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Preface 


Early in the 20th century, the great mathematician David Hilbert 

noticed that a number of important mathematicaJ arguments were 

structurally similar. In fact, he realized that at an appropriate level of 

generality they could be regarded as the same. This observation, and 

others like it, gave rise to a new branch of mathematics, and one of its 

central concepts was named after Hilbert. The notion of a Hilbert space 

sheds light on 80 much of modern mathematics, from number theory to 

quantum mechanics, that ifyou do not know at least the rudiments of 

Hilbert space theory then you cannot claim to be a well-educated 

mathematician. 

What, then, is a Hilbert space? In a typical university mathematics 

course it is denned as a complete inner-product space. Students 

attending such a course are expected to know, from previous courses, 

that an inner-product space is a vector space equipped with an inner 

product, and that a space is complete if every Cauchy sequence in it 

converges. Ofcourse, for those dennitions to make sense, the students 

also need to know the dennitions ofvector space, inner product, 

Cauchy sequence and convergence. To give just one of them (not the 

longest): a Cauchy sequence is a sequence Xl> X" X" .•. such that 

for every positive number té there exists an integer N such that for any 

two integers p and q greater than N the distance from xp to xq is at 

mostE. 



In short, to have any hope ofunderstanding what a Hilbert space is, you 

must learn and digest a whole hierarchy oflower-Ievel eoncepts first. 

Not surprisingly, this takes time and effort. Since the same i8 true of 

many ofthe most important mathematical ideas, there is a severe Iimit 

to what can be achieved by any book that attemp18 to offer an accessible 

introduction to mathematics, especially if it is 10 be very short. 

Instead oftrying to find a c1ever way round this difficulty, 1 have focused 

on a different barrier to mathematical communication. This one, which 

i5 more philosophical than technical, separates those who are happy 

with notions such as infinity, the square root of minus one, the twenty

sixth dimension, and curved space from those who find them 

disturbingly paradoxical. It is possible to become comfortable with 

these ideas vvithout immersing oneself in technicalities, and 1shaH try to 

showhow. 

If this book can be said to have a message, it is that one should learn to 

think abstractly, because by doing so many phil080phical difficulties 

sim ply disappear. 1 explain in detail what 1 mean by the abstract method 

in Chapter 2. Chapter 1 concerns a more familial', and relatcd, kind of 

abstraction: the process ofdistilling the essential features from a real

world problem, and thereby turning it into a mathematical one. These 

two chapters, and Chapter 3, in which 1 discuss what i8 meant by a 

rigOrou8 proo±; are about mathematics in general. 

Thereafter, 1 discuss more specifie topies. The last chapter is more about 

mathematicians than about mathematics and i8 therefore somewhat 

different in character from the others. 1 recommend reading Chapter 2 

before the later ones, but apart from that the book is aITanged as 

unhierarchically as possible: 1 shall not assume, towards the end of the 

book, that the reader has understood and remembered everything that 

cornes earlier. 

Very little prior knowledge is needed to read this book a British GCSE 

course or i18 equivalent should be enough - but 1 do presuppose sorne 

interest on the part of the reader rather than trying to drum it up myself. 



For this reason 1 have done without anecdotes, cartoons, exclamation 

marks, jokey chapter titles, or pictures ofthe Mandelbrot set. 1 have aJso 

avoided topics such as chaos theory and Gôdel's theorem, which have 

a hold on the public imagination out of proportion to their impact on 

CUITent mathematicaJ research, and which are in any case weil treated 

in many other books. Instead, 1 have taken more mundane topics and 

discussed them in detail in order to show how they can be understood in 

a more sophisticated way. In other words, 1 have aimed for depth rather 

than breadth, and have tried to convey the appeal of mainstream 

mathematics by letting it speak for itself. 

1 would like to thank the Clay Mathematics Institute and Princeton 

University for their support and hospitality during part of the writing of 

the book. 1 am very grateful to Gilbert Adair, Rebecca Gowers, Emily 

Gowers, Patrick Gowers, Joshua Katz, and Edmund Thomas for reading 

earlier drafts. Though they are too intelligent and weIl informed to 

count as general readers, it is reassuring to know that what 1 have 

written is comprehensible to at least sorne non-mathematicians. Their 

comments have resulted in many improvements. To Emily 1 dedicate 

this book, in the hope that it ,vil! give her a small idea ofwhat it is 1 

do aIl day. 
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Chapter 1 

Models 

How to throw a stone 

Suppose that you are standing on level ground on a calm day, and 
have in your hand a stone which you would like to throw as far as 
possible. Given how hard you can throw, the most important 
decision you must make is the angle at which the stone leaves your 
hand. If this angle is too flat, then although the stone will have a 
large horizontal speed it will land quite soon and will therefore not 
have a chance to travel very far. If on the other hand you throw the 
stone too high, then it will stay in the air for a long time but without 
covering much ground in the process. Clearly sorne sort of 
compromise is needed. 

The best compromise, which can be worked out using a 
combination of Newtonian physics and sorne elementary calculus, 
turns out to be as neat as one could hope for under the 
circumstances: the direction ofthe stone as it leaves your hand 
should be upwards at an angle of 45 degrees to the horizontal. The 
same calculations show that the stone will trace out a parabolic 
curve as it flies through the air, and they tell you how fast it will 
be travelling at any given moment after it leaves your hand. 

It seems, therefore, that a combination ofscience and mathematics 
enables one to predict the entire behaviour ofthe stone trom the 



moment it is launched until the moment it lands. However, it does 
50 only ifone is prepared to make a number of simplifying 
assumptions, the main one being that the only force acting on 
the stone i5 the earth's gravity and that this force has the same 
magnitude and direction everywhere. That is not true, though, 
because it fails to take into account air resistance, the rotation ofthe 
earth, a small gravitational influence from the moon, the fact that 
the earth's gravitational field is weaker the higher you are, and the 
gradually ,changing direction of 'vertically downwards' as you move 
from one part ofthe earth's surface to another. Even ifyou accept 
the calculations, the recommendation of 45 degrees is based on 
another implicit assumption, namely that the speed of the stone as 
it leaves your hand does not depend on its direction. Again, this is 
untrue: one can throw a stone harder when the angle is flatter. 

In the light ofthese objections, sorne ofwhich are dearly more 
~ 	 serious than others, what attitude should one take to the1calculations and the predictions that follow from them? One .., 
'; 	 approach would be to take as many ofthe objections into account as 
~ 	 possible. However, a much more sensible policy is the exact 

opposite: decide what level of aceuracy you need, and then try ta 
achieve it as simply as possible. Ifyou know from experience that a 
simplifying assumption will have only a small effect on the answer, 
then you should make that assumption. 

For example, the effect of air resistance on the stone will be fairly 
small because the stone is small, hard, and reasonably dense. 
There is not much point in complicating the calcnlations by taking 
air resistance into account when there i5 likely to be a significant 
error in the angle at which one ends up throwing the stone anyway. 
Ifyou want to take it into account, then for most purposes the 
folloVl-ing rnle of thumb is good enough: the greater the air 
resistance, the flatter you should make your angle to compensate 
for it. 

2 

What is a mathematical model? 

VVhen one examines the solution to a physical problem, it lS often, 
though not always, possible to draw a clear distinction between the 
contributions made by science and those made by mathematics. 
Scientists devise a theory, based partly on the results ofobservations 
and experiments, and partly on more general considerations such as 
simplicity and explanatory power. Mathematicians, or scientists 
doing mathematics, then investigate the purely logical 
consequences of the theory. Sometimes these are the results of 
routine calculations that predict exactly the sorts of phenomena the 
theory was designed to explain, but occasionally the predictions of a 
theory can be quite unexpected. If these are later confirmed by 
experiment, then one has impressive evidence in favour of the 
theory. 

The notion of confirming a scientific prediction is, however, 
somewhat problematic, because of the need for simplifications f 
ofthe kind l have been discussing. To take another example, a
Newton's laws of motion and gravity imply that if you drop 
two objects from the same height then they will hit the ground 
(ifit i8 level) at the same time. This phenomenon, first pointed 
out by Galileo, is somewhat counter-intuitive. In fact, it is 
worse than counter-intuitive: ifyou try it for yourself, with, 
say, a golf bail and a table-tennis ball, you will find that the 
golfbalilands first. 80 in what sense was Galileo 
correct? 

It is, ofcourse, because ofair resistance that we do not regard this 
Uttle experiment as a refutation of Galileo's theory: experience 
shows that the theory works weIl when air resistance is small. Ifyou 
find it too convenient to let air resistance come to the rescue every 
time the predictions of Newtonian mechanics are mistaken, then 
your faith in science, and your admiration for Galileo, Vli11 be 
restored ifyou get the chance to watch a feather fall in a vacuum - it 
really does just drop as a stone would. 

3 
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Nevertheless, because scientific observations are never completely 
direct and conclusive, we need a better way to describe the 
relationship between science and mathematics. Mathematicians do 
not apply scientific theories directly to the world but rather to 

models. A model in this sense can he thought of as an imaginary, 
simplified version ofthe part of the world being studied, one in 
which exact calculations are possible. In the case ofthe stone, the 
relationship between the world and the model is something like 
the relationship between Figures land 2. 

........ --- .......... ... 
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There are many ways of modelling a given physical situation, and 
we must use a mixture of experience and further theoreticaI 
considerations to decide what a given mode! is likely to teach us 
about the world itself. When choosing a model, one priority is to 
make its behaviour correspond closely to the actual, observed 
behaviour of the world. However, other factors, such as simplicity 
and mathematical elegance, can often be more important. Indeed, 

there are very useful models with aImost no resemblance to the 
world at aIl, as sorne of my examples will illustrate. 

Rolling a pair of dice 
If1 roll a pair ofdice and want to know how they will behave, then 
experience tells me that there are certain questions it is unrealistic 
to ask. For example, nobody could be expected to tell me the 
outcome of a given roll in advance, even if they had expensive 
technology at their disposaI and the dice were to be rolled by a 

machine. By contrast, questions ofa probabilistic nature, such as, ..1 
'How likely is it that the numbers on the dice will add up to seven?' 
can often be answered, and the answers may be useful if; tor 
example, 1 am playing backgammon for money. For the second sort 
of question, one can model the situation very sim ply by 
representing a roll of the dice as a random choice of one of the 
following thirty-six pairs of numbers. 

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

The first number in each pair represents the number showing on 

the first die, and the second the number on the second. Since exactly 
six ofthe pairs consist oftwo numbers that add up to seven, the 
chances of rolling a seven are six in thirty-six, or one in six. 

5 
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One might object to this model on the grounds that the dice, 
when rolled, are obeying Newton's laws, at least to a very high 
degree of precision, so the way they land is anything but 
random: indeed, it could in principle be calculated. However, the 
phrase 'in principle' is being overworked here, since the 
calculations would be extraordinarily complicated, and would 
need to be based on more precise information about the shape, 
composition, initial velocities, and rotations of the dice than 
could ever be measured in practice. Because ofthis, there is no 
advantage whatsoever in using sorne more complicated 
deterministic model. 

Predicting population growth 
The 'softer' sciences, such as biology and economics, are full of 
mathematical models that are vastly simpler than the phenomena 

~ 	 they represent, or even deliberately inaccurate in certain ways, but 
~ 	 nevertheless useful and illuminating. To take a biological example 
~ " 	of great economic importance, let us imagine that we wish to 
::E 	 predict the population of a country in 20 years' time. One very 

simple model we might use represents the entire country as a pair of 
numbers (t, P(t». Here, t represents the time and pet) stands for the 
size ofthe population at time t. In addition, we have two numbers, b 
and d, to represent birth and death rates. These are defined to be 
the number ofbirths and deaths per year, as a proportion of the 
population. 

Suppose we know that the population at the beginning of the year 
2002 is P. According to the modeljust defined, the number of 
births and deaths during the year will be bP and dP respectively, 
so the population at the beginning of 2003 will be 
P + bP - dP = (1 + b - d)P. This argument works for any year, so we 
have the formula pen + 1) = (1 + b - d)P(n), meaning that the 
population at the beginning ofyear n + 1 is (1 + b - d) times 
the population at the beginning ofyear n. In other words, each year 
the population multiplies by (1 + b - d). It follows that in 20 years 

6 

it multiplies by (1 + b - d)"o, which gives an answer to our original 
question. 

Even this basic model is good enough to persuade us that if the 
birth rate is significantly higher than the death rate, then the 
population will grow extremely rapidly. However, it is also 
unrealistic in ways that can make its predictions very inaccurate. 
For example, the assumption that birth and death rates will 
remain the same for 20 years is not very plausible, since in the 
past they have often been affected by social changes and political 
events such as improvements in medicine, new diseases, increases 
in the average age at which women start to have children, tax 
incentives, and occasionallarge-scale wars. Another reason to 
expect birth and death rates to vary over time is that the ages of 
people in the country may be distributed rather unevenly. For 
example, if there has been a baby boom 15 years earlier, then 
there is sorne reason to expect the birth rate to rise in 10 to 
15 years' time. f 

!fr 
It is therefore tempting to complicate the model by introducing 
other factors. One could have birth and death rates b(t) and d(t) 

that varied over time. Instead of a single number pet) representing 
the size of the population, one might also like to know how many 
people there are in various age groups. It would also be helpful to 
know as much as possible about social attitudes and behaviour in 
these age groups in order to predict what future birth and death 

rates are likely to be. Obtaining this sort of statistical information is 
expensive and difficult, but the information obtained can greatly 
improve the accuracy ofone's predictions. For this reason, no single 
model stands out as better than aIl others. As for social and 
political changes, it is impossible to say with any certainty what 
they will be. Therefore the most that one can reasonably ask of any 
model is predictions of a conditional kind: that is, ones that tell us 
what the effects of social and political changes will be if they 
happen. 

7 
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The behaviour of gases 

According to the kinetic theory ofgases, introdueed by Daniel 
Bernoulli in 1738 and developed by Maxwell, Boltzmann, and 
others in the second half of the 19th eentury, a gas is made up of 
moving molecules, and many of its properties, such as 
temperature and pressure, are statistical properties of those 
molecules. Temperature, for example, corresponds ta their average 
speed. 

With this idea in mind, let us try to devise a model of a gas 
contained in a cubical box. The box should ofcourse be represented 
bya cube (that is, a mathematical rather than physical one), and 
sinee the molecules are very amall it is natural to represent them by 
points in the cube. These points are supposed to move, so we must 
decide on the rules that govern how they move. At this point we 

i 	 have to make sorne choices. .. 
~ If there were just one molecule in the box, then there would be an 
:I! 	 obvious rule: it travels at constant speed, and bounces off the waHs 

of the box when it hits them. The simplest conceivable way to 
generalize this model is then to take N molecules, where N is sorne 
large number, and assume that they all behave this way, with 
absolutely no interaction between them. In arder to get the 
N-molecule model started, we have to choose initial positions 
and velocities for the molecules, or rather the points representing 
them. A good way of doing this is ta make the choice randomly, 
since we would expect that at any given time the molecules in a 
real gas would be spread out and moving in many directions. 

It is not hard to say what is meant by a random point in the cube, or 
a random direction, but it is less clear how ta choose a speed 
randomly, since speed can take any value from 0 to infinity. To avoid 
this difficulty, let us make the physically implausible assumption 
that aIl the molecules are moving at the same speed, and that it is 
only the initial positions and directions that are chosen randomly. A 
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two-dimensional version of the resulting model is illustrated in 
Figure 3 . 

The assumption that our N molecules move entirely independently 
of one another is quite definitely an oversimplification. For 
example, it means that there is no hope ofusing this model to 
understand why a gas becomes a liquid at sufficiently low 
temperatures: ifyou slow down the points in the model you get the 
same model, but running more slowly. Nevertheless, it does explain 
much ofthe behaviour of real gases. For example, imagine what 
would happen ifwe were gradually to shrink the box. The molecules 
would continue to move at the same speed, but now, because the 
box was smaller, they would hit the waHs more often and there 
would be less wall to hit. For these two reasons, the number of 
collisions per second in any given area of wall would be greater. 
These collisions account for the pressure that a gas exerts, sa we 
can conclude that ifyou squeeze agas into a smaIler volume, then 
its pressure is likely to increase as is confirmed by observation. A 
similar argument explains why, ifyou increase the temperature of 
agas without increasing its volume, its pressure also increases. 
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And it is not tao hard to work out what the numerical , wm,how. Ittu= out that ~ "''Y ,imp!, mode], of'Y'''= of 
relationships between pressure, temperature, and volume j interacting particles behave in a fascinating way and give rise to 
should be. 

The above model is roughly that of Bernoulli. One of Maxwell's 
achievements was ta discover an elegant theoretical argument 
that salves the problem ofhow to choose the initial speeds more 
realistically. Ta understand this, let us begin by dropping our 
assumption that the molecules do not interact. Instead, we shall 
assume that from time to time they collide, like a pair oftiny billiard 
balls, after which they go off at other speeds and in other directions 
that are subject ta the laws of conservation of energy and 
momentum but otherwise random. Ofcourse, it is not easy to see 
how they will do this if they are single points occupying no volume, 
but this part of the argument is needed only as an informal 
justification for sorne sort of randomness in the speeds and 

el directions of the molecules. Ma.xwell's two very plausible 

1assumptions about the nature ofthis randomness were that it 
should not change over time and that it should not distinguish i 

:E 	 between one direction and another. Roughly speaking, the second 
of these assumptions means that ifdJ and d2 are two directions and 
8 is a certain speed, then the chances that a partic1e is travelling at 
speed 8 in direction li, are the same as the chances that it is 
travelling at speed 8 in direction d2 • Surprisingly, these two 
assumptions are enough to determine exactly how the velocities 
should be distributed. That is, they tell us that ifwe want to choose 
the velocities randomly, then there is only one natural way ta do it. 
(They should be assigned according to the normal distribution. This 
is the distribution that produces the famous 'bell curve', which 
occurs in a large number ofdifferent contexts, bath mathematical 
and experimental.) 

Once we have chosen the velocities, we can again forget an about 
interactions between the molecules. As a result, this slightly 
improved model shares many of the defects ofthe first one. In order 
ta remedy them, there is no choice but to model the interactions 
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extremely difficult, indeed mostly unsolved, mathematical 
problems. 

Modelling brains and computers 

A computer can also be thought ofas a collection of many simple 
parts that interact with one another, and largely for this reason 
theoretical computer science is also full of important unsolved 
problems. A good example of the sort ofquestion one might like to 
answer is the following. Suppose that somebody chooses two prime 
numbers p and q, multiplies them together and tells you the answer 
pq. You cau then work out what p and q are by taking every prime 
number in turn and seeingwhether it goes exactly into pq. For 
example, ifyou are presented with the number 91, you can quickly 
establish that it is not a multiple of 2, 3, or 5, and then that it 
equals 7 x 13. f 

;. 
If, however, p and q are very large with 200 digits each, say - then 
this process oftrial and error takes an unimaginably long time, even 
with the help ofa powerful computer. (If you want to get a feel for 
the difficulty, try finding two prime numbers that multiply to give 
6901 and another two that give 280123.) On the other hand, it is not 
inconceivable that there is a much c1everer way to approach the 
problem, one that might be used as the basis for a computer 
program that does not take too long to run. If such a method could 
be found, it would allow one to break the codes on which most 
modern security systems are based, on the Internet and e1sewhere, 
since the difficulty ofdeciphering these codes depends on the 
difficulty of factorizing large numbers. It would therefore be 
reassuring if there were sorne way ofshowing that a quick, efficient 
procedure for calculatingp and q from their product pq does not 
exist. Unfortunately, while computers continually surprise us with 
what they can be used for, almost nothing is known about what they 
cannot do. 
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4. A primitive computer program 

Before one can begin to think about this problem one must find 

sorne way of representing a computer mathematically, and as 
simply as possible. Figure 4 shows one of the best ways of doing 
this. It consists oflayers ofnodes that are linked to one another by 
tines that are called edges. Into the top layer goes the 'input', which 
is a sequence of Os and ls, and out ofthe bottom layer cornes the 
'output', which is another sequence of Os and ls. The nodes are of 

three kinds, called AND, OR, and NOT gates. Each of these gates 
receives sorne Os and ls from the edges that enter it from aoove. 
Depending on what it receives, it then sends out Os or ls itself, 
according to the following simple rules: ifan AND gate receives 
nothing but 18 then it sends out ls, and otherwise it sends out Os; if 
an OR gate receives nothing but Os then it sends out Os, and 
otherwise it sends out ls; only one edge is allowed to enter a NOT 
gate from above, and it sends out 15 if it receives a 0 and Os if it 
receive8 a 1. 

An array ofgates linked by edges is called a circuit, and what 1 f 
have described is the circuit model ofcomputation. The reason i 
'computation' is an appropriate word is that a circuit can be thought 
of as taking one sequence of Os and 18 and transforming it into 
another, according to sorne predetermined rules which may, if the 
circuit is large, be very complicated. This is also what computers do, 
although they translate these sequences out ofand into formats that 
we can understand, such as high-Ievel programming languages, 
windows, icons, and so on. There turns out to be a fairly simple way 

(from a theoretical point ofview it would be a nightmare to do in 
practice) ofconverting any computer program into a circuit that 
transforms Dl-sequences according to exactIy the same rules. 

Moreover, important characteristics ofcomputer programs have 
their counterparts in the resulting circuits. 

In particular, the number ofnodes in the circuit corresponds to the 

length oftime the computer program takes to run. Therefore, ifone 
can show that a certain way of transforming Dl-sequences needs a 
very large circuit, then one has also shown that it needs a computer 
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program that runs for a very long time. The advantage ofusing the 
circuit model over analysing computers directly is that, from the 
mathematical point ofview, circuits are simpler, more natural, and 
easier to think about. 

A smaU modification ta the circuit modellcads to a useful model of 
the brain. Now, instead ofos and 1s, one has signals ofvarying 
strengths that ean be rcpresentcd as numbers between 0 and 1. 
The gates, which correspond ta neurons, or brain cens, are also 
different, but they still behave in a very simple way. Each one 
receives sorne signals from other gates. If the total strength ofthese 
signals that is, the sum ofall the corresponding numbers - is large 
enough, then the gate sends out its own signais ofcertain strengths. 
Otherwise, it does not. This corresponds to the decision of a neuron 
whether or not to 'tire'. 

~ It may seem hard ta bclieve that this model could capture the full 
'DE'" complexity of the brain. However, that is partly bccause 1 have said 
j nothing about how many gates there should be or how thcy should 

be arranged. A typical human brain contains about 100 billion 
neurons arrangcd in a very complieatcd way, and in the present 
state ofknowledge about the brain it is not possible to say aIl that 
much more, at least about the fine detail. Nevertheless, the model 
provides a useful theoretieal framework for thinking about how the 
brain might work, and it has allowed people to simulate certain 
sorts ofbrain-like behaviour. 

Colouring maps and drawing up timetables 
Suppose that you are designing a map that is divided into regions, 
and you wish to choose colours for the regions. You would like to use 
as few colours as possible, but do not ,vish ta give two adjacent 
regions the same colour. Now suppose that you are drawing up the 
timetable for a university course that is divided into modules. The 
number of possible times for lectures is limited, sa sorne modules 
will have ta clash with others. You have a list ofwhich students are 
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taking which modules, and would like to choose the times in such 
a way that two modules clash only when there is nobody taking 

both. 

These two problems appear to be quite different, but an appropriate 
choice ofmodel shows that from the mathematical point ofview 
they are the same. In both cases there are sorne objects (countries, 
modules) to which something must be assigned (colours, times). 
Sorne pairs of objects are incompatible (neighbouring countries, 
modules that must not clash) in the sense that they are not allowed 
to receive the same assignment. In neither problem do we really 
care what the objects are or what is being assigned to them, so we 
mayas weIl just represent them as points. To show which pairs of 
points are incompatible we can link them with lines. A collection 
ofpoints, sorne ofwhich are joined by Hnes, is a mathematical 
structure known as a graph. Figure 5 gives a simple example. 
It is customary to caU the points in a graph vertices, and the 

lines edges. 

5. A graph with 10 vertices and 15 edges 

Once we have represented the problems in this way, our task in both 
cases is to divide the vertices into a small number of groups in such 
a way that no group contains two vertices linked by an edge. (The 
graph in Fignre 5 ean be divided into three such groups, but not 
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into two.) This illustrates another very good reason for making 
models as simple as possible: ifyou are lucky, the same model can 
be used to study many different phenomena at once. 

Various meanings of the word 'abstract' 

When devising a model, one tries to ignore as much as possible 
about the phenomenon under consideration, abstracting from it 
only those features that are essential to understanding its 
behaviour. In the examples l have discussed, stones were reduced to 
single points, the entire population of a country to one number, the 
brain to a network of gates obeying very simple mathematical rules, 
and the interactions between molecules to nothing at aIl. The 
resulting mathematical structures were abstract representations of 
the concrete situations being modelled. 

el 	 These are two senses in which mathematics is an abstract subject: it 1abstracts the important features from a problem and it deals with 
~ 	 objects that are not concrete and tangible. The next chapter will 
::! 	 discuss a third, deeper sense of abstraction in mathematics, of 

which the example ofthe previous section has already given us 
sorne idea. A graph is a very flexible model with many uses. 
However, when one studies graphs, there is no need to bear these 
uses in mind: it does not matter whether the points represent 
regions, lectures, or something quite different again. A graph 
theorist can leave behind the real world entirely and enter the realm 

of pure abstraction. 
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Chapter 2 

Numbers and abstraction 

The abstract method 

A few years ago, a review in the Times Literary Supplement opened 

with the following paragraph: 

Given that 0 x 0 =0 and 1 x 1 =l, it follows that there are numbers 

that are their own squares. But then it follows in turn that there are 

numbers. In a single step of artless simplicity, we seem to have 

advanced from a piece of elementary arithmetic to a startling and 

highly controversial philosophical conclusion: that numbers exist. 

