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PREFACE

In this book I bring together ideas that I have been developing sep-
arately in articles written over the past fifteen years. The book's title
expresses my commitment to mathematical realism, empiricism, and
structuralism. For in calling mathematics a science I indicate that it
has a factual subject-matter and stands epistemically with the other
sciences, and in calling it a science of patterns 1 express my commit-
ment to mathematical structuralism. Contemporary readers in the
philosophy of mathematics are likely to know of (if not know) my
structuralism and the paper from which the title of this book
derives. The same is less likely to hold of my views on realism and
the epistemology of mathematics, since much of it appears in con-
ference papers that have not been published, at least not as of this
writing. I hope that this book will not only make these newer ideas
more readily accessible but also present them and my earlier ideas in
a systematic context.

My debt to the writings of W. V. Quine will be apparent to any
reader who knows his work. My combination of holism and postu-
lationalism develops the details of Quinean suggestions for an epis-
temology of mathematics, and his work on ontological relativity has
shaped my structuralism.

1 am also indebted to a host of individuals for conversations, cor-
respondence and other help. I have acknowledged the help of many
of them in previous publications that serve as a basis for this one. |
thank them again, but will confine myself to listing only those who
have assisted me with this particular manuscript. These are Andrea
Bagagiolo, Mark Balaguer, Pieranna Garavaso, Marcus Giaquinto,
Eric Heintzberger, Colin McLarty, Geoffrey Sayre-McCord, Adrian
Moore, Bijan Parsia, my son David Resnik, Stewart Shapiro, Keith
Simmons, and two anonymous referees for Oxford University Press.
I am especially grateful to Mark Balaguer and Eric Heintzberger for
lengthy commentaries on the previous draft of the book. Angela
Blackburn and Peter Momtchiloff in their capacity as philosophy
editors of Oxford University Press have encouraged me from the
inception of this work, and I thank them both. I also thank Angela
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Blackburn for the wonderful job she has done in copy-editing the
final manuscript and preparing it for publication.

I'am also thankful for two one-semester leaves, one due to a grant
from the University of North Carolina Institute for the Arts and
Humanities and the other due to the adminstrative grace of Gerald
Postema in his capacity as chair of the Philosophy Department.

In writing this book I have drawn from a number of my earlier
essays. Some of these have already been published, others are cur-
rently in press. In most cases I have substantially rewritten the
material in question and interspersed it in various chapters. I thank
Oxford University Press and the editor of Mind for permission to
draw on ‘Immanent Truth’, which appeared in vol. 99 (1990}, and ‘A
Structuralist’s Involvement with Modality’, which appeared in vol.
101 (1992). Most of the first paper is reincarnate in Chapter 2 and
the Introduction, and sections 1, 3, and 4 of the second paper recur
in Chapter 4. I also thank Oxford University Press for ‘Ought There
To Be One Logic?, which is to appear in Jack Copeland (ed.), Logic
and Reality, and “Holistic Mathematics’, which is to appear in
Matthias Schirn (ed.), Philosophy of Mathematics Today. 1 use
material from sections 1, 6, 7, and 8 of the first paper in Chapter 8,
and most of the second paper in Chapter 7. I am grateful to the edi-
tor of Noiis for ‘Mathematics as a Science of Patterns: Ontology and
Reference’, which appeared in vol. 15 (1981), and for ‘Mathematics
as a Science of Patterns: Epistemology’, which appeared in vol. 16
(1982). I use most of the first paper in Chapter 10, and pieces of the
second in Chapter 11, I thank the editor and publisher of
Philosophica for ‘A Naturalized Epistemology for a Platonist
Mathematical Ontology’, which appeared in vol. 43 (1989). I use
parts of this paper in Chapters 6 and 9. I thank the editor of
Philosophical Topics for ‘Computation and Mathematical
Empiricism’, which appeared in vol. 17 (1989), and ‘Quine, the
Argument from Proxy Functions and Structuralism’, which is
scheduled to appear in 1997. I use material from the first paper in
Chapter 8 and some from the second in Chapter 12. I am grateful to
the editor of Philosophia Mathematica for ‘Scientific vs. Math-
ematical Realism: The Indispensability Argument’, which appeared
in 3rd Ser., vol, 3 (1995), and ‘Structural Relativity’, which appeared
in 3rd Ser., vol. 4 (1996). I use most of the first of these articles in
Chapter 3, and some of the second in Chapter 12, I thank the
Philosophy of Science Association for ‘Between Mathematics and
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Physics’, which appeared in PSA 1990, vol. 2. Much of this recurs in
Chapter 6. Finally, I thank Routledge Publishing Company for
‘Proof as a Source of Proof”, which appeared in Michael Detlefsen
(ed.), Proof and Knowledge in Mathematics. | use parts of this in
Chapter 11.

As always, 1 am indebted to my wife Janet for her encouragement
and comfort, and for making life so exciting,
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Introduction

Many educated people regard mathematics as our most highly
developed science, a paradigm for lesser sciences to emulate. Indeed,
the more mathematical a science is the more scientists seem to prize
it, and traditionally mathematics has been regarded as the ‘Queen of
Sciences’. Thus it is ironic that philosophical troubles surface as
soon as we inquire about its subject-matter. Mathematics itself says
nothing about the metaphysical nature of its objects. It is mute as to
whether they are mental or physical, abstract or concrete, causally
efficacious or inert. However, mathematics does tell us that its
domain is vastly infinite, that there are infinities upon infinities of
numbers, sets, functions, spaces, and the like. Thus if we take math-
ematics at its word, there are too many mathematical objects for it to
be plausible that they are all mental or physical. Yet the alternative
platonist view that mathematics concerns causally inert objects
existing outside space-time seems to preclude any account of how
we acquire mathematical knowledge without using some mysterious
intellectual intuition.

Resolving this tension between the demands of ontology and
epistemology has dominated philosophical thinking about mathem-
atics since Plato’s time. Yet after nearly a century of vigorous work
in the foundations and philosophy of mathematics the problem
remains as acute as ever. For we have a greater appreciation than
previous generations of philosophers of the boundlessness of the
mathematical universe and the mathematical requirements of
science. Rigorous reflections on the great, but unsuccessful, attempts
by Frege, Hilbert, and Brouwer to work out philosophically moti-
vated foundations for mathematics have shown us exactly why it will
not do to take mathematics to be an a priori science of mental con-
structions, or an empirical investigation of the properties of ordi-
nary physical objects, or a highly developed branch of logic or 2
game of symbol manipulation. On the other hand, the naturalism
driving contemporary epistemology and cognitive psychology
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demands that we not settle for an account of mathematical know-
ledge based upon processes, such as a priori intuition, that do not
seem to be capable of scientific investigation or explanation.

This has led many contemporary philosophers of mathematics to
disdain realism about mathematical objects, and to not read math-
ematics at face value. Hartry Field has embraced an ingenious ver-
sion of the view that mathematics is a useful fiction. Geoffrey
Hellman exchanges realism about mathematical objects for realism
about possible ways unspecified objects might be related to each
other. Charles Chihara reads mathematical existence statements as
asserting that certain inscriptions are possible. Efforts towards fully
formulating these views have produced impressive formalisms. But,
to make a point I will argue later, the epistemic and ontic gains these
approaches promise prove illusory when applied to the infinities
found in the higher reaches of contemporary mathematics,

I mention these anti-realists now by way of background to my
main project in this book, which is to defend a version of math-
ematical realism. In the next paragraphs I sketch the view I will
amplify in subsequent chapters.

My realism consists in three theses: (1) that mathematical objects
exist independently of us and our constructions, (2) that much of
contemporary mathematics is true, and (3) that mathematical truths
obtain independently of our beliefs, theories, and proofs. I have used
the qualifier ‘much’ in (2), because I do not think mathematical real-
ists need be commiitted to every assertion of contemporary mathem-
atics. At a minimum, realists seem to be committed to classical
number theory and analysis, for less than this opens the way to anti-
realist, constructive accounts of mathematics. Moreover, accepting
classical analysis already suffices for making a convincing case that
the mathematical realm is independent of us and our mental life,
thereby raising epistemological problems for realists. I am inclined
to commit myself to standard set theory as well, but the evidence for
this much mathematics and beyond is not as firm as it is for analysis
and number theory, and, as a result, the case for a realist stance
toward it is weaker.

The ontological component of my realism is a form of structural-
ism. Mathematical objects are featureless, abstract positions in
structures {or more suggestively, patterns); my paradigm mathemat-
ical objects are geometric points, whose identities are fixed only
through their relationships to each other. This structuralism
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explains some puzzling features of mathematics: why it only charac-
terizes its objects ‘up to isomorphism’, and why it may use alternat-
ive definitions of, say, the real numbers, when these definitions are
not even extensionally equivalent. Yet structuralism also yields a
form of ontological relativity: in certain contexts there is no fact as
to whether, say, the real numbers are the points on a given line in
Euclidean space or Dedekind cuts of rationals. And this will require
some explaining.

Material bodies in various arrangements ‘fit’ simple patterns, and
in so doing they *fill’ the positions of simple mathematical struc-
tures. We may well perceive such arrangements, but we do not per-
ceive the positions, the mathematical objects, themselves; since, on
my view, they are not spatiotemporal. How then did we come to
form beliefs about them—short of using the sort of non-naturalora
priori processes I renounce? I hypothesize that using concretely writ-
ten diagrams to represent and design patterned objects, such as tem-
ples, bounded fields, and carts, eventually led our mathematical
ancestors to posit geometric objects as sui generis. With this giant
step behind them it was and has been relatively easy for subsequent
mathematicians to enlarge and enrich the structures they knew, and
to postulate entirely new ones.

Basing the epistemology of mathematical objects on positing has
the advantage of appealing to an apparently natural process akin to
making up a story. However, it also generates the obvious problem
of showing how positing mathematical objects can lead us to math-
ematical truths and knowledge. Clearly mere originality would not
be enough to justify our ancestors’ initially suggesting that mathem-
atical objects exist, much less retaining them in their conceptual
scheme. I believe they were justified in introducing mathematical
objects because doing so promised to solve a number of problems
confronting them and to open many new avenues of thought, Part
of their (and our) justification for retaining mathematical objects
was (and remains) pragmatic and global: they have proved immense-
ly fruitful for science, technology, and practical life, and doing with-
out them is now (virtually) impossible.

Scientists also posit new entities, ranging from planets to sub-
atomic particles, and they have done this with great effect. For the
most part, however, they posit to explain observable features of the
world in causal terms, and they usually insist upon experimentally
detecting their posits. This is very unlike mathematics, Furthermore,
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when scientists relax the detection requirement, they sometimes own
that the entities in question are merely fictional idealizations, This
prompts the worry that science also regards mathematical objects as
merely the fictitious characters of a useful and powerful idealiza-
tion. However, as I shall show, a careful analysis of the way scien-
tists use mathematics reveals that they presuppose its truth. Even
when using such devices as point-masses, frictionless objects, or
ideal gases to develop idealized models, they presuppose the reality
of the mathematical objects to which they refer. One philosophical
consequence of this is that certain anti-realists in the philosophy of
science are still committed to the reality of mathematical objects.

Although my argument from the role of mathematics in science
forestalls the fictionalist’s ploy, it generates a new worry: namely,
that we may not be justified in accepting a mathematical claim
unless it is presupposed by science. If this is true, we should suspend
judgement on much contemporary set theory—an unsettling conse-
quence for many mathematical realists.

In practice, when justifying a mathematical claim we hardly ever
invoke such global considerations as the benefits to natural science.
We ordinarily argue for pieces of mathematics locally by appealing
to purely mathematical considerations. Proving theorems is an obvi-
ous way, but one that passes the buck to the axioms. Usually we
accept axioms because they yield an important body of theorems or
are universally acknowledged and used by practising mathemati-
cians. These are considerations restricted to mathematics and its
practice proper, They form part of a local conception of mathemat-
ical evidence; and we can invoke this to support some of the math-
ematics that currently has no use in natural science.

It would be wrong to conclude from its possessing a local concep-
tion of evidence that mathematics is an a priori science, disconnect-
ed evidentially from both natural science and observation. First,
observation is relevant to mathematics, because when supplemented
with appropriate auxiliary hypotheses, mathematical claims yield
results about concretely instantiated structures, such as computers,
paper and pencil computations, or drawn geometric figures, that can
be tested observationally in the same way that we test other scientific
claims, Secondly, technological and scientific success forms a vital
part of our justification for believing the more interesting parts of
mathematics, the parts that go beyond the computationally verifi-
able,
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I formulate my mathematical realism and its epistemology using
notions of truth and reference that are immanent and disquotation-
al. This means that they apply only to our own language, and serve
primarily to permit inferences such as the following: ‘Everything
Tess said is true, and she said “Jones was at home”; so Jones was at
home.” Even this modest conception of truth allows me to formulate
theses committing me to an independent mathematical reality.
Moreover, it avoids worries about how our mathematical terms
‘hook onto’ mathematical objects, and permits me to explain how
merely positing mathematical objects, objects to which we have no
causal connection, can enable us to refer to and describe them.

Structuralism also enters my epistemology at a number of points.
As T already mentioned, it is part of my account of the genesis of
mathematical knowledge. It also figures in my explanation of how
manipulations with concrete numerals and diagrams can shed light
on the abstract realm of mathematical objects. Here the key idea
consists in noting that these concrete devices represent the abstract
structures under study. The unary numerals, for example, and the
computational devices built upon them, reflect the structure of the
positive integers.

Which structures we recognize will depend upon how finely
grained a conception of structure we use. This in turn is a function
of the devices we recognize for delineating structure; and, according
to many contemporary approaches to structure, this ultimately
turns on where we set the limits of logic and logical form.

Once one identifies structure with logical form it is a short step to
thinking that there must be just one correct conception of structure.
My views on both logic and structure contravene this. First, 1 hold
that in calling a truth a logical truth we are not ascribing a property
to it that is independent of our inferential practices, such as being
true in virtue of its form. What we count as logically true is a matter
of convenience. Consequently so are the limits of logic and logical
form. Secondly, structural similarity is like any another similarity; it
presupposes a respect in which things are to be compared. Two
things can be structurally similar in one respect and not in another,
for example, the same in shape but not in size. Thus structure is rel-
ative to our devices for depicting it. But this does not undercut my
realism, since the facts about structures of a given type obtain inde-
pendently of our recognizing or proving them.
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Here is the plan of the book. Part One: ‘Problems and Positions’
begins by explaining my mathematical realism and the version of
truth I use. Next is a chapter offering a prima facie case for mathem-
atical realism, which is based largely on an argument that the indis-
pensability of mathematics to science justifies a realist stance
towards much mathematics. This is followed by a critique of anti-
realist work by Charles Chihara, Hartry Field, Geoffrey Heliman,
and Philip Kitcher aimed at undermining the indispensability pre-
miss upon which the argument is based, and then by a review of the
epistemic problems motivating anti-realists.

In Part Two: ‘Neutral Epistemology’ I take up issues in the epis-
temology of mathematics that I can treat independently of my struc-
turalist ontological doctrines. I begin with a critique of the
distinction between mathematical and physical objects, since this
underlies almost all contemporary thinking about the epistemology
of mathematics. I turn then to a holist approach to the epistemology
of science and explain how this can be compatible with defeasible
local conceptions of evidence operating in the various branches of
science. This makes room for a local conception of mathematical
evidence. However, knowledge based upon such evidence fails to be
a priori, because, in principle, observational evidence bearing upon
scientific systems containing mathematical claims can provide a
basis for overriding the mathematical evidence for those claims.
Further analysis shows that even our local conception of mathemat-
ical evidence recognizes the relevance of empirical data. Since
deduction plays such an important role in the methodology of
mathematics, I turn next to the nature of logic, where I argue against
realism concerning logical necessity and possibility. My position
again has an anti-apriorist slant, since I hold that the role of logic in
mathematics is purely normative—guiding inference rather than
reporting so-called logical facts.

I then move from questions of justification to questions about the
genesis of mathematical knowledge. Here I begin to develop the
view that mathematical objects are posits. Taking mathematical
objects as posits raises the question of how and in what sense our
beliefs can be about mathematical objects. I argue that the sense in
question can be handled by an immanent, disquotational approach
to reference.

To complete my epistemology of mathematics I bring in my
structuralist account of mathematics, the focus of Part Three:
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‘Mathematics as a Science of Patterns’. Here I expound a theory of
patterns (structures) and argue that we can resolve a number of
issues in the ontology of mathematics by construing mathematical
objects as positions in patterns. I also argue that mathematical
knowledge has its roots in pattern recognition and representation,
and that manipulating representations of patterns provides the con-
nection between the mathematical proof and mathematical truth, 1
conclude this part by addressing issues concerning structuralism
itself-—including the relationship between logical form and struc-
ture, and the possibility of a structuralist foundation for mathemat-

1C8.



2

What is Mathematical Realism?

The view I will propose and defend is a form of mathematical real-
ism. Now just calling my view realism threatens to subject it to gra-
tuitous objections—which I could easily avoid by not labelling it at
all. To make matters worse, few philosophical terms are currently
more controversial or obscure. But labels help locate views on the
philosophical map and indicate whether some clash more severely
than others. My view is opposed to views about mathematics that
claim to be anti-realist and go by such names as ‘nominalisn?’, ‘con-
structivism’, ‘fictionalism’, “deflationism’; in this respect ‘realism’
fits. My view also has much in common with other so-called realist
views in other areas of philosophy. So I am going to retain the label,
and try to define it so that it characterizes the contemporary debate
about mathematical objects as well as traditional debates between
realists and anti-realists in other areas of philosophy.!

1. TO CHARACTERIZE REALISM . ..

One may be a realist about some things without being a realist about
others, For instance, one might believe in the existence of physical
objects while denying the reality of mental or abstract objects. Thus
realism is not a single view but rather a family or collection of views.
One is not a realist simpliciter but rather a realist with regard to X5,
where Xs might be mathematical objects, electrons, propositions,
moral values, and so on.

Despite the variety of realisms, surveying traditional debates
between realists and anti-realists reveals that three themes are likely
to emerge as part of a realist’s position: an existence theme, a truth

' Call me a ‘platonist’, if you like. [ used this label in my earlier writings. But I am
using the term ‘realism’ since many of the contemporary philosophers with whom 1
debate or ally myself use it. See e.g. Maddy (1990) and Field (1988).
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theme, and an independence theme. Realists accept certain entities
(for example, material objects, electrons, universals, sets, possible
worlds, beliefs); while anti-realists reject them outright, or else, in
order to retain the appearance of reference to the entities in dispute,
they substitute other entities for them (for example, ‘logical con-
structions’ of sense data for material objects, predicates for proper-
ties, maximally consistent sets of sentences for possible worlds).
Realists also regard the entities they accept as having properties, as
standing in relations, and as giving rise to facts. Many realists add
that our current theory about these entities is approximately, basi-
cally, largely, or unqualifiedly true?2

But there is more. Berkeley denied neither the existence of tables
and chairs nor most of our beliefs about them, but he did deny that
they exist independently of the mind of God and he regarded them
as collections of ideas. Some mathematical anti-realists, while deny-
ing the outright existence of mathematical infinities, retain them in
the form of possibilities involving concreta. Thus issues concerning
independence play as important a role in debates between realists
and anti-realists as issues concerning existence and truth.

Let us then try this schematic formulation of Realism. One is an
realist with regard to X's just in case one holds these three theses
about X5 (1) Xs exist, (2) our current theory of Xs is true (approxi-
mately, basically or largely true), and (3) the existence of the Xs and
the truth of statements about X% is somehow independent of us {or
perhaps other entities, depending upon the realist/anti-realist debate
in question).

In striving for generality, I have used vague, hedging terms in con-
ditions (2) and (3). The exact way in which they might be more fully
specified varies with the branch of philosophy in which the real-
ism/anti-realism debate occurs. Consequently, I will only attempt to
do this (below) for the case of philosophy of mathematics,

It also turns out that conditions (1), (2), and (3) are not jeintly
necessary for each type of realism; nor is any one taken alone suffi-
cient for each type. For example, it does not seem essential to realism
about value that abstract values, such as Goodness, exist, although it

? In recent years the truth of contemporary science has become an important
component of the debates concerning scientific realism. Nancy Cartwright and lan
Hacking, so-called entity realists, countenance subatomic particles while denying the
fuggzamcmal scientific theories describing them. See Cartwright (1983) and Hacking
(1982).
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does seem essential that value judgements be true or false independ-
ently of our wishes, conventions, practices, and so on.

Thus (1) is not necessary for all forms of realism. It is not suffi-
cient either. We have already noted that Berkeley did not deny the
existence of tables and chairs. And asserting that numbers exist as
mental constructions certainly does not make one a mathematical
realist.

The same situation arises concerning condition (2). Nobody
denies the reality of lightning. Yet scientists are unwilling to affirm
any of the current theories of its nature, since each fails to answer
important questions about how lightning is generated. Holding that
our current theory of Xs is true (or qualifiedly true) need not suffice
for realism about Xs either. Certain nominalists grant that number
theory is true, but then they disavow numbers by adding that, prop-
erly understood, number theory concerns possibilities for inscribing
numerals.

Consider next condition (3), that the existence of X3 and the
truth or falsity of statements about Xs must be independent of us
(or other appropriate entities). Elliot Sober has remarked that this
condition encounters some obvious but serious counterexamples.®
Surely we cannot require realists about human beliefs to hold that
our beliefs exist independently of us, or that the truth or falsity of
our theory of what we happen to believe is independent of what we
happen to believe. On the other hand, condition (3) alone also fails
to suffice for certain forms of realism. One might hold that the exis-
tence of minds, for example, or numbers, or electrons, as well as the
truth of our theory of them, is an entirely objective matter, inde-
pendent of what we happen to believe and of the evidence we hap-
pen to possess, and then go on to deny minds, numbers, or electrons
and theories affirming their existence. Hartry Field, a prominent
mathematical anti-realist, takes exactly such a position concerning
numbers, as does Bas van Fraassen, an equally prominent scientific
anti-realist, concerning unobservables.*

1 hypothesize that if we examined the realism/anti-realism
debates in various branches of philosophy, we would find that one
cannot be a realist about any kind of thing unless one maintains at
least one of (1)-(3) with respect to those things. Furthermore, we

3 See Sober (1982).
4 Field (1988), van Fraassen (1980}



WHAT IS MATHEMATICAL REALISM? 13

would surely count as a realist concerning some things anyone who
maintained all three conditions with respect to those things. So we
seem to have found a necessary condition for realism, and a suffi-
cient one, but none which is both necessary and sufficient.
Classifying a philosophical view as realist is like diagnosing an ill-
ness as a case of arthritis, lupus, or schizophrenia. For these and a
number of other diseases there are no fixed diagnostic criteria.
Instead the appropriate medical associations, such as the American
Rheumatism Association, have established lists of criteria for use in
diagnosing patients. If the patient meets more than a certain pre-set
number on the list, the presumption is that the diagnosis is positive;
otherwise there is no such presumption. The criteria are to be used
with caution and tempered by the circumstances of the case. In a
similar way, the three conditions we have been examining are useful
criteria for classifying metaphysical positions. However, in using
them one should always proceed on a case-by-case basis, paying par-
ticular attention to the philosophical context or debate in which the

position is found.?

# The characterization of realism offered here has a well-known rival in Michael
Dummett’s view that realists concerning a given discourse maintain (in opposition to
anti-realists) that to understand a sentence in the discourse is to know what condi-
tions obtain if it is true, and that such a sentence has a truth-value independently of
our ability to verify it. (I have taken this characterization from Dummett (1975).) One
reason that I do not use his criterion is that it counts as realists many who call them-
selves as anti-realists. Examples are Hartry Field (in Field (1988)) who holds that
confemporary mathematics is faise, and Charles Chihara (in Chihara (1990) who
holds that it is true when properly interpreted in his constructibility theory. Bas van
Fraassen (van Fraassen (1980)) is 2 well-known, non-verificationist, anti-realist in the
philosophy of science. I discuss Field’s and Chihara’s views more fully in subsequent
chapters.

Another rival criterion is due to Geoffrey Sayre-McCord (Sayre-McCord (1988))
who holds that in any debate between realists and anti-realists there will be a disput-
¢d class of sentences; realists will hold that some members of this class are lierally
true when literally construed; anti-realists will deny this. Despite its economy and ele-
gance, I demur at Sayre-MeCord's criterion. It would count Brouwer as a realist,
although even he regarded himself as an idealist. For he claimed that some existential
mathematical sentences are literally true, maintaining that on a literal construal they
report the results of private mathematical constructions carried out in inner intuition.
Of course, when compared to those formalists who take mathematics to be a content-
less game, Brouwer comes out on the realist side. Classifying Brouwer as more realist
than game formalists accords with both Sayre-McCord’s criterion and the opinions
of some philosophers of mathematics It may be, then, that Sayre-McCord's criterion
will be useful in marking out a spectrum of positions ranging from radical to moder-
ate anti-realism and thence to realism proper. In any case, I will stick with my more
stringent condition (2} and less elegant set of criteria.
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In characterizing mathematical realism we require all three of
conditions (1)~(3). Intuitionists hold that (certain) mathematical
objects exist and thus meet condition (1). But they meet neither (2)
nor (3). For they hold that mathematical existence and truth depend
upon our constructions and proofs, and they also reject large por-
tions of contemporary mathematics. Hartry Field’s view, as we have
noted, meets condition (3) but neither (1) nor (2). Finally, the recent
modal interpretations of mathematics, such as Charles Chihara’s
and Geoffrey Hellman’s, claim to account for the truth and indepen-
dence of contemporary mathematics without having to acknow-
ledge the existence of mathematical objects. These views meet (2)
and (3) but not (1), Thus it is necessary to affirm all three conditions
to be a mathematical realist. To the best of my knowledge they are
jointly sufficient; I cannot think of any acknowledged mathematical
anti-realism that satisfies all three,

2. IMMANENT TRUTH

Talk of truth plays a major role in formulating realism. I have
reflected this in conditions (2) and (3), but I have not explained the
conception of truth presupposed in those conditions. This is not
something to be set aside, since some important recent general cri-
tiques of realism have concentrated upon the correspondence con-
ception of truth that realism is presumed to presuppose. These
critiques are misguided, because a weaker, but none the less non-
epistemic, conception of truth suffices for realism. The purpose of
this section is to explain this conception of truth and to show that it
suffices for mathematical realism.

Now, in searching for an adequate conception of truth, a philo-
sopher can hardly fail to fall under the spell of one our most serious
epistemic predicaments. On the one hand, only from within the per-
spective of our conceptual scheme can we judge something to be
true. On the other hand, we know that we will significantly revise
this very scheme, and thereby reject much of that we now rationally
accept as true. The first half of this predicament pulls philosophers
towards an epistemic conception; the second towards a correspond-
ence conception. Yet a satisfactory resolution lies on neither
extreme. The difficulties with characterizing truth via a correspond-
ence with reality are well-known: It is not clear in what the corres-
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pondence consists—that is, which parts of language or thought cor-
respond to which parts of reality. Nor is it clear whether the corres-
pondence must be unique, or how it could be established at the
outset, since any correspondence we set up using a bit of language
would seem to presuppose a prior correspondence for that bit of
language. Yet the usual epistemic conceptions face an equally seri-
ous obstacle. Because they are stated in terms of epistemic idealiza-
tions, such as the final scientific theory or ideal warranted
assertability, they do not apply to our own epistemically flawed lan-
guages and theories unless they are supplemented with controversial
premisses. For example, because we don’t know whether ‘People act
on their desires’ is even a sentence of the final scientific theory, we
have no grounds for inferring the biconditional:

‘People act on their desires’ is true (in the sense of being assert-
ed by the final scientific theory) if and only if people act on
their desires.

Yet, as we will see below, such biconditionals fund some of our most
important inferences involving truth.

The conception of truth I will expound, one I will call an imma-
nent conception of truth, avoids the problems of epistemic and cor-
respondence approaches while applying directly to sentences in our
own language. When coupled with classical logic, it also furnishes
the familiar principles linking the truth-values of compound sen-
tences to those of their components, and yields the law of biva-
lence.¢ Furthermore, it makes room for our most fundamental
realist intuitions by permitting truth to be independent of our pre-
sent theories and methods. Despite this, it does not generate worries
about how a sentence corresponds to reality or how it is related to
what might be affirmed under ideal epistemic conditions.

2.1. Truth Vehicles, Truth-Theories, and Some Conceptions of Truth

People philosophizing about truth encounter a stumbling-block at
the outset, since they must choose their truth vehicles, that is, the
things they take to be true or false. One gets a cleaner theory if noth-
ing is both true and false, but the price is not cheap. Neither sen-

§ Although I here take implying bivalence in the presence of classical logic to be
an advantage of this theory, in Chapter 12 I will propose restricting bivalence and
classical logie to resolve problems they raise in connection with my structurafism.
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tences gua linguistic patterns nor gua specific utterances can be
guaranteed to work, due to ambiguities that can even survive the
contexts of specific utterances and speakers’ intentions. Although
ambiguity is prevalent in non-scientific discourse, even mathematics
is not immune to the problem: ‘1 + 1 = I', for example, is true when
construed as a statement of Boolean algebra.

Thus it has been common for philosophers to postulate proposi-
tions, understood as sentential meanings, to serve as truth vehicles,
The idea here is that an ambiguous utterance may express several
propositions, but none of these can be both true and false. But
despite the many reasons one might cite for appealing to proposi-
tions in philosophizing about mind and language, they are probably
even more controversial than mathematical entities. This makes
them a poor beginning for a defence of mathematical realism.”

Now the only reason that mathematical realists need worry about
truth is that they want to affirm that various mathematical theories
are true. Although these theories are often formulated in natural
languages or their technical extensions, their sentences are, for the
most part, not irredeemably ambiguous or context-dependent; with
notational changes they could be expressed so that they had at most
one truth-value. I do not think it is an unreasonable idealization to
assume that this has been done, and I will do so. We can restrict our-
selves to a collection of mathematical languages containing only
unambiguous declarative sentences none of which occurs in more
than one of these languages. Then we can take the sentences of these
languages as our truth vehicles.®

7 And, perhaps, a question-begging one. For since propositions are abstract enti-
ties, given enough of them, it is likely that we could reduce mathematical objects to
propositions.

% So long as we take for granted that each sentence has at most one truth-value,
many of the remarks to follow apply to truth-theories for languages that are less
restricted than the ideal mathematical languages considered here.

I also realize that I am ‘assuming away’ some of the major difficulties with taking
sentences as truth vehicles However, taking propositions as truth vehicles only seems
to transfer these difficulties from a truth-theory to its applications, Rather than
restricting our truth-theories to languages in which no sentence is both true and false
we must restrict their applications to languages in which no sentence expresses both a
true and a False proposition (or fails to correspond to an unique part of reality).
Either way we must face the preparatory work of identifying declarative (or truth-
apt) sentences, disambiguating them and removing their context dependencies, index-
icals, and the like. At least in the mathematical case this task is less daunting than it is
for language at large. By the way, I am not claiming that these considerations show
that we have no need for propositions in other areas of philosophy.
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I will also identify theories with collections of sentences, and
count a theory true when and only when all its sentences are true. By
a truth-theory for a given language or languages, I shall mean a the-
ory containing at least some assertions to the effect that specific sen-
tences of the language or languages are true under certain
conditions. Truth-theories may also contain generalizations about
the conditions under which sentences are true, but they need not.
They may apply to all sentences of the language(s). in question, but
they might be restricted to portions of the language(s). Truth-theor-
ies may also differ radically in the devices they use for specifying the
conditions under which a sentence is true.

Since I will largely ignore the details of the various truth-theories
that I will consider, I will speak of conceptions of truth to indicate
families of related truth-theories. I like to think of a particular con-
ception of truth, for example, the correspondence conception, as a
way of thinking about truth—something guiding the construction of
particular truth-theories or exhibited in them. Thus a variety of
truth-theories may develop a particular conception of truth. For
example, one correspondence truth-theory may only admit corre-
spondences based upon causal chains, another may admit those
based upon intellectual intuitions; one truth-theory may refer to the
correspondence relation explicitly through its singular terms, anoth-
er may only use a correspondence predicate. Similarly, one epistemic
truth-theory might count a sentence as true if it is rationally accept-
able by current standards, another only if it has been conclusively
verified, a third if and only if the final science affirms it.

Construing conceptions of truth as ways of thinking about truth
is useful for highlighting the considerations motivating different
truth-theories, but it tends to produce characterizations too vague
for assessing the commitments of a given conception of truth. So |
will try to give more precise definitions of the various conceptions of
truth by defining them in terms of conditions that truth-theories
answering them must meet.

I will count a truth-theory as meeting the correspondence concep-
tion just in case (a) it specifies a word-world reference relation (a
relation with an argument place for expressions and one for objects
generally), and (b) for each sentence S to which the truth-theory
applies, it implies a sentence of the form

§ is true if and only if —,
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where the blank is replaced by a condition on S formulated in terms
of its sentential structure and the reference relation specified by the
theory.?

Unfortunately, this definition is not satisfactory as it now stands.
According to this definition, truth-theories based upon disquotation-
ally defined reference relations (for example, the relation defined as
what 1 bears to x when ¢ is ‘Adam’ and x is Adam or ¢ is ‘Beatrice’
and x is Beatrice, and so on) count as correspondence theories right
along with those based upon, say, causally defined reference rela-
tions. Disquotationally defined reference relations are word-world
relations: they relate words to objects, and thereby satisfy clause (b).
Yet truth-theories based upon them hardly conform to the corres-
pondence way of thinking about truth. Correspondence theorists
seek a completely general account of truth, one attributing truth-
conditions even to sentences which we do not understand and can-
not translate, one purporting to explain what truth is. By contrast,
truth-theories based upon disquotationally defined reference simply
specify the extension of the term ‘true’ for the language to which
they apply. Furthermore, to apply them one must already know the
referents of the terms in the object language, for the definitions of
disquotationally defined reference relations use these terms to spe-
cify their own references. The truth-theories based upon these rela-
tions provide no general account of truth or reference.

For similar reasons, theories that characterize truth in terms of
translation plus a disquotationally defined reference (for example,
by first defining ‘true’ disquotationally for their home languages and
then extending its application to foreign sentences by stipulating
that a foreign sentence counts as true just in case its home transla-
tion is true) are inimical to the correspondence way of thinking
about truth, These theories can furnish considerably more general
truth and reference predicates than purely disquotational theories,
but by virtue of their ultimate appeal to disquotationally defined
reference relations they also fail to explain what truth is for arbitrary
languages, which is one the main goals of correspondence theorists,

In view of this we must add another clause to (a) and (b) above in
order to exclude disquotationally based truth-theories. The follow-
ing condition suffices:

* This formulation is not as general as Marian David', but it will serve our pur-
poses here. See David (1594).
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(c) the word—world reference relation through which the truth-
theory in question characterizes truth must apply to words
in arbitrary languages.

Adding this clause excludes disquotationally based theories, because
disquotationally defined reference relates only a fixed set of terms to
their referents. On the other hand, (¢) does not exclude truth-
theories based upon reference relations specified through conditions
mentioning causal chains, intentions, platonic intuitions, or physi-
cally described behaviour, since such conditions (presumably) apply
to arbitrary languages.

1 will count a truth-theory as answering to the epistemic concep-
tion just in case for each sentence S to which the truth-theory
applies, it implies a sentence of the form

S is true if and only if —

where the blank is replaced by an epistemic condition on S, such as:
being assertible, justified, verified, or warranted, belonging to an
epistemically ideal theory, or warranted under epistemically ideal
conditions. This characterization is vague-—at least to the extent that
the term ‘epistemic condition’ is. Yet it is clear enough for us to see
that the epistemic and correspondence conceptions need not deter-
mine the same class of truth-theories, Epistemic truth-theories need
not imply biconditionals depicting truth in terms of a reference rela-
tion; correspondence theories need not imply epistemic bicondition-
als applying to whole sentences.

Despite this, one and the same truth-theory might satisfy both
conceptions. For example, a truth-theory for a language containing
just observation sentences might define truth using a causally speci-
fied reference relation, and contain a theorem stating that such sen-
tences are true if and only if they are verifiable. At a less fanciful
level, it is easy to develop a truth-theory for effectively decidable
number-theoretic sentences using a set-theoretically specified refer-
ence relation, and prove within the theory that truth for such sen-
tences is coextensive with their provability within some standard
system of number theory,

2.2, Disquotational Biconditionals for Truth

Since Alfred Tarski’s pioneering work on defining truth nearly
everyone who writes about truth holds that a proper truth-theory
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must imply a disquotational biconditional for truth for each sen-
tence within its scope. (In speaking of the theory having a scope, 1
am allowing that it may apply to only part of a language or to more
than one language.) By a disquotational biconditional for truth I
mean a sentence of the form

‘p’ is true (in L) if and only p.!¢

People usually do not explain why truth-theories should meet this

requirement, so I am going to devote the next few paragraphs to pre-

senting what I take to be the strongest reason in its favour.!!
Consider the following patterns of reasoning:

Pattern (1): p; because according to (a true) theory K, p;
Pattern (2): Theory K is not true; because X is true only if p,
and not p.

The pattern (1) typifies inferences in which we infer a particular
statement by asserting a collection of statements that imply it, while
(2) typifies those in which we reject a collection of statements on the
grounds that they imply a particular statement that we reject. It is
important to note that whether we be realists or anti-realists,
whether we like correspondence truth, epistemic truth, or neither,
we will want to validate inferences of these types.

This is easy enough when the theory K'in question can be codified
by means of a finite pumber of axioms. For then to affirm or deny K
one need only affirm or deny the conjunction of its axioms, since
this implies each of K’s assertions and is in turn implied by the col-
lection of them. This will allow us to replace patterns (1) and (2)
above by:

Pattern (1a): p; becauseg & r & . . . & 5, and if so, p;
Pattern (2a):not (g &ré& ... & s); becauseg & r& ... & sonly
if p, but not p,

10 [ use the letters ‘p’ and ‘q" as schematic letters standing in place of sentences
and ‘S’ as a variable ranging over sentences. Thus the displayed schema represents
sentences such as:

10+ 3=1¥istrueil and only if 10+ 3 =13,
but not the sentence:
‘Pistrueif and only if 10+ 3 = 13,

it A number of the logical points I make about truth, especially those in this sec-
tion, draw upon Field (1986).
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and avoid truth talk altogether. One can use this method for assert-
ing or denying theories, so long as they are finitely axiomatized.

Of course, this technique fails for theories which are not finitely
axiomatizable. But suppose that we spoke a language with a device
for forming infinite conjunctions. Then we could replace (1) and (2)
by:

Pattern (1b); p; because InfConj C, and if so, p;
Pattern (2b): not InfConj C; because InfConj C only if p, but
not p.

In such languages we could also affirm or deny theories and carry
out inferences conforming to (1) and (2) by asserting or denying the
appropriate infinite conjunctions.

In languages such as ours we use a truth predicate instead. We
assert a theory K by asserting that all its sentences are true. We deny
it by denying at least one of its sentences. This lets us spell out (1)

and (2) as:

Pattern (Ic): p; because ‘p’ belongs to K and all X’s sentences
are true;
Pattern (2¢): K is false; because *p’ belongs to X, and not p.

Notice that these will not do the work of (1) and (2) unless we
assume disquotational biconditionals for each ‘p’ to which we apply
the above schemata. For to pass from ‘“p” is true’ (*“p” is false’) to
‘p’(‘not p’) and back, we require the biconditional:

‘7’ is true if and only if p.

In short, no truth predicate can replace infinite conjunction unless we
can use it to disquote the sentences to which it applies.

Given the importance of the disquotational biconditionals to
inferences involving the predicate ‘true’, one would expect that every
conception of truth would hold them to be essential to its truth-the-
ories. Indeed, many philosophers take such biconditionals to be
definitive of correspondence theories. But this is wrong. Disquota-
tional biconditionals alone do not make a theory into a correspond-
ence theory; other theories—even epistemic theories—can imply
them too. Take, for example, a metatheory ML for a language L hav-
ing a syntactically complete and consistent proof procedure, Add to
ML the following rule of inference: From ‘“p” is provable in L’ infer
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p. For each sentence of L we can now prove in ML an instance of
the schema:

pif and only if 'p’ is provable in L.12

Thus if in ML we define ‘true (in L) as ‘provable in L', we can prove
all the disquotational biconditionals required for the ML account of
truth for L. Yet plainly, as it stands, this ML does not answer to the
correspondence conception, since it characterizes truth in purely
syntactic terms.

What is more, a correspondence theory might not imply the re-
quisite disquotational biconditionals on its own. Of course, both
correspondence and epistemic theories imply biconditionals of the
form:

(a) ‘P’ is true if and only if C(*p’),

where ‘C(x)’ is a predicate applying to sentences, such as ‘is warrant-
ed’ or ‘is composed of terms referring to so and so’. Yet taken by
themselves such sentences fail to imply ones of the form:

(b) C(‘p") if and only if p,
and consequently those of the form:
(c) ‘P’ is true if and only if p.

Depending on one’s approach to truth, the extra premiisses needed
to fill this gap can take quite different forms, ranging from the trivial
to the substantial.1?

Many contemporary correspondence theorists expect to use a
causal account of reference to fill the gap. They aim to follow Tarski
1o the extent of characterizing truth recursively in terms of word-
reference and then to depart from him by explicating word-reference

12 Proof: Suppose p. Then if *p" is not provable in L, ‘not p’ is by the syntactic
completeness of the proof procedure. But then by the inference rule, not p. From this
contradiction we infer that 'p’ is provable in L. The converse is an immediate applica-
tion of the inference rule.

13 Suppose that a correspondence theory implies just biconditionals of the form:

§is true iff and only if S corresponds to the proposition that p and p.
Then to go from, say, 'snow is white’ to *“snow is white” is true’, we would need addi-
tional premisses to show that the sentence ‘snow is white’ corresponds to the proposi-
tion that snow js white,
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causally.!* Assuming that the latter part of this programme suc-
ceeds, the resulting truth-theory will make assertions of the form:

Expression e refers to object o if and only if e and o stand in
causal relation R.

But these assertions alone do not suffice for the disquotational
biconditionals for truth; we need also corresponding disquotational
biconditionals for reference. For example, it is not enough to know
that

‘George Washington’ refers to the object to which it bears rela-
tion R,

to conclude, via Tarski’s recursions, that

‘George Washington lived in America’ is true if and only if
George Washington lived in America.

We must also know that the object to which the name ‘George
Washington’ bears R is George Washington.

(It has never been entirely clear to me how causal theories will
furnish information of this kind, but I presume that it is supposed to
follow unproblematically from an account of our naming practices.)

Obtaining disquotational biconditionals is no easy task for those
epistemic truth-theorists who apply their truth-predicates to unde-
cided sentences. Suppose, for example, one defines (epistemic) truth
as idealized rational acceptability. How does one show that if 'p’
would be accepted by an ideally rational agent, then p? (Here both
the occurrences of ‘p’ are to be replaced by the same sentence.) In
particular, how does one prove this generally without employing a
non-epistemic notion of truth?

This not to say that one can never plausibly derive disquotational
biconditionals from an epistemic theory of truth. Earlier we saw
that this can be plausibly done for a language having a syntactically
complete and consistent proof procedure. Finally, the questions I
raised in the last paragraph fall short of refuting epistemic
approaches to truth, as do my prior observations on contemporary
correspondence theories. I have only aimed here to point out diffi-
culties which both approaches to truth must address.

One way to ensure that a truth-theory yields enough disquota-

4 See, for example, Devitt (1984).
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tional biconditionals is to formulate it in a metalanguage containing
a device for forming infinite conjunctions, as well as a postulate or
theorem stating an equivalence between one’s truth-predicate and an
infinite conjunction implying the requisite disquotational bicondi-
tionals for truth. Let me illustrate the idea with a hypothetical lan-
guage containing just three sentences, A, B, and C, The truth-theory
for this language should yield three disquotational biconditionals:

‘Alis true if and only if A;
‘B’ is true if and only if B;
‘C’ is true if and only if C.

Now suppose that in constructing this theory we stipulate (either as
an axiom or as a definition) the following:

(T) x is true if and only if
x=ANonlyif A, and
x = ‘B’ onlyif B, and
x=‘Conlyif C

Then we can derive each of the disquotational biconditionals above
from (T) and some obvious principles of syntax and logic. Here is
the derivation for A, using two conditional proofs, (a)-(c) and
(d)-(h), to obtain the biconditional (i):

(a) ‘A’ is true (assumption) {d) A (assumption)

(b)y A=Aonlyif A (e)A=Aonlyif A

©A A =Bonlyif B
@A="Conlyif C
(h) ‘Al is true

(i) Aistrue if and only if A,
(Step (b) follows from (a) by substituting ‘A’ for *x” in (T); steps (f)
and (g) hold because their antecedents are provably false according
to the (assumed) syntax of the truth-theory; (h) follows from (e}, (),
(), and (T).)

Of course, this method will not work for our language and its
infinitely many sentences. But suppose that we fix part of our lan-
guage as an object language and add a device for forming infinite
conjunctions to our metalanguage. Then we can define “x is true’ by:

x is true if and only if InfConj(x = ‘p’ only if p)
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where ‘InfConj{x = ‘p’only if p)’ represents an open sentence which
is an infinite conjunction of the open sentences of the form:

x="‘ponlyif p.

Then by using infinite versions of the derivation given above we can
prove a disquotational biconditional for each sentence of our object
language.!s

Notice that the definition of ‘is true’ in terms of infinite conjunc-
tion uses no semantical terms nor any kind of correspondence or
epistemic predicates. Thus conceiving of truth as a kind of infinite
conjunction need not commit one to either a correspondence or an
epistemic conception of truth. Of course, in giving truth-conditions
for infinite conjunctions we will be forced to talk of truth of some
kind. But the same is so when we give truth-conditions for, say, con-
ditionals. Furthermore, one can state and wuse rules of inference for
both conditionals and infinite conjunctions without giving truth-
conditions for them, and surely simply using infinite conjunctions
no more commits one to a view of truth than simply using condi-
tionals does,

Earlier we saw how in languages like ours, truth-predicates sub-
stitute for infinite conjunction in inferences whose premisses cite
entire theories. We have just seen that giving truth-predicates such a
role does not commit one to a correspondence conception of
truth——at least so long as simply using infinite conjunctions does
not. Thus it is also sometimes useful to think of truth as a form of
infinite conjunction. Thinking of truth in this way is to think of 2
truth-predicate as a kind of logical operator, since infinite conjunc-
tion is a logical operator. Thus I will call this way of thinking about
truth the logical conception of truth and codify it as follows; a truth-
theory meets the logical conception of fruth just in case for each

3 We can also reverse these definitions. Assume that we already have 2 truth
predicate and disquotational biconditionals for part of our language taken as an
object language. Then we can define infinite conjunction as an adjunct to our meta-
language, so long as we restrict it to sentences of the object language in question. The
definition runs as follows;

InfConj{s:...§.. . }ifandonlyif foreach S,... §... onlyif ‘S"is true.
Here “InfConj{S: ... §. .. represents the infinite conjunction of all sentences §
satisfying the condition ... S, . ..
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sentence S (within the scope of the theory), it implies a disquota-
tional biconditional for that sentence, that is, a sentence of the form

Xistrueif and only if g,

where ‘X" and ‘q" are schematic letters, respectively for a name of the
sentence S and the sentence itself (or a translation of it if the sen-
tence be foreign).

To recapitulate the main points of this section: first, we require
disquotational biconditionals for truth in order to validate infer-
ences conforming to patterns (1) and (2) presented at the beginning
of this section. Secondly, if all we want from 3 truth-theory is that it
yield disquotational biconditionals for truth, then it need only meet
the logical conception of truth.

2.3. Immanent vs. Transcendent Truth

Conceptions of truth that lead one to build truth-theories covering
no sentences beyond one’s home language are immanent. Concep-
tions of truth which require one to develop a truth-theory applying
beyond one’s own language are transcendent. Or to put the distine-
tion in terms of truth-theories instead of ways of thinking about
truth, a truth-theory is imumanent if its scope does not extend
beyond its home language, while it is transcendent if it applies to
sentences in at least one other language (and strongly transcendent
if it applies to sentences in arbitrary languages).

Ordinarily, we think of logical operators, whether finite or infinite,
as composed of sentences drawn from one and the same language.
Taking this a step further, thinking of our own truth-predicate as a
device substituting for infinite conjunctions of our own sentences
suggests that our truth predicate might be restricted to our own lan-
guage. In so doing we would be thinking of truth as immanent.

One reason for taking the immanent approach to truth is that the
currently known transcendent truth-theories are based upon prob-
lematic theories of reference, meaning, or translation, or else upon
controversial epistemic notions that are difficult to apply to our own
sentences, Thus, while remaining prepared to embrace transcendent
truth if and when it can be placed upon firmer footings, one might
for the nonce seek an immanent truth-theory that avoids problemat-
ic transcendent foundations, I will call such an approach to truth
weakly immanent. On the other hand, an immanent truth-theorist
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might hold that the difficulties with transcendent truth-theories are
more fundamental, that at some level talk of transcendent truth or
reference does not make sense, and that all proper truth-theories are
immanent, I will call such an approach to truth strongly immanent. 1
will argue shortly that a truth-theory answering to an immanent
conception is all that mathematical realists need for their realism.
This leaves them the option of taking either the strong or weak
approach. I am inclined to take the strongly immanent approach to
truth, but I will not try to defend that view here,

(Incidentally, it is not possible to classify truth-theories them-
selves as strongly or weakly immanent, since truth-theories typically
do not contain assertions concerning the legitimacy of applying the
predicate ‘true’ to sentences in other languages. Thus it could hap-
pen that a person subscribing to the strongly immanent conception
of truth develops a truth-theory that can be extended to other, per-
haps even arbitrary, languages.)

Adherents of the correspondence or epistemic conceptions nor-
mally think of truth as transcendent, since they attempt to charac-
terize truth uwsing language-transcendent reference relations or
epistemic properties. But one could, somewhat contrary to the usual
spirit of these conceptions, develop an immanent correspondence or
epistemic truth-theory by simply not including foreign sentences
within its scope.

