during his time on the Manhattan Project. A 
bomb based on this design was dropped on Nagasaki, Japan, on Aug. 9, 1945, 
during the United States’ attack against Japan in the Second World War. 
Hulton Archive/Getty Images
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in 1944, he contributed important ideas to the U.S. Army’s 
hard-wired ENIAC computer, designed by J. Presper 
Eckert, Jr., and John W. Mauchly. Most important, von 
Neumann modified the ENIAC to run as a stored-pro-
gram machine. He then lobbied to build an improved 
computer at the Institute for Advanced Study. The IAS 
machine, which began operating in 1951, used binary 
arithmetic—the ENIAC had used decimal numbers—and 
shared the same memory for code and data, a design that 
greatly facilitated the “conditional loops” at the heart of 
all subsequent coding. Von Neumann’s publications estab-
lished the merit of a single-processor, stored-program 
computer—the widespread architecture now known as a 
von Neumann machine.
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n U M e R I C A L  t e R M s 
A n D  C o n C e P t s

C H A P T E R  3

   From the early days when humans developed basic 
number systems to the abstract number theories of 

the modern era, human understanding of what numbers 
can do has become ever more complex. Brief descriptions 
of some important numerical terms and concepts across 
the ages are included here.    

 algorithm 

 An algorithm is a systematic procedure that produces—in 
a fi nite number of steps—the answer to a question or the 
solution of a problem. The name derives from the Latin 
translation,  Algoritmi de numero Indorum,  of the 9th-
century Muslim mathematician Muh. ammad ibn 
Mu-sa- al-Khwa-rizmı-’s arithmetic treatise “Al-Khwa-rizmı-

Concerning the Hindu Art of Reckoning.” 
 For questions or problems with only a fi nite set of 

cases or values an algorithm always exists (at least in 
principle); it consists of a table of values of the answers. In 
general, it is not such a trivial procedure to answer ques-
tions or problems that have an infi nite number of cases or 
values to consider, such as “Is the natural number (1, 2, 3, 
. . .)  a  prime?” or “What is the greatest common divisor of 
the natural numbers  a  and  b ?” The fi rst of these questions 
belongs to a class called decidable; an algorithm that pro-
duces a yes or no answer is called a decision procedure. 
The second question belongs to a class called computable; 
an algorithm that leads to a specifi c number answer is 
called a computation procedure. 
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Algorithms exist for many such infinite classes of 
questions; Euclid’s Elements, published about 300 BCE, 
contained one for finding the greatest common divisor of 
two natural numbers. Every elementary school student is 
drilled in long division, which is an algorithm for the 
question “Upon dividing a natural number a by another 
natural number b, what are the quotient and the remainder?” 
Use of this computational procedure leads to the answer 
to the decidable question “Does b divide a?” (the answer is 
yes if the remainder is zero). Repeated application of these 
algorithms eventually produces the answer to the decid-
able question “Is a prime?” (the answer is no if a is divisible 
by any smaller natural number besides 1).

Sometimes an algorithm cannot exist for solving an 
infinite class of problems, particularly when some further 
restriction is made upon the accepted method. For 
instance, two problems from Euclid’s time requiring the 
use of only a compass and a straightedge (unmarked 
ruler)—trisecting an angle and constructing a square with 
an area equal to a given circle—were pursued for centuries 
before they were shown to be impossible. At the turn of 
the 20th century, the influential German mathematician 
David Hilbert proposed 23 problems for mathematicians 
to solve in the coming century. The second problem on his 
list asked for an investigation of the consistency of the 
axioms of arithmetic. Most mathematicians had little 
doubt of the eventual attainment of this goal until 1931, 
when the Austrian-born logician Kurt Gödel demon-
strated the surprising result that there must exist 
arithmetic propositions (or questions) that cannot be 
proved or disproved. Essentially, any such proposition 
leads to a determination procedure that never ends (a con-
dition known as the halting problem).  In an unsuccessful 
effort to ascertain at least which propositions are 
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unsolvable, the English mathematician and logician Alan 
Turing rigorously defined the loosely understood concept 
of an algorithm. Although Turing ended up proving that 
there must exist undecidable propositions, his description 
of the essential features of any general-purpose algorithm 
machine, or Turing machine, became the foundation of 
computer science. Today the issues of decidability and com-
putability are central to the design of a computer 
program—a special type of algorithm.

Arithmetic function

Any mathematical function defined for integers (. . ., −3, −2, 
−1, 0, 1, 2, 3, . . .) and dependent upon those properties of 
the integer itself as a number, in contrast to functions that 
are defined for other values (real numbers, complex num-
bers, or even other functions) and that involve various 
operations from algebra and calculus, is known as an arith-
metic function. Examples of arithmetic functions include 
the following, which associate with each integer n: (1) the 
number of divisors of n; (2) the number of ways n can be 
represented as a sum or product of a specified number of 
integers; (3) the number of primes (integers not divisible 
by any number greater than one, except themselves) divid-
ing n (including n itself). Arithmetic functions have 
applications in number theory, combinatorics, counting, 
probability theory, and analysis, in which they arise as the 
coefficients of power series.

Associative laws

There are two associative laws relating to number opera-
tions of addition and multiplication—stated symbolically, 
they are a + (b + c) = (a + b) + c and a(bc) = (ab)c; that is, the 
terms or factors may be associated in any way desired. 
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While associativity holds for ordinary arithmetic with real 
or imaginary numbers, there are certain applications—
such as nonassociative algebras—in which it does not hold.

Axiom of choice

The axiom of choice, sometimes called Zermelo’s axiom 
of choice, is a statement in the language of set theory that 
makes it possible to form sets by choosing an element 
simultaneously from each member of an infinite collec-
tion of sets even when no algorithm exists for the selection. 
The axiom of choice has many mathematically equivalent 
formulations, some of which were not immediately real-
ized to be equivalent. One version states that, given any 
collection of disjoint sets (sets having no common ele-
ments), there exists at least one set consisting of one 
element from each of the nonempty sets in the collection; 
collectively, these chosen elements make up the “choice 
set.” Another common formulation is to say that for any 
set S there exists a function f (called a “choice function”) 
such that, for any nonempty subset s of S, f(s) is an element 
of s.

The axiom of choice was first formulated in 1904 by 
the German mathematician Ernst Zermelo in order to 
prove the “well-ordering theorem” (every set can be given 
an order relationship, such as less than, under which it is 
well ordered; i.e., every subset has a first element). 
Subsequently, it was shown that making any one of three 
assumptions—the axiom of choice, the well-ordering 
principle, or Zorn’s lemma—enabled one to prove the 
other two; that is to say, all three are mathematically 
equivalent. The axiom of choice has the feature—not 
shared by other axioms of set theory—that it asserts the 
existence of a set without ever specifying its elements or 
any definite way to select them. In general, S could have 
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many choice functions. The axiom of choice merely asserts 
that it has at least one, without saying how to construct it. 
This nonconstructive feature has led to some controversy 
regarding the acceptability of the axiom.

The axiom of choice is not needed for finite sets since 
the process of choosing elements must come to an end 
eventually. For infinite sets, however, it would take an infi-
nite amount of time to choose elements one by one. Thus, 
infinite sets for which there does not exist some definite 
selection rule require the axiom of choice (or one of its 
equivalent formulations) in order to proceed with the 
choice set. The English mathematician-philosopher 
Bertrand Russell gave the following succinct example of 
this distinction: “To choose one sock from each of infi-
nitely many pairs of socks requires the Axiom of Choice, 
but for shoes the Axiom is not needed.” For example, one 
could simultaneously choose the left shoe from each 
member of the infinite set of shoes, but no rule exists to 
distinguish between the members of a pair of socks. Thus, 
without the axiom of choice, each sock would have to be 
chosen one by one—an eternal prospect.

Nonetheless, the axiom of choice does have some 
counterintuitive consequences. The best-known of these 
is the Banach-Tarski paradox. This shows that for a solid 
sphere there exists (in the sense that the axioms assert the 
existence of sets) a decomposition into a finite number of 
pieces that can be reassembled to produce a sphere with 
twice the radius of the original sphere. Of course, the 
pieces involved are nonmeasurable; that is, one cannot 
meaningfully assign volumes to them.

In 1939 the Austrian-born American logician Kurt Gödel 
proved that, if the other standard Zermelo-Fraenkel axioms 
(ZF) are consistent, then they do not disprove the axiom 
of choice. That is, the result of adding the axiom of choice 
to the other axioms (ZFC) remains consistent. Then in 
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1963 the American mathematician Paul Cohen completed 
the picture by showing, again under the assumption that 
ZF is consistent, that ZF does not yield a proof of the axiom 
of choice; that is, the axiom of choice is independent.

In general, the mathematical community accepts the 
axiom of choice because of its utility and its agreement 
with intuition regarding sets. On the other hand, lingering 
unease with certain consequences (such as well-ordering 
of the real numbers) has led to the convention of explicitly 
stating when the axiom of choice is utilized, a condition 
not imposed on the other axioms of set theory.

Binary code

Binary code, which is used in digital computers, is based 
on a binary number system in which there are only two 
possible states, off and on, usually symbolized by 0 and 1. 
Whereas in a decimal system, which employs 10 digits, 
each digit position represents a power of 10 (100, 1,000, 
etc.), in a binary system each digit position represents a 
power of 2 (4, 8, 16, etc.). A binary code signal is a series of 
electrical pulses that represent numbers, characters, and 
operations to be performed. A device called a clock sends 
out regular pulses, and components such as transistors 
switch on (1) or off (0) to pass or block the pulses. In binary 
code, each decimal number (0–9) is represented by a set of 
four binary digits, or bits. The four fundamental arithme-
tic operations (addition, subtraction, multiplication, and 
division) can all be reduced to combinations of fundamen-
tal Boolean algebraic operations on binary numbers.

Binary number system

The binary number system is a positional numeral system 
employing 2 as the base and so requiring only two 
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different symbols for its digits, 0 and 1, instead of the usual 
10 different symbols needed in the decimal system. The 
importance of the binary system to information theory 
and computer technology derives mainly from the compact 
and reliable manner in which 0s and 1s can be represented 
in electromechanical devices with two states—such as 
“on-off,” “open-closed,” or “go–no go.”

Cantor’s theorem

Cantor’s theorem states that the cardinality (numerical 
size) of a set is strictly less than the cardinality of its power 
set, or collection of subsets. In symbols, a finite set S with 
n elements contains 2n subsets, so that the cardinality of 
the set S is n and its power set P(S) is 2n. While this is clear 
for finite sets, no one had seriously considered the case for 
infinite sets before the German mathematician Georg 
Cantor—who is universally recognized as the founder of 
modern set theory—began working in this area toward 
the end of the 19th century.

The 1891 proof of Cantor’s theorem for infinite sets 
rested on a version of his so-called diagonalization argument, 
which he had earlier used to prove that the cardinality of 
the rational numbers is the same as the cardinality of the 
integers by putting them into a one-to-one correspon-
dence. The notion that, in the case of infinite sets, the size 
of a set could be the same as one of its proper subsets was 
not too surprising, as before Cantor almost everyone 
assumed that there was only one size for infinity. How
ever, Cantor’s proof that some infinite sets are larger than 
others—for example, the real numbers are larger than the 
integers—was surprising, and it initially met with great 
resistance from some mathematicians, particularly the 
German Leopold Kronecker. Furthermore, Cantor’s proof 
that the power set of any set, including any infinite set, is 
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always larger than the original set led him to create an ever 
increasing hierarchy of cardinal numbers, ℵ0, ℵ1, ℵ2. . ., 
known as transfinite numbers. Cantor proposed that there 
is no transfinite number between the first transfinite number 
ℵ0, or the cardinality of the integers, and the continuum 
(c), or the cardinality of the real numbers; in other words, 
c  = ℵ1. This is now known as the continuum hypothesis, 
and it has been shown to be an undecidable proposition in 
standard set theory.

Chinese remainder theorem

The Chinese remainder theorem gives the conditions for 
multiple equations to have a simultaneous integer solu-
tion. The theorem has its origin in the work of the 
3rd-century-CE Chinese mathematician Sun Zi, although 
the complete theorem was first given in 1247 by Qin 
Jiushao.

The Chinese remainder theorem addresses the follow-
ing type of problem. One is asked to find a number that 
leaves a remainder of 0 when divided by 5, remainder 6 
when divided by 7, and remainder 10 when divided by 12. 
The simplest solution is 370. Note that this solution is not 
unique, since any multiple of 5 × 7 × 12 (= 420) can be added 
to it and the result will still solve the problem.

The theorem can be expressed in modern general 
terms using congruence notation. Let n1, n2, . . ., nk be inte-
gers that are greater than one and pairwise relatively prime 
(that is, the only common factor between any two of them 
is 1), and let a1, a2, . . ., ak be any integers. Then there exists 
an integer solution a such that a  =̄  ai (mod ni) for each 
i  =  1, 2,  . . ., k. Furthermore, for any other integer b that 
satisfies all the congruences, b  =¯  a (mod N) where
N = n1n2

...nk. The theorem also gives a formula for finding a 
solution. Note that in the example above, 5, 7, and 12 (n1, n2, 
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and n3 in congruence notation) are relatively prime. There 
is not necessarily any solution to such a system of equa-
tions when the moduli are not pairwise relatively prime.

Church’s thesis

Church’s thesis (theorem), a principle formulated by the 
20th-century American logician Alonzo Church, states 
that the recursive functions are the only functions that can 
be mechanically calculated. The theorem implies that the 
procedures of arithmetic cannot be used to decide the con-
sistency of statements formulated in accordance with the 
laws of arithmetic. 

Commutative laws

There are two commutative laws relating to the number 
operations of addition and multiplication—stated sym-
bolically, they are a + b = b + a and ab = ba. From these laws 
it follows that any finite sum or product is unaltered by 
reordering its terms or factors. While commutativity 
holds for many systems, such as the real or complex num-
bers, there are other systems, such as the system of n × n 
matrices or the system of quaternions, in which commuta-
tivity of multiplication is invalid. Scalar multiplication of 
two vectors (to give the so-called dot product) is commu-
tative (i.e., a·b = b·a), but vector multiplication (to give the 
cross product) is not (i.e., a × b = −b × a). The commutative 
law does not necessarily hold for multiplication of condi-
tionally convergent series.

Complex number

Complex numbers have the form x + yi, in which x and y are 
real numbers and i is the imaginary unit such that i2 = −1.
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Continuum hypothesis

The continuum hypothesis states that the set of real 
numbers (the continuum) is in a sense as small as it can 
be. In 1873 the German mathematician Georg Cantor 
proved that the continuum is uncountable—that is, the 
real numbers are a larger infinity than the counting 
numbers—a key result in starting set theory as a mathe-
matical subject. Furthermore, Cantor developed a way of 
classifying the size of infinite sets according to the num-
ber of its elements, or its cardinality. In these terms, the 
continuum hypothesis can be stated as follows: The car-
dinality of the continuum is the smallest uncountable 
cardinal number.

In Cantor’s notation, the continuum hypothesis can 
be stated by the simple equation 2ℵ0 = ℵ1, where ℵ0 is the 
cardinal number of an infinite countable set (such as the 
set of natural numbers), and the cardinal numbers of larger 
“well-orderable sets” are ℵ1, ℵ2, . . ., ℵα, . . ., indexed by the 
ordinal numbers. The cardinality of the continuum can be 
shown to equal 2ℵ0; thus, the continuum hypothesis rules 
out the existence of a set of size intermediate between the 
natural numbers and the continuum.

A stronger statement is the generalized continuum 
hypothesis (GCH): 2ℵα = ℵα + 1 for each ordinal number α. 
The Polish mathematician Wacław Sierpiński proved that 
with GCH one can derive the axiom of choice.

As with the axiom of choice, the Austrian-born 
American mathematician Kurt Gödel proved in 1939 that, 
if the other standard Zermelo-Fraenkel axioms (ZF) are 
consistent, then they do not disprove the continuum 
hypothesis or even GCH. That is, the result of adding 
GCH to the other axioms remains consistent. Then in 
1963 the American mathematician Paul Cohen completed 
the picture by showing, again under the assumption that 

7 Numerical Terms and Concepts 7



7 The Britannica Guide to Numbers and Measurement 7

160

ZF is consistent, that ZF does not yield a proof of the 
continuum hypothesis.

Since ZF neither proves nor disproves the continuum 
hypothesis, there remains the question of whether to 
accept the continuum hypothesis based on an informal 
concept of what sets are. The general answer in the math-
ematical community has been negative: the continuum 
hypothesis is a limiting statement in a context where there 
is no known reason to impose a limit. In set theory, the 
power-set operation assigns to each set of cardinality ℵα 
its set of all subsets, which has cardinality 2ℵα. There seems 
to be no reason to impose a limit on the variety of subsets 
that an infinite set might have.

Decimal number system

The decimal number system—also called the Hindu-
Arabic, or Arabic, number system—is a positional numeral 
system employing 10 as the base and requiring 10 different 
numerals, the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. It also requires 
a dot (decimal point) to represent decimal fractions. In 
this scheme, the numerals used in denoting a number take 
different place values depending upon position. In a base-
10 system the number 543.21 represents the sum (5 × 102) 
+  (4 × 101) + (3 × 100) + (2 × 10−1) + (1 × 10−2).

This number system, with its associated arithmetic 
algorithms, has furnished the basis for the development of 
Western commerce and science since its introduction to 
the West in the 12th century CE.

Decision problem

The decision problem, for a class of questions in mathe-
matics and formal logic, involves finding, after choosing 
any question of the class, an algorithm or repetitive 
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procedure that will yield a definite answer, “yes” or “no,” 
to that question. The method consists of performing 
successively a finite number of steps determined by pre-
assigned rules. In particular, the term is used for such 
procedures for finding whether—in a particular logistic 
system, logical calculus, or formal mathematical system—
some given “well-formed formula” (generated in accordance 
with established formation rules) is or is not provable as a 
theorem of the system.

Dedekind cut

In 1872 the German mathematician Richard Dedekind 
introduced a concept that combines an arithmetic formu-
lation of the idea of continuity with a rigorous distinction 
between rational and irrational numbers. Dedekind rea-
soned that the real numbers form an ordered continuum, 
so that any two numbers x and y must satisfy one and only 
one of the conditions x < y, x = y, or x > y. He postulated a 
cut that separates the continuum into two subsets, say X 
and Y, such that if x is any member of X and y is any mem-
ber of Y, then x < y. If the cut is made so that X has a largest 
rational member or Y a least member, then the cut corre-
sponds to a rational number. If, however, the cut is made 
so that X has no largest rational member and Y no least 
rational member, then the cut corresponds to an irratio-
nal number.

For example, if X is the set of all real numbers x less 
than or equal to 22/7 and Y is the set of real numbers y 
greater than 22/7, then the largest member of X is the 
rational number 22/7. If, however, X is the set of all real 
numbers x such that x2 is less than or equal to 2 and Y is the 
set of real numbers y such that y2 is greater than 2, then X 
has no largest rational member and Y has no least rational 
member: the cut defines the irrational number √2.
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Diophantine equation

Diophantine equations involve only sums, products, and 
powers in which all the constants are integers and the only 
solutions of interest are integers. For example, 3x + 7y = 1 or 
x2 − y2 = z3, where x, y, and z are integers. Named in honour 
of the 3rd-century Greek mathematician Diophantus of 
Alexandria, these equations were first systematically 
solved by Hindu mathematicians beginning with aryabhata I 
(c. 476–550).

Diophantine equations fall into three classes: those 
with no solutions, those with only finitely many solutions, 
and those with infinitely many solutions. For example, the 
equation 6x − 9y = 29 has no solutions, but the equation 
6x − 9y = 30, which upon division by 3 reduces to 2x − 3y = 10, 
has infinitely many. For example, x = 20, y = 10 is a solution, 
and so is x = 20 + 3t, y = 10 + 2t for every integer t, positive, 
negative, or zero. This is called a one-parameter family of 
solutions, with t being the arbitrary parameter.

Congruence methods provide a useful tool in deter-
mining the number of solutions to a Diophantine equation. 
Applied to the simplest Diophantine equation, ax + by = c, 
where a, b, and c are nonzero integers, these methods show 
that the equation has either no solutions or infinitely 
many, according to whether the greatest common divisor 
(GCD) of a and b divides c: if not, there are no solutions; if 
it does, there are infinitely many solutions, and they form 
a one-parameter family of solutions.

Dirichlet’s theorem

Dirichlet’s theorem states that there are infinitely many 
prime numbers contained in the collection of all numbers 
of the form na + b, in which the constants a and b are 



163

integers that have no common divisors except the number 
1 (in which case the pair are known as being relatively 
prime) and the variable n is any natural number (1, 2, 3, . . .). 
For instance, because 3 and 4 are relatively prime, there 
must be infinitely many primes among numbers of the 
form 4n + 3 (e.g., 7 when n = 1, 11 when n = 2, 19 when n = 4, 
and so forth). Conjectured by the late 18th–early 19th-cen-
tury German mathematician Carl Friedrich Gauss, the 
statement was first proved in 1826 by the German mathe-
matician Peter Gustav Lejeune Dirichlet.

Distributive law

The distributive law relates the operations of multiplica-
tion and addition—stated symbolically, a(b  +  c)  = ab  + ac; 
that is, the monomial factor a is distributed, or separately 
applied, to each term of the binomial factor b + c, resulting 
in the product ab + ac. From this law it is easy to show that 
the result of first adding several numbers and then multi-
plying the sum by some number is the same as first 
multiplying each separately by the number and then add-
ing the products.

Equivalence relation

The equivalence relation is a generalization of the idea of 
equality between elements of a set. All equivalence rela-
tions (e.g., that symbolized by the equals sign) obey three 
conditions: reflexivity (every element is in the relation to 
itself), symmetry (element A has the same relation to ele-
ment B that B has to A), and transitivity. Congruence of 
triangles is an equivalence relation in geometry. Members 
of a set are said to be in the same equivalence class if they 
have an equivalence relation.
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Euclidean algorithm

The Euclidean algorithm is a procedure for finding the 
greatest common divisor (GCD) of two numbers. It was 
described by the Greek mathematician Euclid in his 
Elements (c. 300 BCE). The method is computationally 
efficient and, with minor modifications, is still used by 
computers.