You would have thought that it should have been more difficult. 

A. W. Moore reviewing Realistic Rationalism, 

by Jerrold J. Katz, in the T.L.S., llth September 1998. 

This argument can be criticized in many ways, and it is unlikely that 
anybody takes it seriously, including the reviewer. However, there 
certainly are philosophers who take seriously the question of 
whether numbers exist, and this distinguishes them from 
mathematicians, who either find it obvious that numbers exist or do 
not understand what is being asked. The main purpose of this 
chapter is to explain why it is that mathematicians can, and even 
should, happily ignore this seemingly fundamental question. 

The absurdity of the 'artlessly simple' argument for the existence of 
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Given that 0 x 0 =0 and 1 x 1 =l, it follows that there are numbers 

that are their own squares. But then it follows in turn that there are 

numbers. In a single step of artless simplicity, we seem to have 

advanced from a piece of elementary arithmetic to a startling and 

highly controversial philosophical conclusion: that numbers exist. 

You would have thought that it should have been more difficult. 

A. W. Moore reviewing Realistic Rationalism, 

by Jerrold J. Katz, in the T.L.S., llth September 1998. 

This argument can be criticized in many ways, and it is unlikely that 
anybody takes it seriously, including the reviewer. However, there 
certainly are philosophers who take seriously the question of 
whether numbers exist, and this distinguishes them from 
mathematicians, who either find it obvious that numbers exist or do 
not understand what is being asked. The main purpose of this 
chapter is to explain why it is that mathematicians can, and even 
should, happily ignore this seemingly fundamental question. 

The absurdity of the 'artlessly simple' argument for the existence of 
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numbers becomes very clear if one looks at a parallel argument 
about the game of chess. Given that the black king, in chess, is 
sometimes allowed to move diagonally by one square, it follows that 
there are chess pieces that are sometimes allowed to move 
diagonally by one square. But then it follows in turn that there are 
chess pieces. Of course, l do not mean by this the mundane 
statement that people sometimes build chess sets - after all, it is 
possible to play the game without them - but the far more 'startling' 
philosophical conclusion that chess pieces exist independently of 
their physical manifestations. 

What is the black king in chess? This is a strange question, and the 
most satisfactory way to deal with it seems to be to sidestep it 
slightly. What more can one do than point to a chessboard and 
explain the rules ofthe game, perhaps paying particular attention to 
the black king as one does so? What matters about the black king is 

~ not its existence, or its intrinsic nature, but the role that it plays in

l thegame. 
-5.. 
:::! The abstract method in mathematics, as it is sometimes called, is 

what results when one takes a similar attitude to mathematical 
objects. This attitude can be encapsulated in the following slogan: a 
mathematical object is what it does. Similar slogans have appeared 
many times in the philosophy oflanguage, and can be highly 
controversial. Two examples are 'In language there are only 
differences' and 'The meaning of a word is its use in the language', 

due to Saussure and Wittgenstein respectively (see Further 
reading), and one could add the rallying cry of the logical 
positivists: 'The meaning of a statement is its method of 
verification.' Ifyou find mine unpalatable for philosophical reasons, 
then, rather than regarding it as a dogmatic pronouncement, think 
ofit as an attitude which one can sometimes choose to adopt. In 
fact, as l hope to demonstrate, it is essential to be able to adopt it if 
one wants a proper understanding ofhigher mathematics. 

18 

Chess without the pieces 

It is amusing to see, though my argument does not depend on it, 
that chess, or any other similar game, can be modelled by a 
graph. (Graphs were defined at the end of the previous chapter.) 
The vertices of the graph represent possible positions in the 
game. Two vertices P and Q are linked by an edge if the person 
whose turn it is to play in position P has a legal move that results 
in position Q. Since it may not be possible to get back from Q to 
P again, the edges need arrows on them to indicate their 
direction. Certain vertices are considered wins for white, and 
others wins for black. The game begins at one particular vertex, 
corresponding to the starting position of the game. Then the 
players take turns to move forwards along edges. The first player 
is trying to reach one ofwhite's winning vertices, and the second 

z cone ofblack's. A far simpler game ofthis kind is illustrated in 3 
Figure 6. (It is not hard to see that for this game white has a 3 
winning strategy.) Il 

"

! 
" 
Il 

This graph model ofchess, though wildly impractical because ofthe 
vast number of possible chess positions, is perfect, in the sense that g 
the resulting game is exactly equivalent to chess. And yet, when l 
defined it l made no mention of chess pieces at all. From this 
perspective, it seems quite extraordinary to ask whether the black 

6. White starts, and has a winning strategy 
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king exists: the chessboard and pieces are nothing more than 
convenient organizing principles that help us think about the 
bewildering array of vertices and edges in a huge graph. If we 
say something like, 'The black king ls in check', then this i8 

just an abbreviation of a sentence that specifies an extremely 
long list ofvertices and tells us that the players have reached one 
ofthem. 

The natural numbers 
'Natural' is the name given by mathematicians to the familiar 
numbers 1,2,3,4, .... They are among the most basic of 
mathematieal objeets, but they do not seem to encourage us to 
think abstractly. What, after all, could a number like 5 be said 
to do? It doesn't move around like a chess piece. Instead, it seems to 
have an intrinsic nature, a sort ofpure fiveness that we immediately 

i grasp when we look at a picture such as Figure 7. 

j However, when we consider larger numbers, there i8 rather less of 
this purity. Figure 8 gives us representations of the numbers 7, 12, 

and 47. Perhaps sorne people instantly grasp the sevenness of the 
first picture, but in most people's minds there will be a fleeting 

7. The concept offiveness 
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8. Ways ofrepresenting 7,12, and 47 (twicc) 

thought such as, 'The outer dots form a hexagon, 80 together ",ith f 
the central one we get 6 + 1 = 7: Like\vise, 12 will probably be [ 
thought of as 3 x 4, or 2 x 6. As for 47, there is nothing particularly j 
distinctive about a group of that number of objects, as opposed t~, ~ 

say, 46. If they are arranged in a pattern, such as a 7 x 7 grid with f 
two points missing, then we can use our knowledge that 
7 x 7 - 2 = 49 - 2 = 47 to tell quickly how many there are. If not, 
then we have little choice but to count them, this time thinking of 
47 as the number that cornes after 46, which itself i8 the number 
that cornes after 45, and so on. 

In other words, numbers do not have to be very large before we stop 
thinking of them as isolated objects and start to understand them 
through their properties, through how they relate to other numbers, 
through their role in a number system. This i8 what 1 mean by what 
a number 'does'. 

As is already becoming clear, the concept of a number is intimately 
connected with the arithmetical operations of addition and 
multiplication: for example, without sorne idea of arithmetic one 
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could have only the vaguest grasp of the meaning ofa number like 
1,000,000,017. A number system is not just a collection of numbers 
but a collection of numbers together with rules for how to do 
arithmetic. Another way ta summarize the abstract approach is: 
think about the rules rather than the numbers themselves. The 
numbers, from this point ofview, are tokens in a sort ofgame (or 
perhaps one shouid calI them counters). 

Ta get sorne idea ofwhat the rules are, let us consider a simple 
arithmetical question: what does one do if one wants to become 
convinced that 38 x 263 =9994? Most people would probably 
check it on a calculator, but if this was for sorne reason not possible, 
then they might reason as follows. 

38 x 263 = 30 x 263 + 8 x 263 

= 30 x 200 + 30 x 60 + 30 x 3 + 8 x 200 + 8 x 60 + 8 x 3 

6000 + 1800 + 90 + 1600 + 480 + 24 

= 9400 + 570 + 24 

9994 

Why, though, do these steps seem so obviously correct? For 

example, why does one instantly believe that 30 x 200 = 6000? The 

definition of30 is 3 x 10 and the definition of200 is 2 x (10 x 10), 


so we can say with total confidence that 30 x 200 = 


(3 x 10) x (2 x (10 x 10»). But why is this 6000? 


Normally, nobody would bother to ask this question, but to 

someone who did, we might say, 


(3 x 10) x (2 x (10 x 10») = (3 x 2) x (10 x 10 x 10) =6 x 1000 = 6000 

Without really thinking about it, we would he using two familiar 
facts about multiplying: that ifyou multiply two numbers together, 
it doesn't matter which order you put them in, and that ifyou 
multiply more than two numbers tagether, then it makes no 
difference how you bracket them. For example, 7 x 8 =8 x 7 and 
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(31 x 34) x 35 31 x (34 x 35). Notice that the intermediate 
calculations involved in the second of these two examples are 
defiuitely affected by the bracketing but one knows that the final 
answer will be the same. 

These two rules are called the commutative and associative laws for 
multiplication. Let me now list a few rules, including these two, that 
we commonly use when adding and multiplying. 

Al The commutative law for addition: a + b =b +a for any two 
numbers a and b. 
A2 The associative law for addition: a + (b + e) = (a + b) + cfor 
any three numbers a, b, and c. 
Ml The commutative law for multiplication: ab = ba for any two 
numhers a and b. 

2 
M2 The associative law for multiplication: a(be) (ab)e for any .. 
three numbers a, h, and e. t 
Ma l is a multiplicative identity: la = a for any number a. ~ 