Instead of developing a truth-theory within a metalanguage con-
taining infinite conjunction as a connective, I prefer the disquota-
tional pattern pioneered by Tarski. This method defines truth (for an
object language within a containing metalanguage) by using set the-
ory in place of infinite conjunction.'¢ Two of its features concern us
here. First, this sort of truth-theory implies all the disquotational
biconditionals for its object language (and not just the ones for
truth). More precisely, it implies each instance of

(Disquot. T): ‘p’ is true if and only if p;
(Disquot. Sat): x satisfies *F’ if and only if xis F}
(Disquot. Des): ‘¢’ designates x if and only if 1 = x,

where both occurrences of ‘p’ (‘F’, ‘") are supplanted by one and the
& Alternatively, one can avoid the set theory by taking “true’ (more precisely, ‘sat-

isfies’) as a primitive and introducing the usual recursion clauses for it as axioms. Set
theory is needed to convert the resulting inductive ‘definition’ into an explicit one.
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same object-language sentence (predicate, name). Second, this sort
of truth-theory uses disquotational (or list-like) definitions for name
and predicate reference. A list-like definition of English name-refer-
ence (ENRef) would run along the following lines:

ENRef{t,x) if and only if
(¢ = ‘Adam’ only if x = Adam) & (+ = ‘Babs’ only if x =
Babs) & . .. & (1 = ‘Zeb’ only if x = Zeb),

while one for English one-place predicate-reference (E1PRef) would
look like this:

El1PRef(x,P) if and only if
(P = ‘agile’ only if x is agile) & (P = ‘burnt’ only if x is
burnt) & . .. & (P = ‘zany’ only if x is zany).

Notice that in both cases the lists in question are finite conjunctions,
Extending these to infinite conjunctions involving compound names
and predicates would produce definitions of satisfaction and desig-
nation analogous to the one given for truth earlier.

One reason for preferring disquotational truth-theories for work-
ing out an immanent, logical conception of truth is that they do not
require us to augment our language with controversial logical oper-
ators such as infinite conjunction. Another is that the Tarski recur-
sions used in these theories relate the truth-values of compound
sentences to those of their components, and set up similar relation-
ships for satisfaction and designation.

The disquotational biconditionals of these theories emphasize
their affinities with (the common view of) correspondence truth-
theories, while their list-like definitions of reference serve to distin-
guish them from such theories. Let me elaborate on these similarities
and differences more fully.

The schemata (Disquot. T), (Disquot. Sat.), and (Disquot. Des)
furnish a very clear sense in which the disquotational approach is
compatible with the idea (to quote a characterization of corres-
pondence truth due to Michael Devitt), that ‘sentences . . . are true
or false in virtue of: (1) their objective structure; (2) the objective ref-
erential relations between their parts and reality; (3) the objective
nature of that reality’.!” For even on the disquotational approach,
satisfaction and designation are relations between parts of sentences

17 Devitt (1984), 28,
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and objects in the world, and whether or not they obtain is an
objective matter of the way the world is. (For instance, whether or
not the Sun satisfies ‘is a planet’ depends upon whether or not the
Sun is a planet.} Moreover, even the list-like specifications of name
and predicate reference identify word-world relations by virtue of
having argument places for terms referring to words and for terms
referring to non-linguistic objects. What is more, these specifications
agree (or are at least presumed to agree) extensionally over their
home language with correspondence accounts of reference.

Despite this, a disquotational theory of truth for English, say, dif-
fers importantly from a correspondence theory of truth for English.

One obvious difference is that the disquotational theory is an
immanent theory that has no pretensions of applying to other lan-
guages. In constructing a disquotational truth-theory one’s primary
aim is to capture the disquotational biconditionals; the defined
truth-predicate, the recursion clauses for compound expressions,
and the list-like definitions are subservient to this aim. In a language
containing infinite conjunction they would be superfluous, since
truth, satisfaction, and designation could be defined using infinite
list-like definitions. This clearly differentiates thinking about truth
as logical operator from thinking about it in correspondence terms.
In the latter case the reference (or other ‘correspondence’) relation
necessarily plays a fundamental role, and the theory one obtains
purports to be a theory of truth for arbitrary languages.

Another difference between the two approaches is that corres-
pondence theorists hope to give an account of truth and reference
suitable for use in general theories of human psychology and lin-
guistic behaviour. One could hardly see this as an aim of the disquo-
tational approach. Tarski’s list-like definitions apply enly to
languages whose vocabularies are finite and fixed and consist of
expressions whose extensions are stable. The method for defining
reference cannot apply, for instance, to English qua evolving lan-
guage. Nor will the list-like approach support theoretical links
between reference relations in different languages. It does not even
account for the relation between, say, English one-place predicate-
reference and English two-place predicate-reference. !¢

A more subtle but important difference concerns the status of the

8 Hartry Field has emphasized that the list-like approach failed to be explanat-
ory. He took this to be a drawback of the Tarskian definition. See Field (1972).
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disquotational biconditionals on the two theories. In a disquotation-
al truth-theory, the biconditional

*‘Snow is white’ is true if and only if snow is white

is a consequence of the definition of ‘true’, the syntax of the object
language, and the Jogic (or set theory) employed in the metalan-
guage. On the correspondence approach, the same biconditional is
derived from the definition of ‘true’, the syntax of the object lan-
guage, and presumably empirical hypotheses concerning the tran-
scendent reference relation that replace the list-like definitions of the
disquotational approach.!?

3. REALISM AND IMMANENT TRUTH

Mathematical realists, along with many other realists, need to talk
of truth, because they want to assert the truth of various theories. If
these theories could be condensed into a single sentence S, then
mathematical realists could meet conditions (2) and (3) by simply
asserting that S and that S whether or not we have proved it. (They
would have to leave it understood that they were committing them-
selves to all of S’s logical consequences too.) It happens that by
using second-order logic one can condense number theory, analysis
and Zermelo~Fraenkel set theory into a single sentence S, But not
every mathematical realist is a fan of second-order logic, and no
interesting branch of mathematics can be condensed to a single first-
order sentence unless one supplements the mathematics in question
with predicates foreign to it. So most mathematical realists require a
truth-theory. Yet they require no more than an immanent, logical
truth-theory. In particular, an immanent, disquotational truth-
theory of the type I prefer will suit them fine.

Immanent realism is realism with truth conceived immanently. I
take myself to be an immanent mathematical realist, and I have just
claimed that immanent realism is all the realism mathematical real-
ists need defend. However, due to its limited aims, the immanent
conception of truth and the realism defined in terms of it may
appear to be much weaker than that found in traditional meta-
physics. In discussing Quine’s views on truth and reference Hilary

¥ This point is explained very well in Erchemendy (1988).
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Putnam once had this opinion. Calling Quine’s views ‘immanent’, he
described them as follows:

[For Quine] to say ‘Snow is white’ is true is to reaffirm *Snow is white’ and
not to ascribe a mysterious property called ‘truth’ to ‘Snow is white.’
Similarly, we might say that for Quine reference is ‘immanent reference’—to
say ‘Cat’ refers to cats is to say only that cats are cats, and not {o say that a
mysterious relation called ‘reference’ obtains between the word ‘cat’ and
cats. Any definition of reference that yields the truisms ““Cat” refers to cats,
*“Electron” refers to electrons,” ete. will do. We do not have to first ‘put the
words in correspondence with objects’ and fhen utter these statements to
declare which objects our words correspond 10,20

Then he continued by criticizing this view of truth as inimical to
realism:

When I say that I am trying to decide whether what you have said s true,
then, in Quine’s view, ali I mean is that I am making up my mind whether to
‘assent.” But this is to give up what is right in realism. The deep problem is
how to keep the idea that statements are true or false, that language is not
merely noise and scribbling and ‘subvocalization,” without being driven to
postulate mysterious relations of correspondence. Quine’s view is not the
cure for metaphysical reatism but the opposite pole of the same disease.?!

Now if you say, ‘No uncountable set of reals has a cardinality small-
er than the continuum,” and I am trying to decide whether what you
say is true, then I am trying to decide whether no uncountable set of
reals has a cardinality smaller than the continuum. As we saw in the
last section, not only do truth-theories answering to the logical con-
ception readily imply that this is what T am trying to decide, they are
among the few truth-theories that do so with ease. It is unfortunate
that Putnam seems to be sufficiently misled by his way of character-
izing disquotational approaches (“to say “Snow is white” is true is to
reaffirm “Snow is white”’), to suggest that when I am trying to
decide whether what you said is true, I am simply trying to decide
whether to endorse your utterance. Of course, if Quine’s view

20 Putnam (1984), 12.

Quine also speaks of the immanent-transcendent distinction in ontelogy in
Quine (1969a) and of immanent/transcendent grammar and truth in Quine (1970). In
Quine (1981c) he says ‘Immanent truth, a la Tarski, is the only truth I recognize’
{p.180). It is not clear whether Quine agrees with my characterization since Tarski
sometimes says that object language sentences can be disquoted by transfations in the
metalanguage.

% Putnam (1984), 13



32 PART ONE: PROBLEMS AND POSITIONS

amounted to this, it would be wrong: reasons having nothing to do
with the truth of the continuum hypothesis might move me to en-
dorse your utterance.

Putnam rightly points out that the disquotational approach to
truth says nothing about how language relates to reality and that it
fails to explain the nature of the relationship. It does not fail to do
this by being immanent, since immanent correspondence theories
are possible, but by being a form of the logical approach. Now to be
a realist about mathematical objects, theoretical entities in science,
or possible worlds is to adopt a metaphysical view of these entities,
and not a semantic or epistemic theory concerning them. In their
metaphysical modes, realists need to speak of truth only to assert
theories about the entities they recognize. Thus it makes sense that
they require only an immanent, logical truth-theory. To support this
claim further I will examine other commonly voiced demands on
realism and truth in order to show that either they are not relevant
to the debate between mathematical realists and anti-realists or else
they can be accommodated (to a large extent) within an immanent
approach to truth conceived of as a logical operator.22

3.1. Demands from Metaphysics

Some philosophers believe that realism is committed to the view that
truth depends upon features of the world ‘out there'. If in the math-
ematical case this just means that our theories are true or false inde-
pendently of our proofs and constructions, then it can be
accommodated using an immanent, logical conception of truth. For,
if we had infinite conjunctions, we could formulate versions of this
thesis for specific sentences without talking of truth, and then expli-
cate the general thesis as the infinite conjunction of these specific
claims. In other words, we could form the infinite conjunction of

sentences such as:

There are infinitely many twin primes (or not) independently
of our proving so (or otherwise); the cardinality of the contin-
uum is smaller than the second aleph (or not) independently of
our proving so {or otherwise); ete.

22 The idea that realists do not require correspondence truth is not new. See
Devitt (1984). 1 differ from Devitt in taking ‘realism’ to apply to a broader collection
of doctrines than he does and in seeing truth as essential to some very strong forms of
realism,
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In our language, we say

Every mathematical sentence is true or not independently of
our proving or refuting it.
But since here we need only use the predicate ‘true’ to substitute for
an infinite conjunction, we need presuppose no more than a logical

conception of truth.
On the other hand, the thesis might be taken to mean that a

(mathematical) sentence is true just in case some non-linguistic,
non-¢pistemic condition associated with the sentence obtains, that
is, that truth is a matter of the way the world is. Again we can expli-
cate this idea for a specific sentence, say, ‘The Earth is a planet.” For
this is true or false just in case a specific worldly condition obtains,
namely, the condition of the Earth being a planet. But since this
obtains if and only if the Earth is a planet, the biconditional

“The Earth is a planet’ is true if and only if the Earthis a
planet

serves to explicate the idea that the truth of this specific sentence
depends upon the way the world is. Then, as in the last example, we
can explicate the general claim via the infinite conjunction of all sen-

tences of the form:
‘¢’ is true if and only if p.

However, in order to express this conjunction using a truth-predi-
cate we must take a different approach from that adopted in the last
example. We cannot rewrite the infinite conjunction as:

For any sentence S, S is true just in case ~——

because this fails to indicate the connection between the sentence
variable and the blank. Nor can we rewrite it as:

For any sentence S, Sis true just in case S,

because this will cause ‘S” to function both as a variable ranging over
sentences and as a schematic sentence letter. What we need is some-

thing of the form:
For any sentence S, S is true if and only if G(S),

where ‘G(S)’ is an open sentence with the free variable °S”, Now the
Tarskian definition of ‘true’ is a biconditional with ‘S is true’ on the
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left side and the Tarski definiens as its ‘G(S)y’. Furthermore, it implies
all the specific conjuncts of the infinite conjunction we need to
replace. So we can use it as our ‘G(S5Y.

If we are willing to appeal to translation, then we can even apply
the methods of the last two examples to translated foreign sentences
as well. To say, for example, that such a sentence is true in virtue of
features of the world is to affirm a biconditional whose left side
attributes truth to the sentence and whose right side is the transla-
tion of the sentence. (Of course, immanent truth-theorists will not
pursue this application.)

On the other hand, some metaphysicians may want to advocate a
stronger view than we have captured here. For example, they may
hold that there are truths (in the sense of facts) which obtain inde-
pendently of us, our languages and our theories, and which may not
be formulated in any language that we currently possess, or perhaps
in any language at all. The full articulation of this philosophical
doctrine probably requires substantial commitments concerning
both the nature of truth and truth-bearers (one may need to postu-
late propositions that are not expressed in any language), and it is
unlikely that its proponents will be satisfied with truth conceived
immanently or as a logical operator. For such metaphysicians,
immanent mathematical realism is not a true realism. Rather than
attempt to refute this view directly, which would be no easy task
since it has not been fully articulated, I will simply point out that
contemporary mathematical realisis have not maintained such a
strong metaphysical thesis nor have anti-realists attacked them for
holding such a view. Instead the debate between them has concerned
the truth and ontologies of extant mathematical theories.?

3.2. Demands from Philosophy of Science

History teaches us that sooner or later we will be forced to abandon
or qualify even our most successful scientific theories. Thus many
scientific realists maintain only that contemporary science is approx-
imately true rather than categorically true. Some, fearing that even

23 This is confirmed by the definitions of realism Field and Maddy use when,
respectively, rejecting and defending it. See Field (1989) and Maddy {1990). Some
mathematical realists have committed themselves 1o a stronger view than immanent
realism. Recently Bernard Linsky and Edward Zalta have done so in propounding
their platonized naturalism, See Linsky and Zalta (1995).
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this claim may eventually succumb to empirical evidence, identify
their scientific realism with the thesis that science aims to produce
true theories.?¢ These philosophers require a transcendent concep-
tion of truth, in so far as they think of the truth as independent of
any specific language or an approximately true theory as one which,
for example, more or less corresponds to extralinguistic facts that
may or may not be formulated in the language of the theory in ques-
tion.

Philosophers of mathematics have not proposed versions of
mathematical realism of this ilk, because they tend to overlook the
fallibility of mathematics. The history of mathematics is much lessa
series of failed or flawed theories than the history of empirical
science. Yet the historical considerations motivating philosophers of
science arise in the history of mathematics too: the inconsistency of
‘naive’ set theory and the ill-defined concepts of the calculus are just
the two best-known cases. So some mathematical realists may desire
a richer sense of truth than I have provided.

One way to avoid taking such a step is to speak of our current
mathematics as consisting mostly of true sentences (or as containing
a certain proportion of truths). An even cleaner approach would be
to select, perhaps in consultation with one’s anti-realist opponents, a
certain core set of mathematical assertions and stake one's realism
on these. This would permit realists to assert that mathematics is
basically true while separating the fate of realism from fluctuations
in the more speculative parts of mathematics. Moreover, these qual-
ified versions of mathematical realism would still allow their propo-
nents to engage in the traditional debates with anti-realists
concerning the reality of mathematical objects and our ability to
know them.2s

Realists who accept these recommendations can do so within the
confines of immanent, logical truth, so long as the mathematics (or
parts of it) they endorse is affirmed in their home language. For
whether they assert that mathematics is entirely true, basically true,
or mostly true, they can be construed as asserting the (possibly infi-
nite) conjunction of the members of some set of sentences 26

# See the editor's introduction to Leplin (1984)

35 Cf. Devitt (1984), 22-3, where a similar point is argued concerning scientific
realism.

%6 Even those realists who feel compelled to hold that mathematics is only
approximately true, need not be committed to correspondence truth. The theories of
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3.3. Demands from the Theory of Cognition

One sort of argument that one finds in favour of correspondence
truth-theories is that they are necessary to explain why people with
true beliefs are more likely to succeed and thrive. The idea seems to
be that someone who has true beliefs will, on the correspondence
conception, be in a better position to interact with the environment
than someone who has false beliefs. Now if this idea has any useful
content it comes down to the view that people who have true beliefs
will be in a better position to perform successful actions. But we
need not assume a correspondence theory to explain why this is so,
For beliefs to guide actions successfully they need only imply all the
true observation statements (and no false ones) that are relevant to
the actions in question. We need no notion of truth richer than a
logical one to state this point, Arguing for it is another matter. I am
not sure that we can argue on either the logical or the correspond-
ence conceptions of truth that true non-observational beliefs are
more likely than false ones to imply true observation statements.
(We could argue this using an epistemic theory that entailed that a
true theory must have all the necessary implications.) But since a
theory that implies at least one false observation statement is itself
false, we can see some connection between having false beliefs and
failure to thrive. Yet it is also a connection the logical conception of
truth can establish.??

On the other hand, a cognitive scientist might want to affirm that
any species as intelligent as ours will develop some systematic body
of mathematical truths. This would require a richer conception of
truth than an immanent one, though it is hard to teli what form it
might take. However, the question of whether other intelligent

approximate truth developed by Iikka Niiniluoto and Thomas Weston do not define
approximate truth in terms of correspondence, but rather in terms of measures of
‘distance’ from an unspecified true theory. The latter notion of truth can be taken as
a form of the logical conception of truth. See Niiniluoto (1987) and Weston (1992)

27 The logical conception implies that a theory that implies something false is
itself false.

To guide our actions, it is not enough that a theory implies observation sentences,
it must imply ones that are relevant to them. So don't we need a correspondence the-
ory to identify the relevant ebservation statements? No, since they can be taken to be
tied 1o experience as wholes. (Cf. Quine’s treatment of observation sentences in Quine
(1990).) This would identify the relevant beliefs by reference 1o the experiences asso-
ciated with them, thereby avoiding the correspondence theorist’s approach of correl-
ating sentential components to parts of reality.
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beings will develop a (true) mathematics has not been an issue in
realist/anti-realist debates about mathematics, and 1 see no reason
why it should become one.

3.4. Demands from Philosophy of Language

Many philosophers of language are unlikely to be satisfied with
either an immanent or a logical conception of truth. To some the
transcendence of truth is fundamental both to our our common-
sense notion of truth and to theoretical semantics. Some also see the
biconditionals for truth as empirical hypotheses, which are either the
essential ingredients of a theory of meaning for a language or an
important component of one. ‘How’, they might ask, ‘can a proper
truth-theory yield such truths as definitional transforms of logical
truths?

Let us take up this second problem first, since we can dispose of it
quickly. Consider the geometric sentence, ‘The sum of the angles of
a triangle is 180 degrees.” If we construe this as a claim about
Euclidean space(s), then it is true by definition; for it is a logical con-
sequence of the definition of a Buclidean space that the sum of the
angles of its triangles are 180 degrees. On the other hand, taken as a
claim about physical space, it is empirically false; because space is
not Buclidean. Similarly, the disquotational biconditionals for a lan-
guage L are true by virtue of the Tarskian truth-definition for L, but
this does not preclude its remaining a non-logical question as to
whether a given target population speaks the language L. It is also
important to remember that our measuring, say, the angles of trian-
gles to determine whether our space is Euclidean depends upon our
interpreting the Euclidean notions of line, angle and triangle in
physical terms. Similarly, determining whether a given population
speaks a given language will depend upon our interpreting that lan-
guage in terms we understand.?®

I am sympathetic to the first objection to immanent truth.
Although recognizing the truth of some untranslated body of theo-
rems is not essential to realism, I can see that some realists might

2 For the sake of my exposition | am assuming that whether physical space is
Euclidean is an empirical question, despite the hot debates among philosophers of
physics on this issue. The issue of whether it is an empirical question as to which lan-
guage a population speaks is no less complex than the corresponding issue about
space. That is why I have used the term ‘non-logical’ instead of ‘empirical’,
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want the freedom to so. I think they can attain this within an imma-
nent framework. Here is the basic idea, First notice that since most
of us philosophers are not particularly fluent in even mathematical
English, the difficulty of claiming that a certain piece of mathemat-
ics is true can arise even in the case of our native tongue. We have
every reason to believe that the theorems announced in the latest
issue of the Journal of Symbolic Logic are true but usually we only
partially understand them at best. Now just as our own idiolects fall
short of mathematical English, they also fall short of mathematical
and scientific German, French, and other foreign technical dialects.
Yet since we usually think of our language as including its technical
extensions, we could just as well extend the same courtesy not only
to foreign technical languages but also to all human language—con-
sidered as a polyglot.

I am suggesting that we think of our truth-predicate as applying
immanently to the human polyglot. But in order to keep to the
immanent, logical conception we have used so far we must have the
disquotational biconditionals for non-English expressions follow
the same pattern as the ones for English. More exactly, when dis-
quoting a foreign sentence or name or predicate we simply put the
quoted part of speech in the appropriate place of the disquotational
schema just as we have done so far for the English examples.?® Thus
the biconditional for ‘un et un font deux’ is

‘un et un font deux’ is true if’ and only if un et un font deux,
instead of
‘un et un font deux’istrueif onlyif 1 +1 =2,

We can recover the latter if we know that un et un font deux if and
only if 1 + 1 = 2. Of course, this depends upon allowing sentences
which mix languages, but this is just an extension of our usual prac-
tice of absorbing certain foreign expressions into English.

On transcendent approaches to truth, however, we have disquota-
tional biconditionals of a transcendent truth-theory connecting
quoted foreign sentences with unquoted English counterparts. Thus
the biconditional

2 | am supposing that these languages have the same logical forms. Dealing with
fanguages that do not (if there is a fact of the matter here} is a problem for any theory
of truth or reference, immanent or transcendent, that aims to disquote foreign
expressions.
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‘un et un font deux’istrueif andonlyif L + 1 =2

is part of the truth-theory itself, and not a consequence of the truth-
theory plus a mixed biconditional not in the truth-theory. Further-
more, depending on which transcendent approach is in play, the
statement that a body of foreign statements are true means either (a)
that their English translations are disquotationally true, or (b) that
they could be translated as such English sentences, or (c) that their
truth-conditions are satisfied. Each of these alternatives is contro-
versial, since they respectively appeal to the notions of translation,
possible translations, and truth-conditions,

I think of my proposal as a form of immanent truth since I think
of the human polyglot as one big language. Granted this assump-
tion (which seems less controversial than the just-mentioned
assumptions which transcendent theories require), we can gain some
of the benefits of a transcendent theory without its costs.

On the other hand, adhering to this extended immanent concep-
tion of truth will not permit us to discuss whether, say, any rational
being will know some mathematical truths or other issues about
mathematical truths not expressed in any human language. Here 1
will just say what I have said before: issues such as these have not
arisen in the course of the debates between mathematical realists
and anti-realists, and I can think of no reason why mathematical
realists would be required to take a stand on them.

4. SOME CONCLUDING REMARKS

Some philosophers have remarked to me that immanent realism is a
platitude; still others that it converts important anti-realist positions
into definitional falsehoods. ‘Consider, for example,’ the latter say,
‘the view that mathematical sentences are mere contentless pieces in
a game. Using a disquotational truth-theory for mathematical sen-
tences we can prove, contrary to this thesis, that any given mathem-
atical sentence has a truth-value,”>® However, the problem is not due
to the immanent, logical conception of truth, The anti-realists in
question claim that certain sentences should not be understood as
ordinary declarative sentences and thus are no more true or false

% Sample proof: By excluded middle, 1 < 2 or not 1 < 2. Then using the disquo-
tational biconditional for *1 < 2, we get 1 < 2’ is rue or ‘1 < 2'is false (not true).
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than imperatives or questions. They deny that any truth-theory
applies to the sentences in question. But this does not mean that
they cannot accept disquotational truth where they think talk of
truth applies. The debate between them and realists still concerns the
traditional issue between them, that is, the status of sentences for-
mulated in the vocabulary of mathematics.

I am not sure of how to interpret the idea that immanent realism
is a platitude.! I suppose that it means that no one is going to deny
that, say, there are infinitely many prime numbers or other mathem-
atical truths, but they may well deny that such truths are to be
understood as committing us to the existence of abstract objects. If
this is what the remark means, then it is clearly wrong. Many anti-
realists do deny standard mathematical claims, Hartry Field denies
all mathematical existence claims including the one cited, while con-
structivists deny numerous claims of standard non-constructive
mathematics. Furthermore, although there are anti-realists who
affirm standard mathematical truths, they contradict immanent
realism by denying that mathematical objects exist or else that they
exist independently of our proofs and constructions.

An opposite worry is that immanent realism can be refuted by
discovering false mathematical theorems, and that a philosophical
thesis should not be refuted by evidence of this sort. In Section 3.21
discussed ways of qualifying the truth claims of scientific and math-
ematical realism in order to avoid refutations of this sort. Let me
add that I view the debates between realists and anti-realists in these
areas as concerned with whether we ought to believe the claims of
science and mathematics, Part of the reason that realists think that
we should is the strong evidence, scientific and mathematical, for
these claims. Of course, if we learned that the evidence did not sup-
port a given branch of science or mathematics, we would have little
reason for accepting it and thus little reason for taking a realist
stance towards it. In the period immediately after the discovery of
the paradoxes, philosophers and mathematicians probably had good
reasons for not being realists about sets, and today there is still good
reason to be cautious in one’s realism about the contemporary
extensions of set theory.

3 The suggestion was put to me by an anonymous referee.
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The Case for Mathematical
Realism

1. THE PRIMA FACIE CASE FOR REALISM

As intelligent persons we take mathematics seriously. When we are
told that the Greeks discovered lengths that cannot be expressed as
fractions of any unit length, we presume that we hear the truth, just
as firmly as when we hear that animals roamed the Earth long before
humans existed. The practice and language of mathematics, its
exalted place in our intellectual life, and its enormous technological
successes all promote the idea that mathematics is a factual science
with it own subject-matter.

Let me elaborate a bit on why this is so. I will start with the point
about the language of mathematics. Notice that the apparent gram-
matical and logical forms of mathematical existence-claims are the
same as those of more mundane existence-claims, This can be
brought out dramatically by considering a sentence which mixes
these claims. On a straightforward reading the sentence

The solutions to some of the problems involved numbers
exceeding the capacities of some pocket calculators

contains to two existential claims: first, that numbers exist which
solve certain problems, and second, that there are pocket calculators
that cannot handle these numbers. Consequently, anyone who
denies the straightforward reading of the claim about numbers owes
us an account of the type of claim, if any, it does make. But no
uncontroversial account is at hand, and a history of disappointing
attempts hardly makes the prospects of developing one encourag-
ing.!

¥ It might be easier to interpret ‘there is a’ followed by a mathematical term as a
type of existence claim that somehow lacks the existential force of other existence
claims. But this would still leave us with the mystery of how mathematical terms can
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Not only do we presume that mathematicians mean what they
say-—that their existential claims are to be read straightforwardly—
we also presume that their pronouncements result from an earnest
and well-disciplined search for the truth. Mathematics has all the
trappings of a science——refereed journals, results that can be repli-
cated and independently checked, and so on. Furthermore, natural
scientists incorporate mathematical results in their research in much
the same way that they incorporate the results of their own and
other branches of science. None of them seem to think that math-
ematics is just make-believe,

Finally, mathematics works. Without numbering, measuring, cal-
culating, and mathematical modelling we would never have devel-
oped even our pre-computer technology. And with the advent of the
computer mathematics is destined to play an increasingly important
role in our technology. What is more, mathematics provides more
than just the techniques of numbering, measuring, and calculating;
it also tells us some of the things we can and cannot do with our
mathematics-based technology. The theory of algorithms, for exam-
ple, tells us that there are certain problems that computers cannot
solve, while the theory of computational complexity tells us that cer-
tain kinds of algorithms are generally more efficient than others.
Only physics, chemistry, and biology can come close to claiming the
benefits that mathematics has given us, and even they could not do
without mathematics. Because of this it strains the imagination to
think that mathematics is an elaborate game, fable, or art form that
has just happened to prove useful.

In fact, if mathematics were just a game or an art we could not
explain its usefulness, because we do not use them in the way we use
mathematics, They may teach, entertain or enlighten, but they do
not supply premisses for scientific and practical inferences.
Mathematics does. This still leaves the view that mathematics is a
fable. One might also employ the assertions of a fable as one’s pre-
misses, but why would anyone consciously do so??

undo the existential force of a ‘there is’ while other terms cannot. Simply using one
universe of discourse for mathematical objects and another for others will not work,
for “there is a mathematical object . . " will still assert the existence of a member of
the mathematical universe. Moreover, using multiple universes need not be salutary,
since counting collections containing both mathematical and non-mathematical
objects will then require some fancy logical moves,

2 Actually, the idea that mathematics is a fable is not so easily dismissed. 1 will
deal with fictionalist approaches more carefully in Chapter 4.
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The pervasive use of mathematics in science and technology is
probably the chief reason that mathematical realism has survived so
many challenges. Because many contemporary philosophers of
mathematics regard the argument from applications as the strongest
case for realism, it has been the focus of many of the recent debates
between realists and anti-realists. In view of this, I will devote the
rest of this chapter to a detailed analysis of this argument.

2. THE QUINE-PUTNAM VIEW OF APPLIED
MATHEMATICS

‘We owe the realist’s account of applied mathematics to W. V. Quine
and Hilary Putnam. They maintain that applying mathematics is an
indispensable part of scientific practice, First, mathematical lan-
guage is needed to give scientists an apparatus for representing
empirical findings. Referring to mathematical objects allows scien-
tists to introduce such concepts as acceleration and state vector into
physics, random mating and allelic frequency into genetics, expected
utility and welfare function into economics. Second, mathematical
laws are required for inferring non-mathematical conclusions from
those non-mathematical assumptions that have been formulated
with the help of a mathematical vocabulary, Eliminating mathemat-
ics would thus drastically curtail science.

Quine and Putnam emphasize that in using mathematical ter-
minology and premisses scientists are not merely using the formal-
ism of mathematics, they are also presupposing the existence of the
mathematical objects and the truth of the mathematical principles.
For example, the concepts of acceleration, velocity, state vector, ran-
dom mating, allelic frequency, expected utility, and welfare function
are all defined in terms of the real numbers. If they did not exist,
then these concepts would be no more well-defined than that of the
sum of a divergent infinite series, and all generalizations framed in
terms of them would be vacuously true. Furthermore, if standard
mathematics were not true, we would have no reason to believe in
the soundness of the mathematical deductions scientists use, or the
correctness of their calculations, or the cogency of their statistical
reasoning,

In the rest of this chapter it will important for us to remember
that presupposing the existence of mathematical objects and the
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truth of large portions of standard mathematics is by no means
restricted to the application of mathematics to theories that scien-
tists regard as true. Even when they develop a purely speculative the-
ory or a highly idealized model, scientists presuppose the truth of
the mathematics they use. For the models will not have the proper-
ties they are supposed to have unless the background mathematics
holds.

To illustrate this point, let us consider Newton’s account of the
orbits of the planets. He calculated the shape of the orbit of a single
planet, subject to no other gravitational forces, travelling about a
fixed star. He knew that no such planets exist, but he also believed
that there are mathematical facts concerning their orbit. In deducing
the shape of such orbits, he presumably took for granted the math-
ematical principles he used. For the soundness of his deduction
depended upon their truth, Furthermore, in using his (mathemat-
ical) model to explain the orbits of actual planets, he presumably
took its mathematics to be true. For he explained the orbits of plan-
ets in our solar system by saying that they approximate the behav-
iour of an isolated system consisting of a single planet orbiting
around a single star. For this explanation to work it must be true
that the type of isolated system (Newtonian model) has the math-
ematical properties Newton attributed to it.

It is also important to note that some fairly sophisticated math-
ematics is at work in fairly mundane areas of science. Contemporary
biology, economics, psychology, and sociology are bursting with
statistics. Here scientists use real analysis to compute statistical
measures of data taken from finite populations of observable
objects. In claiming, for example, that some data are normally dis-
tributed they presuppose that real numbers defining the data curve
exist; and in computing means and standard deviations they presup-
pose the truth of a variety of mathematical equations. Mathematics
functions for them as a background framework within which they
may formulate laws and theories, build models, and carry out infer-
ences.

3. INDISPENSABILITY ARGUMENTS FOR
MATHEMATICAL REALISM

The Quine-Putnam account of applied mathematics can be summa-
rized in the following indispensability thesis:
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Indispensability: Referring to mathematical objects and invok-
ing mathematical principles is indispensable to the practice of
natural science.

Now nothing about the reality of mathematical objects follows from
this alone, but suppose that, following Quine’s lead, we adopt the
next two theses:

Confirmational Holism; The observational evidence for a
scientific theory bears upon the theoretical apparatus as a
whole rather than upon individual component hypotheses.

Naturalism: Natural science is our ultimate arbiter of truth
and existence.

Then we can construct a so-called indispensability argument for
mathematical realism along these lines: mathematics is an indispens-
able component of natural science; so, by holism, whatever evidence
we have for science is just as much evidence for the mathematical
objects and mathematical principles it presupposes as it is for the
rest of its theoretical apparatus; whence, by naturalism, this math-
ematics is true, and the existence of mathematical objects is as well-
grounded as that of the other entities posited by science. For future
reference let us call this the Holism~Naturalism (H-N) indispens-
ability argument.?

Now one way to criticize this argument is to challenge its pre-
misses. In the next chapter, I will look at a number of attempts to
undermine the indispensability premiss through showing that we
need not presuppose the (literal) truth of mathematics in natural
science. Here I want to take up different sorts of challenge recently
propounded by Penelope Maddy and Elliott Sober.* Neither thinks
that we can count on science to provide evidence for the truth of
mathematics. Sober claims that scientific testing fails to confirm the
mathematics used in science. In Chapter 7 I will take up Sober’s
objection, which is really an objection to confirmational holism
itself. Maddy's criticism is based upon observing that much of the

3 This is sometimes called the Quine-Putnam indispensability argument. However,
because Quine and Putnam never formulated their arguments as explicitly as I have, it
is not clear whether they intended this argument or the pragmatic argument that I
formulate below. The view that in applying mathematics we presuppose its truth can
be traced to Frege. See Resnik (19803, 62-3,

4 See Maddy (1992) and Sober (1993}.



46 PART ONE: PROBLEMS AND POSITIONS

mathematics used in science occurs in predictively useful theories
that scientists openly acknowledge as false, and that many scientists
distinguish between parts of a theory that they regard as true and
parts that they currently regard as merely instrumentally useful. She
argues that this raises the possibility that the confirmation coming
from membership in scientific theories that are accepted as true cov-
ers too little mathematics to be of comfort to mathematical realists,
In short, too much of mathematized science may fall outside the
scope of the H-N indispensability argument’s naturalism premiss.
Here is how she puts it in one passage:

If we remain true to our naturalist principles we must allow a distinction to
be drawn between parts of a theory that are true and parts that are merely
useful. We must even allow that the merely useful parts might in fact be
indispensable, in the sense that no equally good theory of the same phe-
nomena does without them. Granting all this, the indispensability of math-
ematics in well-confirmed scientific theories no longer serves to establish its
truth.®

However, we need not trouble ourselves with Maddy’s worry. For
whatever attitude scientists take towards their own theories, they
cannot consistently regard the mathematics they use as merely of
instrumental value. As we saw in the Newton example, even when
applying it to idealizations or theories they know are wrong, they
use it in a way that commits them to its truth.®

Reflecting on this leads one to another indispensability argu-
ment—one that is not subject to the objections Maddy and Sober
raise and that supports mathematical realism independently of
scientific realism, This argument, which I will call the pragmatic
indispensability argument, runs as follows:

(1) In stating its laws and conducting its derivations science
assumes the existence of many mathematical objects and the
truth of much mathematics.

(2) These assumptions are indispensable to the pursuit of science;
moreover, many of the important conclusions drawn from

5 Maddy (1992), 281. Maddy also objects to holism on the ground that it gives the
wrong picture our evidence for mathematics. 1 will discuss this issue in Chapter 7.

6 1 tried to argue this in general and nontechnical terms in the last section. In
Resnik (1992a) I argue the point in a more detailed way by analysing a piece of math-
ematical biclogy.
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and within science could not be drawn without taking math-
ematical claims to be true,

(3) So we are justified in drawing conclusions from and within
science only if we are justified in taking the mathematics used
in science to be true.

Notice that, unlike the earlier H-N indispensability argument, this
one does not presuppose that our best scientific theories are true or
even that they are well-supported. It applies whenever science pre-
supposes the truth of some mathematics. Thus, as we noted earlier,
it applies even to the mathematics contained in empirically falsified
scientific theories, such as Newtonian physics, which we still use in
many scientific contexts, and to the mathematics used in construct-
ing idealized scientific models, such as an example Maddy cites of
water waves in an infinitely deep ocean. Furthermore, the argument,
at least as it stands, contains no claim that the evidence for science is
also evidence for mathematics. It has the fairly limited aim of
defending mathematical realism by pointing out that any philosophy
of mathematics that does not recognize the truth of classical math-
ematics must then face the apparently very difficult problem of
explaining how mathematics, on their view of it, can be used in
science.”

Still (3) does invite the worry that we would not be justified in
using mathematics in science unless we had prior evidence of its
truth. If by science we mean disciplines such as physics, chemistry,
and biology, then I think we do have quite a bit of independent evid-
ence for mathematics. We need not turn to the a priori either. For the
evidential relations between experience and the various branches of
mathematics are not very unlike those between experience and the

7 Despite its modest aims the pragmatic indispensability argument effectively
refutes several traditional philosophies of mathematics, such as deductivism (if, then-
ism}, formalism, Quine-Goodman nominalism, and intuitionism. The following
quote from Putnam indicates that he and Quine may have intended the indispensabil-
ity argument this way too:

So far I have been developing an argument for realism along roughly the following

lines: quantification over mathematical entities is indispensable for science, both

formal and physical: therefore we should accept such quantification; but this com-
mits us to accepting the existence of the mathematical entities in question, This
type of argument stems, of course, from Quine, who has for years stressed both
the indispensability of quantification over mathematical entities and the intellec-
tual dishonesty of denying the existence of what one daily presupposes. (Putnam
(1971), §7.)
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various branches of science. Practice with counting, measuring, sur-
veying, and carpentry suggested and confirmed the elementary rules
of practical arithmetic and geometry long before they were elevated
to the status of inviolable laws and codified into mathematical sys-
tems. Morgover, many of the basic techniques of calculus can be
checked geometrically or arithmetically, which in turn helps support
its generalizations to real, complex, and functional analysis.%

We can also argue for the truth of mathematics on pragmatic
grounds by coupling the pragmatic indispensability argument with
one to the effect that we are justified in using mathematics in science,
because we know of no other way of obtaining its explanatory, pre-
dictive, and technological fruits. Here is a formulation of such an
argument:

(4) We are justified in using science to explain and predict.

{5) The only way we know of using science thus involves drawing
conclusions from and within it.

(6) So, by (3) above, we are justified in taking this mathematics to
be true.

Notice that this argument is similar to the H~-N argument except
that instead of claiming that the evidence for science (one body of
statements) is also evidence for its mathematical components
(another body of statements) it claims that the justification for
doing science (one act) also justifies our accepting as true such
mathematics as science uses (another act).?

Since much standard mathematics is used in science, the indis-
pensability arguments support realism about many parts of math-
ematics. Yet as Maddy and others have noted, indispensability
arguments fail to cover the more theoretical and speculative branch-
es of mathematics. In Part Two I will argue that other grounds can
justify a realist attitude towards branches of mathematics that do
not seem to be indispensable to science.

% | will argue for the empirical nature of mathematics further in Part Two.

® It is likely that our ultimate justification for using science to explain and predict
is that doing so appears to promote our theoretical and practical interests better than
any other method we know. If 50, then our justification for accepting the mathemat-
ics used in science also has this character. But isn’t this what one would expect from s
pragmatic argument?
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4. INDISPENSABILITY AND FICTIONALISM ABOUT
SCIENCE

Using mathematics to do science does not force one to presuppose
the truth of the individual scientific hypotheses themselves. For sci-
entists can employ mathematics to establish mathematical claims of
the form ‘in a (possibly idealized) physical situation of type I, law L
holds’, even when they do not believe that situations of that type
actually obtain, Using such mathematical results they can describe
features of theoretical models of situations of type I. In turn they
can use these models to make calculations of values or ranges of
values of the quantities that interest them. As we noted above,
Newton used idealized models of the solar system to calculate orbits
for the planets. Once scientists have made their calculations they
decide whether their models are good enough for their purposes by
comparing the computed values with the data they have (or think
they would have) independently obtained. This decision itself often
involves mathematical techniques.!®

Although using mathematics in science does not force scientists
to regard scientific hypotheses as true, according to the indispens-
ability thesis, it does commit them to the truth of the mathematics
they use. Even fictionalists about theoretical entities may be commit-
ted to the truth of the mathematics used in science 1t

It is worth illustrating this by considering the views of Bas van
Fraassen, the most prominent anti-realist in the philosophy of
science. He regards the entire language of science as both meaning-
ful and truth-valued, but he also holds that we ought not to believe
that the theoretical part of science is anything but empirically ade-
quate. Now van Fraassen defines empirical adequacy in mathemat-
ical terms: a theory is empirically adequate ‘if it has some model
such that all appearances are isomorphic to empirical substructures
of that model’, where the appearances are ‘the structures which can

8 Henry Kyburg has described the sort of statistical reasoning they use. One of
the purposes for building such models may be to determine whether the theoretical
assumptions included in the model are true, See Kyburg (1984).

" This remark does not apply to those who hold that theoretical science is 2
meaningless instrument, because, on their view, no inferences of any kind take place
within theoretical science. However, explaining how we infer observation statements
from features of such an instrument would almost certainly commit them to some
mathematics.
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be described in experimental and measurement reports’.!2 Thus in
claiming that a theory is empirically adequate one asserts the exis-
tence of mathematical objects (i.e. models, structures, isomor-
phisms).

Van Fraassen is no fan of mathematical objects. Here is what he
says about them:

I am a nominalist. . . Yet I do not for a moment think science should eschew
the use of mathematics, I have not worked out a nominalist philosophy of
mathematics——my trying has not carried me that far, Yet I am clear that it
would have to be a fictionalist account, legitimating the use of mathematics
and all its intratheoretic distinctions in the course of that use, unaffected by
disbelief in the entities mathematical statements purport to be about,!3

‘Why does he not claim that it is best to believe that mathematics, like
theoretical science, is merely empirically adequate? Perhaps, because
he realizes that as his view now stands doing so would still commit
him to mathematical objects. To succeed, his fictionalist approach to
mathematics must show that the mathematics is not an indispens-
able component of science proper or of scientific methodology.

5. CONCLUSION

We have seen that the practice of mathematics and its use in science
provide a strong prima facie case for mathematical realism. Now sci-
entists and mathematicians talk little of truth, and when they do it is
to make simple claims that such and such follows from the truth of
so and so theory or that such and such falsifies so and so theory. In
short, they use truth in inferences conforming to patterns (1) and (2)
of the previous chapter. Probably the only exception to this occurs
within mathematical logic where logicians are often concerned to
show that various axioms are true under various interpretations.'4
Here they are not using a conception of truth simpliciter but rather
a mathematical notion of truth under an interpretation. So nothing
in the practice of science seems to presuppose the truth of mathem-

12 van Fraassen (1980), 64,

% van Fraassen (1985), 303,

14 Another exception may be philosophers who talk of truth when doing ‘cogni-
tive science’ or its philosophy. Although these philosophers frequently speak of cor-
respondence truth, they do not appeal to mathematical truths,
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atics in anything stronger than an immanent, logical sense
Consequently, the case for realism drawn from the practice of
science and mathematics is a case for immanent mathematical real-
ism.

It would be nice if my case were airtight, and I could stop here.
Unfortunately, a number of philosophers have argued that scientists
could use other, less philosophically suspect, formalisms in place of
standard mathematics (interpreted at face value). In short, contrary
to my assumption, they hold that to do science it is not necessary to
accept standard mathematics (as standardly interpreted). The next
chapter will be devoted to examining the prospects for anti-realist
alternatives to standard mathematics.



4

Recent Attempts at Blunting the
Indispensability Thesis

The indispensability thesis is a premiss of both the holism-natural-
ism and the pragmatic indispensability arguments. This chapter dis-
cusses several important recent anti-realist programmes which either
have been explicitly aimed at refuting the indispensability thesis or
can be interpreted as directed against it. Recall that the thesis con-
sists of two sub-theses: (1) that using mathematical terms and asser-
tions is an indispensable part of scientific practice, and (2) that this
practice commits science to mathematical objects and truths. This
gives anti-realists several options: they can try to show that the
mathematical formalism is not necessary for doing science, or that
using this formalism in science need not commit one to mathemat-
ical objects and truths, or finally that a supposed commitment to
mathematical existence and truth can be understood in anti-realist
terms. Contemporary philosophers of mathematics have pursued
each of these options both separately and in various combinations.

In criticizing these programmes I will argue that it is not evident
that any of them succeeds in demonstrating that science can avoid a
realist commitment to mathematical truths and mathematical
objects. I will also contend that even if these programmes succeed in
eliminating the need for abstract mathematical objects, and thereby
dispose of the question of how we know such objects, they typically
face equally problematic epistemic questions. Yet the authors of
these programmes have claimed just the opposite—to wit, that their
programmes show promise of being more epistemically tractable
than mathematical realism.}

I do not know how to prove rigorously that anti-realists
inevitably find themselves in this plight, but it does stands to reason.
For suppose for a moment that each branch of science has a clear

! [ examing the epistemic problems confronting realism in the next chapter,
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non-mathematical, observational content.2 Since the chief role
mathematics plays in science is that of conceptually organizing and
deductively systematizing the non-mathematical, observational con-
tent of science, successful anti-realist approaches must deliver the
expressive and inferential apparatus that mathematics provides for
science (or something at least as strong). But to do this they must
introduce some non-mathematical apparatus which goes beyond the
observational content of science and is logically strong enough to
substitute for mathematics. Now the difficulties with giving a plaus-
ible realist epistemology for mathematics arise from the apparent
lack of ties between the mathematical apparatus and observation.
Thus, because anti-realist substitutes for mathematics must also go
beyond observation in ways that are logically similar to the way
mathematics does, it is likely that they too will face similar episte-
mological difficulties.

The foregoing argument is vague because it does not specify the
nature of the relative logical strength and similarities between math-
ematized science and its anti-realist substitutes. This deficiency is
due to significant differences in the ‘logical’ apparatus of standard
mathematics and the anti-realist substitutes for it. Standard math-
ematics uses the extensional logic of the quantifiers ‘all’ and ‘some’,
Anti-realists typically trade outright commitment to abstract math-
ematical objects by extending this logic to include modal operators,
or mereology (the logic of parts and wholes), or the logic of stronger
quantifiers, such as ‘there are finitely many’. As a consequence the
anti-realist systems do not fall under the scope of the concepts
mathematical logicians have developed for comparing the strength
of axiom systems. In the end, the best I will be able to de is to point
out, case by case, the epistemological debts of the anti-realist
approaches.

I. SYNTHETIC SCIENCE: FIELD

The first approach I will consider is the simplest in its most general
conception, but the most difficult to carry to completion: to refute

2 This supposition could be problematic because mathematical vocabulary can
even occur in ‘observation sentences’ such as ‘“The computer screen contains a greater
number of blank spaces than marked ones’ or “The elevator’s downward acceleration
is zero'.
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the indispensability thesis simply show how to do science without
using mathematics, This is the tack Hartry Field took in Science
without Numbers, He drew his inspiration from Hilbert’s Found-
ations of Geometry and the work on measurement theory codified in
Foundations of Measurement by Krantz, Luce, Suppes, and Tversky.
The leading idea of the latter work is that using a certain number
system for representing and measuring the data used in a given area
of science presupposes that the data exhibit a relational structure
that can be embedded within the mathematical structure being
applied. For example, on this approach, using the real numbers to
measure certain bodily lengths on a ratio scale depends upon these
bodies standing in a relation of comparative length (the longer than
relation) that is a weak order, monotonic under bodily juxtaposi-
tion, and so on. Furthermore, where such (empirical) structures are
absent, so is the corresponding possibility for measurement. Thus
we cannot treat putting soap bubbles together as an operation sup-
porting an additive measure, simply because combining two soap
bubbles is unlikely to yield a third one at all, much less one whose
size is in any reasonable sense the sum of the first two.

In practice, we make no clear distinction between ‘empirical’
structures and the mathematical structures in which we embed them,
No practical purpose is served by distinguishing between, say, the
numerical greater than relation helding between numerical values of
a length function and the empirical longer than relation. But for the-
oretical or foundational purposes it may be worth attempting to
characterize a target structure in terms that do not make use of
coordinate systems or numerical scales. Since such characterizations
contrast with their numerical counterparts as do synthetic and ana-
lytic versions of geometry, the former are commonly referred to as
synthetic and intrinsic, the latter as analytic and extrinsic.? Euclid’s
geometry is a synthetic geometry. The early non-Euclidean geomet-
ries, which simply used axioms contrary to the parallel postulate,

3 An extrinsic characterization of a structure refers to a representation of the
structure in some other structure. For instance, extrinsic characterizations of spatial
structures use coordinate systems. Intrinsic characterizations refer only to elements of
the structure or constructions built from them. Analytic characterizations refer to
numbers, functions, and sets; synthetic characterizations contain no such references.
Field’s characterization of Newtonian space-time is both synthetic and intrinsic. On
the other hand, a characterization of a structure in terms of tensors could be intrinsic
yet analytic.
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were also synthetic. Descartes supplied an analytic version of
Euclid’s geometry, and we now have analytic versions of the early
non-Euclidean geometries. There are also synthetic characteriza-
tions for certain space-time theories, measurement theory, and utili-
ty theory. In each case, we can prove so-called representation
theorems that show that the synthetically specified structures can be
embedded in their analytic images.