The algorithm involves successively dividing and cal-
culating remainders; it is best illustrated by example. For 
instance, to find the GCD of 56 and 12, first divide 56 by 12 
and note that the quotient is 4 and the remainder is 8. This 
can be expressed as 56 = 4 × 12 + 8. Now take the divisor 
(12), divide it by the remainder (8), and write the result as 

12  =  1  ×  8  +  4. 
Continuing in this 
manner, take the 
previous divisor (8), 
divide it by the pre-
vious remainder (4), 
and write the result 
as 8 = 2 × 4 + 0. Since 
the remainder is 
now 0, the process 
has finished and 
the last nonzero 
remainder, in this 
case 4, is the GCD.

The Euclidean 
algorithm is useful 
for reducing a com-
mon fraction to 
lowest terms. For 
example, the algo-
rithm will show that 

Greek mathematician Euclid, depicted here, 
was the most prominent mathematician of 
Greco-Roman antiquity. Best known for his 
treatise on geometry, the Elements, he also 
wrote extensively on general mathematics. 
Hulton Archive/Getty Images
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the GCD of 765 and 714 is 51, and therefore 765/714 = 15/14. 
It also has a number of uses in more advanced mathemat-
ics. For example, it is the basic tool used to find integer 
solutions to linear equations ax + by = c, where a, b, and c 
are integers. The algorithm also provides, as the successive 
quotients obtained from the division process, the integers 
a, b, . . ., f needed for the expansion of a fraction p/q as a 
continued fraction:

a + 1/(b + 1/(c + 1/(d . . . + 1/f).

Euclid’s twin prime conjecture

Euclid’s twin prime conjecture asserts that there are infi-
nitely many twin primes, or pairs of primes that differ by 
2. For example, 3 and 5, 5 and 7, 11 and 13, and 17 and 19 are 
twin primes. As numbers get larger, primes become less 
frequent and twin primes rarer still. Greek mathemati-
cian Euclid (flourished c. 300 BCE) gave the oldest 
known proof that there exist an infinite number of primes, 
and he conjectured that there are an infinite number of 
twin primes.

Very little progress was made on this conjecture until 
1919, when Norwegian mathematician Viggo Brun showed 
that the sum of the reciprocals of the twin primes con-
verges to a sum, now known as Brun’s constant. (In 
contrast, the sum of the reciprocals of the primes diverges 
to infinity.) Brun’s constant was calculated in 1976 as 
approximately 1.90216054 using the twin primes up to 100 
billion. In 1994 American mathematician Thomas Nicely 
was using a personal computer equipped with the then 
new Pentium chip from the Intel Corporation when he 
discovered a flaw in the chip that was producing inconsis-
tent results in his calculations of Brun’s constant. Negative 
publicity from the mathematics community led Intel to 
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offer free replacement chips that had been modified to 
correct the problem. In 2004 Nicely gave a value for Brun’s 
constant of 1.902160582582 ± 0.000000001620 based on 
all twin primes less than 5 × 1015.

The next big breakthrough occurred in 2003, when 
American mathematician Daniel Goldston and Turkish 
mathematician Cem Yildirim published a paper, “Small 
Gaps Between Primes,” that established the existence of 
an infinite number of prime pairs within a small difference 
(16, with certain other assumptions). Although their 
proof was flawed, they corrected it with Hungarian 
mathematician János Pintz in 2005. Their introduction 
of new techniques may enable progress on the Riemann 
hypothesis, which is connected to the prime number 
theorem (a formula that gives an approximation of the 
number of primes less than any given value).

Factor

A factor is a number or algebraic expression that divides 
another number or expression evenly—i.e., with no 
remainder. For example, 3 and 6 are factors of 12 because 
12 ÷ 3 = 4 exactly and 12 ÷ 6 = 2 exactly. The other factors of 
12 are 1, 2, 4, and 12. A positive integer greater than 1, or an 
algebraic expression, that has only two factors (i.e., itself 
and 1) is termed prime; a positive integer or an algebraic 
expression that has more than two factors is termed com-
posite. The prime factors of a number or an algebraic 
expression are those factors that are prime. By the funda-
mental theorem of arithmetic, except for the order in 
which the prime factors are written, every whole number 
larger than 1 can be uniquely expressed as the product of 
its prime factors; for example, 60 can be written as the 
product 2·2·3·5.
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Methods for factoring large whole numbers are of 
great importance in public-key cryptography, and on 
such methods rests the security (or lack thereof) of data 
transmitted over the Internet. Factoring is also a particu-
larly important step in the solution of many algebraic 
problems. For example, the polynomial equation 
x2 − x − 2 = 0 can be factored as (x − 2)(x + 1) = 0. Since in an 
integral domain a·b = 0 implies that either a = 0 or b = 0, 
the simpler equations x − 2 = 0 and x + 1 = 0 can be solved 
to yield the two solutions x = 2 and x = −1 of the original 
equation.

Factorial

A factorial is the product of all positive integers less than 
or equal to a given positive integer and denoted by that 
integer and an exclamation point. Thus, factorial seven is 
written 7!, meaning 1 × 2 × 3 × 4 × 5 × 6 × 7. Factorial zero is 
defined as equal to 1.

Factorials are commonly encountered in the evalua-
tion of permutations and combinations and in the 
coefficients of terms of binomial expansions (see binomial 
theorem). Factorials have been generalized to include 
nonintegral values.

Fermat prime

A Fermat prime is a number of the form 22n + 1, for some 
positive integer n. For example, 223  +  1  =  28  +  1  =  257 is a 
Fermat prime. On the basis of his knowledge that num-
bers of this form are prime for values of n from 1 through 
4, the French mathematician Pierre de Fermat (1601–65) 
conjectured that all numbers of this form are prime. 
However, the Swiss mathematician Leonhard Euler 
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(1707–83) showed that Fermat’s conjecture is false for 
n = 5: 225 + 1 = 232 + 1 = 4,294,967,297, which is divisible by 
641. In fact, it is known that numbers of this form are 
not prime for values of n from 5 through 30, placing 
doubt on the existence of any Fermat primes for values 
of n > 4.

Fermat’s last theorem

Fermat’s last theorem is the statement that there are no 
natural numbers (1, 2, 3, . . .) x, y, and z such that 
xn + yn = zn, in which n is a natural number greater than 2. 
For example, if n = 3, Fermat’s theorem states that no 
natural numbers x, y, and z exist such that x3 + y3 = z3 (i.e., 
the sum of two cubes is not a cube). In 1637 the French 
mathematician Pierre de Fermat wrote in his copy of the 
Arithmetica by Diophantus of Alexandria (c. 250 CE), “I 
have discovered a truly remarkable proof [of this theo-
rem] but this margin is too small to contain it.” For 
centuries mathematicians were baffled by this state-
ment, for no one could prove or disprove Fermat’s 
theorem. Proofs for many specific values of n were 
devised, however, and by 1993, with the help of comput-
ers, it was confirmed for all n < 4,000,000. Using 
sophisticated tools from algebraic geometry, the English 
mathematician Andrew Wiles, with help from his former 
student Richard Taylor, devised a proof of Fermat’s last 
theorem that was published in 1995 in the journal Annals 
of Mathematics.

Fermat’s little theorem

Fermat’s little theorem, also known as Fermat’s primality 
test, first given in 1640 by French mathematician Pierre 
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de Fermat, states that for any prime number p and any 
integer a such that p does not divide a (the pair are rela-
tively prime), p divides exactly into ap  −  a. Although a 
number n that does not divide exactly into an − a for some 
a must be a composite number, the converse is not neces-
sarily true. For example, let a = 2 and n = 341, then a and n 
are relatively prime and 341 divides exactly into 2341  −  2. 
However, 341 = 11 × 31, so it is a composite number (a spe-
cial type of composite number known as a pseudoprime). 
Thus, Fermat’s theorem gives a test that is necessary but 
not sufficient for primality.

As with many of Fermat’s theorems, no proof by him 
is known to exist. The first known published proof of 
this theorem was by Swiss mathematician Leonhard 
Euler in 1736, though a proof in an unpublished manu-
script dating to about 1683 was given by German 
mathematician Gottfried Wilhelm Leibniz. A special 
case of Fermat’s theorem, known as the Chinese hypoth-
esis, may be some 2,000 years old. The Chinese 
hypothesis, which replaces a with 2, states that a number 
n is prime if and only if it divides exactly into 2n  − 2. As 
proved later in the West, the Chinese hypothesis is only 
half right.

Fibonacci numbers

Fibonacci numbers are the elements of the sequence of 
numbers 1, 1, 2, 3, 5, 8, 13, 21, . . ., each of which, after the 
second, is the sum of the two previous numbers. These 
numbers were first noted by the medieval Italian mathe-
matician Leonardo Pisano (“Fibonacci”) in his Liber abaci 
(1202; “Book of the Abacus”), which also popularized 
Hindu-Arabic numerals and the decimal number system 
in Europe. 
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Top: A naturally occurring Fibonacci sequence can be detected in this fossilized ammonite 
from the Jurassic period. Shutterstock.com Bottom: The golden ratio, a three-dimen-
sional representation of which is shown above, is a significant irrational number. One reason 
for this is its occurrence in Fibonacci sequences in which two consecutive terms approach the 
value of the golden ratio (approximately 1.618) as the numbers increase. Shutterstock.com
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Fraction

A fraction is a number expressed as a quotient, in which a 
numerator is divided by a denominator. In a simple frac-
tion, both are integers. A complex fraction has a fraction 
in the numerator or denominator. In a proper fraction, the 
numerator is less than the denominator. If the numerator 
is greater, it is called an improper fraction and can also be 
written as a mixed number—a whole-number quotient 
with a proper-fraction remainder. Any fraction can be 
written in decimal form by carrying out the division of the 
numerator by the denominator. The result may end at 
some point, or one or more digits may repeat without end.

Fundamental theorem  
of arithmetic

The fundamental theorem of arithmetic was proved by 
Carl Friedrich Gauss in 1801. It states that any integer 
greater than 1 can be expressed as the product of prime 
numbers in only one way.

Geometric series

A geometric series is an infinite series of the form 

a + ar + ar2 + ar3+..., 

where r is known as the common ratio. A simple example 
is the geometric series for a = 1 and r = 1/2, or 

1 + 1/2 + 1/4 + 1/8 +..., 

which converges to a sum of 2 (or 1 if the first term is 
excluded). The Achilles paradox is an example of the 
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difficulty that ancient Greek mathematicians had with 
the idea that an infinite series could produce a finite sum. 
The confusion around infinity did not abate until the 18th 
century, when mathematicians developed analysis and the 
concept of limits.

The sum of the first n terms of a geometric series is 
equal to a(1  −  rn)/(1  −  r). If the absolute value of r is less 
than 1, the series converges to a/(1 − r). For any other value 
of r, the series diverges.

Goldbach conjecture

The Goldbach conjecture asserts, in modern terms, that 
every even counting number greater than 2 is equal to the 

Clearly, the sum of the square’s parts ( 1/2, 1/4, 1/8, etc.) is 1 (square). Thus, it can 
be seen that 1 is the limit of this series—that is, the value to which the partial 
sums converge. Encyclopædia Britannica, Inc.
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sum of two prime numbers. The Russian mathematician 
Christian Goldbach first proposed this conjecture in a 
letter to the Swiss mathematician Leonhard Euler in 1742. 
More precisely, Goldbach claimed that “every number 
greater than 2 is an aggregate of three prime numbers.” (In 
Goldbach’s day, the convention was to consider 1 a prime 
number, so his statement is equivalent to the modern 
version in which the convention is to not include 1 among 
the prime numbers.)

Goldbach’s conjecture was published in English math-
ematician Edward Waring’s Meditationes algebraicae (1770), 
which also contained Waring’s problem and what was later 
known as Vinogradov’s theorem. The latter, which states 
that every sufficiently large odd integer can be expressed 
as the sum of three primes, was proved in 1937 by the 
Russian mathematician Ivan Matveyevich Vinogradov. 
Further progress on Goldbach’s conjecture occurred in 
1973, when the Chinese mathematician Chen Jing Run 
proved that every sufficiently large even number is the 
sum of a prime and a number with at most two prime 
factors.

Harmonic sequence

A harmonic sequence is a sequence of numbers a1, a2, a3,. . . 
such that their reciprocals 1/a1, 1/a2, 1/a3,. . . form an arith-
metic sequence (numbers separated by a common 
difference). The best-known harmonic sequence, and the 
one typically meant when the harmonic sequence is men-
tioned, is 1, 1/2, 1/3, 1/4 , . . ., whose corresponding arithmetic 
sequence is simply the counting numbers 1, 2, 3, 4,. . ..

The study of harmonic sequences dates to at least the 
6th century BCE, when the Greek philosopher and math-
ematician Pythagoras and his followers sought to explain 
through numbers the nature of the universe. One of the 
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areas in which numbers were applied by the Pythagoreans 
was the study of music. In particular, Archytas of Tarentum, 
in the 4th century BCE, used the idea of regular numerical 
intervals to devise a theory of musical harmony (from the 
Greek harmonia, for agreement of sounds) and the enhar-
monic method of tuning musical instruments.

The sum of a sequence is known as a series, and the 
harmonic series is an example of an infinite series that 
does not converge to any limit. That is, the partial sums 

An ancient Greek plays the kithara, a type of lyre. Harmonic sequences played 
a significant part in the way ancient Greeks played and understood their 
music. Hulton Archive/Getty Images
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obtained by adding the successive terms grow without 
limit, or, put another way, the sum tends to infinity.

Imaginary number

An imaginary number is any product of the form ai, in 
which a is a real number and i is the imaginary unit defined 
as √−1.

Incompleteness theorems

There are two incompleteness theorems, both of which 
were proved by the Austrian-born American logician Kurt 
Gödel. In 1931 Gödel published his first incompleteness 
theorem, “Über formal unentscheidbare Sätze der 
Principia Mathematica und verwandter Systeme” (“On For
mally Undecidable Propositions of Principia Mathematica 
and Related Systems”), which stands as a major turning 
point of 20th-century logic. This theorem established 
that it is impossible to use the axiomatic method to con-
struct a formal system for any branch of mathematics 
containing arithmetic that will entail all of its truths. In 
other words, no finite set of axioms can be devised that 
will produce all possible true mathematical statements, so 
no mechanical (or computer-like) approach will ever be 
able to exhaust the depths of mathematics. It is important 
to realize that if some particular statement is undecidable 
within a given formal system, it may be incorporated in 
another formal system as an axiom or be derived from the 
addition of other axioms. For example, German mathe-
matician Georg Cantor’s continuum hypothesis is 
undecidable in the standard axioms, or postulates, of set 
theory but could be added as an axiom.

The second incompleteness theorem follows as an 
immediate consequence, or corollary, from Gödel’s paper. 
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Although it was not stated explicitly in the paper, Gödel 
was aware of it, and other mathematicians, such as the 
Hungarian-born American mathematician John von 
Neumann, realized immediately that it followed as a cor-
ollary. The second incompleteness theorem shows that a 
formal system containing arithmetic cannot prove its own 
consistency. In other words, there is no way to show that 
any useful formal system is free of false statements. The 
loss of certainty following the dissemination of Gödel’s 
incompleteness theorems continues to have a profound 
effect on the philosophy of mathematics.

Inequality

An inequality is a statement of an order relationship—
greater than, greater than or equal to, less than, or less 
than or equal to—between two numbers or algebraic 
expressions. Inequalities can be posed either as questions, 
much like equations, and solved by similar techniques, or 
as statements of fact in the form of theorems. For exam-
ple, the triangle inequality states that the sum of the 
lengths of any two sides of a triangle is greater than or 
equal to the length of the remaining side. Mathematical 
analysis relies on many such inequalities (e.g., the Cauchy-
Schwarz inequality) in the proofs of its most important 
theorems.

Infinite series

An infinite series is the sum of infinitely many numbers 
related in a given way and listed in a given order. Infinite 
series are useful in mathematics and in such disciplines as 
physics, chemistry, biology, and engineering.

For an infinite series a1  +  a2  +  a3  +..., a quantity 
sn = a1 + a2 +...+ an, which involves adding only the first n 
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terms, is called a partial sum of the series. If sn approaches 
a fixed number S as n becomes larger and larger, the series 
is said to converge. In this case, S is called the sum of the 
series. An infinite series that does not converge is said to 
diverge. In the case of divergence, no value of a sum is 
assigned. For example, the nth partial sum of the infinite 
series 1 + 1 + 1 +... is n. As more terms are added, the partial 
sum fails to approach any finite value (it grows without 
bound). Thus, the series diverges. An example of a conver-
gent series is 

.

As n becomes larger, the partial sum approaches 2, 
which is the sum of this infinite series. In fact, the series 
1 + r  + r2  + r3  +... (in the example above r equals 1/2) con-
verges to the sum 1/(1 − r) if 0 < r < 1 and diverges if r ≥ 1. 
This series is called the geometric series with ratio r and 
was one of the first infinite series to be studied. Its solu-
tion goes back to Zeno of Elea’s paradox involving a race 
between Achilles and a tortoise.

Certain standard tests can be applied to determine the 
convergence or divergence of a given series, but such a 
determination is not always possible. In general, if the 
series a1  +  a2  +... converges, then it must be true that an 
approaches 0 as n becomes larger. Furthermore, adding or 
deleting a finite number of terms from a series never 
affects whether or not the series converges. Furthermore, 
if all the terms in a series are positive, its partial sums will 
increase, either approaching a finite quantity (converging) 
or growing without bound (diverging). This observation 
leads to what is called the comparison test: if 0 ≤ an ≤ bn 
for all n and if b1 + b2 +... is a convergent infinite series, then 
a1  +  a2  +... also converges. When the comparison test is 
applied to a geometric series, it is reformulated slightly 
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and called the ratio test: if an > 0 and if an + 1/an ≤ r for some 
r < 1 for every n, then a1 + a2 +... converges. For example, the 
ratio test proves the convergence of the series 

.

Many mathematical problems that involve a compli-
cated function can be solved directly and easily when the 
function can be expressed as an infinite series involving 
trigonometric functions (sine and cosine). The process of 
breaking up a rather arbitrary function into an infinite 
trigonometric series is called Fourier analysis or harmonic 
analysis and has numerous applications in the study of 
various wave phenomena.

Infinity

Infinity is the concept of something that is unlimited, 
endless, without bound. The common symbol for infinity, 
∞, was invented by the English mathematician John Wallis 
in 1657. Three main types of infinity may be distinguished: 
the mathematical, the physical, and the metaphysical. 
Mathematical infinities occur, for instance, as the number 
of points on a continuous line or as the size of the endless 
sequence of counting numbers: 1, 2, 3, . . .. Spatial and tem-
poral concepts of infinity occur in physics when one asks if 
there are infinitely many stars or if the universe will last for-
ever. In a metaphysical discussion of God or the Absolute, 
there are questions of whether an ultimate entity must be 
infinite and whether lesser things could be infinite as well.

Integer

The integers consist of zero and the whole-valued positive 
and negative numbers. The integers are generated from 
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the set of counting numbers 1, 2, 3, . . . and the operation of 
subtraction. When a counting number is subtracted from 
itself, the result is zero. When a larger number is subtracted 
from a smaller number, the result is a negative whole num-
ber. In this way, every integer can be derived from the 
counting numbers, resulting in a set of numbers closed 
under the operation of subtraction (see group theory).

Lagrange’s four-square 
theorem

Lagrange’s four-square theorem states that every positive 
integer can be expressed as the sum of the squares of four 
integers. For example,

23 = 12 + 22 + 32 + 32.

The four-square 
theorem was first 
proposed by the 
Greek mathemati-
cian Diophantus of 
Alexandria in his 
treatise Arithmetica 
(3rd century CE). 
Credit for the first 
proof is given to the 
17th-century French 
amateur mathema-
tician Pierre de 
Fermat. (Although 
he did not publish 
this proof, his study 
of Diophantus led 
to Fermat’s last 

Joseph-Louis Lagrange, engraving by 
Robert Hart. Courtesy of the trustees of 
the British Museum; photograph, J.R. 
Freeman & Co. Ltd.

7 Numerical Terms and Concepts 7



7 The Britannica Guide to Numbers and Measurement 7

180

theorem.) The first published proof of the four-square 
theorem was in 1770 by the French mathematician Joseph-
Louis Lagrange, for whom the theorem is now named.

The impetus for renewed interest in Diophantus and 
such problems in number theory was the Frenchman 
Claude-Gaspar Bachet de Méziriac, whose Latin transla-
tion Diophanti (1621) of Arithmetica brought the work to a 
wider audience. In addition to the proof of Diophantus’s 
four-square theorem, study of the text led to a generaliza-
tion of the theorem known as Waring’s problem.

Mersenne number

A Mersenne number is a number Mn of the form 2n  −  1, 
where n is a natural number. The numbers are named for 
the French theologian and mathematician Marin 
Mersenne, who asserted in the preface of Cogitata Physica-
Mathematica (1644) that, for n ≤ 257, Mn is a prime number 
only for 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257. His list, how-
ever, contained two numbers that produce composite 
numbers and omitted two numbers that produce primes. 
The corrected list is 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and 
127, which was not determined until 1947. This followed 
the work of numerous mathematicians through the centu-
ries, starting with the Swiss mathematician Leonhard 
Euler, who first verified in 1750 that 31 produces a 
Mersenne prime.

It is now known that for Mn to be prime, n must be a 
prime (p), though not all Mp are prime. Every Mersenne 
prime is associated with an even perfect number—an even 
number that is equal to the sum of all its divisors (e.g., 
6 = 1 + 2 + 3)—given by 2n−1(2n − 1). (It is unknown if any odd 
perfect numbers exist.) For n prime, all known Mersenne 
numbers are squarefree, which means that they have no 
repeated divisors (e.g., 12 = 2 × 2 × 3). It is not known if there 
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are an infinite number of Mersenne primes, though they 
thin out so much that only 39 exist for values of n below 
20,000,000, and only 7 more have been discovered for 
larger n.

The search for Mersenne primes is an active field in 
number theory and computer science. It is also one of the 
major applications for distributed computing, a process in 
which thousands of computers are linked through the 
Internet and cooperate in solving a problem. The Great 
Internet Mersenne Prime Search (GIMPS) in particular 
has enlisted more than 100,000 volunteers, who have 
downloaded special software to run on their personal 
computers. An added inducement for searching for large 
primes comes from the Electronic Frontier Foundation 
(EFF), which established prizes for the first verified prime 
with more than 1 million digits ($50,000; awarded in 
2006), 10 million digits ($100,000; awarded in 2008), 100 
million digits ($150,000), and 1 billion digits ($250,000). 
The largest known Mersenne prime, which won the prize 
for surpassing 10 million digits, is 243,112,609 − 1. As an inter-
esting side note, Mersenne numbers consist of all 1s in 
base 2, or binary notation.