D The distributive law: Ca + h)c = ac + he for any three numbers a, ;. 

~~~ 1 
1Hst these rules not because 1 want ta persuade you that they are 
interesting on their own, but to draw attention to the role they play 
in our thinking, even about quite simple mathematical statements. 
Our confidence that 2 x 3 = 6 is probably based on a picture such as 
this. 

* * * 

* * * 

On the other hand, a direct approach is out of the question ifwe 
want to show that 38 x 263 9994, so we think about this more 
complicated fact in an entirely different way, using the 
commutative, associative, and distributive laws. Ifwe have obeyed 
these rules, then we believe the result. What is more, we believe it 
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even if we have absolutely no visual sense ofwhat 9994 objects 

would look like. 

Zero 

Historically, the idea of the number zero developed later than that 
of the positive integers. It has seemed to many people to be a 

mysterious and paradoxical concept, inspiring questions such as, 

'Howean something exist and yet be nothing?' From the abstract 

point ofview, however, zero is very straightforward it is just a new 

token introduced into our number system with the following special 

property. 

A3 0 is an additive identity: 0 + a = a for any number a. 

That is ail you need to knowabout O. Not what it means - just a 

R lîttle rule that tells you what it does. 

1What about other properties ofthe number 0, such as the fact that 0 

times any number is O? 1 did not list this rule, because it turns out 

that it can be deduced from property A3 and our earlier rules. Here, 
for example, is how to show that 0 x 2 = 0, where 2 is dcfined to be 

the number 1 +1. First, rule Ml tells us that 0 x 2 =2 x O. Next, rule 

D tells us that (1 + 1) x 0 = 1 x 0 + 1 x O. But 1 x 0 0 by rule Ma, so 

this equals 0 + O. Rule A3 implies that 0 + 0 = 0, and the argument 

is fini shed. 

An alternative, non-abstract argument might be somcthing like 
this: '0 x 2 means add up rw tW08, and if you do that you are 

left with nothing, that is, 0: But this way ofthinking makes it 

hard to answer questions such as the one asked by my son John 
(when six): how ean nought times nought be nought, since nought 

times nought means that you have no noughts? A good answer, 

though not one that was suitable at the time, is that it can be 
deduced from the rules as follows. (After each step, 1 list the rule 1 

am using.) 
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0=1 x 0 Ma 
(O+l)xO A3 
OxO+lxO D 

=OxO+O Ma 

=O+OxO Al 
=OxO Aa 

Whyam 1 giving these long-winded proofs ofvery elementary facts? 

Again, it is not because 1 find the proofs mathematieally interesting, 

but rather because 1 wish to show what it means to justifY 
arithmetical statements abstractly (by using a few simple rules and 

not worrying what numbers actually are) rather than concretely (by 
reflecting on what the statements mean). It is of course very useful 

to associate meanings and mental pietures with mathematical 

objects, but, as we shan see many times in this book, often these 

associations are not enough to tell us what to do in new and 

unfamiliar contexts. Then the abstract method becomes 

indispensable. 

Negative numbers and fractions 

As anybody with experience of teaching mathematics to small 

children knows, there is something indirect about subtraction and 

division that makes them harder to understand than addition and 
multiplication. To explain subtraction, one can of course use the 

notion of taking away, asking questions such as, 'How many 

oranges will be left ifyou start with five and eat two ofthem?'. 

However, that is not always the best way to think about it. For 
example, if one has to subtract 98 from 100, then it is better ta 

think not about taking 98 away from 100, but about what one has 

to add to 98 to make 100. Then, what one is eflectively doing is 
solving the equation 98 + al = 100, although of course it is unusual 

for the letter al actually to cross one's mind during the calculation. 

Similarly, there are two ways ofthinking about division. To explain 

the meaning of 50 divided by 10, one can either ask, 'If fifty 
abjects are split into ten equal groups, then how many will be in 
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each group?' or ask, 'Iffifty objects are split into groups often, 
thcn how many groups will there be?'. The second approach is 
equivalent to the question, 'What must ten be multiplied by to make 
fifty, which in turn is equivalent to solving the equation lOx 50. 

A further difficulty with explaining subtraction and division to 
children is that they are not always possible. For example, you 
cannot take ten oranges away from a bowl ofseven, and three 
children cannot share eleven marbles equally. However, that does 
not stop adults subtracting 10 from 7 or dividing 11 by 3, obtaining 
the answers -3 and 11/3 respectively. The question then arises: 
do the numbers -3 and 11/3 actuallyexist, and if so what are 
they? 

From the abstract point ofview, we can deal with these questions 
as we dealt \vith similar questions about zero: by forgetting about 

i them. AlI we need to know about -3 is that when you add 3 to it 
1 you get 0, and aU wc need to know about 11/3 is that when you 
i multiply it by 3 you get 11. Those are the mIes, and, in conjunliion 

with earlier mIes, they allow us to do arithmetic in a larger 
number system. Why should we wish to extend our number 
system in this way? Because it gives us a model in which equations 
like x + a band ax = b can be solved, whatever the values ofa 
and b, except that a should not be 0 in the second equation. To put 
this another way, it gives us a model where subtraction and 
division are always possible, as long as one does not try to di'vide 
by O. (The issue of division by 0 will be discussed later in the 
chapter.) 

As it happens, we need only two more mIes to extend our number 
system in this way: one that gives us negative numbers and one that 
gives us fractions, or ratùmal numbers as they are customarily 

known. 

A4 Additive inverses: for every number a there is a number b such 
thata + b= o. 
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M4 Multiplicative inverses: for every number a apart from 0 there 

is a number c such that ae = 1. 


Armed with these mIes, we can think of -a and l/a as notation for 

the numbers b in A4 and c in M4 respectively. As for a more general 

expression like p/q, it stands for p multiplied by l/q. 


The mIes A4 and M4 imply two further mIes, known as 

cancellation laws. 


A5 The cancellation law for addition: ifa, b, and c are any three 

numbers and a + b =a + c, then b =c. 

MS 'The cancellation law for multiplication: if a, b, and c are any 

three numbers, a is not 0 and ab = oc, then b c. 


The first of these is proved by adding -a to both si des, and the 

second by multiplying both sides by 1/a, just as you would expect. 

Note the different status ofAS and MS from the mIes that have 

gone before they are consequences ofthe earlier mIes, rather than t 

rules we simply introduce to make a good game. 
 , 
If one is asked ta add two fractions, such as 2/5 and 3/7, then the 
usual method is to give them a common denominator, as follows: 

2 3 14 15 29 
-+-=-+-=
57353535 

This technique, and others like it, cau be justified using our new 
rules. For example, 

14 1 1 ) 1 l
35 x 35xl14X- =(35x14)x-=(14x35)x

35 \ 35 35 35 

l \ 
14 x 35 x 1 = 14 x 1 = 14,( 35; 

and 

27 



each group?' or ask, 'Iffifty objects are split into groups often, 
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35X~=(5X7)X(2X~) (7X5)X(~X2) (7X(5X;))X2 

(7 x 1) x 2 =7 x 2 14. 

Hence, by mIe M5, 2/5 and 14/35 are equaI, as we assumed in the 
calculation. 


Similarly, one can justifY familiar facts about negative numbers. 

l Ieave it ta the reader to deduce from the mIes that 

(-1) x (-1) 1- the deduction is fairly similar to the proof 

that 0 x 0 o. 


Why does it seem ta many people that negative numbers are less 

real than positive ones? Probably it is because counting small 

groups ofabjects is a fundamentaJ human activity, and when we do 

it we do not use negative numbers. But all this means is that the 


el natural number system, thought of as a model, is useful in certain 
circumstances where an enlarged number system is not. Ifwe want 

1to think about temperatures, or dates, or hank accounts, then 
negative numbers do become useful. As long as the extended 
number system is logically consistent, which it is, there is no harm 
in using it as a model. 

It may seem strange to caU the natural number system a model. 
Don't we actually count, with no particular idealization 
involved? Yes we do, but this procedure is not always appropriate, 
or even possible. There is nothing \\<Tong with the numher 
1394840275936498649234987 from a mathematical point of 
view, but ifwe can't even count votes in Florida, it is inconceivable 
that we might ever be sure that we had a collection of 
1394840275936498649234987 objects. Ifyou take two piles of 
leaves and add them ta a third, the result is not three piles ofleaves 
but one large pile. And ifyou have just watched a rainstorm, then, 
as Wittgenstein said, 'The proper answer to the question, "How 
many drops did you see?", is many, not that there was a number but 
you don't know how many: 
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Real and complex numbers 

The real number system consists of ail numbers that can be 
represented by infinite decimals. This concept is more sophisticated 
tban it seems, for reasons that will be explained in Chapter 4. For 
now, let me say that the reason for extending our number system 
from rational to real numbers is similar to the reason for 
introducing negative numbers and fractions: they allow us to solve 
equations that we could not otherwise solve. 

The most famous example of sucb an equation is :xl := 2. In the 
sixth century Be it was discovered by the school of Pythagoras that 
Ii is irrational, which means that it cannot be represented by a 
fraction, (A proof of this will be given in the next chapter.) This 
discovery caused dismay when it was made, but now we cheerfully 
accept that we must extend our number system ifwe want ta 
model things like the length of the diagonal of a square. Once 
again, the abstract method makes our task very easy. We introduce 
a new symboI, J'i, and have one rule tbat tells us what to do with 
it: it squares to 2. 

Ifyou are weIl trained, then you will object to what l have just said 
on the grounds that the mIe does not distinguish between and 

One way ofdealing with this is to introduce a new concept into 
our numher system, that oforder. It is often useful to talk of one 
number being bigger than another, and if we allow ourselves to do 
that then we can pick out J2 by the additional property that ,!2 is 
greater than O. But even without this property we can do 
ealculations such as 

+1 
2 1:= ,2 + 1, 

and there is actually an advantage in not distinguishing between ~2 
and -~2, which is that then we know that the above calculation is 
vaJid for both numbers. 
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Historical suspicion of the abstract method has left its traces in 
the words used to describe the new numbers that arose each time 
the number system was enlarged, words like 'negative' and 
'irrational'. But far harder to swallow than these were the 
'imaginary', or 'complex', numbers, that i8, numbers of the form 
a + bi, where a and b are real numbers and i is the square root 

of-1. 

From a concrete point ofview, one can quickly dismiss the square 
root of -1: since the square of any number is positive, -1 does not 
have a square root, and that is the end ofthe story. However, this 
objection cames no force if one adopts an abstract attitude. Why 
not simply continue to extend our number system, by introducing a 
solution to the equation J:f = -} and calling it i? Why should this be 
more objectionable than our earlier introduction of 

i One answer might be that /2 has a decimal expansion which can (in 

iE principle) be calculated to any desired accuracy, while nothing 
equivalent can be said about i. But all this says is something wc 
already know, namely that i is not a real number - just as is not a 
rational number. It does not stop us extending our number system 
to one in which we can do calculations such as 

i+l i+l i + 1 1.
--(u 1)

i - l - (i - l)(i + 1) i"i +i l -}- l 2 

The main differencc between i and ~2 is that in the case of i we are 
forced to think abstractly, whereas there i8 always the option \\'Îth ~2 
of using a concrete representation such as 1.4142 ... or the length 
of the diagonal of a unit square. To see why i has no such 
representation, ask yourself the following question: which of the 
two square roots of -1 i8 i and which is -i? The question does not 
make sense because the only defining property of i is that it squares 
to -1. Since -i has the same property, any true sentence about i 
remains true ifone replaces it with the corresponding sentence 
about -i. It is difficult, once one has grasped this, 10 have any 
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respect for the view that i might den ote an independently existing 
Platonie object. 

There 1S a parallel here with a weli-knoV'.'l1 philo80phical 
conundrum. Might it be that when you perceive the colour red your 
sensation i8 what 1 experience when 1 perceive green, and vice 
versa? Sorne philosophers take this question seriously and define 
'qualia' ta be the absolute intrinsic experienccs we have when, for 
example, we see colours. Others do not believe in qualia. For them, a 
word like 'green' is defined more abstractly by its role in a linguistic 
system, that 18, by its relationships ,vith concepts like 'grass', 'red', 
and so on. It is impossible to deduce somebody's position on this 
issue from the way they talk about colour, except during 
philosophical debates. Similarly, aIl that matters in practice about 
numbers and other mathematical objects is the rules they obey. ,
Ifwe introduced i in order to have a solution to the equation a? = -1, : 

then what about other, similar equations such as x' -3, or i 
2:r!' + 3x + 17 o? Remarkably, it turns out that every such 
equation can be solved \\'Îthin the complex number system. In 
other words, we make the small investment of aceepting the 
number i, and are then repaid many times over. This fact, which 
has a complicated history but i8 U8Ually attributed to Gauss, is 
known as the fundamental theorem of algebra and it provides very 
convincing evidence that there is something natural about i. It may 
he impossible to imagine a basket of i apples, a car journey that 
lasts i hours, or a bank account with an overdraft of i pounds, 
but the complex number system has become indispensable to 
mathematicians, and to scientists and engineers as weil - the theory 
of quantum mechanics, for example, depends heavily on complex 
numbers. It provides one ofthe best illustrations ofa general 
principle: ifan abstract mathematical construction is sufficiently 
natural, then it will almost certainly find a use as a model. 
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A first look at infinity 

Once one has learned to think abstractly, it can be exhilarating, a 

bit like suddenly being able to ride a bicycle without having to 

worry about keeping one's balance. However, 1do not wish to give 

the impression that the abstract method is like a licence to print 
money. It is interesting to contrast the introduction of i into the 

number system with what happens when one tries to introduce the 

number infinity. At first there seems to be nothing stopping us: 

infinity should mean something like 1 divided by 0, 50 why not let 00 

be an abstract symbol and regard it as a solution to the equation 

Ox=l? 

The trouble 'A-'Îth this idea emerges as soon as one tries to do 

arithmetic. Here, for example, is a simple consequence ofM2, the 

associative law for multiplication, and the fact that 0 x 2 = O. 

1 

1=ooxO=oox(Ox2)=(co xO)x2 lx2=2 


What this shows is that the existence ofa solution to the 

equation Ox = lleads to an inconsistency. Does that mean that 

infinity does not exist? No, it simply means that no natural 

notion of infinity is compatible with the laws ofarithmetic. It is 

sometimes useful to extend the number system to include the 
symbol co, accepting that in the enJargcd system these laws are not 

always vaUd. UsuaIly, however, one prefers to keep the laws and do 

'without infinity. 

Raising numbers to negative and fractional powers 

One ofthe greatest v'Îrtues ofthe abstra.ct method is that it allows us 
to make sense offamiliar concepts in unfamiliar situations. The 

phrase 'make sense' is quite appropriate, since that is just what we 

do, rather than discovering sorne pre-existing sense. A simple 

example of this is the way we extend the concept of raising a 

number to a power. 

32 

Ifn is a positive integer, then an means the result ofmultiplying n as 
together. ror example, 53 = 5 x 5 x 5 = 125 and 

25 2 x 2 x 2 x 2 x 2 32. But with this as a definition, it is not easy 

to interpret an expression such as 23/2
, sinee you cannot take one 

and a halftwos and multiply them together. What is the abstract 

method for dealing with a problem like this? Once again, it is not ta 
look for intrinsic meaning in this case of expressions like an - but 
ta think about rules. 

Two elementary rules about raising numbers to powers are the 
following. 

El a' = a for any real number a. 
E2 am + n am x an for any real number a and any pair of natural 

numbers m and n. 

For example, 25 2" x 22 since 25 means 2 x 2 x 2 x 2 x 2 and 

23 x 22 means (2 x 2 x 2) x (2 x 2). These are the same number 

because multiplication i8 associative. 

From these two rules we can quiekly recover the facts we already 
know. For example, a2 = al + l which, by E2, is a' x a'. By El this i8 

a x a, as it should be. But we are now in a position to do mueh more. 

Let us write x for the number 23/2
• Then x x x = 23

/
2 

X 23/2 which, by 
2 23E2, i8 23

/ + 3/2 = 8. In other words, x 2 = 8. This does not quite 

determine x, since 8 has two square roots, so it is customary to 

adopt the follO\ving convention. 

Ba Ifa > 0 and b i8 a real number, then ab is positive. 

Using Ea as weIl, we find that 23/2 is the positive square root of 8. 

This is not a discovery ofthe 'true value' of 23/2. However, neither 

is the interpretation we have given to the expression 2"/2 arbitrary 

it is the only possibility if we want to preserve rules El, E2, 
andE3. 
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A similar argument allows us to interpret an, at least when a is not 
O. By El and E2 we know that a = a' == a 1 + 0 al x aO = a x an. The 
cancellation law M5 then implies that aO l, whatever the value 
ofa. As for negative powers, if we know the value of ah, then 
1 =aO ab + (-b) =ah x a-h, from which it follows that a-b I/ab• The 

2number 2 3
/ , for example, is 1/vB. 

Another concept that becomes much simpler when viewed 
abstractly is that of a logarithm. l ,vill not have much to say about 
logarithms in this book, but if they worry you, then you may be 
reassured to learn that all you need to know in order to use them are 
the following three rules. (Ifyou want logarithrns to base e instead 
oflO, thenjust replace 10 bye in LI.) 

LIlog(IO) = 1. 

L2 Iog(xy) = Iog(x) + log(y). 
~ La Ifx < y then log(x) < log(y). 

1For example, to see that log(30) is less than 3/2, note that 

log(1000) = log(10) + log(lOO) '" log(lO) + log(lO) + 10g(1O) =3, 

by LI and L2. But 210g(30) log(30) + log(30) == 10g(900), by L2, 
and log(900) < log(1000), by La. Hence, 210g(30) < 3, 80 that 
log(30) < 3/2. 

1 shall discuss many concepts, later in the book, of a similar nature 
to these. They are puzzHng ifyou try to understand them concretely, 
but they lose their mystery when you relax, stop worrying about 
what they are, and use the abstract method. 
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Chapter 3 

Proofs 

The diagram below shows five circles, the first with one point on its 
boundary, the second '\\1th two, and so on. AIl the possible Hnes 
joining these boundary points have also been drawn, and these Hnes 
divide the circles into regions. Ifone counts the regions in each 
circle one obtains the sequence 1,2,4,8,16. This sequence is instantly 
recognizable: it seems that the number of regions doubles each time 

9. Dhiding a circle Înto regions 
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2number 2 3
/ , for example, is 1/vB. 
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but they lose their mystery when you relax, stop worrying about 
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Chapter 3 

Proofs 

The diagram below shows five circles, the first with one point on its 
boundary, the second '\\1th two, and so on. AIl the possible Hnes 
joining these boundary points have also been drawn, and these Hnes 
divide the circles into regions. Ifone counts the regions in each 
circle one obtains the sequence 1,2,4,8,16. This sequence is instantly 
recognizable: it seems that the number of regions doubles each time 

9. Dhiding a circle Înto regions 

35 



a new point is added to the boundary, 50 that n points define 2"-1 

regions, at least if no three lines meet at a point. 

Mathematicians, however, are rarely satisfied with the phrase 'it 
seems that'. Instead, they demand a proo!, that is, an argument that 
puts a statement beyond aU possible doubt. What, though, does this 
mean? Although one can often establish a statement as true beyond 
aIl reasonable doubt, surely it is going a bit far to daim that an 
argument leaves no room for doubt whatsoever. Historians can 
provide many examples of statements, some of them mathematical, 
that were once thought to be beyond doubt, but which have since 
been shO\vn to be incorrect. Why should the theorems of present
day mathematics be any different? 1 shall answer this question by 
giving a few examples ofproofs and drawing from them some 
general conclusions. 

C 
The irrationality of the square root of two 

j
:cl 

As 1mentioned in the last chapter, a number is caIled rational ifit 
~ can be written as a fraction plq, where p and q are whole numbers, 

and irrational ifit cannot. One of the most famous proofs in 
mathematics shows that is irrational. It illustrates a technique 
known as reductio ad absurdum, or proofby contradiction. 

A proof ofthis kind begins with the assumption that the result to be 
proved isfaüle. This may seem a strange way to argue, but in fact we 
often use the same technique in everyday conversation. Ifyou went 
to a police station to report that you had seen a car being vandalized 
and were accused ofhaving been the vandal yourself, you might weIl 
say, 'If1had done it, 1would hardly be drawing attention to myself 
in this way: You would be temporarily entertaining the (untrue) 
hypothesis that you were the vandal, in order to show how 
ridiculous it was. 

We are trying to prove that is irrational, so let us assume that it is 
rational and try to show that this assumption leads to absurd 
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consequences. 1shaIl write the argument out as a sequence 
of steps, giving more detail than many readers are likely to 

need. 

1. 	 If ~2 is rational, then we can find whole numbers p and q such that 

~2 =pJq (by the definition of 'rational"). 
2. 	 Any fraction pJq is equal to some fraction ris where rand sare not 

both even. (Just keep dividing the top and bottom of the fraction by 

2 until at least one ofthem becomes odd. For example, the fraction 

1412/1000 equals 706/500 equals 353/250.) 

3. 	 Therefore, if ~2 is rational, then we can find whole numbers r and s, 

not both even, such that rIs. 
4. 	 If ~2 = ris, then 2:= rlll (squaring both sides of the equation). 

5. 	 If2 = rlsz, then 28' = r (muItiplying both sides by 8Z
). 

6. 	 If 282 = r, then 1':> is even, which means that r must be even. 

7. 	 If ris even, then r = 2t for some whole number t (by the definition 

of'even'). i 
8. 	 If 282 =rand r =2t, then 282 (2t)' 4f, from which it follows 

that 82 
:= 2f (dividing both sides by 2). 

9. 	 If 82 =2f, then 82 is even, which means that s is even. 

10. 	 Under the assumption that J2 is rational, we have shown that 

\,:2 =ris, ,vith rand 8 not both even (step 3). We have then shown 

that 1'is even (step 6) and that 8 is even (step 9). This lS a clear 

contradiction. Since the assumption that \12 is rational has 

consequences that are clearly false, the assumption itself must be 

false. Therefore, ~2 is irrational. 

1have tried to make each ofthe above steps so obviously valid that 

the conclusion ofthe argument is undeniable. However, have 1 


really left no room for doubt? If somebody offered you the chance of 

ten thousand pounds, on condition that you would have to forfeit 

your life if two positive whole numbers p and q were ever discovered 

such that p' := 2q2, then would you accept the offer? If50, would you 


be in the slightest bit worried'? 
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Step 6 contains the assertion that if Tt is even, then r must aIso be 
even. This seems pretty obvious (an odd number times an odd 

number is odd) but perhaps it could do with more justification ifwe 
are trying to establish with absolute certainty that ,12 is irrational. 
Let us split it into five further substeps: 

6a. 	 ris a whole number and Tt is Even. Wc would like to show that r 

must aIso be Even. Let us assume that ris odd and seek a 

contradiction. 

6b. Since ris odd, there is a whole number t such that T = 2t + 1. 


6c. It follows that Tt (2t + 1)2 = 4t2 + 4t + 1. 


6d. But 4t' + 4t + 1 = 2(2t' + 2t) + 1, which is odd, contradicting the 


fact that Tt is Even. 


6e. Therefore, ris Even. 


!! 	 Does this now make step 6 completely watertight? Perhaps not, 

~.. 	 because substep 6b needs to be justified. After aIl, the definition of 
.. 	 an odd number is simply a whole number that is not a multiple of 

two. Why should every whole number be either a multiple oftwo or 
one more than a multiple oftwo? Here is an argument that 
establishes this. 

6bl. 	Let us cali a whole number r good ifit is either a multiple oftwo or 

one more than a multiple of two. If r is good, then r = 28 or 

r = 28 + 1, where 8 is also a whole number. If r '" 28 then 

r + 1 = 2s + 1, and if r = 29 + 1, then r + 1 29 + 2 = 2(8 + 1). Either 
way, T + 1 is also good. 

6b2. 1 is good, sinee 0 0 x 2 is a multiple of2 and 1 = 0 + 1. 

6b3. Applying step 6b1 repeatedly, we can deduce that 2 is good, then 

that 3 is good, then that 4 is good, and so on. 

6b4. Therefore, every positive whole number is good, as we were trying 

to prove. 

Have we now finished? Perhaps the shakiest step this time is 
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6b4, because ofthe rather vague words 'and so on' from the 

previous step. Step 6b3 shmvs us how to demonstrate, for any 
given positive whole number n, that it is good. The trouble is 
that in the course ofthe argument we ",ill have to count from 

1 to n, which, if n is large, will take a very long time. The 
situation is even worse ifwe are trying to show that every positive 
whole number is good. Then it seems that the argument will 
neverend. 

On the other hand, given that steps 6b1 to 6b3 genuinelyand 
unambiguously provide us with a methoâ for showing that any 
individual n i8 good (provided that we have time), this objection 
seems unreasonable. So unreasonable, in fact, that mathematicians 
adopt the foIlowing principle as an axiom. 

Suppose that for every positive integer n there is associated a 

statement Sen). (In our example, Sen) stands for the statement 'n is 

good·.) IfS(l) is true, and ifthe truth ofSen) always implies the truth 

of Sen + 1), then Sen) is true for every n. 

This is known as the principle of mathematical induction, or just 
induction to those who are used to it. Put less formally, it says that if 
you have an infinite list ofstatements that you wish to prove, then 
one way to do it is to show that the first one is true and that each one 
implies the next. 

As the last few paragraphs illustrate, the steps of a mathematicaI 
argument can be broken down into smaller and therefore more 
clearly vaIid substeps. These steps can then be broken down into 
subsubsteps, and so on. A fact offundamentaI importance to 

mathematics is that this proce8S eventual(y cornes to an end. In 
principle, ifyou go on and on splitting steps into smaller ones, you 
will end up with a very long argument 8tarts \vith axioms that are 
universally accepted and proceeds to the desired conclusion by 
meanS of only the most elementary 10gicaI rules (such as 'if A is true 
and A implies B then B is true'). 
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What l have just said in the last paragraph is far from obvious: in 
fact it was one ofthe great discoveries ofthe early 20th century, 
largely due to Frege, Russell, and Whitehead (see Further reading). 
This discovery has had a profound impact on mathematics, because 
it means that any dispute about the validity ofa mathematical 
proofcan always be resolved. In the 19th century, by contrast, there 
were genuine disagreements about matters of mathematical 
substance. For example, Georg Cantor, the father ofmodern set 
theory, invented arguments that relied on the idea that one infinite 
set can be 'bigger' than another. These arguments are accepted now, 
but caused great suspicion at the time. Today, if there is 
disagreement about whether a proof is correct, it is either because 
the proofhas not been ,vritten in sufficient detail, or because not 
enough effort has been spent on understanding it and checking it 
carefully. 

i Actually, this does not mean that disagreements never occur. i For example, it quite often happens that somebody produces a 
1 very long proofthat is unclcar in places and contains many 

smaU mistakes, but which is not obviously incorrect in a 
fundamental way. Establishing conclusively whether such an 
argument can be made watertight is usually extremely laborious, 
and there is not much reward for the labour. Even the 
author may prefer not to risk finding that the argument is 
wrong. 

Nevertheless, the fact that disputes can in principle be 
resolved does make mathematics unique. There is no 
mathematical equivalent ofastronomers who still believe in the 
steady-state theory ofthe universe, or ofbiologists who hold, 
vllÎth great conviction, very different views about how much is 
explained by natural selection, or ofphilosophers who disagree 
fundamentally about the relationship between consciousness 
and the physical world, or of economists who follow opposing 
schools ofthought such as monetarism and 
neo-Keynesianism. 
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It is important to understand the phrase 'in principle' above. No 
mathematician would ever bother to write out a proof in complete 
detail - that is, as a deduction from basic axioms using only the 
most utterly obvious and easily checked steps. Even if this were 
feasible it would be quite unnecessary: mathematical papers are 
written for highly trained readers who do not need cverything spelled 
out. However, if somebody makes an important claim and other 
mathematicians find it hard to follow the proof, they \IlÎll ask for 
clarification, and the process ~ill then begin of dividing steps of the 
proof into smaller, more easily understood substeps. Usually, again 
because the audience is highly trained, ihis process does not need to 
go on for long until either the necessary clarification has been 
provided or a mistake comes to light. Thus, a purported proof ofa 
result that other mathematicians care about is almost always 
accepted as correct only if it is correct. 

1 have not dealt with a question that may have occurred to some 
readers: why should one accept the axioms proposed by 1 
mathematicians? If, for example, somebody were to object to the .. 
principle ofmathematical induction, how could the objection be 
met? Most mathematicians would give something like the follo\llÎng 
response. First, the principle seems obviously valid to virtually 
everybody who understands it. Second, what matters about an 
axiom system is less the truth of the axioms than their consistency 
and their usefulness. What a mathematical proof actually does is 
show that certain conclusions, such as the irrationality of ~2, follow 
from certain premises, such as the principle of mathematical 
induction. The validity of these premises is an entirely independent 
matter which can safely be left to philosophers. 

The irrationality of the golden ratio 
A common experience for people learning advanced mathematics is 
to come to the end ofa proof and think, '1 understood how eaeh line 
followed from the previous one, but somehow 1 am none the wiser 
about why the theorem is true, or how anybody thought of this 
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.~ 	 10. The existence ofthe golden ratio 

! argument'. We usually want more from a proofthan a mere 