(By the way, such theorems are not necessary for applying math-
ematics. The structuralist approach expounded by Krantz et al.
maintaings that the target domain must carry the appropriate struc-
ture, to be sure, but it need not be characterized in synthetic or
extrinsic terms. Indeed, currently there is no synthetic version of the
geometry used in relativity theory. Finally, the approach of Krantz
et al. does not undercut the indispensability argument or favour
mathematical anti-realism.)

Field hoped to demonstrate that we can expunge mathematics
from science by replacing analytic, mathematized scientific theories
by synthetic versions that do not refer to mathematical objects. To
illustrate how this might be done he formulated Newtonian gravita-
tion theory within synthetic Euclidean geometry.

Although formulating a synthetic version of a branch of science
shows how to achieve the conceptual power of (analytic) mathemat-
ics, we still might need it in deriving consequences from synthetic
scientific statements. Field planned to cover this base by appealing
to representation theorems. These theorems enable us to represent a
synthetically presented structure (science) in some standard math-
ematical structure (mathematized science). Once we do this we can
use ordinary mathematical reasoning to derive properties of the rep-
resenting structure, and know that, under the representing transla-
tion, these properties transfer to the represented domain in the guise
of synthetic descriptions. Thus the mathematics used imputes no
synthetic properties to the represented structure, which are not
already logical consequences of its synthetic description alone. This
means that, contrary to the indispensability thesis, we need not
assume that (analytic) mathematics is true in order to use it; for it
can be regarded as just a short-cut for generating logical conse-
quences of synthetic scientific statements,*

4 Field’s programme encountered a serious technical impediment at just this step.
In general, the mathematically derived consequences are logical consequences of the
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In assessing Field’s and other anti-realist programmes we should
ask two key questions: (1) Does the programme succeed in showing
that science can be done without appealing to mathematical objects
and truths? (2) Is the epistemology for the anti-realist apparatus
likely to be any more tractable than the epistemology for a realist’s
construal of mathematics? When it comes to Field’s programme,
several considerations indicate that the answer to both questions is
pegative.

First, the expert opinion is that we have little evidence that Field’s
approach can even get started with the job of reformulating quan-
tum mechanics or general relativity theory. This is because currently
there are no synthetic versions of their underlying mathematical
frameworks, and it is not clear that getting them is just a matter of
effort.”

Second, Field’s account is concerned with how so-called pure
mathematics might be applied to so-called mathematical physics,
economics, biology, etc. This is no different from applying one
branch of pure mathematics within another—uno different, for
example, from using number theory or set theory in mathematical
logic. But mathematics is also needed to apply synthetic theories to
experimental data. Consider, for example, the claims and methods
of cardiology or botany, which are about as non-mathematical as
they come. These sciences use statistical significance testing to deter-
mine whether data are more than coincidental, and statistical esti-
mation theory to determine the values to associate with sets of
measurements. Thus cardiologists might use significance testing to
see whether the (let us suppose) slightly lower rate of heart attacks
among philosophers was just a fluke, and a botanist might use esti-
mation techniques to use the information obtained from a sample to
determine the average height of all the trees in a forest. Neither

synthetic theory only if its underlying logic is at least second-order and logical conse-
quence is relativized to standard models. First-order synthetic theories may fail to
pick out a sufficiently narrow class of structures to support a representation theorem.
Furthermore, both first- and second-order proof methods are subject to Gadel
incompleteness results. Thus mathematics will enable us to derive some synthetic con-
sequences of a synthetic theory that cannot be derived using its current proof meth-
ods. Thus it is not plausible to see mathematics as a dispensable short-cut. See
Shapiro (1983a), and Field (1989}, ch. 4.

 Balaguer (1996a) is an initial, but still incomplete, attempt at providing a syn-
thetic version of quantum mechanics.
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Field nor Krantz et al. address the question of how we are to deal
with this kind of applied mathematics.

Experimental physicists use statistics just as much as cardiolo-
gists and botanists do. I have used the latter as examples to remind
us that even observational sciences require mathematics. Now we
don’t use statistics to conclude that one counter-example falsifies a
universal claim. Rather, we use it to determine whether a set of
examples falsifies a statistical claim. One surviving pine tree can fal-
sify the claim that no pine tree survives a pine beetle infestation, but
many survivors may fail to falsify the claim that 90 per cent of pine
trees do not survive such attacks. This is why statistical inference is
an essential part of scientific method. Yet Field’s treatment of
science says nothing about it

What is more, it is not clear how Field might get started on meet-
ing this deficiency. The standard account of why it is reasonable to
reject a statistical hypothesis on the basis of ‘statistically significant’
contrary data is that the data are just too improbable given the truth
of the hypothesis, Field cannot talk about probabilities, however,
because they are numbers; and talking about chances instead will
not help, since these are abstract entities too. So he will need to find
a synthetic substitute for statistical hypotheses and a different way
of accounting for statistical inferences. Again it is hard to see how to
proceed. Depending upon how one formulates one’s statistics, an
experimental distribution is improbable relative to a sample space, a
set of events, a set of propositions, a set of possibilities, and 50 on, all
of which are mathematical constructions that start with abstract
entities,

In the past Field has confronted mathematical challenges that are
not directly amenable to a synthetic reformulation by expanding his
logical apparatus. It would be natural at this point to add probabil-
ity or statistical quantifiers to his logic. But it not clear that this
alone will do. Suppose that we try to coustrue ‘90 per cent of 4 are
B’ as a quantification, of the form, say,

{90% x)(Ax — Bx)
parallel to the universal quantification
(Vx)}(Ax — Bx).

Since ‘4x — Bx'is true of everything that is not an A4, it could be
that ‘4x — Bx’ is true of 90 per cent of the things in our universe
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just because more than 90 per cent of the universe consists of non-
As. Thus ‘(90% x)(4x — Bx)’ could be true although only 10 per
cent of the As are Bs. To properly analyse statistical claims, Field
would need to add non-truth-functional conditionals to his logic—
perhaps, even probabilistic conditionals.®

Furthermore, since Field could not construe statistical claims as
sentences about numerical ratios, it is likely—again judging from
moves he has made in the past—that he would take statistical quan-
tifiers or conditionals as primitives. But that would mean that his
language would need a different logical operator for every real pum-
ber! It is hard to see how a nominalist could think of this as a lan-
guage.

Also think of the difficulties in articulating the rules of inference.
Given premisses stating that a sample of size k contains m A4 that are
B and k—m that are not B, we need a rule telling us whether to reject
(at a certain significance level) the hypothesis that x per cent of 4 are
B. Since the conclusion will vary not only with the particular statist-
ical claim but also with the sample size, mathematics would surely be
necessary to give a finite articulation of the rule.

So far I have been discussing Field’s plans for eliminating math-
ematics from science. However, Field also needed to eliminate math-
ematics from metamathematics, since rigorous versions of his claims
about applying mathematics to synthetic sciences fall squarely with-
in that domain. To purge this mathematics, Field first reformulated
his key claims about applying mathematics as claims about the con-
sistency of various theories, and then proposed identifying consist-
ency with logical possibility. The idea here is that instead of saying
that some (finite) set of axioms A4,, 4,, . . ., A, is consistent, we say
that it is logically possible that 4; & 4, & . . . & 4,.” On this
approach instead of saying that certain mathematical objects, say,
the natural numbers, exist, we need only say that it is logically possi-
ble that they exist. At least on the face of it, this no more commits
one to mathematical objects than saying that unicorns are possible
commits one to unicorns.®

¢ 1 owe this point to Adrian Moore.

7 Field extends this axiom schema by using substitutional quantification. See
Field (1984).

& Field takes logical possibility as a primitive modal operator in order to avoid
committing himself to possible worlds. In order to get this to work out he embeds
standard mathematics within a framework of modal operators, modal logic and cer-
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Since Field is not the only anti-realist to use primitive modal
operators, I will postpone discussing his introduction of modality
until the end of this chapter where I can treat it as a general anti-
realist ploy.? I will argue that it has not resulted in any clear epis-
temic gain,

Another issue [ will address later (Chapter 6) concerns Field’s use
of space-time theories committed to points and regions. Not only
has it been traditional to regard points and regions as mathematical
entities, it is also not clear that we have any greater epistemic access
to them than we have to numbers or sets. For now let me conclude
by noting that we have seen a number of reasons for doubting that
Field can complete his technical program whatever its potential
epistemic gains may be.

2. SAVING THE MATHEMATICAL FORMALISM WHILE
CHANGING ITS INTERPRETATION: CHIHARA
AND KITCHER

In parrying the indispensability thesis, Field combined the strategy
of eliminating some branches of mathematics from science with
showing how to use others (e.g. metamathematics) without presup-
posing mathematical objects. Charles Chihara and Philip Kitcher
take a more conservative approach: by interpreting mathematics in
anti-realist terms, they show how we can reaffirm it and mathema-
tized science without committing ourselves to mathematical objects.

2.1. Chihara’s Constructibility Theory

Since at least Euclid’s time mathematicians have found it natural to
think and speak of mathematical objects as constructions. Doing so
fits Buclidean geometry quite well, where many of the theorems are
concerned with constructing figures using a ruler and compass. It is
also quite congenial when thinking about proof theory, where many

tain principles relating possibility and consistency. The technical details will not mat-
ter here. The technically inclined reader should consult Chihara (1990) where it is
argued that Field will still require mathematics in carrying out his possibility proofs,

# For further discussion of Field’s views see Burgess and Rosen (1997}, Chihara
(1990}, Resnik (1985a), and Resnik (1985b). For expert opinion on synthesizing
advanced physics see Malament (1982) and Heliman (1989).
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theorems, such as the deduction theorem or the cut elimination the-
orems, proceed by showing how to convert one formal derivation
into another. But mathematicians also speak of the applying a
Henkin construction or forming an ultra filter or taking a limit,
where, strictly speaking, the methods in question definitely exceed
the bounds of constructive mathematics in the technical sense,'®
Thus, although thinking of mathematical objects as constructions
comes easily and may actually further mathematical research, it is
not a decisive reason for thinking of mathematical objects as things
that we literally construct. Not only do mathematicians use the lan-
guage of construction in applying non-constructive methods, it is
also implausible to think of ourselves as actually able to construct
most of the numbers, derivations, and other objects treated in con-
structive mathematics proper. Their magnitude and complexity sim-
ply exceeds our computational capacities.

Charles Chihara, whose antipathy to abstract mathematical
objects is long-standing,'' does not believe that we construct math-
ematical objects. Indeed, since he does not believe in mathematical
objects, he can't believe that we construct them. But he does show
how to reinterpret mathematics as a theory of constructibility. The
first step is to reduce mathematics to the simple theory of types
using techniques developed by Frege, Russell and Whitehead, and
other logicists. The next step is to replace talk of sets with talk of the
open sentences associated with them, while simultaneously constru-
ing assertions that an open sentence exists as an assertion that it is
constructible. Reinterpreted thus, mathematics no longer commits
one to various sets but rather to the constructibility of various open-
sentences. (An open-sentence is simply a sentence with one or more
free variables, such as “x is an even number’.}

Sticking to one language for formulating open-sentences would
severely curtail Chihara’s reinterpretation, since the number of
open-sentences available in a language is countable while the num-
ber of sets is uncountable, In fact, Chihara has a more stringent
problem to overcome: he recognizes only open-sentence tokens,
since untokened open-sentences are abstract entities and no more
acceptable to him than sets themselves, and there are only finitely
many open-sentence tokens, To get beyond this, Chihara turns to

1 See Shapiro (1989) for a discussion of dynamic language in mathematics.
tt Chihara (1973).
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open-sentences that might be tokened, or as he prefers, that are con-
structible.

But even this is not enough, since the number of open-sentences
that might be tokened using extant languages is countably infinite.
So Chihara stipulates that to say that an open-sentence is con-
structible is something like saying that it is tokened in some possible
world (by some being using a language that we might not even be
able to grasp or understand). This is supposed to open up resources
sufficiently vast and rich to make sense of the constructibility of
uncountable infinities. Talk of possible worlds is simply a heuristic,
however, since, for Chihara, possible worlds are also unacceptable
abstract entities. In the end he takes the locution ‘is constructible’ as
a primitive notion.

Chihara does not run into Field’s problem of showing how to
purge science of mathematical formalism, because he keeps the for-
malism while reinterpreting it. In effect, Chihara’s response to the
indispensability thesis is to concede that asserting sentences that
look like mathematical principles is indispensable to science, and
then to show how to read these sentences so they do not presuppose
the existence of mathematical objects. This response can be applied
to statistical inference as well—although Chihara does not explicitly
deal with this challenge to the project of nominalizing science.
Despite this it is not clear that Chihara has shown that his approach
can do away with mathematical objects entirely. For he uses math-
ematics in justifying his system. To see how, consider what he writes
in justifying his abstraction axiom: “To show this, I first define the
index of a formula to be the number of occurrences of connectives
and/or quantifiers. I then proceed by induction on the index of for-
mulas to show . .. "2 Now Chihara might reply that the purpose of
this justification is to prove to realists in realist terms that his system
suffices for the mathematics needed in science. If so, it would still be
important for him to show that his system can be justified in terms
that he and other anti-realists can accept. Or he might reply instead
that we should reinterpret his mathematical talk in terms of con-
structibility. But this would call for a further constructibility the-
ory—a metaconstructibility theory—since he is trying to justify his
initial constructibility theory. It would then be fair to ask for the

12 Chihara (1990), 66-7.
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justification of this metatheory. Presumably, Chihara would use
induction to justify this theory, and we then would press him to
eliminate it. This would lead to a meta-metaconstructibility theory,
and we would be off on a regress of justifications and reinterpreta-
tions. Furthermore, since Chihara accepted the task of justifying his
theory in the first place, it would seem that he should do so in terms
that are acceptable to those sceptical of constructibility. In that case,
Chihara should be obliged to stop the regress at some point and give
a neutral, non-mathematical justification of his system.

Let us assume that this can be done, and turn to the question of
whether Chihara’s approach promises an epistemic gain. We have to
speculate on this on our own since Chihara has not produced an
epistemology for his theory—at least not as of this writing.

I will start with something Chihara writes in criticizing realism: ‘I
want to treat the question of the existence of mathematical entities
as a scientific question . . . Where is the evidence that supposedly
supports belief in these entities? Here, I mean evidence of the sort
that would convince the physicist or biologist.’'* This passage
prompts me to wonder about the evidence we might seek for con-
structibility claims. Take the case of the axiom of choice. Its inter-
pretation in Chihara’s system would deny that an open-sentence is
constructible where no open-sentence serving as its ‘choice function’
is constructible. Chihara does not consider the axiom of choice, but
it is now part of standard mathematics, and is required for some the-
orems that are employed throughout science. Thus it should be
given a correlate in his system.

Now the considerations mathematicians have historically raised
for and against the usual form of the axiom are irrelevant to its con-
structibility version. One reason is that interpreting constructibility
as broadly as he does commits him to disallowing the traditional
constructivist objection to the axiom to the effect that specifying
some choice functions might require means that we could not grasp.
On the other hand, the usual arguments in favour of the axiom to
the effect that it is mathematically fruitful to have such an axiom are
also irrelevant, Considerations of mathematical fruitfulness, even
when translated into terms of constructibility theory, have nothing
to do with the sorts of open-sentences that might be tokened.

13 Chihara (1990),189.
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Instead, in gathering evidence bearing upon his version of the axiom
of choice, one would think that Chihara would to turn to biology,
anthropology, and linguistics in order to determine what sorts of
fanguages are possible and what sort of open-sentences might be
tokened. !4
I am assuming, of course, that Chihara’s constructibility theory is
concerned with what it is logically possible for language users to do.
This is borne out by some of the things he writes in justifying other
axioms. Consider his treatment of his correlate of the usual axiom
of abstraction. In a simplified form it postulates that for any object
y and any condition ‘. .. x ...y ... formulated in the constructibil-
ity theory, an open-sentence is constructible that is satisﬁed by just
the (constructibie) thing,s w that are such that . . . Of
course, “. .. ¥... is an open-sentence, But n does xmt venfy
Chihara’s amom because it does not mention the ob_;ect y. The letter
‘v oceurs in it as a free variable, and in stating the axiom it is used to
refer to a specific but (arbitrarily chosen) object. So we need to show
that an open-sentence referring to this object is constructible. Here
is how Chihara does this:

[Suppose thatin*...x...y... the variable )’ refers to an object k.] Then
it is reasonable to maintain that there is some possible world in which the
language of this theory is extended to include a name of the object k. Then
the formula expressing the condition in question can be converted into the
required open-sentence by replacing all free occurrences of ['y'] by the name
of k, and surely it is possible to do this,!3

I am not sure what to make of this. Chihara tells us that he talks of
possible worlds only to help us understand constructibility, but here
he uses his intuitions concerning them (‘it is reasonable to maintain
that there is some possible world’) to justify his axioms. I do not see
how he is entitled to this, and I find his assertion no more convincing
than he would that of the realist who said that it is reasonable to
suppose that there are numbers having some property.

Furthermore, I find that my intuitions, in so far as I can clarify

' Some logicians, mathematicians, and linguists have written of languages with
either infinitely long or uncountably many sentences. I presume that, as purely math-
ematical theories, they are out of bounds for Chihara. Furthermore, he must be wary
of idealizations of ourselves, since he compiains that Philip Kitcher’s ideal construc-
tor *appears more godlike than human’ (Chihara (1990}, 243).

s Chihara (1990), 66.
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them, conflict with Chihara’s, Guiding myself by his earlier state-
ment that we are to imagine a possible world ‘in which some people,
who have an appropriate language, do something that can be
described as the production of the token’,'¢ I try to imagine what is
humanly possible. And it seems to me that there may be physical
objects that it is not humanly possible to name, simply because it is
not humanly possible to identify them with sufficient precision.
They might be too small, too fast, or too fleeting. (Chihara seems to
have no qualms about physics; so he should not object to examples
from quantum field theory, which posits processes of such short
duration that they are undetectable.) On the other hand, if Chihara
simply means that for any object & it is logically possible that some
being tokens a name for it, then his intuition seems more plausible.

In the end, then, Chihara’s epistemology amounts to the episte-
mology of logical possibility. Now once we give up mathematics as a
tool for determining logical possibilities, we seem to be left with
three resources: modal logic (to tell us what is possible if . . ), infer-
ences from what we know to be true to the possibility of claims of
the same logical form, and logical intuitions. The first two are prob-
ably too weak to provide all the knowledge of logical possibility
Chihara’s project requires, since it is likely that they cannot show
that indefinitely complex expressions are possible. I put little stock
in the last, which is connected to the second through including intu-
itions concerning logical forms, since often even the intuitions of
professional logicians conflict. Finally, I doubt that there are modal
facts to be known—even when the modality is that of logical possi-
bility. But more on this in Chapter 8.

2.2, Kitcher's Idealizations

In The Nature of Mathematical Knowledge Philip Kitcher offers an
account on which mathematics is an ‘idealizing theory’ like the phys-
ical theories of ideal gases, mass points, and frictionless surfaces.
These theories idealize various features of the observable world.
Kitcher’s mathematics idealizes both the world around us and our
ability to perform the most basic operations used in practical math-
ematics: segregating and matching (used in numbering), measuring,
cutting, moving, and assembling (used in geometrical construc-

16 Chihara (1990), 40, my emphasis.
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tions), and collecting (used in forming sets). On this view, number
theory, for instance, is a theory of a perfect counter, who lives for-
ever without suffering lapses of memory or attention in a stable uni-
verse of infinitely many objects.

Physicists know from the outset that neither ideal gases, mass
points, nor frictionless surfaces exist, but by investigating their prop-
erties they can derive conclusions that may usefully describe the
approximate behaviour of real gases, bodies, and surfaces. Despite
this, the use of ideal theories seems problematic. If their generaliza-
tions are formulated in standard extensional logics then they are
vacuously true, since they speak of non-existent entities and thus
have no counter-examples. By the same token, their contraries are
also vacuously true: both ‘all balls rolling down a frictionless plane
reach the bottom’ and ‘no balls rolling down a frictionless plane
reach the bottom’ are true.

Thus one might object that Kitcher’s approach will yield too
many truths. We can set this worry aside, however, because we are
not interested in what is true of all ideal entities (every generaliza-
tion is!) but rather what is true according to a given ideal theory. This
is a matter of what follows logically from the basic assumptions of
the theory. Similarly, we do not want to know what is true of all
ideal counters, but rather what is true according to the theory of
them. Thus, if someone asks why in an ideal gas the pressure
increases, rather than decreases, as its container collapses, we can
respond that the ideal theory implies this. And if someone asks why
the molecules of an ideal gas are unextended, we can respond that
this is part of the definition of an ideal gas. Similarly, Kitcher can
point out that ideal counting is invariant under re-ordering the
objects counted because the principles that define ideal counting
imply that it is.

In science we formulate our ideal theories against a mathematical
background and use both mathematics and logic to determine what
is true according to them. But Kitcher wants to treat mathematical
theories themselves as ideal. So he must use only logic as his back-
ground inferential apparatus. This is no impediment to developing
his ideal theories, since something is true in a given mathematical
theory if and only if it is a logical consequence of its axioms.

Can Kitcher continue to stick with purely logical inferences when
it comes to applied mathematics? This is a bit complicated, because
it is not clear whether his idealizations are normative, defining cor-
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rect counting, for example, or descriptive, describing how we actu-
ally count when we are not distracted, and so on. To see what 1
mean, suppose that we construe Turing machine theory as an ideal
theory of actual computing machines. Assume that we use a Turing
machine T to design a type of computer C. Let us further suppose
that we can prove that T never prints the symbol ‘l’, and that we
build a computer which is supposedly of type C and it prints a ‘1"
Then we can conclude using just logical inferences that the comput-
er in question failed to conform to its specifications. Here we use
Turing machine theory normatively. But presumably we want to be
able to use the behaviour of 7"to predict how machines of type Care
likely to behave. If so, then we will need to know how reliable these
machines are, how, where, and when they are likely to fail, and so
on, and this will require us to use statistical techniques. So we will
need mathematics to apply Kitcher’s anti-realist version of mathem-
atics to empirical data—just as Field did.

This is not all. Ideal theories must be consistent, for according to
an inconsistent ideal theory all assertions about its ideal objects are
true. Inconsistent idealizations bring back the problem of vacuous
truth with a vengeance. But we need mathematics to state and prove
that a theory is consistent, since idealizing the mathematics of con-
sistency proofs would rob them of whatever conviction they might
carry. Now we have already seen a way out for Kitcher, though he
did not use it (or address the issue of consistency): he can trade talk
of consistency for talk of logical possibility.

But before turning to assessing this trade I want to discuss briefly
Mark Balaguer’s recent argument that we can account for the
applicability of mathematics in science without having to acknow-
ledge mathematical objects or truths, or reformulate science or rein-
terpret mathematical claims.!” Balaguer does not directly address
the indispensability thesis or either indispensability argument,
because he focuses on accounting for the applicability of mathemat-
ics. We have been concerned instead with the problem of carrying
out scientific inference without presupposing the truth of mathem-
atics, Despite this, we can discern a position on our problem in his
remark that fictionalists can maintain that mathematics serves as a
heuristic device for understanding physical phenomena just as a

17 See Balaguer (1996b).
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novel or a play can be used to help us understand historical phe-
nomena. The idea here is that in using a mathematically formulated
scientific theory in modelling some physical phenomena, we need
not take the theory to be true. Contrary to the indispensability the-
sis, we need only assume that the physical phenomena are like the
mathematics-based theory in order to draw conclusions from it,

The idea I am attributing to Balaguer is like Kitcher’s without the
detour through the ideal constructor. And it is open to similar objec-
tions. First comes the question of how we are to compare scientific
models with the world. If we use statistics, then we can avoid assum-
ing that our scientific theories are true and still draw certain conclu-
sions from them. But such statistical modelling presupposes the
truth of the mathematics used in statistics. Now Balaguer might
point out that in reasoning from features of a model to features of
the world we can use analogical reasoning in place of statistics, To
be sure, this would dispense with the mathematics of statistics, but it
would also dispense with those parts of science where statistics is de
rigueur. Thus this proposal would refute the dispensability thesis
only by restricting the domain of science.

A second problem concerns the consistency of our mathematics-
based scientific theories. As we saw, even if we need not suppose that
these theories are true, we want them to be consistent, Presumably,
Balaguer would substitute logical possibility for consistency and fall
under the same rubric as Field, Kitcher, and our next protagonist,
Geoffrey Hellman.

3. AN INTERMEDIATE APPROACH: HELLMAN'S
MODAL-STRUCTURALISM.

Geoffrey Hellman develops a view of mathematics which combines
some of Field’s ideas on applied mathematics with an anti-realist
interpretation of pure mathematics composed of ideas found in the
works of Dedekind and Putnam.'® Hellman calls his position
‘modal-structuralism’, because he uses modal operators to translate
standard mathematical statements into a ‘structuralist’ language, in
which he substitutes assertions of logical possibility for mathemat-
ical existence claims. Thus he does not assert, for example, that

18 Hellman (1989).
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infinite progressions (omega sequences) exist, but only that it is
logically possible that they exist. Furthermore, to avoid introducing
abstract objects in his metatheory, he eschews the possible world
semantics and takes modal operators as primitive—in this way mir-
roring Chihara and Field. For pure mathematics, his background
logic is second-order SS, in which all iterations of modal operators
collapse to either a single possibility or a single necessity operator
and quantifiers binding predicate and function variables are avail-
able. Moreover, at least in the case of number theory and analysis,
he suggests that we can think of the relevant possibilities as realiz-
able by systems of concrete, material objects (for example, an omega
sequence of inscriptions). This in turn suggests that Hellman’s struc-
turalism also has an Aristotelian twist to it; the only actual struc-
tures are those that are concretely realized.

3.1. Number Theory and Analysis According to Modal-Structuralism

Hellman’s treatment of pure number theory and analysis shows his
project at its best. For here he is able to honour his realism by pro-
ducing bivalent, modal-structuralist translations of ordinary math-
ematical statements, and here his epistemic, metaphysical, and
modal commitments are simplest.!? For brevity and simplicity I will
restrict my exposition to his treatment of number theory.

To see how this works, let S be any closed sentence of Peano
number theory (including second-order sentences quantifying over
number-theoretic functions, classes, and relations). In this system
addition, multiplication, and the other familiar number-theoretic
functions can be defined in terms of the successor function, so we
can assume that the only non-logical symbol appearing in Sis a
symbol for successor. Let PA2 be the conjunction of the second-
order Peano axioms. As Dedekind first proved, these axioms are cat-
egorical, that is, their models are isomorphic to each other. As a
result the same models are also elementary equivalent, that is, S is
true in all the models of P42 or in none. Thus, § is true (in the
objects-platonist’s standard model)?® if and only if ‘PA2 - S’isa

¥ 1 will not discuss his treatment of set theory here, where honouring these com-
mitments becomes much more difficult, but see Resnik (1992b), from which much of
the present discussion of Hellman’s view is taken,

20 Hellman uses the term ‘objects-platonist’ to contrast the standard realist (pla-
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second-order logical truth. Now restrict all the first-order quanti-
fiers in the last sentence to the new free, second-order predicate vari-
able *X",%! and replace the successor symbol everywhere by the new
free, second-order function variable /’. Finally, universally quantify
these two free, second-order variables. This yields a sentence of pure
second-order logic, which I will represent as

(VX(VN)PA2 - SH XS

(The notation ‘| X/ is short-hand for the result of substituting ‘X~
and ‘/” in the appropriate places in the sentence preceding it. The
entire displayed formula could be glossed as ‘in any domain X sup-
porting a function £, if the Peano axioms hold for the pair (X;f), §
also holds for (X:f)".) This sentence is true in second-order logic just
in case the original sentence § is a truth of (second-order) number
theory. If, with Hellman, we equate second-order logical truth with
logical necessity, then we can see that S is true just in case

(Sms) Nec(VXYV/)PA2 > S]| X:f.

This is Heliman’s modal-structuralist translation for S.

If the antecedent of §,,,; is impossible, then it will be vacuously
true. Thus Hellman faces a problem similar to the vacuity problem
Kitcher faces. Neither can simply assume that their antecedents have
models, since doing so presupposes mathematical objects. But they
can ensure the non-vacuity of their translations by assuming that
such models are possible. Hellman does this by postulating

Pos(AX)Ef)PA2 | X[

The technique used to develop a modal-structuralist version of
number theory also applies to second-order real analysis, whose
individual variables range over real numbers, and to other mathemat-
ical theories, such as Euclidean geometry, that have finite, second-
order axiomatizations yielding internal categoricity and elementary
equivalence theorems, Of course, to guarantee non-vacuity we must

tonist} view of mathematical objects with the view of non-modal structuralists such
as Stewart Shapiro and myself,

2 For example, "(Vn)(. .. n...) becomes ‘(Ya}(X(ny— (. ..n.. ).

22 1t turns out that Hellman is able to derive this ‘modal existence’ postulate from
another more ‘constructive’ axiom, which he dubs ‘potential infinity’, In effect, it
asserts that it is Jogically possible for there to be an infinite progression of concrete
marks,
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add further modal existence postulates, for example, for real analysis
we might postulate the possibility of a continuously ordered field.

Hellman would like the foundation given so far to count as nom-
inalist. The sticking point concerns the second-order variables,
which are usually taken to range over classes, properties, or Fregean
concepts. Hellman points out that if we count as concrete certain
geometric models of number theory and analysis, then we can satis-
fy nominalist demands by construing the second-order variables as
ranging over mereological sums of concreta. Thus provided we
acknowledge the concreteness of geometric objects, we can repres-
ent ‘an enormous amount of mathematics . . . in terms of concrete
atomic structures with concrete Cartesian spaces’ without commit-
ting ourselves to actual abstract entities.??

3.2. The Modal-Structuralist Account of Applied Mathematics

In treating pure mathematics modal-structuralists posit structures
as mere possibilities without asking what their realization might
require. Applying mathematics in science, technology, and practical
life forces one to look at the world as it is, This makes modal-struc-
turalists connect the possibilities introduced at the level of pure
mathematics with the actual world—at the unfortunate price of
introducing additional modal operators.

To see how this arises consider the simple applied mathematical
sentence, “The number of stars is finite.” As a first pass, Hellman sug-
gests that we translate this in modal-structuralist terms by

(Star) Nec(VX)(V/)[PA2 — (Bn)(X(n) & (3g)gis 1-1 &
(Vx)(Star(x) - g(x) <P} X3f,

or, as he would read it informally,

If there were a standard model of second-order number the-
ory, then there would be a one-one mapping from the stars
into some initial segment of the model’s natural number
sequence.

23 Heliman (1989}, 51. Hellman suggests that these models could use space-time
points to play the role of real numbers and some extra individuals to play the role of
ordered n-tuples. In a more recent paper he proposes interpreting second-order quan-
tifiers plurally in the manner of George Boolos in order to avoid commitments to sec-
ond-order entities. See Hellman (1996} and Boolos (1984).
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Hellman emphasizes that counterfactual claims of this type must be
construed as concerned with the actual world. If we allowed entities
in other possible worlds to serve as numbers, then the counting func-
tion referred to in (Star) would be a trans-world mapping, that is, an
intension, and fall outside the scope of the modal-structuralist
mathematical framework.

Thus for this translation to be non-vacuous it must be possible
for the actual world to be augmented with entities modelling PA2.
This raises an additional problem; for we must also be assured that
the possibility in question is one which leaves the number of stars
exactly as they actually are. For example, it will not do to use an infi-
nite progression of stars as a model, since that would entail the falsi-
ty of the modal-structural translation of our example regardless of
the actual number of stars. To deal with this, Hellman inserts a
clause into the antecedents of his translations excluding such ‘inter-
fering’ models, and lays down modal existence postulates that posit
the possibility of models that would not interfere with the way the
world actually is were they to exist. Thus we might rewrite (Star) as

(Star'y Nec(VINV/)[PA2 & X, f does not interfere with the
way things actually are = (3)(X(n) & (B3g)Mgis 1-1 &
(Vx)(@Star(x) — g(x) < m)} | Xif,

glossed as

If there were a standard model of second-order number the-
ory that did not interfere with the way things actually are, then
there would be a one-one mapping from the stars there actu-
ally are into some initial segment of the model’s natural num-
ber sequence.

But notice that (Star’) contains a new modal operator, ‘@’ (read ‘it is
actually the case that"), which, speaking intuitively, takes us from
any possible world back to the actual world. Without it we cannot
guarantee that we are referring to the stars in our world.
Furthermore, if modal-structuralists want to extend their treatment
to sentences dealing with ‘other worlds’, such as

Even if the number of stars is not actually finite, it might have
been finite,

then they will need an operator (some call it ‘the backspace’) which,
again speaking intuitively, takes one back to the last world designated.
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(Surely, once one takes the modal leap, one will want to allow claims
of this type too.)

Neither of these operators is definable in terms of the usual pos-
sibility and necessity operators.* Thus modal-structuralism must
pay a steep price in accounting for applied mathematics: namely,
invoking a modal operator which cannot be equated with any of the
purely logical modalities. Actuality is a metaphysical concept par
excellence.

Specifying the required non-interference clauses raises the price
further. We might take ‘does not interfere with the way things actu-
ally are’ as a new primitive. Or we might try quantifying over ways
things are and use the actuality operator. Neither choice would
appeal to Hellman. He explicitly rejects the first as too imprecise and
subject to the sorts of philosophical objections Nelson Goodman
has lodged against talk of the way the world is.?* He does not con-
sider the second, but clearly he cannot reject quantifying over possi-
ble worlds and then quantify over ways things might be or even over
properties or relations taken as intensions.

Because of this, Hellman moves onto to explore ways of formu-
lating non-interference conditions in more precise and metaphysically
neutral terms, His general strategy is to introduce non-mathematical
predicates R and use them to formulate clauses of the form

X%z ...wstand in relation Rif and only if x, y, 2, ..., w
actually stand in R, for all actual objects x, y, z, . . ., w.

Given an appropriate set of predicates, we could use these clauses to
state in non~-mathematical terms that in a given counterfactual situ-
ation all the actual objects have exactly the (presumably relevant)
properties and relationships to each other that they actually have.

Hellman notes that, like Hartry Field, he needs to fix a structure
via a non-mathematical description of the physical facts, but unlike
Field he is not obliged to reformulate applied mathematical theories
as ‘attractive’ synthetic ones. Thus, despite the difficulties with
Field’s programme, he remains cautiously optimistic about his own
proposals for finding synthetic predicates.

24 For formal details see Hodes {1984). For a valuable discussion of attempts to
modalize away commitments to mathematical entities see Burgess (1994). His paper
increased my appreciation of the role of the actuality operator in Hellman's vansia-
tions of applied mathematical claims

#5 See Hellman (1989), 128.
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Whether or not Hellman’s suggestion for dealing with this prob-
lem eventually works out, his programme, along with Field’s and
Kitcher’s, appears to break down when it comes to statistical infer-
ence. Consider the following hypothetical case. Some chemists syn-
thesize a new compound S, that they believe to be slightly different
from an old compound S,,. Using mathematically expressed chemi-
cal hypotheses C and mathematical theorems T, they calculate that
the melting points of the two substances should be identical. We can
represent this by the conditional

C& T-»m(S,) = m(S,).
Then they decide to test C. Taking T for granted, they conclude
m(S,) = m(S,),

which allows them to infer that the arithmetical means of distribu-
tions of measurements of melting-points of samples of the two sub-
stance should be the same. We could write this as

distmS,) = dist,,(S,).

Then they melt samples of the new substances and record their melt-
ing points, and compare the mean value of these numbers with the
value to be expected given their hypothesis. Let us suppose that the
difference between these is ‘statistically significant’ at a level they
consider appropriate, and, as a result, they take the experiment to

refute their hypothesis.
Now observe how Hellman’s account would run. The initial cal-

culations establish something like this subjunctive conditional:

If there were a non-interfering model of second-order real
analysis and C held, then m(5,) = m(S,) would hold,

Here non-interfering means not interfering with the chemical
processes relevant to hypothesis C. Of course, this would be spelled
out by means of appropriate non-interference clauses. The next step
takes us from the melting-points themselves to distributions of
measurements of melting-points, and gives rise to something like
this:

If there were a non-interfering model of second-order real

analysis, then dist,,,(S,) = dist,,.(§,) would hold,
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and thence to this;

If there were a non-interfering model of second-order real
analysis, then samples with means not between x and y would
be significant at the z level.

But now two problems arise. The first is finding a non-mathematical
substitute for talk about means of distributions. One way would be
to introduce predicates describing the tables in which the measure-
ments are recorded. Then instead of talking about patterns (distrib-
utions) of numbers we could talk about the patterns exhibited by
written tables of numerals,

But the second problem is more serious. The original inference
continued with:

The sample mean is not between x and y;
So it is significant at the 7 level;
So the hypothesis is disconfirmed.

The first two steps could translate as:

If there were a non-interfering model of second-order real
analysis, then the sample mean would be not between x and y.

If there were a non-interfering model of second-order real
analysis, then the sample mean would be significant at the z
level.

Since the non-interfering clauses would connect conditions on dis-
tributions with conditions on tables, we could infer that the data
table for the new substance differs ‘significantly’ (in some non-math-
ematical sense) from that for the old substance. But now we come to
the second problem, which is to explain why the original hypothesis
has been disconfirmed.

The standard explanation is fairly straightforward. Given the
chemical hypothesis, the distribution of measurements the experi-
ment yielded is just too improbable; so we reject the hypothesis. But
modal-structuralists run into the same problem that Field does: they
cannot talk about probabilities because they are numbers. And talk-
ing about chances instead will not help, since these are abstract enti-
ties too. So the modal-structuralists will need to translate the
inference by which we reject the chemical hypothesis into modal-
structural terms. But what non-mathematical predicates can they



BLUNTING THE INDISPENSABILITY THESIS 75

use? Depending upon how one formulates one’s statistics, the experi-
mental distribution is improbable relative to a sample space, a set of
events, a set of propositions, a set of possibilities, and so on, all of
which are mathematical constructions that start with abstract enti-
ties. So I do not see how modal-structuralists can even get started.
Until they show us how to overcome this difficulty their attempt to
refute the indispensability thesis will remain incomplete,

4, WHAT HAS INTRODUCING MODALITIES GAINED?

Thus far I have argued that neither Field, nor Hellman, nor Kitcher
have succeeded in showing that an anti-realist substitute or constru-
al of mathematics can completely replace standard mathematics,
because it is unclear that they can deal with statistical inference.
Now one might be able to bypass statistical inference by using ana-
logical reasoning. I doubt that Field, or Hellman, or Kitcher would
find this a plausible solution.?$ In any case, for the remainder of this
section I will simply assume that they have produced some sort of
solution, and ask whether we have much reason to think that a
modal approach to mathematics represents an ontic and epistemic
gain over standard mathematics.

Recall that Chihara, Field, and Hellman are realists about logical
possibility, Indeed, they must be if they are going to invoke modal
premisses in place of mathematical ones in applications of mathem-
atics.?” The main difference between them and ordinary mathemat-
ical realists comes to this: where the former believe that
mathematical objects of a given kind exist, the latter only believe
that it is logically possible that these objects (Field) or objects with
their structure (Chihara, Hellman) exist.

# (Chihara seems to require standard mathematics in giving 2 metatheoretic justi-
fication of his system.

¥ Recall that these philosophers do not question the validity of the indispens-
ability arguments but only the indispensability premiss, which they refute by finding
substitutes for mathematics. Thus the analysis of scientific reasoning supporting the
indispensability premiss can be used to show that they are committed to the truth of
their substitutes.

Let me add some qualifications. Field's use of modal premisses will be restricted
to metamathematics. Furthermore, I have not included Kitcher with Chihara, Field,
and Heliman, because he does not explicitly invoke modalities. Earlier I did so on his
behalf in order to provide him with a response to the vacuity objection. This exten-
sion of his position would be committed to the truth of modal premisses.
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Let us also note that both Field and Hellman are committed to
recognizing that abstract entities are logically possible. Field explic-
itly commits himself to the possibility of sets satisfying the axioms
of NBG set theory.28 Hellman does not go so far. However, after a
valuable examination of the mathematics we might need for physics
he does conclude that ‘it does seem misguided to seek any a priori
limit’ on the mathematics science uses, including even the use of
large cardinal axioms.?® Furthermore, when it comes to transfinite
set theory, he admits that ‘we can hardly call [the associated modal-
structuralist framework] “nominalistic”’. But then, as if to antici-
pate my claim, he adds that it is unnecessary to make ‘any
assumption as to “the nature” of the objects’ that might realize these
structures.3® True, no such assumption need appear in the modal-
structuralist formalism; but surely the question of the nature of the
objects that might be involved is relevant in assessing the philosoph-
ical value of the project. Plainly Hellman cannot argue at this point
that the objects could be concrete.?!

8 See Field (1989), 109. 3 Hellman (1989), 124.

3¢ Heliman (1989), 117,

3t ft is also not clear that Hellman can avoid committing himself to the possibili-
ty of abstract objects even when dealing with arithmetic and analysis. In an
Aristotelian spirit Hellman often writes as if to add a non-interfering omega
sequence or a continuum to the world is to add an arrangement of concrete things to
it. Can we do this without changing the behaviour of the things already there? That
depends upon what we mean by the actual world—on whether we count just its pop-
ulation and their properties and relations taken in extension, or its laws as well.
Adding a new planet to our solar system will not change the behaviour of the other
planets so long as we change the physics of the new world. There is no place for the
{aws of physics in Hellman’s sketches of non-interference conditions. This suggests
that he may be willing to take the actual-world-sine-physics approach to non-interfer-
ence. Yet we do not want to give up all the physics, since the application in question
may be within a theory that presupposes physics Thus we may need to assume that
the physics of the relevant actual objects stays the same, and that the new objects do
not affect the behaviour of the old ones. This is a possibility that Heliman admits: ‘we
are free 1o entertain the possibility of additional objects—even physical objects . . .
[that] could be conceived as occupying a certain region of space-time but as not sub-
ject to certain dynamical laws’ (Hellman (1989), 97). But once we free our world of its
physics to the extent Heliman contemplates, why should we call the new entities phys-
ical or concrete? Of course, since he is already in the business of stipulating, Hellman
might respond that he stipulated that they are concrete and that’s that. But how can
he be confident that he knows what he is stipulating?

Philosophers of mathematics frequently assume that the distinction between
abstract and concrete {mathematical and physical) objects is clear and unproblemat-
ic. Yet Hellman's examples, and Hartry Field’s use of space-time points in his nomi-
nalization of physics, show that without a clearer grasp of the distinction than we
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Thus the distinction between saying that abstract objects exist
and saying that it is logically possible that they exist is crucial to the
contention that Field’s and Hellman's positions represent ontic and
epistemic progress. Intuitively, it seems to be the difference between
saying that something might be (or that it is consistently describ-
able) and saying that it exists, and this distinction is reasonably clear
when it comes to possible concreta such as unicorns. But when it
comes 1o sets or structures like the iterative hierarchy, which cannot
be concretely realized, the difference threatens to be merely verbal.

This is arguably the case for Platonic (as opposed to Aristotelian)
properties, relations, and other universals, which can exist uninstan-
tiated. Now it might be that some universals cannot be instantiated
if others are, just as the existence of arbitrary subsets of every set
precludes a universal set. (Admitting one would generate Russell’s
Paradox.) So when we talk of the possibility of instantiating a uni-
versal we should understand it as relative to a background system of
universals. But given this understanding, I can see no more reason-
able condition to demand for a universal to exist than that it is pos-
sible for it to be instantiated.

Some philosophers have argued that mathematical objects are
universals. For these philosophers there would be no question that
the possibility of mathematical objects suffices for their existence.
Our anti-realists have not taken mathematical objects to be univer-
sals. But they are clearly committed to the possibility of some non-
concrete entities exhibiting various mathematical structures, for
example, entities exhibiting an iterative hierarchy, Presumably these
objects have no positive properties beyond those they have in virtue
of their relations to one another. They are—to use a term that will
come to the fore in Part Three—simply positions in a structure.
Granted this, it is again hard to see how the possibility of such
objects standing in such relations fails to suffice for their existence.

Let turn now to the epistemology of modal mathematics. We
might expect that some advantage is to be gained by replacing the
question of how we know that entities exhibiting mathematical
structures exist by the question of how we know that such objects
are logically possible. However, both Field and Hellman would be

now have we cannot make a definitive assessment of what these projects accomplish.
In Chapter 6 I give reasons for doubting that there is a clear distinction between
mathematical and physical objects
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among the first to admit that they have little idea of how we know
that objects having the structure of an iterative hierarchy of sets are
logically possible. But they offer us the hope that the epistemology
of logical possibility will prove more tractable than the epistemolo-
gy of mathematical objects.

I do not share their optimism. First, I am uncertain of what we
are supposed to know when we know that it is logically possible that
there be so and so. Field suggests that we could define logical possi-
bility in terms of a primitive notion of logical implication and con-
vey the meaning of the latter ‘by specifying the procedural rules
involved in inferring with it’.32 This just passes the buck to the pro-
cedural rules. How are we to know that they correctly characterize
logical implication? Remember Field and Hellman are committed to
facts of the matter here.?® They cannot fall back upon some conven-
tionalist ploy whereby we (partially) fix implication and logical pos-
sibility by laying down rules of inference. And what do we know
when we know that one thing implies another or that something is
logically true? What in addition to knowing that, for example, every-
thing is self-identical do we know in knowing that it is logically true
that everything is self-identical? I fear that it may have to be the
extra-worldly sort of thing that anti-realists find so objectionable
about abstract entities.

Even if the modalists manage to clarify what it is that we know in
knowing logical facts, I suspect that coming to know that infinite
structures are logically possible will involve the same sort of process-
es that mathematicians could use in coming to know that they are
actual. In short, if we had a satisfactory epistemology for the possi-
bility of mathematical objects, we would already have one for math-
ematical objects themselves.

Let me elaborate a bit on this. Granted, in most non-mathemat-
ical cases it is easier to show that something is possible (or consist-
ent) than to show that it is actual (or true). Undoubtedly this has led
modalists to suppose that it is easier to explain how we could know
that mathematical entities are possible than it is to explain how we
could know that they exist. Let us take Hellman’s simplest case, the
possibility of an infinite progression. Given our experience with set
theory and mathematical logic during this century, we can be confid-
ent that we cannot deduce this possibility from our knowledge of

3 Field (1989), 32. 33 See n. 27 above.
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the finite. Historically, we probably arrived at our belief in the possi-
bility of concrete infinities through untutored physical intuitions.
But once we set aside our mathematical knowledge, I do not see how
we could count this belief as justified. Observation, biology, and
engineering do not tell us that natural, biological, or mechanical
sequences can always be prolonged by one more step. Rather they
tell us that prolonging a relative short sequence may be quite differ-
ent from prolonging a very long one, for eventually the process of
generating additional steps will exhaust the material needed or the
mechanism involved, If we remove these limitations on the grounds
that they are merely biological, practical, or technical, then we
might be tempted to conclude that it is physically possible to pro-
long certain natural sequences indefinitely. It is not clear how we
could justify that conclusion, however. For to suppose that we could
continue such sequences by increasing velocities indefinitely, or by
dividing matter into ever smaller parts, or by using ever more matter,
energy, space, or time is to presuppose the possibility (perhaps the
existence) of potential physical infinities.

Fans of modalism will be quick to reply that the relevant possi-
bility is not physical but logical. Yes, but if our physical experience
will not help, how do we know that infinite progressions are logically
possible? Because we see no contradiction in the supposition that
they exist, I presume. And how do we know this? Well, we can rest
with logical intuitions and our deductive experience or we can turn
to mathematical models, Historically we have taken the latter
course, and have appealed to mathematical objects to clarify intu-
itive notions of possibility. Thus possible paths and shapes have
given way to curves in space, possible sizes, weights, and tempera-
tures to abstract magnitudes, and universal physical possibilities to
distributions of matter in space-time. Even in logic we have turned
from untutored notions of possibility to mathematical notions,
replacing the idea of logical possibility with that of implying no
contradiction, and explicating that in turn in terms of proof-theor-
etically defined deductions or set-theoretically defined models. And
why have we done this? Because moving to the more abstract realm
of mathematics allows us to put our ideas in their simplest and most
uncluttered forms, thereby giving us the best chance of determining
their consequences. It is easier to determine whether the idea of the
natural number sequence gua bare structure of an infinite progres-
sion harbours a contradiction than it is to determine whether the
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idea of some physical infinity does, simply because we need not
worry about the effect of extra physical baggage.

Extrapolating from the finite may very well suggest that infinite
structures are possible (or exist), but it will not provide sufficient
evidence for this on its own. We simply have to posit that they are
logically possible (or exist), and test our postulates through their
coherence with our prior beliefs and their fruitfulness. Under these
circumstances it makes more sense to posit the possibility of objects
to which we attribute no ordinary physical properties. (In the case of
geometrical objects, we have no choice. An extensionless point is no
bit of matter.)

So far I have been arguing that our knowledge that infinite physi-
cal structures are possible is likely to depend unavoidably upon our
knowledge that infinite mathematical structures are possible. This
should not alarm modalists much, But remember Field and
Hellman must do more than posit the possibility of mathematical
objects; they must also postulate principles that allow them to derive
the same non-mathematical consequences we would ordinarily
derive using standard mathematics. (Hellman requires non-interfer-
ence principles and synthetic determination results; Field needs
principles embedding his modal primitives within metamathemat-
ics.) Since both the standard and modal systems aim to have the
same set of non-mathematical consequences, they should imply the
same set of observational consequences. In short, they will be
empirically equivalent. And since it is likely that both will depend
upon the same sort of hypothetico-deductive epistemology, in the
end the evidence for standard mathematical systems and the modal
systems is likely to be the same. But if that is so, then the modal sys-
tem, which has a more complicated apparatus than the standard
one, cannot have the epistemic advantage. Simplicity is enough to
recommend the standard system 34

34 I wrote this paragraph before reading a drafl of Burgess and Rosen (1997).
However, they make related criticisms of the scientific merits of nominalist systems
The reader interested in an excellent and thorough discussion of both nominalist
responses to the indispensability thesis and the reasons motivating them shouid con-
sult their book.
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5. CONCLUSION

Those anti-realists who have not shown that their systems can do the
work of standard mathematics have not completed the first step
towards undermining the indispensability thesis. Furthermore,
although our anti-realists object to mathematical objects as epistem-
ically inaccessible, we can raise similar worries concerning the
logical possibilities they require. So even if they could show that
their systems are genuine technical alternatives to standard mathem-
atics, they would still have to show that theirs are less objectionable,
Finally, the most promising epistemology for possibility—a postula-
tional epistemology—should work as well for mathematical objects.
(I aim to establish this over the remainder of this book.)