Number

Numbers include any of the positive or negative integers, 
or any of the set of all real or complex numbers, the latter 
containing all numbers of the form a + bi, where a and b are 
real numbers and i denotes the square root of –1. (Numbers 
of the form bi are sometimes called pure imaginary num-
bers to distinguish them from “mixed” complex numbers.) 
The real numbers consist of rational and irrational num-
bers. Rational numbers, such as 12, 13/5, or –4/11, are those 
numbers that can be expressed as integers or as the quo-
tient of integers, whereas the irrational numbers, such as 
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√2, are those that cannot be so expressed. All rational 
numbers are also algebraic numbers—i.e., they can be 
expressed as the root of some polynomial equation with 
rational coefficients. Although some irrational numbers, 
such as √2, can be expressed as the solution of such a poly-
nomial equation (in this case, x2 = 2), many cannot. Those 
that cannot are called transcendental numbers. Among 
the transcendental numbers are e (the base of the natural 
logarithm), π, and certain combinations of these. The first 
number to be proved transcendental was e (by Charles 
Hermite in 1873), and π was shown to be transcendental in 
1882 by Ferdinand von Lindemann.

Other classes of numbers include square numbers—
i.e., those that are squares of integers; perfect numbers, 
those that are equal to the sum of their proper factors; 
random numbers, those that are representative of random 
selection procedures; and prime numbers, integers larger 
than 1 whose only positive divisors are themselves and 1.

Perfect number

A perfect number is a positive integer that is equal to the 
sum of its proper divisors. The smallest perfect number is 
6, which is the sum of 1, 2, and 3. Other perfect numbers 
are 28, 496, and 8,128. The discovery of such numbers is 
lost in prehistory. It is known, however, that the 
Pythagoreans (founded c. 525 BCE) studied perfect num-
bers for their “mystical” properties.

The mystical tradition was continued by the neo-
Pythagorean philosopher Nicomachus of Gerasa (fl. c. 100 
CE), who classified numbers as deficient, perfect, and 
superabundant according to whether the sum of their 
divisors was less than, equal to, or greater than the num-
ber, respectively. Nicomachus gave moral qualities to his 
definitions, and such ideas found credence among early 
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Christian theologians. Often the 28-day cycle of the Moon 
around the Earth was given as an example of a “Heavenly,” 
hence perfect, event that naturally was a perfect number. 
The most famous example of such thinking is given by St. 
Augustine, who wrote in The City of God (413–426):

Six is a number perfect in itself, and not because God created all 
things in six days; rather, the converse is true. God created 
all things in six days because the number is perfect.

The earliest extant mathematical result concerning 
perfect numbers occurs in Euclid’s Elements (c. 300 BCE), 
where he proves the proposition:

If as many numbers as we please beginning from a unit [1] be 
set out continuously in double proportion, until the sum of all 
becomes a prime, and if the sum multiplied into the last make 
some number, the product will be perfect.

Here “double proportion” means that each number is 
twice the preceding number, as in 1, 2, 4, 8, . . .. For example, 
1 + 2 + 4 = 7 is prime; therefore, 7 × 4 = 28 (“the sum multi-
plied into the last”) is a perfect number. Euclid’s formula 
forces any perfect number obtained from it to be even, 
and in the 18th century the Swiss mathematician Leonhard 
Euler showed that any even perfect number must be 
obtainable from Euclid’s formula. It is not known whether 
there are any odd perfect numbers.

Prime

A prime is any positive integer greater than 1 that is divis-
ible only by itself and 1; e.g., 2, 3, 5, 7, 11, 13, 17, 19, 23, . . ..

A key result of number theory, called the fundamental 
theorem of arithmetic, states that every positive integer 

7 Numerical Terms and Concepts 7



7 The Britannica Guide to Numbers and Measurement 7

184

greater than 1 can be expressed as the product of prime 
numbers in a unique fashion. Because of this, primes can 
be regarded as the multiplicative “building blocks” for the 
natural numbers (all whole numbers greater than zero; 
e.g., 1, 2, 3, . . .).

Primes have been recognized since antiquity, when they 
were studied by the Greek mathematicians Euclid (fl. c. 
300 BCE) and Eratosthenes of Cyrene (c. 276–194 BCE), 
among others. In his Elements, Euclid gave the first known 
proof that there are infinitely many primes. Various formu-
las have been suggested for discovering primes, but all have 
been flawed. Two other famous results concerning the dis-
tribution of prime numbers merit special mention: the 
prime number theorem and the Riemann zeta function.

In the 20th century, with the help of computers, prime 
numbers with more than two million digits were discovered. 
Like efforts to generate ever more digits of π, such number 
theory research was thought to have no possible applica-
tion—that is, until cryptographers discovered how large 
primes could be used to make nearly unbreakable codes.

Prime number theorem

The prime number theorem gives an approximate value 
for the number of primes less than or equal to any given 
positive real number x. The usual notation for this number 
is π(x), so that π(2) = 1, π(3.5) = 2, and π(10) = 4. The prime 
number theorem states that for large values of x, π(x) is 
approximately equal to x/ln(x).

Ancient Greek mathematicians were the first to study 
the mathematical properties of prime numbers. (Earlier 
many people had studied such numbers for their supposed 
mystical or spiritual qualities.) While many people noticed 
that the primes seem to “thin out” as the numbers get 
larger, Euclid in his Elements (c. 300 BCE) may have been 
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the first to prove that there is no largest prime; in other 
words, there are infinitely many primes. Over the ensuing 
centuries, mathematicians sought, and failed, to find some 
formula with which they could produce an unending 
sequence of primes. Failing in this quest for an explicit 
formula, others began to speculate about formulas that 
could describe the general distribution of primes. Thus, 
the prime number theorem first appeared in 1798 as a con-
jecture by the French mathematician Adrien-Marie 
Legendre. On the basis of his study of a table of primes up 
to 1,000,000, Legendre stated that if x is not greater than 
1,000,000, then x/(ln(x)  −  1.08366) is very close to π(x). 
This result—indeed with any constant, not just 1.08366—
is essentially equivalent to the prime number theorem, 
which states the result for constant 0. It is now known, 
however, that the constant that gives the best approxima-
tion to π(x), for relatively small x, is 1.

The great German mathematician Carl Friedrich 
Gauss also conjectured an equivalent of the prime number 
theorem in his notebook, perhaps prior to 1800. However, 
the theorem was not proved until 1896, when the French 
mathematicians Jacques-Salomon Hadamard and Charles 
de la Valée Poussin independently showed that in the limit 
(as x increases to infinity) the ratio x/ln(x) equals π(x).

Although the prime number theorem tells us that the 
difference between π(x) and x/ln(x) becomes vanishingly 
small relative to the size of either of these numbers as x 
gets large, one can still ask for some estimate of that dif-
ference. The best estimate of this difference is conjectured 
to be given by √(x ln(x)).

Pseudoprime

A pseudoprime, also known as a Fermat pseudoprime, is a 
composite, or nonprime, number n such that it divides 
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exactly into an − a for some integer a. Thus, n is said to be a 
pseudoprime to the base a. In 1640 French mathematician 
Pierre de Fermat first asserted “Fermat’s Little Theorem,” 
also known as Fermat’s primality test, which states that 
for any prime number p and any integer a such that p does 
not divide a (the pair are relatively prime), p divides exactly 
into ap  −  a. Although a number n that does not divide 
exactly into an − a for some a must be a composite number, 
the converse is not necessarily true. For example, let a = 2 
and n = 341, then a and n are relatively prime and 341 divides 
exactly into 2341 − 2. However, 341 = 11 × 31, so it is a compos-
ite number. (The smallest pseudoprime to base 2 is 341.) 
Thus, Fermat’s primality test is a necessary but not suffi-
cient test for primality. As with many of Fermat’s theorems, 
no proof by him is known to exist. The first known proof 
of this theorem was published by Swiss mathematician 
Leonhard Euler in 1749.

There exist some numbers, such as 561 and 1,729, that 
are pseudoprime to any base. These are known as 
Carmichael numbers after their discovery in 1909 by 
American mathematician Robert D. Carmichael.

Rational number

Rational numbers are numbers that can be represented as 
the quotient p/q of two integers such that q ≠ 0. In addi-
tion to all the fractions, the set of rational numbers 
includes all the integers, each of which can be written as a 
quotient with the integer as the numerator and 1 as the 
denominator. In decimal form, rational numbers are either 
terminating or repeating decimals. For example,  
1/7 = 0.142857, where the bar over 142857 indicates a pattern 
that repeats forever.

A real number that cannot be expressed as a quotient 
of two integers is known as an irrational number.
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Real number

Real numbers are quantities that can be expressed as an 
infinite decimal expansion. Real numbers are used in 
measurements of continuously varying quantities such as 
size and time, in contrast to the natural numbers 1, 2, 3, . . ., 
arising from counting. The word real distinguishes them 
from the complex numbers involving the symbol i, or √−1, 
used to simplify the mathematical interpretation of effects 
such as those occurring in electrical phenomena. The real 
numbers include the positive and negative integers and 
fractions (or rational numbers) and also the irrational 
numbers. The irrational numbers have decimal expan-
sions that do not repeat themselves, in contrast to the 
rational numbers, the expansions of which always contain 
a digit or group of digits that repeats itself, as 1/6 = 
0.16666. . . or 2/7 = 0.285714285714. . .. The decimal formed 
as 0.42442444244442 . . . has no regularly repeating group 
and is thus irrational.

The most familiar irrational numbers are algebraic 
numbers, which are the roots of algebraic equations with 
integer coefficients. For example, the solution to the equa-
tion x2 − 2 = 0 is an algebraic irrational number, indicated 
by √2. Some numbers, such as π and e, are not the solutions 
of any such algebraic equation and are thus called tran-
scendental irrational numbers. These numbers can often 
be represented as an infinite sum of fractions determined 
in some regular way, indeed the decimal expansion is one 
such sum.

The real numbers can be characterized by the impor-
tant mathematical property of completeness, meaning 
that every nonempty set that has an upper bound has a 
smallest such bound, a property not possessed by the 
rational numbers. For example, the set of all rational num-
bers the squares of which are less than 2 has no smallest 
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upper bound, because √2 is not a rational number. The 
irrational and rational numbers are both infinitely numer-
ous, but the infinity of irrationals is “greater” than the 
infinity of rationals, in the sense that the rationals can be 
paired off with a subset of the irrationals, while the reverse 
pairing is not possible.

Riemann zeta function

The Riemann zeta function is useful for investigating 
properties of prime numbers. Written as ζ(x), it was origi-
nally defined as the infinite series

ζ(x) = 1 + 2−x + 3−x + 4−x + ....

When x = 1, this series is called the harmonic series, 
which increases without bound—i.e., its sum is infinite. 
For values of x larger than 1, the series converges to a finite 
number as successive terms are added. If x is less than 1, 
the sum is again infinite. The zeta function was known 
to the Swiss mathematician Leonhard Euler in 1737, but it 
was first studied extensively by the German mathemati-
cian Bernhard Riemann.

In 1859 Riemann published a paper giving an explicit 
formula for the number of primes up to any preassigned 
limit—a decided improvement over the approximate 
value given by the prime number theorem. However, 
Riemann’s formula depended on knowing the values at 
which a generalized version of the zeta function equals 
zero. (The Riemann zeta function is defined for all complex 
numbers—numbers of the form x  +  iy, where i  =  √−1—
except for the line x = 1.) Riemann knew that the function 
equals zero for all negative even integers −2, −4, −6, . . . (so-
called trivial zeros), and that it has an infinite number of 
zeros in the critical strip of complex numbers between the 
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lines x = 0 and x = 1, and he also knew that all nontrivial 
zeros are symmetric with respect to the critical line x = 1/2. 
Riemann conjectured that all of the nontrivial zeros are 
on the critical line, a conjecture that subsequently became 
known as the Riemann hypothesis.

In 1900 the German mathematician David Hilbert 
called the Riemann hypothesis one of the most important 
questions in all of mathematics, as indicated by its inclu-
sion in his influential list of 23 unsolved problems with 
which he challenged 20th-century mathematicians. In 1915 
the English mathematician Godfrey Hardy proved that an 
infinite number of zeros occur on the critical line, and by 
1986 the first 1,500,000,001 nontrivial zeros were all shown 
to be on the critical line. Although the hypothesis may yet 
turn out to be false, investigations of this difficult problem 
have enriched the understanding of complex numbers.

Root

A root is a solution to an equation, usually expressed as a 
number or an algebraic formula.

In the 9th century, Arab writers usually called one of 
the equal factors of a number jadhr (“root”), and their 
medieval European translators used the Latin word radix 
(from which derives the adjective radical). If a is a positive 
real number and n a positive integer, there exists a unique 
positive real number x such that xn = a. This number—the 
(principal) nth root of a—is written n√a or a1/n. The integer 
n is called the index of the root. For n = 2, the root is called 
the square root and is written a. The root 

3
√a is called the 

cube root of a. If a is negative and n is odd, the unique 
negative nth root of a is termed principal. For example, 
the principal cube root of –27 is –3.

If a whole number (positive integer) has a rational nth 
root—i.e., one that can be written as a common 
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fraction—then this root must be an integer. Thus, 5 has no 
rational square root because 22 is less than 5 and 32 is greater 
than 5. Exactly n complex numbers satisfy the equation 
xn = 1, and they are called the complex nth roots of unity. If 
a regular polygon of n sides is inscribed in a unit circle cen-
tred at the origin so that one vertex lies on the positive 
half of the x-axis, the radii to the vertices are the vectors 
representing the n complex nth roots of unity. If the root 
whose vector makes the smallest positive angle with the 
positive direction of the x-axis is denoted by the Greek 
letter omega, ω, then ω, ω2, ω3, . . ., ωn = 1 constitute all the 
nth roots of unity. For example, ω = −1/2 + √-3/2, ω2 = −1/2 − √-3/2, 
and ω3 = 1 are all the cube roots of unity. Any root, symbol-
ized by the Greek letter epsilon, ε, that has the property 
that ε, ε2, . . ., εn = 1 give all the nth roots of unity is called 
primitive. Evidently the problem of finding the nth roots 
of unity is equivalent to the problem of inscribing a regular 
polygon of n sides in a circle. For every integer n, the nth 
roots of unity can be determined in terms of the rational 
numbers by means of rational operations and radicals; but 
they can be constructed by ruler and compasses (i.e., 
determined in terms of the ordinary operations of arith-
metic and square roots) only if n is a product of distinct 
prime numbers of the form 2h + 1, or 2k times such a prod-
uct, or is of the form 2k. If a is a complex number not 0, the 
equation xn = a has exactly n roots, and all the nth roots of 
a are the products of any one of these roots by the nth 
roots of unity.

The term root has been carried over from the equation 
xn = a to all polynomial equations. Thus, a solution of the 
equation f(x) = a0xn + a1x

n − 1 + . . . + an − 1x + an = 0, with a0 ≠ 0, 
is called a root of the equation. If the coefficients lie in the 
complex field, an equation of the nth degree has exactly n 
(not necessarily distinct) complex roots. If the coefficients 
are real and n is odd, there is a real root. But an equation 
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does not always have a root in its coefficient field. Thus, 
x2 − 5 = 0 has no rational root, although its coefficients (1 
and –5) are rational numbers.

More generally, the term root may be applied to any 
number that satisfies any given equation, whether a poly-
nomial equation or not. Thus π is a root of the equation 
x sin (x) = 0.

Russell’s paradox

Russell’s paradox was devised by the English mathematician-
philosopher Bertrand Russell to demonstrate a flaw in 
earlier efforts to axiomatize set theory.

Russell found the paradox in 1901 and communicated 
it in a letter to the German mathematician-logician 
Gottlob Frege in 1902. Russell’s letter demonstrated an 
inconsistency in Frege’s axiomatic system of set theory by 
deriving a paradox within it. (The German mathematician 
Ernst Zermelo had found the same paradox independently; 
since it could not be produced in his own axiomatic system 
of set theory, he did not publish the paradox.)

Frege had constructed a logical system employing an 
unrestricted comprehension principle. The comprehen-
sion principle is the statement that, given any condition 
expressible by a formula ϕ(x), it is possible to form the set 
of all sets x meeting that condition, denoted {x | ϕ(x)}. For 
example, the set of all sets—the universal set—would be 
{x | x = x}.

It was noticed in the early days of set theory, however, 
that a completely unrestricted comprehension principle 
led to serious difficulties. In particular, Russell observed 
that it allowed the formation of {x  | x ∉ x}, the set of all 
non-self-membered sets, by taking ϕ(x) to be the formula 
x ∉ x. Is this set—call it R—a member of itself? If it is a 
member of itself, then it must meet the condition of its 
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not being a member 
of itself. But if it is 
not a member of 
itself, then it pre-
cisely meets the 
condition of being a 
member of itself. 
This impossible sit-
uation is called 
Russell’s paradox.

The significance 
of Russell’s paradox 
is that it demon-
strates in a simple 
and convincing way 
that one cannot 
both hold that 
there is meaningful 
totality of all sets 
and also allow an 
unfettered compre-
hension principle to 
construct sets that 
must then belong to 
that totality. (Russell 

spoke of this situation as a “vicious circle.”)
Set theory avoids this paradox by imposing restric-

tions on the comprehension principle. The standard 
Zermelo-Fraenkel axiomatization (ZF) does not allow 
comprehension to form a set larger than previously con-
structed sets. (The role of constructing larger sets is given 
to the power-set operation.) This leads to a situation 
where there is no universal set—an acceptable set must 
not be as large as the universe of all sets.

Bertrand Russell, shown above, left behind a 
multifaceted intellectual legacy. His accom-
plishments in the fields of logic and the 
philosophy of mathematics are matched by 
those he made as a social reformer and a cham-
pion of progressive thought. Baron/Hulton 
Archive/Getty Images
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A very different way of avoiding Russell’s paradox was 
proposed in 1937 by the American logician Willard Van 
Orman Quine. In his paper “New Foundations for Math
ematical Logic,” the comprehension principle allows 
formation of {x | ϕ(x)} only for formulas ϕ(x) that can be writ-
ten in a certain form that excludes the “vicious circle” leading 
to the paradox. In this approach, there is a universal set.

Set

Any collection of objects (elements), which may be math-
ematical (e.g., numbers, functions) or not, is known as a 
set. The intuitive idea of a set is probably even older than 
that of number. Members of a herd of animals, for exam-
ple, could be matched with stones in a sack without 
members of either set actually being counted. The notion 
extends into the infinite. For example, the set of integers 
from 1 to 100 is finite, whereas the set of all integers is 
infinite. A set is commonly represented as a list of all its 
members enclosed in braces. A set with no members is 
called an empty, or null, set, and is denoted ∅. Because an 
infinite set cannot be listed, it is usually represented by a 
formula that generates its elements when applied to the 
elements of the set of counting numbers. Thus, {2x | x = 
1,2,3,...} represents the set of positive even numbers (the 
vertical bar means “such that”).

Square root

A square root is a factor of a number that, when multiplied 
by itself, gives the original number. For example, both 3 
and –3 are square roots of 9. As early as the 2nd millen-
nium BCE, the Babylonians possessed effective methods 
for approximating square roots.
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Transfinite number

A transfinite number is the denotation of the size of an 
infinite collection of objects. Comparison of certain infinite 
collections suggests that they have different sizes even 
though they are all infinite. For example, the sets of integers, 
rational numbers, and real numbers are all infinite; but each 
is a subset of the next. Ordering the size of sets according to 
the subset relation results in too many classifications and 
gives no way of comparing the size of sets involving different 
elements. Sets of different elements can be compared by 
pairing them off and seeing which set has leftover elements. 
If the fractions are listed in a special way, they can be paired 
off with the integers with no numbers left over from either 
set. Any infinite set that can be thus paired off with the 
integers is called countably, or denumerably, infinite. It 
has been demonstrated that the real numbers cannot be 
paired off in this way; and so they are called uncountable or 
nondenumerable and are considered as larger sets. There are 
still larger sets, such as the set of all functions involving real 
numbers. The size of infinite sets is indicated by the cardinal 
numbers symbolized by the Hebrew letter aleph (alef>) with 
subscript. Aleph-null symbolizes the cardinality of any set 
that can be matched with the integers. The cardinality of 
the real numbers, or the continuum, is c. The continuum 
hypothesis asserts that c equals aleph-one, the next cardinal 
number; that is, no sets exist with cardinality between aleph-
null and aleph-one. The set of all subsets of a given set has 
a larger cardinal number than the set itself, resulting in an 
infinite succession of cardinal numbers of increasing size.

Transitive law

The transitive law is the statement that if A bears some 
relation to B and B bears the same relation to C, then A 
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bears it to C. In arithmetic, the property of equality is 
transitive, for if A = B and B = C, then A = C. Likewise is the 
property inequality if the two inequalities have the same 
sense: that is, if A is greater than B (i.e., A > B) and B > C, 
then A > C; and if A is less than B (i.e., A < B) and B < C, then 
A < C. An example of an intransitive relation is: if B is the 
daughter of A, and C is the daughter of B, then C is not 
the daughter of A; and of a nontransitive relation: if A 
loves B, and B loves C, then A may or may not love C.

Turing machine

A Turing machine is a hypothetical computing device 
introduced in 1936 by the English mathematician and logi-
cian Alan M. Turing. Turing originally conceived the 
machine as a mathematical tool that could infallibly rec-
ognize undecidable propositions—i.e., those mathematical 
statements that, within a given formal axiom system, 
cannot be shown to be either true or false. (The mathema-
tician Kurt Gödel had demonstrated that such undecidable 
propositions exist in any system powerful enough to 
contain arithmetic.) Turing instead proved that there can 
never exist any universal algorithmic method for determin-
ing whether a proposition is undecidable.