::e 	 guarantee ofcorrectness. Wc feel after reading a good proof that it 

provides an explanation of the theorem, that we understand 
something we did not understand before. 

Since a large proportion of the human brain is devoted to the 
processing ofvisual data, it is not surprising that many arguments 
exploit our powers ofvisualization. To illustrate this, l shall give 
another proof of irrationality, this time of the so-called golden ratio. 
This is a number that has fascinated non-mathematicians (and to a 
lesser extent mathematicians) for centuries. It is the ratio ofthe 
side lengths of a rectangle with the following property: ifyou eut a 
square off it then you are left ",ith a smaller, rotated rectangle of 
exaetly the same shape as the original one. This is true ofthe second 
rectangle in Figure 10. 

Why should such a ratio exist at aIl? (Mathematicians are trained to 
ask this sort ofquestion.) One way to see it is to imagine a small 
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rectangle growing out of the side of a square 80 that the square 
turns into a larger rectangle. To begin ",ith, the small rectangle is 
very long and thin, while the larger one is still almost a square. Ifwe 
allow the small rectangle to grow until it becomes a square itself, 
then the larger rectangle has become twice as long as it is ",ide. 

Thus, at first the smaller rectangle was much thinner than the 
larger one, and now it is fatter (relative to its size). Somewhere in 
between there must be a point where the two rectangles have the 
same shape. Figure 10 illustrates this process. 

A second way ofseeing that the golden r~tio exists is to calculate it. 
Ifwe caU it x and assume that the square has side lengths 1, then 
the side lengths of the largc rectangle are 1 and x, while the 
side lengths of the small one are x 1 and 1. If they are the same 

shape, then x :: = 1 Multiplying both sides by x - 1 we deduce 
1 x

that X(X 1) = 1, 80,l? - x 1 = O. Solving this quadratic equation, 
and bearing in mind that x i8 not a negative number, we find 

thatx (If you are particularly weIl trained mathematically, 
2 

or have taken the last chapter to heart, you may now ask why 1 am 
50 confident that /5 exists. In fact, what this second argument does 
lS to reduce a geometrical problem to an equivalent algebraic one.) 

Ha"ing established that the ratio x exists, let us take a rectangle 
with sides oflength x and 1 and consider the following process. 
First, cut off a square from it, leaving a smaller rectangle which, by 
the definition ofthe golden ratio, has the same shape as the original 
one. Now repeat this basic operation over and over again, obtaining 

a sequence of smaller and smaller rectangles, each of the same 
shape as the one before and hence each ,vith side lengths in the 
golden ratio. Clearly, the process will never end. (See the first 
rectangle of Figure 11.) 

Now let us do the same to a rectangle with side lengths in the ratio 
p/q, where p and q are whole numbers. This means that the 
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1 x
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thatx (If you are particularly weIl trained mathematically, 
2 

or have taken the last chapter to heart, you may now ask why 1 am 
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rectangle has the same shape as a rectangle \\>ith side lengths p and 

q, so it can be divided into p x q !ittle squares, as illustrated by the 
second rectangle of Figure n. VVhat happens ifwe remove large 
squares from the end ofthis rectangle? Ifq is smaller than p, then 
we will remove a q x q square and end up with a q x Cp q) 

rectangle. We can then remove a further square, and 50 on. Can the 
process go on for ever? No, because each time we eut off a square we 

remove a whole number ofthe little squares, and we cannot possibly 
do this more than p x q times because there were only p x q !ittle 
squares to start with. 

We have shown the following two facts. 

1. 	 If the ratio ofthe sides ofthe rectangle is the golden ratio, thell one 

can continue cutting off squares for ever. 

2. 	 Ifthe ratio ofthe sides of the rectangle is p/q for sorne pair ofwhole 

numbers p and q, then one cannat continue cutting off squares for 

ever. 

It follows that the ratio plq is not the golden ratio, whatever the 
values ofp and q. In other words, the golden ratio is irrational. 

Ifyou think very hard about the above proof, you \\>ill eventually 
realize that it is not as different from the praof of the irrationality of 

as it might at tirst appear. Nevertheless, the way it is presented is 
certainly different - and for many people more appealing. 

Regions of a circ/e 

Now that 1 have said something about the nature of mathematical 
proof, let us return ta the problem with which the chapter began. 
We have a circle with n points round its boundary, we join all pairs 
of these points ,vith straight Hnes, and we ,vish to show that the 
number of regions bounded by these Hnes will be 2n -1. We have 
already seen that this is true ifn is l, 2, 3, 4, or 5. In order to praye 
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the statement in general, we would very much like to find a 

convincing reason for the number of regions to double each time a 
new point is added to the boundary. Wnat could such a reason be? 

Nothing immediately springs to mind, so one way ofgetting started 
might be to study the diagrams of the divided-up circles and see 
whether we notice sorne pattern that can be generalized. For 
example, three points round the boundary produce three outer 

regions and one central one. With four points, there are four outer 
regions and four inner ones. With five points, there is a central 
pentagon, with five triangles pointing out of it, five triangles slotting 
into the resulting star and making it back into a pentagon, and 
finally five outer regions. It therefore seems natural to think of 4< as 

3 + l, of 8 as 4 + 4, and of16 as 5 + 5 + 5 + 1. 

Does this help? We do not seem to have enough examples for a clear 
~ pattern to emerge, so let us try drawing the regions that fesult from 
E six points placed round the boundary. The result appears in Figuret 12. Now there are six outer regions. Each ofthese is next to a 

triangular region that points inwards. Between two neighbouring 
regions ofthis kind are two smaller triangular regions. So far we 
have 6 + 6 + 12 =24 regions and have yet to eount the regions inside 
the central hexagon. These split into three pentagons, three 
quadrilaterals, and one central triangle. It therefore seems natural to 
think ofthe number of regions as 6 + 6 + 12 + 3 + 3 + 1. 

Something seems to be wrong, though, beeause this gives us 31. 

Have we made a mistake? As it happens, no: the correct sequence 
begins l, 2, 4, 8, 16, 31, 57, 99, 163. In fact, with a lîttle further 
reflection one can see that the number of regions couid notp08sibly 
double every time. For a start, it is worrying that the number of 
regions defined when there are 0 points round the boundary is 1 

rather than 1/2, which is what it would have to be if it doubled when 
the first point was put in. Though anomalies ofthis kind sometimes 
happen with zero, most mathematicians would find this particular 
one troubling. However, a more serious problem is that ifn i8 a 
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12. Regions ofa circle 

fairly large number, then 2n
-

1 is quite obviously too big. For 
example, 2n - 1 i8 524,288 when n = 20 and 536,870,912 when 
n = 30. Is it remotely plausible that 30 points round the edge of a 
circle would define over five hundred million different regions? 
Surely not. Imagine dra'l'\ing a large circle in a field, pushing thirty 
pegs inta it at irregularly spaced intervals, and then joining them 
with very thin string. The number of resulting regions would 
certainly be quite large, but not unimaginably 50. If the circle had a 
diameter of ten metres and was divided into five hundred million 
regions, then there would have to be, on average, over six hundred 
regions per square centimetre. The cirele would have to be thick 
with string, but with only thirty points round the boundary it clearly 

wouldn't be. 

As 1said earlier, mathematicians are wary ofwords like 'clearly'. 
However, in this instance our intuition can be backed up by a solid 
argument, which can be summarized as foUows. If the circle is 
divided into a vast number of polygonal regions, then these regions 
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must have, between them, a vast number of corners. Each corner 
is a point where two pieces ofstring cross, and to each such 
crossing one can associate four pegs, namely the ones where the 

relevant pieces of string end. There are 30 possible choices for the 
first peg, 29 for the second, 28 for the third, and 27 for the 
fourth. This suggests that the number ofways of choosing the four 
pegs is 30 x 29 x 28 x 27 = 657720, but that is to forget that ifwe 
had chosen the same four pegs in a different arder, then we 
would have specified the same crossing. There are 
4 x 3 x 2 x 1 = 24 ways of putting any given four pegs in arder, and 

if we allow for this we find that the number ofcrossings is 
657720/24 =27405, which is nothing like vast enough ta be the 
number of corners of536,870,912 regions. (In fact, the true 
number of regions produced by 30 points turns out ta be 

27,841.) 

~ This cautionary tale contains many important lessons about the 

1
justification of mathematical statements. The most obvious one is 
that ifyou do not take care to prove what you say, then you rnn the 
risk ofsaying something that is wrong. A more positive moral is that 
ifyou do try to prove statements, then you ,viII understand them in 
a completely different and much more interesting way. 

Pythagoras' theorem 

The famous theorem of Pythagoras states that if a right-angled 
triangle has sides oflength a, b, and c, where c is the length of the 
hypotenuse (the side opposite the right angle), then a2 + b2 = c2 

• It 

has several proofs, but one stands out as particularly short and easy 
ta understand. Indeed, it needs Uttle more than the following two 
diagrams. 

ln Figure 13, the squares that 1 have labelledA, B, and Chave sides 

oflength a, b, and c respectively, and therefore areas a2 
, b2 

, and c2
• 

Since moving the four triangles does not change their area or cause 
them ta overlap, the area of the part of the big square that they do 
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13. A short proofofPythagoras' theorem 

not cover is the same in both diagrams. But on the left this area is 

a2 + b2 and on the right it is c2 
• 

Tiling a square grid with the corners removed 

Here is a well-known brainteaser. Take an eight-by-eight grid of 

squares and rem ove the squares from two opposite corners. Can you 
cover the remainder of the grid with domino-shaped tiles, each of 
which exactly covers two adjacent squares? My illustration (Figure 
14) shows that you cannot if the eight-by-eight grid is replaced by a 
four-by-four one. Suppose you decide to place a tHe in the position 1 
have marked A. It is easy to see that you are then forced to put tiles 
in positions B, C, D, and E, leavi.ng a square that cannot be covered. 
Since the top right-hand corner must be covered somehow, and the 
only other way ofdoing it lcads to similar problems (by the 
symmetry of the situation), tiling the whole shape is impossible. 

Ifwe replace four by five, then tiling the grid is still impossible, for 
the simple reason that each tile covers two squares and there are 23 

squares to cover an odd number. However, 82 2 62 i8 an even 
number, so we cannat use this argument for an eight-by-eight grid. 
On the other hand, ifyou try to find a proofsimilar to the one 1 used 

for a four-by-four grid, you will saon give up, as the number of 
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14. Tiling a square grid with the corners removed 

possibilities you have to consider is very large. So how should you 
~ approach the problem? Ifyou have not come across this question, 1 
~ 
E would urge you to try to solve it before reading on, or to skip the.. 

next paragraph, because if you manage to solve it you will have a 
Î good idea of the pleasures of mathematics. 

For those who have disregarded my advice, and experience suggests 
that they will be in the majority, here is one word which is almost 
the whole proof: chess. A chessboard is an eight-by-eight grid, with 
its squares coloured alternately black and white equite 
unnecessarily as far as the game is concerned, but making it easier 
to take in visually). 1\vo opposite corner squares will have the same 
colour. If they are black, as they mayas weIl be, then once they are 
removed the depleted chessboard has 32 white squares and 30 
black ones. Each domino covers exactly one square of each colour, 
so once you have put down 30 dominoes, you will be left, no matter 
how you did it, with two white squares, and these you will be unable 
to cover. 

This short argument illustrates very weIl how a proof can offer more 
thanjust a guarantee that a statement is true. For example, we now 
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have two proofs that the four-by-four grid with two opposite 
corners removed cannot be tiled. One is the proof 1 gave and the 
other is the four-by-four version of the chessboard argument. 
Both ofthem establish what we want, but only the second gives 
us anything like a reason for the tiling being impossible. This 
reason instantly tells us that tiling a ten-thousand-by-ten
thousand grid with two opposite corners removed is also 
impossible. By contrast, the first argument tells us only about the 
four-by-four case. 

It is a notable feature of the second argument that it depends on 
a single idea, which, though unexpected, seems very natural as 
soon as one has understood it. It often puzzles people when 
mathematicians use words like 'elegant', 'beautiful', or even 'witty' to 
describe proofs, but an example such as this gives an idea ofwhat 
they mean. Music provides a useful anal ogy: we may be entranced 
when a piece moves in an unexpected harmonic direction that 
later cornes to seem wonderfully appropriate, or when an orchestral à 
texture appears to be more than the sum of its parts in a way that 3
we do not fully understand. Mathematical proofs can provide a 
similar pleasure with sudden revelations, unexpected yet natural 
ideas, and intriguing hints that there is more to be discovered. Of 
course, beauty in mathematics is not the same as beauty in music, 
but then neither is musical beauty the same as the beauty of a 
painting, or a poem, or a human face. 

Three obvious-seeming statements that need proofs 

An aspect of advanced mathematics that many find puzzling is that 
sorne of its theorems seem too obvious to need proving. Faced with 
such a theorem, people will often ask, 'If tkat doesn't count as 
obvious, then what does?' A former colleague of mine had a good 
answer to this question, which is that a statement is obvious if a 
proof instantly springs to mind. In the remainder of this chapter, 1 
shall give three examples of statements that may appear obvious 
but which do not pass this test. 
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1. The fundamental theorem of arithmetic states that every natural 
number can be \vritten in one and only one way as a product of 
prime numbers, give or takc the order in which you write them. For 
example,36 2 x 2 x 3 x 3, 74 = 2 x 37, and 101 is itself a prime 
number (which is thought of in this context as a 'product' of one 
prime only). Looking at a few small numbers like this, one rapidly 
becomes convinced that there will never be two d?fferent ways of 
expressing a number as a product ofprimes. That is the main point 
of the theorem and it hardly seems to need a proof. 

But Îs it reany 80 obvious? The numbers 7, 13, 19, 37, and 47 are ail 
prime, 80 if the fundamental theorem of arithmetic is obvious then 
it should be obvious that 7 x 13 x 19 does not equal 37 x 47. One 
can ofcourse check that the two numbers are indeed different (one, 
as any mathematician will tell you, is more interesting than the 
other), but that doesn't show that they were obviously going to be 

~ 	 difterent, or explain why one could not find two other products of 
primes, this time giving the same answer. In faet, there is no easy ~ 

..c 	 proof of the theorem: if a proof instantly springs to mind, then you1;; 
:i 	 have a very unu8nal mind. 

2. Suppose that you tie a slip knot in a normal piece ofstring and 
then fuse the ends together, obtaining the shape illustrated in 
Figure 15, known to mathematicians as the trefoil knot. 18 it 
possible to untie the knot without cutting the string? No, ofcourse 
it isn't. 

Why, though, are we inclined ta say 'ofcourse' ? ls there an 
argument that immediately occurs ta us? Perhaps there is - it 
seems as though any attempt to untie the knot will inevitably make 
it more tangled rather than less. However, it is difficult to convert 
this instinct into a valid proof. AIl that is genuinely obvions is that 
there is no simple way ta untie the knot. What is difficult is to rule 
out the possibility that there is a way of untying the trefoil knot by 
making it much more complicated first. Admittedly, this seems 
unlikely, but phenomena of this kind do occnr in mathematics, and 
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15. A trefoil knot 

even in everyday life: for example, in order to tidy a room properly, 
as opposed to stuffing everything into cupboards, it is often 
necessary to begin by making it much untidier. l 
3. A curve in the plane means anything that you can draw 
without lifting your pen off the paper. It is called simple if it never 
erosses itself, and closed ifit ends up where it began. Figure 16 
shows what these definitions mean pictorially. The first curve 
illustrated, which is both simple and closed, encloses a single 
region of the plane, which is known as the interior of the curve. 
Clearly, every simple closed curve splits the plane into two parts, 
the inside and the outside (three parts ifone includes the curve 
itself as a part). 

18 this really so clear though? Yes, it certainly is if the curve Îs not too 
complicated. But what about the curve shown in Figure 17? Ifyou 
choose a point somewhere near the middle, it is not altogether 
obvious whether it lies inside the curve or outside it. Perhaps not, 
you might say, but there will certainly be an inside and an outside, 
even if the complexity of the curve makes it hard to distinguish 
them visnally. 
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15. A trefoil knot 

even in everyday life: for example, in order to tidy a room properly, 
as opposed to stuffing everything into cupboards, it is often 
necessary to begin by making it much untidier. l 
3. A curve in the plane means anything that you can draw 
without lifting your pen off the paper. It is called simple if it never 
erosses itself, and closed ifit ends up where it began. Figure 16 
shows what these definitions mean pictorially. The first curve 
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choose a point somewhere near the middle, it is not altogether 
obvious whether it lies inside the curve or outside it. Perhaps not, 
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Simple 

16. Four kinds ofcurve 

Not simple 

i How can one justifY this conviction'? One might attempt to 
:Ii distinguish the inside from the outside as follows. Assuming for a 

moment that the concepts of inside and outside do make sense, 
then every time you cross the curve, you must go from the inside to 
the outside or vice versa, Hence, if you want to decide wh ether a 
point P is inside or outside, aIl you need to do is draw a line that 
starts at P and ends up at sorne other point Q that is far enough 
from the curve to be quite clearly outside. Ifthis line crosses the 
curve an odd number oftimes then P is inside; otherwise it is 
outside. 

The trouble with this argument is that it takes various things for 
granted. For example, how do you know that if you draw another 
line from P, ending at a different point R, you won't get a different 
answer? (You won't, but this needs to be proved.) The statement 
that every simple closed cUrve has an inside and an outside is in fact 
a famous mathematical theorem, knovm as the Jordan Curve 
Theorem. However obvious it may seem, it needs a proof, and al] 
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17. Is the black spot inside the curve or outside it? 

known proofs of it are difficult enough to be well beyond the scope 
of a book like this. 
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Chapter 4 

Limits and infinity 

In the last chapter, 1 tried to indicate how the notion of a 
mathematical proof can, in principle, be completely formalized. If 
one starts with certain axioms, follows certain mies, and ends up 
with an interesting mathematical statement, then that statement 
will be accepted as a theorem; otherwise, it will not. This idea, of 
deducing more and more complicated theorems from just a few 
axioms, goes back to Euclid, who used just five axioms to build up 
large parts ofgeometry. (His axioms are discussed in Chapter 6.) 
Why, one might then ask, did it take until the 20th century for 
people to realize that this could be done for the whole of 
mathematics? 

The main reason can be summed up in one word: 'infinity'. In one 
way or another, the concept of infinity is indispensable to 
mathematics, and yet it is a very hard idea to make rigorous. In this 
chapter 1 shall discuss three statements. Each one looks innocent 
enough at first, but turns out, on closer examination, to involve the 
infinite. This creates difficulties, and most of this chapter will be 
about how to deal vvith them. 

1. The square root of 2 is about 1.41421356 

Where is infinity involved in a simple statement like the above, 
which says merely that one smallish number is roughly equal to 
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another? The answer lies in the phrase 'the square root of2', in which 
it is implicitly a8sumed that 2 kas a square root. Ifwe want to 
understand the statement completely, this phrase forces us to ask 
what sort of object the square root of 2 is. And that is where infinity 
cornes in: the square root of 2 is an infinite decimal. 

Notice that there is no mention of infinity in the following closely 
related statement: 1.41421356 squared is close to 2. This statement 
i8 entirely finite, and yet it seems to say roughly the same thing. As 

we shall see later, that îs important. 

What does it mean to say that there is an infinite decimal which, 
when squared, gives 2? At school we are taught how to multiply 
finite decimals but not infinite ones - it is somehow just assumed 
that they can be added and multiplied. But how is this to be done? 
To see the sort of difficulty that can arise, let us consider addition 
first. When we add two finite decimals, such as, say, 2.3859 and 1 
3.1405, we write one under the other and add corresponding 1 
digits, starting from the right. We begin by adding the final digits, 
9 and 5, together. This gives us 14, so we write down the 4 and J 
carry the 1. Next, we add the penultimate digits, 5 and 0, and the 
carried 1, obtaining 6. Continuing in this way, we reach the answer, 
5.5264. 

Now suppose we have two infinite decimals. We cannot start from 
the right, because an infinite decimal has no last digit. 80 how can 
we possibly add them together? There is one obvious answer: start 
from the left. However, there is a drawback in doing so. Ifwe try it 
with the finite decimals 2.3859 and 3.1405, for example, we begin 
by adding the 2 to the 3, obtaining 5. Next, just to the right of the 
decimal point, we add 3 and 1 and get 4, which is, unfortunately, 
incorrect. 

This incorrectness is inconvenient, but it is not a disaster ifwe 
keep our nerve and continue. The next two digits to be added are 
8 and 4, and we can respond to them by writing down 2 as the 
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third digit of the answer and correcting the second digit by 
changing it from 4 to 5. This process continues with our writing 
dO'wn 5 as the fourth digit of the answer, which will then be 
corrected to 6. 

Notice that corrections may take place a long time after the digit has 
been written doV\o'1l. For example, ifwe add 1.3555555555555555573 
to 2.5444444444444444452, then we begin by writing 
3.89999999999999999, but that entire string of nines has to be 
corrected when we get to the next step, which is ta add 7 to 5. Then, 
like a Hne of dominoes, the nines turn into zeros as we carry one 
back and back. Nevertheless, the method works, giving an answer 
of 3.9000000000000000025, and it enables us ta give a meaning 
to the idea of adding two infinite decimals. lt is not too hard to see 
that no digit will ever need to be corrected more than once, so ifwe 
have two infinite decimals, then, for example, the 53rd digit oftheir 

~ sum will be what we write down at the 53rd stage of the above 
~ process, or the correction of it, should a correction later become 
Il 

~ necessary. 
::! 

We would like to make sense ofthe assertion that there is an 
infinite decimal whose square is 2. To do this, we must first 
see how this infinite decimal ls generated and then understand 
what it means to multiply it by itself: As one might expect, 
multiplication of infinite decimals is more complicated than 
addition. 

First, though, here is a natural way to generate the decimal. It has to 
lie between 1 and 2, because 12 

:: l, which is less than 2, and 22 4, 
which is greater. lfyou work out 1.12

, 1.22
, 1.32

, and 50 on up to 1.92 

you find that 1.42 
:: 1.96, which is less than 2, and 1.52 2.25, which 

is greater. 80 must lie between 1.4 and 1.5, and therefore its 
decimal expansion must begin 1.4. Now suppose that you have 
worked out in this waythat the first eight digits of ii are 1.4142135. 
You can then do the following calculations, which show that the 
next digit is 6. 
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1.41421350':: 1.9999998236822500 
1.414213512 1.9999998519665201 
1.41421352' =1.9999998802507904 
1.414213532 1.9999999085350609 
1.414213542 1.9999999368193316 
1.41421355' 1.9999999651036025 
1.414213562 

'" 1.9999999933878736 
1.414213572 2.0000000216721449 

Repeating this procedure, you can generate as many digits as you 
like. Though you will never actually finish, you do at least have an 
unambiguous way ofdefining the nth digit after the decimal point, 
whatever the value ofn: it will be the same as the final digit of the 
largest decimal that squares to less than 2 and has n digits after the 
decimal point. For example, 1.41 is the largest decimal that squares 
ta less than 2 with two digits after the decimal point, so the square 
root of two begins 1.41. f 

i. 
Let us calI the resuIting infinite decimal x. What makes us 80 i 
confident that J! = 2? We might argue as follows. ~ 

12 1 
1.4· 1.96 

1.412 1.9881 
1.4142 1.999396 

1.41422 1.99996164 
1.414212 1.9999899241 

1.4142132 1.999998409469 
1.41421352 1.99999982368225 

1.414213562 1.9999999933878736 

As the above table ofealculations demonstrates, the more digits we 
use of the decimal expansion of li, the more nines we get after the 
decimal point when we muItiply the number by itself. Therefore, if 
we use the entire infinite expansion of ~2, we should get infinitely 
many nines, and 1.99999999 ... (one point nine recurring) equals 2. 
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This argument leads to two difficulties. First, why does one point 
nine recurring equal two? Second, and more serious, what does it 
mean to 'use the entire infinite expansion'? That is what wc were 

trying to understand in the first place. 

To dispose ofthe first objection, we must once again set aside any 
Platonic instincts. It is an accepted truth of mathematics that one 
point nine recurring equals two, but this truth was not discovered 
by sorne process ofmetaphysical reasoning. Rather, it is a 
convention. However, it is by no means an arbitrary convention, 
because not adopting it forces one either to invent strange new 
objects or to abandon sorne of the familiar rules of arithmetic. For 
example, ifyou hold that 1.999999 ... does not equal2, then what 
is 2 - 1.999999 ...? If it is zero, then you have abandoned the useful 
rule that x must equal y whenever x - y = O. If it is not zero, then it 
does not have a conventional decimal expansion (otherwise, 

~ 	 subtract it from two and you will not get one point nine recurring 
1 but something smaller) so you are forced to invent a new object 
i.. sucb as 'nougbt followed by a point, then infinitely many noughts, 
:E 	 and tken a one'. Ifyou do this, tben your diffieulties are only just 

beginning. What do you get when you multiply this mysterious 
number by itself? Infinitely many noughts, then infinitely many 
noughts again, and the:n a one? What happens ifyou multiply it by 
ten instead? Do you get 'infinity minus one' noughts followed by a 
one? What is the decimal expansion of 1/3? Now multiply that 
number by 3. Is the answer l or 0.999999 ... ? Ifyou follow the 
usual convention, then tricky questions of this kind do not arise. 
(Tricky but not impossible: a coherent notion of'infinitesimal' 
numbers was di8covered by Abraham Robinson in the 19608, but 
non-standard analysis, as his theory is called, has not become part 
ofthe mathematical mainstream.) 

The second difficulty is a more genuine one, but it can be 
circumvented. Instead oftrying to imagine what would actually 
happen ifone applied sorne kind of long multiplication procedure 
to infinite decimals, one interprets the statement a? = 2 as meaning 
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simply that the more digits one takes ofx, the closer the square of 
the resulting number is to 2, just as we observed. To be more 
precise, suppose you insist that you want a number that, when 
squared, produces a number tbat begins 1.9999 .... 1 will suggest 
the number 1.41421, given by the first few digits ofx. Since 1.41421 
is very close to 1.41422,1 expect that their squares are also very close 
(and this can be proved quite easily). But because ofhow wc chose 
x, 1.414212 is less than 2 and 1.414222 is greater than 2. It follows 
that both numbers are very close to 2. Just to check: 
1.414212 = 1.9999899241, so 1 have found a number with the 
property you wanted. Ifyou now ask for a number that, when 
squared, begins 

1.999999999999999999999999999999999999999999999999999 ..., 

1 can use exactly the same argument, but with a few more digits ofx. r

(It tums out that if you want n nines then n + 1 digits after the ~ 
decimal point will always be enough.) The fact that 1 can do this, !... 
however many nines you want, is what i8 meant by saying that the g; 
infinite decimal x, when multiplied by itself, equals 2. j 

Notice that what we have done is to 'tame' the infinite, by 
interpreting a statement that involves infinity as nothing more than 
a colourful shorthand for a more cumbersome statement that 
doesn't. The neat infinite statement is 'x is an infinite decimal that 
squares to 2'. The translation is something like, 'There is a rule 
that, for any n, unambiguously determines the nth digit ofx. This 
allows us to form arbitrarily long finite decimals, and their squares 
can be made as close as we like to 2 simply by choosing them long 
enough.' 

Am 1 saying that the true meaning ofthe apparently simple 
statement that a? = 2 is actually very complicated? In a way 1 am 
the statement reaTIy does have hidden complexities - but in a more 
important way 1 am not. It is hard work to define addition and 
multiplication of infinite decimals without mentioning infinity, and 
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one must check that the resulting complicated definitions obey the 
rules set out in Chapter 2, such as the commutative and associative 
laws. However, once this has been done, we are free to think 
abstractly again. What matters about x is that it squares to two. 
What matters about the word 'squares' is that its meaning is based 
on sorne definition of multiplication that obeys the appropriate 
rules. It doesn't really matter what the trillionth digit ofx is and 

it doesn't really matter that the definition of multiplication is 

somewhat complicated. 

2. We reached a speed of 40 m.p.h. just as we 

passed that lamp-post 

Suppose you are in an accelerating car and you have watched the 

speedometer move steadily from 30 m.p.h. to 50 m.p.h. It is 
tempting to say that just for an instant - the exact instant at which 

li 	the arm ofthe speedometer passed 40 - the car was travelling at 40
1 m.p.h. Before that instant it was slower and afterwards it was faster. 
il 	But what does it mean to say that the speed ofa car is 40 m.p.h. just 
::I! 	 for an instant? Ifa car is not accelerating, then we can measure how 

many miles it goes in an hour, and that gives us its speed. 
(Alternatively, and more practically, we can see how far it goes in 

30 seconds and multiply by 120.) However, this method 
obviously does not work with an accelerating car: ifone measures 