I have another reason for being sceptical about the modal
approach. I am an anti-realist about logical possibility and necessity.
Obviously, I need to defend and explain this view, especially since
logical deduction has always played a central role in developing
mathematical theories, and I will do so in Chapter 8 where I discuss
the nature of mathematical evidence.
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Doubts about Realism

One might well wonder why so many talented philosophers have
devoted so much effort to undercutting the indispensability thesis. It
is because when we try to assimilate mathematical objects into our
everyday conceptual scheme the shortcomings of mathematical real-
ism irritatingly emerge. If we ask, for example, where we can find
mathematical objects or how we might perceive them, official math-
ematics remains mute. Whether or not mathematical objects have
locations, smells or colours is totally irrelevant to mathematical
practice. Speaking unofficially, mathematicians would likely tell us
that it makes no more sense to ask where a number is than to ask
what a song smells like, and that our quest is in vain, since mathem-
atics has already told us all there is to say about mathematical
objects.

1. HOW CAN WE KNOW MATHEMATICAL OBJECTS?

Mathematics remains silent about the metaphysical nature of its
objects, but this does not stop philosophers, for they seek a general
theory of the Universe, and they will gladly speculate when scientists
hesitate. Mathematics tells them of infinities upon infinities of
mathematical objects and of perfectly straight lines and extension-
less points. Neither mind nor matter embodies things as numerous
or as perfect. As a result, since antiquity many philosophers have
concluded that mathematical objects must be, if they are anything,
causally inert entities existing outside space and time. I concur with
these philosophers. But this conclusion simply generates another
question: how could we have ever come to know such strange
things? Plato theorized that our souls dwelt in the realm of abstracia
prior to our bodily births, and what mathematical knowledge we
have, we have actually recalled from that time.! Frege spoke of

! Plato applied this to genuine knowledge across the board.
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mathematical objects as being given directly to reason and ‘utterly
transparent to it’,2 while Godel wrote that ‘despite their remoteness
from sense experience, we do have something like a perception also
of the objects of set theory, as is seen from the fact that the axioms
force themselves upon us as being true’.?

None of these pronouncements have been very helpful, since they
have remained sketches at best, closer to reaffirmations of the
abstractness and independence of mathematical objects than to
explanations of our knowledge of them. Frege hoped to show that
mathematics is just an elaboration of logic, but his logic had its own
abstract objects, and he explicitly declined to say how we come to
know the truths of logic.* The logical positivists tried to fill in the
gap in Frege’s epistemology by declaring logic and mathematics to
be true by convention. But, on the logical positivists’ understanding
of truth by convention, mathematical truth and existence are not
independent of us and our mathematical activity. On their
approach, in stipulating that, say, the axiom of choice is true, we are
making it true instead of acknowledging an independently obtaining
fact. And if we decide that mathematics will do better by denying
this axiom then, according to the positivists, we are free to change
our conventions and unmake its truth.

The failure of so many realist epistemologies to advance beyond
brief hints about a priori insights into the mathematical realm has
rightly prompted people to wonder whether an adequate realist epis-
temology is even possible. In a very influential paper, ‘Mathematical
Truth’, Paul Benacerraf raised serious doubts about its prospects.
His argument went roughly along these lines:®

(1) Some mathematical statements must be known directly, i.e.
without being inferred from other statements;

(2) Any plausible account of direct knowledge must appropriate-
ly connect the grounds the knower has for knowing a state-
ment with the conditions under which that statement is true;

(3) On the realist interpretation of mathematical statements this
means appropriately connecting our grounds for knowing,
e.g that 3 + 2 =5 with 3 + 2 being 5;

2 Frege (1959), sect. 105, 3 Gadel (1963), 4834,

4 See Resnik (1980), 175 for a supporting quotation and further discussion.

5 See Benacerraf (1973). This reconstruction owes something to Maddy’s discus-
sion of Benacerraf’s argument in Maddy (1990).
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{(4) But our grounds for knowing that 3 + 2 = 5 (or whatever
directly known mathematical statements there are) consist in
our having certain experiences;

(5) Mathematical objects are causally inert;

(6) So they play no role at all in bringing about those experiences;

(7) Thus our grounds for directly knowing mathematical state-
ments cannot be connected with the conditions under which
they are true,

In short, mathematical realism seems to imply that if there are
mathematical objects, they are unknowable,

Despite the impact of reasoning like this on a generation of
philosophers of mathematics, myself included, I no longer find it
compelling. To start, contrary to premiss (1), it is not clear that any
mathematics is known non-inferentially. Even if some is known
directly, I am hard-pressed to think of examples that we would al
agree upon. Obviously, those mathematical statements that we know
only through proving them do not qualify; so, perhaps, we know the
axioms directly. However, many axioms have been proposed, not on
the grounds that they can be directly known, but rather because they
produce a desired body of previously recognized results. Still others
have been developed through a process of trial and error leading
from initially inconsistent axiom systems to barely workable repairs,
and thence to simple and elegant formulations.$

Let us try, then, looking among theorems for directly known
truths. Take the commutative law of addition. Since it is so obvious
to us now, it looks to be a good candidate for something that could
be known directly. Yet, can we rule out its being known indirectly?
Perhaps it was first inferred from its instances, suchas 3+ 5 =5+
3. Or maybe it was somehow inferred from the concept of addition,
or someone decided to stipulate that addition be commutative, and
found that this worked. What about ‘3 + § = 5 + 3" then? Our math-
ematical ancestors may have arrived at it by generalizing from their
counting experience. And so on.

Perhaps one can put down the doubts we have raised concerning
premiss (1). In any case, we can save the argument by dropping pre-
miss (1) and deleting the reference to direct knowledge from premiss

¢ The history of the simple theory of types as it evolved through the work of
Frege, Russell, and Ramsey is an example; the course of Quine’s New Foundations is
another.
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(2). So revised (2) amounts to requiring that there be some connec-
tion between the knower and the body of facts known, however they
are known. (Much of Benacerraf’s text supports this interpretation.)
Writing in the early 1970s, Benacerraf favoured the then popular
causal theory of knowledge as defining the appropriate connection
mentioned in premisses (3) and (4). The causal theory of knowledge
is no longer in favour, but this need not make Benacerraf’s argument
obsolete. For it is difficult to see what kind of knowledge- or belief-
generating connection, causal or otherwise, there could be between
us and mathematical objects.”

However, this raises another problem with the argument. For
conclusion (7} to follow, one must suppose that the connection
between the experiences leading to our knowledge that, say, 3+ 2 =
5 and 3 + 2 being 5, which premiss (2) requires, must be established
through the numbers themselves. But perhaps the connection is
between the facts: we had the experiences we had when we learned
that 3 + 2 = 5 because three plus two is five.?

Despite the problems we have found with his argument, the chal-
lfenge Benacerraf put forth still remains: no matter how strong the
prima facie case for mathematical realism, it cannot stand as an
ontological doctrine alone. It must be combined with a plausible
epistemology. The difficulties we have seen in the argument above
simply weaken the case that such an epistemology must be based
upon some recognized connection, causal or otherwise, between us
and mathematical objects.

But then what constraints should a realist epistemology satisfy?
Many epistemologists today hold that a belief cannot count as
knowledge vnless it has been generated by a process that is reliable.
In itself this should be no threat to mathematical realists, since the
processes mathematicians use are as reliable as any, given any rea-
sonable construal of reliability, Rather, as Hartry Field has noted,

7 For a discussion of the causal theory in Benacerraf’s argument see Maddy
{1990) and Burgess and Rosen {1997).

¥ This objection raises problems of its own. One would want to clarify its use of
the word ‘because’. Taking it to have the sense of “if three plus two were not five then
we would not have had the relevant experiences’ would saddle one with the problem
of making sense of conditionals whose antecedents are contrary to mathematics. It
might make more sense to maintain that we use ‘because’ here to indicate that the
mathematical truth in question figures in explaining our knowledge of it. For further
discussion of the issue of the role of mathematics in explaining our mathematical
knowledge see Steiner (1975).
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the problem seems to be one of explaining their reliability.? For
acquiring new beliefs transforms our brains, and whatever processes
might lead mathematicians to their beliefs, they cannot physically
operate upon or respond to mathematical objects themselves.

Take, for example, the process of multiplying two numbers. We
usually operate upon written numerals, but never on the numbers
themselves, Why, then, does this produce reliable information about
the numbers? Of course, the realist has no explanation to provide if
it has to be one that gives mathematical objects some causal or
information-transmitting role. But if one doesn't insist on this, there
is another perfectly straightforward answer to our question, namely
that we multiply by following a sound multiplication algorithm.
Assuming that we implement the algorithm correctly, we will not
derive, say, ‘7(43) = 301’ unless seven times forty-three is three hun-
dred and one. Now this seems as though I have just pushed the ques-
tion back a step. The multiplication algorithm is a set of rules for
manipulating marks on paper, but the algorithm we prove sound
concerns abstract numerals. So now we have two questions: how can
manipulating marks on paper, that is, symbol tokens, yield informa-
tion about abstract numerals, that is, symbol types? And how do
facts about abstract numerals reflect facts about numbers? It turns
out that we can answer the second question by going over the math-
ematical connections between our system of numerals and the num-
bers, and the multiplication algorithm and multiplication, This is the
same sort of reasoning we use to prove that a system of deduction
yields only valid conclusions.

We are left with the relationship between expressions qua abstract
types and their written tokens. Some find this less problematic than
the relationship between numbers and written symbols.'? But it is
not clear to me that it is. After all, we cannot see abstract symbol
types any more than we can see numbers. Types are shapes rather
than things that have shapes. So why should we expect that looking
at shaped marks should tell us about them? Only, I would think,
because we suppose that the features of shaped objects reflect or
represent the shapes themselves.

Given such a supposition, we can explain why making marks on

¢ Field (1989), 25-7.

¢ Charles Parsons holds such a view, but even he thinks that only a limited
amount of mathematical knowledge can be obtained through tokens of numerals.
See Parsons (1979-80).
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paper can yield reliable information about numbers. In Chapter 91
will argue that we gain ‘access’ to mathematical objects by positing
them and correlations between some of their features and concrete
computations. In Chapter 11 I will develop this idea further by
defending the view that the features in question are structural. So in
a sense I do hold that we can know types through their tokens. Still,
I reject the idea that we can test correlations by directly comparing
types and tokens. However, this does not undermine the explanation
of why our computations reliably indicate facts about numbers.
Even the explanation of why barometers are reliable indicators of
weather changes must take some correlations for granted.
Barometers indicate weather changes because they register atmos-
pheric changes which are correlated with changes in the weather. We
can explain these correlations in turn if we like. But when it comes to
explaining the reliability of barometers we must ultimately appeal to
a hypothesis that certain features of some device (perhaps a part of
the barometer) vary with atmospheric pressure or with something
we take to measure it, Of course, we can test our theory of the
barometer through using auxiliary hypotheses to deduce observa-
tional consequences from it—just as we test other scientific theories.
We may be able to test an explanation of our reliability as computers
in a similar way, that is, by deducing observational consequences
confirming the correlations it uses.!!

2. HOW CAN WE REFER TO MATHEMATICAL
OBJECTS?

Anti-realists have also argued that we cannot refer to mathematical
objects because of our lack of causal contact with them. Now to
someone unfamiliar with the discussion this must seem a bit puz-
zling. After all, we can refer to fictions and futures despite our lack
of causal contact with either. Why bring causes into a theory of ref-
erence?!?

1 For further useful discussion of both Field’s demand for an explanation of the
reliability of our mathematical beliefs and the causal theory of knowledge see
Burgess and Rosen (1997).

12 | direct to Chapter 6 those who are inclined to object that we don't refer to
these in the relevant sense, since fictions don’t exist and futures don’t exist yet. There
I give examples of presently existing physical entities with which we can have no
causal contact,
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Of course, not everybody thinks we should, but one reason peo-
ple offer for talking about causes in this connection is that we can
use them to explain how people who hold very different theories can
be speaking about the same subjects. This concern seems relevant to
the philosophy of mathematics. We find it plausible that the Greeks
knew quite a bit about numbers, and yet some of their ideas about
numbers were so different from ours that focusing on our differing
ideas might lead us to conclude that their numbers cannot be our
numbers. Similarly, we want to say that Newton and Einstein both
studied gravitation, despite the radical differences in their gravita-
tion theories,

According to some philosophers of science, we can solve our
problem by holding that a given term refers to an object just in case
an ‘appropriate’ causal chain connects the term’s users to the object
in question. This version of the causal theory of reference permits
us to conclude that contemporary biologists speak of the same
plants and animals as their predecessors, despite their radically
divergent theories, because they all stand in the ‘appropriate’ causal
relations to those plants and animals. Now we need not worry about
what ‘appropriate’ means to see that this theory will not work for
causally inert mathematical objects. So the anti-realist can add
another strike against mathematical realism.!3

But must mathematical realists take seriously the problem of
divergent views of apparently identical mathematical subjects? Anti-
realists need not. If there are no mathematical objects, the only links
between our theories and those of other mathematicians can only be
logical or linguistic ties between the theories or historical and cul-
tural links connecting the mathematicians themselves. This route is
open to mathematical realists too, for as I have characterized real-
ism, mathematical realists are committed only to the truth of con-
temporary mathematics, and not to the truth (or approximate truth)
of quite different theories. Thus they can simply say that although
there are clear historical links between contemporary and ancient
mathematics, there is no more need to decide whether we and our

13 The causal theory of reference is not retricted to the philosophy of science, but
for an influential use of it in this area see Putnam (1973), I should emphasize that the
version of the theory I present in this paragraph is an emendation of Putnam’s theory
that has been popular with mathematical anti-realists. His theory, in which causal
chains between users of a lerm determine sameness of reference, is compatible with
mathematical realism,
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predecessors dealt with the same mathematical realm than there is
to decide whether ancient and modern atomists were concerned with
the same underlying physical and chemical structures. Furthermore,
they could draw support for this from Thomas Kuhn's views in the
philosophy of science and Quine’s view in the philosophy of lan-
guage. Both hold that there may be no fact of the matter as to
whether people holding sufficiently different theories speak of the
same subject-matter.'4

This hard line fits poorly with some of our pre-systematic realist
opinions, however. For it seems to have the consequence of failing to
credit our forerunners with much that we think they knew—that
Newton knew about gravitation or Euclid of the infinitely many
prime numbers, On the other hand, the causal theory of reference is
a transcendent theory, and it not only fits poorly with mathematical
realism but also with an immanent approach to truth. Despite this,
we can find a place for some of the intuitions driving the causal the-
ory by using an immanent, disquotational approach to reference,
based on the disquotational biconditionals for names and predicates
(Chapter 2, Section 2.3). We must, however, apply the idea to the
human polyglot. Then whether we and Euclid are referring to the
same thing reduces to the question of whether numbers are arith-
moi.

This approach does not make the question any easier to answer,
but at least it does not rule it out of court at the outset, as the ver-
sion of a causal theory we have considered seems to do. Of course,
in the end, we may conclude that the question has no answer, that
there is no fact of the matter in this case, Given that our pre-system-
atic intuitions often seem to vary with our philosophy, this is not an
especially adverse outcome.,

3. THE INCOMPLETENESS OF MATHEMATICAL
OBJECTS

Puzzles such as those concerning the identity of the Greek numbers,
or Newtonian and Einsteinian gravitation, arise because grammar
and common sense prompt us to formulate questions even when
there may be no conceivable evidence supporting one answer rather

4 See Kuhn (1977), Quine {196%a).
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than another. This situation occurs even more frequently, more
clearly, and more urgently in mathematics than it does in the rest of
science. It is due to what, following Charles Parsons,!s I will call the
incompleteness of mathematical objects.

Mathematical objects are incomplete in the sense that we have no
answers within or without mathematics to questions of whether the
objects one mathematical theory discusses are identical to those
another treats; whether, for example, geometrical points are real
numbers. This springs from the way mathematics defines its terms.
When defining bottoms out, that is, when characterizing its primi-
tive concepts, mathematics is content with axiomatic characteriza-
tions.'¢ This method for dealing with primitives first arose in
algebra, where, for example, a group is defined as any set and opera-
tion satisfying the so-called axioms of group theory, and it spread
through the work of Hilbert and Dedekind to the foundations of
geometry and number theory, where Euclidean spaces are often
characterized as anything that satisfies the axioms for Euclidean
geometry and the natural numbers as anything that satisfies the
Peano axioms. As a consequence foday mathematics seeks to char-
acterize its objects only ‘up to isomorphism’, and its most fine-
grained axiomatic characterizations—those provided by categorical
axiom systems—have infinitely many distinct but structurally identi-
cal models. Thus, as far as mathematics goes, the natural number
sequence might be one of infinitely many progressions of equally
spaced points on a half-line, or progressions of sets, or even progres-
sions of Roman numerals. Neither the axioms nor additional con-
straints arising from counting exclude any of these alternatives, On
the other hand, the natural number sequence cannot be each of
these progressions, since some are provably distinct from each other.
Yet whether it is one of them or none, mathematics does not say.

Mathematics also reflects the incompleteness of its objects in
defining other objects in terms of those taken as primitive. For
example, when taking sets as primitive, mathematics authorizes
many alternative definitions for its other fundamental objects: thus
we have real numbers defined as Dedekind cuts, or alternatively as
infinite sequences of rational numbers; natural numbers defined as

15 Parsons (1979-80),
16 These are often called implicit definitions, Following Frege, I think this term is
misteading. For a fuller discussion of Frege's position, see Resnik (1980).
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different sets by Frege, von Neumann, and Zermelo; and functions
identified alternatively with many-one and one-many relations. Nor
need we start out with sets, for an entire mathematical ontology can
also be defined in terms of functions, and in terms of ordinal num-
bers if we limit sets to Godel’s ‘constructible’ ones.

Now this is no defect in mathematics; leaving these identities
unsettled does not hamper its practice or progress. But it does gener-
ate a philosophical problem, made famous by a paper of Paul
Benacerraf’s.)? Consider this. Zermelo defined the number 2 as the
double unit set of the null set, whereas von Neumann defined it as
the pair set of the null set and its unit set. The von Neumann and
Zermelo two are distinct sets; so the number 2 cannot be identical
with both of them. So which one is 1t? Should there not be a fact of
the matter? Should it not be the case that either 2 equals the
Zermelo two or it does not? But no mathematical facts decide these
questions; identifying 2 with either set, or neither, contravenes no
mathematical dictum, Should we not conclude that since the natural
numbers cannot be both Zermelo and von Neumann sets, they are
not sets after all? By the same token, should we not conclude that
the real numbers are not really sequences, infinite sums, or sets of
rationals, and that functions are not sets of ordered pairs, and so
on? But then by what right would we draw such conclusions? And by
what right does mathematics employ the definitions of Cantor,
Dedekind, Frege, Zermelo, von Neumann, and others?!8

These are not puzzles we should take lightly. And one might be
tempted to conclude that they constitute an objection to realism, on
the grounds that realists should be committed to there being a fact
of the matter as to whether, say, numbers are sets, and if so, which
sets correspond to which numbers. One might argue that realists
take mathematical objects to be things that exist along with ordinary
beings, and given any two things, either they are identical or distinct.
I grant that this argument does show that realists must deal with the
puzzles, Even if they did not appear to pose a special problem for
realists, they are important to address. I will also grant, as Hartry

17 See Benacerraf (1965). This paper also discusses Takeuti’s definition of sets in
terms of ordinal numbers.

1% Although Benacerraf’s classic statement of the problem of fixing the identity
of mathematical objects was restricted to the natural numbers, it should be empha-
sized that the same problem affects all mathematical objects. See also Kitcher (1978).
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Field has pointed out, that it looks as though those who deny the
existence of mathematical objects will have an easier time dealing
with the puzzles.t? However, I would add that mathematical realists
are not committed to claims about mathematical objects beyond
those they hold by virtue of endorsing the claims of mathematics.
Since mathematics recognizes no facts of the matter in the puzzling
cases, mathematical realists are free to develop solutions that do not
recognize them either.

Let us also note that if mathematical realism is in trouble because
of the incompleteness of mathematical objects, then other forms of
realism are in trouble because of the analogous incompleteness of
the objects they recognize. Suppose, to adapt an example of Quine’s,
that one is a realist about both tables and molecules.2® According to
the reasoning used to generate the puzzles concerning mathematical
objects, the table should be identical to some swarm of molecules,
but no evidence, physical or otherwise, determines which of the
many swarms it is. Or take some person, say Frege, and his body,
Some time during its duration this body was identical to Frege him-
self. But what evidence can determine when Frege began and when
his body ceased to be him? Turning to more theoretical entities, we
can ask whether ordinary bodies are identical to the space-time
regions they occupy or to the mereological sums of their undetached
parts, and find no evidence to decide among the alternatives. Thus
the incompleteness problem threatens to arise whenever we combine
two previously separate universes of discourse into one joint uni-
verse, for then we can frame identities that previously did not makes
sense.?!

4, SOME MORALS FOR REALISTS

What morals can we draw from this discussion of the difficulties
with realism? First, that we realists must provide an epistemology
for mathematics. It need not be based upon some causal connection
between us and the mathematical realm, but its account of the gen-
eration of mathematical knowledge should recognize only natural

 Field (1989), 22-3. # Quine (1981b).

2t The incompleteness of (mathematical) objects is refated to what Quine has
called ontological relativity, but it would take us too far afield to sort out exactly how
they are related. For further discussion see Resnik (1997).
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processes. I don’t want to mire in questions about the meaning of
‘natural’ or the scope of science, so let me simply say that ideally the
processes in question should be countenanced by established
branches of science. However, the processes producing our beliefs
need not constitute their justification. This might come later. The
view I shall develop in Part Two is that we arrive at our mathemat-
ical beliefs by making up mathematical theories. Consequently, it
might happen that we do not even believe, much less know, some of
the mathematical principles we introduce. Yet this does not preclude
their evolving into a body of knowledge once they acquire sufficient
supporting evidence.

Second, philosophers of mathematics of every stripe should
address the problem of the incompleteness of mathematical and
other objects, Solving it for the mathematical case may be easy for
those who hold that mathematics is just a system of games or a use-
ful fiction. But it is preferable to seek a more general solution, and
here it is not evident that mathematical realists will be at a disadvan-
tage.

Third, realism about mathematical objects does not commit one
to transcendent theories of reference, or to the causal theory of ref-
erence in particular, Thus the immanent approach I favour still
remains an option.

5. AN ASIDE: PENELOPE MADDY'S PERCEIVABLE
SETS

Penelope Maddy meets the realist’s epistemological challenges by
introducing the kind of assumptions I would rather avoid. She
attributes physical properties to certain mathematical objects. To
begin, she believes that the epistemology of mathematics parallels
that of the empirical sciences in that both mathematics and the
other sciences support theoretical hypotheses with evidence drawn
from a more certain and more elementary database. Her writings
have focused on the case of set theory, whose higher axioms, such as
the infinity and the power set axioms, she argues, are supported by
clementary observational knowledge about sets.

Yes, observational knowledge about sets. Maddy breaks with tra-
ditional realists by denying that all sets are causally inert and outside
of space-time. On her view, sets of located objects are located when
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and where their members are. Thus with the books on my desk there
are also the set of each, the set of any two, the set of any three . . .,
the set of them all, the set of any one of these sets, and so on.
Indeed, an entire model of Zermelo—Fraenkel set theory exists right
where my books are.

Since there are sets in front of us, we might be able to observe
them. And Maddy thinks that we can—at least we can see some of
the less complicated sets, the set of my books, for example, just as we
can see the books themselves. That is why is possible for us to gain
observational knowledge about sets. To buttress this she explains
how an account of our perception of these sets can be integrated
into contemporary perceptual psychelogy. Now my criticism of
Maddy’s view will not turn upon the details of the psychological
theories to which she appeals, so we need not concern ourselves with
them or with their scientific merit. I will grant that if sets are
medium-sized physical objects on a par with rows of books, then it
would be plausible to regard them as observable. Perhaps the fact
that so many people are unaware of the sets right in front of them
can be attributed to their ignorance.

Maddy’s theory stands and falls with her assumption that certain
sets are located along with their members and are no less observable
than those members. Now why should we accept this heterodox
assumption? Maddy’s answer; if one already recognizes the exist-
ence of sets, there is no ‘real obstacle’ to holding that sets formed
from spatio-temporal objects are located along with those objects,
and that we acquire some beliefs about sets directly through percep-
tion.??

Now while it may be consistent to hold that sets of physical
objects are located in space-time, it is not clear that this makes them
into genuine physical objects. For if these sets are physical objects,
they should be distinguishable via their physical properties. But the
physical sets occupy exactly the same spatio-temporal places as their
members and they participate in exactly the same events, so our
usual means for distinguishing physical objects do not apply to
them. But then what physical properties distinguish a set of two
books from the set of this set or the set of non-empty subsets of this
set? Maddy would respond that they differ from each other through
having different members. But having different members is a property

2 Maddy (1990), 58-63.
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of sets, and it is a physical property only by virtue of Maddy’s stipu-
lation that these sets are physical objects. Thus appealing to this
property begs the question of whether sets are physical.

What about Maddy’s claim that we can see certain sets? On her
view, when we look into a carton of eggs and observe that there are
three eggs in it, we have acquired a perceptual belief about the set of
eggs in the carton, namely that it has three members; and, hence, we
can learn about sets through direct perception. Now by looking at a
computer print-out, trained observers learn things about electrons,
genes, or the interiors of stars, none of which can be directly per-
ceived. Thus, contrary to Maddy's inference, acquiring beliefs about
sets via perception need not entail perceiving the sets themselves,

Maddy would respond that scientists infer their beliefs about elec-
trons and from observation reports and their theories, and that
empirical evidence, based upon reaction time studies, shows that we
form beliefs, like the belief that the carton contains three eggs, too
rapidly to infer them. But this shows little. For it is not at all unusu-
al for a novice to take some time to conclude what an expert can see
instantly and automatically. Mechanics and physicians can immedi-
ately ‘smell’ a specific malady in an engine or person. And it is likely
that trained scientists can immediately see that some subatomic phe-~
nomenon has occurred in a cloud chamber,

Maddy’s epistemology does not appeal to the ideal of invoking
only processes countenanced by established branches of science.
Perceptual psychology does not speak of perception of sets, at least
not yet. At best she has offered us a consistent picture of how this
branch of science might come to recognize the perception of sets.
But it is a picture based upon assumptions and inferences that go
against the grain. To review them, first, the only properties that dis-
tinguish sets of physical objects from aggregates of their members
are properties of sets. These are dubious candidates for physical
properties. Secondly, coming to know something about a thing by
means of perception does not entail that we can perceive that
thing.?3

* For a fuller critical discussion of Maddy's views, see Chihara (1990), Balaguer
(1994), Lavine (1992}, and Tieszen (1994), I am indebted in part to their criticisms.
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Neutral Epistemology
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INTRODUCTION TO
PART TWO

In the next chapters I begin to develop an epistemology for math-
ematics, which I will complete in Part Three where I expound my
structuralism. The view I present in this part is ‘neutral’ only in the
sense of being largely independent of structuralism. It derives from
Quine’s epistemology of science, and so in its basic thrust it is postu-
lational and holistic. On this view, we postulate mathematical
objects for the purpose of providing science with richer inferential
and descriptive methods. To postulate something is simply to make
up a theory that asserts that it exists. Doing this is no more occult
than writing fiction-—a process with which mathematical anti-real-
ists have no quarrel.

Taking mathematical objects as posits removes the mystery of
how we came to form mathematical beliefs, but it raises other ques-
tions that I must address before my epistemology can be complete.
These include the following: What distinguishes mathematics from
fiction? Is a postulational epistemology compatible with my realism?
What makes our mathematical theories or beliefs abowr mathemati-
cal objects?

These questions primarily concern the genesis of our mathemati-
cal knowledge. Others concern its justification: what kind of evid-
ence do we have for our mathematical beliefs? What roles do logical
deduction, proof, and computation play in justifying these beliefs?
How do we justify introducing new mathematical axioms or new
kinds of mathematical objects? In answering these questions I will
be presupposing a holistic approach to evidence: no claim of theor-
etical science, including those of mathematics, can be confirmed or
refuted in isolation but only as part of a system of hypotheses,
Holism fits nicely with a postulational account of the genesis of
mathematical knowledge, for it explains why we should not expect to
find pre-theoretic evidence for mathematical objects. On my
account, wltimately our evidence for mathematics and mathematical
objects is their usefulness in science and practical life. Thus an indis-
pensability argument is crucial to my epistemology.
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A major objection to holism is that the notion of evidence used in
science differs markedly from that the holist account of it and from
the notion of evidence used in mathematics. Scientists do take
experimental results as bearing upon specific hypotheses instead of
the entire system of science, and mathematicians virtually never use
anything resembling an experiment to test their theories. To answer
this objection I will argue that not only is global holism compatible
with overridable local conceptions of evidence, but there are also
pragmatic grounds, based upon the good for science as a whole, for
promoting different local conceptions of evidence—especially the
local conception of mathematical evidence that differs as it does
from that found in the rest of science.

I will also need to address some delicate issues concerning logic,
since logical deduction plays a more central role in mathematics
than it does in any of the natural sciences. To many, logical deduc-
tion remains a solid source of a priori knowledge and necessary
truth.

If logical truths are necessary, then they must have some proper-
ty, besides simply being true, that makes them necessary, And, if we
are to be realists, its obtaining must be independent of our conven-
tions, our choice of logical rules, and the like, I shall argue that we
have no reason for believing that anything distinguishes so-called
logical truths from other truths in this way. In my view, judgements
of logicality are normative rather than descriptive.

This is not to say that the statements we call logically true are not
true or that we don’t know them. (I am not denying the (plain) truth
of if 0<I,then0<1or0= 1, forinstance.) So this leaves the pos-
sibility of their being known a priori—and they are in a sense. Logic
plays such a central role in connecting our theories with experi-
mental evidence that it would be ‘illogical’ to take some experiment
as refuting it. Thus we place our logical truths outside the circuit by
which we test our beliefs, thereby allowing no experience to confirm
or refute them. Yet if, by our lights, our system of beliefs fails to fit
experience, we have the option of revising our notion of fitting
experience—even to the extent of revising the limits of logic, alter-
ing our inferential norms, and in so doing changing what we count
as logically true, Thus even logic is not a priori in the sense of being
immune to revision in the light of experience.



6

The Elusive Distinction between
Mathematics and Natural Science

I will mark no sharp epistemic distinction between mathematics and
the rest of science. Part of my reason for taking this course is that I
know of no viable way of drawing such a distinction that is also
open to realists. Truth mamifactured by convention is no option for
them. Frege's programme for reducing mathematics to logic is not
technically convincing, and, in any case, it depends upon realism
about logical truth, which I reject. Gédelean intuition is too myster-
fous, and so on. I need not belabour these considerations; they are
familiar points in the philosophy of mathematics.

Still it is surprising how the view persists that the epistemology of
mathematics must be different in kind from the epistemology of
empirical science. One of the major reasons for this, I think, is that
most philosophers think that mathematical objects differ metaphys-
ically from the objects the other sciences study. They have no loca-
tion in space-time; they are causally inert and experimentally
undetectable. I agree that mathematical objects have these features,
and I also believe that most of the objects the other sciences study
do not share them. But enough physical objects do share them to
break down the epistemic and ontic barriers between mathematics
and the rest of science. I shall argue this by examining the ontology
of theoretical physics.!

! Few have questioned the ontic distinction between mathematics and science
that so much philosophy of mathematics presupposes. LaVerne Shelton challenged
the abstract-concrete distinction in an unpublished address to the American
Philosophical Association (Shelton (1980)). Susan Hale continued this line in her dis-
sertation and related articles (Hale (19884, 1988b)). Hartry Field's taking space-time
points and regions as a concrete, ontological foundation for his nominalization of
physics prompted me to criticize his presupposition: Resnik (1985a).
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1. HOW PHYSICS BLURS THE
MATHEMATICAL/PHYSICAL DISTINCTION

Most anti-realists in recent philosophy of mathematics have been
realists about theoretical physics. Typically, they argue their anti-
realism by emphasizing that mathematical objects (if there are any)
present different and more intractable epistemological problems
than those introduced in physics, since the latter are in principle
detectable due to their being located in space-time and being causal-
ly active. In the next sections I will employ examples from contem-
porary physics and cosmology to undercut the supposed sharp
distinction between mathematical and physical objects that under-
lies contemporary thinking about the epistemology of mathematics.
Of course, anti-realists in the philosophy of science may well object
to these examples as fictitious, but, this is not an option for most
anti-realists in the philosophy of mathematics.

L1, Quantum Particles

Let me start by considering some physical objects that appear to be
as much mathematical as physical. I have in mind quantum particles.
The term ‘particle’ brings to mind the image of a tiny object located
in space-time. But, on what seems to be the consensus view of the
puzzling entities of quantum physics, this image will not do. Most
guantum particles do not have definite locations, masses, velocities,
spin, or other physical properties most of the time. Quantum
mechanics allows us to calculate the probability that a particle of a
given type has a given ‘observable’ property, such as having a posi-
tion, momentum, or spin in a given direction. (Although texts use
the term ‘observable’, one needs instruments to determine the pres-
ence of these properties.) But this does not imply even that if we, say,
detect a photon in a given region of space-time, then the photon
occupied that position prior to our attempts to detect it or that the
photon would have been in that region even if we had not attempted
to detect it. Prior to its detection a photon is typically in a state that
is technically called a superposition of definite (or pure) states, and
quantum theory contains no explanation of how a photon or any
other quantum system goes from a superposition into a definite
state. Recent mathematical critiques of hidden variable theories
indicate that this mysterious feature of quantum mechanics is virtu-
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ally unavoidable.? In spite of this, one might still say that quantum
particles are tiny bits of matter with very weird properties—ones
that are only partially analogous to classical physical properties. But
there is a further problem.

When we have a system of several particles of the same kind—
two photons, for example—there are no quantum-mechanical
means for tagging them at the beginning of an interaction and re-
identifying them at the end of it. Suppose, for example, we run an
experiment in which we detect two photons one above the other at
one location and later detect two photons, again one above the
other, at a location a bit to the right of the first. Intuitively, they are
the same two photons, and one would expect that there is a fact as to
whether the photon on top at the beginning is alse on top at the end
of the experiment. But quantum theory recognizes no such fact; for
such a fact must be described by reference to the trajectories the par-
ticles take in travelling between the two locations, Since their initial
and final positions in space-time are fixed, they have definite trajec-
tories only if they have definite velocities, violating the famous
uncertainty principle of quantum mechanics. The situation is even
worse when we combine quantum theory with special relativity, for
then there is no fact as to whether we even have the same two pho-
tons, It might be, for example, that one photon splits into an elee-
tron—positron pair, whose members in turn annihilate one another
and produce the photon we detect. Moreover, between our two
detections such processes might occur indefinitely many times.
Actually, the same is true of experiments ‘“tracking’ a single photon.
The one with which we start might be destroyed before we see the
one with which we end.

This means that quantum particles are incomplete in an even
more radical sense than mathematical objects. For in mathematics
there may be no fact of the matter as to whether mathematical
objects treated by different branches of mathematics are the same or
different—whether; for example, a given real number is a given set—
but in quantum physics there may be gaps concerning the identities
of objects within the same universe of discourse.

One way to avoid this incompleteness is to think of particles as
features of space-time—more like fields—rather than as bodies

2 See Shimony (1989).
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travelling through space-time. This view is seconded in the following
passage from a recent account of particle physics directed at other
scientists:

In the most sophisticated form of quantum theory, all entities are described
by fields. Just as the photon is most obviously a manifestation of the elec-
tromagnetic field, so too is an electron taken to be a manifestation of an
electron field . . . Any one individual electron wavefront may be thought of
as a particular frequency excitation of the field and may be localized to a
greater or lesser extent dependent upon its interaction.?

Now by thinking of the behaviour of iron filings around a magnet
we can get an intuitive grasp of what a magnetic field is, how it hasa
source, and an intensity or direction at a given point. However,
quantum fields are not distributions of physical forces; rather they
are, roughly, distributions of probabilities, As the electron field
varies its intensity over space-time so does the probability of an
interaction involving electrons.* And remember, we cannot think of
the electrons as definitely present prior to any electron interaction
we observe. Nor are these probabilities merely statistical. (When we
measure the strength of an ordinary magnetic field, for example,
there is some probability of failing to get a theoretically predicted
true value. But this probability can be construed statistically.) In the
quantum fields the probabilities must be regarded as irreducible fea-
tures of the fields themselves (or of space-time).

This suggests to me that quantum fields straddle the border
between mathematics and physics. Under certain conditions they
have ‘observable’ physical properties, under others they are little dif-
ferent from functions from space-time to probabilities. ‘But,” one
will object, ‘surely, fields are not the functions themselves; the func-
tions simply represent their behaviour.” Now this ploy might be open
to those taking an anti-realist stance towards quantum fields, but my
concern is with realists. On their view, a field is real even when in a
superposition of observable states. The realist objectors are commit-
ted to the superposition’s being a physical substance. Let them use
the term ‘physical’ here. I am not claiming that these entities are def-
initely mathematical. But let us not let the term ‘physical’ obscure
how unlike ordinary physical objects (or ordinary fields) quantum

3 8ee Dood (1984), also Teller (1990},
4 Cf. Teller (1990, 612-13.
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fields in superpositions are. Remember, they have manifestations,
but they don’t cause them. And some, such as superpositions of
space-time position, may become localized or take on a definite ori-
entation, but prior to that they ‘occupy’ all of space-time or have
every orientation.

David Bohm's interpretation of quantum physics lends credibil-
ity to viewing quantum objects as quasi-mathematical.® To try to
make sense of the paradoxical features of quantum particles, Bohm
proposed taking a particle’s wave function as physically significant
instead of a mere mathematical means for representing the particle’s
behaviour. It is to be a force field of sorts that guides the particle
from one place to another. But where the usual theory treats the par-
ticle as in a superposition, Bohm’s theory interprets the wave func-
tion (now viewed as a force field) as splitting into parts with only one
part accompanying the particle. The remaining parts of the wave
Sunctionfforce field are completely undetectable, are causally inert, and
have no effects on other particles.® Furthermore, although thereis a
fact of the matter as to which part of the wave function accompa-
nies the particle, and hence as to which trajectory the particle takes,
no physical evidence will reveal these facts to observers. Bohm’s pro-
posal blurs the distinction between mathematical and physical
objects, because the vacant parts of wave function are undetectable
and causally inert. (But presumably they are located in space-time
and thus not fully abstract.)

Making sense of the paradoxical features of quantum mechanics
has motivated much work in the philosophy of physics, and has dri-
ven several prominent physicists and philosophers of science
towards anti-realist views of the theory. But our concern is with
those who conjoin realism about science with anti-realism about
mathematics. Quantum mechanics challenges them to explain quan-
tum particles in uncontroversially physical terms.

How might they respond? One approach would be to identify
probabilities with propensities (of quantum systems to yield certain
kinds of interactions) and quantum fields with distributions of
propensities, and then argue that both the distributions and the
propensities themselves are physical entities. But it is unclear to me

% I rely here on David Albert’s exposition of Bohm’s views. See Albert (1994).
& Ibid. 66.
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how the case that these are physically real could be any more com-
pelling than the case for the physical reality of gquantum wave func-
tions or quantum fields. Either case involves sacrificing the kinds of
properties and causal powers we usually think are essential to physi-
cal objects.”

1.2. Undetectable Physical Objects

According to most philosophers of mathematics, the major epis-
temic difference between physical and mathematical objects is that
the latter cannot participate in causal processes that would permit us
to detect them. It is pertinent, then, that physicists now recognize
physical entities suffering from the very epistemic disability ascribed
to mathematical objects. Take, for example, the photon-electron—
positron-photon transformations we discussed earlier. Quantum
field theory posits processes of this type that happen so fast that
they are in principle undetectable. Virtual processes, as they are
called, need not even conserve energy or momentum so long as the
total processes of which they are components do. If physicists even-
tually adopt Bohm’s interpretation of quantum mechanics, then
most physical objects will be empty, physically undetectable wave
fronts! For a final example, let us turn to cosmology and the interi-
ors of black holes in space-time. According to physicist Clifford
Will, ‘there is no way for any external observer to determine, for
example, the total number of baryons [inside a black hole] and
‘there must exist [such] a singularity of space-time at which the path
or world line of an observer who hits it must terminate, and physics
as we know it must break down’.®

1 would expect someone to reply at this point that, unlike mathe-

? Compare this with R. I. G, Hughes’s discussion of his interpretation of quan-
tum mechanics via ‘latencies”:

The properties of classical systems were summarized by its state . . . The latencies
of quantum physics are also represented by the state—here the state vector. The
fatencies assign probabilities to measurement outcomes . . . A quantum measure-
ment should be regarded neither as revealing a property of the system nor as cre-
ating that property, for the simple reason that quantam systems do not have
properties . . , For, as Born pointed out, the “waves’ . . , are ‘probability waves’. . .
Similarly, to ascribe a latency to a system with respect to its position is just to say
that there is an extended region of space within which there is a nonzero probab-
ility of finding it. (Hughes (1989), 302-3.)

8 Will (1989).
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matical objects, the interiors of black holes, virtual processes,
Bohm'’s wave fronts, and other examples that one might cite are sup-
posed to be part of the spatio-temporal causal network. Yes, virtual
processes are supposed to be physically real processes that happen
too rapidly to detect, but it is not clear that the interiors of black
holes or the vacant parts of Bohm’s wave fronts are supposed to be
physical in any ordinary sense.®

‘Well, aren’t empirical theories committed to them?, the objector
might continue. Yes, but the same theories are also committed to
mathematical objects. More to the point, these examples show that
combining mathematical principles with empirical hypotheses can
commit one to objects whose status is neither clearly mathematical
nor clearly physical.

2. SOME OTHER ATTEMPTS TO DISTINGUISH
MATHEMATICAL FROM PHYSICAL OBIECTS

We began by observing that it is usual for philosophers of math-
ematics to distinguish between supposedly abstract, mathematical
objects and supposedly concrete, physical ones by appealing to the
spatio-temporal locatability, causal powers, or detectability of the
latter. We now see that distinguishing between abstract and concrete
objects in this way is obsolete. Contemporary physics is willing to
entertain theories positing entities that might be undetectable or not
in space-time (in any ordinary sense) or causally inert. Still, I can
think of other ways in which one might distinguish the mathemati-
cal from the physical, and I would like to make some brief points
against them.

One of these ways is to discriminate between the physical and the
mathematical by claiming that mathematical objects cannot change
their properties. But this will not stand up to a first set of objections

# These objects are not what Jody Azzouni calls thick posits, that is, we don’t need
‘to interact causally with them in some way to guarantee that they are empirically
real’, Rather, on Azzouni’s view they would be thin posits, whose kind includes cer-
tain abstract entities, See Azzouni (1994}, 65-6, 74. He and [ differ concerning math-
ematical objects, however, all of which he calls ultrathin posits. To continue to put the
matter in his terms, I will maintain in Chapter 8 that initially our epistemic practices
treated mathematical objects as thin—part of their justification was their success in
applications—but our practices have developed to the point where we are willing to
entertain mathematical posits which we treat as witrathin,
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either. Numbers do change some of their properties. Just as Smith
may be thin as a child, and not as an adult, the number 60 may reg-
ister Smith’s height in inches at age 12 and not at a later age. Now
one might object that if we take the property in question to be regis-
tering Smith's height at age 12 then it is an eternal property of 60
instead of a temporary one. But if we must add a time specification
here, then we should also do so for other properties, such as the prop-
erty of being thin. Yet if we replace thin with thin at t for an appro-
priate time ¢, then Smith will not change properties either. Perhaps
one will object that registering Smith's height at age 12 should not
count, because it is just an accidental property of a number. But
physical objects change only their accidental properties too. Perhaps
the property of registering Smith’s height in inches should not count
because it is not a real property. But what makes it unreal? Surely
not simply because it is a relational property, since electrons, say,
have properties only by virtue of their relations to other particles,

Similar difficulties surround the proposal that no mathematical
object can participate in an event while every physical object can. If
to participate in an event is to be involved in a causal interaction
constituting all or part of the event, then we have already seen
reasons for doubting that certain supposedly physical objects can
participate in events, On the other hand, if to participate in an event
is to change one’s properties during the course of the event, then the
numbers and functions used to characterize physical events do
change their properties during such events. Now the most persuasive
way around this point would be to show that every event can be fully
and precisely described without referring to mathematical objects.
We know that we can do this in some elementary cases, but we have
little reason to think that we can do this with events involving sub-
atomic particles, whose basic features do not correspond to anything
uncontroversially physical.

3. OUR EPISTEMIC ACCESS TO SPACE-TIME POINTS

The acceptance of Einstein's general theory of relativity has led
many philosophers to regard the geometry of space-time as an
empirical theory and space-time itself as a physical entity.
Capitalizing on this, a number of philosophers of mathematics, in
particular both Hartry Field and Geoffrey Hellman, have declared it



MATHEMATICS AND NATURAL SCIENCE 109

acceptable for mathematical anti-realists to employ space-time
points in their constructions.'® Now whether space-time points are
mathematical or physical, abstract or concrete, there will be no real
gain in using them to dispense with (other) mathematical objects
unless they are more epistemically accessible than the objects they
replace.

Hartry Field gives us reasons for thinking that they are. First, we
can observationally test theories about the structure of space-time,
as we have tested the general theory of relativity. Second, space-time
points and regions are part of space-time, and thus part of our phys-
ical world. Some, he says, even fall within our field of vision. Finally,
if we take the eminently plausible step of identifying fields with
properties of space-time, then space-time points and regions become
causal agents}

Let us consider Field’s reasons one at a time. I grant that we can
observationally test theories about the structure of space-time. But
we do so by virtue of testing larger bodies of theory that contain a
space-time theory, and by holding various auxiliary hypotheses
fixed. Furthermore, we can apply such indirect tests only to some
geometric hypothesis, such as those concerning the metric of space-
time. In particular, I know of no way of testing the claim that space-
time points exist. What is more, if these indirect tests are taken to
show that space-time theory is empirically testable, then the same
can be said for certain mathematical theories. For example, with the
appropriate set of auxiliary hypotheses we can use computer runs to
test certain claims about Turing machines. (1 will say more about
these issues in the next two chapters.) So far, then, there seems to be
no epistemically significant difference between points and numbers.

But, according to Field, points and regions fall within our field of
vision. I am not sure what he means when he says this. He may just
mean that they are located in front of our eyes, Of course, that does
not imply that we can see them, any more than it does in the case of
microscopic bits of matter, virtual processes, or Bohm’s wave fronts.
On the other hand, he may mean that points and regions are among
the things we could see if we paid enough attention, knew what to
look for, and so on. I doubt he meant to include points or tiny
regions. So his thought must have been that we can see medium-
sized regions and thereby ground a theory which posits smaller ones

10 Field (1980), Hellman (1989). ¥ Field (1989), pp. 68-70.
P
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and points. If we see regions, we do so because the matter in them
reflects light. But if instead of attributing this ability to matter, we
attribute it directly to portions of space-time, then we see regions
because of their causal powers. So the cogency of Field’s second
reason stands and falls with his third, his attribution of causal pow-
ers to points and regions,

Suppose, then, that we attribute the causal powers of bits of mat-
ter and physical fields to the space-time regions they occupy. Then
our epistemic access to certain medium-sized regions of space-time
is unproblematic. But that still leaves points and smaller regions. We
should not conclude that the accessibility of the larger transfers to
the smaller, After all, undetectable virtual processes differ from ordi-
nary quantuin processes only in their brevity,

What, then, gives us our epistemic access to points and tiny
regions? I think we should distinguish two questions here: (1) How
did we come to know about points? (2) Given what we know now,
how might we detect them? The answer to (1) is that we inherited a
physical framework positing points from our scientific ancestors.
They introduced them in the course of describing the continuity of
space and time. We have accepted this hypothesis, because it was and
remains the simplest way of formulating our physics and accounting
for our informal experience of space and time. (Things seem to
move continuously through space.) As to (2), given what we know
now, I can think of no reason why we should be able to detect points
or very small space-time regions (as opposed to larger regions con-
taining them).

4. MORALS FOR THE EPISTEMOLOGY OF
MATHEMATICS

I will not go so far as to claim that the previous sections constitute
fatal blows to the distinctions between mathematical and physical
objects that I have considered, but they do show that some careful
work must be done before we can take these distinctions for granted.
If this is correct, then much contemporary philosophy of mathemat-
ics has been based upon a dubious and poorly defended presupposi-
tion. Nominalists and other anti-realists should not dismiss realism
on the grounds that the epistemology of objects posited by physics
will automatically be less problematic than that for mathematical
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objects. Nor should we realists assume that our epistemology must
be radically different from ordinary scientific epistemology.

The epistemology of mathematics that I shall develop over the
next few chapters is quite similar to the epistemology of space-time
points and many other physical objects. Our mathematical predeces-
sors in antiguity posited numbers in the course of developing a
framework for making sense of their experience with counting,
measuring, and record-keeping. And, as with space-time points, we
can empirically test certain hypotheses about numbers—modulo an
appropriate set of auxiliary hypotheses—but the bulk of our evid-
ence for numbers has been the success of the framework positing
them.



7

Holism: Evidence in Science and
Mathematics

I want to set aside for now the question of how we generate our
mathematical beliefs and theories, and focus on questions concern-
ing their justification. In separating questions of justification from
those of genesis I obviously do not plan to argue that simply going
through the processes that lead us to mathematical beliefs is already
enough to justify them. Since I have already announced that my
account of the genesis of our mathematical knowledge will be pos-
tulational, it should come as no surprise that I will opt for an indi-
rect theory of justification. It is not inconsistent to hold that we first
hypothesize mathematical entities and then seek (and sometimes
find) direct evidence for them-—say, in the form of mathematical
intuition. But I suspect that anyone who believes that we can know
mathematical objects directly would find the idea that we first postu-
late these very objects both unnatural and extraneous, (It would not
be unnatural to maintain—as, indeed, Maddy has—that we know
some mathematical objects (for example, finite sets) directly and
posit others (for example, infinite sets).