The Turing machine is not a machine in the ordinary 
sense but rather an idealized mathematical model that 
reduces the logical structure of any computing device to 
its essentials. As envisaged by Turing, the machine per-
forms its functions in a sequence of discrete steps and 
assumes only one of a finite list of internal states at any 
given moment. The machine itself consists of an infi-
nitely extensible tape, a tape head that is capable of 
performing various operations on the tape, and a modifi-
able control mechanism in the head that can store 
directions from a finite set of instructions. The tape is 
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divided into 
squares, each of 
which is either 
blank or has 
printed on it 
one of a finite 
number of sym-
bols. The tape 
head has the 
ability to move 
to, read, write, 
and erase any 
single square 
and can also 
change to 
another internal 
state at any 
moment. Any 
such act is 
determined by 
the internal 

state of the machine and the condition of the scanned 
square at a given moment. The output of the machine—
i.e., the solution to a mathematical query—can be read 
from the system once the machine has stopped. (However, 
in the case of Gödel’s undecidable propositions, the 
machine would never stop, and this became known as 
the “halting problem.”)

By incorporating all the essential features of informa-
tion processing, the Turing machine became the basis for 
all subsequent digital computers, which share the 
machine’s basic scheme of an input/output device (tape 
and reader), memory (control mechanism’s storage), and 
central processing unit (control mechanism).

Alan Turing, whose major achievements included 
developing the idea of the Turing machine and 
designing the code-breaking Bombe machine used 
during the Second World War. Life Magazine/
Time & Life Pictures/Getty Images
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Vinogradov’s theorem

Vinogradov’s theorem states that all sufficiently large odd 
integers can be expressed as the sum of three prime num-
bers. As a corollary, all sufficiently large even integers can 
be expressed as the sum of three primes plus 3. The theo-
rem was proved in 1937 by the Russian mathematician 
Ivan Matveyevich Vinogradov. The first statement of the 
theorem, however, dates to the publication of the English 
mathematician Edward Waring’s Meditationes Algebraicae 
(1770; “Thoughts on Algebra”), which contained several 
other important ideas in number theory, including 
Waring’s problem, Wilson’s theorem, and the famous 
Goldbach conjecture.

Waring’s problem

Waring’s problem is the conjecture that every positive 
integer is the sum of a fixed number f(n) of nth powers that 
depends only on n. The conjecture was first published by 
the English mathematician Edward Waring in Meditationes 
Algebraicae (1770; “Thoughts on Algebra”), where he spec-
ulated that f(2) = 4, f(3) = 9, and f(4) = 19; that is, it takes 
no more than 4 squares, 9 cubes, or 19 fourth powers to 
express any integer.

Waring’s conjecture built on the four-square theorem 
of the French mathematician Joseph-Louis Lagrange, who 
in 1770 proved that f(2) ≤ 4. (The origin for the theorem, 
though, goes back to the 3rd century and the birth of 
number theory with Diophantus of Alexandria’s publica-
tion of Arithmetica.) The general assertion concerning 
f(n) was proved by the German mathematician David 
Hilbert in 1909. In 1912 the German mathematicians 
Arthur Wieferich and Aubrey Kempner proved that 
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f(3)  =  9. In 1986 three mathematicians, Ramachandran 
Balasubramanian of India and Jean-Marc Deshouillers 
and François Dress of France, together showed that 
f(4) = 19. In 1964 the Chinese mathematician Chen Jingrun 
showed that f(5) = 37. A general formula for higher powers 
has been suggested but not proved true for all integers.

Wilson’s theorem

Wilson’s theorem states that any prime p divides (p − 1)! + 1, 
where n! is the factorial notation for 1 × 2 × 3 × 4 × ... × n. For 
example, 5 divides (5 − 1)! + 1 = 4! + 1 = 25. The conjecture was 
first published by the English mathematician Edward 
Waring in Meditationes Algebraicae (1770; “Thoughts on 
Algebra”), where he ascribed it to the English mathemati-
cian John Wilson.

The theorem was proved by the French mathemati-
cian Joseph-Louis Lagrange in 1771. The converse of the 
theorem is also true; that is, (n − 1)! + 1 is not divisible by a 
composite number n. In theory, these theorems provide 
a test for primes; in practice, the calculations are impracti-
cal for large numbers.

Zorn’s lemma

Zorn’s lemma, also known as Kuratowski-Zorn lemma 
and originally called the maximum principle, is a state-
ment in the language of set theory, equivalent to the axiom 
of choice, that is often used to prove the existence of a 
mathematical object when it cannot be explicitly 
produced.

In 1935 the German-born American mathematician 
Max Zorn proposed adding the maximum principle to the 
standard axioms of set theory. (Informally, a closed collec-
tion of sets contains a maximal member—a set that cannot 
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be contained in any other set in the collection.) Although 
it is now known that Zorn was not the first to suggest the 
maximum principle (the Polish mathematician Kazimierz 
Kuratowski discovered it in 1922), he demonstrated how 
useful this particular formulation could be in applications, 
particularly in algebra and analysis. He also stated, but did 
not prove, that the maximum principle, the axiom of 
choice, and German mathematician Ernst Zermelo’s 
well-ordering principle were equivalent; that is, accepting 
any one of them enables the other two to be proved.

A formal definition of Zorn’s lemma requires some 
preliminary definitions. A collection C of sets is called a 
chain if, for each pair of members of C (Ci and Cj), one is 
a subset of the other (Ci ⊆ Cj). A collection S of sets is said 
to be “closed under unions of chains” if whenever a chain 
C is included in S (i.e., C ⊆ S), then its union belongs to S 
(i.e., ∪ Ck ∊ S). A member of S is said to be maximal if it is 
not a subset of any other member of S. Zorn’s lemma is the 
statement: Any collection of sets closed under unions of 
chains contains a maximal member.

As an example of an application of Zorn’s lemma in 
algebra, consider the proof that any vector space V has a 
basis (a linearly independent subset that spans the vector 
space; informally, a subset of vectors that can be com-
bined to obtain any other element in the space). Taking S 
to be the collection of all linearly independent sets of 
vectors in V, it can be shown that S is closed under unions 
of chains. Then by Zorn’s lemma there exists a maximal 
linearly independent set of vectors, which by definition 
must be a basis for V. (It is known that, without the 
axiom of choice, it is possible for there to be a vector space 
without a basis.)

An informal argument for Zorn’s lemma can be given 
as follows: Assume that S is closed under unions of chains. 
Then the empty set Ø, being the union of the empty chain, 
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is in S. If it is not a maximal member, then some other 
member that includes it is chosen. This last step is then 
iterated for a very long time (i.e., transfinitely, by using 
ordinal numbers to index the stages in the construction). 
Whenever (at limit ordinal stages) a long chain of larger 
and larger sets has been formed, the union of that chain 
is taken and used to continue. Because S is a set (and not 
a proper class like the class of ordinal numbers), this 
construction ultimately must stop with a maximal 
member of S.
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M e A sU R e M e n t s

C H A P T E R  4

 Measurement is fundamental to the sciences; to 
engineering, construction, and other technical 

fi elds; and to almost all everyday activities. For that reason 
the elements, conditions, limitations, and theoretical 
foundations of measurement have been much studied. 

 Measurements may be made by unaided human senses, 
in which case they are often called estimates, or, more 
commonly, by the use of instruments, which may range in 
complexity from simple rules for measuring lengths to 
highly sophisticated systems designed to detect and 
measure quantities entirely beyond the capabilities of 
the senses, such as radio waves from a distant star or the 
magnetic moment of a subatomic particle. 

 Measurement begins with a defi nition of the quantity 
that is to be measured, and it always involves a comparison 
with some known quantity of the same kind. If the object 
or quantity to be measured is not accessible for direct 
comparison, it is converted or “transduced” into an 
analogous measurement signal. Since measurement always 
involves some interaction between the object and the 
observer or observing instrument, there is always an 
exchange of energy, which, although in everyday applica-
tions is negligible, can become considerable in some types 
of measurement and thereby limit accuracy.   

 measuremeNt systems 

 Although the concept of weights and measures today 
includes such factors as temperature, luminosity, pressure, 
and electric current, it once consisted of only four basic 
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measurements: mass (weight), distance or length, area, 
and volume (liquid or grain measure). The last three are, of 
course, closely related.

Basic to the whole idea of weights and measures are 
the concepts of uniformity, units, and standards. Uniform
ity, the essence of any system of weights and measures, 
requires accurate, reliable standards of mass and length 
and agreed-on units. A unit is the name of a quantity, such 
as kilogram or pound. A standard is the physical embodi-
ment of a unit, such as the platinum-iridium cylinder kept 
by the International Bureau of Weights and Measures at 
Paris as the standard kilogram.

Two types of measurement systems are distinguished 
historically: an evolutionary system, such as the British 
Imperial, which grew more or less haphazardly out of 
custom, and a planned system, such as the International 
System of Units (French: Système Internationale d’Unités, 
or SI), in universal use by the world’s scientific community 
and by most nations.

Early Units and Standards

Ancient Mediterranean Systems

Body measurements and common natural items probably 
provided the most convenient bases for early linear mea-
surements; early weight units may have derived casually 
from the use of certain stones or containers or from deter-
minations of what a person or animal could lift or haul.

The historical progression of units has followed a 
generally westward direction, the units of the ancient 
empires of the Middle East finding their way, mostly as a 
result of trade and conquest, to the Greek and then the 
Roman empires, thence to Gaul and Britain via Roman 
expansion.
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7 Measurements 7

The Egyptians

Although there is evidence that many early civilizations 
devised standards of measurement and some tools for mea-
suring, the Egyptian cubit is generally recognized as having 
been the most ubiquitous standard of linear measurement 
in the ancient world. Developed about 3000 BCE, it was 
based on the length of the arm from the elbow to the 
extended fingertips and was standardized by a royal master 
cubit of black granite, against which all the cubit sticks or 
rules in use in Egypt were measured at regular intervals.

The royal cubit (524 mm, or 20.62 inches) was subdi-
vided in an extraordinarily complicated way. The basic 
subunit was the digit, doubtlessly a finger’s breadth, of 
which there were 28 in the royal cubit. Four digits equaled 
a palm, five a hand. Twelve digits, or three palms, equaled a 
small span. Fourteen digits, or one-half a cubit, equaled 
a large span. Sixteen digits, or four palms, made one t’ser. 
Twenty-four digits, or six palms, were a small cubit.

The digit was in turn subdivided. The 14th digit on a 
cubit stick was marked off into 16 equal parts. The next 
digit was divided into 15 parts, and so on, to the 28th digit, 
which was divided into 2 equal parts. Thus, measurement 
could be made to digit fractions with any denominator 
from 2 through 16. The smallest division, 1/16 of a digit, was 
equal to 1/448 part of a royal cubit.

The accuracy of the cubit stick is attested by the 
dimensions of the Great Pyramid of Giza; although thou-
sands were employed in building it, its sides vary no more 
than 0.05 percent from the mean length of 230.364 metres 
(9,069.43 inches), which suggests the original dimensions 
were 440 by 440 royal cubits.

The Egyptians developed methods and instruments 
for measuring land at a very early date. The annual flood of 
the Nile River created a need for benchmarks and 
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surveying techniques so that property boundaries could 
be readily reestablished when the water receded.

The Egyptian weight system appears to have been 
founded on a unit called the kite, with a decimal ratio, 10 
kites equaling 1 deben and 10 debens equaling 1 sep. Over 
the long duration of Egyptian history, the weight of the 
kite varied from period to period, ranging all the way from 
4.5 to 29.9 grams (0.16 to 1.05 ounce). Approximately 3,500 
different weights have been recovered from ancient 
Egypt, some in basic geometric shapes, others in human 
and animal forms.

Egyptian liquid measures, from large to small, were ro, 
hin, hekat, khar, and cubic cubit.

The Babylonians

Among the earliest of all known weights is the Babylonian 
mina, which in one surviving form weighed about 640 grams 

The pyramids of Giza in Egypt, whose sizes attest to the accuracy of the cubit 
sticks used for measurement during their building. Shutterstock.com
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(about 23 ounces) and in another about 978 grams (about 34 
ounces). Archaeologists have also found weights of 5 minas, 
in the shape of a duck, and a 30-mina weight in the form of 
a swan. The shekel, familiar from the Bible as a standard 
Hebrew coin and weight, was originally Babylonian. Most of 
the Babylonian weights and measures, carried in commerce 
throughout the Middle East, were gradually adopted by 
other countries. The basic Babylonian unit of length was the 
kus (about 530 mm, or 20.9 inches), also called the Babylonian 
cubit. The Babylonian shusi, defined as 1/30 kus, was equal to 
17.5 mm (0.69 inch). The Babylonian foot was 2/3 kus. 

The Babylonian liquid measure, qa (also spelled ka), 
was the volume of a cube of one handbreadth (about 99 to 
102 millilitres, or about 6.04 to 6.23 cubic inches). The 
cube, however, had to contain a weight of one great mina 
of water. The qa was a subdivision of two other units; 300 
qa equaled 60 gin or 1 gur. The gur represented a volume of 
almost 303 litres (80 U.S. gallons).

The Hittites, Assyrians, Phoenicians, and Hebrews 
derived their systems generally from the Babylonians and 
Egyptians. Hebrew standards were based on the relation-
ship between the mina, the talent (the basic unit), and the 
shekel. The sacred mina was equal to 60 shekels, and 
the sacred talent to 3,000 shekels, or 50 sacred minas. The 
Talmudic mina equaled 25 shekels; the Talmudic talent 
equaled 1,500 shekels, or 60 Talmudic minas.

The volumes of the several Hebrew standards of liquid 
measure are not definitely known; the bat may have con-
tained about 37 litres (nearly 10 U.S. gallons); if so, the log 
equaled slightly more than 0.5 litre (0.14 U.S. gallon), and 
the hin slightly more than 6 litres (1.6 U.S. gallons). The 
Hebrew system was notable for the close relationship 
between dry and liquid volumetric measures; the liquid 
kor was the same size as the dry homer, and the liquid bat 
corresponded to the dry ’efa.
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Greeks and Romans

In the 1st millennium BCE commercial domination of the 
Mediterranean passed into the hands of the Greeks and 
then the Romans. A basic Greek unit of length was the 
finger (19.3 mm, or 0.76 inch); 16 fingers equaled about 30 
cm (about 1 foot), and 24 fingers equaled 1 Olympic cubit. 
The coincidence with the Egyptian 24 digits equaling 1 
small cubit suggests what is altogether probable on the 
basis of the commercial history of the era, that the Greeks 
derived their measures partly from the Egyptians and 
partly from the Babylonians, probably via the Phoenicians 
who for a long time dominated vast expanses of the 
Mediterranean trade. The Greeks apparently used linear 
standards to establish their primary liquid measure, the 
metrētēs, equivalent to 39.4 litres (10.4 U.S. gallons). A 
basic Greek unit of weight was the talent (equal to 25.8 kg, 
or 56.9 pounds), obviously borrowed from Eastern 
neighbours.

Roman linear measures were based on the Roman 
standard foot (pes). This unit was divided into 16 digits or 
into 12 inches. In both cases its length was the same. 
Metrologists have come to differing conclusions concern-
ing its exact length, but the currently accepted modern 
equivalents are 296 mm, or 11.65 inches. Expressed in 
terms of these equivalents, the digit (digitus), or 1/16 foot, 
was 18.5 mm (0.73 inch); the inch (uncia or pollicus), or 1/12 
foot, was 24.67 mm (0.97 inch); and the palm (palmus), or 
1/4 foot, was 74 mm (2.91 inches).

Larger linear units were always expressed in feet. The 
cubit (cubitum) was 1 1/2 feet (444 mm, or 17.48 inches). Five 
Roman feet made the pace (passus), equivalent to 1.48 
metres, or 4.86 feet.

The most frequently used itinerary measures were 
the furlong or stade (stadium), the mile (mille passus), and 
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the league (leuga). The stade consisted of 625 feet (185 
metres, or 606.9 feet), or 125 paces, and was equal to 1/8 
mile. The mile was 5,000 feet (1,480 metres, or 4,856 feet), 
or 8 stades. The league had 7,500 feet (2,220 metres, or 
7,283 feet), or 1,500 paces.

Prior to the 3rd century BCE the standard for all 
Roman weights was the as, or Old Etruscan or Oscan 
pound, of 4,210 grains (272.81 grams). It was divided into 12 
ounces of 351 grains (22.73 grams) each. In 268 BCE a new 
standard was created when a silver denarius was struck to a 
weight of 70.5 grains (4.57 grams). Six of these denarii, or 
“pennyweights,” were reckoned to the ounce (uncia) of 423 
grains (27.41 grams), and 72 of them made the new pound 
(libra) of 12 ounces, or 5,076 grains (328.9 grams).

The principal Roman capacity measures were the 
hemina, sextarius, modius, and amphora for dry products 
and the quartarus, sextarius, congius, urna, and amphora for 
liquids. Since all of these were based on the sextarius and 
since no two extant sextarii are identical, a mean generally 
agreed upon today is 35.4 cubic inches, or nearly 1 pint 
(0.58 litre). The hemina, or half-sextarius, based on this 
mean was 17.7 cubic inches (0.29 litre). Sixteen of these 
sextarii made the modius of 566.4 cubic inches (9.28 litres), 
and 48 of them made the amphora of 1,699.2 cubic inches 
(27.84 litres).

In the liquid series, the quartarus, or one-fourth of a 
sextarius (35.4 cubic inches), was 8.85 cubic inches (0.145 
litres). Six of these sextarii made the congius of 212.4 cubic 
inches (3.48 litres), 24 sextarii made the urna of 849.6 
cubic inches (13.92 litres), and, as in dry products, 48 
sextarii were equal to one amphora.

The Ancient Chinese System

Completely separated from the Mediterranean-European 
history of metrology is that of ancient China; yet the Chinese 

7 Measurements 7



7 The Britannica Guide to Numbers and Measurement 7

208

system exhibits all the principal characteristics of the 
Western. It employed parts of the body as a source of 
units—for example, the distance from the pulse to the base 
of the thumb. It was fundamentally chaotic in that there 
was no relationship between different types of units, such 
as those of length and those of volume. Finally, it was rich in 
variations. The mou, a unit of land measure, fluctuated 
from region to region from 0.08 to 0.13 hectare (0.2 to 0.3 
acre). Variations were not limited to the geographic; a unit 
of length with the same name might be of one length for a 
carpenter, another for a mason, and still another for a tailor. 
This was a problem in Western weights and measures as well.

Shi Huang Di, who became the first emperor of China 
in 221 BCE, is celebrated for, among other things, his uni-
fication of the regulations fixing the basic units. The basic 
weight, the shi, or dan, was fixed at about 60 kg (132 
pounds); the two basic measurements, the zhi and the 
zhang, were set at about 25 cm (9.8 inches) and 3 metres 
(9.8 feet), respectively. A noteworthy characteristic of the 
Chinese system, and one that represented a substantial 
advantage over the Mediterranean systems, was its predi-
lection for a decimal notation, as demonstrated by foot 
rulers from the 6th century BCE. Measuring instruments, 
too, were of a high order.

A unique characteristic of the Chinese system was its 
inclusion of an acoustic dimension. A standard vessel used 
for measuring grain and wine was defined not only by the 
weight it could hold but by its pitch when struck; given a 
uniform shape and fixed weight, only a vessel of the proper 
volume would give the proper pitch. Thus the same word 
in old Chinese means “wine bowl,” “grain measure,” and 
“bell.” Measures based on the length of a pitch pipe and its 
subdivision in terms of millet grains supplanted the old 
measurements based on the human body. The change 
brought a substantial increase in accuracy.
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Medieval Systems

Medieval Europe inherited the Roman system, with its 
Greek, Babylonian, and Egyptian roots. It soon prolifer-
ated through daily use and language variations into a great 
number of national and regional variants, with elements 
borrowed from the Celtic, Anglo-Saxon, Germanic, 
Scandinavian, and Arabic influences and original contri-
butions growing out of the needs of medieval life.

A determined effort by the Holy Roman emperor 
Charlemagne and many other medieval kings to impose 
uniformity at the beginning of the 9th century was in vain; 
differing usages hardened. The great trade fairs, such as 
those in Champagne during the 12th and 13th centuries, 
enforced rigid uniformity on merchants of all nationalities 
within the fairgrounds and had some effect on standardiz-
ing differences among regions, but the variations remained. 
A good example is the ell, the universal measure for wool 
cloth, the great trading staple of the Middle Ages. The ell of 
Champagne, 2 feet 6 inches, measured against an iron 
standard in the hands of the Keeper of the Fair, was accepted 
by Ypres and Ghent, both in modern Belgium; by Arras, in 
modern France; and by the other great cloth-manufacturing 
cities of northwestern Europe, even though their bolts 
varied in length. In several other parts of Europe, the ell 
itself varied, however. There were hundreds of thousands of 
such examples among measuring units throughout Europe.

The English and U.S. Customary Systems of 
Weights and Measures

The English System

Out of the welter of medieval weights and measures 
emerged several national systems, reformed and 
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reorganized many times over the centuries; ultimately 
nearly all of these systems were replaced by the metric 
system. In Britain and in its American colonies, however, 
the altered medieval system survived.