how far it has gone in a certain time, all one can calculate is the 
average speed during that time, which does not tell us the speed at 

any given moment. 

The problem would disappear ifwe could measure how far the car 

travelled during an infinitely small period of time, because then the 
speed would not have time to change. If the period of time lasted 
for t hours, where t was sorne infinitely small number, then we 
would measure how many miles the car travelled during those t 
hours, take our answer 8, which would also be infinitely small of 
course, and divide it by t to obtain the instantaneous speed ofthe 

car. 
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This ridiculous fantasy leads to problems very similar to those 
encountered when we briefly entertained the idea that one point 
nine recurring might not equal two. Is t zero? If so, then quite 

clearly 8 must be as weIl Ca car cannat travel any distance in no time 
at aIl). But one cannat divide zero by zero and obtain an 
unambiguous answer. On the other hand, if t is not zero, then the 
car accelerates during those t hours and the measurement is 
invalid. 

The way ta understand instantaneous speed is ta exploit the fact 
that the car does not have time to accelerate very much if t is very 

small- say a hundredtb ofa second. Suppose for a moment that we 
do not try to calculate the speed exactly, but settle instead for a good 
estimate. Then, ifour measuring devices are accurate, we can see 
how far the car goes in a hundredth of a second, and multiply that 
distance by the number ofhundredths of a second in an hour, or 
360,000. The answer will not be quite right, but since the car 

cannot accelerate much in a hundredth of a second it will give us a 
close approximation. 

This situation is reminiscent of the fact that 1.4142135" is a close 
approximation to 2, and it allows us to avoid worrying about the 
infinite, or in this case infinitely small, in a very similar way. 
Suppose that instead ofmeasuring how far the car went in a 
hundredth of a second we had measured its distance over a 
millionth of a second. The car would have accelerated even less 
during that time, 50 our answer would have been more accurate 
still. This observation gives us a way oftranslating the statement, 
'The car is travelling at 40 m.p.h.... NOWl' into the following more 

complicated finite one: 'Ifyou specifY what margin oferror 1 am 
allowed, then as long as t is a small enough number ofhours 
(typically far less than one) 1 can see how many miles the car travels 
in t hours, divide by t and obtain an answer that will be at least as 
close to 40 m.p.h. as the error margin yOll allowed me: For example, 
if t is small enough, then 1 can guarantee that my estimate will be 

between 39.99 and 40.01.1fyou have asked for an answer accurate 
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one must check that the resulting complicated definitions obey the 
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to within 0.0001, then 1may have to make t smaller, but as long as it 
is small enough 1 can give you the accuracy you want. 

Once again, we are regarding a statement that involves intinity as 
a convenient way ofexpressing a more complicated statement 
concerning approximations. Another word, which can be more 
suggestive, is 'limit'. An infinite decimal is a limit ofa sequence of 
finite decimaIs, and the instantaneous speed is the limit of the 
estimates one makes by measuring the distance travelled over 
shorter and shorter periods of time. Mathematicians often talk 
about what happens 'in the limit', or 'at intinity', but they are aware 
as they do so that they are not being wholly serious. Ifpressed to say 
exactly what they mean, they will start to talk about approximations 

instead. 

:l 3. The area of a circle of radius r is 7U~ 

i 
The realization that the infinite can be understood in terms of the 

tinite was one of the great triumphs of19th-century mathematics, 
i although its roots go back much earlier. In discussing my next 
example, how to calculate the area ofa circ1e, l shan use an 
argument invented by Archimedes in the 3rd century BC. Before we 
do this calculation, though, we ought to decide what it is that we are 
calculating, and this is not as easy as one might think. What iB area? 
Ofcourse, it is something like the amount ofstuffin the shape 
(two-dimensional stuff, that is), but how can one make this 

precise? 

Whatever it is, it certaînly seems to be easy to calculate for certain 
shapes. For example, ifa rectangle has side lengths a and b, then its 
area is ab. Any right-angled triangle can be thought of as the result 
ofcutting a rectangle in halfdown one of its diagonals, so its area is 
half that of the corresponding rectangle. Any triangle can be eut 
into two right-angled triangles, and any polygon can be split up into 
triangles. Therefore, it is not lOo difficult to work out the area of a 
polygon. Instead of worrying about what exactly it is that we have 

64 

calculated, we can simply difine the area of a polygon to be the 
result ofthe calculation (once we have convinced ourselves that 
chopping a polygon into triangles in two different ways will not give 
us two different answers). 

Our problems begin when we start to look at shapes with curved 
boundaries. It is not possible to cut a circle up into a few 
triangles. 80 what are we talking about when we say that its area 
iS1l:r? 

This is another example where the abstract approach is very helpful. 
Let us concentrate not on what area is, but on what it does. This 
suggestion needs to be clarified since area doesn't seem to do all 
that much surely it is just there. What 1 mean is that we should 
focus on the properties that any reasonable concept of area will 
have. Here are five. 

1 
Arl Ifyou slide a shape about, its area does not change. (Or more 1 
formally: two congruent shapes have the same area.) ~ 

~ 
Ar2 Ifone shape is entirely contained in another, then the area of 
the tirst is no larger than the area of the second. 

Ar3 The area of a rectangle is obtained by multiplying its two 
side lengths. 

Ar4 Ifyou cut a shape into a few pieces, then the areas of the pieces 
add up to the area of the original shape. 

Ar5 Ifyou expand a shape by a factor of2 in every direction, then its 
area multiplies by 4. 

Ifyou look back, you will see that wc used properties Arl, Ar3, and 
Ar4 to calculatc the area ofa right-angled triangle. Property Ar2 
may seem so obvious as to be hardly worth mentioning, but this is 
what one expects ofaxioms, and we shaH see later that it is very 
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::1 

useful. Property Ara, though important, is not actually needed as an 

axiom because it can be deduced from the others. 

How can we use these properties to say what we mean by the area of 
a circle'? The message ofthis chapter 80 far is that it may be fruitful 
to think about approximating the area, rather than defining it in 
one go. This can be done quite easily as follows. Imagine that a 
shape is drawn on a piece ofgraph paper with a very fine grid of 
squares. We know the area of these squares, by property Ar3 (since 
a square is a special kind of rectangle), so we could try estimating 
the area of the shape by counting how many of the squares lie 
completely within it. If, for example, the shape contains 144 

squares, then the area of the shape is at least 144 times the arca 
of each square. Notice that what we have really calculatcd is the 
area of a shape made out ofthe 144 squares, which is easily 

determined by properties Ar3 and Ar4. 

~ For the shape illustrated in Figure 18 this does not give the right
i answer because there are several squares that are partly in the shape

QI 

1 j 1 Iii i 1 t 1 i Il! 1 i i i i 1 

18. Approximating the area ofa curved shape 
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and partly out of it, 80 we have not taken account ofall of the area. 
However, there is an obvious way to improve the estimate, which is 
to divide each square into four smaller ones and use those instead. 
As before, sorne of the squares will be partly in and partly out, but 
we ,vin now have included a little more of the shape amongst the 
squares that are completely inside it. In general, the finer the grid of 
squares, the more ofthe original shape we take account of in our 
calculation. We find (and this is not quite as obvious as it seems) 
that as we take finer and finer grids, with smaller and smaller 
squares, the results of our calculations are closer and closer to sorne 
number, just as the results of squaring better and better 
approximations to J2 become closer and closer to 2, and we difine 
this number to be the area of the shape. 

Thus, to the mathematically inclined, the statement that sorne 
shape has an area of one square yard means the following. If a t: 

certain amount of error is regarded as tolerable, then, however ! 
small it is, one can choose a sufficiently fine grid of squares, do the !!l ... 
approximate calculation by adding up the areas of the squares §; 
inside the shape, and arrive at an answer which will differ from one J 
square yard by less than that amount. (Somewhere in the back of 
one's mind, but firmly suppressed, may be the idea that 'in the limit' 
one could use infinitely many infinitely small squares and get the 
answer exactly right.) 

Another way ofputting it, which is perhaps clearer, is this. Ifa 
curved shape has an area of exactly 12 square centimetres, and 1am 
required to demonstrate this using a grid ofsquares, then mytask is 
impossible - I would need infinitely many of them. If, however, you 
give me any number other than 12, such as 11.9, say, then I can use a 
grid ofsquares to prove conclusively that the area ofthe shape is not 
that number: all I have to do is choose a grid fine enough for the 
area left out to be less than 0.1 square centimetres. In other words, I 
can do without infinity if, instead ofproving that the area is 12, 1 
settle for proving that it isn't anything else. The area of the shape is 
the one number l cannot disprove. 
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These ideas give a satisfactory definition of area, but they stillleave 
us with a problem. How can we show that if we use the above 
procedure to estimate the area of a cirde of radius r, then our 
estimates will get doser and doser ta nil? The answer for most 
shapes is that one has ta use the integral calculus, which 1 do not 
discuss in this book, but for the cirde one can use an ingenious 
argument ofArchimedes, as 1 mentioned earlier. 

Figure 19 shows a cirde eut into slices and an approximately 
rectangular shape formed by taking the sUces apart and 
reassembling them. Because the slices are thin, the height ofthe 
rectangle is approximately the radius, r, ofthe cirde. Again because 
the slices are thin, the top and bottom sides of the approximate 
rectangle are approximately straight Hnes. Since each of these sides 
uses half the circumference of the cirde, and by the definition 
ofn the circumference has length 2nT, their lengths are 

J approximately nT. Therefore, the area of the approximate
1 rectangle is T x nT = nil at least approximately. 

~ 
~ Of course, it is in fact exactly nil since ail we have done is cut up a 

cirde and move the pieces around, but we do not yet know this. The 
argument 50 far may have already convinced you, but it is not quite 
finished, as we must establish that the above approximation 
becomes doser and doser to nil as the number ofslices becomes 
larger and larger. Very briefly, one way 10 do this is to take two 
regular polygons, one just contained in the cirde and the other just 

~ 

19. Archimedes' method for showing that a circle has area ter 
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20. Approximating a circle by a polygon i 
DI 

containing it. Figure 20 illustrates this with hexagons. The ~ 
perimeter ofthe inner polygon is shorter than the circumference of 1 
the cirde, while that ofthe outer polygon is longer. The two 
polygous can each be cut into triangular slices and reassembled into 
paralJelograms. A straightforward calculation shows that the 
smaller parallelogram has an area of less than r times half the 
perimeter ofthe inner polygon, and hence Jess than nil. Similarly, 
the area of the larger polygon is greater than nil. And yet, if the 
number ofslices is large enough, the difference in area hetween the 
two polygons can he made as small as one likes. Since the circle 
always contains the smaller one and is contained in the larger, its 
area must be exactly nil. 
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Chapter 5 

Dimension 

A notable feature ofadvanced mathematics is that much of it is 

concerned with geometry in more than three dimensions. This fact 

is baffling to non-mathematicians: lines and curves are one
dimensional, surfaces are two-dimensional, and solid objects are 

three-dimensional, but how could something be four-dimensional? 

Once an object has height, width, and depth, it completely fills up a 

portion of space, and there just doesn't seem to be scope for any 

further dimensions. It is sometimes suggested that the fourth 

dimension is time, which is a good answer in certain contexts, such 

as special relativity, but does not help us to make sense of, say, 

twenty-six-dimensional or even infinite-dimensional geometry, 

both of which are ofmathematical importance. 

High-dimensional geometry is yet another example of a concept 

that is best understood from an abstract point ofview. Rather than 

worrying about the existence, or otherwise, oftwenty-six

dimensional space, let us think about its properties. You might 

wonder how it is possible to consider the properties ofsomething 

without establishing first that it exists, but this worry is easily 

disposed of. lfyou leave out the words 'ofsomething', then the 

question becomes: how can one consider a set of properties without 

tirst establishing that there is something that has those properties? 

But this is not difficult at all. For example, one can speculate about 

the character a female president ofthe United States would be likely 
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to have, even though there is no guarantee that there will ever be 
one. 

What sort ofproperties might we expect of twenty-six dimensional 

space? The most obvious one, the property that would make it 
twenty-six dimensional, is that it should take twenty-six numbers to 

specify a point, just as it takes two numbers in two dimensions and 

three in three. Another is that ifyou take a uventy-six dimensional 

shape and expand it by a factor of two in every direction, then its 

'volume', assuming we can make sense of it, should multiply by 2 26
• 

Andsoon. 

Such speculations would not be very interesting if it turned out that 

there was something logïcally inconsistent about the very notion of 

twenty-six dimensional space. To reassure ourselves about this, we 

would after alllike to show that it exists - which it obviously 

couIdn't ifit involved an inconsistency - but in a mathematical CI 

rather than a physical sense. What this means is that we need to f 
define an appropriate mode!. It may not necessarily be a model of f" 
anything, but if it has aU the properties we expect, it 'Will show that 

those properties are consistent. As 80 often happens, though, the 

model we shaH define tums out to be very useful. 

Haw ta define high-dimensianal space 

Defining the model is surprisingly easy to do, as soon as one has had 

one idea: coordinates. As l have said, a point in two dimensions can 

be specified using two numbers, while a point in three dimensions 

needs three. The usual way to do this is with Cartesian coordinates, 

so called because they were invented by Descartes (who maintained 

that he had been given the idea in a dream). In two dimensions you 

start with two directions at right angles to each other. For example, 

one might be to the right and the other directly upwards, as shown 

in Figure 21. Given any point in the plane, you can reach it by going 

a certain distance horizontally (if you go left then you regard 

yourself as having gone a negative distance to the right), then 
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three in three. Another is that ifyou take a uventy-six dimensional 

shape and expand it by a factor of two in every direction, then its 

'volume', assuming we can make sense of it, should multiply by 2 26
• 

Andsoon. 

Such speculations would not be very interesting if it turned out that 

there was something logïcally inconsistent about the very notion of 

twenty-six dimensional space. To reassure ourselves about this, we 

would after alllike to show that it exists - which it obviously 

couIdn't ifit involved an inconsistency - but in a mathematical CI 

rather than a physical sense. What this means is that we need to f 
define an appropriate mode!. It may not necessarily be a model of f" 
anything, but if it has aU the properties we expect, it 'Will show that 

those properties are consistent. As 80 often happens, though, the 

model we shaH define tums out to be very useful. 

Haw ta define high-dimensianal space 
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one might be to the right and the other directly upwards, as shown 

in Figure 21. Given any point in the plane, you can reach it by going 

a certain distance horizontally (if you go left then you regard 

yourself as having gone a negative distance to the right), then 
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(3,2) • 

(-2,1) • 

• (1, -2) 

21. Three points in the Cartesian plane 

:l 	 turning through ninety degrees and going sorne other distance 
;:;j 	vertically. These two distances give you two numbers, and these 
';1 	 numbers are the coordinates ofthe point you have reached. Figure 
:Il 	 21 shows the points with coordinates (3, 2) (threc to thc right and 

two up), (-2, 1) (two to the left and one up), and Cl, -2) (one to the 
right and two down). Exactly the same procedure works in three 
dimensions, that is, in space, except that you must use three 
directions, such as forwards, to the right, and upwards. 

N ow let us change our point ofview very slightly. Instead of calling 
the two (or three) numbers the coordinates oia point in space, let us 
say that the numbers are the point. That is, instead of saying 'the 
point with coordinates (5, 3)', let us say 'the point (5, 3)'. One might 
regard doing this as a mere linguistic convenience, but actually it is 
more than that. It is replacing real, physical space with a 
mathematical model of space. Our mathematical model of two
dimensional space consists ofpairs ofreal numbers (a, b). 
Although these pairs of numbers are not themselves points in space, 
we call them points because we ",ish to remind ourselves that 
that is what they represent. Similarly, we can obtain a model of 
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three-dimensional space bytaking all triples (a, b, c), and again 
calling them points. There is nowan obvious way ofdefining points 
in, say, eight-dimensional space. They are nothing other than 
octuples of real numbers. For example, here are two points: (l, 3, -l, 

4,0,0,6,7) and (5, 71:, -3/2, ~2, 17, 89.93, -12, ,'2 + 1). 

1 have now defined a mathematical model of sorts, but it is not yet 
worthy ofbeing called a model of eight-dimensional space, because 
the word 'space' carries with it many geometrical connotations 
which 1 have not yet described in terms ofthe model: there is more 
to space than just a vast collection of single points. For example, 
we talk about the distance between a pair of points, and about 
straight lines, circles, and other geometrical shapes. What are the 
counterparts ofthese ideas in higher dimensions? 

There is a general method for answering many questions ofthis 
kind. Given a familiar concept from two or three dimensions, first 
describe it entirely in terms of coordinates and then hope that the f 

i ,." 
(5,7) 

fl
:$;/

,:>"'" 

(1, 4)..... 	 1 • (5, 4) 
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22. Calculating distances using Pythagoras' theorem 
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generalization to higher dimensions becomes obvious. Let us see 

how this works for the concept ofdistance. 

Given two points in the plane, such as (1, 4) and (s, 7), we can 
calculate their distance as follows. We begin by forming a right
angled triangle with the extra point (s, 4), as illustrated in Figure 22. 

We then notice that the line joining the points (1, 4) to (s, 7) is the 

hypotenuse ofthis triangle, which means that its length can be 
calculated using Pythagoras' theorem. The lengths ofthe other two 
sides are S 1 =4 and 7 4 =3, so the length ofthe hypotenuse is 
J42 + 3' J16 + 9 =s. Thus, the distance between the two points is 
5. Applying this method to a general pair ofpoints (a, b) and (c, d), 
we obtain a right-angled triangle with these two points at either end 
ofthe hypotenuse and two other side lengths of 1c - a 1 (this means 
the difference between c and a) and 1d b 1. Pythagoras' theorem 
then tells us that the distance between the two points is given by the 

~ formula 

1 
 v(c-a)' +(d-b)' 


A similar but slightly more complicated argument works in three 
dimensions and shows that the distance between two points (a, b, c) 

and (d, e,j) is 

.j(d-a)2+(e b)2+lf-c? 

ln other words, to calculate the distance between two points, you 
add up the squares ofthe differences between corresponding 
coordinates and then take the square root. (Briefly, the justification 
is this. The triangle Twith vertices (a, b, c), (a, b,j), and Cd, e,j) has a 
right angle at (a, b,j). The distance from (a, b, c) to (a, b,j) is li- c 1 

and the distance from (a, b,j) to (d, e,j) is, by the two-dimensional 
formula, \I(d - a)' + (e- b)'. The result nowfollows from 

Pythagoras' theorem applied to T.) 

An interesting feature of this statement is that it makes no mention 
ofthe fact that the points were supposed to be three-dimensional. 
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We have therefore stumbled on a method for calculating distances 
in any number of dimensions. For example, the distance between 
the two points (l, 0, -1, 4,2) and (3, 1, 1, l, -1) (which lie in five
dimensional space) is 

~(3 _1)' + (1 0)" + (1- (_1))2 + (1-4)' + (-1 2)2 = 
,---C--=--:: 
,. +1+4+9+9= 

Now this way ofputting things is a little misleading because it 
suggests that there was always a distance between any pair of five
dimensional points (remember that a five-dimensional point means 
nothing more than a sequence offive real numbers) and that we 
have discovered how to work these distances out. Actually, however, 
what we have done is dejine a notion ofdistance. No physical reality 
forces us to decide that five-dimensional distance should be 
calculated in the manner described. On the other hand, this method 
is 50 c1early the natural generalization ofwhat we do in two and 
three dimensions that it would be strange to adopt any other 
definition. 

Once distance has been defined, we can begin to generalize other 
concepts. For example, a sphere is dearly the three-dimensional 
equivalent ofa circle. What would a four-dimensional 'sphere' be? 
As with distance, we can answer this question ifwe can describe 
the two- and three-dimensional versions in a way that does not 
actually mention the number of dimensions. This is not at aIl 
hard: circles and spheres can both be described as the set of all 
points at a fixed distance (the radius) from sorne given point (the 
centre). There is nothing ta stop us from using exactly the same 
definition for four-dimensional spheres, or eighty-seven
dimensional spheres for that matter. For example, the four
dimensional sphere of radius 3 about the point (1, l, 0, 0) is the 
set of all (four-dimensional) points at distance 3 from (1, 1, 0, 
0). A four-dimensional point is a sequence (a, b, c, d) offour real 
numbers. Its distance from (1,1,0,0) is (according to our earlier 
definition) 
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~(a - 1)2 + (b -1)' + c2 + rP 

Therefore, another description of this four-dimensional sphere is 

that it is the set of aU quadruples (a, b, c, d) for which 

~(a - 1)' + (b _1)2 + c 2 + rP = 3 

For example, (l, -l, 2, 1) is such a quadruple, so this is a point in the 

given four-dimensional sphere. 

Another concept that can be generalized is that of a square in two 
dimensions and a cube in three. AB Figure 23 makes clear, the set of 
aU points (a, b) such that both a and b lie between °and 1 forms a 
square of side length l, and its four vertices are the points (0, 0), 

(0, 1), (l, 0), and (l, 1). In three dimensions one can define a cube by 
taking aU points (a, b, c) such that a, b, and c aU lie between °and 1. 

~ 	 Now there are eight vertices: (0, 0, 0), (0, 0, 1), (0, l, 0), (0, l, 1), 

~ 	 (1,0,0), (l, 0, 1), (l, l, 0), and (l, l, 1). Similar definitions are 
~ 
Il 	

obviously possible in higher dimensions. For example, one can 
:lE 	 obtain a six-dimensional cube, or rather a mathematical 

construction clearly worthy of the name, by taking aU points (a, b, c, 
d, e,j) with aU their coordinates lying between °and 1. The vertices 
wiU be aU points for which every coordinate is °or 1: it is not hard 
to see that the number ofvertices doubles each time you add a 

dimension, so in this case there are 64 of them. 

One can do much more than simply difine shapes. Let me illustrate 
this briefly by calculating the number ofedges of a five-dimensional 
cube. It is not immediately obvious what an edge is, but for this we 
can take our cue from what happens in two and three dimensions: 
an edge is the line that joins two neighbouring vertices, and two 
vertices are regarded as neighbours ifthey differ in precisely one 
coordinate. A typical vertex in the five-dimensional cube is a point 
such as (0, 0, l, 0, 1) and, according to the definitionjust given, its 
neighbours are (l, 0, l, 0, 1), (0, l, l, 0, 1), (0, 0, 0, 0, 1), (0, 0, l, l, 1), 

and (0,0, l, 0, 0). In general, each vertex has five neighbours, and 
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hence five edges coming out of it. (1 leave it to the reader to 
generalize from two and three dimensions the notion of the line 
joining two neighbouring vertices. For this calculation it does not 
matter.) Since there are 25 = 32 vertices, it looks as though there are 
32 x 5 = 160 edges. However, we have counted each edge twice 
once each for its two end points - so the correct answer is half of 
160, that is, 80. 

One way of summarizing what we are doing is to say that we are 
converting geometry into algebra, using coordinates to translate 
geometrieal concepts into equivalent concepts that involve only 
relationships between numbers. Although we cannot directly 
generalize the geometry, we can generalize the algebra, and it seems 
reasonable to caU this generalization higher-dimensional geometry. 
Obviously, five-dimensional geometry is not as directly related to 
our immediate experience as three-dimensional geometry, but this 
does not make it impossible to think about, or prevent it from being 
useful as a model. 

(an four-dimensional space be visualized? 

In fact, the seemingly obvious statement that it is possible to 
visualize three-dimensional objects but not four-dimensional ones 
does not reaUy stand up to close scrutiny. Although visualizing an 
object feels rather like looking at it, there are important differences 
between the two experiences. For example, if1am asked to visualize 
a room with which 1 am familiar, but not very familiar, 1 have no 
difficulty in doing so. If1 am then asked simple questions about it, 
such as how many chairs it contains or what colour the floor is, 1 am 
often unable to answer them. This shows that, whatever a mental 
image is, it is not a photographie representation. 

ln a mathematieal context, the important difference between being 
able to visualize something and not being able to is that in the 
former case one can somehow answer questions directly rather than 
having to stop and calculate. This directness is of course a matter of 
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degree, but it i8 no less real for that. For example, if l am asked to 
give the number ofedges ofa three-dimensional cube, l can do it by 
'just seeing' that there are four edges round the top, four round 
the bottom, and four going from the top ta the bottom, making 
twelve in aIl. 

In higher dimensions, Just seeing' becomes more difficult, and 

one is often forced to argue more as l did when discussing the 
analogous question in five dimensions. However, it is sometimes 
possible. For example, 1 can think ofa four-dimensional cube as 
consisting oftwo three-dimensional cubes facing each other, with 
corresponding vertices joined by edges (in the fourth dimension), 
just as a three-dimensional cube consists oftwo squares facing 
each other with corresponding vertices joined. Although 1 do not 
have a completely clear picture offour-dimensional space, 1 can 
still 'see' that there are twelve edges for each of the two three

~ dimensional cubes, and eight edges linking their vertices together. 
~ This gives a total of12 + 12 + 8 = 32. Then 1 can 'just see' that a 
QI 

; 	 five-dimensional cube i8 made up of two ofthese, again with 
j 	 corresponding vertices linked, making a total of 32 + 32 + 16 = 80 

edges (32 for each four-dimensional cube and 16 for the edges 
between them), exactly the answer 1 obtained before. Thus, 1 have 
sorne rudimentary ability to visualize in four and five dimensions. 
(Ifyou are bothered by the ward 'visualize' then you can use 
another one, such as 'conceptualize'.) Ofcourse, it lS much harder 
than visualizing in three dimensions - for example, 1 cannot 

directly answer questions about what happens when you rotate a 
four-dimensional cube, whereas 1 can for a three-dimensional one 
but it i8 also distinctly easier than fifty-three-dimensional 
visualization, which it could not be if they were both impossible. 
Sorne mathematicians specialize in four-dimensional geometry, and 
their powers offour-dimensional visualization are highly 
developed. 

This psychological point has an importance to mathematics that 
goes weIl beyond geometry. One of the pleasures ofdevoting one's 
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life to mathematical research is that, as one gains in expertise, one 
finds that one can 'just see' answers to more and more questions 
that might once have required an hour or two ofhard thought, and 

the questions do not have to be geometrical. An elementary 
example of this is the statement that 471 x 638 638 x 471. One 
could verify this by doing two different long multiplications and 
checking that they give the same answer. However, ifone thinks 
instead ofa grid ofpoints arranged in a 471-by-638 rectangle, one 
can see that the first sum adds up the number ofpoints in each row 
and the second the number ofpoints in each column, and these 
must of course give the same answer. Notice that a mental picture 
here is quite different from a photograph: did yOll really visualize a 
471-by-638 rectangle rather than a 463-by-641 rectangle? Could 
you count the number of points along the shorter side, just to 

check? 

i What is the point of higher-dimensional geometry?

1It is one thing to demonstrate that sorne sense can be made of the 
idea ofhigher-dimensional geometry, but quite another to explain 
why it is a subject worth taking seriously. Earlier in the chapter, 1 
claimed that it was useful as a model, but how can this be, given that 
the actual space we inhabit is three-dimensional? 

The answer to this question is rather simple. One ofthe points 1 
made in Chapter 1 was that a model can have many different uses. 
Even two- and three-dimensional geometry are used for many 
purposes other than a straightforward modelling ofphysical space. 
For example, we often represent the motion of an object by drawing 
a graph that records the distance it has travelled at different times. 
This graph will be a curve in the plane, and geometrical properties 
ofthe curve correspond to information about the motion ofthe 
object. Why is two-dimensional geometry appropriate for modclling 
this motion? Because there are two numbers of interest - the time 
elapsed and the distance travelled - and, as 1 have said, one can think 
oftwo-dimensional space as the collection ofall pairs of numbers. 

80 

This gives us a due about why higher-dimensional geometry can be 
useful. There may not be any high-dimensional space lurking in the 
universe, but there are plenty ofsituations in which we need to 
consider collections ofseveral numbers. 1 shall very briefly describe 
two, after which it should become obvious that there are many 
more. 

Suppose that 1 wish to describe the position ofa chair. If it is 
standing upright, then its position is completely determined by the 
points where u\'o of its legs meet the floor. These two points can 
each be described by two coordinates. The resu1t is that four 
numbers can be used to describe the position ofthe chair. 