Of course, we justify many of our mathematical beliefs by prov-
ing them. But plainly this is only part of the story of mathematical
justification, since proofs can carry no more justificatory weight
than the premisses—the axioms—upon which they rest. Once one
makes this observation, it is hard to resist the temptation to narrow
the question of justification to that of the axioms and try to develop
a foundational account of mathematical knowledge. We should
resist this temptation. Historically many, if not most, branches of
mathematics have become settled bodies of knowledge prior to their
being axiomatized. When mathematicians have axiomatized them
they have done so more with an eye to organizing and systematizing
them than justifying them. Moreover, in selecting their axioms
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they have been more concerned with obtaining elegant, minimal,
and independent systems than with providing epistemic founda-
tions,

You might find these historical considerations irrelevant, if you
thought that you could justify various branches of mathematics by
reconstructing their foundations.! But I find it hard to have much
confidence in foundational approaches to the epistemology of math-
ematics. Logicism did not work.? Truth by convention will not work
for realists, for whom truth is independent of our theorizing. But
what about justification by convention or stipulation, which takes
the axioms as justified by stipulation? If this simply means that
axioms are like hypotheses and revisable if they yield unwanted con-
clusions, then we do not have foundationalism. If it means that they
are like clauses in a definition, defining the mathematical framework
to which they belong, then we are still up against the problem of
finding evidence that our definitions are not vacuous. This is not
something we can make true by definition, even if the only condition
we require for being justified in believing a set of axioms simpliciter
is that we are justified in believing them consistent.3

Consistency proofs can help, but ultimately they transfer the
demand for evidence to some other system, and we would need to
break this cycle. According to a traditional view, we can give a non-
mathematical demonstration of the consistency of a system by
exhibiting a so-called concrete model for it. But simply pointing to
some part of the physical world is not enough; we must characterize
it in sentential terms. So, in the end, the method of concrete models
amounts to translating mathematical sentences into physical terms.
Philosophers of science often illustrate this by articulating a geomet-
ry in terms of light rays. The success of the resulting optical theory
is supposed to be evidence for the consistency of the geometry. Of
course, if this is the way we ultimately establish the consistency of

v Cf. Mark Steiner’s discussion of the logician midwife in Steiner (1975).

2 Some philosophers have argued that logicism will work for second-order num-
ber theory. But it is debatable whether the axioms they have proposed are logical or
analytic, and, in any case, the resulting system still falls short of supplying the math-
ematical needs of science. See Wright (1983) and Resnik (1984).

3 At times Hilbert stated such a view, and lately Mark Balaguer has See Hilbent
{1971) and Balaguer (1995).
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our mathematical theories, then our evidence is ultimately empirical
and the epistemology of mathematics is non-foundational ¢

We sometimes justify believing in (the truth or consistency of)
some mathematical theories by appealing to others. But because [
know of no convincing theory of how to bottom this out in direct
justifications, my own view is that some mathematics must be justi-
fied indirectly in terms of its consequences. This raises the question
of what counts as a relevant consequence. One might see mathemat-
ics as a totally distinct science that parallels the rest of science, as
Penelope Maddy has, or one might see mathematics as part of
science. If we take the former course, then the consequences must be
mathematical. What, then, shall we count as the evidential database?
Elementary truths of geometry, arithmetic, and set theory? Perhaps,
but how then are these known? Maddy has argued that we know the
elementary truths of set theory by intuition, but as we noted in
Chapter 5 the recent literature has been highly critical of her view. It
is unlikely that one can give any better account by focusing instead
on numbers or geometric figures.

The idea that the data immediately supporting mathematical the-
ories are such elementary truths seems right, but it also seems to me
that these truths are supported indirectly themselves via their con-
nection with so-called empirical truths, In this chapter and the next
I shall try to make the case for this by defending an epistemological
holism that includes both mathematics and the other sciences within
its scope.

1. THE INITIAL CASE FOR HOLISM

By holism I shall mean epistemic or confirmational holism, that is,
the thesis that no claim of theoretical science can be confirmed or
refuted in isolation but only as part of a system of hypotheses. The

4 The method of concrete models raises 2 number of complicated questions. Here
are two that occurred to me: (1) Must the physical theory be true or need it only be
predictively successful? (2) As we learned from the example of general relativity the-
ory, physical theories or methods may already embody the very mathematical
assumptions whose consistency may be in question. Does this change the epistemic
situation? Given the position I will develop in this chapter and next, I am inclined 10
say ‘No’ 10 (2), and to say “The theory need only be predictively successful’ to (1),



HOLISM 1S

nub of the argument for holism consists of an observation about
science and a simple point of logic.

The observation about science is simply that the statements of
any branch of theoretical science rarely logically imply observation-
al claims when taken by themselves, but do so only in conjunction
with certain other ‘auxiliary’ hypotheses. Thus, for example, taken in
isolation the statement that gasoline and water do not mix does not
imply that when I combine water and gasoline in a container I will
be able to observe them separate. It only does so under the assump-
tion that the container contains no other chemical that allows them
to homogenize, that the container is sufficiently transparent, that my
eyes are working, and so on. Hence—and this is the point of logic—
if a hypothesis H only implies an observational claim O when con-
joined with auxiliary assumptions 4, then we cannot deductively
infer the falsity of H from that of O but only that of the conjunction
of Hand 4, H & A. Furthermore, if we subscribe to a confirmation
theory, on which a set of hypotheses is confirmed by its true obser-
vatignal consequences, then the truth of O confirms not H but
rather H & A. Strictly speaking, it is systems of hypotheses rather
than individual ones to which the usual, deductively characterized,
notions of empirical content, confirmation, and falsification should
be applied.>

The previous paragraph has its roots in Pierre Duhem’s writings.
Duhem also defended the law of inertia and similar physical
hypotheses against the charges that they have no empirical content
and are unfalsifiable. One way of putting the law of inertia, you will
recall, is to say that a body remains at rest unless an external force is
imposed upon it. Since we can only determine whether something is

5 1 don't intend to delve into confirmation theory here, but some brief remarks
may be in order. The (Duhemian) points in the text apply to confirmation theories
which maintain that unless a system of hypotheses S implies an observation state-
ment O, O cannot confirm S (or belong to its empirical content) and the negation of
( cannot falsify S. I would think that something like the Duhemian points would
also apply to probabilistic approaches to confirmation, because the same considera-
tions that show that auxiliary hypotheses are necessary for forging deductive ties
between theory and observation are likely 1o apply to establishing probablistic rele-
vance. An exception to this is a Bayesian approach allowing agents to start with arbi-
twrary probability functions. Since both Bayesian and other probabilistic approaches
take mathematics as part of the background framework—the ‘underlying fogic'—in
which confirmation is defined, Quine’s extension of Duhem’s reasoning (see below)
does not apply to them.
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at rest by positing some observable reference system, this law, taken
by itself, implies no observational claims. Furthermore, by appropri-
ately changing reference systems we can guarantee that a body mov-
ing relative to our present system is at rest relative to the new one,
and thereby protect the law against falsifying instances, All this trou-
bled the law’s critics, because they believed that as a physical law it
should have an empirical content and be falsifiable. Duhem
responded to their worry by observing that the law readily produces
empirical consequences when conjoined with auxiliary hypotheses
fixing an inertial system; and that in needing auxiliaries to produce
empirical consequences, it was no different from many other theor-
etical principles of science, whose empirical content everyone readi-
ly acknowledged. Thus the law’s critics could not have it both ways:
to the extent that their critique challenged the empirical status of the
law of inertia it also challenged that of most other theoretical
hypotheses.®

Using logic to extract observational consequences from the law of
inertia also depends upon including mathematical principles among
the auxiliary hypotheses, Duhem drew no conclusions from this
about mathematics. But Quine subsequently did. Using the very
strategy Duhem used in defending the law of inertia, he argued that
even mathematical principles, which by most accounts are just as
unfalsifiable and devoid of empirical content as the law of inertia,
share in the empirical content of systems of hypotheses containing
them.”

1 do not know why Duhem did not come to the same conclusion
as Quine did. However, Frege, who anticipated Duhem’s remarks on
the law of inertia,® would have had a reason for not doing so, For
him, mathematical principles are logical principles, and as such
implied by the conjunction of the law and its physical auxiliaries.
Thus, to him, it would be a mistake to hold that deducing observa-
tional consequences from the law depends upon including mathe-
matical principles among the auxiliaries, and also a mistake to
conclude that failed predictions tell against a system of hypotheses
containing mathematical principles.

Quine would not accept this conclusion, because he restricts
logical implication to that afforded by first-order logic with identity.

¢ Duhem (1954}, * Quine (1990), 1415, ® Frege (1891).
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Still he recognizes at least this much of Frege's point: whatever the
limits of logic, systems of logical truths are immune from the direct
sort of empirical falsification to which systems of mathematical and
scientific hypotheses are subject. This emerges in the following pas-
sage from one of his recent books:

Now some one or more of the sentences in § are going to have to be
rescinded. We exempt some members of S from this threat on determining
that the fateful implication still holds without their help, Any purely logical
truth is thus exempted, since it adds nothing to what S would logically imply

anyway.?

In earlier writings Quine even suggested that we might revise logic to
save a theory in the face of contrary experience.!® At first sight this
seems to conflict with the passage just quoted, but in correspond-
ence Quine explained that when we revise logic to save a hypothesis
in the face of conflicting experience we effectively refuse to acknow-
ledge the ‘fateful implication” as such.

Now one might wonder how revising logic could even be an
option for us. For without logic the experience would be neither con-
nected to the theory nor contrary to it, It is true that without some
logical framework, hypothesis testing could not take place, but that
does not mean that the framework and the hypotheses tested cannot
both be provisional. Obviously, revisions in the framework must
come very gradually, since after changing it we will need to check on
whether previously tested hypotheses still pass muster. Thus instead
of denying all instances of, say, the law for distributing conjunction
over alternation, we might reject certain applications of it to quan-
tum phenomena, In this way there would be no danger of lapsing
into total incoherence. Nor need we abandon the norms surround-
ing deduction. While we may change, for example, what counts as an
implication or a contrary, we need not abandon norms that commit
us to what our theories imply or that prohibit us from simultaneous-
ly maintaining two contraries.

Still, even if we allow revisions in logic, it enjoys a special
methodological status by virtue of fixing the very framework
through which hypothesis testing takes place. We shall see that
because of the prominent place of deduction in its methodology,
mathematics shares the methodological halo with logic, which

? Quine (1990), 14, 16 For example, Quine (1951)
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makes it easier to protect from empirical refutation than the rest of
science.

2. OBJECTIONS TO HOLISM

The prominent place of deduction in the methodology of mathem-
atics also reinforces a form of objection to Quine’s holism that one
frequently encounters, namely that it fails to respect certain intu-
itions about mathematics and logic that seem to be firmly supported
by our mathematical and scientific experience. According to these
intuitions, mathematics and logic are fixed points in our investiga-
tion of the world, determining the limits of what we can entertain as
serious possibilities (to borrow a phrase from Isaac Levi).!! In a dif-
ferent vein, Charles Chihara and Charles Parsons have objected to
the concept of mathematical evidence that appears implicit in
Quine’s views on theory-acceptance confirmation.'? On the one
hand, Chihara observes that in deciding whether to add a new
axiom to set theory no set theorist is going to investigate its benefits
to the rest of science.!* On the other hand, Parsons has pointed out
that Quine’s holistic picture of science seems to belie the intuitively
clear separation between mathematics and the rest of science and to
provide no place for specific kinds of mathematical evidence that
many believe we have.14

In addition to this, some philosophers continue to hold, contrary
to both Quine and Duhem, that observational evidence can be seen
to bear upon specific hypotheses instead of whole systems. Clark
Glymour, for example, argues that by taking confirmation as a
three-termed relation between the evidence E, a hypothesis H, and a
theory T, we can see that for a fixed T, Eis relevant tosome Hin T
and not to others.!® Strictly speaking, Glymour is not denying
Duhem’s and Quine’s point about a two-termed confirmation rela-
tion but rather is taking an approach to confirmation that takes
account of their ideas. Nor does Glymour’s view imply that math-
ematical principles are never confirmed or confirmable by empirical

1t Levi (1980), 2 Parsons (1986). 13 Chihara (1990, 15.
14 Parsons (1986}, 380-3. He also presses these points quite forcefully in Parsons
(1979-80).

15 Glymour (1980).
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evidence. Indeed, by holding fixed a certain empirical theory of a
physical system exhibiting a given mathematical structure, we might
experimentally test certain mathematical conjectures concerning the
structure,

On the other hand, Elliott Sober explicitly directs his separatist
view of confirmation against Quine’s philosophy of mathematics
(and by implication Duhem’s philosophy of science).!$ Scientists
design tests, he observes, to decide between competing hypotheses.
They intend to put specific hypotheses at risk, and consequently take
the data to reflect upon just these hypotheses and not upon the
broader systems to which they belong.

Sober also notes that scientific tests never, or hardly ever, put
mathematical claims at the risk of being falsified. Because of this, he
argues, mathematics cannot share in the confirmation afforded to
those hypotheses that do pass such tests. In particular, the mathem-
atical theory of sets, in contrast to, say, the atomic hypothesis, can-
not claim empirical support. He concludes that the confirmational
indispensability argument based upon holism fails.

Sober’s remarks about scientific practice are certainly right.
Neither scientists nor mathematicians take scientific experiments as
providing evidence for the mathematics used in designing them. Yet,
as I will argue below, even within a holist framework one can make
sense of the scientific and mathematical practice to which Sober,
Chihara, and Parsons have called our attention.

Before I proceed to this and other matters let me comment briefly
on Sober’s case against confirmational holism. I take it that his point
in describing scientific practice is to exhibit rationally defensible
principles of methodology and experimental design that are sup-
posed to conflict with holism. I grant the rationality of the practice
Sober indicates, but I deny that it refutes holism. Holists may readi-
ly admit that it is rational for scientists to fix certain hypotheses (as
auxiliaries) while testing others, and thus also rational (in the practi-
cal sense) for them to act as if the evidence they obtain bears upon
the specific hypotheses being tested. Holists simply deny that, inde-
pendently of holding the ‘auxiliaries’ fixed, a logical (or a priori)
relationship obtains between the hypotheses tested and the evidence.
As Duhem put it, ‘these reasons of good sense [for favouring certain

1 Sober (1993).
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hypotheses] do not impose themselves with same implacable rigor
that the prescriptions of logic do.”'” I also doubt that Sober’s
account of confirmation applies to all non-mathematical hypothe-
ses, and for the sorts of reasons that Duhem emphasized.
Specifically, I doubt that many scientific framework and conserva-
tion principles—such as the continuity of space-time or the conser-
vation of mass-energy—can be put to the specific sorts of tests that
Sober has in mind. Yet we do not want to be forced to deny them
empirical content or to hold that the general theories containing
them have not been tested experimentally,

The Duhemian argument for holism transfers the burden of
proof to those who deny holism. I will call them separatists. Unless
they can refute Duhem’s point of logic or his observation concern-
ing theoretical hypotheses, they must show that the relations obtain-
ing between specific statements and sensory experience that holists
attribute to ‘good sense’ are backed by evidential relations holding
independently of our judgements of ‘good sense’.

Of course, the same goes for Quine’s extension of holism to
mathematics. At the time Quine proposed this extension, many
philosophers believed that the logicists’ identification of mathemat-
ics with logic or the positivists’ conventionalist doctrine of mathem-
atical truth could answer Quine and successfully account for the
objective apriority of mathematics. Largely as result of Quine's crit-
icisms of logicism and conventionalism, few philosophers today
believe that we now have a successful account of the apriority of
mathematics. Despite this, many remain convinced that, due to its
distinctive methodology and its special role in science, mathematics
must be a priori. I will not review Quine’s criticisms here, for they
are well known, and rehearsing them will not change contemporary
separatist attitudes. Instead I will show that ‘good sense’, in the form
of pragmatic rationality, underwrites the special role mathematics
has come to play in science and bids us to treat it as if it were known
a priori. This will undercut the methodologically grounded argu-
ments in favour of the apriority of mathematics.

17 Duhem (1954}, 217-18. In view of this remark, | would think that Duhem
would find Glymour’s ideas a congenial way of working out some of the principles
good sense endorses.
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3. TESTING SCIENTIFIC AND MATHEMATICAL
MODELS

Before proceeding any further it will be useful for us to have a more
detailed picture of the connection between scientific and mathemat-
ical theories and the evidence. The view that I favour is one devel-
oped with great precision by Henry Kyburg.'® On this view, in
science, engineering, and practical life we use combinations of math-
ematical and scientific principles to develop models (mini-theories)
that allow us to calculate values or ranges of values of the quantities
that interest us. Then we compare the values we have calculated with
the data we have obtained independently (or had independently
expected to obtain)} in order to decide whether the models are good
enough for our purposes. (In science, statistical techniques often
guide these decisions.)

Rather than use Kyburg’s technical approach, I will explain what
I have in mind with an example. Suppose that I want to cross Long
Island Sound in a small sailing boat equipped with a compass and
navigational charts, If I am near the New York City end of the
Sound and the day is clear, I will be able to see from one side to the
other. In this case I will not worry much about plotting a course,
much less the best course [ can. But if it is foggy or late in the day or
I am at the other, wider end of the Sound, I will not have that luxury.
The simplest thing I might do is to derive a compass heading by
‘walking’ a straight line drawn on my chart over to the chart’s com-
pass rose.'? I will be satisfied with this approach if I am confident
that it will bring me close enough to my destination. On the other
hand, I may worry about periodic variations in the Earth’s magnetic
field and try to determine how much to swing my straight line course
to compensate for it. Or I might plot a jagged line instead of a
straight one in order to compensate for the tides and the winds.
Whatever I do, it is likely that I will make certain simplifying
assumptions (for example, I will almost certainly use an average
wind velocity and probably an average current velocity). Thus the
most I can conclude is that, with a certain degree of confidence, the

8 Kyburg (1990).

¥ At a first pass we might take my ‘model’ to consist of my chart and parallel
rulers and the lines I draw. But at a decper level my model is a mini-theory incorpo-
rating (at least) some geography, assumptions about the reliability of my chart, and
geometric principles underwriting the use of the parallel rulers.
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course I plot will bring me within a certain distance of my destina-
tion. If the costs of missing it are high, then I will want this distance
to be relatively small and my degree of confidence to be relatively
high. The higher the costs, the more steps I will take to build more
factors into my calculations and to reduce my simplifying assump-
tions. I may even decide that I do not know enough about the tides
and weather to risk the trip. Or I may know these well, but be unable
to figure out how to calculate a sufficiently exact sequence of head-
ings to counteract their effects. Moreover, this might prompt me to
consult a mathematician rather than an oceanographer.

This example is supposed to illustrate how we combine scientific
and mathematical theories to build models that we assess in the light
of our previous experience with model building and the other fac-
tors we know. When we do not find that our models suffice for the
applications we want to make of them, then we may try to improve
upon their questionable assumptions either by making our idealiza-
tions more realistic (for example, in calculating the effects of the cur-
rent I can use a tide table to tell me how it will vary at different
stages of my voyage), or by improving our abilities to deal with com-
plications (for example, instead of working with straight lines and
parallel rules, I might plot my course using a navigational computer
that implements a non-linear, time-dependent function of the tides
and winds). This may even include starting over again with an
entirely different approach. For example, I might decide to borrow a
radio direction finder, use it to determine my current location every
20 minutes, and make rough and ready course corrections on the spot.

Discarding a model is not the same as falsifying the assumptions
on which it is based. Before I even begin to calculate, I know that a
model in which the tides exert no force during my trip is based upon
a false assumption. Hence finding that such a model is not good
enough is not the same as refuting its assumption about the tides.
But that does not mean that we cannot use idealizations to test
hypotheses. We build models based upon the hypothesis we want to
test, and then decide whether they yield values fitting the data well
enough, and better than models based upon competing hypotheses.
Ronald Laymon has pointed out that idealizations often supply the
keys to mathematically tractable applications of physical theories.?®

¢ See his nice discussion of the starlight deflections tests of general relativity:
Laymon (1984).
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Transferring a refutation from a whole model to one of its
hypotheses seems especially tricky, because in the face of a failed
prediction, proponents of a given hypothesis H might fairly ask,
‘“Why should we reject H when we already know that the prediction
was based upon a false idealization?’ Let me use another boat exam-
ple to illustrate how one might independently support an idealiza-
tion while rejecting a hypothesis.

Suppose that on a calm day I motor across the Sound starting at
a point where it is 10 miles wide using a boat which travels at 10
miles per hour. Let us also assume that I compute my compass head-
ing by drawing a straight line on my chart and ‘walking it’ to the
compass rose. If I arrive at the opposite shore 7 miles to the east of
my intended destination, I will know that this cannot be due entirely
to the tides, since at their strongest they run at 5 miles per hour. In
other words, I will know that the bias introduced by my idealization
is not enough to account for my setback, and that some of my other
assumptions must be at fault. Among other things, I assumed that
my chart was accurate, that I had correctly calculated my course,
that none of the steel fittings on the boat were too close to the com-
pass, and that I steered a steady course. Now, despite the fact that I
have already taken the falsity of my assumption about the tides for
granted, I will also have reason to doubt these other assumptions,
and perhaps, ultimately to decide that one or more were false. Thus
‘good sense’ can lead one to reject a hypothesis on the basis of a
failed model that contains other idealizations (false assumptions)
that one knowingly retains.?!

With this holistic model of theory testing at hand, let us now
return to the objections to Quine’s extension of holism to mathematics.

21 What about scientific explanation? When Newton derived Kepler’s law that the
orbit of a planet moving around the Sun is elliptical, he did so by ignoring the gravi-
tational effects of the other planets and heavenly bodies. What made this ‘good
enough’ even though it was based upon false assumptions? I am not sure how to
answer this. From the perspective of the sailing example, explanations seem to be a
bonus that comes with a theory that makes good predictions When we want to avoid
or bring about repetitions of an event, such as an aeroplane crash, it is important for
us to have a detailed and accurate explanation of the event, This will favour explana-
tions based upon theories that are good predictors. From this perspective two things
favoured Newton's explanation. First, it was based upon a theory that was useful in
predicting; second, although he knew that the orbits could not be exact ellipses
{Newton's theory told him that), the model fitted his data as well as any other con-
tender.
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Sober is right that in practice we rarely, if ever, put mathematical
laws to the sorts of specific tests that we apply to some scientific
hypotheses, But this does not imply that purely logical considera-
tions show that mathematics is immune to such testing. Because
entire models, rather than individual hypotheses, bear logical and
statistical relationships to experience, in order to conclude that an
experiment bears upon a particular hypothesis of a model we must
take its other assumptions, including its idealizations, for granted.
Typically justifying this will bring in pragmatic considerations, such
as theoretical simplicity and mathematical tractability. Further-
more, the success of scientific model building does support our prac-
tice of using mathematics to formulate and develop those models.
Moreover, if, as I argued in Chapter 3, this practice commits us to
the truth of the mathematics it deploys, its success also supports our
acceptance of this mathematics. Thus it is on pragmatic grounds
rather than logical ones that we shield mathematics from revision
when it occurs within a failed model.

Still, holists must acknowledge that Sober, as well as Chihara,
Maddy, and Parsons, are right: it is difficult to see the success of
such models, whether it be predictive, explanatory, or technological
success, as providing evidence, in any ordinary sense, for the individ-
ual mathematical principles used in scientific models or as providing
anything that mathematicians would recognize as mathematical
evidence. From a practical point of view, we may be justified in
believing that the mathematics used in science is true, but we still
need an account that will reconcile this global pragmatism with our
usual methods for supporting mathematical claims. I will provide
the foundations for such an account in the next section and develop
it further in the next chapter.

4. GLOBAL AND LOCAL THEORIES

What we take for granted in applying our models varies with the
context. In sketching my last example I presumed that it was reason-
able to take it for granted that the tidal currents in Long Island
Sound never exceed 5 miles per hour. But what I there assumed
never happens probably could happen, and it might even be reason-
able to speculate that it did happen in trying to explain some cata-
clysmic event.
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In practice, scientists working within a given context take large
blocks of theory for granted. Specialized scientific theories, for
example, molecular biology, are developed within a framework
which draws upon principles of more general theories, such as
chemistry, physics, and mathematics, Corresponding to this practice
we may roughly rank the sciences in terms of their scopes and
methodologies as more or less global (or correlatively, as more or
less Jocal). Mathematics is our most global theory as it is presup-
posed by physics, which in turn is presupposed by chemistry, etc.??
We not only use mathematical truths in physical derivations, we also
use mathematical standards to criticize physical arguments and
theories (for example, we complain about the mathematical
respectability of quantum field theory).2

Along with this rough division of the sciences a division of
labour has evolved; mathematicians normally do not meddle in
physics nor physicists in mathematics, and biologists and chemists
are normally not competent to suggest changes in mathematics or
physics even when they might want to see them changed. As a result
when something goes awry in a relatively local science (say, biology),
it is not likely that practitioners of more global sciences (say, physics
or mathematics) will hear of it, much less be moved to seek a solu-
tion through modifying their own more global theories. Nor is it
likely that the specialists in a local theory will tinker with global
background theories to resolve local anomalies.

This is not just a matter of sociology, it is good sense too.
Practical rationality counsels specialists to attempt to modify more
global theories only as a last resort; for they probably do not and
cannot know enough to tackle the task, and modifying a more glob-
al theory is likely to send reverberations into currently quiescent

22 1 don't count logic as our most global theory because I don’t take the set of
logical truths as constituting a theory. On the other hand, logical theory is metalogic,
which, as it is practised these days, is a branch of mathematics.

23 § realize that this ranking is not entirely realistic. On the one hand, mathemati-
cians’ complaints about physicists’ definitions or arguments frequently fall upon deaf
ears; thus physicists do not always adhere to the more global standards of mathemat-
ics. On the other hand, physicists frequently use instruments, such as cloud chambers,
wf!mse evidential status presupposes more local theories, for example, the chemistry
of gases.

Despite the term *more global’, the ranking is only a partial ordering. As current-
ly practised, neither political science nor molecular biology presuppose each other—
I presume.
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areas of science. Quine has expressed the point by saying that in
revising their theories, scientists should minimize mutilation,

Specialization has also fostered local methodologies and stand-
ards of evidence. These provisionally override more global and
holistic perspectives and declare data, obtained via local methods, to
bear on this or that local hypothesis. I should emphasize, however,
that on the account I am proposing, local conceptions of evidence,
in particular those that lead us to take data as confirming specific
hypotheses, are ultimately justified pragmatically in terms of their
ability to promote science as a whole and not on some a priori basis.
Hence the divisions we find in the practice and scope of the various
sciences should not be taken as refuting holism or as indicating hard
and fast epistemic divisions between mathematics and the so-called
empirical sciences. Nor do they show that it is invariably irrational
to modify some global principle to fix a more local problem.

Holists applaud the practice of physicists taking mathematics as
(provisionally) fixed. But instead of grounding their approval on the
supposed apriority of mathematics, they ground it on its more glob-
al status and the deleterious effects on science of revising it.

The methodological picture I have been sketching also allows for
a kind of localized holism, that is, one in which scientists look at
their speciality as a whole without taking into consideration how
accepting a hypothesis or positing new objects or processes might
influence other sciences, whether they be more global or more local.
For example, although the conversion from Newtonian mechanics
to quantum mechanics eventually reverberated in chemistry, physi-
cal considerations and evidence rather than chemical ones motivat-
ed the change. Similarly, purely mathematical considerations—such
as the need for solutions to equations—led to many of the great
advances in mathematics—such as the introduction of the complex
numbers—rather than their eventual and unforeseen, widespread
scientific applications.

In allowing that scientists may take a perspective that is locally
holistic, I do not want to suggest that this is invariably the best thing
for them to do. The early debates about the axiom of choice and
non-constructive mathematics, for example, focused on philosoph-
ical and methodological issues restricted to mathematics. But we
now know that rejecting the axiom of choice or non-constructive
mathematics would have forced very significant changes in mathem-
atical physics too,
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When scientists posit new systems of objects and laws governing
them, they also provide for connections (bridge principles) with sys-
tems of statements whose truth they already accept with a reason-
able degree of confidence. Doing so enlarges the conception of
evidence pertaining to the new objects, and permits them to raise
and answer questions that previously may have made no sense. In
positing new particles, for example, physicists will ordinarily
attribute them with charges, masses, and spins in part to connect
their behaviour with better understood phenomena. Similarly,
mathematicians try to tie new mathematical objects to old ones, for
example, approximating irrational numbers by rational ones facili-
tates calculations with the former.

My talk of positing might remind you of Carnap’s distinction
between internal and external questions, so I think I should explain
how my conception differs from his. According to Carnap, positing
a new system of objects is really to introduce a new language along
with axioms and rules of inference that enable us to decide questions
formulated in that language. The language’s axioms may include
both physical and mathematical laws, and its rules of inference may
include procedures for making empirical inferences as well as those
of logical and mathematical deduction. On this picture, enlarging a
local conception of evidence is tantamount to introducing a new lin-
guistic framework, Furthermore, rejecting a framework axiom or
rule, whether it be logical, mathematical, or ‘empirical’, amounts to
rejecting the framework as a whole, He also believed that questions
about the acceptability of a framework—he called them ‘external
questions’—are fundamentally different from those raised within a
framework—his internal questions. The rules of a framework fix the
considerations relevant to deciding its internal questions, and noth-
ing else counts, whereas only pragmatic considerations are pertinent
to deciding whether to accept a framework itself. ¢

Carnapian frameworks are built from scratch, so that we do not
just tack, say, quark theory, onto a pre-existing quantum mechanics,
but start out by specifying the logical and mathematical principles
of quark theory, and then its fundamental physical laws, and so
on, until we introduce the specific quark hypotheses. Of course,

2% Actually, Carnap replaces the distinction between the logico-mathematical and
the empirical with a framework-relative analytic-synthetic distinction, The analytic
truths are those that follow from the postulates constituting the framework via its
Iogical rules. These rules are in turn introduced by stipulation, See Carnap (1956).
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‘hypotheses’ is a misnomer, since in the quark framework the quark
hypotheses are just as a priori (and analytic) as its logical laws. Since
Carnap recognized no facts prior to or transcending frameworks,
framework principles cannot be true in virtue of independently
obtaining facts. Instead, they are true by convention.

Unlike Carnap, I see global theories as transcending the local the-
ories that are build upon them, and as provisionally fixing a back-
ground of facts upon which local theorists may draw. These facts
may also furnish them with reasons for preferring one local theory
to another. They might show, for example, that a proposed theory is
untestable.

Carnap did not seem to consider the possibility of appealing to
pragmatic grounds to justify adding a new hypothesis to an extant
framework, as we might do today in positing, for example, a new
type of quark, or a larger infinite cardinality. This is just where
Quine would argue that there is no real epistemic difference between
‘externally’ changing a framework by adding a new hypothesis
(expressed in the language of the framework) and ‘internally’ decid-
ing that the evidence supports the hypothesis.? I side with Quine on
this.

Quine sometimes gives the impression that the decision to accept
a new hypothesis is always to be referred to the system of science as
a whole. I can agree to this too, but only if we make the extra
methodological layers explicit. The decision to accept a hypothesis is
often dictated by local methodological principles that in turn have
developed from a more global perspective, and that perspective in
turn may involve an even more global one, and so on, until we ulti-
mately reach considerations affecting the system of science as a
whole,

Let me now review some of our earlier methodological observa-
tions using the global/local distinction. Holism should be uncontro-
versial if construed as a comment on the logical relationship
between theoretical hypotheses and their empirical consequences.
To derive a prediction P from such a hypothesis H we must not only
appeal to H itself but also to auxiliary assumptions 4. If P fails, all
that follows is that H or A is false. To conclude via disjunctive syllo-
gism that H is false, we must already take 4 to be true.

Yet it is certainly not practical for scientists to treat every hypoth-

%5 See Quine (1962).
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esis as equally vulnerable each time they run an experiment. The
path to success lies in taking a more local perspective and tinkering
with those hypotheses one understands best. From such a perspec-
tive it makes sense to treat more global auxiliaries as (provisional)
fixed points. Thus, for example, when some biologists use some
mathematics and a biological hypothesis to design an experiment
which produces results contrary to their expectations, there will be
(and should be) no question in the mind of the biologist but that it is
the biological hypothesis which is at fault. This is no refutation of
holism, but merely an illustration of the global/local approach to
methodology.

I can now say something about the relationship between holism
and our ordinary conception of mathematical evidence. Empirical
success no more confirms individual mathematical claims than it
does individual theoretical hypotheses. However, it does provide a
pragmatic justification for positing mathematical objects, truths
about them, and principles for applying mathematical laws to
experience. From this perspective we may encourage mathemati-
cians to develop their own standards of evidence, so long as the
result does not harm science as a whole. Because mathematics is our
most global science we should expect that many mathematical meth-
ods and principles will be justified by means of considerations neu-
tral between the special sciences, and thus often pertaining to
mathematics alone. In this way we can reconcile holism with the fea-
tures of mathematical practice that Chihara, Maddy, Parsons, and
Sober have emphasized.

Considering the place of proof in mathematics will illustrate this.
Early mathematicians probably took their experience with counting,
book-keeping, carpentry, and surveying as evidence for the rules
and principles of arithmetic and geometry that they eventually took
as unquestionably true. They began to put more emphasis on deduc-
tion after they became aware of the difficulties in deciding certain
mathematical questions by appealing to concrete models, which, for
example, are notoriously unreliable in deciding geometric questions.
(How could we know this without independent access to geometric
truths? By persistent disagreements among the answers the models
supply, or by their inability to supply answers at all.}) Even today we
could (and sometimes do) use concrete models to decide certain
mathematical questions; for example, we might simulate a Turing
machine on a computer to determine whether it gets into a certain
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state when processing a given input. But the advantages of proof to
the practice of mathematics are so obvious that frowning on experi-
mental approaches has served the goals of mathematics better than
allowing or promoting such approaches. Moreover, proof wins out
from the perspective of science as a whole. For requiring mathemat-
ics to prove its results increases its reliability, and decreases its sus-
ceptibility to experimental refutation.

The development of non-Euclidean geometries and abstract alge-
bra further promoted the purely deductive methodology of the
axiomatic method through showing mathematicians how to make
sense of structures that might not be realized physically. It also pro-
moted a shift from viewing mathematical sentences as unqualifiedly
true or false to regarding them as true or false of structures of vari-
ous types. These two developments have further insulated mathem-
atics against empirical refutation. To see how, consider the case of
Euclidean geometry. General Relativity did refute it in its original
role as a theory of physical space, but it still has important mathem-
atical models, and survives through being reinterpreted as a theory
of Euclidean spaces. (With hindsight we say that we discovered that
physical space is not Euclidean.) Now a similar move is available
when a scientific mode] incorporating a bit of mathematics proves
inadequate to a physical application. It is usually far simpler to save
the mathematics from refutation and conclude that the physical situ-
ation to which it was being applied failed to exhibit a suitable struc-
ture. (For obvious reasons, I will subsequently refer to an instance of
this way of saving a theory as a Euclidean rescue.) We can apply a
Euclidean rescue to any theory by reinterpreting it, which is what we
did for Buclid’s geometry. Mathematical theories need no reinterpre-
tation, however, since they do not assert that the structures they
describe are realized in this world. Ironically, the ease with which
Euclidean rescues may be applied to mathematical theories tends to
encourage those separatists who regard mathematics as immune
from empirical refutation.

5. REVISING LOGIC AND MATHEMATICS

Holists and separatists subscribe to different doctrines concerning
the nature of mathematical and scientific evidence. Despite this, we
are unlikely to find that differences in the attitudes of most holists
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towards individual scientific decisions or the practice of contempor-
ary science and mathematics suffice to distinguish them from sepa-
ratists. Thus, for example, both are likely to recommend using a
Euclidean rescue to save the mathematics of a failed scientific
model. This is what one would expect given that holists can accom-
modate separatist intuitions concerning mathematical practice,
Since contemporary objections to holism have been based upon
these intuitions and not upon a developed mathematical epistemol-
ogy, showing that holism and separatism agree on actual cases sig-
nificantly weakens the case for the latter.

By introducing some new characters, the strict holists, we can
bring out a difference between holist and separatist views concern-
ing specific scientific practices. Strict holists maintain that we have
no evidence for a claim unless it is part of a system of hypotheses
from which confirming observations have been deduced. They do
allow for local conceptions of evidence. But they prohibit those con-
ceptions which allow evidence to accrue to specific hypotheses that
are not part of a confirmed system of hypotheses. In particular, they
prohibit the introduction of other (for instance, non-observational)
evidence for scientific or mathematical claims. On this view, math-
ematics with no current application, such as results employing large
infinite cardinals, would have little title to truth.

One problem with strict holism is that it is not clear that it could
countenance certain metamathematical investigations of even the
mathematics that does get used directly in science. It is hard to see
how investigations of the consistency of various systems of analysis
could be directly useful in constructing scientific models or in deriv-
ing empirical consequences from physical hypotheses formulated in
the vocabulary of analysis. Despite this, the information these
proofs provide about the reliability of those models is relevant to
evaluating the sciences using them. Similarly, it is often useful for sci-
entists to know of mathematically equivalent ways of formulating
scientific theories or of probabilistic approximation methods that
might substitute for rigorous calculations. Yet in deriving empirical
results they can often use alternative formulations directly without
having to cite metamathematical equivalence proofs. This is one
reason why | would advocate a liberal version of holism, one which
would allow the development of a local conception of mathematical
evidence that could countenance mathematical truths that have no
foreseeable empirical use,
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Some of Quine’s remarks on higher set theory might suggest that
he is a strict holist. But he is not. Consider this passage:

What now of those parts of mathematics that share no empirical meaning,
because of never getting applied in natural science? What of the higher
reaches of set theory? We see them as meaningful because they are couched
in the same grammar and vocabulary that generate the applied parts of
mathematics . . . On our two-valued approach they then qualify as true or
false, albeit inscrutably.

They are not wholly inscrutable. The main axioms of set theory are gen-
eralities operative already in the applicable part of the domain, Further sen-
tences . . . can still be submitted to considerations of simplicity, economy, and
naturalness that contribute to the molding of scientific theories generally,
Such considerations support Gédel’s axiom of constructibility, V=1" 1t
inactivates the more gratuitous flights of set theory, and incidentally it
implies the axiom of choice and the continuum hypothesis. 26

Although the first paragraph clearly shows that Quine believes that
securing evidence for unapplied mathematics is problematic, in the
second paragraph he goes beyond the strict holist in allowing prag-
matic considerations to justify accepting axioms that are not needed
in deriving empirical consequences from scientific hypotheses. In
particular, if ZFC alone suffices for the mathematical needs of nat-
ural science, then from the strict holist’s point of view there is no
further need to decide the continuum hypothesis or to inactivate ‘the
more gratuitous flights of set theory’. We can get along with ZFC
alone without adding any further axioms to address the issues Quine
thinks we should.

‘What other differences might there be between holists and sepa-
ratists? Strict holists can conceive that a mathematical statement we
previously regarded as true might degrade to one whose truth-value
cannot be settled, because it comes to fall into an area of mathemat-
ics no longer connected to experience. Thus, according to them, it
may not always be possible to perform a Euclidean rescue. Quine,
though no strict holist, envisages something like this in remarking
that the mathematics we recognize as true might be cut back to pred-
icative set theory if it can meet the mathematical needs of science.?’
Separatists, of course, would not permit such developments to cur-
tail otherwise acceptable branches of mathematics.

 Quine (1990), 94-5 (my italics). 7 Ibid,
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I am merely speculating, to be sure. I know of no strict holists nor
of any mathematics that science clearly no longer needs. But it is to
such speculations that we must turn to discern other differences
between the recommendations of holists and separatists. Of course,
the doctrinal differences between them are obvious.

Holists can allow an experiment to refute the mathematics used
in designing it by waiving local conceptions of evidence. How it
might refute the mathematics in question would depend upon the
case at hand. Let us consider some of these cases.

First, let us note that it can happen that scientists use a mathe-
matics so rudimentary and tentative that both its concepts and
proof methods fail to be well defined. This is a reasonable view of
the calculus used in late seventeenth- and early eighteenth-century
physics. Now if we developed a new branch of mathematics for a
specific type of application and using it proved unreliable, then
rather than performing a Euclidean rescue it might be more rational
to reject the mathematics as ill-formed. Since this option is open to
both holists and separatists, I will henceforth restrict my attention to
rigorously specified mathematical theories,

Suppose that while designing an experiment some physicists need
to know whether a certain function has a maximum. They hear
about a conjectured consequence S of a new extension of ZFC set
theory, ZFC + A, using a new axiom 4, and they subsequently
determine that § implies that their function does have a maximum.
Let us also suppose that they assume this maximum exists in testing
one of their pet physical hypotheses and that their experiment pro-
duces a result conflicting with their expectations. We can imagine
them deciding that the conjecture must have been wrong—not sim-
ply that they had misunderstood or misheard the conjecture.

But what does it mean to say that the conjecture is wrong? If one
can be reasonably certain that the set theory in question (ZFC + A)
applies to the physics in question, then it might be reasonable to take
the experiment as evidence that the conjecture is not a theorem.
Now a separatist might hold that certain empirical data, such
as computer outputs or the results of hand computations, could
refute or establish a conjecture.?® But holists must allow that even
experiments, such as those used in physics, that were not originally

%% These separatists might deny that mathematics is a priori but still claim that
only certain empirical data count as mathematical evidence,



134 PART TWO: NEUTRAL EPISTEMOLOGY

designed to test a mathematical conjecture might count against it.
For they countenance no a priori evidential distinction between
experiments that are designed to test a specific claim and those that
merely presuppose the claim without testing it.

Perhaps the physicists will conclude that the conjecture was
wrong in a weaker sense of being inappropriate to their physics.
Then they might conclude that the set theory in question does not
apply to the physics—that it does not exhibit the appropriate set-
theoretic structure—and they will execute a Euclidean rescue,

Let us now suppose that instead of a conjecture the problematic
mathematical claim S is a known theorem of the extended set theory,
ZFC + A. Then the physicists would almost certainly perform a Eu-
clidean rescue. For what other options would they have? They might
examine the theorem’s proof on the off-chance that it contains an
error; but, due to their relative lack of mathematical expertise, they
would have little reason to expect this tactic to succeed.

Finally, let us imagine that after repeated unsuccessful efforts to
account for the anomalous experiment our physicists call in the
mathematicians. Even then it would be rational for the mathemati-
cians to try a Euclidean rescue first, and to attempt to apply to the
physics a different, perhaps newly developed branch of mathematics.

Would it be rational for the mathematicians to see the experiment
as refuting ZFC + A7 According to our story, it implies a claim that
when combined with physical hypotheses forms a package contrary
to the experimental results. Stretching our imaginations to near the
breaking-point, we can think of the mathematicians as arguing as
follows: some statement in the package must be false, and the physi-
cal ones are beyond question, so the mathematical statement must
be false; but since this is implied by ZFC + A4 it must be false too,
But notice how strong a claim this would be. Because one can always
save a consistent branch of mathematics via a Euclidean rescue (and
we have assumed that our mathematicians have excluded this), for
them to reject the axioms of ZFC + 4 would be to take them to be
inconsistent!?® Of course, they could avoid this step by taking an

2 In drawing this conclusion our mathematicians had assumed that ZFC + 4
applied to the physics. Instead of concluding that it is inconsistent, shouldn’t they just
conclude that it does not apply after all? Yes, this would be a2 more reasonable choice
if they had independent grounds for thinking that ZFC + A was consistent. But
holists could find the stronger conclusion warranted if the mathematicians’ inde-
pendent grounds for believing in the consistency of ZFC + A were weak,
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even more radical one. They could take the physical model as show-
ing that the axioms do not imply the theorem, and then proceed to
modify the rules of deduction used in its proof.

The main difference between holists and separatists arises when a
well-established piece of axiomatic mathematics is part of a model
conflicting with experience. Separatists recognize only the Euclidean
rescue, while holists also admit the options of rejecting the math-
ematics as inconsistent or altering its underlying logic. They see
nothing in the epistemology of mathematics that excludes using
these options in the rare instances when doing so will benefit science
more than the Euclidean option.3®

Of course, the foregoing does not refute separatism; it only helps
make holism more palatable to those with separatist leanings.
Moreover, even this tempered and conservative holism would be
unacceptable if, independently of holism, one could establish an
epistemically principled division between the empirical and formal
sciences. But I do not see much hope of success here. Consider the
difficulties confronting separatists.

First, they would need a way of dividing mathematics from the
rest of science which explains why we should not use Euclidean res-
cues to save sufficiently precise scientific theories. Otherwise, it
would be reasonable to hold, for example, that the Michelson-
Morley experiment merely showed that bodies travelling close to the
speed of light do not form Newtonian systems. 1 like this move for
the same reason I like using Euclidean rescues in mathematics: it
preserves more truths and more theories. 3!

30 This is not to deny that separatists can hold that unexpected experimental
results might prompt us to re-examine our mathematics or logic with the possibility
of revising one or the other. But separatists are committed to holding that the
grounds for revising either would be non-empirical ones discovered as a result of re-
examining them rather than the experimental results prompting the re-examination.

3 In correspondence, Mark Balaguer has suggested that blurring the epistemic
boundaries between mathematics and empirical science depends upon successfully
blurring their ontologies. For suppose that all the objects studied by science are
causally active denizens of space-time, but none studied by mathematics are. Then the
mathematical realm has no effect on the observable realm and conversely, and so
observational data have no bearing on the truth of various mathematical claims.

Now this conclusion is correct if it simply means that events in the empirical
world have no effect on the truth-values of mathematical claims. But it does not fol-
low from this that observation is irrelevant to determining their truth-values. For if a
system of physical objects realizes a given mathematical structure, then examining
structural features of the system can inform us about the mathematical structure,



136 PART TWO: NEUTRAL EPISTEMOLOGY

Second, they would also require a similar division between logic
and mathematics, or if they lump mathematics with logic, a division
between logic and the rest of science. A stronger logic sees more dis-
tinctions between structures, decides more mathematical proposi-
tions, and attributes more empirical consequences to a theory. A
stronger logic thus narrows our options for revising theories. Since a
weaker logic requires us to supplement a theory with more auxiliary
hypotheses to test it, it leaves us with more options when our predic-
tions fail.

Third, the division between the formal sciences, logic and mathe-
matics, and the rest of science must be more than just a matter of
methodological convenience for separatists; otherwise they will be
indistinguishable from holists. To date, there is no uncontroversial
principled division between the formal sciences and the empirical
ones.

In the next chapter I will argue that when it comes to logic, there
is no such division because there are no special logical facts to be
known. The truths of logic are just ordinary truths generated via
our most global methodology, and in calling something a logical
truth we do not ascribe a metaphysical property to it, but rather
mark it for special treatment.



8

The Local Conception of Mathematical
Evidence: Proof, Computation,
and Logic

In the last chapter I noted elements of our scientific practice sup-
porting separatist theses: we often take our experiments to test spe-
cific statements instead of the larger theories to which they belong;
we usually agree that a piece of empirical evidence pertains to one
claim and not to another; and we generally allow mathematics to
remain aloof from the empirical fray, shielding it from empirical dis-
confirmation and testing. I argued that we can explain this practice
within the framework of pragmatic holism by pointing out that the
local conceptions of evidence, which underwrite these practices, are
necessary for the development and progress of science as a whole.
Thus these practices can be seen to derive from considerations of
practical rationality rather than from those of logic or some other a
priori source. Consequently, the facts of scientific practice by them-
selves do not entail that mathematical knowledge is fundamentally
different from so-called empirical knowledge.

At the beginning of Chapter 6 I raised several questions concern-
ing mathematical evidence which I have yet to answer. What kind of
evidence do we recognize for our mathematical beliefs? What roles
do logical deduction, proof, and computation play in justifying
these beliefs? How do we justify introducing new mathematical
axioms or new kinds of mathematical objects? Although I said earl-
ier that my answers to questions such as these would presuppose
holism, we can see now that the situation is more complicated than I
had indicated. For these questions concern the local conception of
mathematical evidence, the conception governing ordinary math-
ematical practice. Ordinarily, mathematics is practised as an auto-
pomous science, and its evidential norms do not refer to science as a
whole. On the face of it, this fits poorly with my holistic account,
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For this reason I will begin this chapter by showing in more detail
than I have so far that the features of mathematical practice to
which separatists appeal can be brought under the purview of a
holistic account of mathematics.

I will also argue that, holism aside, mathematical practice is not
free of either non-deductive or empirical methods, and that some
empirical content can be given to certain mathematical claims.
Finally, I will contend that the division between logic and the rest of
science and mathematics is conventional, and that the dividing line
and individual logical principles are revisable in principle. Thus even
purely logical deduction of a theorem from a set of axioms does not
yield a type of knowledge that is immune to revision.

I. SOME NORMS OF MATHEMATICAL PRACTICE

What kind of evidence does our local conception of mathematical
evidence recognize? Certainly, at least proof and computation. In
practice most ‘proofs’ are at best sketches of the steps required to
deduce their theorems from an appropriate set of axioms, but none
can pass muster if such a deduction is in doubt. Furthermore, asso-
ciated with every computation is a deduction from theorems author-
izing the steps of the computation in question. Thus in theory, if not
in practice, both proofs and computations can be considered as
series of deductions from axioms.!

But clearly mathematics is not special in accepting proof, compu-
tation, and deduction as evidence, for other sciences extensively
employ these methods too. What is special about mathematics is
that so long as it seems possible to prove (or refute) a conjecture,
mathematicians regard it as an open question, even when, by the
standards of the natural sciences, the non-deductive evidence decid-
ing the result one way or another is overwhelming. If, for example,
decades of computer runs regularly produced new pairs of twin
primes, it is unlikely that mathematicians would regard the twin
prime conjecture as established. Yet natural scientists would surely
regard similar experiments as decisive.?

! For a useful discussion of the relation between formalization and mathermatical

practice see Steiner (1975).
2 This type of case differs interestingly from the non-deductive evidence favour-
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To be sure, mathematicians might be convinced by such evidence,
while still taking the question to be officially open. I should add
such that Lakatos, Putnam, and Steiner have described historical
examples purporting to show that mathematicians are willing to
decide questions on the basis of non-deductive inference?
Moreover, some contemporary mathematicians speculate that
increased computer testing will lead to the acceptance of non-
deductive substitutes for proofs.# Finally, certain claims about the
behaviour of computer programs are mathematical claims, and
computer runs are sometimes regarded as decisive evidence concern-
ing them. I will postpone discussing cases of this sort until the next
section.