British Imperial and U.S. Customary  
systems of weights and measures

Unit
Abbre
viation 

or Symbol

Equivalents in 
Other Units of 

Same System

Metric 
Equivalent

Weight
Avoirdupois1 avdp 

ton 

   short ton 
20 short hundredweight, 
or 2,000 pounds 

0.907 metric 
ton

   long ton 
20 long hundredweight, 
or 2,240 pounds 

1.016 metric 
tons

hundredweight cwt 

   short 
hundredweight 

100 pounds, or 0.05 short 
ton 

45.359 
kilograms

   long 
hundredweight 

112 pounds, or 0.05 long 
ton 

50.802 
kilograms

pound 
lb, lb avdp, or 
# 

16 ounces, or 7,000 grains 0.454 kilogram

ounce oz, or oz avdp 
16 drams, 437.5 grains, or 
0.0625 pound 

28.350 grams

dram dr, or dr avdp 
27.344 grains, or 0.0625 
ounce 

1.772 grams

grain gr 
0.037 dram, or 0.002286 
ounce 

0.0648 gram

stone st 
0.14 short hundred-
weight, or 14 pounds 

6.35 kilograms
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Unit
Abbre
viation 

or Symbol

Equivalents in 
Other Units of 

Same System

Metric 
Equivalent

Troy

pound lb t 
12 ounces, 240 penny-
weight, or 5,760 grains 

0.373 kilogram

ounce oz t 
20 pennyweight, 480 
grains, or 0.083 pound 

31.103 grams

pennyweight dwt, or pwt 24 grains, or 0.05 ounce 1.555 grams

grain gr 
0.042 pennyweight, or 
0.002083 ounce 

0.0648 gram

Apothecaries’

pound lb ap 12 ounces, or 5,760 grains 0.373 kilogram

ounce oz ap 
8 drams, 480 grains, or 
0.083 pound 

31.103 grams

dram dr ap 3 scruples, or 60 grains 3.888 grams

scruple s ap 20 grains, or 0.333 dram 1.296 grams

grain gr 
0.05 scruple, 0.002083 
ounce, or 0.0166 dram 

0.0648 gram

Capacity
U.S. Liquid Measures

gallon gal 4 quarts 3.785 litres

quart qt 2 pints 0.946 litre

pint pt 4 gills 0.473 litre

gill gi 4 fluid ounces 
118.294 
millilitres

fluid ounce fl oz 8 fluid drams 
29.573 
millilitres

fluid dram fl dr 60 minims 3.697 millilitres

minim min 1/60 fluid dram 
0.061610 
millilitre
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Unit
Abbre
viation 

or Symbol

Equivalents in 
Other Units of 

Same System

Metric 
Equivalent

U.S. Dry Measures

bushel bu 4 pecks 35.239 litres

peck pk 8 quarts 8.810 litres

quart qt 2 pints 1.101 litres

pint pt 1/2 quart 0.551 litre

British Liquid and Dry Measure

bushel bu 4 pecks 
0.036 cubic 
metre

peck pk 2 gallons 
0.0091 cubic 
metre

gallon gal 4 quarts 4.546 litres

quart qt 2 pints 1.136 litres

pint pt 4 gills 
568.26 cubic 
centimetres

gill gi 5 fluid ounces 
142.066 cubic 
centimetres

fluid ounce fl oz 8 fluid drams 
28.412 cubic 
centimetres

fluid dram fl dr 60 minims 
3.5516 cubic 
centimetres

minim min 1/60 fluid dram 
0.059194 cubic 
centimetre

Length
nautical mile nmi 6,076 feet, or 1.151 miles 1,852 metres

mile mi 
5,280 feet, 1,760 yards, or 
320 rods 

1.609 
kilometres

furlong fur 
660 feet, 220 yards, or  
1/8 mile 

201 metres

rod rd 5.50 yards, or 16.5 feet 5.029 metres
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Unit
Abbre
viation 

or Symbol

Equivalents in 
Other Units of 

Same System

Metric 
Equivalent

fathom fth 6 feet, or 72 inches 1.829 metres

yard yd 3 feet, or 36 inches 0.9144 metre

foot ft, or ' 12 inches, or 0.333 yard 
30.48 
centimetres

inch in, or " 0.083 foot, or 0.028 yard 
2.54 
centimetres

Area

square mile sq mi, or mi2 
640 acres, or 102,400 
square rods 

2.590 square 
kilometres

acre 
4,840 square yards, or 
43,560 square feet 

0.405 hectare, 
or 4,047 square 
metres

square rod sq rd, or rd2 
30.25 square yards, or 
0.00625 acre 

25.293 square 
metres

square yard sq yd, or yd2 
1,296 square inches, or 9 
square feet 

0.836 square 
metre

square foot sq ft, or ft2 
144 square inches, or 
0.111 square yard 

0.093 square 
metre

square inch sq in, or in2 
0.0069 square foot, or 
0.00077 square yard 

6.452 square 
centimetres

Volume

cubic yard cu yd, or yd3 
27 cubic feet, or 46,656 
cubic inches 

0.765 cubic 
metre

cubic foot cu ft, or ft3 
1,728 cubic inches, or 
0.0370 cubic yard 

0.028 cubic 
metre

cubic inch cu in, or in3 
0.00058 cubic foot, or 
0.000021 cubic yard 

16.387 cubic 
centimetres

acre-foot ac ft 
43,560 cubic feet, or 1,613 
cubic yards 

1,233 cubic 
metres
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Unit
Abbre
viation 

or Symbol

Equivalents in 
Other Units of 

Same System

Metric 
Equivalent

board foot bd ft 
144 cubic inches, or 1/12 
cubic foot 

2.36 litres

cord cd 128 cubic feet 
3.62 cubic 
metres

1 The U.S. uses avoirdupois units as the common system of measuring weight.

By the time of the Magna Carta (1215), abuses of weights 
and measures were so common that a clause was inserted 
in the charter to correct those on grain and wine, demand-
ing a common measure for both. A few years later a royal 
ordinance entitled “Assize of Weights and Measures” 
defined a broad list of units and standards so successfully 
that it remained in force for several centuries thereafter. A 
standard yard, “the Iron Yard of our Lord the King,” was 
prescribed for the realm, divided into the traditional 3 
feet, each of 12 inches, “neither more nor less.” The perch 
(later the rod) was defined as 5.5 yards, or 16.5 feet. The 
inch was subdivided for instructional purposes into 3 bar-
ley corns.

The furlong (a “furrow long”) was eventually standard-
ized as 1/8 mile; the acre, from an Anglo-Saxon word, as an 
area 4 rods wide by 40 long. There were many other units 
standardized during this period.

The influence of the Champagne fairs may be seen in 
the separate English pounds for troy weight, perhaps from 
Troyes, one of the principal fair cities, and avoirdupois 
weight, the term used at the fairs for goods that had to be 
weighed—sugar, salt, alum, dyes, grain. The troy pound, 
for weighing gold and silver bullion, and the apothecaries’ 
weight for drugs contained only 12 troy ounces.
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A multiple of the English pound was the stone, which 
added a fresh element of confusion to the system by equal-
ing neither 12 nor 16 but 14 pounds, among dozens of other 
pounds depending on the products involved. The sacks of 
raw wool, which were medieval England’s principal export, 
weighed 26 stones, or 364 pounds; large standards, weigh-
ing 91 pounds, or one-fourth a sack, were employed in 
wool weighing. The sets of standards, which were sent out 
from London to the provincial towns, were usually of 
bronze or brass. Discrepancies crept into the system, and 
in 1496, following a Parliamentary inquiry, new standards 
were made and sent out, a procedure repeated in 1588, 
under Queen Elizabeth I. Reissues of standards were com-
mon throughout the Middle Ages and early modern period 
in all European countries.

No major revision occurred for nearly 200 years 
after Elizabeth’s time, but several refinements and redef-
initions were added. Edmund Gunter, a 17th-century 
mathematician, conceived the idea of taking the acre’s 
breadth (4 perches, or 22 yards), calling it a chain, and 
dividing it into 100 links. In 1701 the corn bushel in dry 
measure was defined as “any round measure with a plain 
and even bottom, being 18.5 inches wide throughout and 
8 inches deep.” Similarly, in 1707 the wine gallon was 
defined as a round measure with an even bottom and con-
taining 231 cubic inches; however, the ale gallon was 
retained at 282 cubic inches. There was also a corn gallon 
and an older, slightly smaller wine gallon. There were 
many other attempts made at standardization besides 
these, but it was not until the 19th century that a major 
overhaul occurred.

The Weights and Measures Act of 1824 sought to clear 
away some of the medieval tangle. A single gallon was 
decreed, defined as the volume occupied by
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10 imperial pounds weight of distilled water weighed in air 
against brass weights with the water and the air at a temperature 
of 62 degrees of Fahrenheit’s thermometer and with the 
barometer at 30 inches.

The same definition was reiterated in an Act of 1878, 
which redefined the yard:

the straight line or distance between the centres of two gold 
plugs or pins in the bronze bar . . . measured when the bar is 
at the temperature of sixty-two degrees of Fahrenheit’s 
thermometer, and when it is supported by bronze rollers 
placed under it in such a manner as best to avoid flexure of 
the bar.

Other units were standardized during this era as well.
Finally, by an act of Parliament in 1963, all the English 

weights and measures were redefined in terms of the 
metric system, with a national changeover beginning two 
years later.

The U.S. Customary System

In his first message to Congress in 1790, George 
Washington drew attention to the need for “uniformity in 
currency, weights and measures.” Currency was settled in 
a decimal form, but the vast inertia of the English weights 
and measures system permeating industry and commerce 
and involving containers, measures, tools, and machines, 
as well as popular psychology, prevented the same approach 
from succeeding, though it was advocated by Thomas 
Jefferson. In these very years the metric system was com-
ing into being in France, and in 1821 Secretary of State 
John Quincy Adams, in a famous report to Congress, 
called the metric system “worthy of acceptance . . . beyond 
a question.” Yet Adams admitted the impossibility of 
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A brass measure representing the size of half of the U.S. bushel. SSPL/
Getty Images

winning acceptance for it in the United States, until a 
future time 

when the example of its benefits, long and practically enjoyed, 
shall acquire that ascendancy over the opinions of other 
nations which gives motion to the springs and direction to the 
wheels of the power.

Instead of adopting metric units, the United States 
tried to bring its system into closer harmony with the 
English, from which various deviations had developed; 
for example, the United States still used “Queen Anne’s 
gallon” of 231 cubic inches, which the British had discarded 
in 1824. Construction of standards was undertaken by 
the Office of Standard Weights and Measures, under the 
Treasury Department. The standard for the yard was 
one imported from London some years earlier, which 
guaranteed a close identity between the American and 
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English yard; but Queen Anne’s gallon was retained. The 
avoirdupois pound, at 7,000 grains, exactly corresponded 
with the British, as did the troy pound at 5,760 grains; 
however, the U.S. bushel, at 2,150.42 cubic inches, again 
deviated from the British. The U.S. bushel was derived 
from the “Winchester bushel,” a surviving standard dating 
to the 15th century, which had been replaced in the British 
Act of 1824. It might be said that the U.S. gallon and bushel, 
smaller by about 17 percent and 3 percent, respectively, 
than the British, remain more truly medieval than their 
British counterparts.

At least the standards were fixed, however. From the 
mid-19th century, new states, as they were admitted to 
the union, were presented with sets of standards. Late 
in the century, pressure grew to enlarge the role of the 
Office of Standard Weights and Measures, which, by Act 
of Congress effective July 1, 1901, became the National 
Bureau of Standards (since 1988 the National Institute of 
Standards and Technology), part of the Commerce 
Department. Its functions, as defined by the Act of 1901, 
included, besides the construction of physical standards 
and cooperation in establishment of standard practices, 
such activities as developing methods for testing materials 
and structures; carrying out research in engineering, 
physical science, and mathematics; and compilation and 
publication of general scientific and technical data. One 
of the first acts of the bureau was to sponsor a national 
conference on weights and measures to coordinate stan-
dards among the states; one of the main functions of the 
annual conference became the updating of a model state 
law on weights and measures, which resulted in virtual 
uniformity in legislation.

Apart from this action, however, the U.S. government 
remained unique among major nations in refraining from 
exercising control at the national level. One noteworthy 
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exception was the Metric Act of 1866, which permitted 
use of the metric system in the United States.

The Metric System of Measurement

The Development and Establishment  
of the Metric System

One of the most significant results of the French 
Revolution was the establishment of the metric system of 
weights and measures.

European scientists had for many years discussed the 
desirability of a new, rational, and uniform system to 
replace the national and regional variants that made scien-
tific and commercial communication difficult. The first 
proposal closely to approximate what eventually became 
the metric system was made as early as 1670. Gabriel 
Mouton, the vicar of St. Paul’s Church in Lyon, France, 
and a noted mathematician and astronomer, suggested a 
linear measure based on the arc of one minute of longi-
tude, to be subdivided decimally. Mouton’s proposal 
contained three of the major characteristics of the metric 
system: decimalization, rational prefixes, and the Earth’s 
measurement as basis for a definition. Mouton’s proposal 
was discussed, amended, criticized, and advocated for 
120 years before the fall of the Bastille and the creation 
of the National Assembly made it a political possibility. 
In April of 1790 one of the foremost members of the 
assembly, Charles-Maurice de Talleyrand, introduced 
the subject and launched a debate that resulted in a direc-
tive to the French Academy of Sciences to prepare a 
report. After several months’ study, the academy recom-
mended that the length of the meridian passing through 
Paris be determined from the North Pole to the Equator, 
that 1/10,000,000 of this distance be termed the metre 
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and form the basis of a new decimal linear system, and, 
further, that a new unit of weight should be derived from 
the weight of a cubic metre of water. A list of prefixes for 
decimal multiples and submultiples was proposed. The 
National Assembly endorsed the report and directed that 
the necessary meridional measurements be taken.

On June 19, 1791, a committee of 12 mathematicians, 
geodesists, and physicists met with King Louis XVI, who 
gave his formal approval. The next day, the king attempted 
to escape from France, was arrested, returned to Paris, and 
was imprisoned; a year later, from his cell, he issued the 
proclamation that directed several scientists including 
Jean Delambre and Pierre Mechain to perform the opera-
tions necessary to determine the length of the metre. The 
intervening time had been spent by the scientists and 
engineers in preliminary research; Delambre and Mechain 
now set to work to measure the distance on the meridian 
from Barcelona, Spain, to Dunkirk in northern France. 
The survey proved arduous; civil and foreign war so ham-
pered the operation that it was not completed for six 
years. While Delambre and Mechain were struggling in the 
field, administrative details were being worked out in 
Paris. In 1793 a provisional metre was constructed from 
geodetic data already available. In 1795 the firm decision 
was taken to enact adoption of the metric system for 
France. The new law defined the length, mass, and capacity 
standards and listed the prefixes for multiples and sub-
multiples. With the formal presentation to the assembly 
of the standard metre, as determined by Delambre and 
Mechain, the metric system became a fact in June 1799. 
The motto adopted for the new system was “For all people, 
for all time.”

The standard metre was the Delambre-Mechain survey-
derived “one ten-millionth part of a meridional quadrant 
of the earth.” The gram, the basic unit of mass, was made 
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equal to the mass of a cubic centimetre of pure water at 
the temperature of its maximum density (4 °C or 39.2 °F). 
A platinum cylinder known as the Kilogram of the 
Archives was declared the standard for 1,000 grams.

The litre was defined as the volume equivalent to the 
volume of a cube, each side of which had a length of 1 
decimetre, or 10 centimetres.

The are was defined as the measure of area equal to a 
square 10 metres on a side. In practice the multiple hectare, 
100 ares, became the principal unit of land measure.

The stere was defined as the unit of volume, equal to 
one cubic metre.

Names for multiples and submultiples of all units were 
made uniform, based on Greek and Latin prefixes.

The metric system’s conquest of Europe was facilitated 
by the military successes of the French Revolution and 
Napoleon, but it required a long period of time to over-
come the inertia of customary systems. Even in France 
Napoleon found it expedient to issue a decree permitting 
use of the old medieval system. Nonetheless, in the com-
petition between the two systems existing side by side, 
the advantages of metrics proved decisive; in 1840 it was 
established as the legal monopoly in France, and from that 
point forward its progress throughout the world has been 
steady, though it is worth observing that in many cases the 
metric system was adopted during the course of a political 
upheaval, just as in its original French beginning. Notable 
examples are Latin America, the Soviet Union, and China. 
In Japan the adoption of the metric system came about 
following the peaceful but far-reaching political changes 
associated with the Meiji Restoration of 1868.

In Britain, the Commonwealth nations, and the United 
States, the progress of the metric system has been discern-
ible. The United States became a signatory to the Metric 
Convention of 1875 and received copies of the International 
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Prototype Metre and the International Prototype Kilo
gram in 1890. Three years later the Office of Weights and 
Measures announced that the prototype metre and kilogram 
would be regarded as fundamental standards from which the 
customary units, the yard and the pound, would be derived.

Throughout the 20th century, use of the metric system 
in various segments of commerce and industry increased 
spontaneously in Britain and the United States; it became 
almost universally employed in the scientific and medical 
professions. The automobile, electronics, chemical, and 
electric power industries have all adopted metrics at least 
in part, as have such fields as optometry and photography. 
Legislative proposals to adopt metrics generally have been 
made in the U.S. Congress and British Parliament. In 1968 
the former passed legislation calling for a program of 
investigation, research, and survey to determine the 
impact on the United States of increasing worldwide use 
of the metric system. The program concluded with a 
report to Congress in July 1971 that stated:

On the basis of evidence marshalled in the U.S. metric study, 
this report (D.V. Simone, “Metric America, A Decision whose 
Time has Come,” National Bureau of Standards Special 
Publication 345) recommends that the United States change to 
the International Metric System.

Parliament went further and established a long-range 
program of changeover.

The International System of Units

Just as the original conception of the metric system had 
grown out of the problems scientists encountered in deal-
ing with the medieval system, so a new system grew out of 
the problems a vastly enlarged scientific community faced 
in the proliferation of subsystems improvised to serve 
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The metric system is used extensively throughout the world, as evidenced by 
the customers above who wait to buy rice by the kilogram in the Philippines. 
Romeo Gacad/AFP/Getty Images

particular disciplines. At the same time, it had long been 
known that the original 18th-century standards were not 
accurate to the degree demanded by 20th-century sci-
entific operations; new definitions were required. After 
lengthy discussion the 11th General Conference on 
Weights and Measures (11th CGPM), meeting in Paris in 
October 1960, formulated a new International System of 
Units (abbreviated SI). The SI was amended by subse-
quent convocations of the CGPM. The following base 
units have been adopted and defined:

Length: Metre

Since 1983 the metre has been defined as the distance 
traveled by light in a vacuum in 1/299,792,458 second.

Mass: Kilogram

The standard for the unit of mass, the kilogram, is a cylinder 
of platinum-iridium alloy kept by the International 
Bureau of Weights and Measures, located in Sèvres, near 
Paris. A duplicate in the custody of the National Institute 
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of Standards and Technology serves as the mass standard 
for the United States. (This is the only base unit still 
defined by an artifact.)

Time: Second

The second is defined as the duration of 9,192,631,770 
cycles of the radiation associated with a specified transi-
tion, or change in energy level, of the cesium-133 atom.

Electric Current: Ampere

The ampere is defined as the magnitude of the current 
that, when flowing through each of two long parallel wires 
separated by one metre in free space, results in a force 
between the two wires (due to their magnetic fields) of 2 × 

10−7 newton (the newton is a unit 
of force equal to about 0.2 pound) 
for each metre of length.

Thermodynamic 
Temperature: Kelvin

The thermodynamic, or Kelvin, 
scale of temperature used in SI 
has its origin or zero point at 
absolute zero and has a fixed 
point at the triple point of water 
(the temperature and pressure at 
which ice, liquid water, and 
water vapour are in equilibrium), 
defined as 273.16 kelvins. The 
Celsius temperature scale is 
derived from the Kelvin scale. 
The triple point is defined as 0.01 
degree on the Celsius scale, which 
is approximately 32.02 degrees on 
the Fahrenheit temperature scale.

A thermometer showing temperature 
readings on both the Fahrenheit and 
Celsius scales. Shutterstock.com
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Amount of Substance: Mole

The mole is defined as the amount of substance containing 
the same number of chemical units (atoms, molecules, 
ions, electrons, or other specified entities or groups of 
entities) as exactly 12 grams of carbon-12.

Light (Luminous) Intensity: Candela

The candela is defined as the luminous intensity in a given 
direction of a source that emits monochromatic radiation 
at a frequency of 540 × 1012 hertz and that has a radiant 
intensity in the same direction of 1/683 watt per steradian 
(unit solid angle).

Measurement instruments  
and systems

In general, measuring systems comprise a number of func-
tional elements. One element is required to discriminate 
the object and sense its dimensions or frequency. This 
information is then transmitted throughout the system by 
physical signals. If the object is itself active, such as water 
flow, it may power the signal; if passive, it must trigger the 
signal by interaction either with an energetic probe, such 
as a light source or X-ray tube, or with a carrier signal. 
Eventually the physical signal is compared with a refer-
ence signal of known quantity that has been subdivided or 
multiplied to suit the range of measurement required. The 
reference signal is derived from objects of known quantity 
by a process called calibration. The comparison may be an 
analog process in which signals in a continuous dimension 
are brought to equality. An alternative comparison process 
is quantization by counting, i.e., dividing the signal into 
parts of equal and known size and adding up the number 
of parts.
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Other functions of measurement systems facilitate 
the basic process described above. Amplification ensures 
that the physical signal is strong enough to complete the 
measurement. In order to reduce degradation of the mea-
surement as it progresses through the system, the signal 
may be converted to coded or digital form. Magnification, 
enlarging the measurement signal without increasing its 
power, is often necessary to match the output of one ele-
ment of the system with the input of another, such as 
matching the size of the readout meter with the discern-
ing power of the human eye.

One important type of measurement is the analysis of 
resonance, or the frequency of variation within a physical 
system. This is determined by harmonic analysis, com-
monly exhibited in the sorting of signals by a radio receiver. 
Computation is another important measurement process, 
in which measurement signals are manipulated mathe-
matically, typically by some form of analog or digital 
computer. Computers may also provide a control function 
in monitoring system performance.

Measuring systems may also include devices for trans-
mitting signals over great distances. All measuring systems, 
even highly automated ones, include some method of 
displaying the signal to an observer. Visual display sys-
tems may comprise a calibrated chart and a pointer, an 
integrated display on a cathode-ray tube, or a digital 
readout. Measurement systems often include elements 
for recording. A common type utilizes a writing stylus 
that records measurements on a moving chart. Electrical 
recorders may include feedback reading devices for greater 
accuracy.

The actual performance of measuring instruments is 
affected by numerous external and internal factors. Among 
external factors are noise and interference, both of which 
tend to mask or distort the measurement signal. Internal 
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factors include linearity, resolution, precision, and accu-
racy, all of which are characteristic of a given instrument 
or system, and dynamic response, drift, and hysteresis, 
which are effects produced in the process of measurement 
itself. The general question of error in measurement raises 
the topic of measurement theory.

Measurement theory

Measurement theory is the study of how numbers are 
assigned to objects and phenomena, and its concerns 
include the kinds of things that can be measured, how 
different measures relate to each other, and the problem 
of error in the measurement process. Any general theory of 
measurement must come to grips with three basic problems: 
error; representation, which is the justification of number 
assignment; and uniqueness, which is the degree to which 
the kind of representation chosen approaches being the 
only one possible for the object or phenomenon in 
question.