However, these four numbers are related, because the distance 
between the bottoms of the legs is fixed. If this distance is d and 
the legs meet the floor at the points (p, q) and Cr, s) then 
(p r)2 + Cq - s? =d!, by Pythagoras' theorem. This puts a 
constraint on p, q, r, and s, and one way to describe this constraint 
uses geometricallanguage: the point Cp, q, r, s), which belongs to 
four-dimensional space, is forced to lie in a certain three

i 
i 
" dimensional 'surface'. More complicated physical systems can be 

analysed in a similar way, and the dimensions become much 
higher. 

Multi-dimensional geometry is also very important in economics. If, 
for example, you are wondering whether it is v.'Îse to buy shares in a 
company, then much of the information that will help you make 
your decision cornes in the form of numbers - the size ofthe 
workforce, the values ofvarious assets, the costs of raw mate rials, 
the rate of interest, and so on. These numbers, taken as a sequence, 
cau be thought ofas a point in sorne high-dimensional space. What 
you would like to do, probably by analysing many other similar 
companies, is identify a region ofthat space, the region where it is a 
good idea to buy the shares. 
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Fractional dimension 

Ifone thing seems obvious from the discussion 80 far, it is that the 

dimension of any shape will always be an integer. What could it 

possibly mean to say that you need two and a half coordinates to 

specif)r a point - even a mathematical one? 

This argument may look compelling, but we were faced with a very 
similar difficulty before we defined the number 23/2 in Chapter 2, 

and managed to circumvent it by using the abstract method. Can we 

do something similar for dimension? Ifwe want to, then we must 

find sorne property associated with dimension that does not 

immediately imply that it is a whole number. This rules out 

anything to do v.ith the number ofcoordinates, which seems 80 

closely bound up with the very idea ofdimension that it is hard to 
think of anything else. There is, however, another property, 

li mentioned briefly at the beginning ofthis chapter, that gives us 

1 exactly what we need. 

i An important aspect ofgeometry which varies with dimension is 

the rule that determines what happens to the size of a shape when 

you expand it by a factor of t in every direction. By size, 1 mean 

length, area, or volume. In one dimension, thc size multiplies by t, or 

t" in two dimensions it multiplies by f, and in three it multiplies by 
t~. Thus, the power of t tells us the dimension of the shape. 

So far we have not quite managed to banish whole numbers from 

the picture, because the numbers two and three are implicit in the 
words 'area' and 'volume'. However, we can do without these words 

as follows. Why is it that a square ofside length three has nine times 

the area of a square of side length one? The reason is that one can 
divide the larger square into nine congruent copies ofthe smaller 

one (see Figure 24.). Simîlarly, a three-by-three-by-three cube can 
be divided into twenty-seven one-by-one-by-one cubes, so its 

volume is twenty-seven times that of a one-by-one-by-one cube. 80 
we can say that a cube is three-dimensional because if it is expanded 
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24. Dividing a square into 9 = 32 smaller squares, and a cube into 
27 =33 smaller cubes 

by a factor of t, where t is a whole number greater than 1, then the 

new cube can be divided into f copies ofthe old onc. Note that the 
word 'volume' did not appear in the last sentence. 

We may now ask: is there a shape for which we can reason as above 

and obtain an answer that is not an integer? The answer is yeso One 

of the simplest examples is known as the Koch snoV\llake. It is not 

possible to describe it directly: instead, it is defined as the limit of 

the following process. Start with a straight line segment, oflength 
one, say. Then divide it into three equal pieces, and replace the 

middle piece with the other two sides ofthe equilateral triangle 

that has this middle piece as its base. The result is a shape built 

out offour straight Une segments, each oflength one-third. Divide 

eaeh ofthese into three equal pieccs, and again replace each middle 

piece by the other two sides of an equilateral triangle. Now the 

result is a shape made of sixteen Hne segments, each oflength one
ninth. It is clear how to continue this process: the first few stages 

are illustrated in Figure 25. It Îs not too hard to prove rigorously 

that this process leads to a limiting shape, as the pictures suggest, 

and this shape is the Koch snowflake. (It looks more like a 

snowflake ifyou take three copies of it and put them together round 
a triangle.) 
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25. Building up the Koch snowflake 

The Koch snowflake has several interesting features. The one that 

will concern us is that it can be built out of smaller copies of itself. 

Once again, this can be seen from the picture: it consists offour 

copies, and each copy is a shrinking ofthe whole shape by a factor of 

one-third. Let us now consider what that tells us about its 

.a 	 dimension. 

! .s 	 If a shape is d-dimensional, then when we shrink it by a factor of 

:il 	 one-third its size should go down bya factor of3d
• (As we have seen, 

this is true when d is l, 2, or 3.) Thus, ifwe can build it out ofsmaller 

copies, then we should need 3d ofthem. Since four copies are needed 

for the Koch snowflake, its dimension d should be the number for 

which 3d =4. Since 31 =3 and 3 2 =9, this means that d lies between 

land 2, and so is not a whole number. In fact, it is 10g.,4, which is 

approximately 1.2618595. 

This calculation depends on the fact that the Koch snowflake can be 

decomposed into smaller copies of itself, which is a very unusual 

feature: even a circle doesn't have it. However, it is possible to 

develop the above idea and give a definition of dimension that is 

much more widely applicable. As with our other uses ofthe abstract 

method, this does not mean that we have discovered the 'true 

dimension' of the Koch snowflake and similar exotic shapes - but 

merely that we have found the only possible definition consistent 

with certain properties. In fact, there are other ways of defining 

84 

dimension that give different answers. For example, the Koch 

snowflake has a 'topological dimension' of 1. Roughly speaking, this 

is because, like a Hne, it can be broken into two disconnected parts 

by the removal of any one of its interior points. 

This sheds interesting light on the twin processes ofabstraction and 

generalization. 1 have suggested that to generalize a concept one 

should find sorne properties associated with it and generalize those. 

Often there is only one natural way to do this, but sometimes 

different sets ofproperties lead to different generalizations, and 

sometimes more than one generalization is fruitful. 
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Chapter 6 

Ceometry 

Perhaps the most influential mathematics book ofaU time is Euclid's 
Elements, written in around 300 Be. Although Euclid lived over 
two thousand years ago, he was in many ways the first recognizably 
modern mathematician - or at least the first that we know about. In 
particular, he was the first author to make systematic use of the 
axiomatic method, beginning his book with five axioms and 
deducing from them a large body ofgeometrical theorems. The 
geometry with which most people are familiar, if they are familiar 
with any at all, is the geometry of Euclid, but at the research level 
the word 'geometry' has a much broader definition: today's 
geometers do not spend much of their time with a ruler and 
compass. 

Euclidean geometry 
Here are Euclid's axioms. 1 follow the normal convention and use 
the word 'line' for a line that extends indefinitely in both directions. 
A '!ine segment' will mean a !ine with two end-points. 

1. 	 Any two points can be joined by exactly one line segment. 

2. 	 Any !ine segment can be extended to exactly one Hne. 

3. 	 Given any point P and any length r, there is a circle of radius r with 

Pas its centre. 

4. 	 Any two right angles are congruent. 
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5. 	 If a straight line N intersects two straight lines L and M, and if the 

interior angles on one side of N add up to less than two right 

then the lines Land M intersect on that side of N. 

The fourth and fifth axioms are illustrated in Figure 26. The fourth 
means that you can slide any right angle until it lies exactly on any 
other. As for the fifth, because the angles marked a and {J add up to 
less than 180 degrees, it tells us that the \ines Land M meet 
somewhere to the right ofN. The fifth axiom is equivalent to the 
so-caUed 'paraUel postulate', which asserts that, given any Une Land 
any point x not lying on L, there is exactly one line M that goes 
through x and never meets L. 

Euc\id used these five axioms to build up the whole ofgeometry as it 
was then understood. Here, for example, is an oudine ofhow to 
prove the well-known result that the angles ofa triangle add up to 
180 degrees. The first step is to show that if a line N meets two 
parallellines L and M, then opposite angles are equal. That is, in f 
something like Figure 27 one must have a == a' and f!. This is a 5 
eonsequenee ofthe fifth axiom. First, it tells us that a' + fJ is at least 
180, or otherwise Land M would have to meet (somewhere to the 
left ofline N in the diagram). Since a and fJ together make a straight 
!ine, {J == 180 - a, 80 it follows that a' + (180 - a) is at least 180, whieh 
means that a' is at least as big as a. By the same argument, 
a + f! == a + (180 a') must be at least 180, so a is at least as big as (l'. 
The only way this can happen is if a and a' are equal. Sinee 
{J = 180 - a and f! 180 (l', it fol1ows that {J == f! as wel1. 

Now let.A.BC be a triangle, and let the angles atA, B, and C be a, {J, 

and y respectively. By the second axiom wc can extend the !ine 
segmentAC to a tine L. The parallel postulate tells us that there is 
a line M through B that does not meet L. Let a' and y' be the angles 
marked in Figure 28. By what we have just proved, a' il and 
}" == y. It is clear that a' + {J + y' = 180, since the three angles a', {J, and 
y' together make a straight Hne. Therefore a + fJ + y 180, as 
required. 
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What does this argument tell us about everyday life? An obvious 

conclusion seems to be that if you take three points A, B, and C in 

space, and carcfully measure the three angles of the triangle ABC, 

then they will add up to 180 degrees. A simple experiment will 

confirm this: just drawa triangle on a piece of paper, eut it out as 

neatly as you can, tear it into three pieces containing one corner 
each, place the corners together, and observe that the angles do 

indeed form a straight line. 

Ifyou are now convinced that there could not conceivably be a 

physical triangle "vith angles that fail to add up to 180 degrees, then 

you are in good company, as this was the conclusion drawn by 

everybody from Euclid in 300 Be to Immanuel Kant at the end of 
the 18th century. Indeed, so convinced was Kant that he devoted a 

signïficant part ofhis Critique afPure Reasan to the question ofhow 

one could be absolutely certain that Euclidean geometry was truc. 

~ 
Ë 	However, Kant was mistaken: about thirty years later the great 

iQI 

mathematician Carl Friedrich Gauss could coneeive ofsuch a 
:1 	 triangle, as a result ofwhich he actually measured the angles of the 

triangle formed by the mountain peaks of Hohenhagen, Inselberg, 

and Brocken in the kingdom of Hanover, to test whether they did 

indeed add up to 180 degrees. (This story is a famous one, but 

honesty compels me to note that there is sorne doubt about whether 

he was really trying to test Euclidean geometry.) His experiment 

was inconclusive because ofthe difficulty ofmeasuring the angles 

aceurately enough, but what is interesting about the experiment 

is less its result than the fact that Gauss bothered to attempt it 

at aU. What could possibly be wrong with the argument 1 have 

just given? 

ActuaIly, this is not the right question to ask, since the argument is 

correct. However, sinee it rests on Euclid's five a.xioms, it does not 

imply anything about everyday life unless those axioms are true in 
everyday Iife. Therefore, by questioning the truth of Euclid's axioms 

one can question the premises of the argument. 

90 

But which of the axioms looks in the least bit dubious? It is difficult 

to find fault with any of them. Ifyou want to join two points in the 

reaI world by a line segment, then aIl you have to do is hold a taut 
pieee of string in such a way that it goes through both points. Ifyou 

want to extend that line segment to a straight line, then you could 

use a laser beam instead. Similarly, there seems to be no difficulty 
with producing eircles of any desired radius and centre, and 

experience shows that ifyou take two right-angled corners ofpaper, 

you cau place one ofthem exactly over the other one. Finally, what is 
to stop two Hnes going off into the distance for ever, like a pair of 

infinitely long railway tracks? 

The parallel postulate 

Historically, the axiom that caused the most suspicion, or at least 

uneasiness, wa.'i the parallel postulate. It is more complicated than 

the other axioms, and involves the infinite in a fundamental way. Is 0:"\ 

it not curious, when one proves that the angles of a triangle add up 

to 180 degrees, that the proof should depend on what happens in 

;

5 
the outernlost reaches of space? 

Let us examine the paraIlel postulate more carefully, and try to 

understand why it feels so obviously true. Perhaps in the back ofour 
minds is one ofthe following arguments. 

(1) 	 Given a straight line L and a point œ not on it, ail you have to do to 

produce a parallelline through x is choose the line through œthat 

goes in the same direction as L. 

(2) 	 Let Y be another point, on the same side ofL as x and at the same 

distance from L. Joïn x to y by a line segment (axiom 1) and then 

extend this line segment to a fullline M (a.·dom 2). Then M will not 

meetL. 

(3) 	 Let Mbe the straight line consisting of all points on the same 

side ofL as x and at the same distance. Obviously this does not 

meetL. 
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What does this argument tell us about everyday life? An obvious 
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~ 
Ë 	However, Kant was mistaken: about thirty years later the great 

iQI 

mathematician Carl Friedrich Gauss could coneeive ofsuch a 
:1 	 triangle, as a result ofwhich he actually measured the angles of the 
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varying c we cau move L up and dowu. Obv"Ïously, no two of the 

Here is a more complicated argument aimed at showing that there 
The arguments so far concern the eanstence of a Une parallel to L. 

lines thus produced can cross each other, and every point is 

can be at most one such Une, which is the other part ofthe parallel 
 contained in exactly one of them. 

postulate. 


Notice that what 1 have just done is try to prove the parallel 
(4) Join L toMby evenly spaced perpendicular Hne segments (making postulate, and that is exactly what many mathematicians before the 

the railway tracks of Figure 29) with one ofthese segments 19th century tried to do. What they most wanted was to 
through x. Now suppose that N is another Une through x. On one deduce it from the other four axioms, thus showing that one could 

side of x, the Hne N must lie between L and M, so it meets the nen dispense with it. However, nobody managed to do so. The trouble 
with the arguments 1 have just given, and others like them, is thatHne segment at a pointu, which is between Land M. Suppose for 
they contain hidden assumptions which, when one makes them 
explicit, are not obvious consequences ofEuclid's first four axioms. 

the sake ofexample that u is 1% ofthe way along the Hne segment 

from M to L. Then N will meet the nen Hne segment 2% of the way 
Though plausible, they are no more plausible than the parallelalong, and so on. Thus, after 100 segments, N "l'Iill have met L. Sinee 

postulate itself. 


ail we have assumed about N is that it is not M, it follows that M is 

the only line through x that does not meet L. 

Spherical geometry
~i Finally, here is an argument that appears to show both the existence iA good way to briug these hidden assumptions out iuto the open is 3f and the uniqueness of a line paraUd to L through a given point. to examine the same arguments applied in a different context, one ~ 
:.:Ii in which the parallel postulate is definitely not true. With this in 

(5) A point in the plane can be described by Cartesian coordinates. A mind, let us think for a moment about the surface of a sphere. 
(non-vertical) Hne L has an equation ofthe form y = ma: + c. By 

N 1 It is not immediately obvious what it means to say that the parallel 
postulate is untrue on the surface of a sphere, because the surface 

M ofa sphere contains no straight lines at all. We shall get round this ..-
u difficulty by applying an idea of fundamental importance in 

mathematics. The idea, which is a profound example of the 
abstract method at work, is to reinterpret what is meant by a 
straight line, so that the surface of a sphere does contain 'straight 
Hnes after aIl. 

,---~ 

There is in fact a natural definition: a line segment from x to y is the 

shortest path from x to y that lies entirely within the surface ofthe 

sphere. One can imagine x and y as cities and the line segment as 
L the shortest route that an aeroplane could take. Such a path will be 

29. The uniqueness ofparaIlellines part of a 'great circle', which means a circle obtained by taking a 
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plane through the centre ofthe sphere and seeing where it cuts the 
surface (see Figure 30). An example ofa great circle is the equator 
of the earth (which, for the purposes ofdiscussion, 1 shall take to be 
a perfect sphere). Given the way that we have defined line segments, 
a great circle makes a good definition of a 'straight Hne'. 

Ifwe adopt this definition, then the parallel postulate is certainly 
faIse. For example, let L be the earth's equator and let x be a point 
in the northern hemisphere. It is not hard to see that any great 
circle through x will lie haIf in the northern hemisphere and half in 
the southern, crossing the equator at two points that are exactly 
opposite each other (see Figure 31). In other words, there is no 
line (by which 1 still mean great circle) through x that does not 
meetL. 

This may seem a cheap trick: if 1 define 'straight Hne' in a new way, 
li then it is not particularly surprising if the parallel postulate ceases 
l to hold. But it is not meant to be surprising indeed the definîtiont was desîgned for that very purpose. It becomes înteresting when we 

examine sorne ofthe attempted proofs of the parallel postulate. In 
each case, we 'will discover an assumption that îs not valid for 
spherical geometry. 

For example, argument (1) assumes that it is obvious what îs meant 
by the phrase 'the same direction'. But on the surface of a sphere 
this is not obvious at aIl. Ta see this, consider the three points P, Q, 

and N shown in Figure 32. N is the North Pole, P lies on the equator, 
and Q also lies on the equator, a quarter ofthe way round from P. 

Also on Figure 32 is a small arrow at P, pointing along the equator 
towards Q. Now what arrow could one draw at Q going in the same 
direction? The naturaI direction to choose is still aIong the equator, 
away from P. What about an arrow at N in the same direction 
again? We could choose this as follows. Draw the line segment from 
P ta N, Since the arrow at P is at right angles ta this line segment, 
the arrow at N should be as weil, which means, in fact, that it points 
down towards Q. However, we now have a problem, which is that 
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31. The parallel postulate is false for spherical geometry 

N 

i 
j 


32. The phrase 'in the same direction as' does not make sense on the 
surface ofa sphere 

the arrow we have drawn at N does not point in the same direction 

as the one at Q. 

The trouble with argument (2) is that it is not detailed enough. Why 
will the hne M defined there not meet L? After aIl, ifLand Mare 
sphericallines then they will meet. AB for argument (3), it assumes 
that M lS a straight Hne. This 18 untrue for the sphere: ifL 18 the 
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equator and M consists ofaIl points that are 1,000 miles north ofthe 
equator, then Mis not a great circle. In fact, it i8 a Une of constant 
latitude, which, as any pilot or sailor will tell you, does not give the 
shortest route between two points. 

Argument (4) i8 a Httle different, sinee it i8 coneerned with 
the uniqueness ofparallellines rather than their existence. 
1 shan discuss this in the next section. Argument (5) makes a 
huge assumption: that spaee can be described by Cartesian 
coordinates. Again, this is untrue of the surface ofthe 
sphere. 

The point about introducing the sphere is that it enables us to 
isolate from each ofthe arguments (1), (2), (3) and (5) sorne 
assumption that effectively says, 'The geometry we are doing is 
not spherical geometry: You might wonder what is wrong with 
this: after all, we are not doing spherical geometry. You might 
also wonder how one could ever hope to show that the parallei 
postulate does not follow trom the rest of Euclid's axioms, if 
indeed it doesn't. It is no good saying that mathematicians have 
tried to deduce it for centuries without success. How can we 
be sure that sorne young genius in two hundred years' time 
will not have a wonderful new idea which finally leads to a 
proof? 

This question has a beautiful answer, at least in principle. Euclid's 
tirst four axioms were devised to describe the geometry ofan 
infinite, flat, two-dimensional space, but we are not obliged to 
interpret them that way, unless, of course, this flatness actually 
follows trom the axiorns. Ifwe could somehow reinterpret (one 
might almost say 'misinterpret') the axioms by giving new meanings 
to phrases such as 'line segment', rather as we have done with 
spherical geometry, and ifwhen we had done sa we found that the 
first four axioms were true but the paraliei postulate was faIse, then 
we would have shown that the parallel postulate does not follow 
trom the other axioms. 
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To see why this is so, imagine a purported proof, which starts with 
Eudid's first four axioms and arrives, after a series of strict logical 
steps, at the parallel postulate. Since the steps follow as a matter of 
logic, they will remain valid even when we have given them their 
new interpretation. Since the first four axioms are true under 
the new interpretation and the parallel postulate is not truc, there 
must be a mistake in the argument. 

VVhy do wc not just use spherical geometry as our reinterpretation? 
The reason is that, unfortunately, not aU ofthe first four ofEuclid's 
axioms are true in the sphere. For example, a sphere does not 
contain cirdes of arbitrarily large radius, so axiom 3 fails, and there 
i8 not just one shortest route from the North to the South Pole, 50 

axiom 1 is not true either. Rence, although spherical geometry 
helped us understand the defects ofcertain attempted proofs of 
the parallel postulate, it stillleaves open the possibility that sorne 

R other proof might work. Therefore, 1 shall turn to another 
1 reinterpretation, called hyperbolic geometry. The parallel postulate 
~ will again be false, but this time axioms 1 to 4 will ail be true. 
::E 

Hyperbolic geometry 

There are several equivalent ways of describing hyperbolic 
geometry; the one 1 have chosen is known as the disc model, which 
was discovered by the great French mathematician Renri Poincaré. 
While 1 cannot define it precisely in a book like this, 1 can at least 
explain sorne of its main features and discuss what it tells us about 
the parallel postulate. 

Understanding the dise mode! is more complicated than 
understanding spherical geometry because one has to reinterpret 
not only the terms 'Une' and 'Une segment', but also the idea of 
distance. On the surface ofthe sphere, distance has an easily 
grasped definition: the distance between two points x and y is the 
shortest possible length ofa path from x to y that lies within the 
surface of the sphere. Although a similar definition holds for 
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hyperbolic geometry, it is not obvious, for reasons that will become 
dear, what the shortest path is, or indeed what the length ofany 
path is. 

Figure 33 shows a tessellation of the hyperbolic dise by regular 
pentagons. Of course, this statement has to be explained, since it is 
untrue ifwe understand distance in the usual way: the edges of 
these 'pentagons' are visibly not straight and do not have the same 
length. Rowever, distances in the hyperbolie disc are not defined in 
the usual way, and become larger, relative to normal distance, as you 
approach the boundary. Indeed, they become so much larger that 
the boundary is, despite appearances, infinitely far from the centre. 
Thus, the reason that the pentagon marked with an asterisk appears 
to have one side longer than aH the others is that that side is doser 
to the centre. The other sides may look shorter, but hyperbolic 
distance is defined in such a way that this apparent shortness is 
exactly compensated for by their being doser to the edge. 

33. A tessellation ofthe hyperbolic plane by regular pentagons 
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If this seems confusing and paradoxical, then think ofa t)'pical map 
of the world. As everyone knows, because the world is round and 
the map is flat, distances are necessarily distorted. There are various 
ways ofcarrying out the distortion, and in the most common one, 
Mercator's projection, countries near the poles appear to be much 
larger than they really are. Greenland, for exarnple, seems to be 
comparable in size to the whole of South America. The nearer you 
are to the top or bottom of such a map, the smaller the distances 
are, compared with what they appear to be. 

A well-known effect of this distortion is that the shortest route 
between two points on the earth's surface appears, on the map, to be 
curved. This phenomenon can be understood in two ways. The first 
is to forget the map and visualize a globe instead, and notice that if 
you have two points in the northern hemisphere, the first a long way 
east of the other Ca good example is Paris and Vancouver), then the 

~ shortest route from the first to the second will pass close to the 
i North Pole rather than going due west. The second is to argue from 
1" the original map and reason that ifdistances near the top of the 
:le map are shorter than they appear, then one can shorten the journey 

by going somewhat north as well as west. It is difficult to see in this 
way precisely what the shortest path ",ill be, but at least the 
principle is clear that a 'straight line' (from the point ofview of 
spherical distances) will be curved (from the point ofview ofthe 
distances on the actual map). 

As 1 have said, when you approach the edge ofthe hyperbolic dise, 
distances become larger compared with how they look. As a result 
ofthis, the shortest path between two points has a tendency to 
deviate towards the centre of the disc. This means that it is not a 
straight line in the usuai sense (unless that line happens to pass 
exactly through the centre). It turns out that a hyperbolic straight 
Hne, that is, a shortest path from the point ofview ofhyperbolic 
geometry, is the arc ofa circle that meets the boundary of the main 
circle at right angles (see Figure 34). Ifyou now look again at the 
pentagonal tessellation ofFigure 35, you will see that the edges of 
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34. A 1:ypical hyperbolic Une 

the pentagons, though they do not appear straight, are in fact 1 

hyperbolic Hne segments sinee they can be extended to hyperboHc 
straight lines, according to the definition 1 have just given. 
Similarly, although the pentagons do not seem to be an of the same 
size and shape, they are, since the ones near the edge are far bigger 
than they seem the opposite ofwhat happens vvith Greenland. 
Thus, just like Mercator's projection, the dise mode! is a distorting 
'map' of actual hyperbolic geometry. 

It is natural to ask at this point what actual hyperbolic geometry is 
like. That is, what is the distorting map a map of? What stands 
in relation to the disc model as the sphere does to Mercator's 
projection? The answer to this is rather subtle. In a way it is a 
fluke that spherical geometry can be realized as a surface that sits 
in three-dimensional spaee. Ifwe had started with Mercator' s 
projection, with its strange notion ofdistances, without knowing 
that what we had was a map ofthe sphere, then we would have been 
surprised and delighted to diseover that there happened to be a 
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beautifully symmetrical surface in space, a map ofthis map, so to 
speak, where distances were particularly simple, being nothing but 
the lengths of shortest paths in the usual, easily understood sense. 

Unfortunately, nothing like this exists for hyperbolic geometry. Yet, 
curiously, this does not make hyperbolic geometry any less real than 
spherical geometry. It makes it harder to understand, at least 
initially, but as l stressed in Chapter 2 the reality of a mathematical 
concept has more to do with what it does than with what it is. Since 
it is possible to say what the hyperbolic disc does (for example, if 

you asked me what it would mean to rotate the pentagonal 
tessellation through 30 degrees about one ofthe vertices of the 
central pentagon, then l could tell you), hyperbolic geometry is as 
real as any other mathematical concept. Spherical geometry may be 
easier to understand from the point ofview of three-dimensional 
Euclidean geometry, but this is not a fundamental difference. 

~ 
Ë Another of the properties ofhyperbolic geometry is that it satisfies 

j the first four of Euclid's axioms. For example, any two points can be 
joined by exactly one hyperbolic straight line segment (that is, arc of 
a circle that cuts the main circle at right angles). It may seem as 
though you cannot find a circle oflarge radius about any given 
point, but to think that is to have forgotten that distances become 
larger near the edge of the disco In fact, if a hyperbolic circle almost 
brushes the edge, then its radius (its hyperbolic radius, that is) will 
be very large indeed. (Hyperbolic circles happen to look like 
ordinary circles, but their centres are not where one expects them ta 
be. See Figure 35.) 

As for the parallel postulate, it is false for hyperbolic geometry, just 
as we hoped. This can be seen in Figure 36, where l have marked 
three of the (hyperbolic) lines L, Ml' and M 2 • The lines Ml and M 2 

meet at a point marked x, but neither ofthem meets L. Thus, there 
are two lines through x (and in fact infinitely many) that do not 
meet L. This contradicts the parallel postulate, which stipulates that 
there should be only one. In other words, in hyperbolic geometry we 
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35. A typical hyperbolic circle, and its centre 

f 
have exactly the alternative interpretation of the Euclidean axioms 5 
that we were looking for in order to show that the parallel postulate 
was not a consequence of the other four axioms. 

Of course, l have not actually proved in this book that hyperbolic 
geometry has all the properties l have claimed for it. To do so takes a 
few lectures in a typical university mathematics course, but l can at 
least say more precisely how to define hyperbolic distance. To do 
this, l must specifY by how much distances near the edge of the disc 
are larger than they appear. The answer is that hyperbolic distances 
at a point Pare larger than 'normal' distances by lld 2

, where dis 
the distance from P to the boundary of the circle. To put that 
another way, ifyou were to move about in the hyperbolic disc, then 
your speed as you passed P would, according to hyperbolic notions 
of distance, be lld 2 times your apparent speed, which means that 
if you maintained a constant hyperbolic speed, you would appear to 
move more and more slowly as you approached the boundary of the 
disco 
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36. The parallel postulate is faIse in the hyperbolic plane 

1Just before we leave hyperbolic geometry, let us see why argument 
(4) that 1 gave earlier fails to prove the uniqueness ofparallellines. 
The idea was that, given a \ine L, a point œnot on L, and a \ine M 
through œthat did not meet L, one could join L to M by severalline 
segments that were perpendicular to both L and M, dividing up the 