Now it is not enough for separatists to point out that mathemati-
cians insist on proof where other scientists do not, because pragmat-
ic holists can argue that the practice in mathematics makes ‘good
sense’. For emphasizing proof promotes systematization and relia-
bility in both mathematics itself and those branches of science
applying it.

Although scientists and mathematicians use deduction, the
former use it (largely) to prove theorems from axioms while the
latter use it (largely) to derive testable consequences from hypothe-
ses. Separatists might try to argue that this difference is due to the
differing character of the premisses used in science and mathemat-
ics. It might be that while the evidence supporting the theoretical
assumptions used in science is tentative, that supporting our math-
ematical axioms is conclusive. However, if the opinions of mathem-
aticians are any indication, some axioms are more securely
established than others. For example, hardly anyone seriously
objects to the axioms of elementary number theory, but many math-
ematicians regard axioms postulating large infinite cardinals as
speculative, and a few others suspect even impredicative analysis.

Furthermore, there is no clear understanding among mathemati-
cians as to what counts as conclusive evidence for a mathematical
axiom. Many philosophers and philosophically inclined mathemati-
cians have written of axioms as self-evident, obvious, or intuitively

ing the Riemann hypothesis, which computation cannot directly verify. For further
discussion of the evidence for the Reimann hypothesis see Davis and Hersh (1981).

3 See Lakatos (1978), Putnam (1975), and Steiner (1975).

4 See Horgan (1993).
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known. But this helps little, if only because mathematical
researchers differ radically in assessing these properties. (And these
notions are in desperate need of clarification themselves.) In addi-
tion, mathematicians sometimes argue for admittedly “unintuitive’
axioms on other grounds, such as their ability to systematize large
collections of results or to yield theorems in more secure areas of
mathematics.’

What is more, it is sometimes not clear whether the evidence
mathematicians cite for axioms concerns their consistency or their
truth. Penelope Maddy presents the debates among set theorists as
if they concerned the truth of various axiomatic extensions of set
theory,s and I do not dispute that this is how the participants
regarded them. Yet one can also interpret the discussions she reports
as really concerning a choice between consistent ways of extending
set theory. Instead of seeing set theorists as seeking the true set the-
ory, we might interpret them as secking the most desirable one,
where, of course, we understand desirability in terms of mathemati-
cal fruitfulness, elegance, simplicity, and the other virtues, falling
short of truth, that set theorists cite in favour of their proposals.”
And if one wants to bring in truth here, one can let it concern what
is true in that alternative set theory that best settles the supposed
indeterminacies in our current conception of set.®

So far we have found little in mathematical practice to clarify the
nature of the evidence, if any, for mathematical axioms. It will help
to consider the matter in the light of the types of problems mathem-
aticians tackle. Most of these problems focus on questions arising
within the confines of familiar mathematical theories, and concern
features of the mathematical domain or domains these theories
cover. Answering these questions consists in proving theorems with-
in axiomatic systems. Here the truth of the axioms is not a live issue.
The real issue concerns what is true if they are true, and in the
course of proving theorems one provides conclusive evidence for
such conditional truths. Of course, if one already believes the

% See Maddy (1988) for an excellent survey of the considerations set theorists
have introduced in discussing proposed extensions of standard set theory.

S Ibid.

7 For a critique of Maddy’s interpretation see Riskin (1994).

% Ironically, some mathematicians appeal to holist considerations in condemning
the ‘excesses’ and ‘theology’ of transfinite set theory. For they lament that contem-
porary mathematics has lost its roots in applications, lacks direction, is sterile.
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axioms, it is easy to confuse these proofs with conclusive evidence
for the theorems themselves.

Another type of problem calls for using axioms to characterize a
concept or structure (such as the concept of a group, the natural
number sequence) or a body of results or techniques (such as pred-
icative analysis, school arithmetic) that are already on hand. Here
we want evidence that the axioms are the ‘right’ ones. A necessary
condition for some axioms to be right is that they yield theorems in
the body of results in question (or theorems that are acknowledged
features of the structure being characterized). So once again proving
theorems, using the axioms in question, provides an important part
of the evidence that one has a good answer. Furthermore, if it is
clear that the axioms themselves belong to the results in question (or
formulate acknowledged features of the relevant structure), one
might feel confident that they are among the ‘right’ ones, But this
usually does not suffice to solve the problem. We usually want to
know whether the axioms produce all and only the appropriate the-
orems, and if they do not, then why not. Or we may want to know
whether they are categorical. Furthermore, what counts as having
the ‘right’ axioms varies with one’s other goals, Dedekind’s categor-
ical axiomatization of arithmetic provided no solution to the prob-
lem Frege set himself, because he did not believe that the Dedekind
axioms were purely logical. (Their primitives include zero and suc-
cessor.} In problems like Frege’s, then, proofs within an axiom sys-
tem usually will not suffice as conclusive evidence for a solution.
Also we may be unable to formulate constraints on our axioms with
sufficient precision to prove metatheoretically that they are the
‘right’ ones.

A third type of problem arises when mathematicians set up and
explore new axiom systems in order to introduce new concepts and
structures or to modify old ones. In this case they hope to demon-
strate that the new axioms are worth exploring—that they are con-
sistent, have the ‘right’ sort of models, bear ‘interesting’ relations to
old systems or structures, and so on. This requires them to take a
more openly metamathematical perspective than they might when
dealing with problems of the first or second type. But even here they
prove theorems (and metatheorems) to provide evidence concerning
various properties of their axioms.

One could construe even these metatheoretic investigations as
cases of proving theorems within some axiomatic metatheory. On
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this view, investigations of the second and third type reduce to the
first. The only evidence mathematicians would need is that some-
thing is a theorem of the appropriate system, and proof would be
conclusive. I have called this position deductivism;® others call it “if,
then-ism’. By whatever name it goes, it is an unsatisfactory doctrine.
Mathematicians want to know that their systems have models; and
they want to know this absolutely, and not just relative to a meta-
theory. Furthermore, as we saw in Chapter 3, applying mathematics
to science presupposes that mathematical models exist—again
absolutely and not merely relative to a set of metatheoretic assump-
tions. Thus the methodology of mathematics and science takes a
realist stance towards at least some mathematical theories.

We are left committed to a plethora of mathematical theories,
many of which are incompatible with one another—as are, for
example, the alternative geometries and set theories. We can resolve
the apparent inconsistency in our commitments by restricting these
theories to structures of the appropriate type—FEuclidean geometry
to Euclidean spaces, ZF set theories to iterative hierarchies, and so
on—s0 that each theory is construed as true of only the appropriate
structures, But, at least from the methodological point of view,
mathematics is committed to a plurality of structures and to the
appropriate theories’ being true in the appropriate structures. !¢
What evidence, then, do we have for these structures and truths con-
cerning them?

Given some structures we can prove that others exist by con-
structing models of them within the former. This technique won
acceptance for the imaginary numbers and non-Euclidean geomet-
ries, and established the relative consistency of the axiom of choice.
But, of course, this kind of support is no better than the evidence we
have for the systems within which the constructions take place. This
is why we try to use assumptions in which we have the most confid-
ence, such as those used in the well-entrenched portions of number
theory, geometry, analysis, and set theory. Even here there is reason
to be more confident in some methods, models, or theories than
others. Simple finite models, for example, are easier to understand
and check than infinite ones based upon sophisticated mathematical

? See Resnik (1980).

16 [ say ‘at least from the methodological point of view’ since one might give a
philosophical account of mathematics which shows that these assumptions needn’t
be taken literally,
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constructions. (Compare these: the consistency proof for the predi-
cate calculus, Gentzen's consistency proof for number theory,
Godel’s consistency proof for the axiom of choice, Cohen’s indepen-
dence proof for the same.)

Now why should we be more confident in elementary arithmetic
and geometry than in the theory of infinite cardinals? One reason is
that we can often compute some instances to convince ourselves of
arithmetic formulas or draw diagrams to illustrate geometric theo-
rems. We can also test rules for computing by counting or manipu-
lating collections of physical objects, and geometric theorems by
measuring. While official mathematics disdains evidence of this
sort, it certainly plays a more crucial role in convincing beginning
students of mathematics than proofs do, and mature mathemati-
cians are not above using it when they can. What is more, this sort of
verification is supposed to be the historical evidence for geometry
and arithmetic.

Another reason for being more confident in our older, more
entrenched mathematical theories is that they have been much more
extensively applied than the newer theories, which usually not only
are logically stronger but also have no known or intended applica-
tions. So if the older theories were based upon ill-defined notions or
inconsistent assumptions, the chances are good that trouble artribut-
able to them would have arisen within the scientific theories that use
them.t! While this is no ‘direct’ test of this mathematics, it the same
sort of indirect test that our more general scientific theories receive
in being used in constructing more specific theories or
models.

The picture I have been sketching is one in which the more theor-
etical branches of mathematics draw their support from the more
elementary and established branches, which in turn draw their sup-
port from their success in applications and, historically, from empir-
ical demonstrations aimed at supporting certain elementary claims.
If this is correct, then even from the local point of view some of the
evidence for the most elementary and fundamental parts of mathe-
matics is empirical. The difference between the natural sciences and
mathematics is not that the former recognizes evidence which the

U For contemporary examples of mathematics faulted in its applications con-
sider the many special-purpose algorithms programmed into computers, whose use
often reveals inconsistent instructions, false presuppositions, and neglected cases.
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latter prohibits, but rather that this evidence no longer plays the role
in contemporary mathematics that it played historically. The eviden-
tial roots of the older branches of mathematics are empirical, but
these branches now count as evidence themselves for the newer,
more speculative branches.1?

Have we not returned to the point Sober raised against holism?
That only those tests specifically designed to test a hypothesis
should count for or against it? In a way, yes, but here I am arguing
that even those who separate mathematics from science should re-
cognize that Sober’s point is false. Let me liken hypotheses to tools.
Tool manufacturers are likely to put their products to specific labo-
ratory tests, for instance, to determine how much force is required to
break them. This is like laboratory testing, say, the accuracy of the
inverse square law for charged particles. Tool manufacturers con-
duct such laboratory tests to determine whether to market their
tools and how strongly to warrant them. But a tool’s performance in
service also counts as evidence for its reliability and limitations, and
manufacturers modify their warranties and operating manuals in
the light of such evidence. By analogy, using a hypothesis (even as
an auxiliary) to construct successful models tends to support the
hypothesis just as successful service supports the reputation of a
tool. Moreover, just as using a tool in a failed project can still pro-
vide some favourable experience with the tool so long as there is no
obvious reason to blame it for the project’s failure, so too can failed
models in which there is no obvious reason to blame a hypothesis
count a bit in favour of it.!3

No one disputes that by using appropriate auxiliary premisses we
can derive empirical consequences from certain mathematical
hypotheses—that, for example, we can test claims about Turing
machines by simulating them on electronic computers. In so far as

12 In correspondence Mark Balaguer has questioned the use of applications to
justify mathematical theories on the grounds that these theories are justified prior to
applications. Of course, there are famous examples of mathematical theories—group
theory is one—which were well justified prior to any applications. But I think it is
equally true that arithmetic, geometry, and even the calcalus devioped along with
their applications. The successful applications of the calculus probably helped set
aside doubts about its foundations. In describing the evidential roots of the older
branches of mathematics as empirical I had in mind examples of this sort.

13 To push the analogy further, notice that wringing the head off a bolt does not
count against the wrench, but rounding the head can count against both the bolt and
the wrench. So one can imagine cases in which failure counts against several of the
hypotheses.



PROOF, COMPUTATION, AND LOGIC 145

separatists count similar tests of scientific hypotheses as directly
testing them, such a test should count as directly testing claims
about Turing machines. Thus we can meet separatists on their own
ground and design experiments to test certain specific mathematical
hypotheses. Of course, we cannot design experiments to test every
mathematical claim, but there are plenty of scientific hypothesis that
we cannot test either. For example, there is no way to determine
whether physical space is a continuous manifold.

Separatists might still object that mathematics has no empirical
content of its own despite examples such as these. They could point
out that empirical science aims to describe and explain the world
about us while mathematics, even when playing its indispensable
part in furthering this aim of science, aims to describe all possible
worlds. We can put this point in more precise terms by supposing
that we can divide our vocabulary between purely physical terms
(‘rabbit’, ‘apple’, ‘yellow’, ‘metal’) and purely mathematical ones
(‘number’, ‘derivative’, ‘average’). Such a division would determine
three classes of statements: the purely physical statements, the pure-
ly mathematical statements, and the mixed staternents. Purely math-
ematical statements will have trivial mixed logical consequences. For
example, ‘every set belongs to a set’ implies ‘every set belongs to a
set or gold is an element’. Conjoining some mixed truths with pure-
ly mathematical ones will yield mixed non-empirical truths, For
example, conjoining ‘every set belongs to some set’ with the non-
empirical, mixed premiss ‘there is a set of planets’ implies ‘the set of
planets belongs to some set’.!# But no consistent body of purely
mathematical statements would imply any purely physical state-
ments except the logically true ones. Thus their failure to imply any
purely physical statements would give us a sharp sense in which
mathematical statements have no empirical content, whether taken
collectively or individually.

I think this sort of reasoning underlies the thinking of many
philosophers. But it overlooks the fact that many systems of sup-
posed scientific statements have no empirical content on their own.
One need only turn to philosophical discussions of the geometry of
physical space, Newton’s laws of motion, or Darwin's theory of

14 This statement, which follows from 8 mixed version of the comprehension
axiom, should not be confused with the empirical statement that the set of planets is
non-empty.
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evolution to find examples. Furthermore, it is based upon uncritical-
ly accepting the distinction between purely mathematical and physi-
cal terms. Purely mathematical statements fail to imply purely
physical ones because of the separation in their vocabularies. The
same is true of any two collections of statements composed of dis-
joint non-logical vocabularies. In view of the difficulties we saw in
Chapter 6 in classing space-time points or quantum particles as
clearly physical objects, the burden of providing a clear epistemic
distinction between mathematics and the rest of science lies with the
separatists. Plainly it will not do for them just to list the supposed
mathematical vocabulary and leave it at that.

So far my account of the local conception of mathematical evid-
ence has emphasized the evidential role of applications of mathem-
atics. Let us turn now to the unapplied parts of mathematics.

In Chapter 3 I noted that indispensability arguments fail to cover
the more theoretical and speculative branches of mathematics. In
the last chapter we saw Quine arguing that, considering the mathe-
matical needs of science, it is preferable to ‘inactivate’ the higher
reaches of set theory by adopting an axiom, such as V' = L, to limit
the set-theoretic universe. I pointed out that indispensability consid-
erations alone would leave the extent of the set-theoretic universe
undecided. For science has no need of hypotheses deciding it,

Nor does the mathematics currently employed in science presup-
pose higher cardinals. However, the story is less clear when it comes
to their ultimate indispensability. On the one hand, work on pred-
icative analysis indicates that in principle contemporary natural
science could get along with a weaker mathematical apparatus than
it actually employs; on the other hand, other research indicates that
there may be no limit to the large cardinal assumptions one might
use to decide scientifically pertinent questions in real analysis.!s At
the moment indispensability considerations recommend agnosti-
cism concerning further extensions of set theory.'¢

But we should also ask how matters stand when we turn from just
indispensability considerations to the pragmatic holism cum local
conceptions of evidence that I have been advocating. To begin, let us
note that so long as we use set-theoretic models to study and sup-

15 See the discussion of the mathematics needed in science in Hellman (1989).
6 Most *ordinary mathematics’, and thus most of the mathematics used in
science, does not even require the axiom of replacement. See Lavine (1954)
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port the introduction of new mathematical structures, axioms limit-
ing the size of the set-theoretic universe would discourage the devel-
opment of mathematics through limiting the structures it
recognizes. Furthermore, while limiting the variety of structures
would probably not hinder contemporary science, it might hinder
future science. So the good of neither mathematics nor science as a
whole calls for adding limitative axioms to set theory.!?

We also know that certain limitative axioms, such as V' = L, are
independent of the other axioms of set theory, and so can be consis-
tently negated. Taking the more positive step of postulating further
extensions of the set-theoretic universe, on the other hand, runs a
greater risk of inconsistency. For in general the new systems are
stronger than the older systems by virtue of entailing the consist-
ency of the latter.

Still, mathematicians want to know whether these axioms can be
used to enrich the class of structures mathematics countenances. (If
we take the usual metatheoretical perspective and assume that math-
ematical structures are set-theoretically defined models, then certain
sets exist just in case certain structures do.) Unfortunately, the initial
evidence for these new axioms is less substantial than that for new
hypotheses in the natural sciences, Natural scientists expect new
hypotheses, when combined with appropriate auxiliaries, to yield
previously untested observational consequences. In short, they
should be capable of at least indirect empirical testing. The math-
ematical analogue of this methodological rule would be to require
new axioms to imply new computationally testable results. But
mathematics has no such requirement. And with good reason: the
computationally decidable mathematical truths are completely
axiomatizable; consequently, new axioms will not yield new mem-
bers of this class.!® (However, they usually imply results whose
instances belong to the class, such as arithmetical consistency state-
ments for the systems they extend.)

Instead we may find that the new axioms yield non-computa-
tional consequences which can be verified independently by using

7 This is not to say that we cannot recognize set-theoretic structures in which
limitative axioms hold. Indeed, Gidel showed that every model of ZF set theory con-
tains a submodel in which V= L,

1% By computationally decidable mathematical truths I mean the variable-free,
true numerical equations of primitive recursive arithmetic plus those that can be
coded as such equations.
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methods that are available within older systems, These methods
might be quite advanced themselves. But the more elementary they
are, the more confidence we are likely to have in them, and in the
indirect support their results give to the new axioms. We can also
usually prove that older structures are contained within the struc-
tures the new axioms imply. Such results show that new axioms
extend the old systems in appropriate and interesting ways.

Of course, we would also welcome evidence that the new axioms
are consistent. Due to the strength of the new systems this will take
time. Initially, the most we can expect is to show that the systems do
not permit the obvious derivations of well-known contradictions
such as Russell’s Paradox. We might also show that the systems are
consistent provided other equally powerful systems are. If we have
additional evidence for the consistency of the latter systems, then it
transfers to the former. Analogies to well-entrenched extensions of
even older systems can also provide some initial reason to be confid-
ent in the consistency of new systems. (For example, the axiom pos-
tulating an inaccessible cardinal draws some support from its
similarity to the ordinary axiom of infinity, which postulates
omega.)

To summarize, if the account I have been giving is correct, then
the relationship between our mathematical theories and the evidence
for them is quite similar to the indirect sort of relationship holding
between scientific theories in general and the evidence for them.
Furthermore, the evidence for our more elementary and older math-
ematical theories derives—anot from special mathematical insights or
reasoning—but rather from the empirical consequences they (and
appropriate auxiliaries) produce and their successful use in science.
Thus, despite its emphasis on deductive proof, even the local con-
ception of mathematical evidence does not differ as radically from
that of empirical science as tradition holds.

2. COMPUTATION AND MATHEMATICAL
EMPIRICISM

Although in the previous section I argued that some of the evidence
for the old parts of mathematics is empirical, I did not claim that
non-deductive inference from empirical premisses is part of the con-
temporary methodology of mathematics. In this section I shall
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appeal to the role of computation in mathematics to argue this
claim. It will turn out that only an ideal being could pursue math-
ematics through pure thought alone.’?

2.1. Computation and Mathematical Reasoning

In speaking of computations, it is important to remember that one
may be referring to sequences of mathematical entities, for example,
derivations within the Gédel-Herbrand formalism for recursive
functions, or instead to physical processes, for example, calculations
made with paper and pencil or computer runs. For clarity T will
reserve the term ‘computation’ for the physical processes and use the
expression ‘abstract computation’ when referring to computational
sequences in mathematical formalisms.

We ought not restrict our attention to just the evaluation of
recursive functions using known algorithms. Mathematicians fre-
quently perform computations when they rewrite expressions for
complex numbers by applying algebraic rules, evaluate integrals
using identities, or manipulate expressions in transfinite number the-
ory by appealing to set-theoretic theorems. Yet most of the func-
tions denoted in these cases transcend the recursive. Such symbol
manipulations are computations because they are in principle for-
malizable as derivations within an effective formalism.

Even the most superficial observation reveals that everyday math-
ematical activity, the practice of mathematics, is replete with (physi-
cal) computations, Whether carried out using paper and pencil,
computers, or consciously in one’s head, these computations often
figure as essential pieces of mathematical evidence. An obvious place
to see this is in mathematical publications where suppressing com-
putational steps saves pages while challenging readers. Whether an
author uses an explicit ‘by computation’ or an implicit matter of fac-
tual appeal to tacit identities, as in ‘since (x + I/xP=x2+ 1/x2+ 2., .,

% My thoughts in this section were prompted by the philosophical discussion of
the computer proof of the Four Colour Theorem. See Tymoczko (1979) and respons-
es by Teller (1980), Detlefsen and Luker (1980), Krakowski (1980), and Levin (1981).
To a certain extent I travel paths blazed by Tymoczko and Detlefsen and Luker. | have
also benefited from conversations with Bijan Parsia, although he denies that the use
of computation shows that mathematics is empirical, He sides with Lakatos (1978} in
holding that mathematics is quasi-empirical in that it makes non-deductive inferences
from mathematical premisses.
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readers who want the author’s complete evidence must carry out the
missing computations for themselves.

Obviously, in so far as computations help prove mathematical
theorems, they can also refute mathematical conjectures. Fermat
conjectured that all numbers obtained by raising 2 to the nth power
of 2 and adding | are primes. Computation confirms Fermat’s con-
jecture forn =1, 2, 3, 4, but Euler refuted it by factoring the number
obtained when n is 6.

Although a detailed analysis would show the reasoning involved
in these illustrations to be quite varied, they share a common ele-
ment: instead of following the commonplace pattern of using math-
ematical and physical premisses to draw empirical conclusions, these
examples use mathematical and empirical premisses to draw math-
ematical conclusions. This deserves a closer look.

For simplicity let us restrict our attention to physical computa-
tions mirroring abstract derivations within a known formalism for
recursive function theory. Then the reasoning condensed in a step
‘by computation’ runs more or less according to the following
Pattern A.

(1) A reliable human or mechanical computer has carried out a

physical process corresponding to deriving *f(a) = & within
some formalism S for recursive functions.

Thus
(2) ‘f(a) = b’ is derivable within S.

Hence, by the (mathematically demonstrable) soundness of §,
Gy f@=b.

Of course, we rarely calculate recursive functions within some
standard formalism of recursive function theory. In school, for
instance, we calculated them using traditional algorithms and deci-
mal notation. Yet specifying a formalism for our computations
would be a lengthy but routine task. Hence, it is clear that with some
work inferences from those computations could be fitted in the
mould of Pattern A.

2.2. From Empirical Premisses to Formal Conclusions

In Pattern A the transition from step (1) to step (2) consists in infer-
ring a mathematical claim about a formal object within a mathemat-
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ical formalism from undeniably empirical claims about the behav-
iour of a physical device. The other steps use standard mathematical
reasoning and do not raise special issues. But transitions of the first
kind certainly do; so let us examine thern more thoroughly.

The reasoning that concerns us begins with a premiss describing
the performance of a reliable human or mechanical computer. One
might think that a premiss of this type is not empirical because the
concept of computational reliability is a mathematical concept.??
But I think we can characterize the notion of reliable computer in
uncontroversially non-mathematical terms. For a computer to be
reliable it must be in good physical (and mental, if appropriate)
working condition and properly programmed, and, we might add,
produce results which are generally accepted as correct. By phrasing
the last condition in epistemic terms we avoid using such mathemat-
ically defined terms as ‘mathematically correct’ or ‘sound’.

To say that a human computer is in good working condition
might be to say that its memory is working well, that it is able to con-
centrate and follow instructions, that it can read and write legibly,
and so on; while to say that a mechanical computer is in good work-
ing condition might be to say that its circuits are in good order, that
it is in an appropriate physical environment, that its control systems
are working, that its input~output devices are ready and working,
and so on. Of course, one way to test a whether a human or mechan-
ical computer is in good working order is to give it test computa-
tions. This is probably the most efficient way to evaluate human
computers, but it need not be the only way. We need only look at the
example of electronic computers to see this. Engineers have already
developed a wide variety of non-mathematical tests and instruments
for determining whether an electronic computer’s physical compo-
nents are in good working order. Admittedly, humans are much
more difficult to diagnose than electronic computers, and it may be
hard to distinguish between human errors due to mathematical
ignorance and those due to temporary or permanent mental or
physical disabilities. But even this does not force us to define reliabil-
ity for human computers in terms the mathematical correctness of
their output. For instance, it is well known that we cannot reliably
compute with large numbers. Yet we need not bring in the incorrect-
ness of our results to establish this; instead we can point to their

¢ | had such a worry in Resnik (1989), from which the present pages are adapted.
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diversity. Taken in groups, reliable computers should give the same
answer to the same problem; taken individually, they should give the
same answer on repeated trials on the same example.

Of course, even if a computer is in good working order it can
reliably execute a particular computation only if it has been correct-
ly programmed to execute the algorithm corresponding to the com-
putation. But again I see no need to characterize a computer’s being
correctly programmed in terms of the mathematical soundness of
its output. Notice that we are not concerned here with whether the
program gua formal object correctly codes a given algorithm—
whether, for instance, a program in BASIC codes Euclid’s algorithm.
Rather we are concerned with whether the program in question has
been properly installed in the computer. In the electronic case this
can be determined by checking the appropriate contents of the com-
puter’s memory. The human case is less straightforward, but pre-
sumably asking the computer to describe the steps it would take to
execute computations of a given kind would tell us much about
whether it had been properly programmed.

Although I think the previous paragraphs make it quite probable
that we can specify the reliability of a computer in non-mathemati-
cal terms, it might be that some mathematical element remains in-
eliminable. We might, for example, need statistical measures to
describe the uniformity of a group of computer answers to test
problems. Yet even if the claim that a computer is reliable must be
framed in mathematical terms, the claim itself is an empirical one,
since attributing a mathematical concept to an empirical object—
calling it, for instance, tripartite or triangular—is to make an empir-
ical claim. Thus premiss (1) remains an empirical one.

This premiss also describes the computer as executing a compu-
tation corresponding to deriving a formula with a certain formalism.
This is to claim that there is a connection between the mathematical
situation and the physical one: the computer is supposed to be in
physical state P only if the formalism has a corresponding mathe-
matical property M. Where does this connection come from?

There are a number of ways in which one might fill in the connec-
tion between state P and M, but I think that they ultimately come to
something like this. We can prove mathematically that any system P
{physical or otherwise) having certain structural properties can be
represented homomorphically by an abstract system M in the sense
that (a) there is a one-one composition preserving correspondence
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between the elements of § and certain elements of M and (b) ele-
ments of § have certain structural properties only if their represen-
tatives in M do. This allows us to analyse the first premisses of
inferences conforming to Pattern A as consisting of an unproblem-
atic mathematical claim:

(1a) Any physical system of type P can be homomorphically rep-
resented by a mathematical system of type M;

and two empirical ones:

(1b) The computer in question (in being reliable) is a physical sys-
tem of type P;
(1c) The computer in question has a certain structural property

In short, these premisses amount to claiming that the computer is in
a certain physical condition homomorphically represented by a cer-
tain configuration in a mathematical formalism. This allows us to
infer to the second step stating that the mathematical formalism in
question is in the configuration mentioned.

2.3, What Do Computational Inferences Show Us about the Nature
of Mathematical Knowledge?

Human mathematicians, both theoretical and applied, use physical
computations to draw conclusions about mathematical objects.
Sometimes they do so deductively in order to prove or refute math-
ematical claims; sometimes they do so non-deductively to marshal
evidence for or against mathematical conjectures. And sometimes
the mathematical results they obtain are as theoretical as they come.
But does this alone show that important pieces of mathematical
knowledge are empirical? Yes, provided that we can set aside some
potential apriorist or separatist objections.

The most fundamental of these objections is that in appealing to
computations we simply do not reason according to Pattern A.
Writing by computation’ in a proof is like citing a previously proved
theorem. We don’t appeal to such theorems by reasoning: ‘Someone
has previously proved that A and I have proved that 4 — B, s0 B’
Using a ‘by computation’ in a proof has the same effect as citing a
previously proved theorem; it converts the proof into a proof sketch
whose completion requires filling in the missing steps of deduction
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or computation. Furthermore, when computing we infer the result
directly at the end of the computation; we don’t reason: ‘I computed
7 x 35 and got 245, so 7 x 35 = 245.” And the same point applies to
proofs assisted by electronic computers: using an electronic comput-
er to do a computation is in principle no different from having a fel-
low-mathematician do it, and that in turn is in principle no different
from doing it oneself.?!

The objection is correct in that Pattern A does not describe the
sort of inferences we run through when giving a proof sketch that
includes a step established by a computation (no matter who or what
has done it); we simply take the step as a premiss and use it in subse-
quent inferences. But we should distinguish the reasoning we go
through in constructing proof sketches from the justification we
would give if someone questioned one of its steps. Since it is practi-
cally impossible for any of us to reconstruct all of the mathematics
cited in complicated proof sketches, we would have no choice but to
appeal to the reliability of the proofs or computations we cited. In
either case this would involve empirical premisses, which in the case
of computations would conform to Pattern A.

A second objection responds to the point I have just made by dif-
ferentiating between the methods we actually use in mathematics
and those that we would use under ideal circumstances. One might
put the objection as follows. Granted, the methods we use are the
best for us in our circumstances. (Better to let a computer keep track
of my bank balance than to try to do it in my head!) However, in
principle physical computations are superfluous, since they can be
replaced by full-fledged deductions, which take piace a step at a time
entirely within one’s head.?? At no time would one need to appeal to
any physical or mental outcomes. Thus when arriving at the conclu-
sion of the deduction there would be no need to refer to its previous
steps or to one’s belief in them. Hence mathematical knowledge
does differ significantly from scientific knowledge in that any item of
mathematical knowledge is in principle deducible from purely math-
ematical premisses containing no reference to physical or mental
events,

The usual way with objections of this sort is to remark that unless
one can show that an a priori form of mathematical evidence justi-

2t Bijan Parsia suggested objections of this sort to me.
A Cf Steiner (1975}, ch. 3.
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fies the axioms, the epistemic status of the conclusions remains
open. This remark is appropriate where evidence for the axioms is
wanted, and we have already seen that ultimarely such evidence is
indirect and empirical. None the less, because computations are usu-
ally used to establish results within axiom systems, one could argue
that what we learn from computations is that if the axioms are true
then so is the theorem. It would follow that ideal beings would differ
from us in being able to justify certain conditional truths via logic
alone that we can only justify through using empirical premisses.

A similar point applies to falsifying mathematical results already
on the books. Future experience could upset a mathematical proof
based upon computations by undercutting our confidence in them.
But this would not happen to ideal beings, since their knowledge
would be based upon logic alone. Only such experience that could
prompt them to revise the laws of logic could upset their proofs.

When philosophers speak of mathematical knowledge as a priori
or based upon a special form of evidence, they have in mind at least
two intertwined ideas. The first is that it is known independently of
experience, the second is that it is immune to experiential revision. I
have argued that much of our mathematical knowledge is not spe-
cial in either sense, for it is in fact based upon experience which for
us is largely ineliminable. But I am not denying that some of our
mathematical knowledge is grounded in our own deductions from
axioms. Thus the difference between us and ideal beings is not that
they do, and we do not, have knowledge based upon deduction, but
rather that they would have much more of it. This prompts me to
ask whether and in what sense knowledge based upon deduction isa
priori or different from scientific knowledge,

3. MATHEMATICAL PROOF, LOGICAL DEDUCTION,
AND APRIORITY

Many contemporary philosophers of mathematics believe that
mathematical proofs are the bastions of a priori mathematical
knowledge, because they lead us to logical truths, Specifically, we
learn from them that it is logically true that if the proof’s axioms are
true (or true in a structure) then so is its conclusion, Because these
conditional statements are logically true, they are supposed to be
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insulated from empirically motivated revision. In this section I will
argue against this supposition.

3.1. Mathematical Proof and Logical Deduction

In Section 2 I appealed to the role of computation in mathematics to
argue that most of our proofs are not purely logical deductions from
axioms. This would tend to weaken the case that every mathematical
proof yields knowledge of a logical truth, because some may be too
incomplete to reveal the logical chain linking their conclusions and
their premisses. For the rest of this section I want to set aside this
issue and others related to my remarks on computation, and make
my case independently of them. But before moving on to the main
argument in this section I want to remind us that some prominent
mathematicians have held that mathematical proofs cannot be
reduced to a sequence of logical inferences. Poincaré puts this senti-
ment eloquently in the following passage:

[Sthould a naturalist who had never studied the elephant except by means of
the microscope think himself sufficiently acquainted with that animal?

Well, there is something analogous to this in mathematics, The logician
cufs up, so to speak, each demonstration into a very great number of ele-
mentary operations; when we have examined these one after the other and
ascertained that each is correct, are we to think we have grasped the real
meaning of the demonstration? Shall we have understood it even when, by
an effort of memory, we have been able to repeat this proof by reproducing
all these elementary operations in just the order in which the inventor had
arranged them? Evidently not; we shall not yet possess the entire reality;
that I know not what, which makes the unity of the demonstration, will
completely efude us.23

Thus, according to Poincaré, even after we have checked a proof and
have recognized that each step does indeed follow logically from
prior steps, we may still have failed to grasp all that the proof con-
veys. Thus he seems to hold that there is more to learn from a proof
than a logical truth.

The intuitionist Brouwer held an even stronger position, namely
that logic has no real role in mathematics. While Poincaré insisted
that intuition is necessary to grasp the unity of a proof, he also held
that logical deduction is necessary to give a theorem its certainty. By

* Poincaré (1913), 217,
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contrast, Brouwer held that mathematical proofs are mental con-
structions, and that a theorem merely reports that its author has ex-
ecuted a construction backing it. The being of the construction lies in
its being performed. Nothing further in the way of axioms or rules is
needed to legitimate it. On this view, the only role logic and axiomat-
ization have to play in the study of mathemnatics is that of systemat-
ically describing—not certifying—the constructions mathematicians
have already completed.?* These descriptions may aid you or me in
reconstructing some area of mathematics, but they cannot serve as
mathematical evidence. Only our own constructions can do that.

Now I am not endorsing either Poincaré’s or the intuitionists’
epistemologies. But they do voice a conviction, which many math-
ematicians hold,?* that logicians and philosophers impressed by the
results of formalization have missed an essential feature of math-
ematical knowledge. Perhaps one could respond, in the manner of
Frege, Carnap, or Hempel, that these mathematicians should distin-
guish the psychological aspects of discovering theorems from the
epistemological aspects of justifying them. But many contemporary
epistemologists and philosophers of science could rejoin that such a
distinction is no longer viable.

To make the picture even more cloudy, there is no consensus even
among the friends of logic as to where logic proper ends and math-
ematics begins. Some believe that logic ends with first-order logic,
and cite the fact that it is the only logic that has a complete proof
procedure, is compact, and is subject to the Lowenheim~Skolem
theorems as evidence.?6 Others point to the last feature as evidence
that the logic of mathematics is not first-order but rather second-
order logic.?7 Still others think that logic is given by the ramified the-
ory of types.?® Furthermore, second- and higher-order logics have
no complete proof procedure; their notions of logical consequence
are to be understood semantically, and are usually explicated in
terms of set theory. On this view of logic, we may even require math-
ematics to establish some logical consequences!??

# See Heyting (1956}, 69-71; Brouwer (1913).

25 Cf. the disdain the ‘ideal mathematician” shows for logic and formal proof in
Davis and Hersh (1981). 26 See Tharp (1975).

7 See Shapiro (1991). % See Hacking (1969).

% The usual practice is to formulate the semantics of higher-order logics within
set theory. This would enable us to prove that S is a logical consequence of # by
proving a theorem to that effect within set theory, But notice that in order to employ
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The only conclusion that I will draw from this inconclusive situ-
ation is that it is simply not obvious that in proving a mathematical
theorem we (simply) learn through purely logical methods that the
theorem is logically necessary given the axioms. For the methods
might be both mathematical and logical, and the proof might
inform us of some non-logical fact. Still my argument in the remain-
der of this chapter will not turn upon this. For the sake of argument
I will grant that by deducing a mathematical theorem according to
accepted rules of logic we can learn that it is true provided the
axioms are.

3.2. Wide Reflective Equilibrium and the ‘Epistemology’ of Logic

I deny, however, that mathematical deductions yield a special kind
of truth—so-called logically necessary truths. Nor do they guaran-
tee that the only rational grounds we might have for revising the
beliefs we base upon these deductions will come from discovering
errors in the deductions themselves. Of course, mathematical logic
proves that our rules of deduction are formally valid in various tech-
nical senses of formal validity. But it does not establish that formal
validity suffices for logical necessity or immunity to experiential
refutation. If, for example, we take formal validity to mean comes
out true for all interpretations in non-empty universes, then the claim
that a given quantificational schema is formally valid is a claim of
set-theoretic model theory. Mathematical logic establishes such
model-theoretic truths, but it does not take the further step of con-
necting them with logical necessities. Indeed, it is not obvious how
te make the connection. It is plausible, for example, that set-theor-
etic models represent logically possible worlds, but this and the
claim that the set-theoretic models capture all and only logically
possible worlds need arguing,3®

Consider how one might argue for claims of this sort or for the
claim that our rules of inference generate logically necessary conse-
quences. One might start with our logical intuitions (for example,
intuitions that certain sentences are logically true) and try to con-
struct an appropriate soundness proof. These intuitions might be
either metaphysical ones about various logical necessities or norma-

this theorem to infer that § is a fogical consequence of W we must take the axioms of
set theory 1o be true.

¥ Cf. Etchemendy (1990},
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tive ones about the logical correctness of various arguments. Either
way, the soundness proof will be no better than the intuitions from
which it starts. Thus it is unlikely to convince anyone who begins
with firm logical intuitions to the contrary. Nor is it likely to con-
vince people, such as myself, who are sceptical about the very notion
of logical necessity.

What about turning to Logic, the discipline, as a source of
sophisticated methods for justifying claims concerning logical neces-
sities and consequences? The method logicians use when construct-
ing systems for codifying correct reasoning or notions of logical
necessity and possibility is the method of wide reflective equilibri-
um, first identified by Nelson Goodman, but publicized by John
Rawls in discussing its use in moral theorizing.3! One starts with
one’s own intuitions concerning logical correctness (or logical neces-
sity). These usually take the form of a set of test cases: arguments
that one accepts or rejects, statements that one takes to be logically
necessary, inconsistent, or equivalent to each. These are—in Rawlis’s
terms—one’s considered judgements. Given their topic, I find it con-
venient to call them considered judgements of logic. One then tries to
build a logical theory3? whose pronouncements accord with one’s
initial considered judgements. It is unlikely that initial attempts will
produce an exact fit between the theory and the ‘data’. Furthermore,
committing oneself to a logical theory invariably entails acknow-
ledging unforeseen and prima facie anomalous logical relationships.
(The so-called paradoxes of truth-functional implication constitute
a case in point.) Sometimes one can respond to such anomalies with
a simple modification of one’s formal system. Sometimes retranslat-
ing a prima facie anomalous argument will reconcile it with the the-
ory. Sometimes, however, one will yield one’s logical intuitions to
powerful or elegant systematic considerations, In short, ‘theory’ will
lead one to reject the ‘data’. Moreover, in deciding what must give,
not only should one consider the merits of the logical theory per se,
such as its simplicity, fruitfulness, or elegance, and the firmness of
one’s logical intuitions, but one should also consider how the theory
and one’s intuitions cohere with one’s other beliefs and commit-
ments, including philosophical ones. When the theory rejects no

* See Goodman (1955); Rawls (1971).
3 | take a logical theory to consist of a formal system, its semantics, metatheory,
and rules for paraphrasing informal sentences into logical notation,
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example that one is determined to preserve and countenances none
one is determined to reject, then the theory and its terminal set of
considered judgements are in, to use Rawls’s term, wide reflective
equilibrium. The equilibrium is wide, because the theory is conso-
nant not only with one’s terminal set of considered judgements, the
mark of narrow reflective equilibrium, but also with one’s broader
system of beliefs,

Some discussions of reflective equilibrium suggest that it is a kind
of intellectual contentment, a psychological condition characteriz-
ing individual logicians or teams of them, and something to be
determined more by introspection than by logic. But I mean refleg-
tive equilibrium to apply to systems consisting of beliefs, logical the-
ories, and considered judgements of logic. Such a system isin such a
state just in case it is coherent by the lights of its own logical
theory.

Of course, one’s own logical theory, momentary beliefs, and
logical intuitions may be in reflective equilibrium only temporarily.
New experiences might produce beliefs or logical intuitions conflict-
ing with one’s logical theory. Such is our psychological predicament,
but this does not make reflective equilibrium a psychological matter.

Since in determining reflective equilibrium one uses the logic con-
tained in one’s own evolving logical theory, one might think that a
theory may be in reflective equilibrium from its own internal point
of view and not so from the point of view of another theory. I hesi~
tate to draw this conclusion, since I wonder whether one could make
sense of a rival logical theory while remaining true to one’s own.
(The problems with interpreting intuitionism illustrate the difficul-
ties one might encounter.) Reflective equilibrium may be a notion
that is immanent to a logic rather than transcendent.

Since constructing a logical theory involves balancing various
values against each other and making choice after choice, there is no
reason to expect it to lead different users to the same outcome. Even
if we could make sense of an ideal limit of logical enquiry—when all
the ‘data’ are in—we cannot avoid the possibility of different logi-
cians (or different communities of logicians) correctly applying the
method to the same initial data and arriving at different outcomes.

Furthermore, I do not think we can make sense of an ideal point
where logicians are bound to agree at least concerning the logical
data. Scientists in differing circumstances are likely to begin with
different observational data, but it is at least arguable that their
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opinions concerning the observational data can be made to converge
by exposing them to sufficiently similar experiences. Logicians, like
scientists, are likely to start theory construction with different initial
data. Some will see the derivation of the principle of mathematical
induction as a logical deduction, others will argue that it involves
set-theoretic reasoning. What some will see as unexceptional uses of
excluded middle, others will see as faliacies. But, unlike the scientific
case, we cannot contrive for logicians to concur concerning the
‘data’ unless we do some fancy brainwashing. For it is not just a
matter of seeing that they have similar experiences; rather it is a mat-
ter of making them come to the same evaluations. Thus they could
even come to agree on all truths not containing expressions such as
‘logically true’ and ‘consistent’ while still disagreeing on the extent of
logical truth.

When logical theorizing reaches an equilibrium point the result
consists of a logical theory in wide reflective equilibrium with a set
of considered judgements of logic. If I am correct about the wide
reflective equilibrium methodology, then different logicians can
apply the same methodology and arrive at different terminal sets of
considered judgements.

Notice that it is common for logicians to develop different for-
malisms for classifying the same set of arguments and statements,
There are complete and sound axiom systems, tree systems, and nat-
ural deduction systems for first-ordes, intuitionist, and modal logic;
and while there have been many debates concerning the correctness
of each logic, they have never focused upon the type of system used
to formulate them. Thus, unlike the scientific case where disagree-
ments commonly arise at the level of theory, disagreements in logic
arise at the level of considered judgements. For this reason when |
speak of a logic I will mean the classifications yielded by a logical
theory in reflective equilibrium rather than the formal apparatus of
such a theory.

3.3, Against Logical Realism

In discussing logical necessity and related notions it is important to
distinguish our informal and philosophical notions of logical neces-
sity and possibility from the various types of formal validity, con-
sistency, and implication developed in mathematical logic. My
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target in this section is realism concerning the informal and philo-
sophical notions, and not realism concerning the latter—which may
well be a species of mathematical realism. I will be criticizing logical
realism—the doctrine that statements attributing logical properties
or relationships, such as ““0 = 0” is logically true’ or ““0 = 0” does
not imply “1 = 0", are true or false independently of our holding
them to be true, our psychology, our linguistic and inferential con-
ventions, or other facts about human beings,

If the previous description of the methodology of logic is correct,
then we have no reason for thinking that one logic rather than
another has captured the pre-systematic notions of logical necessity
and logical correctness. But this raises an epistemological problem
for logical realism. To borrow from Benacerraf’s criticism of math-
ematical realism, if logical necessity is a metaphysical property of
sentences or propositions, then we have no grounds for thinking that
we can always know where it applies,

I do not infer from this that we should turn from realism to
logical relativism. We should take our own logic seriously. For sup-
pose that my logical theory, data, and other beliefs are in wide reflec-
tive equilibrium-—at least according to my own logic. Then no fan of
a rival logic can undermine my logical theory by pointing to a defect
in it or to anomalous ‘data’ or to some other problem that both of
us have already considered. I have already taken account of these in
achieving equilibrium. By my lights I am right and my rivals are
wrong—they accept invalid inferences or reject valid ones. (Of
course, someone could upset my equilibrium by presenting me with
new considerations, but I do not have that in mind now.) Thus there
is no reason for me not to take my own logic seriously and no reason
for me to tolerate rival logics (other than social or political reasons).
This intolerance is not incompatible with my commitment to wide
reflective equilibrium. True, but for a whim I would be in the shoes
of one of my rivals. But I am not in their shoes. To convert to one of
their theories I must either give up intuition X or principle Y. Why
should I do that when my theory is working so well now? From my
present point of view, I made the right choices—by luck or whim,
perhaps—but that makes them no less right.

On the other hand, this would be no reason for realists (or even
myself) to identify logical necessity and correctness with the output
of our logical methodology. After all, even if we recognize such
things as logical necessity and correctness, we should recognize that
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our procedure may not have produced the true logic. Nor do I think
that there is any point in identifying logical necessities with those
truths whose denial would violate our linguistic conventions, or with
those which belong to our most global theories or are otherwise
central to our intellectual life. True, the so-called logical truths,
inferences, and equivalences play central roles in our reasoning and
theorizing., And persistent logical deviance is a good indicator of
some sort of linguistic incompetence. But we should not identify
logical facts, if there be any, with facts that might explain why we
make the judgements of logic we do. For example, it is hard to
believe that in calling a statement logically true, we are describing its
role in our conceptual scheme or stating a convention.

Logical realism is, I suspect, the natural inclination of many
philosophical logicians just as platonism is the natural inclination of
many working mathematicians. However, the case for it is much
weaker than that for mathematical realism. Although I will give sev-
eral reasons why one would be inclined to be a logical realist, in the
end each either fails to be compelling or else does not support real-
ism alone.

One of the strongest reasons in favour of logical realism is that
matters of logical correctness seem to be independent of our per-
sonal wishes and beliefs. What better confirmation of this is there
than discovering that one of one’s pet arguments is invalid! Surely a
philosophy of logic must take into account this bit of phenomenol-
ogy, and realism about logical values backed by realism about
logical properties and relations does it well enough. But the view
that logic reflects our linguistic conventions, or the view that logical
truths are those that are central to science, and even certain versions
of the view that our logic is a function of our psychology, can also
ground logic in something independent of our personal opinions,
and thereby explain the objectivity (better, intersubjectivity) of logic
and the appearance of an independent logical reality. Moreover,
they can do so just as plausibly.

A second, related reason is that, by claiming that we are all
responding to the same logical values, realism explains the wide-
spread agreement one finds concerning the judgements of logic. But,
again, pointing to shared conventions, psychologies, conceptual
frameworks, or inferential practices can explain agreement on mat-
ters of logical correctness as easily as realism. On these views, you
and I agree that Russell’s Paradox leads to an absurdity because all
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humans are inclined to react this way or because we share the same
language or inferential practices, and so forth. Furthermore, point-
ing to these can better explain the significant disagreements that
exist.

A third reason that might come to mind is that much of contem-
porary philosophy, especially metaphysics and philosophy of lan-
guage, contains theories built upon a realist view of logical
possibility, necessity, implication, or equivalence. This reason is thus
apalogous to indispensability arguments for mathematical realism.,
Now the indispensability arguments for mathematics are predicated
upon our use of mathematics in science, and we dismiss mathema-
tized science at our peril. But it can hardly be said that we dismiss
any contemporary metaphysics or philosophy of language at our
peril, much less possible-worlds semantics; so I do not find much
force in this indispensability argument for logical realism.

In conversation Keith Simmons has suggested another reason,
namely that only realism about logical facts can explain our intu-
ition, for example, that if we used a different logic or even if no
rational beings existed at all, it would still be the case that no num-
ber is both even and not even. Like the last reason this by itself is no
argument for realism about logical values. I see three ways to inter-
pret it, and several ways for an anti-realist to respond. First, taking
the objection at face value, anti-realists can prove in the usual way
using the logic we now have that under no condition would a number
be both even and not even, and that this is why none would be so if
we had a different logic. The point is that changing our logic would
not alter the truth of these statements, but at most our attributions
of truth to them. To be sure, anti-realists cannot explain why it
would still be contradictory for a number to be both even and not
even if we had a different logic, but this explanandum is itself a the-
sis of logical realism. However, I think that Simmons had in mind
something like the idea that even if our conventions for ‘no’, ‘and’,
and ‘not’ were different it would still be true that no number is both
even and not even. Now if saying that ‘it is true that p’ is just anoth-
er way of saying that the sentence supplanting ‘p’ is true, then the
intuition in question is wrong. Without specifying the case further,
there is just no saying what the truth-value of ‘no number is both
even and not even’ would be if we used the words ‘no’, ‘and’, and
‘not’ differently. On the other hand, if ‘it is true that p’ is an operator
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applying to propositions or Fregean thoughts, then anti-realists can
use our current logic to argue as before that no matter how we used
our current logical vocabulary it would still be true that no number
is both even and not even.

I also suspect that realists about logical necessity and other prop-
erties and relations often confuse normative intuitions concerning
logical correctness with descriptive ones concerning metaphysics,
and tacitly base their descriptive metaphysics on normative judge-
ments of logic. If so, we can add to the list of problems for logical
realism the problem of showing why normative intuitions are rele-
vant to metaphysical facts.