Various systems of axioms, or basic rules and assump-
tions, have been formulated as a basis for measurement 
theory. Some of the most important types of axioms 
include axioms of order, axioms of extension, axioms of 
difference, axioms of conjointness, and axioms of geome-
try. Axioms of order ensure that the order imposed on 
objects by the assignment of numbers is the same order 
attained in actual observation or measurement. Axioms of 
extension deal with the representation of such attributes 
as time duration, length, and mass, which can be com-
bined, or concatenated, for multiple objects exhibiting 
the attribute in question. Axioms of difference govern the 
measuring of intervals. Axioms of conjointness postu-
late that attributes that cannot be measured empirically 
(for example, loudness, intelligence, or hunger) can be 
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measured by observing the way their component dimen-
sions change in relation to each other. Axioms of geometry 
govern the representation of dimensionally complex 
attributes by pairs of numbers, triples of numbers, or even 
n-tuples of numbers.

The problem of error is one of the central concerns of 
measurement theory. At one time it was believed that 
errors of measurement could eventually be eliminated 
through the refinement of scientific principles and equip-
ment. This belief is no longer held by most scientists, and 
almost all physical measurements reported today are 
accompanied by some indication of the limitation of 
accuracy or the probable degree of error. Among the 
various types of error that must be taken into account are 
errors of observation (which include instrumental errors, 
personal errors, systematic errors, and random errors), 
errors of sampling, and direct and indirect errors (in which 
one erroneous measurement is used in computing other 
measurements).

Measurement theory dates back to the 4th century 
BCE, when a theory of magnitudes developed by the 
Greek mathematicians Eudoxus of Cnidus and Thaeatetus 
was included in Euclid’s Elements. The first systematic 
work on observational error was produced by the English 
mathematician Thomas Simpson in 1757, but the funda-
mental work on error theory was done by two 18th-century 
French astronomers, Joseph-Louis Lagrange and Pierre-
Simon Laplace. The first attempt to incorporate 
measurement theory into the social sciences also occurred 
in the 18th century, when Jeremy Bentham, a British utili-
tarian moralist, attempted to create a theory for the 
measurement of value. Modern axiomatic theories of 
measurement derive from the work of two German sci-
entists, Hermann von Helmholtz and Otto Hölder, and 



229

contemporary work on the application of measurement 
theory to psychology and economics derives in large part 
from the work of Oskar Morgenstern and John von 
Neumann.

Since most social theories are speculative in nature, 
attempts to establish standard measuring sequences or 
techniques for them have met with limited success. Some 
of the problems involved in social measurement include 
the lack of universally accepted theoretical frameworks 
and thus of quantifiable measures, sampling errors, prob-
lems associated with the intrusion of the measurer on 
the object being measured, and the subjective nature of the 
information received from human subjects. Economics is 
probably the social science that has had the most success 
in adopting measurement theories, primarily because 
many economic variables (like price and quantity) can 
be measured easily and objectively. Demography has 
successfully employed measurement techniques as well, 
particularly in the area of mortality tables.
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C H A P T E R  5
M e A sU R e M e n t  

P I o n e e R s

  They ranged in profession from civil engineers to  
astronomers to mechanical instrument makers, but 

they shared a common passion: creating standards that 
allowed others to set objective measurements. The fol-
lowing brief biographies highlight the work of a few of 
these infl uential measurement pioneers.    

 NormaN robert campbell 
 (b. March 7, 1880, London, Eng.—d. May 18, 1949, Nottingham)

Norman Campbell is best known for his contributions to 
the theory and practice of physical measurements. 

 Campbell was a research assistant at the Cavendish 
Laboratory at Cambridge, where he worked under the 
great experimental physicist Sir J. J. Thomson and con-
tributed to the study of spontaneous ionization in gases 
and radioactivity. In 1910 Campbell joined Sir William 
Bragg’s research group at the University of Leeds, where 
he studied X-ray ionization on an honorary basis until a 
formal position was created for him in 1912. During this 
period at Leeds, Campbell met and married Edith Utley 
Sowerbutts, who taught science at the Leeds Girls’ High 
School. In 1914 Campbell joined the electrotechnics and 
photometry department of the British National Physical 
Laboratory, where he worked under physicist Clifford 
Patterson on military research. Following the end of 
World War I, Campbell was recruited by Patterson to 
form part of the research staff for what later became the 
General Electric Company Research Laboratory, where 
he spent the rest of his career. 
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Before joining Patterson in 1919, however, the 
Campbells adopted two babies, a boy and a girl, and with-
drew for nine months to adjust to family life. During this 
self-imposed retreat, Campbell wrote Physics: The Elements 
(1920; republished posthumously in 1957 in an expanded 
edition as Foundations of Science: The Philosophy of Theory 
and Experiment), which is still influential for its consid-
eration of philosophical issues related to physical 
measurements and epistemology.

During World War II, Campbell’s son was killed in 
action in 1941 by a torpedo in the Mediterranean, which 
led the grieving couple to retire and move to Dorset. In 
1944 the Campbell’s home was destroyed by a stray 
German bomb, which left Norman virtually unharmed 
but severely injured Edith. Following her death in 1948, he 
moved in with his daughter and her children.

Campbell’s major works include Modern Electrical 
Theory (1907), which rejected the existence of the so-
called ether and foreshadowed certain ideas of relativity; 
The Principles of Electricity (1912); What Is Science? (1921); 
and An Account of the Principles of Measurement and 
Calculation (1928).

Anders Celsius
(b. Nov. 27, 1701, Uppsala, Sweden—d. April 25, 1744, Uppsala)

Anders Celsius was an astronomer and inventor of the 
Celsius temperature scale (often called the centigrade scale).

Celsius was professor of astronomy at Uppsala Uni
versity from 1730 to 1744, and in 1740 he built the Uppsala 
Observatory. In 1733 Celsius published a collection of 316 
observations of the aurora borealis, or northern lights, 
made by himself and others from 1716 to 1732. He advo-
cated the measurement of an arc of a meridian in Lapland 
and in 1736 took part in an expedition organized for that 
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purpose, which ver-
ified Isaac Newton’s 
theory that the 
Earth is somewhat 
flattened at the 
poles. In 1742 he 
described his ther-
mometer in a paper 
read before the 
Swedish Academy 
of Sciences. His 
other works include 
Dissertatio de Nova 
Methodo Distantiam 
Solis a Terra Deter
minandi (1730; “A 
Dissertation on a 
New Method of 
Determining the 
Distance of the Sun 
from the Earth”) 

and De Observationibus pro Figura Telluris Determinanda in 
Gallia Habitis, Disquisitio (1738; “Disquisition on Obser
vations Made in France for Determining the Shape of 
the Earth”).

Giovanni Giorgi
(b. Nov. 27, 1871, Lucca, Italy—d. Aug. 19, 1950, Castiglioncello)

Giovanni Giorgi proposed a widely used system for the 
definition of electrical, magnetic, and mechanical units of 
measurement.

Giorgi studied civil engineering at the Institute of 
Technology in Rome and from 1906 to 1923 directed  
the Technology Office of Rome. He taught (1913–39) at 

Anders Celsius, for whom the Celsius tempera-
ture scale is named. Frederic Lewis/Hulton 
Archive/Getty Images
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the University of Rome and also held appointments at the 
universities of Cagliari and Palermo and at the Royal 
Institute for Higher Mathematics. He is best known for 
developing the Giorgi International System of Meas
urement (also known as the MKSA system) in 1901. This 
system proposed as units of scientific measurement the 
metre, kilogram, second, and joule and was endorsed in 
1960 by the General Conference of Weights and Measures 
(with the ampere instead of the joule as the unit of energy).

Giorgi also contributed to the development of hydro-
electric installations, electric distribution networks, and 
urban trolley systems.

Edmund Gunter
(b. 1581, Hertfordshire, Eng.—d. Dec. 10, 1626, London)

Edmund Gunter invented many useful measuring devices, 
including a forerunner of the slide rule. 

Gunter was professor of astronomy at Gresham 
College, London, from 1619 until his death. Descriptions 
of some of his inventions were given in his treatises on the 
sector, cross-staff, bow, quadrant, and other instruments. 
In Canon Triangulorum, or Table of Artificial Sines and Tangents 
(1620), the first published table of common logarithms of 
the sine and tangent functions, he introduced the terms 
cosine and cotangent. He also suggested to his friend 
Henry Briggs, the inventor of common logarithms, the 
use of the arithmetical complement.

Gunter’s practical inventions included Gunter’s chain. 
Commonly used for surveying, it was 22 yards (20.1 metres) 
long and was divided into 100 links. Gunter’s quadrant 
was used to find the hour of the day, the sun’s azimuth, and 
the altitude of an object in degrees. Gunter’s scale, or 
Gunter’s line, generally called the gunter by seamen, was a 
large plane scale with logarithmic divisions plotted on it. 
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With the aid of a pair of compasses, it was used to multiply 
and divide. Gunter’s scale was an important step in the 
development of the slide rule.

Joseph-Louis Lagrange
(b. Jan. 25, 1736, Turin, Sardinia-Piedmont [Italy]—d. April 10, 1813, 
Paris, France)

Joseph-Louis Lagrange made great contributions to number 
theory and to analytic and celestial mechanics. His most 
important book, Mécanique analytique (1788; “Analytic 
Mechanics”), was the basis for all later work in this field.

The French Revolution, which began in 1789, pressed 
Lagrange into work on the committee to reform the met-
ric system. When the École Centrale des Travaux Publics 
(later renamed the École Polytechnique) was opened in 
1794, he became, with Gaspard Monge, its leading pro-
fessor of mathematics.

Napoleon honoured the aging mathematician, making 
him a senator and a count of the empire, but he remained 

Edmund Gunter’s quadrant, used to calculate the time of day. SSPL/Getty 
Images
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the quiet, unobtrusive academician, a venerable figure 
wrapped in his thoughts.

Pierre-Simon Laplace
(b. March 23, 1749, Beaumount-en-Auge, Normandy, France—d. 
March 5, 1827, Paris)

Pierre-Simon Laplace is best known for his investigations 
into the stability of the solar system.

Laplace successfully accounted for all the observed 
deviations of the planets from their theoretical orbits by 
applying Sir Isaac Newton’s theory of gravitation to the 
solar system, and he developed a conceptual view of evolu-
tionary change in the structure of the solar system. He 
also demonstrated the usefulness of probability for inter-
preting scientific data.

Probably because he did not hold strong political views 
and was not a member of the aristocracy, he escaped 
imprisonment and execution during the French Revolu
tion. Laplace was president of the Board of Longitude, 
aided in the organization of the metric system, helped 
found the scientific Society of Arcueil, and was created a 
marquis. He served for six weeks as minister of the inte-
rior under Napoleon, who famously reminisced that 
Laplace “carried the spirit of the infinitesimal into 
administration.”

Pierre Mechain
(b. Aug. 16, 1744, Laon, France—d. Sept. 20, 1804, Castellón de la 
Plana, Spain)

Pierre Mechain, with Jean Delambre, measured the merid-
ian arc from Dunkirk, France, to Barcelona, Spain. The 
measurement was made between 1792 and 1798 to estab-
lish a basis for the unit of length in the metric system 
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called for by the French national legislature. Mechain also 
discovered 11 comets and calculated the orbits of these 
and other known comets.

Born the son of a master ceiling plasterer, Mechain 
early in life showed mathematical prowess and worked as 
a hydrographer for the Naval Map Archives at Versailles 
during the 1770s. He turned to astronomy, and in 1782 his 
work with comets won him admission to the Académie 
Royale des Sciences. In addition, Mechain discovered 
numerous nebulae that were later incorporated by Charles 
Messier into his famous catalog of clusters and nebulae.

Jesse Ramsden
(b. Oct. 6, 1735, Halifax, Yorkshire, Eng.—d. Nov. 5, 1800, Brighton, 
Sussex)

Jesse Ramsden was a pioneer in the design of precision tools.
Ramsden was apprenticed as a boy to a cloth worker, 

but in 1758 he apprenticed himself to a mathematical 
instrument maker. He went into business for himself in 
London in 1762. He designed dividing engines of great 
accuracy for both circles and straight lines and produced 
highly accurate sextants, theodolites, and vertical circles 
for astronomical observatories. He also built barometers, 
manometers, assay balances, and other instruments. He 
was elected to the Royal Society in 1786 and awarded the 
Copley Medal in 1795.
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M e A sU R e M e n t  t e R M s 
A n D  C o n C e P t s

C H A P T E R  6

  There are many reasons why it is important to measure 
everything from liquids to light to land. Accurate 

measurements can help to make trades fair, help scientists 
quantify their work, and ensure that recipes can come out 
correctly. Brief descriptions of some important or historical 
measurement terms and concepts are included here.    

 acre 

 The acre is a unit of land measurement in the British 
Imperial and U.S. Customary systems, equal to 43,560 
square feet, or 160 square rods. One acre is equivalent to 
0.4047 hectares (4,047 square metres). Derived from 
Middle English  aker  (from Old English  aecer ) and akin to 
Latin ager (“fi eld”), the acre had one origin in the typical 
area that could be plowed in one day with a yoke of oxen 
pulling a wooden plow. The Anglo-Saxon acre was defi ned 
as a strip of land 1 × 1/10 furlong, or 40 × 4 rods (660 × 66 
feet). One acre gradually came to denote a piece of land of 
any shape measuring the present 4,840 square yards. 
Larger and smaller variant acres, ranging from 0.19 to 
0.911 hectares, were once employed throughout the 
British Isles.   

 amphora 

 The amphora is an ancient Roman unit of capacity for 
grain and liquid products equal to 48 sextarii and equiva-
lent to about 27.84 litres (7.36 U.S. gallons). The term 
 amphora  was borrowed from the Greeks, who used it to 



7 The Britannica Guide to Numbers and Measurement 7

238

designate a measure equal 
to about 34 litres (9 U.S. 
gallons).

Angstrom (Å)

The angstrom, a unit of 
length used chiefly in mea-
suring wavelengths of light, 
is equal to 10−10 metre, or 0.1 
nanometer. It is named for 
the 19th-century Swedish 
physicist Anders Jonas 
Ångström. The angstrom and 
multiples of it, the micron 
(104 Å) and the millimicron 
(10 Å), are also used to mea-
sure such quantities as 
molecular diameters and the 
thickness of films on liquids.

Apothecaries’ 
weight

Apothecaries’ weight is a traditional system of weight in 
the British Isles used for the measuring and dispensing of 
pharmaceutical items and based on the grain, scruple (20 
grains), dram (3 scruples), ounce (8 drams), and pound (12 
ounces). The apothecaries’ grain is equal to the troy and 
avoirdupois grains and represents 1/5,760 part of the troy 
and apothecaries’ pound and 1/7,000 part of the avoirdupois 
pound. One apothecaries’ pound equals approximately 
0.82 avoirdupois pound, 373.24 grams, and 0.37 kilogram.

Apothecaries’ weight was used officially in both the 
United States and Great Britain until 1858. In that year, 

A Roman amphora. An amphora 
was both a type of vessel and a 
measurement. Vincenzo Pinto/
AFP/Getty Images
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under the authority of the Medical Act, Great Britain 
adopted the avoirdupois system for dispensing medicines. 
Apothecaries’ weight is still common in the United States. 
In recent years, however, the metric system has gradually 
replaced it for dispensing medicines.

Are

The are is a basic unit of area in the metric system, equal 
to 100 square metres and the equivalent of 0.0247 acre. Its 
multiple, the hectare (equal to 100 ares), is the principal 
unit of land measurement for most of the world.

Avoirdupois weight

Avoirdupois weight is a traditional system of weight in the 
British Imperial System and the U.S. Customary System 
of weights and measures. The name derives ultimately 
from French avoir de pois (“goods of weight” or “property”). 

Old pharmaceutical canisters. Shutterstock.com
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The avoirdupois pound contains 7,000 grains, or 256 
drams of 27.344 grains each, or 16 ounces of 437 1/2 grains 
each. It is used for all products not subject to apothecar-
ies’ weight (for pharmaceutical items) or troy weight (for 
precious metals). It is equal to about 1.22 apothecaries’ or 
troy pounds. Since 1959 the avoirdupois pound has been 
officially defined in most English-speaking countries as 
0.45359237 kg.

Barrel

The barrel is a unit of both liquid and dry measure in the 
British Imperial and U.S. Customary systems, ranging 
from 31.5 to 42 gallons for liquids and fixed at 7,056 cubic 
inches (105 dry quarts, or 115.63 litres) for most fruits, veg-
etables, and other dry commodities. The cranberry barrel, 
however, measures 5,826 cubic inches. In liquid measure, 
the wine barrel of 126 quarts (31.5 gallons, or 119.24 litres) 
and the ale and beer barrel of 144 quarts (36 gallons, or 
136.27 litres) probably were defined by the traditional size 
of the actual wooden barrels used in these trades. In the 
United States a 40-gallon barrel for proof spirits has been 
legally recognized, and federal taxes on fermented liquors 
are calculated on a barrel of 31 gallons. A petroleum barrel 
of 42 gallons may have become standard in the American 
Southwest because casks of this capacity were readily 
available. Dry-weight barrels include the barrel of 200 
pounds for fish, beef, and pork and that of 376 pounds for 
cement, among others.

Bat

The bat (baht or bath), also called an ephah, is an ancient 
Hebrew unit of liquid and dry capacity. Estimated at 37 
litres (about 6.5 gallons) and approximately equivalent to 
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the Greek metre-te-s, the bat contained 10 omers, 1 omer 
being the quantity (based on tradition) of manna allotted 
to each Israelite for every day of the 40-year sojourn in the 
desert recorded in the Bible.

British Imperial System

The British Imperial System is a traditional system of 
weights and measures used officially in Great Britain from 
1824 until the adoption of the metric system beginning in 
1965. The U.S. Customary System of weights and measures 
is derived from it. British Imperial units are now legally 
defined in metric terms.

The British Imperial System evolved from the thou-
sands of Roman, Celtic, Anglo-Saxon, and customary local 
units employed in the Middle Ages. Traditional names 
such as pound, foot, and gallon were widely used, but the 
values so designated varied with time, place, trade, prod-
uct specifications, and dozens of other requirements. 
Early royal standards established to enforce uniformity 
took the name Winchester, after the ancient capital of 
Britain, where the 10th-century Saxon king Edgar the 
Peaceable kept a royal bushel measure and quite possibly 
others. Fourteenth-century statutes recorded a yard (per-
haps based originally on a rod or stick) of 3 feet, each foot 
containing 12 inches, each inch equaling the length of 
three barleycorns (employed merely as a learning device 
since the actual standard was the space between two 
marks on a yard bar). Units of capacity and weight were 
also specified. In the late 15th century, King Henry VII 
reaffirmed the customary Winchester standards for 
capacity and length and distributed royal standards 
(physical embodiments of the approved units) throughout 
the realm. This process was repeated about a century later 
in the reign of Queen Elizabeth I. In the 16th century the 
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rod (5.5 yards, or 16.5 feet) was defined (once again as a 
learning device and not as a standard) as the length of the 
left feet of 16 men lined up heel to toe as they emerged 
from church. By the 17th century usage and statute had 
established the acre, rod, and furlong at their present 
values (4,840 square yards, 16.5 feet, and 660 feet, respec-
tively), together with other historic units. The several 
trade pounds in common use were reduced to just two: the 
troy pound, primarily for precious metals, and the pound 
avoirdupois, for other goods sold by weight.

The Weights and Measures Act of 1824 and the Act of 
1878 established the British Imperial System on the basis 
of precise definitions of selected existing units. The 1824 
act sanctioned a single imperial gallon to replace the wine, 
ale, and corn (wheat) gallons then in general use. The new 
gallon was defined as equal in volume to 10 pounds avoir-
dupois of distilled water weighed at 62 °F with the 
barometer at 30 inches, or 277.274 cubic inches (later 
corrected to 277.421 cubic inches). The two new basic 
standard units were the imperial standard yard and the 
troy pound, which was later restricted to weighing drugs, 
precious metals, and jewels. A 1963 act abolished such 
archaic measures as the rod and chaldron (a measure of 
coal equal to 36 bushels) and redefined the standard yard 
and pound as 0.9144 metres and 0.45359237 kg respec-
tively. The gallon now equals the space occupied by 10 
pounds of distilled water of density 0.998859 gram per 
millilitre weighed in air of density 0.001217 gram per milli-
litre against weights of density 8.136 grams per millilitre.

While the British were reforming their weights and 
measures in the 19th century, the Americans were just 
adopting units based on those discarded by the act of 1824. 
The standard U.S. gallon is based on the Queen Anne wine 
gallon of 231 cubic inches and is about 17 percent smaller 
than the British imperial gallon. The U.S. bushel of 2,150.42 
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cubic inches, derived from the Winchester bushel aban-
doned in Britain, is approximately 3 percent smaller than 
the British imperial bushel. In the British system, units of 
dry and liquid capacity are the same, while in the United 
States they differ; the liquid and dry pint in Britain both 
equal 0.568 cubic decimetre, while the U.S. liquid pint is 
0.473 cubic decimetre, and the U.S. dry pint is 0.551 cubic 
decimetre. British and American units of linear measure 
and weight are essentially the same. Notable exceptions 
are the British stone of 14 pounds, which is not used in the 
United States, and a divergence in definition of the hun-
dredweight (100 pounds in the United States, 112 in 
Britain) that yields two different tons, the short U.S. ton 
of 2,000 pounds and the long British ton of 2,240 pounds. 
In 1959 major English-speaking nations adopted common 
metric definitions of the inch (2.54 cm), the yard (0.9144 
metres), and the pound (0.4536 kg).

Bushel

The bushel is a unit of capacity in the British Imperial 
and the U.S. Customary systems of measurement. In the 
British system the units of liquid and dry capacity are 
the same, and since 1824 a bushel has been defined as 8 
imperial gallons, or 2,219.36 cubic inches (36,375.31 cubic 
cm). In the United States the bushel is used only for dry 
measure. The U.S. level bushel (or struck bushel) is equal 
to 2,150.42 cubic inches (35,245.38 cubic cm) and is consid-
ered the equivalent of the Winchester bushel, a measure 
used in England from the 15th century until 1824. A U.S. 
level bushel is made up of 4 pecks, or 32 dry quarts. Two 
bushels make up a unit called a strike. In 1912 the U.S. 
Court of Customs defined a “heaped bushel” for measur-
ing quantities of apples as 2,747.715 cubic inches (45,035.04 
cubic cm). In the British Isles various cubic capacities and 
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weights for the bushel have existed since the 13th century 
depending on the product to be sold or transported. It 
derived ultimately from the Old French boissel, from boisse, 
a measure of grain.