space between Land M into rectangles. It seems obvious that one 
can do this, but in the hyperbolic world it is not possible because the 
angles of a quadrilateral always add up to less than 360 degrees. In 
other words, in the hyperbolic disc the rectangles needed for the 

argument simply do not exist. 

How can space be curved? 

One ofthe most paradoxical-sounding phrases in mathematics (and 
physics) 18 'curved space'. We an know what it means for a Hne or 
surface to be curved, but space itself just is. Even ifone could 
somehow make sense of the idea ofthree-dimensional curviness, 
the analogy with a curved surface suggests that we would not be 
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able to see for ourselves whether space was curved unless we could 
step out into a fourth dimension to do 80. Perhaps we would then 
discover that the universe was the three-dimensional surface of a 
four-dimensional sphere Ca notion 1 explained in Chapter 5), which 
at least sounds curved. 

Of course, all this is impossible. Since we do not know how to stand 
outside the universe - the very idea is almost a contradiction in 
terms the only evidence we can use cornes from within it. 80 what 
evidence might persuade us that 8pace i8 curved? 

Yet again, the question becomes easier ifone takes an abstract 
approach. lnstead of engaging in extraordinary mental gymnastics 
as we try to apprehend the true nature of curvy space, let us simply 
follow the usual procedure for generalizing mathematical concepts. 
We understand the word 'curved' when it applies to two
dimensional surfaces. ln order to use it in an unfamiliar context, " 
that is, a three-dimensional one, we must try to find properties of c 
curved surfaces that 'will generalize easily, just as we did in order to ! 
define 23

/ 
2

, or five-dimensional cubes, orthe dimension of the Koch 
snowflake. Since the sort ofproperty we wish to end up ,vith is one 
that can be detected from within space, we ought to look at ways of 
detecting the curvature ofa surface that do not depend on standing 
outside it. 

How, for example, can we convince ourselves that the surface of the 
earth is curved? One way is to go up in a space shuttle, look back, 
and see that it is approximately spherical. However, the follo,,>ing 
experiment, which is much more two-dimensional, would also be 
very persuasive. Start at the North Pole and travel due south for 
about 6,200 miles, having marked your initial direction. Then turn 
to your left and go the same distance again. Then turn to your left 
and go the same distance one more time. 6,200 miles is roughly 
the distance from the North Pole to the equator, so your journey will 
have taken you from the North Pole to the equator, a quarter of the 
way round the equator, and back to the North Pole again. Moreover, 
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the direction at which you arrive back will be at right angles to your 
starting direction. It follows that on the earth's surface there is an 
equilateral triangle with ail its angles equal ta a right angle. On a 
flat surface, the angles ofan equilateral triangle have to be 60 
degrees, as they are all equal and add up to 180, so the surface of 

the earth is not flat. 

Thus, one way of demonstrating that a two-dimensional surface is 
curved, from within that surface, is to find a triangle whose angles 
do not add up ta 180 degrees, and this is something that can be 
attempted in three dimensions as well. 1 have concentrated in this 
chapter on Euclidean, spherical, and hyperbolic geometry in two 
dimensions, but they can be generalized quite easily ta three 
dimensions. Ifwe measure the angles of triangles in space and find 
that they add up to more than 180 degrees, then that will suggest 
that space is more like a three-dimensional version of the surface of 

1 
~ a sphere than like the sort of space that can be described by three 

Cartesian coordinates. 

If this happens, then it seems reasonable ta say that space is 
positively curved. Another feature that one would expect of such a 
space is that Hnes that started off in the same direction would 
converge and eventually meet. Still another is that the 
circumference of a circ1e of radius r would not be 2nr, but a 

Httle less. 

You may be tempted to point out that space as we know it does 
not have these peculiarities. Lines that begin in the same direction 
continue in the same direction, and the angles of triangles and 
circumferences of circles are what they ought to be. In other 
words, it appears that, even though it is logieally possible for space 
to be curved, as a matter offact it is fIat. However, it could be that 
space appears to be flat to us only because we inhabit such a small 
part of it, just as the earth's surface appears to be flat, or rather 
fiat with bumps ofvarious sizes, to somebody who has not 

traveHed far. 
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In otherwords, it may be that space is only roughly flat. Perhaps ifwe 
could form a very large triangle then we would find that its angles 
did not add up to 180 degrees. This, ofcourse, was what Gauss 
attempted, but his triangle was nowhere near large enough. 
However, in 1919, one ofthe most famous scientific experiments of 
all time showed that the idea ofcurved space was not just a fantasy 
ofmathematicians, but a fact oflife. According to Eînstein's general 
theory of relativity, which was published four years earlier, space is 
curved by gravity, and therefore light does not always travel in a 
straight lîne, at least as Euclid would understand the term. The 
effect is too small to be detected easily, but the opportunity came in 
1919 with a total eclipse of the sun, visible from Principe Island in 
the Gulfof Guinea. While it was happening, the physicist Arthur 
Eddington took a photograph that showed the stars just next to the 
sun in not quite their expected places, exactlyas Einstein's theory 
had predicted. 

Though it is now accepted that space (or, more accurately, i 
spacetime) is curved, it could be that, lîke the mountains and valleys ... ~ 
on the earth's surface, the curvature that we observe is just a small 
perturbation of a much larger and more symmetrical shape. One of 
the great open questions ofastronomy is to determine the large
Beale shape ofthe universe, the shape that it would have ifone 
ironed out the curves due to stars, black holes, and sa on. Would it 
still be curved, like a large sphere, or would it be flat, as one more 
naturally, but quite possibly VlTongly, imagines it? 

A third possibility is that the universe is negati'Vely curved. This 
means, not surprisingly, more or less the opposite of positively 
curved. Thus, evidence for negative curvature would be that the 
angles ofa triangle added up to [css than 180 degrees, that Hnes 
starting in the same direction tended to diverge, or that the 
circumference ofa circle ofradius r was larger than 2nr. This sort of 
beha"iour occurs in the hyperbolic disco For example, Figure 37 
shows a triangle whose augles add up to significantly less than 180 
degrees. lt is not hard to generalize the sphere and the hyperbolic 
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37. A hyperbolic triangle

i 
i dise to higher-dimensional analogues, and it could be that 

hyperbolic geometry i8 a better model for the large-scale shape of 
spacetime than either 8pherical or Euclidean geometry. 

Manifolds 
A closed surface means a two-dimensional shape that has no 
boundary. The surface ofa sphere is a good example, as is a toros 
(the mathematical name for the shape ofthe surface of a quoit, or a 
ring-shaped doughnut). As the discussion ofcurvature made clear, 
it can be useful to think about such surfaces without referenee to 
sorne three-dimensional space in which they live, and this becomes 
even more important ifwe want to generalize the notion of a closed 
surface to higher dimensions. 

It is notjust mathematicians who like to think about surfaces in a 
pure]y two-dimensional way. For example, the geometry ofthe 
United States is significantly affected by the curvature ofthe earth, 
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but ifone wishes to design a useful road map, it does not have to 
be printed on a single large curved piece of paper. Much more 
practical is to produee a book with several pages, each dealing 
with a small part of the country. It is best if these parts overlap, 
so that ifa town lies inconveniently near the edge ofone page, 
there will be another page where it doesn't. Moreover, at the 
edges of each page will be an indication ofwhich other pages 
represent overlapping regions and how the overlap works. 
Because of the curvature ofthe earth, none of the pages will be 
exactly accurate, but one can include Hnes ofconstant latitude 
and longitude to indicate the small distortion, and in that way 
the geometry of the United States can be encapsulated in a book 
of flat pages. 

There is nothing in principle to stop one producing an atlas that 
covers the whole world in similar detail (though many pages 
would be almost entirely bIue). Therefore, the mathematical 
properties of a sphere can in a way be encapsulated in an atlas. 
lfyou want to answer geometrical questions about the sphere, 
are completely unable to visualize it, but have an atlas handy, 
then, with a bit ofeffort, you will be able to do it. Figure 38 

shows a nine-page atlas, not ofa sphere but ofa toros. To see 
how it corresponds to a doughnut shape, imagine sticking the 
pages together to make one large page, then joining the top 
and bottom ofthe large page to form a cylinder, and finally 
bringing the two ends of the cylinder together and joining 
them. 

One ofthe most important branches ofmathematics is the study 
of objects known as manifolds, which result from generalizing 
these ideas to three or more dimensions. Roughly speaking, a 
d-dimensional manifold is any geometrical object in which every 
point is surrounded by a region that closely resembles a small piece 
of d-dimensional spaee. Sinee manifolds become much harder to 
visualize as the number ofdimensions increases, the idea of an atlas 
becomes correspondingly more useful. 
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Let us think for a moment what an atlas of a three-dimensional 
manifold would be like. The pages would of course have to be 
three-dimensional, and like the pages of a road map they would be 
flat. By that 1 mean that they would be chunks offamiliar Euclidean 
space; one could require them to be cuboids, but this is not very 
important mathematically. Each ofthese three-dimensional 'pages' 
would be a map of a small part of the manifold, and one would 
carefully speci:tY how the pages overlapped. A typical specification 
might be something like that the point (x, y, z) towards a particular 
edge ofpage A corresponded to the point (2y, x, z 4) on page B. 

Given such an atlas, how could one imagine moving about in the 
manifold? The obvious way would be to think of a point moving in 
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one of the pages. If this point ever reached the edge of the page, 
there would be another page on which the same part ofthe manifold 
was represented, but where the point was not right at the edge, so 
one could turn to that page instead. Thus, the entire geometry of a 
manifold can be formulated in terms of an atlas, so that it is not 
necessary to think of the manifold as 'really' being a three
dimensional surface lying in a four-dimensional space. In fact, sorne 
three-dimensional manifolds cannot even be made to fit into four 
dimensions. 

This idea ofan atlas raises sorne natural questions. For example, 
although it enables us to say what happens ifwe move around in the 
manifold, how do we get from that information, which may be 
contained in a large number of pages with very eomplicated rules 
for how they overlap, to sorne feeling for the basic 'shape' of the 
manifold? How can we tell when two different atlases are actually 
atlases ofthe same manifold? In particular, is there sorne easy way CI 

oftelling, by looking at a three-dimensional atlas, whether the ~ 
manifold it represents is the three-dimensional surface ofa four ! 
dimensional sphere? A precise formulation of this last question, 
known as the Poincaré conjecture, is an open problem, for the 
solution ofwhich a reward of one million dollars has been offered 
(by the Clay Mathematics Institute). 
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Chapter 7 

Estimates and 

approximations 

Most people think of mathematics as a very clean, exact subject. 
One learns at school to expect that if a mathematical problem can 
be stated succinctly, then it will probably have a short answer, 
often given by a simple formula. Those who continue with 
mathematics at university level, and particularly those who do 
research in the subject, soon discover that nothing could be 
further from the tmth. For many problems it would be miraculous 
and totally unexpected if somebody were to find a precise formula 
tor the solution; most of the time one must settle for a rough 
estimate instead. UntiI one is used to estimates, they seem ugly 
and unsatisfYing. However, it is worth aequiring a taste for them, 
because not to do so is to miss out on many of the greatest 
theorems and most interesting unsolved problems in 
mathematics. 

A simple sequence not given bya simple formula 

Let a" a2 , a3,·· • be real numbers generated by the tollowing rule. 
The tirst number, al, equals 1, and thereafter eaeh number equals 
the previous number plus its square root. In other words, fo.r every n 
we let an + 1 an + ~an' This simply stated rule raises an ObVIOUS 

question: what is the number an? 
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To get a feel for the question, let us work out an for a few small 
values ofn. We have a2 == l + Ji == 1 + l == 2. Then 

==a3 a2 + =2 + Ii 
a. == a3 + ra; = 2 + ";2 + v2 + ,(2 

r:::' '~a5 a. + '= 2 + '12 + ";2 + ,2 + 

and 50 on. Notice that the expressions on the right-hand side do not 
seem to simplity, and that each new one is twice as long as the 

previous one. From this observation it follows quite easily that the 
expression for al2 would involve 1,024 occurrences ofthe number 2, 
most ofthem deep inside a jungle ofsquare-root signs. Such an 
expression would not give us much insight into the number a,2' 

Should we therefore abandon any attempt ta understand the i 
sequence? No, because aIthough there does not appear to be a good ! 
way ofthinking about the exact value of an! except when n is very ! 
smaH, that does not mIe out the possibility ofobtaining a good !
estimate. Indeed, a good estimate may in the end be more useful. l 

oAbove, l have written an exaetly correct expression for as, but does i 
that make you understand a5 better than the information that as Is 1 
about seven and a half? li 

Let us therefore stop asking what an is and instead ask roughly how 

big an is. That is, let us try to find a simple formula that gives a 


good approximation to an' It turns out that such a formula exists: an 

is roughly n 

2

/4. It is a Iittle tricky to prove this rigorously, but to see 

why it is plausible, notice that 

(n + 1)2/4 '= (n" + 2n + 1)/4 =n 2/4 + n/2 + 1/4 =n 2/4 + Jn2/4 + 1/4. 

That is, if bn == n2/4, then b"+1 == b + lb;, + 1/4. lfit were notfor the 
n 

'+ 1/4', this would tell us that the numbers b were generated exactly 
n 

as the an are. However, when n is large, the addition of1/4 is Just a 
smaU perturbation' (this is the part of the proofthat 1 am leaving 

out), so the bn are generated appro::cimately correctly, from which it 
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can be deduced that bm that is, 11?/4, gives a good approximation to 

an, as 1 claimed. 

Ways of approximating 
It is important to specifY what counts as a good approximation 
when making an assertion like this, because standards vary from 
context to context. Ifone is trying to approximate a sequence 
of steadily increasing numhers like a" a2 , a" ... by a more 
easily defined sequence b" b2, ba, •••, then the best sort of 
approximation one can hope for, which is very rarely achieved, is 
one for which the difference between an and b" is always below sorne 
fixed number - such as 1,000, for example. Then, as an and b" 

become large, their ratio beeomes very close to 1. Suppose, for 
example, that at sorne point an 2408597348632498758828 and 
bn = 2408597348632498759734. Then b" - an = 906, which, 

51 though quite a large number, is tiny by comparison with an and bn. 

1 Ifbn approximates an in this sense, one says that all and bn are 'equal 
i.. up to an additive constant'. 
:1 

Another good sort ofapproximation is one for which the ratio of 
an and b" becomes very close to 1 as n gets large. This is true 
when an and bn are equal up to an additive constant, but it is also 
true in other circumstanees. For example, if an = n2 and 
bn = n2 + 3n then the ratio bn/an is l + 3/n, which is close to 1 for 
large n, even though the difference between an and bn is 3n, which 
is large. 

Often even this is far tao much to hope for, and one is happy to 
settle for still weaker notions ofapproximation. A common one is to 
regard an and bnas approximately equal ifthey are 'equal up to a 
multiplicative constant'. This means that neither all/b" nor bn/a" 
ever exceeds sorne fixed number - again, something like 1,000 
would be a possibility, though the smallcr the better. In other wards, 
now it is not the difference between an and bnthat is kept vvithin 
certain limits, but their ratio. 
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It may seem perverse ta regard one number as being roughly the 
same as another number that is 1,000 times larger. But that is 
because we are used to dealing with small numbers. Of course, 
nobody would regard 17 as being roughly the same as 13,895, but it 
is not quite as ridiculous to say that two numbers like 

2904756294089761562389545345987608890796872347514348757775468 

and 

3609823459872097612349870982498634087623457796784587345987166464 

are, broadly speaking, ofthe same sort of size. Though the second is 
over 1,000 times larger, they both have about the same number of 
digits - between 60 and 65. In the absence of other interesting a 
properties, that may weIl be ail we care about. 1 
When even this degree of approximation is asking too much, it is ~ 
often still worthwhile to try to find two sequences bl> b" b,,, ... and ] 
CI> C" C3' ••• for which one can prove that bn is always less than am i 
and Cn always greater. Then one says that b" is a 'lower bound' for an, t 
and en is an 'upper bound'. For example, a mathematician trying ta .. 
estimate sorne quantity an might say, '1 don't know, even 
approximately, what an is, but 1 can prove that it is at least n2/2 and 
no bigger than n3

.' Ifthe problem is difficult enough, a theorem like 
this cau be a significant achievement. 

Ali you need to know about logarithms, square 
roots etc. 

Part of the reason that the estimates and approximations that 
pervade mathematics are not weIl knoYv'Il outside the discipline is 
that in order to talk about them one uses phrases Iike 'about as fast 
as log n'or 'the square root of t, to within a constant', which mean 
little to most people. Fortunately, if one is concerned only with the 
approximate values oflogarithms or square roots oflarge numbers, 
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then they can be understood very easily, and 50 can this sort of 

language. 

If you have two large positive integers m and n and you want a 
rough and ready estimate of their product mn, then what should 
you do? A good start is to count the digits ofm and the digits ofn. If 
m has h digits and n has k digits, then m lies between loh -1 and 10\ 

and n lies between 10" - l and lOk
, which means that mn lies between 

lOh + k - 2 and 10h+k. Thus, merely by counting the digits of m and n, 
you can determine mn 'to within a factor of100' - meaning that mn 
must lie between two numbers, 1O"+k-2 and 10h+k, and 10h+k is only 

100 times biggerthan lOh 
+ 

k- 2
• Ifyou compromise and go for lOh 

+k-l 

as your estimate, then it will differ from mn by a factor ofat most 10. 

In other words, if you are interested in numbers only 'up to a 
l? 	 multiplicative constant', then multiplication suddenly becomes very 
i 	 easy: take m and n, count their combined digits, subtract one (ifyou 

.!
E 	

can be bothered), and write down a number with that many digits. 
j 	 For example, 1293875 (7 digits) times 20986759777 (11 digits) is 

in the region of10000000000000000 (17 digits). Hyou want 
ta be a little more careful, you can note that the first number 
begins with a 1 and the second with a 2, which means that 
20000000000000000 is a better estimate, but for many 

purposes such precision is unnecessary. 

Since approximate multiplication is easy, so is approximate 
squaring - just replace your number by a new one with twice as 
many digits. From this it follows that halving the number ofdigits 
of n approximates the square root ofn. Similarly, dividing the 
number ofdigits by 3 approximates the cube root. More generally, if 
n is a large integer and t is any positive number, then nI will have 

about t times as many digits as n. 

What about logarithms? From the approximate point ofview they 
are very simple indeed: the logarithm of a number is roughly the 
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number ofdigits it has. For e.xample, the logarithms of 34587 and 
492348797548735 are about 5 and 15 respectively. 

Actually, counting the digits ofa number approximates its base-lO 
logarithm, the number you get by pressing LOG on a pocket 
calculator. Normally, when mathematicians talk about logarithms, 
they mean so-called 'natural' logarithms, which are logarithms to 

base e. Though the number e is indeed very natural and important, 
all we need ta know here i8 that the naturallogarithm of a number, 
the number you get by pressing LN on a calculator, is roughly the 
number of digits it has, multiplied byabout 2.3. Thus, the natural 
logarithm of 2305799985748 is about 13 x 2.3 29.9. (Uyou know 
about logarithms, you will see that what you should reaIly multiply 
by i5 log" 10.) 

a 
This process can be reversed. Suppose you have a number t and you i 
know that it is the naturallogarithm of another number n. This 

Il
& 

number n is called the exponential of t and is written et. What will n ! 
be, roughly? WeIl, to get t from n we count the number ofdigits ofn i 
and multiply by 2.3. Hence, the number ofdigits ofn must be about li 
t/2.3. This determines n, at least approximately. i 

li! 

The main use ofthe approximate definitions 1 have just given is that 
they enable one ta makc comparisons. For example, it is now clear 
that the logarithm ofa large number n will be much smaller than its 
cube root: if n has 75 digits, for example, then its cube root will be 
very large it has about 25 digits but it~ naturallogarithm 'will be 
only about 75 x 2.3 = 172.5. Similarly, the exponential of a number 
m \\Jill be much bigger than a power such as mlO: for example, if m 

has 50 digits, then mlO has around 500 digits, but the number of 
digits of em is about m/2.3, which is far bigger than 500. 

The following table shows the approximate results of applying 
variou5 operations to the number n 941192. 1 have not included if, 
because if l had then 1 would have been obliged to change the title 
ofthis book. 
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only about 75 x 2.3 = 172.5. Similarly, the exponential of a number 
m \\Jill be much bigger than a power such as mlO: for example, if m 

has 50 digits, then mlO has around 500 digits, but the number of 
digits of em is about m/2.3, which is far bigger than 500. 
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variou5 operations to the number n 941192. 1 have not included if, 
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n 941192 
n' 885842380864 

970.15 
98 

log, n 13.755 
loglO n 5.974 

The prime number theorem 

A prime number is a whole number greater than 1 that is 
divisible by no other whole numbers, with the obvious exceptions of 
1and itself. The prime numbers less than 150 are 2, 3, 5, 7, 11, 13, 17, 
19,23,29,31,37,41,43,47,53,59,61,67,71,73,79, 83,89,97,101, 
103,107,109,113,127,131,137,139, and 149. AlI other numbers less 
than 150 can be factorized: for example, 91 = 7 x 13. (You may be 
worried about the seemingly arbitrary exclusion ofl from the 

1:) definition of a prime. This does not express sorne deep fact about 
;1 
~ numbers: it just happens to be a useful convention, adopted 80 that 
t there is only one way of factorizing any given number into primes.) 
:Ii 

The primes have tantalized mathematicians since the Greeks, 
because they appear to be somewhat randomly distributed but not 
completely so. Nobody has found a simple rule that tells you what 
the nth largest prime is (of course one could laboriously write out a 
list of the first n primes, but this hardly counts as a simple rule, and 
would be completely impractical if n was large), and it is most 
unlikely that there is one. On the other hand, an examination of 
even the first 35 primes reveals sorne interesting features. Ifyou 
work out the differences between successive primes, then you 
obtain the following new list: l, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 
6,2,6,4,2,6,4,6,8,4,2,4,2,4,14,4,6,2,10. (That is, 1 3 - 2, 
2 =5 - 3, 2 7 - 5, 4 =11 - 7, and so on.) This list is still somewhat 
disorderly, but the numbers in it have a tendency, just about 
discernible, to get gradually larger. Obviously they do not increase 
steadily, but numbers such as 10 and 14 do not appear until quite 
late on, while the first few are all4 or under. 
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Ifyou were to write out the first thousand primes, then the tendency 
for the gaps between successive ones to get larger would become 
more obvious. In other words, large primes appear to be thinner on 
the ground than small (mes. This is exactly what one would expect, 
because there are more ways for a large number to fail to be prime. 
For example, one might guess that the number 10,001 was prime, 
especially as it is not divisible by 2, 3, 5, 7, 11, 13, l7, or 19 - but in 
fact it equals 73 x 137. 

No self-respecting mathematician will be content with the mere 
observation (not even properly proved) that large primes are rarer 
than small ones. He or she will want to know how much rarer they 
are. Ifyou choose a number at random between 1,000,001 and 
1,010,000, then what are the chances that it will be a prime? In 
other words, what is the 'density' ofprimes near 1,000,000? 18 it li 
fantastically small or only quite small? ~ 

1i 
The reason such questions rarely occur to people who have not been ~ 
exposed to university-level mathematics is that they lack the ~ 
language in which to formulate and think about them. However, if t 
you have understood this chapter 80 far, you are in a position to i 
apprecîate one ofthe greatest achievements of mathematics: the a 
prime number theorem. This states that the density of primes near 
a number n is around liloge n - that is, one divided by the natural 
logarithm of n. 

Consider once again the chances that a random number between 
1,000,001 and 1,010,000 is prime. The numbers in this interval are 
all roughly equal to a million. The prime number theorem says that 
the density ",ill therefore be around 1 divided by the natural 
logarithm of a million. The logarithm to base 10 is 6 (in this case, 
counting the digits would give 7, but since we know the exact 
answer we mayas weil use it), so the naturallogarithm is about 
6 x 2.3, or 13.8. Therefore, about 1 in 14 numbers between 
1,000,001 and 1,010,000 îs a prime, which works out at a little over 
7% of them. By contrast, the number of primes less than 100 is 24, 
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or about a quarter of the total, which illustrates how the density 
drops as they get larger. 

Given the sporadic, random-like quality of the primes, it is quite 
surprising how much can be proved about them. Interestingly, 
theorems about the primes are usually proved by ea:ploiting this 
seeming randomness. For example, a famous theorem of 
Vinogradov, proved in 1937, states that every large enough odd 
number can be written as the sum ofthree prime numbers. 1 cannot 
explain in this book how he proved this, but what he did not do is 
find a method for expressing odd numbers as sums ofthree primes. 
Such an approach would be almost certain to fail, because ofthe 
difficulty ofgenerating even the primes themselves. Instead, 
building on work of Hardy and Littlewood, he argued roughly as 
foUows. Ifyou were to choose a genuinely random sequence of 
numbers of about the same density as the primes, then sorne 

,g elementary probability theory shows that you would almost 
~ certainly be able to write alllarge enough numbers as the sum of
j three members ofyour sequence. In fact, you would be able to do it 

in many different ways. Because the primes are random-like (the 
hard part ofthe proof is to say what this means and then prove it 
rigorously), their behaviour is similar to that of the random 
sequence, 50 ail large enough numbers are the sum ofthree primes, 
also in many different ways. Just to illustrate this phenomenon, 
here are ail the ways ofwriting 35 as a sum ofthree primes: 

35 = 2 + 2 + 31 3 + 3 + 29 =3 + 13 + 19 =5 + 7 + 23 

=5 + 11 + 19 =5 + 13 + 17 7 + 11 + 17 = 11 + 11 + 13. 

Much research on prime numbers has this sort offlavour. You first 
devise a probabilistic model for the primes that is, you pretend ta 
yourself that they have been selected according to sorne random 
procedure. Next, you work out what would be true if the primes 
really were generated randomly. That allows you to guess the 
answers to many questions. Finally, you try to show that the model 
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is realistic enough for your guesses to be approximately correct. 
Notice that such an approach would be impossible ifyou were 
forced to give exact answers at every stage ofthe argument. 

It is interesting that the probabilistic model is a model not ofa 
physical phenomenon, but of another piece of mathematics. 
Although the prime numbers are rigidly determined, they somehow 
feellike experimental data. Once we regard them that way, it 
becomes tempting to devise simplified models that allow us to 
predict what the answers to certain probabilistic questions are 
likely to be. And such models have indeed somctimes led people to 
proofs valid for the primes themselves. 

Although this style ofargument has had sorne notable successes, 
it has left open manyfamous problems. For example, Goldbach's 
conjecture asserts that every even number greater than 4 is the 
sum of two odd primes. This conjecture appears to be much more 1 
difficult than the three-primes question answered by Vinogradov. i.. 
There is also the twin-primes conjecture, which states that there 
are infinitely many pairs of primes separated by 2, such as 17 and 1 
19, or 137 and 139. Another way ofputting this is that ifyou 
write out the successive differences, as 1 did above, then the i 
number 2 keeps appearing for ever (though more and more 
rarely). 

Perhaps the most famous open problem in mathematics is the 
Riemann hypothesis. This has several equivalent formulations. One 
ofthem concerns the accuracy ofthe estimate given by the prime 
number theorem. As 1 have said, the prime number theorem tells 
you the approximate density ofthe primes near any given number. 
From this information one can calculate roughly how many prime 
numbers there are up to any given number n. But how rough is 
rough? Ifp(n) is the true number ofprimes up to n and q(n) is the 
estimate suggested by the prime number theorem, then the 
Riemann hypothesis asserts that the difference between pen) and 
q(n) will be not much larger than ..[ii. Ifthat sort of accuracy could 
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be proved to hold, then it would have many applications, but what is 

known to date is far weaker. 

Sorting algorithms 

Another area of mathematics that is full of rough estimates is 
theoretical computer science. Ifone is writing a computer program 
to perform a certain task, then it is a good idea to design it in such a 
way that it will run as quickly as possible. Theoretical computer 
scientists ask the question: what is the fastest one could possibly 

hope for? 

lt is almost always unrealistic to ask for an exact answer to this 
qucstion, so one tries to prove statements like, 'The following 
algorithm runs in about n 2 steps when the input size is n.' From this 

~ one can conclude that a typica1 PC will be able to handle an input 

size (roughly speaking, how much information you want it to 


1analyse) ofl,OOO but not one ofl,OOO,OOO. Thus, such estimates 


have a practical importance. 

One very useful task that computers can do is known as sorting - that 
is, putting a large number ofobjects in order according to a given 
criterion. To think about this, imagine that you wish to arrange a 
collection of objects (not necessarily inanimate they might, for 