Let me reiterate that my anti-realism about logical values or
logical properties and relations does not extend to anti-realism
about the claims made in formal logic. For example, I have no objec-
tion to being a realist about whether sentences in a sufficiently regi-
mented language are truth-functional tautologies or whether one is
a first-order conseguence of others. Holding that a sentence is true
under all interpretations in every non-empty universe commits one
to its being true, but not to its belonging to a special category of
logical truths in either the evaluative or the metaphysical sense.

Before I pass on to propose my own anti-realist account of logic,
I want to emphasize that the objections to logical realism—whose
similarity to those against mathematical realism is striking—spell
trouble for philosophies of mathematics which trade mathematical
facts for logical ones.>* The contemporary version of this movement
originates with Hilary Putnam, who proposed that we view talk
about mathematical objects and talk about the logical implications
of the axioms of a branch of mathematics as “equivalent descrip-
tions’ of the same mathematical facts, and use one viewpoint ‘to
clarify the other’. The problems in the philosophy of mathematics

33 The objections are so similar to those to mathematical realism that Pieranna
Garavaso wonders {in correspondence) why I don’t accep®the force of the latter. First
of ail, I do accept the anti-realist arguments based upon pointing out that we can give
non-realist accounts of many of the facts about mathematics, such as its apparent
objectivity, which realism claims to explain, These show that realism cannot claim 1o
be the only explanation of these facts. But ] don't accept the objection that we lack an
epistemology for mathematical realism, for the obvious reason that I think I provide
one in this book. And while I think that we need not appeal to statements of the form
‘... is logically true’ or “. , . is logically consistent’ in doing science, [ do not think that
we can dispense with mathematical objects and truths in doing science.
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arise simply because we become captivated by just one picture of
mathematics. Here is how he put it:

In short, if one fastens on the first picture (the ‘object’ picture), then mathe-
matics is wholly extensional, but presupposes a vast totality of eternal
objects; while if one fastens on the second picture (the *modal’ picture), then
mathematics has no special objects of its own, but simply tells us what fol-
lows from what. If ‘Platonism’ has appeared to be the issue in the philo-
sophy of mathematics of recent years, 1 suggest that it is because we have
been too much in the grip of the first picture, 3

Putnam seems to regard either picture of mathematics as appropri-
ate and useful, but his students Hartry Field and Geoffrey Hellman
have drawn upon his insights to further their own versions of anti-
realism. Field rejected mathematical objects in favour of the view
that mathematical knowledge is really knowledge of logical necessi-
ties and possibilities. (His modal picture of mathematics differs from
Putpam’s in ways that need not concern us here) Hellman, on the
other hand, carefully filled in the details of Putnam’s sketch of a
modal-structuralist picture of mathematics, but then departed from
Putnam by rejecting the mathematical objects picture of mathemat-
ics in favour of the modal picture,

Both Field and Hellman are realists about logical necessity and
possibility, and they take these notions as primitives which may not
be defined using set-theoretic models or possible-worlds semantics.
Now if logical realism is untenable, if there are no logical facts, then,
contrary to Putnam, we don’t have two equally satisfactory pictures
of mathematics, and contrary to Field and Hellman, their modal
pictures cannot substitute for the mathematical objects picture.
Furthermore, even if mathematical claims are equivalent to claims
in formal modal logic, further argument is needed to show that this
modal logic has factual content (other than the mathematical content
furnished through interpreting it via possible-worlds semantics).3®

3.4. In Favour of Logical Non-Cognitivism

The force of my criticisms of logical realism don’t depend upon pro-
viding a substitute for it, but in this section I want to take steps

3 Putnam (1967), 330.
35 My criticism has no force, of course, against those who would view neither
mathematics nor modal logic as making factual claims.
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towards doing so. The view I am proposing is a restrained logical
non-cognitivism: sentences of ordinary language that seem categoric-
ally to attribute logical necessity or other logical properties and rela-
tions actually perform other functions, and are neither true nor
false.

The view concerns sentences of ordinary language containing
such terms as ‘implies’, ‘consistent’, and even ‘logical’ (as in ‘that
was the logical thing to do’), but not sentences containing such
terms as ‘logical truth’, ‘logically inconsistent’, ‘logically impossi-
ble’, which are philosophers’ terms of art.?¢ I will not offer an
account of what philosophers might mean when they use the latter
terms. I doubt that a single account will work, since philosophers
differ from each other concerning the nature of logic, and, presum-
ably, give different senses to terms like ‘logically true’, I did argue in
the last section, to be sure, that the logical realists’ use of this term
commits them to an unacceptable view.

While philosophers introduce the terms ‘logically inconsistent’
and ‘logically implies’ in the course of constructing philosophical
theories, they clearly intend the terms as refinements or explications
of our ordinary terms ‘consistent’ and ‘implies’. Thus my non-cog-
nitivist account of the latter terms has implications for philosoph-
ical attempts to explicate them.

The words “hence’, ‘therefore’, ‘whence’, ‘thus’, ‘consequently’
are used to indicate that an inference is being made. Given their
grammar and function, there is little temptation to see them as
expressing some property or relation. We need to look instead at
terms that are not functioning as inference words.

Consider then sentences, such as the following, which we use to
make assessments of a logical character:

Your remarks are consistent with what you said yesterday;
That does not follow from the stated conditions;

By implication the ruling excludes this use too;

This is an equivalent version of the doctrine.

On the version of non-cognitivism I favour, judgements of this sort
serve at least two functions. First, they play a signalling role in our
inferential practice. In calling someone’s remark ‘contradictory’, for

* Yam indebted to Eric Heintzberger for bringing this point to my attention and
prompting me to revise this section.
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example, we are not describing it as, say, false under all substitutions
for its non-logical terms or as false in all possible worlds. Rather we
manifest that we expect it to be treated in a certain way. Among
other things, we show that we are confident that our audience can
see this for themselves, that the person uttering the remark should
retract or qualify it, and, perhaps, that we will regard those who per-
sist in failing to see our point as intellectually incompetent,
(Compare ‘it’s obvious'.) Categorical judgements of consistency,
implication and equivalence play a similar role in our inferential
practice by policing transitions between statements and commit-
ments to groups of statements.

A second function of these judgements is to express our commit-
ment to certain factual claims. For example, in saying that A is triv-
ially true, I commit myself to its truth; while in saying that it implies
R, T commit myself to its being true if B is; and in saying that it is
inconsistent with B, I commit myself to the falsity of their conjunc-
tion. By saying these things I open myself to criticism if the claims
to which I commit myself tumn out to be false.

We can even see these commitments as matters of implication,
and judge, for instance, the inconsistency of A to imply its negation,
so long as we see these judgements on a par with other judgements
of implication. Thus saying that the inconsistency of 4 implies its
negation is to signal both that the transition from the first to the sec-
ond is permissible and that whoever claims that 4 is inconsistent is
committed to the truth of its negation. But when we say that the
inconsistency of 4 implies its negation we do not describe the two as
standing in a logical relationship of implication in any stronger
sense.

Although I deny truth-values to sentences expressing categorical
judgements of logic, I see no reason to refrain from treating them as
if they have truth-values in developing their ‘logic’. This is what
anti-realists about possible worlds do when they systematize modal
inferences using the notion of validity defined in a modal logic via
an index set W and a possible-worlds semantics. Here remaining
true to one’s modal anti-realism is a matter of not taking talk of
possible worlds as attributing genuine truth-conditions to modal
sentences. Similarly, so long as we refrain from assigning factual
truth-conditions to judgements of logic, developing a ‘logic’—even
a two-valued logic—using a set of indices which we might, for con-
venience, call ‘truth-values’ would not betray non-cognitivism.
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To my mind, the most serious objection to non-cognitivism,
whether the view concerns terms of logic, modal language, ethical
discourse, or discussions of rationality, is that these terms seem to
function descriptively in many sentences that appear to have truth-
values. Here are some examples using ‘imply’ and ‘contradict”;

(1) Since Quine accepts theories that imply that there are mathe-
matical objects, he is committed to them.

{2) Any theory implying a falsehood is false itself.

(3) Frege’s earlier views on meaning do not contradict his later
ones.

The problem is that these statements have truth-values, and it is hard
to see how they could unless ‘imply’ and ‘contradict’ can be true or
false of certain pairs of objects. Now I think we can acknowledge
that terms of this sort are true or false of something in non-categor-
ical contexts without giving up the general thrust of non-cogni-
tivism. One way to do this is to interpret statements like these as
tacitly referring to the norms that govern {or ought to govern) our
inferential practices. Thus we might render (1), (2}, and (3) as:

(1") Since Quine accepts theories that (according to our inferen-
tial practice) commit him to its being true that there are
mathematical objects, he is committed to them.

(2'y Any theory from which we may infer a falsehood is false
itself.

(3') Frege’s earlier views on meaning do not prohibit one from
asserting his later ones.

One might think that this ploy commits one to logical relativism,
but distinguishing categorical from embedded judgements avoids
this. A logical relativist holds that all judgements of consistency and
implication are relative to some background inferential practice, and
that statements of the apparent forms ‘4 implies B’ and "4 contra-
dicts B’ are actually of the forms ‘4 implies B in §” and ‘4 contra-
dicts B in S’, where ‘S’ stands for an inferential practice or the
‘logic’ of an appropriate community. I hold nothing like this con-
cerning categorical judgements, and my view concerning embedded
judgements is not as strong. For I do not claim that they have differ-
ent forms from their apparent forms,

My treatment of (1)-~(3) is clearly no more than a start on the
problem of accounting for examples of this type in terms acceptable
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to non-cognitivists. I would prefer to have the sort of systematic
treatment Simon Blackburn and Allan Gibbard have developed for
embedded judgements of necessity (Blackburn) and rationality
(Gibbard), and, perhaps, one of these can be tailored to judgements
of logic.37 At this time I will simply say that neither of them fully
satisfies me, and I still regard the problem of embedded judgements
as a serious, though not fatal, difficulty for my view.

Someone might worry that in denying truth-values to categorical
judgements of logic I undermine the very practice that I claim they
help regulate. Perhaps considering the following dialogue can set
this worry aside.

I: 4,andif A then B; so B.

You: Really? Why?

I. Well, if A4 is true and true only if Bis, then B is true.

You: Yes, but why if that, and if 4, and if 4 only if B, does B fol-
low?

I: (to stop the Carrollian regress) What do you mean by “Why
does B follow?'? If you mean, “Why is B true?, then I have
already given you the reason. If you mean ‘Why should I
accept B, then I answer: because it is true.

You: But why should I accept the truth?

I: Because you just should!

In this kind of a predicament we must eventually stop stating
reasons or rules, and simply try to persuade or compel our audience
to follow our practice. Adding the response, "Because B is a logical
consequence of 4 and “if 4 then B”, will not extricate us; it will
only postpone resorting to pleas, exhortations, threats, and cruder
forms of persuasion.’®

One might also wonder whether as a non-cognitivist I can consis-
tently endorse wide reflective equilibrium or even the theoretical dis-
cipline of logic. I do not see any inherent conflict here. Our informal
judgements on matters of logic help to promote, inculcate, and
enforce our inferential practice. But considerations of system play a

37 See Blackburn (1984 ); Gibbard (1990

¥ One way to persuade a reluctant audience is to teach them formal logic and
carry them through the process of wide reflective equilibrium. Then we will be able to
state as & further consideration that 4 and ‘if 4 then B' truth-functionally imply B.
But in so doing we will simply describe these statements in technical terms and will
not affirm a judgement of logic concerning them,
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large role in this very practice, since the practice governs what we
may or may not hold while continuing to maintain our prior com-
mitments.3? System is not only a concern of this practice, it is essen-
tial to its success. Thus it is entirely appropriate for us to use this
practice to systematize and criticize it, which is just what we do in
using wide reflective equilibrium.

Finally, one might wonder, as Mark Balaguer has in correspond-
ence, whether my position on logic undercuts my mathematical real-
ism. I think that it should be pretty clear that it does not. First, I
deny no truths that mathematics affirms. I do not deny, for example,
that either there are or there are not infinitely many twin primes; I
simply refrain from affirming this as a logical truth in any realist
sense of logical truth. Nor have I called for revisions in the deductive
methodology of mathematics; I retain all the connections mathe-
maticians recognize between their axioms and theorems. What I
deny is that these connections hold by virtue of an objective logical
relation between them, that is, a relation that holds independently of
our beliefs, inferential practices, and the like.

3.5. The Apriority of Logic

In proving a mathematical theorem we do not come to know a
logical fact (for instance, that the axioms logically necessitate the
theorem) which holds independently of our beliefs, proofs, and
practices. However, we do come to know the conditional truth that
axioms hold only if the theorem does and that the axioms and the-
orem are connected via deduction. This permits us to insulate the
truth from empirical refutation.

It is essential that we have such a practice and truths that we treat
in this way. For theory development and testing must take place
against a background of principles and rules for generating conse-
quences and commitments. What we call our logic is what we take as
fixed in testing and developing our theories.

But in using logic in this way, we place it outside the circuit by
which we test our beliefs, and thereby allow no experience to con-
firm or refute logical truths. So in this sense—of being outside the
circuit through which we test our other beliefs against experience—
logic is a priori. Consequently, so is our knowledge that a theorem

3 Notice that one need not use such terms as ‘logically follows’ or ‘consistency’ in
describing the systematic focus of our inferential practice.
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follows from the axioms, if that knowledge has its source in a logical
deduction.

Despite this, even logic is not a priori in another sense, that is, of
being immune to revision. We might find that certain developments
in science and mathematics generate tensions in our system of
beliefs so disquieting and so difficult to resolve that we begin to look
at the framework that links the system together and to experience,
Thus we might find it rational to revise our logic or its limits—to
alter our inferential norms, that is—and in so doing change what we
count as logical truths and implications. We can certainly find such
proposals in the history of science and mathematics. Both the intu-
itionists and the founders of quantum logic have argued that differ-
ent logics are appropriate to different intellectual domains. Nor need
we expect that the move will always be to curtail or subdivide logic.
From the point of view of nineteenth-century logic the movement
originating in Frege, and continuing with contemporary fans of
higher-order logics, has promoted an expansion of the limits of
logic.

I am not an enthusiast of all of this expansion, being inclined
instead to treat so-called higher-order reasoning as part of math-
ematics. As I see it, the issue here is a practical one. In crediting
something’s truth to logic we do confer methodological honours and
protections upon it. We thereby give it a certain role in ongoing
enquiry. In view of this, clarity and predictability would favour lim-
iting logic to what can be captured within an effective proof meth-
ods. This favours first- over higher-order logics, In calling something
logical, we tend to erect barriers to future inquiry concerning it, and
limit the options we are prepared to consider. In limiting our
options we should be conservative. Other things being equal, our
logic should be minimal.

4. SUMMARY

In the past three chapters I have been arguing that there is no sharp
ontological or epistemological boundary between mathematics and
the rest of science. The differences between numbers and trees are
clear enough, but those between abstract mathematical objects and
virtual processes or electron fields are sufficiently elusive to under-
mine the supposed ontic division between mathematical objects and
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physical ones. Furthermore, empirical evidence bears upon theories
that are combinations of mathematical and ‘empirical’ hypotheses,
Considerations of good sense or pragmatic rationality, rather than
reasons of logic, justify our practice of applying a local conception
of evidence—one that takes our observations to bear upon the
hypotheses of the local science instead of the mathematical ones
belonging to a more global theory. Furthermore, the rule governing
this practice is the general rule against tinkering with the global the-
ories one’s local hypotheses presuppose. The same rule that leads
physicists not to question mathematical results also leads biologists
not to question established physical or chemical principles. The rela-
tive apriority of mathematics is thus due to its role as the most glob-
al theory science uses rather than to some purely logical
considerations that shield it from experiential refutation. The same
good sense counsels us to use Euclidean rescues to save our math-
ematical hypotheses from empirical refutation, that is, to save them
by holding that a putative physical application failed to exhibit a
structure appropriate to the mathematics in question. Thus by using
a pragmatic view of the methodology of science to temper the holis-
tic account of the relationship between theories and empirical evid-
ence, we can not only account for but even endorse the relative
apriority that in practice mathematics enjoys,

It is interesting, then, that even the conception of evidence that is
local to mathematics does not entirely exclude empirical evidence.
Our experience working within a mathematical theory and in apply-
ing it can support our belief that it is consistent. Empirical evidence
may also be used to establish the reliability of our computers—
something we presuppose when we appeal to their computations,
Finally logic is a priori only in a weak sense, It does not report spe-
cial togical facts and relationships that are known or discerned in a
special way. Rather, it delineates a set of truths and relationships
which we have for now marked as immune to refutation on the
grounds that they are a convenient way to define the parameters
through which confirmation and refutation takes place.

There are still some questions about the local conception of
mathematical evidence that I have not addressed in this chapter.
Why don’t mathematicians try to detect the objects they posit? And
related to this: why don’t mathematical objects themselves play any
role in the practice of mathematics although symbols for them do?
To answer these questions we need to have a fuller account of the
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nature of mathematical objects. After we have seen such an account
in Part Three we can return to these epistemological questions,



9

Positing Mathematical Objects

1. INTRODUCTION

In discussing Benacerraf’s objection to mathematical realism
(Chapter 3), I concluded that a realist epistemology need not be
founded upon causal or information generating transactions
between humans and mathematical objects. I granted, however, that,
in so far as realists maintain that mathematical objects are causally
inert and outside space-time, they should explain how we can attain
mathematical knowledge using just our ordinary faculties. I will now
attempt to meet this challenge through a postulational account of
the genesis of our mathematical knowledge.

The basic idea is that humans brought mathematical objects into
their ken by positing them. Now to posit a pew kind of object one
need only introduce a new predicate P (or, as happens frequently,
begin to use an old one with a new sense) and claim that P exists.
Thus, it is plain that realists who claim that mathematical objects are
posits invite a variety of worries and objections. Postulational
approaches seem better suited to conventionalists, who may claim
that we make truths, than to realists, who must hold that we can only
recognize independently obtaining truths. Below I will explain why
positing is not incompatible with realism, I will distinguish positing
in mathematics from the creative efforts of fiction writers, and, final-
ly, I will explain how in positing mathematical objects we manage to
refer to them.

I will be assuming that in providing an epistemology for mathem-
atics, realists are entitled to assume that we already have an abundant
fund of knowledge of mathematical objects, For the mathematical
epistemologist is no more obliged to establish the existence of the
mathematical realm than the epistemologist of common-sense
knowledge is obliged to establish the existence of an external world.
The challenge for both is to explain how we acquire the knowledge
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they assume we have.! Of course, the mathematical epistemologist
has the prima facie more difficult problem of explaining both how
we acquire knowledge of a realm with which we cannot interact and
how anyone managed to acquire any initial mathematical know-
ledge.

The problem, then, is to explain how we have obtained the know-
ledge of mathematical objects we now have, The problem is relative-
ly tractable when it comes to accounting for how we generate new
knowledge about those mathematical objects already known to us.
We have at least a rough understanding of what goes on: starting
with information about these objects that we already have, we
manipulate formalisms or diagrams representing this information,
or appeal to analogies with other mathematical theories in order to
generate new mathematical beliefs or hypotheses. If our methods
fall short of justifying our beliefs according to accepted mathemati-
cal standards, then we can go on to try deriving them from previous-
ly accepted results. This method for generating new mathematical
beliefs from old ones is similar to the methods scientific theoreti-
cians use to generate new hypotheses, and neither requires the
researchers using them to interact with the objects the new beliefs
concern.

We also have some information about how certain historical and
contemporary mathematicians came to believe in new types of
mathematical objects. Again, it is significant that they have been
guided by analogies with previous established mathematics instead
of a priori insights. Furthermore, while we may not fully understand
the methods these mathematicians used, we may be confident that
we can learn more about them through psychological and sociologi-
cal investigations of contemporary mathematical practice and stud-
ies of historical mathematics.2

Unfortunately, studying the history of post-Greek mathematical
discoveries is unlikely to tell us much about how people without a
mathematical heritage originally attained mathematical knowledge.
For the mathematicians in question already knew quite a bit of
mathematics and its history, and thus they were prepared to believe

! In making this assumption I am merely falling in line with the tradition in con-
temporary epistemology initiated by Quine {1969h). Of course, I have already argued
for the recognition of mathematical objects in Chapter 4.

2 See Maddy (1988).
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in new mathematical objects and to compare themselves to previous
mathematical innovators.? To make matters worse for us, the histor-
ical record of very early mathematics is scant, and it is totally mute
on the question of how people initially attained knowledge of the
mathematical realm,

2. A QUASI-HISTORICAL ACCOUNT

Despite our lack of historical knowledge, I think we can tell a plaus-
ible story about the origins of the belief in mathematical objects by
interspersing speculations in the historical record.* This is what I
shall attempt in this section.

To begin, we know that all aboriginal peoples have terms for
describing the size of very small collections. Depending upon the
particular group, they are likely to have words we would translate as
‘one’, ‘two’, ‘five’, or ‘many’, or ‘very many’. Furthermore, although
they have no systems of numerals, they generally have developed
means for counting and recording the size of larger collections, such
as notching tallies on sticks, knotting strings, bagging pebbles, and
the like. Consequently, it would be reasonable to suppose that they
have a term roughly equivalent to our ‘equi-numerous’, through
which they at least implicitly recognize that equi-numerosity is sym-
metric, transitive, and reflexive. It would also be reasonable to sup-
pose that they have terms for comparing sizes and know that one
can determine whether one collection is smaller than another by
comparing tallies. By appealing to the analogy between contempor-
ary aborigines and the prehistorical ancestors of early mathemati-
cians, we can fairly attribute similar knowledge and abilities to the
Iatter.

1t is alsc plausible that the prehistorics reached a similar stage of
sophistication in dealing with shapes—namely, that they had terms
for various shapes, and the concept of two things having the same

* It is often said that mathematicians use a realist working philosophy which they
quickly abjure when pressed with philosophical questions. But I wouldn't take this as
evidence that mathematicians do not believe in mathematical objects; first, because
for every closet formalist there is a dyed-in-the-wool platonist; secondly, because it is
idle to wonder whether mathematicians who willingly affirm that, say, there are infi-
nite numbers actually believe that there are.

4 For more on the early development of mathematics see Wilder (1968).
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shape. Perhaps they also had proto-geometrical knowledge, for
example, that a rectangular-shaped thing can be divided into square
and triangular pieces. (This is something an observant person could
pick up in a day of watching carpenters frame a wooden house.)

The next step for people who have come this far would be to
develop indefinitely protractible systems of numerals for counting
and diagrams for representing shapes and methods for constructing
the diagrams of some shapes from those of other shapes. It is unlike-
ly that these came before the development of written languages, and
they probably evolved with writing. As far as I know, nobody has
observed contemporary aboriginal people making the transition to
this stage (except, of course, through learning it from other cul-
tures), and we have no record of how the ancients made the transi-
tion to this stage. Indeed, the earliest documents from ancient
Egypt, Babylonia, India, and China already show that their peoples
possessed full notations for at least the positive patural numbers and
were able to solve simple arithmetical and word problems.

Notice that one can get this far without having to recognize num-
bers in their own right. (In Quinean terms, one need not quantify
over numbers.) One might even affirm that given any number of
things there might be more, or that there is no limit on the size of the
universe, without thereby committing oneself to the existence of
infinitely many numbers,

It is not certain that the precursors of the Greeks—the Babylon-
ians and Egyptians—recognized numbers in their own right. On the
one hand, they did develop potentially infinite systems of numerals,
and they had algorithms for solving numerical problems, which sug-
gest that they at least implicitly recognized the number series. On the
other hand, their algorithms can be interpreted as rules for symbol
manipulation; and it is not clear that they formulated laws with suf-
ficient generality and abstraction to commit themselves to numbers.

With the Greeks the recognition of mathematical objects as
abstract entities is beyond doubt. It is evident both in the language
of their theories, and in their philosophical commentaries.
Unfortunately, we do not know what led to the transition from the
ontically neutral Egyptian~Babylonian stage to the ontically com-
missive stage of the Greeks. So let me speculate a bit,

Prehistorical peoples, I have assumed, knew that three things are
fewer than five things, and they probably learned this through
experience in counting and comparing. Yet they could hardly have
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known that one billion and three things are fewer than one billion
and five things, For without a system of numerals one cannot even
formulate this claim. Furthermore, it is humanly impossible even for
someone with a system of numerals to learn this fact by counting
and comparing collections of the appropriate size (or by using logic
to show that the existence of one billion and five things implies that
of one billion and three things). But it is reasonable to suppose that
the Egyptians and Babylonian mathematicians certainly knew
things like this. For they could have discovered it easily by reflecting
on the norms defining their system of numerals and its use in count-
ing. If they had, they would have seen that one counts their ana-
logue to a ‘~— 3’ before counting “— 5" and, consequently, that
the former counts a smaller subcollection of what the latter counts.
Notice that this example also indicates how deductive reasoning and
proof could emerge as a method of mathematical discovery and jus-
tification. In fact, ancient Babylonians and Egyptians had already
developed the practice of proving solutions to word problems by
verifying that they satisfied the conditions defining the problems in
question.

So far I have argued that it is plausible to interpret pre-Greek
mathematicians as knowing how to devise systems of notation,
defined by rules of construction and manipulation, which they used
to solve practical problems of measuring, counting, and building.
Here they would be working in the ‘object language’. But, as we
have just seen, they must have had ‘metalinguistic knowledge’, in 50
far as they were aware of various properties of their notational sys-
tems. Of course, none of this forced them to recognize mathematical
objects or abstract entities. (Or, if you will, it does not require us to
interpret them as committed to such objects.) When speaking of
numerals they could take themselves to be speaking of tokens of
numerals or the possibility of tokening them. Probably we could
construe their proto-geometries as similarly concerned with token
diagrams rather than abstract shapes. Thus we needn’t wonder how
they could have come this far without interacting with abstract
mathematical objects,

Yet, clearly, at this point the ancients were at the brink of recog-
nizing abstract entities. Perhaps they just unconsciously slipped into
talk committing them to abstract mathematical objects, Our lan-
guage lets us do this quite easily. By ‘a square’ we might mean a con-
crete square-shaped thing or an abstract geometrical object.
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Similarly, we might use ‘word’ to designate a token or a type. What is
more, our word ‘number’ can be used to signify a concrete collec-
tion, as in ‘A number of people asked for you’, a mathematical
object, or even a numeral type or token.

Thus the switch from talk of tokened numerals to abstract num-
bers or from shaped things to abstract shapes may well have come
about unnoticed and unconsciously, and became well-entrenched
before anyone realized it. I will refer to this way of introducing
mathematical objects as implicitly positing them. ] think it is useful,
however, to pretend that the ancients posited mathematical objects
explicitly, because it will prompt us to consider the sorts of objec-
tions they might have encountered and the responses they might
have given. This in turn will furnish us with a better understanding
of the factors that might have unconsciously motivated those who
implicitly posited mathematical objects. So with this in mind I will
continue my story.

Without having to recognize mathematical objects the ancients
would have observed that some objects are straighter or rounder or
squarer than others. This could have led them to understand what it
is for something to be perfectly straight, or perfectly round, or per-
fectly square. And they would surely appreciate the benefits to be
gained from formulating geometric principles and rules of construc-
tion in terms of such ideals. For example, butting two square corners
produces a straight line but butting two corners that pass for square
need not produce a line passing for straight. One the other hand,
while we can see why the ancients might have reason to speak of
geometric ideals, we can also see why they would have had reason to
doubt that such objects can be found in the material world. For,
amongst other things, they would have observed that often what
appears to be perfectly straight fails to be upon closer examination.’

Other considerations might have prompted them to distinguish
between what is and what might be, that is, between the actual and
the (merely) possible. For example, they might have drawn ‘possible’
carts. But thoughts about unending progressions of numerals or
indefinitely divisible lines or areas would have reinforced the distinc-
tion. At this point some ancients might have thought to deal with
these possibilities through introducing abstract mathematical
objects. However, their sceptical colleagues would have shown them

$ Discussions with Marcus Giaquinto prompted the last few sentences.



POSITING MATHEMATICAL OBJECTS 181

how to account for intuitions about endlessly counting or dividing
lines in terms of the possibility of performing more and more
actions, Of course, such actions would raise the possibility of ever
more matter, ever increasing lifetimes and attention spans, ever
diminishing marks, and the like.

However, this way of doing without mathematical objects would
have come to an end when it came to geometric ideals. Perhaps
stretching a cord tighter and tighter eventually forces it to be per-
fectly straight, but cutting a line into smaller and smaller segments
will not yield an extensionless point, nor will drawing finer and finer
lines produce one without breadth. Thus the desire to posit geomet-
ric limits would have forced the ancients to give up speaking in terms
of possible concreta, and to recognize points, lines, and circles as sui
generis entities, existing in their own right.

Another reason for positing geometric ideals would be the gains
to be had in overall theoretical simplicity, clarity, and economy. We
have already seen that accounting for the possibility of repeatedly
dividing or prolonging a concrete line would require positing the
further possibility of unlimited time, matter, and so on. We can add
to this that accounting for geometric ideals in this way would also
require one to explain how one can complete an infinite set of con-
crete tasks—a feat which we still have difficulty making intelligible
today. Thus it would have made more sense for the ancients to reject
the idea that geometrical ideals are some sort of actual or possible
concreta and to posit them as non-material and timeless things to
which our concrete objects at most approximate,

Once one thought to posit geometric ideals it would be a short
step to positing numbers (or abstract numerals) so as to attain the
advantages of an indefinitely long number series. For taking this
step would be nothing compared to positing infinitely small and infi-
nitely large geometric objects.

Despite the recognizable advantages of positing mathematical
objects over trying to deal with possibilities involving concrete ones,
sceptical colleagues of our ancient mathematicians might have
asked them how anyone could learn anything about these new enti-
ties. In responding, they would not have been obliged to supply a full
epistemology; it would have sufficed for them to show that we can
learn enough about the new entities for overall mathematical
progress to be made. They could have pointed out that reasoning,
already recognized as a successful non-observational method of
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discovery, can be applied to the new entities. Furthermore, they
could (and would) also have postulated connections between the
new entities and older symbol systems and diagrams. For example,
by assuming that drawn triangles have approximately the same
structure as abstract ones, they could have used the former to sug-
gest hypotheses about the latter, which they could have attempted to
verify deductively, By assuming that initial segments of the unary
numeral sequence are isomorphic to initial segments of the natural
number sequence, they could have manipulated the former to learn
about the latter. What is more, positing connections of this sort
would have allowed our ancient mathematicians to recover in their
new abstract geometry and arithmetic many of the results they had
previously established in their concrete ‘geometry’ and ‘arithmetic’.
All this would have amounted to a strong reply to their sceptical col-
leagues.

3. MATHEMATICAL POSITING NATURALIZED?

The speculations in the last section cite no supernatural processes in
accounting for the genesis of mathematical knowledge. But they do
presuppose that before the ancients ever posited mathematical
objects they had already developed the ability to communicate in
written languages, to use pictures, diagrams, and words to represent
things that are absent or merely imagined, to speculate, and, finally,
to hypothesize and theorize about new kinds of entities. Of course, I
tacitly assumed that none of these abilities involve supernatural
processes. Now some philosophers have held views that seem to
imply the contrary, For instance, Frege held that using a language,
reasoning, and thinking required ‘grasping thoughts’, Fregean
‘thoughts’ are abstract, non-mental, non-physical objects associated
with sentences as their meanings, and ‘grasping’ them takes place
through non-perceptual contact with the abstract realm. So if Frege
is correct, then my account fails to accomplish its purpose of
explaining how we could come to know abstract entities by already
presupposing that we interact with them.

I happen to think that views like Frege's are wrong. For the idea
that we learn anything by supernaturally grasping abstract entities
strikes me as a scientific dead end. I suspect that this is why it
appeals to so few cognitive scientists or linguists. In any case, I do
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not have to argue this point here, since the philosophical debate in
which I am engaged already presupposes it. Anti-realists maintain
that the abstractness of mathematical objects generates epistemic
problems in addition to any that may arise in empirical science. They
thereby presume that attaining scientific and common-sense know-
ledge does not depend upon our ability to know abstract entities.

On the other hand, if philosophers of the Fregean bent are cor-
rect, then, of course, there is no special problem with knowing math-
ematical objects; since we would have already grasped abstract
objects in the course of coming to our most ordinary beliefs. Yet this
would not dismiss the problem of accounting for the genesis of
mathematical knowledge. We also had the ability to interact with
oxygen prior to our discovering it. Yet to point this out does not
even begin to explain how we came to recognize oxygen or its role in
our body chemistry. Thus it would be reasonable to ask Fregean
philosophers how anyone could become aware that there are
abstract mathematical objects, since we appear to be just as uncon-
scious of using abstract entities for communication and related pur-
poses as we are of consuming oxygen. These philosophers could
easily adapt my account to fit their views on language.®

The intensional notions that play such a crucial role in my histor-
ical account prompt worries from a different quarter. I have specu-
lated about what other people believe, and have made claims about
what they might have stated and how they might have reasoned.
What is more, I have drawn upon anthropological interpretations of
contemporary aborigines and historical accounts grounded in trans-
lations of ancient texts. Quine’s reservations about intensional
notions, such as belief, and his arguments against the determinacy
of translation, are as familiar to contemporary philosophy as his
naturalism.

While I share Quine’s reservations, my position in the dialectic
with anti-realists does not require me to deal with Quine’s worries
head-on. I know of no anti-realists in the philosophy of mathemat-
ics who accept Quine'’s views on intensionality and translation.

§ For a recent example of work of the Fregean bent see Linski and Zalta (1995).
Linsky and Zalta argue that we must posit a rich ontology of abstract objects, more
than sufficient for interpreting mathematics, in order to understand the practice and
language of science. Note, however, they do not speak of ‘grasping’ abstract entities
or enlist supernatural faculties.



184 PART TWO: NEUTRAL EPISTEMOLOGY

Indeed, many of them embrace modality, which Quine has long
regarded as an abomination,

On the other hand, this chapter can be seen as a part of the
Quinean project of naturalizing epistemology, and the method I
have used is similar to the speculative one he initiated in Word and
Object, elaborated in Roots of Reference, and reaffirmed in Pursuit
of Truth. One would hope then that ultimately its use of intensional
notions could be put on a non-intensional basis. This would not
only underwrite my speculations, but also historical accounts more
generally and some of Quine’s remarks in particular.

Now Quine has suggested that we can identify a person’s specific
beliefs with states of their body. For him, the tricky problems arise
when we try to make sense of attributing specific beliefs to others.
On reading some ancient text a historian might report in English,
‘The Greeks believed that there are infinitely many numbers.’
Reading this I might see two ways of interpreting the claim, This
might lead me to wonder whether the Greeks simply believed that
for every number there is a greater or whether they believed the more
sophisticated claim that the number series cannot be matched with
one of its initial segments. The matter might turn upon issues of
translation—and more.” Because of this Quine denies that thereisa
fact of the matter as to what the Greeks believed. On the other
hand, he does not deny that there is a fact of the matter as to what
they believed provided that we relativize our belief attributions to a
translation manual and to our purpose in attributing the beliefs to
them and to the situation in which we do so. Of course, like the rest
of us, Quine usually leaves these to be tacitly understood when
attributing beliefs. Presumably, both his own attributions and my
historical account can be reconstructed in the relativized fashion he
approves. (And, presumably, relative to the historian’s translation
manual, etc. the Greeks believed that the numbers are infinite in the
first but not in the second of the two senses I suggested.)

4, POSITING AND KNOWLEDGE

Positing mathematical objects involves nothing more mysterious
than the ability to write novels, invent myths, or theorize about

7 Quine (1969¢), 145-6.
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unobservable influences on the observable world. For to posit math-
ematical objects is simply to introduce discourse about them and to
affirm their existence,

Yet the very ease with which we can posit generates another
worry. People have posited ghosts, the Ether, and phlogiston as
effortlessly as they have posited numbers. Why did positing lead to
knowledge in the one case and not in the others? One reason is that
ghosts, the Ether, and phlogiston do not exist, whereas mathemati-
cal objects do. (Remember our epistemological task: assuming the
existence of mathematical objects, to explain how we can know
them.) Thus no matter how justified people might have been in
positing the former, their positing could not have led them or anyone
else to knowledge.

Of course, neither the existence of the things we posit nor the
truth of what we say about them guarantees that our positing will
lead us to knowledge, since we may lack the appropriate justification
for our true beliefs. Did our ancestors have this sort of justification?
In responding we must separate the question of whether they were
justified in pesiting mathematical objects from the question of
whether they were justified in believing in the things they posited.
Positing can be done tentatively or decisively. Thus it might have
been that the first ancient mathematicians to posit mathematical
objects actually expressed serious doubts about their existence, and
no one took their postulates as steadfast affirmations. It takes very
little to justify this sort of tentative positing. The only major worry
is that it be a waste of time.

If my historical speculations are correct, then clearly ancient
mathematicians were justified in trying to extend their mathematical
theories by tentatively positing mathematical objects. For in devel-
oping and studying systems of numerals and concrete diagrams they
had already laid the foundations for theorizing about the new
objects. Furthermore, they had reason to believe that the new theor-
etical framework would allow them to simplify, unify, and extend
the mathematical principles they had already developed, tested, and
applied.

Positing mathematical objects probably produced significant
changes in ancient mathematical practice and hastened the arrival
of the mathematical method as we now know it. For the nature of
the new objects meant that reasoning from postulates governing
them would play a much more authoritative role than perceptual
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verifications. Assuming that he would concur with the facts of the
case, Philip Kitcher would deem this transformation a rational inter-
practice transition, which, as such, would warrant our ancient math-
ematicians’ believing the new postulates and countenancing
mathematical objects.® Now Kitcher’s approach prompts the worry
that while it certainly was scientifically rational for mathematicians
to introduce and promote the new practice, it may not have been
rational for them to believe in the new objects. This is because they
may have had ample evidence for the utility of their new theories but
little evidence for their truth,

In Chapter 7 I pointed out that when scientists introduce a new
theory they usually postulate principles linking the theory to previ-
ously accepted methods for obtaining evidence. This has the effect
of extending their local conception of evidence, and allowing them
to take certain data to bear upon specific hypotheses of the new the-
ory. Thus although the decision to initiate a new theory is based
upon considering the benefits to the more global scientific context
into which the theory is introduced, most questions raised within the
new theory’s framework can be adjudicated using its local concep-
tion of evidence. The result is that we count the theoretical frame-
work itself as well-supported so long as its local evidence sustains it,
and usually we evaluate it from a more global perspective only when
it fails in local terms.

We have already supposed that our ancient mathematicians also
postulated links between their new theories and their former meth-
ods for obtaining evidence. This allowed them, for example, to use
physical calculations that previously counted as evidence for claims
about token numerals or countings, as evidence for claims about
numbers. It thus gave them an extended conception of evidence to
invoke in support of their new theories. Furthermore, in time they
found further support for their new mathematics through success-
fully using it as a framework for much science and technology.
(Perhaps their mathematics became indispensable to their science,
But using indispensability reasoning would have required taking a
global perspective on science and mathematics.)

Whether we assess their justification ‘internally’ by focusing on
the evidence available to them or ‘externally’ by focusing on the
evidence available to us, the case is strong for crediting our ancient

8 Kitcher (1983}, 225-6.
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mathematicians with knowledge of mathematical objects. If so, it is
plausible that mathematical objects entered the human ken through
ancient mathematicians positing them. But this still leaves the ques-
tion of how we came to know about mathematical objects.

Of course, we initially acquired our mathematical knowledge
from exposure to teachers who stood at the end of a chain of math-
ematics teachers reaching all the way back to the ancients. In speak-
ing of exposure and a chain of teachers I intend to leave open the
questions of whether interactions between teacher and students pre-
served information, reference, or knowledge. Quine’s work in the
philosophy of language and Kuhn’s and others in the philosophy of
science give one reason to doubt that it preserved either information
or reference. And flaws in historical mathematics, such as Euclid’s
tacit continuity assumptions, suggest that our teachers do not
always impart knowledge.

But I don’t see the last point as a real concern, Although math-
ematicians take a fair amount of mathematics on authority, they
also rework, reformulate, and re-prove large bodies of previously
accepted mathematics. In this case their teachers are not so much a
source of the reworked mathematics as they are initiators of a
process leading to new knowledge. Thus it is not necessary that the
mathematics of our teachers be free of all errors for us to know
some mathematics, Yet the justification of our mathematical beliefs
probably depends upon some of their mathematics being correct;
simply because mathematicians, taken both individually and as a
body, do not re-create all the mathematics they use.

My account of our learning process still assumes that the previ-
ous generations held beliefs about mathematical objects. Their hold-
ing beliefs having a certain content is unproblematic to all but
Quineans, who can accommodate this idea by reference to a transla-
tion manual as I suggested in the last section. However, anti-realists
might bridle at the idea that anyone can hold beliefs about mathem-
atical objects on the grounds that, if they exist, they cannot stand in
the causal relations necessary to establishing and preserving refer-
ence. In the end, my response to this worry will amount to Quine’s.
With him I will countenance no facts of transcendent reference for
mathematical terms. However, they do refer relative to taking our
language at face value (and a translation manual if they be foreign).®

* It will turn out that even taking our language at face value can fail to fix facts of
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I shall develop my views on reference to mathematical objects fur-
ther in the next section and in subsequent chapters,

5. POSTULATIONAL EPISTEMOLOGIES
AND REALISM

Whether or not we inherited our knowledge of various mathemati-
cal objects from previous generations of mathematicians or were
simply prompted by listening to or reading them to posit these
objects ourselves, positing remains an indispensable tool of contem-
porary mathematics. For it is the only way we have for introducing
mathematical structures that are more complex than those we
already recognize. Thus it is essential to establish that a postulation-
al epistemology is compatible with realism,

To begin, let us remember that we do not create mathematical
objects through postulating them. Even constructivists would agree
that merely postulating that infinitely many twin primes exist is no
more potent than wishing that they exist. Instead positing some-
thing is a step towards acknowledging or recognizing a thing that
exists independently of our positing it.

Although mathematical posits exist independently of our postu-
lating them, they are not independently given to us, We must intro-
duce terms for them and posit them in order to recognize them.
Thus one might well wonder what distinguishes mathematical posits
epistemically from fictional characters. Since we require neither
mathematical nor fictional objects to be physically detectable, could-
n't a literary mathematician write some mathematics that one could
read as a piece of fiction? Conversely, couldn’t a piece of fiction con-
tain some significant mathematics? Now, of course, we can read
mathematics as fiction and also find mathematics in fiction. Usually,
very obvious differences in style and vocabulary differentiate articles
intended as mathematics from essays in fiction, but the existence of
mathematical parables, such as Poincaré’s illustration of a non-
Euclidean world, shows that the matter does not turn on syntax.

co-referentiality, such as whether number words refer to the same objects as some of
the terms for sets do. If we use the idea of the human polyglot put forth in Chapter 2,
something similar affects ‘foreign’ terms. It will be true that, say, the Greek word
‘arithmos’ refers to arithmoi, but there need be no fact of the matter as to whether
arithmol are numbers.
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Nor does it turn on reference, Fiction can be about real-—even
mathematical--characters and, contrary to its author’s intentions, it
might even be entirely true. Furthermore, having a recognizably real
subject-matter could not be the test for separating mathematics from
fiction, since often when someone introduces us to new mathemati-
cal objects through positing them they are not recognizably real.
Rather, we mark something as a piece of mathematics by treating it
and expecting it to be treated differently from how we treat fiction.
We require it to meet different standards of accessibility, clarity, pre-
cision, rigour, coherence, and thoroughness. Mathematics also plays
a different role in our intellectual life from fiction. Unlike fiction it
occupies an (apparently) ineliminable place in our scientific endeav-
ours. Thus the rationale for positing new mathematical objects is
quite different from that for creating new fictional characters.

We rarely introduce mathematical posits lightly. Ordinarily they
should answer to a clear mathematical need, such as allowing us to
answer questions that our previous mathematics left undecided or to
systematize and extend a body of previous results. We also seek
evidence for mathematical posits, which we do not seek for fictional
characters. Our postulates are hypotheses that we are prepared to
modify or withdraw in the face of evidence that they are inconsis-
tent, have unwanted models, fail to yield the consequences we seek,
or poorly fit our broader mathematical and scientific programmes,
In short, we use these and the other means discussed in Chapter 8 to
assess our new postulates in terms of our (possibly now enhanced)
local conception of mathematical evidence.

By contrast, none of these evidential constraints apply to the
stipulations through which authors premiss their fictions, They are
extraneous to the practice of fiction writing. Not only do some good
stories mock science and common sense, but in principle they might
violate elementary logic as well. Finally, unlike mathematics, fiction
is not indispensable to science, so we need not presuppose its truth in
investigating the world.

Despite this, there is important disanalogy between mathematical
positing and scientific positing, which some may find disquieting.
Scientists often posit to explain previously observed phenomena.
And even when non-explanatory considerations prompt physicists
to posit a new kind of particle, good physical practice requires them
or their colleagues to develop experiments for detecting the particle,
I see no mathematical match for this case. When we introduce new
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mathematical theories, even those proposed with applications in
mind, we do not try to detect the mathematical entities we posit.

Of course, the reason we don’t is that we know that mathematical
objects are undetectable. But this prompts one to ask why our pre-
decessors did not postulate mathematical objects endowed with
detectable features. We have already seen why. They posited math-
ematical objects for a different purpose from that for which they
posited elements, forces, or gods. They posited them to enhance
their ability to give precise descriptions and to reason about both
physical and mathematical phenomena. Endowing them with physi-
cal characteristics would have only led to unnecessary complica-
tions. We posit mathematical objects for similar reasons today. We
also posit to extend mathematical structures that we already recog-
nize, as Tarski did in positing inaccessible cardinals, or to introduce
new methods of description and reasoning, as Cantor did in posit-
ing sets and transfinite ordinals. Because we do not posit mathemat-
ical objects as explanatory principles or causes, we neither need nor
expect them to be detectable. This difference between the motiva-
tions for positing physical and mathematical objects may be one
reason why physicists seem more suspicious of the undetectable inte-
riors of black holes or virtual processes than mathematicians of the
natural numbers.

It should now be clear that positing does not fictionalize mathe-
matics or detract from our justification in recognizing mathematical
objects or truths about them. However, combining a postulation
epistemology with realism brings another problem to the forefront:
making sense of the idea that our mathematical postulates are about
an independent mathematical reality.'® To appreciate the worry one
might have, consider a team of astronomers who posit a galaxy
which they have not yet observed. Suppose that they subsequently
observe some new galaxy. Obviously their positing it did not bring it
into existence—it was already there. But was it the one to which they
had been referring? Suppose, for instance, they had posited a galaxy
to account for what appeared to be its gravitational effects on other
astronomical bodies, and that the newly observed galaxy had no

9 In correspondence Pieranna Garavaso wondered how to explain how introduc-
ing terms for mathematical objects enables us to refer to entities that exist independ-
ently of our positing them.
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such effects; then it would seem that they would be mistaken in
referring to it as the one they had posited.

One way to account for examples like this is to appeal to the
causal theory of reference. If, at the time they posited a galaxy, our
astronomers stood in the ‘appropriate’ causal relationship to the one
they subsequently observed then it is the one to which they had been
referring. As we know, this account cannot work for mathematical
objects.

But incompatibility with the causal theory is no reason for reject-
ing mathematical posits. In fact, thinking about positing suggests a
weakness in the causal theory. For while the causal theory may suc-
ceed in the example above, it is difficult to see how it could explain
how natural scientists succeed in referring to some of the objects
they posit. This is because often purely theoretical, indeed mathe-
matical, considerations rather than experimental ones lead them to
posit new objects. Dirac posited anti-matter in attempting to make
physical sense of the negative square roots in the equations of spe-
cial relativity. Group-theoretic reasoning led contemporary particle
physicists to posit certain bosons. Yet it is hard to think of any
causal processes involving anti-matter or these bosons that would
‘appropriately’ connect them with the physicists who posited them.
In addition, physicists also refer to supposedly physical things that
can have no physical effects upon us, such as the atoms inside black
holes or virtual processes. As physics advances it seems likely to deal
with more and more objects of this sort.

Now I think we should expect a theory of reference to address at
least the two following questions:

The Genesis Question: How did we come to use a certain term
to refer to a given object?

and

The Criterial Question: When does a given term refer to a
given object?

1 have heard philosophers say that a theory of reference should also
explain what reference is or how it is constituted. But I have no clear
conception of what doing so would come to beyond answering the
genesis and criterial questions. In any case, I will restrict my atten-
tion to these two questions here.

The beauty of a causal-historical account is that it answers both
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questions in the same way. To explain how we came to use a given
term to refer to a certain object it would describe a causal-historical
chain leading from us back to the object, and it counts the existence
of that chain as necessary and sufficient for that term to refer to that
object (rather than to some other object or to none at all). However,
a good theory might give separate answers to the criterial and gene-
sis questions. The causal theory seems to be so prevalent among
realists because we tend to think of theory construction as a matter
of first discovering, then naming, and finally describing reality. But
often in positing we describe first, and only later obtain evidence of
the independent existence of our posits. Positing suggests that
answering our two questions may require two theories (or two parts
of a theory) rather than a single unified one.

Just as I distinguished between transcendent and immanent the-
ories of truth in Chapter 2, I also distinguish between transcendent
and immanent theories of reference. A theory of reference is tran-
scendent when it purports to be an account of reference in any lan-
guage. The causal-historical theory is transcendent. Its condition for
our name ‘The Matterhorn’ to refer to the mountain above the Swiss
town of Zermatt is that an appropriate causal-historical chain lead
from us to that mountain’s baptizers. Not only can this condition be
formulated independently of English, but also the same type of con-
dition determines the references of foreign names, such as ‘Firenze’,
‘Milano’, and *Praha’. Immanent theories of reference apply only to
their own languages, and do not aim to answer the genesis and crite-
rial questions using concepts that are applicable to other languages.
Thus we should not expect an immanent account of

t refers in English to x
to generalize to one of
t refers in L to x (with variable L),

although a transcendent theory would treat the former as a special
case of the latter. Transcendent theorists should find nothing to
deny in the immanent answers I shall give to our two questions,
although they will, of course, find them incomplete.