Centimetre (cm)

The centimetre is a unit of length equal to 0.01 metre in 
the metric system and the equivalent of 0.3937 inch.

Cord

The cord is a unit of volume for measuring stacked fire-
wood. A cord is generally equivalent to a stack 4 × 4 × 8 feet 
(128 cubic feet), and its principal subdivision is the cord 
foot, which measures 4 × 4 × 1 feet. A standard cord con-
sists of sticks or pieces 4 feet long stacked in a 4 × 8-foot 
rick. A short cord is a 4 × 8-foot rick of pieces shorter than 
4 feet, and a long cord is a similar rick of pieces longer 
than 4 feet. A face cord is a 4 × 8-foot stack of pieces 1 foot 

Bushels of apples. Shutterstock.com
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long. The cord was originally devised in order to measure 
firewood and was so named because a line, string, or cord 
was used to tie the wood into a bundle.

The useful amount of wood a cord actually contains var-
ies greatly, depending upon such factors as the type of wood, 
the size and straightness of the pieces, and the amount of 
bark present. A tree with a usable height of 40 feet and a cir-
cumference of 6.25 feet will contain about one cord of wood.

Cubit

The cubit is a unit of linear measure used by many ancient 
and medieval peoples. It may have originated in Egypt 
about 3000 BCE; it thereafter became ubiquitous in the 
ancient world. The cubit, generally taken as equal to 18 
inches (457 mm), was based on the length of the arm from 
the elbow to the tip of the middle finger and was consid-
ered the equivalent of 6 palms or 2 spans. In some ancient 
cultures it was as long as 21 inches (531 mm).

Cup

The cup is a unit of volume in the British Imperial and 
U.S. Customary systems of measurement. The U.S. liquid 
cup is equal to 14 7/16 cubic inches, or 236.59 cubic cm; the 
more rarely used U.S. dry cup is equal to 1.164 liquid 
cups. In Great Britain a single cup is used for both types 
of measurement, equal to 1.201 U.S. liquid cups (284.14 
cubic cm). In either system a cup contains two gills, and 
two cups are contained in a pint.

Dram

The dram is a unit of weight in the apothecaries’ and avoir-
dupois systems. An apothecaries’ dram contains 3 scruples 
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(3.888 grams) of 20 grains each and is equal to one-eighth 
apothecaries’ ounce of 480 grains. The avoirdupois dram 
contains 27.344 grains (1.772 grams) and is equal to one-
sixteenth avoirdupois ounce of 437 1/2 grains. The term 
also refers to the fluid dram, a measure of capacity equal to 
1/8 fluid ounce.

In England dram came to mean a small draught of cor-
dial or alcohol; hence the term dram-house for the taverns 
where one could purchase a dram. Dram is ultimately 
derived from the Greek drachma, designating an ancient 
coin and weight that probably originated as the amount 
one could hold in one’s hands. The use of the dram as a 
measuring unit has largely been superseded by metric 
measures.

Fathom

The fathom is an old English measure of length, now stan-
dardized at 6 feet (1.83 metre), which has long been used as 
a nautical unit of depth. The longest of many units derived 
from an anatomical measurement, the fathom originated 
as the distance from the middle fingertip of one hand to 
the middle fingertip of the other hand of a large man hold-
ing his arms fully extended. The name comes from the Old 
English faedm or faethm, meaning outstretched arms.

Finger

The finger is an ancient and medieval measure of 1/8 yard, 
or 4 1/2 inches (11.4 cm), used primarily to measure lengths 
of cloth. The finger derives ultimately from the digitus, 
the smallest of the basic Roman linear measures. From the 
digitus came the English nail, which equaled 3/4 inch, or 1/16 
foot. The nail also came to mean the 16th part of a 
yard—2 1/4 inches—as well as the 16th part of other 
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measures. The one-nail length was also defined as the 
half finger, the length from the tip of the middle finger to 
the centre of the second joint from the tip. Thus, the 
finger became double the nail, or the length of the whole 
finger, tip to knuckle.

Leonardo da Vinci employed a “finger” measurement, 
but his was actually a finger’s breadth (0.75 inch). Four 
of da Vinci’s finger units equaled a palm, and six palms 
equaled a cubit.

Foot

The foot (plural: feet) includes any of numerous ancient, 
medieval, and modern linear measures (commonly 25 to 
34 cm) based on the length of the human foot and used 
exclusively in English-speaking countries, where it gener-
ally consists of 12 inches or 1/3 yard. In most countries and 
in all scientific applications, the foot, with its multiples 
and subdivisions, has been superseded by the metre, the 
basic linear unit in the metric system. In the United States 
the definition of the foot as exactly 30.48 cm took effect 
in 1959.

Furlong

The furlong is an old English unit of length, based on the 
length of an average plowed furrow (hence “furrow-long,” 
or furlong) in the English open- or common-field system. 
Each furrow ran the length of a 40 × 4-rod acre, or 660 
modern feet. The standardization of such linear units as 
the yard, foot, and inch—begun by government enactment 
sometime between 1266 and 1303—recognized the tradi-
tional sizes of rods, furlongs, and acres as fixed and therefore 
simply redefined them in terms of the newly standardized 
units. Thus, the furlong, often measured as 625 northern 
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(German) feet, became 660 standard English feet, and the 
mile, always 8 furlongs, became 5,280 feet. Today, the fur-
long is used almost exclusively in horse racing.

Gal

The gal is a unit of acceleration, named in honour of the 
Italian physicist and astronomer Galileo Galilei (1564–
1642) and used especially in measurements of gravity. One 
gal equals a change in rate of motion of one centimetre 
(0.3937 inch) per second per second.

Gill

The gill, also spelled jill, is a unit of volume in the British 
Imperial and U.S. Customary systems. It is used almost 
exclusively for the measurement of liquids. Although its 
capacity has varied with time and location, in the United 
States it is defined as half a cup, or four U.S. fluid ounces, 
which equals 7.219 cubic inches, or 118.29 cubic cm; in 
Great Britain the gill is 5 British fluid ounces, which equals 
8.669 cubic inches, 1/4 pint, or 142.07 cubic cm.

The gill was introduced in the 14th century to measure 
individual servings of whiskey or wine. The term jill 
appears in the nursery rhyme “Jack and Jill.” Soon after 
ascending to the throne of England in 1625, King Charles I 
scaled down the jack or jackpot (sometimes known as a 
double jigger) in order to collect higher sales taxes. The 
jill, by definition twice the size of the jack, was automati-
cally reduced also and “came tumbling after.”

Grain

The grain is a unit of weight equal to 0.065 gram, or 1/7,000 
pound avoirdupois. One of the earliest units of common 
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measure and the smallest, it is a uniform unit in the avoir-
dupois, apothecaries’, and troy systems. The ancient grain, 
varying from one culture to the next, was defined as the 
weight of a designated number of dry wheat (or other 
edible grain) kernels taken from the middle of the ear. It 
was also used as the original basis for the medieval English 
inch, which was defined for instructional purposes as the 
length of 3 medium-sized barleycorns placed end to end 
(about 2.54 cm). The Sumerian shekel equaled the weight 
of 180 wheat grains; the British silver penny sterling was 
set at the weight of 32 wheat grains. The metric grain of 
50 mg is used to weigh precious stones.

Gram (gm or g)

The gram is a unit of mass or weight that is used especially 
in the centimetre-gram-second system of measurement. 
One gram is equal to 0.001 kg. The gram is very nearly 
equal (it was originally intended to be equal) to the mass of 
one cubic centimetre of pure water at 4 °C (39.2 °F), the 
temperature at which water reaches its maximum density 
under normal terrestrial pressures. The gram of force is 
equal to the weight of a gram of mass under standard 
gravity. For greater precision, the mass may be weighed 
at a point at which the acceleration due to gravity is 
980.655 cm/sec2.

Gunter’s chain

Gunter’s chain, also called a surveyor’s chain, is a measur-
ing device and arbitrary measurement unit still widely 
used for surveying in English-speaking countries. Invented 
by the English mathematician Edmund Gunter in the 
early 17th century, Gunter’s chain is exactly 22 yards (about 
20 m) long and divided into 100 links. In the device, each 
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link is a solid bar. Measurement of the public land systems 
of the United States and Canada is based on Gunter’s 
chain. An area of 10 square chains is equal to one acre.

Hand

The hand is an ancient unit of length, now standardized at 
4 inches (10.16 cm) and used today primarily for measuring 
the height of horses from the ground to the withers (top 
of the shoulders). The unit was originally defined as the 
breadth of the palm including the thumb. A statute of 
King Henry VIII of England established the hand at 4 
inches. Units of various lengths were used by the ancient 
Egyptians, Hebrews, Greeks, Romans, and others.

Hectare

The hectare is a unit of area in the metric system equal to 
100 ares, or 10,000 square metres, and the equivalent of 
2.471 acres in the British Imperial System and the United 
States Customary measure. The term is derived from  
the Latin area and from hect, an irregular contraction of the 
Greek word for hundred. Although the are is the primary 
metric unit of land measurement, in practice the hectare 
is more commonly used. The hectare is, by subsequent 
definition, equal to a djerib in Turkey, a jerib in Iran, a gong 
qing in mainland China, a manzana in Argentina, and a 
bunder in The Netherlands.

Inch

The inch is a unit of British Imperial and U.S. Customary 
measure equal to 1/36 of a yard. The unit derives from the 
Old English ince, or ynce, which in turn came from the 
Latin unit uncia, which was “one-twelfth” of a Roman 
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foot, or pes. (The 
Latin word uncia 
was the source of 
the name of another 
English unit, the 
ounce.) The old 
English ynce was 
defined by King 
David I of Scotland 
about 1150 as the 
breadth of a man’s 
thumb at the base 
of the nail. To help 
maintain consis-
tency of the unit, 
the measure was 
usually achieved by 
adding the thumb 
breadth of three 
men—one small, 
one medium, and 
one large—and then dividing the figure by three. During 
the reign of King Edward II, in the early 14th century, the 
inch was defined as “three grains of barley, dry and round, 
placed end to end lengthwise.” At various times the inch 
has also been defined as the combined lengths of 12 
poppyseeds. Since 1959 the inch has been defined offi-
cially as 2.54 cm.

International Bureau of 
Weights and Measures 

The International Bureau of Weights and Measures 
(French: Bureau International des Poids et Mesures, or 
BIPM) is an international organization founded to bring 

David I, King of Scotland. Hulton Archive/
Getty Images
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about the unification of measurement systems, to estab-
lish and preserve fundamental international standards 
and prototypes, to verify national standards, and to deter-
mine fundamental physical constants. The bureau was 
established by a convention signed in Paris on May 20, 
1875, effective January 1876. In 1921 a modified convention 
was signed.

The convention provides for a General Conference 
that meets every four years to consider required improve-
ments or modifications in standards. An International 
Committee of Weights and Measures, composed of 18 
scientists elected by the conference, meets annually to 
monitor worldwide uniformity in units of measure. The 
bureau headquarters at Sèvres, France, serves as a deposi-
tory for the primary international standards and as a 
laboratory for certification and comparison of national 
standard copies.

International System of Units

The International System of Units (French: Système 
Internationale d ’Unités, or SI) is an international decimal 
system of weights and measures derived from and extend-
ing the metric system of units. Adopted by the 11th 
General Conference on Weights and Measures in 1960, it 
is abbreviated SI in all languages.

Rapid advances in science and technology in the 19th 
and 20th centuries fostered the development of several 
overlapping systems of units of measurements as scien-
tists improvised to meet the practical needs of their 
disciplines. The early international system devised to rec-
tify this situation was called the metre-kilogram-second 
(MKS) system. The General Conference on Weights and 
Measures added three new units (among others) in 1948: a 
unit of force (the newton), defined as that force which 
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gives to a mass of one kilogram an acceleration of one 
metre per second per second; a unit of energy (the joule), 
defined as the work done when the point of application of 
a newton is displaced one metre in the direction of the 
force; and a unit of power (the watt), which is the power 
that in one second gives rise to energy of one joule. All 
three units are named for eminent scientists.

The 1960 International System builds on the MKS 
system. Its seven basic units, from which other units are 
derived, are currently defined as follows: for length, the 
metre, defined as the distance traveled by light in a vacuum 
in 1/299,792,458 second; for mass, the kilogram, which equals 
1,000 grams as defined by the international prototype 
kilogram of platinum-iridium in the keeping of the 
International Bureau of Weights and Measures in Sèvres, 
France; for time, the second, the duration of 9,192,631,770 
periods of radiation associated with a specified transition 
of the cesium-133 atom; for electric current, the ampere, 
which is the current that, if maintained in two wires placed 
one metre apart in a vacuum, would produce a force of 2 × 
10−7 newton per metre of length; for luminous intensity, 
the candela, defined as the intensity in a given direction of 
a source emitting radiation of frequency 540 × 1012 hertz 
and that has a radiant intensity in that direction of 7/16 watt 
per steradian; for amount of substance, the mole, defined 
as containing as many elementary entities of a substance as 
there are atoms in 0.012 kg of carbon-12; and for thermo-
dynamic temperature, the kelvin.

International Unit (IU)

The international unit, as used in pharmacology, is a quan-
tity of a substance, such as a vitamin, hormone, or toxin, 
that produces a specified effect when tested according 
to an internationally accepted biological procedure. For 
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certain substances, the IU has been identified with a 
weight of a particular purified form of the material; for 
example, one gram of vitamin A acetate contains 2.904 × 
106 IU.

Kilometre (km)

The kilometre is a unit of length equal to 1,000 metres 
and the equivalent of 0.6214 mile.

Knot

The knot is a measure of speed at sea, equal to one nautical 
mile per hour (approximately 1.15 statute miles per hour). 
Thus, a ship moving at 20 knots is traveling as fast as a 
land vehicle at about 23 mph (37 km/hr). The term knot 
derives from its former use as a length measure on ships’ 
log lines, which were used to measure the speed of a ship 

Four speedometers (top left, top right, bottom left, bottom centre), 
showing various readings of velocity in miles per hour and kilometres per 
hour. Shutterstock.com
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through the water. Such a line was marked off at intervals 
by knots tied in the rope. Each interval, or knot, was about 
47 feet (14.3 metres) long. When the log was tossed over-
board, it remained more or less stationary while its 
attached log line trailed out from the vessel as the latter 
moved forward. After 28 seconds had elapsed, the number 
of knots that had passed overboard was counted. The 
number of knots that ran out in 28 seconds was roughly 
the speed of the ship in nautical miles per hour.

League

A league is any of several European units of measurement 
ranging from 2.4 to 4.6 statute miles (3.9 to 7.4 km). In 
English-speaking countries the land league is generally 
accepted as 3 statute miles (4.83 km), although varying 
lengths from 7,500 feet to 15,000 feet (2.29 to 4.57 km) 
were sometimes employed. An ancient unit derived from 
the Gauls and introduced into England by the Normans, the 
league was estimated by the Romans to be equal to 1,500 
paces—a pace, or passus, in Roman measure being nearly 
5 feet (1.5 metres).

Land leagues of about 2.63 miles (4.23 km) were used 
by the Spanish in early surveys of parts of the American 
Southwest. At one time the term was also used as a unit of 
area measurement. Old California surveys show square 
leagues equal to 4,439 acres (1,796 hectares). In the late 
18th century the league also came to refer to the distance 
a cannon shot could be fired at menacing ships offshore. 
This resulted in the 3-mile offshore territorial limit.

Libra

The libra was the basic Roman unit of weight; after 268 
BCE it was about 5,076 English grains or equal to 0.722 
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pounds avoirdupois (0.329 kg). This pound was brought to 
Britain and other provinces where it became the standard 
for weighing gold and silver and for use in all commercial 
transactions. The abbreviation lb for pound is derived 
from libra. One-twelfth of the libra, the Roman uncia, is 
the ancestor of the English ounce.

The libra is one of the nonmetric units of weight still 
used in Spain, Portugal, and several Spanish-speaking 
countries of the Americas. Most of the New World libras 
weigh about the same as the U.S. avoirdupois pound.

Litre (l)

The litre is a unit of volume in the metric system, equal to 
one cubic decimetre (0.001 cubic metre). From 1901 to 1964 
the litre was defined as the volume of 1 kilogram of pure 
water at 4 °C (39.2 °F) and standard atmospheric pressure; 
in 1964 the original, present value was reinstated. One 
litre is equivalent to approximately 1.0567 U.S. quart.

Bottles of milk around the world, such as this bottle from the Netherlands, are 
often sold in units of litres. Patrik Stollarz/Getty Images
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Log

The log, also called a maritime log, is an instrument for 
measuring the speed of a ship through water. The first 
practical log, developed about 1600, consisted of a pie-
shaped log chip with a lead weight on its curved edge that 
caused it to float upright and resist towing. When the log 
was tossed overboard, it remained more or less stationary 
while an attached line (marked off with equally spaced 
knots) was let out behind the vessel for a measured inter-
val of time (measured with a sandglass). The line and log 
were then hauled aboard and the speed of the ship deter-
mined by dividing the length of the line by the time 
interval.

In the 19th century the log chip was replaced by a 
towed rotor or propeller connected by a line to automatic 
speed- and distance-measuring equipment. Two logs in use 
today are the pitometre log and the electronic log. The 
pitometre uses a pitot tube projecting through the bot-
tom of the ship. The tube has one forward facing and two 
side facing orifices. When the ship is moving, pressure in 
the forward-facing tube exceeds the pressure in the side 
tubes; this differential is transmitted to equipment that 
translates it into a speed measurement. In the electronic 
log, which also protrudes through the bottom of the 
ship, a water-driven rotor turns a small electric generator, 
the current from which is proportional to the speed of the 
ship. This current is similarly used to produce a speed 
measurement.

Metre 

The metre is the fundamental unit of length in the metric 
system and in the International System of Units (SI). It is 
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equal to approximately 39.37 inches in the British Imperial 
and U.S. Customary systems. The metre was historically 
defined by the French Academy of Sciences in 1791 as 
1/10,000,000 of the quadrant of the Earth’s circumference 
running from the North Pole through Paris to the equator. 
The International Bureau of Weights and Measures in 
1889 established the international prototype metre as the 
distance between two lines on a standard bar of 90 per-
cent platinum and 10 percent iridium. By 1960 advances 
in the techniques of measuring light waves had made it 
possible to establish an accurate and easily reproducible 
standard independent of any physical artifact. In 1960 the 
metre was thus defined in the SI system as equal to 
1,650,763.73 wavelengths of the orange-red line in the 
spectrum of the krypton-86 atom in a vacuum.

By the 1980s, advances in laser measurement techniques 
had yielded values for the speed of light in a vacuum of an 
unprecedented accuracy, and it was decided in 1983 by 
the General Conference on Weights and Measures that the 
accepted value for this constant would be exactly 
299,792,458 metres per second. The metre is now thus 
defined as the distance traveled by light in a vacuum in 
1/299,792,458 of a second.

Metre-te-s

Metrētēs was the primary liquid measure of the ancient 
Greeks, equivalent to 39.4 litres, or about 9 gallons. In the 
Greek system, of which the smallest capacity unit was 
the kotyle (16.5 cubic inches; 0.475 pint; 270 cubic cm), the 
metrētēs equaled 144 kotyle, or 12 khous, or 2 xestes. Recon
structed earthenware cylinders excavated in the Acropolis 
in Athens furnish the oldest known evidence of the Greek 
system of liquid measurement.
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Metric system

The metric system is an international decimal system of 
weights and measures, based on the metre for length and 
the kilogram for mass, that was adopted in France in 1795 
and is now used officially in almost all countries.

The French Revolution of 1789 provided an opportu-
nity to pursue the frequently discussed idea of replacing 
the confusing welter of thousands of traditional units of 
measure with a rational system based on multiples of 10. 
In 1791 the French National Assembly directed the French 
Academy of Sciences to address the chaotic state of 
French weights and measures. It was decided that the new 
system would be based on a natural physical unit to ensure 
immutability. The academy settled on the length of 
1/10,000,000 of a quadrant of a great circle of the Earth, 
measured around the poles of the meridian passing 
through Paris. An arduous six-year survey led by such 
luminaries as Jean Delambre, Jacques-Dominique Cassini, 
Pierre Mechain, Adrien-Marie Legendre, and others to 
determine the arc of the meridian from Barcelona, Spain, 
to Dunkirk, France, eventually yielded a value of 39.37008 
inches for the new unit to be called the metre, from Greek 
metron, meaning “measure.”

By 1795 all metric units were derived from the metre, 
including the gram for weight (one cubic centimetre of 
water at its maximum density) and the litre for capacity 
(1/1,000 of a cubic metre). Greek prefixes were established 
for multiples of 10, myria (10,000), kilo (1,000), hecto (100), 
and deca (10), while Latin prefixes were selected for the 
submultiples, milli (0.001), centi (0.01), and deci (0.1). Thus, 
a kilogram equals 1,000 grams, a millimetre 1/1,000 of a 
metre. In 1799 the Metre and Kilogram of the Archives, 
platinum embodiments of the new units, were declared 
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the legal standards for all measurements in France, and the 
motto of the metric system expressed the hope that the 
new units would be “for all people, for all time.”

Not until 1875 did an international conference meet in 
Paris to establish an International Bureau of Weights and 
Measures. The Treaty of the Metre signed there provided 
for a permanent laboratory in Sèvres, near Paris, where 
international standards are kept, national standard copies 
inspected, and metrological research conducted. The 
General Conference of Weights and Measures, with dip-
lomatic representatives of some 40 countries, meets every 
six years to consider reform. The conference selects 18 
scientists who form the International Committee of 
Weights and Measures that governs the bureau.

For a time, the international prototype metre and kilo-
gram were based, for convenience, on the archive standards 
rather than directly on actual measurement of the Earth. 
Definition by natural constants was readopted in 1960, 
when the metre was redefined as 1,650,763.73 wavelengths of 
the orange-red line in the krypton-86 spectrum, and again in 
1983, when it was redefined as the distance traveled by light 
in a vacuum in 1/299,792,458 second. The kilogram is still defined 
as the mass of the international prototype at Sèvres.

In the 20th century the metric system generated 
derived systems needed in science and technology to 
express physical properties more complicated than simple 
length, weight, and volume. The centimetre-gram-second 
(CGS) and the metre-kilogram-second (MKS) systems 
were the chief systems so used until the establishment of 
the International System of Units.