example, be candidates for a job) in order of preference. Suppose 
that you cannot assign a numerical value to the amount that you like 
any given object, but that, given any two objects, you can always 
decide which you prefer. Suppose also that your preferences are 

consistent, in the sense that you never prefer A to B, B to C, and C 
to A. Ifyou do not wish to spend long on the task. then it makes 
sense to try to minimize the number of comparisons you make. 

When the number ofobjects is very small, it is easy to work out how 
to do this. For example, ifthere are two objects, then you must make 
at least one comparison, and once you have made it you know what 
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order they are in. If there are three objects A, B, and C, then one 
comparison will not be enough, but you must start with sorne 
comparison and it doesn't matter which. Suppose, for the sake of 
argument, that you compare A vvith Band prefer A. Now you must 
compare one ofA and B with C. Ifyou compare A with C and prefer 
C to A, then you know that your order of preference is C, A, B. 
However, if, as may happen, you find that you prefer A to C, then all 

you know about Band C is that you prefer A to either ofthem. Then 
a third comparison will be needed so that Band C can be put in 
order. Hence, three comparisons are always sufficient and 
sometimes necessary. 

V\'hat happens with four objects A, B, C, and D? The analysis 
becomes more complicated. You mayas weIl start by comparing A 
with B. But once you have done that, there are two genuinely Il 
different possibilities for the next comparison. Either you can 1 
compare one ofA and B with C, or you can compare C with D, and it ~ 
is not clear which is the better idea. ~ ...... 
Suppose you compare B with C. Ifyou are lucky, then you will now ~ 
be able to put A, B, and C in order. Suppose that this order is A, B, C. ! 

!It then remains to see where D fits in. The best thing to do first is to 
compare D with B. After that, all you have to do is compare D with 
A (ifyou preferred D to B) or with C (ifyou preferred B to D). This 
makes a total of four comparisons two to put A, B, and C in order 
and two ta find out where to put D. 

We have not finished analysing the problem, because you may not 
have been luckywith A, B, and C. Perhaps all you know after the first 
two comparisons is that both A and C are preferable to B. Then you 
have another dilemma: is it better to compare A v>'Ïth C or to 
compare D with one ofA, B, and C and in the second case, should 
D be compared with B or "vith one ofA and C? And once you have 
finished looking at those cases and subcases, you still have to see 
what would have happened ifyour second comparison had been 
between C and D. 
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The analysis becomes somewhat tedious, but it can be done. It 
shows that five comparisons are always enough, that sometimes you 
need that many, and that the second comparison should indeed be 
between C and D. 

The trouble with this sort ofargument is that the number ofcases 
one must consider becomes very large very quickly. It would be out 
of the question to work out exactly how many comparisons are 
needed when you have, say, 100 objects almost certainly this will 
never be known. (1 weIl remember my shock when 1 tirst heard a 
mathematician declare that the exact value ofa certain quantity 
would never be knO\vn. Now 1 am used to the fact that this is the 
rule rather than the exception. The quantity in question was the 
Ramsey number R(5, 5), the smallest number n for which in any 
group of n people there must be five who ail know each other or five 
who are ail new to each other.) Instead, therefore, one tries to find 

~ 	 upper and lower bounds. For this problem, an upper bound of Cn 

~ 	 means a procedure for sorting n objects using no more than Cn.. 
~ 	 comparisons, and a lower bound ofbn means a proof that, no matter 
li! 	 how clever you are, bn comparisons will sometimes be neeessary. 

This is an example of a problem where the best-known upper and 
lower bounds are ,vithin a multiplicative factor of each other: it is 
knovvn that, up to a multiplicative constant, the number of 
comparisons needed to sort n objects is n log n. 

One way to see why this i8 interesting is to try to devise a sorting 
procedure for yourself. An obvious method is to start by finding the 
object that cornes top, set it aside, and then repeat. To tind the best 
object, compare the first two, then compare the ""inner with the 
third, and the winner ofthat with the fourth, and 80 on. This way, it 
takes n - 1 comparisons to find the best, then n - 2 to find the next 
best, and so on, making a total of(n -1) + (n - 2) + (n 3) + ... + 1 

comparisons in all, which works out at about n 2f2. 

Natural though this method is, ifyou use il, then you end up 
comparing every pair ofobjects, 50 it is in fact as inefficient as 
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possible (though it does have the advantage ofbeing simple to 
program). When n is large, n log n is a very significant improvement 
on n2f2, because log n is much smaller than nf2. 

The following method, known as QJIicksort, is not guaranteed to 
work any faster, but usually it works much faster. It is defined 
recursively (that is, in terms ofitself) as follows. First choose any 
one ofthe objects, x, say, and arrange the others into two piles, the 
ones that are better than x and the ones that are worse. This needs 
n 1 comparisons. AlI you need to do now is sort the two piles 
which you do using Quicksort. That is, for each pile you choose one 
object and arrange the others into two further piles, and so on. 
Usually, unless you are unlucky, when you divide a pile into two 
further ones, they will be of roughly the same size. Then it can be 
shown that the number of comparisons you make will be roughly n S 
log n. In other words, generally this method works as well as you ~ 
could possibly hope for, to within a multiplicative constant. : 

i 
:g 
Il 

1 
!! 
1 
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possible (though it does have the advantage ofbeing simple to 
program). When n is large, n log n is a very significant improvement 
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Chapter 8 
Some frequently 

asked questions 

1. Is it true that mathematicians are past it by the 
time they are 307 

This widely believed myth derives its appeal from a misconception 
about the nature of mathematical ability. People like to think of 
mathematicians as geniuses, and of genius itself as an utterly 
mysterious quality which a few are born vvith, and which nobody 

else has the slightest chance of acquiring. 

The relationship between age and mathematical output varies 
widely from one person to another, and it is true that a few 
mathematicians do their best work in their 208. The great 
majority, though, find that their knowledge and expertise develop 
steadily throughout their life, and that for many years this 
development more than compensates for any decline that there 
might be in 'raw' brain power if that concept even makes sense. It 
is true that not many major breakthroughs are achieved by 
mathematicians over the age of 40, but this may weIl be for 
sociological reasons. By the age of 40, somebody who is capable of 
making such a breakthrough will probably already have become 
weil known as a result ofearlier work, and may therefore not have 
quite the hunger of a younger, less established mathematician. But 
there are many counter-examples to this, and sorne mathematicians 
continue, with enthusiasm undimmed, well past retirement. 
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In general, the popular view ofa stereotypical mathematician 
very elever perhaps, but also peculiar, badly dressed, asexual, 
semi-autistic - is not a flattering one. A few mathematicians do 
conform to the stereotype to sorne extent, but nothing would be 
more foolish than to think that if you do not, then you cannot be 
any good at mathematics. Indeed, aU other things being equal, 
you may well be at an advantage. Only a very small proportion of 
mathematics students end up becoming research mathematicians. 
Most fall by the wayside at an earlier stage, for example by 
losing interest, not getting a PhD place, or doing a PhD but not 
getting a university job. It is my impression, and 1 am not alone in 
tbinking this, that, among those who do survive the various culls, 
there is usually a smaller proportion ofoddballs than in the initial 
student population. 

1 
While the negative portrayal ofmathematicians may be damaging, : 
by putting off people who would otherwise enjoy the subject and be t 
good at it, the damage done by the word 'genius' is more insidious Ji 
and possibly greater. Here is a rough and ready definition ofa ~ .. 
genius: somebody who can do easily, and at a young age, something .g 
that almost nobody else can do except after years of practice, if at à 
an. The achievements of geniuses have a sort ofmagic quality about ~ 
them it is as if their brains work not just more efficiently than 
ours, but in a completely different way. Every year or two a 
matbematics undergraduate arrives at Cambridge who regularly 
manages to solve in a few minutes problems that take most people, 
including those who are supposed to be teaching them, several 
hours or more. When faced with such a person, aIl one can do is 
stand back and admire. 

And yet, these extraordinary people are not always the most 
successful research mathematicians. Ifyou want to solve a problem 
that other professional mathematicians have tried and failed to 
solve before you, then, ofthe many qualities you will need, genius as 
1 have defined it is neither necessary nor sufficient. To illustrate 
with an extreme example, Andrew Wiles, who (at the age ofjust 
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over 40) proved Fermat's Last Theorem (which states that if x, y, z, 
and n are an positive integers and n is greater than 2, then x" + yn 
cannot equal J?!') and thereby solved the world's most famous 
unsolved mathematics problem, is undoubtedly very clever, but he 

is not a genius in my sense. 

How, you might ask, could he possibly have done what he did 
without sorne sort of mysterious extra brainpower? The answer is 
that, remarkable though his achievcment was, it i8 not so 
remarkable as to dety explanation. 1 do not know precisely what 
enabled him to suceeed, but he would have needed great courage, 
determination, and patience, a wide knowledge ofsorne very 
difficult work done by others, the good fortune to be in the right 
mathematical area at the right time, and an exceptional strategic 

ability. 

SI 	 This last quality is, ultimately, more important than freakish mental 
; 	 speed: the most profound contributions to mathematics are often 
fi" 	made by tortoises rather than hares. As mathematicians develop, 
i 	 they learn various tricks ofthe trade, partly from the work of other 

mathematicians and partly as a result ofmany hours spent thinking 
about mathematics. V\"hat determines whether they can use their 
expertise to solve notorious problems is, in large measure, a matter 
ofcareful planning: attempting problems that are likely to be 
fruitful, knowing when to give up a line ofthought (a difficult 
judgement to make), being able to sketch broad outlines of 
arguments before, just occasionally, managing to fill in the details. 

This demands a level of maturity which is by no means 
incompatible with genius but which does not ahvays 

accompany it. 

2. 	Why are there so few women mathematicians? 
It i8 tempting to avoid this question, sinee giving an answer 
presents such a good opportunity to cause off ence. However, the 
small proportion ofwomen, even today, in the mathematics 
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departments ofthe world, is so noticeable and so very much a fact of 
mathematicallife, that I feel compelled to say something, even if 
what 1 say amounts to little more than that 1 find the situation 
puzzling and regrettable. 

One point that deserves to be made is that the lack ofwomen in 
mathematics is another statistical phenomenon: incredibly good 
female mathematicians exist and, just like their male counterparts, 
they have many different ways ofbeing good, including, in sorne 
cases, being geniuses. There is no evidenee whatsoever for any sort 
ofupper limit on what women can achieve mathematically. 
Occasionally, one reads that men perform better at certain mental 
tests, of \isuo-spatial ability, for example, and it is sometimes 
suggested that this accounts for their domination of mathematics. 
However, this sort ofargument is not very convincing: v:isuo-spatial 
ability can be developed with practice, and, in any case, wh:ile :it can 
sometimes be useful to a mathematician, it is rarely indispensable. 

More plausible i8 the idea that social factors are important: where a 
boy may be proud ofhis mathematical ability, one can imagine a girl 
being embarrassed to exeel at a pursuit that is perceived as 
unfeminine. In addition, mathematically gifted girls have few role 
models, so the situation is self-perpetuating. A social factor that 
may operate at a later stage is that mathematics, more than most 
academic disciplines, demands a certain single-mindedness which 
i8 hard, though certainly not impossible, to combine with 
motherhood. The novelist Candia McWilliam once said that each 
ofher children had cost her !wo books; but at least it i8 possible to 
write a novel after a few years of not having done so. Ifyou give up 
mathematics for a few years then you get out of the habit, and 
mathematical comebacks are rare. 

It has been suggested that female mathematicians tend to develop 
later than their male counterparts and that this puts them at a 
disadvantage in a career structure that rewards early achievement. 
The life stories ofmany of the most prominent female 
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mathematicians bear this out, though their late development is 
largely tor the social reasons just mentioned, and again there are 

many exceptions. 

None of these explanations seems sufficient, though. Rather than 
speculating any further, the best 1 can do is point out that several 
books have been WTitten on this subject (see Further reading). A 
final comment i8 that the situation i8 improving: the proportion of 
women among mathematicians has steadily increased in recent 
years and, given how society in general has changed and i8 
changing, it will almost certainly continue to do 80. 

3. Do mathematics and music go together? 

Despite the fact that many mathematician8 are completely 
unmusica1 and few musicians have any interest in mathematics, 

~ there is a persistent piece offolk knowledge that the two are 
~ connected. As a result, nobody is surprised to learn that a 
iIII mathematician is a very good pianist, or composes music as a 

:1 hobby, or loves to listen to Bach. 

There is plenty of anecdotal evidence suggesting that 
mathematicians are drawn to music more than to any other art 
form, and sorne studies have claimed to demonstrate that children 
who are educated musically perform better in scÎentific subjects. It 
is not hard to guess why this might he. Although abstraction is 
important in all the arts, and music has a representational 
component, music is the most obviously abstract art: a large part of 
the pleasure oflistening to music cornes from a direct, ifnot wholly 
conscious, appreciation of pure patterns with no intrinsic meaning. 

Unfortunately, the anecdotal evidence i8 backed up by very little 
hard science. It i8 not even obvious what questions should be asked. 
What would we learn if statistically significant data were collected 
showing that a higher percentage of mathematicians played the 
piano than ofnon-mathematicians "vith similar social and 
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educational backgrounds? My guess is that such data could be 
collected, but it would be far more interesting to produce an 
experimentally testable theory that explained the connection. As for 
statistical evidence, this would be much more valuable if it was 
more specifie. Both mathematics and music are very varied: it is 
possible to be passionately enthusiastic about sorne parts and 
completely uninterested in others. Are there subtle relationships 
between mathematical and musical tastes? If50, then they would be 
much more informative than crude correlations between interest in 
the disciplines as a whole. 

4. Why do so many people positively 
dislike mathematics? 

One does not often hear people sa)'ing that they have never liked f 
biology, or English literature, To be sure, not everybody is excited by 
these subjects, but those who are not tend to understand perfectly 

:f 
1 

weIl that others are. By contrast, mathematics, and subjects with a ~ 
high mathematical content such as physics, seem to provoke not 
just indifference but actual antipathy. What is it that causes many 

~ 
IDi 

people to give mathematical subjects up as soon as they possibly can 
and remember them with dread for the rest of their lives? 

la 
!' 

Probably it i8 not 50 much mathematics itself that people find 
unappealing as the experience ofmathematics lessons, and this i8 
easier to understand. Because mathematics continually builds on 
itself, it is important to keep up when learning it. For example, if 
you are not reasonably adept at multiplying two-digit nurnbers 
together, then you probably won't have a good intuitive feel for the 
distributive law (discussed in Chapter 2). Without this, you are 
unlikely to be comfortable with multiplying out the brackets in an 
expression such as (x + 2)(x + 3), and then you ",>ill not be able 
to understand quadratic equations properly. And ifyou do not 
understand quadratic equations, then you ",>ill not understand why 

1 + ~5
the golden ratio i8 --. 

2 
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There are many chains of this kind, but there is more to keeping up 
with mathematics than just maintaining technical fluency. Every 
so often, a new idea is introduced which is very important and 
markedIy more sophisticated than those that have come before, and 
each one provides an opportunity to falI behind. An obvious 
example is the use ofletters to stand for numbers, which many find 
confusing but which is fundamental to an mathematics above a 
certain level. Other examples are negative numbers, complex 
numbers, trigonometry, raising to powers, logarithms, and the 
beginnings ofcalculus. Those who are not ready to make the 
necessary conceptualleap when they meet one ofthese ideas will 
feel insecure about ail the mathematics that builds on it. Gradually 
they will get used to only half understanding what their 
mathematies teachers say, and after a few more missed leaps they 
will find that even half is an overestimate. Meanwhile, they will see 
others in their class who are keeping up with no difficulty at an. It 

I:l is no wonder that mathematics lessons become, for many people, 
:1:11 something of an ordeal. 
~ 

i Is this a necessary state ofaffairs? Are sorne people just doomed to 
dislike mathematies at school? Or might it be possible to teach the 
subject differently in such a way that far fewer people are excluded 
from it? 1 am convinced that any child who is given one-to-one 
tuition in mathematics from an early age by a good and enthusiastic 
teacher \\il1 grow up Iiking it. This, ofcourse, does not 
immediately suggest a feasible educational policy, but it does at 
least indicate that there might be room for improvement in how 
mathematics is taught. 

One recommendation follows From the ideas 1 have emphasized in 
this book. Above, 1 implicitly drew a contrast between being 
technically fluent and understanding difficuIt concepts, but it seems 
that almost everybody who is good at one is good at the other. And 
indeed, ifunderstanding a mathematical object is largely a question 
ofleaming the rules it obeys rather than grasping its essence, then 
this is exactly what one would expect - the distinction between 
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technical fluency and mathematical understanding is less clear-cut 

than one might imagine. 


How should this observation influence classroom practice? l do not 
advocate any revolutionary change - mathematics has suffered 
from too many of them already - but a small change in emphasis 
could pay dhidends. For exampIe, suppose that a pupil makes the 
common mistake of thinking that œa 

+ b = x a + Xh. A teacher who has 
emphasized the intrinsic meaning ofexpressions such as œa \\ill 
point out that x a 

• b means a + b xs all multiplied together, which is 
clearly the same as a of them multiplied together multiplied by b of 
them multiplied together. Unfortunately, many children find this 
argument too compIicated to take in, and anyhow it ceases to be 
valid ifa and b are not positive integers. 

r 
Such children might benefit from a more abstract approach. As l j 
pointed out in Chapter 2, everything one needs to know about :; 
powers can be deduced from a few very simple mIes, ofwhich the .i
most important is X 

U 
+ b = œUœh

• If this mIe has been emphasized, ~ 

then not only is the above mistake less Iikely in the first place, but it .:" 
is also easier to correct: those who make the mistake can simply be 1 
told that they have forgotten to apply the right mIe. Ofcourse, it is ~ 
important to be familiar with basic facts such as that œ3 means x 
times x times x, but these can be presented as consequences of the 
rules rather than as justifications for them. 

1 do not wish to suggest that one should try to explain to children 
what the abstract approach is, but merely that teachers should be 
aware of its implications. The main one is that it is quite possible to 
leam to use mathematical concepts correctly "vithout being able to 
say exactly what they mean. This might sound a bad idea, but the 
use is often easier to teach, and a deeper understanding of the 
meaning, if there is any meaning over and above the use, often 
follows of its own accord. 
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5. Do mathematicians use computers in 

theirwork7 

The short answer is that most do not, or at least not in a 
fundamental way. Of course, just like anybody else, we find them 
indispensable for word-processing and for communicating ,vith 
each other, and the Internet is becoming more and more useful. 
There are sorne areas of mathematics where long, unpleasant but 
basically routine calculations have to be done, and there are very 
good symbolic manipulation programs for doing them. 

Thus, computers can be very useful time-saving devices, sometimes 
80 much 80 that they enable mathematicians to discover results that 
they cotùd not have discovered on their own. Nevertheless, the kind 
ofhelp that computers can provide is very limited. Ifit happens that 
your problem, or more usually sub-problem, is one of the small 
minority that can be solved by a long and repetitive search, thent 	weIl and good. If, on the other hand, you are stuck and need a bright 

1 	 idea, then, in the present state oftechnology, a computer will be no 
i 	help whatsoever. In fact, most mathematicians would say that their 

most important tools are a piece of paper and something to write 
with. 

My own view, which is a minority one, is that this is a temporary 
state of affairs, and that, over the next hundred years or so, 
computers will gradually be able to do more and more ofwhat 
mathematicians do - starting, perhaps, with doing simple exercises 
for us or saving us from wasting a week trying to prove a lemma to 

which a well-known construction provides a counter-example (here 
1 speak from frequent experience) and eventually supplanting us 
entirely. Most mathematicians are far more pessimistic (or should 
that be optimistic?) about how good computers will ever be at 
mathematics. 
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6. How is research in mathematics possible? 

Conversely, one might ask, what is it that seems 50 paradoxical 
about the possibility ofmathematical research? 1 have mentioned 
several unsolved problems in this book, and mathematical 
research consists, in large measure, in trying to solve those and 
similar ones. Ifyou have read Chapter 7, then you will see that a 
good way to generate questions is ta take a mathematical 
phenomenon that is too hard to analyse exactly, and try ta 
make approximate statcments about it. Another method is 
suggested by the end of Chapter 6: choose a difficult 

mathematical concept, such as a four-dimensional manifold, and 
you will usually find that even simple questions about it can be 
very hard to answer. 

JIf there is a mystery about mathematical research, it is not 
that hard questions exist - it is in fact quite easy to invent 1.. 
impossibly hard questions - but rather that there are enough J-
questions ofjust the right level ofdifficulty to keep thousands of 

mathematicians hooked. To do this, they must certainly be ... 
I 

t 
c:

challenging but they must also offer a glimmer ofhope that 
they can be solved. 

7. Are famous mathematical problems ever solved 
by amateurs? 

The simplest and least misleading answer to this question is a 
straightforward no. Professional mathematicians very soon learn 
that almost any idea they have about any well-known problem has 

been had by many people before them. For an idea to have a chance 
ofbeing new, it must have sorne feature that explains why nobody 
has previously thought of it. 1 t may be simply that the idea is 
strikingly original and unexpected, but this is very rare: on the 
whole, ifan idea cornes, it cornes for a good rea50n rather than 
simply bubbling up out of nowhere. And if it has occurred to you, 
then why should it not have occurred to somebody else? A more 
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plausible reason is that it is related to other ideas which are not 
particularly weIl known but which you have taken the trouble to 
leam and digest. That at least reduces the probability that others 
have had it before you, though not to zero. 

Mathematics departments around the world regularly receive 
letters from people who daim to have solved famous problems, 
and virtually without exception these 'solutions' are not 
merely "vrong, but laughably so. Sorne, while not exaetly 
mistaken, are so unlike a corre<.,1: proof of anything that they 
are not really attempted solutions at aiL Those that follow at 
least sorne of the normal conventions ofmathematical 
presentation use very elementary arguments that would, had 
they been correct, have been discovered centuries ago. The 
people who write these letters have no conception ofhow 
difficult mathematical research is, of the years ofeffort needed 

,g to develop enough knowledge and expertise to do significant 
i original work, or of the extent to which mathematics is a .,

i collective activity. 

::Ii 

By this last point I do not mean that mathematicians work in large 
groups, though many research papers have two or three authors. 
Rather, I mean that, as mathematics develops, new techniques are 
invented that become indispensable for answering certain kinds of 
questions. As a result, each generation ofmathematicians stands on 
the shoulders of previous ones, solving problems that would once 
have been regarded as out of reach. If you try ta work in isolation 
from the mathematical mainstream, then you will have to work 
out these techniques for yourself, and that puts you at a crippling 
disadvantage. 

This is not quite to say that no amateur could ever do significant 
research in mathematics. Indeed, there are one or two examples. In 
1975 Matjorie Riec, a San Diego housewife with very little 
mathematical training, discovered three previously unknown ways 
of tiling the plane with (irregular) pentagons after reading of the 
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problem in the ScientificAmerican. And in 1952 Kurt Heegner, a 
58-year-old German schoolmaster, proved a famous conjecture of 
Gauss which had been open for over a century. 

However, these examples do not contradict what 1 have been saying. 
There are sorne problems which do not seem to relate closely ta the 
main body ofmathematics, and for those it is not particularly 
helpful ta know existing mathematical techniques. The problem of 
finding new pentagonal tilings was ofsuch a kind: a professional 
mathematician would not have been much better equipped to solve 
it than a gifted amateur. Rice's achievement was rather like that of 
an amateur astronomer who discovers a new cornet - the resulting 
fame is a well-deserved reward for a long search. As for Heegner, 
though he was not a professional mathematician, he certainly did 
not work in isolation. In particular, he had taught himself about 1modular functions. 1 cannot explain what these are here - indeed, 
they would normally be considered too advanced even for an 
undergraduate mathematics course . i 

[ 
Il 

Interestingly, Heegner did not write up his proof in a completcly ... 
! 
c

conventional way, and although his paper was grudgingly 
published it was thought for many years to be wrong. In the late f 
19608, the problem was solved again, independently, by Alan 
Baker and Harold Stark, and only then was Heegner's work 
carefully re-examined and found to be correct after ail. 
Unfortunately, Heegner died in 1965 and thus did not live to see 
his rehabilitation. 

8. Why do rnathernaticians refer to sorne theorerns 
and proofs as beautiful? 
1 have discussed this question earlier in the book, so here 1 will be 
very brief. It may seem odd to use aesthetic language about 
something as apparently dry as mathematics, but, as I el<:plained 
on page 51 (at the end of the discussion of the tiling problem), 
mathematical arguments can give pleasure, and this pleasure has 
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many features in common with more conventional aesthetic 


pleasure. 


One difference is that, at least From the aesthetic point ofview, a 

mathematician is more anonymous than an artist. While we may 

greatly admire a mathematician who discovers a beautiful proof, the 

human story behind the discovery eventually fades away and it is, in 

the end, the mathematies itself that delights us. 

~ 
:;.:; 

~ 
~ 
::Ii 
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rther reading 

There are sorne important aspects ofmathematics that 1 have not had 

the space to discuss here. For these 1 can recommend other books. Ifyou 

want to learn about the history of mathematics, it is hard to beat Morris 

Kline's magisterial three volumes on the subject, Mathematical Thought 

fromAncient to Modem Times (Oxford University Press, 1972), though 

he expects more mathematical sophistication from his readers than 1 

have here. Innumeracy, by John Allen Paulos, (Viking, 1989) has rapidly 

become a classic on the subject of how knowledge of mathematics can 

influence one's judgements in everyday life-for the better. Tom 

Korner's The Pleasures ofCounting (Cambridge University Press, 1996) 

says much more about the applications of mathematics than 1 have, and 

does 50 more wittily. What is Mathematics? by Courant and Robbins 

(Oxford University Press, 2nd edn., 1996) is another classic. It is similar 

in spirit to this book, but longer and somewhat more formaI. The 

Mathematical Experience by Davis and Hersch (Birkhiiuser, 1980) is a 

delightful collection of essays about mathematics, written in a 

philosophical vein. I would have liked to say more about probability, but 

a beautiful discussion of randomness and its philosophical implications 

can instead be found in Afathematics and the Unexpected, by Ivar 

Ekeland (University ofChicago Press, 1988). 

The quotations on page 18 are from Saussure's Course in General 

Linguistics (McGraw-Hill, 1959) and Wittgenstein's PhiZosophical 

Investigations (Blackwell, 3rd edn., 2001). Anybody who has read tbis 
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book and the Philosophical Investigations will see how much the later 

Wittgenstein has influenced my philosophical outlook and in particular 

my views on the abstract method. Russell and Whitehead's famous 

Principia Mathematica (Cambridge University Press, 2nd edn., 1973) is 

not exactly light reading, but ifyou found sorne of my proofs of 

elementary facts long-winded, then for comparison you should look up 

their proofthat 1 + l = 2. On the subject ofwomen in mathematies, 

discussed in Chapter 8, t\vo good recent books are Women in 

MathematU'8: TheAddition ofDijJerence by Claudia Henrion (Indiana 

University Press, 1997) and Women Becoming Mathematicians: 

Creating a Projèssional Identity in Post-World War IIAmerica by 

Margaret Murray (MIT Press, 2000). 

Finally, ifyou have enjoyed this book, you might like to know that in 

order to keep it very short I reluctantly removed whole sections, 

including a complete chapter, from earlier drafts. Some ofthis material 

C can be found on my home page: 

1http://,www.dpmms.cam.ac.uk;-wtglO 
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