The expression ‘the present capital of North Carolina’ refers to
Raleigh, for that city is North Carolina’s capital. It does not refer to
Hillsborough, since Hillsborough has not been the seat of the North
Carolina government for almost two centuries. This example illus-
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trates the general form of an immanent answer to the criterial ques-
tion:
(Sing) For any x, the singular term °r refers to x just in case
x=1,

where 1 is a schematic letter standing for English singular terms. The
condition ‘x = " makes the answer immanent, because putting most
foreign singular terms for ‘¢’ in (Sing) renders it inapplicable, by
virtue of containing an identity outside our language. (Of course, if,
as | proposed in Chapter 2, we take our language to be the human
polyglot, then this restriction has no practical consequences.)

We can treat English predicate reference similarly. This is the cri-
terion for reference by (one-place) predicates:

(Predl) For any x, the predicate ‘F’ refers to x just in case x
is F,

where F is a schematic letter standing for one-place English predi-
cates, Again the criterion is immanent, because substituting most
foreign predicates for F will turn part of (Predl) into non-English.
{Obviously, we must exclude indexicals and equivocal terms or else
greatly complicate this account. Fortunately, this restriction rules
out few mathematical terms, although a number of symbols are
equivocal. For example, ‘+’ and ‘0’ have different meanings in
Boolean Algebra and Number Theory.)

Using this theory of reference, there is no special problem with
referring to mathematical objects. The predicate ‘number’, for
instance, refers to an object if and only if it is a number. End of
story. Taking our language at face value, we can affirm truly within
it that ‘number’ refers to numbers and not to mountains or gold
bricks. For numbers exist, and, given their abstractness, they are nei-
ther mountains nor gold bricks. Furthermore, in using ‘number’ to
refer, we refer to something existing independently of our construc-
tions, proofs, and so on, since our constructing a mathematical
object or proving theorems about it is not necessary for its existence.

This immanent (and disquotational) approach to reference does
not undercut the independence of the objects to which we refer any
more than the disquotational approach to truth does. Just as the
truth of the sentence ‘there are infinitely many primes’ turns upon
whether or not there are infinitely many primes (and not upon our
so proving), so does the reference of ‘the number of apostles’
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depend upon how many apostles there were (and not upon our opin-
ion of how many),

We began with a worry about making sense of the intuition that
astronomers could mistakenly refer to a newly observed galaxy as
the one they posited. We can generate a similar intuition concerning
a mathematical case. Suppose that some mathematicians introduce
the term “finor’ to refer to some new entities that are supposed to be
simply ordered and it turns out that the axioms they subsequently
introduce for characterizing finors do not imply that they are simply
ordered. (Such a simple mistake is unlikely, but remember that Frege
thought that a defining feature of extensions was to be associated in
a one-one fashion with concepts.) Then just as our astronomers
would be mistaken in referring to the galaxy without the posited
gravitational effects as the one they had posited, our mathemati-
cians would be mistaken in referring to the structures modelling
their axioms as finors. We can handle this example without invoking
the causal theory, because “finor’ refers to a model of the axioms just
in case its elements are finors,

Notice, however, that our criterion for a term’s referring to some-
thing answers few questions about its reference, including whether
the mathematicians were mistaken in calling the entities introduced
by their axioms “finors’. The answer turned upon whether the mod-
els were simple orderings. Nor will our criterion create facts where
there are none: if there is no fact of the matter whether 2 is the class
of all pairs, then there is no fact of the matter whether ‘2’ refers to
the class of all pairs. But this does not undercut our immanent
approach to reference, because transcendent theories, and the
causal-historical theory in particular, offer no advantage here either.
Indeed, the lack of a fact of the matter in this case is due to the
incompleteness of mathematical objects. This is a datum we want
eventually to explain rather than to abolish.

The other question we want our theory of reference to answer is:
how did we come to refer to mathematical objects? On the imma-
nent approach taken here, our standard mathematical terms refer, if
at all, to the objects to which our standard mathematical theories
are committed. Thus the question comes to asking how we came to
use such terms in a referential way, and answering this is a matter of
tracing the history of our use of the relevant terms,

Of course, using terms in a referential way is no guarantee that
they refer to anything. But, recalling that we have been assuming
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throughout this chapter that the standard mathematical objects do
exist, we know that our standard mathematical terms do refer. This
assumption and our immanent approach to reference are crucial to
this knowledge, for without them it would seem an inexplicable coin-
cidence that our mathematical terms happen to refer to a mathemat-
ical reality that exists independently of our positing it. Given these
assumptions, however, it is trivial that ‘number’ refers to numbers,
‘set’ 1o sets, and so on. It is also comparatively easy in this context to
explain their independent existence. For contemporary mathemat-
ics, together with some obvious premisses about us, imply that num-
bers and sets and truths about them outrun our current methods of
construction and proof. The thought that something deeper than
this is at work results, I think, from not tacitly conceiving of refer-
ence in transcendent terms.

One might also wonder why positing mathematical objects has
been as successful (or reliable) as it has been in generating math-
ematical knowledge.!! In approaching this question it is useful to
compare mathematical positing with scientific positing. Let us con-
sider first how we know that each has been successful. In the case of
science it would be natural to reply that we know that positing has
been successful here because scientists have experimentally detected
many of the entities they have initially posited. But notice that these
detections depend upon scientists endowing their posits with physi-
cal properties and using their theories to forge connections between
their posits and detectable phenomena. Scientists have been success-
ful in positing in part because they have been able to design their
theories so that they can connect the posited objects with data that
count as detecting the posits. Of course, mathematicians don’t even
try to detect the objects they posit, since they endow them with no
properties that might be detectable. But they do recognize evidence
that the theory of the posits is consistent and bears fruitful connec-
tions to other mathematical and physical theories as counting in
favour of the existence of the posits. In both cases, then, successful
positing is measured in terms of the success of some theory of the
posits, where success is ordinarily measured by criteria that are local
to the discipline. What we want to know, then, is why mathematicians
have been so successful in designing theories that count as successful

11 Mark Balaguer put this question to me in correspondence.
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by the criteria which the discipline of mathematics recognizes.
Finding out why this is so may take some work, but it will certainly
pot require us to make contact with an undetectable mathematical
realm or even take a perspective which transcends our current
scientific theories. I will not carry this project further here. My pur-
pose has only been to show that the project of explaining the success
of mathematical positing can be put into a feasible form.

A final matter that might come to mind in thinking about beliefs
about mathematical objects is the distinction between de dicto and
de re beliefs. Now this distinction concerns the ways in which one
has grasped or is related to or is in epistemic contact with an object.
Mathematicians might believe, for example, that there is a final pair
of twin primes without believing of any pair of numbers that they
are this pair. (Perhaps their evidence is non-constructive.) In this
case, their belief is supposed to be a de dicto, but not de re, belief
about twin primes. By contrast someone who has calculated that six
is the smallest perfect number presumably has a de re belief about
six. Notice that this distinction is predicated upon our already hav-
ing the ability to form beliefs gbous the entities in question. Thus
while it may well be worth further investigation, it is not one that we
need treat in explaining how we acquired knowledge about mathe-
matical objects.!?

12 In Resnik (19902} I argued that whether we attribute a de re or de dicto belief
about a mathematical object to someone varies with the context in question and our
interests in describing it.
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INTRODUCTION TO
PART THREE

In Part Two I presented as much of an epistemology for mathemat-
ics as I thought I could without assuming anything about the nature
of mathematical objects except for their abstractness. One reason
that I got as far as I did is that mathematics does not say anything
about the nature of mathematical objects in general. (Of course, it
says plenty about numbers and other specific kinds of mathematical
objects.) However, before my account can be complete, I must face
some important tasks, Ironically, one of these is to explain why
mathematics doesn’t say anything about the general nature of its
objects. We saw (Chapter 5) that this is related to the incompleteness
of mathematical objects. So one of my aims in this part will be to
come to grips with this phenomenon.

In the last chapter I claimed that by positing links between paper-
and-pencil computations and diagrams and certain mathematical
objects, we can use things that are physically accessible to gain
knowledge about abstract mathematical objects. For example, by
assuming that a sequence of unary numerals shares structural fea-
tures with an initial segment of the natural number sequence, we can
learn features of the latter from those of the former. But I coasted
over the question of why it would be plausible to assume that the
numbers and numerals share structural features and what those fea-
tures might be. I did not explain why, for instance, numbers do not
have shapes although numerals do, I mean to fill this gap in my epis-
temological account here.

Below I will present a view of mathematical objects capable of
completing these tasks. It is the view that mathematics is a science of
patterns with mathematical objects being positions in patterns. In
Chapter 10 I explain the notions of pattern and position, and relate
them to the incompleteness of mathematical objects, reduction in
mathematics and reference to mathematical objects. In Chapter 111
return to epistemological questions and show how to connect math-
ematical knowledge with the study of patterns. In Chapter 12, which
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deals with questions and objections that the pattern view raises, [
attempt to show that despite its controversial features the view does
not substitute a new set of equally intractable problems for those it
claims to solve.



10

Mathematical Objects as Positions
in Patterns

1. INTRODUCTION

Much philosophical thinking about mathematics is guided by a fun-
mental misconception of the subject-matter of mathematics. We
tend to conceive of the numbers, say, along the same lines as we
think of tables or stars or even atoms. That is, we think of them as
objects that can be discussed and known in isolation from the
others. This is why we are likely to think that discovering something
about a number should depend upon some sort of interaction
between us and that number, and to believe that this ought to be
reflected in a satisfactory epistemology for mathematics. It is also
why we are likely to hold that the identity of a number vis-d-vis any
other object should be completely determined. However, for some
time the practice of pure mathematics has reflected the idea that
mathematics is concerned with structures involving mathematical
objects and not with the ‘internal’ nature of the objects themselves.
Mathematicians as prominent as Dedekind, Hilbert, and Poincaré
have even veiced structuralist ideas in reflecting philosophically on
mathematics.! More recently the structuralist approach has been
credited with fostering category theory.

The underlying philosophical idea here is that in mathematics the
primary subject-matter is not the individual mathematical objects
but rather the structures in which they are arranged. The objects of
mathematics, that is, the entities which our mathematical constants
and quantifiers denote, are themselves atoms, structureless points,
or positions in structures. And as such they have no identity or dis-
tinguishing features outside a structure.?

' See Dedekind (1963}, Hilbert (1971), Poincaré (1913), 43, See Parsons (1990)
for additional historical information,
2 A bit of history: during the last thirty years philosophers began to note the
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For epistemological purposes I find it more suggestive to speak of
mathematical patterns and their positions rather than of structures.
For this brings out important similarities between mathematical
knowledge and other knowledge such as grammatical and musical
knowledge. But the term ‘structuralism’ has a better ring to it than
‘patternism’, so the philosophical literature invariably speaks of
structures instead of patterns. In what follows I will use the terms
‘pattern’ and ‘structure’ more or less interchangeably.

As we will see, most mathematical theories do not refer to the
patterns they attempt to describe, and thus do not treat them as enti-
ties at all. Were one to develop a mathematical theory in which pat-
terns or structures figured as mathematical objects, one would treat
them as positions in a pattern of patterns. In Chapter 12 I will say
more about when and whether to consider patterns as entities. For
now I will simply try to explain my conception of patterns.

2. PATTERNS AND THEIR RELATIONSHIPS

I know of no developed philosophical account of patterns. The sug-
gestions I have encountered in conversation and correspondence
tend to characterize a pattern as either a kind of universal or an
equivalence class of instances, and they begin with the relationship
between a pattern and its instances. I will start instead with relation-
ships between patterns and get instantiation as a special case. This
leads to an extensional view of patterns, whereas thinking of them
as universals might lead one to a more intensional theory. The
approach seems quite natural to me, but my experience has been that
people’s intuitions vary considerably on these matters. It may help
you understand my approach if you bear in mind that I arrived at it
by reflecting on geometry and model theory, the two mathematical
theories of structure to which I have been most exposed.
Metaphorically, my view makes model theory into a geometry.

I take a pattern to consist of one or more objects, which I call

structuralist movement in mathematical thought, and somewhat tentatively began
trying out structuralist approaches to the philosophy of mathematics, (CU. Jubien
(1977), Kitcher (1978), Parsons (1965), Benacerraf (1965}, Steiner (1975).) Beginning
in Resnik (1975) I began 10 develop an explicit structuralist approach to the episte-
mology and ontology of mathematics, which I articulated in Resnik (1981).
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positions that stand in various relationships. For generality I will
allow that some of these relations may be monadic and that some of
the positions may be ‘distinguished’. This permits the colours of the
positions in a visual pattern or the specific notes (or sounds) in a
musical pattern to be as much a part of the pattern as their arrange-
ment. Although mathematicians often consider patterns with distin-
guished positions, for example, the natural numbers under successor
with zero as distinguished position (¥,5,0), their theories can usual-
ly be reformulated to treat another pattern in which no position is
distinguished. Thus one can use (¥,5) instead of (N,S,0) because 0
can be defined as that position in (N,S5) which is not a successor.?

A position is like a geometrical point. It has no distinguishing
features other than those it has in virtue of being the particular posi-
tion it is in the pattern to which it belongs. Thus relative to the equi-
lateral triangle ABC the three points 4, B, C can be differentiated,
but when considered in isolation they are indistinguishable from
each other and any other points. Indeed, considered as an isolated
triangle, 4BC cannot be differentiated from any other equilateral
triangle. Geometry reflects this by focusing on structural relation-
ships, such as congruence and similarity, and reserving claims about
the identity of geometric objects for contexts where they are related
to other geometrical objects. I transfer this geometric analogy to the
various structures studied by mathematics, Within a structure or
pattern, positions may be identified or distinguished, since the struc-
ture or pattern containing them provides a context for so doing.
However, just as in geometry, the premier relationships among pat-
terns are structural ones, namely, structural similarity (pattern con-
gruence and equivalence) and structural containment (pattern
occurrence and sub-pattern).

Here is how this geometric analogy applies to the natural number
sequence (V,S). I take this to be a pattern with a single binary rela-
tion (successor) and the natural numbers to be its positions, Viewed
this way, there is no more puzzle to the natural numbers lacking
identifying features beyond those definable in terms of this pattern
than there is to the corresponding fact about the points in triangle
ABC.

* This sort of trick will not work for (Int,5,0), i.e. the integers under successor
with © distinguished. Describing (Int,$,0) either requires taking 0 (or something
interdefinable with it) as a primitive or else defining (Int,S,0) in terms of some other
structure, such as (N,S), in which a distinguished position can be defined.
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Patterns are related to each other by being pattern-congruent or
structurally isomorphic. In Hilbert’s formulation of geometry there
are different congruence relationships for line segments and angles.
Other branches of mathematics must distinguish between different
kinds of isomorphisms (group isomorphisms, ring isomorphisms,
etc.) so as not to confuse structures that are isomorphic as, say,
groups but not as rings. I similarly recognize different pattern-con-
gruence relations for different types of patterns. But just as informal
mathematical talk leaves the type of congruence or isomorphism
understood, I will do so here. Also for brevity I will simply use the
term ‘congruence’ rather than ‘pattern-congruence’ where the con-
text is sufficient to distinguish it from geometric congruence,

Pattern-congruence is an equivalence relation whose field I take to
include both abstract mathematical structures and arrangements of
more concrete objects. Thinking of patterns as models of formal
systems, it is the relationship which holds between isomorphic mod-
els of formal systems. Consider, for example, a first-order system S
with a single two-place predicate ‘R’ and axioms stating that R is a
total ordering. This system has many models—all the total order-
ings—but they are pot all congruent to each other. Only those whose
domains have the same cardinality are. The set of numbers from one
to ten taken in their natural order and ten pennies stacked on each
other taken in order from top to bottom are isomorphic models of
the system S; so I count the abstract numerical structure and the
stack of pennies as congruent.

When a pattern and an arrangement of so-called concrete objects
such as the pennies are congruent then I say that the arrangement
instantiates the pattern. Instantiation then is a special case of con-
gruence in which the objects ‘occupying the positions’ of a pattern
have identifying features over and above those conferred by the
arrangements to which they belong. The pennies thus instantiate the
one-to-ten pattern.

One reason that I have not defined patterns via their instances,
say, as isomorphism types or classes of arrangements, is that this
would require a prior ontology to instantiate mathematical patterns.
Otherwise, all universal quantifications concerning uninstantiated
patterns would be vacuously true. Science and common sense do not
recognize enough non-mathematical things to guarantee that all
mathematical patterns are instantiated. So those defining patterns
via their instances must posit things (presumably mathematical
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things) to instantiate the more extensive and complex mathematical
patterns. (It is arguable that these would include all infinite pat-
terns.) But positing mathematical objects that are not themselves
taken as positions in a pattern is to give up a basic structuralist the-
sis.* Moreover, the approach I have taken seems to follow mathe-
matical practice: when mathematicians cannot model a structure
within one they already accept, they posit additional mathematical
objects as elements of the structure in question without attempting
to say more about their nature.” In my terminology, they posit posi-
tions related as the contemplated structure requires.

Another way in which patterns may be related is that one may
occur with another. To understand this, consider the linguistic pat-
tern or sentence, ‘A cat bit the cat who ate the cat.” The word ‘cat’ is
also a pattern of letters which occurs three times in the sentence. By
analogy, 1 take the natural number sequence (0 occur within real
oumbers taken in their natural order, within the iterative hierarchy
of sets, and within itself. Five pointed solid star patterns occur in
both the patterns of the United States flag and the California flag.
Just as patterns can occur within other patterns, concrete arrange-
ments can occur within concrete arrangements. But my interest is
mainly in patterns occurring within patterns. Thus I will character-
ize occurrence as a reflexive and transitive relation which holds
between structures P and @ when P is isomorphic to a structure R
whose positions are those of Q and whose relations are definable in
Q. Thus the structure (N,S) occurs within (¥,<) and within models
of various set theories. The rational numbers qua field (Rat,+,x)
contain an occurrence of (N,S), but the rational numbers gua count-
able dense ordering (Rat,<) do not, because 0 and successor are not
definable in such structures. On the other hand, although the real
numbers and their ordering are set-theoretically definable from the
natural numbers, (Real,<) does not occur in (V,5) because the latter
does not have enough positions.®

4 One way to obtzin mathematical objects instantiating infinite mathematical
structures is to take a non-structuralist approach to set theory, and use it to construct
models of other mathematical theories.

’3 There are many examples of this, but the introduction of the complex numbers
to obtain an algebraic closure of the reals illustrates what I have in mind.

¢ T have not specified the notion of definability to be used in this definition. T will
say more about this below. Marcus Giaquinto showed me how to improve this defini-
tion over the one 1 gave in Resnik (1981).
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A special case of pattern occurrence is the sub-pattern relation. A
pattern P is a sub-pattern of another pattern Q just in case P occurs
within Q and every position of P is a position of Q. It follows that a
pattern occurs in another just in case it is congruent to a sub-pattern
of the latter.

The sub-pattern relation is more complicated than the sub-model
relation of model theory, although it includes an analogue to that
relation in its special cases. Theré are two reasons for taking this
more complex approach: (1) it is necessary to capture certain intu-
itions about patterns, and (2) it provides a nice account of reduction
in mathematics.

I will take up the intuitive considerations now and leave the dis-
cussion of reduction for later. Suppose we consider a pattern that
may be described as having nine distinct positions a, b,¢,d, e, f, g, h,
i, and two relations A and L such that alb, bLe, dLe, eLf, gLh, hLi,
aAd, dAg, bAe, eAh, cAf, fAi. To get a better grasp of the pattern
consider the following diagram, where L corresponds to the relation
one unit to the left of and A corresponds to the relation one unit
above.

as b Ce
A
/ \
N
/
\
/
da / ce \ fe
/ \
y \
/ \
\
e e — e
g h i

Now as I look at the diagram (and I admit that you may not see
things as I do) I take the rectangle of dots to contain a triangle of
dots gbi (and other dot triangles as well, of course). Thinking now
of my drawing as also a representation of an abstract, spatial dot
pattern (which is not the original L-A pattern, but a more compli-
cated one), I conclude that the spatial dot triangle is a sub-pattern of
the whole spatial dot array. Then analogical thinking leads me to
assume that corresponding to the dot triangle there must be a sub-
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pattern of the original pattern involving the positions g, b, and i.
This pattern can be characterized by relations definable in terms of
A and L, just as the spatial dot triangle can be described in terms of
relations definable in terms of above and Jeft. (The triangle consist of
the dots g,b, i where g is related to b by being two units below and
one to the left of it, etc.) Indeed the former definitions can be read
off the latter quite straightforwardly. Nevertheless, the relations of
neither the spatial nor the non-spatial sub-pattern are simple restric-
tions of the relations of the original pattern. Thus in order to count
these as sub-patterns of the larger patterns the sub-pattern relation
must be defined along the lines which I have suggested.

My visual intuitions with respect to sub-patterns and pattern
occurrences can be transferred to some of the model-theoretic cases
as well, Let us think of the natural number sequence as represented
by means of an unending linear sequence of dots:

c-ooaaooonnooo.aaoseq‘ooﬂo(ands‘)oﬂ)‘

Clearly the sequences of dots which we obtain from this sequence by
starting with the nth dot from the left are sub-patterns of the origi-
nal pattern. These correspond to all those progressions which are
obtainable from (N,5) by restricting S to a subset of N. But there are
infinitely many models of number theory obtainable from (N,S)
which are left out because their relations of succession are not sub-
relations of the successor relation. The even number sequence is one,
the odd number sequence is another, and the prime number
sequence a third. These all correspond to selecting some progression
of dots from the original sequence of dots. I see these sequences as
occurring within the original sequence, and to account for this both
the sub-pattern and pattern occurrence relations must be character-
ized in terms of definability.

The natural number sequence (N,.S) occurs within the natural
numbers ordered under less than, (N,<), since:

Sxyeorx<y&(IDx<z&z<y)

and, allowing second-order or set-theoretic definability, the converse
relation holds too, since:

xsye(Vxez&(Vi(Vuez&Suv»vez)—yez).

Most mathematicians and logicians would regard number theory
developed in a language in which the successor symbol is primitive
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as essentially the same as a version taking the symbol for less than as
primitive. Since I am viewing number theory as the science of a cer-
tain pattern or patterns, this would suggest that (N,S) and (N,<)
should count as the same or essentially the same pattern. The prob-
lem then is to find a satisfactory characterization of this relation.
Pattern congruence is too strict a condition, since these two struc-
tures are not isomorphic. Moreover, they are not isolated examples:
mathematicians have defined Boolean algebras as a kind of ring, but
also as a type of lattice, have given alternative definitions of groups
and topologies, and so on.

It happens that each of these examples concern theories whose
patterns occur within each other. However, mutual pattern occur-
rence seems to be too weak a condition for pattern equivalence. One
reason is that (N,S5,+,x} and (Rat,+,x) occur within each other,
although they are not regarded as essentially the same. (Fractions
can be coded as ordered pairs (m,n), and these as numbers of the
form 2m37.) A second reason is that the pattern-occurrence relation
corresponds to the notion of the interpretability of theories (by
means of definitions) and there are theories which are mutually
interpretable but not essentially the same from the metamathemati-
cal point of view.7

If we look at well-known examples of ‘essentially the same’ the-
ories we see that they meet a stronger condition than that of mutual
interpretability. They are definitionally equivalent. This means that
there are two sets of definitions Def-S-in-T and Def-T-in-S, such
that § + Def-T-in-S yields both T and Def-S-in-T, and also T+ Def-
S-in-T" yields both § and Def-T-in-§. In other words, the theories
together with the interpreting definitions yield not only each other
but also each other’s interpreting definitions. Think of definitions as
a kind of axiom and think of the language of a theory as including
the symbols introduced by definition. Then definitionally equivalent
theories are equivalent axiomatizations of the same set of theorems.

To capture the notion of patterns which are essentially the same
we need a relationship like that of definitional equivalence. The

7 A theory § is interpretable in 2 theory T with the same underlying logic just in
case there is a set, Def-5-in-T, of definitions of the primitives of Sin T, which when
added to T yields the theorems of S {as theorems of T+ Def-S-in-T). See Corcoran
(1980} for examples of mutually interpretable theories that are not ‘essentially the
same’ theories, and for further discussion. I am indebted to John Corcoran for this

point.
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thought that definitionally equivalent theories are distinct encapsu-
lations of a common set of theorems suggests a similar approach for
patterns. The idea is to take two patterns as ‘essentially the same’ if
they both encapsulate some *bigger’ pattern from which they can be
obtained by deleting some of its relationships. More formally, let us
call a pattern P a truncation of a pattern @ if every position and
relation of P is also one of Q. Then a pattern P will be said to be
equivalent to a pattern Q just in case there is a pattern R whichis a
sub-pattern of both P and Q and of which both P and Q are respec-
tive truncations. To illustrate this concept, return to (N,5) and
(N,<). These are truncations of (N,§,<) and it occurs within both of
them. So they are equivalent according to the definition. On the
other hand, although (N,S) and (Rat,+,x) occur within each other
they cannot be obtained from a common extension by means of
truncation since cutting a progression (N,5) from an open dense
ordering (Rat,$,+,x) requires deleting positions from the latter,

3. PATTERNS AND POSITIONS: ENTITY AND
IDENTITY

Of the equivalence relationships which occur between patterns, con-
gruence is the strongest, equivalence the next, and mutual occur-
rence the weakest. Yet none of these is suitable as an identity
condition for patterns, because, presumably, identical patterns have
the same positions whereas equivalent, mutually occurring, and
congruent patterns need not. Considering the strongest of these
relations, congruence, suffices to illustrate the problem. A pattern
can be congruent to a sub-pattern which does not contain all its
positions. For instance, the natural number sequence is congruent to
the sequence of even natural numbers. But if we took congruent pat-
terns to be identical, then we would be forced to count the even
numbers as the same as the natural numbers. Of course, we might
avoid this by restricting substitutivity of identity, as one does in
intensional contexts, but that hardly seems the appropriate thing to
do here,

This suggests that we identify patterns just in case they have the
same positions and the same relations, with the latter being given the
usual extensional identity conditions. And I would do exactly this
were 1 to speak of patterns as identical. But I hesitate to speak of



210 PART THREE: A SCIENCE OF PATTERNS

them in this way, For unless we make radical revisions in our logical
notation, speaking of patterns as identical or distinct is to treat
them as individuals, since identity is a relation between individuals.
But, as we will see (Chapter 12), there are reasons to avoid being
forced into treating patterns as individuals or even as entities of any
kind. Furthermore, the proposed identity-conditions seem to
require quantifiers ranging over a universe composed of positions
from all patterns. This in turn would presuppose facts concerning
identities between these positions. Yet there are also good reasons
for not assuming that there are facts of the matter as to whether
positions from non-overlapping patterns are identical.

Let us turn to these reasons. Recall that positions are like geo-
metrical points in having no identifying features beyond those they
acquire by being in a pattern. Now suppose that we are told that a
point A is the corner of a right triangle and the point 4’ is the corner
of a rectangle. Are 4 and 4’ the same? One might respond that they
cannot be because they belong to separate figures. But we have not
been told that they are separate. It might be that the corner of the
triangle is a corner of the rectangle. Of course, this is no reason to
conclude that there is no fact of the matter here concerning the iden-
tity of 4 and 4'. They are, we may assume, points in the same space
and have adequate identity-conditions—such as being on the same
lines. We simply do not have enough information to determine the
facts in this example.

While this is quite true, its being so is a consequence of develop-
ing geometry as a theory of space. Had geometry developed instead
as a theory or collection of theories of figures or shapes, then points
might only play their role of marking locations within figures with-
out marking locations in a containing space. Then we would have
regarded the triangle and rectangle as either separate designs or a
single composite one, and would take a similar view of other of
simple and compound geometrical figures. For our geometry would
attribute no being to points independently of the figures containing
them. We also would have restricted identity to elements of the same
figure, or else have introduced for each type of figure a separate the-
ory with an identity predicate ranging over all elements of its uni-
verse.

The latter alternative is the one we find in mathematics. Number
theory, for example, is intended to deal with a certain structure; it
has the means to raise and answer questions concerning the identity
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of various numbers, but it cannot ¢even formulate the question as to
whether the number one is the real number e. Yet within number
theory identity is absolute, for ‘any numbers m,n are identical or dis-
tinct’ is one of its theorems. Similar remarks hold for the theory of
real numbers and set theory. Each theory was developed to speak
only of elements of a certain structure and has no means to identify
or distinguish these from elements of another structure. Like the
variant of geometry using different theories for different shapes,
mathematics is largely a conglomeration of theories each dealing
with its own structure or pattern and each forgoing identities leading
outside its pattern.

This mathematical practice has resulted in the so-called incom-
pleteness of mathematical objects (see Chapter 3). But what would
strike one as a problematic oversight if one thought of mathematical
objects along the lines of ordinary objects, seems quite natural when
it comes to positions in patterns. For restricting identity to positions
in the same pattern goes hand in hand with their failure to have any
identifying features independently of a pattern.

The typical mathematical theory also excludes the structure it is
supposed to describe from its universe of discourse—it does not rec-
ognize it as a mathematical object. Thus number theory quantifies
over the numbers but not over the number-theoretic structure; set
theory quantifies over sets but not over the set-theoretic hierarchy.
Even model theory, which purports to treat of arbitrary mathemati-
cal structures, does so by positionalizing them, that is, by identifying
structures with sets or ordered n-tuples. Nor does number theory
have the means to raise questions concerning the identity of the nat-
ural number sequence gua structure. The same is true of set theory
and the iterative hierarchy. Treating patterns as individuals would
undo these parallels with mathematics, since it would allow identi-
ties between patterns, and this in turn would permit identities
between their positions.

However, not recognizing patterns as individuals and restricting
identity to positions within the same pattern threatens to undermine
the rest of the theory of patterns I have been developing during the
course of this chapter. For a formal version of that theory would
seem to treat patterns as entities by using quantifiers that range over
them, and countenancing isomorphisms between patterns seems 1o
require a common universe of positions. This is a serious worry. [
will begin to address it at the end of Section § below, and will
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continue to discuss it in Chapter 12. To prepare the way for that dis-
cussion, I now want to sketch some alternative ways in which one
might develop a formal theory of patterns.

Speaking of relationships among various patterns requires a
comprehensive theory in which positions from different patterns can
be dealt with from a single vantage-point. One option for such a the-
ory uses a many-sorted logic with separate universes for the posi-
tions of each pattern and unreduced functions between these
universes to serve as isomorphisms. It also requires a universe for
patterns, and, as is usual in many-sorted theories, prohibits trans-
universe identities. By postulating that patterns are identical only if
they have the same positions, it avoids the unwelcome result of one
pattern being identical to another without there being a fact of the
matter as to whether their positions are. One problem with this
approach is that it requires uncountably many different styles of
variables, since there are (presumably) uncountably many patterns.
Thus its language would be highly infinistic.

A second (logically cleaner) approach constructs a pattern the-
ory, along the lines of geometry, by positing a space of positions
from which patterns could be *constructed’ as sui generis entities.
This theory recognizes facts of the matter for identities involving
positions from the different patterns it countenances, since identity
would apply to all positions in its space. Two sorts of variables can
be used to reflect the distinction between patterns and positions,
This theory could also follow the treatment of points used in geom-
etry, and prove identities only between those positions given as
belonging to the same pattern. A third approach refines the second
by reducing patterns to sets of positions just as model theory con-
strues models as sets built up from the domain of the model. One
could push this even further and construe positions themselves as
pure sets, thereby reducing so-called pattern theory to set theory.

In a sense these formal theories of patterns, through having posi-
tions that represent both positions and patterns that previously fell
outside the scope of identity, contravene my earlier claims about
identity. But in another sense they do not. For I have not claimed
that the various patterns mathematics studies (the natural number
sequence, the real line, etc.) are entities or identical to the patterns
treated as positions within one of the comprehensive accounts, but
rather that they could be reduced to them. To appreciate the differ-
ence we must turn to the subject of reduction in mathematics.
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4. COMPOSITE AND UNIFIED MATHEMATICAL
OBRJECTS

Before taking up mathematical reductions, I want to respond to a
common objection to structuralist accounts of mathematics. The
objection is that structuralists cannot account for the fact that cer-
tain mathematical objects, such as sets, vectors, and spaces, are com-
posed of others, because structuralists focus on relations between
mathematical objects and not on the objects themselves. A related
objection is that structuralism fails to explain why certain math-
ematical patterns are unified wholes while others are not. For
instance, some think that an ontological account of mathematics
must explain why a triangle is not simply a ‘random’ set of points.

In responding I will grant that it is certainly true that we tend to
think of sets, vectors, triangles, and spaces as made up of other
mathematical objects. It is also true that certain arrangements of
points (or other collections of mathematical objects) strike us as
having unity while others appear entirely random. These features of
mathematical experience should not be neglected, as they probably
provide the keys to explaining why mathematics developed as it did.®
But I deny that they are objective features of mathematical objects
or structures, that obtain independently of the way we think of these
structures and objects. Take sets, the paradigmatic compositional
mathematical objects. The mathematics of set theory applies to any
iterative hierarchy whether it is generated by a compositional rela-
tion or not. That is why, from the point of view of set theory, sets are
simply positions in iterative hierarchies. They appear to us to have
an internal structure only because we use compositional language
and analogies in elucidating their relationships. But while this
heuristic may be essential for our thinking about the hierarchy, and
perhaps even in grasping axioms and proofs, it is not reflected in the
content of set theory itself. For otherwise it could distinguish com-
positional iterative hierarchies—those with a ‘real’ membership rela-
tion—from those that have no ‘real’ membership relation.

In replying to the second objection, let me begin by remarking
that, by virtue of its generality and abstractness, mathematics

8 See Grosholz (1991) both for the source of the objections of the last paragraph
and for a valuable discussion of the importance of treating certain mathematical
objects as unified wholes.
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commits itself to geometric objects, functions, and sets whose fea-
tures strike us as ‘weird’, ‘pathological’, or without unity, and even
as not worthy of mathematical study. But again this is simply a
reflection of our interests and values, and not a matter of objective
features of mathematical objects. It is an objective feature of certain
functions that they cannot be defined by certain kinds of equations,
but it is only a reflection of our interests and values that they are
‘pathological’ or ‘disunified’ or ‘lawless’. Indeed, certain functions,
which were once not even considered to be functions at all, eventual-
ly were taken to be of great mathematical significance. In fact, the
current set-theoretic notion of a function evolved to accommodate
totally ‘lawless’ or disunified functions.?

Let me address another worry. It has been suggested to me that
while there may be no fact of the matter as to whether the natural
number 2 is identical to the Zermelo Two, surely the natural number
2, the positive integer 2, the positive rational 2, the positive real 2,
and the positive complex number 2 are all the same. Far from being
silent on this issue, mathematical practice seems to mark no distinc-
tion between these numbers. For example, there seems nothing amiss
in saying that

equations of the form ‘x?* = @’ have complex roots for any
choice of a, but their roots are integers only when g is the
square of a natural number,

which treats the integers and natural numbers as a species of com-

plex number.

I don’t think we should make much of this facet of mathematical
practice. First, it may be just a manner of speaking. For we can eas-
ily paraphrase the last example as asserting that the roots are inte-
gral only when a has a non-negative, integral square root. More
generally, we can account for mathematical practice by distinguish-
ing the real complex numbers from those that have imaginary parts,
the rational, real complex numbers from the irrational ones, and so
on, which is to recognize divisions within the complex numbers
without thereby identifying the reals, rationals, or integers with
these complex numbers. Second, mathematicians do not speak with
one voice on the issue of whether these numbers are the same. For
example, when defining the real numbers as sets, sequences, or series

¢ See, e.g. Davis and Hersh (1981),
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of rationals, some mathematicians carefully distinguish the rationals
from the ‘rational’ reals (that is, those generated by a rational).
Others simply define the reals implicitly as any system of things that
satisfies, say, the axioms for a continuously ordered field.

For the most part, however, mathematicians take the numbers as
given, and don't even consider the question as to whether, say, the
rational number 2 is identical to the real number 2. I suspect that if
asked whether they are, their first answer would be ‘Sure. What else
could they be? But such a reply is based upon the natural presump-
tion there is a fact of the matter here. This presumption is not a
piece of mathematics but rather a piece 6f background common
sense. And as such it is open to revision in light of deeper considera-
tions,

Notwithstanding these points, we can make sense of the claim
that the natural number 2 is the complex number 2 by likening the
historical development of the complex number system to the step-
by-step construction of a complicated pattern through adding posi-
tions to an initially simple one. Think of this in diagrammatic terms.
Suppose that one starts with a dot diagram representing positions in
a pattern, and adds more dots to it. Then the old dots are part of the
new diagram; so the old positions are represented as among the new.
Furthermore, if one marked the original dots with a colour, say,
then they would not be lost among the new ones. Now until math-
ematicians started explicating the higher numbers as sets or ordered
pairs of lower ones, they tended to think of the integers, rational,
real, and complex numbers as additions to the previously accepted
number systems. From that point of view, one adds, say, the irra-
tionals to the rationals in constructing the real number system, but
one doesn’t add 2, —3, or Y4, because they are, so to speak, already
there. To describe this in terms that I will use in Section 6 below, sup-
pose that we take the term ‘the natural numbers’ at face value, and
also describe the complex number system as the extension of the
natural numbers obtained through closing the latter under algebraic
operations, Then not only will there be a fact of the matter as to
whether the natural numbers are among the complex numbers, it
will be true that they are.
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5. MATHEMATICAL REDUCTIONS

The natural number sequence, gua pattern, has multiple occurrences
within iterative set-theoretic hierarchies, qua patterns. Consequently
even categorical versions of number theory can be interpreted as
dealing with any of these patterns and the set of its true sentences
will remain intact. But there is no one correct interpretation.
Reflecting on geometric cases explains why this is as it should be. If
we completely describe the relationships of a set of points in a geo-
metrical figure, that description continues to hold if we think of that
figure as embedded in a larger one. The difference is that our
description will not cover the relationships these points have to new
points of the containing figure and will fail to characterize that fig-
ure.

Philosophers have called developments of number theory within
set theory reductions of number theory to set theory. Generally when
the pattern or patterns one theory treats occur within the pattern or
patterns another theory treats, the former can be reduced to the
latter. Now when one is interested in proving that one theory is con-
sistent relative to another or in comparing the expressive and deduc-
tive strength of theories, it can be important to know that one
theory can be reduced to another. In practice, however, the reduc-
tion of number theory to set theory has had little effect on math-
ematics at large. Most books on set theory develop the natural
numbers in terms of sets, because doing so illustrates the power of
set theory and leads to more elegant formulations of certain theo-
rems, For example, using von Neumann’s reduction allows one to
derive both finite and transfinite induction from the well-founded-
ness of set membership. On the other hand, books on number the-
ory, topology, algebra, or analysis often begin with both numbers
and sets.

The reduction of the real numbers to sets, converging sequences,
or infinite series of rational numbers had considerable mathematical
significance when Dedekind, Weierstrass, and Cantor presented
these results, because they allowed mathematicians to avoid basing
real analysis on questionable geometric intuitions. It also provided
standard, rigorous methods for specifying specific real numbers, as
one might need to do in proving existence theorems or results about
specific reals, such as e or pi. Frege famously argued that number
theory suffered from a similar lack of rigorous foundations, With
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hindsight we can see that from the mathematical point of view,
determining the correct reduction of the real numbers or natural
numbers was less important than the non-reductionist projects of
characterizing the natural number sequence and real line or axioma-
tizing the standard theorems of number theory and real arithmetic.

Another phenomenon which has greatly changed mathematics
has been the adoption of set theory as the background framework
for working mathematics. This has led to treating as sets certain
structures, such as the natural number sequence or the real line,
which were previously not treated as mathematical objects at all. Put
in my terms, it has resulted in representing as positions certain pat-
terns, which were not previously treated as positions. One can see
this change by looking at the different emphases of pre-set-theoretic
and post-set-theoretic mathematics. Courant and Robbins’s famous
book What is Mathematics? illustrates the pre-set-theoretic ap-
proach to mathematics (although it does contain discussions of
sets). The book is almost exclusively about the elements of tradi-
tional mathematical structures—-the various numbers, geometrical
objects, and functions. Most of its theorems can be formalized in the
first-order theory of these objects. Loosely speaking, these results
were obtained by working within structures rather than by working
with structures. Compare this with recent books on topology or
algebra. Here the emphasis is upon the various structures them-
selves, what their substructures are, and how they are related to
other structures. To formalize such theorems we must use theories in
which structures themselves can be taken as individuals, and this has
been greatly facilitated by the introduction of set-theoretic methods,

Category theory also promotes working with structures as
opposed to working within them. In the category of vector spaces,
for example, the positions are vector spaces and morphisms between
them, and the theory of this category attempts to describe how these
positions are related. Indeed, under the categorical approach to
mathematical objects one tries to show how their supposedly inter-
nal features can be characterized solely in terms of their relation-
ships. This is nicely illustrated through the category-theoretic
definition of a function /s being one—one {monic). Instead of the
usual

(1) fis I-1 iff f(x) = f(y) only if x = y, for all arguments x,y,

category theory uses
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(2) fis 1-1 (monic) iff fg = fh only if g = A for all functions g
and A,

which transfers the matter from the nature of the function’s ordered
pairs to the way in which it composes with other functions. Here
instead of treating functions as composed of their arguments and
values, one treats them as positions in the pattern generated by the
composition relation,

Thus post-set-theoretic mathematics is no exception to the rule
that the objects of a mathematical theory are the positions in the
structures it describes. And even when speaking of structures as
mathematical objects, it does so by taking them as elements of ‘larg-
er’ structures, such as a hierarchy of sets or a category.

We now have two kinds of reduction, With the first, one pattern
occurs in another and the theory of the former is reiterated in the
theory of the latter. With the second, patterns themselves are posi-
tionalized by being identified with positions of another pattern,
which allows us to obtain results about patterns which were not even
previously statable. It is the second sort of reduction which has sig-
nificantly changed the practice of mathematics. To these two we
might add a third kind, which often arises when mathematical mod-
elling is applied to mathematics itself. I have in mind such ‘reduc-
tions’ as those provided in computability theory, where algorithms
are variously identified with Turing machines, recursive functions,
and so on, and proof theory, where syntax is arithmetized.

With each sort of reduction, we are tempted to ask whether the
reduced things are in fact identical to the reducing ones.
Philosophers have been fascinated by the first kind of reduction,
wanting to know what numbers really are. And we now see that they
might also have wondered whether the natural number sequence is a
set, or whether all algorithmic functions are recursive, as indeed
some mathematicians have.

These questions are ambiguous. Taken one way, the question
about numbers, for instance, simply asks whether certain sets are
sets. To be interesting, the questions should be taken as asking
whether certain things known to us before the advent of set theory
(or recursion theory, etc.) are sets (recursive functions, etc.). Since,
on my view, sets (recursive functions, etc.) are positions in certain
patterns, I take the questions to ask whether things which are not
known to be or not given as positions of certain patterns are posi-
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tions in them. The very fact that our language allows us to invent
singular terms more or less at will and to form identities between
them gives these questions prima facie sense. But how could we find
their answers? Not by mathematical means. No new theorems will
settle them. Taken non-trivially, these questions are not even in the
language of a single mathematical theory. They can, to be sure, be
‘resolved’ by forming the union of the relevant languages and
adding new identities (or non-identities) as axioms. However, (local)
mathematical evidence cannot decide between various resolutions,
since it makes no difference to the content of mathematics whether,
for instance, we do set theory with number theory on top of it, so to
speak, or whether we do it with number theory reduced to it.

Thus mathematical reductions cannot tell us what numbers, func-
tions, and sets are in any factual sense, but they can lead us from a
defective conception or theory of mathematical objects of a given
kind to more adequate ones. For example, to someone who objects
to functions on the grounds that they involve intensional notions
such as rules, we might respond that functions can be treated as
nothing but sets of ordered pairs. Or to someone who thinks that the
foundations of mathematical analysis are actually geometric intu-
itions of limited reliability,'? we can reply by pointing to the arith-
metical foundations of analysis. There is nothing wrong with this
sort of response, so long as we realize that we are not claiming that
functions conceived as rules are the same as functions conceived as
sets or that a geometric curve is identical with a set of numbers.
What we are doing is pointing out that we can discard worries about
intensionality or geometric intuitions by using a less problematic
theory which can serve the mathematical ends of the original one.

Something like this can be said about the suggestions given at the
end of Section 3 for a formal pattern theory—although I do not
think of my view as a mathematical theory. Those who want to
prove theorems about ‘patterns’ and find my informal exposition too
imprecise might prefer to model or ‘reduce’ patterns by using pure
sets. But the switch would be like other mathematical reductions;
there would be no fact of the matter as to whether the old and new
theories had the same ontology.

10 See Giaquinto (1994) concerning such limitations.
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6. REFERENCE TO POSITIONS IN PATTERNS

We can describe patterns in a number of ways. We might state how
many positions a pattern has and how they are related. Or we might
point to an arrangement and add that it instantiates the pattern we
have in mind. Or we might introduce labels for positions in our pat-
tern and use them to state how its positions are related to each other.
But no mathematical description of a pattern—not even one by
means of a categorical set of axioms—will differentiate its occur-
rences within other patterns from each other or from its occurrences
in isolation; unless the description also states that the pattern occurs
within a certain containing pattern. For mathematics only describes
structures up to isomerphism, except when it describes them as
embedded in other structures. This is another facet of the thesis that
there is no fact of the matter as to whether two positions are the
same unless they belong to the same pattern; since if a description of
a pattern could distinguish its positions from those of its occur-
rences in other patterns then it could also distinguish the occur-
rences themselves.

But if there is no fact of the matter as to whether the positions in
a pattern are the same or distinct from those in one of its occur-
rences, then there is none as to whether general or singular terms
refer to the positions in the one rather than the positions in the
other. This point applies evenr when reference is immanent and dis-
quotational. For the predicate ‘number’ (‘set’) refers to a thing if
and only if it is a number (respectively, a set). Hence ‘number’ refers
to sets just in case numbers are sets. So if there is no fact to the mat-
ter as to whether numbers are sets, then there is none as to whether
‘number’ refers to sets,

Despite this, ‘number’ refers to numbers; and there are plenty of
facts concerning what it does or does not denote. For instance, it
does not refer to the even numbers only, because not all numbers are
even. I am taking reference immanently, of course, which presup-
poses taking my language at face value. But it is difficult to under-
stand how I could seriously wonder whether the term ‘number’
refers to something other than numbers. For even to begin would
require rejecting the principle

‘number’ refers to numbers,
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and to adopt a theory of reference in which this disquotational prin-
ciple can be blocked,

Such a theory would be a transcendent one that characterized ref-
erence in terms of some relation, R(1,0), applying to terms ¢ in arbi-
trary languages and objects o. This would allow us to conclude such
things as:

Contrary to what Priestly thought, his term ‘dephlogistonated
air’ referred to oxygen and not to air from which phlogiston

had been removed.

A supposed virtue of such a theory is that it recognizes facts con-
cerning the references of a foreigner’s terms. But this is a dubious
virtue when it comes to mathematical terms, For unless the theory is
restricted it will generate facts where there are none to be had. It will
do so by equating or distinguishing the positions to which foreigners
refer with some of those to which we refer.

Still one might wonder how reference is possible even in the dis-
quotational, immanent sense I use. It is simply by taking our lan-
guage at face value, and not raising wholesale questions concerning
its references. In short, we accept disquotational biconditionals such
ast

‘Set’ refers to something just in case it is a set,

and forswear asking the further question of whether the term ‘set’
on the right-hand side actually refers to, say, functions or ordinal
numbers. In a sense, this makes reference relative, as Quine would
say, because it is relative to taking our language at face value. Within
it, however, reference is absolute: I still use a two-place predicate ‘¢
refers to 0’11

By the same token, ascribing an ontology to our theories makes
sense only relative to taking their language at face value. Thus tak-
ing the language of number theory at face value, we can conclude
that its variables range over numbers, but there is no fact of the mat-
ter as to whether they range over sets. It may seem 1 have done away
with mathematical reality or with the view that mathematical truth
is a matter of the way in the world is. But I am not renouncing

't However, I do use different predicates for different kinds of terms. Cf. my
{Sing) and (Pred}) of Chapter 9,
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mathematical objects (positions) or denying that the way they are
related determines what is true in mathematics. My claim is that
there is enough slippage between our theories of patterns and the
patterns themselves to affect reference. But it does not affect truth.
For the truths of a theory of a pattern are invariant under all rein-
terpretations in patterns congruent in it.

7. CONCLUDING REMARKS ON REFERENCE AND
REDUCTION

I want to emphasize that [ do not mean to preclude formal seman-
tics. For this is something we do within a metatheory, whose lan-
guage we take at face value and use to assign references to the terms
of an object language. Thus by taking set theory as our metatheory
and using its terms to fix an omega sequence (for example, the von
Neumann ordinals) we can interpret number theory within set the-
ory. This does give rise to a relative sense of ‘reference’, since relative
to this interpretation the term *number’ denotes sets, and it also
gives rise to a relative sense of truth—truth under an interpretation.
Reference and truth both taken as relative to an interpretation are
transcendent notions, which I find clear and acceptable, so long as
one forswears claims about the correctness of isomorphic interpre-
tations.

I am not ruling ontological reforms out of court, so long as they
are viewed in the spirit of my discussion of mathematical reduc-
tions. The reformist tries to persuade us that we can use one theory
(say, set theory) rather than a motley, On my view, we would belie no
ontological facts in making the switch. However, whether we ought
to do so is another matter, which depends not upon ontology but
rather upon our aims and purposes.

My own aims have not been reductive or foundational. When
Frege—and Dedekind too—asked what numbers were, mathematics
had neither an adequate characterization of the natural number
sequence nor an axiomatic basis for number theory. Their question
was in fact a demand that mathematics develop an adequate concep-
tion of the numbers. One way to do this is to clarify the foundations
of number theory itself, and that clarification was a direct result of
their work. Another way is to explicate numbers by means of entities
for which we already have an adequate conception. Frege and his
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successors tried this using sets, but enough doubt has been cast upon
our conception of sets for us to regard this reduction of numbers
today as often not conceptually clarifying in itself.

1 have been taking yet another approach to the question of what
mathematical objects are. The problem is no longer one of clarifying
our mathematical conceptions. Rather it is a problem of finding a
philosophical interpretation of them. My suggestion that mathe-
matical objects are positions in patterns is not intended as an onto-
logical reduction. My intent