Micrometre

The micrometre, also called a micron, is a metric unit of 
measure for length equal to 0.00l mm, or about 0.000039 
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inch. Its symbol is μm. The micrometre is commonly 
employed to measure the thickness or diameter of micro-
scopic objects, such as microorganisms and colloidal 
particles. Minute distances, as, for example, the wave-
lengths of infrared radiation, are also given in 
micrometres.

Mile

The mile includes any of various units of distance, such as 
the statute mile of 5,280 feet (1.609 km). It originated 
from the Roman mille passus, or “thousand paces,” which 
measured 5,000 Roman feet.

About the year 1500 the “old London” mile was defined 
as eight furlongs. At that time the furlong, measured by a 
larger northern (German) foot, was 625 feet, and thus the 
mile equaled 5,000 feet. During the reign of Queen 
Elizabeth I, the mile gained an additional 280 feet—to 
5,280—under a statute of 1593 that confirmed the use of a 
shorter foot that made the length of the furlong 660 feet.

Elsewhere in the British Isles, longer miles were used, 
including the Irish mile of 6,720 feet (2.048 km) and the 
Scottish mile of 5,952 English feet (1.814 km).

A nautical mile was originally defined as the length on 
the Earth’s surface of one minute (1/160 of a degree) of arc 
along a meridian (north-south line of longitude). Because 
of a slight flattening of the Earth in polar latitudes, how-
ever, the measurement of a nautical mile increases slightly 
toward the poles. For many years the British nautical mile, 
or admiralty mile, was set at 6,080 feet (1.85318 km), while 
the U.S. nautical mile was set at 6,080.20 feet (1.85324 km). 
In 1929 the nautical mile was redefined as exactly 1.852 km 
(about 6,076.11549 feet or 1.1508 statute miles) at an inter-
national conference held in Monaco, although the United 
States did not change over to the new international 
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nautical mile until 1954. The measure remains in universal 
use in both marine and air transportation. The knot is one 
nautical mile per hour.

Millimetre (mm) 

The millimetre is a unit of length equal to 0.001 metre in 
the metric system and the equivalent of 0.03937 inch.

Mina

The mina is the earliest of all known units of weight, 
created by the Babylonians and used by the Hittites, 
Phoenicians, Assyrians, Egyptians, Hebrews, and Greeks. 
Its weight and relationship to its major subdivisions varied 
at different times and places in the ancient world. In one 
surviving form, from the Babylonian period, the mina weighs 
about 640 grams, while in another it weighs 978 grams.

The mina, or minah, was a basic standard of weight 
among the ancient Hebrews. In the sacred system of 
weights, the sacred mina was equal to 60 shekels, and 50 
sacred minas equaled one sacred talent. In the Talmudist 
system, one Talmudist mina equaled 25 shekels, and 60 
Talmudist minas equaled one Talmudist talent. The 
Hebrew sacred mina has been estimated at 499 grams. 
The Greek, or Attic, mina, equal to 100 drachmas, has 
been estimated at 431 grams.

Mou

The mou is a Chinese unit of land measurement that 
varies with location but is commonly 806.65 square yards 
(0.165 acre, or 666.5 square metres). Based on the chi, a 
unit of length after 1860 measuring 14.1 inches, the mou 
has been defined by customs treaty as 920.417 square 
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yards. In ancient China, where units of measure displayed 
great regional and functional variety, the mou ranged from 
1/30 to 1/8 hectare (333.333 to 1,250 square metres).

Ounce

The ounce is a unit of weight in the avoirdupois system, 
equal to 1/16 pound (437 1/2 grains), and in the troy and 
apothecaries’ systems, equal to 480 grains, or 1/12 pound. 
The avoirdupois ounce is equal to 28.35 grams and the troy 
and apothecaries’ ounce to 31.103 grams. As a unit of 
volume, the fluid ounce is equal to 1/16 of a pint, or 29.57 
millilitres, in the U.S. Customary System and to 1/20 of a 
pint, or 28.41 millilitres, in the British Imperial System. As 
a unit of weight, the ounce derives from the Roman uncia 
(meaning “twelfth part”), which was 1/12 of a Roman foot or 
ounce. The standard or physical embodiment of the 
Roman foot, a copper bar, constituted the Roman pound 
standard and was divided along its length into 12 equal 
parts, called unciae. Thus, uncia designated both a unit of 
weight and one of length and is the source of the modern 
terms “inch” and “ounce.”

Peck

The peck is a unit of capacity in the U.S. Customary and 
the British Imperial Systems of measurement. In the 
United States the peck is used only for dry measure and 
is equal to 8 dry quarts, or 537.6 cubic inches (8.810 
litres). In Great Britain the peck may be used for either 
liquid or dry measure and is equal to 8 imperial quarts (2 
imperial gallons), or 1/4 imperial bushel, or 554.84 cubic 
inches (9.092 litres). The peck has been in use since the 
early 14th century, when it was introduced as a measure 
for flour. The term referred to varying quantities, 
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however, until the modern units were defined in the 19th 
century.

Pint

The pint is a unit of capacity in the British Imperial and 
U.S. Customary systems of measurement. In the British 
system the units for dry measure and liquid measure are 
identical; the single British pint is equal to 34.68 cubic 
inches (568.26 cubic cm) or one-eighth gallon. In the 
United States the unit for dry measure is slightly different 
from that for liquid measure; a U.S. dry pint is 33.6 cubic 
inches (550.6 cubic cm), while a U.S. liquid pint is 28.9 
cubic inches (473.2 cubic cm). In each system, two cups 
make a pint, and two pints equal a quart.

A U.S. liquid pint holds 1.042 pounds of water at room 
temperature, a fact that gave rise to the saying “a pint’s a 
pound the world around.” The pint has been a common 
unit of measure in Great Britain since the 14th century. 
The actual volume of the pint, however, has varied con-
siderably over the years; in the medieval and early modern 
British Isles it varied from 0.446 to 1.887 litres.

Pound

The pound is a unit of avoirdupois weight, equal to 16 
ounces, 7,000 grains, or 0.4536 kg, and of troy and apoth-
ecaries’ weight, equal to 12 ounces, 5,760 grains, or 0.37 kg. 
The Roman ancestor of the modern pound, the libra, is 
the source of the abbreviation lb. In medieval England 
several derivations of the libra vied for general acceptance. 
Among the earliest of these, the Tower pound, so called 
because its standard was kept in the Royal Mint in the 
Tower of London, was applied to precious metals and 
drugs and contained 5,400 grains, or 0.350 kg, while the 
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mercantile pound 
contained 6,750 
grains, or 0.437 kg. 
The troy pound, 
believed to have 
originated in Troyes, 
France, superseded 
the lighter Tower 
pound in 1527 as 
the gold and silver 
standard. Increased 
trade with France 
led also to the adop-
tion of the 16-ounce 
avoirdupois pound 
in the 16th century 
to replace the mer-
cantile pound.

The British mon-
etary pound is 
historically linked 
with the minting of 
silver coins (sterlings) from the Tower pound. Large 
payments were reckoned in “pounds of sterlings,” later 
shortened to “pounds sterling.”

Qa

The qa, also spelled qû or ka, was an ancient Babylonian liquid 
measure equal to the volume of a cube whose dimensions 
are each one handbreadth (3.9 to 4 inches, or 9.9 to 10.2 cm) 
in length. The cube held one great mina (about 2 pounds, or 
1 kg) of water by weight. Five qa made up a šiqlu, 100 qa 
equaled an imēru (donkey load), and 300 qa equaled a gur. The 
gur was the equivalent of about 80 U.S. gallons (302 litres).

Scales in supermarkets frequently give weight 
measurements in terms of pounds and ounces. 
© www.istockphoto.com/Michael Krinke
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Quart

The quart is a unit of capacity in the British Imperial and 
U.S. Customary systems of measurement. For both liquid 
and dry measure, the British system uses 1 standard quart, 
which is equal to 2 imperial pints, or 1/4 imperial gallon 
(69.36 cubic inches, or 1,136.52 cubic cm). The U.S. system 
has two units called a quart, one for liquid measure and a 
slightly larger unit for dry measure. The U.S. liquid quart is 
equal to 2 liquid pints, or 1/4 U.S. gallon (57.75 cubic inches, 
or 946.35 cubic cm); and the dry quart is equal to 2 dry 
pints, or 1/32 bushel (67.2 cubic inches, or 1,101.22 cubic cm).

The quart was originally a medieval English unit for 
dry and liquid measures that varied between 0.95 and 1.16 
litres, relatively close to its modern equivalents. In 
Geoffrey Chaucer’s Miller’s Tale (about 1370), it was used as 
a measure for ale.

Rod

The rod is an old English measure of distance equal to 16.5 
feet (5.029 metres), with variations from 9 to 28 feet (2.743 
to 8.534 metres) also being used. It was also called a perch 
or pole. The word rod derives from Old English rodd and 
is akin to Old Norse rudda (“club”). Etymologically rod is 
also akin to the Dutch rood, which referred to a land area 
of 40 square rods, equal to 1/4 acre, or 10,890 square feet 
(1,012 square metres). It also denoted just 1 square rod, or 
272.25 square feet (25.29 square metres). The rood also was 
a British linear unit, containing 660 feet (201.2 metres).

Scruple

The scruple is a unit of weight in the apothecaries’ system, 
equal to 20 grains, or 1/3 dram, and equivalent to 1.296 
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grams. It was sometimes mistakenly assigned to the avoir-
dupois system. In ancient times, when coinage weights 
customarily furnished the lower subdivisions of weight 
systems, the scruple (from Latin scrupulus, “small stone” or 
“pebble”) was a unit of Roman commercial weight as well 
as a unit of coinage weight. One drachma, the basic Greek 
silver unit, consisted of three scruples.

Shi

The shi, also called a dan, was the basic unit of weight in 
ancient China. The shi was created by Shi Huang Di, who 
became the first emperor of China in 221 BCE and who is 
celebrated for his unification of regulations fixing the 
basic units. He fixed the shi at about 60 kg (132 pounds). 
The modern shi is equivalent to 71.68 kg (157.89 pounds).

Steradian

The steradian is a unit of solid-angle measure in the 
International System of Units (SI), defined as the solid 
angle of a sphere subtended by a portion of the surface 
whose area is equal to the square of the sphere’s radius. 
Since the complete surface area of a sphere is 4π times the 
square of its radius, the total solid angle around a point is 
equal to 4π steradians. Derived from the Greek word for 
“solid” and the English word radian, a steradian is, in 
effect, a solid radian; the radian is an SI unit of plane-angle 
measurement defined as the angle of a circle subtended by 
an arc equal in length to the circle’s radius.

Stere

The stere is a metric unit of volume equal to 1 cubic 
metre, or 1,000 litres. The stere (from Greek stereos, 
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“solid”) was originally defined by law and used in France in 
1793, primarily as a measure for firewood. It is thus the 
metric counterpart of the cord, one standard cord (128 
cubic feet of stacked wood) being equal to 3.625 steres. A 
stere is made up of 10 decisteres, and 100 steres make up a 
hectostere. Very large volumes may be expressed in kilo-
steres, equal to 1,000 steres.

Stone

The stone is a British unit of weight for dry products 
generally equivalent to 14 pounds avoirdupois (6.35 kg), 
though it varied from 4 to 32 pounds (1.814 to 14.515 kg) for 
various items over time. Originally any good-sized rock 
chosen as a local standard, the stone came to be widely 
used as a unit of weight in trade, its value fluctuating with 
the commodity and region. In the 14th century England’s 
exportation of raw wool to Florence necessitated a fixed 
standard. In 1389 a royal statute fixed the stone of wool at 
14 pounds and the sack of wool at 26 stones. Trade stones 
of variant weights persist, such as the glass stone of 5 
pounds. The stone is still commonly used in Britain to 
designate the weights of people and large animals.

Talent

The talent was a unit of weight used by many ancient 
civilizations, such as the Hebrews, Egyptians, Greeks, and 
Romans. The weight of a talent and its relationship to its 
major subdivision, the mina, varied considerably over time 
and location in the ancient world. The most common ratio 
of the talent to the mina was probably 1:60.

The Hebrew talent, or kikka-r, probably of Babylonian 
origin, was the basic unit of weight among the ancient 
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Hebrews. In the sacred system of weights, the Talmudic 
talent was equal to 60 Talmudic minas.

The talent was also an important unit of weight 
among the Greeks, who undoubtedly borrowed it from 
eastern neighbours. The Attic talent, which equaled 60 
Attic minas, is estimated to have weighed about 56.9 
pounds (25.8 kg). It was certainly smaller than the 
Hebrew talent.

Ton

The ton is a unit of weight in the avoirdupois system equal 
to 2,000 pounds (907.18 kg) in the United States (the short 
ton) and 2,240 pounds (1,016.05 kg) in Britain (the long ton). 
The metric ton used in most other countries is 1,000 kg, 
equivalent to 2,204.6 pounds avoirdupois. The term 
derives from tun, denoting a large barrel used in the wine 
trade and named from the French tonnerre, or “thunder,” in 
turn named for the rumbling it produced when rolled. Ton 
came to mean any large weight, until it was standardized 
at 20 hundredweight although the total weight could be 
2,000, 2,160, 2,240, or 2,400 pounds (from 907.18 to 
1,088.62 kg) depending on whether the corresponding 
hundredweight contained 100, 108, 112, or 120 pounds.

Ton, as a unit of volume, may also refer to the cargo 
capacity of ships or to the freight itself. The register ton is 
defined as 100 cubic feet, the freight or measurement ton 
as 40 cubic feet; an older measure of a ship’s displacement 
was based on the volume of a long ton of seawater, or 35 
cubic feet. Variant tons of capacity have existed for spe-
cific commodities, such as the English water ton, used to 
measure petroleum products and equal to 224 British 
Imperial System gallons; the timber ton of 40 cubic feet; 
and the wheat ton of 20 U.S. bushels.
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Troy weight

Troy weight is a traditional system of weight in the British 
Isles based on the grain, pennyweight (24 grains), ounce 
(20 pennyweights), and pound (12 ounces). The troy grain, 
pennyweight, and ounce have been used since the Middle 
Ages to weigh gold, silver, and other precious metals and 
stones. The name supposedly derives from the city of 
Troyes in France, site of one of the major medieval fairs. 
The troy pound was adopted by the U.S. Mint for the 
regulation of coinage in 1828.

The troy pound is equal to the apothecaries’ pound 
and to approximately 0.82 avoirdupois pound and 0.373 
kilogram.

Zhang

The zhang was an old Chinese measure of length equal to 
10 chi, or 3.58 metres (11 feet 9 inches). The value was 
agreed upon by China in treaties (1842–44 and 1858–60) 
with England and France. It was thereafter used by 
Chinese maritime customs as the standard value for 
assessing all tariff duties. The length of one chi varied 
throughout China from 27.9 to 40 cm (11 to 15.8 inches). 
The so-called treaty chi was defined for customs purposes 
as 35.8 cm (14.1 inches).
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G L o ssA R Y

arithmetic  Branch of mathematics that studies numbers 
and the relationships between numbers. It generally 
refers to basic operations and computation, such as 
addition, subtraction, multiplication, and division.

associative law  Property of addition and multiplication 
stating that for any numbers, for example a, b, and c, 
any grouping of those numbers will produce the same 
result when they are added or multiplied. This can be 
illustrated by the following: (a + b) + c = a + (b + c) or 
(ab)c = a(bc).

base  A number greater than 1 in terms of which further 
unit groupings can be made.

binary system  A numeric system with a base of 2, whose 
only digits are 0 and 1.

cardinality  Numeration of elements in a given set.
ciphered numeral system  Numeral system in which the 

multiples of a base, b, in addition to b and the number 
1, are designated by special and unrelated names.

commutative law  Property of addition and multiplication 
stating that any numbers, for example a, b, and c, 
can be added or multiplied in any order. This can be 
illustrated by the following: a + b + c = b + c + a or 
abc = bca.

cuneiform numeral  Babylonian representation of a 
number formed by impressing a wedge shape in clay.

decimal number system  Also called the Hindu-Arabic 
or Arabic system. A type of positional numeral system 
with 10 as a base and with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 
and 9. A decimal point (dot) is used to signify an 
alternate expression of fractions.
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distributive law  Property of arithmetic stating that 
multiplying the sum of two or more numbers, for 
example, b and c, by a factor, a, is equivalent to 
multiplying each number by that factor and then 
adding the sums. This can be illustrated by the  
following: a(b + c) = ab + ac.

divisor  An integer (factor) that divides another evenly. 
exponent  An expression of the product of a x a x a. . ., 

wherein a represents any number (the base) and any 
number n is signified as a superscript of the base, such 
that an is equivalent to a multiplied by itself n times.

factor  A number that divides another number without 
leaving a remainder.

fundamental theorem of arithmetic  Theorem that 
states that any integer larger than 1 can be uniquely 
represented as a product of prime numbers.

integer  Any positive or negative whole number or zero.
irrational number  A number that cannot be expressed 

as a ratio of two nonzero integers. Decimals with no 
repeating pattern of digits that continue infinitely are 
expressions of irrational numbers. 

logarithm  The exponent (x) that a base (b) must have in 
order to produce a given number (y). If bx = y, then x is 
the logarithm of y to base b, or alternately, logb (y) = x.

measurement theory  The study of number assignment 
to objects and the determination of what can be 
measured, the relationships between measurements, 
and error in measurement processes. 

multiplicative grouping system  Numeral system in 
which certain levels of numbers are designated by 
special characters or symbols. For example, if 10 is 
represented by X and 100 is represented by C, but the 
digits between 1 and 9 are represented normally, the 
number 752 would be 7C5X2. 
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natural number  A positive integer. Zero may also be 
included in the set of natural numbers if the set 
includes all non-negative numbers. 

positional numeral system  A number system in which 
all digits less than a given base, b, receive unique 
names, with larger numbers expressed as sequences 
of these digits. 

prime number  An integer greater than 1 that can only 
be divided by itself and the number 1.

prime number theorem  Formula that approximates 
the number of prime numbers below a given positive 
real number (x). If the number of primes below x is 
designated as p(x), then it can be approximated by the 
formula x/ln(x).

rational number  The quotient of any two nonzero 
integers, including integers themselves. Decimals 
that terminate or repeat infinitely are also rational 
numbers.

set  A grouping of a finite or infinite number of elements, 
which may or may not be mathematical, that is 
treated as a single unit. 

set theory  Branch of mathematics that deals with the 
properties of sets 

transfinite number  Measure of the size of infinite sets. 
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History of Numbers (1969, reissued 1992; trans. from 
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origins of numbers. Georges Ifrah, The Universal History of 
Numbers: From Prehistory to the Invention of the Computer
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is encyclopaedic in its scope.
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Constance Reid, From Zero to Infi nity: What Makes Numbers 
Interesting, 4th ed. (1992), is an introduction to elementary 
number theory accessible to nonmathematicians. Other 
introductory works include Robert L. Hershey, How to 
Think with Numbers (1982), an analysis of consumer appli-
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demonstrating methods and applications of arithmetic, 
and analyzes its content and impact. J.L. Berggren, Episodes 
in the Mathematics of Medieval Islam (1986), chronicles the 
history of Islamic mathematics. 

Set Theory

I. Grattan-Guinness, The Search for Mathematical Roots, 
1870–1940 (2000), is the most complete mathematical 
account of the development of set theory and includes an 
extensive bibliography. José Ferreirós, Labyrinth of Thought: 
A History of Set Theory and Its Role in Modern Mathematics 
(1999), focuses on the motivation and institutions behind 
the research programs in set theory between 1850 and 
1940. Jean van Heijenoort (ed.), From Frege to Gödel: A 
Source Book in Mathematical Logic, 1879–1931 (1967, reissued 
2002), has 36 of the most important papers in mathemati-
cal logic and set theory. 

Standard introductions for advanced undergraduate 
or beginning graduate-level students are Herbert B. 
Enderton, Elements of Set Theory (1977); and Keith J. Devlin, 
The Joy of Sets: Fundamentals of Contemporary Set Theory, 2nd 
rev. ed. (1993; originally published as Fundamentals of 
Contemporary Set Theory, 1979). Robert L. Vaught, Set 
Theory: An Introduction, 2nd ed. (1995, reissued 2001), is 
an undergraduate textbook that includes answers to 
exercises, increasing its usefulness for self-study. Paul R. 
Halmos, Naive Set Theory (1960, reissued 1998), is a con-
cise overview of basic set theory ideas for nonspecialist 
mathematics students. 

Number Theory

Øystein Ore, Number Theory and Its History (1948; 
reprinted with supplement, 1988), is a popular 
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introduction to this fascinating subject and a timeless 
classic. More demanding mathematically is a book by a 
major figure in 20th-century mathematics, André Weil, 
Number Theory: An Approach through History from 
Hammurapi to Legendre (1984), which gives special atten-
tion to the work of Fermat and Euler. A dated but immense 
treatise is Leonard Eugene Dickson, History of the Theory 
of Numbers, 3 vol. (1919–23, reprinted 1999), which, though 
lacking material on 20th-century mathematics, provides 
a minutely detailed account of the development of 
number theory to that point. Morris Kline, Mathematical 
Thought from Ancient to Modern Times (1972, reissued in 3 
vol., 1990), is an encyclopaedic survey of the history of 
mathematics—including many sections on the history 
of number theory.

Recreational aspects of number theory are pre-
sented in Albert H. Beiler, Recreations in the Theory of 
Numbers: The Queen of Mathematics Entertains, 2nd ed. 
(1966), and John H. Conway and Richard K. Guy, The 
Book of Numbers (1996, reprinted with corrections, 1998). 
Simon Singh, Fermat’s Enigma: The Epic Quest to Solve the 
World ’s Greatest Mathematical Problem (1997), presents 
the historical development of modern number theory 
through the story of the solution of Fermat’s last 
theorem. 

Measurement System

The understanding and development of systems of 
physical measurements, from early elementary to sophis-
ticated modern ones, are discussed in A.E. Berriman, 
Historical Metrology: A New Analysis of the Yardsticks of the 
Universe (1984); O.A.W. Dilke, Mathematics and Measurement 
(1987); Witold Kula, Measures and Men (1986; originally 
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Western European Weights and Measures Since the Age of 
Science (1990). 

Advance toward modern systems of measurement is 
traced in Arthur E. Kennelly, Vestiges of Pre-Metric Weights 
and Measures Persisting in Metric-System Europe, 1926–1927 
(1928); Landmarks in Metrology—1983 (1983).
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